
HAL Id: tel-01996910
https://theses.hal.science/tel-01996910

Submitted on 28 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Quelques applications de l’optimisation numérique aux
problèmes d’inférence et d’apprentissage

Hariprasad Kannan

To cite this version:
Hariprasad Kannan. Quelques applications de l’optimisation numérique aux problèmes d’inférence et
d’apprentissage. Intelligence artificielle [cs.AI]. Université Paris Saclay (COmUE), 2018. Français.
�NNT : 2018SACLC067�. �tel-01996910�

https://theses.hal.science/tel-01996910
https://hal.archives-ouvertes.fr

.

T
h
ès

e
d
e

d
o
ct

o
ra

t
N

N
T

:
2
0
1
8
S
A

C
L

C
0
6
7

Quelques applications de l’optimisation

numérique aux problèmes d’inférence et

d’apprentissage

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

Ecole doctorale n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat: Mathematiques et Informatique

Thèse présentée et soutenue à Gif-sur-Yvette, le 28 septembre, 2018, par

Hariprasad Kannan

Composition du Jury :

Josiane Zerubia

Directrice de Recherche, Inria Sophia Antipolis Présidente

Laurent Najman

Professeur, Université Paris-Est Rapporteur

M. Pawan Kumar

Professeur, University of Oxford Rapporteur

Nikos Komodakis

Professeur, École des Ponts ParisTech Examinateur

Yuliya Tarabalka

Chargée de Recherche, Inria Sophia Antipolis Examinatrice

Nikos Paragios

Professeur, CentraleSupélec Directeur de thèse

Frédéric Chazal

Directeur de Recherche, Inria Saclay Invité

.

.

T
h
ès

e
d
e

d
o
ct

o
ra

t
N

N
T

:
2
0
1
8
S
A

C
L

C
0
6
7

Few Applications of Numerical Optimization

in Inference and Learning

PhD thesis of Paris-Saclay University
prepared at CentraleSupélec

Doctoral School n◦580 Sciences et Technologies de l’Information et de la
Communication (STIC)

PhD specialty: Mathematiques et Informatique

Thesis presented and defended at Gif-sur-Yvette, on 28th septembre, 2018, by

Hariprasad Kannan

Composition of the Jury :

Josiane Zerubia

Director of Research, Inria Sophia Antipolis Chair

Laurent Najman

Professor, Université Paris-Est Reviewer

M. Pawan Kumar

Associate Professor, University of Oxford Reviewer

Nikos Komodakis

Associate Professor, École des Ponts ParisTech Examiner

Yuliya Tarabalka

Researcher, Inria Sophia Antipolis Examiner

Nikos Paragios

Professor, CentraleSupélec Advisor

Frédéric Chazal

Director of Research, Inria Saclay Invited member

.

3

Few Applications of Numerical Optimization in

Inference and Learning

Abstract

Numerical optimization and machine learning have had a fruitful relationship,
from the perspective of both theory and application. In this thesis, we present
an application oriented take on some inference and learning problems. Linear
programming relaxations are central to maximum a posteriori (map) inference in
discrete Markov Random Fields (mrfs). Especially, inference in higher-order mrfs
presents challenges in terms of efficiency, scalability and solution quality. In this
thesis, we study the benefit of using Newton methods to efficiently optimize the
Lagrangian dual of a smooth version of the problem. We investigate their ability
to achieve superior convergence behavior and to better handle the ill-conditioned
nature of the formulation, as compared to first order methods. We show that it
is indeed possible to obtain an efficient trust region Newton method, which uses
the true Hessian, for a broad range of map inference problems. Given the specific
opportunities and challenges in the map inference formulation, we present details
concerning (i) efficient computation of the Hessian and Hessian-vector products, (ii)
a strategy to damp the Newton step that aids efficient and correct optimization, (iii)
steps to improve the efficiency of the conjugate gradient method through a truncation
rule and a pre-conditioner. We also demonstrate through numerical experiments how
a quasi-Newton method could be a good choice for map inference in large graphs.
map inference based on a smooth formulation, could greatly benefit from efficient
sum-product computation, which is required for computing the gradient and the
Hessian. We show a way to perform sum-product computation for trees with sparse
clique potentials. This result could be readily used by other algorithms, also. We
show results demonstrating the usefulness of our approach using higher-order mrfs.
Then, we discuss potential research topics regarding tightening the lp relaxation
and parallel algorithms for map inference.

Unsupervised learning is an important topic in machine learning and it could
potentially help high dimensional problems like inference in graphical models. We
show a general framework for unsupervised learning based on optimal transport and
sparse regularization. Optimal transport presents interesting challenges from an
optimization point of view with its simplex constraints on the rows and columns of
the transport plan. We show one way to formulate efficient optimization problems
inspired by optimal transport. This could be done by imposing only one set of
the simplex constraints and by imposing structure on the transport plan through
sparse regularization. We show how unsupervised learning algorithms like exemplar
clustering, center based clustering and kernel pca could fit into this framework
based on different forms of regularization. We especially demonstrate a promising
approach to address the pre-image problem in kernel pca. Several methods have
been proposed over the years, which generally assume certain types of kernels or have

4

too many hyper-parameters or make restrictive approximations of the underlying
geometry. We present a more general method, with only one hyper-parameter to
tune and with some interesting geometric properties. From an optimization point of
view, we show how to compute the gradient of a smooth version of the Schatten
p-norm and how it can be used within a majorization-minimization scheme. Finally,
we present results from our various experiments.

Quelques applications de l’optimisation numérique aux

problèmes d’inférence et d’apprentissage

Résumé

Les interactions entre optimisation numérique et apprentissage automatique ont
apportées de nombreuses avancées tant du point de vue théorique que pratique.
Cette thèse traite de problématiques applicatives d’inférence et d’apprentissage. Les
relaxations en problème d’optimisation linéaire jouent un rôle central en inférence
du maximum a posteriori (map) dans les champs aléatoires de Markov discrets.
L’inférence dans les champs aléatoires de Markov d’ordre élevé représente notam-
ment un défi en terme d’efficacité, de mise à l’échelle et de qualité de la solution.
Nous étudions ici les avantages offerts par les méthodes de Newton pour résoudre
efficacement le problème dual (au sens de Lagrange) d’une reformulation lisse du
problème. Nous comparons ces dernières aux méthodes de premier ordre, à la fois
en terme de vitesse de convergence et de robustesse au mauvais conditionnement
du problème. Nous montrons qu’il est en effet possible d’obtenir une méthode de
Newton à région de confiance compétitive basée sur la Hessienne pour un large
panel de problèmes d’inférence map. Etant donnés les défis et les opportunités
spécifiques à la formulation de l’inférence map, nous présentons en détail (i) le calcul
rapide de la Hessienne ainsi que son produit par un vecteur, (ii) une stratégie pour
amortir le pas de Newton visant à améliorer la précision et à diminuer le temps
de calcul (iii) les différentes étapes pour améliorer l’efficacité de la méthode du
gradient conjugué au travers de la règle de troncature et d’un préconditionneur.
Nous démontrons également, au travers de simulations numériques, que le choix
d’une méthode de quasi-Newton peut être avantageux pour l’inférence map dans
des graphes de grandes dimensions. L’inférence map basée sur une formulation lisse
peut grandement tirer profit d’un calcul rapide de somme-produit qui est nécessaire
à la fois lors du calcul du gradient et de la hessienne. Nous détaillons une technique
pour calculer la somme-produit pour des arbres contenant des cliques aux potentiels
parsimonieux. Cette dernière peut également être facilement étendu à d’autres
algorithmes. Nous montrons plusieurs résultats prouvant l’utilité de notre approche
en utilisant des champs aléatoires de Markov d’ordre plus élevé. Nous discutons
ensuite d’éventuels extensions liées à une relaxation plus stricte et à l’utilisation
d’algorithmes parallèles pour l’inférence map.

L’apprentissage non-supervisé est un domaine de l’apprentissage automa-
tique d’un intérêt particulier pour les problèmes de grande dimension comme
l’inférence dans les modèles graphiques. Nous exposons donc un cadre général
pour l’apprentissage non-supervisé basé sur le transport optimal et les régularisa-
tions parcimonieuses. Le transport optimal soulève des défis intéressants du point
de vue de l’optimisation, de par ses contraintes de type simplexe sur les lignes et les
colonnes du plan de transport. En s’inspirant du transport optimal, nous présentons
une méthode pour formuler des problèmes d’optimisation avantageux en imposant

6

un unique ensemble de contraintes de type simplexe, ainsi qu’une structure sur le
plan de transport au travers d’une régularisation parcimonieuse. Nous montrons
alors que les algorithmes d’apprentissage non supervisé, tels que les méthodes de
partitionnement des données et l’acp à noyau, rentrent dans ce cadre selon les dif-
férentes regularisations. Nous exhibons notamment une approche prometteuse pour
résoudre le problème de la préimage dans l’acp à noyau. Bien que de nombreuses
méthodes similaires aient été proposées durant les dernières années, celles-ci ne
fonctionnent que pour certains noyaux particuliers, possèdent de trop nombreux
hyperparamètres ou encore imposent des approximations trop restrictives sur la
géométrie sous-jacente du problème. Nous construisons dans cette thèse une méthode
plus générale avec un unique hyper-paramètre à régler et qui possède des propriétés
géométriques intéressantes. Du point de vue de l’optimisation, nous décrivons le
calcul du gradient d’une version lisse de la norme p de Schatten et comment cette
dernière peut être utilisée dans un schéma de majoration-minimisation. Enfin, nous
discutons les résultats de nos diverses simulations numériques.

Learning is a shoreless sea; the learner’s time is limited;
Prolonged study is beset with many ills;

With clear discrimination learn what’s good for you;
Like the swan that leaves the water, to drink the milk.

Acknowledgments

I would like to thank my advisor, Nikos Paragios, for giving me the great opportunity
to pursue a PhD. Several years back, I had come across the book "Handbook of
Mathematical Models in Computer Vision" and it felt like a nice foundation to
someone working in an applied area like computer vision. I have fond memories
of reading the chapter written by him. Being on the technical path has been a
long-standing dream and I am happy that I ended up pursuing my PhD with the
person who wrote that chapter and also, co-edited that book.

I would like to thank my labmates for their help in various ways - getting a
place in the creche for my son, applying for carte vitale, obtaining CAF, finding a
place to stay, making phone calls in French and calling me for lunch. I thank Alp,
Arthur, Enzo, Eugene, Evgenios, Guillaume, Jiaqian, Khue, Maria, Marie-caroline,
Maxim, Mihir, Puneet, Pritish, Rafael, Siddharth, Stavros (both), Stefan, Vivien
and Wacha. The help of my labmates has been critical, to say the least. I thank
the administrators of my lab, Natalia, Jana and Alexandra, for all their support
to take care of various challenges that keep coming up. At this point, I thank the
administrators and technical staff at CentraleSupélec, which includes Antony, Prof.
Duc and Mme. Batalie. I thank the other researchers in the lab, who added to the
dynamic atmosphere in the lab: Edouard, Émilie, Eva, Fragkiskos, Iasonas, Marc,
Matthew, Prof. Pesquet and Prof. Talbot.

I thank my thesis reviewers, Prof. Laurent Najman and Prof. Pawan Kumar,
for their time and feedback. I appreciate their effort and their specific inputs. It
has helped me as a researcher. I thank the rest of the members of the jury, Prof.
Josiane Zerubia, Prof. Nikos Komodakis and Prof. Yuliya Tarabalka, for their
support, which I will always appreciate. I thank Prof. Komodakis for the technical
discussions. I thank Prof. Francis Bach for his time to discuss technical matters. It
is nice to see his dedicated effort towards work. I thank the people who introduced
me to him.

I thank my parents for their love. They have been instrumental in shaping my
thoughts about studies during my childhood. I thank my in-laws for helping to
take care of my son during crucial junctures. I thank my wife’s manager, Mr. S. V.
Desai, for his support. I thank my wife and my son for the various ways in which
they have supported me in this pursuit.

Contents

1 Introduction 3

2 lp Relaxations for map Inference 5

2.1 Notation and Terminology . 6
2.2 map inference . 6
2.3 Exact inference in hypertrees . 9
2.4 LP relaxation based approach . 10
2.5 Efficient dual based formulation . 15
2.6 Unconstrained dual . 18

3 Optimization Algorithms for map Inference 21

3.1 Supergradient based optimization . 21
3.2 Smooth accelerated gradient method 22
3.3 Coordinate Maximization Methods 25
3.4 Augmented Lagrangian Methods . 28

3.4.1 ad3 . 29
3.5 Estimating primal variables . 31
3.6 Lipschitz constant of the smooth dual 33
3.7 Dual decomposition for large graphs 34
3.8 Efficient belief propagation in trees 36

4 Newton Methods and Linear System Solvers 39

4.1 Linear System Solvers . 41
4.2 The Conjugate Gradient Method . 42
4.3 Convergence of CG and Preconditioning 45
4.4 Truncated Newton methods . 47

4.4.1 Truncating cg iterations . 47
4.5 Line search Newton . 48
4.6 Trust-region Newton . 50
4.7 The Steihaug Method . 51
4.8 Damping matrix based approach . 52
4.9 Quasi-Newton methods . 53
4.10 Preconditioning . 55

4.10.1 Diagonal preconditioner . 56
4.10.2 Block diagonal preconditioner 56
4.10.3 Incomplete Cholesky Preconditioner 56
4.10.4 Multigrid Preconditioner . 57
4.10.5 Quasi-Newton preconditioner 57
4.10.6 Combinatorial preconditioner 58

4.11 Hessian-vector products . 58

4 Contents

5 Newton Methods for Inference in Higher-order Markov Random

Fields 59

5.1 Ill-conditioning and affine invariance 59
5.1.1 Hessian related computations 59
5.1.2 Damping matrix approach . 61
5.1.3 Forcing sequence for CG truncation 62
5.1.4 Clique based Preconditioner 62
5.1.5 Backtracking search . 63
5.1.6 Annealing schedule and stopping condition 63
5.1.7 trn-mrf algorithm and parameter settings 64

5.2 Quasi-Newton approach for large graphs 64
5.3 Experiments . 65

5.3.1 Higher-order Stereo . 68
5.4 Discussion . 68

6 Some thoughts on continuous relaxation based map inference 71

6.1 Notes about Newton methods . 71
6.1.1 Stochastic Newton . 71
6.1.2 Partial separability and quasi-Newton methods 71
6.1.3 Projected Newton for small and medium graphs 72

6.2 Preconditioning first order optimization methods 72
6.3 Numerical linear algebra and Graphical models 73
6.4 Tightening the relaxation . 73
6.5 Parallel algorithms to solve the lp relaxation 74

6.5.1 Enforcing node consensus in distributed setting 76
6.5.2 A note on asynchronous projected gradient for map inference 77

7 Unsupervised learning: a perspective based on optimal transport

and sparse regularization 79

7.1 Archetypal analysis . 81
7.2 A loss encouraging reduced output variance 83
7.3 K-medoids clustering . 84
7.4 Center based clustering . 86
7.5 Kernel PCA and the pre-image problem 87

7.5.1 Our Approach . 91
7.5.2 Optimization . 93
7.5.3 Out-of-sample extension . 94
7.5.4 Robust pairwise cost . 95

7.6 Experiments . 96
7.7 Concluding remarks . 99

8 Conclusion 101

Contents 5

9 Appendix 103

9.1 Convex Optimization . 103
9.1.1 Halfspace . 103
9.1.2 Dual norm . 103
9.1.3 Fenchel conjugate . 103
9.1.4 α strong convexity . 103
9.1.5 L smoothness . 103
9.1.6 Strict convexity . 104
9.1.7 Prox function for the simplex 104
9.1.8 M norm of a vector . 104

9.2 Numerically stable sum-product computation 104
9.3 Gradient of Variational Majorant . 105

Bibliography 107

List of Figures

2.1 (a) A graph with pair-wise edges: nodes = {v1, v2, v3, v4, v5} and
edges = {{v1, v2}, {v2, v3}, {v2, v4}, {v2, v5}, {v4, v5}} (b) A hyper-
graph with hyperedges: nodes = {v1, v2, v3, v4, v5} and hyperedges =
{{v1, v2, v3}, {v2, v3}, {v3, v4, v5}} . 5

2.2 Sepset based visualization of a clique tree, where ovals indicate cliques
and rectangles indicate sepsets. 9

2.3 A cartoonish illustration of the relationship between the marginal
polytope M(G) and the local polytope L(G). All the corners of
M(G) are also corners of L(G). L(G) also has fractional corners. The
fact that L(G) has lesser number of facets than M(G) is difficult to
visualize. Image courtesy [Wainwright 2008]. 14

3.1 Superlevel sets of two dimensional non-smooth problems: (a) Sepa-
rable non-smooth part, guaranteed convergence to global optimum
(b) General non-smooth function, with a shape that is not favourable
to coordinate ascent. Image courtesy G. Gordon & R. Tibshirani,

Optimization 10-725 slides, CMU. 26
3.2 A clique chain. 37

4.1 Computing the Newton direction by forming the
quadratic approximation. Image adapted from

https://suzyahyah.github.io/calculus/optimization/2018/04/06/Taylor-

Series-Newtons-Method.html. 39
4.2 For an ill-conditioned problem, the quadratic approximation is a long

bowl. Image adapted from [Nocedal 2006, §4]. 51

5.1 The two components of the Hessian. Within each component, blocks
of the same color have the same values. In component one, there are as
many unique blocks as cliques. In component two, each row/column
of blocks has the same block, corresponding to the shared node. . . . 60

5.2 Matching 1st frame to 90th frame. 67
5.3 Tsukuba and Venus results for quasi-Newton. 69

7.1 Two dimensional data with 60 points. (left) frobenius norm based
loss, (right) optimal transport based loss. Optimal transport based
loss penalizes variance of the output points and those points are close
to or coincide with input points. 97

7.2 From left to right: [Mika 1999], [Kwok 2004], [Bakir 2004], our ap-
proach. [Mika 1999] and [Kwok 2004] use rbf kernel. [Bakir 2004]
and ourselves use polynomial kernel. 97

Chapter 1

Introduction

In this thesis, we will see how numerical optimization could be applied to address
some problems in computer vision and machine learning. The two types of problems
that we will be looking at are (i) maximum a posteriori (map) inference in Markov
random fields (mrfs), (ii) some topics in unsupervised learning. For various machine
learning problems, numerical optimization helps with formulating ideas, designing
algorithms and analysing guarantees. Some of the challenges that we come across
while working with numerical optimization are: 1. the trade-off between tractability
and performance while working with a convex formulation of a learning task; 2.
exploiting problem structure to achieve an efficient and scalable algorithm. We hope
to better appreciate these aspects through this thesis.

Many computer vision problems can be modelled using Markov Random Fields
(mrfs), an undirected graphical model. Maximum a posteriori (map) estimation
in an mrf, is the process of assigning labels to the nodes of the graph, in order
to maximize the joint probability distribution. Among various approaches for
performing map inference, the lp relaxation based approach has theoretical and
practical advantages. We will understand these aspects better in chapter (2). Over
the years, there have been several algorithms to solve the lp relaxation. We will get
a taste for some of them in chapter (3).

In recent years, Newton methods have led to impressive results in various optimiza-
tion based machine learning algorithms [Schmidt 2010,Martens 2010,Lee 2012,Schein-
berg 2016]. These methods are able to move along a better direction in the landscape
of the objective function by considering curvature information and have quadratic
convergence rate when sufficiently close to the optimum. One of the challenges
while solving any optimization problem, is the conditioning of the objective function.
Intuitively, a problem is ill-conditioned if the change in the objective value, due to a
perturbation in the variable value, could vary radically depending on the direction
of the perturbation. This nature of the objective function is characterized by the
condition number. Theoretical and empirical evidence show that first order methods
are faster when the condition number is small or moderate but second order Newton
methods perform much better for ill-conditioned problems [Fountoulakis 2015]. A
first order method makes progress by considering only gradient information. On
the other hand, a second order method considers the curvature, which is quantified
by the Hessian. In map inference for mrfs, we will see that we will come across
ill-conditioned optimization problems. We will get a better understanding of Newton
methods in chapter (4) and go through our numerical experience with Newton
methods for map inference in chapter (5). To better appreciate future research

4 Chapter 1. Introduction

possibilities, we will discuss various avenues in the topic of map inference in chapter
(6).

We will look at some unsupervised learning problems in chapter (7), which form
the second type of problems that this thesis has focused on. We would like to point
out that graphical models are high dimensional by nature and unsupervised learning
has an important role to play in making graphical models more scalable. In this
work, we will discuss how some unsupervised learning problems could be formulated
using sparse regularizers [Mairal 2014] along with a loss function based on optimal
transport [Kolouri 2017]. We will see how different sparse regularizers encourage
different structures in the output. We will see how the loss function based on optimal
transport ties with a topic called archetypal analysis in unsupervised learning. A
comparison of the optimal transport inspired loss and the loss based on Frobenius
norm will be made. The algorithmic aspects for each of the optimization problems
will also be discussed.

Chapter 2

lp Relaxations for map

Inference

Many problems involve a set of interacting random variables, where the joint
probability distribution is over the product space of the random variables. Even
though such product spaces are very large, there will be some structure in how
the random variables interact. Probabilistic graphical models [Koller 2009,Wain-
wright 2008,Koller 2007] model such problems, via directed or undirected graphs,
where the nodes are the random variables and the interactions are represented by
edges. In this thesis we will focus on undirected graphical models, which are referred
to as Markov random fields (mrfs). Several real world problems in diverse fields
such as computer vision [Blake 2011], natural language processing [Sutton 2012],
communication systems [Frey 1998], sensor networks [Chen 2006], computational
biology [Ma 2014] etc, could be modeled by mrfs. The random variables could
take continuous or discrete values. We focus on discrete values or labels in this
thesis. A graph can have edges between pairs of nodes or hyperedges which are
comprised of three or more nodes. A graph with hyperedges is a hypergraph (fig-
ure 2.1). Markov random fields with hyperedges are called higher-order Markov
random fields. In recent years, higher-order mrfs have achieved excellent results
in various applications, since they model far-reaching interactions between the
nodes. Development of scalable and efficient techniques for higher order models is
an evolving topic [Ishikawa 2011], [Komodakis 2009], [Kohli 2009], [Fix 2014], [Kol-
mogorov 2015], [Vineet 2014]. You will find a bias towards higher-order mrfs in
this thesis.

Figure 2.1: (a) A graph with pair-wise edges: nodes = {v1, v2, v3, v4, v5} and edges =
{{v1, v2}, {v2, v3}, {v2, v4}, {v2, v5}, {v4, v5}} (b) A hypergraph with hyperedges:
nodes = {v1, v2, v3, v4, v5} and hyperedges = {{v1, v2, v3}, {v2, v3}, {v3, v4, v5}}

6 Chapter 2. lp Relaxations for map Inference

2.1 Notation and Terminology

We will clarify some notation and graph theoretic language before we go further.
A graph G is made of nodes, with V denoting the set of all nodes. We will use
capital letters to denote random variables. We will usually work with n discrete
variables X1, ..., Xn and they correspond to the nodes in a graph. Each variable
Xi takes labels from a set of labels li of size li. Generally, it is possible for each
node i to have a separate set of labels, i.e., li and li could change with i. In
practice, we may see all variables taking labels from a common set l of size l. A
particular realization (labelling) of Xi is denoted by xi. A clique is a set of nodes
such that every pair of nodes has an edge between them. In the language of graph
theory, the nodes of a clique induces a complete subgraph. In this thesis, a clique
could be a pairwise edge or a hyperedge depending on the context. The set of all
hyperedges/cliques is denoted as C. Thus, each c ∈ C is a subset of variables. Note
that even though small e is the standard notation for (hyper)edges in graphs, in the
graphical models literature, we refer to them as cliques, with small c’s. The set of
variables corresponding to a clique c is indicated by bold capital letters, e.g., Xc.
Thus, X denotes the set of all variables in the graph. The nodes of a clique each
take a label, thus together they lead to a realization (labelling) of the clique, which
we refer to as xc, the bold notation shows that it is a vector of node labels. Thus
the clique could be assigned a label from a set lc, whose size is equal to the product
of the label set sizes of the clique’s nodes.

2.2 map inference

A natural question to ask is, what does the notion of a graphical model on a set of
random variables signify? Here we will discuss what properties about the variables
is captured by an undirected graphical model. First, conditional independence

relationships among the variables is readily represented by the graph. In figure 2.1,
for the pairwise graph on the left, the conditional probability of X1 given the other
variables takes a simpler form as follows, P (X1|X2, X3, X4, X5) = P (X1|X2). In
words, given X2, X1 is independent of the other variables. In general, the smallest
set of nodes that renders a node conditionally independent of all the other nodes, is
called its Markov blanket. When we remove all the nodes of the Markov blanket,
there will be no path connecting that node with the rest of the graph. Another
property represented by an mrf structure is that the joint probability distribution
factorizes according to overlapping subsets of the variables. More precisely the joint
probability distribution factorizes according to potential functions associated with
maximal cliques of the graph. A maximal clique is a clique such that it is not possible
to include one more node to the set such that it will still be a clique. We have
to keep in mind that unlike directed graphs, the potential functions of undirected
graphs do not have a clear probabilistic interpretation. They are generally designed
to signify compatibility among the nodes, for a particular application. For the graph

2.2. map inference 7

on the left in figure 2.1, the joint probability distribution could factorize as follows,

P (X1, X2, X3, X4, X5) = Ψ1(X1, X2)Ψ2(X2, X3)Ψ3(X2, X4, X5). (2.1)

For the hypergraph in figure 2.1, the joint probability distribution could factorize
as follows,

P (X1, X2, X3, X4, X5) = Ψ1(X1, X2, X3)Ψ2(X3, X4, X5). (2.2)

In both cases, Ψi(·) denote appropriate potential functions. In figure 2.1, we see
a maximal clique made of three individual edges (left) and a clique that is completely
contained inside another (right). We will see such grouping of variables in practice.
In fact, it is possible to represent the joint probability distribution according to
smaller cliques of the graph [Bishop 2006, §8.3.3]. Given that the potential functions
do not have a clear probabilistic interpretation, it is possible to define potential
functions with respect to cliques or even nodes, which are contained within maximal
cliques. We have seen two properties encoded by an mrf: conditional independence
according to Markov blankets and factorization of joint probability according to
maximal cliques. The Hammersley-Clifford theorem [Koller 2009] states that if the
potential functions are strictly positive, then these two properties are equivalent
and one holds iff the other holds.

The restriction to strictly positive functions reveals a strong connection between
Markov random fields and statistical physics. It is possible to write the strictly
positive potential function of a clique c as,

Ψc(xc) = exp(−θc(xc)) (2.3)

where θc(xc) is the energy of clique c for the labelling xc. Since, the joint probability
distribution is a product of potential functions, we obtain a sum of energies in the
exponent. Now, in graphical models literature, it is common to model problems
based on potential functions defined on nodes and cliques. We will work with θi
and θc, energies corresponding to the nodes and the cliques of the graphical model.
θi(xi) is the energy corresponding to the node i taking the label xi and θc(xc) is the
energy corresponding to the clique c for the labelling xc. It is better for modelling
applications to have these two explicit types of potential functions. Thus the joint
probability distribution takes the following form,

P (X = x) =
∏

i∈V

Ψi(xi)
∏

c∈C

Ψc(xc) = exp
(−

∑

i∈V

θi(xi)−
∑

c∈C

θc(xc)
)
. (2.4)

An important computation that one would like to perform with mrfs is to find
the labelling x of all the random variables, which will maximize the joint probability
distribution, P (X). This computation is called maximum a posteriori inference or
map inference. However, except for some special graphs, this maximization over the
set of possible labellings is NP-hard [Shimony 1994,Li 2016]. Thus, there has been
considerable research effort to develop approximate inference algorithms for mrfs.

8 Chapter 2. lp Relaxations for map Inference

Maximizing the joint probability in (2.4) is equivalent to minimizing the following
energy,

∑

i∈V

θi(xi) +
∑

c∈C

θc(xc) , E(x;θ). (2.5)

In the graphical models literature, θi and θc are referred to as unary potentials

and clique potentials, respectively. This naming could be confused with the potential
functions that we have seen earlier. In order to be compatible with the literature,
we will also call these quantities as potentials. Talking about terminology, other
terms that one will come across are factors and regions. We will briefly indicate
what they mean. A graphical model can be equivalently represented by a bipartite
graph called a factor graph [Kschischang 2001,Loeliger 2004], which is made of nodes
corresponding to the random variables and nodes called factors. Each set of variables
that define potential functions for the joint probability distribution(2.4) corresponds
to a factor. Thus, we will see both nodes and cliques being referred to as factors.
Also, we will see regions, which is a more general concept but they are also used to
refer to the sets of variables that define the potential functions [Welling 2004].

Thus, the problem of map inference in Markov random fields is about finding
the labels xi of all nodes i ∈ V such that the energy in (2.5) is minimized. We would
like to point out that if the clique potentials θc(xc) are not present, this energy
could be trivially minimized over individual nodes. It is the presence of cliques, with
overlapping sets of nodes that makes the problem intractably hard. Note that when
the nodes of a clique c have been assigned labels, that automatically determines the
labelling xc of the clique. Generally, each node i could take one of li labels from
the set li. Suppose all label sets have same size l, then there are ln possible label
assignments for the entire graph. Thus, map inference has an exponential worst
case complexity. Here, we will clearly state the discrete optimization problem that
we are trying to solve,

minimize
x1,x2,...,xn

∑

i∈V

θi(xi) +
∑

c∈C

θc(xc)

subject to x1 ∈ l1, x2 ∈ l2, ..., xn ∈ ln.
(2.6)

Several approaches exist to minimize this energy efficiently and approximately:
graph cuts, belief propagation and lp relaxation based methods. Refer [Kappes 2015]
for a good survey about various methods. The lp relaxation approach has led
to state-of-the-art algorithms and also, provides a theoretical foundation to the
topic of map inference [Wainwright 2005a,Komodakis 2016]. An attractive property
of this approach is that it readily lends itself to inference in higher-order mrfs
[Komodakis 2009], [Sontag 2008]. Immediately, we will see map inference in trees by
belief propagation, which will help us understand the lp relaxation based derivation
better.

2.3. Exact inference in hypertrees 9

2.3 Exact inference in hypertrees

There are special cases depending on the graph topology and the clique potentials,
where the exact map labelling could be inferred. Here, we will see one special case,
which is useful as a subproblem while performing map inference in general graphs.
This special case is that of trees, whether it is made of pairwise or higher-order
cliques. The following description has been adapted from [Koller 2009, §10.2, 13.3].

Inference in graphical models could be understood through the process of message
passing in a factor graph [Kschischang 2001,Loeliger 2004,Sudderth 2008]. In the case
of a tree with higher-order cliques a useful data structure is a clique tree. Intuitively,
it is the generalization of a tree with pairwise edges to a hypertree with hyperedges,
i.e., edges with more than two nodes. See, [Koller 2009, §4.5.3] for a formal definition.
A clique is a set of nodes and let us denote the ith clique as ci. We define another set
of nodes called the sepset. Given two cliques ci and cj , the sepset sij contains the
nodes in ci ∩ cj . In figure 2.2, we show the visualization using sepsets of a clique tree
containing the cliques {{X0, X1, X2}, {X1, X2, X3}, {X2, X3, X4}, {X3, X4, X5}}. It
is in fact a clique chain and we will see more about clique chains in section (3.7).

Figure 2.2: Sepset based visualization of a clique tree, where ovals indicate cliques
and rectangles indicate sepsets.

In this clique tree, each message is between a clique and its neighbour and it is
computed according to the following max-product or min-sum rule,

δci→cj (sij)← min.
xc∈ci∼sij

θci(xc) +
∑

i:i∈c

θi(xi) +
∑

ck:ck∈N (ci)\cj

δck→ci(ski). (2.7)

To understand what is going on, let us first note that the size of the message that
is sent is equal to the total number of labellings of the sepset between the two
cliques. The total number of labellings of the source clique is more because it has
more nodes than the sepset. Thus for a given labelling of the sepset xsij , there
are several corresponding labellings xci w.r.t. the source clique. We denote these
labellings as xc ∈ ci ∼ sij . For each of these clique labellings, we can compute
θc(xc) +

∑
i:i∈c

θi(xi) +
∑

ck:ck∈N (ci)\cj

δck→ci(ski). Here, the last summation is over

messages received from other neighbouring cliques (N (ci)\cj). The minimum over
xc ∈ ci ∼ sij becomes the message corresponding to the sepset labelling xsij .

10 Chapter 2. lp Relaxations for map Inference

Intuitively, exact inference in a tree is possible because of how the message
passing could be scheduled in a tree. Suppose, we denote some clique as the root
clique and denote cliques connected with only one other clique as leaf cliques. Let
us first pass messages from the leaf cliques towards the root clique, followed by
messages from the root towards the leaves. Since, the graph has a tree topology, for
a given message between a source clique and a target clique, it is possible for the
source clique to receive messages from all other clique neighbours before passing a
message to its target clique. Thisschedule is not possible for graphs with loops. In
fact, in a tree, exact inference is achieved by one upward and one downward pass of
messages. Thus, at the end of the procedure, a clique would have passed messages
to all its neighbouring cliques and it would have received messages from all of them.
Thus, we can compute beliefs for each of the clique labellings as follows,

βxc ← θci(xc) +
∑

i:i∈c

θi(xi) +
∑

k:k∈N (ci)

δck→ci(ski). (2.8)

Such beliefs can be computed for each node-label pair, also. These are referred to as
the min-marginals of the nodes. If the label of a node is held fixed and the energy is
minimized, the resulting energy is the min-marginal for that node-label pair. Once
this is computed for all nodes, the label corresponding to the minimum value for
a given node is the map labelling of that node. Note, the original max-product
algorithm works with the potential function representation (2.3). We have discussed
the min-sum version that involves the energies. There is a related algorithm called
sum-product message passing, which leads to the computation of the node marginals.
We will see this algorithm in section (3.8). Both max-product and sum-product
algorithms optimize subproblems within lp relaxation based algorithms for map

inference.

2.4 LP relaxation based approach

Now, we will see about map inference in general graphs. First, we observe that the
objective of the energy minimization problem has a linear form. Thus, it can be
equivalently represented as an integer linear program (ilp) as follows,

minimize
∑

i

∑

xi

θi(xi)φi(xi) +
∑

c

∑

xc

θc(xc)φc(xc) (2.9a)

subject to
∑

xc\i

φc(xc) = φi(xi), ∀(i, c) : i ∈ c (2.9b)

∑

xi

φi(xi) = 1, ∀i ∈ V;
∑

xc

φc(xc) = 1, ∀c ∈ C

φi(xi) ∈ {0, 1}, ∀i ∈ V, xi ∈ li; φc(xc) ∈ {0, 1} ∀c ∈ C,xc ∈ lc.
(2.9c)

Here, φi(xi) and φc(xc) are boolean indicator variables and are the decision variables
of the discrete optimization problem. For each node i ∈ V and for each label xi ∈ li,
there is a indicator variable φi(xi) ∈ {0, 1}. Similarly, for each clique c ∈ C and

2.4. LP relaxation based approach 11

for each labelling xc ∈ lc, there is an indicator variable φc(xc) ∈ {0, 1}. For a
given labelling of the graph G, only one of φi(xi) will be set to 1 for each node i
and for each clique c, only one of φc(xc) will be set to 1. This is expressed by the
set of constraints (2.9c), called normalization constraints. When map inference is
formulated as an energy minimization problem (2.6), we work with only the discrete
node labels xi as the optimization variables. The clique labellings xc are dependent
variables and are fixed automatically by the node labels. When the same map

inference problem is formulated as an ilp (2.9), we work with two sets of discrete
decision variables, φi(xi) for the nodes and φc(xc) for the cliques. Nevertheless,
the labelling of the nodes and the labelling of the cliques must agree and that is
enforced by the constraint (2.9b). These constraints are called marginalization or
consistency constraints. The summation

∑
xc\i

φc(xc) is performed as follows: for a
given clique c and node i ∈ c, there will be a set of xc’s which correspond to the
node i taking label xi, the summation is performed over the corresponding φc(xc)’s
and the constraint says that the sum should match with φi(xi).

This representation with linear constraints between the indicator variables shows
that the indicator variables are not independent, thus it is possible to have another
set of potentials θ̃i(xi) and θ̃c(xc), such that P (X; θ) = P (X; θ̃) or equivalently,
E(x; θ) = E(x; θ̃). Thus the above representation based on indicator variables,
is referred to as the canonical overcomplete representation. Also, θ is called a
reparameterization of θ̃ and we will revisit this concept, while discussing about
optimization algorithms. Also, it is possible to define minimal representations using
a smaller set of suitably defined discrete variables and still represent the same energy
in (2.6) but we will go with the overcomplete representation, as it is well studied to
develop optimization algorithms.

For ease of exposition, we will assume that there are n nodes, all taking labels
from a common set of size l and that there are |C| cliques, each having s nodes. If not
otherwised stated, the concepts that we will discuss hold in the general setting. For
each node i, let φi represent the vector obtained by stacking the indicator variables
φi(xi). Similarly, for each clique c, let φc represent the vector obtained by stacking
the indicator variables φc(xc). We will let φ represent the vector, which is obtained
by stacking all the vectors φi and φc. When the constraints (2.9b) and (2.9c) are
satisfied, each instance of φ represents a valid labelling of the entire graphical model.
Each instance of φ is a point in a high dimensional space, which is of size n.l+ |C|ls.
The convex hull of all possible instances of φ is called the marginal polytope and is
denoted by M(G). Now, each node i in the graphical model is associated with a
marginal vector µi, which is the vector of probabilities P (Xi = xi). The marginal
probabilities P (Xi = xi) are obtained by fixing the label of node i to xi and summing
P (X) over the other variables. Similarly, each clique c is associated with a marginal
vector µc. Each point µ that belongs to M(G), is a concatenation of valid marginal
vector for all nodes and cliques. Apart from maximum a posteriori inference, one
could also seek marginal inference, which is to infer the marginal probabilities of all
the variables in a graphical model. We will not focus on marginal inference in this
thesis but point out that lp relaxation based techniques could be used for marginal

12 Chapter 2. lp Relaxations for map Inference

inference, also [Wainwright 2005b,Krishnan 2015].
In general, a polytope could be represented either as the convex hull of a set

of points or as the intersection of halfspaces (refer (9.1) for definition). Intuitively,
these halfspaces correspond to the facets of the polytope. More number of facets
means more complexity in representation of the polytope. Ensuring that a vector
of numbers is a valid marginal vector requires the vector to satisfy the exhaustive

set of marginalization constraints, i.e., they involve all possible pairs of regions
(α, β) where β ⊂ α. This leads to a large number of facets for the marginal
polytope. It is conjectured that the number of facets must be super-polynomial in
the graph size [Wainwright 2008, section 4.1.4]. Suppose one tries to solve the energy
minimization problem as a linear program, instead of an integer linear program, i.e.,
the decision variables could take continuous values. Suppose, we use the objective
given in (2.9a) and define the constraints of our linear program through the marginal
polytope. Then the solution of our linear program is one of the corners of the
marginal polytope. By the definition of the marginal polytope, each corner is a
valid labelling of the graphical model. Thus it looks like we have exactly found the
labelling that corresponds to maximum a posteriori probability through a linear
program. However, it will be computationally very hard to represent the marginal
polytope. Thus we are still in square one.

Now, a powerful way to solve discrete optimization problem like the integer
linear program in (2.9), is through convex relaxations. We will consider here, the
linear programming (lp) relaxation of (2.9), which provably bounds the relaxations
based on quadratic programs (qps), semidefinite programs (sdps) and second-order
cone programs socps [Kumar 2009]. Note, [Kumar 2009] still encourages research
in socp relaxations and a useful soc relaxation for higher-order map inference is an
open research question.

The way to construct the linear programming relaxation can be thought of in
terms of obtaining a simpler polytope to optimize over, thus leading to a computa-
tionally tractable approach. The linear programming relaxation takes the following
form,

minimize
∑

i

∑

xi

θi(xi)φi(xi) +
∑

c

∑

xc

θc(xc)φc(xc) (2.10a)

subject to
∑

xc\i

φc(xc) = φi(xi), ∀(i, c) : i ∈ c (2.10b)

∑

xi

φi(xi) = 1, ∀i ∈ V;
∑

xc

φc(xc) = 1, ∀c ∈ C

φi(xi) ≥ 0, ∀i ∈ V, xi ∈ li; φc(xc) ≥ 0 ∀c ∈ C,xc ∈ lc.
(2.10c)

This is referred to as the Schlesinger lp in the graphical models literature
[Schlesinger 1976]. We first notice how similar the lp relaxation is to the ilp.
All we have done is to relax the integer valued (also, called integrality) constraints
in (2.9c). Relaxing the integrality constraints in ilp (2.9) could take the form,
0 ≤ φi(xi) ≤ 1 and 0 ≤ φc(xc) ≤ 1 but the summation constraint in (2.10c) makes

2.4. LP relaxation based approach 13

non-negativity constraint sufficient. Since, we will be referring to this optimization
problem (2.10) often, we will represent it in a succint form as follows,

minimize
φ

〈
θ,φ

〉
(2.11a)

φ ∈ L(G) (2.11b)

where θ and φ are vectors obtained by stacking the potentials and the overcomplete
representation variables, respectively. For this linear program, the marginalization
constraints (2.10b) and the normalization constraints (2.10c) define a polytope,
which the graphical models literature calls as the local polytope. We will denote it as
L(G). The local polytope has several interesting properties. The local polytope is an
outer bound on the marginal polytope. It is defined by marginalization constraints
(2.10b) between cliques and the nodes within each clique. This is only a subset of all
the marginalization constraints that a valid marginal vector has to satisfy. Since, it
enforces local marginalization constraints between a clique and its constituent nodes,
it is called the local polytope. Note, we are able to define the marginal polytope
using this same subset of marginalization constraints. This is because we also enforce
the integrality constraint, which along with these marginalization constraints and
normalization constraints are enough to define the corners of the marginal polytope.
The local polytope will contain all the points within the marginal polytope and
also, other fractional points that satisy constraints (2.10b) and (2.10c). The points
contained within the local polytope are called pseudomarginals, while the marginal
polytope contains the true marginals. In the rest of the thesis, we will be referring
to the variables of the overcomplete representation, which are the decision variables
of our optimization problem, as pseudomarginals.

The local polytope has fewer facets compared to the marginal polytope. In fact,
we know it to be polynomial and upper bounded by O(l.n+|C|ls). Thus, optimization
of the lp relaxation given in (2.10) is tractable. When one is trying to solve an
NP-hard problem, one can one only hope for a trade-off between computational
complexity and approximation guarantee. Even though the local polytope has
lesser number of facets compared to the marginal polytope, it has more corners.
All the integer {0, 1} valued corners of the marginal polytope are also corners of
the local polytope. On top of these, there are several fractional valued corners
in the local polytope. The total number of corners of the local polytope is not
known in general [Wainwright 2008, section 4.1.4]. Thus, when the lp relaxation
returns one of the corners as the solution, it could be a fractional valued corner.
We still need to construct a valid labelling of the graphical model from this vector
of fractional values. However, suppose the lp relaxation returns a integer valued
corner, then we have the guarantee that we have recovered the exact map labelling
of the graphical model. This is an important guarantee of the lp relaxation based
approach [Wainwright 2005a]. Also, if the original graph is a tree or if it is a general
graph with submodular clique potentials, then this lp relaxation is guaranteed to
be tight. We will see in section (2.5), the derivation of the dual in terms of tractable
subgraphs like trees.

14 Chapter 2. lp Relaxations for map Inference

It is difficult to visualize the marginal and local polytopes, especially with
the overcomplete representation. Consider a simple graph, with only two nodes,
each having a label set of size two. The polytope will lie in a space of dimension
2 + 2 + 22 = 8. (2.3) represents these polytopes in an abstract way so that we keep
in mind the fact that the local polytope contains both the integral corners of the
marginal polytope and also, fractional corners.

Figure 2.3: A cartoonish illustration of the relationship between the marginal
polytopeM(G) and the local polytope L(G). All the corners ofM(G) are also corners
of L(G). L(G) also has fractional corners. The fact that L(G) has lesser number of
facets than M(G) is difficult to visualize. Image courtesy [Wainwright 2008].

In general, an lp relaxation minimizes a problem over a larger space of values for
the decision variables compared to an ilp. A solution for the ILP will correspond to
a feasible point within the domain of the lp relaxation. Suppose the lp relaxation
has an optimal solution with objective value Elp, this means that there is no feasible
point within the domain of the lp relaxation with an objective value lesser than
Elp. Thus a solution for the ilp, will have an objective value ≥ Elp. Thus the
solution returned by the lp relaxation (2.10) will be a lower bound to the energy
minimization problem. In section (2.5), we will see a perspective where a lower
bound is derived based on a tree based decomposition.

Given that the solution returned by the lp relaxation is fractional, we need
ways to reconstruct integer valued variables that correspond to a valid labelling
of the graphical models. It will be also desirable to study what is the quality
of approximation that we achieve by first solving a lp relaxation, followed by
reconstructing integer solutions. We will briefly discuss about these aspects in
section (3.5). Immediately, we will see how the lp relaxation given in (2.10) could
be solved efficiently.

2.5. Efficient dual based formulation 15

2.5 Efficient dual based formulation

Over the past decades, there has been tremendous progress in the development
of linear programming solvers like [cplex , mosek]. Will it be enough to apply
one of these high performing solvers to our lp relaxation problem (2.10)? No,
generic lp solvers are not good enough to solve this lp relaxation problem efficiently
and scalably as the graph size increases. An empirical study of off-the-shelf lp

solvers [Yanover 2006] observed their slower performance and also, their inability
to go beyond a 50 × 50 image in a stereo disparity problem. We will continue to
consider a graphical model G with n nodes, each taking labels from a common set
of size l, with |C| cliques of size s each. The LP relaxation, will have n.l + |C|ls
variables. Generally, we will be working with graphs in which with more nodes, we
will have more cliques. Thus, the problem size could increase tremendously with
respect to all the model parameters: n, |C|, l and s. Especially, the exponential
growth with respect to clique size s is a major challenge to address while working
with higher-order mrfs. Thus, there is a lot of benefit to explore lp solvers that
exploit the graph structure of the map inference problem.

We have noticed that a graphical model leads to interaction between the variables
according to local and overlapping cliques. This is evident in the objectives of the
energy minimization problem (2.6) and the LP relaxation formulation (2.10). Also,
one could notice this local interaction structure in the marginalization constraints
(2.10b). Usually in optimization problems, we construct the dual problem, based
on the constraints. Thus, by considering the dual of the lp relaxation, will it be
possible to achieve a formulation that exploits the structure of the graphical model?
Now, we will derive a linearly constrained dual, which is based on a subgraph based
decomposition of the original graph.

Given a graph G, it is possible to construct several hypertrees, which are sub-
graphs of G. For convenience, we will call the hypertrees as trees and whenever
we refer to subgraphs we are referring to trees, unless otherwise stated. We will
consider a set T (G) of overlapping trees, wherein each tree shares at least a node or

a clique with one or more of the other trees and together they cover the graph. For
a node i, we will denote the trees containing it as T (i) and for a clique c, we will
denote the trees containing it as T (c). Now, these trees are also graphical models
and we could associate node potentials (θT

i (xi)) and clique potentials (θT
c (xc)) with

each T ∈ T (G). We could define these potentials such that the following constraints
are satisfied,

∑

T ∈T (i)

θT
i (xi) = θi(xi) ∀i ∈ V,

∑

T ∈T (c)

θT
c (xc) = θc(xc), ∀c ∈ C. (2.12)

A simple way to achieve this constraint is by setting the potentials as follows:
θT
i (xi) = θi(xi)

|T (i)| ∀T ∈ T (i) and θT
c (xc) = θc(xi)

|T (c)| ∀T ∈ T (c). Just like we associate x

with the labelling of all the nodes in the entire graph, we could associate xT with
the labelling of the tree T . Given a particular labeling x of the entire graph, xT

could be constructed by picking the labels of the nodes which are in T . We will

16 Chapter 2. lp Relaxations for map Inference

denote this operation as xT = x|T . Thus, the energy associated with the graphical
model, i.e., E(x;θ) in (2.5), could be decomposed as follows,

E(x;θ) =
∑

T ∈T (G)

E(xT ;θT) (2.13)

by setting xT = x|T . We will repeat that the trees should be chosen such that they
share at least one node or clique with at least one other tree. If this is not the case,
that tree will not be connected with the rest of the trees. Since, our original graph
is a connected graph, we are sure that subgraphs, which cover the original graph,
are overlapping. Hence, our energy minimization problem could be equivalently
formulated as follows,

minimize
xT ,x

∑

T ∈T (G)

E(xT ;θT) (2.14a)

subject to xT = x|T ∀T ∈ T (G) (2.14b)

where the variable x is defined over all the nodes and it ensures consensus between
the labellings of the trees. Note, that we are not explicitly minimizing energy on
the entire graph, i.e., we are not minimizing E(x,θ) explicitly. We are performing
energy minimization on the trees and use x to make the labels agree across trees and
in the process, minimize E(x,θ). Thus, as long the labels of the nodes agree between
all the trees containing that node, then we could minimize the energy of the entire
graph by minimizing energy over individual trees. However, ensuring agreement of
the node labels across trees is a difficult task. This is enforced through the consensus
constraint (2.14b). Probably, we could overcome the restriction imposed by this
constraint through the dual formulation. In order to do that, let us first write the
lp relaxation of (2.14) using pseudomarginals as follows,

minimize
φT

i ,φ
T
c ,ψi,ψc

∑

T ∈T (G)

(∑

i∈T

∑

xi

θT
i (xi)φT

i (xi) +
∑

c∈T

∑

xc

θT
c (xc)φT

c (xc)
)

(2.15a)

subject to
∑

xc\i

φT
c (xc) = φT

i (xi), ∀(i, c) : c ∈ T , i ∈ c
∑

xi

φT
i (xi) = 1, ∀i ∈ T ;

∑

xc

φT
c (xc) = 1, ∀c ∈ T

φT
i (xi) ≥ 0 ∀i ∈ T ; φc(xc) ≥ 0 ∀c ∈ T





∀T ∈ T (G) (2.15b)

∀T ∈ T (G), φT
i (xi) = ψi(xi) ∀T : i ∈ T ; φT

c (xc) = ψc(xc) ∀T : c ∈ T . (2.15c)

The constraints (2.15b) are local to each tree and do not overlap. Suppose the
original graph is itself a tree, then T (G) is composed of only one tree and (2.15) could
be optimized exactly. Thus, the lp relaxation is tight for tree structured graphical
models. In a general setting, a graphical model is decomposed into subgraphs like
trees and the variables ψi(xi) and ψc(xc) are global graph level variables that enforce
consensus between the trees. The coupling constraint (2.15c) is the obstacle to
efficient and scalable algorithms. One way to overcome problematic constraints is to

2.5. Efficient dual based formulation 17

formulate the dual problem. The Lagrangian of (2.15), by considering the coupling
constraint, is as follows,

∑

T ∈T (G)

(
∑

i∈T

∑

xi

θT
i (xi)φT

i (xi) +
∑

c∈T

∑

xc

θT
c (xc)φT

c (xc)

+
∑

i∈V

∑

T :i∈T

∑

xi

δT i(xi)
(
φT
i (xi)− ψi(xi)

)
+
∑

c∈C

∑

T :c∈T

∑

xc

δT c(xc)
(
φT
c (xc)− ψc(xc)

))

(2.16)

where δT i(xi) are the dual variables with respect to the nodes and for each tree
T , each node i ∈ T and for each label xi, there is one such dual variable. δT c(xc)
are the dual variables with respect to the cliques and for each tree T , each clique
c ∈ T and for each possible clique labelling xc, there is one such dual variable. We
will denote by δ the vector of all these dual variables. Now, the dual optimization
problem takes the following form,

maximize
δ

minimize
φT

i ,φ
T
c ,ψi,ψc

∑

T ∈T (G)

(
∑

i∈T

∑

xi

θT
i (xi)φT

i (xi) +
∑

c∈T

∑

xc

θT
c (xc)φT

c (xc)

+
∑

i∈V

∑

T :i∈T

∑

xi

δT i(xi)
(
φT
i (xi)− ψi(xi)

)
+
∑

c∈C

∑

T :c∈T

∑

xc

δT c(xc)
(
φT
c (xc)− ψc(xc)

))

(2.17a)

subject to
∑

xc\i

φT
c (xc) = φT

i (xi), ∀(i, c) : c ∈ T , i ∈ c
∑

xi

φT
i (xi) = 1, ∀i ∈ T ;

∑

xc

φT
c (xc) = 1, ∀c ∈ T

φT
i (xi) ≥ 0 ∀i ∈ T ; φc(xc) ≥ 0 ∀c ∈ T





∀T ∈ T (G). (2.17b)

In the current form, the objective is linear with respect to the consensus variables
ψi(xi) and ψc(xc) and the objective will be unbounded below when minimized with
respect to them. It is possible to eliminate these consensus variables if the dual
variables satisfy the following constraint,

∑

T :i∈T

δT i(xi) = 0, ∀i ∈ V
∑

T :c∈T

δT c(xc) = 0, ∀c ∈ C.
(2.18)

Now, that the coupling consensus variables could be taken out of the objective,
the minimization with respect to φT

i and φT
c could be taken inside the summation

over the trees. Thus, we obtain the following optimization problem,

max.
δ

∑

T ∈T (G)

min.
φT i,φT c

(
∑

i∈T

∑

xi

(θT i(xi)+δT i(xi))φT i(xi)+
∑

c∈T

∑

xc

(θT c(xc)+δT c(xc))φT c(xc)

)

(2.19a)

18 Chapter 2. lp Relaxations for map Inference

subject to
∑

xc\i

φT c(xc) = φT i(xi), ∀(i, c) : c ∈ T , i ∈ c
∑

xi

φT i(xi) = 1, ∀i ∈ T ;
∑

xc

φT c(xc) = 1, ∀c ∈ T

φT i(xi) ≥ 0 ∀i ∈ T ; φc(xc) ≥ 0 ∀c ∈ T





∀T ∈ T (G) (2.19b)

∑

T :i∈T

δT i(xi) = 0, ∀i ∈ V, ∀xi;
∑

T :c∈T

δT c(xc) = 0, ∀c ∈ C, ∀xc. (2.19c)

This dual formulation could be minimized with respect to φT i and φT c in a non-
overlapping distributed manner. The dual problem could be compactly represented
as follows,

max.
δ

∑

T ∈T (G)

min.
φT

〈(
θT + δT),φT

〉
(2.20a)

subject to φT ∈ L(T) ∀T ∈ T (G) (2.20b)
∑

T :i∈T

δT i(xi) = 0, ∀i ∈ V, ∀xi;
∑

T :c∈T

δT c(xc) = 0, ∀c ∈ C, ∀xc. (2.20c)

We will see in chapter (3), how to maximize with respect to δ and thus provably
reach the global optimum of the problem. We will next see a way to derive a dual
formulation, where the graph is decomposed with respect to individual cliques. This
dual is important because it is an unconstrained formulation and also, has lesser
number of dual variables, while retaining similar convergence rate. We will discuss in
section (3.7) how to reduce the number of dual variables in the current formulation
also, while ensuring good convergence rate. Note, the current formulation could
also be made unconstrained because the dual variables are subject to simple linear
constraints (2.18). This will lead to a subgraph that does not have dual variables
of its own, instead its variables will be the negative sum of the dual variables from
the overlapping subgraphs. From an algorithmic point of view, this is equivalent to
imposing the linear constraint (2.18). Also, the resulting equations do not have the
uniformity and symmetry that we will notice in the formulation given in the next
section.

2.6 Unconstrained dual

We will now show a way to derive an unconstrained dual to the LP relaxation,
which proceeds by introducing dual variables corresponding to the marginalization
constraints. The following derivation is an extension to higher-order graphs of the
one given for pairwise graphs by [Sontag 2010]. Note the following derivation could
be obtained based on a clique based decomposition [Sontag 2011], also. As always,
only for the sake of easier exposition, we will assume that all nodes take labels from
a common label set of size l and that all cliques contain s nodes. Then for each
clique the marginalization constraint,

∑

xc\i

φc(xc) = φi(xi), ∀i ∈ c (2.21)

2.6. Unconstrained dual 19

is made of s similar looking sets of constraints for each of the nodes within the clique.
Each of these sets will contain l constraints, corresponding to the l possible labels
that the node can take. Thus, totally we have |C|.s.l marginalization constraints.
We will leave the normalization constraints (2.10c) untouched and only introduce
dual variables for each of the marginalization constraints. We will denote them as
δci(xi). It will be good to spare some time to understand this notation. Let us
recall that some node i takes a label xi, which corresponds to one of l labels. δci(xi)
corresponds to the marginalization constraint for clique c with respect to node i and
label xi. Thus, the total number of dual variables is |C|.s.l and we will denote the
vector of dual variables as δ.

Thus, the Lagrangian takes the form,

∑

i

∑

xi

θi(xi)φi(xi) +
∑

c

∑

xc

θc(xc)φc(xc) +
∑

c∈C

∑

i∈c

∑

xi

δci(xi)
(
φi(xi)−

∑

xc\i

φc(xc)
)
.

(2.22)
Now, by expanding the summations and re-arranging terms, we can see that,

∑

c∈C

∑

i∈c

∑

xi

δci(xi)φi(xi) =
∑

i∈V

∑

xi

φi(xi)
∑

c:i∈c

δci(xi)

∑

c∈C

∑

i∈c

∑

xi

δci(xi)
∑

xc\i

φc(xc) =
∑

c∈C

∑

xc

φc(xc)
∑

i:i∈c

δci(xi).
(2.23)

Thus, the dual optimization problem takes the following form,

max.
δ

min.
φ

∑

i

∑

xi

φi(xi)
(
θi(xi) +

∑

c:i∈c

δci(xi)
)

+
∑

c∈C

∑

xc

φc(xc)
(
θc(xc)−

∑

i:i∈c

δci(xi)
)

(2.24a)

subject to
∑

xi

φi(xi) = 1, ∀i ∈ V;
∑

xc

φc(xc) = 1, ∀c ∈ C

φi(xi) ≥ 0, ∀i ∈ V; φc(xc) ≥ 0 ∀c ∈ C.
(2.24b)

The minimization with respect to φ subject to the constraints given in (2.24b), has
an analytical solution. For each node i, φi(xi) are subject to a simplex constraint.
Thus, we have to set φi(xi) = 1 for the label xi that minimizes the value of
(θi(xi) +

∑
c:i∈c δci(xi)) and set the rest of the φi(xi)’s to zero. Similarly, we have

to set φc(xc) = 1 for the clique labelling xc that minimizes the value of
(
θc(xc)−

∑
i:i∈c δci(xi)

)
and set the rest of the φc(xc)’s to zero.

Thus, we obtain the following dual optimization problem with respect to the
dual variables δ,

max.
δ

∑

i∈V

min.
xi

(
θi(xi) +

∑

c:i∈c

δci(xi)
)

+
∑

c∈C

min.
xc

(
θc(xc)−

∑

i:i∈c

δci(xi)
)

(2.25)

which is an unconstrained optimization problem. It is also possible to derive this
dual based on a clique based decomposition, just like how we derived the dual
based on tree based decomposition. We can interpret the terms in the dual as

20 Chapter 2. lp Relaxations for map Inference

a reparameterization of the node and clique potentials. In other words, for a
given value of the dual variables, we are seeking optimal labels xi’s and xc’s for
a graphical model with the following potentials: θ̂i(xi) = θi(xi) +

∑
c:i∈c δci(xi)

and θ̂c(xc) = θc(xc) −
∑
i:i∈c δci(xi). Thus, this formulation goes by the name

reparameterization dual. In the next chapter, we will see some existing continuous
optimization algorithms for lp relaxation based map inference. We will especially
see some algorithms which are applicable to higher-order mrfs.

Chapter 3

Optimization Algorithms for

map Inference

3.1 Supergradient based optimization

The objective of either (2.20) or (2.25) is concave and non-smooth with respect
to the dual variables δ. This is because the objective is obtained by pointwise
minimization over a set of linear functions of the dual variables [Boyd 2004, §3.2.3].
Here, we will present an algorithm for the tree based decomposition. Since, a clique
is a special case of a tree, adapting the algorithm for the clique based decomposition
is easy. Projected supergradient methods offer a provably convergent method to
reach the global optimum of the dual (2.20) [Komodakis 2011]. In fact, by lemma 1
of [Komodakis 2011], if we minimize the following problem with respect to a tree,

min.
φT

〈(
θT + δT),φT

〉
(3.1a)

subject to φT ∈ L(T) (3.1b)

then the minimizing label assignment is a valid supergradient for the dual variables
δT i(xi) and δT c(xc). This minimization is exactly equivalent to performing energy
minimization or map inference on that tree, which we can obtain exactly using
the method shown in (2.3). This is an important aspect of lp relaxation based
algorithms that exploit the graph structure. We solve the map inference problem in
a general graph, by decomposing the problem over trees and we exploit algorithms
that are suited for map inference over trees. Also, note that the map inference for
all the trees could be computed independently. Once all the supergradients are
obtained, we will project them into the valid set based on the linear constraints (2.18).
Thus, a projected supergradient algorithm is obtained and it offers an approach that
theoretically converges to the global optimum of the dual.

The algorithm for the clique based decomposition is an unconstrained su-
pergradient algorithm, where the supergradients are obtained by minimizing
∑
i∈V

(
θi(xi) +

∑
c:i∈c δci(xi)

)
+
∑
c∈C

(
θc(xc) −

∑
i:i∈c δci(xi)

)
over each of the cliques.

These operations are again map inferences within those individual cliques.
The supergradient based approach (constrained or unconstrained) has a rate of

convergence of O(1
ε2), i.e., to reach an ε-accurate solution it takes O(1

ε2) iterations.
Suppose the node i is shared by nT

i trees and the clique c is shared by nT
c trees, then

the memory requirement for the tree based decomposition is
∑
i∈V

nT
i .l+

∑
c∈C

nT
c .l

s. This

22 Chapter 3. Optimization Algorithms for map Inference

is of the same order as the number of primal variables in the lp relaxation formulation
given in (2.10). We could bring down the number of dual variables by enforcing
consensus only between the pseudomarginals of the nodes. [Komodakis 2011, section
6.3] shows that as long as the subgraphs could be solved exactly, then it is enough
to enforce consensus between the node variables alone. However, the convergence
rate is affected by doing this. The clique based decomposition in (2.25) offers a
formulation that has lesser number of variables (|C|.s.l), which can also be optimized
using supergradients, without affecting the convergence rate adversely. However,
we will see in section (3.7) that solving clique based decomposition for large graphs
leads to poor convergence for several algorithms, thus the tree based decomposition
given in (2.20) is important in its own way. Next, we will see algorithms that have a
convergence rate that is better than O(1

ε2).
We note that it is the minimizing label assignment that leads to a valid super-

gradient. The max-product/min-sum algorithm that we discussed in (2.3) computes
the min-marginals to obtain the minimizing label assignment. Depending on the
clique potential, finding the minimizing labelling could be cheaper than computing
min-marginals [Sontag 2011,Meshi 2015,Swoboda 2018].

3.2 Smooth accelerated gradient method

The poor rate of O(1
ε2) that we saw in the previous section is because of the non-

smooth nature of the problem. It is possible to perturb the non-smooth problem and
obtain a smooth problem [Nesterov 2005]. It is achieved by exploiting the following
theorem on the duality between strong convexity and strong smoothness. Please,
refer to appendix (9.1) for the definition of terms mentioned in the theorem.

Theorem 1 (Strong/Smooth Duality). Assume that f is a closed and convex

function. Then f is β-strongly convex w.r.t. a norm ‖·‖ if and only if its Fenchel

conjugate f∗ is 1
β -strongly smooth w.r.t. the dual norm ‖·‖∗.

Proof. Please, refer [Nesterov 2005].

This theorem gives a ready tool by which one could obtain a smooth dual by
perturbing the primal by a strongly convex function. In fact, this is a useful result for
map inference algorithms and we will see it again in smooth coordinate maximization
methods in section (3.3). We will derive the smooth version of the unconstrained
clique-based dual given in (2.25). It was [Jojic 2010] that showed an accelerated
gradient descent scheme for the following entropy based smoothing approach. We
would like to point out that [Meshi 2015] showed another way to achieve a smooth
problem, using a quadratic perturbation term.

To start with we will perturb the primal objective of the LP relaxation (2.11)
using entropy terms,

〈
θ,φ

〉− 1
τ

∑

i∈V

H(φi)−
1
τ

∑

c∈C

H(φc) (3.2)

3.2. Smooth accelerated gradient method 23

where, H(φi) = −∑
xi

φi(xi)logφi(xi) and H(φc) = −∑
xc

φc(xc)logφc(xc), are strongly

concave entropy terms. Thus, we get a perturbed optimization problem as follows,

minimize
φ

〈
θ,φ

〉− 1
τ

∑

i∈V

H(φi)−
1
τ

∑

c∈C

H(φc)

subject to φ ∈ L(G).

(3.3)

It can be precisely shown to what extent the optimum of this perturbed problem is
away from the optimum of the original problem [Meshi 2014, lemma 1.1]. Suppose
φ∗ is the optimum of the lp relaxation (2.10) and φ̂ is the optimum obtained by
optimizing the perturbed objective (3.2), then we could bound the primal energy as
follows,

〈
φ̂,θ

〉 ≥ 〈φ∗,θ
〉 ≥ 〈φ̂,θ〉− 1

τ
Hmax (3.4)

where Hmax =
∑
i

logli+
∑
c

log|xc|. Thus, we obtain an O(1
τ)-optimal solution, where

the bound will be affected by the number of nodes in the graph, the number of
labels per node and the size of the cliques. We will see the effect of these parameters
in practice and it is good to keep these bounds in mind.

Now, we need to derive the smooth dual corresponding to the perturbed primal
objective (3.2). This is achieved by considering the Fenchel conjugate of the entropy
function subject to simplex constraints, which is the log-sum-exp function [Boyd 2004,
§3.3]. See [Luenberger 1997,Komodakis 2015] for an accessible explanation about
deriving the dual problem based on Fenchel duality. Also, refer section (3.6) for
more details. Thus, the smooth dual is of the following form,

max.
δ

∑

c

smin
xc

(
θc(xc)−

∑

i:i∈c

δci(xi); τ
)

+
∑

i

smin
xi

(
θi(xi) +

∑

c:i∈c

δci(xi); τ
)
. (3.5)

We will denote the objective of the smooth dual as h(δ). Also, smin is the negative

soft-max function. Given a set of numbers s = {s1, s2, ..., sn}, the negative soft-max
over s is defined as follows,

smin
s∈s

(s) = −1
τ

log
∑

s∈s

exp(τs). (3.6)

Thus, as τ →∞, smin
s∈s

(s) → the minimum value in set s. Also, the smin function

lower bounds the minimum of the set, for finite values of τ .
We can readily notice how similar the smooth dual (3.5) is with respect to the

non-smooth dual (2.25). This is facilitated by entropy based smoothing and it is
very convenient from a graphical models point of view. Just like the non-smooth
case, we could develop optimization algorithms that exploit the graph structure,
in this case also. While using gradient based methods, one needs to compute the
gradient, which takes the following form,

∂h(δ)
∂δci(xi)

= µci(xi)− µi(xi) (3.7)

24 Chapter 3. Optimization Algorithms for map Inference

where µci(xi) and µi(xi) are computed as follows,

µci(xi) =

∑
xc:xc(i)=xi

exp
[
τ.(θc(xc)−

∑
n:n∈c

δcn(xn))
]

∑
xc

exp
[
τ.(θc(xc)−

∑
n:n∈c

δcn(xn))
]

µi(xi) =
exp

[
τ.(θi(xi) +

∑
k:i∈k

δki(xi))
]

∑
xl

exp
[
τ.(θi(xl) +

∑
k:i∈k

δki(xl))
] .

(3.8)

We will see in section (3.5) that these quantities are also used while computing optimal
primal variables from optimal dual variables. Another interesting point is that the
supergradient of the non-smooth dual (2.25) also takes a similar form [Schwing 2012].
In section (3.1), we noted that in the non-smooth case, computing supergradients
for individual subgraphs (cliques in the case of (2.25)) is exactly equivalent to
map inference in those subgraphs. Similarly, for the smooth dual (3.5), gradient
computation is enabled by marginal inference in subgraphs (cliques in the case of
(3.5)). [Jojic 2010] is one of the first papers to recognize this. As we will see in (3.8),
the gradient computation could be made further efficient by exploiting the nature of
the clique.

Algorithm 1 FISTA with backtracking line search

1: Input: L0 > 0, β > 1,y = δ0 ∈ R
N , t0 = 1

2: while ‖∇h(δk)‖∞ > ζ do

3: Lk = Lk−1

4: δk = prox(y − 1
Lk
∇h(y))

5: while h(δk) > h(y) + ∇h(y)T (δk − y) +
Lk

2
‖δk − y‖2

2
do

6: Lk = βLk
7: δk = prox(y − 1

Lk
∇h(y))

8: end while

9: tk =
1+
√

1+4t2
k−1

2

10: y = δk + tk−1−1
tk

(δk − δk−1)
11: end while

Thus, given a smooth optimization problem, one can readily apply an accelerated
gradient ascent scheme (algorithm 1) [Beck 2009] and achieve a convergence rate
of O(1

ε). In the case of map inference, with the smooth version of the constrainted
formulation (2.20), the proximal operator (prox) in (1), is the projection onto the
linear constraints (2.18). For the smooth unconstrained formulation (3.5), there is
no proximal operation involved.

We would like to point out that [Schwing 2012] presents an alternative way
to improve convergence of the non-smooth problem. That algorithm achieves
better convergence rate by choosing the steepest descent direction among the ε-
supergradients at a point. Thus, they don’t work with a perturbed version of

3.3. Coordinate Maximization Methods 25

the original problem. Another interesting work is by [Kappes 2012], who improve
convergence by leveraging bundle methods from the field of discrete optimization.

3.3 Coordinate Maximization Methods

Coordinate maximization methods form a very important class of algorithms for
map inference. They readily adapt to the graph structure of the problem and have
led to very successful map inference algorithms. e.g., trw-s [Kolmogorov 2006] for
pairwise graphs. Coordinate maximization methods for map inference are generally
simple to implement and give impressive results. For discussing about coordinate
maximization methods, we will work with the dual formulation given in section
2.6. In general, coordinate optimization methods divide the decision variables into
non-overlapping blocks. Then at each step a block of coordinates is chosen to be
otimized, while holding the rest of the blocks fixed. We would like to point out that
the dual of the lp relaxation given in 2.6 has the form of function h2 in [Nutini 2015].
That could be one reason for the success of coordinate optimization methods in map

inference. An interesting feature about block coordinate maximization methods
for map inference is that the optimal value of the block that is being optimized
is obtained in closed form. Hence, a full optimization is performed in each step,
which is different from general coordinate ascent methods which take a gradient
step with respect to the current block. Hence, we refer to these algorithms as
coordinate maximization [Meshi 2012], rather than coordinate ascent algorithms for
map inference.

To understand better how these algorithms work, consider the non-smooth dual
(2.25). We will denote this objective function as h(δ). It is possible to divide the
set of decision variables δ into N non-overlapping sets of variables {S1, S2, ..., SN}.
Then, δSi = δ|Si

denotes the decision variables restricted to the set Si and δSi is
the set of all other variables. In each iteration, only a block of variables is updated,
while the variables belonging to the other blocks are unchanged. For example, the
block Si will be updated as follows,

δt+1
Si

= arg max
δSi

h(δSi ∪ δ
t
Si

). (3.9)

Here, we have clearly indicated that a full optimization is performed with respect to
the block. Also, the full optimization is obtained in a closed form expression. This
presents interesting opportunities to perform convergence rate analysis of coordinate
maximization methods with closed form update in each step [Meshi 2012,Meshi 2017].

Another coordinate optimization algorithm that we would like to highlight is
the algorithm called mplp [Globerson 2008], which is one of the first algorithms
for inference in higher-order mrfs. That algorithm is based on a dual that is
different from what we saw in sections (2.5) and (2.6). Instead of getting into
the details of mplp, we will describe here an algorithm called convex max-product

[Weiss 2007,Hazan 2010] that optimizes the non-smooth dual (2.25). The following

26 Chapter 3. Optimization Algorithms for map Inference

update equations are repeated until convergence, for every node i ∈ V,

φc(xi) = max.
xc\i

{
θc(xc) +

∑

j∈c\i

δcj(xj)
}
∀xi, ∀c : i ∈ c

δci(xi) =
1

1 +Ni

(
θi(xi) +

∑

c:i∈c

φc(xi)
)
− φc(xi) ∀xi, ∀c : i ∈ c

(3.10)

where Ni is the number of cliques that contain the node i and φc(xi) =
∑
xc\i

φc(xc), as

shown in section (2.4). One weakness about using coordinate maximization methods
for map inference, is that they may get stuck in suboptimal points if the objective
is not smooth [Bertsekas 1999, §6.3.4]. Even though, for some special structure,
coordinate ascent converges to the global optimum for functions of the following
form,

f(x) = g(x) +
n∑

i=1

hi(xi) (3.11)

where g is convex and smooth and each hi is convex and possibly non-smooth. The
special structure is that the non-smooth part is separable. The dual objective in map

inference is only partially separable. We will see in section (5.1.1), that this partial
separability could be exploited for computing the Hessian efficiently. The intuition
for the possibility of coordinate ascent getting stuck in a non-smooth problem could
be seen in figure (3.1). At point P , we are not able to increase the objective by
travelling along either axis.

Figure 3.1: Superlevel sets of two dimensional non-smooth problems: (a) Separable
non-smooth part, guaranteed convergence to global optimum (b) General non-smooth
function, with a shape that is not favourable to coordinate ascent. Image courtesy

G. Gordon & R. Tibshirani, Optimization 10-725 slides, CMU.

Thus, coordinate maximization for the non-smooth dual problem given in (2.19)
could lead to sub-optimal solutions. This could be overcome by smoothing the dual,
like we did in section (3.2). Though, in the case of (super)gradient based methods,
it helped with improving convergence rate, for coordinate maximization it helps

3.3. Coordinate Maximization Methods 27

with better convergence and guarantee to reach the global optimum. Thus, we will
discuss algorithms to optimize the smooth, unconstrained dual given in (3.5).

A critical choice in coordinate maximization algorithms is the block size. One
possible choice is all variables of the form δci(·), for a fixed clique c and node i
within it. This is called the min-sum-diffusion (msd) algorithm, for which both
non-smooth [Werner 2007] and smooth [Werner 2009] versions exist. The update
equation for the smooth msd algorithm is closed form and it is as follows

δt+1
ci (xi) = δtci(xi) +

1
2τ

log
φtc(xi)
φti(xi)

∀xi (3.12)

where φtc(xc) and φti(xi) are obtained through 3.25, which we present in a later section
(3.5). Note, those equations are presented in the context of computing optimal primal
variables from optimal dual variables. In the case of msd, the update equations need
intermediate variables that are computed exactly like optimal primal variables. We
would like to point out that msd based update has a role to play in an important
algorithm for general higher-order inference called srmp [Kolmogorov 2015]. srmp

is a non-smooth coordinate maximization algorithm that works very well in practice
and is very efficient, too.

Another choice, which is a larger block, is all variables of the form δ·i(·), i.e., we
fix a node i and consider all labels of that node and all cliques that contain that
node. This is called the star update in the literature [Meshi 2014]. Remarkably,
star update also has a closed form expression as follows,

δt+1
ci (xi) = δtci(xi) +

1
τ

logφtc(xi)−
1

Ni + 1
· 1
τ

log
(
φti(xi) ·

∏

c′:i∈c′

φtc′(xi)
)
. (3.13)

The schedule by which the coordinate blocks are visited and updated affects
the convergence rate and also, the techniques used for analysis. A straightforward
schedule is to fix the order in which the blocks are visited and cycle through
them in a deterministic manner. This turns out to be a hard schedule to analyse
and [Saha 2013,Beck 2013] present some results, which are not applicable to our
problem. It seems visiting the blocks in a non-cyclic manner leads to simpler
analysis [Meshi 2012]. The straightforward non-cyclic schedule is to randomly
choose the next coordinate block and it has been analysed for coordinate ascent in
general [Lu 2015] and for coordinate maximization for map inference [Meshi 2012].
Also, the block to be updated could be chosen in a greedy manner. This leads
to a deterministic non-cyclic approach which chooses at each step, the coordinate
block that will give maximum improvement in the objective value. Of course,
choosing the block that will lead to maximum gain could be computationally costly.
However, [Meshi 2014] present an efficient priority queue based approach that is
specific for map inference. We state here the convergence rates for the greedy and
random schemes. Please, refer to [Meshi 2012] for proofs.

Theorem 2 (Greedy Block Maximization). Suppose
∣∣δt − δ∗

∣∣
1 ≤ B1 for all t for a

suitable constant B1. If there exists k > 0 so that coordinate maximization of each

28 Chapter 3. Optimization Algorithms for map Inference

block Si satisfies:

F (δt+1)− F (δt) ≥ 1
k

∣∣∣∇SiF (δt)
∣∣∣
2

∞
(3.14)

for all t, then for any ε > 0 after T = kB2
1
ε iterations, we have F (δ∗)− F (δt) ≤ ε.

Theorem 3 (Stochastic Block Maximization). Suppose
∣∣δt − δ∗

∣∣
2 ≤ B2 for all t for

a suitable constant B2. If there exists k > 0 so that coordinate maximization of each

block Si satisfies:

F (δt+1)− F (δt) ≥ 1
k

∣∣∣∇SiF (δt)
∣∣∣
2

2
(3.15)

for all t, then for any ε > 0 after T = k|S|B2
2

ε iterations, we have ❊[F (δ∗)−F (δt)] ≤ ε,
where the expectation is taken with respect to the randomization of the blocks.

In our experiments, we obtained consistently good results with star update,
where the blocks are chosen at random. We found msd update to be always poorer
to star update.

3.4 Augmented Lagrangian Methods

Alternating direction method of multipliers (ADMM) [Boyd 2011,Eckstein 1989]
is an optimization approach that has led to considerable research effort both in
theory and applications. It is a form of the augmented Lagrangian algorithm and
one of its major advantages is its suitability for parallel and distributed computation.
It can leverage the structure of the problem, for example, the objective being a
sum of simpler functions. This is the case with lp relaxation for map inference.
Thus ADMM based methods are yet another set of methods that leverage the graph
structure of the map problem. Just like other methods based on dual decomposition,
these algorithms involve local computation and message passing.

We briefly review the general ADMM approach for convex optimization. Consider
the following optimization problem,

minimize f(x) + g(Mx). (3.16)

Here, M ∈ Rm×n, f and g are convex functions and x ∈ Rn is the decision variable.
Many problems in machine learning take the form 3.16, where the function f is a
loss and g could be a regularizer or a constraint set. By introducing an additional
decision variable (z ∈ Rm), we could write equation 3.16 as

minimize f(x) + g(z) subject to Mx = z. (3.17)

In many problems, we will work with only one decision variable and the additional
variable will lead to convenient optimization algorithms. Given the problem set-up
(3.17), the augmented Lagrangian has the following form,

Lρ(x, z, λ) = f(x) + g(z) + λ⊤(Mx− z) +
ρ

2
||Mx− z||2 (3.18)

3.4. Augmented Lagrangian Methods 29

where λ ∈ Rn is a vector of Lagrange multipliers for the constraint MX = z and ρ

is a positive scalar parameter bounded away from 0. Thus optimization algorithms
seek to find a saddle point of this augmented Lagrangian. The alternating direction
method of multipliers (admm) for 3.17 (and hence, 3.16) has the following update
equations,

xk+1 = arg min
x∈Rn

Lρk
(x, zk, λk)

zk+1 = arg min
z∈Rm

Lρk
(xk+1, z, λk)

λk+1 = λk + ρk(Mxk+1 − zk+1)

(3.19)

where (xk, zk) and λk are sequences of estimates of the solution (x∗, z∗) and the
Lagrangian multipliers, respectively. [Boyd 2011, §3.4.1] describes a standard way
to adjust ρk as the algorithm proceeds. Given the constant terms in each update
equation, we can see that the update of x involves only a quadratic perturbation
of f and the update of z involves only a quadratic perturbation of g. Thus the
functions f and g are decoupled and the individual structure of f and g could be
exploited for efficient updates and for parallelization.

We have earlier seen the advantage of smoothing based methods. The augmented
Lagrangian achieves the same by the presence of the quadratic term. Even though
several admm based approaches have been proposed so far for map inference [Mar-
tins 2015,Meshi 2011,Fu 2013,Miksik 2014], only two approaches explicitly present
a convex optimization approach for higher-order mrfs: ad3 [Martins 2015] and
adlp [Meshi 2011]. Even though adlp is guaranteed to converge for any type of
clique potential, we will see ad3 in greater detail below, as it is more widely used in
the community.

3.4.1 ad3

The algorithm called alternating directions dual decomposition (ad3) approaches
the map inference problem by constructing the augmented Lagrangian of the primal
problem, given in 2.10. We will write the constraints defined by the local polytope
as follows,

∑

xi

φi(xi) = 1 and φi(xi) ≥ 0 ∀i ∈ V,∀xi
∑

xc

φc(xc) = 1 and φc(xc) ≥ 0 ∀c ∈ C,∀xc

Micφc = φi ∀(i, c) : i ∈ c

(3.20)

where for each clique c, φc is the vector of φc(xc) values for all xc and similarly, for
each node i, φi is the vector of φi(xi) values for all xi and the elements of matrix
Mic is 1 if the label of node i within the clique label xc matches with its actual
label xi and 0, otherwise. Thus it is possible to see the parallels between the primal

30 Chapter 3. Optimization Algorithms for map Inference

lp formulation for map inference and the general form of admm problems, given in
equation (3.17). Thus the augmented Lagrangian will take the following form,

Lρ(Φc,Φi, λ) =
∑

c∈C

θ⊤
c φc+

∑

i

θ⊤
i φi+

∑

(i,c):i∈c

λ⊤
ic

(
Micφc−φi

)
+
ρ

2

∑

(i,c):i∈c

||Micφc−φi||2.

(3.21)
Here, Φi is the set of all φi’s and Φc is the set of all φc’s. It can be re-written as
follows based on the constraint Micφc = φi ∀(i, c) : i ∈ c,
∑

c∈C

(
θc +

∑

i:i∈c

M⊤
ic (θi +λic)

)⊤

φc−
∑

(i,c):i∈c

λ⊤
icφi +

ρ

2

∑

(i,c):i∈c

||Micφc−φi||2. (3.22)

Thus, ad3 updates the variables Φi and Φc, along with the Lagrangian multipliers
λ as follows,

Φk+1
c = arg min

Φc∈R|Cls|

Lρk
(Φc,Φk

i ,λ
k) (3.23a)

Φk+1
i = arg min

Φi∈R|V|l

Lρk
(Φk+1

c ,Φi,λ
k) (3.23b)

λk+1
ic = λkic + ρk

(
Micφ

k+1
c − φk+1

i

)
∀(i, c) : i ∈ c. (3.23c)

Both the updates of the clique variables, φc’s (3.23a) and the node variables, φi’s
(3.23b) could be parallelized. Notice that the optimization problem to update the
clique variables, φc’s, is a quadratic program for each of the cliques. [Martins 2015]
shows that these quadratic programs can be solved exactly and efficiently for
particular types of models: Ising models, factor graphs imposing first-order logic
(fol) constraints and for Potts model (after binarization). For general clique
potentials, they present an active-set approach based on the fact that the optimal
φc’s are provably sparse. Given the clique variables, the primal node variables, φi’s,
are updated with the following close form expression,

φk+1
i (xi) =

1
|N(i)|

∑

c:i∈c

φk+1
ic , where φk+1

ic = Micφ
k+1
c . (3.24)

ad3 is able to achieve considerable speed-up by caching the results of the
subproblems. If at iteration (t+ 1), φ(t)

i = φ
(t+1)
ic ∀c : i ∈ c, then according to (3.24)

the primal variable φi will not change. According to (3.23c), it will be the same case
with λic. Thus if at some iteration t if all node variables and Lagrangean multipliers
corresponding to clique c are idle, then φ(t+1)

c = φ
(t)
c , hence, the quadratic program

need not be solved. Also, the active-set apprach allows warm start, which leads
to speed-up. ad3 has a convergence rate of O(1

ε) when the quadratic program is
solved exactly. However, it is too costly to run the active-set method to optimum
for general clique potentials. ad3 truncates the number of iterations according to a
hard coded maximum number. In theory, ad3 would converge as long as sufficient
decrease is obtained while solving the quadratic programs. However, determining
how much is sufficient is a difficult question. Thus, it is difficult to analyse the
convergence rate of ad3 with the active-set method. Also, there is no convergence
guarantee for ad3 with the active-set method and we have observed this empirically.

3.5. Estimating primal variables 31

3.5 Estimating primal variables

We have seen a broad range of optimization algorithms for map inference. In general,
for optimization algorithms, it is possible to recover optimal primal variables from
optimal dual variables. However, it is important to obtain feasible intermediate

primal variables when the algorithm is in progress. It is useful for many purposes:

• To provide a non-heuristic stopping criterion for the optimization algorithm,
based on primal-dual gap.

• To determine when to anneal the smoothing parameter (τ) for the smoothing
based algorithms, again based on primal-dual gap.

• To perform convergence rate analysis of the primal problem, e.g., [Meshi 2014,
1.5.1].

For primal-dual algorithms like ad3, feasible primal and dual variables are
available in each iteration as the algorithm progresses. For some other algorithms
feasible primal variables are only available at the optimum. For example, for the
smoothing based algorithms, the perturbed primal problem (3.3) is convex with
a differentiable objective and affine constraints for which strong duality obtains
[Boyd 2004, section 5.2.3]. Therefore, a pair of optimal primal and dual variables
must satisfy the KKT conditions. Given the optimal dual variables of the smooth
dual given in (3.5), it is possible to estimate optimal primal variables as follows,

φ∗
c(xc) =

exp
(
τθc(xc)− τ

∑
i:i∈c

δci(xi)
)

∑
xc

exp
(
τθc(xc)− τ

∑
i:i∈c

δci(xi)
)

φ∗
i (xi) =

exp
(
τθi(xi) + τ

∑
c:i∈c

δci(xi)
)

∑
xi

exp
(
τθi(xi) + τ

∑
c:i∈c

δci(xi)
) .

(3.25)

However, when the primal variables are estimated according to these equations
at an intermediate stage, they need not be feasible. The same holds true for the
primal variables estimated by supergradient ascent methods [Komodakis 2011],
which obtains the primal variables as time averaged or step-size averaged super-
gradients. There are two main approaches in the literature that recover feasible
intermediate primal variables [Savchynskyy 2014,Meshi 2014]. In both approaches
first approximate intermediate primal variables are computed, say, according to
(3.25). Unless at the optimum, these primal variables need not satisfy the marginal-
ization constraints in (2.10b). The approach in [Savchynskyy 2014] solves small linear
programs with respect to each clique to obtain feasible clique primal variables. These
linear programs take the form of transportation problems and could be efficiently
solved. The approach given in [Meshi 2014] is simpler and doesn’t involve solving
small optimization problems. This is the approach that we have adopted in our
experiments and we describe the steps in algorithm (2).

32 Chapter 3. Optimization Algorithms for map Inference

First, estimates for the node and clique primal variables are obtained, which
are most likely infeasible. (3.25) shows one such way to obtain these beliefs. At
this stage, the vector of beliefs for each node and clique, will satisfy the simplex
based normalization constraint. In order to make them satisfy the marginalization
constraint, we adjust them next. However, after this step, they may no longer satisfy
the simplex constraint. In the final step, they are adjusted again, such that they
satisfy both the normalization and marginalization constraints.

Algorithm 2 Mapping to a feasible primal point

Step 0: Obtain infeasible primal estimates, φi(xi) and φc(xc) according to
(3.25).
Step 1: Obtain marginals satisfying marginalization constraint.
For all c obtain: φc(xi) ,

∑
xc\i

φc(xc) according to (2.10b).

For all i obtain: φ̂i(xi) = 1
1+
∑

c:i∈c

1
|Xc\i|

(
φi(xi) +

∑
c:i∈c

1
|Xc\i|

φc(xi)
)

For all c obtain: φ̂c(xc) = φc(xc)−
∑
i:i∈c

1
|Xc\i|

(
φc(xi)− φ̂i(xi)

)

Step 2: Obtain marginals satisfying simplex constraint.
λ = 0

1: for c ∈ C,xc do

2: if φ̂c(xc) < 0 then

λ = max

{
λ, −φ̂c(xc)

−φ̂c(xc)+ 1
|Xc|

}

3: else if φ̂c(xc) > 1 then

λ = max

{
λ, φ̂c(xc)−1

φ̂c(xc)− 1
|Xc|

}

4: end if

5: end for

6: for l ∈ V do

φ̃l(xl) = (1− λ)φ̂l(xl) + λ 1
|Xl|

7: end for

8: for l ∈ C do

φ̃l(xl) = (1− λ)φ̂l(xl) + λ 1
|Xl|

9: end for

Even though an unconstrained optimization problem is being solved while
optimizing the dual given in (3.5), first order methods do not reach low gradient
norm values in practice (say, ‖∇g(δ)‖∞ ≤ 10−3). Thus, exit condition based on
primal-dual gap is important for first order methods. On the other hand, we have
consistently observed ‖∇g(δ)‖∞ reaching low values, when the true Hessian is being
used within Newton-type methods. This could be because of Newton-type methods
having superior convergence behavior when they are close to the optimum.

Given optimal primal variables of the lp relaxation, we are still faced with the

3.6. Lipschitz constant of the smooth dual 33

task of recovering integral primal variables of the underlying ilp (2.9). Usually,
one resorts to rounding the fractional values to integral values. [Ravikumar 2010]
presents a thorough analysis of various rounding schemes. ad3 [Martins 2015]
presents a branch-and-bound based post-processing that further improves the results
towards the global optimum. We would also like to point out the fact that there
will be ties in the optimum labelling obtained. [Meltzer 2005] has shown a way
to resolve ties along monotonic chains and it has been used by other algorithms
[Kolmogorov 2006, Komodakis 2011]. In our experiments, we have used a simple
maximum based rounding scheme and we resolve ties randomly.

3.6 Lipschitz constant of the smooth dual

We have been discussing optimization algorithms and their convergence rates. We
shown the rates in terms of the desired accuracy ε. However, we have to keep in
mind that the convergence rate is also a function of the Lipschitz constant (L) of
the function. We stated the convergence rate of accelerated gradient ascent to be

O(1
ε), when in fact O(

√
L
ε) would be more accurate. In general, higher the Lipschitz

constant, poorer is the rate of convergence of optimization algorithms. Thus, it is
important to know what factors affect the Lipschitz constant. We will briefly see
how to derive the Lipschitz constant of the smooth dual in (3.5). Our derivation is
based on the technique proposed by [Nesterov 2005].

We could re-write the marginalization constraints in (2.10b) as follows,

A⊤φ = 0 (3.26)

where A is a matrix suitably constructed with only 0s, 1s and −1s. It is of dimen-
sion |φ| × |δ|. Also, based on 9.1.7, we could define a proximal operator for the
normalization constraints (2.10c) as follows,

d(φ) =
∑

i∈V

(
logl +

∑

xi

φ(xi)logφ(xi)
)

+
∑

c∈C

(
slogl +

∑

xc

φ(xc)logφ(xc)
)
. (3.27)

It has a strong convexity parameter of

σ =
1

|V|+ |C| (3.28)

with respect to the l1 norm. Thus, we could define the smooth dual objective as
follows,

gτ (δ) = maximize
φ

δ⊤A⊤φ− 〈θ,φ〉− 1
τ
d(φ)

subject to
∑

xi

φi(xi) = 1, ∀i ∈ V;
∑

xc

φc(xc) = 1, ∀c ∈ C

φi(xi) ≥ 0, ∀i ∈ V; φc(xc) ≥ 0 ∀c ∈ C.

(3.29)

34 Chapter 3. Optimization Algorithms for map Inference

After maximizing with respect to φ, we obtain the same smooth dual objective
that we saw in (2.25). Note, that the derivation of the dual based on proximal
operators is equivalent to obtaining the dual based on the perturbed primal objective
in (3.2). According to [Nesterov 2005], the smooth dual objective function has a
Lipschitz continuous gradient with respect to lp norm as follows,

‖∇gτ (x)−∇gτ (y)‖p ≤ Lτ‖x− y‖p ∀ x,y ∈ Rn

where Lτ =
τ‖A‖2p∞

σ
= τ(|V|+ |C|)‖A‖2p∞.

(3.30)

The ‖ · ‖2∞ norm of A is considered. In our experiments, we work with algorithms
which assume that the objective function has a Lipschitz continuous gradient with
respect to the l2 norm. The range space is equipped with l∞-norm because of the
strong convexity of the entropy terms with respect to the l1 norm and the dual
of the l1 norm is the l∞ norm. See, [Nesterov 2005] for more details. Now, the
following result is given in [Higham 1992],

‖A‖2∞ = max.
i∈[1,...,|φ|]

‖Ai·‖ =
√
Nmax (3.31)

where Nmax is the maximum number of cliques sharing a node. Thus, we have the
following expression for the Lipschitz constant,

Lτ = τ(|V|+ |C|)Nmax. (3.32)

Thus, lesser smoothing (larger τ), more nodes, more cliques and more cliques
sharing a node all affect the Lipschitz constant of the smooth dual. Thus, we have to
expect convergence rate to be affected by all these factors. Note, a similar derivation
can be made for the smooth version of the linearly constrained dual in (2.20). Given
the expression of the Lipschitz constant, the parameter k in scm (3.14, 3.15), for
msd update is k = 4τ and for star update is k = 4τNi [Meshi 2014, §1.4.3]. We
recommend a detailed table in [Meshi 2015] for a ready reference regarding the
convergence rates of map inference algorithms.

3.7 Dual decomposition for large graphs

In order to obtain practical convergence, there is an interplay between the sizes
of the graph and the subgraphs over which the dual decomposition is derived
[Komodakis 2009,Wang 2013,Miksik 2014]. This is especially true for gradient based
and augmented Lagrangian based algorithms. For medium sized graphs, decomposing
into individual cliques like (3.5), leads to excellent practical convergence. However,
for large graphs, only bigger subgraphs like chains of cliques lead to a practical
convergence rate and there is considerable empirical evidence regarding larger
subgraphs leading to better convergence [Komodakis 2009,Schmidt 2011,Wang 2013,
Miksik 2014]. Now, we will consider some possible explanations for observing poorer
convergence with smaller subgraphs. When working with the non-smooth dual (2.20)

3.7. Dual decomposition for large graphs 35

using a supergradient algorithm, we have seen that map inference over individual
subgraphs leads to a valid supergradient. Too many subgraphs, leads to less overlap
among the subgraphs, thus it could lead to noisier supergradients. When working
with the smooth dual (3.5), we have seen in section (3.6) that the Lipschitz constant
increases with the number of subgraphs. If the graph is decomposed using large
subgraphs, then the total number of subgraphs comes down, leading to a lower
Lipschitz constant. Note, if one has densely connected graphs, i.e., a node shared by
many cliques leading to very large Nmax, then convergence is going to be affected
irrespective of graph decomposition. Also, there will be larger memory requirement
because of more number of dual variables. In this thesis, we focus on sparse graphs.

Now, we will show how to derive a dual when the graph is large like a stereo
problem. Also, show a way to reduce problem size when a node is shared by only two
subgraphs. The dual in (2.25) is derived according to clique based decomposition and
it is not the right way to go for gradient based algorithms for large graphs. We have
observed this empirically, also. Consider the dual optimization problem in (2.19).
We observed that if we have dual variables corresponding to pseudomarginals of
both nodes and cliques, then we have

∑
i∈V

nT i.l+
∑
c∈C

nT c.l
s dual variables. Here, each

node i is shared by nT i trees and takes l labels; each clique c is shared by nT c and
contains s nodes. Having so many dual variables is prohibitive for large problems.
We noted in section (3.1) that the number of dual variables could be brought down by
considering consistency constraints only between node pseudomarginals. This is valid
as long as the subgraphs could be optimized exactly, i.e., they satisfy the integrality
condition. However, enforcing consistency between only the node pseudomarginals
reduces the rate of convergence of the algorithm. According to (3.32), we could
improve the convergence rate by increasing the size of the subgraphs because in
return this reduces the number of subgraphs. Thus, similar to section (2.5) we could
derive the non-smooth dual as follows,

max.
δ

∑

T ∈T (G)

min.
φT

i ,φ
T
c

(
∑

i∈T

∑

xi

(θT
i (xi) + δT i(xi))φT

i (xi) +
∑

c∈T

∑

xc

θT
c (xc)φT

c (xc)

)

(3.33a)

subject to φT ∈ L(T) ∀T ∈ T (G) (3.33b)

∑

T :i∈T

δT i(xi) = 0, ∀i ∈ V. (3.33c)

Here, the dual variables are δT i(xi), one for each node i and each node label xi, for
all trees T that contain i. We can notice the reduction in number of dual variables
compared to (2.19). Now, suppose, each node is shared by only two subgraphs. For
example, if the graphical model corresponds to an image grid, the rows could form
one subgraph and the columns could form another subgraph. Note, a subgraph need

36 Chapter 3. Optimization Algorithms for map Inference

not be connected. Then, we will have the following dual problem,

max.
δ

min.
φ

T1
i ,φ

T1
c

(
∑

i∈T1

∑

xi

(θT1
i (xi) + δi(xi))φ

T1
i (xi) +

∑

c∈T1

∑

xc

θT1
c (xc)φT1

c (xc)

)

+ min.
φ

T2
i ,φ

T2
c

(
∑

i∈T2

∑

xi

(θT2
i (xi)− δi(xi))φT2

i (xi) +
∑

c∈T2

∑

xc

θT2
c (xc)φT2

c (xc)

)

(3.34a)

subject to φT1 ∈ L(T1), φT2 ∈ L(T2) (3.34b)

where, we have used the following simplification of the constraint on the dual
variables,

δT1i(xi) + δT2i(xi) = 0 =⇒ δT1i(xi) = δi(xi), δT2i(xi) = −δi(xi). (3.35)

Hence, the dual variables are δi(xi), one for each node i and each node label xi.
Thus, we can see the reduction in number of dual variables for this special case.
Note that in these large scale problems, when we refer to subgraphs, we refer to
trees, unless otherwise stated. Note, we have shown all the results with non-smooth
duals but they can readily be smoothed, just like (3.5).

3.8 Efficient belief propagation in trees

In section (3.2), we mentioned how the terms in the gradient of the smooth dual
could be computed by the sum-product algorithm. This also holds true for terms in
update equations for smooth coordinate maximization. Also, the active set method
used by ad3 has an intermediate step that is equivalent to max-product computation.
We have been looking at subgraphs in the form of trees, where we are guaranteed to
obtain exact inference. As number of labels (l) increases or as the clique size (s)
increases the complexity of inference which is O(ls) increases. Efficient inference
by exploiting the specific nature of the clique potentials has received considerable
research attention: [Potetz 2008] presents an O(l2) approach for both map and
marginal inference for linear constraint nodes; [Duchi 2007] shows an approach for
matchings; [Tarlow 2010] discusses efficient map inference for cardinality based and
order based potentials; [Komodakis 2009] deals with efficient map inference in sparse
pattern-based potentials. Another interesting approach is to use a randomized
algorithm [Noorshams 2013] that achieves O(l) complexity for pairwise graphs. Here,
we will discuss our approach to marginal inference in higher-order pattern-based
potentials. We have implemented this approach for all algorithms optimizing the
smooth dual (3.5).

Sparse pattern-based clique potentials are very useful in computer vision [Ko-
modakis 2009,Rother 2009]. In these potentials, a big majority of the labellings take
a constant (usually high) value and a small subset (of size k) take other significant
values. Many clique potentials fit this description. [Komodakis 2009] showed an

3.8. Efficient belief propagation in trees 37

efficient way to perform max-product computation in chains of such cliques. It is
not clear how to extend their work to sum-product computation. [Coughlan 2010]
showed a sum-product approach for pattern-based potentials in pairwise mrfs. They
achieved a complexity of O(2l + k), instead of O(l2). They mention that their
idea can be used for higher order cliques with a factor graph representation but
don’t go into details. We have found that with a factor graph representation, their
approach has a complexity of O(ls−1 + l + k). Instead of a factor graph, if a clique
tree representation (2.3) is used, it is possible to achieve much better complexity of
O(ls−n + ln + k), where n is the size of a subset of clique nodes. Suppose we want to
compute marginals within a single clique, these subsets will be (nearly) equal sized
partitions of the clique. For clique chains, this is the size of the sepset between two
overlapping cliques. We will recall that the sepset contains the nodes shared by the
two cliques. For example, for cliques of size 4, with either subset or sepset of size 2,
one can quickly see the efficiency gain.

The graphical model for which we perform sum-product inference has potentials,
θ̂i(xi) and θ̂c(xc), obtained according to the reparameterization implied by the dual.
Refer to section (2.6) for this reparameterization interpretation. In order to discuss
about sum-product algorithm, it is more convenient to work with potential functions
than potentials (2.3). Let ψi(xi) = exp(−θ̂i(xi)) and ψc(xc) = exp(−θ̂c(xc)) denote
the node and clique potential functions, respectively. We will let pci (xi) denote the
marginal probability of node i taking label xi in clique c of this graphical model.
We saw in equation (3.7), that the gradient is made of two terms µci(xi) and µi(xi).
Now, µi(xi) could be computed with complexity O(l) and it is not an impediment.
Interestingly, µci(xi) is equal to pci (xi) and could be computed by leveraging efficient
sum-product algorithms.

In the following, we will consider clique chains. This is for simpler notation and
these results are applicable to trees, in general. Also, these results can be reduced
to the case of individual cliques. As shown in figure (3.2), let us work with three
neighbouring cliques in a chain, a, b and c. m is the sepset between a and b and
n is the sepset between b and c. Sometimes, the sepsets can be complementary to
each other, i.e., m = b \ n.

Figure 3.2: A clique chain.

38 Chapter 3. Optimization Algorithms for map Inference

A sum-product message is passed from b to c, as follows,

mb→c(xn) =
∑

xb\n

ψb(xb)ν(xb\n)

where, ν(xb\n) =
(∏

i∈b\n

ψi(xi)
)
ma→b(xb\n)

(3.36)

ma→b(xb\n) is derived from the message sent by clique a to b. That message was
for the sepset m and ma→b(xb\n) is obtained by marginalization. Let ψ̄ denote the
large constant value taken by the clique potential function. Let Pat(xn) denote the
pattern-based clique labellings corresponding to the sepset labelling xn, then the
first equation of (3.36) can be written as,

mb→c(xn) =
∑

xb\n

∈Pat(xn)

ψb(xb)ν(xb\n) +
∑

xb\n

/∈Pat(xn)

ψ̄ν(xb\n)

=
∑

xb\n

∈Pat(xn)

(
ψb(xb)− ψ̄

)
ν(xb\n) + ψ̄

∑

xb\n

ν(xb\n)
(3.37)

In (3.37), the second summation could be computed only once with complexity
O(ls−n) and used for all elements of xn. For each labelling of xn, the first summation
could be computed with complexity O(k). Finally, by iterating once through all
labellings of xn, we obtain the message with O(ln) complexity. Within this last loop
to compute the message, the probabilities pbi(xi) of the corresponding nodes within
the clique b could be computed.

Refer (9.2), for a numerically stable implementation of this scheme. In the
coming chapters we will be discussing about Newton-type methods for map inference.
We would like to point out that having cliques which allow efficient sum-product
computation makes Newton-type methods more suitable for that problem.

Chapter 4

Newton Methods and Linear

System Solvers

Newton methods are a family of optimization methods that have played a long and
important role in optimization literature. In general, optimization algorithms make
progress towards the optimum by computing a search direction in each iteration. The
central concept in Newton methods is the use of curvature information to compute
the search direction. The gradient of a function holds first order information based
on which the search direction could be obtained. The Hessian holds second order
information (i.e., curvature), which could lead to a better search direction. In
each iteration, a local quadratic approximation based on the Hessian is constructed
and the desired Newton direction points towards the minimum of this quadratic
approximation. In figure (4.1), this concept is illustrated for a two dimensional
function f , which is a function of (x, y). At iteration t, the optimization algorithm
will be at (xt, yt). A quadratic q is constructed based on the Hessian matrix at
this point. We can see that q is tangent to f at (xt, yt). The algorithm moves
towards the minimizer of this quadratic and that point becomes xt+1, yt+1. Thus,
the Newton method progresses towards the minimizer of f .

Figure 4.1: Computing the Newton direction by form-
ing the quadratic approximation. Image adapted from

https://suzyahyah.github.io/calculus/optimization/2018/04/06/Taylor-Series-

Newtons-Method.html.

Many concepts in the literature of Newton methods and Linear system solvers
are in terms of a minimization problem. Hence, we will consider the negative of the
smooth dual in (3.5) as our model problem as we discuss about Newton methods

40 Chapter 4. Newton Methods and Linear System Solvers

and linear systems. We will state our model problem here for ready reference,

min.
δ

∑

c

smax
xc

(
θc(xc)−

∑

i:i∈c

δci(xi); τ
)

+
∑

i

smax
xi

(
θi(xi) +

∑

c:i∈c

δci(xi); τ
)
. (4.1)

We will denote the objective of the optimization problem as h(δ). We already
came across the negative soft-max function smin in (3.6) and smax is the soft-max

function. Given a set of numbers s = {s1, s2, ..., sn}, the soft-max over s is defined
as follows,

smax
s∈s

(s) =
1
τ

log
∑

s∈s

exp(τs). (4.2)

Thus, as τ →∞, smax
s∈s

(s) → the maximum value in set s. Thus, the smin function

upper bounds the maximum of the set, for finite values of τ .
Suppose at some iteration, we are at δ and we are seeking the search direction

p. The Taylor series expansion of h at δ takes the following form,

h(δ + p) = h(δ) +∇h(δ)Tp+ pT∇2h(δ)p+ (4.3)

Thus, a quadratic approximation to h at δ takes the following form,

q(p) = h(δ) +∇h(δ)Tp+ pTB(δ)p (4.4)

where, B(δ) could be the true Hessian (∇2h(δ)) or a modified Hessian (we will see
about this in section (4.8)) or a Hessian approximation (e.g., obtained through a
quasi-Newton method). Thus, B(δ) ∈ RN×N carries the curvature information that
the Newton method exploits. We denote |δ| as N . Given a quadratic approximation
at a point, Newton methods seek a p that points in the direction of the minimum
of the quadratic form. Geometrically, a quadratic form is a bowl whose shape
is determined by B. Thus, the Newton direction, p∗, could be obtained as the
minimizer of the quadratic form,

p∗ = argmin
p

q(p) = argmin
p

∇h(δ)Tp+ p⊤B(δ)p. (4.5)

For an unconstrained convex problem, the Newton direction could be found by
minimizing the quadratic form in an unconstrained manner. q(p) is also a smooth
function and it is being optimized in a unconstrained manner. In such a setting,
the minimum, p∗ satisfies ∇q(p∗) = 0 [Boyd 2004, §9.1]. Thus, we get p∗ to be the
solution of the following linear system,

B(δ)p = −∇h(δ). (4.6)

If B(δ) is positive definite, p∗ is guaranteed to be a descent direction. If the linear
system is solved exactly, we will obtain p∗ with the following form,

p∗ = −B(δ)−1∇h(δ). (4.7)

Later, we will see that we need not solve this linear system exactly to obtain the
Newton direction. That will lead to saving of computational cost. Given a descent

4.1. Linear System Solvers 41

direction, the next question is determining the length of the step along this direction.
We will denote this step length as α. Therefore, the iterations in Newton’s method
will be of the following form,

δt+1 = δt − αtB−1∇h (4.8)

where for notational convenience, we make the following abbreviations,

B(δt) = B h(δt) = h. (4.9)

Before we see how to determine αt, we present a strong result regarding convergence
of Newton methods.

Theorem 4. (Quadratic local convergence) If B is the exact Hessian, ∇2h and if

αt = 1 in the Newton iteration (4.8), then quadratic convergence is achieved, when

the iterations are started sufficiently close to the optimum [Bertsekas 1999, §1.4].

We have to note that this strong rate of convergence holds only when the iterations
start sufficiently close to the optimum. In fact, Newton methods may not converge if
the iterations start from a far away point and αt is always 1. Thus, Newton methods
require something called a globalization strategy, in order to ensure convergence
when the iterations start from a far away point. The globalization strategy sets the
value of the step length, αt, in a suitable manner to ensure convergence. It could
either follow a line search or a trust-region procedure. We will discuss about these
procedures in sections (4.5) and (4.6). Immediately, we will look more closely at
linear system solvers. The reason is that Newton methods do not treat the linear
system solver as a black box that returns the exact solution of the linear system in
each iteration. Instead, the algorithmic steps within the linear system solver become
part of the algorithmic steps of Newton methods. Especially, there are two situations
that are relevant to us: solving the linear system only upto an approximate solution
and enforcing a trust-region while minimizing the quadratic form.

4.1 Linear System Solvers

While choosing a linear system solver, we have to keep in mind the size of the
problem. mrfs for computer vision problems result in large problem sizes. Typically,
linear system solvers are grouped as either direct or iterative methods. As the names
suggest, iterative methods perform certain steps repeatedly in a loop, getting closer
to the solution as the algorithm progresses. On the other hand, direct methods
obtain the solution by an algorithm which is a collection of steps. One aspect about
the linear system that can be exploited by an algorithm is the sparsity of the matrix.
We will encounter a sparse linear system in chapter 5 while applying a Newton
method to perform map inference. Even though there has been considerable progress
for solving sparse linear systems by direct methods [Davis 2006,Davis 2016], there
are advantages to using iterative methods within a Newton method. Before we see
what they are, we will clarify that we are interested in linear systems of the form

42 Chapter 4. Newton Methods and Linear System Solvers

(4.6), where B ∈ RN×N is a square matrix and it is sparse, symmetric and positive

definite, −∇h ∈ RN and p ∈ RN is the solution of the linear system that we are
after. In general, the complexity of solving a such a linear system is O(N3), for
both direct and iterative methods. Apart from sparsity, both families of methods
could devise other algorithmic steps to achieve better efficiency.

There are two advantages to iterative methods that are suitable for their use
within Newton methods. First, we will see in section 4.4 that it is not necessary
to obtain the exact solution of the linear system in order to ensure that a Newton
method converges to the solution. In fact, such inexact Newton methods achieve
considerable computational efficiency, while maintaining convergence guarantee.
Compared to direct methods, iterative methods like the conjugate gradient method
(cg) offer a simple mechanism to achieve this approximate solution. Second, we will
see in section 4.2 that iterative methods like conjugate gradients only require Hessian-
vector products at each iteration and not the Hessian explicitly. Depending on the
problem, it is possible to leverage underlying structure to compute Hessian-vector
products efficiently. In fact, there are problems where computing Hessian-vector
products is efficient, while computation of the Hessian is still costly. Such problem
instances lead to efficient Hessian-free Newton methods, where the Hessian is never
computed explicitly and only efficient Hessian-vector products are computed. We
will see more about efficient Hessian-vector products in section 4.11. In our Newton
method for map inference, we do not take a Hessian-free approach. Instead, we
exploit problem structure to compute the sparse Hessian efficiently and to achieve
efficient Hessian-vector products, as we will see in section 5.1.1.

In summary, iterative methods allow truncation of the iterations through which
an approximate solution could be computed and these methods readily exploit
efficient Hessian-vector products. Thus we will focus on iterative linear system
solvers in this thesis. Among various iterative methods, three classic ones are
Jacobi, Gauss-Seidel and successive over-relaxation (sor). However, they have poor
convergence properties and restricted applicability. This is in contrast to a class
of iterative methods called Krylov subspace methods. In particular, the conjugate
gradient method (cg) will be of interest to us. For more information on iterative
methods, one could refer to [Barrett 1994,Saad 2003].

4.2 The Conjugate Gradient Method

The conjugate gradient method is an iterative method for solving linear systems of
the form shown in equation (4.6). Here, we will focus on matrix B ∈ RN×N being
sparse, symmetric and positive definite. The linear system (4.6) was obtained by
setting the gradient of (4.5) to zero. Note that for a symmetric positive definite B,
(4.6) and (4.5) have an unique solution. The objective function in (4.5) is called a
quadratic form. We would like to point out that the interpretation as minimization
of a quadratic form gives an intuitive understanding of how the conjugate gradient
method works. For the sake of visualization, let us imagine a two dimensional system.

4.2. The Conjugate Gradient Method 43

Then, for A being symmetric positive definite, the quadratic form is a convex bowl,
with elliptic level-sets. Keeping this picture in mind is useful, when we discuss about
preconditioned cg.

Now, we will briefly describe some concepts, before presenting the algorithmic
steps of cg. Apart from the books on iterative linear solvers mentioned earlier,
[Demmel 1997,Shewchuk 1994] are excellent resources to understand more about the
cg method. Within cg, an important quantity called the residual is computed and
used both algorithmically and for the truncation of the iterations that we mentioned
in the previous section. The residual is defined as follows and it is equal to the
gradient of the quadratic form,

r(pk) = Bpk +∇h. (4.10)

For better notation, at iteration k of cg, we will refer to the residual as rk and
the intermediate solution as pk. Also, the initial value x0 is specified by the user.
Note, we will denote Newton iterations with a superscript t and cg iterations with
a subscript k.

For a set of nonzero vectors d0,d1, ...,dl and a symmetric positive definite matrix
B, if the following property holds

d⊤
i Bdj = 0 ∀i 6= j (4.11)

then those vectors are said to be conjugate with respect to B. Such a set of vectors
is also linearly independent. For N variables, it will be desirable to have algorithms
that can converge to the solution in atmost N iterations. It can be shown that
it is indeed possible, if the steps are conjugate with respect to B, thus leading to
conjugate directions algorithms. The step taken by a conjugate directions algorithm
is of the following form,

pk+1 = pk + αkdk where αk = − r⊤
k dk

d⊤
k Bdk

. (4.12)

Note that αk is chosen to be the step length that minimizes the quadratic form in
(4.5) along the direction dk. The residual rk has the following properties,

r⊤
k di = 0 ∀ i = 0, 1, ..., k − 1

rk+1 = rk + αkBdk.
(4.13)

In words, the residual at the current iteration is orthogonal to all previous steps of
the algorithm. The second relationship could be derived from (4.12) and (4.10), the
definition of the residual. Now, comes the important question of how to choose the
conjugate directions. The conjugate gradient method presents an approach that is
efficient in terms of memory and computation. The current direction dk is chosen
to be a linear combination of the current residual rk and the direction dk−1 of the
previous iteration, as follows,

dk = −rk + βkdk−1 where βk =
r⊤
k Bdk−1

d⊤
k−1Bdk−1

. (4.14)

44 Chapter 4. Newton Methods and Linear System Solvers

cg chooses d0 to be the steepest descent direction of the quadratic form at p0.
This is essential for proving that the algorithm converges. Since, the residual at a
point is the gradient of the quadratic form, we have d0 = −r0. Thus the conjugate
gradient method takes the form shown in algorithm (3). The update equations for
αk and βk could be derived from (4.12), (4.13) and (4.14). This is done so that
we need to perform only one matrix-vector product (Bdk) in each iteration. This
matrix-vector product is the costliest step within cg and leveraging the sparsity
of B is one possible way to achieve more efficiency. Apart from this matrix-vector
product, algorithm (3) involves a few dot products of vectors.

Algorithm 3 The conjugate gradient method

1: Set r0 ← Bp0 +∇h, d0 ← −r0, k ← 0, ε > 0
2: while rk > ε do

3: αk ← rT
k rk

dT
k
Bdk

4: pk+1 ← pk + αkdk
5: rk+1 ← rk + αkBdk

6: βk+1 ←
r⊤

k+1rk+1

r⊤
k
rk

7: dk+1 ← −rk+1 + βk+1dk
8: k ← k + 1
9: end while

One important property of cg is that all the residuals and the search directions
till iteration k are contained within the Krylov subspace of degree k with respect to
r0, which is defined as,

K(r0; k) , span(r0, Br0, ..., B
k
r0). (4.15)

The Krylov subspace representation is critical to analyse the convergence rate of
cg. Now, the directions {d0,d1, ...,dk} are independent by definition and span a
subspace. Also, it can be shown that r⊤

k ri = 0, ∀i = 0, 1,..., k-1, i.e., the residuals
{r0, r1, ..., rk} are orthogonal to each other and hence, span a subspace. Note,
choosing d0 = −r0 is necessary to show that the residuals are orthogonal. It can be
shown that these subspaces are the same,

K(r0; k) = span(d0,d1, ...,dk) = span(r0, r1, ..., rk). (4.16)

Note, this is a property of Krylov subspace methods in general. Among Krylov
subspace methods, the advantage of cg is that it minimizes the distance to the
solution after each step. The distance measure is the weighted norm, ‖x‖2

B
= x⊤Bx.

So far, the only guarantee regarding convergence rate is that cg will converge in at
most N steps. This is not a very useful result when N is large, which is the case for
us. We will see in the next section that the cg method could be made to converge
in much lesser number of iterations.

Before we end this section, here are some interesting historical notes about CG.
It was first presented as a direct method in 1952 [Hestenes 1952]. The method

4.3. Convergence of CG and Preconditioning 45

did not gain acceptance due to loss of conjugacy with finite precision arithmetic
computers, leading to lack of convergence within n iterations. Later, its usefulness
was recognized as an iterative method [Reid 1971]. Even now, for small problems
this sensitivity to numerical precision is an issue and direct methods are preferred.

4.3 Convergence of CG and Preconditioning

In this section, we will see what factors influence the convergence rate of the
conjugate gradient method and what can be done to improve it. We will present the
preconditioned conjugate gradient method that considerably improves convergence
rate by using a preconditioner.

A bound on the convergence rate of cg could be derived in terms of the condition
number of the matrix B. Let’s recollect that the condition number is defined as,
κ = λmax

λmin
where λmin and λmax are the minimum and maximum eigenvalues of B,

respectively. The convergence rate of cg satisfies the following bound,

|pk − p∗|
B

|p0 − p∗|
B
≤ 2

(√
κ− 1√
κ+ 1

)k
. (4.17)

Visually, we will imagine a two dimensional system. If κ ≫ 1, that means the
quadratic form is a long and narrow bowl. The closer the bowl is to a hemisphere,
the closer κ is to 1. This bound based on the condition number is still not strong
enough. More than the condition number, the distribution of the eigenvalues of
B has a provably stronger influence on the convergence rate of cg. The following
theorem [Nocedal 2006, section 5.1] illustrates this influence.

Theorem 5 (Eigenvalue distribution of B). If B has only r distinct eigenvalues,

then cg will reach the solution in at most r iterations. In fact, if the eigenvalues

occur in r distinct clusters, cg in general will achieve an approximate solution in

around r steps.

We point out that the design of cg such that the directions and residuals till
iteration k are restricted to the Krylov subspace K(r0; k) is necessary to prove these
bounds. How does one use this understanding about the influence of the condition
number and/or the eigenvalue distribution to speed-up the convergence of cg? We
somehow need a new linear system which has favourable properties. Say, we could
modify B to B̂ = M−1B, where M by construction is symmetric positive definite.
Then we could work with the following linear system,

M−1Bp = −M−1∇h. (4.18)

For example, choosing M = B, leads to B̂ = I, for which all eigenvalues are
equal to 1 but it involves the computation of A−1. However, avoiding the explicit
computation of B−1 is a fundamental motivation of linear system solvers. We
need an easy to invert M , such that M−1B has low condition number and/or well
clustered eigenvalues. There is one important issue that we need to address: is

46 Chapter 4. Newton Methods and Linear System Solvers

M−1B symmetric positive definite? It is not necessary. To circumvent this problem,
instead of thinking in terms of transforming B, we will think in terms of transforming
p as follows,

p̂ = Cp =⇒ p = C−1p̂. (4.19)

Substituting this in (4.5), gives us the quadratic form: 1
2 p̂

⊤(C−⊤BC−1)p̂+(C−⊤b)⊤p̂.
Minimizing this quadratic form is equivalent to solving the following linear system,

(C−⊤BC−1)p̂ = −C−⊤∇h. (4.20)

Note that C−⊤BC−1 is symmetric positive definite for any C, as long as B is
symmetric positive definite. Suppose, we define M , C⊤C, then M is symmetric
positive definite for any C. Remarkably, for this choice of M , the eigenvalues of
M−1B and C−⊤BC−1 are the same. However, the eigenvectors differ by a linear
transformation: if v is the eigenvector of M−1B corresponding to the eigenvalue λ,
then Cv is the eigenvector of C−⊤BC−1 for the same λ. Thus, we will work with
the transformed linear system (4.20), rather than (4.18). Apart from leading to a
symmetric positive definite linear system, this approach also leads to an algorithm,
that is a simple modification of algorithm (3). The preconditioned conjugate gradient

algorithm is presented in algorithm (4).

Algorithm 4 The preconditioned conjugate gradient method

1: Set r0 ← Bp0 +∇h
2: Solve My0 = r0 for y0

3: Set d0 ← −y0, k ← 0, ε > 0
4: while ‖rk‖ ≥ ε do

5: αk ← rT
k yk

dT
k
Bdk

6: pk+1 ← pk + αkdk
7: rk+1 ← rk + αkBdk
8: Solve Myk+1 = rk+1

9: βk+1 ←
r⊤

k+1yk+1

r⊤
k
yk

10: dk+1 ← −yk+1 + βk+1dk
11: k ← k + 1
12: end while

Just like algorithm (3), algorithm (4) also computes the same matrix-vector
product Bpk and similar number of dot products of vectors in each iteration. On
top of these computations, algorithm (4) also involves the solution of a linear system
Myk+1 = rk+1 in each iteration. It is essential to solve this linear system efficiently.
We should keep in mind that solving Myk+1 = rk+1 in each iteration should not
outweigh the reduction in number of iterations. Usually, this means an easy to
invert M . We refer to this matrix M as the preconditioner.

Depending on the problem and the preconditioning technique, it may be easier
to reduce the condition number of the linear system or it may be easier to get well

4.4. Truncated Newton methods 47

clustered eigenvalues. Also, we have already seen that the other computationally
heavy step in cg is the matrix-vector product. We will see in section (4.11) ways to
achieve efficient matrix-vector products. We note that preconditioning and Hessian-
vector products are two algorithmic steps within Newton methods, where one can
exploit problem structure and propose new ideas.

We would like to recall that the original dual formulation (2.25) is not smooth.
We will see in the next chapter, that even though we are optimizing a smooth
approximation (3.5), we have to reduce the smoothing as the algorithm proceeds.
This leads to a better approximation of the original non-smooth problem and more
accurate results. [Rockafellar 2009, §9] shows that any locally Lipschitz non-smooth
function can be viewed as a limit of increasingly ill-conditioned differentiable func-
tions. Thus, even though we will get closer to the non-smooth problem by increasing
τ in (3.5), we have to optimize ill-conditioned problems. Thus, preconditioning is
an important problem to address for map inference through lp relaxation. We will
see about preconditioners that we experimented with in section (4.10). Immediately,
we will see more about how cg fits into Newton methods.

4.4 Truncated Newton methods

While solving the linear sytem in order to obtain the Newton direction, it is not
necessary to obtain the exact solution of the linear system in order to ensure
the proper working of the Newton method. Let us recall that Newton methods
approximate the landscape at a point by a quadratic form and the solution to
the linear system points to the minimizer of that quadratic form. A step towards
this minimizer is taken in Newton methods while ensuring convergence through
globalization strategies like line-search or trust-region. What is necessary and
sufficient for Newton methods to converge is to choose an inexact direction that
achieves sufficient decrease in each iteration. We emphasize that it is necessary to
achieve enough decrease in each iteration for the Newton method to converge, when
it starts from a faraway point. Otherwise, it will not converge. We have observed this
empirically and describe our experience in section 5.1.3. At the same time, inexact
computation of Newton direction is essential to make Newton methods practical
and iterative methods like conjugate gradients are readily suited for such truncated

Newton methods [Dembo 1982, Nash 2001]. Generally, the terms "inexact" and
"truncated" are used exchangeably. We prefer "truncated" because the approximate
solution of the linear system is achieved by truncating the cg iterations.

4.4.1 Truncating cg iterations

While optimizing the smooth dual (3.5) by a Newton method, the linear system
that is being solved is given in equation (4.6). Suppose, we are at tth of the Newton
method and cg is at kth iteration. Generally, cg iterations are terminated based on
the residual,

rk = Bpk +∇h. (4.21)

48 Chapter 4. Newton Methods and Linear System Solvers

One possible termination rule to stop cg iterations could be based on the following
condition,

||rk|| ≤ ηt||∇h|| (4.22)

and the sequence {ηt} is called the forcing sequence. The pk corresponding to cg

termination is returned as the Newton direction. The forcing sequence has to be
chosen properly to reduce computational cost and to ensure convergence. If ηt is
very loose, the truncated Newton method may not converge. Truncated Newton
methods are notorious for their sensitivity to the forcing sequence. Thus, there
is a delicate trade-off between the quality of the step and the cost of computing
it [Schlick 1987, Eisenstat 1996, Morales 2002]. A popular choice for the forcing
sequence is as follows [Nocedal 2006, §7.1],

ηt = min
(
0.5,

√
||∇h||

)
. (4.23)

We would like to point out that the conjugate gradient method does not monoton-
ically reduce its residuals. Thus, a truncation rule based on the residual may not be
the right choice. If we are particular about reducing the residual, then we may choose
the minres solver which is designed to monotonically reduce the solver [Fong 2011].
However, we did not go further with this path and used cg in our experiments. We
would like to point out that page 116 of [Fong 2011] has a nice flowchart about
choosing linear system solvers under various conditions. [Martens 2010] presents
a stopping criterion based on the relative decrease of the quadratic objective q(p)
given in (4.4). This is because cg decreases the quadratic form monotonically. We
will see more about the truncation rule in our experiments with map inference in
section (5.1.3).

4.5 Line search Newton

Now, we will start addressing the important question of how to set the step length
α in Newton iterations (4.8). Usually, it is set by a globalization strategy and line
search is one such strategy. In fact, as long as the optimization problem is well
conditioned, a truncated Newton method with line search is an effective approach
and we need not consider other globalization strategies. We will see what to do
when the problem is ill-conditioned in the next section. For now, we will understand
one efficient approach to do line search: polynomial interpolation based backtracking.

In every Newton iteration, cg will return a Newton direction p. A line search
procedure seeks to fix the step length α along this direction. Generally, two conditions
are desired from the step obtained by a line search procedure: decrease in function
value and step length which is not too short. The first condition is called the
sufficient decrease condition and is enforced by seeking a step length α that satisfies
the following condition,

h(δt + αpt) ≤ h(δt) + c1α∇h(δt)⊤pt. (4.24)

4.5. Line search Newton 49

The above condition is also called the Armijo condition. Achieving sufficient decrease
is not enough. We also need to avoid short step lengths and it could be achieved by
the following curvature condition,

∇h(δt + αpt)⊤pt ≥ c2∇h(δt)⊤pt. (4.25)

This condition ensures that the magnitude of the slope at δt +αpt is sufficiently less
than the magnitude at δt, i.e., the function will reach a "flatter" place. Together
these conditions are called the Wolfe conditions. An efficient algorithm to satisfy
the Wolfe conditions is backtracking line search (5).

Algorithm 5 Backtracking line search

1: Choose: c ∈ (0, 1), β ∈ (0, 1), αinit > 0. Set α← αinit.
2: while h(δt + αδt) > h(δt) + cα∇h(δt) do

3: α← βα

4: end while

Notice that only the sufficient decrease condition is explicitly enforced in the
backtracking algorithm. The curvature condition is enforced implicitly by backtrack-
ing the step length from a sufficiently large initial value αinit. Generally, c is set to a
low value, so that the line search algorithm exits in lesser number of iterations. An
initial step length of 1 is what is usually tested for and it is critical for convergence
analysis of Newton methods to set αinit = 1. Larger values of β leads to finer search
of the step length, while a smaller value will agressively reduce the step length. We
set c = 10−4, αinit = 1 and β = 0.8 in our experiments with Newton methods.

The computational complexity of each interation of algorithm (5) is composed
of a function evaluation at the new point and a vector dot product. Generally,
this algorithm leads to too many iterations if β is large and very small steps if β
is small. A more efficient and effective way to adjust the step length is through
polynomial interpolation. Here, we will describe a cubic polynomial based approach,
which needs both the function value and the gradient at the next candidate point.
After fitting a cubic polynomial between the current point and the candidate point,
the point corresponding to the minimum of the cubic polynomial is chosen as
the next candidate point. Given h(δt), h(δt + αpt), ∇h(δt), ∇h(δt + αδt), if
h(δt + αδt) > h(δt) + cα∇h(δt), then the next candidate α is estimated through
algorithm (6). We observed substantial reduction in the number of line search
iterations by using the polynomial interpolation approach.

Thus, we see that line search Newton moves in the direction returned by cg

according to a suitable step length. The underlying assumption is that the quadratic
function (4.4) is a good approximation of the landscape in each iteration. Generally,
this is true only for well conditioned problems. We will see what to do in the case
of ill-conditioned problems in the next section.

50 Chapter 4. Newton Methods and Linear System Solvers

Algorithm 6 Polynomial interpolation based step length
1: αprev ← α

2: compute: d1 = ∇h(δt) +∇h(δt + αpt)− 3
(
h(δt)−h(δt+αpt)

α

)

3: if d1 >
√
∇h(δt + αpt)∇h(δt) then

4: compute: d2 =
√
d2

1 −∇h(δt + αpt)∇h(δt)

5: set: α← α− α
[

∇h(δt+αpt)+d2−d1

∇h(δt+αpt)−∇h(δt)+2d2

]

6: else

7: set: α← α
2

8: end if

9: Bracket α between [0, 1] : α← min.(max.(α, 0), αprev)

4.6 Trust-region Newton

When a problem is ill-conditioned, we need a globalization strategy based on a
trust-region. Intuitively, we will consider the two dimensional problem shown in
figure (4.2). At an ill-conditioned point, the quadratic approximation is an elongated
bowl. This bowl matches the landscape around the current iterate only upto a
small extent, beyond which it is not at all a surrogate for the function. Line search
Newton would lead to a step that points to the bottom of the bowl. But the bottom
of the bowl is at a place where the quadratic approximation is a poor surrogate of
the function. Thus, this is a poor Newton direction. Performing line search along
this direction, will, of course, lead to a step length that has a reduced function
value. But the decrease will not be sufficient and too many Newton iterations will
occur. We have observed this empirically in our map inference problem, when we
implemented a truncated cg based line search Newton algorithm.

Another condition, which will lead to large steps is when the Hessian is not strictly
positive definite. When the Hessian is strictly positive definite, we say the problem is
strongly convex. The smooth dual (3.5) is only strictly convex [Savchynskyy 2012] and
not strongly convex. A strictly convex function is guaranteed to have a unique global
optimum but the Hessian will be strictly positive definite only in the neighbourhood
of the optimum. Thus, at faraway points, the linear system could be rank deficient,
leading to a poor approximation of the function landscape.

Thus, in an ill-conditioned problem, we impose a trust-region on the quadratic
approximation and minimize it within this trust-region.The broad framework of
trust-region methods in shown in (7). There are two major computations that we
need to address. In each Newton iteration, a constrained quadratic program is
solved as follows,

minimize
p

∇h(δt)Tp+ p⊤B(δt)p subject to ||p|| ≤ ∆t. (4.26)

Among the early algorithms to solve the trust-region subproblem (4.26) are those
that are based on the Cauchy point like the dog-leg method. However, these

4.7. The Steihaug Method 51

Figure 4.2: For an ill-conditioned problem, the quadratic approximation is a long
bowl. Image adapted from [Nocedal 2006, §4].

algorithms are not scalable and we will not discuss them here. More details can
be found in [Nocedal 2006, §4.1]. The second important computation is how to set
the trust-region radius ∆t at each iteration. We will discuss about this in section
(4.8). Immediately, we will see one popular scalable method to solve the trust-region
subproblem.

Algorithm 7 Framework for Trust-region Newton Methods

1: Initialization: initial point δ0; initial trust-region radius.
2: Step calculation: compute a step pt that minimizes the quadratic model within

the trust-region.
3: Update trust-region radius.

4.7 The Steihaug Method

The Steihaug method is a scalable approach to solve the trust-region subproblem
(4.26) that is widely used [Nocedal 2006]. The Steihaug method truncates the
conjugate gradient iterations according to a trust-region. Thus, within a given outer
iteration t of the trust-region Newton method, the cg iterates step-by-step move
towards the solution of the linear system. According to the Steihaug method, apart
from the forcing sequence ηt, cg can be truncated based on whether the intermediate
solution computed by cg crosses a trust-region. An important advantage of the
Steihaug method is that it allows the trust-region to be shaped into an ellipsoid
according to a preconditioner M . This is because of considering the matrix weighted
norm of the potential Newton step, while comparing it with the trust-region radius.
Among machine learning researchers there is a misunderstanding that the Steihaug
method cannot be preconditioned [Martens 2012, §8.6]. We would like to clarify
that this is not the case. This aspect about the Steihaug method is not mentioned
in standard numerical optimization textbooks like [Nocedal 2006]. You can find it
in [Conn 2000, §7.5.1]. Intuitively, the trust-region subproblem given in (4.26), is

52 Chapter 4. Newton Methods and Linear System Solvers

solved with a weighted norm based constraint, i.e., ||p||M ≤ ∆t, where M is the
preconditioning matrix.

In algorithm 8, you can notice that the preconditioner based weighted norm
(9.1.8) of the intermediate solution is compared with the trust-region radius ∆t.
Thus, the trust-region is shaped by the preconditioner and the performance of the
Steihaug method critically depends on the preconditioner. For our map inference
problem, we observed that cg reached the trust-region based exit condition in a
very few iterations. Thus, we were not getting sufficient decrease in each Newton
iteration. The preconditioners, Jacobi and block Jacobi, were tried with Steihaug
and we did not observe improvement in performance.

Algorithm 8 Steihaug truncated cg method with preconditioning

1: Given tolerance ε = ηt; trust-region radius = ∆t.
2: Set p0 = 0, r0 = ∇h;
3: Solve My0 = r0; Set d0 = −r0. ⊲ Init. same as pcg (algorithm 4).
4: for j = 0, 1, 2, ... do

5: Set αj =
r⊤

j yj

d⊤
j Bdj

;

6: Set pj+1 = pj + αjdj ;
7: if ||pj+1||M ≥ ∆ then

8: Compute σj as the positive root of ||pj + σdj ||M = ∆t.
9: Return pj + σjdj .

10: end if

11: Set rj+1 = rj + αjBdj ;
12: if ||rj+1|| ≤ ε then

13: Return pj+1.
14: end if

15: Solve Myj+1 = rj+1; ⊲ Same as pcg (algorithm 4).

16: Set βj =
r⊤

j+1yj+1

r⊤
j yj

;

17: Set dj+1 = −yj+1 + βjdj ;
18: end for

4.8 Damping matrix based approach

The Levenberg-Marquardt algorithm, which is generally used in nonlinear least
squares problems, offers another approach to impose a trust-region. In fact, that
algorithm is seen as a progenitor of trust-region methods [Nocedal 2006, §10.3]. The
idea that we borrow is the damping matrix. This matrix is added to the Hessian
and the resulting matrix is called the modified Hessian. For our problem, this
damping matrix acts as a regularizer to address the lack of strong convexity and
the ill-conditioning. We modify the Hessian as follows, B(δ) = ∇2h(δ) + λI, where
λ > 0. While Steihaug works explicitly with a trust radius ∆, we implicitly impose

4.9. Quasi-Newton methods 53

it through λ. In other words, the damping matrix restricts the Newton direction
returned by cg to a trust-region. This can be seen through the following theorem
that ties the damping parameter λ to a trust radius ∆.

Theorem 6 (Damping matrix based trust-region). The vector p∗ is a global solution

of the trust-region subproblem described in equation (4.26), if and only if p∗ is feasible

and there is a scalar λ ≥ 0 such that the following conditions are satisfied:

(∇2h(δ) + λI)p∗ = −∇h(δ)

λ(∆− ‖p∗‖) = 0
(4.27)

Proof. Refer [Nocedal 2006, §4].

Thus, by suitably setting λt after every iteration, we implicitly enforce a trust-
region on the Newton step. We found the following rule to adapt λt to be suitable
for us [Moré 1983],

ρ < 0.25 : λt+1 ← 2λt; 0.25 < ρ < 0.5 : λt+1 ← λt

0.5 < ρ < 0.9 : λt+1 ← 0.5λt; 0.9 < ρ : λt+1 ← 0.25λt

where, ρ =
h(δt + pt)− h(δt)

q(pt)− q(0)
.

(4.28)

ρ signifies how well the quadratic form (4.4) approximates the dual (3.5). As the
algorithm approaches the optimum, we are reaching a sufficiently positive definite
region. The quadratic form will approximate the function landscape better and λt

will be reduced. In fact, λt becomes vanishingly small and the algorithm reaches the
true optimum without any perturbation. According to (4.27), whenever λt is close
to zero, the Newton direction p∗ is computed with the true Hessian. Also, if λt > 0
then ‖p∗‖ = ∆, i.e., the direction is restricted by the trust-region. In ill-conditioned
regions, λ will be large and the enforced trust radius will be small.

A similar approach works for adapting ∆t in the Steihaug method. We have
observed excellent empirical performance with the damping matrix based approach
and our results are based on this approach to enforce a trust-region.

4.9 Quasi-Newton methods

A Newton method approximates the landscape of a problem through a quadratic
form q(p) given in (4.4). Now, B need not be the true Hessian ∇2g(δt) at δt.
Quasi-Newton methods estimate B(δt) (B in short) in a principled manner. This
can be advantageous in problems where computing the true Hessian is expensive,
which is one of the primary impediments to applying Newton methods to problems.

In order to estimate B, we could impose a first order condition on q(p) that the
gradient of q(p) at the current iterate and previous iterate should match the gradients
of h at these points. The current iterate, corresponds to p = 0 and ∇q(0) = ∇h by
construction. Suppose, the Newton direction was pt−1 in the previous iteration and

54 Chapter 4. Newton Methods and Linear System Solvers

we took a Newton step of αt−1pt−1, where αt−1 is determined by a globalisation
procedure like line search. Matching the gradient at the previous iteration means
we want,

∇q(−αt−1pt−1) = ∇h(δt)− αt−1Bpt−1 = ∇h(δt−1). (4.29)

Re-arranging the terms, we obtain the secant condition,

Bαt−1pt−1 = ∇h(δt)−∇h(δt−1). (4.30)

The difference of iterates (δt− δt−1 = αt−1pt−1) and the difference of gradients that
we observe in the secant equation are important quantities in quasi-Newton methods
and we will define separate variables to denote them,

st = δt+1 − δt = αtpt, yk = ∇h(δt+1)−∇h(δt). (4.31)

We need to impose further conditions on B in order to get a unique estimate.
Typically, what is done is the explicit imposition of the condition that it should
be symmetric and also its difference with respect to the previous iterate B(δt−1)
is minimized according to some matrix norm. The choice of this norm determines
the form of the update equation for B. Among quasi-Newton methods, the bfgs

method is considered to be the most effective and the bfgs update equation is of
the following form,

B(δt+1) = B(δt)− B(δt)stst⊤B(δt)
st⊤B(δt)st

+
ytyt⊤

yt⊤st
. (4.32)

Suppose, the bfgs updates start with a symmetric and positive definite matrix
(B0), an important aspect of the bfgs update formula is that it preserves positive
definiteness if the following curvature condition is satisfied [Nocedal 2006, §6.1],

st⊤yt > 0 ∀ t. (4.33)

Whenever, the objective function of the optimization problem is strongly convex,
this condition is satisfied for any two points δt and δt+1. Remarkably, as long as we
enforce a line search procedure satisfying the Wolfe conditions, (4.24) and (4.25),
we can ensure (4.33).

We should note that quasi-Newton methods are not limited to approximating
the Hessian. In fact, the bfgs method was derived by aiming for an approximation
of the Hessian inverse, which we will denote as Ht. By using the Sherman-Morrison-
Woodbury formula, the bfgs update equation for the Hessian (4.32) could be derived
from the following update equation for the Hessian inverse,

Ht+1 = (I − ρtstyt⊤)Ht(I − ρtstyt⊤) + ρtstst⊤ (4.34)

where, ρt = 1
yt⊤st . We will be working with the Hessian approximation based

method because the smooth dual is ill-conditioned in nature. Thus, working with
the Hessian approximation within a trust-region framework is what is suitable for
us.

4.10. Preconditioning 55

The Hessian approximation B is generally dense and it is not suitable to work
with for large scale problems. When we look at the bfgs update equation in (4.32)
carefully, we notice that it carries the effect of all (st,yt) pairs starting from the
initial (s0,y0) pair. Intuitively, to estimate the curvature information at a given
iterate, only the recent (st,yt) pairs will be most informative. The older iterates
are far away and less informative. It is this intuition that led to l-bfgs, the limited
memory bfgs method. In this method, only the m recent (st,yt) pairs are retained
as follows,

St = [st−m, ..., st−1], Y t = [yt−m, ...,yt−1] (4.35)

where St ∈ RN×m, Y t ∈ RN×m and Lt ∈ Rm×m. Given this memory of (st,yt)
vectors, the l-bfgs update takes the following form,

B(δt) = σtI − [σtStY t]

[
σtSt⊤St Lt

Lt⊤ −Dt

]−1 [
σtSt⊤

Y t⊤

]

where Dt = diag[st−m⊤yt−m, ..., st−1⊤yt−1]

Lti,j =




st−m−1+i⊤yt−m−1+j if i > j

0 otherwise

(4.36)

Note that the above update equation is from [Byrd 1994] and it is a compact
way of representing the Hessian approximation. The important aspect about this
representation is that it leads to efficient matrix-vector products.

Now, the Hessian approximation that we are considering is of the form of an
identity + rank-r matrix. An interesting property of the conjugate gradient method
is that it converges in O(r) iterations for such a linear system [Golub 2012, §11.3.4].
The time taken by cg will reduce significantly when it converges within such limited
number of iterations. In fact, we need not seek preconditioners to reduce the number
of iterations.

Thus, with these two aspects: 1. ability to compute efficient matrix-vector
products, 2. convergence of cg within a small number of iterations, it will be
interesting to see whether the l-bfgs method will be competitive with Nesterov’s
accelerated gradient method. We will see experimental results regarding the same in
section (5.3.1). In the quasi-Newton method that we have described so far, we have
not exploited problem structure in any way. In chapter (6), we describe a particular
structure called partial separability present in the lp relaxation for map inference
and how quasi-Newton methods could exploit it.

4.10 Preconditioning

Now, we will discuss preconditioning methods for improving the convergence of cg

iterations. We will present the methods that were studied for Newton methods for
map inference.

56 Chapter 4. Newton Methods and Linear System Solvers

4.10.1 Diagonal preconditioner

The simplest idea that one could try is to take the main diagonal of B(δ) as the
preconditioner. In this case, M−1 is another diagonal matrix with just the inverse
of the diagonal elements of B(δ). Thus, we only need to scale the elements of rk
in each iteration of algorithm (4). This preconditioner goes by the name, Jacobi

preconditioner. This is because just like the iterative Jacobi method for solving
a linear system, this preconditioner scales each element parallelly. The diagonal
preconditioner is especially useful if the linear system matrix has widely varying
elements along its diagonal. This is not the case with the true Hessian of the smooth
dual. Nevertheless, we observed better performance with the diagonal preconditioner
than solving cg without any preconditioning.

4.10.2 Block diagonal preconditioner

In many real-world problems, the Hessian will be composed of meaningful blocks
of values. In other words, it will be a block matrix. In such a case, it is a good
idea to consider the blocks along the main diagonal as the preconditioner. Thus, we
have a block diagonal preconditioner, which is called block Jacobi. For small enough
blocks computing M−1 is not computationally intensive. Individual blocks need to
be inverted and could be done so in parallel. Block Jacobi is guaranteed to minimize
the condition number to a greater extent than Jacobi [Demmel 1997, §6.6.2]. We
found considerable speed-up with a block diagonal preconditioner, where each block
corresponds to a clique.

4.10.3 Incomplete Cholesky Preconditioner

Any symmetric positive definite matrix (including B(δ) could be factorized as LL⊤,
where L is a lower triangular matrix. Even if B(δ) is sparse, L will not be sparse.
It will have fill-in. Suppose, we obtain a factor L̃ that has a sparsity pattern that
resembles B(δ), then L̃L̃⊤ ≈ B(δ). Thus, we choose the preconditioner M = L̃L̃⊤,
as our incomplete Cholesky preconditioner. Solving the linear system Mr = y is
through the solution of two triangular systems. Since, L̃ is sparse like B(δ), the
computational cost is similar to a single matrix-vector multiplication involving B(δ).
This implies that C = L̃ in equation (4.20). However, one needs to choose the
elements that are in L̃ carefully, otherwise, L̃−⊤AL̃−1 may not be sufficiently positive
definite. [Jones 1995] proposed some ideas. They compute the exact Cholesky factor
L and then they decide the sparsity pattern of L̃ based on the entries of B(δ). The
kth column of L̃ only has the nk largest elements in the strict lower triangular part
of the kth column of L, where nk is the number of elements in the kth column of the
strict lower triangular part of A. [Lin 1999] has improved their approach further and
we found the implementation at https://xueyuhanlang.github.io/software/HLBFGS/.
Incomplete Cholesky is a generic preconditioner, which may or may not benefit
a particular problem. We found it to perform poorer than our block diagonal
preconditioner.

4.10. Preconditioning 57

4.10.4 Multigrid Preconditioner

Multigrid linear system solvers are especially suitable for problems that have a
geometric structure to them. Many problems in physics and image processing have
benefited from them. The essential idea of these solvers is to create a heirarchy of
fine to coarse problems. The solver goes through multiple V-cycles, each of which
involves a fine to coarse and a coarse to fine computation. In fine to coarse phase,
each level receives a coarser version of the residual from the finer level above and a
simple solver (called a smoother) like Gauss-Seidel is run for a few iterations. At
the coarsest level, a small linear system is solved. In the coarse to fine phase, each
level receives an interpolated version of the residual from the coarser level below
and again a smoother is run for a few iterations. Geometric multigrid builds the
coarser levels directly based on the geometry of the problem. For example, a grid
graph could be coarsened to a smaller grid graph by merging neighbours together.
Algebraic multigrid builds the coarser levels based on the values present in the
system matrix. These methods are well studied and we found [Stüben 1999] to be a
well written introduction to this topic.

Within the preconditioned conjugate gradient method, we would like to compute
M−1rk at the preconditioning step. Instead, a single V-cycle of a multigrid method
could be applied on the residual rk. This is how a multigrid method is used
as a preconditioner within cg. We experimented with the BoomerAMG libary
[Henson 2002]. We observed poorer performance with respect to the block diagonal
preconditioner. One possible reason could be as given in [Stüben 1999, §10]: ...

if the given matrix is symmetric positive definite, contains relatively large positive

off-diagonal entries, and is far from being weakly diagonally dominant. In such

cases, the performance of classical AMG may be only suboptimal. The matrix B(δ)
in map inference is not even weakly diagonally dominant and it has several positive
off-diagonal entries.

The multilevel ilu preconditioner [Saad 2005] will work with more general
matrices. Whether multilevel ilu could lead to faster convergence with our Hessian
needs to be investigated.

4.10.5 Quasi-Newton preconditioner

In a Newton method, the linear systems from adjacent outer iterations are somewhat
similar. We call such linear systems as slowly varying. In such a scenario, one could
assemble the vectors sk and yk that are needed for a quasi-Newton method (refer
section (4.9)) from the conjugate gradient method of the current iteration and use
them to approximate the Hessian inverse for the next iteration. This approximate
Hessian inverse could be used as the desired preconditioner within cg in the next
outer iteration. This is described in [Morales 2000] and the code is available at:
http://users.iems.northwestern.edu/ nocedal/preqn.html. We are not able to fully
understand the poor performance of this preconditioner for our problem.

58 Chapter 4. Newton Methods and Linear System Solvers

4.10.6 Combinatorial preconditioner

Combinatorial preconditioners (also, called tree based preconditioners) have led to
state-of-the-art results for laplacian matrices and diagonally dominant matrices, in
general [Koutis 2011, Bern 2006]. It may be possible to extend these techniques
to general symmetric positive definite matrices using a concept called support

theory [Boman 2003]. It will be an interesting future exercise for our problem.

4.11 Hessian-vector products

We saw in section (4.2), that one of the computationally costly steps in the conjugate
gradient method is the Hessian-vector product. In the worst case, it is of complexity
O(n2), where n is the number of decision variables. Since, cg only requires Hessian-
vector products, it is possible to design Hessian-free Newton methods. They are
especially successful in training neural networks [Pearlmutter 1994,Martens 2010].
[Knoll 2004] is an excellent introductory resource on Hessian-free methods. Suppose,
we have some function f and we represent its Hessian at some point x as B. Then,
the product of b with respect to some vector y could be approximated through
numerical differentiation based on a small step length µ as follows,

By ≈ ∇f(x+ µy)−∇f(x)
µ

. (4.37)

However, this simple procedure is affected by cancellation errors. One general way to
obtain very accurate Hessian-vector products is through complex step differentiation

[csd]. The Taylor series expansion for ∇f(x) for a small complex step is as follows,

∇f(x+ iµy) = ∇f(x) + iµBy +O(µ2) (4.38)

from which one could obtain By ≈ Im(∇f(x+ iµy)
)
/µ. Thus, the Hessian-vector

product could be computed at the cost of one extra gradient computation. We
implemented complex step differentiation for obtaining Hessian-vector products. We
found it to be slower than computing the Hessian and computing Hessian-vector
products directly. This is because the Hessian is sparse for the smooth dual (3.5).
Exploiting the sparsity of the Hessian is another way to obtain efficient Hessian-vector
products. We will see more about this in section (5.1.1).

Chapter 5

Newton Methods for Inference

in Higher-order Markov

Random Fields

5.1 Ill-conditioning and affine invariance

We saw in chapter (3) that the optimum of the smooth dual (3.5) is at a bounded
distance away from the optimum of the non-smooth dual (2.25). Thus, in order to
reach closer to the optimum of the non-smooth dual, optimization over a series of
smooth problems could be carried out, where we reduce smoothing as we go closer
to the optimum. As τ increases, (3.5) is a closer approximation of (2.25) and we get
closer to the optimum of the non-smooth dual. However, we saw in section (4.10)
that a smooth approximation becomes increasingly ill-conditioned as it approaches
the shape of the non-smooth problem. Hence, it is costlier to optimize for larger
values of τ . It is better to start with a very smooth version and switch to less
smoothness, with warm start from the previous smoother version [Savchynskyy 2012].
This is the approach that we take and we will show how Newton methods could be
used for optimization.

We repeat that smoothing is reduced as the algorithm proceeds and this results
in ill-conditioning. Newton methods have some robustness against ill-conditioning
due their affine invariance [Boyd 2004, §9.5.1]. This concept could be understood by
considering two functions f(x) and f̄(x̄) = f(Ax), where A is an invertible square
matrix. The iterates of a Newton method will be related as p̄t = Apt. Hence, in
theory, these methods are not affected by ill-conditioning and in finite precision
computers, the range of condition numbers in which Newton methods exibit robust
behavior is more than that of first order methods. Thus, there is one more motivation
to investigate the suitability of Newton methods for map inference.

5.1.1 Hessian related computations

We will recall that we are interested in solving the following linear system in each
iteration of the Newton method,

B(δ)p∗ = −∇g(δ). (5.1)

Even though Newton methods have advantages, it may be expensive to compute the
Hessian and/or solve the linear system (5.1). We recall, that the computationally

60

Chapter 5. Newton Methods for Inference in Higher-order Markov

Random Fields

Figure 5.1: The two components of the Hessian. Within each component, blocks of
the same color have the same values. In component one, there are as many unique
blocks as cliques. In component two, each row/column of blocks has the same block,
corresponding to the shared node.

heavy steps for the conjugate gradient (cg) method are: computing Hessian-vector
products and regularly constructing and applying a preconditioning matrix. As
mentioned in section (3.7), for medium sized problems it is sufficient to decompose
according to cliques and achieve practical convergence. We will now show that for
decompositions according to small subgraphs like individual cliques, the Hessian can
be computed very efficiently. In fact, it only takes time of about twice the gradient
computation time to compute both the gradient and Hessian together.

If we take a closer look at the Hessian, we observe that it can be written as
the sum of two components, as shown in figure 5.1. Both components have a block
structure. In section (3.2), we saw that the gradient is made of two components
µci(xi) and µi(xi) (3.8). Now, consider the following quantity,

µcij(xi, xj) =

∑
xc:xc(i)=xi,xc(j)=xj

exp
[
τ.(θc(xc)−

∑
n:n∈c

δcn(xn))
]

∑
xc

exp
[
τ.(θc(xc)−

∑
n:n∈c

δcn(xn))
] . (5.2)

It is computed like µci(xi) but by keeping the labels of two nodes fixed. It can
be seen that component one of the Hessian is a block diagonal matrix, with as
many unique symmetric blocks as there are cliques. For some clique c, the ele-
ments of the block can be written as Bc,ij(xi, xj) = τ

(
µcij(xi, xj)− µci(xi)µcj(xj)

)
.

Component two of the Hessian has non-zero elements only when two cliques a
and b share a node i. One such (l × l) block, has the following elements along its
diagonal: Bab,i(xi, xi) = τµi(xi)(1− µi(xi)) and the following off-diagonal elements:
Bab,i(xi, xj) = −τµi(xi)µi(xj).Component two has as many unique symmetric blocks
as there are nodes and a given row or column has repeated copies of the same block
corresponding to the shared node. Also, it is component two, which contains
off-diagonal blocks, which is caused by overlapping cliques.

5.1. Ill-conditioning and affine invariance 61

Hence, the elements of the Hessian can be computed by only iterating once
through all cliques and nodes. Iterations corresponding to pairs of overlapping cliques
is avoided because two overlapping cliques only result in blocks corresponding to
the shared nodes. Now, for computing the gradient, we need to loop once through
all cliques and nodes. Within those same loops the symmetric blocks needed by
the Hessian could be computed. Practically, due to cache re-use, this is achieved
with the overhead time of one gradient computation only. These blocks can be
readily used for parallelizing Hessian-vector multiplication and we do it with simple
OpenMP code. Thus, efficient Hessian-vector products lead to an efficient cg routine
in our case.

In our problem, the Hessian is sparse because a clique overlaps only with a few
other cliques. Nevertheless, because of the special structure of components one
and two, there is no need to exploit this sparsity for computing and storing the
unique blocks of the Hessian. Also, if there are many overlapping cliques, computing
Hessian-vector products is not adversely affected because we will only have more of
the same block along each row of the component two matrix, corresponding to the
shared node. Moreover, we will see in section (5.1.4) that these components could
be readily used for constructing an effective preconditioner.

5.1.2 Damping matrix approach

We have noted that the smooth dual (3.5) is only strictly and not strongly convex,
i.e., away from the optimum, the Hessian is only positive semidefinite. A trust-region
approach is necessary to obtain meaningful Newton steps. While developing our
trust-region Newton method for mrf inference (trn-mrf), we addressed several
issues: how to enforce the trust-region, how to improve speed of convergence by
coping with the ill-conditioning and how to design a suitable preconditioner. It is a
combination of these choices that lead to a usable algorithm and we note that, what
works for map inference, may not work for other tasks and vice-versa.

The Steihaug method (4.7) seems like the first method to try for large problems.
As mentioned earlier, it has the nice property of shaping the trust-region into an
ellipsoid, according to the landscape. However, in the absense of a good precondi-
tioner, in a given outer iteration, the inner iterations quickly reach the trust-region
radius, before computing a good direction. This leads to several outer iterations. In
our experiments with Steihaug, we tried the diagonal and block-diagonal precondi-
tioner and they did not result in performance improvement. Experiment with the
incomplete Cholesky preconditioner could be still attempted. However, based on
our experience with incomplete Cholesky for our damping matrix based approach,
we strongly feel incomplete Cholesky may not lead to substantial improvement in
the performance of Steihaug.

We adopt the damping matrix based approach described in section (4.8) and we
have obtained excellent convergence rate with this approach.

62

Chapter 5. Newton Methods for Inference in Higher-order Markov

Random Fields

5.1.3 Forcing sequence for CG truncation

Having found out the suitability of damping matrix based approach, it is still
necessary to properly address the ill-conditioning caused by annealing. We saw in
section (4.4.1) that we proceed by taking approximate Newton steps: within each
outer iteration the run of cg iterations is truncated by a suitable criterion. However,
as the algorithm approaches optimality, it is critical to solve the linear systems
to greater accuracy and get better Newton steps [Schlick 1987]. Otherwise, the
algorithm will take too long to converge or will not converge at all. Generally, at
an outer iteration t, cg can be truncated at iteration j according to the condition
(4.22). Through ηt we could reduce the residual and achieve more accurate Newton
direction. For map inference, we found textbook choices of the forcing sequence
like (4.23) leading to non-convergence of the Newton iterations. This is because the
residuals never become low enough to achieve the more accurate directions required
for further progress. Hence, for trn-mrf, the following criterion has been designed,

ηt = min

(
ετ
t
,
√
‖∇g(δt)‖

)
. (5.3)

This condition naturally imposes stronger condition on the residual for later iterations.
Also, the term (ετ), which takes smaller values as the annealing progresses, ensures
that sufficiently accurate Newton steps are obtained, as smoothing reduces.

5.1.4 Clique based Preconditioner

The computational efficiency of the conjugate gradient method could lead to sub-
stantial speed-up of our approach. We experimented with several preconditioning
approaches starting with the simple diagonal preconditioner to incomplete Cholesky,
quasi-Newton and multigrid. We obtained the best performance with a block diago-
nal preconditioner, which has an interesting interpretation from an mrf point of view.
Each block, B̂c, corresponds to a clique c. Therefore, B̂c

i,xi,j,xj
= ∂2h(δ)

∂δci(xi)∂δcj(xj) ,
where i, j are nodes belonging to the clique c and xi, xj are their labels. Since its
structure is closely related to the map inference problem, it performs quite well.
The computational cost is of computing and inverting these blocks individually.
These clique specific blocks could be readily assembled from component one and
component two of the Hessian. Hence, no additional computation is required to
construct the preconditioner. The individual blocks are of size s.l and inverting
them is not computationally heavy. The inversion of the blocks could be parallelized,
if need be. We have not yet parallelized this step.

Note that for sufficiently large values of the damping parameter λt, the modified
Hessian is automatically well-conditioned and cg will converge fast. It is towards
the optimum, when λt reduces to vanishing values, that cg runs for large number
of iterations. We observed considerable improvement in cg performance with this
preconditioner at this stage. Also, in general, we need to stop running cg after a
maximum allowed number of iterations. We have set it as 250 for all our experiments.

5.1. Ill-conditioning and affine invariance 63

5.1.5 Backtracking search

The last aspect concerning efficiency involves backtracking line search. When ρ in
equation (4.28) is less than a small value (say, ερ), it means a step of either very
less decrease or an increase in the function value. So, we cannot directly take a step
along this direction. However, it is desirable to take a step of sufficient decrease in
every outer iteration of trn-mrf and hence, we perform a backtracking line search
in these cases. Such a combination of line search with trust-region has already led
to improved results in other problems [Nocedal 1998]. Performing a backtracking
line search along the direction computed by cg, gave a huge speed-up for trn-mrf.
We have implemented the cubic interpolation based line search described in section
(4.5), which is very efficient.

Note according to some literature on Newton methods [Martens 2010], the
backtracking can be performed along a curved path. Cache cg iterations regularly
and backtrack with respect to the path taken by cg. Although backtracking along
a curved path gives good results in these other problems, we observed poor results
for map inference. We observed that the final direction after backtracking was very
close to the steepest descent direction.

5.1.6 Annealing schedule and stopping condition

[Savchynskyy 2012] suggests annealing τ by periodically computing the primal-dual
(pd) gap of the current smooth problem. We noted in section (3.5) that they recover
feasible primal variables by solving a small transportation problem for each clique.
Since, their approach is adapted to pairwise graphs, their entire algorithm runs with
less than thousand oracle calls (an oracle call is either an iteration or computation
of the pd gap). However, for higher-order mrfs, computing feasible primal variables
and the primal objective (2.10a) is costly. Hence, computing pd gap of the smooth
problem, every few iterations greatly affects computational efficiency.

We have used a simple but intuitive criterion for judging when to anneal. Since,
we are working with an unconstrained concave objective, regions with lesser values
of gradient euclidean norm are guaranteed to be closer to the optimum than regions
with much greater values. Hence, if ∇g(δt) signifies the gradient after running t
iterations with a given τ , we update τ ← ατ, 1 < α, if ‖∇g(δt)‖2 < γτ . If we impose
a strong enough threshold γτ , we are guaranteed to achieve sufficient improvement for
that particular τ . Thus, annealing the τ value is justified. We set γτ = β‖∇g(δ)‖2,
when iterations for a given τ begins. Similar to the proof in [Savchynskyy 2012], this
annealing approach will work with any optimization algorithm that will converge to
the global optimum for a fixed value of τ . All the algorithms tested by us, have this
guarantee for our unconstrained smooth and concave dual. Also, we ensure τ has
reached a large enough value τmax in order to obtain accurate results with respect
to the original non-smooth problem.

In order to exit the least smooth problem, [Savchynskyy 2012] use the non-
smooth pd gap. We have observed that trn-mrf, due to its quadratic convergence

64

Chapter 5. Newton Methods for Inference in Higher-order Markov

Random Fields

rate, can exit based on classical gradient based condition itself. More precisely,
with the condition ‖∇g(δ)‖∞ ≤ ζ, where ζ = 10−3 (§8, [Gill 1981]), trn-mrf

achieves good exit behaviour. However, first order methods take too long a time
to achieve this gradient based exit condition and several times never do so. Hence,
we have implemented a pd gap based approach, so that the first order algorithms
can exit gracefully. As mentioned earlier, we implemented the method presented
in [Meshi 2014]. While implementing this method, small valued variables should be
handled carefully. In order to get numerically correct implementation, it is necessary
to round variable values down to zero based on a small threshold.

5.1.7 trn-mrf algorithm and parameter settings

Our complete trust-region Newton method, within an annealing framework, is
described in algorithm (9). In our experiments, we set, λ0 = 1, α = 2, β = 1

6 ,
ερ = 10−4, ζ = 10−3, τmax = 213 and ετ = 0.1 if τ < τmax

4 , 0.01 if τmax
4 < τ <

τmax
2 , 0.001 if τmax

2 < τ .

Algorithm 9 trn-mrf: Trust-region Newton for map inference

1: Input: λ0, τ, τmax > 0; δ0 ∈ R
N ;α > 1.

2: λ← λ0, γτ = β‖∇g(δ0)‖2
3: while ‖∇g(δk)‖∞ > ζ or τ < τmax do

4: if ‖∇g(δk)‖2 ≤ γτ and τ < τmax then

5: τ ← ατ ; γτ = β‖∇g(δk)‖2 ; adjust ετ
6: end if

7: B(δk) = ∇2g(δk) + λI

8: set ηk = min(ετ
k ,
√
‖∇g(δk)‖)

9: Run CG while ‖rj‖ > ηk‖∇g(δk)‖
10: obtain Newton direction p and calculate ρ
11: update λ according to equation (4.28)
12: if ρ < ερ then backtracking line search along p to obtain Newton step pk
13: δk+1 = δk + pk
14: end while

5.2 Quasi-Newton approach for large graphs

In section (3.7), we pointed out the trade-off between the sizes of the graph and
the subgraphs to obtain practical convergence. Also, we saw that for problems
decomposed according to large subgraphs, it is sufficient to enforce consistency
between node pseudomarginals. Also, if a node is shared by only two subgraphs
then the number of dual variables reduces considerably. In our experiments, we
have worked with large graphs where a node is shared by only two subgraphs. For
problems where nodes are shared by more than two subgraphs, the problem size

5.3. Experiments 65

will be larger and it is a challenge that is shared by all algorithms solving the dual
of the lp relaxation.

Even though smoothing based approach has been scaled for large pairwise
graphs [Savchynskyy 2012], higher order mrfs with large graphs are less studied.
We saw in section (5.1.1), the Hessian for clique based decomposition requires
the marginals for pairs of nodes within that clique. This is true for tree based
decomposition of large graphs, also. We have observed empirically that for faraway
nodes within a chain the corresponding block of values in the Hessian goes to zero.
This is because the two nodes are independent of each other for all practical purposes.
Nevertheless, it is a computationally heavy task to compute the Hessian blocks for
nearby nodes within a chain. Maybe, by using automatic differentiation [Domke 2011],
we could achieve some speed-up. Even then, storing the non-zero blocks of the
Hessian is going to be memory intensive. Thus, instead of computing the true Hessian,
we work with a Hessian approximation obtained through the l-bfgs method. Note
that quasi-Newton methods have only super-linear convergence rate when sufficiently
close to the optimum.

We saw in section (4.9) that for ill-conditioned problems, the Hessian inverse
approximation will lead to large steps. We have also observed that in our experiments,
where we implemented the Hessian inverse approximation of l-bfgs and also, used
the implementation in the ceres solver by google [Agarwal]. Downscaling the large
step to a trust region radius does not help, as the direction itself is poor to start with.
A trust-region based approach using the Hessian approximation is the better choice.
Also, for large problems a limited memory variant is required, based on the most
recent m iterations. Hence, we take the approach described in algorithm (9) with an
l-bfgs based Hessian approximation in the place of ∇2g(δk). We also implemented
the sr1 method but the results were poorer than Hessian approximation based
l-bfgs.

We noted in section (4.9) that the conjugate gradient method converges in O(r)
iterations for a linear system in the form an identity + rank-r matrix. Morever,
matrix-vector products in quasi-Newton can be obtained through a compact repre-
sentation (4.36) [Byrd 1994]. Thus the cost for cg is a very small fraction of the cost
for computing the gradient (0.5% in our experiments). Thus, given the iteration
cost of quasi-Newton being comparable to first order methods, it is worthwhile to
check whether quasi-Newton converges faster to the optimum.

5.3 Experiments

We present results based on higher-order mrf models. As our baseline, we used
fista with backtracking line search (section (3.2)), Smooth Coordinate Minimization
(scm) based on star update (section (3.3)) and ad3 implementation from openGM
(section (3.4.1)). Note that Star update based scm, consistently performed better
than min-sum diffusion based update in our experiments.

First, we tested on medium sized problems and compared trn-mrf, fista, scm

66

Chapter 5. Newton Methods for Inference in Higher-order Markov

Random Fields

σ = 0.5 σ = 0.8
Algorithm TRN SCM FISTA AD3 TRN SCM FISTA AD3
time (seconds) 948.9 1742.7 4368.1 369.35 (738.7) 2513.8 6884.2 9037.1 No convergence
Non-smooth dual -279.69 -279.69 -279.69 -279.69 -259.28 -258.27 -258.7 -260.94
Non-smooth primal -279.67 -279.69 -279.66 N/A -261.04 -258.36 -258.86 N/A
Integer primal -279.69 -279.69 -279.69 -279.69 -247.86 -248.24 -250.3 -249.82

Table 5.1: Results for synthetic problem.

Frame 70 Frame 90 Frame 110
Algorithm TRN SCM FISTA AD3 TRN SCM FISTA AD3 TRN SCM FISTA AD3
time (seconds) 2374.5 3702.9 11964.5 1428.7 (2857.4) 4731.6 4206.4 12561.2 2303.05 (4606.1) 4451.8 10498.8 21171.1 No convergence
Non-smooth dual -368.59 -368.59 -368.59 -368.59 -337.81 -337.81 -337.81 -337.81 -333.03 -331.51 -331.31 -335.5
Non-smooth primal -368.56 -368.57 -368.37 N/A -337.77 -337.78 -337.36 N/A -336.16 -331.95 -330.65 N/A
Integer primal -368.59 -368.59 -368.59 -368.59 -337.81 -337.81 337.81 -337.81 -315.93 -317.69 -317.78 314.16

Table 5.2: Results for House dataset.

and ad3. We formulate the problem of matching two sets of interest points as map

inference, based on [Duchenne 2011]. For n points, each point in the source can be
matched to any of the points in the target, i.e., n labels. The mrf is constructed by
generating 4n triangles in the source and each triangle in the source and target are
characterized by tuples of side length. For each source tuple, we find the top 30K
nearest neighbours among the target tuples. 30K is much lesser than all possible
triangles in the target and this is a sparse, pattern-based clique potential. The higher-
order cliques potentials are defined as exp(−1

γ ((sa − ta)2 + (sb − tb)2 + (sc − tc)2)),
where s and t refer to source and target, respectively and γ is the average squared
differences between source tuple and its 30K nearest neighbours in the target. To
get state-of-the-art results additional terms to disallow many-to-one mapping will
be needed. For the sake of simplicity we ignore this issue.

We first tested with a synthetic problem, with n = 81 on the 2D plane. We added
Gaussian noise to these points to create the target image. The unary potentials are
defined by assigning the value i to node i in both the images and taking the absolute
differences. The results are presented in table 5.1, where two levels of added noise
were tested.

We next tested with matching points on the House dataset [hou]. n = 74 points
are marked in all the frames and the points in the first frame are matched with
points in later frames (110 being the last frame). The unaries are set to zero. The
camera rotates considerably around the object and we show results for three frames
in table 5.3.

The main reason for being able to tackle such problems is the efficient computation
of the gradient using sparse, pattern based potentials (section 3.8). trn-mrf, fista

and scm, all benefit from this. ad3 can also exploit sparse, pattern-based potentials,
since, within every iteration of the active-set method, max-product computation
takes place. Hence, the routine from [Komodakis 2009] could be used by ad3. Since,
these modifications cannot be made to the ad3 version in openGM, we show within
brackets the actual time taken by openGM’s ad3. Since, our current implementation
of sparse sum-product gives two times speed-up, the outside figure for ad3 is half

5.3. Experiments 67

Figure 5.2: Matching 1st frame to 90th frame.

the actual time taken. We note that the actual time saved by ad3 because of sparse
potentials could be lesser because of other operations in each iteration.

We would like to make a note about parallel computation at this point. The
Hessian requires marginals of pairs of nodes within each clique, i.e., µc,ij(xi, xj)
described in section (5.1.1). While computing them using sparse pattern based
potentials, there is scope to parallelize some steps and we have done it using
OpenMP code. Apart from parallelizing a part of Hessian-vector product using
OpenMP, mentioned in (5.1.1), this is the only other use of parallel computing in our
approach. For both trn-mrf and fista there is considerable scope to parallelize
the independent clique based computations in each iteration. We have not yet done
the same. Once, we do that both these algorithms will show similar gains in speed.
Also, for our method, the preconditioner has a block-diagonal form and could be
applied in a parallel manner. This could further improve our method’s speed. Note,
recently [Meshi 2017] has demonstrated considerable speed-up for scm through
parallel asynchronous updates. In a parallel asynchronous setting, scm could very
well be the best performing algorithm for the problems that we have considered.
One has to try and see. There are more details about parallel algorithms for lp

relaxation based techniques in the next chapter.

An important observation is that trn-mrf, fista and scm have reliable conver-
gence compared to ad3 (an admm based approach). Among these three, trn-mrf is
competitive and is the fastest in many cases. We observed the quadratic convergence
rate of trn-mrf in practice because we always observed it reach the stricter gradient
based exit condition around the same time as the pd gap based exit condition. On
the other hand, the first order methods depended on the weaker pd gap based exit
condition in order to exit in a principled manner.

In section (3.5), we mentioned that we do simple rounding of the primal variables
to recover the labels. This rounding leads to energies that can be slightly better
or worse between algorithms. We have not focused our efforts on better rounding
schemes, since, the crux of our work is about getting closer to the global optimum
of the non-smooth dual. The results of ad3 are based on its own rounding scheme.

68

Chapter 5. Newton Methods for Inference in Higher-order Markov

Random Fields

Frame 70 Frame 90 Frame 110
Algorithm TRN SCM FISTA AD3 TRN SCM FISTA AD3 TRN SCM FISTA AD3
time (seconds) 2374.5 3702.9 11964.5 1428.7 (2857.4) 4731.6 4206.4 12561.2 2303.05 (4606.1) 4451.8 10498.8 21171.1 No convergence
Non-smooth dual -368.59 -368.59 -368.59 -368.59 -337.81 -337.81 -337.81 -337.81 -333.03 -331.51 -331.31 -335.5
Non-smooth primal -368.56 -368.57 -368.37 N/A -337.77 -337.78 -337.36 N/A -336.16 -331.95 -330.65 N/A
Integer primal -368.59 -368.59 -368.59 -368.59 -337.81 -337.81 337.81 -337.81 -315.93 -317.69 -317.78 314.16

Table 5.3: Results for House dataset.

5.3.1 Higher-order Stereo

Next, we present results for stereo with curvature prior on 1× 3 and 3× 1 cliques.
The clique energy is truncated, i.e., it is pattern-based. The unary potentials are
based on absolute difference. We present results for Tsukuba, image size 144×192, 16
depth levels. This is a large problem and pattern-based sum-product was computed
on clique chains. We compare quasi-Newton with fista and ad3. ad3 showed poor
convergence behavior for this large problem.

In our experiments, we have used a stopping criterion that is simultaneously
based on function value difference, variable difference and the norm of the gradient
(adapted from [Gill 1981, §8.2.3.2]). Given adjacent iterations t and t + 1, for
the dual function h(δ), function value difference is ∆h = h(δt+1) − h(δt) and l∞
norm of the step taken is ∆δ = ‖δt+1 − δt‖∞. Thus, the conditions enforced are
∆h < 10−3,∆δ < 10−3, ‖∇h(δt+1)‖∞ < 0.5 and we exit if all these conditions are
satisfied. We recommend this principled exit condition as an alternative to the
computationally heavy pd gap based approach.

Tsukuba Venus
Algorithm Quasi-Newton FISTA Quasi-Newton FISTA
Iterations 357 594 102 > 180
Non-smooth dual 29105.9 29105.5 39153 ≈ 39153
Integer primal 29347 29282.5 39230.5 ≈ 39230

Table 5.4: Stereo estimation: Tsukuba & Venus.

5.4 Discussion

We presented Newton methods that offer convergence guarantee and very good
convergence rates, through appropriate choices made concerning their algorithmic
components. Specifically, for problems in which sum-product computation is efficient,
these Newton-type methods are very suitable. We showed promising results with
higher-order mrfs of medium and large sizes. We hope this work spurs further
research on exploiting curvature information within optimization algorithms for map

inference. We make some observations regarding the same in the next chapter.

5.4. Discussion 69

Figure 5.3: Tsukuba and Venus results for quasi-Newton.

Chapter 6

Some thoughts on continuous

relaxation based map inference

lp relaxation based inference in graphical models is a research topic that continues
to get the attention of the research community [Ajanthan 2017,Swoboda 2018]. In
this chapter we would like to discuss some aspects.

6.1 Notes about Newton methods

6.1.1 Stochastic Newton

There have been many works in recent years regarding Newton methods in machine
learning [Pilanci 2015, Erdogdu 2015, Byrd 2016, Mutnỳ 2017]. One aspect that
stands out is the stochastic nature of the updates among these modern methods.
Another frequent aspect is approximation of curvature information by quasi-Newton
methods. Given the stochastic nature of the updates, analysing this quasi-Newton
approximation leads to new results. Stochastic approximation is a less explored
topic in map inference. [Meshi 2015] shows a strongly convex and smooth primal
problem, which is suitable for optimization by sdca [Shalev-Shwartz 2014]. In
this formulation, the strong-smooth duality is driven by quadratic perturbation
terms. Please, refer [Meshi 2015] for more details. It will be interesting to try
stochastic Newton methods with this formulation. The more a Newton method
exploits problem structure, the better it is for making it efficient and scalable. Maybe
it will be a straightforward application of stochastic Newton in this case. It will be
good to clarify this point.

6.1.2 Partial separability and quasi-Newton methods

A function is partially separable if it has the following form,

f(x) =
∑

i

fi(xi) (6.1)

where (x1,x2, ...,xs) are s overlapping subsets of the set of variables. Some of the
dual formulations for map inference have this structure (3.5, 3.34). There are quasi-
Newton methods that exploit this partial separability structure [Nocedal 2006, §7.4].
They may not turn out to be better than the approach described in the previous
chapter using the true Hessian for (3.5). It may be more suitable for (3.34). We are
currently facing an implementation error while pursuing this path.

72

Chapter 6. Some thoughts on continuous relaxation based map

inference

6.1.3 Projected Newton for small and medium graphs

We have observed that for small and medium sized graphs, gradient based methods
converge well with clique based decomposition. If we consider the smooth version
of the constrained formulation (2.20), the Hessian has a block diagonal structure.
For a clique of size s, where each node takes l labels each, the blocks are of size
s.l × s.l. It is computationally feasible to invert these blocks. In fact, the block
diagonal preconditioner that we considered in section (5.1.4), is made of blocks of
the same size. In such a scenario, it may be a good idea to try a projected Newton
method to solve the smooth version of (2.20). Especially, we could consider the
spectral projected gradient method to compute the Newton step like it is done
in [Schmidt 2009]. Since, the Hessian has block diagonal structure, where the blocks
are easily invertible, a preconditioned spectral projected gradient method could be
readily tried and could lead to fast convergence.

However, for small and medium sized graphs there are two strong baselines. For
small and medium sized graphs, ad3 [Martins 2015] shows excellent convergence
speed. However, it does not come with convergence guarantee and it has been
observed to not converge in some cases. Recently, [Meshi 2017] has a shown an
asynchronous parallel block coordinate maximization algorithm that can lead to
considerable speed-up. The scope for parallelization will be similar for ad3 and the
projected Newton method that we have outlined. In all cases, the parallelization
is over clique based computations. Maybe, parallel projected Newton could beat
parallel ad3 but whether it could beat asynchronous bcm is an open question.

6.2 Preconditioning first order optimization methods

We would like to point out that preconditioning of first order optimization methods
has seen significant research effort in recent years [Koutis 2011,Pock 2011,Gisels-
son 2014, Dauphin 2015, Raguet 2015, Fougner 2018, Möllenhoff 2018]. Among
various works, we can more easily relate [Pock 2011,Möllenhoff 2018] to a primal-
dual algorithm for map inference [Schmidt 2011]. We note that [Schmidt 2011]
experimentally studied the primal-dual algorithm of [Chambolle 2011] without pre-
conditioning. Now, [Pock 2011] presented a diagonal preconditioner in the context
of other computer vision problems. We noted in section (4.10) that a block diagonal
preconditioner gave substantial improvement with respect to a diagonal precon-
ditioner. Interestingly, [Möllenhoff 2018] also points out the benefit of diagonal
preconditioning and presents better results compared to [Pock 2011] for computer
vision problems. It will be interesting to understand whether it is possible to accel-
erate the primal-dual algorithm with a tree based preconditioner for map inference,
also. As such, it is worth investigating the suitability of preconditioning with respect
to various first order methods for map inference.

6.3. Numerical linear algebra and Graphical models 73

6.3 Numerical linear algebra and Graphical models

Apart from preconditioning optimization problems, there are other interesting
connections between these two topics. For example, inference in Gaussian graphical
models involves the solution of a linear system [Shental 2008]. Also, the tree based
preconditioner that we came across in section (4.10.6) has been explored for various
contexts within graphical models [Sudderth 2004,Lafferty 2006,Chandrasekaran 2008,
Malioutov 2008]. It will be interesting to understand these works better. Finally, it
will be interesting to know more about connection between the fast fourier transform
and message passing in factor graphs [Kschischang 2001].

6.4 Tightening the relaxation

We saw in section (2.5), the lp relaxation is guaranteed to be exact for any tree-
structured graphical model. However, for general graphs a tree based decomposition
is not tight. This is because the local polytope (L(G)) is a outer bound to the
marginal polytope (M(G)), in general. Thus, with the local polytope we may get a
fractional corner as the optimal solution and depending on the problem, we may
be arbitrarily faraway from the optimum of the discrete problem. It is possible to
strengthen the relaxation based on additional constraints. It is possible to consider
bigger regions of the graph, which will contain as a subset the cliques used to
define the graphical model. It is possible to define pseudomarginals on those bigger
regions, also and impose consistency constraints between them and the cliques
that they contain. This will tighten the polytope. [Ravikumar 2010] also point out
that this particular progression of tighter relaxations underlies belief propagation
algorithms also, i.e., the Bethe (sum-product) to Kikuchi (generalized sum-product)
hierarchy [Yedidia 2005]. [Wainwright 2008, Sontag 2010] have more information
about such lp hierarchies. A related perspective is that of frustrated cycles. When
one goes along a cyclic path of the graph, when the optimal label for the nodes and
the cliques agree, then that cycle is said to consistent. Otherwise, it is a frustrated
cycle. A fractional optimal solution to the lp relaxation means there are frustrated
cycles in the graph. There has been work to identify and "repair" such frustrated
cycles [Komodakis 2008, Sontag 2012]. [Komodakis 2011, §6.2] has shown that if
we decompose the original graph according to subgraphs that are not trees then
we obtain a tighter relaxation. Another takeaway from that paper is that all tree
based decompositions lead to the same local polytope. Suppose we work with a
decomposition where the subgraphs are not trees then we have the possibility of a
tighter relaxation. However, we are faced with the challenge of performing exact
map or marginal inference on such subgraphs. This was the reason for us to base
all our discussions in terms of tree shaped subgraphs in previous chapters. There
have been works that address this challenge. For example, [Wang 2013] shows a fast
and exact method for map inference in cycles. They obtain dual decomposition by
considering cycles of three nodes and show how it leads to better energy because of
tighter relaxation. Further, the semidefinite programming (sdp) based relaxation

74

Chapter 6. Some thoughts on continuous relaxation based map

inference

and the lp relaxation are not comparable [Wainwright 2008, §9.3]. Computational
cost has been a major barrier for sdp relaxation and there have been works to
address this issue [Huang 2014,Wang 2016]. In general, [Werner 2007,Sontag 2007,
Werner 2008,Komodakis 2008,Sontag 2008,Batra 2011,Sontag 2012,Mezuman 2013]
are excellent references to learn more about tighter relaxations.

6.5 Parallel algorithms to solve the lp relaxation

Generally, inference in graphical models becomes more challenging with the increase
of one or more of the following: graph size, clique size and the number of labels per
node. So far, insight in convex optimization has led to design of suitable algorithms.
For example, the Frank-Wolfe algorithm in [Meshi 2015] for large cliques like global
cardinality. We believe similar insight from optimization literature has led to and
will lead to several parallel algorithms. Belief propagation based techniques readily
lend themselves to parallelization [Felzenszwalb 2006, Gonzalez 2009, Yang 2010].
Even though there has been considerable practical success with these techniques,
they come with poor guarantees. Parallel graph-cut algorithms is also an active field
of research [Delong 2008,Liu 2010,Shekhovtsov 2013].

As far as lp relaxation based methods are concerned, dual decomposition based
map inference [Komodakis 2011] and the research efforts that it has inspired, is
readily suited for parallel computation. They have the added advantage of theoretical
guarantees. Moreover, dual decomposition has been helpful in parallelization of other
methods like graph cuts [Strandmark 2011]. We saw in section (3.2) that smoothing is
not the only way to improve convergence with respect to the non-smooth formulation.
[Schwing 2012] improves convergence by choosing the steepest descent direction
among the ε-subgradients and [Schwing 2014] shows how that approach could be
executed in parallel based on a Frank-Wolfe algorithm. We have seen in section (3.4),
the ability of admm to decouple the update equations, which enables us to exploit
the seperable structure in the objective function. To our knowledge, all the admm

based algorithms for map inference [Martins 2015,Meshi 2011,Fu 2013,Miksik 2014]
can be decomposed according to subgraphs. [Jin 2013] implemented the approach
in [Fu 2013] on a cluster and presented results with large scale climate data.

We have noted that coordinate maximization methods are an important class
of methods for map inference. For example, trw-s [Kolmogorov 2006], a method
meant for pairwise graphs, gives good output in practice and usually it is the fastest
serial method based on lp relaxation for many problem instances. However, its
update equations have a particular serial schedule. [Choi 2012] recognized that for
a grid graph, a different schedule based on updating nodes one diagonal after the
other, leads to parallelization among the nodes of a diagonal. [Hurkat 2015] has
extended their work based on multiscale representation [Felzenszwalb 2006] and has
shown good empirical performance. [Shekhovtsov 2016,Knobelreiter 2017] present
a majorization-minimization [Lange 2000] based block coordinate optimization
algorithm that has the same guarantees as trw-s and is considerably faster due

6.5. Parallel algorithms to solve the lp relaxation 75

to a formulation that allows parallel execution. They divide the graph into two
blocks, where each block is made of independent parts. The most common example,
is a grid graph like an image, where the two blocks are rows and columns. Within
each block, the chains are independent of each other. Thus, when each block is
updated, the individual parts within the block could be updated parallelly. In
block coordinate optimization algorithms, it is possible to identify blocks made of
parallelizable parts using graph coloring. It is an idea that originated in parallel
numerical methods [Bertsekas 1989, §1.2.4]. We can see this idea in map inference,
also [Felzenszwalb 2006,Schwing 2011,Chen 2014a].

[Schwing 2011] presents an approach to parallelize the coordinate maximization
approach based on a smooth version of convex BP (3.10). They partition the graph in
a distributed memory setting, where each partition executes parallelly, occassionally
passing messages to enforce consistency at the boundary of the partitions. Within
each partition they propose to perform coordinate maximization in a parallel manner,
where the blocks are chosen according to graph coloring. They prove that their
approach converges and leads to speed-up. They also show empirically the effect of
the frequency with which messages are passed between partitions.

We should point out that a sizeable research effort in parallel algorithms for map

inference has been from the point of view implementation for a specific hardware
architecture. Usually, these efforts also explore appropriate heuristics like multiscale
representation [Felzenszwalb 2006]. Recently, [Meshi 2017] has presented theoretical
analysis of asynchronous block coordinate maximization. It is the asynchronous
extension of the msd and star updates that we saw in section (3.3). What is inter-
esting about that work is the convergence rate analysis. To our knowledge, this is
the first work in map inference to present a detailed theoretical perspective in a
parallel processing setting. We foresee an increase in more theoretically grounded
work in the coming days. In recent years, there has been considerable progress
in numerical analysis and machine learning with respect to algorithmic aspects of
parallel computing [Bekkerman 2011, Boyd 2011, Recht 2011, Ghysels 2013, Dem-
mel 2014,Li 2014,Cevher 2014,Jordan 2015,Liu 2015,Hsieh 2015,Smith 2016]. There
has been renewed interest in the analysis of parallel and distributed numerical
methods [Bertsekas 1989], which was initiated several years ago.

A major thrust behind recent innovation has been the consideration of synchro-

nization and communication costs in parallel algorithms. Generally, when we think
about parallel algorithms, it is mainly in terms of parallel computation. For example,
most, if not all, parallel algorithms for map inference have focused on parallelizing
computation. These parallel computations have to happen in a synchronous manner,
though. This is because the smaller parts performing parallel computation depend
on the output of other parts from the previous iteration. This synchronization cost
could be significant. [Meshi 2017] has addressed exactly this synchronization problem
in a shared memory setting that guarantees bounded delay.

Usually, the updated decision variables that are passed between the various
parts of the graph are in the form of messages. The associated communication cost
is also very significant. Even though there are already communication avoiding

76

Chapter 6. Some thoughts on continuous relaxation based map

inference

framework type of algorithms that address a broad range of machine learning
problems [Smith 2016], there has been progress in recent years, where problem
specific communication avoiding algorithms have been developed [Devarakonda 2016,
Soori 2017, Devarakonda 2017, Koanantakool 2018]. It will be interesting to see
similar developments in map inference. To our knowledge, [Schwing 2011] is one
work in map inference that refers to the need for avoiding communication and
it sends consensus messages between computers in lesser frequency compared to
consensus messages within each computer. It will be interesting to study the effect
of skipping messages between computers in a theoretical manner like [Meshi 2017].
It will be also interesting to test and analyse the coordinate maximization algorithm
in [Schwing 2011] in an asynchronous setting. We would like to point out one
possible way to improve the communication cost in [Schwing 2011] in the following
subsection.

6.5.1 Enforcing node consensus in distributed setting

[Schwing 2011] partitions the graph into P graphs according to some boundaries.
Thus, these graphs share cliques and nodes at the boundaries. For example, a
rectangular grid graph could be divided into four smallers rectangular grids. They
optimize the following optimization problem,

minimize
ψ,φp

∑

p∈P

θp · φp − 1
τ

∑

i∈Vp

H(φpi)−
1
τ

∑

c∈Cp

H(φpc)

subject to φp ∈ L(Gp)
φpc = ψc ∀c ∈ PB

(6.2)

which is a distributed version of the perturbed lp relaxation that we saw in section
(3.2). Here, PB is the set of shared cliques at the boundaries of the partitions.
Note the clique based consensus constraints, given in the last line. Similar to that
earlier formulation, a dual based block coordinate optimization scheme is possible
for this formulation. Apart from the dual variables corresponding to cliques within
in each partition, there will be dual variables corresponding to the shared cliques.
For each shared clique there will be dual variables of the size of total number of
clique labellings and these dual variables are exchanged between computers at a
frequency lesser than the updates within each computer. Suppose the graph is made
of higher-order terms, then the number of overlapping cliques at the boundary of
the partitions is much more compared to a pairwise graph. Thus, for a higher-order
graph there is substantial communication cost. However, it is not necessary to
impose consensus between the shared cliques, it is enough to impose consensus
between the shared nodes. It is enough to have constraints of the following form,

φ
p
i = ψi ∀i ∈ PB (6.3)

which will lead to dual variables for each of the shared nodes. Suppose a node
has l labels, it will lead to l dual variables. Thus for a shared clique of size s,

6.5. Parallel algorithms to solve the lp relaxation 77

with each node taking l labels, [Schwing 2011] exchanges ls dual variables between
computers, while it is enough to pass l · s dual variables. Note, enforcing consensus
only between nodes may lead to slower overall convergence. However, slow down
of [Schwing 2011] due to high communication cost with higher-order graphical models
has been observed by others [Zhang 2014]. Thus, the time saved by smaller messages
exchanged could lead to overall speed-up.

6.5.2 A note on asynchronous projected gradient for map inference

We have been observing that the two major forms of the dual are as shown in (2.19),
which is more suitable for gradient based methods and (2.25), which is more suitable
for coordinate maximization methods. Given the work of [Meshi 2017], the natural
question to ask is whether an asynchronous projected gradient ascent algorithm is
helpful for map inference. This is especially relevant for problems where gradient
based methods have performed better than coordinate maximization [Koo 2010].

We will consider the smooth version of the formulation in (2.19). The asyn-
chronous update equations for this formulation has been presented and studied
in [Bertsekas 1989, §7.5]. The main point of concern is the step length parameter.
It is possible to set it based on the Lipschitz constant (3.32) and the maximum
allowed delay between updates. It has been observed that setting the Lipschitz
constant this way is too conservative and it is better to perform backtracking line
search [Savchynskyy 2011]. Due to the presence of the projection constraint, these
line searches could slow-down the overall algorithm. It is an open question, whether
asynchronous projected gradient with a fixed step length parameter could beat
asynchronous bcm, which has no step length parameter.

Chapter 7

Unsupervised learning: a

perspective based on optimal

transport and sparse

regularization

In this chapter, we will see some applications of numerical methods to unsupervised
learning problems. Unsupervised learning is a fundamental problem in machine
learning. In the previous chapters of this thesis, we came to appreciate that graphical
models present very high dimensional problems. It will be desirable to develop
unsupervised learning techniques that reduce the complexity of high dimensional
problems. In this chapter, we will see a framework based on optimal transport and
sparse regularization that allows us to view various unsupervised learning problems as
special cases. Specifically, we will see how continuous optimization based formulations
of k-medoids clustering (also, called exemplar clustering), center based clustering and
kernel PCA could be formulated with suitable regularizers within this framework.
One way to classify unsupervised learning problems could be as either clustering

problems or dimensionality reduction problems. In this chapter, we will look at both
types of approaches. We present an optimal transport based perspective to a loss
that has already been used for exemplar clustering [Elhamifar 2012]. We show how
this loss can be used for other problems through the concept of archetypal analysis
and also, we show that this loss penalizes variance of the output points. We study
existing sparse regularizers for k-medoids and center based clustering and present
a novel low rank regularizer for the pre-image problem in kernel PCA. We study
optimization algorithms for all the problems. Especially, in the case of kernel PCA,
we present a majorization-minimization algorithm that is novel in the context of
kernel PCA.

One may observe that there is a geometric flavor to unsupervised learning prob-
lems and approaches [Roweis 2000,Belkin 2006,Amari 2007,Von Luxburg 2007,Ab-
sil 2009]. In recent years, the subject of optimal transport has successfully ad-
dressed machine learning problems with a geometric flavour [Kolouri 2017]. Opti-
mal transport has also helped to theoretically understand unsupervised learning
algorithms [Canas 2012,Weed 2017]. The books by Cedric Villani [Villani 2003,Vil-
lani 2008] are excellent references on theoretical aspects of this subject and [San-
tambrogio 2015, Peyré 2017] are useful when working with applications. Given
two probability distributions, optimal transport seeks the most efficient way of

80

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

transforming one to the other, given a ground cost for moving the mass. The
original formulation by Gaspard Monge did not allow the splitting of mass and
the solution to that optimal transport problem is referred to as the transport map.
Disallowing mass splitting leads to no guarantee of the existence of a transport map.
For example, if the source is a dirac and the target is not or if the source and target
are supported on different numbers of diracs. In machine learning problems, data
is available as point clouds, even though they may represent underlying smooth
distributions. Leonid Kantorovich formulated a problem that allowed mass splitting.
The solution to this formulation is called the transport plan.

The precise way to discuss about optimal transport is in terms of measure
theoretic notions. We will take a more informal style here. We will work with
two random variables X and Y , each with discrete probability distributions. Let
the mass functions be µ with n states and ν with m states, respectively. Optimal
transport finds a transport plan Γ ∈ Rn×m that solves the following linear program,

minimize
Γ

∑

i,j

Di,jΓi,j (7.1a)

subject to ΓT✶ = ν and Γ✶ = µ (7.1b)

Γi,j ≥ 0 ∀(i, j). (7.1c)

Here D ∈ Rn×m consists of the ground distances between all possible pairs of the
two distributions. In many applications, the ground distance would be the Euclidean
distance or the squared Euclidean distance. Constraints (7.1b) are marginalization
constraints on Γ with respect to the two distributions. The constraint (7.1c) ensures
that non-negative mass is transported between the distributions. Thus, Γ is a joint
probability distribution between the two random variables and the rows and columns
of Γ satisfy simplex constraints [Condat 2016]. The optimal objective (7.1a) is the
total cost of transporting mass to transform one distribution to the other. Note, we
could rewrite

∑
i,j Di,jΓi,j as tr

(
Γ⊤D

)
.

Solving the linear program (7.1) for large problem sizes is hampered by the
coupling constraints between the rows and columns of Γ. It is possible to define an
optimization problem, where we retain constraints on either the rows or columns
and we enforce structure on Γ through a regularizer. Such an optimization problem
could take the following form,

minimize
Γ

tr
(
Γ⊤D

)
+ λ pen

(
Γ
)

(7.2a)

subject to Γ✶ = µ

Γi,j ≥ 0 ∀(i, j)
(7.2b)

where we have retained simplex constraints only on the rows. The function pen
(
Γ
)

is a suitably defined regularizer. Note, in an algorithm point of view, these simplex
constraints could now be enforced in a parallel fashion.

7.1. Archetypal analysis 81

In this optimization problem also, the matrix Γ continues to be meaningful as

a joint probability matrix. Since, Γ is a joint probability matrix, it is possible to

define a related conditional probability matrix P as follows,

Γi,j = P (A = xi, B = xj) = P (B = xj |A = xi)P (A = xi) = Pi,jµi (7.3)

where the random variable corresponding to the input distribution is A and the

random variable corresponding to the output distribution is B and both take values

from {x1, x2, ..., xn}. For a giveninput point xi, the constraint (7.2b) ensures,∑
j

Γi,j =
∑
j
Pi,jµi = µi. Thus, we could define an optimization problem with the

conditional probability matrix as the decision variable as follows,

minimize
Γ

tr
(
P⊤ Diag(µ)D

)
+ λ pen

(
P
)

(7.4a)

subject to P✶ = ✶

Pi,j ≥ 0 ∀(i, j).
(7.4b)

We will next see how this conditional probability matrix P could be used to represent

the output of unsupervised learning problems. For example, we could obtain latent

variables like cluster centers through P .

7.1 Archetypal analysis

Archetypal analysis [Cutler 1994] is an unsupervised learning technique that seeks

latent archetypes, which are constrained to be convex combinations of the data

points. It leads to interpretable archetypes, which is useful for some applications like

genomics. Apart from the archetypes being constrained to be convex combinations

of the data points, the data points are approximated as convex combinations of the

archetypes. The error in representing the data points this way is minimized, leading

to the following non-convex optimization problem,

minimize
P∈Rp×n,O∈Rn×p

||X −OPX||2F (7.5a)

subject to P✶n = ✶p

O✶p = ✶n

Pi,j ≥ 0 Oi,j ≥ 0 ∀(i, j).
(7.5b)

Here, X ∈ Rn×d represents the input data points and the output archetypes are

obtained by the product PX. One could guess an interesting connection between

optimal transport and archetypal analysis, since both the problems work with

simplex constraints on the elements of the output matrices. In 7.4, we presented

an optimization problem, where the decision variable was a conditional probability

matrix P . It is possible to interpret this matrix based on archetypal analysis and

represent output points as the product PX. Depending on how P is regularized

82

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

in (7.4), PX could represent medoids or cluster centers or projection into a low

dimensional subspace etc.

We would like to point out that the weighted average representation, PX,

implicitly assumes that the distance between two data points is measured in terms of

the Euclidean distance. Other metric distances between points could be considered

in the distance matrix D in (7.4). In general, if a non-Euclidean metric is being

considered then the output point is represented as the weighted Fréchet mean of

the input points, where the weights are according to the rows of P . For example,

optimal transport distance itself is a metric if the ground distance between the

masses of the two distributions is a metric [Santambrogio 2015]. As a concrete

example, the data points could be images from two distributions. We could consider

each image itself as a probability distribution and use the optimal transport cost

between two images i and j as the distance Dij between them in (7.4). Finding

Fréchet mean based on optimal tranport metric (in other words, barycenter in a

Wasserstein space) is an ongoing research topic [Cuturi 2014,Bonneel 2015].

Theorem 7 (Expected output given input). In an Euclidean space, the archetypal

representation, PX, leads to a probabilistic interpretation of the output points. The

ith row of PX represents the expected value of the output point corresponding to a

given input point xi, where the expectation is taken over all points, i.e.,
(
PX

)
i·

=

❊
(
Ci
)
. Here, Ci is a random variable denoting the output point corresponding to

the input point xi and it takes values from {x1, x2, ..., xn}.
Proof. We recall that the random variable corresponding to the input distribution

is A and that corresponding to the output distribution is B. Both take values from

{x1, x2, ..., xn}. The probability distribution of Ci is the same as P (B|A = xi).

Taking expectation over all data points,

❊
(
Ci
)

=
∑

j

p(B = xj |A = xi)xj =
∑

j

p(xi, xj)xj∑
j
p(xi, xj)

. (7.6)

Now,
∑

j

p(xi, xj)xj =
∑

j

Pi,jµixj = µi
∑

j

Pi,jxj (7.7)

and,
∑

j

p(xi, xj) =
∑

j

Pi,jµi = µi
∑

j

Pi,j = µi ∵ P✶ = ✶. (7.8)

Hence,

❊
(
Ci
)

=
∑

j

p(xi, xj)xj∑
j p(xi, xj)

=
µi
∑
j Pi,jxj

µi

=
∑

j

Pi,jxj =
(
PX

)
i·

(7.9)

7.2. A loss encouraging reduced output variance 83

If one observes continuous optimization based formulations of unsupervised learn-

ing problems involving data points X ∈ Rn×d, we will notice several formulations

where the decision variables would also be points Y , usually of the same number

and dimension, i.e., Y ∈ Rn×d. These may represent cluster centers [Hocking 2011]

to which the input points are mapped to or projection of the input points into a

low dimensional subspace [Candès 2011] etc. Instead of directly optimizing with

respect to Y , we propose to optimize with respect to P , where the output points are

represented as PX. This leads to a situation where we seek to represent the output

points within the convex hull of the input points. We would like to point out that

this happens naturally in several unsupervised learning problems like clustering,

principal component analysis (pca) etc. Also, this representation of the output

points as a convex combination of input points could be achieved with a sparse

set of input points. How to achieve this sparse representation in practice? We

note that various applications in sparse modeling literature show that enforcing

non-negativity constraint leads to sparse solutions [Chen 2014b]. Also, the optimal

transport based cost, tr
(
P⊤ Diag(µ)D

)
, encourages mass to be transported between

near data points. Thus, our formulation based on optimal transport and simplex

constraints, promotes sparsity in the output matrix P .

7.2 A loss encouraging reduced output variance

In general, an optimization based formulation for machine learning problems like

clustering and dimensionality reduction has an objective which is made of two

terms, a loss term and a regularization term. Generally, the loss term signifies data

similarity and the regularizer signifies prior knowledge on the decision variables. In

unsupervised learning, these decision variables could represent cluster centers or data

points after projection into a low dimensional subspace or problem specific notions

like self expressiveness in subspace clustering. Usually, the data similarity term is

formulated using the squared Frobenius norm. For example, in section (7.4) we

discuss about a continuous optimization based approach to clustering [Hocking 2011].

Given a matrix X ∈ Rn×d representing n data points in a space of dimension d,

the output, Y ∈ Rn×d, represents cluster centers and note that it is a matrix of

the same size. They encourage several rows of Y to be the same through suitable

regularization.

Thus, the similarity of the output to the input is expressed through the squared

Frobenius norm, ‖X − Y ‖2F . Based on archetypal representation, we could represent

the output points as PX. Thus, the output loss could take the form ‖X − PX‖2F .

Now, comes the question of whether PX will represent a different set of points

compared to Y . Since, the Frobenius norm based loss is based on Euclidean distance

between the input X and output points Y , the optimal output point is bound to

be in the convex hull of the input points. Intuitively, we can see this to be true,

irrespective of any reasonable regularizer. Thus, representing the output points as

convex combinations of data points, results in the same set of output points.

84

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

We noted earlier that for several applications, the ground distance matrix D in

optimal transport is the squared Euclidean distance. In unsupervised learning, this

Euclidean distance could be defined in the space where the points X belong to, thus

Dij = ||Xi· −Xj·||2. With such a ground cost, we make the following observation

about optimizing the optimal transport inspired loss.

Theorem 8 (Penalizing output variance). Suppose, the ground cost D is defined

as the squared Euclidean distance between points, i.e., Dij = ||Xi· −Xj·||2. Then

the optimal transport inspired loss P⊤ Diag(µ)D leads to lesser variance of the

coordinates of the output points, compared to the Frobenius norm based loss, ‖X −
PX‖2F . I.e., var(Ci,j) is penalized for all j, where Ci,j is one coordinate of Ci.

Proof.

tr
(
P T Diag(µ)D

)
=
∑

i

µi
∑

j

Pij‖xi − xj‖2

=
∑

i

µi

(
‖xi‖2 − 2xTi

∑

j

Pijxj +
∑

j

Pij‖xj‖2
)

=
∑

i

µi

(
‖xi‖2 − 2xTi ❊(Ci) +❊

(
(Ci)

2)
)

=
∑

i

µi

(
‖xi‖2 − 2xTi ❊(Ci) + ‖❊(Ci)‖2+

❊
(
C⊤
i Ci

)− ‖❊(Ci)‖2
)

=
∑

i

µi

(
‖xi −❊(Ci)‖2 +

∑

j

var(Ci,j)

)

=
∑

i

µi

(
‖Xi· − (PX)i·‖2 +

∑

j

var(Ci,j)

)
.

(7.10)

Therefore, the loss tr
(
P⊤ Diag(µ)D

)
penalizes the variance of the output points,

when compared to squared Frobenius norm.This is true, irrespective of the form of

the regularizer. In all the unsupervised learning problems that we discuss here, we

have used this loss. In all these problems, this perspective is useful. We point out

that this result is of independent interest and could be used in other problems, also.

7.3 K-medoids clustering

The k-medoids problem seeks to partition the data with respect to cluster centers

such that one of the data points is itself the cluster center. This is unlike the

k-means problem, where the cluster center is the centroid of the data points in that

cluster. This problem is NP-hard and we show here a convex approximation to the

k-medoids problem.

7.3. K-medoids clustering 85

Given a data set of size n, a convex relaxation of the k-medoids clustering

problem could be formulated as follows,

minimize
P

tr
(
P T Diag(µ)D

)
+ λ

∑

j

‖P·j‖∞ (7.11a)

subject to P✶ = ✶ (7.11b)

Pi,j ≥ 0 ∀(i, j). (7.11c)

Note, if the input data points have uniform probability mass (i.e., µi = 1
n), this

formulation has been already proposed in the name of exemplar clustering by [El-

hamifar 2012]. However, the link between optimal transport and this formulation for

exemplar clustering has not been recognized in the research community. [Carli 2013]

present a convex clustering approach based on optimal transport which is in the

form of (7.11) but the l2 norm of the columns are penalized, instead of l∞. They do

not cite any of the exemplar clustering papers. Also, l∞ norm is more effective than

l2 norm for this problem [Elhamifar 2012]. Moreover, interpreting the matrix P as

a conditional probability matrix, readily leads to the ability to assign non-uniform

probability mass to the input points. This could be useful for some applications and

it has not been tried earlier, to the best of our knowledge. Also, by representing the

output points as convex combinations of the input points, along with the optimal

transport inspired loss, makes this formulation as one that penalizes the variance of

the output points 7.2. This perspective is new to the exemplar clustering problem.

Note, the above formulation solves the k-medoids problem exactly only when

each row of P has exactly one element set to 1 and the other elements being zero. In

practice, by minimizing the l∞ norm of the columns of P and by imposing simplex

constraints on the rows of P , we get several columns of P being zeroed out and also,

the non-zero values that appear tend to take uniform values. [Elhamifar 2012, §3]

shows conditions on the dataset under which the k-medoids could be recovered. In

general conditions, we could do one of the following: we could set the cluster centers

as the product PX (thus, the output points need not be exactly one of the input

points) or for a row i in P , we could select the column j that has the maximum

conditional probability Pij as its cluster center. We would recommend PX because

we can reason with it in a more principled manner (7).

Among various algorithms to solve the formulation given in [Elhamifar 2012],

[Yen 2016] has shown a fast and scalable approach. They first construct the

augmented Lagrangian for the problem (7.11) as follows,

L(P, λ) = tr
(
P T Diag(µ)D

)
+ λ

∑

j

‖P·j‖∞ + λ⊤(P✶− ✶) +
ρ

2
||P✶− ✶||2 (7.12)

where the non-negativity constraint on P is retained. The variables P and λ are

updated alternatingly as follows,

P k+1 = argmin
P≥0

L(P, λk) (7.13a)

86

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

λk+1 = η(P✶− ✶) + λk (7.13b)

using a suitably small step length η. In (7.11) the simplex constraints are enforced

on the rows of P , while the l∞ norm of the columns are minimized. By taking the

simplex constraints into the augmented Lagrangian, L is separable according to the

columns of L. Thus, (7.13a) could be optimized in a block coordinate fashion. Since,

L is strongly convex when restricted to a subspace, [Yen 2016] optimize (7.13a) for

only one sweep over the blocks in each iteration and achieve a provably convergent

and fast algorithm. They also show a greedy method to choose the blocks and

achieve further speed-up. We note that according to their formulation input data

points are not weighted, which is equivalent to having µi = 1
n in (7.11). Since, we

have made the observation that this formulation is related to optimal transport, it

leads to the possibility of weighting the input points non-uniformly. We will discuss

our experiments with optimization algorithms for solving (7.11) in section (7.6).

7.4 Center based clustering

[Hocking 2011] presented a continuous optimization based approach to clustering

as follows,

minimize
Y ∈Rn×d

1

2
||X − Y ||2F + λ

∑

i<j

wij ||Yi· − Yj·||q (7.14)

where the lq norm, q ∈ 1, 2,∞, promotes sparsity in the row differences of Y . Also,

in practice weighting the norm, with wij = e−γ‖xi−xj‖2
gives better results. Thus,

we expect Y to have many rows of the same value and the unique row values of

Y represent the cluster centers. Thus, points in X get mapped to cluster centers

represented by Y . In our experiments, we first verified that the representation PX

could replace Y and recovers the same output cluster centers. Thus, we present the

following formulation for clustering,

minimize
P∈Rn×n

tr
(
P T Diag(µ)D

)
+ λ

∑

i<j

wij ||(PX)i· − (PX)j·||q (7.15a)

subject to P✶ = ✶ (7.15b)

Pi,j ≥ 0 ∀(i, j). (7.15c)

We immediately notice how similar (7.15) is to (7.11) and how both fit into the

framework shown in (7.4). Thus, a different way to regularize the conditional

probability matrix P helps us address a different problem in unsupervised learning.

The formulation by [Hocking 2011] has been improved with non-convex regu-

larization terms [Pan 2013,Shah 2017]. For example, [Shah 2017] imposes a robust

penalty on the Euclidean distance between rows of Y as follows,

ρ
(||Yi· − Yj·||2

)
where ρ(y) =

µy2

µ+ y2
. (7.16)

This robust penalty is called the Geman-McClure estimator. They show results on

datasets with difficult to separate clusters. We showed in (7.2) that the optimal

7.5. Kernel PCA and the pre-image problem 87

transport based loss tr
(
P T Diag(µ)D

)
leads to reduced variance in the output points.

Thus, the following formulation could improve the results of [Shah 2017],

minimize
P∈Rn×n

tr
(
P T Diag(µ)D

)
+ λ

∑

i<j

wijρ
(||(PX)i· − (PX)j·||2

)
(7.17a)

subject to P✶ = ✶ (7.17b)

Pi,j ≥ 0 ∀(i, j) (7.17c)

where ρ is defined in (7.16). In (7.6), we present some experimental results using

the optimal transport loss for continuous optimization based clustering. In the next

section, we will see one more topic in unsupervised learning that could be addressed

through the framework shown in (7.4).

7.5 Kernel PCA and the pre-image problem

Kernel principal component analysis (kpca) is an effective approach to model data

lying on non-linear manifolds [Schölkopf 1999]. The pre-image problem is a central

challenge in kernel PCA. For example, KPCA models the data as lying in a linear

subspace in a high (possibly, infinite) dimensional feature space, H, which is the

RKHS associated with the kernel k(x, y) = φ(x)⊤φ(y), where φ(x) : X → H is

usually a nonlinear mapping. Data points are represented and processed in H and

mapping some point Ψ ∈ H to the input space X is the pre-image problem. This

inverse mapping may be computationally difficult to evaluate and usually the exact

pre-image may not exist. Thus, a suitable pre-image needs to be found for points

like Ψ.

Let X ∈ Rn×d represent n input points in a d dimensional space. Traditional

kpca performs eigendecomposition in the feature space. In other words, traditional

kpca is pca performed on the centered kernel matrix as follows,

HKH = UΛU⊤ (7.18)

where, H = I − 1
n✶✶

⊤ is the centering matrix and K is the kernel matrix, i.e.,

Kij = φ(xi)
⊤φ(xj). U contains the eigenvectors, α1,α2, ...,αn and Λ is a diagonal

matrix containing the eigenvalues, λ1, λ2, ..., λn.

kpca models the data in a linear subspace of dimension M in feature space. We

will now see how this model is maintained in feature space and how a new data

point is projected onto this linear subspace. Let us consider the centered feature

vectors, φ̃ = [φ̃(x1), φ̃(x2), ..., φ̃(xn)], where φ̃(xi) = φ(xi) − 1
n

n∑
i=1

φ(xi). We will

denote 1
n

n∑
i=1

φ(xi) as φ̄. The mth component has the form,

Vm =
1√
λm
φ̃αm. (7.19)

88

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

Then, for a new data point x, the projection of φ(x) onto the mth component has

the coefficient,

βm =
1√
λm

n∑

i=1

αmik̃(x, xi) (7.20)

where k̃(x, y) = k(x, y) − 1
n✶

⊤kx − 1
n✶

⊤ky + 1
n2✶

⊤K✶ and

kx = [k(x, x1), k(x, x2), ..., k(x, xn)]⊤. We will also need k̃x =

[k̃(x, x1), k̃(x, x2), ..., k̃(x, xn)]⊤ = H

(
kx − 1

nK✶

)
. Thus, the projection of

φ(x) on the M dimensional subspace is of the following form,

PMφ(x) =
N∑

k=1

1

λk
(α⊤

k k̃x)(φ̃αk) + φ̄ =
n∑

i=1

γiφ(xi) (7.21)

for suitably defined γi. The pre-image problem in kpca seeks a z such that φ(z) is

close to PMφ(x).

Several approaches have been proposed to tackle the pre-image problem.

[Mika 1999] presents an approach for radial basis function (rbf) kernels. They seek

to minimize,

ρ(z) = ||φ(z)− PMφ(x)||2. (7.22)

For rbf kernels they show a fixed-point iteration to obtain the desired pre-image z

as follows,

zk+1 =

n∑
i=1

γiexp(−c−1||zk − xi||2)xi

n∑
j=1

γiexp(−c−1||zk − xj ||2)
. (7.23)

[Bakir 2004] exploits the fact that given a data set, the pairs (x, φ(x)) are available.

A map is learnt based on kernel ridge regression, whose performance depends on

another kernel, different from that used by the original problem. Their learnt map

is of the form Γ(PMφ(x)) = [Γ1(PMφ(x)),Γ2(PMφ(x)), ...,Γd(PMφ(x))], where for

each dimension in the input space a map is learnt and it is of the following form,

zi = Γi(PNφ(x)) =
n∑

j=1

βijκ(PMφ(x), PMφ(xj)) (7.24)

where κ is a kernel function different from that used by kpca. Suppose, B =

[β1, ...,βd] and βi = [βi1, ..., β
i
n]⊤. B is obtained by ridge regression and it is of the

following form,

B = (K̃⊤K̃ + γIn)−1K̃⊤X (7.25)

where K̃ij = κ(xi, xj) and γ is a regularization parameter for kernel ridge regression.

Even though this method could work for any kernel function k, it has too many

hyperparameters to tune. [Kwok 2004] uses the fact that for isotropic and dot

product kernels, if we can find m nearest neighours in feature space of PM (φ(x)),

then it is possible to estimate the distances to these m points in input space. If xi

7.5. Kernel PCA and the pre-image problem 89

is one of the nearest neighbours in feature space, then the pre-image z would be

located at a distance di from xi in input space. For isotropic kernels of the form

k(||xi − xj ||2), this distance di between z and xi could be estimated as follows,

k(d2
i) =

1

2

(
φ(x)⊤φ(x) + φ(xi)

⊤φ(xi)− d̃2
i

)
(7.26)

where d̃i is the distance in feature space and [Kwok 2004] shows that it can be

computed for any kernel. As long as the kernel function k is invertible, di could be

computed. For dot product kernels of the form k(x⊤
i xj), they exploit the fact that

the distance di in input space is of the form,

d2
i = ||z − xi||2 = z⊤z + x⊤

i xi − 2z⊤xi (7.27)

which is in fact just a general relationship and we don’t know the pre-image z yet.

However, the dot products in input space could be computed from dot products in

kernel space for dot product kernels, as long as the kernel function k is invertible.

Thus the distances d2 = [d2
1, d

2
2, ..., d

2
m]⊤ are obtained and z is estimated from Xm =

[x1, x2, ..., xm] based on multi-dimensional scaling mds. Given the singular value

decomposition (svd) of the centered nearest neighbours, XmHm = UΛV ⊤ = UZ,

the pre-image is obtained as follows,

z = Uẑ + x̄. (7.28)

Here, Hm is an m×m centering matrix, x̄ = 1
m

m∑
i=1

xi, ẑ = −1
2Λ−1V ⊤(d2 − d2

0) and

d2
0 = [||Z·1||2, ||Z·2||2, ..., ||Z·n||2]⊤. This approach gives good performance, once the

number of nearest neighbours m is selected based on validation data. However, this

approach will not be applicable to kernels other than isotropic and dot product

kernels and also, working in high input dimensions, with m nearest neighbours from

feature space, could lead to poorer results.

Given clean data, all these approaches build a linear subspace model in feature

space based on traditional kpca and denoise a test sample using that model. However,

the noise in the test sample will affect how the similarity is measured in feature

space. [Nguyen 2009] considers an additional robust similarity measure between

the test sample and the denoised output in input space and presents a fixed-point

iteration that works with rbf kernels. Other pre-image methods generally tend

to improve one of the above methods in some way [Arias 2007], [Rathi 2006], thus

retaining the nature of the underlying method. For example, [Zheng 2010] is inspired

by both [Mika 1999] and [Kwok 2004] and minimizes (7.23) by constraining the

pre-image to be a convex combination of the k nearest neighbours in feature space

and by regularizing using labeled samples, if available.

A common feature among pre-image algorithms is the representation of the pre-

image as a linear combination of the data points. For [Mika 1999] we can see from

(7.23) that zk+1 is a linear combination of xi’s, the input points. For [Bakir 2004],

we can see from (7.24) and (7.25) that representation of the pre-image as a linear

90

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

combination of the data points is again true. For [Kwok 2004], we could define a

matrix Bm = HmV Λ−1ẑ and see that the pre-image is a linear combination of the

points that are nearest neighbours in feature space, z = XmBm + x̄. It can be easily

verified for other algorithms, also [Nguyen 2009], [Abrahamsen 2011], [Honeine 2011]

that the pre-image is a linear combination of the data points. Imposing further

constraints on the linear combination, like non-negative weights [Kallas 2013] and

convex combination [Zheng 2010] have also been explored.

We model the pre-image of a data point according to archetypal analysis, i.e., as

a convex combination of the data points. By imposing simplex constraints on the

combination weights, we can model the pre-image without a priori fixing the number

of data points used in the convex combination. This is an advantage compared to

algorithms like [Kwok 2004,Zheng 2010] that have to tune the number of nearest

neighbours based on a validation set. Also, in practice the non-negative constraint

of the simplex, encourages sparse weights, i.e., a small subset of data points are

automatically chosen to represent the pre-image.

Estimating the pre-image for a broad range of kernels is still an open problem.

Even though there are many kernels (e.g., string kernels [Giguere 2015]), which may

require specialized solutions, addressing the pre-image problem beyond isotropic and

dot-product kernels may be useful. For example, finding pre-images for visualization

during dictionary learning [Shrivastava 2015] and manifold learning [Arif 2010]

could be useful. We saw earlier that [Bakir 2004] presents a general approach

by learning a map based on kernel ridge regression. However, there is room for

understanding how the various parameters interact (kpca’s kernel, number of

components in kpca, kernel ridge regression’s kernel and regularization parameter).

Some of the other pre-image algorithms exploit the rbf kernel to design optimization

algorithms [Mika 1999], [Nguyen 2009], [Rathi 2006], [Abrahamsen 2011] and hence,

are restricted to work with that kernel. Some others exploit some relationship

between input space and feature space [Kwok 2004], [Zheng 2010], [Honeine 2011]

and hence, are restricted to kernels (isotropic and dot-product) where this relationship

is meaningful. To find a way that estimates the pre-image without depending on

the kernel, we first observe that the archetypal representation in the input space,

carries over to the feature space, as well. Thus, in section (7.5.1) we propose a

regularization that again involves the conditional probability matrix P and also, the

kernel matrix K, leading to a method that is independent of the kernel function k.

Another desirable property of a pre-image algorithm is a loss function that

considers both input space and feature space similarities of the pre-image with

the rest of the points. Having both terms has been shown to stabilize the output

[Abrahamsen 2011]. [Mika 1999], [Rathi 2006], [Zheng 2010] exclusively models

similarity in the feature space. [Kwok 2004] discovers nearest neighbours of the

target point based on similarity in feature space alone. The regression coefficients

in [Bakir 2004] are dependent on the feature space representation of the target point

only. [Nguyen 2009] has a robust similarity term in the input space along with a

projection error term in feature space but do not motivate their loss as these two

terms stabilizing each other. In our work we propose two similarity terms, one in

7.5. Kernel PCA and the pre-image problem 91

input space and one in feature space. The one in the input space is naturally suited

for geometric similarity between the data points and the one in the feature space

models the desire of discovering a low dimensional linear subspace in feature space.

In the next section, we present our formulation for kpca and the pre-image

problem. We describe interesting properties like flexible choice of the kernel and

working with robust geometric distance between points. Later, we also describe an

efficient optimization approach to solve the formulation and present results.

7.5.1 Our Approach

We observe that there is a strong geometric flavor in the pre-image problem and

several existing methods are based on explicit geometric reasoning in their for-

mulation [Kwok 2004], [Nguyen 2009], [Honeine 2011]. We bring in geometric

notions through the optimal transport based loss. Thus, our approach to nonlinear

dimensionality reduction takes the following form,

minimize
P

tr
(
P⊤ Diag(µ)D

)
+ λ‖HPK

1
2
c ‖pp (7.29a)

subject to P✶ = ✶

Pi,j ≥ 0 ∀(i, j).
(7.29b)

Again, we rightaway notice the similarity to the form given in (7.4). Also, H =

I − 1
n✶✶

⊤ is the centering matrix, Kc = HKH is the centered Kernel matrix and

‖ · ‖p is the Schatten p-norm. As before, the pre-images of the data points after

projection onto the linear subspace in feature space, are modeled according to

archetypal analysis, as follows,

Z = PX. (7.30)

According to (7), (PX)i· is the expected output point for input point xi. This is a

property expected from the pre-image of a point xi, in at least some applications.

Now, we will motivate our regularization term, ‖HPK
1
2
c ‖pp. In traditional kpca,

the data is modeled by the top eigenvectors of the centered kernel matrix Kc = HKH .

Even though H is an infinite dimensional space, any finite dataset spans a subspace

of finite dimension [Bakir 2004]. Hence, if the dataset exibits a low-dimensional

structure in feature space, traditional kpca is able to model it with a small set of

eigenvectors. Similarly, we want the matrix, HPK
1
2
c , to be of low rank. We will

see how this leads to a low-dimensional representation in feature space. We have

the data points X = [x⊤
1 , x

⊤
2 , ..., x

⊤
n]⊤ and their representation in feature space H,

Φ(X) = [φ(x1)⊤, φ(x2)⊤, ..., φ(xn)⊤]⊤. We would like the archetypes in feature space

(PΦ(X)) to lie in a low dimensional subspace. In other words, the centered vectors

HPΦ(X) could be made to lie in a low dimensional linear subspace by penalizing

the rank of the matrix, HPΦ(X). Matrix rank is combinatorial in nature and the

nuclear norm (‖ · ‖∗) and in general the Schatten p-norm (‖ · ‖p) is a continuous

valued surrogate for the rank. In fact, the nuclear norm is the Schatten p-norm

with p = 1. However, we cannot directly work with Φ(X) which could be infinite

92

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

dimensional. Instead, we exploit the kernel trick and obtain a finite dimensional

matrix as follows,

‖HPΦ(X)‖pp = tr
(
HPΦ(X)Φ(X)⊤P⊤H

) p
2 = tr

(
HPKP⊤H

) p
2 = ‖HPK 1

2 ‖pp.
(7.31)

Hence, minimizing the rank of HPK
1
2 could lead to the desired low-dimensional

representation in H. We work with HPK
1
2
c which is better from a numerical

implementation point of view because in practice the dynamic range of non-zero

eigenvalues is lesser for Kc. Generally, Kc is of size (n × r), with r < n. Hence,

HPK
1
2
c is of size (n × r). This will be useful for designing efficient optimization

algorithms.

In recent years, seeking a low rank representation in feature space has been

explored by other works [Garg 2016, Fan 2018]. However, these works are not

scalable because one of the decision variables in their formulation is the entire kernel

matrix itself. Thus, the per iteration cost of their algorithms is O(n3). We explore

archetypal representation in the feature space and achieve a per iteration complexity

of O(r3). Also, we have an objective function that simultaneously considers similarity

in input space (tr
(
P⊤ Diag(µ)D

)
) and feature space (‖HPK 1

2 ‖pp), which could lead

to better results.

We observe that the optimization problem with the objective 7.29a and con-

straints 7.29b is independent of what kernel is used to define the kernel matrix K.

Thus, our approach may work in any application where the pre-image is reasonably

represented as a convex combination of data points. We have already seen that

general pre-image algorithms represent the pre-image as a linear combination of

data points and the advantage of seeking a convex combination of data points has

also been studied [Zheng 2010].

Our formulation allows flexibility to suitably define the geometry of the input

space. The optimal transport based loss, tr
(
P⊤ Diag(µ)D

)
, allows freedom in the

definition of the ground distance matrix D. To the best of our knowledge, apart

from [Nguyen 2009], which considers the robust Geman-McClure distance in the

input space, our work is one of the first to allow a flexible geometry in the input

space.

We would like to point out that our algorithm involves tuning of the regularization

parameter λ. A regularization path of this parameter needs to be considered and

a final value should be chosen. The criterion for choosing the appropriate value

of λ depends on the application. For example, a supervised denoising application

could use the reconstruction error on a validation data set. We note that the same

procedure is needed for traditional kpca for choosing the number of components.

In fact in that approach, a simultaneous search for number of components along

with the parameters of the pre-image algorithm is required [Alam 2014]. In all

approaches, the parameters of the kernel has to be chosen by some procedure, which

we will describe in the experiments section.

7.5. Kernel PCA and the pre-image problem 93

7.5.2 Optimization

Like in other problems described in this chapter, P , the conditional probability

matrix, is the decision variable. In the objective, the Schatten p-norm is not smooth.

Together with the simplex constraints on the rows of P , this presents a challenge

to design an optimization algorithm. We take an approach where we smooth the

Schatten p-norm and thus, have a smooth version of the objective. This enables the

use of accelerated projected gradient algorithms like FISTA for the convex case and

a general majorization-minimization approach for any value of p.

Given a P ∈ Rn×n, P✶ = ✶ and P ≥ 0, for easier notation we will work with a

matrix M , where M = HPK
1
2
c , where H = I − 1

n✶✶
⊤ is the centering matrix and

K
1
2
c ∈ Rn×p is the square root of the centered kernel matrix. The Schatten p-norm

of M raised to the power p is
∑
k σk(M)p = tr(M⊤M)

p
2 , which is not smooth and

is only convex for p ≥ 1. We consider the following smoothing of the Schatten

p-norm [Zhang 2010],

∑

k

σk(M)p = tr(M⊤M)
p
2 = tr(ε2I +M⊤M)

p
2 . (7.32)

This leads to the following potentially non-convex smooth objective for the opti-

mization problem,

tr(P⊤ Diag(µ)D) + λ tr(ε2I +M⊤M)
p
2 . (7.33)

Given the potential non-convexity of the optimization problem, we seek a

majorization-minimization algorithm [Lange 2000]. Specifically, we derive a suitable

variational majorant surrogate and use it as described in section 2.2 of [Mairal 2013].

In brief, for a real-valued function h which is to be minimized over a convex set X , let

f be a real-valued function defined on X ×Y , where Y is another convex set. Under

reasonable smoothness assumptions and µ-strong convexity of f , ∀x ∈ X , given

any y ∈ Y, the following function is a majorant surrogate for f at some (κ1, κ2),

f̂ : x → f(x, κ2), where κ2 = arg min
y

f(κ1, y). Now, we will derive a variational

majorant surrogate along these lines for the smooth objective function (7.33). First,

we make the following observation,

tr(ε2I +M⊤M)
p
2 = inf

B
p tr

(
B(ε2I +M⊤M)

1
2
)

+ (1− p) trB
−p

1−p . (7.34)

This leads to the folllowing form for the smooth objective: tr(P⊤ DiagµD) +

λinf
B
p tr

(
B(ε2I + M⊤M)

1
2
)

+ (1 − p) trB
−p

1−p . Hence, it is possible to define a

function f(P,B) as follows,

f(P,B) = tr(P⊤ DiagµD) + λp tr
(
B(ε2I +M⊤M)

1
2
)

+ (1− p) trB
−p

1−p . (7.35)

For a given Pt and Mt = HPtK
1
2
c , the following function is a majorant at (Pt, Bt)

94

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

for f : f(P,Bt), where Bt is obtained as follows,

Bt = arg min
B

f(Pt, B) = arg min
B

p tr
(
B(ε2I +M⊤

t Mt)
1
2
)

+ (1− p) trB
−p

1−p

=(ε2I +M⊤
t Mt)

− p
2 .

(7.36)

Hence, our optimization approach is a block coordinate descent procedure with two

blocks (P , B) as described in Algorithm (10). In each iteration, Bt is obtained

in closed form as shown in (7.36) and Pt is obtained by minimizing the function

in (7.35) for a fixed B = Bt, subject to simplex constraints. Currently, this Pt is

obtained using FISTA. Suppose (Pt, Bt) converge to (P ∗, B∗), then P ∗ is a local

optimum for our optimization problem with the smooth objective (7.33).

Finding Pt for a given Bt requires a projected gradient descent procedure. The

projection onto the simplex constraints is carried out using an efficient off-the-shelf

method [Condat 2016]. In order to solve the optimization sub-problem to find Pt for

a given Bt, the gradient of f(P,Bt) with respect to P is required. The derivative

with respect to P could be obtained from the derivative with respect to M through

the chain rule. Thus, what we need is the derivative of tr
(
Bt(ε

2I +M⊤M)
1
2
)

with

respect to M , which is as follows,

2MUB̄U⊤ (7.37)

where U is a matrix whose columns are the eigenvectors ui of the eigendecomposition

of M⊤M . B̄i,j =
B̃i,j

(ε2+σ2
i)

1
2 +(ε2+σ2

j)
1
2

, where B̃ = U⊤BU . Thus the per iteration

complexity of computing the gradient is dominated by the eigendecomposition of

M⊤M , which is O(r3). Thus by working with the square root of the kernel matrix

(∈ Rn×r with r < n), our approach has a more desirable computational complexity.

The other computationally demanding step in our approach is the projection into

the simplex, to ensure the simplex constraints on the rows of P . This operation is of

complexity O(n logn) for each of the n rows and it is trivially parallelizable over the

rows. We generate P ’s over the regularization path of λ values. The computational

load of generating a regularization path over λ values, could be considerably reduced

by warm starting with the P obtained with previous lesser λ value.

We present in the appendix, the derivation of equation (7.37). In the appendix,

we also show how to obtain the derivative for weighted Schatten p-norm where

the singular values are non-uniformly weighted [Gu 2017] or where only the lower

singular values are penalized [Oh 2016]. These are novel results and it can be readily

applied to other problems, involving the Schatten p-norm.

The best performing P (say, P ∗) could be obtained based on performance on a

validation data set. Let us denote the corresponding regularization parameter as λ∗.

Given the optimal P ∗, the pre-image of the data points is obtained as Z = P ∗X.

7.5.3 Out-of-sample extension

So far, we have shown how a set of data points can be projected onto a low

dimensional linear subspace in feature space and how to obtain the pre-images as

7.5. Kernel PCA and the pre-image problem 95

Algorithm 10 Block coordinate descent scheme

1: input P0 = I, λ = 10−3, Kc ∈ Rn×p

2: while regularization path left to be explored do

3: choose λc to explore based on rank of HPλK
1
2
c and performance on validation

set of previous λ’s.

4: λ← λc
5: warm start P0 with Pλ corresponding to largest earlier λ

6: for n = 1, 2, 3, ... do

7: compute Bn according to equation (7.36) using Pn−1.

8: compute Pn by minimizing (7.35) subject to simplex constraints (7.29b),

using Bn.

9: end for

10: save optimal P as Pλc .

11: end while

a convex combination of the data points. In many applications, we seek the pre-

image of a new test point, say xoos ∈ Rd. It can be readily done with the following

approach. We will work with a conditional probability matrix Poos ∈ R(n+1)×n as the

optimization variable. Poos is warm started as follows: The first n rows are assigned

P ∗, obtained in the previous section. The last row (∈ Rn×1) is initialized by zero

except for k nearest neighbours to the test point, each having uniform value of 1
k . We

choose k = 10 but this is to only give a warm start and it is not critical. A centered

kernel square root Kc,oos ∈ R(n+1)×p is computed in an incremental manner with

respect to K
1
2
c . The pairwise cost matrix is also extended as Doos ∈ R(n+1)×n. Then

we optimize for a fixed value of λ = λ∗ using the optimization scheme mentioned in

the previous section is run. Based on the optimal P ∗
oos, one could get the pre-image

of the test point as
(
P ∗
oosX

)
(n+1)·

.

7.5.4 Robust pairwise cost

In the previous section, we showed our approach for out-of-sample extension, where

the pre-image of a test point is a convex combination of the training points. There

are applications where we want to consider the test point also, as part of the convex

combination. For example, when the training points are clean samples and the test

point is a noisy one, to be denoised. Among pre-image algorithms, [Nguyen 2009] is

one work that has considered this possibility in a more principled manner. They

consider the robust Geman-McClure distance between the noisy test point and the

pre-image of the denoised point in feature space. In our approach, we will work with

a conditional probability matrix Pρ ∈ R(n+1)×(n+1) as the optimization variable. In

other words, we let the test point also to define the linear subspace that we are

seeking in feature space. Pρ is warm started similar to the previous section. Also,

the centered kernel matrix takes the same form as in the previous section. It is in the

design of the pairwise cost matrix Dρ ∈ R(n+1)×(n+1), where we exploit the ability

96

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

to suitably define the geometry in the input space, which is afforded by optimal

transport. We could define the pairwise cost between the points based on a robust

metric (say, Euclidean distance which corresponds to 1-Wasserstein distance). By

this approach, the linear subspace that we seek is not adversely affected by the noisy

test point and at the same time, we get a pre-image which considers the test point

in the convex combination. Let Xoos = [X⊤, x⊤
oos]

⊤, then the desired pre-image is(
P ∗
ρXoos

)
(n+1)·

.

7.6 Experiments

For the convex relaxation of the k-medoids problem (7.3), we tried several optimiza-

tion algorithms: fista with a smooth objective (obtained by smoothing the l∞ norm)

with simplex constraints; block coordinate descent with the simplex constraints

encoded as a soft quadratic penalty with randomized and greedy selection of blocks;

an admm based approach according to [Parikh 2014, §3.1]. We found the admm

based approach to be fastest, with a suitable choice of the augmented Lagrangian

parameter. We have observed that the block coordinate descent formulation with

quadratic penalty makes quick initial progress but is ill-conditioned as the algo-

rithm progresses. Ill-conditioning of the quadratic penalty has been recognized

by the research community [MS&E318] and expressing the constraints through

the augmented Lagrangian is a solution. Thus, the augmented Lagrangian with

truncated block coordinate descent in [Yen 2016] is indeed an elegant algorithm for

this problem.

For the continuous clustering formulation, we experimented with both the

Frobenius norm based loss and the optimal transport based loss, along with l1
and l2 regularization. l2 norm is rotation invariant and suitable in a general

setting [Hocking 2011]. We show results on two dimensional toy problems in figure

(7.1). We observe that in both cases points are grouped together into the same

clusters. However, in the case of the optimal transport loss, the cluster center is closer

to one or more of the existing data points. It will be an interesting exercise to test

the optimal transport loss along with the robust regularization given in [Shah 2017].

Since, they showed promizing results with difficult to separate clusters, our variance

penalizing loss could further improve the results.

A set of good baselines for the kpca pre-image problem are: fixed point iteration

[Mika 1999], mds based approach [Kwok 2004], learning pre-image map using kernel

ridge regression [Bakir 2004] and the approach based on a robust loss [Nguyen 2009].

It is not clear whether the code shared by [Nguyen 2009] implements the algorithm

described in the paper and we have not used it in our comparisons. In our formulation,

we have shown results with nuclear norm, i.e., p = 1 for the Schatten p-norm.

First, we test on a two-dimensional problem, 250 points generated along the

circumference of a circle of radius 5, perturbed by Gaussian noise of standard

deviation 1. The polynomial kernel is very suitable for this problem and we have

tested our approach with both polynomial and rbf kernels. Among the baseline

7.6. Experiments 97

Figure 7.1: Two dimensional data with 60 points. (left) frobenius norm based loss,

(right) optimal transport based loss. Optimal transport based loss penalizes variance

of the output points and those points are close to or coincide with input points.

Figure 7.2: From left to right: [Mika 1999], [Kwok 2004], [Bakir 2004], our ap-

proach. [Mika 1999] and [Kwok 2004] use rbf kernel. [Bakir 2004] and ourselves use

polynomial kernel.

algorithms, [Kwok 2004] and [Bakir 2004] can tackle the polynomial kernel. Currently,

the implementation of [Kwok 2004] that we have only supports rbf kernel [stprtool].

The implementation of [Bakir 2004] is from scikit-learn [Pedregosa 2011] and it

supports both rbf and polynomial kernels. Results are shown in figure 7.2. The best

parameter setting for each algorithm is used. We found [Mika 1999] and [Kwok 2004]

to be very sensitive to the bandwidth of the rbf kernel. We had to test 10th

percentile, median and 90th percentile of the pairwise distances and take the best

result. Compared to this our algorithm is very robust to choice of the bandwidth

parameter. In all our experiments it has worked with bandwidth set to the median

pairwise distance. For different choices of the bandwidth parameter, our algorithm

gives acceptable results with a different λ. The implementation of the polynomial

kernel based kpca does not allow us to tune any parameter to improve the result

of [Bakir 2004].

We also show results with the USPS dataset, which consists of 1100 instances

98

Chapter 7. Unsupervised learning: a perspective based on optimal

transport and sparse regularization

Digit Our approach MDS approach

0 11.998 12.1319

1 12.797 13.291

2 11.645 11.7458

3 11.7013 11.8094

4 11.8597 12.0211

5 11.7803 11.881

6 11.8273 11.9465

7 12.3235 12.461

8 11.6172 11.6834

9 11.9246 12.0224

Table 7.1: USPS Dataset: PSNR of denoised image for Gaussian noise.

Digit Our approach MDS approach

0 12.3546 12.5631

1 13.723 14.1372

2 11.7791 11.9145

3 11.8962 12.03

4 12.1903 12.3596

5 11.9898 12.135

6 12.1054 12.2716

7 12.7595 13.0382

8 11.6714 11.8569

9 12.2911 12.3471

Table 7.2: USPS Dataset: PSNR of denoised image for salt & pepper noise.

for each of the ten digits (0...9). The digit images are in binary format, with 0

for background and 1 for foreground. We add noise to all the images and we test

the ability of the algorithms to denoise the images by finding a linear subspace

in feature space. We have tested with two types of noise: Gaussian (µ = 0 and

σ = 0.4) and salt-&-pepper (p = 0.1). In our experiments, the mds based approach

consistently performed better than the other baselines. Hence, we only compare

with [Kwok 2004]. In the tables (7.1) and (7.2) we show PSNR of the denoised

images, for Gaussian and salt-&-pepper noises, respectively. For both algorithms,

we show the results corresponding to the best parameter setting. For our approach,

we have to set the regularization parameter λ and for the mds approach, we have to

choose the number of components in kpca and the number of nearest neighbours.

The bandwidth parameter of the rbf kernel is set as the median of all the pairwise

Euclidean distances.

As future work regarding our pre-image work we have the following thoughts.

Computing the pre-image as a weighted average in Euclidean input space seems

to be a prevalent feature in pre-image literature. Our formulation readily allows

7.7. Concluding remarks 99

non-Euclidean distances in input space. We would like to leverage the advancement

in computing Fréchet mean in different non-Euclidean spaces and see the effectiveness

of our approach.

Surprisingly, many kernel pca applications involve the rbf kernel. In this setting,

the mds based approach [Kwok 2004] performs reasonably well. It has been observed

that this approach suffers in high-dimensional input spaces [Zheng 2010]. It would

be good idea to compare our approach with it in such a setting. For kpca to be

meaningful it is enough if the kernel is a universal kernel [Micchelli 2006] and we would

like to explore such kernels. Some possible kernels are those which consider the non-

differentiable histogram-of-gradient (hog) feature inside the rbf kernel [Huang 2011]

and kernels based on multiple kernel learning [Lin 2011,Shrivastava 2015].

Several manifold learning techniques could be formulated in the form of a kernel

pca problem [Mohri 2012, §12.3]. The kernel function for these formulations is

not in isotropic or dot-product form. There is no flexible pre-image algorithm that

will work for all of these manifold learning techniques. We would like to try our

approach with these manifold learning techniques and see how we perform against

specialized algorithms like [Cloninger 2017].

7.7 Concluding remarks

We have shown how the optimal transport inspired loss, tr
(
P⊤ Diag(µ)D

)
along

with archetypal representation of the output points could be used fruitfully in

unsupervised learning problems. We have shown that when the pairwise distances

are set as squared Euclidean distances, this loss penalizes the variance of the output

points. This is a general result that could be useful for other problems, also. We have

shown how several unsupervised learning algorithms could be all seen as performing

different sparse regularizations on the conditional probability matrix P . For the

problem of kernel pca and associated pre-image estimation, we have proposed a

novel low rank regularizer. Some of the advantages of our approach is that it has only

one parameter to tune and it is not tied to a particular kernel. From an optimization

algorithm point of view, we have shown a majorization-minimization scheme that

works with a smooth version of the Schatten p-norm. This smooth Schatten p-norm

based scheme is of independent interest and it could be used for other problems

involving low rank regularization.

Chapter 8

Conclusion

We have discussed our numerical experience with Newton methods for map inference

and how it compares with state-of-the-art first order methods. With an efficient

parallel implementation the Newton methods that we presented could prove to be very

useful. That is because these methods come with a convergence guarantee and other

properties regarding the optimum of the lp relaxation. We have indicated various

avenues for future research. We especially find research into tighter relaxations for

more accurate map inference to be very relevant.

Continuous optimization based formulations for unsupervised learning has shown

promising results. We have added further understanding and new models to that

literature. The result that optimal transport based loss leads to reduced variance in

the output points holds independent interest and could help other algorithms. The

formula for the gradient of the smooth Schatten p-norm holds independent interest,

also and could be used within other optimization schemes.

At this juncture, we would like to highlight the importance of numerical linear

algebra for various problems in machine learning and computer vision. Usually,

these problems involve numerical optimization. There is scope to exploit application

specific structure to design preconditioners and to improve other aspects of solving

linear systems. There are strong links between numerical linear algebra and graphical

models that could be further explored. For example, inference in Gaussian graphical

models. Also, eigenvalue problems present interesting avenues for research. We

could appreciate this topic while discussing about low-rank regularization in chapter

(7).

Chapter 9

Appendix

9.1 Convex Optimization

9.1.1 Halfspace

A hyperplane {x|a⊤x = b, a ∈ Rn, a 6= 0, b ∈ R} divides Rn into two halfspaces.

Given, a ∈ Rn, a 6= 0, the following set is one of the two closed halfspaces,

{x|a⊤x ≤ b} (9.1)

9.1.2 Dual norm

Let ||·|| be a norm. The associated dual norm, ||·||∗, is defined as,

||z||∗ = sup

{
z⊤x ‖ ||x|| ≤ 1

}
(9.2)

9.1.3 Fenchel conjugate

For a function f : Rn → R, its Fenchel conjugate is defines as,

f∗(y) = sup
x∈Rn

{
y⊤x− f(x)

}
(9.3)

9.1.4 α strong convexity

A function f : Rn → R is α-strongly convex with respect to the norm ||·||p if it

satisfies the following condition ∀x, y,

f(y) ≥ f(x) +∇f(x)⊤(y − x) +
α

2
||x− y||2 (9.4)

For twice differentiable functions, this is equivalent to,

∇2f(x) � αI ∀x (9.5)

9.1.5 L smoothness

A function f : Rn → R is L-smooth with respect to the norm ||·||p if it satisfies the

following condition ∀x, y,

f(y) ≤ f(x) +∇f(x)⊤(y − x) +
L

2
||x− y||2 (9.6)

104 Chapter 9. Appendix

9.1.6 Strict convexity

9.1.7 Prox function for the simplex

Given a set satisfying the simplex constraint,
{

w =
(
w1, ..., wn) ∈ Rn‖w ≥ 0,w⊤

✶ = 1

}
(9.7)

then, the function,

d(w) = logn+
n∑

i=1

wilogwi (9.8)

is a prox function of the set with respect to the l1 norm [Nesterov 2005].

9.1.8 M norm of a vector

Given a preconditioner M , algorithms like the Steihaug method measure distances

using the M norm,

||x||M =
√
x⊤Mx. (9.9)

This vector norm weighted by a matrix also goes by the name of scaled norm.

9.2 Numerically stable sum-product computation

When the damping parameter is increased to high values (low smoothness), the terms

present in equations (3.36) and (3.37) will all take zero value and the summations

in these equations will be of value zero, which is erroneous. This is because these

terms are in fact exponentials of terms corresponding to the nodes and cliques. So,

ψc(xc) and ψi(xi) are of the form exp(θc(xc)) and exp(θi(xi)), respectively, in a

suitably defined graphical model. This numerical issue is addressed by storing offsets

(Mbc(xn)) for each term of the message mb→c(xn). Hence, mb→c(xn) in equation

(3.36) is computed as follows,

mb→c(xn) =
∑

xb\n

exp
[
θb(xb) +

∑

i∈b\n

θi(xi) + log(ma→b(xb\n))−Mbc(xn)
]

(9.10)

where Mbc(xn) = max
xb\n

[
θb(xb) +

∑

i∈b\n

θi(xi) + log(ma→b(xb\n))
]

(9.11)

This ensures that at least one term in the summation is of value 1, hence, the

summation is assured to be non-zero. Later, the required marginals are computed

as pci(xi) = ψi(xi)
Z

∑
xn

[(∏
j∈n\i

ψj(xj)
)
mb→c(xn)

]
, where Z ensures that the marginals

sum to one. In this expression each summand is computed as
[∑
j∈n\i

θj(xj) +

log(mb→c(xn)) +Mbc(xn)
]
. This approach can be carefully extended to equation

(3.37), also. We will need to maintain two offsets, Mbc(xn) as before and also, M

corresponding to the second sum in equation (3.37).

9.3. Gradient of Variational Majorant 105

9.3 Gradient of Variational Majorant

We have for any A which is symmetric definite with eigenvectors ui, and eigenvalues

λi, and any H which is symmetric:

(A+H)1/2 −A1/2

=
∑

i,j

u⊤
i Huj

λ
1/2
i + λ

1/2
j

uiu
⊤
j +O(‖H‖2)

(9.12)

Thus for our matrix M , which is a rectangular matrix, we compute all the eigenvalues

σ2
i and the corresponding eigenvectors ui of M⊤M . Note, this includes the zero

eigen values, also. Hence, equation (9.12) could be written for ε2I + M⊤M as

follows,

(ε2I + (M + ∆)⊤(M + ∆))
1
2 − (ε2I +M⊤M)

1
2

=
∑

i,j

u⊤
i (M⊤∆ + ∆⊤M)uj

(ε2 + σ2
i)

1
2 + (ε2 + σ2

j)
1/2

uiu
⊤
j +O(‖∆‖2)

(9.13)

In order to obtain the gradient of tr[Bt(ε
2I +M⊤M)1/2], we have,

tr[Bt(ε
2I + (M + ∆)⊤(M + ∆))1/2]− tr[Bt(ε

2I +M⊤M)1/2]

=
∑

i,j

u⊤
i (M⊤∆ + ∆⊤M)uj

(ε2 + σ2
i)

1/2 + (ε2 + σ2
j)

1/2
u⊤
j Btui +O(‖∆‖2)

= tr ∆⊤
(∑

i,j

u⊤
j Btui

(ε2 + σ2
i)

1/2 + (ε2 + σ2
j)

1/2

[
Muju

⊤
i +Muiu

⊤
j

])
+O(‖∆‖2)

= 2 tr ∆⊤
(∑

i,j

u⊤
j Btui

(ε2 + σ2
i)

1/2 + (ε2 + σ2
j)

1/2
Muju

⊤
i

)
+O(‖∆‖2)

(9.14)

Taking the limit ∆→ 0, the gradient of tr[Bt(ε
2I +M⊤M)1/2] at M is

2
∑

i,j

u⊤
j Bui

(ε2 + σ2
i)

1/2 + (ε2 + σ2
j)

1/2
Muju

⊤
i

= 2MUB̄U⊤

(9.15)

The last expression is obtained by grouping terms and by evaluating the sums as

matrix products. Here U is the matrix whose columns are the eigenvectors ui,

B̄i,j =
B̃i,j

(ε2+σ2
i)1/2+(ε2+σ2

j)1/2 and B̃ = U⊤BU .

Bibliography

[Abrahamsen 2011] T. J. Abrahamsen and L. K. Hansen. Regularized pre-image

estimation for kernel PCA de-noising. Journal of Signal Processing Systems,

vol. 65, no. 3, pages 403–412, 2011. (Cited on page 90.)

[Absil 2009] P-A Absil, R. Mahony and R. Sepulchre. Optimization algorithms on

matrix manifolds. Princeton University Press, 2009. (Cited on page 79.)

[Agarwal] S. Agarwal, K. Mierle and Others. Ceres Solver. http://ceres-solver.

org. (Cited on page 65.)

[Ajanthan 2017] T. Ajanthan, A. Desmaison, R. Bunel, M. Salzmann, P. H. S. Torr

and M. P. Kumar. Efficient linear programming for dense CRFs. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages

2934–2942, 2017. (Cited on page 71.)

[Alam 2014] M. A. Alam and K. Fukumizu. Hyperparameter selection in kernel

principal component analysis. Journal of Computer Science, vol. 10, pages

1139–1150, 2014. (Cited on page 92.)

[Amari 2007] S-i. Amari and H. Nagaoka. Methods of information geometry, volume

191. American Mathematical Soc., 2007. (Cited on page 79.)

[Arias 2007] P. Arias, G. Randall and G. Sapiro. Connecting the out-of-sample and

pre-image problems in kernel methods. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1–8, 2007. (Cited on page 89.)

[Arif 2010] O. Arif, P. Vela and W. Daley. Pre-image problem in manifold learning

and dimensional reduction methods. In International Conference on Ma-

chine Learning and Applications (ICMLA), pages 921–924, 2010. (Cited on

page 90.)

[Bakir 2004] G. H. Bakir, J. Weston and B. Schölkopf. Learning to find pre-images.

In Advances in Neural Information Processing Systems (NIPS), 2004. (Cited

on pages 1, 88, 89, 90, 91, 96 and 97.)

[Barrett 1994] R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-

garra, V. Eijkhout, R. Pozo, C. Romine and H. Van der Vorst. Templates

for the solution of linear systems: building blocks for iterative methods,

volume 43. SIAM, 1994. (Cited on page 42.)

[Batra 2011] D. Batra, S. Nowozin and P. Kohli. Tighter relaxations for MAP-

MRF inference: A local primal-dual gap based separation algorithm. In

International Conference on Artificial Intelligence and Statistics (AISTATS),

pages 146–154, 2011. (Cited on page 74.)

http://ceres-solver.org
http://ceres-solver.org

108 Bibliography

[Beck 2009] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems. SIAM journal on imaging sciences, vol. 2,

no. 1, pages 183–202, 2009. (Cited on page 24.)

[Beck 2013] A. Beck and L. Tetruashvili. On the convergence of block coordinate

descent type methods. SIAM journal on Optimization, vol. 23, no. 4, pages

2037–2060, 2013. (Cited on page 27.)

[Bekkerman 2011] R. Bekkerman, M. Bilenko and J. Langford. Scaling up machine

learning: Parallel and distributed approaches. Cambridge University Press,

2011. (Cited on page 75.)

[Belkin 2006] M. Belkin, P. Niyogi and V. Sindhwani. Manifold regularization:

A geometric framework for learning from labeled and unlabeled examples.

Journal of machine learning research, vol. 7, no. Nov, pages 2399–2434, 2006.

(Cited on page 79.)

[Bern 2006] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen and S. Toledo.

Support-graph preconditioners. SIAM Journal on Matrix Analysis and Appli-

cations, vol. 27, no. 4, pages 930–951, 2006. (Cited on page 58.)

[Bertsekas 1989] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and distributed

computation: numerical methods, volume 23. Prentice hall Englewood Cliffs,

NJ, 1989. (Cited on pages 75 and 77.)

[Bertsekas 1999] D. P. Bertsekas. Nonlinear programming. Athena scientific Bel-

mont, 1999. (Cited on pages 26 and 41.)

[Bishop 2006] C. M. Bishop. Pattern recognition and machine learning. Springer,

2006. (Cited on page 7.)

[Blake 2011] A. Blake, P. Kohli and C. Rother. Markov random fields for vision

and image processing. Mit Press, 2011. (Cited on page 5.)

[Boman 2003] E. G. Boman and B. Hendrickson. Support theory for preconditioning.

SIAM Journal on Matrix Analysis and Applications, vol. 25, no. 3, pages

694–717, 2003. (Cited on page 58.)

[Bonneel 2015] N. Bonneel, J. Rabin, G. Peyré and H. Pfister. Sliced and radon

wasserstein barycenters of measures. Journal of Mathematical Imaging and

Vision, vol. 51, no. 1, pages 22–45, 2015. (Cited on page 82.)

[Boyd 2004] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge

university press, 2004. (Cited on pages 21, 23, 31, 40 and 59.)

[Boyd 2011] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein. Distributed

optimization and statistical learning via the alternating direction method of

multipliers. Foundations and Trends® in Machine learning, vol. 3, no. 1,

pages 1–122, 2011. (Cited on pages 28, 29 and 75.)

Bibliography 109

[Byrd 1994] R. H. Byrd, J. Nocedal and R. B. Schnabel. Representations of quasi-

Newton matrices and their use in limited memory methods. Mathematical

Programming, vol. 63, no. 1-3, pages 129–156, 1994. (Cited on pages 55

and 65.)

[Byrd 2016] R. H. Byrd, S. L. Hansen, J. Nocedal and Y. Singer. A stochastic quasi-

Newton method for large-scale optimization. SIAM Journal on Optimization,

vol. 26, no. 2, pages 1008–1031, 2016. (Cited on page 71.)

[Canas 2012] G. Canas and L. Rosasco. Learning probability measures with respect

to optimal transport metrics. In Advances in Neural Information Processing

Systems (NIPS), pages 2492–2500, 2012. (Cited on page 79.)

[Candès 2011] E. J. Candès, X. Li, Y. Ma and J. Wright. Robust principal component

analysis? Journal of the ACM (JACM), vol. 58, no. 3, page 11, 2011. (Cited

on page 83.)

[Carli 2013] F. P. Carli, L. Ning and T. T. Georgiou. Convex Clustering via Optimal

Mass Transport. arXiv preprint arXiv:1307.5459, 2013. (Cited on page 85.)

[Cevher 2014] V. Cevher, S. Becker and M. Schmidt. Convex optimization for big

data: Scalable, randomized, and parallel algorithms for big data analytics.

IEEE Signal Processing Magazine, vol. 31, no. 5, pages 32–43, 2014. (Cited

on page 75.)

[Chambolle 2011] A. Chambolle and T. Pock. A first-order primal-dual algorithm

for convex problems with applications to imaging. Journal of mathematical

imaging and vision, vol. 40, no. 1, pages 120–145, 2011. (Cited on page 72.)

[Chandrasekaran 2008] V. Chandrasekaran, J. K. Johnson and A. S. Willsky. Esti-

mation in Gaussian graphical models using tractable subgraphs: A walk-sum

analysis. IEEE Transactions on Signal Processing, vol. 56, no. 5, pages

1916–1930, 2008. (Cited on page 73.)

[Chen 2006] L. Chen, M. J. Wainwright, M. Cetin and A. S. Willsky. Data associ-

ation based on optimization in graphical models with application to sensor

networks. Mathematical and computer modelling, vol. 43, no. 9-10, pages

1114–1135, 2006. (Cited on page 5.)

[Chen 2014a] Q. Chen and V. Koltun. Fast MRF optimization with application to

depth reconstruction. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3914–3921, 2014. (Cited on page 75.)

[Chen 2014b] Y. Chen, J. Mairal and Z. Harchaoui. Fast and robust archetypal

analysis for representation learning. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2014. (Cited on page 83.)

110 Bibliography

[Choi 2012] J. Choi and R. A. Rutenbar. Hardware implementation of MRF map

inference on an FPGA platform. In International Conference on Field

Programmable Logic and Applications (FPL), pages 209–216. IEEE, 2012.

(Cited on page 74.)

[Cloninger 2017] A. Cloninger, W. Czaja and T. Doster. The pre-image problem

for Laplacian Eigenmaps utilizing L 1 regularization with applications to

data fusion. Inverse Problems, vol. 33, no. 7, page 074006, 2017. (Cited on

page 99.)

[Condat 2016] L. Condat. Fast projection onto the simplex and the l1 ball. Math-

ematical Programming, vol. 158, no. 1-2, pages 575–585, 2016. (Cited on

pages 80 and 94.)

[Conn 2000] A. R. Conn, N. I. M. Gould and P. L. Toint. Trust region methods.

SIAM, 2000. (Cited on page 51.)

[Coughlan 2010] J. M. Coughlan and H. Shen. An embarrassingly simple speed-up

of belief propagation with robust potentials. arXiv preprint arXiv:1010.0012,

2010. (Cited on page 37.)

[cplex] cplex. V12.8.0. International Business Machines Corporation. (Cited on

page 15.)

[csd] csd. Complex Step Differentiation. http://blogs.mathworks.com/cleve/

2013/10/14/complex-step-differentiation/. Accessed: 2016-10-30.

(Cited on page 58.)

[Cutler 1994] A. Cutler and L. Breiman. Archetypal analysis. Technometrics, vol. 36,

no. 4, pages 338–347, 1994. (Cited on page 81.)

[Cuturi 2014] M. Cuturi and A. Doucet. Fast computation of Wasserstein barycen-

ters. In International Conference on Machine Learning (ICML), pages 685–693,

2014. (Cited on page 82.)

[Dauphin 2015] Y. Dauphin, H. de Vries and Y. Bengio. Equilibrated adaptive

learning rates for non-convex optimization. In Advances in Neural Information

Processing Systems (NIPS), pages 1504–1512, 2015. (Cited on page 72.)

[Davis 2006] T. A. Davis. Direct methods for sparse linear systems, volume 2. Siam,

2006. (Cited on page 41.)

[Davis 2016] T. A. Davis, S. Rajamanickam and W. M. Sid-Lakhdar. A survey

of direct methods for sparse linear systems. Acta Numerica, vol. 25, pages

383–566, 2016. (Cited on page 41.)

[Delong 2008] Andrew Delong and Yuri Boykov. A scalable graph-cut algorithm for

ND grids. In IEEE Conference on Computer Vision and Pattern Recognition,

pages 1–8. IEEE, 2008. (Cited on page 74.)

http://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/
http://blogs.mathworks.com/cleve/2013/10/14/complex-step-differentiation/

Bibliography 111

[Dembo 1982] R. S. Dembo, S. C. Eisenstat and T. Steihaug. Inexact newton

methods. SIAM Journal on Numerical analysis, vol. 19, no. 2, pages 400–408,

1982. (Cited on page 47.)

[Demmel 1997] J. W. Demmel. Applied numerical linear algebra. SIAM, 1997.

(Cited on pages 43 and 56.)

[Demmel 2014] J. Demmel and K. Yelick. Communication avoiding and other

innovative algorithms. The Berkeley Par Lab: Progress in the Parallel

Computing Landscape, pages 243–250, 2014. (Cited on page 75.)

[Devarakonda 2016] A. Devarakonda, K. Fountoulakis, J. Demmel and M. W. Ma-

honey. Avoiding communication in primal and dual block coordinate descent

methods. arXiv preprint arXiv:1612.04003, 2016. (Cited on page 76.)

[Devarakonda 2017] A. Devarakonda, K. Fountoulakis, J. Demmel and M. W. Ma-

honey. Avoiding Synchronization in First-Order Methods for Sparse Convex

Optimization. arXiv preprint arXiv:1712.06047, 2017. (Cited on page 76.)

[Domke 2011] J. Domke. Parameter learning with truncated message-passing. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 2937–2943, 2011. (Cited on page 65.)

[Duchenne 2011] O. Duchenne, F. Bach, I-S. Kweon and J. Ponce. A tensor-based

algorithm for high-order graph matching. IEEE transactions on pattern

analysis and machine intelligence, vol. 33, no. 12, pages 2383–2395, 2011.

(Cited on page 66.)

[Duchi 2007] J. C. Duchi, D. Tarlow, G. Elidan and D. Koller. Using combinatorial

optimization within max-product belief propagation. In Advances in Neural

Information Processing Systems (NIPS), pages 369–376, 2007. (Cited on

page 36.)

[Eckstein 1989] J. Eckstein. Splitting methods for monotone operators with ap-

plications to parallel optimization. PhD thesis, Massachusetts Institute of

Technology, 1989. (Cited on page 28.)

[Eisenstat 1996] S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in

an inexact Newton method. SIAM Journal on Scientific Computing, vol. 17,

no. 1, pages 16–32, 1996. (Cited on page 48.)

[Elhamifar 2012] E. Elhamifar, G. Sapiro and R. Vidal. Finding exemplars from

pairwise dissimilarities via simultaneous sparse recovery. In Advances in

Neural Information Processing Systems, pages 19–27, 2012. (Cited on pages 79

and 85.)

[Erdogdu 2015] M. A. Erdogdu and A. Montanari. Convergence rates of sub-sampled

newton methods. In Neural Information Processing Systems, pages 3052–3060,

2015. (Cited on page 71.)

112 Bibliography

[Fan 2018] J. Fan and T. WS. Chow. Exactly Robust Kernel Principal Component

Analysis. arXiv preprint arXiv:1802.10558, 2018. (Cited on page 92.)

[Felzenszwalb 2006] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient belief

propagation for early vision. International journal of computer vision, vol. 70,

no. 1, pages 41–54, 2006. (Cited on pages 74 and 75.)

[Fix 2014] A. Fix, C. Wang and R. Zabih. A Primal-Dual Algorithm for Higher-

Order Multilabel Markov Random Fields. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1138–1145, 2014. (Cited on

page 5.)

[Fong 2011] C. L. Fong. Minimum-Residual Methods for Sparse Least-Squares Using

Golub-Kahan Bidiagonalization. PhD thesis, Citeseer, 2011. (Cited on

page 48.)

[Fougner 2018] C. Fougner and S. Boyd. Parameter selection and preconditioning

for a graph form solver. In Emerging Applications of Control and Systems

Theory, pages 41–61. Springer, 2018. (Cited on page 72.)

[Fountoulakis 2015] K. Fountoulakis and J. Gondzio. Performance of First-

and Second-Order Methods for Big Data Optimization. arXiv preprint

arXiv:1503.03520, 2015. (Cited on page 3.)

[Frey 1998] B. J. Frey. Graphical models for machine learning and digital communi-

cation. MIT press, 1998. (Cited on page 5.)

[Fu 2013] Q. Fu, H. Wang and A. Banerjee. Bethe-ADMM for Tree Decomposition

based Parallel MAP Inference. In Uncertainty in Artificial Intelligence (UAI),

page 222, 2013. (Cited on pages 29 and 74.)

[Garg 2016] R. Garg, A. Eriksson and I. Reid. Non-linear dimensionality regularizer

for solving inverse problems. arXiv preprint arXiv:1603.05015, 2016. (Cited

on page 92.)

[Ghysels 2013] P. Ghysels, T. J. Ashby, K. Meerbergen and W. Vanroose. Hiding

global communication latency in the GMRES algorithm on massively parallel

machines. SIAM Journal on Scientific Computing, vol. 35, no. 1, pages

C48–C71, 2013. (Cited on page 75.)

[Giguere 2015] S. Giguere, A. Rolland, F. Laviolette and M. Marchand. Algorithms

for the hard pre-image problem of string kernels and the general problem of

string prediction. In International Conference on Machine Learning (ICML),

2015. (Cited on page 90.)

[Gill 1981] P. E. Gill, W. Murray and M. H. Wright. Practical optimization. 1981.

(Cited on pages 64 and 68.)

Bibliography 113

[Giselsson 2014] P. Giselsson and S. Boyd. Diagonal scaling in Douglas-Rachford

splitting and ADMM. In IEEE Conference on Decision and Control (CDC),

pages 5033–5039, 2014. (Cited on page 72.)

[Globerson 2008] A. Globerson and T. S. Jaakkola. Fixing max-product: Convergent

message passing algorithms for MAP LP-relaxations. In Advances in neural

information processing systems (NIPS), pages 553–560, 2008. (Cited on

page 25.)

[Golub 2012] G. H. Golub and C. F. Van Loan. Matrix computations, volume 3.

JHU Press, 2012. (Cited on page 55.)

[Gonzalez 2009] J. Gonzalez, Y. Low and C. Guestrin. Residual splash for optimally

parallelizing belief propagation. In International Conference on Artificial

Intelligence and Statistics (AISTATS), pages 177–184, 2009. (Cited on

page 74.)

[Gu 2017] S. Gu, Q. Xie, D. Meng, W. Zuo, X. Feng and L. Zhang. Weighted nuclear

norm minimization and its applications to low level vision. International

Journal of Computer Vision, vol. 121, no. 2, pages 183–208, 2017. (Cited on

page 94.)

[Hazan 2010] T. Hazan and A. Shashua. Norm-product belief propagation: Primal-

dual message-passing for approximate inference. IEEE Transactions on

Information Theory, vol. 56, no. 12, pages 6294–6316, 2010. (Cited on

page 25.)

[Henson 2002] V. E. Henson and U. M. Yang. BoomerAMG: a parallel algebraic

multigrid solver and preconditioner. Applied Numerical Mathematics, vol. 41,

no. 1, pages 155–177, 2002. (Cited on page 57.)

[Hestenes 1952] M. R. Hestenes and E. Stiefel. Methods of Conjugate Gradients

for Solving Linear Systems. Journal of Research of the National Bureau of

Standards, vol. 49, no. 6, 1952. (Cited on page 44.)

[Higham 1992] N. J. Higham. Estimating the matrixp-norm. Numerische Mathe-

matik, vol. 62, no. 1, pages 539–555, 1992. (Cited on page 34.)

[Hocking 2011] T. D. Hocking, A. Joulin, F. Bach and J.-P. Vert. Clusterpath

an algorithm for clustering using convex fusion penalties. In International

Conference on Machine Learning (ICML), 2011. (Cited on pages 83, 86

and 96.)

[Honeine 2011] P. Honeine and C. Richard. A closed-form solution for the pre-image

problem in kernel-based machines. Journal of Signal Processing Systems,

vol. 65, no. 3, pages 289–299, 2011. (Cited on pages 90 and 91.)

[hou] House dataset. http://vasc.ri.cmu.edu//idb/html/motion/house/

index.html. Accessed: 2016-10-30. (Cited on page 66.)

http://vasc.ri.cmu.edu//idb/html/motion/house/index.html
http://vasc.ri.cmu.edu//idb/html/motion/house/index.html

114 Bibliography

[Hsieh 2015] C-J. Hsieh, H-F. Yu and I. S. Dhillon. PASSCoDe: Parallel ASyn-

chronous Stochastic dual Co-ordinate Descent. In International Conference

on Machine Learning (ICML), pages 2370–2379, 2015. (Cited on page 75.)

[Huang 2011] D. Huang, Y. Tian and F. De la Torre. Local isomorphism to solve

the pre-image problem in kernel methods. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2761–2768, 2011. (Cited on

page 99.)

[Huang 2014] Q. Huang, Y. Chen and L. Guibas. Scalable semidefinite relaxation

for maximum a posterior estimation. In International Conference on Machine

Learning (ICML), pages 64–72, 2014. (Cited on page 74.)

[Hurkat 2015] S. Hurkat, J. Choi, E. Nurvitadhi, J. F. Martínez and R. A. Ruten-

bar. Fast hierarchical implementation of sequential tree-reweighted belief

propagation for probabilistic inference. In International Conference on Field

Programmable Logic and Applications (FPL), pages 1–8. IEEE, 2015. (Cited

on page 74.)

[Ishikawa 2011] H. Ishikawa. Transformation of general binary MRF minimization

to the first-order case. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 6, pages 1234–1249, 2011. (Cited on page 5.)

[Jin 2013] C. Jin, Q. Fu, H. Wang, A. Agrawal, W. Hendrix, W-k. Liao, M. M. A.

Patwary, A. Banerjee and A. Choudhary. Solving combinatorial optimization

problems using relaxed linear programming: a high performance computing

perspective. In Proceedings of the 2nd International Workshop on Big

Data, Streams and Heterogeneous Source Mining: Algorithms, Systems,

Programming Models and Applications, pages 39–46. ACM, 2013. (Cited on

page 74.)

[Jojic 2010] V. Jojic, S. Gould and D. Koller. Accelerated dual decomposition for

MAP inference. In International Conference on Machine Learning (ICML),

pages 503–510, 2010. (Cited on pages 22 and 24.)

[Jones 1995] M. T. Jones and P. E. Plassmann. An improved incomplete Cholesky

factorization. ACM Transactions on Mathematical Software (TOMS), vol. 21,

no. 1, pages 5–17, 1995. (Cited on page 56.)

[Jordan 2015] M. I. Jordan and T. M. Mitchell. Machine learning: Trends, perspec-

tives, and prospects. Science, vol. 349, no. 6245, pages 255–260, 2015. (Cited

on page 75.)

[Kallas 2013] M. Kallas, P. Honeine, C. Richard, C. Francis and H Amoud. Non-

negativity constraints on the pre-image for pattern recognition with kernel

machines. Pattern Recognition, vol. 46, no. 11, pages 3066–3080, 2013. (Cited

on page 90.)

Bibliography 115

[Kappes 2012] J. H. Kappes, B. Savchynskyy and C. Schnörr. A bundle approach

to efficient MAP-inference by Lagrangian relaxation. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1688–1695, 2012.

(Cited on page 25.)

[Kappes 2015] J. H. Kappes, B. Andres, F. A. Hamprecht, C. Schnörr, S. Nowozin,

D. Batra, S. Kim, B. X. Kausler, T. Kröger, J. Lellmann, N. Komodakis,

B. Savchynskyy and C. Rother. A Comparative Study of Modern Inference

Techniques for Structured Discrete Energy Minimization Problems. Inter-

national Journal of Computer Vision, vol. 115, no. 2, pages 155–184, 2015.

(Cited on page 8.)

[Knobelreiter 2017] P. Knobelreiter, C. Reinbacher, A. Shekhovtsov and T. Pock.

End-to-End Training of Hybrid CNN-CRF Models for Stereo. In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages

1456–1465, 2017. (Cited on page 74.)

[Knoll 2004] D. A. Knoll and D. E. Keyes. Jacobian-free Newton–Krylov methods:

a survey of approaches and applications. Journal of Computational Physics,

vol. 193, no. 2, pages 357–397, 2004. (Cited on page 58.)

[Koanantakool 2018] P. Koanantakool, A. Ali, A. Azad, A. Buluc, D. Morozov,

L. Oliker, K. Yelick and S-Y. Oh. Communication-Avoiding Optimization

Methods for Distributed Massive-Scale Sparse Inverse Covariance Estima-

tion. In International Conference on Artificial Intelligence and Statistics

(AISTATS), pages 1376–1386, 2018. (Cited on page 76.)

[Kohli 2009] P. Kohli, M. P. Kumar and P. H. S. Torr. P3 & Beyond: Move

Making Algorithms for Solving Higher Order Functions. IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 31, no. 9, pages 1645–1656,

2009. (Cited on page 5.)

[Koller 2007] D. Koller, N. Friedman, L. Getoor and B. Taskar. Graphical models in

a nutshell. Introduction to statistical relational learning, pages 13–55, 2007.

(Cited on page 5.)

[Koller 2009] D. Koller and N. Friedman. Probabilistic graphical models: principles

and techniques. MIT press, 2009. (Cited on pages 5, 7 and 9.)

[Kolmogorov 2006] V. Kolmogorov. Convergent tree-reweighted message passing for

energy minimization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 28, no. 10, pages 1568–1583, 2006. (Cited on pages 25, 33

and 74.)

[Kolmogorov 2015] V. Kolmogorov. A new look at reweighted message passing. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 37,

no. 5, pages 919–930, 2015. (Cited on pages 5 and 27.)

116 Bibliography

[Kolouri 2017] S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev and G. K. Rohde.

Optimal Mass Transport: Signal processing and machine-learning applications.

IEEE Signal Processing Magazine, vol. 34, no. 4, pages 43–59, 2017. (Cited

on pages 4 and 79.)

[Komodakis 2008] N. Komodakis and N. Paragios. Beyond loose LP-relaxations:

Optimizing MRFs by repairing cycles. In European conference on computer

vision, pages 806–820. Springer, 2008. (Cited on pages 73 and 74.)

[Komodakis 2009] N. Komodakis and N. Paragios. Beyond pairwise energies: Effi-

cient optimization for higher-order MRFs. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2985–2992, 2009. (Cited on

pages 5, 8, 34, 36 and 66.)

[Komodakis 2011] N. Komodakis, N. Paragios and G. Tziritas. MRF energy mini-

mization and beyond via dual decomposition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 33, no. 3, pages 531–552, 2011. (Cited

on pages 21, 22, 31, 33, 73 and 74.)

[Komodakis 2015] N. Komodakis and J-C. Pesquet. Playing with duality: An

overview of recent primal-dual approaches for solving large-scale optimization

problems. IEEE Signal Processing Magazine, vol. 32, no. 6, pages 31–54,

2015. (Cited on page 23.)

[Komodakis 2016] N. Komodakis, M. P. Kumar and N. Paragios. (hyper)-graphs

inference through convex relaxations and move making algorithms: Contri-

butions and applications in artificial vision. Foundations and Trends® in

Computer Graphics and Vision, vol. 10, no. 1, pages 1–102, 2016. (Cited on

page 8.)

[Koo 2010] T. Koo, A. M. Rush, M. Collins, T. Jaakkola and D. Sontag. Dual

decomposition for parsing with non-projective head automata. In Conference

on Empirical Methods in Natural Language Processing (EMNLP), pages

1288–1298, 2010. (Cited on page 77.)

[Koutis 2011] I. Koutis, G. L. Miller and D. Tolliver. Combinatorial preconditioners

and multilevel solvers for problems in computer vision and image processing.

Computer Vision and Image Understanding, vol. 115, no. 12, pages 1638–1646,

2011. (Cited on pages 58 and 72.)

[Krishnan 2015] R. G. Krishnan, S. Lacoste-Julien and D. Sontag. Barrier Frank-

Wolfe for marginal inference. In Advances in Neural Information Processing

Systems (NIPS), pages 532–540, 2015. (Cited on page 12.)

[Kschischang 2001] F. R. Kschischang, B. J. Frey and H-A. Loeliger. Factor graphs

and the sum-product algorithm. IEEE Transactions on information theory,

vol. 47, no. 2, pages 498–519, 2001. (Cited on pages 8, 9 and 73.)

Bibliography 117

[Kumar 2009] M. P. Kumar, V. Kolmogorov and P. H. S. Torr. An analysis of

convex relaxations for MAP estimation of discrete MRFs. Journal of Machine

Learning Research, vol. 10, no. Jan, pages 71–106, 2009. (Cited on page 12.)

[Kwok 2004] J. T-Y. Kwok and I. W-H. Tsang. The pre-image problem in kernel

methods. IEEE transactions on neural networks, vol. 15, no. 6, pages 1517–

1525, 2004. (Cited on pages 1, 88, 89, 90, 91, 96, 97, 98 and 99.)

[Lafferty 2006] J. D. Lafferty and P. K. Ravikumar. Preconditioner approxima-

tions for probabilistic graphical models. In Advances in Neural Information

Processing Systems (NIPS), pages 1113–1120, 2006. (Cited on page 73.)

[Lange 2000] K. Lange, D. R. Hunter and I. Yang. Optimization transfer using sur-

rogate objective functions. Journal of computational and graphical statistics,

vol. 9, no. 1, pages 1–20, 2000. (Cited on pages 74 and 93.)

[Lee 2012] J. Lee, Y. Sun and M. Saunders. Proximal Newton-type methods for

convex optimization. In Advances in Neural Information Processing Systems

(NIPS), pages 836–844, 2012. (Cited on page 3.)

[Li 2014] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita and B-Y. Su. Scaling Distributed Machine Learning

with the Parameter Server. In OSDI, volume 14, pages 583–598, 2014. (Cited

on page 75.)

[Li 2016] M. Li, A. Shekhovtsov and D. Huber. Complexity of discrete energy

minimization problems. In European Conference on Computer Vision (ECCV),

pages 834–852. Springer, 2016. (Cited on page 7.)

[Lin 1999] C-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited

memory. SIAM Journal on Scientific Computing, vol. 21, no. 1, pages 24–45,

1999. (Cited on page 56.)

[Lin 2011] Y-Y. Lin, T-L. Liu and C-S. Fuh. Multiple kernel learning for dimen-

sionality reduction. IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 33, no. 6, pages 1147–1160, 2011. (Cited on page 99.)

[Liu 2010] Jiangyu Liu and Jian Sun. Parallel graph-cuts by adaptive bottom-up

merging. In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pages 2181–2188, 2010. (Cited on page 74.)

[Liu 2015] J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent:

Parallelism and convergence properties. SIAM Journal on Optimization,

vol. 25, no. 1, pages 351–376, 2015. (Cited on page 75.)

[Loeliger 2004] H-A. Loeliger. An introduction to factor graphs. IEEE Signal

Processing Magazine, vol. 21, no. 1, pages 28–41, 2004. (Cited on pages 8

and 9.)

118 Bibliography

[Lu 2015] Z. Lu and L. Xiao. On the complexity analysis of randomized block-

coordinate descent methods. Mathematical Programming, vol. 152, no. 1-2,

pages 615–642, 2015. (Cited on page 27.)

[Luenberger 1997] D. G. Luenberger. Optimization by vector space methods. John

Wiley & Sons, 1997. (Cited on page 23.)

[Ma 2014] J. Ma, S. Wang, Z. Wang and J. Xu. MRFalign: protein homology

detection through alignment of Markov random fields. PLoS computational

biology, vol. 10, no. 3, page e1003500, 2014. (Cited on page 5.)

[Mairal 2013] J. Mairal. Optimization with first-order surrogate functions. In

International Conference on Machine Learning (ICML), 2013. (Cited on

page 93.)

[Mairal 2014] J. Mairal, F. Bach and J. Ponce. Sparse modeling for image and vision

processing. Foundations and Trends® in Computer Graphics and Vision,

vol. 8, no. 2-3, pages 85–283, 2014. (Cited on page 4.)

[Malioutov 2008] Dmitry M Malioutov, Jason K Johnson, Myung Jin Choi and

Alan S Willsky. Low-rank variance approximation in GMRF models: Single

and multiscale approaches. IEEE Transactions on Signal Processing, vol. 56,

no. 10, pages 4621–4634, 2008. (Cited on page 73.)

[Martens 2010] J. Martens. Deep learning via Hessian-free optimization. In Interna-

tional Conference on Machine Learning (ICML), pages 735–742, 2010. (Cited

on pages 3, 48, 58 and 63.)

[Martens 2012] J. Martens and I. Sutskever. Training deep and recurrent networks

with hessian-free optimization. In Neural networks: Tricks of the trade, pages

479–535. Springer, 2012. (Cited on page 51.)

[Martins 2015] A. F. T. Martins, M. A. T. Figueiredo, P. M. Q. Aguiar, N. A. Smith

and E. P. Xing. Ad3: Alternating directions dual decomposition for map

inference in graphical models. Journal of Machine Learning Research, vol. 16,

pages 495–545, 2015. (Cited on pages 29, 30, 33, 72 and 74.)

[Meltzer 2005] T. Meltzer, C. Yanover and Y. Weiss. Globally optimal solutions

for energy minimization in stereo vision using reweighted belief propagation.

In IEEE International Conference on Computer Vision (ICCV), volume 1,

pages 428–435, 2005. (Cited on page 33.)

[Meshi 2011] O. Meshi and A. Globerson. An alternating direction method for dual

MAP LP relaxation. In Machine Learning and Knowledge Discovery in

Databases, pages 470–483. Springer, 2011. (Cited on pages 29 and 74.)

Bibliography 119

[Meshi 2012] O. Meshi, A. Globerson and T. S. Jaakkola. Convergence rate analysis

of MAP coordinate minimization algorithms. In Advances in Neural Informa-

tion Processing Systems (NIPS), pages 3014–3022, 2012. (Cited on pages 25

and 27.)

[Meshi 2014] O. Meshi, T. Jaakkola and A. Globerson. Smoothed Coordinate Descent

for MAP Inference. Advanced Structured Prediction, pages 103–131, 2014.

(Cited on pages 23, 27, 31, 34 and 64.)

[Meshi 2015] O. Meshi, M. Mahdavi and A. Schwing. Smooth and strong: Map

inference with linear convergence. In Advances in Neural Information Pro-

cessing Systems (NIPS), pages 298–306, 2015. (Cited on pages 22, 34, 71

and 74.)

[Meshi 2017] O. Meshi and A. Schwing. Asynchronous Parallel Coordinate Mini-

mization for MAP Inference. In Advances in Neural Information Processing

Systems (NIPS), pages 5738–5748, 2017. (Cited on pages 25, 67, 72, 75, 76

and 77.)

[Mezuman 2013] E. Mezuman, D. Tarlow, A. Globerson and Y. Weiss. Tighter

linear program relaxations for high order graphical models. In Uncertainty in

Artificial Intelligence (UAI), pages 421–430, 2013. (Cited on page 74.)

[Micchelli 2006] C. A. Micchelli, Y. Xu and H. Zhang. Universal kernels. Journal of

Machine Learning Research, vol. 7, no. Dec, pages 2651–2667, 2006. (Cited

on page 99.)

[Mika 1999] S. Mika, B. Schölkopf, A. J. Smola, K.-R. Müller, M. Scholz and

G. Rätsch. Kernel PCA and de-noising in feature spaces. In Advances in

Neural Information Processing Systems (NIPS), 1999. (Cited on pages 1, 88,

89, 90, 96 and 97.)

[Miksik 2014] O. Miksik, V. Vineet, P. Pérez, P. H. S. Torr and F. C. Sévigné.

Distributed non-convex admm-inference in large-scale random fields. In

British Machine Vision Conference (BMVC), 2014. (Cited on pages 29, 34

and 74.)

[Mohri 2012] M. Mohri, A. Rostamizadeh and A. Talwalkar. Foundations of machine

learning. MIT press, 2012. (Cited on page 99.)

[Möllenhoff 2018] T. Möllenhoff, Z. Ye, T. Wu and D. Cremers. Combinatorial

Preconditioners for Proximal Algorithms on Graphs. In International Confer-

ence on Artificial Intelligence and Statistics (AISTATS), pages 38–47, 2018.

(Cited on page 72.)

[Morales 2000] J. L. Morales and J. Nocedal. Automatic preconditioning by limited

memory quasi-Newton updating. SIAM Journal on Optimization, vol. 10,

no. 4, pages 1079–1096, 2000. (Cited on page 57.)

120 Bibliography

[Morales 2002] J. L. Morales and J. Nocedal. Enriched methods for large-scale

unconstrained optimization. Computational Optimization and Applications,

vol. 21, no. 2, pages 143–154, 2002. (Cited on page 48.)

[Moré 1983] J. J. Moré. Recent developments in algorithms and software for trust

region methods. In Mathematical programming The state of the art, pages

258–287. Springer, 1983. (Cited on page 53.)

[mosek] mosek. V8.1.0.24. MOSEK ApS. (Cited on page 15.)

[MS&E318] MS&E318. Notes by Prof. M. Saunders. http://stanford.edu/

class/msande318/notes/notes11-BCL.pdf. Accessed: 2017-08-10. (Cited

on page 96.)

[Mutnỳ 2017] M. Mutnỳ and P. Richtárik. Parallel Stochastic Newton Method. arXiv
preprint arXiv:1705.02005, 2017. (Cited on page 71.)

[Nash 2001] S. G. Nash. A survey of truncated-Newton methods. In Numerical
Analysis: Historical Developments in the 20th Century, pages 265–279.
Elsevier, 2001. (Cited on page 47.)

[Nesterov 2005] Y. Nesterov. Smooth minimization of non-smooth functions. Math-
ematical programming, vol. 103, no. 1, pages 127–152, 2005. (Cited on
pages 22, 33, 34 and 104.)

[Nguyen 2009] M. H. Nguyen and F. De la Torre. Robust kernel principal component

analysis. In Advances in Neural Information Processing Systems (NIPS),
2009. (Cited on pages 89, 90, 91, 92, 95 and 96.)

[Nocedal 1998] J. Nocedal and Y-X. Yuan. Combining trust region and line search
techniques, volume 14 of Applied Optimization, pages 153–175. Springer,
1998. (Cited on page 63.)

[Nocedal 2006] J. Nocedal and S. Wright. Numerical optimization. Springer, 2006.
(Cited on pages 1, 45, 48, 51, 52, 53, 54 and 71.)

[Noorshams 2013] N. Noorshams and M. J. Wainwright. Stochastic belief propa-

gation: A low-complexity alternative to the sum-product algorithm. IEEE
Transactions on Information Theory, vol. 59, no. 4, pages 1981–2000, 2013.
(Cited on page 36.)

[Nutini 2015] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander and H. Koepke. Co-

ordinate descent converges faster with the Gauss-Southwell rule than random

selection. In International Conference on Machine Learning (ICML), pages
1632–1641, 2015. (Cited on page 25.)

[Oh 2016] T-H. Oh, Y-W. Tai, J-C. Bazin, H. Kim and I. S. Kweon. Partial sum

minimization of singular values in robust PCA: Algorithm and applications.

http://stanford.edu/class/msande318/notes/notes11-BCL.pdf
http://stanford.edu/class/msande318/notes/notes11-BCL.pdf

Bibliography 121

IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 4,

pages 744–758, 2016. (Cited on page 94.)

[Pan 2013] W. Pan, X. Shen and B. Liu. Cluster analysis: unsupervised learning

via supervised learning with a non-convex penalty. The Journal of Machine

Learning Research, vol. 14, no. 1, pages 1865–1889, 2013. (Cited on page 86.)

[Parikh 2014] N. Parikh and S. Boyd. Block splitting for distributed optimization.

Mathematical Programming Computation, vol. 6, no. 1, pages 77–102, 2014.

(Cited on page 96.)

[Pearlmutter 1994] B. A. Pearlmutter. Fast exact multiplication by the Hessian.

Neural computation, vol. 6, no. 1, pages 147–160, 1994. (Cited on page 58.)

[Pedregosa 2011] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay. Scikit-

learn: Machine Learning in Python. Journal of Machine Learning Research,

vol. 12, pages 2825–2830, 2011. (Cited on page 97.)

[Peyré 2017] G. Peyré and M. Cuturi. Computational Optimal Transport. Rapport

technique, 2017. (Cited on page 79.)

[Pilanci 2015] M. Pilanci and M. J. Wainwright. Newton sketch: A linear-time

optimization algorithm with linear-quadratic convergence. arXiv preprint

arXiv:1505.02250, 2015. (Cited on page 71.)

[Pock 2011] T. Pock and A. Chambolle. Diagonal preconditioning for first order

primal-dual algorithms in convex optimization. In IEEE International Con-

ference on Computer Vision (ICCV), pages 1762–1769, 2011. (Cited on

page 72.)

[Potetz 2008] B. Potetz and T. S. Lee. Efficient belief propagation for higher-

order cliques using linear constraint nodes. Computer Vision and Image

Understanding, vol. 112, no. 1, pages 39–54, 2008. (Cited on page 36.)

[Raguet 2015] H. Raguet and L. Landrieu. Preconditioning of a generalized forward-

backward splitting and application to optimization on graphs. SIAM Journal

on Imaging Sciences, vol. 8, no. 4, pages 2706–2739, 2015. (Cited on page 72.)

[Rathi 2006] Y. Rathi, S. Dambreville and A. Tannenbaum. Statistical shape analysis

using kernel PCA. In Image processing: algorithms and systems, neural

networks, and machine learning, volume 6064, 2006. (Cited on pages 89

and 90.)

[Ravikumar 2010] P. Ravikumar, A. Agarwal and M. J. Wainwright. Message-

passing for graph-structured linear programs: Proximal methods and rounding

schemes. Journal of Machine Learning Research, vol. 11, no. Mar, pages

1043–1080, 2010. (Cited on pages 33 and 73.)

122 Bibliography

[Recht 2011] B. Recht, C. Re, S. Wright and F. Niu. Hogwild: A lock-free approach

to parallelizing stochastic gradient descent. In Advances in neural information

processing systems (NIPS), pages 693–701, 2011. (Cited on page 75.)

[Reid 1971] J. K. Reid. On the method of conjugate gradients for the solution of

large sparse systems of linear equations. In Oxford conference of institute of

mathematics and its applications, pages 231–254, 1971. (Cited on page 45.)

[Rockafellar 2009] R. T. Rockafellar and R. J-B. Wets. Variational analysis, volume

317. Springer Science & Business Media, 2009. (Cited on page 47.)

[Rother 2009] C. Rother, P. Kohli, W. Feng and J. Jia. Minimizing sparse higher

order energy functions of discrete variables. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1382–1389, 2009. (Cited on

page 36.)

[Roweis 2000] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by

locally linear embedding. science, vol. 290, no. 5500, pages 2323–2326, 2000.

(Cited on page 79.)

[Saad 2003] Y. Saad. Iterative methods for sparse linear systems, volume 82. SIAM,

2003. (Cited on page 42.)

[Saad 2005] Y. Saad. Multilevel ILU with reorderings for diagonal dominance. SIAM

Journal on Scientific Computing, vol. 27, no. 3, pages 1032–1057, 2005. (Cited

on page 57.)

[Saha 2013] A. Saha and A. Tewari. On the nonasymptotic convergence of cyclic

coordinate descent methods. SIAM Journal on Optimization, vol. 23, no. 1,

pages 576–601, 2013. (Cited on page 27.)

[Santambrogio 2015] F. Santambrogio. Optimal transport for applied mathemati-

cians. Birkäuser, NY, pages 99–102, 2015. (Cited on pages 79 and 82.)

[Savchynskyy 2011] B. Savchynskyy, S. Schmidt, J. Kappes and C. Schnörr. A study

of Nesterov’s scheme for Lagrangian decomposition and MAP labeling. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 1817–1823, 2011. (Cited on page 77.)

[Savchynskyy 2012] B. Savchynskyy, S. Schmidt, J. Kappes and C. Schnörr. Efficient

MRF energy minimization via adaptive diminishing smoothing. Uncertainty

in Artificial Intelligence (UAI), pages 746–755, 2012. (Cited on pages 50, 59,

63 and 65.)

[Savchynskyy 2014] B. Savchynskyy and S. Schmidt. Getting Feasible Variable

Estimates from Infeasible Ones: MRF Local Polytope Study. Advanced

Structured Prediction, pages 133–158, 2014. (Cited on page 31.)

Bibliography 123

[Scheinberg 2016] K. Scheinberg and X. Tang. Practical inexact proximal quasi-

Newton method with global complexity analysis. Mathematical Programming,

vol. 160, no. 1-2, pages 495–529, 2016. (Cited on page 3.)

[Schlesinger 1976] M. I. Schlesinger. Syntactic analysis of two-dimensional visual

signals in the presence of noise. Cybernetics and systems analysis, vol. 12,

no. 4, pages 612–628, 1976. (Cited on page 12.)

[Schlick 1987] T. Schlick and M. Overton. A powerful truncated Newton method for

potential energy minimization. Journal of Computational Chemistry, vol. 8,

no. 7, pages 1025–1039, 1987. (Cited on pages 48 and 62.)

[Schmidt 2009] M. W. Schmidt, E. Van Den Berg, M. P. Friedlander and K. P.

Murphy. Optimizing Costly Functions with Simple Constraints: A Limited-

Memory Projected Quasi-Newton Algorithm. In International Conference on

Artificial Intelligence and Statistics (AISTATS), pages 456–463, 2009. (Cited

on page 72.)

[Schmidt 2010] M. Schmidt. Graphical model structure learning using L1-

regularization. PhD thesis, 2010. (Cited on page 3.)

[Schmidt 2011] S. Schmidt, B. Savchynskyy, J. H. Kappes and C. Schnörr. Evalu-

ation of a first-order primal-dual algorithm for MRF energy minimization.

In International Workshop on Energy Minimization Methods in Computer

Vision and Pattern Recognition, pages 89–103. Springer, 2011. (Cited on

pages 34 and 72.)

[Schölkopf 1999] B. Schölkopf, A. J. Smola and K-R. Müller. Kernel principal

component analysis. Advances in kernel methods, pages 327–352, 1999.

(Cited on page 87.)

[Schwing 2011] A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun. Distributed

message passing for large scale graphical models. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1833–1840, 2011.

(Cited on pages 75, 76 and 77.)

[Schwing 2012] A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun. Globally

convergent dual MAP LP relaxation solvers using Fenchel-Young margins. In

Advances in Neural Information Processing Systems (NIPS), pages 2384–2392,

2012. (Cited on pages 24 and 74.)

[Schwing 2014] A. Schwing, T. Hazan, M. Pollefeys and R. Urtasun. Globally

convergent parallel MAP LP relaxation solver using the Frank-Wolfe algorithm.

In International Conference on Machine Learning (ICML), pages 487–495,

2014. (Cited on page 74.)

124 Bibliography

[Shah 2017] S. A. Shah and V. Koltun. Robust continuous clustering. Proceedings

of the National Academy of Sciences, vol. 114, no. 37, pages 9814–9819, 2017.

(Cited on pages 86, 87 and 96.)

[Shalev-Shwartz 2014] S. Shalev-Shwartz and T. Zhang. Accelerated proximal

stochastic dual coordinate ascent for regularized loss minimization. In Inter-

national Conference on Machine Learning (ICML), pages 64–72, 2014. (Cited

on page 71.)

[Shekhovtsov 2013] A. Shekhovtsov and V. Hlaváč. A distributed mincut/maxflow

algorithm combining path augmentation and push-relabel. International jour-

nal of computer vision, vol. 104, no. 3, pages 315–342, 2013. (Cited on

page 74.)

[Shekhovtsov 2016] A. Shekhovtsov, C. Reinbacher, G. Graber and T. Pock. Solving

dense image matching in real-time using discrete-continuous optimization.

In Computer Vision Winter Workshop, 2016. (Cited on page 74.)

[Shental 2008] O. Shental, P. H. Siegel, J. K. Wolf, D. Bickson and D. Dolev.

Gaussian belief propagation solver for systems of linear equations. In IEEE

International Symposium on Information Theory (ISIT), pages 1863–1867,

2008. (Cited on page 73.)

[Shewchuk 1994] J. R. Shewchuk. An introduction to the conjugate gradient method

without the agonizing pain, 1994. (Cited on page 43.)

[Shimony 1994] S. E. Shimony. Finding MAPs for belief networks is NP-hard.

Artificial Intelligence, vol. 68, no. 2, pages 399–410, 1994. (Cited on page 7.)

[Shrivastava 2015] A. Shrivastava, J. K. Pillai and V. M. Patel. Multiple kernel-based

dictionary learning for weakly supervised classification. Pattern Recognition,

vol. 48, no. 8, pages 2667–2675, 2015. (Cited on pages 90 and 99.)

[Smith 2016] V. Smith, S. Forte, C. Ma, M. Takác, M. I. Jordan and M. Jaggi.

CoCoA: A general framework for communication-efficient distributed op-

timization. arXiv preprint arXiv:1611.02189, 2016. (Cited on pages 75

and 76.)

[Sontag 2007] D. Sontag and T. S. Jaakkola. New outer bounds on the marginal

polytope. In Advances in Neural Information Processing Systems (NIPS),

pages 1393–1400, 2007. (Cited on page 74.)

[Sontag 2008] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola and Y. Weiss.

Tightening LP Relaxations for MAP using Message Passing. In Uncertainty

in Artificial Intelligence (UAI), pages 503–510, 2008. (Cited on pages 8

and 74.)

Bibliography 125

[Sontag 2010] D. Sontag. Approximate inference in graphical models using LP

relaxations. PhD thesis, Massachusetts Institute of Technology, 2010. (Cited

on pages 18 and 73.)

[Sontag 2011] D. Sontag, A. Globerson and T. Jaakkola. Introduction to dual

decomposition for inference. Optimization for Machine Learning, vol. 1,

pages 219–254, 2011. (Cited on pages 18 and 22.)

[Sontag 2012] D. Sontag, D. K. Choe and Y. Li. Efficiently searching for frustrated

cycles in MAP inference. In Uncertainty in Artificial Intelligence (UAI),

pages 795–804, 2012. (Cited on pages 73 and 74.)

[Soori 2017] S. Soori, A. Devarakonda, J. Demmel, M. Gurbuzbalaban and M. M.

Dehnavi. Avoiding communication in proximal methods for convex optimiza-

tion problems. arXiv preprint arXiv:1710.08883, 2017. (Cited on page 76.)

[stprtool] stprtool. Statistical Pattern Recognition Toolbox. https://cmp.felk.

cvut.cz/cmp/software/stprtool/index.html. Accessed: 2018-03-15.

(Cited on page 97.)

[Strandmark 2011] P. Strandmark, F. Kahl and T. Schoenemann. Parallel and

distributed vision algorithms using dual decomposition. Computer Vision and

Image Understanding, vol. 115, no. 12, pages 1721–1732, 2011. (Cited on

page 74.)

[Stüben 1999] K. Stüben. Algebraic Multigrid (AMG): An introduction with appli-

cations. GMD-Report 70, 1999. (Cited on page 57.)

[Sudderth 2004] E. B. Sudderth, M. J. Wainwright and A. S. Willsky. Embedded

trees: Estimation of Gaussian processes on graphs with cycles. IEEE Trans-

actions on Signal Processing, vol. 52, no. 11, pages 3136–3150, 2004. (Cited

on page 73.)

[Sudderth 2008] E. Sudderth and W. Freeman. Signal and image processing with

belief propagation [DSP applications]. IEEE Signal Processing Magazine,

vol. 25, no. 2, pages 114–141, 2008. (Cited on page 9.)

[Sutton 2012] C. Sutton and A. McCallum. An introduction to conditional random

fields. Foundations and Trends® in Machine Learning, vol. 4, no. 4, pages

267–373, 2012. (Cited on page 5.)

[Swoboda 2018] P. Swoboda and V. Kolmogorov. MAP inference via Block-

Coordinate Frank-Wolfe Algorithm. arXiv preprint arXiv:1806.05049, 2018.

(Cited on pages 22 and 71.)

[Tarlow 2010] D. Tarlow, I. Givoni and R. Zemel. Hop-map: Efficient message

passing with high order potentials. In International Conference on Artificial

Intelligence and Statistics (AISTATS), pages 812–819, 2010. (Cited on

page 36.)

https://cmp.felk.cvut.cz/cmp/software/stprtool/index.html
https://cmp.felk.cvut.cz/cmp/software/stprtool/index.html

126 Bibliography

[Villani 2003] C. Villani. Topics in optimal transportation. Numeéro 58. American

Mathematical Soc., 2003. (Cited on page 79.)

[Villani 2008] C. Villani. Optimal transport: old and new, volume 338. Springer

Science & Business Media, 2008. (Cited on page 79.)

[Vineet 2014] V. Vineet, J. Warrell and P. H. S. Torr. Filter-based mean-field

inference for random fields with higher-order terms and product label-spaces.

International Journal of Computer Vision, vol. 110, no. 3, pages 290–307,

2014. (Cited on page 5.)

[Von Luxburg 2007] U. Von Luxburg. A tutorial on spectral clustering. Statistics

and computing, vol. 17, no. 4, pages 395–416, 2007. (Cited on page 79.)

[Wainwright 2005a] M. J. Wainwright, T. S. Jaakkola and A. S. Willsky. MAP

estimation via agreement on trees: message-passing and linear programming.

IEEE Transactions on Information Theory, vol. 51, no. 11, pages 3697–3717,

2005. (Cited on pages 8 and 13.)

[Wainwright 2005b] M. J. Wainwright, T. S. Jaakkola and A. S. Willsky. A new

class of upper bounds on the log partition function. IEEE Transactions on

Information Theory, vol. 51, no. 7, pages 2313–2335, 2005. (Cited on page 12.)

[Wainwright 2008] M. J. Wainwright and M. I. Jordan. Graphical models, exponen-

tial families, and variational inference. Foundations and Trends® in Machine

Learning, vol. 1, no. 1–2, pages 1–305, 2008. (Cited on pages 1, 5, 12, 13, 14,

73 and 74.)

[Wang 2013] H. Wang and D. Koller. A fast and exact energy minimization algorithm

for cycle MRFs. In International Conference on Machine Learning (ICML),

volume 1, page 1, 2013. (Cited on pages 34 and 73.)

[Wang 2016] P. Wang, C. Shen, A. van den Hengel and P. H. S. Torr. Efficient

semidefinite branch-and-cut for MAP-MRF inference. International Journal

of Computer Vision (IJCV), vol. 117, no. 3, pages 269–289, 2016. (Cited on

page 74.)

[Weed 2017] J. Weed and F. Bach. Sharp asymptotic and finite-sample rates of

convergence of empirical measures in Wasserstein distance. arXiv preprint

arXiv:1707.00087, 2017. (Cited on page 79.)

[Weiss 2007] Y. Weiss, C. Yanover and T. Meltzer. MAP estimation, linear pro-

gramming and belief propagation with convex free energies. In Twenty-Third

Conference on Uncertainty in Artificial Intelligence (UAI), pages 416–425,

2007. (Cited on page 25.)

[Welling 2004] Max Welling. On the choice of regions for generalized belief propaga-

tion. In The 20th conference on Uncertainty in artificial intelligence (uai),

pages 585–592, 2004. (Cited on page 8.)

Bibliography 127

[Werner 2007] T. Werner. A linear programming approach to max-sum problem: A

review. IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 29, no. 7, pages 1165–1179, 2007. (Cited on pages 27 and 74.)

[Werner 2008] T. Werner. High-arity interactions, polyhedral relaxations, and cutting

plane algorithm for soft constraint optimisation (MAP-MRF). In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages

1–8, 2008. (Cited on page 74.)

[Werner 2009] T. Werner. Revisiting the decomposition approach to inference in

exponential families and graphical models. Research Reports of CMP. 2009,

No. 6, 2009. (Cited on page 27.)

[Yang 2010] Q. Yang, L. Wang and N. Ahuja. A constant-space belief propagation

algorithm for stereo matching. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1458–1465, 2010. (Cited on page 74.)

[Yanover 2006] C. Yanover, T. Meltzer and Y. Weiss. Linear Programming Re-

laxations and Belief Propagation–An Empirical Study. Journal of Machine

Learning Research, vol. 7, no. Sep, pages 1887–1907, 2006. (Cited on page 15.)

[Yedidia 2005] J. S. Yedidia, W. T. Freeman and Y. Weiss. Constructing free-

energy approximations and generalized belief propagation algorithms. IEEE

Transactions on information theory, vol. 51, no. 7, pages 2282–2312, 2005.

(Cited on page 73.)

[Yen 2016] I. E-H. Yen, D. Malioutov and A. Kumar. Scalable exemplar clustering

and facility location via augmented block coordinate descent with column

generation. In International Conference on Artificial Intelligence and Statistics

(AISTATS), pages 1260–1269, 2016. (Cited on pages 85, 86 and 96.)

[Zhang 2010] T. Zhang. Analysis of multi-stage convex relaxation for sparse regu-

larization. Journal of Machine Learning Research, vol. 11, no. Mar, pages

1081–1107, 2010. (Cited on page 93.)

[Zhang 2014] J. Zhang, A. Schwing and R. Urtasun. Message passing inference for

large scale graphical models with high order potentials. In Advances in Neural

Information Processing Systems (NIPS), pages 1134–1142, 2014. (Cited on

page 77.)

[Zheng 2010] W-S. Zheng, J. Lai and P. C. Yuen. Penalized preimage learning in

kernel principal component analysis. IEEE Transactions on Neural Networks,

vol. 21, no. 4, pages 551–570, 2010. (Cited on pages 89, 90, 92 and 99.)

Titre: Quelques applications de l’optimisation numérique aux problèmes d’inférence

et d’apprentissage

Mots clés: Vision par ordinateur, Apprentissage automatique, Modèles graphiques,

Inférence MAP, Apprentissage non-supervisé, Optimisation numérique

Résumé: Les relaxations en problème

d’optimisation linéaire jouent un rôle cen-

tral en inférence du maximum a poste-

riori (map) dans les champs aléatoires

de Markov discrets. Nous étudions ici

les avantages offerts par les méthodes

de Newton pour résoudre efficacement

le problème dual (au sens de Lagrange)

d’une reformulation lisse du problème.

Nous comparons ces dernières aux méth-

odes de premier ordre, à la fois en terme

de vitesse de convergence et de robustesse

au mauvais conditionnement du prob-

lème.

Nous exposons donc un cadre général

pour l’apprentissage non-supervisé basé

sur le transport optimal et les régulari-

sations parcimonieuses. Nous exhibons

notamment une approche prometteuse

pour résoudre le problème de la préimage

dans l’acp à noyau. Du point de vue

de l’optimisation, nous décrivons le cal-

cul du gradient d’une version lisse de la

norme p de Schatten et comment cette

dernière peut être utilisée dans un schéma

de majoration-minimisation.

Title: Few Applications of Numerical Optimization in Inference and Learning

Keywords: Computer vision, Machine learning, Graphical models, MAP inference,

Unsupervised learning, Numerical optimization

Abstract: Linear programming relax-

ations are central to maximum a poste-

riori (map) inference in discrete Markov

Random Fields (mrfs). In this thesis, we

study the benefit of using Newton meth-

ods to efficiently optimize the Lagrangian

dual of a smooth version of the problem.

We investigate their ability to achieve su-

perior convergence behavior and to better

handle the ill-conditioned nature of the

formulation, as compared to first order

methods.

We show a general framework for unsuper-

vised learning based on optimal transport

and sparse regularization. We especially

demonstrate a promising approach to ad-

dress the pre-image problem in kernel

pca. From an optimization point of view,

we show how to compute the gradient

of a smooth version of the Schatten p-

norm and how it can be used within a

majorization-minimization scheme.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

