
HAL Id: tel-01996964
https://theses.hal.science/tel-01996964v1

Submitted on 28 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural networks regularization through representation
learning

Soufiane Belharbi

To cite this version:
Soufiane Belharbi. Neural networks regularization through representation learning. Neural and Evo-
lutionary Computing [cs.NE]. Normandie Université, 2018. English. �NNT : 2018NORMIR10�. �tel-
01996964�

https://theses.hal.science/tel-01996964v1
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le diplôme de doctorat

Spécialité Informatique

Préparée au sein de « l'INSA Rouen Normandie »

Titre de la thèse

Présentée et soutenue par
Soufiane BELHARBI

Thèse dirigée par Sébastien ADAM, laboratoire LITIS

Neural Networks Regularization Through Representation Learning

Thèse soutenue publiquement le 06 Juillet 2018
devant le jury composé de

Sébastien ADAM Professeur à l'Université de Rouen Normandie Directeur de thèse

Clément CHATELAIN Maître de conférence à l'INSA Rouen Normandie Encadrant de thèse

Romain HÉRAULT Maître de conférence à l'INSA Rouen Normandie Encadrant de thèse

Elisa FROMONT Professeur à l'Université de Rennes 1 Rapporteur de thèse

Thierry ARTIÈRES Professeur à l'École Centrale Marseille Rapporteur de thèse

John LEE Professeur à l'Université Catholique de Louvain Examinateur de thèse

David PICARD
Maître de conférences à l'École Nationale
Supérieure de l'Électronique et de ses Applications

Examinateur de thèse

Frédéric JURIE Professeur à l' Université de Caen Normandie Invité

Neural Networks Regularization
Through Representation Learning

Soufiane BELHARBI

Supervisor: Prof. Sébastien ADAM

Advisor: Assistant Prof. Clément CHATELAIN
Assistant Prof. Romain HÉRAULT

LITIS laboratory
INSA Rouen Normandie

This dissertation is submitted for the degree of
Doctor of Philosophy

Normandie Université July 2018

I would like to dedicate this thesis to my parents and my grandparents.

Fig. 1 Frank Rosenblatt, with the image sensor of the Mark I Perceptron (Source: Arvin
Calspan Advanced Technology Center; Hecht-Nielsen, R. Neurocomputing (Reading,
Mass.: Addison-Wesley, 1990); Cornell Library)

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the outcome
of work done in collaboration with others, except when specified in the text.

Soufiane BELHARBI
July 2018

Acknowledgements

I would like to thank many people who helped me along my thesis.
I would like to thank my thesis supervisor Sébastien Adam, for taking me as his

PhD student. I would like also to thank my advisors Clément Chatelain and Romain
Hérault for all their advice and knowledge they have shared with me. I would like
to thank as well Romain Modzelewski at Henri Becqurel Center at Rouen for his
availability and help for a whole year. I would like to thank as well my collaborators
at the same center Sébastien Thureau, and Mathieu Chastan.

Writing this manuscript was a separate challenge. I would like to thank, again, my
supervisor Sébastien Adam, and my advisors Clément Chatelain, and Romain Hérault,
for their patience, comments, constant criticism, and availability all along the 7 months
of writing. It was through their help that this manuscript has reached such maturity.

Preparing the presentation of my PhD defense was the last challenge. Again, my
supervisor Sébastien Adam, and my advisors, Clément Chatelain, and Romain Hérault
were a major help. It was through their comments and criticism that I have successfully
prepared my presentation in terms of content, pedagogy, and speech.

I would like to thank all the jury members of my PhD defense: John Lee, Elisa
Fromont, Thierry Artières, David Picard, Frédéric Jurie, Clément Chatelain, Romain
Hérault, and Sébastien Adam. I would like to thank all of them for their presence,
constructive, detailed, and helpful questions and criticism that helped improving my
manuscript and showed their interest to my work. I would like to thank them as well
for their valuable time, and their availability to judge my work. It was an honor, and
a pleasure defending my work in front of them.

I would like to thank Clément Chatelain for helping me managing my administrative
procedure at INSA Rouen Normandie.

I would like to thank Stéphan Canu for his constant insightful conversations and
his many offered opportunities and help. He knocks on my office door every morning to
say hi and to start the day with another interesting conversation. I thank him for his
encouragement, guidance, constructive criticism, and inspiration all along these years.

I would like to thank Alain Rakotomamonjy for his interesting conversations when
we have the chance to have one.

I would like to thank Gilles Gasso for all the interesting conversations that we had
including science, and running.

I would like to thank Carole Le Guyader for her interesting conversations and her
help.

I would like to thank Samia Ainouz for her constant encouragement and help.
I would like to thank Aziz Bensrhair for his encouragement and advice.
I would like to thank John Lee at the Université Catholique de Louvain who

admitted me for two weeks in his laboratory. I would like to thank as well Frédéric

viii Acknowledgements

Precioso at University of Nice-Sophia Antipolis for inviting me to give a talk in his
deep learning summer school.

I would like to thank the staff at the computing centers for their constant support
at INSA Rouen Normandie: Jean-François Brulard; Université de Rouen Normandie:
Arnaud Citerin; and the CRIANN computing center (www.criann.fr): Benoist Gaston,
Patrick Bousquet-Melou, Beatrice Charton, and all the technical support team.

I would like to thank the secretariat staff for their help, and assistance including
but not limited to: Brigitte Diara, Sandra Hague, Florence Aubry, Isabelle Poussard,
Fabienne Bocquet, Marion Baudesson, Laure Paris, Leila Lahcen, and Rachel Maeght.

I would like to thank Alexis Lechervy at the Université de Caen Normandie, Kamal
D S Oberoi, and Lorette Noiret for their time, and availability to revise many of my
papers.

I would like to thank Alexis Lechervy for his help and advise since I met him when
I was his student.

I would like to thank Gilles Gasso, Antoine Godichon, Alain Rakotomamonjy,
Djamila Boukehil, and Yuan Liu for their time, availability, and insightful conversations
that helped me improve one of my papers.

I would like to thank the ASI department at INSA Rouen Normandie for open-
ing the door for me to integrate with them, including but not limited to: Nicolas
Malandain, Nicolas Delestre, Geraldine Del Mondo, Gilles Gasso, Benoit Gaüzère,
Sébastien Bonnegent, Damien Guesdon, Elsa Planterose, Alexandre Pauchet, Michel
Mainguenaud, and from the Université de Rouen Normandie: Pierrick Tranouez and
Daniel Antelme and all the members of the “miam” group.

I would like to thank all the administration staff at INSA Rouen Normandie and at
the Université de Rouen Normandie for their help and assistance.

I would like to thank my previous teachers at the Université de Rouen Normandie
for their encouragement, including but not limited to: Thierry Paquet, Laurent Heutte,
Stéphane Nicolas, Caroline Petitjean, Maxime Berar, Pierre Héroux, Su Ruan, and
Christele Lecomte. I would like also to thank Simon Bernard. I would like to thank
my previous teachers at the Université de Caen Normandie as well, including but not
limited to: Gaël Dias, Frédéric Jurie, and Alexis Lechervy.

I would like to thank my office colleagues with whom I had insightful conversations
and wonderful time inside and outside the office, including but not limited to: Yuan
Liu, Linlin Jia, Imad Rida, Cyprien Ruffino, Djamila Boukehil, Denis Rousselle, Sokol
Koço, and Kawtar Bomohamed.

I would like to thank Jean-Baptiste Louvet, and Mathieu Bourgais for all the fun
conversations we had. Good luck to Jean-Baptiste in saving nature. I hope he can
survive without meat.

I Would like to thank all the students, and PhD students that I have met within
LITIS laboratory or outside, including but not limited to: Bruno Stuner, Wassim
Swaileh, Rivière Marc-Aurèle, Sovann En, Meriem El Azami, Safaa Dafrallah, Imen
Beji, Cloé Cabot, Manon Ansart, Laetitia Jeancolas, Tongxue Zhou, Noémie Debroux,
Fan Wang, Fadila Taleb, Imene khames, Romaric Pighetti, Rémi Cadène, Mélanie
Ducoffe, Jean baptiste Charpentier, Nezha Bouhafs, Ennassiri Hamza, Harik Elhoussein
Chouaib, Mohammed Ali Benhamida, Barange Mukesh, Tatiana Poletaeva, Christophe
Tirel, Danut Pop, Sahba Zojaji, Alexander Dydychkin, Julien Lerouge, Grégoire Mesnil,
Quentin Lerebours, Florian Leriche, Clara Gainon de Forsan.

http://www.criann.fr/

ix

I would like to thank my colleagues from my engineer school www.esi.dz for their
help and encouragement, including but not limited to: Arab Ghedamsi, Boualem
Bouldja, Lyas Said Aissa , Sofiane Bellil, Moussa Ailane, and Yasmina Chikhi.

I would like to thank Hanene Haouam for her encouragement.
I would like to thank Amine Frikha for his constant help during all my three years

of studies at Rouen and Caen.
I would like to thank my colleagues and PhD representatives at the LITIS laboratory

committee: Fabien Bonardi and Riadh Saada. I would like also to thank the members
of ADDED association (association-added.fr) who I had a wonderful time working with
them for almost two years: Claire Debreux, Xavier Monnier, Steven Araujo, and Javier
Anez Perdomo. I would like to thank as well all the PhD students who subscribed and
participated into the animation of my club DOC-AC (doctorants-actifs.fr, doctorants-
actifs.github.io).

I would like to thank everyone who helped in preparing the reception of my PhD
defense, including but not limited to: Cyprien Ruffino, Linlin Jia, Ismaila Seck, Djamila
Boukehil, Yuan Liu, Benoit Gaüzère, Pierrick Tranouez, Antoine Godichon, Sandra
Hague, Alain Rakotomamonjy, and Simon Bernard. Particular thanks to Brigitte Diara
who organized and prepared the whole defense.

I thank everyone that helped me in my PhD thesis, people that I know and do not
know of.

In this short acknowledgment, I am certain that I have forgot many other people.
For that, I apologize.

This was a wonderful, and a rich experience.

https://www.esi.dz/
http://association-added.fr/
http://doctorants-actifs.fr/
https://doctorants-actifs.github.io
https://doctorants-actifs.github.io

Context

The research that led to this PhD thesis was conducted at the “Institut National des
Sciences Appliquées Rouen Normandie (INSA Rouen Normandie)”, at the “Laboratoire
d’Informatique, de Traitement de l’Information et des Systèmes (LITIS)”1, in over the
course of 3 years, between 2014 and 2017. This work was done in close collaboration
with my supervisor Prof. Sébastien ADAM at “l’Université de Rouen”, and with my
advisors Clément CHATELAIN and Romain HÉRAULT at INSA de Rouen.

1Avenue de l’Université, 76801 Saint Etienne du Rouvray Cedex

Summary

Neural network models and deep models are one of the leading and state of the art
models in machine learning. They have been applied in many different domains. Most
successful deep neural models are the ones with many layers which highly increases
their number of parameters. Training such models requires a large number of training
samples which is not always available. One of the fundamental issues in neural
networks is overfitting which is the issue tackled in this thesis. Such problem often
occurs when the training of large models is performed using few training samples.
Many approaches have been proposed to prevent the network from overfitting and
improve its generalization performance such as data augmentation, early stopping,
parameters sharing, unsupervised learning, dropout, batch normalization, etc.

In this thesis, we tackle the neural network overfitting issue from a representa-
tion learning perspective by considering the situation where few training samples
are available which is the case of many real world applications. We propose three
contributions. The first one presented in chapter 2 is dedicated to dealing with struc-
tured output problems to perform multivariate regression when the output variable y
contains structural dependencies between its components. Our proposal aims mainly
at exploiting these dependencies by learning them in an unsupervised way. Validated
on a facial landmark detection problem, learning the structure of the output data has
shown to improve the network generalization and speedup its training. The second
contribution described in chapter 3 deals with the classification task where we propose
to exploit prior knowledge about the internal representation of the hidden layers in
neural networks. This prior is based on the idea that samples within the same class
should have the same internal representation. We formulate this prior as a penalty
that we add to the training cost to be minimized. Empirical experiments over MNIST
and its variants showed an improvement of the network generalization when using only
few training samples. Our last contribution presented in chapter 4 showed the interest
of transfer learning in applications where only few samples are available. The idea
consists in re-using the filters of pre-trained convolutional networks that have been
trained on large datasets such as ImageNet. Such pre-trained filters are plugged into a
new convolutional network with new dense layers. Then, the whole network is trained
over a new task. In this contribution, we provide an automatic system based on such
learning scheme with an application to medical domain. In this application, the task
consists in localizing the third lumbar vertebra in a 3D CT scan. A pre-processing
of the 3D CT scan to obtain a 2D representation and a post-processing to refine the
decision are included in the proposed system. This work has been done in collaboration
with the clinic “Rouen Henri Becquerel Center” who provided us with data.

Keywords: neural network, deep learning, regularization, overfitting, feedforawrd
networks, convolutional networks, multi-task learning, unsupervised learning, repre-

xiv Summary

sentation learning, transfer learning, classification, univariate regression, multivariate
regression, structured output prediction, prior knowledge.

Résumé

Les modèles de réseaux de neurones et en particulier les modèles profonds sont
aujourd’hui l’un des modèles à l’état de l’art en apprentissage automatique et ses
applications. Les réseaux de neurones profonds récents possèdent de nombreuses
couches cachées ce qui augmente significativement le nombre total de paramètres.
L’apprentissage de ce genre de modèles nécessite donc un grand nombre d’exemples
étiquetés, qui ne sont pas toujours disponibles en pratique. Le sur-apprentissage est un
des problèmes fondamentaux des réseaux de neurones, qui se produit lorsque le modèle
apprend par cœur les données d’apprentissage, menant à des difficultés à généraliser
sur de nouvelles données. Le problème du sur-apprentissage des réseaux de neurones
est le thème principal abordé dans cette thèse. Dans la littérature, plusieurs solutions
ont été proposées pour remédier à ce problème, tels que l’augmentation de données,
l’arrêt prématuré de l’apprentissage (“early stopping”), ou encore des techniques plus
spécifiques aux réseaux de neurones comme le “dropout” ou la “batch normalization”.

Dans cette thèse, nous abordons le sur-apprentissage des réseaux de neurones pro-
fonds sous l’angle de l’apprentissage de représentations, en considérant l’apprentissage
avec peu de données. Pour aboutir à cet objectif, nous avons proposé trois différentes
contributions. La première contribution, présentée dans le chapitre 2, concerne les
problèmes à sorties structurées dans lesquels les variables de sortie sont à grande dimen-
sion et sont généralement liées par des relations structurelles. Notre proposition vise à
exploiter ces relations structurelles en les apprenant de manière non-supervisée avec
des autoencodeurs. Nous avons validé notre approche sur un problème de régression
multiple appliquée à la détection de points d’intérêt dans des images de visages. Notre
approche a montré une accélération de l’apprentissage des réseaux et une amélioration
de leur généralisation. La deuxième contribution, présentée dans le chapitre 3, exploite
la connaissance a priori sur les représentations à l’intérieur des couches cachées dans
le cadre d’une tâche de classification. Cet a priori est basé sur la simple idée que
les exemples d’une même classe doivent avoir la même représentation interne. Nous
avons formalisé cet a priori sous la forme d’une pénalité que nous avons rajoutée
à la fonction de perte. Des expérimentations empiriques sur la base MNIST et ses
variantes ont montré des améliorations dans la généralisation des réseaux de neurones,
particulièrement dans le cas où peu de données d’apprentissage sont utilisées. Notre
troisième et dernière contribution, présentée dans le chapitre 4, montre l’intérêt du
transfert d’apprentissage (“transfer learning”) dans des applications dans lesquelles peu
de données d’apprentissage sont disponibles. L’idée principale consiste à pré-apprendre
les filtres d’un réseau à convolution sur une tâche source avec une grande base de
données (ImageNet par exemple), pour les insérer par la suite dans un nouveau réseau
sur la tâche cible. Dans le cadre d’une collaboration avec le centre de lutte contre le
cancer “Henri Becquerel de Rouen”, nous avons construit un système automatique
basé sur ce type de transfert d’apprentissage pour une application médicale où l’on

xvi Résumé

dispose d’un faible jeu de données étiquetées. Dans cette application, la tâche consiste
à localiser la troisième vertèbre lombaire dans un examen de type scanner. L’utilisation
du transfert d’apprentissage ainsi que de prétraitements et de post traitements adaptés
a permis d’obtenir des bons résultats, autorisant la mise en œuvre du modèle en routine
clinique.

Mots clés: réseaux de neurones, apprentissage profond, régularisation, sur-
apprentissage, réseau de neurones à passe avant, réseaux de neurones convolutifs,
apprentissage multi-tâches, apprentissage non supervisé, apprentissage des représenta-
tions, transfert d’apprentissage, classification, régression univariée, régression multiple,
prédiction à sortie structurée, connaissances à priori.

Publications

Journals:

• Deep Neural Networks Regularization for Structured Output Predic-
tion. Soufiane Belharbi, Romain Hérault2, Clément Chatelain2, and Sébastien
Adam. Neurocomputing Journal, 281C:169-177, 2018.

• Spotting L3 Slice in CT Scans using Deep Convolutional Network and
Transfer Learning. Soufiane Belharbi, Clément Chatelain2, Romain Hérault2,
Sébastien Adam, Sébastien Thureau, Mathieu Chastan, and Romain Modzelewski.
Computers in Biology and Medicine, 87: 95-103, 2017.

• Neural Networks Regularization Through Class-wise Invariant Repre-
sentation Learning. Soufiane Belharbi, Clément Chatelain, Romain Hérault,
and Sébastien Adam. Under review, 2017.

International conferences/workshops:

• Learning Structured Output Dependencies Using Deep Neural Net-
works. Soufiane Belharbi, Clément Chatelain, Romain Hérault, and Sébastien
Adam. Deep Learning Workshop in the 32nd International Conference on Machine
Learning (ICML), 2015.

• Deep Multi-Task Learning with Evolving Weights. Soufiane Belharbi,
Romain Hérault, Clément Chatelain, and Sébastien Adam. European Symposium
on Artificial Neural Networks (ESANN), 2016.

French conferences:

• A Unified Neural Based Model For Structured Output Problems. Soufi-
ane Belharbi, Clément Chatelain, Romain Hérault, and Sébastien Adam. Con-
férence Francophone sur l’Apprentissage Automatique (CAP), 2015.

• Pondération Dynamique dans un Cadre Multi-Tâche pour Réseaux de
Neurones Profonds. Soufiane Belharbi, Romain Hérault, Clément Chatelain,
and Sébastien Adam. Reconnaissance des Formes et l’Intelligence Artificielle
(RFIA) (Session spéciale: Apprentissage et vision), 2016.

2Authors with equal contribution.

Table of Contents

Summary xiii

Résumé xv

List of Figures xxiii

List of Tables xxv

List of Symbols xxvii

General Introduction 1

1 Background 5
1.1 Machine Learning . 5

1.1.1 Learning from Data . 5
1.1.2 Statistical Learning and Generalization: PAC Learning 7
1.1.3 Empirical Risk Minimization with Inductive Bias 11
1.1.4 Summary . 15

1.2 Introduction to Feedforward Neural Networks 16
1.2.1 Early History . 16
1.2.2 Perceptron . 17
1.2.3 Gradient Based Learning . 19
1.2.4 Multilayer Perceptron and Representation Learning 20
1.2.5 Deep Learning: from Late 60′s to Today 22
1.2.6 Summary . 27

1.3 Improving Neural Networks Generalization 28
1.3.1 Explicit Regularization: Explicit Complexity Reduction 28
1.3.2 Implicit Regularization . 29
1.3.3 Summary . 45

1.4 Conclusion . 45

2 Deep Neural Networks Regularization for Structured Output
Prediction 47
2.1 Prologue . 47
2.2 Introduction . 49
2.3 Related Work . 50

2.3.1 Graphical Models Approaches 50
2.3.2 Deep Neural Networks Approaches 51

xx Table of Contents

2.4 Multi-task Training Framework for Structured Output Prediction . . . 52
2.5 Implementation . 55
2.6 Experiments . 55

2.6.1 Datasets . 56
2.6.2 Metrics . 57
2.6.3 General training setup . 57

2.7 Conclusion . 64

3 Neural Networks Regularization Through Class-wise Invariant
Representation Learning 67
3.1 Prologue . 67
3.2 Introduction . 69
3.3 Related Work . 70
3.4 Proposed Method . 72

3.4.1 Model Decomposition . 72
3.4.2 General Training Framework . 73
3.4.3 Implementation and Optimization Details 74

3.5 Experiments . 75
3.5.1 Classification Problems and Experimental Methodology 76
3.5.2 Results . 77
3.5.3 On Learning Invariance within Neural Networks 79

3.6 Conclusion . 81

4 Application: Spotting L3 Slice in CT Scans using Deep Convolutional
Network and Transfer Learning 83
4.1 Prologue . 83
4.2 Introduction . 85
4.3 Related Work . 86
4.4 Proposed Approach . 88

4.4.1 MIP Transformation . 89
4.4.2 Learning the TL-CNN . 90
4.4.3 Decision Process using a Sliding Window over the MIP Images . 93

4.5 Experimental Protocol . 95
4.5.1 CT Exams Database Description 95
4.5.2 Datasets Preparation . 95
4.5.3 Neural Networks Models . 95

4.6 Results . 96
4.6.1 Data View: Frontal Vs. Lateral 96
4.6.2 Detection Performance . 97
4.6.3 Processing Time Issues . 98
4.6.4 Comparison with Radiologists 98

4.7 Conclusion . 99

General Conclusion and Perspectives 101

References 107

Table of Contents xxi

Appendix A Definitions and Technical Details 135
A.1 Machine Learning Definitions . 135

A.1.1 Applications . 135
A.1.2 Terminology . 136
A.1.3 Learning Scenarios . 138

A.2 Technical Details . 139
A.2.1 Bias-variance Tradeoff . 139
A.2.2 Feedforward Neural Networks 142
A.2.3 Regularization . 157

List of Figures

1 Frank Rosenblatt, with the image sensor of the Mark I Perceptron. . . iii

1.1 Illustration of structural risk minimization (SRM). 14
1.2 Perceptron model. 17
1.3 Multiclass perceptron. 18
1.4 Multilayer perceptron. 22
1.5 Lenet convolutional network. 24
1.6 Example of Deep Residual network architectures for image recognition. 26
1.7 Training and validation learning curves. 30
1.8 Common architecture for multi-task learning in neural networks. 33
1.9 Transfer learning scheme. 35
1.10 Three ways in which transfer learning might improve learning. 36
1.11 Transfer learning vs. multi-task learning. 36
1.12 A 2-dimensional convolution layer. 40
1.13 Dropout applied to a neural network. 41

2.1 Examples of facial landmarks from LFPW training set. 49
2.2 Proposed MTL framework. 54
2.3 Samples from HELEN dataset. 57
2.4 Linear adaptation of the importance weights during training. 59
2.5 Examples of prediction on LFPW test set. 60
2.6 Examples of prediction on HELEN test set. 60
2.7 MSE during training epochs over HELEN train. 62
2.8 CDF curves. 63

3.1 Input/Hidden representations in an MLP. 70
3.2 Decomposition of the neural network. 73
3.3 Constraining the intermediate representations of an MLP. 74
3.4 Samples from training set of each benchmark. 76
3.5 Measuring the hint term of the different layers. 80

4.1 Finding the L3 slice within a whole CT scan. 86
4.2 Two slices from the same patient. 87
4.3 System overview. 89
4.4 Examples of normalized frontal MIP 90
4.5 System overview. 92
4.6 CNN output and post-processing. 94

A.1 Complexity vs. generalization. 138

xxiv List of Figures

A.2 Relationship between model capacity, its bias and variance and the
generalization error. 142

A.3 The backward pass of the backpropagation algorithm. 145
A.4 The backpropagation algorithm in a matrix form. 147
A.5 Examples of nonlinear activation functions. 148
A.6 Rectified linear unit function. 149
A.7 Effect of depth on the generalization of neural networks. 154
A.8 Effect of the number of parameters on the generalization of neural

networks. 155
A.9 Effect of L2 norm regularization. 159
A.10 Effect of L1 norm regularization. 162
A.11 An illustration of the effect of early stopping. 164

List of Tables

2.1 MSE over LFPW. 60
2.2 MSE over HELEN. 61
2.3 AUC and CDF0.1 performance over LFPW test set. 61
2.4 AUC and CDF0.1 performance over HELEN test set. 61
2.5 Size of augmented LFPW and HELEN train sets. 64

3.1 Mean ± standard deviation error over validation and test sets. 78
3.2 Mean ± standard deviation error over validation and test sets. 79
3.3 Mean ± standard deviation error over validation and test sets. 79

4.1 Test error. 97
4.2 Error expressed in slice over all the folds. 97
4.3 Number of parameters vs. processing time. 98
4.4 Comparison of the performance. 99

List of Symbols

The next list describes several notations and symbols that will be later used within
the body of the document, unless we redefine the notations depending on the context.

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

In Identity matrix with n rows and n columns

I Identity matrix with dimentionality implied by the context

diag(a) A square, diagonal matrix with diagonal entries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

0 A vector or a matrix, depending on the context, full of 0

Sets

A A set

a ∈ A Element a in set A

A ⊂ B Set A is a subset of set B

|A| Number of elements in set A

R Set of real numbers

R+ Set of non-negative real numbers

Rn Set of n-dimensional real-valued vectors

Rn×m Set of n×m-dimensional real-valued matrices

N Set of natural numbers, i.e., {0, 1, · · · }

xxviii List of Symbols

{0, 1, · · · , n} The set of all integers between 0 and n

[a, b] Closed interval between a and b

{a, b, c} Set containing elements a, b and c

Indexing

ai Element i of vector a

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Linear Algebra Operations

A⊤ Transpose of matrix A

A⊙B Element-wise (Hadamard) product of A and B

⟨a, b⟩ Inner product between vectors a and b

Calculus
∂y
∂x

Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∂f
∂x

Jacobian matrix J ∈ Rm×n of f : Rn → Rm

Probability and Information Theory

P (a) A probability distribution over a discrete variable

p(a) A probability distribution over a continuous variable, or over a variable whose
type has not been specified

a ∼ P Random variable a has distribution P

E
x∼D

[·] Expectation over x drawn from distribution D

N (x; µ, Σ) Gaussian distribution over x with mean µ and covariance Σ

D Unspecified probability distribution

Functions

f : X → Y The function f with domain X and range Y

f(x; θ) A function of x parametrized by θ. (Sometimeswe write f(x) and omit the
argument θ to lighten the notation)

List of Symbols xxix

log x Natural logarithm of x

loga Logarithm with base a

∥x∥ L2 norm of x

∥x∥p Lp norm of x

1A Indicator function indicating membership in subset A

R(·) Generalization error or risk

R̂(·) Empirical error or risk

Datasets and Distributions

X Input space

Y Target space

pdata The data generating distribution

p̂data The empirical distribution defined by the training set

D A set of samples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised learning

X The m× n matrix with input examples x(i) in row Xi,:

General Introduction

In the last years, the neural network field has seen large success for different applications
that require large number of features to solve complex tasks. This success has made
neural networks one of the leading models in machine learning as well as the state of the
art for different applications. Among the tasks that have been well modeled using neural
networks, one can mention image classification, image labeling, object detection, image
description, speech recognition, speech synthesis, query answering, text generation,
etc. However, in order to solve such complex tasks, neural network models rely on a
large number of parameters that may easily reach millions. Consequently, such models
require a large number of training data in order to avoid overfitting, a case where the
model becomes too specific to the training data and looses its ability to generalize to
unseen data. In practice, one usually deals with applications with few training samples.
Therefore, one has the choice either to use neural network models with small capacity
and loose much of their power, or stick with models with large capacity and employ
what it is known as regularization techniques to save the generalization ability and
to prevent the network from overfitting. We provide in chapter 1 a background on
machine learning with a focus on regularization aspects. The same chapter contains a
brief introduction to neural network models and their regularization techniques. The
chapter is completed by Appendix A that provides some basic definitions in machine
learning, and more technical details on neural networks and regularization.

In the literature of neural networks, we find different approaches of regularization
that we describe in Sec.1.3. Such regularization methods either aim at explicitly
reducing the model complexity using for example Lp parameter norm (Sec.1.3.1), or
implicitly reducing its complexity using for instance early stopping (Sec.1.3.2.1). Other
methods do not alter the model complexity but tackle the issue of overfitting using
different angles where the aim is to improve the model’s generalization. One can
mention the following approaches:

• parameter sharing (Sec.1.3.2.5),

• data augmentation (Sec.1.3.2.2),

• batch normalization (Sec.1.3.2.7),

• and smart ensemble methods such as dropout (Sec.1.3.2.6).

[154] covers most of the technical approaches used to regularize neural networks.
In this thesis-by-article, we provide three different ways of regularizing neural

network models when trained using small dataset for the task of classification, univariate,
and multivariate regression. The aim of such approaches is to directly improve the
model’s generalization without affecting its complexity. Our research direction to

2 General Introduction

improve neural networks generalization in this thesis is throughout learning good
internal representations within the network.

Data representation within neural networks is a key component of their success.
Such models are able to self-learn adequate internal representations to solve the task
in hand. This ability is a major factor that separates such models from other type of
models in machine learning. Although models with high capacity are able to build
complex features that allow to solve complex tasks, they are more likely to fall into
overfitting, particularly when they are trained with few samples. In this thesis, we
provide three approaches to regularize neural networks. Two of them are based on
theoretical frameworks which adapt learning internal representations to the task in hand.
This includes structured output prediction through unsupervised learning (chapter 2),
and classification task through prior knowledge (chapter 3). The last approach is based
on transfer learning with an applicative aspect in medical domain (chapter 4). Each of
our contributions is presented in a chapter.

• Structured output prediction
In chapter 2, we explore the use of unsupervised learning to build robust features in
order to solve structured output problems, i.e., to perform multivariate regression
where the output variable is high dimensional with possible structural relations
between its components. The motivation behind this work is that feedforward
networks lack, by their structural design, the ability to learn dependencies among
the output variable. We recall that each output neuron in a feedforward network
performs the prediction independently from the rest of the other output neurons.
In order to learn the output structure, local or global, the network needs a large
amount of training data in order to learn the output variations. Otherwise, the
network falls into overfitting or in the case of outputting the mean structure.
In this work, we want the network to focus explicitly on learning the output
structure. In order to do so, we propose a unified multi-task framework to
regularize the training of the network when dealing with structured output
data. The framework contains a supervised task that maps the input to the
output and two unsupervised tasks where the first learns the input distribution
while the second learns the output distribution. The later one, which is the key
component of the framework, allows learning explicitly the output structure in an
unsupervised way. This allows the use of labels only data to learn such structure.
We validate our framework over a facial landmark detection problem where the
goal is to predict a set of key points on face images. Our experiments show that
the use of our framework speeds up the training of neural networks and improves
their generalization.

• Prior knowledge and classification
In chapter 3, we explore another aspect of learning representations within neural
network. We investigate the use of prior knowledge. Using prior knowledge can
be considered as a regularization. It allows to promote generalization without
the need to see large amount of training data. For instance, in the case of a
classification task, if someone provides us the information that “generally, a car
has four wheels”, it could save us the need to see a large number of car images to
understand such a key concept in order to figure out what a car is. In the context
of classification, a general prior knowledge about the internal representation of

3

a network is that samples within the same class should have the same internal
representation. Based on this belief, we propose a new regularization penalty
that constrains the hidden layers to build similar features for samples within the
same class. Validated on MNIST dataset and its variants, incorporating such
prior knowledge in the network training allows improving its generalization while
using few training samples.

• Transfer learning and medical domain
Our last contribution, presented in chapter 4, consists in a different strategy
to boost learning complex features using high capacity models while using few
training samples. The hope is to maintain the model generalization. As it seems
in contradiction with the generalization theory (Sec.1.1) that states that to well
fit a model with high capacity we need a large number of training data, empirical
evaluation shows the possibility of such approach. In this work, we provide a
real life application of a learning scheme that allows us to train a model with
high capacity using only few training samples. The learning scheme consists
in training a model with high capacity over a task that has abundant training
samples such as training large convolutional network over ImageNet dataset.
Then, we re-use part of the trained model, responsible for features building,
in the second task which has only few training samples. This training scheme,
known as transfer learning, allows the second task which has a lack of data to
benefit from another task with abundant data. We validate this learning scheme
over a real life application based on medical image data. The task consists in
localizing a specific vertebra, precisely the third lumbar vertebra, in a 3D CT
scan of a patient’s body. We provide adequate pre-processing and post-processing
procedures. We report satisfying results. This work was done in collaboration
with the clinic “Rouen Henri Becquerel Center” which provided us with the data.

How to Read This Thesis
This is a thesis by article. It is composed of 4 chapters. chapter 1 is an introduction

which is composed of four sections: Sec.1.1 presents machine learning backgrounds
with more focus on regularization; Sec.1.2 presents an introduction to feedforward
neural networks; Sec.1.3 contains methods that are used to improve neural networks
generalization; Sec.1.4 contains the conclusion of the first chapter. If the reader is
familiar with these subjects, we recommend skipping the first chapter. However, we
recommend reading Sec.1.1.3 that presents the regularization concept and Sec.1.3.2.8
which presents unsupervised and semi-supervised learning in neural networks as a
regularization.

chapter 2, chapter 3, and chapter 4 contain our three contributions.
In order to keep this thesis short, straightforward, and self-contained, we provide

one appendix that covers some basic definitions in machine learning and some technical
details on neural networks and regularization (Appendix A).

Chapter 1

Background

We discuss in this first chapter three important subjects that constitute the background
of this thesis: machine learning, neural networks, and methods to improve neural
networks generalization. In the first section (Sec.1.1), we provide an introduction to
machine learning problem with an emphasis on the generalization aspect and how one
can improve it. As this thesis concerns specifically neural networks, we then provide an
introduction to such models in the second section (Sec.1.2). Our main concern behind
this thesis is to provide new techniques to improve the generalization performance of
neural network, particularly when dealing with small training sets. Therefore, the last
section (Sec.1.3) contains a presentation of the most common methods used to improve
the generalization performance of neural networks.

This chapter is inspired from machine learning and neural networks literature
[305, 385, 5, 232, 154, 103] including precise definitions and theorems.

1.1 Machine Learning
This section contains an introduction to machine learning with a focus on the gen-
eralization aspect. Appendix A.1 contains basic definitions of machine learning if
needed.

1.1.1 Learning from Data
If a three-year-old kid is shown a picture and asked if there is a tree in it, it is high
likely that we get the right answer. If we ask the three-year-old kid what is a tree,
we likely get an inconclusive answer. We, humans, did not learn what is a tree by
studying the mathematical definition of trees. We learned it by looking at trees. In
other words, we learned from data, i.e., examples.

The term machine learning refers to the automated detection of meaningful patterns
in data. In the past couple of decades, it has become a common tool in almost any task
that requires information extraction from large datasets. Nowadays, we are surrounded
by machine learning based technology almost anywhere: search engines learn how
to bring us the best results, antispam software learns how to filter our email inbox,
and credit card transactions are secured by a software that learns to detect frauds.
Digital cameras learn to detect faces and intelligent personal assistance applications

6 Background

on smart-phones learn to recognize voice commands. Cars are equipped with accident
prevention systems that are built using machine learning algorithms. Hospitals are
equipped with programs that assist doctors in their diagnostics. Machine learning
is also widely used in scientific applications such as bioinformatics, medicine, and
astronomy.

A common feature of all these applications is that, in contrast to the traditional
use of computers, in these cases, due to complexity of the patterns that need to be
detected, a human programmer can not provide an explicit, fine-detailed specification
of how such tasks should be executed. Taking example from intelligent beings, many
of our skills are acquired or refined through learning from our experience. Machine
learning tools are concerned with endowing programs with the ability to “learn” and
adapt.

Learning can be thought of as the process of converting experience into expertise
or knowledge. Machine learning aims at incorporating such a concept into computers
or any other computing device such as phones, tablets, etc. Now, why do we need
machine learning tools? one of the reasons is to automate processes and eliminate
humans routines to free them to do more intelligent and delicate tasks. Another
important reason is to fill the gap in the human capabilities to perform tasks that
go beyond their abilities. Such tasks require analyzing very large and complex data:
astronomical data, turning medical archives into medical knowledge, weather prediction,
analysis of genomic data, web search engines, electronic commerce, etc. With more
and more available digitally recorded data, it becomes obvious that there is meaningful
information buried in such data that are too large and too complex for human to
process them or make sense of them. The last reason that we mention here is the
limiting feature of traditional programmed tools which is their rigidity. Once installed,
a programmed tool does not change. However, many tasks change over time or from a
user to another. Machine learning based tools provide a solution to such issues. They
are, by nature, adaptive to changes in the environment they interact with. A typical
successful application of machine learning to such problems include programs that
decode handwritten text, where a fixed program can adapt to variations between the
handwriting of different users.

Machine learning covers a large spectrum of tasks to adapt to the human needs. Such
tasks include classification, regression, ranking, clustering, dimensionality reduction, etc.
Machine learning also provides different learning strategies as an adaptive way to the
nature of available data and the environment including supervised/unsupervised/semi-
supervised learning, transductive inference, online learning, reinforcement learning,
active learning, etc. We assume the reader is familiar with basic definitions of machine
learning. In the other case, Appendix A.1 contains such definitions.

Let us go back to our problem of tree detection in images. To solve this problem we
decide to use a machine learning tool in a supervised context where we collect a set of
images and annotate them to indicate if they contain a tree or not. One may ask the
following questions: is it possible to learn the concept of trees? which machine learning
algorithm should we use? how many pictures of trees do we need for learning? is
there any guarantee that our algorithm will succeed to detect a tree that was not seen
during training? such questions are legitimate and they construct the foundation of
machine learning. Computational learning theory [232], which is a subfield of artificial
intelligence devoted to studying the design and analysis of machine learning algorithms,
provides us with well studied and formal frameworks to answer the aforementioned

1.1 Machine Learning 7

questions and more. For the sake of simplicity, and in order to address such questions,
we decide to use in this thesis the probably approximately correct learning framework,
also known as PAC learning, proposed by Leslie Valiant [436] in the 80′s.

A fundamental pillar in the learning concept is the ability of the learner to perform
well for unseen situations. This aspect in learning is known as generalization. It is
likely in practice that the learner fails to acquire such capability and falls into what
is known as overfitting, a situation where the learner performs well on the training
data but fails to generalize to unseen data. Regularization is a well known approach
in machine learning that we use to deal with such issue. For the sake of simplicity
and coherence with our contributions in this thesis, we will present in the next section
only some selected concepts in the PAC learning framework in order to answer the
aforementioned questions while building our way and justifications toward the concept
of regularization.

1.1.2 Statistical Learning and Generalization: PAC Learning
In this section, we present a simplified version of PAC learning framework in order
to define the learnability of a concept, the generalization aspect, and the number
of samples needed to learn. For illustration, we consider PAC learning framework
for learning a binary classification task. Extension to other tasks is possible as well
[305, 385, 5].

We denote by X the set of all possible examples or instances. X is also referred
to as the input space. The set of all possible labels or target values is denoted by Y
which is referred to as the output space. Y is limited to two labels, Y = {0, 1}, where
1 refers to the class tree while 0 refers to the class not-tree.

A concept c : X → Y is a mapping function. A concept class is a set of concepts
we may wish to learn one of them and is denoted by C. We note by h a hypothesis
which is also a mapping function: h : X → Y. H is the hypothesis set. Concepts
and hypotheses have the same nature, both of them are mapping functions that take
an element from X and map it into Y. Therefore, the terms hypothesis and concept
can be interchangeable. In this context, the main difference between a concept and
a hypothesis is that the learner does not have access to the concept c while it does
know the hypothesis h. Also, this distinction makes it possible that the set of possible
hypotheses may not contain c, the true hypothesis that associates a label to a random
input. In this context, the aim of the learning algorithm is to pick a hypothesis h
that approximates c. We note that in the case of classification, a hypothesis h and a
concept c can be called a classifier.

Let us assume that examples are independently and identically distributed (i.i.d.)
according to some fixed but unknown distribution D. The learning problem is then
formulated as follows. The learning algorithm considers a fixed set of possible concepts
H, which may not coincide with C. It receives N samples S = (x(1), · · · , x(N)) drawn
i.i.d. according to D as well as the labels (c(x(1)), · · · , c(x(N))), which are based on
a specific target concept c ∈ C to learn. The set {(x(i), c(x(i)))}N

i=1 is known as the
training set. In order to measure the success of a selected hypothesis h, we need an
error measure. In the case of classification, we can use a 0-1 loss function defined as an

8 Background

indicator function that indicates whether h makes a mistake or not over a sample x,

1h(x)̸=c(x) =
{

1 if h(x) ̸= c(x)
0 if h(x) = c(x) .

(1.1)

The loss function, defined to measure the error committed by h, depends on the task in
hand. For instance, in a regression task, a possible loss is the square loss (h(x)− c(x))2.
The error of a hypothesis over all examples that can be sampled from D is referred to
as generalization error.

The generalization error of a hypothesis h ∈ H, also referred to as the true error,
or just error of h, is denoted by R(h) and defined as follows [305, 385, 5]

Definition 1.1. Generalization error
Given a hypothesis h ∈ H, a target concept c ∈ C, and an underlying distribution D,
the generalization error or risk of h is defined by

R(h) = Pr
x∼D

[h(x) ̸= c(x)] = E
x∼D

[1h(x)̸=c(x)] . (1.2)

The learning algorithm task is to use the labeled samples S to select a hypothesis
hS ∈ H that has a small generalization error with respect to the concept c.

The generalization error of a hypothesis is not directly accessible to the learning
algorithm since both distribution D and the target concept c are unknown. Therefore,
another method is required in order to measure how well does a hypothesis h. A useful
notion of error that can be calculated by the learning algorithm is the training error,
which is the error of the classifier h over the training set. The term empirical error or
empirical risk are also used for this error. It is defined as follows [305, 385, 5]

Definition 1.2. Empirical error
Given a hypothesis h ∈ H, a target concept c ∈ C, and a set of samples S =
(x(1), · · · , x(N)), the empirical error or the empirical risk of h is defined by

R̂(h) = 1
N

N∑
i=1

1h(x(i))̸=c(x(i)) . (1.3)

Thus, the empirical error of h ∈ H is the average error over the samples S, while
the generalization error is the expected error based on the distribution D. Since the
training samples S is a snapshot of D that is available to the learning algorithm, it
makes sense to search for a solution that works well on S. This learning paradigm that
outputs a hypothesis h that minimizes R̂(h) is called Empirical Risk Minimization or
ERM for short.

The following introduces the PAC learning framework. We denote by O(n) an
upper bound on the cost of the computational representation of any x ∈ X and by
size(c) the maximal cost of the computational representation of c ∈ C. For example, x
may be a vector in Rn, for which the cost of an array-based representation would be
O(n).

Definition 1.3. PAC-learning
A concept class C is said to be PAC-learnable if there exists an algorithm A and a

polynomial function poly(·, ·, ·, ·) such that for any ϵ > 0 and δ > 0, for all distributions

1.1 Machine Learning 9

D on X and for any target concept c ∈ C, the following holds for any number of
samples N ≥ poly(1/ϵ, 1/δ, n, size(c)):

Pr
x∼DN

[R(hS) ≤ ϵ] ≥ 1− δ . (1.4)

A concept class C is thus PAC-learnable if the hypothesis returned by the learning
algorithm A after observing a number of points is approximately correct (with error
at most ϵ) with high probability (at least 1 − δ), which justifies the PAC-learning
terminology. The definition of PAC-learning contains two approximation parameters
which are predefined beforehand. The accuracy parameter ϵ determines how far the
output hypothesis (classifier) is from the optimal one, and a confidence parameter δ
which indicates how likely the classifier to meet that accuracy requirement.

Several key points of the PAC-learning definition are worth mentioning. First, the
PAC-learning framework is a distribution-free model, no particular assumption is made
about the distribution from which samples are drawn. Second, the training data and
the test data are drawn from the same distribution D. This is a necessary assumption
for the generalization to be possible in most cases. Finally, the PAC-learning framework
deals with the learnability of a concept class C not a particular concept c.

Up to now, we have provided only the definition of a learnable concept class. The
next paragraph provides a condition on the sample complexity [305, 385], i.e., the
minimal number of samples needed in order to guarantee a probably approximately
correct solution. An upper bound of the generalization error is as well provided. First,
let us consider the case of a consistent hypothesis hS which is a hypothesis that admits
no error on the training samples S: R̂(hS) = 0. Whereas, hS is said to be inconsistent
when it has errors on the training samples: R̂(hS) > 0.
Theorem 1.1. Learning bounds: finite H, consistent case
Let H be a finite set of functions mapping from X to Y. Let A be an algorithm that for
any target concept c ∈ H and any i.i.d. samples set S returns a consistent hypothesis
hS : R̂(hS) = 0. Then, for any ϵ, δ > 0, the inequality Pr

S∼DN
[R(hS) ≤ ϵ] ≥ 1− δ holds if

N ≥ 1
ϵ

(
log|H|+ log 1

δ

)
. (1.5)

This sample complexity result admits the following equivalent statement as a general-
ization bound: for any ϵ, δ > 0, with probability at least 1− δ,

R(hS) ≤
1
N

(
log|H|+ log 1

δ

)
. (1.6)

Theorem 1.1 shows that when the hypothesis set H is finite, A, that returns a
consistent hypothesis, is a PAC-learning algorithm under the condition of the availability
of enough training samples. As shown by Eq.1.6, the generalization error of consistent
hypotheses is upper bounded by a term that decreases as a function of the number of
training samples N . This is a general fact, as expected, learning algorithms benefit
from large labeled training samples. The decrease rate of O(1/N) guaranteed by this
theorem, however, is particularly favorable. The price to pay for coming up with a
consistent hypothesis is the use of a larger hypothesis set H in order to increase the
chance to find target concepts. As shown in Eq.1.6, the upper bound increases with
the cardinality |H|. However, that dependency is only logarithmic. We note that the

10 Background

term log|H| can be interpreted as the number of bits needed to represent H. Therefore,
the generalization guarantee of the theorem is controlled by the ratio of this number of
bits log|H| and the number of training samples N .

In most general case, there may be no hypothesis in H consistent with the labeled
training samples. This, in fact, is the typical case in practice where the learning
problem may be somewhat difficult or the concept class may be more complex than the
hypothesis set used by the learning algorithm. The learning guarantees in this more
general case can be derived under an inequality form that relates the generalization
error and empirical error for all the hypotheses h ∈ H [305, 385].

Theorem 1.2. Learning bound: finite H, inconsistent case
Let H be a finite hypothesis set. Then, for any δ > 0, with probability at least 1− δ,
the following inequality holds:

∀h ∈ H, R(h) ≤ R̂(h) +
√

log(|H|) + log(2
δ
)

2N
. (1.7)

Thus, for a finite hypothesis set H,

R(h) ≤ R̂(h) + O

√ log2(|H|)
N

 . (1.8)

The sample complexity required in this case is,

N ≥ 1
2ϵ2

(
log|H|+ log 1

δ

)
. (1.9)

Several remarks similar to those made on the generalization bound in the consistent
case can be made here: a larger number of training samples N guarantees better
generalization, and the bound increase with the size |H|, but only logarithmically. But,
here, the bound is a less favorable function of log2|H|

N
; it varies as the square root of this

term. This is not a minor price to pay: for a fixed |H|, to attain the same guarantees
as in the consistent case, a quadratically larger labeled samples is needed.

We note that the bound suggests seeking a trade-off between reducing the empirical
error versus controlling the size of the hypothesis set: larger hypothesis set is penalized
by the second term but could help reducing the empirical error, that is the first term.
But, for a similar empirical error, it suggests using a small hypothesis set. This can be
viewed as an instance of the so-called Occam’s razor principle1 which states that: all
other things being equal, a simpler (smaller) hypothesis set is better [305].

This concludes our introduction of the PAC-learning framework. We have seen
during this short review the definition of learnability which indicates if an algorithm
has learned to do some task. We investigated as well the number of training samples
required for a learning algorithm to achieve some predefined accuracy. We have seen

1Occam’s razor principle, after William of Ockham, a 14th-century English Logician, is a problem-
solving approach that, when presented with competing explanations, a short explanation (that is,
a hypothesis with short length) tends to be more valid than a long explanation. In computational
learning theory context, Theorem 1.1 and Theorem 1.2 provide a justification of such principle
[305, 385].

1.1 Machine Learning 11

also the relation between the generalization error and the empirical error as a function
of the size of the hypothesis space H and the number of training samples N . This
relation suggests that in order to obtain better generalization error, it is better to
choose small hypothesis set and use large number of training samples.

As we mentioned in the beginning of this section, PAC-learning framework is a
theoretical learning framework that provides learning guarantees for finite hypothesis
sets. However, in practice, we mostly deal with infinite hypothesis set such as the
set of all hyperplanes. While this framework remains theoretical, it provides us
with general guidelines to build good learning algorithms. In the case of infinite H,
other learning frameworks can be required to provide learning guarantees. We can
mention Vapnick and Chervonenkis learning framework that introduces the concept of
Vapnik–Chervonenkis dimension [438], also known as VC-dimension which is covered
in [305, 385].

As we saw earlier, the generalization of a set of hypothesis H depends on two main
aspects: the number of training samples and the size of the hypothesis set. In practice,
we usually have a fixed number of training samples. The only variable that we can
control is |H|. Now, given this fixed number of samples, how one can choose the right
size of a hypothesis set |H|? In the following, we address such issue by introducing the
concept of regularization.

1.1.3 Empirical Risk Minimization with Inductive Bias
We discuss here some model selection and algorithmic ideas based on the theoretical
results presented in the previous section. Let us assume an i.i.d. labeled training set
S with N samples and denote the empirical error of a hypothesis h on S by R̂S(h) to
explicitly indicate its dependency on S.

In the following, we show that an Empirical Risk Minimization algorithm can result
in the hypothesis that best fits the training data but lacks the generalization aspect.
As a possible solution, we present hypothesis selection approaches that, while seeking
a hypothesis that minimizes the ERM, it prevents overfitting the training data and
promotes generalization for unseen situations [305, 385]. Such hypothesis selection
methods are known under the name of inductive biases [305, 385, 299, 159].

1.1.3.1 Inductive Bias

Empirical Risk Minimization algorithm (ERM), which only seeks to minimize the error
on the training samples [305]

hERM
S = arg min

h∈H
R̂S(h) , (1.10)

might not be successful, since it disregards the complexity term of H [305]. In practice,
the performance of the ERM algorithm is typically poor, particularly when using
limited training data, since the learning algorithm may fail to find a hypothesis that
is able to generalize well for data outside the training set [305, 385, 299, 159]. This
situation is known as overfitting. Additionally, in many cases, determining the ERM
solution is computationally intractable. For example, finding a linear hypothesis with
smallest error on the training samples is NP-hard (as a function of the dimension of
the space) [305].

12 Background

A common solution to the overfitting issue of ERM algorithm is to apply the ERM
learning rule over a restricted search space [385]. Formally, a set of predictors H is
chosen in advance before seeing the data. Such prior restrictions are often called an
inductive bias. Since the choice of such restrictions is determined before the learning
algorithm sees the training data, it should ideally be based on some prior knowledge
about the problem in hand. The hope is that the learning algorithm will search for a
hypothesis such that when the ERM predictor has good performance with respect to
the training data, it is more likely to perform well over the underlying data distribution.

Inductive bias of a learning algorithm, also known as learning bias, can be defined as
the set of assumptions that the learner uses to predict correct outputs given inputs that
have not been seen before [299]. Therefore, the aim of inductive bias is to promote the
generalization. A bias refers to any basis for choosing a generalization hypothesis over
another, other than strict consistency with the observed training instances [299, 435].
A fundamental question is raised here: what kind of assumptions and over which
hypothesis classes an ERM learning algorithm will not result in an overfitting?

In machine learning, different inductive biases can be found [300, 299, 435] including:

• Factual knowledge about the domain and the training data.

• Maximum margin when attempting to separate two classes. The assumption
behind is that distinct classes tend to be separated by wide boundaries. Such
assumption is behind support vector machines [93].

• Minimum features: unless there is a good justification that a feature is useful,
it should be deleted. This is the assumption behind feature selection approach
[184, 222, 53].

• Manifold assumption and nearest neighbors: assumes that most of the samples
in a small neighborhood in representation space belong to the same class [71].
Given a sample with an unknown class label, guessing that it belongs to the same
class as the majority in its immediate neighborhood is a direct application to
such assumption. k-nearest neighbors algorithm [222, 305, 385] is based on such
assumption.

• Minimum description length and the bias toward simplicity and generality: the
minimum description length principal (MDL) is a formalization of Occam’s razor
principle in which the best hypothesis for a given set of data is the one that leads
to the best compression of data. This paradigm was introduced in [362] and it is
an important concept in information theory and computational learning theory
[174]. Considering that any set of data can be represented by a string of symbols
from a finite alphabet, the MDL principle is based on the intuition that any
regularity in a given set of data can be used to compress it, i.e., such data can be
described using fewer symbols than needed to describe the data literally [175]. In
inductive and statistical inference theory, such concept promotes the idea that all
statistical learning is about finding regularities in data, and the best hypothesis
to describe the regularities in data is also the one that is able to compresses the
data the most. Theorem 1.1 and Theorem 1.2 are based on such concept where
the notion log2(|H|) is used as a description language to measure the length of
a hypothesis set. Such theorems suggest that having two hypotheses sharing
the same empirical risk, the true error of the one that has shorter description

1.1 Machine Learning 13

can be bounded by a lower error value. Seeking a hypothesis that best fits the
data while keeping its complexity low is known as regularization. This aspect is
described more in details in the next section.

A bias needs to be justified in order to be used to constrain the hypothesis search [299].
While inductive biases can help preventing overfitting the training data, strong biases
can prevent learning from data [385]. Therefore, a tradeoff is required.

In the following, we present one of the well known and well studied inductive biases
which based on preferring hypothesis with low complexity [184, 385, 305]. Such bias is
justified theoretically as well (Sec.1.1.2).

1.1.3.2 Example of Inductive Bias: Preference of Hypothesis Sets with
Low Complexity (Regularization)

While guarantees of Theorem 1.2 and Theorem 1.1 hold for finite hypothesis sets, they
already provide some useful insights for the design of learning algorithms. Similar
guarantees hold in the case of infinite hypothesis sets [305]. Such results invite us to
consider in a learning context two terms: the empirical error and a complexity term,
which here are a function of |H| and the sample size N .

Structural Risk Minimization learning paradigm (SRM) comes to alleviate the
overfitting issue of the ERM learning paradigm. While the ERM considers only
the empirical error, the SRM considers the empirical error and the hypothesis set
complexity which are both involved in bounding the generalization error. SRM consists
in considering an infinite sequence of hypothesis sets with increasing sizes [305]

H0 ⊂ H1 ⊂ · · ·Ht · · · , (1.11)

and find the ERM solution hERM
t for each Ht. The selected hypothesis is the one among

the hERM
t solutions with the smallest sum of the empirical error and a complexity term

complexity(Ht, N) that depends on the size (or more generally the capacity, that is,
another measure of the richness of H) of Ht, and the sample size N [305]

hSRM
S = arg min

h∈H
t∈N

R̂S(h) + complexity(Ht, N) . (1.12)

Fig.1.1 illustrates the SRM. While SRM benefits from strong theoretical guarantees, it
is typically computationally expensive, since it requires to determine the solution of
multiple ERM problems [305].

Instead of performing an exhaustive search among different hypothesis sets Ht

with increasing sizes |Ht|, an alternative family of algorithms is based on a more
straightforward optimization that consists in minimizing simultaneously the sum of
the empirical error and a regularization term that penalizes the complexity of the
hypothesis that belongs to a fixed hypothesis set H∗. Therefore, it is natural to choose a
hypothesis set H∗ with large size. One way to measure the complexity of a hypothesis is
by counting its number of parameters. Let us consider wh ∈ Rm the set of parameters
of a linear hypothesis h ∈ H∗. Therefore, hypothesis with few parameters are less
complex than hypothesis with more parameters. Given that the optimal number of
parameters is usually unknown in practice, a hypothesis set with high complexity is
usually used. However, such hypothesis is more likely to overfit the data, therefore fails

14 Background

measure of capacity

error

training error

complexity term

bound on generalization error

Fig. 1.1 Illustration of structural risk minimization (SRM). The plots of three errors are
shown as a function of a measure of capacity. As the size or capacity of the hypothesis
set increases, the training error decreases, while the complexity term increases. SRM
(shown in red) selects the hypothesis minimizing a bound on the generalization error,
which is a sum of the empirical error, and the complexity term. (Reference: [305])

to generalize. An intuitive solution to this issue is to constrain the search algorithm to
find a hypothesis h with wh that has only few non-zero entries. Setting a subset of
the parameters to zero is a way of omitting them, i.e., reducing the complexity of the
hypothesis since now it has less non-zero parameters. This is known as sparsity and
it is motivated from signal approximation and compressed sensing domain [184]. In
practice, many classes of data are sparse [184], which means that only few components
of the input data are relevant. Hence, sparse parameters are needed. We note that
sparsity and feature selection are two related subjects [184].

A straightforward way to constrain the search algorithm to find sparse solutions
is to count the non-zero entries of the parameters wh which can be done using L0
parameter norm

L0(wh) = ∥wh∥0 =
m∑

i=1
1wih

̸=0 , (1.13)

which counts the non-zero elements of wh [67].
In terms of computational complexity, constraining the search algorithm using L0

norm was shown to be NP-hard [312]. It was shown in [67, 109, 184] that L0 and Lp

norm minimization,
Lp(wh) = ∥wh∥p =

m∑
i=1

(|wih
|p)1/p

, (1.14)

for p = 1, has identical solution under some conditions over wh. Hence, L0 norm
minimization can be relaxed with L1 norm minimization. However, these conditions
may be too strong for practical use. Instead, one may consider the sparse solution

1.1 Machine Learning 15

provided by a relaxed problem for a fixed p with 0 < p < 1 [72, 73, 77, 125, 309].
Nonetheless, Lp norm minimization for 0 < p < 1 is strongly NP-hard [140]. However,
any basic feasible solution of L0 norm minimization is a local minimizer of Lp norm
minimization with 0 < p < 1 [140]. This is motivated by the fact that local minimizers
are easy to certify and compute [140]. Although L1 is one of the most common norm
used to constrain the hypothesis complexity [184], other norms with p > 1, can be used
[425, 468] such as the popular L2 norm [429, 305].

To sum up, the regularized optimization problem which is composed of the empirical
error and a regularization term, that is typically defined as Lp(wh), can be written as
[305]

hREG
S = arg min

h∈H∗
R̂S(h) + λLp(wh) , (1.15)

where λ ≥ 0 is a regularization parameter, which can be used to determine the trade-off
between empirical error minimization and the model complexity. In practice, λ is
typically selected using n-fold cross validation.

Although, in the context of machine learning, regularization is best known for
reducing the hypothesis complexity [184, 385], it can go beyond that to reach the
inductive bias definition (Sec.1.1.3.1). Therefore, regularization can be defined as
any process that allows reducing the generalization error without necessarily reducing
the empirical error. This is usually done by introducing prior knowledge that allows
narrowing down the hypothesis space to specific subset. This prior knowledge may
concern the complexity of the model, the data, or anything related to the task in hand
[154].

In the following, we provide a summary of this section about machine learning and
generalization.

1.1.4 Summary
In this section, we have seen that learning from data is a crucial part of today’s
technology. In order to make it work, some important questions must be addressed
including what can a machine learn? how many samples are needed to guarantee
a better generalization? how to deal with failure of generalization?. In the context
of learning theory, we have presented the concept of learnability throughout the
PAC learning framework which provides us general guidelines to build good learning
algorithms.

We have seen that the generalization error upper bound depends on the number
of training samples and the complexity of the hypothesis. Using the ERM learning
paradigm to find the best hypothesis that fits the training samples can lead to poor
results due to overfitting since ERM takes in consideration only the training samples. A
possible and efficient solution to deal with the overfitting issue of the ERM is to restrict
the hypothesis search space [385]. For instance, one can choose a priori a hypothesis
set H∗ before seeing the training samples. Such priors are known as inductive bias.
Restricting the search space by picking such hypothesis set independently from data
should ideally be done based on some prior knowledge about the problem to be learned.
As an example of inductive bias, we have considered the prior that consists in preferring
hypotheses with low complexity which is justified theoretically. As we have seen, a
hypothesis with low complexity is in favor of generalization. However, such hypotheses

16 Background

may not be able to reduce the empirical error, i.e., explain the observed data. In the
other hand, a hypothesis with high complexity may have low empirical error but it will
increase the upper bound of the generalization error leading to overfitting. Therefore,
a tradeoff between reducing the empirical error and the hypothesis complexity must be
achieved. The search for a hypothesis with low complexity in the context of learning
is known as regularization. This definition can be extended to include methods that
promote the generalization aspect but without necessarily affecting the hypothesis
complexity. We cover in Appendix A.2.1 technical details on the bias-variance tradeoff
which is related to the empirical error and the hypothesis complexity tradeoff.

In this thesis, we deal exclusively with neural network models. Therefore, we provide
in the next section an introduction to the subject. We provide more technical details
on such models in Appendix A.2.2. If the reader is familiar with the neural network
field, we recommend skipping toward Sec.1.3 where we present different methods to
improve the generalization performance of such models.

1.2 Introduction to Feedforward Neural Networks
Artificial neural networks (ANN) are a particular type of parametrized models in
machine learning. We provide in this section an introduction to such models. We cover
more technical details on neural networks in Appendix A.2.2.

While providing a presentation of ANN, we highlight also important historical
key moments in neural networks origins. Extensive tracking of the history of neural
networks and deep learning can be found in [380].

1.2.1 Early History
In 1943, neurophysiologist Warren McCulloch and mathematician Walter Pitts proposed
a mathematical model [288] of neurons in the brain based on threshold logic and
demonstrated that combined together they can compute logic functions. They modeled
a simple neural network through electrical circuit. Their model lacked a learning
mechanism which is important to solve artificial intelligent problems.

In 1949, psychologist Donald Olding Hubb proposed a fundamental work [189]
about the learning process. His hypothesis states that knowledge and learning in the
brain occurs primarily through formation and changes of synapses between neurons,
known as synaptic plasticity.

In 1957, psychologist Frank Rosenblat proposed the perceptron [364] model based
on the work of Warren Mcculloch, Walter Pitts [288] and Donald O. Hubb [189]. Later,
he published a book where he described in depth the perceptrons and their related
proofs [365].

After 1967, research in neural networks stagnated after the work of Marvin Minsky
and Seymour Papert [296] who showed the limitation of the perceptrons which are
unable to solve problems which are not linearly separable such as the simple XOR
problem.

In the following, we present a brief and formal description of perceptrons.

1.2 Introduction to Feedforward Neural Networks 17

1.2.2 Perceptron
A perceptron models one simple neuron. Formally, it is a simple function with an
argument that is linear with respect to its input,

ŷ = f(x) = ϕ(x ·w + b) = ϕ(
D∑

i=1
xiwi + b) , (1.16)

where x ∈ RD is an input vector, w is a vector of parameters known as weights. b is a
scalar parameter known as bias. ϕ(·) is called an activation function and is typically
nonlinear. If ϕ(·) is the Heaviside step function, the perceptron has only two states: 0
or 1 which might indicate two different classes. An illustration of a simple perceptron
is depicted in Fig.1.2.

To simplify notations, the weights vector w are extended by adding extra component
to represent the bias b. Then, the input x is also extended by adding an additional
component with value of 1. From now on, we consider the extended notation unless we
state the opposite.

xD

...

x3

x2

x1

∑
ŷ

+1

w1

w2

w3

wD

ϕ(·)

b

Fig. 1.2 Perceptron model. (Notation: xi is the ith component of x the same as xi in
Eq.1.16.)

Learning consists in searching for the best weights and bias that make ŷ close to the
target y. Rosenblatt training algorithm consists in updating the weights by increasing
or decreasing w if the output ŷ is smaller or greater than the target y as follows,

w ← w − (ŷ − y)x , (1.17)
where y ∈ {0, 1}, and ŷ is the prediction. This algorithm continues learning as long as
the model commits a mistake in classification. It has been shown in [322] that in the
case of two linearly separable classes, this algorithm converges in a finite number of
iterations. However, in the case where the two classes are not linearly separable, the
algorithm never converges.

One perceptron can work only with two classes. It is possible to extend a perceptron
to work with more than two classes, i.e., M > 2. This can be done using M perceptrons

18 Background

connected to the same input x but each one has its own weights and bias. By doing
so, an output vector is obtained instead of one scalar,

ŷ : ŷj = fj(x),∀j = 1, . . . , M . (1.18)
In this case, the predicted class k is given by the class of the maximum output,

k : ŷk ≥ ŷj, ∀j = 1, . . . , M . (1.19)
Fig.1.3 illustrates an example of multiclass perceptron.

+1

xD

...

x3

x2

x1

∑
...

∑

∑

ŷM

...

ŷ2

ŷ1W ϕ(·)

ϕ(·)

ϕ(·)

ŷx

Fig. 1.3 Multiclass perceptron. (Notation: xi is the ith component of x. ŷj is the jth

component of ŷ).

The training of multiclass perceptron is done by applying the peceptron learning
rule described previously for each perceptron. Let us use a matrix notation where
W ∈ R(D+1)×M is the weights of the multiclass perceptron. x is vector of 1× (D + 1),
ŷ−y is a vector of errors with size 1×M , yj=1,...,M ∈ {0, 1} is a vector of labels where
1 indicates the correct class, and ∑M

j=1 yj = 1 to make sure that every sample belongs
to only one class. The update rule can be written as,

W ←W − x⊤ · (ŷ − y) . (1.20)

In 1957, Frank Rosenblatt implemented a multiclass perceptron in custom-built
hardware under the name “Mark I” perceptron with 20 × 20 inputs and 8 output
classes. Preceding this work by many years, in 1951, Marvin Minsky has implemented a
hardware neural network based on memory and rewards named “SNARC” (Stochastic
Neural Analog Reinforcement Calculator). This machine is considered one of the first
pioneering works in the field of artificial intelligence.

In the next paragraph, we present a slightly different approach to train a perceptron
based on gradient descent.

1.2 Introduction to Feedforward Neural Networks 19

1.2.3 Gradient Based Learning
In 1960, Bernard Widrow and Marcian Hoff developed a linear model [459] similar to
the perceptron but without the thresholding activation function. This allows using
gradient descent method and using the derivatives. They named their model ADALINE
for ADAptive LINear Elements. The model is an electrical circuit based on a new
circuit called memistor which is a resistor with memory. For training their model,
Widrow and Hoff proposed a slightly modified version of the perceptron learning rule.
Instead of using the misclassification error, they proposed to use the squared error as
an error measure for each sample as follows,

ℓ(f(x), y) = 1
2

M∑
j=1

(yj − fj(x))2 . (1.21)

Therefore, minimizing the mean squared error over all the training samples N can be
formulated as follows,

L(W) = 1
N

N∑
i=1

ℓ(f(x(i)), y(i)) . (1.22)

In this case, ŷ(i) = f(x(i)) = x(i) ·W .
To train the ADALINE model, they propose to use gradient descent as follows,

W ←W − α
∂L(W)

∂W
, (1.23)

where α is a learning rate which controls the speed of convergence. This algorithm
suggested to move the parameters weights in the direction that decreases the total
error L(W). This direction is obtained by computing the derivative of the total train
loss L(W) with respect to the weight vector using the chain rule. Using the linearity
of the derivatives of Eq.1.22, we can compute the derivatives of one example (x, y) in
Eq.1.21, then we take the average over all the samples to obtain ∂L

∂W
, the derivatives of

the total loss in Eq.1.22. For one training sample, deriving the loss in Eq.1.21 with
respect to a parameter weight gives,

∂ℓ

∂W ij
= ∂ℓ

∂ŷj
· ∂ŷj

∂W ij
, ∀i = 1, . . . , D + 1,∀j = 1, . . . , M , (1.24)

where,
∂ℓ

∂ŷj
=

∂ 1
2(ŷj − yj)2

∂ŷj
= ŷj − yj ⇒ ∂ℓ

∂ŷ
= ŷ − y . (1.25)

The notation xi is the ith component of x, ŷj is the jth component of ŷ, and W ij is
the component at the ith row and the jth coloumn of W .
In the case where there is no activation function,

∂ŷj

∂W ij
=

∂
(∑

k xkW kj
)

∂W ij
= xi, ∀i = 1, . . . , D + 1,∀j = 1, . . . , M . (1.26)

20 Background

This gives the delta rule learning algorithm,

W ←W − α
∂L

∂W
= W − αx⊤ · (ŷ − y) . (1.27)

One can see that the delta rule (Eq.1.27) is similar to the perceptron learning rule
(Eq.1.20) except for the learning rate α.

In the case where there is a differentiable activation function ŷj = ϕ(hj = ∑
k xkW kj),

Eq.1.26 can be developed using chain rule as follows,

∂ŷj

∂W ij
= ∂ŷj

∂hj
· ∂hj

∂W ij
(1.28)

= ∂ϕ(hj)
∂hj

·
∂
(∑

k xkW kj
)

∂W ij
(1.29)

= ∂ϕ(hj)
∂hj

· xi . (1.30)

Therefore, the delta rule in this case is,

W ←W − αx⊤ · ∇hϕ(h) · (ŷ − y) . (1.31)

In the case of the perceptron, which uses the Heaviside step function, ∇hϕ(h) is not
defined at zero and it is equal to zero everywhere else which makes the application
of the delta rule on the perceptron impossible. This led to the use of differentiable
functions such as the sigmoid functions. Appendix A.2.2.2 covers more details about
other activation functions.

In the following, we present the extension of the perceptron to multilayer perceptron
which is a critical change in the history of neural networks. We briefly highlight the
historical reasons for such a major change.

1.2.4 Multilayer Perceptron and Representation Learning
Although perceptrons seemed promising at the beginning, it was quickly shown that
they could not be trained to separate every type of classes. In 1969, Marvin Minsky and
Seymour Papert published their book “Perceptrons: An Introduction to Computational
Geometry” [296] which put an end to perceptrons. In this book, the authors pointed
out fundamental limitations of the perceptron. For instance, a single perceptron can
not solve an XOR problem. Moreover, they conjectured, mistakenly, that similar results
would be found when using multilayer perceptrons. This book caused a significant
decline in interest and funding of neural networks research. This led to an abandonment
of connectionism which was the other part of Artificial Intelligence with concurrence
with symbolic reasoning which Minsky and Papert were part of. This major criticism
participated in starting the AI winter2. Three years later, Stephen Grossborg published
a series of work introducing neural networks modeling XOR [172]. In 1987, Minsky
and Papert reprinted their book with the name “Perceptrons - Expanded Edition”

2Between 1974-1980: AI winter is a period of reduced funding and interest in artificial intelligence
research. At this period, AI has experienced several hype cycles, disappointment and criticism,
followed by funding cuts. Years later, interest into AI was back.

1.2 Introduction to Feedforward Neural Networks 21

[297] where some errors of the original book were shown and corrected. Despite
this controversy, the reprinted version contains a handwritten dedication to Frank
Rosenblatt who did not live to see it. As a side note, Minsky and Rosenblatt knew
each other since adolescence. They studied at the same high school with one different
year. However, they pursued different paths in AI research. While Minsky promoted
symbolism, Rosenblatt promoted connectionism and learning. More on this controversy
can be found in [326].

Despite this pessimism toward perceptrons, the book of Minsky and Papert provided
new insights and research directions to improve them. The main result is that the
perceptron fails in many recognition tasks not because of the learning algorithm
but because of its lack of represention the required knowledge about the task to be
solved. The authors stated that no machine can learn to recognize an object unless
it possesses, at least potentially, some scheme for representing the object. In the
case of the perceptron, Minsky and Papert pointed out that if there is a layer of
simple perceptron-like hidden units which can recode the input pattern into an internal
representation, there is always a recoding in this hidden representation that can support
any required mapping from the input to the output. We note that at that time, few
networks use this technique such as MADALINE [463] which has a different training
algorithm than the perceptron rule referred to as MRII algorithm for MADALINE Rule
II. MADALINE consists basically of two sequential layers where each one is composed
of multiple ADALINE neurons [459] that are followed by a threshold function. The
use of threshold functions prevents MADALINE from using gradient based training
algorithms. MRII algorithm uses instead the principle of minimal disturbance [215]
where the network parameters are disturbed whenever there is a mistake in the output.
MADALINE is an extension of the two-layer network of Ridgway [215] which is based
on two layers: an adaptive layer that contains multiple ADALINE neurons followed each
by a threshold function; then a fixed logic layer that takes the output of the previous
ADALINEs as input to provide the final output. The logic layer is a simple logic
function: “AND”, “OR”, and majority vote. MADALINE goes further by implementing
such logic functions using ADALINE neurons and provides a learning algorithm for a
multilayer network. Earlier to that, particularly in the beginning of the 60′s, we find
Gamaba machines [137] as a two perceptrons machine where the output of the first
one is fed to the second one. The main issue at the time is that there was no strong
learning algorithm to learn networks with hidden units. Moreover, the computation
power required by such networks exceeds what was available at the moment. Neural
networks field had to wait until the arrival of the backpropagation algorithm (Appendix
A.2.2.1) for training multilayer networks. An illustration of a multilayer perceptron is
depicted in Fig.1.4.

We discuss in Appendix A.2.2 more details on neural networks including back-
propagation algorithm (Sec.A.2.2.1), nonlinear activations (Sec.A.2.2.2), universal
approximation properties and depth (Sec.A.2.2.4), and other neural architectures
(Sec.A.2.2.5).

Neural network domain kept struggling in the late of 90′s and the beginning of
2000′s for many reasons including the lack of data, practical issues in optimization
algorithms, and most importantly the lack of computation power which slowed down
research. It was until around 2006 that neural network field entered a new era which
moved neural network models from shallow, i.e., few layers, to deep, i.e., many layers,
which led to a spiking success in the history of neural networks. Such success has

22 Background

+1

xD0

...

x3

x2

x1

∑
...

∑

∑

ŷD1
1

...

ŷ2
1

ŷ1
1

W1 ϕ1(·)

ϕ1(·)

ϕ1(·)

ŷ1x

· · ·

· · ·

· · ·
+1

ŷ
DK−1
K−1

...

ŷ3
K−1

ŷ2
K−1

ŷ1
K−1

∑
...

∑

∑

ŷDK
K

...

ŷ2
K

ŷ1
K

WK ϕK(·)

ϕK(·)

ϕK(·)

ŷKŷK−1

ℓ

Hidden layers

Fig. 1.4 Multilayer perceptron. (Notation: Dk, k = 1, · · · , K is the dimension of the
output of the layer k. D0 = D is the dimension of the input x of the network. DK = M
is the dimension of the output ŷ of the network, i.e., M . xi is the ith component of x.
ŷj

k is the jth component of the output representation ŷk at the layer k).

attracted the research community to start working again on such models. Started in
the beginning of 2000′s, the expression “deep learning”3 was coined to broadly describe
neural based models that use many layers to learn hierarchical representations. Aside
from the advances in optimization algorithms that pushed deep learning field forward,
such success could not be done without: the modern computational power that speeds
up drastically the training and inference of deep models and the availability of massive
supervised data in many domains such as computer vision, natural language processing,
and voice recognition. In the next paragraph, we present a modern version and current
advances in deep learning field.

1.2.5 Deep Learning: from Late 60′s to Today
Deep learning, also known as deep structural learning or hierarchical learning, is part of
a broader family of machine learning algorithms based on learning data representations
where learning can be achieved through supervised, semi-supervised or unsupervised
approaches.

[106] defines deep learning as a class of machine learning algorithms that: • use
a cascade of multiple layers of nonlinear processing units for feature extraction and
transformation. In most cases, each layer uses the output of the previous layer as input.
• learning such layers is done in a supervised and/or unsupervised fashion. • each layer

3The term “deep learning” was introduced to the machine learning community by Rina Dechter in
1986 [102], and to artificial neural networks by Igor Aizenberg [8, 153] in 2000.

1.2 Introduction to Feedforward Neural Networks 23

is seen as an abstraction level of representation. Stacking the layers forms a hierarchy
of concepts that are built up from lower levels toward more abstract ones [47, 44]. The
assumption underlying distributed representations is that observed data are generated
by the interaction of layered factors [197, 47]. Deep learning adds the assumption
that such layers of factors correspond to levels of abstraction or composition. Varying
number of layers and layer sizes can provide different degrees of abstraction [47].

[380] introduce the notion of credit assignment path (CAP) to define what is a
shallow and deep model. The CAP is defined as a chain of transformations from the
input to the output to describe potentially causal connections between the input and
the output. For instance, feedforward neural networks have a CAP with a depth equals
to the number of hidden layers plus one (the output layer). For recurrent networks
(Appendix A.2.2.5), the CAP depth is potentially unlimited [380]. Although there is
no universal agreement upon threshold of CAP depth to divide shallow learning from
deep learning, most researchers agree that deep learning involves a CAP depth greater
than 2 which has been shown to be a universal approximation in a sense that it can
emulate any function (Appendix A.2.2.4).

Neural networks trained by the Group Method of Data Handling (GMDH) [219,
220] were perhaps the first deep learning models based on feedforward multilayer
perceptron. Although, the units of their networks may have polynomial activation
functions implementing Kolmogorov-Gabor polynomials [218] to introduce nonlinearity.
Such activation functions are different than the other widely used nowadays. Their
deep networks are incrementally trained then pruned. [218] describe a network with 8
layers. A presentation of Kolmogorov-Gabor polynomials can be found in [449].

Aside from deep GMDH networks, the Neocognitron [131], by Fukushima, was
maybe the first artificial neural network that deserves the name deep. It was the first
to incorporate the neurophysiological insights about the visual cortex found around the
60′s [460, 213] into a learning framework. Neocognitron introduced convolution layers
composed of a set of convolution operators parametrized with a weights, under the form
of rectangular matrix, that are duplicated over the 2D input through a shifting process.
The same model introduced subsampling4, known also as downsampling, to promote
a certain insensitivity to small shifts in the 2D input image. Neocognitron is very
similar to the feedforward, gadient-based, and backpropagation-based convolutional
neural networks. However, Fukushima did not set the weights by backpropagation
but by local Winner-Take-All-based unsupervised learning rule5 [134] or by pre-wiring.
Therefore, deep learning issues did not matter (Appendix A.2.2.1). For down-sampling,
Fukushima used spatial averaging [132, 133] instead of max-pooling6 that is well known
in modern convolutional networks.

4A subsampling layer is an average pooling layer performs down-sampling by dividing the input
into rectangular pooling regions and computing the average values of each region.

5Winner-Take-All (WTA) is a computational principle applied in computational models of neural
networks by which neurons in a layer compete with each other for activation. In a classical setup, only
the neuron with the highest activation stays active while all the other neurons shut down. However,
other variations may allow more than one neuron to be active. In the theory of artificial neural
networks, WTA networks are a case of competitive learning in recurrent neural networks. Output
nodes in the network mutually inhibit each other, while simultaneously activating themselves through
reflexive connections [173, 328].

6A max-pooling layer is a layer that performs down-sampling by dividing the input into rectangular
pooling regions and computing the maximum values of each region.

24 Background

In 1989, backpropagation algorithm (Appendix .A.2.2.1) was successfully applied
to Neocognitron-like model with weights sharing and convolutional layers [255–257]
(Fig.1.5). The purpose of the application is to recognize handwritten zip codes on mail.
Their algorithm required 3 days of training.

Fig. 1.5 Architecture of lenet convolutional network [257] which is composed of: two
convolutional layers followed by a pooling layer each; followed by two dense layers.
(Source: Deep Learning Tutorial: http://deeplearning.net/tutorial/lenet.html).

Inspired by Neocognitron, Cresceptron was born in 1992 [452] which adapts its
topology during training. Instead of using local subsampling or WTA methods [132,
377], the Cresceptron introduced, for the first time, max-pooling layers. A more
complex version of Cresceptron was proposed which includes blurring layers to improve
object location tolerance [453].

By the late of the 80′s, experiments had shown that traditional deep forward
networks or recurrent networks (Appendix A.2.2.1) are hard to train using backpropa-
gation. It was until 1991, that this issue was understood and the reason for such issue is
now known by the name of the vanishing/explosion of the gradient (Appendix A.2.2.1).
Unsupervised pre-training was a major tool to deal with such an issue in feedforward
networks and recurrent networks as well [23, 378]. Long Short-term memory (LSTM)
recurrent networks helped as well avoiding gradient problems and allow training very
deep learning models [206, 380].

Closely related works to [23] have appeared in post-2000. For instance, in 2006,
[198, 194, 45] showed that many layered feedforward networks could be effectively
trained by pre-training one layer at a time, treating each layer as an unsupervised
restricted Boltzmann machine, then fine-tune the whole network using supervised
backpropagation. This is referred to as training of deep belief networks. Similar ideas
were proposed in [361, 360] which helped training deep networks.

For a long time, the slow computation power stepped in the way of training deep
neural models [380, 106]. Advances in hardware renewed the interest in such domain.
In 2009, Nvidia7 was involved in what was called the “big bang” of deep learning.
Their GPUs have speed up drastically the training of deep networks and allowed going
deeper in a reasonable time. In particular, GPUs are well-suited for the matrix/vector
operations involved in machine learning [408, 86, 350]. Specialized hardware and
optimization algorithms can be used for efficient processing [418].

7Nvidia Corporation is an American technology company that designs graphics processing units
(GPUs) for the gaming, cryptocurrency, and professional markets, as well as system on a chip units
(SoCs) for the mobile computing and automotive market. Website: http://www.nvidia.com

http://deeplearning.net/tutorial/lenet.html
http://www.nvidia.com/

1.2 Introduction to Feedforward Neural Networks 25

Aside from the increase of computational power that speeds up training deep
networks and the increase of the available supervised data in certain applications, which
make training deep architectures practical [380], there have been, in the last few years,
many advances in optimization approaches that helped: • speeding the training by
improving gradient descent approach such as momentum [414, 342], Adagrad [114, 101],
Adadelta [477], Adam [237, 111], and possibly the use of second order optimization
such as Hessian-free optimization [307, 284, 285]. • improving the generalization and
avoid overfitting such as dropout [403, 404] and batch normalization [216]. • avoiding
the vanishing of the gradient by introducing new activation functions that do not
saturate such as rectifier [310, 149, 158] (Appendix A.2.2.2).

Nowadays, different deep neural models including feedforward and recurrent net-
works have been successfully applied to different tasks including: computer vision
[88, 244], speech recognition [106, 380], natural language processing and machine trans-
lation [400, 387], visual art processing8 [420, 395], recommendation systems [450, 437],
image restoration [433, 484], social network filtering [315], bioinformatics and drug
design [79, 374], where they have produced results comparable and in some cases
superior to human experts [88, 244].

In the last four years, generative models based on neural networks have been a
hot topic particularly using Generative Adversarial Network (GANs) [156] (Appendix
A.2.2.5) which is an area of deep learning that is growing rapidly. Hinton, one of
the founders of neural networks, has recently proposed a new architecture named
“capsules” [370, 200] in an attempt to solve a convolutional network issue related to
its lack of taking in consideration the spatial relations between the parts of an object.
Deep reinforcement learning is another breakthrough of deep learning models that is
making a big step to improve artificial intelligence and get computers to learn like
humans, without explicit instructions [16, 12, 303]. Many research teams focus now on
developing systems capable of learning how to play ATARI video games using only
pixels as data input [302, 210]. Autonomous vehicles driving is also an area where deep
reinforcement learning is making progress [128, 78, 474]. Deep reinforcement learning
has been used to learn Go9 game well enough to beat a professional Go player [391].

[380, 106] provide a detailed and extensive presentation of the history and applica-
tions of deep learning methods.

We mention that most of the success of neural networks today is due to the depth of
their architectures and not the width of their layers [154] (Fig.1.6). We cover this aspect
with more details in Appendix A.2.2.4. [330] provide a discussion on the question of
which one to use: deep or wide learning mechanism?

8“DeepDream” is a computer vision program created by Google engineer Alexander Mordvintsev
which uses a convolutional network to find and enhance patterns in images via algorithmic pareidolia,
thus creating a dream-line hallucinogenic appearance in the deliberately over-processed image.

9Go is an abstract strategy board game for two players, in which the aim is to surround more
territory than the opponent.

26 Background

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Fig. 1.6 Example of Deep Residual network architectures for image recognition. Left:
the VGG-19 model [396]. Middle: a plain network with 34 parameter layers. Right: a
residual network with 34 parameter layers. (Credit: [187])

1.2 Introduction to Feedforward Neural Networks 27

Deep Learning Issues and Criticism

Although deep learning models have achieved high performance in many applica-
tions, they still display problematic and questionable behaviors such as classifying
unrecognizable images as belonging to a familiar category of ordinary images or mis-
classifying small perturbed images that have been correctly classified [151, 314, 422].
As deep learning models move from the laboratory to the real world, such misbehavior
can cause a serious security threat. For instance, an attacker can add a specific type
of noise to an image so that the human eye does not notice it, but it will cause the
neural network to produce a completely wrong prediction. Such attacks are known
by “adversarial attacks”. A neural network can be trained to minimize its error over
such attacks [422, 157]. Another serious and old issue that is known to the research
community is that neural networks memorize chunks of training data [181, 15, 68].
This phenomenon is not well-understood. Language models are probably the most
vulnerable type of models at the moment while it is harder over images [68]. This shows
again how deep learning models are vulnerable to information leakage. Using particu-
lar search algorithms, an attacker can retrieve sensitive data such as text messages,
emails, medical data, etc. An important work that changed the research community
understanding of the generalization aspects in deep learning models has suggested
that “brute-force memorization” may be part of an effective learning strategy for deep
neural networks on real data, implying that generalization and memorization are not
necessarily opposed [482]. However, Not all the community seems to agree that neural
networks memorize the training data [245]. There may be ways to get around the
memorization issue. The researchers recommend developers to use “differential privacy
learning algorithms”10 [1, 331] which are currently applied in big companies that often
deal with private information of the users which is mostly textual. Another way is to
scramble and randomize private information so that it is difficult to reproduce.

Neural network field has seen many criticism, and still do, since its birth [296, 297].
The main criticism concerns the lack of theoretical foundations. Deep learning models
are often looked at as a “black box”, with most confirmations are done empirically
rather than theoretically. Modern critics such as Gary Marcus, pointed out that deep
learning should be looked at as a step towards realizing strong artificial intelligence,
and not as an entire solution [282, 283]. Despite the power and the success of deep
learning methods, they still lack much of the functionalities needed for attaining the
goal of artificial intelligence such as their lack of representing causal relationships, logic
inference, and integrating abstract knowledge [282, 283]. Hopefully, such criticism will
lead to improvements in neural networks domain.

1.2.6 Summary
We have presented in this section a brief, technical, and historical introduction to
neural networks from the early 40′s to its modern version under the name of deep
learning. We have presented also some of the last advances in the field.

10In cryptography, Differential privacy is a mathematical definition for the privacy loss that results
to individuals when their private information is used in the creation of a data product. It aims to
provide means to maximize the accuracy of queries from statistical databases while minimizing the
chances of identifying its records [117, 116, 118].

28 Background

As we saw earlier, adding more hidden layers to encode the input is one possible
way to allow perceptrons to perform better on different tasks. This idea has led to what
is known today as deep models, i.e., models composed of many hidden layers. This
makes learning representations within neural networks an important aspect to obtain a
better generalization error [51, 46]. However, increasing the depth of a network leads to
an increase of the number of its parameters which requires a large number of training
data to fit the model and avoid overfitting. Unfortunately, in practice, one usually
deals with small datasets which causes deep models to overfit. Different approaches
were proposed in the literature to deal with such issue using variant regularization
methods. We present the most common used methods in the following section (Sec.1.3).
As it is impractical to cite most the approaches in this chapter, we refer the reader
to [154] where most neural networks regularization techniques are covered, while we
continue our discussion of neural networks in Appendix A.2.2.

1.3 Improving Neural Networks Generalization
Training neural networks and particularly deep architectures is known to be difficult
[148, 154]. Moreover, deep architectures are known to overfit the data particularly when
using few training samples. Regularization is one of the commonly known solutions to
deal with the overfitting issue by providing tools to reduce the generalization error.
We describe in this section selected methods to regularize neural networks.

In Sec.1.1.3, we provided the definition of the regularization as any process that
allows reducing the generalization error without necessarily reducing the error over
the training samples. In machine learning, and for long time, regularization consists
generally in reducing the model complexity using Lp parameters norm penalty. However,
with the advances in machine learning, other approaches have been proposed to reduce
the generalization error. Nevertheless, such methods do not necessarily reduce the
model complexity. We attempt in this section to separate these two approaches, even
though the frontier between them is still vague:

• Explicit regularization where the aim is to explicitly reduce the model complexity.

• Implicit regularization where the aim is to reduce the generalization error. How-
ever, the model complexity may or may not be reduced.

1.3.1 Explicit Regularization: Explicit Complexity
Reduction

Many regularization approaches are based on limiting the capacity of the models by
adding a parameter norm penalty to the training objective function J . Let us denote
the regularized objective function by J̃

J̃(θ; X, y) = J(θ; X, y) + αΩ(θ), Ω(θ) = 1
p
∥θ∥p

p . (1.32)

In this context, we provide the study for the case where p ∈ {1, 2}. α ∈ [0,∞) is
a hyperparameter that weights the relative contribution of the norm penalty term,
Ω, to the standard training objective function J . Large values of α result in more

1.3 Improving Neural Networks Generalization 29

regularization. This approach of regularization is referred to as Lp norm which was
widely used in machine learning with a variety of models. Although, Lp parameters
norm regularization is not specific to neural networks.

When considering the Lp norm for neural networks regularization [244], one typically
chooses a parameter norm penalty that penalizes only the weights vector w at each
layer and leaves the biases unregularized [154]. It is desirable to use a different α
per layer. However, as this can make it computationally expensive to compute each
optimal value, one may consider using the same α across all the layers [154].

1.3.1.1 L2 Parameters Norm

The L2 norm penalty is commonly known as weight decay. This regularization approach
drives the weights closer to the origin by adding a regularization term

Ω(θ) = 1
2∥w∥

2
2 , (1.33)

to the objective function. It is also known in other communities as ridge regression
or Tikhonov regularization [429]. The impact of using the L2 parameter norm as a
regularization is to shrink the components of w where the entries that do not contribute
to reduce the objective function are shrunk to have nearly zero magnitude, while the
rest of the entries are slightly reduced. More technical details are provided in Appendix
A.2.3.1.1.

1.3.1.2 L1 Parameters Norm

As we mentioned in Sec.1.1.3, L1 parameters norm minimization is an approximation
to the L0 parameters norm. Formally, it is defined as

Ω(θ) = ∥w∥1 =
∑

i

|wi| . (1.34)

Compared to L2 norm, L1 norm promotes sparsity by providing a solution with subset
of the entries set exactly to zero while the rest of the entries are shrunk toward zero.
The sparsity aspect of L1 regularization plays an important role in feature selection
in machine learning [184, 428]. More technical details on L1 parameters norms and a
comparaison with L2 parameters norm are provided in Appendix A.2.3.1.2.

1.3.2 Implicit Regularization
We discuss here some approaches that are used to reduce the generalization error of
neural network without necessarily reducing their complexity. However, some of these
methods may have an effect on the model complexity.

1.3.2.1 Early Stopping

Early stopping assumes that minimizing iteratively an objective function J is stopped
before it reaches its minimum. If the model’s capacity exceeds the optimal capacity,
early stopping may prevent overfitting.

30 Background

When training such models with over capacity, one often observes that the training
error decreases steadily through the learning epochs, while the validation set error
begins to raise again at some point (Fig.1.7). This means that one can obtain a model
with a better validation set error and hopefully a better test set error by returning the
model’s parameters at the point with the lowest validation set error. In practice, this
can be achieved by keeping a copy of the model’s parameters at each time a better
validation set error is found.

Fig. 1.7 Learning curves showing how the negative log-likelihood loss changes over
epochs. In this example, a maxout network is trained over MNIST. One can observe
how the validation set average loss begins to increase again, forming an asymmetric
U-shape curve while the training objective loss keeps decreasing. (Credit: [154])

Early stopping is one of the most commonly form of regularization in training neural
networks [154]. This is due to both its effectiveness and simplicity. It can be seen as
an efficient hyperparameter selection algorithm that requires one run of the training
process to find the best value when to stop training while most hyperparameters need
multiple runs. Besides its training time reduction, it provides a regularization aspect
without adding a penalty to the objective cost. However, early stopping requires
evaluating the model over the validation set periodically which may slow down the
training. Moreover, it requires storing a copy of the model’s parameters.

We mentioned that early stopping is a form of regularization. In this section, we
provide an intuition to this idea while formal demonstration is presented in Appendix
A.2.3.2 following the work of [55, 397].

Consider a network with weights initialized from a distribution with zero mean.
This means that initially most of the neurons provide a value close to zero for most
the input vector. Thus, the network can be seen as a linear nilpotent operator with
a very low complexity. During the training process, the weights are more likely to
increase their magnitude which gradually increase the complexity of the network. Early
stopping comes to prevent this increase of magnitude. Therefore, it serves as a method
of a weight decay. Also, it prevents the network of becoming too complex [55, 397].

1.3 Improving Neural Networks Generalization 31

1.3.2.2 Data Augmentation

One way to promote generalization in machine learning is to train the model using
a large number of training samples. However, in practice, the amount of training
data is limited. A possible solution to deal with this issue is to create new data using
the original one, mix them up and feed them to the model as a large training set
[319, 21, 87, 394]. This approach assumes the generation of new training samples using
some invariant parametric transformation function g(x; θ) applied to the existing object
(x, y). The invariance of this function is considered with respect to the sample target y.
This technique can be applied on a wide range of tasks. For instance in classification,
when considering the input as an image, the label of the sample is invariant to a number
of transformations applied on the input image such as translation, rotation, scaling,
elastic deformation, contrast, etc.

Generating new training samples is a simple way to incorporate prior knowledge
about the problem into the learning algorithm [319], which is the aim of most regu-
larization approaches. For instance, when presenting a sample with different rotation
angles and the same label, we are indicating to the learning algorithm that the label
is invariant to rotation, thus, we introduce a domain knowledge. Generating new
samples is also motivated by the bias-variance decomposition (Appendix A.2.1) where
increasing the size of the training set will reduce the variance, but keep the bias the
same. However, adding new samples does not reduce the complexity of the model.

Although, data augmentation might be helpful to improve generalization, it must
be carried out with care. For example, in classification task, some transformations may
change the class of the sample. For instance, in optical character recognition tasks,
the model is required to recognize the difference between “n” and “u”, “b” and “d”.
Therefore, 180◦ rotation and horizontal flip are not appropriate for all characters.

Neural networks are known to be sensitive to noise [424]. One way to improve their
robustness is by training them with random noise applied to the input [390]. This can
be seen as data augmentation. Adding noise to the input is a well known mechanism
for some unsupervised learning methods [439, 440]. One can also carefully add noise to
the hidden units [343] which can be seen as an augmentation of the data at multiple
levels of abstraction.

Depending on the number of generated samples, data augmentation may increase
the training time [244]. For models that need the whole training samples at once,
augmenting the training data can raise the issue of the memory. However, when
training neural networks, one needs only few samples at once. This allows to generate
examples as much as one wants. Moreover, one can generate new samples on the fly
without the need to store them.

1.3.2.3 Multi-task Learning

Multi-task learning (MTL) is a learning scenario where multiple learning tasks are
solved at the same time, while exploiting commonalities and differences across tasks.
This can result in improving the learning efficiency and prediction accuracy of the
task-specific models, when compared to training models separately [70, 26, 426, 332].

32 Background

[70] define MTL as an approach to inductive transfer11 that improves generalization
by using domain information contained in the training signals of related tasks as an
inductive bias. This is achieved by learning tasks in parallel while using a shared
representation. Therefore, the learned representation for a task can be helpful to learn
other tasks. Using an MLT framework introduces a bias in the model selection in
order to prefer hypotheses that explain more than one task. This shows to improve
the generalization of the model and prevents its overfitting since it is required to solve
many tasks at once which makes it less likely to overfit one of the tasks. Hence, MTL
approaches are considered as a regularization. We mention that MTL framework does
not only concern deep learning algorithms but a broad learning algorithms in machine
learning [487]. Aside from designing MTL algorithms, there are many works that study
the theoretical aspects of MTL and their generalization bounds [26, 42, 43, 41]. For
instance, [26] showed that the generalization bounds can be improved through an MTL
framework due to the parameters sharing which prevents overfitting. This holds when
some assumptions about the statistical relationship between the different tasks are
valid, meaning that there is something shared across some of the tasks.

In an MTL framework, a task can be any general learning task such as supervised
task, unsupervised task, semi-supervised task, reinforcement learning task, or multi-
view learning tasks. [487] provide a recent and detailed survey that contains different
approaches of MTL algorithms.

In deep learning, MTL is a common approach and goes back to the 90′s [69]. It
is generally applied by sharing the hidden layers between all the tasks, while keeping
several task-specific output layers (Fig.1.8). This is known as hard parameter sharing.
Another MTL scenario consists in considering each task has its own model. However,
the different models are encouraged to have similar parameters by constraining the
distance between the parameters to be small [115, 471]. This is referred to as soft
parameter sharing. Nevertheless, some works escape such traditional MTL schemes.
[273] improve upon hard parameter sharing by placing matrix priors on each level
of dense layers, which allow to learn the relationship between tasks. [274] propose
a bottom-up approach that starts with a thin network and dynamically widens it
greedily during training using a criterion that promotes grouping of similar tasks. [298]
propose cross-stitch networks. The process starts with two separate models just as
in soft parameter sharing. Then, the authors use what is referred to as cross-stitch
units to allow the model to determine in what way the task-specific networks leverage
the knowledge of the other task by learning a linear combination of the output of
the previous layers. Such units are placed after the pooling and dense layers. [367]
propose sluice networks, a generalization of cross-stitch networks. Other innovations in
MTL exist and depend on the task in hand or they are inspired from non-neural MTL
frameworks [401, 182, 234, 470].

11Inductive transfer or transfer learning is a research problem in machine learning that focuses on
storing knowledge gained while solving one problem and applying it to different but related problem.

1.3 Improving Neural Networks Generalization 33

x

h(shared)

h(2)h(1) h(3)

y(1) y(2)

Fig. 1.8 Typical architecture for multi-task learning in neural networks where the tasks
share a common input but involve different output targets. The low layers, hshared, can
be shared among the different tasks while task-specific layers, h(1) and h(2), can be
learned on top of the shared representation. The underlying assumption is that there
exists a common pool of factors that explain the variations of x, while each task is
associated with a subset of such factors. In an unsupervised task, it is possible to pool
top-level factors, h(3), to be associated with none of the output task. Such factors may
explain some of the variations of the input x, but they are irrelevant to predict the
targets y(1) and y(2). (Reference: [154])

MTL framework is an adequate choice where we are interested in obtaining pre-
dictions for multiple tasks at the same time. Such scenarios are common for instance
in finance or economics forecasting, where we might want to predict the value of
many possibly related variables, or in bioinformatics where we might want to predict
symptoms for multiple diseases simultaneously. In the case of drug discovery, where
tens or hundreds of active compounds may be predicted, MTL increases the prediction
accuracy with the increase of the number of tasks [352]. Although MTL is constructed
to improve the performance of many tasks at once, in some situations we only care
about the performance of one task, that we call main task, whereas, the other tasks,
named auxiliary tasks, are not important in the inference time. They are useful only
during training in order to prevent the main task from overfitting. Using such auxiliary
tasks as an MTL framework is a classical choice. In the case of using T auxiliary tasks,
denoted fj(·), along with a main task f(·), a standard optimization formula can be
cast as follows. Let us consider θMT L = {θsh, θ, θj, · · · , θT} a set of parameters of the
whole MTL framework, where θsh is a shared set of parameters among all tasks, θ is
the set of parameters of the main task, and θj is the set of parameters associated with
the jth auxiliary task. We note C(·, ·) as the cost of the main task, while Cj(·, ·) is the
cost of the jth auxiliary task. We consider that the same input xi is fed to each task,
while a different label yj

i is associated to it depending on the task j. The training set

34 Background

has N samples, with Dj = {(xi, yj
i)}N

i=1 a training set of the jth auxiliary task, and
D = {(xi, yi)}N

i=1 is a training set for the main task. Each auxiliary task j is weighted
using a coefficient λj. The optimization consists in solving

arg min
θMT L

N∑
i=1
C(f(xi; θsh, θ), yi) +

T∑
j=1

λjCj(fj(xi; θsh, θj), yj
i) . (1.35)

Optimizing Eq.1.35 can be done easily in parallel using stochastic gradient descent.
However, in practice, alternating between tasks seems to work better [91, 488].

Auxiliary tasks have been used in different setups in an MTL framework. For
instance, [70] use tasks that predict different characteristics of the road in order to
predict the steering direction in a self-driving car. [488] use head pose estimation and
facial attributes inference as auxiliary tasks to predict facial landmarks. [138] use an
adversarial loss in a domain adaptation12 scenario in order to constrain the model
to build internal representations that do not distinguish between domains. In some
cases, one can encode some prior knowledge as an auxiliary task, mostly to learn better
representations. This is known as hints and it is the old name of an MTL framework
[410, 2, 3]. Reconstructing the input [36] or/and the output [35] data can be used as
well as auxiliary tasks.

Although auxiliary tasks are helpful in an MTL framework, it is still unclear what
tasks should be used in practice. Finding a good auxiliary task is often based on the
assumption that the auxiliary task should be related to the main task somehow and
that it should be helpful for the prediction of the main task. However, the relatedness of
two tasks is still unclear. [70] define two tasks to be related if they use the same features
to make a decision. [26] argue that related tasks share a common optimal hypothesis
class, i.e., have the same inductive bias. [43] propose that two tasks are related if the
data for both tasks can be generated from a fixed probability distribution using a set of
transformations. [469] define that two tasks are related if their classification boundaries,
i.e., parameters, are close. Despite the theoretical lack of our understanding to task
relatedness, such concept is not binary but a spectrum. Allowing the models to learn
what to share with each task might be a way to build better MTL frameworks and
make better use of related or loosely related tasks [487].

1.3.2.4 Transfer Learning

Since transfer learning is not specific to deep learning methods, we decide to provide a
general background on transfer learning as a learning paradigm in machine learning.
Then, we detail its applications and how to achieve it in a deep learning based model.

Transfer Learning: Background

Transfer learning (TL) is the improvement of learning in a new task through the
transfer of knowledge from a related task that has already been learned [327, 7, 329].

12Domain adaptation is a field associated with machine learning and transfer learning. It consists
in a learning scenario where we aim at learning from a source data distribution a well performing
model on a different, but related, target data distribution [62, 39, 94]. For instance, in spam filtering
task, domain adaptation consists in adapting a model from one use (the source distribution) to a new
user who receives significantly different email, i.e., the target distribution.

1.3 Improving Neural Networks Generalization 35

Common machine learning algorithms traditionally address isolated tasks such as
classification, regression, and clustering, etc, under the assumption that training and
test data are draw from the same feature space and the same distribution. When the
distribution changes, most statistical models need to be rebuilt from scratch using
newly collected data. In many real world applications, it is expensive or impossible
to re-collect the needed data and rebuild the models. TL domain attempts to change
this by developing methods to transfer knowledge learned in one or more source tasks
and use it to improve learning a related target task (Fig.1.9). Techniques that enable
knowledge transfer represent progress toward making machine learning as efficient as
human learning. Extensive and detailed study of TL, its applications, and issues can
be found in [329, 7, 327].

Source-task
knowledge

Data

Target-task

Given Learn

Fig. 1.9 Transfer learning is a machine learning algorithm with an additional source of
information apart from the standard training data: knowledge extracted from one or
more related tasks. (Reference: [327])

The study of TL can be motivated biologically by the fact that people can intelli-
gently apply knowledge learned previously to solve new problems faster with better
solutions [120, 465]. The fundamental motivation for TL in the field of machine learning
is the need for lifelong machine learning methods that retain and reuse previously
learned knowledge.

TL techniques have been applied in different learning algorithms including inductive
learning and reinforcement learning [327, 7, 329]. In this section, we focus on its
application to the former.

The goal of TL is to improve learning in the target task by leveraging knowledge
from the source task. [327] refer to three common measures by which TL might improve
learning, illustrated in Fig.1.10: • The initial performance achievable in the target task
using only the transferred knowledge, before any further learning is done, compared to
the initial performance of a model with a fresh start. • The amount of time it takes
to fully learn the target task given the transferred knowledge compared to the amount
of time to learn it from scratch. • The final performance level achievable in the target
task compared to the final level without transfer.

It is important to distinguish the difference between TL and multi-task learning
discussed in Sec.1.3.2.3, where several tasks are learned simultaneously (Fig.1.11).
Multi-task learning is clearly closely related to TL, but it does not involve designated
source and target tasks; instead the learning algorithm receives several tasks at once.

36 Background

Training on target task

Performance
on target
task

without transfer
with transfer

higher start

higher slope

higher asymptote

Fig. 1.10 Three ways in which transfer learning might improve learning the target task.
(Reference: [327])

In contrast, in TL, the learning algorithm in the source task knows nothing about the
target task. Moreover, TL aims at boosting the performance of the target domain by
using the source domain data, i.e., its knowledge.

Source task Target task

Task 1

Task 2

Task 3

Task 4

Fig. 1.11 left: in transfer learning, the information flows in one direction only, from
the source task toward the target task. right: in multi-task learning, information can
flow freely among all tasks. (Reference: [327])

In the case of inductive learning methods [300], the target-task inductive bias is
chosen or adjusted based on the source-task knowledge [327]. It is usually concerned
with improving the speed with which a model is learned, or with improving its
generalization capability. The way this is done varies depending on which inductive
is used to learn the source and target tasks. Some TL algorithms narrow down
the hypothesis space, limiting the possible hypotheses, or remove search steps from
consideration. Other methods broaden the space, allowing the search to discover more
complex hypotheses, or add new search steps [26, 427, 292].

[7, 329] provide an extensive categorization of TL techniques. In the case of
inductive learning, four possible ways of achieving a knowledge transfer: • Transferring
knowledge of instances: where certain parts of the source data are reused together

1.3 Improving Neural Networks Generalization 37

with the labeled data in the target task [99, 224]. • Transferring knowledge of
representations: in this case, the aim is to find a good representation in source and
target tasks which is similar to finding common features in a multi-task learning
scheme (Sec.1.3.2.3). Depending on the available labeled or unlabeled data in the
source task, TL in this category can be done either in a supervised way by using an
MTL framework to learn low-dimensional representations that are shared across the
tasks [13, 14] or in unsupervised way to learn higher level representations [349, 448].
• Transferring knowledge of parameters: the underlying assumption in this approach is
that individual models for related tasks should share some parameters such as in SVMs
[123] , ensemble learning [139], or prior distributions of hyper-parameters such as in
Bayesian frameworks [251, 57]. • Transferring relational knowledge: this approach
deals with the data that is non-i.i.d. and can be represented by multiple relations,
such as networked data and social network data. Its aim is to transfer the relationship
among data from a source domain to a target domain. Statistical relational learning
techniques are required to deal with such context [291, 293].

An important issue in TL is to recognize its limitations. Different works address
theoretical aspects of TL such as its generalization bounds [278, 40, 56, 39, 142].
Although the generalization bounds are slightly different, under some conditions, the
bound consists generally in two terms: the first is the error bound of the model on
the source domain, the second is the bound on the distance between the source and
the target domains, i.e., the distance between their marginal probability distributions
which explains the relatedness of both domains. The aspect of relatedness of domains
is an open issue in TL. When transferring knowledge between unrelated domains,
negative transfer may happen: a case where the performance of the model in the
target domain decrease when applying TL compared to its performance without TL.
Often, when applying TL from a domain to another, it is necessary to map the
characteristics/feature/representation of one task to another. In much cases, this is
achieved by hand. Other methods have been propose to perform automatic mapping
between domains. We intentionally skip the discussion of such important aspects in
this thesis in order to stay focused on its main subject. [327, 7, 329] provide further
details on theses subjects.

In the following, we present some aspects of using TL in deep learning methods.

Transfer Learning in Deep Learning

TL is a learning paradigm that can be applied to different machine learning models
including deep learning. Most success in deep learning methods in academic research
or industry has been driven by the use of large models that have be trained using a
huge amount of supervised data [154]. In real life applications, nor the large amount
of labeled data, nor the computation power required for training are usually available
to conduct such large scale learning. We often encounter a situation where only few
training samples are available in a particular target domain of interest. TL seems
to be an alternative way to classical supervised learning in order to obtain better
performance on the target domain by leveraging knowledge extracted from a source
domain with abundant training samples.

We present in this section two main approaches to apply TL in deep learning,
both of them are based on representation learning paradigm: either through using
pre-trained models, or through learning domain-invariant representations.

38 Background

• The application of convolutional neural networks (CNNs) has seen a large success,
mostly in computer vision tasks [154]. In such models, low convolutional layers in
the network tend to capture low level image features such as edges, while higher
convolutional layers tend to capture more complex and task dependent details such as
body parts, faces, and more compositional patterns [473, 480]. To perform TL in a
target domain in computer vision tasks using CNNs, it is common [31, 357, 225] to
use off-the-shelf pre-trained CNNs on ImageNet [104]. In practice, this is achieved by
reusing the pre-trained convolutional layers, preferably low layers [473], and adding on
top of it new layers specific to the target task. Then, the new network, as a whole or
partially, is trained over the target data. A practical issue in such approach is that,
often, the CNN model is over-parametrized for the target task and it may cause a slow
in running speed mainly due to unnecessary computations. A practical solution is to
drop useless filters through a pruning process [264, 306, 333] while tolerating slight
reduction of the performance. While such reuse of pre-trained low layers of CNNs has
seen large success in computer vision, pre-trained models have limited use in natural
language processing (NLP) [351, 295, 235]. Low layers of an NLP model tend to learn
task specific aspects such as syntax, which can not be helpful to perform cross domain
adaptation [228]. What is needed in NLP is features that capture more fine-grained
rules which are located at the top layers [154, 228]. While object recognition may be a
prototype task that is shared among most computer vision tasks, language modeling
[228] may be the closest analogy in NLP, where in order to predict the next word, a
model needs: to possess knowledge of how a language is structured, understand what
words likely are related to and likely to follow each other, and to model long-term
dependencies. Such aspects may be shared among different tasks in NLP.

A model trained on ImageNet seems to capture details about the way animals and
objects are structured and composed which is generally relevant when dealing with
images. As such, the classification task on ImageNet seems to be a good proxy for
general computer vision problems, as the same knowledge that is required to excel
in it is also relevant for many other computer vision tasks. A similar assumption
is used to motivate the use of generative model, that is, when training generative
models, it is assumed that the ability to generate realistic images, for instance, requires
an understanding of the underlying structure of images. Such knowledge about the
structure can be used in different task where the structure is relevant. Such assumption
relies itself on the premise that all images lie on a low-dimensional manifold, i.e., that
there is some underlying structure to images that can be extracted by a model. [347]
indicate that such a structure might indeed exist, and demonstrate it by generating
realistic images describing transitions points in an image.

Unsupervised layer-wise pre-training technique [154, 50, 198] is another practical
example of TL in deep learning. In such learning approach, the source task consists in
learning in an unsupervised and incremental way hidden representations that disentangle
the variation factors of the input data throughout reconstruction of the raw data.

• The second method of using TL in deep learning consists in learning domain-
invariant representations. Creating representations that do not change based on
the domain is very interesting since it should capture the variations of the data
independently of the domain. This is less expensive and more feasible for non-vision
tasks than generating representations that are useful for all tasks. In such scenario,
only unlabeled data of each domain are needed in order to create domain-invariant

1.3 Improving Neural Networks Generalization 39

representations. Such representations are generally learned using stacked denoising
auto-encoders and have seen success in NLP [150, 76] as well as in computer vision
[489]. Other approaches encourage the data representation in different domains to be
more similar and avoid domain-specific representations [214, 58, 138, 432].

TL is perhaps a potential learning paradigm that may allow breakthrough of deep
learning techniques in a large number of small-data settings, which is the case in most
real life applications. We hope that it will get more attention in deep learning research
community in order to democratize the use of such powerful models.

1.3.2.5 Parameter Sharing: Particular Case of Convolutional Networks
and Auto-encoders

As we mentioned earlier in Sec.1.3.1, regularization can be obtained by introducing
prior knowledge of the domain or of the model’s architecture into the way of estimating
the parameters values. For instance, one may introduce some prior knowledge about
the dependency between the values of different parameters. In pattern recognition
applied to images, one can assume that an elementary pattern such as small corners
may appear multiple times in an image. Therefore, it make sense to use the same
sensor, i.e., parameter, all over the image in order to detect the pattern, instead of using
different sensors at different locations. This is referred to as parameter sharing which
can be seen as a regularization [154]. The first obvious advantage of parameter sharing
over regularizing the parameters to be close to some predefined ideal parameters is
the significant reduction of the model size in terms of memory use. Moreover, some
models have more natural way, in certain applications, to use shared parameters such
as the case of convolutional networks [131, 254].

Convolutional networks were motivated by the neurophysiological insights from
[460, 213] that showed that simple and complex cells, which are found in the cat’s
visual cortex, fire in response to certain properties of visual sensory of inputs such as
the orientation of edges. This led to convolutional networks as we know them today
where the receptive field of a convolutional unit with given weight, which is typically a
square filter, is shifted step by step across a 2 dimensional array of input values such
as an image (Fig.1.12). The resulting 2D array of a subsequent activation events of
this unit can be provided as inputs to higher level units, and so on. Usually, there are
many filters at one representation level where each one learns to respond to specific
properties. In the other hand, sharing filters is also motivated by some properties of
the input signal. For instance, natural images have many statistical properties that
are invariant to translation: a picture of a car remains a picture of car even if it is
translated one pixel to any direction. Convolutional networks can take this property
into account by sharing parameters across different locations of the image where the
same feature is computed over different positions in the input. This means we can
find a car with the same car detector even if we moved the car slightly. Another
example that concerns low level features such as edges. One filter can learn to detect
a specific type of edges with different angle. It is intuitive to apply the same filter
across the whole input in order to find similar edges. Parameter sharing has enabled
convolutional networks to dramatically lower the number of parameters (Fig.1.12) and
to significantly increase network size without requiring a corresponding increase of the
number of training samples.

40 Background

Fig. 1.12 A 2-dimensional convolution layer. The 2× 2 filter K is applied to the 4× 4
input V in order to get a 3 × 3 output H. The number of weights is reduced from
4× 4× 3× 3 = 144 to 4. (Credit: [103])

Auto-encoders [49, 353] employ as well parameter sharing between the encoder
and the decoder layer. However, instead of using the same weight of the encoder, the
decoder uses its transpose. This has the advantage to reduce the number of parameters
of the auto-encoder. Depending on using a non-linearity in both layers, this type of
parameter sharing may prevent the auto-encoder from learning linear transformation
similarly to principal component analysis (PCA) method [48]. Furthermore, sharing
the parameters between the encoder and the decoder may have come originally from
Restricted Boltzmann Machines (RBMs) [399] where the same weight and its transpose
are used to infer the hidden and the visible states.

1.3.2.6 Dropout

Dropout [403, 404] provides a computationally inexpensive but powerful method for
regularizing a broad family of models and prevent their overfitting. The main idea of
dropout consists in randomly omitting a subset of neurons during training for each
sample by setting the output of these neurons to zero. This can prevent the remaining
neurons from co-adaptation in which a feature extractor is only helpful in the context
of several other specific feature detectors. Instead, dropout pushes each neuron to learn
to detect a feature that is generally helpful to produce the correct answer independently
of the internal context, i.e., the presence or the absence of other features. During the
test phase, a scaling of the neuron output is necessary.

In practice, dropout is performed as follows. Let consider a multilayer perceptron
with the layers: y0, · · · , yM . Then, the dropout on the layer yi of the size N can be
described as follows:

1.3 Improving Neural Networks Generalization 41

1. For each training case, generate a binary vector mask µ of length N , where each
element is sampled from the Bernoulli distribution with probability 0 < p < 1.

2. On the forward pass, multiply the values of yi by µ.

3. On the backward pass, multiply the gradients dyi by µ.

4. During the test phase, multiply all values of yi by p.

Fig.1.13 illustrates the application of dropout across all the layers of a feedforward
network.

×
×

×

×

×

×

×

Fig. 1.13 left: a standard neural network with two hidden layers. right: An example of
thinned network produced by applying dropout to the network on the left with p = 0.5
across all the layers. Crossed units have been dropped. (Reference: [404])

Dropout can be interpreted as a biological behavior. It pressures the hidden
unit to be able to perform well regardless of which other hidden units are available.
Hidden units must be ready to be swapped and interchanged between the subnetworks.
Dropout [404] was inspired by an idea from biology: sexual reproduction, which involves
swapping genes between two different organisms, creates evolutionary pressure for
genes to become not just good but readily swapped between different organisms. Such
genes and such features are robust to changes in their environment because they are
not able to incorrectly adapt to unusual features of any one organism. Dropout thus
regularizes each hidden unit to be merely a good feature but a feature that is good in
many contexts. Other aspects of dropout with more details can be found in [154].

As a second interpretation, dropout can be seen as a method of making bagging
[60] practical for ensembles of very many large neural networks [451, 154]. However,
this seems impractical when each model is a large neural network, since training and
evaluating such networks is costly in term of runtime and memory. Dropout provides
a hack to perform bagging on an ensemble of exponentially many neural networks.

Applying dropout to a neural network during training consists into sampling a
“thinned” network from it. The thinned network consists of all the units that survived
dropout. A neural network with N units, can be seen as an ensemble of 2N possible
thinned network that share weights. For each representation of each training case, a

42 Background

new thinned network is sampled and trained. Therefore, training a neural network
with dropout can be seen as training a collection of 2N subnetworks with extensive
weight sharing, where each subnetwork gets trained rarely, if at all. The first hack in
dropout is to use a binary mask as a way of approximating sampling a subnetwork
from the total neural network. The mask of each unit is sampled independently from
the others. The probability of sampling a mask with value 1 (causing a unit to be
included in the subnetwork) is a hyperparameter p fixed before the training begins.
Typical choice for input unit is 0.8 and for the hidden unit is 0.5 [154, 403, 404].

The second hack involved in dropout is at the inference time. Instead of averaging
a bench of subnetworks, dropout infers the prediction by evaluating only one model:
the model with all units, but with the weights going out of unit i multiplied by the
probability of including unit i [403, 404, 154]. The motivation of this modification is to
capture the right expected value of the output from that unit at the test phase. This is
referred to as weight scaling inference rule. There is not yet any theoretical argument
for the accuracy of this approximation inference rule in deep nonlinear networks, but,
empirically, it performs very well [403, 404, 154]. Theoretical demonstration is provided
only for p = 1

2 = 0.5 [403, 404, 154].
While dropout showed satisfying improvements on a large number of tasks, it also

has its limitations. Due to randomness in the architecture, it increases the convergence
time. Considering dropout as a regularization technique, it reduces the effective
capacity of a model [154]. To offset this effect, one must increase the size of the model
to compensate the missed units. However, this comes at the cost of a larger model
and longer training time. Using larger model may allow the model to remember the
dropout noise, which makes it worse. In this case, using other regularization techniques
may be better. When extremely few labeled training examples are available, dropout
is less effective [404]. On very large datasets, the obtained improvement is negligible,
so for computational reasons it is recommended to not use it [154]. It was shown [443]
that when applying dropout to linear regression, it is equivalent to L2 weight decay,
with a different weight decay coefficient for each input feature. The magnitude of each
feature’s weight decay coefficient is determined by its variance. Similar results hold for
other linear models. For deep models, dropout is not equivalent to weight decay [154].

Dropout has motivated other stochastic approaches to training exponentially large
ensembles of models that share weights such as DropConnect [447], and stochastic
pooling [479]. So far, dropout remains the most widely used implicit ensemble method.

1.3.2.7 Batch Normalization

Batch normalization [216] is one of the most recent innovations in deep learning. Its
primary purpose is to improve the optimization speed of deep neural networks. It is
considered as a reparameterization of the model in a way that introduces both additive
and multiplicative noise to the hidden units during training time. This noise can have
a regularization effect and sometimes it makes dropout [403, 404] unnecessary.

Covariance shift [388] is a well known issue in machine learning. The problem
raises when the input distribution of a model changes. For instance, when the test
distribution is different than the train distribution, the model will perform poorly. For
a long time, it has been known [258, 462] that the neural network training converges

1.3 Improving Neural Networks Generalization 43

faster if its input are whitened, i.e. linearly transformed to have zero mean and unit
variances, and decorrelated.

Deep neural models consist in the composition of several layers. The computed
gradient indicates how to update the parameters of each layer assuming that the
other layers do not change. However, in practice, all the parameters are updated
at once. When the updates are done, unexpected results can happen because many
functions composed together have changed simultaneously. In other words, the stream
of information in this hidden layer changes constantly. One possible way to deal with
this is to consider higher level of interactions between layers, i.e., their parameters,
such as second or higher order optimization. However, such optimization for deep
models is impractical due to the computational cost. Batch normalization came up
with a solution in order to stabilize the hidden distributions and thus prevent what
is known as internal covariance shift issue. Its strategy consists in maintaining the
distribution at each hidden unit fixed, i.e., normalized.

Given an input minibatch, let H be a matrix that contains the activations of the
layer to be normalized, with the activations for each example appearing in a row of
the matrix. To normalize H , it is replaced with

H ′ = H − µ

σ
, (1.36)

where µ is a vector containing the mean of each unit and σ is a vector containing the
standard deviation of each unit. The calculation here are based on broadcasting the
vector µ and the vector σ to be applied to every row of the matrix H. Within each
row, the arithmetic is element-wise. Therefore, Hi,j is normalized by subtracting µj

and dividing by σj . The rest of the network then operates on H ′ instead of H . µ and
σ are estimated over each minibatch during train time

µ = 1
m

∑
i

Hi,: , (1.37)

σ =
√√√√δ + 1

m

∑
i

(H − µ)2
i,: , (1.38)

where δ is a small positive value to avoid numerical instability. The most important
thing is that the backpropagation is performed through µ and σ to compute the updates
which means that the computed gradient will not change the units distributions which
is a crucial innovation in this approach. Previous approaches [461, 348, 344, 107] had
involved adding penalties to the cost function to encourage units to have normalized
activation statistics or involved intervening to re-normalize unit statistics after each
gradient descent step. The former approach usually resulted in imperfect normalization
and the latter usually resulted in significant waste of time, as the learning algorithm
repeatedly proposed changing the mean and variance, and the normalization step
repeatedly undid this change. Batch normalization reparametrizes the model to make
some units always standardized by definition.

At the test time, µ and σ may be replaced by running averages that were collected
during train time. This allows the model to be evaluated on a single sample at a time
without the need to re-estimating these statistics that depend on an entire minibatch.

44 Background

Normalizing the mean and standard deviation of a unit can reduce the expressive
power of the network that contains that unit. To maintain the expressive power of the
network, it is common to replace the batch of hidden unit activation H with

γH′ + β , (1.39)

rather than simply the normalized H ′. γ and β are learned parameters that allow
the new variable to have any possible mean and standard deviation depending on the
optimization problem. Setting the mean as a learnable parameter makes it easier than
estimate it stochastically based on a minbatch.

1.3.2.8 Unsupervised and Semi-supervised Learning

In machine learning, learning better representations usually leads to better generaliza-
tion [51, 46]. In neural networks field, representations learning has been a hot topic for
a long time and still is [154]. The main idea is to learn a model that provides adequate
representations for the task in hand. In standard supervised learning setup, learning
such representations requires large number of labeled data which may not be available.
A possible solution to deal with this is to use unlabeled data either alone or combined
with labeled data. Semi-supervised learning refers to a context where the learning is
based on both: labeled and unlabeled data. Unsupervised learning refers to a learning
context where only data without labels are used.

In semi-supervised learning, the main idea is to use unlabeled data to discover
the underlying input domain distribution in an unsupervised way. In most cases, the
supervised task partially shares its parameters with an unsupervised task. This may
be seen as a regularization of the supervised task where the cost is constrained by
the unsupervised cost [121, 50]. Most importantly, the unsupervised task introduces
a generalization and prevents the supervised task from overfitting. This can be
achieved through sharing general representations [154]. For instance, let us consider
an unsupervised task that learns representation of trucks such as car, bus, motor-cycle.
On the other hand, let us consider a supervised task that learns to recognize each of
the previous trucks. One of the possible learned features in the unsupervised task
is the concept of a “wheel” and more complicated feature “counting the number of
wheels”. Learning both these tasks can be helpful because they are important features
in the supervised task that aims at distinguishing between the different trucks. This
type of unsupervised learning can be very helpful in the case where only few labeled
data is available with a large number of unlabeled data [154].

Since 2006, many works showed that unsupervised learning techniques can help to
efficiently train deep feedforward networks [201, 199, 49] using multilayer perceptrons
(MLP). Such methods are mostly based on layer-wise pre-training where layers are
pre-trained sequentially using a reconstruction criterion. This allows to train Deep
Belief Networks [201, 199] using RBMs and deep feedforward networks using different
variants of auto-encoders [353, 354, 360]. Pre-training techniques can be seen as a
regularization to the supervised task where it allows to learn intermediate feature
functions that provide general features. It may also be seen as a better initialization of
the weights by pushing them toward better regions in the parameters space. Thus, it
avoids local minima. More insights on the unsupervised learning can be found in [121].
[261] provide a technical description of pre-training approach and auto-encoders.

1.4 Conclusion 45

Recently, there was an attempt to pre-train convolutional networks in an unsu-
pervised way through reconstruction [287, 485, 110], however these methods are still
facing open issues such as the deconvolution.

Pre-training technique has been abandoned in the last few years due to its greedy
approach, the availability of large supervised data, and also to the improvements
and accessibility to less greedy regularization techniques. One can also mention its
lack of efficient stopping criterion to end the pre-training phase. Moreover, we did
not see new advances in auto-encoders aspects in the last years. Today, learning
better representations is achieved using a large number of supervised data and more
complicated/deep models such as convolutional networks [244, 384, 126].

In this thesis, we focus more on regularizing neural networks through learning better
representations using unsupervised learning, prior knowledge, or transfer learning.

1.3.3 Summary
Throughout this section, we have presented different variant of tools that are commonly
used to prevent the overfitting of neural networks. We have divided such approaches
into two categories: methods that reduce the model complexity, and methods that
promote the model generalization without necessarily affecting its complexity.

1.4 Conclusion
We have presented in this first chapter of this thesis an introduction to machine learning
with a focus on the generalization aspect (Sec.1.1), followed with an introduction to
neural networks (Sec.1.2) and their overfitting issue. Finally, we closed this chapter by
presenting some selected approaches used to improve the generalization of such models
and alleviate their overfitting (Sec.1.3). Such methods may aim directly at reducing
the network complexity or aim directly at improving the generalization performance of
the model.

In this thesis, we tackled the overfitting issue of neural networks by focusing more on
representation learning within the model, particularly when using few labeled training
samples. We performed the regularization of learning representations in neural networks
either through learning input/output representations using unsupervised approach
[29, 33, 35], incorporating prior knowledge on learning internal representations [30],
or using transfer learning [32]. All these contributions were made under the angle of
tackling the overfitting issue of deep neural networks when dealing with small training
sets which is the case in real life applications. We can divide our contributions into
three different approaches:

• Approach based on unsupervised learning (chapter 2): This provides an access to
large unsupervised samples and allows to learn the structure of the data without
the need to large labeled data. This leads to improvements in the network
performance [29, 33, 35].

• Approach based on prior knowledge about the task (chapter 3): The key idea is
to exploit a prior belief about the distribution of the internal representation, in
the case of a classification task, which is: samples within the same class should
have the same internal representation. Incorporating this prior knowledge into

46 Background

the network training allows improving its generalization while using small dataset
for training [30].

• Approach based on transfer learning (chapter 4): This idea consists in training
a deep model on a large labeled data over a specific task t1. Then, one takes a
subset of the learned parameters and use them, combined with new parameters,
to learn a second task t2 which has few training samples. Usually, only the
parameters that learn low representations are used. Such parameters seem to
be common among different tasks, particularly in computer vision. This allows
to obtain models with large capacity partially trained and use them over small
datasets with success [32].

The following chapters describe each of our contributions.

Chapter 2

Deep Neural Networks
Regularization for Structured
Output Prediction

2.1 Prologue
Article Details:

• Deep Neural Networks Regularization for Structured Output Predic-
tion. Soufiane Belharbi, Romain Hérault1, Clément Chatelain1, and Sébastien
Adam. Neurocomputing Journal, 281C:169-177, 2018.

Other Related Publications:

• Learning Structured Output Dependencies Using Deep Neural Net-
works. Soufiane Belharbi, Clément Chatelain, Romain Hérault, and Sébastien
Adam. Deep Learning Workshop in the 32nd International Conference on Machine
Learning (ICML), 2015.

• A Unified Neural Based Model For Structured Output Problems. Soufi-
ane Belharbi, Clément Chatelain, Romain Hérault, and Sébastien Adam. Con-
férence Francophone sur l’Apprentissage Automatique (CAP), 2015.

• Deep Multi-Task Learning with Evolving Weights. Soufiane Belharbi,
Romain Hérault, Clément Chatelain, and Sébastien Adam. European Symposium
on Artificial Neural Networks (ESANN), 2016.

• Pondération Dynamique dans un Cadre Multi-Tâche pour Réseaux de
Neurones Profonds. Soufiane Belharbi, Romain Hérault, Clément Chatelain,
and Sébastien Adam. Reconnaissance des Formes et l’Intelligence Artificielle
(RFIA) (Session spéciale: Apprentissage et vision), 2016.

Context:
We provide in this chapter our first contribution which concerns regularization of

1Authors with equal contribution.

48
Deep Neural Networks Regularization for Structured Output

Prediction

neural network in the context of structured output problems. Structured output
problems is a set of problems where the output variable y is multi-dimensional and
structural relations exist between its components. In this work, we aim at providing
a regularization framework that makes use of unsupervised learning on both input
X and more importantly on output Y. Learning the input and output distribution
allows to speed the training of the neural network and improves its generalization error.
Moreover, this allows exploiting unlabeled inputs and/or label only outputs.

This work comes after a series of related works [29, 28, 33, 34]. Our framework is
composed of three tasks: two unsupervised tasks and a main supervised task. Our
first proposition [29, 28] of this framework had a sequential optimization scheme.
Although it shows significant improvements, it still has issues with respect to the
optimization schedule which is difficult to tune and can easily lead to overfitting for the
unsupervised tasks. Our first attempt to fix this issue was through the works [33, 34]
where we proposed a parallel optimization technique of pre-training [201, 199, 49, 353]
instead of sequential one in hope to avoid overfitting and to reduce the number of
hyperparameters one needs to setup. Through the work [33], we succeed to show
that parallel optimization in this context of multi-tasking is better than sequential
one. Later on, we extend this parallel optimization setup to our framework for solving
structured output problems where the three tasks are optimized at once which led to
this work [35]. Evaluated on a facial landmark detection problem, it allows to improve
the generalization of the network and add more speed to their training. Furthermore,
we show experimentally the possibility to use label-only data in an unsupervised way
to improve more the generalization. We present this final work [35] as a chapter of this
thesis under the form of one contribution. This chapter contains the original paper as
it was accepted in Neurocomputing journal with slight adaptation of notation.

Contributions:
The contribution of this paper is to provide a parallel strategy to optimize the framework
proposed initially in [29, 28] to solve structured output problems. The proposed strategy
showed a significant improvement in the generalization of the network. Furthermore,
we showed the possibility to use label-only data in an unsupervised fashion over the
output which allowed to improve more the generalization.

2.2 Introduction 49

2.2 Introduction
In the machine learning field, the main task usually consists in learning general
regularities over the input space in order to provide a specific output. Most of machine
learning applications aim at predicting a single value: a label for classification or a scalar
value for regression. Many recent applications address challenging problems where the
output lies in a multi-dimensional space describing discrete or continuous variables that
are most of the time interdependent. A typical example is speech recognition, where
the output label is a sequence of characters which are interdependent, following the
statistics of the considered language. These dependencies generally constitute a regular
structure such as a sequence, a string, a tree or a graph. As it provides constraints
that may help the prediction, this structure should be either discovered if unknown, or
integrated in the learning algorithm using prior assumptions. The range of applications
that deal with structured output data is large. One can cite, among others, image
labeling [126, 272, 320, 363, 486, 207, 265, 402], statistical natural language processing
(NLP) [221, 323, 398, 376], bioinformatics [226, 417], speech processing [346, 481]
and handwriting recognition [166, 409]. Another example which is considered in the
evaluation of our proposal in this paper is the facial landmark detection problem. The
task consists in predicting the coordinates of a set of keypoints given the face image as
input (Fig.2.1). The set of points are interdependent throughout geometric relations
induced by the face structure. Therefore, facial landmark detection can be considered
as a structured output prediction task.

Fig. 2.1 Examples of facial landmarks from LFPW [37] training set.

One main difficulty in structured output prediction is the exponential number of
possible configurations of the output space. From a statistical point of view, learning
to predict accurately high dimensional vectors requires a large amount of data where
in practice we usually have limited data. In this article we propose to consider
structured output prediction as a representation learning problem, where the model
must i) capture the discriminative relation between x (input) and y (output), and ii)
capture the interdependencies laying between the variables of each space by efficiently
modeling the input and output distributions. We address this modelization through
a regularization scheme for training neural networks. Feedforward neural networks
lack exploiting the structural information between the y components. Therefore, we
incorporate in our framework an unsupervised task which aims at discovering this
hidden structure. The advantage of doing so is there is no need to fix beforehand any
prior structural information. The unsupervised task learns it on itself.

50
Deep Neural Networks Regularization for Structured Output

Prediction

Our contributions is a multi-task framework dedicated to train feedforward neural
networks models for structured output prediction. We propose to combine unsupervised
tasks over the input and output data in parallel with the supervised task. This
parallelism can be seen as a regularization of the supervised task which helps it to
generalize better. Moreover, as a second contribution, we demonstrate experimentally
the benefit of using the output labels y without their corresponding inputs x. In
this work, the multi task framework is instantiated using auto-encoders [440, 50] for
both representations learning and exploiting unlabeled data (input) and label-only
data (output). We demonstrate the efficiency of our proposal over a real-world facial
landmark detection problem.

The rest of the paper is organized as follows. Related works about structured output
prediction is proposed in section 2.3. Section 2.4 presents the proposed formulation
and its optimization details. Section 2.5 describes the instantiation of the formulation
using a deep neural network. Finally, section 2.6 details the conducted experiments
including the datasets, the evaluation metrics and the general training setup. Two
types of experiments are explored: with and without the use of unlabeled data. Results
are presented and discussed for both cases.

2.3 Related work
We distinguish two main categories of methods for structured output prediction. For
a long time, graphical models have showed a large success in different applications
involving 1D and 2D signals. Recently, a new trend has emerged based on deep neural
networks.

2.3.1 Graphical Models Approaches
Historically, graphical models are well known to be suitable for learning structures.
One of their main strength is an easy integration of explicit structural constraints and
prior knowledge directly into the model’s structure. They have shown a large success
in modeling structured data thanks to their capacity to capture dependencies among
relevant random variables. For instance, Hidden Markov Models (HMM) framework
has a large success in modeling sequence data. HMMs make an assumption that the
output random variables are supposed to be independent which is not the case in many
real-world applications where strong relations are present. Conditional Random Fields
(CRF) have been proposed to overcome this issue, thanks to its capability to learn
large dependencies of the observed output data. These two frameworks are widely used
to model structured output data represented as a 1-D sequence [119, 346, 54, 248].
Many approaches have also been proposed to deal with 2-D structured output data
as an extension of HMM and CRF. [316] propose a Markov Random Field (MRF) for
document image segmentation. [423] provide an adaptation of CRF to 2-D signals
with hand drawn diagrams interpretation. Another extension of CRF to 3-D signal
is presented in [431] for 3-D medical image segmentation. Despite the large success
of graphical models in many domains, they still encounter some difficulties. For
instance, due to their inference computational cost, graphical models are limited to
low dimensional structured output problems. Furthermore, HMM and CRF models

2.3 Related Work 51

are generally used with discrete output data where few works address the regression
problem [321, 129].

2.3.2 Deep Neural Networks Approaches
More recently, deep learning based approaches have been widely used to solve structured
output prediction, especially proposed for image labeling problems. Deep learning
domain provides many different architectures. Therefore, different solutions were
proposed depending on the application in hand and what is expected as a result.

In image labeling task (also known as semantic segmentation), one needs models
able to adapt to the large variations in the input image. Given their large success
in image processing related tasks [244], convolutional neural networks is a natural
choice. Therefore, they have been used as the core model in image labeling problems in
order to learn the relevant features. They have been used either combined with simple
post-processing in order to calibrate the output [89] or with more sophisticated models
in structure modeling such as CRF [126] or energy based models [318]. Recently, a new
trend has emerged, based on the application of convolution [272, 363] or deconvolutional
[320] layers in the output of the network which goes by the name of fully convolutional
networks and showed successful results in image labeling. Despite this success, these
models does not take in consideration the output representation.

In many applications, it is not enough to provide the output prediction, but also its
probability. In this case, Conditional Restricted Boltzmann Machines, a particular case
of neural networks and probabilistic graphical models have been used with different
training algorithms according to the size of the plausible output configurations [304].
Training and inferring using such models remains a difficult task. In this same direction,
[27] tackle structured output problems as an energy minimization through two feed-
forward networks. The first is used for feature extraction over the input. The second is
used for estimating an energy by taking as input the extracted features and the current
state of the output labels. This allows learning the interdependencies within the output
labels. The prediction is performed using an iterative backpropagation-based method
with respect to the labels through the second network which remains computationally
expensive. Similarly, Recurrent Neural Networks (RNN) are a particular architecture
of neural networks. They have shown a great success in modeling sequence data and
outputing sequence probability for applications such as Natural Language Processing
(NLP) tasks [271, 415, 18] and speech recognition [164]. It has also been used for
image captioning [231]. However, RNN models doe not consider explicitly the output
dependencies.

In [261], our team proposed the use of auto-encoders in order to learn the output
distribution in a pre-training fashion with application to image labeling with promising
success. The approach consists in two sequential steps. First, an input and output
pre-training is performed in an unsupervised way using autoencoders. Then, a finetune
is applied on the whole network using supervised data. While this approach allows
incorporating prior knowledge about the output distribution, it has two main issues.
First, the alteration of a network output layer is critical and must be performed
carefully. Moreover, one needs to perform multiple trial-error loops in order to set
the autoencoder’s training hyper-parameters. The second issue is overfitting. When
pre-training the output auto-encoder, there is actually no information that indicates if
the pre-training is helping the supervised task, nor when to stop the pre-training.

52
Deep Neural Networks Regularization for Structured Output

Prediction

The present work proposes a general and easy to use multi-task training framework
for structured output prediction models. The input and the output unsupervised
tasks are embedded into a regularization scheme and learned in parallel with the
supervised task. The rationale behind is that the unsupervised tasks should provide a
generalization aspect to the main supervised task and should limit overfitting. This
parallel transfer learning which includes an output reconstruction task constitutes the
main contribution of this work. In structured output context, the role of the output
task is to learn the hidden structure within the original output data, in an unsupervised
way. This can be very helpful in models that do not consider the relations between
the components of the output representation such as feedforward neural networks.
We also show that the proposed framework enables to use labels without input in an
unsupervised fashion and its effect on the generalization of the model. This can be very
useful in applications where the output data is abundant such as in a speech recognition
task where the output is ascii text which can be easily gathered from Internet. In this
article, we validate our proposal on a facial landmark prediction problem over two
challenging public datasets (LFPW and HELEN). The performed experiments show
an improvement of the generalization of deep neural networks and an acceleration of
their training.

2.4 Multi-task Training Framework for Structured
Output Prediction

Let us consider a training set D containing examples with both features and targets
(x, y), features without target (x, _), and targets without features (_, y). Let us
consider a set F which is the subset of D containing examples with at least features x,
a set L which is the subset of D containing examples with at least targets y, and a set
S which is the subset of D containing examples with both features x and targets y.
One can note that all examples in S are also in F and in L.

Input task The input task Rin is an unsupervised reconstruction task which aims at
learning global and more robust input representation based on the original input
data x. This task projects the input data x into an intermediate representation
space x̃ through a coding function Pin, known as encoder. Then, it attempts
to recover the original input by reconstructing x̂ from x̃ through a decoding
function P̄in, known as decoder

x̂ = Rin (x; win) = P̄in (x̃ = Pin (x; wcin) ; wdin) , (2.1)

where win = {wcin, wdin}. The decoder parameters wdin are proper to this
task however the encoder parameters wcin are shared with the main task (see
Fig.2.2). This multi-task aspect will attract, hopefully, the shared parameters in
the parameters space toward regions that build more general and robust input
representations and avoid getting stuck in local minima. Therefore, it promotes
generalization. This can be useful to start the training process of the main task.
The training criterion for this task is given by

2.4 Multi-task Training Framework for Structured Output Prediction 53

Jin(F; win) = 1
cardF

∑
x∈F
Cin(Rin(x; win), x) , (2.2)

where Cin(·, ·) is an unsupervised learning cost which can be computed on all the
samples with features (i.e. on F). Practically, it can be the mean squared error.

Output task The output task Rout is an unsupervised reconstruction task which has
the same goal as the input task. Similarly, this task projects the output data y
into an intermediate representation space ỹ through a coding function Pout, i.e.
a coder. Then, it attempts to recover the original output data by reoncstructing
ŷ based on ỹ through a decoding function P̄out, i.e. a decoder. In structured
output data, ỹ can be seen as a code that contains many aspect of the original
output data y, most importantly, its hidden structure that describes the global
relation between the components of y. This hidden structure is discovered in an
unsupervised way without priors fixed beforehand which makes it simple to use.
Moreover, it allows using labels only (without input x) which can be helpful in
tasks with abundant output data such as in speech recognition task (Sec.2.3)

ŷ = Rout (y; wout) = P̄out (ỹ = Pout (y; wcout) ; wdout) . (2.3)

where wout = {wcout, wdout}. In the opposite of the input task, the encoder
parameters wcout are proper to this task while the decoder parameters wdout are
shared with the main task (see Fig.2.2).
The training criterion for this task is given by

Jout(L; wout) = 1
cardL

∑
y∈L
Cout(Rout(y; wout), y) , (2.4)

where Cout(·, ·) is an unsupervised learning cost which can be computed on all
the samples with labels (i.e. on L), typically, the mean squared error.

Main task The main task is a supervised task that attempts to learn the mapping
function M between features x and labels y. In order to do so, the first part
of the mapping function is shared with the encoding part Pin of the input task
and the last part is shared with the decoding part P̄out of the output task. The
middle part L of the mapping function M is specific to this task

ŷ =M (x; wsup) = P̄out (L (Pin (x; wcin) ; ws) ; wdout) . (2.5)

where wsup = {wcin, ws, wdout}. Accordingly, wcin and wdout parameters are
respectively shared with the input and output tasks.
Learning this task consists in minimizing its learning criterion Js,

Js(S; wsup) = 1
cardS

∑
(x,y)∈S

Cs(M(x; wsup), y) , (2.6)

where Cs(·, ·) can be the mean squared error.

54
Deep Neural Networks Regularization for Structured Output

Prediction

x

x̃

x̂

y

ỹ

ŷ

P in
(.,w

ci
n
)

P̄
in (.,w

din)

Rin(.; win)

P
out (.,w

cout)Rout(.; wout)

P̄out(.
,w

dout)

L(., ws)

M(.; wsup)

Fig. 2.2 Proposed MTL framework. Black plain arrows stand for intermediate functions,
blue dotted arrow for input auxiliary task Rin, green dashed arrow for output auxiliary
task Rout, and red dash-dotted arrow for the main supervised task M.

As a synthesis, our proposal is formulated as a multi-task learning framework (MTL)
[70], which gathers a main task and two secondary tasks. This framework is illustrated
in Fig. 2.2.

Learning the three tasks is performed in parallel. This can be translated in terms of
training cost as the sum of the corresponding costs. Given that the tasks have different
importance, we weight each cost using a corresponding importance weight λsup, λin

and λout respectively for the supervised, the input and output tasks. Therefore, the
full objective of our framework can be written as

J(D; w) = λsup × Js(S; wsup) + λin × Jin(F; win) + λout × Jout(L; wout) , (2.7)

where w = {wcin, wdin, ws, wcout, wdout} is the complete set of parameters of the
framework.

Instead of using fixed importance weights that can be difficult to optimally set, we
adapt them through the learning epochs. In this context, Eq. 2.7 is modified as follows

J(D; w) = λsup(t)× Js(S; wsup)
+ λin(t)× Jin(F; win) + λout(t)× Jout(L; wout) , (2.8)

where t ≥ 0 indicates the learning epochs. Our motivation to adapt the importance
weights is that we want to use the secondary tasks to start the training and avoid
the main task to get stuck in local minima early in the beginning of the training by
moving the parameters towards regions that generalize better. Then, toward the end
of the training, we drop the secondary tasks by annealing their importance toward
zero because they are no longer necessary for the main task. The early stopping of the
secondary tasks is important in this context of mult-tasking as shown in [488] otherwise,
they will overfit, therefore, they will harm the main task. The main advantage of Eq.2.8
is that it allows an interaction between the main supervised task and the secondary

2.5 Implementation 55

tasks. Our hope is that this interaction will promote the generalization aspect of the
main task and prevent it from overfitting.

2.5 Implementation
In this work, we implement our framework throughout a deep neural network. The
main supervised task is performed using a deep neural network (DNN) with K layers.
Secondary reconstruction tasks are carried out by auto-encoders (AE): the input task
is achieved using an AE that has Kin layers in its encoding part, with an encoded
representation of the same dimension as x̃. Similarly, the output task is achieved using
an AE that has Kout layers in its decoding part, with an encoded representation of the
same dimension as ỹ. At least one layer must be dedicated in the DNN to link x̃ and
ỹ in the intermediate spaces. Therefore, Kin + Kout < K.

Parameters win are the parameters of the whole input AE, wout are the parameters
of the whole output AE and wsup are the parameters of the main neural network (NN).
The encoding layers of the input AE are tied to the first layers of the main NN, and
the decoding layers of the output AE are in turn tied to the last layers of the main NN.
If wi are the parameters of layer i of a neural network, then w1 to wKin

parameters of
the input AE are shared with w1 to wKin

parameters of the main NN. Moreover, if
w−i are the parameters of last minus i− 1 layer of a neural network, then parameters
w−Kout to w−1 of the output AE are shared with the parameters w−Kout to w−1 of the
main NN.

During training, the loss function of the input AE is used as Jin, the loss function
of the output AE is used as Jout, and the loss function of the main NN is used as Js.

Optimizing Eq.2.8 can be performed using Stochastic Gradient Descent. In the
case of task combination, one way to perform the optimization is to alternate between
the tasks when needed [91, 488]. In the case where the training set does not contain
unlabeled data, the optimization of Eq.2.8 can be done in parallel over all the tasks.
When using unlabeled data, the gradient for the whole cost can not be computed
at once. Therefore, we need to split the gradient for each sub-cost according to the
nature of the samples at each mini-batch. For the sake of clarity, we illustrate our
optimization scheme in Algorithm 1 using on-line training (i.e. training one sample at
a time). Mini-batch training can be performed in the same way.

2.6 Experiments
We evaluate our framework on a facial landmark detection problem which is typically
a structured output problem since the facial landmarks are spatially inter-dependent.
Facial landmarks are a set of key points on human face images as shown in Fig. 2.1.
Each key point is defined by the coordinates (x, y) in the image ((x, y) ∈ R2). The
number of landmarks is dataset or application dependent.

It must be emphasized here that the purpose of our experiments in this paper
was not to outperform the state of the art in facial landmark detection but to show
that learning the output dependencies helps improving the performance of DNN on
that task. Thus, we will compare a model with/without input and output training.
[483] use a cascade of neural networks. In their work, they provide the performance

56
Deep Neural Networks Regularization for Structured Output

Prediction

Algorithm 1 Our training strategy for one epoch
1: D is the shuffled training set. B a sample.
2: for B in D do
3: if B contains x then
4: Update win: Make a gradient step toward λin × Jin using B (Eq.2.2).
5: end if
6: if B contains y then
7: Update wout: Make a gradient step toward λout × Jout using B (Eq.2.4).
8: end if
9: # parallel parameters update

10: if B contains x and y then
11: Update w: Make a gradient step toward J using B (Eq.2.8).
12: end if
13: Update λsup, λin and λout.
14: end for

of their first global network. Therefore, we will use it as a reference to compare our
performance (both networks have the same number of layers) except they use larger
training dataset.

We first describe the datasets followed by a description of the evaluation metrics used
in facial landmark problems. Then, we present the general setup of our experiments
followed by two types of experiments: without and with unlabeled data. An opensource
implementation of our MTL deep instantiation is available online2.

2.6.1 Datasets
We have carried out our evaluation over two challenging public datasets for facial

landmark detection problem: LFPW [37] and HELEN [252].
LFPW dataset consists of 1132 training images and 300 test images taken under

unconstrained conditions (in the wild) with large variations in the pose, expression,
illumination and with partial occlusions (Fig.2.1). This makes the facial point detection
a challenging task on this dataset. From the initial dataset described in LFPW [37], we
use only the 811 training images and the 224 test images provided by the ibug website3.
Ground truth annotations of 68 facial points are provided by [371]. We divide the
available training samples into two sets: validation set (135 samples) and training set
(676 samples).

HELEN dataset is similar to LFPW dataset, where the images have been taken
under unconstrained conditions with high resolution and collected from Flikr using
text queries. It contains 2000 images for training, and 330 images for test. Images and
face bounding boxes are provided by the same site as for LFPW. The ground truth
annotations are provided by [371]. Examples of dataset are shown in Fig.2.3.

All faces are cropped into the same size (50× 50) and pixels are normalized in [0,1].
The facial landmarks are normalized into [-1,1].

2https://github.com/sbelharbi/structured-output-ae
3300 faces in-the-wild challenge http://ibug.doc.ic.ac.uk/resources/300-W/

https://github.com/sbelharbi/structured-output-ae
http://ibug.doc.ic.ac.uk/resources/300-W/

2.6 Experiments 57

Fig. 2.3 Samples from HELEN [252] dataset.

2.6.2 Metrics
In order to evaluate the prediction of the model, we use the standard metrics used in
facial landmark detection problems.

The Normalized Root Mean Squared Error (NRMSE) [95] (Eq.2.9) is the Euclidean
distance between the predicted shape and the ground truth normalized by the product
of the number of points in the shape and the inter-ocular distance D (distance between
the eyes pupils of the ground truth),

NRMSE(sp, sg) = 1
N ∗D

N∑
i=1
||spi − sgi||2 , (2.9)

where sp and sg are the predicted and the ground truth shapes, respectively. Both
shapes have the same number of points N . D is the inter-ocular distance of the shape
sg.

Using the NMRSE, we can calculate the Cumulative Distribution Function for a
specific NRMSE (CDFNRMSE) value (Eq.2.10) overall the database,

CDFx = card(NRMSE ≤ x)
n

, (2.10)

where card(.) is the cardinal of a set. n is the total number of images.
The CDFNRMSE represents the percentage of images with error less or equal than

the specified NRMSE value. For example a CDF0.1 = 0.4 over a test set means that
40% of the test set images have an error less or equal than 0.1. A CDF curve can be
plotted according to these CDFNRMSE values by varying the value of NRMSE.

These are the usual evaluation criteria used in facial landmark detection problem.
To have more numerical precision in the comparison in our experiments, we calculate
the Area Under the CDF Curve (AUC), using only the NRMSE range [0,0.5] with a
step of 10−3.

2.6.3 General training setup
To implement our framework, we use - a DNN with four layers K = 4 for the main
task; - an input AE with one encoding layer Kin = 1 and one decoding layer; - an
output AE with one encoding layer and one decoding layer Kout = 1. Referring to
Fig.2.2, the size of the input representation x and estimation x̂ is 2500 = 50× 50; the
size of the output representation y and estimation ŷ is 136 = 68 × 2, given the 68

58
Deep Neural Networks Regularization for Structured Output

Prediction

landmarks in a 2D plane; the dimension of intermediate spaces x̃ and ỹ have been set
to 1025 and 64 respectively; finally, the hidden layer in the L link between x̃ and ỹ is
composed of 512 units. The size of each layer has been set using a validation procedure
on the LFPW validation set.

Sigmoid activation functions are used everywhere in the main NN and in the two
AEs, except for the last layer of the main NN and the tied last layer of output AE
which use a hyperbolic tangent activation function to suite the range [−1, 1] for the
output yi ∈ y.

We use the same architecture through all the experiments for the different training
configurations. To distinguish between the multiple configurations we set the following
notations:

1. MLP, a DNN for the main task with no concomitant training;

2. MLP + in, a DNN with input AE parallel training;

3. MLP + out, a DNN with output AE parallel training;

4. MLP + in + out, a DNN with both input and output reconstruction secondary
tasks.

We recall that the auto-encoders are used only during the training phase. In the test
phase, they are dropped. Therefore, the final test networks have the same architecture
in all the different configurations.

Beside these configurations, we consider the mean shape (the average of the y in
the training data) as a simple predictive model. For each test image, we predict the
same estimated mean shape over the train set.

To clarify the benefit of our approach, all the configurations must start from the
same initial weights to make sure that the obtained improvement is due to the training
algorithm, not to the random initialization.

For the input reconstruction tasks, we use a denoising auto-encoder with a corruption
level of 20% for the first hidden layer. For the output reconstruction task, we use
a simple auto-encoder. To avoid overfitting, the auto-encoders are trained using L2
regularization with a weight decay of 10−2.

In all the configurations, the update of the parameters of each task (supervised
and unsupervised) is performed using Stochastic Gradient Descent with momentum
[414] with a constant momentum coefficient of 0.9. We use mini-batch size of 10. The
training is performed for 1000 epochs with a learning rate of 10−3.

In these experiments, we propose to use a simple linear adaptation scheme for the
importance weights λsup (supervised task), λin (input task) and λout (output task). We
retain the adaptation scheme proposed in [36], and presented in Fig.2.4.

The hyper-parameters (learning rate, batch size, momentum coefficient, weight
decay, the importance weights) have been optimized on the LFPW validation set. We
apply the same optimized hyper-parameters for HELEN dataset.

Using these configurations, we perform two types of experiments: with and without
unlabeled data. We present in the next sections the obtained results.

2.6 Experiments 59

0 200 400 600 800 1000
training epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

im
po

rt
an

ce
 w

ei
gh

t v
al
ue

Importance weights evolution throughout training epochs

λsup

λin,1

λout,4

Fig. 2.4 Linear adaptation of the importance weights during training.

2.6.3.1 Experiments with fully labeled data

In this setup, we use the provided labeled data from each set in a classical way. For
LFPW set, we use the 676 available samples for training and 135 samples for validation.
For HELEN set, we use 1800 samples for training and 200 samples for validation.

In order to evaluate the different configurations, we first calculate the Mean Squared
Error (MSE) of the best models found using the validation during the training. Column
1 (no unlabeled data) of Tab.2.1, 2.2 shows the MSE over the train and valid sets of
LFPW and HELEN datasets, respectively. Compared to an MLP alone, adding the
input training of the first hidden layer slightly reduces the train and validation error in
both datasets. Training the output layer also reduces the train and validation error,
with a more important factor. Combining the input train of the first hidden layer and
output train of the last layer gives the best performance. We plot the tracked MSE
over the train and valid sets of HELEN dataset in Fig.2.7a, 2.7b. One can see that the
input training reduces slightly the validation MSE. The output training has a major
impact over the training speed and the generalization of the model which suggests that
output training is useful in the case of structured output problems. Combining the
input and the output training improves even more the generalization. Similar behavior
was found on LFPW dataset.

At a second time, we evaluate each configuration over the test set of each datasets
using the CDF0.1 metric. The results are depicted in Tab.2.3, 2.4 in the first column
for LFPW and HELEN datasets, respectively. Similarly to the results previously found
over the train and validation set, one can see that the joint training (supervised, input,
output) outperforms all the other configurations in terms of CDF0.1 and AUC. The
CDF curves in Fig.2.8 also confirms this result. Compared to the global DNN in [483]
over LFPW test set, our joint trained MLP performs better ([483]: CDF0.1 = 65%,
ours: CDF0.1 = 69.64%), despite the fact that their model was trained using larger
supervised dataset (combination of multiple supervised datasets beside LFPW).

An illustrative result of our method is presented in Fig.2.5, 2.6 for LFPW and
HELEN using an MLP and MLP with input and output training.

60
Deep Neural Networks Regularization for Structured Output

Prediction

Fig. 2.5 Examples of prediction on LFPW test set. For visualizing errors, red segments
have been drawn between ground truth and predicted landmark. Top row: MLP.
Bottom row: MLP+in+out. (no unlabeled data)

Fig. 2.6 Examples of prediction on HELEN test set. Top row: MLP. Bottom row:
MLP+in+out. (no unlabeled data)

Table 2.1 MSE over LFPW: train and valid sets, at the end of training with and
without unlabeled data.

No unlabeled data With unlabeled data
MSE train MSE valid MSE train MSE valid

Mean shape 7.74× 10−3 8.07× 10−3 7.78× 10−3 8.14× 10−3

MLP 3.96× 10−3 4.28× 10−3 - -
MLP + in 3.64× 10−3 3.80× 10−3 1.44× 10−3 2.62× 10−3

MLP + out 2.31× 10−3 2.99× 10−3 1.51× 10−3 2.79× 10−3

MLP + in + out 2.12 × 10−3 2.56 × 10−3 1.10 × 10−3 2.23 × 10−3

2.6 Experiments 61

Table 2.2 MSE over HELEN: train and valid sets, at the end of training with and
without data augmentation.

Fully labeled data only Adding unlabeled or label-only data
MSE train MSE valid MSE train MSE valid

Mean shape 7.59× 10−3 6.95× 10−3 7.60× 10−3 0.95× 10−3

MLP 3.39× 10−3 3.67× 10−3 - -
MLP + in 3.28× 10−3 3.42× 10−3 2.31× 10−3 2.81× 10−3

MLP + out 2.48× 10−3 2.90× 10−3 2.00× 10−3 2.74× 10−3

MLP + in + out 2.34 × 10−3 2.53 × 10−3 1.92 × 10−3 2.40 × 10−3

Table 2.3 AUC and CDF0.1 performance over LFPW test dataset with and without
unlabeled data.

Fully labeled data only Adding unlabeled or label-only data
AUC CDF0.1 AUC CDF0.1

Mean shape 68.78% 30.80% 77.81% 22.33%
MLP 76.34% 46.87% - -
MLP + in 77.13% 54.46% 80.78% 67.85%
MLP + out 80.93% 66.51% 81.77% 67.85%
MLP + in + out 81.51% 69.64% 82.48% 71.87%

Table 2.4 AUC and CDF0.1 performance over HELEN test dataset with and without
unlabeled data.

Fully labeled data only Adding unlabeled or label-only data
AUC CDF0.1 AUC CDF0.1

Mean shape 64.60% 23.63% 64.76% 23.23%
MLP 76.26% 52.72% - -
MLP + in 77.08% 54.84% 79.25% 63.33%
MLP + out 79.63% 66.60% 80.48% 65.15%
MLP + in + out 80.40% 66.66% 81.27% 71.51%

62
Deep Neural Networks Regularization for Structured Output

Prediction

0 200 400 600 800 1000
epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
S

E
Error over t rain set (MSE) (HELEN)

Error over t rain set (MSE) (HELEN): MLP

Error over t rain set (MSE) (HELEN): MLP + out

(a)

0 200 400 600 800 1000
epochs

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

M
S

E

Error over valid set (MSE) (HELEN)
Error over valid set (MSE) (HELEN): MLP

Error over valid set (MSE) (HELEN): MLP + out

(b)

Fig. 2.7 MSE during training epochs over HELEN train (a) and valid (b) sets using
different training setups for the MLP.

2.6 Experiments 63

0
.0

1
0

.0
2

0
.0

5
0

.0
7

0
.0

9
0

.1
0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

NRMSE

0.10

0.20

0.30

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
a

ta
p

ro
p

o
rt

io
n

CDF NRMSE: m ean shape, CDF(0.1)= 30.804%, AUC= 68.787%

CDF NRMSE: MLP, CDF(0.1)= 46.875%, AUC= 76.346%

CDF NRMSE: MLP + out , CDF(0.1)= 66.518%, AUC= 80.939%

Cum ulat ive dist ribut ion funct ion (CDF) of NRMSE over LFPW test set .

(a)

0
.0

1
0

.0
2

0
.0

5
0

.0
7

0
.0

9
0

.1
0

0
.1

5

0
.2

0

0
.2

5

0
.3

0

0
.3

5

0
.4

0

0
.4

5

NRMSE

0.10

0.20

0.30

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

D
a

ta
p

ro
p

o
rt

io
n

CDF NRMSE: m ean shape, CDF(0.1)= 23.636%, AUC= 64.609%

CDF NRMSE: MLP, CDF(0.1)= 52.727%, AUC= 76.261%

CDF NRMSE: MLP + out , CDF(0.1)= 66.061%, AUC= 79.633%

(b)

Fig. 2.8 CDF curves of different configurations on: (a) LFPW, (b) HELEN.

64
Deep Neural Networks Regularization for Structured Output

Prediction

2.6.3.2 Data augmentation using unlabeled data or label-only data

In this section, we experiment our approach when adding unlabeled data (input and
output). Unlabeled data (i.e. image faces without the landmarks annotation) are
abundant and can be found easily for example from other datasets or from the Internet
which makes it practical and realistic. In our case, we use image faces from another
dataset.

In the other hand, label-only data (i.e. the landmarks annotation without image
faces) are more difficult to obtain because we usually have the annotation based on
the image faces. One way to obtain accurate and realistic facial landmarks without
image faces is to use a 3D face model as a generator. We use an easier way to obtain
facial landmarks annotation by taking them from another dataset.

In this experiment, in order to add unlabeled data for LFPW dataset, we take all
the image faces of HELEN dataset (train, valid and test) and vice versa for HELEN
dataset by taking all LFPW image faces as unlabeled data. The same experiment is
performed for the label-only data using the facial landmarks annotation. We summarize
the size of each train set in Tab.2.5..

Table 2.5 Size of augmented LFPW and HELEN train sets.

Train set / size of Supervised data Unsupervised input x Unsupervised output y
LFPW 676 2330 2330
HELEN 1800 1035 1035

We use the same validation sets as in Sec.2.6.3.1 in order to have a fair comparison.
The MSE are presented in the second column of Tab.2.1, 2.2 over LFPW and HELEN
datasets. One can see that adding unlabeled data decreases the MSE over the train
and validation sets. Similarly, we found that the input training along with the output
training gives the best results. Identically, these results are translated in terms of
CDF0.1 and AUC over the test sets (Tab.2.3, 2.4). All these results suggest that adding
unlabeled input and output data can improve the generalization of our framework and
the training speed.

2.7 Conclusion
In this paper, we tackled structured output prediction problems as a representation
learning problem. We have proposed a generic multi-task training framework as a
regularization scheme for structured output prediction models. It has been instantiated
through a deep neural network model which learns the input and output distributions
using auto-encoders while learning the supervised task X → Y . Moreover, we explored
the possibility of using the output labels y without their corresponding input data x
which showed more improvement in the generalization. Using a parallel scheme allows
an interaction between the main supervised task and the unsupervised tasks which
helped preventing the overfitting of the main task.

We evaluated our training method on a facial landmark detection task over two
public datasets. The obtained results showed that our proposed regularization scheme
improves the generalization of neural networks model and speeds up their training. We
believe that our approach provides an alternative for training deep architectures for

2.7 Conclusion 65

structured output prediction where it allows the use of unlabeled input and label of
the output data.

As a future work, we plan to adapt automatically the importance weights of the
tasks. For that and in order to better guide their adaptation, we can consider the use
of different indicators based on the training and the validation errors instead of the
learning epochs only. Furthermore, one may consider other kind of models instead
of simple auto-encoders in order to learn the output distribution. More specifically,
generative models such as variational and adversarial auto-encoders [280] could be
explored.

Acknowledgement
This work has been partly supported by the grant ANR-11-JS02-010 LeMon and the
grant ANR-16-CE23-0006 “Deep in France”.

Chapter 3

Neural Networks Regularization
Through Class-wise Invariant
Representation Learning

3.1 Prologue
Article Details:

• Neural Networks Regularization Through Class-wise Invariant Repre-
sentation Learning. Soufiane Belharbi, Clément Chatelain, Romain Hérault,
and Sébastien Adam. Under review, 2017.

Context:
Neural network models, particularly deep models, have seen a large success in different
applications. However, training such models requires a large number of training data
which are not available in many real world applications. Despite this issue, one would
like to be able to use deep neural networks using only few samples which is the challenge
that we tackle in this contribution.

Not far away from the time of writing this work, there was an urge toward learning
unsupervised representations. Many of these works suggested using different approach
of regularizations to learn better representations. This motivated us to explore a
different and intuitive approach to regularize supervised learning of neural networks,
especially in the case where only few training samples are available. In this work, we
present a new approach to regularize neural networks when trained over few data for
classification task. The key idea here is the use of a prior belief about the internal
representation within a neural network. The idea simply states that samples within
the same class should have the same representation. We formulate this idea as a
cost function, under the form of a dissimilarity measure, which we integrate with the
training cost to be minimized. We note that our regularization requires supervised
samples.

Empirical results over different classification tasks showed improvements of the
generalization error especially in the case where only few training samples are available.
Moreover, we showed an intriguing behavior in learning intermediate representations
within neural networks which is: the hidden layers do not tend, on its own, to learn

68
Neural Networks Regularization Through Class-wise Invariant

Representation Learning

invariant features. This confirms that the propagated classification error does not
necessarily train the hidden layers to learn meaningful and understandable features.
This brings us one step further to make neural network more understandable and shed
more light on the comprehension of the information stream within the layers to gain
more control over it.

We present this work [30] as a chapter of this thesis under the form of one contribu-
tion. This chapter contains the original paper as it was submitted to Neural Networks
journal with slight adaptation.

Contributions:
The contribution of this work is to provide a new regularization approach for training
supervised neural networks for a classification task by guiding learning the internal
representation of the network using a prior belief. This new approach showed to be
more useful when only few training samples are available.

3.2 Introduction 69

3.2 Introduction
For a long time, it has been understood in the field of deep learning that building a
model by stacking multiple levels of non-linearity is an efficient way to achieve good
performance on complicated artificial intelligence tasks such as vision [244, 396, 420, 187]
or natural language processing [92, 457, 236, 162]. The rationale behind this statement
is the hierarchical learned representations throughout the depth of the network which
circumvent the need of extracting handcrafted features.

For many years, the non-convex optimization problem of learning a neural network
has prevented going beyond one or two hidden layers. In the last decade, deep learning
has seen a breakthrough with efficient training strategies of deeper architectures
[199, 356, 49], and a race toward deeper models has began [244, 396, 420, 187]. This
urge to deeper architectures was due to (i) large progress in optimization, (ii) the
powerful computation resources brought by GPUs1 and (iii) the availability of huge
datasets such as ImageNet [104] for computer vision problems. However, in real
applications, few training samples are usually available which makes the training of
deep architectures difficult. Therefore, it becomes necessary to provide new learning
schemes for deep networks to perform better using few training samples.

A common strategy to circumvent the lack of annotated data is to exploit extra
informations related to the data, the model or the application domain, in order to guide
the learning process. This is typically carried out through regularization which can rely
for instance on data augmentation, L2 regularization [430], dropout[404], unsupervised
training [199, 356, 49, 361, 360, 36], shared parameters [255, 359, 135], etc.

Our research direction in this work is to provide a new regularization framework to
guide the training process in a supervised classification context. The framework relies
on the exploitation of prior knowledge which has already been used in the literature
to train and improve models performance when few training samples are available
[300, 381, 192, 319, 246, 475, 466, 476].

Indeed, prior knowledge can offer the advantage of more consistency, better gener-
alization and fast convergence using less training data by guiding the learning process
[300]. By using prior knowledge about the target function, the learner has a better
chance to generalize from few data [300, 2–4]. For instance, in object localization such
as part of the face, knowing that the eyes are located above the nose and the mouth
can be helpful. One can exploit this prior structure about the data representation: to
constrain the model architecture, to guide the learning process, or to post-process the
model’s decision.

In classification task, although it is difficult to define what makes a representation
good, two properties are inherent to the task: Discrimination , i.e., representations must
allow to separate samples of distinct classes. Invariance, i.e., representations must allow
to obtain robust decision despite some variations of input samples. Formally, given
two samples x(1) and x(2), a representation function Γ(·) and a decision function Ψ(·);
when x(1) ≈ x(2) , we seek invariant representations that provide Γ(x(1)) ≈ Γ(x(2)),
leading to smooth decision Ψ(Γ(x(1))) ≈ Ψ(Γ(x(2))). In this work, we are interested
in the invariance aspect of the representations. This definition can be extended to
more elaborated transformations such as rotation, scaling, translation, etc. However,
in real life there are many other transformations which are difficult to formalize or

1Graphical Processing Units.

70
Neural Networks Regularization Through Class-wise Invariant

Representation Learning

L1

Intermediate
representation

L2

Intermediate
representation

L3

Intermediate
representation

L4
+

-

x ŷ

Fig. 3.1 Input/Hidden representations of samples from an artificial dataset along 4
layers of a MLP. Each representation is projected into a 2D space.

even enumerate. Therefore, we extend in this work the definition of the invariant repre-
sentations to the class membership, where samples within the same class should have
the same representation. At a representation level, this should generate homogeneous
and tighter clusters per class.

In the training of neural networks, while the output layer is guided by the provided
target, the hidden layers are left to the effect of the propagated error from the output
layer without a specific target. Nevertheless, once the network is trained, examples
may form (many) modes on hidden representations, i.e. outputs of hidden layers,
conditionally to their classes. Most notably, on the penultimate representation before
the decision stage, examples should agglomerate in distinct clusters according to
their label as seen on Figure 3.1. From the aforementioned prior perspective about
the hidden representations, we aim in this work to provide a learning scheme that
promotes the hidden layers to build representations which are class-invariant and thus
agglomerate in restricted number of modes. By doing so, we constrain the network to
build invariant intermediate representations per class with respect to the variations in
the input samples without explicitly specifying these variations nor the transformations
that caused them.

We express this class-invariance prior as an explicit criterion combined with the
classification training criterion. It is formulated as a dissimilarity between the repre-
sentations of each pair of samples within the same class. The average dissimilarity
over all the pairs of all the classes is considered to be minimized. To the best of our
knowledge, none has used this class membership to build invariant representations.
Our motivation in using this prior knowledge, as a form of regularization, is to be able
to train deep neural networks and obtain better generalization error using less training
data. We have conducted different experiments over MNIST benchmarck using two
models (multilayer perceptrons and convolutional networks) for different classification
tasks. We have obtained results that show important improvements of the model’s
generalization error particularly when trained with few samples.

The rest of the paper is organized as follows: Sec.3.3 presents related works for
invariance learning in neural networks. We present our learning framework in Sec.3.4
followed by a discussion of the obtained results in Sec.3.5.

3.3 Related Work
Learning general invariance, particularly in deep architectures, is an attractive subject
where different approaches have been proposed. The rational behind this framework is

3.3 Related Work 71

to ensure the invariance of the learned model toward the variations of the input data. In
this section, we describe three kinds of approaches of learning invariance within neural
networks. Some of these methods were not necessarily designed to learn invariance
however we present them from the invariance perspective. For this description, f is
the target function to be learned.

Invariance through data transformations:
It is well known that generalization performance can be improved by using larger
quantity of training samples. Enlarging the number of samples can be achieved by
generating new samples through the application of small random transformations
such as rotation, scaling, random noise, etc [21, 87, 394] to the original examples.
Incorporating such transformed data within the learning process has shown
to be helpful in generalization [319]. [2] proposes the use of prior information
about the behavior of f over perturbed examples using different transformations
where f is constrained to be invariant over all the samples generated using these
transformations. While data transformations successfully incorporate certain
invariance into the learned model, they remain limited to some predefined and
well known transformations. Indeed, there are many other transformations which
are either unknown or difficult to formalize.

Invariance through model architectures:
In some neural network models, the architecture implicitly builds a certain
type of invariance. For instance, in convolutional networks [255, 359, 135],
combining layers of feature extractors using weight sharing with local pooling
of the feature maps introduces some degree of translation invariance [355, 259].
These models are currently state of the art strategies for achieving invariance
in computer vision tasks. However, it is unclear how to explicitly incorporate
in these models more complicated invariances such as large angle rotation and
complex illumination. Moreover, convolutional and max-pooling techniques are
somewhat specialized to visual and audio processing, while deep architectures
are generally task independent.

Invariance through analytical constraints:
Analytical invariance consists in adding an explicit penalty term to the training
objective function in order to reduce the variations of f or its sub-parts when
the input varies. This penalty is generally based on the derivatives of a criterion
related to f with respect to the input. For instance, in unsupervised representation
learning, [361] introduces a penalty for training auto-encoders which encourages
the intermediate representation to be robust to small changes of the input
around the training samples, referred to as contractive auto-encoders. This
penalty is based on the Frobenius norm of the first order derivative of the
hidden representation of the auto-encoder with respect to the input. Later, [360]
extended the contractive auto-encoders by adding another penalty using the norm
of an approximation of the second order derivative of the hidden representation
with respect to the input. The added term penalizes curvatures and thus favors
smooth manifolds. [176] exploit the idea that solving adversarial examples is
equivalent to increase the attention of the network to small perturbation for
each example. Therefore, they propose a layer-wise penalty which creates flat
invariance regions around the input data using the contractive penalty proposed

72
Neural Networks Regularization Through Class-wise Invariant

Representation Learning

in [361]. [393, 392] penalize the derivatives of f with respect to perturbed
inputs using simple distortions in order to ensure local invariance to these
transformations. Learning invariant representations through the penalization
of the derivatives of the representation function Γ(·) is a strong mathematical
tool. However, its main drawback is that the learned invariance is local and is
generally robust toward small variations.

Learning invariance through explicit analytical constraints can also be found in
metric learning. For instance, [82, 178] use a contrastive loss which constrains
the projection in the output space as follows: input samples annotated as similar
must have close (adjacent) projections and samples annotated as dissimilar must
have far projections. In the same way, Siamese networks [63] proceed in learning
similarity by projecting input points annotated as similar to be adjacent in the
output space. This approach of analytical constraints is our main inspiration in
this work, where we provide a penalty that constrains the representation function
Γ(·) to build similar representation for samples from the same class, i.e., in a
supervised way.

In the following section, we present our proposal with more details.

3.4 Proposed Method
In deep neural networks, higher layers tend to learn the most abstract features. We
would like that samples of the same class have the same features. In order to do so, we
add a penalty to the training criterion of the network to constrain the intermediate
representations to be class-invariant. We first describe our regularization framework by
providing basic definitions and our training criterion. Then, we discuss three measures
of invariance studied in this work followed by the implementation of our framework.

3.4.1 Model Decomposition
Let us consider a parametric mapping function for classification: M(.; θ) : X → Y,
represented here by a neural network model, where X is the input space and Y is
the label space. This neural network is arbitrarily decomposed into two parametric
sub-functions

1. Γ(·; θΓ) : X → Z, a representation function parameterized with the set θΓ. This
sub-function projects an input sample x into a representation space Z.

2. Ψ(·; θΨ) : Z → Y , a decision function parameterized with the set θΨ. It performs
the classification decision over the representation space Z.

The network decision function can be written as follows

M(x(i); θ) = Ψ(Γ(x(i); θΓ); θΨ) , (3.1)

where θ = {θΓ, θΨ}.

3.4 Proposed Method 73

Such a possible decomposition of a neural network with K = 4 layers is presented
in Fig.3.2. Here, the decision function Ψ(·) is composed of solely the output layer while
the rest of the hidden layers form the representation function Γ(·).

Layer1 Layer2 Layer3 Layer4
Γ(x; θΓ)

Γ(·; θΓ) Ψ(·; θΨ)

M(·; θ = {θΓ, θΨ}) = Ψ(Γ(.; θΓ); θΨ)

x M(x; θ) = Ψ(Γ(x; θΓ); θΨ)

Fig. 3.2 Decomposition of the neural network M(·) into a representation function Γ(·)
and a decision function Ψ(·).

3.4.2 General Training Framework
In order to constrain the intermediate representations Γ(·) to form clusters over all the
samples within the same class we modify the training loss by adding a regularization
term. Thus, the training criterion J is composed of the sum of two terms. The first
term Jsup is a standard supervised term which aims at reducing the classification
error. The second and proposed regularization term JH is a hint penalty that aims at
constraining the intermediate representations of samples within the same class to be
similar. By doing so, we constrain Γ(·) to lean invariant representations with respect
to the class membership of the input sample.

Proposed Hint Penalty
Let D = {(x(i), y(i))} be a training set for classification task with S classes and N

samples; (x(i), y(i)) denotes an input sample and its label. Let Ds be the sub-set of
D that consists in all the examples of class s, i.e. Ds = {(x, y) ∈ D s.t. y = s}. By
definition, D =

S⋃
s=1

Ds. For the sake of simplicity, even if D and Ds contains tuples of
(feature,target), x represents only the feature part in the notation x ∈ D.

Let x(i) be an input sample. We want to reduce the dissimilarity over the space Z
between the projection of x(i) and the projection of every sample x(i) ∈ Ds with j ̸= i.
For this sample x(i), our hint penalty can be written as follows

Jh(x(i); θΓ) = 1
|Ds| − 1

∑
x(j)∈Ds

j ̸=i

Ch(Γ(x(i); θΓ), Γ(x(j); θΓ)) , (3.2)

where Ch(·, ·) is a loss function that measures how much two projections in Z are
dissimilar and |Ds| is the number of samples in Ds.

Fig.3.3 illustrates the procedure to measure the dissimilarity in the intermediate
representation space Z between two input samples x(i) and x(j) with the same label.
Here, we constrained only one hidden layer to be invariant. Extending this procedure
for multiple layers is straightforward. It can be done by applying a similar constraint
over each concerned layer.

74
Neural Networks Regularization Through Class-wise Invariant

Representation Learning

Layer1 Layer2 Layer3 Layer4
Γ(x(i); θΓ)

Γ(·; θΓ) Ψ(·; θΨ)

M(·; θ = {θΓ, θΨ}) = Ψ(Γ(.; θΓ); θΨ)

x(i) ∈ Ds M(x(i); θ) min
θ={θΓ,θΨ}

Csup(M(x(i); θ), y(i))

Layer1 Layer2 Layer3 Layer4
Γ(xj; θΓ)

Γ(·) Ψ(·)

Replica of M(·)

∀x(j) ∈ Ds

j ̸= i

M(x(j); θ)

min
θΓ
Ch(Γ(x(i); θΓ), Γ(x(j); θΓ))

Fig. 3.3 Constraining the intermediate learned representations to be similar over a
decomposed network M(·) during the training phase.

Regularized Training Loss
The full training loss can be formulated as follows

J(D; θ) = γ

N

∑
(x(i),y(i))∈D

Csup(Ψ(Γ(x(i); θΓ); θΨ), y(i))

︸ ︷︷ ︸
Supervised loss Jsup

+ λ

S

S∑
s=1

1
|Ds|

∑
x(i)∈Ds

Jh(x(i); θΓ)
︸ ︷︷ ︸

Hint penalty JH

,

(3.3)
where γ and λ are regularization weights, Csup(·, ·) the classification loss function. If
one use a dissimilarity measure Ch(·, ·) in Jh that is symmetrical such as typically a
distance, summations in the term JH could be rewritten to prevent the same sample
couple to appear twice.

Eq.3.3 shares a similarity with the contrastive loss [82, 178, 63]. This last one is
composed of two terms. One term constrains the learned model to project similar
inputs to be closer in the output space. In Eq.3.3, this is represented by the hint term.
In [82, 178, 63], to avoid collapsing all the inputs into one single output point, the
contrastive loss uses a second term which projects dissimilar points far from each other
by at least a minimal distance. In Eq.3.3, the supervised term prevents, implicitly,
this collapsing by constraining the extracted representations to be discriminative with
respect to each class in order to minimize the classification training error.

3.4.3 Implementation and Optimization Details
In the present work, we have chosen the cross-entropy as the classification loss Csup(·, ·).

In order to quantify how much two representation vectors in Z, a, b ∈ Z ⊂ RV ,
are dissimilar we proceed using a distance based approach for Ch(·, ·). We study three
different measures: the squared Euclidean distance (SED),

Ch(a, b) = ∥a− b∥2
2 =

V∑
v=1

(av − bv)2 , (3.4)

the normalized Manhattan distance (NMD),

3.5 Experiments 75

Ch(a, b) = 1
V

V∑
v=1
|av − bv| , (3.5)

and the angular similarity (AS),

Ch(a, b) = arccos
(
⟨a, b⟩
∥a∥2 ∥b∥2

)
. (3.6)

Minimizing the loss function of Eq.3.3 is achieved using Stochastic Gradient De-
scent (SGD). Eq.3.3 can be seen as multi-tasking where two tasks represented by the
supervised term and the hint term are in concurrence. One way to minimize Eq.3.3 is
to perform a parallel optimization of both tasks by adding their gradient. Summing up
the gradient of both tasks can lead to issues mainly because both tasks have different
objectives that do not steer necessarily in the same direction. In order to avoid these
issues, we propose to separate the gradients by alternating between the two terms at
each mini-batch which showed to work well in practice [70, 458, 91, 36]. Moreover, we
use two separate optimizers where each term has its own optimizer. By doing so, we
make sure that both gradients are separated.

On a large dataset, computing all the dissimilarity measures in JH in Eq.3.3 over
the whole training dataset is computationally expensive due to the large number of
pairs. Therefore, we propose to compute it only over the mini-batch presented to the
network. Consequently, we need to shuffle the training set D periodically in order to
ensure that the network has seen almost all the possible combinations of the pairs. We
describe our implementation in Alg.2.

Algorithm 2 Our training strategy
1: D is the training set. Bs a mini-batch. Br a mini-batch of all the possible pairs in

Bs (Eq.3.3). OPs an optimizer of the supervised term. OPr an optimizer of the
dissimilarity term. max_epochs: maximum epochs. γ, λ are regularization weights.

2: for i=1..max_epoch do
3: Shuffle D. Then, split it into mini-batches.
4: for (Bs, Br) in D do
5: Make a gradient step toward Jsup using Bs and

OPs. (Eq.3.3)
6: Make a gradient step toward JH using Bh and

OPr. (Eq.3.3)
7: end for
8: end for

3.5 Experiments
In this section, we evaluate our regularization framework for training deep networks
on a classification task as described in Sec.3.4. In order to show the effect of using
our regularization on the generalization performance, we will mainly compare the

76
Neural Networks Regularization Through Class-wise Invariant

Representation Learning

generalization error of a network trained with and without our regularizer on different
benchmarks of classification problems.

3.5.1 Classification Problems and Experimental
Methodology

In our experiments, we consider three classification problems. We start by the standard
MNIST digit dataset. Then, we complicate the classification task by adding different
types of noise. We consider the three following problems:

• The standard MNIST digit classification problem with 50000 , 10000 and 10000
training, validation and test set. We refer to this benchmark as mnist-std. (Fig.3.4,
top row).

• MNIST digit classification problem where we use a background mask composed
of a random noise followed by a uniform filter. The dataset is composed of
100000 , 20000 and 50000 samples for train, validation and test set. Each set is
generated from the corresponding set in the benchmark mnist-std. We refer to
this benchmark as mnist-noise. (Fig.3.4, middle row).

• MNIST digit classification problem where we use a background mask composed
of a random picture taken from CIFAR-10 dataset [243]. This benchmark is
composed of 100000 samples for training built upon 40000 training samples
of CIFAR-10 training set, 20000 samples for validation built upon the rest of
CIFAR-10 training set (i.e. 10000 samples) and 50000 samples for test built upon
the 10000 test samples of CIFAR-10. We refer to this benchmark as mnist-img.
(Fig.3.4, bottom row).

Fig. 3.4 Samples from training set of each benchmark. Top row: mnist-std benchmark.
Middle row: mnist-noise benchmark. Bottom row: mnist-img benchmark.

All the images are 28 × 28 gray-scale values scaled to [0, 1]. In order to study
the behavior of our proposal where we have few training samples, we use different
configurations for the training set size. We consider four configurations where we take
only 1000 , 3000 , 5000 , 50000 or 100000 training samples from the whole available
training set. We refer to each configuration by 1k, 3k, 5k, 50k and 100k respectively.
For the benchmark mnist-std, only the configurations 1k, 3k, 5k and 50k are considered.

For all the experiments, we consider the two following neural network architectures:

3.5 Experiments 77

• Multilayer perceptron with 3 hidden layers followed by a classification output
layer. We use the same architecture as in [100] which is 1200− 1200− 200. This
model is referred to as mlp.

• LeNet convolutional network [257], which is well known in computer vision tasks,
(with similar architecture to LeNet-4) with 2 convolution layers with 20 and 50
filters of size 5×5, followed by a dense layer of size 500, followed by a classification
output layer. This model is referred to as lenet.

Each model has three hidden layers, we refer to each layer from the input toward the
output layer by: h1, h2 and h3 respectively. The output layer is referred to as h4. When
using our hint term, we refer to the model by mlp + hint and lenet + hint for the mlp
and lenet models respectively.

Each experiment is repeated 7 times. The best and the worst test classification error
cases are discarded. We report the mean ± standard deviation of the validation (vl)
and the test (tst) classification error of each benchmark. Models without regularization
are trained for 2000 epochs. All the models regularized with our proposal are trained
for 400 epochs which we found enough to converge and find a better model over the
validation set. All the trainings are performed using stochastic gradient descent with
an adaptive learning rate applied using AdaDelta [478], with a batch size of 100 .

Technical Details:

• We found that layers with bounded activation functions such as the logistic
sigmoid or the hyperbolic tangent function are more suitable when applying
our hint term. Applying the regularization term over a layer with unbounded
activation function such as the Relu [310] did not show an improvement.

• In practice, we found that setting γ = 1, λ = 1 works well.

The source code of our implementation is freely available 2.

3.5.2 Results
As we have described in Sec.3.4, our hint term can be applied at any hidden layer
of the network. In this section, we perform a set of experiments in order to have an
idea about which one is more adequate to use our regularization. To do so, we trained
the mlp model for classification task over the benchmark mnist-std using different
configurations with and without regularization. The regularization is applied for one
hidden layer at a time h1, h2 or h3. We used the squared Euclidean distance (Eq.3.4)
as a dissimilarity measure. The obtained results are presented in Tab.3.1.

From Tab.3.1, it seems that the proposed method decreases systematically the
performance when used in layers 1, and 2 in the configuration 1k. This may be explained
by the fact that low layers in neural networks tend to learn low representations which
are shared among high representations. This means that these representations are
not ready yet to discriminate between the classes. Therefore, they can not be used to
describe each class separately. This makes our regularization inadequate at these levels
because we aim at constraining the representations to be similar within each class

2https://github.com/sbelharbi/learning-class-invariant-features

https://github.com/sbelharbi/learning-class-invariant-features

78
Neural Networks Regularization Through Class-wise Invariant

Representation Learning
Model/train data size 1k 3k 5k 50k

vl tst vl tst vl tst vl tst
mlp

10.49± 0.031 11.24± 0.050 6.69± 0.039 7.17± 0.010 5.262± 0.030 5.63± 0.126 1.574 ± 0.016 1.66 ± 0.016
mlp + hint

h3 8.80 ± 0.093 9.50 ± 0.093 5.81 ± 0.104 6.24 ± 0.069 4.74 ± 0.065 5.05 ± 0.035 1.67± 0.043 1.73± 0.080
h2 11.48± 0.081 12.32± 0.090 6.72± 0.031 7.29± 0.038 5.33± 0.031 5.84± 0.030 1.88± 0.043 1.97± 0.071
h1 12.15± 0.043 12.74± 0.189 6.75± 0.041 7.26± 0.049 5.35± 0.028 5.87± 0.050 1.83± 0.033 1.95± 0.025

Table 3.1 Mean ± standard deviation error over validation and test set of the benchmark
mnist-std using the model mlp and the SED as dissimilarity measure over the different
hidden layers: h1, h2, h3. (bold font indicates lowest error.)

while these layers are incapable to deliver such representations. Therefore, regularizing
these layers may hamper their learning. As a future work, we think that it would be
beneficial to use at low layers a regularization term that constrains the representations
of samples within different classes be dissimilar such as the one in the contrastive loss
[82, 178, 63].

In the case of regularizing the last hidden layer h3, we notice from Tab.3.1 an
important improvement in the classification error over the validation and the test set
in most configurations. This may be explained by the fact that the representations
at this layer are more abstract, therefore, they are able to discriminate the classes.
Our regularization term constrains these representations to be tighter by re-enforcing
their invariance which helps in generalization. Therefore, applying our hint term over
the last hidden layer makes more sense and supports the idea that high layers in
neural networks learn more abstract representations. Making these discriminative
representations invariant helps the linear output layer in the classification task. For all
the following experiments, we apply hint term over the last hidden layer. Moreover,
one can notice that our regularization has less impact when adding more training
samples. For instance, we reduced the classification test error by: 1.74%, 0.92% and
0.58% in the configurations 1k, 3k and 5k. This suggests that our proposal is more
efficient in the case where few training samples are available. However, this does not
exclude using it for large training datasets as we will see later (Tab.3.2, 3.3). We
believe that this behavior depends mostly on the model’s capacity to learn invariant
representations. For instance, from the invariance perspective, convolutional networks
are more adapted, conceptually, to process visual content than multilayers perceptrons.

In another experimental setup, we investigated the effect of the measure used to
compute the dissimilarity between two feature vectors as described in Sec.3.4.3. To do
so, we applied our hint term over the last hidden layer h3 using the measures SED,
NMD and AS over the benchmark mnist-std. The obtained results are presented in
Tab.3.2. These results show that the squared Euclidean distance performs significantly
better than the other measures and has more stability when changing the number of
training samples (1k, 3k, 5k, 50k) or the model (mlp, lenet).

In another experiment, we evaluated the benchmarks mnist-noise and mnist-img,
which are more difficult compared to mnist-std, using the model lenet which is more
suitable to process visual content. Similarly to the previous experiments, we applied our
regularization term over the last hidden layer h3 using the SED measure. The results
depicted in Tab.3.3 show again that using our proposal improves the generalization
error of the network particularly when only few training samples are available. For

3.5 Experiments 79

Model/train data size 1k 3k 5k 50K
vl tst vl tst vl tst vl tst

MLP
2-9 mlp 10.49± 0.031 11.24± 0.050 6.69± 0.039 7.17± 0.010 5.262± 0.030 5.63± 0.126 1.574± 0.016 1.66± 0.016
mlp + hint (SED) 8.80 ± 0.093 9.50 ± 0.093 5.81 ± 0.104 6.24 ± 0.069 4.74 ± 0.065 5.05 ± 0.035 1.67± 0.043 1.73± 0.080
mlp + hint (NMD) 10.32± 0.028 10.92± 0.094 6.69± 0.075 7.22± 0.059 5.34± 0.035 5.79± 0.045 1.44± 0.020 1.47± 0.020
mlp + hint (AS) 10.27± 0.068 10.71± 0.123 6.52± 0.044 6.89± 0.013 4.96± 0.041 5.25± 0.051 1.37 ± 0.023 1.37 ± 0.025

Lenet
lenet 6.25± 0.016 7.27± 0.033 3.65± 0.085 4.02± 0.073 2.62± 0.031 2.90± 0.058 1.31± 0.028 1.23± 0.024
lenet + hint (SED) 4.54 ± 0.150 5.05± 0.115 2.70 ± 0.124 2.85 ± 0.082 2.06 ± 0.113 2.37 ± 0.105 0.97 ± 0.087 1.04 ± 0.060
lenet + hint (NMD) 6.70± 0.040 4.60 ± 0.065 3.85± 0.032 4.30± 0.036 2.87± 0.045 3.14± 0.035 1.99± 0.043 2.075± 0.079
lenet + hint (AS) 6.72± 0.024 7.66± 0.024 3.86± 0.049 4.26± 0.049 2.80± 0.033 3.12± 0.021 1.75± 0.123 1.97± 0.063

Table 3.2 Mean ± standard deviation error over validation and test set of the benchmark
mnist-std using different dissimilarity measures (SED, NMD, AS) over the layer h3.
(bold font indicates lowest error.)

example, our regularization allows to reduce the classification error over the test set
by 2.98% and by 4.16% over the benchmark mnist-noise and mnist-img, respectively
when using only 1k training samples.

Model/train data size 1k 3k 5k 100k
vl tst vl tst vl tst vl tst

mnist-noise
lenet 9.62± 0.123 10.72± 0.116 5.95± 0.059 6.39± 0.032 4.92± 0.036 5.11± 0.012 1.90± 0.020 2.011± 0.018
lenet + hint 7.12 ± 0.200 7.74 ± 0.148 4.09 ± 0.130 4.62 ± 0.059 3.53 ± 0.117 3.98 ± 0.167 1.60 ± 0.107 1.64 ± 0.116

mnist-img
lenet 13.88± 0.114 15.34± 0.124 8.34± 0.030 8.66± 0.024 6.64± 0.057 6.46± 0.033 2.53± 0.080 2.55± 0.007
lenet + hint 10.30 ± 0.425 11.18 ± 0.290 6.19 ± 0.281 6.61 ± 0.212 5.37 ± 0.358 5.65 ± 0.310 2.15 ± 0.105 2.21 ± 0.032

Table 3.3 Mean ± standard deviation error over validation and test set of the bench-
marks mnist-noise and mnist-img using lenet model (regularization applied over the
layer h3). (bold font indicates lowest error.)

Based on the above results, we conclude that using our hint term in the context of
classification task using neural networks is helpful in improving their generalization
error particularly when only few training samples are available. This generalization
improvement came at the price of an extra computational cost due the dissimilarity
measures between pair of samples. Our experiments showed that regularizing the last
hidden layer using the squared Euclidean distance give better results. More generally,
the obtained results confirm that guiding the learning process of the intermediate
representations of a neural network can be helpful to improve its generalization.

3.5.3 On Learning Invariance within Neural Networks
We show in this section an intriguing property of the learned representations at each
layer of a neural network from the invariance perspective. For this purpose and for the
sake of simplicity, we consider a binary classification case of the two digits “1” and “7”.
Furthermore, we consider the mlp model over the lenet in order to be able to measure the
features invariances over all the layers. We trained the mlp model over the benchmark
mnist-std where we used all the available training samples of both digits. The model is
trained without our regularization. However, we tracked, at each layer and at the same
time, the value of the hint term JH in Eq.3.3 over the training set using the normalized

80
Neural Networks Regularization Through Class-wise Invariant

Representation Learning

Manhattan distance as a dissimilarity measure. This particular dissimilarity measure
allows comparing the representations invariance between the different layers due to the
normalization of the measure by the representations dimension. The obtained results
are depicted in Fig.3.5 where the x-axis represents the number of mini-batches already
processed and the y-axis represents the value of the hint term JH at each layer. Low
value of JH means high invariance (better case) whereas high value of JH means low
invariance.

0 25000 50000 75000 100000 125000 150000 175000 200000

Mini-batchs

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

J H
 v
al
ue

JH value over layer 1

JH value over layer 2

JH value over layer 3

JH value over layer 4

Normalized Manhattan distance over each layer.

Fig. 3.5 Measuring the hint term JH of Eq.3.3 over the training set within each layer
(simultaneously) of the mlp over the train set of mnist-std benchmark for a binary
classification task: the digit “1” against the digit “7”.

In Fig.3.5, we note two main observations:
• The value of the hint term JH is reduced through the depth of the network which

means that the network learns more invariant representations at each layer in this
order: layer 1, 2, 3, 4. This result supports the idea that abstract representations,
which are known to be more invariant, are learned toward the top layers.

• At each layer, the network does not seem to learn to improve the invariance of
the learned representations by reducing JH . It appears that the representations
invariance is kept steady all along the training process. Only the output layer
has learned to reduce the value of JH term because minimizing the classification
term Jsup reduces automatically our hint term JH . This shows a flaw in the
back-propagation procedure with respect to learning intermediate representations.
Assisting the propagated error through regularization can be helpful to guide the
hidden layers to learn more suitable representations.

These results show that relying on the classification error propagated from the output
layer does not necessarily constrain the hidden layers to learn better representations
for classification task. Therefore, one would like to use different prior knowledge to
guide the internal layers to learn better representations which is our future work. Using
these guidelines can help improving neural networks generalization especially when
trained with few samples.

3.6 Conclusion 81

3.6 Conclusion
We have presented in this work a new regularization framework for training neural
networks for classification task. Our regularization constrains the hidden layers of the
network to learn class-wise invariant representations where samples of the same class
have the same representation. Empirical results over MNIST dataset and its variants
showed that the proposed regularization helps neural networks to generalize better
particularly when few training samples are available which is the case in many real
world applications.

Another result based on tracking the representation invariance within the network
layers confirms that neural networks tend to learn invariant representations throughout
staking multiple layers. However, an intriguing observation is that the invariance level
does not seem to be improved, within the same layer, through learning. We found that
the hidden layers tend to maintain a certain level of invariance through the training
process.

All the results found in this work suggest that guiding the learning process of the
internal representations of a neural network can be helpful to train them and improve
their generalization particularly when few training samples are available. Furthermore,
this shows that the classification error propagated from the output layer does not
necessarily train the hidden layers to provide better representations. This encourages
us to explore other directions to incorporate different prior knowledge to constrain the
hidden layers to learn better representations in order to improve the generalization of
the network and be able to train it with less data.

Acknowledgment
This work has been partly supported by the grant ANR-16-CE23-0006 “Deep in France”
and benefited from computational means from CRIANN, the contributions of which
are greatly appreciated.

Chapter 4

Application:
Spotting L3 Slice in CT Scans
using Deep Convolutional Network
and Transfer Learning

4.1 Prologue
Article Details:

• Spotting L3 Slice in CT Scans using Deep Convolutional Network and
Transfer Learning. Soufiane Belharbi, Clément Chatelain1, Romain Hérault1,
Sébastien Adam, Sébastien Thureau, Mathieu Chastan, and Romain Modzelewski.
Computers in Biology and Medicine, 87: 95-103 (2017).

Context:
We saw previously that the generalization error is bounded by two terms: a training
error term and a complexity term (Sec.1.1.3). Moreover, we saw that these two terms
are antagonist. Therefore, one needs to strike a balance between these two terms in
order to get a better generalization error. Moreover, we concluded that in order to
well train models with high capacity, one needs large number of training samples. In
this work, we provide a real life application of an idea that allows us to “cheat”, i.e.,
train a model with high capacity using only few samples.

In the last years, many neural network models have seen large success in many
tasks such as pattern recognition, particularly deep convolution networks, e.g., Alexnet
[244], VGG16 [396], VGG19 [396], Googlenet (Inception V1) [419], which were trained
on enormous corpus of labeled data such as ImageNet [105]. This success has attracted
many people and motivated the use of such models. However, training such models
is time consuming and most importantly requires millions of labeled data. Luckily,
the authors of the original models have made available the parameters of the trained
models. Many researchers started experimenting using these parameters and adjusting
them for their own tasks following a transfer learning paradigm. This idea started

1Authors with equal contribution.

84
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

to spread to different applications such as character recognition [225, 90], signature
identification [179] and medical imaging [24, 389]. The idea consists in 1. taking low
layers of the pre-trained network, 2. plug them into a new network, 3. stack on top
random fully connected layers, and finally 4. train the whole network on the new task.
Using this transfer learning approach, we applied a deep convolutional network to a
medical domain problem that lacks data.

We present this work [32] as a chapter of this thesis under the form of one single
contribution. This chapter contains the original paper as it was accepted in Computers
in Biology and Medicine journal.

Technical context:
This work came as a part of a project developed in the clinic “Rouen Henri Becquerel
Center” to analyze 3D Computed Tomography (CT) scans. The idea consists in
locating a particular vertebra slice (the third lumbar vertebra, i.e., L3) in the 3D CT
scan. Then, perform an imagery analysis on it [261]. Our task is to locate the L3 slice.
In this work, we provide a complete automated system to locate the L3 slice in a 3D
CT scan without any assumptions on which part of the patient’s body is covered by
the scan.

Contributions:
The contribution of this work is to provide a complete automated system to locate the
third lumbar vertebra in a 3D CT scan. The system was validated on a real world
data. This work shows that transfer learning can be helpful in the case where only few
training samples are available. Moreover, it shows the possibility to apply deep neural
networks, particularly convolutional neural networks, on medical images. Furthermore,
the provided system is a generic solution which can be used to locate any organ of the
patient’s body, providing the necessary data.

4.2 Introduction 85

4.2 Introduction
In recent years, there has been an increasing interest in the analysis of body composition
for estimating patient outcomes in many pathologies. For instance, sarcopenia (loss of
muscle), visceral and subcutaneous obesity are known prognostic factors in cancers
[286, 472], cardiovascular diseases [17] and surgical procedures [339, 230]. Body
composition can also be used to improve individual nutritional care and chemotherapy
dose calculation [160, 250]. It is usually assessed by CT and Magnetic Resonance
Imaging (MRI). Moreover, It has been shown that the composition of the third lumbar
vertebra (L3) slice is a good estimator of the whole body measurements [301, 386]. To
assess the patient’s body composition, radiologists usually have to manually find the
corresponding L3 slice in the whole CT exam (spotting step, see Figure 4.1), and then
to segment the fat and muscle on a dedicated software platform (segmentation step).
These two operations take more than 5 minutes for an experienced radiologist and are
prone to errors. Therefore, there is a need for automating these two tasks.

The segmentation step has been extensively addressed in the literature among the
medical imaging community [341, 289]. Dedicated approaches for L3 slice have been
proposed such as atlas based methods [83] or deep learning [261]. On the other hand,
to the best of our knowledge, the automatic spotting of a specific slice within the whole
CT scan has not been investigated in the literature. The spotting task is particularly
challenging since it has to handle:

• The intrinsic variability in the patient’s anatomy (genders, ages, morphologies or
medical states).

• The various acquisition/reconstruction protocols (low/high X-rays dose, slice
thickness, reconstruction filtering, enhanced/non enhanced contrast agent).

• The arbitrary field-of-view scans, displaying various anatomical regions.

• The strong similarities between the L3 slice and other slices, due to the repetitive
nature of vertebrae (Fig.4.2).

In the literature, spotting tasks are often achieved using ad hoc approaches such as
registration which are not suitable for high variability problems [147, 97]. In particular,
a 3D registration on a whole CT scan would require a large amount of computation
at decision time [375]. Here, we suggest a more generic strategy based on machine
learning in order to handle high variability context, while maintaining a fast decision
process.

In this work, spotting a slice within a CT scan is tackled as a regression problem,
where we try to estimate the slice position height. An efficient processing flow is
proposed, including a Convolutional Neural Network (CNN) learned using transfer
learning. Our approach tackles the classical issues faced in medical image analysis:
the data representation issue is addressed using Maximum Intensity Projection (MIP);
the variability of the shapes in CT scans is handled using a CNN; and the lack of
annotated data is circumvented using transfer learning.

The article is organized as follows: Section 4.3 presents the related work and the
general framework for applying machine learning for L3 detection in a CT scan. Section
4.4 presents the proposed approach and describes each stage of the whole processing
flow. Section 4.5 describes the experiments and the obtained results.

86
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

L3 slice

Fig. 4.1 Finding the L3 slice within a whole CT scan.

4.3 Related Work
Machine learning approaches provide generic and flexible systems, provided enough
annotated data is available. From a machine learning perspective, the localization of
the L3 slice given a whole CT scan can either be considered as a slice-classification
problem, a sequence labeling problem or a regression problem. Let us now consider
these three options.

The classification paradigm consists of deciding for each slice of the whole CT scan
whether the L3 vertebra is present or not. However, the repetitive nature of
individual vertebra induces a similarity between the L3 slice and its neighbors,
which prevents to efficiently classify an isolated slice without any context (see
Fig. 4.2). This explains why even experienced radiologists need to browse the CT
scan to infer the relative position and precisely identify the L3 slice. To the best
of our knowledge, the classification paradigm has not been used in the literature
to detect the L3 slice within a whole CT scan.

The sequence labeling paradigm consists of estimating the label (L1, L2, etc.) of
every slice of a complete CT scan, then, choose the one that is more likely to
correspond to the L3. The advantage of this approach is that the decision is
globally taken on the whole CT scan by analyzing the dependencies between
the slices. This kind of approach has been recently investigated for labeling the
vertebrae of complete spine images [143, 152, 290, 145, 229, 146, 212, 276, 325].
The dependencies are modeled using graphical models, such as Hidden Markov
Models (HMMs) [146] or Markov Random Fields (MRFs) [229]. A full review
of the spine labelization methods can be found in [279]. The major drawback
of sequence labeling approaches is that they require a fully annotated learning
database where every slice of the CT scan is labeled, which is very time consuming.
Such a dataset is proposed by [147], but this dataset cannot be easily exploited
for our problem since i) the data are cropped images of the whole spine, and ii) it
contains only 224 CT scan.

4.3 Related Work 87

Fig. 4.2 Two slices from the same patient: a L3 (up) and a non L3 (L2) (down). The
similar shapes of both vertebrae prevent from taking a robust decision given a single
slice.

88
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

The regression problem consists of directly estimating a real value that indicates the
L3 slice position (i.e., the number of the slice) given the whole CT scan, in a
spotting fashion. Like the previous paradigm, it has the advantage of performing
a global decision by taking into account the dependencies within the entire exam.
Another major advantage of a spotting approach is that it does not require a full
labeling of the exams. Indeed, the only annotation needed for learning such a
model is the L3 position within the whole exam. For radiologists, this annotation
is more lightweight than a full annotation and may lead to creating large datasets
easily.

In this work, we retain the third paradigm and propose a machine learning approach
for spotting the L3 slice in heterogeneous arbitrary field-of-view CT scans. To the best
of our knowledge, this is the first time that slice spotting is addressed as a machine
learning regression problem.

Usually, traditional machine learning methods exploit generic hand-designed features
which are fed to a learning model with the assumption that they are suitable for
describing the image. To achieve high accuracy, usually one ends up combining many
types of features which require extensive computation, more time and large memory size.
Ideally, it would be better if the model is capable of learning on its own task-dependent
features.

Deep neural networks (DNN) are a specific category of models in machine learning
which are capable of learning on their own hierarchical features based on the raw image.
Convolutional neural networks (CNN) are a particular type of DNN which gained a
large reputation in computer vision due to their high performance for many tasks on
natural scene images [421, 122, 358, 244].

In the last years, the use of machine learning, in general, and using CNN, in
particular, has grown in various medical domains such as cancer diagnosis [366, 434],
segmentation [211, 185, 249] or histological [281] and drusen identification [74]. In all
these works, the authors are faced with a common issue which is the lack of annotated
data. Although extremely powerful, CNN architectures require a huge amount of data
to avoid the “learning by heart” phenomenon, also known as overfitting in machine
learning. The classical techniques to limit these issues are dropout, data augmentation
or the use of regularization. All these technical tricks are exploited in [249], but the
lack of data is still a limitation to train such large models. Recently, a more efficient
way has been proposed to circumvent the lack of annotated data in vision. This method
consists of exploiting models that have been pre-trained on a huge amount of annotated
data on another task and is known as “transfer learning”.

In this work, we explore the idea of using a CNN model for the localization of the
L3 slice using transfer learning. A full description of our approach is presented in
section 4.4.

4.4 Proposed Approach
Using a CNN for solving the L3 detection task formulated as a regression problem
(see fig. 4.1) is not straightforward, and requires the alleviation of some constraints
which are inherent to the medical domain and to the data that is being processed
(i) Training a CNN on 3D data such as CT scans requires very large computing and

4.4 Proposed Approach 89

memory resources that can even exceed the memory limit of most accelerator cards,
while such cards are essential for learning a CNN in a reasonable time; (ii) Training a
CNN requires fixed size inputs, while the size of the CT scans can vary from one exam
to another because of an arbitrary field of view; (iii) Training a CNN requires a large
amount of labeled data.

In this paper, we propose to overcome these limitations by using the approach
depicted in figure 4.3. In this approach, the CT scan is first converted into another
representation using Maximum Intensity Projection (MIP), in order to reduce the
dimension of the input from 3D to 2D, without loss of important information. Then,
the MIP image is processed in a sliding window fashion to be fed to a CNN with a
fixed-size input. This CNN is trained with Transfer Learning (TL-CNN) to solve the
requirement of a large amount of labeled examples. Once the trained TL-CNN has
computed its prediction for each position of a sliding window, the resulting prediction
sequence is processed in order to estimate the final L3 position in the full CT scan.
The following subsections detail the three important contributions of the proposed
system.

Projection

CT Scan MIP

TL-CNN

Sliding window

Decision

L3 slice

MIP transformation1 CNN prediction2
Post processing
(Correlation)3

Fig. 4.3 System overview describing the three important stage of our approach : MIP
transformation, TL-CNN prediction, and post processing.

4.4.1 MIP Transformation
Ideally, one can use the raw 3D scan image to feed the CNN. If N is the number of
slices of the arbitrary field of view CT scan, the input size is 5122 ×N . For example,
a CT-scan with 1000 slices represents 262M inputs. However, the input size of CNN
models strongly impacts their number of parameters. Therefore it would require a very
large number of training samples to efficiently learn the CNN. Thus, in the case of few
training samples, using the 3D scan directly as an input is not efficient. We believe
that the patient’s skeleton carries enough visual information in order to detect the L3.

For these reasons, we propose to use a different data representation which focuses
on the patient’s skeleton and dramatically reduces the size of the input space. This
representation is based on a frontal Maximum Intensity Projection (MIP) [446, 444, 445].
The idea is to project a line from a frontal view of the CT scan and retain the maximum
intensity over all the voxels that fall into that line. We experimented using different

90
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

views such as frontal and lateral views, as well as their combination but they did not
work well as compared to the frontal view alone.

Since the slice thickness can vary within the same scan and the voxels are not squared,
the projection often generates a distorted MIP. Visually, this gives an unrealistic image
where the skeleton is shrunk or enlarged. The cause of this distortion is that, often, the
resulting pixel from the projection does not correspond to one voxel. Often, one voxel
can be represented by more than one pixel. In order to obtain an equal correspondence
(i.e. one pixel corresponds to one voxel), we resize (normalize) the 2D MIP image using
an estimated ratio r and average slice thickness s where r represents the number of
pixels corresponding to one voxel (slice).

Fig.4.4 shows an example of a normalized frontal MIP image. The MIP transfor-
mation reduces the input size from 5122 ×N to 512×N .

Fig. 4.4 Examples of normalized frontal MIP images with the L3 slice position.

4.4.2 Learning the TL-CNN
Convolutional neural networks (CNN) are particular architecture of neural networks.
Their main building block is a convolution layer that performs a non-linear filtering
operation. This convolution can be viewed as a feature extractor applied identically over
a plane. The values of the convolution kernel constitute the layer parameters. Several
convolution layers can be stacked to extract hierarchical features, where each layer
builds a set of features from the previous layer. After the convolutional layers, fully
connected layers can be stacked to perform the adequate task such as the classification
or the regression.

In the learning phase, both parameters of convolutional layers and fully connected
layers are optimized according to a loss function. The optimization of these huge

4.4 Proposed Approach 91

number of parameters is generally performed using stochastic gradient descent method.
This process requires a very large number of training samples.

Recently, there has been a growing interest in the exploration of transfer learning
methods to overcome the lack of training data. Transfer learning consists in adapting
models, trained for different task, to the task in hand (target). It has been applied
with success for various applications such as character recognition [225, 90], signature
identification [179] or medical imaging [24, 389]. All these contributions exploit CNN
architectures which have been pre-trained on computer vision problems, where huge
labeled datasets exist. In this framework, the weights of the convolutional layers
are initialized with the weights of a pre-trained CNN on another dataset, and then
fine-tuned to fit the target application. The fine-tuning starts by transferring only the
weights of the convolutional layers from a pre-trained network to the target network.
Then, randomly initialized fully connected layers are stacked over the pre-trained
convolutional layers and the optimization process is performed on the whole network.
This transfer learning framework carried out for our application is illustrated by Figure
4.5 .

A well-known difficulty when using the transfer learning paradigm is to fit the
data to the input size of the pre-trained architecture. Since the size of the normalized
MIP images varies from one patient to another, two solutions can be considered. The
first one consists of resizing the whole scan to a given fixed size. This solution is
straightforward but it dramatically impacts the image quality and the output precision.
The second solution consists in decomposing the input MIP into a set of fixed-size
windows with a sampling strategy. In this paper, we adopt the second approach which
enables to preserve the initial quality of the image data.

92
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

Im
ageN

et
(14M

sam
ples)

C
1

C
2

C
3

C
4

C
5

FC
1

FC
2

FC
3

1000
classes

Source
T

ask:
C

lassification

A
lexnet,V

G
G

16,V
G

G
19,G

ooglenet,...

L
3C

T
1

(642
sam

ples)

C
1

C
2

C
3

C
4

C
5

FC
1

L3
slice

prediction
(pixel)

T
arget

T
ask:

R
egression

P
aram

eter
T

ransfer

Fig. 4.5 System overview. Layers Ci are Convolutionnal layers, while FCi denote Full
Connected layers. Convolution parameters of previously learnt ImageNet classifier are
used as initial values of corresponding L3 regressor layers to overcome the lack of CT
examples.

4.4 Proposed Approach 93

When sampling windows from the MIP image, two sets of window images can be
produced. The first one is made of windows containing the L3, and the other one
is made of windows without the L3. This raises the question whether the windows
without L3 should be present or not in the CNN learning dataset. As we propose a
regression approach, adding the non-L3 images in the learning dataset would imply
that the CNN learns (and outputs in the decision stage) the offset of the L3 with
respect to the current window. Obviously, this offset can be very difficult to learn,
particularly if the current window is far from the L3 position. Thus, we have decided
to include only the windows containing the L3 in the learning dataset.

Thus, for building the training dataset, we sample all the possible windows of height
H such that the L3 position is in the support [−a, +a] where 0 denotes the center
of the window. This leads to 2a + 1 possible windows from each MIP image to be
included in the training set. All windows from all MIP are then shuffled: it is highly
improbable that two neighboring windows from the same MIP will appear next to each
other in the optimization procedure.

4.4.3 Decision Process using a Sliding Window over the MIP
Images

A sliding window procedure is applied at the decision phase on the entire MIP image,
leading to a sequence of relative L3 position predictions. Such a sequence is illustrated
in the left of figure 4.6.

In this sequence, one can observe two distinct behaviors depending on the presence
of the L3 in the corresponding window: i) If the L3 is not in the window, the CNN
tends to output random values since it has been trained only on images containing L3.
This behavior is illustrated in Figure 4.6 at the beginning and (less clearly) at the end
of the sequence. ii) If the L3 is within the window, the CNN is expected to predict
(correctly) the relative L3 position within the window. Since the L3 position is fixed in
the MIP and the window slides line by line on the region of interest, the true relative
L3 position should decrease one by one. In consequence, the CNN output should evolve
linearly along the sequence of windows, leading to a noisy straight line with a slope of
−12. The noise may come from local imprecision or error on an individual slide. This
behavior can be observed in figure 4.6 between offset 500 and 600, and it is highlighted
with a theoretical orange line.

Therefore, at decision stage, the L3 position can be estimated through the local-
ization of the middle of this particular straight segment. This estimation can easily
be achieved by searching the maximum of a simple correlation between the sequence
and the expected slope. This procedure, illustrated at the bottom of Fig. 4.6, easily
filters out boundary windows which do not contain the L3, and shows robustness by
averaging several predictions of the CNN.

2 ∆y
∆x = −1 is the slope of the line where ∆x is the moved distance (slided distance caused by

moving the window down which is always positive). If we move the window from line x1 to line
x2 = x1 + s where s is the stride (i.e., how many lines we move the window down). y is the relative
prediction inside the window. If the network predicts y1 at the window sampled at x1, therefore, we
expected that when we slide the window down by s lines, the relative prediction should move by −s.
Therefore, y2 = y1 − s which means that ∆y = −s. Therefore, we find that ∆y

∆x = −s
s = −1.

94
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

−40 −20 0 20 40

0

100

200

300

400

500

600

700

800

Estimated relative L3 position (in pixel)

C
en

te
r

po
sit

io
n

of
th

e
sli

di
ng

w
in

do
w

(in
pi

xe
l)

550

−500 0 500

0

100

200

300

400

500

600

700

800

Correlation with slope

Fig. 4.6 [left]: CNN output sequence obtained for H = 400 and a = 50 on a test
CT scan. The sequence contains the typical straight line of slope −1 centered on the
L3 (the theoretical line is plotted in orange), surrounded by random values. [right]:
correlation between the CNN output sequence and the theoretical slope. We retain the
maximum of correlation as an estimation of the L3 position.

4.5 Experimental Protocol 95

4.5 Experimental Protocol

4.5.1 CT Exams Database Description
In order to validate the proposed approach, a database named L3CT1 has been
collected3. The main part of the dataset is composed of 642 CT exams from different
patients. All patients were included in this study after being informed of the possible use
of their images in a retrospective research. The institutional ethical board of the Rouen
Henri Becquerel Center approved this study 4. The CT exams show a high heterogeneity
of patients in terms of anatomy, sex, cancer pathologies, position and properties of the
reconstructed CT images: 4 scanner models (PET/CT modalities) and 2 manufacturer,
acquisition protocols (low dose acquisition (100 to 120 kV) and modulated mAs along
the body) axial field of view (FOV) (400 to 500 mm), reconstruction algorithms
(Filtered Back Projection (FBP) or iterative reconstruction) and slice thickness (2 to 5
mm).

On each CT scan, the L3 slice was located by an expert radiologist on a dedicated
software [250], providing the annotation for the position of the L3 through its distance
in (mm) from the first slice in the scan (top).

Moreover, 43 supplementary CT scans have been annotated by the same radiologist
and 3 other experts, in order to evaluate the variability of annotations among experts.

To be as reproducible and precise as possible, detailed guidelines were given to all
radiologists for annotation.

From all the scans, frontal MIP images have been computed using the process
described in 4.4.1. This results in a set of 642 images of constant width (512 pixels)
and variable height, varying from 659 to 1862 pixels. Fig 4.4 shows some examples of
frontal MIP images extracted from three patients of the L3CT1 database.

4.5.2 Datasets Preparation
The first step consists in splitting the dataset into 5 folds, in order to allow a cross-
validation procedure. The split is applied at the patient level, in order to prevent that
a given CT-scan provides windows in different sets (learning, validation, test), what
should lead to biased results. Moreover, due to variable slice thickness in the dataset,
we make sure when dividing the dataset to obtain stratified folds. Thus, we end up
with the same number of samples from each slice thickness in each set.

Once the MIP images folds have been generated, learning, validation and test
windows are sampled as explained in section 4.4.3, where the value of a has been
experimentally set to a = 50 using a cross validation procedure. For the validation set,
in order to speed up the training, we take only 300 random windows from different
patients.

4.5.3 Neural Networks Models
In order to conduct our experiments, two types of convolutional neural networks have
been compared:

3This dataset is available on demand, please contact the corresponding author
4IRB Number 1604B.

96
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

• Homemade CNN (CNN4): We have designed and trained a CNN from
scratch, with specific architecture of four convolutional layers followed by a fully
connected output layer. In each convolution layer, a horizontal max-pooling is
performed. We found in practice that vertical max-pooling distorts the target
position. The number of kernels that we used in the four convolution layers are
[10, 3, 3, 5], with respective sizes [5, 7, 9, 3]. The hyper-parameters of our CNN
were tuned on the validation set [45]. We refer to our model as CNN4.

• Pre-trained CNNs: In our study, we have collected a set of pre-trained con-
volutional neural networks over ImageNet dataset [105]: Alexnet [244], VGG16
[396], VGG19 [396], Googlenet (Inception V1) [419]5. The models are created
using the library Keras [81]. For each model, we keep only the convolutional
layers which are considered as shared perception layers that may be used for
different tasks. On top of that, we add one fully connected layer to be specialized
in our specific task (i.e. L3 detection). Our experiments have shown that adding
more fully connected layers does not improve the results.
The input of pre-trained models is supposed to be an RGB image (i.e. a 3D
matrix), while in the other hand, our sampled windows are 2D matrix. In order
to match the required input, we duplicate the 2D matrix in each color channel.
Then, each channel is normalized using its mean from the ImageNet Dataset.
We use L2 regularization for training all the models with value of λ = 10−3,
except for Googlenet where we used the original regularization values.

4.6 Results

4.6.1 Data View: Frontal Vs. Lateral
The use of the MIP representation allows us to access to different views of the CT scan,
such as the frontal and lateral views (other views with different angles are possible).
In order to choose the best view, we re-train a VGG16 model with one fully connected
layer using different input views. We recall that the input of the VGG16 is an image
with 3 plans. We experimented three configurations. In the first and second cases,
we repeat the frontal and lateral views, respectively, in the three input channels. In
the last case, we mixed the frontal and the lateral view. The motivation behind the
combination of the views is that each view will provide an additional information
(hopefully complementary) that will help the model to decide. The sampling margin
of the windows is done over the range [−50, +50]. Tab.4.1 shows that using frontal
view alone is more suitable. One possible explanation of this results is that the frontal
view contains more structural context (ribs, pelvis) which helps to locate the L3 slice,
in the opposite of the lateral view. Combining lateral and frontal views gave better
results than lateral alone but worse than frontal alone. One may think that lateral
view adds noise to the frontal view.

5The weights of Googlenet were obtained from: https://gist.github.com/joelouismarino/
a2ede9ab3928f999575423b9887abd14, and the weights of the rest of the models were obtained
from https://github.com/heuritech/convnets-keras

https://gist.github.com/joelouismarino/a2ede9ab3928f999575423b9887abd14
https://gist.github.com/joelouismarino/a2ede9ab3928f999575423b9887abd14
https://github.com/heuritech/convnets-keras

4.6 Results 97

View VGG16
Error mc (slices)

Frontal 1.71 ± 1.59
Lateral 4.29± 14.90
Frontal Lateral Frontal 1.89± 2.05

Table 4.1 Test error (mean ± standard deviation) over the test set of fold 0, expressed
in slices, using VGG16 model with frontal and lateral views.

4.6.2 Detection Performance
All the models described in section 4.5.3 have been evaluated in a cross validation
procedure on the L3CT1 dataset by computing the prediction error. The prediction
error for one CT scan is computed as the absolute difference between the prediction
ypred and the target y: e = |y − ypred|. The error is expressed in slices. We report the
mean and the standard deviation of the test error (µe, σe), respectively in the form
µe ± σe, over the entire test set. Obtained results are reported in Tab.4.2.

For the sake of comparison, we used Random Forest Regression (RF) [61, 203] as a
regressor instead of our CNN. As in most pattern recognition problems, we need to
extract input features to train our Random Forest Regression. Local Binary Patterns
(LBP) features have shown to be very efficient in many computer vision tasks [324],
especially in medical imaging [311]. Therefore, we have retained this feature descriptor.
To extract the LBP features we used a number of neighbors of 8 and a radius of 3
which creates an input feature vector with dimension of 28 = 256. From each sampled
window, we extract LBP features. We investigated different number of trees: 10, 100
and 500. The obtained results showed that random forests do not perform well over
this task. We report in Tab.4.2 the results using 500 (RF500) trees which are in the
same order of performance compared the other cases (i.e. 10 and 100 trees).

RF500 CNN4 Alexnet VGG16 VGG19 Googlenet
fold 0 7.31± 6.52 2.85± 2.37 2.21± 2.11 2.06± 4.39 1.89± 1.77 1.81± 1.74
fold 1 11.07± 11.42 3.12± 2.90 2.44± 2.41 1.78± 2.09 1.96± 2.10 3.84± 12.86
fold 2 13.10± 13.90 3.12± 3.20 2.47± 2.38 1.54± 1.54 1.65± 1.73 2.62± 2.52
fold 3 12.03± 14.34 2.98± 2.38 2.42± 2.23 1.96± 1.62 1.76± 1.75 2.22± 1.79
fold 4 8.99± 7.83 1.87± 1.58 2.69± 2.41 1.74± 1.96 1.90± 1.83 2.20± 2.20
Average 10.50± 10.80 2.78± 2.48 2.45± 2.42 1.82 ± 2.32 1.83± 1.83 2.54± 4.22

Table 4.2 Error expressed in slice over all the folds using different models: RF500,
CNN4 (Homemade model), and Alexnet/VGG16/VGG19/GoogleNet (Pre-trained
models).

From Tab.4.2, one can see that pre-trained models perform better than our home-
made CNN4 with an improvement of about 35%6. In particular, VGG16 showed the
best results by an average error of 1.82± 2.32 followed by VGG19 with 1.83± 1.83.

6(2.78− 1.82)/2.78 ≈ 0.3453 ≈ 35%.

98
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

This result confirms the strong benefit of transfer learning between two different tasks.
Moreover, it shows that the convolutional layers can be shared as a perception tool
between different tasks with slight adaptation. On the other hand, this illustrates the
capability for modeling such task using the pre-trained models.

4.6.3 Processing Time Issues
One must mention that the price we paid in order to reach the performance mentioned
above is to increase the complexity of the model. In Table 4.3, we present the number
of parameters of each model and the average required time for the prediction of the
L3 slice. We observe that VGG16 contains approximately 264 times more parameters
than CNN4. Beside the required memory for such models, the real paid cost is the
evaluation time during the test phase. Computed on a GPU (Tesla K40), VGG16
requires an average of 13.28 seconds per CT scan while our CNN4 only needs 4.46
second per CT scan.

Number of parameters Average forward pass time (seconds/CT scan)
CNN4 55,806 04.46
Alexnet 2,343,297 06.37
VGG16 14,739,777 13.28
VGG19 20,049,473 16.02
Googlenet 6,112,051 17.75

Table 4.3 Number of parameters for different models and average forward pass time
per CT scan.

An important factor which affects the evaluation time in these experiments is the
number of windows processed by the CNN for a given CT scan. Thus, it is possible to
dramatically reduce the computation time by shifting the window by a bigger value
than 1 pixel. An experimental evaluation of this strategy with VGG16 has shown that
a good compromise between processing time and performance could be obtained for a
shift value up to 6 pixels without affecting the localization precision. This sub-sampling
reduces the evaluation time from 13.28 seconds/CT scan to 2.36 seconds/CT scan
and moved the average localization error from 1.82± 2.32 slices to 1.91± 2.69 slices,
respectively. This shows the robustness of the proposed correlation post-processing.

4.6.4 Comparison with Radiologists
In order to further assess the performance of the proposed approach, an extra set
of 43 CT scans was used for test. This particular dataset was annotated by the
same radiologist who annotated L3CT1 dataset and also by three other experts. Each
annotation was performed at two different times, in order to evaluate the intra-annotator
variability. We refer to both annotations by the same expert by Review 1 and Review
2.

Obtained results are illustrated in Tab.4.4. It compares the error made by CNN
models with those made by the radiologists, using the radiologist who annotated the
L3CT1 dataset as reference. These results corroborate the results provided in Table

4.7 Conclusion 99

4.2 since VGG16 is better than CNN4 with an improvement of about 35% in average
for both reviews. The results also demonstrate that radiologists are in average more
precise than automatic models with an improvement of about 50%. However, they also
show that there exists some variabilities among radiologist annotations and even an
intra-annotator variability. This latter is visible in Tab. 4.4 since computed errors for
automatic systems vary between both reviews while the automatic system gives the
same output, showing that reference values have changed. This illustrates the difficulty
of the task of precisely locating the L3 slice and the interest of CNN which does not
change its prediction.

Errors (slices) / operator CNN4 VGG16 Ragiologist #1 Radiologist #2 Radiologist #3
Review1 2.37± 2.30 1.70± 1.65 0.81± 0.97 0.72± 1.51 0.51± 0.62
Review2 2.53± 2.27 1.58± 1.83 0.77± 0.68 0.95± 1.61 0.86± 1.30

Table 4.4 Comparison of the performance of both the automatic systems and radiologists.
The L3 annotations given by the reference radiologist vary between the two reviews.

4.7 Conclusion
In this paper, we proposed a new and generic pipeline for spotting a particular slice in
a CT scan. In our work, we applied our approach to the L3 slice, but it can easily be
generalized to other slices, provided a labeled dataset is available.

First, the CT scan is converted into a frontal Maximum Intensity Projection (MIP)
image. Afterwards, this representation is processed in a sliding window fashion to
be fed to a CNN which is trained using Transfer Learning. In the test phase, all the
predictions concerning the position of the L3 within the sliding windows are merged
into a robust post-processing stage to take the final decision about the position of the
L3 slice in the full CT scan.

Obtained results show that the approach is efficient to precisely detect the target
slice. Using a fine-tuned VGG16 network coupled with an adequate decision strategy,
the average error is under 2 slices where experienced radiologists can provide annotations
that differ of about 1 slice. The computing time is within an acceptable range for
clinical applications, and can be further reduced by (i) increasing the shift value (ii)
adapting the network architecture by pre-training smaller networks over ImageNet, for
example, which has not been studied in this work (iii) and prune the final trained CNN
by dropping the less important filters. Recently, pruning CNNs [264, 306, 333] has
seen a lot of attention in order to deploy large CNNs on devices with less computation
resource. We are currently working on this idea to speedup more the computation.

This contribution confirms the interest of using machine learning and more particu-
larly deep learning in medical problems. One of the main reasons deep learning is not
popular in medical domain is the lack of training data. Pre-training the networks over
other large dataset will strongly alleviate this problem and encourage the use of such
efficient models.

100
Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and

Transfer Learning

Acknowledgement
This work has been partly supported by the grant ANR-11-JS02-010 LeMon and the
grant ANR-16-CE23-0006 “Deep in France”.

General Conclusion and Perspectives

In this thesis, we have tackled the overfitting issue in neural network models particu-
larly in learning scenarios where only few labeled data are available. Regularization is
the most common used approach to deal with such issue. In the literature, different
regularization methods have been proposed. While each regularization method tackles
the overfitting issue differently, we can distinguish a class of methods that uses repre-
sentation learning as a fundamental mechanism such as dropout, sparse representations,
unsupervised/semi-supervised learning, tangent propagation and manifold learning.
Following the success of such methods, we address in this thesis the overfitting of neural
networks by proposing three different regularization methods based on representation
learning paradigm, where each method is adapted to the task in hand. Such methods
were designed and validated mainly in learning scenarios where only few labeled data
are available which is a challenging task since most successful neural networks are
trained using very large number of samples that reaches easily millions. In most real
life applications, such large number of samples is not available. However, one still
wants to exploit the performance of such models.

In the following, we present a brief description of each of our proposals along with
their respective perspectives.

1. Unsupervised learning for structured output problems
In the first contribution, we addressed structured output problems, i.e., a mapping
X → Y where the output is multidimensional and where there are some relations
among its components. In this contribution, we proposed to use the unsupervised
learning paradigm to learn/discover the hidden structure in the output data. To
do so, we proposed a multi-task framework which is composed of a supervised
task and two unsupervised tasks; the first unsupervised task learns the input
distribution data while the second one learns the output distribution. Explicit
incorporating learning the output data structure into the network learning, which
is rarely used, has shown to speedup its training, and more importantly, to improve
its generalization. Moreover, learning could be achieved in an unsupervised way
where the network discovers on its own the underlying structure that may help to
perform accurate prediction. Therefore, no need to a supervised intervention to
specify what type of relations the network should learn. Furthermore, it allows
using unlabeled data and labels only data which showed to help further more
improving the generalization error. The application of our framework to facial
landmark detection problem showed a speedup of neural networks training and
an improvement of their generalization performance.
Although our framework has shown improvements, it still can be improved. For
instance, the adaptation scheme of the importance weights of the three tasks can

102 General Conclusion and Perspectives

be achieved differently. Instead of adapting them in terms of training epochs,
we can consider an automatic scheme that uses different indicators based on the
training and validation errors. Furthermore, one may consider another type of
models to learn the output distribution instead of simple auto-encoders. Gen-
erative models, such as generative auto-encoders and adversarial auto-encoders
[280], seem a good choice to start with. This will lead to probabilistic outputs in
the case where multiple decisions are required.

2. The use of prior knowledge for classification
In the second contribution, neural networks regularization is achieved through
the use of prior knowledge about the internal representations of the network for
a classification task. Prior knowledge can be helpful, in terms of generalization,
when dealing with few training data. Since the prior explains a decision rule
that helps in generalization, it can guide the learning process to choose a better
solution to avoid overfitting. More precisely, to deal with a classification task,
we have proposed to integrate the following prior knowledge about the internal
representation within a neural network: “samples within the same class should
have the same internal representation”. In this contribution, our suggestion
consists in formulating this prior knowledge as a penalty which is added to the
supervised cost in order to be minimized. The proposed penalty constrains
the hidden representations to be class-wise invariant. Empirical evidence has
showed that incorporating such prior knowledge helps in improving the network
generalization when trained with few samples.
Moreover, this work has shown that such class-wise invariance is learned with
the increase of depth, i.e., the more the network is deep the more the internal
representation is class-wise invariant. However, tracking this invariance in a
network did not show its improvement during the learning. This means that the
backpropagation algorithm does not always learns understandable/reasonable
internal representations and one can do better using prior knowledge. In this
work, we exploited only the invariance property of the internal representation in a
neural network. Such property creates compact classes where samples within the
same class are close to each other. As an extension to this work, which showed
promising results, we plan to add a discrimination term that constrains the classes
to be far from each other which is an important property in a classification task.
For instance, we are planning to use non-linear discriminant analysis tool to learn
efficient internal representations. Moreover, we plan to address the issue of multi-
modality to choose which pairs are important for optimization. Many works in
linear discriminant analysis showed that considering the distance between samples
with a uniform importance degrades the performance [411, 127]. Giving high
importance to particular pairs leads to better performance. Based on such results,
we plan to use a probabilistic framework that provides dynamically a probabilistic
importance to each pair. Such probabilistic framework is inspired from ideas in
optimal transport [340]. Moreover, we plan to tackle the optimization problem
when dealing with multi-task learning where we have the following setup: a
main task, and a set of secondary tasks. In such setup, we usually end up
with unbalanced gradients between the main task and the secondary tasks. For
instance, in low layers in a neural network (the ones close to its input), the
supervised (main) gradient is low compared to the secondary tasks (at the same

103

layer). In practice, this scenario usually leads to degrading the performance of
the network. We plan to use a suitable normalization of the gradients to avoid
such issue.

3. Transfer learning and medical domain
In our last contribution, we have presented a real-life application to deal with
the lack of labeled data in medical domain. The idea consists in using a network
with high capacity, such as convolutional networks, which was pre-trained over a
different task with abundant data. Then, a subset of its parameters responsible for
feature building are extracted and re-used into a new fresh network. This learning
procedure falls into the transfer learning paradigm where learned knowledge from
a source task is transfered to a target task. This gives more advantage to the
target task to start with the parameters of a complex network partially trained.
Therefore, only few data are required to adapt the network to fit the target task.
We applied this learning process to localize the third lumbar vertebra, i.e., L3,
over a 3D CT scan. Instead of using the 3D CT scan as a raw input data, we used
its frontal projection to obtain a 2D image. This allows reducing processing time.
To locate the target, we slide our trained model over the whole CT scan, and
perform a prediction over each window. This makes the prediction independent
of which part of the patient’s body is covered by the scan. Then, we perform a
post-processing using a correlation to detect where the network spikes to localize
the target. The framework was designed to be task independent, i.e., it could be
used to localize any other organ.
The obtained results from this contribution showed the interest of applying
transfer learning in machine learning and exploiting pre-trained deep architectures.
However, as a real world application, this work raised an issue which is the running
time. Running large networks such as VGG in a production software where many
images are processed requires a lot of computation power which is not available in
most cases, at least in the clinic. We note that such high complex models are over-
parameterized with respect to our task. This motivated us to explore a solution
to speed up the computation. Recently, a trend of speeding up convolutional
networks, especially when using transfer learning, has raised. This trend is based
on pruning a subset of the filters from the network using different strategies
[264, 306, 333]. We developed the necessary code for pruning the models used in
this work using minimal norm, i.e., filters with low norm are pruned. However,
such approach has yet to be evaluated. We recommended the developers team of
the clinic to pursue this path. Another possible way to speedup the computation
is to reverse the procedure by including the computation power as a model
selection criterion. The idea consists in finding a model with complexity that
allows running it over average computation machine in acceptable time. Next,
this model is pre-trained over a dataset with enough data. Then, its pre-trained
filters are extracted and re-used as described above. The advantage of this
approach is that we are able to control the model size which is directly involved
into the required computation power.

Perspectives

104 General Conclusion and Perspectives

We have presented in this thesis different approaches of using inductive bias to improve
the generalization of neural networks. Such inductive bias is based on representation
learning paradigm that is one the main reasons of the success of neural networks. In the
following, based on the promising results, and the extensive literature study conducted
in this thesis, we present two main research directions that we believe they will improve
the generalization of neural networks and help us build more understandable neural
networks:

1. Prior knowledge and domain knowledge to improve deep learning
Although deep learning based on neural networks has shown impressive results in
different domains, we believe that sooner or later, the performance of such models
will reach a saturation regime. A situation where adding more data will not
improve their performance, even though such models are known to be incredibly
eager for data. For now, the hype that we see in the use of deep learning is
just a start. This issue is the result of neural network limitations. From our
understanding that is based on the reviewed literature and the history of neural
networks, we concluded that neural networks are not that intelligent as machine
learning models. They learn through a mechanical process by repeating over and
over the same process until they memorize patterns of data. We note that other
machine learning models, if not all of them, do the same thing. Humans seem
to learn way faster and smarter. One of the main reasons is their heavy use of
prior knowledge [113] which allows them to learn new tasks in a short time with
less effort and less data. We think that using generic prior knowledge in training
neural networks is inevitable in order to introduce some intelligence aspects into
their learning/behavior. Learning in such framework will more likely require less
training samples. One can go further by using domain knowledge, and benefit
from the knowledge of experts. Therefore, neural networks need to be modified in
order to ease introducing any type of domain knowledge. The main difficulty here
is how one can introduce different types of priors to the network ? We suggest
two possible ways to do that: either through the architecture by designing new
models that take in consideration the prior such as in convolutional networks
where the same feature detector is applied all over the image following the prior
that the feature may appear in different positions. The other way is through
learning, by using constraints such as in regularization.
Neural networks and deep learning are by far to be considered as intelligent
models nor an instance of Artificial Intelligence. We do not think that such
models are ready yet to be integrated to drive a car or take control over a robot.
Such models are purely mechanical and have an extreme lack in reasoning. Up
to now, we do not exactly know how a neural network takes a decision, and it
seems reasonable not to trust its decisions particularly in critical tasks. One
can qualify deep learning models by brute-force models. Unfortunately, in such
domain, the performance goes first, and the justification and the proof do not
matter. It is an experimental-guided field.

2. Fundamental research: dictionary learning and deep learning
During this thesis, we found out that representation learning paradigm is an
important aspect in deep learning models that gives them a powerful capacity to
learn complex tasks. While writing this thesis, we had to go back to the 40′s,

105

the age of birth of neural networks. Years later, Minsky and Papert [296, 297]
showed the limitations of shallow neural networks, i.e., perceptrons. The main
message of their criticism is that shallow networks can be able to solve complex
tasks when they are able to represent differently the input signal in hidden layers.
Minsky and Papert proposed, at the time, to use perceptron-like layers to find
such representations. As much as this proposition is interesting, we think that
we can do better. There are many reasons to think so. We recall that back in
the 40′s, the goal behind creating perceptrons and neural networks is to build
machines, more precisely, intelligent machines. Therefore, such attentions had
a large impact on most research directions including the architecture of such
models where a clear attempt has appeared to mimic an electronic circuit to be
easy to implement in real life. Hence, neural networks, old and modern version,
have inherited most of their aspect from circuits. Seeing deep learning today’s
success, this certainly has advantages. However, we think that such aspect has
carried with it many disadvantages as well which may be the reason behind
most deep learning issues today. Using perceptron-like as an encoder in the
hidden layer can have advantages in, at least, two cases: • Dealing with binary
predicates as input: Using a perceptron-like in the hidden layer will allow to learn
new predicates based on the input predicate. Such hidden representation can be
built by combining different boolean inputs. • Using handcrafted features: In
this case, the input signal is composed of different pre-computed features. The
most important aspect here is that each dimension represents the same feature.
Therefore, combining different features does make sense in order to build a new
feature.
For long time, the research community has started using continues inputs, and
raw data as input. Therefore, each component of the input signal changes from
an example to another, taking as example an image as raw input. This makes
perceptron-like hidden layer inefficient.
Another critical aspect in using perceptron-like as a hidden layer is information
loss. A neuron is fundamentally used to take a decision. Aligning a set of a
neurons to learn a new representation, based a continuous input, is not really
optimal especially in low layers. It is clear that there will be a large information
loss. We think that one of the reasons that today neural networks are deep is
because there is a need to many layers to recover the lost information.
In order to alleviate this issue, and in order to give neural networks a more
solid theoretical background, we suggest to keep the idea of Minsky and Papert,
i.e., to use hidden representations to represent in a different way the raw input
signal. However, instead of using perceptron-like layers, we suggest to use well
studied, interpretable, and solid concepts based on approximation theory and
data representation such as dictionary learning-like methods [407]. The main
idea consists in learning how to well represent data in the hidden layers using
flexible tools that we know and control what they do exactly. Dictionary learning
[406] provides a strong tool to represent a signal using a fixed number of atoms.
In the case of a classification task, one can image a pool of a shared dictionary
to represent all the samples independently from the class membership, followed
by class-wise dictionaries, followed by a perceptron-like layer for decision step.
Possible adaptation to the output can be done by considering dictionary learning

106 General Conclusion and Perspectives

properties in a classification task. The main idea here is to find a new common
space to represent all samples. This common space could be modeled using
dictionaries, and could exploit their ability to be trained using unsupervised
data through reconstruction. It is clear that one can build easily hierarchical
representations following this scheme. However, the first issue of using dictionaries
is security, since the model will explicitly memorize chunks of data.
Following this approach, one may go further to exploit more solid theoretical
frameworks for data representation such as tensor decomposition [345, 240] in
order to build more intelligent layers that are able to decompose a complex signal
into elementary elements.

References

[1] Abadi, M., Chu, A., Goodfellow, I., McMahan, H. B., Mironov, I., Talwar, K., and Zhang, L.
(2016). Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, pages 308–318, New York, NY, USA. ACM.

[2] Abu-Mostafa, Y. S. (1990). Learning from hints in neural networks. Journal of Complexity,
6(2):192–198.

[3] Abu-Mostafa, Y. S. (1992). A method for learning from hints. In Advances in Neural Information
Processing Systems 5, [NIPS Conference, Denver, Colorado, USA, November 30 - December 3,
1992], pages 73–80.

[4] Abu-Mostafa, Y. S. (1993). Hints and the vc dimension. Neural Computation, 5(2):278–288.

[5] Abu-Mostafa, Y. S., Magdon-Ismail, M., and Lin, H.-T. (2012). Learning From Data. AMLBook.

[6] Ackley, D. H., Hinton, G. E., and Sejnowski, T. J. (1985). A learning algorithm for Boltzmann
machines. Cognitive Science, 9:147–169.

[7] Aggarwal, C. C. (2014). Data Classification: Algorithms and Applications. Chapman & Hall/CRC,
1st edition.

[8] Aizenberg, I. N., Aizenberg, N. N., and Vandewalle, J. P. (2000). Multi-Valued and Universal
Binary Neurons: Theory, Learning and Applications. Kluwer Academic Publishers, Norwell, MA,
USA.

[9] Anastassiou, G. A. (2016). Intelligent Systems II: Complete Approximation by Neural Network
Operators. Springer Publishing Company, Incorporated, 1st edition.

[10] Anastassiou, G. A. and Duman, O. (2016). Intelligent Mathematics II: Applied Mathematics and
Approximation Theory, volume 441. Springer.

[11] Anastassiou, G. A. and Gal, S. G. (2002). Approximation theory. moduli of continuity and global
smoothness preservation.

[12] Andersen, P. (2018). Deep reinforcement learning using capsules in advanced game environments.
CoRR, abs/1801.09597.

[13] Argyriou, A., Evgeniou, T., and Pontil, M. (2006). Multi-task feature learning. In Advances
in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7,
2006, pages 41–48.

[14] Argyriou, A., Micchelli, C. A., Pontil, M., and Ying, Y. (2007). A spectral regularization
framework for multi-task structure learning. In Advances in Neural Information Processing Systems
20, Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007, pages 25–32.

108 References

[15] Arpit, D., Jastrzebski, S. K., Ballas, N., Krueger, D., Bengio, E., Kanwal, M. S., Maharaj,
T., Fischer, A., Courville, A. C., Bengio, Y., and Lacoste-Julien, S. (2017). A closer look at
memorization in deep networks. In ICML, volume 70 of Proceedings of Machine Learning Research,
pages 233–242. PMLR.

[16] Arulkumaran, K., Deisenroth, M. P., Brundage, M., and Bharath, A. A. (2017). Deep reinforce-
ment learning: A brief survey. IEEE Signal Processing Magazine, 34(6):26–38.

[17] Atkins, J. L., Whincup, P. H., Morris, R. W., Lennon, L. T., Papacosta, O., and Wannamethee,
S. G. (2014). Sarcopenic obesity and risk of cardiovascular disease and mortality: a population-based
cohort study of older men. Journal of the American Geriatrics Society, 62(2):253–60.

[18] Auli, M., Galley, M., Quirk, C., and Zweig, G. (2013). Joint language and translation modeling
with recurrent neural networks. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2013, 18-21 October 2013, Grand Hyatt Seattle, Seattle,
Washington, USA, A meeting of SIGDAT, a Special Interest Group of the ACL, pages 1044–1054.

[19] Ba, L. J. and Caruana, R. (2014). Do deep nets really need to be deep? In Proceedings of the
27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14,
pages 2654–2662, Cambridge, MA, USA. MIT Press.

[20] Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473.

[21] Baird, H. (1990). Document image defect models. In Proceddings, IAPR Workshop on Syntactic
and Structural Pattern Recognition, Murray Hill, NJ.

[22] Baldi, P., Brunak, S., Frasconi, P., Soda, G., and Pollastri, G. (1999). Exploiting the past and
the future in protein secondary structure prediction. Bioinformatics, 15(11):937–946.

[23] Ballard, D. H. (1987). Modular learning in neural networks. In Proc. AAAI, pages 279–284.

[24] Bar, Y., Diamant, I., Wolf, L., and Greenspan, H. (2015). Deep learning with non-medical
training used for chest pathology identification. Proc. SPIE, Medical Imaging: Computer-Aided
Diagnosis, 9414:94140V–7.

[25] Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function.
Information Theory, IEEE Transactions on, 39(3):930–945.

[26] Baxter, J. (2000). A model of inductive bias learning. J. Artif. Int. Res., 12(1):149–198.

[27] Belanger, D. and McCallum, A. (2016). Structured prediction energy networks. In Proceedings
of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, pages 983–992.

[28] Belharbi, S., Chatelain, C., Hérault, R., and Adam, S. (2015a). Learning structured output
dependencies using deep neural networks. Deep Learning Workshop in the 32nd International
Conference on Machine Learning (ICML).

[29] Belharbi, S., Chatelain, C., Hérault, R., and Adam, S. (2015b). A unified neural based model for
structured output problems. Conférence Francophone sur l’Apprentissage Automatique (CAP).

[30] Belharbi, S., Chatelain, C., Hérault, R., and Adam, S. (2017a). Neural networks regularization
through class-wise invariant representation learning. XXX, XX(X):XXXX–XXXX.

[31] Belharbi, S., Chatelain, C., Hérault, R., Adam, S., Thureau, S., Chastan, M., and Modzelewski,
R. (2017b). Spotting l3 slice in ct scans using deep convolutional network and transfer learning.
Computers in Biology and Medicine, 87:95 – 103.

References 109

[32] Belharbi, S., Chatelain, C., Hérault, R., Adam, S., Thureau, S., Chastan, M., and Modzelewski,
R. (2017c). Spotting l3 slice in ct scans using deep convolutional network and transfer learning.
Computers in Biology and Medicine, 87:95 – 103.

[33] Belharbi, S., Hérault, R., Chatelain, C., and Adam, S. (2016a). Deep multi-task learning with
evolving weights. In European Symposium on Artificial Neural Networks (ESANN).

[34] Belharbi, S., Hérault, R., Chatelain, C., and Adam, S. (2016b). Pondération dynamique dans un
cadre multi-tâche pour réseaux de neurones profonds. Reconnaissance des Formes et l’Intelligence
Artificielle (RFIA) (Session spéciale "Apprentissage et vision").

[35] Belharbi, S., Hérault, R., Chatelain, C., and Adam, S. (2018). Deep neural networks regularization
for structured output prediction. Neurocomputing, 281C:169 – 177.

[36] Belharbi, S., R.Hérault, Chatelain, C., and Adam, S. (2016c). Deep multi-task learning with
evolving weights. In European Symposium on Artificial Neural Networks (ESANN).

[37] Belhumeur, P. N., Jacobs, D. W., Kriegman, D. J., and Kumar, N. (2011). Localizing parts of
faces using a consensus of exemplars. In CVPR, pages 545–552. IEEE.

[38] Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ, USA,
1st edition.

[39] Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. (2010). A
theory of learning from different domains. Machine Learning, 79(1):151–175.

[40] Ben-David, S., Blitzer, J., Crammer, K., and Pereira, F. (2006). Analysis of representations for
domain adaptation. In Advances in Neural Information Processing Systems 19, Proceedings of
the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006, pages 137–144.

[41] Ben-David, S. and Borbely, R. S. (2008). A notion of task relatedness yielding provable multiple-
task learning guarantees. Machine Learning, 73(3):273–287.

[42] Ben-David, S., Gehrke, J., and Schuller, R. (2002). A theoretical framework for learning from a
pool of disparate data sources. In KDD, pages 443–449. ACM.

[43] Ben-David, S. and Schuller, R. (2003). Exploiting task relatedness for multiple task learning. In
Schölkopf, B. and Warmuth, M. K., editors, Learning Theory and Kernel Machines, pages 567–580,
Berlin, Heidelberg. Springer Berlin Heidelberg.

[44] Bengio, Y. (2009). Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2(1):1–127.

[45] Bengio, Y. (2012). Practical recommendations for gradient-based training of deep architectures.
In Montavon, G., Orr, G. B., and Müller, K.-R., editors, Neural Networks: Tricks of the Trade
(2nd ed.), volume 7700 of Lecture Notes in Computer Science, pages 437–478. Springer.

[46] Bengio, Y. (2013). Deep learning of representations: Looking forward. CoRR, abs/1305.0445.

[47] Bengio, Y., Courville, A., and Vincent, P. (2013a). Representation learning: A review and new
perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8):1798–1828.

[48] Bengio, Y., Courville, A. C., and Vincent, P. (2013b). Representation Learning: A Review and
New Perspectives. IEEE PAMI, 35(8):1798–1828.

[49] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise training
of deep networks. In Advances in Neural information Processing Systems 19, NIPS 2006, pages
153–160.

110 References

[50] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy Layer-Wise Training of
Deep Networks. In Schölkopf, B., Platt, J., and Hoffman, T., editors, NIPS, pages 153–160.

[51] Bengio, Y. and Lecun, Y. (2007). Scaling learning algorithms towards AI. MIT Press.

[52] Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient
descent is difficult. Trans. Neur. Netw., 5(2):157–166.

[53] Bermingham, M. L., Pong-Wong, R., Spiliopoulou, A., Hayward, C., Rudan, I., Campbell, H.,
Wright, A. F., Wilson, J. F., Agakov, F., Navarro, P., et al. (2015). Application of high-dimensional
feature selection: evaluation for genomic prediction in man. Scientific reports, 5:10312.

[54] Bikel, D. M., Schwartz, R., and Weischedel, R. M. (1999). An algorithm that learns what’s in a
name. Machine learning, 34(1-3):211–231.

[55] Bishop, C. (1995). Regularization and complexity control in feed-forward networks. In Proceedings
International Conference on Artificial Neural Networks ICANN’95, volume 1, page 141–148. EC2
et Cie.

[56] Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Wortman, J. (2007). Learning bounds for
domain adaptation. In Advances in Neural Information Processing Systems 20, Proceedings of the
Twenty-First Annual Conference on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007, pages 129–136.

[57] Bonilla, E. V., Chai, K. M. A., and Williams, C. K. I. (2007). Multi-task gaussian process
prediction. In Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 3-6, 2007, pages 153–160.

[58] Bousmalis, K., Trigeorgis, G., Silberman, N., Krishnan, D., and Erhan, D. (2016). Domain
separation networks. In NIPS, pages 343–351.

[59] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press, New
York, NY, USA.

[60] Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2):123–140.

[61] Breiman, L. (2001). Random forests. Mach. Learn., 45(1):5–32.

[62] Bridle, J. S. and Cox, S. (1990). Recnorm: Simultaneous normalisation and classification applied
to speech recognition. In NIPS, pages 234–240. Morgan Kaufmann.

[63] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature verification
using a "siamese" time delay neural network. In Cowan, J. D., Tesauro, G., and Alspector, J.,
editors, Advances in Neural Information Processing Systems 6, pages 737–744. Morgan-Kaufmann.

[64] Bryson, A. and Ho, Y. (1969). Applied optimal control: optimization, estimation, and control.
Blaisdell Pub. Co.

[65] Bryson, A. E. (1961). A gradient method for optimizing multi-stage allocation processes. In
Proc. Harvard Univ. Symposium on digital computers and their applications.

[66] Bryson, Jr., A. E. and Denham, W. F. (1961). A steepest-ascent method for solving optimum
programming problems. Technical Report BR-1303, Raytheon Company, Missle and Space Division.

[67] Candes, E. J. and Tao, T. (2005). Decoding by linear programming. IEEE Trans. Inf. Theor.,
51(12):4203–4215.

[68] Carlini, N., Liu, C., Kos, J., Erlingsson, Ú., and Song, D. (2018). The secret sharer: Measuring
unintended neural network memorization & extracting secrets. CoRR, abs/1802.08232.

References 111

[69] Caruana, R. (1993). Multitask learning: A knowledge-based source of inductive bias. In ICML,
pages 41–48. Morgan Kaufmann.

[70] Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

[71] Chapelle, O., Schölkopf, B., and Zien, A. (2006). Semi-supervised learning. Adaptive computation
and machine learning. MIT Press.

[72] Chartrand, R. (2007). Exact reconstruction of sparse signals via nonconvex minimization. IEEE
Signal Processing Letters, 14(10):707–710.

[73] Chartrand, R. (2009). Fast algorithms for nonconvex compressive sensing: Mri reconstruction
from very few data. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano
to Macro, pages 262–265.

[74] Checco, P. and Corinto, F. (2006). Cnn-based algorithm for drusen identification. In International
Symposium on Circuits and Systems.

[75] Chen, J. and Chaudhari, N. S. (2004). Capturing long-term dependencies for protein secondary
structure prediction. In Advances in Neural Networks - ISNN 2004, International Symposium on
Neural Networks, Dalian, China, August 19-21, 2004, Proceedings, Part II, pages 494–500.

[76] Chen, M., Xu, Z. E., Weinberger, K. Q., and Sha, F. (2012). Marginalized denoising autoencoders
for domain adaptation. In ICML. icml.cc / Omnipress.

[77] Chen, X., Xu, F., and Ye, Y. (2009). Lower Bound Theory of Nonzero Entries in Solutions of
l2-lp Minimization. Technical report, The Hong Kong Polytechnic University.

[78] Chi, L. and Mu, Y. (2017). Deep steering: Learning end-to-end driving model from spatial and
temporal visual cues. CoRR, abs/1708.03798.

[79] Chicco, D., Sadowski, P., and Baldi, P. (2014). Deep autoencoder neural networks for gene
ontology annotation predictions. In Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics, BCB ’14, pages 533–540, New York, NY, USA.
ACM.

[80] Cho, K., van Merrienboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of neural
machine translation: Encoder-decoder approaches. In Proceedings of SSST@EMNLP 2014, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, Doha, Qatar, 25 October
2014, pages 103–111.

[81] Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

[82] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric discriminatively, with
application to face verification. In 2005 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR 2005), 20-26 June 2005, San Diego, CA, USA, pages 539–546.

[83] Chung, H., Cobzas, D., Birdsell, L., Lieffers, J., and Baracos, V. (2009). Automated segmentation
of muscle and adipose tissue on CT images for human body composition analysis. Proceedings of
SPIE, 7261:72610K–72610K–8.

[84] Chung, J., Gülçehre, Ç., Cho, K., and Bengio, Y. (2014). Empirical evaluation of gated recurrent
neural networks on sequence modeling. arXiv e-prints, abs/1412.3555. Presented at the Deep
Learning workshop at NIPS2014.

[85] Chung, J., Çaglar Gülçehre, Cho, K., and Bengio, Y. (2015). Gated feedback recurrent neural
networks. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015,
Lille, France, 6-11 July 2015, pages 2067–2075.

https://github.com/fchollet/keras

112 References

[86] Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010a). Deep, big, simple
neural nets for handwritten digit recognition. Neural Comput., 22(12):3207–3220.

[87] Cireşan, D. C., Meier, U., Gambardella, L. M., and Schmidhuber, J. (2010b). Deep, big, simple
neural nets for handwritten digit recognition. Neural Computation, 22(12):3207–3220.

[88] Ciresan, D., Meier, U., and Schmidhuber, J. (2012a). Multi-column deep neural networks for image
classification. In IN PROCEEDINGS OF THE 25TH IEEE CONFERENCE ON COMPUTER
VISION AND PATTERN RECOGNITION (CVPR 2012, pages 3642–3649.

[89] Ciresan, D. C., Giusti, A., Gambardella, L. M., and Schmidhuber, J. (2012b). Deep neural
networks segment neuronal membranes in electron microscopy images. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information Processing
Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States., pages 2852–2860.

[90] Cireşan, D. C., Meier, U., and Schmidhuber, J. (2012). Transfer learning for latin and chinese
characters with deep neural networks. In International Joint Conference on Neural Networks, pages
1–6.

[91] Collobert, R. and Weston, J. (2008a). A unified architecture for natural language processing: deep
neural networks with multitask learning. In Machine Learning, Proceedings of he 25th International
Conference, ICML 2008, pages 160–167.

[92] Collobert, R. and Weston, J. (2008b). A unified architecture for natural language processing:
deep neural networks with multitask learning. In Machine Learning, Proceedings of the Twenty-Fifth
International Conference (ICML 2008), Helsinki, Finland, June 5-9, 2008, pages 160–167.

[93] Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.

[94] Crammer, K., Kearns, M. J., and Wortman, J. (2008). Learning from multiple sources. Journal
of Machine Learning Research, 9:1757–1774.

[95] Cristinacce, D. and Cootes, T. (2006). Feature Detection and Tracking with Constrained Local
Models. In BMVC, pages 95.1–95.10.

[96] Csáji, B. C. (2001). Approximation with artificial neural networks. Master’s thesis, Faculty of
Sciences, Etvs Lornd University, Hungary, Hungary.

[97] Cunliffe, A., White, B., Justusson, J., Straus, C., Malik, R., Hallaq, A.-H., and Armato, S. (2015).
Comparison of Two Deformable Registration Algorithms in the Presence of Radiologic Change
Between Serial Lung CT Scans. Journal of Digital Imaging, 28(6):755–760.

[98] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314.

[99] Dai, W., Yang, Q., Xue, G., and Yu, Y. (2007). Boosting for transfer learning. In Machine
Learning, Proceedings of the Twenty-Fourth International Conference (ICML 2007), Corvallis,
Oregon, USA, June 20-24, 2007, pages 193–200.

[100] De Vries, H., Memisevic, R., and Courville, A. (2016). Deep learning vector quantization. In
European Symposium on Artificial Neural Networks (ESANN).

[101] Dean, J., Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V., Mao, M. Z., Ranzato,
M., Senior, A., Tucker, P., Yang, K., and Ng, A. Y. (2012). Large scale distributed deep networks.
In Proceedings of the 25th International Conference on Neural Information Processing Systems -
Volume 1, NIPS’12, pages 1223–1231, USA. Curran Associates Inc.

[102] Dechter, R. (1986). Learning while searching in constraint-satisfaction-problems. In Kehler, T.,
editor, AAAI, pages 178–185. Morgan Kaufmann.

References 113

[103] Demyanov, S. (2015). Regularization methods for neural networks and related models. PhD
thesis, The University of Melbourne, Department of Computing and Information Systems.

[104] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009a). ImageNet: A
Large-Scale Hierarchical Image Database. In CVPR09.

[105] Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F.-F. (2009b). Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248–255.

[106] Deng, L. and Yu, D. (2014). Deep learning: Methods and applications. Found. Trends Signal
Process., 7(3–4):197–387.

[107] Desjardins, G., Simonyan, K., Pascanu, R., and kavukcuoglu, k. (2015). Natural neural networks.
In Cortes, C., Lawrence, N. D., Lee, D. D., Sugiyama, M., and Garnett, R., editors, Advances in
Neural Information Processing Systems 28, pages 2071–2079. Curran Associates, Inc.

[108] Doersch, C. (2016). Tutorial on variational autoencoders. CoRR, abs/1606.05908.

[109] Donoho, D. (2004). For most large underdetermined systems of linear equations the minimal l1
-norm solution is also the sparsest Solution. Technical report, Stanford University.

[110] Dosovitskiy, A., Springenberg, J. T., Tatarchenko, M., and Brox, T. (2017). Learning to generate
chairs, tables and cars with convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell.,
39(4):692–705.

[111] Dozat, T. (2016). Incorporating nesterov momentum into adam.

[112] Dreyfus, S. E. (1962). The numerical solution of variational problems. Journal of Mathematical
Analysis and Applications, 5(1):30–45.

[113] Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., and Efros, A. A. (2018). Investigating
human priors for playing video games.

[114] Duchi, J., Hazan, E., and Singer, Y. (2010). Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. In COLT, pages 257–269.

[115] Duong, L., Cohn, T., Bird, S., and Cook, P. (2015). Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In ACL (2), pages 845–850. The Association
for Computer Linguistics.

[116] Dwork, C. (2011). A firm foundation for private data analysis. Commun. ACM, 54(1):86–95.

[117] Dwork, C., McSherry, F., Nissim, K., and Smith, A. D. (2006). Calibrating noise to sensitivity in
private data analysis. In TCC, volume 3876 of Lecture Notes in Computer Science, pages 265–284.
Springer.

[118] Dwork, C. and Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407.

[119] El-Yacoubi, M., Gilloux, M., and Bertille, J.-M. (2002). A statistical approach for phrase
location and recognition within a text line: An application to street name recognition. IEEE PAMI,
24(2):172–188.

[120] Ellis, H. C. (1965). Invariant Subspaces. Macmillan, New York.

[121] Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio, S. (2010). Why
does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11:625–660.

[122] Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. (2014). Scalable object detection using
deep neural networks. In CVPR, pages 2155–2162.

114 References

[123] Evgeniou, T. and Pontil, M. (2004). Regularized multi–task learning. In Proceedings of the
Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle,
Washington, USA, August 22-25, 2004, pages 109–117.

[124] Fahlman, S. E., Hinton, G. E., and Sejnowski, T. J. (1983). Massively parallel architectures for
AI: netl, thistle, and boltzmann machines. In Proceedings of the National Conference on Artificial
Intelligence. Washington, D.C., August 22-26, 1983., pages 109–113.

[125] Fan, J. and R., L. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96:1348–1360.

[126] Farabet, C., Couprie, C., Najman, L., and LeCun, Y. (2013). Learning Hierarchical Features
for Scene Labeling. IEEE PAMI, 35(8):1915–1929.

[127] Flamary, R., Cuturi, M., Courty, N., and Rakotomamonjy, A. (2018). Wasserstein discriminant
analysis. Machine learning.

[128] Fridman, L., Jenik, B., and Terwilliger, J. (2018). Deeptraffic: Driving fast through dense traffic
with deep reinforcement learning. CoRR, abs/1801.02805.

[129] Fridman, M. (1993). Hidden markov model regression. PhD thesis, Graduate School of Arts
and Sciences, University of Pennsylvania.

[130] Fukada, T., Schuster, M., and Sagisaka, Y. (1999). Phoneme boundary estimation using
bidirectional recurrent neural networks and its applications. Systems and Computers in Japan,
30(4):20–30.

[131] Fukushima, K. (1979). Neural network model for a mechanism of pattern recognition unaffected
by shift in position - Neocognitron. Trans. IECE, J62-A(10):658–665.

[132] Fukushima, K. (1980). Neocognitron: A self-organizing neural network for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4):193–202.

[133] Fukushima, K. (2011). Increasing robustness against background noise: visual pattern recognition
by a Neocognitron. Neural Networks, 24(7):767–778.

[134] Fukushima, K. (2013). Training multi-layered neural network Neocognitron. Neural Networks,
40:18–31.

[135] Fukushima, K. and Miyake, S. (1982). Neocognitron: A new algorithm for pattern recognition
tolerant of deformations and shifts in position. Pattern Recognition, 15(6):455–469.

[136] Funahashi, K. (1989). On the approximate realization of continuous mappings by neural
networks. Neural Networks, 2(3):183–192.

[137] Gamba, A., Gamberini, L., Palmieri, G., and Sanna, R. (1961). Further experiments with papa.
Il Nuovo Cimento (1955-1965), 20(2):112–115.

[138] Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.,
and Lempitsky, V. (2016). Domain-adversarial training of neural networks. Journal of Machine
Learning Research, 17(59):1–35.

[139] Gao, J., Fan, W., Jiang, J., and Han, J. (2008). Knowledge transfer via multiple model
local structure mapping. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008, pages
283–291.

[140] Ge, D., Jiang, X., and Ye, Y. (2011). A note on the complexity of lp minimization. Mathematical
Programming, 129(2):285–299.

References 115

[141] Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the bias/variance
dilemma. Neural Comput., 4(1):1–58.

[142] Germain, P., Habrard, A., Laviolette, F., and Morvant, E. (2017). Pac-bayes and domain
adaptation. arXiv.

[143] Ghosh, S., Alomari, R. S., Chaudhary, V., and Dhillon, G. (2011). Automatic lumbar vertebra
segmentation from clinical CT for wedge compression fracture diagnosis. Proceedings of the SPIE,
3:796303–9.

[144] Girosi, F. and Poggio, T. (1989). Representation properties of networks: Kolmogorov’s theorem
is irrelevant. Neural Computation, 1(4):465–469.

[145] Glocker, B., D.Zikic, E.Konukoglu, Haynor, D., and Criminisi, A. (2013). Vertebrae localization
in pathological spine CT via dense classification from sparse annotations. MICCAI, 16(Pt 2):262–70.

[146] Glocker, B., Feulner, J., Criminisi, A., Haynor, D. R., and Konukoglu, E. (2012). Automatic
Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans, pages 590–598.
Springer Berlin Heidelberg, Berlin, Heidelberg.

[147] Glocker, B., Zikic, D., and Haynor, D. R. (2014). Robust Registration of Longitudinal Spine CT,
pages 251–258. Springer International Publishing.

[148] Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward
neural networks. In International conference on artificial intelligence and statistics, pages 249–256.

[149] Glorot, X., Bordes, A., and Bengio, Y. (2011a). Deep sparse rectifier neural networks. In
Gordon, G. J. and Dunson, D. B., editors, Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics (AISTATS-11), volume 15, pages 315–323. Journal of Machine
Learning Research - Workshop and Conference Proceedings.

[150] Glorot, X., Bordes, A., and Bengio, Y. (2011b). Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th International Conference on
Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages 513–520.

[151] Goertzel, B. (2015). Are there deep reasons underlying the pathologies of today’s deep learning
algorithms? In Bieger, J., Goertzel, B., and Potapov, A., editors, Artificial General Intelligence,
pages 70–79, Cham. Springer International Publishing.

[152] Golodetz, S., Voiculescu, I., and Cameron, S. (2009). Automatic spine identification in abdominal
CT slices using image partition forests. International Symposium on Image and Signal Processing
and Analysis.

[153] Gomez, F. J. and Schmidhuber, J. (2005). Co-evolving recurrent neurons learn deep memory
pomdps. In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’05, pages 491–498, New York, NY, USA. ACM.

[154] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press. http:
//www.deeplearningbook.org.

[155] Goodfellow, I., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014a). Multi-digit number
recognition from street view imagery using deep convolutional neural networks. In International
Conference on Learning Representations (ICLR2014).

[156] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., and Bengio, Y. (2014b). Generative adversarial nets. In Ghahramani, Z., Welling, M., Cortes,
C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc.

http://www.deeplearningbook.org
http://www.deeplearningbook.org

116 References

[157] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014c). Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572.

[158] Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A. C., and Bengio, Y. (2013). Maxout
networks. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, pages 1319–1327.

[159] Gordon, D. F. and Desjardins, M. (1995). Evaluation and selection of biases in machine learning.
Machine Learning, 20(1):5–22.

[160] Gouérant, S., Leheurteur, M., Chaker, M., Modzelewski, R., Rigal, O., Veyret, C., Lauridant,
G., and Clatot, F. (2013). A higher body mass index and fat mass are factors predictive of docetaxel
dose intensity. Anticancer research, 33(12):5655.

[161] Graves, A. (2012). Supervised Sequence Labelling with Recurrent Neural Networks, volume 385
of Studies in Computational Intelligence. Springer.

[162] Graves, A. (2013a). Generating sequences with recurrent neural networks. CoRR, abs/1308.0850.

[163] Graves, A. (2013b). Generating sequences with recurrent neural networks. CoRR, abs/1308.0850.

[164] Graves, A. and Jaitly, N. (2014a). Towards end-to-end speech recognition with recurrent neural
networks. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014,
Beijing, China, 21-26 June 2014, pages 1764–1772.

[165] Graves, A. and Jaitly, N. (2014b). Towards end-to-end speech recognition with recurrent neural
networks. In Proceedings of the 31st International Conference on International Conference on
Machine Learning - Volume 32, ICML’14, pages II–1764–II–1772. JMLR.org.

[166] Graves, A., Liwicki, M., Fernández, S., Bertolami, R., Bunke, H., and Schmidhuber, J. (2009).
A novel connectionist system for unconstrained handwriting recognition. IEEE transactions on
pattern analysis and machine intelligence, 31(5):855–868.

[167] Graves, A., Mohamed, A., and Hinton, G. E. (2013). Speech recognition with deep recurrent
neural networks. In IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2013, Vancouver, BC, Canada, May 26-31, 2013, pages 6645–6649.

[168] Graves, A. and Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional
recurrent neural networks. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors,
Advances in Neural Information Processing Systems 21, pages 545–552. Curran Associates, Inc.

[169] Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv preprint
arXiv:1410.5401.

[170] Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A.,
Colmenarejo, S. G., Grefenstette, E., Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M.,
Zwols, Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom, P., Kavukcuoglu, K., and
Hassabis, D. (2016). Hybrid computing using a neural network with dynamic external memory.
Nature, 538(7626):471–476.

[171] Griewank, A. (2012). Documenta Mathematica - Extra Volume ISMP, pages 389–400.

[172] Grossberg, S. (1973). Contour enhancement, short term memory, and constancies in reverberating
neural networks. Studies in Applied Mathematics, 52(3):213–257.

[173] Grossberg, S. (1982). Contour Enhancement, Short Term Memory, and Constancies in Rever-
berating Neural Networks, pages 332–378. Springer Netherlands, Dordrecht.

[174] Grünwald, P. D. (2007). The Minimum Description Length Principle (Adaptive Computation
and Machine Learning). The MIT Press.

References 117

[175] Grünwald, P. (2005). A tutorial introduction to the minimum description length principle. In
Advances in Minimum Description Length: Theory and Applications. MIT Press.

[176] Gu, S. and Rigazio, L. (2014). Towards deep neural network architectures robust to adversarial
examples. CoRR, abs/1412.5068.

[177] Hadamard, J. (1908). Mémoire sur le problème d’analyse relatif à l’équilibre des plaques
élastiques encastrées, volume 33. Imprimerie nationale.

[178] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning an
invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA, pages 1735–1742.

[179] Hafemann, L. G., Sabourin, R., and Oliveira, L. S. (2016). Writer-independent feature learning
for offline signature verification using deep convolutional neural networks. CoRR, abs/1604.00974.

[180] Hammer, B. (1998). On the approximation capability of recurrent neural networks. In In
International Symposium on Neural Computation, pages 12–4.

[181] Hansel, D., Mato, G., and Meunier, C. (1992). Memorization without generalization in a
multilayered neural network. EPL (Europhysics Letters), 20(5):471.

[182] Hashimoto, K., Xiong, C., Tsuruoka, Y., and Socher, R. (2017). A joint many-task model:
Growing a neural network for multiple NLP tasks. In EMNLP, pages 1923–1933. Association for
Computational Linguistics.

[183] Hassoun, M. H. (1995). Fundamentals of Artificial Neural Networks. MIT Press, Cambridge,
MA, USA, 1st edition.

[184] Hastie, T., Tibshirani, R., and Wainwright, M. (2015). Statistical Learning with Sparsity: The
Lasso and Generalizations. Chapman & Hall/CRC.

[185] Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin,
P., and Larochelle, H. (2015). Brain tumor segmentation with deep neural networks. CoRR,
abs/1505.03540.

[186] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In ICCV 2015, pages 1026–1034.

[187] He, K., Zhang, X., Ren, S., and Sun, J. (2016a). Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 770–778.

[188] He, K., Zhang, X., Ren, S., and Sun, J. (2016b). Identity mappings in deep residual networks.
In Computer Vision - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part IV, pages 630–645.

[189] Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. Wiley, New
York.

[190] Hecht-Nielsen, R. (1989a). Neurocomputing. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA.

[191] Hecht-Nielsen, R. (1989b). Theory of the backpropagation neural network. In International
Joint Conference on Neural Networks (IJCNN), pages 593–605. IEEE.

[192] Heckerman, D., Geiger, D., and Chickering, D. M. (1995). Learning bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20(3):197–243.

[193] Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence. Neural
Comput., 14(8):1771–1800.

118 References

[194] Hinton, G. E. (2007a). Learning multiple layers of representation. Trends in Cognitive Sciences,
11:428–434.

[195] Hinton, G. E. (2007b). Learning multiple layers of representation. Trends in Cognitive Sciences,
11:428–434.

[196] Hinton, G. E. (2012). A practical guide to training restricted boltzmann machines. In Montavon,
G., Orr, G. B., and Müller, K.-R., editors, Neural Networks: Tricks of the Trade (2nd ed.), volume
7700 of Lecture Notes in Computer Science, pages 599–619. Springer.

[197] Hinton, G. E., McClelland, J. L., and Rumelhart, D. E. (1986). Parallel distributed processing:
Explorations in the microstructure of cognition, vol. 1. chapter Distributed Representations, pages
77–109. MIT Press, Cambridge, MA, USA.

[198] Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006a). A fast learning algorithm for deep belief
nets. Neural Comput., 18(7):1527–1554.

[199] Hinton, G. E., Osindero, S., and Teh, Y. W. (2006b). A fast learning algorithm for deep belief
nets. Neural Computation, 18(7):1527–1554.

[200] Hinton, G. E., Sabour, S., and Frosst, N. (2018). Matrix capsules with EM routing. In
International Conference on Learning Representations.

[201] Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data with neural
networks. Science, 313(5786):504–507.

[202] Hinton, G. E., Sejnowski, T. J., and Ackley, D. H. (1984). Boltzmann machines: Constraint
satisfaction networks that learn. Technical Report CMU-CS-84-119, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA.

[203] Ho, T. K. (1995). Random decision forests. In Proceedings of the Third International Conference
on Document Analysis and Recognition (Volume 1) - Volume 1, ICDAR ’95, pages 278–, Washington,
DC, USA. IEEE Computer Society.

[204] Hochreiter, S. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis,
Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München. Advisor: J.
Schmidhuber.

[205] Hochreiter, S., Bengio, Y., Frasconi, P., and Schmidhuber, J. (2001). Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies. In Kremer and Kolen, editors, A Field
Guide to Dynamical Recurrent Neural Networks. IEEE Press.

[206] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural Comput., 9(8):1735–
1780.

[207] Hoffman, J., Wang, D., Yu, F., and Darrell, T. (2016). Fcns in the wild: Pixel-level adversarial
and constraint-based adaptation. CoRR, abs/1612.02649.

[208] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks are
universal approximators. Neural Networks, 2(5):359–366.

[209] Hornik, K., Stinchcombe, M., and White, H. (1990). Universal approximation of an unknown
mapping and its derivatives using multilayer feedforward networks. Neural Netw., 3(5):551–560.

[210] Hosu, I. and Rebedea, T. (2016). Playing atari games with deep reinforcement learning and
human checkpoint replay. CoRR, abs/1607.05077.

[211] Huang, G. B. and Jain, V. (2013). Deep and wide multiscale recursive networks for robust
image labeling. CoRR, abs/1310.0354.

References 119

[212] Huang, S. H., Chu, Y. H., Lai, S. H., and Novak, C. L. (2009). Learning-Based Vertebra
Detection and Iterative Normalized-Cut Segmentation for Spinal MRI. IEEE Transactions on
Medical Imaging, 28(10):1595–1605.

[213] Hubel, D. H. and Wiesel, T. (1962). Receptive fields, binocular interaction, and functional
architecture in the cat’s visual cortex. Journal of Physiology (London), 160:106–154.

[214] III, H. D. (2007). Frustratingly easy domain adaptation. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, pages 256–263, Prague, Czech Republic.
Association for Computational Linguistics.

[215] (III.), W. C. R. (1962). An Adaptive Logic System with Generalizing Properties. PhD thesis,
Stanford University, Stanford Electronics Labs.

[216] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 448–456.

[217] Irie, B. and Miyake, S. (1988). Capabilities of three-layered perceptrons. In IEEE International
Conference on Neural Networks, volume 1, page 218.

[218] Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Transactions on
Systems, Man and Cybernetics, (4):364–378.

[219] Ivakhnenko, A. G. and Lapa, V. G. (1965). Cybernetic Predicting Devices. CCM Information
Corporation.

[220] Ivakhnenko, A. G., Lapa, V. G., and McDonough, R. N. (1967). Cybernetics and forecasting
techniques. American Elsevier, NY.

[221] Jaderberg, M., Simonyan, K., Vedaldi, A., and Zisserman, A. (2014). Deep structured output
learning for unconstrained text recognition. CoRR, abs/1412.5903.

[222] James, G., Witten, D., Hastie, T., and Tibshirani, R. (2014). An Introduction to Statistical
Learning: With Applications in R. Springer Publishing Company, Incorporated.

[223] Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best multi-stage
architecture for object recognition? In ICCV 2009, pages 2146–2153.

[224] Jiang, J. and Zhai, C. (2007). Instance weighting for domain adaptation in NLP. In ACL 2007,
Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, June
23-30, 2007, Prague, Czech Republic.

[225] Jiang, X. (2015). Representational transfer in deep belief networks. In 28th Canadian Conference
on Artificial Intelligence, pages 338–342.

[226] Jones, D. T. (1999). Protein secondary structure prediction based on position-specific scoring
matrices. Journal of Molecular Biology, 292(2):195–202.

[227] Joulin, A. and Mikolov, T. (2015). Inferring algorithmic patterns with stack-augmented recurrent
nets. In Advances in Neural Information Processing Systems 28: Annual Conference on Neural
Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada, pages
190–198.

[228] Józefowicz, R., Vinyals, O., Schuster, M., Shazeer, N., and Wu, Y. (2016). Exploring the limits
of language modeling. CoRR, abs/1602.02410.

[229] Kadoury, S., Labelle, H., and Paragios, N. (2011). Automatic inference of articulated spine
models in CT images using high-order markov random fields. Medical Image Analysis, 15(4):426–437.

120 References

[230] Kaido, T., Ogawa, K., Fujimoto, Y., Ogura, Y., Hata, K., Ito, T., Tomiyama, K., Yagi, S., Mori,
A., and Uemoto, S. (2013). Impact of sarcopenia on survival in patients undergoing living donor
liver transplantation. American Journal of Transplantation, 13(6):1549–1556.

[231] Karpathy, A. and Li, F. (2015). Deep visual-semantic alignments for generating image descrip-
tions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015, pages 3128–3137.

[232] Kearns, M. J. and Vazirani, U. V. (1994). An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA, USA.

[233] Kelley, H. J. (1960). Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954.

[234] Kendall, A., Gal, Y., and Cipolla, R. (2017). Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics. CoRR, abs/1705.07115.

[235] Kim, Y. (2014a). Convolutional neural networks for sentence classification. CoRR, abs/1408.5882.

[236] Kim, Y. (2014b). Convolutional neural networks for sentence classification. In Proceedings of
the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages
1746–1751.

[237] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. CoRR,
abs/1412.6980.

[238] Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. CoRR, abs/1312.6114.

[239] Kiros, R., Salakhutdinov, R., and Zemel, R. S. (2014). Unifying visual-semantic embeddings
with multimodal neural language models. CoRR, abs/1411.2539.

[240] Kolda, T. G. and Bader, B. W. (2009). Tensor decompositions and applications. SIAM Rev.,
51(3):455–500.

[241] Kolmogorov, A. K. (1957). On the representation of continuous functions of several variables by
superposition of continuous functions of one variable and addition. Doklady Akademii Nauk SSSR,
114:369–373.

[242] Kolmogorov, A. N. (1965). On the representation of continuous functions of several variables
by superposition of continuous functions of one variable and addition. Doklady Akademii. Nauk
USSR,, 114:679–681.

[243] Krizhevsky, A. (2009). Learning multiple layers of features from tiny images. Technical report.

[244] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. In Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors,
Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc.

[245] Krueger, D., Ballas, N., Jastrzebski, S., Arpit, D., Kanwal, M. S., Maharaj, T., Bengio, E.,
Fischer, A., and Courville, A. (2017). Deep nets don’t learn via memorization.

[246] Krupka, E. and Tishby, N. (2007). Incorporating prior knowledge on features into learning.
In Proceedings of the Eleventh International Conference on Artificial Intelligence and Statistics,
AISTATS 2007, San Juan, Puerto Rico, March 21-24, 2007, pages 227–234.

[247] Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J., Gulrajani, I., Zhong, V., Paulus,
R., and Socher, R. (2016). Ask me anything: Dynamic memory networks for natural language
processing. In Balcan, M. F. and Weinberger, K. Q., editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research, pages
1378–1387, New York, New York, USA. PMLR.

References 121

[248] Lafferty, J. D., McCallum, A., and Pereira, F. C. N. (2001). Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In ICML, pages 282–289.

[249] Lai, M. (2015). Deep learning for medical image segmentation. CoRR, abs/1505.02000.

[250] Lanic, H., Kraut-Tauzia, J., Modzelewski, R., Clatot, F., Mareschal, S., Picquenot, J. M., Stam-
atoullas, A., Leprêtre, S., Tilly, H., and Jardin, F. (2014). Sarcopenia is an independent prognostic
factor in elderly patients with diffuse large b-cell lymphoma treated with immunochemotherapy.
Leukemia & Lymphoma, 55(4):817–823.

[251] Lawrence, N. D. and Platt, J. C. (2004). Learning to learn with the informative vector machine.
In Machine Learning, Proceedings of the Twenty-first International Conference (ICML 2004), Banff,
Alberta, Canada, July 4-8, 2004.

[252] Le, V., Brandt, J., Lin, Z., Bourdev, L. D., and Huang, T. S. (2012). Interactive Facial Feature
Localization. In ECCV, 2012, Proceedings, Part III, pages 679–692.

[253] LeCun, Y. (1985). Une procédure d’apprentissage pour réseau à seuil asymétrique. Proceedings
of Cognitiva 85, Paris, pages 599–604.

[254] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. (1989a). Back-propagation applied to handwritten zip code recognition. Neural Computation,
1(4):541–551.

[255] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. (1989b). Backpropagation applied to handwritten zip code recognition. Neural Comput.,
1(4):541–551.

[256] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel,
L. D. (1990). Handwritten digit recognition with a back-propagation network. In Touretzky, D. S.,
editor, Advances in Neural Information Processing Systems 2, pages 396–404. Morgan Kaufmann.

[257] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pages 2278–2324.

[258] LeCun, Y., Bottou, L., Orr, G. B., and Müller, K.-R. (1998). Efficient backprop. In Neural
Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop, pages 9–50,
London, UK, UK. Springer-Verlag.

[259] Lee, H., Grosse, R., Ranganath, R., and Ng, A. Y. (2009). Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual
International Conference on Machine Learning, ICML ’09, pages 609–616, New York, NY, USA.
ACM.

[260] Leibniz, G. W. (1676). Memoir using the chain rule (cited in TMME 7:2&3 p 321-332, 2010).

[261] Lerouge, J., Herault, R., Chatelain, C., Jardin, F., and Modzelewski, R. (2015). IODA : An
input / output deep architecture for image labeling. Pattern Recognition, 48(9):2847–2858.

[262] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993). Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function. Neural Networks, 6(6):861–
867.

[263] L’Hôpital, G. F. A. (1696). Analyse des infiniment petits, pour l’intelligence des lignes courbes.
Paris: L’Imprimerie Royale.

[264] Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P. (2016a). Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710.

122 References

[265] Li, X., Uricchio, T., Ballan, L., Bertini, M., Snoek, C. G. M., and Bimbo, A. D. (2016b).
Socializing the semantic gap: A comparative survey on image tag assignment, refinement, and
retrieval. ACM Comput. Surv., 49(1):14:1–14:39.

[266] Light, W. (1992). Ridge functions, sigmoidal functions and neural networks. Approximation
theory VII, pages 163–206.

[267] Linnainmaa, S. (1970). The representation of the cumulative rounding error of an algorithm as
a Taylor expansion of the local rounding errors. Master’s thesis, Univ. Helsinki.

[268] Linnainmaa, S. (1976). Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics, 16(2):146–160.

[269] Lippmann, R. P. (1988). An introduction to computing with neural nets. SIGARCH Computer
Architecture News, 16(1):7–25.

[270] Liu, D. C. and Nocedal, J. (1989). On the limited memory bfgs method for large scale
optimization. Math. Program., 45(3):503–528.

[271] Liu, S., Yang, N., Li, M., and Zhou, M. (2014). A recursive recurrent neural network for
statistical machine translation. In Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 1491–1500, Baltimore, Maryland.
Association for Computational Linguistics.

[272] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for semantic
segmentation. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 3431–3440.

[273] Long, M. and Wang, J. (2015). Learning multiple tasks with deep relationship networks. CoRR,
abs/1506.02117.

[274] Lu, Y., Kumar, A., Zhai, S., Cheng, Y., Javidi, T., and Feris, R. S. (2017). Fully-adaptive
feature sharing in multi-task networks with applications in person attribute classification. In CVPR,
pages 1131–1140. IEEE Computer Society.

[275] Luenberger, D. G. (1969). Optimization by vector space methods. Decision and control. Wiley,
New York, NY.

[276] Ma, J. and Lu, L. (2013). Hierarchical segmentation and identification of thoracic vertebra
using learning-based edge detection and coarse-to-fine deformable model. Computer Vision and
Image Understanding, 117(9):1072–1083.

[277] Maas, A. L., Hannun, A. Y., and Ng, A. Y. (2013). Rectifier nonlinearities improve neural
network acoustic models. In in ICML Workshop on Deep Learning for Audio, Speech and Language
Processing.

[278] Mahmud, M. M. and Ray, S. R. (2007). Transfer learning using kolmogorov complexity: Basic
theory and empirical evaluations. In Advances in Neural Information Processing Systems 20,
Proceedings of the Twenty-First Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 3-6, 2007, pages 985–992.

[279] Major, D., Hladůvka, J., Schulze, F., and Bühler, K. (2013). Automated landmarking and
labeling of fully and partially scanned spinal columns in CT images. Medical Image Analysis,
17(8):1151–1163.

[280] Makhzani, A., Shlens, J., Jaitly, N., and Goodfellow, I. J. (2015). Adversarial autoencoders.
CoRR, abs/1511.05644.

References 123

[281] Malon, C., Miller, M., Burger, H. C., Cosatto, E., and Graf, H. P. (2008). Identifying histological
elements with convolutional neural networks. In Int. Conf. on Soft Computing As Transdisciplinary
Science and Technology, pages 450–456.

[282] Marcus, G. (2018). Deep learning: A critical appraisal. CoRR, abs/1801.00631.

[283] Marcus, G. F. (2003). The algebraic mind: Integrating connectionism and cognitive science.
MIT press.

[284] Martens, J. (2010). Deep learning via hessian-free optimization. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages
735–742.

[285] Martens, J. and Sutskever, I. (2011). Learning recurrent neural networks with Hessian-free
optimization. In ICML 2011, pages 1033–1040.

[286] Martin, L., Birdsell, L., MacDonald, N., Reiman, T., Clandinin, M. T., McCargar, L. J., Murphy,
R., Ghosh, S., Sawyer, M. B., and Baracos, V. E. (2013). Cancer cachexia in the age of obesity:
Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. Journal
of Clinical Oncology, 31(12):1539–1547.

[287] Masci, J., Meier, U., Cireşan, D., and Schmidhuber, J. (2011). Stacked Convolutional Auto-
Encoders for Hierarchical Feature Extraction, pages 52–59. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[288] McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. The bulletin of mathematical biophysics, 5(4):115–133.

[289] McInerney, T. and Terzopoulos, D. (1996). Deformable models in medical image analysis: a
survey. Medical image analysis, 1(2):91–108.

[290] Michael Kelm, B., Wels, M., Kevin Zhou, S., Seifert, S., Suehling, M., Zheng, Y., and Comaniciu,
D. (2013). Spine detection in CT and MR using iterated marginal space learning. Medical Image
Analysis, 17(8):1283–1292.

[291] Mihalkova, L., Huynh, T. N., and Mooney, R. J. (2007). Mapping and revising markov logic
networks for transfer learning. In Proceedings of the Twenty-Second AAAI Conference on Artificial
Intelligence, July 22-26, 2007, Vancouver, British Columbia, Canada, pages 608–614.

[292] Mihalkova, L. and Mooney, R. (2006). Transfer learning with markov logic networks. In ICML
workshop on structural knowledge transfer for machine learning.

[293] Mihalkova, L. and Mooney, R. J. (2008). Transfer learning by mapping with minimal target
data. In Proceedings of the AAAI-08 workshop on transfer learning for complex tasks.

[294] Mikolov, T. (2012). Statistical language models based on neural networks. PhD thesis, Brno
University of Technology.

[295] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed
representations of words and phrases and their compositionality. In NIPS, pages 3111–3119.

[296] Minsky, M. and Papert, S. (1969). Perceptrons: An Introduction to Computational Geometry.
MIT Press, Cambridge, MA, USA.

[297] Minsky, M. L. and Papert, S. A. (1988). Perceptrons: Expanded Edition. MIT Press, Cambridge,
MA, USA.

[298] Misra, I., Shrivastava, A., Gupta, A., and Hebert, M. (2016). Cross-stitch networks for multi-task
learning. In CVPR, pages 3994–4003. IEEE Computer Society.

124 References

[299] Mitchell, T. M. (1980). The need for biases in learning generalizations. Technical report, Rutgers
University, New Brunswick, NJ.

[300] Mitchell, T. M. (1997). Machine Learning. McGraw-Hill, Inc., New York, NY, USA, 1 edition.

[301] Mitsiopoulos, N., Baumgartner, R. N., Heymsfield, S. B., Lyons, W., Gallagher, D., and Ross,
R. (1998). Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and
computerized tomography. Journal of applied physiology, 85(1):115–122.

[302] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller,
M. (2013). Playing atari with deep reinforcement learning. In NIPS Deep Learning Workshop.

[303] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M. A., Fidjeland, A., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou,
I., King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015). Human-level control
through deep reinforcement learning. Nature, 518(7540):529–533.

[304] Mnih, V., Larochelle, H., and Hinton, G. E. (2011). Conditional restricted boltzmann machines
for structured output prediction. In UAI 2011, Proceedings of the Twenty-Seventh Conference on
Uncertainty in Artificial Intelligence, Barcelona, Spain, July 14-17, 2011, pages 514–522.

[305] Mohri, M., Rostamizadeh, A., and Talwalkar, A. (2012). Foundations of Machine Learning.
The MIT Press.

[306] Molchanov, P., Tyree, S., Karras, T., Aila, T., and Kautz, J. (2016). Pruning convolutional
neural networks for resource efficient transfer learning. arXiv preprint arXiv:1611.06440.

[307] Moller, M. F. (1993). Exact calculation of the product of the Hessian matrix of feed-forward
network error functions and a vector in O(N) time. Technical Report PB-432, Computer Science
Department, Aarhus University, Denmark.

[308] Montúfar, G., Pascanu, R., Cho, K., and Bengio, Y. (2014). On the number of linear regions of
deep neural networks. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’14, pages 2924–2932, Cambridge, MA, USA. MIT Press.

[309] Mourad, N. and Reilly, J. P. (2010). Minimizing nonconvex functions for sparse vector recon-
struction. IEEE Trans. Signal Processing, 58(7):3485–3496.

[310] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines.
In Fürnkranz, J. and Joachims, T., editors, Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807–814. Omnipress.

[311] Nanni, L., Lumini, A., and Brahnam, S. (2010). Local binary patterns variants as texture
descriptors for medical image analysis. Artificial Intelligence in Medicine, 49(2):117 – 125.

[312] Natarajan, B. K. (1995). Sparse approximate solutions to linear systems. SIAM J. Comput.,
24(2):227–234.

[313] Nesterov, Y. (1983). A method of solving a convex programming problem with convergence
rate O(1/sqr(k)). Soviet Mathematics Doklady, 27:372–376.

[314] Nguyen, A. M., Yosinski, J., and Clune, J. (2015). Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images. In CVPR, pages 427–436. IEEE Computer
Society.

[315] Nguyen, D. T., Alam, F., Ofli, F., and Imran, M. (2017). Automatic image filtering on social
networks using deep learning and perceptual hashing during crises. CoRR, abs/1704.02602.

[316] Nicolas, S., Paquet, T., and Heutte, L. (2006). A Markovian Approach for Handwritten
Document Segmentation. In ICPR (3), pages 292–295.

References 125

[317] Nielsen, R. H. (1987). Kolmogorov’s mapping neural network existence theorem. In Proceedings
of the IEEE First International Conference on Neural Networks (San Diego, CA), volume III, pages
11–13. Piscataway, NJ: IEEE.

[318] Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L., and Barbano, P. E. (2005).
Toward automatic phenotyping of developing embryos from videos. IEEE Trans. Image Processing,
14(9):1360–1371.

[319] Niyogi, P., Girosi, F., and Poggio, T. (1998). Incorporating prior information in machine
learning by creating virtual examples. Proceedings of the IEEE, 86(11):2196–2209.

[320] Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution network for semantic segmenta-
tion. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago, Chile,
December 7-13, 2015, pages 1520–1528.

[321] Noto, K. and Craven, M. (2012). Learning Hidden Markov Models for Regression using Path
Aggregation. CoRR, abs/1206.3275.

[322] Novikoff, A. B. (1962). On convergence proofs on perceptrons. In Proceedings of the Symposium
on the Mathematical Theory of Automata.

[323] Och, F. J. (2003). Minimum error rate training in statistical machine translation. In Proceedings
of the ACL, volume 1.

[324] Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(7):971–987.

[325] Oktay, A. B. and Akgul, Y. S. (2011). Localization of the lumbar discs using machine learning
and exact probabilistic inference. In Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, pages 158–165.

[326] Olazaran, M. (1996). A sociological study of the official history of the perceptrons controversy.
Social Studies of Science, 26(3):611–659.

[327] Olivas, E. S., Guerrero, J. D. M., Sober, M. M., Benedito, J. R. M., and Lopez, A. J. S. (2009).
Handbook Of Research On Machine Learning Applications and Trends: Algorithms, Methods and
Techniques - 2 Volumes. Information Science Reference - Imprint of: IGI Publishing, Hershey, PA.

[328] Oster, M., Douglas, R. J., and Liu, S. (2009). Computation with spikes in a winner-take-all
network. Neural Computation, 21(9):2437–2465.

[329] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. on Knowl. and
Data Eng., 22(10):1345–1359.

[330] Pandey, G. and Dukkipati, A. (2014). To go deep or wide in learning? In Kaski, S. and Corander,
J., editors, Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics, volume 33 of Proceedings of Machine Learning Research, pages 724–732, Reykjavik,
Iceland. PMLR.

[331] Papernot, N., Abadi, M., Erlingsson, Ú., Goodfellow, I. J., and Talwar, K. (2016). Semi-
supervised knowledge transfer for deep learning from private training data. CoRR, abs/1610.05755.

[332] Paredes, B. R., Argyriou, A., Berthouze, N., and Pontil, M. (2012). Exploiting unrelated tasks
in multi-task learning. In Lawrence, N. D. and Girolami, M., editors, Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of
Machine Learning Research, pages 951–959, La Palma, Canary Islands. PMLR.

[333] Park, J., Li, S., Wen, W., Tang, P. T. P., Li, H., Chen, Y., and Dubey, P. (2016). Faster cnns
with direct sparse convolutions and guided pruning.

126 References

[334] Parker, D. B. (1985). Learning-logic. Technical Report TR-47, Center for Comp. Research in
Economics and Management Sci., MIT.

[335] Pascanu, R., Mikolov, T., and Bengio, Y. (2012). Understanding the exploding gradient problem.
CoRR, abs/1211.5063.

[336] Pascanu, R., Mikolov, T., and Bengio, Y. (2013a). On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, pages 1310–1318.

[337] Pascanu, R., Mikolov, T., and Bengio, Y. (2013b). On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International Conference on International Conference on
Machine Learning - Volume 28, ICML’13, pages III–1310–III–1318. JMLR.org.

[338] Pearlmutter, B. A. (1994). Fast exact multiplication by the Hessian. Neural Computation,
6(1):147–160.

[339] Peng, P., Van Vledder, M., Tsai, S., De Jong, M., Makary, M., Ng, J., Edil, B., Wolfgang,
C., Schulick, R., Choti, M., Kamel, I., and Pawlik, T. (2011). Sarcopenia negatively impacts
short-term outcomes in patients undergoing hepatic resection for colorectal liver metastasis. HPB,
13(7):439–446.

[340] Peyré, G., Cuturi, M., et al. (2017). Computational optimal transport. Technical report.

[341] Pham, D. L., Xu, C., and Prince, J. L. (2000). Current methods in medical image segmentation
1. Annual review of biomedical engineering, 2(1):315–337.

[342] Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. USSR
Computational Mathematics and Mathematical Physics, 4(5):1–17.

[343] Poole, B., Sohl-Dickstein, J., and Ganguli, S. (2014). Analyzing noise in autoencoders and deep
networks. CoRR, abs/1406.1831.

[344] Povey, D., Zhang, X., and Khudanpur, S. (2014). Parallel training of deep neural networks with
natural gradient and parameter averaging. CoRR, abs/1410.7455.

[345] Rabanser, S., Shchur, O., and Günnemann, S. (2017). Introduction to tensor decompositions
and their applications in machine learning. CoRR, abs/1711.10781.

[346] Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2):257–286.

[347] Radford, A., Metz, L., and Chintala, S. (2015). Unsupervised representation learning with deep
convolutional generative adversarial networks. CoRR, abs/1511.06434.

[348] Raiko, T., Valpola, H., and Lecun, Y. (2012). Deep learning made easier by linear transformations
in perceptrons. In Lawrence, N. D. and Girolami, M., editors, Proceedings of the Fifteenth
International Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of
Machine Learning Research, pages 924–932, La Palma, Canary Islands. PMLR.

[349] Raina, R., Battle, A., Lee, H., Packer, B., and Ng, A. Y. (2007). Self-taught learning: transfer
learning from unlabeled data. In Machine Learning, Proceedings of the Twenty-Fourth International
Conference (ICML 2007), Corvallis, Oregon, USA, June 20-24, 2007, pages 759–766.

[350] Raina, R., Madhavan, A., and Ng, A. Y. (2009). Large-scale deep unsupervised learning using
graphics processors. In Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 873–880, New York, NY, USA. ACM.

[351] Ramachandran, P., Liu, P. J., and Le, Q. V. (2017). Unsupervised pretraining for sequence to
sequence learning. In EMNLP, pages 383–391. Association for Computational Linguistics.

References 127

[352] Ramsundar, B., Kearnes, S. M., Riley, P., Webster, D., Konerding, D. E., and Pande, V. S.
(2015). Massively multitask networks for drug discovery. CoRR, abs/1502.02072.

[353] Ranzato, A., Poultney, C., Chopra, S., and Lecun, Y. (2007a). Efficient Learning of Sparse
Representations with an Energy-Based Model. In NIPS, pages 1137–1144.

[354] Ranzato, M., Boureau, Y., and LeCun, Y. (2007b). Sparse feature learning for deep belief
networks. In Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia,
Canada, December 3-6, 2007, pages 1185–1192.

[355] Ranzato, M., Huang, F., Boureau, Y., and LeCun, Y. (2007c). Unsupervised learning of invariant
feature hierarchies with applications to object recognition. In Proc. Computer Vision and Pattern
Recognition Conference (CVPR’07). IEEE Press.

[356] Ranzato, M., Poultney, C. S., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse
representations with an energy-based model. In Advances in Neural Information Processing Systems
19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4-7, 2006, pages 1137–1144.

[357] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S. (2014). CNN features off-the-shelf:
An astounding baseline for recognition. In CVPR Workshops, pages 512–519. IEEE Computer
Society.

[358] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. NIPS 28, pages 91–99.

[359] Riesenhuber, M. and Poggio, T. (1999). Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2(11).

[360] Rifai, S., Mesnil, G., Vincent, P., Muller, X., Bengio, Y., Dauphin, Y., and Glorot, X. (2011a).
Higher order contractive auto-encoder. In European Conference on Machine Learning and Principles
and Practice of Knowledge Discovery in Databases (ECML PKDD).

[361] Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio, Y. (2011b). Contractive auto-encoders:
Explicit invariance during feature extraction. In Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2, 2011, pages
833–840.

[362] Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5):465–471.

[363] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention - MICCAI
2015 - 18th International Conference Munich, Germany, October 5 - 9, 2015, Proceedings, Part III,
pages 234–241.

[364] Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, pages 65–386.

[365] Rosenblatt, F. (1962). Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms. Spartan Books, Washington.

[366] Roth, H. R., Yao, J., Lu, L., Stieger, J., Burns, J. E., and Summers, R. M. (2014). Detection of
sclerotic spine metastases via random aggregation of deep convolutional neural network classifications.
CoRR, abs/1407.5976.

[367] Ruder, S., Bingel, J., Augenstein, I., and Søgaard, A. (2017). Sluice networks: Learning what
to share between loosely related tasks. CoRR, abs/1705.08142.

[368] Rudin, W. (1964). Principles of mathematical analysis. McGraw-hill New York.

128 References

[369] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal representations
by error propagation. In Rumelhart, D. E. and McClelland, J. L., editors, Parallel Distributed
Processing, volume 1, pages 318–362. MIT Press.

[370] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules. In
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages 3859–3869.

[371] Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., and Pantic, M. (2013). A semi-automatic
methodology for facial landmark annotation. In CVPR Workshops, pages 896–903.

[372] Salakhutdinov, R. and Hinton, G. (2009). Deep Boltzmann machines. In Proceedings of the
International Conference on Artificial Intelligence and Statistics, volume 5, pages 448–455.

[373] Salimans, T., Kingma, D. P., and Welling, M. (2015). Markov chain monte carlo and variational
inference: Bridging the gap. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pages 1218–1226.

[374] Sathyanarayana, A., Joty, S., Fernandez-Luque, L., Ofli, F., Srivastava, J., Elmagarmid, A.,
Arora, T., and Taheri, S. (2016). Sleep quality prediction from wearable data using deep learning.
JMIR mHealth and uHealth, 4(4).

[375] Savva, A. D., Economopoulos, T. L., and Matsopoulos, G. K. (2016). Geometry-based vs.
intensity-based medical image registration: A comparative study on 3D CT data. Computers in
Biology and Medicine, 69:120–133.

[376] Schmid, H. (1994). Part-of-speech tagging with neural networks. conference on Computational
linguistics, 12:44–49.

[377] Schmidhuber, J. (1989). A local learning algorithm for dynamic feedforward and recurrent
networks. Connection Science, 1(4):403–412.

[378] Schmidhuber, J. (1992). Learning complex, extended sequences using the principle of history
compression. Neural Computation, 4(2):234–242.

[379] Schmidhuber, J. (2013). My first Deep Learning system of 1991 + Deep Learning timeline
1962-2013. Technical Report arXiv:1312.5548v1 [cs.NE], The Swiss AI Lab IDSIA.

[380] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks,
61:85–117. Published online 2014; based on TR arXiv:1404.7828 [cs.NE].

[381] Scholkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA.

[382] Schuster, M. (1999). On supervised learning from sequential data with applications for speech
recognition. PhD thesis, Daktaro disertacija, Nara Institute of Science and Technology.

[383] Schuster, M. and Paliwal, K. (1997). Bidirectional recurrent neural networks. Trans. Sig. Proc.,
45(11):2673–2681.

[384] Sermanet, P., Kavukcuoglu, K., Chintala, S., and Lecun, Y. (2013). Pedestrian detection
with unsupervised multi-stage feature learning. In Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR ’13, pages 3626–3633, Washington, DC, USA.
IEEE Computer Society.

[385] Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding Machine Learning: From Theory
to Algorithms. Cambridge University Press, New York, NY, USA.

[386] Shen, W., Punyanitya, M., Wang, Z., Gallagher, D., St-Onge, M.-P., Albu, J., Heymsfield, S. B.,
and Heshka, S. (2004). Total body skeletal muscle and adipose tissue volumes: estimation from a
single abdominal cross-sectional image. Journal of applied physiology, 97(6):2333–2338.

References 129

[387] Shen, Y., He, X., Gao, J., Deng, L., and Mesnil, G. (2014). A latent semantic model with
convolutional-pooling structure for information retrieval. In CIKM, pages 101–110. ACM.

[388] Shimodaira, H. (2000). Improving predictive inference under covariate shift by weighting the
log-likelihood function. Journal of Statistical Planning and Inference, 90(2):227–244.

[389] Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., and
Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: Cnn
architectures, dataset characteristics and transfer learning. IEEE Transactions on Medical Imaging,
35(5):1285–1298.

[390] Sietsma, J. and Dow, R. J. (1991). Creating artificial neural networks that generalize. Neural
Networks, 4(1):67 – 79.

[391] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,
Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T. P., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).
Mastering the game of go with deep neural networks and tree search. Nature, 529(7587):484–489.

[392] Simard, P., Le Cun, Y., and Denker, J. (1993). Efficient Pattern Recognition Using a New
Transformation Distance. In Advances in Neural Information Processing Systems, volume 5, pages
50–58.

[393] Simard, P., Victorri, B., Lecun, Y., and Denker, J. (1992). Tangent Prop — a formalism
for specifying selected invariances in an adaptive network. In Moody, J. E., Hanson, S. J., and
Lippmann, R. P., editors, Advances in Neural Information Processing Systems 4, pages 895–903,
San Mateo, CA. Morgan Kaufmann.

[394] Simard, P. Y., Steinkraus, D., and Platt, J. C. (2003). Best practices for convolutional neural
networks applied to visual document analysis. In Proceedings of the Seventh International Conference
on Document Analysis and Recognition - Volume 2, ICDAR ’03, pages 958–, Washington, DC, USA.
IEEE Computer Society.

[395] Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks:
Visualising image classification models and saliency maps. CoRR, abs/1312.6034.

[396] Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556.

[397] Sjoberg, J., Sjoeberg, J., Sjöberg, J., and Ljung, L. (1995). Overtraining, regularization and
searching for a minimum, with application to neural networks. International Journal of Control,
62:1391–1407.

[398] Sleator, D. D. and Temperley, D. (1993). Parsing English with a link grammar. In Proc. Third
International Workshop on Parsing Technologies, pages 277–292.

[399] Smolensky, P. (1986). Parallel distributed processing: Explorations in the microstructure of
cognition, vol. 1. chapter Information Processing in Dynamical Systems: Foundations of Harmony
Theory, pages 194–281. MIT Press, Cambridge, MA, USA.

[400] Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C. D., Ng, A. Y., and Potts, C. (2013).
Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings
of the 2013 Conference on Empirical Methods in Natural Language Processing, pages 1631–1642,
Stroudsburg, PA. Association for Computational Linguistics.

[401] Søgaard, A. and Goldberg, Y. (2016). Deep multi-task learning with low level tasks supervised
at lower layers. In ACL (2). The Association for Computer Linguistics.

[402] Sohn, K., Lee, H., and Yan, X. (2015). Learning structured output representation using deep
conditional generative models. In NIPS 2015, pages 3483–3491.

130 References

[403] Srivastava, N. (2013). Improving Neural Networks with Dropout. Master’s thesis, University of
Toronto, Toronto, Canada.

[404] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout:
A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research,
15:1929–1958.

[405] Srivastava, R. K., Greff, K., and Schmidhuber, J. (2016). Highway Networks.

[406] Starck, J.-L., Murtagh, F., and Fadili, J. (2015). Dictionary Learning, page 263–274. Cambridge
University Press, 2 edition.

[407] Steffens, K.-G. (2007). The history of approximation theory: from Euler to Bernstein. Springer
Science & Business Media.

[408] Steinkrau, D., Simard, P. Y., and Buck, I. (2005). Using gpus for machine learning algorithms.
In Proceedings of the Eighth International Conference on Document Analysis and Recognition,
ICDAR ’05, pages 1115–1119, Washington, DC, USA. IEEE Computer Society.

[409] Stuner, B., Chatelain, C., and Paquet, T. (2016). Cohort of LSTM and lexicon verification for
handwriting recognition with gigantic lexicon. CoRR, abs/1612.07528.

[410] Suddarth, S. C. and Kergosien, Y. L. (1990). Rule-injection hints as a means of improving
network performance and learning time. In Neural Networks, EURASIP workshop 1990, pages
120–129.

[411] Sugiyama, M. (2007). Dimensionality reduction of multimodal labeled data by local fisher
discriminant analysis. J. Mach. Learn. Res., 8:1027–1061.

[412] Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. (2015). Weakly supervised memory
networks. CoRR, abs/1503.08895.

[413] Sun, X. and Cheney, E. W. (1992). The fundamentality of sets of ridge functions. aequationes
mathematicae, 44(2):226–235.

[414] Sutskever, I., Martens, J., Dahl, G., and Hinton, G. (2013). On the importance of initialization
and momentum in deep learning. In ICML, volume 28, pages 1139–1147.

[415] Sutskever, I., Vinyals, O., and Le, Q. V. (2014a). Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural
Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages
3104–3112.

[416] Sutskever, I., Vinyals, O., and Le, Q. V. (2014b). Sequence to sequence learning with neural
networks. In Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’14, pages 3104–3112, Cambridge, MA, USA. MIT Press.

[417] Syed, U. and Yona, G. (2009). Enzyme function prediction with interpretable models. Compu-
tational Systems Biology. Humana press, pages 373–420.

[418] Sze, V., Chen, Y. H., Yang, T. J., and Emer, J. S. (2017). Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329.

[419] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
and Rabinovich, A. (2014). Going Deeper with Convolutions. CoRR, abs/1409.4842.

[420] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E., Anguelov, D., Erhan, D., Vanhoucke,
V., and Rabinovich, A. (2014). Going deeper with convolutions. CoRR, abs/1409.4842.

References 131

[421] Szegedy, C., Toshev, A., and Erhan, D. (2013a). Deep neural networks for object detection. In
Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, NIPS
26, pages 2553–2561.

[422] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R.
(2013b). Intriguing properties of neural networks. CoRR, abs/1312.6199.

[423] Szummer, M. and Qi, Y. (2004). Contextual Recognition of Hand-drawn Diagrams with
Conditional Random Fields. In IWFHR, pages 32–37.

[424] Tang, Y. and Eliasmith, C. (2010). Deep networks for robust visual recognition. In Proceedings
of the 27th International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, pages 1055–1062.

[425] Terlaky, T. (1985). On lp programming. European Journal of Operational Research, 22(1):70–100.

[426] Thrun, S. (1996). Is learning the n-th thing any easier than learning the first? In Advances in
Neural Information Processing Systems, pages 640–646. The MIT Press.

[427] Thrun, S. and Mitchell, T. M. (1995). Learning one more thing. In Proceedings of the Fourteenth
International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada,
August 20-25 1995, 2 Volumes, pages 1217–1225.

[428] Tibshirani, R. (1994). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288.

[429] Tikhonov, A. N. (1963). On solving ill-posed problem and method of regularization. Doklady
Akademii Nauk USSR, 153:501–504.

[430] Tikhonov, A. N. and Arsenin, V. Y. (1977). Solutions of Ill-posed problems. W.H. Winston.

[431] Tsechpenakis, G., Wang, J., Mayer, B., and Metaxas, D. (2007). Coupling CRFs and Deformable
Models for 3D Medical Image Segmentation. In ICCV, pages 1–8.

[432] Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. (2017). Adversarial discriminative domain
adaptation. In CVPR.

[433] Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2017). Deep image prior. arXiv:1711.10925.

[434] Urban, G., Bendszus, M., Hamprecht, F. A., and Kleesiek, J. (2014). Multi-modal brain tumor
segmentation using deep convolutional neural networks. In MICCAI BraTS Challenge Proceedings,
pages 31–35.

[435] Utgoff, P. E. (1986). Machine Learning of Inductive Bias. Kluwer, B.V., Deventer, The
Netherlands, The Netherlands.

[436] Valiant, L. G. (1984). A theory of the learnable. Commun. ACM, 27(11):1134–1142.

[437] van den Oord, A., Dieleman, S., and Schrauwen, B. (2013). Deep content-based music recom-
mendation. In NIPS, pages 2643–2651.

[438] Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications, 16(2):264–280.

[439] Vincent, P., Hugo, L., Bengio, Y., and Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In Proceedings of the 25th international conference on
Machine learning, ICML ’08, pages 1096–1103, New York, NY, USA. ACM.

[440] Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., and Manzagol, P. (2010). Stacked Denoising
Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion.
JMLR, 11:3371–3408.

132 References

[441] Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever, I., and Hinton, G. E. (2015a). Grammar
as a foreign language. In Advances in Neural Information Processing Systems 28: Annual Conference
on Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada,
pages 2773–2781.

[442] Vinyals, O., Toshev, A., Bengio, S., and Erhan, D. (2015b). Show and tell: A neural image
caption generator. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015,
Boston, MA, USA, June 7-12, 2015, pages 3156–3164.

[443] Wager, S., Wang, S., and Liang, P. S. (2013). Dropout training as adaptive regularization.
In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors,
Advances in Neural Information Processing Systems 26, pages 351–359. Curran Associates, Inc.

[444] Wallis, J. and Miller, T. (1991). Three-dimensional display in nuclear medicine and radiology.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 32(3):534–546.

[445] Wallis, J. W. (1992). Cardiovascular Nuclear Medicine and MRI: Quantitation and Clinical
Applications, pages 89–100. Springer Netherlands.

[446] Wallis, J. W., Miller, T. R., Lerner, C. A., and Kleerup, E. C. (1989). Three-dimensional display
in nuclear medicine. IEEE Trans. on Medical Imaging, 8(4):297–230.

[447] Wan, L., Zeiler, M. D., Zhang, S., LeCun, Y., and Fergus, R. (2013). Regularization of neural
networks using dropconnect. In ICML (3), volume 28 of JMLR Proceedings, pages 1058–1066.
JMLR.org.

[448] Wang, C. and Mahadevan, S. (2008). Manifold alignment using procrustes analysis. In Machine
Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008), Helsinki, Finland,
June 5-9, 2008, pages 1120–1127.

[449] Wang, X., Li, L., Lockington, D., Pullar, D., and Jeng, D. (2005). Self-organizing polynomial
neural network for modelling complex hydrological processes. Research Report No R861, Department
of Civil Engineering.

[450] Wang, X. and Wang, Y. (2014). Improving content-based and hybrid music recommendation
using deep learning. In ACM Multimedia, pages 627–636. ACM.

[451] Warde-Farley, D., Goodfellow, I. J., Courville, A. C., and Bengio, Y. (2014). An empirical analysis
of dropout in piecewise linear networks. In International Conference on Learning Representations
(ICLR2014).

[452] Weng, J., Ahuja, N., and Huang, T. S. (1992). Cresceptron: a self-organizing neural network
which grows adaptively. In International Joint Conference on Neural Networks (IJCNN), volume 1,
pages 576–581. IEEE.

[453] Weng, J. J., Ahuja, N., and Huang, T. S. (1997). Learning recognition and segmentation using
the cresceptron. International Journal of Computer Vision, 25(2):109–143.

[454] Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis in the
Behavioral Sciences. PhD thesis, Harvard University.

[455] Werbos, P. J. (1981). Applications of advances in nonlinear sensitivity analysis. In Proceedings
of the 10th IFIP Conference, 31.8 - 4.9, NYC, pages 762–770.

[456] Weston, J., Chopra, S., and Bordes, A. (2014). Memory networks. arXiv preprint
arXiv:1410.3916.

[457] Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised embedding.
In Machine Learning, Proceedings of the Twenty-Fifth International Conference (ICML 2008),
Helsinki, Finland, June 5-9, 2008, pages 1168–1175.

References 133

[458] Weston, J., Ratle, F., Mobahi, H., and Collobert, R. (2012). Deep learning via semi-supervised
embedding. In Montavon, G., Orr, G., and Muller, K.-R., editors, Neural Networks: Tricks of the
Trade. Springer.

[459] Widrow, B. (1960). An Adaptive "ADALINE" Neuron Using Chemical "Memistors". Technical
report, Solid-State Electronics Laboratory, Stanford Electronics Laboratories, Stanford University,
Stanford, California.

[460] Wiesel, D. H. and Hubel, T. N. (1959). Receptive fields of single neurones in the cat’s striate
cortex. J. Physiol., 148:574–591.

[461] Wiesler, S., Richard, A., Schlüter, R., and Ney, H. (2014). Mean-normalized stochastic
gradient for large-scale deep learning. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2014 : 4 - 9 May 2014, Florence, Italy, International Conference on
Acoustics Speech and Signal Processing ICASSP, pages 180–184, Piscataway, NJ. IEEE International
Conference on Acoustics, Speech and Signal Processing, Florence (Italy), 4 May 2014 - 9 May 2014,
IEEE.

[462] Wiesler, S., Schlüter, R., and Ney, H. (2011). A convergence analysis of log-linear training and
its application to speech recognition. In 2011 IEEE Workshop on Automatic Speech Recognition
Understanding, pages 1–6.

[463] Winter, R. and Widrow, B. (1988). Madaline rule ii: a training algorithm for neural networks.
In IEEE 1988 International Conference on Neural Networks, pages 401–408 vol.1.

[464] Wolpert, D. H. (1996). The lack of a priori distinctions between learning algorithms. Neural
Comput., 8(7):1341–1390.

[465] Woodworth, R. S. and Thorndike, E. (1901). The influence of improvement in one mental
function upon the efficiency of other functions.(i). Psychological review, 8(3):247.

[466] Wu, X. and Srihari, R. (2004). Incorporating prior knowledge with weighted margin support
vector machines. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’04, pages 326–333, New York, NY, USA. ACM.

[467] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., and
Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pages 2048–2057.

[468] Xue, G. and Ye, Y. (2000). An efficient algorithm for minimizing a sum of p-norms. SIAM
Journal on Optimization, 10(2):551–579.

[469] Xue, Y., Liao, X., Carin, L., and Krishnapuram, B. (2007). Multi-task learning for classification
with dirichlet process priors. Journal of Machine Learning Research, 8:35–63.

[470] Yang, Y. and Hospedales, T. M. (2016a). Deep multi-task representation learning: A tensor
factorisation approach. CoRR, abs/1605.06391.

[471] Yang, Y. and Hospedales, T. M. (2016b). Trace norm regularised deep multi-task learning.
CoRR, abs/1606.04038.

[472] Yip, C., Dinkel, C., Mahajan, A., Siddique, M., Cook, G., and Goh, V. (2015). Imaging body
composition in cancer patients: visceral obesity, sarcopenia and sarcopenic obesity may impact on
clinical outcome. Insights into Imaging, pages 489–497.

[473] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep
neural networks? In NIPS, pages 3320–3328.

134 References

[474] Yu, A., Palefsky-Smith, R., and Bedi, R. (2016). Deep reinforcement learning for simulated
autonomous vehicle control. Course Project Reports: Winter, pages 1–7.

[475] Yu, T., Jan, T., Simoff, S., and Debenham, J. (2007). Incorporating prior domain knowledge
into inductive machine learning. Unpublished doctoral dissertation Computer Sciences.

[476] Yu, T., Simoff, S., and Jan, T. (2010). VQSVM: A case study for incorporating prior domain
knowledge into inductive machine learning. Neurocomputing, 73(13-15):2614–2623.

[477] Zeiler, M. (2012a). ADADELTA: An Adaptive Learning Rate Method. CoRR, abs/1212.5701.

[478] Zeiler, M. D. (2012b). ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701.

[479] Zeiler, M. D. and Fergus, R. (2013). Stochastic pooling for regularization of deep convolutional
neural networks. In International Conference on Learning Representations (ICLR2013).

[480] Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional networks. In
ECCV (1), volume 8689 of Lecture Notes in Computer Science, pages 818–833. Springer.

[481] Zen, H., Tokuda, K., and Black, A. (2009). Statistical parametric speech synthesis. Speech
Communication, 51(11):1039–1064.

[482] Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding deep
learning requires rethinking generalization. CoRR, abs/1611.03530.

[483] Zhang, J., Shan, S., Kan, M., and Chen, X. (2014a). Coarse-to-Fine Auto-Encoder Networks
(CFAN) for Real-Time Face Alignment. In ECCV, Part II, pages 1–16.

[484] Zhang, K., Zuo, W., Gu, S., and Zhang, L. (2017a). Learning deep CNN denoiser prior for
image restoration. In CVPR, pages 2808–2817. IEEE Computer Society.

[485] Zhang, X., Das, S., Neopane, O., and Kreutz-Delgado, K. (2017b). A design methodology for
efficient implementation of deconvolutional neural networks on an FPGA. CoRR, abs/1705.02583.

[486] Zhang, Y., David, P., and Gong, B. (2017c). Curriculum domain adaptation for semantic
segmentation of urban scenes. CoRR, abs/1707.09465.

[487] Zhang, Y. and Yang, Q. (2017). A survey on multi-task learning. CoRR, abs/1707.08114.

[488] Zhang, Z., Luo, P., Loy, C. C., and Tang, X. (2014b). Facial landmark detection by deep
multi-task learning. In Computer Vision, ECCV 2014, 13th European Conference, pages 94–108.

[489] Zhuang, F., Cheng, X., Luo, P., Pan, S. J., and He, Q. (2015). Supervised representation
learning: Transfer learning with deep autoencoders. In IJCAI, pages 4119–4125. AAAI Press.

Appendix A

Definitions and Technical Details

Due to the space limitation in the introductory chapter of this thesis (chapter 1), and
in order to ease its reading, we decide to provide a separate appendix that covers some
basic definitions in machine learning (Sec.A.1), and some technical details (Sec.A.2)
which are not mandatory in order to go through the rest of the thesis. However, they
cover some important aspects including:

1. bias-variance tradeoff (Sec.A.2.1),

2. feedforward networks (Sec.A.2.2), including (a) backpropagation, derivatives com-
putation, and issues (Sec.A.2.2.1), (b) nonlinear activation functions (Sec.A.2.2.2,
A.2.2.3), (c) universal approximation theorem (Sec.A.2.2.4), (d) and other neural
architectures (Sec.A.2.2.5).

3. and the impact of some regularization approaches on the obtained solution
(Sec.A.2.3) including Lp norm regularization (Sec.A.2.3.1), and early stopping
(Sec.A.2.3.2).

A.1 Machine Learning Definitions
We discuss in this section further details on machine learning (Sec.1.1). We illustrate
its use throughout different applications in real life (Sec.A.1.1), while we provide some
basic definitions (Sec.A.1.2) and different learning scenarios (Sec.A.1.3).

A.1.1 Applications
Machine learning algorithms have been successfully deployed in a variety of applications,
including • Text or document classification, e.g., spam detection; • Natural language
processing, e.g., part-of-speech tagging, statistical parsing, name-entity recognition;
• Speech recognition, speech synthesis, speaker verification; • Computational biology
applications, e.g., protein function or structural prediction; • Computer vision tasks,
e.g., image recognition, face detection; • Fraud detection (credit card, telephone), and
network intrusion; • Games, e.g., chess, backgammon, go; • Unassisted vehicle control
(robots, navigation); • Medical diagnosis; • Recommendation systems, search engines,
information extraction systems.

136 Definitions and Technical Details

This list is by no means comprehensive, and learning algorithms are applied to new
applications every day. Moreover, such applications correspond to a wide variety of
learning problems. Some major classes of learning problems are:

• Classification: Assign a category to each item. For example, document classi-
fication may assign items with categories such as politics, business, sports, or
weather.

• Regression: Predict a real value for each item. Examples of regression include
prediction of stock values or variations of economic variables. In this problem,
the penalty for an incorrect prediction depends on the magnitude of difference
between the true and predicted values.

• Ranking: Order items according to some criterion. Web search, e.g., returning
web pages relevant to a search query, is the canonical ranking example.

• Clustering: Partition items into homogeneous regions. Clustering is often per-
formed to analyze very large data sets. For example, in the context of social
network analysis, clustering algorithms attempt to identify “communities” within
large groups of people.

• Dimensionality reduction or manifold learning: Transform an initial representa-
tion of items into a lower-dimensional representation of the items while preserving
some properties of the initial representation. A common example involves pre-
processing digital images in computer vision tasks.

In the next section, we provide basic definitions and terminology that are used in
machine learning.

A.1.2 Terminology
We use the canonical problem of spam detection as a running example to illustrate some
basic definitions and to describe the use and evaluation of machine learning algorithms
in practice [305]. Spam detection is the problem of learning to automatically classify
email messages as either SPAM or not-SPAM.

• Examples: Items or instances of data used for learning or evaluation. In our
spam problem, these examples correspond to the collection of email messages we
will use for learning and testing.

• Features: The set of attributes, often represented as a vector, associated to an
example. In the case of email messages, some relevant features may include the
length of the message, the name of the sender, various characteristics of the
header, the presence of certain keywords in the body of the message, and so on.

• Labels: Values or categories assigned to examples. In classification problems,
examples are assigned specific categories, for instance, the SPAM and not-SPAM
categories in our binary classification problem. In regression, items are assigned
real-valued labels.

A.1 Machine Learning Definitions 137

• Training samples: Examples used to train a model. In our spam problem, the
training samples consist of a set of email examples along with their associated
labels.

• Validation samples: Examples used to tune the parameters of a model when
working with labeled data. Models typically have one or more free parameters,
and the validation samples are used to select appropriate values for such free
parameters.

• Test samples: Examples used to evaluate the performance of a learned model.
The test samples are separate from the training and validation data and is not
made available in the learning stage. In the spam problem, the test samples
consist of a collection of email examples for which the learned model must predict
labels based on features. These predictions are then compared with the labels of
the test samples to measure the performance of the model.

• Loss function: A function that measures the difference, or loss, between a
predicted label and a true label. Denoting the set of all labels as Y and the set
of possible predictions as Y ′, a loss function ℓ : Y ′ × Y → R+. In most cases,
Y ′ = Y and the loss function is bounded, but these conditions do not always
hold. Common examples of loss functions include the 0-1 (or misclassification)
loss defined over {−1, +1} × {−1, +1} by ℓ(y′, y) = 1y′ ̸=y and the squared loss
defined over I × I by ℓ(y′, y) = (y′ − y)2, where I ⊆ R is typically a bounded
interval.

• Hypothesis set: A set of functions mapping features (feature vectors) to the
set of label Y. In our example, these may be a set of functions mapping email
features to Y = {SPAM , not-SPAM}. More generally, hypotheses may be functions
mapping features to a different set Y ′. They could be linear functions mapping
email feature vector to real numbers interpreted as scores (Y = R), with higher
score values more indicative of SPAM than lower ones.

We now define the learning stages of our spam problem. We start with a given
collection of labeled examples. We first randomly partition the data into training
samples, validation samples, and test samples. The size of each of these samples
depends on a number of different considerations. For example, the amount of data
reserved for validation depends on the number of free parameters of the model. Also,
when labeled samples are relatively small, the amount of training data is often chosen
to be larger than that of test data since the learning performance directly depends on
the number of training samples.

Next, we associate relevant features to the examples. This is a critical step in the
design of machine learning solutions. Useful features can effectively guide the learning
of the model, while poor or uninformative ones can be misleading. Although it is
critical, to a large extent, the choice of the features is left to the user. This choice
reflects the user’s prior knowledge about the learning task which in practice can have
a dramatic effect on the performance results.

Now, we use the features selected to train our model by fixing different values of its
free parameters. For each value of these parameters, the learning algorithm selects a
different hypothesis, i.e., model, out of the hypothesis set. We choose among them the

138 Definitions and Technical Details

model resulting in the best performance on the validation samples. Finally, using that
model, we predict the labels of the examples in the test samples. The performance of
the model is evaluated by using the loss function associated to the task, e.g., the 0-1
loss in our spam detection task, to compare the predicted and true value.

Thus, the performance of a model is of course evaluated based on its test error and
not its error on the training samples. A model may be consistent, that is it may commit
no error on the examples of the training data, and yet have a poor performance on the
test data. This occurs for consistent models defined by very complex decision surfaces,
as illustrated in Fig.A.1, which tend to memorize a relatively small training samples
instead of seeking to generalize well. This highlights the key distinction between
memorization and generalization, which is the fundamental property sought for an
accurate model.

Fig. A.1 The zig-zag line on the left panel is consistent over the blue and red training
samples, but it is a complex separation surface that is not likely to generalize well to
unseen data. In contrast, the decision surface on the right panel is simpler and might
generalize better in spite of its misclassification of few points of the training samples.
(Reference: [305])

In the following, we describe some common learning scenarios.

A.1.3 Learning Scenarios
We briefly describe common machine learning scenarios [305]. These scenarios differ
in the type of training data available to the learner, the order and method by which
training data is received and the test data used to evaluate the model.

• Supervised learning: The learner receives a set of labeled examples as training
data and makes predictions for unseen points. This is the most common scenario
associated with classification, regression, and ranking problems.

• Unsupervised learning: The learner exclusively receives unlabeled training data,
and makes prediction for unseen points. Since in general no labeled example
is available in that setting, it can be difficult to quantitatively evaluate the
performance of a learner. Clustering and dimensionality reduction are example
of unsupervised learning problems.

A.2 Technical Details 139

• Semi-supervised learning: The learner receives some training samples which
consist of both labeled and unlabeled data, and makes predictions for unseen
points. Semi-supervised learning is common in setting where unlabeled data is
easily accessible but labels are expensive to obtain. Various types of problems
arising in applications, including classification, regression, or ranking tasks,
can be framed as instances of semi-supervised learning. The hope is that the
distribution of unlabeled data accessible to the learner can help to achieve a
better performance than in the supervised setting.

• Transductive inference: As in the semi-supervised scenario, the learner receives
labeled training samples along with a set of unlabeled test points. However, the
objective of transductive inference is to predict labels only for these particular
test points. Transductive inference appears to be an easier task and matches
the scenario encountered in a variety of modern applications. However, the
assumptions under which a better performance can be achieved in this setting
are research questions that have not been fully solved.

• Online learning: In contrast with the previous scenarios, the online scenario
involves multiple rounds and training and testing phases are intermixed. At
each round, the learner receives an unlabeled training point, makes a prediction,
receives the true label, and incurs a loss. The objective in the online setting is to
minimize the cumulative loss over all rounds. Unlike the previous settings just
discussed, no distributional assumption is made in online learning.

• Reinforcement learning: The training and the testing phases are also intermixed
in reinforcement learning. To collect information, the learner actively interacts
with the environment and in some cases affects the environment, and receives an
immediate reward for each action. The object of the learner is to maximize its
reward over a course of actions and iterations with the environment. However,
no long-term reward feedback is provided by the environment, and the learner
is faced with the exploration versus exploitation dilemma, since it must choose
between exploring unknown actions to gain more information versus exploiting
the information already collected.

• Active learning: The learner adaptively or interactively collects training examples,
typically by querying an oracle to request labels for new points. The goal in
active learning is to achieve a performance comparable to the standard supervised
learning scenario, but with fewer labeled examples. Active learning is often used
in applications where labels are expensive to obtain, for example computational
biology applications.

In practice, many other intermediate and somewhat more complex learning scenarios
may be encountered.

A.2 Technical Details

A.2.1 Bias-variance Tradeoff
The bias-variance tradeoff is the problem of minimizing two sources of errors that
prevent a model from well generalizing beyond the train data. The first error source is

140 Definitions and Technical Details

named the bias error which comes from erroneous assumption about the complexity
of the model which means this error depends on the performance of the model in
average while considering an infinite number of training samples. In the other hand,
the variance error which comes from the sensitivity of the model to small variations
in the data. This depends on the model capacity to model the random noise (small
perturbations) in the data.

The bias-variance decomposition [141] provides a way to analyze the expected
generalization error of a model. This decomposition gives the generalization error as a
sum of two terms: the bias and the variance.

In order to formalize this decomposition, let us consider a regression problem over
the distribution p(x,y). Dtrain ∼ p(x,y) is a sampled training data. For clearer exposition,
let us take y = y to be a one-dimentional, although the results apply more generally
[141]. E[y|x] denotes as a deterministic function that gives the value y conditioned on
a fixed x. E[y|x] can be seen as the best value y for x. For any function f(x), and
any fixed x, the regression error is [141]

E
[
(y − f(x))2|x

]
= E

[
((y − E[y|x]) + (E[y|x]− f(x)))2|x

]
(A.1)

= E
[
(y − E[y|x])2|x

]
+ (E[y|x]− f(x))2

+ 2E [(y − E[y|x])|x] · (E[y|x]− f(x)) (A.2)
= E

[
(y − E[y|x])2|x

]
+ (E[y|x]− f(x))2

+ 2(E[y|x]− E[y|x]) · (E[y|x]− f(x)) (A.3)
= E

[
(y − E[y|x])2|x

]
+ (E[y|x]− f(x))2 . (A.4)

In other words, among all functions of x, f(x) = E[y|x] is the best predictor of y given
x, in the mean-squared-error.

Now, let us introduce the dependency of f(x) to its training sample Dtrain and let
us note f(x;Dtrain). For clarity, we refer to Dtrain by D. Now, the generalization error
over a new fixed example x and fixed training sample D is computed as follows [141]

E
[
(y − f(x;D))2|x,D

]
= E

[
(y − E[y|x,D])2|x,D

]
+ (f(x;D)− E[y|x])2 . (A.5)

The term E [(y − E[y|x,D])2|x,D] does not depend on the data D, nor on f . It is simply
the variance of y given x. Therefore, only the term (f(x;D)− E[y|x])2 measures the
effectiveness of f to predict y. The mean-squared error of f as an estimator of the best
prediction E[y|x] is given by [141]

E
D

[
(f(x;D)− E[y|x])2

]
, (A.6)

where E
D

is the expectation with respect to the training set, D, that is the average over
all possible sampled training samples D.

A.2 Technical Details 141

The error measured in Eq.A.6 can be further developed for any x as follows [141]

E
D

[
(f(x;D)− E[y|x])2

]
= E

D

[
((f(x;D) + E

D
[f(x;D)]) + (E

D
[f(x;D)]− E[y|x]))2

]

(A.7)

= E
D

[
(f(x;D)− E

D
[f(x;D)])2

]
+ E

D

[
(E
D

[f(x;D)]− E[y|x])2
]

+ 2E
D

[
(f(x;D)− E

D
[f(x;D)]) · (E

D
[f(x;D)]− E[y|x])

]
(A.8)

= E
D

[
(f(x;D)− E

D
[f(x;D)])2

]
+ (E

D
[f(x;D)]− E[y|x])2

+ 2E
D

[
f(x;D)− E

D
[f(x;D)]

]
· (E

D
[f(x;D)]− E[y|x]) (A.9)

= (E
D

[f(x;D)]− E[y|x])2

︸ ︷︷ ︸
Bias

+E
D

[
(f(x;D)− E

D
[f(x;D)])2

]
︸ ︷︷ ︸

Variance

.

(A.10)

From Eq.A.10, one can see that the bias is the mean error of the average models
which are trained over infinite samples. Therefore, this error depends only on the
model capability to model the data, i.e., model complexity. Similarly, the variance
shows the capability of the model to model the variations of the data, again this is
related to the complexity of the model.

As a consequence, models with small capacity will tend to have high bias because
they are enable to fit well the data and low variance because they do not consider the
variation in the data. In the other hand, models with high capacity will have lower
bias because they can fit well the data, but they have high variance because they are
sensitive to changes in the data. Hence, a tradeoff is necessary to select a model with
lower bias and variance. Fig.A.2 shows a typical behavior of model bias and variance
with respect to the model capacity. When the capacity of the model increases, the bias
tends to decrease and the variance to increase yielding an U-shape of the generalization
error. Above the optimum capacity, the model tends to have lower bias and higher
variance. This relation is similar to the relation between the capacity, underfitting and
overfitting.

When applying the regularization over a model that overfits (high capacity), we
attempts to bring it from the overfitting regime toward the optimal regime by reducing
its variance but without introduction significant bias.

142 Definitions and Technical Details

capacity

generalization error

bias

variance

optimal capacity

overfitting
zone

underfitting
zone

Fig. A.2 Typical relationship between model capacity, its bias and variance and the
generalization error. (Reference: [154])

A.2.2 Feedforward Neural Networks
We cover in this section more technical details on neural networks including 1. back-
propagation, derivatives computation, and issues, (Sec.A.2.2.1), 2. nonlinear activation
functions (Sec.A.2.2.2, A.2.2.3), 3. universal approximation theorem (Sec.A.2.2.4),
4. and other neural architectures (Sec.A.2.2.5).

A.2.2.1 Backpropagation, Computing the Derivatives, and Issues

The error minimization using gradient descent [177] in the parameters space of dif-
ferentiable systems has been discussed since the 60s [233, 65, 66]. Steepest descent
in the weights space of such systems can be performed [65, 233, 64] by iterating the
chain rule [260, 263] to dynamic programming [38]. A simplified derivation of this
backpropagation using the chain rule can be found in [112].

Explicit Backpropagation for arbitrary and discrete neural network-like systems
was first described in 1970 in the master thesis of the Finnish mathematician and
computer scientist Seppo Linnainmaa [267, 268] although without referencing neural
networks. He did implement it in FORTRAN. Now, this method is mostly known as
automatic differentiation [171].

In 1974, Paul Werbos was the first to suggest the possibility to use the backpropa-
gation described by Seppo Linnainmaa, after studying it in depth in his thesis [454],
to train neural networks. However, Werbos did not publish his work at the time
probably because of the AI winter until 1981 [455]. Related works were published
later [334, 253, 254]. In 1986, a paper [369] by David Rumelhart, Geoffrey Hinton,
and Ronald Williams made the backpropagation a popular method for training neural
networks with multi-layers where they showed useful internal representations learned
at the hidden layers.

Up to the day of writing this thesis, backpropagation algorithm is the most dominant
approach for training neural networks.

Technical Details

A.2 Technical Details 143

Let us consider a multi-layer perceptron with K layers where ŷk, k = 1, · · · , K is the
output of each layer. ŷ0 = x is the input vector of size 1×D + 1. The following layers
can be computed as

ŷk = ϕk(ŷk−1 ·Wk), ∀k = 1, · · · , K , (A.11)
with ϕ(·) is an activation function, ŷK is the output vector of size 1 ×M . ℓ(·, ·) is
the per-sample loss function (Eq.1.21). If ϕ(·) is differentiable, one can compute the
gradient for each layer ŷk−1 using the gradient of the layer ŷk using the chain rule as
follows [154, 103]

∂ℓ

∂ŷi
k−1

=
M∑

j=1

∂ℓ

∂ŷj
k

· ∂ŷj
k

∂ŷi
k−1

(A.12)

=
M∑

j=1

∂ℓ

∂ŷj
k

· ∂ϕk(zj)
∂zj

∣∣∣∣∣∣
zj=ŷk−1·W j

k

· ∂zj

∂ŷi
k−1

(A.13)

=
M∑

j=1

∂ℓ

∂ŷj
k

· ∂ϕk(zj)
∂zj

∣∣∣∣∣∣
zj=ŷk−1·W j

k

·W ij
k , (A.14)

where W j
k is the vector of weights connecting the layer ŷk−1 with the neuron j at the

layer ŷk. Using Eq.A.14, one can compute the gradient of the previous layer ∂ℓ
∂ŷk−1

using: the gradient of the current layer ∂ℓ
∂ŷk

, the derivative of the activation function
∇zϕk(z), and the layer weights Wk. Therefore, it is possible to compute iteratively
the gradient of all layers from K − 1 to 0 using ∂ℓ

∂ŷK
in Eq.1.25 at the first iteration.

Using the chain rule, one can compute the weights gradients ∂ℓ
∂Wk

as follows [154, 103]

∂ℓ

∂W ij
k

= ∂ℓ

∂ŷj
k

· ∂ŷj
k

∂W ij
k

(A.15)

= ∂ℓ

∂ŷj
k

· ∂ϕk(zj)
∂zj

∣∣∣∣∣∣
zj=ŷk−1·W j

k

· ∂zj

∂W ij
k

(A.16)

= ∂ℓ

∂ŷj
k

· ∂ϕk(zj)
∂zj

∣∣∣∣∣∣
zj=ŷk−1·W j

k

· ŷi
k−1 . (A.17)

Therefore, using Eq.A.17, one can compute the gradients of all weights at each layer
from K to 1 once ∂ℓ

∂ŷk
is available.

The backpropagation algorithm can be divided into three steps: forward, backward
and weight gradient computation.

1. Forward pass: Initialize the input vector ŷ0 to some input samples x. Then,
iteratively compute the following layers ŷk, for k = 1, · · · , K. Fig.1.4 illustrates
the forward pass.

144 Definitions and Technical Details

2. Backward pass: Initialize the gradients estimations ∂ℓ
∂ŷK

using Eq.1.25. Then,
propagate them back through the network layers from K − 1 to 0 to estimate
∂ℓ

∂ŷk
using Eq.A.14. Fig.A.3 illustrates the backward pass.

3. Weight updates: The weights gradients can be obtained in parallel or after
finishing the whole backward pass using ŷk and ∂ℓ

∂ŷk
at each layer (Eq.A.17). The

weights gradients are then used to update the weights using Eq.1.23. Besides
stochastic gradient descent, different methods have been developed to search the
minimum of a loss function, such as AdaGrad [477] which adapts the learning rate
for each weight, Nesterov accelerated gradient descent [313] with a convergence
rate of 1

t2 , LBFGS algorithm [270] which uses second order gradients information.
However, SGD remains the most commonly used method for training neural
networks.

A.2 Technical Details 145

+
1 ∂
ℓ

∂
x

D
0

... ∂
ℓ

∂
x

3

∂
ℓ

∂
x

2

∂
ℓ

∂
x

1

∂
ℓ

∂
z

D
1

1 ... ∂
ℓ

∂
z

21

∂
ℓ

∂
z

11

∂
ℓ

∂
ŷ

D
1

1 ... ∂
ℓ

∂
ŷ

21

∂
ℓ

∂
ŷ

11

W
⊤1

·∇
z

11 ϕ
1 (z

11)

·∇
z

21 ϕ
1 (z

21)

·∇
z

D
1

1
ϕ

1 (z
D

1
1

)

∂
ℓ

∂
ŷ

1
∂

ℓ
∂

x

···

···

···
+

1 ∂
ℓ

∂
ŷ

D
K

−
1

K
−

1

... ∂
ℓ

∂
ŷ

3K
−

1

∂
ℓ

∂
ŷ

2K
−

1

∂
ℓ

∂
ŷ

1K
−

1

∂
ℓ

∂
z

D
K

K ... ∂
ℓ

∂
z

2K

∂
ℓ

∂
z

1K

∂
ℓ

∂
ŷ

D
K

K ... ∂
ℓ

∂
ŷ

2K

∂
ℓ

∂
ŷ

1K

W
⊤K

·∇
z

1K
ϕ

K (z
1K)

·∇
z

2K
ϕ

1 (z
2K)

·∇
z

D
K

K

ϕ
1 (z

D
K

K
)

∂
ℓ

∂
ŷ

K

∂
ℓ

∂
ŷ

K
−

1

ℓ

H
idden

layers

Fig. A.3 The backward pass of the backpropagation algorithm. (Notation: Dk, k =
1, · · · , K is the dimension of the output of the layer k. D0 = D is the dimension of the
input x of the network. DK = M is the dimension of the output ŷ of the network, i.e.
M . xi is the ith component of x. ŷj

k is the jth component of the output representation
ŷk at the layer k)

146 Definitions and Technical Details

Matrix Representation of the Backpropagation

In practice, it is easier to use a matrix representation of the backpropagation for efficient
computation. For this, we consider every single transformation linear or nonlinear as a
single layer. However, for simplicity, we keep the notation K as the total number of
layers. In this case, a layer k can be formalized as a function as follows

ŷk = fk(ŷk−1, Wk) , (A.18)

which transforms the the vector ŷk−1 into the vector ŷk using the weights Wk. Moreover,
the loss function ℓ(·, ·) is considered as the last layer ŷK+1 with dimension 1× 1. For
simplicity, we refer to it as ℓ(x). The forward pass is the composition of all functions
ℓ(x) = fK+1(fK(· · · f1(x) · · ·)) applied to the input vector x.

Let us consider the following notations:

1. The vector of derivatives with respect to layer values

dyk = ∂ℓ

∂ŷk

. (A.19)

2. The backward backpropagation functions, referred to as reverse functions
f̄(dyk, Wk) which computes the vector of derivatives of the previous layer ŷk−1
using the derivatives of the next layer dyk and its parameters Wk. From Eq.A.14,
one can write

dyk−1 = f̄(dyk, Wk) = dyk · Jŷk
(ŷk−1) , (A.20)

where Jŷk
(ŷk−1) is the Jacobian matrix of the derivatives ∂ŷk

∂ŷk−1
. We note that

the first Jacobian JŷK+1(ŷK) = dyK = ∂ℓ
∂ŷK

.

Most of the functions fk are one of the two following types:

• Linear with weights: Therefore, ŷk = ŷk−1 ·Wk ⇒ dyk−1 = dyk ·W ⊤
k .

• Nonlinear without weights: Therefore, ŷk = ϕk(ŷk−1)⇒ dyk−1 = dyk ·Jϕk
(ŷk−1).

Usually, the nonlinear function ϕk(·) is element-wise, therefore, they have a
squared and diagonal Jacobian Jϕk

(ŷk−1).

Now, we introduce the notation of the vector weight gradients

dWk = ∂ℓ

∂Wk

. (A.21)

Then, from Eq.1.24, we can write

dWk = Jŷk
(Wk) · dyk , (A.22)

where Jŷk
(Wk) is the Jacobian matrix of the derivatives with respect to the weights ∂ŷk

∂Wk
.

In this case, only the linear functions with weights are considered. As a consequence,
their Jacobian is equivalent to ŷ⊤

k−1:

dWk = ŷ⊤
k−1 · dyk . (A.23)

A.2 Technical Details 147

The backpropagation diagram using a matrix representation is illustrated in Fig.A.4.

dy0 dy1 dyK−1 dyK

ŷ0 ŷ1 ŷK−1 ŷK

ℓdW1 dWK

f1(·) fK(·)

f̄K(·)f̄1(·)

Fig. A.4 The backpropagation algorithm in a matrix form. (Reference: [103])

Backpropagation Issues

By the end of 1980′s, it seems that the backpropagation by itself was not enough to
train neural networks with many hidden layers, i.e., deep networks. Most applications
focused on neural networks with few hidden layers, i.e., shallow networks. Adding
more hidden layers did not often offer empirical benefits. This practical limitation of
the backpropagation was accepted at the time. Moreover, the idea of using shallow
networks was motivated furthermore by a theorem [242, 191, 208] (Sec.A.2.2.4) that
states that a neural network with one hidden layer with enough units can approximate
any multivariate continuous function with arbitrary accuracy.

The issue raised in training deep neural networks using backpropagation was
fully understood by 1991 where Hochreiter presented in his diploma thesis [204] a
breakthrough work which clarified this issue. Hochreiter’s work formally identified
a major reason of the backpropagation failure to train deep networks. Typically,
deep networks suffer from what is now known as vanishing gradients or exploding
gradients. With standard activation functions such as the sigmoid function, cumulative
backpropagated error signals can either shrink rapidly and vanish, or grow out of
bounds and explode. The former is more likely to happen in feedforward networks
while the later is more known as an issue in recurrent neural networks.

Over the years, several approaches to partially overcome this fundamental deep
learning issue have been proposed and most of them are based on augmenting the
backpropagation using unsupervised learning. First, the model is pre-trained using
unsupervised learning, then fine-tuned using supervised learning. For example, this
technique has been explored in recurrent neural networks [378, 379]. Deep feedforward
networks can be also pre-trained in a layer-wise fashion by stacking auto-encoders
[23, 50, 439]. Similarly, Deep Belief Networks (DBNs) can be pre-trained [201, 199]
by stacking many Restricted Boltzmann Machines (RBMs) [399]. Recurrent neural
networks can benefit from gradient clipping [294, 335, 336] to avoid exploding the
gradients. Activation functions that can saturate may lead quickly to vanishing the
gradients such as the sigmoid or the hyperbolic tangent functions which saturate at
either tail (0 or 1 for the sigmoid and -1 and 1 for the hyperbolic tangent). This
saturation leads local gradients to be almost zero which causes the gradients to vanish.
To avoid this, new activation functions with no saturation regime have been proposed
such as the Rectified Linear Unit (ReLU) [223, 310, 149], Leaky ReLU [277], Parametric

148 Definitions and Technical Details

ReLU [186] and maxout [158] which generalizes the Leaky and the Parametric ReLU
(Sec.A.2.2.2). Hessian-free optimization can help alleviate the problem for feedforward
neural networks [307, 338, 284] and recurrent neural networks [285]. Moreover, today’s
GPUs provide a huge computational power that allows for propagating errors a few
layers further down within reasonable time. This makes implementing deep neural
network easier, accessible, and helps popularizing such models in different domains.

In the next section, we present some types of nonlinear activation functions.

A.2.2.2 Nonlinear Activation Functions

Training neural networks using gradient based methods requires all the activation
functions to be differentiable. For this reason, the Heaviside step function can no
longer be used in such setup. Therefore, its approximation with another differentiable
function which has similar shape is used instead. We mention two most commonly
used approximations of the sigmoid functions which are the logistic function

ϕ(z) = sigm(z) = 1
1 + exp(−z) ⇒ ∀z, sigm(z) ∈ [0, 1], (A.24)

and hyperbolic tangent function

ϕ(z) = tanh(z) = 1− exp(−2z)

1 + exp(−2z) ⇒ ∀z, tanh(z) ∈ [−1, 1] . (A.25)

Both sigmoid and hyperbolic tanget function are related to each other

tanh(z) = 2 sigm(2z)− 1 . (A.26)

Fig.A.5 illustrates both functions.

−10.0 −8.0 −6.0 −4.0 −2.0 2.0 4.0 6.0 8.0 10.0

−1.0

1.0

x

ϕ(x)sigm(x) = 1
1+e−x

tanh(x)

Fig. A.5 Examples of nonlinear activation functions. blue: Logistic sigmoid function.
red: Hyperbolic tangent function

Both activation functions have a convenient gradient ∇zϕ(z) that can be computed
using the function itself. For logistic function it is formulated as

∂ sigm(z)
∂z

= exp(−z)

(1 + exp(−z))2 = sigm(z)(1− sigm(z)) , (A.27)

A.2 Technical Details 149

while for the hyperbolic tangent function, it is formulated as

∂ tanh(z)
∂z

= 4 exp(−2z)

(1 + exp(−2z))2 = 1− tanh2(z) . (A.28)

The activation functions described in this section are mostly used in the hidden units
of a neural network. However, they can still be used at the output layer, depending on
the output target. In Sec.A.2.2.3, we discuss a specific type of activation function for
the output layer.

Sigmoid activation functions are not always the best choice. They raise an issue for
gradient learning methods. Sigmoid functions are sensitive to z only around 0. They
have an inconvenient property by falling into a saturation regime once the magnitude
of z is very high. This saturation drives the gradient to be very close to 0 which either
stops the learning process or makes it very slow.

Designing new activation functions is an active field. Recently, new functions have
been proposed with much care about the saturation issue. For instance, REctified
Linear Unit [223, 310, 149] (Fig.A.6)

ϕ(z) = relu(z) = max(z, 0) = z · 1(z>0) , (A.29)

is much faster in computation and does not have the saturation problem. Moreover, it
allows a faster training [244]. Its derivative is 1 when z is positive, and 0 when it is
negative

∂ relu(z)
∂z

= 1(z>0) . (A.30)

ReLU function is differentiable everywhere except in z = 0. However, this does not
seem to raise issues in practice [244]. This issue is dealt with in implementation where
usually the value 1 is returned as the value of the derivative at 0 [154].

−10.0 −8.0 −6.0 −4.0 −2.0 2.0 4.0 6.0 8.0 10.0

5.0

10.0

x

relu(x)relu(x) = max(0, x)

Fig. A.6 Rectified linear unit function.

Later, more improvements were proposed such as Leaky ReLU [277], parametric
ReLU [186]. Maxout activation function [158] generalizes ReLU function. Instead of
applying an element-wise function, maxout function divides z into k groups of values.
Each maxout unit then outputs the maximum element of the group

maxouti(z) = max
j∈[1,k]

zij . (A.31)

For instance, in the case of convolutional layer, maxout takes the maximum over a
group of feature maps.

150 Definitions and Technical Details

Many other types of activation functions are possible but are less commonly used. It
is impractical to list them all within this thesis. More details on this matter can be
found in [154].

In the next section, we present an activation function for the output layer.

A.2.2.3 Activation Function for Output Units:
Classification Case

The activation function of the output layer is considered separately because they must
be set according to the target nature y. For instance, in the case of regression with
y ∈ [0, 1]M one can consider using the logistic function. In the case y ∈ [−1, 1]M , the
hyperbolic tangent function can be more suitable. In either cases, one can consider a
linear output.

In classification case, things are slightly different. In the case of binary classi-
fication, one can consider one single output unit to model a Bernoulli distribution
ŷ = ŷK = P (y = 1|x). In this case, the logistic function, which has the range [0, 1], is
enough [154]

ŷ = ŷK = sigmK(z) = P (y = 1|x) , such as z = ŷK−1 ·WK . (A.32)

Therefore,

1− ŷK = 1− sigmK(z) = P (y = 0|x) , such as z = ŷK−1 ·WK . (A.33)

These results are valid under the use of the maximum log-likelihood as a cost function
[154].

In the case of M classes, M > 2, we need M output units to predict a vector of
values to model a multinoulli distribution

ŷj
K = P (y = j|x) . (A.34)

In this case, the output vector ŷ must satisfy two conditions in order to form a
probability distribution

∀j ∈ [1, M], ŷj
K ≥ 0,

M∑
j=1

ŷj
K = 1 . (A.35)

The softmax function was designed to fill the two conditions

softmax(z)j = exp(zj)∑M
t=1 exp(zt) , z = ŷK−1 ·WK . (A.36)

To compute the value of one single output unit, the softmax needs to use the value of
all the output units.

When using the maximum log-likelihood, we want to maximize [154]

log P (y = j|x) = log softmax(z)j = zj − log
M∑

t=1
zt . (A.37)

A.2 Technical Details 151

When maximizing the log-likelihood, the first term encourages zj to be pushed up
while the second term encourages all zt to be pushed down. If we consider that exp(zt)

is insignificant for any zt that is noticeably less than max
t

zt, the second term can be
approximated as: log∑M

t=1 zt ≈ max
t

zt. Therefore, the maximum log-likelihood always
strongly penalizes the most active incorrect prediction. If the correct answer has the
strongest activation, then the term log∑M

t=1 exp(zt) ≈ max
t

zt = zj will roughly cancel
the first term zj.

The softmax function has a convenient derivative
∂ softmax(z)i

∂zj

= softmax(z)i × (δij − softmax(z)j) , (A.38)

where δij is the Kronecker delta function. We note that the Jacobian matrix (Eq.A.20)
of the softmax is still squared but no longer diagonal, however it is symmetric.

The cross-entropy or the negative maximum likelihood are the common losses used
for optimization combined with the softmax function [154]

ℓ(f(x), y) = −
M∑

j=1
yj × log f(x)j, f(x)j = softmax(z)j = softmax(ŷj

K ×W :,j
K) .

(A.39)
To simplify the notation, let us set ℓ(z) = ℓ(f(x), y) and ϕ(z) = softmax(z). Therefore,
l(z) = ∑M

j=1 yj × log ϕ(z)j . Now let us compute the derivative of the softmax function
with respect to its input values z:

∂ℓ(z)
∂zj

=
M∑

i=1

∂ℓ(z)
∂ϕ(z)i

× ∂ϕ(z)i

∂zj

(A.40)

=
M∑

i=1

yi

ϕ(z)i

× ϕ(z)i × (δij − ϕ(z)j) (A.41)

=
M∑

i=1
yi × δij − ϕ(z)j ×

M∑
i=1

yi (A.42)

= yi − ϕ(z)i ⇒
∂ℓ(z)

∂z
= y − ϕ(z) . (A.43)

Therefore, the derivative of the softmax function with respect to the input values z
has a simple formulation which simplifies its implementation and improves numerical
stability. In practice, other tricks are actually used even to compute the softmax
function in order to avoid numerical issues.

In the next section, we present a well known theoretical property of neural networks.
We discuss also their depth and its relation to generalization in practice.

A.2.2.4 Universal Approximation Properties and Depth

Neural networks models has acquired the reputation that they lack theoretical founda-
tions. The universal approximation theorem [98, 208, 136] is one of the few theoretical
justifications of the capability of neural networks. For instance in [98], Cybenko demon-

152 Definitions and Technical Details

strated that a feedforward network with a linear output and at least one hidden layer
with any “squashing” activation function such as the logistic function can approximate
any continuous function on a compact subset of [0, 1]m with any desired nonzero error,
provided that the hidden layer has enough units. A geometric way to understand this
result is as follows:

• A continuous function on a compact set can be approximated by a piecewise
constant function.

• A piecewise constant function can be represented as a neural network as follows:
for each region where the function is constant, use a neural network as an indicator
function for that region. Then, build a final layer with a single node, whose
input linear combination is the sum of all the indicators multiplied by a weight
equals to the constant value of the corresponding region in the original piecewise
constant function.

Simply, one can take the continuous function over [0, 1]m, and some target error ϵ > 0,
then grid the space [0, 1]m at a scale ρ > 0 to end up with (1/ρ)m subcubes so that
the function which is constant over each subcube is within ϵ of the target function.
A neural network can not precisely represent an indicator function, but it can get
very close to it. For m = 1, it can be shown that a neural network with one hidden
layer containing two hidden units can build a “bump” function which is constant over
an interval [x0, x1] within the original compact set [0, 1]. The “squashing” function
is important in Cybenko theorem. It must have a known limit when the input goes
to +∞ where the limit is 1 and when the input goes to −∞ the limit is 0. One can
handcraft the neural network parameters in order to fix x0, x1 and in order to build
the indicator function. For instance, this can be done by setting the weights of the
hidden layer to be extremely huge in order to push the input of the activation function
to its limit (0 or 1). Cybenko was aiming at providing a general theorem with minimal
layers. He showed that one hidden layer with enough units is enough to construct an
approximation with ϵ error.

Formally, let ϕ(·) be a non-constant, bounded and monotonically increasing contin-
uous function. Let Im denote the m-dimensional unit hypercube [0, 1]m. The space
of continuous functions on Im is denoted by C(Im). Then, given any ϵ > 0 and any
function f ∈ C(Im), there exists an integer N , real constants vi , bi ∈ R and real vector
wi ∈ Rm, where i = 1, · · · , N such that we may define

F (x) =
N∑

i=1
viϕ(w⊤

i x + bi) , (A.44)

as an approximate realization of the function f where f is independent of ϕ; that is∣∣∣F (x)− f(x)
∣∣∣ < ϵ , ∀x ∈ Im . (A.45)

Cybenko used in his proof the Hahn-Banach theorem [275]. In the same year, Hornik
found the same results [208] using the Stone-Weiestrass theorem [368]. Independently,
Funahashi proved similar theorem [136] using an integral formula presented in [217].

A year later, Hornik showed [209] that feedforward networks with sigmoid units can
approximate not only an unknown function, but also its derivative. Using a theorem

A.2 Technical Details 153

in [413], Light extended [266] Cybenko’s results to any continuous function on Rn.
Moreover, Light showed that the sigmoid function can be replaced by any continuous
function that satisfies some conditions.

Earlier to this, in 1957, Kolmogorov provided a theorem [241] that states that one
can express a continuous multivariate function on a compact set in terms of sums
and compositions of a finite number of single variable functions. The main difference
between Cybenko’s theorem [98] is that Kolmogorov [241] uses heterogeneous activation
functions at the hidden layer whereas Cybenko [98] uses the same activation function.
Kolmogorov formulation can be seen as a composition of different neural networks in
parallel where each one has a specific type of activation function. Due to this aspect of
the theorem, part of the research community [317, 190, 269] suggested that Kolmogorov
[241] theorem provided theoretical support for the universality of neural networks,
while others disagreed [144].

More details on the universal approximation theorem can be found in [183, 96, 9].
[11, 407, 10] cover more studies on approximation theory.

As much as the universal approximation theorem [98, 208, 136] provides a strong
theoretical support for neural networks, it does not provide much insight on its
application. None of the authors of the theorem provides a way to determine how
many hidden neurons are required. Most importantly, they did not provide a learning
algorithm to find the network parameters. In addition, the authors use sigmoid
functions in the hidden units which we know that they are not the best choice as
they cause saturation and prevent learning of the network when using gradient based
methods. Later, the universal approximation theorem has been proved using a wider
class of activation functions which include the rectified linear unit [262].

The universal approximation theorem simply states that independently of what
function we are seeking to learn, there exist a multilayer perceptron with one large
hidden layer that is able to represent this function with certain precision. [25] provides
some bounds on the size of a single layer network needed to approximate a broad
class of functions. In the worst case, an exponential number of hidden units may be
required. Even if we know the exact number of hidden units which is high-likely to
be large, there is no guaranty that the learning algorithm will succeed to learn the
right parameters. One of the reasons of this failure is that most likely the network will
overfit the training set due to the large number of parameters. In addition, the no
free lunch theorem [464] shows that there is no universally superior learning machine.
Therefore, the universal approximation theorem proves that feedforward networks are
an universal system for representing any function in a sense that given a function,
there exists a feedforward network with a one large hidden layer that approximates
this function with certain precision. Nor the size of the hidden layer, nor the training
procedure to find the network parameters are known. Moreover, there is no guaranty
that the network will generalize well to unseen inputs.

Depth of the Network and Generalization

In practice and in many circumstances, it was found that using deeper models can
reduce the need of large number of hidden units to represent the desired function and
can reduce the generalization error. [308] showed that functions representable with a
deep rectifier network can require an exponential number of hidden units with a network
with one hidden layer. More precisely, they showed that piecewise networks which can

154 Definitions and Technical Details

be obtained using rectifier nonlinearities or maxout unit can represent functions with a
number of regions that is exponential in the depth of the network.

Deep models can also be motivated from statistical view [154]. Choosing a deep
model encodes a general belief that the function we want to learn should involve the
composition of several simple functions. This can be interpreted from a representation
point of view as saying that the learning problem consists of discovering a set of
underlying factors of variation that can in turn be described in terms of other simpler
underlying factors of variation. Alternatively, one may interpret using deep models
as computer program that process the data step by step in order to reach the output
decision. The intermediate steps are not necessarily factors of variation but may be seen
as pointers that the network uses to organize its internal process. Empirically, greater
depth seems to result in better generalization for a wide variety of tasks [244, 396]
(Fig.A.7, A.8). However, the need to deep model is merely an empirical fact which
is not supported by any theoretical foundation. Recently, it was shown that shallow
networks can perform as well as deep networks [19].

Fig. A.7 Effect of depth. Empirical results showing that deeper networks generalize
better when used to transcribe multidigit numbers from photographs of addresses.
Image from [155]. (Credit: [154])

Neural network domain has a wide range of architectures that differ mostly de-
pending on the task in hand. In the next section, we describe some of the common
architectures.

A.2.2.5 Other Neural Architectures

Up to now, we have discussed only feedforward networks which are composed of
sequential layers one after the other such as multilayer perceptron and convolutional
neural networks. These models are directed acyclic graphs where the information
streams from a layer to the next one from the input layer toward the output layer
without loops. Sometimes, the information at a layer i can “skip” the layer i + 1 to
reach the layer i + 2 or higher [187, 188, 405]. All our work presented in this thesis is

A.2 Technical Details 155

Fig. A.8 Effect of the number of parameters. Deeper models tend to perform better
compared to less deep models with the same number of parameters. Image from [155].
(Credit: [154])

validated on feedforward neural networks type.

Boltzmann Machines

One can build a neural model by considering an undirected graph, without direct loop
from one neuron to itself such as Boltzmann Machines (BMs) [124, 6, 202]. BMs are
a type of neural models built using stochastic neurons where each neuron is directly
connected to every neuron in the model. They are used to learn arbitrary probability
distributions over binary vectors. The set of neurons (stochastic variables) are usually
divided into two sets to indicate that the input signal is partial observable. A set of
variables indicates the observable part of the signal referred to as visible units while
the hidden part is referred to as hidden units. The joint probability distribution of
all the variables is described using an energy function. The hidden units state can be
inferred given the visible states. Moreover, the visible states can also be inferred given
the hidden states which makes this type of architecture a generative model. BMs can
be simplified by removing the connection between units at the same layer which leads
to what is known as Restricted Boltzmann Machines (RBMs). RBMs can be stacked to
form a deep network which can be used for feature extraction or for discrimination such
as in Deep Belief Networks (DBNs) [198, 195]. Unlike RBMs which contain only one
layer of hidden units, Deep Boltzmann Machines (DBMs) have several layers of hidden
units [372] which have been applied in several tasks including document modeling [403].
Training Boltzmann Machines-like models is known to be difficult [196] which includes
using contrastive divergence [193] or stochastic maximum likelihood algorithms [154].

Recurrent Neural Networks

Most feedforward networks such as MLPs can process only fixed length input. In
many applications, the input is a sequence and the same goes for the output. Instead
of using one MLP per element of the sequence, the MLP is shared across all the

156 Definitions and Technical Details

inputs which is similar to the idea of weight sharing in convolutional networks where
the same filter is applied across the whole 2D image. Moreover, when dealing with
sequence data, it is useful to remember what happened in the past. Therefore, the
MLP needs its previous states as input, hence, a recurrence is made. Recurrent Neural
Networks (RNNs) [369] are a simple MLP duplicated over the input sequence where
they take as input their previous output and the current input in the sequence. In
theory an RNN with sufficient number of hidden units can approximate any measurable
sequence-to-sequence mapping to arbitrary accuracy [180]. For many sequence labeling
tasks, it is beneficial to have access to future as well past context. Bidirectional
Recurrent Neural Networks (BRNNs) [383, 382, 22] offer the possibility to do so and
showed interesting improvements such as in protein secondary structure prediction
[22, 75] and speech processing [382, 130]. Training RNNs is done using a variant of
backpropagation algorithm by taking in consideration the dependencies to compute
the gradient. It is referred to as BackPropagation Through Time (BPTT). When
increasing the size of the input sequence, RNNs trained with BPTT seem to have
difficulties learning long-term dependencies [337]. This problem is mostly due the
vanishing/exploding gradients issue [204, 205, 52]. Many attempts were proposed to
deal with this issue. Among them, we cite the Long Short-Term Memory (LSTM) [206]
architecture which is similar to vanilla RNN but with a crucial addition to help the
network memorizes long-term dependencies. The LSTM models have been found very
successful in many applications, such as unconstrained handwriting recognition [168],
speech recognition [167, 165], handwriting generation [163], machine translation [416],
image captioning [239, 442, 467], and parsing [441]. Variant architectures based on
LSTMs were proposed known as Gated Recurrent Units (GRUs) [80, 84, 85] where the
main difference is how to control the network memory. More work has been done in
order to improve the memory aspect of RNNs to deal with sequence-data by providing
an entire working memory that allows the networks to hold and manipulate the most
relevant information. [456] introduced memory networks that contain memory cells that
can be addressed via an addressing system using a supervised way. [169, 170] introduced
the neural Turing machine which enables learning to read/write arbitrary content in
the memory cells without explicit supervision based on an attention mechanism [20].
This addressing mechanism has become a standard [412, 227, 247]. The attention
mechanism is probably the next big step in recurrent neural networks. Instead of
processing all the input sequence and map it into a fixed length vector, the attention
mechanism allows the use of all the internal states (memory cells) of the network by
taking their weighted combination in order to produce a single output. This can be
interpreted as a memory access in computer. However, in the attention mechanism,
the access is performed to all the memory instead of selected cells. More details on
recurrent neural networks and the last advances can be found in [154, 161].

Generative Models

Neural networks can also be used to generate new samples. For instance, variational
auto-encoders [108, 238, 373] make a strong assumption about the distribution of the
latent variables, for example, assuming a Gaussian distribution. One can sample new
hidden codes from the learned hidden distribution, then, use these new hidden codes
to generate new samples. Generative Adversarial Networks (GANs) [156] are probably
one of the hottest topics in neural networks domain these years. GANs are a class
of algorithms composed of two networks. A generative network that takes random

A.2 Technical Details 157

noise as input and outputs new samples. A discriminative network that attempts to
discriminate between true (real) samples and the samples generated by the generative
network which are considered fake. Using this technique, one can learn to generate
new samples that look real in an unsupervised way. This topic is an ongoing research
subject.

More details on the last advances in neural networks can be found in [154].

A.2.2.6 Experimenting in Deep Learning

Experimenting in science is encouraged which may lead to more understating of the
matter and probably new discoveries. However, heavy experimenting may lead to
waist of effort, resources and more importantly, it may open the door to personal
interpretations which may bias the results and miss-guide the upcoming research.
Unfortunately, deep learning domain is a heavily experimental field where most the
founded results are empirical which makes it weak compared to concurrent methods in
machine learning, despite its practical high performance. There are many unanswered
questions about neural networks and its performance. This makes it difficult to
understand its results and makes it seem as a “magical black box”. Hopefully, neural
network field will get more theoretical support in order to set it on the right and solid
direction.

In the following, we provide some technical details on regularization.

A.2.3 Regularization
We cover in this section, from a theoretical perspective, the impact of using Lp norm
or early stopping, as a regularization, on the parameters of the obtained solution of a
learning algorithm.

A.2.3.1 Lp Parameters Norms

We provide more details on the Lp parameters norm regularization for p ∈ {1, 2}
(Sec.A.2.3.1.2, Sec.A.2.3.1.1). Let us consider the regularized training objective function

J̃(θ; X, y) = J(θ; X, y) + αΩ(θ), Ω(θ) = 1
p
∥θ∥p

p . (A.46)

A.2.3.1.1 L2 Parameters Norm

For L2 parameters norm regularization, we have

Ω(θ) = 1
2∥w∥

2
2 . (A.47)

For the next analysis, no bias parameters are assumed, so θ represents only w. Let
us consider a general form of the objective function

J̃(w; X, y) = α

2 w⊤w + J(w; X, y) , (A.48)

158 Definitions and Technical Details

and its corresponding gradient

∇wJ̃(w; X, y) = αw +∇wJ(w; X, y) . (A.49)

Considering ϵ a learning rate, the update rule of the gradient descent at each step is
performed as follows [154]

w ← w − ϵ(αw +∇wJ(w; X, y)) (A.50)
w ← (1− ϵα)w − ϵ∇wJ(w; X, y) . (A.51)

The last equation (Eq.A.51) shows that the L2 regularization modifies the learning rule
by multiplicatively shrinking the weight by a constant factor on each step just before
performing the updates. In order to get more insights on what happens over the entire
training process, further simplification of the analysis can be made by considering a
quadratic approximation of the objective function around the value of the weights that
obtains minimal unregularized training cost, w∗ = arg minw J(w) as follows [154]

Ĵ(w) = J(w∗) +∇wJ(w∗)⊤(w −w∗) + 1
2(w −w∗)⊤H(w −w∗) (A.52)

Ĵ(w) = J(w∗) + 1
2(w −w∗)⊤H(w −w∗) , (A.53)

where H is the Hessian matrix of J with respect to w evaluated at w∗. By definition,
∇wJ(w∗) = 0 at the minimum w∗. Given that w∗ is a local minimum, H is a positive
semidefinite matrix. In order to find the analytic form of the minimum, the gradient
of Ĵ is computed as follows [154]

∇wĴ(w) = H(w −w∗) , (A.54)

and solve ∇wĴ(w) = 0 for w. To study the effect of the weight decay, its gradient is
added to Eq.A.54. Now, the regularized version of Ĵ can be solved. Let w̃ denotes the
location of the minimum, therefore [154]

αw̃ + H(w̃ −w∗) = 0 (A.55)
(H + αI)w̃ = Hw∗ (A.56)

w̃ = (H + αI)−1Hw∗ . (A.57)

As α approaches 0, the regularized solution w̃ approaches w∗. In order to have an
idea on what happens when α grows, one can proceed using matrix decomposition.
H has an eigen-decomposition using a diagonal matrix Λ and an orthogonal basis of
eigenvectors Q such that

H = QΛQ⊤ . (A.58)

A.2 Technical Details 159

Applying this decomposition to Eq.A.57, the following is obtained [154]

w̃ = (QΛQ⊤ + αI)−1QΛQ⊤w∗ (A.59)

w̃ =
[
Q(Λ + αI)Q⊤

]−1
QΛQ⊤w∗ (A.60)

w̃ = Q(Λ + αI)−1ΛQ⊤w∗ (A.61)
Q⊤w̃︸ ︷︷ ︸

Projection of w̃ in Q⊤

= (Λ + αI)−1Λ︸ ︷︷ ︸
Scaling factor= Λi

Λi+α

Q⊤w∗︸ ︷︷ ︸
Projection of w∗ in Q⊤

. (A.62)

Therefore, one can see that the effect of weight decay is to rescale w∗ along the axes
defined by the eigenvectors Q⊤. The components of w∗ that are aligned with the i-th
eigenvector of H are rescaled by a factor of Λi

Λi+α
. Therefore, in the case where Λi ≫ α,

the effect of the regularization is relatively small. While, in the case where Λi ≪ α, the
components of the parameters will be shrunk to have nearly zero magnitude. As a result,
only directions along which the parameters contribute significantly to reducing the
objective function, determined by eigenvalues with high values, are preserved relatively
intact. In directions that do not contribute much in reducing the objective function, a
small eigenvalue of the Hessian indicates that the movement in this direction will not
significantly increase the gradient. Components of the weight vector corresponding to
such unimportant directions are pushed toward zero. Fig.A.9 illustrates the effect of
L2 norm regularization on the parameters search.

0 w1

w2 Q⊤w2

Q⊤w1

w∗

w∗
R

Small Λ1,
low curvature
large decrease
of a coordinate

Large Λ2,
high curvature
small decrease
of a coordinate

Fig. A.9 Effect of L2 norm regularization: it scales the weights coordinates depending
on the corresponding eigenvalues. (red contours): indicates the L2 cost (L2 norm of
w). (green contours): indicate the unregularized cost J . One contour indicates a set
of parameters w that have the same cost. For instance, all the coordinates (w1, w2)
that belong to the central red circle have the same L2 norm. w = 0 is the optimum
solution for the L2 cost. w = w∗ is the minimal solution of J . w = w∗

R represents the
optimum solution of the regularized cost J̃ (Eq.A.48).(Reference: [103])

160 Definitions and Technical Details

So far we have seen the effect of the weight decay over a general quadratic cost
function. Using the same analysis, one can see its impact on a true quadratic function
such as the linear regression

y = Xw . (A.63)
Its unregularized objective function is defined as

J(w; X, y) = ∥Xw − y∥2
2 , (A.64)

and its regularized objective function is defined as

J̃(w; X, y) = ∥Xw − y∥2
2 + α∥w∥2

2 . (A.65)

The solution for the normal equation Eq.A.64 is given by

w̃ = (X⊤X)−1X⊤y , (A.66)

while the solution for the regularized form is given as

w̃ = (X⊤X + αI)−1X⊤y . (A.67)

The matrix (X⊤X) in Eq.A.66 is proportional to the convariance matrix 1
m

(X⊤X).
L2 norm regularization replaces this matrix by (X⊤X + αI) in Eq.A.67. The new
matrix is similar to the old one but with the addition of a positive constant α to
the diagonal. The diagonal entries in (X⊤X) correspond to the variance of each
input feature. Therefore, L2 norm regularization makes the input look like it has a
high variance. This shrinks the weights on features whose covariance with the output
target is low compared to the added variance. From computation perspective, L2
norm regularization reduces the numerical instability of inverting (X⊤X) by making it
non-singular. More interpretations of the L2 norm regularization can be found in [59].

A.2.3.1.2 L1 Parameters Norm

L1 parameters norm regularization is formulated as follows

Ω(θ) = ∥w∥1 =
∑

i

|wi| . (A.68)

While we present the L1 norm regularization, we highlight the differences between
L1 and L2 forms of regularization by considering a linear regression problem. L1
weight decay controls the strength of the norm penalty by scaling Ω using a positive
hyperparameter α as in L2 norm regularization. Thus, the regularized objective function
is given by

J̃(w; X, y) = α∥w∥1 + J(w; X, y) , (A.69)
with the corresponding gradient

∇wJ̃(w; X, y) = αsign(w) +∇wJ(w; X, y) , (A.70)

where sign(w) is the sign of w applied element-wise. Comparing L1 (Eq.A.70) and
L2 (Eq.A.49), one can see that the L1 regularization contribution is no longer scales

A.2 Technical Details 161

linearly with each weight wi as in L2; instead it is a constant factor with a sign equal
to the sign of the parameter wi.

Now, let us consider approximating the objective function around the minimum
w∗ = arg minw J(w) by Ĵ using Taylor expansion. In this case, the gradient of Ĵ is
computed as [154]

∇wĴ(w) = H(w −w∗) , (A.71)
where H is the Hessian matrix of J with respect to w evaluated at w∗. However, this
time further simplification are made by assuming that the Hessian is diagonal

H = diag([H1,1, · · · , Hn,n]), ∀i : Hi,i > 0 . (A.72)

This assumption holds if the data for the linear regression problem has been preprocessed
to remove all correlation between the input features. Now, the quadratic approximation
of the L1 regularized objective function can be written as [154]

Ĵ(w; X, y) = J(w∗; X, y) +
∑

i

[1
2Hi,i(wi − w∗

i)2 + α|wi|
]

. (A.73)

Eq.A.73 has an analytic solution for each dimension wi under the following form
[154]

wi = sign(w∗
i) max

{
|w∗

i | −
α

Hi,i

, 0
}

. (A.74)

When w∗
i > 0, there are two possible outcomes:

1. w∗
i ≤ α

Hi,i
: The optimal value of wi is simply wi = 0. This occurs when the

contribution of the L1 regularization penalty takes over the objective function
J(w; X, y).

2. w∗
i > α

Hi,i
: In this case, the regularization does not set the optimal value of wi to

zero but instead shift it in the direction of zero by α
Hi,i

.

In the case where w∗
i < 0, the L1 penalty makes wi less negative by a distance α

Hi,i
or

set it to zero.

Comparing to L2, L1 regularization results in a solution where most of the parame-
ters are zero, i.e., a sparse solution. The sparsity behavior in L1 is different than the
one in L2 where the parameters are pushed toward zero in some cases. Eq.A.61 gives
the solution w̃ for L2 regularization. If the same assumption, used in the case of L1,
is considered about the Hessian matrix, one can find that w̃i = Hi,i

Hi,i+α
w∗

i . Therefore,
if w∗

i is nonzero, w̃i remains nonzero. This shows that L2 does not promote sparse
solutions, while L1 regularization may set a subset of the parameters to zero for large
enough α. Fig.A.10 illustrates the geometric effect introduced by the L1 regularization
on the parameters search. This sparsity aspect plays an important role in machine
learning particularly as a feature selection mechanism. Feature selection simplifies
machine learning by choosing which subset of input features are relevant to predict the
output target. This has a key role in application where the interpretation is highly
important. For instance, when building a model to predict a disease based on set of

162 Definitions and Technical Details

input features, it is important to know which factors are implicated in the cause of
the disease. The sparsity has been used for a long time, for instance, the well known
LASSO [428] (Least Absolute Shrinkage and Selection Operator) model integrates an
L1 penalty with a linear model. More details on the L1 regularization and sparsity can
be found in [184].

0 w1

w2

w∗

w∗
R

Smaller α,
further from the origin
no coordinates are 0

Larger α,
closer to the origin
some coordinates are 0

Fig. A.10 Effect of L1 norm regularization: Large α makes some parameters equal to
0. (red contours): indicate the L1 cost (L1 norm of w). (green contours): indicate
the unregularized cost J . w = w∗ is the minimal solution of J . w = w∗

R represent
the optimum solutions of the regularized cost J̃ (Eq.A.69). In this example, L1
regularization allows two solutions w∗

R depending on the value of α. Small α results
in a solution a little far from the origin. However, large α provides a sparse solution
where w1 = 0. (Reference: [103])

A.2.3.2 Early Stopping as a Regularization

We have mentioned in Sec.1.3.2.1 that early stopping can play a role of a regularizer.
Formal demonstration is provided in this section.

Let us consider a network with weights initialized from a distribution with zero
mean. We will see formally how early stopping can be a regularizer. Many authors
[55, 397] argued that early stopping has the effect of restricting the optimization
procedure to a relatively small volume of parameter space in the neighborhood of the
initial parameter θ0 (Fig.A.11). More specifically, consider taking τ optimization steps
and with a learning rate ϵ. One can view ϵτ as the effective capacity. Restricting the
number of iteration and the learning rate limits the volume of the parameter space
reachable from θ0. In this case, ϵτ behaves as if it was the reciprocal of the coefficient
used for weight decay.

To compare early stopping with the classical L2 regularization, let us consider a
setting where parameters are linear weights θ = w. One can approximate the objective
function J with a quadratic form in the neighborhood of the empirically optimal value

A.2 Technical Details 163

of the weights w∗ [154]

Ĵ(w) = J(w∗) + 1
2(w −w∗)⊤H(w −w∗) , (A.75)

where H is the Hessian matrix of J with respect to w evaluated at w∗. This makes
H positive semidefinite. The gradient of the Ĵ is

∇wĴ(w) = H(w −w∗) . (A.76)

Now, let us study the trajectory followed by the parameter vector during training. For
simplicity, the initial parameters are set to the origin, w(0) = 0. Then, the gradient
descent updates are performed as follows [154]

w(τ) = w(τ−1) − ϵ∇wĴ(w(τ−1) (A.77)
= w(τ−1) − ϵH(w(τ−1) −w∗) (A.78)

w(τ) −w∗ = (I − ϵH)(w(τ−1) −w∗) . (A.79)

Now, using the eigendecomposition of H : H = QΛQ⊤, where Λ is a diagonal matrix
and Q is an orthonormal basis of eigenvectors, it results [154]

w(τ) −w∗ = (I − ϵQΛQ⊤)(w(τ−1) −w∗) (A.80)
Q(w(τ) −w∗) = (I − ϵΛ)Q⊤(w(τ−1) −w∗) . (A.81)

Assuming that ϵ is chosen to be small enough to grantee |1− ϵλi| < 1, it can be shown
[55, 154] that the parameter trajectory during training after τ parameter updates has
the following form

Q⊤w(τ) = [I − (I − ϵΛ)τ] Q⊤w∗ . (A.82)
Eq.A.61 can be rearranged as

Q⊤w̃ =
[
I − (Λ + αI)−1α

]
Q⊤w∗ . (A.83)

Comparing Eq.A.82 and Eq.A.83, one can see that if ϵ, α and τ are chosen such that
[55, 154]

(I − ϵΛ)τ = (Λ + αI)−1α , (A.84)
then L2 regularization and early stopping can be seen as equivalent (under the quadratic
approximation and the previous stated assumptions). Going further, by approximating
both sides of Eq.A.84, one can conclude that if all λi are small, then [55, 154]

τ ≈ 1
ϵα

, (A.85)

α ≈ 1
τϵ

. (A.86)

Thus, under these assumptions, the number of training iterations τ plays a role inversely
proportional to the L2 regularization parameter, and the inverse of τϵ plays the role
of the weight decay. Therefore, the parameter corresponding to the directions of

164 Definitions and Technical Details

significant curvature of the objective function are regularized less than directions of
less curvature. In the context of early stopping, this means that parameters that
correspond to directions of significant curvature tend to learn early relatively to
parameters corresponding to directions of less curvature. This is actually very intuitive.
Parameters that correspond to high curvature tend to learn faster, which means, that
in a short time, they have already learned something. While given the same amount of
time, parameters that correspond to low curvature will tend to learn slowly. Therefore,
early stopping mimics L2 regularization by repressing parameters corresponding to low
curvature and preventing parameter corresponding to high curvature to significantly
grow. One can note that early stopping has the advantage to be determined through
one run of the training process while L2 regularization requires many runs with different
values.

0 w1

w2

w∗

w̃

Fig. A.11 An illustration of the effect of early stopping. (green contours): indicate the
contours the unregularized cost J (no early stopping). (red dashed contours): indicate
the contours of the L2 cost, which cause the minimum of the total cost to lie nearer
the origin rather the minimum of the unregularized cost. (gray dotted path): indicates
the trajectory taken by the SGD starting from the origin. Rather than stopping at
the optimum point w∗ that minimizes the cost, early stopping results in the trajectory
stopping at an earlier point w̃. (Credit: [55, 154])

	Summary
	Résumé
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	General Introduction
	1 Background
	1.1 Machine Learning
	1.1.1 Learning from Data
	1.1.2 Statistical Learning and Generalization: PAC Learning
	1.1.3 Empirical Risk Minimization with Inductive Bias
	1.1.4 Summary

	1.2 Introduction to Feedforward Neural Networks
	1.2.1 Early History
	1.2.2 Perceptron
	1.2.3 Gradient Based Learning
	1.2.4 Multilayer Perceptron and Representation Learning
	1.2.5 Deep Learning: from Late 60s to Today
	1.2.6 Summary

	1.3 Improving Neural Networks Generalization
	1.3.1 Explicit Regularization: Explicit Complexity Reduction
	1.3.2 Implicit Regularization
	1.3.3 Summary

	1.4 Conclusion

	2 Deep Neural Networks Regularization for Structured Output Prediction
	2.1 Prologue
	2.2 Introduction
	2.3 Related Work
	2.3.1 Graphical Models Approaches
	2.3.2 Deep Neural Networks Approaches

	2.4 Multi-task Training Framework for Structured Output Prediction
	2.5 Implementation
	2.6 Experiments
	2.6.1 Datasets
	2.6.2 Metrics
	2.6.3 General training setup

	2.7 Conclusion

	3 Neural Networks Regularization Through Class-wise Invariant Representation Learning
	3.1 Prologue
	3.2 Introduction
	3.3 Related Work
	3.4 Proposed Method
	3.4.1 Model Decomposition
	3.4.2 General Training Framework
	3.4.3 Implementation and Optimization Details

	3.5 Experiments
	3.5.1 Classification Problems and Experimental Methodology
	3.5.2 Results
	3.5.3 On Learning Invariance within Neural Networks

	3.6 Conclusion

	4 Application: Spotting L3 Slice in CT Scans using Deep Convolutional Network and Transfer Learning
	4.1 Prologue
	4.2 Introduction
	4.3 Related Work
	4.4 Proposed Approach
	4.4.1 MIP Transformation
	4.4.2 Learning the TL-CNN
	4.4.3 Decision Process using a Sliding Window over the MIP Images

	4.5 Experimental Protocol
	4.5.1 CT Exams Database Description
	4.5.2 Datasets Preparation
	4.5.3 Neural Networks Models

	4.6 Results
	4.6.1 Data View: Frontal Vs. Lateral
	4.6.2 Detection Performance
	4.6.3 Processing Time Issues
	4.6.4 Comparison with Radiologists

	4.7 Conclusion

	General Conclusion and Perspectives
	References
	Appendix A Definitions and Technical Details
	A.1 Machine Learning Definitions
	A.1.1 Applications
	A.1.2 Terminology
	A.1.3 Learning Scenarios

	A.2 Technical Details
	A.2.1 Bias-variance Tradeoff
	A.2.2 Feedforward Neural Networks
	A.2.3 Regularization

