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Abstract 

Cement production is responsible for a significant portion of manmade CO2 
emissions. This motivates the development of cementitious binders with a lower 
carbon footprint. Considering the emissions in a longer perspective, the durability 
of concrete structures is absolutely essential. Most degradation of concrete 
structures is closely related to both moisture transport and ion transport. Many 
studies have investigated these areas under saturated conditions. Owing to varying 
exposure conditions and self-desiccation, most concrete structures undergo large 
variations in moisture state during their service life. The coupling between ionic 
transport and moisture transport in cementitious materials under partially saturated 
conditions is still poorly understood. This project aimed to contribute to the 
knowledge in this area. 

Service life models can be used to predict the performance of the material over time, 
but fundamental understanding of the underlying physical and chemical relations is 
critical for the development of accurate models. In this project, these physical 
relations of unsaturated ion transport were studied experimentally. The moisture 
dependency of ionic diffusion and ionic convection was investigated in two studies. 
The experimental investigations were performed on mortars with two water to 
binder ratios (0.38 and 0.53) and with four binders (OPC, 95% OPC + 5% silica 
fume, 60% OPC + 40% GGBFS, and 30% OPC + 70% GGBFS).  

In the diffusion study, resistivity measurements and the Nernst-Einstein equation 
were used to evaluate the moisture dependency of the chloride diffusion coefficient, 
i.e., DCl(RH) and DCl(S). Desorption isotherms were determined using a gravimetric 
box method, and the conductivity of pore solutions was evaluated in two different 
ways. First, a simplified method was used. The limitation of this method is that it 
can only assess the pore solution composition for the OPC mortars. Second, a 
thermodynamic modeling tool, GEMS, was used to assess the pore solution 
composition and the chloride diffusion coefficient for all mortars. It was found that 
DCl(S) is independent of w/b, but the relation differs between binders, and for the 
individual binders, there seems to be a relation between DCl(RH) and the desorption 
isotherm. 
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Convective ion transport is more complicated to study because it is difficult to 
decouple ionic transport from moisture transport. For cementitious materials, it is 
difficult, or maybe impossible, to design an experimental setup where the ionic 
species are affected by convective transport only. Cementitious materials are by 
definition reacting with water, and therefore, there will be interactions between the 
solid phases and the pore solution, especially under non-saturated conditions.  

Wick action experiments in combination with measurements of material properties 
were chosen for the investigation of convective ion transport. Chloride profiles and 
moisture profiles were evaluated with microXRF and 1H NMR relaxometry, 
respectively. The measured profiles were discussed in relation to the moisture 
dependent material properties, such as chloride diffusion coefficients, moisture 
diffusion coefficients, chloride binding capacities, and desorption isotherms. It was 
concluded that there is a large variation in moisture dependency of the moisture 
diffusion coefficient, and that the variation cannot be related to the desorption 
isotherms. It was also shown that the composition of the binder is the key factor 
affecting the chloride penetration depth. The measured material properties are 
important parameters for prediction of chloride ingress and all are strongly affected 
by the binder composition.  

 

Keywords: Cement, Mortar, Concrete, Ion transport, Moisture transport, Water 
vapor sorption, Supplementary cementitious materials, Silica fume, Ground 
granulated blast furnace slag. 
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Sammanfattning 

Cementproduktion står idag för en ansenlig andel av världens koldioxidutsläpp, 
vilket driver utvecklingen av bindemedel med lägre koldioxidutsläpp. För utsläppen 
i ett längre perspektiv är dock de nya bindemedlens beständighet absolut avgörande. 
De flesta nedbrytningsmekanismer är direkt relaterade till både fukt- och 
jontransport. Dessa processer har undersökts i många studier, men huvudsakligen 
under fuktmättade förhållanden. På grund av varierande exponeringsförhållande och 
självuttorkning varierar dock fuktförhållandena i en betongkonstruktion mycket 
under dess livslängd och det saknas kunskap om relationen mellan jontransport och 
fukttransport under omättade förhållanden. Målet med detta projekt var att bidra 
med ny kunskap inom detta område. 

Livslängdsmodeller kan användas för att prognostisera vad som händer i material 
över tid, men för att modellerna ska kunna ge tillförlitliga prognoser krävs 
grundläggande förståelse för de underliggande fysikaliska och kemiska relationerna 
i materialet. I detta projekt undersöktes dessa fysikaliska relationer experimentellt. 
Projektet är uppdelat i två studier där fuktberoendet hos jondiffusion respektive 
jonkonvektion undersöktes. Experimenten gjordes med bruk med två 
vattenbindemedelstal (0. 38 och 0.53) och med fyra bindemedel (OPC, 95% OPC + 
5% kiselstoft, 60% OPC + 40% GGBFS, och 30% OPC + 70% GGBFS). 

I diffusionsstudien användes resistivitetsmätningar och Nernst-Einsteins ekvation 
för att utvärdera fuktberoendet hos kloriddiffusionskoefficienten, d.v.s. DCl(RH) och 
DCl(S). Desorptionsisotermer mättes med en gravimetrisk boxmetod och 
konduktiviteten hos porlösningen bestämdes med två olika metoder. Först användes 
en förenklad metod för bestämning av porlösningens sammansättning. 
Begränsningen med denna metod är att den bara möjliggör bestämning av 
porläsningens sammansättning för bruk med OPC som bindemedel. Därför 
användes sedan även ett termodynamiskt modelleringsprogram, GEMS, för att 
bestämma porlösningens sammansättning och kloriddiffusionskoefficienten för alla 
bruk. Resultaten visade att DCl(S) är oberoende av vattenbindemedelstalt, men att 
detta beroende varierar mellan de studerade bindemedlen. Resultaten visade även 
att det verkar finnas en relation mellan DCl(RH) och desorptionsisotermen för de 
olika bindemedlen.  
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Konvektiv jontransport är mer komplicerat att studera eftersom det är svårt att 
särskilja jontransport och fukttransport. För cementbaserade material är det svårt, 
och kanske omöjligt, att designa ett experiment där jontransporten endast påverkas 
av den konvektiva fukttransporten. Cementbaserade material är per definition 
material som reagerar med vatten. Därför kommer det alltid att ske ett utbyte mellan 
porlösning och de fasta faserna, speciellt under icke mättade förhållanden. 

För att studera konvektiv jontransport gjordes wick action experiment. Efter wick 
action exponering mättes kloridprofiler och fuktprofiler med mikroXRF respektive 
1H NMR relaxometri. De uppmätta profilerna diskuterades i relation till 
fuktberoende materialegenskaper, såsom kloriddiffusionskoefficienter, fukt-
diffusionskoefficienter, kloridbindningskapacitet och desorptionsisotermer. 
Fuktdiffusionskoefficienter mättes parallellt i denna studie. Dessa resultat visade att 
det finns stora variationer i fuktberoendet mellan de olika bindemedlen och att dessa 
variationer inte kan kopplas till desorptionsisotermerna. I studien visades även att 
bindemedlet sammansättning är den egenskap som tydligast påverkar 
inträngningsdjupet av klorid. De uppmätta materialegenskaperna är dock alla 
viktiga parametrar för prognostisering av kloridinträngning och alla dessa 
materialegenskaper påverkas av bindemedelssammansättningen.  

 

Nyckelord: Cement, Bruk, Betong, Jontransport, Fukttransport, Sorptionsisoterm, 
Tillsatsmaterial, Kiselstoft, Masugnsslagg.  
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Résumé 

La production de ciment est responsable d'une part importante des émissions de CO2 
générées par les activités humaines, ce qui pousse au développement de liants 
cimentaires ayant une empreinte carbone plus faible. Pour les émissions dans une 
perspective plus longue, la durabilité des structures en béton est absolument 
essentielle. La plupart des dégradations des structures en béton sont étroitement 
liées au transport d'humidité et au transport d'ions. De nombreuses recherches ont 
été faites dans ce domaine dans des conditions saturées. En raison des conditions 
d'exposition variables et de l'auto-dessiccation, la plupart des structures en béton 
subissent d'importantes variations de degré de saturation pendant leur vie. Le 
couplage entre le transport ionique et le transport d'humidité dans des matériaux 
cimentaires dans des conditions partiellement saturées est encore mal compris. Ce 
projet visait à mieux comprendre les phénomènes dans ce domaine. 

Les modèles de durée de vie peuvent être utilisés pour prédire les performances du 
matériau au cours du temps, mais la compréhension des relations physiques et 
chimiques impliquées est essentielle pour le développement de modèles précis. 
Dans ce projet, les relations physiques de transport d'ions en conditions insaturées 
ont été étudiées expérimentalement. La dépendance de la diffusion ionique et de la 
convection ionique evec l'humidité a été étudiée dans deux cas. Les études 
expérimentales ont été réalisées sur des mortiers avec deux rapports eau / liant (0,38 
et 0,53) et avec quatre liants (OPC, 95% OPC + 5% de fumée de silice, 60% OPC 
+ 40% de laitier et 30% OPC + 70% de laitier). 

Dans l'étude de la diffusion, des mesures de résistivité et l'équation de Nernst-
Einstein ont été utilisées pour évaluer la dépendance à l'humidité du 
coefficient de diffusion des chlorures, c'est-à-dire DCl(HR) et DCl(S). Les 
isothermes de désorption ont été déterminées par une méthode 
gravimétrique, et la conductivité des solutions interstitielles a été évaluée de 
deux manières différentes. Tout d'abord une méthode simplifiée a été utilisée. 
La limitation avec cette méthode est qu'elle permet seulement de déterminer 
la composition de la solution interstitielle pour les mortiers de CEM I. 
Ensuite, un outil de modélisation thermodynamique, GEMS, a été utilisé 
pour déterminer la composition de la solution interstitielle et le coefficient 
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de diffusion des chlorures de tous les mortiers. Il a été observé que DCl(S) 
était indépendant de w/b, mais que la relation obtenue différait selon les 
liants. De plus, pour chaque liant, il semble y avoir une relation entre DCl(HR) 
et l'isotherme de désorption. 

Le transport ionique par convection est plus compliqué à étudier étant donné qu'il 
est difficile de découpler le transport ionique du transport d'humidité. Pour les 
matériaux cimentaires, il est difficile, voire impossible, de concevoir un montage 
expérimental où les espèces ioniques sont uniquement affectées par le transport par 
convection. Les matériaux cimentaires réagissent par définition avec l'eau et il y 
aura par conséquent interaction entre les phases solides et la solution interstitielle, 
en particulier dans des conditions non saturées. 

Des essais en "wick action", combinés avec la mesure des propriétés du matériau, 
ont été choisis pour l'étude du transport ionique convectif. Les profils de 
concentration en chlorures et les profils de teneur en eau ont été déterminés par 
microfluorescence X et relaxométrie RMN 1H, respectivement. Les profils mesurés 
ont été discutés en relation avec les propriétés du matériau dépendant de l'humidité, 
tels que le coefficient de diffusion des chlorures, le coefficient de diffusion 
hydrique, la capacité de fixation des chlorures et l'isotherme de désorption. Il a été 
conclu que le coefficient de diffusion hydrique variait largement avec l'humidité, et 
que cette large variation ne pouvait pas être attribuée aux isothermes de désorption. 
Il a également été montré que la composition du liant était le facteur clé affectant la 
profondeur de pénétration des chlorures. Les propriétés des matériaux mesurées sont 
des paramètres importants pour la prédiction de la pénétration des chlorures et sont 
toutes fortement influencées par la composition du liant.  

 

Mots-clés: Ciment, Mortier, Béton, Transport ionique, Transport d'humidité, 
Sorption de vapeur d'eau, Additions minérales, Fumée de silice, Laitier de haut 
fourneau granulé moulu. 
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Nomenclature 

Symbols 

DCl(RH) Chloride diffusion coefficient in bulk material  
as a function of relative humidity (m2/s) 

DCl(S) Chloride diffusion coefficient in bulk material  
as a function of degree of saturation (m2/s) 

Di  Diffusion coefficient of ion i in bulk material (m2/s) 

D0i  Diffusion coefficient of ion i in pore solution (m2/s) 

Dtot Total moisture transport coefficient,  
with vapor content as driving potential (m2/s) 

Dv Moisture diffusion coefficient,  
with vapor content as driving potential (m2/s) 

w Moisture content by volume (kg/m3) 

S Degree of saturation  (-) 

 Conductivity of bulk material (S/m) 

0 Conductivity of pore solution (S/m) 
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Abbreviations 

C-S-H Calcium silicate hydrate 

C3S Tricalcium silicate (alite) 

C2S Dicalcium silicate (belite) 

C3A Tricalcium aluminate (aluminate) 

C4AF Cacium ferro aluminate (ferrite) 

CH Calcium hydroxide (portlandite) 

C/S Calcium to silica ratio 

1H NMR 1H neutron magnetic resonance 

IGP Intraglobular pore 

K2O  Potassium oxide 

LGP Large gel pores 

microXRF Micro X-ray fluorescence 

Na2O  Sodium oxide  

OPC Ordinary Portland cement 

RH Relative humidity 

SCMs Supplementary cementitious materials 
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SEM-EDS Scanning electron microscope  
with energy-dispersive X-ray spectroscopy 

SF Silica fume 

SGP Small gel pores 

slag Ground granulated blast furnace slag (GGBFS) 

w/b Water to binder ratio 
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1 Introduction 

In this chapter, a general background and motivation for this research project is 
provided. The investigated research questions and how they are addressed in the 
appended publications are outlined. The most important limitations are also stated. 

1.1 Background 

Durability of concrete structures is of major importance to society, and most 
degradation of concrete structures is closely related to the transport of moisture and 
ions, inside or outside of the material. Chloride ingress, sulfate attack, alkali silica 
reactions, carbonation, and leaching are all related to ion transport. Ion transport is 
strongly dependent on the moisture content of the material, and all concrete 
structures undergo a variation in moisture distribution over time owing to self-
desiccation from hydration and the surrounding climatic conditions. These 
variations cause ion and moisture movements within the material and in many cases, 
degradation of the material [1]. Service life models are often used to predict the 
performance of the material over time, and important input data to these models are 
the ion and moisture transport properties of the material [2]. 

The transport properties are related to the microstructure of the material, which is 
formed during the hydration of cementitious binders. The composition of the binder 
strongly affects the resulting hydration products and their structure [3, 4]. The 
production of ordinary Portland cement (OPC) is responsible for a considerable 
portion of manmade CO2 emissions. This motivates the development of new binders 
with lower environmental impact. One way of reducing the environmental impact 
is through partial substitution of OPC with supplementary cementitious materials 
(SCMs) [5-7]. 

There is a lack of knowledge on transport properties in blended systems, and the 
need for more experimental data on the effect of SCMs and water to binder ratio 
(w/b) on unsaturated transport was recently pointed out in a review [8]. To enable 
the use of service life models for prediction of durability of concrete structures with 
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new cementitious binders, there is a need for better understanding of the coupling 
between microstructural properties and durability [6]. An increased understanding 
of the moisture dependency of ion transport is a key factor.  

1.2 Aim and research questions  

The aim of the present research project is to experimentally investigate ion transport 
in cementitious materials in unsaturated conditions. The investigation is focused on 
the effect of w/b ratio and the addition of SCMs. The SCMs investigated in this 
project are ground granulated blast furnace slag (slag) and silica fume (SF). The 
investigation is summarized by the following research questions: 

1. Can resistivity measurements be used for the assessment of the moisture 
dependency of ionic diffusion coefficients? 

Papers I, II, and III 

2. How is ionic diffusion related to the moisture content of the materials? 

Papers I, II, and III 

3. Can moisture transport be related to any other microstructural property of 
the material? 

Paper IV 

4. How is moisture sorption changed with age? 

Paper IV 

5. What are the key factors affecting the simultaneous moisture and ion 
transport during wick action experiments? 

Paper V 

6. What relations can be established between the material properties and 
measured ion and moisture profiles during wick action exposure? 

Paper V 
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1.3 Limitations 

Unsaturated ion transport in cementitious materials is a broad research topic, and 
several major aspects were not included in this project as follows: 

 

• Modeling: This is an experimental project and modeling or development of 
models is not included. 
 

• At unsaturated conditions, the chemical composition of the pore solution 
will change and the water activity in the pore system will decrease. The 
possible effects of this decrease in water activity on the stability of hydrates 
are not discussed. 
 

• Binding of ions to the charged pore walls and in solid phases is another 
factor affecting ion transport. The effect of the unsaturated pore system on 
the binding properties is not investigated. 
 

• Ion transport is by definition the transport of charged species. The system 
tries to maintain electroneutrality, and therefore, there will be 
electrochemical aspects that affect the ion transport. The fact that the pore 
system has charged pore walls will also affect transport, possibly to a larger 
extent, at low relative humidity (RH). These aspects are not investigated. 
 

• The effect of an unsaturated pore system on gas transport. 
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2 The porous nature of cementitious 
materials 

In this chapter, the hydration of the most common cementitious materials, OPC with 
SCMs, is briefly described. The description focuses on the aspects of hydration that 
are most relevant for this project. These are further discussed in the appended 
publications. The formation of the pore structure is generally described in 
Section 2.2, and the motivation for the materials used in this project is given in 
Section 2.3. 

2.1 Hydration of OPC and SCM reactions 

Concrete is the most widely used construction material in the world. It contains 
aggregates, water, a cementitious binder, and admixtures. Historically and currently, 
OPC is the major constituent in cementitious binders [5]. The main minerals in OPC 
clinker are tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate 
(C3A), and calcium ferro aluminate (C4AF). However, there are several other minor 
elements incorporated in clinker minerals, which affect the structure causing deviation 
from that of the pure mineral. To highlight the differences compared to pure minerals, 
clinker minerals are often referred to as alite (C3S), belite (C2S), aluminate (C3A), and 
ferrite (C4AF). The proportions between the major elements in OPC can be observed 
in the ternary diagram of CaO-SiO2-Al2O3 in Figure 2.1 A). 

Currently, a portion of OPC is often substituted by other materials, commonly 
referred to as SCMs. SCMs are added to the binder for various reasons, and one of 
the major reasons at present is their lower emission of carbon dioxide (CO2). They 
also affect the workability and durability, and often lower the cost for the producer. 
SCMs that are commonly used in cementitious materials are industrial byproducts, 
such as slag, fly ash (FA), and SF. Natural materials such as metakaolin and natural 
pozzolans can also be used. The important properties of SCMs are that they are 
reactive and a significant portion of the material is calcium, silicon, or aluminum 
oxides. These elements are favorable owing to their high mobility on solution and 
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the fact that they are available in large amounts in the earth’s crust. The most 
common compositions of the main SCMs are shown in Figure 2.1 A). As can be 
observed, SCMs generally contain less calcium and more silicon and/or aluminum 
than OPC. 

 

 
Figure 2.1 Ternary diagram of CaO-SiO2-Al2O3 for cementitious materials.  
A) Composition of anhydrous OPC and the most common SCMs.  
B) Composition of the most common hydrates in cementitious materials with 
the composition of the original anhydrous materials in A) shaded underneath. 
The figure is adopted from [4]. 
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The chemical and mineralogical compositions of the raw materials used in this 
project are provided in Papers I–V. 

The solid structure in cementitious materials is formed from reactions between the 
cementitious binder and water, i.e., hydration of the minerals in the binder. During 
this process, water is consumed, hydrates are precipitated, and the porous structure 
of the material is formed. The hydration of OPC has been widely investigated; 
however, it is a series of complex reactions, which is still not fully understood [3, 9, 
10]. For the investigations in this project, the dissolution of alkalis is important as 
alkalis are the main cations in pore solution at later ages. Alkalis, mainly sodium 
and potassium, are present in OPC as minor elements incorporated in the clinker 
minerals and as highly soluble sulfate salts. The sulfate salts are dissolved rapidly 
during contact with water. The sodium oxide (Na2O) and potassium oxide (K2O) in 
the clinker minerals are dissolved at a slower rate during the dissolution of the 
clinker minerals. 

Several hydrates are formed during the hydration of OPC. The main hydration phase 
is calcium silicate hydrate (C-S-H). The porous structure in cementitious materials 
is closely related to the structure of C-S-H and its space-filling properties. A key 
factor affecting the space-filling properties of the hydrates is the mobility of the ions 
in solution. Calcium and silicon have high mobility and therefore better ability to 
form hydrates and fill spaces in between the original grains. By contrast, iron and 
magnesium have lower mobility, and therefore, their hydrates tend to precipitate 
close to or within the original grain. The most common hydrates in cementitious 
binders and their chemical composition are shown in Figure 2.1 B). 

For the investigations in this project, the formation of calcium hydroxide (CH), often 
referred to by its mineral name, portlandite, is important as well. The reactivity of 
the SCMs is strongly related to the pH, and a high pH of the pore solution is required 
for the reactions to start. The high pH of the pore solution is maintained by the 
portlandite buffering the pore solution with hydroxide ions (OH-). The dissolved 
calcium ions (Ca2+) are also consumed when more C-S-H is formed during the 
hydration of SCMs. When a large portion of the OPC is substituted by SCMs, all 
portlandite is consumed and the pH of the pore solution is decreased. The possible 
degree of substitution varies between different SCMs owing to their different 
chemical and mineralogical compositions. 

In OPC systems, the clinker minerals have different reactivities and are dissolved 
during different phases of the hydration process. Because the SCM reactions are 
dependent on the hydration products from the OPC, i.e., the portlandite, the SCM 
reactions are initiated later than the clinker reactions. Several researchers have 
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investigated these reactions. It is a complicated series of reactions that are sensitive 
to several factors such as temperature, pH, water activity, presence of minor 
elements, and available space, and the kinetics of the reactions are still not fully 
understood. Currently, the SCM reactions are generally believed to start after 
approximately the first day or so. Moreover, before this, the SCMs affect the clinker 
reactions owing to their filler effect, i.e., providing more sites for nucleation of C-
S-H [11, 12]. 

The C-S-H formed from OPC and SCMs has different properties. The chemical 
composition of C-S-H can differ on both the amount of incorporated water and the 
calcium to silica ratio (C/S). Alumina can also substitute for silica in C-S-H. Many 
SCMs have a higher alumina content than OPC, which yields higher incorporation 
of Al in the C-S-H. The structure of the C-S-H formed is related to the C/S. 
Generally, C-S-H has a nanocrystalline structure in the short range, but is 
amorphous at larger scales. C-S-H formed from OPC has a C/S close to two and a 
fibrillar structure of C-S-H forms. When SCMs are added to the system, the C/S 
decreases and the structure of C-S-H becomes more foil-like [13]. 

The relation between the microstructural properties such as C/S, morphology, and 
amount of C-S-H to moisture and ion transport properties are discussed in Paper III 
and Paper IV. The composition of pore solutions is used for the analysis in Paper I, 
Paper II, and Paper III. In Paper I and Paper II, an analytical method was used to 
assess the composition of the pore solution, and in Paper III, the composition of the 
pore solution is determined through thermodynamic modeling. 

2.2 Pore structure and moisture sorption 

The pore structure of cementitious materials is of major importance for durability, 
as this is the structure where the transport of moisture and ions occurs. Initially, the 
pore structure consists of the volume filled with the mixing water and the air voids 
formed during mixing and compaction. The air voids are in the size range of 
centimeters to millimeters and, generally, these remain filled with air during the 
hydration process. When hydration starts, the minerals in the binders are dissolved 
in the mixing water, and the solid phases, i.e., the hydrates, precipitate. During this 
process, pores of different sizes are formed within the C-S-H gel and in between the 
hydrates. The pore structure is increasingly refined, and the capillary pores decrease 
in volume and size. The total volume of the hydration products is smaller than the 
volume of the mixing water and the binder; this reduction is commonly referred to 
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as chemical shrinkage. Owing to this difference in volume, parts of the pore system 
are emptied.  

Theoretically, the evolution of the pore structure continues until the system reaches its 
chemical equilibrium. However, the precipitated hydrates are sensitive to the 
composition of the surrounding pore solution and most concrete structures undergo a 
variation in moisture and ion distribution over time. Therefore, in reality, the pore 
structure of the material changes with time. This topic is further discussed in Paper IV. 

As stated above, the main space-filling hydration product is C-S-H. Therefore, the 
structure of C-S-H is important for the overall pore structure of the material. The C-
S-H in cementitious materials does not have a fixed mineral structure. The C/S and 
the amount of incorporated water vary depending on the composition of the pore 
solution. The C-S-H has a layered structure and is often compared to an imperfect 
version of the natural minerals tobermorite and jennite, or their combination. 

The pore structure of C-S-H has been discussed by several authors and different 
models have been suggested [14-20]. The latest research suggests a colloidal model 
as illustrated in Figure 2.2 A). It is based on units of layers of C-S-H that are 
structured together in globules. The moisture in between the layers of C-S-H is 
referred to as interlayer water, and the pores in the globules are referred to as 
intraglobular pores (IGP). These pores are smaller than 1 nm in pore radius. The 
globules are packed together in globule flocs. Pores are formed in between the 
globules in the globule floc. These pores are called gel pores and are divided into 
two groups based on their size. Small gel pores (SGP) are pores smaller than 3 nm 
in pore radius, and large gel pores (LGP) have a radius in the range of 3–12 nm. It 
was recently suggested by Muller et al. [19] that LGP are not the characteristic of 
the C-S-H structure because their volumes decrease with the growth of C-S-H, as 
illustrated in Figure 2.2 B). They suggest that these pores are formed between the 
hydrates, i.e., interhydrate pores. 
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A) 

 

B) 

 
Figure 2.2 A) Illustration of the structure of C-S-H based on Jennings model CM-
II. The figure is adopted from [21] based on [18].  
B) Suggestion of a refinement of the CM-II model by Muller [22] and Muller et al. 
[19]. Solid lines represent the layers of C-S-H, red squares are interlayer water, 
and green triangles are gel water. The upper part of the figure shows an early pore 
structure, and the bottom part shows the same structure at late age when more 
layers of C-S-H are formed in the large gel pores. 
 

Parts of the originally water filled volume are not filled with hydration products. 
The pores in between the hydrates that are larger in size than the interhydrate pores 
are called capillary pores [19, 20]. It should be noted that the definition of gel pores 
and capillary pores currently deviates from the early definition by Powers and 
Brownyard [14]. In their work, the gel water was defined as the water in the system 
that is affected by the absorbing forces on the pore walls, and capillary water is 
considered as “free water,” i.e., not structured or constrained by the charged pore 
walls [23]. 

The volume of capillary pores in a cementitious system is related to the w/b and the 
ability of the binder to fill the initial water volume with hydration products. This 
ability, often referred to as space-filling ability, varies between binders [12]. The 
observed differences between binders are not fully understood; however, they are 
clearly related to both the volume of the precipitated hydrates and the mobility of 
ions in the system. Currently, there is also reasonable agreement that a lack of space 
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is an important factor affecting the growing hydrates, and this is the main factor that 
limits the growth of C-S-H at later ages [10]. 

The amount of moisture in a material at a specified RH is shown by the sorption 
isotherm of the material. When a cementitious material is in equilibrium at 100% 
RH, the air voids formed during mixing and compaction are still filled with air. It 
should be noted, however, that when the material is in equilibrium at 100% RH, the 
RH within the material is lower than 100% RH owing to the high ionic strength in 
the pore solution. The air voids can be water filled through vacuum saturation, or if 
that material is submerged in water for a long time, i.e., when there is enough time 
for the air in the pores to be transported by the water-filled pore system through 
diffusion. The other parts of the pore system are water filled when the material is in 
equilibrium at 100% RH. When the RH is decreased, the pore system is gradually 
emptied. The large capillary pores are emptied first, followed by the interhydrate 
pores, gel pores, and IGP. However, the emptied pores will also contain some 
moisture as capillary condensate and adsorbate on the pore wall. In this way, the 
pore structure remains interconnected, even though the volume that is no longer 
water filled will change the transport through the pore structure. Several material 
properties can be derived from the sorption isotherm, e.g., pore size distribution and 
inner surface. 

It can be noted that the use of the term “capillary” is somewhat confusing. On one 
hand, the term is used to describe the largest pores in the pore system, i.e., “capillary 
pores” that are larger in size than LGP with a size of up to approximately 12 nm. 
On the other hand, the term “capillary condensate” is used to describe the nature of 
the moisture fixation in the pore structure. Moisture fixation in cementitious 
materials results from two processes: adsorption and capillary condensation. Up to 
an RH of approximately 45%, moisture fixation occurs through adsorption. Above 
this RH, the moisture fixation is a combination of adsorption and capillary 
condensation. The limit of approximately 45% RH refers to the Kelvin equation and 
the smallest pore radius where the water molecules are believed to be able to form 
a meniscus in the pore system, i.e., form a “capillary condensate.” The capillary 
condensation according to the Kelvin equation occurs in the range of approximately 
45% to 100% RH, and the material contains capillary condensate in this range [14]. 
However, the definition of “capillary pores” as larger than approximately 12 nm is 
not related to the pore radius given by the Kelvin equation. These pores are 
gradually emptied from 100% to approximately 90% RH. At lower RH values, these 
pores only contain moisture as adsorbate on the pore surfaces, but there is still 
capillary condensate in the smaller pores, i.e., the LGP or interhydrate pores. 
Because of the different definitions, it can be more confusing when terms such 
“capillary moisture” or “capillary water” are used. 



34 

Depending on the geometry of the pore structure in a material, the sorption 
isotherm will differ between absorption and desorption. The phenomenon is 
referred to as hysteresis and is important for the understanding of RH and moisture 
content in cementitious materials [21]. This topic is not investigated in detail in 
this project. Here, all investigations are performed on water-cured samples and the 
material is regarded to be on the first desorption isotherm. Owing to the self-
desiccation of cementitious materials, this is not perfectly true, especially for 
materials with low w/b. 

In Paper IV, desorption isotherms at two ages, namely 8 months and 4 years, are 
presented. The evolution of the pore structure between these ages is discussed. The 
desorption isotherms are also discussed in relation to moisture transport properties 
and other microstructural properties as mentioned in Section 2.1. 

2.3 Choice of materials for this project 

The experiments in this project were performed on mortars. Siliceous sand materials 
according to EN 196-1 with sizes of 0–2 mm were used as aggregates. Four binders, 
which were mixed to two w/b, were used. The binders used were OPC, and three 
binary binders with SF (5% by mass) or slag (40% and 70% by mass). These were 
mixed to 0.38 and 0.53 w/b. Further details are given in Papers I–V. 

As stated above, transport in concrete occurs in the pore structure of the paste, but 
the aggregates still affect transport. This effect has been investigated by several 
researchers and it has potentially several origins, e.g., the effect of the interface 
between the aggregates and the paste (interfacial transition zone), the filler effect of 
the inert particles on hydration, and the fact that the solid grains act as obstacles to 
transport. However, the size of aggregates also affects the feasibility of using 
experimental techniques, e.g., the size of the largest aggregates determines what 
sample size is suitable in cup tests. These are the reasons that mortars were used, 
i.e., to include the effects of aggregates and at the same time avoiding the largest 
fraction of aggregates and smaller samples and shorter exposure times in some of 
the experiments. 

The binders were chosen based on those commonly used in civil engineering 
structures, except for the blend with 70% slag, which is more of an extreme than 
common choice. Slag was favored compared to FA owing to its better homogeneity 
over time in chemical and mineralogical composition. Differences in chemical and 
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mineralogical composition affect hydration and the development of the pore 
structure, and therefore, complicate comparisons between different studies. 

The 0.38 and 0.53 w/b were chosen as one low and commonly used w/b, where the 
reactions are limited, yielding a low degree of hydration. The higher w/b was chosen 
to be slightly above what is commonly used in civil engineering structures. The aim 
was to investigate materials with more initial pore volume, and systems where a 
significantly higher degree of hydration is expected. It should be noted that the w/b 
was calculated on equivalent volume ratio, i.e., the volume of binder in relation to 
the volume of water is equal for all binders. Owing to the differences in density of 
the raw materials, the w/b differs slightly between binders. The aim of this concept 
is to enable comparison of the binders’ ability to fill the initial capillary pore 
volume, i.e., the volume of the mixing water. 
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3 Transport in cementitious materials 

In this chapter, transport in cementitious materials is discussed. The discussions and 
the whole project focus on transport when the pore system is unsaturated, i.e., 
partially filled with water. 

As stated earlier, moisture is closely related to the degradation of concrete 
structures, because the water in pore systems is the solvent for the ionic species. 
Generally, ion transport in cementitious materials is described by two major 
transport mechanisms: diffusive ion transport and convective ion transport. 
Diffusive ion transport is the transport of ions due to differences in ionic 
concentration. In a case with pure diffusive ion transport, the material has no 
moisture gradient and no moisture transport occurs. In this case, there are 
differences in ionic concentration within the moisture phase, which cause the 
diffusive ion transport. Convective ion transport is the transport of ions with 
moisture transport. In a case with pure convective ion transport, the material has no 
differences in ionic concentration within the moisture phase, and ions are only 
transported due to a moisture gradient causing moisture transport. 

However, in cementitious materials, diffusive ion transport and convective ion 
transport can rarely or never be separated in an unsaturated pore system in reality. 
When the ionic concentrations change due to diffusion, the water activity changes, 
which induces moisture transport. Convective ion transport causes concentration 
gradients, which induce ionic diffusion. To complicate things further, the interaction 
between the solid phases and the pore solution has a major impact on transport and 
needs to be considered in cementitious materials. 

These phenomena have been investigated in this project. In Paper I, Paper II, and 
Paper III, diffusive ion transport and its moisture dependency is discussed, and in 
Paper IV, the moisture dependency of pure moisture transport is discussed. In these 
papers, the measured transport properties are discussed in relation to microstructural 
properties, as outlined in Chapter 2. In Paper V, chloride and moisture profiles after 
wick action exposure are presented. These profiles are discussed in relation to the 
transport properties and sorption isotherms presented in Paper III and Paper IV. 
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3.1 Moisture transport 

Moisture transport in cementitious materials occurs in the pore structure formed 
during the hydration of the cementitious binder. Microcracks and cracks due to loads 
or restraints also affect transport [24]. These effects are considered to have minor 
influence on the experimental setups used in this project and are therefore not further 
investigated or discussed. 

Moisture transport in cementitious materials is generally described by two major 
physical transport mechanisms: water vapor diffusion and liquid water flow. 
Diffusion is transport due to variations in concentration between different parts of 
the material, or between the material and the surrounding atmosphere. Diffusion can 
be described with water vapor content as the transport potential (see Eq. 1). 

  , (1) 

where qv (kg·m-2·s-1) is the moisture flux in vapor phase, Dv (m2·s-1) is the moisture 
diffusion coefficient, v (kg·m-3) is the vapor content, and x (m) is the distance. The 
liquid water flow through materials is due to differences in pore water pressure and 
is described by Darcy’s law as given in Eq. 2 [25]. 

  , (2) 

where ql (kg·m-2·s-1) is the liquid moisture flux, kP (kg·m-1) is the permeability,  
(Pa·s) is the dynamic viscosity, Pw (Pa) is the pore water pressure, and x (m) is the 
distance.  

The total moisture transport, qtot, is the combination of diffusive and liquid moisture 
transport as given in Eq. 3. 

    (3) 
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Here, qtot (kg·m-2·s-1) is the total moisture flux, Dtot (m2·s-1) is the total moisture 
transport coefficient, v (kg·m-3) is the vapor content, and x (m) is the distance.  

In reality, however, it is not possible to separate water vapor diffusion and liquid 
moisture transport in cementitious materials. Owing to the complex pore structure 
with pores in a large range of sizes, transport will occur as a series of different 
transport mechanisms. To estimate the moisture dependency of moisture transport 
in cementitious materials, experimental methods are used. These methods are based 
on measurements of the total moisture transport and cannot distinguish between 
water vapor diffusion and liquid flow [26]. This disables the analysis of the 
contribution of each type of moisture transport on ionic transport.  

The fine pore structure in cementitious materials yields a large specific surface area. 
Therefore, these materials may have a substantial volume of moisture in the 
adsorbate covering the surfaces of the pore structure. For other porous materials 
such as amorphous silica and porous glass, moisture transport as surface diffusion 
can occur in the adsorbed moisture on the pore walls [27, 28]. In a later study on 
cementitious materials [29], it is stated that surface diffusion is of minor importance. 
One argument for this statement is that the charged pore walls attract the water 
molecules, which limit their mobility and decrease transport. However, in materials 
such as dense cementitious materials with a fine pore structure, surface diffusion 
could be the main transport mechanism. A recent study by Jacobsen et al. [30] 
investigates the mobility of water in C-S-H. They concluded that the changed 
structure of C-S-H in systems with SCMs (sugar cane ash in this case), affects the 
mobility of water close to the surface. The results show that the interaction between 
water and pore wall is stronger in systems with SCMs, yielding a decreased 
transport.  

The connection between pores of different sizes is of major importance to transport. 
This effect is often discussed in terms of connectivity between the pores, or 
tortuosity of the pore structure. The tortuosity of the pore structure can be described 
as a factor that relates the distance in macro scale to the real distance for a molecule 
to go through the pore structure. The relation between moisture transport and 
desorption isotherms, amount of C-S-H, C/S, and morphology of C-S-H is discussed 
in Paper IV. In this study, a climate box method and a dynamic sorption balance 
were used to assess desorption isotherms at 8 months and 4 years, respectively. Cup 
tests were used to assess Dtot(RH). The results from the cup tests were evaluated as 
the fundamental potential, which was then used for the evaluation of Dtot(RH). Some 
of the major results in Paper IV are shown in Figure 3.1. In this study, it is concluded 
that there is a significant difference in moisture dependency of Dtot, as observed in 
Figure 3.1 A). 



40 

A) B) 

C) D) 

Figure 3.1 Results presented in Paper IV [31].  
A) Moisture dependency of moisture diffusion coefficients, Dtot.  
B) Moisture diffusion coefficients in A), but with a changed y-axis to show the 
moisture transport at low Dtot.  
C) Desorption isotherms at 8 months.  
D) Desorption isotherms at 4 years. 
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The results in Figure 3.1 A) and B) show that three mortars have a clear moisture 
dependency, whereas the others do not. The results in Figure 3.1 B) show that below 
70% RH, the w/b is more dominant for moisture transport than the type of binder. 
By comparing the results in Figure 3.1 A) with C) and D), it can be observed that 
the moisture content is of the same order of magnitude for all mortars based on the 
large differences in Dtot. No relation between moisture content and moisture 
transport could be identified.  

The results in Figure 3.1 C) and D) also show that the pore structure is refined from 
8 months to 4 years for all mortars. The refinement is most pronounced for the 
mortars with slag. This conclusion is important because cementitious materials are 
commonly regarded as mature at the age of approximately 8 months. However, in 
the perspective of moisture sorption, the results in Figure 3.1 C) and D) show that a 
significant evolution of the pore structure occurs at a later age. The conclusions 
drawn from a specific experiment may therefore be completely different depending 
on the age of the material. Further details on the experimental setups and evaluation 
are given in the paper. 

3.2 Ion transport 

3.2.1 Ionic Diffusion 

Diffusion is one of the physical transport mechanisms for ionic transport in 
cementitious materials. Diffusion is the transport of ions due to differences in ionic 
concentration between different positions in the material. The concentration 
gradient induces differences in chemical potential, and ions are transported from a 
higher to lower concentration. Similarly, as for moisture diffusion, ionic diffusion 
is conventionally described by Fick’s first law as given in Eq. 4. 

  , (4) 

where qi (kg·m-2·s-1) is the flux of ion i in the bulk material, Di (m2·s-1) is the ionic 
diffusion coefficient of ion i, Ci (kg·m-3) is the ionic concentration of ion i in the 
pore solution, and x (m) is the distance [32]. Ionic diffusion is by definition the 
transport of charged species and the electrochemical effects are not considered using 
Fick’s law. However, for accurate prediction of ionic diffusion in multi-species 
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systems such as the pore solution in cementitious systems, the electrochemical 
effects need to be considered. For prediction of diffusive transport of several ions, 
the Nernst-Planck equation can be used [33]. 

For prediction of ionic diffusion, the diffusion coefficient of all ionic species in the 
solution needs to be assessed. Chloride is a hazardous agent for concrete structures 
because the chloride ions are well known to initiate reinforcement corrosion. Several 
standardized test methods are used to measure the chloride diffusion coefficient, 
DCl, for cementitious materials in saturated conditions. The evaluated diffusion 
coefficients are related to the test method and are not necessarily comparable [34]. 

There is no generally accepted method to measure the chloride diffusion coefficient 
in partially saturated conditions, and different approaches have been used to 
investigate this mechanism. This topic is further discussed in Paper I, Paper II, and 
Paper III. In these papers, resistivity measurements and the Nernst-Einstein equation 
are used to evaluate the moisture dependency of the chloride diffusion coefficient, 
DCl(RH) or DCl(S). The Nernst-Einstein equation relates the conductivity of bulk 
material to the ionic diffusion coefficient. The Nernst-Einstein equation is given in 
Eq. 5. 

   (5) 

Here,  (S/m) is the bulk material conductivity, 0 (S/m) is the pore solution 
conductivity, Di (m2/s) is the calculated diffusion coefficient for ion i in the bulk 
material, and D0i (m2/s) is the diffusion coefficient of ion i in pore solution. 

To be able to use the Nernst-Einstein equation, the pore solution conductivity is 
required. The chemical composition of the pore solution can be used to calculate the 
conductivity of the pore solution. In Paper I and Paper II, a simplified method was 
used to calculate the pore solution composition for OPC mortars and the Nernst-
Einstein equation was then used to calculate the moisture dependency of the chloride 
diffusion coefficients, DCl(RH) and DCl(S). In Paper III, a thermodynamic modeling 
program, GEMS, was used to enable the calculation of pore solution composition 
for all mortars. The calculated conductivity of pore solutions used in Paper III is 
shown in Figure 3.2. As can be expected, the conductivity increases with decreasing 
moisture content. However, owing to the interaction between the pore solution and 
solid phases, the increase in conductivity is not linearly proportional to the decrease 
in moisture content. 
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Figure 3.2 Calculated conductivity of pore solutions presented in Paper III [35].  
 

The main results presented in Paper III are shown in Figure 3.3, Figure 3.4, and 
Figure 3.5. The differences between Figure 3.3 A) and B) highlight the need for 
considering the conductivity of the pore solution when resistivity measurements are 
used to assess the transport properties in cementitious materials. 
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A) B) 

Figure 3.3 Results presented in Paper III [35].  
A) Measured conductivity of the bulk material, (RH).  
B) Calculated chloride diffusion coefficient, DCl(RH). 
 

 

 
Figure 3.4 Results presented in Paper III [35]. Relative chloride diffusion 
coefficient related to the degree of saturation of material. 
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Figure 3.5 Results presented in Paper III [35]. Calculated chloride diffusion 
coefficients and desorption isotherms for OPC mortars. 
 

Figure 3.4 shows the chloride diffusion coefficients normalized to their values at 
saturation, i.e., DCl/DCl(S=1) related to the degree of saturation, S. From these 
results, it was concluded that this dependency does not seem to be significantly 
affected by w/b, but the composition of the binder affects the relation. In Paper III, 
it was also concluded that for the individual binders, there seems to be a relation 
between the moisture content and DCl(RH), which is exemplified by the results for 
OPC mortars in Figure 3.5. It is interesting to note that from these results, it seems 
that the diffusion of ions depends on the moisture content in the material, whereas 
the results in Figure 3.1 show that moisture transport is not related to the moisture 
content in the material. Further details on experimental setups and evaluation are 
given in the paper. 

3.2.2 Interaction between pore solution and solid phases 

As discussed in Section 2.2 above, the evolution of the material continues until the 
system is thermodynamically at equilibrium, but in reality, this point is never 
reached. During the service life of a concrete structure, there will be interactions 
between the material and the surrounding atmosphere, and the kinetics of some 
reactions is very slow, which also adds to changes of the material over time. 
Leaching, chloride ingress, and carbonation are examples of degradation processes 
where ionic species or substances are transported into or out of the material, which 
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changes the composition of the pore solution. The changed pore solution 
composition induces interactions between solid phases and the pore solution, e.g., 
dissolution of solids, ion exchange, and precipitation of new solid phases. 

During chloride ingress, chloride is present in the material is several phases. 
Conventionally, the total chloride content is described with a chloride binding 
isotherm that shows the relation between “free chlorides,” i.e., chloride ions in the 
pore solution, and “bound chlorides,” i.e., chemically bound chloride in solid phases 
and physically bound chloride adsorbed on the pore walls. It should be mentioned 
that the chloride binding isotherms differ between binders and that the relation is 
not linear [34]. 

The chemically bound chloride is mainly present as chloroaluminate hydrates such 
as Friedel’s and Kunzel’s salts. The formation of these salts can be related to the 
aluminate content of the binder. The physically bound chloride is adsorbed on the 
surfaces of C-S-H [36] where OH- is exchanged for Cl- [37]. The amount of 
physically bound chloride is related to the amount of C-S-H. 

Chloride binding and chloride binding isotherms are discussed in the literature, e.g., 
in [34, 36-42]. It is well recognized that several factors affect the chloride binding 
capacity of cementitious materials. The aluminate content and the amount of C-S-
H are mentioned above, but the pH of the pore solution, temperature, C/S of C-S-H, 
carbonation, cation of the chloride salt, sulfate ions, addition of SCMs, and degree 
of reaction of SCMs are also important factors discussed in the literature. Some of 
these factors are related to each other but the exact relations are still not fully 
understood. It should also be mentioned that there is no consensus in the literature 
on the influence of these factors, in particular, when the effect of SCMs is discussed. 
Similarly, as for moisture transport, chloride binding isotherms are measured as a 
global relationship and it is not possible to investigate the effect of the individual 
parameters mentioned above, based on what is globally observed.  

There is a lack of studies that investigate the effect of a partially saturated pore 
system on the interaction between the pore solution and solid phases. The effect of 
water activity on some cement hydrates has been investigated [43-45], but more 
knowledge on alkali adsorption and other hydrates is required. The surfaces of C-S-
H are known to affect ionic transport in saturated conditions [37]. These surfaces 
are initially negatively charged, which creates an electrical double layer that 
increases the diffusion of anions and decreases diffusion of cations. This effect 
could potentially be increased in partially saturated condition when the large 
capillary pores are emptied and transport is limited to moisture in capillary 
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condensate and thin layers of adsorbed moisture on the pore walls. This lack of 
knowledge limits the possibilities of investigating and fully understanding non-
saturated ion transport. 

The results presented in Paper I, Paper II, Paper III, and Paper V are based on the 
assumption that a decreased water activity in the pore system has a minor influence 
on the interaction between the pore solution and the solid phases. In Paper I, Paper 
II, and Paper III, the distribution of alkalis between the pore solution and solids is 
assumed to be similar for all RH, and in Paper V, a similar assumption is made for 
chloride binding. 

In Paper V, the total chloride content is measured in selected points for comparison 
with chloride profiles measured with microXRF and to obtain an estimation of the 
chloride binding capacity of the solid phases. In this study, it is concluded that the 
composition of the binder and its chloride binding capacity are important parameters 
for the prediction of chloride ingress. It is also concluded that for denser materials 
with limited moisture transport and no moisture dependency in Dtot, the chloride 
binding capacity seems to be increasingly important for the chloride penetration 
depth. These conclusions further intensify the need for more knowledge on the 
effect of a partially saturated pore system on the interaction between the pore 
solution and solid phases. 

3.2.3 Convective ion transport 

Liquid moisture transport in cementitious materials with a pore solution containing 
ionic species will be coupled with ion transport. The ionic species in the solution 
will be transported with the liquid flow of moisture. This mechanism is often 
referred to as convective ion transport. In a case with pure convective ion transport, 
ions are only transported owing to a moisture gradient causing moisture transport 
and no other mechanism influences transport. This, however, is never the case in 
cementitious materials.  

In cementitious materials, the ionic species in the pore solution have different 
diffusion coefficients and their interactions with the solid phases vary. These 
differences induce electrical fields and differences in concentration, which affect 
the transport and cause ionic diffusion. Simultaneously, a changed ionic strength of 
the pore solution affects the water activity of the solution. Owing to the moisture 
dependency of moisture transport, a changed water activity will affect moisture 
transport in a non-saturated pore system. Consequently, ionic transport and moisture 
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transport in partially saturated cementitious materials are closely related and 
difficult to study separately.  

In this project, two experimental studies were planned to investigate convective ion 
transport in partially saturated cementitious systems. The first study is on mortars 
exposed to wick action. This study is further discussed in Section 3.3, and the results 
are presented in Paper V. The second study on convective ion transport is a study 
that aimed at investigating convective ion transport at a well-defined moisture state 
in a two-step drying experiment similar to that in the study described in [46]. This 
study was not finalized owing to lack of time within the project. However, some 
interesting findings from the work are discussed in the following sections. 

With the two-step drying method, it should be possible to quantify the total ionic 
transport in a material at the specified RH. In this method, the ionic species in the 
pore solution of the original material are used for the investigation, e.g., the alkalis 
sodium and potassium. The alkalis were chosen because a large portion of the total 
alkali content is present in the pore solution and because of their relatively high 
mobility in solution. However, despite these properties, the differences in alkali 
content within the material are small and difficult to measure. Åhs et al. [46] 
investigated OPC mortars and used SEM-EDS analysis to investigate the potassium 
profiles.  

The aim of this project was to investigate a wider range of RH and binders, and 
therefore, SEM-EDS analyses were found to be extremely time consuming. Other 
methods such as LA-ICP-MS and microXRF were evaluated for the analysis, but 
unfortunately, these methods were not able to detect the differences in alkali 
distribution within the material, probably because of the extremely low signal to 
noise ratio. However, it was found that profile grinding in combination with XRF 
analysis can be a suitable method to measure the alkali profiles. One mortar 
specimen with 0.38 w/b and 70% slag binder was analyzed with this method. Profile 
grinding was performed at École polytechnique fédérale de Lausanne (EPFL), in 
cooperation with Prof. Karen Scrivener, and XRF analyses were performed at 
Heidelberg Cement Technology Center in cooperation with Dr. Jan Skocek. The 
composition of the mortar was similar to that in the other studies, but in this study, 
the specimens were sealed-cured. For the selected specimen, the RH after self-
desiccation was 78%. After two years of sealed curing, one surface was exposed to 
33% RH and the other surfaces were sealed. The results are shown in Figure 3.6.  
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A) B) 

 
Figure 3.6 Alkali profiles from XRF analysis as A) potassium content and B) 
sodium content. The specimen was exposed to drying at 0 mm.  

From the results in Figure 3.6, it appears that the method can detect a potassium 
distribution. The results for sodium are not as clear. It could be because the variation 
in sodium content in the sample is below the limit of detection for the technique, or 
that no accumulation of sodium has occurred close to the drying surface. Obviously, 
nothing can be concluded from a single measurement, but with this in mind, some 
observations can be made. The accumulation of potassium from 0 to approximately 
5 mm in the sample in Figure 3.6 A) indicates that convective ion transport occurs 
in this mortar at 78% RH. It also shows that the convective transport due to the 
moisture gradient is larger than the ionic diffusion acting in the opposite direction.  

It would be interesting to relate this ionic transport to measured transport properties, 
e.g., the transport properties presented in Paper III and Paper IV. These transport 
properties are, however, measured on wet-cured specimens and therefore, may not 
be fully accurate for the sealed-cured specimens in the two-step drying experiment. 
With this uncertainty in mind, it is interesting to note that the mortar in Figure 3.6, 
i.e., 70% slag and 0.38 w/b, has little moisture transport and no moisture dependency 
in moisture transport. Despite this, the results in Figure 3.6 suggest that convective 
ion transport occurs in this material, and that this transport mechanism is 
predominant. The moisture dependency of the alkali diffusion coefficients can be 
compared to the moisture dependency of chloride diffusion coefficient in Paper III. 
This is possible because the only factor that differs in the Nernst-Einstein equation 
is the self-diffusion coefficient of the ionic species in the solution, D0i (m2/s), which 
is a constant. From Figure 3.3, it can be observed that at 75% RH, ionic diffusion is 
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limited and DCl is approximately 25% of its value at saturation. Figure 3.6 suggests 
that this diffusive transport is subordinate. However, further measurements would 
be required to conclude the relations between moisture transport, convective ion 
transport, and ionic diffusion from the two-step drying experiment. 

3.3 Wick action experiments 

Wick action experiments were chosen to investigate convective ion transport under 
partially saturated conditions. The basis for these wick action experiments is that 
the specimens are in contact with an ionic solution on one side, and the opposite 
sides of the specimens are exposed to air with a controlled RH. The moisture 
gradient induces moisture transport and convective ion transport through the 
specimens. The water will evaporate at the drying surface, but the ionic species will 
precipitate either at the drying surface or within the specimen. The experimental 
conditions are described in detail in Paper V.  

This experimental setup was chosen based on a sensitivity analysis with models, 
from which it was concluded that the drying condition and the moisture transport 
properties of the material seemed to be crucial for the appearing ion distribution. 
This effect is partly because when modeling moisture transport, the moisture flux is 
separated into liquid water transport and water vapor transport. The liquid transport 
contributes to ion transport, whereas the gas phase does not. For trying to investigate 
these relations experimentally, specimens were exposed to wick action, and 
moisture transport and moisture sorption properties of the mortars were measured 
separately. The measured moisture transport and moisture sorption properties are 
reported in Paper IV.  

In the experimental wick action study, the specimens exposed to wick action were 
in contact with a sodium chloride solution on the wet side, and either 33% or 75% 
RH on the dry side. The chloride and moisture distributions were measured as 
described in Paper V. However, as for the evaluation of the two-step drying 
experiment, it was important to find suitable methods for evaluation of the ion and 
moisture profiles. The commonly used method for evaluation of chloride profiles 
with grinding and titration was rejected owing to the large number of specimens to 
be evaluated, and the desire to obtain a relatively high resolution in the profile. 
Several other methods such as SEM-EDS, require dried and polished samples. This 
sample preparation is time consuming, but more importantly, both drying and 
polishing might interfere with the ion distribution and affect the measured profile. 
The chloride profiles were finally evaluated using MicroXRF because this technique 
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enables analysis of a freshly broken surface. The measurements were performed in 
cooperation with the Imperial College in London, UK.  

3.3.1 Chloride profiles 

The measured chloride profiles are shown in Figure 3.7. These results show that for 
OPC mortars, chlorides have penetrated the specimens, which is in contrast to the 
mortars with SCMs that showed significantly smaller penetration depths. In Paper 
V, it was concluded that for mortars exposed to wick action, the binder composition 
is a key parameter for prediction of chloride penetration depths, and that w/b and 
drying RH are of minor importance. In this paper, chloride penetration is also 
discussed in relation to the transport properties reported in Paper III and Paper IV 
and chloride binding properties. From these discussions, it is concluded that for 
mortars with a large moisture transport and moisture dependency in Dtot, convective 
ion transport is the predominant transport mechanism. However, for dense mortars 
with little moisture transport and no moisture dependency in moisture transport, 
chloride binding and ionic diffusion are of higher importance and need to be 
considered. 
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A) 

 
C)  

B) 

 
D) 

 
Figure 3.7 Chloride profiles after wick action exposure of mortars with  
A) OPC, B) 5% SF, C) 40% slag, and D) 70% slag. Results presented in Paper V [47].  
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3.3.2 Moisture profiles 

The moisture profiles were finally evaluated with 1H NMR relaxometry in 
cooperation with the Technical University of Munich, Germany (TUM). However, 
as reported in Paper V, some profiles could not be evaluated owing to lack of 
specimens. Originally, the evaluation of moisture profiles was planned to be 
performed using gamma-ray attenuation, but unfortunately, this technique was not 
available when the measurements were conducted. Other suitable methods were 
considered prior to choosing the 1H NMR relaxometry at TUM. The same technique 
but with a different instrumentation at another laboratory was evaluated without 
success. X-ray absorption was evaluated and chosen for the evaluation, though with 
a little hesitation. During the test measurements, large differences in intensity were 
observed between subsequent images of the same area of the sample. In other studies 
performed at the same laboratory, e.g., in [48], this problem has been addressed 
through normalization of the intensity in overlapping regions between images. 
Based on this, it was decided to use this method for evaluation of all moisture 
profiles in the wick action study. However, despite thorough attempts to evaluate 
moisture profiles from these measurements, the results did not show sensible 
profiles. 

The results from the NMR measurements at TUM are shown in Figure 3.8 and 
Figure 3.9 A). The results are presented and discussed in detail in Paper V. As 
expected, the results show that the specimens are capillary saturated in the parts 
adjacent to the exposure solution. In Figure 3.8, in cases A), B), and D), the samples 
are capillary saturated all the way through the sample, which is explained by the 
presence of NaCl in the system. The chloride profiles were measured after 30 
months of wick action exposure, in contrast to the moisture profiles that were 
measured after 48 months of exposure. As discussed above, the reason for this delay 
was the difficulty in finding a suitable method for the determination of moisture 
profiles. The different exposure times complicate the analysis of the relation 
between chloride and moisture profiles.  
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A) B) 

C) D) 

E) F) 

 

Figure 3.8 Moisture profiles after wick action exposure of mortars. Results 
presented in Paper V [47]. 
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A)                                                               B) 

C) 

 
Figure 3.9 A) Moisture profiles after wick action exposure of mortar with 
70% slag and 0.53 w/b as intensity measured by NMR.  
B) A general calibration curve illustrating the non-linear relation between 
measured NMR-signal intensity and water content based on data from [49]. 
C) The same moisture profiles as in A), but here, the effect of the calibration 
curve in B) is demonstrated. The results are presented in Paper V [47]. 
 

Another complication for the interpretation of the moisture profiles from NMR 
measurements is the non-linear relation between the measured response from 
samples, i.e., measured intensity and moisture content [49, 50]. From the moisture 
profiles in Figure 3.8 and Figure 3.9 A), it appears that the moisture content close to 
the drying surface is nearly similar for the two exposure conditions, i.e., 75% and 
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33% RH, respectively. This could be reasonable for specimens with precipitation of 
NaCl on the surface. However, for most specimens, chloride has not penetrated 
them, and these specimens should have different moisture contents at 75% and 33% 
RH. The reason for this inaccurate appearance of moisture profiles is the differences 
in sensitivity of the NMR equipment to water in different pore sizes, which yield 
the non-linear relation between intensity and moisture content shown in Figure 3.9 
B). Figure 3.9 A) shows the primary results for 70% slag and 0.53 w/b mortar and 
in B), a general calibration curve is shown. Figure 3.9 C) shows the same moisture 
profiles as in A), but here, an axis for moisture content in kg/m3 is inserted, and the 
effect of the calibration curve in B) is demonstrated. To quantitatively evaluate 
moisture profiles from NMR measurements of moisture content, an accurate 
calibration curve is required.  

3.3.3 Moisture profiles related to pore solution composition 

The presence of ions in the pore solution complicates the relation between the 
measured moisture profiles and the measured material properties, i.e., w(RH), 
Dtot(RH), and DCl(RH), which are measured with no additional ionic species in the 
system in this project. The sodium chloride from the exposure solution will 
increase the ionic strength of the pore solution and decrease its RH. This affects 
the desorption isotherm and the pore structure will be capillary saturated at 
humidity levels lower than 100% RH. A changed desorption isotherm changes the 
basis for moisture and ionic transport. For materials with a clear moisture 
dependency in transport, the ionic strength of the pore solution should 
hypothetically affect the transport properties, i.e., Dtot(RH) and DCl(RH), in this 
case. 

In this project, the moisture diffusion coefficients and chloride diffusion 
coefficients are evaluated as a function of RH. As discussed in [51], different 
moisture potentials can be used to describe transport. The desorption isotherm can 
be used to recalculate Dtot(RH) into Dtot(w) or Dtot(S), and similarly for DCl(RH). 
The choice of potential is important. RH is closely related to the driving potential 
of the basic physics of moisture transport, i.e., the moisture content of gas phase 
and Kelvin radius. However, the moisture-filled pore volume, i.e., w or S, has a 
closer relation to the connectivity of the moisture phase. This property might be of 
higher importance for ionic transport because RH is largely affected by the ionic 
strength of the pore solution. This is a topic that requires further research. 

The effect of these changed transport properties on the measured moisture profiles 
is discussed in Paper V. Based on the calibration curve in Figure 3.9 B), the 



57 

measured intensity profiles should be proportional to the moisture content profiles 
in the RH interval of 75–100%. However, the moisture profiles for specimens 
exposed to 75% RH in Figure 3.8 and Figure 3.9 A) do not agree with what can be 
expected from the measured moisture transport properties and desorption isotherms 
in Figure 3.1. One part of the explanation for this is probably the changed ionic 
strength of the pore solution as discussed above.  

The results presented in Paper V contribute to new understanding of the key 
parameters influencing chloride penetration in cementitious materials with SCMs. 
These results constitute valuable data for the development of mass transport models 
for cementitious systems and for the development of new binders. However, it is 
also emphasized that there is a lack of knowledge on the interaction between ions in 
the pore solution and solid phases, especially for partially saturated conditions. 
Additionally, it is concluded that the relation between the ionic diffusion, pore 
solution ionic strength, RH, moisture content, and degree of saturation needs to be 
clarified to understand ion transport in cementitious materials under partially 
saturated conditions. 
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4 Concluding remarks 

The conclusions from the investigations in this project, as outlined in Section 1.2 
(Aim and research questions), are discussed and presented in the appended papers. 
The main conclusions are summarized in this section. 

Main conclusions from Paper I, Paper II, and Paper III: 
• Resistivity measurements and the Nernst-Einstein equation can be used to 

investigate the moisture dependency of ionic diffusion coefficients in 
cementitious materials. However, the variation in pore solution composition 
with moisture content in the material and binder composition needs to be 
considered. 
 

• DCl/DCl(S=1) is relatively independent on w/b for the individual binders (for 
the investigated range of w/b and binders), but the relation differs slightly 
between binders.  
 

• There seems to be a clear relation between DCl(RH) and the moisture 
content, w, for the individual binders, although the variation between 
binders is large. 

Main conclusions from Paper IV: 
• Between 70% and 100% RH, three mortars show a clear moisture 

dependency Dtot(RH), whereas the other five mortars do not. Below 70% 
RH, there is no moisture dependency for any mortar and the w/b is more 
dominant for moisture transport than the type of binder. 
 

• No clear relation could be identified between Dtot(RH) and w, C/S or amount 
of C-S-H. However, it should be noted that the comparison is performed 
with properties measured at different ages.  
 

• The pore structure is refined from 8 months to 4 years for all mortars and 
the refinement is most pronounced for mortars with slag. 
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Main conclusions from Paper V: 
• The composition of the binder is the key factor affecting the chloride 

penetration depth in the wick action experiment. For the studied range of 
w/b and RH, w/b and moisture potential are of minor importance. 
 

• For mortars with a moisture dependency in Dtot(RH), this factor seems to 
have a large impact on the chloride penetration depth. However, for mortars 
with no moisture dependency in Dtot(RH), chloride binding and possibly 
DCl(RH) seem to be the governing parameters for chloride ingress.  
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5 Future research 

Based on the outcome of the investigations in this project, I have the following 
proposals for future research: 

 

• The use of resistivity measurements is an efficient method for prediction of 
ionic diffusion properties in cementitious systems. The composition of the 
pore solution is required to assess the ionic diffusion properties from these 
measurements. There is a lack of knowledge on alkali sorption in blended 
cementitious systems and at different RH values. This knowledge is 
required to improve thermodynamic modeling tools and to accurately 
predict pore solution composition in cementitious systems. 
 

• There is a need for better understanding of how moisture and ionic transport 
properties are affected by aging and refinement of pore structure with time. 
 

• As for the effect of SCMs on the moisture transport properties, it should be 
possible to find a relation between the expected volume of reaction products 
of SCMs and the available pore volume when the reaction of SCMs occurs. 
It should be investigated if it is possible to predict the moisture dependency 
of moisture transport from w/b, substitution level of SCM, and space-filling 
ability of SCMs. 
 

• There is a need for improved methods on determination of moisture profiles 
in cementitious materials. In particular, there is a need for quantitative 
nondestructive methods with appropriate accuracy that can be used in every 
laboratory and that can be applied to cementitious materials with varying 
aggregate contents and binder compositions.  
 

• The results from the wick action experiments can be used in a modeling 
study for developing more precise models and for enhanced understanding 
of the relation between ion profiles, moisture profiles, and material 
properties. There is a need for improved models that can predict this type 
of combined transport. This modeling study should be combined with a 
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sensitivity analysis on the effect of the different input data required for the 
model.  
 

• Chloride binding is a key factor for prediction of chloride penetration depths 
in materials with low moisture transport. There is a need for understanding 
of how chloride binding is affected by a partially saturated pore system.  
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