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Resumé

Confinement de feuillets de graphène oxydé
dans une matrice fluide anisotrope

Dès sa découverte, le graphène oxydé (GO), le plus accessible des précurseurs du graphène,

a été largement utilisé pour des applications en science et technologie. La motivation de

ce travail est d’étudier, d’un point de vue fondamental, le couplage entre des bicouches

amphiphiles auto-associées (lesquelles peuvent être vues comme une matrice anisotrope

formée d’objets bidimensionnels) et un objet lui-même bidimensionnel, en l’occurrence le

feuillet d’oxyde de graphène, quand ils sont dispersés dans un solvant commun.

La compétition entre les élasticités intrinsèques des bicouches et des feuillets de GO,

ainsi que les interactions directes bicouche-bicouche, bicouche-GO et GO-GO, permet

d’envisager un riche polymorphisme en fonction de la composition du système. Après

avoir développé une procédure destinée à contrôler, dans une gamme étendue de teneur

en GO, le système binaire GO-eau, le domaine confiné des dispersions aqueuses de GO a

été exploré et, par la suite, le diagramme de phases ternaire a été construit.

Les systèmes obtenus ont été caractérisés par des techniques comme la microscopie

optique et la diffusion du rayonnement (diffusion dynamique de la lumière et diffusion

des rayons-X aux petits angles). Les propriétés élastiques et thermodynamiques ont été

décrites par l’application de modèles initialement conçus pour les phases lamellaires à

deux constituants et adaptés dans le cadre de cette étude.

Mots clés : graphène oxydé, tensioactif, cristaux liquides, SAXS, empilements de

bicouches

5



6



Resumo

Confinamento de folhas de grafeno oxidado
em uma matriz fluida anisotrópica

Desde sua descoberta, o grafeno oxidado (GO), o mais acesśıvel dos precursores do grafeno,

tem sido amplamente utilizado para aplicações na ciência e tecnologia. A motivação deste

trabalho é de estudar, de um ponto de vista fundamental, o acoplamento entre bicamadas

anfif́ılicas auto-organizadas (que podem ser vistas como uma matriz anisotrópica formada

por objetos bidimensionais) e um objeto ele mesmo bidimensional, neste caso a folha de

óxido de grafeno, quando estão dispersados em um solvente comum.

A competição entre as elasticidades intŕınsecas das bicamas e das folhas de GO, as-

sim como as interações diretas bicamada-bicamada, bicamada-GO e GO-GO, permitem

esperar um rico polimorfismo em função da composição do sistema. Seguindo o desen-

volvimento de um procedimento destinado ao controle, em um intervalo extendido da

quantidade de GO, o sistema binário GO-água, o domı́nio confinado de dispersões aqu-

osas de GO foi explorado e, em seguida, o diagrama de fases ternário contrúıdo.

Os sistemas obtidos foram caracterizados por técnicas como microscopia ótica, espal-

hamento dinâmico de luz e espalhamento de raios-x à baixos ângulos. As propriedades

elásticas e termodinâmicas foram descritas pela aplicação de modelos inicialmente conce-

bidos para fases lamelares à dois constituintes e adaptados ao escopo deste estudo.

Palavras-chave: grafeno oxidado, surfactante, cristais ĺıquidos, SAXS, empilhamento

de bicamadas

7



8



Abstract

Graphene oxide sheets confined within
anisotropic fluid matrices

Since the discovery of graphene oxide (GO), the most accessible of the precursors of

graphene, this material has been widely studied for applications in science and technology.

The motivation of this work is to study with a fundamental perspective the coupling

between amphiphilic bilayers, which can be seen as an anisotropic matrix formed of two-

dimensional objects, and another two-dimensional object, namely the graphene oxide

sheet when they are dispersed in a common solvent.

The competition between the intrinsic elasticities of the bilayers and GO sheets, as

well as between direct bilayer-bilayer, bilayer-GO and GO-GO interactions allows us to

envisage a rich polymorphism, depending on the composition of the system. Following the

development of a dedicated procedure for controlling in an extended range of GO content

the binary GO-water system, the confined domain of aqueous GO dispersions was first

investigated, and the ternary phase diagram then constructed.

The obtained systems have been characterised, using techniques such as optical mi-

croscopy, light and x-ray scattering. Elastic and thermodynamic properties have been

described by applying, and adapting to the scope of this study, models for two-component

lamellar stacks.

Keywords: graphene oxide, surfactant, liquid crystal, SAXS, stacked layers

9



10



Acknowledgments

The accomplishment of this work would not have been possible without all the help I have

received during these last years. I would like to thank everyone who somehow contributed

for this thesis to be concluded in the best conditions, either directly or indirectly. It would

be very difficult to list the names of each of them, but there are some special ones that I

could not forget.

First I would like to thank those who looked after me, guiding my steps. Thanks to

my wife, who was always by my side and gave me the strength needed to keep going, I was

able to finish one more step. I also thank my mother, who provided me all the necessary

to be who I am.

Not less importantly, I would like to thank Laurence and Frédéric for giving me the

opportunity to take part in this work. Thank you for inspiring me and for everything you

gave me during these years, I have learnt a lot from you. In addition, the idea of this

project would not have been possible without initial discussions with George Nounesis,

so I am grateful to him for that.

I also thank Beth for being part of my learning and encouraging me to face this

challenge. Without your help I would not be where I am today and it was a pleasure for

me that you could be influential in this new step in my career. My special thanks also to

Cristiano, who was also there since the beginning of my scientific career. Thank you for

all the discussions and for the contributions in this work.

The contributions of Brigitte Pansu and Eric Anglaret were also very helpful to im-

prove this text. Thank you to both of you for reading this thesis and for the discussions

during the defence.

I also would like to thank Cécile Zakri, not only for evaluating my work during the

defence, but also for everything you have done as director of the laboratory, providing a

good scientific environment and always listening to the needs of the students.
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Chapter 1

Introduction

1.1 Context of the study

After the study developed by Emerson Rodrigo da Silva (da Silva, 2011), followed by Kévin

Bougis (Bougis, 2016), the formulation of complexes composed of lipid bilayers is in focus

in our group. Using techniques like x-ray scattering, optical and electronic microscopy,

the properties of systems formed by a host lamellar structure and DNA fragments were

investigated.

The DNA fragments are short enough to be meaningfully seen as cylinders, or one-

dimensional particles, and the insertion/organization of these macro molecules in between

the bilayers, a two-dimensional matrix, gives rise to different self-organized structures.

This work was then the inspiration for trying to insert in between the membranes a

two-dimensional object itself, namely graphene oxide sheets.

1.2 Motivation and objectives

The motivation of this work is to study the coupling between the amphiphilic bilayers,

which can be seen as an anisotropic matrix formed of two-dimensional objects, and another

two-dimensional object, namely the graphene oxide sheet.

Since the discovery of graphene oxide, the most accessible of the precursors of graphene,

this material has been widely studied for applications in science and technology. The ob-

jective of this study is, from a fundamental point of view, the investigation of the effects

of confinement on self-assembled complex systems of soft matter and, in particular, the

insertion of GO sheets into a fluid anisotropic matrix. The competition between the elas-

ticity of the bilayer and that of GO allows to envisage a rich polymorphism depending on

the composition of the system.

Initially, the fundamental aspects of the investigated system are introduced and the ex-

perimental techniques, such as optical and electron microscopy, light and x-ray scattering,

employed to get the data for their characterization are described (chapter 2).
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Afterwards, the concentrated regime of the binary system (graphene oxide-water) will

be described (chapter 3), followed by the discussion of the analysed structure using the-

oretical models already proposed and others that will be developed in the scope of this

work (chapter 4).

In a second step, properties of the host matrix composed of surfactant will be studied,

as well as the binary complex (graphene oxide-surfactant). These results will contribute

to the interpretation of the results obtained for the ternary system (graphene oxide-

water-amphiphiles). This characterisation will provide relevant information about a new

material that could be used in many future applications (chapter 5).

The phase diagram will be constructed, given as the final, conclusive part of chapter 5.

1.3 Scientific environment

The work has been developed at the Structure and Dynamics of Soft Matter (M2SD)

team of the Centre de recherche Paul-Pascal, a laboratory located in Pessac and attached

to the University of Bordeaux and the National Center for Scientific Research (CNRS -

France).

The financial support for the thesis was provided by the Science Without Borders

program (Process: 250085/2013-5), an initiative of the Brazilian government through the

National Council for Scientific and Technological Development (CNPq - Brazil).
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Chapter 2

State of art

2.1 Graphene oxide

Graphite or, more precisely, hexagonal graphite (Nič et al., 2009), is a material that was

discovered in the earliest times and has been used since, especially because of its use

for writing. Nowadays, it is also widely used for engineering and industrial applications

because of its excellent in-plane properties. This allotropic form of carbon is the most

thermodynamically stable and has a unique structure, which gives it very interesting

electrical, thermal and mechanical characteristics (Kelly, 1981). The structure of graphite

was one of the first ones to be studied by X-ray diffraction (Hull, 1917) and, as shown

in Figure 2.1a, it consists on hexagonal net planes of carbon atoms stacked periodically

along the axis perpendicular to their plane. In the plane, the distance between the nearest

neighbour carbon atoms is 1.4×10−10 m and adjacent layers are shifted, with a spacing

of 3.4×10−10 m between them (Bernal, 1924).

The covalent bonds between the carbon atoms in the plane are much stronger than

the metallic bonds between the planes, which facilitates the dissociation of graphite into

individual layers. As shown in Figure 2.1b, these layers have the structure of a triangular

lattice of carbon atoms with a single atom thickness, and they are called graphene (Nič

et al., 2009; Boehm et al., 1994). The idea of graphene has been introduced by scientists

many years ago (Wallace, 1947) and some experiments even evidenced its existence a few

years later (Boehm et al., 1962), but from the theoretical point of view, it was considered

impossible to obtain thermodynamically stable two-dimensional crystals (Landau, 1937;

Mermin, 1968). It was only in 2004 that this material was isolated and characterised for

the first time (Novoselov et al., 2004), this work being awarded with the 2010 Nobel prize

in Physics (Prezhdo, 2011).

Graphene is a material that presents high electronic mobility and high mechanical

strength, being at the same time very light, flexible and near transparent (Geim, 2009).

Due to its extraordinary properties, graphene has gained space in the research and in-

dustry, finding many applications in the fields of materials, composites, sensors, energy,

17



(a) Graphite in perspective and top views.

(b) Graphene and reduced Graphene Oxide.
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(c) Graphene Oxide.

Figure 2.1 – Structural representation of carbon materials.
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electronics and many others (Qiu et al., 2012; Marcaccio and Paolucci, 2014; Mohan et al.,

2018).

There are a lot of available procedures to produce graphene (Spyrou and Rudolf, 2014),

and the one mentioned above consists on obtaining graphene layers from several steps of

exfoliation, peeling the layers from graphite using an adhesive (Scotch R©) tape (Novoselov

et al., 2004). The graphene produced using this method has the lowest number of defects,

presenting the highest quality concerning electron mobility and structure (Kusmartsev

et al., 2014). However, another very common way of preparing this material consists on

reducing exfoliated layers of chemically oxidised graphite, which provides lower quality

graphene but in a much larger scale (Stankovich et al., 2007; Wang et al., 2008; Gao et al.,

2009). The graphite oxide, also known as graphitic oxide, was first prepared by Brodie

(1859), but one of the most frequent methods used nowadays is based on the procedure

proposed by Hummers and Offeman (1958), which has been improved with the years to

increase the ratio between oxygen and carbon atoms in the material (Marcano et al.,

2010).

Studies were developed using graphite oxide and dispersions of the layers in acid

medium (Behabtu et al., 2010), however, the advantage of the graphite oxide, compared to

the graphite, is its affinity with water. The hydration of graphite oxide was experimentally

investigated, showing that the distance between the layers can be increased when solvent

is added (Scholz and Boehm, 1969). In Figure 2.2, data extracted from the literature

show the evolution of the interlayer distance of the graphite oxide when the material is

hydrated.
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Figure 2.2 – Interlayer distance as a function of the water mass fraction for graphite oxide. Data extracted from Scholz and
Boehm (1969).

These observations show that after obtaining the graphite oxide, it is possible to

separate the layers and ultrasonication can be used to exfoliate the material, so then thin
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layers will be suspended in the solvent. The obtained thin layers of graphite oxide are

graphene containing oxygen atoms in the form of epoxy, hydroxyl, carbonyl and carboxylic

groups, and this material is called graphene oxide (GO) (Stankovich et al., 2006b; Marcano

et al., 2010). Its precise structure depends on the level of oxidation, but a representation

is shown in Figure 2.1c.

Besides the structure, the properties of GO are very different from the ones of graphene,

because of the presence of the oxygen groups, which makes this material a bad electrical

and thermal conductor. However, these groups can be partially removed via chemical,

photochemical, electrochemical or thermal reduction, and a new material called partially

reduced graphene oxide (rGO) is obtained (Stankovich et al., 2006a; Schniepp et al., 2006;

Cote et al., 2009; Zhou et al., 2009; An et al., 2010; Pei and Cheng, 2012). After this

procedure, even if the material keeps a few defects, it recovers part of the properties of

graphene (Gao et al., 2009).

Graphene oxide is attracting a lot of interest, especially due to its unique properties,

which have already been mentioned, with the advantage of interacting with water, as well

as other solvents. Many composites and new materials are prepared by the deposition of

GO and solution processing, besides its applications in the biotechnological and biomedical

field (Zhou et al., 2009; An et al., 2010; Bisoyi and Kumar, 2011; Xu and Gao, 2011b;

Frost et al., 2012; Kim et al., 2012; Singh et al., 2018).

The structure of GO sheets, as well as their structural organisation in water have

been experimentally investigated and these studies revealed, in an extended range of

solvent content, a liquid-crystalline structure, liquid crystals being materials with special

characteristics that will be treated in the next section. In addition, it has been recently

evidenced that the GO sheets are very flexible, with a bending modulus in the order of

kBT (Poulin et al., 2016). Incidentally, most of these works assume for the GO sheets a

density around 1.8 g/cm3 and a thickness smaller than 1 nm (Behabtu et al., 2010; Kim

et al., 2011; Xu and Gao, 2011a; Aboutalebi et al., 2011; Zamora-Ledezma et al., 2012;

Dan et al., 2011; Xu and Gao, 2011b).

2.2 Liquid crystals

We all have in mind that matter can be found in nature in one of the three different

fundamental states. A brief definition of each one of the states is presented below.

1. Solid, also known as crystal, is a dense state where the components have strong

interactions and are regularly distributed in a three-dimensional periodic lattice,

presenting a defined form;

2. Liquid is also a dense state where the components have still quite strong interactions

and no ordered structure, being able to flow;
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3. Gas is a dilute state where the components have negligible interactions and no

structure, occupying all the available space.

Moreover, some materials can be transformed from one of the three states to the

others without changing their chemical composition. Water is the most common example

of these materials, whose phase transitions are obtained changing the temperature and/or

pressure. Despite the fact that many other materials present the same phase transitions,

some other compounds have a much more complex phase diagram.

Certain organic materials present several transitions involving new phases with in-

termediate properties between the liquid and solid states. These intermediate states are

called mesomorphic phases and a material that presents these properties is called liquid

crystal (LC) (Liebert, 1978; Kelker and Hatz, 1980; de Gennes and Prost, 1995; Dierking

and Al-Zangana, 2017). This is the term used to define these materials because of the

liquid-like order, also called isotropic organisation, they have in at least one direction of

space and an ordered structure in the other directions. There are three possible forms of

liquid crystals:

1. Nematic, a mesophase in which the components have a defined preferred orientation

but their centres of gravity do not present a positional order;

2. Smectic, a mesophase in which the components have a defined preferred orientation

and are organised, forming stacked layers. In the perpendicular direction to the

layers, there is a positional order of the centres of gravity, while there is no positional

order in the parallel direction;

3. Columnar is a mesophase in which the components have a defined preferred orien-

tation and are organised forming cylinders. In the perpendicular direction to the

axis of symmetry of the cylinders there is a positional order of the centres of gravity,

while there is no positional order in the parallel direction.

Elongated objects tend to form nematic and smectic phases, while columnar and also

nematic phases are often obtained with disk-like particles. The LCs are grouped in two

different classes, called thermotropic liquid crystals or lyotropic liquid crystals, depending

on whether the phase transitions are obtained by varying a variable of state, such as the

temperature or pressure, or varying the concentration, respectively.

It has been shown in the literature that aqueous dispersions of GO present the same

behaviour observed for lyotropic liquid crystals. When the dispersion is diluted, no pre-

ferred orientation of the layers is observed, which means that they present an isotropic

organisation. However, an increasing in the concentration makes the GO sheets start to

orientate themselves in a given direction, and birefringence can be observed under po-

larised optical microscopy (see subsection 2.4.1) (Kim et al., 2011; Xu and Gao, 2011a;

Aboutalebi et al., 2011; Dan et al., 2011; Xu and Gao, 2011b; Zamora-Ledezma et al.,
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2012; Zakri et al., 2013; Jalili et al., 2013; Xu and Gao, 2014; Tong et al., 2014; Tkacz

et al., 2014).

This organisation is equivalent to the one observed for nematic mesophases in LCs

and the concentration at which the transition occurs is dependent on the aspect ratio ς

of the GO sheets that is calculated using Equation 2.1, where δ is the layer thickness and

l its maximum lateral extension.

ς =
l

δ
(2.1)

From Onsager’s theory (1949), it is possible to predict the isotropic-nematic phase

transition for suspensions of hard cylinder-like particles with a given aspect ratio. This

model also gives a good qualitative estimate of the phase transition for flat particles. In

the case of GO dispersions, the mass fraction of GO fm at which we observe the phase

transition can be obtained using Equation 2.2.

fm ≈
4.8

ς
(2.2)

If the distribution of sizes of the GO sheets is very large, which means that the GO

sheets present a high polydispersity in size, the concentration at which the phase transition

occurs is not well defined. Instead, there is an interval of mass fractions where the phase

transition takes place. For a given concentration, the biggest sheets start to orientate and

birefringence is observed. This phenomenon corresponds to the appearance of nematic

domains, coexisting with isotropic organisation.

When the concentration is further increased, the smaller sheets will also orientate

themselves, increasing the presence of nematic domains until it reaches a certain concen-

tration in which the isotropic organisation is no longer observed and the whole sample

presents a nematic structure. In Figure 2.3, experimental results obtained from the liter-

ature are presented. For a few given average aspect ratios, the concentrations of GO in

water when the nematic structure is first observed and when the whole sample presents

this organisation are showed.

These experiments showed that the theoretical prediction given by Equation 2.2 is in

good accordance with the values of concentrations that define the interval of coexistence

of isotropic and nematic orientations for polydisperse samples. It has also been observed

that for even higher concentrations, the GO sheets start to stack in layers with a periodic

distance of repetition, an organisation that is equivalent to the one observed for smectic

mesophases.

The stacked structures were further analysed and it is possible to investigate the

evolution of the distance of repetition of the lamellar structure as a function of the mass

fraction for different aspect ratio of GO sheets in the aqueous dispersion (Xu and Gao,

2011a,b; Zamora-Ledezma et al., 2012). As illustrated in Figure 2.6, lamellar periodicity

d is the distance of repetition of the unit cell and, from the data available in the literature,
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Figure 2.3 – Mass fraction of GO in water when the phase transitions are observed as a function of the aspect ratio.
Lower (•) and upper (�) limits of the coexistence of isotropic-nematic mesophases and lamellar (N) mesophases. Dashed
line corresponds to the phase transition given by Equation 2.2. Data extracted from Kim et al. (2011), Xu and Gao
(2011a), Aboutalebi et al. (2011), Dan et al. (2011), Xu and Gao (2011b), Zamora-Ledezma et al. (2012), Zakri et al.
(2013), Jalili et al. (2013), Xu and Gao (2014), Tong et al. (2014) and Tkacz et al. (2014).

it is possible to obtain the curve of this variable as a function of the mass fraction of GO

for different aspect ratios, as shown in Figure 2.4.
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Figure 2.4 – Lamellar periodicity as a function of GO mass fraction in water for layers with an aspect ratios of: 2600 (•),
1000 (�) and 667 (N). Data extracted from Xu and Gao (2011a), Xu and Gao (2011b) and Zamora-Ledezma et al. (2012).

One can observe from the data that increasing the mass fraction of GO makes the

distance of repetition of the lamellar structure to decrease, which is in accordance with

what is observed for smectic lyotropic liquid crystals. In addition, the continuous curve

indicates that this behaviour is not dependent on the aspect ratio of the GO layers.

From these observations, it is now clear that graphene oxide layers can behave as a

lyotropic liquid crystal when in solution. A classic example of this class of liquid crystal

is the surfactants, which will be discussed in next section.
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2.3 Surfactants

Surface active agent, commonly known as surfactant, is a molecule that has the ability to

lower the surface tension between a liquid and an other medium, which can be a gas, a

liquid or a solid. This effect occurs due to the tendency of these molecules to concentrate

at the interface between the two non miscible media. Some examples of surfactants are,

among many others, detergents and emulsifiers (Shaw, 1992; Myers, 1999).

These molecules interact with the surrounding medium in a very particular way: a

part of the molecule is strongly attracted to the solvent, receiving the name of lyophilic

group, while the other part has little attraction to the solvent, which is called lyophobic

group. Most of the information found on literature concern systems composed of water as

solvent so, for this reason, the terms lyophilic and lyophobic are commonly replaced by,

respectively, hydrophilic part of the molecule, also called “head”, and hydrophobic part of

the molecule, also called “tail”. A representation of this structure is shown in Figure 2.5.

Hydrophilic

"Head"

Hydrophobic

"Tail"

Figure 2.5 – Representation of an amphiphilic molecule.

Molecules that present the same behaviour of surfactants in solution, like the lipids,

receive the name of amphiphiles. In general, the hydrophobic part of these molecules is

composed of carbonic chains, or another nonpolar structure, and the hydrophilic part is

composed of an ionic or a highly polar group. Depending on the characteristics of the

hydrophilic “head” of the amphiphile, the molecule can be classified in one of the following

categories, where subgroups are defined depending on the nature of the hydrophobic “tail”.

1. Anionic: the “head” has a negative charge;

2. Cationic: the “head” has a positive charge;

3. Nonionic: the “head” has no charge, but it presents a polarisation of charges;

4. Zwitterionic (or Amphoteric): the “head” has a negative and a positive charge.

Because of the so-called hydrophobic effect, when the amphiphiles are dispersed in

aqueous solutions the water molecules will solvate the “head” and arrange themselves
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around the “tail” in an “ice-like” structure. This organisation has the intention of lowering

the contact between the water molecules and the hydrophobic part of the amphiphile,

which also makes the global entropy of the system to decrease. This phenomenon is not

thermodynamically favourable, and that is the reason why the surfactants are transported

to the surface, so the “tail” will no longer be in contact with the solvent and the associated

water molecules are released, which makes the free-energy of the system to decrease (Jones,

2002; Israelachvili, 2015).

However, when the concentration of amphiphiles in solution increases, the surface

starts to saturate and there is no available space for all the particles and, for this rea-

son, the dispersed amphiphiles tend to aggregate forming many different structures like

spherical micelles, cylindrical micelles, inverted micelles, vesicles or bilayers. In all of the

self-assembled structures the hydrophilic groups are kept in contact with the water while

the hydrophobic chains stay “protected” from it, and the preferred structure for a given

amphiphile is dependent on the solvent in which it will be dispersed, the geometry of

the molecule, its concentration in the solution and the temperature (Luzzati and Husson,

1962; Fontell et al., 1968; Ekwall, 1975; Ruckenstein and Manciu, 2001).

The only structure of self-assembled amphiphiles studied in this thesis is the bilayer,

so the other structures will not be discussed. When dispersed in water, the molecules

will form the bilayers that has a thickness δL approximately equivalent to two times the

sum of the lengths of the “head” δH and the “tail” δT . These bilayers will stack forming

a lamellar phase, separated by a layer of solvent, as represented in Figure 2.6, with a

constant distance of repetition d of the unit cell, also known as lamellar periodicity.

d

L

Figure 2.6 – Representation of a smectic A mesophase, formed by the self-assembly of amphiphilic molecules.

This structure is a typical example of a smectic liquid crystal and, as the phase tran-

sitions occur with the variation of the concentration, it is classified as a lyotropic liquid

crystal. We observe a positional order of the centres of gravity of the amphiphilic molecules

in the perpendicular direction to the plane of the layers. If the bilayers are in the fluid

phase, also known as Lα structure, the aliphatic chains are free to move and there is no

positional order in the plane of the bilayer. This liquid-like organisation in the plane of

the layer is the characteristic that defines the group of smectic A mesophases.
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Considering the surfactant bilayers as rigid planes with a constant thickness, also

known as geometrical model of the lamellar phase, the thickness of the solvent layers will

vary when the concentration of amphiphile in the sample is changed. An increase in the

amount of solvent will lead to an increase in the distance of separation of the bilayers and,

as the thickness of the bilayers is constant, this is the same as saying that the distance of

repetition of the unit cell increases.

This swelling is linearly proportional to the expansion in the volume of the sol-

vent (Fontell et al., 1968; Ekwall, 1975). This phenomenon is called ideal dilution law,

which can be expressed by Equation 2.3, where d is the lamellar periodicity, δL is the

bilayer thickness and ϕ is the volume fraction of the bilayer. The swelling of lyotropic

smectic liquid crystals is very characteristic of bilayers of amphiphiles.

d =
δL
ϕ

(2.3)

As mentioned in chapter 1, in this study we investigated the complexes formed with

GO and surfactant. The amphiphilic molecule we worked with, whose structural formula

is represented in Figure 2.7, is called simulsol.

H3C (CH2)7 CH CH (CH2)7 C

O

(O CH2 CH2)6 OH

Figure 2.7 – Structural formula of simulsol (oleic acid with 6 monomers of PEG functionalized).

The molecules are composed by an oleic acid in the hydrophobic “tail” with a short

polyethylene glycol (PEG) polymer functionalized to it, playing the role of the hydrophilic

“head”, containing a fixed number of 6 monomers. The lengths of the hydrophobic and

hydrophilic parts of the simulsol can be deduced from the fitting of x-ray scattering data.

The estimated values are, respectively, 0.8 ± 0.2 nm and 2.0 ± 0.5 nm (Bougis, 2016).

In the next section, the techniques employed to characterise the studied systems will be

presented.

2.4 Characterisation techniques

In this study a few experimental techniques were employed to characterise the investigated

systems, some of them more often than others. The aim of this section of the thesis is not

to discuss in details the experiments and their theory, as plenty of high quality texts with

this objective can be easily found nowadays in the literature and should be consulted by

those who are interested. Basic aspects of these techniques will be briefly introduced to

support the discussions of the results.
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2.4.1 Polarised Optical Microscopy

Polarized Optical Microscopy (POM) is performed in an Olympus BX51 microscope with

objectives that can magnify 20x, 40x or 100x. In this study, we use two configurations

for the observation of the samples and the obtained images are recorded using a camera,

that is not coloured in our case.

1. In order to identify the presence of big particles in the sample, direct observation of

the image is implemented.

2. In order to observe if the sample is birefringent, an analyser, which has the same

properties of the polarizer, is positioned between the sample and the observer, with

the polarisation direction forming an angle between 0◦ and 90◦ with the one of the

polarizer.

The presence of particles indicates that aggregates of GO sheets are formed and the

presence of birefringence indicates an optical anisotropy in the sample, that can be related

to a certain level of organisation on the microscopic level of the system. For a more detailed

introduction to the optical microscopy, one of the several suggestions would be Bradbury

(1989).

2.4.2 Transmission Electron Microscopy

The Transmission Electron Microscopy (TEM) images were obtained on a H-600 electron

microscope from Hitachi. A tungsten filament emits electrons that are accelerated, form-

ing a beam of electrons that is focused by electromagnetic lenses before being transmitted

through the sample. After the interaction with the electrons on the sample, an “electronic

image” is obtained and the resulting electron beam is refocused by electromagnetic lenses

and magnified to be projected onto a fluorescent screen and this optical image can be

recorded by a camera. For more details on the technique a suggestion would be Reimer

and Kohl (2008).

2.4.3 Dynamic Light Scattering

The Dynamic Light Scattering (DLS) is widely used as a technique to characterise the

distribution in size of dispersed particles, generally ranging from ∼ 1 nm to ∼ 10 µm. We

carried out the experiments with a research goniometer and a red laser light scattering sys-

tem working, under controlled temperature, in a wavelength of 644 nm from Brookhaven

Instruments Corporation. A basic experimental setup is composed of a laser beam that

is aligned in the direction of the sample, passing through a polarizer to define the polari-

sation of the incident light before reaching it. After impinging the sample, the light can

interact with the dispersed particles and, if so, those last ones will emit radiation at the

27



same wavelength in all the directions, phenomenon known as elastic scattering, or even

called Rayleigh scattering for the visible light. This emitted radiation passes through an

analyser and the photons with the selected polarisation reach the detector, that is placed

in a determined position to quantify the radiation collected.

The detector can be placed in a goniometer, used to rotate this one around the sample,

allowing the observation of the intensity in different positions, changing this way the angle

between the propagation of the incident and the emitted light, also known as scattering

angle 2θ. The scattering angle can be converted into the scattering vector q, that is defined

as the modulus of the difference between the wave vectors of the scattered and the incident

light, respectively. This physical quantity allows one to compare data from different

scattering techniques, as it is “normalised” by the wavelength λ, and its magnitude can

be calculated by Equation 2.4 where n is the refractive index of the medium surrounding

the particles.

q =
4πn sin θ

λ
(2.4)

The information collected is stored in a correlator, that will correlate the fluctuations

on the intensity of the detected light at an instant t and an instant later t + τ . These

fluctuations are related to the movement of the particles between the respective instants.

For systems with a high polydispersity in size, as the dispersions of GO flakes, one can

describe the correlation function of the intensity as a function of τ using an stretched

exponential, given by Equation 2.5, where ∆ is the characteristic relaxation time, which

corresponds to the time for the position of the particles to loose the correlation with the

initial position, and the stretching exponent β, that is inserted to take into account the

dispersity.

C (τ) = exp

[
−2
( τ

∆

)β]
(2.5)

If the dispersion is diluted enough, the suspended particles will not interact with

each other, so their movement will be ruled by Brownian motion only. In this case, the

diffusion coefficient D of the particles can be related to the characteristic relaxation time

by Equation 2.6 for a given scattering vector.

1

∆
= Dq2 (2.6)

If the scattering angle is varied for a given sample, the evolution of the characteristic

relaxation frequency 1/∆ as a function of the scattering vector can be observed, whose

fitting will give a more representative value of D for the whole domain of accessible

q. From the Stokes-Einstein relation, the hydrodynamic radius RH of the particles is

obtained, that is given by Equation 2.7, where kB is the Boltzmann, T the absolute

temperature and ν the viscosity of the medium.
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RH =
kBT

6πνD
(2.7)

In the case of flat particles, like the GO sheets, the hydrodynamic radius can be

described as the hydrodynamic radius of a sphere that would have the same diffusion

coefficient. The bigger the particles, the bigger is the equivalent sphere, and we used this

property to the analysis that have been done during the study presented here. We did not

intended to determine the real size of the GO flakes using DLS, but it is possible to follow

the changes on the dimensions of this equivalent sphere when determined parameters are

changed. For a detailed theory of DLS one could check Berne and Pecora (2000).

2.4.4 Small Angle X-Ray Scattering

The Small Angle X-Ray Scattering (SAXS) is the main technique adopted to investigate

the systems studied in this thesis. Every experimental setup contains a source, which

produces x-rays that will be deviated in the direction of the sample, forming a beam

of x-rays. During this procedure, the photons with a well defined wavelength will be

selected, resulting on a monochromatic beam. As all the sources used in the experiments

carried out during this thesis were built with copper, the wavelength of the x-ray beam

is 1.5418 Å, which is the most intense wavelength produced by this material. The beam

passes then through slits that will eliminate divergent photons, so a collimated beam will

impinge on the sample, interacting with it.

Similar to what happens in light scattering experiments, the electrons on the sample

can absorb the x-ray radiation and, as it consists on an elastic scattering, also known as

Thompson scattering for the wavelength of x-rays, they will emit radiation with the same

wavelength in all directions. The x-ray experiments give information about the structure

of the sample in the atomic level, a scale that is smaller than what is obtained by light

scattering experiments, as the wavelength of x-rays is much smaller than the one of light.

The emitted photons will interfere with each other when reaching the detector, that

will collect this radiation. In all the different equipments used in this work, we used 2-

dimension detectors, so other types of detectors will not be discussed. The detector will

count the number of photons arriving on it and their positions, so we obtain a diffrac-

togram image at the end of the acquisition. After that, this image is integrated, which

means that the average number of photons detected for a constant distance to the centre

of the direct beam, over the whole azimuthal range, is calculated. This procedure trans-

forms the 2-D information in a 1-D curve, the intensity I as a function of the distance to

the centre or, in other words, the scattering angle 2θ. Using Equation 2.4, where n = 1 for

x-ray experiments, we can convert the scattering angle into scattering vector, obtaining

the curve of I as a function of q, which will be called spectrum.

The scattering curve contains information about the shape of the scattering units and

the interactions between them, if any. In the case of periodic structures, like a lamellar
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phase, the interference between the re-emitted radiation will provide peaks in the spec-

trum, that can be described by Bragg’s law. This law is based on Bragg’s condition, which

considers that the radiation emitted by subsequent layers, separated by an interplanar

distance d, will be summed up before reaching the detector, if the electromagnetic waves

are in phase, or will be cancelled, if they are out of phase. The waves will be in phase if

the path difference between the two of them is proportional to a multiple integer of the

wavelength. This phenomenon depends on the incidence angle and, consequently, on the

scattering angle. Bragg’s law allows one to determine the interplanar distance from the

position of the peaks in the spectrum, using Equation 2.8, where qi is the value of the

scattering vector for the peak of order ni (ni = 1; 2; 3 · · · ). For typical spectra of lamellar

phases, we can observe that q2/q1 = 2, q3/q1 = 3 and so on.

d =
2πni
qi

(2.8)

In the case of other structures, this relation is not true, but these structures will not be

discussed in this text. For more information concerning scattering techniques one could

see Lindner and Zemb (2002). However, a more detailed description of the theory of the

scattering curves of GO sheets and the obtained structures will be discussed in chapter 4.

Three different equipments were used during the work here presented and they will be

presented below.

1. Most of the diffractograms were recorded on a Bruker-SAXS Nanostar machine

equipped with a Hi-Star detector, also from Bruker (Karlsruhe, Germany). After

collimation, the incident beam size is 0.43 mm in both vertical and horizontal direc-

tions at the sample position. Two distances between the sample and the detector

are used, depending on the range of q wanted. The configuration called “small-

angle”, where the distance is 1.05 m, allows the access of scattering vectors from

0.01 Å−1 to 0.2 Å−1, and for the “large-angle” one, where the distance is 0.25 m, the

window is from 0.04 Å−1 to 0.8 Å−1. The calibration is done using silver behenate

as standard and from the Gaussian width of the first order Bragg peak we estimate

a resolution width (FWHM) of ∆q ≈ 5 × 10−2 Å−1 and ∆q ≈ 6.0 × 10−3 Å−1 for

the two configurations, respectively (Huang et al., 1993). The path between the

source and the detector is evacuated and the sample temperature, kept at 20 ◦C for

our experiments, is controlled by a water circulation system. Acquisition times are

in the order of 5 hours.

2. To have access to even higher scattering vector values, technique known as Wide

Angle X-Ray Scattering (WAXS), a custom-made instrument with a rotating an-

ode from Rigaku (Tokyo, Japan) and a mar345 image plate detector (marXperts,

Norderstedt, Germany) is used. The distance between the sample and the detector

is 0.15 m, also calibrated with silver behenate, giving access to q ranging from
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0.5 Å−1 to 3.3 Å−1. Only the path between the source and the sample is evacuated

and the temperature is controlled by the air-conditioning in the room. Acquisition

times are in the order of 1 hour.

3. For very specific measurements, that will be discussed in chapter 4, a Nanostar

equipment located in the Institute of Physics of the University of São Paulo (Brazil)

was used. The machine operates with a Vantec-2000 detector from Bruker, and

a Genix3D source with a FOX3D focusing system, both from Xenocs (Sassenage,

France). The sample to detector distance is 0.67 m, giving a q range from 0.01 Å−1

to 0.35 Å−1. The path between the source and the detector is evacuated and the

sample temperature, kept at 20 ◦C for our experiments, is controlled by a water

circulation system. The final curve is obtained with the average of 10 frames of 30

minutes each.

Those techniques will help to characterise the aqueous graphene oxide dispersion. In

the next chapter, the results of these experiments will be presented and, exploiting all

the presented information, we can interpret them to better understand the investigated

system.
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Chapter 3

Highly concentrated dispersions of

graphene oxide

3.1 Characterisation of the GO sheets

As briefly described in section 1.2, in order to reach the objectives proposed in this thesis,

we started studying the binary system composed of GO sheets dispersed in water. Differ-

ent sources of GO were tested, in particular, dried forms of GO layers, which were obtained

as films or powder, this last one the result of the lyophilisation of a diluted solution. The

advantage of using dried forms is a better–and easier–control of the concentration of the

prepared dispersion when water is added to the sample.

Because of its porous form, we observed that it is easier to hydrate the GO powder

than hydrating the film. However, it is possible to observe particles, which can be seen

with the naked eye, suspended in the dispersions prepared with both sources. These

grains are presumably formed by GO sheets that aggregated when the material was dried

and cannot be separated by a simple hydration, so the heterogeneous dispersions were

submitted to an ultrasonic treatment to “break” these aggregates.

After sonication, the aggregates are no longer visible with the naked eye, which sug-

gests that the larger aggregates were separated into monolayers that are dispersed in the

solvent. However, a secondary effect observed after the sonication of the dispersions (as

monitored by DLS) is a decrease in the average lateral size of the “free” sheets. These

samples were also observed under POM and, for these observations, the samples can be

prepared in two different ways, depending on their concentrations.

1. For diluted GO dispersions (mass fraction around 10 mg/mL and below), microslides

with a constant optical path varying from 0.2 mm to 0.8 mm are soaked into the

dispersion. By capillary forces, the sample will fill the microslide and the ends of

the microslides are flame sealed to avoid evaporation of water.

2. For more concentrated (significantly more viscous) dispersions, the samples are sand-

wiched between a microscope slide and a cover slip, both in glass, and then sealed

33



with UV-curing glue to prevent the evaporation of water. In this case, the optical

path is not constant, but is estimated to be smaller than 0.01 mm.

The POM images obtained for two of the dispersions prepared with the lyophilised

powder at different concentrations are shown in Figure 3.1. It is possible to observe the

presence of GO aggregates even after the sonication procedure and, as one can expect,

the higher the concentration, the higher the amount of these aggregates in the sample.

(a) Concentration of 4 mg/mL. (b) Concentration of 20 mg/mL.

Figure 3.1 – POM images of aqueous dispersions prepared with lyophilised GO. The scale bars are equivalent to 100 µm.

Considering these results, we concluded that, for the work to be developed in this

thesis, the dispersions prepared from dried sources of GO are not convenient, because of

the presence of aggregates. For this reason, we tested another source of GO sheets, which

consists on a solution commercialised by Graphenea company (San Sebastian, Spain).

The commercial dispersion presents a nominal concentration of 4 mg/mL with more

than 95% of carbon monolayers, containing an amount between 41 and 50% of oxygen

atoms (Graphenea, 2014). The presence of these oxygen groups gives an acid character

to the solution, with a pH in the order of 2.4. According to the provider, the dispersion is

produced using Hummers and Offeman’s method (1958), which provides a large amount

of graphene layers with a high polydispersity in size. In order to compare this source

of GO sheets with the dried ones, we have also observed the solution in POM and the

obtained images are shown in Figure 3.2.

This time, no aggregates are observed in the sample, as one can see in the image

obtained in direct observation (Figure 3.2a). From the image obtained with crossed po-

larizer and analyser (Figure 3.2b), we can observe the presence of birefringence, indicating

a certain level of organisation in the system.

To better characterise the commercial dispersion, TEM images of the GO sheets were

obtained and are shown in Figure 3.3. The samples are prepared by diluting the commer-

cial GO dispersion and depositing a small quantity in a copper grid coated with Formvar R©
and carbon. The grid is then placed in a vacuum chamber for the water to evaporate at

room temperature. This procedure allows to obtain a very thin sample, a condition that
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(a) Direct observation. (b) Crossed polarizer and analyser.

Figure 3.2 – POM images of commercial GO aqueous dispersions. The scale bars are equivalent to 100 µm.

is necessary for the experiment.

(a) Commercial dispersion diluted 50x. (b) Commercial dispersion diluted 75x.

Figure 3.3 – TEM images of GO sheets. The scale bars are equivalent to 2 µm.

The TEM experiments show the presence of monolayers and, as already mentioned,

these GO layers are very polydisperse. In the image obtained for the commercial dispersion

diluted 50x (Figure 3.3a), it is possible to observe large sheets, with a maximum length

of ≈ 10 µm and a few smaller ones, with a maximum length no larger than 1 µm.

As the shape of the layers is not regular, it is difficult to determine their sizes, however,

we can consider the maximum length of a layer as its lateral size. A few grids from the

same dispersion were observed in TEM and the images analysed, so the distribution of

sizes over almost 200 GO sheets can be obtained, as showed in Figure 3.4.

To have a more quantitative analysis of the dimensions of the GO sheets, we can

consider a log-normal distribution for the size of the GO layers. From the fitting, we

obtain a mean size of 2.3 µm, with a standard deviation of 2.2 µm. The median value

35



0 2 4 6 8 10 12

Size (µm)

0.00

0.05

0.10

0.15

P
ro
b
a
b
il
it
y

Figure 3.4 – Probability distribution and probability density function of the size of GO layers.

is 2.7 µm. These results confirm the high polydispersity in size of the GO sheets. The

average size found is compatible with the information provided by the company.

Another technique useful to characterise the dimensions of particles in suspension

is DLS. In Figure 3.5, the obtained results for the characterisation of the commercial

dispersion using this technique are shown. For this study, two batches of commercial

dispersion were used. The dispersion is diluted 100 times, reaching a concentration around

40 µg/mL, to have a condition where the interactions between the sheets are negligible.

Figure 3.5a shows the correlation functions obtained in three different scattering angles

for one of the analysed batches of GO dispersion. One can observe that the stretched

exponential model that was presented in subsection 2.4.3, describes adequately the curves.

From the fittings of each one of the correlation functions for the two batches, the extracted

parameters are plotted in Figure 3.5b and Figure 3.5c.

One can observe from the curves fitted in Figure 3.5b that 1/∆ is proportional to

q2, which means that the conditions to have only Brownian motion are valid and an

average hydrodynamic radius can be determined for the GO layers. From the diffusion

coefficient and the Stokes-Einstein relation, considering the experimental conditions, the

hydrodynamic radii are calculated and we obtain 0.74 µm and 1.22 µm for each one of

the batches.

We do not intend to discuss in this work the quantitative relation between the hydro-

dynamic radius of a flat, not necessarily rigid particle of irregular shape and its effective

lateral size. However, we can notice that the obtained values by the scattering technique

are close to the one obtained by TEM distribution. Another important information that

can be extracted from the experiment is the value of the exponent β, that indicates how

much stretched is the fitted exponential. In Figure 3.5c one can observe that this param-

eter decreases as the scattering angle increases, with values varying from 0.71 to 0.88,
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(a) Correlation functions of a GO dispersion fitted with the stretched exponential model for three different scattering angles.
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(b) Characteristic relaxation frequency as a function of the scattering vector for two batches of commercial GO dispersions.
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Figure 3.5 – DLS results for GO dispersions.

37



which also indirectly demonstrates that the dispersions are polydisperse.

These findings show that the DLS technique can give a comparative information about

the dimensions of the layers for different suspensions, with the advantage of increasing

substantially the statistics of the analysis. This can also help to characterise the evolution

(ageing) of a given dispersion.

We have observed that the GO layers tend to reduce when exposed to light or high

temperatures. When this happens, the layers are no longer fully dispersible in water and

two of the observable consequences of this phenomenon are: the increasing in the viscosity

of the sample and the formation of aggregates. For this reason, three different ways of

storing the samples were tested by DLS and they are described below.

1. The commercial dispersion is stored for ageing and a specimen is diluted to the

appropriate concentration, just before the experiment to be carried out.

2. The commercial dispersion is diluted to the appropriate concentration for the ex-

periment and stored for ageing.

3. The commercial dispersion is concentrated (see section 3.2) and stored for ageing.

A specimen is diluted to the appropriate concentration just before the experiment

to be carried out.

In order to control the ageing of the GO dispersions and evaluate the best way to store

the samples, the DLS experiments were carried out to investigate their evolution in time

and the results are presented in Figure 3.6.
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Figure 3.6 – Evolution of the GO layers hydrodynamic radii obtained from DLS for the commercial (◦), diluted (�) and
concentrated (4) dispersions stored for ageing.

It is possible to observe that changing the storage condition (always avoiding direct

light, and at room temperature) does not interfere in the obtained results, which means
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that the presented conditions are equivalent from the DLS characterisation. The DLS

experiments also show no significant ageing after two months.

All these results show that the commercial dispersion is a convenient source of GO

for our experiments. Nevertheless, it has a very low concentration for the work to be

developed and, for this reason, a procedure to concentrate the dispersions, keeping the

properties of the GO layers, had to be developed.

3.2 Preparation of highly concentrated GO disper-

sions

In order to obtain highly concentrated samples from the commercial dispersion, we had

to develop a procedure that keeps the GO sheets hydrated throughout all the steps, as

we already showed that dried sources are not appropriate for the objectives of this thesis.

The first step of the procedure consists on centrifuging the sample at 1400g for about

20 minutes, with the objective of diminishing the possibility of finding large aggregates

in the samples, if any. After this procedure, the supernatant is recovered and the pellet

material, where the large particles are deposited, is discarded.

The recovered dispersion is then ultracentrifuged at 302000g for typically 5 hours.

This time, the bottom phase, consisting on an almost black viscous paste, is recovered

and the supernatant, consisting on almost only water, is discarded. We have verified that

for longer centrifugation durations, no increase in the final concentration is observed and,

as the maximum speed of the ultracentrifuge was reached, it is not possible to concentrate

even more the dispersions using this method. The concentrated dispersions are stored in

closed tubes at 4◦C for one week, in order to homogenise the samples. In Figure 3.7 we

show POM images obtained for a concentrated GO dispersion.

(a) Direct observation. (b) Crossed polarizer and analyser.

Figure 3.7 – POM images of a concentrated GO aqueous dispersion. The scale bars are equivalent to 100 µm.

It is possible to observe that the obtained images, though with a much smaller optical

path, are very similar to the ones obtained for the commercial dispersion before the
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concentration procedure. This means that even after an ultracentrifugation, no large

aggregates are formed and the sample is still birefringent.

After homogenisation, a new step to obtain even more concentrated dispersions starts.

A device consisting on a diaphragm pump connected to a pressure controller and a des-

iccator, designed in the laboratory and showed in Figure 3.8, is used to concentrate the

dispersion.

Figure 3.8 – Device developed in the laboratory to dehydrate aqueous GO dispersions. From the left to the right: vacuum
pump, pressure controller and vacuum chamber.

Small tubes containing the concentrated dispersion are opened and placed into the

vacuum chamber, where the pressure is kept constant at 300 mbar and at room tempera-

ture, controlled by an air conditioning system regulated to 22◦C, to avoid the aggregation

of the sheets due to thermally-induced reduction of the GO layers. Note that exposure

to direct light is also avoided in our device. In these conditions, the water will slowly

evaporate and, as a consequence, the concentration of the dispersion will increase.

The mass loss is controlled by stopping the evaporation, closing the tubes and weigh-

ing the samples. A few cycles of (mild) centrifugation can be applied, if necessary, to

homogenise the sample during this step. The procedure of dehydration is considered to

be completed when there is no more variations in the mass of the sample.

The remaining water molecules are strongly bounded to the GO layers: a few “dry”

samples have been submitted to even lower pressures, but no mass changes were observed,

which means that the dispersion reached its driest state accessible with our setup.

From SAXS experiments (see subsection 2.4.4 and section 3.3) it is possible to obtain

the lamellar periodicity of the GO dispersion for variable amounts of water. With this

information and using Scholz and Boehm (1969) calibration curve (Figure 2.2), one can

determine the water amount in the sample and calculate, retrospectively, the initial GO

mass fraction. The evolution of the GO mass fraction as a function of the dehydration

time for three of the dispersions is shown in Figure 3.9.
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Figure 3.9 – GO mass fraction as a function of the dehydration time in the vacuum chamber for three samples.

We observe that the amount of GO in the driest accessible sample is a little higher

than 70% in mass. A small variation in the initial concentration of the three analysed

dispersions is observed and we can estimate the mass fraction of a ultracentrifuged GO

dispersion to be fm = 0.160 ± 0.015.

In addition, a fully dehydrated sample was rehydrated, until it reached the initial

mass fraction after ultracentrifugation, with the objective of comparing the properties of

the ultracentrifuged dispersion before and after the dehydration procedure. After waiting

one week for homogenisation, the redispersed sample was observed under POM and the

obtained images are equivalent to the ones showed in Figure 3.7, for the ultracentrifuged

dispersion, revealing the absence of aggregates and an optically anisotropic sample. Both

samples were also investigated by SAXS and the obtained spectra are shown in Figure 3.10.

One can see that the maximum values of intensity from each curve differ, which is

probably due to the correction procedure and experimental artefacts (see section 3.3).

However, the shapes of both curves are very similar, with a peak at practically the same

position, which means that the systems have the same lamellar periodicity, given by

Equation 2.8, i.e. d ≈ 6.5 nm.

All the observations reported in this section show that the procedure to obtain highly

concentrated aqueous GO dispersions, developed during this thesis, is very efficient and

chemical modifications, if any, on the GO layers are not significant during the drying

process. The obtained dispersions are free of aggregates, which is not the case for dried

samples, and the concentration procedure is completely reversible presumably because

the sample does not reach the driest state. The production of these samples allows the

access to an unexplored confined regime of this system, which can now be investigated.

41



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

q (Å−1)
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Figure 3.10 – SAXS spectra of an ultracentrifuged (•) and a rehydrated (�) GO dispersion at the same final concentration.
Data shifted vertically for a better visualisation.

3.3 Structural characterisation of highly confined GO

sheets in water

For the characterisation of the phases obtained with highly concentrated aqueous GO

dispersions, ultracentrifuged samples were separated in different tubes that were placed

in the vacuum chamber, following the procedure already discussed in the previous section.

Each one of the tubes was removed from the desiccator after different durations, providing

samples with concentrations varying along the dehydration curve. In addition, a few

samples were prepared by diluting the ultracentrifuged dispersion, in order to obtain less

concentrated samples, but with a higher GO mass fraction than the commercial dispersion.

After homogenisation of the prepared samples, they were observed in POM. For highly

dehydrated samples, it was not possible to obtain thin enough samples that remained too

opaque for the observations. However, samples containing up to 50% of GO in mass were

always birefringent, indicating a certain level of organisation in the system, and clear

images indicated the absence of aggregates.

All the prepared samples were also analysed by SAXS, which is the main technique

used in this thesis to characterise the organisation of the GO layers in the system. In

addition to the different equipments used for the measurements (see subsection 2.4.4), the

experiments were also carried out in two different conditions, which are described below.

1. For dispersion less concentrated than fm = 0.15, the sample is inserted directly

into a quartz capillary with nominal diameter of 1.5 mm. The capillary can be

softly centrifuged for the sample to reach the bottom and it is flame sealed to avoid

evaporation.
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2. For more concentrated dispersions, the sample is inserted in a support of stainless-

steel that is introduced into a quartz capillary with a nominal diameter of 2.5 mm.

The support has a cylindrical shape, measuring 2.0 × 20.0 mm, with a circular

hole, in the perpendicular direction to the long axis of the cylinder, for the sample

to be spread, measuring 1.3 mm of diameter. The capillary is flame sealed to avoid

evaporation.

Besides the conditions of preparation of the capillaries, there is no difference between

the experiments carried out with a diluted or a concentrated sample. The SAXS mea-

surements are then performed for each one of the samples and selected, but representative

results are shown in Figure 3.11.

In Figure 3.11a and Figure 3.11b, the typical 2D diffractograms of dehydrated disper-

sions are presented. It is possible to observe a slight orientation in the images, probably

due to the shear applied to the sample when the capillary or the cylinder support are

filled. The images are azimuthally averaged and the curves of intensity as a function of

the scattering vector are obtained.

Nevertheless, the scattered radiation contains information not only from the GO

sheets, but also from the solvent and the capillary. In order to remove these undesired

informations from the curves, a correction procedure is implemented. A spectrum of the

capillary filled with the solvent (or an empty capillary for the highly dehydrated samples)

is obtained and its intensity subtracted from the intensity of the ensemble.

The final intensity If as a function of q is obtained using Equation 3.1, where Is and

Ib are, respectively, the intensities of the sample and background and fc is the correction

factor, which is defined as the maximum value for the intensity curve to be strictly positive.

If (q) = Is (q)− fcIb (q) (3.1)

In Figure 3.11c and Figure 3.11d, the plots of corrected spectra obtained for some

of the dehydrated samples are presented, those being vertically shifted to facilitate the

visualisation. Between both groups of curves, the setup was changed to allow the access

of different ranges of q, depending on the concentration of the samples.

One of the first things that can be observed is the plot of the curves in the Kratky

representation, which is obtained by drawing Iq2 as a function of q. This particular

way of exhibiting the data highlights the decrease of the intensity proportional to 1/q2,

characteristic of flat particles with random orientation, which is the case of GO sheets in

suspension.

It is also possible to observe the presence of at least one peak of intensity in each curve

and, the higher the concentration of GO in the dispersion, the higher is the position of the

peak in scattering vector. Besides, a behaviour that is evidenced in Figure 3.11d is the

broadening of the peaks with the dehydration, specially for intermediate samples, while

this behaviour is reversed when the maximum concentration limit is approached.
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(a) Diffractogram of a dispersion with fm = 0.04.
Intensity is in log scale.

(b) Diffractogram of a dispersion with fm = 0.16.
Intensity is in log scale.
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(c) Spectra in a smaller range of q for dispersions with fm: 0.04 (◦), 0.07 (•), 0.10 (�) and 0.14 (�).
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(d) Spectra in a larger range of q for dispersions with fm: 0.12 (◦), 0.16 (•), 0.21 (�), 0.26 (�), 0.38 (4) and 0.62 (N).

Figure 3.11 – SAXS results of dehydrated GO dispersions. Data shifted vertically for a better visualisation.
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The spectra of the less concentrated dispersions, for both configurations, show the

presence of two peaks, whose positions follow Bragg’s condition given by Equation 2.8,

indicating that the GO sheets are organised in periodically stacked layers, which charac-

terises a lamellar phase. The second order peak, that is barely seen in more dehydrated

samples, disappears when the first order peak gets broader, even if its eventual position

is still visible in the q range investigated.

However, the upper limit in q with the NanoStar set-up is smaller than the expected

position of the second order peak for the very dehydrated samples. For this reason, the

most concentrated sample, with fm = 0.79, was analysed in a much larger window of

observation and its spectrum is shown in Figure 3.12.
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Figure 3.12 – X-ray scattering spectrum of the driest GO dispersion with fm = 0.79.

We can observe the presence of the first order peak at q = 0.85 Å−1, which gives

a lamellar periodicity of 7.4 Å. The second order peak is also visible, although weak in

intensity, at q = 1.71 Å−1, corresponding to what is expected from Bragg’s condition for

a lamellar phase.

A hump is observed at q ≈ 2.6 Å−1, whose origin is presumably due to the correction

procedure and experimental artefacts. In addition, another strong peak is observed at

q = 2.96 Å−1, which is related to the distance between the nearest neighbour carbon

atom dCC in the graphene layer. From the relation given by Equation 3.2, we obtain a

distance of 1.4 Å, which is compatible to the value obtained from the literature for dCC

(see section 2.1).

√
3dCC =

4π√
3q

(3.2)

These observations show that, even after a high dehydration, the GO sheets are still

organised in periodically stacked layers and the structure of the graphene in the plane of

the layers is conserved. The curve obtained for the driest samples can be compared to
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the one obtained for the natural graphite (Graflake 99550 - Nacional de Grafite LTDA,

Brazil), which is shown in Figure 3.13.
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Figure 3.13 – X-ray spectrum of natural graphite.

Is is possible to observe the characteristic peak of the nearest neighbour carbon atoms

dCC in the graphene layer plane and a sharp peak at q = 1.87 Å−1, corresponding to a

lamellar periodicity of 3.36 Å, which is very close to the spacing between the graphene

layers in the graphite. Two other small peaks are observed, probably due to impurities

in the sample.

The results shown above confirm that the organisation of the driest GO sample is

very similar to the one of graphite. The layers have the structure of graphene with an

interlayer spacing two times higher than the spacing in graphite, which is probably due to

the oxygen groups in the surface of the graphene oxide and the remaining water molecules,

corroborating the observations for the dehydration curve.

Considering that the GO aqueous dispersion is organised in a lamellar phase through-

out all the dehydration curve, it is possible to determine the periodic spacing of the

lamellar phase as a function of the concentration. Moreover, we can compare the be-

haviour of the lamellar structure with the ideal swelling law of lyotropic smectic liquid

crystals, converting the GO mass fraction into GO volume fraction.

The conversion can be done using the mathematical relation given by Equation 3.3,

where ϕ is the GO volume fraction, fm the GO mass fraction and ρg and ρw the GO and

water densities, respectively.

ϕ =
1

1 +
(

1
fm
− 1
)

ρg
ρw

(3.3)

From the SAXS spectra obtained for all the dehydrated samples, it is possible to

determine the position of the Bragg’s peaks and, using the relation given by Equation 2.8,
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calculate the lamellar periodicity d for each one of the curves. Additionally, with the

conversion of the concentration in volume fraction ϕ, we can plot the curves of d as a

function of 1/ϕ, as presented in Figure 3.14.
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Figure 3.14 – Lamellar periodicity as a function of the inverse volume fraction for GO dispersions. Inset: idem for the whole
investigated dilution range. The dashed line corresponds to the swelling law expressed by Equation 2.3, with δ = 0.39 nm.

One can observe that the ideal swelling law, given by Equation 2.3, convincingly

describes the global behaviour of the GO dispersion. This observation shows that, in

the conditions here presented and in the range of concentration investigated, this system

can be considered as a lyotropic liquid crystal, with the formation of smectic mesophases

(see section 2.3). This phenomenon is schematically represented in Figure 3.15.

Hydration

Figure 3.15 – Schematic representation of the swelling of GO sheets lamellar structure. The amount of solvent increases
from the left to the right.

The fitting, using the dilution law in the whole range of available volume fractions,

gives a slope of 0.39 nm, which corresponds to the geometrical thickness of the GO layers.

This value is very close to the one obtained for the thickness of a graphene layer, which

shows that this method is consistent with previous observations.

Nevertheless, making a zoom in the concentrated domain of the GO aqueous disper-

sions, we observe marked irregularities, and even a disparity in the dilution curve when ϕ

is close to approximately 0.14. The gap on the swelling curve corresponds to the domain
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at which the broadening of the first order peak in the SAXS spectra is observed, indicat-

ing a possible structural phase transition. This transition remains to be characterised in

details.

The results obtained with the SAXS experiments showed that, for a small domain

of concentrated aqueous GO dispersions where the peaks get broader and the ratio be-

tween the intensities of the first and second order peaks decreases, a structural transition

probably takes place. Still, this system forms a periodically stacked structure throughout

the whole studied dilution range, globally following the characteristic swelling law of ly-

otropic liquid crystals. After investigating the structure of the system, we can study the

interactions that stabilise the lamellar organisation.

3.4 Effect of salt on interactions between GO sheets

As already mentioned, the swelling observed for lamellar phases of GO is a common

phenomenon for layered systems like self-assembled bilayers of surfactants. This behaviour

is controlled by the balance of the direct interactions between the layers and within the

layers with the entropic penalty of layers being ordered. When water is added to the

system, the layers get apart from each other, due to the direct, if any, or effective (entropy-

driven) repulsive interactions. An equilibrium along the dilution line, with excess water

coexisting with the lamellar stack may be reached if the attractive (van der Waals) and

repulsive forces become balanced.

Steric repulsive interactions, from the configurational entropy associated to undula-

tions of the GO sheets, and electrostatic repulsion have already been evidenced in the

literature. In particular, in order to evaluate the importance of electrostatic interactions

and monitor their relative weight in the balance, an easy and common method is adding

salt to the samples, changing the ionic strength in the system.

The salt used for our experiments is NaCl and the samples are prepared diluting

the ultracentrifuged dispersion in a saline solution with different concentrations, at the

same final GO mass fraction. The nominal salt concentrations cs range from 10−5 M to

≈ 10−1 M, covering a wide range of ionic strength.

Two series of samples, with final mass fractions of fm = 0.014 and fm = 0.043 each,

were prepared with different NaCl solutions in the whole domain of available concentra-

tions and, after homogenisation, were analysed by SAXS. The results of the experiments

for a few samples are presented in Figure 3.16.

One can observed that, for both series of samples, the curves for systems less charged

in salt have two peaks, which are related to the lamellar order in the sample. These

results could be expected, as the system is not very different from the one investigated

in the dilution curve observed with no salt. However, different observations are made for

each one of the series when the ionic strength is increased.

For the less concentrated dispersions (Figure 3.16a), it is possible to observe that the
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(a) GO mass fraction fixed to fm = 0.014. Salt concentrations cs = 1 × 10−5 M (◦), 1 × 10−4 M (•), 1 × 10−3 M (�),
1× 10−2 M (�), 1× 10−1 M (4). Data shifted vertically by amounts allowing a better visualisation.
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(b) GO mass fraction fixed to fm = 0.043. Salt concentrations cs = 1 × 10−5 M (◦), 5 × 10−4 M (•), 1 × 10−2 M (�),
4× 10−2 M (�), 1× 10−1 M (4). Data shifted vertically by amounts allowing a better visualisation.

Figure 3.16 – SAXS spectra in the Kratky representation for GO aqueous dispersions with two constant mass fractions fm
differing in salt content cs.
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first order peak significantly moves towards higher values of q when salt is added to the

system, indicating a decrease in the distance between the GO layers. In addition, we can

notice a broadening in this peak, until it practically disappears for high salt concentrations.

Broadly equivalent results are obtained for the more concentrated series, as shown

in Figure 3.16b, however, the first order peak does not change its position for low amounts

of NaCl, indicating a constant lamellar periodicity. When the number of ions is increased,

though, a characteristic concentration c∗s is reached where the periodicity starts to decrease

and, for even higher salt concentrations, the peak is not visible anymore.

The same effect is observed in Xu and Gao (2011b), a decreasing in the stacking

period with the increasing in the amount of salt. Closely related systems had already

been studied, giving similar results(Gabriel et al., 2001; Michot et al., 2006).

The GO dispersions in saline solution were observed in POM and the images of two of

the samples are shown in Figure 3.17. The chosen salt concentrations for these samples

delimit the transition before and after the disappearance of the first order peak of the

lamellar phase.

It is possible to observe in the sample with more ions (Figure 3.17c) the presence of

large aggregates that are not observed in the less charged sample (Figure 3.17a). This

result shows that the formation of GO aggregates is directly related to the disappearance

of the peak characteristic of the lamellar phase.

Therefore, we can determine the periodic distance of each one of the systems before

the lost of the lamellar organisation as a function of the salt concentration. The obtained

results are presented in Figure 3.18.

The obtained curves show that before reaching a critical salt concentration c∗s, the

lamellar organisation is stable and, for more charged samples, d starts to decrease until it

reaches a minimum value where the layers start to aggregate, losing the lamellar structure.

These results put in evidence the importance of the repulsive electrostatic interactions

for the stabilisation of the lamellar structure of GO sheets. The presence of salt screens

these interactions and the ratio between the intensity of all the repulsive contributions and

the attractive ones starts to decrease, making the GO layers to attract each other. The

effect of this changing in the balance of the interactions is the decreasing in the distance

between the GO sheets, up to the point where the aggregates are formed.

It is important to highlight that, when the lamellar period starts to decrease, part

of the solvent present in between the GO sheets is expelled from the lamellar structure,

forming a new phase composed of solvent in excess. In these conditions, a biphasic domain

is obtained, with a lamellar stacking of GO sheets coexisting with solvent in excess.

One can also notice that c∗s is directly dependent on the GO mass fraction, which

means that the higher the GO mass fraction fm, the higher the number of ions needed to

reach the balance point in screening the electrostatic interactions.

The results presented in this chapter have been published in Rubim et al. (2018),

where a deeper discussion concerning the stability of this system is presented. The full
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(a) 1× 10−2 M of NaCl in direct observation. (b) 1× 10−2 M of NaCl in crossed polarization.

(c) 1× 10−1 M of NaCl in direct observation. (d) 1× 10−1 M of NaCl in crossed polarization.

Figure 3.17 – POM images of the GO dispersions prepared at fm = 0.043 with different NaCl concentrations. The scale
bars are equivalent to 100 µm.
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Figure 3.18 – Lamellar periodicity as a function of the NaCl concentration for GO mass fraction of: fm = 0.014 (◦),
fm = 0.043 (�).
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article is available in Appendix A.

After a qualitative characterisation of the structure of GO dispersion and the stabil-

ity of the system, we can try to extract more quantitative information from the SAXS

experiments, using adapted models to describe the experimental data.
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Chapter 4

SAXS models for graphene oxide

dispersions

4.1 Absolute scale normalisation

The curves obtained from scattering experiments, like SAXS, contain valuable information

about the investigated system. Using adapted models to describe how the radiation will

interact with the sample, it is possible to fit the experimental data and obtain quantitative

parameters to describe the scattering units and their organisation.

However, to have access to specific information, molar mass for instance, about the

particles, it is necessary to normalise the scattered curves to obtain the intensity in abso-

lute scale. This normalisation is completely dependent on the equipment used and on the

conditions at which the experiments are carried out. As mentioned in subsection 2.4.4,

the experiments presented in this chapter were performed at the Institute of Physics of

the University of São Paulo (Brazil).

Absolute calibration is very useful for interpreting the data, because it relates the in-

tensity of the scattered radiation with the scattering cross section of the system, providing

a curve that is independent on the experimental setup and conditions of the experiment.

This normalisation of the scattered curves allows the comparison with the curves obtained

in different ranges of q or even with curves obtained by other scattering techniques. Be-

sides, as mentioned above it is possible to determine the molar mass of the scattering

particles and to detect interactions between particles in diluted dispersions (Lindner and

Zemb, 2002).

This normalisation can be performed using a standard sample with known differential

scattering cross section. Therefore, two experiments are necessary for the calibration:

the measurement of the scattering of the standard sample and the measurement of the

scattering of the same empty sample holder in the same conditions. The information from

both are necessary because the intensity of the sample holder has to be subtracted from the

one obtained for the standard sample. In our case, we use as standard sample the water
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at 20◦C, whose theoretical scattering cross section per unit volume equals 0.01632 cm−1

(Orthaber et al., 2000), and a capillary in quartz.

In addition, the intensities of the noise in the experimental setup, mostly due to

the electronics in the machine, and the shadow in the detector, generated by the beam

stopper, are also measured. The exactly same capillary is used for the calibration and

for the experiments, assuring constant conditions of acquisition, like the sample path and

thickness of the capillary walls.

With all the obtained information and the results of the analysed samples, the nor-

malised experimental data can be obtained using the expression given by Equation 4.1,

where I, Φ, T , t and dΣ/dΩ are, respectively, the measured scattered intensity after in-

tegration, the intensity of the incident beam, the transmission of the sample, exposition

time and the theoretical scattering cross section. The indexes t, s, b, n, sh and w indicate,

respectively, the treated result, the sample, the background, the noise, the beam stopper

shadow and the water.

It (q) =

{[
Is (q)

ΦsTsts
− Ib (q)

ΦbTbtb
− In (q)

tn (ΦsTs − ΦbTb)

]
1

Ish (q)

}
dΣ/dΩw

I (0)w
(4.1)

As an example of the correction procedure, one can observe in Figure 4.1 the curves

of the intensity as a function of the scattering vector for a GO dispersion and water,

which correspond to the scattering of the sample and the background, respectively, and

the obtained final corrected curve. The intensity of the corrected curve is normalised

in absolute scale, contrary to the other curves. The representation in arbitrary units is

convenient for comparing the spectra. It is possible to notice that the treatment brings

out the wanted information, as the peaks are clearer after the correction procedure.
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Figure 4.1 – Spectra obtained for the background (4), for the sample before the correction (�) and the result after the
treatment (◦).

The data normalisation is performed using the SUPERSAXS package (Oliveira and
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Pedersen, Unpublished). After this procedure, the data can be interpreted and, from the

fittings using models that describe the analysed system, the parameters that characterise

the spatial configuration of the units and their shape can be obtained. This theoretical

description of the SAXS experiments will be discussed in the next section.

4.2 Principles of SAXS theory for disk-like objects

In many situations, the intensity of the scattered radiation by unoriented samples made

of thin, but elongated plate-like objects (“flat disks”) can be considered as proportional

to the product of two terms describing the investigated system: the form and structure

factors. For this reason, the intensity I as a function of the scattering vector q can

be expressed by Equation 4.2, where A is a normalising constant and c a background

constant. P (q) and S (q) represent, respectively, the form and structure factors, which

will be detailed below (Kratky and Porod, 1949).

I (q) = A
2π

q2
P (q)S (q) + c (4.2)

As mentioned in subsection 2.4.4, the interaction between the X-ray radiation and the

matter depends on the contrast electron density of the investigated system. The scattering

patterns that will be detected are related to the inhomogeneities of the electron density in

the particles, if any, and also the difference between the particle itself and the surrounding

medium. The sum of the amplitude of all the scattered waves that reach the detector in

a given position is dependent on the shape of the system that has been irradiated. The

square of this sum is called from factor P (q) of the particle.

For this reason, as the name may indicate, the form factor contains information about

the form of the scattered system. The factor sense comes from the fact that, as already

mentioned, it has to be scaled with a constant in order to match the experimental intensity

units. Using the inverse of a Fourier transform, and disregarding ambiguities related to

the so-called “phase problem” it is possible to obtain the electron contrast density profile

of a particle from its form factor.

The ideal situation to obtain the form factor of a sample is when the particles are

identical in shape and size and they do not interact, which is the case for diluted dis-

persions. In these conditions, the obtained scattering pattern is proportional to the form

factor of a single particle multiplied by the number of illuminated units. However, if the

investigated sample presents any kind of polydispersity, the obtained form factor will be

proportional to the average form factor of all the illuminated particles.

Therefore, it is possible to obtain the form factor of a GO layer in order to have access

to the parameters that will describe their shape and electron distribution. The simplest

model that can be adopted to the GO sheets, which can be seen as flat particles, ideally a

mono-atomic sheet of carbon atoms, is to consider the layers as infinite planes with zero
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thickness, resulting in a form factor that is not dependent in q and equals to 1.

Although this approximation is reasonable for our system in the investigated range

of scattering vector, it does not provide information about the shape of the GO layers.

For this reason, another model can be proposed, which consists on considering the GO

sheets as layers with a constant thickness and homogeneous electron density. The form

factor of this kind of particles can be expressed by Equation 4.3, where ∆ρ is the constant

electron density of the layers relative to the background electron density and δ is its

thickness (Kratky and Porod, 1949).

P (q) =
4

q2
∆ρ2 sin2

(
q
δ

2

)
(4.3)

Nevertheless, a more complex model for the distribution of the electron density of the

GO layer can be proposed, trying to better represent the observed results. Considering

that the electron density is not constant along the perpendicular axis to the plane of the

sheets, due to the presence of oxygen groups in the surface of the GO layer, the electron

density profile can be described by the presence of steps, which will result in the form

factor given by Equation 4.4, where the indexes i and o represent the inner and outer

parts of the layer, respectively, and ∆ρ and δ are, respectively, the electron density of

the layer relative to the background electron density and half of its length (Nallet et al.,

1993).

P (q) =
4

q2
{∆ρo [sin (q (δo + δi))− sin (qδi)] + ∆ρi sin (qδi)}2 (4.4)

A schematic representation of the electron density profile of the GO layers obtained

from the form factors of both models is shown in Figure 4.2.
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Figure 4.2 – Schematic electron density profile ρ along the perpendicular direction to the GO layer z for: the constant
model (Equation 4.3) in the left and the model in steps (Equation 4.4) in the right.

Even though the form factor is obtained for diluted samples, when the concentration of

units in the dispersion starts to increase, the distances between neighbour particles become
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comparable to the particle size: The overlap concentration is reached. In the case of

very anisometric particles–as suggested by Onsager’s analysis of the isotropic-to-nematic

transition for elongated rods, for instance–the overlap concentration remains low. Though

not yet “dense”, but “semi-dilute” as commonly expressed, the system shares features with

truly dense systems: The interference pattern obtained will contain information not

only about the shape of the particles, but will also comprehend information concerning

the organisation of the neighbouring units. This additional information expressing the

structure of the particles in the ensemble represents, as the name may indicate, the

structure factor S(q) of the system.

The structure factor contains the information of the positions of the particles with

respect to each other. In the case of diluted samples, the structure factor can be considered

to be equal to 1, however, for a smectic organisation (see section 2.2), which is the structure

obtained for the dispersions of GO in a large part of its extended semi-dilute regime, it

can be expressed by model Equation 4.5 and Equation 4.6, where N is the number of

correlated layers, d is the distance of repetition of the structure, γ is the value of Euler’s

number and η is known as Caillé parameter (Nallet et al., 1993).

S (q) = 1 + 2
N−1∑

n=1

(
1− n

N

)
cos
[

qdn
1+2∆q2d2α(n)

]
exp

{
−2q2d2α(n)+∆q2d2n2

2[1+2∆q2d2α(n)]

}

√
1 + 2∆q2d2α (n)

(4.5)

α (n) =
η

4π2
[ln (πn) + γ] (4.6)

The Caillé parameter gives information about the flexibility and interactions of the

layers, as it is dependent on the splay modulus K and the compression modulus B of the

smectic structure, and can be expressed by Equation 4.7, where q0 is the position of the

Bragg’s first order peak, kB the Boltzmann constant and T is the temperature.

η =
q2

0kBT

8π
√
KB

(4.7)

Consequently, as mentioned above, the scattering curves of GO dispersions can de-

scribe, simultaneously, the shape of the GO layers and their organisation in the space.

The proposed models can be compared and, from the fitting of the experimental data, it

is possible to obtain the parameters to describe the system.

4.3 Fittings of SAXS curves

Following the procedure described in section 3.2, the GO dispersion is concentrated and

then redispersed in different proportions, resulting in samples with different final concen-

trations. In this step of the study, the more concentrated sample contains around 10% of

GO in mass and the more diluted is equivalent to the commercial concentration, i.e. a

concentration of 0.04%.

57



For a sample with a GO mass fraction of 4%, SAXS experiments were carried out and

the results are presented in Figure 4.3 . The image of the obtained diffractogram is shown

in Figure 4.3a, where the first order Bragg’s peak can be observed at q0 = 0.029 Å−1.

As already discussed in section 3.3, it is possible to observe the presence of a certain

degree of orientation in the image. To quantify this level of orientation of the sample, an

azimuthal integration around the position of the Bragg’s first order peak was performed.

The integration was executed for 2θ varying between 0.3◦ and 0.5◦, which corresponds

to q ranging from ≈ 0.021 Å−1 to ≈ 0.036 Å−1. Therefore, the interval of integration is

given by 0.028 ± 0.007 Å−1, and the obtained curve of the intensity as a function of the

azimuthal angle ψ is presented in Figure 4.3b.

The curve can be described by Equation 4.8, where A is the amplitude, ψ is the

azimuthal angle, ψ0 is the phase and σ is the standard deviation.

I (ψ) = A exp

[
−cos2 (ψ + ψ0)

2σ2

]
+ c (4.8)

A parameter describing the azimuthal contrast, which is related to the ordering of the

sample, can be defined by Equation 4.9.

azimuthal contrast =
Imax − Imin
Imax+Imin

2

(4.9)

The fitting of the curve gives an azimuthal contrast of 7.4 with a full width at half

maximum in the order of 0.36π rad, showing that the sample is slightly oriented, but

it still can be considered as isotropically distributed for the fittings. The comparison

between the integration in the whole azimuthal range and around each maximum of the

peaks, with an angular width ∆ψ of π/9 rad, is presented in Figure 4.3c.

One can observe that there is no significant difference between the obtained curves.

The position of the peaks is constant whether for a small sector or not, besides, the

averaged curve presents a smoother shape. For these reasons, the integrations for all the

investigated samples were carried out in the complete azimuthal domain.

After the integration, the curves are corrected using the absolute scale procedure and

some of the curves are presented in Figure 4.4. It is possible to observe an increasing in

the intensity with the increasing in the concentration, which is expected because of the

higher number of illuminated particles in the solution.

However, among the presented samples, it is possible to observe a superposition of the

curves obtained for the more concentrated GO dispersions, showing that the correction

procedure is not adapted in this condition. This effect can be related to multiple scatter-

ing, where the scattered radiation interacts with more than one particle in the dispersion

before reaching the detector.

Nevertheless, the curves contain information about the investigated system even if the

absolute calibration is not correctly performed. For the most concentrated samples, one
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(a) Diffractogram of the sample. Intensity is in log scale.
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(b) Intensity as a function of the azimuthal angle around the first order Bragg peak, i.e. q = 0.028 ± 0.007 Å−1.
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(c) Integration in the whole radial range for sectors with ∆ψ = π/9 rad around ψ = 0 rad (�) and around ψ = π rad (4),
and integration in the complete azimuthal range (◦).

Figure 4.3 – SAXS results of a GO dispersion with fm = 0.04.
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Figure 4.4 – SAXS spectra in absolute scale for GO dispersions with: fm = 0.004 (◦), fm = 0.005 (�), fm = 0.010 (4),
fm = 0.015 (H), fm = 0.020 (�), fm = 0.030 (•), fm = 0.040 (�), fm = 0.050 (N) and fm = 0.056 (O).

can see the presence of Bragg’s peaks related to the smectic ordering, which is not visible

for the more diluted dispersions. This observation does not mean that the organisation is

not a lamellar, but that the window of q may not be large enough to allow its visualisation.

Once the curves are corrected, the fitting procedure can take place. The minimisation

of the difference between the experimental and theoretical curves is executed using the

least squares method (Jones et al., 2001), and Figure 4.5 shows the difference between the

fittings using the three models for the form factor presented in section 4.2 for a sample

containing 5.6% of GO in mass.

It is possible to observe that for small q there is no significant difference between the

fittings. This effect is expected, as this part of the curve is dominated by the structure

factor, which is the same in the three cases. Therefore, no difference is expected between

the parameters describing the organisation of the lamellar phases for the different fittings.

However, a difference is observed between the theoretical curves in the higher domain of

q for a same experimental data. Although none of the three models completely reproduces

the experimental curve, the two-step model satisfactorily describe the curve, followed by

the model with constant electron density, with, as expected with a lesser number of fitting

parameters, more discrepancies at larger scattering angles.

The fittings were carried out for all the prepared samples and the obtained parameters
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Figure 4.5 – SAXS spectrum of a GO dispersions with fm = 0.056 and the respective fittings using model: thickness equals
zero (dotted line), constant contrast density (dashed line) and contrast density in steps (continuous line).

are presented in Figure 4.6. For the concentrated samples, it is possible to obtain infor-

mation about the shape and organisation of the layers, through the access of the form

and structure factors. However, only the form factor is accessible for the more diluted

dispersions, concentrations at which the Bragg’s peaks are not visible.

In Figure 4.6a, it is possible to see the thickness of the layers obtained with both

models. One can observe that, for a given sample, the thickness revealed by the model in

steps is higher than the one retrieved with the constant model.

In addition, despite the fluctuations, these values can be considered to be constant

and equal to ≈ 10 Å, for the model with constant electron density, and ≈ 15 Å, for the

model in steps. As the thickness of the GO layers can be considered to be constant, a

variation on the lamellar periodicity can be considered to be the same as a variation on

the distance between the layers.

Moreover, for the more detailed thickness described by the model in steps, the total

inner length of the sheet, given by 2δi, is in the order of 6 Å. This value is not distant

from the thickness of a graphene layer (see section 2.1) and from the value obtained for

the geometrical thickness of a GO layers by the swelling law (see section 3.3).

These findings reveal that the inner length obtained with the profile of the electron

density in steps can be interpreted as the carbon layer of the GO, while the outer part

describes the solvated oxygen groups. Correspondingly, the model with a constant electron

density considers an average value between the inner and outer parts of the layer, providing

a smaller thickness.

One can observe in the dilution line of the GO aqueous dispersions (Figure 3.14), that

for d ≈ 15 Å, an anomaly in the curve is observed. This lamellar periodicity is compatible

to the thickness of the GO layer obtained using the model in steps, which indicates that,
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(a) Thickness of the GO layers as a function of the GO mass fraction. The thickness described by the model in steps is
obtained as twice the sum of the inner (/) and outer (.) lengths.
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(b) Number of correlated layers as a function of the lamellar periodicity.
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(c) Caillé parameter as a function of the lamellar periodicity.

Figure 4.6 – Parameters obtained from the fittings of the curves of GO dispersions using model: thickness equals zero (4),
constant contrast density (�) and contrast density in steps (◦).
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for smaller stacking periods, the oxygen groups of neighbouring GO sheets are overlapped.

This configuration may favour hydrogen bonds between these groups, which get weaker

when water is added to the system. The water molecules will interact more strongly with

the oxygen groups in the surface of the GO than the groups of neighbouring layers, and

these molecules will occupy the space swelling the phase. When there is enough water

to fill the surface of the GO layers, the oxygen groups are no longer overlapped, and

the periodicity reaches the value of the thickness of the GO sheet. From this point, the

hydrogen bonds between the oxygen groups of adjacent sheets are broken and they get

apart from each other, losing their contact. This phenomenon is schematically represented

in Figure 4.7. The nature of the interactions between the sheets is different depending

on the configuration of the structure, which may explain the anomalous behaviour of the

GO swelling law in the confined regime.

o o o

o o o

2δi

δo

o o o

o o o o o o

o o o

o o o

o o o

o o o

o o o

o o o

o o o

Hydration

Figure 4.7 – Schematic representation of the swelling of GO sheets lamellar structure in water. The darker layer in the
scheme represents the inner part of the GO sheet and the clearer ones represent its outer part, which corresponds to the
oxygen groups. The water molecules are represented by circles and the amount of solvent increases from the left to the
right.

Concerning the number of correlated layers, whose obtained results are presented

in Figure 4.6b, it is possible to observe that the values are dependent on the model used,

specially for the model in steps. Nevertheless, a global behaviour can be observed.

This parameter represents the number of layers that are strongly bounded forming

the lamellar structure. One can see that, for the more concentrated samples, the number

of bounded layers is higher and, when the dispersion is diluted, this number decreases,

showing that the higher the concentration of the dispersion, the higher the interaction

between the layers.

Figure 4.6c shows the evolution of the Caillé parameter as a function of the lamellar

periodicity. We can notice that this quantity decreases as the layers get apart from each

other. As this parameters is dependent on both K and B, it is difficult to interpret its

variation and make a direct relation with the flexibility and/or the interactions of the

structure.

Considering that K = κ/d, where κ is the bending rigidity of the GO sheets, whose

value can be considered to be constant and equals to kBT , as proposed in Poulin et al.

(2016), we can expect the behaviour of η to be readily related to the dilution behaviour
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Figure 4.8 – Compression modulus as a function of the lamellar periodicity obtained from the fittings of GO dispersions
using model: thickness equals zero (4), constant contrast density (�) and contrast density in steps (◦).

of the compression modulus of the smectic phase.

From Equation 4.7, it is possible to obtain the expression to calculate the compression

modulus of the smectic phase, which is given by Equation 4.10.

B =
π2k2

BT
2

4κη2d3
(4.10)

The compression modulus can be interpreted as the pressure needed to be applied to

the system for the layers to be locally displaced from their position of equilibrium. This

means that the higher the interaction between the layers, the higher the compression

modulus. This parameter can be calculated for each one of the prepared samples and the

obtained results are presented in Figure 4.8.

One can observe that, as the lamellar periodicity increases, the compression modulus

decreases. This observation is consistent with the presence of dominant repulsive inter-

actions between the layers. Once the layers get closer to each other, the higher becomes

the repulsive contribution and the higher will be the force necessary to be applied for the

layers to approach each other.

All the obtained results contributed to better characterise and understand the mech-

anisms of stability of GO layers in aqueous dispersions. We can now use this knowledge

to investigate a new system, whose study will be presented in next chapter, consisting

specifically on complexes of graphene oxide and surfactant dispersed in water.
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Chapter 5

Complexes of Graphene Oxide and

Surfactant

5.1 Self-assembly of surfactant in water

Following the study of the dispersions of graphene oxide in water, we started investigating

the system composed of GO sheets and surfactant in water, which will be called as ternary

system. As previously described in section 1.2, the objective of this thesis is to explore

and characterise the complexes obtained with the coupling of the two materials.

Analogously to the study of the binary GO-water system, prior to the investigation

of the ternary complexes, it is of great interest to introduce the binary surfactant-water

system. The surfactant used in this work is known as simulsol (see Figure 2.7). The phase

diagram of lipid systems associated with ethoxylated fatty acids, such as the simulsol, has

been extensively investigated in our group and a partner team (da Silva, 2011; Gerbelli

et al., 2013; Rubim, 2014; Bougis, 2016; Rubim et al., 2016).

For the binary simulsol and water system, the samples are prepared by mixing the

two components in different proportions and, to accelerate the homogenisation process,

a few cycles of soft centrifugation, intercalating between the upright and upside down

orientations, are performed every two or three days. The samples are stored at 4◦C and,

after three weeks, they are considered to be homogeneous and can be analysed.

In previous works, we showed that for mild concentrated samples of simulsol in water,

a lamellar structure is formed. With the addition of solvent, the structure can be diluted,

following closely the ideal swelling law expressed by Equation 2.3, and no dilution limit

was observed in the investigated range of concentration. Nevertheless, when the simulsol

concentration is increased, a phase transition is observed (Bougis et al., 2015).

In Figure 5.1, a few of the obtained spectra for a series of aqueous simulsol dispersions

with different surfactant volume fractions are presented. It is possible to observe that,

for ϕsurfactant between 0.70 and 0.75, the shape of the x-ray scattering curves changes

considerably, revealing the phase transition. The (rather sharp) Bragg peak, observed
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Figure 5.1 – SAXS spectra of surfactant in water with volume fraction of: 0.50 (◦), 0.55 (�), 0.60 (4), 0.65 (H), 0.70
(.), 0.75 (•), 0.80 (�), 0.85 (N), 0.90 (O), 0.95 (I) and 1.00 (�). Convenient scaling factors have been used for a better
readability of the figure
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q (Å−1)

I
(a
rb
.u
n
.)

(a) Surfactant volume fraction of 0.70.
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(b) Surfactant volume fraction of 0.75.

Figure 5.2 – POM images with crossed polarizer and analyser of surfactant aqueous dispersions before and after the phase
transition. The scale bars are equivalent to 100 µm. Inset: respective SAXS spectrum.
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for diluted samples, is indeed replaced by a much broader hump when the concentration

increases, which means that a structural reorganisation took place. A variation in the

position of the hump is observed when the concentration is changed.

The two samples on both sides of the transition boundary were observed under POM.

Microslides with a constant optical path of 0.2 mm were prepared and the obtained images,

with the respective SAXS spectra, are presented in Figure 5.2.

One can observe in Figure 5.2a the presence of weak birefringence, which is related

to a lamellar organisation, as it is revealed in SAXS measurements. The texture that is

observed in the image can be associated to defects in the lamellar structure, where the

layers are oriented in the plane of the image.

However, despite the presence of a certain level of organisation in the more concen-

trated system, which is evidenced by the hump that is detected in the SAXS curve, no

birefringence is observed in POM, as one can see in Figure 5.2b. Up to now, this new

phase has not been characterised in depth and its exact structure remains unknown.

For each one of the observed lamellar structures, occurring for the diluted systems,

the periodicity d can be determined using Equation 2.8. After the phase transition, a

characteristic distance in the new phase can be calculated using 2π/q∗, where q∗ is the

position of the hump. The obtained results are presented in Figure 5.3.
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Figure 5.3 – Periodicity as a function of the inverse volume fraction for surfactant dispersions in a lamellar (◦) and unknown
(�) organisations. Inset: idem for the whole investigated dilution range. The dashed line corresponds to the swelling law
expressed by Equation 2.3, with δ = 5.0 nm.

As expected, it is observed that the period of the lamellar stack decreases when water is

removed from the structure, following the ideal swelling law. Nevertheless, near the phase

transition, it is possible to see a deviation from the dilution curve, where the periodicity is

slightly higher than the expected value, which can characterise a region of pretransition.

The lower limit is observed when the lamellar periodicity reaches 7.7 nm, the smallest

accessible period for stacked bilayers of simulsol in water.
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Following the tendency, the characteristic distance of the new phase, just after the

transition, is higher than the lower limit lamellar periodicity. Again, the characteristic

distance decreases when water is removed from the system, with a dehydration rate much

higher than the one observed for the lamellar phases, except around the phase transition

and the completely dried system, where the dehydration rate decreases.

Furthermore, in order to reproduce the acid medium of the aqueous GO dispersion,

the simulsol dispersions were duplicated using an aqueous solution of hydrochloric acid

(HCl) at a pH of 2.5 instead of pure water. The x-ray experiments revealed no difference

between both media, indicating that the structure formed by the simulsol molecules is not

sensitive to variations in the pH, an important property for the progression of the study.

With the information obtained for the aqueous simulsol dispersions, it is possible to

investigate the complexes formed by graphene oxide layers and surfactant. The procedures

of preparation and characterisation of the complexes will be discussed in the next sections.

5.2 Preparation of GO-surfactant complexes

In order to prepare the GO-simulsol complexes, the surfactant molecules are added to

the ultracentrifuged aqueous GO dispersion (see section 3.2) until the sample reaches

the wanted proportion between simulsol and GO. This proportion can be defined as the

ratio % between the volume fractions of surfactant and GO, which can be described by

Equation 5.1.

% =
ϕsurfactant

ϕGO
(5.1)

To accelerate the homogenisation process, the same procedure used for the binary

system surfactant-water is employed. Fixing the proportion between GO and simulsol,

it is possible to vary the hydration of the sample, in which case water is added to the

sample. In Figure 5.4, Figure 5.5 and Figure 5.6, the X-ray scattering results of three

series of samples with constant % are presented, after three weeks of stabilisation.

One can observe in the series with highest surfactant proportion (Figure 5.4a), the

presence of Bragg’s peaks characteristic of a lamellar phase. The peaks are visible up to

the third order, with q0 ≈ 0.12 Å−1. It is also possible to notice that, even if the amount of

water is increased, the position of the peaks does not change, indicating that the stacked

structure cannot be swelled.

The experiments carried out in a wider window of q, which is presented in Figure 5.4b,

show the presence of two humps, one around 1.4 Å−1 and the other around 1.9 Å−1, which

are related to the mean distance between the simulsol and water molecules, respectively.

The peak related to the distance between the carbon atoms in the plane of the GO layer,

i.e. q = 2.96 Å−1, is also visible.

These results show that, as expected, when water is added to the system, the hump
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(a) SAXS spectra for water mass fraction of: 0.02 (◦), 0.15 (�), 0.27 (4), 0.38 (•) and 0.49 (�).
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(b) WAXS spectra for water mass fraction of: 0.02 (◦), 0.15 (�), 0.27 (4), 0.38 (•) and 0.49 (�).

Figure 5.4 – Spectra of ternary samples with % = 5.7.
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(a) SAXS spectra for water mass fraction of: 0.02 (◦), 0.16 (�), 0.30 (4), 0.43 (•), 0.54 (�), 0.65 (N) and 0.84 (�).
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(b) WAXS spectra for water mass fraction of: 0.02 (◦), 0.16 (�), 0.30 (4), 0.43 (•), 0.54 (�), 0.65 (N) and 0.84 (�).

Figure 5.5 – Spectra of ternary samples with % = 4.3.
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q (Å−1)

In
te
n
si
ty

(a
rb
.u
n
.)

(a) SAXS spectra for water mass fraction of: 0.04 (◦), 0.15 (�), 0.31 (4) and 0.46 (•).
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(b) WAXS spectra for water mass fraction of: 0.04 (◦), 0.15 (�), 0.31 (4) and 0.46 (•).

Figure 5.6 – Spectra of ternary samples with % = 2.9.
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characteristic of the water molecules gets more intense, if compared to the hump charac-

teristic of the simulsol molecules. In addition, POM observations of the system revealed

the presence of birefringence with no phase separation. These experiments show that

water is macroscopically incorporated to the system, but the molecules are not inserted

in between the layers of the smectic phase at the microscopic scale.

When % is decreased, as shown in Figure 5.5, equivalent results are observed. The

increasing of the amount of water molecules, whose presence is confirmed by WAXS

experiments, does not swell the structure. Besides, the lamellar organisation has the

same stacking period as the previous composition.

Nevertheless, we can observe for the most diluted sample (ϕwater = 0.84), only the

presence of the first order peak, which is also much less intense than the one observed in

the less hydrated samples, although its position does not change compared to the previous

series of samples. These results show that the stacking period is not dependent on the

proportion between simulsol and GO or hydration, for the investigated domain.

Equivalent results are again obtained for the series of samples less charged in simulsol,

shown in Figure 5.6. All the presented spectra exhibit Bragg’s peaks at the same position

observed before, although their intensities are not very high compared to the previous

compositions.

These results show that, when formulated, the ternary system form a lamellar phase

with a constant periodicity of ≈ 5 nm, that does not depend on the proportion between

GO sheets and surfactant, nor on the hydration of the system. However, the observations

after three weeks of homogenisation revealed a dependency on the stability of this phase

with the composition of the system.

For more hydrated systems, the structure seems to loose faster the correlation of the

lamellar organisation. The same effect is observed for systems less charged in surfactant.

The characterisation of this phase is still to be developed, however, a study of the kinetics

of this phase has been developed, in order to evaluate the time needed for the system to

stabilise.

A few samples were formulated with a same composition, i.e. % = 1.8 and ϕwater = 0.71,

and analysed after different durations of homogenisation. The stability of the sample in

time was followed using SAXS and, in Figure 5.7, one can observe the evolution of the

spectra.

The obtained results show that, after shorter stabilisation times, the shape of the

curves obtained for the investigated samples does not suffer big modifications. The curves

show the presence of characteristic peaks of a lamellar phase, corresponding to d ≈ 5 nm.

However, the intensity of the peaks decreases with the ageing of the sample, which clearly

indicates that reaching equilibration requires a large amount of time during which struc-

tural changes may occur.

For the longest equilibration time investigated, the first order Bragg’s peak is barely

visible, may possibly have moved towards smaller scattering angles and higher order
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Figure 5.7 – Evolution of SAXS spectra of a ternary sample after: 10 (◦), 14 (�), 19 (4), 21 (•), 28 (�) and 40 (N) days.

peaks cannot be detected. These observations indicate that the system composed of GO

and surfactant presents a slow equilibration process, when compared to its components

separately dispersed in aqueous solutions.

Equivalent experiments were carried out varying the proportion between surfactant

and GO in the system and the obtained results revealed a dependency in the equilibrium

time with %. The higher the value of %, the longer will be the time needed for the stabili-

sation of the system, reaching up to three months for the systems highly concentrated in

simulsol.

The long time of stabilisation makes the study of this system practically very difficult,

especially when a limited time is available, as in a thesis project. However, after the

homogenisation of the samples, the system can be investigated and the obtained phases

characterised.

5.3 Binary (dehydrated) GO-surfactant complexes

In a first approach, the study will be focused on the investigation of the binary system

composed of GO sheets and surfactant. To obtain these samples, the initial step is to

prepare a ternary complex with the wanted %, as described in the section above. After

the equilibrium is reached (which may require a very long time), the sample is placed in
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the vacuum chamber, where the pressure is controlled, to slowly dehydrate.

The pressure is regulated as a function of the hydration of the system, meaning that

the more dehydrated the complex, the lower the pressure inside the chamber, reaching

around 5 mbar in the final stage of dehydration. The mass lost by the sample is controlled,

similarly to the procedure employed for the binary GO-water system. When the mass

of the sample reaches a plateau, the sample is considered to be completely dried. The

whole dehydration process can last up to 35 hours. In opposition to what was observed

with the binary system GO-water, the water is almost completely removed from the

ternary complexes, as observed in the evolution of the mass of the ternary samples during

dehydration.

A series of samples was prepared varying the proportion of simulsol and GO, followed

by the dehydration procedure after the stabilisation was reached. Although the viscosity

of the samples does not allow their observation under POM, they were analysed by X-ray

scattering. The obtained results are presented in Figure 5.8.
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Figure 5.8 – SAXS spectra of GO sheets and surfactant with GO volume fraction of: 0.57 (◦), 0.46 (�), 0.36 (4), 0.26 (•),
0.19 (�), 0.15 (N) and 0.10 (O).

One can observe, for the more concentrated sample in GO, the presence of a peak,

which dislocates to smaller values of q when the amount of surfactant is increased. This

peak could be related to a lamellar structure and, to verify this hypothesis, WAXS ex-

periments were carried out for this sample. The obtained result is shown in Figure 5.9.
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Figure 5.9 – WAXS spectrum of GO sheets and surfactant with GO volume fraction of 0.57.

It is possible to see in the curve the presence of the same characteristic peak observed

before, at q ≈ 0.65 Å−1. The presence of a second order peak, which can be seen at

q ≈ 1.3 Å−1, although it is partly hidden in the hump characteristic of the distance

between the surfactant molecules, confirms the formation of a lamellar structure.

These results show that, when the amount of surfactant is increased in the system,

the period of the lamellar stacking increases, which means that the observed structure

is a lamellar phase of GO that is diluted by the simulsol molecules. The phenomenon is

similar to the swelling of lyotropic liquid crystals, where the surfactant plays the role of

the solvent in this particular system, swelling the stacked GO sheets.

For systems highly concentrated in simulsol, one can observe that the position of the

peak does not change, which means that a dilution limit has been reached. The occurrence

of the dilution limit is observed starting from ϕGO = 0.15.

Moreover, for even higher amounts of simulsol, one can see the appearance of a new

hump for smaller values of q. The detected hump can be compared to the curve of the

pure simulsol system, and both spectra are presented in Figure 5.10.

The SAXS results show that, after swelling the stacked GO sheets to its limit, the am-

phiphiles in excess will form a new phase, which consists in a structured liquid, apparently

equivalent to the one observed for pure simulsol.

To proceed further in a quantitative analysis, the lamellar periodicity is calculated for

each one of the samples. Concerning the phase in excess, a characteristic distance was

calculated from the position of the hump, a procedure homologous to the one executed

for the surfactant-water system (section 5.1).

The dilution line of the GO sheets dispersed in simulsol, in the whole investigated

domain, is presented in Figure 5.11.

The presented results suggest that, for highly concentrated samples in GO, the sur-
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Figure 5.10 – Comparison between the SAXS spectra for ϕGO = 0.0 (◦) and ϕGO = 0.10 (�).
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Figure 5.11 – Lamellar periodicity as a function of the inverse of GO volume fraction.
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factant molecules are lying parallel to the surface of the sheets, which gives a lamellar

periodicity for the system no higher than the thickness of a GO layer, i.e. in the order of

0.8 nm.

When the amount of simulsol in the system is increased, the molecules will compete

for space in the surface of the GO layer. In this condition, the simulsol molecules will

then start to reorient themselves, presumably with the hydrophilic part in contact with

the GO sheet and the hydrophobic one to the outside, which increases the distance of

separation between the layers.

This phenomenon takes place until the dilution limit is reached, when the hydrophobic

part of the amphiphiles is straightened up. This organisation of the surfactant molecules

is very similar to a bilayer-like structure, in which case the hydrophobic parts form a

double layer, with the hydrophilic parts attached to the surface of the GO sheets. The

described structure is schematically represented in Figure 5.12.

Surfactant

Figure 5.12 – Schematic representation of the swelling of GO sheets lamellar structure with surfactant. The darker layer in
the scheme of the GO sheet represents its inner part and the clearer ones represent the outer part, which corresponds to the
oxygen groups. The continuous and dashed parts of the surfactant represent, respectively, the hydrophobic and hydrophilic
groups. The amount of surfactant increases from the left to the right.

At this point, the lamellar periodicity of the structure reaches d ≈ 1.5 nm, which is

compatible to the stacking distance at which the anomalous behaviour in the swelling of

the binary GO-water system takes place, indicating that both phenomena can be related.

Comparing the structure obtained before the dilution limit is reached with the highly

confined GO layers in water, we can picture a structure where the GO sheets are stacked,

with the oxygen groups of neighbouring layers overlapped, as the lamellar periodicity is

smaller than 15 Å, value obtained for the thickness of the GO. The amphiphiles organise

themselves in between the GO sheets and, when the dilution limit is reached, the oxygen

groups are no longer overlapped and the simulsol structured.

From this point, it can be postulated that no more space is available in the surface

of the GO layers and the additional amphiphiles cannot swell the stacked layers. The

molecules in excess will form a new phase, coexisting with the previous one.

The new phase exhibits a structural distance of 3.0 nm, comparable to the character-

istic distance observed for the pure simulsol, which can be considered a structured liquid.

The exact structure of this system is still to be determined.

Following this study of the binary GO-surfactant system, it is now possible to inves-

tigate the addition of water to the obtained complexes.
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5.4 Ternary (hydrated) GO-surfactant complexes

The procedure of preparation of the ternary samples has already been discussed in sec-

tion 5.2. However, after adding simulsol to the ultracentrifuged GO dispersion, one of the

two different steps presented below can be followed, if necessary.

1. To obtain a more diluted system, water is added, when the sample is formulated,

in the right proportion to reach the wanted concentration and it is stored for ho-

mogenisation;

2. To obtain a more concentrated system, the formulated sample is stored and, after

homogenisation, it is placed in the vacuum chamber to dehydrate. The mass of the

sample is controlled during the procedure and the dehydration is stopped when the

system reaches the wanted concentration.

The use of this method allows to explore the complete phase diagram of the ternary

complexes, following water dilution lines. New series of samples, where the hydration is

varied for a given proportion between surfactant and GO, were prepared. The viscosity of

the sample depends on the amount of water on the system, which means that, the more

dehydrated the sample, the more difficult is its observation in microscopy.

Nevertheless, in the hydrated domain, POM images were recorded for a few samples

and are presented in Figure 5.13.

It is possible to observe that all the samples are optically birefringent, indicating the

presence of an organised system. To obtain more information about the structure of the

complexes, SAXS experiments were carried out in each one of the samples and the results

of two of the series of samples, with % = 1.8 and % = 5.8, are presented in Figure 5.14

and Figure 5.15, respectively.

In the series less charged in simulsol (Figure 5.14), it is possible to observe a peak

characteristic of a lamellar structure for the less hydrated sample. When water is added

to the system, the position of the peak moves towards smaller scattering angles, indicating

an increase in the lamellar periodicity. This means that the phase is swelled, until it

reaches a constant value, at q ≈ 0.4 Å−1 for this value of % = 1.8. One can also notice

that the intensity of the peak decreases with the hydration of the complex.

For the system with ϕwater = 0.35, it is possible to see the appearance of a second

peak, with a smaller value of q. The appearance of the new structured phase seems to be

related to the fact that a dilution limit is reached as it appears when the peak associated

to the lamellar structure does not move any more.

At contrast, the peak characterising the second phase moves towards smaller values of

scattering vector when the system is hydrated. In addition, it is possible to see that the

intensity of this peak increases when water is added.

These results indicate that the lamellar phase, obtained with this system, is swelled

when water is added, until it reaches a dilution limit. The limit of the stacking period
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(a) % = 0.75 and ϕwater = 0.93. (b) % = 1.80 and ϕwater = 0.83.

(c) % = 4.3 and ϕwater = 0.38. (d) % = 9.0 and ϕwater = 0.61.

Figure 5.13 – POM images with crossed polarizer and analyser of ternary systems. The scale bars are equivalent to 100 µm.
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Figure 5.14 – SAXS spectra of ternary samples with % = 1.8 and water mass fraction of: 0.0 (◦), 0.13 (�), 0.25 (4), 0.35
(H), 0.46 (.), 0.56 (•), 0.65 (�), 0.74 (N) and 0.83 (O).
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Figure 5.15 – SAXS spectra of ternary samples with % = 5.8 and water mass fraction of: 0.0 (◦), 0.11 (�), 0.18 (4), 0.31
(•), 0.43 (�) and 0.53 (N).
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in the ternary system is around 1.6 nm, very close to the limit observed for the binary

GO-surfactant complex.

From the observations, it is possible to presume that this lamellar phase, obtained

for the ternary complex and described above, has an organisation that is equivalent to

the lamellar phase obtained for the binary GO-simulsol system. The water molecules will

insert themselves in the surface of the GO sheets, replacing the hydrophilic part of the

simulsol, which prevents their contact with the carbonic chains. The results show that

the swelling phenomenon is equivalent using water or surfactant molecules, as the volume

occupied between the GO layers by these molecules is the same.

After reaching the dilution limit, if water is still added in the system, the new phase

appears, with a higher characteristic structural scale. The new phase can also be swelled

when the system is hydrated.

Similar results are obtained for the experiments carried out in the series of samples

containing a higher proportion of surfactant (% = 5.8, see Figure 5.15).

Once more, one can observe, for the less hydrated samples, the peak of the lamellar

organisation of the binary GO-surfactant that is swelled when water is added to the

system. However, a second phase is observed for ϕwater = 0.11, that can, apparently, also

be swelled. The relative intensity between the first and second phases peaks also changes.

For this composition, no dilution limit is observed for the first phase, whose peak

dislocates for lower q, until it cannot be distinguished from the peak of the second phase

for ϕwater = 0.31. When the hydration is increased, the SAXS spectra show the presence

of a new phase. The shape of the more hydrated curve is very similar to the one ob-

served for the previous composition, which may indicate that the systems have the same

organisation.

In order to try to identify these organisations, the spectra of systems with almost

constant simulsol and water contents are presented in Figure 5.16 and Figure 5.17, re-

spectively. Note that the preparation dilution lines (varying the amount of water) are no

longer followed in such a presentation. A practical consequence is that the studied sam-

ples are less closely located on the chosen lines than when water dilutions are presented.

For the more hydrated systems presented in Figure 5.16, the experiments were carried

out in a smaller window of q for a better visualisation of the characteristic peaks.

It is possible to observe in Figure 5.16 that the lamellar phase of GO sheets with

simulsol in the surface is swelled with addition of water, because of the dislocation of

the peak. For ϕwater = 0.56, the new phase appears, characterised by a hump in smaller

q. This phase is also swelled by hydration, and the system becomes monophasic again,

until the binary surfactant-water lamellar phase is recovered for ϕwater = 0.73, when the

left-hand side of the ternary phase diagram is reached.

The position of the peaks for the two more hydrated samples are very close, although

the shape of the curve are not very similar. This may indicate that the second phase

observed is a lamellar stacking of surfactant bilayers, with the GO sheets in the aqueous
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q (Å−1)

In
te
n
si
ty

(a
rb
.u
n
.)

Figure 5.16 – SAXS spectra of systems with fixed ϕsurfactant = 0.28 ± 0.03 and ϕwater of: 0.0 (◦), 0.28 (�), 0.39 (4),
0.45 (H), 0.56 (♦), 0.66 (•), 0.67 (�), 0.70 (N) and 0.73 (O). The ternary diagram shows the position of each composition
relative to the line corresponding to ϕsurfactant = 0.28 (dashed line).
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Figure 5.17 – SAXS spectra of systems with fixed ϕwater = 0.56 ± 0.03 and ϕsurfactant of: 0.0 (◦), 0.18 (�), 0.23 (4),
0.29 (H), 0.34 (♦), 0.38 (•), 0.40 (�), 0.42 (N) and 0.47 (O). The ternary diagram shows the position of each composition
relative to the line corresponding to ϕwater = 0.56 (dashed line).
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layers that separate them.

In Figure 5.17, where the water volume fraction is fixed, broadly similar observations

can be done. The binary lamellar phase of GO in water is swelled when simulsol (acting

here as a co-solvent for dilution) is inserted in the system, because of the adsorption of

the amphiphiles in the surface of the GO sheets.

When ϕsurfactant = 0.34, the new phase appears and is swelled with the increasing in

the number of surfactant molecules. For more concentrated samples, the first observed

phase disappears and the new phase dilutes until the binary lamellar phase of simulsol and

water is recovered, again when reaching the left-hand side of the ternary phase diagram.

Once more, one can observe a continuous transition between the second phase observed

for the ternary system and the periodically-stacked bilayers of simulsol in water.

These results suggest the formation of two distinct structures for the ternary system.

The first phase, observed for smaller quantity of surfactant, is obtained by amphiphile

molecules adsorbed in the surface of the GO layers, forming a stacked structure that can

be swelled, as already discussed.

For higher proportions of simulsol and enough hydrated systems, the surfactant molecules

will detach from the GO sheets, and organise themselves in bilayers. The GO sheets will

be dispersed in the aqueous layer that separate the membranes, which corresponds to the

second phase observed. The domains where each one of the phases can be obtained are

separated by a zone of transition, where both phases may coexist. The described ternary

structures are schematically represented in Figure 5.18.

With the SAXS results of all the investigated compositions, it is possible to plot the

dilution lines for each one of the series of samples (going back to water dilutions for series

differing in their % values), which are presented in Figure 5.19.

In Figure 5.19a, the dilution lines of the ternary system in the whole investigated range

are presented, and one can observe the existence of two groups of curves. In the lower

part of the figure, a group of curves, whose d is no higher than ≈ 1.6 nm, is observed and,

in the upper part, the curves with higher lamellar periodicities. For a better visualisation

and to facilitate the discussion, the groups of curves will be separated in different figures.

For the group of systems with smaller lamellar periodicities, which are presented in Fig-

ure 5.19b and corresponds to the systems with lower amount of surfactant, it is possible

to observe that, for a given composition, the phase is swelled until it reaches a dilution

limit. The limiting distance of periodic stacking seems to have a common value for the

investigated systems, i.e. d ≈ 1.5 nm.

One can observe that the dilution limit is not dependent on the proportion of GO

and simulsol. Moreover, the limit of the stacking period is compatible to the value of

periodicity at which the anomaly in the GO-water system takes place. This behaviour

was already qualitatively described, which means that this group of curves corresponds

to the first proposed phase, where stacked GO sheets are adsorbed with amphiphiles and

water in their surface.
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Figure 5.18 – Schematic representation of the obtained ternary structures and the phase transition. The darker layer in the
scheme of the GO sheet represents its inner part and the clearer ones represent the outer part, which corresponds to the
oxygen groups. The continuous and dashed parts of the surfactant represent, respectively, the hydrophobic and hydrophilic
groups. The water molecules are represented by circles. The amount of water and/or surfactant increases from the left to
the right.

Nevertheless, a few of the systems presented previously contain more than one struc-

ture. In Figure 5.19c, both observed phases in the biphasic samples are presented. One

element that can be noticed is the decreasing in the amount of water needed for the sec-

ond phase to appear, when the proportion of simulsol is increased. As an example, for

% = 0.31, the biphasic samples are not observed before 1/(ϕGO + ϕsurfactant) ≈ 6.3, while

for % = 2.9, the second phase is observed when 1/(ϕGO + ϕsurfactant) ≈ 1.7. This result

reinforces the hypothesis that the phase transition of the ternary complexes is directly

related to the structural transition of the binary GO-water system.

In Figure 5.19d, the monophasic systems containing only the points in the upper

group of curves and only the second phase for the biphasic samples showed previously, are

presented. It is possible to observe that the lamellar period increases with the addition

of surfactant for a given water volume fraction. This effect can be observed for two

compositions where 1/(ϕGO + ϕsurfactant) ≈ 6.3, when the obtained lamellar periodicities

are 5.3 nm and 9.2 nm for % = 0.31 and % = 1.8, respectively.

These observations indicate that, increasing the surfactant proportion, the swelling

limit of the lamellar phase also increases. For the series corresponding to the highest

proportion in simulsol, it is possible to see that the dilution limit is not observed. The

phase obtained for this group of curves corresponds to simulsol bilayers in a lamellar

organisation with GO and water in between the layers.

The series of samples with % = 9.0 can be compared to the dilution line of the binary
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(a) Dilution lines of the ternary systems in the whole investigated range.
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(b) Dilution lines of the first group of curves of the ternary systems.
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(c) Dilution lines of the biphasic ternary systems.
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(d) Dilution lines of the second group of curves of the ternary systems.
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(e) Comparison between the dilution lines of the ternary and binary systems.

Figure 5.19 – Dilution lines of the binary systems with ϕGO = 0 (J) and ϕsurfactant = 0 (I), ternary systems with % of:
0.15 (◦), 0.31 (�), 0.75 (4), 1.17 (H), 1.80 (♦), 2.9 (•), 4.3 (�), 5.8 (N) and 9.0 (O).
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simulsol and water system. The curves are presented in Figure 5.19e, as well as the binary

GO-water system and a few ternary complexes from the lower group of dilution lines. It is

possible to observe that the GO-water binary system overlaps the first group of samples,

with small proportion of simulsol, while the surfactant-water binary system is very close to

the richest series in simulsol, confirming the interpretation given for the observed phases

of the complexes.

Combining the results of all the studied systems, it is possible to construct a ternary

phase diagram summing up all the observations, which is presented in Figure 5.20.
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Figure 5.20 – Ternary phase diagram. Lamellar phase of GO sheets in water (•) and region of structural anomaly (◦).
Lamellar phase of surfactant in water (�) and unknown surfactant-water phase (�). Lamellar phase of GO sheets in
surfactant (�) and biphasic domain (♦). Lamellar phase of GO with surfactant in the surface (O), lamellar phase of
surfactant with GO and water in between (4) and transition domain with different phases (J, N and I).

This diagram shows the domain of existence of the different observed phases. The

systems containing higher amounts of GO and smaller quantities of simulsol, whose com-

positions are represented by O in the diagram, are formed by monophasic samples.

As already described, this phase is obtained with a lamellar organisation of GO sheets

with the simulsol molecules attached to their surface. The hydrophilic part of the am-
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phiphile will be in the plane of the GO sheet, while the hydrophobic one will be exposed

to outside. This phase can be diluted either by the water or surfactant molecules, until

it reaches the dilution limit and a new phase appears.

From the diagram, it is possible to see that the phase transition of the ternary complex

occurs at ϕGO ≈ 0.14, which is not dependent on the % of the system. This transition is

directly related to the anomalous behaviour of the binary GO-water system.

The transition domain shown in the diagram, which corresponds to a region with low

amount in GO, compared to the domain described above, can be divided in three parts.

In the region represented by J, the previous phase is present coexisting with a second one.

The second phase is characterised by surfactant bilayers organised in a lamellar structure

separated by water. The GO sheets will be dispersed in the aqueous layers, between the

membranes.

For a small domain in the diagram, represented by 4, the monophasic systems con-

taining this new phase are obtained. This organisation is only accessible in the lamellar

domain of the binary surfactant-water system.

When the proportion of surfactant is increased, which corresponds to the non lamellar

structure in the binary simulsol-water system, a biphasic domain is observed, represented

by I. In this region, one of the observed phases is the first described phase, where the

GO sheets are stacked with water and simulsol molecules attached to their surface. The

other phase is composed of amphiphiles in excess and water, corresponding to the phases

observed for the binary GO-surfactant system. In this region, the simulsol in excess will

form an structured liquid, as it is observed for the binary simulsol-water system.

Finally, in the central region, which is represented by N, the obtained phase(s) could

not be identified. This domain could be characterised by a new phase or a mixture of all

the phases previously described.

The phase diagram puts in evidence the rich polymorphism of the GO-simulsol com-

plexes. Real ternary complexes are obtained, with an organisation that depends on the

composition of the system and the phase transitions being ruled by the respective binary

complexes. These results also show the importance of the study of the respective binary

complexes, located over the axis of the diagram, for a better interpretation of the phases.
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Chapter 6

Conclusions

6.1 Results

In the work developed during this thesis, the confinement of graphene oxide (GO) sheets

within an anisotropic fluid matrix composed of amphiphilic molecules and water has been

studied. Prior to the study of the complexes of the ternary system, the binary system

composed of GO and water has been investigated.

A procedure to obtain highly concentrated aqueous GO dispersions has been devel-

oped, which allowed the investigation of an extended concentration range of the dis-

persions. The obtained samples are free of aggregates and can be reversibly swollen or

dehydrated, which is not achievable from dried sources of GO.

Small angle x-ray scattering experiments revealed that the aqueous GO dispersion

behaves like a liquid crystals, where organised phases can be obtained with the increase

in the concentration of the system. The obtained smectic phases obey the usual dilution

law, characteristic of lyotropic liquid crystals, which is observed over the investigated

hydration range.

The swelling behaviour of the aqueous GO dispersions can be interpreted in terms

of the forces acting in the layers. The balance between the attractive and repulsive

interactions will stabilise the lamellar structure, and the importance of the electrostatic

repulsion in the hydrated domain, competing with other contributions to dilute the stacked

structure, has been demonstrated.

Nevertheless, in a small domain of concentration, a discrepancy with the swelling law

is observed,which may indicate a structural phase transition. Although the details of this

phenomenon are still to be identified, this anomalous behaviour can be related to the fact

that, for highly confined phases, the oxygen groups in the surface of the GO sheets are

overlapped and, when the structure is diluted, the lamellar periodicity increases, breaking

the contact between the layers. This phenomenon affects the interactions between the

adjacent sheets, and the effect is detected in the dilution line.

For the more diluted GO dispersions, adapted SAXS models have been employed to
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extract structural parameters of the investigated system. The shape and organisation of

the layers have been studied.

The thickness of a GO layer, obtained from the electron density, is in good accordance

with the value described in the literature. Considering different electron densities for the

carbon plane and the oxygen groups, a thickness around 15 Å is obtained. The inner part

of the GO layer, which measures around 6 Å, has a length that is compatible with the

thickness of a graphene layer. Nevertheless, considering an average electron density for

both parts of the sheet, the obtained thickness is approximately 10 Å.

The organised lamellar structures have also been characterised with the implemented

models. The Caillé parameter, sensitive to the flexibility of the layers has been obtained,

and its behaviour, as a function of the hydration of the system, has been investigated.

These results led to the extraction of the compression modulus of the stacked structure.

As expected for systems like the lamellar phase of GO dispersions, the smaller the dis-

tance between the layers, the higher the force necessary to dislocate the layers from their

equilibrium spacing.

The binary system composed of surfactant and (acidic) water has also been investi-

gated, though in lesser details. The experiments revealed the formation of bilayers of am-

phiphiles organised in a lamellar structure for mild concentrated systems. The structure

also obeys the dilution law, being swelled when solvent is added to the system. However,

a phase transition takes place for highly concentrated samples, and an undefined structure

is observed.

These studies allowed the investigation of the dehydrated binary system composed

of GO sheets and surfactant, which has further been rehydrated to provide the ternary

complexes. The kinetics of the system showed that inconveniently long times are often

needed for the structure to stabilise. The higher the proportions of surfactant and water

in the system, the higher will be the duration of the homogenisation process.

For lower amount of surfactant, the GO layers will organise themselves in a stacked

structure, where the amphiphiles will adsorb in the surface of the sheets. With the in-

creasing in the amount of surfactant, the molecules will organise themselves in the surface,

swelling the structure, until it reaches a dilution limit. At this point, the surfactant will

form a bilayer-like structure, with the hydrophilic part of the molecule grafted in the GO

sheet. For higher concentration of surfactant, the amphiphilic molecules in excess will

form a separated phase, which is also structured.

The described phase can also be swelled by hydration, in which case the water molecules

will insert themselves in the surface of the layers. For system with a high proportion in

simulsol, representing a small domain in the ternary diagram, a new phase appears. In

this phase, the amphiphilic molecules detach form the GO sheets and organise themselves

in bilayers separated by water, with the GO sheets dispersed in the aqueous region. The

two domains of the ternary diagram, where each one of the phases are observed, are

delimited by a transition zone, in which both or multiple phases coexist.
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Two distinct ternary complexes have been actually obtained, whose zones of existence

are separated by a transition region. This transition domain is related to the transitions

of the relevant binary systems. A few structures in the zones of transition are still to be

characterised in details.

All the obtained results for the investigated systems allowed the construction of a

ternary phase diagram, summing up the observed structures.

6.2 Perspectives

For a better comprehension of the binary system GO-water, the evidenced discrepancy

with the swelling law, observed for the confined domain, could be investigated in more

details. The results would be of great interest to the interpretation of the phase transitions

observed in the ternary system. Techniques like the cryogenic electron microscopy or

nuclear magnetic resonance spectroscopy could be employed.

Analogously, the characterisation of the phase observed for the binary surfactant-water

systems, in the dehydrated domain, would give information about one of the biphasic

regions found in the ternary diagram. These findings could be helpful to the interpretation

of the phase transition of the ternary complexes.

The parameters obtained from the fitting using SAXS models are compatible to values

presented in the literature, however, improvements in the fitting routine could provide

more accurate results. Moreover, adapted models for the concentrated systems could also

be developed, providing information about the confined structures and the anomalous

behaviour of the dilution law in this domain.

In addition, theoretical models describing the ternary complexes could be imple-

mented. This study would give valuable information about the structure and stability

of the complexes, and the interpretations of the obtained phases could be verified.

The kinetics of the ternary complexes obtained before the homogenisation could also

be investigated. This study would give information about the equilibration of the phase.

At last, the phase diagram shows the rich polymorphism of the ternary complexes. To

verify if the observed phase transition, from a lamellar structure of GO sheets “decorated”

with surfactants to GO sheets “sandwiched” between membranes, is dependent only in the

anomalous behaviour of the dilution of the binary GO-water system, the study could be

reproduced using surfactants with different lengths of the hydrophilic and/or hydrophobic

parts.
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Stéphan Rouzière, J. David Núñez, Erwan Paineau, Ana M. Benito, Wolfgang K. Maser,

and Pascale Launois. Intercalated water in multi-layered graphene oxide paper: an

x-ray scattering study. Journal of Applied Crystallography, 50(3):876–884, may 2017.

URL https://doi.org/10.1107/s1600576717006227.

R. Leite Rubim, B. B. Gerbelli, K. Bougis, C. L. Pinto de Oliveira, L. Navailles, F. Nal-

let, and E. Andreoli de Oliveira. Water activity in lamellar stacks of lipid bilayers:

“hydration forces” revisited. The European Physical Journal E, 39(1), jan 2016. URL

https://doi.org/10.1140/epje/i2016-16003-0.

Rafael Leite Rubim. Study of interactions between lipid membranes by SAXS experiments:

the role of the composition. Master’s thesis, 2014. URL https://doi.org/10.11606/D.

43.2014.tde-27112014-121446.

Rafael Leite Rubim, Margarida Abrantes Barros, Thomas Missègue, Kévin Bougis,
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Abstract Since the discovery of graphene oxide (GO), the most accessible of the precursors of graphene,
this material has been widely studied for applications in science and technology. In this work, we describe
a procedure to obtain GO dispersions in water at high concentrations, these highly dehydrated dispersions
being in addition fully redispersible by dilution. With the availability of such concentrated samples, it was
possible to investigate the structure of hydrated GO sheets in a previously unexplored range of concentra-
tions, and to evidence a structural phase transition. Tentatively applying models designed for describing
the small-angle scattering curve in the Smectic A (or Lα) phase of lyotropic systems, it was possible to
extract elastic parameters characterising the system on the dilute side of the transition, thereby evidencing
the relevance of both electrostatic and steric (Helfrich) interactions in stabilising aqueous lamellar stacks
of GO sheets.

1 Introduction

Graphene oxide (GO) is a material obtained by mild ox-
idation and exfoliation of graphite, and one of the most
common manner of preparing it is Hummer’s modified
method [1,2]. This material is attracting a lot of interest,
in particular because it can easily be dispersed in various
solvents, including water, and many GO-based materials
and composites have been developed by solution process-
ing [3–8].

The structure of GO sheets, as well as their structural
organisation in water have been investigated using vari-
ous techniques, including atomic force microscopy (AFM),
polarised optical microscopy (POM), circular dichroism
(CD) and small-angle x-ray scattering (SAXS)–see for in-
stance [4,6,9–14]. Most of these works–either directly (AFM)
or indirectly (SAXS)–points to an atomic thickness t for
the GO sheet, significantly below 1 nm (assuming for the
GO density ρGO a value around 1.8 g/cm3 in the SAXS-
based method). Furthermore, it is now a consensus from
POM and SAXS studies that the phase diagram of the
lyotropic GO–water dispersion exhibits isotropic, nematic
and lamellar (or lamellar-like) phases, phase transitions
being driven by the increase of GO concentration in the
dispersion, as also observed in somehow similar materi-
als made of planar, solid-like sheets of near-atomic thick-
ness [15, 16]–or a bit thicker [17].

In qualitative accordance with Onsager’s theory for
the isotropic-to-nematic phase transition in suspensions of

a Present address: Solvay–Laboratoire du futur, 178 avenue
du Docteur-Schweitzer, F-33608 Pessac, France
Correspondence to: frederic.nallet@u-bordeaux.fr

hard colloids, quantitatively valid for slender particles [18],
the particle volume fraction ϕI at the transition onset
is given in numerical simulations for “pancake” particles
by [19–21]

ϕI ≈ 3.2
t

L
(1)

in terms of the particle aspect ratio L/t. Equation (1) de-
scribes reasonably well the mass fraction fB

m of GO when
birefringence first occurs (viz. when the nematic phase
first appears) using fB

m = ϕI × ρGO/ρH2O, considering
the dispersity D in lateral extensions L [22, 23], as well
as uncertainties in GO thickness t and density ρGO. Such
an agreement is considered as a convincing argument for
the GO sheets being rigid enough to remain essentially
uncrumpled in dilute suspensions [4, 6].

Structures commonly described as lamellar are ob-
served in more concentrated GO dispersions, as mainly
results from SAXS studies [6, 9, 12, 24], a behaviour also
found in similar (inorganic) materials such as phospha-
toantimonates, clays or titanium-iron acid oxides [15–17,
25]. The structure (sometimes depicted more cautiously
as a nematic gel, a locally layered system, or a pseudo-
smectic phase because compelling evidence for positional
long-range order is not easily found) is formed by stacking
GO sheets (or other kinds of solid-like sheets), separated
by layers of water, with a given distance of repetition ℓ of
the unit cell along the stacking axis z. In the plane perpen-
dicular to z, the structure of the two-dimensional solid-like
sheet is well-defined locally, but more difficult to ascertain
at scales larger than L. Owing to the repulsive interac-
tion along z between two facing sheets, with a significant
electrostatic contribution according to refs. [6, 15, 16], the
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thickness of the water layers increases, with therefore an
increase in ℓ, when (low ionic strength) water is added to
the system. In a geometric description of the swelling pro-
cess where L → ∞ and t is a constant, a simple dilution
law, namely

ℓ = t/ϕ (2)

is expected and indeed observed, as in refs. [6, 12], at
least for a restricted range of particle volume fractions ϕ,
see [15, 16]. The dilution law, eq. (2), yields the above-
mentioned SAXS (indirect) estimate for the GO sheet
thickness t.

One of the purpose of the present contribution is to ex-
plore the validity of eq. (2) towards more concentrated GO
dispersions than previously investigated. In the next sec-
tions, we describe how our samples are characterised using
dynamic light (sect. 2.1) or small-angle x-ray (sect. 2.3)
scattering techniques, and dehydrated in a controlled way
to almost complete dryness while remaining fully redis-
persible in water (sect. 2.2). Our main results are sum-
marised in sect. 3.1, with evidences for a structural phase
transition between lamellar structures, not reported previ-
ously, as dehydration proceeds. In sect. 3.2, we discuss pos-
sible mechanisms stabilising in water the lamellar stacks
of GO sheets, drawing an analogy with lamellar stacks
of self-assembled amphiphilic bilayers. Though we give no
clues as regards the most concentrated regime, the lamel-
lar stack of GO sheets appears to be well described in the
dilute regime by the so-called “unbinding transition” phe-
nomenon that results from repulsive Helfrich [26] and
electrostatic interactions between stacked layers compet-
ing with attractive van der Waals interactions [27, 28].

2 Materials and methods

2.1 Sample characterisation

The graphene oxide suspensions are prepared from a com-
mercial aqueous solution sold by Graphenea (San Sebas-
tian, Spain), with nominal concentration 4 mg/mL. Such
a solution is concentrated enough to be birefringent, as
revealed by POM, but does not yet exhibit any signifi-
cant increase in viscosity compared to water. According
to the producer, the dispersion presents more than 95 %
of carbon monolayers and an amount between 41 and 50%
of oxygen atoms, with variable sheet dimensions L below
10 µm, usually around 1–2 µm [29]. Owing to the presence
of COOH groups attached to the sheet surface, the aque-
ous GO suspensions are expected to be acid and, indeed,
their measured pH is about 2.4. Two different batches
were bought and used to prepare the samples. For both
batches, dynamic light scattering (DLS) experiments were
carried out, using a research goniometer and laser light
scattering system from Brookhaven Instruments Corpo-
ration (Holtsville, NY, USA). Freshly prepared samples
were diluted in water to 0.04 mg/mL. At such a concen-
tration, the samples are no longer birefringent but faint
depolarised fluctuations can be observed by POM in an

optically thick (0.800 mm) cell from VitroCom (Moun-
tain Lakes, NJ, USA). The DLS experiment is performed
with incident light polarised perpendicular to the scatter-
ing plane, without analysing the polarisation of the scat-
tered signal. DLS experiments have been repeated from
time to time on ageing samples prepared with the first
batch along a total period of about 2 months in an at-
tempt to characterise ageing, if any. Some representative
results on freshly prepared samples are shown in fig. 1. Fit-
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Figure 1. Characteristic relaxation frequency ∆−1 of the au-
tocorrelation function measured in DLS as a function of the
scattering vector q for GO dispersions prepared from two
separate batches–batch 1: ◦, batch 2: �. Inset: Stretched-
exponential model fitted to selected DLS data.

ting the DLS data to a stretched exponential model, see
eq. 3, as a convenient (but ad hoc) way to somehow take
into account the GO dispersity, two parameters (a char-
acteristic time and a stretching exponent) were obtained
as a function of the scattering wave vector q.

The model correlation function is expressed as

C (τ) = exp

[
−2

( τ

∆

)β
]

(3)

where ∆ is the characteristic relaxation time and β the
stretching exponent. Parameter β was found to decrease
from ca. 0.9 to 0.7 as the scattering vector q increases from
ca. 1×10−2 to 2.2×10−2 nm−1. Besides, as illustrated in
fig. 1 by the straight lines with a slope 2, the relaxation
frequency ∆−1 is proportional to q2, meaning that an ef-
fective diffusion coefficient–or a hydrodynamic radiusRH–
can be defined. From the standard Stokes-Einstein relation

RH =
kBT∆

6πη
× q2 (4)

with kB the Boltzmann constant, T the absolute tem-
perature of the GO dispersion and η the solvent viscos-
ity, hydrodynamic radii were found equal to 0.74 µm and
1.22 µm for batches 1 and 2, respectively.
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As mentioned above, possible effects of ageing were
checked on samples prepared from the first batch, with
three distinct histories:

1. Samples were diluted to the concentration appropriate
for DLS (ca. 0.04 mg/mL) immediately after receiving
the solution from Graphenea, then stored for ageing;

2. Samples were diluted to the concentration appropriate
for DLS from the solution stored for ageing received
from the manufacturer;

3. Samples concentrated to ≈ 160 mg/mL immediately
after reception of the Graphenea solution (see below,
sect. 2.2, for details regarding the concentration proce-
dure) were stored for ageing, then diluted to the con-
centration appropriate for DLS.

Whatever the sample history, the storage conditions were
the same, namely stable temperature (22◦C) and no ex-
posure to direct light. In all cases, DLS did not reveal any
significant ageing over a period of about 2 months.

2.2 Sample preparation

A procedure to increase the concentration of the commer-
cial GO dispersions was implemented, requiring two steps.
Centrifugation and ultracentrifugation are used in the first
step. The commercial dispersion is first centrifuged for
about 20 min at 1400g, in order to remove “large” aggre-
gates from the sample. After discarding the bottom phase,
the supernatant is then ultracentrifuged at a much higher
speed (302000g) for 5 h. The recovered supernatant, mostly
water at pH=2.6, occupying almost the total volume of
the centrifuge cell, is also discarded. The remaining phase
appears as a highly viscous material with a dark, almost
black colour. As explained below–see also fig. 2–, it turns
out that the GO mass fraction fm achieved at this stage
is around 0.16, thus corresponding to an increase in GO
concentration by a factor about 40. We have checked that
increasing the duration of the ultracentifugation proce-
dure does not significantly increase fm, while decreasing
it below ca. 3 h does not lead to concentrated enough
dispersions.

After a period of about one week left for homogenisa-
tion in a closed container–required because the presence
of small and uncontrolled amounts of water at the surface
of the concentrated dispersion cannot be avoided when
recovering the pellet from the centrifuge cell–the second
step begins. A home-designed device is set up to slowly
evaporate at room temperature the aqueous solvent from
samples. It consists in a diaphragm pump connected to
a desiccator where a dozen of (open) Eppendorfs contain-
ing the desired material are stored, with a pressure control
system maintaining 300 mbar inside the vacuum chamber.

Figure 2 shows the evolution in time of the GO mass
fraction for three dispersions resulting from the first, cen-
trifugation-based step. As it appeared retrospectively, they
differed by their initial mass fractions. The mass fraction
fm(τ) (τ = 0 when dehydration begins in the vacuum
chamber) is determined, indeed, by weighing the sam-
ple at time τ , which obviously requires opening the vac-
uum chamber. The measured mass is m(τ). The clock is

stopped (and the Eppendorfs closed) for the duration δ
of the weighing operations, with an optional (mild) shak-
ing intended to re-homogenise samples visually displaying
drier patches. The same procedure is repeated at regu-
lar intervals of, typically, 1 h (in “vacuum times”, i.e.
subtracting the δ’s from the actually elapsed time). It
has been observed that for τ & 30 h the mass m(τ)
does not decrease any more, and keeps a constant value
m∞. We have checked on a few sacrificial samples, sub-
mitted to a somehow stronger vacuum (pressure in the
mbar range) for about 15 h, that remaining water cannot
be extracted with our set-up: Achieving complete dehy-
dration would require ultra-vacuum or elevated temper-
atures [30–32]. On the basis of our x-ray measurements
(see below, Section 3.1), we estimate the weight fraction
of “bound” water from Ref. [30] to be f∞

w ≈ 27.7%, with
therefore fm(τ) = (1− f∞

w )×m∞/m(τ).
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Figure 2. GO mass fractions fm(τ ) as a function of the dehy-
dration time in the vacuum chamber (p = 300 mbar) for three
samples differing by their initial water content: ◦ 14.4 %, �
15.7 %, △ 17.6 %. The horizontal dashed line at fm = 0.723
corresponds to the limiting GO mass fraction, and accounts
for water molecules that cannot be removed with our drying
set-up.

Notably–and similarly to the first step–, the second
step of the dehydration procedure is reversible. As shown
by SAXS (see below, sect. 3), adding water to a sam-
ple extracted at time τ> from the desiccator in the re-
quired amounts to mimic the composition of a sample
stored for a lesser time τ< leads to essentially identical
diffractograms for the “wet” and “dried-rehydrated” sam-
ples when they both originate from the same centrifuged
material. At contrast with what has been observed with,
e.g., freeze-dried GO dispersions where the GO chemical
structure is strongly affected [33], it seems to be preserved
in our case as no aggregates were found in the slowly dried
samples redispersed in water.

118



Rafael Leite Rubim et al.: Highly Confined Stacks of Graphene Oxide Sheets in Water

2.3 Experimental techniques

Samples removed at time τ from the desiccator were left
for at least a week in their (now closed) preparation Ep-
pendorfs to ensure relaxation of possible humidity gra-
dients. After homogenisation, the samples were analysed
by POM. Due to their extreme opacity when fm exceeds
50%, highly dehydrated samples could not be successfully
observed. For samples with smaller mass fractions, images
were recorded (data not shown) using an Olympus BX 51
microscope with crossed polarisers and a ×20 objective.
The samples were sandwiched between a glass slide and a
cover-slip, without special precautions for ensuring a con-
stant optical path, estimated below 10 µm, but preventing
water evaporation by means of a UV-curing glue. Birefrin-
gence was always observed, indicating a liquid-crystalline
organisation. The samples were homogeneous, as revealed
by observing them without the analyser, indicating that
aggregates were not present. The samples were also inves-
tigated by small angle x-ray scattering. The thick pastes
were spread on a circular (diameter 1.3 mm), machine-
drilled opening perpendicular to the long axis of cylin-
drical stainless steel supports (2.0×20.0 mm) which were
then introduced in quartz capillaries with a nominal di-
ameter of 2.5 mm. The spreading procedure did not al-
low a control of the optical path better than ≈ 25 %.
The quartz capillaries were further flame-sealed, to ensure
tightness. Diffractograms were recorded on a Bruker-AXS
Nanostar machine equipped with a Hi-Star detector, also
from Bruker (Karlsruhe, Germany). From the entrance
pinhole to the beryllium window in front of the detector,
the whole flight path is evacuated. A crossed-coupled pair
of Göbel mirrors (Bruker) selects the λ = 1.5418 Å ra-
diation of a copper source (Siemens), operated at 40 kV
and 35 mA. A 3-pinhole system is used for collimating
the incident beam, with a size (FWHM) at sample po-
sition ca. 0.43 mm in both vertical and horizontal direc-
tions. Two sample-to-detector distances, found close to
0.25 m and 1.05 m respectively, calibrated using silver be-
henate as standard [34], were used to match the variable
stacking periods of the samples. From the Gaussian width
of the first order Bragg peak of silver behenate, we esti-
mate a resolution width (FWHM) ∆q ≈ 5× 10−2 Å−1 or
∆q ≈ 6.0 × 10−3 Å−1 for the two configurations, respec-
tively. Owing to the intrinsic broadening of silver behen-
ate [34], the latter value could be slightly over-estimated.
The scattering wave vectors that are practically acces-
sible after subtracting the signal of a reference (water)
capillary range from 0.04 Å−1 to 0.8 Å−1 in the “large-
angle” configuration, and from 0.01 Å−1 to 0.2 Å−1 in the
“small-angle” one. For accessing to even higher scattering
wave vector values (typically 0.5–3.3 Å−1), as required
to assess the in-plane order of the GO sheets, we use a
custom-made instrument with a copper rotating-anode-
based setup and crossed-coupled pair of Göbel mirrors,
both from Rigaku (Tokyo, Japan), a 3-pinhole collima-
tion system similar to the Bruker one and a mar345 image
plate detector (marXperts, Norderstedt, Germany) with
sample-to-detector distance 0.15 m. At contrast with the
Bruker system, only the collimation flight path is evacu-

ated. Acquisition times on the instruments were in the or-
der of 5 hours (Bruker Nanostar) or 1 hour (custom instru-
ment). Temperature, fixed at 20◦C, is controlled to within
±0.2◦C by a water circulation system (Bruker Nanostar)
or, with a lesser precision, by the air-conditioning system
of the room (custom instrument). For both instruments,
the 2D detector images were most often characteristic of
slightly oriented samples, as previously observed [6, 12],
presumably because of the shear applied when filling the
x-ray capillaries, or spreading the thick samples on the cir-
cular opening of the sample holders. Data was therefore
azimuthally averaged to yield (normalised) intensities I
vs. scattering wave vector q curves.

3 Experimental results and discussion

3.1 Results

SAXS results (“small” and “large” angle configurations)
for ten selected samples are shown for illustration in fig. 3,
in the Iq2 Kratky representation that factorises out the
characteristic 1/q2 intensity decrease of very extended,
thin and flat particles with random orientations [35]. The
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Figure 3. SAXS spectra (Kratky plot: Iq2 vs. q) for GO aque-
ous dispersions differing by their GO mass fractions fm: 0.04
(�), 0.07 (�), 0.10 (◦), 0.14 (•), 0.12 (△), 0.16 (N), 0.21 (♦),
0.26 (�), 0.38 (▽) and 0.62 (H). Data shifted vertically by
amounts allowing a better visualisation

observed peak, characteristic of the lamellar stacking, moves
towards higher scattering wave vector as dehydration pro-
ceeds. The second order peak, though clearly observed in
either the “small” or “large” angle configurations for the
two more hydrated samples in the corresponding series
(GO mass fractions fm 0.04 and 0.07, or 0.12 and 0.16, re-
spectively), barely appears in the “large” angle configura-
tion for the other samples–even though it still falls within
the observation window. Nevertheless, as shown in fig. 4
with an observation window extending to much larger
scattering wave vector values, the second order Bragg peak
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of the lamellar stacking, though weak, is clearly observed
in one of the most dehydrated sample (fm = 0.792). As
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Figure 4. X-ray scattering data for the dryiest GO disper-
sion (fm = 0.792). Lamellar stacking peaks marked by vertical
arrows at q0 = 8.548 × 10−1 Å−1 and ≈ 1.71 Å−1. The 2D,
in-plane order of the carbon atoms in GO sheets gives rise to
the intense and thin peak observed at qG = 2.964 Å−1. Other
intensity humps at ≈ 2.6 Å−1: Unidentified features, possi-
bly related to experimental artefacts arising from background
scattering

a matter of fact, upon increasing the GO content up to
fm ≈ 0.23, the intensity ratio between the second and
first order peaks decreases until the second order peak ap-
parently disappears, to be unambiguously recovered when
fm reaches ca. 0.29. In this concentration range, the first
order peak is also significantly broadened–see fig. 5. Such
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−1

]

I
q2

[u
.a

.]

Figure 5. SAXS spectra in the Kratky representation for hy-
dration values of the GO aqueous dispersions corresponding to
a very broad first order Bragg peak. GO mass fraction fm: 0.17
(◦), 0.19 (H), 0.21 (△), 0.23 (�), 0.26 (♦), and 0.29 (•). Data
shifted vertically by amounts allowing a better visualisation

features of the SAXS diffractograms may point to a struc-
tural phase transition. It is, however, not evidenced in the
POM observations. We return to this intriguing point im-
mediately below.

From Bragg’s law, namely ℓ = 2π/q0, it is found that,
as expected, the period of the lamellar stack decreases
when water is removed from the structure. The experi-
mental dilution law ℓ(ϕ), with volume fractions ϕ derived
from mass fractions fm through the relation

ϕ =
ρH2Ofm

ρH2Ofm + ρGO(1 − fm)
(5)

(assuming volume additivity) is shown in fig. 6. A striking
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Figure 6. Stacking period ℓ as a function of the inverse volume
fraction 1/ϕ for highly dehydrated GO dispersions (0.1 ≤ ϕ, or
0.17 ≤ fm). Inset: idem for the whole dilution range. Dashed
line: Simple swelling law ℓ = t/ϕ, drawn with t = 0.39 nm

discontinuous behaviour near ϕ ≈ 0.14 (fm close to 0.23)
is clearly observed in the dehydrated limit of the dilution
line. Besides, the discontinuity is precisely found to occur
in the hydration range where broadening of the first or-
der peak, as well as the disappearance of the second order
peak have been observed, hinting again at the occurrence
of a structural phase transition. Still, as evidenced in the
inset to fig. 6 where SAXS data from samples submitted
to the first concentration step (sect. 2.2)–some of them
re-diluted–or only mildly dehydrated in the second step
has been included, our data remains broadly compatible
with the simple swelling law, eq. (2). This latter observa-
tion is nicely in agreement with the findings of previous
studies, limited then to significantly more dilute GO dis-
persions [6,12] than investigated here. The fit to the dilu-
tion data leads to a sheet thickness t ≈ 0.39 nm, a value
close to, yet slightly lower than the value found in ref. [12].
The structural phase transition, if any, does therefore not
strongly weakens the relevance of the simple geometric
arguments at the origin of the simple swelling law.

As shown for illustration in fig. 4 corresponding to our
dryiest sample (fm = 0.792), the expected locally planar
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hexagonal structure of the carbon atoms in the graphene
layers is observed using x-ray scattering at large angles.
The peak found for qG ≈ 2.964 Å−1 can be related to the
C–C nearest-neighbour distance dC−C in a given graphene
layer using 3dC−C = 4π/qG, which indeed yields a result
(1.41 Å) close to the commonly accepted value dC−C =
1.42 Å [36]. The same result is found for more hydrated
samples, as long as there is enough signal for this peak to
emerge from the background.

Two peaks (locations q0 = 0.85 and 1.71 Å−1, close to
2q0) can be found in the lower q-range part of fig. 4. They
are related to the lamellar stacking order of the GO sheets.
The corresponding periodicity, about 0.74 nm, is ca. 1.9×
higher than the geometric parameter t ≈ 0.39 nm found
in fitting the simple dilution law to the whole set of SAXS
data, that is to say about twice higher than the interlayer
distance in graphite [36]. This result is to be attributed to
the water molecules remaining trapped between the GO
sheets, about 46% in volume fraction from eq. (2), a value
found in rather reasonable agreement with eq. (5), leading
to ϕw ≡ 1− ϕ = 0.32.

3.2 Discussion

Despite a possible structural transition, occurring near
ϕ = 0.14 and remaining to be characterised in details,
it appears that GO aqueous dispersions exhibit a lamellar
order over a quite extended concentration range, with a
stacking period ℓ varying from about 0.8 nm in the dryiest
available system to more than 45 nm in our most hydrated
samples. It is worth noting here that periods as large as
ℓ ≈ 100 nm have even been found in other studies [6].
The physical mechanism stabilising the lamellar structure
for vastly different water contents is therefore of obvious
interest.

In the so-called lyotropic lamellar phases (self-assembled
bilayers of surfactant or lipid molecules separated by layers
of solvent, or solvent-swollen block-copolymer systems),
a similar swelling of the lamellar structure over very ex-
tended composition ranges is also commonly observed [37–
42]. It is similarly present in systems structurally similar
to GO, viz. based on extended solid-like sheets–phosphato-
antimonate, for instance [15], or clay-based systems [16]–
dispersed in aqueous solutions. Such a swelling is com-
monly attributed to long-range, either direct or effective,
repulsive interactions between the stacked sheets, acting
across the solvent layers and of electrostatic origin, or re-
sulting from the “undulation interaction” mechanism pro-
posed by Helfrich [26].

In the case of GO aqueous dispersions, the two mech-
anisms have already been identified [6, 43], at least in-
directly in the case of Helfrich’s mechanism [43]. An
electrostatic contribution is clearly evidenced when exper-
imentally studying the swelling properties in the presence
of added salts (in order to vary the ionic strength of the
aqueous solvent layers). Using NaCl as a typical univalent
salt in the (nominal) concentration range 10−6–10−1 M,
the same effect as described in ref. [6] is observed here,
namely a decreasing stacking period ℓ with increasing salt

content above a fm-dependent salt concentration c∗s. In-
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Figure 7. SAXS spectra in the Kratky representation for GO
aqueous dispersions differing in added NaCl content cs. GO
mass fraction fixed to fm = 4.3%. Nominal salt concentrations
cs = 1 × 10−6 M (•), 1 × 10−5 M (�), 5 × 10−5 M (N), 1 ×
10−4 M (▽), 5× 10−4 M (•), 1× 10−3 M (♦), 5× 10−3 M (�),
5×10−2 M (△) and 1×10−1 M (H). Data shifted vertically by
amounts allowing a better visualisation. The vertical dashed
line is drawn at q0 = 3.49× 10−2 Å−1

deed, as shown in fig. 7, up to the salt concentration c∗s
(found about 1 × 10−3 M for fm = 4.3%), the first order
Bragg peak position q0 does not significantly change, and
the overall appearance of the SAXS spectra remains the
same. Conversely, the stacking period decreases and, si-
multaneously, the first order Bragg peak broadens, then
becomes barely noticeable as the salt concentration in-
creases above c∗s. Repeating the experiment at a different
value for the GO mass fraction (fm = 1.4%) yields qualita-
tively similar observations (data not shown), with however
a significant decrease in the value (about 1× 10−4 M) for
c∗s.

Regarding now “undulation interactions”, results have
been interpreted in recent rheoSAXS experiments by in-
troducing a bending modulus κ for GO layers in the order
of kBT , that is to say “superflexible” sheets [43]. Such a
low value suggests quite strong steric repulsions between
adjacent GO layers, owing to the confinement of undula-
tion fluctuations. This would nicely explain the conspic-
uous swelling properties of the system and, in particular,
the salt effect mentioned above. Indeed, as has been firmly
established since Helfrich’s seminal article [26], swelling
properties in lamellar stacks of flexible sheets result from
a competition between, on one hand, the “unbinding” ten-
dency of undulation fluctuations and, on the other hand,
direct sheet–sheet interactions that may favour “bound”
systems if attractive enough [27, 28]. An illustration may
be found in a recent study of lamellar stacks of lipid bi-
layers [44–46], where the delicate interplay between “un-
binding” tendencies and interactions favouring “bound”
systems was varied by controlling the bilayer molecular
composition. This amounted to varying simultaneously
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the bending modulus κ (“unbinding” tendencies) and the
virial coefficient χ that encapsulates in the model the ef-
fect of interactions [28, 44–46], in a way somehow similar
to the theoretical approach to the lamellar–lamellar phase
coexistence proposed in ref. [47].

As regards the salt effect on GO stacks, interpretations
may be simpler than in refs. [45,46], at least if it is safe to
assume that the main effect of salt (screening electrostatic
repulsive interactions through the decrease of the Debye
screening length) falls upon the parameter χ only, κ being
therefore unaffected. In such a simple limit, the Milner–
Roux virial coefficient χ should be a monotonously in-
creasing function of cs, since van der Waals attractions
between GO sheets would be less and less counterbalanced
by electrostatic repulsions [28], as classically described for
colloidal particles in the DLVO theory [48]. The thermo-
dynamic analysis of the unbinding transition then leads to
a (schematic) phase diagram, displayed in the (ϕ, χ)-plane
in fig. 8, following refs. [28, 49].
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Figure 8. Phase diagram of a stack of GO sheets in the (ϕ, χ)
plane drawn in the case where bending modulus κ/(kBT ) = 1.
The Milner–Roux virial coefficient χ is made dimensionless
by normalising to the volume built from the sheet thickness
t. Horizontal dashed lines are binodals, linking excess solvent
with a “bound” lamellar stack

The general features of the phase diagram are in qual-
itative agreement with available observations. As long as
the salt concentration cs is low enough, interactions be-
tween GO sheets are essentially repulsive, χ should remain
“small” (possibly negative) and the system is homogeneous–
blank region in fig. 8. In this case, for any given ϕ, ℓ cannot
depend on cs and obtains according to eq. (2) as ℓ = t/ϕ.
However, when cs increases above a threshold concentra-
tion c∗s(ϕ), van der Waals attractions start being dom-
inant in the sense that the virial coefficient χ(cs) becomes
larger than the swelling limit line χ(ϕ) drawn in fig. 8. For
the same given overall composition ϕ, the swollen stack
of GO sheets phase-separates, part of the volume being
filled with pure solvent (ϕl = 0), a more concentrated
GO–solvent system with ϕr ≥ ϕ occupying the remaining
volume–left- and right-end of dashed binodals in fig. 8.

Since ℓ remains equal to t/ϕr in the swollen stack, the
observed stacking period starts decreasing. Because the
swelling limit line χ(ϕ) in fig. 8 increases with ϕ, the phase
separation phenomenon occurs earlier (i.e. for a lower salt
content) if the lamellar stack is initially more dilute.

To proceed further in quantitative terms, it would be
desirable to directly measure the properties controlling the
swelling behaviour in GO stacks, viz. the bending mod-
ulus κ of the GO sheet and the sheet–sheet interaction
potential or, at least, the Milner–Roux virial coefficient
χ [28], in particular as a function of cs. As an interme-
diate step before reaching this ultimate goal, we propose
below a method (based upon a model description of the
small-angle x-ray–or neutron–diffractograms) for estimat-
ing the Caillé exponent η. This parameter was originally
introduced for describing elastic fluctuations in smectic A
liquid crystals [50–52] and is related to both smectic layer
flexibility and interactions. It also proved useful in in-
terpreting characteristic features of diffractograms of ly-
otropic lamellar Lα phases see, e.g., [38,44,53,54], as well
as of GO stacks [6].

The intensity I of the radiation scattered by unori-
ented (“powder”) lamellar samples can be shown to a good
approximation to be proportional to the product of two
main terms [35, 53]

I (q) = A
2π

q2
P (q)S (q) (6)

where P and S are, respectively, the form and structure
factors, accounting for the scattering along their normal
by isolated flat “particles” and, along the stacking axis, by
a 1D periodic structure. In eq. (6), q is the magnitude of
the scattering wave vector and A is a normalising constant
that depends on “particle”–solvent contrast, composition,
etc. The 1/q2 term accounts at large enough wave vectors
for the powder average [35], and can also be considered as
the “particle” in-plane form factor [53].

With the further simplification of considering the GO
sheets as zero-thickness “particles”, the form factor P no
longer depends on q and remains equal to 1, an acceptable
approximation in the investigated SAXS range. On the
other hand, the structure factor is conveniently expressed
as results from the following equations (7) and (8)

S (q) = 1 + 2

N−1∑

1

(
1− n

N

)

× cos

[
qℓn

1 + 2∆q2ℓ2α (n)

]

×
exp

{
− 2q2ℓ2α(n)+∆q2ℓ2n2

2[1+2∆q2ℓ2α(n)]

}

√
1 + 2∆q2ℓ2α (n)

(7)

α (n) =
η

4π2
[log (πn) + γ] (8)

where N is the number of correlated GO sheets in the
lamellar stack, ℓ the period of the structure, ∆q the Gaus-
sian width of the resolution (or FWHM/

√
8 ln 2), and γ ≈
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0.57721 . . . the value of Euler’s constant [53]. Note that
owing to the logarithmic term in eq. (8), characteristic of
the anomalous fluctuation properties in one-dimensional
systems [50–52], the structure factor given in eq. (7) dif-
fers essentially from the results relevant for the so-called
disorders of the first or second kinds, or para-crystalline
theory–see, e.g., [54, 55].

The model, though being somehow equivocal because
the resolution of our experiment is limited, the distinction
between (small) N and (large) η roles therefore becoming
less clear-cut in some cases, has nevertheless been used
to tentatively describe the diffractograms for some rather
dilute samples (without adding salt), with GO mass frac-
tions fm = 1.4 %, 2.8 %, 4.3 % and 7.1 % (volume fractions
respectively ϕ ≈ 0.8 %, ≈ 1.6 %, ≈ 2.4 % and ≈ 4.1 %).
Figure 9 displays two results, and fitting parameters are
given in table 1.
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Figure 9. SAXS spectra in the Kratky representation for a
fm = 1.4 % GO dispersion in pure water (◦). The full line is
the best fit of eq. (7) to the data. Inset: fm = 4.3 % system
(▽)

Table 1. Model parameters

Parameter fm = 0.014 fm = 0.028 fm = 0.043 fm = 0.071

ℓ [nm] 42.7 23.8 17.4 10.2

η 0.39 0.75 0.65 0.93

N 20 10 10 7

A fair description of the small-angle scattering features
is obtained when using the proposed model, with never-
theless obvious shortcomings for scattering wave vectors
in the range ≈ 0.08 − 0.16 Å−1 that may result from
the crudeness of our assumption as regards the GO sheet
form factor. In particular, the dangling oxygen-rich groups
present in GO sheets may increase locally the sheet thick-
ness, therefore contributing to out-of-plane features of the
form factor not accounted for in our simplified description.

From the fitted values of the Caillé exponent η, the
smectic compression modulus B of the lamellar structure
made of stacked GO sheets may be estimated. With

η =
q20kBT

8π
√
KB

(9)

from ref. [50], and using for the smectic splay modulus K
the relation K = κ/ℓ [26], we get

ℓ3B

kBT
=

π2kBT

4κη2
(10)

or B ≈ 6 for fm = 4.3 % (respectively, B ≈ 16 for
fm = 1.4 %) in kBT/ℓ

3 units if, as proposed in ref. [43],
the value of the GO sheet bending modulus κ is actually
equal to kBT . Such values for the smectic compression
modulus B, significantly larger than predicted in theHel-
frich model, namely ℓ3BH/(kBT ) = 9π2kBT/(64κ) [26,
38] (or ≈ 1.4 in kBT/ℓ

3 units), are quite reasonable in the
presence of dominantly repulsive interactions between GO
sheets. Indeed, from Milner-Roux analysis of the “un-
binding” transition [28], the smectic compression modulus
B should be expressed as [44]

ℓ3B

kBT
=

9π2kBT

64κ(1− t/ℓ)4
− 2χℓt2 (11)

which, from eq. (10) with ℓ and η values as given in table 1,
yields roughly the same estimate for the virial coefficient
χt3 ≈ −0.04 for the two GO concentrations, with a nega-
tive sign as expected for overall repulsive interactions.

The structural phase transition that occurs in the vicin-
ity of ℓ = 2.5 nm is actually also amenable, qualitatively
at least, to an interpretation in terms of Milner-Roux
arguments. As shown in fig. 10, the Caillé exponent is
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Figure 10. Caillé exponent along the dilution line with pure
water, as resulting from equations (9) and (11), with κ/kBT =
1, χt3 = −0.036. GO sheet thickness t = 0.39 nm. Vertical
dashed line drawn at ℓ∗ = 5.4 nm. Data points from table 1

expected to strongly increase when the lamellar stack of
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GO sheets is dehydrated, until a characteristic period ℓ∗

is reached beyond which η decreases to very small val-
ues. As larger η values are associated to (lamellar) Bragg
peaks with lesser peak intensities and broader tails, the
quasi-disappearance of the first and second order Bragg
peaks in a given dilution range (see fig. 5) may thus be
understood, even though the predicted ℓ∗ value, namely
5.4 nm, clearly differs from its experimental counterpart.
However, since the Milner-Roux description of the un-
binding transition is a mean-field, perturbative theory, we
believe that such a discrepancy should not be too seri-
ously deplored for such concentration ranges where direct
interactions between GO sheets are definitely strong.

4 Conclusion

A procedure to concentrate aqueous GO dispersions to
significant dryness, with the benefit of avoiding the for-
mation of aggregates has been implemented. The lamellar
stacks of GO sheets obtained in an extended concentra-
tion range, from ca. 2 % to 72 %, can be reversibly swollen
or dehydrated. The simple one-dimensional dilution law is
largely obeyed over all the investigated hydration range,
even though conspicuous discrepancies have been revealed
by small-angle x-ray scattering studies that may indicate
the occurrence of an underlying, as yet unidentified, struc-
tural phase transition.

The swelling behaviour of the aqueous GO dispersions
can be interpreted, similarly to many lyotropic lamellar
Lα phases in amphiphilic systems, in terms of an entropic
“force” arising from the confinement of undulation fluctu-
ations (also known as Helfrich undulation interactions)
acting together, or competing with, direct forces, respec-
tively electrostatic repulsions and van der Waals attrac-
tions. The so-called “unbinding transition” mechanism ap-
pears here to be mainly driven by the ionic strength of the
aqueous medium swelling the GO sheets, as indirectly sug-
gested by the quantitative analysis of the small-angle x-ray
diffractograms in terms of a parameter, the Caillé expo-
nent η, that combines the bending and compression mod-
uli characterising the elastic properties of lamellar phases.
The analysis confirms the recently proposed “super-flexible”
nature of GO sheets [43].
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Lemaire, Hervé Desvaux, Patrick Davidson, and Patrick
Batail. Swollen liquid-crystalline lamellar phase based on
extended solid-like sheets. Nature, 413:504–508, 2001.

16. Laurent J. Michot, Isabelle Bihannic, Solange Maddi,
Sérgio S. Funari, Christophe Baravian, Pierre Levitz, and
Patrick Davidson. Liquid-crystalline aqueous clay suspen-
sions. Proceedings of the National Academy of Sciences,
103:16101–16104, 2006.

17. Dzina Kleshchanok, Peter Holmqvist, Janne-Mieke Mei-
jer, and Henk N. W. Lekkerkerker. Lyotropic smectic B
phase formed in suspensions of charged colloidal platelets.
Journal of the American Chemical Society, 134:5985–5990,
2012.

18. Lars Onsager. The effect of shape on the interaction of
colloidal particles. Annals of the New York Academy of
Sciences, 51:627–659, May 1949.

19. Daan Frenkel and Rob Eppenga. Monte Carlo study of the
isotropic–nematic transition in a fluid of thin hard disks.
Physical Review Letters, 49:1089–1092, 1982.

20. Giorgio Cinacchi and Alessandro Tani. The
isotropic–nematic phase transition in hard, slightly
curved, lens-like particles. The Journal of Chemical
Physics, 141:154901, 2014.

21. Giorgio Cinacchi and Alessandro Tani. Isotropic–nematic
phase transition in hard platelets as described by a third-
virial theory. The Journal of Physical Chemistry B,
119:5671–5676, 2015.

22. Felix M. van der Kooij and Henk N. W. Lekkerkerker. For-
mation of nematic liquid crystals in suspensions of hard
colloidal platelets. The Journal of Physical Chemistry B,
102(40):7829–7832, 1998.

23. Martin A. Bates and Daan Frenkel. Nematic–isotropic
transition in polydisperse systems of infinitely thin hard
platelets. The Journal of Chemical Physics, 110(13):6553–
6559, 1999.

24. Zhen Xu and Chao Gao. Graphene in macroscopic order:
Liquid crystals and wet-spun fibers. Accounts of Chemical
Research, 47(4):1267–1276, February 2014.

25. Fengxia Geng, Renzhi Ma, Akira Nakamura, Kosho
Akatsuka, Yasuo Ebina, Yusuke Yamauchi, Nobuyoshi
Miyamoto, Yoshitaka Tateyama, and Takayoshi Sasaki.
Unusually stable ∼100-fold reversible and instantaneous
swelling of inorganic layered materials. Nature Communi-
cations, 4:1632, 2013.

26. W. Helfrich. Steric interactions of fluid membranes in mul-
tilayer systems. Zeitschrift für Naturforschung, 33A:305–
315, 1978.

27. Reinhard Lipowski and Stanislas Leibler. Unbinding tran-
sitions of interacting membranes. Physical Review Letters,
56:2541–2544, 1986.

28. S. T. Milner and D. Roux. Flory theory of the unbind-
ing transition. Journal de Physique I France, 2:1741–1754,
1992.

29. Product Datasheet: Graphenea Graphene Oxide.
https://cdn.shopify.com/s/files/1/0191/2296/

files/Graphenea_GO_Datasheet_2016-10-03.pdf?

8258700468234452297. Accessed: 2015-05-03.
30. W. Scholz and H.P. Boehm. Betrachtungen zur struktur

des graphitoxids. Zeitschrift für anorganische und allge-
meine Chemie, 369:327–340, 1969.

31. A. Lerf, A. Buchsteiner, J. Pieper, S. Schottl, I. Dekany,
T. Szabo, and H.P. Boehm. Hydration behavior and dy-
namics of water molecules in graphite oxide. Journal of
Physics and Chemistry of Solids, 67:1106–1110, 2006.
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53. Frédéric Nallet, René Laversanne, and Didier Roux. Mod-
elling x-ray or neutron scattering spectra of lyotropic
lamellar phases: Interplay between form and structure fac-
tors. Journal de Physique II, 3(4):487–502, 1993.

54. Ruitian Zhang, Robert M. Suter, and John F. Nagle. The-
ory of the structure factor of lipid bilayers. Physical Review
E, 50:5047–5060, 1994.

55. Mitsuhiro Shibayama and Takeji Hashimoto. Small-angle
x-ray scattering analyses of lamellar microdomains based
on a model of one-dimensional paracrystal with uniaxial
orientation. Macromolecules, 19:740–749, 1986.

56. J. D. Hunter. Matplotlib: A 2D graphics environment.
Computing In Science & Engineering, 9(3):90–95, 2007.

126



Appendix B

Résumé détaillé

Cette thèse a été développée au sein de l’équipe Matière Molle : Structure et Dynamique

(M2SD) au Centre de recherche Paul-Pascal (UMR5031), un laboratoire situé à Pessac

et attaché à l’Université de Bordeaux et au Centre National de la Recherche Scientifique

(CNRS), dont le financement a été accordé par le programme Sciences sans Frontières,

une initiative du gouvernement brésilien au travers du Conseil National de Développement

Scientifique et Technologique (CNPq).

Après l’étude développée par Emerson Rodrigo da Silva(da Silva, 2011), qui a ensuite

été continuée par Kévin Bougis(Bougis, 2016), la formulation des complexes composés

de bicouches lipidiques a été poursuivie dans le groupe. À l’aide des techniques comme

la diffusion de rayons x aux petits angles, les microscopies optique et électronique, les

propriétés du système formé par une structure lamellaire hôte et des fragments d’ADN

ont été étudiées.

Les fragments d’ADN sont assez petits pour être vus fondamentalement comme des cy-

lindres, des particules unidimensionnelles. L’insertion/organisation de ces macro molécules

entre les bicouches, une matrice bidimensionnelle, donne lieu à des différentes structures

auto-associées.

Ce travail a été l’inspiration pour étudier, d’un point de vue fondamental, le couplage

entre des bicouches amphiphiles auto-associées (lesquelles peuvent être vues comme une

matrice anisotrope formée d’objets bidimensionnels) et un objet lui-même bidimensionnel,

en l’occurrence le feuillet d’oxyde de graphène, quand ils sont dispersés dans un solvant

commun.

Dès sa découverte, le graphène oxydé (GO), dont la structure est présentée en Fi-

gure 2.1c et considéré le plus accessible des précurseurs du graphène, a été largement utilisé

pour des applications en science et technologie. L’objectif de cette thèse est d’étudier les

effets du confinement sur des systèmes complexes auto-associés de matière molle et, en par-

ticulier, l’insertion des feuillets de GO dans une matrice fluide anisotrope. La compétition

entre les élasticités intrinsèques des bicouches et des feuillets de GO, ainsi que les inter-

actions directes bicouche-bicouche, bicouche-GO et GO-GO, permet d’envisager un riche
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polymorphisme en fonction de la composition du système.

Avant l’étude des complexes du système ternaire, le système binaire composé de GO

et de l’eau a été exploré. Une caractérisation des feuillets a été réalisée, ce qui a donné une

extension latérale de l’ordre du micromètre avec une polydispersité élevée, comme montré

en Figure 3.4 et Figure 3.5. Comme décrit en section 3.2, un procédé pour obtenir des

dispersions aqueuses de GO à très fortes concentrations a été développé, ce qui a permis

l’étude d’une large gamme de concentrations de la dispersion. Les échantillons obtenus

sont libres d’agrégats et peuvent être réversiblement gonflés ou deshydratés, ce qui n’est

pas faisable avec le GO en poudre.

La Figure 3.14, résultat des expériences de diffusion de rayons X aux petits angles,

révèle un comportent typique des cristaux liquides pour les dispersions aqueuses de GO,

où des phases organisées peuvent être obtenues avec l’augmentation de la concentration

du système. Les phases smectiques obtenues obéissent à la loi de dilution usuelle, ca-

ractéristique des cristaux liquides lyotropes, dans la gamme d’hydratation explorée. Une

représentation schématique du phénomène est donnée en Figure 3.15.

Le gonflement des dispersions aqueuses de GO peut être interprété en termes des forces

qui agissent sur les feuillets. L’équilibre entre les interactions attractives et répulsives

stabilise la structure lamellaire et nous avons démontré l’importance de la répulsion

électrostatique dans le domaine hydraté, en compétition avec d’autres contributions, pour

diluer la structure empilée.

Néanmoins, dans un petit domaine de concentrations, un écart entre la loi de dilution

et les donnés expérimentales est observé, ce qui peut indiquer une transition de phase

structurale. Bien que les détails de ce phénomène restent à être identifiés, ce comporte-

ment anormal peut être lié au fait que, pour les phases fortement confinées, les groupe-

ments oxygénés dans la surface des feuillets de GO s’interpénètrent. Quand la structure

est diluée, la périodicité lamellaire augmente et les couches perdent leur contact. Une

représentation schématique peut être donnée en Figure 4.7. Ce phénomène affecte les in-

teractions entre les feuillets adjacents, un effet qui est détecté sur la courbe de dilution.

Les résultats de cette partie du travail ont été publiés en Rubim et al. (2018) et l’article

complet peut être consulté en Appendice A.

Pour des dispersions de GO plus diluées, des modèles de diffusion de rayons x ont

été adaptés et employés pour extraire les paramètres structuraux du système analysé. La

forme et l’organisation de feuillets ont été étudiées, comme décrit en section 4.2, et les

résultats des ajustements sont présentés en Figure 4.6.

L’épaisseur du feuillet de GO, obtenue à partir du contraste de densité électronique,

est en accord avec les valeurs décrites dans la littérature. En considérant des densités

électroniques différentes pour le plan des atomes de carbone et des groupes oxygénés,

une épaisseur atour de 15 Å est obtenue. La partie interne du feuillet, qui mesures au-

tour de 6 Å, a une longueur compatible avec l’épaisseur du graphène. Cependant, si l’on

considère une densité électronique moyenne pour les deux parties du feuillet, une épaisseur
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approximative de 10 Å est obtenue.

La structure organisée en lamelles a aussi été caractérisée avec les modèles mis en

œvre. Les paramètres sensibles à la flexibilité des feuillets ont été obtenus et leur compor-

tement, en fonction de l’hydratation du système, a été analysé. Ces résultats ont conduit

à l’extraction du module de compressibilité de la structure empilée. La Figure 4.8 montre

que, comme prévu pour des systèmes comme les phases lamellaires de GO, plus petite est

la distance entre les feuillets, plus élevée est la force nécessaire pour les écarter de leur

position d’équilibre.

Ensuite, le système binaire composé de tensioactif et d’eau acidifiée a été exploré. Les

expériences ont révélé la formation de bicouches amphiphiles organisées en une structure

lamellaire pour les systèmes faiblement et moyennement concentrés. La structure obéit

aussi à la loi de dilution, ce qui veut dire qu’elle gonfle quand le solvant est rajouté au

système. Néanmoins, une transition de phase est observée pour les échantillons fortement

concentrés et une structure non définie est observée.

Cette étude a permis l’exploration du système binaire deshydraté composé de feuillets

de GO et de tensioactif. La cinétique de ce système a montré que des très longs temps

d’homogénéisation sont nécessaires pour stabiliser la structure, un facteur source d’in-

convénients pour l’étude.

Pour de plus faibles quantités de tensioactif, le feuillets de GO s’organisent en une

structure empilée et les amphiphiles s’adsorbent à leur surface. Avec une augmentation

de la quantité de tensioactif, les molécules s’organisent dans la surface et la structure

gonfle, jusqu’au moment où la limite de dilution est atteinte. À ce moment, le tensioactif

forme une structure similaire à celle d’une bicouche, où la partie hydrophile reste en

contact avec le feuillet. Pour des concentrations encore plus élevées en tensioactif, les

amphiphiles en excès forment une phase séparée, qui est aussi structurée. La Figure 5.12

représente schématiquement les phases décrites.

Les phases décrites peuvent aussi être diluées à l’eau, auquel cas les molécules d’eau

vont s’insérer à la surface des feuillets. Pour les systèmes avec une proportion élevée en

tensioactif et qui représentent un domaine restreint du diagramme ternaire, une nouvelle

phase est observée. Dans cette nouvelle phase, les amphiphiles se détachent du feuillet de

GO et s’organisent en bicouches, qui sont séparées par des couches d’eau avec les feuillets

en dispersion. Les représentations schématiques de ces phases se trouvent en Figure 5.18.

Les domaines du diagramme ternaire, où chacune des phases sont observées, sont délimités

par des zones de transition, dans lesquels les deux phases ou même d’autres phases peuvent

coexister.

Deux complexes ternaires distincts ont été obtenus, dont les zones d’existence sont

séparées par des régions de transition. Le domaine de transition est directement lié aux

systèmes binaires respectifs, cependant quelques structures sont toujours à caractériser en

détail.

Tous les résultats obtenus pour les systèmes étudiés ont permis la construction du
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digramme ternaire présenté en Figure 5.20, ce qui résume les structures observées.
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Appendix C

Resumo detalhado

Esta tese foi desenvolvida na equipe Matéria Mole: Estrutura e Dinâmica (M2SD) do Cen-

tro de Pesquisas Paul-Pascal (UMR5031), laboratório localizado em Pessac (França) e vin-

culado à Universidade de Bordeaux e ao Centro Nacional de Pesquisa Cient́ıfica (CNRS),

e financiada pelo programa Ciências sem Fronteiras, uma iniciativa do governo brasileiro

através do Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq).

Após o estudo desenvolvido por Emerson Rodrigo da Silva (da Silva, 2011), posterior-

mente seguido por Kévin Bougis (Bougis, 2016), a formulação de complexos de bicamadas

liṕıdicas foi mantida em foco no grupo. Utilizando técnicas como espalhamento de raios-X

a baixos ângulos e microscopias ótica e eletrônica, as propriedades do sistema formado

por uma estrutura lamelar hospedeira e fragmentos de DNA foram investigados.

Os fragmentos de DNA são pequenos o suficiente para serem vistos fundamental-

mente como cilindros, que são part́ıculas unidimensionais. A inserção/organização dessas

macromoléculas entre as bicamadas, uma matriz bidimensional, dá origem à diferentes

estruturas auto-organizadas.

Este trabalho foi a inspiração para estudar, do ponto de vista fundamental, o acopla-

mento entre as bicamadas anfif́ılicas auto-organizadas (que podem ser vistas como uma

matriz anisotrópica formada por objetos bidimensionais) e um objeto ele mesmo bidimen-

sional, neste caso a folha de óxido de grafeno, quando estão dispersados em um solvente

comum.

Desde a sua descoberta, o grafeno oxidado (GO), cuja estrutura é apresentada na Fi-

gura 2.1c e considerado o mais acesśıvel dos precursores do grafeno, tem sido amplamente

utilizado para aplicações na ciência e tecnologia. O objetivo desta tese é de estudar os

efeitos do confinamento em sistemas complexos auto-organizados da matéria mole e, em

particular, a inserção de folhas de GO em uma matriz fluida anisotrópica.

A competição entre as elasticidades intŕınsecas das bicamadas e das folhas de GO,

assim como as interações diretas bicamada-bicamada, bicamada-GO e GO-GO, permitem

esperar um rico polimorfismo em função da composição do sistema.

Antes de investigar os complexos do sistema ternário, o sistema binario composto de
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GO e água foi explorado. Uma caracterização das folhas foi realizada, cujo resultado ob-

tido foi uma extensão lateral da ordem do micrômetro com uma grande polidispersidade,

como pode ser observado na Figura 3.4 e na Figura 3.5. Como descrito na Seção 3.2,

um procedimento para obter dispersões aquosas de GO a concentrações elevadas foi de-

senvolvido, o que permitiu o estudo de uma ampla gama de concentrações da dispersão.

As amostras obtidas não apresentam agregados e podem ser reversivelmente dilúıdas ou

desidratadas, o que não é posśıvel com o GO em pó.

A Figura 3.14, resultado dos experimentos de espalhamento de raios-X a baixos

ângulos, revela um comportamento t́ıpico de cristais ĺıquidos para as dispersões aquosas

de GO, onde as fases organizadas podem ser obtidas com um aumento da concentração

do sistema. As fases esméticas obtidas obedecem a lei de diluição usual, caracteŕıstica

de cristais ĺıquidos liotrópicos, no intervalo de hidratação explorado. Uma representação

esquemática do fenômeno é apresentada na Figura 3.15.

A expansão das dispersões aquosas de GO pode ser interpretada em termos das forças

que agem sobre as folhas. O equiĺıbrio entre as interações atrativas e repulsivas estabiliza

a estrutura lamelar e nós demonstramos a importância da repulsão eletrostática no regime

hidratado, em competição com outras contribuições, para diluir a estrutura empilhada.

No entanto, em um pequeno domı́nio de concentrações, um distanciamento em relação

à lei de diluição e os dados experimentais é observado, o que pode indicar uma transição

de fase estrutural. Apesar dos detalhes deste fenômeno ainda precisarem ser identificados,

este comportamento anormal pode estar ligado ao fato de que, para as fases muito con-

centradas, os grupos oxigenados na superf́ıcie das folhas de GO se interpenetram. Quando

a estrutura é dilúıda, a periodicidade lamelar aumenta e as folhas perdem o contato entre

elas. Uma representação esquemática pode ser observada na Figura 4.7. Este fenômeno

afeta as interações entre as folhas adjacentes, um efeito que é detectado na curva de di-

luição. Os resultados dessa parte do trabalho foram publicados em Rubim et al. (2018) e

o artigo completo pode ser consultado no Apêndice A.

Para dispersões de GO mais dilúıdas, modelos de espalhamento de raios-X foram

adaptados e empregados para extrair os parâmetros estruturais do sistema analisado.

A forma e a organização das folhas foram estudadas, como descrito na Seção 4.2, e os

resultados dos ajustes são apresentados na Figura 4.6.

A espessura da folha de GO, obtida à partir do contraste de densidade eletrônica,

esta de acordo com valores descritos na literatura. Considerando densidades eletrônicas

diferentes para o plano de átomos de carbono e para os grupos oxigenados, uma espessura

em torno de 15 Å e é obtida. A parte interna da folha, que mede cerca de 6 Å, tem

uma dimensão compat́ıvel com a espessura do grafeno. No entanto, se consideramos uma

densidade eletrônica média para as duas partes da folha, uma espessura aproximativa de

10 Å é obtida.

A estrutura organizada em lamelas também foi caracterizada com os modelos utiliza-

dos. Os parâmetros senśıveis à flexibilidade das folhas forma obtidos e seu comportamento,
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em função da hidratação do sistema, foram analisados. Estes resultados conduziram à ex-

tração do módulo de compressibilidade da estrutura empilhada. A Figura 4.8 mostra que,

como previsto para sistemas como as fases lamelares de GO, quanto menor a distância

entre as folhas, maior é a força necessária para desloca-las da posição de equiĺıbrio.

Em seguida, o sistema binário composto de surfactante e solução aquosa ácida foi

explorado. Os experimentos revelaram a formação de bicamadas anfif́ılicas organizadas em

estrutura lamelar para sistemas não muito concentrados. A estrutura também obedece a

lei de diluição, o que quer dizer que ela expande quando o solvente é adicionado ao sistema.

Não obstante, uma transição de fase é observada para as amostras muito concentradas e

uma estrutura que não pode ser identificada é obtida.

Este estudo permitiu que o sistema binário desidratado composto por folhas de GO

e tensoativo fosse explorado. A cinética desse sistema mostrou que um longo tempo de

homogeneização é necessário para estabilizar a estrutura, um fator inconveniente para o

estudo.

Para pequenas quantidades de tensoativo, as folhas de GO se organizam em uma es-

trutura empilhada e as moléculas anfif́ılicas adsorvem à sua superf́ıcie. Com um aumento

na quantidade de surfactante, as moléculas se organizam na superf́ıcie e a estrutura se

expande, ate o momento em que o limite de diluição é atingido. Neste momento, o tensoa-

tivo forma uma estrutura similar à uma bicamada, onde a parte hidrof́ılica fica em contato

com a folha. Para concentrações ainda maiores de surfactante, as moléculas anfif́ılicas em

excesso formam uma fase à parte, que também é estruturada. A Figura 5.12 representa

esquematicamente as fases descritas.

Essas fases podem também ser dilúıdas com água, sendo que as moléculas adicionadas

vão se inserir na superf́ıcie das folhas. Para os sistemas com uma proporção elevada

de surfactante e que representa um domı́nio restrito do diagrama ternário, uma nova

fase é observada. Nesta nova fase, as moléculas anfifilicas se separam da folha de GO

e se organizam em bicamadas, que são separadas por camadas de água com as folhas

de GO em dispersão. As representações esquemáticas dessas fases podem ser observadas

na Figura 5.18. Os domı́nios do diagrama ternário onde cada uma das fases são observadas,

são delimitados por zonas de transição, sendo que as duas fases descritas, ou até mesmo

outras fases, podem coexistir.

Dois complexos ternários distintos foram obtidos, cujas zonas de existência são separa-

das por regiões de transição. O domı́nio de transição é diretamente ligado aos respectivos

sistemas binários, no entanto, algumas estruturas ainda restam a ser caracterizadas em

detalhes.

Todos os resultados obtidos para os sistemas estudados permitiram a construção do

diagrama ternário apresentado na Figura 5.20, o que resume as estruturas observadas.
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Title: Graphene oxide sheets confined within anisotropic fluid matrices

Abstract: Since the discovery of graphene oxide (GO), the most accessible of the precursors of graphene,
this material has been widely studied for applications in science and technology. The motivation of this work
is to study with a fundamental perspective the coupling between amphiphilic bilayers, which can be seen as
an anisotropic matrix formed of two-dimensional objects, and another two-dimensional object, namely the
graphene oxide sheet when they are dispersed in a common solvent. The competition between the intrinsic
elasticities of the bilayers and GO sheets, as well as between direct bilayer-bilayer, bilayer-GO and GO-GO
interactions allows us to envisage a rich polymorphism, depending on the composition of the system. Fol-
lowing the development of a dedicated procedure for controlling in an extended range of GO content the
binary GO-water system, the confined domain of aqueous GO dispersions was first investigated, and the
ternary phase diagram then constructed. The obtained systems have been characterised, using techniques
such as optical microscopy, light and x-ray scattering. Elastic and thermodynamic properties have been
described by applying, and adapting to the scope of this study, models for two-component lamellar stacks.

Keywords: graphene oxide, surfactant, liquid crystal, SAXS, stacked layers

Titre : Confinement de feuillets de graphène oxydé dans une matrice fluide anisotrope

Résumé : Dès sa découverte, le graphène oxydé (GO), le plus accessible des précurseurs du graphène,
a été largement utilisé pour des applications en science et technologie. La motivation de ce travail est
d’étudier, d’un point de vue fondamental, le couplage entre des bicouches amphiphiles auto-associées
(lesquelles peuvent être vues comme une matrice anisotrope formée d’objets bidimensionnels) et un ob-
jet lui-même bidimensionnel, en l’occurrence le feuillet d’oxyde de graphène, quand ils sont dispersés dans
un solvant commun. La compétition entre les élasticités intrinsèques des bicouches et des feuillets de GO,
ainsi que les interactions directes bicouche-bicouche, bicouche-GO et GO-GO, permet d’envisager un riche
polymorphisme en fonction de la composition du système. Après avoir développé une procédure destinée à
contrôler, dans une gamme étendue de teneur en GO, le système binaire GO-eau, le domaine confiné des
dispersions aqueuses de GO a été exploré et, par la suite, le diagramme de phases ternaire a été construit.
Les systèmes obtenus ont été caractérisés par des techniques comme la microscopie optique et la diffusion du
rayonnement (diffusion dynamique de la lumière et diffusion des rayons-X aux petits angles). Les propriétés
élastiques et thermodynamiques ont été décrites par l’application de modèles initialement conçus pour les
phases lamellaires à deux constituants et adaptés dans le cadre de cette étude.

Mots clés : graphène oxydé, tensioactif, cristaux liquides, SAXS, empilements de bicouches

T́ıtulo: Confinamento de folhas de grafeno oxidado em uma matriz fluida anisotrópica

Resumo: Desde sua descoberta, o grafeno oxidado (GO), o mais acesśıvel dos precursores do grafeno, tem
sido amplamente utilizado para aplicações na ciência e tecnologia. A motivação deste trabalho é de estudar,
de um ponto de vista fundamental, o acoplamento entre bicamadas anfif́ılicas auto-organizadas (que po-
dem ser vistas como uma matriz anisotrópica formada por objetos bidimensionais) e um objeto ele mesmo
bidimensional, neste caso a folha de óxido de grafeno, quando estão dispersados em um solvente comum.
A competição entre as elasticidades intŕınsecas das bicamas e das folhas de GO, assim como as interações
diretas bicamada-bicamada, bicamada-GO e GO-GO, permitem esperar um rico polimorfismo em função
da composição do sistema. Seguindo o desenvolvimento de um procedimento destinado ao controle, em um
intervalo extendido da quantidade de GO, o sistema binário GO-água, o domı́nio confinado de dispersões
aquosas de GO foi explorado e, em seguida, o diagrama de fases ternário contrúıdo. Os sistemas obtidos
foram caracterizados por técnicas como microscopia ótica, espalhamento dinâmico de luz e espalhamento
de raios-x à baixos ângulos. As propriedades elásticas e termodinâmicas foram descritas pela aplicação
de modelos inicialmente concebidos para fases lamelares à dois constituintes e adaptados ao escopo deste
estudo.

Palavras-chave: grafeno oxidado, surfactante, cristais ĺıquidos, SAXS, empilhamento de bicamadas
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