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Introduction 

Figure 1  

 “God made solids; surfaces were the work of the devil.” Wolfgang Pauli 

Composite polymeric materials have long revealed improved physical properties owing to a mixing of 

their constituents’ characteristics. Hence, conventional two-phase mixture laws are usually sufficient 

to clarify and expect the response of microcomposites to an external stimulus. However, surprisingly, 

for a given concentration, when the filler size is reduced to the nanometer range, nanocomposites 

exhibit unexpected properties changes. For instance, J. K. Nelson and J. C. Fothergill noticed for the 

first time in 2004, a decreased dielectric permittivity of the base resin (from 9.99 to 8.49 at 1 kHz for 

example) with the addition of titanium dioxide nanoparticles, although the latter possess much 

higher permittivity than the polymeric matrix (> 100 %) [1].  

The anomalous behavior of dielectric nanocomposites, constituted by a mixture of 

nanoparticles in a matrix, also called nanodielectrics [2], has been attributed to the nanometric size 

of the fillers [3]. At this scale, and for the same weight of material, the ratio of atoms and molecules 

present at the surface of the nanoparticles regarding the bulk ones increases exponentially compared 

to microparticles. Moreover, the reactivity of surface molecules of a condensed phase is high. At the 

contact with another phase, a series of interactions occurs at their mutual interface in order to 

establish a thermodynamical equilibrium. These interactions are likely to favor the emergence of a 

region with unique properties, different than the involved phases. As an example, it has been usually 

postulated that in a nanocomposite, polymer chains rearrange at the interface with the nanoparticles 

creating an immobilized layer with increased order [4]. The latter is mostly elevated at the particle 

surface and lowers as it approaches the polymer bulk. This is the so-called interphase, present in high 

percentage in nanodielectrics and extending from a few angstroms up to a few hundred of 

nanometers thick. The interphase might thus possess lower permittivity than the polymer in volume, 

which clarifies the exceptional observed dielectric response in nanodielectrics. Various electrical 

insulation properties, such as space charge formation, treeing propagation, dielectric breakdown 

strength etc., have also been promised and proved to improve with nanofiller addition compared to 

their unfilled and microfilled counterparts [5-7].  

Accordingly, at this scale, since interphases start to monitor the final material properties, the 

local characterization of these nanometric regions becomes undoubtedly fundamental. What are 

they made of? Where are they really located in the material? What are their properties? How deep is 

their extension? 

In order to answer all these questions, it is simple: “you just look at the thing!”, as Richard Feynman 

mentioned in his famous talk “There’s plenty of rooms on the bottom”, pointing out the importance 

of high resolution imaging techniques to make clear many vital scientific questions [8]. 

Nowadays, the two most developed high resolution imaging methods are Electron 

Microscopies and Scanning Probe Microscopies (SPM). Contrarily to electron microscopies, SPM 

systems and particularly Atomic Force Microscopy (AFM) techniques are versatile, easy-to-handle 

methods, especially appropriate to the study of electrical insulators [9]. In the simplest definition, 

AFM uses a physical probe with a tip at its end of nanometric apex, providing the nanometric 

resolution. This near field microscope detects the material with large precision by sensing the field of 

interaction between the sample and the probe similarly to a hand touching a surface with closed 



 Introduction  
 

2 
 

eyes. When interacting electrostatic forces are selectively detected, we speak about Electrostatic 

Force Microscopy (EFM) [10]. 

EFM is one of the AFM-derived methods constituting a promising technique to locally 

characterize interphases owing to its sensitivity to the capacitive response in the presence of the 

sample [11]. However, due to the probe geometry and the long range nature of electrostatic forces, 

the actual probed region of the specimen becomes too complex to be defined and EFM signals get 

easily misinterpreted. 

Consequently, the aim of this work is to conduct a search to determine whether EFM is able 

to detect interphases in nanodielectrics. In other words, the question is how would the interphase 

presence or absence be manifested on EFM signals? How is it possible to measure its dielectric 

permittivity and/or dimensions?  What are the experimental protocols and signal analysis that allow 

selecting the intrinsic artifact-free response of the interphase?  

In the aim of answering all these questions, firstly, we started by numerically simulating the 

interaction of the EFM tip with several types of nanostructured samples, to fill up the gaps in the 

literature concerning EFM response with complex sample geometries and composition. 

Subsequently, interphase impact on EFM signals was simulated for various types of nanodielectric 

materials. Nevertheless, this theoretical approach was not enough to allow us at this stage to 

measure nanodielectrics with unknown interphases. Experimental measurements on reference 

samples were quickly qualified to be essential for the development of the appropriate experimental 

methods for future interphase characterization of “real” nanodielectrics. Materials with three 

distinct dielectric phases were designed and synthesized to electrostatically model a nanodielectric 

material within an EFM measurement. Experimental tests were hence conducted on those samples 

to adapt EFM for interphase study. Thereby, several methods have been developed in order to fulfill 

the issues of this research.  

This thesis is structured as follows: 

Since our materials of interest are solid dielectrics, we begin in Chapter I by introducing their 

basic structure and response to an electric field. The motivation for the use of nanodielectrics in 

electrical engineering insulation systems is detailed next leading to the concept of interphase. 

Several electrochemical interphase models found in literature are exposed with the usual indirect 

methods to attest them. A state of the art of currently used high resolution imaging and 

characterization methods for interphases in composite systems is then displayed. Thereby, the 

expected appropriateness of EFM for the study of interphases in nanodielectric materials is 

highlighted. 

In Chapter II, we review the most recent electrical scanning probe microscopies explaining 

the advantage of EFM. After an overview on the basics of AFM, we detail the theory and working 

principles of EFM with most of its detection modes. A special note is attributed to the resolution, in 

both classical topographical imaging with AFM and electrical imaging with EFM. Moreover, an 

overview on noise sources in AFM and their influence on the sensitivity within the detection methods 

adopted in this work is clarified. We note that the detection of an interphase in a nanodielectric 

specimen requires the ability at the nanometric scale to both, sense the subsurface composition of 

the material, and distinguish among the association of several types of dielectric materials. 

Therefore, we complete this chapter with a literature review on the late advances in electrical 

scanning probe microscopies in general, and EFM in particular, to study 3D nanometric objects, for 

subsurface imaging and for multi-layered systems imaging. At last, the few specialized studies on 

interphases in particulate filled polymeric nanocomposites are reported.  
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As stated previously, the weakness of previous studies to ascertain the validity of electrical 

scanning results in the interpretation of interphases and complex dielectric materials constitute the 

motivation for the simulations presented in Chapter III. In this chapter, we discuss through finite-

element simulations, the physics of interaction of an EFM probe and several types of nanostructured 

dielectric samples, most of which were never investigated individually in the literature. We illustrate 

our adopted electrostatic model of a nanodielectric possessing an interphase, try to identify how to 

show the presence of an interphase on EFM signals and point out some ranges of validity of EFM for 

this issue. 

Subsequently, in Chapter IV, we define the constituting materials and the preparation 

methods of our reference samples chosen to electrostatically model a nanodielectric. We also 

present the details of our experimental EFM adopted modes in addition to a brief description of 

other complementary used characterization techniques. 

The Chapter V is dedicated to the experimental results obtained over the different sets of 

model samples. Various EFM modes and comparison methods were used in order to develop 

appropriate experimental protocols and accurate signal analysis to detect and identify interphases in 

nanocomposite dielectrics. Experiments have been often confronted to simulations, allowing the 

extraction of quantitative permittivity values of our nanostructured multilayered materials.   

Finally, in the concluding Chapter VI, we outline the key results of simulations and 

experiments and suggest new research prospects on the covered topics in this work. 
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“I never see what has been done; I only see what remains to be done.” Marie Curie 

 Introduction 

This first chapter begins with an introduction to the physics of dielectrics, and their basic response to 

an electric field. Afterwards, the contribution of nanodielectrics to electrical engineering applications 

is outlined. Nanodielectrics properties will be detailed next, leading to the introduction of 

interphases. Several electrochemical models of the interphase found in literature will be exposed. 

After a description of current indirect interphase characterization approaches, the need for local 

interphase study is derived. A state of the art of most developed local interphase characterization 

techniques, among which scanning probe microscopies, is introduced. To finish, the potentiality of 

electrostatic force microscopy to study the interphase is addressed.  

 Dielectrics 

2.1. Origin  

Solid state matter is divided into three main types of materials: metals, semiconductors and 

insulators. The latter are also called “dielectrics”. These three categories are defined and classified 

according to their electrical conductivity, or more precisely, to the state of their electron energy 

bands, and mainly, to the width of the energy gap between their valence and conduction bands.  

 According to quantum mechanics, an isolated atom presents discrete electron energy levels. 

When atoms get closer to form a solid, electrons discrete energy states or wave functions start to 

overlap. Since electrons satisfy Pauli’s exclusion principle, where two fermions (particles with half-

integer spin) cannot possess exactly similar quantum numbers, alike energy states degenerate into N 

different states (N is the number of atoms), separated according to the intensity of interaction 

between overlapping electrons [1]. The result of superposition and degeneration is the production of 

energy bands filled with closely separated energy levels that can be assumed as a continuum. 

Leftover ranges of energy not covered by any band result in band gaps. In the outer shell, the last 

band gap separates what is called the valence band from the conduction band (Fig. I - 1). Electrons in 

the conduction band, with the highest energy values, are totally free to move in the material, and are 

consequently responsible for its electrical conductivity [2]. 

   
Fig. I - 1 : Representation of electrons energy vs. atoms spacing when 2N silicon atoms are brought together to form a 

solid. 
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 The excitation of an electron from the valence to the conduction band creates an electron-hole 

pair into the conduction and valence bands, respectively. The Fermi level is a fictive energy level 

that separates these two bands (Fig. I - 2) [3]. In a metal, the band gap is almost inexistent as valence 

and conduction bands can overlap, whereas, semi-conductors and insulators have Eg of the order of 

electron-volts (Eg >> KBTamb ≈ 0.026 eV). Insulators have the largest band gap. Non-crystalline, semi-

crystalline and real insulations have, in contrast with Fig. I - 2, a certain density of states around  . 

This figure represents a perfect case, met at 0 K. 

 

 
Fig. I - 2 : Schematic diagrams of the energy bands in a perfect: a. insulator, b. semiconductor, and c. conductor: T = 0 K. 

2.2. Definition  

Dielectric materials are hence at first, and by the simplest definition, electrical insulators whose 

specific response to an electric field is to create or separate pairs of opposite bound charges. This 

mechanism called polarization will be explained in the following paragraph. However, the boundary 

between a dielectric behavior and a conductive one is not absolute. The matter can be somewhat 

conductive, somewhat insulating, depending on its intrinsic and external conditions. Dielectrics are 

usually used in power cables to transmit electrical energy, in electronic circuits encapsulation to 

eliminate and prevent any electrical short-circuit, in capacitors for energy storage [4] etc. 

2.3. Dipoles 

An electric dipole is created by two punctual charges or by the barycenter of a density of charges q of 

same value and opposite signs that are separated by a distance l (Fig. I - 3). It is common use to 

measure the extent of a dipole by its electrical dipolar moment p, such as: 

  (I.1)  

 

 
Fig. I - 3 : Schematic illustration of a dipole moment, (left) with no external electric field, (right) under an electric field. 

Please note that all bold symbols in the text account for vector quantities. 

 Dielectric materials can be divided into two groups depending on the total polarity of their 

molecules in the absence of an electric field. The total polarization P of a material or a molecule is 

the sum per unit volume of its dielectric moments pi. For a continuous distribution, P writes: 
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(I.2)  

 

v is the volume of the integrated region. Thus, a material can be: 

a) Non-Polar: if a molecule possesses a center of symmetry, the barycenters of positive and 

negative charges overlap in the absence of an electric field. No permanent dipole is hence 

produced and the material is called non-polar. This is especially the case of solids with 

metallic bonding and covalent-ionic bonding such as ceramics, like aluminum oxide, 

zirconium dioxide, zinc oxide, as well as some macromolecules like polyethylene, polyvinyl 

acetate, polystyrene [5] etc. 

b) Polar: molecules that do not possess a center of symmetry present a permanent dipole in the 

absence of an electric field. These molecules are defined polar. This is the case of some 

molecules like water H2O, epoxy function C2O and macromolecules like polymers with epoxy 

group etc. However, at ambient temperature, the macroscopic P of a polar material is null 

due to the chaotic orientation of its dipoles, cancelling each other. 

Hereafter, a general discussion is initiated concerning the response of a dielectric material to an 

electric field in the case of low-intermediate fields. 

2.4. Polarization 

 

A characteristic of an electric field E is that it creates a force F over a charge q, proportional to the 

field intensity and charge value, and collinear to the field (see Fig. I - 3): 

  (I.3)  

 

Consequently, in the case of an electric dipole, F acts with the same intensity on both poles, with 

opposite directions. This local displacement of charges, keeping them bonded, is called 

“polarization”. Different polarization phenomena can be cited depending on the initial state of 

charges and dipoles in the material. 

 In a dense dielectric medium, the total electric field acting on a dipole is not only the one 

resulting from the voltage source, but also from the contribution of the electric field Edip created by 

surrounding dipoles [6]:  

  (I.4)  

 

The local field El in the approximation of a cubic lattice region has been evaluated by Lorentz: 

 
 

(I.5)  

 

Different types of polarization mechanisms can take place in a dielectric material in response to an 

external electric field, each requiring a specific establishment time [7]: 

a) Electronic polarization: it corresponds to the distortion of the electronic cloud of an atom 

regarding its nucleus. The nucleus stays almost immobile due to the large mass of protons, 

and consequently, the nucleus versus electrons mass ( 2000). The 

polarization induced in each atom pel is equal to:  
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  (I.6)  

 

The electronic polarizability el expressed in F.m2, is generally small and mainly depends on the atom 

radius. The establishment time of electronic polarization is around 10-15 s. In this type of polarization, 

the delay is due to the necessary time for an electron to acquire the sufficient electric energy from El 

and to get excited to another energy level of the quantized energy states in the atom. 

 After the displacement of the cloud of electrons due to F, a restoring Columbic force takes 

place in order to bring back electrons to their initial position. The final displacement is therefore 

reached at equilibrium. Under a sinusoidal external electric field E (ω), the system is similar to a 

harmonic oscillator, resulting in an αel that becomes equal to the sum of a real part αel’ and an 

imaginary part αel’’. The imaginary part represents the loss or delays of the polarization with the field 

creating energy dissipation. 

b) Ionic polarization: it is related to the displacement of ionic species in an ionic crystalline 

lattice due to the electric field. The resulting polarization is: 

  (I.7)  

 

Nio is the number of polarizable species per unit volume.  

c) Orientation polarization: it is encountered in the case of molecules, unit cells of a crystal 

lattice or the material at a macroscopic level that already possess permanent electric dipoles. 

According to (I.3), when a dipole is not parallel to the external applied field, the latter creates 

a couple of forces that act on each pole of the dipole in order to reorient it in the same 

direction of the field. 

According to Langevin theory, the orientation polarization Por can be written for low fields as follows:   

 
 

(I.8)  

 

αor, µ, Nor, KB and T are respectively the orientation polarizability, local dipoles, number of polarizable 

species per unit volume, the Boltzmann constant and the temperature. The temperature 

dependence is well noted in this type of polarization, causing thermal shocks.  

d) Hopping polarization: it is the polarization induced by the localized charges that move from 

one quantum potential well to another well. The hopped charge leaves behind it a positive 

charge and deposits a negative one at the other site, creating an electric dipole. 

e) Interfacial polarization or space charge polarization: at the interface of two dielectric media 

of different dielectric constants (ɛ1, ɛ2) and conductivities (σ1, σ2), whenever , an 

accumulation of virtual charges occurs upon the application of an electric field, creating the 

interfacial or space charge polarization, also called Maxwell-Wagner-Sillars polarization [8, 9]. 

In practice, even a homogeneous material is likely to present structural defects creating 

cracks or voids, and impurities such as solvent and water traces. The impedance of charge 

carriers migration at the interface creates a space charge and results in a distortion field. This 

field is observed as an increase in the capacitance of the sample that can be 

undistinguishable from a real rise of the dielectric constant [10]. The detection of this 

mechanism can be especially observed at very low frequencies (10-5 to 102 Hz). 
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Fig. I - 4 : Variation of different types of polarization with time under a static electric field [11]. 

 As expressed in eq (I.2), the total resulting polarization is the sum of all produced ones. 

However, each polarization process, regarding its characteristics, has a specific response time to the 

applied electric field. The above cited polarizations are listed in an ascending order of response time. 

Consequently, for alternating electric fields, high frequencies can limit the number of polarization 

processes that can take place. In particular, electronic and atomic polarizations respond almost 

instantaneously to the applied electric field, without a considerable lag time. Furthermore, in the 

approximation of harmonic oscillator, when the field has a pulsation equal to the resonance 

frequency of the ions and electrons inside the molecules and atoms of the material, a resonance 

phenomenon can take place. These types of polarization are then defined as ‘’resonance’’ processes. 

For orientation, hopping, or space charge polarization and depolarization induced by an alternating 

electric field, the required time is quite longer and varies in a wide range depending on the dielectric 

systems. Generally, such polarization processes are sometimes referred as ‘’relaxation’’ processes. In 

fact, these types of polarization need a larger relaxation time allowing the system to return to its 

equilibrium state upon application and removal of the electric field. Resonances and relaxations of a 

system can be measured with several techniques such as the broadband dielectric spectroscopy 

(BDS), which will be briefly explained in the next paragraphs.  

 As long as several polarization phenomena can coexist, their effects can be summed. If the 

material is considered to be isotropic, or if it presents a cubic symmetry, the local field has the same 

value for all types of dipoles. Hence, the global polarization has the form:  

  (I.9)  

 

pol indicates the type of polarization phenomena, Npol is the number of polarizable species under the 

mechanism pol, αpol is the corresponding polarizability and Elpol is the local electric field for 

pol dipoles. 
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 Dielectric permittivity 

3.1. Definition 

The generalization of Gauss law for a volume v delimited by a surface S containing a dielectric 

material, considers the charges due to the polarization, and then gives: 

 
 

(I.10)  

 

ε0 is the vacuum permittivity  (8.845  10-12 F/m). The electric induction D can be written in terms of: 

  (I.11) 

 

In the approximation of a homogeneous, linear and isotropic dielectric, P and E are directly collinear, 

and the expression of D can be expressed with: 

  (I.12) 

 

ɛr is the relative permittivity of the dielectric medium, and ɛ = ɛ0 ɛr is its permittivity. However, for 

simplicity, we referred in this thesis to ɛr with permittivity instead of relative permittivity. 

The polarization P can be also written as: 

  (I.13) 

 

Then ɛr is the coefficient of proportionality between the electric induction and the electric field, as 

well as the polarization and the electric field. It expresses the extent of the electric field effect on the 

polarization of the medium and the electric field flux out of the volume surface. Consequently, higher 

permittivities result in lower electric field penetration into the medium. ɛr can be also called 

dielectric constant. 

3.2. Microscopic to macroscopic relation 

It can be noticed that the dielectric permittivity is a macroscopic property of the material. We will try 

here to correlate it to the microscopic polarization properties of the material expressed through the 

polarizabilities αpol [12]. 

Carrying equation (I.5) into (I.9), we get: 

 
 

(I.14)  

 

Identifying this expression to the one given in (I.13), the following general expression is drawn for the 

complex dielectric permittivty ɛr* in the sinusoidal regime, while distinguishing the role of the 

orientation polarization: 

 

 

(I.15)  

 

 is the delay time (s) and pm is the magnetic permeability (Henry/m).  

This expression is the so-called Clausius-Mossotti relation. A general presentation of the complex 

dielectric permittivity can thereby be expressed in the frequency domain by: 

  (I.16)  
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εr’ and εr’’ are respectively the real and imaginary relative permittivities, with no unit (εr’ > 1). The 

real part represents the polarization response and the imaginary part represents the loss.  

Fig. I - 5 shows the general shape of εr’ and εr’’ with the frequency of the electric field.  

Maxima show the resonance of electronic, ionic, orientation and interface polarization mechanisms, 

starting from the highest frequencies (lowest delay times). The loss part is only minimal when the 

real permittivity does not vary. The real value becomes more important at low frequencies when 

several polarization phenomena can take place (Fig. I - 4).  

 
Fig. I - 5 : Frequency dependence of real and imaginary dielectric permittivity.   

3.3. Macroscopic measurement technique of the permittivity 

Since the above described polarization phenomena are mainly observed at electromagnetic 

radiations between 10-12 and 106 Hz, the measurement of the complex dielectric permittivity can be 

studied at the macroscopic level with the so-called Broadband Dielectric Spectroscopy (BDS) [13]. 

This technique uses two planar electrodes of known dimensions, into which the dielectric sample is 

inserted. The BDS measures with a picoammeter, the total current from which it deduces the 

corresponding real and imaginary permittivity values. 

 
Fig. I - 6 : Schematic diagram of the dielectric spectroscopy measurement setup [14]. 

Moreover, a temperature sweep can be added and a map of the complex permittivity as a function of 

frequency and temperature can be obtained. By analyzing BDS results, information about the 

dynamics of a molecular ensemble can be obtained. It is usual to study either εr’ (ω) or εr’’ (ω)  

because both components contain the same information as they are interrelated by Kramers-Kronig 

relations [14]. 
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3.4. Electric field outside a dielectric volume 

A dielectric volume v creates at an external point B placed at a distance r far from v, an electric 

potential VB such as: 

 
 

(I.17)  

 

with  and . n is the unit normal vector. 

An important deduction from this formula is that the dipoles in the volume create at the external 

region of v, the same electric potential, and consequently, the same electric field of a fictive 

distribution of charges distributed in the volume and on the surface S of v. The volume density of 

these charges is ρp and the surface one is . It must be noted that these charges are bound and not 

free charges [7]. In the absence of free charges in the material, the dielectric is electrically neutral 

and the sum of  and ρp , integrated all over the surface S and volume v, respectively, is null. 

3.5. Limits conditions at the boundary of two dielectric media 

In any real insulation, different types of defects or impurities can be present making the material 

non-perfectly homogeneous. Specifically, this is the case of composite materials, naturally 

heterogeneous. Hereafter, we will try to deduce the limit conditions of the electric field at the 

interface between two dielectric media. 

 
Fig. I - 7 : Discontinuity of electrical induction at the interface of two dielectrics. 

Let us consider at the interface between the two media, a little cylinder of negligible height hcyl, on 

the surface ∆S delimited by the cylinder. In the case where a free charge of surface density  is 

present at the interface ( , with the application of Gauss Law, the following equation is 

established: 

  (I.18)  

 

This shows the discontinuity of the normal component of the electric displacement, and similarly, the 

electric field, at the interface between two different media. 

When , the following important relation is deduced: 

  (I.19)  

 

and the tangential components of the electric field can be similarly demonstrated to be continuous: 

  (I.20)  
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 Nanodielectrics 

4.1. Definition 

“Nanometric dielectrics” [15], later introduced as “Nanodielectrics” in 2004 by M.F. Frechette et al. 

[16], is a nowadays popular term in the dielectrics community used to refer to nanocomposites made 

by the inclusion of dielectric nanoparticles in a polymeric matrix for dielectric interest [16, 17]. How 

has interest in nanodielectrics been grown? 

 First used solid dielectrics were made of natural materials such as glass, silk and ceramics. 

However, as the need for higher electrical power transmissions continuously increases, usual 

insulations could not sufficiently cater to demand. Insulators are naturally non-perfect; under certain 

electrical stresses, they can fail and, inter alia, become conductive.  Thus, it was with the 

development of materials science, and especially the successful introduction of natural and synthetic 

polymers in several technologies, that new perceptions for better insulators based on polymers 

started to arise. Hence, new ideas were based on the utilization of materials that have been useful in 

other domains than electrical insulation applications, and introduce them for insulation fields [4]. 

 As an example, the introduction of inorganic microparticles into a polymeric matrix has 

commonly shown to improve the mechanical properties of the base polymer, such as its tensile 

strength and elastic modulus as well as the heat transport. The final microcomposite properties are a 

combination of both mixing elements properties, usually predictable by general two-phase rules of 

mixture [18]. 

 Although microcomposites proved to enhance mechanical and thermal behavior compared to 

the base polymer, contrarily wise, the latter electrical performance has usually degraded [19, 20]. 

One explanation for the decreased insulation properties is the introduction of defects with the 

microfillers. 

 In contrast, the proper incorporation of little nanofillers weight percentage to polymers 

showed to enhance the dielectric performance while addressing thermal, mechanical and economic 

requirements [21-24]. This “non-uniform” behavior of nanocomposites has been conferred to the 

interfacial region between the nanoparticles and the polymer, also called the “interphase”. This 

region, present in a high percentage at the nanoscale, is supposed to possess different properties 

than both polymer and filler, which could explain nanodielectrics behavior. A detailed description of 

interphase models will be presented in next sections. 

4.1. Overview on nanodielectrics properties 

The first unprecedented experimental work on nanodielectrics has been approached by Henk et al. 

[25] and by J.K. Nelson and J.C. Fothergill on an epoxy system filled with titanium dioxide 

microparticles compared to nanoparticles [26]. Adding nanoparticles to conventional polymer 

dielectrics influences the dielectric properties of dielectric materials. Recorded influences are very 

wide in literature; one can yet notice a certain agreement on several dielectric properties. 

 An increase in the breakdown strength [26-28] and the time to failure [29], a decrease in the 

trap controlled-mobility  [29] and in space charge accumulation at medium fields [30] and an 

influence over accumulated charges type, homo or heterocharges, have been commonly noticed 

upon the introduction of nano-sized fillers to insulating polymers. In order to explain these effects, 

Tanaka et al. proposed for example that partial discharges take a zigzag path towards weak regions, 

the matrix, avoiding the filler [22]. Similar mechanisms have been suggested for the retardation of 
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electrical trees propagation observed in nanodielectrics [31-33]. T. Andritsch et al. considered the 

interphase region as a recombination center [34].  

4.2. Nanodielectrics permittivity 

In addition to the above mentioned changes in nanocomposites, dielectric spectroscopy 

measurements at low frequencies revealed a less pronounced interfacial polarization in 

nanodielectrics  (see Fig. I - 8) [26]. 

 More surprisingly, although the filler usually possesses a higher permittivity than the polymer 

(inorganic fillers), the resulting nanofiller mixture in the matrix has been reported to present, at low 

nanofiller concentrations, a dielectric constant lower than both mixture components (Fig. I - 8 and 

Fig. I - 9) [14, 26, 35, 36]. This behavior contradicts common two-phase mixture laws, which predict 

total composite properties that are a compromise between its basic constituents. This can be due to 

the very small size of the particles giving rise to limited cooperative movements of dipoles 

reorientation within them [26]. However, scientists mostly agree that the surface interaction of the 

nano-inclusions with the host polymer rearranges polymer chains and reduces their mobility at the 

interface [26, 36, 37]. The reduction in mobility can lower polar polymer permittivity, and thereby, 

that of the interphase. Moreover, other researchers reported water absorption at the interface [38-

40]. Water molecules within the interphase increase its effective dielectric constant, which can justify 

unexpectidly high nanocomposite permittivities. 

 
Fig. I - 8 : Response spectra at 393 K as revealed in the dielectric spectroscopy experiment for 10 wt. % titania in epoxy: a. 

real permittivity for the unfilled resin and micro and nanocomposites, b. imaginary (loss) permittivity [41]. 

 Furthermore, from Fig. I - 9, it can be noticed that exceeding a certain nanofiller weight 

percentage (wt. %) starts increasing the real permittivity regarding filler content [14, 35-37]. Authors 

explain that at low filler loadings (or small particle diameters), the interphase volume increases with 

filler content, thus, increasing its influence on the material. However, at a certain critical loading, an 

overlap of interphases can occur, decreasing then the interphase effects and making room for 

particle bulk properties. 
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Fig. I - 9 : Relative permittivity of aluminum oxide (Al2O3), magnesium oxide (MgO) and silicon dioxide (SiO2) filled epoxy 

resin nanodielectrics for 1.15 kHz at 293 K as a function of fillgrade [36]. 

 Interphase 

5.1. Interphase role in nanocomposites 

At the nanometric level, the behavior of any material becomes predominantly monitored by the 

properties of its interface with the surroundings [42]. In fact, as the size of a spherical particle, for 

example, is reduced, the number of atoms and molecules present at its surface increases 

exponentially compared to the ones present in its volume (see Fig. I - 10) [23]. Consequently, the 

state of surface molecules will tailor the physical properties of the particle, if it is used alone, or of 

the composite, if it is mixed with another material. The properties of the surface differ from the 

volume since surface molecules and atoms of a condensed phase exhibit lower number of bondings 

with the bulk phase, increasing their reactivity [43]. At very low dimensions, quantum mechanical 

effects can also arise, changing casual bulk particle properties [44]. 

 
Fig. I - 10 : Sketch illustrating the percentage of interfacial regions for the same amount of filler in a composite, for 

micron-sized particles compared to nano-sized particles.  

 In the same way, since nanodielectrics are composed of nano-sized fillers embedded into the 

polymer matrix, the regions at the interface between particle and matrix possess special intrinsic 

properties and occupy a high volume in the material. As a consequence, these interfacial zones result 

in a new phase in the material that is commonly called the interphase. The interphase properties in 

nanocomposites are of the utmost importance, explaining most of their macroscopic behaviors; 

mainly, their electrical properties. 

 The physico-chemical state of interfaces in composites has been first characterized by indirect 

spectroscopic techniques such as the Fourier transform infrared spectroscopy, Raman spectroscopy 

and X-ray photoelectron spectroscopy, which lead to several interphase models [45]. 
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 Hereafter, a description of different interphase models set in order to describe this nanometric 

region in nanodielectrics is presented. 

5.2. Interphase models 

 

A classical description of interfacial zones has been explained with the intensity model. Each atom or 

molecule interacts at the interface with its environment according to different types of long and 

short range forces. Thus, the intensity of each physical or chemical property, associated with these 

forces, changes over a finite distance of a few nanometers, over the interphase (Fig. I - 11) [46]. The 

thickness of the interfacial zone may be less than a nanometer when only low range forces exist, and 

reaches 10 nm and more regarding long range forces, as is the case with electrically charged surfaces. 

 
Fig. I - 11 : The interface between two phases A and B defined by the intensities I1 and I2 of properties 1 and 2 as they 

vary over effective distances t1 and t2 between A and B. t1 and t2 will be of nanometric dimension [46]. 

 

According to Helmholtz, an electric double layer is formed between a solid and a liquid where the 

liquid represents a mobile phase [47]. In the case of a nanocomposite, the solid phase is made of 

nanoparticles and the amorphous polymer matrix is approximated to represent the mobile phase. In 

fact, the chains in a polymer can slightly move, in contrast to the ceramic filler structures. 

 Lewis’s model of electrical double layer is encountered when a part or the whole surface of the 

nanoparticles is electrically charged [21]. In response to this charge, the matrix creates a shielding 

layer against the surface charge. Lewis defines the two layers of this model as the following: 

a) The first is named Stern layer of molecular thickness. It mainly contains oppositely charged 

ions regarding the particle surface (counter-ions) at high densities and of rigid binding with 

the surface through strong forces. The intensity of these forces makes the ions in this layer 

almost immobile in the normal direction to the charged surface. 

b) The second layer is named Gouy-Chapman layer, which is less dense than the first layer 

(diffuse layer). Gouy-Chapman layer is connected to the surface by Columbic forces. Stiffness 

and thickness of this layer are inversely proportional to the conductivity of the matrix. 
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Fig. I - 12 :  a. The diffuse electrical double layer produced by a charged particle A in a matrix B containing mobile ions, 

and b. the resulting electrical potential distribution  [21]. 

 

Tsagaropoulos model consists of two basic layers around the nanoparticle. The first contains the 

channels of the polymer that are strongly related to the particle, and the second is the least bonded 

layer [48]. A third layer of unaffected polymeric chains has been later added to the model [49].  

 The movement of polymers is restricted in the first layer and becomes suspicious in the second 

to become almost free in the third. The morphology of polymer chains was used in order to explain 

the two glass transition temperatures (Tg) sometimes measured in nanodielectrics [48]. The second 

Tg has been found to correspond to the more restricted polymer chains of the loose layer created by 

sufficiently close particles at appropriate filler content. 

 

The multicore model of T. Tanaka et al. considers the interface between an inorganic nanoparticle 

and a polymeric organic matrix as divided into three layers, overlapped by a Gouy-Chapman diffuse 

layer [22]: 

a) Bonded layer: this is the layer that firmly connects the inorganic nanoparticle to the matrix. 

This bonding is usually provided by coupling agents added to the surface such as silane 

coupling agents. The thickness of this layer is about ~ 1 nm.   

b) Bounded layer: this is the part of the interphase that consists of polymer chains in strong 

bonding and/or interaction with the first layer and the inorganic particle. The thickness of the 

bounded layer is of a few nanometers depending on the intensity of the present forces.   

c) Loose layer: this is the layer that follows the first two layers and that reacts loosely with the 

bounded layer. Its corresponding polymer chains are generally considered to have different 

conformations, mobility and even free volume or crystallinity from the organic bulk. It can 

also consist of a less stoichiomerically cross-linked layer. The thickness of the loose layer is of 

the order of a few tens of nanometers. 

 Furthermore, Columbic forces superimpose the above chemical layers. When the particle is 

charged, an electrical double layer thus overlaps the three layers. This model also states that polymer 

chains order diminishes with the transition from the first to the third layer. Hence, charge carrier 

traps can be deep in the first ordered layers, and superficial in the rest. Moreover, this model has 

been used to explain the previously mentioned decrease in the dielectric permittivity of nanofilled 

polymers. Authors explain that by the decrease of chains mobility in the second layer, and the 

decrease of free volume in the third [22]. 
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Fig. I - 13 : Tanaka’s model of three layers interphase overlapped by a Gouy-Chapman layer [22]. 

 

C. Zhou et al. [38] further developed past models in order to explain the observed behaviors of 

dielectric materials in the presence of humidity. Based on the characterization results of an epoxy 

nanocomposite system, authors assume that three types of water shells surround the nanoparticle, 

which itself plays the role of a “core”: 

a) The first one is made of a few water monolayers molecules (~ 5) firmly bound to the 

nanofiller. 

b) The second one contains water molecules that are loosely bound by Van Der Waals forces. In 

this second layer, the concentration of water may be sufficient to make it conductive. These 

first two layers are likely to provide channels to charges and carriers, and overlapping water 

shells can result in a conduction path to charge carriers. 

c) The third and last layer also includes water molecules which are however “free” and present 

in the bulk of the matrix. 

 
Fig. I - 14 : Schematic of a water shell surrounding a particle. The first layer with the highest concentration of water 

molecules is drawn in black, followed by the second layer with a lower concentration and thicker extension and finally 

the third layer with the least big water concentration [38].  

 

The interphase volume model aims at giving the dependency of the interphase volume fraction 

regarding filler weight percentage [50]. The model assumes that an interphase region surrounds the 

particles of any diameter, and which satisfies three suppositions: 

a) Particles are homogeneously dispersed in the matrix. 

b) They are all spherical.  

c) Their disposition is similar to a face centered cubic lattice. 

1: The first layer with mutual tight binding: several nm 
2: The second layer with deep traps: about 10 nm 
3: The third layer with large local free volume as ion traps 
and shallow electronic traps: several tens nm 
4: Nano-particles: 20 to 50 nm in diameter 
5: Interparticle distance (surface to surface): 40 to 100 nm 
6: Debye yielding distance: up to about 100 nm 
7: Possible overlapping of the third layers and charge tails 
of nano-particles 
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Four cases of interphase neighboring particles are taken into consideration: not overlapped, 

overlapped, highly overlapped and absolutely overlapped (Fig. I - 15). Each case mainly depends on 

the distance between particles center, which is dependent on the filler content or the interphase 

thickness. 

 
Fig. I - 15 : View on the body diagonal: a. interphases do not overlap; b. interphases of the nearest neighboring particles 

do overlap, c. interphases of the neighboring center particles do overlap, and d. triple points reached: the whole material 

is only consisting of interphase and particle volume [50]. 

 Ratio percentages of the interphase volume over the particle volume have been found to be 

linearly depending on the filler content with decreasing steepness after overlaps. Thus, interphase 

range thickness is estimated to be approximately between 20-40 nm in the case of high particle-

matrix interaction, in accordance with Tanaka’s model [22]. 

 
Fig. I - 16 : Interphase content according to the interphase volume model for a silicone matrix with SiO2 nanoparticles and 

interphase thicknesses i, for a particle diameter d = 30 nm [50].      

 Optimal nanocomposite properties are supposed to be achieved at maximum interphase 

volume percentage reached at specific filler concentrations. Consequently, characterizing the best 

weight percentage, scientists referred to the above graph (Fig. I - 16) to deduce hypothetic values for 

interphase thickness [51]. 

 

The polymer chain alignment model [34] is especially influenced by Tanaka’s model and interphase 

volume model. It considers the strong dependency of the material pre- and post- processing 

operations on the interphase. When coupling agents are used to connect organic chains to the 

inorganic surface, this connection can result in a restructuring of the surrounding host matrix. A layer 

of perpendicularly aligned polymer chains is then formed around the particle surface that is modified 

by a curing agent. This layer forms a rigid polymer structure (Fig. I - 17). 
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Fig. I - 17 : a. Particle without surface modification and thus only weak interaction with the host, and b. particle with 

layer of surface modification, resulting layer of aligned polymer chains, further affecting the surrounding area thus 

restructuring the polymer [34]. 

 The alignment is also extended beyond this layer since polymers often consist of long chains. 

Furthermore, an interpenetrating polymer network can be formed between polymer chains leading 

to physical properties unlike those of particle or host. Thus, an illustration of the obtained system is 

given in Fig. I - 18. The order decreases gradually with the distance from the filler depending on the 

particle surface shape. Dimensions of these regions can be predicted with the equations present in 

ref [34].  

 
Fig. I - 18 : Illustration of how rigid polymer structure can change from, a. spherical particle or, b. platelet to surrounding 

polymer [34]. 

 

In some cases, the higher breakdown strength of nanodielectrics, the electrical tree growth and 

surface discharge phenomena have been attributed to the nanoparticles themselves acting as 

barriers to the flow of current between electrodes [11, 31, 52, 53]. More recently, T. Tanaka 

presented a new model for nanodielectrics explaining several of their electrical behaviors [54]. In this 

model, nanoparticles are represented as quantum dots. Since quantum dots possess negative 

dielectric permittivity, the author notes that this can simply explain the commonly observed 

permittivity decrease in nanocomposites. 

5.3. Indirect interphase characterization 

As it has been noted earlier in this chapter, interphases play a substantial role in the final properties 

of a nanocomposite. In fact, in order to predict the behavior of the dielectric permittivity of 

nanodielectrics, general two-phase mixture laws failed to predict the inconsistent behavior of 

nanocomposites regarding filler content and mixture components properties. Thus, these casual 

“power-laws” have been modified into “interphase power-laws”, so the interphase is included as a 

third phase in the material, with different properties than filler and matrix [55]. Furthermore, in 
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order to account for the non-uniformity regarding particles wt. % explained by overlapped 

interphase layers, I. Preda et al. added an overlapping factor into the interphase power-law [56].  

 Consequently, we deduce the importance of interphase characterization in nanocomposites in 

order to both, understand their macroscopic behavior, and tailor them by optimizing the rules that 

link mixture component properties to the final material. To date, scientists commonly used semi-

phenomenological methods to gain insight into interphase properties. 

 In ref [57], an electrostatic three layers model was considered for the filler-polymer interface 

in which an exponential charge distribution through a diffuse layer was taken into account (Fig. I - 

19). Each layer permittivity was calculated with simplified chemical methods. The predicted effective 

permittivities showed a good correlation with the experimental results of permittivities at low 

frequencies (Fig. I - 20).  

 
Fig. I - 19 : Electric field variation along a line perpendicular 

to armatures passing through nanoparticles, for 5 wt. % 

SiO2 [57]. 

 
Fig. I - 20 : Comparison of the simulated effective 

permittivity with experimental results obtained at 10-2 Hz 

(LF: low frequency) and at 106 Hz (HF: high frequency) [57]. 

 Another model found in literature inspired by ref [58] and [56], calculates the interphase with 

an exponential formula, identifying  an overlapping factor for very small particles and high filler 

contents (Fig. I - 21) [59].   

 
Fig. I - 21 : Relative permittivity distribution between the centers of two identical neighboring TiO2 nanoparticles with: a) 

50 nm diameter and b) 26 nm diameter embedded in epoxy resin, without overlapped interphases [59]. 
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 Recently, J.C. Pandey and N. Gupta estimated the thickness of the interphase by modifying the 

interphase volume model [60]. Contrarily to the previous model, authors consider, in this modified 

version, a material with non-perfect dispersion of particles. In conjunction with experiments, an 

approximate thickness of 200 nm of the interphase in an epoxy resin with aluminum oxide of 50 nm 

radius has been calculated. 

 In conclusion, although interphases are supposed to be the key to understand nanodielectrics 

interesting electrical performances, up until now, only semi-phenomenological hypotheses on 

interphase properties have been addressed. As we can see from above studies, in order to explain 

global nanocomposite behavior, macroscopic characterizations are associated to theoretical 

interphase models. However, since special dielectric changes are occurring at the nanometric level, 

these indirect methods reach a certain limit of accuracy and deep understanding of real phenomena. 

The following question is hence brought up: why not probing locally the interphase? 

 Local interphase characterization 

Local measurement of interphases is nowadays mainly addressed by two imaging and 

characterization methods of high resolution: electron microscopies and scanning probe microscopies. 

Scanning probe microscopy has been used as a novel alternative method to the equally well used 

techniques: nano-indentation and nano-scratch. All of these techniques probe different interphase 

properties in order to differentiate it from initial material components. A brief description of these 

techniques and their recent advances in interphase study of variously filled composites will be 

developed in the following paragraphs. 

6.1. Electron and ion microscopies 

 

Electron microscopies use a beam of charged particles or electrons that are accelerated with a high 

voltage in a vacuum chamber, and focused with electromagnetic or electrostatic lenses. Due to the 

wave-particle duality, at 10 kV for example, the wavelength of the electrons reaches 12.5 pm. Such 

low wavelengths permit to electron microscopies to differentiate between features as small as one 

angstrom, typically an individual atom. 

 Electron microscopies can be divided into four main types: Transmission Electron Microscopy 

(TEM), Scanning Electron Microscopy (SEM), Scanning Transmission Electron Microscopy (STEM), 

Focused Ion Beam and DualBeam microscopy (FIB). Briefly, in a SEM the signal is obtained from the 

surface of the sample that has been bombarded with the beam, in contrary to the TEM where the 

transmitted signal is detected from the opposite surface of the beam direction. The STEM is the 

combination of SEM and TEM, and FIB is similar to SEM except that a beam of ions replaces electrons 

and provides higher resolution imaging. Several informations can be derived out of the signal 

depending on the type of electron beam-sample interaction, among which, density contrasts, 

cristallinity, chemical elemental composition etc. 

 

TEM has been widely used to study the interphase of coated ceramic fibers in a ceramic matrix [61], 

the interphase in carbon reinforced composites [62, 63] and ceramic fiber reinforced polymers [64]. 

 A gradient variation in the structure at the interfacial region has been reported in ref [62]. 

Later, authors studied the effect of three types of sample preparation on the accuracy of interphase 
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study with TEM: Focused Ion Beam (FIB), Ion Beam etching (IB) and Ultramicrotomy (UM) [63]. 

According to the analysis of bonding states of FIB prepared specimens, an interphase of 200 nm 

thickness has been estimated (Fig. I - 22), through which the quantity of oxygen increases gradually 

from the carbon fiber to the matrix (Fig. I - 23). Ion beam prepared cross-sections showed that the 

interphase is a transition region from crystalline states to amorphous ones. 

 
Fig. I - 22 : STEM image showing the identified fiber, 

interphase and resin matrix regions [63].  

 
Fig. I - 23 : Variation of element contents at electron 

energy loss spectroscopy (EELS) probe-points of Fig. I - 22 

[63]. 

 A recent paper reports TEM measurements of the interphase in two types of glass fiber 

reinforced polymers containing nanocellulose at fibers surface [64]. Authors proved that FIB is the 

most appropriate method for TEM lamella preparation, limiting the deformation of the interphase of 

investigated samples. 

 

Electron microscopy limits are due to the easily deflected or stopped electron beam in the matter. 

This explains the necessity to work under low pressure and the requirement of very thin samples 

especially for TEM measurements (< few hundreds of nanometers). However, thinning preparation 

techniques face several challenges to preserve the specimen bulk properties. Scientists commonly 

studied suitable sample preparation methods for interphase study [63, 64]. An example of obtained 

results for carbon-fiber epoxy composites is presented in Fig. I - 24. Therefore, specimen preparation 

is a science by itself, requiring too much care to preserve the interphase original properties. 

 
Fig. I - 24 : Comparison of three preparation techniques for interphase analysis in carbon-fiber epoxy composites [63].
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 Moreover, when used to study electrical insulations, electron microscopies resolution is 

reduced and image artifacts can appear due to charging effects [65-69]. Specimens are usually 

coated with a metal layer to suppress charging. However, the additional layer decreases the 

resolution of non-flat samples. 

6.2. Nano-indentation and Nano-scratch 

As interphases affect the global physical properties of composites, their macroscopic mechanical 

behavior has also been shown to be correlated to the quality of the interface between the filler and 

the matrix [70]. Hence, several local mechanical techniques have been used, going from micro-bond 

and micro-droplet test methods for fracture toughness and interfacial shear stress measurements 

[71, 72], to the most accurate ones with nano-indentation, nano-scratch and ultimately, AFM 

nanomechanical methods . In the following, a brief description of nano-indentation, nano-scratch 

and AFM mechanical methods and their corresponding state of the art for interphase study will be 

addressed.

 

The nano-indentation method uses an indenter that is pressed into the material while recording 

loading-hold-unloading cycles in function of the displacement [73]. Calibrating the indenter geometry 

and assuming a linear elastic behavior on the onset of loading, the hardness and quasi-static elastic 

modulus can be derived [74]. On the other hand, nano-scratch tests also use a characteristic tip of 

calibrated geometry but placed in contact with the sample. The latter is moved below the tip creating 

linear scratches. 

 

Nano-indentation and nano-scratching methods have been used to study interfaces in several types 

of composites, among which, glass-reinforced polymers [75-78] and single-wall-carbon-nanotubes 

[79]. Similarly to SEM, these types of composites have been investigated in cross-sectioned 

specimen. Authors have been able to show the diffusion into the interphase of water molecules due 

to water ageing [78], and the dissolution of silane coupling agents in the interphase [77]. The 

interphase widens with water ageing and silane coupling agents concentration. Interfacial regions in 

fiber-reinforced composites frequently show a gradual change in hardness and stiffness between 

matrix and filler [79]. The reported interphase thickness values are very different, varying from 0.1 - 

1.5 µm for example [76, 80, 81], to 2 - 6 µm [75, 78]. The measured width depends on the type of 

material components, as well as the specific measured property with the corresponding adopted 

experiment. 

 

Although these techniques have shown to be useful for interphase study, they are however limited in 

resolution. They might be applicable to microfilled composites, possible to be cross-sectioned, but 

they quickly reach limitations for nanofilled polymers. Moreover, even on microcomposite samples, 

it has been widely discussed that the measured variations in the mechanical properties of the 

interphase are mostly created by the used technique rather than an actual material property [81-84].  

6.3. Nanomechanical atomic force microscopy 

As a novel approach for nanomechanical characterization, atomic force microscopy, adapted to 

mechanical testing, has emerged to study composite materials that present extremely narrow 
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interphase regions and/or nanometric fillers, difficult to be distinguished in casual mechanical 

techniques.   

 

The Atomic Force Microscope (AFM) uses a physical probe in the form of a micrometric cantilever 

with a very sharp tip at its end. The probe senses interaction forces with the sample while placed 

either in contact (contact mode) or at few nanometers from the surface (non-contact or tapping 

mode). Several operational methods can be adopted in order to investigate numerous material 

properties according to the physical nature of the tip-sample interaction and to the mechanism of 

signal extraction. High lateral resolutions (atomic scale) and sensitivities (< 10 pN) can be achieved 

with AFM on almost all kinds of surfaces with minimal treatment in many environments, contrarily to 

SEM. The high resolution mainly relies on the precise and accurate motions provided by piezoelectric 

devices. A detailed description of AFM will be presented in Chapter II. Commonly used 

nanomechanical AFM techniques are Contact Resonance [85], PeakForce Tapping [86] and Tapping 

phase [87]. 

 

The nanomechanical modes of AFM are the most widely used and developed modes of scanning 

probe microscopies for interphase investigation in composite materials. An extensive state of the art 

can be found for several types of polymeric composites where their interphase has been studied with 

nanomechanical AFM. 

 Researchers used AFM tapping mode phase signal, nano-indentation mode with low scanning 

force, force volume mode etc. to characterize the transition region in carbon and glass fiber-

reinforced polymers of micrometric diameter [88-95] as well as in confined polymers to  substrates 

surface [96]. Studying cross-sectioned specimens, authors reported an interphase either with higher 

stiffness than the bulk matrix [90], or a lower one [90, 91]. When the interphase thickness exceeded 

the AFM resolution, measurements were sensitive to thicknesses going from 100 nm to 800 nm 

depending on material composition, fillers surface modification, temperature, water ageing [84, 90, 

93, 95] etc. 

 Until now, whether with electron microscopies or local mechanical techniques, we have only 

mentioned interphase investigation in materials where the cross-section gives direct access to the 

interfacial zone (e.g: fiber reinforced polymers). However, as mentioned earlier, in the framework of 

this thesis, we are mostly concerned about composites with 3D nanometric fillers, such as 

nanoparticles. In this case, cross sectioning is not too probable to reveal the interphase. 

Nevertheless, unlike electron microscopies and past mechanical methods, some advances in the 

study of nanoparticles filled composites have been achieved with nanomechanical AFM.  

 S. Chang et al. tried to measure the interphase in a silicon dioxide (SiO2) filled glassy polymer 

nanocomposite [97]. Through the combination of the nanoscale Contact Resonance AFM results to 

the macroscopic Brillouin light scattering ones, authors found an interphase of 3 nm approximately. 

The interphase showed higher elastic modulus than bulk polymer in accordance to authors previous 

broadband spectroscopy study [98]. The higher modulus of the interfacial layer has been attributed 

to polymer chains stretching, despite the lower dense segmental packing of the interfacial region 

compared to the bulk polymer. Authors used the following hypothesis on the sample configuration to 

analyze their results (see inset Fig. I - 25.b): 
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Fig. I - 25 : AFM images of the SiO2 nanocomposite: a. Q-factor (quality factor-see Chapter II) of the cantilever map of the 

surface, b. the spatial resonance frequency shifts (∆f0-due to changes in mechanical properties) and Q profile for a single 

nanoparticle framed by the black boxes in panel (a.). The inset shows schematic positioning of the nanoparticle in the 

polymer matrix and demonstrates three regions associated with different changes in ∆f0 and Q [97].    

 N. Lahoud et al. used PeakForce Tapping-Quantitative Nanomechanical Mapping in order to 

study the profile of Young’s modulus over boron nitride nanoparticles in a polyimide matrix [99]. 

Authors measured a 23 nm approximately wide region of transitional Young’s modulus from the 

particle to the matrix. This region has been affected to the interphase.   

 More recently, H. Huang et al. performed an AFM nanomechanical study for the interphase in 

SiO2 nanoparticles filled polymer matrix [100]. SiO2 particles diameter in matrix has been estimated 

to 40 nm from topography surface profile. Authors found a gradient in the stiffness on a region 

between the particle and the matrix that was ascribed to the interphase. The interphase width has 

been measured from the distance of the supposed-to-be the real tip apex position when it finishes 

scanning the particle, and the point where the stiffness becomes equal to the bulk matrix one. The 

glass transition of the interphase has been measured locally and found to be higher than the bulk 

polymer. The interphase thickness has been supposed to increase with temperature, inversely to 

previous works [101, 102]. However, authors mention clearly the possibility of having measured 

artifacts with increasing temperature. A model of the interphase chemistry has been also 

hypothesized. Authors suppose the following arrangement of particle-interphase-matrix (inset Fig. I - 

26):   

 
Fig. I - 26 : AFM force-distance curves recorded between the tip and (x) the polymer matrix, (-) the interphase region and 

(o) on top of a hydrophobized silica particle located at the nanocomposite surface. The curves were recorded in force 

mapping spectroscopy mode at 23ºC and 63ºC, respectively, at the positions marked with crosses on the image. The force 

curves measured at 63 °C have been displaced on the x-axis for clarity. Measurements on approach and retraction are 

shown as solid and dotted lines, respectively [100]. 
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From the above AFM overview, it can be noticed that the measured thickness range of the 

interphase in microcomposites generally exceeds that of nanocomposites. Moreover, for the current 

studies performed on nanocomposites, the thickness of the interphase varies considerably between 

different studies. This can be attributed at the first sight to the different composites compositions 

and thereby, physico-chemical interfacial interactions.  However, this is also highly related to the 

scanned property, and most importantly, to possible scanning artifacts. In fact, while some studies 

consider tip convolution in AFM images [100], others do not seem to do so [97, 99]. Furthermore, 

AFM tip interaction with non-planar samples is not fully understood yet [103]. Understanding the 

underlying physics of the probe interaction with each type of sample configuration and then, 

quantifying measurement resolution in each specific scanning mode, is substantially important. 

Additionally, authors suppose certain assumptions on the subsurface composition of the probed 

region, on which they have based their interpretations of the interphase. However, there is no direct 

evidence for the consistency of these speculations. For instance, if other configurations constitute 

the probed specimen, different analysis must be performed, that might draw different conclusions 

on the interphase. 

6.4. Electrostatic force microscopy for interphases…? 

In addition to the current limitations concerning SEM and nanomechanical methods for interphase 

measurement, in this work, due to the electrical application of nanodielectrics, we have been 

interested in the dielectric polarization properties of these materials. Since the permittivity of the 

interphase is supposed to be different than mixing components as described in the previous sections, 

this characteristic is thereby going to be the property of interest for interphase characterization. 

Thus, the necessity of both local and dielectric characterization method can be provided by 

Electrostatic Force microscopy (EFM), an AFM variant adapted to electrostatic forces detection.  

 In the following chapter, we will present the state of the art of all scanning probe microscopies 

electrical methods and EFM in particular. Moreover, the advances in those techniques in the fields of 

material investigation that are needed to solve the problem of interphase study in nanocomposite 

systems will be reported. 
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 Conclusion 

In this first chapter, a review on the basics of electrical insulators, or dielectrics, and their response to 

electric fields has been stated. An electric field can either separate superposed opposite charges to 

create an electric dipole, or reorient a permanent dipole. This is the so-called “polarization” 

phenomena, which can be divided into several types with specific establishment time. As electrical 

insulations are often prone to failure, new versatile insulating materials are always needed.  

 Nanodielectrics, a combination of nanoparticles in a polymeric matrix, seem to cater to 

demand: mechanical, thermal and insulating properties have often been improved, contrarily to their 

microcomposite counterparts. The explanation behind the special properties in nanodielectrics is 

usually attributed to the interfacial zone between filler and matrix: the interphase. As interfacial 

interactions can lead to regions in the interphase that are characterized with unique properties 

compared to both nanoparticles and polymer, and due to the high percentage of interfaces at the 

nanoscale, the interphase intrinsic properties are of the utmost importance. For example, the 

prediction of nanodielectrics macroscopic dielectric constant could only be afforded by using 

modified mixture laws that include the interphase: its volume and permittivity. At low particles 

concentration, the permittivity of nanodielectrics can present values that are either higher or lower 

than both filler and matrix. Several physico-chemical interphase models have been established to 

understand electrical experimental results. All of them agree on the fact that the interphase is a 

region around nanoparticles, where the interactions between particles surface and polymer chains 

can rearrange polymer chains, which can explain lower interphase permittivities. Water molecules 

have been also reported to adsorb and accumulate in the interfacial region, clarifying the 

macroscopic increased permittivities. 

 Insight into the interphase has been usually addressed through macroscopic characterizations. 

In particular, scientists used to correlate macroscopic permittivity measurements to theoretical 

models such as the modified mixture laws, to speculate interphase thickness and dielectric constant.  

However, the task is doubly complicated since theoretical models may not be appropriate, as well as 

interphase properties are unknown. Consequently, a local characterization of the interphase 

becomes essential. Mostly used methods to study the interphase at the nanometric level are 

electron microscopies and nanomechanical characterizations techniques, such as classical 

nano-indentation and nano-scratch methods that have evolved recently towards nanomechanical 

atomic force microscopy. These methods proved to resolve interphases in composites with simple 

geometries, like fiber fillers, where the interphase becomes easily exposed to the surface after cross-

sectioning, which is not likely for nanoparticles filled polymers. Moreover, these techniques present 

some limitations, such as sample preparation complexity for TEM measurements in addition to 

imaging artifacts. Interphases in nanocomposite materials have been particularly investigated with 

AFM nanomechanical techniques. The measured interphase thickness importantly varies in 

literature. This is mainly due to the nature of composite components, measuring technique and most 

importantly, results interpretation. 

 In this thesis, the dielectric permittivity of the interphase is going to be used as its signature. 

Consequently, the electrostatic force microscope will be utilized as a potential technique for both 

local and dielectric characterization method with the aim of interfacial zones detection. In the 

following chapter, an introduction to EFM basic principle will be presented. 
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"We have to remember that what we observe is not nature in itself, but nature exposed to our 

method of questioning.” Werner Heisenberg 

 Introduction 

The principle of scanning force microscopies for the imaging process is the use of a physical probe in 

the form of a cantilever with a sharp tip at its end, which allows high resolutions, and a feedback 

mechanism controlling tip movement. The family of scanning force microscopies started in 1982 with 

the scanning tunneling microscope (STM) invented by G. Binnig and H. Rohrer [1]. STM works by 

controlling the tunneling current flowing between a metallic tip and a conductive or semi-conductive 

surface in a vacuum atmosphere by monitoring the distance of the probe from the surface. The 

change in probe position can basically reflect sample topography. However, STM reached limitations 

to image poorly conductive materials such as biomolecules that also need a specific atmosphere. 

Those limitations served as a motivation for G. Binnig et al. to invent later in 1986, the atomic force 

microscope (AFM) with much higher process versatility [2]. The probe motion in an AFM is altered by 

the interaction forces with the sample at close proximity. According to the nature of the force and 

the usage of appropriate feedback mechanism, several physico-chemical properties can be deduced. 

Thereby, since its first development, an impressive number of AFM modes have been developed 

giving the capability of probing, in addition to the topography of different kinds of materials, their 

electrical, magnetic, chemical, thermal and optical properties at the nanoscale. 

 In the following, an overview of recent electrical scanning probe microscopies is presented to 

proceed, in the next part of this chapter, to the detailed description of Electrostatic Force Microscopy 

(EFM). Moreover, a review on the advances of electrical scanning probe microscopies in the study of 

complex nanostructured materials and the interphase in nanocomposites is included. 

 Overview on local electrical characterization methods 

In addition to STM that can measure electron density and the conductivity of conductive and semi-

conductive materials [1, 3], several scanning probe microscopies (SPM) electrical characterization 

techniques have been developed giving access to numerous electrical properties. These methods can 

be mainly divided into two categories: 

a) Current detection techniques: the electric current flowing from substrate to tip is measured 

and used to obtain the targeted electrical property. 

b) Force or force gradient detection techniques: the electric force acting on the probe is 

detected and used to probe the property of interest. 

Fig. II - 1 summarizes the most commonly used current and force detection electrical microscopies:
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Fig. II - 1 : Summary of commonly used AFM electrical characterization techniques, arrows in boxes refer to the basic 

detection system, and point out the measured parameter, LIA: lock-in amplifier. Signal processing is not detailed here 

(see [4, 5] for further explanation). 

 Most of current detection methods use the tip in contact mode with the sample to maintain 

the electrical contact for current measurement [6, 7]. Moreover, although in Nanoscale Impedance 

Microscopy or Scanning Microwave Microscopy, for example, it is possible to perform measurements 

in non-contact mode if desired, AC voltages introduce some noise [8-10]. The signal is highly 

influenced by the stray capacitance originating from the chip and non-screened cables that highly 

reduces the sensitivity.  

 In contrast, force and force gradient detection methods are usually performed in non-contact 

mode, allowing for topography and electrical images to be obtained separately [11-13]. Higher 

sensitivities are achieved since the capacitive coupling is reduced by the physics of interaction, 

including capacitance first or second derivatives instead of raw capacitance. Furthermore, several 

information about the capacitance, surface voltages and charges, can be accessed with little changes 

in the experimental set up and protocol. A more detailed review of electrical AFM methods can be 

found elsewhere [4, 5].  

 EFM definition 

The EFM, first introduced by Y. Martin et al. [11, 14] detects weak but long range electrostatic forces. 

The system making up the EFM, in which it differs from a conventional AFM is: 

a) a conductive probe acting as an upper electrode,  

b) a metallic sample holder used as a counter-electrode, creating together an equivalent of a 

capacitor (Figure 5.12). 

The probe can be excited with a DC and/or AC electrical voltage, and lock-in amplifiers can be used in 

order to detect signals at specific frequencies (see below sections). 

 AFM tip, cantilever and probe support are usually made of monocrystalline silicon or silicon 

nitride prepared by microfabrication techniques [15-17]. Due to their monocrystalline nature, AFM 

tips possess a high mechanical and thermal stability. Diamond tips can be also used for even larger 

durability. 
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Fig. II - 2 : Scanning electron image of a typical AFM probe with a conical tip. 

 For EFM measurements, in order to make the probe sensitive to electrostatic interactions, the 

cantilever and the tip are metallized through the deposition of a thin metal film on their surface, such 

as: chromium, chromium-gold, platinum-iridium, titanium-platinum, carbide Tungsten, titanium 

nitride etc. The deposited thickness is of the order of 25 nm, which increases the tip radius of 

curvature and correspondingly, reduces the lateral resolution for the topography. It must be noticed 

that metal covered tips become more prone to wear and hence, more prone to imaging artifacts, in 

addition to the fact that EFM signal variation is highly influenced by the radius of the apex. Thus, 

highly doped silicon or diamond probes are sometimes utilized. Their electrical conductivity is usually 

convenient to EFM measurements while keeping a sharp tip end (highly doped silicon probes) or 

better mechanical properties (silicon and diamond coated probes) [18]. 

 Set up 

Since EFM is one variant of AFM, we start by presenting a brief description of AFM basic system and 

working principles, followed by the specificities of EFM detection mechanism. 

4.1. AFM basics 

 
Fig. II - 3 : A simplified schematic diagram of basic Atomic Force Microscopy components (in static mode). 

AFM works by scanning a probe over a sample surface in the three dimensions of space, monitored 

with three high precision piezoelectric tubes. Either the tip or the sample can be displaced. The 

probe is a nanometric tip maintained below a cantilever fixed at one end and free from the other 

one. The movement of the probe is usually followed optically by the reflection of a laser beam from 

the back side of the cantilever. Reflected beams are collected on a four segment photodiode (A, B, C, 

D), an optical position sensitive detection system (PSD). The variation of vertical tip movement is 

computed as the signal: (A+B) - (C+D), and lateral one as: (A+C) - (B+D). The collected signal is 

compared to a set point signal. With a proportional-integral-derivative controller (PID), the resulting 
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error signal is used to feed a retroaction system that maintains one characteristic of probe 

movement (deflection, torsion, vibration etc.). According to the physical property of interest, the 

nature of the excitation of the probe and the action of feedback controls are going to be selected.  

 The mapping process is forwarded by the establishment and detection of interacting forces 

between the tip and the sample. Involved forces are very wide, however having in common the 

dependency to the tip-sample distance z. A common way to describe the interaction between the 

sensor and the specimen is by the approximation of the interaction of two neutral atoms (or 

molecules) with Lenard-Jones potential. As presented in Fig. II - 4a., the latter shows the important 

variation of the force intensity with the distance, in addition to the distinction between attractive 

and repulsive forces [19]. At large distances, attractive forces occur such as: Van der Waals forces 

(VdW), capillary forces due to the water meniscus between tip and sample surface in air 

environment, long range electrostatic forces due to differences in sample and probe work functions, 

or permanent surface charges on the sample or capacitive charges, magnetic forces etc. At short 

separations, roughly approximated to start at the minimum of the curve (≤ 5 A% interatomic distance), 

repulsive forces arise due to the overlap of electron orbitals of tip and sample according to Pauli’s 

exclusion principle [20]. At these separations, the two bodies are considered to be in contact.  

 In order to obtain the topography, the tip is usually placed at appropriate close distances from 

the surface to allow VdW forces to dominate. As the force is a decreasing function of the distance, 

for a fixed tip position, surface asperities will modify the force field around the tip. Force variation is 

detected through the induced change in the cantilever movement such as its flexion, or its torsion in 

the case of lateral mapping [21]. 

 
Fig. II - 4 : a. Lennard Jones potential describing the interaction between two neutral atoms or molecules regarding their 

mutual separation r, and b. Nature of interaction forces and their range, brightest color corresponds to the higher force 

magnitude [22]. 

In EFM, electrical information is obtained from the detection of long range electrostatic forces while 

minimizing VdW ones. 

4.2. EFM Lift mode 

Within the framework of this thesis, EFM measurements have been conducted in a double-pass, also 

called double-scan, configuration [23]. During the first scan, the surface topography is acquired using 

Tapping ModeTM, while electrical data are collected at the second scan with the so-called Lift 

ModeLM. In the following, a description of each scan is explained separately. 

a) b) 
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4.2.1.1. Spring - mass model 

In order to predict cantilever motion in a force field, the cantilever-sample interaction is roughly 

modeled as a point mass spring oscillator. The forces acting on the cantilever are considered as the 

point mass pushing the spring to extend (or retract) according to its stiffness K. K depends on the 

geometry, the density and the Young’s modulus of the cantilever. The restoring force is derived from 

Hooke’s law, and in the static case, it can be simply expressed as (see Fig. II - 5) [19]: 

  (II.1) 

 

∆z is the probe deflection from initial position. Among possible methods to measure K [24-26], a 

widespread and simple calculation of the normal spring constant with the assumption of a 

rectangular cantilever shape is based on the use of the following theoretical formula  [24]:  

 
 

(II.2) 

 

EY is the Young’s modulus of the cantilever, W, t and L are its width, thickness and length, 

respectively.  

The additional mass introduced by the tip is usually not considered since it is negligible with respect 

to the mass of the cantilever. The tip deflection is either positive or negative for attractive or 

repulsive interactions with sample surface, respectively. 

 
Fig. II - 5 :  Spring-mass model of the cantilever-tip interaction with the sample. 

4.2.1.2. Tip oscillation in dynamic mode 

AFM has in general two main operating modes, contact and Tapping ModeTM. The latter is a variant 

of non-contact imaging methods. In EFM measurements, we used tapping mode, which forms the 

basis for most of SPM force and force gradient electrical detection modes [27]. 

 In a tapping scan, the tip is excited in the z direction by a bimorph piezoelectric actuator at a 

frequency close or equal to its first eigenmode resonance frequency. The mean tip-surface distance 

and amplitude of vibration are wisely chosen to stay out of contact in the majority of the oscillation 

cycle so that the tip hits the surface only briefly at the end of one vibration period (Fig. II - 6). The 

interaction with the sample modifies the amplitude and phase of oscillation. Those quantities are 

used for the regulation process and thereby for imaging. In order to follow the tip vibration and its 

dependency to the sensed forces, we will extend next the dynamics of oscillation, when 1) no 

interaction with the sample is present, and 2) an interaction force is detected by the tip. 
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Fig. II - 6 : Position on Lennard-Jones potential curve of scanning modes working distances.  

4.2.1.3. No tip-sample interaction 

At sufficiently far distances from the sample surface where no interaction is present, when the tip is 

only subjected to a sinusoidal excitation, the motion of the tip along the z direction is described by a 

second order differential equation [28]: 

 

 ϒ  (II.3)  

 

Fd and ωc are respectively the amplitude and the angular frequency of the driving force of the 

cantilever. me and ϒ are respectively the effective mass of the cantilever and the attenuation 

coefficient. It is usually advisable to consider an effective mass of the probe  [21] (m  is 

the real mass of the cantilever at rest), and to take into account the fact that the mass of the 

cantilever is distributed over its entire length. The components of the above equation represent the 

sum of all forces acting on the tip-cantilever system that are from the left to the right, the friction 

force, the restoring force and the driving force (here, of the actuator). 

The angular resonance frequency is hence calculated from: 

 
 

(II.4) 

 

The solution to the tip equation of motion is that of a harmonic oscillator with damping: 

  (II.5)  

 

Ac is the resulting amplitude of the cantilever oscillation,  is the phase difference between the 

driving force and the cantilever oscillation, ωD is the resonance frequency of the cantilever influenced 

by the damping effect, τ is a time constant characterizing the decay of the damping effect (damping 

is reduced by 1/e after τ; e is the exponential constant). The first term of the equation of motion is a 

steady solution and the second term is a transient one.  

 In order to define τ, the quality factor Q must be inevitably introduced. Q describes the ratio 

between the energy stored per oscillation cycle on the work provided per cycle.  

For a lightly damped harmonic oscillator, Q is written as [29]: 

 
 

(II.6)  

 

and is simplified at resonance ) to:  

  (II.7)  
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 When an external force is applied temporarily, the viscous friction of the cantilever in the air is 

at the origin of the transient regime. This is also the cause for example when the probe encounters a 

physical obstacle or a steep force change on the surface during sweeping. The characteristic time for 

the oscillating probe to reach equilibrium is related to the attenuation factor and consequently, to 

the quality factor by the relation: 

 
 

(II.8)  

 

 The resonance frequency of the cantilever, reflecting its stiffness, together with the quality 

factor, influences damping time. Hence, these parameters determine the required scan rate to 

obtain faithful images. It is considered that it is necessary to wait for a typical time of 3τ before 

reaching equilibrium. Common manufactured AFM cantilevers have quality factors of a few hundred 

in air. For a typical probe used in this thesis with Q = 220 and resonance frequency f0 = 60 kHz, the 

time required to reach steady state is thus about 3.5 ms. For an image resolution with 512 512 

pixels, around 15 minutes will be necessary. However, in ultra-high vacuum, Q is multiplied by 100 

and imaging time becomes unreasonable. That is why higher harmonics are usually used in vacuum 

in order to compensate the quality factor increase (eq. II.8) assuming an unchanged effective mass 

with flexural mode order [23, 30]. Thus, cantilevers of relatively high stiffness are required for 

tapping mode AFM, even if this is at the expense of the sensitivity. An “artificial” modification of the 

quality factor (the so-called Q control) is sometimes performed in order to enhance tapping speed 

[31]. 

When the transient motion fades out, the sinusoidal oscillation of the cantilever is characterized by:  

 
 

 

(II.9)  

  (II.10)  

 

The expression of the amplitude is a Lorentzian function centered on the resonance frequency of the 

oscillator of the studied harmonic mode (see Fig. II - 8 free cantilever case). The quality factor can be 

determined graphically from the amplitude curve using: 

  (II.11)  

 

ωc1 and ωc2 are the pulsations at the  ratio of the maximum oscillation amplitude.  

At ω0, the phase is centered at π/2. Importantly, in this fully linear treatment of the problem, the 

amplitude of the exciting force Fd has no effect on the general shape of the resonance curve.  
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Fig. II - 7 : Simplified block-diagram of tapping mode during topography acquisition.  

4.2.1.4. Presence of tip-sample interaction force 

When the probe is placed in the vicinity of the surface, or when the tip is conditioned in a way that a 

force field is created due to tip-sample interaction, an additional force Fts must be added to equation 

(II.3). If we do not know the dependency of Fts with z, this equation is a priori not soluble. However, 

for small oscillations, or small displacements around average z scanning position, z0,  can be 

expressed as a first order Taylor development around z0 [28]:  

 
 

(II.12)  

 

so equation (II.3) becomes:  

 
 

(II.13)  

 

 The term  is independent of time, which only creates a static deflection of the cantilever 

that has no influence on the coming process. However, from the comparison of the second terms at 

the right hand side of (II.3) and (II.13), it can be noticed that when subjected to an interaction force 

with the sample, force gradients modify the effective stiffness of the probe, Keff, which writes: 

 
 

(II.14)  

 

The new cantilever pulsation is then given by: 

 

 

(II.15)  

 

For small displacements, the average force gradient is small compared to the spring constant of the 

cantilever: . Consequently, the Taylor series of equation (II.15) concludes that the 

frequency shift  of the probe resonance frequency for a weakly perturbed oscillator is 

proportional to the force gradient of the interaction: 

 
 

(II.16)  

 
 

(II.17)  
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Furthermore, for static force gradients, the mechanical phase shift can be expressed as [30, 32]:  

 
 

(II.18)  

 

 Thus, from equations (II.17) and (II.18) it can be deduced that force gradients can be detected 

by either measuring the frequency shifts or the phase shifts, respectively. Even so, measuring the 

frequency shifts is preferred to avoid phase saturation observed at high voltages for example (> 10 V) 

[33]. Amplitude shift signal can be also used to measure indirectly the frequency shifts. A further 

description of signal modulation for each of the three cases will be presented in the next paragraph. 

 However, the main conclusion of this section is that tip-sample interaction forces modify the 

oscillation of the cantilever. Attractive force gradients decrease the effective stiffness of tip motion, 

which decreases its resonance frequency, and vice versa for repulsive ones. Positive force gradients 

are usually generated when the cantilever is relatively far from the sample (Fig. II - 8), and negative 

ones are produced at relatively close distances. The resonance amplitude and phase curves of the tip 

are consequently shifted to be centered on a new effective resonance frequency while keeping a 

similar shape of the curve.  

 
Fig. II - 8 : Amplitude (line) and phase (dotted line) of the free cantilever (black) and in the presence of an attractive force 

gradient (blue) at fixed drive frequency: curves are shifted to lower frequencies [33].  

 

As mentioned previously, during the second pass, EFM measurements have been performed with Lift 

ModeLM, a sub-mode of non-contact scanning. For each scan line over the probed region, the 

topography is obtained with tapping mode, and collected on the height image of the AFM software. 

The tip is then retracted to a higher distance from the surface (~ 100 nm) in order to detach it from 

any possible water meniscus with the sample, and then dropped back to a certain level chosen by the 

user [33, 34]. The latter additional distance is the so-called “lift”. The reference origin for the lift is 

the position of the probe during the first scan z (x, y), which reflects the topography of the sample. 

The consequent movement of the tip at the second scan is to retrace the topography at a higher 

separation from the surface. At this stage, the tip-to-substrate system is usually electrically biased to 

develop capacitive electrostatic forces on the probe (Fig. II - 9). 
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Fig. II - 9 : Principle of the double-pass method [33]. 

 For force gradient measurements, which are the case in this work, electrical data acquisition is 

also performed in dynamic mode. However, importantly, the drive amplitude is typically reduced to 

the third of the oscillation amplitude used for topography measurement [33]. This allows the use of 

very low lifts without crushing the tip, and to stay out of the interval of distances of short range 

forces such as VdW ones. Moreover, small oscillations are required to stay in the linear regime, a 

mandatory condition to extract quantitative solutions with casual methods. In fact, as sketched in 

Fig. II - 9, at the first scan, and in the nonlinear approximation, the tip-sample distance is 

approximated to be equivalent to the oscillation amplitude [35]. Hence, during the second scan, even 

at 0 nm lift, if the oscillation amplitude is reduced, the tip is more likely to stay out of contact from 

the surface.   

 It must be noted that the decorrelation of long range forces from short range ones stems from 

the variation of VdW and electrostatic forces with z. In fact, the power law dependency with z is 

( ) and ( ) for VdW and electrostatic forces, respectively. These relations show the 

predominance of short range forces at low distances, in contrast to high distances. Nonetheless, 

when the sample possesses exceptionally strong surface or volume charges, scientists often 

measured topography artifacts produced by the resulting permanent high electric field [36-38]. 

4.2.2.1. Physics governing EFM tip-sample interaction 

The interaction between an EFM sensor and an insulator is a combination of an attractive Columbic 

force between induced charges on electrodes due to the capacitance C of the probed region 

(capacitive force), and a Columbic force between local surface charges qs (if present) and their image 

charges on the tip - qs [21, 23, 39]. The image charge in the counter electrode is neglected. The total 

tip-sample voltage is due to externally applied voltages, DC and/or AC voltages, as well as those due 

to the existing tip-to-sample work function difference (well known as surface or contact potential 

difference VCP). Other externally induced voltages can be added to VCP such as those resulting from 

polarization, illumination, mechanical stress, etc (see Fig. II - 10). 

 
Fig. II - 10 : Schematic of the electrostatic interactions of an insulator possessing a permanent surface charge when: a. 

electrodes are disconnected, b. electrodes are connected, and c. electrodes are biased with a DC and AC voltage. 
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Fig. II - 11 : Schematic of the origin of contact potential difference between two metals, namely, the conductive EFM tip 

and the metallic sample holder: a. Fermi levels before contact, b. electrons flow upon connection, c. contact potential 

establishment at equilibrium, d. electrostatic field nullification with a bias opposite to the contact potential difference: 

general principle of Kelvin Probe Force Microscopy.    

The general equation of the force F that describes these interactions, for large tip-surface distances 

compared to atomic dimensions, is defined as follows: 

 
 

(II.19)  

  

z is the instantaneous distance between the tip apex and the sample surface, qt is the sum of all 

charges interacting with the surface static charges qs, and the total voltage difference ΔV writes: 

  (II.20)  

 

 and  are the DC and AC externally applied voltages, respectively. ω is the pulsation of 

the AC voltage.  is usually measured with Kelvin Probe Force Microscopy (KPFM) [12]. Fig. II - 11 

presents a schematic of the origin of VCP at the electrical contact between the metallic tip and the 

electrode, as well as the basic process to deduce it with KPFM Fig. II - 11d. An overview of KPFM 

working principles will be given in the following sections. In the case of a perfect insulator and 

perfect dielectric-metal contact,  mostly corresponds to the difference in the work functions 

between the metals constituting the tip and the substrate [33, 40]  [40, 41]. Note that the other 

external voltages mentioned before are neglected, or can be included within VCP. 

qt is expressed as follows:  

  (II.21)  

 

where ,  and  are the capacitive charges due to , 

 and  respectively. We remind that C is the equivalent capacitance of the EFM sensor 

including the air gap and the dielectric sample (Fig. II - 10).  

 At low electric fields, the tip-sample capacitance and its derivatives are generally assumed to 

remain unchanged upon addition of external voltages for common samples. The following 

relationships for electrostatic forces and their gradients can thus be derived. The force acting on the 

tip becomes equal to:  

 
 

(II.22)  
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The development of this expression shows that it can be expressed as the sum of DC, ω and 2ω 

components:  

  (II.23)  

 

 
 

 

(II.24)  

 
 

 

(II.25)  

 
 

(II.26)  

 

 At this stage, it can be noted that similar information about sample properties can be carried 

out either by force detection, or force gradient detection. However, the force gradient detection 

method is expected to offer higher resolution as will be discussed in the following sections. 

Accordingly, the force gradient is deduced from previous expressions and becomes similarly 

to the force, the sum of three components:  

  (II.27)  

 

 

(II.28)  

 
 

(II.29)  

 
 

(II.30)  

 

As already explained for tapping mode, the force gradients sensed by the probe shift its resonance 

frequency.  

 In other terms, during the second scan, the tip is excited mechanically at the resonance 

frequency of its first mode (ω0), and is electrically biased with a DC and/or AC voltage (ω). The latter 

induces perturbating electrostatic forces with varying frequencies (0, ω and 2ω). In this case, these 

electrical forces between the tip and the sample constitute the Fts of equation (II.12), Fts is then 

mainly composed of three components oscillating at different frequencies. When no interferences 

are present, everything happens as if the tip is excited independently at three excitations each 

influencing the mechanical vibration with specific periods: a static modification due to the DC 

gradient, a ω varying vibration and a 2ω one.  

 Note that when the external mechanical drive is stopped, these electrostatic forces become 

equal to the main driving force Fd of eq (II.12) also varying at ωC = 0, ω and 2ω, and Fts = 0. Thus, eq 

(II.12) returns in this case equivalent to (II.3). 

 Since each of the above force and force gradient spectral components depend differently on 

the system capacitance, surface charges and contact potential, it becomes ingenious to monitor 
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them independently, and thereby deduce specific electrical properties with different ways. Lock-in 

amplifiers (LIA) are used for this aim as they demodulate the signal at the desired frequencies. 

Moreover, a LIA suppresses all the noises and electrical responses that are not at the frequency of 

interest, and hence, do not contribute to the researched property [36]. Subsequently, the extracted 

signal is either imaged directly on an independent EFM image, or used as a feedback signal to control 

and extract a specific property. Next, a description and discussion of force mode detection versus 

force gradient mode is presented. 

4.2.2.2. Electrostatic force detection 

During the second scan, when the electrostatic force is measured, the external mechanical excitation 

can be switched off. Here, the electrical stimulus oscillates the tip at three spectral components as it 

has been deduced above. Consequently, the measure of the amplitude of oscillation at ωi pulsation 

(ωi = 0, ω or 2ω)  determines the force researched following the below equation, deduced from the 

combination of equation (II.23) into (II.9) with Fd = Fωi [42]: 

  (II.31)  

 

with : 

 
 

(II.32)  

 

 Note that when FDC is measured, the static amplitude is equivalent to the static deflection of 

the probe and eq (II.31) becomes equivalent to eq (II.1) [43]. In Fig. II - 13, ARMS extraction shows an 

illustration of this measurement mode.  

Care must be taken using this mode to keep the amplitude of electrical oscillation much lower than 

the mean tip-sample separation. Otherwise, sensor movements become not appropriate to be 

treated with the linear regime hypothesis.  

Consequently, the equalization of (II.31) with (II.26) can give access to C’, VCP and qs, depending on 

the chosen spectral component.  

 Electrostatic force detection is commonly used in the literature to study dielectric metal-oxides 

[43-46], polymers [42, 44, 45], bio-membranes [47, 48], viruses [46] and bacteria [49]. However, 

since the electrostatic force is proportional to the first derivative of the probe-to-stage capacitance, 

stray capacitances from the cantilever and the chip highly contribute to the signal. That being so, the 

locality of the measurement is altered [36, 50]. In order to overcome this problem, for each 

measurement, researchers subtracted the signal over the sample for a certain lift, to that over the 

bare substrate at a reference distance from the surface. This calculation step is also added to 

simulations when a quantitative study is desired [45, 46, 49]. Nonetheless, another method to 

directly reduce the non-locality is detecting instead electrostatic force gradients.  

4.2.2.3. Electrostatic force gradient detection  

Contrarily to force measurements, force gradients are acquired keeping the mechanical drive during 

the second scan. As it has been shown earlier in this chapter, force gradients change the effective 

resonance frequency of the sensor (eq (II.17)). Fig. II - 8 illustrates the resulting decrease of the 

effective resonance frequency for a given attractive force field, which is the case of capacitive forces. 

Consequently, when the drive frequency is locked at ω0, resonance frequency shifts will decrease the 

amplitude and the phase of the oscillating cantilever. As a result, force gradients can be detected by 
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three dynamic methods: amplitude, phase and frequency shifts detection. A simplified block diagram 

of EFM for these three detection modes is illustrated in Fig. II - 13. 

a) Amplitude shift detection  

According to eq (II.9) plotted on Fig. II - 8, an indirect measurement of force gradients is to collect 

changes in the cantilever amplitude at fixed drive frequency (see Fig. II - 13, ∆ARMS extraction).  

 However, both amplitude and amplitude shifts measurement methods, for respectively force 

and force gradient study, are not recommended due to the probable appearance on EFM images of 

laser interference artifacts. If the laser is not correctly aligned at the back of the cantilever, spreads 

over the edges reflect at the surface of a reflective sample and interfere with the reflected beam 

from the cantilever. Constructive and destructive interferences induce periodic stripes on the EFM 

image [51]. An example of an EFM image with laser interference artifacts is presented on Fig. II - 12. 

The image can be misleading as it reveals features similar to the subsurface composition of the 

sample (Fig. II - 12 c. versus e.).  

 
Fig. II - 12 : EFM image artifacts obtained on the A2ω signal for a sample composed of particles placed at the substrate and 

covered by a polymer layer. (PVAc film of ~ 1.5 µm thickness covering PS particles + 60 nm Al2O3 shell), a. topography 

image; c. A2ω amplitude image with VAC = 7.5 V and f0 = 10 kHz at z =  21 nm; b. and d. cross-sectional profiles along the 

blue line of a. and c., respectively; e. sample topography without matrix. It can be noticed the misleading match between 

the subsurface and electrical image, however, verified to be due to laser interference.  

Contrariwise, laser interference is not detectable on the phase or frequency signals channel. 

Therefore, a second alternative method to extract force gradients is phase shift detection. 

b) Phase shift detection 

Here, similarly to amplitude shift detection, the phase of the signal at the photodiodes is extracted 

first with a LIA locked at the drive mechanical frequency ω0. The latter phase shift is either directly 

collected on an EFM image for DC phase shifts measurement, or fed back into a LIA locked at the 

electrical frequency to extract ω and 2ω components (see Fig. II - 13, ∆Φc extraction). Note that as 

the phase drive signal is centered at the resonance frequency, the measured signal is thereby equal 

to the phase lag between the drive and the cantilever response. Consequently, the phase shifts can 

be correlated to the electrical force gradients as follows [32]:  

 
 

(II.33)  

where g (ωi): 

   (II.34)  
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ωi = 0, ω or 2ω and g (ωi) is an attenuation coefficient < 1. In fact, the response of the phase shift 

versus ωi has been found to exhibit a low-pass like filter behavior [32]. Thus, g (0) = 1 for DC-phase 

shifts, and g (2ω)  2 in the frame of our experiments (Q 220, 0  120π rad/s and ω = 200π 

rad/s).   

c) Frequency shift detection 

During frequency shift detection, the phase shifts are measured similarly to the previous phase shift 

method. However, those signals are used here as feedback parameter to vary the drive frequency in 

order to keep a zero phase shift (see Fig. II - 13, extraction). According to eq (II.17), 

frequency shifts are generally related to force gradients with the following equation: 

 
 

(II.35)  

 

Nevertheless, due to a lack in our system set-up, in our case, this method is only applicable for DC 

frequency shift measurements. An alternative method to obtain AC frequency shifts (i.e. AC 

gradients) is to convert AC phase shifts into frequency shifts with the following relation, from the 

combination of equations (II.33) and (II.35): 

 
 

(II.36)  

 

 It can be concluded that EFM can be employed using DC and/or AC electrical excitation, for 

either force or force gradients detection. Force measurements are performed with turned off 

mechanical excitation. On the other hand, force gradient detection requires a dynamic excitation of 

the sensor. The detection can be implemented by three methods: amplitude, phase and frequency 

shifts detection. Phase and frequency signals measurement are the most advisable methods. 

Frequency shift detection has been used in our work for DC measurements, and 2ω phase shift 

detection for AC ones. Here also, force gradients detection requires low mechanical and electrical 

oscillation amplitudes, lower than the mean tip-to-sample distance. 

 
Fig. II - 13 : Simplified block-diagram of EFM electrical measurements showing signal extraction with the methods 

described above; for force detection: Ac and force gradient detection: ∆Ac, ∆Φc  and ∆f0.  

d) Options to extract electrical properties  
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A summary of possible electrical parameters extraction with force and force gradient measurements 

at DC and AC excitation modes is presented in Table II - 1.  

i. Capacitive response: In the framework of this thesis, we have been mostly interested in the 

measurement of the pure capacitive response of the system. Hence, as it can be seen from 

equations (II.26) and (II.30), the 2ω components are the only ones that reflect the capacitive 

response without VCP and qs effects. Nevertheless, in Chapter IV, we will present an 

alternative method that we have developed to extract accurate information on the 

capacitive response by using simple DC measurements. 

 

ii. Contact potential: The contact potential VCP is however commonly measured with KPFM that 

can be considered to be derived from EFM [12]. In KPFM, a low AC voltage, with ω near the 

cantilever resonance frequency, excites the cantilever in order to induce the vibration of the 

probe at ω and 2ω. Since F (ω) and G (ω) are both proportional to (V + VCP), feedback 

controls are used to change the applied DC-bias intensity so it nullifies the signal (either 

amplitude or phase) at ω. The magnitude of supplied bias is in principle a measure of VCP. 

Another method to measure VCP in DC and AC at ω with an open loop on the supplementary 

applied voltage is to obtain ∆f0 (V) curves. In the assumption of zero surface charge (qS = 0), 

the shift in the V axis from 0 V is equal to VCP according to (II.24, II.25) and (II.28, II.29). 

 

iii. Surface charges: Similarly to VCP, surface charges can be measured from the DC and ω 

component of the signal [34]. Charge measurement with KPFM requires however to properly 

model the capacitance in order to get accurate estimation of qs. In our past work, we have 

developed a method to extract surface charges from DC measurements without the need to 

model the capacitance [39]. This method has been used later to measure surface charge 

difference above nanocomposites at particles and polymer regions [52].  

 
Table II - 1 : Table of comparison of the information extracted with force vs. force gradient detection methods in DC and 

AC electrical excitation, R0 and  are tip apex radius and cone half-angle, respectively; and ε and h are respectively the 

sample dielectric constant and thickness. 

 Spatial resolution 

The research for resolution enhancement is one of the principle aims of AFM techniques. The 

resolution depends on the accuracy of the interaction area between the tip and the sample. Probe 

dimensions are of the utmost importance in determining the spatial resolution in most AFM variants. 

In the next paragraphs, we develop the main factors conditioning topography and EFM signal 

resolution. 

 Force detection Force gradient detection 

Component Information Component Information 

DC FDC C’(ε, h, R0, ), qS, 

VCP 

GDC C’’(ε, h, R0, ), qS, 

VCP 

 

AC 

Fω C’(ε, h, R0, ), qS, 

VCP 

Gω C’’(ε, h, R0, ), qS, 

VCP 

F2ω C’(ε,h) G2ω C’’(ε,h) 
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5.1. Topography resolution 

Topography images can be mainly influenced in intermittent contact measurements by profile 

broadening artifacts due to tip geometry. However, according to the relative dimension of the tip 

radius R0 in regard to the particle to be measured, some analytical equations can be used in an 

attempt to reconstruct the true geometry of the sample. Two common cases are discussed for a 

feature of particle curvature radius rp, and the resolution limit is subsequently extracted [53]: 

a) Tip radius R0 << particle radius rp: 

 
Fig. II - 14 : a. Schematic of the studied object and the AFM probe for R0 << rp, b. the resulting AFM image profile [53] . 

For this case analysis, the height of the object remains the same, but its radius is broadened from rp 

to rc. rc is related to the probe cone half-angle  as follows :  

 

 

(II.37)  

 

b) Tip radius R0 ≈ particule radius rp : 

 

  
Fig. II - 15 : a. Schematic of the studied object and the probe for R0 rp, b. the resulting AFM image profile [53]. 

When the tip apex radius is close to the one of the object, close particles appear with a relative 

change in their height from 2rp to Hc, in addition to their apparent radius rc. The probe is 

approximated to its apex, and elementary calculations result in the following relations: 

  

 

(II.38)  

 

 

(II.39)  

 

Moreover, when the distance between objects is less than particle diameter (∆x < 2R0), during 

scanning, the tip will only be able to penetrate between them up to the distance  and thus, 

particle height will be underestimated: 



Chapter II Introduction to Electrostatic Force Microscopy  
 

56 
 

 

 

(II.40)  

 

c) Optimum resolution:  

 
Fig. II - 16 : a. Schematic of the studied object and the probe, b. the resulting AFM image profile [53]. 

In general, the optimal resolution ∆Topo = ∆x is conditioned by the vertical resolution ΔZ, which is the 

minimum detectable z change within the instrument noise. For the case presented in Fig. II - 16 a., 

geometrical calculations lead to the following expression for ∆Topo:  

 
 

(II.41)  

 

Since the resolution must be a characteristic of the instrument independent of the scanned object, a 

point approximation of the particles (rp = 0) can be used to define the lateral resolution limit ∆Topo 

obtained for the two constants, tip curvature radius R0 and vertical resolution limit ΔZ: 

  (II.42)  

5.2. EFM resolution 

Similarly to topography resolution, EFM lateral resolution ∆EFM is conditioned by the effective radius 

of interaction Rint with the sample [54]. Since EFM measurements are usually performed out of 

contact with the sample, and due to the long range nature of these forces, the effective radius of 

interaction with the sample can quickly exceed the real physical radius of the tip [54]. An 

approximate expression for the effective tip radius in an EFM measurement over a metallic surface 

can be found in [36]: 

 
 

(II.43)  

 

Another generally agreed analytical expression for the spatial resolution at low tip-sample distances z 

(for z < 0.5 R0) writes [36, 55-57]: 

  (II.44)  

 

while b coefficient being larger in force measurements, compared to gradient measurement 

techniques ). 

 

 A simple method to understand the difference in force and force gradient resolutions is 

described in ref [36] : at close tip-sample separations, the electrostatic force is roughly approximated 

to that between a sphere of radius R0 and a plane (II.45), as well as to that between two disks of radii 

equal to the radius of interaction Rint (II.46). 
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(II.45)  

 
 

(II.46)  

 

From the equalization of these two force expressions, the disk interaction radius for force 

measurements becomes . In the same way, the equality for force 

gradient expressions gives . The lateral resolution is consequently enhanced 

in gradient detection mode.  

 With force gradient detection, sufficiently correct local electrical measurements are thereby 

obtained at intermediate working distances, suitable for ambient conditions. In general, since force 

gradients are proportional to the second derivative of the capacitance, and since tip-sides 

contributions are slowly varying functions with respect to z [58], at experimental working distances, 

their contribution becomes negligible. The advantage of force gradient measurements over force 

measurements have already been accepted by many authors [36, 59, 60]. This further supports our 

choice for force gradient measurements in this work. 

 Some attempts to improve the spatial resolution are to use highly sharp tips such as the 

grafting of carbon nanotubes at the end of the tip. These tips have shown improved spatial 

resolutions [61, 62]. However, although the apex and cone aperture have been highly reduced, the 

nanotube large length can be also problematic [59].  

 Electrostatically coupled regions can also affect the accuracy of measured surface contact 

potential in KPFM [36, 63, 64]. Nevertheless, high spatial resolutions have still been able to be 

reached with KPFM especially under vacuum [63, 65-69] and in air with different methods [70-73]. 

 In fact, in addition to tip geometry and working distance effects, the spatial resolution depends 

on the quality, precision and the nature of the used detection mode. Better sensitivities improve the 

resolution. The sensitivity in AFM will be detailed in the following paragraph.  

 As a conclusion, the main idea for enhancing the resolution is to favor the apex interaction 

compared to the cone and cantilever ones [59]. At low distances compared to tip radius, this is 

achievable for lower apex radii. However, although counter-intuitive, a bigger apex radius can 

enhance the resolution at higher distances as it increases the contribution of the end of the tip 

compared to its sides. Force gradient detection benefits from better spatial resolutions.  

 Sensitivity 

The sensitivity or the vertical resolution is primarily determined by the resolution of the piezo tube 

used for z displacements, of the order of a few angstroms. However, the sensitivity is strongly 

deteriorated by the system noise, which will condition the minimum detectable force and force 

gradient. The deflection noise density versus noise frequency f shows generally an 1/f dependence 

for low frequencies, and a constant white noise above the so-called 1/f corner frequency (fc) (see Fig. 

II - 17) [74]. Consequently, due to the 1/f dependence, static measurements are highly altered by the 

noise compared to dynamic AFM. In fact, for the latter case, measurements are performed around 

the resonance frequency of the cantilever f0. When f0 is higher than fc, a bandpass filter is sufficient 

to only integrate the white noise in the bandpass bandwidth. Among ambient noise sources, we 

enumerate three cases: 
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Fig. II - 17 : Schematic view of spectral noise density of AFM cantilever deflection in regard to the frequency [74]. 

6.1. Electronic noise 

Electronic noise, such as Johnson-Nyquist noise, is introduced by means of conditioning electronics 

(preamplifier, proportional and integral gains…) [34, 75]. It mostly appears at low frequencies, thus, 

altering considerably static AFM measurements. 

6.2. Optical detection system noise 

Optical noises can be classified into two categories [76]: 

a) Classical noise: like the laser fluctuation in intensity or beam direction. This noise can be 

reduced by a proper experimentation. 

b) Quantum noise: like photons shot noise at the detector and the back action of the light on 

the cantilever. Back light action, or the reflected light can be neglected because the force 

created by a 1 mW laser is of the order of pico Newton. However, shot noise is unavoidable. 

It is considered as white noise, and it depends on the optical beam deflection system. A 

typical value of the optical beam deflection system (OBD) precision is 100 fm  . 

A recent study of B. Potier and L. Bellon reported a method to decrease the instrumental noise of a 

casual OBD [75]. This method allows a “noiseless” thermal noise measurement of AFM cantilevers 

(see paragraph 6.3). The study of the thermal spectral vibrations is commonly used to calibrate the 

cantilever stiffness [77, 78]. 

6.3. Cantilever fluctuations: thermal noise 

The thermal noise is caused by the Brownian motion of the gas in which the probe is immersed (the 

air in our case), which induces random fluctuations of the cantilever. It is considered as a white noise 

and can play a potential limiting factor. 

 According to the equipartition principle, it is supposed that the energy stored in the cantilever, 

approximated by a spring, is on average equal to the thermal energy and thus [28]: 

 
 

(II.47)  

 

The fluctuation-dissipation theorem, which relates the response of equilibrium systems to small 

external perturbations and their response functions, is used to deduce the power spectral density 

S(ω) of cantilever fluctuations caused by thermal noise [79]: 

= f
c
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(II.48)  

 

The average fluctuation of the sensor η is calculated as: 

  (II.49)  

 

with B the bandwidth of the measurement. This expression is simplified according to whether one is 

working on or off-resonance: 

   On-resonance (II.50)  

   Off-resonance (II.51)  

 

The minimum detectable force and force gradients are those for which the amplitude of oscillation is 

equal to the average thermal fluctuation of the cantilever [11]. It follows that: 

  (II.52)  

 

At resonance, the amplitude derivative in regard to the frequency of excitation is calculated as [34]: 

 
 

(II.53)  

 

with Am the maximum amplitude of the oscillator. From relation (II.54), a small amplitude variation 

will be connected to the force gradient by the expression: 

 
 

(II.54)  

 

Hence, from the equalization of (II.54) and (II.50), the following expression of the minimum force 

gradient at resonance is deduced: 

 
 

(II.55)  

 

The thermal noise is consequently highly dependent on the tip stiffness, resonance frequency and 

quality factor in addition to the temperature and measurement bandwidth. Note that eq (II.55) is 

also valid for other vibration modes of the sensor. 

In the next chapter, a detailed study of EFM signal variation versus sample properties will be 

discussed. The rate at which the signal changes with a corresponding property conditions the 

sensitivity of EFM. We will show that, in addition to the above experimental limiting factors, EFM 

sensitivity and resolution depend interestingly on the material itself. 

 Recent advances  

As we have concluded in the first chapter, we can deduct from the literature an agreed dielectric 

model for a nanocomposite: it is made of nanoparticles surrounded by an interphase layer of 

different properties than the nanocomposite initial elements, such as its dielectric permittivity, with 
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the assembly embedded within a matrix. Thus, to have access to the interphase with SPM in general, 

and EFM in particular, several imaging problems raise including: 

a) Subsurface imaging, as the interphase is usually present below a matrix layer; 

b) Capability to distinguish the composition of multilayered materials, as the interphase is 

usually a subphase of three superposed materials: particle-interphase-matrix (this is a 

subcase of subsurface sensitivity); 

c) Both above criteria must be also possible for nanometric geometries in the three dimensions, 

as commonly used nanocomposites are nano-particulate filled. 

7.1. 3D nano-subsurface imaging 

In order to detect subsurface nano-features in a material, the AFM generated wave or field must be 

disturbed by the buried object with a relevantly measurable intensity. For this purpose, various 

advantageous interaction fields have been proposed. One approach uses AFM to detect ultrasonic 

waves scattered by subsurface features (ultrasonic-AFM) [80, 81], or nano-mechanical modulation of 

the surface contact stiffness due to buried objects (Contact Resonance-AFM or CR-AFM) [82-86]. 

However, ultrasonic exact imaging mechanism has not been fully understood yet [87, 88] and CR-

AFM can also present important topographic cross-talks [89]. 

 Electrically coupled SPM have shown to be able to gather information beneath the surface. In 

ref [90], three techniques have been investigated through the study of test samples specifically 

designed to verify their subsurface imaging capabilities. Authors show and discuss the aptitude of 

Scanning Microwave Microscopy (SMM) to image the capacitance of buried metal lines, KPFM to 

image the electric potential of buried metal lines, and EFM phase imaging to see buried interface 

surface roughness [90]. Metal lines under 2 micrometers of surface oxide could be resolved with 

SMM [91]. A phase difference has been measured between metal surfaces covered with 800 nm 

oxide thickness, compared to 2200 nm covering layer. 

 SMM has also been indicated to achieve nanoscale tomography of metals to detect defects 

[92]. More recently, [93] SMM has been reported to detect atomically thin regions of dopant atoms 

patterned on silicon substrate and placed below another silicon layer. Authors have been able to 

extract dopants concentration.  

 Concerning nanocomposites, scientists also tried different EFM derived methods to perform 

subsurface imaging of carbon nanotubes composites [94-98]. So far, they have found that the 

extraction of the 2ω component of the electrostatic force was the most robust one. 

 In ref [94], DC amplitude modulation-EFM (AM-EFM) with single pass scanning has been used 

to achieve high resolution, and penetration sensitivity going from 10 to 100 nm. The physical nature 

of EFM contrast in carbon-nanotubes filled composites has been attributed to Joule heating and not 

to local variations of effective dielectric constants.  

 E. Castaneda-Uribe et al. combined KPFM and AM-EFM force detection of the 2ω component 

[97]. This technique has reached penetration depths for Single Wall Carbon Nanotubes (SWCN) layer 

with increasing matrix coverage up to 450 nm. They have also used numerical simulations to 

estimate the depth of SWCN in a nanocomposite.  

 In ref [89], the authors addressed a comparative study between two key tools for subsurface 

imaging: KPFM and CR-AFM. A list of the advantages and limitations of each technique has been 

deduced for SWCN composites, in conjunction with numerical simulations for the underlying physical 

phenomena. 
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7.2. 3D nano-multilayered materials imaging 

A breakthrough work concerning nano-objects characterization with EFM has been published in 2012 

by L. Fumagalli et al. [46]. The authors utilized low stiffness cantilevers, and using the 2ω 

electrostatic force detection, sub-piconewton sensitivity was attainable. The dielectric constants of 

SiO2, PS and Al2O3 nanoparticles of close radii have been quantified with the conjunction of 

experiments to Comsol® numerical simulations. Furthermore, EFM has been able to distinguish 

nanoparticles with similar external shell and different inner composition. A discrimination of empty 

from DNA-containing virus capsids was possible, as well as an estimation of the filled-virus core 

dielectric constant (Fig. II - 18). Later, within the same research group, D. Esteban-Ferrer et al. 

quantified the effective dielectric constant of four types of single bacterial cells under dry and air 

conditions [49]. An increase in the dielectric constant under ambient humidity has been noticed. 

Another similar study of the dielectric permittivity of bacterial cells has been also addressed with 

SMM [99]. Moreover, in ref [99] M. Chiara Biagi et al. introduced topography “cross-talk” removal 

from electrical signals. 

 
Fig. II - 18 : Dielectric constant measurement and material identification of a. the bacteriophage T7 virus and d. capsid ; b. 

and e. measured topography, and c. and f. dielectric images at constant height of the bacteriophage T7 and its capsid 

(scan height 49 nm and 36 ± 0.5 nm, respectively) taken on graphite substrates in air, c. f. phase images show that the 

icosahedral shape and coat-protein pattern of the shell are preserved, and g. matching the maximum dielectric signals 

(symbols) with calculations using a homogeneous oblate-spheroid model gives the effective dielectric constants 6.3 ± 

0.17 and 3.65 ± 0.15 [46].  

7.3. Interphase investigation 

J. Seiler and J. Kindersberger tried a radius comparison method with EFM to show the existence of an 

interphase around SiO2 nanofilled composites [100]. Authors measured the EFM average radius of 

the nanoparticles before and after embedding them into the polymer matrix, and used a topography 

deconvolution equation from [101] in the aim of deconvoluting tip geometry effect out of EFM 

images. Before mixing with the polymer, electrical measurements were obtained with biased 

cantilever-to-stage system at - 5 V. However, after insertion into the matrix, particle size has been 

obtained from EFM images at 0 V. An increased particle radius has been obtained, which was 

explained by the interphase presence around the particle. 

Despite the qualitative confirmation of interphase thickness calculations with authors previous work 

on the same samples [102], care must be taken to interpret those results. Comparisons have been 

addressed at different measurements conditions (VDC  = - 5 and 0 V), thus, at different origins of EFM 

response. Moreover, the highly probable presence of a matrix layer over the particles in the 

nanocomposite has been ignored. The matrix above the nanoparticles can obviously broaden 

particles apparent size and explain obtained results. Furthermore, topographic tip deconvolution 

application on EFM measurements is supposed to be insufficiently appropriate [54]. 

(a) 
(c) 

(d) (e) (f) 

(b) (g) 
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 Later in ref [52], based on the method introduced in ref [39] to measure model free surface 

charges, the authors studied the existence of surface charges on particles in a nanocomposite. 

J. Deschler et al. hypothesized the presence of an electric double layer around the particles, at the 

interfacial region. Here also, any presence of matrix layer above the particles has been neglected. 

 In similar perspectives, a recently developed EFM technique, the intermodulation EFM 

(ImEFM) [103] has been reported to probe the injection and extraction of charges around individual 

surface modified aluminum oxide nanoparticles embedded in a low-density polyethylene matrix 

[104]. Localized energy states close to the conduction band have been reported to exist in the vicinity 

of the nanoparticles. 

 Another interesting paper, published at the end of 2016, used EFM to show the presence of 

the interphase in low density polyethylene nanocomposite with titanium dioxide nanoparticles of 50 

nm radius [105]. Authors studied thin sectioned parts of the bulk composite. Through the extraction 

of the 2ω-phase shift EFM component, three areas of different composition have been distinguished: 

the matrix alone, a particle exposed at the surface of the sample and matrix bump due to the 

nanoparticle underneath the surface. After the interpretation of phase shifts values at these regions, 

and through the corroboration with numerical simulations, authors declare an interphase around the 

nanoparticles. The signal at the bump position could not be explained through simulations unless an 

interfacial layer of lower permittivity than the bulk polymer is present. Typical dielectric permittivity 

and thickness of the interphase have been found to be 1.6 and 20 nm, respectively.  

 
Fig. II - 19 : The results of local dielectric property detection: a. topography image, and b. |  signals amplified 

by the LIA. c. and d. present the local finite models corresponding to two cases with interface: “bump” and “exposed 

bump” [105]. 

  

(a) (b) 

(c) 

(d) 
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 Conclusion 

In this second chapter, AFM basic working principles have been defined. An overview of electrical 

AFM methods has been reviewed briefly to get to the introduction of the main technique of interest 

of this thesis, Electrostatic Force Microscopy (EFM). As a general definition, an EFM tip-sample-stage 

system is similar to a capacitor: the tip and sample holder being both metallic, with the possibility to 

be electrically biased. The EFM sensor detects the electrostatic forces between capacitive charges, 

local static charges with their image charge on the tip and charges caused by differences in work 

functions. In this work, the double-pass method has been used with oscillating probe, where 

topography is acquired on a first scan and EFM measurements during the second one. For the second 

pass, the tip is retracted to a larger separation from the surface and retraces the corresponding 

topography.  

 The polarization of the system with DC and AC voltages at an electrical frequency ω induces 

three spectral components for both the electrostatic force and force gradients: DC, ω and 2ω. Each 

component depends differently on the electrical properties of the system such as the capacitance, 

surface charges, and contact potential. Consequently, to extract and monitor each part of the signal 

of interest separately, making use of lock-in amplifiers, and eventually feedback loops, leads to the 

ingenious extraction of the property of interest. In our work, we have been mainly interested by the 

extraction of the pure capacitive response. The latter can be directly measured from the 2ω 

component or in the DC one with a special experimental protocol that will be exposed in Chapter IV. 

Furthermore, EFM experiments can be carried out either in force, or force gradient detection 

methods. The main difference in the obtained physical properties is the capacitance derivative: the 

former method is proportional to the first capacitance derivative, and the latter method to its second 

derivative. This explains the increased spatial resolution of force gradient EFM mode compared to 

force mode. 

 The tip-sample interaction is approximated in the simplest way by a point-mass spring. Once 

subjected to a sinusoidal excitation, such as the driving oscillation used in dynamic mode, the 

resulting motion of the probe is similar to a harmonic oscillator. In the linear approximation, the 

additional electrostatic interaction force gradients change the effective resonance frequency of the 

sensor. Force and force gradients can thereby be extracted in several ways. Forces are measured 

with the mechanical excitation turned off, from the cantilever amplitude of vibration generated by 

the electrical stimulus. However, force gradients are conventionally only measured in dynamic mode. 

The response to mechanical drive oscillation is altered by electrostatic gradients. The latter are 

measured by cantilever amplitude, phase or frequency shifts detection. In the framework of this 

thesis, we measured the frequency shifts: 1) directly, by regulating the drive frequency to nullify the 

phase signal, or 2) indirectly, by converting detected phase shifts to frequency shifts. This choice has 

been made owing to the widely renowned benefits of force gradient measurement, in addition to the 

accuracy of phase and frequency signals to amplitude extraction. 

 Concerning the limits of the technique, a discussion on spatial and vertical resolutions has 

been reported. The main determining factors for the spatial resolution are the tip geometry and 

working distance, and for the sensitivity, are optical shot noise and thermal noise, also dependent on 

the sensor stiffness, quality factor, resonance frequency, vibration mode etc. The resolution and the 

sensitivity are also influenced by the sample itself as it will be detailed in the following chapter. 

 Afterwards, a state of the art on the advances either directly or indirectly related to the 

interphase detection in nanocomposites has been reviewed. Subsurface imaging and 3D-multilayered 

structures study have achieved some advances for specific type of materials. However, the precise 
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characterization of the interphase in nanocomposites, although attempted by a few scientists, has 

not been fully established yet. Either EFM measurements analysis or comparisons were not 

sufficiently addressed in an accurate way, or nanoscale measurements have not been correlated to 

macroscopic ones to show consistency with SPM results. Nonetheless, one common point found in 

all previous works with electrical AFM methods, and EFM in particular, can be highlighted: the exact 

source of the measured signal is not totally identified, thus, the measurement of complex materials 

stays a big challenge. The following questions naturally arise: what are the main factors influencing 

EFM signal intensity, width, shape, variation? What are the capabilities of EFM? 

In order to investigate the physics of an EFM measurement, simulations over each specific type of 

complex material must be addressed, in addition to the calibration with test samples of known 

properties. Both theoretical studies and well-defined structured test samples will help understanding 

the operation and limitations of EFM. In this thesis, we have adopted these steps in order to 

investigate EFM capabilities to study interphases in nanodielectrics. Our results, presented and 

discussed later, are also applicable on heterogeneous multilayered nano-materials with similar 

configurations as nanodielectrics. 
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“Beware of false knowledge; it is more dangerous than ignorance.” 
George Bernard Shaw 

 Introduction 

This chapter aims at discussing the interaction between an EFM probe and different types of 

dielectric samples, to be finally applied to the specific case of a nanodielectric material. For each class 

of sample geometry and composition, we start by presenting the corresponding state of the art 

associated to our own numerical simulations performed with Comsol® Multiphysics software. The 

model adopted in the thesis for a nanodielectric within the frame of an EFM measurement is first 

presented, followed by a detailed description of our numerical model. Then, the influence on the 

signal of the probe geometry and scanning parameters without a dielectric sample is reviewed and 

simulated. Afterwards, we investigate the effect of several sample configurations whose constitution 

represents potentially that of existent materials in nanoscience. Later, in the section of tip-

nanodielectric interaction modeling, an existing analytical model that assumes no restrictions of EFM 

spatial resolution is firstly adapted to our system. Secondly, this interaction is modeled in a more 

realistic way through numerical simulations, so we try to understand how to attest the presence of 

the interphase with EFM and discuss the benefits and limitations of this technique. 

 Tip-sample interaction: numerical modeling description  

The interpretation and quantification of the interaction between an EFM probe and a sample has 

been the subject of several research works since the first implementation of EFM [1]. The accurate 

analysis of the microscope electrical signals is not obvious since electrostatic signals are long range 

forces, not always confined to the supposed-to-be probed region. EFM response strongly depends on 

the shape and dimensions of the probe and the sample, as well as the intrinsic properties of the 

sample. The probe geometry is complex and specimen dimensions can vary from few nanometers up 

to hundreds of micrometers, and can sometimes contain differently shaped heterogeneities of 

various electrical nature. Therefore, one must resort to adequate models in order to explain EFM 

results. 

 Since a few decades, many models have been proposed. Those models covered principally the 

EFM tip interaction with the metal electrode, with a planar homogeneous thin and thick dielectric 

film and with punctual charges. However, we can rarely find appropriate models for more 

complicated samples such as superposed dielectric materials, nanoparticles… and to our knowledge, 

no detailed simulations for EFM signal above a nanodielectric material presenting an interphase.      

 Hereafter, the adopted model of a nanodielectric material and the numerical model definition 

are presented. 

2.1. Adopted electrostatic model of a nanodielectric 

In the first chapter, we saw that in the literature the composition dependence of the real dielectric 

permittivity of nanodielectrics has revealed at low nanofiller concentrations lower values than filler 

as well as matrix permittivities [2-4]. This macroscopic behavior has been explained by the need to 

reconsider the presence of the interphase, occupying a considerable volume in nanocomposites and 

exhibiting a dielectric permittivity lower than both filler and matrix. Moreover, it has been indicated 

that water absorption at the interfacial particle-matrix region is commonly reported [5, 6]. Water 

molecules within the interphase rise its effective dielectric constant showing the possibility of 
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obtaining a high interphase permittivity. Moreover, concerning interphase thickness, the latter has 

been reported to vary from few nanometers [7, 8], up to 200 nm [9].  

 In our work, we are mainly interested in the characterization of the interphase with EFM. The 

latter is an electrostatic force detector, which depends on the first or second derivative (with respect 

to the distance) of the probe-sample capacitance. Consequently, EFM signal is altered by sample 

dimensions and dielectric permittivity. 

 Accordingly, we model a nanodielectric as an association of three dielectric materials 

distinguished and characterized by their dielectric permittivity, geometry and dimensions. The first 

one is the nanoparticle with a spherical shape; the second one is the interphase surrounding the 

particle and the third one is the matrix containing both, the particle and the interphase. In Fig. III - 1, 

a transverse sketch of one studied region of the nanodielectric model is presented, where εp, εi and 

εm are the relative dielectric constants of the particle, interphase and matrix, respectively. rp, ti and h 

are respectively the particle radius, interphase thickness and matrix height. The particle is buried at a 

certain depth d, from the matrix upper and lower surfaces. 

 
Fig. III - 1 : Adopted model of a nanodielectric measured with an electrostatic force microscope: particle-shell-matrix 

association represented as three dielectric materials distinguished by their dielectric constants, geometries, dimensions 

and disposition. 

2.2. EFM probe model 

As it has been shown in the above paragraph, our sample geometry and structure are relatively 

complicated. To date, no analytical model can describe the interaction between an EFM tip and a 

similar type of material. In the next sections, the present analytical models will be reviewed in details 

and their limits analyzed. Moreover, not all numerical methods can be adapted to simulate our 

system [10]. One appropriate numerical solution is the finite-element method to simulate EFM 

signals accounting for the exact geometry of the tip and the sample. In this thesis, Comsol® 

Multiphysics software has been used to study the interaction between an AFM conductive probe and 

different types of dielectric samples.  

 The interacting system is mainly composed by the force detector represented by the EFM 

probe, and the sample which is placed on a conductive planar counter-electrode. In the present 

chapter, we modeled the tip according to the geometry of standard EFM tips, namely, as a solid 

truncated cone of height H = 10 µm and half-angle = 10 º with a spherical apex at its end, of radius 

R0 = 25 nm [11]. Within our modeling conditions, the truncated cone-plane geometry includes all the 

components of the probe that effectively contribute to the electrostatic interaction with the sample. 

In fact, this geometry has proved accurate quantification of the dielectric constant of both ultrathin 

(< 10 - 50 nm) [12-14] and intermediate thick dielectric films (< 10 µm) [15], corresponding to the 

range of thicknesses studied in the thesis (≤ 1 µm).  We placed the tip at a commonly used EFM 
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working distance z = 20 nm from the top of the sample, which is deposited on a metallic substrate. 

Note that our experimental EFM measurements have been performed in the force gradient detection 

mode, which further localizes the interaction to the nanometric parts of the probe [16, 17]. A more 

detailed explanation of the localization of the electrostatic force interaction and probe modeling 

range of validity will be explained in more details in the following sections.   

 The substrate was modeled as a disk of 20 µm diameter, which allows taking into account 

finite-size lateral effects. In fact, as discussed in ref [18], for a tip of 10 µm cone height and samples 

of 1 µm maximum thickness, 20 µm disk is sufficient to neglect substrate borders effects (see figure 3 

(b) of ref [18]).  

 
Fig. III - 2 : Electric potential map resulting from the EFM modeled tip during simulations above a model nanodielectric. 

 We modeled the air in the EFM enclosure as an empty space of relative permittivity εr = 1. For 

2D axisymmetric calculations, spherical geometry coordinates and a spherical shape for the 

simulation box were chosen. The box was divided into two spherical regions to model the infinite 

extension of the space surrounding the probe-sample system: the inner region of 30 µm radius and 

the outer one of 32 µm radius. We applied the built-in infinite elements transformations to the outer 

region in order to avoid box geometry and dimensions influence. An automated extremely fine 

physics-controlled meshing was used to the whole simulation box. Meshing domains have the form 

of free triangles in 2D (and free tetrahedrals in 3D), with a minimum size of 1.28 nm and maximum 

size of 640 nm. We verified that, within these conditions of simulation box extension and resulting 

mesh size and form, our results are sufficiently correct (< 5 % variation with larger boxes and/or 

smaller mesh size). For 2D calculations, keeping the same model dimensions, square boxes were 

defined for computation region and cylindrical coordinates were used. Infinite elements 

transformations were not applied for 2D simulations. However, the negligible influence of border 

effects was also verified (< 10 % variation with larger boxes). 

2.3. AC-DC electrostatics physics interface  

The problem consists in determining the electrostatic interaction between the EFM sensor and the 

metallic substrate, with or without the presence of a specific dielectric sample. During conventional 

EFM measurements, electrostatic force detection, and/or force gradient detection can be analyzed. 

In this chapter, we calculated the electrostatic force as a basic theoretical study of EFM signals. 

Moreover, the used software provides direct force measurements; whereas, to study the force 

gradient, we have adopted an additional procedure, detailed in the Chapter V of the thesis.  
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To model the force acting on an EFM probe, the AC-DC module (Electrostatics physics interface) of 

Comsol® Multiphysics software was used. This finite-element method based software solves the 

Poisson’s equation for the tip-sample system (III.1), maps the electrostatic potential V (r, z) 

distribution, and then calculates the Maxwell stress tensor (III.2). The integration of the Maxwell 

stress tensor around the tip surface gives the resulting electrostatic force at each position of the 

scan-line (III.3). To shift from 2D calculations to 3D ones, the system includes the perimeter 2πx 

factor in (III.3) where r is the distance from the 2D probe surface to the axis of symmetry.  

The domain equations used in the Electrostatics-Physics interface are detailed in the following: 

The electric scalar potential, V, satisfies the space charge free Poisson’s equation (Laplace equation): 

  (III.1)  

 

where D = ɛ0ɛrE, is the electric displacement vector and E = , is the electric field vector (see 

Chapter 1). We remind that bold symbols represent vector quantities.  

The Maxwell stress tensor TM appropriate to our problem is expressed by: 

 
 

(III.2)  

 

The resulting electrostatic force F reads: 

 
 

(III.3)  

 

 

As introduced in Chapter I, the continuity conditions at the sample material interfaces (material 1: D1 

- material 2: D2) and interior simulation box boundaries can be expressed by: 

  (III.4)  

 

The space charge density in the system has been considered to be negligible, which explains the zero 

in the right hand side of eq (III.1). 

System external boundaries, applied on external box edges, have been set to insulators by: 

  (III.5)  

 

Note that these conditions are ensured by the natural boundary conditions of the program. 

 When measuring the force at the top of particle-interphase assembly, our system is 

axisymmetric. We calculated then the system in 2D axisymmetric dimensions, which is faster and 

more accurate than 3D calculations that are performed within a reasonable time of computation. 

Moreover, when the tip is placed over the matrix alone, relatively far from the particle as well as film 

boundaries, we verified that the tip is not influenced by the particle. The system is thus similar to an 

EFM tip over the matrix without the inclusion. In this case, our measurements have been performed 

in axisymmetric dimensions as well. However, for the calculations of the force on a scan line, 2D 

geometry was used. 

The probe was biased, whereas the substrate was grounded. We fixed the potential to 5 V 

and 0 V respectively on the tip and the substrate boundaries for 2D axisymmetric calculations, and 

on their surface for 2D ones.
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Since during EFM experiments the probe is only driven to oscillate in the z direction, the z 

component of the electrostatic force F has been studied, similarly to previous EFM models [19]. 

Although an eventual Guy-Chapman layer might be present on material interfaces, and 

thereby in the interphase, we did not consider it during our simulations. In fact, a region with free 

charges presents a conductive behavior, which can be seen with EFM as a region of higher dielectric 

constant [20]. Moreover, as described in Chapter II, if AC-EFM measurements are used, the detection 

of the 2ω component allows the unique sensitivity to the intrinsic capacitance of the system without 

the influence of surface space charges. For a study focusing on the distinction of materials through 

their intrinsic dielectric constant, our hypothesis of zero space charge can be considered sufficiently 

valid.  

 In the following paragraphs, a detailed state of the art of the models used in literature to 

understand the interaction between an EFM probe and different types of samples will be discussed. 

In parallel, the results of our simulations will be presented, extending past models and studying 

missing sample configurations of the literature. Afterwards, the results for the specific case of EFM 

tip interacting with a nanodielectric material will be reported. 

 Tip-Metallic substrate 

3.1. State of the art  

The electrostatic force acting on an AFM conductive probe above a bare metallic substrate has been 

widely studied in the past. Many methods, mainly divided into sets of analytical and numerical 

models, have been established. 

 Concerning analytical models, the earliest model goes to Y. Martin et al. with their first paper 

on the possibility of electrostatic force measurements with AFM [1]. Authors assumed a geometrical 

approximation to the probe considering it as a plane electrode, and the system as a plane-plane 

capacitor. Hence, approximating the capacitance of the system, a theoretical estimation of the force 

has been derived. Similarly, other approximations followed such as the sphere-plane models whose 

expressions depend on the separation distance range (table Fig. III - 3). Another analytical model is 

the conical-sphere ended tip-plane where authors added the contribution from the cone [21]. The 

latter has been expected to play an important role at larger distances than those considered in the 

sphere-plane models. H. W. Hao et al. derived the expression for the total interaction force by 

replacing the equipotential lines around the tip, with their equivalent image charges. At small angles, 

authors replaced the cone by a line of charge and the apex of the tip by an extra charge at the end of 

the line. 

 In the Knife-edge model, the tip geometry has been considered as an infinite plane in the z axis 

with a similar width to that of the counter-electrode [22]. The resulting expression of the force does 

not include the value of the width due to the translation symmetry of the problem. 

 Later, an exact three dimensional solution for the potential between two hyperboloid 

electrodes surfaces in the presence of a free charge has been derived [23]. Authors modeled the 

system in the prolate-spheroidal coordinates to extract the corresponding electric field. The force 

could be obtained by the integration of the electrostatic pressure exerted on the plane facing the tip. 

The interaction force has also been calculated as the one derived from a single point charge that 

produces equipotential lines similar to those produced by a sphere electrode [24]. This model is valid 

when the distance between the single charge and the sample surface is much larger than the radius 
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of the sphere. Nevertheless, the hyperboloid model can be also verified for lower distances if the 

equivalent charge is placed at an appropriate separation to result in a curvature of the first 

equipotential line, touching the surface. 

 Afterwards, S. Hudlet et al. modeled the electric field between an axially symmetric concave 

tip and a plane electrode [19]. The tip surface was approximated by a superposition of infinitesimal 

surfaces obtained by faceting. The electric field between each part and the plane electrode was 

approximated to the one obtained for a dihedral capacitor with the same relative orientation 

between its facets to that of between the tip and the sample. The infinitesimal surface charge 

density was thus obtained, from which the capacitance was then calculated since the tip and the 

electrode are in close influence. The total force could thereby be derived. Although the 

approximation for the electric field source is significant, this model revealed little errors compared to 

previous ones. The main advantage of S. Hudlet et al. model is its possible application for any 

working distance with an axisymmetric tip. A brief summary of the analytical expressions of 

described models is presented in Fig. III - 3. 

 
Fig. III - 3 : Representation of usual geometries for the EFM tip with a review on analytical models expressions [25]. 

 Another set of models can be mentioned which are based on the Image Method (IM) [26]. In 

ref [27], authors called this method the Image Charge Method (ICM) that has been extended later to 

the Generalized Image Charge Method (GICM) [10], and finally known as the Equivalent Charge 

Method (ECM) [28-30]. This set of numerical models is based on replacing the electrodes (surface 

charge density) and the sample, by a series of punctual charges and/or linear charges as “image” 

charges, in the tip. The latter are adjusted in order to recreate the desired potential at the surface 

boundaries that restores the same shape of the tip. S. Belaidi et al. used ECM to verify the validity of 

several analytical models, derived the constants in the models, suggested some empirical laws of 

different range of validity, and extended the simulations for the study of EFM tip interaction with the 

presence of surface charges and potential steps [28]. Later, the self-consistent method incorporated 

the technique of Green’s function and ICM in order to evaluate the interaction with the tip at 

different z distance, cubic sample size, permittivity etc [31]. 
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 Recently, finite-difference methods [32] and finite-element methods [12, 18, 33] have been 

extensively used to model EFM probe-sample interaction. The main advantage of these models is 

their ability to take into account the exact geometries of the probe and the sample. However, this 

type of numerical modeling still requires high computation capabilities due to the large dimension 

differences between the probe parts and the sample, from micrometric to nanometric ones. This 

explains the reason why authors usually keep on performing some approximations of the system 

symmetry and probe geometry during such simulations. 

3.2. Modeling results 

 
Fig. III - 4 : 2D-axisymmetric electrostatic force vs. tip-sample distance for, a. different tip radii with a cone height H = 10 

µm, b. different cone half-angles with H = 10 µm and R0 = 25 nm, c. different cone heights with a tip radius R0 = 25nm. 

The first step to understand the interaction with an EFM tip is to study the effect of probe geometry 

without a sample. In order to verify the validity of our model with previous literature results, we 

present in Fig. III - 4 the electrostatic force between an EFM tip and a bare metallic substrate versus 

tip-sample distance z for various tip apex radii (a), cone half-angle (b) and cone height (c). As 

expected, we find that the force is a decreasing function of the distance that tends to saturate at 

large z. Moreover, a larger tip radius, cone half-angle or cone height, enhances the signal. This is 

explained by the larger interaction surface obtained with bigger tips. Furthermore, we investigate the 

effect of tip parameters on the sensitivity to z [1]. When the radius of the tip-apex is doubled, 

changing from 25 nm to 50 nm, the difference between the force obtained at a tip-sample distance 

of 5 nm and the one obtained at 200 nm, increases from 3.19 nN to 6.42nN, respectively. Similarly, 

when the tip cone half-angle varies from 10 ° to 20 °,!the difference between the force obtained at 5 

nm and the one obtained at 200 nm, rises from 3.19 nN to 3.49 nN, respectively. However, an 

enlargement of cone height from 1 µm to 5 µm induces force differences from 3.18 nN to 3.2 nN. 

Hence, a 100 % increase of tip radius modifies the sensitivity to z by almost the same amount, and a 
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100% increase of cone half-angle changes the sensitivity by 9 %. However, 10 times taller tips do not 

modify the sensitivity by more than 0.6 %. This shows the sensitivity level in this range of distances to 

the tip apex, in terms of tip radius and cone opening. Taking into account these simulations, in this 

range of parameters, a fixed cone height to 10 µm is justified.   

 Tip-Dielectric sample 

4.1. One homogeneous film 

 

In the above section, we reviewed and evaluated the effect of the distance between the EFM probe 

and the metallic substrate for various tip dimensions. Since no dielectric layer is present, tip-sample 

distance is equivalent to the tip and counter-electrode separation, simplifying the problem. However, 

when a dielectric film is present, the origin of the interaction becomes a little more complex. 

Nevertheless, EFM tip-dielectric film interaction has also been studied in literature. A precise 

modeling of this interaction is essential in order to quantify the dielectric permittivity and the 

thickness of the film. 

 Using nanoscale capacitance microscopy (NCM) [34], I. Casuso et al. measured electrically the 

thickness of a 5 nm biological layer (purple membranes) [35]. The quantification of the thickness has 

been estimated using the expression of the electrostatic force derived by G. M. Sacha et al., to get 

the capacitance gradient of the tip in close proximity to a thin dielectric layer [10]. The obtained 

expression only takes into account the tip apex contribution (eq. (III.6). At relatively small distances, 

the electrostatic interaction over thin films has been reported to be concentrated on the tip apex. 

 
 

(III.6)  

 

 L. Fumagalli et al. used this analytical expression (eq (III.6)) combined to NCM measurements 

to extract the permittivity of thin SiO2 patches [14].  

 Subsequently, G. Gomila et al. reported a theoretical assessment of the origin and range of 

applicability of eq (III.6) [12]. After confronting the analytical model to numerical simulations, they 

found that this expression relevantly expresses the interaction with a thin sample (< 100 nm) of 

relative dielectric permittivity below 100, an apex radius between 30 and 200 nm, a cone half-angle 

between 10 º and 45 º and a tip-sample distance z range going from contact to 100 nm. 

 
Fig. III - 5 : Schematic representation of: a. nanoscale capacitance measurement and b. the tip-sample system as modeled 

in the numerical calculations [12]. 
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 Later in ref [18], G. Gomila et al. extended their analytical model for ultrathin-films (< 20 – 

50 nm) to a broader range of applicability by adding to eq (III.6) the contribution of the cone. The 

latter cannot be neglected for R0 < 50 nm, and z + h/ɛr  < 100 nm. Hence, generalizing the expressions 

for probe-metal interaction [19], authors derived the expression for tip-cone capacitance gradient: 

 

 

 

(III.7)  

The total capacitance gradient becomes equal to the sum of both apex and cone contributions: 

  (III.8)  

 

 Earlier in ref [10], Sacha et al. compared the force acting on an EFM probe in the presence of a 

thin film (h ≈ 0.5 R0) calculated with GICM, to that derived from the generalization of the force for 

tip-metallic substrate introduced by S. Hudlet et al. [19]. A good agreement between the analytical 

model and GICM forces was obtained. In other works [30, 36], C. Riedel et al. quantified the dielectric 

constant of unmixable polymer blend of polyvinyl acetate particles in a polystyrene matrix. The 

authors performed experimental measurements with DC-force gradient detection in lift-mode. The 

obtained results were correlated to an ECM model for a truncated cone tip facing a dielectric film in 

order to extract the best fit for polymers permittivity. 

 Thus, we remark that thin films dielectric characterization has been commonly demonstrated 

assisted by analytical models, as well as numerical simulations, within an appropriate range of 

measurement setup and parameters. However, quantitative measurements of thick films have been 

much less reported. For thick films, quantifying the dielectric permittivity becomes more difficult 

since the signal-to-noise ratio decreases and the micrometric parts of the tip actively influence the 

electrostatic interaction [37]. A precise modeling of the probe has to be done.    

 In ref [15], L. Fumagalli et al. performed AC force measurements (F2ω) correlated to numerical 

simulations in order to extract the dielectric constant of thick polymer films. The tip was modeled as 

a solid truncated cone with a spherical apex. The geometry was introduced with caution, using SEM 

results for cone height, and approach curves fit with simulations to calibrate tip radius and cone half- 

angle. Moreover, beyond 100 µm thick films, the signal loses sensitivity to film thickness, which was 

deduced to simplify the simulations for the extraction of thick films permittivity.  

 Later, G. Gramse et al. discussed the influence of the specific geometry of the probe on the 

signal over thick films [37]. They introduced the cantilever contribution by a disk at the top of the 

cone as presented in Fig. III - 6. The disk contribution decreases when increasing cone height. 

However, in all cases, the effective radius of the cantilever disk was found to be much smaller than 

the effective physical cantilever width. Moreover, authors showed the possibility of dielectric 

permittivity measurement of any thick film without the knowledge of the microscopic tip dimensions 

if a preliminary calibration step is performed on a reference material of known permittivity. 
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Fig. III - 6 :  Schematic representation of 2D dimensional finite-element numerical modeling of the probe-thick insulator 

system [37]. Cantilever effects are presented by a disk over the cone.  

 Recently, L. A. Miccio et al. considered all the parts of the probe in the total force during 

nanodielectric spectroscopy measurements for thin and thick films [38]. The effective capacitance 

between the probe and the lower electrode was defined by the addition of the cantilever, cone and 

apex capacitances (Fig. III - 7). The electrical interaction between the electrodes was modeled by 

using the equivalent circuit shown in Fig. III - 7, where capacitors 1 and 2 represent the cantilever-air 

and cantilever-polymer systems; capacitors 3 and 4 for the cone-air and cone-polymer systems; and 

capacitor 5 for the apex-polymer system. The corresponding analytical expressions can be found in 

the main publication [38].  

 
Fig. III - 7 : Geometry of the cantilever-cone-apex/sample system for AFM based dielectric spectroscopy: a. general 

scheme; b. zoom of the cone; c. projected cone area and d. equivalent circuit model in nanodielectric spectroscopy [38]. 

 

 
Fig. III - 8 : Sketch of EFM modeled tip facing a homogeneous dielectric film. Note that all thesis descriptive sketches are 

not to scale.  



Chapter III Theoretical and modeling approach  
 

83 
 

 
Fig. III - 9 : Electrostatic force acting on the tip in the z direction, over a homogeneous dielectric film, a. vs. film dielectric 

permittivity for three different thicknesses, b. vs. film thickness for 3 different permittivities.  

Now, the addition of a homogeneous thin dielectric film on the metallic substrate is considered in 

our simulations as shown in Fig. III - 8. The curves of Fig. III - 9a. present the calculated variation of 

the electrostatic force with the permittivity of the film for three thicknesses: 10 nm, 100 nm and 1 

µm. The capacitive force increases with the dielectric permittivity of the homogeneous film [14, 30, 

33]. The slope of the curve becomes steeper, and hence, the sensitivity to the dielectric constant 

decreases at high permittivities and at low film thicknesses. Similarly, we study in Fig. III - 9b., the 

variation of the force with the film thickness for three dielectric constants: 4, 10 and 50. The 

interaction is found to decrease with the film thickness, and the variation becomes less pronounced 

at high thicknesses [15, 37]. Lower dielectric permittivity films decrease the slope of the curve and 

consequently, enhance the sensitivity to the film thickness. 

 From these results, we can deduce that depending on the researched film information, certain 

material properties might be preferred. For example, if we are interested in the detectability of a 

dielectric film on a metallic substrate (e.g.: oxide layer developed on a metallic substrate), the 

highest possible permittivity of the film and the lowest thickness are more convenient. However, if 

we are interested in the distinction of the material dielectric permittivity, less polarizable materials 

and thicker films are preferred. Moreover, the distinction of the film thickness is more likely for films 

with low permittivity and thickness. 

4.2. Two homogeneous superposed films 

As we have reviewed in the above paragraph, a great amount of data can be found for laterally 

infinite homogeneous films studied with EFM, either theoretically or experimentally. However, there 

is a lack of works dealing with multilayered films and the influence of their relative properties on the 

global signal.  

 

E. Castellano-Hernandez and G. M. Sacha studied with the artificial neural network algorithm, the 

interaction between an EFM probe and a thin film over a semi-infinite dielectric substrate [39]. The 

direct application of such a system has concerned single and few layer graphene (FLG) placed on 

insulator substrates for planar device architectures applications. Authors replaced the thin film and 

the substrate with one semi-infinite dielectric film of an equivalent effective permittivity εeff. 

Studying a certain range of permittivities and thicknesses, namely, for thin films permittivities ε1 

higher than the dielectric substrate ε2, they deduced an analytical expression for εeff: 
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(III.9)  

 

where k is a constant depending on the tip geometry, h is the film thickness, and A is equal to 3/2 for 

all analyzed geometries. The authors showed that the extremely high dielectric permittivity of ultra-

thin films becomes distinguishable, provided that a substrate of lower permittivity is present under 

the film. This result has been explained by the small thickness of the film that allows the electric field 

to penetrate inside the substrate. It must be noted that this result has been obtained for the specific 

case of thin permittivity ε1 much bigger than substrate permittivity ε2. 

 Later in ref [40], authors presented numerical calculations with GICM for an insulating film 

over a dielectric substrate placed on a metallic electrode, similarly to ref [39]. This configuration is 

equivalent to the study of two superposed films. Authors fixed the upper thin film dielectric 

permittivity ε1 to 20 and measured the force and the force gradient sensed by the tip for substrate 

permittivities ε2 below 20 and possessing several thicknesses. The sensitivity of the signal to changes 

in the dielectric constant of the upper thin film has been also investigated. In conclusion, they found 

within their range of studied dielectric constants, that F and G absolute values rise with both ε2 and 

h1. Moreover, the sensitivity to ε1 was reported to decrease with ε2 for any h1, and to increase with 

h1, far from certain limits: very low ε2 and very high h1.  

 
Fig. III - 10 : Equipotential distribution between an EFM tip and a three layered sample in air: thin film, dielectric 

substrate and grounded metallic plate [40]. 

 In a subsequent work, W. Castellano-Hernandez and G. M. Sacha considered indirectly the 

effect of two superposed films on the signal [20]. The authors investigated the case of a non-perfect 

dielectric film with finite conductivity. This study concerns the characterization of thin films in 

ambient air where water molecules adsorption and condensation creates ad-ions within the 

insulating sample and hence, change its surface conductivity. The finite conductivity is also 

encountered in the case of a thin conductive film containing no enough free charges to compensate 

the external electric field. A change in the sample conductivity is also expected at regions with 

surface defects implying the presence of surface charges. The sample conductivity has been included 

through a linearized Thomas-Fermi (Debby-Huckel) approximation. In the presence of electrical 

conductivity, the tip-sample interaction was derived with GICM. The system was approximated by a 

superposition of a thin film with a thickness equal to the screening length and a substrate with 

infinite length, both with the same dielectric constant. A small amount of free charges within the film 

has been found to reduce the electric field inside the sample, similarly to a thin film with increased 
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permittivity. Different combinations of dielectric constant and screening length have been found to 

be able to give the same electrostatic force under a specific tip-sample distance, although the effect 

on the electric field distribution is different. The latter variation explains the dissimilar behavior 

regarding the tip-sample distance. This can be used to distinguish the physical phenomena involved 

in the EFM signal, whether it is due to the conductivity or to the dielectric constant. Namely, 

significant amplification in the apparent permittivity of the sample at two working distances can 

indicate the presence of a finite conductivity in the sample. 

 The effect of a dielectric substrate below a thin film has been mentioned briefly elsewhere in 

the literature. For instance, G. Gomila et al. studied the effect of the film width on the EFM signal 

[18]. They defined a critical diameter above which the signal reaches 90 % of its maximum. The 

authors showed that a dielectric substrate with a relative permittivity equals to 6 affects the critical 

diameter for a film with a given dielectric constant of 4. 

 

 
Fig. III - 11 : Sketch of the modeled EFM tip facing two superposed dielectric films (not to scale). 

 
Fig. III - 12 : Electrostatic force over two superposed dielectric films of 50 nm thickness each, a. ɛm1 = 4, variable ɛm2 = ɛm; 

b. variable ɛm1 = ɛm, ɛm2 = 4. Note that matrix 1 and matrix 2 correspond respectively to film 2 and film 1 of Fig. III - 10 of 

ref [40].  

In this paragraph, the case of two general superposed dielectric films, represented in Fig. III - 11, is 

studied in details. Modeling results for two superposed dielectric thin films, of 50 nm thick each, are 

reported in Fig. III - 12. On the black curve (disk like symbols), we fixed the dielectric permittivity of 

the top layer em2 = 4, and simulated the force for variable dielectric permittivities of the bottom layer 

(em1 = em, with εm is a variable value). The resulting force grows with ɛm1. Then, on the red curve 

(diamond like symbols), we fixed em1 = 4, and simulated the force for variable em2. The resulting force 
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also increases with increasing matrix permittivity (with ɛm2 in this case).  However, the two curves do 

not superimpose. It can be deduced that the force over two different superposed dielectric films is 

not conserved for an inversed order of dielectric films position in the vertical direction. Moreover, 

although the absolute value of the force always increases with any intensification of films 

permittivity, the gap between the two configurations is not constant, but becomes more important 

with distinct permittivity values of the superposed films. It can be also noticed that the force 

divergence from the corresponding value at ɛm1 = ɛm2 is more significant for εm2 variations rather than 

εm1 variations. The probe is consequently more sensitive to the permittivity of the top layer. Hence, 

the absolute value highly increases (or decreases) when the upper film possesses a higher (or lower) 

permittivity than the bottom one. Except for very low distances and very thin films, this behavior can 

be explained by the fact that the capacitor configuration in an EFM measurement is far from a plane-

plane interaction as we have seen in previous sections. Thus, the electric field is not constant 

between the electrodes. It decreases gradually in the depth of the material [41], which explains a 

higher sensitivity to upper layer properties. 

 
Fig. III - 13 : Electrostatic force over two superposed dielectric films with ɛm1 = 4, h1 = 50 nm, vs. top film thickness, for top 

film permittivity inferior (ɛm2 = 2), equal (ɛm2 = 4) and superior (ɛm2 = 10, 20) to the bottom film permittivity. 

We study now EFM signal variation regarding top layer thickness, h2, for a fixed bottom layer height 

h1 = 50 nm and fixed εm1 and εm2. With bottom layer permittivity ɛm1 = 4, we simulated the force for a 

top layer dielectric constant ɛm2: inferior to ɛm1 (ɛm2 = 2), equal to ɛm1 (ɛm2 = 4) and superior to ɛm1 (ɛm2 

= 10 and 20). It can be interestingly observed that the signal profile is not the same for all studied ɛm2 

cases (Fig. III - 13). For ɛm2 ≤ ɛm1, the signal decreases with the top layer thickness. However, for ɛm2 > 

ɛm1, the signal rises first with the film thickness and then, after a certain value of h2 (≈ 100 nm), the 

trend changes and the signal starts to decrease. In Fig. III - 14a., the trend for the case of ɛm2 > ɛm1 is 

more clearly presented. 
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Fig. III - 14 : Force variation vs. upper film thickness for ɛm2 = 20 (inset a.), and calculated force over a dielectric film with 

similar dimensions as the association of films 1 and 2 of inset a. (inset b.), for variable film permittivity.  

 As introduced previously, it has been found in ref [40] that the electrostatic interaction with 

the probe is sensitive to an effective permittivity of the probed region. Hence, in order to explain the 

results obtained in Fig. III - 13, we computed the variation of the force for a homogeneous dielectric 

film with a thickness h = h1 + h2, and a relative dielectric permittivity ɛeff. For each value of h2, called 

h2i, we simulated the force corresponding to a total film thickness hi = h1 + h2i, for several ɛeff, called 

each εeff i. In order to extract the effective permittivity ɛeff for the corresponding films association, we 

noted the force Fi obtained for the studied case of the superposed films with a certain h2i (see Fig. III - 

14 a.); and conversely, we extracted the value of the effective permittivity ɛeff i obtained on the film 

of total thickness hi, which gives the same force value Fi (see Fig. III - 14 b.). This way, we deduced the 

effective permittivity sensed by the EFM probe facing the superposed dielectric layers for the 

corresponding layers thicknesses and permittivities. The same procedure has been adopted for all 

studied film 2 thicknesses and for the following second case of film 2 dielectric permittivity lower 

than the bottom layer.  
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Fig. III - 15: Force variation vs. upper film thickness, a. with ɛm2 = 20, higher than lower film permittivity ɛm1 = 4, b. with 

ɛm2 = 2, lower than the lower film permittivity; and the calculated equivalent dielectric permittivity for a dielectric film 

with the same dimensions as the association of films 1 and 2 of Fig. III - 11 (inset), c. for case a. and d. for case b. 

 We present in Fig. III - 15a. and b. the force versus h2 for ɛm2 = 20 > ɛm1 (same as Fig. III - 14a.) 

and ɛm2 = 2 < ɛm1, respectively. We present in Fig. III - 15c. and d. the corresponding values of the 

effective permittivity measured with EFM for a film with similar dimensions to the superposed films 

(see inset Fig. III - 15c. and d). 

 For ɛm2 = 20 > ɛm1, we find that the addition of a layer with the highest permittivity amplifies 

the effective permittivity of the resulting matrix, going from εeff = εm1 at h2i = 0 nm and tending 

towards εm2 at higher thicknesses. However, the effective improvement is not monotonous and 

starts to decrease after h2 ≈ 0.1 µm. The permittivity steep increase below h2 = 0.1 µm explains the 

rised signal obtained in the first branch of the force versus h2 curve. We interpret this trend by the 

sensitivity of the system to the global enhanced polarization, which sufficiently intensifies the system 

equivalent capacitance, compensating the effect of the increased distance between electrodes. As a 

matter of fact, larger interelectrode distance reduces the capacitance. However, for h2 > 0.1 µm, the 

smooth change in ɛeff becomes insufficient to counteract geometrical effects and the signal starts to 

decrease similarly to the case of a homogeneous film with an increasing thickness (Fig. III - 15b.). 

 For ɛm2 = 2 < ɛm1, we find that the addition of the layer with a lower permittivity decreases the 

effective permittivity of the resulting matrix (Fig. III - 15b.). It goes from εeff = εm1 at h2i = 0 and tends 

towards εm2 at higher thicknesses. Here also, the effective regression is not monotonous and starts to 

slow down after h2 ≈ 0.1 µm. The steep decrease of the permittivity explains the decreased signal 
observed in the first branch of the force versus h2 curve. The sensitivity to the decreased polarization 

reduces the capacitance of the system, adding up to the effect of greater interelectrode distances. 

For h2 > 0.1 µm, the smooth change in ɛeff reduces the decay due to the permittivity. Hence, the signal 

keeps on smoothly decreasing, similarly to the case of a homogeneous film with a growing thickness 

(Fig. III - 9b.).  
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 These results suggest paying deep attention when analyzing EFM signals over thin films. An 

increasing signal of the same laterally infinite film, might lead to misconceptions. For instance, one 

might think that the film thickness is being reduced, which is not necessarily the case. As we have 

seen, it can also be due to an increasing thickness when the film is present on a substrate with 

relatively lower permittivity. We also expect a similar behavior for the inversed case: h2 fixed, and h1 

changing. However, the rate of change of εeff, and consequently, the measured force, regarding h1, 

must be slower since it corresponds to the bottom layer.      

 In order to deeper our understanding of this behavior, we compared simulations to the 

simplistic analytical expression of εeff, corresponding to a plane-plane capacitor filled with two 

dielectric layers. From the calculation of the equivalent capacitance for two capacitors in series, we 

deduce the following analytical expression:  

 
 

(III.10)  

 

 
Fig. III - 16 : Calculated equivalent or effective dielectric permittivity of two dielectric films with same dimensions and 

permittivities of Fig. III - 14, using the plane-plane capacitor model of eq (III.10), a. ɛm2 = 20 > ɛm1 = 4, b. ɛm2 = 2 < ɛm1 = 4. 

 Similarly to simulations, the effective permittivity grows with h2 from εeff = εm1 at h2i = 0 nm 

towards εm2 at higher thicknesses. This simple analytical model explains to a good extent the 

interaction of the EFM probe with two superposed dielectric thin films. The thickness of the dielectric 

film in a capacitor affects the impact of its dielectric permittivity on the effective permittivity by 

influencing charge accumulation at the electrodes. However, we notice that εeff rate change with h2 is 

slightly lower than the one obtained with numerical modeling results. In Fig. III - 16, with 1 µm h2 

increase, εeff goes from 4 to 16.8 with analytical calculations versus 4 to 19.25 with numerical 

simulations. Moreover, the numerically simulated curves tend to saturate more rapidly. This can be 

understood by the geometry of the tip which does not allow a conventional polarization response 

from the system as in the case of a plane-plane capacitor. Probe geometry effect on the electric field 

between electrodes strengthens the sensitivity to the upper film, increasing εeff influence to the top 

film. 

 One must note that these conclusions can be extrapolated for multi-layered samples. In fact, 

any association of films can be interpreted with one equivalent permittivity, and be compared to the 

remaining film, or remaining film association, to be studied.  

 Our results elucidate the reason behind the observed intensification in literature of the 

sensitivity to the permittivity of high dielectric constant thin films when placed over dielectric 

substrates [40]. In fact, the studied film possesses the highest permittivity regarding the substrate. 
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Hence, according to what it has been concluded earlier, the effective permittivity of the thin film is 

decreased when placed on the low permittivity substrate. Since the sensitivity to ε generally 

increases for low sample permittivities, this explains the gain in the sensitivity to the studied high 

dielectric constant thin films.  

 In the experimental results of Chapter V, similar signal variations will be verified on real 

multilayered samples, and the conclusions of this section will be used to study the sensitivity to 

different dielectric layers, covering nanoparticles. 

4.3. Finite-size effects 

In the above sections, we treated the case of planar films with an infinite lateral extension relatively 

to the probe geometry and working conditions. However, the interaction between an EFM tip and a 

2D and especially a 3D nanometric sample is much more complicated. In the case of nanoparticles, 

the electric field is highly non-uniform due to the tip geometry and working distance, as well as it is 

strongly dependent on the size and shape of the particle, complicating the sensitivity to its intrinsic 

permittivity. 

 

Y-Z Li et al. have investigated the effect of the size of a squared sample on the electrostatic force 

when presenting the self-consistent method in ref [31]. The response versus sample side-length at 

different tip-sample distances has shown non-monotonous tendencies. The authors introduced the 

influence of small sample widths on the coupling with the substrate. The latter effect explained the 

decrease of the signal at small widths due to a high coupling of the probe with the separated 

substrate. Moreover, the authors explained that larger samples favor the coupling with the sample 

instead of the substrate, clarifying the enhanced signal. 

More recently, G. Gomila et al. studied numerically and analytically the electrostatic force 

acting on an EFM tip over an oblate nanoparticle [42]. Based on the model developed in ref [43], the 

authors derived an expression of the capacitance gradient while performing the following 

approximation on the force origin: the polarization force acting on the tip is equal to the force 

between the induced electric dipole in the nanoparticle and its image dipole within the tip. The 

induced electric dipole is considered to be generated by a uniform electric field, independent from 

the nanoparticle. Comparing to finite-element numerical simulations of the real system, they showed 

that this approximation only holds for small eccentricity particles (1 to 2) and small dielectric 

constants (1 to 10). Otherwise, the particle width strongly affects the field lines and the problem 

must be solved numerically. Authors have also expanded the signal dependence to the shape and 

dimensions of the particle. In particular, for a fixed particle height, the signal has been found to 

augment with the width of a nanoparticle of fixed height (or with its eccentricity), impacting then the 

extracted effective dielectric constant of the sphere, regardless of the tip geometry. Moreover, the 

dielectric constant of the particle also intensifies the electrostatic force acting on the tip with an 

increased sensitivity for wider particles.   

However, the signal contrast tends to saturate at high eccentricities, and it saturates more 

rapidly for particles of high dielectric permittivity. The authors explain those signal saturations at high 

eccentricities to be due to the localized polarization in an EFM interaction. Moreover, the induced 

dipole gets highly reduced, which lowers the influence of other parameters such as the width. 

Numerically, in order to understand better these dependencies, they generalized the 
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phenomenological expression of the capacitance-gradient contrast for a spherical nanoparticle 

introduced in ref [33], to the case of a non-spheroidal one: 

 
 

(III.11)  

 

where hp is the non-spheroidal particle height, ecc is its eccentricity factor and u ≈ 1-1.4 for 1 < εp < 

10. c0 ≈ 2.22 zF/nm and r0 ≈ 11 nm are phenomenological constants, while d0 = d0 (R0) ≈ 8 - 10 nm, d1 = 

d1 (R0, ɛp) ≈ 2-3 nm and d2 = d2 (R0, ɛr) ≈ 0-12 nm are smooth functions of the tip radius R0 and particle 

dielectric constant ɛp. The explicit expressions can be found in the supplementary information of ref 

[33] and [42]. 

The dependency of the signal on particle diameter is present in this phenomenological equation, but 

it was not particularly discussed in these papers. In the supplementary information of ref [33], the 

authors studied signal contrast variation for only some particular cases. 

Another work dealing with finite-size effects of the same research group has been published 

in [18]. The authors studied the capacitance gradient contrast for dielectric films with variable width. 

They calculated the capacitance gradient contrast as the difference between the signal at the 

position of interest and the bare substrate signal for a fixed reference distance, to avoid non-local 

contributions. The contrast was found to saturate after a certain film width at which the film 

approaches an infinite plane. They called it critical diameter (Dc). Dc increases with the film thickness. 

For ultrathin film thicknesses (< 10 nm), Dc depends on the nanometric parts of the tip, and it is not 

influenced by the dielectric constant of the film.  At intermediate thicknesses (> 10 nm and < 1 µm), 

Dc depends on the nanometric parts of the tip, along with the dielectric constant of the sample. 

Finally, at higher thicknesses (> 1 µm), it only depends on the film dielectric constant. It has been also 

verified for all cases that there is no effect of the micrometric parts of the tip on the critical diameter. 

Furthermore, authors explained the dependency on the film thickness by presenting electric 

potential drop maps for an intermediate thick film of different widths. The potential highly drops in 

the depth of the sample for low width films contrarily to large films where the potential is 

concentrated in the center (see Fig. III - 17). This effect has been explained by the fact that for small 

widths, the lateral surfaces are majorly exposed to the tip where the potential is not null. A potential 

drop is thus going to occur in order to reach the zero potential at the substrate boundary. At the 

opposite, for large films, the lateral surface is more close to the substrate zero potential than the 

interacting region close to the tip, which explains the decreased effect of the width (Fig. III - 17).  

 
Fig. III - 17 : Zoomed view of the calculated electric potential distribution for the case of a probe with 12.5 µm cone 

height, 3 µm cantilever radius, 2 µm cantilever thickness, 25 º cone half-angle, 100 nm apex radius, and an insulating film 

(a) (b) 
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with 1 µm thickness , dielectric constant εm= 4, and diameter a. D = 10 µm and b. D = 0.4 µm. Inset: global view of the 

calculated electric potential [18]. 

 C. Riedel et al. have used ECM to quantify the dielectric constant of polyvinyl acetate particles 

embedded in a polystyrene matrix [30, 36]. Although the authors have not accounted for the 

spherical geometry of the particles in their model, as they considered each point as infinite plane 

film, reasonable dielectric constants have been measured for the corresponding polymers.  

 Hence, we deduce that the interaction between a nanoparticle or any 2D nanometric object 

and an EFM tip cannot be solved analytically, and one has to resort to numerical simulations for the 

specific studied system including the exact sample geometry. 

 In this section, we will show the detailed effect of nanoparticle radius and dielectric constant 

on the electrical signal, compared to an infinitely wide dielectric film with similar height. A study of 

the nanoparticle radius combines both particle height and width effects in 3D, compared to other 

studies treating eccentricity change alone, or the diameter for only some particular planar samples 

[31, 33]. Then, we will study the case of different diameters or depth positions of the particle in the 

matrix for several constituent dielectric constants. Finally, we will consider the case of two adjacent 

particles in the matrix with different spacings, for several material properties as well. An insight into 

the lateral force acting on the tip and its effect on the probe motion will also be reported. 

 

From the literature and previous simulations sections, it can be deduced that the nanoparticle 

geometry and dielectric constant, tip dimensions and tip-substrate distance, affect altogether the 

measured EFM signal. However, the radius has been found to have a particularly complicated 

influence on the signal. Nevertheless, to our knowledge, particle radius effect was never investigated 

before individually. 

 
Fig. III - 18 : Electrostatic force vs. sample permittivity for: a. a nanoparticle of different radius (inset a) and b. a dielectric 

homogeneous laterally dielectric infinite film (inset b). 

 To gain a deeper insight into the influence of all those co-existing parameters, and especially 

the radius, we start by presenting in Fig. III - 18a. the absolute electrostatic force change at the 

particle center with the particle dielectric constant for several diameters. The dielectric constant rises 
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the signal, as expected from Fig. III - 9a., with an increased sensitivity for bigger particles, in 

accordance with [42]. However, it can be noticed that the tendency versus particle diameter at a 

fixed permittivity is not the same for all dielectric constants. The signal does not decrease 

monotonously compared to a laterally homogeneous infinite dielectric film with the same height, as 

it is calculated in parallel in Fig. III - 18b. This highlights the effect of the geometry of the particle on 

the signal. Moreover, the absolute value of the force is not the same for a nanoparticle compared to 

a matrix with the same height [18]. 

  
Fig. III - 19 : Force difference percentage between the value at the center of a nanoparticle (Fig. III - 18 a.) and that of the 

matrix regarding the matrix (Fig. III - 18 b.) at same tip-sample distance, for the same parameters: ɛp = ɛm and h = 2rp. 

 In Fig. III - 19, the force difference between the signal at the particle center and above a matrix 

with the same height is calculated, normalized to the corresponding signal above the matrix. Two 

main behaviors regarding the dielectric constant can be distinguished. At low permittivities, and for 

all measured particles radii (10-500 nm), the disparity enlarges with the sample dielectric 

permittivity. The difference of tip interaction with a particle and a matrix with the same height 

becomes more important, up to a certain permittivity, where the difference either saturates for low 

diameters or starts decreasing for higher ones. As a consequence, it seems that the influence of 

particle geometry is less pronounced either for small particles, or relatively big ones with high 

permittivities.  

 Nevertheless, at low permittivities, sample polarization is weak and the charge distribution on 

electrodes gets only slightly modified. Hence, the material is almost not detected and no difference is 

perceived between a nanoparticle and a matrix at fixed tip-sample distance, when both possess the 

same height. However, as the permittivity gets more important, the detectability augments, and the 

material intrinsic contribution increases, so the difference in the lateral geometry becomes more 

noticeable. That explains the highest force differences with greater permittivities. 

 However, we remind that the general sensitivity to the permittivity decreases with the 

permittivity as it can be seen from Fig. III - 9a. and b. where the slope of the curves declines at high 

permittivities. The decreased sensitivity is more pronounced for thin samples. As a consequence, the 

difference between the signals becomes almost constant for small particle diameters. 

 Furthermore, in order to follow more clearly the non-monotonous behavior regarding εp for 

different rp, noticed in Fig. III - 18 and developed in Fig. III - 19., we present in Fig. III - 20 the variation 

of the force versus particle radius at four representative permittivities. 
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Fig. III - 20 : Electrostatic force over the center of a nanoparticle vs. particle radius for four representative permittivities: 

ɛp = 4, 25, 80 and infinite.   

 From Fig. III - 20, two trends for low and high dielectric permittivities at fixed tip geometry and 

tip-sample distance can be defined. We find that at low particle permittivities, the signal 

continuously decreases with particle diameter. However, as long as the permittivity increases, signal 

decay slows down until a certain radius, before the force tendency changes, and the force starts to 

increase gradually with the particle radius [31].  

 In order to interpret this behavior, one must note that the change in particle radius involves 

several effects that co-act on the charge distribution and hence, the electrostatic force sensed by the 

tip. We mention two main effects:  

a) Particle height increase: it enlarges the distance between electrodes that tends normally to 

decrease the signal at a constant tip-particle distance z; 

b) Surface increase: it expands the surface of the sample interacting with the probe that, alone, 

is supposed to rise the signal [18, 42]. 

 As mentioned previously, a semi-phenomenological model has been reported by 

L. Fumagalli et al. that demonstrates the cooperative dependency of the signal on particle size and 

permittivity, working distance and tip geometry (eq (III.11)) [33]. Nevertheless, this model is limited 

to a certain range of parameters. It is consequently insufficient to analytically model the critical-like 

behavior of particle radius. 

 On the other hand, our results are in accordance with previous force tendencies versus the 

dielectric size, observed on cubic samples [31]. Unlike our study, Z. Y. Li et al. however indicated 

sample size effect at different tip-sample distances and for a fixed permittivity. 

 Therefore, for a nanoparticle, the interpretation of the observed non-monotonous signal 

tendencies regarding particle radius and permittivity is the following: 

a) At low permittivities (Fig. III - 20, εp = 4), as mentioned earlier, the sample does not greatly 

alter the created electric field produced by the applied voltage difference. Hence, the 

expansion of interelectrode separation is the paramount parameter that describes how the 

signal decays when the radius broadens. The contribution of particle polarization response 

and surface widening are insufficient to compensate the decreased capacitance induced by 

the separated electrodes.  

b) However, at high permittivities (Fig. III - 20, εp > 4), and exceeding a critical rp, the important 

dipolar polarization effect on the capacitance compensates the change due to tip-substrate 

height increase, and avoids the signal from decreasing. As a consequence, the height change 

is no longer influential, and particle surface increase starts to dominate and contribute to the 

augmenting signal. 
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c) Moreover, concerning the interaction decrease at low radii met at all εp (Fig. III - 20), this 

behavior must be due to the proximity of the electrodes for small particles. In this case, the 

tip-substrate distance predominates over the material intrinsic polarization response. As the 

former increases with the radius, it explains the signal drop for relatively small rp. This 

interpretation agrees with that provided by Y-Z Li et al. for small cubic samples [31]. 

 

4.3.3.1. Zero depth 

 
Fig. III - 21 : EFM modeled tip facing a nanocomposite composed of a nanoparticle of radius rp placed in a matrix of height 

h at zero depth from upper and lower surfaces. 

 
Fig. III - 22 : 2D electrostatic force raw values on a scan line over a nanocomposite of h = 50 nm (Fig. III - 21) for: a. fixed 

matrix permittivity, ɛm = 4, and variable particle one, ɛp = 2, 10, 16; b. fixed particle permittivity, ɛp = 10, and variable 

particle one: ɛm = 2, 4, 10. Note that all forces calculated in 2D geometry overestimate the value of the effective 3D force, 

here measured in 2D axisymmetric geometry (10-3 N vs. 10-10 N). The accuracy of 2D signal tendencies have been 

however confirmed to be consistent with 3D ones. 

In this section, the EFM signal in front of a nanoparticle placed within a matrix is studied. Fig. III - 22a. 

presents the force variation on a 2D scan at fixed z around the particle center for ɛm = 4, h = 2rp = 

50 nm and ɛp = 2, 10 and 16. The Gaussian like signal shows a maximum at the center of the particle 

and possesses a certain half-width at half-maximum (HWHM), relatively larger than the particle 

radius. We find that the signal intensity at the center increases with particle permittivity, thus, 

changing the contrast. A contrast inversion is obtained as the particle permittivity goes from a higher 

to a lower permittivity regarding the matrix. 

 We present in Fig. III - 22b. the force obtained for the same system as in Fig. III - 22a., with a 

fixed particle permittivity ɛp = 10 and variable matrix permittivity ɛm= 4, 6, 8. We find that for a fixed 

εp, εm affects the signal contrast, the force value at matrix regions and the force value at the center of 

the particle. 
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 From previous results, above a nanoparticle, the signal has been inferred to divert from that 

corresponding to the similar matrix with the same height, due to the finite resolution of the system 

(see Fig. III - 18). Hence, the influence of the matrix permittivity on the signal over the particle is not 

surprising. Similarly to superposed dielectric films interpretation, one can expect a collective effect of 

the system capacitance from the whole probed region. Hence, since no geometrical parameter is 

changing, the interaction region from the matrix changes the effective permittivity of the probed 

zone. It gets larger for εm higher than εp. 

 Moreover, as shown in Fig. III - 22a., the decreased contrast observed in Fig. III - 22b. can be 

explained by the decreased permittivity differences between the inclusion and the matrix reducing 

the corresponding EFM contrast. The signal contrast and HBWM are found to be inversely 

proportional. This infers that the measured particle diameter with EFM can change for the same 

physical particle dimensions. The apparent EFM diameter (particle diameter on EFM signal ≈ EFM 

signal HBWM) becomes tighter or wider, depending on particle and matrix permittivities ratio closer 

or distant to 1, respectively. 

 This shows that EFM resolution in nanocomposite studies depends on the relative dielectric 

constants of their heterogeneities. When there is a high dielectric contrast with the matrix, the 

particle detectability increases and its corresponding measured diameter in EFM approaches its real 

one. This resolution definition is not similar to metal-tip cases which has been defined as only 

proportional to tip radius and tip-sample distance [17]. This work also extends the study of the 

resolution performed on planar samples in ref [16]. Authors studied the EFM response function on a 

scan line using the potential and electric field trace variation on the scan axis. Moreover, our results 

suggest the need for a meticulous interpretation of the HBWM when used as a proof for interphase 

presence. For instance, filler EFM apparent diameter would directly change in a matrix, since the 

dielectric contrast with a common polymeric matrix is less important than that obtained in air. 

Consequently, it is not sufficiently accurate for example to compare nanofillers size before and after 

incorporation into the polymer as adopted in a previous study [8].   

4.3.3.2. Lateral forces 

 
Fig. III - 23 : 2D lateral electrostatic force values on a scan around the center of a nanocomposite (Fig. III - 21) of fixed 

matrix permittivity ɛm = 4, and: a. particle permittivities ɛp = 10 and 16, increasing permittivities higher than ɛm; b. particle 

permittivities ɛp = 10 and 2, higher and lower permittivities than ɛm; rp = 25 nm. 

In the whole thesis, we studied the normal force acting on the tip, that we have called the total 

force F. This force represents indeed the total force acting on the tip in the case of a perfect 

symmetry at the probing region and when no local charges are present. This condition is totally 

verified at any position of a laterally infinite homogeneous film, as well as above the center of a 
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nanoparticle, embedded or not into a matrix, when it is placed at the center of the film with no 

surface charges. However, when getting away from the center, lateral forces start to appear. 

 We present in Fig. III - 23 the lateral component of the force Fx, obtained on a scan line over 

the system sketched in Fig. III - 21. In Fig. III - 23a., the case of two particle permittivities ɛp = 10 and 

16, higher than the permittivity of the matrix fixed to ɛm = 4, are compared. Moreover, the signals of 

ɛp = 10 and ɛp = 2, higher and lower than ɛm = 4, respectively, are studied in Fig. III - 23b. 

 For ɛp > ɛm, as the tip approaches the center, we notice that it measures a positive lateral force, 

and a negative one as it goes away from the particle. A positive lateral force represents a force in the 

x positive direction, from the left to the right, as considered in our model. Hence, the tip is more 

attracted towards the particle for ɛp > ɛm when it is approaching it. The attraction starts to rise 

gradually, not too far from the particle (depending on the interaction radius), until it reaches a 

maximum of attraction at a certain distance (around 300 nm from the center in this case), then it 

gradually starts decreasing until it reaches a zero value at the particle center. The reverse 

phenomenon occurs as the tip goes away from the center. A negative sign implies that the attraction 

is in the opposite x direction.  

 For ɛp < ɛm, opposite lateral force directions occur. The tip is more attracted to the matrix when 

it approaches the particle, until a certain separation, then the intensity of attraction decreases as the 

tip becomes close to the center. The reverse behavior also occurs as the scan continues. 

 Electrostatic lateral forces are due to the dissymmetry of electrostatic normal forces acting on 

the tip, as already underlined in the literature [44-46]. In fact, for ɛp > ɛm for example, the normal 

force is higher in the direction of the particle than that of the matrix as we have seen in Fig. III - 22. 

Hence, the tip will undergo a more important attraction towards the particle when it approaches the 

center, which later lowers as it gets closer to the center. Around the center, the equilibrium of forces 

from both tip sides starts to establish, and force dissymmetry lowers. Whereas, when the scan 

continues, the tip start again to become more attracted towards the material with the higher 

permittivity, here, the particle.   

 The lateral force component within all studied case conditions has been however found to be 

at least one order of magnitude lower than the normal force. It can still be neglected for more 

dissymmetric geometries, with some precautions. 

4.3.3.3. Different depths 

 
Fig. III - 24 : a. Simulated 2D force contrasts on 0.6 µm  scans over a nanocomposite with a spherical filler of rp = 25 nm,

ɛp = 10 and a matrix of ɛm = 4 at different depths from upper and/or lower surfaces (inset a.); b. the corresponding 

normalized absolute force values to zero depth value. 
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Fig. III - 24 shows the force contrast simulated for a  particle located at 0 nm depth (inset A) and with 

20 nm of matrix layer below (inset B), above (inset C) and both above and below the particle 

(inset D). The curves have been obtained by the normalization of the measured signal in each case, to 

the corresponding one at the matrix region. We find that the presence of a matrix layer always 

reduces the contrast and rise the apparent diameter of the inclusion. The general decrease in the 

contrast for fixed matrix permittivity and increased depth can be explained by the change in the 

effective permittivity of the central region. In fact, these cases are comparable to an association of 

dielectric layers. In the center, the parts corresponding to the matrix dominate at high depths, and 

modify the effective dielectric constant of this region to a permittivity closer to the matrix one. Since 

the difference between the apparent permittivity of the central region and that of the matrix gets 

smaller, this can explain contrasts reduction in (B), (C) and (D) compared to (A). 

 
Fig. III - 25 : Electric field intensity into a planar dielectric sample of 150 nm thickness and a relative permittivity that is 

equal to 4, within an EFM set up. 

 Furthermore, we notice that the effect of the depth from the upper surface, dup, is the most 

pronounced. This difference can be explained by the decrease in electric field intensity versus 

insulation depth in an EFM configuration, as shown in Fig. III - 25. The electric field is characterized by 

its penetration depth commonly defined as the distance at which the signal is equal to E(0)/e, with 

E(0) the field at the surface and e the exponential constant. The penetration depth has already been 

reported to be strongly dependent on the probe and sample geometries, measurement parameters, 

and sample dielectric permittivity [41]. It has been also found to decrease with z [1]. Hence, for a 

homogeneous sample, it is supposed to increase with sample thickness as well. However, at an 

equivalent distance from the top surface, the electric field intensity is lower for thicker films. 

Consequently, the decrease of the electric field in the depth of the sample explains signal differences 

of case (B) versus (C). Furthermore, the decreased amplitude of the electric field at similar distances 

from the surface for thicker samples can explain the lowest signal of (D) compared to (C).   
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4.3.3.4. Several particles 

 
Fig. III - 26 : Sketch of modeled adjacent particles in a matrix at zero depth. 

 
Fig. III - 27 : Electrostatic raw force values (z component) on a scan-line: a. over two particles ɛp = 10 in a matrix ɛm = 4, for 

several inter-particles distance Δx, and b. over two particles of fixed inter-particles distance Δx = 2rp and εm = 4 for εp = 6, 

10 and 16; rp = 25 nm. 

Fig. III - 27a. presents the computed normal component of the electrostatic force on a scan line over 

a matrix containing two particles at different inter-particles distance ∆x (see Fig. III - 26). We notice 

that particles located at different ∆x lead to different EFM responses, disrupted by the ambient 

electrical surrounding at each position. Signals from both particles overlap gradually as they get 

closer. On one hand, overlapping affects the final form and the HWHM of the response function, 

which modifies the apparent diameter of the inclusions. On the other hand, signal intensity is also 

affected by the relative position between the inclusions. 

 For low spacings (Δx = 0 µm), much lower than measurement resolution that is theoretically 

equal to 22 nm for metals according to Chapter II [17], a total overlapping occur. The sample behaves 

as if only one particle is placed in the matrix (Fig. III - 22a.). Moreover, when the particle permittivity 

is higher than the matrix one, we find that approaching particles enhance the signal intensity in the 

region containing the inclusions. The inverse behavior (decreasing signal) results for ɛp < ɛm  (not 

shown here).  

 At intermediate spacings (Δx = 2rp), the two particles can be detected due to the double 

maxima in the curve. However, the signal at the center of the particles is influenced by neighbor 

inclusions.  

 Finally, at large spacings (Δx = 6rp), total discrimination of the two particles is observed. The 

signal in the middle becomes equivalent to that on borders, and that in the center of each particle is 

hence the intrinsic one relative to its presence in the corresponding matrix.  

 We deduce that although in a nanocomposite, particles might turn up to be resolved in the 

signal, their measured dimensions and electrostatic signal can be misleading for inter-particles 
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distances close to the resolution of the measurement. At fixed nanocomposite properties, as well as 

particles depth, the diameter can appear lower than the expected one, only due to particles spacings. 

 According to EFM apparent diameter calculus for a nanoparticle within a matrix, we found that 

the resolution depends on their relative dielectric constants. In Fig. III - 27b., a study of the resolution 

between two particles has been also addressed regarding their permittivity ratio with the matrix. We 

find that particles with higher dielectric contrast get resolved at lower spacings. This proves the 

conclusion derived from Fig. III - 22, stating that the dielectric contrast of sample heterogeneities 

enhances the resolution. Thus, the latter is not a fixed value of EFM probe and measurements 

parameters, but depends on the measured material intrinsic properties. 

 
Fig. III - 28 : Lateral electrostatic raw force values on a scan-line over two particles in a matrix for several particles x 

spacings. 

 In addition to the effect of particles spacing on the normal component, the impact on the 

lateral electrostatic force is studied in Fig. III - 28. The expected signal above one nanoparticle (εp > 

εm) has been determined in Fig. III - 23. It is characterized by two branches, one representing an more 

attractive region towards the particle (left hand side), and towards the matrix (right hand side), 

characterized by a positive and a negative force, respectively. Thereby, similarly to the normal force 

interpretation, signals above particles tend to overlap at low spacings (Fig. III - 28). Particles can only 

be distinguished at intermediate distances. Moreover, when interparticle distance decreases, we 

notice that the maximum of the attractive part increases, inversely to the repulsive part that decays. 

Hence, for ɛp > ɛm, the lateral attraction of the tip towards the inclusions is enhanced at higher 

inclusions surface density. 

 This result can be explained by the increasing normal component of the force over the particle 

for ɛp > ɛm as previously explained, enhancing the attraction towards the particles regarding the 

matrix. However, as the tip moves away from the center of the first particle, it is subjected to a force 

originating from the matrix, as well as the second particle. The force contrast and the friction are 

then decreased. The same behavior and interpretation apply for ɛp < ɛm with opposite force branches 

sign. A higher attraction towards the matrix at the curve left hand side is obtained, compared to a 

reduced attraction at the right hand side (not shown here). Note that in all modeled cases, the lateral 

force value at the center of the particles remains equal to 0. 
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 Tip-Nanodielectric 

In the following section, we apply the conclusions and signal interpretations of the previous 

paragraphs to specifically study the signal above a nanodielectric material. First, an analytical study 

assuming no restrictions on the spatial resolution is presented. Then, a further investigation of EFM 

response in a more realistic model is forwarded through numerical simulations. 

5.1. Analytical signal preview at perfect spatial resolution 

As a first step towards the understanding of EFM-nanodielectric interaction, we considered our 

material as a superposition of three types of infinite planar dielectric films that correspond to the 

matrix, particle and interphase. The thickness of each film depends on the position of the probe 

above the sample as we move from the matrix to the particle. In this case, the model proposed by G. 

Gomila et al. can be adapted to our system in order to calculate the signal at different positions [18]. 

We studied the case of a particle of rp = 25 nm and ɛp = 10, an interphase of ti = 20 nm, and a matrix 

layer of d = 20 nm above and below the particle-interphase assembly. As described in the beginning 

of this chapter, the tip was modeled in accordance to commonly used EFM probes with an apex 

radius R0 = 25 nm and a cone half-angle  = 10 º placed at z = 20 nm above the sample surface. Within 

this range of material and tip dimensions, both tip apex and cone contributions must be considered 

into the measured electrostatic force. Moreover,  the cantilever contribution to the total capacitance 

gradient of the probe-sample system was reported to be negligible for comparable sample 

thicknesses to our nanodielectric model [37]. 

 We adapted the analytical expression for the capacitance gradient of the apex in the limit of 

infinite planar films of [12], introduced in eq (III. 6), by substituting   by  : 

 
 

(III.12)  

 

where z, the tip-sample distance, represents the thickness of the air layer, modeled with a relative 

permittivity equals to one. hp, hi and hm are the total thickness of the particle, interphase and matrix 

at each x position, respectively (see Fig. III - 29). 

 
Fig. III - 29 : Illustration of nanodielectric model geometry with the corresponding materials thickness at each lateral x 

position (xk) used in our analytical model in eq (III.12) and eq (III.13). 

For the cone contribution, we also adapted the analytical expression of ref [18]  to our system: 

 
  

(III.13)  
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and since , the total electrostatic force writes: 

 
 

(III.14)  

 

 
Fig. III - 30 : Analytical model: a. Force calculation on a 1 µm region using the nanodielectric model for a particle of ɛp = 10 

and rp = 25 nm, interphase thickness ti = 20 nm in a matrix of ɛm = 4 and at 20 nm depth from upper and lower surfaces; b. 

Force values of Fig. III - 30a. at the center (x = 0 µm) for different interphase permittivities. 

 We present in Fig. III - 30a. the calculated electrostatic force contrast sensed by the tip for a 

scan of 1 µm around the nanodielectric central region for different interphase permittivities. We 

notice that with a perfect resolution, the signal changes in a non-monotonous way when the tip 

moves away from the center, and it becomes static once the tip is located above the matrix alone. 

Specifically, for interphase permittivities below 4, which corresponds to the matrix permittivity, or 

higher than 10, which corresponds to the particle permittivity, the signal contrast changes at two 

interfaces: particle-interphase and interphase-matrix. 

In order to analyze these contrasts, our system can be further simplified to an association of 

capacitors in series divided into three main lateral regions between the center and extreme borders 

(see inset Fig. III - 30 a.):   

a) The center composed by particle, interphase and matrix sections; 

b) The interphase borders composed by interphase and matrix sections; 

c) The matrix alone. 

As we have seen in above paragraphs, depending on the permittivity and the thickness of the films at 

each position, the effective permittivity of the multilayered regions changes. Then, the interaction 

for the nanodielectric model properties, at different regions, can differ. Moreover, the interphase 

acts on both regions a) and b), either by increasing, or decreasing their resulting force. It can also be 

noticed that sufficiently high interphase permittivities yield to more gradual signal change between 

the center and the matrix regions. This can be explained by the predominance of the interphase on 

the signal for high permittivities.  

 Fig. III - 30b. presents normalized absolute force values at the center. The force strengthens 

with interphase permittivity for fixed particle and matrix properties. Here also, the rising intensity 

can be explained by the increased equivalent permittivity, and consequently, the equivalent 

capacitance at the central region. 
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 However, this analytical expression does not take into account the position in the z direction of 

the film. As we have seen in Fig. III - 12, the film position regarding the upper surface is crucial. This 

approximation also neglects the contribution of the electrostatically coupled region. Hence, a more 

realistic modeling must be forwarded. 

 Note that in addition to electrostatic force measurements, we have performed the same type 

of calculations for the force gradient after the integration of equations (III.12) and (III.13). Similar 

tendencies for the force gradient compared to those obtained for the force presented in Fig. III - 30 

were obtained. Hence, as we present hereafter numerical simulations of the electrostatic force; the 

same conclusions will be supposed to be appropriate for force gradient signals. 

5.2. Numerical simulations of EFM tip-nanodielectric interaction 

Numerical modeling in general and finite-element simulation in particular is an accurate method to 

study the interaction between an EFM probe and sophisticated geometries such as those 

encountered in a nanodielectric model. As we have described in above sections, to present, 

analytical models have been only suitable for laterally homogeneous dielectrics. Moreover, most 

analytical models have been focusing on dielectric thin and thick films but rarely on superposed 

dielectric films. Hence, there is no analytical method to completely model our system that is laterally 

inhomogeneous at the nanoscale and composed of several superposed materials. In this thesis, we 

chose finite-element modeling with Comsol® Multiphysics package for all simulations of tip-sample 

interactions, including nanodielectrics. 

 The probed region of the nanodielectric model consists of a nanoparticle surrounded by an 

interphase placed in a matrix. The polymer matrix is represented as a disk of 20 μm diameter, 

thickness h, and dielectric constant εm. Similarly to the description of the adopted model of a 

nanodielectric at the beginning of this chapter, we modeled the nanoparticle as a solid sphere of 

radius rp and dielectric constant εp. The particle is buried at a certain depth d, from the top and the 

bottom of the matrix. The interphase around the nanoparticle was modeled as a spherical shell of 

thickness ti and dielectric constant εi (Fig. III - 2). 

 

5.2.1.1. Force contrast versus interphase permittivity 

 
Fig. III - 31 : Numerical simulations: a. EFM normalized signal contrast on a 1 μm scan over a nanodielectric of εm = 4, εp = 

10, rp = 25 nm, ti = 20 nm and at 20 nm from upper and lower surfaces, inset: capacitance model of the nanodielectric 

comparing center to border scan line regions; b. Force value at the center of the same system presented in Fig. III - 31a. 

calculated in 2D axisymmetric dimensions at the center (x = 0 µm) for different interphase permittivities.  
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We present in Fig. III - 31 a. the result of 2D calculations of the force on a scan line over the 

nanodielectric probed region for different interphase permittivities. We show that although the 

probe encounters basically three main regions of different capacitances (Fig. III - 30), the expected 

signal with numerical modeling of the system is characterized by one maximum and a certain 

HWHM, similarly to the case of one homogeneous particle in a matrix. The force contrast and HWHM 

depend on the interphase permittivity; both can either increase or decrease, and the sign of the 

force contrast can even change. This behavior can be explained by the fact that EFM detects the 

particle-interphase assembly as one apparent particle with one effective permittivity having a 

diameter Deff = 2(rp + ti). This type of explanation concerning the effective change in permittivity and 

equivalent diameter of a particle surrounded by a shell (without a matrix) has been already proposed 

in ref [33]. In the assumption of a uniform electric field within the particle, L. Fumagalli et al. used the 

model given in ref [47] correlated to numerical simulations, to detect the core of a virus through 

effective permittivity change of its core-shell composition form preserving the same dimensions. 

That work is however performed in air, and not in a matrix. 

 Therefore, a further explicit explanation of these numerical model results can be obtained by 

assimilating our system to an association of capacitors in series, this time, at two main regions (see 

inset Fig. III - 31 a.): 

a) The center composed of particle, interphase and matrix; 

b) The matrix alone. 

The apparent permittivity becomes higher or lower than matrix one, depending on the relative 

permittivities and dimensions of the different material components, which explains contrast 

variations. A unique contrast is observed due to the approximate detection of a probed region wider 

than that of perfect resolution analytical study. Besides force contrasts, we show in Fig. III - 31 b. the 

absolute force values change at the central region for the same parameters of Fig. III - 30. We find 

that the signal increases together with the interphase permittivity. This result is in accordance with 

Fig. III - 9a.: the force intensifies regarding the dielectric permittivity of a dielectric film, and tends to 

saturate at high permittivities. 

 The behavior of force values at the center is also in accordance with what we have seen in the 

approximate analytical simulation presented in Fig. III - 30b. The analytical equation reflects the 

response provided by all material components at a specific lateral position as a combination of 

capacitors in series. This confirms that the EFM tip is sensitive to a general response of the connected 

materials in a nanodielectric model. 

5.2.1.2. Force contrast versus interphase thickness 

In Fig. III - 32 a. and b., the changes in force contrasts for a fixed interphase permittivity of εi = 2 and 

12, respectively, is shown for different interphase thicknesses. Keeping same depths from upper and 

lower surfaces, the contrast is amplified regarding the interphase thickness in both cases. Similarly to 

Fig. III - 31, we explain this result by the effective permittivity of the particle-interphase assembly, 

which, as long as it diverts from matrix permittivity, presents higher contrasts. 

 Furthermore, the corresponding absolute force values at the sample center are traced in Fig. III 

- 33. The absolute value of the central force decreases with ti for both simulated cases of εi. This 

signal tendency is similar to that obtained over a homogeneous film of increasing thickness. It is also 

similar to the signal change over multilayered samples presenting a varying geometry, contributing to 

an effective permittivity decrease. Since our system is composed of several superposed materials, 

the second interpretation must be selected. It is indeed verified for the case of εi = 2 lower than both 



Chapter III Theoretical and modeling approach  
 

105 
 

matrix and particle permittivities. However, for εi = 12, this interpretation is inconsistent unless the 

increase in interphase thickness effect on electrode separations is faster than the contribution to the 

effective permittivity.   

 Moreover, we notice from Fig. III - 31 and Fig. III - 32 that for certain critical interphase 

permittivities and thicknesses, the force contrast can greatly decrease and hence, reach the 

detectability limit of EFM. This indicates that certain conditions might not allow detecting the 

interphase with EFM even if it is physically present. Consequently, in the following sections, 

discussions and simulations about interphase detectability within characteristic EFM limits are 

forwarded. 

 
Fig. III - 32 : Normalized force percentage regarding the matrix force value, on a 1 µm scan over a nanodielectric for 

different interphase thicknesses for εm = 4, rp = 25 nm, εp = 10, 20 nm from upper and lower surfaces and a. ɛi = 2 and b. 

ɛi = 12. 

 
Fig. III - 33 : Raw force intensities corresponding to the samples of Fig. III – 5 a. and b. at the center (x = 0 µm), for 

different interphase thicknesses. 

 

5.2.2.1. No matrix above and below the particle 

a) Interphase detectability conditions 

In order to detect the interphase, two main conditions should be accomplished. The first one is to 

localize the particle-interphase assembly completely embedded within the matrix, and the second 

one is to identify a difference between the presence and the absence of the interphase. Note that 
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sometimes the particle-interphase below the matrix can still be perceived on the surface topography. 

In such cases, the first condition is no more mandatory.  

 In order to accomplish the first condition, the force contrast ΔF between the matrix and 

particle-interphase assembly must be detectable. Thus, ∆F should be higher than the noise that we 

considered to be equal to 10 pN, typically [48].  

 As an example, Fig. III - 34 presents two cases for particle permittivities, εp = 10 and εp = 4, both 

possessing a radius rp = 25 nm and placed within a matrix of permittivity ɛm = 4. The permittivity εp = 

10 can model aluminum oxide nanofillers, and εp = 4, silicon dioxide nanofillers. The curve A of Fig. III 

- 34a. shows for an aluminum oxide nanofiller the variation of the absolute values of the force 

contrast ∆F versus interphase permittivity εi for an interphase thickness ti = 20 nm (inset A). Thus, the 

interval of critical permittivities ɛic
A for which the assembly is undetectable with these values of rp 

and ti is deduced (see annotations on Fig. III - 34a.). 

 Then, to accomplish the second condition, we present on the curve B of Fig. III - 34 a., the force 

difference between presence and absence of interphase (inset B). This difference must also exceed 

the detectability limit, which is verified for interphase permittivities outside the interval ɛic
B (see Fig. 

III - 34a.). 

 The final right condition is the combination of these two intervals, which goes in the case of 

aluminum oxide, from the minimum of the first one to the maximum of the second one. 

 
Fig. III - 34 : Force contrast absolute values between particle-interphase assembly and matrix, for a nanoparticle of 25 nm 

radius and 20 nm interphase thickness; a. for an ɛp = 10, inset A: particle-interphase assembly detection, inset B: 

interphase detection (assembly compared to particle alone); and b. for an ɛp = 4, inset: same conditions for particle-

interphase detection and interphase detection. 

 In the case of silicone dioxide particles of εp = 4, having an equal permittivity to the matrix one, 

as presented in Fig. III - 34 b., both conditions become similar. In fact, ∆FA becomes equal to ∆FB and 

critical interphase permittivities are directly deduced from the unique curve |∆FAB|. 

b) Critical interphase permittivities 

Fig. III - 35 a. and b. show the obtained critical interphase permittivities ɛic at different interphase 

thicknesses for two radii, rp = 25 and 50 nm of aluminum oxide and silicon dioxide nanoparticles, 

respectively. For both types of particles, we notice that the area between lower and higher εic curves 

decreases with the thickness of the interphase. Thus, higher interphase thicknesses seem to reduce 

the width of undetectable interphase permittivities. 
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Fig. III - 35 : Final critical combination εic values, [εi Min, εi Max], at different ti for interphase detection of a nanoparticle of: 

a. εp = 10, and b. εp = 4, having a 25 nm and 50 nm radii in a matrix of εm = 4 at zero depth. 

c) Critical width of interphase permittivity intervals versus particle permittivity  

In Fig. III - 36, we present the width variation of εic intervals corresponding to a particle radius 

rp = 50 nm, for ɛp = 2, 4 and 10, that correspond respectively to a particle of permittivity, lower, equal 

and higher than the matrix. The width has been measured by subtracting for each ti case, its 

corresponding upper and lower εic values ((εic Min – εic Max) of Fig. III - 35a.). It can be clearly noticed 

that the intervals width decreases with interphase thickness for the three cases of particle 

permittivities, in accordance to the observations of above paragraph. Moreover, whatever the 

thickness ti is, the lowest critical permittivity interval widths correspond to the case where particle 

and matrix permittivities are equal. This result appears logical, since in this case, any perceived EFM 

contrast must be due to the interphase creating the dielectric difference with the matrix. Thus, we 

conclude that higher interphase thickness, and closer particle and matrix permittivities seem to 

improve the probability of interphase detection. The investigation of the interphase in EFM is then 

more likely in nanocomposites with comparable filler and matrix permittivities.   

 
Fig. III - 36 : Width of critical interphase intervals for a particle of 50 nm radius for different particle permittivities below 

(ɛp = 2), equal to (ɛp = 4) and higher (ɛp = 10) than that of the matrix (εm = 4). 

5.2.2.2. Matrix layer above and below the particle 

a) Force contrast at several particle-interphase depths 

In reality, a thin layer of the unchanged polymer matrix should probably exist over and below the 

particle due to a non-perfectly controlled cutting process of the bulk material when preparing thin 

sample slices for EFM studies. Therefore, Fig. III - 37 examines the force contrast with 0 nm matrix 
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above and below particle-interphase assembly (inset A), with 20 nm of matrix layer above (inset B), 

below (inset C) and both above and below the particle-interphase assembly (inset D). The curves 

were obtained normalizing the measured signal in each case, to the corresponding one at the matrix 

region. In accordance to the case of a nanocomposite without an interphase (Fig. III - 24), for a 

nanodielectric model sample, we also found that the addition of a matrix layer simultaneously 

decreases the contrast and increases the apparent measured EFM diameter of the particle-

interphase inclusion.  

 In order to explain the contrast decrease with the addition of matrix layers, the same analysis 

adopted for a simple nanocomposite applies to a nanodielectric. In fact, the central region of a 

nanodielectric only differs with the additional layers corresponding to the interphase. At higher 

depths, the matrix layer in the central region balances out the effective permittivity of this region 

with that of the matrix at the borders. The decreasing dielectric difference explains the drop in the 

signal contrast of (B), (C) and (D) compared to (A). 

 Moreover, the effect of the depth from the upper surface, dup, is also found to be more 

pronounced than at low effects. The general decreasing intensity of the electric field in the sample 

depth in an EFM configuration can explain the difference between (B) and (C) cases. Furthermore, 

since at similar distances from the surface, thicker samples result in lower electric field intensity, the 

difference between (C) and (D) is understandable. 

 
Fig. III - 37 : Simulated 1 µm scans over a  nanodielectric with εm = 4, εp = 10, rp= 25 nm, εi  = 2 and ti  = 20 nm at different 

depths from upper and/or lower surfaces. 

b) Critical width of interphase permittivity intervals versus particle-interphase depth 

Finally, to complete interphase detection study, we measured the critical width of εic intervals for the 

case of a nonoparticle of 25 nm radius and εp = 10, presenting a 20 nm interphase thickness, for 

several matrix layer depths d from lower and upper surfaces. These intervals were calculated 

following the same procedure explained above (section 5.2.2.1.a). A fast rise in εic interval width can 

be noticed with increasing depth. As examined previously for a nanocomposite, the EFM contrast 

decreases with increasing particle-interphase assembly depth. The inclusion system becomes more 

difficult to be detected and thereby, any difference between absence and presence of interphase 

becomes unnoticeable. For fixed particle and matrix properties, a high dielectric constant interphase 

is needed to render it detectable. Particularly, at high depths, the εic interval width strongly 

increases, addressing the only possibility of interphases with extremely high permittivity to be 

detectable. Huge interphase dielectric constants have not been commonly reported in 

nanodielectrics. This result supposes the impossibility of interphase detection for inclusions deeply 
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embedded in the matrix. We deduce a characteristic thickness of around 70 nm for the detectability 

depth limit, in the range of our model. Subsurface imaging has always been a critical issue in scanning 

probe microscopies [49, 50]. Up to now, researches have only been able to detect metallic nanofillers 

with EFM, embedded within a limited depth of 40 nm from the matrix upper surface [50]. Thus, one 

must try to keep a relatively thin matrix layer above the interphase to improve the probability of 

interphase detection. 

 
Fig. III - 38 : Width of the critical interphase permittivities interval for 50 nm particle radius, ɛp = 10 and 20 nm interphase 

thickness calculated at different depths d from upper and lower surfaces. 
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 Conclusion 

This chapter aimed at improving our understanding of EFM probe response due to several types of 

dielectric samples. Starting by modeling the specifically chosen sample types and configurations, 

finally, we were able to interpret the signals over a nanodielectric presenting an interphase with 

different properties. 

 A nanodielectric has been electrostatically modeled as an association of three types of 

dielectric materials differentiated by their dielectric permittivities. The first material type takes the 

form of a spherical nanoparticle, surrounded by the second material and the resulting system placed 

into a matrix of the third material. 

 Based on the configuration of the chosen nanodielectric model, we studied the interaction 

between the EFM tip and potential sample types and geometries. In particular, we studied the 

response over bare substrate, planar homogeneous dielectric films, superposed dielectric layers, 

nanoparticle alone and nanoparticles located within a matrix.  

 In the absence of a dielectric film, the signal always decreases with the distance between 

electrodes, and increases with larger tips. Nanometric tip parts have however the greatest impact on 

force value and sensitivity at low distances. 

 The signal over homogeneous films rises with the dielectric permittivity of the film and 

decreases with its thickness. The sensitivity to the dielectric permittivity was found to be favored for 

materials of low dielectric permittivity and, also, thicker ones. The sensitivity to the film thickness 

was also proved to be enhanced with a low matrix permittivity and thin films. 

 For superposed films, the signal detects a general dielectric response from the sample. As a 

dielectric layer is added on the base matrix, their relative dielectric permittivities will change the 

signal behavior. When the permittivity of the added layer is higher than the initial layer, it grows the 

apparent permittivity and thereby, the signal. The latter increases with the added film thickness until 

reaching saturation of the increasing effective permittivity. The opposite behavior is obtained with 

the addition of a film with the lowest dielectric permittivity. Care must be taken in the interpretation 

of EFM experimental results when a possible configuration of the system in the form of superposed 

layers may be present. Signals might exhibit behaviors in contradiction with conventional ones over 

homogeneous films. 

 Next, the response versus a nanoparticle diameter and dielectric permittivity was examined. 

The signal was found to always rise with the permittivity. On the contrary, the nanoparticle diameter 

variation exhibits a more complicated effect on the signal. Compared to the response with a matrix 

possessing similar height, we found that the particle diameter lateral-size, highly affects the physics 

of the interaction. A certain kind of change in the interaction was found at specific relative values of 

tip-sample distance, tip radius, particle diameter and permittivity. 

For small diameters, the signal starts by decreasing with particle radius. For bigger ones, the 

interaction keeps on decreasing for low permittivities; whereas for high permittivities, the signal 

intensifies with the radius. We explained these behaviors with the fact that at low permittivities, the 

effect of a wider diameter is dominated by the influence on the interelectrode distance, so the signal 

decreases. Conversely, at higher permittivities, the intrinsic dielectric contribution to the response is 

more significant, and the broadening of the particle surface with the radius counteracts other effects; 

hence, increasing the signal. Furthermore, small particles bring the electrodes closer together, thus, 

the signal is hardly influenced by material polarization contribution. That being so, the increase in tip-

substrate distance dominates and explains the drop in these cases, for any permittivity. 

Nevertheless, we found that particle geometry influence is generally less pronounced either for small 
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particles, or big ones, however, of important permittivities. In conclusion, 3D materials interaction 

with an EFM probe is difficult to be apprehended intuitively. Several effects co-exist and co-influence 

the signal. A simulation of the exact geometry of the sample, probe and experimental parameters is 

then recommended.  

 The last configuration before directly studying a nanodielectric model sample was a 

nanocomposite of a homogeneous spherical nanoparticle, introduced into a matrix. We found that 

the matrix can contribute to the interaction at the middle of the same nanoparticle. Depending on 

their relative dielectric constants, the matrix affects the effective permittivity of the probed region, 

and changes the intensity of the signal. Moreover, a high dielectric difference between the inclusion 

and the matrix proved to enhance EFM contrast and thereby, affect the apparent EFM diameter of 

the particle. Furthermore, the relative dielectric properties of the nanocomposite can induce either 

attraction or repulsion in the lateral directions due to normal forces dissymmetry far from the center. 

We have also brought up the topic of subsurface imaging. Deeply-buried particles were found to 

exhibit low contrasts and extended EFM apparent diameter. We explained these observations by the 

effective permittivity of the probed region that gets closer to the matrix alone, decreasing the 

dielectric contrast, as well as the evanescent electric field in the depth of the sample, reducing the 

chances of detectability of the buried inclusion. We also showed that EFM lateral resolution is 

dependent on material properties and the relative dielectric permittivity of its components.  

 Then, the EFM tip interaction over a nanodielectric material with an interphase was addressed. 

Although the probe mainly encounters three regions of different capacitances, the signal was found 

to be only characterized by one maximum and a HWHM. We deduced that the particle-interphase 

assembly is detected as one apparent particle with one effective permittivity conserving the same 

diameter of the assembly. The interphase presence is manifested on both signal maximum value in 

the center and its contrast, and likewise, its HWHM. Thus, certain interphase properties might result 

in an undetectable signal differences within the sensitivity of the technique. We extracted critical 

intervals of interphase dielectric constants and permittivities that might show an absence of the 

interphase, although it is physically present. We found that for a low dielectric permittivity matrix, 

higher interphase permittivities and thickness, and lower depths, make the interphase more likely to 

be detectable. 

 One must note that although we focused exclusively on electrostatic force measurements with 

EFM, the electrostatic problem can be generalized. In fact, analogous results should hold for force 

gradient detection and for other scanning probe microscopies such as conductive or scanning 

microwave microscopy, in which tip and sample geometry and structure influence as well the 

measured response.  

 At this stage, we had acquired deeper information about EFM response in front of complex 

materials, typically, above a nanodielectric. Nevertheless, the study of nanodielectric samples of 

unknown interphase was considered to be too early. With the very few experimental studies on EFM 

for interphase characterization, our theoretical simulations become particularly essential to 

accompany in the following, proper experimental measurements, dedicated to “calibrate” the 

technique for future interphase study. In this regard, reference materials of relatively known and 

modifiable composition and shape have been prepared. These reference samples model 

electrostatically a nanodielectric, since they are made of three dielectric phases, synthesized in a 

simplified configuration of the particle-interphase-matrix assembly of a nanodielectric. The signature 

of each dielectric phase is its dielectric permittivity. The following chapter details the choice of 

constituting materials and preparation methods of these nanodielectric model samples. 
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“The most beautiful experience we can have is the mysterious. It is the fundamental emotion that 
stands at the cradle of true art and true science.” Albert Einstein 

 Introduction 

As defined earlier in this thesis, a dielectric model of a nanodielectric possessing an interphase is the 

association of three materials of different permittivities. The nanodielectric model is constituted by a 

nanoparticle covered homogeneously by the second material that plays the role of the interphase, 

and the matrix layer, which is the third material covering all. Moreover, since the dielectric model is 

used in order to set up an appropriate EFM experimental protocol for interphase detection, a 

judicious choice of packed materials must be performed. According to Chapter II, samples 

components must possess appropriate permittivities and geometry/dimensions ratios in order to 

present sufficient EFM contrast allowing interphase study.   

 Keeping that in mind, and using some of the most accurate nanomaterials fabrication 

methods, we designed and prepared samples in the form of a stack of several dielectric materials: 

spherical nano and mesoparticles (or sub-microparticles) covered by one or two different thin layers 

of other materials. 

 Samples description will be presented first, followed by the description of the adopted and 

developed EFM experimental protocols and the basic principles of the complementary 

characterization techniques.  

 Samples description 

The materials used in this study consist of spherical particles deposited on a metallic substrate and 

subsequently covered by either one or two shells. Two types of spherical particles were used: silicon 

dioxide (SiO2) of 20 nm average diameter and polystyrene (PS) of 250 nm and 380 nm approximate 

diameter. We mainly utilized 3 types of shells: aluminum oxide (Al2O3), silicon dioxide and polyvinyl 

acetate polymer (PVAc). Note that all of the materials are electrical insulators with different 

dielectric permittivities. The range of layers thickness is between 20 and 200 nm. Hereafter, particles 

deposition and preparation methods with layers synthesis and deposition techniques will be detailed.  

2.1. EFM substrates 

 

Samples substrates adapted for EFM measurements were based on (100) oriented silicon (Si) single-

crystals of high resistivity with a thin native oxide layer (Si-Mat Silicon materials, ref: 1014G1007). A 

50 nm gold thin film has been sputtered above a 10 nm chrome fixing layer with plasma sputtering 

deposition to obtain a conductive substrate surface (see 2.1.2 paragraph). Consequently, a 

conductive silver paste was sufficient to establish the electrical contact with EFM metallic specimen 

holders. Silicon based substrates were chosen owing to their very flat surface with low roughness (< 

1 nm), much lower than the diameter of the particles to be subsequently deposited [1].  

 

Plasma Sputtering Deposition (PSD) is a physical vapor deposition method of thin films in which a 

high-purity source (or target material) is subjected to a plasma gas. The energetic atoms/ions 
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produced in the plasma gas knock-off source atoms, which then travel and condense into a thin film 

on the substrate (Fig. IV - 1). 

 
Fig. IV - 1 : Schematic of a plasma sputtering deposition. 

 Under a vacuum environment, the sample is first screened by a shutter and the sputtering gas 

is introduced into the chamber until the desired pressure is stably reached. A radio frequency power 

is applied next to ignite the plasma. Some of the produced ions, electrons and radicals are in high 

energy states and hence bombard the target material settling the sputtering process [2]. Once the 

pre-sputter sequence is finished, the shutter opens and the extracted species get then directed 

ballistically in the deposition chamber, and condense on the entire surface including the substrate. 

During deposition, substrates are rotated to enhance uniformity. The shutter is timed to close after 

desired film thickness is achieved. When different types of materials are deposited, shutters are also 

used to expose the only desired material source. Some of the advantages of PSD are the high purity 

film and the fact that no additional heating of the substrate is needed.  

 An Alcatel sputtering plasma argon has been used to deposit a 50 nm gold (99.95 % purity) 

above a 15 nm chrome (99.95 % purity) fixing layer on the silicon substrates. The process has been 

performed under 0.03 mbar with 130 W radio frequency power. 

 

For subsequent polystyrene spheres deposition, EFM substrates were exposed to oxygen (O2) plasma 

and little argon (Ar) percentage for 2 minutes at 50 W and 0.011 mbar to remove organic compounds 

and enhance hydrophilicity [3-6].  

2.2. Particles 

 

2.2.1.1. Definition 

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula: SiO2. The 

structure of SiO2 is sketched on Fig. IV - 2. Silica can come naturally, or synthetically, in a crystalline or 

amorphous state. However, in nature, SiO2 is often found as a crystalline solid, with a unit structure 

like that in Fig. IV - 2b. Each silicon atom is covalently bonded to four oxygen atoms (O) in a 

tetrahedral way (Fig. IV - 2a.). Although Si is combined to 4 O atoms, the proportion is actually 1:2, 

which explains the empirical formula: SiO2. In amorphous SiO2, no long-range order is present, but 
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there is local ordering with respect to the tetrahedral arrangement of O atoms around Si (Fig. IV - 

2c.). 

 SiO2 covalent bonds are highly polar. However, due to the symmetry of the tetrahedral 

molecule geometry, the resulting SiO2 structure is non-polar. On the other side, SiO2 nanoparticles 

for example are often reported as highly attractive centers for water molecules, which are polar 

molecules. One possible reason behind this attraction is the electrostatic hydrogen bonds that 

develop between partially positive hydrogen atoms in water and partially negative oxygen in silica. 

Furthermore, some fabrication techniques introduce polar groups in the lattice or at the surface 

conferring upon silica network polar properties, e.g, the left hydroxyl groups at the surface of sol-gel 

synthesized silica gels [7] or water molecules and silane functions with plasma-enhanced chemical 

vapor deposition [8]. A generally accepted relative dielectric permittivity of SiO2 is 3.9 [9-11].  

 
Fig. IV - 2 : Silicon dioxide chemical structure of: a. tetrahedral basic unit, b. quartz like silica crystal and c. amorphous 

network [12].  

2.2.1.2. Silicon dioxide nanoparticles deposition 

SiO2 nanoparticles were used as purchased from Sigma-Aldrich (ref: 791342), possessing a non-

crystalline structure with a nominal diameter < 50 nm, 2.3 triethoxylpropylaminosilane functionalized 

and dispersed in aqueous solution. In order to spread out the nanoparticles on the substrates, 10 µL 

of SiO2 solution was first mixed with 200 mL of Milli-Q water (18.5 Ω.m) for 30 min with sonication by 

a tip (20 %). Then, the same amount of the resulting solution (SiO2 + Milli-Q water) was mixed with 

ethanol absolute. For this step, an ultrasonic bath was used for 5 min. Finally, one droplet of the 

prepared solution was spread on the substrate placed at plane position until the solvent was 

naturally dried in air, in a partly opened box.  

 

PS has been chosen as a second type of particles to represent the template for our model samples. In 

fact, PS deposition has been extensively studied in literature for highly organized and controllable 

structures, thereby, optimal for precise synthesis of model samples. 

2.2.2.1. Definition 

Polystyrene (PS) is a synthetic, thermoplastic polymer with an aromatic structure. It is formed by the 

polymerization of the styrene monomer resulting in the chemical formula: (C8H8)n (Fig. IV - 3). 

Polystyrene is a non-polar polymer with accepted relative permittivity around 2.6 [9, 10]. Moreover, 

PS dielectric polarization has been already characterized at the nanoscale in the literature [10, 13].  
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Fig. IV - 3 : Chemical reaction diagram showing polystyrene formed by polymerization of the styrene monomer [14]. 

2.2.2.2. PS deposition 

PS particles of 1 µm initial diameter purchased as a colloidal liquid solution (Sigma-Aldrich, ref: 

89904) were deposited on substrates using the self-assembly property of PS spheres (PSS) [15-17]. 

PSS self-assembly produces periodically organized monolayers tightly adsorbed on the majority of 

substrate surface.  

 These monolayers (or multilayers) are usually used as mask/substrates for metal or ceramic 

deposition for numerous applications. After thin films deposition, the spheres are subsequently 

removed, keeping special designed structures. This combination of bottom-up and top-down 

techniques is known as nanosphere lithography.  Further information on nanosphere lithography can 

be found elsewhere [17-19].  However, in our case, PSS were not removed, but used as base particles 

for ulterior addition of dielectric layers, modeling interphase and matrix. Several methods for PS 

monolayer deposition have been adopted in literature, each with different degrees of complexity and 

efficiency [17, 20-23]. 

 In this work, two methods have been developed for PSS deposition based on two techniques: 

floating-dip and spin-coating. 

a) Floating-dip 

For the floating-dip method, we dropped 40 µL of the initial solution diluted with equal amount of 

ethanol, on a glass substrate of 2  2.5 cm2 approximate surface area. Glass substrates were treated 

with oxygen plasma for 2 minutes in order to increase the hydrophilicity of the surface [3-6]. During 

deposition, we fixed the substrate at 45 ° approximately from the horizontal. Then, we gently 

immersed the glass substrate into water as shown in Fig. IV - 4a. A glass vessel of 7 cm diameter and 

100 mL capacity filled with 80 mL of Milli-Q water was used. PSS start to organize themselves on the 

water surface forming a hexagonally close-packed monolayer. A succeeded organization can be 

directly noticed with bare eyes due to the diffraction of visible light from the formed PSS closely-

packed monolayer with periodic nanometric separations (see Fig. IV - 7) [24]. Different orientations 

of the crystal domains result in different colors at the same white light angle. A drop of sodium 

dodecyl sulfate (SDS) solution (10 wt. % in water) was subsequently added on the water surface to 

consolidate the particles (Fig. IV - 4b.). Then, the PSS monolayer was cautiously transferred on the 

substrates prepared for EFM characterization as shown in Fig. IV - 4c. The substrate was kept to dry 

in air on an inclined substrate holder, in a partly opened box.  

 
Fig. IV - 4 : PSS deposition process, a. insertion of glass substrates with the solution of PSS (white spheres) organizing on 

the air-water interface; b. addition of SDS drop, and c. transfer on substrates of PSS monolayer. 
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 Please note that the experimental protocols of SiO2 nanoparticles deposition and PS floating-

dip self-assembly have been mainly developed by the PhD student Viktoriia Fedorenko at the 

European Institute of Membranes (IEM) in Montpellier, thanks to the collaboration with Dr. Mikhael 

Bechelany. 

b) Spin-coating 

Another technique has been investigated in order to deposit PSS in a relatively more reproducible 

way. In fact, floating-dip method is useful since it can provide a large monolayer out of one 

deposition. However, many steps are experimentalist controlled, and hence, lack of sufficient 

precision for reproducible results at any deposition time/conditions. 

 Similarly to the previous method, we mixed a 1:1 solution of initial PSS solution and ethanol. 

The resultant diluted solution is kept for 1 min in an ultrasounds bath to ensure that particles had 

been homogeneously dispersed. EFM substrates have been hydrophilized in O2 plasma (50 W, 0.001 

mBar). 7 µL of the solution was then spread over the whole substrate surface before spinning. We 

used the following program for the spinning process: 

i. 15 s at 100 rpm with a ramp of 2000 rpm 

ii. 30 s at 500 rpm with a ramp of 2000 rpm 

iii. 60 s at 2000 rpm with a ramp of 2000 rpm 

Each spinning step has a great influence on the final result [25, 26], in addition to the influence of 

substrate surface hydrophilicity and area, solution concentration, solvent used, temperature, 

humidity etc. 

 
Fig. IV - 5 : Image of spin-coating self-assembly of PSS. 

c) Comparison of PS deposition methods 

As it has been previously noticed, the transfer of PSS with floating-dip method from the glass 

substrate to the water-air interface is highly sensitive to any mechanical vibration. Since this step is 

manually driven, then, in addition to other ambient thermodynamical parameters, this reduces the 

chances of self-assembly. Moreover, when the assembly has been well established, the extraction of 

the monolayer to the substrate must also be carefully driven in order to preserve the monolayers at 

the air-water interface. Furthermore, this transfer can carry an amount of PSS from the water surface 

that has not been ordered and will overlap on the extracted monolayer, reducing then the 

percentage of organized regions (Fig. IV - 6a.). 

 On the other hand, since most spin-coated monolayers procedures are automated, this 

technique provides relatively more efficient and reproducible results. Nevertheless, the drawbacks 

are the coverage or the surface density of the periodic monolayers. PSS self-assembly with spin-

coating is well known to suffer of holes-like domains in PS monolayers (Fig. IV - 6b.) [25]. Hence, 

Self-assembling PSS 

Spinning substrate 

Spin-coating rotating stage 
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although EFM measurements do not require more than a few microns of ordered domains, the 

optical positioning of the probe before engage suffers from this level of precise resolution. 

 Hence, in both methods, either small regions limited by multilayered (or unordered PSS) or 

small regions limited by void areas, can relatively complicate the positioning for AFM imaging. 

Therefore, these two methods have been used interchangeably, however preserving one specific 

synthesis technique for each set of compared samples.  

 
Fig. IV - 6 : Optical microscopy images of PSS deposited with: a. floating-dip method, and b. spin-coating. 

2.2.2.3. PSS diameter modification - Dry O2 plasma etching 

As the process of plasma etching has proven to effectively reduce particles size [27, 28], the films of 

PS particles were radially etched in a plasma reactor with O2 as a process gas. Since substrates 

possess a slower etching rate, gold surface topography remained almost unchanged. The samples 

were inserted into the reactor, and chamber pressure reached ≈ 0.011 mbar. Oxygen was introduced 

using a needle valve, and the pressure was equilibrated to 0.6 mbar by adjusting the valve. After 

equilibrium pressure is reached, a radio frequency power of 50 W at 0.15 A was applied until 

obtaining the desired diameter (around 250 nm after 15 min etching) [29]. It must be noted that 

although particle diameter can be monitored by the amount of removed substance, the distance 

between particles center is fixed and is determined by the initial diameter of the closely packed 

particles (spacing ≈ 1 - 1.2 µm). 

 
Fig. IV - 7 : Image of substrates with PS self-assembled spheres fixed to one electrode for plasma etching (vertical 

electrodes). 

 Concerning the mechanism of dry etching, the latter proceeds in the following four main steps 

after plasma generation:  

Voids Agglomerations 

(a) Floating-dip (b) Spin-coating 

20 µm 20 µm 

Plasma reactor vertical 

electrode 

Fixed substrate 

Ordered PSS monolayer 
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i. Reaction species, such as neutral radicals and ions (in the case of O2 gas), are produced in the 

plasma; 

ii. Those reaction species are transported and adsorbed on the target sample to be etched 

iii. Reactions (chemical or physical) take place at the target sample surface, and byproducts are 

created; 

iv. Byproducts desorb from the target sample surface, ending etching procedure.  

Etching driven by radicals reaction species proceeds in the three dimensions since resultant species 

move randomly by Brownian motion [30]. This confers an isotropic etching that is supposed to 

preserve a spherical shape for PS spheres to a good extent.  

 In addition to material etching, O2 plasma activates the surface state of the sample, PSS and 

gold substrate surface for subsequent thin films deposition. This is due to the creation of hydrophilic 

surface groups, in addition to the rougher PS surface that results after dry etching [3-6, 31].   

2.3. Shells 

 

2.3.1.1. Definition 

Aluminum oxide, also known as alumina, is a metal-oxide of chemical structure: Al2O3. In addition to 

silica, alumina is, too, among the widely used inorganic compounds in electrical engineering. The 

generally reported dielectric permittivity of Al2O3 is around 9.8 [10, 11]. 

 
Fig. IV - 8 : Aluminum oxide molecular chemical structure. 

The atomic layer deposition method (ALD) was used in order to grow alumina layers above 

nanoparticles [32, 33].  

2.3.1.2. Atomic layer deposition 

ALD is a thin film deposition technique where the thickness of the film is precisely controlled at the 

atomic level. The deposition is based on sequential chemical reactions between gas precursors and 

the surface of the material. After each cycle of one precursor, an inert gas is introduced to remove 

the remaining precursor and the resulting byproducts (see Fig. IV - 9). 

 For alumina deposition, we used trimethylaluminium, (TMA) or (Al (CH3)3), as an aluminum 

precursor, H2O as an oxygen source and argon as an inert gas. The precursor is initially a liquid 

solution. The evaporated molecules at the surface of the liquid are used at their vapor pressure. The 

generally accepted and dominant reaction mechanism occurring at steady state (Fig. IV - 9) [34] is: 

 à  

 

(IV.1)  

 à  (IV.2)  

 

 A custom-made ALD reactor at the European Institute of Membranes (IEM) was used for the 

synthesis of Al2O3 films [35]. ALD was performed using sequential exposures of TMA and H2O 

separated by a purge of argon with a flow rate of 100 standard cubic centimeters per minute (sccm). 
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The deposition regime for Al2O3 consisted of 0.1 s pulse of TMA, 40 s of exposure, 60 s of purge with 

argon followed by 2 s pulse of H2O, 40 s of exposure, and finally 60 s purge with argon. The film 

thickness was determined by the number of ALD reaction cycles. Thus, 20, 60, 100, 150 and 200 nm 

thick Al2O3 layers were deposited by 100, 300, 500, 750 and 1000 number of ALD cycles, respectively. 

The deposition was performed at 80 ° C (< glass transition temperature of polystyrene). The typical 

growth rate for Al2O3 coating during these cycles is found to be 0.2 nm per cycle. The final theoretical 

configuration of the samples is presented in Fig. IV - 10. 

 
Fig. IV - 9 : Atomic layer deposition cycle showing the formation 

of Al2O3 coating using TMA and water precursors and purge 

steps that remove byproducts [36]. 

 

 

 

 

 

 
Fig. IV - 10 : Schematic of the resulting sample 

configuration after ALD. 

 Since precursors quantity is enough to occupy the whole chamber volume, and hence, cover 

the whole sample surface, and with the enough chosen exposure time, chemical reactions are 

supposed to occur evenly on the whole sample surface including the underside of the round beads. 

The resultant configuration is hence believed to be closely similar to the sketch of Fig. IV - 10. Note 

that the perfect aspect of film line at particle edges with the substrate is somehow exaggerated. This 

figure does not also show the relative roughness of PS spheres surface. The characterization of 

PS+Al2O3 samples will be studied in Chapter V.    

 

2.3.2.1. Definition 

Polyvinyl acetate (PVAc) is a thermoplastic synthetic polymer with the chemical formula: (C4H6O2)n. 

PVAc is a hydrophobic polymer with a dielectric permittivity of 2.6 at ambient temperature [9, 10].  

 
Fig. IV - 11 : Chemical reaction diagram showing polyvinyl acetate production after polymerization of vinyl acetate 

monomers [37]. 
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2.3.2.2. Spin-coating 

We used spin-coating to deposit PVAc films on the surface of the particles with or without Al2O3. A 

solution of PVAc mixed with a highly evaporating solvent has been used. We mixed 0.25 mg of PVAc 

with 5 mL toluene and stirred them with magnetic mixing until no visible particulates are visible 

(around 30 min). The spinning program used for thin film deposition is the following:  

i. 15 s at 100 rpm with a ramp of 2000 rpm 

ii. 15 s at 500 rpm with a ramp of 2000 rpm 

iii. 60 s at 2000 rpm with a ramp of 2000 rpm 

Once spin-coated, samples were kept to dry further in ambient conditions. As a first step, films 

homogeneity and thickness have been verified and monitored upon the deposition of PVAc on bare 

substrates, with no PS particles. However, since our samples are highly rough due to the sub-

micrometric PS spheres, the mechanism of film spreading is not obvious to expect [38]. A detailed 

discussion on the characteristics of the resulting film over PS+Al2O3 templates will be forwarded in 

Chapter V. 

 

Silicon dioxide layers have been deposited with plasma sputtering in a Plassys 450S reactor using a 

high purity silicon dioxide target source. 

 The deposition regime for SiO2 consisted on a preliminary 20 s exposure to 100 sccm Ar plasma 

at 50 W while substrates and SiO2 target sample are screened. Then, the target shutter was opened, 

and a presputtering step was maintained for 30 s with 15 sccm Ar and 0.8 sccm O2 plasma gas at 

200 W. Next, the planetary rotation of substrates was launched and shutters opened, permitting the 

deposition of SiO2 film. The latter thickness was determined by the exposure time to SiO2 sputtering.  

The final expected configuration of the samples is likewise similar to Fig. IV - 10. However, in contrary 

to ALD, it must be noted that although sputtered SiO2 molecules invade the whole deposition 

chamber; due to the spherical geometry of PS particles on the surface, a shadowing effect can occur. 

Then, the final geometry is probable to slightly differ from Fig. IV - 10. In fact, SiO2 might not cover 

the very low parts of the particles and the below substrate regions.  

 EFM experiments description 

EFM measurements were performed with a commercial AFM (Bruker, previously Veeco, 

EnviroscopeTM). The probe consists of metal covered tips (Budget Sensors: ElectriMulti75-G and 

µmasch: HQ:NSC18/Pt) supported by a cantilever electrically connected to a metallic sample holder 

and biased at an electrical potential. Manufacturers claim a radius below 25 nm and an average 

stiffness of 3 N/m. 

 In this entire thesis, EFM measurements have been performed in the force gradient detection 

method. However, both DC and AC electrical excitations were used. Since the basics of EFM 

experiments have been already described in Chapter II, in the following, each method is briefly 

reminded with further specification on the adopted experimental protocols. 

3.1. DC-force gradient detection 

The property of interest in our study is the pure dielectric contribution of each probed region. This 

particular response lies within the capacitance C of the probe-sample system. As mentioned in 

Chapter II, the 2ω force-gradient extraction G2ω accounts to the unique capacitance contribution, 
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contrarily to the DC component GDC, influenced by static surface charges and contact potential. 

Nevertheless, since DC-biased force gradient detection is usually available in any standard AFM 

equipped with EFM module, we developped an experimental protocol that permits the study of the 

pure capacitive contribution from DC component. 

 During the second scan, the frequency shifts ∆f0 due to the force gradients sensed by the 

probe can be expressed in the DC excitation mode as a second order polynomial function of the bias 

voltage VDC. Combining equations II.28 to II.17 of Chapter II, ∆f0 (VDC) writes:  

  (IV.3)  

 

where . We remind that C'' is the second derivative of the probe-to-sample 

capacitance; so it can be deduced that αDC depends solely on the dielectric properties of the probed 

region. On the other hand, β and γ are the coefficients that depend on local surface charges and 

contact potential in addition to the capacitance derivatives. 

 The parabolic dependency of Δf0 to DC bias voltages has been studied in details in our work 

published in ref [39]. It has been able to point out the presence of surface charges over epoxy 

samples without preliminary charge injection. As it can be shown in Fig. IV - 12a. and b., a linear 

tendency of the curves predominates. β and γ coefficients have been used then to indicate the sign 

and an order of magnitude of these localized charges. This has been made possible by associating the 

values of the latter coefficients to numerical and analytical modelling of the probe surface 

capacitance and the electrostatically coupled area, respectively. 

 
Fig. IV - 12 : a. and b. Experimental DC - Δf0 curves obtained on epoxy samples at different tip-to-sample distances with a 

positive charge density and negative charges densities, respectively [39]; c. an example of DC measurements and second 

order polynomial fitting lines over a bare metallic substrate and a thin aluminum oxide dielectric film. 

 Consequently, for the DC-adopted protocol, EFM maps were performed at different regions of 

all samples at VDC  = 0, 5 and -5 V. Then, the average ∆f0 on a few number of pixels at the top of the 

spherical particles has been extracted for each voltage. We fitted ∆f0 (VDC) curves with a polynomial 

function similar to eq (IV.3) in order to extract αDC coefficient at different tip-sample distances (see 

Fig. IV - 12c.). This coefficient has been used in ref [40], associated to modeling with the Equivalent 

Charge Method, in the aim of extracting the dielectric permittivity of PVAc particles placed into a PS 

matrix. 
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3.2. AC-force gradient detection 

 

 
Fig. IV - 13 : EFM apparatus setup including the external modules for AC force gradients measurements: (1) PC, (2) signal 

access module, (3) Digital Instuments Enviroscope controller, (4) Nanoscope IV controller, (5) laser regulation knobs, (6) 

photodiode regulation knobs (internal mirror), (7) AFM head, (8) stage, (9) arbitrary function generator, (10) lock-in 

amplifier, (11) 0-5V switch. 

With AC excitation, G2ω component has been measured with custom-made external installations to 

the standard EFM apparatus. A NanoScopeTM Signal Access Module (SAM) (Fig. IV - 13, (2)) was 

plugged to both, Digital instruments and Nanoscope IV controllers (Fig. IV - 13, (3) and (4), 

respectively) in order to get access to their output signals, along with monitoring measurement 

inputs and feedback controls. An external arbitrary function generator (Sony Tektronic - AFG310) 

(Fig. IV - 13, (9)) was used to provide the AC excitation signal between the probe and the sample 

during the second EFM scan. Appropriately collected from the SAM output channels, the measured 

phase shifts were sent to an external LIA (EG&G Instruments - Model 5302, Fig. IV - 13, (10)), which 

was used to demodulate the ∆Φc (2ω) at the second pass. The same AC voltage of the external 

generator was utilized as the reference signal for the LIA. The internal LIA bandpass filter, set at the 

double of the electrical excitation reference frequency, gave rise to the RMS of the 2ω demodulated 

signal. A 0 - 5 V switch (Fig. IV - 13, (11)) was used to monitor the bias so it only gets injected during 

the interleave mode (the second pass). For that, the switch was biased by the internal interleave 

channel signal, fixed to 5 V. ∆Φc (2ω)  raw data were finally collected on an EFM image at the 

computer through an analog-digital converter, with a spatial resolution proportional to the 

measurement speed, set to 0.1 Hz in the majority of experiments.  

The AC electrical pulsation ω must be chosen wisely: 

i. Lower than the probe mechanical resonance angular frequency ω0 of the cantilever in order 

to avoid interference with the mechanical drive signal that oscillates at ω0, 

ii. lower than the cutoff frequency of the first-order like behavior of phase shifts signals (see 

Chapter II, paragraph 4.2.2.3.b), 

iii. and large enough to minimize lock-in detection noise signal in order to increase the number 

of demodulation integration cycles. 

We used a 100 Hz electrical frequency, much lower than f0 (60-70 kHz). The cutoff frequency is 

around 270 Hz. Hence, the reduction due to filtering of the signal was calculated to be around 0.5 (eq 

(II.34)).  Moreover, as we set the LIA to the fast demodulation mode, the time constant of 20 ms is 

sufficient for accurate measurements. 
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 Raw ∆Φ2ω electrostatic data was acquired on EFM images in Volts. When comparison to 

simulations was expected, a conversion from Volts to Hz was needed at the first place. Afterwards, 

since we mainly studied α coefficients, then similarly to DC experiments, α2ω were measured. 

Therefore, the following conversion steps from raw ∆Φ2ω to real 2ω-Δf0, and subsequently real α2ω 

coefficients, were adopted (Fig. IV - 14):  

 
Fig. IV - 14 : Conversion coefficients from raw ∆Φ2ω in Volts, to real α2ω in Hertz per square Volts. 

 Simulations compute αDC; so in order to correlate AC measurements to simulations, it must be 

noted that the amplitude of the demodulated 2ω-signal is a DC response, and hence experimental 

α2ω are static values. Comparing equations (II.28) and (II.30) of Chapter II, it can be deduced that α2ω 

are simply equal to the half of αDC at similar measurement conditions. Hence, αDC simulation values 

were divided by 2 to get the corresponding simulation-α2ω and compare to experimental-α2ωvalues of 

Fig. IV - 14.   

 Complementary characterization techniques 

In addition to the main characterizations with EFM, the following described techniques accompanied 

EFM measurements for comparisons and complementary informations on our samples. In particular, 

the elemental chemical composition, thin films thickness and surface composition phases were 

investigated.  

4.1. PeakForce tapping - Quantitative Nanomechanical Mapping 

PeakForce tapping-Quantitative Nanomechanical Mapping (PF-QNM) is an easy-to-use, quantitative 

AFM method to measure materials nanomechanical properties [41]. The principle of PF-QNM lies on 

the extraction of force-distance curves that are allowed since the probe is slowly oscillating (≈ 1 kHz) 

[42]. At each probing position, the force is measured regarding the separation between the tip and 

the sample. Close to the surface, the force highly strengthens, which roughly drags the tip to jump 

into contact with the surface. As the separation continues to decrease, both bodies stay in contact 

while repulsion forces between them increase. When the set-point PeakForce is reached, the tip is 

brought to retract back from the surface. However, when the sample is relatively soft, the tip stays 

adhered to a certain extent. This is reflected in a hysteresis on the force-distance curve (Fig. IV - 15). 

The maximum adhesion force with the sample depends on the relative mechanical properties of the 

tip-sample system. Since the tip is usually sufficiently stiff, a high adhesion force represents a soft 

specimen, as it retains longer the tip to the surface.   

 In this work, measurements were performed on a Bruker MultiMode V8 microscope at room 

temperature. An RTETAP525 cantilever model has been used, supplied by Bruker. On each force 

curve, the maximum force value corresponds to the peak force and it is used as the feedback signal. 

The cantilever repeats the cycles from (A) to (E) (Fig. IV - 15) at a fixed frequency, typically 1 kHz. The 

tapping amplitude was set at a constant value of 250 nm. 
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Fig. IV - 15 : Force curve versus tip-sample separation including: (A) approach, (B) jump-to-contact, (C) PeakForce, (D) 

adhesion and (E) retraction. [41]. 

4.2. Scanning electron microscopy 

Scanning Electron Microscopy (SEM) is a type of electron microscopies, widely applied to the study of 

nanoparticles and thin films, owing to the high resolutions attainable with an electron-probe and the 

versatility of acquired informations.  

 SEM uses a beam of electrons that are accelerated with a high voltage in a vacuum chamber, 

and focused with electromagnetic or electrostatic lenses [43]. Electron-matter interaction results in 

several elastic and inelastic phenomena allowing for the derivation of lots of informations on the 

sample [43, 44]. Fig. IV - 16b. summarizes all possible phenomena and resultant output from the 

interaction of a high energetic electron beam with a specimen.  

 
Fig. IV - 16 : a. The different types of interaction between electrons (e’s) and a sample, and b. Schematic of secondary-

electrons imaging: contrast is dominated by the so-called edge effect, resulting in an image of sample morphology [45]. 

 Typical SEM signals used for imaging include principally secondary electrons (SE). SE result 

when a primary electron transfers its energy to a bound electron, enough to knock it out of the atom. 

The extracted electron is the secondary electron.  Since SE possess a low-energy, they can get easily 

scattered and hence, they are usually collected from the first few nanometers of the surface. 

Consequently, SE contrasts represent the morphology of the specimen (see Fig. IV - 16b.). 

 Backscattered electrons (BSE) are primarily electrons that, within the specific angle of 

incidence, have been elastically scattered from the positively charged nucleus, instead of being 

captured by it. BSE will hence come back out with, optimally, no energy loss. Therefore, BSE contrasts 

are dependent on the atomic number of the probed region atoms (or on the density).  

 When the incident electron beam possesses sufficient energy, it can remove a core electron, 

leaving subsequently a hole. This vacancy is likely to be filled up by an electron from a higher level. 

The energy released from the recombination can be: either transferred to another electron that gets 

A 
E B 

D 

C  

(a) (b) 
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ejected from the atom, with this second electron called Auger electron, or emitted by a photon. 

Since the initial vacancy took place in the inner shells, high energy photons get released, typically, X-

rays. 

 
Fig. IV - 17 : Energy levels diagram of copper showing Kα and Kβ transitions [44]. 

Each atom has a set of unique electron energy levels. Consequently, the interpretation of photons 

and particularly, the X-ray dispersion spectrum is used to analyze the elemental composition of the 

specimen lines (called Energy Dispersive X-ray Spectrometry or EDS) are commonly identified by two 

letters and a number (Fig. IV - 17): 

i. The first letter indicates the shell containing the initial vacancy (according to Rutherford-Bohr 

model of an atom: K, L, M…), 

ii. the second one specifies the group to which the transition belongs in a decreasing order of 

importance that filled up the vacancy (α for a L to K or M to L transition, β for a M to K 

transition…), 

iii. and the number denotes the intensity of the line within the group in a decreasing order (1, 2, 

3…).  

An FEI, INSPECT S50 electron microscope was used, equipped with an EDAx-AMETEK system for 

EDS measurements. The used acceleration voltage was set to 20 kV, with around 124 eV resolution 

taken at 10.1 mm from the surface.   

4.3. Ellipsometry 

Ellipsometry is a highly sensitive optical measurement technique to study the dielectric properties 

(refractive index, dielectric permittivity tensor), roughness, crystallization and thickness of thin semi-

transparent films.  
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Fig. IV - 18 : Schematic view of an ellipsometry measurement in reflection configuration. The linearly polarized beam is 

incident on the sample from the right side. After reflection, the beam polarization state becomes elliptical and pursuits 

its propagation on the left side [46].  

 The incident light beam is linearly polarized with a polarizer and sent at a fixed angle Φin to the 

sample surface. The electromagnetic wave polarization is defined by the direction of its oscillating 

electric field. The latter can be viewed as the addition of two vectors: one in the plane of incidence (p 

polarized) and the second normal to the plane of incidence (s polarized). Since the p and s 

components do not reflect in the same way at the interface of two media of different refractive 

index, the linearly polarized incident beam becomes elliptical upon reflection [47]. The reflected 

beam is analyzed, and two quantities are measured denoted by Ψ and ∆, which are related to Fresnel 

reflectance coefficients by the following [48]:  

 
 

(IV.4)  

 and  are respectively the p polarized and s polarized reflectance Fresnel coefficients. These are 

complex vectors. Ψ is the ratio of the amplitude of Rp over Rs,and ∆ represents the phase lag 

between the p and s components of the reflected elliptical wave. Ψ and ∆ are thus a function of the 

properties of each layer of the sample: refractive index, absorption coefficient and thickness. λ is the 

wavelength of the incident light, usually known in addition to Φin. In order to determine material 

properties, a spectroscopic measurement is usually performed. Afterwards, the obtained Ψ and ∆ 

spectrum must be inevitably fitted to an appropriate model in order to identify the properties of the 

sample. A common model used for dielectrics, where there is no need to enter the refractive index of 

the film, is the dispersion model. Ellipsometry owes its high sensitivity to the measurement of a 

relative value (ratio of Rp over Rs), unlike absolute light measurements spectroscopies. 

4.4. Stylus profilometry 

The principle of stylus profiling is at the heart of the operation of first scanning probe microscopies 

[49]. A stylus profilometer uses a physical probe to directly reproduce the height of a step on the 

sample surface. While the probe is moving in contact along the surface, a feedback loop monitors the 

amount of torque acting on the stylus from the pits and valleys of the surface. A set-point force value 

is thereby maintained by mechanically displacing the z position of the probe. Those changes are 

subsequently used to reconstruct the surface [50].  

 This technique has proved very good accuracy for thin films measurements. Since it is a 

contact technique, it is independent of surface reflectance and substrate nature. Moreover, stylus 

profiling provides direct surface measurements with no need for modeling. Similarly to AFM, the 

lateral resolution is limited by the probe radius. Nevertheless, as we measure planar thin films on a 

wide step, there is no special need for high spatial resolution. 
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 A Veeco profilometer, DEKTAK 150 model, has been used with a 5µm stylus radius. Typical set 

up force  was fixed to 5 mg with an approximate 0.1 µm scanning resolution.   

 
Fig. IV - 19 : Schematic of stylus profilometry operation principle [51]. 
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 Conclusion 

In this Chapter, we defined and described the nanodielectric model samples of this thesis. 

Nanocomposites model samples are made of nanoparticles of either silicon dioxide or polystyrene. 

After dispersion on the substrate, SiO2 were subsequently covered by aluminum oxide. On the other 

hand, PS microspheres were self-assembled in organized monolayers and etched with oxygen plasma 

in order to reduce their diameter and produce well organized arrays of nanoparticles with periodic 

separations. PS nanospheres have been covered by different types of shells, namely, aluminum 

oxide, silicon dioxide and polyvinyl acetate. Al2O3 has been prepared with atomic layer deposition, 

SiO2 with plasma sputtering deposition and PVAc films with spin-coating. These shells either model 

the interphase or the matrix. According to the experimental methods developed in the following 

chapter, different types of layers assemblies will be utilized. 

 Next, DC and AC-EFM experimental protocols and set up have been described with the 

justification of each choice. PeakForce Tapping-Quantitative Nanomechanical Mapping has been 

described as well, for it has been used later in Chapter V, to distinguish two phases of different 

stiffness. Morphological and chemical elemental analysis measurements were conducted with 

scanning electron microscopy. In addition to SEM, thin films height values were also measured with 

ellipsometry and stylus profilometry. The basic working principles of all these complementary 

techniques have been reported as well. 
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“It is not that I’m so smart; It’s just that I stay with problems longer.” 
Albert Einstein 

 Introduction 

In this last chapter, EFM characterizations over several types of nanodielectric models have been 

performed in order to set up correct experimental protocols to investigate the possibility of the 

technique for detecting interphases in nanocomposites. Model samples, described in Chapter IV, 

consist on nanoparticles (PS and SiO2) put on metallized silicon substrates, over which, materials of 

various permittivities were deposited in thin layers (Al2O3, SiO2 and PVAc). We start by characterizing 

particles alone, followed by samples combining two materials: nanoparticles covered by a thin shell. 

The latter configuration can either model a particle with an interphase not covered by a matrix, or a 

particle with a matrix possessing no interphase. The sensitivity to the top layer above the 

nanoparticles is examined. Afterwards, we benefit out of two materials results in order to attempt 

detecting an interfacial effect/layer when three types of materials are combined: particle covered by 

two different layers. The intermediate material models the interphase. Three methods have been 

established to address this issue by comparing various types of samples nature and configuration. 

Most of experimental sections are associated to simulations in order to verify the experimental 

results, deeper the interpretation of measured signals and get quantitative characterization of 

materials dielectric permittivities and/or dimensions.  

 Samples substrates 

 
Fig. V - 1 : AFM topography of a 500 500 nm2 region for a typical substrate: 50nm gold / 10nm chrome sputtered films 

over silicon substrate. 

In Fig. V - 1, a typical AFM topography image of samples substrates is presented on a 500  500 nm2 

region. The RMS roughness is around 0.6 nm, which is acceptable to base on the deposition of our 

particles (with diameters of ~ 20 nm for silicon dioxide and ~ 250 – 400 nm for polystyrene particles).    

 Type 1 samples: particle + interphase or particle + matrix  

Since our aim is to identify the interphase model, which is the material present above the particle 

and below the matrix, we started by studying the response over the association of a particle with 

only one layer. As the first material, SiO2 nanoparticles and PS nanospheres have been used, and 

Al2O3 shells as the second material. In this configuration, the shell can play two roles: 1) it either 

represents the interphase model when no matrix covers the system, which can practically occur after 

 2.50 nm

 0.00 nm

100nm
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cross-sectioning a nanocomposite [1], or 2) it represents the matrix, and the system models a 

nanodielectric with no remarkable interphase between matrix and filler. Beyond these two cases, the 

target of this first part is to explore experimentally the response of an inhomogeneous, double 

layered system of 3D finite size. How will the combination of these two materials affect the signal? 

How to identify the presence of various stacked materials? How is it possible to identify the intrinsic 

polarization response of each part? What is the range of sensitivity of EFM? 

 As described in Chapter IV, samples possess the general configuration sketched in Fig. V - 2.  

SiO2 and PS particles were covered by Al2O3 of thickness ti.  

 
Fig. V - 2 : General configuration of type 1 samples within an EFM set up: particle (diameter Dp) + aluminum oxide shell 

(thickness ti), at a z tip-sample surface distance.  

3.1. Silicon dioxide particles 

 

 
Fig. V - 3 : AFM topography images of silicon dioxide particles, a) without covering, and b) with 40 nm aluminum oxide 

layer. 

The first set of samples is based on SiO2 nanoparticles of 20 nm approximate diameter. Fig. V - 3 

presents the topography over a 1  0.5 µm2 region of SiO2 particles, and that of 40 nm Al2O3 covered 

particles. It can be first noticed from Fig. V - 3a. that the nanoparticles are relatively well dispersed 

with little agglomerations. Particles diameter varies as expected from manufacturer (Sigma-Aldrich, 

ref: 791342). In contrary, Fig. V - 3b. shows little isolated particles, and higher agglomerations size for 

the covered nanospheres. Consequently, the physisorption of SiO2 nanoparticles to the surface 

seems to not be sufficiently stable under the thermodynamical conditions of ALD. Nevertheless, few 

particles stand still to ALD and can be subsequently compared to bare SiO2. 
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Fig. V - 4 : Cross-sectional topography profiles of SiO2 

nanoparticles placed on bare substrate (inset a.), and SiO2 

with 40 nm Al2O3 shell covering the whole sample surface 

(inset b). 

 

 

Fig. V - 5 : DC - EFM electrical frequency shifts contrast of 

SiO2 nanoparticles placed on bare substrate (inset a.), and 

SiO2 with 40 nm Al2O3 shell covering the whole surface 

(inset b.). VDC = 5 V and z = 23 nm.  

 

 
Fig. V - 6 : Cross-sectional topography profiles of SiO2 

nanoparticles placed on bare substrate (inset a.), and SiO2 

with 10 nm Al2O3 shell covering the whole sample surface 

(inset b). 

 

Fig. V - 7 : DC - EFM electrical frequency shifts contrast of 

SiO2 nanoparticles placed on bare substrate (inset a.), and 

SiO2 with 10 nm Al2O3 shell covering the whole surface 

(inset b.). VDC = 5 V and z = 23 nm. 

0 50 100 150
0

5

10

15

20

25

x (nm)

T
o

p
o

g
ra

p
h

y
 (

n
m

)

 

 

SiO
2

SiO
2
+40nmAl

2
O

3

25
D

p
 ≈ 23 nm 

Deconvolution: 
Al

2
O

3
 ≈ 33 nm  

0 50 100 150
0

50

100

150

x (nm)

D
C

 -
 D

f 0
 c

o
n

tr
a

s
t 

(H
z
)

 

 

SiO
2

SiO
2
+40nmAl

2
O

3

SiO
2
 

SiO
2 

+ Al
2
O

3
 

20 40 60 80 100 120 140

0

5

10

15

x (nm)

T
o

p
o

g
ra

p
h

y
 (

n
m

)

 

 

SiO
2

SiO
2
+10nmAl

2
O

3

15
D

p
 ≈ 14 nm 

Deconvolution: 
Al

2
O

3
 ≈ 6 nm  

20 40 60 80 100 120
-10

0

10

20

30

x (nm)

D
C

 -
 D

f 0
 c

o
n

tr
a

s
t 

(H
z
)

 

 

SiO
2

SiO
2
+10nmAl

2
O

3SiO
2
 

SiO
2 

+ Al
2
O

3
 



Chapter V Experimental results  
 

 142  
 

 For this set of samples, DC-EFM frequency shift detection mode at same tip-sample distance 

has been employed. The above figures present topography images, EFM images and cross-sectional 

profiles of SiO2 nanospheres, without Al2O3 and with approximately 40 nm (Fig. V - 4 and Fig. V - 5) 

and 10 nm Al2O3 (Fig. V - 6 and Fig. V - 7).  

Topography cross-sectional profiles along the main axis at the central region of compared particles 

show similar heights, around 23 nm and 14 nm for the respective cases of 40 nm and 10 nm Al2O3 

layers (Fig. V - 4 and Fig. V - 6). This suggests that the initial diameter of compared SiO2 particles is of 

the same order, since Al2O3 is supposed to equally cover the whole sample as it can be deduced from 

Fig. V - 2. Note that height profiles, for sufficiently isolated particles, are exempt from Gaussian effect 

of the tip radius compared to lateral profiles (see Chapter II section 5.1). Al2O3 shell thickness is 

approximately calculated from the deconvoluted particles width profiles before and after ALD. In the 

present case, where SiO2 nanoparticles possess a diameter in the same order of tip apex, we referred 

to eq (II.38) to deduce a layer thickness around 6 nm, and 33 nm from Fig. V - 4 and Fig. V - 6, 

respectively. Nevertheless, it must be noted that particles do not preserve a completely spherical 

shape after ALD (particle height: Dp + ti > particle width: Dp + 2ti, Fig. V - 2). The deconvoluted widths 

are thereby an underestimation of the real covered spheres because eq (II.38) is appropriate for 

spherical particles. 

 For these two couples of particles, their corresponding EFM signals have been compared at the 

same tip-sample distance (same set-point and lift), and for the same bias voltage. EFM contrast 

profiles on a cutline at the center of EFM images (Fig. V - 5 and Fig. V - 7) show in addition to the 

reconstruction of AFM topography width, a remarkable difference in contrast intensity between 

covered and uncovered particles for both Al2O3 thicknesses. 

 We remind that EFM frequency shift contrasts for SiO2 nanoparticles without a shell basically 

result from the difference of the detected electrostatic force gradient between the particle and the 

metallic substrate. On the other hand, for covered SiO2 particles, the signal difference comes from 

the signal over SiO2+Al2O3 compared to Al2O3 alone over the substrate. Since the same Al2O3 shell is 

present on the whole surface, at the first sight, the contrasts might be supposed to represent the 

contribution of the SiO2 particle under the shell, to the signal. 

 However, contrasts obtained by the double-pass method, or by retracing sample topography, 

have been found to be highly influenced by tip-substrate distance, or interelectrode distance change, 

as the tip is scanning the surface. M. Van Der Hofstadt et al. [2] called this effect as topography cross-

talk, first introduced by D. Esteban-Ferrer et al. [3]. Knowing the thickness of the sample at each 

position, authors subtracted the measured signal over the sample at a certain distance from the 

surface, from that over a bare substrate at similar interelectrode distance. This method, also used for 

other electrical scanning probe microscopies [4], is supposed to extract the so-called intrinsic 

capacitance of the probed region. 

In our case, the bottom of our samples, corresponding to the regions between particles, is covered 

by Al2O3; and for each shell thickness, the composition varies differently among samples. 

Consequently, although the previously attempted deconvolution from eq (II.38) might give insight 

into the film thickness when we assume that the shell cover the particles homogeneously, the exact 

knowledge of our sample depth at each position is not straightforward from AFM topography 

measurements. The method proposed by D. Esteban-Ferrer and M. Van Der Hofstadt et al. cannot be 

accurately adopted here, nor for any type of specimen with unknown thickness.  
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 The idea behind double-pass cross-talks stems from the irregular dependency of the 

electrostatic force to tip-sample distance z (Chapter III - section 3.2). When a z variation over a bare 

metallic substrate is considered, this is equivalent to the modification of interelectrode distance Z. 

We have verified in Fig. V - 8 the decrease of the force gradient versus Z on a metallic substrate, 

through αDC coefficient extraction, as explained in Chapter IV - section 3.1.  The importance of αDC 

study instead of the raw DC frequency shifts resides in the fact that ∆f0 (DC) measurements are 

sensitive to the sample surface potential and surface space charge, as already explained in previous 

chapters. On the other hand, αDC separates the pure capacitive response from other electrostatic 

contributions, and hence, provides the quantity of interest within the framework of our study. 

 
Fig. V - 8 : αDC coefficient vs. interelectrode distance Z obtained over a bare metallic substrate. 

 EFM signal variation is not a monotonous function of Z, but it gets steeper at low distances 

(Fig. V - 8). This changing rate versus Z indicates that EFM contrasts with the double-pass method can 

still be obtained over homogeneous samples when the latter present a rough surface or non-planar 

features. Nevertheless, these topography cross-talks are more pronounced on thin samples 

(equivalent to low inter-electrodes distances) and become negligible at thicker ones. 

Consequently, the observed decrease in EFM contrasts with Al2O3 films can be due to two 

reasons: 

a) Layer addition on the whole surface enlarges interelectrode distance when the tip-sample 

distance is kept constant during scanning. Hence, for thicker samples, and as the lift is 

conserved, the same topographical steps will contribute less to EFM contrast (the 

topography cross-talk decreases); 

b) The change in the material dielectric contribution to the signal between particle and sample 

bottom regions before and after layer addition. Namely, the alumina layer could be screening 

the electric field from the initial sample: particle and metallic substrate, and thus reducing 

the contrast. 
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Fig. V - 9 : αDC vs. interelectrode distance Z for SiO2 nanoparticles without and with 10 nm Al2O3 layer. Interelectrode 

distance selection is explained on insets (a) and (b) for SiO2 and SiO2+10nmAl2O3, respectively. 

In order to distinguish the two possible effects mentioned previously concerning contrast decrease, 

we measured the signal at the center of SiO2 without and with 10 nm Al2O3 shell, while keeping this 

time the same interelectrode distance Z, instead of same lift height (Fig. V - 9). Since the same tip is 

used for measurements (cone height is consequently constant), interelectrode distance Z is 

measured from the end of the tip to the substrate upper surface. Practically, lift heights for SiO2 with 

and without alumina have been selected based on the following steps, also sketched on insets a. and 

b. of Fig. V - 9: 

 In the aim of keeping similar Z for both SiO2 (case 1 - inset a) and SiO2+Al2O3 (case 2 – inset b), 

this relation between experimental parameters for the specific studied particles must be satisfied: 

  

 

(V-1)  

where Dp1 and Dp2 are SiO2 particles diameter, associated to AFM measured height. z0 is the initial 

distance from the sample surface set at the first scan. L1 and L2 are the lift distance chosen at the 

second scan for case 1 and case 2, respectively; and ti is the shell thickness.  

Since we compare particles with same measured AFM height, then Dp1 = Dp2. z0 is kept constant by 

using the same amplitude set-points for tapping, so that z01 = z02. Considering with precaution that ti 

is equal to the difference of deconvoluted particles widths, then ti = 6 nm (see section 3.1.1). The 

final relation between the experimental lifts to be chosen, expressed in nm, becomes: 

  (V-2)  

 

 We find from the resulting αDC (Z) curve of Fig. V - 9 that while keeping the same separation 

between electrodes, the signal increases with the presence of the dielectric layer. In other words, the 

signal with an alumina shell over particles is higher than that above the particles with an additional 

air shell possessing the same thickness as alumina. Thereby, this shows the sensitivity to the 

dielectric contribution of the material modeling the interphase (or modeling the matrix with no 

interphase). 

 Thus, it can be concluded that the EFM contrasts observed in Fig. V - 5 and Fig. V - 7, mainly 

reflect the polarization response of the material to the EFM signal. The contrast decrease is mostly 

affected by the dielectric screening of the additional alumina thin film. This result proves the 

sensitivity of EFM to the presence of an upper dielectric layer via simple comparisons at same tip-

sample surface distance, verified for our case of SiO2 nanoparticles covered by Al2O3 shells.  
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3.2. Polystyrene particles 

The second type of particles above which nanodielectric model samples were based is polystyrene 

particles. For this section, spheres of 230 nm approximate diameter were used to be covered by 

alumina thin films of several thicknesses: 20, 60, 100 and 200 nm. 

 It must be noted that although this work is basically meant for common nanocomposites using 

smaller nanoparticles, the study is equally applied for other purposes. It addresses the issue of 

setting-up an appropriate experimental protocol and signal analysis in the aim of distinguishing with 

EFM, the presence of additional layers, or changes in initial ones, of materials with complex shape 

and finite-size. Nevertheless, the chosen geometry stays appropriate with casual nanocomposites to 

a certain extent. For instance, the ratio of the model interphase layer thickness (alumina layers: 20 to 

200 nm) and particle diameter (polystyrene: 230 nm) goes approximately from 8 % up to 87 %, which 

satisfies commonly expected ratios in nanocomposites that have been likewise modeled during the 

simulations of Chapter III [5]. Consequently, polystyrene sub-micrometric particles, or mesoparticles, 

have been called as nanoparticles in this thesis. 

 Furthermore, it must be also reminded that although in usual electrical engineering 

applications, particles are inorganic materials and both interphase and matrix are organic ones, our 

model only accounts for the permittivity of samples elements. As described previously, materials 

have been basically chosen according to their relative permittivities, regardless of other properties, 

as long as they can get appropriately prepared. 

 

3.2.1.1. PS particles 

 
Fig. V - 10 : AFM topography images of a typical PS sample, a. on a 6  6 µm2 region, the average diameter is around 

227 nm ± 16 nm, and b. a zoom around one PS sphere (low gains and drive amplitude cause the expanded PS shape).  

The topography of a typical PS sample is presented on Fig. V - 10, proving the periodicity of particles 

self-assembly and stability after plasma etching. Particle diameter is measured from the relative 

height between particle center and substrate surface. Then, PS average diameter from Fig. V - 10a. is 

around 227 nm ± 16 nm. Fig. V - 10b. shows a zoom on one particle indicating a relatively rough 

surface. This surface state is common for plasma etched PS spheres, especially after ample material 

extraction (1 µm initial diameter to 227 nm) [6]. 

 Note that topography images of all PS based samples have been flattened after extracting 

particles from the flattening regions to avoid pits artifacts [7]. 
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3.2.1.2. Aluminum oxide shells 

 
Fig. V - 11 : PS spheres samples, a. without and b. with Al2O3, studied on the upper surface with SEM. 

 
Fig. V - 12 : SEM images of a cross-sectioned region for a 60 nm Al2O3 covered PS sample. Right image is a zoom around 

the particle of left image that shows an interruption of Al2O3 film.  

The deposition of Al2O3 thin films over the whole sample surface, particles and substrate, has been 

first verified from particles width change using SEM. Contrasts of Fig. V - 11a. and b. reveal the 2D 

morphology of bare and covered particles, respectively. The particles shape and separation are 

conserved with notable diameter increase over PS+100nmAl2O3 compared to PS alone. This widening 

following atomic layer deposition has been also recorded on AFM images, as it will be shown in the 

becoming sections, in addition to particle surface roughness decrease (see Fig. V - 14 and Fig. V - 15). 

Hence, it can be concluded that alumina must have been successfully grown on the surface of PS 

particles in a homogeneous way. PS based samples are hence highly controllable, justifying the 

choice of PS instead of SiO2 nanoparticles for subsequent measurements. 

 However, the deposition in the bottom of the substrate, or between particles, cannot be 

precisely proven by surface imaging. Hence, a cross-section of our samples was necessary. Fig. V - 12 

shows an example of SEM images for a PS+60nmAl2O3 cross-section specimen. Image contrast is 

blurred due to the charging of our insulator sample under the electron beam; nevertheless, the thick 

layer in the region between particles can be clearly distinguished. The range of magnitude of film 

thickness is around 80 nm. Accounting for the low resolution and the possibility of overestimation 

due to non-perfect vertical cut and/or vertical inclination of the imaged sample, the measured 

thickness can be considered as consistent with the theoretical deposited layer of 60 nm. Moreover, 

we notice an interruption of alumina film at the center of a particle, which can indicate its successful 

sectioning. Zooming this area shows in  Fig. V - 12b. a hollow like region that might refer to the 

alumina shell of close thickness to that of the film over of the substrate. Nonetheless, during the 

majority of our preparations, a reference metallic sample was introduced during ALD process to 
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monitor the thickness of the deposited layer. Those reference specimens were characterized with 

other non-destructive techniques (profilometry, ellipsometry), as it will be described in section 

4.3.3.1 of this chapter.  

 
Fig. V - 13 : Energy dispersive X-ray spectrometry spectrum performed over a micrometric region of: a. PS, and b. 

PS+100nmAl2O3 samples. 

 In addition to morphological verifications, the chemistry of deposited alumina layers has been 

verified at the microscale with energy dispersive X-ray spectrometry.  The average elemental 

chemical spectra for bare and alumina covered particles have been compared. As it can be 

highlighted from Fig. V - 12 a. and b., both samples show the peaks corresponding to silicon, chrome 

and gold. These elements must be coming from the substrate. A carbon peak is detected as well, 

which can return to the organic polystyrene particles, or other adsorbed organic molecules at the 

surface. However, only alumina covered samples show an aluminum peak on the spectrum of Fig. V - 

13b. This can prove the consistency of aluminum oxide deposition. Further chemical 

characterizations could have been forwarded, but we stopped here since ALD alumina films have 

been already largely studied in the laboratory of ALD preparation (IEM). 

 

After showing the sensitivity to the polarization response of thin alumina films over silicon dioxide 

nanoparticles of 14 and 23 nm diameters, hereafter, we extend the study to EFM force gradient 

detection in both DC and AC excitation modes. The main objective is to set up appropriate 

experimental protocols for the detection of alumina shells properties, thickness and dielectric 

constant, as they cover PS nanoparticles. 
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3.2.2.1. Signal contrast comparisons  

 
Fig. V - 14 a, b and c: EFM - ∆f0 (DC) images for PS, PS with 60 nm and 200 nm Al2O3, respectively; d: Cross-sectional 

topography profiles, and e: the corresponding EFM - ∆f0 (DC) signals for studied PS particles at VDC = 5 V and z = 26 nm. 

 
Fig. V - 15 a, b and c: AC - EFM ∆f0 (2ω) images for PS, PS with 60 nm and 200 nm Al2O3, respectively; d: cross-sectional 

topography profiles, and e: the corresponding AC - EFM ∆f0 (2ω) signals for the studied PS particles at VAC = 5 V, ω = 

200π rad/s and z = 30 nm. 
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Fig. V - 14 and Fig. V - 15 show topography and EFM results of PS nanoparticles, without coating (a), 

with 60 nm (b) and 200 nm alumina coating (c) in DC and AC excitation modes, respectively. Cross-

sectional topography profiles of Fig. V - 14d. and Fig. V - 15d. along the main axis of the particles 

show similar particles height, around 250 nm. Similarly to SiO2 case, this suggests that the diameter 

of compared particles without and with alumina is of the same order since alumina is supposed to 

equally cover the whole sample surface (see Fig. V - 2). 

 Furthermore, although lateral profiles are not exempt of Gaussian convolution, the measured 

differences between profiles widths from Fig. V - 14d. and Fig. V - 15d. have been found to be 

consistent with the theoretical thickness of added alumina layers: 60 and 200 nm approximately. In 

fact, in this set of samples, particle size is much larger than the tip apex. As we have already seen in 

Chapter II, in the latter case, the cone angle is the determining factor of tip convolution over AFM 

profiles. Since the cone angle of the tip is supposed to not change between measurements, according 

to equation (II.37), the measured lateral profile is directly proportional to the real particle diameter; 

the difference in AFM profiles becomes thereby directly proportional to real changes in particle 

width. In other words, for constant tip cone angles, the slope of the tip edge interacting with the 

surface of the particles is constant, and larger particles will only induce a translational movement of 

the tip compared to the corresponding position with smaller particles. 

Hence, AFM lateral profiles comparison demonstrates with good precision, and in a direct way, the 

successful deposition of Al2O3 with ALD over PS particles. Likewise, it can be noticed from Fig. V - 14d. 

and Fig. V - 15d. that the roughness of PS spheres decreases with the thickness of deposited Al2O3 

films. ALD deposition follows the surface of the base material; when the thickness of the deposited 

layer sufficiently increases, the layers above particles of fixed separations will superimpose, and the 

void will be filled up after sufficient thin film growth.  Hence, since the surface roughness can be 

viewed as very small PS particles on the surface of the main sphere, then vacant sites can get 

gradually filled up with thicker Al2O3 depositions. PS roughness measurement with AFM can hence 

also be an indication of a successful ALD growth.  

 EFM cross-sectional profiles of Fig. V - 14 and Fig. V - 15 a, b and c insets are presented in Fig. V 

- 14e. and Fig. V - 15e.  The latter show raw EFM frequency shifts signals between differently covered 

PS particles in DC and AC force gradient detection modes, respectively. Measurements have been 

performed at the same lift height, and hence, same tip-sample distance, since the initial distance at 

the first scan z0 has been kept constant too. 

 For PS nanoparticles without a shell, EFM contrasts result from the difference of the detected 

electrostatic force gradient between the nanoparticle and the metallic substrate. The signal 

difference obtained for covered PS particles comes from the difference between the particle and the 

Al2O3 film alone covering the metallic substrate. In addition to the intrinsic capacitive response due 

to materials permittivity and thickness, interelectrode distance change with prominent topography 

features adds up to the source of EFM contrasts. As mentioned earlier and further clarified in Fig. V - 

8, the topographic cross-talk contrasts are not the same at any separation between electrodes, and 

consequently, not the same at any Al2O3 thickness. However, the comparison at similar electrode 

separation proved in the first section of this chapter, that EFM is sensitive to the contribution of 

alumina layers above SiO2 nanoparticles. This result is directly extended to PS spheres since those 

particles are bigger, and according to Chapter III, the sensitivity to the intrinsic dielectric response 

further increases with particles diameter (see Fig. III - 18). Hence, as Fig. V - 14 and Fig. V - 15 still 

highlight a decreasing contrast with alumina, the comparison of EFM frequency shift contrasts at 

constant tip-sample distance indicates the sensitivity of EFM to the dielectric contribution of the shell 
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over PS nanospheres. Nevertheless, in order to ensure this sensitivity, and to overcome supposedly 

topographic contrast artifacts, we adopt next a new comparison method. 

 In fact, it must be reminded that the bottom of our samples, namely, the areas between 

particles, do not possess the same composition for different coverage thicknesses. Although for SiO2 

particles (section 3.1), to keep same electrodes separation, we have assumed that the global layer 

thickness is equal to particles deconvoluted width change; the real thickness of the sample at each 

position is not straightforward from topography images as it was the case in ref [2, 3]. The lateral 

profiles consistency with theoretical Al2O3 films stays not sufficient to prove the homogeneity of 

Al2O3 on the whole sample surface, including substrate and particles top regions. Consequently, the 

comparison at similar interelectrode distances is not possible with high precision, neither the method 

proposed in ref [2, 3] is applicable. 

3.2.2.2. Signals comparision at particle center  

In the following, a new general method is hence adopted in order to counteract any possible 

topography cross-talk effects. Instead of comparing EFM image contrasts, we start by confronting 

raw signals at particles central regions, for similar lift heights. From Fig. V - 14e. and Fig. V - 15e 

center response, we find that the signal intensity gets amplified with the presence of an alumina shell 

and further increases with larger alumina thickness for particles of comparable diameters (around 

250 nm). 

 At constant lift heights, when a layer is added above the particles, the resulting increase in the 

separation between electrodes must decrease the signal. However, we obtained at same tip-sample 

distance more important signals with thicker alumina. This new method of results interpretation 

proves in another way, the sensitivity of the electrostatic response in both DC and AC modes to the 

shell, accounting for topography cross-talks and without further treatments that require quantifying 

sample thickness.    

 It must be noted that the signal at the bottom regions between close particles might differ 

from that above less PS occupied regions, or for instance, over bare substrates with similar Al2O3 film 

thickness. In fact, for a constant electrostatically coupled volume, EFM response between two 

particles is intensified due to the additional contribution of neighbor particles, when the latter fall 

within the volume of interaction. For instance, this can explain some inconsistent signals behavior 

over these regions as noticed in Fig. V - 14e. and Fig. V - 15e: the bottom signal for 200 nm thick Al2O3 

layer covered samples, where particle separation becomes too narrow, is higher than 60 nm and 0 

nm layered samples. In fact, according to the conclusions of Chapter III and the literature [8], the 

capacitance of the tip-sample system must decrease with the thickness of a dielectric film directly 

deposited on EFM counter-electrode, contrarily to the observed tendency. Consequently, a precise 

measurement is mostly directed over the central regions of particles surface, as just presented in 

above experiments. Readers can refer to “PS+50nmAl2O3+50nmSiO2” inset image of Fig. V - 49 for a 

direct example of the signal difference, between particles, compared to more isolated bottom 

regions. 

 Hence, it can be concluded that the change in both DC and 2ω signals at the center of the 

particles and for constant tip-sample separations proves the sensitivity of this method to the 

presence of the shell, without the usage of a precise information on sample thickness. 
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In this section, we extend DC results to several Al2O3 thicknesses, in a further accurate way, allowing 

comparison of experimental results to simulations.  

In fact, as explained in Chapter II and IV, we remind that raw DC measurements are sensitive to the 

contact potential and surface space charges (see summary of Table II -1). Hence, we studied for 

several particles, the behavior of the purely capacitive αDC parabolic coefficient parameter, extracted 

over the central region of the particles, as explained in Chapter IV - section 3.1. 

 Although 2ω force gradient extraction directly accounts to the unique capacitance contribution 

of the system, DC-excitation mode measurements are important in the way that they are usually 

accessible in any standard AFM equipped with EFM module. AC experiments are usually more 

complicated to perform. Hence, for this section, we investigate DC detection protocols. Nonetheless, 

both DC and AC measurements have been used interchangeably in this work.  

 

Fig. V - 16 : αDC coefficient vs. tip-sample distance z for PS 

nanoparticles with and without Al2O3 shells. 

Fig. V - 17 : αDC coefficient for different Al2O3 shell 

thicknesses ti over PS nanoparticles, measured at a 

constant tip-sample distance z = 20 nm. 

 Fig. V - 16 presents the curves of the experimental αDC parameter versus tip-sample distance z 

for PS samples covered by different Al2O3 shell thicknesses. αDC curves have been obtained by 

averaging the data on a few pixels over the central region of the particles, and that above several 

particles of similar height (around 250 nm). Firstly, we notice that αDC decreases with increasing tip-

sample distance. This decrease is explained by the proportional dependence of αDC with the 

electrostatic force gradient, reduced at higher z [9]. As a result, measurements at short distances (

20 nm) are found to be more sensitive to small variations between samples. Secondly, for the same 

tip-sample distance, PS nanoparticles with an Al2O3 shell exhibit clearly higher αDC values than bare 

PS nanospheres, and αDC increases with the thickness of the shell. 

 The difference between the presence and absence of the shell shows the good sensitivity of 

αDC  coefficient extraction to detect the dielectric layer over PS nanoparticles, while removing any 

ambiguity coming from contact potentials and surface charges. Moreover, the significant increase of 

αDC with alumina thickness shows that the DC-force gradient extraction method is well adapted to 

evaluate the thickness of a dielectric alumina layer above PS nanospheres of 250 nm approximate 

diameter. Detectable thicknesses in our case are comprised in a range between 20 nm and 200 nm. 

Furthermore, Fig. V - 17 shows the trend observed for αDC coefficient versus alumina shell thickness 

at a constant tip-sample distance. We notice that the slope of the curve is high up to 100 nm and 

becomes weaker beyond this value. Thereby, it can be deduced that the sensitivity to alumina 

thickness is limited to a certain range of thicknesses. 
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In order to interpret previous results summarized in Fig. V - 17, and try to deduce qualitatively an 

idea about the shell permittivity, we clearly state in the following, the directly observed, and 

expected to be morphological variations due to shell addition: 

1) Interelectrode distance increase: 

Changes cannot be the result of enlarged interelectrode separation. In fact, as we compare αDC 

between PS at z = 76 nm and PS+60nmAl2O3 at z = 16 nm, where both interelectrode distances are 

supposed to be around 326 nm, we still observe the same signal tendency. As well as, generally, a 

more important separation between electrodes is expected to decrease the signal (Fig. V - 8 and Fig. 

V - 9), which is not our case (Fig. V - 17). 

 

2) Total sample thickness increase: 

Changes cannot be caused by the greater PS+Al2O3 probed region thickness. We experimentally 

verified the expected tendency of the signal versus sample thickness, for a homogeneous alumina 

dielectric film. Fig. V - 18 confirms that an increased thickness of a homogenous dielectric film 

decreases the signal [8], whereas the opposite behavior is observed over PS spheres (Fig. V - 17). 

 
Fig. V - 18 : αDC coefficient for different Al2O3 films thicknesses h covering bare metallic substrates at constant tip-sample 

distance z = 18 nm. 

3) Particle width increase: 

Changes might be attributed to particle width increase, which broadens the surface of interaction of 

the sample and subsequently, the capacitance of the system. Namely, as reviewed in Chapter III, 

Z. Y. Li et al. studied the size of a squared sample on the signal [10], and G. Gomila et al. reported on 

the eccentricity of a dielectric nanoparticle [11]  and the width of a dielectric film [12]. 

 
Fig. V - 19:  αDC coefficient vs. PS particles diameter D measured at z =20 nm.  
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 A first attempt for verifying this possibility has been performed by measuring PS particles of 

different diameters in the range of the previously measured particles with alumina shell. As it can be 

highlighted from Fig. V - 19, the signal decreases with the diameter, on the contrary to the observed 

change with Al2O3 covered PS (Fig. V - 17). This is also in accordance with Fig. III - 18a. of Chapter III.  

However, it is worth reminding that the size of bigger PS particles grows homogeneously in all 

directions (1:1 aspect ratio). On the other hand, PS+Al2O3 particles are not fully covered with Al2O3 on 

their back side in contact with the substrate.  Accordingly, an additional layer enlarges particle width, 

two times faster than its height. For instance, particle + shell width is equal to (Dp + 2ti), compared to 

the particle + shell height (Dp + ti) (see Fig. V - 2). Therefore, Fig. V - 19 is not sufficient to firmly 

eliminate the explanation of previous results (Fig. V - 17) by a predominance of particles radius of 

curvature. 

 Nevertheless, if the curvature radius is the most influencing parameter, it must satisfy a signal 

increase for all types of dielectric shells within the studied dimensions. Consequently, at this stage, 

we are going to consider the last possible parameter, the intrinsic response of the dielectric shell, 

which will help clarifying this point.  

 

4) Intrinsic shell dielectric response:  

The signal is obviously the combination of several parameters effects, each weighting differently on 

the resulting interaction. However, as we have seen so far, none of them is sufficiently able to 

explain the increased signal. Actually, the only left possible explanation would be the permittivity 

increase with the shell that also amplifies the signal. How to relate that to our system?  

 In the case of a multilayered sample, for instance, a particle + shell, if the added material 

possesses the same permittivity than the particle, we get a kind of homogeneous material and within 

this range of morphological changes, the latter will act on the signal in a casual way, enough to 

understand any signal change. However, since we verified that morphological parameters are not 

sufficient to explain the obtained results, our material cannot be homogeneous, and the layer cannot 

be an extension of the particle or a layer with the same dielectric constant. Therefore, based on 

simulation results of Chapter III concerning superposed dielectric materials, we remind that the 

assembly of different types of dielectric materials changes the global effective permittivity of the 

sample, and thereby, presents special behavior regarding geometry modification. In particular, a 

layer with a lower permittivity than the initial particle decreases the effective permittivity of the 

resulting particle. In this case, the signal is expected to decay with the layer thickness, even if the 

radius of curvature rises too. Conversely, a layer with a higher dielectric permittivity than the particle 

increases the effective permittivity and subsequently, the signal is estimated to become more 

important with a shell of intermediate thickness. 

 Therefore, we deduce that EFM is detecting a heterogeneous material. In particular, the added 

layer over PS particles is extracted owing to EFM sensitivity for the change of the global permittivity, 

attributed to the intrinsic permittivity of the shell relative to the particle. Consequently, our signal is 

only explainable if the shell permittivity exceeds the PS one. This is well verified for our case of Al2O3 

shells, for which the relative permittivity is equal to 9.8, which is indeed, higher than PS permittivity 

that is equal to 2.6.  

3.3. Type 1 samples experiments: conclusions 

To conclude, what can be retained from the previous measurements on single layered particles is the 

following: 
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a) EFM is able to distinguish homogeneous from heterogeneous materials, in particular, one 

layered from multilayered materials. Interestingly, this is made possible since heterogeneous 

samples can present unusual behaviors due to morphology change. 

b) The detection of the additional layer (Al2O3 shell in our case) is predominated by its dielectric 

contribution, observed on contrasts decrease at same tip-sample distance (over SiO2 and PS 

particles), as well as particles central regions signal change. 

c) The distinction of the intrinsic dielectric permittivity of added material (Al2O3) relative to the 

initial material (PS) is possible after precise results interpretation. Morphological changes 

start reflecting the dielectric identity of the material rather than the casual response for the 

material alone. 

d) Inversely, those results prove at the same time the subsurface sensitivity of EFM (PS below 

Al2O3). Consequently, in the opposite case where the shell is known, the subsurface material 

properties can be deduced. This latter investigation becomes similar to the work of Fumagalli 

et al., using AC 2ω-force detection method [13]. The prominent additional information with 

our results is to benefit out of the geometrical effects on the signal to get direct qualitative 

insight into the material permittivity. This has been also made possible with DC force 

gradient measurements. 

e) Moreover, an additional contribution of these results is that the adopted experimental and 

interpretation method (signal study around particle center at constant tip-sample distance 

vs. layer thickness) provides dielectric information and eliminates topography cross-talks 

without the mandatory need for sample thickness quantification, in contrary to previous 

literature [2, 3].  

 It must be noted that within the dimensions of our PS based samples, the spatial EFM 

resolution at the top of the particles has been calculated numerically and found to be lower than 

particles dimensions. In the opposite case (particle diameter > EFM resolution), topographical effects 

become however more influential, and the intrinsic dielectric response becomes harder to measure.   

3.4. Experiments versus simulations 

For a further verification and understanding of the previous experimental results, as well as 

attempting to quantify the supposed-to-be unknown parameters of our reference samples, new 

numerical simulations have been carried out. We used the same Comsol® model described in 

Chapter III, however adapted to the used tip and sample characteristics. Moreover, since the 

software basically calculates electrostatic forces, on the contrary to our EFM experiments that were 

performed in the force gradient detection mode, we adjusted the simulation procedure in order to 

provide force gradient values. 

 

The first step towards the quantification of the electrostatic response is determining the actual tip-

sample distance during measurements. As already introduced in Chapter II, when the oscillation 

amplitude during the second scan is relatively small, the tip-sample distance is equal to: z ≈ z0 + L. We 

remind that L is the lift height, and z0 is the initial distance of the tip during the first scan, that is 

supposed to be approximately equal to the set-point amplitude of vibration Asp during the 

topography scan (see Fig. II - 9). z0 is usually obtained by performing an approach curve of the 

amplitude of vibration over a stiff sample [14]. An example of an approach curve recorded with one 

typical probe used for our measurements is presented in Fig. V - 20. The idea behind this method is 
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that as the tip approaches the surface, its oscillation amplitude decreases, and is supposed to nullify 

once it “touches” the surface of the sample. That being so, the distance traveled from the starting 

position of Asp to that at zero oscillation represents the tip-sample distance z0 at the set-point 

amplitude. 

 
Fig. V - 20 : Typical amplitude vs. distance curve obtained over a stiff substrate for the quantification of tip-sample 

distance z0 during tapping mode scanning.  

 

Comsol® software only calculates the interaction force. In order to obtain the force gradient, we 

calculated the force F at different tip-sample distances z (10 nm to 90 nm). Then, we deduced the 

first derivative of the resulting power-law fitting equation of F (z) to get the gradient G (z), as shown 

in Fig. V - 21.  

 
Fig. V - 21 : Typical electrostatic force vs. distance curve computed with our numerical model. Modeling results are fitted 

to a power-law trendline. The derivative of this equation gives the expression of the force gradient vs. distance. 

G (z) is calculated at 5 V and 6 V, in order to obtain the first parabolic coefficient αDC, such as: 
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 As shown in Fig. V - 22, a tip radius of R0 = 13 nm and  = 10 º fit quite well most experimental 

curves for the above set of experiments. 

 
Fig. V - 22 : Best tip geometry fitting curve of experimental results and simulations over a metallic substrate, obtained for 

tip radius R0 = 13 nm, half-cone angle  = 10º and fixed cone height H = 10 µm.  

 

 
Fig. V - 23 : Experiments and simulation fitting curves of αDC (z) measured over a SiO2 nanoparticle of approximately 20 

nm diameter, obtained for a 3.9 dielectric permittivity.  

 An example of an αDC (z) curve over a SiO2 nanoparticle of 20 nm diameter is presented in Fig. V 

- 23. A dielectric permittivity of 3.9 provides relatively good agreement of experiments to simulation 

values.  

 

 
Fig. V - 24 :  Best experiment to simulation fit for PS particles of 250 nm diameter at z = 20 nm, obtained for a 2.48 

dielectric permittivity. 

PS particles dielectric permittivity has been quantified from the fitting of experimental EFM αDC value 
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acquired above particles possessing diameters mostly close to 250 nm (Fig. V - 16). Within these 

conditions, we find 2.48 as the best fit for PS dielectric constant (see Fig. V - 24). 

 

In this paragraph, we confront the results of Fig. V - 17 and Fig. V - 18 to simulations. Our material 

geometries and permittivities have been modeled as sketched on Fig. V - 2.  Polystyrene particles 

have been implemented as 250 nm diameter particles of a standard dielectric permittivity of 2.6, and 

the uniform alumina shell over the whole sample surface has been simulated with a 9.8 permittivity. 

 All parameters have been fixed, while only the thickness of Al2O3 layers has been changed. Fig. 

V - 25 presents experimental and simulation results for PS+Al2O3 shells at z ≈ 20 nm and those for 

Al2O3 films alone at z ≈ 18 nm (data of Fig. V - 19) for variously thick Al2O3. The same trend between 

simulations and experiments, and a good agreement of αDC values between EFM measurements and 

our model, can be noticed. However, the fitting is more robust for Al2O3 films alone. Over PS+Al2O3 

assembly, the fitting is less accurate especially at high shell thicknesses. 

  
Fig. V - 25 : Experimental vs. simulated αDC values for PS+Al2O3 (z = 20 nm) and Al2O3 films (z = 18 nm) for different Al2O3 

thicknesses.  

 In order to understand these differences, we review the main experimental features 

neglected during simulations: 

a) Cantilever: 

The cantilever arm has not been implemented in our Comsol® model. Although it plays a substantial 

role over thick samples [15], the cantilever contribution is usually neglected when force gradient 

detection is used. This can eliminate the effect of this first disregarded experimental parameter. 

 

b) Neighbor particles: 

As the shell thickness increases, the separation decreases between the borders of the particles that 

are placed at fixed positions. The contribution of neighbor particles could justify the important signal 

increase over thick covered layers. Nevertheless, we verified this influence as we introduced a disk 

around the particles in our 2D axisymmetric model. The influence of the surroundings on the 

electrical response has been verified to slightly enhance the overall signal versus ti, however, keeping 

a similar slowly increasing trend of αDC versus ti. This, too, is not sufficient to interpret Fig. V - 25 

results. 

 

c) Particles roughness: 

Particles surface roughness has been neglected in the simulation model. The approximation of PS to 

perfect 250 nm diameter spherical shape might either underestimate or overestimate the real 

amount of PS material in the region probed with EFM. However, both cases result in a relatively small 
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change for any thick layer. Thereby, surface roughness cannot constitute the explanation of the 

sudden change versus alumina thickness.  

 

d) z position uncertainty: 

The above results must be due to a certain irregular change with the shell thickness. A possible 

reason would be the static deflection of the cantilever when the latter undergoes the effect of a 

force. This deflection is usually neglected, and tip-sample distance is calculated as explained in above 

paragraphs [16]. However, as it can be noticed from Fig. V - 16, the force gradient slope versus tip-

sample distance increases with alumina. Hence, for important ti, uncertainties on z can result in 

higher errors of the simulated system. In fact, we have verified in simulations that only 3 nm 

decrease of z can afford the good fit with 100 nm and 200 nm thick layers. Furthermore, the static 

deflection is likely to increase with thicker alumina films as the latter also intensify the attractive 

electrostatic force.    

 

In order to quantify the dielectric permittivity of alumina shells over PS particles, the EFM 

experimental value over PS with 60 nm Al2O3 has been used as it better agrees with the expected 

response verified through simulations. Contrarily to the above simulations of αDC (ti), we used here 

the exact fitted value of PS permittivity that is equal to 2.48. Within these conditions, we find 10.78 

as the best fit for Al2O3 shell dielectric permittivity (see Fig. V - 26). 

 
Fig. V - 26 : Best experiment to simulations fit for PS particles of 250 nm diameter with the fitted 2.48 PS permittivity, 

covered by a 60nm Al2O3 shell at z = 20 nm, obtained for a 10.78 Al2O3 dielectric permittivity. 

 Type 2 samples: particle + interphase + matrix 
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been addressed. Those samples model either: a) a particle surrounded by an interphase in a thin 

section of a nanocomposite specimen where the matrix has been removed by the cutting process 

(particle + interphase), or b) a particle in a nanocomposite covered by the matrix, with no interphase 

between them (particle + matrix). Developing appropriate experimental protocols and signal analysis, 

we found that EFM is convenient to detect and characterize the intrinsic permittivity of both, the 

upper thin layer (Al2O3) and the subsurface nanoparticle (PS and SiO2) of variable dimensions.  

 In this second section, the experimental results aim at detecting the interphase in a complete 
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material (mat3) can be either placed at the top of our initial system: PS+Al2O3+(mat3), such as Al2O3 

becomes the interphase model; or equally, it can be placed between the alumina shell and 

polystyrene spheres: PS+(mat3)+Al2O3, where this third material (mat3) plays the role of the 

interphase (see Fig. V - 27).   

 
Fig. V - 27 : Simplified configuration of model samples for interphase study: particle + interphase + matrix. Mat3 is either 

polyvinyl acetate or silicon dioxide. Depending on the deposition method, the geometry could slightly differ from the 

above sketch. 

 We note that within all our samples set, particles can be positioned by the topography scan 

since covering layers have been prepared in an appropriate way to keep the bulge associated to the 

spheres. Obviously, a more complete study would be performed over totally embedded particles. 

However, according to our choice of materials, the dielectric contrast is not always sufficient to 

undertake these measurements. Nevertheless, such configuration, where the particle protrudes from 

the surface, has been met in previous works studying interphases in “real” nanocomposite systems, 

either with mechanical scanning probe microscopy techniques [17-19], or with EFM [1, 20-22]. 

 In the following, three main methods have been investigated in order to characterize the 

interphase model in our samples. PVAc has been used as the third material for method 1, and SiO2 

for methods 2 and 3.  PVAc and SiO2 films deposition has been described in Chapter IV. Henceforth, 

we will use the denominations: mat1, mat2 and mat3 to designate respectively, PS particles, Al2O3 

layer and the third material (PVAc or SiO2). 

4.1. Method 1: PS+Al2O3 versus PS+Al2O3+PVAc 

The results of section 3 have been used in order to set up the first method for interphase detection 

below a matrix. In this first method, we used PS particles of 380 nm approximate diameter covered 

by 60 nm and 100 nm Al2O3 layers. In parallel, a similar set of samples has been covered by an 

additional layer of PVAc with spin coating as described in Chapter IV.   

 
Fig. V - 28: Interphase detection method 1, left: sketch of the samples to be compared, right: methodology. 

 The first methodology is based on comparing the signals at same tip-sample distance above 

PS+60nmAl2O3 and PS+100nmAl2O3 to PS+60nmAl2O3+PVAc and PS+100nmAl2O3+PVAc, respectively. 

As Al2O3 is here the interphase model material, PVAc and PS permittivities are then supposed to be 

the known parameters (Fig. V - 28). 

 A decrease of EFM response above PVAc covered particles compared to uncovered ones is 

researched. In fact, since we suppose that PS and PVAc permittivities are given, we know that εPVAc = 
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3.2  >  εPS = 2.6. Therefore, based on the conclusion of section 3.3, the addition of PVAc above PS 

must increase the signal. Otherwise, a change in particle or matrix permittivities must be the reason 

for this firm change in the tendency of the signal. Then, since Al2O3 is expected to sufficiently 

enhance the effective permittivity of the covered particle, an additional PVAc layer must decrease 

the signal, proving that the region below PVAc possesses a higher permittivity than the matrix. This 

can indicate the presence of a layer above the particle, which possesses a higher permittivity than 

both, PS and PVAc. 

 In this section, a statistical study becomes substantial. In fact, spin-coated layers on our rough 

samples do not necessarily lead to a uniform thick film on the whole surface [23]. Consequently, all 

information about initial particles diameter is lost with matrix addition. 

 Therefore, we performed measurements on 12  3 µm2 images that contain 30 complete 

particles on average. We verified the validity of this choice for the number of particles, by comparing 

the statistical results on a 12  12 µm2 image to those on its quarter. Calculated values do not 

significantly change. Moreover, we used AC-2ω force gradient detection in the double-pass method 

with constant lift distance. A 12  3 µm2 scan with this technique performed at an appropriate 

resolution takes around 40 minutes. Since a quantitative comparative study is better to be 

performed with the same tip, a higher imaging duration, for a series of minimum 5 samples, might 

already wear the tip, in addition to the enhanced probability of breaking and contaminating it, of 

image drifts etc.  For all these reasons, we referred to 12  3 µm2 imaging areas for the rest of 

experiments.  

 

Before matrix addition, we verified that chosen samples possess the usual behavior on which our 

forthcoming investigation of the interphase could be based. For all next sections, unless otherwise 

stated, AC excitation has been applied, and the 2ω-frequency shift component has been extracted.  

 
Fig. V - 29 : Topography and EFM AC-2ω frequency shift images of a 12  3 µm2 region of PS+60nmAl2O3, PS+100nmAl2O3, 

PS+60nmAl2O3+PVAc and PS+100nmAl2O3+PVAc samples, VAC = 5 V and ω = 200π rad/s. 

 Fig. V - 29 presents respectively topography (left) and EFM images (right) of 12  3 µm2 

regions of uncovered and PVAc covered PS,  PS+60nmAl2O3 and PS+100nmAl2O3 samples. We have 

performed a cut-line of around 1.2 µm length in the middle of each particle of Fig. V - 29. The 

average and the standard deviation of extracted data have been measured at similar x positions. In 

Fig. V - 30, the resulting averaged topography profiles (Fig. V - 30a.) and their corresponding EFM 
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averaged signals (Fig. V - 30b.) are plotted for the reference samples: PS+60nmAl2O3 versus 

PS+100nmAl2O3. 

 
Fig. V - 30 : Average profiles for PS+60nmAl2O3 and PS+100nmAl2O3 samples for a. topography and b. 2ω-frequency shifts 

results. VAC = 5 V, ω = 200π rad/s and z = 21 nm. 

 Similarly to the case of 250 nm diameter PS particles (type 1 samples), here too, the average 

height of covered PS particles superimposes with only 3 % difference. However, the width changes 

more significantly as it can be directly recorded from Fig. V - 29. The measured difference is around 

35 nm, in accordance with the theoretical one of 40 nm. Note that averaging tends to smooth the 

surface roughness.   

 Concerning EFM measurements, we have compared the signals at the center of the particles. 

In order to get a precise, accurate value in the center, without borders effects, we have measured 

the average EFM signals going from x = 0.45 µm to x = 0.75 µm. One must also note that if lateral 

forces are influencing the z component, this lateral contribution is expected to be nullified at the 

center of the particle, where it must exhibit a symmetric behavior from either sides of the center 

(see Chapter III - Fig. III - 23). Therefore, an averaging around the supposed-to-be center must 

sufficiently reduce lateral and borders effects.  

 The EFM average values are around 15.4 ± 2.2 Hz and 20.6 ± 1.9 Hz for PS+60nmAl2O3 and 

PS+100nmAl2O3, respectively. Then 2ω - ∆f0 increases by ~ 34 % with an additional 40 nm Al2O3 layer. 

The desired tendency observed in section 3.2 is thus verified. This set has been selected to be 

subsequently compared to the covered ones with PVAc matrix. Note that we have prepared all PS 

samples within the same experimental conditions, during the same day. Among them, some samples 

were selected as reference ones, and the others were divided into samples to be covered either with 

60 nm or with 100 nm thick Al2O3 layers. Similarly, among PS spheres with Al2O3, we have selected 

some of them to be covered by PVAc with spin coating. Accordingly, the samples are supposed to be 

comparable enough. 

 

Topography contrasts of Fig. V - 29 indicate a considerable decrease of particles measured height 

after coverage with PVAc. Then, this supposes two possible configurations for the film prepared with 

spin-coating: 

a) The film is homogeneously displayed over the core + shell surface, as well as the sample 

bottom (Fig. V - 31a.). 

b) The film is not homogeneously spread over the surface of the sample, comparing particles 

top regions to substrate surface (Fig. V - 31b.). The film is more likely to accumulate in the 

deep pits, leaving less solution at the peaks. 
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Fig. V - 31 : Possible configurations of PVAc spin-coated films over PS+Al2O3 samples: a. film thickness is homogeneous on 

the whole surface, and b. the film is thicker between the particles. 

 In order to gain a deeper insight into film configuration and thickness, we performed with a 

rigid AFM tip, a scratch into the PS+60nmAl2O3+PVAc sample with AFM contact mode. Afterwards, 

the cut has been imaged with a new tip, since scratching breaks the tip. A typical thickness between 

substrate and film surface between particles is around 120 nm. This value can be roughly supposed 

to represent PVAc film thickness in the bottom of the sample.  

 
Fig. V - 32: Topography image of a scratched PS+60nmAl2O3+PVAc sample with a stiff AFM tip.  

 Furthermore, since spin-coating of polymer films is not mastered on rough surfaces like other 

thin film deposition techniques, e.g. ALD, a verification of PVAc sticking to particles surface is needed. 

In order to do so, and in addition to topography measurements, we combined EFM characterizations 

to nanomechanical ones with Quantitative nanomechanical measurements, the PeakForce-QNM (see 

Chapter IV). 

 Note that all nanomechanical PF-QNM measurements have been performed at LAPLACE 

laboratory in Toulouse, by the PhD student Mohammed Houssat, thanks to the collaboration with Dr. 

Nadine Lahoud.  

 
Fig. V - 33 : 3D - topography images obtained with PeakForce-QNM for PS with 60 nm Al2O3, PS with 60 nm Al2O3 covered 

by a PS spin-coated film and PS with 60 nm Al2O3 covered by a PVAc spin-coated film. 

 We start by comparing topography images of polystyrene spheres with an alumina layer, 

before and after the deposition of another material; a polystyrene film and a polyvinyl acetate film 

(see Fig. V - 33). We observe a decrease in particles height with film deposition, and most 
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interestingly, particles surface gets smoother on the sides for particles with PS film, and on the whole 

surface for the PVAc film.  

 

 

Fig. V - 34 : Adhesion images obtained with PeakForce-QNM for PS with 60nm Al2O3, PS with 60nm Al2O3 covered by a PS 

spin-coated film and PS with 60nm Al2O3 covered by a PVAc spin-coated film.  

 On the other hand, the corresponding adhesion images show on Fig. V - 34 noticeable 

differences in the contrast values:  -8 nN, -53 nN and - 12 nN for PS+60nmAl2O3, PS+60nmAl2O3+PS 

and PS+60nm Al2O3+PVAc, respectively. A high adhesion contrast is known to reveal the detection of 

two phases, as stiffer regions induce low adhesion forces with the tip compared to smoother ones 

(Chapter IV - section 4.1) [24]. Since PS+60nmAl2O3 and PS+60nmAl2O3+PVAc present low contrasts 

compared to PS+60nmAl2O3+PS, this demonstrates that Al2O3 and PVAc have successfully covered 

the whole surface of the sample. Whereas, due to the contrast sign and its important value on PS 

covered samples, it can be deduced that PS film deposition is not homogeneous on the entire 

surface; namely, particles top is the least covered, or it might not be even covered at all. We deduce 

that PS film deposition fills up the regions between particles first. 

 Furthermore, we confront nanomechanical AFM signals of Fig. V - 34 to EFM ones in Fig. V - 35.   

 
Fig. V - 35 : DC - EFM frequency shift images for PS with 60nm Al2O3, PS with 60nm Al2O3 covered by a PS spin-coated film 

and PS with 60nm Al2O3 covered by a PVAc spin-coated film (low gains and drive amplitude cause the expanded 

PS+60nmAl2O3 shape). 

PS covered samples exhibit EFM contrast inversion in regard to uncovered ones (Fig. V - 35). We 

remind that EFM images measure the greatest frequency shifts at the regions with the highest 

capacitance. Consequently, this indicates that the top of PS+Al2O3+PS exhibit higher dielectric 

permittivity than the rest of the sample. Contrariwise, PS+Al2O3+PVAc particles present low EFM 

contrast. Therefore, it can be deduced from EFM images that the PS film partially covers the particles 

contrarily to PVAc, masking the whole surface. This deduction is supported by the previous results of 

nanomechanical characterization. 

 Henceforth, EFM can be used alone to prove the homogeneity of soft films deposition above 

the stiffer surface. For instance, in Fig. V - 36 we show the signal above a PS+60nmAl2O3 covered by a 

PVAc film from a base PVAc solution of lower concentration (C2) than the solution of the PVAc 

covered sample of Fig. V - 35 (C1). The concentration is related to the thickness tC of the spin coated 

film (tC1 < tC2) [25]. It can be noticed that the sign of EFM contrast for PVAc covered samples of C2 

concentration is similar to that of PS covered samples of Fig. V - 35. This proves that PVAc and PS 
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spin-coating deposition mechanisms are close, and thereby, shows that PVAc additional layer is 

actually closer to the configuration (b) of Fig. V - 31. 

 
Fig. V - 36 : DC - EFM frequency shift image for PS with 60 nm Al2O3 covered by a PVAc spin coated film from a base 

solution with a lower concentration (C2) than the solution of the PVAc covered sample (C1) of Fig. V - 35. 

 

  
Fig. V - 37 : Average profiles of PS+60nmAl2O3 and PS+60nmAl2O3+PVAc for a. topography and b. 2ω - frequency shifts 

results. VAC = 5 V, ω = 200π rad/s and z = 21 nm. 

We respectively compare in Fig. V - 37a. and Fig. V - 37b. the average topography and electrical 

frequency shift profiles, for PS+60nmAl2O3 and PS+60nmAl2O3+PVAc. Their corresponding mean 

values calculated around the center give 15.4 ± 2.2 Hz without the matrix compared to 14 ± 2.4 Hz 

with PVAc. We find that the matrix only slightly decreases the overall center signal over 

PS+60nmAl2O3 (1% ratio). Since this low decrease is confusing and not sufficiently noteworthy, we 

study in the following paragraph the case of 100 nm alumina layer.    

 

 
Fig. V - 38 : Average profiles of PS+100nmAl2O3 and PS+100nmAl2O3+PVAc for a. topography and b. 2ω - frequency shifts 

results. VAC = 5 V, ω = 200π rad/s and z = 21 nm. 

Similarly to 60 nm Al2O3 shells, Fig. V - 38a. and b. present respectively the average topography and 

electrical frequency shift profiles for PS+100nmAl2O3 and PS+100nmAl2O3+PVAc. Their corresponding 

average values calculated around the center give 20.6 ± 1.9 Hz without the matrix compared to 14.6 

± 0.95 Hz with PVAc. Hence, it can be noticed in this case that the matrix decreases the overall 
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central signal of PS+100nmAl2O3 by ~ 30 % ratio. Contrarily to 60 nm alumina shell case, samples 

prepared with an interphase model layer of 100 nm meet with a good extent our expectations. In 

fact, upon the addition of PVAc, the signal has decreased over the PS particle that is considered to be 

covered by an unknown shell. Since εPVAc > εPS, this supposes that the effective permittivity of PS has 

changed due to its shell. The latter must possess a higher dielectric permittivity than both PVAc and 

PS, equal to 3.2 and 2.6, respectively. This is consistent with our case of Al2O3 shell, possessing a 

permittivity of 9.8. 

 The difference between the two treated cases, 60 nm and 100 nm Al2O3 intermediate shells, 

could be due to: 

a) Thinner PVAc film over PS+60nmAl2O3 than PS+100nmAl2O3: since all experimental 

conditions are preserved during the deposition of PVAc, the same total volume of the matrix 

must be left to be dispersed on the surface. Moreover, PS+60nm Al2O3 possess larger empty 

space between two neighbor particles compared to PS+100nmAl2O3. As PVAc deposition 

mechanism has been concluded to start filling up empty cavities before covering the 

particles, this can suppose that PVAc film thickness is lower over PS+60nmAl2O3+PVAc 

samples. A very thin film can be insufficient to induce a detectable change in the polarization 

response compared to the base sample (refer to αDC curve versus ti of Fig. V - 17). 

 

b) Lower effective permittivity of PS+60nmAl2O3 compared to PS+100nmAl2O3: if the PVAc layer 

is however supposed to have the same thickness over both covered samples, the lower 

effective permittivity of the core material with additional 60 nm Al2O3 compared to 100 nm 

Al2O3 could explain the low decrease. As the contrast in the permittivities of the core and the 

matrix is reduced, the risk becomes to be unable detecting an important change in EFM 

response. 

This proves the sensitivity of this first method, within the right geometry and permittivity ratios, to 

detect the region at the interface between PS particles and the PVAc matrix. 

 

The comparison between the associations of mat1+mat2 compared to mat1+mat2+mat3 has shown 

sensitivity to the effective permittivity of PS particles with 100 nm thick Al2O3 film.  However, this 

methodology cannot be adopted as a general method, and in order to extend it, higher precise 

deposition techniques are needed for the third material, for the two following reasons: 

a) The comparison of mat1+mat2 versus mat1+mat2+mat3 is not easily feasible in practice. In 

fact, such samples confrontation supposes to be able to have the particle with an interphase, 

alone. Since the creation of the interphase requires the interaction between the particle and 

the matrix, it cannot be obtained unless after the fabrication of the nanocomposite. Thus, as 

mentioned earlier, the bulk polymer layer above the particles in a nanocomposite must be 

extracted to reveal the interphase and obtain a similar association to the model mat1+mat2. 

However, at which level should matrix etching be stopped? Does it not induce interphase 

properties changes? 

 

b) Hence, a more realistic method would be to compare the particle + matrix association with 

and without the interphase. This means to be able to deposit a PVAc film over PS and 

PS+Al2O3 of the same thickness, or at least, with known and accurately controllable thickness. 

However, as it has been detailed in section 4.1.2 of this chapter, and further investigated in 
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section 4.1.4, spin-coated films are hardly controllable over our substrates since the latter 

possess rough surfaces. 

Therefore, we chose next another alternative method to prove with EFM the existence of an 

embedded layer between the particle and the surface material. 

 It must be highlighted that the very low EFM contrasts of PVAc covered samples can lead to 

suppose that the sublayer is not being detected. However, it may be a wrong interpretation since the 

bottom of the samples is expected to possess a thicker PVAc film than above the particles. The center 

and the bottom regions cannot be accurately compared. Nevertheless, this reinforces the need of 

another method and/or another type of samples to confirm subsurface interphase model detection.  

4.2. Method 2: PS+50nmSiO2 versus PS+100nmAl2O3+50nmSiO2 

 

  
Fig. V - 39: Interphase detection method 2, left: sketch of the samples to be compared, right: methodology. 

As it has been drawn from the conclusion of method 1, a controllable film thickness is needed in 

order to demonstrate the presence of the interphase layer in samples that model more general 

nanocomposite configuration. Hence, in the following methods, we used SiO2 instead of PVAc, since 

it can be deposited with plasma sputtering. The latter is one example of a high precision thin film 

deposition technique that showed to homogeneously spread SiO2 molecules over the whole sample 

surface, quite similarly to ALD (see Chapter IV). This allowed us to adopt the second methodology: 

comparison of mat1+mat3 to mat1+mat2+mat3 at same tip-sample distance. The latter assemblies 

model in a general way a comparison between a nanocomposite with and without an interphase, 

respectively. If the signal strengthens with the interphase layer, this shows the detection of an 

interphase with a permittivity higher than the effective one of particle + matrix association. In fact, 

according to section 3, when EFM signal increases with a thicker layer at same lift height, this 

indicates that the added material possesses a dielectric permittivity higher than the effective one of 

the initial particle + shell assembly. Although in these comparisons the added material is not at the 

surface, but in the middle, the same analysis holds. 

 
Fig. V - 40 : EFM images of PS+50nmSiO2 and PS+100nmAl2O3+50nmSiO2 samples (left), and their corresponding 

distribution histogram (right). VAC = 5 V and ω = 200π rad/s.  

0 5 10 15 20 25 30
0

0.5

1

1.5

2w - Df
0
 (Hz)

%

 

 

PS+50nmSiO
2

PS+100nmAl
2
O

3
+50nmSiO

2

%12 µm 0 µm 

12 µm 0 µm 



Chapter V Experimental results  
 

 167  
 

 Fig. V - 40 presents EFM images of PS+50nmSiO2 and PS+100nmAl2O3+50nmSiO2 along with the 

histogram illustrating signal distribution of both EFM images. As we set the latter scale to the values 

of the histogram with the highest percentage, we deduce that the greatest maximum identifies the 

bottom of the sample and the lowest one goes for the particle center values (see annotations on Fig. 

V - 40). A shift towards higher ∆f0 is found for particles with an additional intermediate Al2O3 layer. 

This indicates the sensitivity to the embedded Al2O3 layer below SiO2, and corroborates the 

hypothesis for this method. 

 

The observed shifts are consistent with this method 2 logic, proving that the detected interphase has 

a higher permittivity than the effective permittivity of PS+50nmSiO2 (εi > ε(PS+50nmSiO2)). Moreover, 

since εSiO2 > εPS, leading to an ε(PS+50nmSiO2) > εPS according to section 3 conclusions, this shows that εi > 

εPS. However, no information can be drawn about the relative permittivity of the interphase 

compared to the matrix (εi  versus εSiO2).   

 
Fig. V - 41 : EFM histogram of distribution of PS+50nmSiO2 and PS+100nmSiO2 samples. VAC = 5 V, ω = 200π rad/s. 

For instance, an additional SiO2 layer, representing a thicker matrix layer above the particles, 

would have also raised the signal, since the matrix possesses a higher permittivity than the particles 

(Fig. V - 41). This method could be important when information about the interphase compared to 

the particle is researched, while an approximate notion compared to the matrix one is enough.  

Certainly, once associated to simulations, signal change ratio can quantify the sublayer permittivity. 

However, a straightforward method would be to gain insight into the relative permittivity of the 

interphase layer model regarding both, matrix and particle, before verification with simulations. 

Consequently, we propose in method 3 a comparison procedure sufficient to draw direct information 

of the interlayer properties. 

4.3. Method 3: comparisons of samples with similar dimensions 

The above adopted comparison methodology has shown sensitivity to the interlayer. Nevertheless, 

these methods have shown limitations: either the compared samples are not so much feasible for a 

real application to nanocomposites (method 1), or the information about the relative identity of the 

interphase to particle and matrix is not complete (method 2). Moreover, the total thickness of 

confronted samples was not the same. Confusions due to the topography can be always considered 

as misleading, even if we have proved the predominance of the intrinsic response of the layers. 

Consequently, in this last method, we have compared samples possessing similar total height and 

stacked model layers shape. Sketch of Fig. V - 42 details the respective steps adopted in order to 

cautiously show the presence of the material between PS particles and the surface material.  
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Fig. V - 42 : The main three steps of samples comparisons for method 3: comparisons of samples with similar dimensions.  

In this last method too, PS spheres, Al2O3 layers and SiO2 have been deposited with the same 

adopted methods for previous samples: self-assembling + plasma etching, ALD and PSD, respectively 

(Chapter IV). EFM measurements have been acquired in the AC-force gradient detection mode, with 

the extraction of the 2ω component. AC-α2ω coefficient values have been calculated according to the 

conversion steps explained in Chapter IV (Fig. IV - 13). For this set of measurements, α was used as an 

independent coefficient from the applied voltage, contrarily to section 3.2.3 where it was especially 

used to remove the effect of surface contact potential and charges. In fact, 2ω-∆f0 is naturally 

independent of those parameters. A tip-sample distance of around 30.14 nm has been conserved for 

all of the coming up measurements, unless otherwise stated. 

 The reproducibility of the following results has been always verified at several sample regions 

and most of the times, for several comparable samples, measured with different probes. However, 

since in this section we correlate experiments to simulations for a large set of samples, we present 

results obtained with a specific probe for all measurements.  

 

The first step in order to confront experiments to simulations is always the calibration of the tip 

geometry. We performed one-point α2ω (z) curves over a metallic sample at a limited region (10 nm  

2.5 nm). Using the truncated conical tip with the same numerical model parameters as Chapter III, 

and extending to force gradient measurements, we obtain a tip radius of 28 nm and cone half-angle 

of 15 º that best fit experiments with a 4.6 % total error. Errors have been measured by:  

 
 

(V-4)  
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Fig. V - 43 : Tip calibration: experimental measurements fit simulations for a tip of (R0, ) = (29 nm, 15 º) with 4.6 % total 

error. 

 

 
Fig. V - 44 : AFM images and average cross-sectional profiles for PS reference sample, of its corresponding topography (a. 

and b. respectively), and EFM response (c. and d. respectively). VAC = 5 V, ω = 200π rad/s, z = 30.14 nm. 

Topography and EFM images of the polystyrene reference sample of this section are presented in Fig. 

V - 44a. and c., respectively. The corresponding average topography and EFM profiles of the cross-

sections extracted over the particles of Fig. V - 44a. and c. images, are respectively plotted in Fig. V - 

44b. and d.  Furthermore, we have measured the average value of both profiles around their center. 

Particles average height is 383 nm ± 29 nm and α2ω is 0.489 ± 0.07 Hz/V2. Implementing the present 

PS geometry and experimental parameters to our model, a PS dielectric permittivity of 2.6 has been 

found to agree with experiments with 0.80 % error (Table V - 1).  

Table V - 1 : Summary of the obtained experimental topography and EFM results over PS reference sample, compared to 

simulations. Tip-sample distance z = 30.14 nm, tip-calibration parameters (28 nm, 15 º) and average particles diameter 

experimental value (382 nm) are used. A particle permittivity of 2.6 fits simulations with 0.8 % error. 

Experiments-

PS Height (nm) 

Experiments-

α2ω (Hz/V2) 

Simulations -

α2ω (Hz/V2) 

Error (%) Permittivity 

383 ± 29 0.489 ± 0.07 0.493 0.80 εPS = 2.6 
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As it has been sketched in Fig. V - 42, we compare in the first place (step A) for method 3 the signals 

over uniformly covered particles of 100 nm Al2O3 versus 100 nm SiO2. In order to verify the 

uniformity of layers thickness prepared with ALD and PSD, we added during the deposition process, 

reference samples of silicon and gold-covered bare Si substrates. Ellipsometry has been used to 

characterize Al2O3 and SiO2 layers that have been grown and deposited on Si substrates, and 

profilometry to study the films over gold-covered substrates. This choice has been adopted since 

ellipsometry uses a theoretical model to calculate samples thickness (Chapter IV). Then, the fitting 

process becomes complicated when measurements are performed over multi-layered samples, 

which is the case for our gold-sputtered substrates: silicon + native oxide layer + chrome + gold, 

compared to silicon + native oxide layer for unmodified silicon substrates. 

4.3.3.1. Films thickness uniformity characterization 

a) Ellipsometry 

 
Fig. V - 45 : Ellipsometry results for 100 nm Al2O3 covered PS spheres. A 101 nm thickness is obtained with a good 

regression value of 0.998. 

Clean dispersion spectrum have been collected over 100 nm Al2O3 (Fig. V - 45) and SiO2 layers (not 

shown here). Fitting indicates an approximation of Al2O3 layer thickness of ~ 101 nm and SiO2 of ~ 

115 nm.  

b) Profilometry 

 
Fig. V - 46 : Typical profilometry results on a step of: a. 100nm Al2O3, and b. 100nm SiO2 planar films. Measured 

thicknesses are around 93 nm and 98 nm, respectively. 

Typical profilometry results over a step of 100 nm Al2O3 and SiO2 films are presented in Fig. V - 46, 

showing 93 nm and 98 nm heights for Al2O3 and SiO2, respectively. Combining both characterization 
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methods results, it can be concluded that within the measurement techniques accuracy, the films 

exhibit relatively similar thicknesses. This result is extrapolated to PS covered samples: as PS 

reference samples present similar diameter, Al2O3 and SiO2 layers are supposed to give similar shells 

thicknesses once deposited over PS.     

4.3.3.2. EFM measurements 

 
Fig. V - 47 : PS+100nmAl2O3 and PS+100nmSiO2 samples: a. average topography profiles, b. average EFM signal profiles, 

and their corresponding EFM images (insets). VAC = 5 V, ω = 200π rad/s. 

Fig. V - 47 presents topography and EFM results of PS+100nmAl2O3 and PS+100nmSiO2 samples. 

Average topography profiles of all AFM image spheres (around 25 particles) show interestingly 

similar topography profiles as expected from the calibrated preparation process. Although 

topography profiles sharply match, their corresponding EFM profiles are distinctly different in terms 

of signal magnitude at both the center of the particles as well as sample bottom regions. As SiO2 and 

Al2O3 possess different dielectric permittivities, in the hypothesis of similar thicknesses, signal change 

becomes explainable. However, surprisingly, the EFM response increases with SiO2 as covering layer 

compared to Al2O3, although SiO2 is known to possess a lower permittivity than Al2O3 (3.9 for SiO2 

compared to 9.8 for Al2O3). Since Al2O3 shells have been already characterized in the above sections 

showing predictable performances, this odd dielectric response is attributed to SiO2. 

 Hence, in order to explain this apparently higher dielectric response of SiO2 compared to Al2O3, 

we suppose that SiO2 layers are prompt to retain at their surface water molecules from the 

environment more than Al2O3, although both materials are usually reported as highly hydrophilic [26, 

27]. In fact, compared to the smooth chemical vapor ALD technique, SiO2 physical deposition with 

plasma sputtering could be producing a more developed ionic surface state, creating favorable sites 

for water attraction. This could be particularly caused by the little percentage of reactive O2 gas that 

was added to the neutral Ar gas during sputtering (see Chapter IV). Typically,  and could be 

introduced, attracting the hydrogen ends of water molecules [28]. 

 A test in a highly humid environment has been performed over each of those samples. Both 

topography (not shown here) and EFM imaging have not been possible on SiO2 covered spheres, 

contrarily to Al2O3 that presented no problem (see Fig. V - 48). All used probes have been stuck to the 

surface, and consequently, got crushed or polluted, requiring tip change. Since a water meniscus 

created between the tip and the surface in air environment can be responsible for sticking of the tip 

to the surface at low distances, greater water molecules adsorption layers are supposed to be 

responsible of greater attraction forces. Consequently, water meniscus can be responsible for 
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dynamic imaging instabilities [29], and an important water adsorption/absorption can then explain 

surface states difference between Al2O3 and SiO2. 

 
Fig. V - 48 : EFM images of PS+100nmAl2O3 (left) and PS+100nmSiO2 (right) in a highly humid environment. Imaging 

process is not stable over silicon dioxide covered samples. VAC = 5 V, ω = 200π rad/s and z = 30.14 nm. 

 We correlate experimental results to simulations in order to calculate the apparent 

permittivity of the SiO2 layer over PS spheres. An apparent permittivity of εapp = 17 is found to fit 

experiments with 0.6 % error. This permittivity is certainly much higher than the usual SiO2 value 

around 3.9. On the other hand, a 9.8 dielectric permittivity for 100 nm alumina covered PS spheres 

agrees with experiments with only 3.2 % error. Hence, within the same hypothesis of the above 

paragraph, we simulate the presence of a water layer above the samples of PS+100nmSiO2. While 

water is simulated with a dielectric permittivity of 80, calculations give an adsorption layer of 14 nm, 

capable of resulting in a similar EFM response as experiments with 0.9 % error.  Since 14 nm water 

layer is relatively large for an adsorption layer [30], it must be noted that water molecules can also 

diffuse in the material at the interface with air [29], which creates a region possessing an average 

permittivity between 3.9 and 80. The latter region is a “real” interphase region that seems to 

dominate in this type of samples. 

Nevertheless, the high signal could be due as well to a thin water layer, however, resulting in a 

developed nanomeniscus that modifies the intensity of interaction [31].  

 Our hypothesis of external conditions changing the apparent dielectric response of SiO2 at the 

surface will be further investigated in the following sections. 

 

At this stage, since the deposition of similarly thick layers with ALD and PSD has been verified, and 

the relative difference between SiO2 and Al2O3 layers have been calibrated, stacking different layers 

of SiO2 and Al2O3 over PS for detecting the intermediate material becomes meaningful. 

 The second main step in order to test the interphase model detection with this third method 

has been addressed by comparing EFM response over PS+50nmAl2O3+50nmSiO2 with PS+100nmSiO2. 

The interphase model layer is hence the 50 nm Al2O3 intermediate layer (see step B in the sketch of 

Fig. V - 42). 
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Fig. V - 49 : PS+50nmAl2O3+50nmSiO2 and PS+100nmSiO2 samples: a. average topography profiles, b. average EFM signal 

profiles and their corresponding EFM images (insets). VAC = 5 V, ω = 200π rad/s and z = 30.14 nm. 

 Fig. V - 49 shows topography and EFM signals of PS+50nmAl2O3+50nmSiO2 and PS+100nmSiO2 

samples. For this set of samples too, the average topography profiles match to a good extent (Fig. V - 

49a.). On the other hand, EFM average response is not conserved, the signal around the center 

decreases with a 50 nm Al2O3 shell below the 50 nm SiO2 layer compared to 100 nm SiO2 unique 

covering material (see Table V - 2). Based on the measurements of section 4.3.3, surface SiO2 layer 

has shown to present a higher permittivity than Al2O3. The exchange of 50 nm SiO2 (εapp = 17) above 

the particles with 50 nm Al2O3 (εAl2O3 = 9.8) becomes thereby reasonable to decrease the signal at 

both particles center as well as bare substrates regions. Please note that EFM cross-sections have 

been collected slightly far from the center to avoid borders effects, which is reflected in a change of 

apparent particles width on EFM average profiles.  

 Signal decrease suggests both, the detection with EFM double-pass method of the interphase 

represented by the 50 nm Al2O3 layer, and the sensitivity to its relative permittivity regarding the 

matrix. 

 Nevertheless, the difference between the signals is relatively small. This can be justified since 

the upper layer is already 50 nm thick; due to electric field penetration limits, the subsurface layer is 

prone to only lightly modify it (see Chapter II – section 4.3.3.3) [32]. Moreover, the surface material 

presents a high dielectric polarization response, which further screens the one from the deeper 

parts. Besides, the difference between the deduced SiO2 apparent permittivity (εapp = 17) and that of 

Al2O3 (εAl2O3 = 9.8) is relatively low. Namely, high dielectric permittivity materials are difficult to be 

distinguished [33], even if their effective permittivity decreases since they are placed on a material of 

lower permittivity (εPS = 2.6 < 9.8 and 17). We remind that a reduction in sample effective 

permittivity enhances the sensitivity to the top film. This latter remark can be either understood 

from section 3 conclusions of this chapter, or from Chapter III - section 4.2. 

 In order to further verify this result, as well as the quantification of the interphase permittivity, 

we corroborate experimental results with numerical simulations. We also used for the upcoming 

simulations the appropriate fitting parameters of section 4.3.1 for tip geometry, and section 4.3.2 for 

PS particles geometry and dielectric permittivity, in addition to εapp = 17 for SiO2 as derived from 

experiments to simulations fitting of section 4.3.3.2. An adequate match of experiments to 

simulations can be clearly noticed. The resultant dielectric permittivity of Al2O3 is fitted to 9.8 with 5 

% error (see Table V - 2). Errors below 5 % are widely acceptable considering the errors on tip and 

spheres calibration, films thickness and the technique inherent experimental errors. 

0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

400

x (mm)

T
o

p
o

g
ra

p
h

y
 (

n
m

)

 

 

PS+50nmAl
2
O

3
+50nmSiO

2

PS+100nmSiO
2

0 0.2 0.4 0.6 0.8 1 1.2

10

15

20

25

30

35

40

x (mm)

2
w

 -
 D

f 0
 (

H
z
)

 

 

PS+50nmAl
2
O

3
+50nmSiO

2

PS+100nmSiO
2

(a) (b) 



Chapter V Experimental results  
 

 174  
 

Table V - 2 : Experiments to simulations comparison for PS+50nmAl2O3+50nmSiO2 vs. PS+100nmSiO2 samples. Al2O3 

subsurface layer presents a 9.8 dielectric permittivity with 5 % error for a calibrated SiO2 upper layer with a 17 

permittivity value, z = 30.14 nm. 

 Experiments-

α2ω (Hz/V2) 

Simulations-

α2ω (Hz/V2) 

Error 

(%) 

Interphase Matrix 

PS+100nmSiO2 2.285 ± 0.33 2.271 0.60 εSiO2 = 17 εSiO2 = 17 

PS+50nmAl2O3+50nmSiO2 2.011 ± 0.18 2.113 5.1 εAl2O3 = 9.8 εSiO2 = 17 

 

In this last set of experiments, for the third main step for interphase model detection with method 3, 

we compare the signal over the reversed system of the above section: PS+50nmSiO2+50nmAl2O3 is 

compared to PS+100nmAl2O3 (step C of Fig. V - 42). 

The total thickness of 100nmSiO2+50nmAl2O3 and that of 150nmAl2O3 reference films over 

gold sputtered substrates have been verified with profilometry. Here also, measured heights closely 

equate to the theoretical thickness (159 nm and 154 nm, Fig. V - 50). 

 
Fig. V - 50 : Typical profilometry results on a step over: a. 100nmSiO2+50nmAl2O3, and b. 150nmAl2O3 planar films. 

Measured thicknesses are around 159 nm and 154 nm, respectively. 

 
Fig. V - 51 : PS+50nmSiO2+50nmAl2O3 and PS+100nmAl2O3 samples: a. average topography profiles, b. average EFM signal 

profiles and their corresponding EFM images (insets). VAC = 5 V, ω = 200π rad/s and z = 30.14 nm. 
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 Fig. V - 51 presents topography and EFM signals obtained above PS+50nmSiO2+50nmAl2O3 and 

PS+100nmAl2O3 samples. In accordance with above comparisons, the average topography profiles for 

this set of samples closely match, on the contrary to EFM responses. The average electrical signal 

clearly decreases with 50 nm SiO2 below the 50 nm Al2O3 upper layer, compared to the full 100 nm 

Al2O3 covering material, at both, particles center and bare substrate regions. 

 From the previous two last sections, an apparent dielectric permittivity of 17 has been 

calculated for SiO2 layer. If this latter permittivity holds for SiO2 when it is placed as the interphase 

layer, the signal above SiO2 filled samples must exceed Al2O3 one, which contradicts the results of Fig. 

V - 51. However, if one considers the nominal intrinsic bulk permittivity of SiO2 that is around 3.9, 

lower than Al2O3 permittivity (εAl2O3 = 9.8), these results become reasonable. 

 It must be noted that in all cases (A, B and C), SiO2 has been deposited with the same 

technique. Thereby, intrinsic material changes (bulk SiO2) must not be the reason for the apparent 

permittivity change of SiO2 among samples. Hence, in order to interpret those changes, it can be 

noted from the above section that the amplified signal has been attributed to adsorbed/absorbed 

water molecules at the interface of SiO2 with the air. Since measurements were performed in air, this 

effect has been widely noticed when SiO2 was the upper layer. However, in the present set of 

samples, SiO2 layer is below Al2O3. 

If Al2O3 deposition had been performed in air, the surface state of SiO2 would have been probably 

preserved, and SiO2 dielectric response would have still exceeded Al2O3 one in Fig. V - 51. Yet, this is 

not the case. We remind that ALD is performed under vacuum (0.01 mbar) at 80 º C. Samples were 

left for at least 40 min before launching the deposition process, in order to acquire vacuum and 

temperature stability. At these pressure and temperature conditions, water molecules can get 

evaporated, and within the 40 min delay time, we suppose that relatively enough time has been 

conferred for H2O desorption [34]. Consequently, this could explain the return of SiO2 to its initial 

properties when Al2O3 is grown above it. 

 In all cases, from the comparison of topography to EFM response, the detection of the 

interphase represented by the 50 nm SiO2 layer can be clearly identified.  

 This result is verified as well for superimposed planar films, as deduced from the bottom 

regions of the sample on Fig. V - 51b. We demonstrate these results on entirely planar samples too. 

As presented in Fig. V - 52, α2ω (z) curve, with SiO2 in the sublayer, lies below the homogeneous Al2O3 

film curve. This result closely matches numerical simulations of the corresponding system with εSiO2 = 

3.9 and εAl2O3 = 9.8.   

 
Fig. V - 52 : α2ω vs. z curves for planar SiO2 and Al2O3 films obtained with a. AC - EFM experiments, b. simulations. The 

SiO2 sublayer decreases the signal, with close match to simulations. VAC = 5 V, ω = 200π rad/s. 
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 Furthermore, in order to prove the proper sensitivity to the dielectric constant of the 

interphase over PS spheres, here also, we extend the above PS results (Fig. V - 51) to simulations. 

Similarly to Fig. V - 52a., we used in these simulations a permittivity of 3.9 for SiO2. Experiments and 

simulations are closely equivalent, using εAl2O3 = 9.8 and εSiO2 = 3.9, with only 0.2 % error (see Table V - 

3). 

Table V - 3 : Experiments to simulations comparison for PS+50nmSiO2+50nmAl2O3 vs. PS+100nmAl2O3 samples. 

Subsurface SiO2 layer presents a 3.9 dielectric permittivity with 0.3 % error, z = 30.14 nm. 

 Experiments-

α2ω (Hz/V2) 

Simulations -

α2ω (Hz/V2) 

Error 

(%) 

Interphase Matrix 

PS+100nmAl2O3 1.709 ± 0.26 1.653 3.24 εAl2O3 = 9.8 εAl2O3 = 9.8 

PS+50nmSiO2+50nmAl2O3 1.478 ± 0.17 1.475 0.27 εSiO2 = 3.9 εAl2O3 = 9.8 

 

Method 3 showed the possibility of detecting the interphase model layer with EFM-force gradient 

measurements performed in the double pass method and at constant tip-sample distance, by 

comparing samples with similar dimensions. 

 After calibration of matrix permittivity, direct EFM results showed to allow distinguishing the 

relative dielectric permittivity of the interphase model layer. For instance, in the case of a calibrated 

50 nm thick SiO2 matrix, and an unknown 50 nm Al2O3 interphase, the quantification of Al2O3 

permittivity matched the casual one of 9.8 with acceptable error (5 %). In the opposite case, for a 

50 nm Al2O3 calibrated matrix, and 50 nm SiO2 as the unknown interphase, a 3.9 permittivity also 

agreed with simulations with only 0.3 % error. 

 In practice, this type of study can be practically transposed to comparisons between particles 

in a nanocomposite that show similar bulge shape (height and width). In the assumption that filler 

particles possess similar size, the same shape returns to particles with equally thick covering layers. 

The latter may be the matrix alone or both, matrix and interphase. Moreover, with this methodology, 

the interphase permittivity can be directly compared to the matrix one; and knowing particle 

permittivity, it can be stated regarding the particle one. 
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 Conclusion 

In conclusion, this last thesis chapter has been dedicated to assess experimentally the capabilities of 

EFM for interphase detection with the samples prepared as electrostatic model of nanodielectrics. 

An association of 3 materials of different dielectric permittivities has been used such as the first has 

the shape of a nanoparticle, covered homogeneously by the second material, being the interphase 

model, and subsequently, by the third material for the matrix model. 

 As a preliminary basic study, the association of two materials has been investigated. This 

association can represent the particle with an interphase where the matrix has been removed, or the 

particle with the matrix with no interphase. Paramount conclusions on suitable experimental 

protocols and signal analysis have been deduced. For instance, for the studied samples, SiO2 

nanoparticles (20 nm diameter) and PS spheres (250 and 350 nm diameter) covered by Al2O3 shells 

(from 10 to 200 nm thickness), EFM showed a special sensitivity to the shell intrinsic dielectric 

permittivity relative to the particle. An appropriate detection method is to compare signals at the 

center of the particles at similar tip-sample distance. Unusual morphological effects on EFM 

responses are used to extract the dielectric information about the shell, when the particle is known, 

and vice versa, when the shell is known, all with no need for sample thickness quantification. 

Namely, as the increase of the additional layer thickness intensifies EFM response, this reflects a 

material with higher dielectric permittivity than base particle, which enhances the effective 

permittivity of the particle-shell association. Experiments showed good agreement with simulations 

allowing for an approximate fitting of PS spheres permittivity to 2.48 and Al2O3 to 10.78. 

 Next, the interphase investigation in a three-layered material: particle + interphase + matrix, 

has been attempted by three methods. The first method consisted in comparing the signal between 

the system particle + interphase to that of particle + interphase + matrix. Since the interphase layer is 

always the unknown material, and based on above section conclusions, a 100 nm Al2O3 interphase 

has provoked signal changes between a PS particle and a PVAc spin coated matrix that were 

interpreted to prove its detectability, as well as the sensitivity to its intrinsic permittivity, lower than 

both particle and matrix. This method represents the comparison between the signals above a 

particle covered by an interphase with no matrix to those above the same system, however with the 

matrix layer. This comparison is delicate since matrix etching without affecting the interphase is not 

straightforward. 

 A more realistic comparison has been then forwarded by studying particle + matrix compared 

to particle + interphase + matrix, such as matrix layers possess controlled thicknesses. This has been 

possible with the use of SiO2 layers deposited with controlled sputtering method adapted to our 

samples with rough surfaces. Signal comparison of PS+50nmSiO2 versus PS+100nmAl2O3+50nmSiO2 

also showed consistent results with the characteristics of our materials. However, the conclusion on 

the interphase layer was limited to its relative dielectric permittivity regarding the effective one of 

particle and matrix association, and that of the particle, but not matrix alone. 

 Hence, a third more direct method for interphase detection has been attempted via 

comparisons of carefully prepared samples, possessing similar shape and dimensions. Having 

removed any topographical ambiguity, interphase detection has been studied after a preliminary 

step: quantification of matrix dielectric permittivity when the latter is deposited first over the 

particles, without the interphase layer. Once the SiO2 matrix has been calibrated, the dielectric 

permittivity of 50 nm Al2O3 interphase below a 50 nm SiO2 matrix has shown to match the expected 

permittivity of 9.8 with 5 % error compared to simulations. As well as, in the inversed system, the 

permittivity of the Al2O3 matrix layer has been first verified. Then, in this case, the permittivity of SiO2
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as the interphase shell agreed well with the casual reported SiO2 permittivity of 3.9, with 0.3 % error 

from simulations.  

 Moreover, we have also noted a higher polarization response provoked by SiO2 when this 

material is grown on the top surface than in the bulk. This result has been attributed to the surface 

state of SiO2 with air that seems to develop a water adsorption/absorption layer. This layer is 

probably removed when Al2O3 is grown on its surface, due to Al2O3 film deposition thermodynamical 

conditions. Nevertheless, surface to bulk SiO2 properties change must be further investigated. 

 This third method can be practically adopted with the comparison of thin cross-sectioned 

nanocomposite specimens showing bulges of the same dimensions. Differently prepared 

nanocomposites can be compared at the regions of same bulges shape; in the assumption of equal 

fillers dimensions, signal changes must reflect an interphase contribution.  

 The general conclusion states the capabilities of EFM to detect subsurface multilayered 

materials of 3D finite-size with very good sensitivity and resolution, namely, for interphase detection 

in nanodielectrics. Several methods can be adopted to draw information about those layers. 

Nevertheless, as detailed in this chapter, each experimental parameter and material property must 

be kept in mind, similarly to our developed methods, in order to forward accurate analysis and 

appropriate conclusions on the intrinsic dielectric response of studied layers. 
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“I would rather have questions that can’t be answered than answers that can’t be questioned.” 
Richard Feymann 

 

Since interphases have long been considered to be responsible for the improved, or at least, unique 

properties of nanocomposites compared to their microcomposite counterparts and to the base 

polymer, a serious need for their local characterization has arisen. Among possible high resolution 

microscopic techniques, the Electrostatic Force Microscope (EFM) has been selected as a potential 

method to locally study nanodielectrics owing to the contrasts in the dielectric properties of the 

different nanocomposite components. 

 Little fundamental work of EFM response to polymeric dielectric nanocomposites has been 

investigated. Hence, the aim of this work was to explore the capabilities of EFM to locally study 

interphases in nanodielectric materials. 

 Conclusions 

In order to do so, we developed first a model for a nanodielectric sample within the frame of an EFM 

measurement. Based on the literature review, this type of nanocomposites can be simplified as an 

association of three materials, characterized by their dielectric permittivity: the first one is a 

nanoparticle, covered by a shell of the second material that models the interphase, and the third 

material covering the particle-interphase assembly, modeling the polymeric matrix. 

 As a nanodielectric sample is a relatively complicated system for casual EFM measurements, 

we have resorted to numerical simulations to deeper our understanding of the physics behind the 

interaction of an EFM probe and dielectric samples of several types and configurations, allowing at 

the end to simulate the specific interaction with a nanodielectric model. Numerical simulations 

proved that the electrical signal in an EFM is a mix result of several parameters effect, each weighing 

differently on the final response. The intensity of each parameter depends on the specific type, 

geometry and dimensions of the sample, as well as tip geometry, measurement parameters etc. 

Nevertheless, some global and salient conclusions could be drawn: 

1) As expected, in the absence of a dielectric film, the signal always decreases with the distance 
between electrodes, and increases with larger tips. The sensitivity to distance change is higher at 
low electrodes spacing where the nanometric tip parts dominate over probe micrometric parts. 
 

2) Within the electrostatically coupled region, and for fixed tip-sample distance, a homogeneous 

material intensifies the tip-sample interaction when it possesses a high dielectric permittivity 

and/or reduced thickness. The improved polarization with higher permittivities clarifies the 

stronger electrostatic force. On the other hand, thinner homogeneous films bring electrodes 

closer together, which is responsible for the improved capacitance. 

Nevertheless, the sensitivity to the permittivity decreases for important permittivities and/or 

thin films. This sensitivity can be relatively restored with thicker films. On the other hand, the 

sensitivity to the thickness is higher for thin films. Thick samples of high dielectric constant can 

also relatively restore the sensitivity to the film thickness. 

 

3) Multilayered planar films of different permittivities are detected as one global material with an 

effective permittivity comprised between the minimal and maximal permittivities of involved 

materials. 
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The effective dielectric constant is affected by the percentage of occupation of each component. 

Consequently, dimension changes might induce signal variations inconsistent with casual ones 

that are appropriate to homogeneous films. For instance, increasing the thickness of the layer 

with the highest permittivity can rise the signal to a certain extent, contrarily to homogeneous 

planar films where thicker films always reduce the interaction. 

 

4) Finite-sized samples, typically in the form of a nanoparticle, present a relatively complicated 

behavior regarding particle radius change. As a summary, for small particles, the signal decays 

with increasing particle size. In fact, in this case the tip and the substrate are very close, the 

sensitivity to interelectrode distance change with particle size dominates, and explains signal 

decay. However, exceeding a certain particle size, the smoothly reduced interaction due to the 

spacing between electrodes can be partially compensated by the polarization response of high 

dielectric materials. Bigger particles start to intensify the interaction owing to the contribution of 

the width increase.  

 

5) In a nanocomposite, finite-size effects can also be noticed as the matrix permittivity affects signal 

intensity contrast and the half-width at half-maximum of the inclusion. The spatial resolution in 

EFM was then found to depend on the permittivity ratio of sample components. 

The depth of the inclusion in the matrix equally affects electrical signal maximum and the 

apparent diameter. In fact, spatial resolution decrease is due to the effective permittivity of the 

probed region that gets closer to the matrix alone. Moreover, the limited penetration depth of 

the electric field reduces the detectability chances of deeply buried inclusions. 

 

6) Finally, for the specific case of a nanodielectric material, the particle-interphase assembly was 

found to be approximated to a particle of similar global dimensions, with an effective apparent 

permittivity. The same conclusions drawn for a simple nanocomposite system thereby hold for a 

nanodielectric. An insight into the detectability limits of the interphase in several common 

nanodielectric configurations has been established.  In general, we found that a low dielectric 

permittivity matrix, higher interphase permittivities and thickness, and lower depths, make the 

interphase more likely to be detectable. 

 

Subsequently, we designed and synthesized samples of known and mastered properties to play the 

role of an electrostatic model of a nanodielectric material (particle + interphase + matrix) making use 

of most recent nanotechnology preparation methods. In particular, silicon dioxide (~ 20 nm 

diameter) and polystyrene nanoparticles (~ 250 - 380 nm diameter) were placed on metallic 

substrates and aluminum oxide, polyvinyl acetate and silicon dioxide thin shells deposited on 

samples surface (particle and substrate). The shells can either model the interphase or the matrix 

depending on the adopted order of shells deposition. 

 Based on the theoretical background gained through our simulations, and making use of the 

model samples as reference samples, EFM measurements were performed in order to assess 

experimentally the ability to characterize interphases with EFM. Several experimental protocols and 

comparison methods were developed for this issue: 

 

7) The association of a particle with one shell was first studied, representing either a particle + 

interphase model, or a particle + matrix model. 

EFM showed a special sensitivity to both particle and shell intrinsic dielectric permittivities, 

relatively to each other. We deduced that the comparison of EFM signals at the center of the 
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particles at similar tip-sample distance is an appropriate detection method with no special need 

for thickness measurements compared to literature previous studies. This was proved in both the 

simple DC as well as the AC (2ω) excitation methods of force gradient detection. 

In accordance with simulation results, unusual morphological effects on EFM signals are found to 

be useful to extract dielectric information about similar 3D multilayered materials. 

Experiments showed good agreement with simulations allowing for an approximate fitting of PS 

spheres permittivity to 2.48 and Al2O3 one 10.78. 

 

The study of the interphase model layer embedded between the particle and the matrix has been 

attempted by three methods. 

8) In the first one, we compared the system particle + interphase to that of particle + interphase + 

matrix. This method represents the comparison between the signals above a particle with an 

interphase with removed matrix (e.g. by etching) to those above the same system, however with 

the matrix layer.  

Owing to the previous experimental conclusions, we were able to analyze the signal and prove an 

acceptable sensitivity to a 100 nm Al2O3 thick interphase between a PS particle and a PVAc 

matrix. 

However, this type of material comparison is delicate in practice since matrix etching without 

affecting the interphase is not straightforward. 

 

9) A more realistic comparison was forwarded by comparing: particle + matrix to particle + 

interphase + matrix, such as the matrix layers possess equal thicknesses. Signal comparison of PS 

with 50nmSiO2 vs. PS+100nmAl2O3+50nmSiO2 also showed consistent results with the 100nm 

Al2O3 interphase layer characteristics. The conclusion on the interphase layer was however 

limited to its relative dielectric constant compared to the association of particle and matrix 

effective permittivity, and that of the matrix but not particle alone. 

 

10) Hence, the third method investigated the comparison of carefully prepared samples possessing 

similar shape and dimensions to remove any topographical ambiguity. This third method can be 

practically adopted by comparing thin cross-sectioned nanocomposite specimens showing bulges 

of same dimensions.  

After the calibration of matrix dielectric constant when it is deposited first over the particles 

without the interphase layer, the dielectric constant of 50 nm Al2O3 interphase below a 50 nm 

SiO2 matrix was estimated and shown to match the expected permittivity for Al2O3 of 9.8 with 5 

% error regarding simulations results. 

As well as, in the inversed system, the dielectric constant of SiO2 as the interphase shell below a 

calibrated Al2O3 matrix layer agreed with the expected bulk permittivity of SiO2 of 3.9 with 0.3 % 

error regarding simulations. 

 

Surprisingly, due to matrix calibration measurements, we noted a higher apparent dielectric 

permittivity for SiO2 when grown on the upper surface compared to the bulk one. This result has 

been attributed to the surface state of SiO2 that seems to develop a water adsorption/absorption 

layer, related to the deposition technique of SiO2. This layer was supposed to be probably 

removed when Al2O3 is grown on its surface, due to Al2O3 deposition thermodynamical 

conditions. 
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Altogether, the results of this thesis demonstrate the potential of EFM to study subsurface 

multilayered dielectric materials of 3D finite-size, namely, to study interphases in nanodielectrics. 

Quantitative characterizations can be obtained too by correlating to numerical simulations; 

nevertheless, accurate analysis of all influencing parameters must be kept in mind.  

 Future works 

The first straightforward recommendation to confirm the third methodology for interphase 

measurement would be to examine other types of SiO2 thin film deposition methods. EFM 

measurements could also be tested under vacuum, after in-situ samples heating to remove water. A 

broadband nanoscopic Dielectric Spectroscopy (nDS) could be adapted to investigate surface 

molecules dynamics. 

 Various types of ceramics could be tested too as covering shells like titanium dioxide, boron 

nitride, zinc oxide etc. 

 An extension of this work towards closer configurations to practically used nanodielectrics 

would be to: 

a) Disperse PS particles of lower initial size (< 1 µm), etch to smaller diameters and grow lower layer 

thicknesses in order to test EFM developed protocols over lower dimension samples. 

b) Evenly disperse inorganic particles instead of organic ones, which was the case of our PS particles 

and subsequently, deposit polymeric shells instead of ceramic ones. The latter could be prepared 

with either chemical vapor or physical vapor deposition methods, in order to model the 

interphase and the matrix. A broadband nDS measurement becomes interesting over this latter 

type of model samples.   

Intrinsic space charge measurements (when they exist) and injected charges propagation could 

be also envisaged with EFM on both model samples configurations: organic particle + inorganic 

shells, and vice-versa. Either appropriate DC-force gradient measurements or casual AC-ω 

component measurements could be used.  

 Since analytical methods have been limited to the calculus of the interaction of EFM probe 

with simple geometries, some attempts to develop these models for complicated configurations 

must start in the future in order to master the interpretation of EFM signals.  

 Finally, the ultimate recommendation would be to evaluate these developed methods over 

“real” (industrial) nanodielectric materials, where only filler and matrix are the known parameters. 
Testing must obviously begin with materials exhibiting at the macroscale non-common behaviors, 

either in the real dielectric permittivity or other dielectric properties. In the meantime, several types 

of EFM specimen preparation methods must be also tested. Numerical modeling could always come 

in handy to verify, understand and quantify EFM results. 

 It must be noted that the electrostatic problem of our work could be equally generalized and 

adapted to other types of electrical scanning probe microscopies such as KPFM, SMM, C-AFM etc. 

Moreover, the application of the developed experimental protocols could also be applied to other 

types of nanometric heterogeneous materials, such as the wide types of synthesized core-shell 

materials and core-shell filled composites, as well as natural core-shell like structures such as viruses 

and bacteria. 

 Consequently, some reflections remain to wonder: how far could we reach with electrical 

scanning probe microscopies? Could direct tomography of complex nanomaterials be possible one 

day? What are the missing parts to reach this level of 3D unambiguous nanometric-resolution with 

AFM? Meanwhile, how could we confirm the nature of interphases? 
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Les matériaux polymères composites ont longtemps révélé des propriétés physiques améliorées en 

raison du mélange des caractéristiques de leurs constituants. Par conséquent, les lois 

conventionnelles de mélange de deux phases sont généralement suffisantes pour clarifier et prévoir 

la réponse des microcomposites à un stimulus externe. Cependant, pour une concentration donnée, 

lorsque la taille de la charge est réduite à l’échelle nanométrique, les nanocomposites présentent des 
changements de propriétés inattendues. A titre d’exemple, J.K. Nelson et J.C. Fothergill ont remarqué 
pour la première fois en 2004, une diminution de la permittivité diélectrique de la résine de base (de 

9.99 à 8.49 à 1 kHz par exemple) avec l'ajout de nanoparticules de dioxyde de titane, bien que celles-

ci possèdent une permittivité beaucoup plus élevée que la matrice polymère [1]. 

Le comportement singulier des nanocomposites diélectriques, constitués d’un mélange de 
particules dans une matrice, appelé également nanodiélectriques [2], a été attribué à la taille 

nanométrique des particules qui les constituent [3]. À cette échelle, et à masse équivalente de 

matériau, le rapport des atomes et des molécules présents à la surface des particules à l'égard de 

ceux présents dans le volume, augmente de façon exponentielle, comparé à des microparticules. En 

outre, la réactivité des molécules de surface d'une phase condensée est élevée. Au contact d'une 

autre phase, une série d'interactions se produit sur leur interface mutuelle afin d'établir un équilibre 

thermodynamique. Ces interactions sont susceptibles de favoriser l’apparition  d’une région aux 
propriétés uniques, différentes de celles des phases impliquées. Ainsi, et à titre d'exemple, il est 

généralement signalé que, dans un nanocomposite, les chaînes de polymères se réorganisent à 

l’interface avec les nanoparticules créant une couche immobilisée, et plus ordonnée [4]. L’ordre de 
cette dernière est surtout élevé à la surface de la particule et diminue à mesure qu'on s'approche du 

volume du polymère. Cette région, aux propriétés modifiées,  est communément appelée 

‘’interphase’’. Celle-ci occupe ainsi un pourcentage considérable en volume dans les 

nanodiélectriques, s'étendant de quelques angströms jusqu'à quelques centaines de nanomètres 

d'épaisseur. L'interphase pourrait donc posséder une permittivité inférieure à celle du polymère en 

volume, ce qui explique la réponse diélectrique exceptionnelle observée dans les nanodiélectriques. 

De surcroit, de nombreuses propriétés d'isolation électrique, telles que la formation de charges 

d’espace, la propagation des arborescences, la résistance aux décharges électriques, etc., ont 
également été améliorées avec l'addition de nanoparticules par rapport au même diélectrique non 

chargé, aussi bien que leurs équivalents chargés avec des particules micrométriques [5-7]. 

Par conséquent, à cette échelle, du fait que les interphases commencent à contrôler les 

propriétés finales du matériau, la caractérisation locale de ces régions nanométriques devient 

incontestablement fondamentale. De quoi sont-elles faites ? Où sont-elles vraiment situées dans le 

matériau ? Quelles sont leurs propriétés ? Quelle est leur étendue ? 

Afin de répondre à toutes ces interrogations, les techniques d'imagerie à haute résolution s’avèrent 
potentiellement aptes à offrir des solutions.  

De nos jours, les deux méthodes d'imagerie à haute résolution les plus développées sont les 

microscopies électroniques et les microscopies à sondes locale, en anglais, Scanning Probe 

Microscopy (SPM). Contrairement aux microscopies électroniques, les techniques SPM et en 

particulier les techniques de Microscopie à Force Atomique (AFM) sont des méthodes polyvalentes et 

relativement faciles à utiliser, particulièrement adaptées à l'étude des isolants électriques [8]. Pour la 

définir simplement, l’AFM utilise une sonde physique comportant une pointe à son extrémité, d’apex 
nanométrique, dont dépend la haute résolution spatiale. La sonde détecte, avec une grande 

précision, le champ d'interaction avec l'échantillon, de façon analogue à une main qui effleure une 

surface avec les yeux fermés. Lorsque des forces électrostatiques sont à l’origine de l’interaction, 
nous parlons alors de Microscopie à Force Electrostatique (EFM) [9]. 

L’EFM est une des méthodes dérivées de l'AFM, prometteuse pour caractériser localement 
les interphases, en raison de sa sensibilité à la réponse capacitive en présence de l'échantillon [10]. 
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Cependant, compte tenu de la géométrie de la sonde et de la nature des forces électrostatiques à 

longue portée, la région réellement sondée de l'échantillon devient très complexe à définir, et les 

signaux EFM deviennent souvent mal interprétés.  

Par conséquent, le but de ce travail de recherche est de déterminer si l’EFM est capable de 
détecter et caractériser les interphases dans les nanodiélectriques. En d'autres termes, les questions 

qui se posent sont les suivantes : Comment la présence ou l'absence d’une interphase se manifeste-t-

elle sur les signaux EFM ? Comment est-il possible de mesurer sa permittivité diélectrique et /ou ses 

dimensions ? Quels sont les protocoles expérimentaux et les analyses des signaux qui permettent 

d’interpréter la réponse intrinsèque aux interphases sans artéfacts ? 

Pour répondre à ces questions, nous avons choisi, dans un premier temps, de simuler 

numériquement l'interaction de la pointe EFM avec plusieurs types d'échantillons nanostructurés, 

pour combler les lacunes dans la littérature concernant la réponse EFM à de tels matériaux aux 

géométries et aux compositions complexes. Par la suite, l'impact de l’interphase sur les signaux EFM 
a été simulé pour des matériaux nanodiélectriques aux diverses propriétés et dimensions. 

Néanmoins, cette approche théorique n'était pas suffisante pour nous permettre, à ce stade, de 

mesurer les propriétés diélectriques par EFM de nanodiélectriques "réels", aux interphases 

inconnues. Des mesures expérimentales sur des échantillons de référence se sont rapidement 

avérées essentielles au développement des méthodes EFM appropriées en vue d’une caractérisation 

future des nanodiélectriques "réels". Des matériaux comportant trois phases diélectriques distinctes 

ont été conçus et synthétisés pour modéliser un matériau nanodiélectrique. Des tests expérimentaux 

ont donc été effectués sur ces échantillons pour adapter l’EFM à l'étude de l’interphase. De ce fait, 

plusieurs méthodes ont été développées. 

Ainsi, après l’introduction dans les Chapitres I et II des notions de base des matériaux 
diélectriques soumis à un champ électrique, des nanodiélectriques, des interphases d’un point de 
vue électrochimique, des modes de fonctionnement de l’EFM et leurs spécificités, ainsi qu’un état de 
l’art des avancées générales concernant les mesures locales des interphases, et ensuite par EFM en 
particulier, les premiers résultats sont traitées dans le Chapitre III.  

 
Fig.  1 : Modèle diélectrique adopté pour modéliser les nanodiélectriques, dans le cadre d’une mesure EFM : l’association 

de particule + couche interphase + matrice représente trois matériaux identifiés par leur permittivité diélectrique, 

géométrie, dimensions et disposition. ɛp, ɛi et ɛm représentent respectivement les permittivités diélectriques de la 

particule, de l’interphase et de la matrice. rp est le rayon de la particule, ti est l’épaisseur de l’interphase, h l’épaisseur de 

la matrice et d, la séparation de l’interphase par rapport à la matrice.    

Au cours d’une mesure EFM, un nanodiélectrique possédant une interphase a été modélisé comme 
étant constitué de trois phases diélectriques, caractérisées par leur permittivité diélectrique et 

disposées dans la configuration suivante : une nanoparticule constituant la première phase, enrobée 

d’une couche d’un deuxième matériau, illustrant l’interphase, et le tout recouvert par un troisième 
matériau modélisant la matrice (voir Fig.  1). 
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Dans le Chapitre III, nous discutons au travers de simulations par éléments-finis, la physique relative 

à l'interaction entre une sonde EFM et plusieurs types d'échantillons diélectriques nanostructurés. En 

particulier, nous étudions l’effet de l’association de multicouches diélectriques sur le signal, ainsi que 
l’effet des dimensions nanométriques des particules, enfouies ou pas dans une matrice, pour pouvoir 
enfin étudier le cas particulier d’un nanodiélectrique. 
La réponse EFM est affectée en premier lieu par la géométrie de la pointe, la séparation entre les 

électrodes, la permittivité diélectrique et la profondeur du matériau dans le volume d’interaction 
avec la pointe. Ainsi, nous avons pu montrer que la réponse d’un matériau hétérogène, structuré par 

multicouche, dépend des ratios permittivité/hauteur de chaque couche. Le signal est une réponse 

globale, que l’on illustre par une permittivité effective du système. 

On montre qu’il est possible de mettre en évidence l’hétérogénéité diélectrique du matériau du fait 
que ce dernier montre des variations consécutives à des modifications de la géométrie du matériau, 

incompatibles avec des échantillons homogènes. Le changement du rayon d’une nanoparticule, 
quand à lui, peut potentiellement faire intervenir tous les paramètres désignés ci-dessus. Une 

combinaison critique de tous ces paramètres peut ainsi changer les tendances classiquement 

obtenues en présence d’un diélectrique plan homogène. Ainsi, un nanocomposite, avec et sans 

interphase, combine à la fois les effets de taille et les effets de multicouche. L’ensemble particule + 
interphase est ainsi détecté comme une particule globale, ayant une permittivité effective. 

L’interphase agit alors sur le maximum, le contraste et la largeur à mi-hauteur du signal (voir Fig.  2). 

En conclusion, nous avons constaté qu'une matrice de faible permittivité diélectrique, qu’une 
interphase de permittivité et d’épaisseur élevées, et qu’un couple particule + matrice de 
permittivités comparables avec particule proche de la surface extérieure, rendent l'interphase plus 

susceptible d'être détectable.  

 
Fig.  2 : Simulations numériques de l’interaction pointe EFM avec un nanodiélectrique: a. Contraste EFM normalisé, sur 

un scan de 1 μm d’un nanodiélectrique ayant εm = 4, εp = 10, rp = 25 nm, ti = 20 nm, d = 20 nm à 20 nm de la surface, 

encart: modèle de condensateurs en permettant de comparer le signal au centre à celui obtenu aux bords de la particule; 

b. valeurs absolues brutes de la force, obtenues au centre des particules (x = 0 µm) pour différentes εi. 

Ainsi, après avoir identifié la réponse EFM liée à une interphase, et souligné certaines gammes de 

validité de l’EFM pour ce problème, l'étude expérimentale directe d’échantillons nanodiélectriques 

ayant une interphase inconnue a été jugée encore précoce à ce stade. Les études théoriques 

deviennent particulièrement essentielles pour accompagner des mesures expérimentales 

appropriées, dédiées à "étalonner" la technique de mesure pour de futurs études de l’interphase. 
À cet égard, des matériaux de référence de composition et de forme relativement connues et 

modifiables ont été préparés. Ces échantillons modélisent diélectriquement un nanodiélectrique 

(particule + interphase + matrice) utilisant les méthodes de préparation  en nanotechnologie les plus 

récentes.   
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Dans le Chapitre IV, nous détaillons le choix des matériaux composants ces échantillons 

modèles ainsi que leurs méthodes de préparation. Des nanoparticules de polystyrène (PS ~ 250 - 380 

nm de diamètre) et de dioxyde de silicium (SiO2 ~ 20 nm de diamètre) ont été placées sur des 

substrats métalliques, et de couches minces de dioxyde d'aluminium (Al2O3), de polyvinyl acétate 

(PVAc) et de dioxyde de silicium ont été déposées à la surface des échantillons (particules et 

substrat). Les couches minces ont été utilisées pour modéliser soit l'interphase, soit la matrice, ceci 

en fonction de l'ordre adopté pour la croissance des couches. 

En se basant sur les constats théoriques obtenus grâce à nos simulations, et en utilisant les 

échantillons modèles comme échantillons de référence, des mesures EFM ont été effectuées afin 

d'évaluer expérimentalement la capacité avec cette technique de caractériser les interphases. Ces 

résultats sont détaillés dans le Chapitre V du mémoire. 

Divers protocoles expérimentaux et méthodes de comparaison ont été développés dans l’optique de 
répondre à notre problématique. Dans un premier temps, l'association du système particule avec 

une seule couche a été étudiée, représentant soit un modèle de particule + interphase, soit un 

modèle de particule + matrice sans interphase.  

L'EFM a montré une sensibilité particulière à l’épaisseur et aux permittivités diélectriques 
intrinsèques des particules et des films déposés dessus, les unes par rapport aux autres. Nous avons 

déduit que la comparaison des signaux EFM au centre des particules, avec une même distance 

pointe-échantillon, est une méthode de détection appropriée, sans le besoin particulier de mesurer 

l'épaisseur du matériau (voir Fig.  3). Ce résultat est une avancée comparé aux études antérieures de 

la littérature. Ceci a été prouvé pour la détection de gradient de force électrostatique à la fois, avec 

une excitation DC ainsi qu’une excitation AC. Pour le mode DC, un protocole de mesure particulier a 

été adapté afin de sélectionner la réponse purement capacitive du signal. Alors qu’en AC, un banc de 
mesure supplémentaire a été mis en place. Dans ce cas, la composante qui varie avec le double de la 

fréquence du potentiel électrique a été démodulée, permettant de mesurer directement la réponse 

capacitive propre de l’échantillon. 

Conformément aux résultats des simulations, des effets morphologiques inhabituels sur les signaux 

EFM obtenus se sont avérés utiles pour extraire des informations sur les grandeurs diélectriques des 

matériaux multicouches 3D étudiés.  

Les expériences ont montré un bon accord avec les simulations permettant une quantification 

approximative de la permittivité relative des sphères de PS, de SiO2 et d’Al2O3 respectivement égales 

à 2.48, 3.9 et 10.78. 

 
Fig.  3a, b et c: (gauche) Représentation de la structure des échantillons et (droite) images du signal EFM en excitation 

DC : modification de la fréquence de résonance de la pointe (Δf0 (Hz)) liée aux gradients de forces électrostatiques, pour 
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des échantillons de PS, PS+60nmAl2O3 et PS+200nmAl2O3 ; d. et e. profils de coupes au centre, de la topographie (d.) et 

du signal EFM à potentiel et distance-pointe échantillon constantes(e.). La chute du contraste et l’augmentation du signal 

au centre montre la sensibilité à l’épaisseur et à la permittivité de l’Al2O3, supérieure au PS.  

Ensuite, l’étude de la couche modèle de l’interphase, placée entre la particule et la matrice, a été 

réalisée par trois méthodes. 

La première méthode a consisté à comparer la réponse à un système particule + interphase à 

celle d’un système de particule + interphase + matrice. Cette méthode représente en pratique, la 

comparaison entre les signaux obtenus face à une particule possédant une interphase, dont la 

matrice aurait été éliminée (par exemple par gravure), à ceux obtenus au-dessus du même système, 

conservant la couche matricielle cette fois-ci. 

Suite aux conclusions de la partie traitant le système particule + couche unique, nous avons pu 

analyser la réponse EFM et prouver une sensibilité acceptable à une interphase modèle de 100 nm 

d’Al2O3 entre une particule PS et une matrice de PVAc. Cependant, ce type de comparaison de 

matériau est délicat en pratique. En effet, le prélèvement de la matrice (particule + interphase) sans 

affecter l'interphase n'est pas évident.  

Une comparaison plus réaliste a été ainsi réalisée par une deuxième méthode, en comparant 

le système particule + interphase + matrice à celui particule + matrice, tout en gardant une même 

épaisseur de la couche de matrice modèle. La comparaison du signal obtenu pour le PS avec un 

enrobage de 50 nm de SiO2 par rapport à celui obtenu pour le PS + 100nmAl2O3 + 50nmSiO2, a 

également montré des résultats cohérents avec les caractéristiques de la couche modèle 

d’interphase (100 nm d’Al2O3). Cependant, la conclusion sur cette dernière couche a été limitée à sa 

constante diélectrique relative par rapport à la permittivité efficace de l'association particule + 

matrice, et non à celle de la matrice ou de la particule, seules. 

 
Fig.  4 : Détection de la couche modèle d’interphase - Méthode 3 : échantillons de PS+50nmAl2O3+50nmSiO2 comparés à 

PS+100nmAl2O3: a. profil moyen de la topographie (encart : dessin représentatif de la configuration des matériaux) ; 

b. profil moyen du signal EFM  et images EFM correspondantes (encart), à pulsation (ω) et amplitude du potentiel AC et 

distance constantes. Une superposition de la topographie est notée, à l’inverse de la réponse EFM montrant en moyenne 

une diminution du signal au centre avec une interphase de SiO2, en accord avec les permittivités relatives du SiO2 par 

rapport à Al2O3.  

Par conséquent, une troisième méthode a consisté à comparer la réponse d’échantillons 

soigneusement préparés, possédant des géométries et des dimensions similaires, afin de supprimer 

toute ambiguïté liée à la topographie et acquérir une information directe sur l’interphase modèle. 
Cette troisième méthode pourrait être adoptée en pratique pour la comparaison de spécimens d’un 
nanocomposite présentant des protrusions, liées aux inclusions, et qui possèdent les mêmes 

dimensions.  
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Après un étalonnage de la constante diélectrique de la matrice, déposée d'abord sur les particules 

sans la présence de la couche modèle d’interphase, la constante diélectrique d’une couche de 50 nm 
d’Al2O3, au-dessous de 50 nm d’une matrice de SiO2, a été estimée (voir Fig.  4). La quantification des 

résultats montrent une correspondance avec la permittivité relative prévue pour l’Al2O3 de 9,8 avec 

une erreur de 5 %  par rapport aux résultats de simulations.  

De même, pour le système inversé, la constante diélectrique du SiO2 en tant que couche modèle 

d'interphase sous une couche de matrice d’Al2O3 calibrée, coïncide avec la permittivité attendue du 

SiO2 de 3.9 avec une erreur de 0,3 % par rapport à la simulation.  

En outre, suite aux mesures d’étalonnage de la matrice, nous avons noté une permittivité apparente 

de la couche de SiO2, lorsque cette dernière est déposée à la surface libre du matériau, beaucoup 

plus élevée que celle mesurée en volume du matériau. Cette différence a été attribuée à l'état de 

surface du SiO2 qui semble développer une couche d'adsorption / absorption d'eau, liée à la 

technique de préparation du SiO2. Cette couche a été supposée être éliminée lorsque l’Al2O3 est 

déposé à la surface du SiO2, ceci en raison des conditions thermodynamiques spécifiques du dépôt 

d’Al2O3. 

L’ensemble des résultats de cette thèse démontre la capacité de l'EFM à étudier des 
matériaux diélectriques multicouches, de tailles nanométriques en 3D ; elle permet en particulier 

d’étudier l’interphase dans les nanodiélectriques. Des caractérisations quantitatives peuvent 

également être offertes en corrélant l’expérience aux résultats obtenus en simulations numériques. 

Néanmoins, une analyse précise de tous les paramètres d'influence doit être effectuée. 

Le dernier chapitre de ce mémoire regroupe les résultats clés, et propose des perspectives de 

travail afin d’appuyer les hypothèses dégagées dans ce travail qui n’ont pas pu être approfondies. 

Ces travaux permettront ainsi d’étendre l’application pour aller encore plus loin avec l’EFM. 
Notamment, nos travaux théoriques et expérimentaux pourraient s’appliquer également à 

d’autres techniques de caractérisation électriques avec l’AFM. (Scanning Microwave Microscopy, 
Conductive-Microscopy). En plus, l’étude de nos échantillons, à composition et géométrie 

relativement complexes, pourrait s’avérer transposable à d’autres types de nanomatériaux ; on peut 

citer par exemple les particules type core-shell, pour les applications pharmaceutiques, biologiques, 

et même énergétique; ainsi que des structures similaires mais naturelles telles que les virus et les 

bactéries... 
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Towards the use of Electrostatic Force Microscopy to study interphases in nanodielectric 

materials 

  

 

Abstract: Interphases are usually considered to be responsible for the physical properties of 

nanodielectrics unexplainable by general mixture laws. The prediction of the effective dielectric 

permittivity of these materials needs to reconsider the intrinsic permittivity and the volume of the 

interphase. Despite the urge for a local characterization of these nanometric interfacial regions, no 

reliable experimental method has been developed yet. The Electrostatic Force Microscope (EFM) 

constitutes a promising technique to fulfill this objective. The aim of this thesis is to develop 

appropriate experimental protocols and signal analysis to explore the ability of EFM to the study of 

interphases in nanodielectrics. We first resorted to finite-element numerical simulations in order to 

deeper our understanding of the interaction between an EFM probe and several types of 

nanostructured samples, allowing to simulate afterwards the specific response to a nanocomposite 

possessing an interphase. We proposed a three-phase electrostatic model of a nanodielectric, upon 

which, we designed and synthesized model samples of known properties to play the role of a 

reference nanodielectric material for EFM measurements. Consequently, we were able to develop 

several experimental protocols and signal analysis with both DC and AC force gradient EFM modes. 

These techniques offer versatile methods to characterize interphases with reduced impact of the 

parasitic effects commonly convoluted within EFM signals. Finally, a quantification of the interphase in 

our nanodielectric model samples was possible thanks to correlation with our numerical simulations. 

 
Key-words: Interphases, Nanocomposites, Nanodielectrics, Dielectric permittivity, Atomic force microscopy, 

Electrostatic force microscopy, Finite-elements.  

----------------------------------------------------------------------------------------------------------------------------------------------- ----- 

Vers l’utilisation du Microscope à Force Electrostatique pour l’étude des interphases dans les 

matériaux nanodiélectriques 

Résumé: Les interphases sont souvent considérées comme responsables des propriétés physiques des 

nanodiélectriques inexplicables par les lois de mélange. La prédiction de la permittivité diélectrique 

des nanodiélectriques nécessite de reconsidérer la permittivité intrinsèque et le volume de 

l'interphase. Malgré le besoin d'une caractérisation locale de ces régions interfaciales nanométriques, 

aucune méthode expérimentale fiable n'a encore été développée. La Microscopie à Force 

Electrostatique (EFM) constitue une technique prometteuse pour atteindre ce but. L'objectif de cette 

thèse est de développer des protocoles expérimentaux et des méthodes d’interprétations du signal 
appropriés pour évaluer l’aptitude de l’EFM à l'étude des interphases dans les nanodiélectriques. Nous 

avons eu recours d’abord à des simulations numériques par éléments-finis pour approfondir notre 

compréhension de l'interaction entre une sonde EFM et plusieurs types d'échantillons nanostructurés, 

permettant par la suite de simuler la réponse spécifique face à un nanocomposite possédant une 

interphase. Nous avons proposé un modèle électrostatique de nanodiélectrique possédant trois 

phases, selon lequel, nous avons conçu et synthétisé des échantillons modèles aux propriétés connues 

afin de jouer le rôle de matériaux nanodiélectriques de référence pour les mesures EFM. Par 

conséquent, nous avons pu développer plusieurs protocoles expérimentaux et d’analyses du signal 
utilisant des modes DC et AC de détection du gradient de force pour caractériser les interphases dans 

des nanocomposites. Ces techniques constituent un ensemble polyvalent de méthodes d’étude des 
interphases avec un impact réduit des effets parasites communément convolués dans les signaux EFM. 

Enfin, une quantification de la permittivité de l'interphase de nos échantillons modèles a été possible 

par corrélation avec nos simulations numériques. 

Mots-clés: Interphases, Nanocomposites, Nanodiélectriques, Permittivité diélectrique, Microscopie à force 

atomique, Microscopie à force électrostatique, Eléments-finis. 


