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Résumé

L’imagerie sismique du sous-sol à partir de données terrestres est très difficile à effectuer due à la
complexité 3D de la proche surface. Dans cette zone, les ondes sismiques sous forme d’un paquet com-
pact de phases souvent imbriquées sont dominées par des effets élastiques et viscoélastiques, couplés
aux effets dus à la surface libre qui génèrent des ondes de surface de grande amplitude et dispersives.
L’interaction des ondes sismiques avec une topographie plus ou moins complexe dans un contexte de
fortes hétérogénéités de la proche surface induit d’importantes conversions des ondes avec de fortes
dispersions d’énergie. Il est donc nécessaire de prendre en compte à la fois une représentation tridi-
mensionnelle précise de la topographie et une physique correcte qui rend compte de la propagation
du champ d’onde dans le sous-sol au niveau de précision réclamé par l’imagerie sismique. Dans ce
manuscrit, nous présentons une stratégie d’inversion des formes d’onde complètes (FWI en anglais)
efficace, autonome et donc flexible, pour la construction de modèles de vitesse à partir de données sis-
miques terrestres, plus particulièrement dans les environnements dits de chevauchements d’arrière pays
(foothills en anglais) aux variations de vitesse importantes.

Nous proposons une formulation efficace de cette problématique basée sur une méthode d’éléments
spectraux en domaine temporel sur une grille cartésienne déformée, dans laquelle les variations de to-
pographie sont représentées par une description détaillée de sa géométrie via une interpolation d’ordre
élevé. La propagation du champ d’onde est caractérisée par une élasticité linéaire anisotrope et par une
atténuation isotrope du milieu: cette deuxième approximation semble suffisante pour l’imagerie crustale
considérée dans ce travail. L’implémentation numérique du problème direct inclut des produits matrice-
vecteur efficaces pour résoudre des équations élastodynamiques composant un système différentiel
hyperbolique du second ordre, pour les géométries tridimensionnelles rencontrées dans l’exploration
sismique.

Les expressions explicites des gradients de la fonction écart entre les données et les prédictions
sont fournies et inclut les contributions de la densité, des paramètres élastiques et des coefficients
d’atténuation. Ces expressions réclament le champ incident venant de la source au même temps de
propagation que le champ adjoint. Pour ce faire, lors du calcul du champ adjoint à partir de l’instant
final, le champ incident est recalculé au vol à partir de son état final, de conditions aux bords préal-
ablement sauvegardées et de certains états intermédiaires sans stockage sur disques durs. Le gradient
est donc estimé à partir de quantités sauvegardées en mémoire vive. Deux niveaux de parallélisme sont
implémentés, l’un sur les sources et l’autre sur la décomposition du domaine pour chaque source, ce
qui est nécessaire pour aborder des configurations tridimensionnelles réalistes. Le préconditionnement
de ce gradient est réalisé par un filtre dit de Bessel, utilisant une implémentation différentielle effi-
cace fondée sur la même discrétisation de l’espace du problème direct et formulée par une approche
d’éléments spectraux composant un système linéaire symétrique résolu par une technique itérative de
gradient conjugué. De plus, une contrainte non-linéaire sur le rapport des vitesses de compression et de
cisaillement est introduite dans le processus d’optimisation sans coût supplémentaire: cette introduction



s’avére nécessaire pour traiter les données en présence de faibles valeurs de vitesse proche de la surface
libre.

L’inversion élastique multi-paramètres en contexte de chevauchement est illustrée à travers des ex-
emples de données synthétiques dans un premier temps, ce qui met en évidence les difficultés d’une
telle reconstruction. Des données synthétiques simulées et extraites du réseau d’acquisition en surface
du modèle de chevauchement de la deuxième phase (phase II) du projet SEAM (SEG Advanced Mod-
eling) avec quatre lignes de vingt sources permettent une illumination tridimensionnelle complète de
la sub-surface. L’inversion est plus sensible aux ondes de cisaillement car les données sont majori-
tairement composées d’ondes de surface. Nous proposons une stratégie de fenêtrage des données en
deux étapes, en se focalisant d’abord sur les ondes de volume en supprimant brutalement les ondes de
surface, puis sur l’ensemble des données incluant les ondes de surface. L’utilisation de cette hiérar-
chie dans la présentation des données conjointement avec la mise en œuvre du préconditionnement de
Bessel, fondé sur la structure géométrique de l’image attendue, rend la reconstruction des modèles de
vitesse des ondes P et des ondes S possible. Cette stratégie de fenêtrage temporel est deplus couplée
avec une hiérarchie de contenu fréquentiel allant des basses fréquences aux hautes fréquences. Elle
est appliquée avec succès à l’étude dans une configuration tridimensionelle d’une ligne d’acquisition
extraite des données originales de la phase SEAM II sur les chevauchements. Avec l’éclairage limité
d’une acquisition ligne, la contrainte du modèle sur le rapport des vitesses d’ondes P et S joue un rôle
important pour atténuer le caractère mal posé de l’inversion multi-paramètres. En considérant égale-
ment les ondes de surface, nous pouvons exploiter au maximum les informations des données observées
afin d’obtenir des modèles de vitesse précis, aussi bien pour la proche surface que pour des profondeurs
plus importantes.

Cette méthodologie de l’inversion des formes d’onde complètes developpée au cours de ce travail
est appliquée à un jeu de données réelles en contexte de chevauchement. Sa mise en œuvre est déli-
cate, principalement en raison d’une acquisition comprenant peu de sources, de la présence d’un bruit
important, et d’une structure du sous-sol très complexe. On peut s’attendre à ce que des données sup-
plémentaires telles que des diagraphies puissent aider l’inversion à mieux contraindre le modèle pour
expliquer les données observées. Les résultats préliminaires, en ne considérant que les ondes de vol-
ume, améliorent la cinématique et sont cohérents avec les interprétations géologiques préalablement
effectuées sur cette cible. Des contrôles sur la qualité du modèle via une analyse de l’ajustement des
données permettent de mieux cerner les zones fiables des modèles reconstruits.
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Abstract

Seismic imaging of onshore targets is very challenging due to the 3D complex near-surface-related
effects. In such areas, the seismic wavefield is dominated by elastic and visco-elastic effects such as
highly energetic and dispersive surface waves. The interaction of elastic waves with the rough topog-
raphy and shallow heterogeneities leads to significant converted and scattering energies, implying that
both accurate 3D geometry representation and correct physics of the wave propagation are required for
a reliable structural imaging. In this manuscript, we present an efficient and flexible full waveform
inversion (FWI) strategy for velocity model building in land, specifically in foothill areas.

We propose an efficient formulation based on a time-domain spectral element method (SEM) on a
flexible Cartesian-based mesh, in which the topography variation is represented by an accurate high-
order geometry interpolation. The wave propagation is described by the anisotropic elasticity and
isotropic attenuation physics. The numerical implementation of the forward problem includes effi-
cient matrix-vector products for solving second-order elastodynamic equations, even for completely
deformed 3D geometries. Complete misfit gradient expressions, including attenuation contribution
spread into density, elastic parameters and attenuation factors, are given in a consistent way. Combined
adjoint and incident fields recomputation, from the final state and previously saved boundary values,
allows the estimation of gradients with no I/O effort. A two-level parallelism is implemented over
sources and domain decomposition, which is necessary for 3D realistic configurations. The gradient
preconditioning is performed by a so-called Bessel filter using an efficient differential implementation
based on the SEM discretization on the forward mesh. A non-linear model constraint on the ratio of
compressional and shear velocities is introduced into the optimization process at no extra cost.

The challenges of the elastic multi-parameter FWI in complex land areas are highlighted through
synthetic and real data applications. A 3D synthetic illustration is considered on a subset of the SEAM
phase II Foothills model with 4 lines of 20 sources, providing a complete 3D illumination. As the data is
dominated by surface waves, it is mainly sensitive to the S-wave velocity. We propose a two-step data-
windowing strategy, focusing on the early body waves before considering the entire wavefield, including
surface waves. The use of this data hierarchy together with the structurally-based Bessel precondition-
ing make possible to reconstruct accurately both P- and S-wavespeeds. The designed inversion strategy
is combined with a low-to-high frequency hierarchy, successfully applied to a pseudo-2D dip-line sur-
vey of the SEAM II Foothill dataset. Under the limited illumination of a 2D acquisition, the model
constraint on the ratio of P- and S-wavespeeds plays an important role to mitigate the ill-posedness of
the multi-parameter inversion process. By also considering surface waves, we manage to exploit the
maximum amount of information in the observed data to get a reliable model parameters estimation,
both in the near-surface and in deeper parts.

The developed FWI algorithm and workflow are finally applied on a real foothill dataset. The
application is challenging due to a sparse acquisition design, the presence of high levels of noise, and



complex underneath structures. Additional prior information such as the logs data is considered to
assist the FWI design. The preliminary results, only relying on body waves, are shown to improve the
kinematic fit and follow the expected geological interpretation. Model quality controls through data-fit
analysis and uncertainty studies help to identify artifacts in the inverted models.
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GENERAL INTRODUCTION

Context

With the growing need for energy resources and raw materials, imaging the Earth’s crust has been a
topic of enormous interest over the last century. However, in practice, the observation of the geological
structure below the surface is difficult, as it typically involves well drilling, cores analysis and petro-
physical studies. For example, drilling costs alone can range from several to hundreds million dollars,
depending on the geological condition and the investigation depth, leading to rather sparse spatial well
sampling (Kaiser, 2007). Consequently, direct knowledge about the subsurface structures remains very
limited. Up to now, subsurface images mainly rely on indirect interpretations from physical measure-
ments at the free surface, shallow depth and through remote sensing techniques.

In the case of the oil & gas industry, seismic and non-seismic geophysical imaging techniques are
already intensely used to guide the search for new resources or monitor existing reservoirs. Non-seismic
methods, for instance, the gravity and magnetic measurements, can be used to determine the geome-
try and depth of particular sedimentary basins, where oil and gas are typically located. Due to their
comparatively low-resolution, they serve generally as complementary information for seismic methods,
which are the most widespread. Seismic surveying uses mechanical waves to map the underground rock
structures over several kilometers depth. Depending on the acquisition design, the method can provide
a 2D or 3D high-definition picture of the subsurface geology.

The evolution of this market will continue to require more and more from seismic imaging in the
near future. Hydrocarbon fuels are expected to remain as a substantial part of the global energy mix
(Abas Kalair et al., 2015). However, in the past few years, the global conventional hydrocarbon dis-
covery continuously decreased, according to the study published by Rystad Energy (Figure 1)1. The
reserves are getting smaller, under more complex geological structures such as deep offshore, sub-salt,
heavily faulted or thrust zones, which requires a breakthrough in exploration technology2. Moreover,
due to the decline of the oil price, it is vital to maximizing the recovery from existing reserves. Under
these conditions, clear images of the subsurface play an important role to de-risk the structure interpre-
tation, especially in challenging locations.

Besides the conventional sources, we are seeing an spectacular growth in the production of uncon-
ventional fuels, notably shale gas, tight oil and oil sands, with enormous estimated resources in the US
and Canada (Erbach, 2014). Unlike conventional gas, which resides in porous and permeable reservoirs
and can be extracted by standard vertical wells, shale gas remains trapped in its original source rock3.
Their extraction requires the horizontal drilling and fracking along the gas-containing rock. The ex-
ploration for unconventional oil and gas accelerates the demand for more information to find the sweet
spots to drill and fracture4. In this case, understanding the rock and natural fracture properties in the
reservoir is the game changer. This is the area where high resolution, broadband and wide-azimuth 3D
multicomponent seismic and advanced imaging techniques can play a key role in providing information
about the rock types, anisotropy, and fracture orientations. Finally, the development of seismic imaging
is also increasing in other sectors which require a good understanding of the subsurface structures, for
instance, mineral exploration industry (Malehmir et al., 2017).

In summary, we believe that seismic imaging, especially toward high-resolution medium charac-

1All-time low for discovered resources in 2017: Around 7 billion barrels of oil equivalent was discovered. Rystad Energy
UCube and Rystad Energy research and analysis, December 21, 2017.

2Geophysical Imaging brochure, Shell Global, 2014.
3Shale Gas and Other Unconventional Sources of Natural Gas. Union of Concerned scientists, April 3, 2015.
4Proving the Role of Seismic in Unconventional Plays. ION Geophysical, Official show daily publisher of the 75th EAGE

Conference and Exhibition, E&P DailyNews, June, 2013.

15

https://www.rystadenergy.com/newsevents/news/press-releases/all-time-low-discovered-resources-2017
https://www.shell.com/energy-and-innovation/overcoming-technology-challenges/finding-oil-and-gas.html
https://www.iongeo.com/content/documents/Resource%20Center/Articles/HEPDaily_EAGE_Seismic_in_Unconventional_Plays_130612.pdf


CONTENTS

Figure 1: Global conventional discoveries. Source: Rystad Energy UCube and Rystad Energy research
and analysis.

terization, remains a key indicator, not only for future hydrocarbon exploration but also for reservoir
monitoring, in both conventional and unconventional resources. With that motivation, this manuscript
focuses on the use of seismic waves in complex onshore targets, especially in foothill environments.

Exploration seismic acquisition

Data acquisition is the first step in any geophysical method. Acquisition design and the quality of the
recorded signal are crucial for the structural image of the subsurface, directly used for prospect map-
ping. The design of the surface acquisition or vertical seismic profile is defined before the deployment,
mainly based on the geological setting of the target, acquisition condition in the field and available
infrastructures.

Marine seismic acquisition is generally accomplished using one or multiple air-gun arrays for
sources. Air-guns are deployed behind the seismic vessel and generate a seismic signal by releas-
ing highly pressured air into the water. In standard acquisitions, receivers are towed behind the ship
in long streamers at several kilometers length: for instance, a 3D streamer project in offshore Gabon
considers from 6 to 12 km streamers to cover a deep sub-salt target (Andrew et al., 2013). Marine
receivers are mainly hydrophones, which respond to changes in water pressure. More advanced tech-
nologies, such as the dual sensor (hydrophone-vertical) and multicomponent (streamers hydrophones,
and particle acceleration in x, y, and z directions) streamers are shown to be helpful in deghosting in
the receiver side, thus providing broadband temporal seismic data (Carlson et al., 2007; Robertsson
et al., 2008; Moldoveanu et al., 2012). Due to the water column, which acts as a natural filter of shear
movement, the streamers can only record compressional wavefields. In complex structure areas, for
instance, salt bodies, more advanced technologies can be considered to enhance the image quality such
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as wide-azimuth, broadband and coil shooting. These techniques aim at gaining precise knowledge of
specific targets, in particular at the top of the reservoir: For example, the Heidrun coil shooting survey
in the Norwegian Sea with a radius of 5.6km, and 10 streamers, each 4.5 km long, separated by 75 m,
provides a clearer image of the fault definition in the reservoir5.

Another advanced technique of marine seismic is the ocean bottom setting, which is target-oriented
with a fixed-spread acquisition. The receivers can be cables (ocean bottom cables) or independent nodes
(ocean bottom nodes), laying out on the sea floor. They can have up to three component geophones and
an additional hydrophone. The use of ocean bottom recording has several advantages over conventional
towed streamer technology such as a more flexible acquisition design, ranging from narrow to wide
azimuth. It also gives the possibility of direct measurement of S-wave data in addition to P-wave
data through the geophones components. Most of the systems offered today are used for reservoir
monitoring, with shallow to medium water depth, limited at around 3000 m (Hovland, 2016).

Unlike marine data, land acquisition geometry is more flexible, and the shot points and the receivers
can be re-arranged in many ways. Acquisition flexibility is further enhanced by the development of
wireless devices, for instance, the RT3 system provided by WirelessSeismic 6. The receivers can be
single or multiple components geophones, which record both P- and S-wavefields. In 2D land acquisi-
tion, the shot points are gradually moved along a line of geophones. For 3D acquisition, an orthogonal
design is normally considered, with receiver lines laid out perpendicular to the source lines, leading to
a natural wide azimuth aperture. Explosive and vibroseis sources are commonly used in exploration
scale acquisitions. In explosive source acquisition, a charge of dynamite is placed at several meters
below ground, in a drilled hole: For example, the 3D acquisition in Jungar Basin, northwest China,
uses dynamite packages from 16 to 20 kg (Lv et al., 2015). The explosion of the dynamite charge
provides a broadband impulsive source signature. As opposed to the impulsive response of dynamite
source, vibroseis is a truck-mounted system that uses a large oscillating mass to generate a limited
band energy signals over an extended period. The recorded data then must be correlated to convert
the extended source signal into an impulse. In both ocean bottom and land acquisitions, the wavefield
recorded through geophones placed at the free-surface or sea-floor contains significant elastic effects
such as Rayleigh waves and converted energies from P to S and vice-versa.

Foothill acquisition

Foothill conditions are generally associated with a compressive tectonic regime and significant to-
pography variation. The underneath structures normally contain thrust faults, multi-folds, and steeply
dipping formations. The lithology varies quickly in both lateral and vertical directions. The alternative
of fast and slow velocity layers in depth is also found in these over-thrust areas (Ravaut et al., 2004).

Figure 2 provides an example of the extreme acquisition condition in Llanos Foothills with steep
topography and surface water springs (Checa et al., 2009). Such hard-to-access areas are inaccessible
by vibroseis trucks. Only explosive sources can thus be used. However, heavy dynamite charge is
abandoned inside the environmental reserve because of the environmental constraint, leading to various
data quality and rather weak signal-to-noise ratio. Seismic data is rarely shot in a straight line, under
rather sparse sources and receivers distribution due to the presence of natural obstructions. Issues related
to the positioning of receivers or shots during acquisition also affect the later processing and imaging
steps. Besides the technical issues, human safety also requires special consideration and investigation,
through intensive training for unskilled workers who had little or no previous exposure to such difficult
acquisitions.

5Shooting Seismic in Linked Circles. Lasse Amundsen and Martin Landrø, GEOExPro magazine, Vol. 6, No. 1, 2009.
6RT3 system, WirelessSeismic.
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Figure 2: Example of acquisition parameters and terrain condition in Llanos foothills in Colombia,
extracted from Checa et al. (2009).

More advanced acquisition trends consider the wireless receivers deployment by drones, for in-
stance the METIS project developed by TOTAL7. The application of this technique in foothill condition
could possibly improve the seismic traces density, and allow a more flexible acquisition geometry with
larger data coverage.

Depth imaging

Detailed images of the subsurfaces need to be constructed from the recorded wavefield so that the
structural interpretation could be made feasible. For exploration scale target, the structural image is
generally produced in two steps: macro-models construction and data migration. The macro-models are
some representative physical parameters of the sub-surface, for instance, compressional and shear wave
speeds, density, anisotropy, and attenuation. Based on the low-wavenumber macro-model properties,
the migration techniques construct the high-wavenumber reflectivity image of the sub-surface (Yilmaz,
2001). The migrated images then allow localizing medium interfaces, i.e. reflectors, for structural
interpretation purpose.

One of the early migration techniques is based on solving the acoustic one-wave equation from
source and receiver positions. The migration image is built from the coincident-time principle, so-called
the imaging condition: when the source and receiver wavefields meet inside the earth (Claerbout, 1970,
1971). In a different formulation, Schneider (1978) considers summing the data along the diffraction
curve to produce a focused image at each spatial location, namely Kirchhoff migration. These methods
rely on the single-scattering assumption and assume rather smooth macro-velocity models, generally
built from stacking-velocity estimation. They often only consider compressional waves and could effi-
ciently produce good images for simple geology with limited heterogeneity (Gray, 2016).

As computing power was increasing, more sophisticated forms of wave-equation migration have

7METIS Research & Development project, an Integrated Geophysical Acquisition System for Quality, Real-Time Imaging
of Complex, Hard-to-Access Onshore Areas, Florent Bertini, TOTAL Exploration & Development.
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been developed such as the reverse-time migration techniques which consider the full two-way acoustic
wave equation (Whitmore, 1983; McMechan, 1983), and the least-square techniques to handle varia-
tions in illumination (Nemeth et al., 1999; Valenciano et al., 2009). The 2D and 3D pre-stack migration
both in time and depth becomes more popular. These advanced techniques provide better-migrated im-
age quality, however, they also require better accuracy and precision in the velocity model: for instance
depth migration is very sensitive to velocity errors but the technique is critical in complex targets such
as flattening the below-salt horizons (Etgen et al., 2009; Jones, 2015; Gray, 2016). In more complex
setting such as sub-salt, thrust and faulting structures, the construction of macro-model is challenging,
leading to a rather noisy migration image, eventually uncertain structural interpretation.

Based on the picked travel-time or reflectors from seismic data, seismic tomography techniques
aim at constructing velocity models which could match or flatten the picked events (Bishop et al., 1985;
Stork, 1992; Lambaré et al., 2004). The resolving power of conventional ray-based tomography tech-
niques is limited at several times the wavelengths of the recorded waves (Jones, 2015). Their capacity
is also limited at shadow zones when the rays cannot be traced. Due to their numerical efficiency, ray-
based methods still remain very popular. Full waveform inversion (FWI) or waveform tomography has
the potential to generate more accurate velocity models by considering not only the arrival times but
also amplitude and waveform (Lailly, 1983; Tarantola, 1987; Virieux and Operto, 2009; Virieux et al.,
2017). The method iteratively improves the current velocity model by matching the predicted with the
recorded waveform. It can deliver velocity structure at a scale length similar to the wavelengths of the
seismic data (Devaney, 1984; Jones, 2015).

Land imaging

Seismic imaging in land is generally more complicated than marine data due to many factors which
can distort the wavefield. The near-surface migration image is very poor, due to the fact that the near-
surface heterogeneity is generally below the data sampling at migration frequencies. The elastic effect
is pronounced in the land data, which raises the question about elastic imaging tools instead of the
current acoustic approximation.

Onshore targets normally contain various near-surface issues such as topography variation, near-
surface low-velocity thickness, and weathering velocity. Therefore, static corrections at both source
and receiver positions are required, before any further migration techniques could be applied. The
objective is to determine the reflection arrival times from a flat datum without any weathering or low-
velocity materials, in order to “shift’ all recorded traces into the same defined datum. One of the most
common methods for these corrections is an uphole-based measurement of vertical travel times from a
buried source (Cox, 1999).

The near-offset reflection data, required for migration sequences, is hidden by highly energetic
surface waves. It is difficult to suppress surface waves without knowing the correct velocity variation.
One current interesting direction is to build the near-surface model from surface waves, which can later
be used for surface wave attenuation or static correction (Socco et al., 2010).

Accurate velocity estimation is thus critical for accurate structural mapping in onshore targets. Note
that, the described challenges also occur in ocean bottom data, in which the elastic and topography
effects are pronounced.

Foothill challenges

On top of the onshore imaging challenges, foothill targets are particularly difficult due to brutal
topography variation, as shown in Figure 2, and geological subsurface complexity. The recorded data
has a low signal-to-noise ratio due to acquisition condition, and complex underneath structures. Hard
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rocks at the surface also result in poor energy transmission into the ground. Moreover, the interaction
with the rough surface leads to significant converted and scattered energies, also broken and highly
dispersive surface waves, making the removal of these “coherent noises” even more challenging.

Careful geometry quality control, complex statics correction, and data processing sequences need
to be considered before feeding any migration tools. Velocity analysis in these areas is difficult and
highly uncertain due to the complex geology and low signal-to-noise ratios (Checa et al., 2009). All of
these obstacles make the migrated image very noisy.

In these areas, anomalously low-velocity layers in depth, coming from the over-thrust activities, and
brutal lateral lithology variation warp ray-paths of traditional ray-based tomography methods (Ravaut
et al., 2004). Also, the elastic and viscoelastic effect in the wavefield requires the beyond-acoustic-
assumption methods, in which FWI is an appealing candidate for velocity model building, both at the
near-surface and deeper parts.

Motivation & PhD outline

As we have shown, the demand for accurate structural images is significantly increasing in modern
exploration market. In complex geology, for instance, foothill environments, this task requires non-
negligible efforts in acquisition, processing and imaging sequences. In these areas, the estimated ve-
locity models by conventional techniques are often incorrect, which eventually degrades the quality of
the produced images and therefore affect the exploration decisions (Plessix et al., 2012). The velocity
estimation process is generally complex, time-consuming and frequent bottleneck in seismic imaging
projects. This manuscript aims at establishing an FWI strategy for velocity model building in land,
specifically in foothill areas, where the conventional techniques often fail. Also, the surface waves can
be considered to improve the near-surface velocity model estimation. An accurate near-surface model
will be very useful in any static correction techniques or surface waves removal, for instance through
adaptive subtraction (Cary and Zhang, 2009), to provide a cleaner dataset for later migration steps.

This manuscript involves two main objectives: building an accurate and efficient wave simulation
tool in complex geometry and designing flexible workflow for medium parameters reconstruction. The
thesis is thus divided into two main parts.

In the first part, the challenges associated with FWI problem in foothill targets are identified in
Chapter (1), which highlights the importance of accurate physical and 3D geometry representation.
This leads to the choice of the selected numerical method: spectral element approach. The theoretical
development and numerical implementation of forward and inversion problems, associated with the
selected numerical discretization, are provided in Chapters (2) and (3). Exploration scale applications
also require optimized parallelization implementation as described in Chapter (4). The use of vari-
ous preconditioning and model constraint strategies to stabilize the ill-posed inversion process, also to
mitigate the cross-talk between multiple estimated parameters are addressed in Chapters (3) and (5).

In the second part, the presented FWI algorithm is applied to several synthetic benchmarks in
Chapter (6) to illustrate the importance of each element that we develop. These applications highlight
the challenges of the elastic multi-parameter FWI in complex land areas: Besides the use of a sophisti-
cated numerical tool, an appropriate workflow is mandatory. The developed workflow in synthetic data
is then applied on a real foothill dataset in Chapter (7) with realistic challenges as sparse and uncertain
acquisition design, noisy recording and complex underneath structures.

Conclusion and perspectives are provided in the last section of this manuscript.

20



Part I

Theory and Algorithms





This part aims at developing an efficient, flexible, and accurate FWI methodology, dedicated to
exploration-scale challenging onshore targets. The chapters included in this part are based on the
following extended abstracts and papers

•

• Trinh, P. T., Brossier, R., Métivier, L., Tavard, L., and Virieux, J. (2017a). Efficient 3D elastic FWI
using a spectral-element method. In 87th SEG Conference and Exhibition 2017, Houston, pages
1533–1538

• Trinh, P. T., Brossier, R., Métivier, L., Virieux, J., and Wellington, P. (2017b). Bessel smoothing
filter for spectral element mesh. Geophysical Journal International, 209(3):1489–1512

• Trinh, P. T., Brossier, R., Métivier, L., Virieux, J., and Wellington, P. (2017c). Structure-smoothing
Bessel filter for finite element mesh: Application on 3D elastic FWI. In 79th EAGE Conference
and Exhibition 2017, Paris

The numerical development presented in this part is associated with the SEM46 code development:
Spectral Element Method For Seismic Imaging at eXploration scale

• Brossier, R. and Trinh, P. T. (2017). SEM46 Manual Version 2.1. SEISCOPE Consortium
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In oil & gas industry, FWI technique appears as a powerful technique to extract high-resolution
quantitative multiparameter models of the subsurface, down to half of the local wavelength (Lailly,
1983; Tarantola, 1984; Virieux and Operto, 2009; Virieux et al., 2017). Since the pioneering 2D FWI
applications with surface seismic data (Ravaut et al., 2004; Operto et al., 2006; Brenders and Pratt,
2007), most of FWI applications at the crustal scale have been performed under the acoustic approxi-
mation, generally for marine environments (Plessix and Perkins, 2010; Sirgue et al., 2010; Warner et al.,
2013; Vigh et al., 2013; Operto et al., 2015). In this PhD work, we are interested in applying the FWI
technique onto challenging onshore targets, such as foothill environments.

1.1 FWI in brief

In majority of the Earth imaging applications, the physics of wave propagation can be described through
partial differential equations (PDEs). The wave equation in time or frequency domain can thus be
generally written as

F (m,W(m)) = S, (1.1)

which implies that the seismic wavefield W is calculated by a forward propagator F on the model
parameters m, with the source term S. Assuming that our numerical propagator could honor the physics
of the wave propagation, the model parameters m, related to the physical and mechanical parameters
of the sub-surface, can be adjusted through comparisons between the recorded and the numerically
simulated data. Under the assumption that a good data prediction implies a good model estimation, FWI
technique improves the model parameters estimation by minimizing the misfit between the observed
data dobs and the calculated data dcal(m) at receiver positions. The calculated data is the computed
wavefield W at receivers location

dcal(m) = RW(m), (1.2)
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where R is the extraction operator. An often used misfit function is the least-squares distance

χ(m) =
1

2
‖dcal(m)− dobs‖2. (1.3)

The formulation implies a summation over all sources and receivers and an integral over the recording
time or the considered frequency band. The minimization of the misfit function (1.3) can be addressed
by two main approaches:

• Global and semi-global methods, see for instance, Metropolis and Ulam (1949); Kirkpatrick
et al. (1983); Sen and Stoffa (1995): Without any significant prior knowledge about the medium,
these methods aim at searching for the global minimum of the misfit function by relatively dense
sampling of the model space. Therefore, a large number of forward simulations are generally
required, which limits the application of these approaches to problems with a small number of
degrees of freedom (10 to 1000) and/or with a cheap forward simulation.

• Local optimization methods (Nocedal and Wright, 2006): For non-convex misfit functions, these
approaches require a relatively good initial model. If the starting point stays within the valley
of the global minimum, these methods make possible to iteratively converge towards the global
minimum. Compared with the global or semi-global approaches, the local optimization strategies
could consider a larger number of degrees of freedom, even with a complex forward propagator.

Due to a large number of degrees of freedom and fairly expensive forward simulation, FWI mostly
relies on local optimization strategies.

The iterative minimization process can be formulated following the perturbation theory. At each
iteration k, we start from the model mk and the misfit function χ(mk). Within a vicinity of the starting
point, we look for an updated model mk+1 which decreases the value of the misfit function. The
updated model can be written as the sum of the initial model and a perturbation ∆mk as

mk+1 = mk + ∆mk (1.4)

We assume that the misfit function is twice continuously differentiable, i.e. the fist-order and second-
order derivatives of the misfit function exist and are themselves finite and continuous functions. Under
the assumption of small perturbation model ∆m, the Taylor expansion of the first-order derivatives of
the misfit function can be written as

∇χ(mk+1) = ∇χ(mk + ∆mk)

= ∇χ(mk) +∇2χ|mk︸ ︷︷ ︸
Hessian

∆mk +O(‖∆mk‖2), (1.5)

in which the notation “•|mk” implies the value of a function estimated at the parameter mk and the
infinitesimal asymptotic is denoted by “O(•)”.

Under the linearization of the inverse problem, the misfit function can be locally approximated by
a quadratic function. The minimum of this quadratic approximation is reached when the first-order
derivative of the misfit function vanishes, i.e. ∇χ(mk+1) = 0, giving the perturbation model

∆mk = −
[
∇2χ|mk

]−1∇χ(mk). (1.6)

If the misfit function is quadratic, Equation (1.6) provides the global minimum of the misfit function
after one iteration, which is equivalent to a linear inverse problem. However, the FWI problem is
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non-linear, leading to an iterative minimization process of the misfit function, where each iteration is
approximated by a linear problem. In Equation (1.6), the model perturbation is the product of the inverse
of the Hessian matrix

[
∇2χ|mk

]−1 with the gradient vector of the misfit function∇χ(mk). In practical
applications, the size of the Hessian matrix is extremely big with nmod × nmod elements, where nmod
is the size of the model vector m. The Hessian matrix cannot thus be explicitly computed or stored,
implying that the perturbation model cannot be estimated directly from Equation (1.6). Section (3.2)
will provide an overview about various local optimization approaches which are used to estimate the
model perturbation ∆mk and the effect of the Hessian operator. They are all approximated versions of
Equation (1.6).

1.2 Challenges of FWI for foothill targets

Standard FWI schemes require an accurate and efficient forward propagator for wavefield simulation.
When considering on-shore targets, especially foothill environments, free-surface-related effects can
be quite important in the wavefield. For instance, significant elastic and visco-elastic effects can be
observed in the presence of weathering and unconsolidated near-surface, complex topographies, strong
geological interfaces (shale-carbonate for example) (Aki and Richards, 2002; Yilmaz, 2016). An ex-
ample of a real foothill seismic dataset is shown in Figure 1.1, in which the wavefield is dominated by
strong amplitude and highly dispersive surface waves (or Rayleigh waves). Significant converted en-
ergies can be detected in this dataset due to the interaction with the rough topography. These complex
effects cannot be fully removed or compensated by data pre-processing, such as attenuation compen-
sation or ground-roll removal, implying that a correct description of the physics is strongly advisable
for accurate model parameters estimation. Moreover, considering the complete physical phenomena
of the wave propagation would allow taking benefit of each piece of recorded data, for expected more
accurate results and higher imaging resolution.

Regarding anelastic media, attenuation affects both amplitudes and phases of the seismic wavefield.
Its effect thus needs to be considered precisely during the modeling and imaging processes. In active
seismic applications, the approximation of constant Q-value over a frequency band is widely accepted.
Viscous effects can be easily considered in acoustic-based frequency-domain modeling and FWI, at
least as passive parameters during inversion, thanks to the straightforward and free implementation
through complex-valued velocity. Impressive 3D visco-acoustic illustrations have been shown in Op-
erto et al. (2015); Amestoy et al. (2016), for velocity model building by a mono-parameter frequency-
domain FWI based on sparse direct solver, or more recently with a joint reconstruction of the Q model
(Operto and Miniussi, 2017).

When moving toward elastic and/or visco-elastic approximation, especially for 3D land data, fre-
quency domain approaches with direct solvers are out of reach for actual computer hardware technol-
ogy, as mentioned by Gosselin-Cliche and Giroux (2014). Alternative iterative solvers would require
efficient and robust preconditioning for the modeling part (Li et al., 2014; Kostin et al., 2016). In ad-
dition, dispersive and complex wavefields would require considering a significant number of discrete
frequencies, an additional argument reducing the attractability of frequency-domain approaches (Sir-
gue and Pratt, 2004; Brossier et al., 2009a). The time-domain formulation is thus the currently selected
approach when performing FWI for elastic media at various scales (Tape et al., 2010; Peter et al., 2011;
Fichtner et al., 2013; Vigh et al., 2014; Borisov et al., 2015; Zhu et al., 2015). The time-domain for-
mulation also facilitates the application of time-windowing, wavefield separation, and various signal
processing techniques, which favors strategies based on data-windowing hierarchy in FWI. It should be
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Figure 1.1: A raw 19-km seismic profile acquired from a challenging foothill area. The topography
variation is converted into a time muting (red line), placed on top of the shot gather. The total variation
of the topography in vertical direction is about 1 km, inducing significant imprints into the seismic data.

noted that these strategies are difficult to achieve in the frequency-domain with few discrete frequen-
cies, aside from the product by exponential decay of the Laplace transform proposed by Shin and Cha
(2008).

Figure 1.2 shows an example of a realistic topography extracted from the SEAM Phase II foothill
benchmark, created by the SEAM consortium to reproduce the imaging challenges in mountain regions
(Oristaglio, 2012, 2016; Regone et al., 2017). Such rapid topography variation will introduce signifi-
cant footprints into the wavefield such as scattering energies when the waves hit the steep slopes at the
surface. Figure 1.1 also highlights that the high-amplitude topography deforms the first-arrivals, imply-
ing that a correct 3D geometry representation is critical for accurate wavefield prediction. It should be
noted that standard static corrections with respect to a pre-defined datum might correct the travel time
but not the full waveform, which is generally complex due to elastic interaction between the seismic
waves and the 3D geometries (Yilmaz, 2001; Jones, 2015).

1.3 Spectral element method: Why?

Up to now, most of FWI applications at the crustal scale have been performed in marine environments.
In such flat-surface condition, numerical methods designed with finite-difference (FD) discretization
appears to be a reasonable choice due to their numerical efficiency, their relatively simple implementa-
tion, and the fact that optimized modeling kernels developed for reverse-time migration can be shared.
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Figure 1.2: Topography of the SEAM Phase II foothill benchmark.

When considering the elastic wave-equation, fluid/solid contrasts can also be implicitly and accurately
considered for representing simple bathymetry with FD methods. However, standard FD formulations
are often limited to a regular-spacing grid, although there are interesting extensions for deformed grids
(Moczo, 1989; Tarrass et al., 2011; Petersson and Sjögreen, 2015; Shragge, 2016). In addition, signif-
icant extra efforts are needed when considering surface topography or important geological interfaces
(Robertsson, 1996; Bohlen and Saenger, 2006). Extensions, such as the summation-by-parts approaches
(Petersson and Sjögreen, 2012), immersed-boundaries implementation (LeVeque, 2007; Lombard et al.,
2008; Gao et al., 2015; Huiskes et al., 2017) or hybrid techniques (Moczo et al., 1997) have been pro-
posed. Up to now, they have not displayed superior efficiency compared with finite-element methods
(FEM), as described below.

FEM are based on a variational formulation or weak form of the PDEs which need to be discretized.
The physical domain is decomposed into a set of elements, leading to a so-call finite element (FE) mesh.
The solution is represented over a set of basis functions (often polynomials), defined within each el-
ement (Zienkiewicz et al., 2005). FEM have been used in solving the elastodynamic equations by
different authors (Marfurt, 1984; Bielak et al., 2003; Koketsu et al., 2004). The free-surface boundary
condition is naturally taken into account by zeroing a boundary term coming from the integration by
part. The deformed mesh can be easily considered, allowing to represent complex geometries such
as the topography variation. The second-order wave equation is generally considered in FE imple-
mentations, resulting in a large global mass matrix associated with the acceleration term. The size of
this matrix is controlled by the square of the number of degrees of freedom in the model. Its inverse,
required for any standard time integration scheme, is not trivial to compute.

Among the wide variety of FE methods, two have been particularly studied within seismic imaging
and seismology: Discontinuous Galerkin (DG) and Spectral Element Methods (SEM). Their formula-
tions naturally yields either a block diagonal or diagonal mass matrix, respectively. The inverse of the
global mass matrix can be thus cheaply performed, making the use of these FE methods at a reasonable
computational cost. The DG method was used to solve the electromagnetic equation in Remaki (2000),
then has been intensively investigated in seismic simulation due to several interesting properties (Käser
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and Dumbser, 2006; Ben Jemaa et al., 2009; Brossier et al., 2010a): Tetrahedral elements can be used
in the mesh creation, allowing to map any specific interfaces or 3D geometries. Test functions are local
within each element and they can be different from one element to the others. Therefore, the DG method
can account for discontinuities in the wavefield and the model. The integrals in the weak form of wave
equation are separately computed at each element, leading to the block diagonal global mass matrix
(Cockburn et al., 2000). However, the DG strategy relies on duplicating each degree of freedom at the
interface between elements, which increases significantly the computational cost. Many works have
been focusing on the numerical cost reduction, for instance by considering the unstructured h-adaptive
mesh combined with p-adaptive interpolations (Etienne et al., 2010; Brossier, 2011). The design of the
so-called hybridizable DG method is an alternative approach which has recently attracted the attention
of the applied mathematics community (Li et al., 2017; Bonnasse-Gahot et al., 2018). Also, considering
a local time-stepping per element might help to improve the global cost of the explicit time integration
scheme (Diaz and Grote, 2009).

On the other hand, SEM are limited to the used of quadrangle or hexahedral elements, which can
complicate the mesh design if one is willing to follow specific interfaces. It is also a continuous FE
method, which does not allow for discontinuities of the model and the wavefield. However, the specific
choice of Lagrange polynomials as basis functions and Gauss-Lobatto-Legendre (GLL) points as inte-
gration points makes the global mass matrix naturally diagonal. This results in an efficient and accurate
explicit time-marching scheme, and provides spectral convergence properties. Therefore, the method is
particularly attractive for simulations where we can assume the continuity of the solution and medium
properties. This is the case for regional and global scale problems where the majority applications of
SEM has been performed (Faccioli et al., 1997; Komatitsch and Vilotte, 1998; Capdeville et al., 2003,
2005; Vilotte et al., 2005). The only issue could be related to the specific interfaces meshing. Many
realistic geometries, such as geological basin structures or even the approximated ellipsoidal shape of
the Earth are shown to be adequately described using hexahedral elements in unstructured meshes (Ko-
matitsch and Tromp, 1999). However, this mesh build-up can require significant human efforts (Peter
et al., 2011).

In the exploration scale elastic FWI, we work at low to medium frequencies for which the fields can
be assumed to be continuous. Also, in this frequency band, the waves see the subsurface as a reasonably
smooth medium (Capdeville et al., 2010; Capdeville and Cance, 2015). Moreover, the theoretical res-
olution of standard FWI is limited at a half of the local wavelength, implying rather smooth inversion
results (Virieux and Operto, 2009). Therefore, SEM appears as the optimum choice. Moreover, the
method can be easily adapted to parallel architecture with interesting scaling behavior. The specific
issue related to the mesh generation can be mitigated by a high order geometry interpolation, as later
described in the manuscript.

1.4 Summary

FWI for foothill targets is recognized as a challenging task which requires a complete physics of the
wave propagation and an accurate 3D medium representation. In this Theory and Algorithms part
of the manuscript, we build an efficient FWI formulation based on a time-domain SEM on a flexible
Cartesian-based mesh. Our strategy focuses on the algorithmic balance between numerical efficiency,
memory requirement and simulation accuracy, especially for 3D visco-elastic problems.

Chapter (2) develops the forward problem in SEM perspectives. The chapter reviews the second-
order visco-elastic and elastic wave equation for the displacement field. The efficient SEM-based im-
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plementation is also described, including flexible mesh design and optimized modeling kernel.

In Chapter (3), the associated FWI problem is formulated. The FWI gradient expressions are de-
rived for anisotropic elastic parameters and isotropic attenuation coefficients, based on a least-squares
misfit function. No implicit approximation is considered on attenuation mechanism, aside from the
standard-linear-solid (SLS) description. As an illustration of these exact expressions, the impact of the
attenuation when recovering elastic parameters will be pointed out in a toy configuration. When in-
verting for multiple parameters (e.g. compressional and shear wave speeds), we introduce a non-linear
constraint on the relationship between inverting parameters, which is useful when dealing with complex
heterogeneities or poor illumination.

Chapter (4) focuses on the high performance computing aspect. The scaling behavior of our model-
ing strategy is evaluated. Similar computational behaviors are observed compared with the open-source
FD modeling package SW4 V1.1 (Petersson and Sjögreen, 2013) and SEM-based tool SPECFEM V2.0
(Peter et al., 2011). The chapter also illustrates our strategy to mitigate the memory expense related to
the visco-elastic FWI problem.

Since the SEM mesh is considered for both modeling and inversion parts, it is critical to develop
an efficient gradient preconditioning strategy to stabilize the ill-posed inversion process. Chapter (5)
describes a structured-oriented Bessel smoothing strategy, directly implemented by a SEM formulation
on the same mesh as the wavefield modeling (Trinh et al., 2017b). The geological prior knowledge can
be incorporated into the smoothing process.
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3D TIME-DOMAIN ELASTIC AND VISCO-ELASTIC MODELING IN SEM

This chapter focuses on the theoretical development and numerical implementation of the forward
problem in SEM framework, including a flexible mesh design. It provides a comprehensive review of
the second-order visco-elastic and elastic wave equations for the displacement field. The formulation
emphasizes on the coupling between the isotropic attenuation mechanism and anisotropic elasticity, in
the linear mechanical regime. The weak-form of the wave equation is then derived step-by-step.

We describe a visco-elastic version of the second-order Newmark scheme to propagate the obtained
system in time and preserve the second-order accuracy. The source injections for single point force
and moment tensor are carefully addressed in order to obtain true-amplitude seismogram computation.
The numerical implementation aims at balancing the numerical efficiency and the memory requirement,
which are generally considered as bottle-necks for visco-elastic simulation. A combination of sponge
layers and radiative boundary condition is used to absorb the outgoing wavefield at the boundaries
of the numerical model. The comparison with semi-analytical solutions on the layered-structure LOH
benchmarks (a reference model of the Southern California Earthquake Center, SCEC project (Day et al.,
2003)) illustrates both the simulation quality of our modeling tools and the efficiency of the boundary
absorbing implementation.

2.1 Elastodynamics equations

The elastodynamics equations in this section are developed in the small deformation regime, within the
linear Hooke’s law approximation. The visco-elastic wave propagation can be written in complete form
as {

ρ(x)∂ttui(x, t) = ∂jσij(x, t) + fi(x, t),

σij(x, t) = Mijkl(x, t) ∗t εkl(x, t) + Tij(x, t),
(2.1)

where the density is denoted by ρ, the displacement by u, the second-order stress and strain tensors
respectively by σ and ε. The external force is denoted by the vector f , and the tensor T is the possible
stress failure. The attenuation effect is described by the relaxation rate Mijkl, and the symbol “∗t”
denotes the convolution in time-domain. These equations use the Einstein convention (summation over
repeated indices).

In the small deformation regime, the strain is defined through the first-order linear approximation
of the displacement field, related to Hooke’s law, as

εkl =
1

2

(
∂kul + ∂luk

)
. (2.2)

The Voigt indexing

11→ 1, 22→ 2, 33→ 3, 23 or 32→ 4, 13 or 31→ 5, 12 or 21→ 6; (2.3)

is used to define the stress and the strain in the vector notation as

σ = (σ11, σ22, σ33, σ23, σ13, σ12)T = (σ1, σ2, σ3, σ4, σ5, σ6)T , (2.4)

ε = (ε11, ε22, ε33, 2ε23, 2ε13, 2ε12)T = (ε1, ε2, ε3, ε4, ε5, ε6)T , (2.5)
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2.1 Elastodynamics equations

where the transposed operator is denoted by “•T ”. The spatial derivative operator D in the Cartesian
space

D =

 ∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0

 (2.6)

can then be used to describe the relationship between the strain ε and the displacement field u in
Equation (2.2) as

ε = DTu. (2.7)

2.1.1 Elastic modeling

The pure elastic wave equation can be seen as a particular case of the visco-elastic equation with the
specific relaxation rate, again within the small deformation regime, as

Mijkl(x, t) = cijkl(x)δ(t), (2.8)

where cijkl is the elastic (or unrelaxed) stiffness coefficient and δ(t) is a Dirac delta function, resulting
in the elastic wave equation{

ρ(x)∂ttui(x, t) = ∂jσij(x, t) + fi(x, t),

σij(x, t) = cijkl(x)εkl(x, t) + Tij(x, t).
(2.9)

Following the Voigt indexing and matrix notation, the second-order elastic wave equation of displace-
ment field u can be written as

ρ∂ttu = DCDTu + S, (2.10)

where the elastic stiffness tensor is denoted by C, and the source term by S. The elastic equation is self-
adjoint, implying that we can develop an adjoint system similar to the forward problem. This property
makes possible to use the same numerical scheme for incident and adjoint fields propagation (useful for
gradient building, see Section (4.2)).

2.1.2 Visco-elastic modeling

The attenuation effect in seismic data is characterized by the energy loss per cycle of the phase, mea-
sured by the quality factor. This parameter is either understood as an observable coming from the data
or as parametric tensorial description. The seismic attenuation is often described by the quality-factor
tensor Qijkl(x) (Emmerich and Korn, 1987; Carcione et al., 1988). The coefficients of this tensor are
the model parameters that we consider for describing the attenuation. In the frequency domain, the in-
verse of these parameters are defined as the ratio of imaginary and real parts of the complex relaxation
rate M̂ijkl(x, ω) as

Q̂−1
ijkl(x, ω) =

=[M̂ijkl(x, ω)]

<[M̂ijkl(x, ω)]
, (2.11)

in which the “ .̂ ” notation denotes the Fourier transform.
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3D TIME-DOMAIN ELASTIC AND VISCO-ELASTIC MODELING IN SEM

2.1.2.1 Constant-Q approximation

For realistic crustal scale application, the approximation of a constant Q over the considered frequency
band [ωmin, ωmax] is usually accepted. Assuming that L standard-linear-solid systems (SLS), at specific
reference frequencies ων ∈ [ωmin, ωmax], are used to fit a constant Q parameter over this frequency
band, one may introduce anelastic coefficients Y ijkl

ν , ν = 1, · · · , L, in the definition of the complex
relaxation rate M̂ijkl(x, ω) as

M̂ijkl(x, ω) = cijkl(x)
(

1−
L∑
ν=1

Y ijkl
ν (x)

ων
ων + iω

)
, (2.12)

(Emmerich and Korn, 1987; Blanch et al., 1995; Moczo and Kristek, 2005; van Driel and Nissen-Meyer,
2014). According to the definition of the complex relaxation rate in Equation (2.11), the resulting
quality factor can be written as

Q̂−1
ijkl(x, ω) =

L∑
ν=1

Y ijkl
ν (x)

ωνω

ω2
ν + ω2

1−
L∑
ν=1

Y ijkl
ν (x)

ωνω

ω2
ν + ω2

. (2.13)

The assumption of Q � 1 in realistic attenuative media leads to the following approximation of the
quality factor

Q̂−1
ijkl(x, ω) ≈

L∑
ν=1

Y ijkl
ν (x)

ωνω

ω2
ν + ω2

. (2.14)

This equation implies that a set of L anelastic coefficients Y ijkl
ν (x) is required for each value of the

inverse quality factor Q̂−1
ijkl at the spatial location x (Komatitsch and Tromp, 1999).

Instead of computing L anelastic coefficients Y ijkl
ν (x) for each spatial location x, Yang et al.

(2016a) proposes the approximation

Y ijkl
ν (x) ≈ yνQ−1

ijkl(x) (2.15)

for the entire medium, in which the scalars yν being L dimensionless anelastic coefficients. By con-
sidering the expression (2.15), the approximation (2.14) of the inverse of the quality factor becomes

Q̂−1
ijkl(x, ω) ≈

L∑
ν=1

Q−1
ijkl(x)yν

ωνω

ω2
ν + ω2

. (2.16)

We thus aim at searching for the coefficients yν , which minimizes the distance between the frequency
independent quality factor Q−1

ijkl(x) with its approximation Q̂−1
ijkl(x, ω) over the considered frequency

band. Following this idea, the coefficients yν are estimated from the following generalized least-squares
minimization problem

min
yν

{∫ ωmax

ωmin

[
Q−1
ref

(
yν

ωνω

ω2 + ω2
ν

− 1
)]2}

, (2.17)

which minimizes the distance between a given constant-value Q−1
ref with its approximation over the

frequency band [ωmin, ωmax]. The value of this constant is usually chosen such that

Qref ≈
√

min
ijkl,x

(Qijkl(x))× max
ijkl,x

(Qijkl(x)). (2.18)
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2.1 Elastodynamics equations

2.1.2.2 Visco-elastic equation under SLS approximation

By considering the approximation (2.15), the complex relaxation rate in Equation (2.12) can now be
written as

M̂ijkl(x, ω) = cijkl(x)− cijkl(x)Q−1
ijkl(x)

L∑
ν=1

yν
ων

ων + iω︸ ︷︷ ︸
attenuation mechanisms

. (2.19)

In Equation (2.19), the product between the two fourth-order tensors cijkl and Q−1
ijkl is a term by term

product. Equations (2.19) and (2.17) incorporate explicitly the attenuation parameters Q−1
ijkl(x) into the

wave equation, following a cheap-memory strategy: instead of storing the L× 21 anelastic coefficients
Y ijkl
ν (x) associated with 21 coefficients Mijkl(x) at each spatial location (Komatitsch and Tromp,

1999), we only need to store L scalar yν for the entire medium and the heterogeneous attenuation
parameters over the medium. We also store L reference frequencies ων associated with L SLSs.

In order to separate the elastic rheology (represented by the unrelaxed stiffness coefficients cijkl(x)
in Equation (2.19)) with the attenuation mechanisms, which are frequency-dependent, we introduce
attenuative stiffness coefficients caijkl. In the case of fully anisotropic attenuation, these parameters can
be linked to the unrelaxed quantities through

caijkl(x) = cijkl(x)Q−1
ijkl(x), (2.20)

which is a term-by-term product. The convolution relationship between stress and strain in Equation
(2.1) then becomes

σij(x, t) = cijkl(x)εkl(x, t)− caijkl(x)

L∑
ν=1

ψν;kl(x, t) + Tij(x, t), (2.21)

where the memory variable ψν;kl(x, t) satisfies the first-order ordinary differential equation (ODE)

∂tψν;kl(x, t) + ωνψν;kl(x, t) = ωνyν εkl(x, t). (2.22)

The mathematical demonstration is given in Appendix 2.A, which is coherent with Moczo and Kristek
(2005) and Yang et al. (2016a). Similar to the elastic case (Eqn. 2.10), following the Voigt indexing,
the second-order visco-elastic wave equation can thus be written as{

ρ∂ttu = DCDTu−DCa
∑L

ν=1ψν + S,

∂tψν + ωνψν = yνωνD
Tu, ν = 1, ..., L,

(2.23)

where ψν is the memory-variable vector associated with each SLS

ψν = (ψν;1, ψν;2, ψν;3, ψν;4, ψν;5, ψν;6)T . (2.24)

The matrix Ca = (CaIJ)6×6 contains the attenuative stiffness coefficients, with 21 independent com-
ponents in the case of fully anisotropic attenuation. Due to the memory variables, the visco-elastic
equation (2.23) is not self-adjoint. This property is related to the energy dissipation; however, we shall
show that the corresponding adjoint system can be transformed into a similar structure as for the forward
problem.
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It should be noted that the memory variables can act either on the stress fields as it is the case here
(Eqn. 2.21), or on the displacement fields (Petersson and Sjögreen, 2012). The former strategy requires
L×6 variables and 2 spatial derivatives per forward problem, whereas L×3 incident memory variables
with at least 3 spatial derivatives are needed in the latter approach: 2 derivatives for the displacement
fields and at least one for the memory variables. Therefore, considering displacement memory vari-
ables is less memory demanding but more numerically expensive. Since the estimation of the spatial
derivatives is the most expensive operation in our SEM-based modeling kernel, we decide to inject the
memory variables into the stress fields as shown in Equation (2.21) to optimize the computational cost.

2.1.2.3 Isotropic attenuation

Practical applications are generally limited to isotropic attenuation because constraining anisotropic
attenuation parameters is difficult for surface seismic acquisition. It is important to highlight that the
isotropic attenuation regime implies that the attenuative stiffness tensor (CaIJ)6×6 is isotropic but not
the inverse quality factor matrix (Q−1

IJ )6×6 (Moczo et al., 1997). Hence, the Voigt-noted matrix can be
written in the form

Ca =



λa + 2µa λa λa 0 0 0
λa λa + 2µa λa 0 0 0
λa λa λa + 2µa 0 0 0
0 0 0 µa 0 0
0 0 0 0 µa 0
0 0 0 0 0 µa

 , (2.25)

with attenuative Lamé coefficients λa and µa. We thus consider the effective mechanisms with

λa + 2µa =
1

3
Q−1
p

(
C11 + C22 + C33

)
, µa =

1

3
Q−1
s

(
C44 + C55 + C66

)
, (2.26)

where the heterogeneous model parameters Qp and Qs are the attenuation parameters associated with
compressional and shear wave speeds (Vp, Vs). In the case of isotropic-attenuation mechanism &
isotropic-elastic rheology, the proposed solution is consistent with the development suggested by Moczo
et al. (1997). Equation (2.26) also implies that isotropic attenuation has isotropic impact on compres-
sional and shear components even when considering anisotropic elasticity, which is physically mean-
ingful. By doing so, the attenuation parameters Qp and Qs are explicitly incorporated in the wave
equation, even for anisotropic elasticity, and therefore can be naturally considered in the FWI frame-
work. Let us mention that anisotropy feature is important for the characterization of the Earth, which
might come from intrinsic and/or structure-induced anisotropy such as layering or intensive faulting
structures. Therefore, considering isotropic attenuation while taking into account elastic anisotropy is a
good approximation for describing seismic wave propagation, especially for surface acquisitions with
limited illumination.

2.2 Weak-form development of the visco-elastic wave equation

As mentioned in Section (1.3), one of the main advantages of SEM formulation compared with other
FEM is the diagonal global mass matrix by construction. This comes from the combination of the GLL
quadrature for numerical integration with the use of Lagrange basis function. This section will provide
a step-by-step development of the weak form of the wave equation to achieve a such formulation.
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2.2 Weak-form development of the visco-elastic wave equation

Figure 2.1: The physical model Ω is divided into a set of tensorial elements Ωe(e = 1, ..., 6). Figure is
extracted from Komatitsch and Tromp (1999).

We firstly derive some key SEM elements and operations related to the basis functions, then moving
gradually from the continuous integral form of the wave equation to the discrete form.

2.2.1 Key elements in spectral element method

To avoid any misunderstanding, we firstly define the physical space {x; (z, x, y) ∈ R3}, in which the
geological structures are defined according to Cartesian coordinates. In standard SEM approaches,
the physical domain Ω ⊂ R3 is decomposed into a set of non-overlapping hexahedral elements Ωe,
as illustrated by the 2D example in Figure 2.1. Each hexahedral element Ωe can be mapped to the
reference cube {ξ; (ξ, η, ζ) ∈ [−1, 1]⊗ [−1, 1]⊗ [−1, 1]}.

2.2.1.1 Mapping from the reference to the physical space

In order to correctly honor geological structures, SEM might need to employ deformed elements in the
physical space. The shape of each hexahedral element is defined by a set of na control points xa =
x(ξa, ηa, ζa); a = 1, ..., na and a set of na shape functions Na(ξ, η, ζ) (Komatitsch and Tromp, 1999).
The general one-to-one mapping between the reference cube and the hexahedral element (ξ 7→ x) can
be thus written as follows:

x(ξ, η, ζ) =

na∑
a=1

Na(ξ, η, ζ)xa. (2.27)

In standard meshing, eight corners of the element are used as control points, the shape functionNa(ξ, η, ζ)
are thus triple product of Lagrange polynomials of degrees 1. When mid-size and center nodes are also
taken into account, shape functions are triple products of Lagrange polynomials of degrees 2.

At each spatial position, the Jacobian matrix J(ξ) associated with the mapping in Equation (2.27)
is defined by

J(ξ) =

∂ξz ∂ηz ∂ζz
∂ξx ∂ηx ∂ζx
∂ξy ∂ηy ∂ζy

 . (2.28)

An element of volume dx in the physical space is related to an element of volume dξ in the reference
cube through

dzdxdy = Jedξdηdζ, (2.29)
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Figure 2.2: Example of GLL points
in a 2D element with interpolation
order N = 4.

Figure 2.3: 1D Lagrange polynomials defined on GLL
points of order N = 4.

in which the Jacobian determinant Je(ξ) is the determinant of the Jacobian matrix J(ξ) in Equation
(2.28). The uniqueness of the projection between the reference and physical space is characterized by
positive values of the Jacobian determinant Je(ξ) everywhere on the reference cube. For this purpose,
the geometrical shape of each element in the physical space should satisfy the condition that all of their
vertex angles should be bounded away from 0 and π (Deville et al., 2002).

When considering a fully deformed element in the physical space, the Jacobian matrix J(ξ) is
fulled of non-zero terms. However, this matrix becomes diagonal in the case of regular element, i.e.
rectangular parallelepiped shape. This property simplifies the numerical implementation in the regular
SEM mesh, leading to a better computational efficiency compared with the fully deformed mesh. In
practical applications, it is thus strongly advised to combine deformed elements with regular elements
in the case of weak topography variation.

2.2.1.2 Integration points & Gauss-Lobatto-Legendre quadrature

SEM employs Gauss-Lobatto-Legendre (GLL) integration points, which are defined in the reference
cube. In 1D, the (N + 1) GLL points are roots of the polynomial

(1− ξ2)L′N (ξ) = 0, (2.30)

where LN is Legendre polynomial 1 of degree N , and N refers to the interpolation order. The GLL
points in 2D or 3D are simply defined based on tensorial products of GLL points in 1D thanks to the
tensorial property of quadrangular and hexahedral elements. Example of GLL point in a 2D element at
interpolation order N = 4 is provided in Figure 2.2.

In 3D, the reference cube is discretized into a set of (N+1)3 Gauss-Lobatto-Legendre (GLL) points

ξk̂ = (ξk1 , ηk2 , ζk3) k̂ stands for the triple indexes {k1, k2, k3 = 0, ..., N}, (2.32)

1Legendre polynomial can be defined by the following recursion relation with L0(x) = 1 and L1(x) = x (Canuto et al.,
2006):

Lk+1(x) =
2k + 1

k + 1
xLk(x)−

k

k + 1
Lk−1(x) (2.31)
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where k1, k2, k3 are the indexing of GLL points in z, x and y dimensions, respectively. These colloca-
tion points are used to define (N + 1)3 basis functions `k̂(ξ)

`k̂(ξ) = `k1(ξ)`k2(η)`k3(ζ); (2.33)

each function is a triple product of Lagrange polynomials of degree N

`j(ξ) =

N∏
i=0
i 6=j

ξ − ξi
ξj − ξi

. (2.34)

Lagrange polynomials have the interesting property that its values at GLL nodes are equal either 0 or 1

`j(ξi) = δji =

{
0 if i 6= j,

1 if i = j
, (2.35)

where δji is the Kronecker notation. The 1D Lagrange polynomials defined on GLL points of order
N = 4 are presented in Figure 2.3.

In SEM, the same collocation points are considered for spatial interpolation and numerical integra-
tion. The approximation of a vector v(ξ) = (v1(ξ), v2(ξ), v3(ξ))T over the reference cube can thus be
written as follows

v(ξ) ≈
N∑

h1=0

N∑
h2=0

N∑
h3=0

vĥ`h1(ξ)`h2(η)`h2(ζ) =

N∑
ĥ=0

vĥ`ĥ(ξ), (2.36)

where vĥ = v(ξh1 , ηh2 , ζh3). Equation (2.36) implies that heterogeneous medium properties inside
each element could be easily considered. This property is widely used in practical SEM implementation,
especially at high interpolation order N .

The integral of any continuous function f(ξ) over the reference cube can be approximated by the
Gauss-Lobatto-Legendre quadrature as∫∫∫ 1

−1
f(ξ)dξ ≈

N∑
q̂=0

wq̂f(ξq̂), (2.37)

where wq̂ stands for the product of quadrature weights2 wq1 , wq2 , wq3 , associated with the GLL integra-
tion points ξq̂. The convergence characteristics of SEM are guaranteed for polynomial functions up to
the degree (2N + 1), in which the expression (2.37) becomes exact.

2.2.2 Some common operations related to the basis functions

Since the basis function `k̂(x) is a single-dimensional function of multiple variables `k̂(x) : R3 7→ R,
its product with a multiple-dimensional field v(x) : R3 7→ Rd can be written as

`k̂(x)v(x) = `k̂(x)

 v1(x)
...

vd(x)

 =

 `k̂(x)v1(x)
...

`k̂(x)v3(x)

 , (2.39)

2In each dimension, the quadrature weights associated with the GLL points are defined as

wj =
2

N(N + 1)

1

[LN (ξj)]2
(∀ξj 6= ±1) ; wj =

2

N(N + 1)
(ξj = ±1) (2.38)
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where d is the dimension of the field v(x). However, we do not have similar property with respect to
the spatial derivatives operator D, in Equation (2.6).

When developing the weak form of the wave equation, we encounter frequently the integral form
of the spatial derivatives of a vector, for instance the stress σ, which is a 6-dimensional field. Let’s
consider the integral form of the spatial derivatives of a 6-dimensional field v(x) : R3 7→ R6 over the
model volume Ω. By integrating by parts over the model volume Ω we have∫

Ω
`k̂(x)Dv(x)dx = −

∫
Ω

[D`k̂(x)]v(x)dx +

∫
ΓΩ

[ID`k̂(x)]v(x)dsx︸ ︷︷ ︸
Boundary term

, (2.40)

where in the first term [D`k̂(x)] stands for

[D`k̂(x)] =

 ∂1`k̂(x) 0 0 0 ∂3`k̂(x) ∂2`k̂(x)
0 ∂2`k̂(x) 0 ∂3`k̂(x) 0 ∂1`k̂(x)
0 0 ∂3`k̂(x) ∂2`k̂(x) ∂1`k̂(x) 0

 , (2.41)

and in the boundary term the expression [ID`k̂(x)] stands for

[ID`k̂(x)] =

 `k̂(x) 0 0 0 `k̂(x) `k̂(x)
0 `k̂(x) 0 `k̂(x) 0 `k̂(x)
0 0 `k̂(x) `k̂(x) `k̂(x) 0

 . (2.42)

The boundary term in Equation (2.40) is the integral over the surface boundaries ΓΩ of the model
volume where dsx is the surface unitary in the physical space. At the free-surface, this boundary term
vanishes.

When moving from the physical space x to the reference space ξ in ignoring the boundary term, the
volumetric Jacobian determinant Je(ξ) and surface determinant Jse (ξ) are introduced into the integral
(2.40) as∫

Ω
`k̂(x)Dv(x)dx = −

∫
Ω

[D`k̂(ξ)]v(ξ)Je(ξ)dξ +

∫
ΓΩ

[ID`k̂(ξ)]v(ξ)Jse (ξ)dsξ, (2.43)

where dsξ is the surface unitary in the reference space. To simplify the mathematical expressions,
we introduce the following notations of the coordinates of the dimensionless physical space and the
reference space

(p1, p2, p3) := (z, x, y) = x and (r1, r2, r3) := (ξ, η, ζ) = ξ. (2.44)

The spatial derivatives in Equation (2.43) are also modified according to the chain rules with

∂1 =
∂

∂p1
=

3∑
j=1

∂

∂rj

∂rj
∂p1

, (2.45)

∂2 =
∂

∂p2
=

3∑
j=1

∂

∂rj

∂rj
∂p2

, (2.46)

∂3 =
∂

∂p3
=

3∑
j=1

∂

∂rj

∂rj
∂p3

. (2.47)
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2.2 Weak-form development of the visco-elastic wave equation

Following this development, we have

[D`k̂(ξ)] =
3∑
j=1

∂`k̂(ξ)

∂rj


∂rj
∂p1

0 0 0
∂rj
∂p3

∂rj
∂p2

0
∂rj
∂p2

0
∂rj
∂p3

0
∂rj
∂p1

0 0
∂rj
∂p3

∂rj
∂p2

∂rj
∂p1

0

 . (2.48)

We introduce the geometric matrix, associated with the projection of spatial derivatives between the
Cartesian coordinates and the reference coordinates as

Gj(ξ) =


∂rj
∂p1

0 0 0
∂rj
∂p3

∂rj
∂p2

0
∂rj
∂p2

0
∂rj
∂p3

0
∂rj
∂p1

0 0
∂rj
∂p3

∂rj
∂p2

∂rj
∂p1

0

 . (2.49)

Hence,

[D`k̂(ξ)] =

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ). (2.50)

By considering the compact form (2.50) of the spatial derivative operator when moving from the
physical space x to the reference space ξ, the integral (2.43) becomes∫

Ω
`k̂(x)Dv(x)dx = −

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)v(ξ)Je(ξ)dξ +

∫
ΓΩ

[ID`k̂(ξ)]v(ξ)Jse (ξ)dsξ. (2.51)

The relationship (2.51) will be frequently used in the development of the weak form of the wave equa-
tion.

2.2.3 From the integral form to the discrete form of the wave equation

Considering the choice of Lagrange basis functions `k̂(x), the integral form of the visco-elastic wave
equation (2.23) over a model volume Ω can be written as
∫

Ω
`k̂(x)ρ(x)∂ttu(x)dx =

∫
Ω
`k̂(x)DCDTu(x)dx−

∫
Ω
`k̂(x)DCa

L∑
ν=1

ψν(x)dx +

∫
Ω
`k̂(x)S(x)dx,

∫
Ω
`k̂(x)∂tψν(x)dx + ων

∫
Ω
`k̂(x)ψν(x)dx = yνων

∫
Ω
`k̂(x)DTu(x)dx.

(2.52)
Applying the integration by part described in Equation (2.40), we obtain

∫
Ω
`k̂(x)ρ(x)∂ttu(x)dx = −

∫
Ω

[D`k̂(x)]CDTu(x)dx +

∫
Ω

[D`k̂(x)]Ca
L∑
ν=1

ψν(x)dx

+

∫
ΓΩ

[ID`k̂(x)]τB(x)dsx︸ ︷︷ ︸
Boundary term B

+

∫
Ω
`k̂(x)S(x)dx,

∫
Ω
`k̂(x)∂tψν(x)dx + ων

∫
Ω
`k̂(x)ψν(x)dx = yνων

∫
Ω
`k̂(x)DTu(x)dx.

(2.53)
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At the boundaries of the numerical model, the attenuation of the outgoing wavefield is applied through
the traction τB which will be further described in Section (2.4). For the sake of simplicity, we ignore
temporarily the boundary term B in the next steps.

Moving from the physical space x to the reference space ξ and considering the transformation
(2.51) provide

∫
Ω
`k̂(ξ)ρ(ξ)∂ttu(ξ)Je(ξ)dξ = −

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)CDTu(ξ)Je(ξ)dξ

+

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)Ca

L∑
ν=1

ψν(ξ)Je(ξ)dξ +

∫
Ω
`k̂(ξ)S(ξ)Je(ξ)dξ,

∫
Ω
`k̂(ξ)∂tψν(ξ)Je(ξ)dξ + ων

∫
Ω
`k̂(ξ)ψν(ξ)Je(ξ)dξ = yνων

∫
Ω
`k̂(ξ)DTu(ξ)Je(ξ)dξ.

(2.54)

In the next step, we approximate the physical fields, u,S and ψν , by the spatial interpolation over
the basis function (2.36) and obtain

N∑
ĥ=1

∫
Ω
`k̂(ξ)ρ(ξ)`ĥ(ξ)∂ttuĥJe(ξ)dξ = −

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)C

N∑
ĥ=1

[DT `ĥ(ξ)]uĥJe(ξ)dξ

+

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)Ca

N∑
ĥ=1

`ĥ(ξ)

L∑
ν=1

ψν;ĥJe(ξ)dξ +

N∑
ĥ=1

∫
Ω
`k̂(ξ)`ĥ(ξ)SĥJe(ξ)dξ,

N∑
ĥ=1

∫
Ω
`k̂(ξ)`ĥ(ξ)∂tψν;ĥJe(ξ)dξ + ων

N∑
ĥ=1

∫
Ω
`k̂(ξ)`ĥ(ξ)ψν;ĥJe(ξ)dξ

= yνων

∫
Ω
`k̂(ξ)

N∑
ĥ=1

[DT `ĥ(ξ)]uĥJe(ξ)dξ.

(2.55)
Similar to the compact form (2.50), the operator [DT `ĥ(ξ)] can be written as

[DT `ĥ(ξ)] =
3∑
i=1

GTi (ξ)
∂`ĥ(ξ)

∂ri
, (2.56)

which transform the system (2.55) into

N∑
ĥ=1

∫
Ω
`k̂(ξ)ρ(ξ)`ĥ(ξ)∂ttuĥJe(ξ)dξ = −

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)C

N∑
ĥ=1

3∑
i=1

GTi (ξ)
∂`ĥ(ξ)

∂ri
uĥJe(ξ)dξ

+

∫
Ω

3∑
j=1

∂`k̂(ξ)

∂rj
Gj(ξ)Ca

N∑
ĥ=1

`ĥ(ξ)

L∑
ν=1

ψν;ĥJe(ξ)dξ +

N∑
ĥ=1

∫
Ω
`k̂(ξ)`ĥ(ξ)SĥJe(ξ)dξ,

N∑
ĥ=1

∫
Ω
`k̂(ξ)`ĥ(ξ)∂tψν;ĥJe(ξ)dξ + ων

N∑
ĥ=1

∫
Ω
`k̂(ξ)`ĥ(ξ)ψν;ĥJe(ξ)dξ

= yνων

∫
Ω
`k̂(ξ)

N∑
ĥ=1

3∑
i=1

GTi (ξ)
∂`ĥ(ξ)

∂ri
uĥJe(ξ)dξ.

(2.57)
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2.2 Weak-form development of the visco-elastic wave equation

The last step involves the application of GLL quadrature mentioned in Equation (2.37) and using
the property of Lagrange polynomials described in Equation (2.35), the system (2.57) becomes

N∑
ĥ=1

N∑
q̂=1

wq̂ρq̂δk̂q̂δĥq̂∂ttuĥJe(ξq̂) = −
N∑
q̂=1

wq̂

3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂)C

N∑
ĥ=1

3∑
i=1

GTi (ξq̂)
∂`ĥ(ξq̂)

∂ri
uĥJe(ξq̂)

+

N∑
q̂=1

wq̂

3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂)C

a
N∑
ĥ=1

δĥq̂

L∑
ν=1

ψν;ĥJe(ξq̂) +

N∑
ĥ=1

N∑
q̂=1

wq̂δk̂q̂δĥq̂SĥJe(ξq̂),

N∑
ĥ=1

N∑
q̂=1

wq̂δk̂q̂δĥq̂∂tψν;ĥJe(ξq̂) + ων

N∑
ĥ=1

N∑
q̂=1

wq̂δk̂q̂δĥq̂ψν;ĥJe(ξq̂)

= yνων

N∑
q̂=1

wq̂δk̂q̂

N∑
ĥ=1

3∑
i=1

GTi (ξq̂)
∂`ĥ(ξq̂)

∂ri
uĥJe(ξq̂).

(2.58)
By simplifying the Kronecker delta functions, we obtain a cleaner system

wk̂ρk̂Je(ξk̂)∂ttuk̂ = −
N∑
q̂=1

wq̂Je(ξq̂)

3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂)C

N∑
ĥ=1

3∑
i=1

GTi (ξq̂)
∂`ĥ(ξq̂)

∂ri
uĥ

+
N∑
q̂=1

wq̂Je(ξq̂)
3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂)C

a
N∑
q̂=1

L∑
ν=1

ψν;q̂ + wk̂Je(ξk̂)Sk̂,

wk̂Je(ξk̂)∂tψν;k̂ + ωνwk̂Je(ξk̂)ψν;k̂ = yνωνwk̂Je(ξk̂)

N∑
ĥ=1

3∑
i=1

GTi (ξk̂)
∂`ĥ(ξk̂)

∂ri
uĥ.

(2.59)

By removing wk̂Je(ξk̂) from both sides of the second equation and changing the index k̂ to q̂ we have

Mk̂k̂︷ ︸︸ ︷
wk̂ρk̂Je(ξk̂) ∂ttuk̂ = −

Dw
k̂q̂︷ ︸︸ ︷

N∑
q̂=1

wq̂Je(ξq̂)
3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂)C

Dq̂ĥ︷ ︸︸ ︷
N∑
ĥ=1

3∑
i=1

GTi (ξq̂)
∂`ĥ(ξq̂)

∂ri
uĥ

+

N∑
q̂=1

wq̂Je(ξq̂)

3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂)C

a
N∑
q̂=1

L∑
ν=1

ψν;q̂ + wk̂Je(ξk̂)Sk̂︸ ︷︷ ︸
Fk̂k̂

,

∂tψν;q̂ + ωνψν;q̂ = yνων

N∑
ĥ=1

3∑
i=1

GTi (ξq̂)
∂`ĥ(ξq̂)

∂ri
uĥ.

(2.60)

2.2.4 Global system of the weak formulation

We can now introduce the global mass matrix M which is diagonal by construction with the diagonal
terms

Mk̂k̂ = wk̂ρ(ξk̂)Je(ξk̂). (2.61)
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The weighted spatial derivative matrix Dw and the spatial derivative matrix D are respectively written
as

Dw
k̂q̂

=
N∑
q̂=1

wq̂Je(ξq̂)
3∑
j=1

∂`k̂(ξq̂)

∂rj
Gj(ξq̂), (2.62)

Dq̂ĥ =

N∑
ĥ=1

3∑
i=1

Gti(ξq̂)
∂`ĥ(ξq̂)

∂ri
. (2.63)

It should be noted that the operator D estimates the spatial derivatives of a vector in the Cartesian
space. The operator Dw is equivalent to the spatial derivatives operator weighted by GLL weights wq̂
and the local Jacobian determinant Je(ξq̂). The stiffness matrix is defined through the spatial derivative
matrices as

K = DwCD. (2.64)

The source term is embedded inside the matrix F with

Fk̂k̂ = wk̂Je(ξk̂)Sk̂. (2.65)

A similar development can be considered for the boundary term B in Equation (2.53), which consists
of the surface integral over boundaries of the numerical model

B =

∫
ΓΩ

[ID`k̂(x)]τB(x)dsx. (2.66)

It should be noted that the boundary term consists of the surface integral over different faces of a given
3D model volume. After discretization in the reference space, an example of the boundary term for the
points located at one face of the model can be provided for instance as

Bk̂k̂ = wk1wk2J
s
e (ξk̂)τB(ξk̂). (2.67)

Under these discrete notations, the weak form of the second-order visco-elastic wave equation
(2.23) of the displacement field u can be written as{

M∂ttu = −Ku + DwCa
∑L

ν=1ψν + F + B,

∂tψν + ωνψν = ωνyνDu
(2.68)

In elastic medium, the attenuation contribution DwCa
∑L

ν=1ψν vanishes, leading to the second-order
elastic system as developed by Komatitsch and Tromp (1999). The free-surface condition is naturally
taken into account when the boundary terms appearing during the integration-by-parts step is ignored
(Equation 2.40). The outgoing wavefield at the model boundaries is absorbed by a combination of
sponge layers (Cerjan et al., 1985) and radiative boundary condition (Lysmer and Kuhlemeyer, 1969;
Kouroussis et al., 2011), which are further described in Section (2.4).

2.3 Optimized and low-memory visco-elastic modeling kernel

As developed in the previous Section (2.2), the global mass matrix is diagonal by construction. Its
inverse can thus be obtained without any extra cost. The visco-elastic system in Equation (2.68) without
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2.3 Optimized and low-memory visco-elastic modeling kernel

Algorithm 1: Visco-elastic Newmark scheme

1 u0 = 0; v0 = 0;
2 for it = 1, · · · , nt do

3 Prediction phase

4 uit = uit−1 + ∆tvit−1 +
∆t2

2
ait−1 ;

5 vit−1/2 = vit−1 +
∆t2

2
ait−1 ;

6 Resolution phase
7 εit = Duit ;
8 ψit+1/2

ν = γνψ
it−1/2
ν + βνε

it ;

9 σit = Cεit − Ca
L∑
ν=1

ψ
it+1/2
ν +ψ

it−1/2
ν

2
+ T ;

10 ait = −M−1
(
Dwσit + Fit

)
;

11 Correction phase

12 vit = vit−1/2 +
∆t

2
ait;

13 end

the boundary term can then be written as{
∂ttu = −M−1

(
Ku + DwCa

∑L
ν=1ψν + F

)
,

∂tψν + ωνψν = ωνyνDu
(2.69)

A second-order explicit visco-elastic Newmark scheme is implemented for the time integration to com-
pute the displacement field at each time-step as shown in Algorithm (1). This visco-elastic scheme is
developed based on the Crank-Nicholson scheme (Robertsson et al., 1994) and elastic Newmark scheme
described in Komatitsch (1997).

The SEM implementation used in our workflow is based on limited interpolation orders for test
functions with N = 4 or 5. It has been shown that these orders provide a good compromise between
the numerical accuracy and the constraint on the Courant-Friedrichs-Lewy (CFL) stability condition
(Komatitsch and Vilotte, 1998; Komatitsch and Tromp, 1999).

2.3.1 Optimized modeling kernel

At each time-step, the most computationally intensive part of the modeling kernel is the computation
of the acceleration a, which is equivalent to the second-order time-derivative of the displacement field
∂ttu. According to the definition of the stiffness matrix K in Equation (2.64), the stiffness-displacement
vector product can be factorized as

Ku = DwCDu. (2.70)
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The right-hand-side of the first equation in the visco-elastic system (2.69) can then be written as

a := ∂ttu = −M−1
[
Dw

(
C

ε︷︸︸︷
Du +Ca

L∑
ν=1

ψν
)

︸ ︷︷ ︸
σ

+F
]
. (2.71)

The numerical computation of the acceleration field is based on this factorization through a decompo-
sition into three steps as described in the resolution phase in Algorithm (1):

- Line (7) - The estimation of the spatial derivatives of the displacement field Du, leading to the
strain component ε.

- Line (9) - The collection of the visco-elastic stress σ, which involves two terms: The first term
is related to the elastic rheology, computed through the product of the stiffness coefficients with
the strain component Cε. The second-term Ca

∑L
ν=1ψν is only linked to the attenuation mecha-

nism, its numerical discretization is described in Equation (2.75). If the wave-propagation system
is excited by an external stress failure T , it can also be included.

- Line (10) - The estimation of the weighted spatial derivatives of the stress field Dwσ.

Each spatial-derivative calculation is matrix-free. They are implemented following the Deville et al.
(2002) approach, taking benefit from the tensorial properties of hexahedral elements, optimizing the
loop vectorization and cache usage by smart management of fast and slow dimensions in tables, com-
bined with manual loop unrolling for inner loops.

2.3.2 Low-memory visco-elastic modeling kernel

As described by Equation (2.71), the displacement field can be propagated under a second-order accu-
rate time scheme. The first-order ODE governing the memory variables (Equation. 2.69)

∂tψν + ωνψν = ωνyνDu (2.72)

needs to be incorporated into the time-scheme without degrading this second-order accuracy. To do so,
the memory variables ψν are updated at half time-steps compared to the displacement field u. To be
more precise, the ODE (2.72) is discretized following the centered scheme

ψ
it+1/2
ν −ψit−1/2

ν

∆t
+ ων

ψ
it+1/2
ν +ψ

it−1/2
ν

2
+O(∆t2) = ωνyνDuit, (2.73)

in which it indicates the current time-step and ∆t is the time-stepping. Therefore, the memory variables
at the time step (it+ 1/2) can be explicitly updated by

ψit+1/2
ν ≈ 2− ων∆t

2 + ων∆t︸ ︷︷ ︸
γν

ψit−1/2
ν + ωνyν

2∆t

2 + ων∆t︸ ︷︷ ︸
βν

Duit +O(∆t2), (2.74)

as indicated in Line (8) in the visco-elastic Newmark scheme in Algorithm 1 for ν = 1, ..., L. Following
this expression, the memory variables at the next step is explicitly computed from the previous step and
the already known displacement field. Therefore, we only need to store a single entity of the ψν fields,
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2.4 Boundary conditions and source implementation

i.e. L × 6 tables of memory variables, per time-step. The attenuation contribution in the stress field
Ca
∑L

ν=1ψν can be estimated following the same strategy

σit = Cεit − Ca
L∑
ν=1

ψitν ≈ Cεit − Ca
L∑
ν=1

ψ
it+1/2
ν +ψ

it−1/2
ν

2
+O(∆t2). (2.75)

Equation (2.75) is considered for updating the stress field in Line (9) in Algorithm 1. In addition, as
highlighted by Equations (2.17) and (2.19), we only store L scalar anelastic coefficients yν to reduce the
memory requirement related to SLS attenuation mechanism (Yang et al., 2016a). The combination of
these two strategies allows to reduce the memory footprint of visco-elastic simulation while preserving
the accuracy.

The simulation quality of our approach is illustrated through the LOH benchmarks (Day et al., 2003)
as shown in Section (2.6), where we obtain an excellent agreement with both elastic and visco-elastic
semi-analytical solutions on layered medium, calculated from the boundary integral method (Coutant,
1989).

2.4 Boundary conditions and source implementation

In practical applications, the seismic waves are propagated from a single point source (e.g. vibroseis
or explosive source). A couple of Dirichlet and Neumann conditions are then considered for initial
condition in time: Zero displacement field and its temporal derivative, the velocity field, at the starting
time u(t = 0) = 0 and v(t = 0) = 0.

The numerical simulation of the wave propagation can only be performed in a finite volume. Spec-
ifying boundary conditions are thus required to attenuate the outgoing wavefield. As mentioned in
Section (2.2), the free-surface condition is naturally considered by the SEM weak form development
of the wave equation. This section then only focus on the wavefield absorbing at the boundaries of the
model and the source injection into the SEM mesh.

2.4.1 Boundary conditions

The absorbing conditions are required at the boundaries of the numerical model to stimulate the sim-
ulation in an infinite system. The outgoing wavefield is absorbed by a combination of sponge layers
(Cerjan et al., 1985) and radiative boundary condition (Lysmer and Kuhlemeyer, 1969) due to its effi-
ciency even for anisotropic materials.

The sponge consists of several layers of elements at the boundaries of the physical medium as
illustrated in Figure 2.4. These layers gradually reduce the amplitude of the wavefield coming out from
the physical domain. At the end of the calculation at each time-step, the wavefield propagating inside
the sponge layers are damped by the factor

G(c, x) = e−
[
c(x/L)

]2
, (2.76)

where c is a damping coefficient, L is the sponge thickness and x is the distance from the physical
domain as described in Figure 2.5. At the interface between the physical domain and the sponge layers,
the factor G(c, x = 0) is equal to 1, implying no amplitude attenuation inside or at the boundaries of
the physical domain.
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Figure 2.4: An example of the mesh design where sponge layers contain 4 elements.

In standard implementation, the damping coefficient is normally chosen as c = 0.3, which provides
the factor G(c = 0.3, x = 0) = 0.92 at the outer boundaries of the sponge layers. In practice, the
sponge thickness L should be around 4 times larger than the wavelength λ that we want to attenuate.
The method appears to be robust and can be applied to different wave modeling problems, even when the
anisotropy is considered. The effectiveness of this boundary condition does not decreases for shallow
angles of incident. However, when the dataset has low frequency component, a thick sponge design is
required for an efficient wavefield absorbing at the boundaries.

To improve the accuracy of the sponge technique, we combine it with a first-order radiative absorb-
ing condition. The damping coefficient inside Equation (2.76) has been reduced to c = 0.06 to weaken
the amplitude attenuation inside the sponge. A boundary traction τB is injected into the boundary term
of the wave equation (2.53), at the end of the sponge, to further attenuate the outgoing wavefield. We
use a classic formulation proposed by Lysmer and Kuhlemeyer (1969); Kouroussis et al. (2011)

τB = ρVpvn + ρVsvt, (2.77)

where ρ is the density, Vp and Vs are compressional and shear wave speeds, respectively. This expres-
sion also requires normal and tangential particles velocities vn and vt on the domain borders. It should
be noted that the radiative boundary condition can be applied at no extra-cost and it works for all fre-
quency range. However, one of the main drawbacks of this approach is that the wavefield absorbing
efficiency is incident-angle dependent: The method is efficient for normal incident waves but less for
other angles. By combining the sponge technique and the radiative boundary condition, both short and
long wavelengths of the wavefield at the boundary can be efficiently attenuated, also at a wider range
of incident angles. Figure 2.10 presents an example of a forward modeling in the LOH1 benchmark
described in Section (2.6), in which the boundary effect is invisible.

Figure 2.5: Amplitude reduction inside the sponge layers.
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2.4 Boundary conditions and source implementation

Aside from the described combination of the sponge and radiative boundary condition techniques,
the perfectly matched layer (PML) absorbing boundary condition has been proven to be very efficient
for elastic wave equation to absorb both body and surface waves. The main issues of the standard
implementations are the incident-angle dependent efficiency and intrinsic instability for anisotropic
materials (Bérenger, 1994). The unsplit convolution technique has been proposed to improve the ab-
sorbing efficiency at grazing incidences. However, in anisotropic media, it is well known that PML
exhibits numerical instabilities: The outgoing wavefield can be amplified instead of being decreased.
Correction terms can be considered to stabilize the simulation (Komatitsch and Martin, 2007; Martin
et al., 2008, 2010). However, we have not investigated on these approaches yet and we keep a simple
sponge and absorbing boundary approach.

2.4.2 Source implementation

In land seismic application, the source can be either vibroseis or explosive. The vibroseis source is
equivalent to an external directional point force f(x, t) in Equation (2.1). The explosive source is
directly linked to moment tensor source, which can be applied through external stress failure T (x, t) in
Equation (2.1). In a surface seismic acquisition, the vibroseis source is applied at the free-surface, i.e.
at the boundary of the simulation model, while the explosive source is buried at several-meters depth.

2.4.2.1 Point-force source

Each point source is consider as a product of a Dirac delta function in physical space at the source
position xs with a source-time function f(t) as

f(x, t) = δ(x− xs)f(t). (2.78)

We choose to inject the source directly into the displacement field. Following the same workflow as the
weak form development in Section (2.2), the integral form of the source term is∫

Ω
`k̂(x)δ(x− xs)f(t)dx. (2.79)

It should be noted that when moving from the physical space to the reference space, the delta function
δ(x− xs) should be normalized by the Jacobian determinant

δ(x− xs) =
1

Je(ξ)
δ(ξ − ξs), (2.80)

leading to the source term in the reference space as∫
Ω
`k̂(ξ)δ(ξ − ξs)f(t)dξ, (2.81)

where ξs is the associated position of the source point in the reference space. The diagonal terms of the
source matrix Equation (2.65) can then be written as

Fk̂k̂ = `k̂(ξs)f(t). (2.82)

The implementation can be simply interpreted as a spatial interpolation of the source point position
over the GLL point, scaled by the source-time function f(t).
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2.4.2.2 Moment tensor source

In petroleum geophysics, an ideal explosive source is described by a diagonal stress failure

T11(x, t) = T33(x, t) = T33(x, t). (2.83)

The stress failure can be injected directly into the stress calculation in Line (9) in Algorithm 1.

We implement the explosive source through the moment-tensor source Mij , which is a physical
notation widely used in seismology. The moment-tensor source M(x, t) is related to the stress failure
T (x, t) through a volumetric integral over the physical domain Ω (Komatitsch and Tromp, 1999; Aki
and Richards, 2002)

M(x, t) =

∫
Ω
T (x, t)dx. (2.84)

The application of an external point-moment at the position xs can be described as

M(x, t) = M(t)δ(x− xs). (2.85)

By consequence, the stress failure can be written as

T (x, t) = T (t)δ(x− xs), (2.86)

even though the notion of a point-stress source does not exist physically. Therefore, we seek a mean-
ingful relationship between the stress time-function T (t) and the moment time-function M(t). By
substituting the definitions of the external moment and stress failure into the relationship (2.84) we
obtain

M(t)δ(x− xs) = T (t)

∫
Ω
δ(x− xs)dx, (2.87)

≈ T (t)

N∑
k̂=1

`k̂(xs)`k̂(x). (2.88)

The spatial integral of the Dirac function δ(x − xs) in Equation (2.87) provides an unitary amplitude
at the source position xs, which can be approximated by the spatial interpolation over the GLL points
and Lagrange basis function as indicated in Equation (2.88). By considering a volumetric integral over
the physical medium Ω, the stress time-function can now be computed as

T (t) =
M(t)∫

Ω

N∑
k̂=1

`k̂(xs)`k̂(x)dx

=
M(t)

N∑
ĥ

wĥ`ĥ(ξs)`ĥ(ξĥ)Je(ξĥ)

. (2.89)

This normalization term is important to achieve a “true amplitude” seismogram estimation. The am-
plitude consistency of the computed seismogram has been verified for the same physical setting on
different mesh designs and different relative source positions inside a element.

2.5 Mesh design

In a completely unstructured FE mesh, a relatively expensive set-up stage is required at the beginning
of any simulation, where the mesh is generated and the associated indices or any neighborhood look-
up tables are pre-computed. We simplify the mesh design by considering a Cartesian-based deformed
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2.5 Mesh design

a) b)

Figure 2.6: 3D mesh generation on a realistic example (4 km in z direction, 8 km in x direction and
2 km in y direction): (a) A subset of constant element-size mesh with dz = dx = dy = 40 m.
(b) A subset of variable element-size mesh, where the number of elements is reduced 3.03 times in z
direction, 1.57 times in x direction and 1.47 times in y direction: dz ∈ [49−142] m, dx ∈ [49−139] m,
dy ∈ [49− 100] m.

mesh to combine the accurate representation of the topography allowed by the FE meshes and the
convenience of an implementation on a FD grid (Cupillard et al., 2011; Gokhberg and Fichtner, 2016).
The spatial position of each element can be obtained directly from its x, y, z indices, without using
any neighborhood look-up tables or searching steps over the global mesh. The topography variation is
represented by vertically deformed elements as shown in Figure 2.6(a). The numbers of elements in
x, y and z directions are constant, although the size of elements can vary. For the basis functions at
interpolation orderN = 4 or 5, SEM allows to accurately model elastic waves propagation with around
6 GLL nodes per shortest wavelength (Komatitsch, 1997). This condition is referred as the volume
condition.

2.5.1 Cartesian-based mesh with variable element-size

In most geophysical targets, the velocity is spatially varying, leading to spatially varying wavelengths.
The element-size should thus be adapted to the variation of the local shortest wavelength. Figure 2.6(b)
shows an example of such a flexible mesh design for a 3D target, where the element-size varies from
49 m to 142 m in three directions. The mesh is built upon the condition that 6 GLL points per shortest
wavelength are required. Under the same constraint, Figure 2.6(a) illustrates the constant element-
size mesh, where the element-size is 40 m in each direction. In this cross-section, by using a variable
element-size mesh, the number of elements is reduced by a factor of 3.03 times in z direction, 1.57 times
in x direction and 1.47 times in y direction: almost a factor 7 in total, while keeping the Cartesian-based
topology of the mesh. The reduction of the number of elements systematically decreases the numerical
cost by the same factor, or even more if it induces the relaxation of the CFL stability condition of the
explicit time-marching scheme.
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2.5.2 Complex topography representation

When considering significant topography variations, hexahedral elements can be vertically deformed
as illustrated in Figure 2.6. As described in Section (2.2.1.1), the shape of each element can be defined
by a set of (n + 1) control points in each direction, leading to a total na = (n + 1)3 control points
and associated shape functions in 3D geometry. For instance, n = 1 means only eight corners of the
elements are used as control points, while n = 2 considers also the mid-size and center nodes.

The spatial position of GLL points inside the element is computed from these control points and
shape functions through

x(ξ, η, ζ) =

n+1∑
k1=1

n+1∑
k2=1

n+1∑
k3=1

`k̂(ξ, η, ζ)xk̂, (2.90)

where k̂ again stands for the triple indexes k1, k2, k3. The associated shape functions are a triple product
of Lagrange polynomials of degree n: `k̂(ξ, η, ζ). Since shape functions are products of Lagrange
polynomials, their partial derivatives are analytically determined even for high order n, implying that
the Jacobian matrix J(ξ) in Equation (2.28) is also analytically determined. The number of control
points and shape functions in each direction (n + 1) is not related to the interpolation order N of the
test functions needed for solving the wave equation PDE. However, we normally consider n ≤ N to
avoid any possible artifact coming from the geometry representation.

Figure 2.7(a) and (b) show the relative position of GLL points inside a deformed elements under P1

(using eight corners of each element as control points and linear shape functions) and P4 representation
((4 + 1)3 GLL points are used as control points and order-4 shape functions). The P1 representation
of the surface cannot honor sharp spatial variation of the free surface, as shown in Figure 2.7(c), which
might affect the accuracy of the simulation due to the interaction between elastic waves and the complex
surface. Decreasing the element size is one way for following the rapid variation of the topography,
namely the surface condition: At least two spatial sampling points per shortest topographic wavelength
are required to honor the interaction at the surface. This criterion might be stricter than the volume
condition, and would significantly increase the computational cost. The surface condition limitation
can be overcome by using higher-order Pn representation, such as n = 4 (Figure 2.7d) where all GLL
points inside the element are considered as control points.

Figure 2.7(d) further confirms that the P4 representation provides a better description of the complex
topography since (4 + 1)2 GLL points are used in each element to capture the topography map, instead
of (1 + 1)2 points for the P1 case. This thus leads to a more accurate spatial positioning of GLL
points inside the element. To evaluate the influence of the topography representation on the accuracy
of the wavefield simulation, we use a homogeneous model with complex surface extracted from the
SEAM Phase II Foothills benchmark as shown in Figure 2.8(a). The medium is meshed at 100 m
element-size, under P1 and P4 topography representations. A single-valued envelop misfit estimated at
each receiver location (Kristeková et al., 2006) is used to compare the observed seismograms with the
reference solution, computed from a 25 m mesh under P1 topography representation. The comparison is
shown in Figure 2.8(b): For the same number of elements, thus identical numerical cost, the P4 surface
representation provides a more accurate estimation of the wavefield. Moreover, the simulation error
of the P1(100 m) mesh is accumulated with offset, which might damage the information at far offsets,
thus the velocity estimation of the near surface during the inversion. Trade-offs between topography
representation and velocity parameters in acoustic land-FWI have been investigated numerically by
Huiskes et al. (2017). When considering surface-waves, the influence of topography representation on
elastic FWI is expected to be even more important.
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Figure 2.7: Left - Position of GLL points (red triangles) of a cross-section inside a 3D element for
interpolation order N = 4 using (a) the eight corners of each element and linear shape function and (b)
the (4 + 1)3 GLL control points associated with P4 shape functions. The control points are highlighted
by black circles. Right - The associated with topography description (for a cross-section extracted
from SEAM II Foothills model) using (c) P1 and (d) P4 representation. The position of control points
are marked by the sign ’+’, showing that the P4 representation provides a better representation of the
complex topography. The element size is 100 m for both case.
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Figure 2.8: (a) A complex topography extracted from the SEAM II Foothills model. (b) Envelop misfit
comparison: Red - Between P1 (100 m) mesh with the reference solution, Blue - Between P4 (100 m)
mesh with the reference solution, which shows significant improvement in the numerical accuracy. The
reference solution is obtained from the simulation on P1 (25 m) mesh.
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Figure 2.9: LOH layered model. The source is placed in the lower half-space (zs = 2 km, xs = ys =
15 km) and the receiver is placed on the free surface (zr = 0 km, xr = 21 km, yr = 23 km).

It should be noticed that only the Jacobian matrix J(ξ) and the Jacobian determinant Je(ξ) associ-
ated with the mapping from the reference space to the physical space are required for the wave propaga-
tion. Using high-order geometry representation (Pn) therefore only affects the mesh building step and
the computation of the Jacobian terms, which are computed only once in the FWI workflow. Moreover,
similar optimized strategy as the matrix-free spatial-derivative estimation described in Section (2.3) can
be applied for the computation of the volumetric Jacobian. The computational cost of the wavefield
modeling is thus unaltered, while the simulation accuracy related to the complex wave-phenomena at
the free-surface is significantly improved.

The combination of the variable element-size mesh design with high-order topography represen-
tation makes possible using as coarse elements as possible without degrading the medium geometries
representation, then providing a good balance between computational cost and numerical accuracy. We
are aware that such high-order shape functions might affect the SEM convergence properties, because
the polynomial order inside the integrals in Equation (2.57) becomes superior than 2n + 1. However,
our numerical experiments in Figure 2.8 confirm a rather low simulation error compared with a refer-
ence solution. Also, it is widely known that the convergence characteristics of SEM are already lost
when solving the wave equation in a heterogeneous medium inside each element, which is the cases for
a majority practical applications.

2.6 Comparison with semi-analytical solutions - LOH benchmarks

The simulation accuracy of our elastic and visco-elastic forward modeling, embedded inside the SEM46
code, is illustrated through the comparison with the boundary integral method (Coutant, 1989). Follow-
ing this approach, the AXITRA open-source package offers highly accurate semi-analytical solution
on layered medium. For visco-elastic solution, only the Kjartansson’s constant Q-model is originally
available in AXITRA (Kjartansson, 1979). We thus introduce the approximation by 3 pre-defined SLS
mechanisms over the modeling frequency range of the benchmark into AXITRA.

The comparison is performed on the LOH benchmark, which has a layered material model, where
the top 1000 m have different properties than the rest of the domain (cf. Table 2.1 and Figure 2.9).
The problem is driven by a single point moment source Mxy = 1018 N.m, positioned in the lower
half-space at depth zs = 2km. The selected receiver is located at the free-surface with the distance

56



2.6 Comparison with semi-analytical solutions - LOH benchmarks

Vp[m/s] Vs[m/s] ρ[m/s] Qp Qs
Top layer 4000 2000 2600 120 40
Half space 6000 3464 2700 155.9 69.3

Table 2.1: Medium properties of the LOH benchmark.

Figure 2.10: Wavefield recorded in LOH1 benchmark, showing dispersive surface waves and multiple
body-wave-reflections between the free surface and the sharp contrast. The interested receiver position
(zr, xr, yr) is highlighted by red triangular. The wavefield at the boundary is efficiently attenuated
thanks to the combination of the sponge layers and the radiative boundary condition.

about 10 km from the source (∆xsr = 6 km, ∆ysr = 8 km). We also deploy a surface receiver array
across the source and selected receiver positions as indicated by the red line in Figure 2.9.

2.6.1 LOH1 comparison

LOH1 solutions come from an elastic simulation with a Gaussian source time function centered at
2.65 Hz. The distance source-receiver is equivalent to about 14 times the dominant surface wavelength
(703 m). SEM mesh consists of a set of regular cubic elements, with element size calculated from the
volume condition: dx = dy = 160 m. The element-size in the vertical direction is a factor of the
thickness of the top-layer, dz = 100 m, to better represent the sharp interface. A sponge layer of 8
elements is considered at each model boundary, equivalent to 1280 m thickness in x and y directions
and 800 m at the bottom of the model.

Figure 2.10 shows the recorded wavefield at the free-surface with multiple body-wave reflections
between the free-surface and the sharp-contrast at 1 km depth. Complex and dispersive surface energy
can be clearly identified in the recorded wavefield. Moreover, the residual wavefield at the boundary is
insignificant thanks to the efficiency of our wavefield absorbing strategy. Figure 2.11 shows excellent
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Figure 2.11: Excellent agreement between the elastic SEM46 simulation result and the semi-analytic
solution obtained from AXITRA on LOH1 configuration. Blue - SEM46 solution. Red - AXITRA
solution.

agreement between the elastic SEM46 simulation result and the semi-analytic solution obtained from
AXITRA. Since SEM is a continuous FE method, it has some intrinsic limitation in the representation
of the sharp contrast. We thus do not push the comparison further with any time-frequency analysis.

2.6.2 LOH3 comparison

LOH3 solutions come from a visco-elastic simulation with a Gaussian source time function at 3.18 Hz
center frequency. The medium is meshed with regular cubic elements dx = dy = 160 m and dz =
100 m to better represent the sharp-contrast at z = 1 km. SEM46 uses 3 SLSs to approximate the
constant quality factors. We perform two separated visco-elastic comparisons in the LOH3 setting:

(1) Similar SLS attenuation mechanism, different wavefield computation method: By using the same
SLS mechanisms (similar dimensionless anelastic coefficients yν and reference frequencies ων),
we modify the complex relaxed P- and S-waves speeds inside the AXITRA following Equation
(2.105) in Appendix (2.B). It should be noted that the computation kernel inside AXITRA is
kept untouched, only the estimation of the complex wave speeds are modified. The additional
SLS complex velocities implementation provides an excellent agreement between the SEM46
and modified-AXITRA solutions in Figure 2.12(a).

(2) Difference attenuation mechanism, different wavefield computation method: A very good fit be-
tween SEM46 simulation and AXITRA solution obtained with Kjartansson attenuation model is
also obtained in Figure 2.12(b). In this comparison, a reference frequency at 100 Hz is considered
for Kjartansson model as described in Appendix (2.B).

One should notice the use of a “tuning” frequency for matching the solutions obtained by different
attenuation models. This comes from the fact that SLS model has a finite phase velocity at infinite
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Figure 2.12: Excellent agreement between the visco-elastic SEM46 simulation result and the semi-
analytic solution obtained from AXITRA on LOH3 configuration: (a) Using 3 SLSs mechanism, (b)
Kjartansson model with 100 Hz reference frequency. Blue - SEM46 solution. Red - AXITRA solution.

frequency (V∞ < ∞), while Kjartansson’s constant-Q model assumes infinite velocity at infinite fre-
quency V∞ = ∞ (Wang, 2009). Therefore, a finite reference frequency at 100 Hz is required to make
the phase velocities in SLS and Kjartansson models compatible It should be remarked that different
attenuation model provides different expression of the medium parameters, leading to difficulties for
assessing the validation of the attenuation propagation.

Aside from the comparison with the semi-analytical solutions, our simulation also shows excellent
waveform and true-amplitude agreement compared with a time-domain FD implementation in SW4
V1.1 (Sjögreen and Petersson, 2012). Their implementation also describes the attenuation effect by
constant-Q quality factors, approximated by a set of SLSs over the considered frequency band. How-
ever, the so-called memory variables act on the displacement fields, which is different compared with
our strategy described in Section (2.1.2.2).

2.7 Conclusion

This chapter provides a review of the 3D modeling in visco-elastic medium, using SLS mechanisms.
We separate purposely the elasticity with the attenuation mechanisms, which offers an easy and explicit
coupling between the anisotropic elasticity and isotropic attenuation. The attenuation parameters are
explicitly incorporated in the wave equations, and therefore can be naturally reconstructed in the FWI
framework as discussed in the next Chapter (3).

We present a step-by-step weak-formulation development for the visco-elastic system which has
a similar form as the second-order elastic weak form presented by Komatitsch and Tromp (1999). A
visco-elastic Newmark scheme is then considered to propagate the system in time. The first-order ODE
governing the memory variables has been integrated into this time-marching scheme following a cheap-
memory implementation strategy, while still preserving the second-order accuracy of the time scheme.
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The outgoing wavefield at the model boundaries is absorbed by a combination of sponge layers (Cerjan
et al., 1985) and radiative boundary condition (Lysmer and Kuhlemeyer, 1969; Clayton and Engquist,
1977; Kouroussis et al., 2011). The combination efficiently attenuates both short and long wavelength
at a wide range of incident angles.

The simulation accuracy is ensured by the use of a Cartesian-based deformed mesh with high-order
geometry interpolation to capture rough topography variations. This high-order geometry representa-
tion is shown to improve the simulation quality while keeping a coarse mesh design (?). The element-
size can be adapted to the variation of the local shortest wavelength to reduce the numerical cost,
especially for inversion applications. The comparison with semi-analytical solutions computed from
the boundary integral method confirms the accuracy of our elastic and visco-elastic implementations
(Coutant, 1989).
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2.A Stress and strain relationship in the time domain

APPENDICES

2.A Stress and strain relationship in the time domain

According to Equation (2.1), in anelastic medium, the stress σij is the convolution of the relaxation rate
Mijkl with the strain εkl as

σij(x, t) = Mijkl(x, t) ∗t εkl(x, t) + Tij(x, t). (2.91)

In the frequency-domain, this relationship becomes

σ̂ij(x, ω) = M̂ijkl(x, ω)ε̂kl(x, ω) + T̂ij(x, ω). (2.92)

Under the assumption that L SLSs at specific reference frequencies ων are used to fit a constant Q
parameter over the frequency band [ωmin, ωmax], the associated expression for the complex relaxation
rate M̂ijkl(x, ω) is represented in Equation (2.19). Equation (2.92) now becomes

σ̂ij(x, ω) =
[
cijkl(x)− cijkl(x)Q−1

ijkl(x)

L∑
ν=1

yν
ων

ων + iω

]
ε̂kl(x, ω) + T̂ij(x, ω). (2.93)

By using the definition of the attenuative stiffness coefficients caijkl given in Equation (2.20), we can
rewrite Equation (2.93) as

σ̂ij(x, ω) = cijkl(x)ε̂kl(x, ω)− caijkl(x)
L∑
ν=1

yν
ων

ων + iω
ε̂kl(x, ω) + T̂ij(x, ω). (2.94)

Introducing the complex memory variable ψ̂ν;kl(x, ω) such that

ψ̂ν;kl(x, ω) = yν
ων

ων + iω
ε̂kl(x, ω), (2.95)

leads to the simplification of Equation (2.94) into

σ̂ij(x, ω) = cijkl(x)ε̂kl(x, ω)− caijkl(x)
L∑
ν=1

ψ̂ν;kl(x, ω) + T̂ij(x, ω). (2.96)

In time domain, Equation (2.96) is equivalent to the relationship between stress and strain mentioned in
Equation (2.21).

Equation (2.95) can be developed as

(iω + ων)ψ̂ν;kl(x, ω) = ωνyν ε̂kl(x, ω). (2.97)

By applying the invers Fourier transform into this equation, we obtain

∂tψν;kl(x, t) + ωνψν;kl(x, t) = ωνyν εkl(x, t), (2.98)

which is the ODE governing the propagation of the memory variables, mentioned in Equation (2.22).
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2.B Complex P and S wave velocities in AXITRA

Kjartansson model

The Kjartansson’s constant Q model (Kjartansson, 1979) originally implemented in AXITRA (Coutant,
1989) is

V̂p(x, ω)relaxed = Vp(x)unrelaxed

( ω

ωref

)γ
(1− iQ−1

p ), (2.99)

V̂ν(x, ω)relaxed = Vν(x)unrelaxed

( ω

ωref

)γ
(1− iQ−1

ν ), (2.100)

where the coefficient γ is set as

γ =
arctan(Q−1)

π
. (2.101)

The computation of these complex velocities requires a reference frequency ωref .

SLS approximation

Following the Voigt indexing, the complex relaxation rate in Equation (2.19) can be written as

M̂IJ(x, ω) = CIJ(x)
(

1−Q−1
IJ (x)

L∑
ν=1

yν
ω2
ν − iωων
ω2
ν + ω2

)
. (2.102)

For isotropic attenuation mechanism, the complex compressional and shear velocities can then be writ-
ten as

V̂ 2
p (x, ω) =

M̂11(x, ω)

ρ(x)
=
C11(x)

ρ(x)

(
1−Q−1

p (x)
L∑
s=1

yν
ω2
ν − iωων
ω2
ν + ω2

)
, (2.103)

V̂ 2
ν (x, ω) =

M̂44(x, ω)

ρ(x)
=
C44(x)

ρ(x)

(
1−Q−1

s (x)
L∑
s=1

yν
ω2
ν − iωων
ω2
ν + ω2

)
. (2.104)

It should be remarked that the unrelaxed P-wave speed isC11(x)/ρ(x), and S-wave speed isC44(x)/ρ(x),
implying that the complex P- and S-wave speeds can be directly estimated from the unrelaxed quantities
as

(V̂ 2
p (x, ω))relaxed = (V 2

p (x))unrelaxed

(
1−Q−1

p (x)

L∑
s=1

yν
ω2
ν − iωων
ω2
ν + ω2

)
,

(V̂ 2
ν (x, ω))relaxed = (V 2

ν (x))unrelaxed

(
1−Q−1

s (x)

L∑
s=1

yν
ω2
ν − iωων
ω2
ν + ω2

)
. (2.105)

These complex velocities have been added in the AXITRA code.
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Chapter 3

Inverse problem
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Standard FWI is a local optimization method, which attempts to reduce iteratively the data misfit
between the calculated dcal and the observed data dobs at receiver locations, for instance through the
least-squares distance in Equation (1.3). The minimization problem is solved under some constraints
related to the wave equation, in which the descent direction relies on the gradient of the misfit function.
The Lagrangian strategy is used to develop the gradient expressions.

The visco-elastic gradient for a set of model parameters (ρ, Vp, Vs, Q
−1
p , Q−1

s ) can be computed by
the adjoint-state method (Plessix, 2006). The impact of attenuation when recovering elastic parameters
will be pointed out in a toy configuration. A review of various local optimization approaches for model
perturbation estimation is also provided. They are all approximated versions of the model perturbation
estimation through the inverse Hessian and gradient in Equation (1.6). When inverting for multiple
parameters, for example compressional and shear wave speeds, the use of an additional non-linear
model constraint on the relationship between inverting parameters becomes attractive to reduce the
possible model-search space. This could lead to a more reliable model parameters estimation as pointed
out in the application chapters.



INVERSE PROBLEM

3.1 Gradient computation by the adjoint-state approach

We define the incident vector from the displacement u and memory variables fields ψν associated with
L SLS mechanisms as

W = (u1, u2, u3︸ ︷︷ ︸
u

, ψ1;1, ..., ψ1;6︸ ︷︷ ︸
ψ1

, ..., ψL;1, ..., ψL;6︸ ︷︷ ︸
ψL

)T , (3.1)

which is the full wavefield estimated from the forward problem. We recast the visco-elastic system in
Equation (2.23) into a forward problem with variable W . According to the definition of the incident
vector, the forward problem (2.23) can now be written as

B2(m)︷ ︸︸ ︷
ρI3 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

 ∂ttW +

B1︷ ︸︸ ︷
0 0 ... 0
0 I6 ... 0
... ... ... ...
0 0 ... I6

 ∂tW

+


−DCDT DCa ... DCa

−y1ω1D
T ω1I6 ... 0

... ... ... ...
−yLωLDT 0 ... ωLI6


︸ ︷︷ ︸

B0(m)

W = S, (3.2)

or in a more compact form with the introduction of matrices B2(m),B1 and B0(m) as

F (m,W) = B2(m)∂ttW + B1∂tW + B0(m)W − S = 0. (3.3)

The optimal choice of model parameters m, especially in attenuating medium, is not obvious and is
expected to be dependent on the medium complexity, acquisition design and radiation pattern. As
a reference and natural parametrization, we compute the gradient for the density ρ, the independent
components of the unrelaxed stiffness components (CIJ) and the inverse of the quality factors Qp and
Qs

m =
(
ρ, CIJ ;(1≤I≤J≤6), Q

−1
p , Q−1

s

)
. (3.4)

3.1.1 Lagrangian definition & Adjoint system

By considering the incident vector W , the least-square misfit function in Equation (1.3) between the
calculated dcal and the observed data dobs can be written as

χ(m) =
1

2
‖RW(m)− dobs‖2, (3.5)

where R is a restriction operator extracting the full wavefield W at receiver positions for each source.
We introduce the Lagrangian function with the Lagrangian multiplier vector W , subjected to the wave
equation constraint as

L(m,W ,W) =
1

2
‖RW − dobs‖2 +

(
W , F (m,W)

)
. (3.6)
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3.1 Gradient computation by the adjoint-state approach

The inner product is defined over the space and time domain Ω × [0 − t]. It should be noted that the
definition of the Lagrangian multiplier is not unique, and not the physical field. We can choose the
adjoint fields to suit our numerical purpose as described in the latter steps.

Let W(m) be the solution of the forward problem (3.3) for the model parameter m. ThenF (m,W(m)) =
0, the second term of the Lagrangian function will be thus canceled

L(m,W ,W) =
1

2
‖RW − dobs‖2 = χ(m), (3.7)

giving the misfit function χ(m). Thus, the gradient of the misfit function can be computed from the
derivative of the Lagrangian function with respect to model parameters m

∂χ(m)

∂m
=
∂L(m,W ,W)

∂m
. (3.8)

Using the chain rule, this equation is equivalent to

∂χ(m)

∂m
=
(
W ,

∂F (m,W)

∂m

)
+
∂L(m,W ,W)

∂W
∂W(m)

∂m
, (3.9)

where the adjoint fields are considered as independent with the model parameters (i.e. ∂W/∂m = 0).

Similar to the construction of the incident full wavefield W , we define the Lagrangian multiplier
from adjoint displacement u and memory variable fields φν as

W = (u,φ1, ...,φL)T , (3.10)

which satisfies
∂L(m,W ,W)

∂W
= 0. (3.11)

Our later development will show that this condition is equivalent to a new PDE to be solved.

The gradient of the misfit function on model parameters m in Equation (3.9) can then be simplified
as

∂χ(m)

∂m
=
(
W ,

∂F (m,W)

∂m

)
. (3.12)

Adjoint fields construction

We would like to remind some properties of adjoint operators “•†” with respect to time and spatial
derivatives that we use in the next developments

D† = −DT , (∂t)
† = −∂t, (3.13)

where D is the first-order spatial derivative operator described in Equation (2.6). According to the
definition of the Lagrangian multiplier defined in Equation (3.11), we can compute the adjoint fields
W through

0 =
∂L(m,W ,W)

∂W = R†(RW − dobs) +
(∂F (m,W)

∂W

)†
W . (3.14)

By considering the properties of adjoint operator in Equation (3.13), we obtain

B†2(m)∂ttW −B†1∂tW + B0(m)†W = −R†(RW − dobs). (3.15)
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The data residual is mainly driven by the displacement residual receiver positions ∆du and no
contribution is coming from the memory variable residuals ∆dφν as

RW − dobs = [∆du,∆dφ1 , ...,∆dφL ]T := [∆du, 0, ..., 0]T . (3.16)

The system (3.15) governing the Lagrangian multiplier can now be expanded as

B†2(m)︷ ︸︸ ︷
ρI3 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

 ∂tt


u

φ1

...

φL

−
B†1︷ ︸︸ ︷

0 0 ... 0
0 I6 ... 0
... ... ... ...
0 0 ... I6

 ∂t


u

φ1

...

φL

+

+


−DCDT y1ω1D ... yLωLD
−CaDT ω1I6 ... 0

... ... ... ...
−CaDT 0 ... ωLI6


︸ ︷︷ ︸

B†0


u

φ1

...

φL

 =


−R†∆du

0
...
0

 , (3.17)

resulting in the second-order adjoint system{
ρ∂ttu = DCDTu−D

∑L
ν=1 yνωνφν −R†∆du,

∂tφν − ωνφν = −CaDTu.
(3.18)

In the adjoint system, the displacement misfit at receiver positions R†∆du, i.e. the residues which are
nor explained in the current model description, acts as the source term. We introduce the modified
adjoint memory variables ψν such that

yνωνφν = Caψν , (3.19)

which transforms the adjoint system (3.18) into
ρ∂ttu = DCDTu−DCa

L∑
ν=1

ψν −R†∆du,

∂tψν − ωνψν = −yνωνDTu.

(3.20)

The obtained system now has nearly identical equations as the forward problem in Equation (2.23),
except the sign “-” in the memory variable ODE and the adjoint source.

It should be noted that the back-propagation of the adjoint wavefield comes from its zero final
condition, which naturally appears through the Lagrangian formalism when the zero initial condition of
the incident wavefield is included as a constraint. Here, for the sake of simplicity, we have only defined
the Lagrangian through the volumetric constraints on the incident wavefield without introducing initial
and boundary conditions, and we refer to more mathematical oriented studies for a complete derivation
of the gradient (see for instance (Plessix, 2006) and references therein).

Regarding the stability of the adjoint wavefield back-propagation, the change of sign in the ODEs
defining the relaxation mechanisms would induce an exponential growth of the energy forward in time.
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3.1 Gradient computation by the adjoint-state approach

However, as the adjoint wavefield is back-propagated in time, the relaxation mechanism decreases
the energy of the adjoint wavefield backward in time. Also, the set of coupled PDE/ODE defining the
incident and adjoint wavefields solely differs from the change of sign in the ODE part. This significantly
simplifies the implementation: a significant part of the code designed for the incident wavefield can be
re-used for the adjoint wavefield.

This section constructs the Lagrangian function and adjoint fields associated with the least-squares
misfit function, but similar workflow can be applied for other misfit functions. Changing the misfit
function only affects the adjoint source term (Brossier et al., 2010b).

3.1.2 Gradient expressions

The section presents the gradient computations for the set of model parameters m in Equation (3.4),
where the mathematical development is presented in Appendix (3.A).

For both elastic and visco-elastic problems, the gradient on density ρ is the zero-lag cross-correlation
of the adjoint displacement field and the incident acceleration field

∂χ(m)

∂ρ
=
(
ū, ∂ttu

)
Ω,t
. (3.21)

The gradient on attenuation parameters Q−1
p and Q−1

s can be estimated as

∂χ(m)

∂Q−1
p,s

= −
(
ε̄,

L∑
ν=1

∂Ca

∂Q−1
p,s
ψν

)
Ω,t
, (3.22)

which is the zero-lag cross-correlation of the adjoint strain field ε̄, and the incident memory variable
field ψν . The obtained expression (3.22) is coherent with the Q-gradient proposed by Fichtner and
van Driel (2014). Under the isotropic attenuation regime, our approximation in Equations (2.25) and
(2.26) provides simple expressions of the derivatives of the attenuative stiffness tensor Ca with respect
to attenuation parameters Q−1

p and Q−1
s as

∂Ca

∂Q−1
p

=
1

3

( 3∑
I=1

CII

)


1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (3.23)

∂Ca

∂Q−1
s

=
1

3

( 6∑
I=4

CII

)


0 −2 −2 0 0 0
−2 0 −2 0 0 0
−2 −2 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.24)

Following the separation of the elastic rheology and attenuation mechanism in Equation (2.19), the
CIJ elementary gradient has two terms

∂χ(m)

∂CIJ
=
(
ε̄,

∂C

∂CIJ
ε
)

Ω,t
−
(
ε̄,

L∑
ν=1

∂Ca

∂CIJ
ψν

)
Ω,t
. (3.25)

67



INVERSE PROBLEM

The first term has identical expression as the elastic gradients proposed by Tromp et al. (2005); Virieux
et al. (2017), which is the zero-lag cross-correlation of the adjoint ε̄ and the incident strain fields ε,
weighted by the spatial radiation pattern ∂C/∂CIJ . Both adjoint and incident strain fields are calcu-
lated in the anelastic medium. The second term is related to the memory variables ψν . Under our
approximation of the isotropic attenuation in Equations (2.25) and (2.26), the derivatives of the attenu-
ative stiffness tensor Ca with respect to elastic stiffness coefficients can be simplified as

∂Ca

∂CIJ

∣∣∣
I 6=J

= 0, (3.26)

∂Ca

∂CII

∣∣∣
I=1,2,3

=
1

3
Q−1
p



1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (3.27)

∂Ca

∂CII

∣∣∣
I=4,5,6

=
1

3
Q−1
s



0 −2 −2 0 0 0
−2 0 −2 0 0 0
−2 −2 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (3.28)

The expression (3.27) confirms that the attenuation coefficient Qp has an isotropic impact on com-
pressional components, thus having isotropic impact on Vp estimation (similar interpretation for the
attenuation coefficient Qs through Equation (3.28)). The development of ∂Ca/∂CIJ also highlights
that, in a weakly attenuative medium, the second term in the visco-elastic CIJ -gradient (Eqn. 3.25)
can be neglected and tends to zero in purely elastic medium. Since the memory variables ψν obey the
first-order ODE (2.22) with the incident strain field ε as the source, the magnitude of the second term
is generally small compared with the first term. However, we shall expect an accumulative influence on
the amplitude of the model parameter reconstruction. Numerical illustration of this effect on a simple
inclusion example is presented in Section (3.1.3).

This interpretation is also consistent with other theoretical investigations in the literature. Tarantola
(1988) showed that the gradient with respect to the general relaxation rate is the cross-correlation of
the adjoint and the incident strain fields. By considering the chain rule with respect to the stiffness
coefficients, where the relaxation function Mijkl is given in Equation (2.19), a two-term expression for
the CIJ -gradient, as for our formulation (3.25), shall be obtained. Liu and Tromp (2008) also expressed
the gradient of the misfit function through the cross-correlation of the adjoint and incident strain fields,
scaled by the perturbation of the relaxation rate δM . The time-dependency of this perturbation is related
to the second term in our gradient expression. For numerical implementation, Liu and Tromp (2008);
Komatitsch et al. (2016) assumed that δMijkl is time-independent, resulting in a simplification of the
gradient kernels, explaining why they obtained similar expression as for the elastic case.

Furthermore, the gradient for any parameter α (seismic velocity, anisotropic parameter, impedance
etc.) can be computed by chain rule using the density ρ, CIJ and Q−1

p,s elementary gradients

∂χ(m)

∂α
=

6∑
i=1

6∑
j=i

∂χ

∂CIJ

∂CIJ
∂α

+
∂χ

∂ρ

∂ρ

∂α
+

∂χ

∂Q−1
p

∂Q−1
p

∂α
+

∂χ

∂Q−1
s

∂Q−1
s

∂α
. (3.29)
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Figure 3.1: (a) Homogeneous background with a Vp inclusion in the center of the model. Source
positions are highlighted by red triangles. (b) First visco-elastic FWI Vp-gradient computed from ele-
mentary CIJ -gradients in Equation (3.25). (c) First FWI gradient without considering the second term.
(d) Difference between gradient (c) and (b), which highlights contribution related to the second term
gradient.

3.1.3 Influence of the attenuation on the velocity gradient estimation

The second term in Equation (3.25) has never been explicitly reported before, although correctly han-
dled by Fichtner and van Driel (2014). It is generally ignored in practical applications (Liu and Tromp,
2008; Komatitsch et al., 2016). Its magnitude is small in weakly attenuating medium compared with
the first-term contribution. However, its influence should increase with the attenuation, especially at
far offsets. Therefore, in highly attenuating medium, ignoring the second-term might affect the model
parameter estimation.

The contribution of the second term in Equation (3.25) is illustrated on a simple toy example. We
use a simple setting with homogeneous background Vp = 2300 m/s, Vs = 1500 m/s, ρ = 1000 kg/m3

and a Vp inclusion in the center of the model as shown in Figure 3.1(a). The medium is strongly
attenuating with Qp = Qs = 40.

In Figure 3.1(a), the medium is illuminated by 4 sources, highlighted by red triangles. For each
source, a plan containing 6241 receivers is located at the opposite side of the inclusion: for instance
when the source position is xs = 250 m, the receiver plan is at xr = 6750 m. Free-surface con-
ditions are applied at all faces of the model to increase the illumination through the reflection at the
boundary of the model. The source time function is a Ricker wavelet, centered at 10 Hz. With this
setting, the distance between sources and receivers is about 30 dominant P-wavelengths. Since a very
sparse acquisition is used in this toy example, we use long recording time (9 sec) so that the medium
can be sampled by multiple reflected wavefield. We use a homogeneous initial model Vp = 2300 m/s.
Figure 3.1(b) shows an estimation of the first Vp-gradient computed from elementary CIJ -gradients in
Equation (3.25). The inversion problem is ill-constrained leading to significant artifacts in the gradi-
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Figure 3.2: An example of the model-fit at the inclusion position between the true Vp and the inverted
model using the correct gradient estimation (red) and without considering the 2nd term (blue), which
highlights the accumulative effect on model parameter estimation.

ents. However, we only apply a minimal Bessel smoothing to remove the numerical artifacts above
the Nyquist wave-number associated with the underlying mesh. The gradient smoothing operator is
discussed in Chapter (5).

Figure 3.1(c) shows the Vp-gradient estimation when ignoring the second term in the elementary
CIJ -gradients. The difference between the gradients (b) and (c) in Figure 3.1(d) highlights the small
amplitude modification at the inclusion position and the places intensively sampled by the wavefield.
It should be noted that without the second term, the gradient (c) is under-estimated at the inclusion
position, implying a non-correct estimation of the model update. On this setting, we run a FWI test
with 60 iterations where the model-fit at the inclusion position is shown in Figure 3.2: The model-fit
decreases faster when considering the correct gradient. The comparison effectively shows that ignoring
the second term in the gradient estimation might affect the reconstruction of the model parameter. The
effect manifests at later stages, when the shape of the target has been found, and the inversion attempts
to recover the correct amplitude of model parameter.

In practical applications, these effects might be negligible compared with other sources of uncer-
tainties. However, the correct gradient can be collected without any extra cost since the incident fields
ψν are available during the simultaneous forward and backward propagations of the adjoint and the
incident fields (Algorithm (5) in Section (4.2)).

3.2 Solving the constrained local minimization problem

As described by Equation (1.6), in the Newton optimization framework, the opposite of the gradient
weighted by the inverse of the Hessian provides the descent direction of the misfit function. The use of
Hessian also offers the possibility to mitigate the cross-talk between different parameters in multiple-
parameters FWI. However, the explicit computation of the Hessian is unfeasible. Some rather simple
approximations of the Hessian are normally considered in practical applications.

Our inversion optimization kernel relies on the SEISCOPE optimization toolbox (Métivier and
Brossier, 2016). The library embeds various non-linear optimization methods, which have been fully
included in the inversion part of the SEM46 code, without any upper-level wrapper. This section pro-
vides a quick review of the numerical methods for solving constrained local optimization problem,
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available in this optimization toolbox. At each iteration, all algorithms aim at estimating the updated
model as

mk+1 = mk + αk∆mk, (3.30)

where ∆mk now refers to a descent direction and αk is a step length.

When the full Hessian is not available, the introduction of some additional prior information into
the inversion process is necessary to reduce the searching model space in multiple parameters FWI.
The section will also discuss the use of optimization preconditioning and the integration of multiple
non-linear constraints on the inversion problem.

3.2.1 Step length computation

At each iteration, the step length value controls how far to move along the descent direction ∆mk. The
step-length αk is computed through a line-search process, which satisfies the Wolfe conditions (Wolfe,
1969). The condition involves two criteria (Nocedal and Wright, 2006) :

• Sufficient decrease: For a given size of step-length, the misfit function reduction should be pro-
portional to both the step length and the directional derivative

χ(mk + αk∆mk) ≤ χ(mk) + b1αk∇χ|Tmk∆mk. (3.31)

In practice, the constant b1 is chosen to be quite small as b1 = 10−4.

• Curvature condition: This condition guarantees not too small steps which would result in slow
convergence through

∇χ(mk + αk∆mk)T∆mk ≥ b2∇χ(mk)T∆mk. (3.32)

It provides an indication that we reduce the misfit function by moving further along the chosen
descent direction ∆mk. In practice, the constant b2 is chosen to be close to 1 as b2 = 0.9.

The Wolfe condition ensures the convergence towards the nearest “local” minimum from an arbitrary
initial guess, under the condition that the misfit function is bounded and twice continuously differen-
tiable.

3.2.2 Descent direction computation

3.2.2.1 Steepest descent direction

The steepest descent approach simply follows the negative of the first derivative of the misfit function
(i.e. the gradient)

∆mk := −∇χ|mk . (3.33)

This approach has been proved to have a slow convergence (Nocedal and Wright, 2006). Moreover, the
convergence might not be uniform for the ensemble of parameters. For example, in a standard surface-
acquisition, the medium is not uniformly illuminated. The areas suffering from poor illumination will
be poorly reconstructed due to the unbalance energy in the gradient.
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3.2.2.2 Non-linear conjugate gradient method

The conjugate gradient method has been shown to be effective for convex quadratic system. For the
non-linear FWI problem, we consider the non-linear conjugate gradient approach. At each iteration, the
descent direction is a combination of the current gradient ∇χ|mk with the previous descent direction
∆mk−1 as

∆mk = −∇χ|mk + βk∆mk−1, (3.34)

where βk is computed following the formula of Dai and Yuan (1999). By doing so, the method accel-
erates the convergence compared with the steepest descent method. However, this acceleration is not
predictable: non-linear conjugate gradient can exhibit varying performance.

3.2.2.3 Truncated Newton method

The full Newton method compute the descent direction based on the inverse of the Hessian matrix as
described in Equation (1.6) as

∆mk = −
[
∇2χ|mk

]−1∇χ(mk). (3.35)

The consideration of the Hessian could significantly improve the convergence rate of the iterative FWI
process and is powerful in multi-parameter inversion. However, we do not compute explicitly the
forward or inverse Hessian due to the significant cost. This leads to the truncated Newton method
which estimates the descent direction based on solving an approximated linear system of the Newton
equation (Métivier et al., 2013, 2014; Castellanos et al., 2015)[

∇2χ|mk

]
∆mk = −∇χ(mk). (3.36)

Even when the linear system can be efficiently solved by using a matrix-free conjugate gradient al-
gorithm, the overall cost remains significant, especially for SEM implementation of elastic and visco-
elastic problems.

3.2.2.4 Quasi-Newton l-BFGS method

The method allows taking benefit from the information inside the Hessian without paying the full com-
putational cost of the full Newton or truncated Newton methods. A limited number of gradients and
models from the previous iterations are stored in the memory and then used to estimate an approxima-
tion of the inverse Hessian (Byrd et al., 1995; Nocedal and Wright, 2006). This information is then
included inside the descent direction as

∆mk = −Qk∇χ|mk , (3.37)

where Qk is the l-BFGS approximation of the inverse Hessian operator. The number of required previ-
ous gradients is relatively small, between 5 and 20, but the method significantly improve the inversion
results. The numerical implementation follows a too-loop recursion strategy, which avoids any explicit
estimation of the inverse Hessian. The approximation of the Hessian matrix-vector product only in-
volves basis arithmetic manipulations between vectors, leading to a very attractive efficiency (Brossier
et al., 2009b).

All our synthetic and real data applications rely on the l-BGFS optimization method, with and
without preconditioning as introduced in the next section.

72



3.2 Solving the constrained local minimization problem

0 1 2 3 4 5 6 7

X (km)

0

1

2

3

Z
 (

k
m

)
500 1000 1500 2000 2500

0 1 2 3 4 5 6 7

X (km)

0

1

2

3
Z

 (
k
m

)

500 1000 1500 2000 2500

Figure 3.3: An example of the complex near-surface extracted from the SEAM Phase II Foothill bench-
mark. The alluvial deposits at the free-surface have low shear velocity, at about 550 m/s.

3.2.3 Preconditioning for optimization process

The use of an appropriate optimization preconditioning Pk might accelerate the convergence of the FWI
problem. In the preconditioned l-BFGS method, the preconditioning Pk serves as an initial estimation
of the approximation of the Hessian Q̃k. The descent direction now can be estimated as

∆mk = −Q̃k∇χ|mk . (3.38)

In practice, depth preconditioning is widely used to enhance the model estimation with depth, following
the z direction as

Pk(z, x, y) = (β + z)α, (3.39)

where α are β are pre-defined constants. In 3D surface-acquisition application, the power α is usually
chosen as 2. In marine applications, the scalar β can be set as 0 since the zero depth is located inside
the water column. However, in land applications, the tuning of both α and β coefficients is required.
The depth preconditioning appears to be robust and efficient in flat-topography condition. However,
the simple preconditioning as defined in Equation (3.39) might have significant footprints from a rough
topography variation in foothills environment.

Since the Hessian has a diagonal-dominant structure, the approximations of its diagonal are widely
used to precondition the inverse problem (Pratt et al., 1998; Operto et al., 2006). Following the develop-
ment from Shin et al. (2001), we consider the illumination preconditioning based on the displacement
field u as

Pk(x) =
1

‖u(x)‖α + µ
, (3.40)

where α is the power that we apply to the norm of the wavefield and µ is a stabilizing factor to avoid
the division by zero. Since the preconditioning is directly computed from the wavefield, it naturally
compensates for the amplitude loss due to the 3D propagation and complex heterogeneity. Practical
applications show that α = 1 provides the best energy balancing between the shallow and deep targets.
It should be noted that surface energies are also included in the construction of the preconditioning,
implying a high α value might artificially amplify the model estimation at greater depth due to high
amplitude surface waves.

Our synthetic and real data applications only consider the illumination preconditioning for the l-
BFGS optimization process, as presented in Equation (3.40) with α = 1.
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Algorithm 2: Standard POC algorithm

1 x0 = mk + αk∆mk

2 while
(
Not convergence .and. k < nmax

)
do

3 yk = PC1(xk);
4 xk+1 = PC2(yk) ;
5 end

3.2.4 Non-linear model constraints on the relationship between different parameters

The multi-parameter FWI results have significant artifacts in the model estimation due to the cross-
talk between parameters and the unequal sensitivity of the inversion process with respect to different
parameters. For instance elastic FWI applications with the least-squares misfit function is generally
more sensitive to Vs, due to strong amplitude shear events, leading to insignificant Vp estimation when
inverting simultaneously for Vp and Vs. When considering significant geological heterogeneities such as
alluvial deposits in the near-surface in Figure 3.3(a), the inversion process will be dominated by the Vs
update in those low-velocity zones. This might lead to unrealistic updates where Vs > Vp or too small
value of Vs. Therefore, additional prior information should be incorporated through preconditioning
and model regularization or constraints in addition to the standard gradient smoothing strategy.

To mitigate this issue, we introduce a non-linear constraint on the relationship between Vp and
Vs. This constraint is applied in addition to the (hard) bounds constraint on the range of the inverting
parameters, widely used in standard FWI applications. The inverse problem is then described as a
multiple-constrained non-linear minimization problem

min
m

χ(m) where m ∈ (C1 ∩ C2︸ ︷︷ ︸
Ω

). (3.41)

The misfit function χ(m) is minimized over the restricted model space Ω, where the model m should
simultaneously satisfy two sets of constraints:

- Bounds constraint C1: Vp and Vs should vary within pre-defined ranges.

- Ratio constraint C2: The ratio Vp/Vs should vary within a pre-defined range as

r1(x) ≤ Vp(x)

Vs(x)
≤ r2(x). (3.42)

These constraints can be designed based on well data or simple geological knowledge about the struc-
ture.

At each iteration, after the step length and descent direction computation, if the estimated model
does not satisfy the set of constraints C1, C2, it needs to be projected back to the restricted space Ω,
giving a more general expression of Equation (3.30) as

mk+1 = PΩ(mk + αk∆mk). (3.43)

Under the assumption that all sets of constraints are convex, the projection-onto-convex-sets (POCS)
strategy can be used to find a point in their intersection (Boyd et al., 2010; Baumstein, 2013). The algo-
rithm performs a sequential projections onto these convex sets: the input of the current projection onto
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Algorithm 3: Standard Dykstra algorithm

1 x0 = mk + αk∆mk and p0 = 0, q0 = 0
2 while

(
Not convergence .and. k < nmax

)
do

3 yk = PC1(xk + pk);
4 xk+1 = PC2(yk + qk) ;
5 pk+1 = xk + pk − yk ;
6 qk+1 = yk + qk − xk+1;
7 end

the set of one constraint PC2 is the output of the previous projection onto the set of another constraint
PC1 , as shown in Algorithm (2). If the applications of two constraints on the current state xk are not
commutative

PC1(PC2(xk)) 6= PC2(PC1(xk)), (3.44)

the output of the POCS algorithm will depend on the order of the constraints application. It should be
noted that the projection onto the set of bound-constraint PC1 is trivial: At the pixels where the values of
the estimated model parameters are outside of the pre-defined range, they are replaced by the boundary
values. However, designing a projection onto the set of ratio-constraint PC2 which is commutative with
PC1 is not obvious. We thus decide to consider other strategies.

POCS is a special case of the Dykstra algorithm (Algorithm 3), when the additional auxiliary vari-
ables pk and qk are set as zero. These parameters are updated during the Dykstra’s iterations and the
sequence (xk) is demonstrated to converge toward an unique solution of the original problem (3.43),
independently of the order of the constraints application (Boyle and Dykstra, 1986). Figure 3.4 pro-
vides an illustration of the Dykstra projection algorithm. In general, the alternating Dykstra projection
method might have a slow convergence. However, it is useful when the projection on each set is effi-
cient, such as an analytical formula, for carrying out the projection (Boyd et al., 2010).

Following this remark, we design the projection onto the set of ratio-constraint PC2 such that an
analytical solution of the projection exists. At each spatial position x, the projection PC2 is equivalent

Figure 3.4: Illustration of the Dykstra algorithm. Figure extracted from Walsh and Regalia (2010)
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to solving a minimization problem

minimizeα,βf(α, β) =
(Vp − α)2

V 2
p

+
(Vs − β)2

V 2
s

subject to r1 ≤
α

β
≤ r2. (3.45)

If the estimated (Vp, Vs) are not satisfied the constraint (3.42), they will be replaced by the closest pair
of values (α, β), which belong to the set of ratio-constraint C2. The analytical solution of the problem
(3.45) exists

- If Vp/Vs > r2, the minimization of the function f(α, β) is achieved when

α = r2β and β =
VpVs(Vp + r2Vs)

V 2
p + r2

2V
2
s

. (3.46)

- If Vp/Vs < r1, the minimization of the function f(α, β) is achieved when

α = r1β and β =
VpVs(Vp + r1Vs)

V 2
p + r2

2V
2
s

. (3.47)

The uniqueness of the solution also confirms the convexity of the set of model parameters which satisfy
the ratio constraint. For our problem, the Dykstra iterative process converges quickly, generally after
4 iterations. Moreover, since the analytical solutions of the projection exist, the constraint on the ratio
Vp/Vs can be integrated into the inversion process without any extra cost. In this implementation,
we consider a quadratic objective function (3.45), but other continuous differential functions could be
easily considered.

Compared with standard model regularization strategies, the use of hard constraints is free of trade-
off parameter and the inverted models are guaranteed to satisfy simultaneously all the imposed con-
straints (Peters and Herrmann, 2017). This section only describes the constraint on the ratio Vp and Vs,
but the approach can be extended for multiple constraints consideration, even for more sophisticated
relationships between parameters.

In seismic tomography, the set of model parameters (Vp/Vs, Vp) is widely used, instead of (Vp, Vs)
(Guoqing et al., 2007; Marjanovic et al., 2018). The bound constraint is applied on this ratio parameter
to mitigate the issues related to Vs inversion. In our strategy, due to the constraint on Vp/Vs, we are able
to invert simultaneously for Vp and Vs. However, it would be interesting to see the radiation patterns
analysis with respect to this Vp/Vs parameter choice.

3.3 Source estimation

As described in the previous chapter, the source time function and the source physics (either point-force
or point-moment) are required for the wavefield modeling. For real data applications, the source time
signature is generally unknown, especially in the explosive source dataset. Pratt (1999) formulates the
source inversion as a linear problem in the frequency domain, in which the source signature at each
discrete frequency can be computed through

s(ω) =
d†mod(m, ω)dobs(m, ω)

d†mod(m, ω)dmod(m, ω)
, (3.48)
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where dmod is the simulated data on the model m with a delta source time function. The simulated and
observed data are transformed from the time to the frequency domain by a standard Fourier transform.
The source function is then converted back to the time domain via the inverse of the Fourier transform.
The obtained source function can be seen as a matching filter which aims at matching the convolution
dmod(m, ω)s(ω) with the observed data dobs(m, ω), with respect to a least-square distance.

The source signature can be estimated for each shot individually or the ensemble of all shots. It
should be noted that the obtained source function (3.48) depends on the accuracy of the background
model. Since it is a deconvolution-like process, for inaccurate model parameters, a part of the model
inaccuracy will be hidden inside the estimated source. Therefore, it is recommended to re-estimate the
source after a significant change in the inverting model parameters (Plessix and Cao, 2011; He et al.,
2018).

3.4 Conclusion

Standard FWI is a local optimization method, in which the descent direction relies on the gradient of
the misfit function. This chapter presents the gradient computation following the adjoint-state approach
(Plessix, 2006). Even if the second-order visco-elastic wave equation is not self-adjoint, we can de-
velop the adjoint system with similar equations as for the incident fields, implying that they can be
propagated under the same numerical scheme. Following the forward and adjoint formulation using
SLS mechanisms, the gradient expressions for density, attenuation parameters and stiffness coefficients
CIJ are simply zero-lag cross-correlations in time between incident and adjoint fields, weighted by the
associated spatial radiation pattern. The gradient for any other parameter can be computed by chain
rule from these elements.

We report a two-term expression for the CIJ -gradient, which is equivalent to theoretical investiga-
tions of Tarantola (1988); Liu and Tromp (2008). The first-term, related to the zero-lag cross-correlation
of the adjoint and incident strain fields, is commonly used in practical application (Komatitsch et al.,
2016). The second term can be interpreted as the time-dependency of the perturbation of the relaxation-
rate, which has small amplitude compared with the first-term contribution. However, the influence
of the second term is shown to have an accumulative effect on the amplitude of the model parameter
estimation, depending on the physical domain and acquisition settings.

The chapter also provides a review of the numerical methods for solving the constrained local
optimization FWI problem, available in the SEISCOPE optimization toolbox (Métivier and Brossier,
2016). Due to the limited computational resource, the computation of the full Hessian is unreachable,
especially for 3D finite element implementation. To help the inversion process, we suggest to build
the optimization preconditioning operator based on the simulated wavefield to compensate for the am-
plitude loss due to the 3D propagation. This is particularly useful in foothill environment where the
topography footprint might disturb the standard depth precondition strategy. To partially mitigate the
cross-talk between multiple parameters inversion, we introduce a non-linear model constraint on the
relationship between inverting parameters. These preconditioning and constraint strategies are applied
at no extra cost but very helpful for reliable model parameters estimation.
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APPENDICES

3.A Gradients estimation

Gradient on density

The gradient on density ρ is given by

∂χ(m)

∂ρ
=
(
W ,

F (m,W)

∂ρ

)
. (3.49)

The derivative of the forward problem (3.3) on density is given by

∂F (m,W)

∂ρ
=

∂B2(m)/∂ρ︷ ︸︸ ︷
I3 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ... 0

 ∂tt


u
ψ1

...
ψL

 =


∂ttu

0
...
0

 . (3.50)

By considering the Lagrangian multiplier vector W in Equation (3.10), the gradient on density in
Equation (3.49) becomes

∂χ(m)

∂ρ
=
(

u

φ1

...

φL

 ,

∂ttu

0
...
0

) =
(
u, ∂ttu

)
. (3.51)

When propagating the adjoint problem with a simultaneous reconstruction of the incident field, both
adjoint displacement field u and the incident acceleration field ∂ttu are available. The gradient on
density can thus be collected without any extra cost.

Gradient on attenuation parameters

Since the development of the gradient on attenuation parameters Q−1
p and Q−1

s are similar, we then
consider Q−1

p,s standing for either Q−1
p or Q−1

s . The gradient on attenuation parameters is given by

∂χ(m)

∂Q−1
p,s

=
(
W ,

F (m,W)

∂Q−1
p,s

)
. (3.52)

The derivative of the forward problem (3.3) on the inverse of quality factors is given by

∂F (m,W)

∂Q−1
p,s

=

∂B0(m)/∂Q−1
p,s︷ ︸︸ ︷

0 D ∂Ca

∂Q−1
p,s

... D ∂Ca

∂Q−1
p,s

0 0 ... 0
... ... ... ...
0 0 ... 0




u
ψ1

...
ψL

 =


∑L

s=1D
∂Ca

∂Q−1
p,s
ψν

0
...
0

 . (3.53)
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By considering the Lagrangian multiplier vector W in Equation (3.10), the gradient on inverse quality
factors in Equation (3.52) becomes

∂χ(m)

∂Q−1
p,s

=
(

u

φ1

...

φL

 ,

∑L

ν=1D
∂Ca

∂Q−1
p,s
ψν

0
...
0

) (3.54)

=
(
u,

L∑
ν=1

D
∂Ca

∂Q−1
p,s
ψν

)
. (3.55)

By considering the properties of adjoint operator in Equation (3.13), we obtain

∂χ(m)

∂Q−1
p,s

= −
(
Dtu,

L∑
ν=1

∂Ca

∂Q−1
p,s
ψν

)
. (3.56)

We introduce the adjoint strain ε = Dtu, the gradient on attenuation parameters can be written in a
cleaner form as

∂χ(m)

∂Q−1
p,s

= −
(
ε,

L∑
ν=1

∂Ca

∂Q−1
p,s
ψν

)
. (3.57)

Gradient on stiffness coefficients

The gradient on stiffness coefficients CIJ is given by

∂χ(m)

∂CIJ
=
(
W ,

F (m,W)

∂CIJ

)
. (3.58)

The derivative of the forward problem (3.3) on CIJ coefficients is given by

∂F (m,W)

∂CIJ
=

∂B0(m)/∂CIJ︷ ︸︸ ︷
−D ∂C

∂CIJ
Dt D ∂Ca

∂CIJ
... D ∂Ca

∂CIJ
0 0 ... 0
... ... ... ...
0 0 ... 0




u
ψ1

...
ψL

 (3.59)

=


−D ∂C

∂CIJ
Dtu +

∑L
ν=1D

∂Ca

∂CIJ
ψν

0
...
0

 . (3.60)

By considering the Lagrangian multiplier vector W in Equation (3.10), the elementary CIJ -gradient in
Equation (3.58) becomes

∂χ(m)

∂CIJ
=

(
u

φ1

...

φL

 ,

−D ∂C

∂CIJ
Dtu +

∑L
ν=1D

∂Ca

∂CIJ
ψν

0
...
0

), (3.61)
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=
(
u,−D ∂C

∂CIJ
Dtu

)
+
(
u,

L∑
ν=1

D
∂Ca

∂CIJ
ψν

)
. (3.62)

By considering the properties of adjoint operator in Equation (3.13), we obtain

∂χ(m)

∂CIJ
=
(
Dtu,

∂C

∂CIJ
Dtu

)
−
(
Dtu,

L∑
ν=1

∂Ca

∂CIJ
ψν

)
. (3.63)

We simply this expression by considering the adjoint ε = Dtu and the forward strain ε = Dtu, the
gradient on stiffness coefficients CIJ can be written as

∂χ(m)

∂CIJ
=
(
ε,

∂C

∂CIJ
ε
)
−
(
ε,

L∑
ν=1

∂Ca

∂CIJ
ψν

)
. (3.64)

In the gradient expression (3.64), we separate the elastic rheology (the 1st term) with the attenuation
mechanism (the 2nd term). The adjoint ε and incident fields ε,ψν are available at each time-step, the
gradients can thus be collected without any extra cost.

Without attenuation contribution, the second term in Equation (3.64) vanishes, leading to the elastic
CIJ gradient

∂χ(m)

∂CIJ

∣∣∣
elastic

=
(
ε,

∂C

∂CIJ
ε
)
, (3.65)

which is coherent with the gradient kernels proposed by Liu and Tromp (2006) for 2nd-order elastic
system. Similar conclusion is draw for density gradient. However, it should be noted that our adjoint
source is−R†(RW−dobs), which has opposite sign compared with the one in Liu and Tromp (2006)),
thus resulting in the opposite sign for the gradient expressions. The gradients on stiffness-coefficients
CIJ and inverse quality factors Q−1

p and Q−1
s are also consistent with the development for the 1st-order

system by Yang et al. (2016a).
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HPC implementation in SEM46 code
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Exploration scale applications generally consist of multiple shots and covering a large area. This
chapter focuses on our two-level parallelization implementation for both modeling and inversion parts
to handle such targets. We present the visco-elastic gradient estimation following the CARFS strategy
(Yang et al., 2016b), relying on the trade-off between the the computation cost and memory require-
ment.

4.1 Two-level parallelization

Our implementation relies on a two-level MPI-based parallelization. The inner level is designed on
a Cartesian-based domain decomposition as shown in Figure 4.1, which ensures an efficient load-
balancing and an easy implementation. In particular, this avoids the use of a third-party mesh-partitioner,

Figure 4.1: Example of a Cartesian-based domain decomposition where the boundaries between sub-
domains are highlighted by orange lines.
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Figure 4.2: Strong scaling of the domain decomposition MPI-level for a 192×192×192 elements appli-
cation, on a Intel Omni-Path interconnect & Intel Xeon E5-2697 v4 node (36 cores/node) architecture:
a) Intra-node efficiency, b) Inter-node efficiency, showing stable and good scaling property.

even if the number of possible sub-domains should be constrained by the mesh splitting in each direc-
tion. This parallel level is quite standard and efficient in SEM as gathering information through MPI
communications is equivalent to the assembly procedure of FE schemes. This communication involves
a single depth “layer” of degree of freedom at each domain interface whatever is the SEM interpolation
order, different from FD schemes.

The outer MPI-level is performed over seismic shots managed in parallel. This level is embarrass-
ingly parallel as the communications steps only involve the summation of misfit function and gradient
contributions of each seismic shot, and the scattering of physical parameters models and descent di-
rections. Practical applications show that this second MPI-based level generally satisfies the perfect
theoretical efficiency. It has to be noted that, compared to other SEM implementations relying on a
single shot framework, our frame generally involves a large number of shots in parallel. The domain
decomposition per shot thus contains few tens of CPU-cores, leading to a strong memory and com-
putational load per core. In practical exploration FWI-liked applications, the communication between
sub-domains is negligible compared with the computation on each domain. Asynchronous communi-
cation would thus only provide marginal savings.

4.1.1 Scalability

The parallel efficiency of our implementation has been assessed on different hardware architectures
(Intel CPU-based) with different interconnect technologies, showing very good properties. An example
of strong scaling for the domain decomposition level is conducted on a benchmark with 192 × 192 ×
192 elements (4.5×108 degrees of freedom (dof)). The efficiency is assessed from an architecture
embedding Intel Omni-Path interconnect & Intel Xeon E5-2697 v4 nodes (36 cores/node). Figure
4.2(a) shows the efficiency for intra-node parallelization. As usual for PDE-based numerical schemes,
the memory bandwidth appears to be a strong bottleneck: for low number of MPI process, we benefit
from the whole memory bandwidth leading to artificially good performances (scalability larger than
90% up to 8 process). When the number of MPI process is increased, memory-bandwidth-bound effects
appear, leading to an efficiency decrease (down to 60% for 32 process). This effect is directly associated
with the memory-bandwidth-bound, and when the hardware is fully used as in production, only the 32
processes number should be considered as a reference. In Figure 4.2(b), the strong scaling is pushed up
to 512 MPI process, showing stable and good scaling property, above 94%.
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Figure 4.3: Comparable behavior of numerical efficiency for different implementations of elastic
and visco-elastic forward modeling over different domain decomposition: SEM46, SW4 V1.1 and
SPECFEM V2.0 (CPU-based) packages.

4.1.2 Modeling efficiency compared with other modeling tools

We compare the overall behavior of computational efficiency for 3D elastic and visco-elastic seismic
modeling of SEM46 with two open-source programs: SW4 V1.1 and SPECFEM V2.0 (CPU version).
SW4 uses a 4th-order FD approach (Sjögreen and Petersson, 2012) while SPECFEM relies on a SEM
approach (Peter et al., 2011).

We use a homogeneous model for the comparison. For visco-elastic comparison, in each code,
quality factors are set as Qp = Qs = 40, described by 3 SLSs. In most practical applications, SW4
recommends to use at least 6 points per shortest wavelength for an acceptable accuracy, leading to
the grid sampling at 25 m (Petersson and Sjögreen, 2013). Since around 6 GLL points per shortest
wavelength allows to accurately model elastic waves, we decide to consider the same number of dof
(1.8 × 108) for both FD and SEM meshes. In this case, the SEM mesh is filled with 100 m elements
and the interpolation order N = 4 is used for both SEM46 and SPECFEM.

The total recording time is 6 sec, leading to 908 time-steps in SW4 and 4000 time-steps in SEM46,
due to the CFL condition. A similar configuration is considered for SPECFEM with identical number of
dof and time-steps as for SEM46. Figure 4.3 compares the computational cost of SEM46 with the one
of SW4 and SPECFEM for parallelism over different domain decomposition settings. Even with much
larger number of time-steps, SEM implementations exhibit comparable computational cost as SW4 for
both elastic and visco-elastic modeling.

In this comparison, SEM46 uses a triclinic elasticity coupled with an isotropic attenuation imple-
mentation, while isotropic elasticity and isotropic attenuation is considered in SPECFEM. The anelas-
tic effect is described by independent Qp and Qs quality factors in SEM46 as described in Section
(2.1.2.3). Only isotropic elasticity and shear quality factor Qs is taken into account by the considered
version V2.0 of SPECFEM, which somehow simplifies the numerical implementation. Even though,
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our SEM46 implementation exhibits comparable computational performances as the ones of SPECFEM
for the forward 3D elastic and visco-elastic simulations, under the same computer and compilation en-
vironment.

4.2 Balancing memory requirement & computational cost for gradient
building

FWI gradient estimation, required as the input of the optimization process, involves the zero-lag cross-
correlation in time between the incident and adjoint wavefields, weighted by the spatial radiation pattern
(Equations 3.21, 3.22, 3.25). The adjoint-state approach is thus considered for the gradient estimation,
which requires the access to the incident and adjoint wavefields at the same time (Plessix, 2006). We
might store the incident wavefield in the core-memory or out-of-core memory at the expense of the
I/O cost (Boehm et al., 2016). To avoid heavy memory requirement, the incident field can be re-
computed from the last snapshot and the boundary wavefield simultaneously with the propagation of
the adjoint field. For elastic medium, the incident field can be perfectly reconstructed by the reverse
propagation in time from the last snapshot and the stored wavefield at the boundaries, synchronously
with the propagation of the adjoint field backward in time. Gradients are directly accumulated during
this process, resulting in a cheap operation with limited I/O operations (Dussaud et al., 2008).

Typical SEM simulation requires a number of time-steps to the order of 104, which might lead to
significant memory requirement for storing the boundary wavefields. Our implementation relies on
compressed boundary storage to mitigate the memory cost (Yang et al., 2016c). The time-stepping
given by the CFL condition is generally much smaller than the Nyquist requirement, and compression
technique can be quite efficient: during the forward propagation, the boundary wavefield is saved at
every r time-step (r � 1), where r is the decimation ratio. When reconstructing the incident field, at
each time-step, the boundary wavefield is interpolated from the decimated time series through Lagrange
polynomial interpolation. Numerical experiments show that only the displacement field u (and not its
spatial derivatives, nor time derivatives) needs to be saved at boundaries, after the prediction phase in
the visco-elastic Newmark time-marching scheme (Algorithm 1), for an accurate reconstruction of the
incident displacement u and velocity v fields.

In anelastic medium, the propagation of the adjoint field backward in time (Equation 3.20) is nu-
merically stable, as the forward propagation of the incident fields (Equation 2.23), because they share
the same equations. However, the irreversibility of the visco-elastic wave equation makes the reverse
propagation of the incident field unstable, which requires specific strategies for efficient gradient ac-
cumulation (Tarantola, 1988; Griewank and Walther, 2000; Liu and Tromp, 2008; Komatitsch et al.,

Algorithm 4: Forward propagation

1 for it = 1, · · · , nt do
2 Forward propagation of the incident field: F it : W it−1 →W it ;
3 Record the reference strain-energy Eitref for W it ;

4 if (At checkpoint position) then Store the snapshot uit,vit,ψit−1/2
ν ;

5 if (At decimated location: mod(it,r)=0) then Store the boundary of the displacement field
uit ;

6 end
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Algorithm 5: Gradient estimation

1 for it = nt− 1, · · · , 1 do
2 Adjoint time-step: at = nt− it ;
3 Forward propagation of the adjoint field: F at : W̄at−1 → W̄at ;
4 if (At checkpoint position) then
5 Read the snapshot uit,vit,ψit−1/2

ν ;
6 else
7 Interpolate the boundary of the displacement field uit ;
8 Backward propagation of the incident field: (F it)−1 : W it+1 →W it ;
9 Measure the energy of the reconstructed wavefield Eitrec;

10 if (Instability: |Eitref − Eitrec| > tol · Eitref ) then
11 Forward propagation from the closest checkpoint prior to the current time-level it ;
12 Replace the used checkpoints by new snapshot positions;
13 end
14 end
15 Gradient collection (Equation 3.21, 3.22, 3.25);
16 end

2016). To overcome this issue, we implement a visco-elastic version of the checkpointing-assisted
reverse-forward simulation (CARFS) algorithm (Yang et al., 2016b), which makes a smart decision
between the reverse modeling and the forward modeling using checkpoints based on the strain-energy
measure. Similar to standard checkpointing techniques, the checkpoints distribution is computed from
the binomial law, the optimal number of checkpoint being related to the total number of time-steps
nt by log2(nt). For each checkpoint, we store the displacement, velocity and memory variable fields
uit,vit,ψ

it−1/2
ν . During the propagation of the incident field (Algorithm 4), at each time-step, a refer-

ence global strain energy is also recorded

Eitref =
1

2

(
σitεit

)
Ω
. (4.1)

This global measure is used for monitoring the stability of the reverse simulation of the incident wave-
field based on a pre-defined energy tolerance: For instance, tol = 0.1 is used in our applications as
shown in Algorithm 5. Above this tolerance, the nearest earlier in time checkpoint is considered. A
forward simulation from this checkpoint until the current time level is performed. During this forward
simulation, the checkpoints are also redistributed. Once done, the reverse simulation of the incident
wavefield together with the propagation of the adjoint wavefield backward in time can be continued.

The combination of this compression technique through decimation and interpolation with the
CARFS approach provides a good balance between the memory requirement, simulation accuracy and
the computational cost, which is directly linked to the recomputation ratio of the incident field. Ad-
ditional compression strategies could also be used to further reduce the memory requirement and I/O
requests (Boehm et al., 2016).
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4.3 Conclusion

Our integrated SEM-based workflow is capable of efficiently performing 3D elastic and visco-elastic
modeling and inversion in the time-domain. Two MPI-based parallelism levels are considered for tack-
ling large-scale and multiple-shots experiments. Thanks to the use of a Cartesian-based mesh, the do-
main decomposition and communication between sub-domains are straightforward. The strong scaling
tests show stable and good behavior, above 94%. For the same physical model and similar numerical
settings, we achieve comparable computational cost as two open-source reference codes: SW4 V1.1
and SPECFEM V2.0 (CPU version) for both elastic and visco-elastic simulations, for different domain-
decomposition configuration.

For the gradient calculation, the incident field is reconstructed from the stored boundary wavefield
in the memory, synchronously with the propagation of the adjoint field. The gradient is directly accumu-
lated during this process, resulting in a cheap operation (Dussaud et al., 2008). To reduce the memory
requirement, the boundary wavefield is saved at decimated positions in time and re-interpolated when
needed (Yang et al., 2016c). In visco-elastic medium, the instability in the reconstruction of the incident
wavefield can be mitigated by using the elastic version of CARFS (Yang et al., 2016b). This strategy
is critical in realistic applications, normally associated with a large number of degrees of freedom and
time-steps, in which massive storage and intensive I/O might not be the optimal choice.

Future works include considering GPU implementation, which is expected to drastically improve
the computational efficiency (Komatitsch et al., 2010; Michéa and Komatitsch, 2010).
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Chapter 5

Structure-oriented Bessel gradient
preconditioning
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STRUCTURE-ORIENTED BESSEL GRADIENT PRECONDITIONING

The FWI problem under standard surface acquisition is mathematically ill-posed and poorly con-
strained, leading to significant artifacts (generally high wavenumber) in the estimated perturbation
model. As specified in Section (3.2), the perturbation estimation directly relies on the gradient of the
misfit function. This chapter will describe both the theoretical development and numerical implemen-
tation of a gradient preconditioning strategy, based on the Bessel function, in the form of a published
paper in the journal Geophysical Journal International (Trinh et al., 2017b). The described smoothing
operator is directly implemented on the SEM mesh in which the local geological prior information can
be incorporated through the 3D anisotropic filter shape and local rotation. Numerical illustrations on the
influence of the preconditioning operator on gradient and inversion results are extracted from extended
EAGE and SEG abstracts (Trinh et al., 2017a,c).

The Bessel gradient preconditioning described in this chapter is not related to the optimization
preconditioning in Section (3.2.3), which is an approximation of the Hessian to accelerate the conver-
gence of the iterative inversion process. Both strategies should be considered together to speed up the
convergence and also to guide the inversion toward the desired solutions.

Bessel smoothing filter for spectral-element mesh
P.T. Trinh, R. Brossier, L. Métivier, J. Virieux, P. Wellington

Geophysical Journal International, 209, 1489-1512

Abstract

Smoothing filters are extremely important tools in seismic imaging and inversion, such as for travel-
time tomography, migration and waveform inversion. For efficiency, and as they can be used a number
of times during inversion, it is important that these filters can easily incorporate prior information on
the geological structure of the investigated medium, through variable coherent lengths and orientation.
In this study, we promote the use of the Bessel filter to achieve these purposes. Instead of considering
the direct application of the filter, we demonstrate that we can rely on the equation associated with its
inverse filter, which amounts to the solution of an elliptic partial differential equation. This enhances
the efficiency of the filter application, and also its flexibility. We apply this strategy within a spectral-
element-based elastic full waveform inversion framework. Taking advantage of this formulation, we
apply the Bessel filter by solving the associated partial differential equation directly on the spectral-
element mesh through the standard weak formulation. This avoids cumbersome projection operators
between the spectral-element mesh and a regular Cartesian grid, or expensive explicit windowed convo-
lution on the finite-element mesh, which is often used for applying smoothing operators. The associated
linear system is solved efficiently through a parallel conjugate gradient algorithm, in which the matrix
vector product is factorized and highly optimized with vectorized computation. Significant scaling be-
havior is obtained when comparing this strategy with the explicit convolution method. The theoretical
numerical complexity of this approach increases linearly with the coherent length, whereas a sub-linear
relationship is observed practically. Numerical illustrations are provided here for schematic examples,
and for a more realistic elastic full waveform inversion gradient smoothing on the SEAM II benchmark
model. These examples illustrate well the efficiency and flexibility of the approach proposed.
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5.1 Introduction

Full waveform inversion (FWI) offers the possibility to extract high-resolution quantitative multi-parameters
of the subsurface from seismic data. The majority of these applications are carried out under finite-
difference (FD) approximation, due to the numerical efficiency of this method and its ease of imple-
mentation. Standard formulations of this approach are, however, limited on regular grids, which require
significant extra effort in terms of design and computational cost in the presence of surface topography
or important geological interfaces (Robertsson, 1996; Bohlen and Saenger, 2006; Huiskes et al., 2016;
Fuji et al., 2016). Finite-element (FE) methods have become popular for regional and global problems,
especially spectral-element methods (SEM), where complex geometry can be handled with accurate
numerical calculation of wavefields (Komatitsch and Tromp, 1999). In dealing with 3-D elastic FWI,
we would like to develop a complete inversion numerical workflow using a spectral FE scheme while
including an efficient smoothing filter implemented directly on the FE mesh.

In most geophysical applications, FWI is introduced as an iterative local optimization problem
that attempts to minimize the least-squares residuals between the observed and the calculated data at
the receiver location. This inverse problem is mathematically ill-posed, which thus leads to the non-
uniqueness of the solution. For seismic imaging using either travel times or wavefields, the inversion
often needs to be stabilized by applying regularization. This can be performed through model-driven
regularization (Menke, 1984; Tarantola, 2005) or by preconditioning the gradient through filtering op-
erators (Guitton et al., 2012). This data-driven strategy is sometimes called model preconditioning
(Fomel and Claerbout, 2003). These regularization techniques normally assume the particular proper-
ties or structure of the model, such as smoothness or geological features, to guide the problem toward
the desired solution. In 3-D elastic FWI, the computational cost remains one of the main challenges
(Virieux and Operto, 2009), therefore decimation of the data volume by reducing the number of com-
puted shots, random subsampling strategies, and/or source-encoding becomes mandatory (Capdeville
et al., 2005; Krebs et al., 2009; Herrmann et al., 2009; Warner et al., 2013; Castellanos et al., 2015).
This implies a decrease in the data coverage and the presence of cross-talk and artifacts, which makes
the inversion problem even more ill-posed. In this context, the role of regularization at each iteration
becomes crucial and needs to be performed efficiently.

Dealing with complex structures or geological heterogeneity might also require adequate regulariza-
tion strategies. These issues can be addressed by attenuation of the wave-number content in a particular
direction, such as plane-wave destruction filters (Fomel, 2002; Claerbout, 1992), or by imposition of
expected structures through directional Laplacian preconditioning in the model space (Hale, 2007; Gui-
tton et al., 2012). This latter highlights the importance of non-stationary filters in complex geology; for
example, the Laplace filter can smooth or drastically reduce local planar events according to a local dip
field.

These nonstationary preconditioning filters are expressed as convolution operators, such as Gaus-
sian or Laplacian filters, through

s(x) =

∫
CnD(x− x′)m(x′)dx′. (5.1)

The vector m(x) is transformed into a new vector s(x) through the convolution operator CnD, where
n is the dimension of the problem (n = 2 or n = 3). In the FD grid, the Gaussian filter (without local
rotation) can be applied efficiently to any model or gradient vector, due to the tensorial property of the
function. For long filters, recursive implementation can be used to improve the computing performance
(Deriche, 1992; Van Vliet et al., 1998). These approaches can be extended to FE methods by including
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a projection between the Cartesian mesh, where the parameters to be reconstructed are located, and the
FE mesh. However, this can be limited by the accuracy of the back and forth projections. Filtering can
also be applied as a windowed convolution of the filter and the vector (Tape et al., 2010; Peter et al.,
2011), as for the SPECFEM open-source package

s(x) ≈
∫ αL

−αL
CnD(x− x′)m(x′)dx′, (5.2)

where L is the coherent length associated with the filter: as the kernel of the filter is decaying, the
integration can be limited over the finite domain expressed by the effective radius αL from the position
x. This convolution approach can be relatively computer demanding, because for each input point to
be filtered, contributions of other points of the medium are required in the surrounding volume, which
leads to significant computer manipulation, especially for functions with long tails, such as the Laplace
filter.

In this report, we highlight that the inverse of given operators CnD can be relatively sparse. There-
fore, it is interesting to consider them to obtain the contribution of the smoothing operator (Wellington,
2016). Instead of performing the convolution in Equation (5.1), we can consider solving the following
Equation (5.3), relying on the inverse operator∫

C−1
nD(x− x′)s(x′)dx′ = m(x), (5.3)

which requires knowledge of the inverse operator C−1
nD. This leads to the definition of Bessel filters,

which are defined by the modified Bessel functions (Abramowitz and Stegun, 1972) and their sparse
inverse operators. As the filter is defined through a nonhomogeneous elliptic partial differential equation
(PDE) with delta source function, its inverse operator can be expressed as a distribution function. The
integral Equation (5.3) can then be efficiently solved using any FD or FE method. In 3-D, applying
the Bessel filter twice provides an excellent approximation of the Laplace operator, with negligible
mismatch at the origin. This approximation implies that the Bessel filter can be applied either once as a
smoothing filter, or twice to reproduce the decay of the Laplace filter.

This paper is organized as follows. In section 2, we first define the Bessel filter through a PDE
with specific boundary conditions, and the approximation of the Laplace filter by Bessel functions
in 2-D and 3-D geometries. In section 3, the application of the Bessel sparse inverse operator on a
vector is described by a system of PDEs. The weak formulation of these equations yields a sparse
linear system, which is symmetric positive even for variable coherent lengths, dip and azimuth angles.
In section 4, several numerical illustrations and an example from the synthetic 3-D SEAM Phase II
foothills model are provided of such smoothing processes. In section 5, efficient numerical schemes in
a high-performance computer environment are presented. We show how a parallel conjugate gradient
(CG) iterative solver can be implemented in a matrix-free fashion. The convergence of this CG iterative
solver is analysed with respect to several parameters. Significant scaling behavior is also obtained when
this strategy is compared with the explicit convolution method. Conclusions and perspectives are given
in section 6. We highlight that the choice of applying the Bessel filter once or twice depends on the
specific application, and this decision will be case dependent.

5.2 Methodology

Before moving to the mathematical development, we would like to specify some definitions regarding
forward and inverse filters. Let us consider the kernel C(x) as a 2-D or 3-D smoothing filter. The
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application of this filter to a function g(x) is defined by the convolution operator, which is denoted by
the symbol “*”, through

f(x) = C(x) ∗ g(x), which is equivalent to f(x) =

∫
C(x− x′)g(x′)dx′. (5.4)

The inverse filter of C(x), namely C(x)−1, is defined through the relation

C−1(x) ∗ C(x) = δ(x). (5.5)

5.2.1 Definition of Bessel filters and their sparse inverse operators

Depending on the space dimension, we introduce the normalized Bessel filters

B3D(z, x, y) =
1

(2π)3/2LzLxLy
r−1/2K1/2(r) where r =

√
z2

L2
z

+
x2

L2
x

+
y2

L2
y

, (5.6)

B2D(z, x) =
1

2πLzLx
K0

(√ z2

L2
z

+
x2

L2
x

)
, (5.7)

where Lx, Ly and Lz are coherent lengths in the x, y and z directions, and Kν is the modified Bessel
function of the second kind, as presented in Appendix 5.A. While the 2-D Bessel filter is the normalized
modified Bessel function Kν(r) with ν = 0, the 3-D Bessel filter is the modified spherical Bessel
function r−1/2Kν+1/2(r) with ν = 0 (Abramowitz and Stegun, 1972). When coherent lengths are
uniform over space, these Bessel filters are unique solutions of the following PDEs

B3D(z, x, y)−
(
L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)
B3D(z, x, y) = δ(z, x, y), (5.8)

B2D(z, x)−
(
L2
z

∂2

∂z2
+ L2

x

∂2

∂x2

)
B2D(z, x) = δ(z, x), (5.9)

with radiative boundary conditions BnD(x) → 0 as ‖x‖ → ∞, and the additional bounded
constraint on the integral through 0 <

∫
BnD(x)dx <∞. The construction of these normalized Bessel

filters is developed in Appendix 5.B.
According to eqs (5.8) and (5.9) and the definition of the inverse filter in Equation (5.5), the associated
sparse inverse of the Bessel filters can be defined as

B−1
3D(z, x, y) =δ0(z, x, y)−

(
L2
zδ

2(z)δ0(x)δ0(y) + L2
xδ

2(x)δ0(y)δ0(z) + L2
yδ

2(y)δ0(x)δ0(z)
)

(5.10)

B−1
2D(z, x) =δ0(z, x)−

(
L2
zδ

2(z)δ0(x) + L2
xδ

2(x)δ0(z)
)
, (5.11)

where δn is defined as ∫
δn(x− x′)f(x′)dx′ = (−1)n

dnf(x)

dxn
. (5.12)

It is important to note that Bessel filters only depend on the radial part (Appendix 5.B), which favors the
transformation from Cartesian coordinates to polar coordinates (r, θ) in 2-D, or to spherical coordinates
(r, θ, φ) in 3-D

(z, x) −−→
2D

√
z2

L2
z

+
x2

L2
x

; (z, x, y) −−→
3D

√
z2

L2
z

+
x2

L2
x

+
y2

L2
y

. (5.13)
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Let us consider an original vector m in the model space Ω that we want to smooth. The vector s
will be the smoothed vector obtained by applying the Bessel filter B3D(z, x, y). We can equivalently
consider the application of the inverse Bessel filter, which leads to the choice between the solutions of
the following two problems:

s = B3D ∗m or m = B−1
3D ∗ s. (5.14)

Both systems are convolution over space. The first one embeds a relatively broad kernel shape, where
the computation can be demanding. Therefore, we are interested in the second equation. According to
the definition of the inverse operator B−1

3D (Equation (5.10)), this convolution can be translated into the
following PDE over the domain Ω

s(z, x, y)−
(
L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)
s(z, x, y) = m(z, x, y), (5.15)

in which the vector m appears on the right-hand side. Once discretized by any FD or FE method, this
system leads to a sparse operator and can be solved efficiently, to obtain the smoothed vector s. Our
approach is similar in some ways to the structure-oriented smoothing filter proposed by Williamson
et al. (2011), which was derived from the diffusion equation as proposed by Fehmers and Höcker
(2003). This smoothing process is controlled by a symmetric diffusion tensor, without knowing the
kernel shape of the forward filter.

5.2.2 Approximation of the Laplace filter by the Bessel operator

The convolution of two Bessel filters can provide an excellent approximation of the Laplace filter in
2-D and 3-D. We first illustrate this for the 3-D case, as this is our main interest. The double operator
B−1

3D∗B
−1
3D is the inverse filter of the operatorB3D∗B3D, which is the solution of the following equation[

B−1
3D ∗B

−1
3D(z, x, y)

]
∗ f(z, x, y) = δ(z, x, y), (5.16)

where the function f satisfies the following PDE[
1−

(
L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)]2
f(z, x, y) = δ(z, x, y). (5.17)

Changing parameters from Cartesian coordinates to spherical coordinates, where

r =

√
z2

L2
z

+
x2

L2
x

+
y2

L2
y

, (5.18)

and knowing that the expected solution, the filter B3D ∗B3D, only depends on the radial part, Equation
(5.17) now becomes[

1− ∂2

∂r2

]
f(r) =

δ(r)

4πr2
+
[ ∂2

∂r2
+

4

r

∂

∂r
− ∂4

∂r4
− 4

r

∂3

∂r3
− 4

r2

∂2

∂r2

]
f(r)︸ ︷︷ ︸

M3D[f(r)]

. (5.19)

The normalized 3-D Laplace filter L3D(z, x, y) is given by

L3D(z, x, y) =
1

8πLzLxLy
e
−
√

z2

L2
z

+ x2

L2
x

+ y2

L2
y or L3D(r) =

1

8πLzLxLy
e−r. (5.20)
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Figure 5.1: Comparison between the behavior of the 3-D normalized Laplace filter defined in Equation
(5.20) and the convolution of two 3-D Bessel filters for Lx = Ly = Lz = 20 m, obtained from the
iterative solving of Equation (5.8), which defines the 3-D Bessel filter.

This is the solution of Equation (5.19), for r > 0, provided the residual term M3D[L3D(r)] can be
ignored, as

L3D(r)− ∂2

∂r2
L3D(r) = 0. (5.21)

The residual term M3D for the 3-D Laplace filter satisfies∥∥∥M3D[L3D(r)]

L3D

∥∥∥ =
4

r2
, (5.22)

which implies that the residual term becomes smaller when the distance r increases. Figure 5.1 presents
an excellent match between the 3-D normalized Laplace filter defined in Equation (5.20) and the convo-
lution of the two 3-D Bessel filters for Lx = Ly = Lz = 20 m, obtained from solving the PDE defining
the 3-D Bessel filter. The mismatch at zero origin comes from the residual terms M3D[L3D(r)], which
are more important at small distances r. This analysis is also coherent with the 3-D inverse operator of
the Laplace filter proposed by Tarantola (2005).

In 2-D, by applying the same workflow, we can find a similar approximation. However, we would
like to highlight the flexibility of this approximation by introducing a scaling parameter a into the
definition of the 2-D normalized Laplace filter

L2D(z, x, a) =
1

2πa2LxLz
e
−
√

z2

a2L2
z

+ x2

a2L2
x or L2D(r) =

1

2πa2LxLz
e−r. (5.23)

This 2-D Laplace operator can be well approximated by the application of two 2-D Bessel filters,
as shown in Figure 5.2, except at the origin where there is a singularity. By using different values
of the scaling factor a, we have different approximations of the Laplace filter, which mitigates the
discrepancies for both the amplitude and the decay.

5.3 Weak formulation in finite element methods

Following the weak formulation, as usual for FE methods, we can discretize Equation (5.15) and deduce
a sparse linear system that can be efficiently solved using an iterative linear solver. First, we start
by introduction of the weak formulation in SEM for homogeneous coherent lengths without dip and
azimuth, which naturally leads to a symmetric linear system. We then introduce an efficient method
to incorporate variable coherent lengths, and dip and azimuth angles into our linear system, while
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Figure 5.2: Comparison between the 2-D normalized Laplace filter defined in Equation (5.23) and the
application of two 2-D Bessel filters for Lx = Lz = 20 m at different values of the scaling parameter
a. The Bessel filters are obtained from the iterative solving of Equation (5.9), which defines the 2-D
Bessel filter.

preserving the symmetry of the left-hand-side matrix. Although the following was developed for SEM,
it can be extended to other FE formulations, and also for FD methods (Wellington, 2016).

5.3.1 Weak formulation of the filter for homogeneous coherent lengths without dip and
azimuth

We do not develop the weak formulation of Equation (5.15) in Cartesian space, but in the dimensionless
coordinates in the domain Ω̃, as defined by the following expressions

z̃ =
z

Lz
, x̃ =

x

Lx
, ỹ =

y

Ly
. (5.24)

As coherent lengths Lz, Lx and Ly are homogeneous, the relationship of Equation (5.24) is an one-to-
one projection from (z, x, y) to (z̃, x̃, ỹ), which implies that solving Equation (5.15) in dimensionless
or Cartesian coordinates should provide identical results. In the dimensionless coordinates, Equation
(5.15) can be written in its weak form as∫∫∫

Ω̃

[
s−∇2

z̃,x̃,ỹs
]
v dz̃dx̃dỹ =

∫∫∫
Ω̃
mv dz̃dx̃dỹ, (5.25)
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leading to the weak formulation∫∫∫
Ω̃
sv dz̃dx̃dỹ +

∫∫∫
Ω̃
∇z̃,x̃,ỹs∇z̃,x̃,ỹv dz̃dx̃dỹ =

∫∫∫
Ω̃
mv dz̃dx̃dỹ, (5.26)

where the test function v(z̃, x̃, ỹ) is chosen such that it satisfies the homogeneous Dirichlet boundary
conditions, which implies that the boundary terms have vanished.

We introduce the notation of the division of two vectors (x1, x2, x3)T and (y1, y2, y3)T (where “•T ”
stands for the transpose operator)

B =
(y1, y2, y3)T

(x1, x2, x3)T
, (5.27)

such that B satisfies the relationship y1

y2

y3

 = B

x1

x2

x3

 . (5.28)

This matrix B is actually the transformation matrix when the coordinate transformation is performed
from the system (x1, x2, x3) to (y1, y2, y3).

In SEM, the physical domain is decomposed into a set of nonoverlapping hexahedral elements. Each
element is further discretized by (N + 1)3 Gauss-Lobatto-Legendre (GLL) points (ξk1 , ηk2 , ζk3) in the
reference space, k1, k2, k3 = 0, ..., N . The mapping from the reference space (ξ, η, ζ) to the Cartesian
space (z, x, y) is expressed by the Jacobi matrix, according to the notation in Equation (5.27),

J =
(∂z, ∂x, ∂y)T

(∂ξ, ∂η, ∂ζ)T
and Je = det(J). (5.29)

Similarly, the relationship between the reference space and the dimensionless coordinate is defined
through

J̃ =
(∂z̃, ∂x̃, ∂ỹ)T

(∂ξ, ∂η, ∂ζ)T
and J̃e = det(J̃). (5.30)

In the reference space, the basis functions are defined as Lagrange polynomials over the GLL points.
The integrals are then numerically approximated by GLL quadrature (more details on SEM are given in
Appendix 5.C). Due to these ingredients and the property of the Lagrange polynomials that have values
at the GLL nodes of either 0 or 1, the weak formulation in Equation (5.26) can be written as

(M + K︸ ︷︷ ︸
A

)s = Mm, (5.31)

in which the mass matrix M is diagonal, and the stiffness matrix K is symmetric. The impedance
matrix A = M + K is then symmetric. For the mass matrix, its components are given by

Mk̂k̂ = wk1wk2wk3 J̃e(ξk1 , ηk2 , ζk3) k̂ stands for the triple of indexes {k1, k2, k3}, (5.32)

and, for the stiffness matrix, by

Kk̂ĥ =

N∑
q̂=0

wq1wq2wq3 J̃e(ξq1 , ηq2 , ζq3)
[ 3∑
i=1

3∑
j=1

∂vk̂
∂ri

( 3∑
d=1

∂ri
∂pd

∂rj
∂pd

)∂vĥ
∂rj

]
, (5.33)

where
(p1, p2, p3) := (z̃, x̃, ỹ) and (r1, r2, r3) := (ξ, η, ζ).
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We introduce here the geometric factors Gij associated with the projection between the dimension-
less coordinates and the reference coordinates

Gij(ξq1 , ηq2 , ζq3) =

3∑
d=1

∂ri
∂pd

∂rj
∂pd

J̃e(ξq1 , ηq2 , ζq3), (5.34)

which simplifies the expression of the stiffness matrix to

Kk̂ĥ =
N∑
q̂=0

wq1wq2wq3

[ 3∑
i=1

3∑
j=1

∂vk̂
∂ri

Gij
∂vĥ
∂rj

]
. (5.35)

These expressions of eqs (5.32), (5.34), and (5.35) are used for the implementation of the matrices
M and to compute the product of the matrix A with a given vector in the dimensionless coordinates.
To do so, the evaluation of the geometric factors Gij is critical. Note that the linear system of Equation
(5.31) is constructed and solved in the dimensionless coordinates and not in the Cartesian coordinates.
The results are not affected by this coordinate transformation, due to the bijective correspondence be-
tween the two coordinates systems (Equation (5.24)).

When wave-propagation simulation is performed by SEM, all of the elements of the inverse Jacobi
matrix J−1 and the volumetric Jacobian Je associated to this projection are available at no extra cost. It
is of great interest to incorporate these ingredients into the construction of matrices M and geometric
factors Gij . According to the definition of the relationship between dimensionless coordinates and
Cartesian coordinates (Equation (5.24)), the determinant J̃e of the Jacobi matrix J̃ can be estimated
from the volumetric Jacobian Je of the Jacobi matrix J through

J̃e(ξ, η, ζ) =
∣∣∣(∂z̃, ∂x̃, ∂ỹ)T

(∂ξ, ∂η, ∂ζ)T

∣∣∣ =
1

LzLxLy

∣∣∣(∂z, ∂x, ∂y)T

(∂ξ, ∂η, ∂ζ)T

∣∣∣ =
1

LzLxLy
Je(ξ, η, ζ). (5.36)

The inverse matrix J̃−1 can be deduced from the elements of the inverse Jacobi matrix J−1 through the
identity ∂z̃ξ ∂x̃ξ ∂ỹξ

∂z̃η ∂x̃η ∂ỹη
∂z̃ζ ∂x̃ζ ∂ỹζ

 =

Lz∂zξ Lx∂xξ Ly∂yξ
Lz∂zη Lx∂xη Ly∂yη
Lz∂zζ Lx∂xζ Ly∂yζ

 . (5.37)

Following this framework, the application of the Bessel filter to a model vector, through the solving of
the linear system (Equation (5.31)), can be efficiently achieved in the dimensionless coordinate system,
whereas the wave-propagation simulation is still performed in Cartesian coordinates.

The symmetric matrix A is referred to as the discrete Helmholtz operator, which has been shown
to be positive definite (Deville et al., 2002). The CG method is thus the method of choice to iteratively
solve the linear system. In these numerical experiments, the condition number of the matrix A ranges
from 102 to 104, which depends on the value of the coherent lengths. Therefore, the iterative solver
converges rapidly toward the desired solution, as we will see with the numerical implementation.

5.3.2 Variable coherent lengths, dip and azimuth angles

In the previous section, the weak formulation of the Bessel filter in a dimensionless coordinate sys-
tem was shown to naturally yield a symmetric stiffness matrix. When introducing variable parameters
—coherent lengths, dip and azimuth angle —we want to preserve the symmetry of the matrix A, and
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5.3 Weak formulation in finite element methods

therefore we develop the weak formulation in a rotated dimensionless coordinate system (ṽ, ũ, w̃). Be-
fore defining these coordinates, let us provide the definition of the azimuth θ and dip ϕ angles for a
given vector. The azimuth is the horizontal angle measured from the North, and the dip is the angle
that the vector has with the horizontal (Sheriff, 2002). Their values range such that θ ∈ [−π, π] and
ϕ ∈ [−π/2, π/2]. In 3-D space, a rotation R3D with azimuth θ and dip ϕ transforms the Cartesian
coordinates (z, x, y) into the rotated coordinates (v, u, w), where v is vertical direction, perpendicular
to the bedding planes, and the two horizontal directions u and w define the plane of the geological
structure. Considering the previous definitions, we have the following rotational operator

R3D(θ, ϕ) =
(v, u, w)T

(z, x, y)T
=

cosϕ − cos θ sinϕ sin θ sinϕ
sinϕ cos θ cosϕ − sin θ cosϕ

0 sin θ cos θ

 . (5.38)

Similar to the last section, we would like to develop the weak formulation of the PDEs associated
with the application of the sparse inverse Bessel filter in the rotated dimensionless coordinates system
(ṽ, ũ, w̃), defined by the following relationships

ṽ =
v

Lv(v, u, w)
; ũ =

u

Lu(v, u, w)
; w̃ =

v

Lw(v, u, w)
, (5.39)

in which Lv, Lu and Lw are coherent lengths in the v, u and w directions, respectively. In this rotated
dimensionless coordinate system, the Bessel filter is defined by the PDE

B(ṽ, ũ, w̃)−
( ∂2

∂ṽ2
+

∂2

∂ũ2
+

∂2

∂w̃2

)
B(ṽ, ũ, w̃) = δ(ṽ, ũ, w̃). (5.40)

The rotated dimensionless coordinates are mapped to the Cartesian coordinates through the relationship

(ṽ, ũ, w̃)T

(z, x, y)T
=

(ṽ, ũ, w̃)T

(v, u, w)T
× (v, u, w)T

(z, x, y)T
=

 1
Lv

0 0

0 1
Lu

0

0 0 1
Lw

×R3D(θ, ϕ). (5.41)

As coherent lengths, dip and azimuth (i.e., the parameters of the filter) are nonstationary, Equation
(5.40) does not provide the same structure as Equation (5.8) when expressed in the Cartesian coordinate
system. The chain rules for derivative estimation introduce spatial derivative terms that are related to
the parameter variations in the PDE, when moving from one to the other set of coordinates, through
the relationship of Equation (5.41). However, if the filter parameters vary slowly in space, their spatial
derivatives can be ignored, which leads to the following approximation

(∂ṽ, ∂ũ, ∂w̃)T

(∂z, ∂x, ∂y)T
≈ (ṽ, ũ, w̃)T

(z, x, y)T
=

 1
Lv

0 0

0 1
Lu

0

0 0 1
Lw

×R3D(θ, ϕ). (5.42)

Within this approximation, the Bessel filters defined in the rotated dimensionless coordinates and in
the Cartesian coordinates are almost identical. In other words, performing the smoothing operation in
the dimensionless system or the Cartesian system should provide approximately the same results. This
argument has an important role in this implementation, because it allows the weak formulation to be
developed in dimensionless coordinates, to maintain the symmetry of matrices K and A; this is a key
point for numerical efficiency. It should be noted that this approximation will systematically introduce
an error into the amplitude of the filtering operator when rapid variations of the filter parameters occur.
The associated error analysis will be discussed in section 5.4.1.
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In the rotated dimensionless coordinate system, the differential relationship between the original
vector m and the smoothed vector s that was obtained by filtering with the Bessel filter B3D(ṽ, ũ, w̃)
can be written as

s(ṽ, ũ, w̃)−∇2
ṽ,ũ,w̃s(ṽ, ũ, w̃) = m(ṽ, ũ, w̃). (5.43)

Ignoring the derivatives related to variations in the filter parameters allows the same workflow to be
applied as for homogeneous parameters. Let us consider the mapping from reference space (ξ, η, ζ) to
the rotated dimensionless coordinates (ṽ, ũ, w̃), defined by the Jacobi matrix J̃rot

J̃rot =
(∂ṽ, ∂ũ, ∂w̃)T

(∂ξ, ∂η, ∂ζ)T
, (5.44)

and the volumetric Jacobian J̃ rot
e

J̃ rot
e = det(J̃rot). (5.45)

The weak form of Equation (5.43) can again be discretized into the linear system of Equation (5.31),
where the mass matrix M is diagonal and the stiffness matrix K remains symmetric through relations

Mk̂k̂ = wk1wk2wk3 J̃
rot
e (ξk1 , ηk2 , ζk3) where k̂ stands for the triple of indexes {k1, k2, k3}, (5.46)

and

Kk̂ĥ =

N∑
q̂=0

wq1wq2wq3

[ 3∑
i=1

3∑
j=1

∂vk̂
∂ri

Gij
∂vĥ
∂rj

]
, (5.47)

where
(p1, p2, p3) := (ṽ, ũ, w̃) and (r1, r2, r3) := (ξ, η, ζ).

The geometric factorsGij associated with the projection between the rotated dimensionless coordinates
and the reference coordinates becomes

Gij(ξq1 , ηq2 , ζq3) =
3∑
d=1

∂ri
∂pd

∂rj
∂pd

J̃ rot
e (ξq1 , ηq2 , ζq3). (5.48)

The numerical implementation is identical to the case of the homogeneous parameters in eqs (5.32),
(5.34), and (5.35), where the linear system of Equation (5.31) is again constructed and solved in the
reduced coordinates system. However, we need new expressions of the volumetric Jacobian J̃ rot

e , and
the elements of the inverse Jacobi matrix (J̃rot)−1. These quantities can be computed from elements in
the mapping between the reference space and the Cartesian space, knowing that

J̃rot =
(∂ṽ, ∂ũ, ∂w̃)T

(∂ξ, ∂η, ∂ζ)T
=

(∂ṽ, ∂ũ, ∂w̃)T

(∂z, ∂x, ∂y)T
× (∂z, ∂x, ∂y)T

(∂ξ, ∂η, ∂ζ)T
. (5.49)

Combining Equation (5.49) with the approximation of Equation (5.42), we have

J̃rot ≈

 1
Lv

0 0

0 1
Lu

0

0 0 1
Lw

×R3D(θ, ϕ)× J. (5.50)

As det[R3D(θ, ϕ)] = 1, the determinant of the Jacobi matrix Jrot is

J̃ rot
e =

det(J)

LvLuLw
=

Je
LvLuLw

. (5.51)
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The inverse of the Jacobi matrix Jrot is

(Jrot)−1 = J−1 ×R3D(θ, ϕ)−1 ×

Lv 0 0
0 Lu 0
0 0 Lw

 , (5.52)

or

(Jrot)−1 = J−1 ×

 Lv cosϕ Lu sinϕ 0
−Lv cos θ sinϕ Lu cos θ cosϕ Lw sin θ
Lv sin θ sinϕ −Lu sin θ cosϕ Lw cos θ

 . (5.53)

The volumetric Jacobian J̃ rot
e and elements in the inverse Jacobian matrix J̃rot can be computed from

eqs (5.51) and (5.53), which completes the construction of matrix M and geometric factors Gij in the
dimensionless coordinates. If the azimuth and dip are zero, and if the coherent lengths are homoge-
neous, eqs (5.51) and (5.53) are identical to eqs (5.36) and (5.37). Finally, we end up with the linear
system

As = Mm. (5.54)

5.4 Numerical illustrations

Various 3-D examples that illustrate the numerical efficiency of the workflow are proposed in this
section. We will show that the decay of Laplace filters can be mimicked by using Bessel operators.
However, it should be emphasized that there is no obligation to use a Laplace filter; for example,
the software SPECFEM3D uses a 3-D Gaussian smoothing filter (Peter et al., 2011). We will also
quantify the numerical approximation for variable coherent length, dip and azimuth. We first consider
an estimation of the Bessel kernel by considering an original vector m as a delta function at the origin.
Then, we will consider the impact of the filter when the input vector only contains random noise,
without any predefined structures. Finally, we show the application of the filter to a gradient obtained
from a subset of the synthetic 3-D SEAM Phase II foothills model (Oristaglio, 2012).

5.4.1 Spike test

When the source term, that is, the original vector m0, is set as a delta function at location (0, 0, 0), the
linear system

A s = M m0, (5.55)

should provide a solution that is identical to the Bessel filter (Equation (5.6)). When we solve the linear
system of Equation (5.55) twice through the following sequential system

A s∗ = M m0

A s = M s∗, (5.56)

we should obtain a response similar to the Laplace filter. Let us consider a model of size 1.5 km × 1.5
km× 1.5 km. A delta function is located at the centre of the model, as shown in Figure 5.3.

In this example, the coherent lengths in the x and y directions are homogeneous Lx = Ly = 80 m
and the dip and azimuth angle are set to zero, as there is no specific orientation. The coherent length
Lz is either constant or variable in the z direction, as indicated in Figure 5.3A(a), B(a), and C(a). In
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Figure 5.3: Comparison of the normalized Laplace filter with the application of two Bessel filters
through the spike tests, with homogeneous coherent lengths in the x and y directions Lx = Ly = 80
m. Coherent length in the z direction: (A) Constant Lz; (B) Lz varies from 50 to 200 m; (C) Lz varies
from 50 to 350 m. In each panel, (a) shows the variation of Lz in the z direction, and (b) compares the
output of applying the 3-D Bessel filter twice (blue dashed line), with the theoretical Laplace filter (red
line). The respective zx cross-section of these filters are shown in (c) and (d).

100



5.4 Numerical illustrations

Figure 5.3A(b), B(b), and C(b), the output of the linear system (blue dashed line) and the theoretical
Laplace function (red line) in the z directions are superimposed. Figure 5.3A(b) illustrates that the
double application of the Bessel filter provides an excellent approximation of the Laplace filter for
homogeneous coherent lengths, although still with the negligible singularity at the origin. Under the
slow variation of the coherent lengths, ∂zLz = 0.1 in Figure 5.3B(b), this method can correctly follow
the shape of the Laplace filter, which implies that ignoring the spatial derivatives of the coherent lengths
is acceptable. This conclusion is further supported by the identical shapes of the zx cross-sections of
the 3-D Laplace filter and the output of the linear system of Equation (5.55) in Figure 5.3B(c) and
B(d). When this variation becomes more important, as ∂zLz = 0.2, this approximation cannot exactly
reproduce the amplitude of the theoretical filter, but the influence of this approximation still appears
acceptable for the smoothing effect of the model vector m that we consider.

The implementation of constant dip and azimuth is illustrated by the spike test in Figure 5.4. The
delta function is again located at the centre of the model. Homogeneous different coherent lengths are
used in all directions, but the filters are highly anisotropic, withLv = 50 m, Lu = 100 m, andLw = 200
m. Due to this design, the 3-D filter is a tri-axial ellipsoid with distinct semi-axis length, as indicated in
the zx, xy, and zy cross-sections in Figure 5.4A. After applying the rotation with azimuth θ = 60◦ and
dip ϕ = 30◦, the comparison between Figure 5.4B and Figure 5.4A shows that the ellipsoid is tilted
30◦ from the x axis in the zx section, and it is also rotated 60◦ from the y axis in the xy cross-section.

When variable dip and azimuth are introduced into the filter, similar amplitude errors as for the
variable-coherent-lengths study in Figure 5.3C are expected. Furthermore, the amplitude error intro-
duced by the 3-D rotation can be mitigated by careful design of the coherent lengths, as the rotation has
no impact in an isotropic filter. For FWI applications, which are generally limited at low frequency, the
approximation of the slow variation of the filter parameters still appears acceptable for the smoothing
effect.

5.4.2 Random noise tests

The filtering operator normally assumes the particular properties of the structures, which implies that the
shape of the smoothed gradient/ model is driven by the imposed variation of coherent lengths, dip, and
azimuth. This argument is illustrated in the following examples, when the input vector m only contains
random noise, with no pre-defined structures. Figure 5.5 focuses on homogeneous coherent lengths,
dip, and azimuth filters on a model of size 1.5 km×1.5 km×1.5 km. The zx, xy, and zy cross-sections
of the input vector are shown in Figure 5.5A, which only contains high frequency variations of random
noise. Figure 5.5B shows the smoothed vector obtained with coherent lengths Lz = Lv = 25 m,
Lx = Lu = 100 m, andLy = Lw = 25 m, without dip and azimuth. As the filter is strongly anisotropic,
with the longest semi-axis length in the x direction, the zx and xy sections both contain features aligned
in the x direction. The patterns in the zy section have no specific orientation as Lz = Ly, that is, the
3-D filter is isotropic in the zy plane. In Figure 5.5C, after applying a rotation with 45◦ dip, the aligned
features are tilted 45◦ from the x axis in the zx section. Note that the apparent coherent length Lx is
now almost identical to Ly, with no specific trend in the xy cross-section. Meanwhile, the apparent Lz
becomes greater than Ly, which induces the alignment along the z direction in the zy cross-section. A
similar interpretation can be applied to Figure 5.5D, which shows the application of a filter with azimuth
45◦ to smooth the initial vector. Compared to Figure 5.5B, the features in the xy section are rotated 45◦

from the y axis, and the patterns presented in the zx cross-section are lost due to the apparent coherent
length in the x direction.
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Figure 5.4: Spike test to illustrate the kernel of the 3-D Bessel filter with homogeneous coherent lengths
Lv = Lz = 50 m, Lx = Lu = 100 m, and Ly = Lw = 200 m. (A) zx, xy and zy cross-sections of the
3-D Bessel filter without dip and spike. (B) The filter consists of a 3-D rotation with 60◦ azimuth and
30◦ dip.

The example shown in Figure 5.6 is a longer gradient/ model with 3 km length in the x direction that
is used to illustrate the implementation of variable coherent lengths, dip and azimuth. We use simple
sine variation for these geological properties. Again, the input vector (Figure 5.6A) contains random
noise without any predefined structure. In Figure 5.6B, the coherent lengths in the z and y directions
are homogeneous Lz = Ly = 25 m, whereas Lx varies as a sine function in the x direction, from 25
m to 85 m. The zx section of the smoothed vector (Figure 5.6B, left) correctly follows the variation
of the coherent length Lx (Figure 5.6B, right). Figure 5.6C shows the zx and xy cross-sections of the
smoothed vector with homogeneous coherent lengths Lz = Lv = 25 m, Lx = Lu = 250 m, and
Ly = Lw = 25 m, and no dip and azimuth. An extremely long Lu was intentionally designed so
that the smoothed vector has a layered structure, in parallel with the x direction. Figure 5.6C will be
used as the reference to compare this with the variable dip and azimuth filters in the next examples.
In Figure 5.6D, similar values of homogeneous coherent lengths were use as those for Figure 5.6C.
The dip (Figure 5.6D, right) varies as a sine function in the x direction from −45◦ to 45◦, which leads
to folding structures in the zx section (Figure 5.6D, left). Similar variation in the xy cross-section in
Figure 5.6E is obtained when the azimuth varies as a sine function in the x direction, from−60◦ to 60◦.
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Figure 5.5: Random noise test with a stationary filter to illustrate the implementation of homogeneous
coherent lengths, dip and azimuth. (A) zx, xy and zy cross-sections of the input model. (B) Smoothed
model obtained from applying an anisotropic filter, Lv = 25 m, Lu = 100 m, and Lw = 25 m, without
dip and azimuth. (C) Smoothed model when 45◦ dip and 0◦ azimuth are introduced into the filter. (D)
Smoothed model when 0◦ dip and 45◦ azimuth are introduced into the filter. Model size, 1.5 km×1.5
km×1.5 km.
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Figure 5.6: Random noise test with nonstationary filter to illustrate the implementation of variable
coherent lengths, dip and azimuth. The size of the model is 1 km in the z and y directions, and 3 km
in the x direction. (A) zx and xy cross-section of the input model. (B) Smoothed model (left) obtained
from a filter with variable coherent length Lx (right). (C) zx and xy cross-section of the smoothed
model obtained from a highly anisotropic stationary filter. (D) Smoothed model (left) obtained from a
filter with variable dip (right). (E) Smoothed model (left) obtained from a filter with variable azimuth
(right).
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Figure 5.7: Example of the filtering
operator on the FWI gradient, from
a subset of the 3-D SEAM Phase II
foothills model.
(A) True shear-wave velocity model.
(B) Initial shear-wave velocity model.
(C) Dip field.
(D) Original scaled gradient without any
smoothing.
(E) Smoothed gradient, with an
anisotropic nonstationary Laplace
filter (approximated by the application
of two Bessel filters) for the dip field
as presented in (C): Lz = 0.05λs and
Lx = Ly = 0.15λs, where λs is the local
shear wavelength.

5.4.3 FWI gradient smoothing

This section illustrates the application of a nonstationary Laplace filter to a realistic gradient vector from
FWI, as obtained from a subset of the 3-D SEAM Phase II foothills model (Oristaglio, 2012). Surface
acquisition is used with a line of 20 sources, with 350 m between adjacent sources. The receivers are
located in the whole surface, with 12.5 m between receivers. A Ricker wavelet centred at 3 Hz is used
as the source signal. The 2-D cross-section of the shear-wave velocity (Vs) model underneath the source
line is shown in Figure 5.7A.
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The topography variation is significant in this model, with maximal vertical elevation of 900 m.
SEM is used for both forward and inversion problems. The initial Vs model is shown in Figure 5.7B,
which is a smoothed version of the true model. Compared with the true model in Figure 5.7A, this
initial Vs is overestimated at the near surface and underestimated at greater depths. The dip field is
extracted from the true velocity model by manual picking, as illustrated in Figure 5.7C. Figure 5.7D
shows the first scaled gradient without any smoothing filter, which contains a significant acquisition
footprint at the near surface. The horizontal oscillation of the features at greater depths might come
from high wavenumber artifacts.

An anisotropic nonstationary Laplace filter with coherent lengths Lz = 0.05λs and Lx = Ly =
0.15λs is applied, where λs is the shear wavelength at each spatial position. The true dip field, as
shown in Figure 5.7C, and the zero azimuth angle are used for 3-D rotation. It should be noted again
here that the Laplace filter is efficiently approximated by application of two Bessel filters. The filters
help to remove the near-surface artifacts due to the acquisition footprint, without degrading the deeper
structures. The continuity of the features at greater depths is actually enhanced because the horizontal-
oscillation artifacts are attenuated. In addition, the gradient correctly determines the update direction
of the model: it reduces the Vs at the near surface and increases it at greater depths (knowing that FWI
updates the model following the negative gradient).

In summary, we have illustrated the property of the Bessel filter through various numerical ex-
amples in spike and random-noise tests. The approximation of the Laplace filter by Bessel operators
is shown, which indicates prospective applications of this filter, either as a smoothing filter, or to ef-
ficiently mimic the decay of the Laplace filter. We also illustrate the robustness of this method for
variable coherent lengths, dip and azimuth. The numerical example on a realistic gradient highlights
the potential application of the filter for FWI.

5.5 Numerical implementation in a parallel spectral-element method scheme

In FWI, the gradient vector of the misfit function is computed from the correlation of the forward
and backward propagation wavefields (as one per source) at each iteration, due to the adjoint-state
method (Plessix, 2006). However, the modelling mesh can sometimes be quite dense compared to
the resolution that can be expected from the inversion, which leads to high wave-number noise in
many applications. Consequently, the gradient/ model vector must be smoothed or regularized on this
forward-modelling mesh. By doing so, the filtering operation (i.e., the Bessel operator here) has to
be directly and efficiently implemented on the modelling mesh, which can be described by a domain
decomposition for parallel computation. As the application of the Bessel filter is related to a PDE, this
can proceed in a similar way as for the wave-propagation simulation.

Following an analoguee of the framework to that designed for the SEM for wave simulation, the
linear system associated with the Bessel filters is constructed and solved by a parallel CG iterative
solver

(M + K︸ ︷︷ ︸
A

) s = M m. (5.57)

According to Saad (2003), only the matrix-vector product and the inner product of two vectors are
required in the CG method. Thus, the most expensive operator is the product of the matrix A with a
given vector. Each subdomain computes its part of the product in parallel, and the communications
between subdomains during the CG iterations share the same strategies as that of wave simulation,
which requires no extra effort to manage the parallelism. This section presents this implementation and
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highlights the efficiency of this approach, compared with the standard 3-D convolution method. The
convergence rate of the CG solver for several parameters are then analysed.

5.5.1 Linear system construction and matrix-vector product evaluation

The mass matrix M is diagonal, and the number of nonzero elements (NNZs) of this matrix is identical
to the size of the input gradient/ model vector,

NNZ(M) = SIZE(m). (5.58)

It is then stored in the same form as the input vector. The dimensions of the matrices K and A are
[SIZE(m)]2; thus the full storage is not reasonable for realistic application. Assuming that the same
order of interpolationN is used in each direction, and the inverse of Jacobi matrix J̃rot is full of nonzero
elements, the NNZs in the matrix A can be estimated from the size of the vector m, as

NNZ(A)

SIZE(m)
−→ (3(N + 1)2 + 3(N + 1) + 1). (5.59)

For example, when 4th order interpolation is used (i.e., each hexahedral element is discretized by 5 ×
5× 5 GLL points)

NNZ(A) ≈ 91× SIZE(m). (5.60)

This estimation illustrates that the stiffness matrix is extremely sparse. Therefore, the nonzero elements
of this matrix can either be stored by some efficient compressed storage technique or the matrix-vector
product can be directly evaluated without storing the matrix. These two implementation approaches are
discussed in this section.

5.5.1.1 Coordinate list storage of nonzero elements of matrix A

As the impedance matrix A is sparse, only the nonzero elements of this matrix need to be computed
and stored. At each CG iteration, these nonzero elements are used to evaluate the product of matrix A
with a given vector.

The matrix A is computed from the stiffness matrix K. According to Equation (5.47), the element
at row k̂th, column ĥth of matrix K can be computed through a triple loop over all of the degrees of
freedom (q1, q2, q3) inside the current element, which is computationally expensive. This component
can be further developed as a sum of six terms, as shown in Equation (5.121) in Appendix 5.C. This
development allows the computation of the left-hand-side matrix A, while minimizing the loops over
all of the degrees of freedom inside the current element.

The matrix A can thus be stored using the compressed storage techniques coordinate list (COO)
format (Golub, 1996), where a list of row and column indices and the associated values of the nonzero
elements are stored. In addition, as the matrix A is symmetric, only the upper triangular part has to be
stored; that is, the elements Aji where i ≥ j. We only store half of the diagonal terms 1

2Ajj . This helps
to simplify the matrix-vector product in the CG algorithm. By applying this triangular storage strategy,
and based on several tests carried out with this implementation on realistic size problems, the required
memory for storage of matrix A is reduced by 49%, and the computation time of the CG by 33%, .
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5.5.1.2 Matrix-free implementation of the matrix-vector product Au

Instead of building explicitly the impedance matrix A by storing its nonzero elements, its product with
a given vector u can be directly estimated inside each CG iteration in a matrix-free fashion. As the
product of a vector with the diagonal mass matrix M is trivial, the challenge is the stiffness matrix-
vector product Ku. According to the development of the weak formulation of Equation (5.26) in
Appendix 5.C and the definition of the geometric factors Gij in Equation (5.48), this matrix-vector
product can be written as

∑
ĥ

Kk̂ĥuĥ =

N∑
q̂=0

wq1wq2wq3

N∑
ĥ=0

[ 3∑
i=1

3∑
j=1

∂vk̂
∂ri

Gij
∂vĥ
∂rj

]
uĥ, (5.61)

or under the factorized version, as

∑
ĥ

Kk̂ĥuĥ =

3∑
i=1

{ N∑
q̂=0

wq1wq2wq3
∂vk̂
∂ri

GDu︷ ︸︸ ︷[ 3∑
j=1

Gij

( N∑
ĥ=0

∂vĥ
∂rj

uĥ

)
︸ ︷︷ ︸

Du

]}
︸ ︷︷ ︸

DwGDu

. (5.62)

Equation (5.62) implies that the product stiffness matrix-vector can be factorized as

Ku = DwGDu, (5.63)

where the operator D evaluates the spatial derivatives of the vector u in the reference space, G is the
geometric matrix, and Dw is equivalent to a weighted spatial derivatives operator.

The derivatives operators Du and the weighted spatial derivatives Dw

(
GDu

)
can be efficiently

estimated using the highly efficient algorithms developed by Deville et al. (2002), which benefit from
the tensorial properties of SEM and the optimization of cache usage by manual loop unrolling. For each
degree of freedom, the geometric matrix G is symmetric and only depends on the projection between
the rotated dimensionless coordinates and the reference coordinates (Equation (5.48)). Therefore, only
six vectors, as G11, G12, G13, G22, G23, G33, are stored in the memory, and they are computed outside
the CG loops. Due to the factorization in Equation (5.62) and the vectorized computation for the
stiffness/ vector product, each CG iteration costs about 0.46 times a time-step of wave propagation
for deformed elements. Compared with the explicit matrix-vector product with the COO format of
the previous section, this matrix-free implementation decreases the computation cost by a factor of
around 7, and reduces the memory requirement by >20-fold. These numbers have been estimated on
the same high-performance computing architecture for the two implementations, on a model with 33×
106 degrees of freedom, with decomposition on 64 subdomains (64 computing cores with infiniband
interconnections).

5.5.2 Parallel conjugate gradient iterative solver

The parallel CG solver introduced in this section is similar to the standard algorithm, except that the
matrix-vector and vector-vector operators are computed in parallel. As mentioned before, the matrices
M and A are evaluated in parallel without assembly over the boundaries between subdomains. After
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each matrix-vector product, some point-to-point communications are required to assemble the values
on the shared degrees of freedom.

The modulus of the relative numerical error

η =
‖M.m−A.sk‖
‖M.m‖

(5.64)

is used for the convergence criteria, where sk is the smoothed model obtained at the kth iteration.
In the next paragraphs, we study the properties of the linear system (Equation (5.57)), as well as the
convergence rate based on the values of the error modulus η.

5.5.2.1 Linear system behavior

First, we build a reference system with smoothed vector sref and input mref, which is computed as

mref = M−1.A.sref. (5.65)

The linear system
A.s = M.mref (5.66)

is then solved iteratively by the CG solver. At each iteration, the modulus of the relative model error γ
is computed

γ =
‖sref − sk‖
‖sref‖

. (5.67)

The numerical error η is defined in Equation (5.64), and it is compared to this model error γ to charac-
terize the behavior of the linear system of Equation (5.57). An example of this comparison for a model
vector that contains 30 × 106 degrees of freedom is shown in Figure 5.8. The filter is defined with
homogeneous coherent lengths Lz = Lx = Ly = 80 m, without dip and azimuth. It should be noted
that the numerical and model error modulus both decrease with the same speed, which implies that
the linear system associated with the Bessel filter is well conditioned. The system converges relatively
rapidly, and attains the numerical limit of 10−6 after 110 iterations, using FORTRAN single-precision
arithmetics. Beyond this limit, the relative model accuracy remains unchanged, so the stopping criteria

Figure 5.8: Relative numerical error modulus η and model error modulus γ for smoothing a model
vector containing 80 × 80 × 80 elements; that is, 30 × 106 degrees of freedom. The coherent lengths
are homogeneous Lz = Lx = Ly = 80 m, without dip and azimuth.
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Figure 5.9: (A) Dependence of the total number of iterations (obtained from consecutively solving two
linear systems associated with the Bessel filter) on coherent length. The model contains 80 × 80 × 80
elements; i.e., 30 × 106 degrees of freedom. (B) Dependence of the total number of iterations on the
size of the problem. For both images, the stopping criterion is η = 10−6.

can be set as η = 10−6. In FWI applications, to optimize the numerical cost, the CG solver could
be stopped before the numerical limit is attained, because the model parameters will be repetitively
modified. Evaluation of this tolerance η should be carefully studied, according to the objective of the
application.

5.5.2.2 Convergence properties

After fixing the stopping criteria as η = 10−6, we investigate the dependence of the convergence rate of
the CG solver on several parameters, including coherent length, size of model vector, and presence of
dip and azimuth. As we are approximating the Laplace filter by the Bessel operators, the linear system
associated with the Bessel filter is solved twice to obtain the smoothed vector. The number of iterations
shown in Figure 5.9 is then estimated by consecutively solving two linear systems. Obviously, the same
conclusions should be draw when solving one linear system, which corresponds to the direct application
of the Bessel filter.

Figure 5.9A indicates that for a given model the number of iterations required for solving two linear
systems increases linearly with the values of the coherent length. This plot is obtained from a model of
size 80×80×80 elements; that is, 30×106 degrees of freedom. Each point in the plot is obtained from
filtering with the isotropic Bessel operator, where the coherent lengths are homogeneous. We carry out
a similar study when the coherent lengths are fixed, and the dip and azimuth angles are introduced into
the filter. These parameters have no influence on the computation time. Therefore, these data are not
shown here. In Figure 5.9B, the filter shape is kept unchanged, with Lz = Lx = Ly = 80 m, but the
size of the model vector increases gradually from 20× 20× 20 elements to 100× 100× 100 elements.
The corresponding number of degrees of freedom in each direction is indicated by the axis at the top
of Figure5.9B. For a pre-defined filter, the total number of iterations required for smoothing a model
vector is independent of the model size.

5.5.2.3 Numerical performance versus explicit 3-D convolution filtering

As Bessel filters can be efficiently used to approximate the Laplace filter, the efficiency of this method
needs to be evaluated with respect to the 3-D explicit convolution approach. We limit this study to an
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Figure 5.10: Comparison of the numerical performance of this method. The COO storage of nonzero
elements in matrix A (black) and the matrix-free implementation of the product matrix-vector Au
(red) are compared to the truncated explicit 3-D convolution of the Laplace filter (blue) for a model
with 1.77× 106 degrees of freedom, with decomposition for two subdomains.

isotropic and homogeneous Laplace filter

L3D(z, x, y) =
1

8πL3
e−

√
x2+y2+z2

L2 . (5.68)

The filter theoretically has infinite tail, but it can be implemented as a truncated 3-D convolution of the
filter and the model/ gradient vector. We then define a sphere ΩαL centered at the origin, with radius
αL, such that ∫∫∫

ΩαL

L3D(z, x, y)dzdxdy = 0.99, (5.69)

which provides α ≈ 8.4 (Figure 5.11). This condition is equivalent to 99% energy of the filter. Figure
5.10 compares the computation cost of our approach with the 3-D explicit convolution in a model
with 1.77 × 106 degrees of freedom and where the coherent length increases from 30 m to 80 m.
The 3-D explicit convolution is the most expensive method, but the comparison is partially biased as
our approaches are highly optimized. However, it should be noted that the numerical cost of the 3-D
explicit convolution method is driven by the number of points within the effective sphere ΩαL, thus
with the complexity O(L3). Whereas, for a given model size the computational complexity of the
approximation of the Laplace filter by Bessel operators only depends on the number of CG iterations,
which increases linearly with the coherent length (∝ O(L1)), as shown in Figure 5.9A. In Figure
5.10, the observed numerical complexity of the explicit convolution method versus the increase in the
coherent length is O(L2.6) due to the limited model size. We obtain a sublinear relationship between
the numerical cost of our approximation and the coherent length (O(L0.7)), for the two implementation
approaches mentioned in section 5.5.1: COO-storage and matrix-free implementation. This is due to
some calculations that are independent of the coherent length. This property is encouraging for the
application of this approach to large problems.
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5.6 Conclusion and discussion

The application of a filter on a given vector is usually described through convolution of the vector by a
filter that is a linear operation. Smoothing will require filters with decaying tails. Thus, the convolution
operator might be expensive if it is computed explicitly. We promote the idea of applying the filter
through its inverse operator, which is expected to be a sparse operator. The smooth output is obtained
as the solution of a new linear system, in which the sparse inverse of the filter has been constructed.
We introduce the Bessel filters and their corresponding diffusion-like PDEs to be solved numerically
in 2-D and 3-D geometries. We analytically explain why the iterative application of two Bessel filters
provides an excellent approximation of the Laplace operator for smoothing the model, which offers the
choice of either using Bessel filters as smoothing operators or to mimic the decay of the Laplace filter.
This argument is well supported by the numerical illustration of spike tests, where the PDE defining the
Bessel filter is solved with a delta source function.

These PDEs can be discretized through a weak formulation that involves SEM, which leads to a
symmetric linear system that can be efficiently solved through a CG method. There are no specific
requirements for the mesh, which can be chosen in a suitable way for the application being considered.

We present a robust and efficient approach to incorporate variable coherent lengths, dip and az-
imuth into the Bessel filter, without losing the symmetry of the left-hand-side term of the linear system.
To do so, we develop the weak formulation of the PDE associated with the sparse inverse filter in the
rotated dimensionless coordinate system. The construction of this system naturally takes advantage of
the available ingredients in the underlying mesh that are associated to the study problem. All of the
information about the geological variations of the medium is preserved in the Jacobi matrix and its
inverse, which does not break the symmetry of the stiffness matrix. The well-behaving performance of
this approximation is illustrated by spike tests, which closely reproduce the shape of analytical Laplace
filter when assuming slow variations of these geological properties. In more complex tests, when ran-
dom noise is used as the input model, the output vector correctly follows the imposed shape that is
described by the filter parameters. When the non-stationary filter is applied to a realistic FWI gradient,
it effectively removes near-surface artifacts due to the acquisition footprint, and further enhances the
continuity of the deeper structures.

We propose efficient implementation of the application of the Bessel filter, where the linear system
is solved with a parallel CG following the same domain decomposition as the wave simulation. This
parallel computation of the matrix-vector product at each CG iteration can be achieved either by using
explicit building of the local matrix, or in a matrix-free fashion. For the matrix-free implementation,
the stiffness matrix-vector product can be factorized and highly optimized, due to the vectorized com-
putation and the optimizing cache usage developed by Deville et al. (2002). This strategy significantly
reduces the memory requirement and computation time for the CG solver. After each matrix-vector or
vector-vector product, the vectors obtained are spatially communicated to assemble the values on the
sub-domain boundaries. Consequently, any projection back and forth from the modelling mesh and the
inversion mesh is avoided, as well as any explicit windowed convolution.

The sparse inverse linear system associated with the Bessel filter is well conditioned, due to the
structure of the PDE. The CG solver applied to this system converges relatively rapidly. The conver-
gence depends on many factors, but it increases linearly with the coherent length. Other factors, such
as the number of elements in the medium and the presence of dip and azimuth angles, appear to have
no influence on the number of iterations required for the system to converge. The approximation of
the Laplace filter by the Bessel filter proposed here is also compared with the windowed explicit 3-D
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Figure 5.11: Energy analysis for isotropic Laplace and Bessel filters within the sphere ΩαL centered at
the origin with the radius αL (L is the coherent length in the z, x and y directions). E10, E50 and E90

indicate the 10%, 50% and 90% energy.

convolution method. The approach here is significantly faster, with a sublinear relationship between the
numerical cost and the coherent length, which promises general applications to various large problems.

One question might be whether we should apply one Bessel filter with longer coherent length or two
Bessel filters, to reproduce the decay of the Laplace filter. Choosing between Bessel and Laplace filters
is case dependent, and this should be decided based on the energy distribution of the filters and the
numerical cost. Knowing that the energy distribution of these filters are different (as shown in Figure
5.11), they should result in different smoothing effects. To have the same energy as the Laplace filter at
90%, 50% or 10% energy, the coherent length in the Bessel filter should be increased by a factor of 1.4,
1.6, or 2.1, respectively. These different scaling factors also imply that it is not possible to mimic the
Laplace filter by simply modifying the coherent length in the Bessel filter. For the same coherent length,
the contributions of the neighbors surrounding the origin are more important in the Bessel kernel, which
is indicated by the 10% energy level. It should also be noted that increasing the coherent length will
eventually increase the numerical cost of the iterative solving of the linear system associated with the
Bessel filter.

Only the numerical implementation for SEM is presented here, but the method can be extended to
other FE techniques, and also to FD techniques (Wellington, 2016). This study illustrates the potential
applications for model preconditioning, but this approach of applying a filter (or a covariance matrix)
can be considered for regularization and for prior-model strategies. As the filter has a robust shape,
even with dip, azimuth and coherent length variations, it can be used to amplify expected geological
features, while attenuating features that come from numerical artifacts in other areas. In this way, the
null-space dimension is reduced, to converge to more meaningful models while honoring the data fit.

Appendix (5.D) shows an example of a possible 3D matrix-free implementation scheme for FD
technique, which is an on-going collaboration with Wellington (2016).

5.7 Additional numerical investigations

The global equation governing the Bessel smoothing process can be formulated as

s(x)−∇Tz,x,yP(x)PT (x)∇z,x,ys(x) = g(x), (5.70)
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Figure 5.12: Example of the nonstationary filtering operator on FWI gradient, from pseudo-3D Mar-
mousi model. (A) True velocity model. (B) Initial velocity model. (C) Dip field, estimated from the
true velocity model. (D) Coherent lengths in bedding plan (Lu and Lw), which vary from 12 m at fault
location to 45 m at other places. (E) Original scaled gradient without any smoothing. (F) Smoothed
gradient with anisotropic nonstationary Laplace filter (approximated by the application of two Bessel
filters): dip field as presented in Figure C, Lu = Lw as presented in Figure D, and Lv =12 m (≈ 0.15
of the shortest wavelength). Some interesting features are highlighted by black and red arrows, and
faults are indicated by black dash-lines. Figure extracted from Trinh et al. (2017a)

where the raw gradient g(x) is transformed into the smoothed vector s(x). The information related to
the geological variation of the medium (i.e. filter parameters) are embedded in the projection matrix

P(x) =

 Lv cosϕ Lu sinϕ 0
−Lv cos θ sinϕ Lu cos θ cosϕ Lw sin θ
Lv sin θ sinϕ −Lu sin θ cosϕ Lw cos θ

 , (5.71)

appearing in the construction of the rotated dimensionless Jacobian matrix (5.53). The projection matrix
describes the projection between the Cartesian space and the locally rotated dimensionless coordinates
system.

5.7.1 Gradient smoothing in pseudo-3D Marmousi model

Figure 5.12 illustrates the application of an anisotropic nonstationary Laplace filter (approximated by
double application of Bessel filters) on a gradient computed in the Marmousi benchmark. The 2D
Marmousi Vp model in Figure 5.12A has been extended to an elastic 3D volume for this test. A surface
acquisition is used with a line of 24 sources, with distance 160 m between adjacent sources. The
receivers are located on the whole surface, with 12.5 m between receivers. A Ricker wavelet centered
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at 8 Hz is used as the source signal. The initial model is a smooth version of the true model as shown
in Figure 5.12B.

The 2D cross-section of the Vp gradient without any smoothing filter underneath the source line is
shown in Figure 5.12E. The gradient contains significant acquisition footprint at the near-surface and
high wavenumber artifacts in the deeper part. To remove these high wavenumber artifacts, we design
an anisotropic nonstationary Bessel-based preconditioning with parameters as:

- Azimuth field θ is set as zero due to the pseudo-3D configuration. The smooth dip field ϕ is
estimated from the true velocity model, as shown in Figure 5.12C.

- The vertical coherent length Lv is set as 12 m, which is about 0.15 times of the shortest wave-
length. The horizontal coherent length Lu and Lw vary from 12 m near the fault locations to
45 m at other places as shown in Figure 5.12D. This coherent length parameters design is based
on the assumption that we know the relative positions of the main faults.

The output smoothed gradient is shown in Figure 5.12F, in which the near-surface acquisition footprint
is effectively removed. The continuity of the features at greater depths is enhanced, because the hori-
zontal oscillation artifacts are attenuated, as indicated by the thin black arrows. Due to the design of the
coherent lengths, the energy is not smeared out across the faults, indicated by the thick red arrows in
Figures 5.12E and F. In this example, the smoothing process costs about 2.2% running time comparing
to the forward problem.

5.7.2 Influence of the preconditioning operator on inversion results

Following the setting in Section (5.4.3) and Figure 5.7, we run several FWI tests, each consists of 60
iterations with l-BFGS optimization method. We invert for compressional and shear velocities but only
the results for shear wave are presented here. The density is as smooth as the initial Vs model and it is
kept unchanged. Figure 5.13C and D are inversion results obtained with the body waves, which arrive
before the surface waves. Figure 5.13E and F are obtained respectively from the starting models 5.13C
and D, after enlarging the time-window to incorporate surface waves and underlying body wave. Only a
simple medium filter (3× 3× 3 pixels) is used for gradient smoothing at each iteration in Figure 5.13C
and E. The results 5.13D and E are obtained with a fully nonstationary and anisotropic Bessel-based
gradient precondition as described in Figure 5.7.

The inversion result in Figure 5.13C is a clear example for the discussion in Section (5.4.3), where
the gradient artifacts in Figure 5.7D leave strong imprints in the final estimated model. In Figure
5.13C, the near-surface is highly broken due to the sparse acquisition footprint. The high wavenum-
ber horizontal-oscillation in the gradient due to poor illumination also damages the continuity of the
events at greater depth. When adding more data into the inversion process (from Figure 5.13C to E),
the poor illumination issue is partially resolved and the near-surface is improved but the structure dis-
continuity still pronounces. These results might leads to wrong geological interpretation about medium
heterogeneities.

By properly preconditioning the gradient, as shown in Figure 5.7E, we obtain a cleaner model esti-
mation in Figure 5.13D. The model quality is obviously limited by the amount of provided information
and the data-resolving capacity of our FWI technique. However, compared with Figure 5.13C, the arti-
facts linked to the acquisition footprint and poor illumination issues are effectively eliminated. At each
iteration, the gradient smoothing requires less than 1% cost of one FWI iteration. When enlarging the
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Figure 5.13: A - True Vs model. B - Initial Vs model. C - Inverted model obtained with body waves,
where only a median filter over 3× 3× 3 degrees of freedom is applied onto the gradient. D - Inverted
model obtained with body waves, where the gradient is smoothed by an anisotropic non-stationary
Bessel-based filter as described in Figure 5.7: Lv = 0.05λs and Lu = Lv = 0.15λs, where λs
is the local shear wavelength. E and F - Inverted models obtained respectively from C and D, after
enlarging the time-window to incorporate surface waves and underlying body wave. Figure extracted
and modified from Trinh et al. (2017c)

time-window to incorporate more data into the inversion process (Figure 5.13F), the inversion result is
further enhanced, and still cleaner than a naive gradient preconditioning strategy in Figure 5.13E.
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APPENDICES

5.A Modified Bessel functions and their integral representation

In this Appendix, we provide the definition of the modified Bessel function of the second kindKν(x) for
ν ∈ R. This function is defined from the modified Bessel function of the first kind Iν(x) (Abramowitz
and Stegun, 1972), written in the power series expansion

Iν(x) =
(x

2

)ν ∞∑
k=0

1

Γ(k + 1)Γ(ν + k + 1)

(x
2

)2k
, (5.72)

where the gamma function Γ(x) is defined as

Γ(x) =

∫ ∞
0

tx−1e−tdt. (5.73)

When ν is an integer, we have the following property of the function Iν(x)

Iν(x) = I−ν(x). (5.74)

According to the definition of the function Iν(x) in Equation (5.72), we describe how it behaves when
x→ 0:

lim
x→0

Iν(x) =


0 Re(ν) > 0

1 ν = 0

±∞ Re(ν) < 0

. (5.75)

This implies that Iν(x) and I−ν(x) are linearly independent if ν is not an integer. The modified Bessel
function of the second kind Kν(x) is then defined as

Kν(x) =
π

2

I−ν − Iν
sinπν

, (5.76)

for ν /∈ Z. For n ∈ Z, the function Kn(x) is defined as

Kn(x) := lim
ν→n

Kν(x). (5.77)

5.B Definition of Bessel filters and their normalized factors

In this Appendix, we demonstrate that 2-D and 3-D Bessel filters are unique solutions of the PDEs (5.8)
and (5.9), respectively, when considering the radiative boundary condition

BnD(x)→ 0 as ‖x‖ → ∞ (5.78)

and the boundness property

0 <

∫
BnD(x)dx <∞ (5.79)
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The 2-D case

We look for all possible analytical solutions of Equation (5.9):

C(z, x)−
(
L2
z

∂2

∂z2
+ L2

x

∂2

∂x2

)
C(z, x) = δ(z, x). (5.80)

Changing from Cartesian to dimensionless coordinates

x→ x̃ =
x

Lx
; z → z̃ =

z

Lz
, (5.81)

knowing that Lx and Lz are homogeneous, we obtain

C(z̃, x̃)−
( ∂2

∂x̃2
C(z̃, x̃) +

∂2

∂z̃2
C(z̃, x̃)

)
= δ(z̃, x̃). (5.82)

We first solve the homogeneous form of Equation (5.82) for (z̃, x̃) 6= (0, 0). Again, we move from
dimensionless coordinates (z̃, x̃) to polar coordinates (r, θ), and assume that the solution is separated;
that is, C(r, θ) = R(r)A(θ). The homogeneous form of Equation (5.82) now becomes

R(r)A(θ)−
(
R′′(r)A(θ) +

1

r
R′(r)A(θ) +

1

r2
R(r)A′′(θ)

)
= 0. (5.83)

Dividing both sides of this equation by R(r)A(θ)r2:

r2R′′(r)

R(r)
+
rR′(r)

R(r)
− r2 = −A

′′(θ)

A(θ)
. (5.84)

As R(r) and A(θ) are independent, Equation (5.84) can be set as a constant V , for r > 0. Note that
valid solutions must satisfy the periodicity in the angular domain; that is, A(θ) = A(θ + 2π), which
leads to a nonnegative value of V .

By considering the angular part of the solution:

A′′(θ)

A(θ)
= −V ⇐⇒ A′′(θ) + V.A(θ) = 0. (5.85)

Two independent real solutions of this equation are

A1(θ) = cos(
√
V θ) ; A2(θ) = sin(

√
V θ). (5.86)

As A(θ) = A(θ + 2π), V must satisfy V = ν2, where ν is an integer. The radial part now becomes

r2R′′(r) + rR′(r)− (r2 + ν2)R(r) = 0, (5.87)

which is actually the modified Bessel differential equation (Polyanin and Nazaikinskii, 2002; Abramowitz
and Stegun, 1972). Two linearly independent solutions of this equation are the modified Bessel function
of the first kind Iν(r), singular at ∞, and the second kind Kν(r), singular at zero, where ν is a real
number.

As we are interested in building a smoothing filter, it must vanish at infinity (a condition of Equation
(5.78)):

R(r)→ 0 as r →∞, (5.88)
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which implies that the modified Bessel function of the first kind Iν can be excluded, as

lim
r→+∞

Iν(r) = +∞. (5.89)

In the polar coordinates (r, θ), the condition of Equation (5.79) can be re-written as

0 <

∫ π

−π
dθ

∫ ∞
0

rdrC(r, θ) <∞. (5.90)

As our solution has the form C(r, θ) = R(r)A(θ), this condition becomes

0 <

∫ π

−π
dθA(θ)

∫ ∞
0

rdrR(r) <∞. (5.91)

The angular part of the forward filter has the form

Aν(θ) = c1 cos(νθ) + c2 sin(νθ) where ν = 0,±1,±2... (5.92)

and c1, c2 are constant, which leads to∫ π

−π
dθAν(θ) =

{
c1 sin(νθ)

∣∣π
−π − c2 cos(νθ)

∣∣π
−π = 0 if ν = ±1,±2...

2π(c1 + c2) = Cst > 0 if ν = 0.
(5.93)

Consequently, the modified Bessel function of the second kind Kν with ν > 0 cannot be our expected
filter. In addition, ∫ ∞

0
rK0(r)dr = 1, (5.94)

which clearly satisfies the condition

0 <

∫ π

−π
dθA0(θ)

∫ ∞
0

rdrK0(r) <∞. (5.95)

The boundary conditions at infinity imply that K0 is the only possible solution of the homoge-
neous form of Equation (5.82). As the function K0(r) is singular at zero, the normalized function

1
2πLxLz

K0

(√
x2

L2
x

+ z2

L2
z

)
is also the solution of the non-homogeneous Equation (5.80).

The 3-D case

Similar to the 2-D case, we look for all possible solution of Equation (5.8):

C(z, x, y)−
(
L2
z

∂2

∂z2
+ L2

x

∂2

∂x2
+ L2

y

∂2

∂y2

)
C(z, x, y) = δ(z, x, y). (5.96)

By repeating the same workflow as for the 2-D case, moving from Cartesian coordinates to spherical
coordinates, and assuming again that the solution is separated C(r, θ, φ) = R(r)A(θ)B(φ), where
0 < r <∞, 0 ≤ θ ≤ π, and −π ≤ φ ≤ π, the homogeneous form of Equation (5.96) becomes

R(r)A(θ)B(φ)−
(∂2R(r)

∂r2
+

2

r

∂R(r)

∂r

)
A(θ)B(φ) − 1

r2

(cos θ

sin θ

∂A(θ)

∂θ
+
∂2A(θ)

∂θ2

)
R(r)B(φ)
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− 1

r2 sin2 θ

∂2B(φ)

∂φ2
R(r)A(θ) = 0. (5.97)

Multiplying both sides of this equation by r2 sin θ
R(r)A(θ)B(φ) , assuming it does not vanish, we obtain

sin2 θ
(
r2 − r2R

′′(r)

R(r)
− 2r

R′(r)

R(r)

)
−
(

cos θ sin θ
A′(θ)

A(θ)
+ sin2 θ

A′′(θ)

A(θ)

)
− B′′(φ)

B(φ)
= 0, (5.98)

which should be valid for all different sets of values of (r, θ, φ). By choosing θ = 0, Equation (5.98)
should hold for any values of r and φ, leading to

B′′(φ)

B(φ)
= 0 =⇒ B(φ) = Constant (5.99)

(because this function is periodic B(φ) = B(φ + 2π)). Replacing this expression back into Equation
(5.98), and dividing both sides of the equation by sin θ, we obtain

sin θ
(
r2 − r2R

′′(r)

R(r)
− 2r

R′(r)

R(r)

)
−
(

cos θ
A′(θ)

A(θ)
+ sin θ

A′′(θ)

A(θ)

)
= 0. (5.100)

Again, this equation should hold for any values of r and θ = 0, which leads to

A′(θ)

A(θ)
= 0 =⇒ A(θ) = Constant. (5.101)

Replacing this expression back into Equation (5.100), we get

r2R′′(r) + 2rR′(r)− r2R(r) = 0. (5.102)

According to Abramowitz and Stegun (1972), this is the modified spherical Bessel function, which has
two particular solutions: √

1

r
I±1/2(r) and

√
1

r
K1/2(r). (5.103)

Again, we expect that the solution vanishes at infinity, which means that r−1/2I±1/2(r) can be excluded.
The function r−1/2K1/2(r) satisfies the normalizable condition of Equation (5.79) in 3-D as∫ π

−π
dφ

∫ π

0
sin θdθ

∫ ∞
0

r2
[
r−1/2K1/2(r)

]
dr = (2π)3/2. (5.104)

Again, as the function K0(r) is singular at zero, the normalized function 1
(2π)3/2LxLyLz

r−1/2K1/2(r)

is also the solution of the non-homogeneous Equation (5.96).

5.C Weak formulation development

This Appendix clarifies the definition of the mesh used in SEM, which consists of Gauss-Lobatto-
Legendre (GLL) points, defined in the reference space. The base functions are Lagrange polynomials.
GLL quadrature is used to approximate analytical integrals over collocation points. Let us recall the
weak formulation of Equation (5.26)∫∫∫

Ω̃
s v dz̃dx̃dỹ +

∫∫∫
Ω̃
∇z̃,x̃,ỹs ∇z̃,x̃,ỹv dz̃dx̃dỹ =

∫∫∫
Ω̃
m v dz̃dx̃dỹ, (5.105)
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where v(z̃, x̃, ỹ) is a test function, m and s are the original and the smoothed vectors, respectively.

In SEM, the physical domain Ω is decomposed into a set of nonoverlapping hexahedral elements
Ωe. This implies that the dimensionless space Ω̃ is also represented by a set of elements Ω̃e, which is
related to the physical element Ωe through the one-to-one mapping (Equation (5.24)). Each reduced
coordinate element Ω̃e can be mapped to the unitary reference space of the GLL points, where the cube
[−1, 1]⊗ [−1, 1]⊗ [−1, 1] is discretized into (N+1)×(N+1)×(N+1) GLL points (ξk1 , ηk2 , ζk3);
k1, k2, k3 = 0, ..., N . These collocation points define (N + 1) × (N + 1) × (N + 1) base functions,
which are triple products of Lagrange polynomials of degree N , over the element Ω̃e

vk̂(ξ, η, ζ) = `k1(ξ)`k2(η)`k3(ζ) k̂ stands for the triple of indexes {k1, k2, k3}. (5.106)

Lagrange polynomials have the interesting property that their values at GLL nodes are either 0 or 1

`j(ξ) =

N∏
i=0
i 6=j

ξ − ξi
ξj − ξi

; `j(ξi) = δji. (5.107)

An element of volume dz̃dx̃dỹ is related to an element of volume dξdηdζ in the reference cube by

dz̃dx̃dỹ = J̃edξdηdζ, (5.108)

where the volumetric Jacobian J̃e is the determinant of the Jacobian matrix J̃

J̃ =

∂ξ z̃ ∂η z̃ ∂ζ z̃
∂ξx̃ ∂ηx̃ ∂ζ x̃
∂ξ ỹ ∂ηỹ ∂ζ ỹ

 . (5.109)

We introduce the following notations of the coordinates of the dimensionless physical space and the
reference space

(p1, p2, p3) := (z̃, x̃, ỹ) and (r1, r2, r3) := (ξ, η, ζ), (5.110)

to develop the weak formulation in Equation (5.105) as∫∫∫
Ω̃
s vk̂dz̃dx̃dỹ +

∫∫∫
Ω̃

3∑
d=1

∂vk̂
∂pd

∂s

∂pd
dz̃dx̃dỹ =

∫∫∫
Ω̃
m vk̂dz̃dx̃dỹ. (5.111)

When moving to the reference space, according to the chain rule, this equation becomes∫∫∫ 1

−1
s vk̂J̃e(ξ, η, ζ)dξdηdζ +

∫∫∫ 1

−1

3∑
d=1

[ 3∑
i=1

∂vk̂
∂ri

∂ri
∂pd

][ 3∑
j=1

∂s

∂rj

∂rj
∂pd

]
J̃e(ξ, η, ζ)dξdηdζ

=

∫∫∫ 1

−1
m vk̂J̃e(ξ, η, ζ)dξdηdζ. (5.112)

or ∫∫∫ 1

−1
s vk̂J̃e(ξ, η, ζ)dξdηdζ +

∫∫∫ 1

−1

3∑
i=1

3∑
j=1

∂vk̂
∂ri

[ 3∑
d=1

∂ri
∂pd

∂rj
∂pd

] ∂s
∂rj

J̃e(ξ, η, ζ)dξdηdζ
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=

∫∫∫ 1

−1
m vk̂J̃e(ξ, η, ζ)dξdηdζ. (5.113)

In the following step, we use the approximation of a field u over the element [−1, 1]⊗ [−1, 1]⊗
[−1, 1], as follows

u(ξ, η, ζ) ≈
N∑

h1=0

N∑
h2=0

N∑
h3=0

uĥ`h1(ξ)`h2(η)`h2(ζ) =:
N∑
ĥ=0

uĥvĥ(ξ, η, ζ), (5.114)

where uĥ = u(ξh1 , ηh2 , ζh3) for vectors m and s. Therefore, Equation (5.113) becomes

N∑
ĥ=0

∫∫∫ 1

−1
vk̂vĥsĥJ̃edξdηdζ +

N∑
ĥ=0

∫∫∫ 1

−1

3∑
i=1

3∑
j=1

∂vk̂
∂ri

[ 3∑
d=1

∂ri
∂pd

∂rj
∂pd

]∂vĥ
∂rj

sĥJ̃edξdηdζ

=

N∑
ĥ=0

∫∫∫ 1

−1
vk̂vĥmĥJ̃edξdηdζ. (5.115)

The integral over the reference cube can be approximated by the GLL quadrature∫∫∫ 1

−1
f(ξ, η, ζ)dξdηdζ ≈

N∑
q̂=0

wq1wq2wq3f(ξq1 , ηq2 , ζq3), (5.116)

where wq1 , wq2 , wq3 are quadrature weights. As the test function vk̂ is the triple product of Lagrange
polynomials (Equation 5.106), which is 1 at node (ξk1 , ηk2 , ζk3), and 0 at other nodes (Equation (5.107)),
the weak formulation developed in Equation (5.115) can be transformed into a linear system

Ms + Ks = Mm. (5.117)

The mass matrix M is diagonal with

Mk̂k̂ = wk1wk2wk3 J̃e(ξk1 , ηk2 , ζk3) (5.118)

and the stiffness matrix K is symmetric and sparse

Kk̂ĥ =

N∑
q̂=0

wq1wq2wq3 J̃e(ξq1 , ηq2 , ζq3)
[ 3∑
i=1

3∑
j=1

∂vk̂
∂ri

( 3∑
d=1

∂ri
∂pd

∂rj
∂pd

)∂vĥ
∂rj

]
. (5.119)

The property mentioned in Equation (5.107) of the test functions can be used again to simplified the
spatial derivatives of the test functions as

∂vk̂
∂ξ

(ξq1 , ηq2 , ζq3) = `′k1
(ξq1)δk2,q2δk3,q3 , (5.120)

similar expressions can be written for ∂vk̂/∂η and ∂vk̂/∂ζ at (ξq1 , ηq2 , ζq3). Therefore, the element at
row k̂th, column ĥth of the matrix K can be explicitly computed as

Kk̂ĥ =
N∑

q1=0

wq1wk2wk3Je(ξq1 , ηk2 , ζk3)`′h1
(ξq1)`′k1

(ξq1)
[ 3∑
d=1

(∂pdξ(ξq1 , ηk2 , ζk3)2
]
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+
N∑

q2=0

wk1wq2wk3Je(ξk1 , ηq2 , ζk3)`′h2
(ηq2)`′k2

(ηq2)
[ 3∑
d=1

(∂pdη(ξk1 , ηq2 , ζk3))2
]

+

N∑
q3=0

wk1wk2wq3Je(ξk1 , ηk2 , ζq3)`′h3
(ζq3)`′k3

(ζq3)
[ 3∑
d=1

(∂pdζ(ξk1 , ηk2 , ζq3))2
]

+ wk1wh2wk3Je(ξk1 , ηh2 , ζk3)`′h1
(ξk1)`′k2

(ηh2)
[ 3∑
d=1

∂pdξ(ξk1 , ηh2 , ζk3)∂pdη(ξk1 , ηh2 , ζk3)
]

+ wh1wk2wk3Je(ξh1 , ηk2 , ζk3)`′h2
(ηk2)`′k1

(ξh1)
[ 3∑
d=1

∂pdξ(ξh1 , ηk2 , ζk3)∂pdη(ξh1 , ηk2 , ζk3)
]

+ wk1wk2wh3Je(ξk1 , ηk2 , ζh3)`′h1
(ξk1)`′k3

(ζh3)
[ 3∑
d=1

∂pdξ(ξk1 , ηk2 , ζh3)∂pdζ(ξk1 , ηk2 , ζh3)
]

+ wh1wk2wk3Je(ξh1 , ηk2 , ζk3)`′h3
(ζk3)`′k1

(ξh1)
[ 3∑
d=1

∂pdξ(ξh1 , ηk2 , ζk3)∂pdζ(ξh1 , ηk2 , ζk3)
]

+ wk1wk2wh3Je(ξk1 , ηk2 , ζh3)`′h2
(ηk2)`′k3

(ζh3)
[ 3∑
d=1

∂pdη(ξk1 , ηk2 , ζh3)∂pdζ(ξk1 , ηk2 , ζh3)
]

+ wk1wh2wk3Je(ξk1 , ηh2 , ζk3)`′h3
(ζk3)`′k2

(ηh2)
[ 3∑
d=1

∂pdη(ξk1 , ηh2 , ζk3)∂pdζ(ξk1 , ηh2 , ζk3)
]
. (5.121)

5.D Matrix-free finite-difference implementation scheme

The appendix provides an example of the finite difference implementation of Bessel smoothing strat-
egy in a matrix-free perspective. The numerical implementation is inspired from the structure-tensor
implementation in Hale (2009). Since the matrix P(x)PT (x) in Equation (5.70) is symmetric, only six
elements of this product need to be computed. They can be either computed outside or inside the loop
as

! Compute 6 tables of the geometric factor
G11=P11*P11+P12*P12+P13*P13
G12=P11*P21+P12*P22+P13*P23
G13=P11*P31+P12*P32+P13*P33

G22=P21*P21+P22*P22+P23*P23
G23=P21*P31+P22*P32+P23*P33

G33=P31*P31+P32*P32+P33*P33

Under any numerical discretization method, the linear system derived from the self-adjoint PDE (5.70)
is symmetric and positive-define, the conjugate gradient (CG) method is thus a nature choice for solving
this system. Inside each CG iteration, the double spatial derivatives of a given vector s(x)

d(x) = ∇Tz,x,yP(x)PT (x)∇z,x,ys(x), (5.122)

can be estimated following a matrix-free fashion, at second-order spatial precision, as
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DO i3=1,n3 ! Looping in y direction
DO i2=1,n2 ! Looping in x direction

DO i1=1,n1 ! Looping in z direction
! Smoothing tensor coefficients at nodes (i1,i2,i3)
g11=G11(i1,i2,i3); g12=G12(i1,i2,i3); g13=G13(i1,i2,i3);
g22=G22(i1,i2,i3); g23=G23(i1,i2,i3); g33=G33(i1,i2,i3);

! Extract the neighbors
r000=S(i1,i2,i3); r001=S(i1,i2,i3-1); r010=S(i1,i2-1,i3);
r011=S(i1,i2-1,i3-1); r100=S(i1-1,i2,i3); r101=S(i1-1,i2,i3-1);
r110=S(i1-1,i2-1,i3); r111=S(i1-1,i2-1,i3-1);

! Spatial derivative of the vector S in the "shifted" grid
! The first spatial derivative centered at (i1-1/2,i2-1/2,i3-1/2)
ra = r000-r111; rb = r001-r110; rc = r010-r101; rd = r011-r100;

r1= (ra+rb+rc+rd)/4/hz ! Eq(c1)
r2= (ra+rb-rc-rd)/4/hx ! Eq(c2)
r3= (ra-rb+rc-rd)/4/hy ! Eq(c3)

! Multiply by the smoothing tensor, and divide for the normalization 4*h
s1=(g11*r1+g12*r2+g13*r3)/4/hz
s2=(g12*r1+g22*r2+g23*r3)/4/hx
s3=(g13*r1+g23*r2+g33*r3)/4/hy

! Scatter back to the "normal" grid for the estimation of vector D
! The second spatial derivative centered at (i1,i2,i3)
D(i1,i2,i3)=D(i1,i2,i3)+s1+s2+s3 !r000 Eq(a1)
D(i1,i2,i3-1)=D(i1,i2,i3-1)+s1+s2-s3 !r001 Eq(a2)
D(i1,i2-1,i3)=D(i1,i2-1,i3)+s1-s2+s3 !r010 Eq(a3)
D(i1,i2-1,i3-1)=D(i1,i2-1,i3-1)+s1-s2-s3 !r011 Eq(a4)
D(i1-1,i2,i3)=D(i1-1,i2,i3)-s1+s2+s3 !r100 Eq(a5)
D(i1-1,i2,i3-1)=D(i1-1,i2,i3-1)-s1+s2-s3 !r101 Eq(a6)
D(i1-1,i2-1,i3)=D(i1-1,i2-1,i3)-s1-s2+s3 !r110 Eq(a7)
D(i1-1,i2-1,i3-1)=D(i1-1,i2-1,i3-1)-s1-s2-s3 !r111 Eq(a8)

ENDDO
ENDDO

ENDDO

The work is an on-going continuation of the collaboration with Wellington (2016).
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Applications





This part is based on the following extended abstracts and papers

•

• Trinh, P. T., Brossier, R., Métivier, L., and Virieux, J. (2018). Data-oriented strategy and Vp/Vs
model-constraint for simultaneous Vp and Vs reconstruction in 3D viscoelastic FWI: Application
to the SEAM ii foothills dataset. In 88th SEG Conference and Exhibition 2018, Anaheim
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Chapter 6

Synthetic examples
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In this chapter, we apply our FWI algorithm on different subsets of the SEAM Phase II Foothill
benchmark (Oristaglio, 2012, 2016; Regone et al., 2017) to highlight the importance of each element of
the methodological workflow which has been presented in the previous chapters. We are interested in
the FWI applications for simultaneous reconstruction of elastic parameter Vp and Vs. Applications on
similar sub-sets of the SEAM Phase II Foothill benchmark have been successfully conducted by using
an envelop-based misfit function as presented in Borisov et al. (2017).

The first example is a 3D isotropic elastic configuration in which the observed data is generated on
a different mesh compared with the inversion. We consider an “easy setting” with full 3D illumination
and close initial models to focus on the challenge of multi-parameters FWI. In the second example,
we apply the workflow developed from the first example on the visco-elastic SEAM Phase II Foothill
dataset. The data is created by the SEAM consortium to reproduce the imaging challenges in mountain
regions (Regone et al., 2017). We aim at inverting the pseudo-2D dip-line visco-elastic survey, starting
from relatively crude initial models. Besides the poor illumination of the pseudo-2D acquisition, the
task is particularly difficult due to the strong near-surface heterogeneities and complex geometries.



SYNTHETIC EXAMPLES

Figure 6.1: 3D acquisition design superimposed on the topography and the underlying mesh, where
the colorbar illustrates the absolute depth Zabs(m) from a pre-defined zero-depth: Sources positions are
marked by red triangles ∆Sx = 320 m, ∆Sy = 500 m. For each source, 3-component receivers are
deployed in the whole surface with ∆R = 12.5 m.

6.1 Elastic 3D configuration

This section considers a 3D isotropic elastic subtarget of the SEAM Phase II Foothill model, in which
both forward and inversion problem use SEM, but on different meshes. The observed data is generated
by ourself, and the inversion is run with the true source function. The inversion starts from a relatively
close initial model, in the regime of no cycle-skipping. Even in a such “easy” setting, appropriate
data-windowing hierarchy and gradient preconditioning are required to reliably estimate the model
parameters. The required computer resources for 3D elastic and visco-elastic FWI on this subset are
also provided.

6.1.1 Model description & 3D acquisition design

The topography variation is significant for this target, with maximal vertical variation of 800 m as shown
in Figure 6.1. The bedding plans are gently dipping in x-direction with folding structures, which can
be visualized from the depth section in Figure 6.4(a). The model also has an unconformity at 2-3 km
depth, which might be difficult to recover through FWI. Velocity attributes extracted at 20 m below the
free-surface in Figure 6.6(a) show interesting features with complex geometry.

We use a 3D surface acquisition with 4 source-lines, each line including 20 sources. The source
positions are indicated by red triangles in Figure 6.1, with inline and crossline source-spacing ∆Sx and
∆Sy taken at 300 m and 500 m, respectively. For each source, a grid of 3-component (3C) receivers is
deployed on the whole surface, the distance between two adjacent receivers being 12.5 m. We use ver-
tical point-force. The source-time function is a Ricker wavelet, centered at 3.5 Hz. The total recording
time is equal to 6 sec.

The observed data is generated with a constant element-size mesh, globally satisfying the volume
condition of around 6 points per shortest wavelength. The true compressional and shear wavespeeds for
the observed data generation are presented in Figures 6.5(a). A sharp density model, as these velocity
models, is considered for the observed data generation. As shown in the observed-data panel in Figure
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6.1 Elastic 3D configuration

Figure 6.2: Example of an observed seismic shot: The wavefield is complex with highly energetic and
dispersive surface waves. Significant converted and back-scattering energies occur when the waves hit
the steep-slope topography. The separation between the early-body waves and surface waves can be
done through a simple bottom mute.

6.2, the seismic wavefield is complex, including highly dispersive surface waves due to the rapidly
varying topography. Significant back-scattering of body and surface waves as well as mode conversion
at steep-slope surface positions can also be observed, for instance at X = 3 km (the associated Vs
cross-section is presented in Figure 6.3(a)). In the seismogram in Figure 6.2, we distinguish between
the early-body waves, which arrival before the surface waves, with the rest of the wavefield.

6.1.2 Inversion setup

The inversion problem is computed over variable element-size mesh, locally satisfying the volume
condition of around 6 points per shortest wavelength. As discussed in Section (2.5.2), a high-order
geometry representation, i.e. the P4 representation in this case, should be used to describe rapid topog-
raphy variations of the surface, especially for this variable element-size mesh. Since the sources and
receivers are located at the free-surface, P4 representation also helps to correctly position sources and
receivers.

The initial Vp, Vs models that we use (Figures 6.5(b) and 6.6(b)) are smoothed versions of the
true model. Similar smoothed model is used for density as the input of the inversion process. To
investigate on different aspects of elastic FWI, such as gradient preconditioning and data-windowings
hierarchy, we choose here a set of starting models compatible with the frequency-content of the data:
the calculated data in the initial models is not cycle-skipped compared with the observed data, as shown
in Figure 6.7(a). We invert simultaneously for Vp and Vs, and the density is kept unchanged, as a passive
parameter. Each inversion sequence consists of 60 iterations of the l-BFGS optimization method. We
do not apply other preconditioning or regularization than the Bessel gradient smoothing as detailed
below.
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Figure 6.3: Gradient smoothing illustration underneath the source line at Y = 750 m: (a) True velocity
model. (b) Initial model. (c) Original scaled gradient without any smoothing, showing significant
acquisition footprint and artifacts due to sparse acquisition. (d) Smoothed gradient by Bessel filter
where the parameters are described in Figure 6.4(b,c), which clearly show the dip & azimuth filtering
effect.
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Figure 6.4: Top - Depth section (xy-view) at z = 1 km, bottom - Cross section (zx) at Y = 100 m: (a)
True Vs velocity model with gentle dipping in zx-section and folding in xy-view. (b) Smooth azimuth
field, which nicely follows the folding the structures in xy-view. (c) Smooth dip field, which is almost
homogeneous.
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6.1 Elastic 3D configuration

6.1.2.1 Structure-oriented gradient preconditioning

The raw gradient computed on the initial model is presented in Figure 6.3(c), showing significant ac-
quisition footprint at the near-surface. Unrealistic oscillations also occur at greater depths, due to the
limited illumination coming from the sparsity of the sources. However, the targets have considerable
dipping and folding structures, which can be characterized by smooth azimuth and dip fields as shown
in Figures 6.4(b) and (c). Since the structures vary quicker in vertical direction than the horizontal
directions, we design a highly anisotropic filter shape in which the vertical coherent length Lv is set to
25 m, much smaller than for other directions. Due to the presence of an unconformity, the horizontal
coherent lengths Lu and Lw increases from 25 m near the discontinuity position to 100 m elsewhere.
By doing so, the filter has an isotropic shape near the unconformity to avoid any smearing effect across
the unconformity. The anisotropic coherent lengths design together with the 3D rotation result in the
oblate-spheroid shape of the filter volume, with the major plan toward the dipping direction of the bed-
ding plan. In practical applications, the filter design can be based on an interpretation of the migrated
image computed from the initial models or any geological prior information about the medium such as
well logs and geological description.

By considering these filter parameters in the structure-oriented Bessel preconditioning, we obtain
the smoothed gradient 6.3(d): The artifacts due to the acquisition footprint and the poor illumination
are effectively reduced, without degrading the deeper structures. The continuity of the features at
greater depths is enhanced since the oscillations are weaken. We also obtain a correct orientation of
the geological features. In this example, the smoothing process costs only 0.4% running time of one
FWI iteration. The structure-oriented Bessel gradient precondition as described above is systematically
applied into any inversion sequence in the next section.

6.1.2.2 Data-windowing hierarchy

Due to the rough topography, the seismic wavefield is quite complex with high-amplitude and dis-
persive surface waves and significant back-scattering waves as described in Figure 6.2. A two-step
data-windowing hierarchy is considered to mitigate the dominance of the Vs parameter over Vp, due
to the presence of surface waves. The models are first inverted with early-body waves, arriving before
the surface waves. The observed models will then be used as starting models for the inversion will the
entire wavefield. During the first step, a bottom mute is used to separate the early-body waves with the
surface waves and underlying reflected and back-scattering waves, as illustrated in Figure 6.2.

6.1.3 Inversion results

The cross-sections of the results obtained after the first step are shown in Figure 6.5(c). The inversion
successfully recovers main structures of the Vp model. The reconstruction of the Vs model is limited
at 2 km depth due to the shallow penetration of the shear component. The models presented in Figures
6.5(c) and (d) are obtained after the second step, accounting for the whole dataset. Adding surface
waves and other parts of the wavefield does not degrade the Vp estimation and improve significantly
the Vs model. The continuity of the near-surface features are strengthened and the deeper structures
are better resolved. The unconformity is well reconstructed in the Vs model at the 2 km depth (Figure
6.5(d), middle and right panels). This is in part due to the nonstationary design of the Bessel filter.
When looking at the velocity attributes extracted at 20 m below the free-surface, (Figures 6.6(c) and
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e) Inversion with all waves, starting from initial models in figures b
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c) Inversion with body waves, starting from initial models in figures b
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Figure 6.5: Left - Vp velocity cross-section at Y = 1 km, middle - Vs cross-section at Y = 1 km,
right - Vs cross-section at X = 5 km: (a) True models. (b) Initial models. (c) Inversion results by
only using the early-body waves, starting from the initial models. (d) Inversion results by using all the
wavefield, starting from models in Figure (c), showing significant improvement for the Vs estimation.
(d) Inversion results by using all the wavefield, starting from the initial models - no significant update
in Vp estimation.
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c) Inversion with body waves, starting from initial models in figures b
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Figure 6.6: Velocity attributes extracted at the relative depth ∆Z = 20m from the free-surface. Left
- Vp, right - Vs: (a) True models with interesting channels. (b) Initial models. (c) Inversion results
by only using the early-body waves, starting from the initial models. (d) Inversion results by using
all the wavefield, starting from models in Figure (c), showing that surface waves can bring additional
information to improve inversion results at near-surface for both Vp and Vs.

(d)) inverting for surface waves actually improves the thin-structure imaging and amplitude estimation
for both Vp and Vs.

6.1.4 Discussions

6.1.4.1 Importance of the data-windowing hierarchy

Since the calculated data from the initial models is not cycle-skipped compared with the observed data,
one can run the inversion with the entire wavefield, without any distinction between body and surface
waves. The inverted results are shown in Figure 6.5(e), where the Vs is well-reconstructed. However,
we observe insignificant updates of the Vp model. As the data is dominated by surface waves, the least-
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squares misfit function is mainly sensitive to Vs. The data-oriented strategy we use in this 3D example is
thus crucial: By focusing on early body waves before considering the whole data, our data-windowing
hierarchy makes possible to better constrain the P-wave velocity.

Figure 6.7 shows the comparison of observed data with the calculated data computed from initial
models and final inverted models (in Figures 6.5 and 6.6(d)). It should be remarked that compared
with the observed data, the initial models produce simple surface waves estimation and weak amplitude
of the first-arrival due to wrong velocities at the source location. After the two-step data-windowing
hierarchy, the inversion successfully recovers details in the velocity models, resulting in an improved
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Figure 6.7: Data comparison at the shot-line Y = 750 m between observed data and calculated data: (a)
dcal estimated from initial models in Figure 6.6 and 6.5(b); (b) dcal computed from inverted models in
Figure 6.6 and 6.5(d). Final inverted models significantly improves the data-fit for the back-scattering,
body and surface waves. The inversion also recovers the body-wave amplitude, related to the radiation
efficiency of the source from model perturbation.
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Figure 6.8: Difference between inverted results with structure-oriented preconditioning (Figure 6.5(d))
and the inversion results with stationary smoothing Lv = 25 m, Lu = Lw = 100 m, 0◦ dip and azimuth
angles. (a) and (b) are Vp and Vs cross-sections at Y = 750 m. The rotational gradient preconditioning
mainly affects the amplitude estimation.

agreement with the observed data for surface, body and back-scattering waves.

For complex real data applications, especially in foothill environment, this data separation between
early body waves and surface waves might be difficult to achieve. In such a case, a model hierarchy
could be used on top of this data-windowing strategy, where Bessel gradient preconditioning and/or
model regularization could be used to monitor the wavenumber-content of the allowed model updates.
At the first step, only low-wavenumber Vs updates would be allowed in order to enhance the Vp recon-
struction.

6.1.4.2 Structure-oriented Bessel preconditioning enhances the model estimation

The importance of the gradient preconditioning is highlighted in Figure 6.3. If prior information about
the structures such as the local 3D rotation is not available, a simple stationary anisotropic Bessel
preconditioning could be enough to remove artifacts in the gradient (Trinh et al., 2017b), for example
with coherent lengths Lv = 25 m, Lu = Lw = 100 m, and 0◦ dip and azimuth angles. It should be
repeated that the anisotropic design relies on the fact that geological features vary quicker in the vertical
direction than in horizontal directions.

Without the 3D rotation and variable coherent lengths in the gradient preconditioning design, the
overall shape of the estimated models will remain similar as the results presented in Figure 6.5 and
6.6. These properties mainly affect the amplitude of the estimated parameters as highlighted in Fig-
ure 6.8, which shows the difference between inverted results with the nonstationary structure-oriented
preconditioning and the inversion with the stationary filter, under the same inversion hierarchy and set-
ting. The comparison shows considerable modification of the amplitude estimation for both Vp and Vs,
especially following the dipping directions. In particular, notable difference can also be observed at
the unconformity because the nonstationary filter is reduced to isotropic shape near this location. The
model update is thus not smeared out across the unconformity, leading to a sharp interface as shown in
the final Vs model in Figure 6.5(d). It should be noted that we only impose the relative position of the
unconformity, and we simply reduce the filter effect at this location. By doing so, the filter does not
artificially sharpen the interface but let FWI free to reconstruct it.
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Total memory
per shot

1st gradient
estimation

FWI (60 it-
erations)

3D Elastic FWI example (3×7×2 km) - 1600 cores:
3.98 × 106 dofs; 82.6×103 receivers per source; 104

time steps; Decimation ratio = 5; Mesh with all de-
formed elements. Inverting for Vp, Vs parameters.

44 Gb 20 min 20.8 h

3D viscoelastic FWI test - 1600 cores:
Quality factors Qp = Qs = 50; Incident fields re-
construction: 80 checkpoints, decimation ratio = 5,
energy tolerance = 5 % leading to recomputation ra-
tio ≈ 3.2.

70 Gb 1.36 h 84.8 h (es-
timation)

Table 6.1: Top - Memory requirement and computational cost for the elastic FWI test on the 3D subset
of the SEAM Phase II Foothills benchmark. Bottom - Estimation for 3D viscoelastic test with similar
setting.

6.1.4.3 Computer memory and elapsed time

The 3D elastic inversion study has been performed on 1600 cores, where the computation for each shot
being performed on 20 cores (i.e. 80 sources and only 20 sub-domains per shot). The incident fields
are reconstructed from the decimated boundary wavefield with a decimation ratio equal to 5. The total
memory requirement per shot is thus about 44 Gb. Each gradient computation in parallel is performed
in 20 min, leading to almost 21 hours for one FWI sequence of 60 iterations, as shown in Table 6.1. It
should be noted that storing the incident fields at each time-step would require approximately 889.5 Gb
per shot without any compression.

On the same 3D models with similar numerical setting, we add homogeneous viscous properties
with Qp = Qs = 50, which is the value of quality factors in the near-surface region of the SEAM
II Foothills benchmark. To take benefit from whole memory while optimizing the elapsed time, 80
checkpoints are stored and a decimation ratio equal to 5 is used for wavefields saving at the boundaries.
The energy tolerance for monitoring the reconstruction of incident fields is set to 5 % (Algorithm 5),
leading to a recomputation ratio equal to 3.2. The wave propagation in anelastic medium is more
expensive than for the elastic cases: one gradient costs 1.36 hours in parallel, providing an estimation
of 85 hours for 60 iterations. In this setting, we obtain a factor 4 between elastic and visco-elastic
inversion. It should be noted that storing the incident fields at each time-step would require 3.5 Tb per
shot, due to the fact thatCIJ -gradient requires access to both strain and memory-variable incident fields
(Eqn. 3.25).

It should be noted that Table 6.1 provides estimations for a relatively small example. In realis-
tic applications, even with variable-element mesh design, we expect to consider 108 dof with longer
recording time. In such applications, storing a large number of checkpoints or incident wavefields even
at the Nyquist frequency in core-memory is infeasible. One might use the out-of-core memory at the
expense of the I/O cost. Similar strategy could be considered for the storage of the wavefield in the
boundaries. We rather focus on storing a small number of checkpoints and decimated boundary wave-
field at Nyquist frequency in core-memory with limited I/O request but higher recomputation ratio of
the incident fields.
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6.2 SEAM II Foothill dataset

Figure 6.9: The 3D SEM mesh designed at 3 Hz maximal frequency: 100 m elements size at the near-
surface and 200 m elements size at the deeper part. The topography map is put on top of the mesh,
where the colorbar illustrates the absolute depth Zabs(m) from a pre-defined zero-depth. The source
positions of the 2D line are indicated by black triangles (∆S = 200 m).

6.2 SEAM II Foothill dataset

In this section, we apply our FWI frame and the two-step data-windowing hierarchy proposed in the
previous section on the SEAM Phase II Foothill dataset. The data is computed by the SEAM consortium
and we do not have information about the data generation. Starting from relatively crude initial models,
we focus on the simultaneous reconstruction of compressional and shear waves velocities from the
pseudo-2D dip-line visco-elastic survey. Besides the poor illumination of the pseudo-2D acquisition,
the task is particularly difficult due to the strong near-surface heterogeneities and complex geometries.
We also highlight the importance of the model constraint on the ratio Vp/Vs developed in Section (3.2.4)
for reliable Vp and Vs reconstruction. We show that it is possible to reconstruct the shallower part form
early-body waves before integrating surface waves for better constraining the construction at depth.

6.2.1 SEAM II Foothill Dip-line configuration

Our main target is the cross-section of the SEAM II Foothill model, underneath the pseudo-2D dip-
line survey. The entire 2D line has 17 km length, but we limit the investigated area at 8 km in the
x-direction. The associated compressional and shear velocities are presented in Figure 6.13(a). The
topography variation in this area is significant, with maximal vertical variation of 900 m as shown in
Figure 6.9. The structure is characterized by gentle dip in the x-direction with folding structures and
an unconformity at 2-3 km depth as shown in Figure 6.13(a). The near-surface has alluvial deposits

Figure 6.10: The pseudo-2D acquisition design with 1 source line (in black) and 9 receiver lines (in red
dash lines). The source positions are indicated by black triangles (∆S = 200 m).
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Figure 6.11: (a) The z-component
of the observed visco-elastic data,
low-pass filtered at 5 Hz.
(b) Time envelope-misfit [%] be-
tween the simulated elastic and vis-
coelastic data, computed for the
whole seismic gather: showing neg-
ligible difference.
(c) The near-surface Vs model.
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resulting from rapid erosion (Regone et al., 2017). These channels have low shear velocity, about
550 m/s at the surface, which are main obstacles for FWI. Moreover, the first 500 m below the surface
has anelastic properties with Qp = Qs = 50.

The pseudo-2D line is acquired along the middle of the SEAM II Foothill model in the dip (x)
direction. Due to limited computational resources, we only treat 40 shots: their positions are indicated
by black triangles in Figure 6.9, with inline source-spacing being 200 m. There are 9 parallel receiver
lines: the central line lies along the source line, with 4 parallel lines on either side, spaced at 25 m in
the crossline (y) direction as illustrated in Figure 6.10. Receivers in the inline direction are located each
6.25 m (Oristaglio, 2016). All of the receivers are 3-components geophones and the sources are vertical
point-force.

The acquired visco-elastic data is complex, including highly energetic and dispersive surface waves,
as shown in Figure 6.11(a). By cross-comparing with the near-surface model in Figure 6.11(c), we
observe significant back-scattering and converted waves at the steep-slope positions and at the strong-
contrast interfaces between the alluvial deposits and the background medium, for example at the inter-
vals (1− 2 km) and (5− 7 km) in x direction. The reverberations inside the low-velocity channels also
dominate the wavefield amplitude, which are the most challenging parts for data fitting.

6.2.2 Inversion setup

The data considered for our inversion are the ones generated by the SEAM consortium, for which we
do not have information about the numerical method, the mesh design and the source wavelet. The
application is therefore not in the inverse-crime configuration.

140



6.2 SEAM II Foothill dataset

0 1 2 3 4 5 6 7
X (km)

0

1

2

3

Z
 (

km
)

-60 -40 -20 0 20 40 60

-75

-50

-25

0

25

50

75

Figure 6.12: Relative model error of initial Vs model compared with the true model, computed from
Equation (6.1).

6.2.2.1 Initial models & Mesh design

The initial Vp and Vs models are built in a realistic way, from 5 logs at positions 0, 2, 4, 6 and 8 km
in x-direction. The models are obtained from a standard interpolation between upscaling logs data, as
shown in Figure 6.13(b). We assume that no precise information about the alluvial deposits is available
by removing all the Vs value less than 1000 m/s, leading to a wrong near-surface description in the
starting velocity models. The inaccuracy of the initial model is also highlighted by Figure 6.12, which
shows the relative model error between the initial and the true Vs model computed through

Errorrel =
V true
s − V initial

s

V true
s

. (6.1)

This estimation indicates a significant relative error at the near-surface, with more than 200 % inside
the low velocity channels. The density model is calculated from Vp through a linear regression obtained
from wells data as:

ρ [kg/m3] = 0.177× Vp [m/s] + 1663 (6.2)

To account for the 3D propagation effects, we consider a narrow 3D model with 2 km in y-direction.
Since we limit at 8 km offset in x-direction, we do not expect any model update below 3.5 km in depth.
The 3D initial models are built from these 2D sections assuming invariance along the y-direction.

Different SEM meshes are designed for different inversion frequency bands (i.e. 0-3 Hz and 0-
5 Hz). Since we expect significant heterogeneities at the near-surface, the first 500 m in z-direction
is filled with small elements. The element sizes are computed from the expected shear wavelength.
An example of the mesh design for the maximal frequency at 3 Hz is shown in Figure 6.9: the near
surface contains 100 m elements and the deeper part is filled with 200 m elements size. Each element
is deformed by the 4th-order shape functions to describe the sharp topography (?).

6.2.2.2 3D elastic inversion setup: Data-windowing hierarchy

We apply our FWI frame on SEAM II Foothill dataset, low-pass filtered in the [0-5 Hz] frequency
band. The time-frequency envelope misfit (Figure 6.11(b)) is used to compare the synthetic elastic
and visco-elastic seismograms, showing negligible difference: less than 10% misfit (Kristeková et al.,
2006). Based on this observation, we decide to use elastic engine to invert for the visco-elastic dataset,
at least at low frequency. However, it is interesting to note that the main differences occur at the areas
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associated with the trapped energies inside the alluvial deposits, between 1-2 km and 5-7 km as cross-
compared with Figure 6.11(c).

We invert simultaneously for Vp and Vs. To mitigate the dominance of the Vs parameter over Vp,
due to the presence of surface waves, we use a two-step data-windowing hierarchy: (1) The early-body
waves, arriving before the surface waves, are first considered for the inversion. (2) The reconstructed
models will then be used as starting models for the inversion with the whole wavefield. We simply use
a bottom mute to separate the early-body waves with other parts of the wavefield.

Each step contains different FWI sequences as detailed in the next sections. Each sequence con-
tains 30 iterations, where the density and the source wavelet are kept unchanged. After each inversion
sequence, the source wavelet is re-estimated as described in Section (3.3) (Pratt, 1999), and the density
is computed from the obtained Vp model according to the empirical relationship (6.2). We consider
one single wavelet estimation for the entire dataset, under the assumption that the source signature is
coherent from shot to shot.

We do not apply other preconditioning than the Bessel-based gradient smoothing (Trinh et al.,
2017b). The coherent lengths design is adapted to the working frequency: Lv = 100m and Lu = Lw =
400m for [0-3 Hz]; Lv = 30m and Lu = Lw = 120m for [0-5 Hz]. We suppose that the smooth dip
field is known and 0◦ strike as our main target is a 2D cross-section.

Inversion with early-body waves

When considering the early body-waves within the range [0-5 Hz], the calculated data computed from
the initial models are cycle-skipped compared with the observed data at the far offsets. The cycle-
skipping issue can be assessed by the time-shift attributes, as shown in Figure 6.14(a), which measures
the time-lag of the maximum of the cross-correlation function between the calculated and the observed
windowed seismic traces. From this calculation, we can also extract the maximal cross-correlation
attribute to evaluate the trace-by-trace similarity between the calculated and the observed data, given
in Figure 6.14(c). These attributes are computed for all traces acquired by the central receiver line. It
should be noted that the synthetic data is considered as cycle-skipped when the measured time-shift
with the observed data is more than 0.1 sec (half of the apparent wavelength in the observed data). A
good data match is indicated by small time-shift (close to 0 sec) and high maximal correlation values
(close to 1).

The time-shift and maximal cross-correlation attributes in Figure 6.14(a) and (c) are computed from
the early-body waves, which highlight the cycle-skipping issue at the far-offset. Since the initial models
have no information about the low-velocity alluvial deposits, significant dissimilarity is also visible for
the near-offset data in these areas. This analysis is further confirmed by the data comparison between
the observed data and the calculated data computed from initial models for the first shot, given in Figure
6.15A. Significant phase mismatch for early body waves at all offset ranges can be identified from this
superimposed comparison.

We apply the standard low-to-high frequency strategy (Bunks et al., 1995) by considering two fre-
quency bands: [0-3 Hz] and [0-5 Hz]. For each frequency band, we firstly inject half of the early-body
waves package in time. The recovered models will then be used as starting models for the inversion
will all the early-body waves. This strategy helps to enhance the Vp estimation since the early arrivals
have more P-wave signature. The final models after the inversion with the early-body waves are shown
in Figure 6.13(c).
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Inversion with all the wavefield

Since the seismic wavefield is dominated by surface waves and back-scattering energies (Figure 6.11(a)),
we would like to incorporate these information into the inversion. The comparison of the entire wave-
field between the calculated and the observed data indicates that the models in Figure 6.13(c) are not
good enough to avoid the cycle-skipping issue at 5 Hz (The time-shift attribute map is not shown here).
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d) Final models obtained with all the wavefield within [0-3Hz], starting from models (c).
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c) Final models obtained with early body waves within [0-5Hz], starting from initial models.
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Figure 6.13: Left - Vp target cross-section, Right - Vs target cross-section: (a) True models. (b) Initial
models. (c) Inversion results obtained with early-body waves within [0-5 Hz], showing interesting
reconstruction for both Vp and Vs. (d) Inversion results by using all the wavefield within [0-3 Hz],
showing improvement for the Vs estimation at depth.
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Figure 6.14: Time-shift [sec] and maximal cross-correlation maps between the calculated and the ob-
served data. The attributes are computed for early-body waves within the range [0-5 Hz]: (a) and (c)
are from initial models; (b) and (d) are from inverted models in Figure 6.13(c). Source positions are
indicated by black triangles.

We then consider again the low-to-high frequency strategy by considering two frequency bands: [0-
3 Hz] and [0-5 Hz].

Starting from the models 6.13(c), the Vp and Vs parameters obtained from the inversion with the
entire wavefield within [0-3 Hz] are shown in Figure 6.13(d). We do not show the results obtained from
the next frequency band [0-5 Hz] due to insignificant improvement.

6.2.3 Inversion results & Discussions

After the first step with low-to-high frequency strategy on early-body waves, the inversion successfully
recovers main structures of the P- and S-velocity models (Figure 6.13(c)). The alluvial deposits and
near-surface heterogeneities are well detected on both Vp and Vs. The time-shift and maximal cross-
correlation comparisons between the observed and the calculated data on these models (Figure 6.14(b)
and (d)) shows significant improvement compared with the measurement on the initial models (Figure
6.14(a) and (c)), both at near and far offsets. However, the Vs model contains discontinuous geological
features due to shallow penetration of the shear component, the poor illumination of the pseudo-2D
acquisition and the sparsity of the sources.

Considering the entire wavefield helps to improve the Vs model, without degrading the Vp estima-
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6.2 SEAM II Foothill dataset

Figure 6.15: Data comparison for
the first shot between the observed
data dobs and calculated data dcal:
(A) dcal estimated from initial mod-
els in Figure 6.13B,
(B) dcal estimated from inverted
models in Figure 6.13D.

Observed data is displayed with red-
and-blue color. Calculated data is
displayed with black and transpar-
ent color.
Good data-fit is identified when the
red loops are perfectly covered by
the black loops.

tion, as shown in Figure 6.13(d). The continuity of the near-surface features are strengthened and the
deeper structures at 2 km depth are better resolved. This is due to the fact that the inversion can exploit
the shear body waves hidden by the surface waves and back-scattering energies. However, we stop the
second inversion step at 3 Hz since the obtained near-surface models are not good enough to explain
the surface energies at 5 Hz. It should be noted that the model resolution is limited by a half of the lo-
cal wavelength. The inversion thus cannot reconstruct sharp contrasts in the obtained velocity models,
leading to the limited capacity to fit the back-scattering and surface energies in the data. This is also
one of the main reasons why we consider the low-to-high frequency strategy instead of other surface
waves inversion strategies, such as the layer stripping technique proposed by Masoni et al. (2016).

Figure 6.15 shows the comparison of the 5Hz observed data with the calculated data computed
from initial models and final inverted models (Figures 6.13(b) and (d), respectively). Compared with
the observed data, the initial models produce rather incoherent body and surface waves with offset as
shown in Figure 6.15(A). Significant mismatch between the observed and calculated data is also ob-
served at all offset ranges and at all time-window levels. After the two-step data-windowing hierarchy,
the early-body waves data fit has been improved as shown in Figure 6.15(B), especially for the first
arrivals. However, once can detect some phase mismatch related to the velocity inaccuracy inside the
low-velocity channels between 5 and 7 km for the early-body waves part. As described before, the
5 Hz surface waves are completely cycle-skipped, again confirming that this data part cannot be used
by the inversion. It should be noted that the coherency of the calculated wavefield with offset is sig-
nificantly improved for both body and surface waves. Even when the surface waves are cycle-skipped
but the waveform looks rather similar, implying that a more cautious inversion strategy might offer the
possibility to consider this surface-related energies.

In many elastic FWI applications for land problems, the least-squares misfit function is more sen-
sitive to Vs, as shear events have strong imprint in the data. This is the case for our application where
the models have significant geological heterogeneities such as low velocity alluvial deposits at the near-
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Figure 6.16: Vs logs comparisons at several position: X = 1500 m and 6500 m logs go through low-
velocity channels, X = 3000 m is within the areas without alluvial deposits. Blue - initial model, black
- inverted Vs and red - true model. The logs are only displayed from the free-surface level.

surface, leading to significant converted energies in the wavefield. The vertical-point-force source also
generates a considerable amount of shear energy. The inversion process is then dominated by the Vs
update in those low-velocity zones. This consequently produces unrealistic updates where Vs > Vp or
too small value of Vs. Once these issues occur the inversion process will stop after several iterations due
to numerical instabilities. To overcome these issues, Section (3.2.4) introduces a non-linear constraint
on the ratio Vp/Vs, which is applied simultaneously with the bound constraints on the range of Vp and
Vs. For this application, we only consider homogeneous constraint on the ratio as

1.4 ≤ Vp/Vs ≤ 3.0. (6.3)

These upper and lower bounds are simply designed based on well data. Such a simple constraint
does not affect the FWI descent direction. At each iteration, it only removes unrealistic values of the
estimated model parameters, leading to more reliable Vp and Vs estimation.

Since we suffer from the poor illumination of the pseudo-2D acquisition and sparse source dis-
tribution, i.e. only 40 sources are considered in this experiment, the estimated models thus contain
significant artifacts. However, the inversion process in Figure 6.13 is still able to recover the main
features in both Vp and Vs. The argument is further supported by some logs extractions at different
locations as shown in Figure 6.16, in which the Vs amplitude for shallow targets are retrieved. The Vs
estimation below 2500 m is unreliable, they are thus not shown here.

6.2.4 Perspectives

In this example, we treat the visco-elastic dataset by an elastic approach. Even when time-envelope
misfit in Figure 6.11(b) shows insignificant difference between the elastic and visco-elastic data, the
phase and amplitude distortion still appears in the visco-elastic dataset. Therefore, one source estima-
tion per shot could be used to partially absorb the attenuation effect into the source wavelet. Moreover,
the inversion hierarchy only consists of two frequency bands, with fews time-windows per frequency
band. With the current 5 Hz dataset, a more elaborated inversion strategy might help to improve the
model estimations before injecting the surface energies. Higher frequency early-body waves could be
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also considered to produce a more accurate near-surface models before considering the 5 Hz surface en-
ergies. In addition, considering more data, for instance more seismic shots, could also help to improve
the estimated models quality.

6.3 Conclusion

The synthetic studies illustrate the complexity of the data and elastic multi-parameter FWI problem
in complex land areas. We showed that the two-step data-windowing hierarchy makes possible for
simultaneous estimation of Vp and Vs. If the surface waves and back-scattering energies are not cycle-
skipped, we can take advantage from the hidden information below these events to get better Vp and
Vs estimation, both at the near-surface and deeper parts. We treat body waves and surface energies
independently, following low-to-high frequency strategies, to get a reliable model parameters estimation
but also to exploit the maximum amount of information in the observed data. We also notice that
body and surface waves require different frequency-hierarchy. In the second example, higher model
resolution is required before the [0-5 Hz] surface and back-scattering energies can be integrated into
the inversion.

We highlight the importance of additional prior information for providing reliable inverted model
parameters. These information can be injected through the gradient preconditioning or model con-
straint. Experiences show that the inversion does not require sophisticated prior: A stationary gradient
preconditioning and homogeneous model constraint are enough for stable inversion results. However,
the accuracy of inverted models could be enhanced if some additional information is available, such as
3D rotation and relative faults position, which can be incorporated through the nonstationary Bessel-
based preconditioning. More delicate prior, for example lithology changes, can be introduced through
the constraint on the relationship between inverting parameters, such as the ratio Vp/Vs.

We promote the use of time-shift and maximal cross-correlation attributes for data quality control
but also for inversion hierarchy design. These attributes provide a global indication of the data fit, which
is directly associated with the quality of the inverted models.
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Chapter 7

Real data application
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In this chapter, we apply our FWI algorithm within the workflow developed on the SEAM Phase
II Foothill benchmark on a real foothill dataset. This application is particularly challenging due to the
sparse 2D acquisition both in sources and receivers, the presence of high levels of noise and complex
underneath structure. It is difficult to progress quickly in this real data application since for instance, the
process generates considerable amount of artifacts in the Vs estimation. The models presented in this
chapter are thus preliminary results. To avoid any showing right issues, no structure images, migrated
sections or absolute spatial locations are presented nor discussed.

7.1 Background information

7.1.1 Exploration context

We are interested in a complex foothill area with significant topography variation. The 3D volume of
the entire area is shown in Figure 7.1, which is a SEM mesh generated from a given LIDAR topography



REAL DATA APPLICATION

Figure 7.1: The 3D volume of the entire area. The considering 2D seismic line is indicated by the red
dash line.

map. The topography has maximal vertical variation of 1000 m as shown in a subset of the LIDAR to-
pography map in Figure 7.2. The sub-surface is characterized by verging thrusts with complex faulting
and a series of anticlines and synclines, holding a large quantity of trapping hydrocarbons. Significant
folding and highly dipping structures are resulted from the active tectonic activities in the past.

Some seismic surveys were acquired during the exploration phase for target imaging. Several pre-
and post-stack images were generated, but they failed at imaging the top of the reservoir. This is due
to significant amount of noise in the data, as shown in Figure 7.3, sparse acquisition and mainly the
inaccuracy of the Vp velocity model. The rough topography variation and the excessive amount of
noises make the standard velocity model building approach very difficult, for instance velocity picking
and tomography techniques. The large geological uncertainties remain the most challenging factor for
exploration. For this reason, multidisciplinary approaches and their integration have been considered
for exploration but also during the later development phases. Different types of data, from seismic to
non-seismic methods, have been acquired in this field. The strategic and business decisions mainly rely
on the combination of different geophysical interpretations, driven by the appraisal wells. However, the
geometry of the reservoir structure remains uncertain, especially the top of the structure.

In this chapter, we re-visit the velocity model building step with the 3D elastic FWI technique. As
described in the previous chapter, our SEM46 tool is capable of correctly modeling the elastic wave-
field, even under rapid topography variation. This modeling accuracy offers a possibility to improve
the velocity models reconstruction through any data-fitting technique such as FWI. Among different
seismic dataset, we consider a 2D seismic line which has the highest receiver density. The selected 2D
line is indicated by the red line in Figure 7.1.
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Figure 7.2: A subset of the LIDAR topography map where the colorbar illustrates the absolute depth
from a pre-defined zero-depth. Sources positions are marked by black triangles, showing significant
deviation in y direction. The selected sub-target is indicated by the rectangle.

7.1.2 Seismic data

The considered 2D line is located across the mountain trend with significant topography change. The
entire seismic line is acquired with explosive sources, buried at 7 m depth. All receivers are single
vertical (z) component, located at the free-surface. The sources and receivers follow the same line,
as indicated by the black triangles in Figure 7.2. The acquisition has significant deviation in the y
direction, at about 400 m, especially when crossing the mountain. This deviation implies that the 3D
effect consideration is advisable for any imaging technique. The source and receiver spacings are not
regular with rather sparse distribution: the average distance between adjacent receivers is approximately
37 m, and about 40 m between adjacent sources.

The raw seismic shot in Figure 7.3 shows clear topography footprint in the first arrivals. Due to the
considerable amount of vertical stripping and coherent noises, the later arrivals are hardly seen. The
shot gather also contains highly energetic and dispersive surface waves. At the display frequency range
(between 0 and about 20 Hz), the surface waves patterns are completely broken due to the interaction
with the rough free surface. Also, the surface waves is aliased at this frequency range due to rather
sparse receiver distribution. We also notice remarkable converted energies, indicated by red arrows in
Figure 7.3, when the waves hit the steep slops at the near surface. The amplitude variation of early
arrivals, i.e. dimming and brightening events, indicates possible lateral heterogeneities at the near-
surface. The complexity in the seismic wavefield further confirms the challenging structure that we are
dealing with.

The use of explosive seismic source produces un-controlled source signature but it also generates
the low frequency content. The data spectrum showing in Figure 7.4 indicates the appearance of low
frequency content, below 5 Hz, which is beneficial for FWI.
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7.1.3 Acquisition uncertainties

As described in Chapter (3), the velocity models building relies on the comparison between the cal-
culated and the real data. The calculated wavefield is computed on a finite element mesh, generated
from a given topography map. The simulation thus requires sources and receivers staying within the
SEM mesh. This condition might be tricky when we have an inaccurate topography measure and
the sources and receivers positions are close to the free-surface. In practical implementation, to avoid
putting sources and receivers in the air, we implement in SEM46 the relative depth from the free-surface
instead of the absolute depth from a pre-defined datum.

In majority of the onshore fields, the 3D topography map of the entire field is given by LIDAR
measurement, which has lower resolution compared with the sources and receivers positions recorded
inside the SEGY header. We cross-check the acquisition information by comparing the absolute depth
zabsoluted recorded inside the SEGY header with the computed depth zcomputed from the LIDAR mea-
surement. For each source or receiver position, the zcomputed is the sum of the surface elevation zLIDAR
at the considering position with the relative depth zrelative inside the SEGY header as

zcomputed = zrelative + zLIDAR. (7.1)

The computed depth from LIDAR and the absolute depth from SEGY header for all sources are super-
imposed in Figure 7.5, which shows significant mismatch at the top of the mountains. The histograms
of these difference (zabsoluted − zcomputed) for all sources and receivers are shown in Figure 7.5. There
is a systematic error at (−1.64 m) mean and 8.42 m standard deviation (std) for all sources and (−1.6 m)
mean and 8.5 m standard deviation for all receivers. There is a non-negligible number of sources and
receivers with more than 20 m mismatch, especially at the top of the mountain with more than 40 m
shift as indicated in Figure 7.5. This mis-positioning in depth might affect the inversion results since
FWI heavily relies on kinematic data fitting. For instance, FWI might tend to put low velocity layers at
the near-surface to absorb this error. The influence of the acquisition uncertainty on FWI process will
be further investigated in the discussion Section (7.3.2).

Figure 7.3: Example of a raw seismic shot: The data contains a significant amount of noises. The elastic
effect is pronounced with energetic and dispersive surface waves and converted energies (indicated by
red arrows). The amplitude variation of early arrivals indicates possible lateral heterogeneities at the
near-surface.

152



7.2 Inversion setup

Figure 7.4: Example of the amplitude spectrum of a shot gather. The cut-off frequency is indicated by
the red arrow

Figure 7.5: Comparison between the absolute source depth extracted from SEGY header zabsoluted and
the computed source depth zcomputed from LIDAR measurement following Equation (7.1).

7.2 Inversion setup

Since our SEM46 tool can perform true-amplitude and waveform elastic waves propagation, we do not
apply any sophisticated processing sequences such as static correction or surface waves removal. We
only remove the low frequency noises below 2 Hz by a high-pass filter. The data within the range
[2-4 Hz] is considered for the first FWI frequency band, which provides a reasonable signal to noise
ratio.

Figure 7.6: Systematic error in sources and receivers depth. In the source side, the error in depth
is at median -1.64 m with standard deviation 8.42 m. In the receiver side, the error in depth is at
1.60 m median with standard deviation at 8.5 m.
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Figure 7.7: The 3D SEM mesh designed at 4 Hz maximal frequency: 62.5 m elements size at the
near surface and 175 m elements size at the deeper part. The topography map is put on top of the
mesh, where the colorbar illustrates the absolute depth Zabs(m) from a pre-defined datum. The source
positions of the 2D line are indicated by black triangles (∆S = 200 m).

The initial Vp model is provided by the data owner, which is generated from the standard picking
workflow, calibrated by the walk-away vertical seismic profile.The initial model quality control shows
acceptable starting data fit for the selected frequency range. We do not have any starting Vs or density
models, however, several wells with compressional, shear sonic logs and density measurement are
available. These well are sparsely distributed and they do not follow the considered seismic line. The
distance from the 2D line to these well ranges from 1.7 km to 10.5 km, the spatial interpolation thus
cannot be considered for initial Vs and density models building. Also, they cannot be used for quality
control of the inversion results. However, they still provide useful rock physics properties. We generate
the initial Vs and density from Vp through some empirical relationships computed from logs data. Other
elements of the inversion process such as mesh generation and model constraint design also rely on these
logs information.

Due to limited computational resources, we only treat a sub-set of 7.2 km of the given seismic line.
We select the area with the most topography variation, indicated by the rectangular box in Figure 7.2.
Figure 7.5 shows that the selected area contains some sources with significant depth uncertainty. For
this target, only 36 sources are considered with distance between two adjacent sources being 200 m as
illustrated in Figure 7.7. Since the data quality varies from shot to shot, the shot selection has to be
done manually to select the 36 best shots within the considered target. Also, an amplitude calibration
between shots is performed based on the root-mean-square measure to bring all the shots amplitude
to the same range: one scaling constant is applied per shot. As described in Section (7.1), the 3D
elastic propagation should be considered due to significant acquisition deviation, topography issue and
complex underneath structure.
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Figure 7.8: Example of logs upscaling for the well W4: A - Input logs data; B - Upscaled logs data.

7.2.1 Models building

There are five calibrated wells, named as W1 to W5, with sonic logs and density measurement which
are available as the input information. Since the logs data is at much higher frequency than the seismic
frequency range, they are upscaled by a Gaussian window with standard deviation σ = 12.5 m, about
half of the highest expected resolution. Figure 7.8 shows an example of the logs data before and after the
upscaling. Some additional corrections need to be applied to the logs such as removing the unmeasured
intervals and unexpected values. For each well, different logs (Vp, Vs, ρ) are measured at different depth
intervals, so the next cross-plots in this chapter are only produced from the common intervals between
different logs.

7.2.1.1 Mesh creation

To account for the 3D propagation effect, we consider a narrow 3D model with 2 km in y-direction.
Since the selected sub-set has 7.2 km in x-direction, the investigation depth is limited to 3.5 km. The
mesh design follows the same strategy as for the synthetic benchmark in Section (6.2), in which the
first 500 m in z-direction is filled with small elements. To prepare for any near-surface low-velocity
anomalies, we allow the minimum shear wave speed Vs to reach 400 m/s, leading to the 62.5 m elements
size at the shallow part.

The well W2 ranging from 1700 m to 2800 m depth detects possible gas-sand at the reservoir level
with low Vs, about 1200 m/s. This value is thus accepted as the smallest possible Vs value for the
deeper part, leading to the 175 m elements size. The mesh design for the maximal frequency at 4 Hz is
shown in Figure 7.7. Each element is deformed by the 4th-order shape functions to describe the sharp
topography.
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Figure 7.9: Histogram of the Poisson ratio computed from upscaling Vp and Vs wells following Equa-
tion (7.2), indicating the existence of various rock-types.

7.2.1.2 Initial Vs and density ρ models building from the given Vp

We aim at building some empirical relationships from upscaled logs data to transform the given com-
pressional velocity Vp in Figure 7.11A to meaningful initial shear velocity Vs and density ρ models.
The main challenge is that the logs are only measured at the reservoir level. The shallowest density
measurement is at 1700 m measured depth as shown in the well W4 in Figure 7.8, and for Vs is also
at 1700 m depth, for the well W2 that we do not show here. Any regression at the reservoir level
then needs to be propagated up to the surface level, which is associated with low Vp values, at about
1000 m/s. From the upscaling Vp and Vs wells, the Poisson ratio can be computed as

Poisson ratio =
1

2

(Vp/Vs)
2 − 2

(Vp/Vs)2 − 1
. (7.2)

The histogram of the computed Poisson ratio is shown in Figure 7.9, which is a multi-pole distribution,
implying the existence of various rock-types. Therefore, an additional challenge is to build meaningful
empirical relationships for the ensemble of different lithology.

Initial density model

Among five wells, only W3 and W4 have the density measurement. Following the Gardner’s relation-
ship (Gardner et al., 1974), the density can be computed from Vp as

ρ [kg/m3] = 326× V 0.25
p [m/s]. (7.3)

When extrapolating this regression up to the surface level with estimated Vp at 1000 m/s, we obtain
rather small density value as shown in Figure 7.10A. It should be noted that, in reservoir character-
ization, the Gardner’s relationship is considered for a short logs interval, normally associated with a
specific rock type, which is not the case in our application. When considering a simple linear fitting,
we obtain the relationship

ρ [kg/m3] = 0.137× Vp[m/s] + 1977, (7.4)

leading to more reliable density estimation for small Vp value. Moreover, experiences show that FWI
does not require a very accurate density as a passive parameter. Therefore, we accept the linear regres-
sion (7.4), resulting in the initial density model presented in Figure 7.11B.
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Figure 7.10: Empirical relationship between density ρ and Vp: A - Gardner’s relationship in Equation
(7.3); B - Linear relationship as mentioned in Equation (7.4).

Figure 7.11: A - Initial Vp model provided by the data owner. B - Initial density model computed from
the initial Vp in Figure A through the linear regression in Equation (7.4).

Initial shear wave velocity model

Similar as the density initial model building, we aim at estimating the initial Vs from the given Vp
model. The linear relationship between Vs and Vp is widely considered in rock physics, which provides
a good fit at the reservoir level. However, the extrapolation for small Vp values at 1000 m/s gives too
small Vs values, close to zero, as shown in Figure 7.12A. The existence of various lithology, indicated
by the multi-poles Poisson ratio distribution in Figure 7.9, also confirms that a simple linear fitting is
not enough for our purpose. To avoid unexpected small Vs values at the near-surface, the Vs model is
computed from Vp through the relationship

Vs =
Vp

−1e−4Vp + 2.22
, (7.5)

which is equivalent to a linear fitting between the ratio Vp/Vs and Vp at the reservoir level. The extrap-
olation of this regression provides the estimation Vs ≈ 500 m/s for small Vp values as shown in Figure
7.12B. The obtained initial Vs model is presented in Figure 7.17A.
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Figure 7.12: Empirical relationship between Vs and Vp: A - Linear fitting; B - Regression provided in
Equation (7.5).

7.2.2 Source estimation

Since the data is acquired with explosive sources, each shot has its own source time signature, both in
waveform and starting time. Therefore, one source wavelet is estimated per shot, following the strategy
proposed by Pratt (1999) as described in Section (3.3). The source estimation is performed over a time-
windowed dataset as shown in Figure 7.13. The very-near offset traces are removed due to their high
amplitude and the unphysical wavefield simulation near the source position. A time window, based on
the first break picking, is applied to the data to remove the noises before the first arrival and the data
part which is not considered by the inversion.

The source estimation is a deconvolution-like process, it thus requires a sufficient quantity of ob-
served data for a stable wavelet estimation. However, each shot gather contains less than 200 traces
due to the sparse receiver distribution. We thus do not apply any other stronger muting than what has
been described in Figure 7.13. The short to medium offsets of surface waves are also included, which
actually provide a better source amplitude and waveform compared with the source estimation from
only far offsets body waves.

Figure 7.13: An example of the source estimation over a time-windowed dataset: The very near-offset
traces are ignored and the noises before the first arrivals are muted out.
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It should be noted that the seismic data contains coherent noises, arriving before the first arrivals.
At some shots, it could be difficult to distinguish between the coherent noises and first arrivals. The
estimated wavelet is thus anti-causal and contains artifacts from the coherent noises. To partially miti-
gate this issue, we perform the source estimation over different time-windows which contains different
amount of noises. A source signature stacking is carried on in a second stage to only keep the coherent
signatures and attenuate the artifacts. A taper is also applied at the beginning and the end of the source
wavelet to make it causal and remove spurious oscillations.

7.2.3 Preconditioning and model constraint design

The importance of gradient preconditioning and model constraints has been highlighted through our
synthetic applications in Chapter 6. The considered real dataset is even more challenging due to com-
plex structures and acquisition issues. Also, the data is acquired with explosive sources, leading to
limited information for Vs reconstruction. Therefore, the use of gradient preconditioning and model
constraint becomes critical for reliable model parameters estimation.

7.2.3.1 Preconditioning design

To prepare for any rapid vertical velocity variation at the near-surface, the preconditioning has highly
anisotropic shape at this area with vertical coherent length being Lv = 16 m, and horizontal coherent
lengths as Lu = 200 m. It should be note that Lv is equivalent to a quarter of the element size at the
near-surface (62.5 m as shown in Figure 7.7) and a large value of Lu is used to attenuate the acquisition
footprint due the sparse source spacing. In the deeper part, we follow similar coherent lengths design
as the previous applications with Lv = 70 m and Lu = 150 m. The action of the non-stationary filter is
illustrated in Figure 7.14B.

The highly anisotropic smoothing at the near-surface requires an “appropriate” rotation design,
otherwise the preconditioning operator might introduce thin pinch-out artifacts following unexpected
direction. The initial models provides rather good velocity trends, correctly following the topography
and the expected structures orientation for the first 1 km. We thus compute the near-surface dip field

Figure 7.14: Gradient preconditioning design: A - The dip field considering by the Bessel-based gra-
dient smoothing, in which the first 1 km below the free-surface is extracted from the initial Vp velocity
model; B - The cartoon to illustrate the effect of the smoothing operator onto the gradient.
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from the initial Vp and the deeper part is set to 0◦ as shown in Figure 7.14A. The filtering orientation is
also illustrated in Figure 7.14B.

7.2.3.2 Model constraint on the ratio Vp/Vs

Section (6.2) describes the importance of the model constraint on the ratio Vp/Vs , where the use
of homogeneous upper and lower bounds is enough for a stable Vs estimation. When dealing with the
considered real dataset, we suffer from the instability of the Vs reconstruction meanwhile the Vp remains
stable. One might start by inverting for Vp first, which could requires a better Vs model building than
the empirical relation described in Section (7.2.1.2). This comes from the fact that the kinematic of
the early arrivals is mainly controlled by Vp, whereas Vs affects the waveform and the lateral amplitude
variation.

We believe that the Vs model computed from the given Vp through the regression (7.5) is not good
enough to keep Vs as a passive parameter. We then decide to invert simultaneously for Vp and Vs and
we constraint the estimated Vs through the inverting Vp following the non-stationary constraint on the
ratio Vp/Vs as described in Section (3.2.4). At each spatial position x, the estimation Vs should satisfy
the following condition

r1(x) ≤ Vp(x)

Vs(x)
≤ r2(x), (7.6)

where both upper r2(x) and lower bounds r1(x) depend on the local Vp value. A tight constraint on the
ratio Vp/Vs is considered at the reservoir level, normally associated with large Vp value, whereas a less
strict constraint is applied at the near-surface as shown in Figure 7.15. The upper and lower bounds are
computed from Vp as

r1(x) = 1.6− 2000

Vp + 6000
and r2(x) =

2.3 +
800

Vp − 1200
for Vp > 1500 [m/s]

5 for Vp ≤ 1500 [m/s]
. (7.7)

Figure 7.15: The design of model constraint on the ratio Vp/Vs based on wells data. A tight constraint
on the ratio Vp/Vs is considered at the reservoir level normally associated with large Vp value, whereas
a less strict constraint is applied at the near-surface.
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Figure 7.16: Progressive time-windows which are considered for the inversion process. Each time-
window is defined by top and bottom mutes, which are designed based on the first break.

7.2.4 FWI workflow

We aim at inverting simultaneously for Vp and Vs, by considering the data-windowing hierarchy de-
veloped on synthetic benchmarks. This section only presents the inversion for the early-body waves,
arriving before the surface waves as indicated in Figure 7.16. The incorporation of surface waves is
under investigation. A simple bottom mute is used to separate the early body waves and surface waves.

In the body waves packages, the cycle-skipping issue occurs for the later arrivals but not for the
early arrivals. We thus design a progressive time-windows to incorporate gradually the later arrivals
into the inversion process. As shown in Figure 7.16, each time-window is defined by a pair of top and
bottom mutes, designed from the first-break. The first-break picking is provided to us by the data owner.
The top mute is important to remove the coherent noises arriving before the first arrival. The bottom
mute increases progressively by a haft of the apparent wavelength per time-window as indicated by the
black lines (b1) to (b5) in Figure 7.16.

The inversion contains different sequence, each being performed over one time-window with 4
iterations of the preconditioned l-BFGS optimization method. Within each sequence, the density and
the source wavelet are kept unchanged. We use the optimization preconditioning computed from the
calculated wavefield described in Section (3.2.3). Since a relative short data interval with few traces is
considered as the FWI input, we keep relatively small number of iterations per sequence. After each
inversion sequence, the source wavelet is re-estimated as explained in Section (7.2.2), and the density
is computed from the obtained Vp model according to the linear regression (7.4).

The gradient preconditioning and model constraint designs in Section (7.2.3) are considered at each
iterations, without any modification.

7.3 Inversion results & Discussions

The inversion process makes some significant amplitude changes in both Vp and Vs models as shown
in Figure 7.17B. The main fault trend which already existed in the initial model is preserved in the
inverted models. The trend is further refined in the inverted Vp, and the high Vp value is propagated up
to the free-surface, which is coherent with the geological observation. The inversion also remove all
the low-Vp values at the near-surface, and considerably increases the Vp background.
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Figure 7.17: Left - Vp target cross-section; Right - Vs target cross-section. A - Initial models; B -
Inverted model obtained with the workflow described in Section (7.2.4). Possible near-surface ruptures
are indicated by the black arrows. Low-velocity Vs layer at the free-surface with about 100 m thickness
is indicated by the red arrow.

The inverted Vs is more difficult to interpreted since it has a considerable amount of artifacts. This
is due to the fact that the early body waves, acquired by the explosive sources, bring limited shear
information. Even if the main fault direction is presented, the dimming of the estimated Vs at the top of
the mountain, atX ≈ 1.8 km, is not coherent with the high velocity trend in Vp. The inverted Vs detects
some interesting low velocity trends at the near-surface, indicated by the black arrows in Figure 7.17.
Their coherent appearance, size and amplitude in various FWI setting make us believe that they are
geologically correct. The geological interpretation of the area indeed shows some possible near-surface
ruptures. Since the available logs data are not located along the seismic line, they cannot be used to
control the quality of inverted models.

An about 100 m thickness low-velocity layers underneath the free-surface appears in the Vs model,
as indicated by the red arrow in Figure 7.17B. This low-velocity layer does not have coherent shape
and has never been detected by the Vp estimation through our various FWI settings. Its appearance is
not supported by any geological evidence. This inconsistency makes us believe that it is not geological
correct and we are interested in which sort of uncertainty might cause this problem.

7.3.1 Model quality control through data fitting

Figure 7.18 shows the comparison of the maximal 4 Hz real data with the calculated computed from
initial models and final inverted models in Figure 7.17. Compared with the real data, the initial models
produce relatively good wavefield prediction, with coherent body and surface waves at all the offsets.
However, the early body waves package is cycle-skipped, apart from some first arrivals, as shown in
Figure 7.18A. By injecting real data progressively into the inversion process through the progressive
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Figure 7.18: Data comparison for
the first shot between the observed
data dobs and calculated data dcal:
(A) dcal estimated from initial mod-
els in Figure 7.17A,
(B) dcal estimated from inverted
models in Figure 7.17B.

Observed data is displayed with red-
and-blue color. Calculated data is
displayed with black and transpar-
ent color.
Good data-fit is identified when the
red loops are perfectly covered by
the black loops.

time-widows strategy, we improve the early body waves fitting as indicated by Figure 7.18B. We seem
to also have a better surface waves prediction and mode convergence, for example at around 3 km
position. However, the predicted data is almost cycle-skipped at the far offsets, at 6 km position. This
issue is also detected in other shot gathers.

The absolute time-shift is considered for a global indication of data-fitting between the early arrivals
of calculated and read data, as shown in Figure 7.19. A good data-fit is indicated by a close to 0 time-
shift. Due to the significant amount of noises in the data, the calculated attribute map is noisy and
difficult to interpret. This is also the reason why we consider the absolute shift instead of the normal
time-shift. When comparing the time-shift maps computed from initial and inverted models in Figure
7.17A and B, a data-fit improvement can still be observed within the area [0 - 5.5 km]. However, a global
degradation for the traces recorded within [5.5 - 7 km] is detected, mainly due to the low-velocity Vs
layers underneath the free-surface as indicated by the red arrow in Figure 7.17B.

7.3.2 Influence of acquisition mis-positioning on inversion results

As described in Section (7.1.3), our selected target contains considerable amount of acquisition mis-
positioning in depth, about 45 m at the top of the main mountain. This is equivalent to a fifth of the
shortest P-wavelength in the initial models 7.17A. We thus use two synthetic benchmarks to study the
influence of acquisition error on the inverted models: the first one consists of homogeneous medium
properties, while the second is the initial foothill models in Figure 7.17A.

Both synthetic benchmarks have the same size and similar mesh design as the selected target in
Figure 7.7. The observed data is computed from the source and receiver positions extracted from the
SEGY header. We do not consider the deviation in the y-direction by putting all sources and receivers
in the center of the model, at Y = 1000 m. The inversion is perform on the true models with modified
acquisition that is computed from the LIDAR measurement. To simplify the numerical setting, in
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Figure 7.19: Absolute time-shift map [sec] between the calculated and the real data. The attribute is
computed for the early arrivals within the range [2-4 Hz]: A - from the initial model; B - from the final
models. The time-shift map is noisy due to the data quality but the improvement can be seen inside the
black box.

all simulations, the relative source depths are kept as 7 m from the free-surface and all receivers are
placed at the surface. Only the topography has been modified to accommodate the acquisition variation
in Figure 7.5. The difference between the topography built from the absolute acquisition positions in
SEGY header and the variation computed from LIDAR measurement is presented in Figure 7.20, which
is equivalent to the acquisition mis-positioning in depth. The black arrows indicate the places where
the main difference occurs.

In both examples, to respect the maximal frequency at 4 Hz, a Ricker wavelet centered at 1.6 Hz is
considered as the source signal. We consider the same acquisition design as the selected target with 36
explosive sources. The following inverted Vp and Vs models are obtained with one FWI iteration, by
considering the entire wavefield. The gradient preconditioning is kept as minimal with vertical coherent
length Lv = 20 m and horizontal values Lu = Lw = 60 m.

7.3.2.1 Homogeneous test

The reference model has homogeneous medium properties with Vp = 2200 m/s, Vs = 1300 m/s
and density ρ = 1000 km/m3. The shortest P- and S-wavelength are thus min(λp) = 550 m and

Figure 7.20: A smooth version of the difference between two topography variations in Figure 7.5, which
is equivalent to the acquisition mis-positioning in depth. The peaks of the difference are indicated by
black arrows.
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Figure 7.21: Inverted Vp (A) and Vs models (B). The main locations of acquisition mis-positioning are
indicated by black arrows.

min(λs) = 325 m. The acquisition mis-positioning in Figure 7.20 is relatively small compared with
the P-wavelength, leading to negligible artifacts in the inverted Vp in Figure 7.21A. However, the near-
surface Vs model is under-estimated, especially underneath the peak at 1.8 km, which is associated with
the largest acquisition error.

Through this simple numerical setting, we confirm that the inversion tends to put low velocity
anomalies at the near-surface to absorb the travel-time mismatch due to the acquisition issue. The
inverted Vs is more affected because the effect depends on the size of the mis-positioning error with
respect to the local wavelength.

7.3.2.2 Heterogeneous models

The reference model consists of the foothill Vp model provided by the real data owner, the computed Vs
in Figure 7.17A and homogeneous density ρ = 2000 km/m3. The inversion is performed on the same
model parameters with modified acquisition. Figure 7.22 shows the difference between the reference
and the inverted shear velocity as (V reference

s − V inverted
s ), in which the low velocity anomalies are

highlighted by blue and purple colors. In this heterogeneous model, similar conclusion is obtained:
The inversion puts low velocity layers underneath the locations of major mis-positioning in depth to
compensate for the travel time error. The origin of the deeper modification is not clear to us yet.

The near-surface low velocity layers between 5.5 and 7 km are coherent with the anomaly detected
by our inverted Vs model in Figure 7.17B, which might explain the origin of this artifact. Moreover,
the dimming of the estimated Vs at the top of the mountain at X ≈ 1.8 km might be caused by the
significant acquisition error at this position, as shown by Figure 7.22.

7.4 Conclusion & Perspectives

The preliminary inversion results from the real data application illustrate the challenges in a real foothill
environments. Apart from the data complexity and elastic multi-parameter FWI problem, we have to
deal with various practical issues such as significant amount of noise in the data, sparse acquisition
and topography representation uncertainty. We illustrate how additional prior information such as the
logs data can be used to assist the FWI design. Even when the wells are not located along the the
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Figure 7.22: Difference between the reference and the inverted model (V referece
s − V inverted

s ), where
the main locations of acquisition mis-positioning are indicated by black arrows.

considered 2D seismic line to be served as final quality control tool, they participate in almost every
step of the inversion process: initial shear wave speed and density models building from a given initial
Vp, and mesh generation. A Vp-dependent model constraint on the ratio Vp/Vs, again relying on the
logs information, is considered to constrain the Vs based on the stable Vp estimation.

At the current stage, the inversion mainly focuses on the early-body waves, which is gradually
incorporated through a progressive time-windowing. The strategy helps to mitigate the cycle-skipping
issue at the latter arrivals and maximize the considering data quantity. Due to the data lacking, the
estimated Vs is unstable with considerable amount of artifacts. To avoid biased interpretation, we
highlight the importance of inverted model quality control through data-fit analysis and uncertainty
studies. The numerical tests based on the depth mis-positioning of sources and receivers indicate that
the acquisition error might become one of the major challenges for the near-surface reconstruction
at higher frequency. Moreover, our inversions rely on the assumption of perfect explosive sources,
describing by equally diagonal terms in the moment tensor point-source. The influence of the incorrect
physics of the source should also be considered.

Despite the inversion complexity, the body and surface waves prediction has coherent features as
the real dataset. At this stage, the surface waves are still cycle-skipped, they cannot be considered into
the inversion process yet. In the next step, to compensate for the data lacking, we aim at considering
more shots, for example through the data sub-sampling technique (Ha and Shin, 2013; Warner et al.,
2013), and adding the short offsets surface waves into the inversion process. However, a more recently
acquired dataset or the re-processed data might help to improve the inverted models quality. Advance
data processing is beyond our capacity, but we could suggest several steps such as bad traces edition
and data continuity enhancing. Moreover, various non-seismic dataset and associated inverted images
are available which could be used as additional data or prior information for the seismic inversion.

Effective topography representation/Acquisition positioning

The influence of acquisition error into the inversion results has been highlighted in Section 7.3.2. To re-
duce the mis-positioning in depth, the inversion could consider an effective smooth topography variation
zeff , lying between the LIDAR measurement zLIDAR and the recorded source and receiver positions
in the SEGY header sSEGY . The effective topography could be estimated from an optimization process
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under the following misfit function

χtopo(zeff ) =
1

2
‖zeff − zLIDAR‖2 +

µ1

2
‖Rzeff − sSEGY ‖2 + µ2‖∇zeff‖2︸ ︷︷ ︸

Smoothness

, (7.8)

where µ1 and µ2 are trade-offs parameters and R is a restriction operator at sources and receiver po-
sitions. The minimization of the least-square distance between the effective surface and the LIDAR
measurement is ensured by the first term in the function (7.8). By increasing the trade-off parameter
µ1, the effective topography is forced to go through the recorded source and receiver positions in the
SEGY header. The smoothness of the estimated surface zeff is guaranteed by the third Tikonov regu-
larization term. The minimization of the misfit function (7.8) can be solved by any local optimization
process starting from the initial guest zLIDAR, or global methods due to small number of degrees of
freedom (Metropolis and Ulam, 1949; Nocedal and Wright, 2006).
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7.4 Conclusion & Perspectives

Conclusion

The manuscript provides a complete review of the 3D multi-parameter FWI method in visco-elastic
medium that we have developed from theoretical development to numerical implementation. The work
leads to a fully integrated 3D modeling and inversion code, namely SEM46, with both elastic and
viscoelastic physics. The code has been used to perform various multi-parameter FWI applications,
which highlight the importance of a correct physical description, adapted inversion strategies and the
introduction of geological prior information for successful applications of our method.

Theory and algorithms

The theoretical development of the wave propagation separates purposely the linear elasticity with the
attenuation mechanisms, which offers an easy and explicit coupling between the anisotropic elasticity
and isotropic attenuation. The attenuation parameters are explicitly incorporated in the wave equation,
and therefore can be naturally reconstructed in the FWI framework. Even if the second-order visco-
elastic wave equation is not self-adjoint, we can develop the adjoint system with similar equations
as for the incident fields, implying that they can be propagated under the same numerical scheme.
Following the forward and adjoint formulation using SLS mechanisms, the gradient expressions for
density, attenuation parameters and stiffness coefficients are simply zero-lag cross-correlations in time
between incident and adjoint fields, weighted by the associated spatial radiation pattern. The gradient
for any other parameters can be computed by chain rule from these elementary gradients, which offers
the flexibility to consider any set of parameterization. We also highlight the cumulative effect of the
attenuation contribution on the recovered amplitude of elastic parameters, which was neglected in some
state-of-the-art implementations (Liu and Tromp, 2008; Komatitsch et al., 2016)

We present an integrated SEM-based workflow, capable of efficiently performing 3D modeling and
FWI in the time-domain for elastic and visco-elastic exploration-scale targets. Our approach relies on
the trade-off between computational cost, accuracy and memory requirement. The simulation accuracy
is ensured by the use of a Cartesian-based deformed mesh with high-order geometry interpolation to
capture rough topography variations. The size of the elements can be adapted to the variation of the
local shortest wavelength to reduce the numerical cost. The Cartesian-based mesh design also allows
to access the spatial position and the neighbors of each element without any extra cost. Two MPI-based
parallelism levels are considered for tackling large-scale and multiple-shots experiments, associated
with an efficient computation and low-memory implementation of incident and adjoint fields. The sim-
ulation accuracy of our approach is illustrated through the comparison with elastic and visco-elastic
semi-analytical solutions via the boundary integral method (Coutant, 1989). For the same physical
model and similar numerical settings, we achieve comparable computational cost as two open-source
reference codes: SW4 V1.1 and SPECFEM V2.0 (CPU version) for both elastic and visco-elastic sim-
ulations. The gradient is accumulated during the synchronous reconstruction of the incident field with
the propagation of the adjoint field, applicable for both elastic and visco-elastic physics (Dussaud et al.,
2008). For this purpose, the incident field is propagated backward in time from the last snapshot and the
wavefield at the boundaries. Our low-memory implementation relies on the decimation in time of the
boundaries wavefield and elastic-CARFS technique, which mitigates the instability in the reconstruc-
tion of the incident wavefield (Yang et al., 2016b,c). This strategy is critical in realistic applications,
normally associated with a large number of degrees of freedom and time-steps, in which massive storage
and intensive I/O might not be the optimal choice.
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The structurally-based nonstationary and anisotropic Bessel smoothing is considered for an efficient
gradient preconditioning. The geological prior information can be introduced through filter parameters
such as 3D coherent lengths and local rotation. The smoothing process is implemented as a PDE solved
with SEM, directly on the modeling mesh, following the same high-performance-computing structure
as the one for the wave equation (Trinh et al., 2017b). A non-linear model constraint on the relationship
between parameters is introduced to partially mitigate the cross-talks between the different classes of
inverted parameters

Applications

The challenges of the elastic multi-parameter FWI in complex land areas are highlighted through dif-
ferent 3D sub-sets of the SEAM phase II Foothills benchmark and real data applications. Even under
an ideal 3D setting with full 3D illumination and accurate initial models, the simultaneous estimation
of P- and S- wavespeeds is not obvious, due to the unbalanced compressional and shear energies in the
wavefield. To mitigate the unequal sensitivity of the inversion process with respect to different parame-
ters, we propose a two-step data-windowing strategy, focusing on early body waves before considering
the entire wavefield, including surface waves. The main idea is to start the inversion with the data
parts which have the most P-wave signature before including more S-waves energy. The use of this
data hierarchy together with the structurally-based Bessel preconditioning make possible to reconstruct
accurately both compressional and shear wavespeeds.

When the data constraint is not sufficient, for instance under limited illumination in the pseudo-
2D dip-line SEAM II Foothill survey, some additional constraint on model parameters are required to
reduce the model space. For this purpose, the constraint on the ratio of P- and S-wavespeed, based
on the rock-physics prior, could be considered to mitigate the ill-posedness of the multi-parameter
inversion process. Aside from this model constraint, the two-step data-windowing strategy is combined
with a low-to-high frequency hierarchy to get reliable model parameters estimation, but also to exploit
the maximum amount of information in the observed data. We notice that if the surface-related energies
could be accurately modeled, within half of the apparent wavelength, we can take advantage from the
hidden information below these events to get better model estimation, both at the near surface and
deeper parts.

The real foothill dataset brings more difficulties into our already complex elastic multi-parameter
FWI problem with sparse acquisition design, noisy recordings, complex underneath structures and to-
pography representation uncertainty. Additional prior information such as the logs data and geological
interpretation has to be considered to assist the FWI process, from initial design to final model qual-
ity control. Despite the inversion complexity, the preliminary results, only relying on body waves,
are shown to improve the kinematic fit and follow the expected geological interpretation. This experi-
ment also highlights the importance of well-understanding both physics and geometry of the considered
problem, to avoid any biased interpretation coming from possible artifacts in the inverted models.

Perspectives

Numerical implementation

The manuscript presents a complete numerical implementation for visco-elastic modeling and inver-
sion. The visco-elastic modeling is 2 times more expensive than elastic modeling for regular elements,
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Figure 7.23: Example of mesh design with multiple imposed interfaces.

and 2.5 times more expensive for deformed elements. In addition, taking viscosity into account in-
creases the cost of the gradient computation through the CARFS strategy, due to the instability in
the reconstruction of the incident field on-the-fly. If the storage at the Nyquist frequency on the disk
becomes affordable with reasonable I/O cost (using fast access SSD disk for instance), this option
will significantly reduce the computational cost of the gradient calculation, making it potentially more
attractive for practical applications. Additional compression strategies could also be used to further
reduce the memory requirement and I/O requests (Boehm et al., 2016).

The numerical accuracy of the simulation under rapid topography variation is ensured by a high-
order geometry interpolation. All presented applications are conducted with the P4 shape function as
shown in Figure 2.7(b). However, the combination of different order shape functions into a single
mesh design is possible, which shall not affect the simulation cost but the implementation complexity.
The presented meshes in the manuscript are designed with a single topography variation at the top the
associated model. Following similar strategy, multiple interfaces could be incorporated into the future
mesh design, as shown in Figure 7.23, which could be used for known multi-layers structures such as
marine environment to honor the sea floor.

FWI strategies

Misfit function

In this manuscript, the surface waves are inverted with the standard least-square misfit function. In
many examples, the surface waves inversion is limited by the fact that the initial near-surface models
are not good enough to provide a surface waves prediction within a half of the apparent wavelength.
This problem could be mitigated by considering other misfit functions with larger basins of attraction
such as the envelop function (Wu et al., 2014), cross-correlation based function (van Leeuwen and
Mulder, 2008), normalized deconvolution or adaptive misfit function (Warner and Guasch, 2016) and
optimal transport method (Métivier et al., 2016a,b). These alternative misfit designs could be integrated
in the future into the developed framework of this study.

Data consideration

Due to the limited computational resources, we normally consider a decimated number of sources. In
the next step, to compensate for the data lacking, we will aim at including information from more shots,
for example through the data sub-sampling technique (Ha and Shin, 2013; Warner et al., 2013).

173



REAL DATA APPLICATION

Additional prior to assist the FWI process

Through synthetic and real data applications, the manuscript highlights that additional prior information
could help for getting more reliable inversion results. Model regularization could be considered to
introduce any model prior such as well data or interpreted geological structures from migrated images.
Challenging exploration targets normally require multidisciplinary approaches for geological structure
de-risking, implying that various seismic and non-seismic data types are available. These data and their
interpreted results could be used as additional data or prior information for the seismic inversion. Since
our numerical scheme relies on SEM mesh, the Bessel-liked operator could be the optimal choice for
designing the spatially variant model covariance matrix.

Moreover, the model constraint on the ratio of P- and S-wavespeeds, described in Section (3.2.4),
could be generalized for other set of parameters with any expected differentiable and monotonic rela-
tionship between parameters. The numerical implementation shall be similar, at insignificant computa-
tional cost.

Imaging condition and quality controls

The input for the application in Chapter (7) is a raw foothill dataset, which contains significant amount
of noise. A processing sequence dedicated to foothill dataset should be established to prepare the data
for the inversion, at least to remove bad traces and attenuate the low frequency noise. Any process-
ing step should preserve and take into account the significant acquisition deviation in y-direction and
vertical elevation of sources and receivers.

After obtaining reliable velocity models, migrated images are generated to get a high resolution
image about the sub-surface structures. Due to the rough topography variation, the near-surface image
produced by standard finite difference techniques is very noisy, also affecting the structures at greater
depths. The development of a SEM-based migration tool could take benefit from our optimized mod-
eling & inversion kernels and Bessel smoothing operator to remove artifacts in the migrated image. By
considering a complete physics and accurate 3D geometry, the tool could deliver a better near-surface
image, and simply some steps in the processing sequences such as static correction.

The manuscript promotes the use of time-shift and maximal cross-correlation attributes for data
quality controls but also to assist the design of inversion hierarchy. The interpretation is intuitive for 2D
acquisition designs but more effort would be required for 3D acquisitions. Other attributes less sensitive
to noise should be considered to facilitate the interpretation of inverted results and the detection of
artifacts, especially in 3D acquisitions.

Code development history

The theoretical development and numerical implementation of the SEM46 code presented in this manuscript
has been carried by Romain Brossier and the main author, under the orientation of other supervisors
(Brossier and Trinh, 2017). The optimized elastic modeling and inversion kernels, implemented on a
linearly deformed Cartesian-based mesh, was available at the beginning of the PhD project. The two-
level MPI-based parallelization and the general structure of the code has been previously established.
The former version only considered vertical point-force source, and the wavefield at the boundary was
absorbed by a first-order radiative absorbing boundary condition (Equation (2.77) in Section (2.4)).
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During the PhD project, the main author has been making several contributions into the code develop-
ment as

- Mesh design: The Cartesian-based deformed mesh is improved with high-order geometry rep-
resentation to capture complex topography. The element sizes can vary in three directions, fol-
lowing the expected shortest wavelength, to reduce the numerical cost. The mesh is expanded to
accommodate for the sponge layers at the model boundaries to absorbed the out-going wavefield.

- Visco-elastic modeling: Based on the theoretical review on the first-order visco-elastic wave
equation of Yang et al. (2016a), the main author works on similar formulation for second-order
system of the displacement field, following SEM perspectives. The main author considers the
visco-elastic Newmark-scheme for the propagation in time, which preserves the second-order
accuracy of the existing elastic scheme. The moment-tensor source implementation is introduced
for the numerical comparison with the semi-analytical solutions on LOH benchmarks, described
in Section (2.6).

- Adjoint system & Gradient building: The main author has developed the adjoint system with
similar equations as for the incident fields, resulting in simple visco-elastic gradients for the
set of parameters CIJ , ρ,Q−1

p , Q−1
s as zero-lag cross-correlations of adjoint and incident fields,

weighted by the associated spatial radiation pattern. For efficient and low-memory gradient com-
putations, the main author integrates the existing wavefield-decimation toolbox and an elastic
version of the CARFS toolbox, developed by (Yang et al., 2016b,c), into the SEM46 inversion
scheme.

- Bessel smoothing filter: Under the original ideal made by Wellington et al. (2017), the main
author developed a complete theoretical base for the Bessel smoothing filter in both 2D and 3D.
The 3D implementation in SEM mesh for gradient preconditioning has been introduced into the
SEM46 code.

- Non-linear constraint on the ratio between inverting parameters.

Besides the scientific contribution, the main author completely changes the interface of the code, to ease
the user experiences. The code has been distributed within ISterre laboratory and industrial sponsors
with positive feedback in both scientific capacities and user experiences.
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