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Abstract 

The requirements in terms of navigation accuracy, integrity, continuity and availability are 

increasing for land vehicles especially with the development of automated and autonomous 

vehicle applications. This type of applications requires a navigation system not only capable of 

providing continuously an accurate and reliable navigation solution but also having a reasonable 

cost. 

In the last decades, the Global Navigation Satellite System (GNSS) has been the most widely 

used navigation system especially with the receivers decreasing cost over the years. However, 

despite of its capability to provide absolute navigation information with long time accuracy, 

this system suffers from problems related to signal propagation especially in urban 

environments where buildings, trees and other structures hinder the reception of GNSS signals 

and degrade their quality. This can result in significant positioning error exceeding in some 

cases a kilometer. Many techniques are proposed in the literature to mitigate these problems 

and improve the GNSS accuracy. Unfortunately, all these techniques have limitations. 

A possible way to overcome these problems is to fuse “good” GNSS measurements with other 

sensors having complementary advantages. In fact, by exploiting the complementarity of 

sensors, hybridization algorithms can improve the navigation solution compared to solutions 

provided by each stand-alone sensor. Generally, the most widely implemented hybridization 

algorithms for land vehicles fuse GNSS measurements with inertial and/or odometric data. 

Thereby, these Dead-Reckoning (DR) sensors ensure the system continuity when GNSS 

information is unavailable and improve the system performance when GNSS signals are 

corrupted, and in turn, the GNSS limits the drift of the DR solution if it is available. However, 

the performance achieved by this hybridization depends thoroughly on the quality of the DR 

sensor used especially when GNSS signals are degraded or unavailable. 

Since the targeted application is cost-sensitive and low-cost sensors should be used, the 

common solution of fusing GNSS with inertial and/or odometric data mentioned previously 

cannot provide the high performance required by the application. For this reason, the use of 

vision-based navigation techniques to provide additional information is proposed in this thesis 

to improve the navigation performance. In fact, cameras have become, recently, an attractive 

positioning sensor with the development of Visual Odometry (VO) and Simultaneous 

Localization and Mapping (SLAM) techniques, capable of providing accurate navigation 

solution while having reasonable cost. In addition, visual navigation solutions have a good 

quality in textured environments where GNSS is likely to have bad performance. This 

interesting aspect makes visual techniques promising to achieve good performance in difficult 

GNSS environments. 

Therefore, this Ph.D. thesis focuses on developing a multi-sensor fusion architecture integrating 

visual information and particularly studies the contribution of fusing this information with the 

previously mentioned sensors to improve the vision-free navigation system performance. 
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The dissertation begins with a description of the context and challenges of this work, an 

identification of the navigation requirements and a presentation of the thesis objective and 

contribution. 

Then a description of the commonly used land navigation sensors is performed. The system 

principle and the measurement models of each sensor are provided. The state of the art of the 

integrated systems is addressed and the integration techniques and strategies are explained. 

The third chapter reviews the existing vision-based navigation techniques and highlights their 

challenges especially in outdoor large-scale environments. A particular interest is brought to 

ORB-SLAM open-source software that has been used in this study to provide the visual 

information fed to the developed system.  

The fourth chapter provides a detailed explanation of the proposed multi-sensor navigation 

system. The choices made to design this system are justified and the contribution of each sensor 

is described mathematically. A special attention is given to the observability analysis of the 

parameters the developed system should be able to estimate. 

The fifth chapter addresses the integrity monitoring problem and discusses the integrity 

challenges faced, on one hand, with the visual information and its processing with the SLAM 

technique, and on the other hand with the hybridized structure whose integrity study is not a 

trivial task. 

The sixth chapter provides the results and the performance analysis of the proposed solution. 

The presented results are based on real datasets collected in different types of environments. 

The contribution of visual information is particularly highlighted. 

Finally, the last chapter concludes on the works done during the Ph.D. and proposes some 

perspectives that could be considered for future works. 

 



Résumé 

Les exigences en termes de précision, intégrité, continuité et disponibilité de la navigation 

terrestre sont de plus en plus strictes, surtout depuis le développement des véhicules autonomes. 

Ce type d’applications nécessite un système de navigation non seulement capable de fournir 

une solution de navigation précise et fiable, mais aussi ayant un coût raisonnable. 

Durant les dernières décennies, les systèmes de navigation par satellites (GNSS) ont été les plus 

utilisés pour la navigation, surtout avec la baisse continue des coûts des récepteurs. Cependant, 

malgré sa capacité à fournir des informations de navigation absolue avec une bonne précision 

dans des milieux dégagés, ce système souffre de problèmes liés à la propagation du signal dans 

des milieux contraints tels que le milieu urbain où des bâtiments, des arbres et d’autres 

structures empêchent la bonne réception des signaux GNSS et dégradent leur qualité. Ceci peut 

entraîner une erreur de position importante qui peut dépasser le kilomètre dans certains cas. 

Beaucoup de techniques ont été proposées dans la littérature pour remédier à ces problèmes et 

améliorer les performances GNSS. Toutefois, ces techniques présentent des limitations.  

Une façon possible de surmonter ces problèmes est de fusionner les "bonnes" mesures GNSS 

avec les mesures d'autres capteurs ayant des caractéristiques complémentaires. En effet, en 

exploitant la complémentarité des capteurs, les algorithmes d'hybridation peuvent améliorer la 

solution de navigation par rapport aux solutions fournies par chacun des capteurs considéré 

individuellement. Les algorithmes d'hybridation les plus largement mis en œuvre pour les 

véhicules terrestres fusionnent les mesures GNSS avec des données inertielles et / ou 

odométriques. Ainsi, ces capteurs de navigation à l’estime (NE) assurent la continuité du 

système lorsque les informations GNSS ne sont pas disponibles et améliorent les performances 

du système lorsque les signaux GNSS sont altérés et, de son côté, le GNSS limite la dérive de 

la solution de NE s’il est disponible. Cependant, les performances obtenues par cette 

hybridation dépendent énormément de la qualité du capteur de NE utilisé, surtout lorsque les 

signaux GNSS sont dégradés ou indisponibles. 

Étant donné que l'application visée doit respecter le critère d’un coût raisonnable, les solutions 

classiques de fusion du GNSS avec les données inertielles et / ou odométriques bas coût ne 

peuvent pas fournir le niveau de performance requis par l'application. C’est pourquoi 

l'utilisation de techniques de navigation basées sur la vision pour fournir des informations 

supplémentaires est proposée dans cette thèse pour améliorer les performances de navigation. 

En effet, les caméras deviennent un capteur de positionnement de plus en plus attrayant avec le 

développement de techniques d'Odométrie Visuelle et de Localisation et Cartographie 

simultanées (SLAM), capable de fournir une solution de navigation précise tout en ayant des 

coûts raisonnables. En outre, les solutions de navigation visuelle ont une bonne qualité dans les 

environnements texturés où le GNSS risque d'avoir de mauvaises performances. 

Par conséquent, cette thèse se concentre sur le développement d'une architecture de fusion 

multi-capteurs bas coût intégrant l'information visuelle tout en étant facilement embarquable. 
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Une attention particulière est accordée à l’étude de la contribution l’information visuelle pour 

améliorer les performances du système de navigation sans vision.  

La thèse commence par une description du contexte de ce travail, une identification des 

exigences de navigation et une présentation de l'objectif et de la contribution de cette thèse. 

Ensuite, une description des systèmes de navigation terrestre couramment utilisés est effectuée. 

Le principe du système et les modèles de mesures de chaque capteur sont fournis. Un état de 

l'art des systèmes d’hybridation est présenté et les techniques et stratégies d’hybridation sont 

expliquées. 

Le troisième chapitre passe en revue les techniques existantes de navigation basée sur la vision 

et souligne leurs défis, en particulier dans les environnements extérieurs à grande échelle. Un 

intérêt particulier est apporté au logiciel open source ORB-SLAM qui a été utilisé dans cette 

étude pour fournir l'information visuelle en entrée de la solution développée. 

Le quatrième chapitre fournit une explication détaillée de l’architecture de navigation multi-

capteurs proposé. Les choix réalisés pour concevoir cette architecture sont justifiés et la 

contribution de chaque capteur est décrite mathématiquement. Une attention particulière est 

accordée à l'analyse d'observabilité des paramètres que le système développé devrait pouvoir 

estimer. 

Le cinquième chapitre traite du problème de contrôle de l'intégrité des signaux utilisés et 

analyse les moyens de sélectionner les mesures des capteurs afin de conserver celles intègres et 

exclure celles susceptibles d'être affectés par de grandes erreurs. 

Le sixième chapitre présente les résultats et l'analyse des performances de la solution proposée. 

Les résultats présentés sont obtenus suite à la réalisation de collectes de données réelles dans 

différents types d'environnements. La contribution de l'information visuelle est particulièrement 

soulignée. 

Enfin, le dernier chapitre conclut sur les travaux réalisés au cours de la thèse et propose des 

perspectives qui pourraient être envisagées pour des travaux futurs. 
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Chapter 1 

1 Introduction 

1.1 Motivation and challenges 

Automated and autonomous driving applications are nowadays closer than ever to being part 

of our everyday life thanks to the ongoing research advances on this topic (Okuda, 2014). This 

promising field is facing at present several challenges. Technological aspects of 

autonomous/automated driving such as navigation (positioning, path planning and decision 

making, control), perception, obstacle avoidance, etc. are among the most challenging tasks. In 

particular, positioning is an important task that needs to be addressed carefully. In fact, many 

other issues involving safety of life, such as vehicle control or path planning and decision 

making, rely on positioning and require not only having continuously an accurate navigation 

solution but also to be confident in this information.  

However, this is a complex task because of many challenges. First, road applications require 

stringent level of positioning accuracy and integrity in order to prevent human harm/material 

damage in environments where people, vehicles and other structures are likely to be close to 

each other. At present, there are no positioning performance requirements, but works are going 

on to handle this problem (GSA, 2015). Second, although GNSS is the most widely used system 

to perform positioning, this system is not free from drawbacks since it suffers from problems 

related to signal propagation especially in urban environments where buildings, trees and other 

structures hinder the reception of GNSS signals and degrade their quality. This can result in 

significant positioning error exceeding in some cases a kilometer. Many techniques are 

proposed in the literature to mitigate these problems and improve the GNSS accuracy. 

Unfortunately, all these techniques have limitations (Jiang, 2012). Finally, the third challenge 

is the sensors cost which is a very restricting constraint. In fact, a possible way to overcome the 

GNSS problem is to fuse its measurements with other sensors having complementary 

characteristics like being independent from the surrounding environment. Generally, the most 

widely implemented hybridization algorithms for land vehicles fuse GNSS measurements with 

inertial and/or odometric data. Thereby, these DR sensors ensure the system continuity when 

GNSS information is unavailable and improve the system performance when GNSS signals are 

corrupted, and in turn, the GNSS limits the drift of the DR solution if it is available. However, 

the performance achieved by this hybridization depends thoroughly on the quality of the DR 

sensor used especially when GNSS signals are degraded or unavailable. It is well known that 

the high grade Inertial Measurement Units (IMU) are very expensive, hence not adapted to 

ground vehicle applications. The only usable IMUs are the Micro-Electro-Mechanical Systems 

MEMS IMUs having an affordable cost at the expense of quality, despite the progress that has 

been done in this field. 
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The state-of-the-art of performance and cost constraints is summarized in the following table 

(BGLE-MIMOSA, 2012). It shows that each sensor and configuration of the existing solutions 

has their advantages and drawbacks. GNSS is not expensive, but it is not accurate, not robust 

and does not provide a continuous navigation solution in difficult environments. If it is used in 

precise positioning mode (e.g. RTK), then the accuracy is improved but its cost increases 

considerably. In addition, the dependence on the environmental conditions degrades the 

continuity and the robustness in difficult GNSS environment. The combination of GNSS and 

IMU improves the continuity of the navigation solution. However, the accuracy of this solution 

is only possible when using high grade sensors. Finally, if GNSS is fused with other low-cost 

sensors, then the cost decreases but the accuracy level is of few meters. 

Technology Accuracy Continuity Robustness Cost 

Examples of 

industrial 

solutions 

GNSS Few meters Low Low 

Tens to 

hundreds of  

euros 

Ublox, 

Septentrio, 

NovAtel, 

CSR 

GNSS + 

RTK 
Decimeter Low Low 

Tens of 

thousands 

of euros 

Ublox, 

Septentrio, 

NovAtel, 

CSR 

GNSS+ IMU 

Few meters if 

GNSS+MEMS IMU 

High 
Medium to 

high 

Hundreds 

of euros 
Novatel 

(SPAN), 

Ublox 

(Automotive 

Dead 

Reckoning) 

Sub-meter to meter 

if GNSS+higher 

grade IMU 
Tens to 

hundreds of 

thousands 

of euros 
Decimeter if GNSS 

RTK+higher grade 

IMU 

GNSS+IMU+

other sensors 
Few meters if GNSS High High 

Hundreds 

of euros 

STMicroelect

ronics 

/CSR 

(LMS333D + 

SiRFusion) 

Table 1.1 Summary of the existing positioning technologies and of their performance 

Therefore, other sensors have been considered to find a compromise between accuracy and cost. 

Many sensors have been proposed and tested in the literature. Among these sensors we can find 

the sensors providing range information such as the Light Radar (LIDAR) (Gao, 2015), the 

laser rangefinders (Hiremath, 2014) and the ultra-sound sensors (Nordh, 2007). The LIDAR 

has very good performances, but its cost is relatively high for car applications. Ultra-sound 

sensors are also not adapted to car applications in large scale environments because of the lack 

in their range. The drawback of all these sensors is that they only provide ranging information. 
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Recently, it has been proven that vision could be a promising navigation sensor that provides 

accurate navigation solution (Nistér, 2006). Indeed, cameras have the advantage of providing 

an extensive amount of information while having low weight, limited power consumption, 

small size and reasonable cost (Engel, 2012). Vision-based navigation is inspired from human 

navigation: the observation of the world and objects around us allows us to deduce our relative 

position with respect to our environment. This important information makes vision-based 

navigation a promising solution able to improve navigation performance. The first navigation 

algorithms called Visual Odometry were developed for NASA planetary rovers (Moravec, 

1980) exploring Mars to be able to measure their 6-degree-of-freedom (DoF) in rough terrains 

where the classical wheel odometry experience slippage. Then, VO has progressed over the 

years. In (Nistér, 2006), the assessment of a stereo pair of cameras performance in realistic 

ground-vehicle scenarios over a few hundred meters shows a few meters accuracy in 

positioning and sub-degree accuracy in heading angle recovery. In the last years, successful 

results have been obtained using a more sophisticated vision-based technique consisting not 

only in motion measuring but also in mapping the surrounded environment. This technique 

called Visual Simultaneous Localization And Mapping (VSLAM) (Dissanayake, 2001), has 

proven to have better performance than VO. A state of the art review of vision-based positioning 

techniques and the solutions proposed to benefit from this information in positioning have been 

done in this thesis, and a paper addressing this review (Ben-Afia, 2014) has been published. 

Taking into account all these constraints, challenges and current advances, a French project 

called MIMOSA has been launched in 2013 by industrials and researches in order to develop a 

navigation equipment for road professional market, having good positioning performance and 

taking advantage of progresses made in sensor fusion and vision-based positioning fields. Two 

applications are targeted in this project: ground vehicles in airport surfaces and garbage trucks 

moving in suburban to urban environments. 

The idea in this project is not to develop a new vision-based positioning technique, but to exploit 

the progress made in this field in order to fuse visual information with other positioning sensors 

to achieve a robust navigation system capable of providing continuously sub-meter level 

accuracy. This means that, using a visual processing module, visual information should be 

converted in motion or positioning information before its integration in the main navigation 

system consisting of multiple sensors. This approach of considering the visual processing 

module as a black box has the advantage of having a multi-sensor system that is independent 

from the technique used by the visual module. This allows the modularity of the system by 

giving the possibility to decide whether this information should be used or not, especially 

because vision depends on light conditions.  

This Ph.D. thesis is part of MIMOSA project and aims at exploiting the visual information in a 

multi-sensor fusion framework, while taking into account the requirements and technological 

constraints set by the MIMOSA project and mentioned previously. More details about the thesis 

objectives are given in Section 1.2 
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1.2 Thesis objectives and contribution 

The global objective of this Ph.D. thesis is to define a multi-sensor navigation that takes 

advantage of low-cost sensors, especially vision sensors, and to provide continuously a robust 

navigation solution meeting the sub-meter level accuracy. This overall objective has been 

divided in several sub-objectives and realized in the following steps: 

- The review of the state of the art of low-cost sensors and techniques used currently in 

positioning is performed. A special attention is given to vision-based positioning to 

understand its principles and its techniques. A classification of vision-based positioning 

techniques is proposed and the key elements of this particular type of navigation are 

investigated. In addition, the different techniques and strategies to fuse sensor 

information are studied and compared. 

- The sensors that will be integrated in the proposed multi-sensor navigation solution in 

addition to camera are selected. This selection is mainly based on the cost/performance 

trade off. 

- The identified sensors are studied, and their measurements are characterized. In addition, 

the different ways to use these sensors in positioning are investigated.  

- A multi-sensor hybridization architecture integrating the identified sensors is proposed. 

The choices made to define this architecture are justified and a detailed description of 

the mathematical aspect of hybridization is provided. 

- The review of the integrity challenges of the proposed solution is addressed. In particular 

the vision-based solution integrity is addressed, and its possible failure modes are listed. 

The challenges of the overall proposed hybridization architecture are also discussed. 

The performances achieved with the proposed architecture are assessed, based on real data 

collected in the environments targeted by the MIMOSA project, namely urban and airport 

environments. The contribution of each sensor to the improvement or degradation of the 

navigation solution is highlighted. In particular, the visual information contribution is studied. 

1.3 Thesis outline 

In  order  to  synthesize  the  work  done  during  this Ph.D. thesis, the document is organized 

as follows: 

Chapter 2 is an overview of sensors selected to be used in the multi-sensor architecture based 

on their performance/cost tradeoff. First, an overview of these sensors, mainly composed of a 

GNSS receiver for global navigation, an IMU for inertial navigation and 4 Wheel Speed Sensors 

(WSS) for odometry, is performed. Then, the principle of their associated navigation modules 

is explained, and their measurement errors are characterized. Finally, a state of the art review 

of the sensor fusion strategies and solutions is addressed. 

Chapter 3 reviews the existing vision-based navigation techniques and highlights their 

challenges especially in outdoor large-scale environments. First, a classification of the different 

manners these techniques have been used in the literature is proposed. Then the review of the 
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technical aspects of vision-based positioning is performed. A particular interest is given to 

ORB-SLAM (Mur-Artal, 2015) open-source software, used in this study to provide the visual 

information. Then, the challenges of these techniques are emphasized. Finally, the measurement 

model of the visual information is given. 

Chapter 4 provides a detailed explanation of the proposed multi-sensor navigation system. The 

choices made to design this system are justified and the contribution of each sensor is described 

mathematically. A special attention is given to the observability analysis of the parameters the 

developed system should be able to estimate. 

Chapter 5 addresses the integrity monitoring problem and discusses the integrity challenges 

faced, on one hand, with the visual information and its processing with the SLAM technique, 

and on the other hand with the hybridized structure whose integrity study is not a trivial task. 

Chapter 6 provides the results and the performance analysis of the proposed solution. The 

presented results are based on real datasets collected in urban and airport environments. The 

contribution of visual information is particularly highlighted. 

Finally, the last chapter concludes on the works done during the Ph.D. and proposes some 

perspectives that could be considered for future works. 



 



 

Chapter 2 

2 Navigation Systems for Ground 
Vehicles 

This chapter is an overview of sensors selected to be used in the multi-sensor architecture based 

on their performance/cost tradeoff. First, an overview of these sensors composed of a GNSS 

receiver for global navigation, an IMU for inertial navigation and 4 Wheel Speed Sensors 

(WSS) for odometry, is performed. Then, the principle of their associated navigation modules 

is explained and their measurement errors are characterized. Finally, a state of the art review 

and comparison of the sensor fusion strategies and solutions is addressed. 
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2.1 GNSS 

 System principle 

Global navigation Satellite Systems are positioning systems able to provide a user, equipped 

with a GNSS receiver, with a tridimensional position, velocity, and time. The concept of GNSS 

positioning is based on measuring the time delay it takes for a signal transmitted by the satellite 

to reach a user receiver. This signal propagation time is then multiplied by the speed of light to 

obtain an estimate of the satellite-to-receiver range. By measuring the propagation time of the 

signals broadcast from multiple satellites with known positions, thanks to the information 

broadcast in the navigation message, the receiver may determine the position of its antenna. 

The described GNSS principle requires synchronized satellite and receiver clocks to compute 

the signal propagation time between its transmission and reception. However, these clocks are 

actually not synchronized, resulting in errors in the measured distances. Consequently, the 

computed distance between the satellite and the receiver includes a time component associated 

to the offset between the satellite and the receiver clocks, in addition to the true range. For this 

reason, this computed distance is named pseudorange. The offset between the satellite and the 

receiver clocks is named satellite-receiver clock offset. 

In order to monitor timing, a reference time, the GNSS Time, is defined. The satellite-receiver 

clock offset may be expressed as the difference between the GNSS-Time-satellite clock offset 

and the receiver-GNSS Time clock offset. The satellite clock drift is monitored by the ground 

segment and, parameters for the receiver to estimate the satellite-GNSS Time clock offset are 

transmitted in the navigation message, thus allowing the synchronization of the satellite time 

with GNSS Time. The GNSS-Time-receiver clock offset remains unknown and must be 

estimated in the navigation solution computation. 

The mathematical model of the pseudorange provided by a satellite 𝑖  at time epoch 𝑘  is 

therefore given by: 

𝜌𝐺,𝑘
𝑖 = 𝑑𝑘

𝑖 + 𝑐 (∆𝑡𝑘
𝑟 − ∆𝑡𝑘

𝑖 ) + 𝜀𝑘
𝑖  (2.1) 

where 

• 𝑑𝑘
𝑖 = √(𝑥𝑘 − 𝑥𝑘

𝑖 )
2
+ (𝑦𝑘 − 𝑦𝑘

𝑖 )
2
+ (𝑧𝑘 − 𝑧𝑘

𝑖 )
2
 is the geometric distance between the 

receiver and the satellite 𝑖 

• 𝑿𝐺,𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘)  are the receiver coordinates in a reference frame 

• 𝑿𝒔,𝑘
𝑖 = (𝑥𝑘

𝑖  , 𝑦𝑘
𝑖  , 𝑧𝑘

𝑖 )  are the satellite 𝑖 coordinates in the same reference frame 

• 𝑐 is the speed of light 

• ∆𝑡𝑘
𝑖  is the GNSS-Time-satellite clock offset. This offset is broadcast in the navigation 

message and is corrected by the receiver using the correction models detailed in (Farrell, 

1999). 

• ∆𝑡𝑘
𝑟 is the receiver-GNSS-Time clock offset at the reception time. 
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• 𝜀𝑘
𝑖  is the error affecting the pseudorange. This term reflects the uncertainty in the 

estimation of the signal propagation time and is due to many sources of error. These 

errors corrupting the GNSS pseudorange measurements are mainly: 

- the uncertainties on the GNSS-Time-satellite clock offset correction model and 

Ephemeris  

- Error due to ionosphere delay  

- Error due to troposphere delay  

- Error due to Multipath and Non-Line-Of-Sight (NLOS) signals 

- Receiver noise 

These errors are presented in Figure 2-1. When a GNSS signal propagates from satellite to the 

GNSS antenna, it goes through the atmosphere and undergoes ionosphere and troposphere 

delays. Then, it may be reflected by buildings and structures surrounding the antenna resulting 

in receiving the reflected signal in addition to the direct signal (multipath), or even receiving 

only the indirect signal (NLOS).  

 

 

Figure 2-1 GNSS error sources 

Based on equation (2.1), 4 unknowns should be actually estimated: the three-dimensional user 

position as well as the receiver-GNSS-Time clock offset. This explains the need to have at least 

4 GNSS pseudorange measurements to solve the 4-unknown system of equations. 

A GNSS receiver can also compute the velocity of the user by exploiting the pseudorange rate 

measurement deduced from the Doppler measurements using the following formula: 
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𝜌̇𝐺,𝑘
𝑖 = ∆𝑓𝐺

𝑖 .
𝑐

𝑓0
 (2.2) 

where  

• ∆𝑓𝐺
𝑖  is the Doppler measurement provided by the GNSS receiver. It represents the 

frequency shift caused by the relative motion between the receiver and the satellite 𝑖.  

• 𝑐 is the speed of light 

• 𝑓0 is the transmitted signal frequency (𝑓0 = 1575.42 MHz for L1 signals) 

The mathematical model of the pseudorange rate provided by a satellite 𝑖 at time epoch 𝑘 is 

therefore given by: 

𝜌̇𝐺,𝑘
𝑖 = 𝑑̇𝑘

𝑖 + 𝑐 (∆𝑡̇𝑘
𝑟 − ∆𝑡̇𝑘

𝑖 ) + 𝜀𝑘̇
𝑖  (2.3) 

where 

• 𝑑̇𝑘
𝑖  is the receiver-satellite distance rate 

• 𝑐 is the speed of light 

• ∆𝑡̇𝑘
𝑟 is the receiver clock drift 

• ∆𝑡̇𝑘
𝑖  is the satellite clock drift 

• 𝜀𝑘̇
𝑖  is the error drift 

The accuracy of the velocity computed using the Doppler measurements is in the order of few 

centimeters per second (Hoffmann-Wellenhof, 1992). 

 GNSS Measurement models 

To evaluate GNSS positioning performance, error sources have to be taken into account and 

corresponding measurement errors have to be modeled as precisely as possible.  

2.1.2.1 Pseudorange measurement model 

Two types of pseudorange error models are considered: 

• The nominal error model: it characterizes the pseudorange measurement errors that are 

present when all GNSS segments are working according to their specifications and the 

magnitudes of other external error sources have typical values. These errors are 

modelled as zero-mean independent Gaussian distributions. Therefore, the mathematical 

model of nominal error of pseudorange 𝑖 at time epoch 𝑘 is given by:  

𝜀𝑘
𝑖  ~ 𝒩 (0, (𝜎𝑃𝑅,𝑘

𝑖 )
2
) (2.4) 

where 𝜎𝑃𝑅,𝑘
𝑖  is the standard deviation of the pseudorange error affecting the satellite 𝑖 

measurement. 

• The faulty error model: it characterizes unusual errors that may cause a positioning 

failure. The origins of these errors may be: 

- A satellite clock malfunction 
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- A large multipath/NLOS 

- A large and punctual ionospheric delay 

- etc. 

These errors are modelled as a bias added to the nominal error. Therefore, the mathematical 

model of an error on pseudorange measurement 𝑖 at time epoch 𝑘 is given by: 

𝜀𝑘
𝑖  ~ 𝒩 (𝑏𝑘

𝑖 , (𝜎𝑃𝑅,𝑘
𝑖 )

2
) (2.5) 

where 𝑏𝑘
𝑖  is the additive bias. 

The mathematical pseudorange model given in equation (2.4) is the result of convolution of the 

errors listed in Section 2.1.1, which are assumed independent. Each of these errors is assumed 

to be zero-mean and Gaussian. This assumption is conservative since real errors are not exactly 

described by this distribution. The zero-mean Gaussian model is obtained using overbounding 

techniques described in (DeCleene, 2000). The model of each individual error is described in 

the following sections.  

2.1.2.1.1 Satellite clock error and ephemeris errors 

The satellite clock error is the offset between the time maintained by the atomic clocks on the 

satellite and the GNSS Time. The parameters to correct the satellite clock error are computed 

and broadcast to the users. After correction, a residual error remains. 

The Ephemeris error is the difference between the estimated and the actual satellite position. 

The estimated satellite position is uploaded to the satellite and is broadcast to the users in the 

navigation message.  

The satellite clock and ephemeris errors are overbounded by a zero-mean Gaussian distribution 

with a standard deviation equal to the User Range Accuracy (URA). The value of URA for 

modernized GPS is given in (Neri, 2011): 

𝜀𝑐𝑙𝑘&𝑒𝑝ℎ,𝑘
𝑖 ~ 𝒩(0, 𝜎𝑈𝑅𝐴,𝑘

2 ) (2.6) 

with 𝜎𝑈𝑅𝐴,𝑘 = 0.85 𝑚 

2.1.2.1.2 Ionosphere propagation error 

The ionospheric error is the measurement error caused by the propagation of the GNSS signals in 

the ionosphere. In this atmosphere region, the signal travels with a speed different from the speed 

of light, delaying consequently the pseudorange. The ionosphere is a dispersive medium, i.e. the 

propagation speed depends on the carrier frequency, so the ionospheric delay can be eliminated 

using dual frequency receivers. In this work only single L1 C/A frequency solutions are considered 

and in this case the ionospheric error can be reduced using suitable models, the most common being 

the Klobuchar model (Klobuchar, 1987) which removes about 50% of ionospheric error on average 

and whose coefficients are broadcast in the navigation message. The ionospheric residual error after 

correction with the Klobuchar model is given by (Salos, 2012): 

𝜀𝑖𝑜𝑛𝑜,𝑘
𝑖 ~ 𝒩 (0, (𝜎𝑖𝑜𝑛𝑜𝐿1,𝑘

𝑖 )
2
) (2.7) 
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with 

𝜎𝑖𝑜𝑛𝑜𝐿1,𝑘
𝑖 = {

𝐹𝑖𝑜𝑛𝑜 ∙ 9   0 ≤ |𝜙𝑚| ≤ 20°

𝐹𝑖𝑜𝑛𝑜 ∙ 4.5 20° < |𝜙𝑚| ≤ 55°

𝐹𝑖𝑜𝑛𝑜 ∙ 6   55° < |𝜙𝑚| ≤ 90°
 (2.8) 

 where  

• 𝐹𝑖𝑜𝑛𝑜 is the mapping function used in klobuchar corrections: 

𝐹𝑖𝑜𝑛𝑜 = 1 + 16(0.53 −
𝜃𝑖

180
)

3

 (2.9) 

• 𝜃𝑖  is the satellite 𝑖 elevation angle 

• 𝜙𝑚 is the user’s geomagnetic latitude 

2.1.2.1.3 Troposphere propagation error 

The troposphere error is the measurement error resulting from the propagation of the GNSS signals 

in the troposphere. In this region of atmosphere, the signal also travels with a speed different from 

the speed of light, adding consequently a delay to the pseudorange. The troposphere is a non-

dispersive medium for frequencies up to 15 GHZ and dual-frequency cannot be used to eliminate 

its error. Several models can be used to reduce the influence of the tropospheric error, bringing sub-

meter accuracy (Spilker, 1996). In this study, the UNB3 (Collins, 1999) model is used. After 

correction by the UNB3 model, the tropospheric residual error is given by: 

𝜀𝑡𝑟𝑜𝑝𝑜,𝑘
𝑖 ~ 𝒩 (0, (𝜎𝑡𝑟𝑜𝑝𝑜,𝑘

𝑖 )
2
) (2.10) 

with 

𝜎𝑡𝑟𝑜𝑝𝑜,𝑘
𝑖 = 𝐹𝑡𝑟𝑜𝑝𝑜 . 𝜎𝑡𝑟𝑜𝑝𝑜,𝑣 (2.11) 

where 

• 𝜎𝑡𝑟𝑜𝑝𝑜,𝑣 = 12𝑐𝑚  

• 𝐹𝑡𝑟𝑜𝑝𝑜 = {

1.001

√0.002001+sin2 𝜃𝑖
                                                𝑓𝑜𝑟𝜃𝑖 ≥ 4°

1.001

√0.002001+sin2 𝜃𝑖
(1 + 0.015 ∙ (4° − 𝜃𝑖)

2
) 𝑓𝑜𝑟 2° ≤ 𝜃𝑖 < 4°

 

• 𝜃𝑖 is the satellite 𝑖 elevation angle. 

2.1.2.1.4 Receiver noise 

The receiver error is caused mainly by the thermal noise produced at the tracking process level. 

Errors are of few decimeters for code measurement (Conley, 2006). The mathematical model 

of this error is given by: 

𝜀𝑟𝑐𝑣,𝑘
𝑖 ~ 𝒩 (0, (𝜎𝑟𝑐𝑣,𝑘

𝑖 )
2
) (2.12) 

with (Julien, 2011): 
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𝜎𝑟𝑐𝑣,𝑘
𝑖 = 1.5 𝑚 

2.1.2.1.5 Multipath error 

The multipath error is due to the reflection of the propagated signal on the surroundings of the 

GNSS antenna. In general, the multipath error is the dominant error in dense scenarios like urban 

environments. The impact of this error on the pseudorange can vary from few meters in benign 

environments to over one hundred meters in strongly reflective scenarios (Parkinson, 1996) and can 

be much greater in situations where only the NLOS are received by the receiver (Mezentsev, 2005). 

The study presented in (EU-US, 2010) shows that the Jahn multipath model (Jahn, 1996) is a 

good model in urban and suburban environments, while in an open sky environment the 

multipath error is better modeled with the Mats Brenner multipath model (Brenner, 1998). 

The multipath error model is given by: 

𝜀𝑚𝑝𝑡ℎ,𝑘
𝑖 ~ 𝒩 (0, (𝜎𝑚𝑝𝑡ℎ,𝑘

𝑖 )
2
) (2.13) 

with 

𝜎𝑚𝑝𝑡ℎ,𝑘
𝑖 = {

max {𝑎 + 𝑏. 𝑒𝑐 𝜃
𝑖
 , 𝑒}            in  open sky and suburban environments  

max{𝑎 + 𝑏. tan−1 (𝑐(𝜃𝑖 − 𝑑) ) , 𝑒}             in  urban environments         
 (2.14) 

 where  

• 𝑒 = 10−4  

• 𝜃𝑖  is the elevation angle in (°). 

• 𝑎,𝑏,𝑐 and 𝑑 are given for the L1 C/A in Table 2.1: 

 Open sky Suburban Urban 

𝒂 0.22176 0.55349 6.3784 

𝒃 2.2128 30.257 -3.5782 

𝒄 -0.057807 -0.23566 0.1725 

𝒅 -- -- 29.075 

Table 2.1 Multipath model parameters 

2.1.2.1.6 Total pseudorange error 

The total pseudorange error is the convolution of all the independent errors described above. It 

is modeled consequently as Gaussian distribution with a variance equal to the sum of the 

variances of each error component: 

(𝜎𝑃𝑅,𝑘
𝑖 )

2
= 𝜎𝑈𝑅𝐴,𝑘

2 + (𝜎𝑖𝑜𝑛𝑜𝐿1,𝑘
𝑖 )

2
+ (𝜎𝑡𝑟𝑜𝑝𝑜,𝑘

𝑖 )
2
+ (𝜎𝑟𝑐𝑣,𝑘

𝑖 )
2
+ (𝜎𝑚𝑝𝑡ℎ,𝑘

𝑖 )
2
 (2.15) 
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2.1.2.2 Pseudorange rate measurement model 

We only consider the nominal pseudorange rate model in this study and we assume that all the 

error sources mentioned above contribute to a unique error 𝜀𝑘̇
𝑖  which follows a zero-mean 

Gaussian distribution: 

𝜀𝑘̇
𝑖~ 𝒩 (0, (𝜎𝑃𝑅𝑅,𝑘

𝑖 )
2
) (2.16) 

 where 𝜎𝑃𝑅𝑅,𝑘
𝑖  is the pseudorange rate error standard deviation. Tests carried out in urban 

environment in (Carcanague, 2013) have shown that the value of 𝜎𝑃𝑅𝑅,𝑘
𝑖  depends on the vehicle 

dynamics and the GNSS carrier to noise ratio 𝐶/𝑁0 . Table 2.2 gives the values of 𝜎𝑃𝑅𝑅,𝑘
𝑖  : 

 𝐂/𝐍𝟎 (db.Hz) 

Vehicle speed 

(m/s) 
30-33 33-36 36-39 39-42 42-45 45-48 48-51 

0-3 0.53 0.43 0.28 0.21 0.13 0.09 0.07 

3-6 2.04 1.61 1.08 0.71 0.55 0.32 0.24 

6-9 2.37 2.00 1.43 0.86 0.53 0.29 0.18 

9-12 3.08 2.33 1.60 1.06 0.99 0.28 0.22 

12-15 2.54 1.87 1.25 0.83 0.54 0.27 0.17 

15-18 1.26 1.36 1.48 0.80 0.53 0.27 0.15 

18-21 1.37 1.29 0.87 0.55 0.44 0.25 0.16 

21-24 1.44 1.25 1.09 0.73 0.37 0.26 0.16 

24-27 1.33 0.90 0.58 0.47 0.31 0.26 0.11 

27-30 1.01 0.92 0.61 0.53 0.31 0.31 0.14 

Table 2.2 Standard deviation values of the pseudorange rate 

 GNSS Navigation solution 

2.1.3.1 Position computation using the pseudorange measurement 

As described in Section 2.1.1, the GNSS receiver computes the GNSS antenna position using 

at least four pseudorange measurements. After applying the corrections described in Section 

2.1.2, the corrected pseudorange measurement is given by: 

𝜌𝐺,𝑘
𝑖 = 𝑑𝑘

𝑖 + 𝑏𝑘
𝑐𝑙𝑘 + 𝜀𝑘

𝑖  (2.17) 

 We remind that: 

• 𝑑𝑘
𝑖 = √(𝑥𝑘 − 𝑥𝑘

𝑖 )
2
+ (𝑦𝑘 − 𝑦𝑘

𝑖 )
2
+ (𝑧𝑘 − 𝑧𝑘

𝑖 )
2
 is the geometric distance between the 

receiver and the satellite 𝑖 

• 𝑿𝐺,𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘)  is the GNSS antenna position in a reference frame and should be 

determined by the receiver. 

• 𝑿𝑠,𝑘
𝑖 = (𝑥𝑘

𝑖  , 𝑦𝑘
𝑖  , 𝑧𝑘

𝑖 )  is the satellite 𝑖 position in the same reference frame.  

• 𝑏𝑘
𝑐𝑙𝑘 is the receiver clock bias and is determined by the receiver. It is therefore included 

in 𝑿𝐺,𝑘 that becomes from now on  𝑿𝐺,𝑘 = (𝑥𝑘  , 𝑦𝑘 , 𝑧𝑘, 𝑏𝑘
𝑐𝑙𝑘)   
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The pseudorange measurements are linearized using a Taylor series expansion around an 

approximate point 𝑿̂𝐺,𝑘 = (𝑥̂𝑘 , 𝑦̂𝑘 , 𝑧̂𝑘, 𝑏̂𝑘
𝑐𝑙𝑘) . The expansion is truncated at the first order 

giving the following linearized pseudorange expression: 

𝜌𝐺,𝑘
𝑖 = 𝜌̂𝐺,𝑘

𝑖 +
𝜕𝜌𝐺,𝑘

𝑖

𝜕𝑥𝑘
|
𝑿̂𝐺,𝑘

(𝑥𝑘 − 𝑥̂𝑘) +
𝜕𝜌𝐺,𝑘

𝑖

𝜕𝑦𝑘
|
𝑿̂𝐺,𝑘

(𝑦𝑘 − 𝑦̂𝑘) +
𝜕𝜌𝐺,𝑘

𝑖

𝜕𝑧𝑘
|
𝑿̂𝐺,𝑘

(𝑧𝑘 − 𝑧̂𝑘)

+
𝜕𝜌𝐺,𝑘

𝑖

𝜕𝑏𝑘
𝑐𝑙𝑘|

𝑿̂𝐺,𝑘

(𝑏𝑘
𝑐𝑙𝑘 − 𝑏̂𝑘

𝑐𝑙𝑘) + 𝜀𝑘
𝑖  

(2.18) 

where 

• 𝜌̂𝐺,𝑘
𝑖  is a prediction of the pseudorange measurement, evaluated in the point 𝑿̂𝐺,𝑘 

• 
𝜕𝜌𝑘

𝑖

𝜕𝑥𝑘
|
𝑿̂𝐺,𝑘

is the partial derivative of the pseudorange measurement with respect to the 

variable 𝑥𝑘 and evaluated in the point 𝑿̂𝐺,𝑘. 

The development of equation (2.18) for 𝑁𝑠𝑎𝑡 satellites in view yields: 

𝝆𝐺,𝑘 − 𝝆̂𝐺,𝑘 = 𝑯𝐺,𝑘 𝛿𝑿𝑘 + 𝜺𝑘 (2.19) 

where 

• 𝝆𝐺,𝑘 = [𝜌𝐺,𝑘
1  , ⋯ , 𝜌𝐺,𝑘

𝑁𝑠𝑎𝑡]
𝑇
 is the vector of the measured pseudoranges  

• 𝝆̂𝐺,𝑘 = [𝜌̂𝐺,𝑘
1  , ⋯ , 𝜌̂𝐺,𝑘

𝑁𝑠𝑎𝑡]
𝑇
 is the vector of the predicted pseudoranges evaluated in 𝑿̂𝐺,𝑘:  

• 𝑯𝐺,𝑘 is the Jacobian matrix of 𝝆𝑮,𝒌 evaluated in 𝑿̂𝐺,𝑘 

• 𝛿𝑿𝑘 = [(𝑥𝑘 − 𝑥̂𝑘)   , (𝑦𝑘 − 𝑦̂𝑘)   , (𝑧𝑘 − 𝑧̂𝑘)   , (𝑏𝑘
𝑐𝑙𝑘 − 𝑏̂𝑘

𝑐𝑙𝑘)  ]
𝑇

 is the unknown vector 

which represents the prediction error vector  

• 𝜺𝑘 = [𝜀𝑘
1 , ⋯ , 𝜀𝑘

𝑁𝑠𝑎𝑡]
𝑇
is the vector of residual errors  

Using equation (2.19), 𝛿𝑿𝑘 is estimated using the Iterative Least Squares method. The antenna 

coordinates and receiver clock bias are then deduced using: 

𝑿𝑘 = 𝛿𝑿𝑘 + 𝑿̂𝑘 (2.20) 

2.1.3.2 Velocity computation using the pseudorange rate measurement 

As explained in Section 2.1.1, the GNSS receiver provides also the Doppler measurements from 

which we can compute the pseudorange rate using equation (2.2). After applying the corrections 

to equation (2.3), the corrected pseudorange rate measurement model is given by: 

𝜌̇𝐺,𝑘
𝑖 = 𝑑̇𝑘

𝑖 + 𝑏̇𝑘
𝑐𝑙𝑘 + 𝜀𝑘̇

𝑖  (2.21) 

with  
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𝑑̇𝑘
𝑖 = 𝑽𝐺,𝑘

𝑇   
( 𝑿𝐺,𝑘 − 𝑿𝑠,𝑘

𝑖 )

𝑑𝑘
𝑖

− 𝑽𝑠,𝑘
𝑖 𝑇

  
(  𝑿𝐺,𝑘 − 𝑿𝑠,𝑘

𝑖 )

𝑑𝑘
𝑖

 (2.22) 

where 

• 𝑽𝐺,𝑘 = [𝑉𝑥𝑘 , 𝑉𝑦𝑘 , 𝑉𝑧𝑘]
𝑇

 is the receiver velocity vector 

• 𝑽𝑠,𝑘
𝑖 = [𝑉𝑥𝑘

𝑖  , 𝑉𝑦𝑘
𝑖  , 𝑉𝑧𝑘

𝑖 ]
𝑇

 is the satellite 𝑖 velocity vector 

• 𝑏̇𝑘
𝑐𝑙𝑘 is the receiver clock drift 

• 𝜀𝑘̇
𝑖  is the pseudorange rate error 

Therefore, if the position is known, we can write: 

𝜌̇𝐺,𝑘
𝑖 + 𝑽𝑠,𝑘

𝑖 𝑇
  
(  𝑿𝒌 − 𝑿𝒌

𝒊 )

𝑑𝑘
𝑖

= 
( 𝑿𝒌 − 𝑿𝒌

𝒊 )
𝑇

𝑑𝑘
𝑖

  𝑽𝐺,𝑘 + 𝑏̇𝑘
𝑐𝑙𝑘 + 𝜀𝑘̇

𝑖  (2.23) 

As it can be noticed, equation (2.23) is linear for the receiver velocity components and clock 

drift, which are the unknowns of the problem. So, the linearization process is unnecessary. The 

velocity components are therefore estimated using the Least Squares Algorithm. 

From now on until the end of this thesis, although the vectors and components are always time-

dependent, this dependency on time will not be expressed for sake of simplicity unless it is 

necessary to do it. 

2.2 Inertial navigation 

 System principle 

An Inertial Navigation System (INS) is a combination of sensors able to determine all 

navigation parameters of a moving object, i.e. position, velocity and attitude. The ensemble of 

sensors is an IMU and consists of three accelerometers, three gyroscopes and eventually three 

magnetometers mounted on an orthogonal triad. In this study, the magnetometers are not 

considered since the Earth’s magnetic field can be altered by electrical currents, buildings, 

vehicles or any type of structure using ferrous materials (Groves, 2008). 

Accelerometers measure the specific force also called non-gravitational acceleration. It is what 

people and instruments sense. For example, under zero acceleration, the reaction to gravitation 

is sensed, and the specific force is equal and opposite to the acceleration due to gravitation 

(Groves, 2008). 

Inertial Navigation is based on the DR principle, which is the process of estimating the current 

position of the vehicle from a previously determined position knowing the vehicle’s motion. In 

fact, to obtain the velocity at the current time, the specific force corrected of the gravitational 

term is integrated and added to the previous velocity. The current position is then obtained by 

integrating the velocity and adding the obtained displacement to the previous position. 
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Nearly all IMUs fall into one of the two following categories: Stable Platform Systems and 

Strapdown Systems (Woodman, 2007). Stable platform systems are maintained aligned with 

the local navigation frame (𝑙) (See Appendix A) in which the position and the velocity are 

expressed. The gyroscopes detect rotations and this information is fed back to actuators which 

rotate the platform to keep it aligned with (𝑙). The orientation angles of the vehicle can be read 

directly. The specific force integration is directly performed in (𝑙).  

In Strapdown platforms, the IMU is mounted rigidly onto the vehicle. The angular rates 

provided by the gyroscopes are integrated to obtain the vehicle’s current orientation with 

respect to (𝑙), knowing its previous orientation. The accelerometers provide the specific force 

in the vehicle frame also called body frame (𝑏) if the IMU platform is perfectly aligned with 

(𝑏) (See Appendix A). To obtain the vehicle position and velocity in (𝑙), the specific force is 

turned first into (𝑙) before integration, using the orientation of (𝑏) with respect to (𝑙).This 

platform illustrated and detailed in Section 2.2.3. 

Strapdown platforms are currently the most widely used configurations (Woodman, 2007) and 

are used in this work.  

 Inertial measurement errors and models 

The measurements provided by an IMU are affected by errors which degrade their accuracy. In 

this thesis, the IMU used is an XSENS MTi developed with Micro-Electro-Mechanical Systems 

(MEMS) technology. Details about the errors that arise in a MEMS IMU are given (Woodman, 

2007). These errors are summarized by the following: 

• Turn-on bias: it is the average of each IMU measurement, obtained during a specific 

period whilst the sensor is not undergoing any motion. It is generally constant and 

deterministic. 

• In-run bias: it is due to flicker noise in the electronics and in other components 

susceptible to random flickering (Woodman, 2007). It is in general modeled as a Gauss-

Markov process (Angrisano, 2010): 

𝑏̇𝑚 = −
1

𝜏𝑏𝑚
 𝑏𝑚 + 𝜂𝑏𝑚  (2.24) 

where 

▪ 𝜏𝑏𝑚 is the correlation time of the process. Its value is set to 100 s which is a 

typical value for MEMS sensors (Woodman, 2007). 

▪ 𝜂𝑏𝑚 is the process driving noise with a standard deviation 𝜎𝑏𝑚 

• Angle/Velocity Random Walk (ARW/VRW): it is the thermo-mechanical perturbation 

that affects each measurement of the IMU. It is modeled as a zero-mean white noise 

(Woodman, 2007). When integrated, this error affecting the IMU specific force and 

angular rate becomes a zero-mean random walk affecting the velocity and the angle 

respectively. The ARW/VRW values are provided in the sensor specification datasheet 
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by the sensor manufacturers. The random walk standard deviations 𝜎𝜔  and 𝜎𝑓  are 

derived from the ARW/VRW values using: 

𝜎𝜔(°/𝑠) =
1

√𝑇𝑠
𝐴𝑅𝑊(°/𝑠/√𝐻𝑧) 

𝜎𝑓(𝑚/𝑠
2) =

1

√𝑇𝑠
𝑉𝑅𝑊(𝑚/𝑠2/√𝐻𝑧) 

(2.25) 

where 𝑇𝑠 is the IMU sampling time. 

 

• Scale factor: it is the ratio between the change in the output signal of the sensor and the 

change in the physical quantity to measure. In ideal conditions the scale factor should 

be unity however for MEMS IMU, this quantity is never unity and is modeled as Gauss-

Markov process (Angrisano, 2010): 

𝑘̇𝑚 = −
1

𝜏𝑘𝑚
 𝑘𝑚 + 𝜂𝑘𝑚  (2.26) 

where 

▪ 𝜏𝑘𝑚  is the correlation time of the process. The scale factor changes very slowly 

in time, therefore its correlation time is set to a large value (5 hours for example 

(Angrisano, 2010)) 

▪ 𝜂𝑘𝑚 is the process driving noise with a standard deviation 𝜎𝑘𝑚 

Taking into account these error sources, the IMU measurements can be modeled by the 

following expression: 

𝑚̃ = (1 + 𝑘𝑚)𝑚 + 𝑏𝑚 + 𝜂𝑚 (2.27) 

where  

• 𝑚̃ is one of the measurements outputted by the IMU 

• 𝑚 is the true value of the IMU measurement (if the sensor was ideal without errors) 

• 𝑘𝑚 is the scale factor affecting the measurement 𝑚 

• 𝑏𝑚 is the bias affecting the measurement 𝑚 

• 𝜂𝑚 is the white random noise affecting the measurement 𝑚. Its standard deviation is 𝜎𝑚 

given in equation (2.25) 

The specifications of the IMU used in this thesis are summarized in the following table: 

Error Gyroscopes Accelerometers 

Angle/Velocity Random Walk 0.46 °/𝑠/√𝐻𝑧 0.007 𝑚/𝑠2/√𝐻𝑧 
Scale Factor 0.05% 

Table 2.3 IMU specifications 
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Based on Table 2.3 as well as a 10 hours long static data collection, the IMU error parameters 

are given in Table 2.4. The experimental results are based on the Allan standard deviation 

analysis (El-Sheimy, 2008) illustrated in Figure 2-2 and Figure 2-3.  

 
Gyroscopes Accelerometers 

Parameter Theoretical Experimental Parameter Theoretical experimental 

Bias 

𝜎𝑏𝜔𝑥 N/A 8.3 × 10−3°/𝑠 𝜎𝑏𝑓𝑥 N/A 2.6 × 10−4 𝑚/𝑠2 

𝜎𝑏𝜔𝑦 N/A 9.5 × 10−3°/𝑠 𝜎𝑏𝑓𝑦 N/A 2.1 × 10−4 𝑚/𝑠2 

𝜎𝑏𝜔𝑧 N/A 9.5 × 10−3°/𝑠 𝜎𝑏𝑓𝑧 N/A 2.6 × 10−4 𝑚/𝑠2 

𝜏𝑏𝜔𝑥 100 s N/A 𝜏𝑏𝑓𝑥 100 s N/A 

𝜏𝑏𝜔𝑦 100 s N/A 𝜏𝑏𝑓𝑦 100 s N/A 

𝜏𝑏𝜔𝑧 100 s N/A 𝜏𝑏𝑓𝑧 100 s N/A 

Scale 

factor 

𝜎𝑘𝜔  5. 10−4 N/A 𝜎𝑘𝑓  5. 10−4 N/A 

𝜏𝑘𝜔 18000s N/A 𝜏𝑘𝑓  18000s N/A 

noise 

𝜎𝜔𝑥 0.046 °/𝑠 0.054 °/𝑠 𝜎𝑓𝑥 7. 10−4 𝑚/𝑠2 7.8 × 10−4 𝑚/𝑠2 

𝜎𝜔𝑦 0.046 °/𝑠 0.05 °/𝑠 𝜎𝑓𝑦 7. 10−4 𝑚/𝑠2 8.1 × 10−4 𝑚/𝑠2 

𝜎𝜔𝑧 0.046 °/𝑠 0.056 °/𝑠 𝜎𝑓𝑧 7. 10−4 𝑚/𝑠2 9.7 × 10−4 𝑚/𝑠2 

Table 2.4 Comparison of theoretical and experimental IMU errors 

Figure 2-2 and Figure 2-3 show that the IMU error is mainly a combination of noise (slope of -

1/2), bias (slope of 0) and rate random walk for the accelerometers (slope of +1/2). The first 57 

seconds are dominated by the noise which means that the error for the first 57 seconds is due to 

this source of error. The noise standard deviation corresponds to 𝜏 = 1 𝑠𝑒𝑐. From 57 seconds, 

the bias is the main source of error. Its standard deviation corresponds to the value of 𝜎 

corresponding to the flat part. The scale factor parameters cannot be determined experimentally 

because in static conditions, this quantity is not observable. It is the reason why we rely on 

theoretical values to characterize this type of error. 

 

Figure 2-2 Allan variance deviation of the IMU 

gyroscopes 

 

Figure 2-3 Allan variance deviation of the IMU 

accelerometers 

 Inertial mechanization 

The process of computing the navigation parameters from the inertial measurements provided 

by the inertial sensors is called the INS Mechanization. In this work, the local navigation frame 
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considered to implement the mechanization is the East North Up (ENU) Local Tangent Plane 

(𝑙) defined in Appendix A. 

The mathematical development of the mechanization equations is detailed in (Farrell, 1999) 

and (Shin, 2001). The mechanization equations are given by: 

[

𝒑̇𝑏
𝑙

𝒗̇𝑏
𝑙

𝑪̇𝑏2𝑙

] = [

𝒗𝑏
𝑙

𝑪𝑏2𝑙𝒇𝑖𝑏
𝑏 − (2𝝎𝑖𝑒

𝑙 +𝝎𝑒𝑙
𝑙 ) × 𝒗𝑏

𝑙 + 𝒈𝑙

𝑪𝑏2𝑙(𝛚𝑖𝑏
𝑏 −𝛚𝑖𝑙

𝑏 ) ×

] (2.28) 

where 

• (∙) × denotes the skew-symmetric matrix 

• 𝒑𝑏
𝑙 = [𝑝𝑏

𝐸  , 𝑝𝑏
𝑁 , 𝑝𝑏

𝑈]𝑇 is the position of the vehicle in the navigation frame (𝑙) 

• 𝒗𝑏
𝑙 = [𝑣𝑏

𝐸  , 𝑣𝑏
𝑁 , 𝑣𝑏

𝑈]𝑇 is the velocity of the vehicle in the navigation frame (𝑙) 

• 𝑪𝑏2𝑙 is the attitude of the vehicle, i.e. the (3 × 3) matrix expressing the orientation of 

the vehicle with respect to the navigation frame (𝑙). It is also called the Direction Cosine 

Matrix (DCM). Its expression as a function of the Euler angles (roll (𝜙), pitch (𝜃) and 

heading (𝜓),) is given by: 

𝑪𝑏2𝑙 = [

cos𝜙 cos𝜓 + sin𝜙 sin 𝜃 sin 𝜓 cos 𝜃 sin 𝜓 sin 𝜙 cos𝜓 − cos𝜙 sin 𝜃 sin𝜓

−cos𝜙 sin𝜓 + sin𝜙 sin 𝜃 cos𝜓 cos 𝜃 cos𝜓 − sin 𝜙 sin𝜓 − cos𝜙 sin 𝜃 cos𝜓

− sin 𝜙 cos 𝜃 sin 𝜃 cos𝜙 cos 𝜃

] (2.29) 

• 𝒇𝑖𝑏
𝑏 = [𝑓𝑖𝑏

𝑏𝑥 , 𝑓𝑖𝑏
𝑏𝑦
 , 𝑓𝑖𝑏

𝑏𝑧]
𝑇
 is the specific force vector in the body frame (𝑏) measured by 

the accelerometers 

• 𝝎𝑖𝑒
𝑙 = [0 , 𝜔𝑒 cos(𝜑) , 𝜔𝑒 sin(𝜑)]

𝑇 is the Earth rotation rate with respect to the Earth-

Centered-Inertial (ECI) frame (𝑖) (see Appendix A) expressed in the navigation frame 

(𝑙) , where 𝜑  is the latitude of the vehicle and 𝜔𝑒 = 7,2921158.10
−5 𝑟𝑎𝑑/𝑠  is the 

constant earth rotation rate. 

• 𝝎𝑒𝑙
𝑙 = [

−𝑣𝑏
𝑁

𝑅𝑀+ℎ
 ,

𝑣𝑏
𝐸

𝑅𝑁+ℎ
 ,
−𝑣𝑏

𝐸 tan(𝜑)

𝑅𝑁+ℎ
]
𝑇

is the rotation rate of the navigation frame (𝑙) relative 

to the Earth-Centered-Earth-Fixed (ECEF) frame (𝑒), where 𝑅𝑁 and 𝑅𝑀 are the Earth 

radii of curvature and ℎ is the vehicle altitude with respect to the reference ellipsoid 

(WGS84). 

• 𝒈𝑙 = [0 , 0 , 𝛾𝑔]
𝑇
 is the gravity vector expressed in the navigation frame (𝑙). 𝛾𝑔 depends 

on the vehicle’s position (latitude and altitude) and can be computed using different 

gravity models (Farrell, 1999). 

• 𝝎𝑖𝑏
𝑏  is the angular rate of the body frame (𝑏) with respect to the inertial frame (𝑖), 

expressed in the body frame (𝑏). It is the gyros measurements. 

• 𝝎𝑖𝑙
𝑏  is the rotation rate of the navigation frame (𝑙) with respect to the inertial frame (𝑖), 

expressed in the body frame (𝑏). It is given by: 

𝝎𝑖𝑙
𝑏 = 𝑪𝑏2𝑙

𝑇  (𝝎𝑖𝑒
𝑙 +𝝎𝑒𝑙

𝑙 ) (2.30) 
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The INS mechanization described above is illustrated in Figure 2-4: 

 

Figure 2-4 INS mechanization in the navigation frame (adapted from [20]) 

In strapdown INS mechanization, the first step is the use of the vehicle angular rate with respect 

to the inertial frame 𝛚𝑖𝑏
𝑏 , provided by the gyros rigidly attached to the vehicle. In order to 

compute the orientation of the vehicle with respect to the navigation frame 𝑪𝑏2𝑙 , the angular 

rate of the vehicle with respect to the navigation frame, 𝝎𝑙𝑏
𝑏 , must be integrated. Therefore, the 

angular rate component corresponding to the rotation of the navigation frame with respect to 

the inertial frame 𝝎𝑖𝑙
𝑏  must be removed from the gyro measurement before integration. The 

integration is given in details in (Shin, 2001). 

Once the vehicle orientation with respect to the navigation frame is determined, the specific 

force 𝒇𝑖𝑏
𝑏  provided by the accelerometer in the body frame is rotated to the navigation frame 

and is corrected for the Coriolis and transport rate terms ((2𝝎𝑖𝑒
𝑙 +𝝎𝑒𝑙

𝑙 ) × 𝒗𝑏
𝑙 ) and for the 

gravity in the local frame 𝒈𝑙. The expression of 𝒈𝑙 is given by 𝒈𝑙 = [0 0 𝛾𝑔]𝑇 where (Shin, 

2001): 

𝛾𝑔 = 𝑎1(1 + 𝑎2 sin
2𝜑 + 𝑎3 sin

4𝜑) + (𝑎4 + 𝑎5 sin
2𝜑)ℎ + 𝑎6ℎ

2 (2.31) 

where  

• 𝜑 and ℎ are respectively the vehicle geodetic latitude and ellipsoidal height  

• 𝑎1 = 9.7803267715  𝑎4 = −0.0000030876910891 

𝑎2 = 0.0052790414  𝑎5 =    0.0000000043977311 

𝑎3 = 0.0000232718  𝑎6 =    0.0000000000007211 

The obtained acceleration is integrated to compute the vehicle velocity, which is then integrated 

to get the vehicle position. 
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2.3 Odometry 

 Wheel Speed Sensors 

Most vehicles are nowadays equipped with Wheel Speed Sensor (WSS) used by the anti-lock 

braking system (ABS) and traction control system. The ABS is a standard feature in most of 

the vehicles, providing easily accessible odometric data at no additional cost. WSS provides a 

measurement of the vehicle velocity. It consists of a magnetic (or optical) pickup and a toothed 

steel gear (or optically encoded shaft). The pickup counts the rate at which the teeth or marks 

pass by. To better understand the working principle of WSS, the principle of the magnetic WSS 

is explained in Figure 2-5.  

 

Figure 2-5 Principle of the magnetic WSS 

The magnetic pickup placed near the rotating gear detects the change in the surrounding 

magnetic field. This creates a square wave having a high voltage when the tooth is close to the 

pickup and a low voltage when the space between two teeth is close to the pickup. The wheel 

velocity is then calculated using: 

𝑣𝑤 =
2𝜋. 𝑅𝑤ℎ𝑒𝑒𝑙
𝑁𝑡𝑒𝑒𝑡ℎ. 𝑇𝑡𝑒𝑒𝑡ℎ

 (2.32) 

where  

• 𝑁𝑡𝑒𝑒𝑡ℎ is the number of gear teeth 

• 𝑅𝑤ℎ𝑒𝑒𝑙 is the wheel radius 

• 𝑇𝑡𝑒𝑒𝑡ℎ is the elapsed time between two teeth detection. 

 Steering angle sensors 

The steering angle of the vehicle is the angle between the front of the vehicle and the steered 

(front) wheels direction. This angle is determined using the measurement of the steering wheel 

turn that can be recovered from the vehicle Controller Area Network (CAN) bus. The 

relationship between the steering wheel turn and the steering angle is determined by the steering 

ratio using: 
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∆𝛿𝑠 = 𝑟𝑠. ∆𝛼𝑠 (2.33) 

where  

• ∆𝛿𝑠 is the steering turn 

• 𝑟𝑠 is the steering ratio. Its value is included in general between 12 and 20 for passengers 

cars. 

• ∆𝛼𝑠 is the steering wheel turn 

 Ackermann steering model 

A four-wheeled vehicle rolling motion can be described by the 2D Ackermann steering model. 

This model states that the roll axes of the four vehicle wheels intersect at a point called the 

Instantaneous Center of Rotation (ICR) (Siegwart, 2011) as shown in Figure 2-6.  This point is 

the center of the circles described by each wheel when the vehicle moves. 

 

Figure 2-6 2D Ackermann steering model 

Let us consider the following definition of the parameters: 

• 𝑣𝑅𝑅 is the rear right wheel velocity of the vehicle 

• 𝑣𝑅𝐿 is the rear left wheel velocity of the vehicle 

• 𝑣𝐹𝑅 is the front right wheel velocity of the vehicle 

• 𝑣𝐹𝐿 is the front left wheel velocity of the vehicle 

• 𝑣𝑅 is the rear axle center velocity 

• 𝛿𝑠 is the steering angle of the vehicle 

• 𝜔𝑣 is the heading rate of the vehicle 

• 𝐿𝑣 is the vehicle wheelbase 
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• 𝑒𝑣 is the distance between one of the rear wheels and the rear axle center 

• 𝜌𝑣 is the distance between the ICR and the rear axle center 

Using the Ackermann steering model and its geometric properties, the following relationships 

between the different motion quantities are derived: 

• Velocity of the rear axle center in the body frame: 

𝑣𝑅 = [0
𝑣𝑅𝑅 + 𝑣𝑅𝐿

2
0]
𝑇

 

or 

𝑣𝑅 = [0
∆𝐹𝐿 . cos(𝛿𝐿) + ∆𝐹𝑅 . cos(𝛿𝑅)

2
0]
𝑇

 

(2.34) 

where 

𝛿𝐿 = atan(
tan(𝛿𝑠) . 𝐿𝑣

𝐿𝑣 − 𝑒𝑣. tan(𝛿𝑠)
) 

𝛿𝑅 = atan(
tan(𝛿𝑠) . 𝐿𝑣

𝐿𝑣 + 𝑒𝑣. tan(𝛿𝑠)
) 

(2.35) 

• Velocity of any point A of the longitudinal axis of the vehicle (for example the gravity 

point) 

𝒗𝐴 = 𝒗𝑅 −𝝎× 𝒍𝐴 (2.36) 

where 𝒍𝐴 is the lever arm between the rear axle center and the point A 

• Angular rate computed using the rear velocities: 

𝜔𝑣 =
𝑣𝑅𝑅 − 𝑣𝑅𝐿
2𝑒𝑣

 (2.37) 

• Angular rate computed using front velocities 

𝜔𝑣 =
𝑣𝐹𝑅 cos(𝛿𝑅) − 𝑣𝐹𝐿 cos(𝛿𝐿)

2𝑒𝑣
 (2.38) 

• Relationship between the steering angle, the velocity and the angular rate 

tan(𝛿𝑠) = 𝐿𝑣 .
𝜔𝑣
𝑣𝑅

 (2.39) 

The advantage of using this four-wheel model is the fact that it describes better the true motion 

of the vehicle. In addition, compared to the simple differential model, the four-wheeled model 

takes advantage from the redundancy of the measurements to obtain a more accurate estimate 

of the vehicle velocity as well as its angular velocity. 
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 Odometric measurement models 

In order to extract the odometric measurement models, an analysis of the odometric 

measurements collected during 55 𝑚𝑖𝑛  using the CAN bus of passengers car, namely the 

velocity of each wheel and the steering angle, is conducted. As illustrated in Figure 2-7 and 

Figure 2-8, the heading rate error given by the steering wheel is less noisy than the heading rate 

provided by the differential odometry.  

 

Figure 2-7 Comparison of the estimated heading rate 

using rear wheels and steering wheel 

 

Figure 2-8 Comparison of the estimated heading rate 

error using rear wheels and steering wheel  

 

Figure 2-8 shows that the steering wheel heading rate can be modeled by the following 

expression: 

𝜔𝑠 = 𝜔𝑡𝑟𝑢𝑒 + 𝜀𝑠 (2.40) 

where 

• 𝜔𝑠 is the steering wheel heading rate 

• 𝜔𝑡𝑟𝑢𝑒 is the true heading rate 

• 𝜀𝑠 is zero-mean Gaussian noise with a standard deviation of 0.017 rad/s 

As for the velocity provided by the WSSs, the measurements are affected by a scale factor and 

a noise as shown in Figure 2-9, illustrating, for each wheel, the velocity estimation error as a 

function of true velocity. 
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Figure 2-9 Velocity estimation errors for each wheel as a function of true velocity 

The value of the scale factor for each wheel velocity is summarized in Table 2.5.  

 FLW FRW RLW RRW 

Scale factor -0.0091 -0.0098 -0.0146 -0.0166 

Table 2.5 WSS velocity scale factor 

The velocity measurement model of wheel speed sensors is consequently deduced: 

𝑣𝑤 = (1 + 𝑘𝑤)𝑣𝑡𝑟𝑢𝑒 + 𝜀𝑤 (2.41) 

where 

• 𝑣𝑤 is the velocity provided by the WSS 

• 𝑣𝑡𝑟𝑢𝑒 is the true velocity 

• 𝑘𝑤 is a scale factor  

• 𝜀𝑤 is a zero-mean Gaussian noise with a standard deviation of 0.5 m/s 

After reviewing the principle and the measurement model of each identified sensor to be used 

in the multi-sensor fusion architecture, the next section will highlight the interest in fusing these 

sensors and will investigate the different strategies and techniques used for sensor fusion. The 

state of the art of proposed multi-sensor fusion systems involving GNSS, INS and WSSs is 

reviewed. 

2.4 Sensor complementarity and integrated navigation 

The purpose of this thesis is to use low-cost sensors to form a system capable of achieving high 

navigation performances in constrained environments. The idea is therefore to benefit from 

each sensor’s advantages and to avoid each sensor’s weakness by fusing the data provided by 
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the available sensors. The combination of sensors chosen in this thesis is a trade-off between 

cost and complementarity.  

For example, inertial navigation has the advantage of operating autonomously and 

continuously, providing a high-bandwidth output and exhibiting low short-term noise. The fact 

of being autonomous makes this navigation technique invulnerable to external disturbances. 

However, inertial navigation is based on a DR principle requiring initialization and implying 

the navigation solution to drift due to the error accumulation, especially in our case of study 

where low-cost IMU should be used.  

On the other hand, GNSS provides high long-term navigation solution accuracy with small 

errors in open-sky environments and relatively large errors in constrained environments such 

as urban environments. This dependence on the environment is due to the signal propagation 

which is prone to interference, reflection and even blockage. In fact, GNSS measurements 

suffer in urban environments from blockage reducing the number of satellites in view and 

resulting either in poor geometry degrading the navigation performance, or even in the 

unavailability of GNSS if the number of satellites in view is less than 4. The problem of 

unavailability should be reduced in the near future with the development of new constellations 

such as GALILEO, BEIDOU, etc. The principal issue in urban environments is signal 

reflections which result in significant positioning error. When the Line-Of-Sight (LOS) signal 

is reflected and received with the reflected signal, this is known as multipath. If the LOS signal 

is blocked and only its reflection arrives to the receiver antenna, this is known as Non-Line-Of-

Sight (NLOS) signal. The latter error results in a positive pseudo-range measurement error 

equal to the additional path delay and its value may exceed in some cases a kilometer (Jiang, 

2012). Many techniques are proposed in the literature in order to mitigate these problems and 

improve the GNSS accuracy (Jiang, 2012). Unfortunately, all these techniques have limitations 

as highlighted in (Jiang, 2012).For all these reasons, GNSS cannot be relied upon to provide a 

continuous navigation solution.  

As for odometry, it has the advantage of benefiting from information that already exists in 

almost all the new vehicles and consequently it does not induce an additional cost. However, 

the odometric solution suffers from the dead-reckoning drawbacks mentioned earlier for the 

INS. 

A possible way to overcome these problems of each sensor taken individually and to benefit 

from their complementary advantages is to fuse their information together. In fact, by exploiting 

the complementarity of sensors, hybridization algorithms can improve the navigation solution 

compared to solutions provided by each stand-alone sensor.  

 Integration techniques and strategies 

The integration of the complementary data mentioned previously commonly uses filters. The 

most widely used filter is the Extended Kalman Filter (EKF) (Welch, 2006), (Kalman, 1960). 

However other filters, such as the Unscented Kalman Filter (UKF) (Wan, 2000), (Julier, 1997) 

and the Particle Filter (PF) (Gustafsson, 2002), are also used. 
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The UKF is a nonlinear adaptation of the KF not requiring the linearization process by Jacobian 

computation. Instead, the UKF approximates the state distribution by capturing its mean and 

covariance using a minimal set of carefully chosen sample points called sigma points. The filter 

propagates each point through the nonlinear process and measurement models, and then 

computes the weighted averages of the transformed points to determine the posterior state mean 

and state covariance. Despite its capacity to provide good results (Julier, 1995), the UKF is 

slightly more computationally expensive than the EKF because of the need to compute sigma 

points. 

The PF is a type of sequential Monte Carlo estimation algorithm. The state estimates are 

represented as a set of discrete state vectors, known as particles, which are spread throughout 

their joint probability distribution (Groves, 2008). The main advantage of the PF compared to 

the KF is the possibility to overcome the constraint of Gaussianity generally needed for KFs to 

provide an optimal estimation. In addition, the PF is robust to non-linearities. However, this 

filter has the disadvantage of the high computational cost resulting from the high number of 

particles required to reach a good accuracy. 

The most widely used filter in the literature is the EKF which uses the linearization required to 

model non-linear systems in the KF. The linearization process can degrade the filter 

performance in high dynamics. However, in constrained environments such as urban 

environments, the vehicle dynamics are in general low and the hazardous effect of the 

linearization process is negligible. In addition, this filter is efficient in terms of computational 

cost, especially for applications where there are a large number of states and observations 

compared to the other filters (Hide, 2007). 

We generally consider three different ways to combine sensor measurements to estimate the 

navigation solution, which vary depending on the information exchanged by the sensors and 

the integration engine: loose-coupling, tight-coupling and deep-coupling. With loose-coupling, 

each sensor provides a positioning solution. The hybridized solution is the combination of 

different solutions provided by each sensor individually. With tight and deep coupling, fusion 

of sensor information takes place before positioning solution estimation. Tight architectures 

combine the sensors information to provide a unique solution, while in deep architectures, the 

sensors work as a unique system and fusion is performed inside one of the sensors processes. 

Detailed descriptions of these various architectures are found in (Kaplan, 2005), (Groves, 

2008), (Skog, 2009). 

In all the cases, two possible forms of integration can be considered. The direct form (also 

referred as the total state form) and the indirect form (also referred as the error state form). As 

the name indicates, in the total state formulation, the variables estimated by the fusion filter are 

the navigation parameters, and the measurements presented to the filter are the GNSS 

measurements. However, the error state form considers the errors of the navigation parameters. 

As highlighted in (Roumeliotis, 1999), the error state formulation is preferred, because the 

dynamics upon which this formulation is based, are low frequency, and consequently very 

adequately represented as linear. However, with the total state formulation, the vehicle 

dynamics include a high frequency component and can only be described by non-linear model. 
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In the case of indirect formulation, the integration filter can be designed to be feedforward or 

feedback as detailed in (Roumeliotis, 1999). The basic difference between the two 

configurations is mainly the way they handle the updated error estimate. In the first case, the 

updated error estimate is fed forward to correct the current state estimate without updating the 

dead-reckoning system. This system is not at all aware of the existence of an aiding system. In 

the feedback configuration, the correction is actually fed back to the dead-reckoning system to 

correct its “new” starting point as well as its “raw measurements” if they exist. The feedforward 

configuration is equivalent to the Linearized Kalman Filter (LKF) while the feedback 

configuration is equivalent to the EKF, as explained in (Roumeliotis, 1999). Indeed, in the EKF, 

the state propagation starts from the corrected state right after a measurement while in the LKF 

the propagation continues at the state that the propagation has reached when the measurement 

appeared, thus ignoring the correction just computed. The LKF and the feedforward 

configuration are thus free to drift with unbounded errors, and the assumption of small errors 

used in the linearization process of the filter can be violated, especially in the case of low-cost 

sensor. 

 State of the art of existing ground vehicle integrated navigation based on 

INS, GNSS and/or odometry and limits of the existing solutions 

Generally, the most widely implemented hybridization algorithms for land vehicles fuse GNSS 

measurements with inertial and/or odometric data. Thereby, these dead-reckoning sensors 

ensure the system continuity when GNSS information is unavailable and improve the system 

performance when GNSS signals are severely corrupted, and in turn, the GNSS limits the drift 

of the dead-reckoning solution if it is available. In general, the fusion is done so that the dead-

reckoning system errors are estimated and corrected by the GNSS. Varied sensor configurations 

can be utilized in the dead-reckoning system. Many studies in the literature focus on fusing INS 

with GNSS (Farrell, 1999), (Angrisano, 2010), (Shin, 2001). In general, the performance 

achieved by this hybridization depends thoroughly on the quality of the INS used especially 

when GNSS signals are degraded or unavailable.  

Reduced inertial systems have been introduced in order to adapt this sensor to terrestrial 

applications and to reduce the cost of INS (Bhatti, 2008), (Li, 2010). This consists of using a 

reduced number of accelerometers and/or gyroscopes instead of a six-degrees of freedom IMU. 

An analysis performed in (Syed, 2007) compares the performance of five different 

configurations ranging from six sensors to only two sensors. Full sensors configuration gave 

the best results with minimum average drift. In addition, low-cost MEMS are no longer 

expensive, and the reduction of the number of sensors degrades further the performance 

especially with high levels of nonlinearity of MEMS sensors. 

One way to tackle this issue is to integrate more sensors such as wheel speed, steering encoders, 

etc. as performed for instance in (Gao, 2007), (Spangenberg, 2007). However, the performance 

of these techniques is limited by the quality of GNSS and its availability. 
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2.5 Conclusion 

This chapter has presented an overview of GNSS, INS and wheel odometry navigation systems. 

The technical fundamentals and the principle of each navigation technique are presented, and 

the error models are provided and analyzed.  Then, each sensor advantages and limits are 

detailed in order to highlight the complementary characteristics of these sensors and emphasize 

the need of fusing them in a multi-sensor solution. A review of the strategies and techniques 

used to fuse information is performed. The advantages and drawbacks of each technique are 

discussed. 



 

Chapter 3 

3 Vision-based Navigation for Ground 
Vehicle Navigation in Outdoor 
Environments  

In Chapter 2, the limits of the existing navigation solutions in terms of accuracy and robustness 

are detailed especially in challenging environments. The state of the art solutions are not 

sufficient to guarantee the required level of performance defined in Chapter 1. Therefore, other 

sensors have been considered to find a compromise between accuracy and cost, even in 

challenging environments. 

Many sensors have been proposed and tested in the literature. Among them we can find the 

sensors providing range information such as the Light Radar (LIDAR) (Gao, 2015), the laser 

rangefinders (Hiremath, 2014) and the ultra-sound sensors (Nordh, 2007). The LIDAR has very 

good performances but its cost is relatively high for car applications. Ultra-sound sensors are 

also not adapted to car applications in large scale environments because of their short range. 

The laser rangefinders are more adapted to car application. All these sensors have the drawback 

of only providing range information with respect to surrounding objects.  

Recently, it has been proven that vision could be a promising navigation sensor that provides 

accurate navigation solution (Nistér, 2006). This chapter reviews the existing vision-based 

navigation techniques and highlights their challenges especially in outdoor large-scale 

environments. First, a classification of the different manners these techniques have been used 

in the literature is proposed. Then the review of the technical aspects of vision-based positioning 

is performed. A particular interest is given to ORB-SLAM (Mur-Artal, 2015) open-source 

software, used in this study to provide the visual information. Then, the challenges of these 

techniques are emphasized. Finally, the measurement model of the visual information is given. 

 

  



Chapter 3 – Vision-based Navigation for Ground Vehicle Navigation in Outdoor Environments 

32 

 

 Contents 

 

3.1 State of the art of vision-based navigation techniques ...........................................32 

 Classification of vision-based navigation techniques ......................................32 

 Vision-based Navigation fundamentals ...........................................................34 

3.2 ORB SLAM ............................................................................................................46 

 Selection of ORB-SLAM ................................................................................46 

 ORB-SLAM characteristics .............................................................................46 

3.3 Challenges of vision-based navigation in outdoor environments ...........................48 

3.4 VSLAM measurement model .................................................................................49 

3.5 Conclusion ..............................................................................................................51 

 

 

3.1 State of the art of vision-based navigation techniques  

There has been extensive research in the field of vision-based navigation in the last decades that 

yielded to workable systems in various navigation applications such as land vehicle navigation, 

drone navigation, robotics, etc. Different vision-based techniques have been proposed in the 

literature and the review of the state of the art of these techniques is important to understand 

their fundamentals and issues, and to be able to identify the advantages and limits of each 

technique. A classification of these vision-based techniques comes out of this state of the art 

review. 

 Classification of vision-based navigation techniques 

Figure 3-1 summarizes the vision-based navigation techniques found in the state of the art. It 

shows that vision-based techniques can be divided into two categories: Navigation in a known 

environment and navigation in an unknown environment. 
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Figure 3-1 Classification of vision-based techniques 

3.1.1.1 Navigation in a known environment 

The first category of vision-based navigation techniques is performed in a known environment 

which means that a database of features 1  (also called map of features) describing the 

environment in which the vehicle moves has been previously established, before the navigation 

starts. In this case, two ways of using visual information are possible: the first consists in 

capturing the current image, extracting features and associating the extracted features with the 

database ones. This provides geometric information such as the distance of the camera on the 

vehicle to the feature, or the bearing angle to the feature. This information is then used as aiding 

information in a multi-sensor system as proposed in (Raquet, 2003). 

The second way of navigating in a known environment consists in performing localization by 

extracting features from the current images and tracking them among the established database. 

These features are then used to deduce the position of the camera, based on the knowledge of 

the tracked features and the database characteristics. If the database is given in an absolute 

coordinate system, then the navigation parameters provided by the vision module are absolute 

and could be used alone or integrated in a fused architecture. However, if the database is given 

in a relative coordinate system, then the information provided by the vision module is relative 

and should be fused with other information to provide an absolute navigation solution. 

                                                 
1 A feature also called a landmark is a salient zone in the image such as a corner or an edge. 
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This type of navigation has the advantage of relying on previously collected information that 

could be controlled (for example with the knowledge of the features position) and optimized. 

However this requires the previous establishment of database which can be heavy and complex. 

3.1.1.2 Navigation in an unknown environment 

If the environment is unknown, vision-based navigation is based on the DR principle illustrated 

in Figure 3-2. The main techniques used to perform navigation in unknown environments are 

VO and relative SLAM that we will be detailed in Section 3.1.2.3. Using these techniques, 

camera motion is computed based on the comparison of a sequence of successive images 𝐼𝑘. 

Pose estimation is performed with respect to the vision frame (𝑣)  (see Appendix A) and 

requires the knowledge of the initial pose2. 

 

Figure 3-2 Trajectory estimation 

The navigation outputs of the vision module based on the DR principle drifts in general. 

Therefore, it cannot be used as an accurate standalone navigation module. Integration with other 

sensors is therefore necessary. 

The advantage of this approach, compared to navigating in known environment, is its 

independence of a priori information about the environment, but at the cost of accuracy. 

All the previously mentioned techniques are based on vision-based navigation fundamentals 

that will be explained in the following section. 

 Vision-based Navigation fundamentals  

3.1.2.1 The vision-based navigation problem formulation 

The goal of a vision navigation module is to determine the motion of the vehicle to which a 

camera is rigidly attached. Before formulating the motion problem, the type of camera and the 

way it is mounted on the vehicle should be determined first.  

The review of the state of the art of vision-based navigation shows that many types of cameras 

are used. The most widely used types of cameras are monocular cameras3, stereo cameras4 and 

omnidirectional cameras5.  

In general, vision systems reach accurate results when using stereovision. However, the main 

drawback of such a configuration compared to a single camera is that in large-scale 

                                                 
2 The pose is defined by the combination of the position and attitude information 
3 A monocular camera is a single camera 
4 A stereo camera is the set of two cameras with overlapping fields of view 
5 An Omnidirectional camera is a camera with a 360° field of view 
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environments such as streets, the images captured by the cameras might contain objects that are 

placed too far. Processing these images does not allow recovering the depth values unless the 

stereo camera baseline is of few meters (Hong, 2012). In addition to this compactness issue, a 

calibration issue arises when a multi-camera system is used and the calibration of a single 

camera is much easier (Nützi, 2010). Therefore, a single camera will be considered in this study. 

The camera can be mounted on the vehicle in four possible ways: looking forwards such in 

(Nistér, 2006), (Mur-Artal, 2015), looking downwards (Nourani-Vatani, 2011), looking 

upwards (Hwang, 2011) and tilting downwards (Hong, 2012) (Campbell, 2005). The forward-

looking camera provides a high number of features thus allowing good motion estimation 

accuracy, if sufficient number of features are close to the camera. This is possible in general in 

highly textured environments such as indoors environment or outdoor urban environments. 

However, in large-scale environments, the depth information is badly recovered. Additionally, 

in poor illumination, this method is not feasible. These problems are handled using a downward 

facing camera looking at the ground texture, with a light source next to the camera, using the 

optical flow technique. However, downward-facing camera performance is degraded as soon 

as the vehicle moves rapidly. The tilted camera provides a larger field of view than the 

downward-facing camera and captures the ground texture, but captures also the vehicle shadow 

which looks stationary and provides erroneous information about the vehicle motion. Upward-

looking cameras are mainly used in indoor environments and exploit the characteristics of this 

environment such as corners, lamps and door features, but are not adapted to outdoor 

environments because of the lack of features. Therefore, the most adapted technique to our case 

of study (a ground vehicle in outdoor environments) is the forward-looking camera. 

3.1.2.2 Camera modeling and calibration 

Before tackling the fundamentals of vision-based navigation, three frames should be defined: 

the image frame (𝐼) defining the 2-dimensions image captured by the camera, the camera frame 

(𝑐) attached to the camera, and the vision frame (𝑣) (also called world frame by the computer 

vision community) that defines the environment in which the camera moves. More details about 

these frames are given in Appendix A. 

To estimate the 3D camera motion from 2D images, vision techniques are usually based on 

narrow field-of-view cameras modeled using the Pinhole Projection model described in Figure 

3-3. If the camera has large field-of-view, then a different projection model called the 

omnidirectional model is used. This model, addressed in (Scaramuzza, 2006) is used for 

cameras having a field-of-view within a range of 180°-360°. In this study, only narrow field-

of-view cameras are considered and the pinhole model is used. 
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Figure 3-3 Pinhole camera projection 

The relationship between the coordinates of a physical 3D point 𝒑𝑣 = [𝑥𝑣 𝑦𝑣 𝑧𝑣]𝑇 

expressed in the vision frame (𝑣) and its projection in the image plane 𝒑𝐼 = [𝑢 𝑣]𝑇 expressed 

in the image frame (𝐼) is given by: 

𝑘𝑐 𝒑ℎ
𝐼 = 𝚷 𝒑ℎ

𝑣  (3.1) 

Where 𝑘𝑐  is a scale factor resulting from unknowing the depth of the scene using a single 

camera,  𝒑ℎ
𝐼 = [𝑢 𝑣 1]𝑇 and 𝒑ℎ

𝑣 = [𝑥𝑣 𝑦𝑣 𝑧𝑣 1]𝑇 are the homogeneous coordinates of 

𝒑𝐼  and  𝒑𝑣 , and 𝚷 is a (3 × 4) projection matrix. The homogeneous coordinates are used in 

order to express the projection as a linear transformation. The projection matrix depends both 

on camera intrinsic and extrinsic parameters. Intrinsic parameters do not depend on the camera 

location but rather on the internal camera parameters such as the focal length 𝑓, the number of 

pixels per distance unit in u and v directions 𝑘𝑢 and 𝑘𝑣, the skew factor  s𝛾 which equals zero 

if and only if the 𝒖 and 𝒗 directions are perfectly orthogonal, and the image pixel coordinates 

of the intersection between the optical axis and the image plane called the principal point 𝒄𝟎 =

(𝑢0, 𝑣0). These intrinsic parameters define the Calibration Matrix of the camera 𝑲𝑐, which 

expresses the transformation between the camera frame and the image frame. The expression 

of the calibration matrix is given by: 

𝑲𝑐 = (
𝑘𝑢𝑓 s𝛾 𝑢0
0 𝑘𝑣𝑓 𝑣0
0 0 1

) (3.2) 

The camera calibration process is based on the estimation of 𝑲𝑐, and is generally performed 

offline. To compute the calibration parameters, several pictures of a planar checkerboard are 

taken at distinct positions and orientations. The intrinsic and extrinsic parameters are then 

estimated using a least square minimization method. The camera extrinsic parameters depend 

on the camera location in the vision frame and correspond to the Euclidean relationship between 

this frame and the camera frame. This relationship is defined by a (3 × 3) rotation matrix 𝑪𝑐2𝑣 

and a (3 × 1) position vector 𝒑𝑐
𝑣 expressed in the vision frame, where 𝑪𝑐2𝑣 and 𝒑𝑐

𝑣 define the 

camera pose. This means that given the coordinates 𝒑𝑐  and 𝒑𝑣 of a 3D point 𝒑 in the camera 

and vision coordinates frames respectively, then: 
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𝒑𝑣 = 𝑪𝑐2𝑣 𝒑
𝑐 + 𝒑𝑐

𝑣 (3.3) 

Since 𝑪𝑐2𝑣
−1 = 𝑪𝑐2𝑣

𝑇 , then: 

𝒑𝑐 = 𝑪𝑐2𝑣
𝑇 (𝒑𝑣 − 𝒑𝑐

𝑣) (3.4) 

Therefore, the projection matrix of a world point in the image plane using the pinhole model is 

given by: 

𝚷 = 𝑲𝑐 [𝑪𝑐2𝑣
𝑇  −𝑪𝑐2𝑣

𝑇 𝒑𝑐
𝑣] (3.5) 

As explained in (Scaramuzza, 2011), many camera calibration toolboxes are available. The 

most popular ones are the Camera Calibrator application provided by the Computer Vision 

toolbox of Matlab (Bouguet, 2015) and the open-source Camera Calibration implementation of 

OpenCV (OpenCV, 2014). 

3.1.2.3 Vision as a standalone navigation means 

The use of vision as a standalone navigation tool has proven to be promising (Nistér, 2006). It 

has also been demonstrated that, compared to wheel-odometry navigation, vision-based 

navigation provides more accurate trajectory estimates, with relative position error ranging 

from 0.1% to 2% (Scaramuzza, 2011). However, visual navigation works effectively only if 

three conditions are fulfilled. Firstly, there should be sufficient illumination in the environment 

surrounding the camera unless the camera is infrared. However, infrared camera has the 

disadvantage of being too sensitive to sun light. Secondly, there should be enough static features 

in the scene filmed by the camera to deduce the camera motion with respect to these features. 

Finally, consecutive frames should be captured such as they sufficiently overlap to recognize 

the static features already seen and deduce the camera motion from it. This may be achieved 

using a high camera frame rate but requires a powerful processor if real-time applications are 

targeted. 

As explained in Section 3.1.1, vision navigation can be performed using these following 

techniques: 

• Visual Odometry (VO) which is the process of incrementally estimating a device pose 

by examining the changes that motion induces on images taken by its on-board 

camera(s) (Scaramuzza, 2011), without reconstructing the 3D scene surrounding the 

camera 

• Visual Simultaneous Localization and Mapping (VSLAM6) which is the process of 

estimating the map of the environment filmed by the camera and at the same time 

deducing the camera pose in this environment. 

• Absolute or relative localization if the environment has been already explored and a 

feature database has been already constructed. This task is performed thanks to the 

localization processing part of VSLAM and can be included in VSLAM. 

                                                 
6 In the remaining parts of this thesis, VSLAM and SLAM refer both to visual SLAM  
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VO can be considered as a building block of a complete VSLAM as stated in (Scaramuzza, 

2011). It consists of the pose estimation task of VSLAM. VSLAM includes, in addition to VO, 

the mapping task consisting of keeping track of the environment map and optimizing 

simultaneously this map and the camera pose. 

The following sections give an overview on VO and VSLAM. 

3.1.2.3.1 Visual odometry 

Based on a sequence of images taken by a camera, VO generally relies on 3 main steps in order 

to estimate the trajectory of the camera by estimating its displacement: establishing matches 

between two successive images, removing outliers and estimating the motion that occurs 

between two image captures. These steps are illustrated in Figure 3-4 and described in the 

following steps:  

 

Figure 3-4 Visual odometry diagram 

• Establishing matches 

In this step, a comparison between two successive images is performed by matching their 

similar characteristics. This is performed either by using the Optical Flow (OF) technique or 

the Feature Tracking (FT) one. 

- Optical flow 

It is also called direct method or dense method. OF exploits the information available at each 

pixel in the image to estimate the parameters that fully describe the camera motion as explained 

in Figure 3-5. The OF between two consecutive frames is represented by a set of vectors, one 

for each pixel, where their norm depends on the motion speed and their directions represent the 

movement of the corresponding pixel in consecutive images. To estimate the OF at all pixels, 

the Intensity Constancy assumption is used. This assumption consists of considering that the 

intensity of a small image region remains constant with time, and is formulated by: 

𝐼(𝑢, 𝑣, 𝑘 − 1) = 𝐼(𝑢 + 𝛿𝑢, 𝑣 + 𝛿𝑣, 𝑘) (3.6) 
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where 𝐼(𝑢, 𝑣, 𝑡 − 1)  is the (𝑢, 𝑣)  point intensity at time epoch (𝑘 − 1)  and (𝛿𝑢, 𝛿𝑣)  is the 

displacement in the image plane of this point between time epochs (𝑘 − 1)  and 𝑘 . Many 

approaches have been proposed in the literature to solve this equation and find the 

displacement(𝛿𝑢, 𝛿𝑣). These approaches are reviewed and assessed in (Barron, 1992).  

 

 

Figure 3-5 Optical flow matching 

- Feature tracking 

It is also called indirect method or sparse method. FT only exploits the information of only 

salient image locations such as corners or edges, which are called features or landmarks. The 

selection of these features is performed using feature detectors. These detectors must satisfy a 

tradeoff between feature quality (invariance to viewpoint and illumination changes and 

robustness to blur and noise) on one hand, and computational speed on the other hand. The most 

widely used detectors are the Harris detector (Harris, 1988), the Shi and Thomasi detector (Shi, 

1994), and the FAST detector (Rosten, 2006).  

Once detected, these features have to be characterized in a unique way. This second step in 

feature tracking is performed through feature description. A feature descriptor includes all 

feature characteristics. A very large number of feature descriptors have been developed. The 

most widely used algorithms are Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and 

Speeded Up Robust Feature (SURF) (Bay, 2008). Evaluations and comparison of feature 

detectors and descriptors can be found in (Gauglitz, 2011), (Hartmann, 2013) and (Hietanen, 

2016).  

The final step is Feature Matching consisting is associating features describing the same 

physical point in the successive images. This step can be performed in two ways: either by 

extracting features from both previous and current images independently, then performing 

matching, or by extracting features from the previous image, predicting the regions where the 

features could be found in the current image and then performing matching. The first approach 

is more suitable for large-scale environments while the second is generally used in small-scale 

environments. This phase consists of computing a matching score that indicates the likelihood 

that two features correspond to the same physical feature. The features that have the highest 
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scores are matched. The matching process can also be performed considering the computation 

of the distance between the descriptors of the features. In this case, the features having the 

smallest distances are matched. Figure 3-6 illustrates feature detection, description and 

matching. 

 

Figure 3-6 Feature matching 

- Comparison of Optical Flow and Feature Tracking 

As stated in (Younes, 2017), each of the two methods has its advantages and drawbacks. Optical 

flow is more robust than feature tracking since it exploits all the information available in the 

image even if some image regions are poorly textured. Nevertheless, optical flow is susceptible 

to failure if the intensity constancy assumption is violated. A second disadvantage is that 

applying the optical flow method for every pixel is computationally intensive; therefore, real-

time applications were not feasible until recently where (Engel, 2014) and (Concha, 2015) 

proposed algorithms based on the direct method. Methods combining direct and indirect 

methods to benefit from their advantages have been recently proposed in the literature (Forster, 

2014). 

• Outlier removal 

The second step of VO is a process applied to exclude wrong matches usually called outliers. 

These wrong matches can cause significant error in estimating camera motion, and removing 

them is necessary to obtain accurate motion estimation. To exclude wrong matches, the 

algorithm usually used is RANdom SAmple Consensus (RANSAC) (Choi, 2009), based on the 

Epipolar geometry constraint described in Figure 3-7.  
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Figure 3-7 Epipolar geometry constraint 

Epipolar geometry defines the geometrical constraints between two different views of the same 

3D point. Denoting 𝒑𝑘−1
𝐼  and  𝒑𝑘

𝐼  the image points corresponding to the same 3D point 𝒑𝑣 

viewed from different locations 𝒄𝑘−1  and 𝒄𝑘  (since the camera moves), then 𝒑𝑘−1
𝐼 , 𝒑𝑘

𝐼 , 𝒑𝑣 , 

𝒄𝑘−1  and 𝒄𝑘  should all lie in the same plane (Hartley, 2004). Based on this principle, all 

corresponding image points satisfy the coplanarity equation:  

𝒑𝑘
𝐼 𝑇𝑭𝑘

𝑐  𝒑𝑘−1
𝐼 = 𝟎 (3.7) 

where 𝑭𝑘
𝑐  is the Fundamental Matrix at time 𝑘. 𝑭𝑘

𝑐  expresses the camera motion from 𝒄𝑘−1 to 

𝒄𝑘 and the internal camera calibration. Each pair of points  𝒑𝑘−1
I  and  𝒑𝑘

𝐼  adds a constraint on 

the fundamental matrix estimation. The normalized 8-point algorithm described in (Hartley, 

2004) is used to estimate 𝑭𝑘
𝑐  using RANSAC algorithm for robustness against outliers. This 

means that to estimate 𝑭𝑘
𝑐 , at least 8 pairs of points must be correctly matched. Points not 

satisfying the Epipolar geometry constraints defined by equation (3.7) are considered as outliers 

and are excluded. 

If the camera is calibrated, i.e. the calibration matrix 𝑲𝑐 is known, then the coplanarity equation 

is given by: 

𝒑̅𝑘
𝐼 𝑇𝑬𝑘

𝑐   𝒑̅𝑘−1
𝐼 = 𝟎 (3.8) 

Where 𝒑̅𝑘−1
𝐼 = 𝑲𝑐

−1𝒑𝑘−1
𝐼 ,  𝒑̅𝑘

𝐼 = 𝒑𝑘
𝐼 (𝑲𝑐

𝑇)
−1

 and 𝑬𝑘
𝑐  is the Essential Matrix at time epoch 𝑘. 

The essential matrix is the specialization of the fundamental matrix to the case of known 

calibration parameters. At least 5 pairs of points must be correctly matched to estimate 𝑬𝑘
𝑐 , 

using the 5-point algorithm addressed in (Nistér, 2004). This algorithm requires at least 5 good 

matches to estimate 𝑬𝑘
𝑐 . If more good matches are available, then the system described by 

equation (3.8) is overdetermined and is solved in the least squares sense, providing 

consequently more robustness to noise. 

• Motion estimation 

Once outliers are determined and excluded using Epipolar geometry constraints and the 

fundamental/essential matrix computed, the camera motion between the current image and the 
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previous image can be estimated based on the matches established in the previous steps. If the 

intrinsic parameters are unknown, then only the fundamental matrix is estimated. In this case, 

the camera displacement is recovered up to a projective transformation, and it is not possible to 

recover the distance ratios and the angles.  That is why, in most of VO applications, the camera 

is calibrated. In this case, the essential matrix is computed using equation (3.8). It has been 

shown in (Hartley, 2004) that the essential matrix can be decomposed into a rotation and a 

translation vector such as: 

𝑬𝑘
𝑐 = ((𝒑𝑘−1,𝑘

𝒄𝑘 ) ×) 𝑪𝑘−1,𝑘 (3.9) 

where 

• 𝒑𝑘−1,𝑘
𝒄𝑘  is the displacement vector between time epochs (𝑘 − 1) and 𝑘 given up to a scale 

factor (Chu, 2012), expressed in the frame of the camera  𝒄𝑘 

• (𝒑𝑘−1,𝑘
𝒄𝑘 ) × is the skew-symmetric matrix of 𝒑𝑘−1,𝑘

𝒄𝑘  

• 𝑪𝑘−1,𝑘 is the rotation between time epochs (𝑘 − 1) and 𝑘. 

The trajectory of the camera is recovered by concatenating the successive estimated translations 

and rotations using the principle described previously in Figure 3-2 and expressed 

mathematically by the following equation: 

𝑪𝑐𝑘2𝑣 = 𝑪𝑐𝑘−12𝑣  𝑪𝑘−1,𝑘
𝑇  

𝒑𝑐𝑘
𝒗 = 𝒑𝑐𝑘−1

𝒗 + 𝑪𝑐𝑘2𝑣 𝒑𝑘−1,𝑘
𝒄𝑘  

(3.10) 

3.1.2.3.2 Visual Simultaneous Localization and Mapping 

Contrary to VO which aims to estimate only the camera pose based on the displacement 

measured between two successive frames, VSLAM accounts for the correlations that exist 

between the camera pose and the 3D position of the observed features. In fact, VSLAM differs 

from VO in its aim to localize and build a map (determine the 3D feature positions) 

simultaneously, instead of only localizing. This improves dramatically the pose estimation 

accuracy since it takes into account the correlation between the observed features and the 

camera pose, but at the cost of an additional computational burden. The accuracy improvement 

is especially notable when a loop closure is detected. Indeed, by seeing again features that have 

been already seen, VSLAM is capable of integrating this constraint into the map, reducing 

consequently the pose drift, compared to VO. For these reasons, the choice between VSLAM 

and VO depends on the trade-off between accuracy and simplicity in implementation. But 

recently, with the computation processing advances, VSLAM becomes the preferred solution 

for vision-based navigation.  

The SLAM map reconstruction is done through the triangulation process. This process, 

described in Figure 3-8, consists of estimating the 3D position of a feature, denoted 𝒑̂𝑣, from 

its 2D corresponding image points 𝒑̃𝑘−1
I  and  𝒑̃𝑘

𝐼 , detected in the image plane of the moving 

camera at two successive times (𝑘 − 1) and 𝑘 . In perfect conditions, the reconstructed 3D 
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feature point is the intersection between the two rays going from the camera centers 𝒄𝑘−1 and 

𝒄𝑘  to the detected features 𝒑̃𝑘−1
I  and  𝒑̃𝑘

𝐼 . However, because of the image noise, the camera 

model, the calibration errors and the processing errors, these two rays almost never intersect. A 

solution is to choose the point at a minimal distance in the least squares sense from the 

intersecting rays as an estimate of the 3D feature position (Scaramuzza, 2011). 

 

Figure 3-8 VSLAM triangulation process 

• VSLAM methodologies 

In literature, two different methodologies of VSLAM are generally implemented: the keyframe-

based VSLAM (Mur-Artal, 2015) and the filtering-based SLAM (Strasdat, 2012). These two 

different implementations are presented below. 

- Filtering-based visual SLAM 

This approach is based on the construction of a probabilistic 3D feature map, describing the 

current pose estimation of the camera and the reconstructed 3D features that define the map, in 

the vision frame. In addition, this approach provides the estimate uncertainties. The map is 

initialized in the beginning of the process and is updated, as the camera moves, by Bayesian 

Filters such as the Kalman Filter or the Particle Filter. The probabilistic map is mathematically 

described through a state vector and a covariance matrix. The state vector comprises the 

concatenation of the estimations of the camera pose and the 3D features. The probability density 

function of the map parameters is usually approximated by a multiple variable Gaussian 

distribution. This technique is detailed in (Durrant-Whyte, 2006) and (Bailey, 2006).  

- Keyframe-based VSLAM 

The principle of Keyframe-based SLAM is to select some specific frames to reconstruct the 3D 

map of the environment based on the minimum number of correspondences that should exist 

between two frames. By doing this selection, the reconstruction process is done only when there 

is a significant change in the scene filmed by the camera. This selection has two major benefits: 

firstly, it allows the reduction of the VSLAM computational cost by only processing a small 

number of frames for the map reconstruction step and secondly it ensures a sufficient baseline 

between the two frames for the triangulation process. For example, if the camera moves 

straightforward, then there is no notable change in the scene seen by the camera and therefore, 
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the time between two keyframes is long. However, when the camera turns, the scene changes 

quickly, implying a rapid change of the keyframes in order to take into account the new features 

seen by the camera. Figure 3-9 explains the keyframe selection process. In this figure, 𝐾𝑓𝑛, is 

the 𝑛𝑡ℎ  selected keyframe and 𝐼𝑗  is the 𝑗𝑡ℎ  captured image with 𝑗 ∈ {𝑘, 𝑘 + 1,⋯ }. For each 

newly captured 𝐼𝑗  after the selection of 𝐾𝑓𝑛  as a keyframe, the number of correspondences 

between 𝐾𝑓𝑛 and 𝐼𝑗 is computed. If this number is higher than a threshold, then 𝐼𝑗 is not selected 

as a keyframe, otherwise, the test considers that the scene has sufficiently changed to select 𝐼𝑗 

as the (𝑛 + 1)𝑡ℎ keyframe. In this case, the selected (𝑛 + 1)𝑡ℎ keyframe is  𝐼𝑘+4. 

 

Figure 3-9 Keyframe selection 

Although the map is reconstructed using only keyframes, the camera pose is computed for all 

the frames given the position of the already reconstructed 3D features. A refinement process, 

called Bundle Adjustment (BA) (Engles, 2006) and consisting of jointly optimizing the 3D 

reconstructed map and the camera pose, is generally performed. BA is a nonlinear least squares 

refinement that aims to minimize the reprojection error of a 3D feature point. This error is 

defined as the sum of squared residuals between the detected image features and the 

reprojection of their corresponding 3D features, using the projection model defined in Section 

3.1.2.2, of their corresponding reconstructed 3D features. The mathematical formulation of BA 

is given is the following equation: 

𝒙̂ = argmin 
𝒙

∑‖(𝒑̃𝐼)𝑖 − (𝒑⊥
𝐼 (𝒙))

𝑖
‖
2

2

𝑖

 (3.11) 

where 

• 𝒙̂ is the vector of the estimated camera pose and the reconstructed 3D feature positions 

• (𝒑̃𝐼)𝑖 is the 2D vector of the measured image position of the 𝑖𝑡ℎ detected feature 

• (𝒑⊥
𝐼 (𝒙))

𝑖
 is the vector of the 2D positions obtained by projecting the reconstructed 3D 

𝑖𝑡ℎ feature on the image plane 

A review of BA algorithms is performed in (Triggs, 1999). As explained earlier, this 

optimization process is very important to improve the accuracy performance especially when a 

loop closure is detected. This means that when the scene includes again features that have been 

seen before, the drifts of the estimated map and pose due to the error accumulation can be 

removed using the past knowledge of feature positions. 
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In this case, instead of establishing matches between features detected in successive images, 

which is called (2D/2D correspondence), visual SLAM establishes matches between detected 

features in the current image and already reconstructed features. This process described in 

(Scaramuzza, 2011)  is called ‘3D/2D correspondence’. The motion estimation is not deduced 

from the decomposition of the essential matrix such as in VO, but rather from solving the 

Perspective-Three-Point Problem. The definition and the solutions of this problem are detailed 

in (Moreno-Noguer, 2007). 

- Optimal approach for VSLAM 

It is difficult to compare the keyframe-based SLAM and the filtering-based SLAM and to 

conclude which approach is better. In fact, each approach has its advantages and drawbacks, 

depending on the intended application. Filtering-based visual SLAM has the advantage of 

handling easily measurement covariances, but is less accurate than keyframe SLAM in large-

scale environments (Michot, 2010). An analysis of the performance of keyframe-based and 

filtering-based approaches is performed in (Strasdat, 2012). It revealed that the keyframe-based 

approach with BA is more efficient than the filtering-based approach in terms of accuracy and 

computational cost. Indeed, in filtering-based VSLAMs, the camera pose as well as all the map 

features already seen are included in the state vector and are updated at every processed frame. 

However, in keyframe-based VSLAMs, the camera pose is estimated using a subset of the entire 

map, without the need to update the map’s features at every processed frame. This has the 

advantage of reducing significantly the processing time and hence making the real-time 

processing possible. In addition, the linearization process used in filtering-based VSLAMs is 

avoided in keyframe-based VSLAMs, which reduces the accumulation of errors. For these 

reasons, most new releases of VSLAM systems are keyframe-based. Therefore, the following 

study will only focus on keyframe-based VSLAMs. 

• Feature matching in Keyframe-based VSLAM 

Unlike for VO where the matching process is only applied to the 2D detected features (called 

2D-2D correspondence), the matching process for the VSLAM includes the 3D reconstructed 

features. In the VSLAM-related literature, in addition to 2D-2D correspondence, 2 types of 

matching are generally applied: the 3D-2D and the 3D-3D correspondences.  

The 3D-2D correspondence method consists of detecting features in the current image, 

associating them with the map already reconstructed based on the previous keyframes and 

estimating the camera pose 𝒙 that minimizes the reprojection error between detected features 

in the current image and the reprojection of the corresponding previously reconstructed features 

on the current image plane. This process is formulated using equation (3.11), which is the same 

equation as for BA. The problem of solving this equation is known as Perspective from n Points 

(PnP) and many solutions are proposed in the literature (Moreno-Noguer, 2007).  

The 3D-3D correspondence method consists of detecting features in the current image, 

reconstructing them in 3D, associating them with the map already reconstructed based on the 

previous keyframes and finally estimating the camera pose 𝒙  that minimizes the distance 

between the 3D reconstructed features and the previously established map using: 
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𝒙 = argmin
𝒙

∑‖(𝒑̂𝑣(𝒙))
𝑖
− (𝒑𝑚𝑎𝑝

𝑣 )
𝑖
‖
2

2

𝑖

 (3.12) 

where 

• (𝒑̂𝑣(𝒙))
𝑖
 is the 3D position of the 𝑖𝑡ℎ feature reconstructed using the camera pose 𝒙 

• (𝒑𝑚𝑎𝑝
𝑣 )

𝑖
 is the 3D position of the 𝑖𝑡ℎ feature existing in the previously established 

map 

The solutions that have been proposed to solve this problem are detailed in (Scaramuzza, 2011).  

The 3D-2D correspondence method is the most popular since it has been shown in (Nistér, 

2004) that it is more accurate than the 3D-3D correspondence one. 

3.2 ORB SLAM 

 Selection of ORB-SLAM 

A review of the state of the art of keyframe-based VSLAM during this thesis had led to 

identifying several solutions proposed in the literature. Recently, a survey on keyframe-based 

VSLAM has been proposed by (Younes, 2017), in which the authors identify 19 keyframe-

based VSLAM proposed solutions. Among these solutions, only few Keyframe-based are 

available in open-access. The review of these solutions has led to identify 3 candidates: ORB-

SLAM (Mur-Artal, 2015), Parallel Tracking and Mapping (PTAM) (Klein, 2007), and Large 

Scale Direct SLAM (LSD-SLAM) (Engel, 2014). In (Mur-Artal, 2015) , it has been shown that 

ORB-SLAM outperforms other types of VSLAM, in terms of accuracy and robustness. PTAM 

has been tested in the framework of this thesis. However, frequent losses of map track have 

occurred in outdoor environments, proving that this solution is more adapted to small scale 

operations. For all these reasons, ORB-SLAM is selected as the VSLAM algorithm that is used 

in this study. 

 ORB-SLAM characteristics 

ORB-SLAM is based on 3 main tasks:  

• tracking: localizing the camera every time a frame is captured and deciding where to 

insert a new keyframe for map building 

• mapping: reconstructing the 3D map from keyframes and perform local BA to achieve 

an optimal reconstruction in the surroundings of the camera 

• loop closing: when features already reconstructed are seen again, a loop is detected. The 

drift accumulated during the loop can therefore be removed.    

This algorithm is based on ORB features (Rublee, 2011) which are invariant to viewpoint and 

illumination changes and extremely fast to compute and match, unlike the popular SURF or 

SIFT that require much more time to be extracted. ORB SLAM discretizes and stores the feature 
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descriptors into bags of words, known as visual vocabulary (Mur-Artal, 2014) which is used to 

speed up image and feature matching. 

Pose estimation in ORB SLAM is established through a constant velocity motion model to 

predict the camera pose and the position of the features already reconstructed. This model 

assumes a smooth camera motion. If the motion model is violated (abrupt motions), ORB 

SLAM detects this problem through the number of matches found and uses a wider search of 

features around their position in the last frame. If tracking is lost, ORB SLAM uses a Global 

relocalization to handle this problem. The pose is estimated using the PnP algorithm that 

determines the camera pose from the 3D-2D correspondence explained in Section 3.1.2.3.2. 

The prediction of camera and feature location helps feature matching process to search in a 

small region instead of across the entire image. This reduces the computational expense of the 

algorithm. In addition, it serves as a starting point for the minimizing procedure of the 

reprojection error, which provides a better estimate of the camera pose.  

To adapt ORB SLAM to large environments, a local map is defined by all the features present 

in the set of keyframes that share features with the current frame, as well as all neighbors of 

this set of keyframes. This neighborhood between keyframes is determined using the covisiblity 

graph. This graph is defined as a weighted graph having nodes and edges. Each node is a 

keyframe and an edge between two keyframes exists if they share observations of the same 

features (at least 15) (Mur-Artal, 2015). The weight of the edge is the number of common map 

features between two keyframes. Among the previously defined features, only some selected 

features are kept in the local map. This selection is performed such that the matching process 

is most likely to be successful. The remaining features are then matched in the current frame 

before a final camera pose refinement step takes place.  

ORB SLAM’s local mapping process is performed with the following steps: keyframe insertion, 

map point creation and culling, local BA and local keyframe culling. In the keyframe insertion 

process, the covisibility graph is updated with the new node (keyframe) and its corresponding 

edges, as well as the bag of words representing the new keyframe. The map point creation 

module is based on the triangulation of ORB features appearing in at least two nodes of the 

covisibility graph, as explained in Section 3.1.2.3.2. Before triangulation, the feature 

association and the outlier rejection are based on the Epipolar geometry described in Section 

3.1.2.3.1. Triangulated features are tested for positive depth, reprojection error, and scale 

consistency to accommodate them into the map. To be retained in the map, map points should 

fulfill two conditions to ensure good map quality (very few outliers). These conditions consist 

of finding the point in more than 25% of the frames in which it is predicted to be visible, and 

seeing the point from at least 3 keyframes. Otherwise the map point is removed. After creating 

the map points and selecting the best ones, a local BA process is applied to the current keyframe, 

to all the keyframes connected to it in the covisibility graph, to all the map features seen by 

these keyframes and to all keyframes that see those map points but are not connected to the 

current keyframe. Finally, a keyframe culling process is applied. In this step, the keyframes that 

have 90% of their matched features observed in 3 other keyframes are deemed redundant and 

are removed. This allows reducing the computational complexity resulting from having a high 

number of keyframes in the map.  
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The third task performed in ORB-SLAM is loop closing. First, the loop is detected using a 

similarity measure between the current keyframe bag of word and the covisibility graph 

information. Then, a similarity transformation is computed from the current keyframe to the 

loop keyframe to provide information about the drift accumulated in the loop. Once this 

similarity validated with enough inliers, an optimization is performed and the loop closure is 

accepted. The loop fusion is then performed. It consists of merging duplicate map points in both 

keyframes and inserting a new edge in the covisibility graph that closes the loop by correcting 

the pose of the current keyframe and all its neighbors using the similarity transform. Then, all 

map points involved in the loop closure process are fused and all keyframes involved in this 

process update their edges in the covisibility graph to take into account this loop closure. 

Finally, the Essential graph, that consists of a covisibilty graph whose edges are reduced, is 

optimized to correct the drift. After optimization, the map points corresponding to the optimized 

keyframes are transformed to fit with the new keyframe poses. 

Figure 3-10 and Figure 3-11 illustrate a comparison between the trajectories of a car on which 

we have mounted a camera and run ORB-SLAM (data collection is explained in Chapter 6). 

The trajectory is illustrated with the blue rectangles and the map with the red (active) and black 

(non-active) points. The car returns to its initial point after having traveled around a building. 

We can see in Figure 3-10 that the trajectory drifts before detecting the loop closure. However, 

once the loop closure is detected, the trajectory and map points are jointly adjusted to remove 

the drift as illustrated in Figure 3-11. 

 

Figure 3-10 ORB-SLAM trajectory before loop 

closure 

 

Figure 3-11 ORB-SLAM trajectory after loop 

closure 

3.3 Challenges of vision-based navigation in outdoor environments 

Although vision has shown to be promising in navigation, several challenges arise when using 

visual information provided by one of the techniques described previously. These challenges 

are summarized in the following points: 

- Vision-based navigation techniques suffer from the accumulated error resulting from the 

use of the DR navigation principle, if they are used in unknown environments. 

Compared to VSLAM, VO suffers from a higher drift rate because VO techniques are 

based only on the DR principle, whereas VSLAM techniques combine DR and BA 

which improves the accuracy of visual solution, but at the cost of an increased 

computational burden for the optimization process. Furthermore, the possibility of loop 
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closure with VSLAM is very promising because it allows removing the drift that 

accumulates during navigation.  

- Vision-based techniques have the drawback of providing their navigation outputs in an 

unknown frame constructed at the initialization step (vision frame). This issue makes 

the use of this information challenging, unless a previously established geo-referenced 

map is used to perform localization. This case of study will not be addressed in the scope 

of this thesis, and the problem of the unknown vision frame must be handled, to be able 

to use visual information in navigation. 

- The choice of monocular vision introduces a scale factor to the position information. 

This scale should be determined to make the visual information useful. 

For these reasons, the integration of vision-based information with other sensor measurements 

is necessary to improve the localization performances. Before tackling fusion, it is important 

first to address the VSLAM measurement model, which is a necessary step in multi-sensor 

fusion. This measurement model must take into account the lack of knowledge of the vision 

frame and of the scale factor affecting the VSLAM position. 

3.4 VSLAM measurement model 

As explained in the previous section, VSLAM provides the camera 3D position in undefined 

scale, the camera attitude and the reconstructed map with respect to its own arbitrary frame (𝑣). 

To be able to fuse VSLAM with other sensors, its outputs must be expressed in the same frame 

as the other sensors. Considering the local frame (𝑙) as the frame in which all sensors outputs 

are expressed, the relationship between the camera position estimated by the SLAM in (𝑣) and 

the corresponding position in (𝑙) is the following: 

𝒑̃𝑐
𝑣 = 𝑘𝑣𝑪𝑙2𝑣𝒑𝑐

𝑙 + 𝒑𝑙𝑣
𝑣  (3.13) 

where  

• 𝒑̃𝑐
𝑣 is the camera 3D position in (𝑣) estimated by the VSLAM 

• 𝑘𝑣 is the scale factor that affects the VSLAM 3D position measurement 

• 𝑪𝑙2𝑣 is the rotation matrix from (𝑙) to (𝑣)  

• 𝒑𝑐
𝑙  is the camera 3D position in (𝑙)  

• 𝒑𝑙𝑣
𝑣  is the translational offset between (𝑙) and (𝑣)  

As for the camera attitude estimated by the visual SLAM, the relationship with the camera 

attitude in (𝑙) is given in terms of quaternions7 by: 

𝒒̃𝑣2𝑐 = 𝒒𝑙2𝑐⊗𝒒𝑣2𝑙 (3.14) 

where  

• ⊗ is the quaternion multiplication operator explained in Appendix B 

                                                 
7 see Appendix B for quaternion definiition 
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• 𝒒̃𝑣2𝑐 is the quaternion defining the attitude of the camera with respect to the (𝑣) frame. 

This quaternion is the output of visual SLAM  

• 𝒒𝑣2𝑙 is the quaternion defining the rotation from (𝑣) to (𝑙). Its associated rotation matrix 

is 𝑪𝑣2𝑙 = 𝑪𝑙2𝑣
𝑇 . The relationship between a rotation matrix and its corresponding 

quaternion is also detailed in Appendix B 

• 𝒒𝑙2𝑐 is the quaternion defining the misalignment between the camera and (𝑙). 

The main issue of this model is that the (𝑣) frame is unknown because it is constructed during 

the SLAM initialization process and depends on the features detected by the SLAM during 

initialization. Therefore, the transformation between (𝑣) and (𝑙) which involves 𝑘𝑣 , 𝑪𝑙2𝑣  (or 

equivalently 𝒒𝑙2𝑣) and 𝒑𝑙𝑣
𝑣  is unknown and should be estimated to be able to exploit the SLAM 

outputs. The estimation of this transformation will be described later in this section, for SLAM 

performance evaluation purpose, and will be performed in Chapter 4 differently to be able to 

use the SLAM in a multi-sensor framework. 

The evaluation of SLAM performance can be done by evaluating the reconstructed map quality. 

However, accurate ground truth maps are difficult to obtain (Sturm, 2012). Therefore, SLAM 

performance is evaluated in this study by computing the outputted SLAM poses and comparing 

them to the ground truth. To compute this error, the pose should be expressed in the SE(3) 

Euclidean group (Blanco, 2010). This means that the SLAM and ground truth poses can be 

expressed, at time 𝑘, with an invertible (4 × 4) matrix as follows: 

𝑺̃𝑘
𝑝𝑜𝑠𝑒 = [

𝑪̃𝑣2𝑐 𝒑̃𝑐
𝑣

𝟎1×3 1
]
𝑘

 

𝑮𝑘
𝑝𝑜𝑠𝑒 = [

𝑪𝑙2𝑐 𝒑𝑐
𝑙

𝟎1×3 1
]
𝑘

 

(3.15) 

where 

• SE(3) = {𝑨|𝑨 = [
𝑪 𝒑
𝟎1×3 1

] ;  𝑪 is a (3 × 3) rotation matrix , 𝒑 is a (3 × 1) vector } 

• 𝑺̃𝑘
𝑝𝑜𝑠𝑒

 and 𝑮𝑘
𝑝𝑜𝑠𝑒

 are respectively the SLAM and the ground truth poses. 

• 𝑪̃𝑣2𝑐  and 𝑪𝑙2𝑐  are the (3 × 3)  rotation matrices associated respectively to the 

quaternions 𝒒̃𝑣2𝑐 and 𝒒𝑙2𝑐 

A possible way to evaluate the SLAM performance is to apply the approach proposed in (Sturm, 

2012). This approach consists of calculating two types of errors at each time epoch 𝑘: 

• the Relative Pose Error (RPE) which measures the local accuracy of the trajectory over 

a fixed time interval ∆. It characterizes the drift of the trajectory when no loop closure 

is detected. It is given by: 

𝑬𝑘
𝑅𝑃𝐸 = (𝑺̃𝑘

𝑝𝑜𝑠𝑒−1 𝑺̃𝑘+∆
𝑝𝑜𝑠𝑒)

−1

(𝑮𝑘
𝑝𝑜𝑠𝑒−1 𝑮𝑘+∆

𝑝𝑜𝑠𝑒) (3.16) 
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• the Absolute Trajectory Error (ATE) which measures the global consistency of the 

trajectory by comparing the absolute distances between the estimated and the ground 

truth trajectories: 

𝑬𝑘
𝐴𝑇𝐸 = 𝑮𝑘

𝑝𝑜𝑠𝑒−1  𝑻𝑘  𝑺̃𝑘
𝑝𝑜𝑠𝑒

 (3.17) 

where 𝑻𝑘  is the transformation in SE(3)  that maps the SLAM pose  𝑺̃𝑘
𝑝𝑜𝑠𝑒

 onto the 

corresponding ground truth pose  𝑮𝑘
𝑝𝑜𝑠𝑒

. This transformation is necessary because the SLAM 

pose is expressed in (𝑣) while the ground truth pose is expressed in (𝑙). Therefore, based on 

equation (3.13), the expression of 𝑻𝑘 is given by: 

𝑻𝑘 =
1

𝑘𝑣
[
𝑪𝑙2𝑣 𝒑𝑙𝑣

𝑣

𝟎1𝑥3 1
]
𝑘

−1

 (3.18) 

This transformation is computed based on Horn method whose steps are detailed in (Horn, 

1987). 

The SLAM performance analysis as well as the 𝑻𝑘 computation are done in Chapter 6 where 

the data collections are described, and the results are presented.  

3.5 Conclusion 

In this chapter, we have focused on the study of vision-based navigation to identify the 

techniques and the type of measurement that will be used in the multi-sensor fusion architecture, 

and to understand the characteristics and challenges of this type of information.  

First, a review of the state of the art of standalone vision-based navigation techniques had led 

to establishing a classification of these techniques depending on the environment in which the 

camera moves. This classification has led to the identification of two vision-based techniques: 

VO and VSLAM. These techniques have been addressed in detail and compared. VSLAM has 

been identified as the best technique capable of providing navigation information with the best 

accuracy performance. Indeed, unlike VO based on simple DR to provide camera motion, 

SLAM relies on several optimization processes improving jointly the accuracy of the navigation 

solution and of the map. For this reason, this information has been identified as the visual 

information to be used in the multi-sensor architecture. The review of open-source SLAMs and 

the comparison between these proposed solutions has led to the identification of ORB-SLAM 

as the solution that will be used to assess the performance of the hybridization architecture that 

will be defined in Chapter 4. This choice is mainly based on the possibility for ORB-SLAM to 

cope with outdoor large-scale environment, unlike most of the other SLAM solutions designed 

for indoor navigation. 

Then, the challenges of these choices are discussed. In particular, issues related to the unknown 

transformation between the vision frame and the local frame are highlighted. This 

transformation includes an unknown scale factor resulting from monocular vision, an unknown 

rotation and an offset between the vision frame and the local frame. This transformation has 

been used to model the SLAM outputted pose. This modeling step is necessary for studying 
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SLAM error characteristics and to link the SLAM output to the other sensor outputs to design 

the multi-sensor fusion architecture. 



 

Chapter 4 

4 Proposed Hybridization Architecture 
for the Improvement of Ground Vehicle 
Navigation in Urban Environments 

 

In Chapter 2 and Chapter 3, the advantages and limits of the identified navigation sensors in 

terms of accuracy and robustness are presented especially in constrained environments. The 

current chapter deals with the description of the proposed hybridization solution integrating the 

identified sensor measurements. The first part of the chapter is an overall description of the 

proposed solution architecture defining the IMU as the reference sensor and the other 

measurements provided by GPS, SLAM, odometry and ground vehicle motion constraints as 

aiding information to correct the IMU, in an error-state EKF closed-loop architecture. The 

second part is a presentation of the theoretical model of the KF in general and of the EKF in 

particular. The third, fourth and fifth parts detail respectively the Kalman error state vector used 

in our model, its transition model and the observation model relating the aiding measurements 

to the state vector. Finally, a special attention is given to the observability analysis of the defined 

state vector. The detailed filter equations and calculations are provided in Appendix B and the 

observability analysis proofs are given in Appendix C. 
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4.1 System architecture 

The proposed architecture consists of a single frequency GNSS receiver, a low-cost IMU, a 

vision module processing the images of a single camera using the VSLAM technique, odometry 

module providing the vehicle velocity and constraints describing the motion of a ground 

vehicle. 

Figure 4-1 depicts the overall architecture of the proposed hybridization. The IMU is selected 

as the reference sensor since it is the only sensor providing, continuously and autonomously, a 

complete navigation solution (vehicle position, velocity and attitude) at the highest rate 

( 100 𝐻𝑧 ). The IMU provides the accelerometer and gyroscope measurements. These 

measurements are processed using the INS mechanization described in Section 2.2.3 to provide 

the navigation solution in the local frame (𝑙). All the filter computations are done in this frame. 

In particular, the position is expressed in meter unit in this frame instead of being expressed in 

radians in the geodetic frame (latitude, longitude, height). This allows avoiding numeric 

instability inside the filter resulting from the very small values of the latitude and longitude 

errors, as highlighted in (Angrisano, 2010) and (Shin, 2001). 
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Figure 4-1 Multi-sensor fusion architecture 

The INS mechanization errors are corrected by the measurements of the other sensors. An error-

state EKF is used in order to estimate the corrections that should be applied to the inertial 

navigation solution. The choice of an error-state EKF is justified by the analysis done in Section 

2.4.1.  

The estimated IMU measurement errors (biases and scale factors) are fed back to the 

mechanization since we have to deal with a low-cost IMU. Otherwise the mechanization can 

experience unbounded error growth, and the assumption of small errors used in the linearization 

process of the filter can be violated (Shin, 2001). Indeed, in the feedforward configuration, the 

reference sensor which is the IMU in our case is unaware of the existence of the other sensors 

and the correction is only applied to the mechanization outputs. This makes the INS quantities 

free to drift with unbounded errors, and the assumption of small errors used in the linearization 

process of the filter can be violated in the case of a low-cost IMU. However, with the feedback 

configuration, the IMU errors as well as the linearization points are fed back to reduce the drift 

of the INS and the assumption of small errors is respected. 

The aiding sensors provide either raw measurements or measurements processed by a 

navigation module. For GNSS, the raw measurements are used in difficult environments such 

as urban canyons to avoid the problem of GNSS navigation solution unavailability in case of 

satellite masking, and to be able to discard wrong measurements in case of significant 

degradation. The raw GNSS are code pseudorange 𝝆̃𝐺  and Doppler measurements used to 

compute the pseudorange rate 𝝆̃̇𝐺  using equation (2.2). Two important decisions have been 

taken regarding GNSS.  

First, if the GNSS raw measurements are used, then the code measurements are preferred to the 

carrier phase measurements, although carrier phase measurements can provide better accuracy. 

In fact, in urban environments, multipath makes difficult the estimation of the carrier phase 
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measurement ambiguities. In addition, in this environment, frequent cycle slips and even a 

complete loss of lock may occur. This results in a low availability of GNSS in this environment 

(Carcanague, 2011). Unlike carrier phase measurements, the Doppler measurements are 

provided by the GNSS receiver continuously (Bahrami, 2010) and are not prone to cycle slips. 

For this reason, Doppler measurements will be used in this study. In favorable environments 

where a sufficient number of satellites are in view, the processed GNSS measurements, namely 

the position and the velocity, are directly used. 

Then, the single frequency GNSS technique is used. In fact, despite its capacity to remove the 

ionospheric delay, the GNSS dual frequency technique combining the GPS L1 C/A signal 

(𝑓𝐿1 = 1575.42 MHz) and the civilian GPS L2C signal (𝑓𝐿2𝐶 = 1227.60 MHz) is not used in 

this work for two main reasons. The first reason is the cost of the single frequency receiver that 

is lower than the dual frequency receiver. The second reason is that, in 2013, the year of the 

beginning of this Ph.D. thesis, the number of GPS satellites emitting L2C signals was limited 

to 11 satellites (Martin, 2013), therefore requiring the civilian dual frequency receivers to also 

process codeless tracking of GPS L2P(Y), rendering the tracking very noisy and not robust.  

As for wheel odometry, the vehicle velocity and angular rate are estimated using the WSS 

velocity of each wheel and the steering wheel angle measurement, as described in Section 2.3. 

Then, the vehicle velocity and angular rate are input to the EKF. Based on Section 2.3, the 

velocity measurement is affected by an unknown scale factor due to the tire radius change. This 

scale factor should be estimated in the Kalman filter and the WSS velocity should be corrected 

in order to obtain a good velocity measurement used to update the Kalman filter. Since the WSS 

provides only the forward velocity, the Non-Holonomic-Constraints (NHC) (Sukkarieh, 2000) 

complete the three-dimensional velocity by assuming that a ground vehicle moves only 

straightforward, and its lateral and vertical velocities should be equal to zero if there is no slip 

or jump. This assumption of no side slip of the NHC could be violated in practical situations. 

For this reason, NHC is modelled as: 

𝑣𝑁𝐻𝐶
𝑏𝑥 = 𝜀𝑁𝐻𝐶

𝑏𝑥  

𝑣𝑁𝐻𝐶
𝑏𝑧 = 𝜀𝑁𝐻𝐶

𝑏𝑧  

(4.1) 

where 𝜀𝑁𝐻𝐶
𝑏𝑥  and 𝜀𝑁𝐻𝐶

𝑏𝑧  are Gaussian white noise sources with zero mean and a relatively high 

standard deviation equal to 0.5 m/s (Angrisano, 2010). 

When a stationarity is detected, the trust that we have in a zero velocity, on the lateral and 

vertical axes, increases and the standard deviation associated to the NHC can be decreased 

improving the solution accuracy. We set this standard deviation to 0.01 m/s. This detection is 

based on the comparison of the WSS velocity mean with a threshold over a suitable time 

window. The stationarity of the vehicle can be advantageous also in calibrating the IMU 

gyroscopes, by estimating their measurement biases. This can be done using the Zero Angular 

Rate Update (ZARU), which states that at stationarities, the angular rate must be zero. This 

method can also be applied in linear motion. The linear motion is detected using the heading 

angular rate provided by the steering wheel angle and computed over a suitable time window. 

In addition to improving the accuracy, these methods used in stationarity allow reducing the 
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uncertainty associated to the filter solution. This uncertainty reduction is a key step towards 

defining an integrity monitoring algorithm and evaluating its performance, as it will be detailed 

in Chapter 5. 

The visual information is provided by VSLAM that processes the images captured by a camera 

rigidly mounted on the vehicle and outputs the scaled camera pose. As highlighted in Chapter 

3, this pose is given in the unknown vision frame (𝑣) making this information unusable if the 

transformation between (𝑣) and (𝑙) is not determined. For this reason, this transformation is 

estimated in the Kalman filter and is fed back to transform the pose in the local frame as 

illustrated in Figure 4-1. To avoid errors due to misalignment between the camera and the IMU, 

this misalignment is also estimated by the Kalman filter. We remind that this configuration is 

chosen in order to have a modular system that does not rely mandatorily on the vision module 

and gives the possibility to remove the vision-based module in bad visibility conditions or loss 

of the map track in case of abrupt vehicle motion. Furthermore, this approach allows us to rely 

on any vision-based module found in the literature if advances are done in this field. For these 

reasons, the option of considering the visual information removable is preferred in this work.  

The aiding measurements provided by visual, odometric, NHC, and ZARU in order to correct 

the inertial sensor form a DR system running without interruption. Each sensor provides its 

measurement at its own rate and the update of inertial measurements is performed each time a 

measurement arrives. This system is capable of remarkably reducing the drift compared to a 

stand-alone running inertial system. If available, GNSS measurements are used to calibrate the 

DR system. Otherwise, the DR system keeps on running to ensure the navigation continuity and 

to reduce the INS drift.  

4.2 Extended Kalman Filter 

The EKF is chosen in this work for the reasons given in Section 2.4.1. Before tackling the EKF, 

an overview of the standard KF is given. The KF is a recursive algorithm that estimates the 

states of a dynamic system based on noisy observations. It is a Bayesian estimation technique 

that is based on the a priori knowledge of the system properties and that aims to minimize the 

Mean Square Error. The KF may operate continuously in time, however the discrete KF is 

considered in this work because sensor fusion requires digital computation. 

The discrete KF is based on the following core elements: 

• The state vector 𝑿𝑘 which is the set of system parameters that the KF estimates at the 

time epoch 𝑘. To this vector is associated an error covariance matrix 𝑷𝑘 describing the 

uncertainties in the KF’s estimated parameters and the degree of correlation between the 

errors of these parameters. 

• The system process model which describes the state vector evolution with time: 

𝑿𝑘+1 = 𝑭𝑘𝑿𝑘 + 𝜼𝑘 (4.2) 

where 𝑭𝑘 is the system transition matrix at time epoch 𝑘 and 𝜼𝑘 is the process driving noise 

whose covariance matrix is denoted 𝑸𝑘 
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• The measurement vector 𝒁̃𝑘 which consists of a set of simultaneous noisy measurements 

that are expressed as a function of the state vector components. To this vector is 

associated a measurement noise covariance matrix 𝑹𝑘 describing the noise statistics of 

the measurements. The relationship between the measurement vector and the state vector 

components is given by the measurement model: 

𝒁̃𝑘 = 𝑯𝑘𝑿𝑘 + 𝜺𝑘 (4.3) 

where 𝑯𝑘  is the observation matrix and 𝜺𝑘  is the measurement noise whose covariance 

matrix is 𝑹𝑘. 

The KF algorithm consists of two phases, system propagation and measurement update. The 

system propagation consists of predicting the state vector estimate and the associated error 

covariance matrix using the system process model. In the measurement update phase, the state 

vector estimate and its error covariance are updated using the new measurements. The first step 

of this phase consists of computing the Kalman gain matrix. This quantity is used for weighting 

the corrections applied to the state vector according to the uncertainty of the current state 

estimates and how noisy the measurements are. Then, the state vector is updated based on the 

measurement data weighted with the Kalman gain. 

In the standard KF, both the system and the measurement models are assumed to be linear, 

which is not the case in the considered application. A nonlinear version of the KF is the EKF, 

considered in this study. In an EKF, the nonlinear system is approximated by a linear system. 

The following system process and measurement models are considered in the EKF: 

𝑿𝑘+1 = 𝑓(𝑿𝑘) + 𝜼𝑘 

𝒁̃𝑘 = ℎ(𝑿𝑘) + 𝜺𝑘 
(4.4) 

where 𝑓 and ℎ are nonlinear functions. Therefore, the prediction phase of the EKF is done as 

follows: 

State prediction 

𝑿̂𝑘+1|𝑘 = 𝑓(𝑿̂𝑘|𝑘) (4.5) 

State error covariance prediction 

𝑷𝑘+1|𝑘 = 𝑭𝑘𝑷𝑘|𝑘𝑭𝑘
𝑇 + 𝑸𝑘 (4.6) 

where 𝑭𝑘 is the Jacobian matrix of 𝑓 computed in 𝑿̂𝑘|𝑘 

The EKF update phase is based on the following steps: 

Kalman gain computation 

𝑲𝑘+1 = 𝑷𝑘+1|𝑘𝑯𝑘+1
𝑇 (𝑯𝑘+1𝑷𝑘+1|𝑘𝑯𝑘+1

𝑇 + 𝑹𝑘+1)
−1

 (4.7) 
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where 𝑯𝑘+1 is the Jacobian matrix of ℎ computed in 𝑿̂𝑘+1|𝑘 

State update 

𝑿̂𝑘+1|𝑘+1 = 𝑿̂𝑘+1|𝑘 +𝑲𝑘+1 (𝒁̃𝑘+1 − ℎ(𝑿̂𝑘+1|𝑘)) (4.8) 

State error covariance update 

𝑷𝑘+1|𝑘+1 = 𝑷𝑘+1|𝑘 −𝑲𝑘+1𝑯𝑘+1𝑷𝑘+1 (4.9) 

Although the EKF handles the linearity problem, it has the disadvantage of being based on a 

first order Taylor series linearization. This can lead to important problems in the stability of the 

filter as highlighted in (Spangenberg, 2007). To reduce the effect of this limitation, the error 

state form is considered because the dynamics of the system error are low frequency and could 

be represented as linear. Furthermore, the linearization point must be very close the true point, 

to avoid the divergence of the EKF. This is the reason why the closed loop is considered in this 

work. 

4.3 State vector 

This work is based on the error state formulation of an EKF where the state prediction is driven 

by the inertial system. The IMU is defined as the reference sensor in the architecture described 

above. Therefore, the designed filter aims to estimate the position, velocity and attitude errors 

of the IMU. However, due to errors in the inertial measurements as modeled in equation (2.27), 

the state vector is augmented by the inertial errors which are the biases and the scale factors of 

the accelerometers and gyroscopes measurements. Therefore, the core state vector is given by: 

𝛿𝑿𝐼𝑀𝑈 = [𝛿𝒑𝑏
𝑙 𝑇 𝛿𝒗𝑏

𝑙 𝑇 𝜺𝑏2𝑙
𝑇 𝛿𝒃𝑓

𝑇 𝛿𝒃𝜔
𝑇 𝛿𝒌𝑓

𝑇 𝛿𝒌𝜔
𝑇]
𝑇
 (4.10) 

where 

• 𝛿𝒑𝑏
𝑙 = [𝛿𝑝𝑏

𝐸 𝛿𝑝𝑏
𝑁 𝛿𝑝𝑏

𝑈]𝑇 is the position error vector in (𝑙)  

• 𝛿𝒗𝑏
𝑙 = [𝛿𝑣𝑏

𝐸 𝛿𝑣𝑏
𝑁 𝛿𝑣𝑏

𝑈]𝑇 is the velocity error vector in (𝑙)  

• 𝜺𝑏2𝑙 = [𝜀𝐸 𝜀𝑁 𝜀𝑈]𝑇 is the vehicle attitude error vector in (𝑙) 

• 𝛿𝒃𝑓 = [𝛿𝑏𝑓𝑥 𝛿𝑏𝑓𝑦 𝛿𝑏𝑓𝑧]𝑇 is the accelerometer biases error in (𝑏)  

• 𝛿𝒃𝜔 = [𝛿𝑏𝜔𝑥 𝛿𝑏𝜔𝑦 𝛿𝑏𝜔𝑧]𝑇 is the gyroscope biases error in (𝑏)  

• 𝛿𝒌𝑓 = [𝛿𝑘𝑓𝑥 𝛿𝑘𝑓𝑦 𝛿𝑘𝑓𝑧]𝑇 is the accelerometer scale factors error in (𝑏)  

• 𝛿𝒌𝜔 = [𝛿𝑘𝜔𝑥 𝛿𝑘𝜔𝑦 𝛿𝑘𝜔𝑧]𝑇 is the gyroscope scale factors error in (𝑏)  

 

The aiding sensors can then be added modularly to this core system. Table 4.1 summarizes each 

sensor outputs and the frame in which the outputs are expressed. The INS provides the vehicle 

position, velocity and attitude computed in the IMU location point. GNSS processed 

measurements are calculated in (𝑙) . For GNSS raw data, no frame is associated to these 

measurements because pseudoranges are distance scalar between the receiver and each satellite 

in view and can be expressed in any orthonormal frame. For Doppler measurements, they are 
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equivalent to a frequency shift scalar and are also frame-independent. For the wheel odometry, 

the velocity is computed either in the vehicle rear axle center point or in its front axle center 

point, depending on the wheels we use, and is then expressed in (𝑏). Note that the attitude is 

given in terms of a rotation matrix 𝑪 or equivalently a quaternion 𝒒. More details about these 

two mathematical rotation representations are given in Appendix B. 

Nav. module Output Frame 

INS 

Vehicle position 𝒑𝑏
𝑙  

(𝑙) 

Vehicle velocity 𝒗𝑏
𝑙  

Vehicle attitude 𝑪𝑏2𝑙/𝒒𝑏2𝑙 

GNSS processed 

data 

Antenna position 𝒑̃𝐺
𝑙  

Antenna velocity 𝒗̃𝐺
𝑙  

GNSS raw data 
Antenna Pseudoranges 𝝆̃𝐺  

No frame 
Antenna Doppler meas. ∆𝒇̃𝐺 

VSLAM 
Camera position 𝒑̃𝑐

𝑣 
(𝑣) 

Camera attitude 𝑪̃𝑣2𝑐/𝒒̃𝑣2𝑐 

Wheel odometry 
Rear or front velocity 𝑣̃𝑤

𝑏𝑦 
(𝑏) 

Angular rate 𝝎̃𝑠 

Table 4.1 Sensor outputs and associated frames 

Based on the measurement models given by equations (2.17) and (2.21) for GNSS, equation 

(2.41) for the WSS, and equations (3.13) and (3.14) for SLAM, we notice that every sensor 

adds a number of unknown parameters which relate the provided measurements to the core 

state. To reduce the number of unknowns, it is assumed that the lever arms between the aiding 

sensors and the IMU are measured before the navigation starts and are perfectly known. More 

details about the configuration of sensors during the data collection are given in Chapter 6. The 

full system state is assembled from the core state 𝛿𝑿𝐼𝑀𝑈 and a series of additional states. These 

additional states are detailed in the following paragraphs. 

The WSS measurement model given in equation (2.41) is affected by an unknown scale factor 

𝑘𝑤 and this scale factor error forms the sate vector associated to the WSS: 

𝛿𝑿𝑤 = [𝛿𝑘𝑤] (4.11) 

For GNSS, if the processed position and velocity are input to the filter, then no additional states 

are introduced. However, if the raw GNSS pseudorange and Doppler measurements are used, 

then two additional states should be accounted for, which are the receiver clock bias 𝑏𝐺
𝑐𝑙𝑘 and 

clock drift 𝑏̇𝐺
𝑐𝑙𝑘 errors: 
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𝛿𝑿𝐺𝑁𝑆𝑆 = [𝛿𝑏𝐺
𝑐𝑙𝑘 𝛿𝑏̇𝐺

𝑐𝑙𝑘]𝑇 (4.12) 

As for the SLAM outputs, the measurement models given in equation (3.13) and equation (3.14) 

relate the camera outputs expressed in (𝑣) to their corresponding measurements expressed 

in (𝑙). Since the designed filter takes the IMU as the reference sensor, we should express first 

the SLAM outputted pose as a function of the IMU pose by taking into account the lever arm 

Δ𝒑𝑐
𝑏  between the camera and the IMU as well as the alignment of the camera with respect to 

the IMU 𝑪𝑏2𝑐 (or equivalently 𝒒𝑏2𝑐). Based on equation (3.13) and equation (3.14), we have 

(Weiss, 2012): 

𝒑̃𝑐
𝑣 = 𝑘𝑣 𝑪𝑙2𝑣 (𝒑𝑏

𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝑐
𝑏) + 𝒑𝑙𝑣

𝑣 + 𝜺𝑣,𝑝 (4.13) 

𝒒̃𝑣2𝑐 = (𝒒𝑏2𝑐⊗𝒒𝑙2𝑏⊗𝒒𝑣2𝑙) + 𝜺𝑣,𝑞 (4.14) 

where  

• 𝒑̃𝑐
𝑣 and 𝒒̃𝑐2𝑣 are the SLAM pose measurements 

• 𝒑𝑏
𝑙  and 𝑪𝑏2𝑙 are the IMU pose  

• 𝑘𝑣  ,  𝑪𝑙2𝑣  and 𝒑𝑙𝑣
𝑣   are the scale factor, rotation and translational offset defining the 

transformation between (𝑣) and (𝑙) 

• 𝜺𝑣,𝑝 is an additive noise representing the SLAM position measurement error 

• 𝜺𝑣,𝑞 is an additive noise representing the SLAM attitude measurement error. 

Therefore, 4 parameters are unknown:  the 3 parameters describing the transformation between 

(𝑣) and (𝑙) as well as the alignment of the camera with respect to the IMU. In terms of error 

states, we can write: 

𝛿𝑿𝑆𝐿𝐴𝑀 = [𝛿𝑘𝑣 𝜺𝑙2𝑣
𝑇 𝛿𝒑𝑙𝑣

𝑣 𝑇 𝜺𝑏2𝑐
𝑇]
𝑇
 (4.15) 

where 

• 𝜺𝑙2𝑣 = [𝜀𝑙2𝑣
1 𝜀𝑙2𝑣

2 𝜀𝑙2𝑣
3 ]𝑇 is the (𝑣)-(𝑙) frame orientation error 

• 𝛿𝒑𝑙𝑣
𝑣 = [𝛿𝑝𝑙𝑣

𝑣𝑥 𝛿𝑝𝑙𝑣
𝑣𝑦

𝛿𝑝𝑙𝑣
𝑣𝑧]

𝑇
 is the offset error between (𝑣) and  (𝑙)  

• 𝜺𝑏2𝑐 = [𝜀𝑐2𝑏
1 𝜀𝑐2𝑏

2 𝜀𝑐2𝑏
3 ]𝑇 is the orientation error of the camera frame (𝑐) with respect 

to (𝑏)  

 

Finally, the full error state vector 𝛿𝑿 is assembled from the core state corresponding to the INS 

mechanization and the additional states corresponding to the GNSS receiver, the SLAM and 

the WSS algorithms: 

𝛿𝑿 = [

𝛿𝑿𝐼𝑀𝑈
𝛿𝑿𝑆𝐿𝐴𝑀
𝛿𝑿𝑤

{𝛿𝑿𝐺𝑁𝑆𝑆}

] (4.16) 



Chapter 4 – Proposed Hybridization Architecture for the Improvement of Ground Vehicle 

Navigation in Urban Environments 

62 

 

where 𝛿𝑿𝐺𝑁𝑆𝑆 is put between braces because it is removed in case of GNSS loose coupling and 

kept in case of tight coupling. 

4.4 State transition model 

 Continuous-time model 

The process is modeled by the temporal behavior of the state vector components. It is defined 

by two matrices: the 𝐹 matrix which describes the system dynamic evolution with time after 

linearization, and the 𝑸 matrix which describes the system noise. 

The behavior of the navigation parameters, i.e. the position, velocity and attitude errors, are 

obtained by applying the following perturbation model to the INS mechanization given in 

equation (2.28) and neglecting terms of order higher than first: 

𝒑̂𝑏
𝑙 = 𝒑𝑏

𝑙 + 𝛿𝒑𝑏
𝑙  

𝒗̂𝑏
𝑙 = 𝒗𝑏

𝑙 + 𝛿𝒗𝑏
𝑙  

𝑪̂𝑏2𝑙 = (𝑰3 − 𝑬𝑏2𝑙) 𝑪𝑏2𝑙 

(4.17) 

where 

• ˆ and 𝛿 denote estimated values and errors, respectively 

• 𝑬𝑏2𝑙 = (𝜺𝑏2𝑙) ×  is the skew-symmetric matrix of the vehicle attitude 

The following system is obtained: 

[

𝛿𝒑̇𝑏
𝑙

𝛿𝒗̇𝑏
𝑙

𝜺̇𝑏2𝑙

] = [

𝟎3 𝑰3 𝟎3
𝑭𝑣𝑝 𝑭𝑣𝑣 (𝑪𝑏2𝑙𝒇𝑖𝑏

𝑏 ) ×

𝑭𝑒𝑝 𝑭𝑒𝑣 −(𝝎𝑖𝑙
𝑙 ) ×

] [

𝛿𝒑𝑏
𝑙

𝛿𝒗𝒃
𝒍

𝜺𝑏2𝑙

] + [

𝟎3 𝟎3
𝑪𝑏2𝑙 𝟎3
𝟎3 −𝑪𝑏2𝑙

] [
𝛿𝒇𝑖𝑏

𝑏

𝛿𝝎𝑖𝑏
𝑏 ] (4.18) 

where  

• 𝑭𝑣𝑝 =

[
 
 
 
 
 0

2𝜔𝑒(𝑣𝑏
𝑁𝑐𝑜𝑠(𝜑)+𝑣𝑏

𝑈 𝑠𝑖𝑛(𝜑))

𝑅𝑚+ℎ
+

𝑣𝑏
𝐸𝑣𝑏

𝑁

(𝑅𝑛+ℎ)(𝑅𝑚+ℎ) 𝑐𝑜𝑠2(𝜑)

𝑣𝑏
𝐸𝑣𝑏

𝑈−𝑣𝑏
𝐸𝑣𝑏

𝑁 𝑡𝑎𝑛(𝜑)

(𝑅𝑛+ℎ)2

0
−2𝜔𝑒𝑣𝑏

𝐸 𝑐𝑜𝑠(𝜑)

𝑅𝑚+ℎ
−

𝑣𝑏
𝐸2

(𝑅𝑛+ℎ)(𝑅𝑚+ℎ)𝑐𝑜𝑠2(𝜑)

𝑣𝑏
𝑁𝑣𝑏

𝑈

(𝑅𝑚+ℎ)2
+
𝑣𝑏
𝐸2tan(𝜑)

(𝑅𝑛+ℎ)2

0 −
2𝜔𝑒 𝑣𝑏

𝐸𝑠𝑖𝑛(𝜑)

𝑅𝑚+ℎ 

−𝑣𝑏
𝐸2

(𝑅𝑛+ℎ)2
−

𝑣𝑏
𝑁2

(𝑅𝑚+ℎ)2
+

2𝑔𝑙

𝑅+ℎ]
 
 
 
 
 

 

• 𝐹𝑣𝑣 =

[
 
 
 
 
 

𝑣𝑏
𝑁 tan(𝜑)−𝑣𝑏

𝑈

𝑅𝑛+ℎ

𝑣𝑏
𝐸 tan(𝜑)

𝑅𝑛+ℎ
+ 2𝜔𝑒 sin(𝜑) −2𝜔𝑒 cos(𝜑) −

𝑣𝑏
𝐸

𝑅𝑛+ℎ

−2𝑣𝑏
𝐸 tan(𝜑)

𝑅𝑛+ℎ
− 2𝜔𝑒 sin(𝜑)

−𝑣𝑏
𝑈

𝑅𝑚+ℎ

−𝑣𝑏
𝑁

𝑅𝑚+ℎ

2𝑣𝑏
𝐸

𝑅𝑛+ℎ
+ 2𝜔𝑒 cos(𝜑)

2𝑣𝑏
𝑁

𝑅𝑚+ℎ
0 ]
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• 𝑭𝑒𝑝 =

[
 
 
 
 
 0 0

𝑣𝑏
𝑁

(𝑅𝑚+ℎ)2

0 −
𝜔𝑒 sin(𝜑)

𝑅𝑚+ℎ

−𝑣𝑏
𝐸

(𝑅𝑛+ℎ)2

0
𝜔𝑒 cos(𝜑)

𝑅𝑚+ℎ
+

𝑣𝑏
𝐸

(𝑅𝑛+ℎ)(𝑅𝑚+ℎ)cos2(𝜑)

−𝑣𝑏
𝐸 tan(𝜑)

(𝑅𝑛+ℎ)2 ]
 
 
 
 
 

 

• 𝐹𝑒𝑣 =

[
 
 
 
 0

−1

𝑅𝑚+ℎ
0

1

𝑅𝑛+ℎ
0 0

tan(𝜑)

𝑅𝑛+ℎ
0 0]

 
 
 
 

 

• 𝛿𝒇𝑖𝑏
𝑏 = 𝒇̃𝑖𝑏

𝑏 − 𝒇𝑖𝑏
𝑏  is the accelerometer error vector derived from equation (2.27): 

𝛿𝒇𝑖𝑏
𝑏 = 𝜸(𝒌𝑓)𝒇𝑖𝑏

𝑏 + 𝒃𝑓 + 𝜼𝑓 (4.19) 

where  

𝜸(𝒌𝑓) = diag (
1

1+𝑘𝑓𝑥
,

1

1+𝑘𝑓𝑦
,

1

1+𝑘𝑓𝑧
)  

• 𝛿𝝎𝑖𝑏
𝑏 = 𝝎̃𝑖𝑏

𝑏 −𝝎𝑖𝑏
𝑏  is the gyroscope error vector derived from equation (2.27) 

𝛿𝝎𝑖𝑏
𝑏 = 𝜸(𝒌𝜔)𝝎𝑖𝑏

𝑏 + 𝒃𝜔 + 𝜼𝜔 (4.20) 

where 

𝜸(𝒌𝜔) = diag (
1

1+𝑘𝜔𝑥
,

1

1+𝑘𝜔𝑦
,

1

1+𝑘𝜔𝑧
)  

• The IMU biases and scale factors are modeled as Gauss-Markov processes as discussed 

in Section 2.2.2. 

•  The state vector components related to the WSS and the SLAM are modeled as random 

walks 

Therefore, the resulting continuous system process model is given by: 

If the GNSS is used in a loose configuration, then no additional states are related to GNSS 
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[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝛿𝒑̇𝑏

𝑙

𝛿𝒗̇𝑏
𝑙

𝜺̇𝑏2𝑙
𝛿𝒃̇𝑓

𝛿𝒃̇𝜔
𝛿𝒌̇𝑓

𝛿𝒌̇𝜔
𝛿𝑘̇𝑤
𝑘̇𝑣
𝜺̇𝑙2𝑣
𝛿𝒑̇𝑙𝑣

𝑣

𝜺̇𝑐2𝑏 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
𝟎3 𝑰3 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3×11

𝑭𝑣𝑝 𝑭𝑣𝑣 (𝑪𝑏2𝑙𝒇𝑖𝑏
𝑏 ) × 𝑪𝑏2𝑙 𝟎3 𝑪𝑏2𝑙𝑭

𝑏 𝟎3 𝟎3×11

𝑭𝑒𝑝 𝑭𝑒𝑣 −(𝝎𝑖𝑙
𝑙 ) × 𝟎3 −𝑪𝑏2𝑙 𝟎3 −𝑪𝑏2𝑙𝑾

𝑏 𝟎3×11

𝟎3 𝟎3 𝟎3 𝜷𝑏𝑓 𝟎3 𝟎3 𝟎3 𝟎3×11

𝟎3 𝟎3 𝟎3 𝟎3 𝜷𝑏𝜔 𝟎3 𝟎3 𝟎3×11

𝟎3 𝟎3 𝟎3 𝟎3 𝟎3 𝜷𝑘𝑓 𝟎3 𝟎3×11

𝟎3 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3 𝜷𝑘𝜔 𝟎3×11

𝟎11×3 𝟎11×3 𝟎11×3 𝟎11×3 𝟎11×3 𝟎11×3 𝟎11×3 𝟎11×3]
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
 
𝛿𝒑𝑏

𝑙

𝛿𝒗𝑏
𝑙

𝜺𝑏2𝑙
𝛿𝒃𝑓
𝛿𝒃𝜔
𝛿𝒌𝑓
𝛿𝒌𝜔
𝛿𝑘𝑤
𝑘𝑣
𝜺𝑙2𝑣
𝛿𝒑𝑙𝑣

𝑣

𝜺𝑐2𝑏 ]
 
 
 
 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
𝟎3 𝟎3 𝟎3×23

𝑪𝑏2𝑙 𝟎3 𝟎3×23

𝟎3 −𝑪𝑏2𝑙 𝟎3×23

𝟎23×3 𝟎23×3 𝑰23 ]
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
 
𝜼𝑓
𝜼𝜔
𝜼𝑏𝑓
𝜼𝑏𝜔
𝜼𝑘𝑓
𝜼𝑘𝜔
𝜼𝑘𝑤
𝜼𝑘𝑣
𝜼𝜀𝑙2𝑣
𝜼𝑝𝑙𝑣
𝜼𝜀𝑐2𝑏]

 
 
 
 
 
 
 
 
 
 
 

= 𝑭𝛿𝑿 + 𝑮𝜼 

(4.21) 

where 

• 𝑭𝑏 = diag (𝒇𝑖𝑏
𝑏 )  and 𝑾𝑏 = diag (𝝎𝑖𝑏

𝑏 )   

• 𝜷𝑏𝑓 = diag (−
1
𝜏𝑏𝑓𝑥⁄  , − 1 𝜏𝑏𝑓𝑦⁄  , − 1 𝜏𝑏𝑓𝑧⁄ ) 

• 𝜷𝜔𝑓 = diag (−
1
𝜏𝑏𝜔𝑥⁄  , − 1 𝜏𝑏𝜔𝑦⁄  , − 1 𝜏𝑏𝜔𝑧⁄ ) 

• 𝜷𝑘𝑓 = diag (−
1
𝜏𝑘𝑓𝑥⁄  , − 1 𝜏𝑘𝑓𝑦⁄  , − 1 𝜏𝑘𝑓𝑧⁄ ) 

• 𝜷𝑘𝜔 = diag (−
1
𝜏𝑘𝜔𝑥⁄  , − 1 𝜏𝑘𝜔𝑦⁄  , − 1 𝜏𝑘𝜔𝑧⁄ ) 

where 𝜏𝑢 is the correlation time of the Gauss-Markov process 𝑢. 

If the GPS is used in a tight configuration, then the two states corresponding to the receiver 

clock bias 𝑏𝐺
𝑐𝑙𝑘 and drift 𝑏̇𝐺

𝑐𝑙𝑘 are added to the previous system. The two states are: 

[
𝛿𝑏̇𝐺

𝑐𝑙𝑘

𝛿𝑏̈𝐺
𝑐𝑙𝑘
] = [

0 1
0 0

] [
𝛿𝑏𝐺

𝑐𝑙𝑘

𝛿𝑏̇𝐺
𝑐𝑙𝑘
] + [

𝜂𝑏𝐺
𝜂𝑏̇𝐺

] (4.22) 

where 𝜂𝑏𝐺 and 𝜂𝑏̇𝐺 are the clock erros whose spectral densities are given by: 

𝑞𝑏𝐺 = 𝑐
2 .
ℎ0
2

 

𝑞𝑏̇𝐺 = 𝑐
2. 2𝜋2 . ℎ−2 

(4.23) 

where ℎ0 and ℎ−2 are allan variance parameters describing the clock errors, typical values for 

compensated crystal clock are 2 . 10−19 and 2 . 10−20 respectively (Brown, 1997). 
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 Discrete-time model 

Since all the sensors are implemented with sampled data, the previous continuous time model 

must be discretized. The discretization steps are described in (Shin, 2001). Since the sampling 

time interval ∆𝑡 = 𝑡𝑘+1 − 𝑡𝑘  is very small, then the following approximation of the state 

transition matrix is considered: 

𝚽𝑘 ≈ 𝑰 + 𝑭𝑘∆𝑡 (4.24) 

The discretization of the spectral density matrix 𝑸 is given by: 

𝑸𝑘 = 𝐸[𝜼𝑘𝜼𝑘
𝑇] ≈ 𝑮𝑸𝑮𝑇∆𝑡 (4.25) 

where 

𝑸 = diag (𝒒𝜂𝑓 , 𝒒𝜂𝜔 , 𝒒𝜂𝑏𝑓 , 𝒒𝜂𝑏𝜔 , 𝒒𝜂𝑘𝑓 , 𝒒𝜂𝑘𝜔 , 𝑞𝜂𝑘𝑤 , 𝑞𝜂𝑘𝑣 , 𝒒𝜂𝜀𝑙2𝑣 , 𝒒𝜂𝑝𝑙𝑣 , 𝒒𝜂𝜀𝑐2𝑏) 

with 

• 𝑞𝜂𝑢 = 𝜎𝑢
2 if 𝑢 is a white Gaussian process with a variance equal to 𝜎𝑢

2 

• 𝑞𝜂𝑢 = 2 ∗ 𝜎𝑢
2 𝜏𝑢⁄  if 𝑢 is a Gauss-Markov process with a correlation time equal to 𝜏𝑢 and 

a noise variance equal to 𝜎𝑢
2 

4.5 Observation model 

The update phase of the EKF is performed when acquiring the aiding sensors measurements. 

These measurements at time 𝑘  are related to the state vector 𝛿𝑿  by the following linear 

equation: 

𝛿𝒁𝑘 = ℎ(𝛿𝑿𝑘) + 𝜺𝑘 (4.26) 

where 𝛿𝒁𝑘 is the difference between the measurement prediction 𝒁̂ computed with the state 

already propagated at the prediction phase, and the measurement observation 𝒁̃ provided by the 

sensor. 𝛿𝒁𝑘 is also called the measurement innovation. 

The expressions of the nonlinear function ℎ and its Jacobian 𝑯𝑘 will be given for each sensor 

in the following sections. 

 GNSS observation model 

In the case of loose coupling, the GNSS receiver provides the processed antenna position 𝒑̃𝐺
𝑙  

and velocity 𝒗̃𝐺
𝑙 . Taking into account the lever arm Δ𝒑𝐺

𝑏  between the GNSS antenna and the 

IMU, the GNSS measurements are given by: 

𝒑̃𝐺
𝑙 = 𝒑𝑏

𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺
𝑏 + 𝜺𝐺,𝑝 (4.27) 
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𝒗̃𝐺
𝑙 = 𝒗𝑏

𝑙 + 𝑪𝑏2𝑙 ((𝝎𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏) + 𝜺𝐺,𝑣 
(4.28) 

where 𝜺𝐺,𝑝 and 𝜺𝐺,𝑣 are additive zero-mean, white and Gaussian noises whose variances are 

provided by the GNSS navigation module. 

The GNSS measurement innovation is given by: 

𝛿𝒁𝐺 = [
𝒑̂𝑏
𝑙 − 𝒑̃𝐺

𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝐺
𝑏

𝒗̂𝑏
𝑙 − 𝒗̃𝐺

𝑙 + 𝑪̂𝑏2𝑙(𝝎𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏] (4.29) 

The Jacobian matrix associated to equation (4.27) and equation (4.28) is given by: 

𝑯𝐺 = [
𝑰3 𝟎3 (𝑪̂𝑏2𝑙  Δ𝒑𝐺

𝑏) × 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3×11

𝟎3 𝑰3 (𝑪̂𝑏2𝑙(𝜔𝑖𝑏
𝑏 × Δ𝒑𝐺

𝑏)) × 𝟎3 −𝑪̂𝑏2𝑙(Δ𝒑𝐺
𝑏) × 𝟎3 −𝑪̂𝑏2𝑙(Δ𝒑𝐺

𝑏) ×𝑾 𝟎3×11
] (4.30) 

In the case of tight coupling, the GNSS receiver provides the pseudoranges 𝝆𝐺  and the Doppler 

measurements ∆𝒇̃𝐺 . The Doppler measurements are converted into pseudorange rates 𝝆̇𝐺  using 

equation (2.2). Taking into account the lever arm Δ𝒑𝐺
𝑏  between the GNSS antenna and the IMU, 

the GNSS raw measurements are given by: 

𝝆̃𝐺 = [

𝜌̃𝐺
1

⋮

𝜌̃𝐺
𝑁𝑠𝑎𝑡

] =

[
 
 
 
 √(𝒑𝑏

𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺
𝑏  − 𝒑𝑠1

𝑙 )𝑇(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺

𝑏  − 𝒑𝑠1
𝑙 ) + 𝑏𝐺

𝑐𝑙𝑘 + 𝜀𝐺,𝑃𝑅
1

⋮

√(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺

𝑏  − 𝒑𝑠𝑁𝑠𝑎𝑡
𝑙 )

𝑇
(𝒑𝑏

𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑁𝑠𝑎𝑡

𝑙 ) + 𝑏𝐺
𝑐𝑙𝑘 + 𝜀𝐺,𝑃𝑅

𝑁𝑠𝑎𝑡
]
 
 
 
 

 (4.31) 

𝝆̃̇𝐺 = [
𝜌̃̇𝐺
1

⋮

𝜌̃̇𝐺
𝑁𝑠𝑎𝑡

] =

[
 
 
 
 
 (𝒑𝑏

𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺
𝑏  − 𝒑𝑠1

𝑙 )
𝑇
(𝒗𝑏

𝑙 + 𝑪𝑏2𝑙(𝝎𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏  − 𝒗𝑠1
𝑙 )

𝑑1
+ 𝑏̇𝐺

𝑐𝑙𝑘 + 𝜀𝐺,𝑃𝑅𝑅
1

⋮

(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺

𝑏  − 𝒑𝑠𝑁𝑠𝑎𝑡
𝑙 )

𝑇
(𝒗𝑏

𝑙 + 𝑪𝑏2𝑙(𝝎𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏  − 𝒗𝑠𝑁𝑠𝑎𝑡
𝑙 )

𝑑𝑁𝑠𝑎𝑡
+ 𝑏̇𝐺

𝑐𝑙𝑘 + 𝜀𝐺,𝑃𝑅𝑅
𝑁𝑠𝑎𝑡

]
 
 
 
 
 

 (4.32) 

where  

• 𝑁𝑠𝑎𝑡 is the number of satellites in view 

• 𝒑𝑠𝑖
𝑙  is the position of the satellite 𝑖 in (𝑙) 

• 𝒗𝑠𝑖
𝑙  is the velocity of the satellite 𝑖 in (𝑙) 

• 𝑑𝑖 = √(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺

𝑏  − 𝒑𝑠𝑖
𝑙 )

𝑇
(𝒑𝑏

𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )  is the geometric range 

between the satellite 𝑖 and the GNSS antenna 

• 𝜀𝐺,𝑃𝑅
𝑖  and 𝜀𝐺,𝑃𝑅𝑅

𝑖  are additive zero-mean, white and Gaussian noises whose variances are 

given in Section 2.1. 

The GNSS raw measurements are linearized by expansion in Taylor series as explained in 

equation (2.18). The lever arm is compensated in the prediction of the measurements using 

equation (4.31) and equation (4.32). However, the measurement dependency on the attitude 
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error 𝜺𝑏2𝑙  introduced by the lever arm will be assumed negligible, considering the small 

contribution of the lever arm to the direction cosine angles defining the observation matrix. 

Therefore, the GNSS measurement innovation is given by: 

𝛿𝒁𝐺 =

[
 
 
 
 
 
 
𝜌̃𝐺
1 − 𝜌̂𝐺

1

⋮

𝜌̃𝐺
𝑁𝑠𝑎𝑡 − 𝜌̂𝐺

𝑁𝑠𝑎𝑡

𝜌̃̇𝐺
1 − 𝜌̂̇𝐺

1

⋮

𝜌̃̇𝐺
𝑁𝑠𝑎𝑡 − 𝜌̂̇𝐺

𝑁𝑠𝑎𝑡]
 
 
 
 
 
 

 (4.33) 

The Jacobian matrix associated to equation (4.31) and equation (4.32) is given by: 

𝑯𝐺 =

[
 
 
 
 
 
 
𝑯𝐺,𝑝𝑃𝑅1 𝟎1×3 𝟎1×26 −1 0

⋮ ⋮ ⋮ ⋮ ⋮
𝑯𝐺,𝑝𝑃𝑅𝑁𝑠𝑎𝑡 𝟎1×3 𝟎1×26 −1 0

𝑯𝐺,𝑝𝑃𝑅𝑅1 𝑯𝐺,𝑣𝑃𝑅𝑅1 𝟎1×26 0 −1

⋮ ⋮ ⋮ ⋮ ⋮
𝑯𝐺,𝑝𝑃𝑅𝑅𝑁𝑠𝑎𝑡 𝑯𝐺,𝑣𝑃𝑅𝑅_𝑁𝑠𝑎𝑡 𝟎1×26 0 −1]

 
 
 
 
 
 

 (4.34) 

where  

• 𝑯𝐺,𝑝𝑃𝑅𝑖 = 𝑯𝐺,𝑣𝑃𝑅𝑅𝑖 =
−(𝒑̂𝑏

𝑙 +𝑪̂𝑏2𝑙 Δ𝒑𝐺
𝑏  −𝒑𝑠𝑖

𝑙 )
𝑇

𝑑̂𝑖
 

• 𝑯𝐺,𝑝𝑃𝑅𝑅𝑖 =
−(𝒗̂𝑏

𝑙 +𝑪̂𝑏2𝑙(𝝎̂𝑙𝑏
𝑏 )×Δ𝒑𝐺

𝑏  −𝒗𝑠𝑖
𝑙 )

𝑇

𝑑̂𝑖
−
(𝒑̂𝑏
𝑙 +𝑪̂𝑏2𝑙 Δ𝒑𝐺

𝑏  −𝒑𝑠𝑖
𝑙 )

𝑇
𝑟̂̇𝑠𝑖

(𝑑̂𝑖)
2  

The computation details of matrix 𝑯𝐺 are given in Appendix C. 

 SLAM observation model 

As explained in Section 3.4, the SLAM provides the filter with the camera position and attitude 

in (𝑣) and its outputs are expressed as a function of the filter states in equation (4.13) and 

equation (4.14). Therefore, the SLAM measurement innovation is given by: 

𝛿𝒁𝑣 = [
𝑘̂𝑣 𝑪̂𝑙2𝑣 (𝒑̂𝑏

𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝑐
𝑏) + 𝒑̂𝑙𝑣

𝑣 − 𝒑̃𝑐
𝑣

𝒒̂𝑏2𝑐⊗ 𝒒̂𝑙2𝑏⊗ 𝒒̂𝑣2𝑙 − 𝒒̃𝑣2𝑐
] (4.35) 

The Jacobian matrix associated to equation (4.13) and equation (4.14) is given by: 

𝑯𝑣 = [
𝑯𝑣,𝑝𝑝 𝟎3 𝑯𝑣,𝑝𝜀𝑏𝑙 𝟎3×13 𝑯𝑣,𝑝𝑘𝑣 𝑯𝑣,𝑝𝜀𝑙𝑣 𝑰3 𝟎3 {𝟎3×2}

𝟎4×3 𝟎4×3 𝑯𝑣,𝑞𝜀𝑏𝑙 𝟎4×13 𝟎4×1 𝑯𝑣,𝑞𝜀𝑙𝑣 𝟎4×3 𝑯𝑣,𝑞𝜀𝑐𝑏 {𝟎4×2}
] (4.36) 

where  

• 𝑯𝑣,𝑝𝑝 = 𝑘̂𝑣 𝑪̂𝑙2𝑣  

• 𝑯𝑣,𝑝𝜀𝑏𝑙 = 𝑘̂𝑣 𝑪̂𝑙2𝑣(𝑪̂𝑏2𝑙 Δ𝒑𝑐
𝑏) ×  
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• 𝑯𝑣,𝑝𝑘𝑣 =  𝑪̂𝑙2𝑣 (𝒑̂𝑏
𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝑐

𝑏)  

• 𝑯𝑣,𝑝𝜀𝑙𝑣 = 𝑘̂𝑣  (( 𝑪̂𝑙2𝑣𝑪̂𝑏2𝑙 Δ𝒑𝑐
𝑏) × +( 𝑪̂𝑙2𝑣𝒑̂𝑏

𝑙 ) ×)  

• 𝑯𝑣,𝑞𝜀𝑏𝑙 = −
1

2
𝓡(𝒒̂𝑣2𝑙)𝓛(𝒒̂𝑏2𝑐)𝚿(𝒒̂𝑙2𝑏)  

• 𝑯𝑣,𝑞𝜀𝑙𝑣 = −
1

2
𝓛(𝒒̂𝑏2𝑐)𝓛(𝒒̂𝑙2𝑏)𝚿(𝒒̂𝑣2𝑙)  

• 𝑯𝑣,𝑞𝜀𝑐𝑏 =
1

2
𝓡(𝒒̂𝑣2𝑙)𝓡(𝒒̂𝑙2𝑏)𝔼(𝒒̂𝑏2𝑐)  

The expressions of 𝓡, 𝓛 , 𝔼 and 𝚿 as well as the computation of the matrix 𝑯𝑣 are given in 

Appendix B and Appendix C respectively. 

 WSS and NHC observation model 

The WSS provides the forward vehicle velocity as and the NHC complete the three-dimensional 

velocity by assuming that a ground vehicle moves only in straightforward direction and its 

lateral and vertical velocities should be equal to zero if there is no slip or jump. Therefore, the 

combined WSS and NHC velocity model is given by: 

𝒗̃𝑤
𝑏 = [0 𝑣̃𝑤

𝑏𝑦
0]
𝑇
 (4.37) 

The expression of the WSS velocity expressed in (𝑏) as a function of the IMU velocity 𝒗𝑏
𝑙  

expressed in (𝑙) takes into account three parameters. First, the WSS scale factor 𝑘𝑤 should be 

considered. Then, the lever arm Δ𝒑𝑤
𝑏  between the point where the WSS velocity is calculated 

(vehicle rear or front wheel axle center) and the IMU should be taken into account. And finally, 

the rotation between frames (𝑏) and (𝑙) should be considered. Therefore, the WSS velocity is 

written as: 

𝒗̃𝑤
𝑏 = 𝑫(𝑪𝑙2𝑏𝒗𝑏

𝑙 + (𝝎𝑙𝑏
𝑏 ) × Δ𝒑𝑤

𝑏 ) + 𝜺𝑤 (4.38) 

where 

𝑫 = [
1 0 0
0 1 + 𝑘𝑤 0
0 0 1

] (4.39) 

 The measurement innovation is given by: 

𝛿𝒁𝑤𝑠𝑠 = 𝑫̂(𝑪̂𝑙2𝑏𝒗̂𝑏
𝑙 + (𝝎𝑙𝑏

𝑏 ) × Δ𝒑𝑤
𝑏 ) − 𝒗̃𝑤

𝑏  (4.40) 

The Jacobian matrix associated to equation (4.38) is given by: 

𝑯𝑤 = [𝟎3 𝑯𝑤,𝑣 𝑯𝑤,𝜀𝑏2𝑙 𝟎3 𝑯𝑤,𝑏𝜔 𝟎3 𝑯𝑤,𝑘𝜔 𝑯𝑤,𝑘𝑤 𝟎3×10 {𝟎3×2}] (4.41) 

where 

• 𝑯𝑤,𝑣 = 𝑫̂ 𝑪̂𝑙2𝑏  

• 𝑯𝑤,𝜀𝑏2𝑙 = −𝑫̂ 𝑪̂𝑙2𝑏(𝒗̂𝑏
𝑙 ) ×  

• 𝑯𝑤,𝑏𝜔 = −𝑫̂ (Δ𝒑𝑤
𝑏 ) × 
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• 𝑯𝑤,𝑘𝜔 = −𝑫̂ (Δ𝒑𝑤
𝑏 ) ×𝑾𝑏  

• 𝑯𝑤,𝑘𝑤 = [
0 0 0
0 1 0
0 0 0

] (𝑪̂𝑙2𝑏𝒗̂𝑏
𝑙 + (𝝎𝑙𝑏

𝑏 ) × Δ𝒑𝑤
𝑏 )  

The computation details of the matrix 𝑯𝑤 are given in Appendix C. 

 ZARU observation model 

ZARU consists in considering that the angular rate of the vehicle is equal to zero when a 

stationarity or a linear motion is detected. In this case, the measurement innovation is given by 

the IMU gyroscope measurements: 

𝛿𝒁𝑧𝑎𝑟𝑢 = 𝝎̃𝑖𝑏
𝑏  (4.42) 

Based on this equation, the Jacobin matrix 𝑯𝑧𝑎𝑟𝑢 matrix is easily derived: 

𝑯𝑧𝑎𝑟𝑢 = [𝟎3×12 𝑰3 𝟎3×17 {𝟎3×2}] (4.43) 

The noise covariance corresponding to ZARU represents the variance of the nominally-zero 

angular rate due to vibration and disturbances. Moreover, the heading axis is less affected by 

disturbances than the other two axes and this should be reflected in the assumed measurement 

noise (Groves, 2008).  

4.6 Observability analysis 

The use of many sensors in the proposed architecture introduces numerous additional states to 

be estimated by the Kalman filter. Therefore, a question raises in this case. Is it possible to 

achieve successful estimation of all the state vector components, given the available 

measurements? To answer this question, an observability analysis of the proposed filter states 

is conducted. 

Observability can be defined as the ability of recovering the state values from the available 

measurements, the known control inputs, and a finite number of their time derivatives (Conte, 

2006).  Observability is a necessary condition for any filtering algorithm to converge to an 

unbiased estimate of the true system state (Lee, 1982). For an unobservable system, we cannot 

achieve successful estimation, even though the measurements are accurate enough. 

For linear time-invariant systems, many observability studies are proposed in the literature. The 

most widely known studies are the linear observability rank test (Maybeck, 1979) or the 

eigenvector test (Verhaegen, 2007). However, the considered system in this thesis is time-

varying and time-invariant approaches are consequently not applicable. 

For linear time-varying systems, the observability analysis involves evaluating the observability 

Gramian matrix, which must usually be done numerically (Kelly, 2010). An alternative 

approach proposed in (Goshen-Meskin, 1992) approximates linear time-varying systems by a 

piecewise constant model and use the stripped observability matrix. Since the proposed system 

is not linear, this approach can be applied on the linearized system. However, the linearization 
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implies that the observability depends on the linearization point and not only on the system 

itself. In addition, linearization can introduce additional observable directions that are 

unobservable with the non-linear system. Therefore, analyzing the observability of the 

nonlinear system is the best approach to know whether the system, as it is defined above, is 

fully observable or not, regardless of the linearization point. 

Hence, the nonlinear system observability analysis we conduct is based on the method proposed 

by (Hermann, 1977) and detailed in (Kelly, 2010), based on the differential geometry and the 

Lie derivatives. To conduct this analysis, we consider the full state variables and not the error 

state since the definition of the error state is an approximation where second and higher order 

terms are discarded under the assumption of small error state (Weiss, 2012).  

The considered approach determines whether a nonlinear system is locally weakly observable, 

i.e., if for each point 𝒙0 ∈ 𝑀 ⊆ ℝ𝑚, there exists an open neighborhood 𝑈 ⊆ 𝑀 such that for 

every open neighborhood 𝑉  of 𝒙0 , 𝑉 ⊆ 𝑀 , there is no other state 𝒙1 ∈ 𝑉  that is 

indistinguishable from 𝒙0  (Hermann, 1977). Note that the local observability concept is 

stronger than the global concept because in global observability, it might be necessary to travel 

a considerable distance or for a long time to distinguish between the states and their neighbors, 

while local concept deals with the ability to distinguish states from their neighbors in a small-

time interval or instantaneously. 

 Observability analysis using Lie derivatives 

Let us consider the system: 

{
𝒙̇ = 𝑓0(𝒙) +∑ 𝑓𝑖(𝒙)𝑢𝑖

𝑝

𝑖=1

𝑧 = ℎ(𝒙)                                

 (4.44) 

The Lie derivative of ℎ with respect to a function 𝑓 at 𝒙 is given by: 

𝐿𝑓ℎ(𝒙) =
𝜕ℎ(𝒙)

𝜕𝒙
𝑓(𝒙) (4.45) 

The recursive definition of Lie derivative is given by: 

𝐿𝑔𝐿𝑓ℎ(𝒙) =
𝜕𝐿𝑓ℎ(𝒙)

𝜕𝒙
𝑔(𝒙) (4.46) 

Now, consider the system above, and let 𝓞 be its observability matrix, whose rows are formed 

by the gradients of the Lie derivatives of ℎ(𝒙): 
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𝓞 =

[
 
 
 
 
 
 
 
 
 
∇𝐿0𝒉1
∇𝐿0𝒉2
∇𝐿𝒇0

1 𝒉1

∇𝐿𝒇0
1 𝒉2

∇𝐿𝒇1
1 𝒉1
⋮

∇𝐿𝒇𝑖𝐿𝒇𝑗
1 𝒉𝑖

⋮ ]
 
 
 
 
 
 
 
 
 

 (4.47) 

𝓞 has an infinite number of rows and the same number of columns as the state vector component 

number. 

The system is said to be locally weakly observable at 𝒙0 if 𝓞 has full column rank at 𝒙0 (Kelly, 

2010), i.e. the rank of 𝓞 is equal to the state vector length. To prove the full column rank of 𝓞, 

it suffices to show that a submatrix of 𝓞 comprising a subset of its rows such as the submatrix 

is square and invertible. 

 Nonlinear system formulation 

Let us develop the nonlinear system derived from the INS mechanization in equation (2.28): 

[

𝒑̇𝑏
𝑙

𝒗̇𝑏
𝑙

𝒒̇𝑏2𝑙

] =

[
 
 
 
 

𝒗𝑏
𝑙

𝑪𝑏2𝑙𝒇𝑖𝑏
𝑏 − (2𝝎𝑖𝑒

𝑙 +𝝎𝑒𝑙
𝑙 ) × 𝒗𝑏

𝑙 + 𝒈𝑙

−
1

2
 𝒒𝑏2𝑙⊗𝝎𝑏𝑙

𝑏
]
 
 
 
 

 (4.48) 

Using a low-cost IMU, the earth rotation is buried in sensor errors, and cannot be detected by 

the sensor. Thus, the Coriolis term is not considered. Moreover, for short distance applications, 

the transport rate is negligible. These justified assumptions are considered for the observability 

analysis and do not have any effect on it. Thus, the nonlinear system becomes: 

[

𝒑̇𝑏
𝑙

𝒗̇𝑏
𝑙

𝒒̇𝑏2𝑙

] =

[
 
 
 

𝒗𝑏
𝑙

𝑪𝑏2𝑙𝒇𝑖𝑏
𝑏 + 𝒈𝑙

1

2
 𝒒𝑏2𝑙⊗𝝎𝑏𝑙

𝑏
]
 
 
 

 (4.49) 

The quaternion can also be written as: 

𝒒̇𝑏2𝑙 =
1

2
𝚿( 𝒒𝑏2𝑙)𝝎𝑖𝑏

𝑏  (4.50) 

where 𝚿 is given in Appendix B. 

Considering this system and the IMU measurement models given in equations (4.19) and 

equation (4.20), the nonlinear system propagation equation is given by: 
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𝑿̇𝐼𝑁𝑆 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝒑̇𝑏
𝑙

𝒗̇𝑏
𝑙

𝒒̇𝑏2𝑙

𝒃̇𝑓

𝒃̇𝜔

𝒌̇𝑓

𝒌̇𝜔

𝑘𝑤

𝑘𝑣

𝒒̇𝑙2𝑣

𝒑̇𝑙𝑣
𝑣

𝒒̇𝑐2𝑏

{𝑏̇𝐺
𝑐𝑙𝑘}

{𝑏̈𝐺
𝑐𝑙𝑘}]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝒗𝑏
𝑙

𝑪𝑏2𝑙𝛾(𝒌𝑓)𝒃𝑓

−1

2
𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)𝒃𝜔

𝜷𝑏𝑓  𝒃𝑓

𝜷𝑏𝜔  𝒃𝜔

𝜷𝑘𝑓  𝒌𝑓

𝜷𝑘𝜔  𝒌𝜔

0

0

𝟎4×1

𝟎3×1

𝟎4×1

𝑏̇𝐺
𝑐𝑙𝑘

0 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟              
𝑓0(𝑿)

+

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟎3

𝟎3

1

2
𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)

𝟎3

𝟎3

𝟎3

𝟎3

𝟎1×3

𝟎1×3

𝟎4×3

𝟎3

𝟎4×3

𝟎1×3

𝟎1×3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟            
𝑓1(𝑿)

𝜔̃𝑖𝑏
𝑏 +

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝟎3

𝑪𝑏2𝑙𝛾(𝒌𝑓)

𝟎4×3

𝟎3

𝟎3

𝟎3

𝟎3

𝟎1×3

𝟎1×3

𝟎4×3

𝟎3

𝟎4×3

𝟎1×3

𝟎1×3 ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⏟        
𝑓2(𝑿)

𝑓𝑖𝑏
𝑏  

(4.51) 

where 𝑪𝑏2𝑙 is a function of the components of the quaternion  𝒒𝑏2𝑙 as explained in Appendix 

B. 

 Measurement formulation 

For each aiding sensor, we can write the measurement functions as: 

GNSS position: 

𝒉1 = 𝒑𝑏
𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺

𝑏  (4.52) 

GNSS velocity: 

𝒉2 = 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙(𝝎𝑖𝑏

𝑏 ) × Δ𝒑𝐺
𝑏  

= 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙 (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝐺
𝑏  

(4.53) 

WSS and NHC velocity: 

𝒉3 = 𝑫(𝑪𝑙2𝑏𝒗𝑏
𝑙 + (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝑤
𝑏 ) (4.54) 

SLAM position:  
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𝒉4 = 𝑘𝑣 𝑪𝑙2𝑣 (𝒑𝑏
𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝑐

𝑏) + 𝒑𝑙𝑣
𝑣  (4.55) 

SLAM attitude:  

𝒉5 = (𝒒𝑏2𝑐⊗𝒒𝑙2𝑏⊗𝒒𝑣2𝑙) (4.56) 

Quaternion constraints:  

ℎ6 = 𝒒𝑏2𝑙
𝑇 . 𝒒𝑏2𝑙 = 1 (4.57) 

ℎ7 = 𝒒𝑙2𝑣
𝑇 . 𝒒𝑙2𝑣 = 1 (4.58) 

ℎ8 = 𝒒𝑐2𝑣
𝑇 . 𝒒𝑐2𝑣 = 1 (4.59) 

 The Lie derivatives of the measurement functions are computed as follows: 

𝐿0𝒉𝑖 = 𝒉𝑖 

𝐿𝒇𝑗
1 𝒉𝑖 = ∇𝐿

0𝒉𝑖 . 𝒇𝑗 

𝐿𝒇𝑗
𝑛 𝒉𝑖 = ∇𝐿𝒇𝑗

𝑛−1𝒉𝑖. 𝒇𝑗 

𝐿𝒇𝑗𝐿𝒇𝒌
𝑛 𝒉𝑖 = ∇𝐿𝒇𝑘

𝑛−1𝒉𝑖 . 𝒇𝑗 

(4.60) 

where  

• The operators ∇ and . express the Jacobian and the dot product respectively. 

• 𝐿𝒇𝑗
𝑛 𝒉𝑖 is the 𝑛𝑡ℎ Lie derivative of 𝒉𝑖 along the vector field 𝒇𝑗 (if 𝒉𝑖 is differentiable 𝑛 

times along 𝒇𝑗) 

 Observability analysis 

To simplify the observability analysis, the results of previous observability studies are used. 

Thus the observability analysis of the proposed hybridization architecture is divided into two 

parts: the observability analysis that has been already done in previous publications and the new 

contribution of this thesis in the observability analysis. 

The observability study of the INS/SLAM system using the Lie derivatives has been done by 

(Weiss, 2012) , (Kelly, 2010) and (Martinelli, 2011). These studies have shown that with the 

aid of an absolute system providing the 3D position, i.e. GNSS, all states associated to INS and 

SLAM are locally weakly observable. Nonetheless, these studies model the IMU measurements 

with only a bias and a white Gaussian Noise and do not take into account the IMU scale factors 

which have to be accounted for because of the measurement bad quality of a low-cost IMU. 

The following paragraph will consider the study of the observability of the nonlinear 

INS/GNSS/WSS/NHC system including the IMU and WSS measurement scale factors. To our 

knowledge, this study has not been addressed yet.  
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To show that all the system states are locally weakly observable, it suffices to show that all the 

states related to the INS, GNSS and WSS are locally weakly observable, since the NHC does 

not introduce unknown parameters to be estimated by the filter. All the INS associated state 

observability will be studied for this architecture, even though it has been done for INS/SLAM 

system is (Kelly, 2010). This choice is made because we need to be sure that this system is 

observable regardless of the SLAM, if we had to discard the SLAM information because of a 

potential failure (loss of features, bad visibility conditions, bad measurements, etc.) 

The observability matrix of the INS/GNSS/WSS/NHC system is the following: 

𝓞 =

[
 
 
 
 
 
 
 
 
 
∇𝐿0𝒉1
∇𝐿0𝒉2
∇𝐿0ℎ32
∇𝐿𝒇2

1 𝒉2

∇𝐿0ℎ6
∇𝐿𝒇0

1 𝒉2

∇𝐿𝒇0𝐿𝒇2
1 𝒉2

∇𝐿𝒇1𝐿𝒇2
1 𝒉2]

 
 
 
 
 
 
 
 
 

 (4.61) 

To better understand the expression of 𝓞, the expressions of the Lie derivative gradients as 

functions of the state vector components are written in the Table 4.2. The highlighted boxes (in 

green and pink) are the boxes that are used to prove that the 𝓞 matrix has full column rank, and 

the corresponding 𝒈𝑖  functions are computed. However, the white boxes are not used and 

therefore the corresponding 𝒈𝑖 are not expanded. 

 𝒑𝑏
𝑙  𝒗𝑏

𝑙  𝒒𝑏2𝑙 𝒃𝑓 𝒃𝜔 𝒌𝑓 𝒌𝜔 𝑘𝑤 

∇𝐿0𝒉1 𝑰3 𝟎3 𝒈1(𝑿) 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3×1 

∇𝐿0𝒉2 𝟎3 𝑰3 𝒈2(𝑿) 𝟎3 𝒈3(𝑿) 𝟎3 𝒈4(𝑿) 𝟎3×1 

∇𝐿0ℎ32 𝟎1×3 𝟎1×3 𝒈5(𝑿) 𝟎1×3 𝒈6(𝑿) 𝟎1×3 𝒈7(𝑿) 𝑔8(𝑿) 

∇𝐿𝒇2
1 𝒉2 𝟎9×3 𝟎9×3 𝒈9(𝑿) 𝟎9×3 𝟎9×3 𝒈10(𝑿) 𝟎9×3 𝟎9×1 

∇𝐿0ℎ6 𝟎1×3 𝟎1×3 2𝒒𝑏2𝑙
𝑇  𝟎1×3 𝟎1×3 𝟎1×3 𝟎1×3 0 

∇𝐿𝒇0
1 𝒉2 𝟎3 𝟎3 𝒈11(𝑿) 𝑪𝑏2𝑙𝛾(𝒌𝑓) 𝒈12(𝑿) 𝒈13(𝑿) 𝒈14(𝑿) 0 

∇𝐿𝒇0𝐿𝒇2
1 𝒉2 𝟎9×3 𝟎9×3 𝒈15(𝑿) 𝟎9×3 𝒈16(𝑿) 𝒈17(𝑿) 𝒈18(𝑿) 𝟎9×1 

∇𝐿𝒇1𝐿𝒇2
1 𝒉2 𝟎9×3 𝟎9×3 𝒈19(𝑿) 𝟎9×3 𝟎9×3 𝒈20(𝑿) 𝒈21(𝑿) 𝟎9×1 

Table 4.2 Expression of the 𝓞 matrix 

The matrix 𝓞 is a (38 × 23) matrix. To prove that the rank of 𝓞 is 23, we use the block 

Gaussian elimination method explained in (Kelly, 2010). We assume in this study that the roll 
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of the vehicle is equal to zero and that the alignment of the IMU and the vehicle is perfect so 

that the gravity does not have an acceleration component on the vehicle lateral axis.  

The detailed rank computation is divided in 5 steps and is detailed in Appendix D. In each step, 

the observability of a state using a sensor measurement is proven. 

• Step 1: Observability analysis of the WSS velocity scale factor 𝒌𝒘 using 𝒉𝟑𝟐 

The WSS measurement expression is given by: 

ℎ32 = (1 + 𝑘𝑤)(𝑪𝑙2𝑏(2, : )𝒗𝑏
𝑙 + 𝑙𝑣𝑦) (4.62) 

Where 𝑙𝑣𝑦 is the y-component of  𝒍𝑣 = (𝝎𝑖𝑏
𝑏 )

𝑡𝑟𝑢𝑒
× Δ𝒑𝑤

𝑏  representing the lever arm between 

the WSS velocity computation point and the IMU. 

Therefore; 

∇𝐿0ℎ32 = [𝟎1×3 𝟎1×3 𝒈5(𝑿) 𝟎1×3 𝒈6(𝑿) 𝟎1×3 𝒈7(𝑿) 𝒈8(𝑿)] (4.63) 

where 

𝒈8(𝑿) = 𝑪𝑙2𝑏(2, : )𝒗𝑏
𝑙 + 𝒍𝑣𝑦 (4.64) 

We prove in Appendix D that the scalar 𝑔8(𝑿) has full column rank (equal to 1) if the vehicle 

moves, i.e. if the vehicle velocity is not null. This corresponds to intuition since the scale factor 

of the WSS appears only when the real vehicle velocity is not equal to zero. 

• Step 2: Observability analysis of the vehicle attitude 𝒒𝒍𝟐𝒃 and the accelerometers 

scale factors 𝒌𝒇 using 𝒉𝟐 and 𝒉𝟔 

The GNSS velocity measurement expression is given by: 

𝒉2 = 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙 (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝐺
𝑏  (4.65) 

Therefore; 

∇𝐿𝒇2
1 𝒉2 = [𝟎9×3 𝟎9×3 𝒈9(𝑿) 𝟎9×3 𝟎9×3 𝒈10(𝑿) 𝟎9×3 𝟎9×1] 

 

(4.66) 

where 

𝒈9(𝑿) =
𝜕

𝜕𝒒𝑏2𝑙
(𝑪𝑏2𝑙𝜸(𝒌𝑓)) (4.67) 

𝒈10(𝑿) =
𝜕

𝜕𝒌𝑓
(𝑪𝑏2𝑙𝜸(𝒌𝑓)) (4.68) 
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We study the observability of the attitude and the accelerometers scale factors jointly using the 

matrix 𝑨 = [
𝒈9(𝑿) 𝒈10(𝑿)

2𝒒𝑏2𝑙
𝑇 𝟎1×3

].  

We prove in Appendix D that the attitude and the accelerometers scale factors are locally 

weakly observable if the three acceleration axes are excited. In our case of vehicular application, 

the vehicle lateral axis is only excited during turns, while the forward and downward axes 

undergo a nonzero acceleration because of the vehicle motion and the gravity effect, 

respectively. This implies that the acceleration scale factor of the lateral accelerometer axis is 

only locally weakly observable in turns, while the other axes accelerometer scale factors are 

locally weakly observable. We prove also that the attitude error is fully observable if at least 

two IMU axes (the forward and the vertical axes) undergo a nonzero acceleration. When the 

vehicle is stationary or moves at a constant speed, i.e. the forward acceleration is zero, the only 

existing acceleration is due to the gravity effect. If the vehicle pitch is nonzero, then the scale 

factors of the forward and vertical accelerometer axes are observable. This implies also that the 

attitude is fully observable. However, if the pitch is equal to zero, then only the vertical 

accelerometer scale factor axis is observable. This implies that there exists an attitude 

unobservable state because the rank of 𝑨 is 1 column deficient. 

• Step 3: Observability analysis of the accelerometers biases 𝒃𝒇 using 𝒉𝟐  

Using again equation (4.65), the expression of ∇𝐿𝒇0
1 𝒉2 is given by: 

∇𝐿𝒇0
1 𝒉2 = [𝟎3 𝟎3 𝒈11(𝑿) 𝑪𝑏2𝑙𝛾(𝒌𝑓) 𝒈12(𝑿) 𝒈13(𝑿) 𝒈14(𝑿) 0] (4.69) 

We prove in Appendix D that the matrix 𝑪𝑏2𝑙𝛾(𝒌𝑓) has always full column rank (equal to 3). 

We conclude that the three accelerometer biases are locally weakly observable if the GNSS 

provides a velocity information 

• Step 4: Observability analysis of the gyroscopes biases 𝒃𝝎 using 𝒉𝟐 

Using again equation (4.65), the expression of ∇𝐿𝒇0𝐿𝒇2
1 𝒉2 is given by: 

∇𝐿𝒇0𝐿𝒇2
1 𝒉2 = [𝟎9×3 𝟎9×3 𝒈15(𝑿) 𝟎9×3 𝒈16(𝑿) 𝒈17(𝑿) 𝒈18(𝑿) 𝟎9×1] (4.70) 

where 

𝒈16(𝑿) = −
1

2

𝜕

𝜕𝒃𝜔
(𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)𝒃𝜔) (4.71) 

We prove in Appendix D that the matrix 𝒈16(𝑿) has full column rank (equal to 3) if at least 

two accelerometer axes are excited. Therefore, the local weak observability of the three 

gyroscopes biases is achieved if at least two accelerometer axes are excited. The discussion in 

step 2 applies also for this step. 
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• Step 5: Observability analysis of the gyroscopes scale factors 𝒌𝝎 using 𝒉𝟐 

Using again equation (4.65), the expression of ∇𝐿𝒇1𝐿𝒇2
1 𝒉2 is given by: 

∇𝐿𝒇1𝐿𝒇2
1 𝒉2 = [𝟎9×3 𝟎9×3 𝒈19(𝑿) 𝟎9×3 𝟎9×3 𝒈20(𝑿) 𝒈21(𝑿) 𝟎9×1] (4.72) 

where 

𝒈21(𝑿) =
1

2

𝜕

𝜕𝒌𝜔
(𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)) (4.73) 

We prove in Appendix D, with the analysis of matrix 𝒈21(𝑿), that if the rotation about the 

forward axis is neglected (which is the case of a land vehicle), then the scale factor of the 

gyroscope measurement about this axis is not locally weakly observable. However, the other 

gyroscope scale factors are locally weakly observable if at least two accelerometer axes and the 

corresponding gyroscope axis are excited. 

• Note on the observability using only position information 

The observability of all the states has used the velocity information provided by GNSS.  We 

have proven in Appendix D that the 3D GNSS position information is sufficient to observe all 

the states of the INS/GNSS/WSS/NHC system. The velocity information improves the 

observability of the system without adding new observables, thus making the filter convergence 

faster. This can be seen with the Lie derivative gradient order of the observability matrix. In 

fact, considering that the observability matrix rows are ordered such that the derivation order is 

increasing, then the sooner we proof that the parameter is observable, the higher is its 

observability degree.  The comparison between the Lie derivative gradients associated to 

position and velocity measurement, whose expressions are given in Appendix , shows that we 

have lower derivative orders with the position and velocity information than with the position 

only. 

• Summary of the state observability 

Table 4.3 summarizes the different state observability as a function the sensor measurements 

and the vehicle motion. The (✓) is used for states that are observable using the measurement 

and the (X) is used in case the measurement is not useful to make the state observable. 
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Global 

position 

(GNSS) 

Velocity 

(GNSS/WSS) 

Local 

position 

(VSLAM) 

Local 

attitude 

(VSLAM) 

Required motion 

𝒑𝑏
𝑙  ✓ X ✓ X None 

𝒗𝑏
𝑙  ✓ ✓ ✓ X None 

𝒒𝑙2𝑏 ✓ ✓ ✓ X > 2 excited acceleros 

𝒃𝑓 ✓ ✓ ✓ X None 

𝒃𝜔 ✓ ✓ ✓ ✓ > 2 excited acceleros 

𝒌𝑓 ✓ ✓ ✓ X 
Corresponding accelero 

axis excited 

𝒌𝜔 ✓ ✓ ✓ X 

> 2 excited acceleros + 

Corresponding gyro axis 

excited 

𝑘𝑤 X ✓ X X Excited WSS 

𝑘𝑣 X X ✓ X None 

𝜺𝑙2𝑣 ✓ X X X None 

𝛿𝒑𝑙𝑣
𝑣  ✓ X X X None 

𝜺𝑐2𝑏 X X X ✓ None 

Table 4.3 Summary of state observability of the defined architecture 

The validation of these results will be done in Chapter 6. 

4.7 Conclusion 

In this chapter, the architecture of the multi-sensor fusion system, based on an error-state EKF, 

has been proposed. The IMU is selected as the reference sensor since it is the only sensor 

providing continuously a complete navigation solution at the highest rate, independently of the 

surrounding environment. The other sensors, as well as motion constraints of a ground vehicle, 

are used to correct the INS solution. This closed loop solution is necessary to calibrate the bad 

quality IMU. 

Based on this architecture, the states to be estimated by the filter have been identified for each 

sensor and gathered in the state vector. The mathematical models defining the Kalman 

propagation process and measurement update are detailed for all the sensors. An observability 

study has been carried out given the high number of states to be estimated by the filter. This 

study has confirmed the observability of all the states using the proposed architecture if some 

motion conditions are respected. 

 

 



 

Chapter 5 

5 Integrity Monitoring Challenges  

The fusion of multiple sensors is an efficient way to improve the accuracy and the continuity 

of the navigation solution. However, qualifying the performance of a navigation system using 

only these two performance parameters is not sufficient for the positioning task, especially with 

the current development of automated and autonomous vehicles, demanding a minimum quality 

of sensor information to perform reliable positioning. 

The reliability performance is addressed through integrity monitoring: it is a primary 

requirement of the positioning function to guarantee the safety of the users. This task consists 

primarily of providing a measure of trust of the estimated position, and if necessary of detecting 

“faulty” measurements to raise an alarm when the estimated navigation solution is claimed to 

be unreliable. Upon detection, an internal task of exclusion can be tentatively performed to 

exclude the fault source, thereby allowing good chances for navigation to return to safer 

performance without an interruption of service and enhancing the continuity.  

The concept of positioning integrity is particularly mature in civil aviation community, where, 

for instance, the GNSS integrity requirements are well addressed and defined. For land vehicles 

applications, this problem is still not well addressed. Indeed, unlike some civil aviation 

operations (ICAO, 2006) and recently train control (Filip, 2006) and maritime navigation, no 

integrity requirements concerning the navigation information are publicly standardized for road 

vehicle navigation. Additionally, in our case, the proposed architecture in Chapter 4 includes 

SLAM outputs which rely on the integrity of the visual information. The application of the 

integrity concept to this type of environment-dependent information is a huge challenge that 

has not been explored yet. 

This chapter consists of a first analysis on integrity monitoring challenges for airport surface 

and road applications using a multi-sensor navigation solution. Firstly, we recall the integrity 

requirement definitions as they are defined by the civil aviation community. Secondly, the 

sensor fault-free and failure modes are identified and an integrity risk tree is defined to identify 

the sensor failure modes. In particular, the challenges of defining an integrity system using 

visual information are addressed. Then, the integrity monitoring solutions that would be adapted 

to our proposed multi-sensor architecture are presented. These solutions take into account the 

fact that a Kalman filter is used in the proposed architecture. Finally, the integrity requirements 

for airport surface movement and road vehicles are given since these are the two cases of study 

targeted by the thesis project. The airport requirements are derived from the A-SMGCS manual 

(ICAO, 2004) and other research papers addressing this topic (Guilloton, 2011) (Schuster, 

2011). The road requirements are a proposal that is based on a study of road vehicle traffic and 

the criticality of the road application. We emphasize that this chapter consists only of a 

discussion on integrity monitoring challenges and not a complete performance assessment of 
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an integrity solution for land vehicle application. The difficulties of performing this complete 

integrity study are highlighted. 
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5.1 Integrity concept 

 Integrity definition and requirements 

As defined by civil aviation and also the DoD for GPS, integrity is the measure of trust that can 

be placed in the correctness of the information supplied to the total system. Integrity includes 

the ability of a system to provide timely valid warnings to the user (alerts) when the system 

must not be used (Martineau, 2008). 

In civil aviation applications and for GNSS Signal in Space, defined as the aggregate of GNSS 

signals expressing the required navigation performance of the aircraft for each phase of flight 

in terms of accuracy, integrity, availability and continuity of service, three parameters quantify 

the GNSS signal integrity requirements for a specific operation (e.g. en-route operation in civil 

aviation), assuming a fault-free GNSS receiver (ICAO, 2006): 

- the Integrity Risk (P𝐼𝑅): it is the probability of using a Hazardous Misleading Information 

(HMI) without detection within the time to alert. A HMI is defined when a positioning failure 

occurs while the system is declared available. Further details about the positioning failure and 

the system availability are given later in this chapter 
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- the Alert Limit (AL): it represents the largest position error (PE) allowable for a safe operation. 

In civil aviation, depending on the operation, two alert limits are defined: the Horizontal Alert 

Limit (HAL) and the Vertical Alert Limit (VAL). In the case of terrestrial navigation, we can 

usually avoid considering requirements on the quality of vertical position information. 

Therefore, typically only the HAL must be considered, although other types of error bounds 

could be considered such as the lateral AL or the longitudinal AL. The HAL is defined as the 

radius of a circle in the horizontal plane (East-North plane of the local frame (𝑙)), with its center 

being at the true position, that describes the region that is required to contain the indicated 

horizontal position with the required probability for a particular navigation mode 

- the time to alert (TTA): it is the maximum allowable elapsed time from the onset of a 

positioning failure until the equipment annunciates the alert. 

A positioning failure occurs whenever the positioning error exceeds the AL (ICAO, 2006). 

Figure 5-1 illustrates a horizontal positioning failure: the estimated horizontal position is 

outside the HAL circle. If the positioning failure is not annunciated within the TTA, then a loss 

of integrity event occurs.  

For the remaining of this chapter, because of the considered applications, we only focus on 

integrity monitoring in the horizontal plane. 

 

Figure 5-1 Loss of integrity 

The probability of a loss of integrity at time 𝑘 of an operation is therefore given by: 

P𝐼𝑅(𝑘) = P((HPE(𝑘) > HAL) &(no detection within TTA)) (5.1) 

where HPE represents the Horizontal Position Error. 

The TTA is the delay allowed for detecting the anomaly after the onset of a positioning failure 

and warning the user. This last delay of warning transmission in the system is not necessarily 

well known or easily quantified. Thus, we are going to assume that a loss of integrity happens 

as soon as a positioning failure occurs. This means 
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P𝐼𝑅(𝑘) = P(HPE(𝑘) > HAL) = P(𝐻𝑀𝐼(𝑘)) (5.2) 

In order to determine P(𝐻𝑀𝐼(𝑘)), an analysis of the causes of HMI is necessary. This will be 

done in the next section. 

 Fault-free mode and failure modes 

An HMI at time epoch 𝑘 may result from sensor fault-free mode or a failure mode.  

The fault-free mode covers nominal errors as well as the causes of HMI that are due to rare 

normal errors (RTCA, 2009). In general, nominal measurement errors are reliably modeled 

using large amounts of experimental data. In reality, this is not always true because, in some 

situations, errors such as GNSS multipath are too complex to be described or modelled. One 

technique which is used in the civil aviation community, to simplify the model of the nominal 

distribution, is the Gaussian overbounding technique. This technique refers to the process of 

replacing the actual error distribution by a simplified conservative model, with the objective of 

having enough margins to take into account the risk of non-modelled errors (Rife, 2009). There 

is no requirement that the errors included in the fault-free mode should be detected. They are 

only taken into account in the calculation of an upper statistical bound of the horizontal position 

estimation error under the fault-free assumption. This upper bound is called Horizontal 

Protection Level (HPL) and is addressed in Section 5.2.1. 

A failure mode occurs when one (or multiple) sensor measurement(s) is (are) affected by a 

sufficiently large error that may potentially lead to an HMI. Contrary to nominal errors that 

correspond to the usual errors, failure modes describe events that are difficult to observe 

because of their low probability of occurrence and that represent threats to the navigation 

solution. These events are called “sensor threats” or “sensor failure modes”. 

In Section 5.1.3, we will try to list the fault-free and failure mode error sources for the GNSS, 

the VSLAM and the INS. As for the wheel odometry velocity, this measurement is the linear 

velocity measurement, computed using the different wheel velocities and eventually the 

steering wheel angle information as explained in Section 2.3. We will assume that this 

information, as such, is reliable, and the integrity of its measurements will not be investigated. 

This assumption is justified by the information redundancy provided by each WSS on each 

wheel that allows to check the consistency of each WSS velocity measurement with the three 

other velocity measurements and, probably exclude the inconsistent measurement. 

 Sensor fault-free and failure mode identification 

Sensor fault-free mode describes the nominal sensor measurement errors as well as the rare 

normal errors. The nominal measurement errors are described in Chapter 2 for GNSS and INS. 

The failure modes of these two sensors will be detailed thereafter. As for SLAM, we will list 

the most important errors impacting the navigation solution and try to classify them into fault-

free mode errors and failure mode errors. Note that this list may not be exhaustive as it is mostly 

based on our experience with the SLAM. 
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5.1.3.1 GNSS failure sources 

The GNSS system used in the proposed hybridization solution is a GPS L1 C/A receiver without 

any augmentation. Thus, the failure modes detailed in this section only refer to GPS 

constellation signals. 

GPS failure modes originate from several sources that are well established in the literature 

(Martineau, 2008). These sources consist of satellite failure, constellation failure, atmospheric 

propagation anomalies, local effects such as interference multipath and NLOS 8 , etc. An 

exhaustive list is given in (Bhatti, 2007) and (Montloin, 2014). 

5.1.3.1.1 The satellite failure  

It is called “Major Service Failure” (MSF) and occurs when a healthy GPS satellite ranging 

signal error (excluding atmospheric and receiver error) exceeds the range error limit (GPS-SPS, 

2001). The range error limit is 4.42 times the URA value9. The probability of occurrence of a 

MSF is given by (GPS-SPS, 2008): 𝑃𝑀𝑆𝐹 = 10
−5/sat/h 

After the occurrence of such an event, the GNSS shall detect and alert the user within 6 hours. 

Realistic Maximum observed alert delays are around 1 hour. Thus the probability that a satellite 

is faulty at a given instant is equal to the probability that the failure occurs during the previous 

hour (Brocard, 2016): 𝑃𝑀𝑆𝐹(1ℎ𝑜𝑢𝑟) = 10
−5/sat 

The probability that a position is calculated with 𝑁𝑠𝑎𝑡 containing 𝑛 MSF is given by: 

𝑃𝑜𝑐𝑐 𝑜𝑓 𝑛 𝑀𝑆𝐹 = (
𝑁𝑠𝑎𝑡
𝑛
) (𝑃𝑀𝑆𝐹(1ℎ𝑜𝑢𝑟))

𝑛
(1 − 𝑃𝑀𝑆𝐹(1ℎ𝑜𝑢𝑟))

𝑁𝑠𝑎𝑡−𝑛
 (5.3) 

5.1.3.1.2 Constellation failure 

This is the failure that may affect more than one satellite within the same constellation at a 

given time and for the same reason. For GPS, the probability of occurrence of this failure is 

currently assumed to be zero (there is no evidence of such event in the past) (Brocard, 2016). 

5.1.3.1.3 Atmospheric propagation anomalies 

During its propagation, the GNSS signal may encounter large ionospheric or tropospheric 

delays, or ionospheric scintillation due to solar and meteorological storms. This can result in 

larger than usual errors in GNSS and manifest as a channel failure. 

5.1.3.1.4 Local effects 

Local effects include the signal degradation resulting from the environment surrounding the 

GNSS antenna. These local effects are divided in two categories: interference and NLOS. 

• Interference 

Interference is defined as any undesired signal that interferes with the reception of GNSS 

signals, and results in degrading the GNSS signals or even completely loosing the track of this 

signals. It may be intentional or unintentional. Intentional interference includes mainly 

                                                 
8 We remind that the NLOS is a reflected GNSS signal received without receiving the direct signal 
9 We remind that the URA is the standard deviation value of the satellite clock and ephemeris errors 
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jamming10 and spoofing11.  Unintentional interference is mainly due to equipment that emits 

Radio Frequency (RF) signals in the GNSS frequency bands such as Distance Measurement 

Equipment (DME) in the airports that may interfere with GNSS L5 signals and any other 

equipment emitting RF signals and generating harmonics in the GNSS frequency bands. Further 

details about interference are given in (Montloin, 2014). 

• NLOS (Non-Line of Sight signals) 

If the satellite is masked, the receiver may track a NLOS, sometimes resulting in a significant 

bias in the GNSS processed position domain. As explained in (Brocard, 2016), it is not 

sufficient to apply a 𝐶/𝑁0 mask to exclude all the possible NLOSs. Some NLOSs have a 𝐶/𝑁0 

relatively high and may degrade the GNSS accuracy. The remaining NLOS error is not modeled 

by the nominal GNSS error presented in 2.1.2 and should be taken into account in GNSS signal 

integrity monitoring, especially in urban environments. Two ways are proposed in (Brocard, 

2016) to consider NLOS. One consists of including the NLOS in the nominal error model by 

inflating it sufficiently; the second considers the NLOS as a failure mode and relies on 

additional algorithms to protect the system against it. 

5.1.3.1.5 User equipment hardware failure 

The user equipment hardware failure consists of failures that may occur in the antenna, receiver, 

or reference oscillator, etc., or software failures. These errors can sometimes produce erroneous 

outputs on all channels, so they require detection. 

5.1.3.2 VSLAM errors 

This section lists the VSLAM errors that are likely to degrade the its performance. There errors 

can be classified into two categories: feature extraction errors and feature matching errors. 

5.1.3.2.1 Feature extraction errors 

Feature extraction refers to the process of detecting a feature in the image plane and estimating 

its pixel coordinates. Feature extraction errors may be due to hardware, software or 

environmental-dependent errors. Hardware errors occur because of the sensor degradation or 

malfunctioning (camera noise, sampling, quantization, etc.). Software errors can be due to the 

sensor modeling including the applicability of the projection model, the intrinsic parameter 

estimation and the distortion corrections (calibration parameters). Other errors on feature 

extraction can occur because of the environment surrounding the camera. These errors are 

mainly due to bad visibility conditions (rain, fog, insufficient light, etc.) 

5.1.3.2.2 Feature matching errors 

Feature matching errors are one of the most serious SLAM problems. We remind that feature 

matching consists of associating extracted features with corresponding previously existing 

ones. This process is sensitive to several issues such as the lack of feature repeatability, the 

lightening abrupt change, the feature scale change, the point of view change, blurring, 

                                                 
10  Jamming is an intentional attack consisting of broadcasting radio-frequency power that interferes with a 

receiver's ability to track the GNSS genuine signals, resulting in denial of service  
11 Spoofing is an intentional attack consisting of broadcasting competing signals that make the position estimated 

by the user receiver incorrect. 
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occlusion, etc. This leads to establishing erroneous feature matches (outliers), resulting if not 

excluded in errors degrading the SLAM accuracy estimation. On the other hand, when the 

outlier rejection process (RANSAC) decides to incorrectly reject a match, fewer measurements 

are used for estimation, at the expense of estimation accuracy. These issues are especially due 

to the navigation visual environment and conditions. Indeed, if the visual environment is highly 

dynamic with a lot of moving objects and people, then the performance of this process is more 

likely to be degraded due to the lack of good matches (inliers) between static objects with 

respect to the matches between dynamic features (outliers). In addition, the dynamics of the 

vehicle, the frame rate and the power of the computer used for feature matching are determining 

factors of the robustness of this process. If the vehicle has high dynamics and the frame rate is 

not sufficiently high to handle the fast change of light, scale, point of view, etc., then the 

matching process is likely to be degraded. However the frame rate cannot be increased without 

taking into account the computer processor power. Therefore, feature matching robustness (and 

consequently the probability of failure occurrence) depends thoroughly on the power of the 

computer used to perform this process. 

As discussed in (Cadena, 2016), feature matching is even more challenging when loop closure 

process is performed because of light, scale and point of view significant changes. This problem 

is partially solved with the use of bag of words models explained in Section 3.2.2, but this 

approach is not capable of handling severe illumination variations. This issue can result in 

establishing wrong loop closures and consequently degrade severely the SLAM estimation 

process. In addition, in poorly textured environments (runways and taxiways in airports, 

highways, etc.), the environment tends to be repeated, making consequently the SLAM 

algorithm establish wrong matches with features seen a time ago and decide a loop closure 

while this is not the case. This problem has been noticed on a data collection performed in 

airport environments near the runway. 

5.1.3.2.3 Classification of SLAM faults 

To be able to address SLAM issues from an integrity monitoring point of view, it is essential 

to classify the previously mentioned error sources into fault-free mode and failure mode. We 

remind that that the fault-free mode includes the large nominal errors and the rare normal events 

while the failure mode includes the errors that cannot be considered nominal. A classification 

of these errors is proposed in Table 5.1, assuming that the computer processing power and the 

frame rate are sufficiently high to consider that they are not a source of SLAM error. 
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SLAM errors Error sources 

Fault-free 

mode  

Feature extraction error - Camera noise 

- Quantization errors 

- Sampling error 

- Calibration errors 

Possible existence of outliers in 

feature matching but with an 

acceptable inlier-outlier ratio) 

- Existence of some dynamic objects in the 

environment  

- Light, feature scale, feature point of view 

changes 

Failure 

modes 

Feature extraction error Bad visibility conditions 

Existence of outliers in feature 

matching with an unacceptable 

inlier-outlier ratio) 

- Very dynamic environment  

   (High number of dynamic features) 

- Badly textured environment  

   (Small number of features) 

- Camera occlusion and blurring 

- Illumination variation 

- Bad initialization 

- Bad motion model (e.g. if the constant 

velocity model does not describe the actual 

vehicle motion) 

Table 5.1 Classification of VSLAM errors into fault-free mode and failure modes 

Note that the environmental conditions mentioned in Table 5.1 as failure modes (very dynamic 

environment, badly textured environment, camera occlusion and blurring, illumination 

variation) can result not only in integrity issues but also in continuity issues consisting of the 

loss of map tracking and consequently the interruption of the navigation output supply by 

VSLAM. 

5.1.3.3 Inertial sensor errors  

Inertial sensor errors are mainly due to hardware and/or mechanical/electrical errors and can 

manifest as no outputs at all, null readings, repeated readings, or simply much larger errors than 

specified (Groves, 2008). The IMU errors may also be due to the misalignments either between 

the gyroscopes and the corresponding accelerometers axis or between the body and the IMU 

platform frames in the case of strapdown mechanization. In addition, if the IMU axes are not 

perfectly orthogonal, then the IMU measurements will be affected by errors whose severity 

depends on non-orthogonality coefficients of the IMU axes. Schuler oscillation is also a 

possible source of inertial error. It is the resulting error of combining initialization errors with 

the navigation mechanization equations. For example, when an error is introduced in the 

navigation equations due to an error in initial conditions or non-perfect measurements, this error 

can be amplified because of the closed loop of the inertial mechanization (the previous 
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navigation solution is used to compute the current navigation solution). The IMU fault-free 

mode includes the errors that are intrinsic to the IMU which are described by the measurement 

model in equations (2.27). The failure mode corresponds to less common errors such as the 

misalignment between the body frame and the IMU frame, errors related to the gravity model 

or to the Schuler oscillation. 

As highlighted in (RTCA, 2009), the IMU failures are traditionally detected and sometimes 

even excluded using sensor redundancy which means using several IMU platforms with the 

same characteristics and running in parallel. Fortunately, the development of the MEMS inertial 

sensors in the last decade makes this solution possible without exorbitant cost increase. Based 

on this argument, we are going to assume that there is no integrity risk coming from the IMU 

and that the only integrity risks come either from GPS or SLAM. 

 Integrity risk allocation 

The integrity risk allocation consists of distributing the integrity risk among all the possible 

causes of an HMI for all the considered sensors. Therefore, the integrity risk can be expressed 

as follows (the time epoch 𝑘 has been removed to simplify the notations): 

P𝐼𝑅 = P𝐼𝑅
𝐺𝑃𝑆 + P𝐼𝑅

𝑆𝐿𝐴𝑀 + P𝐼𝑅
𝐼𝑀𝑈 + P𝐼𝑅

𝑊𝑆𝑆 (5.4) 

where P𝐼𝑅
𝑠𝑒𝑛𝑠𝑜𝑟 consists of the integrity risk induced by the failure of each sensor (or the failure 

of the navigation module of each sensor including the hardware and software risks). 

for each sensor, both fault-free mode and failure modes may lead to an HMI. Consequently, the 

allowed integrity risk for each sensor can be sub-allocated among the fault-free mode and the 

different failure modes using (Montloin, 2014): 

P𝐼𝑅
𝑠𝑒𝑛𝑠𝑜𝑟 = P𝐼𝑅,𝑓𝑓

𝑠𝑒𝑛𝑠𝑜𝑟 +∑P𝐼𝑅,𝑓𝑚𝑖
𝑠𝑒𝑛𝑠𝑜𝑟  

𝑖

 (5.5) 

where 

• P𝐼𝑅,𝑓𝑓
𝑠𝑒𝑛𝑠𝑜𝑟 is the integrity risk allocated to the sensor fault-free mode 

• P𝐼𝑅,𝑓𝑚𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 is the integrity risk allocated to the sensor failure mode 𝑓𝑚𝑖 

P𝐼𝑅
𝑠𝑒𝑛𝑠𝑜𝑟 = P𝐻𝑀𝐼|𝑓𝑚𝑖

𝑠𝑒𝑛𝑠𝑜𝑟   P𝑓𝑚𝑖
𝑠𝑒𝑛𝑠𝑜𝑟 (5.6) 

• P𝐻𝑀𝐼|𝑓𝑚𝑖
𝑠𝑒𝑛𝑠𝑜𝑟  is the HMI probability given that the sensor failure mode 𝑓𝑚𝑖 is present and 

not detected (this probability is equivalent to the probability of missed detection (P𝑀𝐷) 

of a positioning failure) 

• P𝑓𝑚𝑖 is the probability of occurrence of the sensor failure mode 𝑓𝑚𝑖 

As highlighted previously, it is assumed that there is no integrity risk coming from the WSS 

and the IMU thanks to the use of redundancy. Therefore, we can write: 

P𝐼𝑅 = P𝐼𝑅
𝐺𝑃𝑆 + P𝐼𝑅

𝑆𝐿𝐴𝑀 (5.7) 
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In addition,  

Therefore we can write from equation (5.5) and equation (5.7): 

P𝐼𝑅 = P𝐼𝑅,𝑓𝑓
𝐺𝑃𝑆 + P𝐼𝑅,𝑓𝑓

𝑆𝐿𝐴𝑀 +∑P𝐼𝑅,𝑓𝑚𝑖

𝐺𝑃𝑆  

𝑖

+∑P𝐼𝑅,𝑓𝑚𝑖
𝑆𝐿𝐴𝑀  

𝑖

 (5.8) 

This equation leads to the definition of the following integrity risk tree: 

 

Figure 5-2 Integrity risk tree 

Where the GPS and the SLAM fault trees are the following: 

 

Figure 5-3 GPS fault tree 
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Figure 5-4 VSLAM fault tree 

Note that in the scope of this thesis, we do not give numerical allocations to the integrity risks 

associated to the fault-free and the failure modes. This is mainly because the characterization 

of the SLAM errors is a challenging task that should be done in future works because it needs 

a sufficient experience on the SLAM failure mode characterization, which is not the case at 

present. 

 Failure mode characterization 

Sensor failure modes are generally characterized by their probability of occurrence P𝑓𝑚𝑖
𝑠𝑒𝑛𝑠𝑜𝑟, the 

correlation between multiple failures (simple failure, multiple failures) and their signatures 

(amplitude, time duration, shape). Their characterization is an important step that must be done 

prior to the definition of any integrity monitoring algorithm. However, for environment-

dependent errors such as GNSS local effects and SLAM data association in harsh environments, 

the characterization of such errors is a major issue in addressing the integrity problem. For 

GNSS, some researches have addressed failure characterization issues in urban environment 

such as multipath and NLOS characterization using environment modeling (BinAhmad, 2015). 

However, to our knowledge, there is still no work on the characterization of the SLAM error 

depending on the environment in which the camera moves. In this case, the SLAM failure 

characterization is a challenging task that should be investigated. A possible way to handle this 

task is to consider the worst case, consisting of assuming a probability of occurrence of such 

events equal to one. This assumption can be an appropriate way to handle this issue. However, 

this is a very conservative assumption.  

In fact, as explained in (Montloin, 2014), the probability of occurrence P𝑓𝑚𝑖

𝑠𝑒𝑛𝑠𝑜𝑟  of a failure 

mode 𝑓𝑚𝑖 drives the requirements on the integrity monitoring system. Indeed, we can see from 
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equation (5.6) that the lower the probability of occurrence is, the less demanding the 

requirement is on the probability of missed detection P𝑀𝐷 related to the failure mode. In the 

worst case where the probability of occurrence of a failure mode is maximum (equals 1), the 

probability of missed detection should be very low to satisfy the integrity risk. Therefore, 

considering that a SLAM failure mode has a probability of occurrence of 1 leads to a very low 

probability of required positioning failure missed detection. The drawback of having a low P𝑀𝐷 

is explained in Section 5.2.1, after presenting the integrity monitoring function. 

5.2 Integrity monitoring function 

Integrity monitoring must be able to detect a failure, potentially exclude or mitigate the impact 

of the erroneous measurement from the navigation solution and provide a measure of the 

integrity provided in the form of a protection level. In civil aviation navigation using GNSS 

signals, integrity monitoring may be carried out at the system level (external) using external 

integrity system such as Ground Based Augmentation Systems (GBAS) or Satellite Based 

Augmentation System (SBAS) or at the sensor level (internal) using Aircraft Based 

Augmentation System (ABAS). More details about these augmentation systems can be found 

in (Milner, 2009). In our case of study, only the sensor level integrity monitoring ABAS is 

considered since the navigation architecture proposed in Chapter 4 does not involve any 

external aiding to the used sensors. This integrity system autonomously performs fault detection 

and potentially exclusion without the need of any external augmentation. 

 Fault detection and exclusion 

Fault Detection and Exclusion (FDE) is a processing scheme that autonomously provides 

integrity monitoring for the position solution, using redundant measurements. The FDE consists 

of two distinct parts (Martineau, 2008): 

• The fault detection part detects the presence of an unacceptably large position error. If a 

positioning failure occurs and is not detected, then this event is called missed detection. 

If an alarm is raised without a positioning failure occurs, then this event is called false 

alarm.  

• Upon the detection, the fault exclusion may follow to try to exclude the source of the 

unacceptably large position error, thereby increasing chances for navigation to return to 

normal performance without an interruption of service. This process is characterized by 

failed exclusion and by wrong exclusion events. 

The FDE function involves three basic parameters: test statistic, decision threshold and 

Horizontal Protection Level (HPL).  

The fault detection is performed by comparing the test statistic to a threshold. If the test statistic 

exceeds the threshold, then a fault is decided otherwise no fault detection occurs. The selection 

of the test statistic depends on the integrity monitoring method12.  The decision threshold is 

chosen on the basis of statistical characteristics of the test statistic so that a false alarm occurs 

                                                 
12 Further details will be given later 
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no more than a specified rate called false alarm rate (P𝐹𝐴). For example, if the test statistic has 

a distribution with a specific Cumulative Distribution Function (CDF), then the threshold is 

computed based on the CDF denote 𝑄𝑑𝑖𝑠𝑡 and the P𝐹𝐴 using: 

𝑇ℎ = 𝑄𝑑𝑖𝑠𝑡
−1 (1 − P𝐹𝐴) (5.9) 

The HPL is a statistical upper bound of the estimated HPE satisfying the required integrity risk, 

thus delimiting the region, around the true position, assured to contain the estimated horizontal 

position with a specific probability. The HPL is not affected by the actual measurements; it is 

computed only from the P𝑀𝐷, the P𝐹𝐴, the expected measurement error characteristics and the 

factors on which depends the precision (e.g. Dilution Of Precision for GPS, feature number and 

spatial distribution for SLAM). The HPL is an important parameter that determines the 

availability of the integrity function. That is, if HPL is less than the HAL for a given operation, 

the integrity function is available, and if it is higher than the HAL then the integrity function is 

declared unavailable. As explained in (Lee, 1999), as much as it is important for an integrity 

method to detect that HPE exceeds HPL given the predefined integrity risk, it is also important 

that HPL be small so that high availability of the integrity function may be provided. 

Consequently, to keep a small value of HPL, it is important firstly to define an integrity monitor 

(test statistic and threshold) that detects and excludes the causes of HMI. Secondly, the 

probability of failure occurrence should be identified instead of considering it equal to 1 as 

suggested in Section 5.1.5. This increases the value of the required P𝑀𝐷 based on equation (5.6), 

making consequently the HPL value small. 

The classical algorithm to perform GNSS fault detection and possibly fault exclusion is the 

Receiver Autonomous Integrity Monitoring (RAIM) (Parkinson, 1988). It operates by using 

redundancy in the measurements observed to perform a statistical test based consistency check 

for the presence of failures. RAIM algorithms may be classified into two groups depending on 

the algorithm used to estimate the navigation solution: the snapshot RAIM involving only 

measurements received at the current time epoch and sequential RAIM using both current and 

historical measurements. The most widely used integrity monitoring algorithm for GNSS 

signals is the snapshot RAIM (Parkinson, 1988) (Walter, 1995) (Martineau, 2008) that exploits 

redundant measurements at one time of interest. However, this algorithm is insufficient for our 

case of study where a Kalman filter is used to fuse sensor measurements. This type of 

implementation does not match with snapshot RAIM and needs a sequential detection and 

exclusion algorithm. 

 State of the art of sequential FDE 

Sequential detection approaches have been investigated in the literature. The most popular 

works are the Autonomous Integrity Monitoring Extrapolation (AIME) method (Diesel, 1996) 

and the Maximum Solution Separation (MSS) (Brenner, 1995), for GPS/INS hybridization 

considering that the INS is fault-free.  
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AIME method uses the Kalman filter innovations13 rather than the instantaneous least square 

residuals of the snapshot RAIM, to compute the test statistics to detect GPS range failures. 

Three test statistics are computed in AIME. The first test is based on the innovation average 

over the last 2.5 𝑚𝑖𝑛 duration and the others are obtained by averaging the innovations over 

10 𝑚𝑖𝑛 and 30 𝑚𝑖𝑛. 

MSS is based on a bank of 𝑛 sub-filters running in parallel and excluding, each one, a GPS 

measurement, where 𝑛 is the number of satellites in view. The sub-filters are then compared to 

the full-filter solution by computing the difference. This difference defines the test statistic for 

each sub-filter and is compared to a threshold to detect failures. 

A comparison between the AIME and MSS is performed in (Lee, 1999). It reveals that both 

methods have advantages and disadvantages. While the MSS guarantees satisfactory detection 

performance based on theory, the HPL values tend to be relatively large so that it cannot achieve 

good integrity function availability. In addition, MSS runs as many sub-filters as the number of 

measurements and has consequently a high computational burden. On the other hand, while 

AIME can achieve significantly higher availability, there is no good way to confirm the 

detection performance based on theory; therefore, very extensive simulation must be used 

instead. A common drawback of these two methods is the assumption of a single failure. 

Other sequential FDE algorithms based on detecting abrupt changes in random variable 

distribution are proposed in the literature. These algorithms are mainly based on Kalman 

innovations (Giremus, 2007) (Sukkarieh, 1999). One of the most known algorithms detecting 

abrupt changes at the innovation level is the Generalized Likelihood Ratio (GLR) algorithm 

(Willsky, 1976) (Giremus, 2007). The detection of abrupt changes affecting the components of 

the state vector is performed by sequentially applying a likelihood ratio hypothesis testing. The 

advantages of this method are on one hand the possibility to cope with multiple simultaneous 

failures and on the other hand the robustness to disturbances of small magnitude. The drawback 

of this approach is that no fault-free solution is maintained. Therefore, whenever an anomaly is 

detected, a compensation step is necessary to remove the induced errors on the Kalman filter 

estimates. 

All these state of the art methods are based on a monitor (detection test and HPL) used to detect 

a failure and potentially exclude it, as explained in Section 5.2.1. For the fault-free mode, the 

HPL depends on the required integrity risk and the error distribution. For the failure mode, the 

HPL depends on the allowed missed detection rate, which in turn depends on the failure 

probability of occurrence and the required integrity risk. Since some of the VSLAM and GNSS 

failure modes are environment-dependent, their probability of occurrence is hard to 

characterize. Therefore, specific monitors with guaranteed performance cannot be implemented 

at this stage. However, an overall FDE monitor for Kalman filter can still be implemented. This 

monitor is the innovation test (Sukkarieh, 1999), which is a way of detecting and excluding a 

measurement by deciding whether it is consistent with the other measurements or not. The 

normalized innovation (i.e. the innovation divided by its corresponding uncertainty) is 

                                                 
13 We remind that the Kalman filter innovation is the difference between the actual measurement and the predicted 

one. 
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calculated and compared to a threshold. If the normalized innovation is higher than the 

threshold, than the measurement is excluded, otherwise the measurement is kept. Considering 

that the Kalman innovation should follow a zero-mean Gaussian distribution, if the threshold is 

set to 2, then 95% of genuine measurements are passed by the innovation test, and if it set to 3, 

then 99.73% of genuine measurements are passed by the innovation test. Besides its simplicity, 

this method is applicable to all the types of measurements. 

5.3 Case study of integrity challenges 

After reviewing the integrity principle and algorithms for Kalman-based architectures, we are 

going to recall the most important integrity challenges of our thesis case of study. These 

challenges can be classified into two categories: the challenges related to the integrity 

requirements of the targeted applications and the challenges related to the fusion architecture 

defined in Chapter 4. 

 Integrity requirements challenges 

This thesis targets two different types of land applications. Airport surface moving vehicles and 

land vehicles moving in urban environments. Unlike aircraft operations which have specific 

Required Navigation Performance (RNP) (ICAO, 2006) and recently train control (Filip, 2006), 

until today, there is really no international standard of user performance integrity requirements 

for these two applications. However, researches are ongoing to define and standardize these 

requirements for airport movement. For example, the ICAO has developed the Advanced 

Surface Movement Guidance and Control System (A-SMGCS) concept (ICAO, 2004) to cope 

with traffic increase on airport surfaces. In addition, this issue has been addressed in some 

research papers such as (Guilloton, 2011) and (Schuster, 2011). In these researches, the 

proposed requirements are dependent on the operation (taxiing, approach, etc.), the visibility 

conditions (good, low, etc.) and the main intended navigation function (Surveillance 14 , 

Guidance15, Steering16, etc.). When the hazard risk increases, the requirements become more 

stringent. For example, when the operation is conducted with a high vehicle speed in degraded 

visibility conditions and without possible human intervention, the integrity requirements must 

be very stringent to avoid causing harm to humans or destruction/damage to materials. In our 

case, we are interested in steering requirements since the automated/autonomous vehicle 

applications are intended. Table 5.2 provides the navigation integrity requirements in terms of 

integrity risk and HAL defined in the A-SMGCS and (Guilloton, 2011) for low-speed ground 

airport vehicles moving near the airport gate: 

 

                                                 
14 Surveillance is defined in (ICAO, 2004) as the function that concentrates and displays the position and the 

identification of all aircraft and ground vehicles on the airport surface. 
15 Guidance is defined in (ICAO, 2004) as the function that relates to facilities, information and advice necessary 

to enable pilots of aircraft or drivers of ground vehicles to find their way on the airport and keep aircraft or vehicles 

on the surfaces and areas intended for their use. 
16 Steering can be defined as the function that enables automatic control of the aircraft or the ground vehicles on 

the airport surface without human aid. 
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Operation Integrity risk HAL 

Gate 10−7/op 1.2 𝑚 

Table 5.2 Integrity risk and HAL for steering in the airport Gate 

As for land vehicles, no standard requirements are defined presently. This makes the integrity 

study difficult to perform currently. We are going to derive an example of the HAL value using 

a simple reasoning. Figure 5-5 illustrates a typical traffic scheme where the width of one road 

way equals 3.5 𝑚. We imagine a scenario where a 1.6 𝑚 width small urban car running in the 

middle of one road way meets a 2.5 𝑚 width van also running in the middle of its corresponding 

road way. Then the maximum allowable cross-track error (CTE) to avoid a collision between 

the two vehicles equals: 

CTE𝑚𝑎𝑥 = 3.5 −
1.6 + 2.5

2
= 1.45 𝑚 (5.10) 

We define CTE𝑚𝑎𝑥 as the HAL. 

 

Figure 5-5 HAL computation from a typical traffic example 

 Fusion architecture integrity challenges 

Ideally, in order to take into account the integrity issue in the fusion architecture proposed in 

Chapter 4, integrity blocks should be added to the architecture as illustrated in Figure 5-6. 

Each sensor should have its own integrity block at the sensor level either using sensor 

redundancy (IMU and WSS) or using measurement redundancy (GNSS and SLAM). A final 

integrity check based on the redundancy of measurements of the same nature provided by the 

different sensors should be performed at the hybridization stage.  

The most challenging parts are the SLAM and the filter integrity blocks.  
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Figure 5-6 multi-sensor architecture integrity monitoring 

Although SLAM performs internal outlier detection and exclusion through RANSAC, there are 

no sufficient elements to elaborate a complete integrity study of this algorithm for several 

reasons.  

First, given the fact that SLAM includes very complex processes to compute the camera pose 

(navigation solution) from the features detected in the camera images (initial measurements), it 

is not easy to establish a simple relationship between the SLAM navigation solution and its 

measurements. This error projection from the measurement domain to the range domain is a 

necessary step to express the integrity risk in the range domain through the computation of the 

HPL in case of failure.  

Second, the SLAM failure modes and their characteristics in terms of probability of occurrence, 

number of simultaneous failures, amplitude, time duration and shape need an extensive study 

and is not performed yet. For the probability of occurrence, if we consider the worst case where 

it is equal to one, the probability of missed detection corresponds to the lowest possible value 

the integrity risk value). This makes the HPL value be maximal, reducing therefore the 

availability of the integrity function as explained in Section 5.2.1. As an example, if we assume 

that the SLAM provides Gaussian outputs (optimistic assumption) in the fault-free mode (which 

is the mode supposed to have the lowest HPL), the SLAM HPL, denoted 𝐻PL𝑓𝑓
𝑠𝑙𝑎𝑚, can be 

expressed by: 

HPL𝑓𝑓
𝑠𝑙𝑎𝑚 = 𝑘𝑓𝑓

𝑠𝑙𝑎𝑚 𝜎ℎ
𝑠𝑙𝑎𝑚 (5.11) 

where  

• 𝜎ℎ
𝑠𝑙𝑎𝑚 is the square root of the maximum eigenvalue of the (2 × 2) SLAM horizontal 

position covariance matrix. This matrix must be first transformed from the vision frame 

to the local frame to be able to talk about horizontal error in meter units. 
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• 𝑘𝑓𝑓
𝑠𝑙𝑎𝑚 is a multiplicative coefficient computed from the integrity risk allocated to the 

fault-free mode 𝑃𝐼𝑅,𝑓𝑓
𝑠𝑙𝑎𝑚 using: 

𝑘𝑓𝑓
𝑠𝑙𝑎𝑚 = −𝑄𝑛𝑜𝑟𝑚

−1 (𝑃𝐼𝑅,𝑓𝑓
𝑠𝑙𝑎𝑚) (5.12) 

where 𝑄𝑛𝑜𝑟𝑚 is the normal CDF. 

Table 5.3 expresses different values of 𝑘𝑓𝑓
𝑠𝑙𝑎𝑚 as a function of different possible values of 𝑃𝐼𝑅

𝑠𝑙𝑎𝑚 

if we assume that the integrity risk is divided equally between the fault-free mode and the failure 

mode defined by Figure 5-4, i.e. 

𝑃𝐼𝑅,𝑓𝑓
𝑠𝑙𝑎𝑚 = 𝑃𝐼𝑅,𝑓𝑚

𝑠𝑙𝑎𝑚 = 𝑃𝐼𝑅
𝑠𝑙𝑎𝑚/2 (5.13) 

After 𝑘𝑓𝑓
𝑠𝑙𝑎𝑚 derivation, the values of (𝜎ℎ

𝑠𝑙𝑎𝑚)
𝑚𝑎𝑥

, defining the maximum allowable value of 

𝜎ℎ
𝑠𝑙𝑎𝑚 to meet the availability requirement based on the HAL example given for land vehicle 

application in equation (5.10), are given in Table 5.3 .  

𝑷𝑰𝑹
𝒔𝒍𝒂𝒎 10−8 10−7 10−6 10−5 10−4 

𝒌𝒇𝒇
𝒔𝒍𝒂𝒎 5.73 5.33 4.89 4.41 3.89 

(𝝈𝒉
𝒔𝒍𝒂𝒎)

𝒎𝒂𝒙
 25 𝑐𝑚 27 𝑐𝑚 30 𝑐𝑚 33 𝑐𝑚 37 𝑐𝑚 

Table 5.3 Computation of the maximum allowable SLAM uncertainty 

Note that, according to Table 5.2 , the HAL for vehicles moving near the airport gate equals 

1.2 𝑚 and is in the same order of the land vehicle HAL, giving therefore the same order of the 

required accuracy (𝜎ℎ
𝑠𝑙𝑎𝑚)

𝑚𝑎𝑥
 as land vehicle applications. 

Therefore, the maximum allowable value of the SLAM uncertainty to guarantee the availability 

of the integrity function is about 30 𝑐𝑚. According to the SLAM performance analysis that will 

be presented in Chapter 6, showing that the SLAM has meter accuracy, the required sub-meter 

accuracy is not achieved yet, making the integrity function almost always unavailable for the 

SLAM process.  

As for the filter integrity, the same reasoning for the position state estimated by the developed 

filter applies as for SLAM. According to the filter performance analysis, that will be presented 

in Chapter 6, the state after fusion has meter accuracy and does not meet the HAL requirement 

defined by the example in 5.3.1. Consequently, the availability of the integrity function is not 

guaranteed yet and an integrity algorithm cannot be implemented on the current developed 

architecture, unless the accuracy is first improved to achieve about 30 𝑐𝑚.  

Only the innovation test described in Section 5.2.2 and relying only on the Kalman filter 

measurement innovation and its covariance is implemented in order to detect and exclude the 

measurements likely to be faulty based on the consistency between the measurements of the 
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different hybridization architecture sensors. The contribution of this test to the improvement of 

the filter accuracy and robustness against faults will be highlighted in Chapter 6.  

5.4 Conclusion 

In this chapter, the integrity concept of the navigation solution proposed in Chapter 4 is 

addressed. The sensor errors that may lead to an HMI are identified, particularly for the SLAM 

and the GPS. The SLAM errors are identified and classified into fault-free mode and failure 

modes and the GPS errors are recalled in order to define the integrity fault-tree that is used to 

allocate the integrity risk between the different sensors and the different modes. Furthermore, 

the integrity monitoring principle through the FD or the FDE function is explained and the state 

of the art of the existing FD/FDE techniques adapted to our case of study is reviewed. A 

discussion on the HPL value and the integrity function availability is addressed showing that 

the lower the HPL value, the better is the integrity function availability.  

Then the limitations and the challenges related to GPS, SLAM and filter integrity monitoring 

are identified assuming that the INS and WSS are fault-free using sensor redundancy. We 

summarize these challenges in the flowing: 

• GPS challenges: 

- The presence of buildings and structures hiding the satellites makes the GPS 

signal integrity challenging. In fact, integrity monitoring is based on GPS signal 

redundancy. This redundancy is scarce in urban canyons making the integrity 

monitoring difficult to perform. 

- The GPS error distribution is assumed to be zero-mean Gaussian. This 

assumption is invalid in urban scenarios because of the presence of multipath and 

NLOS. Even with overbounding techniques and environment modeling, this 

assumption can be violated resulting in wrong modelling of the error distribution. 

• SLAM challenges 

- The slam error and particularly failure mode error should be characterized in 

terms of probability of occurrence, number of simultaneous measurement errors 

and error signature. This requires having done sufficiently various and long data 

collections, evaluated the SLAM on it and identified all the possible failures 

based on these collections. In addition, most of the SLAM failures are 

environment-dependent making this task a real challenge. 

- The SLAM includes very complex processes making the mapping of the 

measurement error into the navigation solution domain complicated. However, 

this step is necessary to be able to establish a theoretical HPL formula. 

• Overall system challenges 

- In general, state of the art integrity monitoring techniques are not designed to 

handle many simultaneous faults and assume a single measurement failure. This 

assumption is not valid for sensors using several measurements with errors that 
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are dependent on the environment in which the vehicle moves such as GPS and 

SLAM. 

- In general, sequential integrity monitoring techniques have a high computational 

complexity making them not adapted to real time. This is the case for the MSS 

algorithm which considers several banks of sub-filters or the Kalman-based filter 

of (Joerger, 2013) which requires a batch least-squares algorithm to evaluate the 

integrity risk. The innovation test is a simpler method that has shown to be 

efficient (the evaluation of this method is performed in Chapter 6) 

• Integrity requirements challenges 

- The most challenging point in the integrity requirements is the value of HAL 

which should be very low to avoid the risk of human harm or material damage. 

This value is evaluated to about 1.5 𝑚 for the intended applications and requires 

a much better (submeter level) accuracy than the accuracy provided by the 

architecture defined in Chapter 4 (meter level). 



 

Chapter 6 

6 Results and Performance Analysis 

This chapter describes the tests carried out, along with the details about the followed 

experimental procedure. The considered scenarios are vehicular navigation in urban canyon and 

airport surface contexts. The performance of the developed navigation solutions (position, 

velocity and attitude) is assessed based on these tests. 

First, we start by presenting the equipment used to collect real data and describing the 

environments where tests were carried out.  

Second, the GPS navigation solution is assessed, and the limitations of this solution are 

highlighted.  

The third part is dedicated to analyzing ORB-SLAM navigation outputs and to assess its 

performance based on the localization task. In fact, visual SLAM is advantageous compared to 

visual odometry thanks to its map and the optimizations using this map to provide an acceptable 

navigation solution. The case where SLAM explores for the first time an environment is not 

considered. Only the SLAM localization process based on a previously constructed and 

adjusted map is studied. In this study, the trajectory coordinates are computed by the SLAM 

algorithm and are output in its vision frame. Note that this trajectory is computed using the 

same collected data that was processed to generate the map in a previous step. 

The last part presents a synthesis of performance assessment of the hybridized navigation 

solution proposed in Chapter 4 and improved based on the innovation test described in Chapter 

5. The contribution of VSLAM to the hybridized navigation solution is particularly studied. 
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6.1 Experimental procedure 

 Equipment 

The developed algorithms are implemented and tested in post-processing on real data collected 

in Toulouse using an equipped Citroën Jumpy car, illustrated in Figure 6-1. 

 

Figure 6-1 Measuremet campaign equipment 

The equipment used in the tests consists of: 

- An Xsens-MTI IMU providing the measurements of three axes accelerometers and 

gyroscopes and running at 100 Hz. The main characteristics of the IMU are given in 

Table 2.4 

- A L1-only-Ublox LEA M8T GNSS receiver running at 1 Hz connected to a low-cost 

antenna. This receiver provides GPS and GLONASS measurement data, but only GPS 

data is used in our hybridization to evaluate the impact of single frequency single 

constellation aiding in multi-sensor fusion framework 

- A Eye UI-3240CP-C-HQ camera. Its resolution is equal to 1280 × 1024 pixels and its 

frame rate can reach 60 fps. To avoid dealing with huge files, the frame rate is set to 

25 fps. The lens is a Tamron M118FM08 with a horizontal and vertical angles of view 

of 50.8° and 38.6° respectively. The images captured by this camera are processed in 

post-processing by the ORB-SLAM software. 

- The WSS data is generated with the model given in equation (2.41) because of the lack 

of this information in this dataset. 

- A device used for estimating a reference solution for error analysis. This device is the 

NovAtel SPAN system, consisting of a ProPak6 receiver processing GPS L1/L2 and a 

tactical grade IMU from Northrop-Grumman Litef Gmbh (UIMU-LCI). The reference 

solution is computed in post-processing with the NovAtel Inertial Explorer software. 

The tightly coupled strategy is applied to combine GPS and IMU data in forward and 
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backward processing. The double difference technique is used for GPS. The base 

stations used are TLSE, TLIA, TLSG and TLMF whose locations with respect to the car 

are illustrated in Figure 6-2. for the urban test (this test will be described later) 

 

Figure 6-2 Reference stations distance with respect to the car (urban test) 

The accuracy of the reference solution as estimated by the NovAtel software is illustrated in 

Figure 6-3 for position, for the urban test. It can be noticed that, in this illustration, the reference 

position has decimeter level uncertainty, up to 1 𝑚 in the worst case, as computed by the 

NovAtel SPAN equipment. The reference velocity and attitude are also used in the performance 

assessment of the integrated algorithm. The velocity has a cm/s level of accuracy while the 

attitude accuracy is in the order of arcminute (0.01°). 

 

Figure 6-3 Reference position accuracy (standard deviation) 

The equipment is mounted on the car with the configuration described in Figure 6-4. The GPS 

antennas and the camera are mounted on the roof top of the car. The camera is oriented to the 

forward direction. The IMU is mounted inside the car. The lever arm between the SPAN 

antenna and the SPAN IMU is set such as only the vertical component is nonzero.  
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Figure 6-4 Sensor configuration for data collection 

Sensor data is collected and recorded using ROS (Quigley, 2009) in a single file called rosbag. 

The rosbag file includes all the sensor information timestamped using the data collection 

computer Unix Time. This time is computed by the computer clock. To prevent its drift, this 

time is synchronized with the GPS-Time estimated by the Ublox LEA M8T GNSS receiver. To 

perform the synchronization task, the Chrony (Chrony, 2016) suite based on the Network Time 

Protocol (NTP) is used. The Ublox LEA M8T GNSS receiver is connected to the computer 

serial port using an RS-232 serial connection and outputs PPS (Pulse Per Second) signals. Then, 

Chrony uses these GPS PPS signals to prevent the computer clock from drift, allowing therefore 

a good sensor timestamping. 

To avoid dealing with big size files because of the presence of image files, the measurement 

campaigns have been split into several sub-measurement campaigns. For simplicity reasons, 

only results on measurement sub-campaigns having different characteristics are presented in 

this report. 

 Description of the trajectory 

6.1.2.1 Suburban and dense urban data collection 

The data collection was done on May, 13th 2016 in Toulouse and corresponds approximately to 

80 minutes of data. It starts from ENAC, goes through Toulouse downtown and finishes in 

ENAC. The speed of the vehicle varies from 0 to 50 km/h with frequent stops due to the 

traffic. The full trajectory is given in Figure 6-5. It is characterized by many loops to test the 

SLAM Loop Closure and its contribution to the improvement of the navigation performance. 
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Figure 6-5 Urban and suburban trajectory 

The traveled trajectory is characterized by two types of environments: 

- A suburban environment with low buildings, trees, etc. but a relatively good satellite 

visibility. The car travels this type of environment in the beginning and the end of the 

trajectory. 

 

Figure 6-6 Suburban environment description 

- A dense urban environment with urban canyons and important building mask angles 

with a very high multipath and NLOS occurrence probability. The car travels this type 

of environment in the middle of the trajectory. 
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Figure 6-7 Urban environment description 

6.1.2.2 Airport environment 

The data collection was done on May, 24th 2016 in Toulouse Francazal airport and corresponds 

approximately to 75 minutes of data. The zones near the hangars, in the apron, in taxiways and 

in the runway are travelled. The vehicle speed varies from 0 to 90 km/h. The full trajectory is 

given in Figure 6-8. 

 

Figure 6-8 Francazal airport trajectory 

The traveled trajectory is characterized by two types of environments: 

- A suburban environment when the vehicle moves next to the hangars and in the apron  

- An open sky environment when the vehicle moves in the taxiways and in the runway 
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6.2 Sensors and filter performance analysis 

The 2 measurement campaigns presented in Section 6.1.2 are used to evaluate the performance 

of each sensor as well as the integrated navigation solution provided by the Kalman filter. First, 

the L1 GPS performance and challenges, especially in urban environments, are emphasized. 

Second the monocular visual SLAM performance evaluation is performed. Then the navigation 

solution output by the Kalman filter is evaluated using different sensor combinations. 

This performance analysis is based on the evaluation of the horizontal position, velocity and 

attitude (heading). The following metrics are used: 

- The horizontal position error, the horizontal velocity error and the vehicle heading error, 

along with the associated 3𝜎17 bound. In the case of a zero-mean Gaussian distribution 

of the error, 99,7% of the error must be included in the [−3𝜎, 3𝜎] bound. 

- The horizontal position error statistics (after the filter convergence in the case of the 

assessment of the hybridized solution): 

▪ The maximum error 

▪ The 95th and the 99th error percentiles18.  

▪ The RMS error 

 GPS solution 

6.2.1.1 Suburban and dense urban environment 

The GPS solution is first assessed using the 𝐶/𝑁0  of the received signals. This quantity is an 

indicator of the received signal quality that is independent of the acquisition and tracking 

algorithms used by a receiver. Typical values in an L1 C/A code receiver are comprised between 

37 and 50 dB-Hz, but high sensitivity receivers can track signals with a much lower 𝐶/𝑁0 . 

This value can drop because of local effects such as multipath and NLOS as explained 

previously. Figure 6-9 illustrating the 𝐶/𝑁0 of received signals, highlights the drop of their 

values. A non-negligible ratio of received signals has a 𝐶/𝑁0  lower than 30  dB-Hz, 

characterizing signals degraded by the surrounding environment. Therefore, we can think of 

setting a 𝐶/𝑁0 mask to avoid the local effects. The 𝐶/𝑁0 mask is set to 30 dB-Hz.  

                                                 
17 The parameter 𝜎 is the uncertainty of the navigation solution output by the navigation module. 
18 The error percentile is a measure that indicates the value below which a given percentage of the error fall. For 

example, the 95th percentile is the error value below which we find 95% of errors. 
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Figure 6-9 𝑪/𝑵𝟎 of GPS measurements in suburban-urban environment 

Figure 6-10 illustrates the number of satellites in view before and after applying the 𝐶/𝑁0 mask. 

We notice that the number of visible satellites may drop under 4 after applying the 𝐶/𝑁0 mask. 

 

Figure 6-10 Number of GPS measurements before and after exclusion through comparison to 𝑪/𝑵𝟎 = 𝟑𝟎 

dB-Hz in suburban-urban environment 

Table 6.1 gives the availability of satellites. For example, we have between 4 and 5 satellites 

during 3.20% of the measurement campaign duration before exclusion, while after exclusion, 

we have between 4 and 5 satellites in view 19.98 % of time. We are going to study the impact 

of satellite removal on the GPS navigation solution computed with the least square method 

mentioned in Section 2.1.3. 
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Number of SVs Before exclusion 
After low 𝐶 𝑁0⁄  

exclusion 

𝟎 ≤  𝑵 <  𝟒 0.13 % 2.63 % 

𝟒 ≤  𝑵 <  𝟔 3.20 % 19.98 % 

𝟔 ≤  𝑵 <  𝟖 33.82 % 42.98 % 

≥ 𝟖 62.84 % 34.92 % 

Table 6.1 Satellite availability before and after exclusion through comparison to 𝑪/𝑵𝟎 = 𝟑𝟎 dB-Hz in 

suburban-urban environment 

The Horizontal Dilution Of Precision (HDOP) describing the impact of the satellite geometry 

on the horizontal accuracy of the GPS solution is computed before and after the low 𝐶 𝑁0⁄  

exclusion and its evolution is compared to the evolution of the horizontal position error and to 

the horizontal velocity error in Figure 6-11. It can be noticed that the low 𝐶 𝑁0⁄  exclusion 

degrades dramatically the satellite geometry, and so the accuracy of the navigation solution.  

 

Figure 6-11 Impact of the low 𝑪/𝑵𝟎 exclusion on HDOP, horizontal position error and horizontal velocity 

error in suburban-urban environment 
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Table 6.2 gives more details about the GPS accuracy before and after low 𝐶 𝑁0⁄  exclusion. It 

shows that the exclusion based on a 𝐶/𝑁0 mask of 30 dB-Hz is not an efficient way to improve 

the navigation solution because it degrades the satellite geometry which degrades in turn the 

accuracy of the navigation solution. This degradation is especially noticed on the position value 

while the velocity performances are comparable before and after the low 𝐶 𝑁0⁄   exclusion. 

 

Horizontal position error (m) Horizontal Velocity error (m/s) 

Before exclusion 
After low 𝐶 𝑁0⁄  

exclusion 
Before exclusion 

After low 𝐶 𝑁0⁄  
exclusion 

Max 73.75 344.40 36.64 73.46 

RMS 11.69 15.66 1.67 2.30 

95th percentile 22.47 23.57 3.50 2.70 

99th percentile 38.61 64.00 6.25 6.09 

Table 6.2 Comparison of the navigation solution accuracy before and after low 𝑪/𝑵𝟎 exclusion in suburban-

urban environment 

Note that Figure 6-10 and Figure 6-11 highlight the characteristics of the environment. The 

beginning of the measurement campaign is characterized by a high number of satellites in view, 

and consequently a good (low) HDOP and a small position error. The test continues in severe 

environment with a decrease of the number of satellites in view and their 𝐶/𝑁0, resulting in 

degradation in the HDOP and the navigation solution.  

The full measurements without low 𝐶 𝑁0⁄   exclusion will therefore be considered for the 

remaining parts of this Chapter, for suburban-urban environments. Figure 6-12 and Figure 6-13 

illustrate the GPS horizontal position and velocity errors without low 𝐶 𝑁0⁄   exclusion and their 

corresponding 3𝜎 bound. It can be seen that the 3𝜎 bound envelops the errors and describes 

well the error variations. This validates the error models explained in Chapter 2 used to model 

the different GPS error sources, especially the multipath model in suburban and urban 

environment as well as the Doppler noise model depending on the 𝐶/𝑁0 and the vehicle speed. 

 
Figure 6-12 GPS L1 horizontal position error and its 

associated 𝟑𝝈  bound without low 𝑪/𝑵𝟎 exclusion in 

suburban-urban environment 

 
Figure 6-13 GPS L1 horizontal velocity error and its 

associated 𝟑𝝈  bound without low 𝑪/𝑵𝟎  exclusion in 

suburban-urban environment 
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6.2.1.2 Airport environment 

Similar to the urban environment, we start first by evaluating the received signals 𝐶/𝑁0 values 

in Figure 6-14. We can see that the C/N0 values are higher than in the suburban-urban 

environment. However, these values drop in the beginning and the end of the measurement 

campaign. This is because the test car has moved along the airport hangars and next to the 

airport buildings, making the GPS antenna receive multipath signals, in these two periods.  

 

Figure 6-14 𝑪/𝑵𝟎 of GPS measurements in airport environment 

A 30 dB-Hz 𝐶/𝑁0 mask is applied. Figure 6-15 illustrates the number of satellites before and 

after exclusion. Even after exclusion, the number of satellites in view is not lower than 5. The 

number of excluded satellites is not important, and the geometry remains satisfactory. This 

explains the slight improvement of the navigation solution accuracy parameters given in Table 

6.3. For this reason, this exclusion is kept for the remaining of the tests in airport environment. 

 

Figure 6-15 Number of GPS measurements before and after exclusion through comparison to 𝑪/𝑵𝟎 = 𝟑𝟎 

dB-Hz in airport environment 
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Horizontal position error (m) Horizontal Velocity error (m/s) 

Before exclusion 
After low 𝐶 𝑁0⁄  

exclusion 
Before exclusion 

After low 𝐶 𝑁0⁄  
exclusion 

Max 57.88 35.32 4.87 4.87 

RMS 6.87 5.80 0.33 0.15 

95th percentile 16.52 16.07 0.45 0.22 

99th percentile 24.60 17.46 1.36 0.48 

Table 6.3 Comparison of the navigation solution accuracy before and after low 𝑪/𝑵𝟎 exclusion in airport 

environment 

To evaluate the open sky measurement model, especially the multipath model given in equation 

(2.14) and Table 2.2 for pseudorange and pseudorange rate respectively, the GPS horizontal 

position and velocity errors and their corresponding 3𝜎 bound are plotted in Figure 6-16 and 

Figure 6-17. We can see that the pseudorange model is satisfying in regions near buildings 

(beginning and end of the trajectory); however, in runways and taxiways (middle of the 

trajectory), this model overestimates the navigation solution uncertainty. As for velocity, the 

error model based on the 𝐶/𝑁0 and the vehicle speed describes well the uncertainty of the 

velocity error. 

 

Figure 6-16 GPS L1 horizontal position error and its 

associated 𝟑𝝈 bound with low 𝑪/𝑵𝟎 exclusion in 

airport environment 

 

Figure 6-17 GPS L1 horizontal velocity error and its 

associated 𝟑𝝈 bound with low 𝑪/𝑵𝟎  exclusion in 

airport environment 

 SLAM solution 

The images collected by the camera are processed using ORB-SLAM. This algorithm 

performance is assessed using the method described in Section 3.4. We choose the ATE 

(Absolute Trajectory Error) given by equation (3.17), since loop closures are considered in the 

data collections. 

 From now on, the performance assessment is based on 2 tests: 

- Urban environment (Test 1) 

Test 1 lasting about 12 min belongs to the urban measurement campaign described by Figure 

6-5. This part of the trajectory goes through harsh GPS environment. Figure 6-18 illustrates 

SLAM trajectory, and Figure 6-19 shows some screenshots of SLAM processing, where the 
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green points are the features detected by SLAM. We can see from the trajectory that, even with 

map construction and adjustment previously done, there is a map discontinuity that remains at 

the moment of loop closure, resulting in trajectory discontinuity. Although this discontinuity 

persists, the drift of the map is less important than in an unknown environment. 

Figure 6-18 ORB-SLAM trajectory in vision frame (Test 1) 

 

Figure 6-19 ORB-SLAM image processing (Test 1) 

 

- Airport environment (Test 2): 

Test 2 lasting 4:16 min is performed in airport environment and describes a loop closure 

trajectory. In the scope of this thesis, only the hangar and apron areas of the airport are 

studied for many reasons. First, this thesis targets airport ground vehicles that move most 

of the time in these areas. Second, unlike taxiways and runways where there are no 

structures resulting in multipath and NLOS, the hangars and apron areas are characterized 

by buildings and structures that cause this type of GNSS error. As highlighted in Section 

6.2.1.2, GNSS needs aid in this type of area where its performance is degraded and has good 

performance in open-areas like taxiways and runways. The final reason why we only focus 
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on apron and gate zone is the fact that SLAM has good performance in textured environment 

and bad performance in non-textured environment. The lack of features illustrated in Figure 

6-20 (left figure), especially in the runway, makes SLAM loose the map track as soon as 

the vehicle turns, and no loop adjustment could be performed in this environment. 

Therefore, Test 2 is performed only in the airport hangar and apron areas (right figure). 

 

Figure 6-20 ORB-SLAM image processing (Test 2) 

Figure 6-21 illustrates the ORB-SLAM trajectory. Similar to Test 1, the map dicontinuity 

resulting in trajectory discontinuity is also noticed. This means that even with map optimization, 

a small trajectory drift remains.  

 

Figure 6-21 ORB-SLAM trajectory in vision frame (Test 2) 

6.2.2.1 Test 1: VSLAM performance in urban environment 

First of all, we are going to illustrate the car trajectory as it is output by SLAM and compare it 

to the reference trajectory. This illustration is performed in Figure 6-22 which represents the 

meter unit trajectory and which shows with Figure 6-18 that the trajectory estimated by SLAM 

has the same shape as the reference trajectory up to scale, a rotation and a translation as 

explained in Chapter 3, which is the transformation from the vision to the local frame. 



Chapter 6 – Results and Performance Analysis 

113 

 

 

Figure 6-22 Comparison between ORB-SLAM and reference trajectories (Test 1) 

The parameters are estimated using Horn method (Horn, 1987) and are given in Table 6.4 ORB-

SLAM transformation estimation (Test 1). Note that this method requires at least three different 

points expressed in both coordinate frames to estimate the transformation between these points. 

Scale factor 
Quaternion value (from (𝒍) to (𝒗)) 

Translational offset (between 

(𝒍) and (𝒗)) 

q0 qx qy qz px py pz 

0.0316 0.9296 -0.0251 -0.0514 -0.3640 -19.15 -150.08 12.04 

Table 6.4 ORB-SLAM transformation estimation (Test 1) 

To validate this estimation, the transformed SLAM trajectory is plotted and compared to the 

reference trajectory in Figure 6-23.  

 

Figure 6-23 Reference and ORB-SLAM trajectories after alignment (Test 1) 
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We can see in this figure that if we consider the vision to local frame transformation constant, 

the trajectories do not perfectly match. We can conclude that local-to-vision-frame 

transformation is not constant in time, which confirms the drift of the map and consequently 

the drift of the trajectory. 

For this reason, we computed the transformation on a temporal sliding window to understand 

the 7 transformation parameters’ behavior. Each sliding window consists of 1500 samples 

(approximately 1 min). This is illustrated in Figure 6-24Erreur ! Source du renvoi 

introuvable.. In this figure, The SLAM scale factor estimated by the Horn method is compared 

to the scale factor estimated point by point. This latter estimation is based on equation (3.13) 

and assumes that the scale factor value does not change between two successive frames:  

(𝒑̃𝑐
𝑣)𝑘+1 − (𝒑̃𝑐

𝑣)𝑘 = 𝑘𝑣𝑪𝑙2𝑣((𝒑𝑐
𝑙 )𝑘+1 − (𝒑𝑐

𝑙 )𝑘) (6.1) 

Therefore 

|𝑘𝑣| = ‖
(𝒑̃𝑐

𝑣)𝑘+1 − (𝒑̃𝑐
𝑣)𝑘

(𝒑𝑐
𝑙 )
𝑘+1

− (𝒑𝑐
𝑙 )
𝑘

‖

2

 (6.2) 

 

Note that the point by point scale factor has been filtered using a moving mean function for 

better readability. The sliding window is the same as the one used with the Horn method. 

Figure 6-24: ORB-SLAM transformation estimation using a sliding window (Test 1) 
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First, we notice that the scale factor estimated by Horn method is similar to the scale factor 

estimated point by point. Second, it can be seen that the 7 transformation parameters vary 

slowly in time and are not constant. We can also see that the only jump of this transformation 

parameters’ values occurs at time epoch 455s. This jump occurs when the SLAM position 

switches from using the end of the map to using again the beginning of the map to compute the 

trajectory. This position jump, in addition to the slow transformation drift, show that, although 

loop closure reduces considerably the map drift, it does not remove it completely. Despite this 

little drift, the most convenient way to model these parameters in the Kalman filter is to consider 

them as constant between two time instants because of their slow variation in time. 

The SLAM ATE is computed using the transformation assumed varying in time. Figure 6-25 

illustrates this error based on the computation of the previously mentioned transformation. We 

can see that the error is relatively small assuming a varying transformation except for the loop 

closure jump instant, where the horizontal error is of few meters. Table 6.5 ORB-SLAM 

accuracy after alignment (Test 1)Table 6.5 gives the maximum, the RMS, the 95th and the 99th 

percentile of the SLAM ATE. 

 

Figure 6-25 ORB-SLAM ATE after alignment (Test 1) 

 Max (m) RMSE (m) 95th percentile 99th percentile 

East 1.93 0.56 1.49 1.81 

North 14.37 1.08 1.08 5.78 

Up 3.89 0.32 0.15 1.76 

Table 6.5 ORB-SLAM accuracy after alignment (Test 1) 

6.2.2.2 Test 2: VSLAM performance in airport environment 

As in the previous test, a comparison is performed between the SLAM and the reference 

trajectories in Figure 6-26. It shows that the SLAM is affected by a very small scale factor, a 

rotation and a translational offset as explained in the previous test. The comparison between the 

scale factor in airport environment and in urban environments shows that the scale factor in 

airport environment is smaller. This is due to the depth of the observed features. In fact, in urban 
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environments, the observed features are closer than the features observed in airport. This makes 

the scale factor higher.  

 

Figure 6-26 Comparison between ORB-SLAM and reference trajectories (Test 2) 

As in Test 1, the computation of the local-to-vision frame transformation parameters is 

performed using Horn method assuming first that this transformation is constant. These 

parameters are given in Table 6.6.  

Scale factor 
Quaternion value (from (𝒍) to (𝒗)) 

Translational offset (between 

(𝒍) and (𝒗)) 

q0 qx qy qz px py pz 

0.0079 0.6245 -0.0329 5e-5 0.7803 -32.75 68.90 -4.51 

Table 6.6 ORB-SLAM transformation estimation (Test 2) 

Similar to Test 1, this transformation is used to compare the SLAM trajectory to the reference 

trajectory in Figure 6-27.  

 

Figure 6-27 Reference and ORB-SLAM trajectories after alignment (Test 2) 
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The comparison between the two trajectories shows that the constant transformation is not 

adapted since the trajectories do not totally match. We consider therefore a varying 

transformation in time, as in Test 1. 

Figure 6-28 illustrates the estimated parameters using Horn method on a 1min sliding window. 

As in Test 1, these parameters vary slowly in time. This highlights the improvement brought 

by loop closure. However, the jump occurring around instant 180s (time corresponding to loop 

closure) proves that the map is affected by a discontinuity at the time of loop closure.  

 

Figure 6-28 ORB-SLAM transformation estimation (Test 2) 

The ATE computation is also performed for Test 2. It follows the same steps as for Test 1. The 

SLAM ATE statistics are summarized in Table 6.7. Compared to urban environments, the ATE 

is slightly worse. This may be explained by the lack of features first and to their bad spatial 

distribution (very far, concentrated is one area where there are buildings or aircrafts) compared 

to urban environment. 

 Max (m) RMSE (m) 95th percentile 99th percentile 

East 4.95 1.83 2.18 3.97 

North 3.47 1.04 1.24 1.54 

Up 4.14 0.78 0.57 3.99 

Table 6.7 ORB-SLAM accuracy after alignment (Test 2) 



Chapter 6 – Results and Performance Analysis 

118 

 

 Hybridized navigation solution 

6.2.3.1 GPS/INS/WSS/NHC 

First of all, the classical GPS/INS/WSS/NHC hybridization using an EKF is implemented and 

studied. Only Test 1 is discussed since the results are similar for Test 2. This study consists of 

analyzing the estimated navigation solution error in terms of horizontal position, horizontal 

velocity and heading. It validates also the filter convergence by analyzing the covariance 

properties and confirms the observability theoretical results found in Chapter 4. Figure 6-29, 

Figure 6-30 and Figure 6-31 illustrate respectively the horizontal position error, the horizontal 

velocity error, the heading error (in blue) and their corresponding 3𝜎 bound (in red), where 𝜎 

is the state’s uncertainty provided by the EKF. We notice that the errors are almost always 

below the 3𝜎 bound. This validates the measurement models used for the different sensors. We 

notice also that the 3𝜎 bound reflects the observability issue. When the car does not move, the 

heading is unobservable, and its associated uncertainty increases to reflect its unobservability 

at stops. 

 

Figure 6-29 Horizontal position error and its 

associated 𝟑𝝈 bound of the GPS/INS/WSS/NHC 

filter (Test 1) 

 

Figure 6-30 Horizontal velocity error and its 

associated 𝟑𝝈 bound of the GPS/INS/WSS/NHC 

filter (Test 1) 

 

Figure 6-31 Heading error and its associated 𝟑𝝈 bound of the GPS/INS/WSS/NHC filter (Test 1) 

Figure 6-32 and Figure 6-33 provide the EKF estimation of the IMU biases and scale factors 

for both accelerometers and gyroscopes. In blue is the bias/scale factor error estimated by the 
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filter and in red their corresponding 3𝜎 bound. The magenta curve represents the IMU bias and 

scale factor after summing the estimated errors. It can be noticed that the filter converges since 

its 3𝜎 bound decreases in time. In addition, the estimated values of IMU biases and scale factors 

errors are included in this bound. We can also validate the observability theoretical results by 

analyzing the uncertainty provided by the filter. The accelerometer biases are observable since 

their uncertainty decreases continuously. The accelerometer scale factors are observable on the 

y and z axes because these axes correspond respectively to along track and vertical axes that 

are excited by the car motion and the gravity. However, the uncertainty of the x-axis scale factor 

does not decrease continuously because the scale factor is only observable when this axis is 

excited (in turns). For gyroscopes, their biases are theoretically observable if at least two 

accelerometers are excited. It is almost always the case thanks to the vehicle motion and gravity. 

When the vehicle does not move, these biases are estimated thanks to ZARU (Zero Angular 

Rate Update). This is confirmed by Figure 6-33 showing that gyro biases are always estimated. 

For the scale factors, they are only estimated if their corresponding gyros are excited. For this 

reason, the uncertainty of the x and y axes gyro scale factors converge much slowly than the 

scale factor on the z-axis, which is excited much more frequently than the other thanks to 

horizontal movement.  
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Figure 6-32 IMU accelerometer and gyroscope biases and their associated 𝟑𝝈 bound of the 

GPS/INS/WSS/NHC filter (Test 1) 
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Figure 6-33 IMU accelerometer and gyroscope scale factors and their associated 𝟑𝝈 bound of the 

GPS/INS/WSS/NHC filter (Test 1) 

6.2.3.2 Innovation test contribution 

The innovation test is a simple filter test presented in Section 5.2.2 that consists of a consistency 

check all of the KF measurements with all the filter previous information. This test has been 

implemented on GNSS normalized innovation with a threshold of 3. The normalization consists 

of dividing the innovation by its standard deviation estimated by the KF. If the measurement 

innovation does not pass the test, then it is excluded. A single test is passed by each GNSS 

pseudorange and pseudorange rate measurement. The comparison between the horizontal 

position and velocity errors before and after the exclusion based on the innovation test is 

performed in Figure 6-34, in suburban-urban environment 
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Figure 6-34 Comparison of the horizontal position error and the horizontal velocity error before and after 

innovation test using GPS/INS/WSS/NHC filter (Test 1) 

This comparison reveals that the improvement brought by this simple test makes it a good and 

simple way to make the navigation solution more robust to faulty measurements by rejecting 

measurements that are likely to be degraded. It is possible that the pseudorange rate be rejected 

while its corresponding pseudorange is kept for the navigation solution estimation, but not the 

inverse because if a pseudorange is of bad quality than the corresponding pseudorange rate is 

automatically bad. Note that a condition is put on the pseudorange measurement exclusion 

limiting the number of excluded measurement such as the number of remaining satellites does 

not go below 4. If the number of identified pseudoranges to be excluded makes this number 

below 4, then the measurements to be excluded are classified based on their quality and the 

measurements with better quality than the others are kept to have exactly 4 satellites.  

 

Figure 6-35 Number of GPS measurements before and after innovation test exclusion 
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Figure 6-35 illustrates the number of all the satellites in view and the number of remaining 

pseudorange and pseudorange rate. The pseudoranges were shifted by 0.2 to be able to 

distinguish the number of remaining satellites. We clearly notice on this figure that the 

pseudorange rate measurements are more excluded than the pseudoranges, as explained 

previously. 

Table 6.8 gives the horizontal performance in terms of maximum, RMS, 95th percentile and 99th 

percentile before and after exclusion. In addition to the Figure 6-34, this table emphasizes the 

improvement brought by the innovation test. 

 

Horizontal position 

error (m) 

Horizontal Velocity 

error (m/s) 
Heading error (°) 

Before 

exclusion 

After 

exclusion 

Before 

exclusion 

After 

exclusion 

Before 

exclusion 

After 

exclusion 

Max 32.63 15.71 6.02 0.79 24.79 4.93 

RMS 14.83 8.53 0.99 0.14 0.98 0.14 

95th percentile 24.84 13.18 2.35 0.30 11.00 1.98 

99th percentile 28.15 14.95 3.96 0.46 19.11 3.68 

Table 6.8 Horizontal accuracy performance before and after innovation test using GPS/INS/WSS/NHC 

filter (Test 1) 

The results are only illustrated for Test 1 but the same conclusions are applied for Test 2. Note 

that the number of satellites excluded is lower in Test 2 thanks to the better quality of 

measurements in airport area. 

6.2.3.3 SLAM contribution 

To evaluate SLAM contribution to the hybridized navigation solution, two scenarios are 

considered: 

- Scenario 1: the GPS is always available to study the SLAM contribution in presence of 

GPS with VSLAM loop-closure-based adjusted map. 

- Scenario 2: a GPS outage is manually introduced to highlight the contribution of using 

VSLAM loop-closure-based adjusted map, when GPS (which is the only absolute 

sensor) is unavailable. 

Therefore, seven configurations are considered: 

- Config 1: GPS 

- Config 2: GPS/INS/IT (innovation test) 

- Config 3: GPS/INS/WSS/NHC/IT 

- Config 4: GPS/INS/WSS/NHC/IT/VSLAM 

- Config 5: GPS/INS/IT with 300s GPS outage 

- Config 6: GPS/INS/WSS/NHC/IT with 300s GPS outage 

- Config 7: GPS/INS/WSS/NHC/IT/VSLAM with 300s GPS outage 

6.2.3.3.1. SLAM contribution in presence of GPS 

Figure 6-36 illustrates the horizontal position and velocity errors obtained by Config 4 that 

considers all the available aiding measurements. First of all, it is important to mention that the 
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filter should run and converge before the VSLAM starts, in order to provide good information 

to estimate the SLAM transformation, as well as the lever arm between the IMU and the camera. 

Otherwise, these parameters will be badly estimated and the VSLAM innovation measurement 

quality depending on these parameters will be degraded, resulting in the filter navigation 

solution degradation. In addition, VSLAM parameters should be initialized by computing the 

transformation between the SLAM vision frame and the local frame from the first SLAM 

points. Note that it is mandatory to check the velocity of the vehicle and if it does not move, 

then wait until the vehicle start moving to launch the initialization. If these parameters are not 

initialized, the filter converges nonetheless to the values of these parameters, but the 

convergence takes a lot of time and degrades the navigation solution meanwhile.  

Compared to Figure 6-29, Figure 6-36 shows that the use of SLAM in the presence of GPS does 

not improve the navigation solution, although a negligible decrease in the 3𝜎 bound has been 

noticed. A possible explanation to this is the fact that the SLAM parameters are estimated 

thanks to the other filter sensors. These parameters are then utilized to create the SLAM 

innovation measurement by computing the difference between the SLAM actual output in the 

vision frame and the IMU prediction transformed in the vision frame; see Equation (4.35).  

In addition, the position error exceeds the 3𝜎 bound in some points. This may be due to the bad 

SLAM modeling. In fact, Kalman filters are not optimal in the case of non-Gaussian 

measurements, which is the case of SLAM based on the analysis of ATE. This may also be due 

to the uncertainty provided by the SLAM performance analysis in Section 6.2.2 that 

underestimates its error. 

 

Figure 6-36 Horizontal position and velocity errors and their associated 𝟑𝝈 bound of the 

GPS/INS/WSS/NHC/IT/VSLAM filter (Test 1) 

Figure 6-37 illustrates the SLAM transformation estimation by the filter. These parameters have 

approximately the same values found with Horn method in Section 6.2.2. The camera-IMU 

alignment denoted 𝒒𝑏2𝑐 is also estimated by the Kalman as illustrated in Figure 6-37. 
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Figure 6-37 ORB-SLAM transformation parameters estimated by the GPS/INS/WSS/NHC/IT/VSLAM 

filter (Test 1) 

 

5.2.3.3.2. SLAM contribution in GPS outage 

Figure 6-38 shows Config 7 where 300 s of GNSS outage have been introduced while using all 

the other measurements. First, we notice the increase in the error 3𝜎 bound because of GPS 

outage. This increase is due to the fact that GPS, which is the only global sensor, does not 

provide any information. In parallel, we notice that the error drifts even in SLAM presence. 

This is due to the fact that in GPS absence, the SLAM transformation parameters are propagated 

using its model in the Kalman filter (constant model). This choice of not updating the SLAM 

transformation parameters with the INS/WSS/NHC mode is justified by the drift of these 

sensors in GPS outage and by the slowly changing behavior of these parameters. However, due 

to the small drift remaining even when we use a map adjusted with loop closure, these 

parameters change in reality making drift the navigation solution using SLAM in GPS outage. 

If the map was correctly adjusted to completely remove the drift of these parameters, then these 

parameters would be estimated before GPS outage and the navigation would continue with the 

parameters that would not change. This would make SLAM like a global sensor thanks to the 

estimation of its parameters, resulting in navigation performance in GPS outage similar to the 

case of GPS presence. This suggests reviewing more deeply the loop closure process of SLAM 

and improving it.  
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Figure 6-38 Horizontal position error and its associated 𝟑𝝈 bound of the GPS/INS/WSS/NHC/IT/VSLAM 

filter  with 300 s GPS outage (Test 1) 

The accuracy performance of the navigation solution is summarized for all the cases of Test1 

in Figure 6-39, Figure 6-40 and in Table 6.9 to Table 6.14. We can see that sensor fusion 

improves dramatically the navigation solution accuracy with respect to standalone GPS. Each 

time a sensor or constraint is added, the navigation accuracy is improved. As for SLAM use, as 

it is defined in our proposed architecture, it does not contribute to the improvement of the 

navigation solution because of the existence of the unknown transformation between the vison 

frame and the local frame. However, the use of SLAM improves the navigation accuracy in 

case of GPS outage, even if the achieved performance is still not satisfactory.  

 

Figure 6-39 Comparison of the different 

configuration horizontal position error without GPS 

outage (Test 1) 

 

Figure 6-40 Comparison of the different 

configuration horizontal position error with 300 s 

GPS outage (Test 1) 
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 Horizontal position error (m) 

 Max RMS 95th percentile 99th percentile 
GPS 73.75 15.92 30.42 55.57 
GPS/INS/IT 34.65 11.51 21.99 29.74 
GPS/INS/WSS/NHC/IT 15.72 8.54 13.19 14.96 
GPS/INS/WSS/NHC/IT/SLAM 17.70 9.57 15.57 17.35 

Table 6.9 Comparison of the different configuration horizontal position accuracy with no GPS outage 

 (Test 1) 

 Horizontal position drift after 300s of GPS outage (m) 
GPS/INS/IT 15 967.85 
GPS/INS/WSS/NHC/IT 54.92 
GPS/INS/WSS/NHC/IT/SLAM 30.21 

Table 6.10 Comparison of the different configuration horizontal position drift after 300s of GPS outage  

(Test 1) 

 Horizontal Velocity error (m/s) 

 Max RMS 95th percentile 99th percentile 
GPS 36.64 2.49 4.39 8.79 
GPS/INS/IT 3.21 0.74 1.77 2.53 
GPS/INS/WSS/NHC/IT 0.79 0.14 0.31 0.47 
GPS/INS/WSS/NHC/IT/SLAM 0.64 0.16 0.35 0.56 

Table 6.11 Comparison of the different configuration horizontal velocity accuracy with no GPS outage 

 (Test 1) 

 Horizontal velocity drift after 300s of GPS outage (m/s) 
GPS/INS/IT 117.81 
GPS/INS/WSS/NHC/IT 3.97 
GPS/INS/WSS/NHC/IT/SLAM 2.03 

Table 6.12 Comparison of the different configuration horizontal velocity drift after 300s of GPS outage  

(Test 1) 

 Heading error (°) 

 Max RMS 95th percentile 99th percentile 
GPS/INS/IT 25.04 5.21 6.64 19.23 
GPS/INS/WSS/NHC/IT 4.94 1.50 1.98 3.68 
GPS/INS/WSS/NHC/IT/SLAM 4.68 1.84 3.49 4.56 

Table 6.13 Comparison of the different configuration heading accuracy with no GPS outage (Test 1) 

 Heading drift after 300s of GPS outage (°) 
GPS/INS/IT 153.71 
GPS/INS/WSS/NHC/IT 5.58 
GPS/INS/WSS/NHC/IT/SLAM 2.66 

Table 6.14 Comparison of the different configuration heading drift after 300s of GPS outage (Test 1) 

The same conclusions about the filter behavior apply for Test 2. The results of Test 2 are shown 

in Figure 6-41, Figure 6-42 and in Table 6.15 to Table 6.20. The results show that the addition 

of INS, WSS and the motion constraints to the GPS solution has improved the accuracy of the 

navigation solution near buildings and apron. However, when we get far from buildings, the 
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fusion of GPS with these sensors degrades its performance. This is due to the overestimation of 

the GPS uncertainly mentioned in Section 6.2.1 using the GPS model described in Section 

2.1.2Erreur ! Source du renvoi introuvable.. This uncertainty overestimation makes the filter 

less confident in GPS measurements than it should be, although they are of good quality.  

As for the SLAM, its contribution is negligible in presence of GPS. In the absence of GPS, the 

use of SLAM as it is defined in the architecture proposed in Chapter 4, does not improve neither 

the navigation performance. This is due to the badly textured airport environment and to the 

SLAM trajectory drift. 

 

Figure 6-41 Comparison of the different 

configuration horizontal position error without GPS 

outage (Test 2) 

 

Figure 6-42 Comparison of the different 

configuration horizontal position error with 60 s 

GPS outage (Test 2) 

 

 Horizontal position error (m) 

 Max RMS 95th percentile 99th percentile 
GPS 9.60 2.81 4.92 6.87 
GPS/INS/IT 4.94 3.13 4.22 4.64 
GPS/INS/WSS/NHC/IT 5.75 3.13 4.41 5.26 
GPS/INS/WSS/NHC/IT/SLAM 5.04 3.34 4.59 4.82 

Table 6.15 Comparison of the different configuration horizontal position accuracy with no GPS outage 

 (Test 2) 

 Horizontal position drift after 60s of GPS outage (m) 
GPS/INS/IT 393.93 
GPS/INS/WSS/NHC/IT 17.63 
GPS/INS/WSS/NHC/IT/SLAM 22.70 

Table 6.16 Comparison of the different configuration horizontal position drift after 60s of GPS outage  

(Test 2) 
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 Horizontal Velocity error (m/s) 

 Max RMS 95th percentile 99th percentile 
GPS 2.61 0.24 0.44 1.04 
GPS/INS/IT 0.83 0.15 0.32 0.53 
GPS/INS/WSS/NHC/IT 0.81 0.17 0.37 0.55 
GPS/INS/WSS/NHC/IT/SLAM 0.77 0.16 0.34 0.51 

Table 6.17 Comparison of the different configuration horizontal velocity accuracy with no GPS outage 

 (Test 2) 

 Horizontal velocity drift after 60s of GPS outage (m/s) 
GPS/INS/IT 13.37 
GPS/INS/WSS/NHC/IT 0.91 
GPS/INS/WSS/NHC/IT/SLAM 1.27 

Table 6.18 Comparison of the different configuration horizontal velocity drift after 60s of GPS outage  

(Test 2) 

 Heading error (°) 

 Max RMS 95th percentile 99th percentile 
GPS/INS/IT 15.11 11.33 8.37 13.73 
GPS/INS/WSS/NHC/IT 12.03 6.35 5.74 7.99 
GPS/INS/WSS/NHC/IT/SLAM 12.01 6.42 5.67 7.93 

Table 6.19 Comparison of the different configuration heading accuracy with no GPS outage (Test 2) 

 Heading drift after 60s of GPS outage (°) 
GPS/INS/IT 80.28 
GPS/INS/WSS/NHC/IT 12.18 
GPS/INS/WSS/NHC/IT/SLAM 11.78 

Table 6.20 Comparison of the different configuration heading drift after 60s of GPS outage (Test 2) 

6.3 Conclusion 

This chapter presented the accuracy performance analysis of the navigation solution estimated 

using the hybridization architecture presented in Chapter 4. It described the data collection and 

the tests used to assess the performance of the navigation solution. 

In the first part GPS solution is evaluated. It has been shown based on the received signal 𝐶/𝑁0 

that the measurements are degraded with multipath and probably NLOS. The exclusion of 

measurements based on a 𝐶/𝑁0  mask is proven to be not efficient especially in urban 

environments where the satellite number is already small. The exclusion degrades the satellite 

geometry which degrades in turn the navigation solution. However, in airport environment, this 

exclusion has shown to be useful and is therefore applied in such environment. 

In the second part, ORB-SLAM position output was analyzed on a previously explored 

environment where the feature map has been constructed, optimized thanks to loop closure and 

saved in the SLAM vision frame. This choice is based on the fact that if the map is not used, 

then the SLAM drifts and does not help to achieve good accuracy performance. Two tests have 

been considered. The first one is a trajectory in urban environment and the second one in the 

airport next to its building. First, the transformation allowing aligning the SLAM frame with 
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the reference local frame was estimated. Then, an estimation of SLAM position accuracy is 

given based on the computation of this transformation. This accuracy is used as the SLAM 

position uncertainty input to the Kalman filter. Note that SLAM accuracy in urban environment 

(textured) is better than in airport environment (non-textured). This is due to the higher number 

of features, their better location in terms of proximity and spatial distribution. However, in both 

cases, the accuracy (of few meters) is not satisfactory. 

In the third part, the performance of the hybridized solution is assessed. First, the integrated 

GPS/INS/WSS/NHC before SLAM integration has been studied. The validation of the 

measurement models is performed, and the theoretical state observability conclusions are 

confirmed. Then, the impact of the use of innovation testing and SLAM were discussed. This 

performance analysis has shown that the innovation test that excludes the GPS measurements 

that are likely to be degraded because of multipath and NLOS, improves dramatically the 

navigation solution estimation especially in urban environments. However, the SLAM, as it is 

used, does not improve the navigation solution performance when GPS is available. However, 

in case of GPS outage, SLAM can improve the navigation performance if the 7 parameters 

describing the transformation between the vision frame and the local frame do not change in 

time. This can be done by improving the SLAM loop closure process to achieve a complete 

drift removal. 



 

Chapter 7 

7 Conclusions and Proposals on Further 
Research 

The current chapter has a first part which reminds the conclusions of the previous chapters and 

concludes the work done during this Ph.D. thesis. It also reminds the major contributions of the 

thesis. In a second part, perspectives of future works that could be carried out so as to continue 

the work done during this Ph.D. thesis are addressed. 

7.1 Thesis conclusions 

It is important to remind that this Ph.D. thesis focused on designing and assessing the 

performances of a hybridization filter integrating low-cost sensors to achieve a high-

performance level in terms of accuracy, continuity and integrity, while having a reasonable cost 

and taking into account the constraints related to the targeted applications. 

As a first step, the state of the art of sensors used in literature, their characteristics, their prices 

and their performance has been reviewed to identify the most adapted sensors to our case of 

study, taking into account different aspects such as the low-cost constraint and the 

characteristics of the targeted application (outdoor environment, ground vehicles, etc.). This 

state of the art has led to the identification of the sensors to be used in the multi-sensor fusion 

architecture. These sensors consist of a low-cost GNSS receiver, a MEMS IMU, four-wheel 

speed sensors and visual information provided by an independent processing module which 

converts the visual information into motion information before its integration in the multi-

sensor architecture. This approach of considering the visual processing module as a black box 

has the advantage of having a multi-sensor system that is independent from the technique used 

by the visual module. This allows having a modular system capable of continuously providing 

a navigation solution even if the visual process experiences failures either coming from bad 

visibility conditions (lack of light, fog, rain, intense luminosity variation, etc.), or an 

unfavorable environment for visual information processing (dynamic environment, badly 

textured environment, etc.). 

After having identified the sensors that would be part of the hybridization architecture, these 

sensors have been studied in depth in Chapter 2 and Chapter 3. A review of their technical 

fundamentals, principles and measurement characteristics has been performed. In particular, we 

focused on vision-based positioning to identify the techniques and the type of measurement that 

would be used in the multi-sensor architecture, and to understand the characteristics and 

challenges of this type of information. First, VO and SLAM techniques have been addressed 

and compared. SLAM has been identified as the best technique capable of providing navigation 
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information with the best accuracy performance. Indeed, unlike VO based on simple DR to 

provide camera motion, SLAM provides the camera pose after being adjusted by several 

optimization processes. For this reason, this information has been identified as the visual 

information to be used in the multi-sensor architecture. Second, monocular vision has been 

preferred to stereovision because of the need of having a large baseline in stereovision to cope 

with the far objects in large-scale environments, which is not feasible for ground vehicles. 

Finally, the challenges of these choices are discussed. In particular, issues related to the 

unknown transformation between the frame in which SLAM outputs its pose and the local well-

known frame are highlighted. This transformation includes an unknown scale factor resulting 

from monocular vision, an unknown rotation and offset between the vision frame and the local 

frame resulting from the SLAM initialization step. 

After having studied sensors and detailed their advantages and their challenges, the state of the 

art of hybridization techniques has been reviewed, and a comparison between the different 

strategies has been carried out. This study has led to identify the error-state EKF as the most 

adapted fusion algorithm. In fact, despite the EKF limits consisting mainly of the linearization 

process, the low dynamics in the intended applications and the error state configuration make 

the effect of linearization negligible. In addition, this filter is efficient in terms of computational 

cost, especially for applications where there are a large number of states and observations, 

compared to the other techniques. 

Based on the previous considerations, the architecture of the multi-sensor fusion system has 

been proposed in Chapter 4. The IMU is selected as the reference sensor since it is the only 

sensor continuously and autonomously providing a complete navigation solution at the highest 

rate, independently of the surrounding environment. The other sensors consisting of a GNSS 

receiver providing position and velocity information or pseudorange and pseudorange rate 

depending on the application, WSSs providing velocity on each wheel, and position and attitude 

output by a SLAM algorithm, are used to correct the IMU navigation solution. This correction 

is done in closed loop to calibrate the high errors of the bad quality IMU. Motion constraints 

related to ground movement are also taken into account to improve the navigation solution 

estimation.  

Based on this architecture, the states to be estimated by the filter have been identified for each 

sensor and gathered in the state vector. The mathematical models defining the Kalman time 

propagation process and measurement update are detailed for all the sensors. An observability 

study has been carried out given the high number of states to be estimated by the filter. This 

study has confirmed the observability of all the states using the proposed architecture if some 

motion conditions are respected. 

The proposed architecture is then evaluated from an integrity point of view in Chapter 5. The 

challenges related to this topic have been discussed. These challenges are divided into sensor 

challenges, filter challenges and requirement challenges. Sensor challenges are mainly related 

to SLAM and GNSS whose errors are environment-dependent. To address this challenge, 

SLAM errors have been identified and classified into fault-free mode and failure modes and the 

GNSS failure modes are recalled. Furthermore, the integrity monitoring principle through the 
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FD/FDE function has been explained and the state of the art of the existing FD/FDE techniques 

adapted to our case of study is reviewed. This analysis has led to several conclusions regarding 

the integrity challenges resulting from the presence of SLAM and GNSS. For GNSS, these 

challenges are mainly related to signal vulnerability to reflections and interferences. As for 

SLAM, the main challenge consists of characterizing its error and particularly the possible 

failure modes. This requires having evaluated SLAM on sufficiently various and long data 

collections and identified all the possible failures based on these collections. In addition, the 

fact that SLAM error is environment-dependent and that SLAM includes very complex 

processes, make the mapping of the measurement error (pixel uncertainty) into the navigation 

solution domain complicated to perform. This prevents the direct exploitation of the classical 

GNSS signal integrity methods in the SLAM context, and requires thinking about a different 

approach to handle the SLAM integrity issue.  

Filter integrity challenges are mainly due to the single failure assumption which is not adapted 

to our case of study where the proposed system uses different measurements. In addition, the 

computational complexity of the existing integrity algorithms makes the real-time processing 

unfeasible. However, since the proposed architecture takes advantage of information 

redundancy provided by different sensors, consistency check of these measurements can be 

simply performed by testing the filter innovation. This method, though simple, has proven to 

be efficient to detect measurements that are likely to be faulty and exclude them. 

The third integrity challenge consists of having no requirements for road applications in terms 

of integrity risk, time to alert and HAL. Despite that, a simple example based on the HAL 

definition is proposed in this thesis and has shown that the HAL should be approximately equal 

to 1.5𝑚 to avoid collision between vehicles. If we assume the fault free mode, this requires an 

accuracy of about 40 𝑐𝑚, which is a challenging task at present.  

Taking into account all the challenges discussed above, the proposed multi-sensor filter has 

been implemented and evaluated on real data. The ORB-SLAM algorithm is used to output the 

camera pose. Two tests have been considered. The first one is a trajectory in urban environment 

and the second one in the airport next to its building.  

First the GPS solution is evaluated to highlight the difficulties encountered by GPS in urban 

environment. It has been shown based on the received signal 𝐶/𝑁0 that the measurements have 

degraded quality, resulting from multipath and NLOS. The exclusion of measurements based 

on a 𝐶/𝑁0  mask is proven to be not efficient especially in urban environments where the 

satellite number is already small. This is due to the degradation of satellite geometry because 

of exclusion which degrades the navigation solution. 

Second, ORB-SLAM position output was analyzed on a previously explored environment 

where the feature map has been constructed, adjusted and saved in the SLAM vision frame. 

This choice was based on the fact that if the map is not used, then the SLAM drifts and does 

not help to achieve good accuracy performance. First, the transformation allowing aligning the 

SLAM frame with the reference local frame was estimated. Then, an estimation of SLAM 

position accuracy is given based on the ATE. It has shown that SLAM accuracy in urban 

textured environment is better than in airport poorly-textured environment. This is due to the 
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higher number of features, their better location in terms of proximity and spatial distribution. 

However, in both cases, the accuracy (of few meters) is not satisfactory. The analysis of the 

SLAM trajectory has shown that the use of a previously adjusted map with loop closure reduces 

considerably SLAM drift but does not remove it completely.  

Then the performance of the hybridized solution is assessed. First, the integrated 

GPS/INS/WSS/NHC without SLAM has been studied. The validation of the measurement 

models is performed and the theoretical state observability conclusions are confirmed using the 

behavior of the 3𝜎 bound output by the filter. 

Then, the impact of the use of innovation testing and SLAM were discussed. This performance 

analysis has shown that the innovation test excluding the GPS measurements that are likely to 

be degraded by multipath and NLOS, improves dramatically the navigation solution estimation 

especially in urban environments. However, the SLAM, as it is used, does not improve the 

navigation solution performance when GPS is available. However, in case of GPS outage, 

SLAM can improve the navigation performance if the 7 parameters describing the 

transformation between the vision frame and the local frame do not change in time. This can be 

achieved by improving the SLAM loop closure process to achieve a complete drift removal. 

7.2 Perspective and future works 

Further studies can be conducted in the following of this thesis on several axes in order to 

improve the performance of the proposed architecture: 

SLAM improvement 

- We have seen in this thesis when studying the SLAM performance that a drift remains 

in the adjusted map using loop closure. This drift is reflected on the SLAM pose 

estimation and degrades the quality of SLAM. Note that this problem has not been 

noticed when processing SLAM in small loop closures (loop closure of few hundreds 

of meters) and it may be due to the long trajectory we have travelled (few kilometers). 

It is therefore important to revise the loop closure process especially in the case of large 

loop closure. 

- SLAM can also be improved by modifying the constant velocity model used to predict 

the vehicle motion. This model can be violated in case of high dynamics resulting in the 

loss of map track. This problem has been experienced in the airport environments where 

the car has accelerated. To improve this model, it is recommended to use wheel 

odometry or inertial navigation to predict vehicle dynamics. 

- In badly textured environments such as airport surface, SLAM is likely to loose the map 

frequently especially in turns. To reduce map tracking loss, the camera field-of-view 

may be augmented to 180° or even to 360°. This requires the adaptation of the SLAM 

algorithm to large field-of-view lens, to take into account the correct projection model 

- One of the most limiting issues in SLAM, as it is defined in the proposed architecture, 

is the unknown transformation between the vision frame in which SLAM provides its 
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outputs and the local frame (or any other known frame). In fact, although we have used 

the previously adjusted map in our study, this map is defined in the unknown vision 

frame transferring this unknown transformation to the pose estimation. We can therefore 

think about geo-referencing the map after its adjustment and before using it to perform 

the positioning task. The geo-referencing process should be based on a very precise 

reference system to reduce the SALM error. In that way, SLAM can become an absolute 

sensor being able to provide the pose directly in the absolute frame. Using this method, 

we can achieve the sub-metric level of accuracy 

SLAM Integrity challenges 

- The most challenging integrity task for SLAM is to characterize its error. This task 

requires testing SLAM on a large amount of data to identify the nominal error statistical 

distribution and to characterize the failure modes by their probability of occurrence, the 

correlation between multiple failures (simple failure, multiple failures) and their 

signatures (amplitude, time duration, shape).  

Integration strategy improvement 

- The assumption that may be reviewed in this thesis is the incoherence between the EKF 

requiring Gaussian measurements and the SLAM pose estimation which is not 

Gaussian. This problem may be handled in the future by choosing one of the following 

options: 

o the use of a particle filter to hybridize the non-Gaussian SLAM pose 

measurement with the other sensors. In fact, this filter gives the possibility to 

overcome the constraint of Gaussianity generally needed for KFs to provide an 

optimal estimation. 

o the use of the relative information (displacement and angular change instead of 

position and attitude). This information should be studied in order to be 

characterized. If it is Gaussian, then, its integration in a Kalman filter may be 

performed using stochastic cloning described in (Roumeliotis, 2002) 
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Appendix A 

A Coordinate frames and 
Transformations 

In this appendix, the different coordinate frames used in this thesis and their corresponding 

transformations are detailed. 

A.1 Coordinate frames 

A.1.1 Earth-Centered-Inertial frame (𝒊) 

An inertial frame is defined as a non-rotating and non-accelerating frame with respect to the 

fixed stars. The Earth-Centered-Inertial (ECI) frame used in inertial navigation is centered at 

the Earth’s center of mass and oriented with respect to its spin axis and the stars. Consequently, 

the ECI is not strictly inertial as the Earth undergoes motion in its orbit around the sun.  The 

ECI is defined by: 

• Origin: Earth’s Center of mass 

• 𝒛𝑖 axis: Earth’s spin axis 

• 𝒙𝑖 and 𝒚𝑖 axes: lie within the equatorial plane and do not rotate with the Earth. The 𝒚𝑖 

axis points 90° ahead the 𝑥𝑖 axis in the direction of the Earth’s rotation 

A.1.2 Earth-Centered-Earth-Fixed frame (𝒆) 

The Earth-Centered-Earth-Fixed frame is a frame remaining fixed with respect to the Earth. It 

is defined by: 

• Origin: Earth’s Center of mass 

• 𝒛𝑒 axis: Earth’s spin axis 

• 𝒙𝑒 axis: points from the Earth’s center of mass to the intersection of the equator with the 

Prime Meridian of Greenwich 

• 𝒚𝑒 axis: completes the right-handed frame. 

A.1.3 The East-North-Up local Tangent-Plane frame (𝒍) 

The East-North-Up (ENU) Tangent-Plane frame is a local frame with a fixed origin with respect 

to Earth (usually a point on the Earth surface close to the navigation area). It is defined by: 

• Origin: a fixed origin with respect to Earth 

• 𝒛𝑙  or 𝐔 axis: points upwards along the WGS84 ellipsoidal normal 

• 𝒙𝑙  or 𝐄 axis: points towards the geodetic East 

• 𝒚𝑙  or 𝐍 axis: points towards the geodetic North. 
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The ECI, ECEF and ENU frames are shown in Figure A-1. 

 

Figure A-1 ECI, ECEF and ENU frames 

A.1.4 The body frame (𝒃) 

The body frame, sometimes known as the vehicle frame, describes the vehicle position and 

orientation given by the navigation solution. In the strapdown configuration where the IMU is 

rigidly mounted on the vehicle to be positioned, this frame describes also the IMU axes. The 

body frame is defined by: 

• Origin: vehicle’s Center of mass 

• 𝒙𝑏 axis: points towards the right of the vehicle 

• 𝒚𝑏 axis: points towards the front of the vehicle 

• 𝒛𝑏 axis: completes the right-handed frame (points upwards) 

The body frame is illustrated in Figure A-2. 

 

Figure A-2 Body frame 
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A.1.5 The image frame (𝑰) 

The image frame is a 2D frame that describes the pixel coordinates of a point lying on the image 

plane. It is defined by: 

• Origin: the top-left corner of the image 

• 𝒖 axis: lies in the image plane and points towards the right 

• 𝒗 axis: lies in the image plane and points downwards 

A.1.6 The camera frame (𝒄) 

The camera frame describes the camera position and orientation. It is defined by: 

• Origin: the center of the camera lens (optical center) 

• 𝒛𝑐 axis: is perpendicular to the image plane and points towards the image plane 

• 𝒙𝑐 axis: parallel to the image u-axis and points towards the same direction 

• 𝒚𝑐 axis: parallel to the image v-axis and points towards the same direction 

A.1.7 The vision frame (𝒗) 

The vision frame, also called world frame by the computer vision and robotics communities, is 

a local frame fixed with respect to the Earth. It is defined by: 

• Origin: a fixed point with respect to the Earth 

• 𝒙𝑣 axis: is an arbitrary axis fixed to the Earth 

• 𝒚𝑣 and 𝒛𝑣 axes: complete the right-handed frame. 

The image, camera and vision frames are illustrated in Figure A-3: 

 

Figure A-3 Image, camera and vision frames 
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A.2 Frame Transformations 

A.2.1 From ECI to ECEF frame 

The transformation from ECI to ECEF frame corresponds to a single rotation around the z-axis, 

because both frames have the same origin and the z-axis. Denoting the Earth angular rate by 

𝜔𝑖𝑒, the rotation from ECI to ECEF is given by: 

𝑪𝑖2𝑒 = [

cos(𝜔𝑖𝑒(𝑘 − 𝑘0)) sin(𝜔𝑖𝑒(𝑘 − 𝑘0)) 0

−sin(𝜔𝑖𝑒(𝑘 − 𝑘0)) cos(𝜔𝑖𝑒(𝑘 − 𝑘0)) 0

0 0 1

] (A.1) 

where 

• 𝑘 is the current time epoch 

• 𝑘0 is the time epoch when the x and y-axes of both frames are coincident 

Therefore, denoting 𝒑𝑖 a point expressed in the ECI frame and 𝒑𝑒 the same point expressed in 

the ECEF frame, we have: 

𝒑𝑒  = 𝑪𝑖2𝑒𝒑
𝑖 (A.2) 

A.2.2 From ECEF to ENU frame 

The transformation from ECEF to ENU frame includes a rotation and a translation between the 

ECEF origin (Earth’s center of mass) and the ENU origin (local point). The rotation is 

determined by the vehicle geodetic latitude 𝜑 and longitude 𝜆 as follows: 

𝑪𝑒2𝑙 = [

− sin(𝜆) cos(𝜆) 0
− sin(𝜑) cos(𝜆) − sin(𝜑) sin(𝜆) cos(𝜑)

cos(𝜑) cos(𝜆) cos(𝜑) sin(𝜆) sin(𝜑)
] (A.3) 

Therefore, denoting 𝒑𝑒 a point expressed in the ECEF frame and 𝒑𝑙 the same point expressed 

in the ENU frame, we have: 

𝒑𝑙 = 𝑪𝑒2𝑙(𝒑
𝑒 − 𝒑𝑙0

𝑒 ) (A.4) 

where 𝒑𝑙0
𝑒  is the position of the ENU frame origin in the ECEF frame. 

A.2.3 From ENU to body frame 

The transformation from the ENU frame to the body frame is performed by three consecutive 

rotations as explained in Appendix B and a translation between the ENU origin (fixed with 

respect to the Earth) and the body origin (moving with respect to the Earth). The rotation 𝑪𝑙2𝑏 

is given by equation (B.41). Therefore, denoting 𝒑𝑙 a point expressed in the ENU frame and 𝒑𝑏 

the same point expressed in the ENU frame, we have: 

𝒑𝑏 = 𝑪𝑙2𝑏(𝒑
𝑙 − 𝒑𝑏0

𝑙 ) (A.5) 
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where 𝒑𝑏0
𝑙  is the position of the vehicle center of mass in the local ENU frame. 

A.2.4 From vision to camera frame 

The transformation from the vision frame to the camera frame is described by a rotation 𝑪𝑣2𝑐 

and a translation between the vision frame origin and the camera optical center 𝒑𝑐0
𝑣 . 𝑪𝑣2𝑐 and 

𝒑𝑐0
𝑣  represent respectively the camera orientation and position is the world frame. These 

parameters are called the camera extrinsic parameters. Therefore, denoting 𝒑𝑣 a point expressed 

in the vision frame and 𝒑𝑐 the same point expressed in the camera frame, we have: 

𝒑𝑐 = 𝑪𝑣2𝑐(𝒑
𝑣 − 𝒑𝑐0

𝑣 ) (A.6) 

A.2.5 From camera to image frame 

The transformation from the camera frame to the image frame is described by two steps. The 

first step transforms a 3D point 𝒑𝑐 = [𝑥𝑐 𝑦𝑐 𝑧𝑐]𝑇 expressed in the camera frame into a 2D 

point 𝒑𝐼𝑚 lying on the image plane. The second step converts the point 𝒑𝐼𝑚 expressed in metric 

unit to 𝒑𝐼𝑝 = [𝑢 𝑣]𝑇 expressed in pixel unit. 

To perform this transformation, the points should be expressed in homogenous coordinates to 

avoid the non-linearity of the transformation: 

𝑘𝑐 [
𝑢
𝑣
1
] = [

𝑘𝑢 𝑠𝛾 𝑢0
0 𝑘𝑣 𝑣0
0 0 1

]
⏟        

2𝑛𝑑𝑠𝑡𝑒𝑝

[
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

]
⏟        

1𝑠𝑡𝑠𝑡𝑒𝑝

[

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

] (A.7) 

where 

• 𝑘𝑐 is a scale factor 

• 𝑘𝑢 and 𝑘𝑣 represent the number of pixels per distance unit in the u and v directions 

• 𝑠𝛾 is the skew factor which equals zero if and only if the 𝒖 and 𝒗 directions are perfectly 

orthogonal 

• 𝒄𝟎 = [𝑢0 𝑣0]  is the principal point describing the intersection point between the 

optical axis and the image plane 

• 𝑓 is the focal length 

The parameters 𝑘𝑢 ,𝑘𝑣, 𝑠𝛾, 𝑢0, 𝑣0 and 𝑓 are called the camera intrinsic parameters. 

Taking into account the transformation from the vision frame to the camera frame and the 

transformation from the camera frame to the image frame, the projection of a point 𝒑𝑣 on the 

image plane is given by the following expression: 

𝑠 [𝒑
𝐼𝑝

1
] = [

𝑘𝑢 𝑠𝛾 𝑢0
0 𝑘𝑣 𝑣0
0 0 1

] [
𝑓 0 0 0
0 𝑓 0 0
0 0 1 0

] [
𝑪𝑣2𝑐 −𝑪𝑣2𝑐𝒑𝑐0

𝑣

𝟎1×3 1
] [
𝒑𝑣

1
] (A.8) 
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Appendix B 

B Rotation mathematics 

In three-dimensional space, there are several ways to represent a rotation. The common way to 

describe a rotation is to use quaternions, rotation matrices and Euler angles.  

B.1 Quaternions 

B.1.1 Mathematical definition 

A quaternion is a hyper-complex number defined with four components 𝑞0, 𝑞1, 𝑞2 and 𝑞3 by: 

𝒒 = 𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 (B.1) 

where 𝒋  and 𝒌   are the hyper-imaginary numbers satisfying the JPL convention (Trawny, 

2005): 

𝑖2 = −1 , 𝑗2 = −1 , 𝑘2 = −1 

𝑖𝑗 = −𝑗𝑖 = −𝑘 , 𝑗𝑘 = −𝑘𝑗 = −𝑖  , 𝑘𝑖 = −𝑖𝑘 = −𝑗  
(B.2) 

Note that there are additional conventions that are used such as the Hamilton convention (Sola, 

2015). In land navigation, the Hamilton convention is the most widely used while the JPL 

convention is used in the aerospace field. However, it is more convenient to use the JPL 

convention to simplify the transformations between the quaternion and the rotation matrices. 

Further details will be given later about this choice. 

The quantity 𝑞0 is the real or scalar part of the quaternion and 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘 is the imaginary 

or vector part. Therefore, the quaternion can be written: 

𝒒 = [
𝑞0
𝒒𝑣
] = [𝑞0 𝑞1 𝑞2 𝑞3]𝑇 (B.3) 

B.1.2 Physical definition 

A quaternion is a representation of a rotation by a rotation angle 𝛼 and a unit vector along the 

axis of rotation 𝒖: 

𝒒 = [
cos (

𝛼

2
)

sin (
𝛼

2
)  𝒖

] = [cos (
𝛼

2
) sin (

𝛼

2
)𝑢𝑥 sin (

𝛼

2
) 𝑢𝑦 sin (

𝛼

2
)𝑢𝑧]

𝑇

 (B.4) 

This definition shows the following important property of the quaternion of rotation: A 

quaternion representing rotation is a unit vector: 



Appendix B – Rotation mathematics 

156 

 

‖𝒒‖ = √𝑞0
2 + 𝑞1

2 + 𝑞2
2 + 𝑞3

2 = 1 (B.5) 

B.1.3 Quaternion properties 

- Multiplication 

The quaternion multiplication operator is denoted by ⊗. The product of two quaternions is 

given by: 

𝒒⊗ 𝒑 = (𝑞0 + 𝑞1𝑖 + 𝑞2𝑗 + 𝑞3𝑘)(𝑝0 + 𝑝1𝑖 + 𝑝2𝑗 + 𝑝3𝑘) (B.6) 

Using the JPL convention defined in equation (B.2), we obtain: 

𝒒⊗ 𝒑 = [

𝑞0𝑝0 − 𝑞1𝑝1 − 𝑞2𝑝2 − 𝑞3𝑝3
𝑞0𝑝1 + 𝑞1𝑝0 − 𝑞2𝑝3 + 𝑞3𝑝2
𝑞0𝑝2 + 𝑞1𝑝3 + 𝑞2𝑝0 − 𝑞3𝑝1
𝑞0𝑝3 − 𝑞1𝑝2 + 𝑞2𝑝1 + 𝑞3𝑝0

] (B.7) 

This can also be written in terms of scalar and vector parts as: 

𝒒⊗ 𝒑 = [
𝑞0𝑝0 − 𝒒𝑣

𝑇𝒑𝑣

𝑞0𝒑𝑣 + 𝑝0𝒒𝑣 − 𝒒𝑣 × 𝒑𝑣
] (B.8) 

This equation shows that the quaternion product is not commutative. However, the quaternion 

product is associative and distributive over the sum: 

𝒒⊗ 𝒑 ≠ 𝒑⊗𝒒 

(𝒒⊗ 𝒑)⊗ 𝒓 = 𝒒⊗ (𝒑⊗ 𝒓) 

𝒒⊗ (𝒑 + 𝒓) = 𝒒⊗ 𝒑+ 𝒒⊗ 𝒓 

(B.9) 

The quaternion product can also be written in matrix form based on equation (B.7): 

𝒒⊗ 𝒑 = [

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 𝑞3 −𝑞2
𝑞2 −𝑞3 𝑞0 𝑞1
𝑞3 𝑞2 −𝑞1 𝑞0

] [

𝑝0
𝑝1
𝑝2
𝑝3

] 

= [
𝑞0 −𝒒𝑣

𝑇

𝒒𝑣 𝑞0𝑰3 − (𝒒𝑣) ×
] [
𝑝0

𝒑𝑣
] 

= [𝒒 𝚿(𝒒)]𝒑 

= 𝓛(𝒒)𝒑 

(B.10) 

Or 
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𝒒⊗ 𝒑 = [

𝑝0 −𝑝1 −𝑝2 −𝑝3
𝑝1 𝑝0 −𝑝3 𝑝2
𝑝2 𝑝3 𝑝0 −𝑝1
𝑝3 −𝑝2 𝑝1 𝑝0

] [

𝑞0
𝑞1
𝑞2
𝑞3

] 

= [
𝑝0 −𝒑𝑣

𝑇

𝒑𝑣 𝑝0𝑰3 + (𝒑𝑣) ×
] [
𝑞0

𝒒𝑣
] 

= [𝒑 𝔼(𝒑)]𝒒 

= 𝓡(𝒑)𝒒 

(B.11) 

With: 

𝓛(𝒒) = [

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 𝑞3 −𝑞2
𝑞2 −𝑞3 𝑞0 𝑞1
𝑞3 𝑞2 −𝑞1 𝑞0

]  , 𝓡(𝒒) = [

𝑞0 −𝑞1 −𝑞2 −𝑞3
𝑞1 𝑞0 −𝑞3 𝑞2
𝑞2 𝑞3 𝑞0 −𝑞1
𝑞3 −𝑞2 𝑞1 𝑞0

] 

𝚿(𝒒) = [

−𝑞1 −𝑞2 −𝑞3
𝑞0 𝑞3 −𝑞2
−𝑞3 𝑞0 𝑞1
𝑞2 −𝑞1 𝑞0

]  , 𝔼(𝒒) = [

−𝑞1 −𝑞2 −𝑞3
𝑞0 −𝑞3 𝑞2
𝑞3 𝑞0 −𝑞1
−𝑞2 𝑞1 𝑞0

]   

(B.12) 

- Identity 

Quaternions have neutral element with respect to multiplication, which is defined as: 

𝒒n = [1 0 0 0]𝑇 (B.13) 

- Inverse 

The inverse rotation is described by the inverse quaternion 𝐪−1, defined as: 

𝐪⊗ 𝐪−1 = 𝐪−1⊗𝐪 = 𝒒n (B.14) 

Therefore: 

𝐪−1 = [
𝑞0
−𝒒𝑣

] = [
cos (

𝛼

2
)

−sin (
𝛼

2
)  𝒖

] = [
cos (

−𝛼

2
)

−sin (
−𝛼

2
)  𝒖

] (B.15) 

In addition, the inverse of a quaternion product is the product of the commuted quaternion 

inverse: 

(𝒒⊗ 𝒑)−1 = 𝐩−1⊗𝐪−1 (B.16) 

- Vector rotation using quaternions 
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Let us consider two different coordinate systems (𝑠)  and (𝑡) . Let 𝒗𝑠  be a (3 × 1)  vector 

expressed in (𝑠) and 𝒒𝑠2𝑡  is the quaternion representing the rotation from (𝑠) to (𝑡). Then 

(Trawny, 2005): 

𝒗𝑡 = 𝒒𝑠2𝑡⊗ [
0
𝒗𝑠
] ⊗ 𝒒𝑠2𝑡

−1  (B.17) 

- Rotation quaternion composition 

Let 𝒒𝑠2𝑤, 𝒒𝑤2𝑡 and 𝒒𝑠2𝑡be three rotation quaternions, respectively from the coordinate system 

(𝑠) to the coordinate system (𝑤), from (𝑤) to (𝑡) and from (𝑠) to (𝑡) and let 𝒗𝑡, 𝒗𝑠 and 𝒗𝑤 be 

the (3 × 1) vector 𝒗 expressed respectively in the (𝑡), (𝑠) and (𝑤) coordinate systems. Then, 

using the quaternion product associativity in equation (B.9) and the product inverse property in 

equation (B.16), we have: 

𝒗𝑡 = 𝒒𝑤2𝑡⊗ [
0
𝒗𝑤
] ⊗ 𝒒𝑤2𝑡

−1  

= 𝒒𝑤2𝑡⊗(𝒒𝑠2𝑤⊗ [
0
𝒗𝑠
] ⊗ 𝒒𝑠2𝑤

−1 )⊗ 𝒒𝑤2𝑡
−1  

= (𝒒𝑤2𝑡⊗𝒒𝑠2𝑤) ⊗ [
0
𝒗𝑠
] ⊗ (𝒒𝑤2𝑡⊗𝒒𝑠2𝑤)

−1 

(B.18) 

Then using equation (B.17) we have 

𝒒𝑠2𝑡 = 𝒒𝑤2𝑡⊗𝒒𝑠2𝑤 (B.19) 

B.2 Rotation matrix 

A rotation matrix is a (3 × 3) matrix used to perform a rotation from a coordinate system (𝑠) 

to another coordinate system (𝑡). Let 𝒗𝑠 be a (3 × 1) vector expressed in (𝑠) and 𝑪𝑠2𝑡 is the 

rotation matrix from (𝑠) to (𝑡), then: 

𝒗𝑡 = 𝑪𝑠2𝑡𝒗
𝑠 (B.20) 

- Multiplication 

As for any matrix product, the rotation matrix multiplication is associative but not commutative: 

𝑪1(𝑪2𝑪3) = (𝑪1𝑪2)𝑪3 

𝑪1𝑪2 ≠ 𝑪2𝑪1 
(B.21) 

- Inverse 

Let 𝑪𝑠2𝑡 be a rotation matrix from (𝑠) to (𝑡). The inverse rotation matrix describe the rotation 

from (𝑡) to (𝑠): 

𝑪𝑠2𝑡
−1 = 𝑪𝑡2𝑠 (B.22) 

The rotation matrix is an orthogonal matrix: 
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𝑪𝑠2𝑡𝑪𝑠2𝑡
𝑇 = 𝑰3 (B.23) 

Or equivalently: 

𝑪𝑠2𝑡
−1 = 𝑪𝑠2𝑡

𝑇 = 𝑪𝑡2𝑠 (B.24) 

As for any square matrices, the inverse of the product of two matrices is the product of their 

inverse: 

(𝑪1𝑪2)
−1 = 𝑪2

−1𝑪1
−1 (B.25) 

- Rotation matrix composition 

Let 𝑪𝑠2𝑤, 𝑪𝑤2𝑡 and 𝑪𝑠2𝑡be three rotation quaternions, respectively from the coordinate system 

(𝑠) to the coordinate system (𝑤), from (𝑤) to (𝑡) and from (𝑠) to (𝑡) and let 𝒗𝑡, 𝒗𝑠 and 𝒗𝑤 be 

the (3 × 1) vector 𝒗 expressed respectively in the (𝑡), (𝑠) and (𝑤) coordinate systems. Then, 

using the matrix product associativity in equation (B.21), we have: 

𝒗𝑡 = 𝑪𝑤2𝑡𝒗
𝑤 

= (𝑪𝑤2𝑡𝑪𝑠2𝑤)𝒗
𝑠 

= 𝑪𝑠2𝑡𝒗
𝑠 

(B.26) 

Therefore: 

𝑪𝑠2𝑡 = 𝑪𝑤2𝑡𝑪𝑠2𝑤 (B.27) 

B.3 Euler angles 

The Euler angles describe the orientation of a rigid body (𝑏) with respect to a fixed coordinate 

system (the (𝑙) frame for example). There are three Euler angles in a three-dimensional space 

which are the roll, the pitch and the yaw described in Figure B-1: 

• Roll 𝜙: the angle of rotation about the forward vehicle axis 

• Pitch 𝜃: the angle of rotation about the lateral vehicle axis 

• Yaw 𝜓: the angle of rotation about the vertical vehicle axis 

 

Figure B-1 Euler angles 
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Figure B-2 illustrates three successive rotations transforming the (𝑙) frame into the (𝑏) frame. 

The first rotation turns the (𝑙) frame by an angle (𝜓) about the z-axis, transforming the x and 

y axes and leaving the z-axis the same. The second rotation turns the obtained frame by an angle 

(𝜃) about the x-axis, transforming the y and z axes and leaving the x-axis the same. Finally, the 

third rotation turns the frame obained after the previous two rotations by an angle (𝜙) about the 

y-axis to obtain the (𝑏) frame. The inverse rotation transforms the (𝑏) frame into the (𝑙) frame. 

This means that in order to transform (𝑏) into (𝑙), we need to turn first about the y-axis by (𝜙), 

then about the x-axis by (𝜃) and finally about the z-axis by (𝜓). 

Note that the order in which the three rotations are carried out is critical. If the rotations are 

performed in a different order, the orientation of the axes at the end of the transformation is 

generally different. 

 

Figure B-2 Transformation from (𝒍) to (𝒗) 

Note also that the pitch should satisfy the following constraint −90 < 𝜃 < 90° for the unicity 

of the angle triplet representing the same attitude. 

Based on the notations in Figure B-2, the following relationships between the different axes are 

derived: 

- Rotation about the z-axis 

The rotation about the z-axis rotates the x and y axes with 𝜓: 

𝒙𝜓 = cos𝜓 𝒙𝑏 + sin𝜓 𝒚𝑏 

𝒚𝜓 = −sin𝜓 𝒙𝑏 + cos𝜓 𝒚𝑏 

𝒛𝜓 = 𝒛𝑏 

(B.28) 

In matrix form, this is written: 
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[
𝒙𝜓

𝒚𝜓

𝒛𝜓
] = [

cos𝜓 sin𝜓 0
−sin𝜓 cos𝜓 0
0 0 1

] [
𝒙𝑏

𝒚𝑏

𝒛𝑏
] = 𝑪𝑧(𝜓) [

𝒙𝑏

𝒚𝑏

𝒛𝑏
] (B.29) 

- Rotation about the x-axis 

The rotation about the x-axis rotates the y and z axes with 𝜃: 

𝒙𝜃 = 𝒙𝜓 

𝒚𝜃 = cos 𝜃  𝒚𝜓 + sin 𝜃  𝒛𝜓 

𝒛𝜃 = −sin 𝜃 𝒚𝜓 + cos 𝜃 𝒛𝜓 

(B.30) 

In matrix form, this is written: 

[
𝒙𝜃

𝒚𝜃

𝒛𝜃
] = [

1 0 0
0 cos 𝜃 sin 𝜃
0 −sin 𝜃 cos 𝜃

] [
𝒙𝜓

𝒚𝜓

𝒛𝜓
] = 𝑪𝑥(𝜃) [

𝒙𝜓

𝒚𝜓

𝒛𝜓
] (B.31) 

- Rotation about the y-axis 

The rotation about the y-axis rotates the x and z axes with 𝜙: 

𝒙𝑙 = cos𝜙 𝒙𝜃 − sin𝜙 𝒛𝜃 

𝒚𝑙 = 𝒚𝜃 

𝒛𝑙 = sin𝜙 𝒙𝜃 + cos𝜙 𝒛𝜃 

(B.32) 

In matrix form, this is written: 

[
𝒙𝑙

𝒚𝑙

𝒛𝑙
] = [

cos𝜙 0 − sin𝜙
0 1 0

sin𝜙 0 cos𝜙
] [
𝒙𝜃

𝒚𝜃

𝒛𝜃
] = 𝑪𝑦(𝜙) [

𝒙𝜃

𝒚𝜃

𝒛𝜃
] (B.33) 

The use of Euler angles for representing a rotation is not recommended for the following 

reasons: 

- To reverse a rotation, we cannot simply reverse the sign of the Euler angle. More 

complicated operations are required 

- Successive rotations cannot be expressed by simply adding the Euler angle. 

For these reasons, it is better to use rotation matrices or rotation quaternions to manipulate 

rotations.  
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B.4 Relationship between the different representations 

B.4.1 Relationship between quaternion and rotation matrix 

- From quaternion to rotation matrix 

We recall equation (B.17) describing the rotation of a vector with a quaternion: 

𝒗𝑡 = 𝒒𝑠2𝑡⊗ [
0
𝒗𝑠
] ⊗ 𝒒𝑠2𝑡

−1  

To simplify the notations, we are going to use the notation 𝒒𝑠2𝑡 = 𝒒 = [
𝑞0
𝒒𝑣
] = [

𝑞0
𝑞1
𝑞2
𝑞3

].  

Therefore: 

𝒗𝑡 = [
𝑞0
𝒒𝑣
] ⊗ [

0
𝒗𝑠
] ⊗ [

𝑞0
−𝒒𝑣

] 

= [
−𝒒𝑣

𝑇 . 𝒗𝑠

𝑞0𝒗
𝑠 − 𝒒𝑣 × 𝒗

𝑠
] ⊗ [

𝑞0

−𝒒𝑣
] 

= [
−𝒒𝑣

𝑇 . 𝒗𝑠 −(𝑞0𝒗
𝑠 − 𝒒𝑣 × 𝒗

𝑠)𝑇

𝑞0𝒗
𝑠 − 𝒒𝑣 × 𝒗

𝑠 −𝒒𝑣
𝑇 . 𝒗𝑠𝑰3 − (𝑞0𝒗

𝑠 − 𝒒𝑣 × 𝒗
𝑠) ×

] [
𝑞0

−𝒒𝑣
] 

=

[
 
 
 
 −𝑞0𝒒𝑣

𝑇 . 𝒗𝑠 + 𝑞0𝒗
𝑠𝑇 . 𝒒𝑣⏟              

0

− (𝒒𝑣 × 𝒗
𝑠)𝑇 . 𝒒𝑣⏟        

Dot product of 2 orthogonal vect=0

𝑞0
2𝒗𝑠 − 𝑞0𝒒𝑣 × 𝒗

𝑠 + 𝒒𝑣
𝑇 . 𝒗𝑠. 𝒒𝑣⏟      
𝒒𝑣𝒒𝑣

𝑇𝒗𝑠

+ 𝑞0𝒗
𝑠 × 𝒒𝑣 − (𝒒𝑣 × 𝒗

𝑠) × 𝒒𝑣⏟          
𝒒𝑣
𝑇𝒒𝑣𝒗

𝑠−𝒒𝑣
𝑇.𝒗𝑠.𝒒𝑣 ]

 
 
 
 

 

= [

0

𝑞0
2𝒗𝑠 − 2𝒒𝑣 × 𝒗

𝑠 + 2𝒒𝑣𝒒𝑣
𝑇𝒗𝑠 − 𝒒𝑣

𝑇𝒒𝑣⏟  
1−𝑞0

2

𝒗𝑠] 

= [
0

(2𝑞0
2 − 1)𝑰3 − 2𝑞0(𝒒𝑣) × +2𝒒𝑣𝒒𝑣

𝑇
] [
0

𝒗𝑠
] 

= [
0

𝑪𝑠2𝑡
] [
0

𝒗𝑠
] 

(B.34) 

Therefore, the rotation matrix is expressed as function of the corresponding quaternion 

components using: 
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𝑪𝑠2𝑡 = (2𝑞0
2 − 1)𝑰3 − 2𝑞0(𝒒𝑣) × +2𝒒𝑣𝒒𝑣

𝑇 

= [

2𝑞0
2 + 2𝑞1

2−1 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 2𝑞0
2+2𝑞2

2 − 1 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 2𝑞0
2+2𝑞3

2 − 1 

] 

= [

1 − 2𝑞2
2−2𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 1 − 2𝑞1
2−2𝑞3

2 2(𝑞2𝑞3 + 𝑞0𝑞1)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 1 − 2𝑞1
2−2𝑞2

2 

] 

(B.35) 

Based on the formula in (B.19), we deduce an important property. Let 𝒒1 and 𝒒2 be two rotation 

quaternions, then their product composes consecutive rotations in the same order as rotation 

matrices do. 

𝑪(𝒒1⊗𝒒2) = 𝑪(𝒒1)𝑪(𝒒2) (B.36) 

- From rotation matrix to quaternion 

Let us consider that the rotation matrix 𝑪𝑠2𝑡 is written: 

𝑪𝑠2𝑡 = [

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

] 
(B.37) 

Based on (B.35), derived in the previous section, the expressions of the quaternion components 

as a function of the rotation matrix components are the following: 

𝑞0 =
1

2
√1 + 𝑐11 + 𝑐22 + 𝑐33 

𝑞1 =
𝑐23 − 𝑐32
4𝑞0

 

𝑞2 =
𝑐31 − 𝑐13
4𝑞0

 

𝑞3 =
𝑐12 − 𝑐21
4𝑞0

 

(B.38) 

In case where 𝑞0 is close to zero, then the first calculated component should be replaced by 𝑞1, 

𝑞2 or 𝑞3. For example, if it is 𝑞1, then 
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𝑞1 =
1

2
√1 + 𝑐11 − 𝑐22 − 𝑐33 

𝑞0 =
𝑐23 − 𝑐32
4𝑞1

 

𝑞2 =
𝑐12 + 𝑐21
4𝑞1

 

𝑞3 =
𝑐13 + 𝑐31
4𝑞1

 

(B.39) 

The quaternion components should satisfy the unit norm constraint. 

B.4.2 Relationship between rotation matrix and Euler angles 

- From Euler angles to rotation matrix 

Euler angles represent successive rotations about the three vehicle axes. By taking the example 

given in Section B.3, the composition (multiplication) of the rotations defined in this section 

results in the rotation matrix: 

𝑪𝑙2𝑏 = 𝑪𝑦(𝜙)𝑪𝑥(𝜃)𝑪𝑧(−𝜓) (B.40) 

𝑪𝑧(−𝜓) is considered instead of 𝑪𝑧(𝜓) to respect the right-handed transfomation between the 

(𝐸, 𝑁, 𝑈) system of the (𝑙) frame and the (𝑥, 𝑦, 𝑧) system of the (𝑏) frame (with y pointing to 

the forward direction). 

Therefore 

𝑪𝑙2𝑏 = [

cos𝜙 cos𝜓 + sin𝜙 sin 𝜃 sin 𝜓 −cos𝜙 sin𝜓 + sin𝜙 sin 𝜃 cos𝜓 − sin𝜙 cos 𝜃

cos 𝜃 sin 𝜓 cos 𝜃 cos𝜓 sin 𝜃

sin𝜙 cos𝜓 − cos𝜙 sin 𝜃 sin 𝜓 − sin𝜙 sin𝜓 − cos𝜙 sin 𝜃 cos𝜓 cos𝜙 cos 𝜃

] (B.41) 

This matrix represents the rotation from the (𝑙)  frame to the (𝑏)  frame and its inverse 

(transpose) 𝑪𝑏2𝑙 represents the vehicle attitude. 

- From rotation matrix to Euler angles 

Based on equation (B.41), derived in the previous section, the expressions of the Euler angles 

as a function of the rotation matrix components are the following: 

𝜙 = −arctan2(𝑐13, 𝑐33) 

𝜃 = −arcsin(𝑐23) 

𝜓 = arctan2(𝑐21, 𝑐22) 

(B.42) 
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B.4.3 Relationship between quaternion and Euler angles 

- From Euler angles to quaternion 

The quaternion  𝒒𝑙2𝑏  representing the rotation from the (𝑙)  frame to the (𝑏) frame can be 

defined by the composition of the Euler rotations about each axis as: 

 𝒒𝑙2𝑏 = 𝒒𝑦(𝜙)⊗ 𝒒𝑥(𝜃)⊗ 𝒒𝑧(−𝜓) (B.43) 

Therefore, to express the relationship between the quaternion and the Euler angles using the 

JPL convention, we can write: 

( 𝒒𝑙2𝑏)JPL = 𝒒𝑦(𝜙) ⊗ 𝒒𝑥(𝜃) ⊗ 𝒒𝑧(−𝜓) 

=

[
 
 
 
 
 cos

𝜙

2
0

sin
𝜙

2
0 ]
 
 
 
 
 

⊗

[
 
 
 
 
 cos

𝜃

2

sin
𝜃

2
0
0 ]
 
 
 
 
 

⊗

[
 
 
 
 
 cos

𝜓

2
0
0

−sin
𝜓

2]
 
 
 
 
 

 

= 𝓛(𝒒𝑦(𝜙))𝓛(𝒒𝑥(𝜃))𝒒𝑦𝒒𝑧(−𝜓) 

=

[
 
 
 
 
 
 
 cos

𝜙

2
cos

𝜃

2
cos

𝜓

2
+ sin

𝜙

2
sin
𝜃

2
sin
𝜓

2

cos
𝜙

2
sin
𝜃

2
cos

𝜓

2
+ sin

𝜙

2
cos

𝜃

2
sin
𝜓

2

−cos
𝜙

2
sin
𝜃

2
sin
𝜓

2
+ sin

𝜙

2
cos

𝜃

2
cos

𝜓

2

− cos
𝜙

2
cos

𝜃

2
sin
𝜓

2
+ sin

𝜙

2
sin
𝜃

2
cos

𝜓

2]
 
 
 
 
 
 
 

 

(B.44) 

If the Hamilton convention was used, then the composition of the quaternion would have been: 

( 𝒒𝑙2𝑏)𝐻𝑎𝑚 = 𝒒𝑦(−𝜙)⊗ 𝒒𝑥(−𝜃)⊗ 𝒒𝑧(𝜓) (B.45) 

This formula does not correspond to the same attitude angles as for the rotation matrices but to 

their opposite. Therefore, to avoid confusions and apply all the formulas “naturally” the JPL 

convention is preferred.  

- From quaternion to Euler angles 

Based on equation (B.42) and equations (B.39), the transformation between the quaternion  𝒒𝑙2𝑏 

and Euler angles are determined: 

𝜙 = −arctan2 ((2(𝑞0𝑞2 − 𝑞1𝑞3)), (2𝑞0
2+2𝑞3

2 − 1 )) 

𝜃 = −arcsin(2(𝑞2𝑞3 + 𝑞0𝑞1)) 

𝜓 = arctan2 ((2(𝑞1𝑞2 − 𝑞0𝑞3)), (2𝑞0
2+2𝑞2

2 − 1 )) 

(B.46) 
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B.5 Rotation error model 

The rotation error model is only applied to quaternions and rotation matrices. The Euler angles 

are not considered in this study and are only derived from quaternions or rotations because of 

the critical manipulation of these angles. 

B.5.1 Quaternions 

Let 𝒒̂(𝛼) be an estimated value of a quaternion and 𝒒(𝛼) its actual value. Let 𝛿𝛼 be a small 

error affecting the quaternion angle of 𝒒̂(𝛼), then using the sine and cosine small angle first 

order approximations (cos 𝛿𝛼 ≈ 1) and sin(𝛿𝛼 ≈ 𝛿𝛼), we have: 

𝒒̂(𝛼) = 𝒒(𝛼 + 𝛿𝛼) 

= [
cos (

𝛼 + 𝛿𝛼

2
)

sin (
𝛼 + 𝛿𝛼

2
)  𝒖

] 

= [
cos

𝛼

2
−
𝛿𝛼

2
sin
𝛼

2

(sin
𝛼

2
+
𝛿𝛼

2
cos

𝛼

2
)  𝒖

] 

= [
cos

𝛼

2
− sin

𝛼

2
𝒖𝑇

sin
𝛼

2
 𝒖 cos

𝛼

2
𝑰3 + (sin

𝛼

2
𝒖) ×

] [
1
𝛿𝛼

2
𝒖
] 

= 𝓡(𝒒(𝛼))𝛿𝒒 

= 𝛿𝒒⊗ 𝒒(𝛼) 

(B.47) 

where 𝛿𝒒 is the quaternion error: 

𝛿𝒒 = [

1

𝛿𝛼

2
𝒖
] = [

1

𝜺

2

] (B.48) 

Therefore, we can write: 

𝒒̂ = [𝒒 𝔼(𝒒)] [

1

𝜺

2

] = 𝒒 +
1

2
𝔼(𝒒)𝜺 (B.49) 

and 

𝒒 = 𝛿𝒒−1⊗ 𝒒̂ = [𝒒̂ 𝔼(𝒒̂)] [

1

−
𝜺

2

] = 𝒒̂ −
1

2
𝔼(𝒒̂)𝜺 (B.50) 

Therefore,  
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𝒒̂−1 = (𝛿𝒒⊗ 𝒒)−1 = 𝒒−1 −
1

2
𝚿(𝒒−1)𝜺 (B.51) 

and 

𝒒−1 = (𝒒̂−1⊗𝛿𝒒)−1 = 𝒒̂−1 +
1

2
𝚿(𝒒̂−1)𝜺 (B.52) 

B.5.2 Rotation matrix 

The rotation error model is derived from the quaternion model in equation(B.47). Based on 

equation (B.35)expressing a rotation matrix as a function of its corresponding quaternion and 

equation (B.36)expressing the rotation of a quaternion product as a function of the product of 

quaternion rotations, the rotation matrix error model can be written: 

𝑪̂ = 𝑪(𝒒̂(𝛼)) 

= 𝑪(𝛿𝒒⊗ 𝒒(𝛼)) 

= 𝑪(𝛿𝒒)𝑪(𝒒(𝛼)) 

= 𝛿𝑪 𝑪 

(B.53) 

𝛿𝑪 is given by the following expression (first order approximation): 

𝛿𝑪 ≈ 𝑰3 − (𝜺) × (B.54) 

Therefore, 

𝑪̂ = (𝑰3 − 𝑬)𝑪 (B.55) 

where 𝑬 is the skew-symmetric matrix of 𝜺. 
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Appendix C 

C Calculation of the Kalman Filter 
observation matrices 

This appendix justifies the expressions of the Kalman filter observation matrices given in 

Section 4.6. 

C.1 Perturbation model 

Based on the following measurement models, the perturbation of quantities to the first order 

used in the calculation of the observation matrices are expressed by: 

C.1.1 Vectors and scalars 

IMU-related components: 

Position: 

𝒑̂𝑏
𝑙 = 𝒑𝑏

𝑙 + 𝛿𝒑𝑏
𝑙  (C.1) 

Velocity: 

𝒗̂𝑏
𝑙 = 𝒗𝑏

𝑙 + 𝛿𝒗𝑏
𝑙  (C.2) 

Gyroscope measurement: 

𝛿𝝎𝑖𝑏
𝑏 = 𝝎̃𝑖𝑏

𝑏 −𝝎𝑖𝑏
𝑏 = 𝜸(𝒌𝜔)𝝎𝑖𝑏

𝑏 + 𝒃𝜔 + 𝜼𝜔 (C.3) 

with 𝛾(𝒌𝜔) = diag (
1

1+𝑘𝜔𝑥
,

1

1+𝑘𝜔𝑦
,

1

1+𝑘𝜔𝑧
) 

GNSS-related components: 

Position: 

𝒑̃𝐺
𝑙 = 𝒑𝐺

𝑙 + 𝛿𝒑𝐺
𝑙  (C.4) 

Velocity: 

𝒗̃𝐺
𝑙 = 𝒗𝐺

𝑙 + 𝛿𝒗𝐺
𝑙  (C.5) 

Pseudorange: 

 𝝆̃𝐺 = 𝝆𝐺 + 𝛿𝝆𝐺 (C.6) 

Pseudorange rate: 

 𝝆̃̇𝐺 = 𝝆̇𝐺 + 𝛿𝝆̇𝐺 (C.7) 
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Clock bias: 

𝑏̂𝐺
𝑐𝑙𝑘 = 𝑏𝐺

𝑐𝑙𝑘 + 𝛿𝑏𝐺
𝑐𝑙𝑘 (C.8) 

Clock bias: 

𝑏̂̇𝐺
𝑐𝑙𝑘 = 𝑏̇𝐺

𝑐𝑙𝑘 + 𝛿𝑏̇𝐺
𝑐𝑙𝑘 (C.9) 

SLAM-related components: 

Position: 

𝒑̃𝑐
𝑣 = 𝒑𝑐

𝑣 + 𝛿𝒑𝑐
𝑣 (C.10) 

Scale factor:  

𝑘̂𝑣 = 𝑘𝑣 + 𝛿𝑘𝑣 (C.11) 

(𝑙)-(𝑣) frame offset: 

𝒑̂𝑙𝑣
𝑣 = 𝒑𝑙𝑣

𝑣 + 𝛿𝒑𝑙𝑣
𝑣  (C.12) 

WSS-related components: 

Velocity: 

𝒗̃𝑤
𝑏 = 𝒗𝑤

𝑏 + 𝛿𝒗𝑤
𝑏  (C.13) 

Scale factor: 

𝑘̂𝑤 = 𝑘𝑤 + 𝛿𝑘𝑤 (C.14) 

C.1.2 Rotations 

The following equations expressing the rotation error models are derived from equation 

(B.49)and equation (B.55).  

(𝑏) to (𝑙) rotation: 

𝑪̂𝑏2𝑙 = (𝑰3 − 𝑬𝑏2𝑙)𝑪𝑏2𝑙 

    𝒒̂𝑏2𝑙 = 𝒒𝑏2𝑙 +
1

2
𝔼(𝒒𝑏2𝑙)𝜺𝑏2𝑙 

  𝒒𝑙2𝑏 = 𝒒̂𝑙2𝑏 +
1

2
𝚿(𝒒̂𝑙2𝑏)𝜺𝑏2𝑙 

(C.15) 
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(𝑙) to (𝑣) rotation: 

𝑪̂𝑙2𝑣 = (𝑰3 − 𝑬𝑙2𝑣)𝑪𝑙2𝑣 

 𝒒̂𝑙2𝑣 = 𝒒𝑙2𝑣 +
1

2
𝔼(𝒒𝑙2𝑣)𝜺𝑙2𝑣 

 𝒒𝑣2𝑙 = 𝒒̂𝑣2𝑙 +
1

2
𝚿(𝒒̂𝑣2𝑙)𝜺𝑙2𝑣 

(C.16) 

(𝑏) to (𝑐) rotation 

𝑪̂𝑏2𝑐 = (𝑰3 − 𝑬𝑏2𝑐)𝑪𝑏2𝑐 

 𝒒̂𝑏2𝑐 = 𝒒𝑏2𝑐 +
1

2
𝔼(𝒒𝑏2𝑐)𝜺𝑏2𝑐 

 𝒒𝑏2𝑐 = 𝒒̂𝑏2𝑐 −
1

2
𝔼(𝒒̂𝑏2𝑐)𝜺𝑏2𝑐 

(C.17) 

C.2 Observation matrices 

The calculation of the observation matrices is based on the measurements models relating the 

sensors outputted measurements to the state vector components, given in Section 4.5, and the 

perturbation models of the measurements and the state vector components given in equations 

(C.1) to (C.17) 

C.2.1 GNSS observation matrices 

Loose coupling 

The position observation model is given by: 

𝒑̃𝐺
𝑙 = 𝒑̂𝑏

𝑙 + 𝑪̂𝑏2𝑙  Δ𝒑𝐺
𝑏  (C.18) 

By replacing the quantities by their perturbation model, we have: 

𝒑𝐺
𝑙 + 𝛿𝒑𝐺

𝑙 = 𝒑𝑏
𝑙 + 𝛿𝒑𝑏

𝑙 + (𝑰3 − 𝑬𝑏2𝑙)𝑪𝑏2𝑙Δ𝒑𝐺
𝑏  (C.19) 

Therefore, knowing that 𝒑𝐺
𝑙 = 𝒑𝑏

𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺
𝑏 , we obtain: 

𝛿𝒑𝐺
𝑙 = 𝛿𝒑𝑏

𝑙 − 𝑬𝑏2𝑙𝑪𝑏2𝑙Δ𝒑𝐺
𝑏  

= 𝛿𝒑𝑏
𝑙 + (𝑪𝑏2𝑙Δ𝒑𝐺

𝑏) × 𝜺𝑏2𝑙 
(C.20) 

where (𝛿𝒑𝐺
𝑙 ) is the difference between the GNSS measured position and the prediction of this 

position using the IMU propagation (first Kalman filer step): 

𝛿𝒑𝐺
𝑙 = 𝒑̂𝑏

𝑙 − 𝒑̃𝐺
𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝐺

𝑏  (C.21) 

The same development applies for the GNSS velocity. Using the velocity observation model: 
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𝒗̃𝐺
𝑙 = 𝒗̂𝑏

𝑙 + 𝑪̂𝑏2𝑙 ((𝝎̂𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏) (C.22) 

As justified in Section 4.6.2, (𝝎̂𝑙𝑏
𝑏 ) can be approximated by (𝝎̃𝑖𝑏

𝑏 ) for a land vehicle using a 

MEMS IMU, therefore 

𝒗𝐺
𝑙 + 𝛿𝒗𝐺

𝑙 = 𝒗𝑏
𝑙 + 𝛿𝒗𝑏

𝑙 + (𝑰3 − 𝑬𝑏2𝑙)𝑪𝑏2𝑙 ((𝝎𝑖𝑏
𝑏 + 𝛿𝝎𝑖𝑏

𝑏 ) × Δ𝒑𝐺
𝑏) (C.23) 

𝛿𝒗𝐺
𝑙 = 𝛿𝒗𝑏

𝑙 − 𝑬𝑏2𝑙𝑪𝑏2𝑙(𝝎𝑖𝑏
𝑏 × Δ𝒑𝐺

𝑏) + 𝑪𝑏2𝑙 ((𝜸(𝒌𝜔)𝝎𝑖𝑏
𝑏

⏟      
𝑾𝑏𝒌𝜔

+ 𝒃𝜔)× Δ𝒑𝐺
𝑏) 

𝛿𝒗𝐺
𝑙 = 𝛿𝒗𝑏

𝑙 + (𝑪𝑏2𝑙(𝝎𝑖𝑏
𝑏 × Δ𝒑𝐺

𝑏)) × 𝜺𝑏2𝑙 − 𝑪𝑏2𝑙 (Δ𝒑𝐺
𝑏) × 𝒃𝜔

− 𝑪𝑏2𝑙 (Δ𝒑𝐺
𝑏) ×𝑾𝑏𝒌𝜔 

(C.24) 

where 𝑾𝑏 is the (3 × 3) diagonal matrix whose elements are the x, y and z componenets of 

𝝎𝑖𝑏
𝑏 . 

We conclude that the expression of 𝑯𝐺 is given by: 

𝑯𝐺 = [
𝑰3 𝟎3 (𝑪̂𝑏2𝑙  Δ𝒑𝐺

𝑏) × 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3×11

𝟎3 𝑰3 (𝑪̂𝑏2𝑙(𝜔𝑖𝑏
𝑏 × Δ𝒑𝐺

𝑏)) × 𝟎3 −𝑪̂𝑏2𝑙(Δ𝒑𝐺
𝑏) × 𝟎3 −𝑪̂𝑏2𝑙(Δ𝒑𝐺

𝑏) ×𝑾𝑏 𝟎3×11
] 

(C.25) 

Tight coupling 

The pseudorange observation model for a satellite 𝑠𝑖 is given by: 

𝜌̃𝐺
𝑖 = √(𝒑𝑏

𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )
𝑇
(𝒑𝑏

𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )
⏟                                

𝑑𝑖

+ 𝑏𝐺
𝑐𝑙𝑘

 
(C.26) 

The linearization around the state vector prediction point using the first order Taylor 

approximation leads to the following expression: 

𝜌̃𝐺
𝑖 ≈ 𝜌̂𝐺

𝑖 +
𝜕𝜌𝐺

𝑖

𝜕𝑿
|
𝑿̂

(𝑿 − 𝑿̂) (C.27) 

where 𝜌̂𝐺
𝑖  is the prediction of the 𝜌𝐺

𝑖  at 𝑿̂. 

Therefore: 
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𝜌̃𝐺
𝑖 − 𝜌̂𝐺

𝑖 =
𝜕𝜌𝐺

𝑖

𝜕𝑿
|
𝑿̂

(𝑿 − 𝑿̂) 

=
𝜕𝜌𝐺

𝑖

𝜕𝒑𝑏
𝑙 |
𝒑̂𝑏
𝑙

(𝒑𝑏
𝑙 − 𝒑̂𝑏

𝑙 )⏟      
−𝛿𝒑𝑏

𝑙

+
𝜕𝜌𝐺

𝑖

𝜕𝑏𝐺
𝑐𝑙𝑘|

𝑏̂𝐺
𝑐𝑙𝑘

(𝑏𝐺
𝑐𝑙𝑘 − 𝑏̂𝐺

𝑐𝑙𝑘)⏟        
−𝛿𝑏𝐺

𝑐𝑙𝑘

 

=
−(𝒑̂𝑏

𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )
𝑇

𝑑̂𝑖
𝛿𝒑𝑏

𝑙 − 𝛿𝑏𝐺
𝑐𝑙𝑘 

(C.28) 

As for the pseudorange rate, the observation model for a satellite 𝑠𝑖 is given by: 

𝜌̃̇𝐺
𝑖 =

(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺

𝑏  − 𝒑𝑠𝑖
𝑙 )

𝑇
(𝒗𝑏

𝑙 + 𝑪𝑏2𝑙(𝝎𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏  − 𝒗𝑠𝑖
𝑙 )

√(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺

𝑏  − 𝒑𝑠𝑖
𝑙 )

𝑇
(𝒑𝑏

𝑙 + 𝑪𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )

+ 𝑏̇𝐺
𝑐𝑙𝑘 (C.29) 

By linearizing as previously, we have: 

𝜌̃̇𝐺
𝑖 − 𝜌̂̇𝐺

𝑖 =
𝜕𝜌̇𝐺

𝑖

𝜕𝑿
|
𝑿̂

(𝑿 − 𝑿̂) 

=
𝜕𝜌̇𝐺

𝑖

𝜕𝒑𝑏
𝑙 |
𝒑̂𝑏
𝑙

(𝒑𝑏
𝑙 − 𝒑̂𝑏

𝑙 )⏟      
−𝛿𝒑𝑏

𝑙

+
𝜕𝜌̇𝐺

𝑖

𝜕𝒗𝑏
𝑙 |
𝒑̂𝑏
𝑙

(𝒗𝑏
𝑙 − 𝒗̂𝑏

𝑙 )⏟      
−𝛿𝒗𝑏

𝑙

+
𝜕𝜌̇𝐺

𝑖

𝜕𝑏̇𝐺
𝑐𝑙𝑘
|
𝑏̂̇
̇
𝐺
𝑐𝑙𝑘

(𝑏̇𝐺
𝑐𝑙𝑘 − 𝑏̂̇𝐺

𝑐𝑙𝑘)⏟        
−𝛿𝑏̇𝐺

𝑐𝑙𝑘

 

= −(
(𝒗̂𝑏

𝑙 + 𝑪̂𝑏2𝑙(𝝎̂𝑙𝑏
𝑏 ) × Δ𝒑𝐺

𝑏  − 𝒗𝑠𝑖
𝑙 )

𝑇

𝑑̂𝑖

+
(𝒑̂𝑏

𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )
𝑇
𝑑̂̇𝑖

(𝑑̂𝑖)
2 )𝛿𝒑𝑏

𝑙 −
(𝒑̂𝑏

𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝐺
𝑏  − 𝒑𝑠𝑖

𝑙 )
𝑇

𝑑̂𝑖
 𝛿𝒗𝑏

𝑙

− 𝛿𝑏̇𝐺
𝑐𝑙𝑘 

(C.30) 

We conclude that: 

𝑯𝐺 =

[
 
 
 
 
 
 
𝑯𝐺,𝑝𝑃𝑅1 𝟎1×3 𝟎1×26 −1 0

⋮ ⋮ ⋮ ⋮ ⋮
𝑯𝐺,𝑝𝑃𝑅𝑛 𝟎1×3 𝟎1×26 −1 0

𝑯𝐺,𝑝𝑃𝑅𝑅1 𝑯𝐺,𝑣𝑃𝑅𝑅1 𝟎1×26 0 −1

⋮ ⋮ ⋮ ⋮ ⋮
𝑯𝐺,𝑝𝑃𝑅𝑅𝑛 𝑯𝐺,𝑣𝑃𝑅𝑅𝑛 𝟎1×26 0 −1]

 
 
 
 
 
 

 (C.31) 

where  

• 𝑯𝐺,𝑝𝑃𝑅𝑖 = 𝑯𝐺,𝑣𝑃𝑅𝑅𝑖 =
−(𝒑̂𝑏

𝑙 +𝑪̂𝑏2𝑙 Δ𝒑𝐺
𝑏  −𝒑𝑠𝑖

𝑙 )
𝑇

𝑑̂𝑖
 

• 𝑯𝐺,𝑝𝑃𝑅𝑅𝑖 =
−(𝒗̂𝑏

𝑙 +𝑪̂𝑏2𝑙(𝝎̂𝑙𝑏
𝑏 )×Δ𝒑𝐺

𝑏  −𝒗𝑠𝑖
𝑙 )

𝑇

𝑑̂𝑖
−
(𝒑̂𝑏
𝑙 +𝑪̂𝑏2𝑙 Δ𝒑𝐺

𝑏  −𝒑𝑠𝑖
𝑙 )

𝑇
𝑑̂̇𝑖

(𝑑̂𝑖)
2  
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C.2.2 SLAM observation matrix 

The SLAM position observation model is given by: 

𝒑̃𝑐
𝑣 = 𝑘̂𝑣 𝑪̂𝑙2𝑣 (𝒑̂𝑏

𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝑐
𝑏) + 𝒑̂𝑙𝑣

𝑣  (C.32) 

By replacing the quantities by their perturbation models, we have: 

𝒑𝑐
𝑣 + 𝛿𝒑𝑐

𝑣 = (𝑘𝑣 + 𝛿𝑘𝑣)(𝑰3 − 𝑬𝑙2𝑣)𝑪𝑙2𝑣(𝒑𝑏
𝑙 + 𝛿𝒑𝑏

𝑙 + (𝑰3 − 𝑬𝑏2𝑙)𝑪𝑏2𝑙Δ𝒑𝑐
𝑏) + 𝒑𝑙𝑣

𝑣

+ 𝛿𝒑𝑙𝑣
𝑣  (C.33) 

Therefore by neglecting the terms of order higher then 1, we obtain 

𝛿𝒑𝑐
𝑣 = 𝑘𝑣𝑪𝑙2𝑣 𝛿𝒑𝑏

𝑙 − 𝑘𝑣𝑪𝑙2𝑣𝑬𝑏2𝑙𝑪𝑏2𝑙 Δ𝒑𝑐
𝑏 − 𝑘𝑣𝑬𝑙2𝑣𝑪𝑙2𝑣𝒑𝑏

𝑙 − 𝑘𝑣𝑬𝑙2𝑣𝑪𝑙2𝑣𝑪𝑏2𝑙Δ𝒑𝑐
𝑏

+ 𝛿𝑘𝑣𝑪𝑙2𝑣𝒑𝑏
𝑙 + 𝛿𝑘𝑣𝑪𝑙2𝑣𝑪𝑏2𝑙Δ𝒑𝑐

𝑏 + 𝛿𝒑𝑙𝑣
𝑣  

= 𝑘𝑣𝑪𝑙2𝑣 𝛿𝒑𝑏
𝑙 + 𝑘𝑣𝑪𝑙2𝑣(𝑪𝑏2𝑙 Δ𝒑𝑐

𝑏) × 𝜺𝑏2𝑙

+ 𝑘𝑣 ((𝑪𝑙2𝑣𝒑𝑏
𝑙 ) × +(𝑪𝑙2𝑣𝑪𝑏2𝑙Δ𝒑𝑐

𝑏) ×) 𝜺𝑙2𝑣

+ 𝑪𝑙2𝑣(𝒑𝑏
𝑙 + 𝑪𝑏2𝑙Δ𝒑𝑐

𝑏)𝛿𝑘𝑣 + 𝛿𝒑𝑙𝑣
𝑣  

(C.34) 

The SLAM attitude measurement model is given by: 

𝒒̃𝑣2𝑐 = 𝒒𝑏2𝑐⊗𝒒𝑙2𝑏⊗𝒒𝑣2𝑙 (C.35) 

By replacing the quaternions by their perturbation models given in equations (C.15)-(C.16)-

(C.17), we have: 

𝒒̃𝑣2𝑐 = (𝒒̂𝑏2𝑐 −
1

2
𝔼(𝒒̂𝑏2𝑐)𝜺𝑏2𝑐)⊗ (𝒒̂𝑙2𝑏 +

1

2
𝚿(𝒒̂𝑏2𝑙)𝜺𝑏2𝑙)

⊗ (𝒒̂𝑣2𝑙 +
1

2
𝚿(𝒒̂𝑣2𝑙)𝜺𝑙2𝑣) 

(C.36) 

We expand this equation. After neglecting the second and third error orders, we obtain: 

𝒒̃𝑣2𝑐 = 𝒒̂𝑏2𝑐⊗ 𝒒̂𝑙2𝑏⊗ 𝒒̂𝑣2𝑙 + (−
1

2
𝔼(𝒒̂𝑏2𝑐)𝜺𝑏2𝑐)⊗ 𝒒̂𝑙2𝑏⊗ 𝒒̂𝑣2𝑙 + 𝒒̂𝑏2𝑐

⊗(
1

2
𝚿(𝒒̂𝑏2𝑙)𝜺𝑏2𝑙)⊗ 𝒒̂𝑣2𝑙 + 𝒒̂𝑏2𝑐⊗ 𝒒̂𝑙2𝑏⊗ (

1

2
𝚿(𝒒̂𝑣2𝑙)𝜺𝑙2𝑣) 

(C.37) 

Therefore 

𝒒̂𝑏2𝑐⊗ 𝒒̂𝑙2𝑏⊗ 𝒒̂𝑣2𝑙 − 𝒒̃𝑣2𝑐

= (
1

2
𝔼(𝒒̂𝑏2𝑐)𝜺𝑏2𝑐) ⊗ 𝒒̂𝑙2𝑏⊗ 𝒒̂𝑣2𝑙 − 𝒒̂𝑏2𝑐⊗ (

1

2
𝚿(𝒒̂𝑏2𝑙)𝜺𝑏2𝑙)

⊗ 𝒒̂𝑣2𝑙 − 𝒒̂𝑏2𝑐⊗ 𝒒̂𝑙2𝑏⊗ (
1

2
𝚿(𝒒̂𝑣2𝑙)𝜺𝑙2𝑣) 

(C.38) 

In matrix form: 
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𝓡(𝒒̂𝑣2𝑙)𝓡(𝒒̂𝑙2𝑏)𝒒𝑏2𝑐 − 𝒒̃𝑐2𝑣

=
1

2
𝓡(𝒒̂𝑣2𝑙)𝓡(𝒒̂𝑙2𝑏)𝔼(𝒒̂𝑏2𝑐)𝜺𝑏2𝑐 −

1

2
𝓡(𝒒̂𝑣2𝑙)𝓛(𝒒̂𝑏2𝑐)𝚿(𝒒̂𝑙2𝑏) 𝜺𝑏2𝑙

−
1

2
𝓛(𝒒̂𝑏2𝑐)𝓛(𝒒̂𝑙2𝑏)𝚿(𝒒̂𝑣2𝑙) 𝜺𝑙2𝑣 

(C.39) 

Therefore, the SLAM observation matrix is written: 

𝑯𝑣 = [
𝑯𝑣,𝑝𝑝 𝟎3 𝑯𝑣,𝑝𝜀𝑏𝑙 𝟎3×13 𝑯𝑣,𝑝𝑘𝑣 𝑯𝑣,𝑝𝜀𝑙𝑣 𝑰3 𝟎3 {𝟎3×2}

𝟎4×3 𝟎4×3 𝑯𝑣,𝑞𝜀𝑏𝑙 𝟎4×13 𝟎4×1 𝑯𝑣,𝑞𝜀𝑙𝑣 𝟎4×3 𝑯𝑣,𝑞𝜀𝑐𝑏 {𝟎4×2}
] (C.40) 

where  

• 𝑯𝑣,𝑝𝑝 = 𝑘̂𝑣 𝑪̂𝑙2𝑣  

• 𝑯𝑣,𝑝𝜀𝑏𝑙 = 𝑘̂𝑣 𝑪̂𝑙2𝑣(𝑪̂𝑏2𝑙 Δ𝒑𝑐
𝑏) ×  

• 𝑯𝑣,𝑝𝑘𝑣 =  𝑪̂𝑙2𝑣 (𝒑̂𝑏
𝑙 + 𝑪̂𝑏2𝑙 Δ𝒑𝑐

𝑏)  

• 𝑯𝑣,𝑝𝜀𝑙𝑣 = 𝑘̂𝑣  (( 𝑪̂𝑙2𝑣𝑪̂𝑏2𝑙 Δ𝒑𝑐
𝑏) × +( 𝑪̂𝑙2𝑣𝒑̂𝑏

𝑙 ) ×)  

• 𝑯𝑣,𝑞𝜀𝑏𝑙 = −
1

2
𝓡(𝒒̂𝑣2𝑙)𝓛(𝒒̂𝑏2𝑐)𝚿(𝒒̂𝑙2𝑏)  

• 𝑯𝑣,𝑞𝜀𝑙𝑣 = −
1

2
𝓛(𝒒̂𝑏2𝑐)𝓛(𝒒̂𝑙2𝑏)𝚿(𝒒̂𝑣2𝑙)  

• 𝑯𝑣,𝑞𝜀𝑐𝑏 =
1

2
𝓡(𝒒̂𝑣2𝑙)𝓡(𝒒̂𝑙2𝑏)𝔼(𝒒̂𝑏2𝑐)  

C.2.3 WSS and NHC observation matrix 

The WSS and NHC measurement model is given by: 

𝒗̃𝑤
𝑏 = 𝑫̂(𝑪̂𝑙2𝑏𝒗̂𝑏

𝑙 + (𝝎̂𝑙𝑏
𝑏 ) × Δ𝒑𝑤

𝑏 ) (C.41) 

Based on equation (C.15) giving the perturbation model of 𝑪𝑏2𝑙, we have: 

𝑪̂𝑙2𝑏 = (𝑪̂𝑏2𝑙)
𝑇
= ((𝑰3 − 𝑬𝑏2𝑙)𝑪𝑏2𝑙)

𝑇
= 𝑪𝑙2𝑏(𝑰3 + 𝑬𝑏2𝑙) (C.42) 

By replacing the quantities by their perturbation models, and taking (𝝎̂𝑙𝑏
𝑏 ≈ 𝝎̃𝑖𝑏

𝑏 ), we have: 

𝒗𝑤
𝑏 + 𝛿𝒗𝑤

𝑏 = (𝑫 + [
0 0 0
0 𝛿𝑘𝑤𝑠𝑠 0
0 0 0

]) (𝑪𝑙2𝑏(𝑰3 + 𝑬𝑏2𝑙)(𝒗𝑏
𝑙 + 𝛿𝒗𝑏

𝑙 )

+ (𝝎𝑖𝑏
𝑏 +𝑾𝒌𝜔 + 𝒃𝜔) × Δ𝒑𝑤

𝑏 ) 

(C.43) 

Thus, keeping only the first order errors, we have: 
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𝛿𝒗𝑤
𝑏 = 𝑫𝑪𝑙2𝑏𝛿𝒗𝑏

𝑙 +𝑫𝑪𝑙2𝑏𝑬𝑏2𝑙𝒗𝑏
𝑙 +𝑫(𝑾𝒌𝜔) × Δ𝒑𝑤

𝑏 +𝑫(𝒃𝜔) × Δ𝒑𝑤
𝑏

+ [
0 0 0
0 1 0
0 0 0

] (𝑪̂𝑙2𝑏𝒗̂𝑏
𝑙 + (𝝎̂𝑙𝑏

𝑏 ) × Δ𝒑𝑤
𝑏 )𝛿𝑘𝑤 

= 𝑫𝑪𝑙2𝑏𝛿𝒗𝑏
𝑙 −𝑫𝑪𝑙2𝑏(𝒗𝑏

𝑙 ) × 𝜺𝑏2𝑙 −𝑫(Δ𝒑𝑤
𝑏 ) ×𝑾𝒌𝜔

−𝑫(Δ𝒑𝑤
𝑏 ) × 𝒃𝜔 ×+ [

0 0 0
0 1 0
0 0 0

] (𝑪̂𝑙2𝑏𝒗̂𝑏
𝑙 + (𝝎̂𝑙𝑏

𝑏 ) × Δ𝒑𝑤
𝑏 )𝛿𝑘𝑤 

(C.44) 

Therefore: 

𝑯𝑤 = [𝟎3 𝑯𝑤,𝑣 𝑯𝑤,𝜀𝑏2𝑙 𝟎3 𝑯𝑤,𝑏𝜔 𝟎3 𝑯𝑤,𝑘𝜔 𝑯𝑤,𝑘𝑤 𝟎3×10 {𝟎3×2}] (C.45) 

where 

• 𝑯𝑤,𝑣 = 𝑫̂ 𝑪̂𝑙2𝑏  

• 𝑯𝑤,𝜀𝑏2𝑙 = −𝑫̂ 𝑪̂𝑙2𝑏(𝒗̂𝑏
𝑙 ) ×  

• 𝑯𝑤,𝑏𝜔 = −𝑫̂ (Δ𝒑𝑤
𝑏 ) × 

• 𝑯𝑤,𝑘𝜔 = −𝑫̂ (Δ𝒑𝑤
𝑏 ) ×𝑾  

• 𝑯𝑤,𝑘𝑤 = [
0 0 0
0 1 0
0 0 0

] (𝑪̂𝑙2𝑏𝒗̂𝑏
𝑙 + (𝝎𝑙𝑏

𝑏 ) × Δ𝒑𝑤
𝑏 )  

 



 

Appendix D 

D Proofs of observability analysis 

All the proofs are based on the observability matrix expression defined in equation (4.61) and 

Table 4.2 which expresses the observability matrix components. To simplify reading, let us 

recall their expressions : 

𝓞 =

[
 
 
 
 
 
 
 
 
 
∇𝐿0𝒉1
∇𝐿0𝒉2
∇𝐿0ℎ32
∇𝐿𝒇2

1 𝒉2

∇𝐿0ℎ6
∇𝐿𝒇0

1 𝒉2

∇𝐿𝒇0𝐿𝒇2
1 𝒉2

∇𝐿𝒇1𝐿𝒇2
1 𝒉2]

 
 
 
 
 
 
 
 
 

 (D.1) 

 𝒑𝑏
𝑙  𝒗𝑏

𝑙  𝒒𝑏2𝑙 𝒃𝑓 𝒃𝜔 𝒌𝑓 𝒌𝜔 𝑘𝑤 

∇𝐿0𝒉1 𝑰3 𝟎3 𝒈1(𝑿) 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3×1 

∇𝐿0𝒉2 𝟎3 𝑰3 𝒈2(𝑿) 𝟎3 𝒈3(𝑿) 𝟎3 𝒈4(𝑿) 𝟎3×1 

∇𝐿0ℎ32 𝟎1×3 𝟎1×3 𝒈5(𝑿) 𝟎1×3 𝒈6(𝑿) 𝟎1×3 𝒈7(𝑿) 𝑔8(𝑿) 

∇𝐿𝒇2
1 𝒉2 𝟎9×3 𝟎9×3 𝒈9(𝑿) 𝟎9×3 𝟎9×3 𝒈10(𝑿) 𝟎9×3 𝟎9×1 

∇𝐿0ℎ6 𝟎1×3 𝟎1×3 2𝒒𝑏2𝑙
𝑇  𝟎1×3 𝟎1×3 𝟎1×3 𝟎1×3 0 

∇𝐿𝒇0
1 𝒉2 𝟎3 𝟎3 𝒈11(𝑿) 𝑪𝑏2𝑙𝛾(𝒌𝑓) 𝒈12(𝑿) 𝒈13(𝑿) 𝒈14(𝑿) 0 

∇𝐿𝒇0𝐿𝒇2
1 𝒉2 𝟎9×3 𝟎9×3 𝒈15(𝑿) 𝟎9×3 𝒈16(𝑿) 𝒈17(𝑿) 𝒈18(𝑿) 𝟎9×1 

∇𝐿𝒇1𝐿𝒇2
1 𝒉2 𝟎9×3 𝟎9×3 𝒈19(𝑿) 𝟎9×3 𝟎9×3 𝒈20(𝑿) 𝒈21(𝑿) 𝟎9×1 

Table D.1 Expression of the 𝓞 matrix 

D.1 Step 1: Observability analysis of the WSS scale factor 𝒌𝒘 

The WSS measurement expression is given by: 

ℎ32 = (1 + 𝑘𝑤)(𝑪𝑙2𝑏(2, : )𝒗𝑏
𝑙 + 𝑙𝑣𝑦) (D.2) 
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Where 𝑙𝑣𝑦 is the y-component of  𝒍𝑣 = (𝝎𝑖𝑏
𝑏 )

𝑡𝑟𝑢𝑒
× Δ𝒑𝑤

𝑏  representing the lever arm between 

the WSS velocity computation point and the IMU. 

Therefore; 

∇𝐿0ℎ32 = [𝟎1×3 𝟎1×3 𝒈5(𝑿) 𝟎1×3 𝒈6(𝑿) 𝟎1×3 𝒈7(𝑿) 𝒈8(𝑿)] (D.3) 

where 

𝒈8(𝑿) = 𝑪𝑙2𝑏(2, : )𝒗𝑏
𝑙 + 𝑙𝑣𝑦 (D.4) 

This expression is equal in two possible cases: 

- Either the vehicle does not move (𝒗𝑏
𝑙 = 0 and 𝑙𝑣𝑦 = 0) 

- Or 𝑪𝑙2𝑏(2, : )𝒗𝑏
𝑙 = −𝑙𝑣𝑦 . This implies that ‖𝒗𝑏

𝑙 ‖
2
= |𝑙𝑣𝑦| = |𝜔𝑖𝑏

𝑏𝑧 Δ𝑝𝑤
𝑏𝑥 − 𝜔𝑖𝑏

𝑏𝑥 Δ𝑝𝑤
𝑏𝑧| 

with 𝜔𝑖𝑏
𝑏𝑥 very close to zero for a ground vehicle application and Δ𝑝𝑤

𝑏𝑥 is also close to 

zero since the IMU is often mounted along the longitudinal axis of the vehicle, which is 

the same axis along which lies the rear axle center. Therefore, the condition 

𝑪𝑙2𝑏(2, : )𝒗𝑏
𝑙 = −𝑙𝑣𝑦 implies that ‖𝒗𝑏

𝑙 ‖ ≈ 0.  

Thus, we conclude that the only possibility that 𝒈8(𝑿) is not full rank (null) is to have a 

stationary vehicle. In this case, the WSS scale factor is not locally weakly observable. 

Otherwise, when the vehicle moves, the WSS scale factor is locally weakly observable. 

D.2 Step 2: Observability analysis of the attitude 𝒒𝒃𝟐𝒍  and the accelerometers scale 

factors 𝒌𝒇 

The GNSS velocity measurement expression is given by: 

𝒉2 = 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙 (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝐺
𝑏  (D.5) 

Therefore; 

∇𝐿𝒇2
1 𝒉2 = ∇(∇𝐿

0𝒉2. 𝒇2) 

= ∇(𝑪𝑏2𝑙𝛾(𝒌𝑓)) 

∇𝐿𝒇2
1 𝒉2 = [𝟎9×3 𝟎9×3 𝒈9(𝑿) 𝟎9×3 𝟎9×3 𝒈10(𝑿) 𝟎9×3 𝟎9×1] 

 

(D.6) 

where 𝜸(𝒌𝑓) = diag (
1

1+𝑘𝑓𝑥
,

1

1+𝑘𝑓𝑦
,

1

1+𝑘𝑓𝑧
) = diag (𝛾𝑓𝑥  , 𝛾𝑓𝑦  , 𝛾𝑓𝑧) 

𝒈9(𝑿) =
𝜕

𝜕𝒒𝑏2𝑙
(𝑪𝑏2𝑙𝜸(𝒌𝑓)) (D.7) 
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Considering the expression of 𝑪𝑏2𝑙  as a function of the 𝒒𝑏2𝑙  components given in equation 

(B.35), we compute 𝒈9 and 𝒈10: 

𝒈9(𝑿) =

[
 
 
 
 
 
 
 
 
 
 

0 0 −4𝛾𝑓𝑥𝑞2 −4𝛾𝑓𝑥𝑞3
2𝛾𝑓𝑥𝑞3 2𝛾𝑓𝑥𝑞2 2𝛾𝑓𝑥𝑞1 2𝛾𝑓𝑥𝑞0
−2𝛾𝑓𝑥𝑞2 2𝛾𝑓𝑥𝑞3 −2𝛾𝑓𝑥𝑞0 2𝛾𝑓𝑥𝑞1
−2𝛾𝑓𝑦𝑞3 2𝛾𝑓𝑦𝑞2 2𝛾𝑓𝑦𝑞1 −2𝛾𝑓𝑦𝑞0

0 −4𝛾𝑓𝑦𝑞1 0 −4𝛾𝑓𝑦𝑞3

2𝛾𝑓𝑦𝑞1 2𝛾𝑓𝑦𝑞0 2𝛾𝑓𝑦𝑞3 2𝛾𝑓𝑦𝑞2

2𝛾𝑓𝑧𝑞2 2𝛾𝑓𝑧𝑞3 2𝛾𝑓𝑧𝑞0 2𝛾𝑓𝑧𝑞1
−2𝛾𝑓𝑧𝑞1 −2𝛾𝑓𝑧𝑞0 2𝛾𝑓𝑧𝑞3 2𝛾𝑓𝑧𝑞2
0 −4𝛾𝑓𝑧𝑞1 −4𝛾𝑓𝑧𝑞2 0 ]

 
 
 
 
 
 
 
 
 
 

 (D.8) 

and 

𝒈10(𝑿) =

[
 
 
 
 
 
 
 
 
 
 
 
−𝛾𝑓𝑥

2 (1 − 2𝑞2
2 − 2𝑞3

2) 0 0

−2𝛾𝑓𝑥
2 (𝑞1𝑞2 + 𝑞0𝑞3) 0 0

−2𝛾𝑓𝑥
2 (𝑞1𝑞3 − 𝑞0𝑞2) 0 0

0 −2𝛾𝑓𝑦
2 (𝑞1𝑞2 − 𝑞0𝑞3) 0

0 −𝛾𝑓𝑦
2 (1 − 2𝑞1

2−2𝑞3
2 ) 0

0 −2𝛾𝑓𝑦
2 (𝑞0𝑞1 + 𝑞2𝑞3) 0

0 0 −2𝛾𝑓𝑧
2 (𝑞0𝑞2 + 𝑞1𝑞3)

0 0 −2𝛾𝑓𝑧
2 (𝑞2𝑞3 − 𝑞0𝑞1)

0 0 −𝛾𝑓𝑧
2 (1 − 2𝑞1

2−2𝑞2
2 )]
 
 
 
 
 
 
 
 
 
 
 

 (D.9) 

The 𝒒𝑏2𝑙 quaternion norm constraint is given by: 

ℎ6 = 𝒒𝑏2𝑙
𝑇 . 𝒒𝑏2𝑙 (D.10) 

Therefore, 

∇𝐿0ℎ6 = [𝟎1×3 𝟎1×3 2𝒒𝑏2𝑙
𝑇 𝟎1×3 𝟎1×3 𝟎1×3 𝟎1×3 0] (D.11) 

Let us prove that the matrix 𝑨 = [
𝒈9(𝑿) 𝒈10(𝑿)

2𝑞𝑏2𝑙
𝑇 𝟎1×3

] has full column rank (equal to 7). To prove 

this, we have to prove that the rank of at least one submatrix of 𝑨 is 7. To do this, we compute 

the determinant of a subset of square submatrices of 𝑨. These submatrices are formed by 

choosing a combination of 7 rows from the 10 rows of 𝑨. The last row which expresses the 

quaternion norm constraint is kept for all the chosen submatrices. 

The first three rows of 𝑨 correspond to acceleration along the x-axis of (𝑏), rows 4 to 6 

correspond to acceleration along the y-axis of (𝑏)  and finally rows 7 to 9 correspond to 

acceleration along z-axis of (𝑏). 
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We notice that we must have the three accelerations excited in order to have a full rank matrix 

𝑨. In fact, with two accelerations (the minimum number of accelerations since we must choose 

6 rows apart from the seventh row corresponding to the quaternion row constraint), the 𝑨 matrix 

is rank deficient and the rank of 𝑨 is equal to 6. The missing rank corresponds to the IMU 

acceleration scale factor of the missing axis. Therefore, in our case of vehicular applications, 

the scale factor 𝑘𝑓𝑥 is weakly observable when the vehicle turns, only. The other scale factors 

are observable thanks to the vehicle displacement and the gravity effect. 

Now let us consider the submatrix of 𝑨 after removing the rows corresponding to the cross 

acceleration along the x-axis, and let us prove that the attitude is locally weakly observable with 

at least two acceleration axes excited. This means that we must prove that the rank of 𝑨1 is 

equal to 6 with 𝑨1 given by: 

𝑨1 =

[
 
 
 
 
 
 
 
 
−2𝛾𝑓𝑦𝑞3 2𝛾𝑓𝑦𝑞2 2𝛾𝑓𝑦𝑞1 −2𝛾𝑓𝑦𝑞0 −2𝛾𝑓𝑦

2 (𝑞1𝑞2 − 𝑞0𝑞3) 0

0 −4𝛾𝑓𝑦𝑞1 0 −4𝛾𝑓𝑦𝑞3 −𝛾𝑓𝑦
2 (1 − 2𝑞1

2−2𝑞3
2 ) 0

2𝛾𝑓𝑦𝑞1 2𝛾𝑓𝑦𝑞0 2𝛾𝑓𝑦𝑞3 2𝛾𝑓𝑦𝑞2 −2𝛾𝑓𝑦
2 (𝑞0𝑞1 + 𝑞2𝑞3) 0

2𝛾𝑓𝑧𝑞2 2𝛾𝑓𝑧𝑞3 2𝛾𝑓𝑧𝑞0 2𝛾𝑓𝑧𝑞1 0 −2𝛾𝑓𝑧
2 (𝑞0𝑞2 + 𝑞1𝑞3)

−2𝛾𝑓𝑧𝑞1 −2𝛾𝑓𝑧𝑞0 2𝛾𝑓𝑧𝑞3 2𝛾𝑓𝑧𝑞2 0 −2𝛾𝑓𝑧
2 (𝑞2𝑞3 − 𝑞0𝑞1)

0 −4𝛾𝑓𝑧𝑞1 −4𝛾𝑓𝑧𝑞2 0 0 −𝛾𝑓𝑧
2 (1 − 2𝑞1

2−2𝑞2
2 )

2𝑞0 2𝑞1 2𝑞2 2𝑞3 0 0 ]
 
 
 
 
 
 
 
 

 
(D.12) 

Let us consider the following submatrices of 𝑨1 and let us compute their determinants: 

det 1 = det(𝑨1{1,2,3,4,5,7}) = −32(𝑞1𝑞0 + 𝑞2𝑞3)𝛾𝑓𝑦
4 𝛾𝑓𝑧

3  

det 2 = det(𝑨1{1,2,3,4,6,7}) = −16(𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞0

2)𝛾𝑓𝑦
4 𝛾𝑓𝑧

3  

det 3 = det(𝑨1{1,2,4,5,6,7}) = −16(𝑞1
2 + 𝑞2

2 − 𝑞3
2 − 𝑞0

2)𝛾𝑓𝑦
3 𝛾𝑓𝑧

4  

det 4 = det(𝑨1{1,3,4,5,6,7}) = −32(𝑞1𝑞0 − 𝑞2𝑞3)𝛾𝑓𝑦
3 𝛾𝑓𝑧

4  

(D.13) 

To prove that 𝑨1 has full column rank, it suffices to prove that  {∃ 𝑖 ∈ {1,⋯ , 4}  ;  det 𝑖  ≠ 0} 

To do so, let us conduct a proof by contradiction and let us assume that {∀ 𝑖 ∈

{1,⋯ , 4}  ;  det 𝑖 = 0}.We know that 𝛾𝑓𝑦 ≠ 0 and 𝛾𝑓𝑧 ≠ 0, therefore: 

det 1 = 0  →    𝑞1𝑞0 = −𝑞2𝑞3     

det 2 = 0    →   𝑞1
2 + 𝑞3

2 = 𝑞2
2 + 𝑞0

2 

det 3 = 0    →   𝑞1
2 − 𝑞3

2 = −𝑞2
2 + 𝑞0

2 

det 4 = 0  →    𝑞1𝑞0 = 𝑞2𝑞3 

(D.14) 

By adding and then subtracting the two lines corresponding to (det 2 = 0) and to (det 3 = 0), 

we have: 

𝑞1
2 = 𝑞0

2  and  𝑞2
2 = 𝑞3

2 (D.15) 
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Using the result of  (det 1 = 0), we have:( 𝑞1
2𝑞0
2 = 𝑞2

2𝑞3
2) and applying the previously found 

equalities, we deduce that: 

𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 (D.16) 

Now using (det 1 = 0) and (det 4 = 0), we deduce that    𝑞1𝑞0 = 0 which implies that 𝑞1 = 0 

or 𝑞0 = 0. This means that  𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 = 0 which is contradictory with the fact that 

the quaternion norm is unit. 

Therefore; 

{∃ 𝑖 ∈ {1,⋯ , 4}  ;  det 𝑖  ≠ 0} (D.17) 

We conclude that 𝑨1 has full column rank which means that the attitude and the scale factors 

of the two excited acceleration axes are locally weakly observable. If only one acceleration axis 

is exited, then the attitude is not fully observable. This result is confirmed in (Rhee, 2002) where 

the observability of the linearized GPS/INS system is performed. 

D.3 Step 3: Observability analysis of the accelerometers biases 𝒃𝒇 

We recall the GNSS velocity measurement expression given in equation (D.5): 

𝒉2 = 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙 (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝐺
𝑏  

Therefore 

∇𝐿𝒇0
1 𝒉2 = ∇(∇𝐿

0𝒉2. 𝒇0) 

= ∇(𝑪𝑏2𝑙𝛾(𝒌𝑓)𝒃𝑓) 

∇𝐿𝒇0
1 𝒉2 = [𝟎3 𝟎3 𝒈11(𝑿) 𝑪𝑏2𝑙𝛾(𝒌𝑓) 𝒈12(𝑿) 𝒈13(𝑿) 𝒈14(𝑿) 0] 

(D.18) 

This step is very simple since we need to prove that 𝑪𝑏2𝑙𝛾(𝒌𝑓) is full rank (equal to 3). This 

expression is the product of a rotation matrix which is invertible and a (3 × 3) diagonal matrix 

with nonzero elements. Therefore, the rank of both matrices is 3 and their product has 

consequently a full rank. Thus, the three accelerometer biases are locally weakly observable if 

the GNSS provides a 3D velocity information. 

D.4 Step 4: Observability analysis of the gyroscopes biases 𝒃𝝎 

We recall the GNSS velocity measurement expression given in equation (D.5): 

𝒉2 = 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙 (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝐺
𝑏  
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Therefore 

∇𝐿𝒇0𝐿𝒇2
1 𝒉2 = ∇(∇(∇𝐿

0𝒉2. 𝒇2). 𝒇0) 

= ∇(∇𝐿𝒇2
1 𝒉2 . 𝒇0) 

= ∇(
−1

2
𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)𝒃𝜔 + 𝒈10(𝑿)𝜷𝑘𝑓  𝒌𝑓) 

∇𝐿𝒇0𝐿𝒇2
1 𝒉2 = [𝟎9×3 𝟎9×3 𝒈15(𝑿) 𝟎9×3 𝒈16(𝑿) 𝒈17(𝑿) 𝒈18(𝑿) 𝟎9×1] 

(D.19) 

With 

𝒈16(𝑿) = −
1

2

𝜕

𝜕𝒃𝜔
(𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)𝒃𝜔) 

=
−1

2
𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔) 

(D.20) 

Let us analyze the rank of 𝒈16(𝑿) which is the product of three matrices.  

𝛾(𝒌𝜔) is a diagonal matrix with nonzero elements and consequently it has full rank. Therefore, 

it suffices to analyses the rank of the matrix: 𝑩 =
−1

2
𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙). 

Let us conduct the same analysis as in Step 2. We must demonstrate that the rank of 𝑩 is equal 

to3. To do this, we compute the determinant of a subset of square submatrices of 𝑩. These 

submatrices are formed by choosing a combination of 3 rows from the 9 rows of the matrix 𝑩. 

The determinants of these submatrices are computed and we must prove that there exists at least 

one nonzero determinant. 

First of all, when we compute the determinant of 𝑩 with only one excited accelerometer axis, 

we obtain a null determinant and the rank of 𝑩 is 2. Therefore at least 2 accelerometer axes 

must be excited to be able to estimate the three gyro biases. As explained in Step 2, the x-axis 

describes the lateral movement of the vehicle and the corresponding acceleration is excited 

during turns, only. Therefore, only the y and z axes are considered because they correspond 

respectively to the forward movement and the gravity acceleration effect. 

Let us consider the following submatrices of 𝑩 and let us compute their determinants: 

det 1 =det(𝑩{5,6,8}) = −4(𝑞1
2𝑞2
2 − 𝑞3

2𝑞0
2)𝛾𝑓𝑦

2 𝛾𝑓𝑧 

det 2 =det(𝑩{6,8,9}) = 4(𝑞1
2𝑞3
2 − 𝑞2

2𝑞0
2)𝛾𝑓𝑦𝛾𝑓𝑧

2  

det 3 =det(𝑩{4,6,7}) = −(𝑞1
4 + 𝑞2

4 − 𝑞3
4 − 𝑞0

4 − 2𝑞1
2𝑞2
2 + 2𝑞3

2𝑞0
2) 𝛾𝑓𝑦

2 𝛾𝑓𝑧 

det 4 =det(𝑩{4,7,8}) = −(𝑞1
4 − 𝑞2

4 + 𝑞3
4 − 𝑞0

4 − 2𝑞1
2𝑞3
2 + 2𝑞2

2𝑞0
2) 𝛾𝑓𝑦𝛾𝑓𝑧

2  

det 5 =det(𝑩{4,5,7}) = −2(𝑞1𝑞0 + 𝑞2𝑞3)(𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞0

2)𝛾𝑓𝑦
2 𝛾𝑓𝑧 

(D.21) 
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det 6 =det(𝑩{5,8,9}) = −4(𝑞1𝑞3 + 𝑞2𝑞0)(𝑞1𝑞2 + 𝑞3𝑞0)𝛾𝑓𝑦𝛾𝑓𝑧
2  

det 7 =det(𝑩{5,6,9}) = −4(𝑞1𝑞3 − 𝑞2𝑞0)(𝑞1𝑞2 − 𝑞3𝑞0)𝛾𝑓𝑦
2 𝛾𝑓𝑧 

As for step 2, let us conduct a proof by contradiction and let us assume that 

{∀ 𝑖 ∈ {1,⋯ , 7}  ;  det 𝑖 = 0}.We know that 𝛾𝑓𝑦 ≠ 0 and 𝛾𝑓𝑧 ≠ 0, therefore: 

det 1 = 0  →     𝑞1
2𝑞2
2 = 𝑞3

2𝑞0
2 

det 2 = 0  →     𝑞1
2𝑞3
2 = 𝑞2

2𝑞0
2 

(D.22) 

Using the results of (det 1 = 0) and (det 2 = 0) we have, 

det 3 = 0  → 𝑞1
4 + 𝑞2

4 − 𝑞3
4 − 𝑞0

4 = 0 

det 4 = 0  → 𝑞1
4 − 𝑞2

4 + 𝑞3
4 − 𝑞0

4 = 0 
(D.23) 

 By adding and then subtracting the previous equations, we obtain: 

𝑞1
4 = 𝑞0

4  and  𝑞2
4 = 𝑞3

4  or equivalently 𝑞1
2 = 𝑞0

2  and  𝑞2
2 = 𝑞3

2 (D.24) 

 By applying the previously found equalities in the result of (det 5 = 0), we have: 

det 5 = −2(𝑞1
2 − 𝑞2

2)(𝑞1𝑞0 + 𝑞2𝑞3) = 0  → 𝑞1𝑞0 = −𝑞2𝑞3   or   𝑞1
2 = 𝑞2

2 (D.25) 

In both cases we deduce that: 

𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 (D.26) 

Indeed: 

• If (𝑞1𝑞0 = −𝑞2𝑞3) then(  𝑞1
2𝑞0
2 = 𝑞2

2𝑞3
2) and applying the equalities found in equation 

(D.24), we obtain equation (D.26)  

• If (𝑞1
2 = 𝑞2

2 = 0) then using equation (D.24), we obtain directly equation (D.26) 

Finally, summing and subtracting the results of (det 6 = 0) and (det 7 = 0), we deduce that 

at least one quaternion component is zero. This implies that (𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 = 0) which 

is contradictory with the fact that the quaternion is a unit vector. 

Therefore 

{∃ 𝑖 ∈ {1,⋯ , 7}  ;  det 𝑖  ≠ 0} (D.27) 

We conclude that 𝑩 has full column rank. Therefore, the three gyroscope biases are locally 

weakly observable if at least two acceleration axes are excited. 

D.5 Step 5: Observability analysis of the gyroscopes cales factors 𝒌𝝎 

We recall the GNSS velocity measurement expression given in equation (D.5): 
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𝒉2 = 𝒗𝑏
𝑙 + 𝑪𝑏2𝑙 (𝛾(𝒌𝜔)(𝝎̃𝑖𝑏

𝑏 − 𝒃𝜔)) × Δ𝒑𝐺
𝑏  

Therefore; 

∇𝐿𝒇1𝐿𝒇2
1 𝒉2 = ∇(∇(∇𝐿

0𝒉2. 𝒇2). 𝒇1) 

= ∇(∇𝐿𝒇2
1 𝒉2 . 𝒇1) 

= ∇(
1

2
𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)) 

∇𝐿𝒇1𝐿𝒇2
1 𝒉2 = [𝟎9×3 𝟎9×3 𝒈19(𝑿) 𝟎9×3 𝟎9×3 𝒈20(𝑿) 𝒈21(𝑿) 𝟎9×1] 

(D.28) 

With 

𝒈21(𝑿) =
1

2

𝜕

𝜕𝒌𝜔
(𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)) (D.29) 

 After removing the zero rows, we obtain the following matrix: 

𝒈21(𝑿) = [

𝒈21
𝑐𝑥 𝟎1×6 𝟎1×6

𝟎1×6 𝒈21
𝑐𝑦

𝟎1×6
𝟎1×6 𝟎1×6 𝒈21

𝑐𝑧

] (D.30) 

with 

𝒈21
𝑐𝑥 =

[
 
 
 
 
 
 
 
(2𝑞1𝑞3 − 2𝑞2𝑞0)𝛾𝜔𝑥

2 𝛾𝑓𝑥
(−2𝑞3𝑞0 − 2𝑞1𝑞2)𝛾𝜔𝑥

2 𝛾𝑓𝑥
(2𝑞1𝑞0 + 2𝑞2𝑞3)𝛾𝜔𝑥

2 𝛾𝑓𝑦
(𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞0

2)𝛾𝜔𝑥
2 𝛾𝑓𝑦

(−𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞0

2)𝛾𝜔𝑥
2 𝛾𝑓𝑧

(2𝑞1𝑞0 − 2𝑞2𝑞3)𝛾𝜔𝑥
2 𝛾𝑓𝑧 ]

 
 
 
 
 
 
 

 ,     𝒈21
𝑐𝑦
=

[
 
 
 
 
 
 
 
−(2𝑞1𝑞3 − 2𝑞2𝑞0)𝛾𝜔𝑦

2 𝛾𝑓𝑥
(𝑞1
2 − 𝑞2

2 − 𝑞3
2 + 𝑞0

2)𝛾𝜔𝑦
2 𝛾𝑓𝑥

−(2𝑞1𝑞0 + 2𝑞2𝑞3)𝛾𝜔𝑦
2 𝛾𝑓𝑦

(2𝑞1𝑞2 − 2𝑞3𝑞0)𝛾𝜔𝑦
2 𝛾𝑓𝑦

(𝑞1
2 + 𝑞2

2 − 𝑞3
2 − 𝑞0

2)𝛾𝜔𝑦
2 𝛾𝑓𝑧

(2𝑞1𝑞3 + 2𝑞2𝑞0)𝛾𝜔𝑦
2 𝛾𝑓𝑧 ]

 
 
 
 
 
 
 

 

𝒈21
𝑐𝑧 =

[
 
 
 
 
 
 
 

(2𝑞1𝑞2 + 2𝑞3𝑞0)𝛾𝜔𝑧
2 𝛾𝑓𝑥

(−𝑞1
2 + 𝑞2

2 + 𝑞3
2 − 𝑞0

2)𝛾𝜔𝑧
2 𝛾𝑓𝑥

(−𝑞1
2 + 𝑞2

2 − 𝑞3
2 + 𝑞0

2)𝛾𝜔𝑧
2 𝛾𝑓𝑦

(2𝑞3𝑞0 − 2𝑞1𝑞2)𝛾𝜔𝑧
2 𝛾𝑓𝑦

(−2𝑞1𝑞0 + 2𝑞2𝑞3)𝛾𝜔𝑧
2 𝛾𝑓𝑧

−(2𝑞2𝑞0 + 2𝑞1𝑞3)𝛾𝜔𝑧
2 𝛾𝑓𝑧 ]

 
 
 
 
 
 
 

 

(D.31) 

Again, the acceleration along the x-axis is not taken into account and the observability is 

analyzed independently of this axis for the land vehicle. The observability of 𝒌𝜔 depends also 

on the gyro measurements. We take into consideration the fact that the land vehicle rotation 

around the y-axis (the roll) is negligible. In this case, 𝒈21 is rank deficient and its rank is equal 

to 2. The missing rank corresponds to the IMU angular rate scale factor about the y-axis. Let us 

prove that the other gyroscope scale factors are observable with the measurements that are 

available. First, we define the new matrix 𝑮21
𝑐𝑥  whose rows correspond to the available 

measurements (2 accelerations along the y and z axes and a rotation about the x axes): 
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𝑮21
𝑐𝑥 =

[
 
 
 
 

2(𝑞1𝑞0 + 𝑞2𝑞3)𝛾𝜔𝑥
2 𝛾𝑓𝑦

(𝑞1
2 − 𝑞2

2 + 𝑞3
2 − 𝑞0

2)𝛾𝜔𝑥
2 𝛾𝑓𝑦

(−𝑞1
2 − 𝑞2

2 + 𝑞3
2 + 𝑞0

2)𝛾𝜔𝑥
2 𝛾𝑓𝑧

2(𝑞1𝑞0 − 𝑞2𝑞3)𝛾𝜔𝑥
2 𝛾𝑓𝑧 ]

 
 
 
 

 (D.32) 

Let us prove that it has a rank equal to 1. 

det 1 =det(𝑮21
𝑐𝑥{1}) = 2(𝑞1𝑞0 + 𝑞2𝑞3)𝛾𝜔𝑥

2 𝛾𝑓𝑦 

det 2 =det(𝑮21
𝑐𝑥{2}) = (𝑞1

2 − 𝑞2
2 + 𝑞3

2 − 𝑞0
2)𝛾𝜔𝑥

2 𝛾𝑓𝑦 

det 3 =det(𝑮21
𝑐𝑥{3}) = (−𝑞1

2 − 𝑞2
2 + 𝑞3

2 + 𝑞0
2)𝛾𝜔𝑥

2 𝛾𝑓𝑧 

det 4 =det(𝑮21
𝑐𝑥{4}) = 2(𝑞1𝑞0 − 𝑞2𝑞3)𝛾𝜔𝑥

2 𝛾𝑓𝑧 

(D.33) 

Let us assume that {∀ 𝑖 ∈ {1,⋯ , 4}  ;  det 𝑖 = 0}.We know that 𝛾𝑓𝑦 ≠ 0,𝛾𝑓𝑧 ≠ 0 and 𝛾𝜔𝑥 ≠ 0 

therefore: 

det 1 = 0  →     𝑞1𝑞0 = −𝑞2𝑞3 

det 2 = 0  →     𝑞1
2 + 𝑞3

2 = 𝑞2
2 + 𝑞0

2 

det 3 = 0  →     𝑞1
2 − 𝑞3

2 = −𝑞2
2 + 𝑞0

2 

(D.34) 

By adding and then subtracting (det 2 = 0) and (det 3 = 0), we have: 

𝑞1
2 = 𝑞0

2  and  𝑞2
2 = 𝑞3

2 (D.35) 

Using (det 1 = 0), we have:     𝑞1
2𝑞0
2 = 𝑞2

2𝑞3
2  and applying the previously found equalities, we 

deduce that: 

𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 (D.36) 

Now using (det 1 = 0) and (det 4 = 0), we deduce that    𝑞1𝑞0 = 0 which implies that 𝑞1 = 0 

or 𝑞0 = 0. This means that  𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 = 0 which is contradictory with the fact that 

the quaternion norm is unit with the fact that the quaternion norm is unit. 

Therefore; 

{∃ 𝑖 ∈ {1,⋯ , 4}  ;  det 𝑖  ≠ 0} (D.37) 

We conclude that 𝑮21
𝑐𝑥  has full column rank and consequently that the gyro scale factor about 

the x-axis is locally weakly observable. 

Now let us prove that 𝑮21
𝑐𝑧  has full rank with: 
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𝑮21
𝑐𝑧 =

[
 
 
 
 
(−𝑞1

2 + 𝑞2
2 − 𝑞3

2 + 𝑞0
2)𝛾𝜔𝑧

2 𝛾𝑓𝑦

2(𝑞3𝑞0 − 𝑞1𝑞2)𝛾𝜔𝑧
2 𝛾𝑓𝑦

−2(𝑞1𝑞0 − 𝑞2𝑞3)𝛾𝜔𝑧
2 𝛾𝑓𝑧

−2(𝑞2𝑞0 + 𝑞1𝑞3)𝛾𝜔𝑧
2 𝛾𝑓𝑧 ]

 
 
 
 

 (D.38) 

det 1 =det(𝑮21
𝑐𝑧 {1}) = (−𝑞1

2 + 𝑞2
2 − 𝑞3

2 + 𝑞0
2)𝛾𝜔𝑧

2 𝛾𝑓𝑦 

det 2 =det(𝑮21
𝑐𝑧 {2}) = 2(𝑞3𝑞0 − 𝑞1𝑞2)𝛾𝜔𝑧

2 𝛾𝑓𝑦 

det 3 =det(𝑮21
𝑐𝑧 {3}) = −2(𝑞1𝑞0 − 𝑞2𝑞3)𝛾𝜔𝑧

2 𝛾𝑓𝑧 

det 4 =det(𝑮21
𝑐𝑧 {4}) = −2(𝑞2𝑞0 + 𝑞1𝑞3)𝛾𝜔𝑧

2 𝛾𝑓𝑧 

(D.39) 

Let us assume that {∀ 𝑖 ∈ {1,⋯ , 4}  ;  det 𝑖 = 0}.We know that 𝛾𝑓𝑦 ≠ 0,𝛾𝑓𝑧 ≠ 0 and 𝛾𝜔𝑧 ≠ 0 

therefore: 

det 1 = 0  →     𝑞1
2 + 𝑞3

2 = 𝑞2
2 + 𝑞0

2 

det 2 = 0  →     𝑞3𝑞0 = 𝑞1𝑞2  →    𝑞3
2𝑞0
2 = 𝑞1

2𝑞2
2 

det 3 = 0  →     𝑞1𝑞0 = 𝑞2𝑞3  →    𝑞1
2𝑞0
2 = 𝑞2

2𝑞3
2 

det 4 = 0  →     𝑞2𝑞0 = −𝑞1𝑞3 

(D.40) 

By summing (det 2 = 0) and (det 3 = 0), and using (det 1 = 0), we have: 

(𝑞2
2 + 𝑞0

2)(𝑞2
2 − 𝑞0

2) = 0 and (𝑞1
2 + 𝑞3

2)(𝑞1
2 − 𝑞3

2) = 0 (D.41) 

which implies 

𝑞2
4 = 𝑞0

4 or equivalently 𝑞2
2 = 𝑞0

2 and 𝑞1
4 = 𝑞3

4 or equivalently 𝑞1
2 = 𝑞3

2 (D.42) 

Using the previously found equalities in (det 1 = 0), we obtain: 

𝑞1
2 = 𝑞2

2 (D.43) 

and we deduce that  

𝑞1
2 = 𝑞2

2 = 𝑞3
2 = 𝑞0

2 (D.44) 

Let us assume that 𝑞1 ≠ 0, then multiplying (det 3 = 0) by 𝑞1  and using (det 4 = 0), we 

have: 

𝑞1
2𝑞0 = 𝑞1𝑞2𝑞3 = −𝑞2𝑞0𝑞2 = −𝑞2

2𝑞0 (D.45) 

This implies that: 

(𝑞1
2 + 𝑞2

2)𝑞0 = 0 (D.46) 

This means that 𝑞2 = 0 or 𝑞0 = 0. In both cases this implies using equation (D.44) that 
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𝑞1 = 𝑞2 = 𝑞3 = 0 (D.47) 

which is contradictory with the unit norm of the quaternion. Therefore 𝑞1 = 0 and consequently 

all the other quaternion components are equal zero which is again contradictory with the 

quaternion unit norm. 

Finally, we conclude that {∃ 𝑖 ∈ {1,⋯ , 4}  ;  det 𝑖  ≠ 0} and that the gyro scale factor about the 

z-axis is locally weakly observable. 

D.6 Note on the observability using only position information 

It can be noticed in the observability analysis done that the GNSS velocity was the most used. 

However, the observability analysis applies also to any velocity information provided to the 

filter if the GNSS velocity is not available (for example the WSS velocity). Note that in this 

study, it was intended to not use the lever arm information between the sensors to study 

specifically the contribution of each measurement without the lever arm contribution. The lever 

arm information includes the attitude of the vehicle and its presence increases the observability 

of the attitude. 

However, if the position is the only available information, then let us have a look at the system 

observability using this information: 

𝒉1 = 𝒑𝑏
𝑙 + 𝑪𝑏2𝑙  Δ𝒑𝐺

𝑏  (D.48) 

Therefore 

∇𝐿0𝒉1 = [𝑰3 𝟎3 𝒈1(𝑿) 𝟎3 𝟎3 𝟎3 𝟎3 𝟎3×1] (D.49) 

where 𝒈1(𝑿) is the component resulting from the lever arm presence. 

The first Lie derivative of 𝒉1 along 𝒇0 brings up the velocity term that we have used to analyze 

the observability in the previous section: 

𝐿𝒇0
1 𝒉1 = ∇𝐿

0𝒉1. 𝒇0 = 𝒗𝑏
𝑙 −

1

2
𝒈1(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)𝒃𝜔 (D.50) 

Therefore 

∇𝐿𝒇0
1 𝒉1 = [𝟎3 𝑰3 𝒈22(𝑿) 𝟎3 𝒈23(𝑿) 𝟎3 𝒈24(𝑿) 𝟎3×1] (D.51) 

which proves that the velocity is locally weakly observable. 

We show that the same conclusions as in the previous section can be drawn thanks to ∇𝐿𝒇0
1 𝒉1. 

Correspondence 1: 

𝐿𝒇2
1 𝐿𝒇0

1 𝒉1 = ∇𝐿𝒇0
1 𝒉1. 𝒇2 = 𝑪𝑏2𝑙𝛾(𝒌𝑓) (D.52) 

Therefore 
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∇𝐿𝒇2
1 𝐿𝒇0

1 𝒉1 = [𝟎9×3 𝟎9×3 𝒈9(𝑿) 𝟎9×3 𝟎9×3 𝒈10(𝑿) 𝟎9×3 𝟎9×1] (D.53) 

This shows the attitude error and the accelerometer scale factors observability as detailed in 

Step 2. 

Correspondence 2: 

𝐿𝒇0
2 𝒉1 = ∇𝐿𝒇0

1 𝒉1. 𝒇0 = 𝑪𝑏2𝑙𝛾(𝒌𝑓)𝒃𝑓 (D.54) 

Therefore 

∇𝐿𝒇0
2 𝒉1 = [𝟎3 𝟎3 𝒈11(𝑿) 𝑪𝑏2𝑙𝛾(𝒌𝑓) 𝒈12(𝑿) 𝒈13(𝑿) 𝒈14(𝑿) 0] (D.55) 

This shows the accelerometer biases observability as detailed in Step 3. 

Correspondence 3: 

𝐿𝒇0
1 𝐿𝒇2

1 𝐿𝒇0
1 𝒉1 = ∇𝐿𝒇2

1 𝐿𝒇0
1 𝒉1. 𝒇0 =

−1

2
𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔)𝒃𝜔 + 𝒈10(𝑿)𝜷𝑘𝑓  𝒌𝑓 (D.56) 

Therefore 

∇𝐿𝒇0
1 𝐿𝒇2

1 𝐿𝒇0
1 𝒉1

= [𝟎9×3 𝟎9×3 𝒈15(𝑿) 𝟎9×3 𝒈16(𝑿) 𝒈17(𝑿) 𝒈18(𝑿) 𝟎9×1] 
(D.57) 

 

This proves the gyroscope biases observability as detailed in Step 4 

Correspondence 4: 

𝐿𝒇1
1 𝐿𝒇2

1 𝐿𝒇0
1 𝒉1 = ∇𝐿𝒇2

1 𝐿𝒇0
1 𝒉1. 𝒇1 =

1

2
𝒈9(𝑿)𝚿( 𝒒𝑏2𝑙)𝛾(𝒌𝜔) (D.58) 

Therefore 

∇𝐿𝒇1
1 𝐿𝒇2

1 𝐿𝒇0
1 𝒉1 = [𝟎9×3 𝟎9×3 𝒈19(𝑿) 𝟎9×3 𝟎9×3 𝒈20(𝑿) 𝒈21(𝑿) 𝟎9×1] (D.59) 

This proves the gyroscope scale factors observability as detailed in Step 5.



 



 

 

Résumé 

Les exigences en termes de précision, intégrité, continuité et disponibilité de la navigation terrestre, 

consistant à estimer la position, la vitesse et l’attitude d’un véhicule, sont de plus en plus strictes, surtout 

depuis le développement des véhicules autonomes. Ce type d’applications nécessite un système de 

navigation non seulement capable de fournir une solution de navigation précise et fiable, mais aussi 

ayant un coût raisonnable. Durant les dernières décennies, les systèmes de navigation par satellites 

(GNSS) ont été les plus utilisés pour la navigation, surtout avec la baisse continue des coûts des 

récepteurs. Cependant, malgré sa capacité à fournir des informations de navigation absolue avec une 

bonne précision dans des milieux dégagés, l’utilisation du GNSS dans des milieux contraints est limitée 

à cause des problèmes liés à la propagation des signaux. Ce problème peut être surmonté en fusionnant 

les bonnes mesures GNSS avec les mesures d'autres capteurs ayant des caractéristiques 

complémentaires. Les algorithmes d'hybridation les plus largement mis en œuvre pour les véhicules 

terrestres fusionnent les mesures GNSS avec des données inertielles et / ou odométriques. Cependant, 

les performances obtenues par cette hybridation dépendent énormément de la qualité du capteur 

inertiel/odométrique utilisé, surtout lorsque les signaux GNSS sont dégradés ou indisponibles. Par 

conséquent, cette thèse, vise à enrichir l’architecture d'hybridation en incluant d'autres mesures de 

capteurs capables d'améliorer les performances de navigation tout en disposant d'un système bas coût et 

facilement embarquable. C’est pourquoi l'utilisation de la technique de navigation SLAM basées sur la 

vision pour fournir des informations supplémentaires est proposée dans cette thèse. Par conséquent, ce 

travail se concentre sur le développement d'une architecture de fusion multi-capteurs fusionnant 

l’information visuelle fournie par le SLAM avec les capteurs précédemment mentionnés et étudie en 

particulier la contribution de l'utilisation de cette information pour améliorer les performances du 

système de navigation. 

 

Mots-clés : fusion multi-capteurs, navigation par vision, GNSS, INS, SLAM, filtre de Kalman 

 

 

 

Abstract 

For land vehicles, the requirements of the navigation solution in terms of accuracy, integrity, continuity 

and availability are more and more stringent, especially with the development of autonomous vehicles. 

This type of application requires a navigation system not only capable of providing an accurate and 

reliable position, velocity and attitude solution continuously but also having a reasonable cost. In the 

last decades, GNSS has been the most widely used navigation system especially with the receivers 

decreasing cost over the years. However, despite of its capability to provide absolute navigation 

information, this system suffers from problems related to signal propagation especially in urban 

environments where buildings, trees and other structures hinder the reception of GNSS signals and 

degrade their quality. A possible way to overcome these problems is to fuse good GNSS measurements 

with other sensors having complementary characteristics. Generally, the most widely implemented 

hybridization algorithms for land vehicles fuse GNSS measurements with inertial and/or odometric data. 

However, the performance achieved by this hybridization depends thoroughly on the quality of the 

inertial/odometric sensor used especially when GNSS signals are degraded or unavailable. Therefore, 

this Ph.D. thesis, aims at extending the classical hybridization architecture by including other sensors 

capable of improving the navigation performances while having a low cost and being easily embeddable. 

For this reason, the use of vision-based navigation techniques to provide additional information is 

proposed in this thesis. In particular, the SLAM technique is investigated. Therefore, this work focuses 

on developing a multi-sensor fusion architecture integrating visual information with the previously 

mentioned sensors. In particular, the study of the contribution of this information to improve the vision-

free navigation system performance is perfomrmed. 

Keywords : Multi-sensor fusion, vision-based navigation, GNSS, INS, SLAM, Kalman filter 


