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Abstract

Thermoacoustic instabilities, also known as combustion instabilities, are a ma-
jor concern in the aerospace and energy production industries. They are due to
an energy transfer that occurs between a heat source, usually a flame stabilized
inside a combustor, and the surrounding acoustic field and may lead to unde-
sirable phenomena such as flame extinction, increased heat fluxes, very large
sound emissions at certain frequencies, vibration, structural damage and even
catastrophic failure in some cases. Given the potential consequences of such
phenomena, a large research effort has been devoted to predicting the onset of
combustion instabilities in modern boilers, rocket engines and gas turbines dur-
ing the past few decades. Unfortunately, the theoretical framework associated
with the study of thermoacoustic instabilities is complex and multi-physics and
the geometry of practical combustors is an intricate arrangement of 3D cavities.
As a consequence, predicting the thermoacoustic stability of a combustor at an
early design stage is a challenging task to date.

One way to predict the onset of thermoacoustic instabilities is to couple an
acoustic solver with a function that describes the frequency response of the
flame when submitted to harmonic sound waves. This function, called a Flame
Transfer Function (FTF) or a Flame Describing Function (FDF) when it is non-
linear, is then determined for a large set of forcing frequencies and operating
conditions using experiments, numerical simulations or analytical models. How-
ever, the impact of many parameters such as the forcing level, the way sound
waves are introduced inside the combustor, or a modification of the flame size
on the flame frequency response remain poorly understood.

As a consequence, the objective of this thesis is to study the acoustic response
of various laminar and turbulent premixed flames submitted to harmonic sound
waves in order to improve the thermoacoustic stability predictions of labscale
and industrial combustors at an early design stage. This experimental and
analytical work is part of the NoiseDyn project which is completed by a nu-
merical and theoretical investigation performed by Malte Merk, Camilo Silva
and Wolfgang Polifke at Technische Universität München.

The case of premixed laminar conical flames, which are used in a variety of
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domestic and industrial low-power combustors, is first investigated. The con-
cept of FTF is introduced and a few typical FTF models for such flames are
presented. These models are compared with measurements and it is concluded
that the best FTF model for large premixed laminar conical flames is obtained
when the velocity disturbance reaching the flame front is a convective wave with
a radial component such that the incompressible mass balance is respected.
Moreover, it is observed that an additional model accounting for the flame base
motion has no impact on the FTF predictions of large premixed laminar coni-
cal flames. On the other hand, no model is able to accurately predict the FTF
of small premixed laminar conical flames. It is concluded that an additional
modeling effort is needed for such flames.

It is also shown that for large injectors, the FTF of premixed laminar conical
flames is controlled by two dimensionless numbers: the reduced frequency and
the steady flame tip half angle. For smaller injectors, the dimensionless stand-
off distance, the dimensionless flame thermal thickness and the Lewis number
are further needed in order to fully describe the FTF.

In the second part of this manuscript, the acoustic response of premixed con-
fined turbulent flames submitted to harmonic forcing is investigated using ex-
periments and various modeling strategies. In a first set of experiments, the
FDF defined with respect to various reference signal is measured using an op-
tical technique. It is shown that all these describing functions may be related
using a nonlinear acoustic network model. Moreover, it is shown that the FDF
is different depending on the way acoustic forcing is introduced inside the com-
bustor, except when the reference signal is the acoustic velocity assessed just
before the flame. It is thus concluded that this signal should be used as the
reference signal when defining a Flame Describing Function.

In a second set of experiments, the Dimensionless Acoustic Transfer Matrix
(DATM) of the NoiseDyn burner is measured for cold and reactive operating
conditions and with a swirling and non-swirling injector. The acoustic forcing
level is controlled at the hot wire location and measurements are performed for
various predefined forcing levels. The acoustic response of the NoiseDyn burner
is found to be nonlinear for both cold and reactive operating conditions. More-
over, two acoustic network models representing the NoiseDyn burner operated
for cold and reactive conditions are assembled. The measured and predicted
DATM are then found to be in good agreement for cold and reactive operating
conditions and for both injectors. Even though the effect of the forcing level in
the predicted DATM is not entirely retrieved, the FDF measured using optical
techniques could be reconstructed from the DATM measurements with good
agreement.

Finally, the thermoacoustic stability of six distinct configurations of the Noise-
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Dyn burner is predicted for reactive operating conditions using two acoustic net-
work models. In the first model, the acoustic response of the flame is accounted
for using a measured FDF while in the second model, the flame response is em-
bedded inside a measured DATM. Both models are able to predict the onset
of thermoacoustic instabilities and the associated frequency of the instability.
However, the model based on the FDF does not predict the correct limit cycle
amplitude as opposed to the model based on the DATM measurement. This is
attributed to the way acoustic losses occurring inside the combustor are taken
into account: in the first model, these losses are modeled whereas in the second
model, they are measured, thus leading to better predictions of the limit cycle
amplitude.





Résumé

Les instabilités thermoacoustiques, également appelées instabilités de combus-
tion, sont un problème majeur pour la production d’électricité ainsi que dans
l’industrie aérospatiale. Ces instabilités sont dues à un transfert d’énergie en-
tre une source chaude, le plus souvent une flamme stabilisée dans un brûleur,
et le champ acoustique environnant. Les instabilités de combustion peuvent
avoir de nombreuses conséquences délétères telles que l’extinction de la flamme,
l’augmentation des flux de chaleur pariétaux, l’émission d’ondes sonores de
grande amplitude à certaines fréquences, des vibrations importantes, des dégâts
structurels et même l’explosion du moteur dans certains cas. Étant donné les
conséquences potentielles de tels phénomènes, d’importants moyens de recherche
ont été consacrés à la prédiction de l’apparition d’instabilités de combustion
dans les chaudières, les moteurs de fusée et les turbines à gaz ces dernières
décennies. Néanmoins, le cadre théorique associé à l’étude de ces instabilités
est complexe et nécessite l’emploi de nombreuses disciplines de la physique. De
plus, les brûleurs industriels sont constitués de nombreuses cavités tridimen-
sionnelles interagissant entre elles d’un point de vue acoustique. Pour toutes
ces raisons, la prédiction de la stabilité thermoacoustique d’un brûleur demeure
une tâche ardue à ce jour.

Une technique pour prédire l’apparition d’instabilités de combustion est de cou-
pler un solveur acoustique avec une fonction décrivant la réponse de la flamme
lorsque celle-ci est soumise à des ondes acoustiques harmoniques. Cette fonc-
tion, appelée Fonction de Transfert de Flamme (FTF) ou Fonction Descriptive
de Flamme (FDF) lorsqu’elle est non-linéaire, est ensuite déterminée pour une
large gamme de fréquences et de conditions opératoires en utilisant des ex-
périences, des simulations numériques ou des modèles analytiques. Cependant,
l’impact de divers paramètres tels que le niveau de forçage acoustique, la façon
dont le forçage est introduit dans le système ou encore la modification de la
taille de la zone réactive sur la réponse acoustique de la flamme est encore mal
compris.

En conséquence, l’objectif de cette thèse est d’étudier la réponse acoustique de
flammes prémélangées laminaires et turbulentes soumises à des ondes acous-
tiques harmoniques dans le but d’améliorer la prédiction de la stabilité ther-
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moacoustique des brûleurs, qu’ils soient industriels ou de taille plus réduite, lors
de leurs phases de conception. Ce travail expérimental et analytique fait partie
du projet NoiseDyn qui est également constitué des simulations aux grandes
échelles effectuées par Malte Merk, Camilo Silva et Wolfgang Polifke à la Tech-
nische Universität München.

Le cas des flammes prémélangées laminaires coniques, qui sont rencontrées
dans de nombreux brûleurs industriels et domestiques de faible puissance, est
examiné dans la première partie de ce manuscrit. Le concept de FTF est
décrit et quelques modèles classiques de FTF de flammes prémélangées lami-
naires coniques sont présentés. Les prédictions liées à ces modèles sont ensuite
comparées à des mesures expérimentales. Les meilleures prédictions pour des
flammes prémélangées laminaires coniques de grande taille sont obtenues avec
une perturbation de vitesse dans les gaz frais de type convective avec une com-
posante radiale de telle sorte que l’équation de conservation de la masse soit
respectée. De plus, l’inclusion d’un modèle supplémentaire prenant en compte
le mouvement du pied de flamme n’a aucun impact sur les prédictions de FTF
de flammes prémélangées laminaires coniques de grande taille. D’autre part,
aucun modèle n’est capable de prédire la FTF de flammes prémélangées lam-
inaires coniques de petite taille. Des recherches supplémentaires sont ainsi
nécessaires afin de prédire correctement la réponse de ces flammes à des ondes
acoustiques.

Il est également démontré que la FTF des flammes prémélangées laminaires
coniques de grande taille est contrôlée par deux nombres sans dimension: la
fréquence réduite et le demi angle au sommet de la flamme stationnaire. Pour
les petites flammes, la distance de stabilisation adimensionnée, l’épaisseur ther-
mique de flamme adimensionnée ainsi que le nombre de Lewis sont également
nécessaires afin de décrire entièrement l’évolution de la FTF.

Dans un second temps, la réponse acoustique de flammes prémélangées con-
finées turbulentes soumises à des ondes acoustiques harmoniques est étudiée
d’une part expérimentalement et d’autre part en employant plusieurs approches
analytiques. Une première série d’expériences est consacrée à l’étude des FDF
définies par rapport à différents signaux de référence. Il est démontré que toutes
ces FDF peuvent être reliées entre elles analytiquement en utilisant un réseau
non-linéaire d’éléments acoustiques. De plus, il est observé que la FDF est
différente en fonction de la façon dont le forçage acoustique est introduit dans
le brûleur, excepté lorsque le signal de référence est la vitesse acoustique juste
avant la flamme. Il est ainsi conclu que ce signal doit être utilisé comme signal
de référence lors de la définition de la FDF.

Dans une seconde série d’expériences, la matrice de transfert acoustique représen-
tant le brûleur NoiseDyn est mesurée à froid et à chaud (c’est-à-dire en présence
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d’une flamme) et pour un injecteur tourbillonnant et non-tourbillonnant. Le
niveau de forçage acoustique est contrôlé au niveau du fil chaud et des mesures
sont effectuées pour plusieurs niveaux de forçage prédéfinis. Il est ainsi démon-
tré que la réponse acoustique du brûleur NoiseDyn est non-linéaire aussi bien à
froid qu’à chaud. De plus, deux réseaux d’éléments acoustiques représentant le
brûleur NoiseDyn à froid et à chaud sont conçus. Les mesures et prédictions de
la matrice de transfert acoustique sont en accord aussi bien à froid qu’à chaud.
Même si l’effet du niveau de forçage n’est pas parfaitement prédit par le réseau
acoustique, la FDF mesurée en utilisant une technique optique est reconstruite
avec succès à partir des mesures de la matrice de transfert acoustique.

Enfin, la stabilité thermoacoustique de six configurations différentes du brûleur
NoiseDyn est prédite en utilisant deux réseaux d’éléments acoustiques. Dans
le premier réseau, la réponse acoustique de la flamme est prise en compte en
utilisant une FDF préalablement mesurée tandis que dans le second réseau,
la réponse de la flamme est incluse dans la mesure de la matrice de transfert
acoustique correspondant à la majeure partie du brûleur. Ces deux modèles
sont capables de prédire l’apparition d’instabilités thermoacoustiques ainsi que
la fréquence de ces instabilités le cas échéant. Néanmoins, le modèle basé sur la
FDF ne prédit pas l’amplitude du cycle limite de façon satisfaisante contraire-
ment au modèle basé sur la mesure de la matrice de transfert acoustique. Cette
observation s’explique par la façon dont les pertes acoustiques à l’intérieur du
brûleur sont prises en compte: dans le premier modèle, ces pertes sont en-
tièrement modélisées alors que dans le second modèle, elles sont directement
mesurées.
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Nomenclature

Acronyms :

ATM Acoustic Transfer Matrix
CCD Charge-Coupled Device
CTA Constant Temperature

Anemometry
DATMDimensionless ATM
DF Describing Function
ICCD Intensified CCD
FDF Flame Describing Function
FFT Fast Fourier Transform
FTF Flame Transfer Function
HW Hot Wire
LDA Laser Doppler Anemome-

try

LDV Laser Doppler Velocimetry
MMM Multiple Microphone

Method
PMT Photomultiplier
RMS Root Mean Square
SPL Sound Pressure Level
TF Transfer Function
TMM Three Microphone Method
TTL Transistor Transistor

Logic
UV Ultraviolet

Latin Characters :

a Hole radius
ak Thermal diffusivity of

species k
A Cross section area
Aω Harmonic wave amplitude
Bω Harmonic wave amplitude
c Sound speed
cp Specific heat capacity at

constant pressure
cv Specific heat capacity at

constant volume
C Coherence factor
Cb Confinement ratio
Cxy Coherence function be-

tween x and y
d Inter-hole spacing

D Diameter
Dm,k Mass diffusivity of species

k
D0 Binary diffusion coefficient
ê Unit vector
E Volumetric expansion ratio
f Frequency
fi Imaginary part of the char-

acteristic equation root
fr Real part of the character-

istic equation root
fs Sampling frequency
f0∗ Frequency at which the

FTF gain is maximum
F FTF or FDF



xviii Nomenclature

FA FTF model due to the ve-
locity perturbations

FB FTF model due to the an-
choring point dynamics

FC TF between the flame base
motion and the flame sur-
face area fluctuations

FHW DF defined with respect to
the hot wire probe

FHWC DF defined with respect to
the acoustic velocity just
before the flame

FMC DF defined with respect to
the microphone MC

FMHW DF defined with respect to
the microphone MHW

G Gain
G Scalar function describing

the flame front position
h Flame height
He Helmholtz number
Hxy TF between x and y
H Enthalpy
i local pixel intensity
I OH* chemiluminescence

intensity
Ix Modified Bessel function of

the first kind and of order
x

Jx Bessel function of the first
kind and of order x

k Wave number
k• Modified wave number
k∗ Dimensionless parameter
Kr Rayleigh conductivity
Kx Modified Bessel function of

the second kind and of or-
der x

l Distance
L Length
Le Lewis number
M Mach number
M Acoustic transfer matrix

M̃ Dimensionless acoustic
transfer matrix

n̂ Normal unit vector
N Number of holes
p Pressure
P Flame thermal power
Pxx Auto power spectral den-

sity of x
Pxy Cross power spectral den-

sity between x and y
q Volumetric heat released
Q Total heat released
Qc Convective heat transfer
r Specific gas constant
R Radius
Re Reynolds number
Re Acoustic resistance
R Acoustic reflection coeffi-

cient
Rl Acoustic reflection coeffi-

cient at l
s Entropy
S Swirl number
S Surface
St Strouhal number
SL Laminar flame speed
Sb
L Non-adiabatic flame speed

at the flame base
S Source term
t Time variable
T Temperature
Ta Activation temperature
Tad Adiabatic temperature
Tb Burnt gases temperature
Ts Burner outlet temperature
Tu Unburnt gases tempera-

ture
T∗ Dimensionless adiabatic

temperature
u Axial flow velocity
u Eulerian velocity vector
ub Bulk flow velocity
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uc Velocity at which vortices
are convected

v Radial flow velocity
V Volume
Vf Flame volume
V Control volume
x Position vector
X Acoustic reactance
Xu Species concentration in

the fresh gases

Yx Bessel function of the sec-
ond kind and of order x

z Characteristic acoustic
impedance

Z Acoustic impedance
Zs Specific acoustic

impedance
Ze Zeldovich number

Greek Characters :

α Flame tip half angle
αb Angle at the flame base
β Gradient of the square of

the sound speed
γ Adiabatic index
δ Flame thermal thickness
δ∗ Dimensionless flame ther-

mal thickness
δ0 Unflanged Levine-

Schwinger end correction
δ∞ Flanged Levine-Schwinger

end correction
ǫ Surface emissivity
ζ Rayleigh conductivity

model
ζa Volumetric acoustic losses
θ∗ Ratio between burnt gases

and adiabatic tempera-
tures

Θ∗ Dimensionless tempera-
ture

ι Dimensionless frequency
κ Thermal conductivity

λ Wavelength
µ Dynamic viscosity
ν Kinematic viscosity
Ξ TF between the veloc-

ity perturbations and the
flame base motion

ρ Density
Σ Lateral surface
τ Time lag
τc Thermalization time
τω Oscillation period
ϕ Phase lag
φ Equivalence ratio
ψ Flame stand-off distance
ψ∗ Dimensionless flame stand-

off distance
ω Angular frequency
ω̂ Dimensionless frequency
ωi Acoustic damping rate
ω∗ Reduced frequency
ω0
∗ Reduced frequency at

which the FTF gain is
maximum

Subscripts :

∗ Dimensionless
x Axial coordinate (carte-

sian system)

r Radial coordinate (cylin-
drical system)

θ Orthoradial coordinate
(cylindrical system)
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z Axial coordinate (cylindri-
cal system)

ω Harmonic
xp Experimental
th Theoretical
max Maximum
min Minimum
open Open acoustic boundary
closed Closed acoustic boundary
ref Reference

u Upstream
d Downstream
⊕ Positive harmonic conven-

tion
⊖ Negative harmonic conven-

tion
i At section (i)
ij Between sections (i) and

(j)

Superscripts :

o Original configuration
s Switched configuration
f Final
con Convective model

inc Incompressible convective
model

uni Uniform model

Diacritics :

x Steady-state value of x
x′ Fluctuating value of x

ẋ Time derivative of x

Mathematical Symbols :

|x| Modulus of x
∠x Angle of x
〈x〉 x averaged over the flame

volume
∂x Partial derivative with re-

spect to x
dx Total derivative with re-

spect to x
∆x Variation of x

∇x Gradient of x
∇ · x Divergence of x
∇2x Laplacian of x
x · y Dot product of x and y
∼ x Same magnitude as x
∝ x Proportional to x
Re(x) Real part of x
Im(x) Imaginary part of x
(x)∗ Complex conjugate of x

Blueprint Symbols :

∅ Diameter
� Length of the square side



Introduction

Context

Combustion is a reduction-oxidation chemical reaction between a fuel and an
oxidant releasing a large amount of heat. While the oxidant is usually the oxy-
gen contained in the atmosphere (or sometimes pure oxygen), a variety of solid,
liquid or gaseous fuels may be used, such as wood, coal, crude oil, methane, hy-
drogen and many others. Combustion reactions require large activation energies
which is why they are not so easily initiated, but they are usually self-sustained
as long as the fuel and oxidant are still available. The required activation en-
ergies may be found in nature, through a lightning strike for instance.

Since all the ingredients (fuel, oxidant and activation energy) can be found in
nature, combustion was the first source of energy controlled by humans around
one million years ago (Bowman et al. 2009). As of 2015, 91.1% of the world’s
primary energy is still produced by combustion reactions as depicted in Fig. 1
(International Energy Agency 2017), completed by 4.9% of nuclear energy and
4.0% of renewable energy that do not originate from combustion-based tech-
nologies (such as the energy extracted from water or wind for instance). These
primary energy sources are then used to generate electricity (coal-fired power
plants, gas turbines, nuclear power plants, hydropower plants, etc.), manu-
facture goods through industrial processes, heat residential and commercial
buildings and fuel individual and public transports among others.

Figure 1 also shows that the world’s primary energy production (and consump-
tion) is increasing steeply: the global primary energy produced by humanity
was multiplied by a factor of 2.2 between 1973 and 2015. If fossil fuels and
renewable energies based on combustion technologies are considered alone, the
energy production still increased by a factor of 2.1 between 1973 and 2015.

Even though the share of the world’s primary energy obtained from burning
various types of fuels dropped from 97.2% to 91.1% between 1973 and 2015, it
is widely accepted that combustion is going to remain the first source of energy
for mankind in the foreseable future for economical and technical reasons. In
fact, combustion technologies are usually cheap compared to competing tech-
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Figure 1: World primary energy sources in 1973 (Left) and 2015 (Right). Reproduced
from Key World Energy Statistics 2017.

nologies. In some sectors such as commercial air transport or rocket launchers,
there are no competitors at all because of the very high energy densities re-
quired (Shepherd 2003). Traditional combustion technologies are among the
most well-established techniques for electricity production and air transport.
However, it should be noted that new combustion technologies also constitute
the largest source of renewable energy: in 2015, 9.7% of the world’s primary
energy is extracted from biofuels and waste incineration which are renewable
and combustion-based technologies.

Combustion reactions are essentially used because they generate a lot of heat
per unit mass of fuel, but they also generate undesirable by-products depending
on the type of fuel and oxidant employed. These pollutants may include:

• CO2 (Carbon dioxide): a long-lived greenhouse gas responsible for cli-
mate change.

• CO (Carbon monoxide): a highly toxic colorless, odorless, and tasteless
gas.

• NOx (Nitrogen oxides): gases that cause or worsen respiratory diseases
and have several detrimental effects on the environment.

• SOx (Sulfur oxides): gases that are air pollutants and toxic for humans.

• CHx or UHCs (Unburned hydrocarbons): chemical compounds that dis-
rupt the atmosphere chemistry.
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Figure 2: Examples of gas turbines. (Left): General Electric J85, a single-shaft
turbojet engine. (Right): Siemens SGT-8000H, an industrial gas turbine for power
generation.

• Soot: nanoscale and microscale particles that are responsible for climate
change and cause various lung diseases as well as cancer.

Combustion is going to remain a major source of primary energy in the up-
coming decades but due to the rising environmental and health concerns, a
huge research effort is needed in order to reduce the pollutants emissions while
concomitantly increasing the overall energy efficiency of combustion technolo-
gies. Various strategies have been adopted accordingly depending on the type
of combustor and specific pollutants targeted.

Gas turbines are an important class of combustors used in the aerospace and
power production industries. Two gas turbines used for propulsion and power
generation are presented in Fig. 2-(Left) and (Right) respectively. The General
Electric J85 gas turbine depicted in Fig. 2-(Left) is a single-shaft turbojet en-
gine comprising an air inlet on the left followed by a multi-stage compressor and
a combustion chamber, where kerozene is injected. A two-stage turbine is then
used to drive the rotating shaft, followed by a propelling nozzle which generates
thrust. On the other hand, the Siemens SGT-8000H depicted in Fig. 2-(Right)
is an industrial gas turbine with a peak thermal power production of 1000 MW.

One way to reduce the NOx and soot emissions of gas turbines is to oper-
ate them for lean premixed conditions as opposed to rich or partially premixed
conditions which were traditionally employed (Correa 1993). This change of op-
erating conditions also increases the overall efficiency of gas turbines. However,
a lean premixed flame stabilized inside a gas turbine is less stable as thermoa-
coustic instabilities are promoted for such operating conditions (Sattelmayer
et al. 1992; Keller 1995).
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Thermoacoustic instabilities

A thermoacoustic instability is characterized by a large positive energy transfer
from a heat source to the surrounding acoustic field that cannot be counter-
balanced by the linear acoustic losses generated at the boundaries or inside
the system. As a consequence, the amplitude of the acoustic oscillations grow
until saturation is reached due to nonlinear processes. This limit cycle regime
is rarely desirable as it has many detrimental consequences: very large sound
emissions at certain frequencies (Schuller 2003; Poinsot 2017), flame extinction
(Candel 1992; McManus et al. 1993; Ducruix et al. 2003), structural damage
(Candel 1992; McManus et al. 1993; Ducruix et al. 2003; Dowling and Morgans
2005) and increased heat fluxes (McManus et al. 1993; Ducruix et al. 2003;
Dowling and Morgans 2005) among others.

Thermoacoustic instabilities were known long before they became a major in-
dustrial concern. There is evidence that these phenomena have been observed
since the Middle Ages at least, when glassblowers noticed that they could gener-
ate sound by blowing into a cold pipe connected to a hot glass bulb (Sondhauss
1850).

The first scientific investigation of thermoacoustic instabilities was performed
by Byron Higgins in 1777 using a single hydrogen/air flame stabilized inside
a tube (Higgins 1802). The tone emitted was modified by changing the tube
length. This experiment was then reproduced in Italy by Brugnatelli and Volta
who popularized it (Higgins 1802).

A few decades later, Auguste Pinaud reproduced the glassblowers’ observa-
tions in a controlled experiment, where he used a tube with an open end and
a closed heated end (Pinaud 1837). These experiments were further investi-
gated by Marx (Marx 1841) and Sondhauss (Sondhauss 1850), who gave his
name to this tube with an heated closed end. Rijke proposed a variation of the
Sondhauss tube, called Rijke tube, featuring a cylindrical tube open at both
ends with a disc of wire gauze placed inside the tube at a distance equal to
one quarter of the total tube length (Rijke 1859). These experimental investi-
gations pioneered the field of thermoacoustics but until the second half of the
19th century, the physical phenomena at stake were still obscure.

A first attempt at describing thermoacoustic instabilities using a mathematical
formalism was performed a few years after Rijke’s discovery (Kirchhoff 1868).
However, the real breakthrough in the field of combustion instabilities is due
to Rayleigh, who published an article providing the correct explanation of the
physical mechanisms occuring in Rijke’s tubes (Rayleigh 1878). This article
also contains the first description of the famous Rayleigh’s criterion that is still
used today to predict the onset of thermoacoustic instabilities (Rayleigh 1878).
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Figure 3: Sketch depicting the pyrophone, invented by Kastner. Image reproduced
from The popular science monthly, August 1875, p. 449

Until the 1940s, thermoacoustic instabilities were either employed as a source
of entertainment, using various devices such as the pyrophone depicted in Fig. 3
(Kastner 1876) or seen as an exotic physical phenomenon. The development
of rocket and aircraft engines with extremely large energy densities completely
changed this perspective in the 1950s and 1960s as a significant proportion
of these early engine designs were thermoacoustically unstable which could
sometimes lead to dramatic outcomes (Candel 2002). As a consequence, a
large theoretical and experimental research effort was initiated in order to de-
sign thermoacoustically stable engines (Gunder and Friant 1950; Crocco 1951;
Blackshear 1953; Merk 1957). This research effort was further amplified during
the late 1980s and the 1990s, when a new generation of gas turbines operated
with lean premixed flames and especially prone to thermoacoustic instabilities
began to be massively employed (Sattelmayer et al. 1992; Correa 1993; Keller
1995).

Thermoacoustic stability prediction

Modern predictive approaches

Despite the fact that combustion instabilities have been studied for more than
two centuries, the onset of these instabilities is still not perfectly understood
because of the large number of physical phenomena involved, the nonlinearity
of the flame acoustic response, and the complexity of the combustors geome-
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tries (Candel 2002; Poinsot 2017). In practice, various approaches based on
purely analytical models (Keller 1995; Dowling and Stow 2003) or used along
with measurements (Paschereit and Polifke 1998; Schuermans et al. 2000; Po-
lifke et al. 2003; Noiray et al. 2008) or numerical simulations (Nicoud et al.
2007; Han et al. 2015) may be used to predict the thermoacoustic stability of
a combustor. One of these approaches is quickly introduced below.

A gas turbine operated for reactive conditions can be represented by a network
of cavities which possesses a set of discrete frequencies at which it acoustically
resonates (Munjal 1987; Candel and Poinsot 1988). The flame frequency re-
sponse to the incoming sound wave may be described using a Flame Transfer
Function (FTF) or its nonlinear extension, a Flame Describing Function (FDF).
The FTF/FDF may be determined using experiments (Becker and Günther
1971; Noiray et al. 2008; Gatti et al. 2018), numerical simulations (Kornilov
et al. 2009; Tay Wo Chong et al. 2010; Han and Morgans 2015) or analytical
models (Crocco 1951; Merk 1957; Ducruix et al. 2000; Schuller et al. 2003a;
Palies et al. 2011).

Used along with suitable upstream and downstream acoustic boundary condi-
tions, the acoustic network model combined with the FDF leads to a charac-
teristic equation that predicts the thermoacoustic stability of the combustor
(Noiray et al. 2008). If an unstable thermoacoustic mode is triggered, the
characteristic equation also provides the frequency and amplitude of the limit
cycle oscillations (Noiray et al. 2008; Boudy et al. 2011).

The frequency and damping rate of each thermoacoustic mode depends on
many parameters, including the burner geometry (Paschereit and Polifke 1998;
Schuermans et al. 2000), the acoustic boundary conditions (Munjal 1987;
Paschereit and Polifke 1998), the Mach number of the mean flow (Paschereit
and Polifke 1998; Hirschberg and Rienstra 2004), the presence of a flame (Keller
1995; Paschereit and Polifke 1998) and the acoustic damping rate inside the
setup (Paschereit and Polifke 1998; Fischer et al. 2006). Until recently, the
flame frequency response was considered to be independent of the forcing level
(Merk 1957; Becker and Günther 1971; Schuermans et al. 1999; Polifke et al.
2001; Candel 2002) but during the past two decades, analytical developments
(Dowling 1997; Noiray et al. 2008), experiments (Noiray et al. 2008; Boudy
et al. 2011; Gaudron et al. 2017c) and simulations (Krediet et al. 2012; Han
and Morgans 2015) showed that this response depends on the amplitude of the
sound waves impinging on the flame.

Current challenges

Despite these recent advances, the impact of the amplitude of the incoming
acoustic waves on the flame frequency response and on the damping of the
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Figure 4: Original sketches depicting the experimental setups used in previous studies
investigating the FTF of premixed flames. Reproduced from Noiray et al. (2008) (Top
left), Durox et al. (2009) (Top right), Boudy et al. (2011) (Bottom left) and Hochgreb
et al. (2013) (Bottom right).

acoustic waves inside the system is still poorly understood. Experimental and
numerical works that explicitly consider the effects of the forcing level on these
physical phenomena still remain scarce and the source of nonlinearity is not
always clearly identified.

Another challenge associated with the experimental or numerical investigation
of the frequency response of a flame is related to the way the FTF/FDF is
determined. In fact, two distincts reference signals may be used when defining
a FTF/FDF: the acoustic pressure or the acoustic velocity. Moreover, these
acoustic variables may be assessed at the flame location or at some distance
inside the injector.

For instance, the FTF/FDF defined with respect to different reference signals
and obtained using four distinct experimental setups employed in previous in-
vestigations (Noiray et al. 2008; Durox et al. 2009; Boudy et al. 2011; Hochgreb
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et al. 2013) are represented in Fig. 4. The reference signal may be defined as
the signal recorded by a hot-wire probe located inside the plenum (Noiray et al.
2008), as shown in Fig. 4-(Top left) or reconstructed using the two-microphone
method (Hochgreb et al. 2013), as shown in Fig. 4-(Bottom right). Alterna-
tively, the reference signal may be defined as the acoustic velocity at the flame
base location, obtained using Laser Doppler Velocimetry (Durox et al. 2009;
Boudy et al. 2011), as shown in Fig. 4-(Top right) and (Bottom left). Many
other reference signals based on the acoustic pressure inside the injector or at
the flame location may be defined as well. However, a detailed comparison
between FTF/FDF defined with respect to several reference signals but deter-
mined using the same experimental setup has yet to be performed. Moreover,
the analytical links between all these FTF/FDF has yet to be established and
it is not clear whether all these FTF/FDF can be used equivalently when per-
forming a thermoacoustic stability analysis.

Another important issue when determining a FTF/FDF is related to the way
acoustic forcing is introduced inside the experimental setup or the numerical
domain. For instance, an upstream loudspeaker may be used to generate acous-
tic waves (Durox et al. 2009; Boudy et al. 2011), as shown in Fig. 4-(Top right)
and (Bottom left). Alternatively, acoustic waves may be generated from the
downstream side of the combustor using loudspeakers (Krebs and Flohr 2002)
or a siren (Hochgreb et al. 2013), as shown in Fig. 4-(Bottom right). However,
it is unclear whether the experimental or simulated FTF/FDF determined with
upstream and downstream acoustic forcing are equivalent.

Moreover, the flame acoustic response may be measured experimentally using
an optical technique (Noiray et al. 2008; Boudy et al. 2011) or using acous-
tic measurements only (Paschereit and Polifke 1998; Schuermans et al. 2000;
Paschereit et al. 2002). The first method is based on the FTF/FDF formalism
and requires an optical access inside the combustion chamber. This method can
be used to determine the acoustic response of perfectly premixed lean hydrocar-
bon flames and is relatively easy to implement. The second method is based on
the Acoustic Transfer Matrix (ATM) formalism and does not require an optical
access into the combustion chamber. Moreover, this purely acoustic method
can be used to determine the acoustic response of a large array of flames but it
requires large sets of experimental data and complex post-processing routines.
A detailed comparison between these two methods for controlled acoustic forc-
ing levels has yet to be performed.

Finally, the impact of a number of other physical parameters such as the flame
size, the Lewis number of the premixed gases or the temperature of the burnt
gases have not been systematically examined using experiments. Additional
research efforts based on experiments and analytical approaches are thus needed
in order to investigate these poorly understood yet crucial aspects.



Introduction 9

Thesis objectives and contents

The objective of this thesis is to study the acoustic response of various laminar
and turbulent premixed flames submitted to harmonic sound waves in order
to improve the thermoacoustic stability predictions of labscale and industrial
combustors at an early design stage. First, the fundamental case of premixed
laminar conical flames is investigated, followed by a study of swirling and non-
swirling premixed confined turbulent flames.

Premixed laminar conical flames

In the first part of this manucript, the elementary class of premixed laminar
conical flames is investigated. Chapter 1 contains a literature review sum-
marizing the main results regarding the Flame Transfer Functions (FTF) of
premixed laminar conical flames. Then, three typical analytical models aiming
at predicting these FTF are described along with an additional model account-
ing for the impact of the flame base motion. Chapter 2 includes a thorough
description of the experimental setup and associated diagnostics used to study
the acoustic response of premixed laminar conical flames submitted to har-
monic sound waves. The associated operating conditions are also described in
this chapter.

The subsequent measurements are compared with analytical models in Chap-
ter 3 for injectors of various sizes in order to find which analytical model yields
the best predictions. A parametric study of the response of premixed laminar
conical flames submitted to acoustic forcing is then performed in Chapter 4
for flames of varying temperatures, sizes and Lewis number. A physical analysis
of the flame dynamics undergoing acoustic forcing is also performed. Finally,
a new physical mechanism explaining the presence of a gain overshoot in the
Flame Transfer Function of small premixed laminar conical flames is introduced.

Premixed confined turbulent flames

In the second part of this manuscript, premixed confined turbulent flames are
investigated. Most of the results presented in the following chapters were ob-
tained for swirling and non-swirling flames in order to cover a wide range of
flames used in practical applications. Chapter 5 contains a detailed descrip-
tion of the NoiseDyn burner which was designed during this thesis. The oper-
ating conditions for all premixed turbulent flames studied in this work are also
defined. Chapter 6 includes a comprehensive description of the diagnostics
employed to characterize the acoustic response of premixed turbulent flames.

Chapter 7 is an introduction to the theory of linear acoustics applied to low-
Mach non-reactive flows. The notion of acoustic impedance, acoustic reflection
coefficient and acoustic transfer matrix is also presented in this chapter. Chap-
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ter 8 is an extension of the previous chapter to low-Mach reactive flows. The
acoustic transfer matrices corresponding to a variety of elements such as 1D
ducts, compact and non-compact area changes and lean premixed flames are
also derived in these two chapters.

The Flame Describing Function (FDF) of swirling and non-swirling premixed
turbulent flames is analyzed in Chapter 9. Analytical links between the FDF
defined with respect to various reference signals are established using linear
and nonlinear models and the FDF obtained with upstream and downstream
acoustic forcing are compared. Finally, it is demonstrated that the FDF based
on the acoustic velocity just before the flame depends on the frequency and on
the amplitude of the acoustic velocity only. If another reference signal is used,
such as the acoustic velocity inside the injector or the acoustic pressure at the
flame location, the FDF also depends on the amplitude of the acoustic pressure.

Measurements of the acoustic transfer matrices representing the NoiseDyn
burner are carried out in Chapter 10 for cold and reactive operating con-
ditions and for swirling and non-swirling injectors. The acoustic forcing level is
controlled at the hot wire location and measurements are performed for various
predetermined forcing levels. Acoustic network models are also constructed for
both operating conditions and analytical predictions are compared with mea-
surements. The acoustic losses generated at the swirling vane are accounted
for and the flame frequency response is represented using a FDF for reactive
operating conditions.

Finally, the thermoacoustic stability of the NoiseDyn burner is investigated in
Chapter 11, where measurements are compared with analytical predictions
based on two distinct network models. In the first model, the flame response
is represented with a FDF measured using an optical technique. In the sec-
ond model, the flame response is embedded in a measured acoustic transfer
matrix. It is shown that the thermoacoustic stability predictions according to
both models are equivalent but that the predicted amplitude of the limit cycle
oscillations differ because the acoustic damping inside the combustor is analyt-
ically modeled in the first model whereas it is directly measured in the second
one.

Appendices

A few additional topics are analyzed at the end of this manuscript. First,
a discussion regarding the impact of the harmonic convention and acoustic
boundary orientation is proposed in Appendix A. Then, a few fundamental
limitations affecting the usual procedure used to predict the thermoacoustic
stability of combustors is presented in Appendix B.
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Chapter 1

Flame Transfer Functions

Modeling

Thermoacoustic instabilities coupled to self-sustained mixture flowrate
oscillations are observed in many domestic boilers and industrial burn-
ers operated with premixed laminar conical flames. The stability mar-
gin of these systems may be predicted by using the acoustic response
of the system along with the Flame Transfer Function (FTF), i.e the
flame frequency response when submitted to harmonic flowrate modula-
tions. As a conseqence, the FTF of such flames was studied and mod-
eled extensively during the past decades. A review of the current state of
knowledge on the physics controlling the FTF shape of premixed laminar
conical flames is first presented. Various analytical models describing
the FTF of such flames are then introduced and discussed in the second
part of this chapter.

1.1 Introduction

Flame Transfer Functions (FTF) are often used in combination with an acous-
tic model of the system in order to predict the thermoacoustic stability of
combustors. This algebraic relation linking heat release rate perturbations to
incoming flow disturbances is a black-box that conceals the physical complexity
associated with the interactions between flow dynamics, acoustics and unsteady
combustion processes. This formalism is used to perform stability analysis of
the combustor at reduced computational costs (Dowling 1995; Sattelmayer and
Polifke 2003). Due to the major problems caused by combustion instabilities
in practical systems, there is a large theoretical, experimental and numerical
research effort oriented towards the development of tools easing the determi-
nation of Flame Transfer Functions (Candel 2002; Lieuwen 2005; Poinsot 2017).

Premixed laminar conical flames submitted to harmonic flowrate modulations
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Figure 1.1: Simplified structure of a premixed laminar conical flame stabilized above
a burner.

constitute an elementary case that can be used to validate theoretical models
and numerical simulations (Duchaine et al. 2011; Kedia et al. 2011; Schlimpert
et al. 2015). It also brings to light some of the main physical mechanisms
controlling the response of premixed flames to incoming flow perturbations
(Ducruix et al. 2000; Preetham et al. 2008). Finally, there are many domes-
tic and industrial low-power burners operated with premixed laminar conical
flames which exhibit regimes with self-sustained combustion oscillations ac-
companied by large noise emission (Zähringer et al. 2003; Durox et al. 2009;
de Goey et al. 2011). The dynamic response of these combustors may be mod-
eled and predicted using the FTF formalism.

It is thus worth developing physics-based models describing accurately the FTF
of premixed laminar conical flames. Much progress was achieved in this field of
research and the main findings are summarized in Sec. 1.2. It is emphasized that
this analysis is limited to the case of fully premixed flames submitted to flowrate
oscillations in the absence of mixture composition disturbances (Lieuwen 2005).

1.2 Flame Transfer Functions of premixed laminar

conical flames

Let us consider a steady laminar conical flame with a heat release rate Q̇ stabi-
lized above a burner and fed by fully premixed gases with an injection velocity
u as represented in Fig 1.1. Throughout this work, the overline (x) and prime
(′) stand for mean and fluctuating variables respectively. The transfer function
of this flame submitted to harmonic flowrate modulations is a linear operator
defined in the frequency domain as (Fleifil et al. 1996; Ducruix et al. 2000):
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Figure 1.2: Illustration of a premixed laminar conical flame for steady injection
conditions (Left) and submitted to a harmonic flowrate modulation at a forcing angular
frequency ω (Right).

F (ω) =
Q̇′/Q̇

u′/u
= G(ω) exp (iϕ(ω)) (1.1)

where Q̇′ denotes the heat release rate fluctuation around the steady-state value

Q̇ examined at the same angular frequency ω as the incoming harmonic velocity
disturbance u′ around the steady-state injection velocity u as shown in Fig. 1.2.

Equation (1.1) sets a clear framework for theoretical modeling, but already

raises difficulties for experiments and simulations. In practice, the quantities Q̇
and u are often taken as the mean values of the unsteady signals averaged over
many oscillation cycles (Ducruix et al. 2000; Karimi 2014; Mejia et al. 2015;
Gaudron et al. 2017b). Moreover, the injection velocity is frequently replaced
in Eq. (1.1) by a reference velocity measured at some distance from the burner
outlet in a region where the flow is as uniform as possible (Karimi et al. 2009;
Gaudron et al. 2017b). However, the distance between the reference point
and flame base needs to be compact with respect to the acoustic (Truffin and
Poinsot 2005) and hydrodynamic (Schuller et al. 2002) characteristic length
scales.

Finally, the forcing level |u′|/u needs to be taken as low as possible in order
to avoid nonlinear effects (Schuller et al. 2003a; Lieuwen 2005; Durox et al.
2009; Karimi et al. 2009; Mejia et al. 2015), but cannot be set to zero in
experiments and simulations. FTF are often obtained at a fixed perturbation
level resulting from a trade-off between maximizing the signal-to-noise ratio



16 Chapter 1 - Flame Transfer Functions Modeling

and not triggering nonlinear effects. Linearity of the response can be checked
by verifying that the measured FTF is independent of perturbation amplitude
(Schuller et al. 2003b; Durox et al. 2009; Karimi et al. 2009). When this is not
feasible, it is better to consider only the components of the heat release rate
and velocity signals at the forcing angular frequency ω obtained using the cross
and auto power spectral densities of these signals in order to reduce artefacts
due to the finite duration of the signals and the finite sampling rate of data. In
this case, linearity is well approximated if the amplitude of the first harmonic
component is at least one order of magnitude lower than the amplitude of the
fundamental component at ω. If all these conditions are met, the simulated
or measured FTF converges to the definition in Eq. (1.1) and corresponds to a
complex-valued function that can be expressed as a gain G(ω) corresponding to
the FTF modulus and a phase lag ϕ(ω) between the response Q̇′ and the input
u′. One of the main advantages of this representation is to explicitly state the
gain G and phase lag ϕ dependence on the angular frequency ω.

An example of a Flame Transfer Function of a large premixed laminar conical
flame of equivalence ratio φ = 1.08 stabilized above a burner of radius R = 11
mm with a fresh reactant stream of bulk velocity ub = 1.96 m/s and for four
different forcing levels is presented in Fig. 1.3 (Durox et al. 2009). The top and
bottom plots represent the FTF gain and phase lag respectively as a function
of the reduced frequency, a dimensionless parameter that will be introduced in
Sec. 1.2.1.

An extensive research effort has been devoted to finding the main dimension-
less numbers controlling the FTF of premixed laminar conical flames (Fleifil
et al. 1996; Ducruix et al. 2000; Schuller et al. 2003a). The sketch in Fig. 1.1
introduces the main physical and geometrical parameters used in this study,
where R is the burner exit radius, u is a reference velocity that does not neces-
sarily correspond to the bulk velocity ub within the injector, Tu is the fresh gas
temperature, Ts is the burner outlet temperature, ψ is the stand-off distance
of the flame base with respect to the burner outlet, h is the flame height, α is
the flame tip half angle, SL is the laminar burning velocity and δ is the flame
thermal thickness. It is reminded that the overline stands for steady conditions.
Additional parameters will be introduced later.

First, the main findings regarding the FTF of large premixed laminar conical
flames are summarized in Sec. 1.2.1. An example of such a flame of equivalence
ratio φ = 0.95 stabilized above an injector of radius R = 11 mm with a fresh
reactant stream of bulk velocity ub = 2.5 m/s is represented in Fig. 1.4-(Left)
(Durox et al. 2004). The same review is performed for the FTF of collections
of small premixed laminar conical flames, presented in Sec. 1.2.2. An example
of a collection of 21 small premixed laminar conical flames at stoichiometry fed
by fresh gases of bulk velocity ub = 1.48 m/s stabilized on a plate featuring 21
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Figure 1.3: Flame Transfer Function of a large premixed laminar conical methane/air
flame of equivalence ratio φ = 1.08 stabilized above a burner of radius R = 11 mm
traversed by a fresh reactant stream of bulk velocity ub = 1.96 m/s and for four different
forcing levels. Reproduced from Durox et al. (2009).

Figure 1.4: (Left): Example of a large premixed laminar conical CH4/Air flame of
equivalence ratio φ = 0.95 obtained with an injector of radius R = 11 mm traversed
by a fresh reactant stream of bulk velocity ub = 2.5 m/s, reproduced from Durox et al.
(2004). (Right): Example of a collection of small premixed laminar conical CH4/Air
flames at stoichiometry stabilized on a plate featuring 21 holes of radius R = 1.5 mm
traversed by a fresh reactant stream of bulk velocity ub = 1.48 m/s.
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holes of radius R = 1.5 mm is represented in Fig. 1.4-(Right).

1.2.1 FTF of large premixed laminar conical flames

Early investigations

Due to the relative simplicity of the experimental setup, the response of a
single premixed laminar conical flame submitted to acoustic forcing has been
the topic of many early investigations. These experiments revealed that flame
front wrinkling is the main mechanism leading to heat release rate disturbances
(Blackshear 1953). Early theoretical analysis aimed at describing the dynamics
of these wrinkles and led to simple expressions by analogy with the n− τ time-
lag model (Crocco 1951) developed for rocket engines stability analysis. One
of the first expressions for the FTF of a premixed laminar conical flame was
developed in the 1950s (Merk 1957). In this model, the FTF phase lag increases
with the angular frequency ω and the steady flame height h and is proportional
to the inverse of the injection bulk velocity ϕ ∼ ωh/ub (Merk 1957). However,
this model could not capture the low-pass filter behavior of the FTF gain.

Another important step was taken with the introduction of kinematic models
based on a G-equation used to analyze the dynamics of flame wrinkles (Boyer
and Quinard 1990). These models were found to well reproduce the flame front
motion observed in experiments provided that the correct flow disturbances
structure is prescribed (Boyer and Quinard 1990; Baillot et al. 1992; Baillot
et al. 1996).

Effects of the velocity perturbation model

A linear analysis based on a perturbed G-equation led to the first derivation
of an analytical expression for the FTF of elongated conical flames (α→ 0) in
a uniform flow submitted to bulk flow oscillations (Fleifil et al. 1996). Based
on this model, the FTF was only controlled by a Strouhal number defined as
St= ωR/SL. This model was later generalized to any steady flame tip half
angle α by introducing the reduced frequency ω∗ (Ducruix et al. 2000):

ω∗ =
ωR

SL cosα
(1.2)

It was found that the uniform velocity model well reproduces the low-frequency
behavior of the FTF of large premixed laminar conical methane/air and propane/air
flames stabilized on R = 11 and R = 15 mm injectors (Ducruix et al. 2000).
Overall, experiments revealed a good match for the FTF gain over the fre-
quency range of interest (Ducruix et al. 2000; Karimi et al. 2009), but the
model was unable to predict the correct evolution of the phase lag at high fre-
quencies, when ω∗ ≥ 6. The origin was found to be in the coarse description of
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the incoming flow perturbations that cannot be assumed uniform in the fresh
reactants, even though the flame can be considered to be acoustically compact
(Baillot et al. 1992; Schuller et al. 2002).

Low-frequency perturbations at the burner outlet are convected by the mean
flow (Baillot et al. 1992; Baillot et al. 1996; Birbaud et al. 2006). By taking
this aspect into account, new expressions were derived for the FTF of single pre-
mixed laminar conical flames submitted to convected perturbations (Schuller
et al. 2003a). Based on this approach, the FTF was found to be a function of
two independent parameters, the first being the reduced frequency ω∗ given by
Eq. (1.2) and the second the steady flame tip half angle α or equivalently the
steady flame aspect ratio h/R (Schuller et al. 2003a; Preetham et al. 2008).
This convective model barely changes the FTF gain predictions, but yields the
correct evolution of the phase lag of elongated flames (α → 0) that regularly
increases with frequency and also that of nearly planar flames (α→ π/2) that
saturates at π/2 at high frequencies. Karimi et al. found that this model
suitably reproduces the FTF of premixed laminar conical flames stabilized in
a setup with a R = 12.5 mm injector enclosed in a D = 50 mm flame tube
(Karimi et al. 2009; Karimi 2014). However, this convective model violates
mass balance.

As a consequence, analytical expressions for the FTF with a 2D axisymmetric
velocity perturbation convected by the mean flow which satisfies the incom-
pressible mass balance were proposed (Baillot et al. 1992; Baillot et al. 1996;
Schuller et al. 2002; Preetham et al. 2008; Cuquel 2013; Orchini and Juniper
2016). Simulations with a bulk flow oscillation, a purely axial velocity wave con-
vected by the mean flow and a 2D velocity wave convected by the mean flow
and respecting the incompressible mass balance showed that the uniform ve-
locity modulation rapidly fails in predicting the correct shape of the perturbed
flames, which is better reproduced by considering incompressible velocity dis-
turbances that are convected by the mean flow (Schuller et al. 2002).

A comparison between three experimental FTF obtained for large premixed
laminar conical flames featuring various bulk velocities and two analytical mod-
els is presented in Fig. 1.5, reproduced from Schuller et al. (2002). Model
A is based on convective velocity disturbances whereas model B is based on
incompressible convective velocity disturbances (i.e. the mass balance is re-
spected). Overall, the incompressible model yields better results than the con-
vective model, especially for the phase lag plot.

An extensive modeling effort mainly conducted by Prof. Lieuwen’s research
group at Georgia Tech led to analytical expressions for the FTF including the
effects of the mean flow velocity profile, celerity of the convected perturbations,
anchoring point dynamics, flame stretch, flame curvature and of finite ampli-
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Figure 1.5: Comparisons between predicted and experimental Flame Transfer Func-
tions obtained for a single large premixed laminar conical methane/air flame. Symbols:
measurements for mean flow velocities ub = 0.97 m/s, ub = 1.22 m/s and ub = 1.70
m/s at a prescribed equivalence ratio φ = 0.85. Dashed line: convective velocity dis-
turbances model. Solid line: incompressible convective velocity disturbances model.
Reproduced from Schuller et al. (2002).

tude perturbations (Lieuwen 2005; Preetham et al. 2008). However, it should
be noted that these studies rarely provide comparisons with experiments or
simulations on a quantitative basis.

Effects of the flame base motion

In a system with an injector of radius R = 5 mm, conical flames submitted to
harmonic flowrate disturbances and flames stabilized over an oscillating ring in
a uniform flow feature very similar FTF gains, but their FTF phase lags differ
and reach two different asymptotic limits, as displayed in Fig. 1.6 (Kornilov
et al. 2007). Flames submitted to flowrate modulations feature a FTF phase
lag increasing with the forcing frequency, while flames submitted to modula-
tions of their anchoring position feature a phase lag saturation at π/2, as shown
in Fig. 1.6. This reveals that the anchoring point dynamics needs to be consid-
ered in order to reproduce the correct FTF phase lag evolution (Kornilov et al.
2007).

It was shown recently that the contribution of the anchoring point dynamics to
flame wrinkling is the leading mechanism at high frequency and large forcing
amplitudes (Karimi et al. 2009), a feature that has been shown to be responsible
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Figure 1.6: The transfer function gain (a) and phase delay (b) of a large premixed
laminar conical methane/air flame when submitted to an acoustic wave (curve 1) and
when the flame holder oscillates in the jet direction (curve 2) and in the transversal
direction (curve 5). Analytical transfer function based on the uniform velocity pertur-
bation model (curve 3) and on the convective velocity perturbation model (curve 4).
Experiments were performed for a bulk velocity ub = 1.65 m/s and an equivalence ratio
φ = 0.85. Reproduced from Kornilov et al. (2007).

for the saturation of the FTF phase lag at high frequencies (Cuquel et al.
2013a). The effects of heat transfer from the flame base to the injector outlet
on the anchoring point dynamics was then investigated. It was established that
changing the burner cooling alters the flame anchoring point dynamics and as a
consequence the FTF (Mejia et al. 2015). As the burner exit plate temperature
is increased, a slight decrease of the low-frequency FTF gain is observed, but
no change in the FTF phase lag could be detected (Mejia et al. 2015).

Effects of exothermicity

Analytical expressions of FTF derived from kinematic models usually neglect
the impact of exothermicity (Mehta et al. 2005). Exothermicity was shown to
alter the fresh reactants stream dynamics by two separate mechanisms. First,
the steady-state velocity field is modified due to the slight overpressure gener-
ated by the burnt gases and acting on the upstream flow. This phenomenon
causes an acceleration of the flow along the burner axis leading to elongated
flames, but it is only perceptible for oxy-flames (Higuera 2009) or confined con-
ical flames when the burnt gases cannot fully expand (Cuquel et al. 2013b).
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The main effect is indirect and deeply alters the unsteady flow field upstream
of the flame front. Due to exothermicity, flame wrinkles convected along the
reaction layer act as a perturbed vorticity sheet, which in turn modifies the
dynamics of the acoustically perturbed flow field through the Biot-Savart law
(Blanchard et al. 2015). The strength of this mechanism increases with the vol-
umetric expansion ratio E = ρu/ρb between burnt and unburnt gases and with
flame wrinkle curvature. This phenomenon was shown to be responsible for the
convected waves observed at low frequencies in the fresh reactants of acousti-
cally perturbed laminar flames. Its penetration depth through the perturbed
flow field is inversely proportional to the forcing frequency (Birbaud et al. 2006)
and a progressive transition to a purely acoustic field takes place as the forc-
ing frequency increases (Birbaud et al. 2006). Direct numerical simulations of
acoustically perturbed conical flames were able to reproduce this phenomenon
(Schlimpert et al. 2015). This mechanism is reminiscent to Darrieus-Landau
instabilities (Clanet and Searby 1998), but for perturbed flames (Blanchard
et al. 2015).

Effects of the forcing level

The impact of the forcing level on the FTF gain of large premixed laminar
conical flames is limited, as observed in the experiments presented in Fig. 1.3
(Durox et al. 2009) and in numerical simulations (Schuller et al. 2003a). On
the other hand, the FTF phase lag plot was shown to saturate when the forcing
amplitude was increased (Durox et al. 2009). This saturation occurs for lower
frequencies when the forcing level is increased, as shown in Fig. 1.3.

In this work, the flame frequency response is investigated for reduced frequen-
cies ω∗ < 15. As a consequence, the forcing level is always prescribed at
|u′|/u = 0.10 RMS, unless it is specifically mentioned otherwise. This ensures
that the flame frequency response remains in the linear regime for all forcing
frequencies of interest.

1.2.2 FTF of collections of small premixed laminar conical flames

Many industrial and domestic burners operate with a collection of small pre-
mixed laminar conical flames stabilized above matrix injectors featuring differ-
ent patterns of circular and/or rectangular holes, as exemplified in Fig. 1.7. The
FTF of these flames have been the topic of many investigations due to their
technological applications (Matsui 1981; Sugimoto and Matsui 1982; Noiray
et al. 2006b; Durox et al. 2009).

An example of a Flame Transfer Function of a collection of small premixed
laminar conical flames of equivalence ratio φ = 1.08 stabilized on a 3 mm thick
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Figure 1.7: (Left) Baxi Solo 2PF domestic boiler. Reproduced from
www.lovekin.co.uk (Right) ERB Special high capacity, triple slot burner, used for in-
dustrial baking. Reproduced from www.selas.com.

plate comprising 49 holes of radius R = 1 mm traversed by a fresh reactant
stream of bulk velocity ub = 2.12 m/s and for seven different forcing levels is
presented in Fig. 1.8 (Durox et al. 2009).

The early analysis (Matsui 1981; Sugimoto and Matsui 1982) have shown that
small flames may feature FTF gain values largely exceeding unity, correspond-
ing to an amplification of the incoming flow perturbations by the unsteady
combustion processes. Noiray et al. found that despite the small radii of
their injectors (R = 1.0 mm and R = 1.5 mm) that are of the same order of
magnitude as the flame thickness, the response of a collection of small curved
conical flames submitted to low-frequency acoustic waves still feature convected
velocity waves in the fresh stream of reactants (Noiray et al. 2006a). This ob-
servation is consistent with the regularly increasing phase lag of the measured
FTF (Noiray et al. 2006b; Durox et al. 2009), as shown in Fig. 1.8. However,
the FTF gain of these flames exceeds unity over a broad range of frequencies, a
feature that is not predicted by the kinematic models presented in the previous
section (Fleifil et al. 1996; Ducruix et al. 2000; Schuller et al. 2003a; Preetham
et al. 2008) and represented in Fig. 1.5 for instance.

The frequency response of premixed laminar planar flames stabilized above
porous burners and matrix burners with small injection holes was investigated
at Eindhoven University in a series of articles (Schreel et al. 2002; Rook et al.
2002; Rook and De Goey 2003; Schreel et al. 2005; de Goey et al. 2011). Exper-
iments and simulations led to the conclusion that the FTF is mainly controlled
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Figure 1.8: FTF of a collection of small premixed laminar conical methane/air flames
of equivalence ratio φ = 1.08 stabilized on a 3 mm thick plate comprising 49 holes of
radius R = 1 mm traversed by a fresh reactant stream of bulk velocity ub = 2.12 m/s
and for seven different forcing levels. Reproduced from Durox et al. (2009).

by the combined effects of acoustic forcing and unsteady heat transfer between
the flame base and the burner exit plate. As a consequence, the dynamics of the
flame leading edge stabilized close to the injector is an essential feature of the
frequency response of small flames stabilized over perforated burners that are
submitted to acoustic forcing. By considering the flame as a uniform planar un-
steady and non-adiabatic reaction layer impinged by acoustic waves, they were
able to reproduce the general trend of the gain featuring a large gain overshoot
G > 1 in a narrow frequency range and the correct phase lag behavior observed
in experiments and simulations (de Goey et al. 2011). In the analytical model
developed by Rook et al., constructive interferences between 1) heat and mass
transfer between the flame and the burner and 2) the flame anchoring point
motion lead to a resonance-like behavior for the FTF gain with values largely
exceeding unity (Schreel et al. 2002; Rook et al. 2002). An example of an
analytical FTF featuring a large gain overshoot predicted by this mechanism
is presented in Fig. 1.9.

This mechanism is controlled by a dimensionless parameter ω̂ defined as (Rook
et al. 2002; de Goey et al. 2011):

ω̂ =
ωδ

ub
(1.3)
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Figure 1.9: Predictions of the FTF gain of a premixed laminar planar methane/air
flame stabilized above a burner according to the analytical model developed at Eind-
hoven University (dashed line), according to a numerical model with one-step chemistry
(solid line) and according to a numerical model with skeletal chemistry (solid line with
symbols). Reproduced from Rook et al. (2002).

where δ is the thermal thickness of the freely propagating adiabatic flame and
ub is the injection bulk velocity.

This planar model was later generalized by Prof. Ghoniem’s research group to
analyze the FTF of a collection of small conical flames stabilized above injec-
tion holes interconnected by planar reaction layers (Altay et al. 2009; Kedia
and Ghoniem 2013). The authors found that the resonant peaks are dominated
by the flame burning velocity oscillations arising as a result of the unsteady
heat losses to the burner. Flame area oscillations become significant above the
resonant frequency, generating heat release rate oscillations and reducing the
time lag between the heat release rate and the inlet velocity.

In a recent study, two regions were defined in order to take into account the
flame speed variation along the flame front and subsequently to describe the
flame base dynamics along with flame-burner heat interactions (Kedia and
Ghoniem 2013). The authors found that the “two-dimensionality” of the flame
contributes to the heat release rate fluctuations and the gain overshoot. The
FTF predictions (Kedia and Ghoniem 2013) match fairly well the results of
direct numerical simulations (Kedia et al. 2011) provided that the flame base
stand-off distance and the plate surface temperature are well adjusted, as shown
in Fig. 1.10.

Comparisons are also reported with experiments (Manohar 2011) where larger
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Figure 1.10: Comparison of the FTF of a collection of small premixed laminar
conical methane/air flames obtained from simulations (Kedia et al. 2011) and from
an analytical model (Kedia and Ghoniem 2013) for a bulk velocity ub = 1.3 m/s, an
equivalence ratio φ = 0.75, a perforation ratio κ = 2 and with a burner outlet of
thermal conductivity λ = 1.5 W/mK. Reproduced from Kedia and Ghoniem (2013).

differences are observed, but the authors conclude that results are very sensi-
tive to the coupling parameters between the flame stand-off distance and the
burner surface temperature and to external heat losses. In these developments,
unsteady heat transfer between the flame base and the injector generates the
flame base motion (Rook et al. 2002), which constitutes an additional source
of flame wrinkles that are convected along the flame front (Cuquel et al. 2013a).

Detailed comparisons between experiments and direct numerical simulations of
the FTF of premixed laminar conical flames stabilized over a series of small 2D
slits were also explored (Kornilov et al. 2009). In this article, a parametric study
was carried out, where the injection bulk velocity ub, the equivalence ratio φ of
methane/air mixtures, the slit width and the distance between slits were varied.
It was shown that the measured and computed FTF are qualitatively the same
for simulations carried out at a fixed burner outlet temperature T s = 100◦C.
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Figure 1.11: Phase average pictures of the flame base motion and associated
convected wrinkles of a premixed laminar methane/air V-flame of equivalence ratio
φ = 1.03 fed by fresh gases of bulk velocity ub = 1.56 m/s stabilized above a burner of
radius R = 11 mm and submitted to harmonic forcing at a frequency f = 100 Hz for
a forcing level |u′|/u = 0.10. Reproduced from Cuquel et al. (2013a).

1.3 Analytical modeling of the FTF of premixed lam-

inar conical flames

In this work, a kinematic description of the perturbed flame dynamics is used
(Kerstein et al. 1988; Lieuwen 2005). The main contribution to heat release
rate fluctuations is assumed to come from flame surface area variations due to
flame wrinkles. Fluctuations of the local burning rate are neglected except near
the flame base (Preetham et al. 2008).

Flame wrinkles partly originate from the response of the flame reaction layer
to the perturbed velocity field (Fleifil et al. 1996; Dowling 1999). This con-
tribution is designated here as FA(ω). Coincidently, flame wrinkles are also
generated by the displacement of the flame base (Pertersen and Emmons 1961;
Quinard 1996; Kornilov et al. 2007) and are then convected along the flame
front, as shown in Fig. 1.11 for a premixed laminar V-flame (Cuquel et al.
2013a). This contribution is designated here as FB(ω). The Flame Transfer
Function is then the sum of these two contributions (Lee and Lieuwen 2003;
Cuquel et al. 2013a; Mejia et al. 2015):



28 Chapter 1 - Flame Transfer Functions Modeling

F (ω) = FA(ω) + FB(ω) (1.4)

where FA(ω) depends on the velocity perturbation model used to describe the
flow upstream of the flame front and FB(ω) depends on the model used to de-
scribe the anchoring point dynamics.

This analysis is used as a starting point in this work. Three different veloc-
ity models are considered for FA(ω) in order to revisit this problem for large
and small premixed laminar conical flames: 1) a uniform velocity perturbation
(UNI), 2) an axial velocity perturbation convected by the mean flow (CON)
and 3) an axial plus radial velocity disturbance convected by the mean flow
and verifying the incompressible mass balance (INC). These three models are
detailed in Sec. 1.3.1. Furthermore, an anchoring point dynamics model is also
used to describe FB(ω) in this work (Cuquel et al. 2013a). This model is
detailed in Sec. 1.3.2.

1.3.1 Analytical models for FA

Since the description of the perturbed flame dynamics is purely kinematic, the
expression of FA is entirely determined by the expression of the axial and radial
velocity perturbations in the fresh gases, respectively denoted by u′ and v′ in
Fig. 1.12. In the remainder of this work, u′ and v′ are assumed to be harmonic
and thus are proportional to e±iωt depending on the harmonic convention (See
Appendix A). For the sake of consistency with previous works, the harmonic
convention retained here is e−iωt (Schuller et al. 2003a; Preetham et al. 2008).

In this kinematic framework, the flame front is an infinitely thin layer described
by a scalar function G(x, t), where x is the position vector and t is the time
variable, such that at the interface separating the fresh gases from the burnt
gases:

G(x, t) = 0 (1.5)

In this work, the fresh gases region corresponds to G(x, t) < 0 while the burnt
gases region corresponds to G(x, t) > 0. Assuming that the steady-state flow
is purely axial and uniform, the flame front dynamics is then described by a
G-equation (Markstein 1964):

∂G
∂t

+ u · ∇G = SL|∇G| (1.6)

where u is the Eulerian velocity vector and SL is the laminar burning velocity.
The expression of the flame front position is then obtained with the follow-
ing procedure. First, a velocity perturbation model is chosen. The Eulerian
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u′

v′

Name Velocity perturbation model

Uniform (UNI)

{
u′ = ue−iωt

v′ = 0

(1.8)

(1.9)

Convective (CON)

{
u′ = ueikx−iωt

v′ = 0

(1.10)

(1.11)

Incompressible (INC)

{
u′ = ueikx−iωt

v′ = ik(R− y)ueikx−iωt/2

(1.12)

(1.13)

Figure 1.12: Velocity perturbation models for the e−iωt harmonic convention.

velocity u is subsequently decomposed into its steady-state and fluctuating
components in Eq. (1.6). Then, the reference frame is changed and a telegraph
integral is performed (Boyer and Quinard 1990; Schuller et al. 2003a; Cuquel
et al. 2013a). The analytical expression for FA(ω) is then obtained by in-
tegrating the flame front position over the complete flame surface. Since the
flame surface area S is assumed to be proportional to the flame heat release

rate Q̇ (Hurle et al. 1968), the relative heat release rate fluctuations Q̇′/Q̇ are
shown to be proportional to the relative velocity fluctuations u′/u by a factor
FA corresponding to a Flame Transfer Function:

Q̇′

Q̇
=
S′

S
= FA

u′

u
(1.7)

The three velocity perturbation models assessed in this work are reproduced in
Fig. 1.12 for the e−iωt harmonic convention. The wave number k is the ratio
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Figure 1.13: Modulus of the velocity perturbations u′ = u′ex + v′ey for the uniform
velocity perturbation model (Left), the convective velocity perturbation model (Cen-
ter), and the incompressible convective velocity perturbation model (Right). The axial
propagation direction is vertical and the radial direction is horizontal. Maximum and
minimum velocity disturbances magnitudes are represented respectively in white and
black. All physical parameters were chosen arbitrarily.

between the angular frequency ω and the convection speed uc and R is the
radius of the cylindrical injector.

The uniform velocity perturbation model (UNI) is a purely axial and uniform
velocity disturbance (Fleifil et al. 1996; Ducruix et al. 2000). The convective
velocity perturbation model (CON) corresponds to a wave propagating in the
axial direction, with no radial component (Schuller et al. 2003a). The incom-
pressible convective velocity perturbation model (INC) corresponds to a wave
propagating in the axial direction with a radial component such that the in-
compressible mass balance is respected (Schuller et al. 2002; Preetham et al.
2008). The spatial distribution of these velocity disturbances is represented in
Fig. 1.13. The specificities of each of these three models are now presented in
details.

The uniform velocity perturbation model (UNI):

First proposed for premixed laminar conical elongated flames (Fleifil et al.
1996) and later generalized to any steady flame tip half angle α (Ducruix et al.
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2000), the uniform velocity perturbation model (UNI) is the simplest kinematic
model based on the integration of the G-equation. The associated velocity per-
turbation field is uniform in the axial direction and zero in all other directions,
as expressed in Eqs. (1.8) and (1.9). This description was proposed because
the flame is usually considered to be compact with respect to acoustic and
hydrodynamic perturbations (Schuller et al. 2002; Truffin and Poinsot 2005).
The associated FTF, denoted F uni

A , was shown to be a function of the reduced
frequency ω∗ only (Ducruix et al. 2000):

F uni
A (ω∗) =

2

ω2
∗

(1− exp(iω∗) + iω∗) (1.14)

The gain and phase lag of F uni
A are represented in blue in Fig. 1.14 as functions

of the reduced frequency ω∗. These curves corresponding to the uniform veloc-
ity perturbation model are the same for all premixed laminar conical flames.
The gain G(ω∗) tends towards 1 as ω∗ → 0, as predicted by theory (Polifke and
Lawn 2007). When the reduced frequency is increased, the gain quickly drops
and tends towards 0 as ω∗ → +∞. The modeled flame response behaves like a
low-pass filter. On the other hand, the phase lag plot increases linearly with the
reduced frequency until it reaches ω∗ ∼ 5, where the phase lag is approximately
ϕ ∼ π/2. The phase lag then oscillates around π/2 until the oscillations are
completely damped.

The convective velocity perturbation model (CON):

The saturation of the FTF phase lag at π/2 as predicted by the uniform velocity
perturbation model (UNI) is not observed experimentally for elongated flames
(Ducruix et al. 2000; Schuller et al. 2002; Kornilov et al. 2007; Durox et al.
2009; Karimi 2014). As a consequence, a new model, called the convective
velocity perturbation model (CON) was proposed. In this second kinematic
model, the axial velocity perturbation is a wave propagating in the flow di-
rection whereas the radial velocity perturbation is set to zero, as expressed in
Eqs. (1.10) and (1.11). The associated Flame Transfer Function F con

A is then a
function of two parameters: the steady flame tip half angle α and the reduced
frequency ω∗ (Schuller et al. 2003a):

F con
A (ω∗, α) =

2

ω2
∗(1− cos2 α)

[
1− exp(iω∗) +

exp(iω∗ cos
2 α)− 1

cos2 α

]
(1.15)

The gain G(ω∗, α) and phase lag ϕ(ω∗, α) associated with the convective veloc-
ity perturbation model are represented in Fig. 1.15 as functions of the reduced
frequency ω∗ (x-axis) and steady flame tip half angle α (y-axis). The values
of the FTF gain G and phase lag ϕ are then represented using a colorbar.
Figure 1.15 clearly shows that once again, the flame frequency response is a
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Figure 1.14: Gain (Top plot) and phase lag (Bottom plot) of a Flame Transfer
Function according to the uniform (blue), convective (red) and incompressible convec-
tive (green) velocity perturbation models. The steady flame tip half angle is set to
α = 14.5◦ for the last two models.

low-pass filter.

In order to compare the uniform (UNI) and convective (CON) velocity pertur-
bation models, the steady flame tip half angle is set to α = 14.5◦, corresponding
to all flames explored in the present work, and the FTF predictions associated
with the convective model are plotted in red in Fig. 1.14. Once again, the gain
plot indicates that the flame response is a low-pass filter. The gain predictions
according to the uniform and convective perturbation models are almost the
same. On the other hand, the phase lag increases indefinitely with the reduced
frequency in the case of the convective perturbation model, as opposed to the
uniform perturbation model where the phase lag quickly saturates. It should be
noted that when α→ 0, the convective model described by Eq. (1.15) collapses
to the uniform model described by Eq. (1.14).
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Figure 1.15: Gain (Top plot) and phase lag (Bottom plot) of the Flame Transfer
Function predicted by the convective velocity perturbation model (CON) as functions
of the reduced frequency ω∗ (x-axis) and steady flame tip half angle α (y-axis).

The incompressible convective velocity perturbation model (INC):

The convective velocity perturbation model (CON) has a major drawback: mass
balance is violated. This issue is solved by considering a radial velocity per-
turbation in addition to the axial convective wave such that the incompressible
mass balance is ensured (Preetham et al. 2008; Cuquel 2013; Orchini and
Juniper 2016). These velocity disturbances are expressed in Eqs. (1.12) and
(1.13). The corresponding Flame Transfer Function F inc

A is a function of the
steady flame tip half angle α and the reduced frequency ω∗. For the sake of
simplicity, an additional parameter is introduced: k∗ = ω∗ cos

2 α. This param-
eter is redundant as it is expressed solely in terms of α and ω∗. The Flame
Transfer Function F inc

A is then given by (Cuquel 2013):
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Figure 1.16: Gain (Top plot) and phase lag (Bottom plot) of the Flame Transfer
Function predicted by the incompressible convective velocity perturbation model (INC)
as functions of the reduced frequency ω∗ (x-axis) and steady flame tip half angle α
(y-axis).

F inc
A (ω∗, α) =

1

i(k∗ − ω∗)

[(
2− ik∗ −

k∗
k∗ − ω∗

)
×

(
exp(ik∗)− 1

ik∗
− exp(iω∗)− 1

iω∗

)
+

(
exp(ik∗)−

exp(ik∗)− 1

ik∗

)]
(1.16)

The gain G(ω∗, α) and the phase lag ϕ(ω∗, α) associated with the incompress-
ible convective velocity perturbation model (INC) are represented in Fig. 1.16
as functions of the reduced frequency ω∗ (x-axis) and steady flame tip half an-
gle α (y-axis). The values of the gain G and phase lag ϕ are then represented
using a colorbar. Once again, it is clear from Fig. 1.16 that the modeled flame
response is a low-pass filter.

In order to compare the incompressible convective (INC) perturbation model
to the uniform (UNI) and convective (CON) perturbation models, the steady
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flame tip half angle is again set to α = 14.5◦, corresponding to all flames ex-
plored in the present work, and the FTF associated with the incompressible
model is plotted in green in Fig. 1.14. The FTF phase lag plots as predicted by
the incompressible (INC) and convective (CON) models increase indefinitely
with the reduced frequency ω∗ and are almost superimposed. On the other
hand, the FTF gain plot as predicted by the incompressible model is larger
compared to the predictions according to the uniform and convective models.
The low-frequency limit of G is still 1 but as the reduced frequency increases,
a small gain overshoot can be observed. Moreover, the flame is still a low-pass
filter but the gain slowly decreases with the reduced frequency. At ω∗ = 30,
the gain of the FTF as predicted by the incompressible model is G ∼ 0.5 as
opposed to G < 0.1 for the two previous models.

One way to solve this issue is to consider a new velocity perturbation model
based on an acoustic wave with an exponentially decaying amplitude in the axial
direction (Cuquel 2013). The radial component of the velocity disturbance is
then obtained by solving the incompressible mass balance. However, there
is no physical justification for such a velocity perturbation model and as a
consequence, this model will not be considered in this work.

1.3.2 Analytical models for FB

In addition to the flame response to velocity disturbances, wrinkles are also
induced by the motion of the flame base. This contribution, denoted FB in this
work, is the product of two transfer functions (Cuquel et al. 2013a):

FB = FC × Ξ (1.17)

The first transfer function FC relates flame surface area fluctuations to the
unsteady motion of the flame base which generates flame wrinkles (Boyer and
Quinard 1990; Lee and Lieuwen 2003). The second transfer function Ξ de-
scribes the motion of the flame base as a function of the incoming velocity
perturbations. This contribution has been investigated in a series of articles
for planar flames stabilized above perforated plates (Rook et al. 2002; de Goey
et al. 2011).

The transfer function FC can be deduced solely from kinematic considerations
and behaves like a low-pass filter. It is a function of the reduced frequency ω∗

and of the steady flame tip half angle α and it is expressed as (Cuquel et al.
2013a):

FC(ω∗, α) = 2 cosα
eiω∗ − 1

iω∗

(1.18)
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Figure 1.17: Gain (Top plot) and phase lag (Bottom plot) of the transfer function
FC(ω∗, α) as functions of the reduced frequency ω∗ (x-axis) and steady flame tip half
angle α (y-axis).

The gain G(ω∗, α) and phase lag ϕ(ω∗, α) of FC(ω∗, α) are represented in
Fig. 1.17 as functions of the reduced frequency ω∗ (x-axis) and steady flame
tip half angle α (y-axis). Once again, the values of the gain and phase lag are
represented using a colorbar. This transfer function behaves like a low-pass
filter, especially when α → 0, as shown in Fig. 1.17. The incoming acoustic
wave is amplified when the gain of the transfer function is larger than one,
which happens for low forcing frequencies and for a steady flame tip half angle
smaller than 60◦.

The second transfer function Ξ is much more complex than FC because it is
deduced from a dynamic analysis involving unsteady heat and mass transfer
between the flame and the burner (de Goey et al. 2011; Cuquel et al. 2013a).
In addition to the reduced frequency ω∗ introduced in Eq. (1.2) and the steady
flame tip half angle α, the retained expression for Ξ (Cuquel 2013; Cuquel et al.
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2013a) depends on the Zeldovich number Ze, the dimensionless flame thermal
thickness δ∗, and an additional dimensionless parameter Θ∗:





δ∗ =
δ cosα

R

Ze =
Ta
Tb

Tb − Tu
Tb

Θ∗ =
1

2
log10

(
Tad − Tu
Tad − Tb

)

(1.19)

(1.20)

(1.21)

where Ta = 15 000 K is an activation temperature, Tb and Tu are the burnt
and unburnt gas temperatures respectively and Tad is the adiabatic flame tem-
perature (Cuquel et al. 2013a). The expression for Ξ(ω∗, α,Ze, δ∗,Θ∗) is then
given by:

Ξ(ω∗, α,Ze, δ∗,Θ∗) = (A− 1) exp(iω∗δ∗Θ∗ sin 2α)×[
(iω∗ cosα)

−1 − cosα

2
+ δ∗Θ∗ sinα

]
(1.22)

where A is given by:

A(ω∗,Ze, δ∗,Θ∗) =

[
1− 4iδ∗ω∗

Ze
sinh(Θ∗) exp

(
Θ∗

√
1− 4iω∗δ∗

)]−1

(1.23)

It should be noted that Ξ is flame dependent and that it is not derived from
purely kinematic considerations. As a consequence, FB is different for every
flame and experiments or simulations are needed in order to provide the ad-
equate input variables. Moreover, it depends on five distinct variables which
makes an experimental or numerical parametric study tedious.

Several expressions for Ξ have been proposed (Rook et al. 2002; Kedia et al.
2011; Cuquel et al. 2013a) but the expression for Ξ(ω∗, α,Ze, δ∗,Θ∗) given
in Eq. (1.22) was validated by pictures of the flame base motion, shown in
Fig. 1.11, and was shown to adequately reproduce the high frequency behavior
of the FTF gain and phase lag for a premixed laminar conical methane/air
flame stabilized over an injector of radius R = 11 mm, as shown in Fig. 1.18
(Cuquel et al. 2013a). A similar model was derived (Kedia et al. 2011), but
the authors do not provide detailed comparisons of the FTF with experiments.

The total transfer function FB describing the motion of the flame base is rep-
resented in Fig. 1.19 as a function of the reduced frequency ω∗ and steady
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Figure 1.18: Gain (left) and phase lag (right) of the transfer function Ξ for a pre-
mixed laminar conical methane/air flame of equivalence ratio φ = 1.03 and bulk flow
velocity ub = 1.56 m/s as a function of the frequency. The theoretical prediction (black)
is compared to measurements for two forcing levels |u′|/u = 0.05 (grey squares) and
|u′|/u = 0.10 (black circles). Reproduced from Cuquel et al. (2013).
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Figure 1.19: Gain (Top plot) and phase lag (Bottom plot) of the transfer function
FB describing the anchoring point dynamics as functions of the reduced frequency ω∗

(x-axis) and steady flame tip half angle α (y-axis) for δ∗ = 0.1, Ze = 8 and Θ∗ = 1.
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flame tip half angle α. The three remaining parameters are set in this work to
δ∗ = 0.1, Ze = 8 and Θ∗ = 1, which are typical values for the premixed laminar
conical methane/air and propane/air flames stabilized over a burner outlet of
radius R = 11 mm that were investigated in this study. This transfer function
behaves like a low-pass filter, especially when the steady flame tip half angle is
limited, as shown in Fig. 1.19.

1.4 Conclusion

A comprehensive literature review about the acoustic response of premixed
laminar conical flames submitted to harmonic forcing was performed in this
chapter. It was shown that this response may be characterized by a Flame
Transfer Function (FTF) that relates the relative oscillations of the flame heat
release rate to the relative oscillations of the flow velocity. This FTF may be
decomposed into two distincts contributions: 1) a transfer function FA that
depends on the velocity perturbation impinging on the flame and 2) a transfer
function FB related to the flame base motion.

Three models for FA based on uniform, convective and incompressible convec-
tive velocity perturbations were then presented based on previous investiga-
tions. An additional model for the transfer function FB was also reproduced.

Based on previous experimental and numerical investigations, it seems that the
frequency response of collections of small premixed laminar conical flames differ
from the response of large premixed laminar conical flames. It is then worth
investigating the FTF of both types of flames using experiments and analytical
approaches.





Chapter 2

Experimental Setup and

Diagnostics

The experimental setup used to determine the Flame Transfer Functions
of premixed laminar conical flames is presented in this chapter. The
various diagnostics employed, including velocity and chemiluminescence
measurements, are also described. Finally, the physical parameters of
all flames explored in the present study are introduced along with the
corresponding steady-state flame pictures.

2.1 The laminar burner

The burner used to analyze the frequency response of premixed laminar conical
flames in this study is presented in Fig. 2.1. It is a new version of the so-called
Durox burner (Ducruix et al. 2000; Schuller et al. 2002; Birbaud et al. 2006;
Durox et al. 2009; Cuquel et al. 2013a). The various geometrical and physical
parameters used in this chapter are introduced in Fig. 1.1.

The different mass flowrates injected are controlled with Bronkhorst EL-FLOW
devices. Pure methane (CH4) or propane (C3H8) is mixed with air at a large
distance from burner (not represented in Fig. 2.1). The resulting perfectly pre-
mixed gases are injected at the bottom of the burner in a tranquilization box,
above a loudspeaker used to generate harmonic flowrate perturbations. The
flow is then pushed through a perforated plate and a honeycomb structure to
break the large turbulence scales thus generating a laminar flow in the plenum.
At the top of the plenum, a finely-meshed grid impedes downward flame prop-
agation in the event of a flashback.

A convergent nozzle (contraction ratio: 8.73) placed after the plenum acceler-
ates the fresh gases and creates an almost planar velocity profile at the burner
outlet (Schuller 2003; Cuquel 2013). A water-cooled support is added at the
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Figure 2.1: Laminar burner (black & gray) and its associated diagnostics (red). The
premixed gases are injected in a tranquilization box just after the loudspeaker and the
flame is stabilized above the cooling support at the top of the burner. Diagnostics
include a hot-wire probe (HW), a photomultiplier with an OH* filter (PMT), Laser
Doppler Velocimetry (LDV) and thermocouple measurements. Dimensions are given
in mm.

top of the burner to control the steady-state burner outlet temperature, kept
constant and equal to T s = 300 K for all experiments. By default, the burner
exit radius is equal to R = 11 mm, corresponding to Fig. 2.2-(a), but adapta-
tion elements shown in Fig. 2.2 may be used to modify the flame size. The first
element is a sleeve used to reduce the radius of the burner outlet to R = 7 mm,
corresponding to Fig. 2.2-(b). Two perforated plates with circular holes reg-
ularly distributed over a square pattern of size d can also be mounted at the
top of the burner. The first plate features 21 holes of radius R = 1.5 mm with
an inter-hole space d = 4 mm, corresponding to Fig. 2.2-(c). The second plate
features 25 holes of radius R = 1.0 mm separated by d = 3 mm, corresponding
to Fig. 2.2-(d). The burnt gases are then exhausted to the atmostphere.

It should be noted that the velocity profiles at the burner outlet slightly differ
depending on the burner outlet radius. For the burner outlets with R = 11 mm
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Figure 2.2: Burner outlet elements with various perforation radii and patterns. (a)
1 hole, R = 11 mm. (b) 1 hole, R = 7 mm. (c) 21 holes, R = 1.5 mm. (d) 25 holes,
R = 1.0 mm.

and R = 7 mm, the velocity profile is flat (Durox et al. 2004). For the
perforated plates with injection holes of radii R = 1.5 mm and R = 1.0 mm,
the velocity profile is parabolic (Noiray 2007). However, a parabolic mean
velocity profile (Fleifil et al. 1996) and a flat mean velocity profile (Ducruix
et al. 2000) lead to very similar results for the FTF gain and phase lag plots
with a uniform velocity perturbation model. As a consequence, the impact of
the mean velocity profile at the burner outlet will not be considered in this
study.

2.2 Diagnostics

The various diagnostics employed in this study are now quickly described.

2.2.1 Temperature measurements

R-type and K-type thermocouples are used to measure the temperature in the
burnt gases one millimeter above the steady-state flame tip, as represented in
Fig. 2.1. All temperature measurements presented in this part of the manuscript
and performed in the burnt gases region are corrected for radiative heat losses
(Guiberti 2015). More details about temperature measurements are given in
Chapter 6.

2.2.2 Velocity measurements

The frequency response of premixed laminar conical flames is explored using
two different types of velocity measurements. In all cases, harmonic acoustic
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forcing is generated by the loudspeaker located at the bottom of the burner.
In a first set of experiments, corresponding to the data presented in Sec. 4.2,
a hot-wire probe (Dantec Dynamics - Probe 55P16 with a mini-CTA 54T30),
denoted HW in Fig. 2.1, records the velocity signal 35 mm below the burner
outlet, in the uniform region of the steady-state flow. The hot-wire signal is
used to determine the reference velocity u corresponding to the steady-state
velocity in the absence of acoustic forcing and the forcing level |u′|/u, kept
constant and in the linear regime for all operating conditions.

In a second set of experiments, corresponding to the data presented in Chapter 3
and Sec. 4.3, the axial velocity is measured using Laser Doppler Velocimetry
(LDV) at the burner outlet. The measurement volume is in this case located
1 mm above the burner outlet and on the symmetry axis. A continuous 3-Watts
Argon Laser is used to generate two beams of wavelength λ = 514 nm separated
by a distance l = 40 mm before they reach a converging lens of focal distance
f = 250 mm used to create the interference pattern. The flow is seeded with
small oil droplets of diameter 3 µm with a nebulizer (Durox et al. 1999). The
data collection rate is always greater than 10, 000 s−1 and the LDV bench is
calibrated before all measurements. The LDV velocity signal is then used to
determine the reference velocity u corresponding to the steady-state velocity at
the flame base and in the absence of acoustic forcing, the velocity disturbance
u′ at the forcing angular frequency ω and the forcing level |u′|/u, kept constant
and in the linear regime for all operating conditions. Hot-wire anemometry and
Laser Doppler Velocimetry are presented in more details in Chapter 6.

2.2.3 Chemiluminescence measurements

It is assumed in this study that the mean Q̇ and fluctuating Q̇′ heat release
rate signals are linearly related to the mean I and fluctuating I ′ OH∗ chemi-
luminescence intensities originating from the entire flame region (Hurle et al.
1968). This relation was checked for lean premixed hydrocarbon flames (Hig-
gins et al. 2001; Schuller et al. 2002; Candel et al. 2004; Li et al. 2015). The
OH∗ chemiluminescence signal is recorded with a photomultiplier (Hamamatsu
H5784-04) equipped with a narrow band-pass filter (Asahi Spectra ZBPA310 -
λ = 310 nm and 10 nm width). Another interferometric filter with the same
characteristics may be used in front of the ICCD camera, presented thereafter.

2.2.4 Experimental Flame Transfer Functions

Measurements at low frequencies require a large acquisition time in order to
reach statistical convergence. As a consequence, all signals including the hot-
wire, LDV and photomultiplier signals were recorded for a minimum duration of
t = 10 s and at a sampling rate fs = 8196 Hz. All measured signals are recorded
for a duration corresponding to at least 50 periods of the forcing cycle. The
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FTF is then deduced from the cross power spectral density between the photo-
multiplier signal and the LDV signal divided by the auto power spectral density
of the LDV signal. The Welch periodogram method examined at the forcing
frequency is utilized. More details about the experimental determination of
Flame Transfer Functions is presented in Sec. 9.2.

2.2.5 Flame pictures with the ICCD camera

A signal generator (Hameg Instruments HM8030-3) is used to generate both a
sinusoidal wave and the corresponding TTL signal. The sinusoidal signal is am-
plified and sent to a loudspeaker (Monacor SPH-115, 50 Watts RMS) mounted
at the bottom of the burner to force the flow, as depicted in Fig. 2.1. On
the other hand, the TTL signal triggers an ICCD camera (Princeton Instru-
ments PI-MAX4 1024x1024 pixels) mounted with an UV objective (Nikon U.V.
Nikkor 105 mm f/4.5) with and without an interferometric filter (λ = 310 nm
and 10 nm width). This technique is employed to get phase average pictures
of the flame at various forcing frequencies and forcing levels. Pictures of the
flames at steady flow injection conditions are also taken with the ICCD camera
without interferometric filter, as shown in Figs. 2.3, 2.4, 2.5 and 2.6. All flame
pictures taken with the ICCD camera are averaged over 100 frames. More
details about flame imaging techniques are presented in Chapter 6.

2.3 Operating conditions

All flames investigated in this work are fully premixed laminar conical flames
with a steady flame tip half angle α = 14.5◦ corresponding to a steady flame
aspect ratio h/R = 4 for large flames, as shown in Figs. 2.3 and 2.4. Small
flames stabilized on perforated plates experience strong curvature effects at
their flame tip, as shown in Figs. 2.5 and 2.6. The curvature at the flame tip is
controlled by preferential diffusion (Lewis and von Elbe 1987). Consequently,
the aspect ratio of small flames is slightly smaller than h/R = 4 and depends on
the Lewis number Le of the fuel/air mixture, but the flame angle away from the
flame base and flame tip is still equal to α = 14.5◦ as for the large conical flames.

Two types of fuels are used in this study: methane (CH4) and propane (C3H8).
As a first approximation, the Lewis number of the premixed gases is assumed
to be independent of the equivalence ratio (Gaudron et al. 2017b). Fresh gases
have a Lewis number Le=0.93 and Le=1.80 for the CH4/air and C3H8/air mix-
tures respectively.

The main physical parameters of the flames investigated in this study are sum-
marized in Table 2.1, where P is the thermal power of a single conical flame.
For small flames stabilized above perforated plates, P corresponds to the total
thermal power divided by the number of perforations. The other parameters
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Table 2.1: Main physical parameters for all premixed laminar conical flames ex-
plored in this study. Laminar burning velocities SL are taken from Vagelopoulos and
Egolfopoulos (1998). Flame thicknesses δ are taken from Yamaoka and Tsuji (1985).

Name Fuel
P

(W)

R

(mm)
φ

Tad

(K)

Tb

(K)

SL

(m/s)

ψ

(mm)

δ

(mm)

FS1 CH4 1855 11 1.00 2225 1522 0.38 0.70 1.00

FS2 C3H8 1807 11 0.91 2190 1530 0.38 0.65 0.84

FS4 CH4 34.3 1.5 1.00 2225 1627 0.38 0.68 1.00

FS5 C3H8 33.6 1.5 0.91 2190 1543 0.38 0.71 0.84

FS6 C3H8 1094 11 0.75 1964 1395 0.28 1.12 1.18

FS7 CH4 985 11 0.80 1997 1388 0.27 0.89 1.33

FS11 C3H8 1513 11 0.84 2100 1470 0.34 0.75 0.94

FS12 CH4 1164 11 0.84 2055 1419 0.31 0.93 1.23

FS13 C3H8 28.1 1.5 0.84 2100 1466 0.34 1.16 0.94

FS14 CH4 21.6 1.5 0.84 2055 1466 0.31 0.85 1.23

FS15 CH4 748 7 1.00 2225 1492 0.38 1.21 1.00

FS16 C3H8 729 7 0.91 2190 1481 0.38 1.12 0.84

FS17 C3H8 613 7 0.84 2100 1413 0.34 1.58 0.94

FS18 CH4 472 7 0.84 2055 1403 0.31 1.35 1.23

FS19 CH4 32.4 1.5 0.98 2207 1571 0.36 0.75 1.02

FS20 C3H8 34.7 1.5 0.93 2206 1573 0.38 0.53 0.84

FS21 CH4 25.2 1.5 0.88 2108 1503 0.31 0.85 1.12

FS23 CH4 14.3 1 0.98 2207 1543 0.36 0.75 1.02

FS24 C3H8 15.2 1 0.93 2206 1481 0.38 1.00 0.84

FS25 CH4 15.1 1 1.00 2225 1565 0.38 0.88 1.00

FS26 C3H8 14.9 1 0.91 2190 1447 0.38 1.12 0.84

FS27 CH4 9.6 1 0.84 2055 1441 0.31 0.71 1.23
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are: R the burner outlet radius, φ the equivalence ratio and Tad and T b the adi-
abatic flame temperature (computed with a GRI-MECH 3.0 mechanism) and
burnt gases temperature (measured with a thermocouple) respectively. The
laminar burning velocities SL are taken from a previous experimental investi-
gation (Vagelopoulos and Egolfopoulos 1998). Flame stand-off distances ψ are
assessed from steady-state flame pictures. Flame thicknesses δ are also taken
from a previous study (Yamaoka and Tsuji 1985).

One way to obtain the frequency response of a flame is to force it with a
loudspeaker that generates harmonic sound waves over a wide range of forcing
frequencies. However, if the laminar burning velocity is too low or too high,
the flame may be blown off or may flash back inside the injector respectively.
Ethylene/air flames were initially considered in this study but they were too
sensitive to flashback when submitted to harmonic forcing and were thus not
retained. These flames are not included in Table 2.1.

Steady-state pictures of all flames described in Table 2.1 are presented in
Figs. 2.3, 2.4, 2.5 and 2.6 for decreasing burner outlet radii R = 11 mm,
R = 7 mm, R = 1.5 mm and R = 1 mm. For each flame, the ICCD picture
obtained without interferometric filter is depicted on the left and the associated
Abel deconvolution (Abel 1826) is depicted on the right.

2.4 Conclusion

The experimental setup and the associated diagnostics used to investigate the
frequency response of large and small premixed laminar conical flames was
first introduced. Then, the operating conditions corresponding to twenty-two
methane/air and propane/air flames stabilized above four different burner out-
lets of decreasing radii R = 11 mm, R = 7 mm, R = 1.5 mm and R = 1 mm
and featuring different equivalence ratios ranging from φ = 0.75 to φ = 1.00
were defined. Steady-state pictures of all these flames were taken using an
ICCD camera with and without an interferometric filter corresponding to the
OH* chemiluminescence wavelength.

Since the flame tip half angle α was already identified as an important dimen-
sionless parameter controlling the flame frequency response in previous studies,
its impact was not considered in this work. As a consequence, the flame tip half
angle away from the flame base and flame tip was always fixed to α = 14.5◦

corresponding to a steady flame aspect ratio h/R = 4 for large flames.

It is now worth examining whether the frequency response of large and small
premixed laminar conical flames assessed using the experimental setup pre-
sented in this chapter are consistent with the models introduced in Chapter 1.
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Chapter 3

Comparison Between Predicted

and Measured Flame Transfer

Functions

The experimental FTF of premixed laminar conical flames are compared
with analytical expressions when the burner outlet radius is reduced.
The steady flame aspect ratio is kept constant corresponding to a steady
flame tip half angle α = 14.5◦ and the radius of the injector is reduced
from R = 11 mm to R = 1.5 mm. The three different velocity pertur-
bation models introduced in Chapter 1 are tested, with and without the
additional model accounting for the flame anchoring point dynamics.
For the largest flames with R = 11 mm and 7 mm, the best agreement
is found for a FTF model with an incompressible convective velocity
disturbance in the fresh reactants stream. The anchoring point dynam-
ics has only a weak influence on the FTF gain and phase lag plots of
these flames. For the smallest flames with R = 1.5 mm, a FTF model
based on a uniform flow perturbation yields the best match with experi-
ments for the phase lag plot, but none of the three velocity perturbation
models reproduce the FTF gain evolution as measured in experiments.
Including the contribution of the anchoring point dynamics to the FTF
models for the small flames significantly changes the FTF gain predic-
tions, but it does not allow to reproduce the main features observed in
the measured gain curves and the phase lag predictions worsen.

3.1 Introduction

From the literature review presented in Chapter 1, the following parameters
are known to be relevant when analyzing the frequency response of premixed
laminar conical flames to flowrate disturbances:

• The reduced frequency ω∗ = ωR/(SL cosα) (Fleifil et al. 1996; Ducruix
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et al. 2000).

• The steady flame tip half angle α or equivalently, the steady flame height
relative to the burner exit radius h/R (Schuller et al. 2003a; Preetham
et al. 2008).

• The acoustic forcing level |u′|/u (Preetham et al. 2008; Durox et al. 2009;
Karimi et al. 2009).

The impact of these parameters has been studied extensively and will not be
considered in the present work. Hence, all flames studied here have the same
relative height h/R = 4 or equivalently the same flame tip half angle α = 14.5◦

for steady-state conditions. The acoustic modulation level is always chosen in
the linear regime. Except if mentioned otherwise, the root-mean-square (RMS)
value of the acoustic forcing level is equal to |u′|/u = 0.10. The measured FTF
gains and phase lags are generally plotted as functions of the reduced frequency
ω∗.

On the other hand, it was shown in Chapter 1 that experimental investigations
exploring the effects of more complex physical parameters on the FTF of pre-
mixed laminar conical flames still remain scarce. As a consequence, the impact
of the following physical phenomena is worth investigating:

• Preferential diffusion, that controls heat and molecular transport in the
vicinity of the reaction layer, is analyzed by modifying the fuel. Methane
is used to investigate flames with a Lewis number Le ∼ 1. Propane is
used to investigate flames with Le > 1.

• Flame size effects, that modify heat losses to the burner and change the
proportion of fresh gases affected by heat and mass transport near the
flame reaction layer, are analyzed by modifying the injector hole size.
Results are compared when the ratio δ/R progressively increases, where
δ is the thermal flame thickness and R is the injector radius.

• Thermal dilatation of the burnt gases, that acts as a feedback on the
hydrodynamic velocity field upstream of the flame front, is analyzed by
modifying the equivalence ratio φ of the injected reactants. Results are
examined as a function of the ratio T∗ = Tad/T u − 1, where Tad is the
adiabatic flame temperature and T u is the unburnt gas temperature.

In Chapter 1, the main findings regarding the frequency response of premixed
laminar conical flames were presented along with a detailed description of var-
ious analytical FTF models. Nonetheless, a systematic attempt to validate
these models with experiments when the injector size is varied and for different
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Table 3.1: Summary of all flames investigated in this chapter.

Name Fuel R
(mm)

φ Name Fuel R
(mm)

φ

FS4 CH4 1.5 1.00 FS14 CH4 1.5 0.84

FS5 C3H8 1.5 0.91 FS15 CH4 7 1.00

FS6 C3H8 11 0.75 FS16 C3H8 7 0.91

FS7 CH4 11 0.80 FS17 C3H8 7 0.84

FS13 C3H8 1.5 0.84 FS18 CH4 7 0.84

fuels and equivalence ratios has yet to be performed. This constitutes the main
objective of the present chapter.

The scope of this chapter is restricted to fully premixed laminar conical CH4/Air
or C3H8/Air flames stabilized above the cylindrical injectors described in Chap-
ter 2. All flames share the same steady flame tip half angle α = 14.5◦ and the
equivalence ratio remains unaltered since the flames are submitted to flowrate
disturbances only. The frequency response of ten different flames, described in
Table 3.1, is explored in this chapter.

More information about these flames may be found in Table 2.1. The FTF
gain and phase lag of all premixed laminar conical flames retained here are first
plotted as functions of the forcing frequency in Fig. 3.1-(Top). Both the gain
and phase lag curves depicted in this figure highly depend on the burner outlet
radius R, equivalence ratio φ and type of fuel (CH4 or C3H8). As a conse-
quence, the analytical models describing the FTF gain and phase lag have to
depend on these physical quantities.

It is reminded that the FTF of a premixed laminar conical flame can be ex-
pressed as the sum of two contributions, as seen in Chapter 1: F = FA + FB

where FA depends on the type of the velocity perturbation model used to de-
scribe the flow upstream of the flame front and FB depends on the type of model
used to describe the flame anchoring point dynamics. In this chapter, the an-
alytical predictions for FA according to the uniform (UNI), convective (CON)
and incompressible convective (INC) velocity perturbation models introduced
in Chapter 1 are compared with FTF measurements of premixed laminar con-
ical flames obtained with the experimental setup presented in Chapter 2 when
the injector size is reduced.

The contribution of the flame anchoring point dynamics through the expression
of FB presented in Sec. 1.3.2 is either accounted for (plots denoted by FA+FB)
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Figure 3.1: FTF gain (Top subplot) and phase lag (Bottom subplot) as functions of
the forcing frequency f (Top plots) and reduced frequency ω∗ (Bottom plots). FS4:
Turquoise - FS5: Yellow - FS6: Gray-blue - FS7: Red - FS13: Blue - FS14: Orange
- FS15: Green - FS16: Violet - FS17: Gray - FS18: Light green.
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or neglected (plots denoted by FA). Results are plotted as functions of the
dimensionless parameter ω∗ and for a prescribed steady flame tip half angle α.
These parameters were identified as relevant parameters in the three velocity
perturbation models presented in Chapter 1 (Fleifil et al. 1996; Ducruix et al.
2000; Schuller et al. 2003a; Preetham et al. 2008; Cuquel 2013; Orchini and
Juniper 2016). All the physical parameters needed to determine ω∗, FA(ω∗, α)
and FB are summarized in Table 2.1. The corresponding steady-state pictures
of all ten flames explored here are presented in Chapter 2.

It is worth recalling that the theoretical low frequency limit of the FTF gain of
a premixed flame submitted to flowrate disturbances at a constant equivalence
ratio is G = 1 (Polifke and Lawn 2007). However, since the flame stand-off
distance varies from 0.7 to 1.3 mm depending on the operating conditions,
while the LDV measurement volume is always located 1 mm away from the
burner outlet, the FTF gain at zero frequency ranges from 0.9 to 1.1, as shown
in Fig. 3.1-(Top). This is due to the fact that the amplitude of the acoustic
velocity decreases progressively in the axial direction in the fresh gases region
of a conical flame (Birbaud et al. 2006). This issue is tackled by dividing the
gain by its low-frequency value. The corresponding gain variation is always
lower than 10%. The phase plot are left unchanged since the involved distances
are small compared to the convective wavelengths. This observation raises the
question of the impact of the exact velocity measurement location on the FTF.
This issue is scrutinized in the second part of this manuscript for premixed
confined turbulent flames.

Based on this analysis, the FTF gain and phase lag of all ten flames presented
earlier are now plotted as functions of the reduced frequency ω∗ in Fig. 3.1-
(Bottom). By comparing this figure with Fig. 3.1-(Top), it is clear that the
reduced frequency ω∗ is a relevant dimensionless parameter when studying the
FTF of premixed laminar conical flames. However, the FTF gain and phase
lag plots are not superimposed for all flames. For instance, some flames feature
FTF gains larger than 1 for certain frequencies while this feature is not ob-
served for the majority of the flames. The FTF phase lags plotted as functions
of the reduced frequency also differ depending on the flame. Since all three
analytical models for FA depend on the reduced frequency ω∗ only when the
steady flame tip half angle α is prescribed, this observation advocates for the
use of an anchoring point dynamics model.

Results are first presented for the injector featuring an outlet radius R = 11 mm
in Sec. 3.2, followed by the injector with R = 7 mm in Sec. 3.3. Finally, results
obtained for small conical flames stabilized over the perforated plate with 21
holes of radius R = 1.5 mm are presented in Sec. 3.4.
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Figure 3.2: FS6: C3H8/air flame with an equivalence ratio φ = 0.75 stabilized over
an injector of radius R = 11 mm. Velocity perturbation models : UNI (blue), CON
(red) and INC (green). Experiments : EXP (purple). Left : FA. Right : FA + FB.

3.2 Results for a burner outlet of radius R=11 mm

The frequency responses of propane/air (FS6) and methane/air (FS7) pre-
mixed laminar conical flames stabilized above the injector of radius R = 11 mm
are investigated first. The contribution FA from the three analytical models
are plotted in Fig. 3.2-(Left) and Fig. 3.3-(Left) along with FTF measurements.

The incompressible convective (INC) velocity perturbation model yields the
best match for both the gain and the phase lag plots in Fig. 3.2-(Left) and
Fig. 3.3-(Left). For 3 < ω∗ < 5, small differences are observed between the
FTF gain predictions and measurements, where the gain slightly decreases and
subsequently increases. The incompressible convective (INC) model also pre-
dicts a minimum gain G ∼ 0.4 followed by an increase up to G ∼ 0.6 for ω∗ = 11
while the measured FTF continues to drop until the gain reaches G = 0.2 at
ω∗ = 10 for both flames FS6 and FS7. This problem at high frequencies was
already identified in the past and can be solved by prescribing a spatial decay
of the flow perturbations in the flow direction (Schuller et al. 2002). Except
for these minor deviations, the agreement between analytical and experimental
FTF gain plots is very satisfactory when the incompressible convective (INC)
velocity perturbation model is considered.

Regarding the phase lag plots, the agreement between calculations with the
incompressible convective model and the measured FTF phase lag is almost
perfect for ω∗ < 5, followed by an increasing gap between theory and measure-
ments. Nevertheless, the incompressible convective velocity perturbation model
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Figure 3.3: FS7: CH4/air flame with an equivalence ratio φ = 0.80 stabilized over
an injector of radius R = 11 mm. Velocity perturbation models : UNI (blue), CON
(red) and INC (green). Experiments : EXP (purple). Left : FA. Right : FA + FB.

remains the most accurate model in terms of FTF phase lag prediction for both
the propane/air and methane/air premixed laminar conical flames stabilized on
the largest injector.

Analytical FTF predictions including the effects of the anchoring point dy-
namics FA + FB as shown in Fig. 3.2-(Right) and Fig. 3.3-(Right) are now
examined. Several changes are observed. First, the quasi-steady limit of the
analytical FTF gain differs from unity for both flames FS6 and FS7. The
deviation is small but this is in contradiction with theory (Polifke and Lawn
2007). At this point, it is worth noting that all velocity models studied here,
namely the uniform, convective and incompressible convective models, reach
the theoretical quasi-steady limit when the anchoring point dynamics is not
considered. This is shown in all FTF gain plots corresponding to contribution
FA alone. But since FB does not tend toward 0 at low frequencies, the sum
FA + FB cannot tend toward 1 in the low-frequency limit and the theoretical
quasi-steady limit is not respected.

Additionally, the gain predictions according to FA + FB at high frequencies in
Fig. 3.2-(Right) and Fig. 3.3-(Right) are larger than those according to FA in
Figs. 3.2-(Left) and 3.3-(Left) that were already too large compared to mea-
surements (though it is possible that the measured FTF does not capture the
gain rebound because of the lack of data in the high frequency range). Finally,
the experimental gain curves plotted in Figs. 3.2-(Right) and 3.3-(Right) do
not match with any analytical model curve at low reduced frequencies ω∗ < 10.
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Figure 3.4: FS15: CH4/air flame with an equivalence ratio φ = 1.00 stabilized over
a burner outlet of radius R = 7 mm. Velocity perturbation models : UNI (blue), CON
(red) and INC (green). Experiments : EXP (purple). Left : FA. Right : FA + FB.

As a conclusion, the anchoring point dynamics model used in addition to the
velocity perturbation model is unnecessary and even detrimental when predict-
ing the frequency response of large premixed laminar conical flames. This type
of anchoring point dynamics model was shown to be more adapted for the study
of the frequency response of small premixed laminar conical flames (Kedia et al.
2011) and large premixed laminar conical flames at high frequencies (Cuquel
et al. 2013a). At the relatively low reduced frequencies and forcing levels in-
vestigated in this study, the contribution of the anchoring point dynamics to
the FTF of propane/air and methane/air large premixed laminar conical flames
does not improve the FTF predictions.

3.3 Results for a burner outlet of radius R=7 mm

The next step is to analyze the frequency response of premixed laminar conical
flames stabilized over a smaller injector of radius R = 7 mm. Results for the
transfer functions of FS15, FS16, FS17 and FS18 are plotted in Figs. 3.4, 3.5,
3.6 and 3.7 respectively. Overall, predictions associated with the incompress-
ible convective velocity perturbation model without the flame anchoring point
dynamics model yield the best match with the measured FTF gain and phase
lag plots. Predictions associated with this model for the FTF phase lag per-
fectly match measurements for ω∗ ≤ 5 for both propane/air and methane/air
flames. The measured phase lag of FS17 represented in Fig. 3.6-(Left) is even
reproduced by this model for all reduced frequencies investigated.
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Figure 3.5: FS16: C3H8/air flame with an equivalence ratio φ = 0.91 stabilized over
a burner outlet of radius R = 7 mm. Velocity perturbation models : UNI (blue), CON
(red) and INC (green). Experiments : EXP (purple). Left : FA. Right : FA + FB.
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Figure 3.6: FS17: C3H8/air flame with an equivalence ratio φ = 0.84 stabilized over
a burner outlet of radius R = 7 mm. Velocity perturbation models : UNI (blue), CON
(red) and INC (green). Experiments : EXP (purple). Left : FA. Right : FA + FB.

The FTF gain plots obtained for propane/air flames (FS16 and FS17) repre-
sented in Fig. 3.5-(Left) and Fig. 3.6-(Left) are in very good agreement with
the incompressible convective model when the anchoring point dynamics is ne-
glected except in the high frequency range in Fig. 3.5-(Left) where the uniform
and convective models yield better results.
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Figure 3.7: FS18: CH4/air flame with an equivalence ratio φ = 0.84 stabilized over
a burner outlet of radius R = 7 mm. Velocity perturbation models : UNI (blue), CON
(red) and INC (green). Experiments : EXP (purple). Left : FA. Right : FA + FB.

On the other hand, the FTF gain plots obtained for methane/air flames (FS15
and FS18) represented in Fig. 3.4-(Left) and Fig. 3.7-(Left) are not fully repro-
duced by any velocity perturbation model. For ω∗ ≤ 7, the uniform and con-
vective models underestimate the FTF gain. The measured FTF gain behavior
is better reproduced in Fig. 3.7-(Left) in this frequency range by considering
the incompressible convective model. Slight differences are found at very low
reduced frequencies ω∗ ≃ 2 in Fig. 3.4-(Left) and Fig. 3.7-(Left) where small
amplitude overshoots are observed in the measured FTF gain but not predicted
by any model. Predictions associated with the incompressible convective model
also slightly overestimate the gain in the intermediate frequency range for the
stoichiometric methane/air flame in Fig. 3.4-(Left). The agreement is better for
the lean methane/air mixture in Fig. 3.7-(Left). At higher frequencies, the in-
compressible convective model again largely overestimates the FTF gain. Once
again, in this frequency range, the uniform and convective models yield better
results.

Once more, adding the contribution of the flame anchoring point dynamics FB

to the flame transfer function does not improve the predictions as shown in
Fig. 3.4-(Right), Fig. 3.5-(Right), Fig. 3.6-(Right) and Fig. 3.7-(Right). The
phase lag plots of the different models for FA+FB remain essentially unaltered
compared to Fig. 3.4-(Left), Fig. 3.5-(Left), Fig. 3.6-(Left) and Fig. 3.7-(Left).
The same issues that were already identified in the FTF gain plots for the
injector of radius R = 11 mm still apply: the theoretical quasi-steady limit is
not reached by any model when the anchoring point dynamics is considered.
However, the agreement between the modeled and measured FTF gains is much
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Figure 3.8: FS4: CH4/air flame with an equivalence ratio φ = 1.00 stabilized over
a perforated plate with 21 holes of radius R = 1.5 mm. Velocity perturbation models
: UNI (blue), CON (red) and INC (green). Experiments : EXP (purple). Left : FA.
Right : FA + FB.

better for the uniform and convective models in Fig. 3.4-(Right) and Fig. 3.5-
(Right) when ω∗ ≤ 7. The FTF gain behavior for ω∗ > 7 is less well captured by
the three models tested when the anchoring point dynamics is considered. The
worst model at high frequencies is again the incompressible convective model
used along with the anchoring point dynamics model that largely overestimates
the measured FTF gain for FS15, FS16, FS17 and FS18.

3.4 Results for a perforated plate with 21 holes of

radius R=1.5 mm

The last step is to analyze the frequency response of small flames corresponding
to FS4, FS5, FS13 and FS14. Results are plotted in Figs. 3.8, 3.9, 3.10 and
3.11 respectively. These flames are stabilized on a perforated plate with 21 holes
of radius R = 1.5 mm distributed over a square pattern of size d = 4 mm, as
shown in Fig. 2.2-(c). It is known that the dynamics of premixed laminar con-
ical flames may be altered by neighboring flames if they are too close (Cuquel
et al. 2013b). It was demonstrated that this effect can be neglected as long as
the burnt gases can fully expand (Cuquel et al. 2013a) which can be assessed
by using the following dimensionless parameter:

Cb =
R

R1

(
1− E − 1

E
cosα

)−1/2

(3.1)
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Figure 3.9: FS5: C3H8/air flame with an equivalence ratio φ = 0.91 stabilized over
a perforated plate with 21 holes of radius R = 1.5 mm. Velocity perturbation models
: UNI (blue), CON (red) and INC (green). Experiments : EXP (purple). Left : FA.
Right : FA + FB.
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Figure 3.10: FS13: C3H8/air flame with an equivalence ratio φ = 0.84 stabilized
over a perforated plate with 21 holes of radius R = 1.5 mm. Velocity perturbation
models : UNI (blue), CON (red) and INC (green). Experiments : EXP (purple). Left
: FA. Right : FA + FB.
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Figure 3.11: FS14: CH4/air flame with an equivalence ratio φ = 0.84 stabilized over
a perforated plate with 21 holes of radius R = 1.5 mm. Velocity perturbation models
: UNI (blue), CON (red) and INC (green). Experiments : EXP (purple). Left : FA.
Right : FA + FB.

where R is the burner outlet radius and R1 is an equivalent radius such that
πR2

1 = d2. Moreover, E = ρu/ρb = T b/T u is the volumetric expansion ratio
and α denotes the steady flame tip half angle.

When Cb ≥ 1, the fresh reactant stream is accelerated in the axial direction
because the burnt gases cannot fully expand due to the limited available space.
This in turn leads to elongated flames with altered Flame Transfer Functions
(Cuquel et al. 2013a). FS4, FS5, FS13 and FS14 yields values in the range
Cb = 1.3−1.4, a value slightly higher than unity. Nevertheless, the flame angle
away from the flame tip and flame leading edge are kept constant and equal
to α = 14.5◦ in these experiments so that this effect can be neglected. This is
confirmed by the steady-state flame pictures obtained using the ICCD camera
and presented in Chapter 2.

Moreover, the thin flame assumption is necessary in order to use the kinematic
models presented in Chapter 1. Even though this assumption can be debated
in the case of small flames stabilized above perforated plates, it is worth ex-
amining whether kinematic models can reproduce some of the features of the
frequency response of these flames.

Measurements and predictions according to the FTF models are represented in
Fig. 3.8-(Left), Fig. 3.9-(Left), Fig. 3.10-(Left) and Fig. 3.11-(Left) when the
anchoring point dynamics is not considered. The frequency response of these
small premixed laminar conical flames stabilized over a perforated plate largely
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differs from those measured in Figs. 3.2-3.7 that were obtained for larger in-
jectors. It is also interesting to note that the FTF gain and phase lag of these
small flames are significantly affected when the fuel or equivalence ratio are
modified, as opposed to the FTF gain and phase lag of larger flames that re-
mained roughly identical when these parameters were varied.

Predictions according to the incompressible convective (INC) model without
the anchoring point dynamics model do not yield the best match with exper-
iments anymore. This model rapidly leads to an over-prediction of the FTF
phase lag for ω∗ > 2 for both propane/air and methane/air flames. This ob-
servation is also valid for the convective (CON) model. On the other hand,
measurements of the FTF phase lag of FS4 and FS14 are accurately repro-
duced by the theoretical expression corresponding to the uniform (UNI) model
for all reduced frequencies investigated. The FTF phase lag of FS5 and FS13
are also correctly reproduced by the uniform model up to ω∗ = 5.

Regarding the FTF gain plots, predictions according to the incompressible con-
vective model without the anchoring point dynamics model are the closest to the
experimental values. Nevertheless, the differences between theory and experi-
ments are much larger than for the flames stabilized above the larger injectors
of radius R = 11 mm or R = 7 mm, especially for FS13. Moreover, the lo-
cal extrema of the gain curves and their associated reduced frequencies do not
match those observed in experiments. It is clear that an additional mechanism
needs to be accounted for in order to reproduce the evolution of the FTF of
small premixed laminar conical flames.

In an attempt to reduce the gap between experiments and theoretical predic-
tions, results for the analytical transfer functions including the contribution
of the anchoring point dynamics are investigated in Fig. 3.8-(Right), Fig. 3.9-
(Right), Fig. 3.10-(Right) and Fig. 3.11-(Right). It has been shown that the
motion of the flame leading edge largely contributes to heat release rate fluc-
tuations in the case of small flames (Rook et al. 2002; Kedia et al. 2011). It
has also been shown that the transfer function of planar flames stabilized over
porous materials or perforated plates features an amplification behavior with
gain values largely exceeding unity at relatively low forcing frequencies (Schreel
et al. 2002; de Goey et al. 2011), as shown in Fig. 1.9.

It is obvious from Fig. 3.8-(Right), Fig. 3.9-(Right), Fig. 3.10-(Right) and
Fig. 3.11-(Right) that the model accounting for the flame anchoring point
dynamics significantly alters the analytical FTF gain predictions. The am-
plification behavior expected in the low-frequency range is reproduced by the
analytical models. However, the reduced frequencies associated with the local
gain maxima are not well captured by the different models. The values for
these gain overshoots are also largely overestimated. Finally, the theoretical
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quasi-steady limit for the FTF gain is once again not respected. Overall, the
analytical FTF gain plots do not yield the correct trend identified in the FTF
gain measurements depicted in Figs. 3.8-3.11. On the other hand, the analyti-
cal phase lag predictions barely change when the contribution of the anchoring
point dynamics is considered. In the end, none of the analytical models in-
cluding the effects of the anchoring point dynamics is able to reproduce the
evolution of the measured FTF.

3.5 Conclusion

The transfer functions of methane/air and propane/air premixed laminar coni-
cal flames stabilized over three different injectors with holes of radii R = 11 mm,
R = 7 mm and R = 1.5 mm were investigated. FTF measurements were com-
pared to analytical expressions obtained for three different velocity perturbation
models with and without an additional model accounting for the flame anchor-
ing point dynamics, as described in Chapter 1.

The three velocity perturbation models retained in this study were the uni-
form (UNI), convective (CON) and incompressible convective (INC) velocity
perturbation models. Overall, the best match between the FTF gain and phase
lag measurements was achieved with the INC model. However, when the size
of the injector hole is reduced, predictions with this model became less accurate.

For the smallest flames stabilized over the perforated plate with holes of radius
R = 1.5 mm, the phase lag plots were better reproduced by considering a uni-
form flow perturbation in the stream of reactants, corresponding to the UNI
model. However, none of the explored analytical models yielded the correct
trend in terms of gain for the injector with R = 1.5 mm. The analytical pre-
dictions did not improve when an additional contribution to the flame transfer
function corresponding to the flame anchoring point dynamics was considered.

It was also shown that the theoretical model used here to describe the flame
anchoring point dynamics (Cuquel et al. 2013a) led to a theoretical difficulty.
The expected quasi-steady limit for the FTF gain was not achieved as the fre-
quency went to zero. For all cases investigated, the gain at zero frequency was
greater than unity. On the other hand, this additional contribution did allow to
qualitatively reproduce some of the features of the FTF gain of small premixed
laminar conical flames stabilized over matrix injectors. These flames feature an
amplification behavior with FTF gain values exceeding unity at low frequen-
cies. However, the analytical models explored here largely overestimated the
values of these FTF gain maxima and did not accurately predict the resonant
frequencies at which they occur.
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It is finally concluded that wrinkles generated by the flame leading edge motion
and then convected along the flame front are of minor importance when consid-
ering large flames stabilized above injectors of radii R = 11 mm and R = 7 mm,
i.e. when the burner outlet radius is large with respect to the flame thickness.
For smaller matrix injectors with holes of radius R = 1.5 mm, i.e. of the same
order of magnitude of the flame thickness, the motion of the flame base needs
to be considered, but the way it contributes to the Flame Transfer Function
needs to be revisited.



Chapter 4

Impact of the Injector Size on

the Flame Frequency Response

Flame Transfer Functions (FTF) of premixed laminar conical CH4/air
and C3H8/air flames submitted to flow rate modulations are investi-
gated for a large set of injection conditions and burner outlet radii R.
The steady flames investigated all feature the same flame tip half angle
α = 14.5◦. When R is large compared to the flame thickness δ, FTF
measurements collapse to the same curve when they are plotted as a
function of the reduced frequency ω∗ = ωR/(SL cosα), where ω is the
forcing angular frequency and SL the laminar burning velocity. When
the injector size is reduced and δ/R becomes sizable, additional param-
eters are needed to fully describe the FTF. The Lewis number Le and
burnt gases temperature are shown to alter the low frequency evolution
of the FTF of small flames stabilized above matrix injectors. These
flames feature FTF gain values exceeding unity, called gain overshoots,
at low reduced frequencies. Larger FTF gain overshoots are found as
the injector size is reduced or as the flame temperature is reduced. A
model accounting for the flame mutual interactions and unsteady heat
and mass transfer at the flame base predicts the value of the reduced
frequency ω0

∗ at which the FTF gain is maximum. This expression is
shown to better match measurements than previous models that only
consider unsteady heat and mass transfer between the flame base and
the burner. Flame mutual interactions due to interpenetrating diffu-
sion layers and unsteady heat transfer at the flame base both lead to
FTF gain values exceeding unity but the former mechanism is largely
dominant for the configurations investigated here. It is finally suggested
that the FTF of flames stabilized over small injectors may be fully de-
scribed by five dimensionless parameters: the reduced frequency ω∗, the
flame tip half angle α, the Lewis number Le, the dimensioness stand-off
distance ψ/R and the dimensionless flame thickness δ cosα/R.
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4.1 Introduction

The objective of this chapter is to elucidate the differences between the fre-
quency responses of large and small premixed laminar conical flames when sub-
mitted to flow rate perturbations in the linear regime, as observed in Chapter 3.

Once again, the effects of mixture composition inhomogeneities (Cho and Lieuwen
2005) are not considered. All flames have the same flame tip half angle α =
14.5◦ in steady-state conditions, corresponding to a relative height h/R = 4 for
the large flames. The acoustic modulation level is always chosen in the linear
regime. Except if mentioned otherwise, the root-mean-square (RMS) value of
the acoustic forcing level is taken equal to |u′|/u = 0.10. The measured FTF
gains and phase lags are always plotted as functions of the reduced frequency ω∗.

The present chapter is organized as follows. First, the structure of the perturbed
flames is investigated in Sec. 4.2. Their FTF is then analyzed in Sec. 4.3.
Finally, Sec. 4.4 contains a discussion about the experimental results and a
new physical interpretation explaining these results is introduced.

4.2 Analysis of flame pictures

The response of three premixed laminar conical flames, denoted FS15, FS19
and FS21 in Table 2.1, to harmonic flow rate modulations is first investigated
by examining unsteady flame pictures.

Phase average pictures (over 100 frames) of the flame motion are recorded with
the ICCD camera for a reduced forcing frequency set to ω∗ = 2. This forc-
ing frequency is low enough to generate large flame surface area fluctuations
(Ducruix et al. 2000) and highlights the differences between the various con-
figurations explored. The camera gate width is small enough compared to the
forcing period to freeze the motion and obtain unblurred pictures.

Figure 4.1 shows results for a stoichiometric CH4/air flame stabilized above the
R = 7 mm radius injector. This flame is submitted to an harmonic flow rate
modulation at a forcing frequency f = 16.7 Hz, corresponding to a reduced
frequency ω∗ = 2 and at a forcing level |u′|/u = 0.30 RMS. This relatively high
forcing level generates a large flame motion. For each of the six phases pre-
sented in Fig. 4.1, the original ICCD picture is represented on the left and the
corresponding Abel deconvoluted image is represented on the right. The origin
of the cycle ϕ = 0◦ is arbitrarily defined as the phase at which the flame reaches
its maximum height. Colors were changed in Fig. 4.1 to improve contrast. The
same images were also recorded with the interferometric filter in front of the
ICCD camera to isolate the OH∗ chemiluminescence signal and infer the heat
release rate.
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Figure 4.1: Phase average images of a CH4/air flame at φ = 1.00, h/R = 4, R =
7 mm (FS15) forced at a reduced frequency ω∗ = 2 and forcing level |u′|/u = 0.30
RMS. ICCD pictures without interferometric filter (Left) and their associated Abel
deconvolution (Right). Colors were changed to improve contrast.

Figure 4.2: Phase average pictures of two CH4/air flames with h/R = 4 and
R=1.5 mm forced at a reduced frequency ω∗ = 2 and forcing level |u′|/u = 0.30 RMS.
Left: φ = 0.98 (FS19). Right: φ = 0.88 (FS21). Colors were changed to improve
contrast.

Figure 4.2 represents phase average pictures of flames stabilized above the
burner with injection holes of radius R = 1.5 mm corresponding to FS19
and FS21 and sharing the same flame angle α = 14.5◦ as those investigated in
Fig. 4.1. They are also submitted to the same harmonic flow disturbances at
ω∗ = 2 and |u′|/u = 0.30 RMS corresponding to a forcing frequency f = 74.0
Hz for the flame on the left and f = 63.7 Hz for the flame on the right.

The oscillation cycles in Figs. 4.1 and 4.2 are qualitatively similar despite the
large differences in terms of forcing frequencies f and burner exit radii R. These
introductory results confirm that the reduced frequency ω∗ and the steady flame
tip half angle α are well suited to analyze the response of large and small pre-
mixed laminar conical flames to harmonic flow rate modulations. However,
the flame on the right in Fig. 4.2 experiences larger height excursions as well
as larger luminosity oscillations over the cycle than the flame shown on the left.
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This observation is further examined by determining the heat release rate fluc-
tuations using these perturbed flame pictures. In many investigations, the heat
release rate fluctuations of premixed laminar flames are directly related to flame
surface area fluctuations (Schuller et al. 2002). Another approach is proposed
in this work. For axisymmetric flames, the heat release rate Q̇ can be expressed
as:

Q̇ =

∫

V
q̇(r, z)dV =

∫

z

∫

r
q̇(r, z)2πrdrdz (4.1)

where q̇ denotes the volumetric heat release rate and V the flame volume. Equa-
tion (4.1) may be rewritten as:

Q̇ = 〈q̇(r, z)〉V (4.2)

where 〈q̇〉 is volumetric heat release rate averaged over the flame volume V.

For perturbed flames, these variables may be decomposed into their average
(denoted with an overline) and fluctuating (denoted with a prime) components
thus leading to the following expression for each phase in the oscillation cycle:

Q̇′

Q̇
=

〈q̇〉′

〈q̇〉
+
V ′

V
(4.3)

where 〈q̇〉 = Q̇/V is the steady-state value of the spatial average of q̇ over
the steady flame volume V and 〈q̇〉′ is the perturbed volumetric heat release
rate averaged over the flame volume. The first term in the right hand side of
Eq. (4.3) represents the contribution to heat release rate disturbances resulting
from fluctuations of the spatially-averaged volumetric rate of heat released dur-
ing the forcing cycle. The second term in Eq. (4.3) stands for heat release rate
disturbances due to flame wrinkling, i.e. changes associated with geometrical
modifications of the flame shape and perturbations of the flame thickness.

These two contributions are extracted from OH∗ Abel deconvoluted images and
compared to values recorded by the photomultiplier equipped with the same
OH∗ filter. For lean premixed hydrocarbon flames, the OH∗ signal is a good
indicator of the heat release rate (Hurle et al. 1968; Li et al. 2015). The photo-
multiplier thus yields a signal of intensity I ∝ Q̇. Assuming that the local pixel
intensity is proportional to the volumetric heat release rate i(r, z) ∝ q̇(r, z), the
total heat release rate Q̇ and flame volume V may also be deduced from flame
pictures:

Q̇ ∝
∑

z

∑

r

i(r, z)2πr and V ∝
∑

z

∑

r

2πr (4.4)
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Figure 4.3: Evolution of the spatially-averaged volumetric heat release rate (blue
curve - 〈q̇〉′ /〈q̇〉), flame volume (red curve - V ′/V ), heat release rate (green curve -

Q̇′/Q̇) and sum of the volumetric heat release rate and flame volume (orange curve
- 〈q̇〉′ /〈q̇〉 + V ′/V ) over an oscillation cycle for ω∗ = 2 (Left) and ω∗ = 4 (Right)
and for a forcing level |u′|/u = 0.30 RMS. Top: CH4/air, φ = 1.00, h/R = 4 and
R = 7.0 mm (FS15). Middle: CH4/air, φ = 0.98, h/R = 4 and R = 1.5 mm (FS19).
Bottom: CH4/air, φ = 0.88, h/R = 4 and R = 1.5 mm (FS21).

where only pixels above a threshold intensity level are considered for the sum-
mations in Eq. (4.4). The spatially-averaged volumetric heat release rate is
deduced from 〈q̇(r, z)〉 ∝ Q̇/V .

This analysis is used to determine the different contributions Q̇′/Q̇, 〈q̇〉′ /〈q̇〉
and V ′/V which are plotted in Fig. 4.3 for FS15, FS19 and FS21. Measure-

ments for Q̇′/Q̇ (interconnected orange symbols) deduced from flame images
are also compared with photomultiplier measurements obtained with the same
OH* filter (green curve). In all cases, the results are very close confirming
that the local pixel value of the OH∗ chemiluminescence distribution is a good
tracer of the volumetric heat release rate for the lean premixed flames investi-
gated (Li et al. 2015). The signals plotted in orange in Fig. 4.3 correspond to
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the summation Q̇′/Q̇ = 〈q̇〉′ /〈q̇〉 + V ′/V of the two contributions in blue and
red respectively.

The main contribution to Q̇′/Q̇ is associated with the term V ′/V (intercon-
nected red symbols) for flames stabilized over the burner of radius R = 7 mm
in Fig. 4.3-(Top). The flame thickness is in this case δ = 1.00 mm (Yamaoka
and Tsuji 1985). The contribution of 〈q̇〉′ /〈q̇〉 (interconnected blue symbols) to

Q̇′/Q̇ remains weak at ω∗ = 2 and ω∗ = 4 for this burner outlet, but its relative
proportion with respect to V ′/V increases with the forcing frequency mainly
because the oscillation level of V ′/V slightly drops. The contributions 〈q̇〉′ /〈q̇〉
and V ′/V are out of phase by about π in Fig. 4.3-(Top). As the burner size is

reduced, the contribution of 〈q̇〉′ /〈q̇〉 to Q̇′/Q̇ increases and becomes sizeable
in the middle and bottom plots in Fig. 4.3 obtained for flames stabilized above
the perforated plate with injection holes of radius R = 1.5 mm. The flame
thickness is δ = 1.02 mm for an equivalence ratio φ = 0.98 and δ = 1.12 mm
for φ = 0.88 (Yamaoka and Tsuji 1985). In these plots, the phase shift between
〈q̇〉′ /〈q̇〉 and V ′/V has changed and is closer to π/2.

The same procedure was repeated with various threshold values above which
the OH∗ chemiluminescence is considered, and results were found to be indepen-
dent of this value in a certain range. These observations confirm that changes
of the spatially-averaged volumetric rate of heat released during the forcing

cycle can be ignored for flames stabilized above large injectors Q̇′/Q̇ ≃ V ′/V
when δ/R ≪ 1. Assuming a fixed flame thickness, the classical expression

Q̇′/Q̇ ≃ A′/A is retrieved, where A denotes the flame surface area. This rela-
tion was verified for premixed laminar conical flames stabilized above R = 11
and R = 15 mm injector radii (Schuller et al. 2002; Li et al. 2015). However,
this expression needs to be reconsidered to analyze the response of small flames
when δ/R increases, as shown in Fig. 4.3.

The last aspect investigated in this section is the flame anchoring point dy-
namics. The evolution of the forced flame stand-off distance ψ examined at
the reduced forcing frequency ω∗ = 2 corresponding to the flames FS15, FS19
and FS21 is represented in Fig. 4.4. The stand-off distance ψ is defined as
the distance between the burner outlet and the flame leading edge, for an OH∗

pixel intensity in the Abel deconvoluted image higher than a threshold value.
The threshold level is kept constant for all flames and equal to the value used
for the previous analysis of heat release rate fluctuations.

Results for ψ′/ψ plotted in Fig. 4.4 at ω∗ = 2 demonstrate that despite the
large differences in terms of injector sizes R and forcing frequencies f , the
flame stand-off distance ψ oscillates for all cases explored with about the same
amplitude, roughly equal to ψ′/ψ ≃ 0.15 RMS. This value is about half the
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Figure 4.4: Evolution of the flame stand-off distance as a function of the phase in
the oscillation cycle at the reduced frequency ω∗ = 2 with an acoustic forcing level
|u′|/u = 0.30 RMS . Blue Crosses : CH4/air, φ = 1.00, h/R = 4 and R = 7 mm
(FS15). Red Circles : CH4/Air, φ = 0.98, h/R = 4 and R = 1.5 mm (FS19). Green
Diamonds : CH4/Air, φ = 0.88, h/R = 4 and R = 1.5 mm (FS21).

velocity oscillation level |u′|/u = 0.30 RMS measured with the hot wire probe
inside the injector. It is thus concluded that ω∗ is a relevant dimensionless
parameter to analyze the anchoring point dynamics. It is also worth noting
that the flame stand-off distance oscillation amplitude does not seem to be
correlated to changes in the volumetric heat release rate oscillation amplitudes
〈q̇〉′ /〈q̇〉 observed in Fig. 4.3.

4.3 Analysis of Flame Transfer Functions

The FTF of premixed laminar conical flames are now examined as functions of
the reduced frequency ω∗. Velocity measurements are obtained using LDV with
a measurement volume located 1 mm above the burner outlet exit plate and on
the burner symmetry axis. The reference velocity u denotes the mean value of
this velocity signal in this section. Heat release rate measurements are deduced
from a photomultiplier with an OH∗ filter. For each forcing frequency f , the
voltage triggering the loudspeaker is determined by a binary search algorithm in
order to keep the forcing level constant and equal to |u′|/u = 0.10 RMS within
5%. The photomultiplier and LDV signals are sampled at fs = 8192 Hz during
at least t = 10 s. Both signals are measured for at least 50 forcing periods.
The FTF is then deduced from the cross and auto power spectral densities of
the signals assessed at the forcing frequency, as described in Chapter 2.

Figure 4.5 shows the FTF gain (Top) and phase (Bottom) plots for a premixed
laminar conical CH4/air flame with φ = 1.00, h/R = 4 and R = 7 mm (FS15).
The two other dimensionless parameters, Le = 0.93 and T∗ = 6.42, are intro-
duced later.
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Figure 4.5: Gain (Top) and phase (Bottom) of the FTF of a premixed laminar conical
CH4/air flame with φ = 1.00, h/R = 4, R = 7 mm, Le = 0.93 and T∗ = 6.42 (FS15).

The reduced frequency ω∗ spans from 0 to 30. The phase lag ϕ increases linearly
with ω∗. A gain greater than 1, i.e. a gain overshoot, is observed for 0 < ω∗ < 2
with a maximum peak at around ω∗ = 1.4. The gain curve then rapidly drops
as ω∗ increases. A first rebound is observed for ω∗ ∼ 12 and a second one for
ω∗ ∼ 18. At low gain values, it is more difficult to determine the phase lag
due to the low signal-to-noise ratio. The FTF gain drops below G < 0.25 for
ω∗ > 10. As a consequence, the analysis of the FTF in the remainder of this
work focuses on the low frequency behavior, ω∗ < 10, which corresponds to the
frequency range where the flame strongly responds to acoustic forcing.

Impact of the Lewis number

For a given flame tip half angle α, steady-state images shown in Chapter 2
indicate that curvature effects increase at the flame tip as the injector size
is reduced. The impact of the Lewis number Le is first analyzed to examine
whether the acoustic response of the investigated flames is related to prefer-
ential diffusion effects as the injector size is reduced. The Lewis number of a
species k is defined as Le= ak/Dm,k, where ak is the thermal diffusivity of k
and Dm,k is the mass diffusivity of k. These quantities are determined in the
reactants for mixtures of methane or propane with air at different equivalence
ratios. Since the fresh reactants are a mixture of multiple gases, the expression
of the Lewis number Le of the mixture is not trivial and the definition adopted
here is (Bouvet et al. 2013):

Le =
κ

ρcpD0
(4.5)
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where κ, ρ and cp are the mixture equivalent thermal conductivity, density and
specific heat capacity at constant pressure and D0 is the binary diffusion coef-
ficient between CH4 or C3H8 and air (Wakeham and Slater 1973).

The equivalence ratio φ barely changes the effective Lewis number. Equa-
tion (4.5) indicates that the binary diffusion coefficient remains constant as long
as the fuel remains the same, and the combustible mixture thermo-physical
properties are almost equal to the air properties since fuel represents only a
small fraction of the total mass of the premixed gases. Hence, the CH4/air
flames investigated have a Lewis number in the range Le = [0.933− 0.935] and
the C3H8/air flames have a Lewis number in the range Le = [1.784 − 1.822],
a variation smaller than 2% in both cases. For the remainder of this study,
all CH4/air flames are considered to have a Lewis number Le = 0.93 and all
C3H8/air flames are considered to have a Lewis number Le = 1.80.

The FTF of lean premixed laminar conical CH4/air and C3H8/air flames are
compared in Fig. 4.6 when the injector exit radius is reduced from R = 11, 7,
1.5 to 1.0 mm. These flames share the same steady aspect ratio h/R = 4 and
dimensionless parameter T∗ = 6.4 that is introduced below. In all cases, the
FTF phase lag ϕ regularly increases with ω∗. The FTF phase and gain plots
corresponding to Le = 0.93 (methane/air) and Le = 1.80 (propane/air) col-
lapse to a single curve for experiments conducted with the largest injectors of
radius R = 11 mm and R = 7 mm. The FTF gain and phase lag for the flames
stabilized above the perforated plate with injection holes of radius R = 1.5 mm
slightly differ for a Lewis number Le = 0.93 and Le = 1.80. Differences are
more notable between the FTF of propane/air and methane/air flames with
the burner featuring the smallest injection holes of radius R = 1.0 mm.

When the injector radius is small enough, the FTF gain and phase plots of
the lean premixed conical flames featuring Lewis numbers Le ∼ 1 and Le > 1
do not collapse to a single curve. The Lewis number is thus a discriminating
dimensionless parameter when investigating the frequency response of small
premixed laminar conical flames. However, the emergence of a gain overshoot
for flames characterized by two distinct Lewis numbers when the burner outlet
radius is reduced seems to indicate that additional dimensionless parameters
are needed to describe the dynamics of these flames. Further investigations of
the flame frequency response for combustible mixtures featuring Lewis numbers
smaller than unity are required in order to generalize these results.

Effects of the flame size are further investigated in Fig. 4.7 for premixed lam-
inar conical flames featuring the same steady aspect ratio h/R = 4. Results
for methane/air mixtures at Le = 0.93 are presented on the left and results for
propane/air mixtures at Le = 1.80 are presented on the right. For the injectors
of radius R = 11 mm and R = 7 mm, the FTF gain and phase lag collapse to
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Figure 4.6: FTF gain and phase of CH4/air flames (FS1, FS15, FS19 and FS23)
with Le = 0.93, h/R = 4 and T∗ = 6.4 (blue) and of C3H8/air flames (FS2, FS16,
FS20 and FS24) with Le = 1.80, h/R = 4 and T∗ = 6.4 (red) stabilized above injectors
of different radii R = 11 mm (Top Left), R = 7 mm (Top Right), R = 1.5 mm (Bottom
Left) and R = 1.0 mm (Bottom Right).

the same curve except at high reduced frequencies. Moreover, Fig. 4.7 demon-
strates that for a given mixture Lewis number, the burner radius R needs to
be considered to analyze the FTF of small flames. Deviations for the FTF
gain and phase lag as the burner radius R is reduced are found to differ for
methane/air flames (Le = 0.93) and propane/air flames (Le = 1.80). These
observations again confirm that preferential diffusion effects need to be con-
sidered, but cannot fully explain the experimental observations. Finally, the
FTF gain overshoot clearly increases as the injector radius R decreases for both
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Figure 4.7: FTF gain and phase of CH4/air flames (FS12, FS14, FS18 and FS27)
with h/R = 4, T∗ = 5.85, Le = 0.93 (Left) and of C3H8/air flames (FS11, FS13

and FS17) with h/R = 4, T∗ = 6.00, Le = 1.80 (Right) stabilized above injectors of
different burner radius R = 11 mm (blue), R = 7 mm (red), R = 1.5 mm (green) and
R = 1.0 mm (orange).

methane/air flames (Le = 0.93) and propane/air flames (Le = 1.80).

Impact of heat losses

The effects of heat losses and thermal flow expansion are now examined as
the burner size is reduced. The burnt gases temperature T b is measured one
millimeter above the tip of all steady-state flames and corrected for radiative
heat losses, as explained in Chapter 2. The adiabatic flame temperature Tad is
also determined with the GRI-MECH 3.0 mechanism. Analysis of heat losses
is carried out by examining the ratio θ∗ = T b/Tad that is found to vary from
0.68 to 0.73 with an average value θ∗ = 0.71 for all conditions explored. The
deviation from this average value never exceeds 4% and thus, θ∗ can be consid-
ered to be constant in these experiments. One important consequence is that
the adiabatic flame temperature Tad and the burnt gases temperature T b are
equivalent parameters in the present study, and the former quantity is retained
for further analysis.

A new dimensionless parameter T∗ = Tad/T u − 1 is now introduced, quanti-
fying the excess of volume occupied by the burnt gases at Tad with respect to
unburnt gases at T u. The quantity T∗ = E − 1, where E is the volumetric
expansion ratio, is useful to describe the effects of exothermicity. This quantity
has been shown to alter the response of conical flames and M-flames (Cuquel
et al. 2013b; Blanchard et al. 2015).



80 Chapter 4 - Impact of the Injector Size on the Flame Frequency

Response

0

0.5

1.0

1.5

G

R = 11 mm
Le = 0:93

T$ = 5:6 6 T$ = 5:8 5 T$ = 6:4 2

0 2 4 6 8 10
!$

0

: 

2: 

'

0

0.5

1.0

1.5

G

R = 11 mm
Le = 1:80

T$ = 5:55 T$ = 6:00 T$ = 6:30

0 2 4 6 8 10
!$

0

: 

2: 

'

Figure 4.8: FTF gain and phase of CH4/air flames (FS1, FS7 and FS12) and
C3H8/air flames (FS2, FS6 and FS11) stabilized above the R = 11 mm radius in-
jector and sharing the same relative height h/R = 4. Left: CH4/air with Le = 0.93
and T∗ = 5.66 (blue), T∗ = 5.85 (red) and T∗ = 6.42 (green). Right: C3H8/air with
Le = 1.80 and T∗ = 5.55 (blue), T∗ = 6.00 (red) and T∗ = 6.30 (green).

The impact of T∗ is examined by varying the equivalence ratio and bulk in-
jection velocity of methane/air and propane/air mixtures sharing the same
steady flame aspect ratio h/R = 4. Flame Transfer Functions measured for
propane/air (Le = 1.80) and methane/air (Le = 0.93) flames stabilized above
the R = 11 mm injector are found to be independent of T∗ in Fig. 4.8. In
these experiments, T∗ varies between 5.55 and 6.42 with relative variations
of about 16% that are larger than the changes of θ∗ (< 4%), thus justifying
the approximation of a constant θ∗ = 0.71 throughout this chapter. Flame
Transfer Functions of propane/air and methane/air flames stabilized above the
R = 7 mm radius injector and plotted in Fig. 4.9 also barely change with T∗.
A small difference for the gain curves of methane/air flames at T∗ = 5.85 and
T∗ = 6.42 can however be noticed.

Large deviations are found in Fig. 4.10 between the FTF of premixed lami-
nar conical flames stabilized above the perforated plate with holes of radius
R = 1.5 mm. The FTF gain drops as T∗ increases for both methane/air flames
(Le = 0.93) and propane/air flames (Le = 1.80), while the phase lag is less
affected. However, the phase plots feature an inflection point at a relatively
low reduced frequency. It is worth recalling that the reference velocity u used
when determining the FTF is not the bulk flow velocity at the injector outlet,
but corresponds to the time-averaged value measured with Laser Doppler Ve-
locimetry 1 mm above the injector outlet. This is the reason why the gain does
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Figure 4.9: FTF gain and phase of CH4/air flames (FS15 and FS18) and C3H8/air
flames (FS16 and FS17) stabilized above the R = 7 mm radius injector and sharing
the same relative height h/R = 4. Left: CH4/air with Le = 0.93 and T∗ = 5.85 (blue)
and T∗ = 6.42 (red). Right: C3H8/air with Le = 1.80 and T∗ = 6.00 (blue), T∗ = 6.30
(red).
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Figure 4.10: FTF gain and phase of CH4/air flames (FS4, FS14, FS19 and FS21)
and C3H8/air flames (FS5, FS13 and FS20) stabilized above the R = 1.5 mm radius
injector and sharing the same relative height h/R = 4. Left: CH4/air with Le = 0.93
and T∗ = 5.85 (blue), T∗ = 6.03 (red), T∗ = 6.36 (green), T∗ = 6.42 (orange). Right:
C3H8/air with Le = 1.80 and T∗ = 6.00 (blue), T∗ = 6.30 (red), T∗ = 6.36 (green).
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Figure 4.11: FTF gain and phase of CH4/air flames (FS23, FS25 and FS27) and
C3H8/air flames (FS24 and FS26) stabilized above the R = 1.0 mm radius injector
and sharing the same relative height h/R = 4. Left: CH4/air with Le = 0.93 and
T∗ = 5.85 (blue), T∗ = 6.36 (red), T∗ = 6.42 (green). Right: C3H8/air with Le = 1.80
and T∗ = 6.30 (blue curve), T∗ = 6.36 (red curve).

not converge to unity when ω∗ → 0, but reaches values slightly larger than unity.

The low frequency behavior of the FTF gain also changes depending on T∗. For
the methane/air FTF shown in Fig. 4.10-(Left), the blue and red gain curves
obtained for T∗ = 5.85 and T∗ = 6.03 both feature a gain overshoot larger than
the quasi steady-state value when ω∗ = 0. The green and orange gain curves
corresponding to T∗ = 6.36 and T∗ = 6.42 feature a rebound of the gain with a
peak value lower than the quasi steady-state value. This behavior may also be
observed for the propane/air FTF in Fig. 4.10-(Right), even though differences
between the peak and quasi steady-state values of the gain are reduced for the
green and red curves.

The impact of T∗ is even more striking in Fig. 4.11 obtained for flames stabi-
lized above the perforated plate with holes of radius R = 1.0 mm. In Fig. 4.11-
(Right), both the FTF gain and phase plots collapse to a single curve for
C3H8/air flames featuring almost the same T∗. In the left figure, the FTF gain
plots differ when T∗ changes, while the phase lag plots all collapse to a single
curve. The FTF gain overshoot is observed in a large range of reduced frequen-
cies for T∗ = 5.85. The maximum gain also increases as T∗ decreases.

Figures 4.8-4.11 reveal that T∗ is also a discriminating dimensionless parameter
that needs to be considered when analyzing the FTF of small premixed laminar
conical flames. In the following section, a physical analysis is performed in order
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to determine the origin of these experimental observations.

4.4 Physical analysis

Large gain overshoots for the FTF of small premixed laminar conical flames
is a well documented feature (Noiray et al. 2006b; Noiray et al. 2007) that
is often attributed to the unsteady heat transfer between the flame and the
burner (Rook et al. 2002; Altay et al. 2009). The dimensions of the small
conical flames stabilized above the matrix injectors of radii R = 1.5 mm and
R = 1.0 mm are close to those investigated in these studies. It is therefore
worth analyzing the results presented in the previous sections with the associ-
ated theoretical developments (Rook et al. 2002; Altay et al. 2009).

The impact of unsteady heat and mass transfer between the flame leading edge
and the burner outlet on flame dynamics has been described in past investi-
gations (Rook et al. 2002; Altay et al. 2009; de Goey et al. 2011). A quick
description of this mechanism is now presented. When a non-adiabatic planar
flame stabilized above a burner oscillates around its mean position, the heat loss
from the reacting layer to the burner oscillates as well, because of the resulting
changes in the temperature gradient at the burner exit plate. An enthalpy wave
is then convected by the mean velocity u from the burner outlet to the reaction
layer. When this wave reaches the flame front standing at ψ with a time lag
τ = ψ/u, the flame speed SL and flame position ψ are modified because of
the changes in flame temperature due to the enthalpy fluctuations. In such a
system, the dynamics of the anchoring point is formally governed by:

∂ψ

∂t
= u− SL

(
ψ,H′(t− τ)

)
(4.6)

where the flame speed SL is a function of both the flame leading edge posi-
tion ψ and the enthalpy wave H′ generated at the burner exit plate at t − τ .
For small harmonic disturbances, the burning rate instantaneously adapts to
changes of the enthalpy at the flame front (Rook et al. 2002; de Goey et al.
2011), meaning that these two quantities are in phase.

This mechanism has been shown to lead to an amplification behavior with val-
ues of the FTF gain greater than unity G > 1 (Kedia et al. 2011) when the
phase lag associated with the average convective time lag τ is equal to π/2:

∆ϕ = τω =
ψω

u
=
π

2
(4.7)

It is reminded that the overline and prime stand for mean and fluctuating
quantities respectively. Figure 4.12 illustrates this mechanism, designated in
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this work as the vertical heat and mass transfer mechanism, for a premixed
laminar conical flame when the phase lag between the enthalpy fluctuations at
the burner outlet and at the average flame leading edge position is equal to
∆ϕ = π/2.

Harmonic disturbances are prescribed and the reference phase in Fig. 4.12 is
arbitrarily set to ϕ = 0 when the flame leading edge stand-off distance is the
largest (ψ′)max, and the flame base displacement velocity ψ̇ = ∂ψ/∂t is zero.
This instant also corresponds to the smallest enthalpy fluctuation (H′)min gen-
erated at the injector outlet. This enthalpy wave is then convected at an average
speed of u and hits the flame leading edge at ϕ = π/2, when the flame base
displacement velocity ∂ψ/∂t is the greatest and oriented towards the burner,
i.e. with negative values. The enthalpy fluctuation (H′)min being the smallest,
the flame speed SL is the largest at ϕ = π/2 leading to an amplification of the
flame base displacement speed towards the burner ψ̇ = ∂ψ/∂t < 0. The same
kind of reasoning can be made when the largest enthalpy fluctuation (H′)max

generated at ϕ = π at the burner outlet reaches the flame leading edge at
ϕ = 3π/2. In this case, the flame speed is drastically reduced, leading to a
larger flame displacement velocity ψ̇ > 0.

Results shown in the previous sections are analyzed in light of this mechanism
in which the theoretical resonant frequency f0 associated with the peak value
of the FTF gain is (Rook et al. 2002; Altay et al. 2009):

f0 ∼ 1

4 τ
∼ Sb

L

4 sinαb ψ
(4.8)

where Sb
L denotes the non-adiabatic flame speed at the flame base (Rook et al.

2002). The additional factor sinαb = u/Sb
L was added in Eq. (4.8) to account

for the steady flame angle at its base αb with respect to the main flow direction
and corresponds to a generalization of the planar flame model. In the general
case, the non-adiabatic burning velocity Sb

L differs from the adiabatic burning
velocity of a freely propagating flame SL.

Since θ∗ = T b/Tad was shown to be constant for all flames in the present study,
one may assume that the ratio Sb

L/SL, despite being lower than unity, remains
roughly constant. As a first approximation, Sb

L is here taken equal to Sb
L ≈ SL.

This rough approximation is justified because the main interest of the present
section lies in the modification of the reduced resonant frequency ω0

∗ when the
injectors radius R is reduced. Since the steady flame stand-off distances, sum-
marized in Table 2.1, are almost the same for all the injectors sizes, and since
it was shown that stand-off distances oscillate with the same amplitude for all
flames in Fig. 4.4, the flame leading edge displacement speed is expected to
be about the same for all cases explored. It is thus reasonable to assume that
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Figure 4.13: Resonant reduced frequency ω0
∗

as a function of ψ/R. Blue curve: the-
oretical prediction from Eq. (4.9). Filled symbols : Experimental values corresponding
to all flames described in Table 2.1.

Sb
L/SL remains also constant for all flames of the present study. Equivalently,

the flame angle is assumed to remain constant along the flame front α = αb.
With this additional assumption, Eq. (4.8) is expressed in terms of the reduced
frequency:

ω0
∗ ≃ π

sin 2α

(
R

ψ

)
(4.9)

Steady-state stand-off distances ψ are determined with the macro-photographies
of the steady flames shown in Figs. 2.3, 2.4, 2.5 and 2.6. Values for ψ are found
to decrease as T∗ increases. The resonant reduced frequencies ω0

∗ associated
with the FTF gain peak values are also deduced from FTF measurements.
These frequencies are compared with predictions of ω0

∗ according to Eq. (4.9)
as a function of ψ/R in Fig. 4.13. For ψ/R ∼ 1, the order of magnitude of
the resonant reduced frequency ω0

∗ is correctly predicted by Eq. (4.9), but re-
sults largely differ at lower ψ/R values. In the experiments, ω0

∗ first increases
with ψ/R and then reaches an asymptotic limit at large ψ/R values. Equa-
tion (4.9) shows that ω0

∗ linearly scales with R/ψ. Additionally, results plotted
in Fig. 4.4 revealed that for a fixed reduced frequency, flames stabilized above
small R = 1.5 mm and large R = 7 mm injectors feature the same flame base
oscillation amplitude ψ′/ψ while they feature large differences for ω0

∗ in the
FTF plotted in Figs. 4.9 and 4.10.

These comparisons in Fig. 4.13 indicate that an additional mechanism needs
to be considered in order to accurately predict the resonant reduced frequency
at which the FTF gain is maximum. An improved version of this mechanism,
called the bidimensional mechanism in the remainder of this work, is now pro-
posed. Rather than considering the flame as a rigidly oscillating body that
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instantly responds to enthalpy waves hitting the flame leading edge by adjust-
ing its fuel burning rate (Rook et al. 2002; Altay et al. 2009; Altay et al. 2010;
de Goey et al. 2011), the flame is now considered to be deformable. Moreover,
the largest burning rate fluctuations are no longer considered to take place at
the flame base, but at the axial location zA(t) = zA + z′A(t) where the pre-
heating diffusion layers between adjacent flame fronts merge as described in
Fig. 4.14. The physical justification is developed below.

At the flame leading edge, the flame elements facing each other are separated
by a layer of fresh reactants at the center of the burner where the temperature
and species concentrations remain uniform and equal to T u andXu respectively.
Opposite flame elements lying in this region are unaffected by each other from
a thermal and chemical viewpoint. At a certain height zA(t) downstream of
the burner outlet, the diffusion layers of flame elements facing each other merge
and for all axial positions greater than zA(t), there is no fresh gas layer between
the two opposite flame elements. In this region, lateral heat and mass trans-
fers are modified and the fuel burning rate is greatly reduced (Echekki et al.
1996; Wichman and Vance 1997). For steady operating conditions, this is the
well known mechanism leading to flame tip bending controlled by preferential
diffusion (Lewis and von Elbe 1987). It has already been shown that the FTF
of large flames featuring mutual interactions of flame elements lead to large
FTF gains exceeding unity over a broad frequency range (Schuller et al. 2003a;
Durox et al. 2005) due to flame tip pinch-off and are also accompanied by large
noise emissions at these forcing frequencies (Schuller et al. 2003a; Talei et al.
2011).

When acoustic forcing is applied, the axial position zA(t) oscillates for two
reasons: (1) the flame stand-off distance oscillates and (2) the flame height
oscillates. These two additive contributions lead to large oscillation amplitudes
z′A/zA with a large fraction of fresh gases successively entering and leaving the
preheating diffusion layer of the flame during the forcing cycle. These oscilla-
tions are expected to be comparatively larger than the oscillation ψ′/ψ at the
flame base.

Figure 4.14 illustrates this mechanism for a flame with a sizeable diffusion layer
thickness δ with respect to the burner exit radius R. The flame diffusion layer
thickness is represented in blue in this figure and corresponds to the region
where the temperature rises from the fresh gases temperature T u to the burnt
gases temperature T b. Alternatively, a species diffusion layer could be chosen
as well. Reasoning is made here for a unity Lewis number. Adjacent flame
elements located at z ∼ zA(t) experience large burning rate oscillations due to
both the vertical oscillation of zA and lateral heat and mass transfers in the
interpenetrating diffusion layers. These burning rate oscillations may be much
larger than the ones felt by flame elements at the bottom of the flame that only
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experience fluctuations of the burning rate through the vertical mechanism de-
scribed before. Enthalpy waves convected by the mean flow generate larger
flame speed oscillations S′

L at z ∼ zA(t) and accordingly a larger displacement
velocity ż′ compared to the flame leading edge displacement velocity ψ̇ close
to the flame base. In other words, enthalpy waves hitting the location where
the diffusion layers merge increase the burning rate oscillation amplitude and
at the same time, increase the flame surface area oscillation amplitude.

Flame Transfer Function gain overshoots are expected to be important when
the phase lag between the enthalpy wave generated at the burner exit H′(0) and
the enthalpy wave hitting the axial location where the diffusion layers merge
H′(zA) is equal to ∆ϕ = π/2. This reasoning constitutes the basis of the bidi-
mensional heat and mass transfer mechanism. The ratio of the radial projection
of the flame thickness δ to the burner radius R is introduced to further inves-
tigate this mechanism:

δ∗ =
δ cosα

R
(4.10)

This quantity was already introduced to analyze the impact of the flame base
dynamics on the FTF of large premixed laminar conical flames (Cuquel et al.
2013a). It characterizes the strength of the interactions of adjacent flame dif-
fusion layers facing each other. When δ∗ ≪ 1, mutual interactions remain
weak and the FTF is barely influenced as shown by the results obtained for the
R =11 and 7 mm radii injectors presented in Sec. 4.3. The FTF is in this case
mainly controlled by flame surface wrinkling. When δ∗ ∼ 1, the bidimensional
heat and mass transfer mechanism needs to be considered. The flame experi-
ences in this case both vertical and lateral heat and mass transfer oscillations,
thus generating large fuel burning rate oscillations that will in turn generate
large flame surface area oscillations. The values for the flame thermal diffusion
layer thicknesses used in the following analysis are summarized in Table 2.1
(Yamaoka and Tsuji 1985).

Predictions of the resonant reduced frequencies ω0
∗ associated with the bidi-

mensional heat and mass transfer mechanism are now examined. The deriva-
tion is the same as for the vertical heat and mass transfer mechanism, but
the governing time lag τ is now associated with the convection of enthalpy
waves between the burner outlet and the average axial location zA where the
flame diffusion layers merge. From geometrical considerations, it is found that
zA = h (1− δ∗) + ψ. Assuming again that the ratio Sb

L/SL remains constant
and close to unity, the resonant reduced frequency is given by:

ω0
∗ ≃ π

sin 2α

[
1

h/R (1− δ∗) + ψ/R

]
(4.11)
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Figure 4.15: Resonant reduced frequency ω0
∗

as a function of the dimensionless stand-
off distance ψ/R and the dimensionless diffusion layer thickness δ∗ according to the
vertical mechanism from Eq. (4.9) (upper surface) and the bidimensional mechanism
from Eq. (4.11) (lower surface). Experimental values corresponding to all flames de-
scribed in Table 2.1 are represented as black spheres.

The steady flame aspect ratio h/R or equivalently the steady flame tip half
angle α and the dimensionless steady stand-off distance ψ/R appear explicitly
in this expression. The ratio δ∗ takes into account the bidimensional heat and
mass transfer mechanism. It is clear that this expression is only valid for δ∗ < 1.
When the flame aspect ratio is small h/R ≪ 1 or when δ∗ ∼ 1, the resonant
frequency is only controlled by ψ/R as for the purely vertical heat and mass
transfer mechanism and Eq. (4.9) is retrieved. When the flame aspect ratio
is large h/R ≫ ψ/R and δ∗ ≪ 1, the resonant frequency is only controlled
by h/R and δ∗ and associated to purely lateral heat and mass transfer within
interpenetrating adjacent flame diffusion layers. In the general case, heat and
mass transfers are bidimensional.

Theoretical predictions from Eq. (4.11) are found in the range 1.5 ≤ ω0
∗ ≤ 8.0,

which is in good agreement with experiments presented in the previous section.
Moreover, the slight variation of ω0

∗ with the injector radius R is also well cap-
tured. Figure 4.15 shows the resonant reduced frequency ω0

∗ in a log scale as
a function of ψ/R and δ∗ according to Eq. (4.9) associated with the vertical
mechanism and Eq. (4.11) associated with the bidimensional mechanism. It
is reminded that the steady flame aspect ratio is kept constant and equal to
h/R = 4 in this study. Experimental values are displayed as black spheres. The
resonant reduced frequencies predicted by the bidimensional mechanism are in
much better agreement with experiments than the resonant reduced frequencies
predicted by the vertical mechanism. It is also worth noting that when δ∗ → 1,
both mechanisms predict the same resonant reduced frequency. In this case,
the diffusion layers of adjacent flame elements merge at the flame leading edge
position, and both models are equivalent.
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dictions are assessed by considering the vertical (red circles) or bidimensional (blue
crosses) heat and mass transfer mechanisms.

This three-dimensional representation is completed by Fig. 4.16 showing the
ratio between the theoretical

(
ω0
∗

)
th

and measured
(
ω0
∗

)
xp

resonant reduced

frequencies as a function of
(
ω0
∗

)
xp

for the vertical mechanism given by Eq. (4.9)
(Red circles) and the bidimensional mechanism given by Eq. (4.11) (Blue crosses).
The y-axis is represented with a log scale. The proximity to unity in Fig. 4.16
indicates how well analytical predictions match measurements.

For large experimental values
(
ω0
∗

)
xp

, both the vertical and bidimensional mech-

anisms yield the correct resonant reduced frequency. But as
(
ω0
∗

)
xp

decreases,
predictions associated with the vertical transfer mechanism become less accu-
rate, leading to a two orders of magnitude difference between theory and exper-
iments. Predictions of

(
ω0
∗

)
th

associated with the bidimensional mechanism are
always close to the measured values, hence advocating for the validity of this
mechanism over a much wider range of operating conditions corresponding to
a wide variety of premixed laminar conical flames. An overall good agreement
is found between experiments and predictions by considering the bidimensional
heat and mass transfer mechanism.

4.5 Conclusion

The frequency response of methane/air and propane/air premixed laminar con-
ical flames with the same aspect ratio h/R = 4 submitted to harmonic flow rate
modulations were investigated for decreasing injector radii. The analysis was
carried out with four injector radii and for different equivalence ratios and in-
jection velocities. Heat release rate oscillations were shown to be driven by
oscillations of the spatially-averaged volumetric heat release rate and by flame
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volume oscillations. The first contribution, associated with changes of the burn-
ing rate, can be neglected for large injectors, i.e. when the injector radius is
large compared to the flame thickness. However, this contribution increases as
the burner size is reduced. The second contribution is mainly associated with
flame surface wrinkling. It was also found that the flame leading edge stand-off
distance oscillates around its steady position for all the perturbed flames inves-
tigated. For a given reduced frequency ω∗ = ωR/(SL cosα), the amplitude of
this motion was found to be independent of the burner radius and operating
conditions.

It was then shown that the reduced frequency ω∗ is an adequate dimensionless
number to investigate the Flame Transfer Function (FTF) of premixed laminar
conical flames stabilized over injectors with different sizes for steady flames of
constant aspect ratio h/R or flame tip half angle α. The FTF was also found
to be independent of the Lewis number for mixtures with Le ∼ 1 and Le > 1
as long as the injector radius is large enough. For flames stabilized over small
injectors, the flame diffusion layer thickness becomes sizeable with respect to
the injector radius and large differences between FTF were found for mixtures
with Le ∼ 1 and Le > 1. Large modifications of the FTF shapes were also
highlighted while decreasing the burner outlet radius and modifying the flame
temperature. The main observations are the following. The FTF of small pre-
mixed laminar conical flames feature FTF gain values largely exceeding unity
at low reduced frequencies, reaching a peak value at a resonant reduced fre-
quency ω0

∗. This peak FTF gain value increases when the flame temperature
or the injector radius are reduced.

A model predicting ω0
∗ was then derived. This quantity was shown to be a

function of the steady flame aspect ratio h/R, the dimensionless steady flame
base stand-off distance ψ/R, and δ∗ = δ cosα/R, the ratio between the flame
diffusion layer thickness projected along the radial direction and the injector ra-
dius. This framework generalizes previous one-dimensional approaches where
FTF gain values exceeding unity, i.e. flames amplifying flow perturbations,
were solely attributed to unsteady heat losses between the flame base and the
burner outlet.

Bidimensional effects associated with 1) unsteady vertical heat losses between
the flame base and the burner and 2) lateral heat and mass transfers between
adjacent flame elements through the interpenetration of their diffusion layers
were shown to lead to a more accurate description of the physical processes in-
volved. Moreover, predictions of ω0

∗ with this new model were shown to better
reproduce measurements over the wide variety of injector sizes and operating
conditions explored.

The main results may be synthesized as follows. For large injectors, i.e. when
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δ∗ ≪ 1, the transfer function of premixed laminar conical flames is controlled
by two dimensionless numbers, the reduced frequency ω∗ and the steady flame
tip half angle α or equivalently the steady flame aspect ratio h/R. For smaller
injectors, i.e. when δ∗ ∼ 1, the additional dimensionless parameters ψ/R and
δ∗, accounting for the motion of the flame base and the motion of the interpen-
etrating diffusion layers, are necessary to describe the FTF. The Lewis number
Le should also be considered when describing the FTF of small premixed lam-
inar conical flames.
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Chapter 5

The NoiseDyn burner

The NoiseDyn burner is presented in this chapter. A base configuration
is used to introduce the core elements of the NoiseDyn burner. The
upstream and downstream elements are then discussed. One of the
specificities of this setup is that acoustic forcing may be generated
using loudspeakers located on the upstream or downstream sides of
the combustor. Moreover, many elements such as the swirler or the
exhaust tubes can be easily modified if needed. The main geometrical
configurations explored in this work are also listed along with the
retained operating conditions.

The NoiseDyn burner was designed using Computer-Aided Design softwares,
namely Autodesk Inventor 2015 and Catia v5, and built at the EM2C labora-
tory. Its design is an evolution of previous confined turbulent burners (Palies
et al. 2011a; Guiberti 2015). It is represented in Fig. 5.1. Its design is highly
modular and can be divided into three main parts:

• The upstream elements, located below the region where the fresh gases
are injected.

• The downstream elements, located after the combustion chamber exhaust
nozzle, in the hot gases region.

• The core elements, located in-between and comprising the swirler and the
combustion chamber among others.

The upstream and downstream elements are changed depending on the type of
forcing and/or acoustic boundary condition desired. Moreover, the burner de-
sign allows many of the core elements to be changed as well (Gatti et al. 2017).
However, all the core elements other than the swirling vane are prescribed for
the experiments presented in this work.
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Upstream

Elements

Core

Elements

Downstream

Elements

Figure 5.1: Upstream, core and downstream elements of the NoiseDyn burner. The
premixed gases are injected near the bottom of the experimental setup, flow through
the core and downstream elements, and are then exhausted.
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Figure 5.2: The base configuration, used to describe the core elements of the Noise-
Dyn burner. Various diagnostics are represented in red. All dimensions are in mm.

First, the core elements are examined in Sec. 5.1, followed by a brief description
of the upstream and downstream elements in Sec. 5.2. The main geometrical
configurations of the NoiseDyn burner are then listed in Sec. 5.3. Finally, the
operating conditions explored in this work are detailed in Sec. 5.4.

5.1 The core elements

The core elements of the NoiseDyn burner are now presented through the so-
called base configuration, depicted in Fig. 5.2.
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Figure 5.3: Steady-state axial velocity profile uz as a funtion of the distance r from
the burner axis of symmetry measured at the convergent nozzle outlet with a hot wire
probe.

5.1.1 Tranquilization box, plenum and convergent

The mass flow rates of methane and air are controlled independently with
Bronkhorst EL-FLOW mass flow meters and premixed far upstream of the
burner. These elements are fully described in previous studies (Guiberti 2015)
and therefore will not be detailed here. The perfectly premixed gases are then
injected in the tranquilization box by two opposed apertures at the bottom of
burner, as shown in Fig. 5.2. The flow is then pushed through a grid and a
honeycomb structure that reduce the turbulence intensity in the plenum. Sev-
eral apertures separated by a distance of 50 mm (except the last two apertures,
located at the same axial position) can be used to flush-mount up to 5 micro-
phones in the plenum, as shown in Fig. 5.1. A convergent nozzle (contraction
ratio: 8.73) generates a laminar flow with a top-hat velocity profile just after
the convergent. A velocity scan performed with a hot wire probe (Dantec Dy-
namics Mini-CTA 54T30 with a 55P16 probe) at the convergent exit, shown in
Fig. 5.3, confirms that the flow has a top-hat velocity profile in this region.

Downstream the convergent nozzle, the same hot wire probe, called HW in
Fig. 5.2, is used to determine the average u and fluctuating u′ velocity signals
at the nozzle outlet in the top-hat region of the velocity profile. An additional
aperture, located in front of the hot wire probe at the same axial location, is
used for further measurements. In Fig. 5.2, this aperture is used to set up a
microphone denoted by MHW.
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Swirler S∅Swirler S

Figure 5.4: Cross-sectional top view of the swirlers used in the NoiseDyn burner. A
cylindrical bluff body fills the central aperture. The premixed gases flow from the outer
to the inner regions of the swirler channels. (Left): Swirler S that generates a swirling
flow characterized by a Swirl number S = 0.8. (Right): Swirler S∅ that generates a
non-swirling flow.

5.1.2 Swirler

A swirler support is placed above the hot wire probe support. Two distinct
radial swirlers, both featuring six holes of radius R = 3 mm (contraction ratio:
7.41), may be mounted on the swirler support depending on the type of flow
desired. The first swirler, represented in Fig. 5.4-(Left) and denoted by S, is
used to create a swirling flow characterized by a Swirl number S = 0.8 mea-
sured at the burner outlet. The second swirler, represented in Fig. 5.4-(Right)
and denoted by S∅, is used to generate a non-swirling flow. This difference
between the flows generated by swirlers S and S∅ originates from the direction
of the swirler channels. When they are directed towards the burner axis of
symmetry, a non-swirling flow is generated. If the holes are off-centered, the
flow rotates around the axis of symmetry, thus generating a swirling motion. In
the remainder of this work, the various configurations of the NoiseDyn burner
including swirler S (respectively swirler S∅) will be denoted without a subscript
(respectively with a subscript ∅).

The Swirl number of the flow generated by swirler S was determined using
Laser Doppler Velocimetry with a measurement volume 2 mm away from the
cylindrical bluff body of radius R = 3 mm topped by a cone of radius R = 5
mm that is used to stabilize the flame (see Fig. 5.2). The axial uz, orthora-
dial uθ, and radial ur velocity components are determined for cold conditions
without the combustion chamber for a bulk velocity ub = 5.4 m/s at the hot
wire probe location. More details are presented in Chapter 6. The average and
RMS profiles presented in Fig. 5.5 for the axial uz, orthoradial uθ, and radial ur
velocities are obtained with a spatial resolution of 0.5 mm. The Swirl number
was then assessed using the formula (Chigier and Chervinsky 1967):
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Figure 5.5: Axial uz (blue), orthoradial uθ (red) and radial ur (green) velocity profiles
generated by swirler S for cold unconfined conditions with a bulk velocity ub = 5.4 m/s
assessed at the hot wire location. (Top) Mean velocity profiles - (Bottom) RMS velocity
profiles.

S =
1

R

∫
uθuzr

2dr∫
u2zrdr

(5.1)

where R = 10 mm is the injector inner radius. In addition to computing the
Swirl number of the flow, these velocity scans were used to validate Large Eddy
Simulations of the NoiseDyn burner in stable and unstable conditions (Merk
et al. 2017).

The three velocity profiles presented in Fig. 5.5 are symmetric. The mean axial
velocity profile features a central recirculation zone with negative velocities in
the wake of the central bluff body which is also altered by vortex breakdown.
This phenomenon promotes flame stabilization. The mean orthoradial velocity
features a Rankine-like profile in the center part of the flow. The mean radial
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Figure 5.6: Upstream configurations of the NoiseDyn burner. (Left): Configuration
1 - (Right): Configuration 2.

velocity is close to zero for all radial positions.

The Swirl number of the flow generated by swirler S∅ was measured at the
burner outlet in a different study using Particle Image Velocimetry (PIV) (Gatti
et al. 2018). The three velocity profiles were also shown to be symmetric.

Downstream the swirler, the bluff body of conical shape extends into the com-
bustion chamber over a distance of 1.5 mm, as shown in Fig. 5.2. The impact
of the injector geometry on the Swirl number and shape of the Flame Transfer
Function (FTF) was assessed in a separate study (Gatti et al. 2017).

5.1.3 Combustion chamber

A water-cooled support is placed above the swirler support to prescribe the
combustion chamber backplate temperature. The backplate features an aper-
ture through which a microphone or a thermocouple can be inserted, as shown
in Fig. 5.2. Optical access into the combustion chamber is granted by four
quartz windows that are transparent for both the visible and near ultraviolet
wavelengths, corresponding to the OH* (λ = 307 nm) and CH* (λ = 431 nm)
chemiluminescence wavelengths. Four metal rods are used to hold the four
quartz windows. This assemby is made airtight by using ceramic fibers. A sec-
ond convergent (contraction ratio: 2.03) with a water-cooled top flange is added
at the top of the combustion chamber, followed by various exhaust components
through which the burnt gases are exhausted to the atmosphere.

5.2 The upstream and downstream elements

The upstream and downstream elements of the NoiseDyn burner were designed
to be easily interchanged depending on the experimental needs.
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Figure 5.7: Passive downstream configurations of the NoiseDyn burner. (Top Left)
: Configuration A - (Top Center) : Configuration B - (Top Right) : Configuration C

- (Bottom Left) : Configuration D - (Bottom Center) : Configuration E - (Bottom
Right) : Configuration F.
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Figure 5.8: Perforated plate featuring a square pattern of 12 holes of radius R = 2.5
mm with an inter-hole spacing d = 20 mm. This perforated plate is mounted at the
top of the burner in Configurations D, E and F. The black circle represents the inner
diameter of the exhaust element located just before the perforated plate.

5.2.1 Upstream configurations

Two upstream configurations, represented in Fig. 5.6, are retained in the present
work. The first upstream configuration, called Configuration 1 and depicted
in Fig. 5.6-(Left), consists of a large loudspeaker (Monacor SP6/108PRO, 100
Watts RMS) and its adaptation support. This configuration is used to acous-
tically force the flow from the fresh gases region.

The second upstream configuration, called Configuration 2 and depicted in
Fig. 5.6-(Right), is made of a rigid plate tightly attached to the bottom of
the tranquilization box. This upstream configuration is used when natural
thermoacoustic instabilities are studied for instance. It features an aperture
through which a microphone or a thermocouple can be inserted.

In the remainder of this work, the superscripts 1 and 2 are used to designate
the NoiseDyn burner mounted with the upstream elements corresponding to
Configurations 1 and 2 respectively.

5.2.2 Passive downstream configurations

Seven downstream configurations are explored in this study. The first six con-
figurations, called Configurations A to F and depicted in Fig. 5.7, are passive.
They correspond to various acoustic boundary conditions obtained using be-
tween zero and two exhaust tubes of length 220 mm with and without a perfo-
rated plate placed at the top. Figure 5.8 is a representation of this perforated
plate which features a square pattern of 12 holes of radius R = 2.5 mm with
an inter-hole spacing d = 20 mm. For Configurations B, C, E and F, several
apertures located on the first exhaust tube can be used to mount microphones,
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Downstream

Config. G

..

Figure 5.9: Active downstream configuration of the NoiseDyn burner : Configuration
G. The elements placed above the louspeakers are water-cooled in order to protect the
loudspeakers’ membranes.

as shown in Fig. 5.1.

5.2.3 Active downstream configuration

An additional downstream configuration, called Configuration G, is used to
generate downstream acoustic forcing, as represented in Fig. 5.9. Since acoustic
forcing is applied in the high-temperature burnt gases region, the loudspeakers
cannot be direcly mounted on the exhaust pipe. Moreover, thermal dilation
due to the presence of the flame increases the bulk flow velocity and decreases
the gas density in the hot gases region. More acoustic power is thus required
in order to reach the same forcing level |u′|/u assessed at the hot wire location,
in the fresh gases region. Due to these two reasons, the following design is
adopted: first, an exhaust tube junction consisting of six branches is connected
to the top of the convergent by its lower branch, as depicted in Figs. 5.1 and 5.2.
The upper branch is used to exhaust the hot gases to the atmosphere. The first
lateral branch is used to fix the setup to a rigid structure while the three re-
maining branches are connected to curved pipes, themselves connected to two
or three loudspeakers (Monacor SP-6/108PRO - 100 W RMS). The elements
holding the loudspeakers are water-cooled in order to protect the loudspeak-
ers’ membranes against high temperatures, as shown in Fig. 5.1. Since the
loudspeakers are sealed to the setup, there is no flow inside the curved tubes.



Part II - Premixed Confined Turbulent Flames 107

Table 5.1: Main geometrical configurations of the NoiseDyn burner.

Config. Up. forcing Swirler Exhaust tube Perforate Down. forcing

A1 X S 0 mm ✗ ✗

B1 X S 220 mm ✗ ✗

C1 X S 440 mm ✗ ✗

E1 X S 220 mm X ✗

F1 X S 440 mm X ✗

G1 X S 0 mm ✗ X

A2 ✗ S 0 mm ✗ ✗

B2 ✗ S 220 mm ✗ ✗

C2 ✗ S 440 mm ✗ ✗

D2 ✗ S 0 mm X ✗

E2 ✗ S 220 mm X ✗

F2 ✗ S 440 mm X ✗

G2 ✗ S 0 mm ✗ X

B1
∅ X S∅ 220 mm ✗ ✗

C1
∅ X S∅ 440 mm ✗ ✗

G1
∅ X S∅ 0 mm ✗ X

5.3 List of the main geometrical configurations

The NoiseDyn burner is a highly modular burner with two possible upstream
configurations, seven possible downstream configurations and two different swirlers.
Twenty-eight different configurations may be built from these elements. How-
ever, not all possible combinations of these configurations have been explored.
Table 5.1 summarizes the main geometrical configurations explored in this work.

5.4 Operating conditions

The operating conditions are the same for all the geometrical configurations
explored in this study. A perfectly premixed methane/air flame with an equiv-
alence ratio φ = 0.82 and a thermal power of 5.5 kW is stabilized inside
the combustion chamber. The corresponding adiabatic flame temperature is
Tad = 2022 K assessed using a GRI-MECH 3.0 detailed chemistry mechanism.
The bulk velocity associated with these operating conditions in a tube of diam-
eter D = 22 mm corresponding to the hot wire probe support is ub = 5.4 m/s,



108 Chapter 5 - The NoiseDyn burner

Figure 5.10: Steady-state OH* chemiluminescence distributions integrated over the
line of sight obtained with an ICCD camera equipped with an OH* filter for two dif-
ferent swirlers. (Left): Swirler S with S = 0.8 - (Right): Swirler S∅ with S ∼ 0.

yielding a Reynolds number of approximately Re = ubD/ν = 7000 where ν is
the kinematic viscosity of the fresh gases assessed at T u = 293 K. For cold flow
conditions, methane is not injected and the air mass flow rate is increased in
order to reach the same bulk velocity ub as for reactive conditions. In all cases,
the forcing level |u′|/u is measured with the hot wire probe located before the
swirler and denoted by HW in Fig. 5.2.

For cold and reactive conditions, the highest velocity umax = 12 m/s is reached
by the flow inside the swirler injection holes. It corresponds to a Mach number
Mmax = 0.035 meaning that the flow regime remains incompressible everywhere
inside the NoiseDyn burner.

The steady-state OH* chemiluminescence distributions corresponding to the
flames stabilized above the cylindrical bluff body are displayed in Fig. 5.10-
(Left) for swirler S and Fig. 5.10-(Right) for swirler S∅. These pictures were
averaged over a hundred snapshots obtained with an ICCD camera, as described
in Chapter 6.

5.5 Conclusion

A highly modular burner, called the NoiseDyn burner, was designed to study
the acoustic response of premixed confined turbulent flames. Various upstream
and downstream configurations were introduced and the burner core elements,
including the swirler and the combustion chamber, were also described. Finally,
the main geometrical configurations used in this study were listed as well as
the retained operating conditions.
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Diagnostics

The diagnostics employed with the NoiseDyn burner presented in Chap-
ter 5 are described in this chapter. Temperature measurements followed
by pressure drop and velocity measurements are first introduced. Then,
a description of acoustic pressure measurements is performed. Chemi-
luminescence and flame imaging techniques are then presented. Finally,
two distinct methods used to determine the acoustic impedance are de-
scribed in details.

6.1 Temperature measurements

6.1.1 Thermocouples and infrared pyrometer

Gas and wall temperature measurements are performed using standard K-type
thermocouples for temperatures lower than 1200 K and R-type thermocouples
for temperatures larger than 1200 K. When measuring the temperature of a
hot gas, a correction accounting for the radiative heat losses at the thermo-
couple surface should be applied (Hindasageri et al. 2013). However, these
corrections are of the order of the measurement accuracy ∆T ∼ 10− 20 K and
always smaller than 2% of the absolute temperature value. As a consequence,
the radiative heat losses correction is neglected for all premixed turbulent flame
experiments presented in this work.

An additional temperature measurement technique, called infrared pyrometry,
is employed to measure wall temperatures inside the burner during reactive
operation. These measurements are performed with a Fluke 572-2 pyrometer,
which infers the wall temperature from thermal radiation (called blackbody
radiation and following Planck’s law) emitted by the surface of interest. If the
surface emissivity ǫ is exactly known, the measurement accuracy is around 1 %.
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Table 6.1: Exhaust gases temperature for Configurations A, B and C of the NoiseDyn
burner.

Configuration Exhaust tube Perforated plate Exhaust temperature

A 0 mm ✗ 1129 K ± 31 K
B 220 mm ✗ 996 K ± 27 K
C 440 mm ✗ 843 K ± 23 K

6.1.2 Gas and wall temperature measurements

For cold flow conditions, the gas temperature is equal to T u = 293 K every-
where inside the burner. For reactive conditions, the gas temperature is equal
to T u = 293 K upstream the confinement chamber and increases drastically
at the flame location to a value approaching the adiabatic flame temperature.
The parietal and radiative heat losses are responsible for a drop in temperature
after the flame. These heat losses are geometry-dependent and the length of
the elements placed downstream the confinement chamber will strongly affect
them. As a consequence, the average hot gases temperature measured at the
exhaust tube exit and along the burner axis of symmetry differs depending on
the downstream configuration, as exemplified in Table 6.1.

Numerical simulations of thermoacoustically stable and unstable configurations
of the NoiseDyn burner with parietal heat losses are investigated by Prof. Po-
lifke’s research group (Merk et al. 2017), thus requiring additional wall temper-
ature measurements. First, the average temperature of the outer surface of the
quartz windows is measured with a thermocouple for stable reactive conditions.
For each of the four windows, five measurements at different locations are per-
formed. The average temperature of the outer surface of the quartz windows
is found to be 622 K ± 17 K, with values ranging from 580 K ± 16 K at the
bottom of the confinement chamber up to 651 K ± 18 K at the center and
down to 579 K ± 16 K at the top of the window, near the combustion chamber
exhaust nozzle.

Another temperature measurement needed for numerical simulations is the
conical bluff body surface temperature during stable reactive operation. It
is measured using the infrared pyrometer (Fluke 572-2) for a surface emissiv-
ity ǫ = 0.85 valid for stainless steel oxydized at high temperatures (Gubareff
et al. 1960). The average temperature is found to be equal to 608 K ± 79 K.
However, this measurement should be considered with caution since it was per-
formed without the confinement chamber. Besides, the surface emissivity of
the conical bluff body is poorly known, thus generating large measurement un-
certainties.
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Figure 6.1: Experimental setup used to assess the thermalization time τc of the
NoiseDyn burner. Three K-type thermocouples are used: T1, T2 and T3.

Three additional thermocouples, denoted by T1, T2 and T3 in Fig. 6.1, are
used to measure the transient temperature at the bottom of the combustion
chamber, inside one of the metal rods and on the outer surface of the combustion
chamber exhaust nozzle respectively, as detailed in the next section.

6.1.3 Thermalization time

Just after the flame ignition, the temperature of the elements downstream the
flame suddenly increase and reach their steady-state value after a certain pe-
riod of time called thermalization time and denoted by τc. During this transient
regime, heat losses as well as sound speed in the hot gases evolve with time
thus impacting flow stabilization (Guiberti et al. 2015) and the thermoacoustic
behavior of the combustor. In order to eliminate this variability, all measure-
ments presented in this work are performed for t > τc, when the wall and gas
temperatures are stabilized everywhere.

In order to estimate the thermalization time τc, three K-type thermocouples
are placed at various locations on the NoiseDyn burner, as depicted in Fig. 6.1.
The first thermocouple T1 is inserted inside the combustion chamber through
the aperture in the chamber backplate. The tip of thermocouple T1 protrudes
inside the hot gases recirculation zone over a distance l ∼ 2 mm. The second
thermocouple T2 is flush-mounted inside one of the metal rods maintaining the
combustion chamber structure. It is located 84 mm downstream the combus-
tion chamber backplate. Finally, the last thermocouple T3 is in contact with
the outer surface of the combustion chamber exhaust nozzle. The time evolu-
tion of these temperatures is represented in Fig. 6.2 for Configuration A2 (See
Table 5.1 in Chapter 5). Measurements are also performed for other configura-
tions, leading to similar results.
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Figure 6.2: Temperature as a function of time for three different K-type thermocou-
ples. (Blue): T1 located in the hot gases region, just after the combustion chamber
backplate - (Red): T2 flush-mounted in one of the metal rods of the combustion cham-
ber - (Green): T3 placed in contact with the outer surface of the combustion chamber
exhaust nozzle. The shaded area around each curve accounts for the measurement
uncertainties.

At all times, the highest temperature is reached in the hot gases recirculation
zone, measured by thermocouple T1, followed by the temperature of the outer
surface of the combustion chamber exhaust nozzle, measured by thermocouple
T3. The temperature inside the combustion chamber metal rod, measured
by thermocouple T2, is the lowest. Their respective steady-state values are
862 K ± 24 K, 546 K ± 11 K and 507 K ± 10 K. After 21 minutes, the
temperatures have reached 97% to 99% of their steady-state values. After
30 minutes, the difference between the measured temperatures and associated
steady-state values is of the order of a few degrees. As a consequence, the
thermalization time τc of the NoiseDyn burner is comprised between 20 and
30 minutes depending on the desired accuracy. The value τc = 20 minutes is
retained here.

6.2 Pressure drop measurements

The NoiseDyn burner is operated at ambient pressure. The pressure drop across
the NoiseDyn burner is defined as the difference between the pressure in the
tranquilization box and the ambient pressure (See Fig. 5.2 in Chapter 5). The
swirler and the perforated plate placed at the top of the burner in Configu-
rations D, E and F, shown in Fig. 5.7, are responsible for most of the total
pressure drop across the setup.

Pressure drops have to be considered for two main reasons. First, a large
pressure drop implies that the absolute pressure inside the burner will vary
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Table 6.2: Pressure drops across the NoiseDyn burner for cold and reactive conditions
for all configurations explored in this study. The burner is operated at atmospheric
pressure.

Configuration Cold pressure drop Reactive pressure drop

A B C 250 Pa 315 Pa
D E F 300 Pa 410 Pa

G 250 Pa 417 Pa
A∅ B∅ C∅ 125 Pa 128 Pa

considerably, thus impacting the mean flow variables such as gas density. Fur-
thermore, pressure drops may have an impact on the thermoacoustic behavior
of the combustor, especially when the Mach number of the flow becomes sig-
nificant (Paschereit and Polifke 1998; Polifke et al. 2001).

Pressure drops across the NoiseDyn burner are measured for all downstream
configurations and all swirlers. The upstream elements have no impact on the
pressure drop. These measurements are performed for both thermoacoustically
stable reactive conditions and cold conditions using an electronic differential
manometer (KIMO MP111) and a U-shaped tube differential manometer con-
nected to the bottom of the tranquilization box. The U-shaped tube leads
to more precise measurements since it filters high-frequency oscillations of the
pressure without any further operation. The results are averaged and summa-
rized in Table 6.2.

For all configurations investigated, the pressure drop across the NoiseDyn
burner is always lower than 0.5% of the ambient pressure. As a consequence, the
mean pressure inside the NoiseDyn burner is considered to be constant in the
remainder of this work. Moreover, the maximum Mach number in the Noise-
Dyn burner for the retained operating conditions is very low as discussed in
Sec. 5.4. Therefore, the impact of the pressure drop on the fluctuating physical
variables is also neglected except if mentioned otherwise.

6.3 Velocity measurements

Two velocity measurement techniques are used in this work: Constant Tem-
perature Anemometry (CTA) performed with hot wire probes, as described in
Sec. 6.3.1, and Laser Doppler Velocimetry (LDV), as described in Sec. 6.3.2.
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Figure 6.3: Illustration of the velocity measurement techniques used in this study.
The fresh gases velocity in the top-hat region of the velocity profile upstream the swirler
and at the bottom of the combustion chamber are measured with a hot wire probe
denoted by HW and with Laser Doppler Velocimetry respectively. All dimensions are
in mm.

6.3.1 Constant Temperature Anemometry with a hot wire probe

Basic principle

Constant Temperature Anemometry (CTA) probes are made of several ele-
ments: the sensor itself, where the velocity measurement is achieved, the sen-
sor supports on which the sensor is welded, the probe body and the electrical
connections. The hot wire probe sensor used in this study is a thin wire of di-
ameter D ∼ 5 µm and length L ∼ 1 mm maintained at a constant temperature.
When it is placed inside a flow, the hot wire tends to cool down through forced
convection. A servo amplifier modulates the current going through the wire in
order to keep the wire temperature constant. At any instant, the velocity of
the fluid flowing around the wire can be precisely estimated by measuring the
bridge voltage on which the hot wire probe is mounted.

The relation linking convective heat transfer Qc to the flow velocity u passing
around the hot wire is given by King’s law (King 1914):

Qc = Al +Blu
nl (6.1)

where Al, Bl and nl are parameters to be determined during the hot wire
probe calibration procedure. Since the only sizable heat losses are convective,
the power lost by the wire through Joule heating is equal to Qc. Using Ohm’s
law and introducing the bridge voltage Vt, King’s law becomes:

V 2
t = A1 +B1u

n1 (6.2)

where A1, B1 and n1 are new calibration parameters. Equation (6.2) is a simple
expression linking the hot wire voltage output Vt to the incoming flow velocity
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u. The physical complexity associated with convective heat transfer is hidden
in parameters A1, B1 and n1, which depend on the hot wire over-temperature
and on the fluid’s physical properties, such as the kinematic viscosity ν and
thermal conductivity κ. It is often easier to consider Eq. (6.2) as an empiric
expression with ad-hoc parameters which have to be determined with a cali-
bration procedure.

Performing flow velocity measurements with a CTA hot wire probe has advan-
tages and drawbacks. On one hand, hot wire probes are simple-to-use devices
producing high-accuracy measurements if correctly calibrated and with a very
high frequency response (up to 100 kHz). On the other hand, hot wire probes
are fragile, do not withstand high temperatures, and can be used to determine
the flow velocity at a given location only (0D measurements). Moreover, hot
wire probes should always be orthogonal to the flow direction if a correct esti-
mate of the flow velocity is to be achieved. Finally, the presence of a hot wire
probe generates flow perturbations which may significantly alter the flow dy-
namics. The gas composition also alters the output signal of a hot wire probe
(Guiberti 2015). All these aspects were considered in the present work in order
to reduce the measurement uncertainties.

CTA measurements applied to the NoiseDyn burner

A hot wire probe, denoted by HW in Figs. 5.2 and 6.3, is used in the NoiseDyn
burner. It is placed after the convergent, in the top-hat region of the velocity
profile, in a tube of inner radius R = 11 mm. This hot wire probe (Dantec Dy-
namics Mini-CTA 54T30 with a 55P16 probe) is used to measure the average
u and fluctuating u′ velocity in the laminar region of the flow which leads to a
value of the forcing level |u′|/u at a given frequency. The hot wire probe param-
eters A1, B1 and n1 are determined during a calibration procedure performed
before all experiments.

6.3.2 Laser Doppler Velocimetry

Basic principle

Laser Doppler Velocimetry (LDV), also called Laser Doppler Anemometry
(LDA), is an absolute velocity measurement technique. It is based on the di-
rect link between the luminosity variations of a pattern of two interfering laser
beams crossed by moving targets and the velocity of these moving targets. Ve-
locity measurements using this technique are local (e.g. 0D) but depending on
the number of interfering laser beams, one to three components of the velocity
may be measured concomitantly.

The first step is to seed the flow with a large amount of particles of very small ra-
dius, usually a few micrometers. These particles can be either liquid, in which
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case they are produced by a nebulizer that generates a very fine mist of oil
droplets, or solid, introduced inside the setup through a cyclonic chamber. The
inertia of these particles is assumed to be negligible because of their dimension.
As a consequence, the particles follow the flow instantly without any resistance.

Once the flow is seeded, two laser beams of coherent, monochromatic and col-
limated light are used to generate a pattern of straight fringes as they interfere
in the region where the flow velocity is measured. The simplest way to obtain
two laser beams with these properties is a use a single laser and a beam splitter.
Though any kind of laser can be used in theory, it is preferable to use a laser
emitting light in the visible spectrum for safety reasons.

A photodiode is then installed so that the light emitted by the interference
pattern is entirely received. When a particle crosses the interference fringes,
the luminosity measured by the photodiode varies. The frequency at which the
luminosity oscillates is then related to the particle velocity and hence to the
flow velocity (Boutier 2012).

Like all measurement techniques, Laser Doppler Velocimetry has advantages
and drawbacks. On one hand, this technique provides accurate time resolved
velocity measurements and it only requires one initial optical alignment proce-
dure. If the seeding particles are small enough, the flow is not perturbed by
the measurement. On the other hand, setting the laser, optics and electronics
required for LDV measurements can quickly become tedious, even if modern
ready-to-use LDV apparatus are much simpler to use. Furthermore, since the
flow is seeded with particles, other measurement techniques such as CTA per-
formed with hot wire probes are incompatible with LDV. Finally, a powerful
laser is needed for LDV measurements, which raises safety issues.

LDV measurements applied to the NoiseDyn burner

In the present study, velocity scans are obtained by placing the NoiseDyn burner
on two orthogonal step-by-step engines (Micro-contrôle MMTM-200PP com-
manded by a Micro-contrôle ITL09). The three components of the velocity
are measured by Laser Doppler Velocimetry (LDV) at the burner outlet. The
measurement volume is in this case located 3 mm above the injector outlet, as
shown in Fig. 6.3.

A continuous 3-Watts Argon Laser is used to generate two sets of two interfering
beams of wavelengths λ = 488 nm and λ = 514 nm in the radial and axial
directions respectively. Each set of monochromatic beams are separated by
a distance l = 40 mm before they reach a converging lens of focal distance
f = 250 mm used to create the interference pattern. The flow is seeded with
small oil droplets of diameter 3 µm produced by a nebulizer (Durox et al. 1999).
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Table 6.3: Correspondence between Sound Pressure Levels (SPL) in decibels, acoustic
pressure fluctuations amplitudes p′ in pascals and order of magnitude of the ratio
between p′ and the ambient pressure p.

SPL (dB) 0 20 40 60 80 100 120 140

p′ (Pa) 2.10−5 2.10−4 2.10−3 2.10−2 2.10−1 2 20 200
p′/p 10−10 10−9 10−8 10−7 10−6 10−5 10−4 10−3

The data collection rate is always greater than 10000 s−1 and the LDV bench
was checked before all measurements. Mean and RMS velocity profiles were
obtained for the radial, orthoradial and axial velocity components for cold flow
conditions, as depicted in Fig. 5.5. During these measurements, the combustion
chamber was removed for accessibility reasons.

6.4 Acoustic pressure measurements

6.4.1 Sound Pressure Level

Sound waves propagating in a fluid are small-amplitude fluctuations of the fluid
pressure, density and velocity around their respective average values (Rienstra
and Hirschberg 2016). One way to quantify the acoustic level is the Sound
Pressure Level (SPL), given in decibels, and defined as:

SPL = 20 log10

(
p′

pref

)
(6.3)

where p′ is the root-mean-square amplitude of the acoustic pressure fluctua-
tions and pref = 2.10−5 Pa is a reference pressure fluctuation amplitude cor-
responding to the human hearing threshold at a frequency f = 1 kHz. Using
Eq. (6.3), the amplitude of the acoustic pressure fluctuations associated with
several Sound Pressure Levels are summarized in Table 6.3.

According to Table 6.3, the amplitudes of the acoustic pressure fluctuations
in a combustor are three to six orders of magnitude lower than the ambient
pressure depending on the thermoacoustic stability of the combustor. There-
fore, measuring the acoustic pressure fluctuations is not trivial and cannot be
performed with a simple differential manometer. It requires specific devices,
called microphones, that are able to detect small-amplitude variations of the
fluid pressure at relatively high frequencies.
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6.4.2 Externally polarized microphones

Basic principle

An ideal microphone is a device that converts the incoming acoustic waves into
electrical signals with the same frequency spectrum and same relative ampli-
tudes. When this signal is sent back to an ideal loudspeaker, the exact original
acoustic wave is emitted. On the other hand, real microphones tend to distort
the signals during conversion and transmission.

A variety of pressure transducers exists depending on the type of application
(confined or unconfined environment), frequency range (minimum and max-
imum operating frequencies) and dynamic range (minimum and maximum
Sound Pressure Levels) that are investigated. Externally polarized microphones
with a 200 V polarization provide accurate and reproducible results. Their sen-
sitivity is stable in time. Moreover, they can withstand higher temperatures
compared to other types of microphones such as prepolarized microphones. As
a consequence, all microphones used in this study are externally polarized mi-
crophones.

Externally Polarized Condenser Microphones (EPCM) are based on the follow-
ing principle: a diaphragm, sometimes called a membrane, is placed at the tip
of the microphone. When an acoustic wave of frequency f hits the diaphragm,
it moves at the same frequency f and its displacement is related to the Sound
Pressure Level. A few millimeters away from the membrane, a fixed backplate
is supplied with a constant voltage (200 V). The association of the microphone
membrane and backplate forms a capacitor which voltage is directly propor-
tional to the amplitude of the incoming pressure wave. This voltage is then
amplified by a preamplifier and conditioning amplifier before it can be further
used.

Acoustic pressure measurements applied to the NoiseDyn burner

In addition to the acoustic velocity measurements obtained with the hot wire
probe, the acoustic pressure inside the NoiseDyn burner is measured at various
axial locations using several externally polarized microphones (Bruel & Kjaer
4938 1/4-inch pressure-field microphones) connected to preamplifiers (Bruel
& Kjaer 4938-A-011) which are subsequently linked to conditioning amplifiers
(Bruel & Kjaer 2690). All microphones are first calibrated with a known sound
source (94 dB, 1000 Hz). The spectrum of this source, shown in Fig. 6.4, is
measured with a calibrated microphone. The retained microphones frequency
range is 4−70000 Hz and their dynamic range is 30−172 dB with a sensitivity
S = 1.6 mV/Pa. The microphone can operate at temperatures up to 450 K
and withstand temperatures up to 600 K before being damaged.
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Figure 6.4: Sound source (94 dB, 1000 Hz) spectrum measured with a calibrated
microphone. The acoustic pressure was recorded during t = 8 s at a sampling frequency
fs = 50 kHz.

Various microphones are mounted on the NoiseDyn burner at different axial
locations, as represented in Fig. 6.5. Because of the geometry of the different
upstream and downstream elements, some of these microphones have to be
removed for certain configurations. The first microphone, denoted by MB, is
flush-mounted on the rigid plate located at the bottom of the tranquilization
box. It is not mounted when this rigid plate is replaced by a loudspeaker,
e.g. when upstream forcing is applied. The second microphone, MP, is flush-
mounted at the bottom of the plenum, downstream of the honeycomb. Another
microphone, MHW, is flush-mounted in front of the hot wire probe, at the
same axial location. The acoustic pressure is also measured at the bottom of
the combustion chamber with microphone MC and in the first exhaust tube
with microphones ME and ME’, located in front of each other at the same axial
location, and ME” located 50 mm downstream. These last three microphones
are used to reconstruct the acoustic velocity fluctuations in order to determine
the acoustic reflection coefficient at the exhaust tube outlet, as explained in
Sec. 6.7.

6.4.3 Water-cooled waveguides

Microphones MC, ME, ME’ and ME” are not directly flush-mounted onto
the NoiseDyn burner as they are located in the hot gases region. In this re-
gion, the temperature is well beyond the maximum operating temperature of
these microphones (450 K) and the hot gases have to be cooled down before any
acoustic measurement can be performed. Water-cooled waveguides, represented
in Fig. 6.6, are subsequently used whenever an acoustic pressure measurement
is performed in the hot gases region (Tran et al. 2009a).
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Figure 6.5: Illustration of the base configuration of the NoiseDyn burner (Black &
Gray) with various embedded diagnostics (Red). All dimensions are in mm.

The water-cooled waveguides are used as follows. First, they are flush-mounted
onto the setup at the desired location. A cavity filled with water is wrapped
around the main pipe of inner radius R = 4 mm. Water enters at the bottom
of the cavity and is exhausted at the top of the cavity, as depicted in Fig. 6.6.
The water flowing through this cavity absorbs most of the heat present in the
hot gases. The microphone is then flush-mounted on the main pipe after the
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Figure 6.6: Sketch of a water-cooled waveguide flush-mounted on the NoiseDyn
burner (Right surface).

water cavity, in the region where the gas are at the ambient temperature, as
shown in Fig. 6.6. The distance between the microphone and the wall on which
the waveguide is flush-mounted is l = 230 mm. After the microphone, a closed
pipe of length l = 20 m is added in order to damp the reflected sound waves
generated at the acoustic boundary. Since the pipe ending is closed, the gases
do not flow through the waveguide. Each waveguide is associated with a given
microphone and a given closed tube and the acoustic response of the whole
system has to be measured in a separate experiment.

The waveguides represented in Fig. 6.6 distort the acoustic pressure signals
because of acoustic propagation within the tube (phase shift) and sound ab-
sorption and reflections (gain distortions). In order to characterize these distor-
tions, a first microphone is flush-mounted onto a straight pipe while a second
microphone is mounted on the waveguide which is itself flush-mounted onto
the pipe at the same axial position. An upstream loudspeaker is then driven
by a constant voltage signal for forcing frequencies ranging from f = 20 Hz to
f = 1 kHz for cold flow conditions (T u = 293 K). For each forcing frequency,
the microphone signals are recorded at a sampling frequency fs = 20 kHz dur-
ing t = 1 s. The acoustic pressure signals corresponding to a forcing frequency
f = 1 kHz are shown in Fig. 6.7. It is clear from this figure that both a phase
shift and a gain distortion are generated by the waveguide.

The transfer functions of all waveguides are then determined as functions of
the forcing frequency using these signals. One of these transfer functions is
represented in Fig. 6.8 in blue. The transfer function corresponding to an ideal
waveguide that only generates a phase shift is also represented in Fig. 6.8 in red.
As expected, the waveguide generates a phase shift but also a gain distortion.
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Figure 6.7: Acoustic pressure inside a straight pipe as a function of time recorded
at a sampling frequency fs = 20 kHz. Flush-mounted microphone (Blue) and micro-
phone mounted on a water-cooled waveguide (Red). Measurements were performed for
cold flow conditions and with an upstream loudspeaker driven by a voltage signal of
frequency f = 1000 Hz.

These transfer functions are measured for cold flow conditions. However, they
are still assumed to be valid for both cold and reactive conditions since the
gas temperature inside the waveguide was checked to remain close to T u =
293 K even for reactive conditions. Once the waveguide transfer function is
determined, the acoustic pressure inside the NoiseDyn burner at the waveguide
location can be easily reconstructed. Phase shifts and gain distortions generated
by waveguides are eliminated using this procedure.

6.5 Chemiluminescence measurements

Very high temperatures are reached at the flame front leading to the formation
of free radicals such as OH* or CH* that are in an excited state and emit light
during their transition to the fundamental state. This process is called chemi-
luminescence. The corresponding wavelengths are precisely known and can be
used as flame front tracers (Gaydon 1957). Moreover, both the OH* and CH*
chemiluminescence signals I emitted by lean premixed methane/air flames in
which the equivalence ratio remains constant and uniform are linearly related
to the flame heat release rate Q̇ (Hurle et al. 1968):

I = a1Q̇ (6.4)

where a1 is a proportionality constant. When the flame heat release rate is

perturbed, Q̇ = Q̇ + Q̇′, the chemiluminescence intensity is also perturbed



Part II - Premixed Confined Turbulent Flames 123

0.8

1  

1.2

G

0   200 400 600 800 1000
f [Az]

0

:

2:

'

Measured TF Ideal TF

Figure 6.8: Gain (Top) and phase lag (Bottom) of the transfer function of a water-
cooled waveguide as a function of the forcing frequency obtained using an upstream
loudspeaker. Measured transfer function (Blue) and ideal transfer function (Red).

I = I + I ′. Using Eq. (6.4), it is easy to show that:

I = a1Q̇

I ′ = a1Q̇
′

}
Q̇′

Q̇
=
I ′

I
(6.5)

In the end, it is possible to measure the relative oscillations of the flame heat
release rate by measuring the relative oscillations of the OH* or CH* chemilu-
minescence signals.

In the present work, a photomultiplier (Hamamatsu H5784-04) mounted with a
bandpass interferometric filter corresponding to the OH* emission wavelengths
(Asahi Spectra ZBPA310, centered on λ = 310 nm and with a 10 nm band-
width) is used to record the chemiluminescence signal. This leads to measure-

ments of the average Q̇, fluctuating Q̇′, and relative fluctuation Q̇′/Q̇ of the
flame heat release rate which are subsequently used to determine the Flame
Describing Functions as described in Chapter 9.
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6.6 Flame imaging

6.6.1 Average OH* chemiluminescence distribution

Photomultipliers are useful when the total luminosity emitted by a flame is
needed. However, when the luminosity distribution is required, an Intensified
Charge-Coupled Device (ICCD) is used. This camera is made of a standard
CCD sensor coupled with an image intensifier tube. When a photon hits the
intensifier tube, it is transformed into an electron and depending on the ICCD
gain voltage, a cascade of electrons can be carried in its wake through a domino
effect. In addition to this amplification process, the ICCD optical shuttering
properties allow acquisition times as low as a few nanoseconds. Thanks to these
two properties, ICCD cameras are a remarkable tool for studying quick modifi-
cations of flame structures. Moreover, the Signal-to-Noise ratio is usually very
high for ICCD cameras, even when the ICCD gain is significant.

In this work, an ICCD camera (Princeton Instruments PI-MAX 4) equipped
with an UV objective (Nikon U.V. Nikkor 105 mm f/4.5) and with a band-pass
filter centered on λ = 310 nm with a 10 nm bandwidth (equivalent to that
placed in front of the photomultiplier) is used to record the average flame OH*
chemiluminescence distribution for all configurations. As explained in Sec. 6.5,
the OH* chemiluminescence is directly linked to the flame heat release rate and
is a good flame front tracer.

The same acquisition parameters are used for all configurations. The acqui-
sition time, also called gate width, is set to 5 ms and the gain of the ICCD
camera is set to 100. All mean OH* chemiluminescence distributions presented
here are averaged over 100 frames.

The average flame shape was checked to be independent of the upstream and
downstream elements of the NoiseDyn burner, even when a thermoacoustic
instability is triggered. This implies that in the presence of a combustion insta-
bility, the flame oscillates around a state corresponding to the average state in
the absence of such instabilities. On the other hand, the flame shape is strongly
modified when the swirler is changed, as shown in Fig. 5.10, where the average
flame shape obtained with swirler S generating a flow with a Swirl number
S = 0.8 and swirler S∅ generating a non-swirling flow are both displayed.

The OH* chemiluminescence distributions presented in Fig. 5.10 are integrated
over the line of sight. Since all flames presented in this work are axisymmetric,
an Abel deconvolution leads to the OH* chemiluminescence distributions in the
symmetry plane, and thus to the average flame front positions, as represented
in Fig. 6.9. The collection of dots located on the axis of symmetry are artifacts
due to the Abel deconvolution procedure and do not indicate the presence of a
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Figure 6.9: Average OH* chemiluminescence distribution in the symmetry plane
obtained with an ICCD camera for two different swirlers. (Left): Swirler S with
S = 0.8 - (Right): Swirler S∅ with S ∼ 0.

flame front.

Figure 6.9 clearly shows the impact of a swirling flow generated inside the in-
jector on the average flame front position. When swirler S featuring a Swirl
number S = 0.8 is used, the angle between the flame front, represented in
Fig. 6.9-(Left), and the axis of symmetry is much larger compared to the non-
swirling flame, represented in Fig. 6.9-(Right). Since the ICCD pictures rep-
resented here are obtained by averaging the data obtained from a hundred
independent snapshots, the flame luminosity spreading is also a good indicator
of the turbulent flame brush covered by the reaction zone in the absence of
acoustic forcing. It is obvious from Fig. 6.9 that the flame stabilized within
the non-swirling flow does not move as much as the flame stabilized within the
swirling flow.

6.6.2 Phase average OH* chemiluminescence distribution

Mean OH* chemiluminescence distributions are used to determine the average
flame front position. However, the instantaneous flame front position may de-
part considerably from this average position if the flame is submitted to acoustic
forcing (generated by a loudspeaker for instance) or if a thermoacoustic insta-
bility is triggered. In order to study the flame response in such cases, two main
options are available: first, a high-speed camera may be used, but the small
flame luminosity due to the short exposure time is usually limiting, especially
if an interferometric filter is used. The second option is to use an ICCD camera
to obtain phase average pictures by the means of a synchronization signal.

For instance, the phase average pictures for configuration A1 (with upstream
acoustic forcing and swirler S featuring a Swirl number S = 0.8) obtained with
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Figure 6.10: Phase average pictures of an oscillating swirling flame (Swirl number
S = 0.8) obtained with an ICCD camera with an OH* filter for a forcing frequency
f = 190 Hz and at a forcing level |u′|/u = 0.72 RMS, generated with an upstream
loudspeaker. (Top left): ϕ = 0◦ - (Top right): ϕ = 60◦ - (Center right): ϕ = 120◦ -
(Bottom right): ϕ = 180◦ - (Bottom left): ϕ = 240◦ - (Center left): ϕ = 300◦.
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an ICCD camera with an OH* filter for a forcing frequency f = 190 Hz and a
forcing level |u′|/u = 0.72 RMS are represented in Fig. 6.10. The ICCD gain is
set to 100 and the gate width to 40 µs, approximately 1/100 of the oscillation
period. Each frame is obtained by accumulating 40 images on the CCD sensor.
All flame pictures are averaged over 100 frames. In this figure, ϕ designates the
phase shift between the synchronization signal that triggers the ICCD camera
and the voltage signal that drives the loudspeaker. Since the forcing level is
very large, the flame interacts with the quartz windows for ϕ = 60◦, ϕ = 120◦

and ϕ = 180◦ which causes artifacts in the left and right sides of these pictures.

The phase average imaging procedure is now detailed. A flame stabilized in-
side the combustion chamber is submitted to harmonic acoustic forcing orig-
inating from a loudspeaker sealed at the top or bottom of the burner. The
flame is thus moving at the same frequency, but with a phase lag due to the
acoustic wave propagation through the burner and to the flame response delay.
The loudspeaker voltage is a harmonic signal which can be transformed into
a TTL binary signal indicating whether the voltage is positive (TTL=+1 V if
Uspeaker > 0 V) or negative (TTL=0 V if Uspeaker < 0 V). This signal is then
used to trigger the ICCD camera by setting off the image acquisition when the
TTL signal switches from 0 V to 1 V for example. The phase lag discussed
before can be accounted for by adding a time offset. By doing so, the first
image, corresponding to ϕ = 0◦ in Fig. 6.10 for Configuration A1, is obtained.
The following images in Fig. 6.10 are obtained by adding an additional time
offset. For example, ϕ = 180◦ is obtained by adding an additional time offset
of 1/2f where f is the frequency of the signal.

The procedure is the same when a natural thermoacoustic instability is present
inside the system, provided that the corresponding oscillations of the physical
variables are roughly harmonic. In this study, the reference signal is provided
by the hot wire probe located below the swirler because it features a high
signal-to-noise ratio at the instability frequency.

6.7 Measurements of the acoustic impedance and re-

flection coefficient

The acoustic impedance Z(x, ω) is a complex number that relates the acoustic
pressure to the acoustic velocity at a given location x and at a given angular
frequency ω (Rienstra and Hirschberg 2016):

Z (x, ω) =
p′ω(x)

u′
ω(x) · n̂(x)

(6.6)

where p′ω and u′
ω are the Fourier components of the acoustic pressure and

acoustic velocity assessed at the angular frequency ω and located at x. The
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Figure 6.11: Acoustic impedance measurement with a hot wire probe and a micro-
phone. The hot wire probe (HW) and microphone (MHW) are located at the same
axial position and their signals are recorded simultaneously.

unit vector n̂ is normal to the surface of interest and pointing outward.

The acoustic reflection coefficient R(ω) is defined as the ratio of the reflected
wave amplitude to the incident wave amplitude at a given position and fre-
quency. The acoustic reflection coefficient is equivalent to the acoustic impedance.
Nevertheless, it is much easier to measure the impedance and reconstruct the
reflection coefficient. This approach is adopted in this work. The properties
of the acoustic impedance and acoustic reflection coefficient are described in
Sec. 7.3.

6.7.1 First method: impedance measurements with a hot wire
probe and a microphone

The simplest way to estimate the acoustic impedance from experiments is to
measure the acoustic velocity and acoustic pressure simultaneously at a given
axial location. Since the impedance is a function of the angular frequency ω,
harmonic forcing has to be applied for each frequency of interest. In this work,
the acoustic velocity is measured with a hot wire probe, denoted by HW in
Fig. 6.11, and the acoustic pressure is measured with a microphone, denoted
by MHW in the same figure. These quantities are measured just after a noz-
zle, in a region where the acoustic waves are one-dimensional. Moreover, there
are no entropy fluctuations in that region so that the measured pressure and
velocity fluctuations correspond to acoustic fluctuations. These diagnostics are
presented in details in Sec. 6.3.1 and 6.4 respectively.

For each forcing frequency, the cross power spectral density between the mi-
crophone signal and the hot wire signal Ppu is computed using the Welch’s
averaged, modified periodogram method. The auto power spectral density of
the hot wire signal Puu is also computed with the same method. The compo-
nents of the acoustic pressure p′ and velocity u′ at the forcing angular frequency
ω are then given by:
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p′(ω) = Ppu(ω)/
√

|Puu(ω)| (6.7)

u′(ω) = Puu(ω)/
√

|Puu(ω)| (6.8)

Another method consists in computing the Fast Fourier Transform (FFT) of
the hot wire and microphone signals and retaining the components of the sig-
nals corresponding to the forcing frequency ω. This method is much easier
to implement but is not used in practice because of the large incoherent noise
usually present in the recorded signals that lead to poor signal-to-noise ratios.

After p′(ω) and u′(ω) are obtained, the specific acoustic impedance Zs and
acoustic reflection coefficient R at the hot wire/microphone location can be
computed using:

Zs(ω) = ± 1

ρc

p′

u′
(6.9)

R(ω) =
Zs(ω)− 1

Zs(ω) + 1
(6.10)

where ρ and c are the mean gas density and sound speed respectively. The
expression of the specific acoustic impedance given by Eq. (6.9) depends on the
acoustic boundary orientation as well as the harmonic convention, as detailed
in Appendix A. On the other hand, Eq. (6.10) does not depend on the acoustic
boundary orientation or harmonic convention.

The reflection coefficient can be deduced further downstream or upstream as
long as sound waves propagate in a 1D pipe with a constant cross section area
in a uniform temperature field. The reflection coefficient Rl(ω) at a distance
l from the location where R0(ω) is measured is given by (Chung and Blaser
1980a):

Rl(ω) = R0(ω)e
±2ikl with e±iωt (6.11)

where k = ω/c is the wave number. It should be noted that Eq. (6.11) depends
on the harmonic convention retained (e±iωt), as described in Appendix A.

6.7.2 Second method: impedance measurements with the Three
Microphone Method (TMM)

It is not always possible to measure the acoustic velocity with a hot wire probe,
especially in a reactive flow with high-temperature gases. In theory, Laser
Doppler Velocimetry (LDV), presented in Sec. 6.3.2, could be used to measure
the acoustic velocity but it requires an optical access to the region where the
impedance is wanted. As a consequence, another method is used to reconstruct



130 Chapter 6 - Diagnostics

Zs

ME ME’

ME”
l2 = 185

l1 = 135

..
p′ u′

Figure 6.12: Acoustic impedance measurement using the Three Microphone Method
(TMM). The first microphone (ME) and second microphone (ME’) are located at the
same axial position, at a distance l2 from the region where the impedance is assessed.
The third microphone (ME”) is located downstream, at a distance l1 < l2 from the
region where the impedance is assessed. All dimensions are in mm.

the impedance from acoustic measurements only: the Multiple Microphone
Method (MMM) (Chung and Blaser 1980a; Chung and Blaser 1980b). Various
versions of the MMM exist depending on the number of microphones utilized
and their spatial arrangement. The version used in this work is the Three Micro-
phone Method (TMM) consisting of two microphones at the same axial position
and a third microphone further downstream (Tran et al. 2009b; Scarpato 2014).

The principle of the Three Microphone Method is now detailed. Two micro-
phones, ME and ME’, are placed in front of each other at a distance l2 from
the reference location where the acoustic impedance is wanted, as depicted
in Fig. 6.12. A third microphone, ME”, is placed further away from the first
two microphones, at a distance l1 < l2 from the reference location. The spe-
cific acoustic impedance at the reference location is then given by (Chung and
Blaser 1980a):

Zs(ω) = i
H12(ω) sin (kl1)− sin (kl2)

cos (kl2)−H12(ω) cos (kl1)
(6.12)

whereH12(ω) is the transfer function between microphone ME’ and microphone
ME” at the angular frequency ω. The subscripts 1 and 2 refer to microphones
ME’ and ME” respectively. H12(ω) is defined as:
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H12(ω) =
P12(ω)

P11(ω)
(6.13)

where P12(ω) is the cross power spectral density between the signals measured
by microphones ME’ and ME” at the forcing angular frequency ω and P11(ω) is
the auto power spectral density of the signal measured by microphone ME’ at ω.

Since Zs is an impedance, Eq. (6.12) depends on the harmonic convention, here
arbitrarily chosen as e+iωt, and the acoustic boundary orientation, here chosen
in the main direction (Case II in Appendix A).

In order to improve the signal-to-noise ratio when reconstructing the acoustic
impedance using the TMM, two complementary techniques are employed: mi-
crophone switching and coherence functions (Chung and Blaser 1980a). The
microphone switching method works as follow: in a first set of experiments,
the original configuration ◦, depicted in Fig. 6.12, is used and the three micro-
phone signals are recorded for all forcing frequencies of interest. In a second set
of experiments, microphones ME’ and ME” are exchanged, corresponding to
the switched configuration s, and the same measurements are performed once
again. The final transfer function Hf

12(ω) between microphones ME’ and ME”
is the geometrical mean between the two transfer functions H◦

12(ω) and Hs
12(ω)

obtained for the original and switched configurations respectively:

Hf
12(ω) =

√
H◦

12(ω)H
s
12(ω) (6.14)

The second technique employed to improve the signal-to-noise ratio when de-
termining the acoustic impedance using the TMM is a post-processing method
involving coherence functions. The coherence function between the signals of
microphones ME’ and ME” is defined as:

C12(ω) =
|P12(ω)|2

P11(ω)P22(ω)
(6.15)

A coherence factor accounting for the coherence functions between microphones
ME, ME’ and ME” is then given by:

C(ω) =

√
C23(ω)

C12(ω)C31(ω)
(6.16)

where the subscript 3 refers to microphone ME. The corrected transfer function
Hc

12(ω) between microphones ME’ and ME” is then obtained from the coher-
ence factor and measured transfer function H12(ω):

Hc
12(ω) = C(ω)H12(ω) (6.17)
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The corrections due to the switching method and coherence factor method can
be combined (Chung and Blaser 1980a). In that case, Eq. (6.12) becomes:

Zs(ω) = i
Cf (ω)Hf

12(ω) sin (kl1)− sin (kl2)

cos (kl2)− Cf (ω)Hf
12(ω) cos (kl1)

(6.18)

where the final coherence factor Cf is given by:

Cf (ω) = 4

√
C◦
23(ω)C

s
23(ω)

C◦
12(ω)C

s
12(ω)C

◦
31(ω)C

s
31(ω)

(6.19)

and Hf
12(ω) is given by Eq. (6.14).

The Three Microphone Method may be used to reconstruct the acoustic impedance
in a limited frequency range only. First, the phase difference between the sig-
nals corresponding to microphones ME’ and ME” tends towards zero when the
frequency is reduced. In this case, the impedance measurements may become
inaccurate or even incorrect. Nevertheless, this erratic behavior is only ob-
served for very low frequencies f < 20 Hz in the experiments performed in this
work.

On the other hand, the high-frequency limit is prescribed by the spacing l2− l1
between microphones ME’ and ME” represented in Fig. 6.12. If l2 − l1 is a
multiple of λ/2 where λ is the acoustic wavelength, then the expression for the
reflection coefficient given by Eq. (6.18) blows up, thus placing an upper bound
on the frequency at which the reconstruction of the acoustic impedance can
be performed using the Three Microphone Method. This maximum frequency
fmax is then given by:

l2 − l1 =
c

2fmax
(6.20)

In this work, the microphone spacing l2−l1 = 50 mm corresponds to a maximum
frequency fmax = 3400 Hz for cold flow conditions. Nevertheless, this maxi-
mum frequency is only an upper bound. In practice, when a frequency sweep
is performed, the maximum frequency is reached as soon as a pressure node is
located next to one of the microphones. In that case, the signal-to-noise ratio
drops dramatically and the acoustic impedance cannot be determined properly.

Several measurements are performed with a Kundt’s tube in order to validate
the post-processing routines used to reconstruct the acoustic impedance and
acoustic reflection coefficient using the Three Microphone Method. The mi-
crophone signals are recorded at a sampling frequency fs = 20 kHz during
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Figure 6.13: Real part (Top) and imaginary part (Bottom) of the acoustic reflection
coefficient corresponding to a rigid plate placed at the top of a Kundt’s tube. Mea-
surements are post-processed using the Three Microphone Method. The switching and
coherence factor techniques are employed. (Blue): Measurements - (Red): Theoretical
prediction.

t = 1 s. For instance, the acoustic reflection coefficient corresponding to a rigid
plate and obtained using the Three Microphone Method with both switching
and coherence factor corrections is presented in Fig. 6.13. As demonstrated in
Sec. 7.3.2, the acoustic reflection coefficient at the rigid plate location is R = 1.
The agreement between theory and measurements is satisfactory, as shown in
Fig. 6.13.

The post-processing routines implementing the Three Microphone Method are
also tested and validated for several additional test cases (not presented here).
This technique is now employed to determine the acoustic impedance at the
NoiseDyn burner exhaust tube outlet for various configurations and operating
conditions.
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Figure 6.14: Real part (Top) and imaginary part (Bottom) of the acoustic reflection
coefficient at the NoiseDyn burner exhaust tube outlet for Configuration C for cold flow
conditions. Measurements are post-processed using the Three Microphone Method for
various forcing levels |u′|/u = 0.1 RMS (Red), |u′|/u = 0.3 RMS (Blue), |u′|/u = 0.5
RMS (Green), |u′|/u = 0.7 RMS (Orange). The switching and coherence factor tech-
niques are employed. Theoretical prediction are also plotted according to the unflanged
Levine-Schwinger (LSu) model (Yellow) and infinitely flanged Levine-Schwinger (LSf )
model (Brown).

6.7.3 Impedance measurements at the NoiseDyn burner ex-
haust tube outlet

Microphones ME, ME’ and ME” are mounted on the first exhaust tube of the
NoiseDyn burner, as depicted in Figs. 6.5 and 6.12. The acoustic reflection
coefficient at the top of the NoiseDyn burner exhaust tube is then assessed
for Configurations A, B, C, D, E and F for cold and reactive operating con-
ditions. The various upstream elements and swirlers have no impact on this
acoustic boundary condition. For reactive operating conditions, the waveguides
described in Sec. 6.4.3 are used in combination with microphones ME, ME’ and
ME”. Measurements are in this case corrected using the transfer functions of
the associated waveguides.
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The acoustic reflection coefficients at the NoiseDyn burner exhaust tube outlet
for Configurations A, B and C (open end) and for cold flow conditions are
reconstructed from measurements using the TMM at four different forcing lev-
els: |u′|/u = 0.1 RMS, |u′|/u = 0.3 RMS, |u′|/u = 0.5 RMS and |u′|/u = 0.7
RMS measured with the hot wire probe located below the swirler. The mi-
crophone signals are recorded at a sampling frequency fs = 20 kHz during
t = 1 s. Results are represented in Fig. 6.14 for Configuration C along with the
predictions associated with the unflanged (LSu) and infinitely flanged (LSf )
Levine-Schwinger models, which are presented in details in Chapter 7. The
acoustic reflection coefficients obtained for Configurations A and B are similar.

Figure 6.14 clearly shows that the acoustic reflection coefficient at the Noise-
Dyn burner exhaust tube exit is independent of the forcing level for all forcing
frequencies investigated (f < 600 Hz) in the case of an open end boundary
condition (e.g. for Configurations A, B and C). This also demonstrates the
reliability and reproducibility of the acoustic impedance reconstructions using
the Three Microphone Method. The reconstructed reflection coefficients are
also in very good agreement with the theoretical models plotted in Fig. 6.14.
The reflection coefficient assessed at the exhaust tube outlet, which has a flange
of finite spatial extension, mostly lies between the curves corresponding to the
infinitely flanged (LSf ) and unflanged (LSu) Levine-Schwinger models.

The acoustic reflection coefficients at the NoiseDyn burner exhaust tube outlet
corresponding to Configurations A, B and C are also reconstructed from mea-
surements for reactive operating conditions. Since these reflection coefficients
were shown to be independent of the forcing level for cold flow conditions, a
simpler methodology is followed here. The forcing level is not kept constant at
the hot wire location but a constant voltage is applied to the upstream loud-
speaker used to generate harmonic forcing. The associated reconstruction of
the reflection coefficient is presented for Configuration C in Fig. 6.15 along with
the analytical predictions of the unflanged (LSu) and infinitely flanged (LSf )
Levine-Schwinger models. Once again, the microphone signals are recorded at
a sampling frequency fs = 20 kHz during t = 1 s. These models are once again
quite successful even though the values of the reconstructed reflection coefficient
shown in Fig. 6.15 are more scattered compared to cold operating conditions.
The imaginary part of the reflection coefficient is slighly underestimated by the
models whereas the real part is accurately predicted. The acoustic reflection
coefficients measured at the exhaust tube outlet for Configurations A and B
are similar.

Given the results presented in Figs. 6.14 and 6.15, the acoustic reflection coef-
ficient at the NoiseDyn burner exhaust tube outlet for cold and reactive condi-
tions and for Configurations A, B and C are described with a flanged Levine-
Schwinger (LSf ) impedance model for the remainder of this work. For reactive
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Figure 6.15: Real part (Top) and imaginary part (Bottom) of the acoustic reflection
coefficient at the NoiseDyn burner exhaust tube outlet for Configuration C for reac-
tive conditions (Blue). Measurements are post-processed using the Three Microphone
Method for a constant loudspeaker voltage. The switching and coherence factor tech-
niques are employed. Theoretical prediction are also plotted according to the unflanged
Levine-Schwinger (LSu) model (Red) and infinitely flanged Levine-Schwinger (LSf )
model (Green).

operating conditions, the speed of sound increases which in turn has an impact
on the Levine-Schwinger model, as described in Sec. 7.3.3.

Finally, the acoustic reflection coefficient corresponding to the NoiseDyn burner
exhaust tube outlet for Configurations D, E and F is investigated using the
TMM. In this case, the NoiseDyn burner is topped by a perforated plate, as
shown in Fig. 5.7. The microphone signals are still recorded at a sampling
frequency fs = 20 kHz during t = 1 s. The real part and imaginary part of
the reflection coefficient reconstructed for Configuration F are represented in
Fig. 6.16. Results for Configurations D and E are similar. Figures 6.14 and
6.16 demonstrate that the reflection coefficients for Configurations A, B, C
and D, E, F are quite different for all forcing frequencies investigated: these
two acoustic boundary conditions are said to be independent. When a perfo-
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Figure 6.16: Real part (Top) and imaginary part (Bottom) of the acoustic reflection
coefficient at the NoiseDyn burner exhaust tube outlet for Configurations D, E and
F for cold flow conditions. Measurements are post-processed using the Three Micro-
phone Method for a constant loudspeaker voltage. The switching and coherence factor
techniques are employed.

rated plate is added at the top of the NoiseDyn burner exhaust tube, e.g. for
Configurations D, E and F, the acoustic reflection coefficient coincides with
anechoic conditions when the frequency tends towards zero and depart from
these anechoic conditions when the frequency increases.

6.8 Conclusion

Various diagnostics employed in association with the NoiseDyn burner were
introduced in this chapter. It is now worth exploring the linear acoustics theory
in order to interpret the measurements obtained using the techniques presented
in this chapter.





Chapter 7

Linear Acoustics: low-Mach

Non-reactive flow

The linearized conservation equations describing sound wave propaga-
tion in a low-Mach non-reactive flow are derived in this chapter. The
acoustic impedance and acoustic reflection coefficients are then intro-
duced. Finally, the jump conditions for the acoustic pressure and acous-
tic velocity across various elements are derived in the case of a low-Mach
non-reactive flow.

7.1 Linearized conservation equations

7.1.1 Assumptions

A few assumptions are made in order to derive the equations describing sound
wave propagation in a low-Mach non-reactive flow. It is reminded that the mean
physical variables are represented with an overline (x) whereas the fluctuating
physical variables are represented with a prime (x′). Vectors are denoted by
bold characters for the sake of readability. The initial hypotheses related to the
nature of the flow and acoustic perturbations are listed below with bullets (•)
and circles (◦) respectively:

• The mean flow variables are time-independent.

• The flow is non-reactive: q̇ = 0.

• The fluid is an ideal gas.

• Body forces are neglected.

• Viscosity effects are neglected: µ = 0.

• Thermal conduction and radiation are neglected.
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• The flow has a low Mach number M = u/c≪ 1.

◦ Acoustic sources are not considered.

◦ Acoustic perturbations are linear.

7.1.2 Conservation equations

The conservation equations for a non-reactive flow where body forces, viscous
forces and thermal diffusion and radiation are neglected are (Morse and Ingard
1968; Candel and Poinsot 1988; Crighton et al. 1992):

Mass conservation

∂ρ

∂t
+∇ · (ρu) = 0 (7.1)

Momentum conservation

ρ
∂u

∂t
+ ρu · ∇u = −∇p (7.2)

Each of the physical variables in Eqs. (7.1)-(7.2) can be written as the sum of
a mean flow variable and an acoustic perturbation (Morse and Ingard 1968;
Candel and Poinsot 1988). This decomposition is presented explicitly below:

p = p+ p′ (7.3)

u = u+ u′ (7.4)

ρ = ρ+ ρ′ (7.5)

T = T + T ′ (7.6)

cp = cp + c′p (7.7)

cv = cv + c′v (7.8)

Even though cp and cv are functions of the gas temperature, their variations
are limited, especially since the acoustic perturbations are linear which implies
that |T ′|/T ≪ 1. Therefore, c′p and c′v are neglected in the remainder of this
work.

Since the flow is non-reactive and non-viscous, it is isentropic and the conser-
vation of energy is given by:

Ds

Dt
= 0 (7.9)
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Equation (7.9) states that there is no entropy production within the flow. If it
is further assumed that the mean flow variables are homogeneous, the entropy
is initially the same everywhere. Since the material derivative of the entropy
is zero, the entropy then remains equal to its initial value. As a consequence,
the flow is homentropic if the mean flow variables are homogeneous and the
entropy fluctuations cancel out in that case: s′ = 0.

7.1.3 Constitutive equations

In this chapter, dimensional analysis is frequently used to assess the relative
importance of each term in the equations. The constitutive equations for the
mean flow are:

p = ρrT (7.10)

γp = ρc2 (7.11)

γrT = c2 (7.12)

pρ−γ = S (7.13)

where Eq. (7.10) is the ideal gas law, Eq. (7.11) is the expression of sound speed
in an ideal gas, Eq. (7.12) is obtained by combining the first two equations and
Eq. (7.13) is obtained by considering the expression of the entropy of an ideal
gas, equal to a constant S here. Moreover, the mean flow variables are assumed
to be homogeneous:

∇ρ = 0 (7.14)

∇T = 0 (7.15)

∇p = 0 (7.16)

On the other hand, the acoustic variables are linked through the following equa-
tion:

p′ = c2ρ′ (7.17)

Equation (7.17) comes from the linearized entropy of an ideal gas in the absence
of entropy fluctuations (Morse and Ingard 1968; Candel and Poinsot 1988).

Using the linearized ideal gas law along with Eq. (7.17), a link between the
temperature and density fluctuations can be established:

T ′

T
= (γ − 1)

ρ′

ρ
(7.18)
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The acoustic pressure and acoustic velocity of a travelling acoustic wave are
also related by (Hirschberg and Rienstra 2004):

p′ = ±ρcu′ (7.19)

7.1.4 Linearized mass conservation

The linearized mass conservation is obtained by injecting Eqs. (7.3)-(7.8) into
Eq. (7.1). Terms of order 0 and 1 are kept while terms of higher order are
neglected. The mass conservation for the mean flow is first obtained by consid-
ering terms of order 0 along with Eq. (7.14):

∇ · u = 0 (7.20)

Then, the linearized mass conservation is obtained by considering terms of or-
der 1 along with Eq. (7.14):

∂ρ′

∂t︸︷︷︸
(1)

+∇ ·
(
ρ′u
)

︸ ︷︷ ︸
(2)

+ ρ∇ · u′

︸ ︷︷ ︸
(3)

= 0 (7.21)

Using dimensional analysis, the relative weight of terms (1), (2) and (3) in
Eq. (7.21) is assessed. It is found that (1)/(3) ∼ He where He = ωL/c is the
Helmholtz number (L is a characteristic length of the system) and (2)/(3) ∼ M
where M is the Mach number. Since the flow is low-Mach, the second term in
Eq. (7.21) can be neglected. Moreover, if the region of interest is compact, e.g.
He ≪ 1, the first term can also be neglected.

Linearized mass conservation in a low-Mach non-reactive flow

∂ρ′

∂t
+ ρ∇ · u′ = 0 (7.22)

Linearized compact mass conservation in a low-Mach non-reactive

flow

∇ · u′ = 0 (7.23)

7.1.5 Linearized momentum conservation

The same procedure is repeated with the momentum conservation: Eqs. (7.3)-
(7.8) are injected into Eq. (7.2). If terms of order 0 are considered only, it is
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found that:

u · ∇u = 0 (7.24)

(7.25)

Back to Eq. (7.2) combined with Eqs. (7.3)-(7.8), the linearized momentum
conservation is obtained if terms of order 1 are considered only:

ρ
∂u′

∂t︸ ︷︷ ︸
(1)

+ ρu · ∇u′

︸ ︷︷ ︸
(2)

+ ρu′ · ∇u
︸ ︷︷ ︸

(3)

= −∇p′
︸ ︷︷ ︸

(4)

(7.26)

Once again, dimensional analysis can be used to simplify Eq. (7.26). It is found
that (1)/(4) ∼ He, (2)/(4) ∼ M and (3)/(4) ∼ M. Since the flow is low-Mach,
the second and third terms in Eq. (7.26) can be neglected. Moreover, if the
region of interest is compact, the first term can also be neglected.

Linearized momentum conservation in a low-Mach non-reactive flow

ρ
∂u′

∂t
= −∇p′ (7.27)

Linearized compact momentum conservation in a low-Mach

non-reactive flow

∇p′ = 0 (7.28)

7.2 Propagation of harmonic plane waves in a low-

Mach non-reactive flow

7.2.1 Uniform mean temperature field

The divergence operator is applied to Eq. (7.27). Equations (7.17) and (7.22)
are then injected into the resulting equation, thus leading to the wave equa-
tion describing sound wave propagation in a low-Mach non-reactive flow with
a uniform mean temperature field.
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Low-Mach non-reactive wave equation in a uniform mean

temperature field

∇2p′ − 1

c2
∂2p′

∂t2
= 0 (7.29)

Plane waves propagating along the x-axis are now considered. Equation (7.29)
becomes:

∂2p′

∂x2
− 1

c2
∂2p′

∂t2
= 0 (7.30)

Moreover, the acoustic waves are assumed to be harmonic, thus prescribing the
form of the solution in the complex plane:

p′ = p′ω(x)e
±iωt (7.31)

where p′ω is the amplitude of the harmonic wave propagating at the angular
frequency ω. The acoustic pressure in the time domain is a real variable, equal
to the real part of p′ in Eq. (7.31). Two harmonic conventions e±iωt are possi-
ble, as explained in Appendix A. From Eqs. (7.30) and (7.31) and introducing
the wave number k = ω/c, a Helmholtz equation is obtained:

d2p′ω
dx2

+ k2p′ω = 0 (7.32)

The general solution of Eq. (7.32) is given by:

p′ω = Aωe
ikx +Bωe

−ikx (7.33)

where Aω and Bω are two complex integration constants that are prescribed by
the acoustic boundary conditions. The expression for the acoustic velocity can
be retrieved from Eq. (7.27):

u′
ω = ∓

(
Aω

ρc
eikx − Bω

ρc
e−ikx

)
êx with e±iωt (7.34)

where êx is a unit vector along the x-axis. The expression for the acoustic
velocity depends on the harmonic convention chosen (e±iωt). The acoustic
velocity in the time domain is a real variable, equal to the real part of u′

ω in
Eq. (7.34).
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7.2.2 Linear mean temperature field

In this section, the mean flow variables are not homogeneous and as a conse-
quence, the flow is not homentropic. The results presented in Sec. 7.1 do not
apply.

The mean axial temperature gradient is assumed to be a non-zero constant in
this section, which implies that c2 is linearly related to x. The x-axis origin
is chosen such that c2 = βx where β is a prescribed parameter, thus implying
that ∇c2 = β. This shift in origin greatly simplifies the mathematical derivation
that follows. The wave equation in a fluid with a varying mean temperature
field is given by (Hirschberg and Rienstra 2004):

∂2p′

∂t2
−∇ ·

(
c2∇p′

)
= 0 (7.35)

By considering plane waves propagating along the x-axis in a linearly changing
mean temperature field, Eq. (7.35) becomes:

∂2p′

∂t2
− β

∂p′

∂x
− βx

∂2p′

∂x2
= 0 (7.36)

If the acoustic waves are further assumed to be harmonic, Eqs. (7.31) and (7.36)
lead to a canonical equation of solution (Abramowitz and Stegun 1972):

p′ω = AωJ0(2ω
√
x/β) +BωY0(2ω

√
x/β) (7.37)

where Aω and Bω are complex integration constants and J0 and Y0 are Bessel
functions of the first and second kind and of order 0. Equation (7.27) is still
valid with non-homogeneous mean flow variables and can be used to express
the acoustic velocity at the angular frequency ω:

u′
ω = ± 1

iρ(x)
√
βx

[
AωJ1(2ω

√
x/β) +BωY1(2ω

√
x/β)

]
êx (7.38)

where J1 and Y1 are Bessel functions of the first and second kind and of order
1. Once again, the expression of the acoustic velocity depends on the harmonic
convention (e±iωt).

7.3 Acoustic impedance and reflection coefficient

7.3.1 Definitions

The acoustic impedance Z(x, ω) is a complex number that relates the acoustic
pressure to the acoustic velocity at a given location x and at a given angular
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frequency ω (Rienstra and Hirschberg 2016):

Z (x, ω) =
p′ω(x)

u′
ω(x) · n̂(x)

(7.39)

where p′ω and u′
ω are the Fourier components of the acoustic pressure and

acoustic velocity assessed at the angular frequency ω and located at x. The
unit vector n̂ is normal to the surface of interest and pointing outward. With
one-dimensional variables, Eq. (7.39) becomes:

Z (x, ω) = ±p
′
ω(x)

u′ω(x)
(7.40)

where the sign depends on surface direction, as explained in Appendix A. In
the remainder of this work, this latter definition of the 1D acoustic impedance
is retained. The acoustic impedance is expressed in kg.m−2.s−1 and is usually
split into its real part, the acoustic resistance Re (x, ω), and its imaginary part,
the acoustic reactance X (x, ω):

Z (x, ω) = Re (x, ω) + iX (x, ω) (7.41)

An important acoustic property of a medium is its characteristic acoustic
impedance z, defined as the acoustic impedance of a quiescent uniform medium
traversed by a plane wave propagating in the positive direction. From the re-
sults presented in Sec. 7.2.1, it is found that z can be expressed as (Candel and
Poinsot 1988; Rienstra and Hirschberg 2016):

z = ρc (7.42)

The ratio of the acoustic impedance Z(x, ω) to the characteristic acoustic
impedance z is a dimensionless variable called the specific acoustic impedance
Zs (x, ω):

Zs (x, ω) =
Z (x, ω)

ρc
(7.43)

Another important acoustic variable is the reflection coefficient R(x, ω) defined
as the ratio of the reflected wave amplitude to the incident wave amplitude
at a given position and frequency. The reflection coefficient can be linked to
the specific acoustic impedance through the following equations (Rienstra and
Hirschberg 2016):

R(x, ω) =
Zs (x, ω)− 1

Zs (x, ω) + 1
(7.44)
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Zs (x, ω) =
1 +R(x, ω)

1−R(x, ω)
(7.45)

Equations (7.44) and (7.45) are valid for both harmonic conventions e±iωt and
both surface orientations. However, it is important to note that the harmonic
convention has an impact on the expression of the acoustic impedance and
acoustic reflection coefficient. The following relations between the acoustic
impedances and acoustic reflection coefficients for both harmonic conventions
can be established:

Z⊕ = (Z⊖)
∗ (7.46)

R⊕ = (R⊖)
∗ (7.47)

where the subscripts ⊕ and ⊖ are used for the acoustic variables described with
the e+iωt and e−iωt harmonic conventions respectively and the superscript .∗

stands for the complex conjugate. These relations are derived in Appendix A.

7.3.2 Closed and open acoustic boundaries

At a closed boundary, the mean and instantaneous flow velocities cancel out.
As a consequence, the acoustic velocity at a closed boundary is equal to zero.
Using Eqs. (7.40) and (7.44), the acoustic impedance and reflection coefficient
at a closed boundary are derived:

Zclosed = ±∞ (7.48)

Rclosed = +1 (7.49)

These expressions are valid for both harmonic conventions. The ± sign comes
from surface direction considerations. The reflection coefficient corresponding
to a rigid plate mounted at the top of a Kundt’s tube measured with the Three-
Microphone Method (TMM) is presented in Fig. 6.13. It is clearly shown that
R ≃ +1 in this figure.

On the other hand, the acoustic boundary condition corresponding to an open
end may be described as a pressure node as a first approximation. This
crude model is valid for low frequencies only and for a quiescent fluid. Us-
ing Eqs. (7.40) and (7.44), the acoustic impedance and reflection coefficient at
an open boundary for low frequencies are derived:

Zopen = 0 (7.50)

Ropen = −1 (7.51)

These expressions are valid for both harmonic conventions and for both surface
orientations.
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Figure 7.1: Acoustic impedance of an open pipe. (Blue line): Levine-Schwinger
model for an infinitely flanged pipe - (Red dashed line): Levine-Schwinger impedance
for an unflanged pipe - (Green dotted line): Zs = 0.

7.3.3 Levine-Schwinger acoustic impedance

A tube with an open oulet is characterized by the presence of a pressure node
located at the outlet for low Helmholtz numbers He = ka ≪ 1, where a is
the tube radius and k is the wave number (e.g. for low frequencies), and for
low-Mach number M ≪ 1 flows. As the angular frequency ω is increased, the
inertia of the fluid located just after the outlet induces an end correction of
order He and the acoustic radiation losses induce another correction of order
He2 (Levine and Schwinger 1948; Atig et al. 2004).

One possible model for the acoustic impedance of an unflanged open pipe tra-
versed by a low-Mach flow M ≪ 1 which is not restricted to low frequen-
cies is given by the Levine-Schwinger acoustic impedance model (Levine and
Schwinger 1948):

Zs =
1

4
(ka)2 ± ikδ0 with e±iωt (7.52)
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p′
d

u′
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Figure 7.2: Illustration of the Acoustic Transfer Matrix (ATM) formalism. A 2 ×
2 matrix, denoted by M , relates the downstream acoustic pressure p′d and acoustic
velocity u′d to the upstream acoustic pressure p′u and acoustic velocity u′u.

where δ0 = 0.6133a is the end correction in the unflanged case for a tube with
sharp edges. This expression is valid for a unit vector normal to the surface of
interest n̂ = êx (Case II in Appendix A) and depends on the harmonic conven-
tion (e±iωt). The alternative expression for an infinitely flanged pipe is given
by (Nomura et al. 1960; Norris and Sheng 1989):

Zs =
1

2
(ka)2 ± ikδ∞ with e±iωt (7.53)

where δ∞ = 0.8216a is the end correction of a flanged aperture with sharp edges.
More recent works proposed additional corrections accounting for high-forcing
levels (Atig et al. 2004), Mach number (Munt 1977) and flow temperature
(Cummings 1977). These corrections are neglected in the present work.

The Levine-Schwinger impedance models are plotted in Fig. 7.1 for the e+iωt

convention. Three models are compared: the Levine-Schwinger impedance for
infinitely flanged and unflanged tubes are represented in blue and red respec-
tively. The additional green plot represents the usual open acoustic boundary
condition Zs = 0 as described in Sec. 7.3.2. For low Helmholtz numbers He ≪ 1,
all three models collapse.

7.4 Acoustic Transfer Matrices in a low-Mach Non-

reactive Flow

7.4.1 Concept of Acoustic Transfer Matrix

The Acoustic Transfer Matrix (ATM), represented by the symbol M in Fig. 7.2,
is a black-box representation linking the acoustic variables (p′d, u

′
d) downstream

an element to the acoustic variables (p′u, u
′
u) upstream the same element (Abom

1992; Paschereit and Polifke 1998). Mathematically, it corresponds to a 2 × 2
matrix as expressed by Eq. (7.54). The subscripts u and d refer to upstream
and downstream variables respectively and the overline and prime refer to mean
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and fluctuating variables respectively.

Since the acoustic pressure is expressed in pascals whereas the acoustic velocity
is expressed in meters per second, the coefficients of the ATM in Eq. (7.54)
are not dimensionless. One way to solve this issue is to divide the acoustic
pressure by the characteristic impedance z = ρc at the same axial location.
The resulting Dimensionless Acoustic Transfer Matrix (DATM) denoted by M̃
is defined in Eq. (7.55).

Definition of the Acoustic Transfer Matrix (ATM)

(
p′d
u′d

)
=

(
M(1, 1) M(1, 2)
M(2, 1) M(2, 2)

)

︸ ︷︷ ︸
M

×
(
p′u
u′u

)
(7.54)

Definition of the Dimensionless Acoustic Transfer Matrix (DATM)

(
p′d/zd
u′d

)
=

(
M̃(1, 1) M̃(1, 2)

M̃(2, 1) M̃(2, 2)

)

︸ ︷︷ ︸
M̃

×
(
p′u/zu
u′u

)
(7.55)

The harmonic convention has an impact on the ATM/DATM expressions pre-
sented thereafter. It is also worth mentioning that other acoustic representa-
tions such as Scattering Matrices or Mobility Matrices are equivalent to Trans-
fer Matrices (Schuermans et al. 2000; Fischer et al. 2006). Nevertheless, these
alternative formalisms are not used in the present work.

7.4.2 Transfer Matrix of a straight duct in a uniform low-Mach
non-reactive flow

The case of a one-dimensional straight duct containing a uniform low-Mach
non-reactive flow, as sketched in Fig. 7.3, is first examined. The acoustic pres-
sure and acoustic velocity inside the duct at any axial location are given by
Eqs. (7.33) and (7.34) respectively.

The acoustic pressure and acoustic velocity are expressed at the duct inlet (at
x = 0) and outlet (at x = l). All variables related to these locations are denoted
by the subscripts u and d respectively. The downstream acoustic variables are
then expressed as functions of the upstream acoustic variables:
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Figure 7.3: Sketch of a straight duct containing a uniform low-Mach non-reactive
flow. The acoustic pressure and acoustic velocity at the duct inlet at x = 0 are denoted
by p′u and u′u respectively. The acoustic pressure and acoustic velocity at the duct
outlet at x = l are denoted by p′d and u′d respectively.

p′d = cos(kl)p′u ∓ ρci sin(kl)u′u with e±iωt (7.56)

u′d = ∓ i sin(kl)
ρc

p′u + cos(kl)u′u with e±iωt (7.57)

From Eqs. (7.56) and (7.57), the ATM and DATM associated with sound waves
propagating in a uniform low-Mach non-reactive flow within a straight duct are
derived, as expressed in Eqs. (7.58) and (7.59) respectively (Paschereit and Po-
lifke 1998; Polifke et al. 2001).

ATM/DATM of a straight duct in a uniform low-Mach non-reactive

flow

M =

(
cos(kl) ∓iz sin(kl)

∓i sin(kl)/z cos(kl)

)
with e±iωt (7.58)

M̃ =

(
cos(kl) ∓i sin(kl)

∓i sin(kl) cos(kl)

)
with e±iωt (7.59)

ATM/DATM of a nearly compact straight duct in a uniform

low-Mach non-reactive flow

M =

(
1 ∓izkl

∓ikl/z 1

)
with e±iωt (7.60)

M̃ =

(
1 ∓ikl

∓ikl 1

)
with e±iωt (7.61)
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Equations (7.58) and (7.59) are valid for all Helmholtz numbers. It is interest-
ing to derive the low-frequency limit of these equations, valid for low Helmholtz
numbers only, which correspond to the solution for nearly compact systems.
The Taylor series expansions of Eqs. (7.58) and (7.59) are thus performed up
to the first order and presented in Eqs. (7.60) and (7.61), which correspond
respectively to the ATM and DATM associated with sound waves propagating
in a uniform low-Mach non-reactive flow within a nearly compact straight duct.

The general approach detailed in Sec. 7.4.4 may also be used to derive these
ATM/DATM valid for low Helmholtz numbers.

7.4.3 Transfer Matrix of a straight duct in a low-Mach non-
reactive flow with a linear mean axial temperature gra-
dient

The expression for the acoustic pressure and acoustic velocity in a low-Mach
non-reactive flow with a linear mean axial temperature gradient is given by
Eqs. (7.37) and (7.38). These equations are expressed at x = lu, corresponding
to the element entrance, and x = ld, corresponding to the element exit. These
two locations are prescribed by the relation c2 = βx, as explained in Sec. 7.2.2.
While not absolutely necessary, two additional parameters are introduced in
order to simplify the expressions of the ATM/DATM:

ιu = 2ω

√(
lu
β

)
(7.62)

ιd = 2ω

√(
ld
β

)
(7.63)

where ιu and ιd are two dimensionless parameters that are reminiscent of re-
duced frequencies. The acoustic pressure p′d and acoustic velocity u′d at the

ATM/DATM of a straight duct in a low-Mach non-reactive flow with a linear

mean axial temperature gradient

M =




Y1(ιu)J0(ιd)− J1(ιu)Y0(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)

∓izu Y0(ιu)J0(ιd)− J0(ιu)Y0(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)

∓ i
zd
Y1(ιu)J1(ιd)− J1(ιu)Y1(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)

zu
zd
J0(ιu)Y1(ιd)− Y0(ιu)J1(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)


 (7.64)

M̃ =
zu
zd




Y1(ιu)J0(ιd)− J1(ιu)Y0(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)

∓i Y0(ιu)J0(ιd)− J0(ιu)Y0(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)

∓i Y1(ιu)J1(ιd)− J1(ιu)Y1(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)

J0(ιu)Y1(ιd)− Y0(ιu)J1(ιd)
Y1(ιu)J0(ιu)− Y0(ιu)J1(ιu)


 (7.65)
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element exit are then expressed in terms of the acoustic pressure p′u and acous-
tic velocity u′u at the element entrance. The corresponding ATM/DATM are
subsequently derived for both harmonic conventions e±iωt in Eqs. (7.64) and
(7.65).

7.4.4 Transfer Matrix of a compact area change in a low-Mach
non-reactive flow

The impact of a compact area change traversed by a low-Mach non-reactive
flow is now investigated. Equations (7.14)-(7.16) lead to the jump conditions
for the mean density, temperature and pressure:

ρd = ρu (7.66)

T d = T u (7.67)

pd = pu (7.68)

The jump condition for the mean flow velocity is then obtained by integrating
Eq. (7.20) over the control volume (V) bounded by a surface (S), as depicted
in Fig. 7.4.

Adud = Auuu (7.69)

The jump conditions for the acoustic variables are then obtained by integrating
the linearized mass conservation given by Eq. (7.23) and the linearized momen-
tum conservation given by Eq. (7.28) over the control volume (V).

The integrated mass conservation yields:

∫

(V)
∇ · u′dV = 0 (7.70)

Using the divergence theorem, Eq. (7.70) becomes:

∮

(S)
u′ · dS = 0 (7.71)

The surface (S) can be decomposed into three smaller surfaces corresponding
to the inlet Au, lateral surface (Σ) and outlet Ad:

∫

Au

Auu
′
u · nu +

∫

(Σ)
u′ · dS+

∫

Ad

Adu
′
d · nd = 0 (7.72)
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Figure 7.4: Sketch of a compact area change in a low-Mach non-reactive flow. The
subscripts u and d denote the upstream and downstream variables respectively. The
control volume (V) retained here is bounded by a surface (S) which can be split into
three smaller surfaces: Au, (Σ) and Ad.

The second term in Eq. (7.72) is equal to zero because the lateral surface (Σ)
is a rigid non-porous boundary which implies that u′ = 0 on this surface. The
first and third terms in Eq. (7.72) are further simplified by assuming that the
acoustic fields are one-dimensional in these regions. In the end, the jump con-
dition for the acoustic velocity across a compact area change in a low-Mach
non-reactive flow is given by (Poinsot and Veynante 2005):

u′dAd − u′uAu = 0 (7.73)

The second step is to consider the integrated momentum conservation over the
control volume (V):

∫

(V)
∇p′dV = 0 (7.74)

Using the gradient theorem and splitting (S) into Au, (Σ) and Ad, the following
expression is obtained:

∫

Au

p′uAunu +

∫

(Σ)
p′dS+

∫

Ad

p′dAdnd = 0 (7.75)

Using the system symmetries, the integral over the lateral surface (Σ) reduces
to an integral over the area corresponding to the cross section jump Ad − Au,
where the acoustic pressure is p′u (Dowling and Stow 2003). Hence, the second
term in Eq. (7.75) can be approximated by:

∫

(Σ)
p′dS ≃ −p′u (Ad −Au)nd (7.76)
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Finally, the jump condition for the acoustic pressure across a compact area
change in a low-Mach non-reactive flow (Poinsot and Veynante 2005) is ob-
tained from Eqs. (7.75) and (7.76):

p′d − p′u = 0 (7.77)

From Eqs. (7.54), (7.73) and (7.77), the associated ATM/DATM is given by
(Paschereit and Polifke 1998; Poinsot and Veynante 2005; Fischer et al. 2006):

ATM/DATM of a compact area change in a low-Mach non-reactive

flow

M = M̃ =

(
1 0
0 Au/Ad

)
(7.78)

Equation (7.78) is valid for both harmonic conventions (e±iωt). The ATM and
DATM expressions for a compact area change in a low-Mach non-reactive flow
are both given by Eq. (7.78) since the associated matrix is diagonal.

7.4.5 Transfer Matrix of a non-compact area change in a low-
Mach non-reactive flow

In this section, acoustic waves propagating in a low-Mach non-reactive flow
within a duct with a slowly-varying cross section area A(x) are investigated.
The propagation of acoustic waves within such a system is described using
Webster’s equation (Rienstra and Hirschberg 2016):

∂2p′

∂x2
− 1

c2
∂2p′

∂t2
+
d (logA)

dx

∂p′

∂x
= 0 (7.79)

In this section, the function log refers to the natural logarithm. When harmonic
waves are considered, Eq. (7.79) becomes:

k2p′ω +
d2p′ω
dx2

+
1

A

dA

dx

dp′ω
dx

= 0 (7.80)

where k = ω/c is the wave number. Based on Eq. (7.80) and introducing λ the
acoustic wavelength and L the characteristic length of variation of A(x), three
distinct cases are possible:
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• λ ≪ L : A(x) varies very slowly along the x-axis. The third term in
Eq. (7.80) vanishes and the results presented in Sec. 7.4.2 apply.

• λ≫ L : A(x) varies very quickly along the x-axis. The system is compact
and the results presented in Sec. 7.4.4 apply.

• λ ∼ L : All terms in Eq. (7.80) have to be considered.

In that last case, another assumption is needed in order to derive an explicit
expression for the acoustic pressure and acoustic velocity inside the system. It
is assumed here that the expression of A(x) is given by:

A(x) = A0e
2bx (7.81)

where b is a positive or negative constant. Using this expression with Eq. (7.80)
leads to:

d2p′ω
dx2

+ 2b
dp′ω
dx

+ k2p′ω = 0 (7.82)

The general solution of this equation is:

p′ω = Aωe
−bxeik•x +Bωe

−bxe−ik•x (7.83)

where Aω and Bω are two complex integration constants and k• =
√
k2 − b2.

The acoustic velocity is then obtained using Eqs. (7.27) and Eq. (7.83):

u′ω = ∓ 1

ρω

[
(k• + bi)Aωe

−bxeik•x − (k• − bi)Bωe
−bxe−ik•x

]
(7.84)

The acoustic pressure p′d and acoustic velocity u′d at the element outlet (x = l)
are expressed in terms of the acoustic pressure p′u and acoustic velocity u′u at
the element inlet (x = 0) using Eqs. (7.83) and (7.84), thus leading to the
expressions of the ATM/DATM of a non-compact exponential area change in a
low-Mach non-reactive flow for both harmonic conventions (e±iωt) in Eqs. (7.85)
and (7.86).

It is worth noting that imposing b = 0 in Eqs. (7.85) and (7.86) leads to
Eqs. (7.58) and (7.59) that describe sound wave propagation in a straight duct
with a constant cross section area.
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ATM/DATM of a non-compact exponential area change in a low-Mach

non-reactive flow

M = e−bl




cos(k•l) +
b
k•

sin(k•l) ∓ iρω
k•

sin(k•l)

∓ i
ρω (k• +

b2

k•
) sin(k•l) cos(k•l)− b

k•
sin(k•l)


 (7.85)

M̃ = e−bl



cos(k•l) +

b
k•

sin(k•l) ∓ ik
k•

sin(k•l)

∓ i
k
(k• +

b2

k•
) sin(k•l) cos(k•l)− b

k•
sin(k•l)


 (7.86)

7.4.6 Transfer Matrix of a compact perforated plate traversed
by a high-Reynolds flow

A single perforation or an array of perforations traversed by a high-Reynolds
flow generate an acoustic pressure drop due to the interaction between vortical
structures and sound waves (Strutt and Rayleigh 1878; Howe 1979; Scarpato
et al. 2013). In that case, the acoustic pressure p′d downstream the perforation
is different from the acoustic pressure p′u upstream the perforation.

The Rayleigh conductivityKr of a compact aperture (Strutt and Rayleigh 1878;
Howe 1979; Scarpato et al. 2013) relates the rate of change of volumetric flow
rate fluctuations ∂V̇ ′/∂t inside the aperture to the acoustic pressure drop across
the aperture:

ρ
∂V̇ ′

∂t
= −Kr

(
p′d − p′u

)
(7.87)

The Reynolds number is assumed to be sufficiently large to neglect viscous ef-
fects except at the aperture rim, where unsteady vortical structures are shedded
periodically (Howe 1979). Acoustic waves interact with these vortical structures
convected away from the rim, thus accounting for the non-zero acoustic pressure
drop across the aperture. As a consequence, when vorticity is neglected, the
results obtained in Sec. 7.4.4 are applicable, leading to a zero acoustic pressure
drop across the aperture.

The second jump condition is in this case the continuity of the acoustic volu-
metric flow rate:

Auu
′
u = Adu

′
d (7.88)
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Figure 7.5: Sketch of a perforated plate consisting of N identical evenly-distributed
circular apertures of radius a traversed by a high-Reynolds flow and located at a com-
pact area change. (Left): Original geometry - (Right): Equivalent geometry.

The model retained for the Rayleigh conductivity Kr, called Howe’s model,
accounts for both the acoustic dissipation and the inertia of the fluid inside
the perforation (Howe 1979). Howe’s model was initially derived for a sin-
gle circular aperture located inside a constant area duct (Strutt and Rayleigh
1878; Howe 1979). However, it can be extended to a collection of N identical
non-interacting circular apertures of radius a evenly distributed over a plate
located at a compact area change, as depicted in Fig. 7.5-(Left) (Howe 1979;
Luong et al. 2005; Scarpato et al. 2013).

An equivalent geometry preserving the acoustic properties of the perforated
plate is subsequently defined, as shown in Fig. 7.5-(Right). Assuming that the
acoustic waves are harmonic and replacing V̇ ′ in Eq. (7.87) by its explicit ex-
pression, the acoustic pressure jump across the perforated plate is obtained:

p′d = p′u ∓ iωρAu

NKr
u′u (7.89)

The Rayleigh conductivity Kr depends on the harmonic convention (Gloer-
felt 2009). The Rayleigh conductivity Kr⊕ obtained with the e+iωt convention
is the complex conjugate of Kr⊖ obtained with the e−iωt convention. From
Eqs. (7.88) and (7.89), the ATM/DATM of a compact perforated plate tra-
versed by a high-Reynolds flow are derived in Eqs. (7.90) and (7.91).

For an infinitely thin perforated plate, the Rayleigh conductivity according to
Howe’s model is given by (Howe 1979):

Kr⊖ = 2aζ (7.92)
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ATM/DATM of a compact perforated plate traversed by a

high-Reynolds flow

M =

(
1 ∓iωρAu/(NKr)

0 Au/Ad

)
with e±iωt (7.90)

M̃ =

(
1 ∓ikAu/(NKr)

0 Au/Ad

)
with e±iωt (7.91)

where ζ is a function of a Strouhal number St = ωa/uc only, as expressed in:

ζ = 1 +
π
2 I1(St)e

−St − iK1(St) sinh(St)

St
[
π
2 I1(St)e

−St + iK1(St) cosh(St)
] (7.93)

where I1 and K1 are modified Bessel functions of the first and second kind
respectively and of order 1. The velocity uc is the speed at which vortical
structures are convected away from the apertures’ rim. Usually, uc is assumed
to be equal to the average velocity u inside the holes (Scarpato et al. 2013).

A modified version of this model for a perforated plate with a finite thickness
L is given by (Jing and Sun 2000; Luong et al. 2005):

Kr⊖ = 2aζL (7.94)

where ζL is expressed as:

ζ−1
L = ζ−1 +

2L

πa
(7.95)

7.4.7 Transfer Matrix of a compact perforated plate traversed
by a high-Reynolds flow - Non-linear extension

The ATM/DATM of a compact perforated plate traversed by a high-Reynolds
flow, as presented in Sec. 7.4.6, is linear because it was assumed that the convec-
tion velocity uc at which vortical structures are swept away from the apertures
is equal to u. However, for large acoustic forcing levels |u′|/u ≥ 1, it was shown
in a previous investigation that the convection speed of the vortical structures
generated at the rim of the aperture is not equal to the mean flow velocity
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Figure 7.6: Evolution of the convection velocity of the vortical structures as a function
of the forcing level |u′|/u in the perforation for a forcing frequency f = 400 Hz. The
average convection velocity uc deduced from direct numerical simulations (dots) for
each forcing amplitude is compared to the velocity ratio in the orifice (u + |u′|)/u
(dashed line and black squares), and to the model uc = u+ C|u′| with C = 1/3 (solid
line). Reproduced from Scarpato (2014).

inside the aperture (Scarpato 2014). Thus, the acoustic response of the perfo-
rated plate deviates from the linear model for large acoustic forcing levels.

A nonlinear extension of the previous linear model for high acoustic forcing lev-
els is based on a modified expression for the convection velocity uc (Scarpato
2014):

uc = u+K|u′| (7.96)

where K is a constant fixed to 1/3 (Scarpato 2014) and u′ is the acoustic
velocity inside the holes. This heuristic model is based on experiments and
simulations where the convection velocity of the vortical structures generated
at the rim of the apertures was assessed for low forcing levels |u′|/u ≪ 1 and
large forcing levels |u′|/u ≥ 1 (Scarpato 2014). Figure 7.6 demonstrates that
the optimal value for K is 1/3 based on these simulations (Scarpato 2014).

A consequence of the previous analysis is that the Strouhal number St is now
a function of both the angular frequency ω and forcing amplitude |u′|:

St(ω, |u′|) = ωa

u+K|u′| (7.97)
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The Rayleigh conductivity, given by Eq. (7.92) for infinitely thin plates and
Eq. (7.94) for plates with a finite thickness, and the associated ATM/DATM,
given by Eqs. (7.90) and (7.91) respectively, are then written as functions of
the angular frequency ω and forcing amplitude |u′| following Eq. (7.97).

This approach is a simple extension of the linear model presented in Sec. 7.4.6,
as opposed to more complex nonlinear approaches (Cummings 1984). As a
consequence, the Acoustic Transfer Matrix formalism, which is intrinsically
linear, may be still be used when large acoustic forcing levels are considered.

7.5 Conclusion

The propagation of linear acoustic waves in a low-Mach non-reactive flow was
investigated in this chapter. The notion of Dimensionless Acoustic Transfer
Matrix (DATM) was introduced and the DATM of various acoustic elements
such as a straight duct in a uniform flow, a compact area change or a perfo-
rated plate traversed by a high-Reynolds flow were derived. It is now worth
investigating the propagation of linear acoustic waves in a low-Mach reactive
flow.





Chapter 8

Linear Acoustics: low-Mach

Reactive flow

The linearized conservation equations describing sound wave propaga-
tion in a low-Mach reactive flow are derived in this chapter. The jump
conditions for the acoustic pressure and acoustic velocity across a com-
pact lean flame stabilized in a low-Mach flow within a straight duct are
subsequently derived.

8.1 Linearized conservation equations

8.1.1 Assumptions

A few assumptions are made in order to derive the equations describing sound
wave propagation in a low-Mach reactive flow. It is reminded that the mean
physical variables are represented with an overline (x) whereas the fluctuating
physical variables are represented with a prime (x′). Vectors will be denoted
by bold characters for the sake of readability. The initial hypotheses related to
the nature of the flow and acoustic perturbations are listed below with bullets
(•) and circles (◦) respectively:

• The mean flow variables are time-independent.

• The flame is a non-moving volumetric heat source q̇.

• The fluid is an ideal gas.

• Body forces are neglected.

• Viscosity effects are neglected: µ = 0.

• Thermal conduction and radiation are neglected.
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• The flow has a low Mach number M = u/c≪ 1.

◦ Acoustic sources other than the unsteady flame are not considered.

◦ Acoustic perturbations are linear.

8.1.2 Conservation equations

The conservation equations for a reactive flow where body forces, viscous forces
and thermal diffusion and radiation are neglected are (Poinsot and Veynante
2005):

Mass conservation

∂ρ

∂t
+∇ · (ρu) = 0 (8.1)

Momentum conservation

ρ
∂u

∂t
+ ρu · ∇u = −∇p (8.2)

Energy conservation

ρcp

(
∂T

∂t
+ u · ∇T

)
= q̇ +

∂p

∂t
+ u · ∇p (8.3)

As opposed to Chapter 7, the flow is not isentropic because of the flame. An-
other expression of the energy conservation is thus employed in this chapter.

Each of the physical variables in Eqs. (8.1)-(8.3) can be written as the sum of
a mean flow variable and an acoustic perturbation (Morse and Ingard 1968;
Candel and Poinsot 1988). This decomposition is presented explicitly below:

p = p+ p′ (8.4)

u = u+ u′ (8.5)

ρ = ρ+ ρ′ (8.6)

T = T + T ′ (8.7)

cp = cp + c′p (8.8)

cv = cv + c′v (8.9)

Even though cp and cv are functions of the gas temperature, their variations
are limited, especially since the acoustic perturbations are linear which implies
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that |T ′|/T ≪ 1. Therefore, c′p and c′v are neglected in the remainder of this
work.

It should be noted that even though the flow has a low Mach number, the mean
flow velocity u cannot be neglected because that would imply that the mean
volumetric heat release rate q̇ is equal to zero.

8.1.3 Constitutive equations

By analogy with the non-reactive case presented in Chapter 7, dimensional
analysis is employed to assess the relative importance of each term in the fol-
lowing derivations. The constitutive equations for the mean flow are:

p = ρrT (8.10)

γp = ρc2 (8.11)

γrT = c2 (8.12)

pρ−γ = es/cv (8.13)

where Eq. (8.10) is the ideal gas law, Eq. (8.11) is the expression of sound speed
in an ideal gas, Eq. (8.12) is obtained by combining the first two equations and
Eq. (8.13) is the expression of the entropy of an ideal gas.

On the other hand, the acoustic variables are linked through the following equa-
tion:

p′ = rTρ′ + ρrT ′ (8.14)

Equation (8.14) comes from the linearized ideal gas law (Candel and Poinsot
1988; Crighton et al. 1992).

The following estimate is also used in this chapter (Hirschberg and Rienstra
2004):

p′ ∼ ρcu′ (8.15)

8.1.4 Linearized mass conservation

Following the procedure introduced in Sec. 7.1.4 and keeping terms of order 0
only, the mass conservation for the mean flow is obtained:

∇ · (ρu) = 0 (8.16)
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The linearized mass conservation in a low-Mach reactive flow is then obtained
by considering terms of order 1. The resulting equations for compact and non-
compact systems are expressed in Eqs. (8.17) and (8.18) respectively. These
equations differ from those obtained in Chapter 7 because Eq. (7.17) cannot be
used for a non-homentropic flow.

Linearized mass conservation in a low-Mach reactive flow

∂ρ′

∂t
+∇ ·

(
ρ′u
)
+∇ ·

(
ρu′
)
= 0 (8.17)

Linearized compact mass conservation in a low-Mach reactive flow

∇ ·
(
ρ′u
)
+∇ ·

(
ρu′
)
= 0 (8.18)

8.1.5 Linearized momentum conservation

Equations (8.4)-(8.9) are injected into Eq. (8.2). If terms of order 0 are consid-
ered only, it is found that:

ρu · ∇u︸ ︷︷ ︸
(1)

= −∇p︸ ︷︷ ︸
(2)

(8.19)

In Eq. (8.19), the first term represents the inertial effects of the mean flow
whereas the second term represents the mean pressure gradient effects. Their
relative importance can be assessed by using dimensional analysis. It is found
that (1)/(2) ∼ γM2 ≪ 1 which implies that both terms are equal to zero:

u · ∇u = 0 (8.20)

∇p = 0 (8.21)

Moreover, the linearized momentum conservation is still given by Eq. (7.26).
The dimensional analysis performed in Sec. 7.1.5 still applies and the second
and third terms in Eq. (7.26) are dropped because of the low-Mach flow as-
sumption. Furthermore, if the region of interest is compact, the first term can
also be dropped. In the end, the linearized momentum conservation in the re-
active and non-reactive cases are similar. Equations (8.22) and (8.23) are the
linearized momentum conservation in a low-Mach reactive flow for non-compact
and compact systems respectively.
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Linearized momentum conservation in a low-Mach reactive flow

ρ
∂u′

∂t
= −∇p′ (8.22)

Linearized compact momentum conservation in a low-Mach

reactive flow

∇p′ = 0 (8.23)

8.1.6 Linearized energy conservation

Equations (8.4)-(8.9) are injected into Eq. (8.3). The energy conservation for
the mean flow is obtained by considering terms of order 0 only:

ρcpu · ∇T = q̇ (8.24)

Using Eq. (8.16), this equation can also be expressed as:

∇ ·
(
ρcpTu

)
= q̇ (8.25)

Next, the linearized energy conservation is obtained by repeating the procedure
and considering terms of order 1 only:

ρcp
∂T ′

∂t︸ ︷︷ ︸
(1)

+ ρcpu · ∇T ′

︸ ︷︷ ︸
(2)

+ ρcpu
′ · ∇T

︸ ︷︷ ︸
(3)

+ ρ′cpu · ∇T
︸ ︷︷ ︸

(4)

= q̇′

︸︷︷︸
(5)

+
∂p′

∂t︸︷︷︸
(6)

+u · ∇p′
︸ ︷︷ ︸

(7)

(8.26)

This equation can be further simplified by using dimensional analysis. It is
found that (1)/(3) ∼ He (T ′c)/(Tu′), (6)/(3) ∼ He (γ−1) and (7)/(3) ∼ M (γ−
1). Since the flow is low-Mach, the seventh term in Eq. (8.26) is neglected.
Moreover, if the region of interest is compact, the first and sixth terms may
also be neglected. In the end, the linearized energy conservation in a low-Mach
reactive flow is obtained for compact and non-compact regions of interest, as
expressed in Eqs. (8.27) and (8.28).

Linearized energy conservation in a low-Mach reactive flow

ρcp
∂T ′

∂t
+ ρcpu · ∇T ′ + ρcpu

′ · ∇T + ρ′cpu · ∇T = q̇′ +
∂p′

∂t
(8.27)

Linearized compact energy conservation in a low-Mach reactive flow

ρcpu · ∇T ′ + ρcpu
′ · ∇T + ρ′cpu · ∇T = q̇′ (8.28)
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8.1.7 Combination of the mass and energy conservation

An additional equation combining the linearized mass conservation given by
Eq. (8.17) and the linearized energy conservation given by Eq. (8.27) is now
derived (Poinsot and Veynante 2005).

From Eqs. (8.10), (8.14), (8.16), (8.17) and (8.27), the following equation is
obtained:

cpTρ∇ · u′

︸ ︷︷ ︸
(1)

+
1

γ − 1

∂p′

∂t︸ ︷︷ ︸
(2)

+
γ

γ − 1
u · ∇p′

︸ ︷︷ ︸
(3)

− γ

γ − 1

p′

ρ
u · ∇ρ

︸ ︷︷ ︸
(4)

= q̇′

︸︷︷︸
(5)

(8.29)

It is found that (2)/(1) ∼ He, (3)/(1) ∼ Mγ and (4)/(1) ∼ Mγ. Since the
flow is low-Mach, the third and fourth terms in Eq. (8.29) are neglected. Fur-
thermore, if the region of interest is compact, then the second term is dropped
as well. Given these considerations, two extra equations valid for low-Mach
reactive flows in non-compact and compact regions are respectively given by
Eqs. (8.30) and (8.31).

Linearized equation in a low-Mach reactive flow

∇ · u′ +
1

γp

∂p′

∂t
=
γ − 1

γp
q̇′ (8.30)

Linearized compact equation in a low-Mach reactive flow

∇ · u′ =
γ − 1

γp
q̇′ (8.31)

8.2 Wave equation in a low-Mach reactive flow

In Chapter 7, a wave equation describing sound wave propagation in a low-Mach
non-reactive flow was obtained from the linearized conservation equations. The
same procedure is now applied to the reactive case. By taking the time deriva-
tive of Eq. (8.30) and injecting the linearized momentum conservation given by
Eq. (8.22), and finally using the constitutive equation given by Eq. (8.11), the
wave equation in a low-Mach reactive flow is obtained (Dowling 1995; Nicoud
et al. 2007), as expressed in Eq. (8.32).
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Wave equation in a low-Mach reactive flow

1

ρc2
∂2p′

∂t2
−∇ ·

(∇p′
ρ

)
=
γ − 1

ρc2
∂q̇′

∂t
(8.32)

8.3 Transfer Matrix of a lean compact flame stabi-

lized in a low-Mach flow within a straight duct

The jump conditions across a lean compact flame stabilized in a low-Mach flow
within a straight duct are derived in this section. It is reminded that the sub-
scripts u and d refer to upstream and downstream variables respectively.

The jump conditions for the mean flow variables are obtained by integrating
Eqs. (8.16), (8.21) and (8.25) over the control volume (V) bounded by a surface
(S) as depicted in Fig. 8.1:

ρdud = ρuuu (8.33)

pd = pu (8.34)

cpρuuu
(
T d − T u

)
A = Q̇ (8.35)

ρdT d = ρuT u (8.36)

where Q̇ is the mean heat release rate integrated over the flame volume. Equa-
tion (8.36) is obtained from Eqs. (8.10) and (8.34).

The jump condition for the acoustic pressure is then obtained by integrating
the linearized compact momentum conservation, given by Eq. (8.23), over the
control volume (V). The gradient theorem is then used, yielding the following

(S)

()⊰
p′
u

u′
u

A

p′
d

u′
d

Anu nd

Figure 8.1: Sketch of a compact flame stabilized in a low-Mach flow within a straight
duct. The acoustic pressure and acoustic velocity at the duct inlet are denoted by p′u
and u′u respectively. The acoustic pressure and acoustic velocity at the duct outlet are
denoted by p′d and u′d respectively. The control volume (V) retained here is bounded by
a surface (S).
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equation:

∫

(V)
∇p′dV =

∮

(S)
p′ndS = 0 (8.37)

Using the axisymmetric properties of the control volume depicted in Fig. 8.1,
this equation becomes:

∫

A
p′unudS +

∫

A
p′dnddS = 0 (8.38)

Assuming that the acoustic pressure is uniform in the upstream and down-
stream cross sections, this latest equation leads to the jump condition for the
acoustic pressure across a compact flame stabilized in a low-Mach flow within
a straight duct (Dowling 1995):

p′d = p′u (8.39)

In order to obtain the jump condition for the acoustic velocity, Eq. (8.31) is
integrated over the control volume (V):

∫

(V)
∇ · u′dV =

∫

(V)

γ − 1

γp
q̇′dV (8.40)

The divergence theorem is then applied to the left-hand-side of Eq. (8.40).
Since the mean pressure is a constant, the right-hand-side is simplified by in-
troducing Q̇′, the fluctuating heat release rate integrated over the flame volume:

∮

(S)
u′ · ndS =

γ − 1

γp
Q̇′ (8.41)

As explained in Chapter 7, the acoustic velocity is equal to zero at the duct
inner wall. By further assuming that the acoustic fields are one-dimensional at
the upstream and downstream locations, Eq. (8.41) can be further simplified
(Dowling 1995):

(
u′d − u′u

)
A =

γ − 1

γp
Q̇′ (8.42)

The heat release rate fluctuations Q̇′ can be described using the Flame Transfer
Function F (ω) (Crocco 1951; Crocco 1952; Candel 2002) or its nonlinear ex-
tension, the Flame Describing Function F (ω, |u′u|/uu), defined as (Noiray et al.
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2008):

F (ω, |u′u|/uu) =
Q̇′/Q̇

u′u/uu
(8.43)

Using Eqs. (8.10), (8.35), (8.42) and (8.43), the jump condition for the acoustic
velocity across a lean compact flame stabilized in a low-Mach flow within a
straight duct is obtained:

u′d =

[
1 + F

(
T d

T u

− 1

)]
u′u (8.44)

Equations (8.39) and (8.44) are valid for both harmonic conventions (e±iωt).

The ATM/DATM of a lean compact flame stabilized in a low-Mach flow within
a straight duct (Keller 1995) are then derived from Eqs. (8.39) and (8.44), as
expressed in Eqs. (8.45) and (8.46).

ATM/DATM of a lean compact flame stabilized in a low-Mach flow

within a straight duct

M =

(
1 0

0 1 + F
(
T d/T u − 1

)
)

(8.45)

M̃ =

(
zu/zd 0

0 1 + F
(
T d/T u − 1

)
)

(8.46)

where z = ρc is the characteristic impedance. Once again, Eqs. (8.45) and
(8.46) are valid for both harmonic conventions (e±iωt). If the flame frequency
response is described using a Flame Transfer Function (FTF), the associated
ATM/DATM are linear. On the other hand, if a Flame Describing Function
(FDF) is used, the nonlinearities of the flame acoustic response are accounted
for and the ATM/DATM model is nonlinear.

8.4 Conclusion

The propagation of linear acoustic waves in a low-Mach reactive flow was in-
vestigated in this chapter. The DATM corresponding to a lean compact flame
stabilized in a low-Mach flow within a straight duct was subsequently derived.



Chapter 9

Describing Functions with

Upstream and Downstream

Forcing

The describing functions of confined premixed swirling and non-swirling
flames is explored in this chapter for a large set of forcing levels. In
these experiments, the flame is either forced by an upstream loudspeaker
or by a set of downstream loudspeakers. The experimental setup is
equipped with a hot wire probe and a microphone located in front of
each other, before the swirler. A second microphone is connected to
the combustion chamber backplate. A photomultiplier equipped with an
OH* filter is used to measure the heat release rate fluctuations. The de-
scribing functions between the photomultiplier signal and the different
pressure and velocity reference signals are then analyzed for upstream
and downstream forcing. The describing function measured for a given
reference signal is shown to vary depending on the type of forcing. It
is shown that the Flame Describing Function measured with respect to
the hot wire can be retrieved from the specific impedance at the hot wire
location and the describing function determined with respect to the mi-
crophone located in front of the hot wire. It is then shown that a 1D
acoustic model is able to reproduce the describing function computed
with respect to the microphone inside the injector from the microphone
located at the bottom of the combustion chamber for downstream forcing.
This relation does not hold for upstream forcing because of the acoustic
dissipation across the swirler which is much larger compared to down-
stream forcing for a given forcing level set at the hot wire location.
When the nonlinear acoustic losses in the swirler holes are accounted
for, this reconstruction is satisfactory. Finally, the upstream and down-
stream forcing techniques are found to be equivalent only if the reference
signal is the acoustic velocity in the fresh gases just before the flame.
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9.1 Definition and purpose of describing functions

Coupling an acoustic solver with a Flame Transfer Function (FTF), or its non-
linear extension, the Flame Describing Function (FDF), is a powerful framework
used to predict the thermoacoustic stability of practical combustors at a lim-
ited computational cost (Keller 1995; Dowling and Stow 2003; Sattelmayer and
Polifke 2003; Nicoud et al. 2007; Camporeale et al. 2011; Laera et al. 2017).
In these low-order models, the flame frequency response to acoustic waves is
described by the complex function called FTF and defined as (Candel 2002):

F (ω) =
Q̇′/Q̇

u′/u
(9.1)

where Q̇ denotes the heat release rate generated by the flame and u the velocity
at some location inside the injector. The overline stands for mean conditions
and the prime corresponds to the Fourier component of the signal at the forcing
angular frequency ω.

The FTF can be generalized to take into account the effect of the forcing level
|u′|/u (Dowling 1997; Noiray et al. 2008). In this case, the operator defined in
Eq. (9.1) becomes nonlinear and is called a Flame Describing Function (FDF).
The FDF can then be used to analyze the dynamics of each mode of the com-
bustor and determine the level reached by the acoustic oscillations within the
system. This procedure is applied to the NoiseDyn burner in Chapter 11.

The FDF framework is able to reproduce the nonlinear dynamics of labscale
combustors equipped with swirling injectors (Palies et al. 2011b; Ćosić et al.
2014) and more recently the nonlinear dynamics of annular systems with mul-
tiple flames (Laera et al. 2017). One difficulty is to have a good knowledge of
the FDF covering the frequency range of interest at low and high perturbation
amplitudes (Laera et al. 2017). This requires high efficiency actuation systems
and acoustic forcing can be generated from the upstream (Boudy et al. 2011;
Mirat et al. 2015) or downstream (Hochgreb et al. 2013) sides of the combustor.

Another difficulty is to properly define the reference signal used to compute the
describing function. This reference signal is sometimes defined as the velocity
signal at some location inside the injector (Noiray et al. 2008; Gatti et al.
2017) and sometimes as the velocity signal at the flame location (Schuller et al.
2003b; Birbaud et al. 2007; Durox et al. 2009; Gaudron et al. 2017a). Other
authors use the pressure signal inside the combustion chamber as a reference to
characterize the nonlinear flame response (Schuermans et al. 2006; Noiray and
Schuermans 2013; Ghirardo et al. 2015). However, no systematic comparison
between the describing functions defined with these various reference signals
has been performed so far.
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The aim of this chapter is to measure and establish a link between the various
describing functions based on three different reference signals: 1) The acoustic
velocity before the swirler, measured with a hot wire probe. 2) The acoustic
pressure before the swirler, measured with a microphone located at the same
axial position as the hot wire probe. 3) The acoustic pressure at the bottom
of the combustion chamber, in the hot gases region, also measured with a
microphone. A reconstruction of the describing function with a reference signal
corresponding to the acoustic velocity just before the flame is also attempted.
These measurements are performed for a swirling and a non-swirling flame.

9.2 Measurement of describing functions

Configurations G1 and G1
∅ are used to determine the various describing func-

tions for both types of acoustic forcing in the swirling and non-swirling cases
respectively. The corresponding experimental setup is depicted in Fig. 9.1.
When upstream forcing is applied, a loudspeaker fixed below the tranquilization
box is used to generate harmonic acoustic waves. When downstream forcing
is applied, this bottom loudspeaker is idle. On the other hand, a downstream
element is used to hold two loudspeakers at the top of the exhaust nozzle. This
element is used to generate harmonic acoustic waves when downstream forcing
is applied or is left idle when upstream forcing is applied. A detailed description
of the experimental setup can be found in Chapter 5.

A hot wire probe called HW in Fig. 9.1 is used to determine the mean u0 and
fluctuating u′0 velocity signals at the top of the first convergent nozzle, in the
top-hat region of the velocity profile. A microphone called MHW in Fig. 9.1
measures the fluctuating pressure signal p′0 at the same axial position as the
hot wire probe. A second microphone called MC in Fig. 9.1 and mounted on a
water-cooled waveguide is used to measure the pressure fluctuations p′8 at the
combustion chamber backplate. The small acoustical distortions induced by the
waveguide are corrected through the use of its transfer function. In addition to
the acoustic measurements, a photomultiplier equipped with an interferometric
filter records the OH* chemiluminescence signal, which is assumed to be lin-
early related to the heat release rate (Hurle et al. 1968). More information on
these various diagnostics can be found in Chapter 6.

All time series contain at least 40 oscillation cycles recorded at a sampling rate
fs = 20 kHz. All pressure signals presented in this work are divided by the
characteristic impedance ρc where ρ is the mean gas density and c the mean
speed of sound at the microphone location. By doing so, the same dimension, a
velocity in m/s, is prescribed for the hot wire and normalized microphone sig-
nals thus simplifying the comparison between the various describing functions
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Figure 9.1: Experimental setup used to determine the various describing functions
with upstream and downstream acoustic forcing.

introduced in the following sections. The original expressions can be easily re-
trieved by doing the reverse operation.

The operating conditions retained here correspond to a perfectly premixed
methane/air flame with an equivalence ratio φ = 0.82 and a thermal power of
5.5 kW. The associated bulk velocity at the hot wire location, in a tube of diam-
eter D = 22 mm, is ub = 5.4 m/s. The highest mean velocity umax = 12 m/s is
reached by the flow inside the six swirler injection holes, leading to a maximum
Mach number Mmax = 0.035. The mean pressure drop in the test-rig is deter-
mined with a differential manometer between the plenum and the atmosphere
and is lower than 400 Pa, corresponding to ∆p/p = 0.4%. As a consequence,
the mean pressure inside the burner is considered to be constant and equal to
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the atmospheric pressure.

For each forcing frequency and each forcing level, the different describing func-
tions are deduced from the cross power spectral density Ppa(ω, |u′|/u) between
the photomultiplier signal and an arbitrary signal divided by the cross power
spectral density Pra(ω, |u′|/u) between the reference signal and the same arbi-
trary signal. The reference signals considered here are given by the hot wire
probe (HW), the microphone located inside the injector (MHW) and the mi-
crophone located on the combustion chamber backplate (MC). The arbitrary
signal, oscillating at the forcing frequency, is used as a phase reference. It may
correspond to a physical signal (such as the voltage applied to the loudspeaker
for instance) or to an artificial signal (sine wave at the forcing frequency). The
average values of the photomultiplier signal I and reference signal r are mea-
sured as well. In the end, the describing function is defined as:

F (ω, |u′|/u) = Ppa(ω, |u′|/u)/I
Pra(ω, |u′|/u)/r

(9.2)

Another method can be used to determine a describing function: first, the Fast
Fourier Transform (FFT) of the photomultiplier and reference signals are com-
puted. Then, the Fourier components of these signals at the forcing frequency
ω are exctracted and finally the former coefficient is divided by the latter. This
method is much easier to implement but it is not used in practice because the
corresponding signal-to-noise ratio is usually poor.

9.3 Describing functions based on various reference

signals

Four describing functions based on various reference signals corresponding to
the acoustic pressure or acoustic velocity inside the NoiseDyn burner at several
axial locations are first defined. A sketch of the injector of the NoiseDyn burner
is depicted in Fig. 9.2 along with its associated acoustic equivalent. HW and
MHW are located in section (0). The swirler is comprised between sections (3)
and (6) and the combustion chamber starts in section (8), where MC is placed.
In this chapter, the index j refers to variables assessed in section (j).

The first describing function FHW is defined with respect to the hot wire probe
(HW) signal:

FHW (ω, |u′0|/u0) =
Q̇′/Q̇

u′0/u0
(9.3)

where the fluctuating Q̇′ and average Q̇ heat release rate are assessed at the
same frequency as the fluctuating u′0 and average u0 velocity at the hot wire
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Figure 9.2: Zoomed view of the injector of the NoiseDyn burner and acoustic model
representing the injector dynamics. All dimensions are in mm.

probe location (See Fig. 9.1). The flame nonlinearities are taken into account
by including the forcing level |u′0|/u0 as one of the variables of the describing
function.

The second describing function FMHW is defined with respect to the signal of
the microphone (MHW) located inside the injector, in front of the hot wire
probe:

FMHW (ω, |u′0|/u0) =
Q̇′/Q̇

p′0/p0
(9.4)

where p′0 is the fluctuating pressure signal measured by MHW and p0 is a con-
stant that has the same dimension as p′0. Here, p0 is expressed in m/s, as
explained in the previous section. Without loss of generality, it is taken equal
to the atmospheric pressure divided by the characteristic impedance ρ0c0 at
the hot wire location.

The third describing function FMC is defined with respect to the signal of the
microphone (MC) located at the bottom of the combustion chamber:

FMC(ω, |u′0|/u0) =
Q̇′/Q̇

p′8/p8
(9.5)

where p′8 is the fluctuating pressure signal measured by MC and p8 is a con-
stant that has the same dimension as p′8. The quantity p8 is taken equal to the
atmospheric pressure divided by the characteristic impedance ρ8c8 in the burnt
gases, at the bottom of the combustion chamber.

A fourth describing function FHWC is defined with respect to the acoustic
velocity u′7 at the injector outlet, just before the combustion chamber:

FHWC(ω, |u′0|/u0) =
Q̇′/Q̇

u′7/u7
(9.6)
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where u7 and u′7 are respectively the mean and fluctuating velocity at the in-
jector outlet. This describing function is not measured in the present work but
it is deduced from the previous describing functions using the models described
thereafter.

It is worth recalling that the forcing level is always prescribed at the same axial
location, the hot wire probe location, which explains why the variable |u′0|/u0
is the same for all describing functions in Eqs. (9.3), (9.4), (9.5) and (9.6).

9.4 Relations between the describing functions

The link between FHW and FMHW is straight-forward since the hot wire HW
and the microphone MHW are located in front of each other at the same axial
location. By introducing the specific acoustic impedance Zs(ω) = Z/(ρ0c0) at
the hot wire location, it is easy to show that:

FHW (ω, |u′0|/u0) = Zs(ω)
u0
p0
FMHW (ω, |u′0|/u0) (9.7)

The specific acoustic impedance Zs remains independent of the forcing level
if the acoustic response of the burner upstream the hot wire probe is linear.
This condition was checked for the swirling and non-swirling flames and for up-
stream and downstream acoustic forcing, as shown in Fig. 9.3. Moreover, since
Zs represents the acoustic response of the elements located before the hot wire
probe and thus before the swirler, its frequency response is independent of the
Swirl number, as shown in Fig. 9.3, except for upstream forcing experiments
at high forcing frequencies. In that case, the swirler seems to have a limited
impact on the acoustics of the upstream elements.

Equation (9.7) will be used to check for the consistency of the experimental
measurements in Secs. 9.5 and 9.6.

Two different approaches are used to relate FMC to FMHW and FHW : first, a
simple linear model accounting for the propagation of acoustic waves is derived.
The second model is based on the Dimensionless Acoustic Transfer Matrix
(DATM) formalism and the nonlinear acoustic losses across the swirler are
accounted for. These two models are now described in details.

9.4.1 Linear acoustic model

In order to relate FMC to FMHW and FHW , a link between the acoustic pres-
sure p′8 at the bottom of the combustion chamber and the acoustic variables
p′0 and u′0 at the hot wire location has to be established. The acoustic equiva-
lent of the injector of the NoiseDyn burner is depicted in Fig. 9.2-(Right). It
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Figure 9.3: Specific acoustic impedance Zs as a function of the forcing frequency in
the swirling (Top) and non-swirling (Bottom) cases and for upstream (Left) and down-
stream (Right) acoustic forcing. Results are shown for various forcing levels |u′0|/u0.

comprises eight elements, for which the downstream acoustic variables have to
be related to the upstream acoustic variables. The change in temperature from
Tu = 293 K in the fresh gases region to Tb = 1200 K in the burnt gases region is
also accounted for. It is reminded that the index j refers to variables assessed
in section (j) and that HW and MHW are located in section (0) while MC is
placed in section (8).

In the remainder of this section, it is assumed that the acoustic waves inside the
burner are linear harmonic plane waves propagating in a low-Helmholtz region.
Moreover, the harmonic convention adopted here is e+iωt and all acoustic pres-
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sures are divided by their respective characteristic impedances. The acoustic
model represented in Fig. 9.2-(Right) features three different types of elements.

The first type of acoustic element is purely propagative and described by
Eq. (7.61). The acoustic pressure p′j and acoustic velocity u′j in section (j)
are expressed in terms of the acoustic pressure p′i and acoustic velocity u′i in
section (i) located before (j):

{
p′j = p′i − ikliju

′
i

u′j = u′i − iklijp
′
i

(9.8)

(9.9)

where lij is the length of the element between (i) and (j) in Fig. 9.2. Equa-
tions (9.8) and (9.9) are applied between sections (0) and (1), (2) and (3), (4)
and (5) and finally (6) and (7) in the acoustic model.

The second type of acoustic element corresponds to a sudden cross section area
change without a temperature jump and is described by Eqs. (7.73) and (7.77).
The acoustic pressure p′j and acoustic velocity u′j in section (j) just after the
area change are expressed in terms of the acoustic pressure p′i and acoustic
velocity u′i in section (i), just before the area change:

{
p′j = p′i

Aju
′
j = Aiu

′
i

(9.10)

(9.11)

where Aj denotes the cross section area in (j). Equations (9.10) and (9.11) are
applied between sections (1) and (2), (3) and (4) and finally (5) and (6) in the
acoustic model represented in Fig. 9.2-(Right).

The last type of element is a sudden cross section area change combined with a
jump in temperature between sections (i) and (j). It is a very simple model of
a compact flame located at a sudden area change and it is applied between sec-
tions (7) and (8) in the acoustic model. The corresponding jump conditions are:

{
zjp

′
j = zip

′
i

Aju
′
j = Aiu

′
i

(9.12)

(9.13)

where zi = ρici and zj = ρjcj are the characteristic acoustic impedances in
sections (i) and (j) respectively. Using Eqs. (9.8)-(9.13) and keeping terms of
order He only, it is possible to relate the acoustic pressure p′8 in section (8) to
the acoustic pressure p′0 and acoustic velocity u′0 in section (0), measured by
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MHW and HW respectively:

p′8 =
√
Tb/Tu

[
p′0 − ikLau

′
0

]
(9.14)

The same procedure is applied to link the acoustic velocity u′7 at the injector
outlet, in section (7), to the acoustic velocity u′0 and acoustic pressure p′0 at
the hot wire location, in section (0):

u′7 = (A1/A6)
(
u′0 − ikLbp

′
0

)
(9.15)

The lengths La and Lb are equivalent lengths that take into account wave prop-
agation inside the injector:

La = l01 + l23

(
A1

A2

)
+ l45

(
A1

A4

)
+ l67

(
A1

A6

)
(9.16)

Lb = l01 + l23

(
A2

A1

)
+ l45

(
A4

A1

)
+ l67

(
A6

A1

)
(9.17)

Using Eqs. (9.4), (9.5) and (9.14), the describing functions FMC and FMHW

are connected by:

FMC(ω, |u′0|/u0) = FMHW (ω, |u′0|/u0)
1

(1− ikLa/Zs)
(9.18)

Using Eqs. (9.3), (9.6) and (9.15), the describing functions FHW and FHWC

are connected by:

FHWC(ω, |u′0|/u0) = FHW (ω, |u′0|/u0)
1

(1− ikLbZs)
(9.19)

The derivation presented in this section is valid at low frequencies only (Rienstra
and Hirschberg 2016), when the Helmholtz number He = kL remains small. In
this work, the maximum frequency investigated is fmax = 500 Hz correspond-
ing to a maximum Helmholtz number He = 0.98. Hence, the previous condition
is respected and Eqs. (9.18) and (9.19) are applicable to the investigated con-
figuration. Furthermore, this maximum Helmholtz number is small enough to
justify the use of the hot wire HW and microphone MHW as reference signals.

Acoustic diffraction at the different jumps in cross section area (Lieuwen 2005),
acoustic dissipation due to viscous dissipation and acoustic dissipation inside
the swirler holes due to the interaction of acoustic waves with vortical structures
(Howe 1998) are not taken into account with this reconstruction. Moreover,
since the mean pressure drop across the setup remains small (∆p/p = 0.4%)
and the Mach number is much smaller than unity (M = 0.035), the mean
pressure drop effects are neglected in this work (Paschereit and Polifke 1998).
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9.4.2 Nonlinear acoustic network model

Two major assumptions were made in order to derive the linear acoustic model
presented in the previous section: first, the injector was assumed to be nearly
compact for the frequency range of interest, and second, all acoustic dissipation
phenomena were neglected. The first assumption is reasonable since the max-
imum Helmholtz number is always lower than 1. On the other hand, acoustic
dissipation may become important, especially inside the swirler channels where
the acoustic velocity and Mach number are maximum. In fact, it is known that
an important source of acoustic damping within the flow comes from the cou-
pling between vortical structures generated in shear layers and acoustic waves
(Lighthill 1952; Howe 1979; Ni et al. 2017). In order to drop these two assump-
tions, a network model based on the Transfer Matrix formalism and accounting
for the acoustic pressure drop across the swirler is now derived.

The concept of Dimensionless Acoustic Transfer Matrix (DATM) used in this
section is introduced in Chapter 7. The test-rig is modeled using acoustical two-
port matrices (Abom 1992). Again, the harmonic convention retained is e+iωt

and all pressure signals are divided by their respective characteristic acoustic
impedances z = ρc in order to get Dimensionless Acoustic Transfer Matrix co-
efficients.

Various types of DATM are necessary in order to model the dynamics of the
injector between section (0) and section (7) or (8) in Fig. 9.2-(Right):

• Transfer Matrices corresponding to a straight duct in a uniform non-
reactive low-Mach flow, modeled with Eq. (7.59) and corresponding to
the regions between sections (0) and (1), (2) and (3) and finally (6) and
(7) in Fig. 9.2-(Right).

• A Transfer Matrix corresponding to a compact area change in a non-
reactive low-Mach flow, modeled with Eq. (7.78) and corresponding to
the region between sections (1) and (2) in Fig. 9.2-(Right).

• A Transfer Matrix corresponding to a compact area change in a low-
Mach flow combined with a temperature jump, corresponding to the
region between sections (7) and (8) in Fig. 9.2-(Right).

• A Transfer Matrix corresponding to a compact perforated plate tra-
versed by a high-Reynolds flow, modeled with Eq. (7.91) and corre-
sponding to the region between sections (3) and (6) in Fig. 9.2-(Right).
The swirler finite thickness is taken into account as well as the nonlinear
effects, as described in Sec. 7.4.7.

These various elements are then combined in order to build two total transfer
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Figure 9.4: Nonlinear acoustic network models representing the injector dynamics
between sections (0) and (7) (Top) and between sections (0) and (8) (Bottom). The
blue and red elements contain fresh and burnt gases respectively.

matrices representing the injector dynamics between section (0) where HW and
MHW record u′0 and p′0 respectively, and section (7) at the injector outlet or sec-
tion (8) where MC records p′8. These two acoustic networks are represented in
Fig. 9.4 where each black box represents an element with an associated transfer
matrix. The blue elements contain fresh gases whereas the red elements contain
burnt gases.

From a mathematical viewpoint, the total transfer matrices M̃07 and M̃08 are
obtained by multiplying the transfer matrices M̃ij associated with each element
located between sections (i) and (j). M̃07 and M̃08 are expressed in Eqs. (9.20)
and (9.21) respectively.

M̃07 = M̃67 M̃36 M̃23 M̃12 M̃01 (9.20)

M̃08 = M̃78 M̃67 M̃36 M̃23 M̃12 M̃01 (9.21)

From the definition of the Dimensionless Acoustic Transfer Matrix given by
Eq. (7.55), the acoustic pressure p′8 at the bottom of the combustion chamber
and the acoustic velocity u′7 at the injector outlet, just before the combustion
chamber, are then related to the acoustic pressure p′0 and the acoustic velocity
u′0 at the hot wire location through the following equations:

p′8 = M̃08(1, 1)p
′
0 + M̃08(1, 2)u

′
0 (9.22)

u′7 = M̃07(2, 1)p
′
0 + M̃07(2, 2)u

′
0 (9.23)

From Eqs. (9.4), (9.5) and (9.22), the describing functions FMC and FMHW are
connected by:
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FMC(ω, |u′0|/u0) = FMHW (ω, |u′0|/u0)
√
Tb/Tu

M̃08(1, 1) + M̃08(1, 2)/Zs

(9.24)

where the specific acoustic impedance Zs is assessed at the hot wire location,
in section (0).

From Eqs. (9.3), (9.6) and (9.23), the describing functions FHW and FHWC are
connected by:

FHWC(ω, |u′0|/u0) = FHW (ω, |u′0|/u0)
A0/A7

M̃07(2, 2) + M̃07(2, 1)Zs

(9.25)

where Zs is also assessed in section (0).

9.5 Describing functions of a premixed confined swirling

flame

9.5.1 Downstream forcing

A first set of experiments is conducted with downstream forcing with the
setup shown in Fig. 9.1 and for a fully premixed confined swirling flame. The
operating conditions are detailed in Chapter 5. The three describing functions
defined previously are extracted from measurements. Results are presented in
Fig. 9.5 with FHW (ω, |u′0|/u0) at the top left, FMHW (ω, |u′0|/u0) at the top
right and FMC(ω, |u′0|/u0) at the bottom left. Finally, the plots at the bottom
right represent FMHW→HW (ω, |u′0|/u0), a reconstruction of FHW (ω, |u′0|/u0)
using data gathered for FMHW (ω, |u′0|/u0) by means of the specific impedance
Zs as expressed in Eq. (9.7). For each describing function, the flame frequency
response is measured for six different forcing levels set at the hot wire location
|u′0|/u0 = 0.10, 0.20, 0.30, 0.40, 0.55 and 0.72 RMS and the top and bottom
plots represent the FDF gain and phase lag respectively.

For all three describing functions FHW , FMHW and FMC , the gain plots
in Fig. 9.5 depend on the forcing level |u′0|/u0 for frequencies comprised
between 180 Hz and 250 Hz. At lower and higher frequencies, the gain remains
independent of the input level |u′0|/u0. Furthermore, the phase lag plots of
these describing functions remain independent of the forcing level over the full
frequency range. This last feature is often observed for fully premixed swirling
flames (Palies et al. 2011a).

Results for FHW (ω, |u′0|/u0) are now compared with FMHW→HW (ω, |u′0|/u0),
the reconstruction obtained from FMHW (ω, |u′0|/u0). Both the gain and phase
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Figure 9.5: Describing functions of a fully premixed confined swirling flame obtained
with downstream forcing for six different forcing levels |u′0|/u0 measured at the hot wire

location. FHW : (Q̇′/Q̇)/(u′0/u0). FMHW : (Q̇′/Q̇)/(p′0/p0). FMC : (Q̇′/Q̇)/(p′8/p8).
FMHW→HW = Zsu0FMHW /p0.

lag plots of FHW and FMHW→HW are identical in Fig. 9.5 for all forcing levels
and all frequencies. It proves that the describing functions FHW (ω, |u′0|/u0)
and FMHW (ω, |u′0|/u0) measured with the hot wire probe and the microphone
installed at the same axial location are fully equivalent as long as the specific
impedance Zs at the hot wire location is known.

The describing functions FMHW (ω, |u′0|/u0) and FMC(ω, |u′0|/u0), respectively
determined with the microphone inside the injector (MHW) and at the bottom
of the combustion chamber (MC), are now compared. The gain plots of FMHW
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Figure 9.6: Describing function of a fully premixed confined swirling flame deter-
mined with microphone MHW (Top-Left) and its associated reconstructions from the
data gathered with microphone MC and the linear (Top-Right) and nonlinear (Bottom)
acoustic models. Results are shown for six forcing levels |u′0|/u0 measured at the hot
wire location and for downstream acoustic forcing.

and FMC feature roughly the same type of evolution in Fig. 9.5 except that the
gain values for FMHW (ω, |u′0|/u0) with the microphone set before the swirler
are about 10 times larger than the ones found for the describing function
FMC(ω, |u′0|/u0) determined with the microphone located in the combustion
chamber. Moreover, there is a slight phase shift between the phase lags
measured for FMHW (ω, |u′0|/u0) and FMC(ω, |u′0|/u0) due to acoustic wave
propagation between the hot wire location and the bottom of the combustion
chamber.
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The next step is to compare the describing function FMHW (ω, |u′0|/u0)
and the associated reconstructions FMC→MHW (ω, |u′0|/u0) obtained from
FMC(ω, |u′0|/u0) using the linear acoustic model given by Eq. (9.18) and the
nonlinear acoustic model given by Eq. (9.24). Results are shown in Fig. 9.6. The
linear acoustic model given by Eq. (9.18) yields an excellent reconstruction for
the gain and phase lag over the entire frequency range and for all forcing levels.
The nonlinear acoustic model predictions are closer to the original describing
function FMHW (ω, |u′0|/u0) but overall, the gain and phase lag predictions are
only slightly improved with respect to the predictions of the linear acoustic
model. Therefore, it is not necessary to include the acoustic pressure losses
across the swirler when the describing function of a fully premixed confined
swirling flame stabilized inside the NoiseDyn burner is determined with down-
stream forcing. It is reminded that these results are obtained with the forcing
level measured by the hot wire probe, upstream the swirler.

9.5.2 Upstream forcing

A second set of experiments is conducted for a fully premixed confined swirling
flame but with acoustic forcing coming from the upstream side. As for the
downstream forcing case, the signals corresponding to the hot wire probe,
microphones and photomultiplier are measured for the same forcing levels,
controlled with the hot wire probe. The describing functions FHW , FMHW

and FMC are determined from these data and plotted in Fig. 9.7. Again, the
plots at the bottom right represent FMHW→HW (ω, |u′0|/u0), the reconstruction
of FHW (ω, |u′0|/u0) using the data from FMHW (ω, |u′0|/u0) and Eq. (9.7).

A common feature between upstream and downstream forcing experiments is
that the phase lag plots of all measured describing functions in Figs. 9.5 and
9.7 are independent of the forcing level at all frequencies. This means that the
describing function phase lag can be safely determined without considering the
effects of the forcing level. Moreover, the phase lag plots of FHW (ω, |u′0|/u0)
coincide for upstream and downstream forcing experiments implying that the
way acoustic forcing is introduced in the system has no impact on the phase
lag plot of the describing function computed with respect to the hot wire signal.

However, there are also differences between the describing functions obtained
with downstream and upstream forcing. The gain plots of FHW (ω, |u′0|/u0)
and FMHW (ω, |u′0|/u0) in Fig. 9.7 now depend on the forcing level |u′0|/u0
for frequencies comprised between 20 Hz and 100 Hz, and between 180 Hz
and 250 Hz while with downstream forcing, the gain plots of FHW (ω, |u′0|/u0)
and FMHW (ω, |u′0|/u0) in Fig. 9.5 depend on the forcing level only between
180 Hz and 250 Hz. This difference comes from the limited low-frequency
range explored with downstream forcing due to technical limitations. Acoustic
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Figure 9.7: Describing functions of a fully premixed confined swirling flame obtained
with upstream forcing for six different forcing levels |u′0|/u0 measured at the hot wire

location. FHW : (Q̇′/Q̇)/(u′0/u0). FMHW : (Q̇′/Q̇)/(p′0/p0). FMC : (Q̇′/Q̇)/(p′8/p8).
FMHW→HW = Zsu0FMHW /p0.

forcing from the downstream side requires much more power than experiments
conducted with upstream forcing, especially at low forcing frequencies, for a
given oscillation level set at the hot wire probe location.

Moreover, the describing functions FMHW (ω, |u′0|/u0) determined with respect
to the microphone in front of the hot wire probe largely differ in terms of
gain and phase lag for downstream and upstream forcing experiments. For
instance, the maximum gain achieved with downstream forcing is around 1200
in Fig. 9.5 compared to 300 with upstream forcing in Fig. 9.7. This is due
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Figure 9.8: Describing function of a fully premixed confined swirling flame deter-
mined with microphone MHW (Top-Left) and its associated reconstructions from the
data gathered with microphone MC and the linear (Top-Right) and nonlinear (Bottom)
acoustic models. Results are shown for six forcing levels |u′0|/u0 measured at the hot
wire location and for upstream forcing.

to the fact that the specific acoustic impedance Zs at the hot wire location
depends on the type of forcing since the acoustic boundary condition at the
hot wire location varies in these two cases. This impedance represents the
acoustic response seen by MHW and HW from all the components located
upstream these sensors when the system is perturbed from the downstream or
upstream sides.

Furthermore, the gain plot of the describing function FMC(ω, |u′0|/u0)
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represented in Fig. 9.7 for upstream acoustic forcing now remains almost
independent of the forcing level for all forcing frequencies. This is again in
contrast with the results presented for FMC(ω, |u′0|/u0) in Fig. 9.5 obtained
for downstream acoustic forcing. Moreover, the evolution of the gain of
FMC(ω, |u′0|/u0) with the forcing frequency significantly differ depending on
the type of forcing. This is due to the difference in acoustic pressure levels
inside the combustion chamber between experiments conducted with upstream
and downstream acoustic forcing. For a given oscillation level measured by
the hot wire probe inside the injector, downstream excitation results in a
much larger pressure oscillation amplitude at the bottom of the combustion
chamber than upstream excitation. Moreover, for upstream forcing, the
acoustic pressure at the bottom of the combustion chamber rapidly drops
towards zero as the forcing frequency decreases thus explaining why the gain
of FMC(ω, |u′0|/u0) rapidly increases at low frequencies.

It is now worth exploring whether the describing functions FHW , FMHW and
FMC can be reconstructed from one another in the case of upstream forcing.
The describing function FHW (ω, |u′0|/u0) and the associated reconstruction
FMHW→HW (ω, |u′0|/u0) deduced from FMHW (ω, |u′0|/u0) and Eq. (9.7) are
again found to be identical for all frequencies and forcing levels in Fig. 9.7.
Determining FHW (ω, |u′0|/u0) or FMHW (ω, |u′0|/u0) is once again completely
equivalent as long as the specific impedance Zs at the hot wire location is
known with precision.

The describing functions FMHW determined with the microphone in front
of the hot wire and FMC determined with the microphone at the bottom
of the combustion chamber are now further examined. The shapes of
FMHW (ω, |u′0|/u0) and FMC(ω, |u′0|/u0) in Fig. 9.7 differ considerably. The
main differences are that FMC(ω, |u′0|/u0) does not depend on the forcing level
|u′0|/u0 and that the peaks observed in all other describing functions are absent
in the gain plot of FMC(ω, |u′0|/u0). In addition, the gain at zero frequency
does not reach a fixed level but rapidly increases. Finally, the phase lag plot
increases as the forcing frequency increases.

Since FMHW (ω, |u′0|/u0) depends on the forcing level in Fig. 9.7, it cannot be
reconstructed from FMC(ω, |u′0|/u0), which does not depend on the forcing
level, and a linear acoustic model. Figure 9.8 shows indeed that the recon-
struction FMC→MHW (ω, |u′0|/u0) of FMHW (ω, |u′0|/u0) from the data gathered
for FMC(ω, |u′0|/u0) and the linear acoustic model given by Eq. (9.18) does
not yield the correct results when the system is acoustically forced from the
upstream side. On the other hand, when the nonlinear acoustic pressure losses
across the swirler are accounted for, the reconstruction FMC→MHW (ω, |u′0|/u0)
of FMHW (ω, |u′0|/u0) from the data gathered for FMC(ω, |u′0|/u0) and the
nonlinear acoustic model given by Eq. (9.24) is satisfactory. The overall shape
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Figure 9.9: Acoustic velocity u′4 inside the swirler channels in section (4) as a func-
tion of the forcing frequency f for a forcing level |u′0|/u0 = 0.10 RMS measured at the
hot wire location for downstream (Left) and upstream (Right) acoustic forcing.

of both the gain and phase lag plots are retrieved accurately, except at low
forcing frequencies, where the number of forcing cycles is limited and hence,
the predictions worsen. The correct evolution of the gain with the forcing level
|u′0|/u0 is also retrieved from the nonlinear network model.

The dynamical state of the system is not symmetric for upstream and
downstream acoustic forcing. This is attributed to the fact that the upstream
and downstream acoustic boundary conditions differ depending on the type of
forcing. As a consequence, the structure and level of the acoustic pressure and
acoustic velocity fields inside the injector and combustion chamber differ for
upstream and downstream forcing. This is exemplified in Fig. 9.9 where the
acoustic velocity u′4 inside the swirler channels is represented for downstream
and upstream forcing for a forcing level |u′0|/u0 = 0.10 RMS prescribed at the
hot wire location. These acoustic velocity signals were obtained from the hot
wire probe signals and propagated to the swirler channel location. The Mach
number of the flow inside the perforations is M4 = 0.035 ≪ 1 which justifies
the low-Mach flow assumption.

Figure 9.9 clearly shows that the acoustic velocity u′4 inside the swirler channels
vastly differ depending on the type of forcing. For upstream forcing experi-
ments, u′4 is 2 to 5 times larger compared to downstream forcing experiments
depending on the forcing frequency. The swirler is essentially a perforated plate
and it is shown in Sec. 7.4.6 that the acoustic pressure drop across a perforated
plate is proportional to u′4. As a consequence, the acoustic pressure drop across
the swirler is much larger for upstream forcing compared to downstream forcing,
where it remains negligible. The linear acoustic network model, used to link
the acoustic variables at the bottom of the combustion chamber to the acous-
tic variables at the hot wire location, is adequate in the case of downstream
forcing. On the other hand, a more complex network model accounting for the
nonlinear acoustic losses at the swirler holes is needed in the case of upstream
forcing to effectively link the acoustic variables across the injector. This result
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Figure 9.10: Reconstructed describing function of a fully premixed confined swirling
flame with respect to the acoustic velocity at the injector outlet, just before the combus-
tion chamber, for six different forcing levels |u′0|/u0 measured at the hot wire location
for upstream forcing (Top) and downstream forcing (Bottom) using the linear (Left)
and nonlinear (Right) acoustic models.

depends on the detailed burner geometry and on the acoustic boundary condi-
tions obtained for upstream and downstream acoustic forcing experiments. As
a consequence, this conclusion may not be valid for other acoustic boundary
conditions or for a different burner.

9.5.3 Discussion

The experiments conducted with a fully premixed confined swirling flame re-
vealed that the FDF FHW (ω, |u′0|/u0) based on the acoustic velocity measured
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with a hot wire probe inside the injector can be determined with upstream
or downstream acoustic forcing. However, there are slight differences between
results for FHW in Fig. 9.5 and those shown in Fig. 9.7. Both methods yield
the same results for the phase lag at all frequencies and velocity modulation
amplitudes. The gain plots are also the same for forcing frequencies lower
than 220 Hz. Differences appear in the high frequency region. The FDF gain
plot rapidly drops below unity for f > 220 Hz and is strongly attenuated with
gains lower than 0.5 when f > 270 Hz in the case of downstream forcing.
When the flame is modulated from the upstream side, the FDF gain remains
relatively large and above 0.5 in Fig. 9.7 up to f > 440 Hz at the low forcing
levels |u′0|/u0 = 0.1 and 0.2 RMS.

This effect can be counterbalanced by reconstructing the describing functions
FHWC(ω, |u′0|/u0) defined with respect to the acoustic velocity at the injector
outlet, in section (7), from FHW (ω, |u′0|/u0) using the linear and nonlinear
acoustic models, corresponding respectively to Eqs. (9.19) and (9.25). In that
case, the match between the plots corresponding to upstream and downstream
forcing in Fig. 9.10 is almost perfect for all frequencies and all forcing levels.
It should also be noted that the linear and nonlinear models predict almost
the same describing function FHWC(ω, |u′0|/u0), even for upstream forcing,
as the nonlinear acoustic losses across the swirler mainly affect the acoustic
pressure. It is confirmed that the describing function defined with respect to
the acoustic velocity at the injector outlet right under the flame is the only
describing function that is fully independent of the type of forcing (e.g. of the
acoustic boundary condition) (Truffin and Poinsot 2005).

As a consequence, the acoustic velocity at the injector outlet is the correct ref-
erence signal when computing the describing function of a fully premixed con-
fined swirling flame. The reference signal may be chosen at a certain distance
from the flame provided that two conditions are respected: 1) The distance
between the reference signal and the flame should be compact with respect
to the acoustic wavelengths investigated and 2) There should be no source of
acoustic damping between the reference signal location and the flame location.
When a reference signal located further away from the flame is used, or when
a significant acoustic pressure drop is present between the reference signal lo-
cation and the flame location, both the acoustic pressure and acoustic velocity
need to be considered along with an acoustic model of the burner in order to
reconstruct the acoustic velocity at the flame location. If this reconstruction is
not performed, then the FDF associated with a reference signal other than the
acoustic velocity at the flame location depends on both the amplitude of the
acoustic velocity and that of the acoustic pressure.
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Figure 9.11: Describing functions of a fully premixed confined non-swirling flame
obtained with downstream forcing for three different forcing levels |u′0|/u0 measured

at the hot wire location. FHW : (Q̇′/Q̇)/(u′0/u0). FMHW : (Q̇′/Q̇)/(p′0/p0). FMC :

(Q̇′/Q̇)/(p′8/p8). FMHW→HW = Zsu0FMHW /p0.

9.6 Describing functions of a premixed confined non-

swirling flame

9.6.1 Downstream forcing

The describing functions of a fully premixed confined non-swirling flame ob-
tained with downstream forcing are presented in Fig. 9.11 with FHW (ω, |u′0|/u0)
at the top left, FMHW (ω, |u′0|/u0) at the top right, FMC(ω, |u′0|/u0) at the
bottom left and the reconstruction FMHW→HW (ω, |u′0|/u0) of FHW (ω, |u′0|/u0)
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Figure 9.12: Describing function of a fully premixed confined non-swirling flame
determined with microphone MHW (Top-Left) and its associated reconstructions from
the data gathered with microphone MC and the linear (Top-Right) and nonlinear (Bot-
tom) acoustic models. Results are shown for three forcing levels |u′0|/u0 measured at
the hot wire location and for downstream forcing.

using the data gathered for FMHW (ω, |u′0|/u0) and Eq. (9.7) at the bottom
right. For each describing function, the flame frequency response is measured
for three different forcing levels set at the hot wire location |u′0|/u0 = 0.10,
0.30 and 0.55 RMS and the top and bottom plots represent the FDF gain and
phase lag respectively.

The gain plots of FHW , FMHW and FMC in Fig. 9.11 depend on the forcing
level |u′0|/u0 for frequencies comprised between 150 Hz and 300 Hz, a frequency
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range much larger compared to the swirling flame case presented in Sec. 9.5.
At lower and higher frequencies, the gain plots remain independent of the
input level |u′0|/u0. On the other hand, the phase lag plots are independent of
the forcing level up to 150 Hz. For larger frequencies, the phase lag changes
more rapidly as the forcing level is lowered.

Once again, the reconstruction FMHW→HW (ω, |u′0|/u0) obtained from
FMHW (ω, |u′0|/u0) and the specific acoustic impedance Zs at the hot wire
location is very accurate for all forcing levels and all forcing frequencies. Hence,
these two describing functions are equivalent for a fully premixed confined
non-swirling flame with downstream forcing as long as the specific impedance
Zs at the hot wire location is known.

The describing functions FMHW (ω, |u′0|/u0) and FMC(ω, |u′0|/u0) are now
compared in Fig. 9.11. The gain plots feature roughly the same type of evolu-
tion except that the maximum gain reached by FMHW (ω, |u′0|/u0) determined
with the microphone set at the hot wire location is about 10 times larger than
the one reached by FMC(ω, |u′0|/u0) determined with the microphone located
at the bottom of the chamber. This feature is also observed for a swirling
flame, as described in Sec. 9.5.

The describing function FMHW (ω, |u′0|/u0) and the associated reconstructions
FMC→MHW (ω, |u′0|/u0) obtained from FMC(ω, |u′0|/u0) and the linear acoustic
model given by Eq. (9.18) or the nonlinear acoustic model given by Eq. (9.24)
are compared in Fig. 9.12. Both the linear and nonlinear acoustic models yield
an excellent reconstruction for the gain and phase lag over the entire frequency
range and for all forcing levels. As a conclusion, it is not necessary to include
the acoustic pressure losses across the swirler when the describing functions
of a fully premixed confined non-swirling flame stabilized inside the NoiseDyn
burner are determined with downstream forcing.

9.6.2 Upstream forcing

The describing functions FHW (ω, |u′0|/u0), FMHW (ω, |u′0|/u0), FMC(ω, |u′0|/u0)
and the reconstruction FMHW→HW (ω, |u′0|/u0) of a fully premixed confined
non-swirling flame obtained with upstream forcing are now presented in
Fig. 9.13. Again, the flame frequency response is measured for three differ-
ent forcing levels set at the hot wire location |u′0|/u0 = 0.10, 0.30 and 0.55 RMS.

Both the gain and phase lag plots of the describing functions differ for swirling
and non-swirling flames. For instance, the phase lag plots corresponding to
a fully premixed confined non-swirling flame presented in Figs. 9.11 and 9.13
depend on the forcing level for forcing frequencies larger than 150 Hz. As
a consequence, the phase lag plot of a describing function corresponding to
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Figure 9.13: Describing functions of a fully premixed confined non-swirling flame
obtained with upstream forcing for three different forcing levels |u′0|/u0 measured at

the hot wire location. FHW : (Q̇′/Q̇)/(u′0/u0). FMHW : (Q̇′/Q̇)/(p′0/p0). FMC :

(Q̇′/Q̇)/(p′8/p8). FMHW→HW = Zsu0FMHW /p0.

a fully premixed confined non-swirling flame cannot be safely determined
without considering the effects of the forcing level. This is in contrast with
the results obtained for a swirling flame, presented in Sec. 9.5. Differences in
the gain shapes are also observed between swirling and non-swirling flames. In
Fig. 9.7, obtained for a swirling flame, the gain of FHW features two narrow
peaks whereas in Fig. 9.13, obtained for a non-swirling flame, the gain of FHW

features only one broad peak.

The phase lag plots of FHW (ω, |u′0|/u0) presented in Figs. 9.11 and 9.13
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Figure 9.14: Describing function of a fully premixed confined non-swirling flame
determined with microphone MHW (Top-Left) and its associated reconstructions from
the data gathered with microphone MC and the linear (Top-Right) and nonlinear (Bot-
tom) acoustic models. Results are shown for three forcing levels |u′0|/u0 measured at
the hot wire location and for upstream forcing.

coincide for upstream and downstream forcing, except in the high-frequency
range where the signal-to-noise ratio is too low to determine the phase lag
accurately. As a consequence, the way acoustic forcing is introduced in
the system has no impact on the phase lag plot of the describing function
computed with respect to the hot wire signal.

There are also remarkable differences between the describing functions
FHW (ω, |u′0|/u0) and FMHW (ω, |u′0|/u0) in Figs. 9.11 and 9.13 obtained with
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downstream and upstream forcing. First, the gain plot of FHW (ω, |u′0|/u0) is
much smoother and features a different shape in the case of upstream forcing
compared to downstream forcing. The same observation is valid for the gain
plot of FMHW (ω, |u′0|/u0), but also for its phase lag plot.

Moreover, the gain plot of the describing function FMC(ω, |u′0|/u0) in Fig. 9.13
obtained with upstream forcing is almost independent of the forcing level for
all forcing frequencies. This is again in contrast with the results presented for
FMC(ω, |u′0|/u0) in Fig. 9.11 that was determined with downstream forcing
experiments. Moreover, the evolution of the gain of FMC(ω, |u′0|/u0) with the
forcing frequency significantly differ depending on the type of forcing. These
observations are similar for a swirling flame, as shown in Sec. 9.5.

The describing function FHW (ω, |u′0|/u0) and the reconstruction
FMHW→HW (ω, |u′0|/u0) deduced from FMHW (ω, |u′0|/u0) and Eq. (9.7)
are again found to be identical for all frequencies and forcing levels in Fig. 9.13.
Once again, determining FHW (ω, |u′0|/u0) or FMHW (ω, |u′0|/u0) is completely
equivalent if Zs is known.

Again, Fig. 9.14 shows that the reconstruction FMC→MHW (ω, |u′0|/u0) of
FMHW (ω, |u′0|/u0) from the data gathered for FMC(ω, |u′0|/u0) and the linear
acoustic model given by Eq. (9.18) does not yield the correct results when
the system is acoustically forced from the upstream side. On the other hand,
when the nonlinear acoustic pressure losses across the swirler are accounted
for, the reconstruction FMC→MHW (ω, |u′0|/u0) from the nonlinear acoustic
model given by Eq. (9.24) retrieves the phase lag plot correctly for all forcing
levels. The correct evolution of the gain with the forcing level |u′0|/u0 is
also retrieved from the nonlinear network model. However, the gain plot is
correctly predicted for |u′0|/u0 = 0.1 and 0.3 RMS only. For high forcing levels,
even the nonlinear acoustic model is unable to accurately predict the gain of
FMHW (ω, |u′0|/u0).

Once again, these results for upstream and downstream acoustic forcing
experiments differ because the structure and level of the acoustic pressure and
acoustic velocity in the combustion chamber and the injection unit depend
on the type of forcing. The linear acoustic network model is sufficient in the
case of downstream forcing. However, in the case of upstream forcing, a more
complex network model accounting for the nonlinear acoustic losses across
the swirler is needed in order to link the acoustic variables through the injector.

These results indicate that despite the very low pressure drop ∆p/p ∼ 0.1%
across the non-swirling injector unit, its acoustic response remains complex and
depends on the way acoustic waves are introduced inside the burner.
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Figure 9.15: Reconstructed describing function with respect to the acoustic velocity
at the injector outlet for a fully premixed confined non-swirling flame and for three
different forcing levels |u′0|/u0 measured at the hot wire location for upstream forcing
(Top) and downstream forcing (Bottom) using the linear (Left) and nonlinear (Right)
acoustic models.

9.6.3 Discussion

The Flame Describing Function FHW (ω, |u′0|/u0) based on the acoustic velocity
measured with a hot wire probe inside the injector can be determined with
upstream (Fig. 9.13) or downstream (Fig. 9.11) acoustic forcing. Nonetheless,
there are disparities between results for FHW in Fig. 9.11 and those shown in
Fig. 9.13. Both methods yield the same phase lag plot at all forcing frequencies
and velocity modulation amplitudes. However, the gain plots vary significantly
depending on the type of forcing.
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Based on the procedure used for a swirling flame in Sec. 9.5, the effect of the
acoustic boundary conditions on the describing functions can be counterbal-
anced by reconstructing the describing functions with respect to the acoustic
velocity at the injector outlet, just before the flame FHW→HWC(ω, |u′0|/u0) from
FHW (ω, |u′0|/u0) and the linear and nonlinear acoustic models, corresponding
to Eqs. (9.19) and (9.25) respectively. The match between the gain and phase
lag plots of FHW→HWC(ω, |u′0|/u0) in Fig. 9.15 corresponding to upstream and
downstream forcing is almost perfect for all frequencies and all forcing levels.
It should also be noted that the linear and nonlinear models predict the same
describing function FHW→HWC(ω, |u′0|/u0), even for upstream forcing.

9.7 Conclusion

It is known that reliable predictions of thermoacoustic instability oscillation
frequencies and limit cycle levels can be achieved by combining the Flame
Describing Function FHW determined with a velocity reference signal with
different types of acoustic solvers (Noiray et al. 2008; Palies et al. 2011b). In
many works, the relation FHW between heat release rate and velocity distur-
bances remains unknown and is difficult to determine in practical combustors.
As a consequence, FHW is often replaced by another relationship between heat
release rate and pressure fluctuations measured in the combustion chamber
and designated by FMC in this work.

The responses of confined premixed swirling and non-swirling flames submitted
to acoustic forcing from the upstream and downstream sides of a combustor
were determined in this chapter for a large set of forcing frequencies and
forcing levels. The swirling injector unit featured a pressure drop ∆p/p ∼ 0.4%
whereas the non-swirling injector unit featured a much smaller pressure drop
∆p/p ∼ 0.1%. Three types of describing functions relating heat release rate
fluctuations to different reference signals were defined. The first reference
signal was the acoustic velocity inside the injector measured by the hot wire
probe set before the swirler, the second reference signal was the acoustic
pressure measured by a microphone set at the same axial location as the hot
wire probe and the third reference signal was the acoustic pressure at the
bottom of the combustion chamber determined with a microphone mounted
on a water-cooled waveguide. The forcing level was in all cases controlled by
the hot wire probe.

For downstream acoustic forcing experiments, the gain plots of these different
describing functions were shown to depend on the forcing level over a certain
frequency range. The phase lag plots were found to remain independent
of the forcing level for swirling flames as opposed to the phase lag plots
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of non-swirling flames which were shown to depend on the forcing level at
high frequencies. Moreover, it was found that all three describing functions
could be reconstructed from one another using a linear acoustic model linking
the acoustic variables at the bottom of the combustion chamber to the
acoustic variables inside the injector. This linear model accounted for acoustic
wave propagation and the effects of sudden area changes but all dissipation
mechanisms were neglected.

For upstream acoustic forcing experiments, the same describing functions were
extracted from measurements. In this case, the describing function defined with
respect to the acoustic pressure measured at the hot wire location could not
be reconstructed from the describing function measured with the microphone
located at the bottom of the combustion chamber through the use of a linear
acoustic model of the injector. In fact, the upstream and downstream acoustic
boundary conditions were shown to vary depending on the type of forcing,
which in turn had an impact on the acoustic fields inside the system. The main
source of acoustic losses in a closed system with rigid walls is known to come
from the coupling between the vortical structures generated by the mean flow
and the acoustic waves (Lighthill 1952; Howe 1979). In the NoiseDyn burner,
a large acoustic pressure drop was shown to be generated across the swirler
because of this coupling in the case of upstream forcing. When this acoustic
pressure drop was taken into account in the model, the describing function
based on the acoustic pressure measured at the hot wire location could be
reconstructed from the describing function based on the acoustic pressure
measured at the bottom of the combustion chamber. On the other hand, when
downstream forcing was applied, the acoustic pressure drop across the swirler
was found to be negligible and hence, a simple linear acoustic model was
able to link these two describing functions accurately. It is emphasized that
these results depend on the detailed burner geometry and acoustic boundary
conditions and as a consequence cannot be generalized to all burner geometries.

It was also checked that for both downstream and upstream acoustic forcing
experiments, the specific acoustic impedance Zs at the hot wire location could
be used to reconstruct the describing function based on the hot wire signal
from the describing function based on the facing microphone signal and vice
versa.

Furthermore, the gain and phase lag of the Flame Describing Function (FDF)
linking heat release rate and velocity fluctuations measured by the hot wire
inside the injector for a fully premixed confined swirling flame were found to be
identical for upstream and downstream acoustic forcing as long as the forcing
frequency was lower than f < 220 Hz. At higher frequencies, both FDF phase
lags still matched, but the FDF gain dropped more rapidly with the forcing
frequency for downstream acoustic forcing than for upstream acoustic forcing.
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The discrepancies between upstream and downstream acoustic forcing were
found to be even more prononced for a fully premixed confined non-swirling
flame. These differences due to distinct acoustic boundary conditions could be
suppressed by considering the reconstructed describing functions with respect
to the acoustic velocity at the injector outlet, which were found to be almost
identical for upstream and downstream forcing experiments at all frequencies
and all forcing levels. This finding is valid for swirling and non-swirling flames.

In the end, the describing functions between heat release rate and acoustic
fluctuations determined with upstream and downstream forcing were shown
to be equivalent as long as the reference signal was the acoustic velocity in
the fresh gases as close as possible to the flame and in the absence of acoustic
damping between the reference signal location and the flame location. For
all other reference signals, such as the acoustic velocity in the injector or
the acoustic pressure anywhere in the system, the upstream and downstream
acoustic forcing methods appeared as non equivalent techniques to deter-
mine the describing function. In that case, the FDF was found to depend
on both the amplitude of the acoustic velocity and that of the acoustic pressure.

These experiments demonstrate that the frequency response of a perturbed re-
acting flow described in terms of heat release rate versus pressure oscillations
inside the combustion chamber depends on the way acoustic forcing is intro-
duced in the system. Differences for the resulting describing functions are due
to the different acoustic pressure and acoustic velocity fields inside the com-
bustion chamber for a given level of velocity oscillation measured inside the
injector. The correct reference signal that should be used when defining de-
scribing functions is the acoustic velocity at the top of the injector, just before
the flame.



Chapter 10

Measurement and Prediction of

Acoustic Transfer Matrices

In this chapter, the Dimensionless Acoustic Transfer Matrix (DATM)
coefficients are determined for a thermoacoustically stable configuration
of the swirling and non-swirling NoiseDyn burner. The impact of the
forcing level needs to be considered as the dynamics of the whole system
is controlled by nonlinearities. The four transfer matrix coefficients are
thus measured for cold flow and reactive conditions for increasing acous-
tic excitation levels. The velocity level is controlled by a hot wire probe
located inside the injector, in a region with a laminar top-hat velocity
profile. The upstream and downstream specific acoustic impedances are
also measured for the different cases explored. Results for the response
of the swirling and non-swirling configurations under cold flow condi-
tions are first presented. In this case, the transfer matrix coefficients
are found to be independent of the forcing level except for the modulus
of the coefficients linking the downstream velocity fluctuations to the
upstream pressure and velocity fluctuations. This behavior is linked to
the nonlinear response of the injector but is not entirely retrieved by the
acoustic network model developed in this work. For reactive conditions,
measurements indicate that all transfer matrix coefficients depend on
the forcing level to a certain extent. The Flame Describing Function,
linking heat release rate fluctuations to velocity fluctuations measured
by the hot wire, is used to reconstruct the transfer matrix through an
acoustic network model. This network model accurately predicts the
trend of the measured coefficients but the impact of the forcing level is
not retrieved. Saturation for reactive conditions is shown to be not only
related to the nonlinear flame response but also to the nonlinear injec-
tor dynamics. Finally, a reconstruction of the FDF using the acoustic
network model along with the hot wire and microphone measurements
is performed.
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10.1 Introduction

As explained in Chapter 9, the Flame Transfer Function (FTF) or its nonlinear
extension, the Flame Describing Function (FDF) can be combined with an
acoustic solver to analyze the thermoacoustic stability of practical combustors
at low computational cost (Keller 1995; Dowling and Stow 2003; Sattelmayer
and Polifke 2003; Nicoud et al. 2007; Camporeale et al. 2011; Laera et al.
2017). This framework can be used to analyze the dynamics of each mode of
the combustor and determine the oscillation frequency and oscillation level
reached by the acoustic variables within the system.

The FDF is a function of the forcing angular frequency ω and acoustic forcing
level |u′|/u (Dowling 1997; Noiray et al. 2008) linking the heat release rate

fluctuations Q̇′/Q̇ to the incoming velocity fluctuations u′/u:

F (ω, |u′|/u) = Q̇′/Q̇

u′/u
(10.1)

Throughout this work, the overline stands for mean conditions while the prime
corresponds to the Fourier component of the signal at the angular frequency
ω.

The predictions obtained with this framework have been successfully compared
to experiments for single swirling injector setups (Palies et al. 2011b; Ćosić
et al. 2014). However, there are only a few analytical FTF expressions
available for canonical flames (Schuller et al. 2003a; Preetham et al. 2008)
and the effects of the forcing level are difficult to consider analytically. As a
consequence, experiments or numerical simulations are used to determine the
FDF of practical and lab scale flames (Noiray et al. 2008; Palies et al. 2011b;
Han et al. 2015).

The effects of the perturbation level remain essentially studied by numerical
means (Krediet et al. 2012; Han et al. 2015) or by combining experimental
and numerical strategies (Silva et al. 2013; Laera et al. 2017). Simulations of
the frequency response of practical swirling flames in industrial combustors
are often limited to a single or a limited set of forcing frequencies due to the
large computational ressources needed for these calculations and the forcing
level is rarely varied (Poinsot 2017). There is a growing effort to reproduce the
FDF over the entire frequency range of interest and for multiple perturbation
amplitudes (Krediet et al. 2012; Han and Morgans 2015; Li et al. 2017).
Simulations of the FDF of a premixed swirling flame in a lab scale burner over
a wide range of forcing frequencies and forcing levels were recently carried
out (Han and Morgans 2015). These data were then used to determine the
combustor stability and the trajectories of the unstable modes when submitted
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to perturbations of increasing amplitudes (Han et al. 2015).

However, simulations aiming at reproducing the FDF remain exceptions and
large deviations are still observed between the simulated flame frequency
responses and the corresponding measurements (Han and Morgans 2015). In
many nonlinear stability analysis, the FDF is then modeled by a heuristic
expression (Noiray and Schuermans 2013; Ghirardo et al. 2015) or determined
by dedicated experimental means (Noiray et al. 2008; Palies et al. 2011b;
Ćosić et al. 2014; Ćosić et al. 2015).

On the experimental side, large actuators are needed to perturb the flow and
reach high forcing levels in the injection unit (Giuliani et al. 2012). Another
difficulty is to determine the flame heat release rate. In fully premixed systems,
it is common to rely on the proportionality between the chemiluminescence
intensity and the combustion intensity (Hurle et al. 1968). The FTF/FDF
can then be determined by an optical setup recording the light emission
from selected intermediate combustion radicals, such as OH* or CH*, which
concentrations are assumed to be proportional to the rate of heat released
by the flame. This method requires an optical access that covers the full
combustion region and as a consequence is often limited to the determination
of FTF/FDF in lab scale setups.

In non premixed systems, where measuring the flame heat release rate is
challenging, or in combustors operating at higher powers with limited access to
the flame region, a purely acoustic method is preferred (Paschereit and Polifke
1998; Paschereit et al. 2002; Fischer et al. 2006; Alemela et al. 2008). In this
framework, the flame frequency response to sound waves is represented by a
2×2 matrix linking the acoustic variables upstream and downstream the flame,
as expressed mathematically in Eq. (7.55). The upstream and downstream
locations should be as close to the flame as possible (Truffin and Poinsot 2005).

This approach was originally developed for non-reactive 1D duct systems
(Munjal 1987; Abom 1992). This method was then used to model a ther-
moacoustic system by representing the flame with a simple time-lag model
(Keller 1995). For a compact flame stabilized in a low-Mach number flow
within a straight duct, the Dimensionless Acoustic Transfer Matrix (DATM)
representing the flame is given by Eq. (8.46). This expression is reproduced
here:

M̃ =

(
zu/zd 0

0 1 + F
(
T d/T u − 1

)
)

(10.2)

where z = ρc is the characteristic impedance of the medium, F is the Flame
Describing Function, and T is the mean gas temperature. The subscripts u
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and d refer to variables upstream and downstream the flame respectively.

The acoustic pressure signals p′d and p′u are divided by their respective char-
acteristic impedances, zd and zu in order to obtain dimensionless coefficients.
In many experimental setups, the acoustic pressure and acoustic velocity
upstream (p′u, u

′
u) and downstream (p′d, u

′
d) the flame cannot be measured

close enough to the combustion region as they need to be determined in
regions of the flow where the waves are planar and in the absence of acoustic
sources (Munjal 1987). Hence, measurements are generally achieved with
a series of microphones located in straight ducts upstream the injector
and downstream the combustion chamber (Paschereit et al. 2002; Fischer
et al. 2006). The drawback is that the distance between the upstream and
downstream measurement locations is no longer compact with respect to sound
waves and a propagation model needs to be considered to reconstruct the
acoustic states just upstream and downstream the flame (Truffin and Poinsot
2005). Additionally, other elements such as smooth or sudden area changes or
elements modeling a pressure drop have to be considered in order to correctly
describe the burner acoustics (Fischer et al. 2006).

Experimental determination of the acoustic transfer matrices of practical
burners is now well mastered (Paschereit and Polifke 1998; Schuermans et al.
2000). The first measurements of the modulus and phase of the four coefficients
of the transfer matrix for cold and reactive conditions (Paschereit and Polifke
1998; Schuermans et al. 2000; Paschereit et al. 2002) were achieved using a
two-source method (Munjal 1987; Abom 1992) by forcing the flow from the
upstream and downstream sides of the burner with harmonic sound waves.
Due to the high level of noise produced by the turbulent flow inside the burner,
a large number of forcing cycles needs to be recorded to extract the coherent
response of the system. Further efforts were put into modeling and measuring
the transfer matrix coefficients of a swirling burner for cold flow conditions
(Fischer et al. 2006) and reactive conditions (Alemela et al. 2008), with a
good agreement between theory and experiments.

The acoustic transfer matrix representing the flame can also be reconstructed
using numerical simulations. Different strategies were developed and compared
to analytical expressions or experiments with satisfactory agreement (Polifke
et al. 2001; Gentemann and Polifke 2007; Tay Wo Chong et al. 2010;
Tay-Wo-Chong et al. 2012).

Nevertheless, the forcing level is never considered in these experimental or
numerical reconstructions of the flame response or is kept constant at an
arbitrary small value. A consequence of this representation is that the flame
response is assumed to be independent of the forcing amplitude |u′|/u, an
approximation which only holds for small acoustic levels (Dowling 1997;
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Schuller et al. 2003a; Lieuwen 2005; Durox et al. 2009). The way the
forcing level is handled in these previous works is rarely discussed or even
accounted for. For sizable forcing levels, flame and flow nonlinearities have to
be considered in the acoustic network models.

The objective of this chapter is to examine the four acoustic transfer matrix
coefficients between f = 20 Hz and 400 Hz for swirling and non-swirling
injectors operated under cold and reactive conditions and for increasing forcing
levels |u′0|/u0 measured with a hot wire probe located in the injection unit.
For cold flow conditions, experiments are carried out for forcing levels ranging
from |u′0|/u0 = 0.10 to 0.72 RMS and |u′0|/u0 = 0.10 to 0.55 RMS for the
swirling and non-swiling injectors respectively. For reactive conditions, the
same experiments are repeated for forcing levels |u′0|/u0 = 0.10 to 0.55 RMS
for the swirling and non-swirling injectors. Measurements of the acoustic
transfer matrices are then analyzed and compared to a reconstruction based on
the FDF, which is measured in a separate set of experiments with an optical
technique. Finally, a reconstruction of the FDF based on the data obtained
from purely acoustic measurements is attempted.

A description of the acoustic transfer matrix measurement technique is pre-
sented in Sec. 10.2. The acoustic network models used to represent the swirling
and non-swirling injectors for cold and reactive conditions are described in
Sec. 10.3. Measurements of the acoustic transfer matrix coefficients are then
discussed in Sec. 10.4 and Sec. 10.5 for cold and reactive conditions respectively.

10.2 Measurement of acoustic transfer matrices

The experimental setup used in this chapter, represented in Fig. 10.1-(Left), is
now described. A more thorough description of the various configurations of
the NoiseDyn burner can be found in Chapter 5.

A loudspeaker sealed at the bottom of the tranquilization box (not shown in
Fig. 10.1-(Left)) is used to generate harmonic sound waves. A hot wire probe
denoted by HW in Fig. 10.1-(Left) measures the velocity signal u0 + u′0 in the
top-hat region of the flow, after the convergent. At the same axial location,
a microphone denoted by MHW in Fig. 10.1-(Left) measures the acoustic
pressure p′0. A swirler featuring 6 holes of radius R = 3 mm generates a flow
with a swirl number S = 0.8, measured by Laser Doppler Velocimetry at the
burner outlet. Alternatively, a non-swirling flow is generated by replacing the
swirling vane inside the injector. A bluff body of conical shape is used to help
flame stabilization in both cases. A second convergent nozzle is added at the
top of the combustion chamber, followed by an exhaust tube of variable length
which may or may not be topped by a perforated plate.
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Figure 10.1: (Left) Central elements of the experimental setup used to determine
the acoustic transfer matrices for cold and reactive conditions. The hot wire probe
HW and facing microphone MHW are used to determine the acoustic velocity u′0 and
acoustic pressure p′0 in section (0). The downstream microphones ME, ME’ and ME”
are used to determine the acoustic velocity u′11 (using the Three-Microphone Method)
and acoustic pressure p′11 in section (11). (Right) Acoustic network model representing
the injector and burner dynamics for cold and reactive conditions. All dimensions are
in millimeters.

Three microphones denoted by ME, ME’ and ME” in Fig. 10.1-(Left) are
mounted on water-cooled waveguides. The small acoustic distortions induced
by these waveguides are corrected through the use of their transfer functions,
determined in a separate set of experiments, as explained in Chapter 6. The
first two microphones, ME and ME’, are located in front of each other in the
exhaust tube. A third microphone, ME”, is located 50 mm downstream. The
Three-Microphone Method (Chung and Blaser 1980a) is used to reconstruct
the acoustic velocity fluctuations u′11 at the same axial position as the
acoustic pressure p′11 measured by ME”. In order to increase the accuracy
of the Three-Microphone Method, all experiments are made twice: one
with the microphones set in their original configuration, as represented in
Fig. 10.1-(Left), and another one with the microphones ME’ and ME” switched
(Chung and Blaser 1980a; Scarpato et al. 2012). Coherence functions are
also used to further improve the signal-to-noise ratio (Chung and Blaser 1980a).
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Table 10.1: Various configurations of the NoiseDyn burner used to determine the
acoustic transfer matrix for the swirling and non-swirling injectors operated for cold
and reactive conditions.

Operating conditions Swirling Non-swirling

Cold B1, C1 B1
∅, C1

∅

Reactive B1, E1 B1
∅, C1

∅

All pressure signals are divided by their respective characteristic impedance ρc
where ρ is the mean gas density and c the speed of sound at the microphone
location. More information about the hot wire probe, microphones and
Three-Microphone Method can be found in Chapter 6.

Two distinct operating conditions are investigated in this chapter: cold flow
and reactive conditions. The reactive configuration is a perfectly premixed
methane/air flame with an equivalence ratio φ = 0.82 and a thermal power
of 5.5 kW for both the swirling and non-swirling injectors. The associated
bulk velocity at the hot wire probe location is ub = 5.4 m/s in a tube of
diameter D = 22 mm. For cold flow conditions, methane is not injected
and the air mass flow rate is adjusted in order to reach the same bulk
velocity ub as for reactive conditions. For both cold and reactive conditions,
the highest flow velocity (12 m/s) is reached inside the swirler injection
holes. It corresponds to a maximum Mach number Mmax = 0.035 meaning
that the flow remains in the incompressible regime everywhere inside the setup.

The Dimensionless Acoustic Transfer Matrix (DATM), defined in Eq. (7.55),
links the downstream acoustic fluctuations to the upstream acoustic fluctu-
ations. This expression contains four unknowns (M̃11, M̃12, M̃21 and M̃22)
for only two equations. As a consequence, two independent acoustic states
are needed to determine these coefficients. In many experiments, the two
source method is used (Paschereit and Polifke 1998; Paschereit et al. 2002;
Fischer et al. 2006; Alemela et al. 2008). Here, the two load method is
retained (Guedra et al. 2011). Both methods are based on a modification
of the acoustic impedance at one or more boundaries of the experimental setup.

For each injector (swirling/non-swirling) and each operating conditions
(cold/reactive), two configurations of the NoiseDyn burner are thus needed.
These configurations may be different depending on the type of injector
and operating conditions because the thermoacoustic stability of the system
may vary depending on the acoustic boundary condition. A summary of all
configurations of the NoiseDyn burner used in this chapter is presented in
Table 10.1. For instance, Configurations B1 and C1 of the NoiseDyn burner
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are used to determine the DATM coefficients for the swirling injector and for
cold flow operating conditions. A detailed description of these configurations
is presented in Chapter 5.

It was checked that the two configurations of the NoiseDyn burner retained
in each case lead to independent acoustic states for all frequencies of interest.
Moreover, each measurement has to be performed with the original and
switched microphone arrangement.

Altogether, sixty-four experimental cases are explored in the present chapter,
as summarized in Fig. 10.2. For each type of injector (level 0 branch in
Fig. 10.2), an operating condition is set (level 1 branch in Fig. 10.2) and
an acoustic forcing amplitude is chosen (level 2 branch in Fig. 10.2). The
corresponding DATM is determined by measuring the acoustic variables for
two distinct configurations (level 3 branch in Fig. 10.2) and with the original
and switched microphone settings (level 4 branch in Fig. 10.2). For each
of these sixty-four cases, a frequency sweep containing between 10 and 100
forcing frequencies is performed.

Once the data are post-processed, the acoustic states (p′0,u
′
0) and (p′11,u

′
11)

at the hot wire HW and microphone ME” locations are known as functions
of the forcing frequency for each type of injector, operating conditions and
forcing level for two independent configurations, obtained by modifying the
downstream acoustic boundary condition. Using Eq. (7.55), the following
system can be written:




pα11/z
α
11

uα11
pβ11/z

β
11

uβ11


 =




M̃(1, 1) M̃(1, 2) 0 0

M̃(2, 1) M̃(2, 2) 0 0

0 0 M̃(1, 1) M̃(1, 2)

0 0 M̃(2, 1) M̃(2, 2)


×




pα0 /z
α
0

uα0
pβ0/z

β
0

uβ0


 (10.3)

where α and β denote the acoustic variables measured with the first and second
acoustic boundary condition respectively and M̃ is the DATM representing the
acoustic response of the elements placed between the hot wire HW location
and the microphone ME” location. All pressures and velocities appearing in
Eq. (10.3) are acoustic variables even though the prime was omitted for the
sake of readability.

The last step is to solve the system given by Eq. (10.3) which consists of four
linear equations with four unknowns. The four transfer matrix coefficients
are obtained by solving this system symbolically or numerically. It is also
possible to acquire data from additional configurations with different acoustic
boundary conditions in order to improve the measurements of the coefficients
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Figure 10.2: Summary of all experimental configurations investigated in this chapter.
(Left) Swirling injector. (Right) Non-swirling injector. For each type of injector, the
first subdivision corresponds to the operating conditions (cold/reactive), the second
subdivision corresponds to the forcing level, the third subdivision corresponds to the
NoiseDyn configuration, e.g. to the acoustic boundary condition, and finally the fourth
subdivision corresponds to the microphone arrangement (original or switched). For
each of these 64 cases, between 10 and 100 forcing frequencies are explored.

of the acoustic transfer matrix by using a least-square method.

Since the acoustic pressure and acoustic velocity are measured or reconstructed
at the hot wire HW and microphone ME” locations, the specific acoustic
impedances can be easily assessed at these locations by using Eq. (7.39).

Figure 10.3 represents the specific acoustic impedance Zs
0 at the hot wire HW

location as a function of the forcing frequency for the swirling and non-swirling
injector and for cold and reactive operating conditions. These results are
obtained using configurations B1 and B1

∅ for the swirling and non-swirling
injectors respectively. Several forcing levels are investigated in each case.
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Figure 10.3: Specific acoustic impedance Zs
0 at the hot wire HW location as a function

of the forcing frequency with the swirling (Top) and non-swirling (Bottom) injectors
and for cold (Left) and reactive (Right) operating conditions. Results are obtained
using configuration B1 and B1

∅
for the swirling and non-swirling injectors respectively.

Results are shown for various forcing levels |u′0|/u0 measured by the hot wire probe HW.

For cold flow conditions, corresponding to the left plots in Fig. 10.3, the
specific acoustic impedance does not depend on the forcing level for all forcing
frequencies and for both the swirling and non-swirling injector. Moreover, the
top-left and bottom-left plots in Fig. 10.3 are similar, implying that the type
of injector has no impact on the specific acoustic impedance Zs

0 . It can be
thus concluded that for cold operating conditions, the acoustic response of
the burner elements placed before the hot wire probe is linear and does not
depend on the injector type.
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Figure 10.4: Specific acoustic impedance Zs
11 at the microphone ME” location as a

function of the forcing frequency with the swirling (Top) and non-swirling (Bottom)
injectors and for cold (Left) and reactive (Right) operating conditions. The downstream
boundary is a single exhaust tube with an open end, corresponding to configurations
B1 and B1

∅
for the swirling and non-swirling injectors respectively. Results are shown

for various forcing levels |u′0|/u0 measured by the hot wire probe HW.

On the other hand, for reactive operating conditions, corresponding to the right
plots in Fig. 10.3, the specific acoustic impedance Zs

0 at the hot wire location
slightly depends on the forcing level for forcing frequencies f > 150 Hz. This
observation is valid for the swirling and non-swirling injectors. However,
the amplitude of these variations is limited and will be neglected in the
remainder of this work. Nevertheless, the specific acoustic impedance Zs

0

significantly differs depending on the type of injector, as shown in the top-right
and bottom-right plots in Fig. 10.3. This implies that the flame has a
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considerable impact on the acoustic response of the burner elements placed
before the hot wire probe and differs for the swirling and non-swirling injectors.

Figure 10.4 represents the specific acoustic impedance Zs
11 at the microphone

ME” location as a function of the forcing frequency for the swirling and non-
swirling injectors and for cold and reactive operating conditions. These data
are obtained with configurations B1 and B1

∅ of the NoiseDyn burner in the
swirling and non-swirling cases respectively. Figure 10.4 clearly shows that the
acoustic response of the elements placed after microphone ME” is linear for
all forcing frequencies whatever the operating conditions and type of injector.
Moreover, the specific acoustic impedance Zs

11 is the same for the swirling and
non-swirling injectors for both cold and reactive operating conditions. However,
the moduli of Zs

11 significantly differ between cold and reactive conditions. This
is due to the increased sound speed c in the burnt gases. Similar measurements
performed for configurations C1, C1

∅ and E1 (not shown here) lead to the same
conclusion.

10.3 Acoustic network models of the NoiseDyn

burner

The experimental setup is now modeled for cold and reactive operating
conditions using the acoustic two-port matrices network formalism (Abom
1992; Paschereit and Polifke 1998; Polifke et al. 2001; Dowling and Stow 2003;
Poinsot and Veynante 2005; Fischer et al. 2006). This formalism is presented
thoroughly in Chapter 9. It is reminded that the harmonic convention retained
here is e+iωt and that all pressure signals are divided by the characteristic
impedance z = ρc in order to obtain a Dimensionless Acoustic Transfer Matrix
(DATM), defined in Eq. (7.55).

The burner sketched in Fig. 10.1-(Left) is represented by a network of two-port
matrices representing the acoustic response of the setup between the hot wire
HW location defined as section (0) in Fig. 10.1-(Right) and the microphone
ME” location defined as section (11) in Fig. 10.1-(Right). The injector is
comprised between section (0) and section (8) and includes the swirling vane
and the injection tube. It is followed by the combustion chamber between
section (8) and section (9) and the downstream elements between section (9)
and section (11). The swirling vane is represented by the elements comprised
between section (3) and section (6). For reactive operating conditions, the
flame is assumed to be stabilized at the axial location corresponding to section
(8) and is treated as a compact element in this model.

This acoustic network model is represented for cold and reactive operating
conditions in Fig. 10.5 where each black box represents an element with an
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Figure 10.5: Acoustic network models representing the Dimensionless Acoustic
Transfer Matrix of the experimental setup between section (0) and section (11) for
cold flow conditions (Top) and reactive conditions (Bottom).

associated transfer matrix. The blue color indicates elements filled with fresh
gases whereas the red color indicates those filled with burnt gases. The acoustic
response of the burner elements comprised between section (0) and section
(7) is the same as in the acoustic network model introduced in Sec. 9.4.2 and
represented in Fig. 9.4.

Several DATM are used to model the acoustic response of the central elements
of the NoiseDyn burner comprised between section (0) and section (11) for
cold and reactive conditions. They correspond to the following models:

• Section (0) → section (7): The same DATM as those presented in
Sec. 9.4.2 are used.

• Section (7) → section (8): For cold flow conditions, a DATM cor-
responding to a compact area change in a non-reactive low-Mach flow
modeled with Eq. (7.78) is used. For reactive conditions, the previous
DATM is combined with the DATM of a lean compact flame stabilized
in a low-Mach flow within a straight duct given by Eq. (8.46).

• Section (8) → section (9): A DATM corresponding to a straight duct
in a uniform non-reactive low-Mach flow is modeled with Eq. (7.59).

• Section (9) → section (10): A DATM corresponding to a compact
area change in a non-reactive low-Mach flow is modeled with Eq. (7.78).

• Section (10) → section (11): A DATM corresponding to a straight
duct in a uniform non-reactive low-Mach flow is modeled with Eq. (7.59).

The total Dimensionless Acoustic Transfer Matrix M̃ representing the acoustic
response of the injector and burner between section (0) and section (11) in
Fig. 10.1-(Right) is then given by:
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M̃ = M̃1011 M̃910 M̃89 M̃78 M̃07 (10.4)

Using the expression of M̃07 given by Eq. (9.20), M̃ can be further expressed as:

M̃ = M̃1011 M̃910 M̃89 M̃78 M̃67 M̃36 M̃23 M̃12 M̃01 (10.5)

Based on this analysis, the acoustic network models for the swirling and non-
swirling injectors are different for reactive operating conditions, when the Flame
Describing Function is taken into account. For cold flow operating conditions,
the swirling and non-swirling burners are modeled with the same acoustic net-
work model.

10.4 Results for cold operating conditions

Figures 10.6 and 10.7 represent the modulus and phase of the four DATM
coefficients M̃(1, 1), M̃(1, 2), M̃(2, 1) and M̃(2, 2) representing the acoustic
response of the system between section (0) and section (11) in Fig. 10.5-(Top)
and reconstructed from the experimental data for a swirling and non-swirling
injector respectively and for cold operating conditions. Measurements are
performed for increasing forcing levels ranging from |u′0|/u0 = 0.10 to 0.72
RMS for the swirling injector and |u′0|/u0 = 0.10 to 0.55 RMS for the
non-swirling injector. These measurements are plotted as symbols in Figs. 10.6
and 10.7. The DATM coefficients predicted according to the acoustic network
model shown in Fig. 10.5-(Top) are also plotted as solid lines in Figs. 10.6 and
10.7 for all forcing levels.

Both the modulus and angle of the DATM coefficients mostly coincide for
the swirling and non-swirling injectors for all forcing levels and all forcing
frequencies when the burner is operated for cold flow conditions, as shown in
Figs. 10.6 and 10.7. As a consequence, the analysis presented in the remainder
of this section will focus on the swirling case, corresponding to Fig. 10.6,
without loss of generality.

The modulus and phase of the measured DATM coefficients shown in Fig. 10.6
are more scattered in the low-frequency region. This is due to low frequency
noise, which is not fully eliminated by the averaging procedure of the raw
data because they were recorded over a limited number of forcing cycles.
Morever, the two independent acoustic boundary conditions needed to solve
Eq. (10.3) are close at low frequencies, which also decreases the signal-to-noise
ratio. Except in the low frequency region, the angle of the measured DATM
coefficients M̃(1, 1), M̃(1, 2), M̃(2, 1) and M̃(2, 2) remain roughly independent
of the forcing level. The moduli of M̃(1, 1) and M̃(1, 2) are also identical
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Figure 10.6: Coefficients of the Dimensionless Acoustic Transfer Matrix (DATM)

representing the acoustic response of the system between the hot wire HW location in

section (0) and the microphone ME” location in section (11) for a swirling injector and

for cold flow operating conditions. (Top left): M̃(1, 1) - (Top right): M̃(1, 2) - (Bottom

left): M̃(2, 1) - (Bottom right): M̃(2, 2). Measurements are performed at various

forcing levels: |u′0|/u0 = 0.10 RMS (Red dots), |u′0|/u0 = 0.20 RMS (Blue dots),

|u′0|/u0 = 0.30 RMS (Green dots), |u′0|/u0 = 0.40 RMS (Orange dots), |u′0|/u0 = 0.55

RMS (Yellow dots) and |u′0|/u0 = 0.72 RMS (Brown dots). Acoustic network model

predictions are represented as solid lines for all forcing levels. For each plot, the top and

bottom figures represent the modulus and angle of the DATM coefficient respectively.
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Figure 10.7: Coefficients of the Dimensionless Acoustic Transfer Matrix (DATM)

representing the acoustic response of the system between the hot wire HW location in

section (0) and the microphone ME” location in section (11) for a non-swirling injector

and for cold flow operating conditions. (Top left): M̃(1, 1) - (Top right): M̃(1, 2) -

(Bottom left): M̃(2, 1) - (Bottom right): M̃(2, 2). Measurements are performed at

various forcing levels: |u′0|/u0 = 0.10 RMS (Red dots), |u′0|/u0 = 0.30 RMS (Green

dots) and |u′0|/u0 = 0.55 RMS (Yellow dots). Acoustic network model predictions are

represented as solid lines for all forcing levels. For each plot, the top and bottom figures

represent the modulus and angle of the DATM coefficient respectively.
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for all forcing levels. For f < 150 Hz, the moduli of M̃(2, 1) and M̃(2, 2)
are independent of the forcing level, but as the frequency becomes larger, an
increasingly large gap appears between the data corresponding to the various
forcing levels. The smaller the forcing level, the smaller the modulus of both
coefficients M̃(2, 1) and M̃(2, 2).

This behavior cannot be reproduced by a linear acoustic network model. It
is clear from Fig. 10.6 that the moduli of M̃(2, 1) and M̃(2, 2) linking the
downstream acoustic velocity to the upstream acoustic pressure and acoustic
velocity respectively appear to be nonlinear over a certain frequency range
even in the absence of combustion. The origin of this nonlinear acoustic
response for non-reactive conditions may be twofold.

First, nonlinear acoustic losses at the system boundaries may perturb the
transfer matrix determination as the forcing level increases (Heckl 1990;
Schuller et al. 2009). However, the specific acoustic impedances at the setup
inlet and outlet are independent of the forcing level, as shown in Figs. 10.3 and
10.4. The acoustic nonlinearities are thus generated inside the region of inter-
est, located between section (0), where the hot wire HW is located, and section
(11), where the microphone ME” is located, as represented in Fig. 10.1-(Right).

The coupling between vorticity and sound waves may constitute another source
of nonlinearities through the dissipation of acoustic energy as the sound waves
interact with the large vortical structures (Howe 1979; Howe 1998) produced
by the flow at the swirling vane and at the injector outlet. It has long been
recognized that a fraction of the acoustic energy is dissipated inside a burner
submitted to sound waves (Paschereit and Polifke 1998; Kruger et al. 2001; Su
et al. 2015). This is generally modeled by a transfer matrix with additional
lump parameters, such as an effective length taking into account the inertia
of the fluid and a pressure loss coefficient. An example of such a model is
the ζ − leff model (Paschereit and Polifke 1998; Hirschberg 2001; Gentemann
et al. 2003; Polifke et al. 2003). These types of acoustic loss models yield good
results for swirling injectors (Polifke et al. 2001; Ni et al. 2017), but they are
linear and thus their predicted transfer matrix coefficients do not depend on
the forcing level.

In this work, the response of the swirling vane to sound waves is modeled
with a DATM corresponding to a compact perforated plate traversed by a
high-Reynolds flow, modeled with Eq. (7.91) and corresponding to the region
between section (3) and section (6) in Fig. 10.1-(Right). The swirler’s finite
thickness is taken into account as well as the nonlinear effects, following
the description given in Sec. 7.4.7. For cold flow operating conditions, this
analytical model constitutes the only source of nonlinearity in the acoustic
network model represented in Fig. 10.5-(Top) as the amplitude of the acoustic
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velocity does not appear in any other DATM.

The analytical predictions according to this acoustic network model are rep-
resented as solid lines in Figs. 10.6 and 10.7 for the swirling and non-swirling
injectors respectively and for increasing forcing levels. These analytical
predictions are similar for both injectors. Overall, the agreement between the
analytical predictions and the modulus and angle of the measured DATM
coefficients is excellent, except in the high-frequency range where the moduli
of M̃(1, 1) and M̃(1, 2) are slightly underpredicted and the moduli of M̃(2, 1)

and M̃(2, 2) are slightly overpredicted for the swirling injector. These ob-
servations are also valid for the non-swirling injector. On the other hand,
the agreement between the model and the measurements for the angle of the
DATM coefficients is very good for all frequencies investigated and for both
the swirling and non-swirling injectors.

The acoustic network model represented in Fig. 10.5-(Top) accounts for the
nonlinear acoustic losses at the swirling vane. Nevertheless, it is clear from
Figs. 10.6 and 10.7 that the impact of the forcing level on the moduli of
M̃(2, 1) and M̃(2, 2) is not correctly predicted by this network model. For
instance, the modulus of M̃(2, 1) measured at a forcing frequency f = 240 Hz
and at a forcing level |u′0|/u0 = 0.10 RMS for the swirling injector is 40%
smaller than the same modulus measured at the same frequency but at a
forcing level |u′0|/u0 = 0.72 RMS. According to the acoustic network model
represented in Fig. 10.5-(Top), this gap should be less than 1% at a forcing
frequency f = 240 Hz.

It is thus concluded that for cold flow operating conditions, either the effects of
the nonlinear acoustic losses at the swirling vane are highly underestimated by
the acoustic network model or another source of nonlinearity was not taken into
account. For instance, the acoustic waves may be damped at the injector outlet
since vortical structures are known to be shed periodically at the injector rim,
between section (7) and section (8) in Fig. 10.5-(Top). An additional modeling
effort is thus needed to correctly predict the nonlinear acoustic losses inside a
swirling and non-swirling premixed turbulent combustor. Moreover, the experi-
ments conducted in this work for cold operating conditions show that nonlinear
acoustic losses need to be considered when modeling the DATM coefficients of
the system between section (0) and section (11) as the forcing level is increased.

It is now worth investigating the acoustic response of the NoiseDyn burner for
reactive operating conditions. In this case, the flame constitutes another source
of acoustic nonlinearity which also alters the acoustic response of the system.
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10.5 Results for reactive operating conditions

Measurements and predictions according to the acoustic network model of
the four DATM coefficients representing the acoustic response of the system
between the hot wire HW location in section (0) and the microphone ME”
location in section (11) are now reported for the swirling and non-swirling
injectors operated under reactive conditions and for increasing acoustic forcing
levels |u′0|/u0.

Figures 10.8 and 10.9 represent the measured modulus and angle of the four
DATM coefficients M̃(1, 1), M̃(1, 2), M̃(2, 1) and M̃(2, 2) for reactive operating
conditions and for the swirling and non-swirling injectors respectively. Results
are presented for forcing levels ranging from |u′0|/u0 = 0.10 RMS to 0.55 RMS.

Once again, a higher variability of the DATM coefficients reconstructed
from measurements is observed for low forcing frequencies because of the
limited number of forcing cycles in the recorded signals and because the two
independent acoustic boundary conditions become close at low frequencies.
Moreover, the flame generates broadband combustion noise thus affecting
the overall signal-to-noise ratio in Figs. 10.8 and 10.9 compared the results
obtained for cold flow conditions presented in Figs. 10.6 and 10.7.

As opposed to the results obtained for cold flow operating conditions and
presented in Sec. 10.4, both the modulus and angle of the DATM coefficients
mostly differ for the swirling and non-swirling injectors operated under
reactive conditions. This is particularly stricking when looking at the moduli
of M̃(1, 1), M̃(1, 2) and M̃(2, 2). This is due to the fact that the acoustic
response of the flame depends on the type of injector, as demonstrated
in Figs. 10.10-(Right) and 10.11-(Right) which represent the FDF for the
swirling and non-swirling injectors respectively. As a consequence, the acoustic
response of the flame/combustor system comprised between section (0) and
section (11) in Fig. 10.1-(Right) is different for the swirling and non-swirling
injectors.

Figures 10.8 and 10.9 highlight the fact that all four measured DATM
coefficients depend on the forcing level |u′0|/u0 to some extent over a certain
frequency range. For both the swirling and non-swirling injectors and for all
forcing frequencies investigated, the moduli of M̃(1, 1) and M̃(2, 1) are strongly
affected when the forcing level is increased while the moduli of M̃(1, 2) and
M̃(2, 2) are only slightly affected by changes of the forcing level. On the other
hand, the angles of all measured DATM coefficients only marginally depend
on the forcing level.

The impact of the forcing level on the measured DATM coefficients appears
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Figure 10.8: Coefficients of the Dimensionless Acoustic Transfer Matrix (DATM)

representing the acoustic response of the system between the hot wire HW location in

section (0) and the microphone ME” location in section (11) for a swirling injector

and for reactive operating conditions. (Top left): M̃(1, 1) - (Top right): M̃(1, 2) -

(Bottom left): M̃(2, 1) - (Bottom right): M̃(2, 2). Measurements are performed at

various forcing levels: |u′0|/u0 = 0.10 RMS (Red dots), |u′0|/u0 = 0.20 RMS (Blue

dots), |u′0|/u0 = 0.30 RMS (Green dots) and |u′0|/u0 = 0.55 RMS (Yellow dots).

Acoustic network model predictions are represented as solid lines for all forcing levels.

For each plot, the top and bottom figures represent the modulus and angle of the DATM

coefficient respectively.
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Figure 10.9: Coefficients of the Dimensionless Acoustic Transfer Matrix (DATM)

representing the acoustic response of the system between the hot wire HW location in

section (0) and the microphone ME” location in section (11) for a non-swirling injector

and for reactive operating conditions. (Top left): M̃(1, 1) - (Top right): M̃(1, 2) -

(Bottom left): M̃(2, 1) - (Bottom right): M̃(2, 2). Measurements are performed at

various forcing levels: |u′0|/u0 = 0.10 RMS (Red dots), |u′0|/u0 = 0.30 RMS (Green

dots) and |u′0|/u0 = 0.55 RMS (Yellow dots). Acoustic network model predictions are

represented as solid lines for all forcing levels. For each plot, the top and bottom figures

represent the modulus and angle of the DATM coefficient respectively.
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to be more important for reactive operating conditions, shown in Figs. 10.8
and 10.9, than for cold operating conditions, shown in Figs. 10.6 and 10.7.
An initial conjecture would be to relate these observations to the nonlinear
response of the flame when it is submitted to high-amplitude acoustic forcing.

The predictions of the DATM coefficients according to the acoustic network
model represented in Fig. 10.5-(Bottom) for reactive operating conditions are
also determined for all forcing levels and for both injectors. These predictions
are plotted in Figs. 10.8 and 10.9 for the swirling and non-swirling injectors
respectively. The nonlinear flame response is accounted for through the use of
the Flame Describing Function, determined by optical means and represented
in Figs. 10.10-(Right) and 10.11-(Right) for the swirling and non-swirling
injectors respectively.

Both FDF are obtained by forcing the flame with the loudspeaker while
recording the velocity signal u0 + u′0 at the hot wire location, corresponding
to section (0) in Fig. 10.1-(Right), and simultaneously recording the light
emission from the combustion region with a photomultiplier equipped with an
OH* filter. The acoustic velocity u′7 at the top of the injector in section (7) is
then deduced from the hot wire signal and the propagation model described in
Chapter 9.

Despite the fact that the FDF for the swirling and non-swirling injectors
are different, the analytical predictions obtained with this acoustic network
model for these two injectors are comparable, as shown in Figs. 10.8 and 10.9.
Overall, the agreement between the acoustic network model predictions and
the corresponding measurements of M̃(1, 2) and M̃(2, 2) is satisfactory for the
swirling injector. On the other hand, the modulus of M̃(1, 1) and the modulus
and angle of M̃(2, 1) are only partly retrieved from the model for the swirling
injector. For the non-swirling injector, the best match between the model and
the experiments is obtained for coefficients M̃(1, 1), M̃(1, 2) and M̃(2, 2) even
though the match is still satisfactory for coefficient M̃(2, 1).

The predictions of coefficients M̃(1, 1), M̃(1, 2) and M̃(2, 1) according to the
acoustic network model are found to be almost insensitive to the forcing level
for both the swirling and non-swirling injectors, as shown in Figs. 10.8 and
10.9. For instance, even though the general trend for the modulus of M̃(1, 1)
is reproduced by the acoustic network model in the non-swirling case, the
impact of the forcing level on the measured coefficient is much larger than
expected from the acoustic network analysis fed with the FDF. On the other
hand, the predictions for coefficient M̃(2, 2) vary significantly when the forcing
level is modified but these variations do not fully represent the experimental
observations, as shown in Figs. 10.8 and 10.9.
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It is worth emphasizing that the FDF appears in the velocity/velocity
component M̃(2, 2) of the DATM representing the acoustic response of the
flame, given by Eq. (8.46). However, the DATM linking the acoustic pressure
p′11 and acoustic velocity u′11 at the microphone ME” location to the acoustic
pressure p′0 and acoustic velocity u′0 at the hot wire location is not compact
due to the large distance separating these locations. As a consequence, the
contribution of the DATM representing the compact flame spreads to the other
DATM coefficients representing the entire burner/flame response to sound
waves. Hence, nonlinearities due to the flame response may be present in all
four DATM coefficients presented in Figs. 10.8 and 10.9.

In addition to the nonlinearities generated by the flame response, the coupling
between vortical structures and sound waves described in Sec. 10.4 for cold
flow operating conditions is still a source of nonlinearity for reactive operating
conditions. In the end, the nonlinearities observed in Figs. 10.8 and 10.9
originate from both phenomena.

The last step is to reconstruct the FDF obtained with optical measurements
from the acoustic network model and the hot wire HW and microphones MHW,
ME, ME’ and ME” signals. In most industrial burners, measuring the flame
heat release rate is challenging. Optical access is often limited in such systems
and the OH* or CH* chemiluminescence signals, which are tracers of the flame
heat release rate, cannot be easily recorded. In non-premixed combustors, the
OH* or CH* chemiluminescence signals are usually not linearly related to the
flame heat release rate, which raises difficulties. Since the Flame Describing
Function is an important tool that may be used to perform a thermoacoustic
stability analysis, it is worth examining whether the FDF can be recontructed
from acoustic measurements only.

The DATM describing the flame response to harmonic sound waves is extracted
using the following procedure. The DATM denoted by M̃ , which describes
the entire acoustic response of the combustor/flame system located between
section (0) and section (11), is extracted from the hot wire and microphone
measurements as explained in Sec. 10.2. Then, all the different DATM denoted
by M̃ij are modeled using the analysis presented in Sec. 10.3, except for M̃78

corresponding to the flame element. This latest DATM is deduced using
Eq. (10.5) rearranged in the following way:

M̃78 =
(
M̃1011 M̃910 M̃89

)−1
M̃
(
M̃67 M̃36 M̃23 M̃12 M̃01

)−1
(10.6)

The resulting DATM denoted by M̃78 describes the acoustic response of
the system between section (7) and section (8), where the flame is located.
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Figure 10.10: Gain (Top) and phase (Bottom) of the Flame Describing Func-
tion (FDF) obtained with the swirling injector as a function of the forcing frequency
for increasing forcing levels |u′0|/u0 = 0.10 RMS (Red dots), |u′0|/u0 = 0.20 RMS
(Blue dots), |u′0|/u0 = 0.30 RMS (Green dots), |u′0|/u0 = 0.40 RMS (Orange dots),
|u′0|/u0 = 0.55 RMS (Yellow dots) and |u′0|/u0 = 0.72 RMS (Brown dots). (Left): Re-
construction from the acoustic network model and the acoustic pressure and acoustic
velocity measurements in section (0) and section (11). (Right): Reconstruction from
the acoustic velocity measurement in section (0) and the chemiluminescence signal.

The reconstruction of M̃78 is then compared with the analytical model given
by Eq. (8.46) and the Flame Describing Function is subsequently deduced
from the velocity/velocity component of the reconstructed coefficient M̃78.
This procedure can be used to determine the FDF solely from acoustic
pressure and acoustic velocity measurements at any distance from the flame
when used in association with an acoustic network model of the reactive system.

Figures 10.10-(Left) and 10.11-(Left) represent this acoustic reconstruction
for the swirling and non-swirling injectors while Figs. 10.10-(Right) and
10.11-(Right) represent the corresponding FDF determined optically using
a photomultiplier with an OH* filter for the swirling and non-swirling injectors.

The FDF gains in Figs. 10.10-(Right) and 10.11-(Right) start at unity at low
frequency, as expected from theory (Polifke and Lawn 2007). On the other
hand, the FDF gains at low frequencies predicted by the DATM reconstructions
are overestimated, as shown in Figs. 10.10-(Left) and 10.11-(Left) for the
swirling and non-swirling injectors.

The FDF obtained from optical measurements with the swirling injector and
shown in Fig. 10.10-(Right) is now described. First, the gain increases with
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increasing frequencies before a sudden drop, followed by a second increase and
then a smooth decrease at high frequencies. This type of frequency response is
typical of premixed swirling flames (Palies et al. 2010; Gatti et al. 2017). The
overall flame response drops as the forcing level |u′0|/u0 increases except within
the low-gain valley, for forcing frequencies between 100 Hz and 150 Hz. In this
region, the FDF remains roughly independent of the forcing level whereas at
lower and higher frequencies, the gain is impacted by the forcing level set at
the hot wire location.

The overall shape of the reconstructed FDF obtained from acoustic measure-
ments using the swirling injector, presented in Fig. 10.10-(Left), is in good
agreement with the FDF obtained with the photomultiplier, presented in
Fig. 10.10-(Right). The evolution of the reconstructed FDF gain with the
forcing level is also fairly well retrieved. Nevertheless, for forcing frequencies
f < 50 Hz and 150 Hz < f < 250 Hz, the reconstructed FDF gain is
overestimated. On the other hand, the FDF phase lag is perfectly predicted for
forcing frequencies f > 50 Hz. At lower frequencies, the FDF reconstruction
is less accurate because of the limited number of forcing cycles in the recorded
signals. Finally, both the acoustically reconstructed and optically measured
FDF phase lag are independent of the forcing level (Palies et al. 2010; Gatti
et al. 2017) and are in excellent agreement with each other.

It is thus concluded that the phase lag of the Flame Describing Function of a
premixed turbulent swirling flame can be accurately predicted from an acoustic
network model used in association with acoustic measurements at the system
inlet and outlet. On the other hand, the reconstruction of the gain of the FDF
is more difficult and some deviations may be observed between the optical and
purely acoustic techniques. However, the overall evolution of the gain of the
FDF with the forcing frequency and forcing level is fairly well predicted.

For the non-swirling injector, the general trend of the FDF gain is once again
fairly well predicted by the acoustic reconstruction, presented in Fig. 10.11-
(Left), when it is compared to the FDF obtained with the photomultiplier,
presented in Fig. 10.11-(Right). The gain of the Flame Describing Function
corresponding to the non-swirling injector and measured with the optical
technique first increases with the forcing frequency and then decreases until
it reaches a value G ∼ 0 at a forcing frequency f = 400 Hz. This FDF
gain shape is typical of non-swirling injectors (Schuller et al. 2003b; Gatti
et al. 2018). Moreover, the FDF gain decreases for increasing forcing levels
at a given forcing frequency, as shown in Fig. 10.11-(Right). The impact of
the forcing level is also predicted by the FDF reconstruction to a certain extent.

The gain of the acoustically reconstructed FDF are highly overestimated in
the low frequency region, with gain values exceeding 2 for certain forcing
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Figure 10.11: Gain (Top) and phase (Bottom) of the Flame Describing Function
(FDF) obtained with the non-swirling injector as a function of the forcing frequency
for increasing forcing levels |u′0|/u0 = 0.10 RMS (Red dots), |u′0|/u0 = 0.30 RMS
(Green dots) and |u′0|/u0 = 0.55 RMS (Yellow dots). (Left): Reconstruction from the
acoustic network model and the acoustic pressure and acoustic velocity measurements
in section (0) and section (11). (Right): Reconstruction from the acoustic velocity
measurement in section (0) and the chemiluminescence signal.

frequencies and forcing levels compared to a maximum gain G ∼ 1.25 for the
FDF determined with an optical technique. In the high frequency range, a
second FDF gain peak is predicted by the recontruction in Fig. 10.11-(Left)
while it is absent in the FDF obtained from optical measurements presented in
Fig. 10.11-(Right). Finally, the FDF phase lag for the non-swirling injector is
accurately predicted for intermediate forcing frequencies 50 Hz < f < 250 Hz.
The general trend of the Flame Describing Function of a premixed turbulent
non-swirling flame is fairly well retrieved by the acoustic network model used
in association with acoustic measurements at the system inlet and outlet but
large deviations for the values of the FDF gain are observed.

It is thus concluded that for both the swirling and non-swirling flames, some
discrepancies between the optically-measured and acoustically-reconstructed
Flame Describing Functions are observed. These deviations may be due to
various phenomena:

• Even though the hot wire, photomultiplier and microphones signals were
always recorded at the same time with the same sampling frequency
and for the same duration, it appears that the acoustic reconstruction
is more sensitive to low frequency noise than the optical technique.
At low forcing frequencies, the specific acoustic impedances of the two
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configurations of the NoiseDyn burner that are needed to extract the
DATM coefficients tend to be relatively close. As a consequence, the
quality of the acoustic reconstruction decreases at low frequencies.

• Moreover, the acoustic reconstruction of the Flame Describing Function
relies on the quality and accuracy of the models used to describe the
acoustic response of all the elements present inside the combustor
between section (0) and section (11), except the element containing the
flame. However, it was shown in Sec. 10.4 that the acoustic response of
the burner for cold operating conditions is not fully reproduced by the
acoustic network models. As a consequence, the acoustic reconstruction
of the FDF is altered because the models are not accurate enough.

• Finally, the optical technique used to determine the FDF relies on the
hypothesis that the OH* chemiluminescence signal is proportional to the
flame heat release rate. Even though this relation is well-established for
perfectly premixed lean hydrocarbon flames, the accuracy of this approx-
imation is difficult to assess.

10.6 Conclusion

The impact of the forcing level |u′0|/u0 on the Dimensionless Acoustic Transfer
Matrix (DATM) coefficients describing the acoustic response of a swirling and
non-swirling burner was determined for cold and reactive operating conditions.
The specific acoustic impedances at the system inlet and outlet were also
measured for all operating conditions and all forcing frequencies and were
found to be independent of the forcing level. The Flame Describing Function
(FDF) of the swirling and non-swirling flames were also measured with a
photomultiplier mounted with an OH* filter for the same forcing levels and
forcing frequencies.

For cold operating conditions, the acoustic response of the system comprised
between the hot wire HW location and the uppermost microphone ME”
location was found to be similar for both injectors. Moreover, the angles
of the DATM coefficients representing the whole system were found to be
mostly independent of the forcing level |u′0|/u0. Likewise, the moduli of
the DATM coefficients linking the downstream pressure fluctuations to the
upsteam pressure and velocity fluctuations were found to be the same for all
forcing levels. On the other hand, the moduli of the DATM coefficients linking
the downstream velocity fluctuations to the upstream pressure and velocity
fluctuations were found to be strongly impacted by the forcing level |u′0|/u0 at
high forcing frequencies.
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For reactive operating conditions, the acoustic response of the entire system
was found to be different for the swirling and non-swirling injectors. The
angles of the DATM coefficients were still found to be mostly independent of
the forcing level for all forcing frequencies and for both injectors. Moreover, the
moduli of the DATM coefficients linking the downstream pressure and velocity
fluctuations to the upsteam velocity fluctuations were found to be the same for
all forcing levels while the moduli of the DATM coefficients linking the down-
stream pressure and velocity fluctuations to the upsteam pressure fluctuations
were found to depend on the forcing level |u′0|/u0 over a certain frequency range.

Two acoustic network models describing the response of the system between
the hot wire HW location and the uppermost microphone ME” location were
designed for cold flow and reactive operating conditions respectively. For cold
flow conditions, the reconstructed DATM was shown to be the same for the
swirling and non-swirling injectors. For reactive conditions, the reconstructed
DATM was found to be injector-dependent as the Flame Describing Function
(FDF), which was shown to be different for swirling and non-swirling injectors,
was used to describe the acoustic response of the flame in the network model.

Two sources of acoustic nonlinearities were considered in the network models.
First, the acoustic nonlinearities generated at the rim of the swirling vane
channels because of the coupling between sound waves and vortical structures
convected by the mean flow were included in the cold and reactive acoustic
network models. Furthermore, the flame nonlinearities were also accounted for
in the reactive case through the use of the FDF.

For cold operating conditions, the acoustic network model was found to be
in good agreement with the measurements obtained with the swirling and
non-swirling injectors. The angles of the reconstruced DATM coefficients
were found to be independent of the forcing level, which corresponds to the
experimental observations. Moreover, the agreement between the angles of the
measured and predicted DATM coefficients was shown to be excellent. The
moduli of the pressure/pressure and pressure/velocity DATM coefficients were
also well predicted by the acoustic network model. On the other hand, the
moduli of the velocity/pressure and velocity/velocity DATM coefficients were
still found to be fairly well predicted but the impact of the forcing level was
not correctly reproduced by the DATM reconstruction.

For reactive operating conditions, the general trends of the four DATM
coefficients obtained with the swirling and non-swirling injectors were still
shown to be roughly reproduced by the model but the agreement between
the measured DATM coefficients and the corresponding reconstructions from
the acoustic network model were found to worsen compared to cold flow
conditions. The impact of the forcing level on the DATM coefficients was not
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well retrieved by the acoustic network model.

Finally, the FDF associated with the swirling and non-swirling flames were
reconstructed from the DATM measurements and the acoustic network models
developed for reactive operating conditions. The corresponding predictions
were compared to the FDF obtained with optical measurements. The
agreement between the measured and reconstructed FDF was found to be
good for the swirling injector even though the gain was shown to be largely
overestimated for certain frequency ranges. The phase lag was shown to be
well predicted and the variations of both the FDF gain and phase lag with
the forcing level were found to be satisfactorily predicted. The agreement
between the optically-measured and acoustically-reconstructed FDF was still
found to be satisfactory for the non-swirling injector even though the FDF
gain was found to be highly overestimated for most forcing frequencies. On
the other hand, the FDF phase lag was shown to be accurately predicted for
most forcing frequencies even with the non-swirling injector.

These experiments confirm that some of the Dimensionless Acoustic Transfer
Matrix coefficients representing the acoustic response of the burner/flame
system highly depend on the forcing level for cold and reactive operating
conditions. The nonlinear acoustic losses at the swirler holes coupled with
the flame nonlinearities (for reactive conditions) were modeled in the acoustic
network model, but these elements do not allow to entirely reproduce the
impact of the forcing level on the DATM coefficients. This chapter emphasizes
the need for analytical models predicting the nonlinear acoustic losses inside
premixed turbulent swirling and non-swirling burners.

This chapter also highlights the difficulties when extracting the Flame De-
scribing Function from purely acoustic measurements. This method requires
accurate DATM models for all the elements of the acoustic network model. It
also requires precise measurements of the total DATM representing the whole
response of the burner/flame system, which is achievable only if the two re-
quired acoustic states are independent for all forcing frequencies and all forcing
levels.



Chapter 11

Measurement and Prediction of

Thermoacoustic Modes

Thermoacoustic instabilities are due to a significant energy transfer
from the flame to the acoustic field that is not counterbalanced by the
linear acoustic losses generated within the combustor and at its bound-
aries. When these instabilities occur in a combustor, they may lead to
flame extinction, structural damage, increased heat fluxes or even catas-
trophic failure. Predicting the onset of thermoacoustic instabilities in
industrial combustors remains a challenging task. The aim of this chap-
ter is to predict the thermoacoustic stability of various configurations of
the NoiseDyn burner. For all unstable configurations, the frequency of
the instability and its associated limit cycle amplitude is determined.
First, the thermoacoustic stability of six distinct configurations is ex-
plored experimentally and the unstable modes are fully characterized.
Then, two acoustic network models are constructed: in the first model,
the flame response is directly modeled using a Flame Describing Func-
tion while in the second model, the flame response is embedded in an
Acoustic Transfer Matrix that also accounts for the acoustic losses in-
side the setup. The predictions associated with both network models are
then compared to measurements and it is concluded that both approaches
lead to accurate predictions of the thermoacoustic state of the NoiseDyn
burner. In the case of an unstable thermoacoustic mode, the instability
frequency is also well predicted by both acoustic network models. On the
other hand, the limit cycle oscillation amplitude is accurately predicted
by the second model only while it is overestimated by the first model, in
which the acoustic losses need to be modeled.
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11.1 Introduction

Background on thermoacoustic instabilities

Modern gas turbines are operated with lean premixed flames in order to reduce
the emissions of pollutants such as nitrogen oxides but they are prone to large-
amplitude oscillations of the pressure, velocity, density and temperature inside
the combustor (Keller 1995; Correa 1998; Candel 2002; Poinsot 2017). The
oscillations of these physical variables are called thermoacoustic instabilities
or combustion instabilities and may lead to various detrimental phenomena
such as flame extinction (Candel 1992; Prieur et al. 2018), structural damage
(Candel 1992; Lieuwen and Yang 2005), increased heat fluxes (McManus
et al. 1993; Barbosa et al. 2008) and large noise emission at a few discrete
frequencies (Noiray et al. 2006b; Barbosa et al. 2008; Tran et al. 2009a).

Gas turbines used for power generation (Seume et al. 1998) or propulsion (Zhu
et al. 2001) have been known to suffer from combustion instabilities. It should
be noted that thermoacoustic instabilities are not limited to gas turbines:
they may develop in a variety of combustors, including rocket engines (Crocco
1951; Crocco 1952; Crocco et al. 1960), ramjets (Yang and Culick 1986; Yu
et al. 1991), industrial furnaces (Putnam 1971; Rodriguez-Martinez et al.
2006) and many industrial or domestic heating appliances (de Goey et al. 2011).

Since thermoacoustic instabilities may appear in a large collection of combustors
and may lead to disastrous consequences, there is large theoretical, experimen-
tal and numerical research effort to develop tools predicting the thermoacoustic
stability of practical and labscale combustors at an early design stage (Candel
2002; Lieuwen 2005; Poinsot and Veynante 2005; Poinsot 2017). However,
predicting the presence and growth of an unstable thermoacoustic mode in a
practical combustor is challenging for three main reasons. First, complex un-
steady interactions between acoustic waves, flow variables, heat transfer and
chemistry take place inside the combustor (Candel 2002). Second, many of the
mechanisms involved, such as the flame response to high-amplitude harmonic
sound waves or the internal acoustic losses, are usually nonlinear (Cummings
1984; Dowling 1997; Noiray et al. 2008). Finally, the geometry of practical
combustors is a complex arrangement of cavities and many modes may develop
during operation (Poinsot 2017).

Thermoacoustic stability analysis

Various strategies based on analytical developments alone (Keller 1995;
Dowling and Stow 2003) or used along with experiments (Paschereit and
Polifke 1998; Schuermans et al. 2000; Polifke et al. 2003; Noiray et al. 2008) or
simulations (Nicoud et al. 2007; Han et al. 2015) may be used to predict the
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thermoacoustic stability of a combustor. In all cases, the acoustic response of
the combustor is predicted using an acoustic equivalent consisting of a limited
number of cavities - in which sound waves propagate - connected to one another
with appropriate jump conditions. This framework is quickly introduced below.

From an acoustics viewpoint, gas turbines operated for reactive conditions can
be represented by a network of cavities with a flame stabilized within one of
these cavities (Keller 1995; Paschereit and Polifke 1998; Dowling and Morgans
2005). For cold flow operating conditions, an isothermal network model that
does not account for the flame response may be constructed (Munjal 1987;
Candel and Poinsot 1988; Fischer et al. 2006). Fresh gases feeding the flame
are injected through inlets and burnt gases are exhausted through outlets, all
of which are represented by measured, simulated or modeled acoustic boundary
conditions.

A network of cavities coupled with non-anechoic acoustic boundary conditions
possesses a set of discrete frequencies at which it acoustically resonates
(Munjal 1987; Candel and Poinsot 1988). Each frequency associated with
its acoustic flow fields is called a mode and depends on many parameters,
including the combustor geometry (Paschereit and Polifke 1998; Schuermans
et al. 2000), the inlet and outlet acoustic boundary conditions (Munjal 1987;
Paschereit and Polifke 1998), the Mach number of the mean flow (Paschereit
and Polifke 1998; Hirschberg and Rienstra 2004), the presence of a flame
(Keller 1995; Paschereit and Polifke 1998) and the acoustic damping rate
inside the setup (Paschereit and Polifke 1998; Fischer et al. 2006) among others.

The concept of acoustic resonance will now be introduced using a very simple
model: a single one-dimensional cavity opened at both sides (the so-called
open-open duct) containing a cold quiescent fluid. This representation may be
used as a first approximation of the acoustic behavior of flutes and organ pipes
for instance (Hartmann 2013). In that case, the frequencies at which the duct
resonates are given by:

f =
pc

2L
(11.1)

where L is the cavity length, c is the speed of sound and p ∈ N
∗ is a non-zero

positive integer characterizing the acoustic mode. The first five modes corre-
sponding to a one-dimensional cavity opened at both sides are represented in
Fig. 11.1.

This one-dimensional cavity model is too simple to accurately describe the
acoustic behavior of a real combustor. For more complex systems consisting
of multiple cavities of various sizes and cross section areas that are bounded
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Figure 11.1: Acoustic pressure envelope of the first five modes of a one-dimensional
cavity opened at both sides. (Blue): Fundamental mode at f0 = c/2L - (Red): First
harmonic at f1 = c/L - (Green): Second harmonic at f2 = 3c/2L - (Orange): Third
harmonic at f3 = 2c/L - (Violet): Fourth harmonic at f4 = 5c/2L

by complex acoustic boundary conditions, acoustic modes and their associated
acoustic flow fields can still be determined either analytically (Munjal 1987;
Candel and Poinsot 1988), experimentally (Schuller et al. 2003b; Palies et al.
2011b) or using numerical strategies (Crighton et al. 1992; Selle et al. 2006).

For cold quiescent conditions and in the absence of an external source of energy,
the acoustic modes will not develop and the system is said to be stable. On the
other hand, acoustic modes may become unstable in the presence of a mean
flow (Rienstra and Hirschberg 2016) or flame (Poinsot and Veynante 2005)
for instance. In that case, the amplitude of the oscillations of the acoustic
variables inside the combustor increases and may lead to limit cycle oscillations.

The prediction of acoustic modes is greatly complicated by the presence of a
flame inside combustors operated for reactive conditions. This is due to the
complexity of the flame response to incoming acoustic waves. Until recently,
the acoustic response of the flame was assumed to be independent of the forcing
level (Merk 1957; Becker and Günther 1971; Schuermans et al. 1999; Polifke
et al. 2001; Candel 2002). In the past two decades, analytical developments
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(Dowling 1997; Noiray et al. 2008), experiments (Durox et al. 2009; Gaudron
et al. 2017c) and simulations (Krediet et al. 2012; Han and Morgans 2015)
showed that this response is nonlinear as it depends on the amplitude of the
sound waves impinging on the flame.

FTF/FDF formalism versus ATM/DATM formalism

The acoustic response of a premixed flame may be described using two
formalisms that are equivalent from a theoretical viewpoint: the FTF/FDF
formalism in which the flame response to sound waves is directly described
and the ATM/DATM formalism in which the flame response is hidden in
a black box relating the acoustic variables upstream and downstream the flame.

In the first framework, the flame frequency response is represented using a
Flame Transfer Function (FTF) (Merk 1957; Candel 2002) or its nonlinear
extension, a Flame Describing Function (Dowling 1997; Noiray et al. 2008). A
detailed description of the FTF/FDF formalism can be found in Chapter 9.
The FTF/FDF is then determined using experiments (Becker and Günther
1971; Durox et al. 2009; Gatti et al. 2018), simulations (Kornilov et al. 2009;
Tay Wo Chong et al. 2010; Han and Morgans 2015) or analytical models
(Crocco 1951; Merk 1957; Ducruix et al. 2000; Schuller et al. 2003a; Preetham
et al. 2008; Palies et al. 2011). After the FTF/FDF is determined, it may be
incorporated into an acoustic model of the combustor and the corresponding
acoustic modes are predicted using an acoustic solver (Keller 1995; Dowling
and Stow 2003; Noiray et al. 2008; Palies et al. 2011b; Silva et al. 2013; Laera
et al. 2017).

The second formalism is based on the (Dimensionless) Acoustic Transfer
Matrix (ATM/DATM) formalism where the flame acoustic response is mod-
eled by a 2 × 2 matrix relating the acoustic pressure and acoustic velocity
upstream and downstream the flame (Paschereit and Polifke 1998; Schuermans
et al. 1999; Dowling and Stow 2003; Truffin and Poinsot 2005). A detailed
description of this framework may be found in Chapter 10. Once again,
the ATM/DATM representing the flame element may be determined using
experiments (Paschereit and Polifke 1998; Guedra et al. 2011; Gaudron et al.
2017c), simulations (Polifke et al. 2001; Merk et al. 2018) or analytical models
(Schuermans et al. 1999). The ATM/DATM representing the flame response
may then be incorporated into an acoustic network model representing the
entire combustor in order to perform a thermoacoustic stability analysis
(Schuermans et al. 2000; Guedra et al. 2011).

A link between the FTF/FDF formalism and the ATM/DATM formalism can
be established in the case of perfectly premixed lean flames (Schuermans et al.
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1999; Truffin and Poinsot 2005), as described in Chapter 10. However, the
flame nonlinearities are usually neglected in the ATM/DATM formalism as the
impact of the forcing level on the acoustic transfer matrix describing the flame
element is rarely accounted for. As a consequence, it is impossible to predict
the limit cycle oscillation amplitude at which unstable thermoacoustic modes
may develop using the ATM/DATM formalism unless the impact of the forcing
level is considered.

Acoustic energy balance: the modified Rayleigh’s criterion

Thermoacoustic instabilities occurring in industrial and labscale combustors
are due to an energy transfer from the flame to the acoustic flow field variables
(Strutt and Rayleigh 1878; Blackshear 1953; Candel 2002). The acoustic
energy balance of a system containing a heat source is now detailed (Strutt
and Rayleigh 1878; Dowling and Morgans 2005; Durox et al. 2009).

A positive energy transfer from the flame to the acoustic flow field variables
is observed when the acoustic pressure at the flame location and the flame
heat release rate are out of phase by less than 90◦ (Strutt and Rayleigh 1878;
Poinsot and Veynante 2005). This law, called Rayleigh’s criterion, is respected
when the source term S defined below is positive.

S =
γ − 1

ρc2
1

τω

∫

Vf

∫

τω

p′q̇′dtdV (11.2)

where τω is the oscillation period and Vf is the flame volume, i.e. the volume
in which the combustion reactions take place. The volumetric heat release rate
fluctuations q̇′ and the acoustic pressure p′ may vary significantly across the
flame and should be integrated locally.

When the source term S is positive, the acoustic energy surplus may be
dissipated by two distinct mechanisms: 1) it may be dissipated at the system
boundaries (Dowling and Morgans 2005; Durox et al. 2009) and 2) it may be
dissipated inside the setup by various sources of acoustic losses (Durox et al.
2009).

The amplitude of the acoustic oscillations increases if the source term S
is larger than the sum of all acoustic damping mechanisms. This may be
expressed mathematically through a modified version of Rayleigh’s criterion
corresponding to an acoustic energy balance and expressed as (Dowling and
Morgans 2005; Nicoud and Poinsot 2005; Durox et al. 2009; Brear et al. 2012):

S >
1

τω

∫

∂V

∫

τω

p′u′dtdS +
1

τω

∫

V

∫

τω

ζadtdV (11.3)
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where V corresponds to the control volume containing the combustion chamber,
∂V denotes the control volume boundaries and ζa represent the local volumetric
acoustic losses. The first term in Eq. (11.3) corresponds the acoustic energy
generated by the unsteady flame, the second term stands for the acoustic
dissipation at the system boundaries and the third term corresponds to the
contribution of all acoustic dissipation mechanisms occurring within the
control volume.

If the source term S is larger than the dissipation terms, as expressed in
Eq. (11.3), the amplitude of the acoustic oscillations grows until the sum of
the nonlinear acoustic losses at the boundaries (Dowling and Morgans 2005)
and those inside the combustor (Durox et al. 2009) exactly compensate the
source term S, leading to finite amplitude oscillations, the so-called limit cycle
oscillations. Complex phenomena such as mode switching (Noiray et al. 2008;
Moeck 2010; Boudy et al. 2011) or hysteresis (Moeck 2010; Prieur et al. 2016)
are not considered in this work.

On the other hand, if the source term S is smaller than the sum of all linear
dissipation terms, the corresponding thermoacoustic mode will be damped.
Reaching these conditions is the main objective of all thermoacoustic instability
control strategies. These methods are either based on a reduction of the source
term S or an increase of the acoustic losses terms (Dowling and Morgans 2005).

The aim of this chapter is to predict the thermoacoustic stability of various
configurations of the NoiseDyn burner using the ATM/DATM formalism and
the FTF/FDF formalism. First, experiments are performed in the absence of
forcing, for reactive operating conditions and for six different configurations.
All the unstable thermoacoustic modes are then fully characterized. Then, two
acoustic network models based on either the ATM/DATM formalism or the
FTF/FDF formalism are designed to reproduce the acoustic behavior of all
six configurations. Finally, the thermoacoustic stability preditions according to
these two network models are compared against measurements. The frequencies
and limit cycle amplitudes of the unstable thermoacoustic modes according to
the acoustic network models are also compared with measurements.

11.2 Thermoacoustic stability of the NoiseDyn

burner

First, the thermoacoustic stability of six distinct geometrical configurations of
the NoiseDyn burner, denoted by A2, B2, C2, D2, E2 and F2, is investigated
with experiments performed in the absence of acoustic forcing and for reac-
tive operating conditions. The frequencies and oscillation amplitudes of the
unstable modes at limit cycle are then extracted for all unstable configurations.
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Figure 11.2: Sketches depicting configurations A2 (Left), B2 (Center) and C2

(Right) of the NoiseDyn burner. Configurations D2, E2 and F2 are respectively ob-
tained from configurations A2, B2 and C2 by adding a perforated plate at the top of
the exhaust tubes. The thermoacoustic stability of these six configurations is inves-
tigated when a flame is stabilized inside the combustion chamber and in the absence
of external forcing. Microphones MP, MC and ME are used to measure the acoustic
pressure at various axial locations. A hot wire probe HW is used to measure the acous-
tic velocity. A photomultiplier PMT with an OH* filter is used to measure the flame
heat release rate.

All six configurations of the NoiseDyn burner investigated in this chapter are
bounded by a rigid plate at the upstream boundary and include a swirling
vane S that generates a flow of Swirl number S = 0.8. Three exhaust tubes of
various lengths are investigated, all of which may or may not be topped by a
perforated plate featuring a square pattern of 12 holes of radius 2.5 mm with
an inter-hole space d = 20 mm, as represented in Fig. 5.8. More information
about these configurations can be found in Chapter 5. Configurations A2,
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B2 and C2 and their associated diagnostics are represented in Fig. 11.2.
Configurations D2, E2 and F2 are obtained from configurations A2, B2 and
C2 by adding the perforated plate at the top of the exhaust tubes.

Three polarized microphones denoted by MP, MC and ME are used to measure
the acoustic pressure at the bottom of the plenum, at the bottom of the
combustion chamber and at the entrance of the exhaust tube respectively.
The acoustic velocity is measured inside the injector using a hot wire probe
HW. The heat release rate is measured using a photomultiplier PMT mounted
with an OH* filter recording the light originating from the entire flame region.
An additional microphone MHW placed in front of the hot wire probe HW is
used for configurations D2, E2 and F2. More information about these various
diagnostics may be found in Chapter 6.

A perfectly premixed methane/air flame of equivalence ratio φ = 0.82 and
thermal power P = 5.5 kW is then stabilized inside the combustion chamber.
When the experimental setup is thermalized, the microphones, hot wire probe
and photomultiplier signals are recorded at a sampling frequency fs = 8192 Hz
for configurations A2, B2 and C2 and fs = 20000 Hz for configurations D2,
E2 and F2 during at least four seconds. The hot wire probe signals are then
plotted as functions of time, as represented in Fig. 11.3-(Top left) for configura-
tions A2, B2 and C2 and Fig. 11.3-(Top right) for configurations D2, E2 and F2.

From Fig. 11.3-(Top), it is obvious that configurations B2 and C2 are unstable
whereas configuration A2 is stable. It is worth pointing out that configuration
B2 is marginally unstable since oscillations appear and disappear intermit-
tently and the system does not reach a well defined limit cycle with a constant
oscillation amplitude. Nevertheless, this configuration is also considered to be
unstable in the present section.

On the other hand, the time series corresponding to configurations D2, E2

and F2 are harder to interpret even though a mild instability with a small
oscillation amplitude seems to be detected for all three configurations. These
acoustic states may be due to the additional damping generated by the
perforated plate added at the top of the exhaust tubes for configurations D2,
E2 and F2.

The Power Spectral Density (PSD) of the hot wire signals are then computed
using the Welch’s averaged, modified periodogram method with 32 Blackman-
Harris windows. The PSD is scaled by the equivalent noise bandwidth of the
window, thus leading to an estimate of the power at each frequency. The
Root-Mean Square (RMS) amplitudes of the relative acoustic velocity oscilla-
tions at the hot wire location are then obtained by dividing the square root of
the moduli of the PSD of the hot wire signals by the corresponding average
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Figure 11.3: Flow velocity inside the injector for reactive operating conditions and
in the absence of acoustic forcing measured with the hot wire probe HW and plotted as
a function of time (Top). Associated RMS amplitude of the relative acoustic velocity
oscillations at the hot wire location (Bottom). Results for configurations A2 (Red),
B2 (Blue) and C2 (Green) are presented on the left while results for configurations
D2 (Yellow), E2 (Brown) and F2 (Pink) are presented on the right.

velocities at the hot wire location. The corresponding plots are represented in
Fig. 11.3-(Bottom). The frequencies of the unstable thermoacoustic modes and
their associated limit cycle levels are then extracted from Fig. 11.3-(Bottom).

Figure 11.3-(Bottom) confirms that configurations A2, D2, E2 and F2 are
stable or feature variations of the flow velocity at the hot wire location smaller
than 3% of the average velocity. The source term in the acoustic energy balance
given by Eq. (11.3) is either negative or slightly positive for these configurations.

On the other hand, configurations B2 and C2 feature thermoacoustic insta-
bilities of frequency f = 205.0 Hz and f = 185.2 Hz respectively with limit
cycle oscillations of amplitude |u′|/u = 0.21 and |u′|/u = 0.65 respectively.
The frequency of the thermoacoustic instability is larger for configuration
B2 compared to configuration C2 as the exhaust tube is shorter. Based on
that observation, it is established that the thermoacoustic modes developing
in the NoiseDyn burner are longitudinal. For these two configurations, the
source term in Eq. (11.3) is positive and larger than the damping terms:
the amplitude of the combustion instabilities increase until the nonlinear
acoustic losses exactly compensate the source term for the limit cycle oscilla-
tions with the amplitudes and frequencies reported here. Since configuration
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Figure 11.4: Power Spectral Density (PSD) of the acoustic pressure at the bottom
of the combustion chamber measured with microphone MC as a function of frequency
for reactive operating conditions and in the absence of acoustic forcing. Results for
configurations A2 (Red), B2 (Blue) and C2 (Green) are presented on the left while
results for configurations D2 (Yellow), E2 (Brown) and F2 (Pink) are presented on
the right.

B2 is intermittently unstable, the validity of this analysis is limited in that case.

It is also worth looking at the Power Spectral Density of the acoustic pressure
at the bottom of the combustion chamber measured with microphone MC
for all six configurations. Once again, the PSD is computed using Welch’s
modified periodogram method with 32 Blackman-Harris windows. The results
are presented in Fig. 11.4-(Left) for configurations A2, B2 and C2 and
Fig. 11.4-(Right) for configurations D2, E2 and F2.

Figure 11.4 further demonstrates that configurations B2 and C2 are the
only unstable or intermittently unstable configurations out of the six cases
explored. The frequencies of the instabilities obtained from Fig. 11.4 are
consistent with the results obtained using the PSD of the hot wire probe
signals in Fig. 11.3. The Sound Pressure Level (SPL) reaches 149.1 dB inside
the combustion chamber for the unstable mode of frequency f = 185.2 Hz
appearing in configuration C2 whereas it only reaches 139.2 dB for the
intermittently unstable mode of frequency f = 205.0 Hz appearing in con-
figuration B2. The difference between the Sound Pressure Level of these
two thermoacoustic modes and the surrounding noise level is between 20 dB
and 40 dB which implies that the acoustic pressure signals are almost harmonic.

The next step is to reconstruct the structure of the unstable thermoacoustic
modes. First, the time series corresponding to all acoustic pressure signals
are plotted as functions of time for all six configurations, as represented
in Fig. 11.5. The corresponding PSD of the acoustic pressure signals are
represented in Fig. 11.6 using the procedure described earlier.

Once again, the results presented in Figs. 11.5 and 11.6 clearly demonstrate
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Figure 11.5: Acoustic pressure measured with microphones MP (Red), MC (Blue),
ME (Green) and MHW (Orange) as a function of time for reactive operating conditions
and in the absence of acoustic forcing. Results for configurations A2 (Top left), B2

(Top right), C2 (Center left), D2 (Center right), E2 (Bottom left) and F2 (Bottom
right).

that configurations A2, D2, E2 and F2 are thermoacoustically stable. On the
other hand, the acoustic pressure signals corresponding to configurations B2

and C2 experience large amplitude harmonic oscillations inside the setup.

The acoustic pressure at the bottom of the combustion chamber, measured
with microphone MC, and at the entrance of the exhaust tube, measured with
microphone ME, are in phase for configurations B2 and C2 in Fig. 11.5. On
the other hand, the acoustic pressure at the bottom of the plenum, measured
with microphone MP, is nearly in phase opposition with respect to the two
abovementioned signals in Fig. 11.5. This observation advocates for the
presence of a pressure node inside the injector.

Figures 11.6-(Top right) and 11.6-(Center left) establish the presence of higher
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Figure 11.6: Power Spectral Density (PSD) of the acoustic pressure measured by
microphones MP (Red), MC (Blue), ME (Green) and MHW (Orange) as a function
of the frequency for reactive operating conditions and in the absence of acoustic forcing.
Results for configurations A2 (Top left), B2 (Top right), C2 (Center left), D2 (Center
right), E2 (Bottom left) and F2 (Bottom right).

order harmonics in the microphone signals corresponding to the unstable
or intermittently unstable configurations. Part of the acoustic energy at
the instability frequency is transferred to higher order harmonics through
nonlinear processes.

The structure of the unstable thermoacoustic modes is now established based
on the acoustic pressure measurements presented in Figs. 11.5 and 11.6.
Figures 11.7-(Left) and 11.7-(Right) correspond to such reconstructions for
configurations B2 and C2 respectively. The x-axis in these figures corresponds
to the axial coordinate in the flow direction with x = 0 defined as the location
of the combustion chamber backplate. Negative coordinates x < 0 correspond
to the locations of the plenum and injector while positive coordinates x > 0
correspond to the locations of the combustion chamber and exhaust tube.
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Figure 11.7: Structure of the thermoacoustic modes associated with configurations
B2 (Left) and C2 (Right). The acoustic pressure field is plotted as a function of the
axial coordinate x, where x = 0 corresponds to the combustion chamber backplate loca-
tion. Results are plotted when the acoustic pressure inside the combustion chamber is
maximum (Red) and minimum (Blue). Measurements are represented as filled circles.

The red curve represents the acoustic pressure measured by all microphones
when the acoustic pressure inside the combustion chamber is maximum. The
corresponding phase is arbitrarily defined as ϕ = 0◦. The blue curve then
represents the acoustic pressure at ϕ = 180◦, when the acoustic pressure inside
the combustion chamber is minimum.

Figure 11.7 demonstrates that the structure of the thermoacoustic modes
developing inside configurations B2 and C2 are the same: the acoustic pressure
inside the plenum is relatively low, followed by a pressure node inside the
injector and then by a large acoustic pressure at the flame location. The
acoustic pressure then drops and reaches zero near the exhaust tube exit. This
structure corresponds to a longitudinal acoustic mode and it is reminiscent of
a 3/4 wave mode for a single cavity. The amplitude of the acoustic pressure
oscillations is much larger for configuration C2 compared to configuration B2,
as shown in Fig. 11.7. This is once again consistent with the results presented
in Figs. 11.5 and 11.6.

The source term S defined in Eq. (11.2) is now computed for all six config-
urations of the NoiseDyn burner (Tran et al. 2009a). S is expected to be
largely positive for the unstable and intermittently unstable configurations -
where it is balanced by large nonlinear acoustic losses - and slightly positive
for the stable configurations. Assuming that the flame is compact, Eq. (11.2)
is simplified and discretized in time:

S =
γ − 1

ρc2
1

τω

τω∑

t=0

p′Q̇′∆t (11.4)

where p′ is the acoustic pressure at the flame location, measured with mi-
crophone MC, and Q̇′ is the flame heat release rate fluctuation, given by the
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Figure 11.8: Product of the microphone MC signal and the photomultiplier signal
as a function of time for reactive operating conditions and in the absence of acoustic
forcing. Results for configurations A2 (Red), B2 (Blue) and C2 (Green) are presented
on the left while results for configurations D2 (Yellow), E2 (Brown) and F2 (Pink)
are presented on the right.

photomultiplier mounted with an OH* filter. In this expression, ∆t is the
inverse of the sampling frequency.

Figure 11.8 represents the product of the acoustic pressure p′ at the flame
location and the flame heat release rate fluctuation Q̇′ as a function of time for
configurations A2, B2 and C2 on the left and D2, E2 and F2 on the right. The
integrals of the curves shown in Fig. 11.8 are directly related to S. This source
term is then computed for each configuration by extracting the oscillation
period τω from the maximum value of the PSD represented in Fig. 11.6 and
using Eq. (11.4). The source term Sc obtained for configuration C2 is used as
a reference and all other source terms are divided by Sc. The corresponding
results are summarized in Table 11.1.

Based on the results presented in Table 11.1, a few interesting facts can be
established. First, the source terms for all six configurations are positive: the
phase lag between the acoustic pressure at the flame location and the flame
heat release rate fluctuation is always comprised between ±90◦ and a positive
energy transfer from the flame to the acoustic flow field is present for all six
configurations. This implies that the linear acoustic losses are large enough to
avoid the growth of an unstable mode for configurations A2, D2, E2 and F2

but not for configurations B2 and C2.

Moreover, the source term corresponding to configuration C2 is significantly
larger than all other source terms. This accounts for the large limit cycle os-
cillation amplitude of the unstable mode observed for this configuration. On
the other hand, the source terms for configurations A2 and F2 are small: these
configurations are thus thermoacoustically stable. In between, the source terms
corresponding to configurations B2, D2 and F2 are similar even though con-
figuration B2 is intermittently unstable while configurations D2 and E2 are
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Table 11.1: Source terms appearing in the acoustic energy balance for six configu-
rations of the NoiseDyn burner operated for reactive conditions and in the absence of
acoustic forcing. Results are normalized by the source term Sc obtained for configura-
tion C2.

Config. A2 B2 C2 D2 E2 F2

S/Sc 0.0058 0.062 1 0.084 0.057 0.012

thermoacoustically stable. As mentioned previously, this is likely due to the
addition of the perforated plate at the top of the exhaust tubes that generates
additional acoustic losses for configurations D2 and E2.

11.3 Thermoacoustic stability predictions using

acoustic network models

In order to predict the thermoacoustic stability of the NoiseDyn burner, the
experimental setup is modeled using the acoustic two-port matrices network
formalism (Abom 1992; Paschereit and Polifke 1998; Polifke et al. 2001; Dowl-
ing and Stow 2003; Poinsot and Veynante 2005; Fischer et al. 2006) which was
described extensively in Chapters 7 and 8. The harmonic convention retained
is e+iωt and all pressure signals are divided by their respective characteristic
impedance z = ρc.

Two distinct acoustic network models are used to represent the NoiseDyn
burner operated for reactive conditions. The first network model, called the
Reactive Flame Describing Function (RFDF) model, is an extension of the
network model presented in Sec. 10.3. In this model, the nonlinear response
of the flame to incoming acoustic waves is taken into account using a Flame
Describing Function (FDF). The FDF is measured using an optical technique
based on measurements of both the OH* chemiluminescence emitted by the
flame and the velocity signal inside the injector, as explained in Chapter 9.
All other elements of the network model are represented using analytical
expressions, as described in Chapter 7. A total of 13 acoustic elements are
used to describe the propagation and damping of acoustic waves inside the
NoiseDyn burner in the RFDF model.

For instance, configuration B2 and its associated acoustic equivalent according
to the RFDF model are represented in Fig. 11.9. The acoustic equivalents
corresponding to configurations A2 and C2 are obtained by changing the
length of the exhaust tubes to l1011 = 0 mm and l1011 = 440 mm respectively.
Configurations D2, E2 and F2 are obtained from configurations A2, B2 and
C2 respectively by changing the downstream acoustic impedance.
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Figure 11.9: Sketch depicting configuration B2 of the NoiseDyn burner (Left) and its
associated acoustic equivalent according to the RFDF model (Right). The area shaded in
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The RFDF model is then assembled using the appropriate analytical DATM
expressions between each consecutive section of the acoustic equivalent:

• Section (-2) → section (-1): A DATM corresponding to a straight
duct in a uniform non-reactive low-Mach flow, modeled with Eq. (7.59).

• Section (-1) → section (0): A DATM corresponding to a compact
area change in a non-reactive low-Mach flow, modeled with Eq. (7.78).

• Section (0) → section (10): The same DATM as those presented in
Sec. 10.3.

• Section (10) → section (11): A DATM corresponding to a straight
duct in a uniform non-reactive low-Mach flow, modeled with Eq. (7.59).
The length of this element depends on the explored configuration.

The only source of acoustic damping in the RFDF model is located inside the
swirling vane and is modeled using a nonlinear extension of Howe’s model for
all six configurations, as described in Sec. 9.4.2.

Three different gas temperatures are employed in the RFDF model: for all
elements between section (-2) and section (7), the gas temperature is set to
the ambient temperature T u = 293 K. Between section (8) and section (9),
corresponding to the combustion chamber, the temperature is set to 1600 K,
around 80% of the adiabatic flame temperature, in order to account for the
heat losses. Finally, between section (10) and section (11), the temperature
is set to the average gas temperature inside the exhaust tube, measured with
a thermocouple for each configuration and summarized in Table 11.2.

The acoustic element located between section (i) and section (j) is mathemat-
ically represented by a DATM denoted by M̃ij . The total DATM representing
the whole burner between section (-2) and section (11) according to the RFDF

network model is then expressed as:

M̃ = M̃1011 M̃910 M̃89 M̃78 M̃67 M̃36 M̃23 M̃12 M̃01 M̃−10 M̃−2−1 (11.5)

The second acoustic network model, called the Reactive Transfer Matrix (RTM)
model, is based on the Dimensionless Acoustic Transfer Matrices (DATM)
measurements presented in Sec. 10.5 that were obtained from the microphones
and hot wire probe signals. This DATM corresponds to the acoustic response
of the elements located between the hot wire probe HW inside the injector
and the microphone ME” inside the exhaust tube, such as represented in
orange in Fig. 11.9. The analytical expressions corresponding to these acoustic
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Table 11.2: Average gas temperature in the exhaust tube for configurations A2, B2,
C2, D2, E2 and F2 of the NoiseDyn burner.

Config. Temperature

A2 & D2
∅

B2 & E2 1062 K
C2 & F2 986 K

elements in the RFDF model are then replaced by the measured DATM and
the acoustic elements located before the hot wire probe or after microphone
ME” are modeled using the same DATM models as for the RFDF model. It
should be noted that this approach only works for configurations that feature
at least one exhaust tube since the DATM is reconstructed using the signals
of microphones ME, ME’ and ME” located on the first exhaust tube. As a
consequence, this method cannot be employed for configurations A2 and D2

in which the exhaust gases are directly released to the atmosphere after the
combustion chamber.

The total DATM representing the whole burner between section (-2) and
section (11) according to the RTM network model is then expressed as:

M̃ = M̃1011 M̃xp M̃01 M̃−10 M̃−2−1 (11.6)

where M̃xp is the measured DATM and the length of the elements between
section (0) and section (1) and between section (10) and section (11) are
modified in order to account for wave propagation up to the hot wire probe
and after microphone ME” respectively. The acoustic elements located before
the hot wire probe are at the ambient temperature T u = 293 K while the
gas temperature in the elements located after microphone ME” are set to the
average gas temperature inside the exhaust tubes, as summarized in Table 11.2.

For both acoustic network models, two acoustic boundary conditions are
needed in order to obtain a closed set of equations. The upstream acoustic
boundary condition, located in section (-2) in Fig. 11.9, is described with
the impedance of a rigid plate Zs

−2 = −∞. The second acoustic boundary
condition, located in section (11) in Fig. 11.9, is described with an open
end acoustic boundary condition modeled using a flanged Levine-Schwinger
impedance for configurations A2, B2 and C2, as detailed in Sec. 7.3.3.
This acoustic impedance model accounts for acoustic radiation which is a
source of acoustic damping. For configurations D2, E2 and F2, an anechoic
acoustic boundary condition is used in section (11). This is justified by the
measurements of the acoustic impedance of the perforated plate placed at
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the top of the exhaust tube for configurations D2, E2 and F2, as detailed in
Sec. 6.7.3.

For both the RFDF and RTM network models, the thermoacoustic stability
of each configuration of the NoiseDyn burner is obtained using the following
procedure. First, the acoustic pressure p′−2 and acoustic velocity u′−2 in section
(-2) are related to the acoustic pressure p′11 and acoustic velocity u′11 in section
(11) using the DATM representing the whole burner and given by Eq. (11.5)
for the RFDF model and by Eq. (11.6) for the RTM model:

(
p′11
u′11

)
=

(
M̃(1, 1) M̃(1, 2)

M̃(2, 1) M̃(2, 2)

)
×
(
p′−2

u′−2

)
(11.7)

Using Eq. (11.7) along with the definition of the specific acoustic impedances
in section (-2) Zs

−2 and section (11) Zs
11, the following characteristic equation

is obtained:

M̃(1, 1)Zs
−2 + M̃(1, 2)− Zs

−2Z
s
11M̃(2, 1)− M̃(2, 2)Zs

11 = 0 (11.8)

Equation (11.8) fully characterizes the thermoacoustic stability of the NoiseDyn
burner. If Eq. (11.8) has no real solution, then the investigated configuration
is thermoacoustically stable. On the other hand, if Eq. (11.8) has at least one
root for a given frequency f and a given forcing level |u′|/u, then the system
features a thermoacoustically unstable mode of frequency f and limit cycle
oscillation amplitude |u′|/u.

In practice, it is almost impossible to solve Eq. (11.8) symbolically if there
are more than a few acoustic elements, especially if the acoustic response of
the flame is described using a nonlinear model. Another strategy is to solve
Eq. (11.8) numerically with a predetermined accuracy. In this study, the
frequencies of the thermoacoustic modes are determined with a numerical
accuracy of 0.1 Hz while the corresponding relative amplitudes of the acoustic
velocity fluctuations at the hot wire location |u′|/u are determined with a
numerical accuracy of 0.01. The left-hand side of Eq. (11.8) is then computed
for frequencies comprised between 50 Hz and 500 Hz and for limit cycle
amplitudes comprised between 0 and 1. The FDF and DATM used in the
RFDF and RTM network models are linearly interpolated and extrapolated
in order to cover the full range of frequencies and relative amplitudes of the
acoustic velocity fluctuations explored. For instance, the measurements and
interpolations/extrapolations retained for the FDF gain and phase lag are
represented in Fig. 11.10.

Figure 11.11 is a semi-log plot representing the inverse of the left-hand side of
Eq. (11.8) as a function of the frequency and relative amplitude of the acoustic



Part II - Premixed Confined Turbulent Flames 253

0
1

0.5

0.8

1

G

00.6

1.5

ju0j=u

100

2

0.4 200

f [Hz]

3000.2 4000 500

-3:
1

-2:

0.8

'

-:

00.6

ju0j=u

100

0

0.4 200

f [Hz]

3000.2 4000 500

Figure 11.10: FDF gain (Top) and phase lag (Bottom) as functions of the forcing
frequency and relative amplitude of the acoustic velocity fluctuations at the hot wire
location |u′|/u. Measurements are represented as black spheres. The corresponding
interpolated/extrapolated values are represented as smooth surfaces.

velocity fluctuations at the hot wire location |u′|/u. The results presented
here are obtained using the RFDF model representing configuration C2 of the
NoiseDyn burner. The peaks correspond to the solutions of Eq. (11.8) and
thus to the unstable thermoacoustic modes. Each thermoacoustic mode is
then fully characterized by extracting the frequency and limit cycle amplitude
from the associated peak. On the other hand, if no peak is observed, then the
corresponding configuration is thermoacoustically stable.

Following this procedure, the thermoacoustic stability of the various configura-
tions of the NoiseDyn burner investigated in Sec. 11.2 is predicted using both
the RFDF and RTM acoustic network models. The results are summarized in
Table 11.3. The predictions of the thermoacoustic stability of the NoiseDyn
burner are the same for both acoustic network models. The results presented
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Figure 11.11: Representation of the inverse of the left-hand side of Eq. (11.8) as a
function of the frequency and relative amplitude of the acoustic velocity fluctuations
at the hot wire location |u′|/u obtained using the RFDF model for configuration C2. A
peak indicates the presence of an unstable thermoacoustic mode.

in Sec. 11.2 indicate that configurations E2 and F2 are stable, which is well
retrieved by both network models. Configuration A2 and D2 are also stable,
which is correctly predicted by the RFDF model but not by the RTM model
that cannot be used in the absence of an exhaust tube, as explained before.
Configuration C2 is also predicted to be thermoacoustically unstable by both
acoustic network models, which is in conformity with experiments. On the
other hand, configuration B2 is predicted to be stable by both network models
even though it is intermittently unstable. In fact, predicting the onset of an
intermittently unstable thermoacoustic mode using the conventional analysis
employed here is challenging.

Table 11.3: Thermoacoustic stability of six distinct configurations of the NoiseDyn
burner obtained from experiments and predicted by the RFDF and RTM acoustic net-
work models.

Config. Experiments RFDF model RTM model

A2 Stable Stable ∅

B2 Intermittently unstable Stable Stable

C2 Unstable Unstable Unstable

D2 Stable Stable ∅

E2 Stable Stable Stable

F2 Stable Stable Stable



Part II - Premixed Confined Turbulent Flames 255

Table 11.4: Frequency and limit cycle oscillation amplitude associated with the un-
stable thermoacoustic mode appearing inside configuration C2 according to direct mea-
surements and to the RFDF and RTM acoustic network models.

Method f [Hz] |u′|/u

Measurements 185.2 0.65

RFDF model 182.6 0.98

RTM model 180.0 0.54

Overall, the thermoacoustic stability of the NoiseDyn burner is well predicted
by both acoustic network models. The predictions of the frequency and
limit cycle amplitude of the unstable thermoacoustic mode developing inside
configuration C2 is now investigated. Measurements are compared against pre-
dictions according to the RFDF and RTM acoustic network models in Table 11.4.

The frequency of the unstable thermoacoustic mode appearing in configuration
C2 is well predicted by both acoustic network models, as shown in Table 11.4.
However, the relative amplitude of the acoustic velocity fluctuations at the hot
wire location |u′|/u is overpredicted by the RFDF model. On the other hand,
the limit cycle amplitude according to the RTM model is in conformity with
experiments.

This difference between the RFDF and RTM models is due to the fact that the
acoustic losses inside the injector are naturally included in the RTM model. In
fact, these losses are contained in the measurements of the DATM representing
the burner response between the hot wire probe HW and microphone ME”.
As a consequence, the limit cycle amplitude of the instability predicted by the
RTM model is in better agreement with the limit cycle amplitude obtained
using direct measurements. On the other hand, the acoustic losses are entirely
modeled in the RFDF model. As mentioned in Chapter 10, these losses are
underpredicted and thus, the limit cycle amplitude according to the RFDF model
is overpredicted.

11.4 Conclusion

The objective of this chapter was to compare the thermoacoustic stability
predictions according to two acoustic network models with the experimental
data gathered using the NoiseDyn burner.

Six configurations of the NoiseDyn burner, denoted by A2, B2, C2, D2, E2 and
F2 and featuring various exhaust tube lengths and downstream acoustic bound-
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ary conditions were first explored experimentally. Multiple microphones and
a hot wire probe were placed at various axial locations and the corresponding
signals were recorded during reactive operation. Based on these measurements,
configurations A2, D2, E2 and F2 were shown to be thermoacoustically stable
while configuration C2 was shown to be thermoacoustically unstable. Finally,
configuration B2 was found to be intermittently unstable. The structures of
the thermoacoustic modes appearing in configurations B2 and C2 as well as
their frequencies and limit cycle amplitudes were also extracted from these
experiments.

Two acoustic network models representing these configurations of the NoiseDyn
burner were subsequently constructed. In the first model, denoted by RFDF,
the flame response to incoming acoustic waves was described using a Flame
Describing Function (FDF) measured with an optical technique. All the other
elements of the RFDF acoustic network model were represented using various
analytical expressions accounting for wave propagation and acoustic damping
within the burner.

In the second acoustic network model, denoted by RTM, the acoustic response
of the NoiseDyn burner between the hot wire probe located inside the injector
and microphone ME” located inside the exhaust tube was directly assessed
using the acoustic transfer matrix measurements presented in Chapter 10. The
acoustic elements located before the hot wire probe and after microphone ME”
were still modeled using analytical expressions.

The thermoacoustic stability predictions according to both network models
were then compared against measurements. Except for the intermittent
instability occuring in configuration B2 which was not predicted by any of the
network models, the thermoacoustic stability of the explored configurations
of the NoiseDyn burner were well retrieved by both network models. The
frequency of the instability occuring in configuration C2 was also well retrieved
by both the RFDF and RTM models.

On the other hand, the limit cycle oscillation amplitude associated with the
unstable thermoacoustic mode appearing in configuration C2 was well predicted
by the RTM model but not by the RFDF model. This was attributed to the
acoustic losses inside the injector that are not accurately predicted by the RFDF

model. In the RTM model, these acoustic losses are included in the measured
acoustic transfer matrix representing the burner response and as a consequence,
the limit cycle oscillation amplitude is accurately predicted by this model.



Conclusion and perspectives

The acoustic response of a set of premixed flames submitted to harmonic sound
waves was investigated in this work using experiments and various modeling
strategies. The response of premixed laminar conical flames was first investi-
gated in Chapters 1 to 4. These flames constitute an elementary case that
can be used to validate theoretical models and numerical simulations and they
are also found in many industrial and domestic heating appliances. The re-
sponse of premixed confined turbulent swirling and non-swirling flames was
then investigated in Chapters 5 to 11. These flames are used in a variety
of high-power combustors such as gas turbines used for propulsion or power
generation. These combustors are particularly prone to thermoacoustic insta-
bilities.

The case of premixed laminar conical flames was examined first. A quick sum-
mary of the current state of knowledge related to the acoustic response of these
flames was performed in Chapter 1. The notion of Flame Transfer Function
(FTF) was introduced and it was shown that the FTF of premixed laminar
conical flames can be split into two components: FA, related to the velocity
perturbation propagating in the fresh gases and FB, related to the flame base
motion. Three typical analytical models for FA were introduced based on uni-
form, convective and incompressible convective velocity perturbation models.
An additional model for FB was also described based on previous works.

The acoustic response of premixed laminar conical flames was then measured
with the setup presented in Chapter 2. Experiments were performed for
methane/air and propane/air flames featuring the same aspect ratio h/R = 4
and stabilized on burner outlets of decreasing radii, ranging from R = 11 mm
to R = 1.0 mm. A total of twenty-two configurations featuring different fuels,
bulk flow velocities, equivalence ratios and burner geometries were investigated.

The FTF predictions according to the analytical models presented in Chap-
ter 1 were then compared against measurements in Chapter 3. Overall, the
best match was obtained using the incompressible convective velocity pertur-
bation model. However, the predictions associated with this model worsened
when the size of the injector was reduced. For small flames, the uniform ve-
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locity perturbation model yielded better results for the FTF phase lag. It was
also shown that the contribution of the flame base motion to the FTF of pre-
mixed laminar conical flames could be neglected for large flames stabilized over
the injectors of radii R = 11 mm and R = 7 mm. On the other hand, this
contribution had to be considered for smaller flames but the model retained
was unable to reproduce the FTF measurements. It was thus concluded that
an additional modeling effort was needed in order to predict the FTF of small
premixed laminar conical flames.

It was then demonstrated in Chapter 4 that premixed laminar conical flames
submitted to harmonic sound waves experience heat release rate fluctuations
due to flame volume oscillations and spatially-averaged volumetric heat release
rate fluctuations. This last contribution was shown to be negligible for large
flames, e.g. when the burner outlet radius is much larger than the flame thick-
ness, but needs to be considered for small flames stabilized over the injectors
of radii R = 1.5 mm and R = 1.0 mm.

It was also demonstrated that the reduced frequency ω∗ = ωR/(SL cosα) is an
adequate dimensionless parameter to scale the acoustic response of large pre-
mixed laminar conical flames of constant aspect ratio h/R. For smaller flames,
three additional dimensionless numbers were shown to control the shape of the
FTF: the Lewis number Le, the dimensionless flame thickness δ∗ and the di-
mensionless flame stand-off distance ψ∗ = ψ/R.

A new analytical model predicting the reduced frequency ω0
∗ at which the FTF

gain of premixed laminar conical flames reaches its maximum value was also
derived. This model was based on a bidimensional heat and mass transfer
mechanism accounting for 1) the unsteady vertical heat losses between the
flame base and the burner and 2) the lateral heat and mass transfers between
adjacent flame elements. The reduced frequency ω0

∗ was shown to depend on
the flame aspect ratio h/R, the dimensionless flame thickness δ∗ and the dimen-
sionless flame stand-off distance ψ∗. The predictions of ω0

∗ associated with this
new analytical model were shown to be in excellent agreement with experiments.

In the second part of this work, premixed confined turbulent flames were in-
vestigated using the NoiseDyn burner presented in Chapter 5. This modu-
lar burner was designed specifically to examine the acoustic response of such
flames. Throughout this part, the cold and reactive operating conditions were
prescribed and only the upstream elements, swirling vane and downstream
elements of the NoiseDyn burner were modified. The associated diagnostics
(including temperature, pressure drop, velocity, acoustic pressure and chemi-
luminescence measurements) were subsequently presented in Chapter 6. A
thorough description of the acoustic impedance and acoustic reflection coeffi-
cient measurement techniques, including the Three Microphone Method, was
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also included in this chapter.

The fundamental equations describing linear sound wave propagation in a
low-Mach non-reactive flow were derived in Chapter 7. Various acoustic
impedance models were also introduced in this chapter and the concept of
Acoustic Transfer Matrix (ATM) was presented. Analytical models for the
Acoustic Transfer Matrices corresponding to straight ducts in uniform and
non-uniform temperature fields, compact and non-compact area changes and
perforated plates traversed by high-Reynolds number flows were subsequently
derived.

The same approach was applied to low-Mach reactive flows in Chapter 8.
The analytical model for the Acoustic Transfer Matrix corresponding to a lean
compact flame stabilized in a low-Mach flow within a straight duct was derived.

The acoustic response of premixed confined swirling and non-swirling flames
submitted to harmonic sound waves generated from the upstream or down-
stream sides of the NoiseDyn burner was investigated in Chapter 9 for a large
set of forcing frequencies and forcing levels. Three describing functions were
measured using the photomultiplier signal and various reference signals: the
hot wire probe signal located inside the injector, the signal of the microphone
located in front of the hot wire probe and the signal of another microphone
located at the bottom of the combustion chamber. The forcing level was con-
trolled at the hot wire location in all cases. The FTF phase lags of all describing
functions were shown to be independent of the forcing level whereas the FTF
gains were shown to depend on the forcing level for certain frequencies.

For downstream forcing experiments, it was shown that all describing func-
tions could be retrieved from one another using a linear propagation model in
which the acoustic losses inside the setup were neglected. On the other hand,
for upstream forcing experiments, a more complex model accounting for the
acoustic losses generated at the swirling vane due to the coupling between the
acoustic flow field variables and the vortical structures was required in order to
accurately relate the describing functions. This was attributed to the different
acoustic pressure drops across the swirling vane for upstream and downstream
forcing experiments due to different acoustic boundary conditions.

The Flame Describing Function (FDF) defined with respect to the hot wire
probe signal was observed to be the same for upstream and downstream forc-
ing experiments as long as the forcing frequency was lower than 220 Hz. For
higher frequencies, the FDF phase lag plots still matched but not the FDF gain
plots. Nevertheless, the FDF defined with respect to the acoustic velocity just
before the flame was found to be identical for upstream and downstream forcing
experiments over the entire frequency range. It was thus concluded that the
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correct reference signal that should be used when defining a Flame Describ-
ing Function is the acoustic velocity at the top of the injector, just before the
flame. It was also demonstrated that the describing functions based on acous-
tic pressure measurements depended on the upstream and downstream acoustic
boundary conditions. It was thus concluded that these pressure signals should
not be used as reference signals when defining a Flame Describing Function.

Next, the impact of the forcing level on the Dimensionless Acoustic Transfer
Matrix (DATM) coefficients representing the acoustic response of a swirling and
non-swirling injector was determined using cold flow and reactive flow experi-
ments in Chapter 10. For cold flow conditions, the response of both injectors
was found to be the same. The phases of the DATM coefficients were shown to
be independent of the forcing level while the modulus of these coefficients was
shown to be impacted by the forcing level in a certain frequency range. For
reactive operating conditions, the response of the combustor was found to be
different for the swirling and non-swirling injectors. The phases of the DATM
coefficients were found to be independent of the forcing level but not the moduli
of these coefficients.

Two acoustic network models representing the acoustic response of the Noise-
Dyn burner for cold and reactive operating conditions were then assembled. For
cold flow operating conditions, the network model was similar for both injectors
whereas for reactive operating conditions, the swirling and non-swirling flames
were found to have distinct acoustic responses and the network model predic-
tions thus varied. Two sources of acoustic nonlinearities were accounted for in
these acoustic network models: 1) the nonlinear acoustic damping generated
at the swirling vane and 2) the nonlinear flame response which was considered
through the use of a Flame Describing Function for reactive operating condi-
tions only.

For cold flow operating conditions, the predicted DATM coefficients according
to the acoustic network model was found to be in excellent agreement with
the DATM measurements even though the effect of the forcing level was not
correctly retrieved. For reactive operating conditions, the general trend of the
DATM coefficients was still found to be correctly reproduced by the model but
the overall accuracy of the predictions worsened. Once again, the effect of the
forcing level was not entirely retrieved.

Both Flame Describing Functions associated with the swirling and non-swirling
flames were measured using an optical technique and reconstructed using the
DATM measurements along with the reactive acoustic network model. The
overall evolution of the FDF gain and phase lag was shown to be fairly well
predicted for both types of injectors and the effect of the forcing level on the
FDF gain was retrieved to some extent.
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Finally, the thermoacoustic stability of six different configurations of the Noise-
Dyn burner was investigated in Chapter 11 using experiments. Furthermore,
two acoustic network models were designed to represent the acoustic response
of each configuration of the NoiseDyn burner. In the first network model,
the acoustic response of the flame was considered using a Flame Describing
Function. In the second network model, the flame response was included in a
DATM measurement performed for reactive operating conditions. The acoustic
losses generated inside the burner were described analytically in the first model
whereas they were directly measured in the second model.

The thermoacoustic stability predictions according to these two acoustic net-
work models were then compared against experimental data. Both network
models were able to predict the thermoacoustic stability of the NoiseDyn burner.
For thermoacoustically unstable configurations, the frequency of the instability
was also accurately predicted by both models. However, the limit cycle oscilla-
tion amplitude was precisely predicted by the second network model only. This
was attributed to the way acoustic losses are taken into account in the acoustic
network models.

Perspectives

The analysis performed in this work for premixed laminar conical flames clearly
indicates that new analytical models describing the Flame Transfer Function
of collections of small flames are required. Moreover, the current models de-
scribing the impact of the flame base motion on the FTF of premixed laminar
conical flames needs to be revisited.

Furthermore, the results presented in the second part of this work demonstrate
that modeling the acoustic losses inside a combustor in order to accurately
predict the onset of thermoacoustic instabilities is a difficult task. In order to
improve these predictions, a fundamental understanding of the physical mecha-
nisms at stake is necessary and new analytical models describing these acoustic
losses are required. Used within suitable acoustic network models, these acous-
tic losses models could then lead to precise predictions of the frequencies of
the unstable thermoacoustic modes and their associated limit cycle oscillation
amplitudes without resorting to experiments or numerical simulations.

It should also be emphasized that the incoherent source terms due to the tur-
bulent flame motion were neglected in the acoustic network models employed
here. An interesting extension of this work would be to extract these source
terms and the Acoustic Transfer Matrix coefficients concomittantly from the
experimental data. Alternatively, the NoiseDyn burner could be operated for
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reactive conditions with upstream and downstream anechoic boundary condi-
tions in order to directly assess these acoustic source terms.

Finally, the results presented in this work were obtained with purely gaseous
flames and for a limited set of operating conditions. Another possible ex-
tension of this work would be to explore the acoustic response of confined
turbulent flames for different operating conditions and for various fuels. For
instance, it would be worth exploring the acoustic response of spray flames,
which are widely employed in the industry, using the experiments and analyti-
cal approaches described in the present study.
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Appendix A

Harmonic Convention and

Acoustic Boundary Orientation

This appendix constitutes an extension of the theoretical developments
presented in Chapters 7 and 8. The origin of the acoustic harmonic con-
vention and its consequences on the expression of the acoustic impedance
and acoustic reflection coefficient are first discussed. Then, the impact
of the acoustic boundary orientation on the expression of the acoustic
impedance and acoustic reflection coefficient is investigated.

A.1 Origin of the harmonic convention

The propagation of acoustic waves in a low-Mach non-reactive flow with a uni-
form temperature field is described with the following wave equation (Rienstra
and Hirschberg 2016):

∇2p′ − 1

c2
∂2p′

∂t2
= 0 (A.1)

where p′ denotes the acoustic pressure and c the mean speed of sound.

If the acoustic waves are further assumed to be harmonic, e.g. if their spectra
contain a single angular frequency ω, one specific set of complex solutions fol-
lowing this equation, denoted by a subscript ⊕, is given by:

p′⊕ = p′⊕ω(x)e
+iωt (A.2)

where x is the position vector and p′ω is the complex amplitude of the acoustic
pressure at the angular frequency ω.
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However, Eq. (A.1) also admits another set of complex solutions, denoted by a
subscript ⊖:

p′⊖ = p′⊖ω(x)e
−iωt (A.3)

These two distinct sets of solutions expressed in Eqs. (A.2) and (A.3) are equally
valid and physically equivalent. The harmonic convention is said to be e+iωt or
e−iωt depending on the set of solutions retained, and the associated variables
are denoted by a subscript ⊕ or ⊖ respectively. The physical signal corre-
sponding to the acoustic pressure is then obtained by considering the real part
of Eqs. (A.2) or (A.3).

A.2 Impact of the harmonic convention on the acous-

tic impedance and acoustic reflection coefficient

In this section, the acoustic waves are assumed to be harmonic plane waves
propagating in a duct along the x-axis. The acoustic pressure inside the duct
is given by:

p′ = p′ω(x)e
±iωt (A.4)

where the ± sign depends on the harmonic convention retained. Using Eq. (A.4),
the wave equation given by Eq. (A.1) becomes a Helmholtz equation:

d2p′ω
dx2

+ k2p′ω = 0 (A.5)

where k = ω/c is the wave number.

Equation (A.5) is valid for both harmonic conventions. The acoustic pressure
at any axial location inside the duct is obtained by solving this equation. The
associated acoustic velocity is then derived from Eq. (7.27), which is reproduced
here:

ρ
∂u′

∂t
= −∇p′ (A.6)

Using the harmonic plane wave assumption, the resulting equation differs de-
pending on the harmonic convention retained:

±iωρu′
ω = −dp

′
ω

dx
(A.7)
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From Eqs. (A.4), (A.5) and (A.7), the acoustic pressure and acoustic velocity
with the e+iωt harmonic convention are given by:





p′⊕ = A⊕ωe
ikxe+iωt +B⊕ωe

−ikxe+iωt

u′
⊕ =

(
−A⊕ω

ρc
eikxe+iωt +

B⊕ω

ρc
e−ikxe+iωt

)
ex

(A.8)

(A.9)

where A⊕ω and B⊕ω are complex integration constants.

On the other hand, the acoustic pressure and acoustic velocity with the e−iωt

harmonic convention are given by:





p′⊖ = A⊖ωe
ikxe−iωt +B⊖ωe

−ikxe−iωt

u′
⊖ =

(
A⊖ω

ρc
eikxe−iωt − B⊖ω

ρc
e−ikxe−iωt

)
ex

(A.10)

(A.11)

where A⊖ω and B⊖ω are complex integration constants that differ from A⊕ω

and B⊕ω. All these integration constants A⊕ω, B⊕ω, A⊖ω and B⊖ω depend on
the frequency.

A link between these two conventions can be established with the following
reasoning. Even though two different harmonic conventions are possible, the
physical signals corresponding to the acoustic pressure and acoustic velocity
are the same for both harmonic conventions:

{
Re(p′⊕) = Re(p′⊖)

Re(u′⊕) = Re(u′⊖)

(A.12)

(A.13)

where Re(e) denotes the real part of any complex number e. From Eqs. (A.8)-
(A.13), it is found that:

{
A⊕ω = (B⊖ω)

∗

B⊕ω = (A⊖ω)
∗

(A.14)

(A.15)

where the superscript * denotes the complex conjugate. The expression of the
acoustic impedance with the e+iωt convention is then given by:

Z⊕ = ±p
′
⊕

u′⊕
= ±ρc A⊕ωe

ikx +B⊕ωe
−ikx

−A⊕ωeikx +B⊕ωe−ikx
(A.16)
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where the symbol ± is due to the surface orientation, as explained in Sec. A.3.
Likewise, the expression of the acoustic impedance with the e−iωt harmonic
convention is given by:

Z⊖ = ±p
′
⊖

u′⊖
= ±ρcA⊖ωe

ikx +B⊖ωe
−ikx

A⊖ωeikx −B⊖ωe−ikx
(A.17)

By taking the complex conjugate of Eq. (A.17) and using Eqs. (A.14)-(A.16),
the relation between the acoustic impedances with both harmonic conventions
is found:

Z⊕ = (Z⊖)
∗ (A.18)

Furthermore, the analytical link between the specific acoustic impedance Zs

and the acoustic reflection coefficient R is given by Eq. (7.44), reproduced here:

R(x, ω) =
Zs (x, ω)− 1

Zs (x, ω) + 1
(A.19)

where Zs is the ratio between the acoustic impedance Z and the characteristic
acoustic impedance of the medium z = ρc.

Using this equation, the relation between the acoustic reflection coefficients
with both harmonic conventions is found as well:

R⊕ = (R⊖)
∗ (A.20)

In the end, switching between harmonic conventions for the acoustic impedance
and acoustic reflection coefficient is simply done by taking the complex conju-
gate of these physical quantities.

A.3 Impact of the acoustic boundary orientation

As explained in Chapter 7, the acoustic impedance Z is defined as:

Z (x, ω) =
p′ω(x)

u′
ω(x) · n̂(x)

(A.21)

In this expression, n̂ stands for the unit vector normal to the surface of inter-
est and pointing outward and p′ω and u′

ω are the complex amplitudes of the
acoustic pressure and acoustic velocity assessed at the angular frequency ω. As
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Figure A.1: Acoustic boundary orientation in the case of harmonic plane waves

propagating along the x-axis. The axial location at which the acoustic impedance and

acoustic reflection coefficient are defined is x = 0. Case I corresponds to acoustic
waves propagating on the right of the boundary (Left). Case II corresponds to
acoustic waves propagating on the left of the boundary (Right).

a consequence, the acoustic impedance Z and subsequently the acoustic reflec-
tion coefficient R depend on the orientation of n̂. In other words, Z and R
depend on surface orientation.

When harmonic plane waves propagating along the x-axis are considered, two
possible cases arise. The first case, called I in Fig. A.1, corresponds to an
acoustic boundary with sound waves propagating on its right whereas in the
second case, called II in Fig. A.1, the sound waves are propagating on the left
of the boundary. Without loss of generality, the surface on which the acoustic
impedance and acoustic reflection coefficient are assessed is defined as the x-
axis origin.

From Eq. (A.21) and Fig. A.1-(Left), the expressions of the acoustic impedance
and acoustic reflection coefficient for Case I are given by Eqs. (A.22) and
(A.23) respectively.

Z
I
(0, ω) = −p

′
ω(0)

u′ω(0)
(A.22)

R
I
(0, ω) =

Aω

Bω
(A.23)

where Aω and Bω represent the complex amplitudes of the acoustic waves prop-
agating in the positive and negative directions respectively.

On the other hand, the expressions of the acoustic impedance and acoustic re-
flection coefficient for Case II are given by Eqs. (A.24) and (A.25) respectively.
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Z
II

(0, ω) =
p′ω(0)

u′ω(0)
(A.24)

R
II

(0, ω) =
Bω

Aω
(A.25)

In the end, it was shown that the acoustic impedance and acoustic reflection
coefficient both depend on the orientation of the acoustic boundary.



Appendix B

Cold Flow Acoustic

Characterization

The procedure used to determine the frequencies and damping rates of
the cold flow acoustic modes developing inside a combustor using exper-
iments and analytical approaches is exemplified in this appendix using
the NoiseDyn burner. The issues associated with this procedure are then
described in details.

B.1 Acoustic characterization of the NoiseDyn burner

using cold flow experiments

In this section, configurations A2, B2 and C2 of the NoiseDyn burner are oper-
ated for cold flow conditions while submitted to external acoustic forcing gen-
erated by a loudspeaker (Schuller et al. 2003b; Mirat 2015), as represented in
Fig. B.1. This experimental setup is used to characterize the cold flow acoustic
modes developing in these three configurations of the NoiseDyn burner. Micro-
phones MP, MHW, MC, ME and ME” are flush-mounted on the burner, except
for configuration A2 where microphones ME and ME” are removed. The dis-
tance between microphones ME and ME” is set to 50 mm.

The frequency of the sound waves emitted by the loudspeaker is then varied
between 50 Hz and 1000 Hz and the various microphone signals are recorded
at a sampling frequency fs = 20000 Hz during one second for each forcing fre-
quency. These measurements are performed with a mean cold flow across the
NoiseDyn burner in order to accurately assess the damping rates of the acoustic
modes. The auto power spectral densities of each microphone signal are then
computed using a single flat-top window. The corresponding plots, represented
in Fig. B.2, are used to determine the frequencies and damping rates of the
acoustic modes for all three configurations of the NoiseDyn burner.

Based on the assumption that the acoustic response of the combustor is a sec-
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Figure B.1: Sketches depicting configurations A2 (Left), B2 (Center) and C2 (Right)
of the NoiseDyn burner submitted to harmonic sound waves generated by an external
loudspeaker for forcing frequencies up to 1000 Hz. Microphones MP, MHW, MC, ME
and ME” are used to measure the acoustic pressure at various axial locations for all
forcing frequencies.

ond order damped harmonic oscillator (Mirat 2015), the damping rate ωi of
each acoustic mode is simply given by:

ωi = π∆f (B.1)

where ∆f is the full width at half maximum for each acoustic mode, obtained
from Fig. B.2. The frequencies and damping rates of all the acoustic modes
appearing in configurations A2, B2 and C2 between 50 Hz and 1000 Hz are
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Figure B.2: Auto power spectral density of the microphone signals at the forcing
frequency in the presence of a mean cold flow and plotted as a function of the forcing
frequency. Results for configurations A2 (Top left), B2 (Top right) and C2 (Bottom).

obtained following this procedure. The corresponding results are summarized
in Table B.1.

B.2 Prediction of the acoustic modes of the NoiseDyn

burner for cold flow operating conditions

The experimental setup is now modeled for cold flow operating conditions us-
ing the acoustic two-port matrices network formalism (Abom 1992; Paschereit
and Polifke 1998; Polifke et al. 2001; Dowling and Stow 2003; Poinsot and Vey-
nante 2005; Fischer et al. 2006). Following the procedure presented in Sec. 11.3
for reactive operating conditions, an acoustic network model representing the
NoiseDyn burner may be constructed by analogy with the RFDF model but with
a constant gas temperature T u = 293 K throughout the burner. Moreover, the
element corresponding to the flame response is removed here.

Combining this acoustic network model with relevant acoustic boundary con-
ditions at the combustor inlet (closed boundary) and outlet (open boundary),
the characteristic equation given by Eq. (11.8) is explicitly derived.

The next step is to look for the complex roots f = fr+ ifi of this characteristic
equation, where fr is the frequency of the acoustic mode and ωi = 2πfi is the
associated damping rate. Using the method introduced in Sec. 11.3, these roots
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Table B.1: Frequencies and damping rates of the acoustic modes appearing in configu-
rations A2, B2 and C2 of the NoiseDyn burner for cold flow operating conditions with
ub = 5.4 m/s at the hot wire probe location. Results were obtained using an external
louspeaker generating harmonic sound waves between 50 Hz and 1000 Hz (Experiments)
and using the acoustic network model representing the NoiseDyn burner (Predictions).

Config. Mode
Experiments Predictions

f [Hz] ∆f [Hz] ωi [1/s] f [Hz] ωi [1/s]

A2

1 82 28 88 80.5 200

2 272 20 63 297.1 61

3 608 24 75 573.4 16

4 928 38 119 869.0 209

B2

1 70 36 113 75.0 143

2 156 12 38 156.3 71

3 530 10 31 551.1 28

4 579.5 28

5 870 14 44 827.6 80

C2

1 62 14 44 67.9 85

2 118 18 57 123.1 121

3 354 16 50 364.6 18

4 570.7 13

5 612 18 57 622.3 31

6 842 17 53 813.2 52

are found and summarized in Table B.1.

The frequencies of the acoustic modes corresponding to configurations A2, B2

and C2 for cold flow operating conditions are adequately predicted, as shown
in Table B.1. Two acoustic modes predicted by the acoustic network model for
configurations B2 and C2 are not detected in the experiments but this is likely
due to the presence of other modes at neighboring frequencies which may cover
up these undetected modes.

On the other hand, the acoustic damping rates according to the experiments
and to the acoustic network model predictions are in contradiction. This is
not surprising since many assumptions are necessary in order to relate the
results obtained from the experiments, presented in Sec. B.1, to the analytical
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predictions, presented in Sec. B.2. The main limitations associated with these
assumptions are discussed in the next section.

B.3 Issues associated with the cold flow acoustic char-

acterization procedure

The first issue associated with the cold flow acoustic characterization procedure
presented in Secs. B.1 and B.2 is due to the downstream acoustic boundary
condition set in the acoustic network model. Usually, this acoustic boundary
is modeled using an open end condition, or any other acoustic boundary con-
dition corresponding to the experimental setup in the absence of external forc-
ing. However, the downstream acoustic boundary condition may be strongly
impacted by the external source of forcing.

In the absence of acoustic forcing, no acoustic mode will develop inside the
burner. The addition of an external loudspeaker introducing acoustic energy
through the downstream boundary is necessary for the acoustic modes to de-
velop inside the setup. As a consequence, the downstream acoustic boundary
condition is modified to some extent in the presence of external forcing com-
pared to the unforced regime. Unless the downstream acoustic impedance is
measured for all frequencies and used as a boundary condition in the acous-
tic network model, the frequencies and damping rates of the acoustic modes
obtained from the experiments and predicted by the acoustic network models
may not be the same.

The second issue associated with the cold flow acoustic characterization pro-
cedure presented earlier is related to the assumption that the combustor is a
second order damped harmonic oscillator. This assumption is necessary in or-
der to obtain the acoustic damping rates by extracting the full width at half
maximum from Fig. B.2 for each acoustic mode. However, this assumption is
inconsistent with the nonlinear acoustic response of the combustor observed in
Chapter 10 for both cold and reactive operating conditions. In that case, part
of the acoustic energy is transfered to higher order harmonics and the damping
rate of each acoustic mode cannot be obtained using the previous method.

Even if the acoustic response of the combustor can be assumed to be linear and
the correct acoustic impedance is set at the downstream boundary, a fundamen-
tal difficulty arises when one tries to predict the damping rates of the acoustic
modes using the procedure described in Sec. B.2. In fact, some elements in
the acoustic network model, such as the Levine-Schwinger impedance, are not
functions of a complex variable f = fr + ifi. As a consequence, these elements
are often considered to be a function of the frequency fr only. When reactive
operating conditions are explored, the Flame Describing Function is typically



278 Appendix B - Cold Flow Acoustic Characterization

assumed to be a function of fr as well. This implies that these elements do not
participate in the damping of the acoustic waves occurring inside the combustor
since fi is artificially set to zero for these elements. On the other hand, acoustic
damping is known to occur at an open end boundary for instance which is in
contradiction with the previous assumption.

This problem becomes obvious when the combustor is modeled using an experi-
mental DATM, measured as a function of fr only, along with acoustic boundary
conditions that depend on fr only (such as closed or open end acoustic bound-
ary conditions). In that case, the characteristic equation is a function of fr
only and it is concluded that there is no acoustic damping inside the combus-
tor, which is evidently false.

It is thus concluded that the cold flow acoustic characterization procedure pre-
sented in this appendix is rudimentary and should be utilized with great care.
Moreover, determining the damping rates of the acoustic modes by looking for
the complex roots of the characteristic equation is problematic, especially when
considering acoustic elements that were measured as a function of the frequency
only.
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Résumé : Les instabilités thermoacoustiques sont un problème 
majeur pour la production d’électricité ainsi que dans l’industrie 
aérospatiale. Ces instabilités sont dues à un transfert d’énergie entre 
une source chaude, le plus souvent une flamme stabilisée dans un 
brûleur, et le champ acoustique environnant. Les instabilités de 
combustion peuvent avoir de nombreuses conséquences délétères 
telles que l’extinction de la flamme, l’augmentation des flux de chaleur 
pariétaux, l’émission d’ondes sonores de grande amplitude à 
certaines fréquences, des vibrations importantes, des dégâts 
structurels et même l’explosion du moteur dans certains cas. 
Cependant, la prédiction de la stabilité thermoacoustique d’un brûleur 
demeure une tâche ardue. Une technique pour prédire l’apparition 
d’instabilités de combustion est de coupler un solveur acoustique avec 
une fonction décrivant la réponse de la flamme lorsque celle-ci est 
soumise à des ondes acoustiques harmoniques. Cette fonction, 
appelée Fonction de Transfert de Flamme (FTF) ou Fonction 
Descriptive de Flamme (FDF) lorsqu’elle est non-linéaire, est ensuite 
déterminée en utilisant des expériences, des simulations numériques 
ou des modèles analytiques. Néanmoins, l’impact de divers 
paramètres tels que le niveau de forçage acoustique, la façon dont le 
forçage est introduit dans le système ou encore la modification de la 
taille de la zone de réaction sur la réponse acoustique de la flamme 
est encore mal compris. L’objectif de cette thèse est donc d’étudier la 
réponse acoustique de flammes prémélangées laminaires et 
turbulentes soumises à des ondes acoustiques harmoniques dans le 
but d’améliorer la prédiction de la stabilité thermoacoustique des 
brûleurs, qu’ils soient industriels ou de taille plus réduite.  Le cas des 
flammes prémélangées laminaires coniques, qui sont rencontrées 
dans de nombreux brûleurs industriels et domestiques de faible 
puissance, est d’abord examiné.  Dans un second temps, la réponse 
acoustique de flammes prémélangées confinées turbulentes 
soumises à des ondes acoustiques harmoniques est étudiée d’une 
part expérimentalement et d’autre part en employant plusieurs  
 

approches analytiques. Une première série d’expériences est 
consacrée à l’étude des FDF définies par rapport à différents signaux 
de référence. Il est démontré que toutes ces FDF peuvent être reliées 
entre elles analytiquement en utilisant un réseau non-linéaire 
d’éléments acoustiques. De plus, il est observé que la FDF est 
différente en fonction de la façon dont le forçage acoustique est 
introduit dans le brûleur, excepté lorsque le signal de référence est la 
vitesse acoustique juste avant la flamme. Dans une seconde série 
d’expériences, la matrice de transfert acoustique représentant le 
brûleur est mesurée à froid et à chaud (en présence d’une flamme) et 
pour un injecteur tourbillonnant et non-tourbillonnant. Le niveau de 
forçage acoustique est contrôlé au niveau du fil chaud et des mesures 
sont effectuées pour plusieurs niveaux de forçage prédéfinis. Il est 
ainsi démontré que la réponse acoustique du brûleur est non-linéaire 
aussi bien à froid qu’à chaud. De plus, deux réseaux d’éléments 
acoustiques représentant le brûleur à froid et à chaud sont conçus. 
Les mesures et prédictions de la matrice de transfert acoustique sont 
en accord aussi bien à froid qu’à chaud. La FDF mesurée en utilisant 
une technique optique est également reconstruite avec succès à partir 
des mesures de la matrice de transfert acoustique. Enfin, la stabilité 
thermoacoustique de six configurations différentes du brûleur est 
prédite en utilisant deux réseaux d’éléments acoustiques. Dans le 
premier réseau, la réponse acoustique de la flamme est prise en 
compte en utilisant une FDF préalablement mesurée tandis que dans 
le second réseau, la réponse de la flamme est incluse dans la mesure 
de la matrice de transfert acoustique correspondant à la majeure 
partie du brûleur. Ces deux modèles sont capables de prédire 
l’apparition d’instabilités thermoacoustiques ainsi que la fréquence de 
ces instabilités le cas échéant. Néanmoins, le modèle basé sur la FDF 
ne prédit pas l’amplitude du cycle limite de façon satisfaisante 
contrairement au modèle basé sur la mesure de la matrice de transfert 
acoustique. Cette observation s’explique par la façon dont les pertes 
acoustiques à l’intérieur du brûleur sont prises en compte. 
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Abstract: Thermoacoustic instabilities are a major concern in the 
aerospace and energy production industries. They are due to an 
energy transfer between a heat source, usually a flame stabilized 
inside a combustor, and the surrounding acoustic field and may lead 
to undesirable phenomena such as flame extinction, increased heat 
fluxes, very large sound emissions at certain frequencies, vibration, 
structural damage and even catastrophic failure in some cases. 
However, predicting the thermoacoustic stability of a combustor at an 
early design stage is a challenging task. One way to predict the onset 
of thermoacoustic instabilities is to couple an acoustic solver with a 
function that describes the frequency response of the flame when 
submitted to harmonic sound waves. This function, called a Flame 
Transfer Function (FTF) or a Flame Describing Function (FDF) when 
it is nonlinear, is then determined using experiments, numerical 
simulations or analytical models. However, the impact of many 
parameters such as the forcing level, the way sound waves are 
introduced inside the combustor, or a modification of the flame size on 
the flame frequency response remain poorly understood. The 
objective of this thesis is to study the acoustic response of various 
laminar and turbulent premixed flames submitted to harmonic sound 
waves using experiments and analytical approaches in order to 
improve the thermoacoustic stability predictions of lab scale and 
industrial combustors. The case of premixed laminar conical flames, 
used in a variety of domestic and industrial low-power combustors, is 
first investigated. The acoustic response of premixed confined 
turbulent flames submitted to harmonic forcing is then investigated 
using experiments and various modeling strategies. In a first set of 
experiments, the FDF defined with respect 

to various reference signals is measured using an optical technique. 
All these describing functions are then related using a nonlinear 
acoustic network model. Moreover, the FDF is shown to be different 
depending on the way acoustic forcing is introduced inside the 
combustor, except when the reference signal is the acoustic velocity 
assessed just before the flame. In a second set of experiments, the 
Dimensionless Acoustic Transfer Matrix (DATM) of the burner is 
measured for cold and reactive conditions and with a swirling and non-
swirling injector. The acoustic forcing level is controlled at the hot wire 
location and measurements are performed for various predefined 
forcing levels. The acoustic response of the burner is found to be 
nonlinear for both cold and reactive conditions. Moreover, two acoustic 
network models representing the burner operated for cold and reactive 
conditions are assembled. The measured and predicted DATM are 
then found to be in good agreement for cold and reactive conditions 
and for both injectors. The FDF measured using optical techniques is 
also reconstructed from the DATM measurements with excellent 
agreement. Finally, the thermoacoustic stability of six distinct 
configurations of the burner is predicted for reactive conditions using 
two acoustic network models. In the first model, the acoustic response 
of the flame is accounted for using a measured FDF while in the 
second model, the flame response is embedded inside a measured 
DATM. Both models are able to predict the onset of thermoacoustic 
instabilities and the associated frequency of the instability. However, 
the model based on the FDF does not predict the correct limit cycle 
amplitude as opposed to the model based on the DATM 
measurement. This is attributed to the way acoustic losses occurring 
inside the combustor are taken into account. 
 

 


