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Résumé

La recherche sur les planètes géantes gazeuses se concentre sur l’étude des effets aerothermo-

dynamiques lors du vol dans les atmosphères des plus grandes planètes du système solaire -

Jupiter, Saturne, Neptune et Uranus - appelées « les géantes gazeuses ». La majorité des

études sur les géantes gazeuses menées dans le passé étaient liées à la conception et à l’analyse

des résultats de la sonde atmosphérique de Galileo, qui a pénétré l’atmosphère de Jupiter le 7

décembre 1995. Plus récemment, il y a eu un regain d’intérêt pour les futures sondes atmo-

sphériques des géantes gazeuses. Dans l’enquête «Vision and Voyages for Planetary Science in

the Decade 2013-2022 » du conseil national de la recherche des États-Unis, les futures missions

spatiales vers Uranus et vers Saturne ont été identifiées comme grandement prioritaires.

Les vitesses d’entrée proposées sont de 22.3 km/s pour Uranus et de 26.9 km/s pour Saturne.

Les géantes gazeuses sont quatre grandes planètes gazeuses dans les régions externes de notre

système solaire, qui sont principalement composées d’hydrogène moléculaire avec de l’hélium

de dix à vingt pour cent (en volume), et quelques oligo-éléments, principalement du méthane.

Bien que leur poids moléculaire atmosphérique est minuscule, ce qui signifie que le gaz peut

être accéléré plus facilement, les grandes vitesses d’entrée provoquées par leur taille ont tradi-

tionnellement rendu leurs entrées difficiles à simuler dans les installations d’essais au sol. Les

expériences réalisées lors de la conception de la sonde atmosphérique de Galileo ont pu recréer le

flux thermique prédit, mais aucune d’entre elles n’a pu recréer la vitesse d’entrée de 47.5 km/s.

Les vitesses d’entrée plus lentes associées à l’entrée dans Uranus et Saturne impliquent que les

entrées sont plus susceptibles d’être réalisables. Pour cette raison, cette thèse se concentre sur

la génération de conditions d’essai pour l’étude de ces entrées dans le tube d’expansion X2, un

tube d’expansion à piston libre à l’Université du Queensland.

Pour permettre la prédiction rapide de la réponse de l’installation X2 pour la génération

de nouvelles conditions d’essai utilisées pour simuler l’entrée dans les géantes gazeuses, un

nouveau code de simulation de tube d’expansion appelé PITOT a été conçu. Le code isole les

processus importants qui se produisent lors d’une expérience dans le tube d’expansion et les

simule en utilisant des relations isentropiques et compressibles d’écoulement de gaz et l’équilibre

chimique. Pour tester la précision du code par rapport à la réalité, PITOT a été testé contre
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deux cas test expérimentaux utilisant comme gaz d’essai de l’air. On a constaté qu’il pouvait

bien prédire des données expérimentales lorsque certaines variables d’ajustement empiriques

étaient ajustées pour s’assurer qu’il correspondait aux mesures expérimentales des vitesses de

choc et aux dépressions aux parois et dans la section d’essai.

PITOT a ensuite été utilisé pour générer des cartographies de performance théoriques pour

la simulation de l’entrée d’Uranus et de Saturne dans X2. En théorie, avec une enceinte

amont secondaire utilisée pour augmenter la performance de l’installation, X2 pourrait re-

créer la vitesse requise de 22.3 km/s pour simuler l’entrée d’Uranus proposée. Cependant, dans

l’expérience actuelle, les pertes causées par la membrane secondaire ont légèrement réduit la

performance, et les vitesses de choc au-dessus de 20 km/s dans le tube d’accélération étaient

difficiles à mesurer sans grandes incertitudes. Une condition de test plus lente sans enceinte

amont secondaire, avec une vitesse de vol équivalente de 19 km/s, a été conçue, ce qui n’était

pas assez rapide pour simuler l’entrée. Une autre analyse théorique a révélé qu’avec une en-

ceinte amont à piston libre plus puissante, une installation de la même taille que X2 pourrait

simuler plus facilement l’entrée dans Uranus ou être capable de simuler l’entrée dans Saturne

proposée. Il a également été proposé qu’un système de détection de choc avec un temps de

réponse plus rapide serait nécessaire pour réduire les incertitudes sur les vitesses de choc dans

des ces conditions au-dessus de 20 km/s.

Puisque X2 n’a pas été capable de simuler directement l’entrée dans Uranus ou Saturne,

d’autres pistes ont été explorées. Dans la littérature, il a été proposé que pour la simula-

tion de les entrées balistiques dans les géantes gazeuses, le pourcentage d’hélium dans le gaz

d’essai pouvait être supérieur à la vraie composition atmosphérique (en substituant quelque

H2 pour He), ou l’hélium pouvait être remplacé par du néon, un gaz plus lourd. Ces deux

changements augmentent la force de l’arc de choc sur le modèle d’essai, permettant de repro-

duire d’importants phénomènes de vol de conditions de vol qui ne peuvent pas être simulés

directement à des vitesses réalisables dans l’installation X2. Ceci a été exploré théoriquement

en utilisant à la fois des gaz d’hélium et de néon, et la condition d’essai de vitesse de vol

équivalente à 19 km/s conçue au cours de l’analyse précédente. Il a été trouvé théoriquement

que l’entrée d’Uranus et de Saturne pouvait être facilement recrée dans X2 en utilisant soit un

pourcentage molaire accru d’hélium, soit un pourcentage molaire similaire de néon à la place de

l’hélium dans l’entrée réelle. Du point de vue de la dynamique des gaz, l’hélium produisait des

écoulements d’essais de la même enthalpie de stagnation quel que soit le pourcentage utilisé, ce

qui est une conclusion intéressante, permettant de choisir des températures en post-choc dif-

férentes tout en maintenant l’enthalpie de stagnation. Cela ne s’est pas produit pour le néon,

avec des conditions qui se sont considérablement ralenties même lorsque les températures de

la couche de choc du modèle d’essai ont augmenté, en raison des changements beaucoup plus
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grands du poids moléculaire du gaz d’essai associé au néon. On a vérifié expérimentalement que

l’enthalpie de stagnation d’écoulement d’essai restait constante dans les pourcentages molaires

d’hélium testés (de 15 à 70%) et qu’on observait plus de rayonnement de couche de choc avec

des pourcentages plus élevés d’hélium.

Actuellement, le rayonnement associé à l’entrée dans Uranus et Saturne n’a été simulé que

dans des tubes à choc non réfléchis, où, en raison des temps d’essai courts, les modèles d’essai

ne peuvent généralement pas être utilisés. Les tubes d’expansion comme X2 sont capables

de simuler les conditions d’essai d’entrée planétaire avec des temps d’essai plus longs et des

écoulements aérothermodynamiques plus réalistes. C’est ce qui rend la possibilité de simuler

des conditions post-choc expérimentales lors de l’entrée dans Uranus et Saturne dans X2 si

importante. X2 permit non seulement pour l’étude du rayonnement associé à ces entrées, mais

aussi pour la simulation expérimentale des phénomènes liés à ces entrées qui nécessitent des

modèles d’essais, tels que les taux de flux thermique, les études de la couche limite du modèle

d’essai, ou en utilisant un modèle d’essai avec un mur chauffé, pour étudier l’interaction entre

l’écoulement et la surface chaude.
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 ____________________________________  
Abstract 

___________________________________________________________________________  
Gas giant research focuses on the study of the aerothermodynamic effects during flight into the 

atmospheres of the solar system's largest planets - Jupiter, Saturn, Neptune and Uranus - called 

"the gas giants". The majority of gas giant studies conducted in the past were related to the 

design and analysis of results from the Galileo atmospheric probe, which entered Jupiter's 

atmosphere on 7 December 1995. More recently, there has been renewed interest in future gas 

giant entry probes. The United States National Research Council's survey "Vision and Voyages 

for Planetary Science in the Decade 2013-2022" identified future space missions to Uranus and 

Saturn as a high priority. 

 The proposed entry velocities are 22.3 km/s for Uranus and 26.9 km/s for Saturn. The gas 

giants are four large gaseous planets in the outer regions of our solar system, which are mainly 

composed of molecular hydrogen with ten to twenty per cent helium (by volume), and some 

trace elements, mainly methane. Although their atmospheric molecular weight is minuscule, 

which means that the gas can be more easily accelerated, the high entry velocities caused by their 

size have traditionally made their entries difficult to simulate in ground testing facilities. The 

experiments carried out during design of the Galileo atmospheric probe were able to recreate the 

predicted heat flow, but none was able to recreate the entry velocity of 47.5 km/s. The slower 

entry velocities associated with entry into Uranus and Saturn imply that the entries are more 

likely to be achievable. For this reason, this thesis focuses on the generation of test conditions 

for studying these entries in the X2 expansion tube, a free-piston-driven expansion tube at the 

University of Queensland.  

 To allow prompt prediction of the X2 facility response for generating new test conditions 

used to simulate gas giant entry, a new expansion tube simulation code called PITOT was 

designed. The code isolates the important processes that occur during an experiment in the 

expansion tube, and simulates them using isentropic and compressible gas flow relationships and 

equilibrium chemistry. 

xiv



Translated from French by Sarah Walls NAATI No 42988 Date: 22.01.2018 ID No 029.18 
 

CERTIFICATION 

I certify that this is a true and accurate translation from French to English of a copy of an abstract concerning 

gas giant entry research conducted on the X2 expansion tube at the University of Queensland, undated. 

Sarah J. Walls - Professional translator from French to English - NAATI No: 42988 - 22 January 2018 

XV 

In order to test the accuracy of the code compared with reality, PITOT was tested against two 

experimental test cases using air as the test gas. PITOT was found to predict the experimental 

data well once certain empirical adjustment variables were adjusted to ensure that it matched the 

experimental shock-speed measurements and the wall and test-section pressures. 

 PITOT was then used to generate theoretical performance maps for simulating the Uranus 

and Saturn entries in X2. In theory, with a secondary driver used to increase the facility's 

performance, X2 could recreate the required velocity of 22.3 km/s to simulate the proposed 

Uranus entry. However, in the current experiment, the losses caused by the secondary diaphragm 

slightly reduced performance, and shock speeds above 20 km/s in the acceleration tube were 

difficult to measure without substantial uncertainties. A slower test condition was designed with 

no secondary driver and with a flight velocity equivalent to 19 km/s, which was not fast enough 

to simulate entry. Another theoretical analysis revealed that with a more powerful free-piston 

driver, a facility the same size as X2 could simulate the Uranus entry more easily or be capable of 

simulating the proposed Saturn entry. It was also proposed that a shock detection system with a 

faster response time would be necessary in order to reduce the uncertainties concerning shock 

speeds above 20 km/s under these conditions. 

 Since X2 was not capable of directly simulating Uranus or Saturn entry, other avenues 

were explored. In the literature, it was proposed that for blunt-body simulation of gas giant 

entry, the percentage of helium in the test gas could be increased above the real atmospheric 

composition (by substituting some H2 for He), or the helium could be replaced by neon, a 

heavier gas. These two changes increase the strength of the bow shock over the test model, 

allowing important flight condition phenomena to be reproduced, which cannot be simulated 

directly at the velocities achievable in the X2 facility. This was explored theoretically using both 

helium and neon gases, and the flight speed test condition equivalent to 19 km/s designed during 

the previous analysis. It was found theoretically that Uranus and Saturn entry could easily be 

recreated in X2 using either an increased molar percentage of helium, or a similar molar 

percentage of neon instead of helium in the real entry. From the gas dynamic point of view, 

helium produced test flows with the same stagnation enthalpy regardless of the percentage used; 

this is an interesting conclusion, as it allows various post-shock temperatures to be selected while 

maintaining the same stagnation enthalpy. 
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This did not occur for neon, with conditions that slowed considerably even when the 

temperatures of the test model shock layer increased, due to the much greater changes in the 

molecular weight of the test gas associated with neon. It was verified experimentally that the test 

flow stagnation enthalpy remained constant across the helium molar percentages tested (from 

15% to 70%), and that more shock layer radiation was observed with higher percentages of 

helium.  

 Currently, the radiation associated with Uranus and Saturn entry has only been simulated 

in non-reflected shock tubes, where, due to the short test times, test models generally cannot be 

used. Expansion tubes such as X2 are capable of simulating planet entry test conditions with 

longer test times and more realistic aerothermodynamic flows. This is what makes the possibility 

of simulating experimental post-shock conditions during Uranus or Saturn entry in X2 so 

important. X2 enables not only study of the radiation associated with these entries, but also 

experimental simulation of phenomena related to these entries which require test models, such as 

heat transfer rates, studies of the test model boundary layer, or using a test model with a heated 

wall to study the interaction between the flow and the hot surface.  
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Introduction

We set sail on this new sea because there is new knowledge to be gained, and new rights to

be won, and they must be won and used for the progress of all people. For space science, like

nuclear science and technology, has no conscience of its own. Whether it will become a force

for good or ill depends on man... The great British explorer George Mallory, who was to die on

Mount Everest, was asked why did he want to climb it. He said because it is there. Well, space

is there, and we’re going to climb it. And the moon and the planets are there. And new hopes

for knowledge and peace are there. And therefore, as we set sail, we ask God’s blessing, on the

most hazardous, and dangerous, and greatest adventure, on which man has ever embarked.

– President John F. Kennedy, Sept. 12, 1962, Rice University, Houston [27]

1.1 Chapter Overview

This chapter introduces the thesis. It gives some basic context for the thesis by discussing space

exploration in general, and then more specifically, exploration of the four gas giants: Jupiter,

Saturn, Uranus, and Neptune. Gas Giant entry research in expansion tubes is then briefly

discussed, before the proposed original scientific contributions are presented. A summary of

each chapter in the overall thesis document is also presented.

1.2 Space Exploration

In 1942, Germany launched a V2 rocket vertically and broke the 100 km altitude barrier which

we call the boundary of space 1. Since then, space continues to capture the hearts and minds of

many. During the Cold War, the space race was seen as a show of power and supremacy by the

1This is the ‘Kármán line’ that the Fédération Aéronautique Internationale (FAI) accepts as the boundary
between Earth’s atmosphere and outer space [28].

1
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competing U.S.A. and U.S.S.R.. During times of peace, the International Space Station, built as

a co-operative effort between the American, Russian, Canadian, European, and Japanese Space

Agencies, shines as an example of what human beings can achieve when they work together.

To this day, countless experiments and missions have been undertaken to try to further

understand our solar system, and the vast expanse of space surrounding it. We have sent people

to the moon and back during the Apollo Program [29]. We have flown by and photographed

every planet in our solar system during many missions. We have sent probes to land on and

explore Venus and Mars. We have landed on an asteroid, taken a sample, and brought it home

during the Japan Aerospace Exploration Agency’s (JAXA) Hayabusa mission [30]. We have

sent a probe to rendezvous with a distant comet, orbit its nucleus, and place a lander there

during the European Space Agency’s (ESA) Rosetta mission [31]. We have sent the Voyager

probes to the edge of our solar system, and they are still going [32, 33]. We have the Hubble

Space Telescope which allows us to see deep into the space surrounding us [34]. An example

image taken by the Hubble Space Telescope can be seen in Figure 1.1.

Figure 1.1: “Light Echo” illuminating dust around the supergiant star, V838 Monocerotis,
taken on February 8, 2004, by the Hubble Space Telescope [35].
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1.3 The Gas Giants

1.3.1 What are they?

The four outermost planets in our solar system (Jupiter, Saturn, Uranus, and Neptune, all

shown together in Figure 1.2) are known collectively as ‘the gas giants’ or ‘the Jovian planets’

[36]. They are large gaseous planets, with densities close to that of the sun [37], which together

comprise 99.56% of the planetary mass in our solar system [37].

Figure 1.2: Comparative size of the four Gas Giants L–R: Jupiter, Saturn with its ring system,
Uranus, and Neptune [38].

As shown in Table 1.1, all four gas giants are made up of primarily molecular H2 and He,

with small amounts of other trace elements.

Planet % H2 % He Trace Components Mean MW (g/mol)
Jupiter 89.8 (±2.0) 10.2 (±2.0) CH4, NH3 2.22
Saturn 96.3 (±2.4) 3.25 (±2.4) CH4, NH3 2.07
Uranus 82.5 (±3.3) 15.2 (±3.3) CH4 (2.3%) 2.64
Neptune 80.0 (±3.2) 19.0 (±3.2) CH4 (2.3% (±0.5)) 2.53 – 2.69

Table 1.1: Atmospheric compositions of the four Jovian planets (by volume, uncertainties in
brackets) from the NASA Planetary Fact Sheets [39].
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1.3.2 Jupiter

The most famous gas giant is Jupiter, the largest planet in our solar system. It is named after

Jupiter, the king of the Roman gods, and astronomer and astrophysicist Carl Sagan once said

of Jupiter that “The cloud patterns are distinctive and gorgeous. No painter trapped on Earth

ever imagined a world so strange and lovely” [40]. Due to the fact that it can be seen by the

naked eye in the night sky, Jupiter has been known to humanity since pre-biblical times, being

first identified by Babylonian astronomers around the 7th and 8th century B.C [41]. However,

it took another 2,500 years for detailed observations to be made of Jupiter. On January 7,

1610, using his own primitive telescope, Galileo discovered Jupiter’s four largest moons, now

separately named Io, Europa, Ganymede and Callisto, and collectively known as the ‘Galilean

moons’ in his honour [42]. In 1831, the pharmacist Heinrich Schwabe produced the earliest

known drawing showing details of Jupiter’s Great Red Spot (shown photographed by Voyager

1 in Figure 1.3) [43].

Figure 1.3: Jupiter’s Great Red Spot photographed by Voyager 1 on February 25, 1979, when
Voyager 1 was 9.2 million kilometres from Jupiter. [44]
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1.3.3 Gas Giant Exploration

Humans have already commenced exploration of the gas giants. Various missions have examined

the gas giants from afar (including Pioneer 10 and 11, Voyager 1 and 2, Ulysses, and Cassini [42,

45]) and missions have entered planetary bodies in the Jovian system (the Galileo probe’s entry

into Jupiter’s atmosphere [42] and the Huygens probe’s entry into Titan’s atmosphere [46]).

At the time of writing, the National Aeronautics and Space Administration’s (NASA) Juno

spacecraft is currently in orbit around Jupiter, after arriving in July 2016 [47]. The Juno mission

is conducting a detailed study of Jupiter’s origin, interior, atmosphere, and magnetosphere. It

is hoped that clues to the origin of our solar system, and other systems like it, will be found

[48]. It was originally planned that Juno would be slowly de-orbited over 5.5 days starting on

February 20, 2018, causing it to burn up in Jupiter’s atmosphere [49]. However, the mission

has now been extended until 2021, partially due to an issue with a thruster placing it in a more

elliptical orbit around Jupiter than had been planned [50]. A processed image from Juno’s

JunoCam created by Björn Jónsson can be seen in Figure 1.4. The image was taken on July

10, 2017, during Juno’s seventh close flyby of Jupiter, and it shows what Jupiter’s Great Red

Spot would look like to the human eye from Juno’s position.

Figure 1.4: Jupiter’s Great Red Spot photographed by Juno on July 10, 2017, during its seventh
close flyby of Jupiter [51]. The processed image was created by Björn Jónsson and shows what
Jupiter’s Great Red Spot would look like to the human eye from Juno’s position.
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However, despite the research effort so far, there is still a lot which we do not know about

the Jovian planets. The gas giants contain matter produced during the birth of the solar

system which may hold valuable clues about the origins of life in the universe, and solar system

formation and evolution [48]; the gas giants provide a valuable link to extrasolar planetary

systems, where gas giant planets are common; Saturn’s moon Titan (which the Huygens probe

visited in 2005 [46]) is the only moon in our solar system with its own atmosphere, and Jupiter’s

four Galilean moons (shown in Figure 1.5) are all worthy of exploration: Io has over four

hundred active volcanoes, and the other three moons, Europa, Ganymede, and Callisto, are all

believed to house oceans of liquid water below their surfaces.

Figure 1.5: Jupiter’s four Galilean moons, L–R: Io, Europa, Ganymede, and Callisto, pho-
tographed by the Galileo spacecraft. [52]

1.3.4 Gas Giant Entry in the Past: The Galileo Probe

Note: a more comprehensive study of gas giant entry research can be found in Chapter 3.

The entry of the Galileo probe into the atmosphere of Jupiter on December 7, 1995 is the

only gas giant entry which humankind has ever performed. Being the largest of the four gas

giants, entry into Jupiter presented the biggest challenge to engineers, with Jupiter’s inertial

entry speed being a massive 60 km/s [39]. However, it was the probe’s speed relative to the

atmosphere which needed to be minimised, rather than the inertial speed, and the probe’s

designers were able reduce the atmospheric entry speed to a more manageable 47 km/s by

entering the planet travelling due East, with Jupiter’s rotation, and along the equator where

Jupiter’s rotational speed is at its maximum (roughly 13 km/s) [53]. The probe was designed

for an entry speed of less than 47.8 km/s [53].

The Galileo probe entered Jupiter at a relative velocity of 47.5 km/s, and took less than

100 seconds to decelerate to 1 km/s [54]. Generally, even for ballistic Earth entries, the heat
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load is principally convective and only partially radiative 2. However, in these harsh conditions,

radiation was the primary driver of the heat flux to the surface of the Galileo probe [54], con-

tributing 99% of the total heating load, and constituting the most extreme heating environment

ever experienced by a planetary entry probe. This is shown in Figure 1.6, where the magnitude

of the engineering design problem can be seen when the Galileo probe’s maximum stagnation

point heat flux is compared to other planetary entries. At around 34,000 W/cm2, the maximum

stagnation point heat flux for the Galileo probe was a thousand times larger than the Space

Shuttle’s peak stagnation point heat flux (based on the experimental stagnation point heat flux

from Space Shuttle flight STS-5 of 34 W/cm2 from Curry et al. [56]), and more than twenty

times larger than the maximum stagnation point flux of faster Earth entries such as Hayabusa

(1,800 W/cm2) and Stardust (1,330 W/cm2) (data from Davies [57]).

Behind the bow shock on the front of the Galileo probe during its entry, significant dissoci-

ation and ionisation would have occurred. The H2 in the flow would have dissociated directly

behind the shock, before collisions with the heavier He atoms in the flow field would have started

to ionise the H. Due to the much higher electronic excitation level of He (20 eV, compared to 10

eV for H), any He ionisation would probably have been fairly negligible in comparison, and the

He would have acted as an inert diluent. As the partial ionisation created more free electrons,

they would have become the primary driver of further ionisation, and the flow would have

existed as a partially ionised plasma.

In ballistic planetary entry situations, ablative heat shields are generally used to manage

surface heating and protect entry vehicles from destruction. This is especially important for

harsh environments such as the entry which the Galileo probe encountered. However, heat

shields comprise a large portion of the weight of a planetary entry vehicle, and as such, it is

important that the uncertainties in the tools used to design the craft are minimised, so that

safety margins can be adjusted accordingly. Due to the fact that radiative heat flux is still

difficult to study, and uncertainties remain high, this is especially important for entries where

radiative heat flux is significant, such as entry into Jupiter. The work of Milos [58] stated that,

in relation to the Galileo probe heat shield, “This thickness distribution provided a 50% safety

margin against conservative predictions of heat shield recession for the nominal axisymmetric

entry ... this margin was believed to be adequate for probable survival of the probe under a

worst-case scenario of steep entry...”. However, even with these conservative safety factors,

analysis of the heat shield recession after the entry found that the heat shield had been bulky,

inefficient, and unsafe.

2Convection is heat flux which occurs between a moving fluid and a surface when they are at different
temperatures (i.e. heat flux to the heat shield from the hot, shocked gas flowing over it), and radiation is heat
exchange between two surfaces at different temperatures, in the absence of an intervening medium (i.e. heat
flux directly from the hot, shocked gas to other particles and the heat shield) [55].
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Figure 1.6: Maximum stagnation point heat flux for various entry vehicles. All data is from
Davies [57] except for the Space Shuttle STS-5 data, which is experimental data from Curry et
al. [56]. If the entry includes radiation, the heat flux value includes both the convective and
radiative heat flux values from [57]. Where a range of radiative heat flux was given, the middle
value has been taken. A * next to a vehicle indicates data which is labelled in Davies [57] with
a note saying “Heating rates and loads are probably for non-ablating conditions.” This figure
was inspired by a similar figure by Gnoffo [54].

The Galileo probe was designed using the best computational aerothermodynamic methods

available in the 1970’s and early 1980’s [59], with supporting experiments performed using

a gas dynamic laser [60], a ballistic range [61], and an arc-jet [62], and its survival was an

engineering triumph. However, the actual heat shield ablation did not agree well with the

predictions [54]. In-flight measurements showed that only half of the sphere-cone heat shield

actually ablated during entry [58]. Figure 1.7 shows that 100 mm of material thickness was left

at the stagnation point of the probe, but that on the frustum3 the heat shield ablated to within

10 mm of its base. This was different from the computational fluid dynamics (CFD) predictions

which expected more recession at the stagnation point, and less on the frustum [58]4. These

disagreements between the simulations and the flight test data indicated that improvements to

both experimental and simulated modelling could be made.

3The conical sides of the probe’s sphere-cone heat shield.
4This is explained further in Section 3.3.
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Figure 1.7: Ablation of the Galileo probe’s heat shield during its entry into Jupiter. (Adapted
from NASA Ames photo ACD96-0313-13 [63])

In 2005, Matsuyama et al. [64] used the injection-induced turbulence model proposed by

Park [65], as well as the actual atmospheric composition which the craft experienced (designers

had expected Jupiter’s atmosphere to be the nomimal value of 89%H2/11%He, by volume, but

where the probe entered was actually 86.4%H2/13.6%He, 24% more He than was expected)

in a radiating and ablating CFD model of the Galileo probe’s entry into Jupiter. They were

able to closely reproduce the actual ablation on the frustum of the vehicle, but they largely

overestimated the recession at the stagnation point.

A study by Park in 2009 [66] was able to recreate the stagnation point recession “fairly

closely” by implementing a model which was focused on correctly modelling the interaction

between the flow-field and the spallating carbon particles from the heat shield. Park’s model

calculated the thermochemical state of the gas more accurately than had been achieved previ-

ously, and included the effects of vacuum ultraviolet (VUV) radiation absorption and spallation.

The fact that it is still difficult for CFD simulations to fully recreate the heat shield recession

seen during the Galileo probe’s entry into Jupiter is motivation for the creation of techniques

which would allow ground testing of gas giant entry radiation to be performed at velocities which

are generally achievable in current impulse facilities (10 to 15 km/s) [67], hopefully leading to

a greater understanding of gas giant entry phenomena.
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1.3.5 Gas Giant Entry in the Future

While the majority of gas giant entry research in the past was either performed for the design

of the Galileo probe, or to analyse issues associated with it, there is currently renewed interest

in future gas giant entry probe missions. The US National Research Council ‘Vision and

Voyages for Planetary Science in the Decade 2013-2022’ report identified probes to Uranus

[68] and Saturn [69, 70] as high priorities for future space missions due to the aforementioned

large scientific questions which remain unanswered, and the fact that Jupiter and Saturn are

fundamentally different planets to Neptune and Uranus. The latter planets are known as ‘ice

giants’ due to heavy elements trapped in their atmospheres in an ice-like state. It is hoped that

by entering the atmosphere of an ice giant planet, humankind can then better understand the

differences between gas giant and ice giant planets. The proposed probe entry velocities were

22.3 km/s for Uranus [68] and 26.9 km/s for Saturn [69, 70].

The expected aeroheating uncertainties of the aforementioned Uranus and Saturn entries,

as well as a third steeper descent angle Saturn entry at 28.2 km/s, were analysed by Palmer

et al. [71] in 2014 by performing a Monte Carlo study on the input parameters to their CFD

model. They found that radiative heating for Uranus entry was negligible but at the highest

velocity examined for Saturn entry, radiative heating contributed up to 20% of the heat load. In

general, they found that the uncertainty in convective heating for Uranus and Saturn entry was

“no more than a few percent”, but that for Saturn entry, where the post-shock temperatures are

higher, that “the uncertainty in radiative heating was substantial”. The strongest contributor

to the radiative heating variation was found to be the H2 dissociation reaction rates, because

the radiative heating seen at the wall is strongly influenced by the chemistry which occurs just

behind the bow shock.

More recent work by Cruden and Bogdanoff [72, 73] has experimentally examined the ex-

pected radiation for parts of the three entry trajectories examined by Palmer et al. [71] in the

Electric Arc Shock Tube (EAST) facility at NASA Ames Research Centre [74, 75, 76]. EAST

is a non-reflected shock tube (NRST) capable of re-creating planetary entry shock waves at the

true flight velocity and density. A suite of different spectrometers are then used to examine

the relaxation behind the shock wave as it moves past a set axial location in the test section.

Cruden and Bogdanoff used an 89%H2/11%He (by volume) simulated Saturn entry test gas,

and examined freestream pressures from 13 to 66 Pa and velocities from 20 to 30 km/s. Consis-

tent with Palmer et al.’s [71] conclusion that radiative heating for Uranus entry was “negligible”,

Cruden and Bogdanoff found that, within their measurement limits, no shock layer radiation

was detectable below 25 km/s. Above 25 km/s, radiation was observed, and they found that

their shocks did not reach equilibrium over several centimetres, and that in many cases, the
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state distributions were non-Boltzmann. Due to the fact that Nonequilibrium Air Radiation

(NEQAIR) [77], NASA’s in-house radiation code, is only able to simulate H2/He gas flows in

Boltzmann states, NEQAIR currently over-predicts the radiation of the conditions by up to a

factor of 10.

1.3.6 Ground Testing of Gas Giant Entry at UQ

Within this new context, which may see the design of two new gas giant probe missions in the

foreseeable future, it is worth considering how the ground testing facilities at The University

of Queensland (UQ) can further aid the development of this next generation of gas giant entry

probes.

The large cost of performing flight experiments makes ground testing essential for the design

of planetary entry vehicles. However, there are limitations: Due to the extreme total pressures

and total temperatures encountered in planetary entry, it is impossible, in practice, to run

continuous duration wind tunnel experiments at these speeds. Figure 1.8 shows how stagnation

enthalpy, a parameter which correlates with total pressure and total temperature5, increases

with increasing entry velocity. Stagnation enthalpy is a function of velocity squared, so an

8 km/s Earth entry has a stagnation enthalpy of 32 MJ/kg, but for an 11 km/s entry it is

61 MJ/kg, almost 100% higher. When gas giant entry is considered, the gases become lighter

and it becomes easier to accelerate them to higher velocities, however, the stagnation enthalpies

again get much larger. The aforementioned Uranus and Saturn entries at 22.3 and 26.9 km/s

have related stagnation enthalpies of 249 and 362 MJ/kg respectively, and the Galileo probe’s

entry had a stagnation enthalpy of 1,130 MJ/kg. Due to these extreme energy requirements,

decisions must be made about what to simulate. Many test facilities used to simulate planetary

entry are relatively low velocity and long duration (i.e. arc-jets and plasma torches) where

often neither the velocity nor the stagnation enthalpy of the true flight are re-created. In these

facilities, the test times are long enough for the model to reach sufficient temperatures at which

hot-wall and ablation tests can be performed. Others are high velocity, impulse facilities (i.e.

shock tunnels and expansion tubes) where the velocity and Reynolds number of the true flight

condition can be re-created, but the test times are generally extremely short (10’s to 1000’s of

microseconds, depending on the size and type of facility) and experiments are performed on a

‘cold’ model.

The aforementioned three sets of experiments performed for the design of the Galileo probe

all fell into the low velocity and long duration category [60, 61, 62]. None of the experiments

5Stagnation enthalpy (Ht), is equal to CpT +
U2

∞

2
, involving the static temperature (T) and the entry velocity,

and is also equal to CpTt because total temperature (Tt) takes into account the velocity term.



Section 1.3 The Gas Giants 12

0 10 20 30 40 50
0

200

400

600

800

1, 000

1, 200

Entry velocity (U∞, km/s)

S
ta

gn
at

io
n

en
th

al
p
y,

(H
t,

M
J
/k

g)

Figure 1.8: How stagnation enthalpy increases with increasing planetary entry velocity.

were able to re-create the velocity of the Galileo probe’s entry, but in various ways, and at

various velocities, each experiment aimed to re-create the heating environment for a duration

long enough to study the recession of an ablating model.

This thesis instead focuses on the use of an impulse facility, and it examines the opportunities

and limitations of studying gas giant entry in an expansion tube, namely the X2 expansion tube

at UQ. Expansion tubes are mainly used for studying planetary entry phenomena from around

3 to 12 km/s, but this thesis examines whether they are able to simulate the flow conditions

of planned missions to Uranus and Saturn, and potentially faster gas giant entries, such as

entry into Jupiter. This should be possible due to the high performance available from their

high-powered free-piston drivers, and the extra speed gained by using a light hydrogen/helium

test gas.

While an NRST facility like EAST has the ability to simulate and capture the relaxation

behind a shock wave at true flight conditions, test time limitations generally preclude performing

more complex experiments using test models. For most NRST facilities, this is a fundamental

limitation. An expansion tube is a more versatile facility for several reasons. For a very short

period of time (usually of the order of a hundred microseconds for the X2 facility) an expansion

tube is capable of generating a realistic aerothermodynamic test flow, meaning that it can be

used to simulate scaled test models. This opens X2 up to a series of different possibilities,

including the use of quasi two-dimensional cylinder models [78, 79, 80], scaled aeroshell models

[81, 82], instrumented models [83, 84, 85], wedge models to study expanding post-shock flows

[86, 87], Mach disk models which produce standing normal shocks to study radiation over

long relaxation distances [88, 89], and even resistively heated models to re-create the surface
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temperatures of planetary entry vehicles [90, 91, 3, 7]. This added versatility means that

re-creating gas giant entry flows in the X2 expansion tube would be very useful.

Previous work by Stalker and Edwards [67] showed that the inert diluent in gas giant entry

flows, He, could be replaced by the heavier Ne to achieve significant shock layer dissociation

and ionisation at much lower speeds. This is possible because He and Ne have similar excitation

energies (21 and 17 eV, respectively). Their analytical and computational analysis showed that

unless the post-shock temperature was above 60,000 K (where the Ne itself starts to ionise) the

ionising relaxation of H2/Ne test flows was the same as H2/He ones. They also found that the

similarity was not very sensitive to the amount of diluent used for the test gas substitution.

This is helpful because Ne weighs five times as much as He, and therefore, if it is used in

significant concentrations, it will increase the molecular weight of the test gas mixture by such

a factor that the related decrease in Cp will cause the post-shock temperature to be much

hotter for the same flow enthalpy. This means that test flows with shock layers containing

significant levels of dissociation and ionisation could be produced at velocities of the order of

10 to 15 km/s compared to the more than 20 km/s velocities required to reproduce the real

flight conditions. This means that the shock layers of conditions beyond the current stagnation

enthalpy limitations of the X2 expansion tube could be simulated at slower velocities by using

either a larger amount of He diluent, or the heavier diluent, Ne.

Previous studies in X2 [92, 63] used the test gas substitution to investigate shock standoff

on blunt bodies with a H2/Ne test gas which was correlated to Damköhler numbers for the

ionisation process and confirmed using an analytical ionisation model. Good reproduction of

shock standoff was seen between experiment, CFD, and analytical results for cylinders and

spheres. A test gas utilising 85%Ne diluent (by volume) was used to maximise dissociation and

ionisation in the shock layer. However, no radiation measurements were taken, and it is not yet

known how the substitution of He for Ne will affect the post-shock radiative emission, or if this

substitution provides a valid platform for studying it. Due to the opportunities available for

performing radiating gas giant entry experiments using test models if the substitution proves

to be valid, this is worth investigating.

1.4 Objectives of this Thesis

The overall aim of this thesis is to establish the feasibility and practical limitations of simulating

gas giant entry with a free piston driven expansion tube in UQ’s X2 facility. The specific

objectives required to do this are:

1. Develop fast condition modelling capability. To facilitate the design of new test

conditions for simulating gas giant entry in the X2 expansion tube, it is necessary to have
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tools which can quickly and easily perform parametric studies of facility performance with

a reasonable level of accuracy.

2. Investigate the feasibility of simulating Uranus and Saturn entry at true gas

composition and true flight velocity in X2. The recently proposed entry probe

missions to Uranus and Saturn give new context for the study of gas giant entry. Due to

their 22.3 km/s and 26.9 km/s entry velocities being much slower than Jupiter’s 47.5 km/s,

there is the potential that these entries could be simulated at true gas composition and

true flight velocity. Using fast condition modelling tools, performance of the facility can

be theoretically ascertained and then tested against experimental results.

3. Investigate the possibility of using the Stalker substitution to simulate Uranus

and Saturn entry at flow stagnation enthalpies more easily achievable in the

X2 facility. There are issues with simulating such high speed conditions, such as large

shock speed uncertainties. For this reason, it is important to consider simulating these

proposed entries at lower stagnation enthalpies than the true flight conditions using the

established Stalker substitution. This substitution can also be used to investigate gas

giant entries which cannot be simulated directly.

1.5 Structure of this Thesis

This thesis is organised as follows:

Chapter 2 provides a brief introduction to the ground testing of hypervelocity flow and how

it is generally simulated. It briefly discusses the limitations of a shock tunnel and how these

limits can be circumvented by using an expansion tube facility. A brief literature review of the

different types of experimental facilities used to simulate planetary entry is also presented.

Chapter 3 presents a comprehensive literature review of the history of gas giant entry re-

search starting from when it was first considered in the 1960’s, through to the design and flight

of the Galileo probe, and then the research still being conducted today. It aims to start from

the very first experiments and continue until the present day, showing how the canon of gas

giant entry knowledge has expanded over time.

Chapter 4 is dedicated to a discussion of the X2 expansion tube at the University of Queens-

land, the facility which this thesis is built around. It expands on the short introduction to

expansion tubes discussed in Chapter 2 and aims to give the reader a good understanding of

the tube and its related hardware. Upgrades to analysis procedures and to the facility itself

conducted by the author are also discussed.
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Chapter 5 discusses simulation of the X2 expansion tube. It begins by explaining what occurs

during an X2 expansion tube experiment and then how PITOT, an equilibrium expansion tube

analysis code written by the author, simulates the real experiment. How the PITOT code

works is explained, including any issues related to a state-to-state analysis of some sections of

the facility. Two examples of how to use the code to help analyse an actual experiment are

provided.

Chapter 6 presents the analysis of the performance limitations of the X2 expansion tube

in its current configuration. It uses the PITOT code discussed in Chapter 5 to perform a

parametric study of the facility for the simulation of gas giant entry at true flight velocity and

true gas composition for the simulation of Uranus entry conditions. Experimental results are

presented to validate the theoretical predictions, with discrepancies and issues associated with

the high shock speeds also discussed. A theoretical analysis of how faster gas giant entries could

be simulated with a more powerful free piston driver is also presented.

Chapter 7 presents the theoretical analysis related to using higher amounts of helium diluent

or the heavier neon diluent to simulate gas giant entry shock layers inside the current theoretical

performance envelope of the X2 expansion tube. Experiments are then presented to validate

the theoretical predictions using a helium diluent.

Chapter 8 provides the conclusions and recommendations of the thesis.



2

Literature Review of Hypervelocity Flow

Simulation

Ce que nous connaissons est peu de chose, ce que nous ignorons est immense.

– mathematician and astronomer Pierre-Simon Laplace, on his deathbed, 1827

2.1 Chapter Overview

This chapter presents an overview of hypervelocity flow and how it is simulated. It begins

by describing hypervelocity flow before moving on to the challenges of simulating it and the

various types of facilities used for this purpose. This section does not claim to be completely

comprehensive, but aims to give the reader a reasonable idea of the types of facilities which

exist and what they are typically used for.

2.2 Ground Testing of Hypervelocity Flows

In a general sense, any gas flow above Mach 5 is considered to be not just supersonic, but

hypersonic. However, this is a very loose definition. As Anderson states in the introduction to

his textbook on hypersonic flow [93]:

“There is a conventional rule of thumb that defines hypersonic aerodynamics as

those flows where the Mach number M is greater than 5. However, this is no more

than just a rule of thumb; when a flow is accelerated from M = 4.99 to 5.01, there

is no ‘clash of thunder,’ and the flow does not ‘instantly turn from green to red.’

Rather, hypersonic flow is best defined as that regime where certain physical flow

phenomena become progressively more important as the Mach number is increased

16
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to higher values. In some cases, one or more of these phenomena might become

important above Mach 3, whereas in other cases they may not be compelling until

Mach 7 or higher.

The reader is referred to the rest of Section 1.3 of Anderson [93] for a broader discussion of

what constitutes hypersonic flow.

When dealing with an entry or re-entry scenario, a very applicable scenario for this thesis,

the flow is generally not simply hypersonic, but hypervelocity. According to Stalker [94]:

“‘Hypervelocity’ is a term that was originally coined to describe flows that are

both hypersonic and high velocity, rather than merely hypersonic, and it is used in

that context here. Hypervelocity aerodynamics arose as a field of research in fluid

dynamics when it became necessary to understand the aerodynamics of vehicles en-

tering the Earth’s atmosphere. The velocities involved in such re-entry manoeuvres

ensure that the enthalpy of air, after crossing the strong bow shock that is formed

ahead of the vehicle, is sufficient to cause dissociation of the air molecules.”

In a hypervelocity flow-field, a strong bow shock envelops the vehicle, and the energy in

the flow-field is high enough for intermolecular collisions to cause the flow to dissociate and

potentially ionise behind the bow shock. These collisions also distribute energy amongst the

internal energy modes of the atoms and molecules. In a general sense, until the flow reaches an

equilibrium state, this is what is referred to as a ‘non-equilibrium flow-field’: the distribution

of species and the distribution of energy among their internal modes, in any small part of the

gas in the flow-field, are a function of the collisional history of atoms and the molecules [54].

Often it is not a simple task to simulate and analyse these hypervelocity flow-fields, and this is

a theme which will be expanded upon in this chapter.

In the 19th century, the wind tunnel replaced the earlier, but somewhat more questionable,

‘whirling arm’ of the 18th century1 as the aerodynamic test facility of choice, revolutionising

aeronautical science with it. According to Baals and Corliss [95]:

“This utterly simple device consists of an enclosed passage through which air

is driven by a fan or any appropriate drive system. The heart of the wind tunnel

1The ‘whirling arm’ was just like the name says, a sort of ‘aeronautical centrifuge’ where a model was
mounted at the end of an arm, and the centre was rotated, spinning the model around in circles. This design
has many obvious flaws (the spinning complicates the analysis, the model was constantly flying into its own
wake, among others), but was used to successfully test early airfoil models, and Sir George Cayley used whirling
arm test data to build and fly the world’s first successful heavier-than-air vehicle in England in 1804. [95]
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is the test section, in which a scale model is supported in a carefully controlled

airstream, which produces a flow of air about the model, duplicating that of the full-

scale aircraft. The aerodynamic characteristics of the model and its flow field are

directly measured by appropriate balances and test instrumentation. The wind tun-

nel, although it appears in myriad forms, always retains the five identifying elements

italicized above. The wind tunnel’s great capacity for controlled, systematic testing

quickly rendered the whirling arm obsolete.

The unique role and capabilities of a wind tunnel can best be appreciated by rec-

ognizing the aerodynamic forces and moments acting on an aircraft in flight. The

three basic forces are lift, drag, and side force as measured in an axis system refer-

enced to the direction of flight of the aircraft. The drag force is along (but reversed

to) the flight path; the lift and side forces are at right angles to it. In a wind tunnel

the axial centerline of the test section defines the direction of the oncoming wind -

the aerodynamic equivalent of the flight path. The ease of measuring aerodynamic

forces relative to the tunnel axis on a model held stationary in the airstream opened

a new era in aerodynamic experimentation.”

With the advent of wind tunnel testing, aerodynamic theory accelerated very quickly, and

such concepts as angle of attack, aspect ratio, and Reynolds number scaling are all concepts

from the 19th century. The now famous Wright Brothers built a wind tunnel in 1901 which

informed the design of their 1903 Wright Flyer, the first ever powered flight vehicle [95].

The wind tunnel was then, and still is today, an important subsonic aerodynamic testing

device. Even when supersonic flight testing began in the 1940’s, the wind tunnel was still

considered the facility of choice [95]. However, in the 1950’s, when hypersonic flow testing was

beginning, the limits of wind tunnel testing started to become apparent, and it was generally

accepted that normal supersonic wind tunnels could not simulate gas flows above Mach 5. In

1955, Smelt [96] stated that:

“It is well known that ordinary supersonic wind tunnels, operating from an air

supply at approximately room temperature, have an upper limit in Mach number

which is determined by the commencement of liquefaction of the air around the

model in the test section. For a wind tunnel with a supply pressure of one atmosphere

and a supply temperature of 80 ◦F ( ≈300 K), the air in the test section reaches the

liquefaction point at a Mach number of 5.”

Smelt [96] went on to detail both the engineering and physical limits of hypersonic wind

tunnel testing, before discussing the other types of facilities which could be used to perform hy-

personic testing. Smelt stated that the maximum wind tunnel Mach number could be extended
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to about 10 or 11 by heating the supply air but this could only occur “at the expense of a

considerable increase in the complexity of the wind tunnel”. However, the practical engineering

limit of needing to contain a high temperature and pressure supply chamber for long periods

of time prevents hypersonic wind tunnels from operating past this limit. The physical limits of

hypersonic wind tunnel applicability arrive due to the departure of hypersonic air from perfect

gas behaviour as the flow Mach number increases. This occurs because traditional supersonic

and hypersonic wind tunnels operate at low freestream temperatures close to the liquefaction

temperature of air, meaning that the related post-shock temperatures are much lower than

they would be in flight. Smelt identified three different regimes of hypersonic wind tunnel test-

ing, and summarised his results in a table which has been reproduced below as Table 2.1 with

the temperature unit converted from ◦R to K. Table 2.1 shows that by using corrections for

vibration effects which would not be present in the wind tunnel post-shock flow, wind tunnels

could be used up to around Mach 12, but beyond that, larger differences would be seen between

tunnel and flight.

Table 2.1: Ranges of application of hypersonic wind tunnels, adapted from Smelt [96]. Tem-
perature units have been converted from ◦R to K.

Range 1 Range 2 Range 3
Results applicable Corrections for Large Differences
to flight without Vibration Effects betweens Tunnels
correction Required and Flight

Maximum local
temperature (K) Up to 550 550 – 1,900 Above 1,900
Corresponding
Stagnation
temperature (K) Up to 1,550 1,550 – 6,900 Above 6,900
Flight Mach number
in stratosphere
(T = 220 K) Up to 5.5 5.5 – 12 Above 12

Smelt mentions the idea of short-duration high Mach number facilities as a solution to the

cooling problem at the tunnel throat. He states that “One possibility is to reduce the time of

operation of the high-temperature flow to such an extent that the heat transfer to the critical

parts of the wall is not large enough to do damage” [96]. Following that, both reflected and

non-reflected shock tubes are discussed as a type of impulse facility which could be used.

In another section, Smelt details the concept of simulating individual phenomena as a way

to simplify the process of simulating complex hypersonic flow phenomena [96], a technique

which is still carried out today for the study of hypersonic and hypervelocity gas flows.
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In the 60 years since Smelt’s paper was published, the simulation of hypervelocity flows

has very much followed what Smelt discussed. Due to the extreme costs of performing flight

experiments, ground tests have been essential to the design of planetary entry vehicles. Because

of the aforementioned issues discussed by Smelt, it is impossible in practice to run continuous

duration planetary entry wind tunnel experiments on a test model, and decisions must be made

about what to simulate. Two different fields of planetary entry simulation have developed, and

test facilities used to simulate planetary entry generally either choose to simulate a scaled

version of the real flight condition for a very short period of time, or some specific phenomena

of the real flight condition for a longer period of time.

Impulse facilities based on some variation of the shock tube and shock tunnel concept have

been very popular for hypersonic and hypervelocity testing because even if the test times are

extremely short (from 10’s of microseconds to 100’s of milliseconds depending on the scale and

type of facility), and because of this, experiments are performed on a ‘cold’ model, they allow

the stagnation enthalpy and Reynolds number of a true flight condition to be re-created.

The other types of ground testing facilities used to study hypersonic phenomena are gener-

ally relatively low velocity and long duration, such as arc-jets [97, 98], plasma torches [99, 100],

and plasma wind tunnels [101, 102]. These are high enthalpy test facilities which have test

times long enough for the test model to reach temperatures at which hot-wall and ablation

tests can be performed. However, while they can re-create flow stagnation enthalpy, they do

not re-create the velocity or a real aerodynamic flow-field, and due to the high freestream tem-

peratures, the test flows are often subsonic. For this reason, these long duration facilities are

often used for materials testing, because they allow representative heat loads to be re-created

and the test model to be measured before and after the experiment, allowing the material lost

through surface recession to be quantified2. Due to how their test flow is generated, arc jets

and plasma wind tunnels can generally only produce test flows with low Reynolds numbers and

low stagnation pressures. This also results in high levels of thermal non-equilibrium in the test

flow. Conversely, plasma torches generally operate at much higher pressures, and the work of

Laux [99] showed that the test flow generated by the plasma torch which he was using was in

thermochemical equilibrium, allowing it to be used for the validation of radiation modelling

codes. Many modern studies in these types of facilities focus on the interaction of an ablating

test model with the test flow, such as the work of MacDonald et al. in a plasma torch [100],

and the work of Hermann et al. in a plasma wind tunnel [103].

Shock tubes and shock tunnels also have their limitations. Because all of the energy is

added to the flow using shock waves, both reflected and non-reflected shock tubes are limited

2This is not something which can be done in a shock tube type facility, because the driving gases flow over
the test model after the experiment
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in the stagnation enthalpy which they can simulate. This is because at very high shock speeds,

the flow exists as a highly dissociated plasma, which is useful for studying post-shock planetary

entry radiation, but not for aerothermodynamic testing. Such facilities are generally limited to

speeds up to, and including, Earth orbit velocities (≈8 km/s) [104].

Non-reflected shock tubes, such as the EAST facility at NASA Ames [74, 75, 76] and the

currently under construction European Shock-Tube for High Enthalpy Research (ESTHER) in

Portugal [105], are generally used for the study of planetary entry radiation, due to their ability

to generate the real post-shock conditions of planetary entries. However, due to low density

shock tube (‘Mirels’ [106, 107, 108]) effects, the separation distance between the moving shock

wave and the contact surface travelling behind it decreases with distance, meaning that they

often generate very short test gas slugs. This can make it difficult to establish flow over a test

model. Even if flow over a model can be established, because the freestream flow generated is

the condition directly behind a shock wave, its flow stagnation enthalpy is often highly chemical.

In spite of this, experiments with test models have been performed in non-reflected facilities,

and the ‘prior steady flow’ technique developed by Mudford and Stalker [109, 110, 111], wherein

a flow was generated in a hypersonic nozzle before arrival of the shocked test gas, was able to

start nozzles in high speed non-reflected shock tunnels, which could then be used to generate

flows over test models.

One of the most common impulse facility configurations is the reflected shock tunnel, where

the initially shocked test gas is reflected off a wall, generating a reservoir of twice shocked gas at

high pressure and temperature. This reservoir can itself be probed to study high temperature

gas behaviour, such as dissociation, or it can be slowly bled out through a de Laval nozzle

to generate hypersonic test flows. One benefit of reflected shock tunnels is that because the

test flow is generated by bleeding gas out of a reservoir, they produce much longer test times

than non-reflected facilities. However, they also require different nozzles to generate different

flow Mach numbers, and if the facility is driven too quickly, the stagnated test gas can become

highly dissociated, and even if the temperature drops through the nozzle expansion, the test

gas may not recombine [112, 113]. Reflected shock tunnels have been used for many different

types of hypersonic testing. The list provided here is not exhaustive, but for example, they

have been used to study planetary entry heat transfer [114, 115, 116, 117, 118, 119], scramjet

flight [120, 121, 122], as well as many different fundamental studies of hypersonic flow-fields

[123, 124, 119, 121].

The expansion tube, an idea which was originally proposed in the 1950’s [125], refers the

freestream chemistry issues to higher enthalpies by only adding part of the energy to the flow

using a shock wave. The rest of the energy is added by accelerating the flow through an

unsteady expansion. At the expense of test time (compared to a reflected shock tunnel), total
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enthalpy and total pressure can be added to the flow without the dissociation which would

occur if the conditions were generated in a traditional shock tube or shock tunnel [126]. Since

this allows expansion tubes to simulate much higher enthalpy conditions, they are often used

to simulate planetary entry. At UQ, the X2 expansion tube has been used to study entry into

Earth [81, 127, 86, 103, 128, 129], Mars [78, 79, 87], Venus [80, 130], and Titan [79]. The LENS-

XX expansion tube at CUBRC has been used to extensively study Mars entry test conditions

[131, 132, 133, 134, 135]. Expansion tubes have also been used to simulate scramjet flight

[136, 137, 138], the interaction between planetary entry flight conditions and an ablating wall

using resistively heated test models [90, 91, 3, 7, 6, 139], and to study supersonic combustion

phenomena at lower enthalpy conditions [140, 141, 142].

The first expansion tube experiments at UQ were performed in 1987 [143, 144, 145]. Through-

out the 1990’s, UQ developed, designed and commissioned three separate free piston driven

expansion tube facilities, X1, X2, and X3, each larger than its predecessor. The X2 and X3

superorbital expansion tube facilities are both still operational to this day. A history of expan-

sion tube research at UQ can be found in Gildfind et al. [146] and X2 is discussed further in

Chapter 4.



3

Literature Review of Gas Giant Entry

The world is still a weird place, despite my efforts to make clear and perfect sense of it.

– Hunter S. Thompson, Songs of the Doomed, 1990 [147]

3.1 Chapter Overview

This chapter presents a literature review of the history of gas giant entry. The review begins by

discussing some of the work published in the late 1960’s and 1970’s by NASA when they were

first considering the idea of sending a probe to enter a gas giant. The next section talks about

the research done to transform that idea into a reality with the design of the Galileo probe, the

first human-made object to enter a gas giant. A test gas substitution proposed in the literature

is then presented, which allows gas giant entry conditions to be approximated in hypersonic

ground testing facilities at lower velocities than in flight, before some of the research carried

out using the substitution is discussed. Finally, the section concludes by discussing some of the

recent research which has been completed and how it contributes to an increased understanding

of gas giant entry.

3.2 Where it all Started

The very first mention of entry into a gas giant that the author could find was in a NASA paper

titled ‘Progress and Problems in Atmosphere Entry’, presented at the XVIth IAF International

Congress in Athens in 1965 [148]. The paper discusses the issues facing NASA in the longer

term, including the issues involved in sending unmanned probes to Mars and Venus. However,

Jupiter, with an entry speed listed as approximately 60 km/s, is dismissed in a single paragraph:

23
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“Also listed in the figure is the entry velocity associated with atmosphere probes

of Jupiter, provided that no propulsive braking is utilized. Today’s entry technology

clearly does not permit such an entry and much work must be done if such a mission

is to be attempted. Because Jupiter entry probes are so far in the future, no further

consideration will be given to them here.” [148]

However, with the technological leaps which led to humankind setting foot on the moon

in 1969, came similar leaps in other areas, and during the final years of the 1960’s NASA

reseachers were starting to analyse gas giant entry. The first study of the heating environment

and potential trajectories related to the once dismissed Jupiter atmospheric entry was performed

by Tauber in 1969 [149]. Other early studies of gas giant entry heating environments, include

the work of Stickford and Menard in 1968 [150]; Tauber and Wakefield in 1970 [151]; and

Tauber [152] and Page [153] in 1971. All of these early studies made the assumption that the

dissociation and ionisation of the H2/He gas mixture was complete immediately after the shock;

meaning that the whole flow-field in the shock layer was assumed to be in chemical equilibrium.

In 1973, Leibowitz [154] performed shock tunnel experiments in the new electric arc driven

shock tube at NASA’s Jet Propulsion Laboratory (JPL) in Pasadena, California, U.S.A. [155]

from 13 to 20 km/s with fill pressures of 33, 133, and 267 Pa, all using a 21%H2/79%He test

gas mixture (by volume). The work examined the relaxation of Hydrogen line and continuum

emission intensities behind the incident shock in the shock tube. He found that dissociation of

the H2 took place behind the shock in a region which was small compared to the ionisation, and

that the ionisation process was governed by 2 different regions; one which was dominated by

the excitation of H due to atom-atom collisions; and a second region which was dominated by

H excitation due to collisions with electrons. Liebowitz found that when ionisation started, the

electron temperature of the flow was significantly different to the heavy particle temperature,

but that the two temperatures began to converge during the later part of the reaction. (This

is shown in Figure 3.1.)

Leibowitz’ work in 1973 [154], along with a short theoretical paper by Howe in 1974 [156],

showed that the assumption made in the initial gas giant entry papers had been wrong: disso-

ciation and ionisation did not occur instantly. This meant that researchers needed to consider

non-equilibrium flow and see if its effect was significant.

In 1976 Leiobwitz and Kuo analysed results from shock tube experiments, flow-field calcula-

tions, and trajectory analysis to build an analytical tool which enabled the impact of ionisational

non-equilibrium to be studied [157]. They found that during segments of simulated entries into

Saturn and Jupiter, the ionisational non-equilibrium region behind the bow shock was of sig-

nificant size, and would result in a reduction of the overall entry heat load. However, the
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Figure 3.1: Variation of concentrations and temperature behind a 15.5 km/s shock in a
21%H2/79%He gas mixture (by volume) with a fill pressure of 1.0 torr (133 Pa), calculated
by Leibowitz [154].

non-equilibrium regions were found to be thin during the peak heating parts of the trajectories,

so the overall reduction was typically less than 15%.

The first measurements of the ionisation rate of H were taken by Belozerov and Measures

in 1969 [158] using an electric arc driven shock tube at the Institute for Aerospace Studies

at the University of Toronto, Canada. They had estimated that shock speeds greater than

25 km/s would be required to complete dissociation of a pure hydrogen test gas and produce

a ‘measurable’ electron concentration behind the shock. As such, they performed experiments

from 28 to 35 km/s at between 1.5 to 3 torr (200 to 400 Pa) using an ‘ultra-pure hydrogen with

the specified impurity level 5 parts per million’ [158] test gas. Electron concentration changes

were observed using interferometry as the increase of electrons changed the refractive index of

the gas. Experimental measurements were compared to their own theoretical relaxation model,

and in Figure 3.2 it can be seen that good agreement was seen.

The previously mentioned shock tube work by Leibowitz in 1973 [154] presented new reaction

rates which were smaller than the rates measured by Belozerov and Measures. Leibowitz and

Kuo’s work in 1976 [157] included further shock tube measurements at higher shock speeds (26

to 27 km/s with an initial fill pressure of 4 torr [533 Pa] and 29 to 38 km/s with an initial fill
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Figure 3.2: Comparison between theoretical (curve) and experimental (circles) electron density
profiles from Belozerov and Measures [158].

pressure of 1 torr [133 Pa]) using a 85%H2/15%He mixture (by volume) test gas, and the rates

were again reduced.

In 1980, Stalker compared both sets of Leibowitz’ data to experiments carried out in a

non-reflected free piston driven shock tunnel at the Australian National University (ANU) in

Canberra, Australia using an inclined flat plate and a test gas mixture of 60%H2/40%Ne (by

volume) [159]. He found good agreement between the set of reaction rates obtained by Leibowitz

and Kuo in 1976, and his own experimental data. The results of the experiments can be seen in

Figure 3.3. (The ‘A’ rate constants referred to in Figure 3.3 are the reaction rates obtained by

Leibowitz in 1973 [154], and the ‘B’ rate constants are the reaction rates obtained by Leibowitz

and Kuo in 1976 [157].)

In 1971, in an attempt to simulate Saturn and Jupiter atmospheric entry in a shock tube

at NASA’s JPL, Menard used an electric arc shock tube with a new lower volume, conical

arc driver to improve facility performance from previous configurations [155]. (A diagram of a

conical arc driver from Dannenberg [160] can be seen in Figure 3.4.)

Using a hydrogen driver gas and a very low pressure 0.05 torr (6.7 Pa) pure hydrogen test gas,

Menard [155] was able to produce a shock velocity of 45 km/s 3.66 m away from the diaphragm

separating the driver and driven sections, and a shock velocity of 39.5 km/s 10.67 m away

from the diaphragm. With an 20%H2/80%He (by volume) gas giant entry test gas at the same

pressure, he was able to produce a shock velocity of 41.3 km/s 3.66 m away from the diaphragm,

and 40.4 km/s 10.67 m away. Performance was considerably lower when a helium driver gas was

used, dropping to around 30 km/s for the 20%H2/80%He (by volume) condition. The following

year in 1972, similar experiments were performed with the same type of driver at NASA Ames
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Figure 3.3: Relaxation downstream of an oblique shock over a flat plate from the work of
Stalker [159]. The ‘A’ rate constants were obtained by Leibowitz in 1973 [154], and the ‘B’ rate
constants were obtained by Leibowitz and Kuo in 1976 [157]. The test gas is 60%H2/40%Ne
(by volume), and the primary shock speed is 11.4 km/s.

Research Center by Dannenberg and very similar results were seen [160]. A comparison plot

between the two studies (taken from Dannenberg [160]) can be seen in Figure 3.5.

Looking at Figure 3.5, it can be seen that for both the work of Menard [155] and Dannenberg

[160], with a driven gas mixture of 20%H2/80%He (by volume) and a 1.0 torr (133 Pa) shock

tube fill pressure (labelled ‘driven tube loading pressure’ on the figure), both facilities cannot

drive a shock faster than 20 km/s. It is only with a very low 0.05 torr (6.7 Pa) shock tube fill

pressure, that they can manage to drive a shock at 40 km/s.

In 1975, while discussing previous gas giant entry shock tube research, Leibowitz [161]

stated that the conical arc drivers used by Menard [155] and Dannenberg [160] had allowed

the simulation of some of the variables for Jupiter entry but that “performance has fallen short

of the goal of 40 km/s shock velocities in hydrogen-helium mixtures with initial pressures of

1.0 torr or greater” [161]. Leibowitz went on to show that the shock velocities required to

study entry into Jupiter or Saturn could be established at higher pressures than the earlier
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Figure 3.4: Schematic of a conical arc driver for an electric are shock tube from Dannenberg
[160]. The section to the left of the diaphragm is the driver.

Figure 3.5: Comparison between conical arc driven shock tube facilities for gas giant entry
simulation from Dannenberg [160]. The data labelled AMES is from the experiments performed
by Dannenberg [160] and the data labelled JPL is from Menard [155].
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work of Menard [155] and Dannenberg [160] using the newly developed ANAA (ANnular Arc

Accelerator) driven shock tube [161].

Unlike traditional electric arc driven shock tubes like those used by Menard [155] and

Dannenberg [160] (a version of which is shown in Figure 3.4), the ANAA shock tube used

a more complex design where energy was deposited into an already moving gas to avoid the

energy losses and radiative cooling generally associated with diaphragm opening in traditional

electric arc driven shock tubes. The facility (a schematic of which can be seen in Figure 3.6)

consisted of a cold gas driver, followed by an expansion section, several electrode sections, and

then the shock tube test section. When the experiment starts, the driver gas accelerates into

the expansion section with a shock wave being driven in front of it. As this gas flow passes

through the electrode sections, a high voltage capacitor bank is used to discharge energy into

the gas, creating an arc heated plasma that immediately expands and cools, driving a shock

wave through the shock tube. Leibowitz stated that “this immediate expansion greatly reduces

the opportunity for the gas to lose energy by radiative cooling during the diaphragm opening

process” [161].

Figure 3.6: Schematic of the ANAA shock tube from Leibowitz [161]. Flow looks to be from
right to left.

.

The ANAA facility was capable of achieving the 47 km/s required to simulate Jupiter entry

conditions with a 1.0 torr (133 Pa) shock tube fill pressure, but only with a pure hydrogen test

gas. The facility was limited to 40 km/s when using an 85%H2/15%He mixture1. The perfor-

mance of the ANAA shock tube for various configurations can be seen in Figure 3.7. Leibowitz

used radiation emission measurements of the Hydrogen Beta line at 486.1 nm to identify the test

time and quality of the test conditions. For the slower 85%H2/15%He conditions (the diagram

1Leibowitz [161] does not specify whether the mixtures discussed in the paper are by volume or by mass,
but due to the fact that in Fig. 2 in the paper (which is re-created here as Figure 3.7), Leibowitz has compared
his own experiments to earlier experiments by Livingston and Menard [162] which were specified as by volume,
Leibozwitz’s mixture is probably by volume also.
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in the paper is for a shock speed of 35.8 km/s) the intensity of the Hydrogen Beta line has an

initial non-equilibrium rise, followed by a steady region, before a sharp decay which indicates

the end of the test time. However, for the faster pure hydrogen conditions (the diagram in the

paper is for a shock speed of 45.5 km/s) Liebowitz states that “the initial jump in intensity

is very rapid and is followed immediately by the decay of the continuum and line intensites”

[161]. No steady region can be seen in the diagram. Further on it is stated that it is difficult to

ascertain the test time for these conditions, and that further investigation would be required

to discover if these conditions were producing a usable amount of test time.

Figure 3.7: Figure taken from Leibowitz [161] showing the performance of the ANAA shock
tube for simulating gas giant entry scenarios. Data comparing the ANAA facility to the conical
arc driven shock tubes at NASA Ames and NASA’s JPL which were used by Menard [155],
Dannenberg [160], and Livingston and Menard [162] are also shown.
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3.3 The Galileo Probe

From the end of the 1970’s, and for most of the 1980’s, the design of the Galileo probe was

the primary driver for further gas giant entry research. Two separate codes were developed

to design heat shields for outer planetary entry probes, such as the Galileo probe: ‘COLTS’

(COupled Laminar and Turbulent Solutions), a viscous shock layer code developed at the NASA

Langley Research Centre [163]; and ‘TOPIC’ (Thermodynamic Outer Planets Insulation Code),

an engineering code which combined computations and correlations of CFD and experimental

data for a large number of flow factors [164].

A series of computational studies were completed in the early 1980’s to try and understand

the heating environment that the Galileo probe would encounter. These included, Balakrishnan

and Nicolet in 1980 [165]; Green and Davy in 1981 [166]; Moss and Simmonds in 1982 [167];

and the analysis done by the General Electric Re-entry Systems Division in 1984, the group

commissioned to design the heat shield [59].

Three different types of experiments were also performed to validate the aforementioned

simulations and some of the parameters used. As can be seen in Figure 3.8, the Galileo probe’s

heat shield was built using two different carbon phenolic composites. The nose cap was made

from a reinforced chopped-molded carbon phenolic, with the material molded normal to the

centreline. The conical frustum section on the sides of the probe was made by tape wrapping

carbon phenolic at an angle of 30◦. To investigate the response of the materials to the expected

entry heating, Lundell performed experiments in 1982 on the two materials with a 45 kW gas

dynamic laser at NASA Ames Research Center [60]. The laser system used had several different

parameters which could be adjusted to vary the laser power, allowing Lundell to achieve laser

intensities from 8.5 to 32 kW/cm2, which were focused on 1 cm2 sections of larger material

samples, effectively boring a hole through the samples. It was found that both materials had

a threshold intensity below which the material did not spallate. This was found to occur at

14.5 kW/cm2 for the chopped-molded carbon phenolic, and 8.5 kW/cm2 for the tape wrapped

carbon phenolic. For both materials, correlations relating total and spallated mass loss to

intensity were made and then applied to flight heating models of the Galileo probe.

In 1982, Park proposed a method by which gas giant entry heating rates could be simulated

at velocities currently achievable in ground testing facilities [168]. He said that the ballistic

ranges used at the time for measuring surface recession rates on scaled models were limited to

velocities of around 5 km/s. While this provided shock layer temperatures of around 8,000 K

which were suitable for studying the behaviour of heat shield materials subjected to a large

convective heat load, radiation emission was relatively small. Park proposed that argon could

be used as the test gas instead of air, as the shock layer temperatures become much higher
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Figure 3.8: Gaileo probe schematic from Lundell [60] showing the two types of carbon phenolic
composites used on the probe’s heat shield, and where they were each located.

(around 15,000 K), where the radiative heating becomes much higher. He showed that by using

an argon test gas, ballistic range facilities could produce radiative heat fluxes of the order

of 100 kW/cm2 and claimed that radiative heat transfer in an 89%H2/11%He (by volume) gas

giant atmosphere could be approximated by the heat transfer from Argon due to the theoretical

similarity between the spectral lines of each gas. (This is shown in Figure 3.9.) While Park did

not mention any specific entry velocity which this simulated, the heat transfer rates shown in

Figure 3.9 (34.1 kW/cm2 for Argon and 42.1 kW/cm2 for 89%H2/11%He, by volume) are similar

to ground testing heat fluxs show below in Figure 3.10, and where the Galileo probe heat flux

is marked as below 25 kW/cm2 .

In 1983, Park [169, 170] performed preliminary stagnation point ablation studies on flat disks

of carbon-carbon and carbon phenolic materials in radiation dominated environments using an

argon test gas in the AEDC-VKF 1000-ft Hyberballistic Range G at the Arnold Engineering

Development Center [171]. The average wall heat flux ranged from 30 to 35 kW/cm2, compara-

ble to the laser irradiation experiments performed by Lundell [60]. However, Park found that

the spallation contributed more to the thermochemical ablation rate in his experiments than

had occured in Lundell’s.

To continue these experiments, Park and Balakrishnan flew 1/24 scale ablating Galileo probe

models at 4 to 5 km/s [61] in the AEDC-VKF 1000-ft Hyberballistic Range G [171]. An air test

gas was used to test convective heating and an argon test gas was used to test radiative heating.
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Figure 3.9: Comparison of the emission spectra of argon and an 89%H2/11% He mixture (by
volume) from a uniform 1 cm thick slab with a temperature of 16,000 K and a pressure of
5.61 atm from Park [168].

The experimental argon results were found to agree “approximately” with theoretical conditions

made using two different computer codes, radiating shock layer environment (RASLE) and

charring materials ablation (CMA). For the air experiments which were used to examine the

convective heating, the data was only found to be agree “approximately” with the computer

codes when turbulence and surface roughness effects were accounted for, because turbulence

can greatly increase the ablation rate. Park concluded that the Galileo probe’s heat shield was

“adequately designed” because he predicted an overall recession enhancement of around 10% on

the stagnation point (where the safety margin was nearly 50% [166]) and an overall recession

enhancement of around 20% on the frustum section (where the safety margin was 30% [61]).

Ablating models were also tested in a 50%H2/50%He (by volume) arc-jet flow by Park et al.

[62] on NASA Ames’ Giant Planets Facility. The test condition velocity was between 15 and

16 km/s and had a total enthalpy of ≈400 MJ/kg (a static enthalpy of 260 MJ/kg due to the gas

temperature of almost 11,000 K, and another ≈130 MJ/kg from the gas velocity). The carbon

phenolic data was compared to other radiative heating data from the same era (see Figure 3.10)

including the laser irradiation data of Lundell [60] and the stagnation point ballistic range

ablation data from Park [169, 170] and it was said that “the three sets of data are consistent

and form a continuous trend” [62]. Heat transfer rates and spectral data were found to agree

well with theory, but compared to the aforementioned RASLE and CMA computer codes, the

measured ablation rates were 15% higher, which was attributed to spallation phenomena. Once

again the experiments indicated that the probe design was suitable.

Figure 3.12 shows the comparison between the predicted heat shield ablation using both

COLTS and TOPIC, and the actual heat shield ablation which was measured by ten ablation
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Figure 3.10: Comparison of carbon-phenolic ablation rates measured in an arc-jet (Park et al.
[62]), a gas dynamic laser (the data marked ‘4’ is from Lundell [60], and a ballistic range (the
ballistic range data is the stagnation point data from Park [169, 170]) from Park et al. [62].

sensors embedded in the probe’s surface [58] when the probe entered Jupiter’s atmosphere on

the 7th of December 1995. (A schematic of the locations of the ten ablation sensors from Milos

et al. [172] can be seen in Figure 3.11.) It should be noted that Figure 3.12 shows results from

the NASA analysis by Moss and Simmonds [167] as well as results from the analysis done by

General Electric [59]. TOPIC was used as the primary design tool to design the heat shield for

the Galileo probe [58].

The two predictions from the General Electric analysis used a non-reflecting surface, whereas

the prediction from Moss and Simmonds (the dashed line) used a less conservative assumption

of 10% surface reflectance [58]. The TOPIC prediction assumed abrupt transition to turbulent

flow at a Reynolds number on the boundary-layer edge of 105, whereas the COLTS predictions

assumed turbulent flow on the nose of the vehicle at all times [58].

From Figure 3.12 it can be seen that all three predictions overestimated heat shield reces-

sion on the stagnation point of the vehicle, while underestimating recession on the frustum.

Milos, who analysed the ablation data from the ablation sensors mounted on the surface of the

probe in 1997 [58], said that “The TOPIC design prediction shows recession of 8.75 cm at the

nose, which is 96% high, and 3.27 cm at the end of the frustum, which is 18% low. The less
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Figure 3.11: Schematic showing the locations of the ten ablation sensors (A1 – A10) in the
Galileo probe’s heat shield, and the four resistance thermometers (T1 – T4) inside the structure,
from Milos et al. [172].

ARAD data

TOPIC (General Electric)

COLTS (General Electric)

COLTS (NASA)

Figure 3.12: Comparison of the final shape of the Galileo entry probe compared to various
theoretical predictions [58]. The solid black line shows the actual surface ablation (with the
solid blocks showing where the ablation sensors were located on the heat shield surface), the
other 3 lines show results obtained by both NASA [167] and General Electric [59] using two
different CFD codes, COLTS and TOPIC.

conservative COLTS calculation shows 5.84 cm at the nose (31% high) and 2.29 cm at the end

of the frustum (43% low). The ratio of frustum end to nosetip recession was less than 0.4 in

these two calculations,but the measured ratio was 0.9.”

Milos found that the ablation was axisymmetric and that the final shape of the heat shield

was well defined. Only 10 mm of heat shield thickness remained on the end of the frustum of

the heat shield after ablation. He theorised that the under-prediction of frustum recession may
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have been a direct consequence of the greater than expected helium mole fraction in Jupiter’s

atmosphere, but he also said that explaining the over-prediction of recession near the stagnation

point of the heat shield was “more problematic” [58].

A follow up paper by Milos et al. in 1999 [172] compared the heat shield recession data

to data from temperature sensors mounted underneath the heat shield by performing a one-

dimensional analyses of the heat shield ablation, pyrolysis, and heat conduction at the ther-

mometer locations. Comparing the ablation data at ablation sensors A7 and A8 to thermometer

T2 which was located on the surface of the structure in the same plane (see Figure 3.11), the

temperature and recession data were found to be very consistent. The estimated peak heat flux

and heat load at the point were found to be 13.4 ± 0.5 kW/cm2 and 161 ± 6 kJ/cm2. On the aft

heat shield, Milos et al. were not able to find a theoretical solution which matched the recession

of the two thermometers mounted there (see Figure 3.11). They said that “The data seem to

indicate an unexpected low heat conduction into the aft heat shield. Whether this discrepancy

should be attributed to excessively high heating estimates, deficiencies of the material modelling,

or other factors is unknown at this time.” [172].

Following the Galileo probe mission, several CFD studies have aimed to re-create the abla-

tion of the Galileo probe’s heat shield, but no experimental campaigns have been performed.

The pre-flight CFD studies had assumed an atmospheric composition of 89%H2/11%He (by

volume), whereas the measured mole fraction from the Galileo probe’s mass spectrometer was

86.4%H2/13.6%He [173, 174]. In 2005, a study by Matsuyama et al. [64] used this fact, Park’s

injection-induced turbulence model [65], and a radiative energy transfer calculation which was

tightly coupled to the flow-field solver to examine the Galileo probe’s heat shield ablation.

Their study was able to re-create the recession of the frustum region of the probe closely but

like the pre-flight CFD, stagnation point recession was still overestimated. This is shown below

in Figure 3.13, where the work of Matsuyama et al. [64] is compared to the flight data [58, 172]

and the pre-flight CFD performed by Moss and Simmons [167]. The x-axis has been normalised

by the nose radius of the heat shield (Rn), so 0 on the x-axis is the stagnation point, and 4 is

the end of the frustum. The result from Matsuyama et al. [64] is the curve shown as ‘Present’

on the figure, and it can be seen to roughly follow the pre-flight CFD by Moss and Simmonds

[167] near the stagnation point, before changing and closely following the flight data [58, 172]

for the whole frustum region.

A paper by Park in 2009 [66] was able to re-create the stagnation point recession “fairly

closely” by implementing a model which was focused on correctly modelling the interaction

between the flow-field and the spallating carbon particles from the heat shield, Park’s model

calculated the thermochemical state of the gas more accurately than had been done before,

included the effects of VUV radiation absorption, and the effects of spallation. Park found
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Figure 3.13: Figure from Matsuyama et al. [64] comparing the computed forebody recession
profile from their own study, the study by Moss and Simmonds used to design the heat shield
[167], and the actual flight data from Milos [58] and Milos et al. [172].

that when the radiative heat flux reaching the wall exceeded 14.5 kW/cm2 (the heat flux at

which spallation of the material at the stagnation point begins [60]) spallated particles create a

‘radiation shield’ which prevents the surface heat flux from rising much further than this value.

Park’s result is shown in Figure 3.14, where a figure from Park [66] has been reproduced. The

curve labelled ‘present model’ follows the ‘flight data (ARAD1)’ (the stagnation point ablation

data from Milos [58] and Milos et al. [172]) curve very closely.

While Park [66] did not study the surface recession in the frustum region downstream of the

stagnation point, he theorised that a couple of different phenomena could have contributed to

the larger than expected surface recession seen there. He stated that the heat shield material

used on the frustum section was not the same as the material on the stagnation point and had

been found experimentally to start spallating when the heat flux was 8.5 kW/cm2, instead of

the 14.5 kW/cm2 for the material at the stagnation point [60]. Therefore it would be expected

that many more spalled particles would exist downstream than in the stagnation region. Park

also stated that the spalled particles released in the stagnation region would have to flow

downstream and over the frustum region, potentially causing strong turbulence in that area

and increasing the convective heating rate.
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Figure 3.14: Figure from the work of Park [66] showing the progression of surface recession at
the stagnation point (ARAD1) of the Galileo probe compared between the flight data [58, 172]
and many different computational methods (including the work of Matsuyama et al. [64]).

3.4 Stalker Substitution

The velocities involved with entry into the gas giants are generally of the order of 20 to 50 km/s,

well beyond the limits of what can be simulated in impulse facilities designed for use with test

models. To overcome this issue, Stalker and Edwards [67] proposed a test gas substitution

for the study of gas giant entry conditions at velocities currently achievable in ground testing

facilities. Their theoretical analysis for inviscid gas giant entry flows showed that, due to its

large ionisation energy, the helium in the hydrogen/helium flow-field acted as an ‘inert diluent’

and collision partner for the hydrogen molecules and atoms. They started their analysis with

a completely dissociated shock layer (because for very fast gas giant entries they believed the

dissociation distance was short enough to justify this) and they found that the amount of

inert diluent in the flow-field, and even the type of inert diluent, did not affect the ionising

relaxation of the test flow. They examined both hydrogen/helium test flows, and test flows

with a heavier diluent, neon, across all diluent fractions (1 to 99%, by volume). Due to the

much higher ionisation potentials of both He and Ne (21.6 and 24.6 eV, respectively) compared

to H (13.6 eV), they expected that little He or Ne in the flow would ionise, and that the He

or Ne would only act as an inert diluent and collision partner in the flow-field. They found

that until the post-shock temperature became so hot that the neon itself began to ionise, the

substitution held.

Stalker and Edwards [67] adapted the results of a previous blunt-body flow similarity study
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[175] to the simulation of gas giant entry. The original study had investigated how, for a

generalised shape at an given angle of incidence, different freestream and model parameters

could be varied to produce similar shock layer flows. It was found that if appropriate freestream

and model parameters were chosen, the distribution of flow variables in one shock layer could

be obtained from another one, allowing conditions which cannot be simulated in test facilities

to be simulated by testing similar flows.

Four requirements were required for the similarity to be valid. These are discussed in

depth by Stalker and Edwards [67], and therefore only a small summary is provided here.

Requirements 1, 2, and 3 related mainly to the flow geometry, principally the angle of incidence

between the model and the freestream flow, and the slope of the body surface. Both the angle

of incidence with the flow and the slope of the body surface must be small, and the angle

of incidence must be adjusted to take into account the change in normal shock density ratio

between the two flows. This thesis only considers stagnation line flows at zero angle of attack

(i.e. angle of incidence = 90 degrees), so these requirements do not need to be considered

currently.

Requirement 4 is more complicated to satisfy: Variation of density along post-shock flow

streamlines must be the same for the two flows. For frozen or equilibrium flow-fields this

requirement is easily satisfied because the density remains effectively constant, but for non-

equilibrium flows where the gas composition is changing along the streamline, it is not so

simple. By examining computationally the relaxation behind strong shocks in both H2/He and

H2/Ne test gases with differing concentrations of diluent, Stalker and Edwards found that if the

reactions were binary it could hold, and then it was shown that for a set post-shock temperature,

the non-equilibrium variation of the density ratio was independent of whether helium or neon

was used as a diluent, and “to a good approximation” was independent of the amount of diluent

used. Two figures from their paper which illustrate this can be seen in Figure 3.15, with the

x-axes shown in terms of the binary reaction variable:

χ =
∫

rp

q
ds (3.1)

where r is the mole fraction of H2 in the gas mixture before dissociation and ionisation, p is

the post shock pressure, q is the streamline velocity, and s is the distance along the streamline.

Examining Figure 3.15 it can be seen that they found no detectable difference between

the relaxation of the He and Ne diluent, except when approaching equilibrium at the highest

post shock temperature in Figure 3.15b, where the Ne started to ionise. The results shown in

Figures 3.15a and 3.15b confirmed that not only did the type of diluent not matter, but neither
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(a) Effect of diluent concentration on ionising relax-
ation

(b) Effect of temperature and pressure on ionising
relaxation

Figure 3.15: Two figures from the work of Stalker and Edwards [67] showing the effect that the
two different diluents (He and Ne), and differing concentrations of those diluents, have on the
ionising relaxation of the flow behind a strong shock.

did the concentration of diluent. From this conclusion, they stated that Requirement 4 would

be satisfied by a modified binary scaling parameter term taking into account the molecular

hydrogen partial pressure. This can be found below as Equation 3.2.

Ω =
rpnL[εn(1 − εn)]−0.5

U∞

(3.2)

where r is the fraction of molecular hydrogen (H2, by volume) in the gas mixture before

dissociation and ionisation 2, p is the post-shock pressure for the flow, L is an appropriate

length scale to compare, ε is the inverse shock density ratio, ρ/ρs, for the flow, n represents

each flow-field, and U∞ is the freestream velocity of the flow.

What this means in practice, is that with appropriate selection of experimental parameters

the limits of a shock tube facility can be circumvented for blunt body flow simulation because

the shock layers of faster entries can be simulated at slower speeds using either an increased

amount of helium diluent or a heavier neon diluent. Both of these substitutions produce stronger

shock waves in the test flow, producing a hotter post-shock region, and allowing faster entry

shock layers to be simulated when the facility is not able to produce enough stagnation enthalpy

to reproduce the conditions directly. This also means that large concentrations of Ne diluent

2For an experiment, this is the hydrogen fraction in the test gas when the shock tube is filled, and for a real
entry flow, this is the hydrogen fraction in the atmosphere
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(40%, 60%, or even 85%), can be used to create test conditions with very significant levels of

dissociation and ionisation behind the shock over the test model3.

Stalker and Edwards [67] performed experiments in the T3 shock tunnel at ANU in non-

reflected shock tunnel mode with a 60%H2/40%Ne (by volume) test gas on a hemispherically

blunted cone model, producing flows which re-created the frozen post-shock temperatures of

gas giant entries from 24 to 28 km/s. They noted that because the experiments were performed

using a non-reflected shock tunnel driven very quickly (from 8.3 to 11.1 km/s) a large source

of error was added to their results because the test gas was fully dissociated before it flowed

over the model. They estimated that up to around 30% of their flow stagnation enthalpy

was chemical, whereas in the true flight situation the freestream flow would have no chemical

enthalpy at all. They stated that expansion tubes, where only part of the flow energy is added

to the flow using a shock wave, would potentially allow these errors to be minimised.

In 1999 Herbrig, a UQ final year thesis student, expanded Stalker and Edward’s [67] work

using the X2 expansion tube. He completed a small pilot study investigating gas giant entry in

the X2 expansion tube at the University of Queensland [92], using a test condition which took

advantage of the test gas substitution from Stalker and Edwards [67]. Herbrig designed a test

condition utilising a 15%H2/85%Ne (by volume) test gas and used it to conduct experiments

on a series of spherical blunted cones examining shock shape and shock standoff using schlieren.

The work which Herbrig started was then greatly expanded upon by Higgins in 2004 [63].

Higgins used the test condition which Herbrig had developed to conduct a much more com-

prehensive study on simulated gas giant entry [63]. She measured shock standoff and electron

concentration along the stagnation streamline using both two-wavelength and near-resonant

holographic interferometry on cylinders and spheres in the X2 expansion tube. Higgins demon-

strated that nonequilibrium flow effects could be re-created in a ground testing facility using

the Stalker substitution. A sample result can be seen in Figure 3.16.

Higgins also developed a one-dimensional inviscid analytical model to calculate properties

along the stagnation line behind a blunt body shock in ionising nonequilibrium flow. This model

was compared to both analytical and experimental results for shock standoff and Higgins found

that CFD results were qualitatively similar to experimental data but generally 10% to 28%

greater. This is shown in Figure 3.17.

However, comparing Higgins’ work [63] to the original work by Stalker and Edwards [67], it

could be argued that Higgins’ work was at the edge of the validity of the substitution. Higgins’

3An 85%H2/15%He (by volume) Uranus gas mixture has a molecular weight of 2.31 g/mol, while a
15%H2/85%Ne (by volume) mixture (the maximum amount of Ne diluent discussed by Stalker and Edwards)
has a molecular weight of 17.5 g/mol, more than seven times greater.
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Figure 3.16: Sample electron concentration calculation (per cm3) from the work of Higgins [63],
with a freestream velocity of 11.8 km/s.

Figure 3.17: Comparison of shock standoff between nonequilibrium CFD, experiment and an
analytical solution from Higgins [63]. The shock standoff distance (δS) has been normalised by
the nose radius of the cylinder (RB).

analysis showed (and the author predicted, using the same input parameters as Higgins and

the PITOT code4) that depending on the condition, the hydrogen gas in the freestream flow

for the experiments was either almost fully dissociated or partially ionised at equilibrium, with

a large amount of chemical enthalpy in the freestream. An equilibrium PITOT run for Higgins’

shot 674 found a stagnation enthalpy which was 8% chemical, a fairly normal percentage for

4PITOT is an equilibrium gas shock tunnel and expansion tube analysis code written by the author. It is
discussed in Chapter 5.
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expansion tube conditions. However, Higgins’ shot 752 has a stagnation enthalpy which is

expected to be 21% chemical, a value approaching the amount of stagnation enthalpy error

predicted for the original non-reflected shock tunnel experiments performed by Stalker and

Edwards [67], and effectively cancelling out the benefits they believed expansion tubes would

bring to research with the substitution.

Higgins also mentioned that the neon was a ‘partially ionised’ diluent for the experiments.

Using PITOT, the author confirmed this, and found that it was expected that for shot 674

almost half of the ions in the post-shock stagnation line flow at equilibrium were produced by

ionising neon, and over a third was produced by ionising neon for shot 752. This goes against

the conclusions of Stalker and Edwards [67] where it was stated that “it was found that there

was no detectable difference in the use of neon or helium as diluent, except when approaching

equilibrium at the highest temperature ... where the ionization of neon took place.” This fact

adds more potential uncertainty to the experiments, and shows that potentially the substitution

was used beyond its limits.

3.5 Modern Resurgence in the Study of Gas Giant Entry

In 2009, Furudate [176] developed a chemical kinetic model for re-creating a one-dimensional

flow-field behind a shock wave in a high temperature H2/He gas mixture. He used dissociation

rate coefficients from the work of Leibowitz in 1973 [154], and new ionisation rate coefficients

from the work of Park [177]. The model was found to reproduce shock tube data of ionisation

time in H2/He gas mixtures reasonably well. Figure 3.18 shows a comparison between the

ionisation distance and time found from Furudate’s model and the experimental work done by

Leibowitz in 1973 [154] and Leibowitz and Kuo in 1976 [157].

Over two separate papers (one examining H + H2 and He + H2 collisions, and the other

examining H2 + H2 collisions) Kim et al. derived a comprehensive model describing dissociation

of H2 in a H2/He mixture [178, 179]. Part of the deliverables of the study were a set of rate

coefficients for H2 dissociation and recombination from collisions with H2, H, and He. Both

single temperature model reaction rates, and two-temperature reaction rates based on separate

translational and vibrational temperatures are included. The rate coefficients were validated

by comparison with various experimentally measured rate coefficients with good comparison

seen. An example reaction rate coefficient comparison between experiment and theory from

the H2 + H2 collision paper [179] can be seen in Figure 3.19.

In 2012, Park [187] collected modern data on the physical properties of H2/He mixtures

and developed a new theoretical model for describing the non-equilibrium processes which

occur behind a normal shock in a H2/He mixture. The theoretical model was validated by
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Figure 3.18: Ionisation time and ionisation distance from the work of Furudate [176] compared
to measurements and calculations done by Leibowitz in 1973 [154] and Leibowitz and Kuo in
1976 [157].

Figure 3.19: Comparison between reaction rate coefficients for H2 + H2 collisions from Kim et
al.’s study [179], experiments, and other theoretical calculations: a) dissociation rate coefficients
compared with the experiments by Cohen and Westberg [180], and b) recombination rate
coefficients compared with the experiments by Hurle [181], Jacobs et al. [182], Rink [183], and
Sutton [184], as well as theoretical calculations performed by Schwenke [185] and Furudate et
al. [186].
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comparison with two sets of experiments carried out in the 1970’s. The first set were collected

by Leibowitz [154] in 1973, and the second set were collected by Livingston and Poon [188] in

1976. The model includes a full dissociation reaction scheme, a complex ionisation model and a

radiation model which Park uses to calculate the spectral intensity at the surface of a Neptune

entry vehicle and trajectory proposed by Jits et al. [189]. Park’s result showing radiation in

both the Lyman and Balmer Series’ of H can be seen in Figure 3.20.

Figure 3.20: Spectral intensity at 10 mm downstream for 174 second point in Jits et al.’s
Neptune entry trajectory [189] from the work of Park [187].

Neptune’s atmosphere is believed to contain between 1 and 2% hydrocarbons (by volume),

mainly CH4 [190]. There are two other related Park [191, 192] papers in which the effect of

these hydrocarbons on the shock layer radiation are examined theoretically for both shock

tunnel data from Livingston and Poon [188], the proposed Jits et al. [189] trajectory and

another proposed trajectory from Hollis et al. [193]. Park assumed a CH4 percentage of 1.5%

(by volume). The addition of CH4 was found to appreciably shorten the ionisation equilibration

distance, and the carbon atoms added to the flow-field were found to contribute significantly

to the total radiative heat flux.

In 2010, the US National Research Council ‘Vision and Voyages for Planetary Science in the

Decade 2013-2022’ report identified probes to Uranus [68] and Saturn [69, 70] as high priorities
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for future space missions, and several studies have been performed to examine the proposed

entries discussed in the report. The proposed probe entry velocities were 22.3 km/s for Uranus

[68] and 26.9 km/s for Saturn [69, 70].

The expected aeroheating uncertainties of the aforementioned Uranus and Saturn entries,

as well as a third steeper descent angle Saturn entry at 28.2 km/s, were analysed by Palmer

et al. [71] in 2014 by performing a Monte Carlo study on the input parameters to their data

parallel line relaxation computational fluid dynamics code. They found that radiative heating

for Uranus entry was “negligible” but at the highest velocity examined for Saturn entry, radiative

heating contributed up to 20% of the heat load. In general, they found that the uncertainty in

convective heating for Uranus and Saturn entry was “no more than a few percent”, but that for

Saturn entry, where the post-shock temperatures are higher, that “the uncertainty in radiative

heating was substantial”. The strongest contributor to the radiative heating variation were

found to be the H2 dissociation reaction rates, because the radiative heating seen at the wall

is strongly influenced by the chemistry which occurs just behind the bow shock.

A study by Cruden and Bogdanoff [72] in 2015 experimentally examined the expected ra-

diation for parts of the three entry trajectories examined by Palmer et al. [71] in the EAST

facility at NASA Ames Research Center [76]. A study by Bogdanoff and Park in 2002 [194]

had brought heritage H2/He experiments in the EAST facilty into question by showing that

the radiation from the electric arc driver could be essentially ‘overheating’ the test gas to well

above what would be expected from equilibrium shock wave theory. For Cruden and Bog-

danoff’s experiments, a buffer section was added to the facility to protect the test gas from

the driver radiation. After this addition, they stated that “Somewhat surprisingly, no direct

evidence of driver gas preheating was seen during any of the tests”. Cruden and Bogdanoff

used an 89%H2/11%He (by volume) simulated Saturn entry test gas, and examined freestream

pressures between 13 and 66 Pa and velocities from 20 to 30 km/s. Consistent with Palmer

et al.’s [71] conclusion that radiative heating for Uranus entry was “negligible”, Cruden and

Bogdanoff found that, within their measurement limits, no shock layer radiation was detected

below 25 km/s. Above 25 km/s, radiation was observed, and they found that their shocks did

not reach equilibrium over several centimetres, and that in many cases, the state distributions

were non-Boltzmann. Due to the fact that NEQAIR [77], NASA’s in-house radiation code, is

only able to simulate H2/He gas flows in Boltzmann states, NEQAIR currently over-predicts

the radiation of these conditions by up to a factor of 10. This work was published in the Journal

of Spacecraft and Rockets in 2017 [73].
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The X2 Free Piston Driven Expansion

Tube

Nothing is built on stone; all is built on sand, but we must build as if the sand were stone.

– Jorge Luis Borges, The Book of Sand, 1977 [195]

4.1 Chapter Overview

This chapter primarily discusses the facility which has been used for the experiments in this

thesis, the X2 Expansion Tube at the University of Queensland. It begins with a short general

discussion of expansion tubes, before providing a more specific introduction to the X2 facility

and what it has been used for. The section closes with a discussion of both the physical and

operational facility upgrades performed by the author during this thesis. For a larger discussion

of the history of expansion tube research at UQ, the reader is directed to Gildfind et al. [146].

Section 4.2 is a slightly extended version of Section 1 of the final submitted version of the

journal paper James et al. [25].

4.2 The Expansion Tube

Since spaceflight research began, shock tubes and shock tunnels have been widely used for the

study of hypervelocity flows. However, they have generally been limited to the study of Earth

orbit velocities up to around 8 km/s [104] because of a fundamental limitation: These facilities

can only add energy to the flow through shock waves, and at sufficiently high shock speeds

there can be significant dissociation and potentially even ionisation of the test gas. This makes

the conditions suitable for the study of plasmas behind planetary entry shock waves, and shock

speeds up to 47.5 km/s have been generated in non-reflected shock tubes [161], but unsuitable

47
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for aerodynamic testing [196]. This can be seen in Figure 4.1 where the related post shock

temperature (T2) in air for different shock tube shock speed (Vs,1) values are shown for both

the perfect gas condition, and equilibrium gas conditions with different representative shock

tube fill pressures (p1) found using NASA’s CEA program [197, 198]. It can be seen that above

a shock speed of around 2,000 m/s all three equilibrium conditions start to diverge from perfect

gas behaviour as dissociation of the molecules (mainly nitrogen and oxygen) begins. At a shock

speed of 9,000 m/s, the upper limit of the data shown on the plot, the molecules in the air are

almost fully dissociated, and the perfect gas model over-predicts the post-shock temperature

(T2) by around a factor of four.
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Figure 4.1: How changing shock tube shock speed (Vs,1) changes the post-shock temperature
(T2) in air for both perfect gas and equilibrium conditions.

Reflected shock tunnels have been used to study a wide variety of hypersonic phenomena,

but also suffer from the same limitation as non-reflected ones: The twice shocked test gas

feeding the nozzle may not recombine through the expansion, and this only gets worse for

higher enthalpy conditions [113].

The expansion tube, a concept first proposed by Resler and Bloxsom in the 1950s [125], is a

modified shock tube which uses a second downstream low pressure shock tube to circumvent the

enthalpy limitation by adding only part of the required energy to the flow using a shock wave.

After initial shock processing of the test gas in the shock tube, more energy is added to the final

test flow by processing it with an unsteady expansion, where total enthalpy and total pressure

are added to the shocked test gas as it unsteadily expands, without ever having to stagnate the

gas at these conditions during the operational cycle. At the expense of test time, this extra total

enthalpy and total pressure are added to the flow without the dissociation which would occur
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in a shock tunnel, and therefore much higher enthalpy conditions can be reached [196]. The

expansion tube is therefore particularly suitable for the study of planetary entry flow-fields.

Due to the two modes of energy addition available, the final test flow can be controlled by

balancing energy addition between these two modes, without the need for changes in physical

hardware, such as nozzles, making the expansion tube a very versatile type of test facility.

An example of the extra stagnation enthalpy (Ht) available in an expansion tube is shown in

Figure 4.2 below, where the maximum Ht achievable in a non-reflected shock tube compared to

an expansion tube can be seen. An equilibrium unsteady expansion from the shocked condition

in the shock tube to a pressure of 100 Pa has been performed to simulate the maximum enthalpy

situation where almost all of the pressure gained in the shock tube is converted to velocity in

the acceleration tube. Using a shock tube shock speed (Vs,1) of 5,000 m/s as an example, the

stagnation enthalpy in the shock tube is 23 MJ/kg, but the maximum stagnation enthalpies

achievable for an expansion tube are 80 MJ/kg with a shock tube fill pressure (p1) of 1 kPa,

and 99 MJ/kg with a shock tube fill pressure of 10 kPa. These are increases of around 400 and

500%, respectively. For a perfect gas case, it is a function of the unsteadily expanded test gas

Mach number only, asymptoting to a factor of around 3 [196].
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Figure 4.2: The maximum stagnation enthalpy (Ht) achievable in air with changing shock tube
shock speed (Vs,1) for both a shock tube and an expansion tube. The expansion tube flow has
been unsteadily expanded to 100 Pa to simulate the maximum situation where almost all of
the pressure gained in the shock tube is converted to velocity in the acceleration tube.

The first detailed theoretical analysis of an expansion tube was presented by Trimpi in 1962

[199], who was the first to call the facility an expansion tube. Other theoretical work followed,

such as Trimpi and Callis [200], Trimpi [201], and Norfleet and Loper [202]. Around this time,

preliminary experimental expansion tube work was beginning, such as the work of Jones [203],
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Givens et al. [204], Norfleet et al. [205], and Spurk [206], all published in 1965. Over the

next twenty years, expansion tube research was pioneered at NASA Langley on two different

facilities. The first facility, which is discussed in Jones [203] and Jones and Moore [207], was a

pilot cold hydrogen driven facility converted from an existing shock tube. The second facility,

called the Langley 6-inch expansion tube [208], was a purpose built expansion tube facility

which could be run with either an arc heated driver [209], or a heated [210] or unheated [211]

helium driver. While previous work had focused on trying to understand the expansion tube

as a concept, the Langley 6-inch expansion tube was the first instance where one was used as a

facility, and many studies were performed using blunt models, including Miller and Moore [212],

and Shinn [213], where the pressure on the nose-cap of the space shuttle was analysed. Due to

“financial and manpower constraints and to diminished programmatic needs”, the facility was

decommissioned in 1983 [208]. A more comprehensive history and reference list of the work

performed on the Langley 6-inch expansion tube can be found in [208], where it is also stated

that “contrary to theory, only a single flow condition, in terms of Mach number and Reynolds

number, acceptable for model testing was found with the expansion tube for a given test gas”,

something which would have severely limited the usefulness of the facility. This facility was

later recommissioned as HYPULSE at GASL [214]. Similar issues had also been seen for other

facilities such as in Norfleet et al. [205], where it was stated that “the steadiness of the resulting

flow leaves much to be desired and the definition of accurate flow conditions remains in serious

doubt”.

In 1987, the first free piston driven expansion tube, later slightly modified and named

X1, was built by converting the University of Queensland’s existing TQ shock tube into an

expansion tube using a grant from NASA Langley [145]. The facility had a driver section bore

of 101.6 mm, and a driven section bore of 38.6 mm [143]. It was postulated that a free-piston

driver would allow more test conditions to be created than had been possible in the Langley

facility, and Paull et al. [143] found that additional operating conditions existed using an air

test gas. However, test times were found to be shorter than what was predicted by theory. In

1992, Paull and Stalker [215] investigated expansion tube test flow disturbances by modelling

disturbances which originated in the driver gas as first-order lateral acoustic waves. They found

that in some situations these waves were transmitted into the test gas where they were able to

prematurely end, or completely remove, the steady test time. These waves were transmitted

to the test gas in the shock tube, from the driver/test gas interface, and then the waves were

focussed to particular frequencies, which were so severe that they precluded useful steady flow,

by the unsteady expansion process in the acceleration tube. Paull and Stalker [215] also found

that this transmission could be attenuated by ensuring that there was a “sufficient increase” in

sound speed from the unsteadily expanded driver gas to the shocked test gas at the driver/test
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gas interface, preventing the disturbances from being able to pollute the test gas. The size of

the increase required depended on the frequency of the waves to be inhibited at the driver gas

sound speed. Paull and Stalker [215] established a criterion for ensuring clean flow which led

to a revival in the use of expansion tubes. This finding and others led to what is now thirty

years of sustained expansion tube research at UQ, which is discussed in detail in Gildfind et

al. [146]. Since 2000, there has been increased interest in expansion tubes, and new facilities of

different sizes and purposes have been commissioned by several groups, such as those discussed

by Sasoh et al. [216], Ben-Yakar and Hanson [140], Dufrene et al. [217, 218], Abul-Huda and

Gamba [219], Jiang et al. [220], and McGilvray et al. [221].

A representative schematic of a free piston driven expansion tube facility can be seen in

Figure 4.3. Similar to a traditional free piston driven shock tube, the facility has a larger bore

free piston driver section which produces the high pressure, high temperature (generally helium

or a mixture of helium and argon) driver gas which powers the facility, an area change at the

primary diaphragm location, and then a shock tube section with a smaller bore, where the test

gas is located. Up until the ‘secondary diaphragm’ the facility is a shock tube. The ‘secondary

diaphragm’ and the low pressure ‘acceleration tube’ are the extra components which make the

facility an expansion tube. During an experiment, after the test gas reaches the end of the

shock tube, it ruptures the secondary diaphragm, unsteadily expands to a much higher velocity

and much lower pressure in the acceleration tube, and then enters the test section where it

flows over the test model.
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Figure 4.3: Representation of a basic free piston driven expansion tube.
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4.3 The X2 Expansion Tube

The free piston driven X2 Expansion Tube at the University of Queensland is a 20 m long,

medium sized experimental facility with a driven section bore of 85 mm and a nozzle exit di-

ameter of 201.8 mm. Measured in terms of driver gas sound speed (a4), X2 has the highest

performance driver of any operational expansion tube facility, which makes it capable of pro-

ducing scaled test conditions for entry into most of the planets in our solar system. X2 is

generally used to perform studies of blunt-body planetary entry radiation or to investigate

new techniques for the improved simulation of planetary entry in ground testing facilities.

X2 has been used extensively to simulate and measure radiating test flows for many plane-

tary bodies in the solar system, including Earth, Mars, Titan, and Venus from 3 to 12 km/s

[222, 1, 81, 127, 86, 78, 87, 79, 80], and it has also been used to develop and refine a new

technique for the study of ablation phenomena in impulse facilities by using heated models

[90, 91, 3, 7, 139].

X2 was originally commissioned in 1995 by Doolan and Morgan [223, 224, 225] as a two-

stage free piston driven expansion tube, a representation of which can be seen in Figure 4.4.

While a shock tube driver gives the most performance with an area change1, the original X2

configuration had more of a ‘small step’ than a defined area change, with a 91 mm diameter

second stage of the compression tube and an 85 mm diameter driven section. While the two-

stage free piston driver was not the highest performing option, X2 was originally built as a

proof-of-concept facility for the much larger, 65 m long X3 expansion tube which was built in

2000 [226] with a driven section bore of 182.6 mm. The concept behind the outer sabot piston

was that cost could be saved by performing the first part of the compression stroke with a light,

cheap outer piston, and then performing the end of the compression stroke with a stronger but

smaller inner piston. Today, both X2 and X3 use single-stage free piston drivers.

In 2004, a major facility modification was designed by Professor Richard Morgan and un-

dertaken by Scott et al. [227, 228, 229] and X2’s original two-stage free piston driver was

scrapped in favour of a new single-stage free piston driver using a 35 kg piston. Scott designed

a new driver condition using the new single-stage driver, and as would have been expected,

an increase in performance was seen with it [228]. To increase the model size which could be

tested in the X2 facility, Scott also designed the current nozzle which is now used for most X2

experiments [229]. The nozzle is a full-capture, contoured, shock-free nozzle with a geometric

1This occurs because an unsteady expansion increases total temperature and total pressure in supersonic

flow, but decreases it in subsonic flow. Therefore, the loss in total pressure and total temperature which would
be incurred to unsteadily expand the stationary driver gas up to Mach 1 can be avoided by performing a steady
expansion to a choked throat condition instead of an unsteady one into the driven tube while the driver gas is
subsonic.
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Figure 4.4: Representation of the original X2 configuration with a two-stage free piston driver.

exit-to-inlet area ratio of 5.64 which was built for an inflow Mach number of 7.3, and an outflow

Mach number of 10. The bezier control points for the final nozzle design can be found in Table

5.4 of Scott’s PhD thesis, and the related engineering drawings can be found in Appendix E of

the same document [229]. (The CFD geometry which Gildfind used to simulate the nozzle can

be found in Figure 8.2 of Gildfind [230].)

In 2011, Gildfind et al. [231, 230] found that while Scott’s driver conditions had been

suitable for high enthalpy experiments where the test gas reached the end of the driven tubes

very quickly, the driver supply pressure (p4) of these conditions did not remain constant for long

enough for the simulation of the slower but much higher total pressure scramjet test conditions

which they were designing2. The driver pressure would drop too quickly, and the expansion

wave processing the driver gas would reflect off the piston face in the driver section, and move

down the tube and interfere with the test flow before it could reach the test model, effectively

cancelling out any useful test time. To solve this problem, Gildfind et al. [231, 230] designed a

new 10.5 kg piston, and a set of new ‘tuned’ driver conditions to be used with it.

An un-tuned free piston compression with a relatively heavy piston, like Scott’s [229], only

gives the piston enough kinetic energy to compress the driver gas until it just ruptures the

primary diaphragm (p4), after which the piston is effectively stopped, and for a very short

period of time a high pressure burst of driver gas is achieved, which decays very quickly as the

driver gas exits the driver tube. While a ‘tuned’ driver condition puts much more stress on the

2Using a high enthalpy condition with a 5,000 m/s shock tube shock speed (Vs,1) and a 10,000 m/s acceler-
ation tube shock speed (Vs,2) as an example (basically the Hayabusa entry condition from Fahy et al. [81]).
Theoretically, the acceleration tube shock would reach the end of the acceleration tube in 1.25 ms. For a much
slower scramjet condition with Vs,1 = 1,000 m/s and Vs,2 = 3,000 m/s, similar to a condition from Gildfind et
al. [232], the acceleration tube shock would take just over four times longer to reach the end of the acceleration
tube.
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piston itself and can be more challenging to design, requiring a correct combination of driver

length, driver diameter, driven diameter, piston mass, and reservoir pressure limits, tuned

operation can provide approximately constant driver pressures for a much longer duration of

time. This is because it over-drives the piston and keeps it moving after diaphragm rupture so

that the extra piston displacement after rupture compensates for the loss of driver gas exiting

the driver tube. (The reader is referred to Stalker [233, 234], Itoh et al. [235], and Tanno et al.

[236] for further discussion of tuned operation of free piston drivers.)

The tuned driver conditions designed by Gildfind et al. [231, 230] can be found in Table 4.1,

and a simulation of the expected driver pressure for the three tuned 80%He/20%Ar (by volume)

conditions using the one-dimensional facility simulation code L1d2 [237, 238] can be seen in

Figure 4.5, where the region of approximately steady pressure after diaphragm rupture can be

seen for each condition. As a comparison, a simulation of Scott’s original 35 kg piston, 100%He

driver condition [229] has been time shifted to align it with the rupture pressure of the tuned

new 1.2 mm diaphragm condition designed by Gildfind et al. [231, 230], showing the sharp

pressure drop after rupture for Scott’s condition, and the millisecond of roughly steady driver

supply pressure for Gildfind et al.’s.

Table 4.1: Current tuned X2 expansion tube lightweight piston driver conditions from Gildfind
et al. [231, 230]. Designed using an 80%He/20%Ar (by volume) driver gas. (Updated values
for X2-LWP-2.0 mm-0 can be found in Table 5.2.)

Driver case Steel Rupture Rupture Reservoir Driver
ID diaphragm pressure temp. fill fill

thickness (p4) (T4) pressure pressure
- mm MPa K MPa kPa
X2-LWP-1.2 mm-0 1.2 15.5 1,993 4.94 110.3
X2-LWP-2.0 mm-0 2.0 27.9 2,700 6.85 92.8
X2-LWP-2.5 mm-0 2.5 35.7 3,077 6.08 77.2

Figure 4.6 shows the dimensions of the current X2 expansion tube when it is configured in

various ways. Figure 4.6a shows the most commonly used X2 configuration, with the nozzle,

but without a secondary driver section. Figure 4.6b shows another configuration with the

nozzle, but also with a secondary driver section.3 It can be seen that when the secondary

driver section is used, the shock tube is moved downstream and the acceleration tube becomes

shorter. Figure 4.6c, shows another configuration with a secondary driver section but this time

without the nozzle. While an extra section is added to the end of the acceleration tube when

3The secondary driver is an extension of the primary driver which is used to increase driver performance
or to act as an acoustic buffer to prevent noise generated from primary diaphragm rupture entering the test
gas. The secondary driver is discussed further in Section 5.4.2, and the reader is directed to Morgan [196] and
Gildfind et al. [1] for more information.
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Figure 4.5: Driver pressure simulations from L1d2 [237, 238] for the three tuned driver condi-
tions shown in Table 4.1 and the original 35 kg piston, 100%He driver condition designed by
Scott [229], from Gildfind [231].

the nozzle is not used, the facility is still shorter overall without the nozzle. X2 could also be

used without a secondary driver or nozzle, but this is not shown in Figure 4.6.

For many reasons, it is not simple to take experimental measurements of an X2 flow con-

dition. Firstly, any physically intrusive measurement techniques performed along the facility

length will change the flow condition itself, changing any measurements taken further down-

stream. Secondly, the experiments generally involve shock speeds of the order of 6 to 12 km/s,

so any measurement device used must respond quickly enough to be able capture the arrival

and passing of a shock wave at that order of magnitude. Thirdly, the measurement devices

must be tough enough to survive not just the accelerator and test gases, but the hot, high

pressure driver gas that flows down the tube behind it, and any diaphragm fragments which

may be entrained in the flow.

Other physical instrumentation such as heat transfer gauges are sometimes mounted in the

test section, and cameras and spectrometers are often used to optically probe the test flow of

experiments, but general shot-to-shot instrumentation on the X2 expansion tube is performed

by a series of twelve wall-mounted pressure transducers along the facility length. Wall-mounted

pressure transducers are chosen because a passing shock provides a step increase in pressure,

and if that can be captured in multiple locations, it can be used to measure the shock speed in
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Figure 4.6: Schematics of the X2 expansion tube in various current configurations. (Roughly
to scale.)

each section of the facility. These shock speed measurements can then be compared to theory

or simulations to try and effectively ‘fill in the gaps’ of the flow condition with what cannot
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be directly measured experimentally. Impact pressure probes mounted in a Pitot rake in the

test section are used when new test conditions are being validated to measure the test flow

pressure, test flow uniformity, and experimental test time. This can all be seen in Figure 4.7,

where the pressure transducer configuration for each of the three facility configurations shown

in Figure 4.6 are shown. When the secondary driver section is not used (see Figure 4.7a), the

wall transducers ‘sd1’ to ‘sd3’ are used to measure the shock speed near the end of the shock

tube, and wall transducers ‘st1’ to ‘st3’ are either not used or are used to measure the shock

speed at the start of the acceleration tube. When the secondary driver section is used (see

Figures 4.7b and 4.7c) the wall transducers ‘sd1’ to ‘sd3’ are used to measure the shock speed

near the end of the secondary driver, and wall transducers ‘st1’ to ‘st3’ are used to measure the

shock speed in the shock tube. In all configurations, the six acceleration tube wall transducers

(‘at1’ to ‘at6’) are used to measure the shock speed in the acceleration tube, with an extra ‘at7’

transducer used when the faciity is used without the nozzle. The actual locations of the wall

pressure transducers from Gildfind et al. [239] can be found in Table 4.2.

Table 4.2: X2 wall transducer and diaphragm locations from Gildfind et al. [239]. Details of
the locations of two new wall pressure transducer mounts at the end of the acceleration tube
can be found in Section 4.5.1.

Description x-location (mm)
Primary diaphragm downstream face 0
Transducer sd1 2,577
Transducer sd2 2,810
Transducer sd3 3,043
Secondary diaphragm downstream face 3,418
Transducer st1 4,231
Transducer st2 4,746
Transducer st3 5,260
Tertiary diaphragm downstream face 5,976
Transducer at1 6,437
Transducer at2 6,615
Transducer at3 6,796
Transducer at4 7,590
Transducer at5 7,846
Transducer at6 8,096
Transducer at7 (if used) 8,652
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Figure 4.7: Current X2 wall pressure transducer locations. Both without (a) and with (b) a
secondary driver section. (Not to scale.)

4.4 Proposed Test Models for the Project

Various different test models have been used in the X2 expansion tube. These include funda-

mental shapes such as spheres [240], circular cylinders [78, 79, 80] and wedges [86, 87], scaled

blunt body aeroshell models of re-entry spacecraft such as Hayabusa and Stardust [82, 241, 242],
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scaled scramjet models [137], heated cylinders [90, 91, 3, 7], and a Mach disk model for creating

standing normal shocks [243, 88, 89]. This section will discuss the test models proposed for this

project. They are the latest version of the Eichmann cylinder [244], the X2 Pitot rake model

for validating new test conditions, a new ‘Pitot Rake Cylinder’ to be used for taking basic

spectroscopic measurements when the Pitot Rake is in use, and two new smaller, standalone

Pitot rake models which can be used under other test models for measuring test section Pitot

pressure.

4.4.1 The Eichmann Cylinder

The Eichmman cylinder is a 25 mm diameter, 75 mm long circular cylinder, giving an aspect

ratio of 3:1. This was the cylinder geometry used by Eichmann for studying Mars entry radi-

ation in X2 [78]. An earlier paper by Eichmann showed that the optimal aspect ratio, which

maximised cylinder diameter (and also shock standoff) in X2 while producing a very close ap-

proximation of the expected shock standoff on a two-dimensional infinite length cylinder was

4:1 [244]. However, when Eichmann did experiments with an imaging spectroscopy system, and

the 4:1 aspect ratio model, he found that the achievable spatial resolution was unsatisfactory

[78]. Because he did not want to reduce the available shock standoff, by changing to a model

with an aspect ratio of 3:1, he was able to achieve an acceptable spatial resolution. However,

the trade off was an expected reduction in shock standoff of less than 5% compared to the 4:1

case. A 3:1 aspect ratio model has been used here too.

A Computer-aided design (CAD) representation of the Eichmann cylinder and the full X2

model mounting system can be seen in Figure 4.8. The system is designed to place the test

model at the horizontal centre-line of the X2 facility. Adjustment can then be performed in

several places to move the test model forward and backwards, up and down, or to place it at an

angle of attack. The whole model mounting system is designed to be modular, with different

test model designs making use of different parts of the model mounting system. In Figure 4.8

the test model is shown with its alignment plates in place, which are attached to the model

using keys to ensure correct angular and horizontal alignment. A bolt is then used to secure

them in the correct vertical location. Each plate has a 0.5 mm diameter hole in front of the

test model at its vertical centre which a laser can be shone through for model angular and

horizontal alignment.

The engineering drawings of the latest version of the Eichmann cylinder can be found in

Appendix A. The drawing set also includes drawings of the full model mounting system which

were made by the author from measurements of the existing model mounting components.

This was done for posterity so that these drawings could be used by other experimenters in the
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Figure 4.8: CAD representation of the Eichmann cylinder and full X2 model mounting system
from Appendix A.

future to design models which work with the same mounting system. Since this has been done,

various other experimenters have designed experimental systems using these drawings and all

or some parts of the current model mounting system.
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4.4.2 The Pitot rake

A Pitot rake is a test model used in a wind tunnel or impulse facility for the testing of new

or established operating conditions. In a continuous flow facility, such as a wind tunnel, a

Pitot rake would be used to measure core flow size and flow uniformity from Pitot pressure

measurements. In an impulse facility, like X2, a Pitot rake is not only used to measure those two

parameters, but also to measure the steady test time of the test condition being tested. Because

most impulse facilities are generally made from circular tubes, the flow should be axisymmetric,

and the simplest Pitot rake design therefore only requires a single row of sensors to be placed

in the test section. X2’s design is similar to this, and a photo of it from McLean [245], during

experimental set up to measure pressures at the same axial location as the entrance to X2’s

nozzle, can be seen in Figure 4.9. More complex designs measure in two axes, or may have

probes placed off axis. .

Figure 4.9: X2’s Pitot rake during experimental set up to measure pressures at the same axial
location as the entrance to X2’s nozzle from McLean [245].

A representation of the X2 Pitot rake can be seen in the test section for all three facil-

ity configurations shown in Figure 4.7. X2’s Pitot rake can be instrumented with nine pres-

sure transducers mounted 17.5 mm apart vertically, covering a total centre-to-centre height of

140 mm. (Figure 4.7c only shows probes ‘pt1’ to ‘pt5’ to illustrate the smaller exit diameter of
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the facility without the nozzle.) Generally, the middle probe is oriented with both the horizon-

tal and vertical centre-lines of the facility, but it could be offset vertically if required. Different

forebodies can be used to shield the pressure transducers. Either Pitot pressure probes designed

by McGilvray et al. [246] or 15◦ cone pressure probes designed by Gildfind [230] are generally

used. (The latest drawings for both forebody designs can be found in Appendices G and H of

Gildfind [230], respectively.)

4.4.3 Pitot Rake Cylinders

It is proposed that this project will test many new operating conditions. For this reason, it was

decided that it would be useful to build a test model which would allow basic spectroscopic

measurements to be taken while also using the Pitot Rake, and for this reason, two Pitot

Rake Cylinders and a mount for them were designed and built. Two different cylinders were

made, an approximately half-size Eichmann cylinder (12 mm diameter, 36 mm long), and also

an approximately 2/3 scale truncated Eichmann cylinder (17 mm diameter, 51 mm length). The

truncated cylinder was designed to maximise the model radius, and with it, the shock standoff,

by truncating the geometry beyond the sonic line which occurs at around 45◦ along the body.

A mount was then made to allow the cylinders to be mounted in one of the standard mount-

ing holes of the X2 Pitot rake. An example high speed image showing the truncated cylinder

in use when new argon test conditions were being tested on X2 can be seen in Figure 4.10.

For this test condition, it can be seen that the truncated cylinder has a large wake flow, which

was interfering with measurements from the probes on either side of it. However, the top and

bottom 3 probes on the Pitot rake were undisturbed by it. The full set of engineering drawings

for the cylinders and their mount can be found in Appendix D.

4.4.4 Standalone Pitot Probe Mount Models

In many early spectroscopic studies in the X2 expansion tube, no test section Pitot pressure

measurements were taken. Test section pressures were measured in separate Pitot rake ex-

periments and either these measurements, or high speed imagery captured using the actual

experimental test model, were used to estimate when imagining spectroscopy systems should

be triggered. In Sheikh [247], the test model was mounted on a very large mount which con-

tained embedded vacuum ultraviolet optics. This mount provided space for the mounting of two

Pitot pressure probes so that test section Pitot pressure could be obtained for each experiment.

Because they are designed conservatively, most test models used in X2 fit inside a maxi-

mum 100 mm core flow diameter, while Pitot rake measurements have indicated that some test

conditions’ core flow covers at least the 140 mm centre-to-centre height of the Pitot rake. Using
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Figure 4.10: False colour sample high speed image from experiment x2s3119 testing argon test
condition x2-mhd-lwp-02.

Sheikh’s test section Pitot probe mounts [247] as an inspiration, two iterations of a standalone

Pitot probe mount model were designed to interface with the current model mounting system.

The goal of the mounts was to be compatible with the existing Pitot rake hardware, while also

being as compact as possible so that they could be mounted as close to the main test model as

possible. The first design was only able to mount a single probe, which was aligned with the

horizontal centre-line of the facility. The second iteration, named ‘the trident’ in the laboratory,

was able to use up to three separate probes, one aligned with the horizontal centre-line of the

facility, and one probe either side using the same 17.5 mm probe spacing as the Pitot rake. The

second iteration also provided more shielding behind the mount for the transducer cabling. A

photo taken by the author of the second iteration model in place under a 3D printed version

of the 1/5 scale Hayabusa test model from Fahy et al. [81] during experiments for Apirana et

al. [248] can be seen in Figure 4.11. Engineering drawings for both iterations of the model can

be found in Appendices B and C respectively.
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Figure 4.11: Photo of the second iteration of the standalone Pitot probe mount model mounted
underneath a 3D printed scaled Hayabusa test model.

These standalone probe mounts are now standard experimental hardware for most exper-

imenters on the X2 expansion tube. As was discussed above, they are generally used for

establishing the steady test time of the given test condition for setting the delays and exposure

times for various optical hardware. Because most X2 test conditions strongly radiate, photodi-

odes are often used for triggering a central trigger box which triggers facility instrumentation.

In some situations where test conditions are not as strongly radiating, the photodiodes become

very sensitive to their exact placement, which can cause issues with the repeatability of the

triggering or can cause hardware to trigger late after the experiment is over or not at all. In

these situations, these Pitot probe mounts have been very useful for triggering facility instru-
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mentation, and because they generally exhibit a sharp rise at test flow arrival, they provide a

good, repeatable basis for setting up delays and exposure times for optical hardware. In the

heated model experiments of Lewis et al. [7], a standalone Pitot probe mount was essential

because when it had been attempted to use a photodiode for triggering, the luminosity of the

heated model had been triggering the experimental hardware before test flow arrival. This

problem was easily remedied by instead triggering using the test section Pitot probe.

4.5 Physical Upgrades to the X2 Expansion Tube

During this project, because of the need to perform experiments with acceleration tube fill pres-

sures below 1 Pa and acceleration tube shock speeds around 20 km/s, several physical upgrades

were made to the facility to better accommodate this. These mainly concerned improving the

wall pressure transducer mounting to improve sealing on the facility, and to improve the wall

pressure measurements and the shock speeds which are inferred from them.

4.5.1 New Wall Pressure Transducer Mounts

In 2015, new wall pressure transducer mounts were designed for the X2 expansion tube by

Gildfind [249]. Instead of being bolted into the tube wall itself, to vibrationally isolate the

probes from the facility, they were mounted through an 18 mm diameter hole in the tube wall,

with o-rings mounted down the barrel of the probe and also on its face which was pressed

against a flat section machined on the outside of the tube. The probes were held in place by

a clamping piece bolted to the outside of the tube, with another o-ring used to vibrationally

isolate the probe mount from the clamp. A CAD representation of one of the mounts can be

seen in Figure 4.12.

Initially, three pilot mounts were made and used in sensor locations ‘at4’ to ‘at6’ near the

end of X2’s acceleration tube. The probe locations are shown in Figure 4.7. Near the end of

2015, when the author started planning for a final set of experiments, the author made some

modifications to the clamping piece (named ‘PCB tube holder’ in the engineering drawing set)

to strengthen it for use in higher pressure sections of the facility, and organised the manufacture

and installation of enough of these probes to replace every wall pressure transducer mount on

the facility. Today, every mount except the ‘sd’ labelled mounts (‘sd1’ to ‘sd3’) have been

replaced with these new mounts. Hardware has been built for these final locations, but due

to the facility downtime which would be required to remove this final large section of the

facility so that the new mounting holes could be machined, the job remains in the pipeline. A

full modified drawing set which includes the author’s changes to the assembly and PCB tube
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Figure 4.12: Section view of Gildfind’s new wall transducer mount from Gildfind [249] and
Appendix E.

holder drawings, as well as original drawings by Gildfind [249] for the other components, can

be found in Appendix E.

While Gildfind’s design was mainly concerned with vibrationally isolating the probe mounts,

the interest in getting the mounts installed for this project was more about sealing issues and

sensor reliability. The old probe mounts used on the X2 facility were very old, and the different

mounting holes were not always consistent with each other. Their design was also somewhat

opaque, and this meant that no one wanted to make changes to the installed probes and mounts,

which created a situation where sensor reliability and facility sealing were at cross-purposes. A

sensor may have needed replacing, but unless it was essential, no one would want to touch it for

fear of causing issues with sealing or vice versa. For this reason as well, the new probe mounts

are a large improvement. They are new and documented, with drawings which experimenters

can access, and the mounts and the probes themselves can be removed and examined quite

easily, which encourages experimenters to regularly examine the probes and replace them if

required.

Another project carried out by the author was the creation of wall pressure transducer

mounts in the place of four unused photodiode mounts just before the entrance to X2’s nozzle.

Sheikh [247] had four mounting holes drilled 20 mm apart in X2’s acceleration tube just before
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the nozzle entrance for mounting photodiodes for high speed shock detection. While this is

a very good idea which should be investigated again in the future, the rise seen by Sheikh

[247] using his mounts was not as defined as a pressure transducer, and the technique was not

adopted by others and fell into disuse.

Because these mounting holes already existed, it was a simpler task to create and install

probes for them, with the benefit that the same tightly spaced locations could be used just before

the nozzle entrance. The author designed a wall transducer mount which was a more compact

version of Gildfind’s design for the other sensor locations [249]. A CAD representation showing

one of the probes and a plug version for when sensors aren’t used, can be seen in Figure 4.13.

The related engineering drawings can be found in Appendix F.

Figure 4.13: Section view of the photodiode mount pressure transducer mounts from Ap-
pendix F.

After the probes were manufactured, it was decided to install two probes in the second and

fourth photodiode mounting holes away from sensor ‘at6’ as ‘at7’ and ‘at8’. Their distances

from the primary diaphragm (so that their locations are compatible with the values shown in

Table 4.2 in Gildfind et al. [239]) are 8.157 m for ‘at7’ and 8.197 m for ‘at8’. The distance

for ‘at7’ was found by the author and one of the laboratory technicians using vernier callipers

between the edge of its mounting hole and the edge of the ‘at6’ mounting hole as the original

manufacturing drawings for the photodiode mounting holes only specified that they should be
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placed as close as possible to the ‘at6’ mount, instead of an exact location. The location between

‘at7’ and ‘at8’ was taken to be 40 mm as the distances between the mounts were specified on

the original manufacturing drawing. An updated X2 PCB diagram showing sensors ‘at7’ and

‘at8’ can be seen in Figure 4.14.

These new probes just before the nozzle entrance have been quite successful for pressure

measurements, but taking tightly spaced pressure measurements and using them for shock

speed calculations hs some issues. Shock speeds are calculated between the sensor pairs using

the time-of-flight method, i.e. Vs = ∆x
∆t

, which is explained further in Appendix G. As the time

and distance uncertainties are generally fixed, as time-of-flight and distance get smaller, they

both increase the uncertainty. Therefore, trying to measure a fast moving shock between two

very tightly spaced mounts leads to very large uncertainties, compared to other sensor pairs on

the facility which are between 200 and 500 mm apart. In the future, the probes may be able

to be used with more complex curve fitting methods for calculating the shock speed down the

length of the acceleration tube, but for now, they are generally used for calculating the wall

pressure just before the nozzle entrance.

sd1, sd2, sd3 st1, st2, st3 at1, at2, at3

at4, at5, at6, at7, at8

pt1 – pt9
Primary

diaphragm
Secondary
diaphragm

Tertiary
diaphragm

Secondary
driver

Shock
tube

Acceleration
tube

Nozzle

Test section

Figure 4.14: X2 PCB diagram with secondary driver section and ‘at7’ and ‘at8’

4.5.2 Improved Shock Speed Measurements

As is discussed further in Section 6.4.1, when the first experiments were performed for this

project, the shock speed uncertainties were as high as ±1,000 m/s. During investigation of

the individual uncertainties which contribute to the overall shock speed uncertainties (see Ap-

pendix G), it was deduced that the sampling rate error caused by the 2.5 MHz maximum

sampling rate of the facilty’s data acquisition system (DAQ) was having a large effect on the

uncertainty. For this reason, a 60 MHz National Instruments PXI-5105 high speed oscilloscope

card was set up on the DAQ and all of the acceleration tube wall pressure traces except ‘at1’

(see Figure 4.7) were teed off into the high speed card.



Section 4.6 The Shot Class 69

However, when further experiments were performed for this project, it was found that

in certain circumstances, as a result of the very low post-shock pressures, the high speed

data acquisition did not lower the shock speed uncertainties because uncertainty in reliably

ascertaining the shock arrival time became the limiting factor. The noise on the signal was also

found to be too large for capturing the sub-microsecond response of the sensor to such a small

step change. This is all discussed further in the experimental analysis presented in Section 6.4.1.

In other situations, where the post-shock pressure in the acceleration tube is higher, such as

the free piston driven air example presented in Section 5.5.4 with an acceleration tube shock

speed of around 8,000 m/s, the 60 MHz card was much more successful at reducing shock speed

uncertainties in X2’s acceleration tube.

4.6 The Shot Class

When the author began this project they inherited a basic Python code called the ‘Shot class’

from Fabian Zander, a previous PhD student [250]. This code allowed experimental facility

data to be loaded into a Python program which could then be used to calculate experimental

shock speeds by selecting the shock arrival time at each wall pressure sensor location using a

basic GUI system. From there, the Shot class has morphed into a much larger project.

The initial goal of the Shot class, for the author, was to make it simpler for experimenters to

perform a rough analysis of their experimental facility data, as this was not a capability which

fully existed in the laboratory when this project began. In terms of functionality, the goal was

that within a couple of minutes of performing an experiment, an experimenter could know their

experimental shock speeds, check wall and test section pressure data, and check the triggering

times of optical components, so that this could be used to inform their next experiment on the

facility. This was the original functionality provided by the author’s first version of the code.

From there, the Shot class has morphed into a larger project for experiment analysis which

is now somewhat of a ‘one-stop shop’ for analysing facility data. It is still used for performing

the initial post-experiment analysis, but it can now also be used to do more in-depth analysis,

such as the estimation of experimental diaphragm hold times, experimental test time from

test section pressure measurements, and the calculation of experimental wall pressures with

uncertainties included. It also calculates shock speed uncertainties using a procedure which is

discussed in Appendix G, and in the latest version, is able to automatically calculate shock

arrival times using several different methods.

A series of supporting tools were also written which can import the analysed Shot class

objects and use them to make it simpler to compare different experiments, and also to collate

and present data. These include tools for plotting experimental wall and test section pressures,
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and shock speed data. These tools can also be configured to produce ‘journal quality’ outputs

using LATEX based typesetting for simplifying the presentation of experimental facility data.

All of the pressure and shock speed figures presented in the following chapters were made using

these tools. Equivalent tools which allow experimental shock speed and pressure data with

uncertainties to be exported in a format which can be pasted straight into LATEX as a table

with or without automatic rounding to set significant figures were also made, and similarly,

were used to produce most of the experimental tables presented in the following chapters.

The last major tool created during this project was made to infer the test section conditions

from experimental shock speed and pressure data. It uses experimental shock speeds and

their uncertainties from the Shot class analysis to perform sensitivity analyses to infer facility

uncertainties using PITOT, the facility simulation code discussed in Chapter 5. The exact

procedure is discussed further in Section 5.5, and was used in that section and the experimental

sections of the following chapters.

These supporting tools were all built to be user friendly, generic, and to run quickly. The goal

of the Shot class project, in general, is to make the analysis and presentation of X2 facility data

a simple task for experimenters, in the hope that this will result in better quality facility data

being analysed and presented. All experimental analysis presented in the following chapters of

this thesis were performed using the Shot class and various supporting tools. The Shot class

does not have a user guide yet, but it is open source, well documented, and its progress is

stored in an internal repository. Many examples are included in the repository, which mainly

show users how to re-create the figures and tables presented by the author in this thesis and

the related journal papers.
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Simulating the X2 Expansion Tube

De qui et de quoi en effet puis-je dire : « Je connais cela ! » Ce cœur en moi, je puis l’éprouver

et je juge qu’il existe. Ce monde, je puis le toucher et je juge encore qu’il existe. Là s’arrête

toute ma science, le reste est construction. Car si j’essaie de saisir ce moi dont je m’assure,

si j’essaie de le définir et de le résumer, il n’est plus qu’une eau qui coule entre mes doigts. Je

puis dessiner un à un tous les visages qu’il sait prendre, tous ceux aussi qu’on lui a donnés,

cette éducation, cette origine, cette ardeur ou ces silences, cette grandeur ou cette bassesse.

Mais on n’additionne pas des visages. Ce cœur même qui est le mien me restera à jamais

indéfinissable. Entre la certitude que j’ai de mon existence et le contenu que j’essaie de donner

à cette assurance, le fossé ne sera jamais comblé.

– Albert Camus, Le Mythe de Sisyphe, 1942 [251]

5.1 Chapter Overview

This chapter provides a description of how the X2 expansion tube can be simulated for quick

condition design and characterisation using well known relations from isentropic and compress-

ible flow theory. It is discussed in the context of explaining how the Centre for Hypersonics’

equilibrium expansion tube and shock tunnel simulation code, PITOT, written by the author,

works, but provides principles that could be applied to simulating an expansion tube without

PITOT as well. Formulas are discussed where it is deemed necessary, however, the aim of this

chapter is not to bog the reader down in the maths, but to give them an overview of how an

expansion tube can be simulated quickly, and both the advantages and disadvantages of doing

that. For a description of how an expansion tube works with all of the formulae included,

the reader is directed to ‘Chapter 3: Expansion Tube Theory and Operation’ in the thesis of

Gildfind [230]. The chapter begins by providing some context as to why quick expansion tube

simulation is required, before giving a brief explanation of how to run a PITOT simulation and

71
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then stepping the reader through how an expansion tube experiment is simulated from start to

finish. The chapters ends with a couple of examples to illustrate how well this type of analysis

is able to simulate the X2 expansion tube.

This chapter is made up of the final submitted version of the journal paper James et al.

[25] with some of the introduction removed and instead discussed in Chapter 4.

5.2 Introduction

If expansion tubes are to be useful for the study of planetary entry and other situations, it

is important to be able to characterise the test flows which they create, and this is not a

simple task. Expansion tube test flows are fundamentally transient, and depending on the

size of the facility and the individual test condition, useful test times will be of the order

of tens to thousands of microseconds. This useful test time precedes the arrival of the hot,

high pressure driver gas which is entrained with heavy particles from the diaphragms which

were separating the different gas sections before the experiment was performed. It presents

an extremely harsh flow environment, meaning that while expansion tubes require sensitive

instrumentation which responds quickly to the transient flow, the instrumentation must also

survive the harsh environment which follows it, limiting the types which can be used. Basic

expansion tube instrumentation consists of pressure sensors mounted on the walls of the facility

to measure shock speeds and wall static pressures, and test section mounted impact pressure

probes to measure Pitot pressure. These diagnostics are used as input and validation data for

analytical or numerical simulations which are used to infer extra information about the flow

condition which cannot be measured directly. Shock speeds are often used to verify simulations

of expansion tube flow conditions because they can be measured non-intrusively in the facility.

If shock speeds match between experiment and simulation, it generally indicates that overall

wave processes are being simulated with reasonable accuracy.

Different types of phenomena occur during an expansion tube experiment, such as di-

aphragm rupture, unsteady wave processes, viscous effects, and high temperature gas effects.

This makes full numerical characterisation a costly computational process, and traditional

techniques, such as the model presented in Neely and Morgan [252], used a semi-empirical ap-

proach, where measured shock speeds and wall and Pitot pressure measurements were used to

calculate ‘mean’ or representative flow conditions. Current state-of-the-art requires compress-

ible, high temperature, transient, two-dimensional axisymmetric computational fluid dynamics

(CFD) calculations. These simulations generally cost tens or hundreds of thousands of hours

of CPU time and are not suitable for the iterative design of new test conditions. Instead,

two-dimensional CFD is used for accurate characterisation of established operating conditions.
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UQ’s one-dimensional CFD code, L1d3 [237, 238], can simulate phenomena such as free

piston driver compression, equilibrium chemistry, various diaphragm rupture phenomena, and

longitudinal wave processes. Depending on the fidelity of the simulation, L1d3 can perform

a full facility simulation in the order of hours, making it more suitable for condition design.

However, generally expansion tube acceleration tubes are affected by low density shock tube

(or ‘Mirels’) effects [106, 107, 108], which cause over-expansion of the shocked test gas due

to boundary layer growth in the acceleration tube. Due to its one-dimensional nature, L1d3

has no mechanism to simulate this phenomenon, making it unsuitable for the simulation of

complete expansion tube test flows. Instead, L1d3 is generally used to provide the in-flow to

higher fidelity simulations of the acceleration tube or to somewhat qualitatively verify overall

wave processes.

By identifying important flow processes which occur during an expansion tube experiment

and then modelling them from state to state using predominately analytical techniques, lower

fidelity estimates can be made with orders of magnitude less computational expense. Coupling

this with an understanding of where ideal processes may start to break down and what can be

done to accommodate this analytically, reasonable predictions can still be made. This allows

experimenters to perform preliminary design of new expansion tube test conditions in close to

real-time. If a reasonable starting point can be found theoretically, the condition can then be

further tuned, if necessary, after initial experiments have been carried out and any discrepancies

between theory and experiment have been identified.

In this paper, a new code, PITOT, is described. PITOT was written in the Python pro-

gramming language and makes use of the Python libraries written by Jacobs et al. [253] for

use with the ESTCj program. An early version of the code was first presented by James et

al. [10] in 2013. PITOT is UQ’s in-house expansion tube and shock tunnel simulation code

based on isentropic and compressible flow state-to-state gas processes. The code takes its name

from a perfect gas expansion tube simulation code written by one of the authors in the early

90s. PITOT uses NASA’s Chemical Equilibrium with Applications (CEA) equilibrium gas code

[197, 198] to account for high-temperature gas effects, which are often important in the facility’s

acceleration tube, where shock speeds normally range from 6 to above 20 km/s. PITOT also

incorporates a perfect gas solver. It is capable of performing an equilibrium expansion tube

simulation on a single processor in several minutes and a perfect gas simulation in seconds.

PITOT was written to be a virtual impulse facility, and simulations are therefore configured

like an experimenter would configure a real experiment. It uses facility fill condition as inputs

and then the code runs through the flow processes in a state-to-state manner, analogous to

how the different sections of the facility would operate in the real experiment. The code was

written this way to create a simple and intuitive tool for trying to understand a facility and
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how different parameters affect flow conditions. PITOT can also be easily scripted to perform

parametric studies and sensitivity analyses, and tools are provided with the code to do this.

PITOT is open source and forms part of the Compressible Flow Computational Fluid Dynamics

(CFCFD) code collection at UQ’s Centre for Hypersonics [254]. Instructions for obtaining the

code can be found in Appendix H.

While this paper is based around the X2 expansion tube at UQ, the discussion is generally

applicable to any such facility. The following section, Section 5.3, provides a brief introduction

to the X2 facility and explains what occurs during an X2 experiment. Section 5.4 provides a

summary of how each section of the facility is simulated in PITOT. The final section, Section 5.5,

discusses how this analysis can then be calibrated to allow it to be used to quantify experimental

data, similar to a traditional semi-empirical expansion tube model such as the one presented

by Neely and Morgan [252].

5.3 The X2 Expansion Tube

The free piston driven X2 Expansion Tube at UQ is a 23 m long, medium sized facility with a

driven tube bore of 85 mm and a nozzle exit diameter of 201.8 mm. Measured in terms of driver

gas sound speed (a4), X2 has the highest performance driver of any operational expansion tube

facility, and is capable of producing scaled test conditions for entry into most of the planets

in our solar system. X2 is generally used to perform studies of blunt-body planetary entry

radiation and it has been used extensively to generate and measure radiating test flows for

many planetary bodies, including Earth, Mars, Titan, Venus, and Uranus from 3 to 20 km/s

[222, 1, 81, 127, 86, 78, 87, 79, 80, 20]. X2 has also been used to develop and refine a new

technique for the study of ablation phenomena in impulse facilities by using heated models

[90, 91, 3, 7]. Fig. 5.1 shows the current dimensions of the X2 expansion tube when it is used

in the most common configuration, with the nozzle, but without a secondary driver section. It

also shows the notation employed for the different gas states, and the names and locations of

the tube wall pressure sensors. A more detailed overview of X2 can be found in Gildfind et al.

[146].

In its simplest configuration, an expansion tube has two driven sections: a shock tube, and

a lower pressure downstream ‘acceleration tube’ which is used to accelerate the shocked test

flow through an unsteady expansion (see Fig. 5.1). An expansion tube can also be configured

with an extra driven section called a ‘secondary driver’, which is added between the primary

diaphragm and the shock tube. This section is filled with a light gas (generally helium) and is

used to increase the performance of the driver condition, allowing the facility to drive a more

powerful shock through the test gas than it could have done otherwise [1].
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Figure 5.1: Schematic and position-time (‘x-t’) diagram of the X2 expansion tube. (Not to
scale.) The exact locations of sensors at6, at7, and at8 are slightly obscured due to their tight
spacing just before the nozzle entrance.
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Before an experiment, all sections of the facility are evacuated and then filled with the re-

quired gases, at the required pressures. The experiment begins when the piston is released. The

reservoir pressure (usually of the order of several MPa) causes the piston to rapidly accelerate,

compressing the primary driver gas in front of it from its initial fill pressure to the primary

diaphragm rupture pressure. At this rupture point, due to the compression of the driver gas,

its pressure and temperature are both very high (tens of MPa, thousands of K). This hot, high

pressure driver gas (state 4) is used to drive a shock wave through the driven sections of the

facility, processing the test gas to the required condition before it flows into the test section.

Figure 5.1 includes a facility schematic and position-time (‘x-t’) diagram of the facility,

showing the longitudinal wave processes which occur during an experiment. After primary

diaphragm rupture, if the free piston driver is tuned [233, 234, 235, 236], the high speed piston

maintains approximately constant gas properties in the driver (T4 ≈ constant, p4 ≈ constant)

by matching mass loss from driver gas venting into the driven tube with further piston dis-

placement. Due to the area change at the primary diaphragm, the driver rupture condition

(state 4) undergoes a steady expansion to the throat Mach number (Mthroat) of 1 before it un-

steadily expands into the shock tube (becoming state 3), driving a shock wave (Vs,1) through

the shock tube gas (state 1) and processing it to state 2. When this shock wave reaches the

secondary diaphragm separating the shock and acceleration tubes, the diaphragm ruptures and

the shocked test gas (state 2) starts to unsteadily expand into the acceleration tube (becoming

state 7). The state 7 gas drives a shock wave (Vs,2) through the accelerator gas (state 5) and

processes it to state 6. Generally, X2 is operated with a contoured nozzle at the end of the

acceleration tube which steadily expands the state 7 gas to the nozzle exit condition (state 8).

The test time begins when the state 8 gas arrives at the test model, and it generally ends either

with the arrival of the downstream edge of the test gas unsteady expansion or the leading u+a

wave reflected off the driver/test gas contact surface [215].

5.4 Simulating an Expansion Tube with PITOT

This section details how PITOT simulates the complete operation of an expansion tube using

state-to-state processes. Readers interested in a fully analytical solution procedure for expan-

sion tube flow processes are directed to Appendix A of Gildfind et al. [1] where the equations

are explained in detail.

The facility configuration for an example high enthalpy expansion tube condition from the

work of Fahy et al. [81] is shown in Table 5.1. The condition is a binary scaled air condition

designed to match the 13:52:20UTC trajectory point of the Hayabusa entry at 1/5 scale. This
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flow condition is used in this section to illustrate how the selection of certain parameters in the

code can affect the test flow estimates which it provides.

Table 5.1: Details of the 1/5 scale Hayabusa 13:52:20UTC trajectory point condition designed
by Fahy et al. [81].

Driver condition X2-LWP-2.0 mm-100He-0
Primary driver fill condition 92.8 kPa He
Primary diaphragm 1 x 2 mm cold rolled thick steel, scored diaphragm
Orifice plate diameter 65 mm
Shock tube fill condition 13.5 kPa lab air
Secondary diaphragm 1 x ≈ 14 µm thick aluminium foil diaphragm
Acceleration tube fill condition 17.0 Pa lab air

5.4.1 Driver Simulation

Before an experiment is run, the primary driver section is filled to the required fill condition,

consisting of a set driver pressure and gas composition, which is assumed to be at nominally

atmospheric temperature. Next, the reservoir is filled to the required pressure with compressed

air. The current X2 free piston piston driver conditions were designed by Gildfind et al. using a

10.5 kg piston and an 80%He/20%Ar (by volume) driver gas [231, 230]. Details of the conditions

can be found in that work.

When the piston is released, it compresses the driver gas to the rupture condition of the

primary diaphragm (state 4). This can be simulated in PITOT in two different ways. The

first method assumes an isentropic compression of the driver gas from its initial fill condition

to its rupture condition. If either the volumetric compression ratio of the driver condition (λ)

or the primary diaphragm rupture pressure (p4) are known, then the temperature at primary

diaphragm rupture (T4), and with it, the gas state (state 4) can be found:

(

T4

Tfill

)

=

(

p4

pfill

)1−
1

γ

=
(1

λ

)γ−1

(5.1)

This method does not take into account heat and total pressure losses in the compression

process, and as such, tuned empirical estimates of the driver rupture condition can be used

instead, which are hard coded into PITOT as reference driver conditions. As an example of

this, ‘effective’ driver gas properties from Gildfind et al. [2] in 2015 were calculated for X2-

LWP-2mm-0 from experimental shock speeds through a helium test gas and are summarised in

Table 5.2.
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Table 5.2: State 4 values for X2-LWP-2mm-0 from Gildfind et al. in 2015 [2].

Driver case Driver gas Orifice plate Rupture Rupture
ID composition diameter pressure temp.

(p4) (T4)
- (by volume) mm MPa K
X2-LWP-2.0 mm-0 80%He/20%Ar None 23.9 2,747
X2-LWP-2.0 mm-100He-0 100%He 65 27.4 2,903

It is assumed that the driver rupture condition is approximately stagnated (M4 ≈ 0), and

after the diaphragm has ruptured (see Fig. 5.2a), due to the tube area change, state 4 undergoes

a steady expansion to a choked throat condition (Mthroat = 1) at state 4′′, before undergoing

an unsteady expansion into the driven sections downstream.
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Figure 5.2: Driver after rupture representation. (Not to scale.)

Orifice plates are often used in X2 to introduce an additional contraction at the tunnel area

change to allow existing driver conditions to be used with larger percentages of helium in the
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driver gas than they were originally designed for. By sizing the orifice plate to maintain the

choked volumetric flow rate out of the driver (i.e. preserving the u · A, or in this case, a · A∗,

product) the piston dynamics can be preserved, while allowing the use of a higher sound speed

driver gas. Generally, a choked throat is the most efficient driver configuration to use as the

steady part of the expansion, which conserves total enthalpy and total pressure, is performed

subsonically and the unsteady part of it, which reduces total enthalpy and total pressure in

subsonic flow, but increases them in supersonic flow, is performed supersonically [196]. However,

even though a higher sound speed driver gas used with an orifice plate undergoes a supersonic

expansion into the driven tube, and therefore some of the available driver total pressure is lost,

it will normally still drive a stronger shock than a choked throat condition with a lower sound

speed. A further discussion of this, and a procedure for sizing the orifice plates, can be found

in Gildfind et al. [2].

In PITOT, the orifice plate is simulated by performing a second steady expansion from the

throat condition (Mthroat = 1) to a supersonic Mach number at state 4′′ (M4′′ > 1), similar to

how a de Laval nozzle would be modelled. (This is shown in Fig. 5.2b.) M4′′ is found iteratively

using the well-known Mach-area relation and the area ratio between the orifice plate (A∗) and

the driven tube (Adriven):

(

Adriven

A∗

)2

=
1

M2
4′′

[

2
γD + 1

(

1 +
γD − 1

2
M2

4′′

)

]

γD+1

γD−1

(5.2)

Starting from 2015, some X2 experiments have been performed without the free piston

driver, instead using a small reservoir of room temperature helium as a ‘cold’ driver [87]. This

can be simulated by manually setting state 4 (p4 and T4) to the cold driver rupture conditions.

The authors used the methodology described in Gildfind et al. [2] to produce effective driver

values for the cold driver, which are shown in Table 5.3. It should be noted that the sub-

atmospheric rupture temperature (T4) values are not intended to be physical.

Table 5.3: Driver rupture conditions for two ‘cold driver’ conditions designed by Gu [87]. The
rupture values (p4 and T4) were found by the authors.

Driver case Driver gas Aluminium Rupture Rupture
ID composition diaphragm pressure temp.

thickness (p4) (T4)
- (by volume) mm MPa K
Cold driver 1.8 MPa 100%He 0.5 1.8 169
Cold driver 2.2 MPa 100%He 0.6 2.2 169
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While it is not relevant for X2, PITOT is also able to simulate a basic shock tube driver

(i.e. no area change) by setting the throat Mach number to 0.

5.4.2 Secondary Driver Simulation

The unsteadily expanding driver gas (starting at state 4′′ and unsteadily expanding to state sd3)

drives a shock wave through the (typically) helium secondary driver gas (state sd1) processing

it to state sd2. The speed of this shock (Vs,sd) is dependent on both the fill condition in the

secondary driver (state sd1) and the driver throat condition (state 4′′), because it is the shock

speed at which velocity and pressure are matched across the state sd3 / sd2 interface. This is

shown in Fig. 5.3, where a partial facility schematic and position-time (‘x-t’) diagram centred

around the secondary driver section can be seen.
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Figure 5.3: Secondary driver representation. (Not to scale.)

Generally, the secondary driver fill condition (state sd1) is set and PITOT uses an iterative

secant solver to find the point at which Vsd3 = Vsd2 and psd3 = psd2, and with it, the correct

shock speed (Vs,sd). This is done by guessing a Vs,sd value, finding the condition behind the

shock wave (state sd2), and then expanding from the driver condition (state 4′′) to the pressure

behind the shock wave (i.e. making psd3 = psd2). If the correct shock speed has been guessed,

Vsd3 and Vsd2 will be equal, and the secant solver set to find the zero of the function Vsd3 -

Vsd2 will be satisfied, if not, a new guess for Vs,sd will be made, and the process is repeated

until it converges.
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A comprehensive study of expansion tube operation with a secondary driver can be found

in Gildfind et al. [1].

5.4.3 Shock Tube Simulation

Either the unsteadily expanding driver gas (state 4′′ unsteadily expanding to state 3) or the

unsteadily expanding shock processed secondary driver gas (state sd2 unsteadily expanding to

state 3) drive a shock wave through the test gas in the shock tube, processing it from state 1

to state 2. The speed of this shock (Vs,1) is dependent on both the fill condition in the shock

tube (state 1) and the condition of the driving gas (either state 4′′ or state sd2). This is shown

in Fig. 5.4, where two partial facility schematics (one with and one without a secondary driver

section) and a position-time (‘x-t’) diagram centred around the shock tube can be seen. Vs,1 is

found in the same manner as Vs,sd was found in Section 5.3, except here the solution requires

that V3 = V2 and p3 = p2.

contact
surface

shock

Primary diaphragm
(has burst)

Secondary
diaphragm

state 3
(V3, p3, T3)

state 2
(V2, p2, T2)

state 1
(p1, T1)

state 5
(p5, T5)

Vs,1

state 4,
(M ≈ 0,
p4, T4)

state 4′′,
(M = 1, p4′′ , T4′′)

x

t
Vs,1

1

2
3

p3 = p2

V3 = V2

unsteady
expansion

state sd2
(Vsd2, psd2, Tsd2)

state 3
(V3, p3, T3)

state 2
(V2, p2, T2)

state 1
(p1, T1)

state 5
(p5, T5)

Vs,1

contact
surface

shockSecondary diaphragm
(has burst)

Tertiary
diaphragm

Figure 5.4: Shock tube representation. (Not to scale.)

As was discussed in the introduction, it should be noted that Paull and Stalker [215] found

that if the sound speed of the shocked test gas (a2) was not sufficiently larger than the sound
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speed of the expanded driver gas (a3), that flow disturbances originating in the driver were

able to be transmitted into the test gas in the shock tube, potentially shortening or completely

removing the steady test time. They did not provide a single recommendation for the increase

required, instead stating that it grew with the frequency of the waves to be inhibited and

decreased with increasing a3. However, inspection of Figure 6 in their paper shows that an

increase of at most 120% would be required to stop noise being transmitted in most situations.

Users should keep this criterion in mind when designing test conditions. PITOT provides a

summary of all gas states at the end of the calculation which can be used to check these values.

When very low density shock tube fill pressures are used, after the post-shock conditions

have been found, a flag in the code can be used to artificially set the velocity of the shocked

test gas (V2) to the shock speed in the shock tube (Vs,1). This is done to help PITOT account

for low density shock tube (or ‘Mirels’) effects [106, 107, 108] which are discussed further in

Section 5.4.5.

5.4.4 Secondary / Tertiary Diaphragm Modelling

Thin diaphragm modelling is an ever present problem for the simulation of expansion tubes.

While a fully ideal expansion tube model assumes that the diaphragm effectively doesn’t exist,

in certain cases the diaphragm’s inertia and its opening or ‘hold’ time have a non-trivial effect

on the overall flow condition, and it cannot be ignored. Issues with diaphragm rupture and

hold times are known contributors to situations where expansion tube flow conditions can differ

from simple shock tube theory [255, 256, 257], and for this reason it is important to be able to

simulate them.

The inertial diaphragm model [255, 258] shown in Fig. 5.5 treats the diaphragm as an

obstacle that the shocked test gas (state 2) must accelerate, and it models the time dependent

behaviour of the gas during this process. The inertial diaphragm model assumes that the

diaphragm shears along its periphery as soon as the flow hits it and then it stays together as

an obstacle in the flow-field. The model also assumes that the front of the gas slug which hits

the diaphragm is fully stagnated by it, and that this twice shocked test gas (state 2r) then

unsteadily expands from this state. The diaphragm then starts to accelerate into the tube in

front of it, driving a shock in front of itself and acting as a ‘piston’ between the shocked gas in

front of it (state 6) and the gas behind it which is unsteadily expanding after being processed

by the reflected shock (state 7). As the diaphragm accelerates, the reflected shock behind the

diaphragm gradually loses strength until it decays to a Mach wave (M2r = 1) and the effect of

the diaphragm on the flow reaches a final steady state.
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Figure 5.5: Partial shock and acceleration tube representation showing how an inertial di-
aphragm model simulates secondary or tertiary diaphragm rupture. (Not to scale.) Adapted
from a theory and figure presented in Morgan and Stalker [255].

A study by Kendall et al. [256] in the X1 expansion tube compared experimental shock

speed data around the secondary diaphragm to both Morgan and Stalker’s [255] original inertial

diaphragm model and a more sophisticated numerical inertial diaphragm model developed by

Petrie-Repar [259]. Kendall et al. [256] found that Petrie-Repar’s [259] model simulated the

diaphragm rupture better than Morgan and Stalker’s [255], but that good agreement between

Petrie-Repar’s [259] model and the experiment only lasted for 30 µs. After this point, the two

reflected shock trajectories started to diverge, and the experimental transmitted shock was

faster than what was predicted by the inertial diaphragm model. Kendall et al. [256] stated

that this meant that the inertial diaphragm model “in its current form, is not complete”. It was

suggested that the effect of the diaphragm on the test flow was lessened due to the diaphragm

eventually vaporising. Petrie-Repar [259] investigated this numerically by simulating an initially

curved diaphragm which then broke into a 7 or 14 pieces upon shock arrival at the diaphragm.

Petrie-Repar’s [259] 14 piece model gave “good” agreement with downstream experimentally

measured pressure traces using what was called a “heavy diaphragm” (127 µm thick), but shock

arrival at that point occurred 65 µs earlier than the experiment because the model did not
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include viscous effects or a diaphragm hold time.

Wegener et al. [260] used holographic interferometry in X1 to optically investigate light

diaphragm rupture. This was done by placing a light cellophane diaphragm at the end of

the final driven section, turning X1 into a facility with a long shock tube, and then using the

test section as an effective acceleration tube. It was found that upon rupture the initially

curved diaphragm flattened, and after propagating a quarter of a tube diameter downstream, it

began to fragment in the centre, gradually losing fragments as it travelled further downstream.

Wegener et al. [260] found that the trajectory of the diaphragm and the gas interface were

well approximated by the inertial diaphragm model for a short period of time after diaphragm

rupture but that it gradually lost accuracy after the diaphragm had travelled half a tube

diameter downstream from the rupture location. After this point, like Kendall et al. [256]

had also observed, the interface began to accelerate more than the inertial diaphragm model

predicted. Wegener et al. [260] stated that this was caused by the diaphragm losing mass as it

fragmented. More recently, in 2007, Furakawa et al. [261] used the JX-1 expansion tube [216],

which has a 50 mm driven section bore, to study thin secondary diaphragm rupture using both

framing shadowgraph imaging of the diaphragm rupture process using a high speed camera and

wall pressure measurements. The use of a section of acrylic tube which functioned as a set of

aspherical lenses allowed the experiments to be performed in-situ in the facility. Three materials

were tested: 23 µm thick cellophane, and 3 and 25 µm thick Mylar. Like what was found by

Wegener et al. [260], the diaphragms could be seen travelling downstream after rupture and

evidence of radiation from stagnated gas behind the diaphragm was seen for all but the 3 µm

thick Mylar. They concluded that the transmitted shock wave motion was influenced primarily

by the diaphragm mass, and that only the 3 µm thick Mylar diaphragm was shown to have

almost negligible effect on the test flow.

Currently an inertial diaphragm model is not implemented in PITOT but some kind of

inertial diaphragm model is planned as an upgrade to the code in the future to help model

conditions which cannot be simulated well otherwise.

Another way to simulate thin diaphragm rupture is to use a hold time model, where it is

assumed that when the shocked test gas (state 2) hits the diaphragm, the diaphragm remains

closed for a set period of time, causing some of the gas to be processed by a reflected shock,

before it opens fully and its effect is removed from the flow. While it was not called a ‘hold

time’ model, this is the type of diaphragm model discussed by Haggard [262] in 1973, who

stated that the effect of the mass of the secondary diaphragm could be modelled by a reflected

shock at the diaphragm location. The hold time model has been used in several computational

studies investigating the flow in an expansion tube [263, 258, 264] and comparing experimental

results and the hold time model, Wilson [263] stated that “Even with the very simple model
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for the opening time used in this work, the qualitative features of the disturbance compare well

with the experiments”.

This type of diaphragm model (and the related hold time) can be easily implemented in

the in-house one-dimensional facility simulation CFD code L1d3 [237, 238] with a simple flag

in the input script. An example where different secondary diaphragm hold times (‘dt_hold’

in the code) have been used is shown in Fig. 5.6, using simulations of the scaled Hayabusa

entry condition detailed in Table 5.1. The shock speeds in the shock and acceleration tubes are

compared for hold times between 0 and 1,000 µs to see the effect on the test flow. The nominal

equilibrium solution from PITOT without a hold time model is also shown.
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Figure 5.6: L1d3 [237, 238] one-dimensional CFD results showing how different diaphragm hold
times (‘dt_hold’) affect the shock speed of the test condition.

Firstly, looking at Fig. 5.6 it can be seen that without a hold time, PITOT simulates the

expected shock speeds very well, both in the shock and acceleration tubes. It can also be seen

that when the diaphragm hold time is below 1 µs, no change in acceleration tube shock speed

(Vs,2) and no slow down of the shock speed at the secondary diaphragm is seen. With a hold

time of 10 µs a sustained increase in Vs,2 is seen, as well as a small but noticeable slow down

of the shock speed just before the secondary diaphragm. This increase in performance likely

comes from the weak reflected shock off the diaphragm which was not able to fully stagnate

the test gas and remove all of its kinetic energy. For the final two simulated hold times (100

and 1,000 µs) a fully reflected shock is seen at the secondary diaphragm, with the shock speed

dropping to 0 m/s. With a hold time of 100 µs a temporary increase in Vs,2 is seen after

diaphragm rupture, which decays to the nominal value by the time it reaches the end of the
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tube. With a hold time of 1,000 µs, directly after diaphragm rupture Vs,2 is slower than the

condition with no hold time, and it only continues slowing down.

For the simulation of conditions where it is believed that the diaphragm has a non-negligible

effect on the flow, PITOT uses a time-independent hold time model where the effect of a

diaphragm stopping the flow is modelled by a reflected shock. Like a normal hold time model,

it cannot simulate the inertia of the diaphragm and it is only useful for simulating conditions

where the diaphragm produces a measurable reflected shock in the test gas, but otherwise has a

low inertial effect. What is shown in Fig. 5.8 below is similar to the condition with a hold time

of 10 µs in Fig. 5.6 where a sustained increase in acceleration tube shock speed (Vs,2) is seen due

to the shock reflection at the diaphragm. An experimental example discussed in Section 5.5.4

uses this diaphragm model to explain experimental results seen in the acceleration tube which

would not otherwise be predicted.

This time-independent hold time model predicts and models the hold time as a reflected

shock of specified strength. Using the shock tube as an example, state 2 is first found using

the standard procedure outlined in Section 5.4.3 before it is processed by a reflected shock of

specified Mach number (Mr,st). The user can either choose to use the maximum Mach number,

which will fully stagnate the state 2 gas, or a shock of user specified Mach number which will

leave the gas with some residual velocity. This new reflected condition (labelled state 2r in the

code), is then the gas which unsteadily expands downstream into the acceleration tube. This

is shown in Fig. 5.7.

Fig. 5.8a shows the effect that Mr,st has on the shocked test gas (state 2), using the nominal

equilibrium solution for the Hayabusa condition detailed in Table 5.1, and the 100% helium

driver condition values shown in Table 5.2. All of the values in the figure have been normalised

by the value of each variable when the reflected shock Mach number (Mr,st) is equal to 1 (i.e.

a reflected shock with no strength).

It can be seen in Fig. 5.8a that the flow variables most affected by the reflected shock

are the pressure (p2r) and density (ρ2r), with maximum increases of around 1200% and 600%

respectively, and the velocity (V2r) and Mach number (M2r), that both go to 0. The other flow

variables show little variation. The stagnation enthalpy (Ht,2r) shows an increase of 18% for a

fully reflected shock, and the temperature (T2r) shows an increase of 61%.

The questions which arise from the discussion of this diaphragm model are: 1. what reflected

shock Mach number should be chosen, and 2. how sensitive the resulting flow condition is to

that choice. This is investigated in Fig. 5.8b by using the results from Fig. 5.8a as inputs

to examine results further downstream. Test section conditions were found by expanding the

shocked test gas (state 2r) results from Fig. 5.8a to the acceleration tube shock speed (Vs,2)
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Figure 5.7: Shock tube representation with a reflected shock at the secondary or tertiary
diaphragm. (Not to scale.)

and then steadily expanding them using the nozzle’s geometric area ratio of 5.64 [229]. Each

variable has been normalised by the value when Mr,st = 1.

Examining Fig. 5.8b, the effect that the reflected shock Mach number has on various flow

variables in the test section can be seen. The test section Mach number (M8), density (ρ8), and

velocity (V8) are only affected slightly by the increasing reflected shock Mach number (Mr,st)

with maximum changes of -8%, -9%, and 5% respectively. The test section stagnation enthalpy

(Ht) is affected more with a maximum change of 14%, but the main changes are seen in the test

section pressure (p8) and temperature (T8) with increases of 31% and 38% seen respectively.

To help predict if there is a hold time, PITOT is able to use facility length information and

experimentally measured shock speeds to create ideal experimental x-t diagrams of facility test

conditions. These ideal situations can then be compared to experimentally measured shock

arrival times in the acceleration tube to roughly estimate experimental secondary diaphragm
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Figure 5.8: Effect of reflected shock Mach number (Mr,st) on flow variables in the shock tube
and test section for the nominal equilibrium solution for the Hayabusa condition detailed in
Table 5.1. Values have been normalised by the value of each variable when Mr,st = 1

hold times. For the two experimental examples presented in Section 5.5.4, both used the

same aluminium secondary diaphragm, but they showed different behaviour in relation to the

diaphragm. The first example, discussed in Section 5.5.4, was a low enthalpy test condition and

was estimated to have an experimental hold time of around 150 µs. It required a fully reflected

shock to re-create the experimentally measured acceleration tube shock speeds. Whereas the

second example, discussed in Section 5.5.4, was a much faster test condition which was found to

have an experimental hold time of around 30 µs. A reflected shock at the secondary diaphragm

was not required for that condition.

5.4.5 Acceleration Tube Simulation

Initially, the acceleration tube conditions are found using the same process as the secondary

driver and shock tube conditions discussed in Sections 5.4.2 and 5.4.3. The unsteadily ex-

panding test gas (starting at state 2 and unsteadily expanding to state 7) drives a shock wave

through the acceleration tube gas (state 5, generally lab air) processing it to state 6. The speed
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of the shock (Vs,2) is dependent on both the fill condition in the acceleration tube (state 5) and

the condition of the shocked test gas (state 2), such that V7 = V6, and p7 = p6. This is shown

in Fig. 5.9. Vs,2 is found in the same manner as Vs,sd was found in Section 5.3, except here the

solution requires that V7 = V6 and p7 = p6.
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Figure 5.9: Acceleration tube representation without over-expansion. (Not to scale.)

However, due to the low density of the acceleration tube gas, generally low density shock

tube boundary layer (or ‘Mirels’) effects [106, 107, 108] must be accounted for. Mirels proposed

that these effects become significant below a 1 torr (133 Pa) fill pressure, and X2’s acceleration

tube fill pressure (p5) is generally between 0.5 and 100 Pa. Mirels effects cause a further

expansion of the test gas than would be expected from basic shock tube theory because as

mass in the post-shock state (state 6) is lost to the boundary layer, the post-shock pressure

(p6) drops, causing further expansion of the test gas (state 7) to re-equalise the pressure across

the interface between the two gases. In the limiting case, the test gas expands to the shock

speed (Vs,2 in this case), and the interface between states 6 and 7 becomes stationary relative

to the shock. This limiting case is shown in Fig. 5.10. It can be seen that Fig. 5.10 is very

similar to the ideal case shown in Fig. 5.9, but that in Fig. 5.10 the contact surface is travelling

at the same velocity as the shock wave. It should be noted that in both the ideal case (Fig. 5.9)

and the limiting Mirels case (Fig. 5.10), pressure and velocity are both matched across the

interface between state 7 and state 6, but each figure represents a different interface in terms

of matched pressure and velocity, due to the over-expansion. In the limiting Mirels case shown

in Fig. 5.10, the matched velocity would be faster than the ideal velocity shown in Fig. 5.9 and

equal to the shock speed. Correspondingly, the matched pressure in Fig. 5.10 would be lower

than the ideal matched pressure shown in Fig. 5.9.
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Figure 5.10: Acceleration tube representation with over-expansion. (Not to scale.)

PITOT currently does not directly apply the analytical methodology derived by Mirels

[106, 107, 108] to account for this, but can instead practically account for the effect. It is

common practice when estimating test gas conditions to assume Mirels’ limiting case, and to

expand the test gas to Vs,2 instead of V6. The real solution should theoretically lie between

these two limits, and can be tuned against experimental results. PITOT offers the choice

between these two theoretical limits (V7 = V6 and V7 = Vs,2) and when Vs,2 is chosen, the

ideal case is still solved using V7 = V6 to find Vs,2, and then afterwards, the state 2 gas is

unsteadily expanded to Vs,2 instead of V6.

It should be noted that these two limits can have a large effect on the related flow properties.

Using the Hayabusa condition detailed in Table 5.1 the nominal theoretical solution predicts

a shock tube shock speed (Vs,1) of 4,597 m/s, and an acceleration tube shock speed (Vs,2) of

10,011 m/s. Table 5.4 shows a comparison of the various flow properties at both the nozzle

entrance (state 7) and exit (state 8, using the nozzle geometric area ratio of 5.64) when the

shocked test gas (state 2) is expanded to V6 or Vs,2. The reference case was chosen to be the

ideal condition (‘State 2 expanded to V6’).

It can be seen in Table 5.4 that there are large differences in variables between the two limits,

and that in general, roughly the same level of percentage difference between the two conditions

is carried from the nozzle inlet to the nozzle exit. Two very important quantities for performing

scaled expansion tube experiments are the stagnation enthalpy (Ht), a measure of the static and

kinetic enthalpy of the test gas, and the density at the nozzle exit (ρ8). In Table 5.4 a +11.4%

difference in stagnation enthalpy (Ht) can be seen between the two limits, and a -47.4% change

in nozzle exit density (ρ8). These are not trivial changes, and for the theoretical model’s results
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Table 5.4: Comparison between expansion of the shocked test gas (state 2 which expands to
state 7) to the gas velocity behind the shock (V6) or the acceleration tube shock speed (Vs,2)
for the nominal equilibrium solution for the Hayabusa condition detailed in Table 5.1. (While
it is noted that the column selected as the reference for the percentage change calculations is
arbitrary, it has been chosen to use ‘State 2 expanded to V6’ as the reference.)

State 2 State 2 Percentage
expanded to expanded to change
V6 (9,384 m/s) Vs,2 (10,010 m/s) (%)

State 7 (nozzle entry condition)
Static pressure (p7, Pa) 18,426 8,721 −52.7
Static temperature (T7, K) 2,901 2,659 −8.34
Density (ρ7, kg/m3) 2.13 × 10−2 1.12 × 10−2 −47.6
Velocity (V7, m/s) 9,384 10,010 6.67
Mach number (M7) 9.39 10.5 11.9
Stagnation enthalpy (Ht, MJ/kg) 47.9 53.4 11.4
State 8 (nozzle exit condition, using an area ratio of 5.64)
Static pressure (p8, Pa) 2,370 1,069 −54.9
Static temperature (T8, K) 2,213 1,904 −13.9
Density (ρ8, kg/m3) 3.72 × 10−3 1.95 × 10−3 −47.4
Velocity (V8, m/s) 9,547 10,149 6.31
Mach number (M8) 10.9 12.2 12.4
Stagnation enthalpy (Ht, MJ/kg) 47.9 53.4 11.4

to be most useful, it is important to calibrate PITOT against experimental measurements to

ascertain how much the gas has expanded in the acceleration tube.

Sometimes chemical freezing is an issue in acceleration tubes due to how fast the gas expands

and cools in the tube versus the time scales which may be required for the gas to chemically

recombine [258]. For this reason, if necessary, PITOT also has the ability to freeze the chemistry

of the shocked test gas (state 2) as it unsteadily expands to state 7 in the acceleration tube.

5.4.6 Nozzle Simulation

Generally, a contoured nozzle is used at the end of X2’s acceleration tube to increase the

model sizes which can be tested in the facility, increase the flow Mach number, and increase

the available test time. When a nozzle is used, it is simulated in PITOT by performing a

steady expansion through a known area ratio to process the test gas from its state at the

nozzle entrance (state 7, shown in Fig. 5.11a) to its state at the nozzle exit (state 8, shown in

Fig. 5.11b). Generally, the geometric exit-to-inlet area ratio of 5.64 of X2’s contoured Mach 10
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nozzle1 [229] is used for PITOT calculations, but it does not always represent the true state

of expansion of the core flow. Unlike a reflected shock tunnel where the test gas is stagnated

before being expanded through a de Laval nozzle, an expansion tube nozzle is fully supersonic,

and the gas flowing through the nozzle has an associated boundary layer which has developed

through the acceleration tube, and which continues to grow through the nozzle. This is shown

in Fig. 5.12. This boundary layer growth is something which is very hard to accurately measure

in an operational expansion tube facility.

Dinlet Dexit

contact
surface

shock

state 7
(V7, p7, T7)

state 6
(V6, p6, T6)

state 5
(p5, T5)

Vs,2

(a) Nozzle entrance representation

contact
surface

shock

state 7
(V7, p7, T7)

state 8
(V8, p8, T8)

(b) Nozzle exit representation

Figure 5.11: X2 nozzle representation, with the shock wave entering and exiting the nozzle.
(Not to scale.)

As shown in Fig. 5.12, this changing boundary layer can be modelled with an ‘effective’

area ratio which accounts for the effect of the boundary layer profile on the steady expansion.

Generally, a comparison between wall pressure traces before the nozzle entrance and impact

pressure probe traces at the nozzle exit are used to establish the effective area ratio of the

nozzle for a given operating condition. To aid this analysis, and to help understand the effect

that changes in effective area ratio can have on the resultant flow in the test section, PITOT

has an ‘area ratio check’ mode which lets the user specify a list of area ratios which are then

analysed at the end of the analysis for a set nozzle inlet (state 7) condition.

In Fig. 5.13, a sample result using the Hayabusa condition from Table 5.1 for the nominal

equilibrium condition can be seen. The test gas has been unsteadily expanded to the shock

speed in the acceleration tube (Vs,2 = 10,011 m/s, see Section 5.4.5) and then steadily expanded

1The nozzle was designed by Scott [229] for an inlet Mach number of 7.2 and an exit Mach number of 10,
but usage by the authors and their colleagues have shown it to work well for a wide range of different entry
conditions.
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Figure 5.12: Nozzle exit representation showing an example of the boundary layer. (Not to
scale.)

using area ratios from 2.0 to 9.0, in increments of 0.1, covering a range on either side of the

nozzle’s geometric area ratio of 5.64 [229]. The results have then been normalised by the results

for the nozzle geometric area ratio of 5.64.
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Figure 5.13: Effect of changing nozzle area ratio on flow variables at the nozzle exit (state 8)
for the nominal solution for the Hayabusa condition detailed in Table 5.1.

Examining Fig. 5.13, and considering what occurs when the area ratio increases above

the geometric area ratio, there are only small changes in nozzle exit velocity (V8, a 0.4%

maximum increase), nozzle exit Mach number (M8, a 4% maximum increase), and nozzle exit

temperature (T8, a 10% maximum decrease) over the full range shown. However, the other two

state variables, the nozzle exit density (ρ8) and pressure (p8) show much larger changes, with

the variables decreasing by 38% and 44% respectively.

Now examining Fig. 5.13, and considering what occurs when the area ratio drops below the
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geometric area ratio, there are only small changes in nozzle exit velocity (V8, a maximum 1%

decrease), nozzle exit Mach number (M8, a maximum 8% decrease), and nozzle exit temperature

(T8, a 19% increase) over the full range shown. However, once again the other two state

variables, the nozzle exit density (ρ8) and pressure (p8) show much larger changes, with increases

of 284% and 345%.

Overall, Fig. 5.13 shows that the nozzle exit velocity (V8), Mach number (M8), and tem-

perature (T8) are not sensitive to changes in the nozzle area ratio. However, the nozzle exit

density (ρ8) and pressure (p8) are very sensitive to it for area ratios below the geometric one.

In addition to its effect in the acceleration tube (see Section 5.4.5), in some situations

chemical freezing can also occur in expansion tube nozzles due to how fast the gas expands

and cools in relation to the time scales required for chemical recombination. For this reason, if

necessary, PITOT has the ability to freeze the chemistry of the steady expansion from state 7

to state 8.

5.4.7 Simulation of Various Basic Test Models

Many different types of test models are used in the X2 expansion tube, and PITOT has a series

of modes which allow it to estimate the flow properties over these models. For the simulation of

the stagnation streamline of blunt body models (see Fig. 5.14) or Pitot pressure probes in the

test section, PITOT has the functionality to allow it to calculate conditions behind a normal

shock in the test section for both frozen and equilibrium flow.

state 8
(V8, p8, T8)

stagnation
streamline

state 10f
(V10f , p10f , T10f )

state 10e
(V10e, p10e, T10e)

Figure 5.14: Representation of flow over a blunt body test model. (Not to scale.)

To protect the pressure transducers used in the test section from the high pressure driver

gas and debris which follows the test gas down the tube, 15◦ half-angle conical pressure probes

are often used instead of blunt Pitot pressure probes in UQ’s expansion tubes, and PITOT has
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the functionality to solve the Taylor-Maccoll conical flow equations [265, 266] to find the conical

shock angle (β) and surface gas state for a specified cone half-angle (θ) in the test section.

Both symmetric and asymmetric wedge models are common test models in UQ’s expansion

tubes, and PITOT has the functionality to find the shock angle (β) and the post-shock gas

state for a wedge model of specified wedge angle (θ) in the test section.

While Fig. 5.14 includes the contoured nozzle generally used at the end of the X2 expansion

tube, PITOT can also simulate the same test models without a nozzle (state 8 in Fig. 5.14

would become state 7).

5.5 Quantifying Experimental Data using PITOT

For the purpose of analysing experimental data, PITOT has several experimental test modes

which make use of experimentally measured shock speeds to perform parts of the analysis,

effectively ‘calibrating’ the analysis by removing potential errors in the theoretical modelling of

different sections of the facility. PITOT can be run in a fully experimental mode where all shock

speeds are taken directly from experimental data, or a partially experimental mode where either

the shock tube or acceleration tube shock speeds (Vs,1 and Vs,2) are taken from experimental

data, and the remaining calculations are performed theoretically. How these modes function is

discussed in this section.

5.5.1 Experimental Calibration of the Shock Tube

In Section 5.4.3, the shock tube shock speed (Vs,1) was computed based on the shock tube fill

condition (state 1) and the driver condition which is unsteadily expanding into the shock tube

(either state 4′′ or state sd2, both of which will unsteadily expand to state 3), by finding the

point where p3 = p2 and V3 = V2. While state 1 is experimentally well defined, the condition of

the unsteadily expanding driver gas depends on the estimated driver rupture condition (state

4). While the state 4 estimate may be sufficient to perform reasonably accurate parametric

studies of the facility, it may not be accurate enough for the rebuilding of an experiment.

By shocking the state 1 gas with an experimentally measured Vs,1 value instead of a value

computed from state 4, driver modelling errors are largely removed from the flow calculation.

Experimental uncertainty associated with the shock speed measurement and the shock tube

fill condition are introduced to the calculation, but are usually much smaller and can be easily

taken into account.
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5.5.2 Experimental Calibration of the Acceleration Tube

In Section 5.4.5, the acceleration tube shock speed (Vs,2) was computed based on the acceler-

ation tube fill condition (state 5) and the condition of the shocked test gas which is unsteadily

expanding into the acceleration tube (state 2 which will unsteadily expand to state 7), by find-

ing the point where p6 = p7 and V6 = V7. In most situations, after Vs,2 has been found, the

shocked test gas (state 2) is then ‘over-expanded’ to Vs,2 to find state 7, simulating the limiting

case of the Mirels effect for a low density shock tube [106, 107, 108]. Practically, there are some

issues with this.

Firstly, by its nature the acceleration tube is a low density shock tube, and for some condi-

tions with low acceleration fill pressures (p5), Vs,2 can be very sensitive to small changes in p5,

and even small errors in state 5 can have a significant effect on the unsteadily expanded test gas

(state 7). If Vs,2 or the unsteadily expanded test gas pressure (p7) are known experimentally,

state 2 can be expanded to either of these values, removing p5 from the calculation. Additional

experimental uncertainty is added to the calculation, but by simulating the bounds of these

inputs, the correct solution can be bounded, in a way which is independent of state 5. If the

gas has in fact reached the limiting Mirels case where the unsteadily expanded test gas (state

7) has expanded to the shock speed, measurements of Vs,2 and p7 can be used to verify this. If

the pressure is greater than the limiting Mirels case, this can be used to ascertain the degree

of expansion which has occurred.

Secondly, there is the issue of modelling the weak secondary or tertiary diaphragm separating

the shock and acceleration tubes (see Section 5.4.4). While PITOT is able to simulate a reflected

shock wave of user-specified strength at the end of the shock tube as a type of diaphragm hold

time model, it is a limited model, and the effect of the diaphragm is generally assumed to be

small. This may not be true, and must be kept in mind when assessing simulation results.

5.5.3 Experimental Calibration of the Nozzle

As was discussed in Section 5.4.6, due to the fact that an expansion tube flow is never stagnated,

significant boundary layers can build up in the acceleration tube and nozzle. The boundary

layer profile through the nozzle is a large source of experimental uncertainty, and it can cause

the nozzle to behave as if it has a different area ratio than its geometric value (see Figs. 5.11

and 5.13). As was shown in Fig. 5.13, different nozzle area ratios can have a large effect on the

nozzle exit density and pressure (ρ8 and p8).

During the testing of new flow conditions in X2, a pitot rake model is installed at the nozzle

exit, where nine impact pressure probes (either Pitot or 15◦ half-angle conical probes) are
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spaced 17.5 mm apart radially relative to the nozzle exit plane, covering a total centre-to-centre

height of 140 mm. The middle probe (‘pt5’) is generally oriented with the centre-line of the

nozzle. These pitot rake tests are used to measure the size of the core flow of test conditions,

estimate steady test time, and to provide additional diagnostics to ascertain the gas state in

the test section (state 8).

While it would be very useful to have measurements of the other state variables, by their

nature, high enthalpy shock tunnel facilities are powered by driver gas which follows the test gas

down the tube and whose high pressure and temperature can damage sensitive instrumentation.

This makes it difficult to measure state variables other than pressure, and often other state

variables must be inferred from changes in the flow pressure. If the condition of the unsteadily

expanded test gas entering the nozzle (state 7) is known with a reasonable amount of accuracy

from experimental measurements of Vs,2 and the unsteadily expanded test gas pressure (p7),

and if the impact pressure at the nozzle exit has been experimentally measured, PITOT’s ‘area

ratio check’ mode can be used to find the ‘effective’ nozzle area ratio which is consistent with

both of these results. Once this effective area ratio is known, the related nozzle exit state

(state 8) can then be found. Once again, this is affected by any uncertainties in the measured

quantities, but the bounds of the real solution can be found.

5.5.4 Examples

Now that experimental calibration has been discussed, two different examples will be presented.

The first example is a ‘cold driver’ air example from the work of Gu [87], using two ex-

periments performed by the authors and Gu. The example was chosen since its low velocity

nature should remove some of the high temperature effects normally present in an expansion

tube facility, making it a condition which should be well suited to simulation using PITOT.

The second example is a regular X2 free piston driven air test condition that was originally

designed by Zander et al. [90] and has since been used by Lewis et al. [91, 3, 7]. It was

chosen because it is a condition which has been used for several years now, and because new

pitot rake data was available for the condition from August 2016, which incorporated some

upgraded diagnostics. Upgrades included replacing the static pressure mounts along the length

of X2’s acceleration tube with new vibrationally isolated ones. An extra two sensors (‘at7’ and

‘at8’) were also added to the end of the acceleration tube to give two pressure measurements

just before the entrance to the nozzle. The majority of the ‘at’ labelled pressure sensors (all

except ‘at1’) are now recorded both in the main data acquisition system at 2.5 MHz, and in a

separate system at 60 MHz, lowering the sampling rate error on the shock speed calculations

by an order of magnitude. The effect of the upgrades can be seen when comparing Table 5.6
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in Section 5.5.4, with experimental data taken before the upgrades, to Tables 5.9 and 5.10

in Section 5.5.4, whose experimental data was taken after the upgrades. Pressures and shock

speeds down the whole length of X2’s acceleration tube are shown in Tables 5.9 and 5.10,

whereas only values from the end of the acceleration tube are shown in Table 5.6.

The experimental shock speed naming convention for the two examples (i.e. ‘sd1-sd3’)

is a reference to the two specific wall pressure sensor locations used to find that particular

shock speed value, and where experimental shock speeds are shown in figures in this subsection

(i.e. Figs. 5.15, 5.16, and 5.20), the values are shown at the midpoint between the two sensor

locations. Where experimental pressure measurements are shown in Tables 5.6 and 5.10, the

names either correspond to wall pressure sensor locations or the locations of pressure sensors

in the X2 pitot rake. (Approximate X2 wall pressure sensor locations are shown in Fig. 5.1 and

exact values can be found in Gildfind et al. [232].)

The experimental shock speed uncertainties shown in Tables 5.6 and 5.9 were found using

the standard shock speed uncertainty calculation procedure described in Appendix G. The

experimental pressure measurements shown in Tables 5.6 and 5.10 were found by filtering the

data with a 6th order lowpass filter with a cutoff frequency of 100 kHz, taking the mean of the

steady pressure time for the relevant signal, and then removing the mean of the noise taken

just before shock arrival. The uncertainties on the pressure measurements were found using a

95% confidence interval on the standard deviation of the experimental data. This implies that

95% of the distribution of the experimental data sits within the uncertainty of the mean value.

Mean uncertainties shown in the tables were calculated using the root sum squared method.

Where experimentally measured pressure signals are shown in figures (i.e. Figs. 5.17, 5.18, 5.19,

5.21, and 5.22) they have been filtered using a 6th order lowpass filter with a cut off frequency

of 100 kHz, with the unfiltered data shown behind it using a lower opacity.

Example 1: Cold Driver Condition

The fill details of the ‘cold driver’ air example are shown in Table 5.5. The experimentally

measured shock speeds, and wall transducer and pitot rake 15◦ half-angle cone pressure mea-

surements for two experiments, x2s2902 and x2s2903, are shown in Table 5.6.

In Fig. 5.15 the experimental shock tube shock speed (Vs,1) values shown in Table 5.6

for the two experiments are compared to the theoretical equilibrium shock speed value from

PITOT when effective ‘cold driver’ values from Table 5.3 are used. It can be seen that the

two experiments, x2s2902 and x2s2903, are statistically consistent with each other, with the

first two shock speed measurements for each experiment having overlapping uncertainties, and

the final measurement being almost the same. However, the theoretical result from PITOT
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Table 5.5: Facility configuration details for the ‘cold driver’ air test condition used by the
authors and Gu [267].

Driver condition Cold helium driver
Primary driver fill condition 1.8 MPa He
Primary diaphragm 1 x 0.5 mm thick 5000 series aluminium sheet
Shock tube fill condition 900 Pa lab air
Secondary diaphragm 1 x ≈ 14 µm thick aluminium foil diaphragm
Acceleration tube fill condition 40.0 Pa lab air

Table 5.6: Experimentally measured quantities from the two experiments performed by the
authors and Gu [267]. Analysis was performed by the authors.

x2s2902 x2s2903
Shock tube shock speeds (Vs,1)
sd1-sd3 (m/s) 2,050 ± 10 (0.7%) 2,040 ± 10 (0.6%)
sd1-sd2 (m/s) 2,070 ± 30 (1.3%) 2,050 ± 30 (1.3%)
sd2-sd3 (m/s) 2,040 ± 30 (1.3%) 2,040 ± 30 (1.3%)
Mean value (m/s) 2,050 ± 10 (0.7%) 2,040 ± 10 (0.6%)
Acceleration tube shock speeds (Vs,2)
at4-at6 (m/s) 3,660 ± 20 (0.7%) 3,690 ± 20 (0.7%)
at4-at5 (m/s) 3,700 ± 50 (1.3%) 3,720 ± 50 (1.3%)
at5-at6 (m/s) 3,610 ± 50 (1.3%) 3,650 ± 50 (1.3%)
Mean value (m/s) 3,660 ± 20 (0.7%) 3,690 ± 30 (0.7%)
Acceleration tube wall pressure traces (p7)
at4 (kPa) 3.5 ± 0.2 (5.2%) 3.3 ± 0.3 (8.1%)
at5 (kPa) 3.4 ± 0.3 (8.8%) 3.2 ± 0.3 (10%)
at6 (kPa) 3.1 ± 0.3 (9.7%) 3.1 ± 0.4 (13%)
Mean value (kPa) 3.3 ± 0.2 (4.6%) 3.2 ± 0.2 (6.0%)
Test section 15◦ half-angle cone pressure traces (p10c)
pt1 (kPa) 1.1 ± 0.3 (27%) 1.3 ± 0.5 (36%)
pt2 (kPa) 1.6 ± 0.5 (30%) 1.6 ± 0.4 (27%)
pt3 (kPa) 1.5 ± 1.6 (105%) 1.5 ± 1.9 (132%)
pt7 (kPa) 1.7 ± 0.4 (24%) 1.8 ± 0.5 (27%)
pt8 (kPa) 1.4 ± 0.3 (20%) 1.4 ± 0.3 (19%)
pt9 (kPa) 1.2 ± 1.1 (94%) 1.3 ± 0.9 (68%)
Mean value (kPa) 1.4 ± 0.4 (24%) 1.5 ± 0.4 (26%)

underestimates the experimental shock speeds by around 5%. As was discussed in Section 5.5.1,

this error can be removed by not using the driver model in the calculation and instead specifying

an experimentally measured Vs,1 value. For the theoretical acceleration tube calculations shown

in Figs. 5.16 and 5.17, an average Vs,1 value of 2,050 m/s has been used instead of the driver

model.
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Figure 5.15: Experimentally measured shock tube shock speeds (Vs,1) from Table 5.6 compared
to the theoretical equilibrium result from PITOT.

In Fig. 5.16 the experimental acceleration tube shock speed (Vs,2) values shown in Table 5.6

are compared to various theoretical equilibrium shock speed estimates from PITOT when the

experimental shock tube fill condition (state 1) has been shocked by a specified average Vs,1

value of 2,050 m/s. On the legend in Fig. 5.16 it can be seen that for some of the simulations,

the velocity of the shocked test gas (V2) has been set to the shock tube shock speed (Vs,1), and

a reflected shock has been used at the end of the shock tube (Mr,st > 1). These settings have

been used to simulate the use of a low density shock tube and a secondary diaphragm which

produces a measurable reflected shock in the already shocked test gas (state 2), but otherwise

has a low inertial effect. These modes are discussed in Sections 5.4.3 and 5.4.4.

In Fig. 5.16, for the simulation where the shocked test gas velocity (V2) has not been changed

and the reflected shock has not been used (Mr,st = 1), Vs,2 is underestimated by around 10%.

This shows that it is not possible to simulate this condition closely with PITOT without using

some kind of non-ideal model for either the low density shock tube or the secondary diaphragm

(or both). By using the non-ideal shock tube model and making V2 = Vs,1 the discrepancy can

be reduced to around 4%. By using only a full reflected shock at the end of the shock tube

(Mr,st = maximum = 2.9), the discrepancy can be reduced to around 7%. This shows that the

discrepancy can only be reduced further by making V2 = Vs,1 and using a reflected shock at

the end of the shock tube (Mr,st > 1). The final three lines on the figure show the theoretical

shock speeds with both non-ideal models and differing reflected shock Mach numbers (Mr,st). It

can be seen that each reflected shock Mach number value (Mr,st = 2.0, 2.4, and the maximum

of 2.9) falls inside the range of some of the experimental measurements, but it is not obvious
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Figure 5.16: Experimentally measured acceleration tube shock speeds (Vs,2) from Table 5.6
compared to various semi-experimental equilibrium PITOT simulations.

which value is the most correct. To resolve this, the pressure of the unsteadily expanded test

gas (state 7) can be analysed. This is shown in Fig. 5.17.

Figure 5.17 shows the tube wall static pressure traces at the end of the acceleration tube for

the two experiments compared to the expected theoretical unsteadily expanded test gas (state

7) pressures for the various simulations shown in Fig. 5.16. Fig. 5.17 shows theoretical data

where the test gas has both been expanded to the acceleration tube shock speed (V7 = Vs,2)

and the theoretical ideal gas velocity in the acceleration tube (V7 = V6). Firstly, in general it

can be seen that the theoretical p7 values where V7 = V6 are all too large when compared to

the experimental data. Therefore, the remaining discussion about Fig. 5.17 will focus on the

theoretical data where V7 = Vs,2.

Comparing the experimental and theoretical data shown in Fig. 5.17, it is difficult to ascer-

tain exactly where to compare the experimental data to the theoretical equivalent. To estimate

which part of each pressure trace is the accelerator gas and which is the test gas, a theoretical

calculation of the accelerator gas slug length was performed from Mirels [106] using the mea-

sured Vs,2 value. Equations 2 and 20 from Mirels [106] were used to find the slug length. It

was assumed that the boundary layer was laminar and that the β value required for Equation

2 could be found from Equation 17 in the same paper. From this, the passage time of the

accelerator gas slug was found to be around 40 µs for each signal shown here, and this is shown

in Fig. 5.17 for signal ‘at4’ as the ‘accelerator gas slug’. At the end of that gas slug, there is a

section of steadily dropping pressure which is likely to be test gas, but without a stable pressure

reading. This has been labelled the ‘start of test gas’. The next section is labelled ‘steady test
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Figure 5.17: Measured acceleration tube wall pressure traces for two experiments performed
using the test condition described in Table 5.5 compared to the unsteadily expanded test gas
(state 7) pressures for the semi-experimental equilibrium PITOT simulations shown in Fig. 5.16.

gas estimate’ and it has been used to calculate the experimental state 7 pressure values shown

in Table 5.6 for signals ‘at4’, ‘at5’, and ‘at6’. The section after this labelled ‘end of steady test

gas’ appears to have a similar pressure to the ‘steady’ section before it, but with more noise.

Potentially it is the section where the test and driver gases start to mix, and it has not been

used to calculate the steady pressure values.

Considering the experimental p7 values shown in Table 5.6, the mean values for x2s2902 and

x2s2903 are 3.3 ± 0.2 kPa and 3.2 ± 0.2 kPa respectively. In Fig. 5.16 it was shown that only the

conditions with a shocked test gas velocity equal to the shock tube shock speed (V2 = Vs,1) and

a reflected shock exiting the shock tube (Mr,st > 1) were able to match the experimental shock

speed data. Here it is similar, with only the simulations with reflected shock Mach number

(Mr,st) values of 2.4 and 2.9 falling within the uncertainties of the experimental data with

theoretical unsteadily expanded test gas pressure (p7) values of 3.1 and 3.4 kPa respectively.

For this reason it has been decided to use a shocked test gas velocity equal to the shock tube

shock speed (V2 = Vs,1) and a fully reflected shock at the end of the shock tube (Mr,st =

maximum = 2.9) for all of the experimental data analysed in Figs. 5.18 and 5.19.

Figure 5.18 is similar to Fig. 5.17 above, however, in Fig. 5.18 the experimental wall pressure

traces for the two experiments are compared to PITOT simulations based on experimental shock

speeds only. While examining shock speed and wall pressure data in the acceleration tube in

Figs. 5.16 and 5.17, it was found that setting the shocked test gas velocity in the shock tube to
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the shock tube shock speed (V2 = Vs,1) and using a fully reflected shock at the end of the shock

tube (Mr,st = maximum = 2.9) gave the best comparison between PITOT and the experimental

data. For this reason, this has again been done for the PITOT simulations shown in Figs. 5.18

and 5.19.
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Figure 5.18: Measured acceleration tube wall pressure traces for two experiments performed
using the test condition described in Table 5.5 compared to equilibrium PITOT simulations
performed using experimentally measured shock speeds from experiment x2s2902.

The goal of Fig. 5.18 is to ascertain the effect that the uncertainty on the experimental shock

speed data has on how well the overall flow condition can be known. If uncertainties on the shock

tube and acceleration tube fill conditions (state 1 and state 5) are assumed to be sufficiently

small, the main sources of uncertainty are the shock speed uncertainties in each section of the

facility and the uncertainties about the effective nozzle area ratio (see Section 5.4.6). Using

the extremities of the measured shock speed data, a sensitivity analysis can be performed to

ascertain realistic bounds on the resulting flow condition parameters in the acceleration tube,

and following that, the test section. This will be done here using the data from x2s2902 and a

tool which the authors wrote to use PITOT to examine this. While the experimental data for

both experiments are very similar, to simplify the discussion, it has been decided to focus on

only x2s2902.

Considering the shock speed data for x2s2902 shown in Table 5.6, the absolute minimum

shock tube shock speed (Vs,1) possible is 2,010 m/s, and the absolute maximum is 2,100 m/s.

If it is assumed that Vs,1 is not changing across the locations where it is measured, the values

can be averaged, giving a mean value of 2,050 ± 10 m/s, and a much smaller shock speed range

of 2,040 to 2,070 m/s. Similarly, for the acceleration tube shock speed (Vs,2), the absolute

maximum range possible is 3,570 to 3,750 m/s. Once again, if it is assumed that Vs,2 is not
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changing across the locations where it is measured, the values can be averaged, giving a mean

value of 3,660 ± 20 m/s, and a much smaller shock speed range of 3,630 to 3,680 m/s. Every

possible combination of these shock speeds for both the ‘absolute minimum and maximum’

and ‘mean minimum and maximum’ cases were simulated in PITOT to find a realistic range

of unsteadily expanded test gas pressure (p7) values, and these values are shown in Fig. 5.18

with the experimental acceleration tube wall pressure data.

Results where the test gas has both been expanded to the acceleration tube shock speed

(V7 = Vs,2) and the theoretical ideal gas velocity in the acceleration tube (V7 = V6) are shown

in Fig. 5.18. Once again, the same as when Fig. 5.17 was discussed, the PITOT simulations

shown in Fig. 5.18 where V7 = V6 have an unrealistically high unsteadily expanded test gas

pressure (p7) for every case. Therefore, the following analysis will only focus on the pressure

values where V7 = Vs,2.

From Table 5.6, it can be seen that the mean wall pressure trace (p7) values for x2s2902

and x2s2903 are 3.3 ± 0.2 kPa and 3.2 ± 0.2 kPa respectively. From the sensitivity analysis, the

absolute maximum p7 range shown in Fig. 5.18 is 2.7 to 5.0 kPa. Using the less conservative

mean uncertainty values, the p7 range is a more realistic 3.4 to 4.0 kPa, with a nominal value

of 3.7 kPa. The simulated mean values from the sensitivity analysis and the experimental

p7 measurements have overlapping uncertainties, indicating that the analysis so far has been

adequate, with the pressure potentially around 3.4 kPa, where the two overlap.
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Figure 5.19: Measured 15◦ half-angle cone pressure traces in the test section (p10c) for two
experiments performed using the test condition described in Table 5.5 compared to theoretical
values from equilibrium PITOT simulations using the nozzle’s geometric area ratio of 5.64 and
measured experimental shock speeds from experiment x2s2902.
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Now that the bounds on the unsteadily expanded test gas (state 7) values have been con-

sidered, the last step is to find realistic bounds on the test section state (state 8). This is not

necessarily a simple task. Firstly, there is uncertainty about the unsteadily expanded test gas

state (state 7) entering the nozzle. Secondly, there is uncertainty about the effective area ratio

of the nozzle, and finally, it is only possible to infer the nozzle exit state (state 8) from pressures

measured over pressure probes in the test section (state 10), which in this case are 15◦ half-

angle conical pressure probes. Fig. 5.19 shows the experimental cone pressure data for the two

experiments from’s X2 pitot rake. The pitot rake is generally instrumented with nine pressure

probes mounted vertically along the nozzle exit plane, with the middle probe (‘pt5’) oriented

with the centre-line of the nozzle. However, in this case, the centre-line probe was replaced

with a small cylinder model to perform infrared radiation measurements, and the wake flow of

this cylinder was interacting with probes ‘pt4’ and ‘pt6’ on either side of the model, so only

data from probes 1 to 3 and 6 to 9 are shown in Fig. 5.19.

Flow arrival in the test section is generally seen as a spike in the measured impact pressure

traces due to the different post nozzle expansion properties of the accelerator gas compared to

the test gas. This is then followed by a short period of relatively steady test time, seen for

around 300 µs for this condition, where measurements would be taken for a more complicated

experiment. In most cases, the steady test time is terminated by a gradual pressure rise as less

expanded test gas starts to flow over the probes.

Due to fact that the PITOT results where the test gas was unsteadily expanded to the ideal

gas velocity in the acceleration tube (V7 = V6) shown in Figs. 5.17 and 5.18 were found to be

too large to be a correct assumption, it was decided to only show PITOT results where the test

gas has been unsteadily expanded to the acceleration tube shock speed (V7 = Vs,2) in Fig. 5.19.

These unsteadily expanded test gas values (state 7) were then steadily expanded through the

nozzle using the nozzle’s geometric area ratio of 5.64 to find the values shown in Fig. 5.19.

The experimental 15◦ half-angle cone pressure (p10c) measurements shown in Table 5.6

were found using the ‘steady test time’ shown in Fig. 5.19. Looking at Table 5.6 it can be

seen that the mean experimental p10c values for x2s2902 and x2s2903 are 1.4 ± 0.4 kPa and

1.5 ± 0.4 kPa respectively. These results are imprecise as they have quite large percentage un-

certainties (around 25%) and for some of the individual signals (‘pt3’ and ‘pt9’) the percentage

uncertainties are quite large (around 100%). If the mean range from the sensitivity analysis

is again considered, it can be seen in Fig. 5.19 that this mean data compares quite well to

the experimental data, with a p10c range of 1.7 to 1.9 kPa, with a nominal value of 1.8 kPa.

This compares well with the experimental data. The range of the more conservative absolute

minimum and maximum uncertainty simulations is 1.5 to 2.2 kPa, the bottom end of which

also compares well with the experimental data.
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Due to the large uncertainties on the cone pressure (p10c) data, it would be hard to perform

an ‘area ratio check’ for different nozzle area ratios (see Section 5.4.6) and have confidence

in the result. For this reason, the test section state (state 8) range found using the nozzle’s

geometric area ratio of 5.64 and the mean uncertainties on the shock speed measurements have

been used to estimate the flow condition parameters. This is shown in Table 5.7 where the final

condition details at both nozzle entry (state 7) and nozzle exit (state 8) for experiment x2s2902

are shown. Both a nominal solution found using only the mean shock speeds and a solution

bound for every variable found using the range of the uncertainties on those shock speeds are

presented. This is already considered by the authors to be a conservative analysis, but it should

be noted that more conservative estimates of the flow condition bounds could be found by using

the absolute minimum and maximum shock speed ranges instead, or by performing an ‘area

ratio check’ to ascertain what variation in area ratio would still fall inside the uncertainties on

the experimentally measured p10c data shown in Table 5.6.

Table 5.7: Final result of the condition analysis of the ‘cold driver’ air test condition from
Table 5.5.

Nominal Solution bounds
State 7 (nozzle entry condition)
Static pressure (p7, kPa) 3.68 3.37 – 4.02
Static temperature (T7, K) 1,690 1,640 – 1,740
Density (ρ7, kg/m3) 7.59 × 10−3 7.15 × 10−3 – 8.04 × 10−3

Velocity (V7, m/s) 3,660 3,630 – 3,680
Mach number (M7) 4.61 4.52 – 4.71
State 8 (nozzle exit condition, using an area ratio of 5.64)
Static pressure (p8, kPa) 0.349 0.318 – 0.381
Static temperature (T8, K) 961 929 – 994
Density (ρ8, kg/m3) 1.26 × 10−3 1.19 × 10−3 – 1.34 × 10−3

Velocity (V8, m/s) 3,890 3,860 – 3,910
Mach number (M8) 6.40 6.27 – 6.53
Stagnation enthalpy (Ht, MJ/kg) 8.26 8.15 – 8.38

Example 2: Free Piston Driven Condition

The fill details of the example free piston driven air condition can be found in Table 5.8. The

experimentally measured shock speeds, and filtered wall transducer and pitot rake 15◦ half-

angle cone pressure measurements for experiment x2s3232 are shown in Tables 5.9 and 5.10

respectively.

To simplify this second example, some lessons learnt while analysing the first example in

Section 5.5.4 will be used. Considering Figs. 5.18 and 5.19 where the pressure values from
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Table 5.8: Facility configuration details for the free piston driven air test condition designed
by Zander et al. [90].

Driver condition X2-LWP-2.0 mm-0
Primary driver fill condition 92.8 kPa 80%He/20%Ar (by volume)
Primary diaphragm 1 x 2 mm thick cold rolled steel, scored diaphragm
Orifice plate diameter 85 mm (i.e. no extra contraction)
Shock tube fill condition 3.0 kPa Coregas instrument air

(79%N2/21%O2, by volume)
Secondary diaphragm 1 x ≈ 14 µm thick aluminium foil diaphragm
Acceleration tube fill condition 10.0 Pa lab air

Table 5.9: Experimentally measured shock speeds for the free piston driven air test condition
detailed in Table 5.8 from experiment x2s3232.

Shock tube shock speeds (Vs,1)
sd1-sd3 (m/s) 4,020 ± 30 (0.74%)
sd1-sd2 (m/s) 4,100 ± 60 (1.5%)
sd2-sd3 (m/s) 3,940 ± 60 (1.5%)
Mean value (m/s) 4,020 ± 30 (0.74%)
Acceleration tube shock speeds (Vs,2)
st1-st3 (m/s) 7,840 ± 40 (0.46%)
st1-st2 (m/s) 7,660 ± 70 (0.91%)
st2-st3 (m/s) 8,030 ± 80 (0.94%)
at1-at3 (m/s) 7,910 ± 120 (1.5%)
at1-at2 (m/s) 7,610 ± 230 (3.0%)
at2-at3 (m/s) 8,270 ± 140 (1.6%)
at3-at4 (m/s) 7,890 ± 30 (0.37%)
at4-at6 (m/s) 7,990 ± 50 (0.58%)
at4-at5 (m/s) 8,000 ± 90 (1.2%)
at5-at6 (m/s) 7,990 ± 100 (1.2%)
Mean value (m/s) 7,920 ± 30 (0.44%)

the sensitivity analysis based on the shock speed uncertainties for experiment x2s2902 are

compared to experimental data, it can be seen that the pressure values found from the bounds

of the absolute minimum and maximum possible shock speeds (‘abs. minimum exp.’ and ‘abs.

maximum exp.’) are much less representative of the real spread in the data than the pressure

values found using the bounds of the mean uncertainties of the shock speeds (‘mean minimum

exp.’ and ‘mean maximum exp.’), and in Table 5.7 the mean uncertainty values were used to

find the expected range of the final flow condition data. For this reason, only the bounds of

the mean uncertainties will be used for the sensitivity analysis for this example.

In Fig. 5.20a the experimental shock tube shock speed (Vs,1) values shown in Table 5.9
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for experiment x2s3232 are compared to the theoretical equilibrium shock speed value from

PITOT when the effective driver values from Table 5.2 are used. It can be seen that the

theoretical result from PITOT overestimates the experimental shock speeds by around 5%. As

was discussed in Section 5.5.1, this error can be removed by not using the driver model in the

calculation and instead specifying an experimental Vs,1 value. For the theoretical acceleration

tube calculations shown in Fig. 5.20b, an average experimental Vs,1 value of 4,020 m/s has been

used instead of the driver model.

In Fig. 5.20b the experimental acceleration tube shock speed (Vs,2) values shown in Ta-

ble 5.9 for experiment x2s3232 are compared to both the fully theoretical equilibrium value

from PITOT when the effective driver values from Table 5.2 were used, as well as a result from

PITOT where the shock tube fill condition (state 1) was shocked by the specified experimental

Vs,1 value of 4,020 m/s. The driver model in PITOT overestimated Vs,1 in Fig. 5.20a by around

5%, so it was expected that it would also overestimate Vs,2 here, and that is what is seen, with

the fully theoretical value being around 6% higher than the mean experimental Vs,2 value from

Table 5.9. Large variations are seen in the first seven experimental Vs,2 measurement locations.

However, the shock speed becomes fairly consistent for the last three downstream measure-

ments. The authors believe that this could be caused by a few different phenomena, such as

diaphragm effects, changing shock shape, or errors in the measured transducer locations for

some of the sensors. It is also interesting to note in Fig. 5.20b that even using the experimen-

tally measured mean Vs,1 value of 4,020 m/s, PITOT still overestimates the acceleration tube

shock speed by 2% compared to the measured ‘at4-at6’ value of 7,990 ± 50 m/s, showing that

either the shock has attenuated slightly and slowed down from the expected value, or that the

acceleration tube fill pressure (p5) may have been slightly higher than expected.

If the uncertainties on the shock and acceleration tube fill conditions (state 1 and state

5) are assumed to be small, the main sources of uncertainty for the experiment are from the

shock speed measurements in each section of the tube and the effective nozzle area ratio (see

Section 5.4.6). By performing a sensitivity analysis using the uncertainties on the measured

shock speed data, realistic bounds on the resulting flow condition parameters in the acceleration

tube can be ascertained, and following that, the test section.

Considering the shock speed data for x2s3232 shown in Table 5.9, the mean shock tube

shock speed (Vs,1) is 4,020 ± 30 m/s, giving a mean shock speed range of 3,990 to 4,050 m/s.

The mean acceleration tube shock speed (Vs,2) considering just the ‘at’ labelled shock speeds

in Table 5.9 is 7,950 ± 50 m/s, giving a mean shock speed range of 7,900 to 8,000 m/s. The

sensitivity analysis simulated every possible combination of these mean shock speeds in PITOT

to find the full potential range of unsteadily expanded test gas pressure (p7) values. These values

are shown in Fig. 5.21 with the experimental acceleration tube wall pressure trace data from
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Figure 5.20: Experimentally measured shock speeds from Table 5.9 compared to PITOT results.
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Table 5.10: Filtered experimentally measured pressure data for the free piston driven air test
condition detailed in Table 5.8 from experiment x2s3232.

Acceleration tube wall pressure traces (p7)
st1 (kPa) 3.2 ± 0.9 (30%)
st2 (kPa) 6.0 ± 1.7 (30%)
st3 (kPa) 4.6 ± 1.4 (30%)
at1 (kPa) 4.8 ± 0.9 (20%)
at2 (kPa) 4.2 ± 0.7 (20%)
at3 (kPa) 4.9 ± 0.8 (20%)
at4 (kPa) 4.6 ± 0.7 (10%)
at5 (kPa) 4.4 ± 0.7 (20%)
at6 (kPa) 5.0 ± 0.6 (10%)
at7 (kPa) 5.2 ± 0.6 (10%)
at8 (kPa) 5.5 ± 0.6 (10%)
Mean value (all values) (kPa) 4.8 ± 0.3 (6%)
Test section 15◦ half-angle cone pressure traces (p10c)
pt1 (kPa) 4.8 ± 0.7 (20%)
pt2 (kPa) 5.8 ± 0.8 (10%)
pt3 (kPa) 6.2 ± 2.6 (40%)
pt4 (kPa) 6.4 ± 1.5 (20%)
pt5 (kPa) 6.1 ± 1.6 (30%)
pt6 (kPa) 6.7 ± 2.0 (30%)
pt7 (kPa) 5.9 ± 1.5 (30%)
pt8 (kPa) 6.0 ± 0.7 (10%)
pt9 (kPa) 4.9 ± 0.4 (8%)
Mean value (without pt1 and pt9) (kPa) 6.2 ± 0.6 (10%)

experiment x2s3232 for wall sensors ‘at1’ to ‘at8’. Fig. 5.21 shows data where the test gas has

both been expanded to the acceleration tube shock speed (V7 = Vs,2) and the theoretical ideal

gas velocity in the acceleration tube (V7 = V6).

Firstly, it can be seen that for all of the PITOT results shown in Fig. 5.21 where V7 =

V6 the unsteadily expanded test gas pressure (p7) is too large for it to have been a correct

assumption. Therefore, the following analysis will focus only on the pressure values where V7

= Vs,2.

From Table 5.10, it can be seen that the mean wall pressure (p7) value for x2s3232 is

4.8 ± 0.3 kPa. Where V7 = Vs,2, the p7 range shown in Fig. 5.21 from the sensitivity analysis is

4.5 to 5.9 kPa, with a nominal value of 5.2 kPa. These values are consistent within the bounds

of their associated uncertainties, and there is a -8.4% difference between the experimentally

measured mean p7 value, and the nominal value from the sensitivity analysis using PITOT and

the measured shock speeds.
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Figure 5.21: Measured acceleration tube wall pressure traces for the test condition described in
Table 5.8 compared to equilibrium PITOT simulations performed using experimentally mea-
sured shock speeds from experiment x2s3232.

Now that the bounds on the unsteadily expanded test gas state (state 7) values have been

considered, the final step is to assign realistic bounds to the nozzle exit state (state 8). This is

not necessarily a simple task, because there are uncertainties about the gas state entering the

nozzle (state 7) and about the effective area ratio of the nozzle, and it is only possible to infer

the nozzle exit state (state 8) from measurements over pressure probes in the test section (state

10). Fig. 5.22 shows the experimental 15◦ half-angle cone pressure data for the experiment

from the X2 pitot rake. To provide a starting point for the analysis, the state 7 values have

been steadily expanded using the nozzle’s geometric area ratio of 5.64 to find the values shown

in Fig. 5.22. It can be seen in Fig. 5.22 that the condition appears to have a steady test time

of around 60 µs.

Once again, the same as when Fig. 5.21 was discussed, for all of the PITOT results shown

in Fig. 5.22 where V7 = V6 the 15◦ half-angle cone pressure (p10c) is too large for it to have

been a correct assumption. Therefore, the following analysis will only focus on the pressure

values where V7 = Vs,2.

The experimental 15◦ half-angle cone pressure (p10c) measurements shown in Table 5.10

were found using the ‘steady test time’ shown on Fig. 5.22. Looking at Table 5.10, it can

be seen that the pressures for sensors ‘pt1’ and ‘pt9’ have similar values (4.8 ± 0.7 kPa and

4.9 ± 0.4 kPa respectively) which are lower than the other sensors by at least a kilopascal,

indicating that they are probably out of the core flow of the test condition. Considering the

geometry of the pitot rake, this gives a core flow of around 120 mm. For this reason, the mean



Section 5.5 Quantifying Experimental Data using PITOT 112

1,800 1,900 2,000 2,100 2,200 2,300

Time (µs)

0

2

4

6

8

10

12

14

P
re
ss
u
re

(k
P
a)

acc. gas
+ flow
startup

steady
test time start of gradual pressure rise

pt1

pt2

pt3

pt4

pt5

pt6

pt7

pt8

pt9

p10c (V7 = Vs,2, nominal exp.)

p10c (V7 = Vs,2, mean min. exp.)

p10c (V7 = Vs,2, mean max. exp.)

p10c (V7 = V6, nominal exp.)

p10c (V7 = V6, mean min. exp.)

p10c (V7 = V6, mean max. exp.)

Figure 5.22: Measured 15◦ half-angle cone pressure traces in the test section (p10c) for the
test condition described in Table 5.8 compared to equilibrium PITOT simulations performed
using the nozzle’s geometric area ratio of 5.64 and measured experimental shock speeds from
experiment x2s3232.

p10c value for experiment x2s3232, 6.2 ± 0.6 kPa, has been calculated without sensors ‘pt1’ and

‘pt9’. With V7 = Vs,2, the p10c range found from the mean experimental shock speed values

is 5.6 to 6.9 kPa, with a nominal value of 6.2 kPa, which is the same as the experimentally

measured mean value. This difference of 0% between the experimentally measured mean p10c

value and the nominal value from the sensitivity analysis using PITOT and the measured shock

speeds, indicates that the choice to use the geometric area ratio of 5.64 was reasonable.

Table 5.11 presents the final condition details at nozzle entry and exit (states 7 and 8) and

also post-normal shock in the test section at equilibrium (state 10e) for experiment x2s3232

using the nozzle’s geometric area ratio of 5.64. Both a nominal solution found using only the

mean experimentally measured shock speeds and a solution bound for every variable found

using the uncertainties on those mean values are presented. While the solution bounds show

the potential variation which may exist for the flow condition, the analysis showed that the

nozzle entry pressure (p7) from the sensitivity analysis was consistent with the experimentally

measured values (with an 8.3% difference between the nominal theoretical value and the mean

experimental one) and the nominal 15◦ half-angle cone pressure (p10c) was the same as the mean

experimental value, showing that potentially it is reasonable to describe experiment x2s3232 in

a less conservative manner using just the nominal solution.

Concluding Remarks about the Examples

Overall, it has been shown that it is possible for both cold and free piston driven conditions to

use an appropriately experimentally calibrated version of PITOT to re-create results obtained
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Table 5.11: Final result of the condition analysis of the free piston driven air test condition
from Table 5.8.

Nominal Solution bounds
State 7 (nozzle entry condition)
Static pressure (p7, kPa) 5.18 4.52 – 5.92
Static temperature (T7, K) 2,580 2,520 – 2,640
Density (ρ7, kg/m3) 6.83 × 10−3 6.13 × 10−3 – 7.59 × 10−3

Velocity (V7, m/s) 7,950 7,900 – 8,000
Mach number (M7) 8.47 8.32 – 8.62
State 8 (nozzle exit condition, using an area ratio of 5.64)
Static pressure (p8, kPa) 0.625 0.534 – 0.728
Static temperature (T8, K) 1,830 1,740 – 1,920
Density (ρ8, kg/m3) 1.19 × 10−3 1.07 × 10−3 – 1.32 × 10−3

Velocity (V8, m/s) 8,120 8,070 – 8,170
Mach number (M8) 9.92 9.69 – 10.2
Stagnation enthalpy (Ht, MJ/kg) 34.7 34.3 – 35.2
Flight equivalent velocity (Ue, m/s) 8,340 8,280 – 8,390
State 10e (eq post-normal shock condition in the test section)
Static pressure (p10e, kPa) 73.8 67.1 – 81.2
Static temperature (T10e, K) 7,530 7,490 – 7,580
Density (ρ10e, kg/m3) 1.87 × 10−2 1.70 × 10−2 – 2.06 × 10−2

Velocity (V10e, m/s) 7,600 7,560 – 7,650
Mach number (M10e) 3.55 3.53 – 3.57

from experiments. It has also been shown that the experimentally measured shock speeds can

be used to provide realistic solution bounds for the experimental data.

The main discrepancy was seen in the modelling of the driver, with driver rupture conditions

(p4 and T4) inferred from experimental shock speeds through a helium test gas [2] under-

predicting the shock tube shock speed (Vs,1) by 5% for the first example, and over-predicting

it by 5% for the other. Especially for the free piston driven example, there may be several

reasons for this. Firstly, a free piston driver is complicated, and the variations may be real.

The diaphragm scoring is performed by many different personnel and could have been performed

slightly differently for each experiment; the wear rings on the piston may have had a different

amount of wear for each experiment; the driver temperature could have been different for each

experiment; or the back pressure of the high pressure bottle bank which is used to fill the

reservoir could have been different, causing the temperature of the expanded reservoir gas to

be different for each experiment. All of these small changes can affect the performance of the

driver. Secondly, all of X2’s shock tube wall pressure sensors are located in the last quarter of

the tube’s length (see Fig. 5.1) because the physical geometry of the facility leaves only a small

straight section at the end where sensors can easily be placed. This is not ideal for monitoring
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driver performance and complicates using measured shock speeds to try to understand the

driver, because the shock may have slightly attenuated or even been sped up by compression

waves sent down the tube from the driver before it reaches the sensors. While the inferred driver

conditions used for the free piston driven condition were an average of ten different experiments

performed at three different shock tube fill pressures, 50, 150, and 500 kPa [2], their ability to be

universally applicable could still have been affected by the measurement locations. Colleagues

of the authors have had success using initial experimental data to create more targeted effective

driver rupture values that could then be used to accurately predict the shock speeds of new

but similar conditions performed at a similar time, but existing data is not always available.

Before continuing, it is worth considering what effect that the inferred solution bounds

would have on a real X2 experiment. As a simple way to simulate the relatively blunt models

usually used on X2, conditions behind an equilibrium normal shock in the test section (state

10e) were added to the sensitivity analysis result shown in Table 5.11. Generally for expansion

tube flow conditions, whether they are being used for scaled experiments or not, the stagnation

enthalpy (Ht) and the post-shock density are the most important flow variables. The first

because it is a measure of the energy in the freestream gas which will be mainly converted to

thermal energy behind the shock wave, and the second because it controls the chemical length

scales behind the shock, which are important for scaling and more generally, for generating

conditions focussed on studying either equilibrium or non-equilibrium behaviour. Looking at

Table 5.11 and considering the nozzle exit (state 8) Ht value, the uncertainty on the nominal

value caused by the solution bounds is ±1.3%. The flight equivalent velocity (Ue), which is

a function of Ht, shows an even smaller uncertainty of ±0.7%. If the post-shock (state10e)

values are now considered, it can be seen that the post-shock temperature (T10e), which is also

a function of Ht, shows an uncertainty of ±0.6%. This is a positive result for the accurate

simulation of stagnation enthalpy, as its uncertainty was found to be of the same order as the

shock speed uncertainties (around 1%, see Table 5.9). However, it also shows that even with

shock speed uncertainties around 1%, the post-shock density is still very sensitive to that and

has an uncertainty of around ±10%. In a more general sense, this is something which would

be expected for most test conditions, as it was discussed in Sections 5.4.5 and 5.4.6 that the

pressure and density were the most sensitive variables to changes in how the gas expanded

through the acceleration tube and nozzle. This is still a small uncertainty for an impulse

facility, but it shows that blunt-body experiments which cannot tolerate post-shock density

uncertainties of around ±10% may not be suitable for expansion tube simulation, even with

very small shock speed uncertainties.
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5.6 Conclusions

This paper has presented a framework for the rapid simulation of an expansion tube facility

by identifying central flow processes involved in facility operation, and simulating them from

state to state through the facility by using isentropic and compressible flow relations, and

equilibrium and frozen chemistry. Potential issues with modelling the light secondary and

tertiary diaphragms, acceleration tube, and nozzle of an expansion tube facility were discussed,

along with the solutions available in the model to deal with these issues. The theoretical effect

of these solutions on the overall flow condition was also presented for an example expansion

tube flow condition.

A method for using this framework to quantify experimental data using several different

techniques was then presented. A technique for using the model with experimentally measured

shock speeds in the shock tube to remove potential issues with driver modelling uncertainty was

presented. A technique for using experimentally measured wall pressures and shock speeds in

the acceleration tube to quantify the degree of over-expansion in the acceleration tube was also

presented, as well as a technique to use experimentally measured pressures in the acceleration

tube and test section to quantify the effective area ratio of a facility’s nozzle.

Finally, two different experimental examples using data from the X2 expansion tube were

presented to validate the model for quantifying experimental expansion tube flow conditions.

One example was a ‘cold driver’ condition and the other was a free piston driven test condition

regularly used in the laboratory. Both examples were able to be quantified using the model pre-

sented in this paper, by configuring the theoretical model to correctly re-create experimentally

measured pressures and shock speeds. An inferred nominal solution for the test section state

(state 8) of each example was presented, as well as a solution bound for each inferred quantity

to take into account the uncertainty in the measured shock speed values used with the model.

The authors believe that this is the current best practice to calculate an inferred expansion

tube test section condition without using CFD simulation, as it is provides an insight into the

potential variation of the different test flow quantities.

Further work aims to improve the model where required by adding more complex models for

different phenomena. This includes implementing an inertial diaphragm model [255, 258] to bet-

ter model the thin secondary and tertiary diaphragm rupture, and directly implementing Mirels

methodology for modelling the expected attenuation of the shock wave and over-expansion of

the unsteadily expanding gas in a low density shock tube [106, 107, 108] to allow better predic-

tion of acceleration tube behaviour. A larger goal is a more comprehensive validation of this

model against both experimental and two-dimensional facility CFD simulation data, so that
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the model can be compared to the full suite of data collected from these CFD simulations,

instead of just the few experimental measurements which can be taken.

Another direction for further work is to implement an improved driver model into the code,

because for both examples presented in Section 5.5.4 there was a 5% difference between the

measured experimental shock tube shock speeds and the theoretical values predicted by the

driver models used to simulate the experiments. This is not a large difference, and the driver

model can be removed when simulating experimental data if necessary, but it limits the utility

of fully theoretical simulations. This work could be taken in several different directions. The

first direction would be to add estimated heat losses during the piston compression process and

total pressure losses at the area change to the current fully theoretical driver model to make

it more realistic. The second would be to perform a more comprehensive study of using shock

speeds in the shock tube to infer effective driver rupture conditions than the one performed by

Gildfind et al. [2]. Potentially taking data over a large range of shock tube fill pressures and

test gases and providing a small database rather than a single value would provide results which

are applicable to more situations. This could possibly also be done without performing any new

experiments by mining old analysed experiments for this information. A more physical part of

this proposed work would be to increase quality control for everything related to the driver,

such as the diaphragm scoring depth, the accuracy of the driver and reservoir fill pressures,

and estimating driver and reservoir gas temperatures at the time of firing to try to ensure that

they remain inside specified limits.
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True Gas Composition Gas Giant Entry

Simulation

DP: “Exactly what do you mean by ‘guts’?”

EH: “I mean, grace under pressure.”

– Ernest Hemingway, being interviewed by Dorothy Parker for The New Yorker, 30

November 1929

6.1 Chapter Overview

This chapter examines the possibility of simulating Uranus and Saturn entry in the X2 expan-

sion tube. It begins by establishing the theoretical performance limits of X2 for the simulation

of these entries, before experimental results are presented to verify the theoretical predictions.

Issues with measuring shock speeds at such high velocities are also discussed. The chapter ends

with a discussion of the possibilities available for more easily simulating gas giant entry in an

X2 sized expansion tube facility by using a more powerful free piston driver.

6.2 Introduction

Previously, the majority of gas giant aerothermodynamic research has been focussed on the

Galileo probe. Earlier research was performed in support of the design of the probe [59, 60,

61, 62], and subsequent analysis was conducted after it flew and the heat shield recession was

found to be different from what had been expected [58, 64, 66]. This is discussed further

in Section 3.3. Recently, there has been renewed interest in future gas giant entry probe

missions. The US National Research Council ‘Vision and Voyages for Planetary Science in the

Decade 2013-2022’ report identified future space missions to Uranus [68] and Saturn [69, 70]

117
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as high priorities due to several significant scientific questions about the universe which these

missions could help address, such as helping to improve models of solar system formation

and evolution, or helping scientists understand extrasolar planetary systems, where gas giant

planets are common. The proposed probe entry velocities are 22.3 km/s for Uranus [68] and

26.9 km/s for Saturn [69, 70]. The expected aeroheating uncertainties of these entries, and how

different parameters contribute to these overall uncertainties, have been analysed by Palmer

et al. [71]. Representative radiation was analysed experimentally by Cruden and Bogdanoff

[72, 73]. Due to this renewed interest in gas giant entry probes, which may see the design of

two new missions in the foreseeable future, it is worth considering how further ground testing

can aid the development of this next generation of missions.

Planetary entry missions are extremely infrequent and expensive. For example, NASA’s

Galileo mission to Jupiter was estimated to have cost $1.4 billion USD in 1988 dollars [268].

For this reason, various types of ground testing have proven to be essential to the design of

planetary entry vehicles. Due to the stagnation enthalpy requirements of simulating planetary

entry, it is not possible to simulate these flights in continuous flow wind tunnel type facilities.

For example, the stagnation enthalpy of a 10 km/s Earth re-entry is 50 MJ/kg, and for the

22.3 km/s proposed Uranus entry [68] it is 250 MJ/kg. Arc jets [97, 98], plasma torches [99, 100],

and plasma wind tunnels [101, 102] are high enthalpy test facilities which have test times long

enough for the test model to reach temperatures at which hot-wall and ablation tests can be

performed. However, while they can re-create flow stagnation enthalpy, they do not re-create

the velocity or a real aerodynamic flow-field, and the tests are often subsonic. Impulse facilities,

which are generally some variation of the shock tunnel concept, can often match the velocity

and Reynolds number of the true flight condition, but experiments are performed on a ‘cold’

model because the test times are from tens to thousands of microseconds, depending on the

size and type of facility. Considering the Galileo probe, none of the three sets of experiments

performed were able to fully re-create the velocity of the Galileo probe’s entry. However, in

various ways, and at velocities ranging from 0 to 15 km/s, each experiment aimed to re-create

the heating environment for a duration long enough to study the recession of an ablating model

which could then be compared to Computational Fluid Dynamics (CFD) results [60, 61, 62].

This is discussed further in Section 3.3.

Most planetary entry test facilities are smaller than real flight vehicles. For this reason,

it is common that blunt-body ground testing is performed using binary scaling, a technique

originally suggested by Birkhoff [269]. Because the post-shock flow is often controlled by binary

dissociation reactions, by matching the stagnation enthalpy and the ρ · L product (where L is

a characteristic length scale) between flight and scaled experiment, the ratio of the chemical

relaxation distance to the body size remains unchanged and flow similarity is achieved [270].
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Binary scaling is known to have its limitations, such as not correctly scaling post-shock radia-

tion, three-body reactions such as recombination, and equilibrium compositions [271], but it is

still an essential tool for laboratory simulation of planetary entry.

Due to the extreme stagnation enthalpy requirements of Jupiter entry (1,100 MJ/kg), Stalker

and Edwards [67] proposed that the phenomena could be studied by only simulating the shock

layer temperature of the condition. They proposed that higher levels of helium in the test gas

or instead using neon, which is heavier, would result in hotter post-normal shock conditions

during an experiment. This would allow gas giant entry shock layers to be simulated at lower

flow velocities which are achievable in expansion tubes or non-reflected shock tunnels. This

was investigated in the X2 expansion tube at the University of Queensland (UQ) in 2004 by

Higgins [63], who studied the effect of atomic hydrogen ionisation on shock standoff. This is all

discussed further in Section 3.4. The technique has not been used for radiation studies in the

past. A preliminary theoretical analysis of how this could be examined again has been carried

out by the author of this thesis [16, 17], with the final theoretical and experimental results

found in Chapter 7 of this work. However, this is not the direction of this chapter.

Expansion tubes are well suited to simulating planetary entry because they process their test

flow with a shock wave and then an unsteady expansion, instead of just a shock wave, allowing

them to accelerate their test flow to superorbital conditions without causing it to be excessively

dissociated and ionised [196]. This has allowed X2 to study entry into most planetary bodies

in the solar system [222, 1, 81, 127, 78, 87, 79, 86, 80].

Due to the lower entry velocities of the proposed Uranus and Saturn entry missions [68,

69, 70], this paper examines whether an expansion tube with a high powered free piston driver

(Stalker [234]) could be used to create relevant hypervelocity test conditions for the simulation

of gas giant entry at true gas composition and true flight stagnation enthalpy. The X2 expansion

tube will be used as a test case as it is an expansion tube facility currently principally used

for the study of planetary entry phenomena. Further information about X2 can be found in

Chapter 4, Gildfind et al. [146], or James et al. [25]. This chapter begins by examining the

theoretical performance limits of X2 using the theoretical expansion tube and shock tunnel

simulation code written by the author which is discussed in Chapter 5. Experiments are then

presented to validate the theoretical results, and discrepancies between them are discussed.

The final section of this chapter performs a second theoretical parametric study to investigate

increasing the performance limits of an X2 sized facility by using a more powerful free piston

driver.
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6.3 Theoretical Condition Analysis

Expansion tubes are typically used for the simulation of planetary entry from 6 to 12 km/s [222,

1, 81, 127, 78, 87, 79, 86, 272, 134]. However, the simulation of gas giant entry involves velocities

ranging from 20 to 50 km/s. Considering a simulated Uranus entry as an example, the molecular

weight of the 85%H2/15%He (by volume) [273] Uranus test gas mixture (2.31 g/mol) is 8% of

the molecular weight of air (28.97 g/mol), which gives the possibility of generating higher shock

speeds than usual air test conditions. Maximum performance requires an understanding of how

the facility variables can be controlled to optimise the performance of each individual section

of the facility, and then the facility as a whole. Therefore, in this section an equilibrium gas

parametric study of the X2 expansion tube is performed with the condition building version

of PITOT (see Chapter 5) using two different driver conditions (detailed in Table 6.1) and

operation with and without a shock heated secondary driver section. To simulate the limiting

Mirels case [106, 107, 108] for a low density shock tube, it has been chosen to over-expand the

test gas in the acceleration tube to the shock speed for all test conditions. This is standard

practice for high enthalpy expansion tube conditions and is discussed further in Section 5.4.5.

All simulations have been performed with X2’s contoured nozzle using its geometric area ratio

of 5.64 [229]. The two driver conditions used in this paper have different compression ratios

(λ) and are both used here in a modified version where an orifice plate is used to restrict the

mass flow through a choked throat, so that a lighter driver gas can be used to give higher

performance [2].

Table 6.1: X2 driver conditions used for this study. Driver conditions are from [231, 230],
except operated with a 100%He driver gas and a 65 mm orifice plate [2].

Driver case Diaphragm Rupture Rupture Compression Reservoir Driver Piston
ID thickness pressure, p4 temp., T4 ratio, λ fill fill mass

pressure pressure
- mm MPa K MPa kPa kg
X2-LWP-2.0 mm-0 2.0 27.9 2,700 30 6.85 92.8 10.5
X2-LWP-2.5 mm-0 2.5 35.7 3,077 40 6.08 77.2 10.5

All test conditions discussed in this chapter use a simulated Uranus entry test gas compo-

sition of 85%H2/15%He (by volume) based on values from the work of Conrath et al. [273]

which were found from Voyager fly-by measurements. They found a helium mole fraction in

the upper troposphere of Uranus (where methane is insignificant) of 0.152 ± 0.033. For this

work, the mole fraction has been assumed to be 0.15 based on this measurement. This same

gas composition was also used by Palmer et al. [71] for their simulations and Cruden and

Bogdanoff [72, 73] for their experiments in the EAST facility at NASA Ames. Separate Saturn
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entry simulations have not been performed due to the fact that the percentage of helium in

both atmospheres are very similar. Conrath and Gautier [274] gave a range for the possible

helium percentage in Saturn’s upper atmosphere of 9.9 to 13.8% (by volume) due to the large

uncertainties in their approach, and Cruden and Bogdanoff performed Saturn entry experi-

ments using an 89%H2/11%He (by volume) test gas [72, 73]. Simulations by the authors of

this paper found that Uranus and Saturn entry results were very similar, and the results in this

chapter could therefore also be applied to Saturn entry.

Stagnation enthalpy (Ht) is used to compare the performance of all test conditions in this

chapter because it gives a measure of energy contained in a gas due to both its gas state and

velocity. It is normally calculated for planetary entry using only the velocity component because

the static enthalpy (h - h0) at true freestream temperatures (T∞ ≈ 200 K) is insignificant

compared to the kinetic enthalpy. For example, for the proposed 22.3 km/s Uranus entry, less

than 1% of the stagnation enthalpy is due to static enthalpy. This is not true of expansion

tube test flows, where the test gas freestream temperature can be several thousand kelvin, and

the flow may be partially dissociated. The fact that expansion tube test flows can have have

significant energy stored as static enthalpy means that Ht for an expansion tube at a given

velocity generally corresponds to a slightly higher true flight velocity, which is referred to as

the ‘flight equivalent velocity’ (Ue). This is shown in Equation 6.1.

Ht = (h − h0) +
U2

∞

2
=

U2
e

2
(6.1)

While stagnation enthalpy can be theoretically maximised by minimising the acceleration

tube fill pressure (p5), the following analysis limits p5 to 0.5 Pa or above of air for several

reasons: Operationally, it can be difficult to maintain the pressure in the acceleration tube

below 0.5 Pa for long enough to perform an experiment; the low fill pressure results in very

low post shock pressures which make it difficult to obtain accurate shock speed measurements

for the conditions; low density shock tube or ‘Mirels’ effects [106, 107, 108], which cause shock

attenuation and over-expansion of the test gas, also become more pronounced when extremely

low acceleration tube fill pressures are used.

Binary scaling is generally used to perform planetary entry experiments in X2 because it is a

relatively small facility with a 201.8 mm nozzle exit diameter. Due to the boundary layer which

builds up along the length of the tube, the useful core flow (and maximum model diameter used)

is normally around 100 mm. Depending on the scale of the vehicle to be tested, this means that

X2 must reproduce the flow condition at densities typically 5 to 10 times higher than in flight,

and its driver has sufficient performance to allow it to perform binary scaled experiments for

many useful mission profiles. For example, the 400 mm diameter Hayabusa re-entry capsule
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was tested in X2 at 1/5 scale [81]. However, for gas giant entry conditions, where recreating

the flow stagnation enthalpy becomes difficult, there may be insufficient performance to also

binary scale the test conditions. This can be ameliorated by binary scaling the post-shock ρ · L

product over the test model between the two gas flows instead of the freestream one, because

due to the elevated temperature of an expansion tube test flow, the freestream Mach number is

lower [275]. For example, for the proposed 22.3 km/s Uranus entry test condition [68], using a

freestream temperature of 200 K, the freestream Mach number is 22, whereas a representative

X2 expansion tube condition with the same Ht would have a freestream Mach number around

10. This means that less total pressure is lost across the bow shock in an expansion tube, and

as such, the same post-shock density can be generated from a lower density freestream [275].

For this reason post-shock density is compared in this paper.

6.3.1 Conditions Without a Secondary Driver

Without a secondary driver section, there are three main facility variables which control the

resulting flow condition. The driver condition itself, which consists of the driver gas fill pressure,

temperature, and composition, the air reservoir fill pressure, piston mass, and any orifice plates

at the area change; the shock tube fill pressure (p1); and the acceleration tube air fill pressure

(p5). This section analyses how changes in these variables affect the performance of the facility

as a whole.

Fig. 6.1a shows how changes in driver condition, shock tube fill pressure (p1), and accelera-

tion tube fill pressure (p5) influence the stagnation enthalpy (Ht) of the test flow and Fig. 6.1b

shows how the same changes affect the equilibrium post-normal shock density over the test

model (ρ10e). Two driver conditions and four acceleration tube fill pressures are considered,

and the shock tube fill pressure is varied.

In Fig. 6.1a, it can be seen that performance in terms of stagnation enthalpy is maximised

and the equilibrium post-shock density (ρ10e) is minimised when p5 is set to the minimum value

(0.5 Pa) and the more powerful driver is used (X2-LWP-2.5 mm-0). There is a single p1 value

which gives maximum performance for each curve, but across the full range of p1 values shown

in Fig. 6.1a, there is minimal variation in performance for each combination. However, looking

at Fig. 6.1b it can be seen that ρ10e rises monotonically with both p1 and p5, showing that high

Ht and ρ10e are incompatible objectives.

This can be explained by examining the unsteady expansion equation from Cantwell [276]

(Equation 6.2), where subscripts refer to gas states in Fig. 5.1.
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Figure 6.1: Effect of shock tube fill pressure (p1) on conditions without a secondary driver.
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Since the shocked test gas is initially supersonic, it gains velocity and total enthalpy through

the unsteady expansion process by reducing pressure and temperature. This means that stag-

nation enthalpy can only be gained by reducing pressure, and with that, density. The reducing

temperature also has an effect on the density, but its effect is much less pronounced because

it reduces by at most an order of magnitude, whereas the pressure typically reduces by several

orders of magnitude. This loss in density is then propagated through the facility’s nozzle and

through the normal shock calculation in the test section.

The analysis shows that to achieve maximum stagnation enthalpy for each driver condition,

the minimum acceleration tube fill pressure of 0.5 Pa is required. The optimum shock tube fill

pressure occurs around 2 kPa for both drivers when p5 = 0.5 Pa, and therefore p1 = 2 kPa was

chosen for both drivers, giving theoretical stagnation enthalpies of 143 MJ/kg for X2-LWP-2.0

mm-0 and 166 MJ/kg for X2-LWP-2.5 mm-0.
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6.3.2 Conditions With a Secondary Driver

The shock heated secondary driver is a section of typically helium gas placed between the

primary driver and the shock tube to increase shock strength through the test gas [1]. The use

of a secondary driver section adds another facility variable, the secondary driver fill pressure,

psd1. This subsection examines how a secondary driver can be used to augment the performance

of the facility for gas giant entry simulation.

Physically, considering the X2 schematic shown in Fig. 5.1, when the secondary driver is

used, what is labelled as the shock tube on the figure becomes the secondary driver, and the

first section of the acceleration tube becomes the shock tube. The behaviour and notation is

similar to the shock tube part of the position-time diagram in Fig. 5.1, except, by notation, the

states would be labelled sd1 (fill state), sd2 (post-shock state), and sd3 (unsteadily expanded

driver gas), instead of 1, 2, 3. State sd2 then drives the shock tube gas instead of state 4′′.

This is discussed further in Chapters 4 and 5.

If the shock through the secondary driver is over-tailored, then the shock heated secondary

driver gas will be hotter than the unsteadily expanded driver gas, and as it travels at the same

pressure and velocity as the original driver gas, it forms a more effective driver than the original

unsteadily expanded driver gas. The shock speed in the secondary driver (Vs,sd) required to

give the maximum shock speed in the shock tube can be determined analytically for a perfect

gas, and is shown by equilibrium gas numerical simulation here in Fig. 6.2. There is only an

advantage in using a secondary driver if the required shock speed in the test gas is much greater

than the undisturbed sound speed in the driver. This is discussed further in Morgan [196] and

more discussion about secondary drivers can be found in Gildfind et al. [1].

Fig. 6.2 shows the performance of various conditions using both drivers and a secondary

driver section. Stagnation enthalpy is shown on the left y-axis of the figure, while the related

flight equivalent velocity is shown on the right (both from Equation 6.1). The acceleration tube

fill pressure (p5) has been fixed at 0.5 Pa to maximise the unsteady expansion of the test gas

for every simulation. Each curve represents a different shock tube fill pressure from 1 to 4 kPa,

and the secondary driver fill pressure has been varied from 0.5 to 100 kPa.

In Fig. 6.2 it can be seen that as the shock tube fill pressure increases, a higher psd1 is

required to maximise performance. It can also be seen that maximum stagnation enthalpy

increases with decreasing p1, theoretically approaching an asymptotic limit with 0 kPa in the

shock tube. This occurs because, theoretically, the maximum amount of over-tailoring occurs

in the secondary driver with the highest Vs,sd, which occurs when the lowest psd1 is used.

However, if psd1 is too low for the related shock fill condition (state 1), the post-shock pressure
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Figure 6.2: Effect of secondary driver fill pressure (psd1) on performance for different test
conditions with a set p5 value of 0.5 Pa.

in the secondary driver (psd2), will not be large enough to adequately drive the shock in the

shock tube, and the related Vs,1 value will be lower. Conversely, if psd1 is too high for the

related shock tube fill condition, the performance will drop because the optimum psd1 value

has not been used. Using p1 values as close to zero as possible is impractical because if p1 is

reduced too far, the condition will have insufficient test gas to produce a usable test flow, wall

boundary layer effects become more significant, and the conditions become operationally more

challenging. Also, residual air contamination prior to filling is particularly problematic with

low p1 values for H2/He experiments because the test gas is very light. An 85%H2/15%He (by

volume) Uranus test gas mixture contaminated with 1% air (by volume) is 14% more dense

than a pure mixture, which would affect performance and the quality of the experiment itself.

For these reasons, 2 kPa was also chosen as the p1 value for both secondary driver conditions

as a compromise between performance and test flow quality. This could be modified as required

for future experiments, but it provides a reasonable starting point.

Now that a p1 value of 2 kPa has been selected for the conditions, psd1 values need to be

selected. In Fig. 6.2 it can be seen that for both conditions performance is approximately

maximised (within 0.4% of the maximum) for psd1 = 15 to 25 kPa. A psd1 value of 25 kPa was

selected for X2-LWP-2.0 mm-0, and 21 kPa was selected for X2-LWP-2.5 mm-0, corresponding

to stagnation enthalpies of 249 MJ/kg and 293 MJ/kg respectively. These correspond to flight

equivalent velocities of 22.3 and 24.2 km/s respectively, meaning that the proposed 22.3 km/s
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Uranus entry [68] could theoretically be simulated in X2 with a secondary driver.

Fig. 6.3 shows the related post-shock densities over the test model (ρ10e) for the conditions

shown in Fig. 6.2 where p1 = 2 kPa. While X2’s contoured nozzle allows larger models to be

used, more density is lost through the steady expansion than is gained in the reduced scaling

factor, so the nozzle actually reduces the achievable ρ · L product. To show the effect of this,

results are shown both with and without the nozzle expansion. In the maximum performance

region where psd1 ranges from around 20 to 25 kPa, the density remains fairly constant for both

driver conditions with and without the nozzle. With the nozzle, ρ10e is around 4.4 × 10−4 kg/m3

for X2-LWP-2.0 mm-0 and 3.3 × 10−4 kg/m3 for X2-LWP-2.5 mm-0, which are both the same

order of magnitude as the equilibrium post-shock density for the first Uranus entry point

analysed by Palmer et al. [71] (2.52 × 10−4 kg/m3 from a calculation performed by the authors

in Section 6.5) showing that these flow conditions would not be suitable for binary scaled

experiments in X2. Without the nozzle, ρ10e is around 2.4 × 10−3 kg/m3 for X2-LWP-2.0 mm-0

and 1.8 × 10−3 kg/m3 for X2-LWP-2.5 mm-0, an order of magnitude higher than the results

using the nozzle. A test model half the size would be required if the nozzle wasn’t used.

However, the ρ · L product would still be higher, meaning it would be more likely that binary

scaled experiments could be performed.
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Figure 6.3: Effect of secondary driver fill pressure (psd1) on ρ10e for both drivers when p1 =
2 kPa. Results are shown both with and without X2’s nozzle.

The flat density seen in Fig. 6.3 using X2-LWP-2.5 mm-0 appears to be non-physical, and

is probably caused by an issue with the CEA backed equilibrium gas model [197, 198]. While
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the temperature of the test gas never reaches the 20,000 K maximum temperature in CEA,

the temperature of the shocked accelerator gas (state 6) may reach this temperature for high

velocity conditions like this, causing the code to use a gas state which may not be physical.

When the pressure and velocity are matched across the contact surface in the acceleration tube

to find the acceleration tube shock speed (Vs,2), this error would then be transmitted to the

unsteadily expanded test gas. It is not expected that this would have a large effect on the test

gas as it remains below 20,000 K, but it should still be noted.

6.3.3 Chosen Conditions

It was chosen to only examine conditions using the more powerful driver condition (X2-LWP-

2.5 mm-0). Table 6.2 shows the details of the test conditions labelled with a naming convention

which includes the name of the facility (‘X2’), the entry simulated (‘GG-UE’ for gas giant and

Uranus entry), the driver condition (2.5 mm), and a signifier for the secondary driver if it is

used (‘SD’).

Table 6.2: Final details of the chosen test conditions.

Test condition Driver Secondary Shock tube Acceleration Theoretical
ID condition driver fill pressure tube stagnation
- - fill pressure (85%H2/15%He, fill pressure enthalpy

(He, kPa) by volume, kPa) (Air, Pa) (MJ/kg)
X2-GG-UE-2.5 mm X2-LWP-2.5 mm-0 not used 2.0 0.5 166
X2-GG-UE-2.5 mm-SD X2-LWP-2.5 mm-0 21.0 2.0 0.5 293

6.4 Experimental Results

This section presents experimental results for the test conditions shown in Table 6.2. An

instrumented Pitot rake was used to measure the nozzle exit pressure, core flow size, and

experimental test time of the conditions. The Pitot rake uses nine impact pressure probes,

which are 15◦ half-angle conical probes for these experiments, spaced 17.5 mm apart radially

relative to the nozzle exit plane, covering a total centre-to-centre height of 140 mm. The middle

probe (‘pt5’) was oriented with the centre-line of the nozzle.

The naming conventions used here are the same as that which is used in Section 5.5. Each

experimental shock speed, for example ‘sd1-sd3’, is a reference to the two specific tube wall

pressure sensor locations used to find that particular shock speed value. Where experimental

shock speeds are shown in figures, the values are shown at the midpoint between the two sensor

locations. Where experimental pressure measurements are shown, the names either correspond

to wall pressure sensor locations or locations within the X2 Pitot rake. (Approximate X2 wall
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pressure sensor locations are shown in Fig. 5.1 and exact values from Gildfind et al. [232] can

be found in Table 4.2.)

Experimental shock speed uncertainties were found using the uncertainty calculation pro-

cedure described in Appendix G. Experimental pressure measurements presented here were

processed as follows: data was filtered with a 6th order lowpass filter with a cutoff frequency of

100 kHz; the mean of the steady pressure duration after shock arrival for the relevant signal was

taken; the mean of the noise taken just before shock arrival was subtracted. The uncertainties

on the pressure measurements were found using a 95% confidence interval (CI) on the standard

deviation of the filtered experimental data.

In this section, shock speeds are used to compare the performance between theoretical

predictions from PITOT and experimental data. Shock speeds can be measured non-intrusively,

and if shock speeds match between experiment and simulation, it generally indicates that overall

wave processes are being simulated accurately.

Due to the fact that hydrogen is a combustible gas, a special procedure for evacuating

the gas from the tube during the filling of mix gas bottles and after each experiment was

developed. The procedure and some notes about hydrogen safety can be found in Appendix J.

A risk assessment for using the gas was also made and added to the university’s risk assessment

system.

6.4.1 Test Condition without Secondary Driver (X2-GG-UE-2.5 mm)

Two sets of experiments were performed to characterise test condition X2-GG-UE-2.5 mm.

The first set of experiments were performed in July 2014 before various upgrades of the facility

instrumentation were performed, and initial analysis of these experiments was partly the reason

for the upgrades. The last two experiments for this condition (x2s3241 and x2s3244) were

performed in August 2016 after the upgrades. Final condition characterisation has been carried

out using one of the latter experiments. The facility configuration details of the test condition

can be found in Table 6.3. The experimental shock and acceleration tube shock speed data

from both experimental campaigns is presented in Figs. 6.4 and 6.5 respectively.

Fig. 6.4 shows the experimental shock tube shock speeds with the mean and 95% CI also

shown for each calculated value. The predicted shock speed is 8,733 m/s using PITOT’s equi-

librium solver. It can be seen on the figure that all of the experimental data is inside the 95%

CI for each value and contains no outliers. Therefore it can be concluded that the mean values

are representative of the experimental data. It can be seen that the two experiments from the

second experimental campaign, x2s3241 and x2s3244, are consistent with the first campaign.
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Table 6.3: Facility configuration details of condition X2-GG-UE-2.5 mm.

Driver condition X2-LWP-2.5 mm-0 [231, 230, 2]
Primary driver fill condition 77.2 kPa He
Primary diaphragm 1 x 2.5 mm thick cold rolled steel, scored diaphragm
Orifice plate diameter 65 mm
Shock tube fill condition 2.0 kPa 85%H2/15%He (by volume) Uranus entry test gas
Secondary diaphragm 1 x ≈14 µm thick aluminium foil sheet
Acceleration tube fill condition 0.5 Pa laboratory air

It can also be seen that the experimental mean shock speeds are very similar to the equilib-

rium theoretical values, for example, there is a difference of 0.07% between the mean ‘sd1-sd3’

experimental value and the result from PITOT.
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Figure 6.4: Experimental shock tube shock speeds (Vs,1) for condition X2-GG-UE-2.5 mm.

While the mean values shown in Fig. 6.4 are statistically consistent, with no individual

values which would be classed as outliers, some variation in shock speed can be seen both for

the same experiments along the tube and between experiments at some transducer pairs. The

mean value for every shock speed location shown in Fig. 6.4 is 8,740 m/s, and the minimum

and maximum nominal values are 8,440 m/s and 9,040 m/s respectively. These three values

are 0.08% above, 3% below, and 4% above the equilibrium value from PITOT respectively.
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It is worth considering the effect of these variations on the flow condition downstream in the

acceleration tube. If Vs,1 is set to each of these shock speeds, a large change in performance is

predicted using PITOT. The theoretical acceleration tube shock speed, Vs,2, varies from 17,100

to 18,600 m/s, and the subsequent stagnation enthalpy varies from 153 to 181 MJ/kg (a change

in flight equivalent velocity from 17,500 to 19,000 m/s). These are non-trivial variations in the

overall flow condition.

Fig. 6.5 shows the experimental acceleration tube shock speeds. The global mean and

95% CI are also shown for each shock speed. The predicted acceleration tube shock speed for

this condition is 17,830 m/s. Focusing on the end of the acceleration tube, the global mean

experimental shock speeds are 19,300 ± 400 m/s for ‘at4-at5’, 17,800 ± 300 m/s for ‘at5-at6’,

and 18,500 ± 200 m/s for ‘at4-at6’. It can be seen that the two experiments from the second

experimental campaign, x2s3241 and x2s3244, are consistent with the first campaign. It can

also be seen that PITOT’s equilibrium solver actually under-predicts the mean experimental

‘at4-at6’ value by around 4%. The mean shock speed appears to be falling at the end of the

last set of sensors, and then again at the end of the second. However, it is hard to conclude

trends with large individual uncertainties, large variation, and only three experimental shock

arrival times in each set.

While the uncertainties for some of the mean Vs,2 values discussed in the last paragraph are

not large, in Fig. 6.5 it can be seen that the uncertainties on the individual measurements are

relatively large. The mean, minimum, and maximum uncertainties for all of the data shown

on the figure are ±800 m/s, ±100 m/s, and ±3,000 m/s respectively, 5%, 0.8%, 17% of the

nominal theoretical values. These large uncertainties make it difficult to decisively conclude

the state of the gas in the acceleration tube for each experiment, and because of that, what

later occurs in the nozzle and test section. When the shock tube variation was discussed

above, it was found that it could cause a theoretical acceleration tube shock speed variation of

1,500 m/s, from 17,100 to 18,600 m/s, and considering the experimental data in Fig. 6.5, the

various measurements and their associated uncertainties extend further than this range. This

also makes it difficult to ascertain whether the source of the uncertainty is the shock tube or

the acceleration tube.

It is worth considering what is causing the large uncertainties seen in Fig. 6.5. The uncer-

tainty is calculated using the formula which is discussed fully in Appendix G, but in summary:

A shock arrival range is selected manually by the experimenter. The midpoint is taken as the

shock arrival time, and half of the full range is added as a time uncertainty. The total uncer-

tainty includes the shock arrival uncertainty for each sensor, a distance uncertainty for each

sensor location, and a conservative sampling rate uncertainty of the size of a full sample. The

default sampling rate of X2’s data acquisition system (DAQ) is 2.5 MHz, which is the maximum
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Figure 6.5: Experimental acceleration tube shock speeds (Vs,2) for condition X2-GG-UE-2.5
mm from both the first and second experimental campaigns.

sampling rate of the DAQ hardware, corresponding to one sample every 0.4 µs. The other issue

is uncertainty in the shock arrival time at each sensor location due to the low post-shock static

pressure for these conditions (of the order of a kilopascal), which is less than 1% of the range

of the 50 psi (≈350 kPa) pressure transducers currently used on the wall in X2’s acceleration

tube [277]. It would be preferable to use more sensitive transducers, however, the high pressure

unsteady expansion and driver gas which follows the test gas down the tube requires the use

of relatively high range transducers.

The large uncertainties seen in Fig. 6.5 mainly show that this sampling rate is not fast

enough for performing these experiments in a facility of this size. For example, considering

shock speed ‘at4-at6’ calculated using the 2.5 MHz data for experiment x2s3244, the total

uncertainty is 2.6%. If each of the components of the uncertainty are considered separately,

the contributions from the shock arrival uncertainty (which is related to the sample size), the

sampling rate, and the distance uncertainty are 2.1, 1.5 and 0.6% respectively. To reduce the

sampling rate issue and aid in better selecting the shock arrival time for these experiments, a

60 MHz data acquisition card was installed for the second experimental campaign and used to
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measure the acceleration tube wall pressure traces for experiments x2s3241 and x2s3244. When

the example shock speed is re-calculated using the 60 MHz data, the total uncertainty is 1.8%,

and the contributions from the shock arrival uncertainty, the sampling rate, and the distance

uncertainty are 1.7, 0.06 and 0.6% respectively. Showing that the uncertainty for the 60 MHz

data is instead dominated by uncertainty in determining the shock arrival time.

Referring to Fig. 6.5 and considering the experimental data from the second campaign, it

can be seen that because of this uncertainty in determining the shock arrival time, recording the

acceleration tube signals at 60 MHz did not consistently reduce the shock speed uncertainties.

For example, the ‘at4-at5’ uncertainty for experiment x2s2513, which was sampled at 2.5 MHz,

is ±1,000 m/s; the same uncertainty for experiment x2s3241, with the 60 MHz sampling is

±300 m/s. However, the ‘at4-at5’ uncertainty for experiment x2s3244 is also ±1,000 m/s. These

two wall sensors (‘at4’ and ‘at5’) are spaced 256 mm apart, whereas sensors ‘at4’ and ‘at6’ are

spaced 506 mm apart. This shows that even with the 60 MHz card, uncertainty in determining

the shock arrival time and the assigned distance uncertainty when sensors are closely spaced

can still lead to large uncertainties.

All of these related uncertainties come from the compromises involved in measuring time-

of-flight shock speeds. Larger sensor spacing gives lower uncertainties, and in an ideal case, it

would be preferable. However, generally shock waves attenuate with distance, and the larger

spacing gives an average value which can’t be used to measure attenuation. X2’s acceleration

tube is also made up of a series of sections connected by collars and capstans, meaning that the

exact length between sensors mounted on different physical sections can slightly change with

time, making it hard to average over the whole acceleration tube with complete certainty.

The final issue is the sensor response time. The shock arrival times presented here were found

manually using a range which indicated when the shock arrival occurred. Any uncertainty in

the shock arrival time was added as a time uncertainty on the related shock speed calculations,

which in some situations was what led to uncertainties not decreasing with the higher sampling

rate. The quoted response time of the pressure transducers used is >2 µs [277], meaning that for

a 1 kPa step change, they will reach 0.63 kPa (63% of the input) after 2 µs, and faster response

will be determined by the noise on the signal. The size of a single sample for the 60 MHz data

is 16.66 ns. If the response is modelled as a first order system with a time constant of 2 µs

responding to a 1 kPa step change, its initial response will have a linear slope of 1 kPa/2 µs

(due to the time constant of 2 µs). To respond in 16.66 ns, the system must be able to sense a

change in pressure of 8.33 Pa, which is 0.0023% of the sensor range, or around 0.115 mV of raw

signal. This would be impossible to sense with the current shock detection system.

The influence of shock speed uncertainties on the final test flow is considered in Section 5.5.
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The technique calculates a nominal case and solution bounds by assuming that the uncertainty

on the fill pressures are small and that the mean uncertainties on the mean experimental

shock speeds in each section of the facility can be used to find the test section state using an

experimental equilibrium version of PITOT. A sensitivity analysis is performed by perturbing

the calculation using every permutation of the shock speeds with their mean uncertainties.

The nominal case is the result using the mean shock speeds, and the solution bounds are the

minimum and maximum of each quantity from all of the permutations of the shock speeds.

The sensitivity analysis is calibrated to scale the experimental tube wall static pressure

at the entrance to the nozzle and the nozzle exit impact pressure within the uncertainty of

the overall solution. This is achieved by running the sensitivity analysis with several different

settings to find the best match for both the experimental shock speeds, and tube wall and

test section pressure data. The major settings used to change the results of the sensitivity

analysis are discussed in detail in Section 5.5, but a short summary of them is provided here.

Firstly, the nozzle entrance state (state 7) is influenced by two factors: the first is whether a

reflected shock of non-negligible effect is deemed to have occurred at the secondary diaphragm

or not, and if so, the strength of that reflected shock; the second is to determine what state the

shocked test gas unsteadily expands to in the acceleration tube. Generally, due to Mirels effects

[106, 107, 108] the test gas over-expands in the acceleration tube, reaching a lower pressure and

higher velocity than would be expected from ideal shock tube theory. The limiting case is when

the shocked test gas unsteadily expands to the shock speed in the acceleration tube (i.e. V7

= Vs,2). Then moving into the test section, a decision must be made about what area ratio

to use for the steady expansion through the facility’s nozzle. Due to boundary layer build up

along the acceleration tube, and further boundary layer growth through the nozzle, often an

‘effective’ area ratio is required instead of the actual geometric one.

It was decided to use this method to quantify the test section state of experiment x2s3244

from the second experimental campaign. While this experiment has higher calculated shock

speed uncertainties than experiment x2s3241 it was chosen to show how this method can be

successfully applied for conditions with higher acceleration tube shock speed uncertainties. The

mean Vs,1 and Vs,2 values for x2s3244 are 8,700 ± 100 m/s and 18,700 ± 400 m/s respectively.

For experiment x2s3244, the mean experimental unsteadily expanded test gas pressure (p7)

is 1.2 ± 0.1 kPa. The p7 range from the sensitivity analysis without a reflected shock at the

secondary diaphragm, and with the shocked test gas (state 2) unsteadily expanded to Vs,2, is

0.28 to 0.76 kPa, which is too low. If instead the shocked test gas is expanded to the ideal

gas velocity in the acceleration tube (i.e. V7 = V6), the pressure range is 0.68 to 1.4 kPa,

which is consistent with the experimental data. However, due to the low acceleration tube fill

pressure (p5 = 0.5 Pa), it is expected that V6 would be closer to Vs,2. It is therefore likely
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that the reflected shock has non-negligible effect. Comparing the theoretical minimum time for

the mean experimental Vs,1 and Vs,2 values to reach the wall sensors in the acceleration tube

against the experimentally measured shock arrival times gives an estimated delay of around

60 µs, some of which would be a hold time at the secondary diaphragm, meaning that a non-

negligible reflected shock would be expected. With a fully reflected shock at the secondary

diaphragm, and with the shocked test gas unsteadily expanded to Vs,2, the p7 range is 0.78

to 1.6 kPa. This range is consistent with the experimental data so it was decided to use these

settings to find the test section state.

Fig. 6.6 shows the experimental test section 15◦ half-angle cone pressure (p10c) data for

experiment x2s3244. The data has been filtered using a 6th order lowpass filter with a cut off

frequency of 100 kHz, with the unfiltered data shown behind it using a lower opacity. Sensor

‘pt5’ is not shown because another type of probe was mounted in that location for another

experiment. There is a region of quasi-steady pressure for around 73 µs after flow startup and

this is identified on the figure. Sensor ‘pt8’ appears to not be working properly as its pressure

signal rises when the flow arrives but then quickly falls. Sensors ‘pt1’ and ‘pt9’ record lower

pressures, indicating that they are outside the core flow of the test condition; giving a core flow

of around 122.5 mm considering the geometry of the Pitot rake. For these reasons, sensors ‘pt1’,

‘pt5’, ‘pt8’, and ‘pt9’ have not been used to calculate the mean 15◦ half-angle cone pressure.

The mean p10c value during the test time using the remaining sensors is 2.1 ± 0.2 kPa. Using

a fully reflected shock at the secondary diaphragm and with the shocked test gas unsteadily

expanded to Vs,2, choosing an effective nozzle area ratio of 3.5 gave the best match with the

experiment data, with a nominal p10c value of 2.0 kPa which is consistent with the experimental

data. There appears to be pressure variation in space during the test time, with the minimum

value being ‘pt4’ with a p10c value of 1.6 ± 0.3 kPa and the maximum being ‘pt2’ with a value

of 2.5 ± 0.5 kPa. However, as can be seen in Fig. 6.6 where the theoretical values from the

sensitivity analysis with an effective area ratio of 3.5 are shown alongside the experimental

data, this experimental range is covered by the theoretical p10c range of 1.6 to 2.5 kPa.

Table 6.4 presents the final condition details in the test section at the nozzle exit (state 8)

and post-normal shock at equilibrium (state 10e) for experiment x2s3244 using a fully reflected

shock at the secondary diaphragm, before unsteadily expanding the shocked test gas to the

acceleration tube shock speed, and then steadily expanding the gas through the nozzle using

an effective area ratio of 3.5. Both a nominal solution and solution bounds are presented.

It can be seen that the state variables, p8, T8, and ρ8, show the largest variation, with the

pressure uncertainty being −32% / +43% and the density uncertainty being −22% / +26%.

This shows that the large shock speed uncertainties would potentially prevent scaled testing

being performed because the density uncertainties may be too large to get an exact scaled
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Figure 6.6: Experimental test section 15◦ half-angle cone pressures (p10c) from experiment
x2s3244.

value. However, if only stagnation enthalpy and flight equivalent velocity are important, the

uncertainties are much smaller, with uncertainties of −4.0% / +4.1% and −2.0% / +2.0%

respectively.

Table 6.4: Computed test section freestream and post-shock state ranges for experiment
x2s3244.

Nominal Solution bounds Uncertainties
State 8 (nozzle exit condition, using an effective area ratio of 3.5)
Static pressure (p8, Pa) 193 130 – 276 −32% / +43%
Static temperature (T8, K) 775 673 – 885 −13% / +14%
Density (ρ8, kg/m3) 6.92 × 10−5 5.40 × 10−5 – 8.70 × 10−5 −22% / +26%
Velocity (V8, m/s) 19,100 18,700 – 19,500 −2.1% / +2.1%
Mach number (M8) 9.61 8.84 – 10.5 −8.0% / +9.2%
Stagnation enthalpy (Ht, MJ/kg) 188 180 – 195 −4.0% / +4.1%
Flight equivalent velocity (Ue, m/s) 19,400 19,000 – 19,800 −2.0% / +2.0%
State 10e (equilibrium post normal shock pressure in the test section)
Static pressure (p10e, kPa) 23.7 19.1 – 28.7 −19% / +21%
Static temperature (T10e, K) 3,870 3,810 – 3,940 −1.5% / +1.8%
Density (ρ10e, kg/m3) 1.01 × 10−3 8.01 × 10−4 – 1.24 × 10−3 −21% / +23%
Velocity (V10e, m/s) 17,800 17,400 – 18,100 −2.1% / +2.1%
Mach number (M10e) 3.35 3.32 – 3.38 −0.92% / +0.73%
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6.4.2 Test Condition with Secondary Driver (X2-GG-UE-2.5 mm-

SD)

The facility configuration details for test condition X2-GG-UE-2.5 mm-SD can be found in

Table 6.5. Similar to test condition X2-GG-UE-2.5 mm (Section 6.4.1), experiments were per-

formed in both experimental campaigns. The experimental shock speed data for the condition

from both experimental campaigns are presented in Figs. 6.7, 6.8, and 6.9. Fig. 6.7 presents

the secondary driver data, Fig. 6.8 presents the shock tube data, and Fig. 6.9 presents the

acceleration tube data.

Table 6.5: Facility configuration details of condition X2-GG-UE-2.5 mm-SD.

Driver condition X2-LWP-2.5 mm-0 [231, 230, 2]
Primary driver fill condition 77.2 kPa He
Primary diaphragm 1 x 2.5 mm thick cold rolled steel, scored diaphragm
Orifice plate diameter 65 mm
Secondary driver fill condition 21 kPa He
Secondary diaphragm Initial experiments: 2 x ≈ 14 µm thick aluminium foil sheet

Later experiments: 1 x 12.5 or 25 µm thick Mylar sheet
Shock tube fill condition 2.0 kPa 85%H2/15%He (by volume) Uranus entry test gas
Tertiary diaphragm 1 x ≈ 14 µm thick aluminium foil sheet
Acceleration tube fill condition 0.5 Pa laboratory air

Fig. 6.7 shows the experimental secondary driver shock speeds with the global mean and

95% CI bounds also shown for each calculated value. The predicted secondary driver shock

speed is 7,386 m/s. Similar to the shock tube shock speeds shown in Section 6.4.1, all data

was statistically consistent and very similar to the result from PITOT, for example, with a

difference of 0.8% between the global mean ‘sd1-sd3’ experimental value and PITOT.

When the first experimental campaign was performed in July 2014, the shock and accelera-

tion tube performance for this condition was much lower than had been expected. In Section V

of James et al. [16] it was proposed that the issues were caused by air contamination in the test

gas either from residual air left in the shock tube before filling, leaking during filling, or further

leaking before the experiment was conducted. Before the second experimental campaign was

performed in August 2016, a helium leak detection system was purchased, and many leaks on

the facility were found and fixed. As such, when the second experimental campaign began, it

was thought that every section of the facility sealed well.

However, the first three experiments from the second experimental campaign were actually

slower than the fastest experiments from the first one. The problem was found to be an issue
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Figure 6.7: Experimental secondary driver shock speeds (Vs,sd) for condition X2-GG-UE-2.5
mm-SD from the first and second experimental campaigns.

with the two sheets of aluminium foil which were being used as the secondary diaphragm

separating the secondary driver and shock tubes. In the experimental procedure, the secondary

driver was filled first, causing a leak in the shock tube which would then subsequently jeopardise

the experiment. Some static diaphragm testing was performed in situ, and it was found that the

single aluminium sheets would rupture statically at around 14 kPa, and that even near the burst

pressure, no leak was caused by diaphragm deformation under pressure. However, it was also

found that when a double aluminium sheet diaphragm was used with any pressure difference

above the static rupture pressure of a single diaphragm, the double diaphragm would not burst,

but would leak through itself into the adjacent tube. This was seen with both helium and air

placed in the secondary driver. After discovering this, the final three experiments for this

condition, x2s3248, x2s3249, and x2s3250, were performed with a Mylar secondary diaphragm.

Testing showed that Mylar did not leak through itself when filled to the required pressure

difference to perform the experiment. x2s3248 and x2s3249 were performed with 12.5 µm thick

Mylar diaphragms, and x2s3250 was performed with a 25 µm thick Mylar diaphragm.

Fig. 6.8 presents experimental Vs,1 values for these three final experiments, and much better

performance is seen. The predicted shock tube shock speed from PITOT is 10,860 m/s. x2s3248

and x2s3249, using the thinner 12.5 µm thick Mylar diaphragms, show a reduction from the

equilibrium theoretical value of around 7%, with both experiments having ‘st1-st3’ shock speeds

of 10,000 ± 60 m/s. The condition with the 25 µm thick Mylar diaphragm, x2s3250, is as slow
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Figure 6.8: Experimental shock tube shock speeds (Vs,1) for condition X2-GG-UE-2.5 mm-SD
from the first and second experimental campaigns.

as the fastest conditions from the earlier experiments, with a percentage reduction from the

equilibrium theoretical value of around 10% using its ‘st1-st3’ shock speed of 9,390 ± 50 m/s,

showing that losses caused by the mass of the secondary diaphragm may explain the per-

formance loss compared to the theoretical result. At the time that these experiments were

performed, the thinnest Mylar material used in the laboratory was the 12.5 µm thick Mylar

Later testing by one of the authors with colleagues from Oxford University for another project

[278] found that Mylar diaphragms down to a thickness of 5 µm could be used reliably on X2,

with a static burst pressure of around 35 kPa. These diaphragms are recommended for future

testing at these conditions.

Fig. 6.9 shows the experimental acceleration tube shock speeds. All shock speeds shown

on the figure except the first shock speed near 6.5 m were calculated using data from the high

speed 60 MHz oscilloscope card. The predicted acceleration tube shock speed from PITOT

is 23,720 m/s, which is also shown on the figure. Due to the fact that the shock tube shock

speeds were slower than predicted, the acceleration tube shock speeds would be expected to

be slower also, so the predicted equilibrium Vs,2 values from semi-theoretical PITOT runs

using the nominal ‘st1-st3’ values of 10,000 m/s for experiments x2s3248 and x2s3249, and

9,390 m/s for experiment x2s3250 are also shown. Looking at the values near the end of the

acceleration tube, it can be seen that the majority of the values from experiments x2s3248,

x2s3249, and x2s3250 are clustered around the semi-theoretical Vs,2 value from PITOT using
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Vs,1 = 9,390 m/s, and that experiments x2s3248 and x2s3249 have not reached their expected

theoretical value, whereas x2s3250 has actually exceeded it by 2% using the ‘at4-at6’ value from

the 60 MHz card.
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Figure 6.9: Experimental acceleration tube shock speeds (Vs,2) for condition X2-GG-UE-2.5
mm-SD from the first and second experimental campaigns.

In Section 6.4.1 when the acceleration tube shock speeds were discussed for condition X2-

GG-UE-2.5 mm, it was mentioned that the shock speed uncertainties in the acceleration tube

for conditions this fast can be quite large, and this is also seen here when individual shock speeds

are considered. Using the 60 MHz data, the ‘at4-at5’ and ‘at4-at6’ shock speeds for experiment

x2s3248 are 18,800 ± 400 m/s and 19,100 ± 200 m/s respectively. These are relatively small

uncertainties. However, when the original DAQ data recording at 2.5 MHz is considered the

same shock speeds become 19,400 ± 1,000 m/s and 19,300 ± 700 m/s respectively. The results

are quite similar for x2s3249. Its shock speeds are slightly faster and have slightly larger

uncertainties, its ‘at4-at6’ shock speed using the 60 MHz data is 19,300 ± 400 m/s, but they are

all statistically consistent with the results for x2s3248. The acceleration tube wall pressures

for both experiments are also consistent with each other with a pressure of 2.2 ± 0.5 kPa for

experiment x2s3248 and 2.3 ± 0.3 kPa for experiment x2s3249 using only the ‘at5’ to ‘at8’ values

due to the very short period of steady pressure behind the moving shock wave before that.

Considering experiment x2s3250, due to the large uncertainties using the 2.5 MHz data, it

is statistically consistent with x2s3248 and x2s3249, but only for shock speed ‘at5-at6’ using

the 60 MHz data, as can be seen in Fig. 6.9. It can also be seen that x2s3250 is faster than the
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other two experiments. This is not what would be expected as it had a slower shock tube shock

speed by around 5% (see Fig. 6.8). At such low acceleration tube fill pressures (p5 = 0.5 Pa),

the conditions become very sensitive to small changes, because, for example, a change of 0.1 Pa

becomes a 20% change in density in front of the acceleration tube shock. Potentially either the

fill pressure was lower for x2s3250 or higher for the other two experiments. This is backed up

by the fact that x2s3250 has an acceleration tube wall pressure of 1.6 ± 0.2 kPa which is lower

than the other two experiments, potentially indicating a lower fill pressure. This is something

which can be investigated further in the future when more experiments are carried out.

It was decided to use the same sensitivity analysis technique from Section 5.5 which was used

in Section 6.4.1 for X2-GG-UE-2.5 mm to quantify the test section state of this condition using

experiment x2s3249. It is not necessary to use the secondary driver shock speed to perform the

sensitivity analysis, as the secondary driver functions as an extension of the driver, so it will

not be discussed here. The mean Vs,1 for experiment x2s3249 is 10,000 ± 60 m/s and the mean

Vs,2 using wall sensors ‘at4’,‘at5’, and ‘at6’ is 19,300 ± 400 m/s.

As this condition is similar to condition X2-GG-UE-2.5 mm from Section 6.4.1 it was decided

to start the calculation with settings similar to that condition. As such, the first calculations

were also performed with a fully reflected shock at the tertiary diaphragm, before unsteadily

expanding the shocked test gas to the acceleration tube shock speed (i.e. V7 = Vs,2). This gave

an unsteadily expanded test gas (p7) pressure range of 3.3 to 4.8 kPa which is higher than the

experimental value of 2.3 ± 0.3 kPa. If the reflected shock at the tertiary diaphragm is removed,

the p7 range becomes 2.1 to 3.5 kPa which is consistent with the experimental data. However,

this is not likely to be a correct assumption due to the estimated roughly 50 µs hold time at

the tertiary diaphragm, which was found using the same method discussed in Section 6.4.1

for experiment x2s3244 and is of similar magnitude to the hold time estimated there, where a

fully reflected shock was used. There are two other possible solutions, either there is a total

pressure loss at the tertiary diaphragm which is causing the gas to expand either from a lower

velocity (V2) or lower pressure (p2) (or a combination of the two), or the mean Vs,2 being

used is too low and the gas is actually unsteadily expanding further than this. Due to the fact

that no such total pressure loss was seen for experiment x2s3244 in Section 6.4.1 and that the

acceleration tube shock speed uncertainties for this condition are quite large (up to ±2,000 m/s

using the 2.5 MHz DAQ data), it was decided to consider unsteadily expanding the shocked

test gas further. By unsteadily expanding the test gas using an over-expansion factor of 1.08,

the effective nominal Vs,2 value is 20,900 m/s. The related p7 range is 1.7 to 2.7 kPa, which

is consistent with the experimental data. If this is correct, it would show that potentially the

piezoelectric pressure transducers cannot respond quickly enough to the passing shock wave

to correctly capture the shock speed. To capture this uncertainty about the state of the test
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gas entering the nozzle, the sensitivity analysis was performed again using the permutations of

the absolute minimum and maximum experimental shock speeds measured, giving a larger p7

range of 1.1 to 4.0 kPa

Fig. 6.10 shows the experimental test section 15◦ half-angle cone pressure (p10c) data for

experiment x2s3249. The data has been filtered using a 6th order lowpass filter with a cut off

frequency of 100 kHz, with the unfiltered data shown behind it using a lower opacity. Once

again sensor ‘pt5’ is not shown as a probe was mounted in that location for another experiment.

There appears to be a relatively steady test time of 60 µs and this is marked on the figure. While

the mean p10c value for all of the sensors except ‘pt5’ and ‘pt8’ is 2.5 ± 0.2 kPa, if individual

sensors are considered, there appears to be a large asymmetrical pressure variation during the

test time. The minimum value during the test time is ‘pt4’ with a p10c of 1.8 ± 0.6 kPa and the

maximum value is ‘pt2’ with a p10c of 3.7 ± 0.3 kPa. Interestingly, these are the same two sensors

which gave the minimum and maximum individual pressures for experiment x2s3244 in Fig. 6.6,

meaning that the asymmetrical pressure variation may be caused by the pressure transducers

not responding linearly to the small input pressure. The manufacturer specifications for the

transducers state that they should be linear to 1% of full scale [277], which would be 3.45 kPa,

meaning that they could have a non-linear response which is causing the behaviour. At this

time, it is not possible to conclude if this is the case or not, but further experiments with Pitot

pressure probes could be carried out to examine whether or not the pressure variations in space

are real.

Using the sensitivity analysis with the more conservative option which was used to find the

nozzle inlet conditions, the p10c range using an effective area ratio of 3.5 (the same as was used

in Section 6.4.1) is 2.0 to 4.9 kPa, which is consistent with the variation of the experimental

data. This result is also shown in Fig. 6.6.

Table 6.6 presents the final condition details in the test section at the nozzle exit (state 8)

and post-normal shock at equilibrium (state 10e) for experiment x2s3249 using a fully reflected

shock at the secondary diaphragm, before unsteadily expanding the shocked test gas to the

acceleration tube shock speed, and then steadily expanding the gas through the nozzle using

an effective area ratio of 3.5. Both a nominal solution and solution bounds found using the

absolute minimum and maximum experimental shock speeds are presented. Similar to Table 6.4

in Section 6.4.1, in Table 6.6 the state variables show the largest variation (up to 110%), and

the stagnation enthalpy and flight equivalent velocity show much less variation (up to 8.2%).

However, in Table 6.6 the percentage uncertainties are generally around double the uncertainties

which were seen in Table 6.4 for the slower test condition.

Overall, it has been shown that a 20 km/s experiment can be performed in X2, and also
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Figure 6.10: Experimental test section 15◦ half-angle cone pressures (p10c) from experiment
x2s3249.

Table 6.6: Computed test section freestream and post-shock state ranges for experiment
x2s3249.

Nominal Solution bounds Uncertainties
State 8 (nozzle exit condition, using an effective area ratio of 3.5)
Static pressure (p8, kPa) 0.407 0.187 – 0.860 −54% / +110%
Static temperature (T8, K) 1,390 1,020 – 1,830 −26% / +31%
Density (ρ8, kg/m3) 8.13 × 10−5 5.09 × 10−5 – 1.31 × 10−4 −37% / +61%
Velocity (V8, m/s) 21,400 20,500 – 22,200 −4.1% / +3.6%
Mach number (M8) 8.14 7.09 – 9.70 −13% / +19%
Stagnation enthalpy (Ht, MJ/kg) 242 222 – 261 −8.2% / +7.8%
Flight equivalent velocity (Ue, m/s) 22,000 21,100 – 22,900 −4.2% / +3.8%
Pitot pressure (ppitot, kPa) 34.5 22.8 – 52.5 −34% / +52%
Stagnation pressure (pt, MPa) 151 98.4 – 225 −35% / +48%
State 10e (equilibrium post normal shock pressure in the test section)
Static pressure (p10e, kPa) 34.6 22.8 – 51.9 −34% / +50%
Static temperature (T10e, K) 5,240 4,500 – 6,260 −14% / +19%
Density (ρ10e, kg/m3) 9.96 × 10−4 5.99 × 10−4 – 1.63 × 10−3 −40% / +64%
Velocity (V10e, m/s) 19,600 19,000 – 20,200 −3.5% / +2.7%
Mach number (M10e) 2.67 2.44 – 3.04 −8.3% / +14%

that the condition may have actually had an acceleration tube shock speed closer to 21 km/s.

The condition’s nominal flight equivalent velocity is 22 km/s, so it would be almost able to

simulate the 22.3 km/s proposed Uranus entry [68], however, due its large uncertainties, its
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flight equivalent velocity may actually be anywhere between 21.1 and 22.9 km/s, so it is diffi-

cult to conclude its suitability at this time. The post-shock density range is large also, from

5.99 × 10−4 – 1.63 × 10−3 kg/m3, however, the fact that the nominal value (9.96 × 10−4 kg/m3)

is four times greater than the equilibrium post-shock density for the first Uranus entry point

analysed by Palmer et al. [71] (2.52 × 10−4 kg/m3 from a calculation performed by the authors

in Section 6.5) shows that without X2’s nozzle a modified version of this condition could easily

simulate the proposed Uranus entry using binary scaling.

In the future, to help better quantify this condition, a new shock detection system would

be required which could respond quickly enough to the passing shock to allow the shock speeds

to be found more accurately and with more certainty. Some form of focused optical technique

utilising either lasers or photomultiplier tubes which could respond faster than a physical object

placed under load would be required. This is also a test condition which should first be tested

without the nozzle so that Pitot pressure probes can be used to measure the state of the gas

before it enters the nozzle, removing uncertainty associated with the nozzle inlet condition.

6.5 Theoretical Expansion Tube Compression Ratio Anal-

ysis

X2 is driven in the same manner as a free piston driven shock tunnel [234]. A free piston

driven shock tunnel applies an isentropic compression to a lightweight gas (usually helium or a

mixture of helium and argon) to greatly improve the performance of the facility’s driver section

[234]. A diaphragm which ruptures at a set pressure is used to control the compression ratio

(λ) from a set driver fill condition.

Considering as a simplified example the unsteady expansion equation for a shock tube driver

without an area change [276] (see Equation 6.3), it can be seen why the free piston compression

is advantageous. The degree to which velocity can be added to the unsteadily expanding driver

gas (state 3) is dependent on the sound speed of the stagnated driver condition (state 4, V4 ≈
0 m/s). The driver gas sound speed (a4 =

√
γ4R4T4) is a function of temperature, which for an

isentropic compression, is a function of the compression ratio. In general, driver performance

corresponds far more to driver rupture temperature (T4), which is controlled by the compression

ratio, than it does to driver rupture pressure (p4) which is controlled by the chosen diaphragm

thickness.

V3 = V4 +
2a4

γ4 − 1





1 −
(

p3

p4

)

γ4−1

2γ4





 (6.3)
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Currently, the two most common X2 driver conditions (summarised in Table 6.1) have

compression ratios of 30 and 40 respectively and estimated primary diaphragm rupture pressures

of 27.4 and 35.7 MPa [231]. While X2’s current driver conditions give it the ability to simulate

entry to many planetary bodies in our solar system [222, 1, 81, 127, 78, 87, 79, 86], as Section 6.3

has shown, more powerful driver conditions would be required to easily simulate gas giant entry.

Considering other facilities around the world, higher compression ratios and rupture pres-

sures are common for free piston driven facilities. The T4 reflected shock tunnel at UQ uses

compression ratios up to 60, and rupture pressures up to 75 MPa [279]. The High Enthalpy

shock tunnel Göttingen (HEG) facility at DLR in Göttingen, Germany uses rupture pressures

above 100 MPa, and compression ratios around 55 [280]. It has also been fired at rupture pres-

sures up to 200 MPa [281]. The T5 Shock Tunnel at the California Institute of Technology uses

rupture pressures up to 130 MPa [282] and when first commissioned was using a compression

ratio of 47 [283]. The High Enthalpy Laboratory Munich (HELM) shock tunnel at the Bun-

deswehr University Munich in Munich, Germany has a driver section rated to 185 MPa, has

been fired with rupture pressures up to around 80 MPa, and has a compression ratio range from

64 to 124 [284].

To examine the possibilities available with higher compression ratios and rupture pressures,

a new mode was added to PITOT allowing it to perform parametric studies of different com-

pression ratios by specifying either the driver fill or rupture pressure. Based on what was seen

in the literature, it was chosen to theoretically examine four set driver rupture pressures up

to 200 MPa, in increments of 50 MPa, and compression ratios up to 100. The analysis will

focus on the potential for using an expansion tube with a more powerful primary driver con-

dition to study the aforementioned proposed Uranus and Saturn entries at 22.3 and 26.9 km/s

[68, 69, 70] analysed by Palmer et al. [71] and Cruden and Bogdanoff [72, 73], as well as

another proposed Saturn entry at 28.2 km/s also analysed by Palmer et al. [71] and Cruden

and Bogdanoff [72, 73], and the 29 km/s Neptune entry proposed by Jits et al. [189], of which

the entry radiation was analysed by Park [187]. Park analysed the whole entry but focused

on the 174 second point at 30.1 km/s, where the maximum radiative heat flux was seen [187].

That point will be the focus of any discussion of that proposed entry in this analysis also. The

details of these entry points can be seen in Table 6.7. The first Saturn entry value, Saturn

point 1 from Table 8 in Palmer et al. [71], is from the proposed Saturn entry at 26.9 km/s

[69, 70]. The other Saturn entry value, Saturn point 3 from the same table, is from the faster

proposed 28.2 km/s Saturn entry. Equilibrium post-normal shock densities and temperatures

calculated by the authors using CEA [197, 198] are also shown in Table 6.7 for all four entries.

The Saturn entry post-shock values were calculated using an 89%He/11%H2 (by volume) gas

composition from Conrath and Gautier [274], and the Neptune entry post-shock value was cal-
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Table 6.7: Gas giant entry points from the literature used for comparison in this paper. Sig-
nificant figures from the sources have been maintained.

Entry and source Entry Freestream Freestream Freestream Eq post-shock Eq post-shock
point density temperature velocity density temperature
(s) (ρ∞, kg/m3) (T∞, K) (U∞, km/s) (kg/m3) (K)

Uranus point 1 from 34.5 2.04 × 10−5 128.2 22.504 2.52 × 10−4 5,680
Table 4 in
Palmer et al. [71]
Saturn point 1 from 206 1.80 × 10−5 141.0 26.316 1.81 × 10−4 8,670
Table 8 in
Palmer et al. [71]
Saturn point 3 from 91.5 5.77 × 10−5 141.2 27.706 5.59 × 10−4 9,830
Table 8 in
Palmer et al. [71]
Neptune entry point 174 1.11 × 10−4 not provided 30.090 1.09 × 10−3 12,000
from Jits et al. [189]
examined by Park [187]

culated using an 81%He/19%H2 (by volume) gas composition from Gautier et al. [190] and a

140 K freestream temperature (as the freestream temperature was not specified in either Jits

et al. [189] or Park [187]).

It was decided to base the test conditions to be analysed in this section on the conditions

discussed in Sections 6.3 and 6.4. The specific details of these conditions can be found in

Table 6.2: simulated Uranus entry test gas composition of 85%H2/15%He (by volume), p1

= 2 kPa, p5 = 0.5 Pa, X2’s contoured nozzle with an area ratio of 5.64 [229] and if used, a

secondary driver fill pressure (psd1) of 21 kPa. It is not known whether these values would be

nominal for other compression ratios and driver rupture pressures, but they form a reasonable

basis for a theoretical parametric study like this.

The model employed to simulate these theoretical conditions is the normal theoretical equi-

librium solver in PITOT and it should be noted that it is a state-to-state solver with no loss

mechanisms modelled This means that the calculations performed and discussed in this section

provide a theoretical maximum of what would be possible for expansion tubes with these driver

conditions. It is expected that because of increased driver losses due to high temperatures,

diaphragm losses, and low density shock tube effects in the acceleration tube [106, 107, 108],

that performance in practice would probably be lower than what is seen here.

Similar to what was seen in Fig. 6.3 in Section 6.3, there are ‘kinks’ on some of the plots in

this section which may be non-physical and caused by interpolating beyond the CEA [197, 198]

temperature limits to find the state of the shocked accelerator gas condition (state 6). Also,

where curves are truncated it is because PITOT was not able to find a solution for the input

conditions.
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6.5.1 Maximum Stagnation Enthalpy

As has been discussed earlier, an expansion tube accelerates the post-shock shock tube condition

(state 2) to superorbital conditions in the acceleration tube by processing the gas through

an unsteady expansion. Stagnation enthalpy (Ht) will generally be maximised by using the

lowest acceleration tube fill pressure (p5) possible. Fig. 6.11 shows what would be considered

‘maximum performance’ for the eight different driver conditions shown on the plot by showing

their stagnation enthalpies (and the related flight equivalent velocities, see Equation 6.1) when

p5 is set to 0.5 Pa, the general operational limit of the X2 expansion tube.
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Figure 6.11: Performance of different conditions with set driver rupture pressures (p4), when
the driver compression ratio (λ) is varied from 0 to 100, and p5 = 0.5 Pa.

Examining Fig. 6.11, firstly, it shows that without a secondary driver section the perfor-

mance appears to be rather insensitive to increases in driver rupture pressure above 100 MPa.

A similar trend can be seen for the secondary driver conditions, with a large gap in performance

between the conditions with 50 and 100 MPa rupture pressures, and a smaller gap beyond that.

Beyond 100 MPa, the performance still increases with increasing rupture pressure, but it is less

pronounced, and concentrated towards the higher compression ratios. It can also be seen that

without a secondary driver, both of the proposed Saturn entries could be potentially simulated

by an expansion tube driver with a compression ratio of 100, but that a secondary driver is
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required to simulate the 30.1 km/s Neptune trajectory point analysed by Park [187]. With a

compression ratio above 50, a secondary driver section, and a driver rupture pressure around

100 MPa, all of the entry velocities could be simulated.

6.5.2 Density Requirements

If this analysis is considered for an X2 sized expansion tube, scaling must be considered. As was

discussed in the introduction to Section 6.3, X2 has a relatively small driven section diameter

(85 mm with a nozzle exit diameter of 201.8 mm) and aerothermodynamic testing is generally

performed using binary scaled test conditions. This requirement adds another limit to the Ht

values for gas giant entry conditions where the driver is only just powerful enough to simulate

the conditions. This would be less of a problem for facilities with larger driven section or nozzle

exit diameters. In figures throughout this section, equilibrium post-normal shock densities over

the test model (ρ10e) are compared to the related values from Palmer et al. [71] and Park [187]

shown in Table 6.7. Scaled entry densities for simulation in X2 are also shown in figures where

appropriate. The proposed aeroshell diameters for the Saturn and Uranus entries proposed by

the US National Research Council [68, 69, 70] are 1,000 mm for Saturn and 760 mm for Uranus.

Therefore, Fig. 6.12 shows density values for Saturn entry based on a 100 mm diameter scaled

model (1/10 scale) and a 108.6 mm diameter scaled model (1/7 scale) for Uranus entry. The

Saturn entry point 3 value from Palmer et al. [71] which is shown in Table 6.7 is actually from

another proposed entry, but Palmer et al. [71] simulated it as a 1,000 mm diameter aeroshell as

well, so the same has been done here. Two separate scale values are provided for the Neptune

entry point, because the vehicle proposed by Jits et al. [189] is a more complex biconic vehicle

design. The radius of the nose cone is 0.33 m, but the radius on the back face of the whole

vehicle is 0.5 m. Therefore, a 1/6 scale model could simulate just the nose cone with a 110 mm

diameter model, and a 1/10 scale model could simulate the whole vehicle with a 100 mm model.

In Fig. 6.12, ρ10e values for the conditions in Fig. 6.11 are shown compared to the unscaled

post-normal shock densities for the entry points shown in Table 6.7, as well as the densities

required for post-shock binary scaling for two of the entry points. Binary scaled results are not

shown for Saturn entry point 3 from Palmer et al. [71] or the Neptune entry point examined

by Park [187] because they would be an order of magnitude larger than the other points

shown. It can be seen that the overall ρ10e range for all of the test conditions (3.282 × 10−4

to 8.070 × 10−4 kg/m3) is of the same order of magnitude as the three trajectory points from

Palmer et al. [71] shown on the figure, with only Saturn point 3 passing through the expansion

tube values. It is believed that with slight modifications to the tunnel fill pressures Uranus

point 1 and Saturn point 1 could also be covered by the tunnel conditions. However, overall

Fig. 6.12 shows that these conditions would not be appropriate for binary scaled experiments.
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Figure 6.12: ρ10e for the conditions shown in Fig. 6.11 with a nozzle expansion performed at
the end of the acceleration tube.

As was discussed in Section 6.3, ρ · L reduces through a steady expansion nozzle, therefore

in Fig. 6.13 the same result as Fig. 6.12 is shown without a steady expansion at the end of the

acceleration tube to simulate a nozzle. Because the nozzle expansion is nominally an isentropic

process, the stagnation enthalpy of the test gas remains constant through the nozzle, and the

values shown in Fig. 6.11 are still able to be compared to the results shown in Fig. 6.13. It has

been assumed that without the nozzle the maximum model diameter would be 50 mm, so the

scaling factors have been doubled compared to Fig. 6.12.

Considering Fig. 6.13, where the ρ10e values calculated for the conditions without the nozzle

expansion can be seen, the test conditions now overlap with the densities required to simulate

the post-shock condition for Uranus entry point 1 and Saturn entry point 1 from Palmer et

al. [71], even if the scaling factor is now higher. However, to be able to simulate post-shock

binary scaled versions of Saturn entry point 3 from Palmer et al. [71] or the Neptune entry

point analysed by Park [187], more density is required, which would require higher acceleration

tube fill pressures.
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Figure 6.13: ρ10e for the conditions shown in Fig. 6.11 without a steady expansion through a
nozzle performed at the end of the acceleration tube.

6.5.3 Higher Acceleration Tube Fill Pressures

Fig. 6.14 explores the density potential of different acceleration tube fill pressure (p5) values by

taking the same conditions analysed in Figs. 6.11 and 6.12, but instead fixing the compression

ratio at the maximum value of 100 and varying p5 from 0.1 to 10 Pa. The equilibrium post-

normal shock density values from Palmer et al. [71] and Park [187] shown in Table 6.7 are also

shown along with scaled entry densities appropriate for an X2 sized facility.

Considering Fig. 6.14, it can be seen that there are combinations of driver condition and

acceleration tube fill pressure (p5) which would be able to simulate the equilibrium post-normal

shock densities of all three Palmer et al. [71] entry points and the Neptune entry point analysed

by Park [187] at true flight density, and Uranus entry point 1 and Saturn entry point 1 from

Palmer et al. [71] at scaled post-normal shock densities appropriate for an X2 sized facility

using X2’s nozzle. All of this can be done with a maximum acceleration tube fill pressure of

around 4.5 Pa, showing that a large increase in acceleration tube fill pressure is not required

to increase the density. It can be also be done both with and without the use of a secondary

driver section, giving many options in terms of generating the stagnation enthalpy required to

simulate the conditions. It can also be seen that it would not be possible to simulate the binary
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Figure 6.14: ρ10e of different conditions with set driver rupture pressures (p4), λ = 100, with a
nozzle expansion, when p5 is varied from 0.1 to 10 Pa.

scaled post-shock density of either Saturn entry point 3 from Palmer et al. [71] or the Neptune

entry point analysed by Park [187] with these conditions. To examine how these higher density

conditions could be simulated, Fig. 6.15 shows the same results shown in Fig. 6.14 except

without using a steady expansion through a nozzle at the end of the acceleration tube.

In Fig. 6.15, where the nozzle is not used, much lower acceleration tube fill pressures are

required than in Fig. 6.14. It can be seen in Fig. 6.15 that now a p5 value between 0.5 and 1 Pa

would be required to simulate Uranus entry point 1 and Saturn entry point 1 from Palmer et

al. [71] at scaled post-normal shock densities appropriate for an X2 sized facility. Depending

on the driver condition and whether or not the secondary driver is used, the binary scaled

post-shock density of Saturn entry point 3 from Palmer et al. [71] could be simulated with a

p5 value between 2.8 and 5.6 Pa. For the Neptune entry point analysed by Park [187] p5 value

between 3.6 and 7.4 Pa would be required.

Overall, this subsection and Section 6.5.2 have shown that there are different approaches to
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Figure 6.15: ρ10e of different conditions with set driver rupture pressures (p4), λ = 100, without
a nozzle expansion, when p5 is varied from 0.1 to 10 Pa.

simulate the density requirements of post-normal shock binary scaled gas giant entry conditions.

These subsections have not identified the exact combinations required to do this, but it has

been shown that simulating the post-normal shock binary scaled conditions for Uranus entry

point 1 and Saturn entry point 1 from Palmer et al. [71] should be possible for an X2 sized

facility both with and without a nozzle. A more powerful driver would be required if the nozzle

was used. Without a nozzle, it should be possible to simulate the post-normal shock binary

scaled conditions for both Saturn entry point 3 from Palmer et al. [71] and the Neptune entry

point analysed by Park [187].

6.6 Conclusions

This chapter has investigated the possibility of simulating the proposed 22.3 km/s Uranus entry

[68] and 26.9 km/s Saturn entry [69, 70] in the X2 expansion tube. It was first examined

theoretically by investigating how to maximise the performance of the facility both with and
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without a secondary driver section. Theoretically, it was shown that it should be possible to

experimentally simulate the proposed 22.3 km/s Uranus entry [68] in X2 using a secondary

driver section to augment the performance of X2’s current most powerful driver condition. It

was also shown it would not be possible at this time to simulate the proposed 26.9 km/s Saturn

entry [69, 70] in X2. While the theoretical investigation principally focused on conditions using

X2’s contoured nozzle, it was seen that it would likely be necessary to remove X2’s nozzle to

simulate the proposed Uranus entry with a binary scaled test condition, as a higher ρ·L product

is achievable without the nozzle.

Experimentally, both a condition with and without a secondary driver were investigated.

The condition without a secondary driver, X2-GG-UE-2.5 mm, had a flight equivalent velocity

range of 19 to 19.8 km/s, too slow to simulate the proposed Uranus entry. Its individual shock

speed uncertainties were large due to its high shock speeds, however, it was also seen that the

expected uncertainties on the stagnation enthalpy and flight equivalent velocity values were still

small considering this, being only −4.0% / +4.1% and −2.0% / +2.0% respectively. However,

the uncertainties on the state variables were larger, with the worst case being a freestream

density variation of −22% / +26%, indicating that these test conditions may not be suitable

for simulating situations which are very sensitive to changes in the state variables of the test

gas.

The condition with a secondary driver, X2-GG-UE-2.5 mm-SD, showed performance losses

in the shock tube of at least 7%, which was attributed to diaphragm losses between the sec-

ondary driver and shock tube. The thinnest Mylar diaphragm separating the tubes was 12.5 µm

thick, and it was proposed to use 5 µm thick diaphragms in the future to recover some of the

lost performance. Due to the large shock speed uncertainties and uncertainty about how far

the test gas unsteadily expanded in the acceleration tube, the test section uncertainties were

generally double what was found for condition X2-GG-UE-2.5 mm. The inferred flight equiva-

lent velocity range for this condition was 21.1 to 22.9 km/s. Even though the range is large, it

does include the proposed 22.3 km/s Uranus entry and shows that if the uncertainties could be

reduced, X2 could be used to simulate Uranus entry flight conditions. The post-shock density

over the test model for the condition was of the same order of magnitude as the post-shock

density of some of the Uranus entry points analysed by Palmer et al. [71], but binary scaled

experiments could be performed by removing X2’s nozzle.

To investigate what could be done beyond the limitations of X2’s current driver configura-

tions, a theoretical parametric study of free piston driven expansion tubes with more powerful

drivers was performed. Primary diaphragm rupture pressures up to 200 MPa and compression

ratios up to 100 were used as these values were found to have been used by other facilities.

It was found that using various combinations of driver rupture pressure, compression ratio,
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whether to use a secondary driver or not, acceleration tube fill pressure, and whether to use

a nozzle or not, an X2 sized facility could simulate the proposed Uranus and Saturn entries

[68, 69, 70], another proposed Saturn entry at 28.2 km/s analysed by Palmer et al. [71], and a

30.1 km/s Neptune entry proposed by Jits et al. [189] both with and without binary scaling.

More powerful driver conditions would be required to simulate the faster entries, and to pro-

duce binary scaled test conditions. The possibility of designing more powerful driver conditions

within the physical constraints of X2’s current driver is being investigated.

Further work should be aimed at reducing the large uncertainties seen in this work. This

means removing potential losses by ensuring that absolute minimum thickness diaphragms are

used for future experiments; developing a shock detection system which is fit for purpose for

detecting 20 km/s shocks; performing experiments without X2’s contoured nozzle to reduce

uncertainty about the flow entering the nozzle; using only Pitot pressure probes in the test

section to ensure that measured test section pressures are high enough to be out of the non-

linear range of the sensors; and writing more complex expansion tube analysis programs to give

a more complete picture of the real uncertainty which exists for expansion tube flow conditions.

In the meantime, while these issues are being worked through, as was discussed in the

introduction to this chapter, another direction would be to continue on from the work of

Stalker and Edwards [67] and simulate only the shock layer temperature, without reproducing

the stagnation enthalpy, by using either more helium or neon in the test gas. Without the

requirement to reproduce the stagnation enthalpy, lower velocity conditions could be used,

reducing shock speed uncertainties, and with them, the inferred uncertainties in the test section.

This would also increase the available ρ · L range for producing binary scaled test conditions

as excess driver performance could be used to produce slower conditions with higher density.

The need to remove X2’s nozzle to maintain more density could also be relaxed, allowing larger

models to be used, with less scaling. Considering all of the issues with directly simulating gas

giant entry in an expansion tube facility which this paper has discussed, at this time it appears

that this may be the most promising direction to take this work in. This is examined further

in the following chapter.
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Using Higher Amounts of Diluent for

Gas Giant Entry Simulation

Tiger got to hunt, bird got to fly; Man got to sit and wonder, ‘Why, why, why?’ Tiger got to

sleep, bird got to land; Man got to tell himself he understand.

– Kurt Vonnegut, Cat’s Cradle, 1963 [285]

7.1 Chapter Overview

Due to the fact that Chapter 6 shwoed that the X2 expansion tube cannot currently re-create

the 26.9 km/s entry velocity required to simulate Saturn entry, and that conditions which could

re-create the velocity of a 22.3 km/s Uranus entry have not yet been experimentally validated,

it is important that other avenues be explored to potentially allow the simulation of these

conditions in the facility in the future. This section examines how utilising a higher amount of

helium diluent than the actual entries (or the change to a heavier neon diluent) would allow

hotter shock layers to be simulated at shock speeds currently achievable in the X2 expansion

tube.

This chapter is made up of the final submitted version of the journal paper James et al.

[26] with some repetition removed from the document and links to previous chapters added.

7.2 Introduction

The four outermost planets in our solar system (Jupiter, Saturn, Uranus, and Neptune) are

collectively known as ‘the gas giants’ or ‘the Jovian planets’. They are large gaseous planets,

with densities close to that of the sun, which together comprise 99.56% of the planetary mass

in our solar system [37]. All four gas giants are made up of primarily molecular hydrogen and

154
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ten to twenty percent helium (by volume), with small amounts of other trace elements such as

methane [39]. The Galileo probe’s 47.4 km/s entry into Jupiter on the 7th of December 1995

is the only entry into a gas giant planet ever performed by humankind [58]. The majority of

previous gas giant entry research was either performed to support the design of the Galileo

probe [59, 60, 61, 62], or to analyse the results from the mission [58, 64, 66].1 However, there

is now an interest in new missions to the gas giants, especially Saturn and Uranus.

In the US National Research Council’s ‘Vision and Voyages for Planetary Science in the

Decade 2013-2022’ report, scientific missions involving atmospheric entry to Uranus and Saturn

[68, 69, 70] were identified as high priorities for future space research due to several important

unanswered scientific questions. Firstly, gas giants are old planets, containing matter produced

early in the existence of the solar system which could be used to help calibrate and improve

models of solar system evolution. Secondly, gas giant planets are relatively common in extra-

solar planetary systems, providing a valuable link between our own solar system and the greater

universe. The last question relates to the fact that two types of gas giant planets exist in our

solar system. Jupiter and Saturn are ‘gas giants’, whereas, Neptune and Uranus are technically

‘ice giants’ due to the heavy elements trapped in their atmospheres in an ice-like state. It is

hoped that if missions are performed into both gas and ice giant planets, humankind will gain

a better understanding of these types of planets.

The two scientific missions proposed in the report were a 22.3 km/s entry into Uranus [68]

and a 26.9 km/s entry into Saturn [69, 70]. The expected aeroheating uncertainties of these

entries, as well as a third steeper descent angle Saturn entry at 28.2 km/s, were analysed by

Palmer et al. [71] in 2014 by performing a Monte Carlo study on the input parameters to

their data parallel line relaxation computational fluid dynamics (CFD) code. They found that

radiative heating for Uranus entry was negligible but at the highest velocity examined for

Saturn entry, radiative heating contributed up to 20% of the heat load. In general, they found

that the uncertainty in convective heating for Uranus and Saturn entry was only a few percent,

but that for Saturn entry, where the post-shock temperatures are higher, the radiative heating

uncertainty was substantial. The strongest contributor to the radiative heating variation was

found to be the H2 dissociation reaction rates, because the radiative heating seen at the wall

is strongly influenced by the chemistry which occurs just behind the bow shock.

More recently, Cruden and Bogdanoff [72, 73] experimentally examined the expected post-

shock radiation for parts of these three entry trajectories in the Electric Arc Shock Tube (EAST)

facility at NASA Ames Research Center [76]. This constitutes the first significant gas giant

entry experimental research study since the design of the Galileo probe [60, 61, 62], and the first

1This is discussed further in Section 3 where a larger literature review about gas giant entry can be found.
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attempt to spectrally quantify the shock layer radiation for these missions. Previous gas giant

experiments in EAST were believed to have been compromised by radiation from the driver

gas (see Bogdanoff and Park [194]). EAST is a non-reflected shock tube (NRST) capable of

re-creating planetary entry shock layers at the true flight velocity and pressure. A suite of

spectrometers examine the relaxation behind the moving shock wave as it moves past a specific

axial location in the test section. Cruden and Bogdanoff used an 89%H2/11%He (by volume)

simulated Saturn entry test gas, based on the work of Conrath et al. [274], and examined

freestream pressures from 13 Pa to 66 Pa and velocities from 20 km/s to 30 km/s. Consistent

with Palmer et al.’s [71] conclusion that radiative heating for Uranus entry was negligible,

Cruden and Bogdanoff found that, within their measurement limits, no shock layer radiation

was detectable below 25 km/s. Above 25 km/s, radiation was observed, and they found that

the post-shock non-equilibrium region was very large, with the shocks not reaching equilibrium

over several centimetres. They also found that in many cases, the state distributions were non-

Boltzmann. Due to the fact that NEQAIR [77], NASA’s in-house radiation code, is only able

to simulate H2/He flows in Boltzmann states, they found that NEQAIR currently over-predicts

the radiation by up to a factor of 10.

This chapter examines the possibility of simulating gas giant entry in an expansion tube, a

different type of ground testing facility. An expansion tube is a modified shock tunnel facility

which is often used for the study of planetary entry aerothermodynamics. The expansion tube

circumvents a fundamental limitation of shock tubes and tunnels by processing the test gas

through an unsteady expansion after it has been shock processed [196]. If a basic shock tube is

driven too quickly, it creates a dissociated and ionised test flow which is generally only suitable

for the study of post-shock radiation phenomena, like what is studied in EAST [76]. If the

more common reflected shock tunnel is driven too quickly, the flow chemistry created in the

stagnation region when the already shocked test gas is shocked again as it reflects off the shock

tube end wall can chemically freeze in the facilty’s nozzle causing the generated freestream flow

to be chemically excited [112, 113]. Processing the shock-processed test gas with an unsteady

expansion means that the shock processing can be weaker as additional total enthalpy can be

added to the flow while the gas is actually cooling down [196]. Expansion tubes can still suffer

from chemical freezing if the shock tube is driven too quickly, but the use of these two modes

of enthalpy addition means that generally these effects can be minimised. The specific facility

examined in this chapter is the X2 expansion tube at the University of Queensland (UQ). Prior

to this study, X2 has been used to study planetary entry into Earth, Mars, Titan, and Venus

[104, 222, 81, 127, 286, 82, 78, 79, 80, 86, 87] from around 3 km/s to 12 km/s. More information

about X2 can be found in Chapter 4.

While an NRST facility like EAST has the ability to simulate and capture the relaxation
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behind a shock wave at the true flight condition, test times are very short in NRSTs, making it

hard to perform experiments using test models. An expansion tube is a more versatile facility

for several reasons. For a very short period of time (typically around a hundred microseconds

for X2) an expansion tube is able to create a representative aerothermodynamic test flow,

which means that it can be used to test scaled models. This has allowed X2 to examine flows

using many different types of models, including quasi two-dimensional cylinders [78, 79, 80, 4],

scaled aeroshells [81, 82], instrumented models [83, 84, 85], wedge models to study expanding

post-shock flows [86, 87], Mach disk models which produce standing normal shocks to study

radiation over long relaxation distances [88, 89], and resistively heated models to re-create the

surface temperature of planetary entry vehicles [90, 91, 3, 7]. This versatility means that it

would be advantageous to be able to re-create gas giant entry flows in the X2 expansion tube

so that experiments with test models could be performed for the study of post-shock radiation

and other phenomena such as heat transfer and shock standoff.

In Chapter 6, the author performed a theoretical parametric study of the X2 expansion

tube operating with and without a shock heated secondary driver section to increase facility

performance (refer to Gildfind et al. [1] for more information about secondary drivers) using

the in-house expansion tube analysis code PITOT (see Chapter 5), and attempted to quantify

the performance envelope of X2 for the simulation of true gas composition gas giant entry flow

conditions. Theoretical stagnation enthalpy (Ht), a measure of the energy contained in a gas

due to both its gas state (h−h0) and its velocity (U2
∞

2
), was used to assess the performance of the

test conditions. A related quantity called the ‘flight equivalent velocity’ (Ue) was also discussed.

It is a measure of the true flight stagnation enthalpy simulated by a ground test facility where

the experimental freestream may have an elevated temperature compared to flight. This is

shown in Equation 6.1.

In that previous chapter it was found that it should theoretically be possible to simulate

the proposed 22.3 km/s Uranus entry [68] in X2, but that it would not be possible to directly

simulate the 26.9 km/s proposed Saturn entry [69, 70]. However, experiments conducted found

that only the condition without a secondary driver section, with an estimated Ue of 19,400 m/s

was able to be experimentally reproduced without very large uncertainties. The fastest and

potentially most useful condition, which made use of the secondary driver, suffered from di-

aphragm losses and uncertainty about the quality and state of the test flow. Since this earlier

chapter showed that X2 cannot currently re-create either proposed gas giant entries, other av-

enues have been explored here to perform meaningful aerothermodynamic simulation of these

conditions. This problem was previously considered by Stalker and Edwards [67] who proposed

that for blunt-body simulation of gas giant entry, increasing the molar percentage of helium

above the true atmospheric composition, or substituting it with neon, which is heavier, could
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be used to create hotter shock layer conditions at slower speeds. This chapter examines the

potential of using this technique in X2 to overcome the aforementioned limitations in directly

simulating the entries. Section 7.3 presents an overview of the aforementioned ‘Stalker substi-

tution’; Section 7.4 presents a theoretical parametric study of X2 using different percentages of

helium or neon diluent; and Section 7.5 presents experimental validation for the helium case.

7.3 The Stalker Substitution

As gas giant entry velocities are generally too fast to be directly simulated in impulse facilities

designed for use with test models, in 1998 Stalker and Edwards [67] proposed a test gas substi-

tution for the study of gas giant entry conditions in ground testing facilities. Their theoretical

analysis for inviscid gas giant entry flows showed that, due to its large ionisation energy, the

helium in the H2/He flow-field acted as an ‘inert diluent’ and collision partner for the hydrogen

molecules and atoms. They started their analysis with a completely dissociated shock layer

flow, which would be justified by the short dissociation distance associated with very fast gas

giant entries, such as Jupiter entry. However, it would not be true for the aforementioned

Uranus and Saturn entries, where both simulation [71] and experiment [72, 73] showed that the

post-shock flow relaxation for these entries principally consisted of large dissociation regions

which occurred over centimetres.

In their basic shock relaxation analysis, Stalker and Edwards [67] found that the amount

of inert diluent in the flow-field, and even the type of inert diluent, did not affect the ionising

relaxation of the test flow. They examined both H2/He test flows, and test flows with a

heavier diluent, neon, because of its similar excitation energy compared to helium (17 eV,

compared to helium’s 21 eV). They examined diluent fractions from 1 – 99% (by volume)

and different constant post-shock temperatures and pressures to simulate different post-shock

streamlines with different enthalpies. They found that with a constant post-shock temperature

of 60,000 K, the neon itself began to ionise near equilibrium in situations where helium would

not. At temperatures of 40,000 K and below, they found that the substitution held and the

ionising relaxation of H2/Ne test flows were similar to H2/He ones for the situations which they

analysed. Both 40,000 K to 60,000 K are very high temperatures to be using reaction rate and

thermodynamic data at, so these values should obviously be considered approximate.

Stalker and Edwards [67] also adapted the results of a previous blunt-body flow similarity

study [175] to the simulation of gas giant entry. The original study had investigated how, for

a generalised shape at an angle of incidence, different freestream and model parameters could

be varied to produce similar shock layer flows. It was found that if appropriate freestream and

model parameters were chosen, the distribution of flow variables in one shock layer could be
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obtained from another shock layer, allowing conditions which cannot be simulated directly to

be simulated indirectly with more achievable flow conditions.

Four requirements needed to be satisfied for the similarity to be valid. These are discussed

in depth in their original paper [67], and therefore only a small summary is provided here.

Requirements 1, 2, and 3 related mainly to the flow geometry; principally the angle of incidence

between the model and the freestream flow, and the slope of the body surface. Both the angle

of incidence with the flow and the slope of the body surface must be small, and the angle

of incidence must be adjusted to take into account the change in normal shock density ratio

between the two flows. This is shown in Fig. 2 in Stalker and Edwards [67]. This thesis only

considers stagnation streamline flows at zero angle of attack (i.e. angle of incidence = 90◦), so

these first three requirements do not need to be considered presently.

Requirement 4 is more difficult to satisfy: Variation of density along post-shock flow stream-

lines must be the same for the two flows. For frozen or equilibrium flow-fields this require-

ment is easily satisfied because the post-shock density effectively remains constant, but for

non-equilibrium flow, where the gas composition is changing along the streamline, it is more

complicated. Stalker and Edwards [67] found that if the reactions were binary (i.e. no re-

combination) it could hold, and then it was shown that for a given post-shock temperature,

the non-equilibrium variation of the density ratio with normalised distance was independent

of whether helium or neon was used as a diluent, and was roughly independent of the diluent

fraction used. From this conclusion, they stated that Requirement 4 would be satisfied by

a modified binary scaling parameter term which takes into account the molecular hydrogen

partial pressure and must be comparable for both shock layers. This modified binary scaling

parameter scales the binary chemical reactions with distance like a normal binary scaling pa-

rameter does, while allowing the variation caused by the use of different diluent fractions to be

taken into account. The modified binary scaling parameter is:

Ω =
rpnL[εn(1 − εn)]−0.5

U∞

(7.1)

where r is the fraction of molecular hydrogen (by volume) in the gas mixture before dissociation

and ionisation. For an experiment, this is the hydrogen fraction in the test gas in its fill

condition, and for an actual entry, this is the hydrogen fraction in the undisturbed atmosphere.

pn is the post-shock pressure for each flow, L is an appropriate length scale, εn is the inverse

shock density ratio (ρ/ρs) for each flow, and U∞ is the freestream velocity of the flow.

This means in practice that with appropriate selection of experimental parameters, the

limits of a ground testing facility can be circumvented for gas giant blunt-body flow simulation

because the shock layers of unobtainable true flight speeds can be simulated at slower speeds
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using either an increased amount of helium diluent or a heavier neon diluent. Both of these

substitutions produce stronger shock waves over the test model in the test section, resulting in

a hotter post-shock flow for a given freestream velocity.

It is interesting to note that in 1969 one of the first ever journal articles about Jupiter

entry, Tauber [149], actually included calculations for Jupiter entry with differing percentages

of helium in the atmosphere due to uncertainty about the exact percentages of hydrogen and

helium in Jupiter’s atmosphere at the time. It was predicted that the shock layer temperature

and also the radiative heat transfer would increase as the helium percentage in the atmosphere

increased.

Stalker and Edwards [67] performed experiments on a hemispherically blunted cone model

in the T3 shock tunnel at the Australian National University (ANU) in non-reflected shock

tunnel mode with a 60%H2/40%Ne (by volume) test gas, producing flows which re-created the

frozen post-shock temperatures of gas giant entries between 24 km/s and 28 km/s. They noted

that, because their experiments were performed using a non-reflected shock tunnel driven very

quickly (from 8.3 km/s to 11.1 km/s), a large source of error was added to their results because

the freestream flow was fully dissociated. They estimated that up to 30% of the freestream

stagnation enthalpy was chemical (the h − h0 in Equation 6.1), compared to true flight, where

the freestream chemical enthalpy is negligible. They stated that expansion tubes, where only

part of the final test flow enthalpy is added through a shock wave, generally resulting in less

freestream chemistry compared to a non-reflected shock tunnel, would potentially allow these

errors to be minimised.

In 2004, Higgins [63] expanded Stalker and Edward’s [67] work using the X2 expansion

tube. Experiments were performed with a 15%H2/85%Ne (by volume) test condition designed

by Herbrig [92] to maximise the strength of the test model bow shock and create an ionising

post-shock flow over the model. All of Higgins’ experiments were nominally performed with

this test condition, with variation discussed later in this section caused by variation in facility

performance between experiments. Higgins took measurements of shock standoff and electron

number density for sphere and cylinder test models and compared this to a theoretical model,

observing good agreement. However, the work was potentially at the edge of the validity of the

substitution due to ionising neon in the post-shock flow over the test model. Higgins stated

that the neon was a partially ionised diluent in the post-shock flow over the test model for

the experiments [63]. Using PITOT2 and Higgins’ experimental shock speeds (from Table 5.1

of Higgins [63]), the present author confirmed this, finding that for one experiment (shot 674)

PITOT predicted that almost half of the ions in the post-shock stagnation streamline flow at

2See Chapter 5 for more information about PITOT.
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equilibrium were produced by ionising neon, and over a third were produced by ionising neon

for another (shot 752). This goes against the conclusions of Stalker and Edwards [67] who had

found that differences in post-shock relaxation between helium and neon diluents were only

found near equilibrium at the highest temperatures, where the neon would start to ionise. This

shows that the substitution was potentially used beyond its useful limits.

Higgins’ [63] analysis also showed (and the present author predicted using PITOT that

depending on the condition, the hydrogen in the experimental freestream flow (state 7, by con-

vention, as X2 was not being used with a nozzle then) was either almost fully dissociated or

partially ionised at equilibrium, with a large percentage of the stagnation enthalpy being chem-

ical. From the same equilibrium PITOT simulations performed for two of Higgins’ experiments

above, one of the experiments (shot 674) was predicted to have a stagnation enthalpy that was

was 8% chemical, a common percentage for X2 flow conditions. However, the other experiment

(shot 752) had a Ht which was 21% chemical, a value approaching the amount of stagnation

enthalpy error predicted for the original non-reflected shock tunnel experiments performed by

Stalker and Edwards [67], and effectively negating the benefits they believed expansion tubes

would bring to experiments using the substitution.

It should be noted that the original substitution was proposed for primarily ionising flows

where the post-shock dissociation distance is small, thereby allowing the flow to be assumed

to be fully dissociated. For the proposed Uranus and Saturn entry conditions, this is not the

case. Simulations in Palmer et al. [71] showed dissociation distances of 17 mm for Uranus entry

(where recombination begins) and 10 mm for Saturn entry (where ionisation begins). These

flows are therefore primarily dissociating flows, not ionising ones. Currently the author has

not established what effect this will have on the validity of the substitution, but because the

reactions remain binary, it is considered reasonable to use the substitution for dissociating

flows. Stalker and Edwards drew a similar conclusion for their ionising conditions. They noted

that for some of their simulated post-shock conditions, the hydrogen atoms may not be fully

dissociated when ionisation begins, which would slightly modify their relaxation curves, but

due to the processes being binary in nature, the trends should remain the same. How the

substitution affects the relaxation in dissociating flows will require further investigation in the

future using finite rate chemistry models. This will be simple for H2/He conditions, as reaction

schemes are readily available due to it being the real composition of gas giant planets, but may

be more complicated for H2/Ne ones. However, reaction schemes were used by Higgins [63] and

Stalker and Edwards [67] for H2/Ne relaxation. Higgins [63] used an approximate hydrogen

dissociation rate for collisions with neon based on a rate for collisions with argon. Stalker and

Edwards [67] used a hydrogen ionisation reaction rate with a generic collision partner of either a

hydrogen, neon, or helium atom, which was actually derived by Stalker [159] from shock tunnel
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measurements using a H2/Ne test gas.

7.4 Theoretical Analysis for Helium and Neon Diluents

This section examines theoretically how a changing helium or neon diluent fraction in the test

gas fill state (by volume) affects a specified flow condition in various ways. The figures presented

in this section present results calculated using the equilibrium gas expansion tube simulation

code PITOT. With the exception of Figs. 7.7 and 7.8, all of the results shown are based purely

on test condition X2-GG-UE-2.5 mm from Table 6.2 in Chapter 6. This condition uses the

X2-LWP-2.5 mm-0 driver condition [231, 230] with a pure helium driver gas and its associated

orifice plate [2], no secondary driver, a 2 kPa shock tube fill pressure (p1), a 0.5 Pa acceleration

tube fill pressure (p5), and X2’s contoured nozzle with a geometric area ratio of 5.64 [229].

p1 and p5 are kept constant for all simulations. Calculations were performed from 10 to 90%

diluent (by volume), as the helium fraction used in Cruden and Bogdanoff to simulate Saturn

entry was 11% [72, 73], based on the work of Conrath et al. [274]. 90% diluent (by volume)

was deemed to be a reasonable maximum value. Where normalised values are shown, they are

normalised by the results with the minimum 10% diluent fraction (by volume).

7.4.1 Effect on the Test Conditions in the Driven Tubes

Fig. 7.1 shows how a changing diluent fraction in the test gas fill state changes the performance

of the test conditions in terms of stagnation enthalpy (Ht, Equation 6.1), and also the related

shock and acceleration tube shock speeds (Vs,1 and Vs,2 respectively).

Considering the helium diluent results shown in Fig. 7.1a first, it can be seen that over the

full range from 10 to 90% diluent, Ht is almost constant, with a maximum deviation of less

than 0.2%. Vs,1 decreases by around 4% before rising again, and Vs,2 increases over the whole

range shown on the figure, but only by 0.8%. Now considering the neon diluent results shown in

Fig. 7.1b, much larger changes are seen. Ht, Vs,1, and Vs,2 all decrease approximately linearly

from 10 to 60% diluent before all showing a slight rise or remaining constant for higher neon

fractions. This is very different to Fig. 7.1a, where Ht and Vs,2 stayed almost constant across

the full range of helium diluent fractions shown. These differences are explained by examining

Figs. 7.2 and 7.3 where the test gas fill and post-shock conditions (states 1 and 2) are shown.

The effect of the changing diluent fraction on the test gas fill condition (state 1) is shown

in Fig. 7.2a for the helium diluent. Over the full range of helium diluent fractions shown, the

specific heat ratio (γ1) increases by at most around 13%, the specific gas constant (R1) decreases

by at most around 40%, and the molecular weight and density (MW1 and ρ1) increase by at most
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Figure 7.1: Effect of diluent fraction on the performance of the condition. Normalised by 10%
diluent.

around 72%. When compared to other gases, these changes are very small. Using the molecular

weight as an example, which along with density showed the largest variation, mixtures with

helium diluent fractions of 10 and 90% have molecular weights of 2.2 and 3.8 g/mol respectively.

In comparison, air has a molecular weight of 28.97 g/mol, which is an order of magnitude higher.

The equivalent neon diluent fill conditions shown in Fig. 7.2b have a molecular weight range of

3.8 g/mol to 18.4 g/mol. The lightest H2/Ne fill condition shown in Fig. 7.2b is as heavy as the

heaviest H2/He fill condition shown in Fig. 7.2a. Because of this, much larger changes are seen

in Fig. 7.2b over the neon diluent fraction range. The molecular weight (MW1), density (ρ1),

and specific gas constant (R1) of the fill condition each change by almost 500% over the neon

diluent fraction range shown.

Similar behaviour is seen in Fig. 7.3, where the effect that the changing diluent fraction has

on various post-shock variables in the shock tube (state 2) is shown. Examining a form of the

unsteady expansion equation from Cantwell [276] of the shocked test gas (state 2) to state 7 in

the acceleration tube (Equation 7.2), it can be seen that the unsteady expansion is a function

of the change in test gas velocity (V2 and V7), the initial post-shock sound speed (a2), the

change in pressure (p2 and p7), and the post-shock specific heat ratio (γ2). When the helium

diluent is considered, none of the state 2 variables shown in Fig. 7.3a show a large variation

over the diluent fraction range shown. The maximum variation of any post-shock variable over
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Figure 7.2: Effect of diluent fraction on the test gas fill condition (state 1). Normalised by 10%
diluent.

the whole range is the density (ρ2), with an increase of 65%.

V7 = V2 +
2a2

γ2 − 1






1 −

(

p7

p2

)

γ2−1

2γ2






(7.2)

The results shown in Fig. 7.3a explain what was seen earlier in Fig. 7.1a: As the helium

diluent fraction changes, small variations in state 2 variables cancel each other out, causing Ht

and Vs,2 to remain almost constant over the whole diluent fraction range. For example, as was

shown in Fig. 7.1a, the shock tube shock speed (Vs,1) decreases with increasing diluent fraction

over most of the range shown. However, the shock tube post-shock density (ρ2) also decreases

with increasing diluent fraction over most of the range. This causes Vs,1 - V2 to decrease, which

makes the post-shock velocity (V2) remain almost constant. Another example is the post-shock

sound speed (a2), which decreases slightly over most of the diluent fraction range, but is offset

by the increase in post-shock pressure (p2).

Considering the neon diluent results shown in Fig. 7.3b, much larger changes in the state 2

variables are seen, with, for example, maximum changes in the post-shock density and pressure

(ρ2 and p2) of almost 400%. The large changes seen in Figs. 7.2b and 7.3b over the whole
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Figure 7.3: Effect of diluent fraction on the post-shock test gas condition (state 2). Normalised
by 10% diluent.

neon diluent fraction range explain why larger changes are seen in Fig. 7.1b than was seen in

Fig. 7.1a using the helium diluent.

7.4.2 Effect on the Final Test Flow (states 8 and 10)

The figures in this subsection show how the initial test gas diluent fraction affects the fully

processed test flow (state 8) and its post-normal shock state (state 10). Figs. 7.4, 7.5, 7.6,

and 7.7, show its effect on the temperature in the stagnation region behind the bow shock

over the test model for both frozen and equilibrium flow, the equilibrium composition in the

stagnation region, various test section variables, and the modified binary scaling parameter

(Equation 7.1). Frozen results are presented to illustrate the effect directly behind the shock

wave, before reactions have occurred, and equilibrium results are presented to compare the

effect on the final equilibrium state.

Considering the helium diluent (Fig. 7.4a) it can be seen that the temperature behind both

the frozen and equilibrium normal shock waves increases approximately linearly with increasing

helium diluent fraction. The frozen temperature varies from 12,800 K to 27,800 K over the 10 to

90% helium diluent range, and the equilibrium temperature increases from 3,500 K to 14,000 K

over the same range.
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Figure 7.4: Effect of diluent fraction on the frozen and equilibrium post-normal shock temper-
atures in the stagnation region over the test model (state 10)

To understand the practical implications of Fig. 7.4, it is useful to compare these temper-

atures to the aforementioned proposed Uranus and Saturn missions. For this reason, related

temperatures from trajectory points analysed by Palmer et al. [71] were calculated and are

also shown in Fig. 7.4. Considering the 34.5 s Uranus entry point from Table 4 in that paper

[71] (shown here in Table 7.1), calculations performed by the author with NASA’s Chemical

Equilibrium with Applications (CEA) code [197, 198], gave post-normal shock frozen and equi-

librium temperatures of 21,200 K and 5,700 K, respectively. Fig. 7.4a shows that the frozen and

equilibrium temperatures could be re-created with 54 and 36% helium fractions respectively.

Both the CEA equilibrium calculation for the Uranus entry point and the related test condition

utilising a 36% helium diluent fraction have 99.8% H2 dissociation in the shock layer at equi-

librium. A difference between the real flight conditions and the simulated conditions is seen

when considering shock relaxation. Whilst the condition with 36% helium diluent is able to

re-create both the post-shock equilibrium temperature and H2 dissociation percentage, due to

the increased helium diluent fraction in the experimental conditions (and potentially different

post-shock densities to true flight), the experimental conditions do not relax from the same

frozen condition to the same equilibrium one. This is still a useful conclusion, but it means

that different amounts of diluent would need to be used to study non-equilibrium behaviour
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Table 7.1: Uranus and Saturn entry points from Tables 4 and 8 in Palmer et al. [71] used for
comparison in this chapter. Significant figures from Palmer et al. [71] have been maintained.

Planet Entry point Freestream Freestream Freestream Composition of
density temperature velocity outer atmosphere

(s) (ρ∞, kg/m3) (T∞, K) (U∞, m/s) (by volume)
Uranus 34.5 2.04 × 10−5 128.2 22,504 85%H2/15%He [274]
Saturn 206 1.80 × 10−5 141.0 26,316 89%H2/11%He [273]

directly behind the shock wave and equilibrium behaviour further away from the shock. It

should be noted that in reality shock waves rarely reach the frozen limit due to the finite width

of the shock itself. This means that even a test condition which does not match the frozen

condition exactly, such as one with a lower helium diluent fraction, may still produce sufficient

non-equilibrium behaviour.

Now considering Palmer et al.’s [71] 206 s Saturn entry point from Table 8 in that paper

(shown here in Table 7.1) the same calculation as above gave a frozen temperature directly

behind the shock of 27,600 K and an equilibrium temperature of 8,700 K. The frozen and

equilibrium temperatures could be re-created with helium diluent fractions of 84 and 50%

respectively. A CEA [197, 198] calculation for the Saturn entry point indicates full H2 dissoci-

ation and 1.6% H ionisation in the shock layer at equilibrium. The theoretical test condition

with 50% helium diluent is fully dissociated at equilibrium also, with 1.98% of the H ionised.

Once again, different helium diluent fractions would be needed to study non-equilibrium and

equilibrium behaviour for this entry point.

Fig. 7.4b shows the equivalent post-shock temperatures for the neon diluent. The frozen

result shows a linear increase in temperature from 10 to 40% diluent, before then showing a

parabolic decrease to 60% diluent and then a parabolic increase after that. The equilibrium re-

sult increases linearly from 20 to 90% diluent. Over the diluent fraction range shown, the frozen

temperature increases from 21,300 K to 109,000 K and the equilibrium temperature increases

from 5,890 K to 19,000 K. Comparing this to the helium results shown in Fig. 7.4a, there is a

theoretical 33% increase to the maximum equilibrium temperature achievable by using a neon

diluent. However, the study by Stalker and Edwards [67] stated that their substitution stopped

being valid when the neon started to ionise, because at this point the H2/He and H2/Ne results

began to diverge. Examining Fig. 7.5, which shows the equilibrium composition behind the

bow shock for both diluents, the neon begins to ionise with 49% diluent. This invalidates any

conditions with neon diluent beyond this for equilibrium studies if their rules are followed [67].

This reduces the maximum achievable equilibrium temperature with H2/Ne to 14,700 K for this

condition, a 2% increase from the maximum H2/He value.
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A difference which can be seen in Fig. 7.4 is the diluent fraction which is required to

simulate the planetary entry trajectory points. In Fig. 7.4b, it can be seen that the Uranus

entry trajectory point is actually too cold for the H2/Ne results shown, but it could be simulated

with a different, slower test condition. For the Saturn entry point, a 15% diluent fraction (by

volume) is required to simulate the frozen post-shock temperature, and 14% is required to

simulate the equilibrium post-shock temperature. This means that the same condition could

be used to simulate both non-equilibrium phenomena directly behind the shock and equilibrium

phenomena further away from it when a neon diluent is used. This diluent fraction is also much

closer to the helium fractions of the real entries, which are 11% for Saturn [274] and 15% for

Uranus [273]. It also means that if only around 15% diluent (by volume) is needed to simulate

Saturn entry, there is a lot of extra performance there to be exploited in the future for the

simulation of faster entries.

Fig. 7.5 shows how the equilibrium composition of the shocked test gas in the stagna-

tion region over the test model varies with changing diluent fraction. For the helium diluent

(Fig. 7.5a), it can be seen that the mole fraction of atomic hydrogen initially rises to a peak at

30% diluent, at which point the H2 is fully dissociated. H ionisation begins when the helium

diluent fraction is 35%, and with a diluent fraction of 90% the calculations predict almost

complete ionisation of the hydrogen atoms.
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Figure 7.5: Effect of diluent fraction on the equilibrium composition of the test gas in the
stagnation region over the test model (state 10).
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In Fig. 7.5b, larger changes are seen with the neon diluent. Firstly, the hydrogen is already

completely dissociated with a 10% diluent fraction, and above 49% diluent, the neon itself

starts to ionise, which is the point at which Stalker and Edwards said their substitution was

no longer valid [67] because the H2/He and H2/Ne results began to diverge.

Comparing Fig. 7.5 to the equilibrium calculations performed for the trajectory points from

Palmer et al. [71] shown in Table 7.1, the Uranus entry point is predicted to be fully dissociated

but with only negligible ionisation (an ion/electron mole fraction of 8.0 × 10−5), which could

be simulated with a helium diluent fraction of around 35%. The Saturn point is predicted to

be fully dissociated, and slightly ionised (an ion/electron mole fraction of 0.02), which could

be simulated with a helium diluent fraction of around 50% or a neon diluent fraction of around

15%. As was found when the post-shock temperature results shown in Fig. 7.4 were discussed,

higher neon diluent fractions would only be able to be used to simulate faster entries for these

facility fill conditions.

To examine the flow properties immediately before and after the bow shock over the test

model, Fig. 7.6 shows how temperature, density, pressure, and velocity in the nozzle exit / test

section freestream flow (state 8) and the frozen post-shock flow in the stagnation region (state

10fr) change with differing diluent fraction. Considering the helium diluent results shown in

Fig. 7.6a, most variables change by less than 20% over the full range of diluent fractions shown,

with the exception of the freestream pressure (p8) which drops by around 50%, and the frozen

post-shock temperature (T10,fr), which more than doubles over the full range. This shows that

the main change made to the flow by adding more helium diluent is to increase the immediate

post-shock temperature, simulating a faster and hotter entry.

Consistent with earlier results, much larger changes are seen with the neon diluent (Fig. 7.6b).

The largest change seen is still the frozen post-shock temperature (T10,fr) with a maximum in-

crease of 500% with 90% diluent. There is also a very large increase in freestream temperature

(T8) which was not seen for the helium diluent in Fig. 7.6a. Similar to Fig. 7.6a, the changes

in velocity, pressure, and freestream density (ρ8) are not large compared to the changes in

temperature, however, there is a large increase in the frozen post-shock density (ρ10,fr) for neon

diluent fractions between 40 and 80% which was not seen for the helium diluent (Fig. 7.6a).

Fig. 7.7 shows how the modified binary scaling parameter proposed by Stalker and Edwards

(Ω, see Equation 7.1) varies with changing diluent fraction at the immediate post-bow shock

condition (i.e. the frozen condition). Ω aims to scale the reaction lengths in space like a normal

binary scaling parameter, but while also taking into account the changing diluent fraction in

the test gas. This is explained further in Section 7.3. The modified binary scaling parameter is

compared to the aforementioned trajectory points from Palmer et al. [71] which are shown in
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Figure 7.6: Effect of diluent fraction on the test gas in the test section both before (state 8)
and immediately after (state 10fr) the normal shock over the test model. Normalised by 10%
diluent.

Table 7.1 at both the full size, and the maximum feasible test model diameter for simulation

in X2 (≈100 mm). The full scale Ω values for the trajectory points are 0.896 and 0.821 for the

Saturn and Uranus entry points respectively. The scaled Saturn entry value of 8.96 is based on

a 1,000 mm diameter aeroshell scaled down to 100 mm (1/10 scale), and the scaled Uranus entry

value of 5.75 is based on a 760 mm diameter aeroshell scaled down to 108.6 mm (1/7 scale).

The full scale aeroshell sizes are the values which were used by Palmer et al. [71] for their

analysis. The results of six different simulations are shown on the figures to illustrate which

facility parameters can be modified to change the Ω of the resulting X2 test condition. The test

conditions are based on conditions X2-GG-UE-2.5 mm and X2-GG-UE-2.5 mm-SD from Table

2 in James et al. [20], but instead of leaving the acceleration tube fill pressure (p5) constant at

0.5 Pa, simulations were performed using p5 values of 0.5, 5.0, and 10 Pa. The curves labelled

‘No S.D.’ are simulations without a secondary driver section, whereas the dashed curves labelled

‘With S.D.’ are simulations with a secondary driver. It should be noted that the curves labelled

‘No S.D., p5 = 0.5 Pa, Ht ≈ 166 MJ/kg’ for the helium diluent and “No S.D., p5 = 0.5 Pa, Ht

≈ 136 – 166 MJ/kg’ for the neon diluent are for the test condition analysed in the other parts

of this section. Where Ht ranges are shown on the labels, this is because Ht is changing over

the diluent fraction range shown.
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Figure 7.7: Effect of diluent fraction on the immediate post-shock modified binary scaling
parameter (Ω) for different test conditions.

In Fig. 7.7a where the helium diluent results are shown, there is generally around an order of

magnitude difference in modified binary scaling parameter for each condition over the full range

of diluent fractions, with a higher value seen with lower diluent fractions because Equation 7.1

scales linearly with the amount of molecular hydrogen in the shock tube fill condition. It can

also be seen that higher Ω values are seen with higher p5 values because these conditions are

expanded less in the acceleration tube. However, they are also slower, and would have a lower

Ht. For the condition without a secondary driver and p5 = 10 Pa, Ω varies from 9.05 to 1.00 and

this condition could potentially be used to simulate Uranus entry at 1/7 scale. However, a 39%

reduction in Ht to around 105 MJ/kg compared to the condition with p5 = 0.5 Pa means that

the condition may no longer have enough flow stagnation enthalpy to generate the post-shock

temperatures required. The effect of using higher p5 values with the helium diluent is examined

further in Section 7.4.3.

There are several solutions shown in Fig. 7.7 which would allow post-shock temperature

and Ω to be more easily matched. One would be the use of a secondary driver section, which

would allow the freestream density to be modified while still maintaining the same flow stag-

nation enthalpy [1]. While in Chapter 6 a secondary driver was used to increase the achievable

stagnation enthalpy beyond the ability of a basic expansion tube, it can also be used to allow

flow density to be increased while maintaining flow stagnation enthalpy by allowing higher fill
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pressures to be used. Here, higher p5 values have been used, and in Fig. 7.7a the results with

the secondary driver have much higher Ht values for similar Ω values.

Another solution is using the neon diluent, which is shown in Fig. 7.7b. In previous figures

it was shown that very small neon diluent fractions (13 to 15%) were required to simulate the

proposed Saturn entry, therefore, it would be much more likely that scaled neon conditions

could be used with either higher fill pressures or low diluent fractions to reach the required Ω

values. As a much lower Ht is needed to simulate the required shock layer conditions using

neon, a secondary driver would also probably not be required. This is an advantage of using a

neon diluent and something which can be investigated further in the future.

While it will not be discussed further here, another solution for achieving the required binary

scaled conditions is to use the facility without its contoured nozzle, because generally the order

of magnitude of the density loss through the nozzle expansion is greater than the decrease in

scaling factor gained in increased model size. In James et al. [20] conditions without a nozzle

were able to simulate binary scaled conditions which could not be simulated with the nozzle.

7.4.3 Using a Higher p5 Value with the Helium Diluent

In Section 7.4.2 it was discussed that higher acceleration tube fill pressures (p5) may be required

to allow scaled test conditions to be re-created with a helium diluent. For this reason, Fig. 7.8

here examines the effect of using a higher p5 value by re-creating Fig. 7.4a with the related

temperatures for acceleration tube fill pressures of 5 and 10 Pa added to the figure. The original

result from Fig. 7.4a is shown as ‘p5 = 0.5 Pa’.

Examining Fig. 7.8 it can be seen that it is only possible to simulate the frozen conditions

directly behind the shock for the two entries using a p5 value of 0.5 Pa. This shows that p5 =

0.5 Pa is definitely required for the study of non-equilibrium phenomena near the shock for these

test conditions. However, looking at the equilibrium results shown on the figure, it can be seen

that a low p5 value is not as important. Between 10 and 20% helium diluent fraction, all three

acceleration tube fill pressures shown on the figure (p5 = 0.5, 5, and 10 Pa) equilibrate to the

same temperature around 4,000 K. After this, there is a period from 20 to around 48% diluent

fraction where the p5 = 0.5 Pa result begins increasing and the p5 = 5 and 10 Pa results remain

fairly flat. After this point, the p5 = 5 and 10 Pa curves start to increase, and above around

70% diluent fraction, their temperatures are around 90% of the p5 = 0.5 Pa temperature. This

is another interesting result, showing that equilibrium phenomena away from the shock could

potentially be simulated with much slower conditions if it is necessary. It is also useful because

the post-shock flow is more likely to actually equilibrate at higher pressures as well.
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Figure 7.8: Effect of diluent fraction and p5 on the frozen and equilibrium post-normal shock
temperatures in the stagnation region over the test model (state 10)

7.4.4 Effect on the Post-shock Radiation

As part of this thesis, the author added atomic hydrogen, helium, and neon line radiation

to the SPECAIR radiation analysis code [287, 288]. To examine the effect that the diluent

fraction would have on the radiation of the post-normal shock test flow in the test section,

equilibrium gas spectral calculations were performed using SPECAIR for a 1 cm tangent slab

for each simulated diluent concentration with self absorption turned on. No slit function was

used for the calculations. Calculations were performed both using atomic hydrogen as the

only radiating species and using radiating atomic hydrogen and the relevant diluent (helium

or neon). The total power density from line radiation in both the Lyman series in the vacuum

ultraviolet (VUV) from 91.9 nm to 121.6 nm and the Balmer series in the ultraviolet (UV) and

visible range from 364.6 nm to 656.3 nm was integrated for each diluent fraction. The results

were separated this way to show how much of the radiation comes from the VUV region which is

operationally difficult to measure as it is absorbed by the oxygen in the air. How VUV radiation

can be measured in X2 is discussed in Sheikh et al. [127, 286] and Wei et al. [86]. The results

are shown in Fig. 7.9. To provide an approximate comparison, similar equilibrium radiation

calculations were also performed for the trajectory points from Palmer et al. [71] which are

shown in Table 7.1. A single line was provided for each trajectory point as the Lyman and

Balmer series radiation was found to be very similar for both trajectory points. Uranus entry
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results are not provided for the neon diluent as they were too small to be shown on the figure.

In Fig. 7.9a, for the helium diluent, the final calculations were performed without helium

as a radiating species, because no difference was seen in the results with and without helium

radiation. In Fig. 7.9b, for the neon diluent, no difference in radiation was seen for the Lyman

radiation results with and without neon as a radiating species, so only the result without neon

radiation is shown. For the Balmer series radiation shown in Fig. 7.9b, results are shown with

radiating neon.
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Figure 7.9: Effect of diluent fraction on the theoretical total power density in the Balmer and
Lyman series from a 1 cm tangent slab in thermochemical equilibrium.

In Fig. 7.9a, it can be seen that for every case shown on the figure, there is around an eleven

order of magnitude increase in power density over the full range of helium diluent fractions

shown in the figure. It can also be seen that the steepest increase occurs between 30 and 40%

helium diluent, and that the power density is increasing linearly above around 70%. It can also

be seen that diluent fractions of around 40 and 50% are required to re-create the equilibrium

radiation of the Uranus and Saturn entry trajectory points. It should also be noted that what

is shown for each case is the total power density in that wavelength region; it is not scaled by

the H2 fraction in the fill condition (state 1). This means that even though the diluent fraction

is increasing, and therefore the amount of molecular hydrogen in the fill state is decreasing, the

power density is still increasing due to the increased shock layer temperature. Considering the
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individual curves, it can be seen that the power density in both the Lyman and Balmer series

are both very similar for most of the range.

In Fig. 7.9b, for the neon diluent, it can be seen that in general there is an increase in

power density of around five orders of magnitude over the full neon diluent fraction range.

The Lyman radiation initially shows a steep increase from 10 to 15% diluent followed by a

slower increase over the rest of the diluent range which appears to be reaching a plateau at 90%

diluent. Considering the Balmer series radiation with radiating neon, the same steep increase

is seen for diluent fractions from 10 to 15% as was seen for the Lyman radiation but it then

plateaus beyond a diluent fraction of 50%. For the conditions simulated without neon radiation,

after this plateau the power density continues to drop. For the conditions simulated with neon

radiation, the power density drops from around 50 to 60% diluent fraction before the gradient

flattens out presumably due to neon line radiation appearing in the integration region between

364.6 and 656.3 nm. While it is not anticipated that the neon line radiation would interfere

with the hydrogen line radiation, this is interesting to note because it means that the neon is

definitely no longer acting as an inert diluent. It is electronically excited and it is affecting

the radiating flow-field which it has created. It can also be seen that a diluent fraction of only

around 15% is required to simulate the Saturn entry trajectory point.

Similar to Fig. 7.9a, the results in Fig. 7.9b are not scaled by the H2 fraction in the test gas

fill state. This means that the total power density is increasing with increasing diluent fraction,

even as the amount of H2 in the test gas fill state is decreasing, showing once again that the

increased temperature is having a large effect on the radiation.

7.4.5 Effect on the Stagnation Point Heat Flux

An important consideration for planetary entry is the stagnation point heat flux, which is

generally either quoted at different points of a trajectory as a rate or as an integrated heat load

for whole entry trajectories. Many simple correlations exist for calculating the stagnation point

heat flux to simple axisymmetric entry bodies entering atmospheres in the solar system. To

examine the effect that the substitution will have on the stagnation point heat flux generated by

the test conditions, convective and radiative heat flux correlations have been utilised with the

results presented in Fig. 7.10. The convective stagnation point heat flux correlation from Sutton

and Graves [289] was used to calculate the convective heat flux, with a more generic equation

and the results from Section 7.4.4 used to find the radiative heat flux. Further information about

how the correlations were used to produce the plot can be found in Appendix K. Calculations

were performed for an axisymmetric body with a nose radius of 70 mm, which was the nose

radius of the test model used in a recent preliminary gas giant entry radiation study performed
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in X2 by Liu et al. [22]. Calculations performed using the correlations for the Uranus and

Saturn trajectory points from Palmer et al. [71] (which are shown here in Table 7.1) also used

the same model size to facilitate easy comparison. Due to the minute radiative heat flux seen

for the conditions, comparisons with the trajectory points were performed using only convective

heat flux calculations.

10 20 30 40 50 60 70 80 90
0

500

1, 000

1, 500

2, 000

2, 500

Saturn entry

Uranus entry

% of He diluent in the test gas (by volume)

S
ta

gn
at

io
n

p
oi

n
t

h
ea

t
fl
u
x

(W
/c

m
2
)

qconv
qrad
qtotal

(a) helium diluent

10 20 30 40 50 60 70 80 90
0

1, 000

2, 000

3, 000

4, 000

Saturn entry

Uranus entry

% of Ne diluent in the test gas (by volume)

S
ta

gn
at

io
n

p
oi

n
t

h
ea

t
fl
u
x

(W
/c

m
2
)

qconv
qrad
qtotal

(b) neon diluent

Figure 7.10: Effect of diluent fraction on the stagnation point heat flux to a spherical test
model.

Examining Fig. 7.10, it can be seen that an increased diluent fraction results in increased

stagnation point heat flux, with an increase of around 100% seen over the range shown for

the helium diluent (Fig. 7.10a) and an increase of around 200% seen for the neon diluent

(Fig. 7.10b). It can be seen in Fig. 7.10a that a helium diluent fraction of around 35% would be

required to re-create the stagnation point heat flux of the Uranus trajectory point and a helium

fraction of around 80% would be required to re-create the heat flux for the Saturn trajectory

point. For the neon diluent, the Uranus trajectory point is actually off the scale of the plot,

and a neon diluent fraction of around 30% would be required to recreate the stagnation point

heat flux of the Saturn trajectory point. It can be seen that overall the contribution of the

radiative heat flux is quite small, especially for the helium diluent (Fig. 7.10a). This could

be an issue with the basic formula which was used to calculate the radiative heat flux (see

Appendix K) but it is more likely that these are just not strongly radiating conditions. For

the aforementioned Uranus and Saturn entry trajectory points (see Table 7.1, considering their
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CFD stagnation point heat flux values from Tables 4 and 8 in Palmer et al. [71], the radiative

heat fluxes are 0.85% and 5% of the convective heat fluxes respectively. Also, as is discussed in

Section VI.A. of Capra and Morgan [290], convective heat flux to scaled test models increases

with decreasing model size while radiative heat flux remains similar to the full scale case. This

generally causes convective heating to dominate in scaled experiments.

7.5 Experimental Results

Experiments were performed for three different helium diluent fractions to confirm the results

of the theoretical analysis presented in Section 7.4. Due to experimental time constraints, no

experiments were performed using a neon diluent. The experimental test condition analysis is

presented in Section 7.5.1 and an experimental analysis of the time-resolved test flow radiative

emission from a high speed camera is presented in Section 7.5.2.

X2’s Pitot rake was used as the test model for all of the experiments presented here to

ascertain the nozzle exit pressure, core flow size, and test times for the test conditions. The

Pitot rake uses nine impact pressure probes, which are 15◦ half-angle conical probes for these

experiments, spaced 17.5 mm apart radially along the nozzle exit plane, covering a total centre-

to-centre height of 140 mm. The middle probe (‘pt5’ by convention) was oriented with the

centre-line of the nozzle. The majority of the experiments (all except x2s3241 and x2s3242)

made use of a Pitot pressure probe in the centre location of the Pitot rake (‘pt5’) as a separate

experiment to examine the time resolved total post-normal shock radiative emission of the test

conditions using a high speed camera. These results are presented in Section 7.5.2.

7.5.1 Test Condition Analysis

The condition tested here is the one discussed in Section 7.4, which is based on condition

X2-GG-UE-2.5 mm from Table 6.2 in Chapter 6. The facility configuration details of the test

condition can be seen in Table 7.2. The three different test gas compositions cover most of

the range discussed in Section 7.4 using a helium diluent. 85%H2/15%He (by volume) is the

composition of the outer atmosphere of Uranus [273], 60%H2/40%He (by volume) is at the end

of the steep rise in expected radiative power density seen in Fig. 7.9a, and 30%H2/70%He (by

volume) is the composition on the same figure where the power density plateaus.

Two experiments were performed with an 85%H2/15%He (by volume) test gas (x2s3241

and x2s3244), which are also presented in Chapter 6 as condition X2-GG-UE-2.5 mm. Two

experiments were performed with a 60%H2/40%He (by volume) test gas (x2s3242 and x2s3243)

and because the authors only had access to two gas bottles to fill and store the required mixtures
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Table 7.2: Facility configuration details of the test condition used.

Driver condition X2-LWP-2.5 mm-0 [231, 230]
using modification for orifice plate [2]

Primary driver fill condition 77.2 kPa 100%He (by volume)
Primary diaphragm 1 x 2.5 mm thick cold rolled steel, scored diaphragm
Orifice plate diameter 65 mm
Shock tube fill condition 2.0 kPa either 85%H2/15%He, 60%H2/40%He,

or 30%H2/70%He, (by volume)
Secondary diaphragm 1 x 14 µm thick aluminium foil diaphragm
Acceleration tube fill condition 0.5 Pa laboratory air

in, four 30%H2/70%He (by volume) experiments were performed to test how the filling process

affected the test conditions. The first two experiments (x2s3253 and x2s3254) were filled to

1 kPa using the 60%H2/40%He (by volume) mixture used for those experiments, and then with

another 1 kPa from a helium bottle. The final two experiments (x2s3255 and x2s3256) were

filled directly into the shock tube from a helium bottle and then a hydrogen bottle.

The naming conventions used here are the same as that which is used in other parts of this

thesis. The experimental shock speed naming convention, for example ‘sd1-sd3’, is a reference

to the two specific wall pressure sensor locations used to find that particular shock speed value.

Where experimental shock speeds are shown in figures, the values are shown at the midpoint

between the two sensor locations. When experimental pressure measurements are discussed,

their names either correspond to wall pressure sensor locations or the locations of the sensors

in the X2 Pitot rake. (Approximate X2 wall pressure sensor locations are shown in Fig. 5.1

and exact values from Gildfind et al. [232] can be found in Table 4.2.)

Experimental shock speed uncertainties were found using a shock speed uncertainty calcu-

lation procedure described in Appendix G. The experimental pressure measurements presented

here were also found using the same methodology used in that work. To take into account the

uncertainty which exists when modelling an expansion tube experiment, principally due to the

shock speed uncertainties, a technique for calculating both a nominal case as well as a set of

solution bounds for important gas states from Chapter 5 was used to find the flow properties

discussed in this section. The technique calculates the nominal case and the overall solution

bounds of each facility gas state by assuming that the uncertainties on the fill pressures have a

small effect compared to the shock speed uncertainties and can be ignored. The mean uncer-

tainties on the mean experimental shock speeds (i.e. the root sum squared [RSS] uncertainties)

in each section of the facility can then be used to find the test section state using an exper-

imental equilibrium version of PITOT which performs an experimentally inferred uncertainty

analysis on the nozzle entrance and final test section state by perturbing the calculation using
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every permutation of the shock speeds and their mean uncertainties. The nominal case is the

result using the mean shock speeds, and the solution bounds are the minimum and maximum

of each quantity from all of the shock speed permutations. The analysis is then calibrated so

that the experimental wall pressure measured in the acceleration tube and the pressure on the

probes in X2’s Pitot rake fall inside the bounds of the overall solution by running the analy-

sis with several different assumptions for the different situations where expansion tubes often

diverge from ideal theory. These situations are discussed further in Section 5.5.

In Chapter 6, where the simulation of true flight velocity gas giant entry in X2 was consid-

ered, this experimentally inferred analysis was also used to quantify two different experiments,

one of which was experiment x2s3244, which is also part of this analysis here. For this reason, it

was chosen to start the analysis here using the specific assumptions which were found most suit-

able for experiment x2s3244 in that chapter. This was a fully reflected shock at the secondary

diaphragm to simulate the effect of the secondary diaphragm on the test flow, expanding the

shocked test gas to the shock speed in the acceleration tube to simulate low density shock tube

(or ‘Mirels’) effects [106, 107, 108], and an effective nozzle area ratio of 3.5 to simulate the effect

of the boundary layer in the acceleration tube and nozzle on the nozzle’s performance. Different

effective area ratios have also been tested in this chapter, but 3.5 was used as a starting point.

The experimental shock speed data for all of the experiments are presented in Figs. 7.11

and 7.12. Even though the conditions have different test gas compositions, because the shock

speeds were expected to stay almost the same in both tubes in Section 7.4 (see Fig. 7.1a),

theoretical equilibrium data from PITOT is also shown based on the mean shock speed value

for all of the compositions analysed in Section 7.4. Global mean and 95% CI values are also

shown for each measured shock speed.

Fig. 7.11 shows the experimental shock tube shock speeds measured at three locations near

the end of X2’s shock tube. The mean equilibrium theoretical Vs,1 value from the analysis

presented in Section 7.4 is 8,552 m/s, where the maximum reduction from the initial 10%

diluent value was less than 4% (see Fig. 7.1a). It can be seen that all of the experimental data

is inside the 95% CI for each value and contains no outliers, even if two experiments (x2s3244

and x2s3256) are just inside the bounds for some measurements. It can also be seen that the

experimental data is very similar to the mean equilibrium theoretical value with, for example,

a 0.5% reduction between the global mean ‘sd1-sd3’ experimental value and the theoretical

result. All of the experiments being statistically the same and close to the theoretical model is

a very positive result, as it shows that inside the uncertainty of the experiments, the results of

the theoretical analysis are valid.

Fig. 7.12 shows experimental acceleration tube shock speeds measured near the end of X2’s
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Figure 7.11: Experimental shock tube shock speeds (Vs,1).

acceleration tube. The mean equilibrium theoretical Vs,2 value from the analysis presented in

Section 7.4 is 17,900 m/s, where the maximum increase from the initial 10% diluent value was

around 1% (see Fig. 7.1a). When a fully reflected shock at the secondary diaphragm is added to

the theoretical model, the mean Vs,2 value over the full range examined in Section 7.4 becomes

19,140 m/s. Both of these values are also shown in Fig. 7.12. Similar to the shock tube results

shown in Fig. 7.11, all of the global means are representative of all of the experimental data

shown, which is once again a positive result, as it further confirms the theoretical results from

Section 7.4 about the effect of the helium diluent fraction on the test conditions.

In Fig. 7.12 it can be seen that when the reflected shock at the secondary diaphragm is not

used, the theoretical Vs,2 is 5% less than the global mean values, and only the 95% CI range for

value ‘at4-at5’ (probably due to the large uncertainty for experiment x2s3244) overlaps with the

theoretical result. With the reflected shock used at the secondary diaphragm, the theoretical

result is 2% greater than the the global mean ‘at4-at6’ experimental value, and all three 95%

CI ranges include the theoretical result, showing that it is the better assumption to model the

experimental data.

The unsteadily expanded test gas (p7) results both from the experiments and the experi-

mentally inferred theoretical analysis can be seen in Table 7.3. The experimental results are
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Figure 7.12: Experimental acceleration tube shock speeds (Vs,2).

the mean of the filtered experimentally measured pressures from all eight ‘at’ labelled sensor

locations in X2’s acceleration tube (‘at1’ to ‘at8’). The theoretical values shown from the anal-

ysis (both the nominal case and the solution bounds) were found using a fully reflected shock

at the secondary diaphragm, and with the shocked test gas (state 2) unsteadily expanded to

the acceleration tube shock speed (Vs,2) in the acceleration tube. For every experiment, the

uncertainties on the experimentally measured values overlap with the solution bounds from

the experimentally inferred analysis, making the experiments and the theoretical results sta-

tistically consistent. From this it can be concluded that the aforementioned assumptions used

with the theoretical model are valid. For this reason, these assumptions have been used for the

following theoretical calculations presented in Table 7.4 and Figs. 7.13 and 7.14.

The test section 15◦ half-angle cone pressure (p10c) results both from the experiments and

the experimentally inferred theoretical analysis can be seen in Table 7.4. Sensors ‘pt1’ and ‘pt9’

were deemed to be out of the core flow for all experiments, giving a core flow size of at least

120 mm based on the geometry of X2’s Pitot rake. A Pitot pressure probe was used in location

‘pt5’ for most experiments and sensor ‘pt8’ was deemed to be malfunctioning, so mean values

were calculated using all remaining sensors. The experimentally inferred theoretical values

shown were found by using the same assumptions which were used to find the results shown
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Table 7.3: Experimental and theoretical unsteadily expanded test gas pressure (p7) results for
all of the experiments.

Experiment Experimental p7 (kPa) Theoretical nominal p7 (kPa) Theoretical p7 solution bounds (kPa)
x2s3241 1.61 ± 0.14 (8.7%) 1.12 0.85 – 1.44
x2s3244 1.16 ± 0.13 (11%) 1.39 0.88 – 2.10
x2s3242 0.94 ± 0.12 (13%) 0.83 0.62 – 1.07
x2s3243 1.05 ± 0.14 (13%) 1.29 0.93 – 1.75
x2s3253 1.18 ± 0.18 (15%) 1.38 1.07 – 1.74
x2s3254 1.26 ± 0.16 (13%) 0.99 0.73 – 1.30
x2s3255 1.04 ± 0.14 (13%) 1.44 1.11 – 1.81
x2s3256 1.17 ± 0.18 (15%) 1.10 0.81 – 1.46

in Table 7.3 above and then calculating results with different effective area ratios in intervals

of 0.5 to find the best match for the experimental data. The results are shown in Table 7.4.

While it is not shown here, for the experiments where the Pitot pressure probe was used in

location ‘pt5’, the Pitot pressure was also compared as a check of the effective ratio results.

Except for experiments x2s3244 and x2s3243 where the Pitot pressure probe gave unrealistically

low values, which can occur when the front of the probe mount is not tight enough, the same

effective area ratio was able to be used for the Pitot pressure as well. In Table 7.4 it is interesting

to note how often different effective area ratios are required for conditions with the same test

gas composition, showing how sensitive this parameter is. The freestream conditions found

using these effective area ratios are used to find the post-normal shock data shown in Figs. 7.13

and 7.14.

Another conclusion presented in Section 7.4 was that the stagnation enthalpy (Ht) of the

test conditions should remain virtually constant for all helium diluent fractions. Fig. 7.13

examines this by comparing the expected stagnation enthalpy values from the fully theoretical

analysis from Section 7.4 with the reflected shock added at the secondary diaphragm to the

experimentally inferred values for the individual experiments. Each experimental point shown

on the figure is a different experiment. Considering the experimental data shown on the figure,

it can be seen that more than half of the experiments, which includes the two experiments

with a 15% helium diluent fraction (x2s3241 and x2s3242), one of the experiments with a

40% diluent fraction (x2s3243), and two experiments with 70% (x2s3255 and x2s3256, the

two experiments filled directly into the shock tube), show a nominal reduction from what was

expected theoretically of around 5 to 6%. The authors are not sure what this is caused by.

It could be a small loss of total pressure at the secondary diaphragm or something caused

by the shock speed uncertainties. One experiment with a 40% diluent fraction (x2s3242) is

statistically consistent with the theoretical result, and so is one experiment with 70% (x2s3253).

The remaining 70% diluent fraction experiment (x2s3254) is nominally around 2% faster than
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Table 7.4: Experimental and theoretical test section 15◦ half-angle cone pressure (p10c) results
for all of the experiments.

Experiment Effective Experimental p10c (kPa) Theoretical nominal Theoretical p10c

area ratio p10c (kPa) solution bounds (kPa)
x2s3241 3.0 2.22 ± 0.19 (8.7%) 2.34 1.98 – 2.74
x2s3244 4.0 2.05 ± 0.15 (7.4%) 1.98 1.51 – 2.53
x2s3242 3.0 2.13 ± 0.26 (12%) 2.02 1.72 – 2.35
x2s3243 3.5 2.05 ± 0.32 (15%) 2.23 1.84 – 2.66
x2s3253 3.5 2.48 ± 0.36 (14%) 2.38 2.04 – 2.77
x2s3254 3.5 1.96 ± 0.25 (13%) 1.95 1.65 – 2.29
x2s3255 4.0 2.10 ± 0.30 (15%) 2.11 1.82 – 2.44
x2s3256 4.0 1.84 ± 0.23 (12%) 1.82 1.54 – 2.13

the theoretical result.
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Figure 7.13: Comparing theoretical and experimental results for how changing helium diluent
affects the stagnation enthalpy of the test condition.

As more than a half of the experiments showed a slight reduction from the expected theo-

retical stagnation enthalpy in Fig. 7.13, it is interesting to examine what effect that has on the

expected post-normal shock temperatures in the test section. This is shown in Fig. 7.14. Once

again, a fully reflected shock has been added to the fully theoretical calculation at the sec-

ondary diaphragm (which makes the theoretical results shown here different to Fig. 7.4a), and

the theoretical results are compared to the experimentally inferred values for each individual

experiment. Considering the frozen experimental data, the five experiments with a roughly 5

to 6% reduction in stagnation enthalpy show a nominal reduction in frozen post-shock temper-
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ature of also around 5 to 6%, which would be expected for the frozen case due to its post-shock

temperature only being a function of the stagnation enthalpy. Considering the equilibrium

experimental data, it is interesting to note that the majority of the experiments which showed

the 5 to 6% nominal reduction in stagnation enthalpy do not show a reduction in equilibrium

post-shock temperature. For the 15% helium diluent fraction results, a small increase (0.2%

for x2s3241 and 2% for experiment x2s3244) in equilibrium post-shock temperature is actually

seen. This is also seen for the 70% diluent fraction data where a nominal 0.7% increase above

the expected theoretical value is seen for experiment x2s3255 and 0.2% increase is seen for

experiment x2s3256. It is only the 40% diluent fraction experiment (x2s3243) which shows a

reduction more in line with its reduction in stagnation enthalpy, with a 7% nominal reduction

in equilibrium post-shock temperature compared to the theoretical value. As most of the stag-

nation enthalpy goes into thermal modes behind the shock wave, this can be explained using

CEA [197, 198] to examine how the equilibrium state of these different mixtures change as the

static enthalpy (h - h0) changes around 180 MJ/kg. For the 15% and 70% helium diluent con-

ditions, the gradient of temperature with changing enthalpy is very shallow around 180 MJ/kg,

with most of the enthalpy change going into dissociation or ionisation, respectively. For the

40% helium diluent, the opposite is true, and the temperature is rising very steeply around

180 MJ/kg as the H is fully dissociated but has not yet started to ionise. Overall, these results

are similar to what was seen in Fig. 7.8 in Section 7.4.3 where the temperatures of higher ac-

celeration tube fill pressure, and therefore lower stagnation enthalpy, conditions were shown. It

was seen that the lower stagnation enthalpy conditions showed similar equilibrium post-shock

temperatures for helium diluent fractions either below around 20% or above around 70%, with

a reduction seen in between these limits.

7.5.2 High Speed Imagery Analysis

High speed imagery was taken for all experiments discussed in this section using a Shimadzu

HPV-1 high speed camera which can record 100 greyscale images at a recording speed of up to

1 MHz. As was discussed in Section 7.5.1, after the first two experiments (x2s3241 and x2s3242)

were performed, a Pitot pressure probe was added to the middle sensor in the Pitot rake (‘pt5’)

to create a small stagnation region which could be used to compare the time-resolved radiative

emission in the stagnation region between experiments. Camera settings were kept constant for

all experiments, with a recording frequency of 250 kHz (giving a total recording time of 400 µs),

an exposure time of 1/2, a gain of 1, and an f-number of 5.6. The lens used was a Nikkon

Zoom-nikkor 100-300mm which was set up to cover and focus on all nine probes in X2’s Pitot

rake.

The spectral response curve of the Shimadzu HPV-1 camera (found in Appendix F of
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Figure 7.14: Comparing theoretical and experimental results for how helium diluent fraction
affects the post-shock temperature of the test gas along the stagnation streamline over the test
model.

Eichmann [78] from Eichmann’s personal communication with Shimadzu) is from around 320 nm

to 950 nm. It has a maximum response at 500 nm with the sensitivity dropping off gradually

on either side. The camera is essentially capturing spectrally integrated radiative emission in

time before, during, and after the experimental test time. It should be noted that, while this

spectral range includes the whole Balmer series of atomic hydrogen from 364.6 nm to 656.3 nm,

it also includes two bright contaminant lines from the aluminium foil secondary diaphragm at

394 and 396 nm, and a lot of weak iron contamination lines from the tube walls. The next step

after this work would be to use a larger test model and a spectrometer to spectrally resolve the

radiation seen, but the current study sought to establish if the post-shock radiative emission

increased with increasing helium diluent as had been predicted in Section 7.4.4.

To perform the analysis, the raw images were analysed using a code described in James et

al. [4]. A selected region in space which corresponded to the stagnation region on the Pitot

pressure probe was spatially integrated in each image to find a time-resolved camera intensity

which could be used to examine the flow radiative emission between experiments. The results

can be seen in Fig. 7.15. The x-axis on the figure has been zeroed at flow arrival in the test

section.

Based on the cone pressure measurements discussed in Section 7.5.1 (even though the time-

resolved pressures were not shown) and the radiative emission measurements shown in Fig. 7.15,
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Figure 7.15: Time-resolved integrated high speed camera intensity over a Pitot pressure probe
for different percentages of helium diluent (by volume).

the test time for all of the conditions appears to be around 100 µs. It starts around 20 µs after

flow arrival and ends around 120 µs after flow arrival when the increase in emission seen in

Fig. 7.15 indicates the arrival of the unsteady expansion which processed the test gas to its

final state. (See Paull and Stalker [215] or James et al. [4] for more discussion of how expansion

tube test time begins and ends.)

In Fig. 7.15, it can be seen that a higher amount of helium diluent does indeed result in

more radiative emission. For experiment x2s3244, the 15% helium diluent fraction condition,

a spike in emission is seen at shock arrival when the hot accelerator gas passes the model and

the flow starts up before the colder test gas brings with it a reduction in emission. This is

generally normal for X2 conditions, and is something which is not as pronounced for the 40 and

70% helium diluent fraction conditions, which show the initial shock arrival and then almost

constant emission after it. While the 15% diluent fraction condition has less counts during the

test time, its emission remains almost constant until around 120 µs after flow arrival when the

test time ends and the flow emission increases. The 40% diluent fraction experiment (x2s3243)

shows a gradual reduction from shock arrival to a steady period of radiative emission at around

28,000 counts for around 50 µs. The 70% helium diluent fraction conditions show an even longer

reduction, and an even shorter steady emission period, with two of the experiments (x2s3253

and x2s3255) showing a steady period at around 30,000 counts for around 20 µs. The other two

experiments (x2s3254 and x2s3256) show a similar length period but with more counts. This

reduction in emission seen during the test time for the 70% helium diluent fraction conditions
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is interesting and is something which should be investigated further in the future. It is also

interesting to compare the emission of the 70% helium diluent fraction experiments to their

inferred stagnation enthalpies from the results presented in Section 7.5.1. Experiment x2s3254

had an inferred stagnation enthalpy which was 2% higher than the nominal result, and as such,

it is to be expected that it would be the condition with the highest emission during the test

time in Fig. 7.15. Experiments x2s3255 and x2s3256 both had their test gas filled directly into

the shock tube and had an inferred stagnation enthalpy reduction of 5 to 6% compared to the

nominal result, however, in Fig. 7.15, x2s3256 has the second highest emission. Experiment

x2s3255 has almost exactly the same time-resolved emission profile as experiment x2s3253,

which did not have the inferred stagnation enthalpy reduction. These results show that there

does not appear to be a conclusive relationship between how the test gas is filled, the inferred

stagnation enthalpy, and the flow radiative emission.

Fig. 7.16 shows sample false colour images near the end of the test time (around 100 µs

after flow arrival) from both x2s3244, a 15% diluent fraction test condition, and x2s3254, one

of the 70% diluent fraction test conditions. The images have been zoomed in to the region near

the Pitot pressure probe and the intensity scale has been set to the same maximum value for

both images so that they can easily be compared. Comparing the 70% helium diluent image

(Fig. 7.16b) to the 15% one (Fig. 7.16a), it can be seen that there is not only more emission

over the Pitot pressure probe, but there are also other radiating features in the flow-field, such

as a bright wake flow behind the probe.

(a) x2s3244 (15% helium diluent fraction) (b) x2s3254 (70% helium diluent fraction)

Figure 7.16: False colour high speed camera images around 100 µs after flow arrival for experi-
ments with helium diluent fractions of 15 and 70% (by volume).
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Considering the theoretical Balmer series radiation shown in Fig. 7.9a, a seven order of

magnitude increase in radiative emission would be expected between diluent fractions of 15

and 40%, and then another four orders of magnitude would be expected from 40 to 70%.

This is not what is seen in Fig. 7.15, where at most an order of magnitude increase is seen

between diluent fractions of 15 and 70%. This is probably caused by a combination of non-

equilibrium chemistry and flow contamination. The results shown in Fig. 7.9a are for a gas in

thermochemical equilibrium, and Cruden and Bogdanoff found that a lot of their experimental

shock relaxation data was non-equilibrium and radiating at lower levels than the expected

equilibrium values [72, 73]. Considering that the radiative emission measurements shown in

Fig. 7.15 were taken over a Pitot pressure probe with a small shock standoff, this could have

a significant affect. The effect of the contamination lines from the aluminium foil secondary

diaphragm are shown in Fig. 7.17, where the Balmer series radiative power density (which is fully

captured by the sensitivity of the HPV-1 high speed camera) from Fig. 7.9a has been re-plotted

along with similar calculations performed with the post-shock equilibrium flow contaminated

by 1, 0.1, and 0.01 percent aluminium (by volume). Examining Fig. 7.17 it can be seen that the

contamination dramatically reduces the change in power density between conditions with low

and high percentages of the helium diluent, with only a small dependence on the contamination

percentage at diluent fractions of less than 30%. At higher diluent fractions, a combination

of the aluminium ionising and the flow radiating much more strongly means that there is a

point for each contamination percentage where the contamination no longer has an effect on

the power density at all. Depending on the percentage of aluminium contamination, Fig. 7.17

still predicts a difference of three or four orders of magnitude between diluent fractions of 15

and 70%, but this is a very large reduction compared to eleven orders of magnitude, and is able

to explain a large amount of the discrepancies seen between theory and experiment. In future

work, high speed imagery should be performed with optical filters to better isolate the Balmer

series radiation from the contaminants.
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Figure 7.17: Effect of aluminium secondary diaphragm contamination on the theoretical total
power density in the same wavelength region as the Balmer series from a 1 cm tangent slab in
thermochemical equilibrium.

7.6 Conclusions

Due to large uncertainties when the author attempted to simulate Uranus entry directly in X2

in Chapter 6, it was proposed to investigate a test gas substitution from the literature which

allows for the simulation of only the shock layers of blunt-body gas giant entry conditions

by using either an increased amount of helium diluent in the test gas, or by replacing the

helium with a heavier diluent, neon. This was examined theoretically for a test condition from

Chapter 6 using both helium and neon diluent fractions from 10 to 90% (by volume).

Using the helium diluent, it was found that increasing the diluent fraction did not affect

the test condition gas dynamically in the expansion tube as the stagnation enthalpy of the test

condition remained constant over the whole range. In general, the only large increase seen over

the whole diluent fraction range was in the post-shock temperature over the test model in the

test section. Theoretically, it was shown that the analysed condition should be able to simulate

both frozen and equilibrium shock layers of proposed Uranus and Saturn entries using different

amounts of helium diluent, and that a secondary driver section could potentially be used to

simulate these conditions with modified binary scaling parameters which took into account

the changing amount of H2 in the test gas fill condition. It was also found that with large

helium diluent fractions (70% and above, by volume) the conditions became less sensitive to

the acceleration tube fill pressure for simulating the equilibrium temperature, meaning slower
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conditions than the one investigated here could be used to generate these conditions. Basic

theoretical predictions of post-shock radiation showed that atomic hydrogen radiation from the

Lyman and Balmer series should increase over the helium diluent range investigated, allowing

the radiation from proposed Uranus and Saturn entries to be simulated.

With the neon diluent, larger changes were seen. The conditions became slower with in-

creasing neon diluent fraction due to the larger change in the test gas molecular weight from

the use of the heavy neon diluent. It was shown that the neon diluent could easily generate the

post-shock temperatures required to simulate the proposed Uranus and Saturn entries, meaning

that it would be able to simulate faster entries or binary scaled conditions more easily. How-

ever, it was also seen that the neon ionised for some of the very high temperature conditions,

a situation which Stalker and Edwards [67], said rendered their substitution invalid, because

the neon was no longer acting as an inert diluent. Basic theoretical predictions of post-shock

radiation showed that atomic hydrogen radiation from the Lyman and Balmer series should

increase over the full neon diluent range investigated.

Finally, H2/He Pitot rake experiments were performed, using diluent fractions of 15, 40,

and 70% (by volume). The analysis confirmed the theoretical prediction that the performance

of the test conditions would not be affected by the changing diluent fraction, with the exper-

imentally measured shock speeds for each experiment being represented by the same global

means, making them statistically the same. While some of the experiments were shown to have

stagnation enthalpies 5 to 6% lower than would have been expected theoretically, their tem-

perature predictions were still very close to the theoretical predictions both at the frozen and

equilibrium limits. This is a very positive result as in Chapter 6, the shock speed uncertainties

were large, and the conditions were very sensitive to that. Because these conditions appear to

be insensitive to minute differences in the flow conditions, they are more likely to be able to be

used successfully. The intensity of a high speed camera was also used to show that there was

in fact more radiative emission seen with higher amounts of helium diluent.

Further work should aim to spectrally quantify the shock layers generated by these flows.

Due to how dark these conditions are when compared to planetary entries which are normally

studied in expansion tubes, such as Earth, Mars, or Titan, this should be done with a blunt

quasi two-dimensional model to start with to ensure that a large stagnation region exists to be

imaged. Following this, the technique can be progressed to more representative aeroshell models

after experimenters have an idea of the intensity of the radiation seen versus the sensitivity

of their equipment. Further experiments should also experimentally examine the performance

of the neon diluent against the theoretical results presented here, as due to experimental time

constraints, the authors were not able to take experimental data for the H2/Ne test conditions.

In a more general sense, further work should aim to leverage the ability of expansion tubes
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to simulate gas giant entry test conditions using test models as this is a niche which cannot

currently be filled by other types of test facilities. This means focusing on phenomena which is

currently studied in expansion tubes, such as heat transfer, the flow around scaled aeroshells,

and the use of resistively heated test models to study the interaction of the test flow with an

ablating model. This process of further experimentation has already started, with preliminary

gas giant entry radiation experiments having been performed by Liu et al. [22] this year using

the test conditions described in this chapter.



8

Conclusions and Recommendations

An earthquake is such fun when it is over.

– George Orwell, Burmese Days, 1934 [291]

8.1 Chapter Overview

This chapter presents the final conclusions and recommendations of this thesis.

8.2 Conclusions

The goal of this thesis was to examine the possibility of simulating radiating Uranus and

Saturn entry in the X2 expansion tube at UQ. Examining this was a multi-faceted process,

which required a lot of scaffolding to be built before the project could progress. This allowed the

operational procedures of UQ’s whole expansion tube laboratory to be improved. Consequently,

some of the deliverables of this thesis changed from something very specific, related to planetary

exploration missions, and into more general ground testing aims. At the end of Chapter 4, there

is a brief discussion of the upgrades performed to X2 both physically and procedurally, which

were either fully designed by the author, or in the case of the wall transducer mounts, designed

by one of the author’s supervisors, and modified and further implemented by the author. The

Shot Class code written specifically for analysing the facility data for this thesis, is now used

by every experimenter on the X2 facility. The miniature Pitot rake test models, which can

be mounted below another test model, were never used by the author for this project due to

changes in its scope. However, they are now part of the standard experimental hardware used

by the majority of X2 experimenters for understanding their equipment trigger times in relation

to experimental test times.

192
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PITOT, the equilibrium gas state-to-state expansion tube analysis code presented in Chap-

ter 5 is also one of the generic deliverables of this thesis, and has proven to be a very useful tool

for the author and other X2 experimenters. PITOT was written to allow ‘virtual experiments’

to be performed quickly and easily, in a way which is analogous to how the facility is configured

during a real experiment. In a more fundamental sense, PITOT was shown to not just be

useful for approximately designing new test conditions or for qualitatively assessing trends in

the facility’s performance. The air test gas examples presented in Chapter 5 demonstrated how

facility shock speed and pressure data could be used with PITOT to model experiments and

estimate experimental freestream properties in a semi-empirical manner. This was also shown

to generally be true when PITOT was used for the simulation of gas giant entry test conditions

in the later chapters of the thesis.

Initial theoretical performance predictions showed that attempting to simulate true gas com-

position and true flight velocity Uranus and Saturn entry in X2 was not going to be straight-

forward, and that trends in facility performance would need to be maximised to achieve the

required stagnation enthalpies. However, other difficulties were not foreseen. During the first

experimental campaign, it was difficult to get the facility to seal as well as was necessary to

operate with an uncontaminated test gas and to reach the required acceleration tube fill pres-

sures. When operating conditions were adequate, the shock speed uncertainties were large due

to the very fast shock speeds, which were at least 50% higher than X2’s more typical maximum

shock speeds of around 12 km/s.

To help address these issues on X2 in general, a helium leak detector was purchased and used

to remove leaks on the facility. However, during the second experimental campaign, other issues

were then found. These issues included leaking through the double aluminium foil secondary

diaphragm, which compromised experiments using a secondary driver section. The stronger

Mylar diaphragms used in their place then caused performance losses between the secondary

driver and shock tubes. The main issues were still caused by the very large shock speed

uncertainties from the 20 km/s low pressure, acceleration tube shock speeds. Even with the wall

transducer pressure signals recorded at 60 MHz to reduce the sampling rate error, uncertainty

in finding the shock arrival time in the signals resulted in very large shock speed uncertainties,

which, in turn, resulted in very large uncertainties on the test conditions themselves. The

fastest condition tested had a flight equivalent velocity range of 21.1 to 22.9 km/s, showing that

potentially the required 22.3 km/s velocity to simulate Uranus entry was achieved. However,

the results are not conclusive. It was also shown theoretically that with a more powerful

free piston driver, an X2 sized facility could be used to simulate the proposed Uranus and

Saturn entry conditions. Either way, a faster response shock detection system, which would be

fit for purpose for measuring shock speeds above 20 km/s, would be required before true gas
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composition and true flight velocity Uranus and Saturn entry simulation is again considered in

X2. These requirements are expanded on further in the recommendations section below.

However, the simulation of Uranus and Saturn entry using the Stalker substitution, where

either an increased molar percentage of helium, or a substitution to neon instead of the helium,

is used in the test gas, was shown to be much more promising. A modified version of a 19 km/s

condition tested in the true gas composition study was theoretically shown to be able to easily

simulate the required shock layer temperatures for the simulation of both Uranus and Saturn

entry in X2. This could either be achieved by using a large molar percentage of helium or a

molar percentage of neon which was similar to the ten to twenty percent helium percentage

in the real atmospheres. Interestingly, it was also shown that the helium substitution did

not affect the stagnation enthalpy of the test condition as it travelled through the expansion

tube, with the only large change shown to be the post-shock temperature over the test model.

Experimental validation using the helium substitution confirmed that the test conditions would

behave in the driven sections of X2 as had been predicted, and also clearly showed that more

radiation was seen in the post-shock flow in the test section. This is a very promising result,

because it shows that using this substitution, the shock layers of the proposed Uranus and

Saturn entries can be simulated in X2 at conditions which are more easily achievable. The

conditions being slower also means that the shock speed uncertainties, and the related test

condition uncertainties, are smaller than when it was attempted to simulate the conditions at

true flight velocity.

This will be expanded upon further in the recommendations section below, but it should not

be forgotten how difficult it is to simulate gas giant entry. When the Galileo probe was designed

in the 1980’s, the heat loads were able to be re-created, but the fastest experiments were per-

formed at 15.5 km/s. The shock layers of entry conditions for Uranus and Saturn were recently

simulated in the EAST facility at NASA Ames, but those conditions could never be used for

the generation of true aerothermodynamic flow-fields like those which can be generated in an

expansion tube. The final results are promising because they open up X2 for the experimental

simulation of other phenomena related to these entries, such as heat transfer rates, studies of

the boundary layer around the test model, or the effect of a heated wall on the post-shock

flow-field.

8.3 Recommendations

In terms of the theoretical simulation of expansion tubes in general, and the experimental

simulation of gas giant entry in them, much work remains to be done. The following further

work is recommended:
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• Addition of more complex time and distance dependent models to PITOT. Currently,

PITOT simulates an expansion tube experiment using state-to-state processes, which are

independent of time and distance. It can take into account time and distance depen-

dent phenomena, such as a secondary diaphragm hold time, or the over-expansion of the

shocked test gas in the acceleration tube due to low density shock tube (‘Mirels’) effects

using various settings, but it cannot simulate them directly. One upgrade to the code

would be the addition of models such as an inertial diaphragm model and a Mirels solver

to allow it to simulate expansion tube phenomena which need time and/or distance based

calculations to be modelled correctly.

• Validate PITOT against higher fidelity numerical simulation models. The main benefit of

PITOT is that it is able to complete a simulation of an expansion tube facility in a couple

of minutes, whereas quasi one-dimensional facility simulations such as the in-house L1d3

facility simulation code can take hours, and higher fidelity two-dimensional simulations

can take weeks. While so far PITOT simulations have only been compared to experimental

data, it would be interesting and useful to compare results found from PITOT to higher

fidelity simulations to see where the different techniques agree, and where they don’t.

Whereas real experimental data is effectively ‘the gold standard’ of validation data, what

can be measured during an experiment is very limited, and if PITOT is compared to

higher fidelity simulations, there will be a lot more data available for comparison.

• Improved driver modelling for use with PITOT. During the experimental validation of

PITOT, it was found for the experimental test conditions that the empirically evaluated

driver condition estimates used in the code generally either over or under-estimated the

shock tube shock speed by 5%, compared to experimental results. While PITOT can be

run in various experimental modes which remove the driver model from the simulation,

the accuracy of PITOT’s purely theoretical results, which are used for initial condition

characterisation, are based on the accuracy of the driver estimates. For this reason it is

suggested that additional time should be spent on improving the current driver estimates

used in PITOT. This model could be improved in two ways. The first would be purely

theoretical, by allowing PITOT to simulate heat losses during the piston compression and

total pressure losses through the area change into the shock tube to improve theoretical

driver estimates. The second would be experimental, by performing a comprehensive

study of driver performance for different test conditions and aiming to provide a look up

table for driver performance instead of a single set of rupture pressure and temperature

values for each driver condition.

• Investigation of new and thinner secondary or tertiary diaphragm materials. When ex-
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periments were performed to validate the theoretical performance predictions for true

gas composition gas giant entry simulation, it was found that the dual aluminium foil

diaphragms which were being used as the secondary diaphragm for the conditions with

a secondary driver had been leaking before the experiment and compromising the re-

sults. As such, experiments were instead performed using either 12.5 or 25 µm mylar

diaphragms. However, these diaphragms were found to lower the performance seen after

the secondary driver section when compared to theory. This became more severe when

the 25 µm material was used. At the time when the experiments were performed, these

were the thinnest mylar diaphragms in use in the laboratory. Since then, the author and

colleagues have performed limited testing using mylar diaphragms down to 1 µm for other

projects. The diaphragms are very weak, and sometimes unreliable, but a 5 µm mylar

diaphragm was found to have a static rupture pressure of 35 kPa, which would make it

appropriate for simulating the conditions discussed in this work, as the secondary driver

fill pressure used here was between 21 and 25 kPa. In a more general sense, the investiga-

tion of new and thinner secondary diaphragm materials is always necessary, because the

secondary and tertiary diaphragms used in an expansion tube often have a significant and

negative effect on the flow. Just after diaphragm rupture, it has an effect on the shocked

test gas, which can cause flow conditions to depart from what would be expended from

ideal theory, where the diaphragm is not modelled. This causes some conditions to be

slower than theory, and others to be faster. The diaphragm also adds contamination to

the test flow, as particles from the final diaphragm become entrained in the test gas. The

mylar diaphragms once used on X2 were replaced with aluminium foil for radiation stud-

ies because it removed hydrocarbon contamination from the flow. However, it does add

aluminium and potentially iron contamination, as many common aluminium alloys used

for making foil contain iron. Potentially thinner mylar diaphragms would be more ap-

propriate, as mylar is a stronger material, so less diaphragm mass is required for a given

rupture pressure, or another material could be found. A study should be carried out,

focusing both on facility performance from different diaphragms, and the contamination

seen in the spectra when different diaphragms are used.

• Designing a faster response shock detection system for when true gas composition Uranus

and Saturn entry is simulated in X2. When experiments were performed to validate the

theoretical performance predictions for simulating true gas composition gas giant entry,

one of the biggest issues found were how large the shock speed uncertainties were. The

large uncertainties were not surprising, as the shock speed uncertainties generally increase

with increasing shock speed, but uncertainty about the shock arrival times meant that

even wall pressure data recorded at 60 MHz to try to reduce the sampling rate error
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still had large uncertainties. For the fastest conditions tested, the freestream pressure

uncertainties were up to 100% and even the stagnation enthalpy uncertainty was almost

10%. If at some point in the future these entries were to be simulated in X2 using a

more powerful driver, a shock detection system which was fit for purpose for these very

fast shock speeds would be required, as the pressure transducers currently used do not

seem to be able to respond quickly enough to the passing shock wave. This is something

which would have to be investigated in the future, but potentially a focused optical system

would be required as it should be able to respond quicker than force on a physical pressure

transducer.

• Design of new driver conditions for X2 to allow for true gas composition simulation of

Uranus and Saturn entry. The theoretical study performed at the end of the investigation

into simulating true gas composition gas giant entry found that with a more powerful

driver condition, an X2 sized facility could be used to simulate entry into Uranus and

Saturn, or potentially even Neptune. While X2’s driver has many limitations, such as its

short length, and its low driver pressure rating of 40 MPa (compared to other facilities

which are often above 100 MPa), like many other facilities in the world, it does have the

benefit that its current free piston driver conditions were designed to be tuned and to

produce long hold times. This tuning means that the driver conditions are overdriven to

keep the piston moving after diaphragm rupture to ensure that the driver supply pressure

does not drop too quickly. While tuning is very important for the slow, scramjet test

conditions which the driver conditions were designed for, for the simulation of very fast

test conditions, not as much tuning would be required, and instead, slower piston speeds

could be used to increase the driver compression ratio inside the physical limitations of

X2’s geometry. Recently, this has been comprehensively examined by an undergraduate

thesis student of the author [292], with plans to test a diaphragm rupture condition with

a compression ratio of 70 in X2 in the coming year. This is a large increase from the

current maximum compression ratio of 40, and current simulations predict that the new

driver condition will be as powerful as the current compression ratio of 40 condition with

a secondary driver. If this is the case, this new driver would allow for true gas composition

simulation of Uranus entry in X2, and potentially even Saturn entry.

• Further investigation of using either a larger molar percentage of helium or neon for the

simulation of radiating gas giant entry test conditions. For various reasons, the tasks

completed in this thesis became larger than was expected, and because of this, it was

not possible to comprehensively study the effect which using either an increased molar

percentages of helium or neon has on the shock layer radiation. For this reason, it is

important that further work aims to spectrally quantify the shock layers generated using
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either helium or neon substitutions. Because the expected radiative emission is much

lower for these conditions compared to planetary entries which are normally studied in

X2, such as Earth, Mars or Titan, initial experiments should either be performed using

either a blunt quasi two-dimensional model or a very large model to ensure that a large

stagnation region exists to be imaged. Thermochemical non-equilibrium CFD simulations

could also be used to examine the effect of the substitution on the chemistry of the whole

flow-field for various fundamental geometries which could be tested in X2.

• Using the substituted test gas conditions to capitalise on the benefits of expansion tubes

for the simulation of gas giant entry. Because an expansion tube effectively relies on two

separate shock tubes separated by a diaphragm to generate its test flows, expansion tubes

will always have higher uncertainties than facilities like NASA’s EAST where radiation

directly behind a well quantified moving shock can be imaged. However, generally an

expansion tube can generate a much larger test gas slug than a non-reflected shock tube,

allowing experiments with scaled test models to be easily performed. This means that

to be useful, an expansion tube must capitalise on these benefits. In support of Uranus

and Saturn entry, many different types of experiments could be performed in X2 using

the test gas substitution. Experiments could be performed over scaled aeroshell models

with surface mounted instrumentation to study heat transfer rates, as for gas giant entry,

even when the radiative heat transfer rates are low, the convective heat transfer rates

are as high as hyperbolic Earth entries. The discrepancies seen between the expected

and measured heat shield ablation of the Galileo probe are now thought to be caused by

ablation products absorbing heat in the stagnation region, and then travelling downstream

and increasing the heat transfer rates on the flank of the vehicle. Similar behaviour to

this for Uranus and Saturn entry could be explored in X2 using the resistively heated test

model techniques which are currently employed in the laboratory. A continuation of this

work using test models has already started, with preliminary gas giant entry radiation

experiments having been performed by Liu et al. [22] this year using a scaled aeroshell

model and the test conditions described in this thesis.
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Appendix A

Eichmann Cylinder Drawings

This appendix collects the drawing set for the latest iteration of the 75 mm long, 25 mm

diameter Eichmann cylinder that was used for some experiments during this project. The

drawing of the cylinder is included, as well as drawings of an aligning tool, and a key to mount

the aligning tool to the model. Drawings of the rest of the X2 model mounting system are also

included, including the model mount, sting adapter, sting, sting clamps, and the model mount

that bolts to the rail at the bottom of the X2 test section.
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8 X2-MODEL-MOUNTING-SYSTEM-008 0 Model Mount Steel C.M. James 1 model_mount



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
11/08/16

SIZE
A4

PROJECT REV
1

FILE NAME: x2-m-m-system-000-1-model-assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 3 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James 05/04/16

Chris James PhD model

TITLE Assembly

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-000

1 Changes to drawing to reflect extra detail
added to the Sting Clamp
(X2-MODEL-MOUNTING-SYSTEM-007)

11/08/16

Item
Number

Document Number Revision
number

Title Material Author Quantity File Name (no extension)

9* N/A N/A M10 High Tensile Washer Steel C.M. James 2 M10_high_tensile_washer

10* N/A N/A M10 x 50 mm Cap Screw Steel C.M. James 2 M10-50mm

11 N/A N/A M4 x 10 mm Cap Screw Steel C.M. James 5 M4 x 10mm

12 N/A N/A M4 x 5 mm Cap Screw Steel C.M. James 2 M4 x 5mm

13* N/A N/A M6 x 25 mm Cap Screw Steel C.M. James 2 M6 x 25mm

14 N/A N/A M8 x 50 mm Cap Screw Steel C.M. James 2 M8 x 50mm

15 N/A N/A M10 x 20 mm Cap Screw Steel C.M. James 2 M10 x 20mm



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
10/04/16

TITLE New Eichmann Cylinder

SIZE
A4

PROJECT
Chris James PhD model

REV
1

FILE NAME: x2-m-m-system-001-1-eichmann-clyinder.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James. 25/03/14

1 Updates to drawing to make it part of
X2-MODEL-MOUNTING-SYSTEM drawing set.

03/04/16

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-001

FRONT VIEW (2:1)

TOP VIEW (2:1)

SIDE VIEW (2:1)

1:1

75

16 +0.1/-0.0

2

2

2

2

2 2
1515

O 25

M6 - 7.5 DEEP

Notes:
- 25 diameter cylinder, 75 long.
- Need tight tolerance on cutouts on ends to fit 2 mm key.
- Material: mild steel.

M4 - 10 DEEP

M4 - 10 DEEP

1010

7.
5

7.
5

M6 - 7.5 DEEP

25 25

NEED TIGHT TOLERANCE ON CUTOUTS ON END TO 
FIT 2MM KEY (X2-MODEL-MOUNTING-SYSTEM-003).



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
03/04/16

SIZE
A4

PROJECT
Chris James PhD model

REV
1

FILE NAME: x2-m-m-system-002-1-aligning-tool.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James. 25/03/14

1 Updates to drawing to make it part of
X2-MODEL-MOUNTING-SYSTEM drawing set.

03/04/16

TITLE Aligning Tool for Eichmann Cylinder

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-002

Notes:
-20 long, 15 high. thickness of 4 is not essential, could be made  slightly
wider if only wider materials are available
- Material: stainless steel if available, could be made of aluminimum or mild
steel otherwise
- Need 2. One to fit either side of the model.

FRONT VIEW (5:1)

TOP VIEW (5:1)

5:1
15

4

21

O 0.5

O 4.1

7.
5

1
7

17
19

2

M4 TIGHT CLEARANCE HOLE

NEED TIGHT TOLERANCE ON
 CUTOUT TO FIT KEY 
(X2-MODEL-MOUNTING-SYSTEM-003).



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
03/04/16

SIZE
A4

PROJECT REV
1

FILE NAME: x2-m-m-system-003-1-key.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James. 25/03/14

1 Updates to drawing to make it part of
X2-MODEL-MOUNTING-SYSTEM drawing set.

03/04/16

Chris James PhD model

TITLE Key

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-003

Notes:
- key needs to fit fightly into the groove on the other two parts, the cylinder
(X2-MODEL-MOUNTING-SYSTEM-001) and the Aligning Tool (X2-MODEL-MOUNTING-SYSTEM-002).
- Material: not load bearing so stainless steel or aluminium is fine.
- Need 2 of these, one to fit either side of the model.

FRONT VIEW (10:1)

TOP VIEW (10:1)
5:1

15

4
2



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
05/04/16

SIZE
A4

PROJECT REV
0

FILE NAME: x2-m-m-system-004-0-mounting-block.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James based on
measurements of an existing part.

03/04/16

Chris James PhD model

TITLE Mounting Block

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-004

Notes:
- This drawing has been made based on measurmements of an existing component.
- Material: Existing component appears to be steel.
- Part is symmetrical about the Front View in both directions.
- Hollow centre is for use with test models with inbuilt sensors.

1:1.33

FRONT VIEW (1.5:1)

TOP VIEW (1.5:1)

SIDE VIEW (1.5:1)

16
0 -0
.1

SHOULD BE TOLERANCED DOWN TO FIT
CYLINDER (X2-MODEL-MOUNTING-SYSTEM-001).

O
3.5

M5 - 12 DEEP (BOTH ENDS)

O 3.5

BOTH ENDS
BOTH ENDS

13.710 10
10

4.75
16

27.25

32

75

O 6.1

O 4.1

15

R 4 R 4

VERY TIGHT M4 CLEARANCE HOLE WITH 
45v COUNTERSINK (BOTH SIDES).

O 6 O 6

THIS APPEARS TO BE A VERY TIGHT M6 CLEARANCE HOLE FOR
CONNECTION TO THE CYLINDER (X2-MODEL-MOUNTING-SYSTEM-001).
(IN REALITY, IT IS PROBABLY SLIGHTLY LARGER THAN 6 MM.)

3 HOLES ARE FROM AN OLD 
ALIGNMENT SYSTEM AND COULD 
BE REMOVED FROM A NEW 
VERSION OF THIS PART.

13.7 MM HOLE HAS A TIGHT FIT (PROBABLY H7/h6) WITH
THE STING ADAPTER (X2-MODEL-MOUNTING-SYSTEM-005).

12.5 12.526

7.
5



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
10/04/16

SIZE
A4

PROJECT REV
0

FILE NAME: x2-m-m-system-005-0-sting-adapter.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James based on
measurements of an existing part.

03/04/16

Chris James PhD model

TITLE Sting Adapter

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-005Notes:
- This drawing has been made based on measurmements of an existing component.
- Material: Existing component appears to be made from steel.

SIDE VIEW (2:1)FRONT VIEW (2:1)

1:1

13
.6
5

8 34 38

7

M4 STRAIGHT THROUGH

O 4

90
° 90°

4

3 x 4 mm HOLES WITH 45v COUNTERSINK
FOR BOLTING THIS PIECE TO THE STING 
(X2-MODEL-MOUNTING-SYSTEM-006)

TIGHT FIT (PROBABLY H7/h6) BETWEEN THIS PART AND
THE MOUNTING BLOCK (X2-MODEL-MOUNTING-SYSTEM-004)

5

46

11.5

13.19

M4 STRAIGHT THROUGH

60°
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
10/04/16

SIZE
A4

PROJECT REV
0

FILE NAME: x2-m-m-system-006-0-solid-sting.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James based on
measurements of an existing part.

03/04/16

Chris James PhD model

TITLE Solid Sting

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-006

Notes:
- This drawing has been made based on measurmements of an existing component.
- Material: Existing component appears to be made from steel.
- A similar hollow sting for use with models with inbuilt sensors also exists and can be found on
X2-MODEL-MOUNTING-SYSTEM-009.

SIDE VIEW
(1:1.33)

FRONT VIEW (1:1.33)

300

M10- 40 DEEP FOR CONNECTION
TO SCREW ON MODELS.

3 x M4- 10 DEEP FOR CONNECTION TO THE 
STING ADAPTER (X2-MODEL-MOUNTING-SYSTEM-005)

90°90
°

45°

2 1

45°

1:2

O 34

5
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
11/08/16

SIZE
A4

PROJECT REV
1

FILE NAME: x2-m-m-system-007-1-sting-clamp.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James based on
measurements of an existing part.

03/04/16

Chris James PhD model

TITLE Sting Clamp

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-007

1 More detail of existing part added, and
after dimensions were checked, the
diameter of the large bore was changed
from 33 to 34.

11/08/16

Notes:
- This drawing has been made based on measurmements of an existing component.
- Material: Existing component appears to be made from steel.
- Part is symmetrical about the Front View in both dimensions.

FRONT VIEW (1:1.25)

TOP VIEW (1:1.25)

SIDE VIEW (1:1.25)

1:2
75

50

13
.5

36
.5

O
34

15.5 15.5
M12- 15 DEEP

M12- 15 DEEP

17.48

M12 HOLES ARE FOR CONNECTING
THIS PART TO THE MODEL MOUNT
(X2-MODEL-MOUNTING-SYSTEM-008)

45

THE SOLID STING (X2-MODEL-MOUNTING-SYSTEM-006)
MOUNTS THROUGH THIS CENTRE HOLE

A BOLT THROUGH THESE TOP M10 THREADED 
HOLES IS USED TO APPLY FRICTION TO THE
SOLID STING (X2-MODEL-MOUNTING-SYSTEM-006)

8.2

M10 - THROUGH TOP

M10 - THROUGH TOP

M8 - THROUGH BOTTOM
M8 - THROUGH BOTTOM

A BOLT THROUGH THE TOP M8 CLEARANCE HOLE 
HERE THREADED INTO THE M8 BOTTOM THREADED 
HOLES CLAMPS THIS WHOLE PIECE TOGETHER.
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
05/04/16

SIZE
A4

PROJECT REV
0

FILE NAME: x2-m-m-system-008-0-model-mount.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James based on
measurements of an existing part.

03/04/16

Chris James PhD model

TITLE Model Mount

DOCUMENT NO.
X2-MODEL-MOUNTING-SYSTEM-008

Notes:
- This drawing has been made based on measurmements of an existing component.
- Material: Existing component appears to be made from steel.

FRONT VIEW (1:5)

TOP VIEW (1:5)

SIDE VIEW (1:5)

1:3.33

15
0

10

43

15 15

R 5

29

10
10

99

85 85 4 x 10 MM WIDE SLOTS WITH 5 MM RADIUS 
ROUNDED ENDS FOR CONNECTING THIS 
PART TO THE RAILS IN THE X2 DUMP TANK.

20
35

0

200

13 13 13

36.5

105.5
71.49

17

33

60
28

7

3 x 13 MM WIDE SLOTS WITH ROUNDED ENDS

FIRST AND THIRD SLOTS ARE HOLLOW
AND ACT AS M12 CLEARANCE HOLES 
FOR MOUNTING THE STING CLAMP 
(X2-MODEL-MOUNTING-SYSTEM-007)
TO THIS PART,

THE SECOND SLOT IS 17 MM 
DEEP AND IS USED FOR
RUNNING CABLING FROM
MODELS DOWN TO THE
INSTRUMENT PANEL ON 
THE BOTTOM OF THE 
X2 DUMP TANK.
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
10/04/16

SIZE
A4

PROJECT REV
0

FILE NAME: x2-m-m-system-009-0-hollow-sting.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James based on
measurements of an existing part.

10/04/16

Chris James PhD model

TITLE Hollow Sting

DOCUMENT NO. X2-MODEL-MOUNTING-SYSTEM-009

Notes:
- This drawing has been made based on measurmements of an existing component.
- Material: Existing component appears to be made from steel.
- This is the Hollow Sting for use with models with inbuilt sensors. A Solid Sting is shown on
X2-MODEL-MOUNTING-SYSTEM-006.

FRONT VIEW (1:1)SIDE VIEW (1:1)

1:2

200
63M10 STRAIGHT THROUGH ON THIS SIDE5

2 x M4 FOR CONNECTION TO THE 
STING ADAPTER (X2-MODEL-MOUNTING-SYSTEM-005)

THIS DIMENSION WAS NOT ABLE TO MEASURED
ACCURATELY SO CANNOT BE GUARANTEED

O 30

O 34



Appendix B

Original Standalone Pitot Mount Draw-

ing
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
uqcjame4

DATE
02/21/14

TITLE
Standalone Mount

SIZE
A4

PROJECT
Chris James PhD

REV
0

FILE NAME: standalone_mount.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

Notes:
- made from 20 mm thick steel. Does not need to be stainless.
- lead dimensions 60 x 180
- 20 degree chamfer on the front edge, length does not need to be exactly
what it is.
- Don't cut the holes until I can check on the model currently in the tunnel.
- Contact details: ph(internal) 54864, ph (mobile) 0423 229 601

180

152.53

30

20

M12 - 20 DEEPM12 - 20 DEEP

20
°

45

60

15.5
84.5

100

O
12.7



Appendix C

Standalone Three Pitot Mount Draw-

ings
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
04/09/15

TITLE
Assembly Drawing  (X2-PMM-000)

SIZE
A4

PROJECT
Chris James Pitot Mount Model

REV
0

FILE NAME: new_pcb_mount_model_assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 2

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James 04/09/15

Notes:
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

Item
Number

Document
Number

Revision
number

Title Material Author Quantity Notes

1 X2-PMM-001 0 Standalone 3 Pitot Mount Steel C.M. James 1 To be made

2 X2-PMM-002 0 Standalone 3 Pitot Mount
Backplate

Steel C.M. James 1 To be made

3 X2-PIT-004 0 Pitot Tube Body Stainless
steel bar

D. Gildfind 3 To be supplied by Xlabs

4 X2-PIT-003-0 1 15 Deg Pitot Cone, 8 Hole Stainless
steel bar

D. Gildfind 3 To be supplied by Xlabs

5 N/A M3 x 10 mm cap screw Steel C.M. James 4

6 N/A M6 x 5 mm grub screw Steel C.M. James 9



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
04/09/15

TITLE
Assembly Drawing  (X2-PMM-000)

SIZE
A4

PROJECT
Chris James Pitot Mount Model

REV
0

FILE NAME: new_pcb_mount_model_assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 2 OF 2

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James 04/09/15
1
1

3
3

4
3

6
9

2
1 5

4
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
04/09/15

TITLE
Standalone 3 Pitot Mount  (X2-PMM-001)

SIZE
A4

PROJECT
Chris James Pitot Mount Model

REV
0

FILE NAME: pcb_mount_model.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James 04/09/15

Notes:
- To be made from 20 mm thick steel. Does not need to be stainless.
- Leading dimensions 75 mm x 230 mm x 20 mm.
- 20 degree symmetrical chamfer on the front edge. Flat length (202.53) does not need to
be exact to the drawing.
- 10 mm slot on back is NOT a through slot. Stops at left edge of helf-most through hole.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW

TOP VIEW

LEFT SIDE VIEW RIGHT SIDE VIEW

BOTTOM VIEW

75

20

202.53
230

15

110

M12 - 15 DEEP
25.5

M12 - 15 DEEP
94.5

20°

27
.545

62
.5

O 12.7

O
12.7

O
12.7

10

38
58

78

3

4
61

8

62.5

9 x M6 THREADED THROUGH HOLES

4

3

4 x M3 - 10 DEEP
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
07/09/15

TITLE
Standalone 3 Pitot Mount Backplate  (X2-PMM-002)

SIZE
A4

PROJECT
Chris James Pitot Mount Model

REV
0

FILE NAME: pcb_mount_backplate.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing by C.M. James 04/09/15

Notes:
- To be made from 2 mm thick steel. Does not need to be stainless.
- Leading dimensions 20 mm x 65 mm x 0 mm.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW

TOP VIEW

SIDE VIEW

20

2

65

4O 3.4

3

4 x M3 medium clearance holes

4

3



Appendix D

Mini-cylinder Drawings
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
28/03/16

TITLE
Example Assembly (X2-PRM-000)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: x2-prm-000-0-example-assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 2

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

Notes:
- This is an example assembly showing X2-PRM-001 and X2-PRM-002 assembled with
X2-PRM-004.
- The related Parts List can be found on Sheet 2.
- Contact details: ph(internal) 54864, ph (mobile) 0413 642 000

1:1

TOP VIEW (1:1)

FRONT VIEW (1:1)

A

A
SECTION A-A (1:1)

An Internal M4 x 10 mm cap screw is used to mount
the Pitot Rake Mount Bracket (X2-PRM-002)
to the Solid Pitot Rake Mount (X2-PRM-001).

2 x M4 x 14 mm cap screws are used to mount
the Pitot Rake Mount Bracket (X2-PRM-002) to
the 8.5 mm radius Eichmann Cylindert (X2-PRM-004).

2
1

1
1

4
1

3
1

5
2
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
28/03/16

TITLE
Example Assembly (X2-PRM-000)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: x2-prm-000-0-example-assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 2 OF 2

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

Item
Number

Document Number Revision number Title Material Author Quantity File Name (no extension)

1 X2-PRM-001 0 Solid Pitot Rake Mount Stainless steel bar C.M. James 1 solid_pitot_rake_mountl

2 X2-PRM-002 0 Pitot Rake Model Bracket Steel C.M. James 1 pitot_rake_model_bracket

3 N/A N/A M4 x 10 mm Cap Screw Steel C.M. James 1 M4 x 10 mm

4 X2-PRM-004 0 8.5 mm Radius Eichmann
Cylinder

Stainless steel C.M. James 1 8_5_radius_eichmann_cyli
nder_new

5 N/A N/A M4 x 14 mm Cap Screw Steel C.M. James 2 M4 x 14 mm
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
28/03/16

TITLE
Solid Pitot Rake Mount (X2-PRM-001)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: x2-prm-001-0-solid-pitot-rake-mount.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

1:1

Notes:
- Material: Stainless steel. Probably half inch bar.
- If necessary, tolerance down bar bore. Must fit inside X2 Pitot Rake. Check  fit after
completion.
- Dimension on flat does not need to be exact, it is just a flat section for  grub screws.
- 8mm H7/h6 transition fit between this part and X2-PRM-002.
- Contact details: ph(internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW (1:1)

TOP VIEW (1:1)

END VIEW (1:1)
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
28/03/16

TITLE
Pitot Rake Mount Bracket (X2-PRM-002)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: x2-prm-002-0-pitot-rake-mount-bracket.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

Notes:
- Material: Mild steel.
- Tolerance down 10 mm height for fit between this part and the models.
- 20 mm distance between M4 clearance holes is important for mounting this part to the
models (X2-PRM-003, X2-PRM-004, X2-PRM-005).
- 8mm H7/h6 transition fit between this part and X2-PRM-001.
- Contact details: ph(internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW (3:1)

TOP VIEW (3:1)

END VIEW (3:1)
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REV DESCRIPTION DATE APPROVED
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CHECKED
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NAME
C.M. James

DATE
28/03/16

TITLE
6mm Radius Cylinder  (X2-PRM-003)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: x2-prm-003-0-6-mm-radius-cylinder.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

Notes:
- Material: Mild steel. Was designed so it can be built from 6 mm raduis bar.
- Tolerance up 10 mm cut out on back plate for fitting with mounting bracket.
- 20 mm distance between the M4 threaded holes is important for mounting this
part to the the mounting bracket (X2-PRM-002).
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW (3:1)

TOP VIEW (3:1)

END VIEW (3:1)
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DRAWN
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NAME
C.M. James

DATE
28/03/16

TITLE
8.5 mm Radius Partial Cylinder (X2-PRM-004)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: X2-prm-004-0-8-5-mm-radius-cylinder.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

Notes:
- Material: Mild steel.
- This is to be made if 16 mm steel bar is NOT available.
- Tolerance up 10 mm cut out on back plate for fitting with mounting bracket.
- 20 mm distance between the M4 threaded holes is important for mounting this
part to the the mounting bracket (X2-PRM-002).
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW (3:1)

TOP VIEW (3:1)

END VIEW (3:1)
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DRAWN
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NAME
C.M. James

DATE
28/03/16

TITLE
8 mm Radius Partial Cylinder  (X2-PRM-005)

SIZE
A4

PROJECT
Chris James Pitot Rake Models

REV
0

FILE NAME: x2-prm-005-0-8-mm-radius-cylinder.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 28/03/16 n/a

Notes:
- Material: Mild steel. Cut from 16 mm steel bar if possible.
- This is to be built if 16 mm steel bar IS available.
- 20 mm distance between the M4 threaded holes is important for mounting this
part to the the mounting bracket (X2-PRM-002).
- Tolerance up 10 mm cut out on back plate for fitting with mounting bracket.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

FRONT VIEW (3:1)

TOP VIEW (3:1)

END VIEW (3:1)

2:1

48

12

5

1
10

+0
.1 0

2

R 8

14 14

4 4

M4 - 4 DEEP M4 - 4 DEEP



Appendix E

New wall PCB Mount Drawings

255



DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
24/08/15

TITLE
X2 pcb mount assembly

SIZE
A3

DWG NO
x2-pcbmount1-000

REV
1

FILE NAME: x2-pcbmount1-000-0-pcb-mount-assembly-drawing.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

DESCRIPTION DATE APPROVED

0 New drawing by D. Gildfind 15/01/2015

1 New assembly drawing made by C.M.
James to reflect changes made to
x2-pcbmount-003.

28/08/2015

Notes:
1. See Sheet 2 for Sections A-A and B-B.
2. See Sheet 3 for parts list.

PRINT ON A3 SHEETSIZE

TOP VIEW

SIDE VIEW

ISOMETRIC VIEW

1:2

A A
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B
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)

1. Bore out transducer hole to O18+/-0.0025
2. Plane tube down to a depth that brings the
   transducer mount inner face flush with the 
   tube inner bore, WITHOUT o-rings installed.
3. If depth of removed material exceeds 3.5mm,
   thickness, consult with engineering.

O
85

(REF)

O 139.5 (REF)

 



DRAWN
CHECKED
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MGR APPR

NAME
C.M. James

DATE
24/08/15

TITLE
X2 pcb mount assembly

SIZE
A3

DWG NO
x2-pcbmount1-000

REV
1

FILE NAME: x2-pcbmount1-000-0-pcb-mount-assembly-drawing.dft

SCALE: AS SHOWN WEIGHT: SHEET 2 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

DESCRIPTION DATE APPROVED

0 New drawing by D. Gildfind 15/01/2015

1 New assembly drawing made by C.M.
James to reflect changes made to
x2-pcbmount-003.

28/08/2015

SECTION A-A
1:1

SECTION B-B
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(2 places)
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When installed with o-rings,
a gap will naturally form due
to o-ring squeeze on either
side of pcb holder.
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 a 0.5mm total clearance to PNo
 x2-pcbmount1-001, as shown,
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CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
24/08/15

TITLE
X2 pcb mount assembly

SIZE
A3

DWG NO
x2-pcbmount1-000

REV
1

FILE NAME: x2-pcbmount1-000-0-pcb-mount-assembly-drawing.dft

SCALE: AS SHOWN WEIGHT: SHEET 3 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

DESCRIPTION DATE APPROVED

0 New drawing by D. Gildfind 15/01/2015

1 New assembly drawing made by C.M.
James to reflect changes made to
x2-pcbmount-003.

28/08/2015

PRINT ON A3 SHEETSIZE

Item Number Document Number Revision number Title Material Author Quantity

1 N/A N/A X2 acceleration tube
section, O/D139.5mm, I/D
85mm

Steel D. Gildfind 1

2 x2-pcbmount1-001 0 X2 PCB mount outer fitting Stainless steel D. Gildfind 1

3 x2-pcbmount1-002 0 PCB mount outer part Stainless steel D. Gildfind 1

4 x2-pcbmount-003 1 PCB tube holder Stainless Steel, 316 C.M. James 1

5 112A22 N/A PCB pressure transducer Steel D. Gildfind 1

6 BS006 o-ring N/A BS006 o-ring Rubber D. Gildfind 1

7 BS113 N/A BS113 o-ring Rubber D. Gildfind 3

8 BS120 N/A BS120 o-ring Rubber D. Gildfind 1

9 BS121 N/A BS121 o-ring Rubber D. Gildfind 1

10 065A02 seal ring 065A02 seal ring Brass, yellow brass C.M. James 1

11 M8 washer M8 washer Steel C.M. James 2

12 M8 x 25mm M8 x 25mm Steel C.M. James 2



DRAWN
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MGR APPR

NAME
D. Gildfind

DATE
15/01/2015

TITLE
X2 pcb mount inner holder

SIZE
A3

DWG NO
x2-pcbmount1-001

REV
0

FILE NAME: x2-pcbmount1-001-0-pcb-holder-inner.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 2

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

REV DESCRIPTION DATE APPROVED

0 New drawing 15/01/2015

Notes:
1. See Sheet 2 for isometric views.

PRINT ON A3 SHEETSIZE
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SECTION B-B
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NAME
D. Gildfind

DATE
15/01/2015

TITLE
X2 pcb mount inner holder

SIZE
A3

DWG NO
x2-pcbmount1-001

REV
0

FILE NAME: x2-pcbmount1-001-0-pcb-holder-inner.dft

SCALE: AS SHOWN WEIGHT: SHEET 2 OF 2

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

REV DESCRIPTION DATE APPROVED

0 New drawing 15/01/2015

1.5:1

1
1

Item
Number

Document Number Revision
number

Title Material Author Quantity

1 x2-pcbmount1-001 0 X2 PCB mount outer fitting Stainless steel D. Gildfind 1

PRINT ON A3 SHEETSIZE



DRAWN
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NAME
D. Gildfind

DATE
15/01/2015

TITLE
X2 pcb mount outer holder

SIZE
A3

DWG NO
x2-pcbmount1-002

REV
0

FILE NAME: x2-pcbmount1-002-0-pcb-holder-outer.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

REV DESCRIPTION DATE APPROVED

0 New drawing 15/01/2015

PRINT ON A3 SHEETSIZE

2:1

2:1

10
.43

M12 x 1

20
.43

3

O
5.64

+0.0
5/-0

.00

13

R
9

12
.45

(R
EF

)

1
1

Item
Number

Document Number Revision
number

Title Material Author Quantity

1 x2-pcbmount1-002 0 PCB mount outer part Stainless steel D. Gildfind 1

ISOMETRIC VIEWS

FRONT VIEWSIDE VIEW

TOP VIEW

VIEW FROM BELOW

9.7 +/-0.0025



DRAWN
CHECKED
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NAME
C. M. James

DATE
24/08/15

TITLE
X2 pcb mount tube holder

SIZE
A3

DWG NO
x2-pcbmount1-003

REV
1

FILE NAME: x2-pcbmount1-003-0-pcb-tube-holder.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±1.0°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

n/a

REVISION HISTORY

REV DESCRIPTION DATE APPROVED

0 New drawing by D. Gildfind 15/01/2015

1 Height of mount increased by 3 mm,
bolt holes changed to M8, and
material changed to 316 stainless
steel to strengthen the piece by C.M.
James.

24/08/2015

PRINT ON A3 SHEETSIZE

ISOMETRIC VIEWS1:1

TOP VIEW

SIDE VIEW

BOTTOM VIEW

23
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EF

)

IMPORTANT:
Machine slot depth on final assembly.
See DWG x2-pcbmount1-000 for instructions.

33

FRONT VIEW

1:1.33

1
1

Item
Number

Document Number Revision
number

Title Material Author Quantity

1 x2-pcbmount-003 1 PCB tube holder Stainless Steel, 316 C.M. James 1
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REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
18/11/15

TITLE

Assembly Drawing  (X2-PD-PCB-MOUNT-000) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-000-assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 1 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

Notes:
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000

1:2
A

A

SECTION A-A

B

DETAIL B (2:1)
 

C

DETAIL C (1:1)
 



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
18/11/15

TITLE

Assembly Drawing  (X2-PD-PCB-MOUNT-000) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-000-assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 2 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

Item
Number

Document Number Revision
number

Title Material Author Quantity

1 x2-pd-pcb-mount-001 0 X2 Photodiode Mount PCB Mount External Piece Stainless steel C.M. James 2

2 x2-pd-pcb-mount-002 0 X2 Photodiode Mount PCB Mount Internal Piece Stainless steel C.M. James 2

3 x2-pd-pcb-mount-003 0 X2 Photodiode Mount PCB Mount Mounting Bracket Stainless steel C.M. James 4

4 x2-pd-pcb-mount-004 0 X2 Photodiode Mount PCB Mount Blank Off Stainless steel C.M. James 2

5 x2-pd-pcb-mount-005 N/A X2 Expansion Tube Representation Steel C.M. James 1

6 112A22 N/A PCB pressure transducer Steel D. Gildfind 2

7 065A02 seal ring 065A02 seal ring Brass, yellow brass C.M. James 2

8 N/A N/A BS012 o-ring Rubber C.M. James 4

9 N/A N/A BS111 o-ring Rubber C.M. James 6

10 N/A N/A BS009 o-ring Rubber C.M. James 2

11 N/A N/A BS013 o-ring Rubber C.M. James 4

12 Hexagon socket head cap screw DIN 6912 - M5x16 Steel uqcjame4 8
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
18/11/15

TITLE

Assembly Drawing  (X2-PD-PCB-MOUNT-000) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-000-assembly.dft

SCALE: AS SHOWN WEIGHT: SHEET 3 OF 3

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

SECTION A-A (1:1)
 

6
2

1
2

9
6

12
8

5
1

8
4

2
2

11
4

7
2

10
2

1:1.33

3
4

4
2



REVISION HISTORY

REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
ENG APPR
MGR APPR

NAME
C.M. James

DATE
17/11/15

TITLE

PCB Mount External Piece  (X2-PD-PCB-MOUNT-001) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-001-external-piece.dft

SCALE: 2:1 WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

Notes:
- Material: Stainless steel.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000
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REV DESCRIPTION DATE APPROVED

DRAWN
CHECKED
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MGR APPR

NAME
C.M. James

DATE
17/11/15

TITLE

PCB Mount Internal Piece  (X2-PD-PCB-MOUNT-002) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-002-internal-piece.dft

SCALE: 2:1 WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

Notes:
- Material: Stainless steel.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000
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REV DESCRIPTION DATE APPROVED

DRAWN
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MGR APPR

NAME
C.M. James

DATE
17/11/15

TITLE

PCB Mount Bracket  (X2-PD-PCB-MOUNT-003) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-003-bracket.dft

SCALE: 2:1 WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

Notes:
- Material: Stainless steel.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000
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REV DESCRIPTION DATE APPROVED

DRAWN
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NAME
C.M. James

DATE
17/11/15

TITLE

Plug  (X2-PD-PCB-MOUNT-004) 

SIZE
A4

PROJECT
X2 Photodiode Mount PCB Mount

REV
0

FILE NAME: x2-pd-pcb-mount-004-plug.dft

SCALE: 2:1 WEIGHT: SHEET 1 OF 1

UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS

ANGULAR TOLERANCE ±0.1°
DIMENSIONAL TOLERANCE ±0.1mm

DRAFTING STANDARD: AS1100 - 1992
DO NOT SCALE

0 New drawing 17/11/15 n/a

Notes:
- Material: Stainless steel.
- Contact details: ph (internal) 54864, ph (mobile) 0413 642 000
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Appendix G

Calculating Experimental Shock Speed

Uncertainty

This appendix details the procedure currently used for the calculation of expansion tube shock

speed uncertainty in the Centre for Hypersonics at UQ. It is the procedure used by the shot

analysis codes in the laboratory for the calculation of shock speed uncertainty, and it includes

uncertainty and error from three different sources:

1. Distance uncertainty from the measured sensor locations and the physical size of each

sensor.

2. Time uncertainty in ascertaining shock arrival on the sensors.

3. Sampling rate error from the clocking speed of the data acquisition system.

In a shock tube or expansion tube, a shock travels through the tube at shock speed Vs. Over

the full length of the tube, depending on the strength of the facility driver and the severity of

non-ideal effects such as low density shock tube (or ‘Mirels’) effects [106, 107, 108], wall friction,

or heat losses, there may be attenuation of the shock and it will slow down as a function of

distance (Vs (x)), but as this analysis is interested in the local shock speed between two wall

pressure sensors, this will not be considered here, and it will be assumed that Vs remains

constant between the two sensors.

Consider a shock moving through the acceleration tube of an expansion tube at shock speed

Vs. Just in front of the shock are two wall pressure sensors, ‘at1’ and ‘at2’, mounted at locations

x1 and x2, measured from a single datum point. This is shown in Fig. G.1, and constitutes

time t0.

272



Section G.0 273

At a certain time after t0 called t1, the shock will pass pressure sensor ‘at1’. When this

occurs, there will be a step increase in pressure at location x1, which will be recorded by the

sensor and later used to ascertain t1. Similarly, at a certain time after t1 called t2, the shock

will pass pressure sensor ‘at2’, and the step increase in pressure seen at the location x2 will be

recorded by sensor ‘at2’ and later used to ascertain t2.

contact
surface

shockSecondary or tertiary
diaphragm (has burst) End of

acceleration tube

state 2
(V2, p2, T2)

state 7
(V7, p7, T7)

state 6
(V6, p6, T6, v6)

x

t
Vs,2

5

67

p7 = p6

V7 = V6

unsteady
expansion

L6

D

Figure G.1: Representation of a moving shock wave about to pass wall pressure sensors ‘at1’
and ‘at2’ in the X2 expansion tube. (Not to scale.)

Knowing the distance between the two sensors (x2 - x1), and the time at which the shock

passes both locations (t1 and t2), the nominal shock speed can be found as simply distance

(∆x) divided by time (∆t):

Vs =
x2 − x1

t2 − t1

=
∆x

∆t
(G.1)

Equation G.1, is a function of two distances (x1 and x2), and two times (t1 and t2). There-

fore, to quantify the uncertainty, the uncertainties on both the distance and the time must be

considered.

Three different types of distance uncertainty are considered:

1. Uncertainty in the measurement of the sensor locations (x1 and x2).

2. Uncertainty in the response of the pressure sensor due to the physical size of the sensor.

(The pressure sensors used on X2 in the acceleration tube are 112A22 50 PSI pressure

transducers from PCB Piezotronics with a sensor diameter of 5.54 mm [277].)
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3. Uncertainty due to the shape of the shock not being planar like it is assumed.

These three uncertainties are encapsulated by a single distance uncertainty (δxi) of ±
2.0 × 10−3 m (2 mm) for each sensor location.

Therefore, because the distance uncertainties are independent measurements, the total dis-

tance uncertainty (δ∆x) for the shock speed calculation is:

δ∆x =
√

δx2
1 + δx2

2 (G.2)

One source of time uncertainty and one source of error are considered:

1. Time uncertainty in ascertaining shock arrival on the sensors.

2. Sampling rate error from the clocking speed of the data acquisition system.

Pressure transducers have a finite rise time to full signal (≤ 2.0 µs for the 112A22 pressure

transducers used in X2’s acceleration tube [277]) and the facility’s data acquisition system is

recording at a set clock speed (2.5 MHz for all sensors on X2, with most acceleration tube sensors

also teed off into a 60 MHz card to reduce sampling rate error), meaning it can be difficult to

ascertain exactly when the shock has passed each location. Two separate uncertainties are used

to quantify this.

Firstly to remove any large uncertainties created by an automated process on what can

sometimes be a relatively noisy signal, shock arrival times are found manually by a graphical

interface which experimenters use to select shock arrival times for each signal. Instead of

selecting a single time for shock arrival, experimenters are instructed to select the data point

just before and just after when they believe the shock has arrived, giving a time range for shock

arrival. The analysis code then finds both of the data points, calculates the midpoint, and adds

a shock arrival uncertainty (δti) to the data which is half of the distance between the original

two points.

Secondly, to take into account the sampling rate error, an extra time uncertainty is added

based on the size of a single sample (δtsr) to take into account the fact that the shock could

arrive at any point in the sample. The size of a full sample instead of only half of a sample

has been used as a conservative measure to take into account the fact that multiple samples

are actually involved in the calculation process. Recently, acceleration tube pressure data

(where shock speeds are often of the order of 10 km/s) has also been recorded on a high speed
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National Instruments PXI-5105 card clocking at 60 MHz to reduce the sampling rate error on

the acceleration tube shock speeds after it was found that the largest source of experimental

uncertainty on these measurements was caused by the normal data acquisition system clocking

at 2.5 MHz.

Therefore, because the time uncertainties are independent measurements, the total time

uncertainty (δ∆t) for the shock speed calculation is:

δ∆t =
√

δt2
1 + δt2

2 + δt2
sr (G.3)

Now that total distance and time uncertainties (δ∆x and δ∆t) are known, the total shock

speed uncertainty (δVs) can be found using the uncertainty formula for the division of indepen-

dent variables, which is shown below in the form appropriate for calculating the shock speed

uncertainty:

δVs = Vs ·

√

√

√

√

(

δ∆x

∆x

)2

+

(

δ∆t

∆t

)2

(G.4)



Appendix H

Setting Up and Running PITOT

PITOT forms part of the CFCFD code collection at UQ’s Centre for Hypersonics [254], and

as such, PITOT relies on installation of the accompanying Compressible Flow Python Library

(cfpylib) to run. The latest version of the CFCFD code collection, instructions on how to

obtain it, and the dependencies required to use it, can be found at the website found in the

accompanying CFCFD reference [254] principally on the page titled ‘Getting the codes and

preparing to run them’. A page with separate specific instructions for PITOT also exists [293].

The authors have written an accompanying Makefile which can be used to install PITOT on a

compatible Linux system with the correct dependencies installed. The authors use Ubuntu, and

are aware that PITOT has been used on other Linux distributions as well. It is surely possible

to manually install PITOT on a Macintosh or Windows system, but the authors cannot confirm

this. The main obstacle would be getting PITOT to find and use CEA [197, 198] on the other

operating systems.

PITOT is written in the Python programming language, and after it is installed, the most

common way to run the program is to write a configuration file which conforms to Python syntax

and then parse it to the overarching program by entering the line below into the terminal:

$ pitot.py --config_file=filename.cfg

Example annotated configuration files for various scenarios can be found in the examples

folder of the CFCFD code collection covering both simple simulations and more complex ones

using custom facilities, custom test gases, and other ‘advanced’ features. PITOT has been built

to be modular and easy to script, and the configuration info can also be parsed to the program

inside a Python script using a Python dictionary. Several different tools which make use of

this have been created by the authors to perform tasks such as analysing air contamination or

performing parametric studies of different fill pressures in the facility. These tools are included

with the basic PITOT installation. The overall PITOT source code is open source and users

can browse the code and make changes themselves if required.
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Extra Information About PITOT

This appendix contains supplementary information about the PITOT program which was not

deemed necessary to be included in the main text. Currently, it includes these things:

• Table I.1 detailing the notation of each state used inside the program. Associated dia-

grams expanding on these states can be found in Chapter 5 of the main text.

• Table I.2 detailing the basic inputs used in PITOT. It provides most of this inputs, but

specific niche inputs are instead included as examples in the cfcfd repository [254].

• An annotated sample configuration file for a theoretical equilibrium air example.

• A Python file showing how to run the same PITOT configuration as the annotated con-

figuration file from directly inside Python.
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I.1 State Details in PITOT

Table I.1: Description of the standard shock tunnel and expansion tube notation used by
PITOT. Note: Not all states are used for every simulation.

State Description
State 4i Initial driver fill state for when custom driver conditions are simulated.
State 4 Primary driver gas at the diaphragm rupture condition. Taken to be a

stagnation condition (M ≈ 0).
State 3s or
(4” in the
literature)

Primary driver gas after steady expansion to the throat Mach number.
(Without an orifice plate it is a sonic throat [M = 1], but orifice plates are
used for some driver conditions, contracting the throat area, and resulting
in a supersonic throat. If no throat is used to simulate a facility without
an area change, this state will be the same as State 4 above)

State sd1 Secondary driver fill condition (pure He).
State sd2 Shocked secondary driver gas.
State 2r Twice shocked secondary driver gas to simulate a reflected shock of user

specified strength at the secondary diaphragm.
State sd3 State 3s unsteadily expanding into the secondary driver section.
State 1 Shock tube fill condition (test gas).
State 2 Shocked test gas.
State 2r Twice shocked test gas to simulate a reflected shock of user specified

strength at the secondary or tertiary diaphragm.
State 3 State 3s or State sd2 unsteadily expanding into the shock tube.
State 5 Acceleration tube fill condition (air).
State 6 Shocked accelerator gas.
State 7 Test gas unsteadily expanding into the acceleration tube
State 8 Nozzle exit condition after steady expansion through the nozzle.
State 10f Frozen post shock condition at the stagnation point of the model.
State 10e Equilibrium post shock condition at the stagnation point of the model.
State 10c Post shock condition over at cone at a user-specified angle. (Default cone

angle is 15◦.)
State 10wf Frozen post shock condition behind a wedge at a user-specified angle.
State 10we Equilibrium post shock condition behind a wedge at a user-specified an-

gle.
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I.2 PITOT Configuration Details

Table I.2: Configuration details for PITOT
Parameter

Description Choices Default

Facility Expansion tube facil-

ity to simulate

x2 = the X2 expansion tube; x3 =

the X3 expansion tube

x2

Test Test case to run fulltheory-shock = fully theoretical

analysis, guessed shock speeds used

to find solution; fulltheory-pressure

= fully theoretical analysis, guessed

shock speeds are found from set fill

pressures; test = partially theoreti-

cal run where both shock speeds and

fill pressures are specified based on

tunnel data

fulltheory-

pressure

Config Expansion tube con-

figuration to use

basic = no secondary driver, no noz-

zle; sec = with secondary driver, no

nozzle; nozzle = with no secondary

driver, nozzle; sec-nozzle = with sec-

ondary driver, nozzle

nozzle

Driver Gas Driver gas composi-

tion to use

‘He:0.80,Ar:0.20’; ‘He:0.90,Ar:0.10’;

‘He:1.0’; ‘He:0.60,Ar:0.40’ (all mole

fractions)

‘He:1.0’

Test Gas Test gas to use air; air5species; n2; titan; gas-

giant_h215ne; gasgiant_h215he;

gasgiant_h240ne; gasgiant_h285ne;

gasgiant_h210he; gasgiant_h210ne

air

Vs1 Shock tube (‘pri-

mary’) shock speed

(m/s)

Vs1 > 0 None

Vs2 Acceleration tube

(‘secondary’) shock

speed (m/s)

Vs2 > 0 None
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Vsd Secondary Driver

shock speed (not

needed if secondary

driver isn’t used)

Vsd > 0 None

p1 Shock tube fill pres-

sure (Pa)

p1 > 0 None

p5 Acceleration tube fill

pressure (Pa)

p5 > 0 None

psd1 Secondary driver fill

pressure (Pa) (not

needed if secondary

driver isn’t used)

psd1 > 0 None

Area ratio Area ratio of the noz-

zle

area ratio > 0 2.5

Conehead Switch to calculate

pressure over a 15◦

conehead

n/a False

Filename Filename to save the

result to

n/a x2run.txt
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I.3 Sample PITOT Configuration File

Below is a Python based configuration file “high-speed-air-theory.cfg” for an equilibrium high

enthalpy air condition in PITOT. After PITOT has been installed it can be parsed to the

overarching program by entering the line below into the terminal:

$ pitot.py --config_file=filename.cfg

# high -speed -air - theory .cfg

# Example input file for pitot .

# Chris James (c. james 4@uq.edu.au) 14/12/15

# This is a simple test of a fully theoretical high speed air condition .

# ( Elise ’s Hayabusa entry air condition ).

# I’ve tried to annotate this config file as much as I can so it will

# be useful to other people using the program .

# --------------------------- Start -up --------------------------------------

# This is where the setup of the program is specified .

# Name of the output file (if required )

filename = ’high -speed -air - theory ’

# Boolean statement controlling if pitot will clean up temporary files after running

# Use false unless you really want to clean everything up.

cleanup = True

# Testcase to run. There are three options :

# ’fulltheory - pressure ’ = a fully theoretical run where shock speeds are found from set fill pressures

# ’fulltheory - shock ’ = a fully theoretical run where fill pressures are found from set shock speeds

# ’experiment ’ = partially theoretical run where both shock speeds and fill pressures are specified based o

# ’experiment -shock -tube -theory -acc -tube ’ = where the shock tube is specified from experiment (Vs1 and p1)

# ’theory -shock -tube - experiment -acc -tube ’ = where Vs1 is found from theory and the acc tube is found from e

test = ’fulltheory - pressure ’

# Solver to use. There are three options :

# ’eq ’ = equilibrium calculations using CEA code

# ’pg ’ = perfect gas solver

# "pg -eq ’ = a combination of pg and eq solvers , used for CO2 based gases . Sets state 1 as a pg , but everythi

solver = ’eq ’

# Mode that the program is run in. There are five options :

# ’printout ’ = normal run , prints out a summary to the screen , a txt file and a csv file at the end of the

# ’return ’ = simpler run , useful if pitot is to be used inside a bigger program . returns a set of values at

# the returned values are cfg , states , V and M, which are , the config dictionary , state dictionary , velocit

# ’cea - printout ’ = same as printout but does some cfcfd gas object printouts at the end

# ’txt - printout ’ = just does the txt file printout

# ’cea -txt - printout ’ = just the txt file printout but with cea style printouts too

# ’csv - printout ’ = just does the csv printout

mode = ’printout ’
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# Here you can specify how many steps are used for the various unsteady expansions

shock_tube_expansion_steps = 400

# need to use 800 - 1000 steps on the acceleration tube unsteady expansion to match the

# pressure across the contact surface properly , which is important .

acc_tube_expansion_steps = 1000

# Can specify your own bounds and initial guesses for the secant solver in

# the acceleration tube if you so desire

# for ’fulltheory - pressure ’ testcase :

#Vs2 _lower =

#Vs2 _upper =

#Vs2 _guess_ 1 =

#Vs2 _guess_ 2 =

# for ’fulltheory - shock ’ testcase : (all pressures in Pa)

#p5 _lower = 5.0

#p5 _upper = 2000.0

#p5 _guess_ 1 = 10.0

#p5 _guess_ 2 = 100.0

# ------------------------- Facility parameters -----------------------------

# This is where the facility parameters are specified .

# The facility to simulate . Currently there are two options :

# ’x2’ = the x2 expansion tube

# ’x3’ = the x3 expansion tube

# ’custom ’ = a custom facility where the driver configuration must be specified with a series of variables .

facility = ’x2’

# Tunnel mode to use. There are tree options :

# ’expansion -tube ’ = expansion tube mod}e

# ’nr -shock - tunnel ’ = non - reflected shock tunnel mode

# ’reflected -shock - tunnel ’ = reflected shock tunnel mode

tunnel_mode = ’expansion -tube ’

# Secondary driver

secondary = False

# Nozzle

nozzle = True

# Piston in use (Only currently required for x2 facility ). There are two main options ,

# but this is generally also used to specify the driver condition , so other modes exist :

# ’lwp ’ or ’lwp -2mm ’ = lightweight piston . tuned 2mm diaphragm driver condition designed by David Gildfind

# ’ossp ’ = original single stage piston . designed by Michael Scott

# ’lwp -2.5mm ’ = tuned 2.5 mm diaphragm driver condition designed by David Gildfind

# ’lwp -2.5mm - isentropic ’ = isentropic compression version of tuned 2.5 mm diaphragm driver condition design
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# ’lwp -1.2mm ’ = tuned 1.2 mm diaphragm driver condition designed by David Gildfind

# ’lwp -2mm -new - paper ’ = new rupture conditions for 2mm diaphragm condition from the 2015 Gilfind et al Shoc

# ’Sangdi -1.8MPa ’ = 1.8 MPa burst condition cold driver condition designed by Sangdi Gu , driver values from

# ’Sangdi -2.2MPa ’ = 2.2 MPa burst condition cold driver condition designed by Sangdi Gu , driver values from

piston = ’lwp -2mm -new - paper ’

# -------------------------- Tunnel parameters ------------------------------

# Driver gas to use (by mole fraction ). There are four options :

# Keep in mind , that the fourth option is normally only used for X3 facility .

# ’He:0.80,Ar:0.20’

# ’He:0.90,Ar:0.10’

# ’He:1.0’

# ’He:0.60,Ar:0.40’

driver_gas = ’He:1.0’

# Test gas to use (by mole fraction where mentioned ). There are myriad options :

# Check the make_test_gas function in the main program for more info about the gases

# but the majority are mention below

# ’air ’; ’air5 species ’; ’n2 ’; ’titan ’; ’gasgiant_h 215ne ’; ’gasgiant_h 215he ’;

# ’gasgiant_h 240ne ’; ’gasgiant_h 285ne ’; ’gasgiant_h 210he ’; ’gasgiant_h 210ne ’;

# ’co2 ’; ’mars ’; ’venus ’; ’h2’

# NOTE: co2, mars and venus test gases only work with pg and pg -eq solvers

test_gas = ’air ’

# Specified shock speeds (used for both the ’fulltheory - shock ’ and ’experiment ’ test cases )

# Units for shock speeds are m/s and should be inputted as floating point numbers

# Vsd , Vs1 and Vs2 are the names of the variables

# Specified fill pressures (used for both the ’fulltheory - pressure ’ and ’experiment ’ test cases )

# Units for fill pressures are Pa and should be inputted as floating point numbers

# psd , p1 and p5 are the names of the variables

# psd is secondary driver fill pressure (if used)

# p1 is shock tube fill pressure

# p5 is acceleration tube fill pressure (if used)

p1 = 13500.0 # Pa

p5 = 17.0 # Pa

# -------------------------- Final parameters ------------------------------

# Some parameters that control the solution

# Nozzle area ratio

# I used to generally use 2.5 ( which was a value from Richard )

# BUT currently I’ve been using 5.64 (the geometric area ratio of the nozzle )

area_ratio = 5.64

# code for the pitot area ratio check mode

area_ratio_check = True

from numpy import arange

area_ratio_check_list = arange (2.0, 9.1, 0.1)
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normalise_results_by = ’original value ’

# Choose whether to expand expanding shocked test gas to the shock speed or

# the gas velocity behind the shock in the acceleration tube.

# ’flow -behind - shock ’ = expand shocked test gas to gas velocity behind shock in the acceleration tube

# ’shock - speed ’ = expand the shocked test gas to the shock speed in the acceleration tube

# I changed the default here to ’shock - speed ’ as that simulates the Mirels ’ Effect

# and would generally be correct for most high enthalpy test cases .

expand_to = ’shock - speed ’

# Change the ratio of the expansion specified in the parameter above .

# Leave this value as a floating point 1.0 unless you know what you ’re doing ,

# but it ’s used to tweak how far above or below the shock speed / gas velocity

# that the test gas is expanded to.

expansion_factor = 1.0

# Turns on the shock switch that is used for simulating scramjet conditions .

# In a scramjet condition in an expansion tube the secondary driver shock is

# driven faster than the shock in the test gas , creating a normal shock into

# the shock tube , instead of the usual unsteady expansion . The switch below turns

# that feature on (the code will try to look for the phenomena itself ,

# but it won ’t always find it ).

# NOTE: always make this false unless you know what it is!

shock_switch = False

# Turns on the code that calculates the conditions over a conehead placed in the test section .

# The conehead angle can be specified in degrees , but will default to 15 degrees if not specified .

conehead = True

conehead_angle = 15.0 # ( degrees )

wedge = True

wedge_angle = 50.0 # degrees

# Turns on the code that calculates the conditions over a normal shock over a test model in the test sectio

shock_over_model = True

all_total = True

make_one_line_summary = True

I.4 Sample of PITOT scripted in Python

The Python code below is an example of how PITOT can be scripted from directly inside

Python. The configuration data found in the dictionary below is exactly the same as the

configuration data found in Appendix I.3 above, but this time PITOT can now be ran directly

from Python by entering the command below into the terminal:
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$ python pitot_scripting_example.py

#! /usr/bin/env python

"""

pitot_scripting_example .py

This example shows how the same PITOT configuration shown in high -speed -air - theory .cfg

could be ran from inside Python by using importing run_pitot and giving it the

configuration dictionary directly from inside Python .

Chris James (c. james 4@uq.edu.au) - 28/02/16

"""

import sys , os

sys.path. append (os.path. expandvars (" $HOME /e3bin")) # installation directory

sys.path. append ("") # so that we can find user ’s scripts in current directory

from pitot import run_pitot

cfg = {’filename ’:’high -speed -air - theory ’, ’cleanup ’:True ,

’test ’:’fulltheory - pressure ’, ’solver ’:’eq ’,

’mode ’:’printout ’, ’facility ’:’x2’, ’tunnel_mode ’:’expansion -tube ’,

’nozzle ’:True , ’secondary ’:False , ’piston ’:’lwp -2mm -new - paper ’,

’driver_gas ’:’He:1.0’, ’test_gas ’:’air ’, ’p1’:13500.0, ’p5’:17.0,

’area_ratio ’:5.64, ’expand_to ’:’shock - speed ’, ’expansion_factor ’:1.0,

’conehead ’:True , ’conehead_angle ’:15.0, ’wedge ’:True , ’wedge_angle ’:50.0,

’shock_over_model ’:True , ’all_total ’:True}

run_pitot (cfg=cfg)



Appendix J

Hydrogen Safety

It is well known that hydrogen (H2) is a combustible gas, and therefore precautions must

be taken when using a hydrogen based test gas for testing in the X2 expansion tube. This

appendix presents some quick calculations to assess the danger of hydrogen combustion in the

X2 expansion tube, as well as a procedure for using the gas safely.

Matheson Tri Gas, namesake of the Matheson Gas Data Book [294] give a very concise

description of the Lower and Upper Explosive Limits for a combustible gas [295]:

“The minimum concentration of a particular combustible gas or vapor necessary

to support its combustion in air is defined as the Lower Explosive Limit (LEL)

for that gas. Below this level, the mixture is too ‘lean’ to burn. The maximum

concentration of a gas or vapor that will burn in air is defined as the Upper Explosive

Limit (UEL). Above this level, the mixture is too ‘rich’ to burn. The range between

the LEL and UEL is known as the flammable range for that gas or vapor.”

In air, the Lower and Upper Explosive Limits for H2 are found to be 4% and 75% respectively

(by volume). Therefore, it is important that any work done with hydrogen is done in a contained

environment with the hydrogen kept outside of the flammable range whenever possible.

During testing on the X2 expansion tube, H2 is used in six different situations:

1. Above atmospheric pressure H2 gas in manifolds on the X2 expansion tube for mixing

test gas. (Too rich to combust.)

2. Above atmospheric pressure H2/He or H2/Ne gas mixtures in manifolds on the X2 ex-

pansion tube for mixing test gas. (Too rich to combust.)
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3. Diluted (with laboratory air) atmospheric pressure H2, H2/He, or H2/Ne mixtures in the

shock tube, acceleration tube, dump tank and manifolds of the X2 expansion tube for

pumping out through the exhaust system in the lab. (Too lean to combust.)

4. Below atmospheric pressure H2/He or H2/Ne in the shock tube and manifolds of the X2

expansion tube after the test gas has been filled before a shot. (Too rich to combust.)

5. Mixture of test gas (H2/He or H2/Ne), air (from the acceleration tube), He (from primary

and secondary driver tubes) in the shock tube, acceleration tube and dump tank of the

X2 expansion tube after a shot. (Unsure whether this will be combustible or not, but

contained in the tube itself regardless.)

6. Diluted (with air) Mixture of test gas (H2/He or H2/Ne), air (from the acceleration tube),

He (from primary and secondary driver tubes) in the shock tube, acceleration tube and

dump tank of the X2 expansion tube after a shot. (Too lean to combust.)

In the list above it can be seen that when H2 is used in the X2 expansion tube, it is generally

used in situations where it is either too lean or too rich to combust. Care must be taken when

moving through the flammable range (from rich to lean) when diluting a test gas mixture to

pump it out safely through the exhaust system, but the main risk is an explosion inside the

tube after a shot has been done and air and H2 are interacting inside the tunnel. This is very

unlikely to be dangerous (due to the fact that all proposed test gases contain 2 to 4 kPa of H2

which will be diluted by almost an atmosphere of inert driver gas after the shot, as well as

dropping in pressure by approximately 20 times due to the large difference in volvume between

the shock tube and the whole tube and dump tank itself), but to be extremely conservative,

a calculation was done in NASA’s CEA program [198] for a Chapman-Jouget detonation of

1 kPa of H2 gas at 300 K with the stoichiometric amount of air. The output pressure and

temperature were then used as inputs into the same calculation again to find the pressure

and temperature if the original ‘shocked’ gas is hit by a reflected detonation wave. The final

pressure and temperature were found to be 20 kPa and 2,576 K respectively, meaning that even

in an extremely conservative scenario, a detonation inside the expansion tube will still lead to

sub-atmospheric conditions in the tube.

The procedure written for using a test gas mixture which includes H2 in the X2 expansion

tube can be found below:

Shock tube fill procedure:

1. Pump the shock tube and manifold down to vacuum.
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2. Flush the shock tube and manifold with the diluent (He or Ne) if required. Do not flush

the shock tube with the test gas or pure H2.

3. Open the test gas bottle while it is isolated from the manifold.

4. Isolate the vacuum pump and fill the shock tube to the required pressure.

5. Isolate the shock tube from the manifold.

6. Close the test gas bottle.

7. Do not pump the test gas in the manifold out through the vacuum line. Wait

until after the shot to remove it through the tube.

8. Vent manifold up to atmospheric pressure (to go from being above the UEL to below the

LEL) and seal it again until after the shot.

After shot procedure:

1. Immediately after the shot has been completed, open the sealed manifolds to the rest of

the tube and vent the whole tube up to roughly 80 kPa to ensure the gas in the tube is

below the LEL.

2. Wait for a few minutes.

3. Pump the tube down through the vacuum line to remove most of the now safe H2/He/air

mixture.

4. Vent the whole tube up to roughly 80 kPa and then seal the tube again.

5. Wait for a few minutes again.

6. Pump the tube down again through the vacuum line to remove any remaining pockets of

H2.

Mixing Procedure:

1. Clear area.

2. Seal off the whole expansion tube but leave it at atmospheric pressure. (It will be used

for venting the H2 gas into the expansion tube after mixing, so ensure no diaphragms are

in place blocking the H2 from expanding into the whole expansion tube.)
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3. Isolate the expansion tube from the manifold.

4. Pump out the mix bottle through the manifold.

5. Flush the mix bottle with the diluent (He or Ne).

6. Pump out the manifold and the mix bottle again.

7. Open the H2 bottle, while it is isolated from the manifold.

8. Isolate vacuum pumps from the manifold.

9. Fill the mix bottle to the required pressure with H2.

10. Close the mix bottle.

11. Vent the manifold into the expansion tube so that a mixture below the lean combustible

limit of H2 can be pumped out through the expansion tube’s vacuum line.

12. Leave everything for a few minutes.

13. Pump the expansion tube down to 200 Pa or less.

14. Vent the manifold and expansion tube.

15. Pump the expansion tube down to 200 Pa or less again.

16. Isolate the tube from manifold. Keep pumping the manifold, vent tube and then seal at

atmospheric pressure.

17. Open the diluent bottle (He/Ne) while isolated from manifold.

18. Fill manifold with diluent to above the pressure in the H2 mix bottle (to ensure no H2 is

pushed into the manifold).

19. Open the mix bottle.

20. Fill the diluent to the required pressure.

21. Close the mix bottle.

22. Once again, just to be conservative, vent manifold into the tube at atmospheric pressure.

23. Pump down the tube.

24. Vent the tube, and vent the manifold.
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25. Write on the manifold the details of what has been mixed into the mix bottle and the

data when it was done.

26. Finally, at the end of the experimental campaign a similar procedure should be

used to empty the mix bottle so that a mixture containing H2 is not left lying

around in the laboratory for another person (who may not be experienced in

the handling of a test gas containing H2) to deal with.



Appendix K

Stagnation Point Heat Flux Correlation

Selection

Stagnation point axisymmetric convective heat flux was calculated using the equilibrium gas

CFD correlation created by Sutton and Graves [289], which aimed to produce a generic equation

which was applicable to all gas mixtures which would be of interest for planetary entry studies.

Sutton and Graves’ correlation [289] is valid for nine base gases (which include H2, He, and Ne)

and mixtures of those base gases. The correlation was validated up to a stagnation enthalpy of

116.2 MJ/kg (roughly 15 km/s), but it has been used for gas giant entry calculations by Sutton

[296] up to a flight speed of 47 km/s. Calculations performed here show that it agrees fairly

well with the modern CFD results of Palmer et al. [71], which will be discussed later.

The simplest form of the correlation for the cold wall convective heat flux (qconv) in Sutton

and Graves [289] comes from Equation 33 in the original work:

qconv = K

√

ps

Rn

(hs − hw) (K.1)

where K is the convective heat transfer coefficient (in specified units), ps is the stagnation

pressure at the edge of the boundary layer, Rn is the vehicle or test model nose radius, hs is

the stagnation enthalpy at the edge of the boundary layer (basically, Ht), and hw is the wall

enthalpy.

Using an equation for the stagnation pressure from Sutton [296]:

ps = 0.952ρ∞U2
∞

(K.2)

and also making the assumption that the kinetic part of the stagnation enthalpy is much

larger than the static part (see Equation 6.1) and the wall enthalpy (i.e. U2
∞

2
>> (h−h0)−hw),

291
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the correlations are normally expressed in terms of the freestream density and velocity (ρ∞

and U∞), as was done in Sutton [296] and also more modern references such as Brandis and

Johnston for Earth entry [297]:

qconv = 0.487K

√

ρ∞

Rn

U3
∞

(K.3)

K values for different base gases are provided in Table 2 of Sutton and Graves [289] in units

of kg/s−m3/2−atm1/2, as well as set combinations of the base gases which were also calculated.

Equation 44 of Sutton and Graves [289] provides an equation for finding the K value for an

arbitrary mixture of the base gases, based on their individual mass fractions:

1
K2

=
∑ c0,i

K2
i

(K.4)

where c0 is the freestream mass fraction of the species. In Sutton and Graves [289], compar-

isons between Equation 44 and the results in Table 2 can be found in Figure 7, with comparisons

for H2/He mixtures found in Figure 7b.

For H2 and He in SI Units (but using original K values from Sutton and Graves [289]) this

becomes:

K =

√

√

√

√

1
c0,H2

K2
H2

+ c0,He

K2
He

1√
101.3 × 103 Pa

=

√

√

√

√

1
c0,H2

0.03952 + c0,He

0.07972

1√
101.3 × 103

(K.5)

where the final K value is now in kg1/2/m. If the calculation is performed with neon instead

of helium, KNe = 0.147,4 kg/s−m3/2−atm1/2 can be used instead of KHe.

Sutton also provides a simplified equation for K for gas giant entry mixtures [296] as Equa-

tion 9 of that work. However, comparing Sutton’s [296] K value to the original work in Sutton

and Graves [289], it appears that there must be an error in Sutton’s [296] equation, as it pre-

dicts a larger K for a larger mass fraction of molecular hydrogen, whereas Table 2, Figure 7b,

and Equation 44 in Sutton and Graves [289] all predict the opposite. This is shown in Fig. K.1

here where these different cases are compared. For this reason, and also the fact that it al-

lows mixtures containing neon to be evaluated, the K equation from Sutton and Graves [289]

(Equation K.5 in this work) has been used here.

To check the validity of the correlation from Sutton and Graves [289], it was decided to

compare the results of the correlation to Palmer et al.’s CFD [71]. Calculations were performed



Section K.0 293

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5
·10−4

Mass fraction of H2

K
(k

g1
/
2
/m

)

Sutton [296] Eqn. 9
Sutton and Graves [289] Eqn. 44
Sutton and Graves [289] Table 2

Figure K.1: Comparing the convective heat transfer coefficient (K) in a H2/He mixture between
a simplified equation from Sutton [296] and the original work of Sutton and Graves [289].

for the Uranus and Saturn entry trajectory points found in Tables 4 and 8 of that work [71]. An

85%H2/15%He gas composition was used for the Uranus entry conditions based on the work

of Conrath et al. [273] and an 89%H2/11%He gas composition was used for the Saturn entry

conditions based on the work of Conrath et al. [274]. The nose radius for the proposed Uranus

and Saturn entry probes were 0.38 m and 0.5 m respectively [68, 69, 70, 71]. The results can be

found in Table K.1. It should be noted that the final Saturn trajectory point was for another

trajectory, hence the very different time value.

Examining Table K.1 it can be seen that the correlation from Sutton and Graves [289]

generally overestimates the convective heat flux, however, the minimum and maximum differ-

ences are 3.7% and 73% respectively. These are both very good results for a correlation which

is almost half a century old now, is being used outside of its enthalpy limits, and is being

used in a form which assumes that the wall enthalpy is negligible (when in reality the surface

temperatures for these trajectory points are around 3,000 K to 4,000 K).

Sutton [296] included calculations of radiative heat flux for gas giant entry, but did not

provide the base intensity matrix which was used to perform the calculations. For this reason,

calculations provided here were performed using the SPECAIR [287, 288] results shown in
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Table K.1: Comparison between stagnation point convective heat flux calculated by Palmer et
al’s CFD [71] and calculations performed here using the correlation from Sutton and Graves
[289].

Planet Time (s) qconv (W/cm2) qconv (W/cm2) % diff.
Palmer et al. CFD [71] Sutton and Graves [289]

Uranus 34.5 542 563 4
Uranus 36.5 725 863 17
Uranus 42.5 1,942 4,166 73
Saturn 206 690 716 4
Saturn 272 790 951 19
Saturn 91.5 1,208 1,497 21

Fig. 7.9 in Section 7.4.4. These calculations were performed using equilibrium chemistry, which

would not be true of the test conditions, only include line radiation from the Lyman and

Balmer series (and any Neon contamination which falls within these regions), so continuum

and molecular radiation are not included, but should give an order of magnitude indication

of the radiative heat flux. The SPECAIR [287, 288] calculations were also performed using a

10 mm thick tangent slab, which is similar to the shock standoff of recent preliminary gas giant

entry radiation experiments performed in X2 by Liu et al. [22]. The results were presented

per cm3 in Fig. 7.9, but were used here in their original cm2 form. The radiative heat flux was

calculated using an equation from Park [298] for calculating stagnation point radiative heat flux

from simulated spectra over a specified wavelength range which is based on empirical results

from Ried et al. [299]:

qrad(λ1 − λ2) ≡
∫ 2π

0

∫ λ2

λ1

IλdλdΩ ≈ 2π0.84I(λ1 − λ2) (K.6)

where λ1 and λ2 are the lower and upper wavelength limits respectively, I is the radiance

(measured in W/cm2−sr or equivalent units and often what is being referred to when the

‘intensity’ of radiation is discussed), and dλ and dΩ represent integrations in wavelength and

solid angle respectively.
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Titre: Simulation du rayonnement de l’entrée atmosphérique sur les planètes gazeuses géantes

Mots clés: hypersonique, essais au sol, tube à expansion, tube à shoc, entrée atmosphérique

Résumé: L’exploration des quatre planètes

géantes gazeuses, Jupiter, Saturne, Neptune et

Uranus, est importante pour comprendre l’évolution

de notre système solaire et plus généralement de

l’univers. Les sondes entrant dans l’atmosphère

des géantes gazeuses ont des vitesses de 20

à 50 km/s, largement supérieures aux vitesses

d’entrée atmosphérique sur les autres planètes du

système solaire. Il s’agit d’un problème complexe

car les conditions d’entrées sont brutales et les

vitesses associées dépassent largement les capac-

ités des installations d’essai au sol actuelles. Cette

thèse examine la possibilité de simuler expérimen-

talement les conditions d’entrées proposées pour

Uranus et Saturne à 22.3 et 26.9 km/s avec un tube

d’expansion à piston libre. D’abord, la possibilité

de simuler les conditions directement en recréant

la vitesse d’entrée réelle a été étudiée.

Il a été trouvé qu’il était possible de simuler l’entrée

d’Uranus mais seulement avec de grandes incerti-

tudes. Pour cette raison, il a été proposé d’utiliser

une substitution du gaz d’essai établie, dans lequel

soit le pourcentage d’hélium dans l’atmosphère

H2/He est augmenté, soit l’hélium est remplacé

par du néon, un gaz noble plus lourd. Cela per-

met de simuler uniquement les conditions post-

choc des entrées. Théoriquement, il a été con-

staté que ces substitutions permettaient de simuler

l’entrée Uranus ou Saturne, ce qui a été con-

firmé expérimentalement à l’aide d’hélium. Notant

l’intérêt actuel d’envoyer des sondes d’entrée atmo-

sphérique vers ces deux planètes, cette étude a dé-

montré que les capacités expérimentales requises

sont disponibles pour la réalisation d’expériences

simulées avec les modèles d’essais.

Title: Radiation from Simulated Atmospheric Entry into the Gas Giants

Keywords: hypersonic, experimental, ground testing, expansion tube, shock tunnel, planetary entry

Abstract: Exploration of the four gas giant plan-

ets, Jupiter, Saturn, Uranus, and Neptune, is im-

portant for understanding the evolution of both our

solar system and the greater universe. Due to their

size, flight into the gas giants involves atmospheric

entry velocities between 20 and 50 km/s. This is

a complex issue because the entry conditions are

harsh but the related velocities are mostly beyond

the capabilities of current ground testing facilities.

As such, this thesis examines the possibility of ex-

perimentally simulating proposed Uranus and Sat-

urn entries at 22.3 and 26.9 km/s in a free piston

driven expansion tube, the most powerful type of

impulse wind tunnel. Initially, the possibility of sim-

ulating the conditions directly by re-creating the true

flight velocity was investigated.

It was found to be possible to simulate the 22.3 km/s

Uranus entry, but not without large uncertainties in

the test condition. For this reason, it was proposed

to use an established test gas substitition where the

percentage of helium in the H2/He atmosphere is

increased, or the helium is substituted for the heav-

ier noble gas neon. This allows just the post-shock

conditions of the entries to be simulated. Theoret-

ically it was found that these substitutions allowed

both Uranus or Saturn entry to be simulated, which

was confirmed experimentally using helium. Not-

ing the current interest in sending atmospheric en-

try probes to both of these planets, this study has

demonstrated that the required experimental capa-

bilities are available for performing simulated exper-

iments using test models.
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