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Résumé des travaux

Ces travaux s'inscrivent dans le cadre des recherches menées dans le cadre d'une collaboration entre le laboratoire Roberval de l'Université de Technologie de Compiègne et l'équipe dans le cadre du projet ANR-14-CE07-0035 LASMIS de l'Institut Charles Delaunay de l'Université de Technologie de Troyes. Nous présentons dans ces travaux une h-méthodologie adaptative tridimensionnelle des éléments nis an de représenter l'initiation et la propagation des ssures dans des matériaux ductiles. Un modèle elasto-plastique couplé à l'endommagement isotrope proposé par l'équipe du LASMIS/UTT est utilisé. Les applications visées à terme concernent principalement la mise en forme des métaux. Dans ce contexte, une formulation Lagrangienne actualisée est employée et des remaillages fréquents s'avèrent essentiels an d'une part d'éviter les fortes distorsions d'éléments dues aux grandes déformations plastiques et d'autre part de suivre les modications de la topologie résultant de la création de ssures. La taille du nouveau maillage doit permettre à moindre coût représenter avec précision l'évolution des gradients des quantités physiques représentatives des phénomènes étudiées (plasticité, endommagement...). Nous proposons des indicateurs empiriques de taille d'éléments basés sur la déformation plastique ainsi que sur l'endommagement. Une courbe dénie par morceau représente l'évolution de la taille d'élément suivant la sévérité de la plasticité et le cas échéant de l'endommagement.

Les ssures sont représentées par une méthode de destruction d'éléments qui permet une description aisée de la géométrie de ces dernières et une gestion simpliée de la ssuration sans nul besoin de critères additionnels. En revanche, pour permettre une description réaliste des ssures, ces dernières doivent être représentées par l'érosion des éléments de plus petite taille. Un solveur ABAQUS/Explicit 4 ⃝ est utilisé avec des éléments tétraédriques quadratiques (C3D10M) évitant notamment les problèmes de verrouillage numérique survenant lors de l'analyse de structures en matériau compressible ou quasi-incompressible. Le contrôle de la plus petite taille du maillage est important dans un contexte explicite. De surcroît, pour les phénomènes adoucissant, la solution dépend de la taille de maille considérée alors comme un paramètre intrin-VI sèque. Une étude nous a permis de constater que lorsque le maillage est susamment rané, les eets de la dépendance au maillage se réduisaient. Dans la littérature, les coûts de maillage ou de remaillage fréquents sont souvent considérés comme prohibitifs et de nombreux auteurs s'appuient sur cet argument pour introduire, avec succès certes, des méthodes alternatives qui limitent le coût des opérations de remaillage sans toutefois les éliminer (XFEM par exemple). Nos travaux montrent que le coût d'un remaillage local est négligeable par rapport au calcul. Compte tenu de la complexité de la géométrie et de la nécessité de raner le maillage, la seule alternative à ce jour est d'utiliser un mailleur en tétraèdres. La stratégie de remaillage local en tétraèdre s'appuie sur une méthode de bisection suivie si nécessaire d'une optimisation locale du maillage proposé par A. Rassineux en 2003. Le remaillage, même local, doit s'accompagner de procédures de transfert de champ des variables nodales et aux points d'intégration. Les variables nodales sont, comme le fait la plupart des auteurs, transférées en utilisant les fonctions de forme éléments nis. Le transfert de champ en 3D aux points de Gauss et les nombreux problèmes sous-jacents ont été relativement peu abordés dans la littérature. Les principales dicultés à résoudre pour assurer la qualité du transfert concernent la limitation de la diusion numérique, le manque d'information près des frontières, le respect des conditions aux limites, de l'équilibre, les coûts de calcul, le ltrage du support d'information, des problèmes cruciaux en dimension 3 où le nombre de points de Gauss utilisés se chire en plusieurs centaines.

Nous proposons une méthode dite hybride qui consiste, dans un premier temps, à extrapoler les données aux points de Gauss, aux noeuds par interpolation diuse (ID) puis à utiliser les fonctions de forme éléments nis pour obtenir la valeur au point 

Introduction

The study of the initiation and propagation of cracks inside structures subjected to various monotonically increasing loading paths or mixed loading modes is of important concern in numerous industrial domains. A number of authors have proposed classications of dierent techniques to perform crack simulation. In general, under monotonical loading path, cracks occur by brittle or by ductile mechanisms. For example, there are two distinct branches using `smeared crack model' or the `discrete crack model' to simulate brittle cracks. In this thesis, we focus on the simulation of ductile cracks. Authors study the crack in the structures by two basic theories, namely fracture mechanics and the damage mechanics. Usually, the development of the fracture mechanics is based on one or several small initial cracks. This kind of study mainly focus on the direction of crack propagation. However, the damage mechanics is based on the cumulative damage of the materials which is usually linked to the cumulative plastic strain. In this kind of study, initial cracks are not necessarily predened and the cracks occur at the zones where the materials are totally damaged. The advantages of damage based crack are that the crack initiation zones can be predicted and several cracks can be treated in the same time without increasing the implementation diculties.

The representation of the cracks has been widely studied in the literature. In terms of the representations, three main numerical methods are applied by authors, namely nite element methods with pre-rened mesh; displacement enriching ele-ment or cohesive boundary without remeshing; and pure nite element methods with frequent remeshing.

In the rst group, crack initiation and propagation can be represented in a prerened constant mesh without remeshing. In this group the discontinuity of the displacement across cracks surface are implemented either at interface of elements or within elements. LUIZ F. Martha [START_REF] Luiz F Martha | Three-dimensional fracture simulation with a single-domain, direct boundary element formulation[END_REF] introduced a 2D direct boundary element method which works in a linear elastic domain. Full cubic polynomials are chosen to interpolate the discontinuity displacement function on both sides of the crack surface. G.T.Camacho and M.Ortizt [START_REF] Godofredo | Computational modelling of impact damage in brittle materials[END_REF] have proposed 2D cohesive-law fracture dynamic models which used to propagate multiple brittle cracks. Crack surfaces are created by splitting nodes according to a fracture criterion for conical cracks and a continuum damage criterion for radial cracks. Propagation direction of cracks are restricted along the element edges. Working with standard nite elements are the principle advantages of these methods, due to easy integration in the standard FEM code. However, cracks should propagate along the interface between elements so that mesh alignment have a signicant inuence on such method as explained by Martin G.A. Tijssens [START_REF] Martin Ga Tijssens | Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces[END_REF]. Furthermore, to guarantee the accuracy of direction of crack propagation, fracture zones should be predicted primarily and mesh is then pre-rened in vicinity of these zones which usually cost too much or sometimes even impossible.

In order to eliminate the inuence of mesh alignment and reduce calculation costs (relatively coarsened mesh), Dolbow [START_REF] Dolbow | A nite element method for crack growth without remeshing[END_REF] proposed a method which allows cracks to propagate in an arbitrarily direction including traversing elements. This crack representation is independent from mesh element. Discontinuity is integrated into nodes near crack surface by jump functions and nodes around crack tip by crack tip functions so that remeshing is not necessary. Some other authors [START_REF] Moës | Extended nite element method for cohesive crack growth[END_REF], [START_REF] Broumand | The extended nite element method for large deformation ductile fracture problems with a non-local damage-plasticity model[END_REF], [START_REF] Broumand | X-fem modeling of dynamic ductile fracture problems with a nonlocal damage-viscoplasticity model[END_REF] used X-FEM to introduce discontinuity in the fracture zones. Nodes around cracks are enriched and number of integration points in each element there are multiplied. Cracks are represented by a ctitious line across the enriched crack patch. An approach called Thick Level Set (TLS) [15] [4] is also proposed in which the damage variable is represented by a level set function. The damaged and undamaged zones are therefore separated which allows the use of a non-local formulation and takes internal size eects into account. The cracks can be represented within the damaged zone.

In the second group, cracks are presented with a little modication of mesh. Due to the singularity at crack tips by fracture mechanism, it is attractive to deal with the zone surrounding crack tips separately from other zones. Otherwise, damage model should be performed. Nishioka et al. [START_REF] Nishioka | An evaluation of several moving singularity nite element models for fast fracture analysis[END_REF] and Atluri [START_REF] Satya | Numerical studies in dynamic fracture mechanics[END_REF] introduced a moving mesh technique in order of avoid frequent remeshing. The elements around crack tip are replaced by singular-elements within which a large number of analytical eigenfunctions corresponding to a steadily propagating crack are used as basic functions for displacements. However, it is much too complicated to transfer this method from 2D structured mesh to 3D unstructured mesh. Rashid [START_REF] Rashid | The arbitrary local mesh replacement method: an alternative to remeshing for crack propagation analysis[END_REF] introduced an arbitrary local mesh replacement method, in which the nite element interpolant in the vicinity of the crack tip is replaced with one that is derived from a moving mesh patch.

The moving mesh patch immerses in the background mesh according to several predened patterns which limits the method to be used only to small deformations and planar problems as well as mono-crack propagation. Some other authors used damage model with little modication along crack path. In order to simulate cracks in quasi brittle materials, Kuutti and Kolari [START_REF] Kuutti | A local remeshing procedure to simulate crack propagation in quasi-brittle materials[END_REF] have proposed a delete-and-ll 3D local remeshing procedure which in fact splits full damaged elements and triangularizes the sub-portion of them. The cohesive elements with zero thickness are used as interface of inter-elements and sub-portion elements. However, saw-tooth shape crack surface from split elements may cause shear failure. Dolbow and Moes [START_REF] Dolbow | An extended nite element method for modeling crack growth with frictional contact[END_REF] apply extended nite element method in modeling crack growth with frictional contact on the crack faces. The enriched crack path elements are triangularized with the new boundary, namely ctitious crack line which split the original crack path elements.

In the third group, pure nite element method with frequent changing of mesh topology is performed in most of the work. Adaptive mesh seems to be attractive, because it makes both initiation and propagation of cracks automatic without prediction of crack path and pre-renement of mesh. The distortion of nite element is usually solved by remeshing technique. Bouchard et al. [START_REF] Bouchard | Crack propagation modelling using an advanced remeshing technique[END_REF] [6] simulate 2D crack propagation with both remeshing and nodal relaxation. The crack propagation direction is rstly computed, then nodes and edges are split along the calculated crack path, then the ring domain surrounding the crack tip is rened and remeshed. Several crack growth criteria are tested, such as maximum/minimum circumferential stress criterion, maximum strain energy release rate, the strain energy release rate and so on. Field transfer is indispensable after remeshing to form a new physical eld based on the new mesh. Mediavilla [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF] proposed a 2D remeshing-transfer operator for ductile fracture. The crack propagates along the predicted crack path which is based on maximum hoop stress and maximum tangential stress. A full remeshing process is carried out in the whole domain with the new boundary (crack path). Usually the distortion of elements occurs only along the crack path so that local remeshing can be used to largely reduce the cost of calculation compared to the full remeshing [START_REF] Ar Khoei | Modeling of crack propagation via an automatic adaptive mesh renement based on modied superconvergent patch recovery technique[END_REF].

Khaoulani and Bouchard [START_REF] El | An anisotropic mesh adaptation strategy for damage and failure in ductile materials[END_REF] proposed an anisotropic adaptive mesh strategy based on the proper combination of metrics driven by both damage and damage rate variables. The crack is represented by killing fully damaged elements. Labergere et al. [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF] proposed an 2D h-adaptive remeshing procedure dedicated to the simulations of macroscopic ductile cracks initiation and propagation during metal forming process in which cracks are represented based on fully damaged elements deletion. The mesh located inside highly localized zones is adapted by both cumulative plastic strain and plastic strain rate. The loading sequence is also adapted by number of elements killed at each step.

Predicting the initiation and propagation of 3D cracks inside elastoplastically deforming structures that are subjected to various loading paths remains an open problem. In this work we shall focus on 3D FEM simulations of metallic ductile fracture under monotonically increasing loading paths, with an emphasis on adaptive aspects including size indicators, local remeshing, and eld transfer, as well as on various related topics. For this reason we shall not discuss the large amount of published works relating to crack propagation in brittle and quasi-brittle structures.

In plastically deforming structures, large plastic or viscoplastic strains are localized within narrow bands, leading to the formation of macroscopic cracks. Since in elastoplasticity there are no clear denitions of singularity at the crack tip, the nite element method is the most eective method for describing crack initiation and propagation. In 2D, many works have been proposed to address this problem [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF]. Among these techniques, the deletion of fully damaged elements, together with an adaptive methodology, has been widely used with success. However, in a 3D FEM context, this is not a trivial task, mainly because of the remeshing diculties. It is often remarked that unlike in 2D, the cost of 3D adaptive remeshing is prohibitive. Among the main objectives of the present work is to show that a framework can be proposed in which the computational cost of 3D adaptive remeshing may be negligible in relation to the total computation time.

Concerning the initiation and propagation of 3D cracks in elastoplasticity, several works have addressed issues relating to the deletion of fully damaged elements. Molinari et al. [START_REF] Molinari | Three-dimensional adaptive meshing by subdivision and edge-collapse in nite-deformation dynamic-plasticity problems with application to adiabatic shear banding[END_REF] proposed an adaptive methodology for predicting the localization of thermomechanical elds inside intensive shear bands. The authors used Rivara's [START_REF] Rivara | Mesh renement processes based on the generalized bisection of simplices[END_REF] longest bisection technique together with mesh coarsening based on edge collapsing as a remeshing technique. They used an energy norm error indicator to rene the mesh. Mesh quality is not optimized during the simulation, which may aect the accuracy of the numerical solution. Also, the authors did not discuss eld transfer and crack propagation in details. Pires et al. [START_REF] Fm Andrade Pires | On the nite element prediction of damage growth and fracture initiation in nitely deforming ductile materials[END_REF] proposed an explicit framework for describing fracture initiation based on damage growth. The authors used linear tetrahedron elements in which volumetric locking is enforced over patches of simplex elements. A full remeshing is performed at each loading step in which element size is driven by ZZ Error estimates [START_REF] Zienkiewicz | The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique[END_REF] based on the damage rate together with the damage energy release rate. State variables at integration points are transferred via a moving least-squares technique based diuse approximation method [START_REF] Breitkopf | Explicit form and ecient computation of mls shape functions and their derivatives[END_REF]. The authors did not address the problem of numerical diusion [START_REF] Peri¢ | Transfer operators for evolving meshes in small strain elasto-placticity[END_REF] during elds transfer using a diuse approximation method directly, and did not investigate the process of crack propagation. In an implicit context, some authors have proposed specic elements to avoid the problem of volumetric locking, especially for quasi-incompressible tetrahedral elements. Feulvarch et al. [START_REF] Feulvarch | A stabilized p1/p1 nite element for the mechanical analysis of solid metals[END_REF] have used P1/P1 element. Khaoulani and Bouchard [START_REF] El | An anisotropic mesh adaptation strategy for damage and failure in ductile materials[END_REF] investigated an anisotropic mesh adaptation strategy to describe ductile fracture and have used a bubble P1+/P1 tetrahedral element which indeed reduces the cost of the simulaton compared to a higher degree element. To regularize mesh dependency they proposed a simple nonlocal damage formulation based on continuum damage mechanics. In their remeshing technique, mesh is rened according to error estimates based on the damage and damage rate Hessian matrix. Fracture is represented through the deletion of fully damaged elements. However, the authors gave no details regarding the technical aspects of eld transfer and associated 3D process of crack propagation. Following their work, Cao [START_REF] Cao | Numerical simulation of 3d ductile cracks formation using recent improved lode-dependent plasticity and damage models combined with remeshing[END_REF] modied the classical Lemaitre damage model and introduced the eects of the Lode angle on the damage evolution relationship. Cao used an element erosion technique in order to represent the crack accurately while avoiding mesh adaptation. Instead, a pre-rened mesh is created in the regions where cracks are expected to appear. Consequently, no error estimates or size indicators are needed, but the cost of the simulation is increased, since the number of elements required to represent the crack may be considerably overestimated. Javani [START_REF] Hr Javani | Three-dimensional nite element modeling of ductile crack initiation and propagation[END_REF], in an implicit context, performed a full remeshing in order to avoid element distortion and to represent the crack while improving the quality of the eld transfer. The transfer is based on an extension of Mediavilla's work [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF],

meaning that the mechanical elds in the new mesh satisfy the equilibrium equations (static admissibility), the boundary conditions, and the yield function (plastic admissibility). As a consequence, the cost of a full remeshing and of the related transfer procedures is high. The author proposed a method controlling both the crack surface and the crack front to represent the propagation of the crack based on non-local damage. In order to perform a full tetrahedron remeshing, the surface of the domain must be rebuilt, including the crack surfaces and the boundaries of the domain. Although the author addressed meshing issues, the development of complex-shaped cracks and crack branching presents diculties.

The 3D adaptive methodology that we propose in the present work is a 3D extension of the an 2D h-adaptive remeshing procedure proposed by Labergere et al. [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF].

The methodology is applied for simulating initiation and propagation of macroscopic ductile cracks in metal forming processes. Cracks are represented by deleting the fully damaged elements with the smallest mesh size. The main goals of the present approach are:

• Local robust remeshing at a negligible computational cost with controlled mesh gradation only when and where needed 

Chapter 2

Overview of the adaptive methodology

In the context of an updated Lagrangian-based formulation, frequent remeshing is required in order to avoid mesh entanglement following major topological changes, such as the creation of new surface boundaries resulting from newly created cracks and large plastic strains. As a consequence, the mesh must be adapted -where possible, at the smallest possible computational cost -to take account of topological changes in the domain and changes in physical elds. The two main drawbacks of remeshing that are most often cited are its prohibitive computational cost and its lack of robustness. Solving these issues would create new opportunities for improving the eectiveness of the updated Lagrangian FE formulation under nite transformations.

Determining an appropriate mesh size in relation to either geometrical or physical criteria is a crucial issue in nite element analysis. In a context in which developing cracks are reproduced through the deletion of fully damaged elements based on local mechanical elds (plastic strain rate, damage rate, or dissipation) the choice of the smallest element size and the gradation of the mesh is crucial. Some of the above mentioned authors proposed error indicators based on total energy norm [58][8] or damage and damage rate [65][40]. Others chose an empirical mesh size distribution [45][17] to represent the evolution of the physical elds and to obtain a realistic crack path. The goal is always to assign the smallest size to the elements which reproduce expected crack paths. Cao [START_REF] Cao | Numerical simulation of 3d ductile cracks formation using recent improved lode-dependent plasticity and damage models combined with remeshing[END_REF] separated the mesh domain into, rst, potential crack regions in which a constant smallest mesh size is used and, second, other regions where a larger mesh size is used. Labergere et al. [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF] used plasticity and damage to divide the mesh domain into sub-regions in which mesh size as well as mesh gradation is controlled. ⃝ includes 4 parts: the initial mesh data, the initial condition, the boundary conditions and the material parameters. In terms of iterating the calculation loop, there are two situations: the beginning of the simulation and in the beginning of one loading step (except from the rst one). At the beginning of the simulation, the geometry of the specimens (parts) is discretized into a tetrahedron mesh. The geometry of the holders (tools) is discretized into a triangle mesh. If there is a contact between parts and tools, a geometrical adaptive remeshing process is performed. In this process, the meshes of the parts are rened according to the geometrical curvature of the tools. At the beginning of one loading sequence, the connectivity of the tool mesh is not changed and only the position of the tool node is updated by boundary condition (displacement load). The mesh information of the parts are obtained from remeshing process which changes all the mesh information automatically in the last loading step. The mesh information includes: the coordinates of all the nodes, the connectivity of all the element, the node sets and the element sets of the user dened surfaces. In terms of initial conditions, at the beginning of the simulation, all the state variables are null. At the beginning of one loading sequence, the initial condition is obtained from eld transfer process which is discussed in detailed in the chapter 7. Boundary conditions include 2 parts: the load and the constrains. The load can be displacements or forces exerted on either nodes or surfaces. The constrains can be clamped or contact surface pairs (a part contacts with a tool). During the simulation, the surfaces involved in the boundary condition can be remeshed. Therefore, the information in these sets should be updated after each loop in order to guarantee the correct boundary condition. For example if a specic surface is rened, all the nodes and the elements dening this surface should be included in the node and element sets dening this surface. In addition, the curvature of the surface should be kept even if the mesh is rened and the contact surface pairs should be carefully veried so that no penetration occurs especially in active or likely to be active areas. The material parameters are constant during all the simulation loading steps. ABAQUS/Explicit 4

⃝ solves the constitutive equations and gives the solutions including the values of state variables at both nodal and integration points. ⃝ , the meshing and remeshing process begins. This process is carried out in C language with dierent independent executable les: output data interpretation works as an interface which reads both the mesh data and the state variable elds data from ASCII data given by ABAQUS/Explicit 4

⃝ in order to be used directly by executable les geometry update which adds the displacement of the parts and the tools on their nodes; element deletion which removes the totally damaged elements from the geometry of the parts and also removes the eld values of state variables corresponding to these elements; a size indication procedure builds a referenced size map of the the mesh of the parts at each integration points of all the elements; the remeshing procedure renes the mesh in the zones where it is needed and active according to the size map (if the simulation has contact constrains: smoothing the crack surface and remeshing the zones around the smoothing surface; coarsening the mesh in the zones where there are needed); the eld transfer procedure projects the values of the state variables from the mesh after element deletion to the mesh after remeshing and input data preparation writes all the binary data from the meshing and remeshing process into ASCII le in order to be read by ABAQUS/Explicit 4

⃝ as input data. The overview of the data ow in the calculation loop is schemed in the Fig. 2-2 in which,

M n is the mesh at the time t n , S n is the mechanical solution at the time t n , M n+1 is the mesh at the time t n+1 , S n+1 is the mechanical solution at the time t n+1 .

Chapter 3

Elastoplastic constitutive equations

The model used is detailed in appendice A and only a brief description is given here. This model is mostly the work carried out by Khemais Saanouni and his team at UTT (Université de Technologie de Troyes). Our approach has been validated successfully with this model. Our approach has also been carried out with an elastoplastic model from ABAQUS and the shortcomings of this model are presented. In particular, we show that the cracks obtained by this second model are unrealistic.

The fully coupled elastoplastic behavior is modeled in the framework of the thermodynamics of irreversible processes with state variables [START_REF] Lemaitre | Mécanique des matériaux solides-3eme édition[END_REF][80] [START_REF] Labergere | Strain rate distribution and localization band width evolution during tensile test[END_REF], assuming the small elastic strain and large plastic strain hypothesis for metallic materials. Three couples of internal state variables are used for this isothermal case: (ε e , σ) for plastic ow, (r, R) for isotropic hardening and (d, Y ) for isotropic ductile damage. When the current conguration exhibits ductile damage, the concept of the eective state variables based on the hypothesis of total energy equivalence [START_REF] Saanouni | Damage mechanics in metal forming: Advanced modeling and numerical simulation[END_REF] is used. The state relations between the strain variables and the dual stress variables are derived from the state potential, classically taken as the Helmholtz free energy Ψ(ε e , r, d) additively decomposed and written in the present isotropic case as:

ρΨ(ε e , r, d) = 1 2 (1 -d)ε e : Λ : ε e + 1 n + 1 (1 -d ω ) n+1 2 Qr n+1 (3.1)
Where ρ is the material density, Q and n are respectively the modulus and non linear parameter associated to isotropic hardening. Λ =

νE (1+ν)(1-2ν) 1 ⊗ 1 + 2 E 2(1+ν) 1
is the fourth rank order symmetric elastic stiness tensor for the isotropic material where E is the Young modulus and ν is the Poissons' coecient. The parameter ω is used to adjust the inuence of the isotropic damage eect on the isotropic hardening.

By introducing the above state potential into the Clausius-Duhem basic inequality the state relations are obtained. Application of the generalized normality rule with a specic pseudo dissipation potentials leads to the denition of the required complementary evolution of the state variables. All the constitutive equations are summarized in Table 3.1. 

R = ρ ∂Ψ ∂r = (1 -d ω ) n+1 2 Qr n ṙ = δ( 1 √ 1-d ω -br) Damage Y = Y + e + Y r Y e = (1+ν)[(⟨σ I ⟩ 2 + +⟨σ II ⟩ 2 + +⟨σ III ⟩ 2 + )] 2(1-d)E - 9ν[⟨σ H ⟩ 2 + ] 2(1-d)E Y r = 1 2Q 1 n ωd (ω-1) (1 -d ω ) -3n+1 2n R n+1 n ḋ = δ (1-d) β [ Y S ] s
In the equations of Table 3.1, D p is the nite plastic strain rate, σ H = 1 3 σ ii is the hydrostatic stress and σ I , σ II and σ III are the three principal stresses with the notation ⟨x⟩ + = (x+|x|)
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. A classical von Mises yield function is used to determine the plastic domain:

f = J 2 (σ) √ 1 -d - R √ 1 -d ω -σ y = 0 (3.2)
where σ y is the yield stress in uniaxial tension. The normal to the yield surface is

n = 3 2 √ 1-d σ dev J 2 (σ)
, where σ dev is the deviatoric part of the Cauchy stress and J 2 = » 3 2 σ dev : σ dev is its second invariant. The parameter b characterizes the non linearity of the isotropic hardening, while S, s and β characterize the ductile damage evolution.

The scalar δ is the plastic multiplier solution of the consistency condition given by ḟ = 0 when f = 0.

It is worth mentioning that the fully coupled constitutive equations derived above, are valid under the small strain hypothesis. To be used in metal forming by large plastic deformation, they should be extended to the nite strain hypothesis in such a manner that the objectivity requirement is fullled. This is made using an Eulerian description for which the total small strain rate tensor ε transforms to its Eulerian counterpart D. If the elastic part of the total strain tensor is supposed very small compared to the plastic one, the total strain rate can be approximated by the following additive decomposition:

D = εJ e + D p (3.3)
in which εJ e stands for the Jaumann derivative of the elastic small strain tensor, while D p is the nite plastic strain tensor dened as the symmetric part of the velocity gra- dient tensor. The objectivity requirement is ensured by using the so called rotational frame formulation (RFF). It leads to express the constitutive equations in a rotated deformed and damaged (Eulerian) conguration obtained from the current one by the orthogonal rotation tensor Q, solution of the following kinematic equation:

Q T • Q = W Q with Q (t = 0) = 1 (3.4)
where W Q is the rotation rate tensor which can be chosen in order to obtain some classical rotational objective derivatives as Jaumann, or Green-Naghdi derivation.

This model has been implemented into ABAQUS/EXPLICIT 4 Let's mention that the rotation tensor Q n+1 at t n+1 is independently determined before performing the integration of the constitutive equation in order to rotate all the tensorial variables as discussed above. Now, if the fully implicit Euler integration scheme is used for all the dierential equations excepting the hardening equation for which an asymptotic scheme is applied, the equations to be solved over the current load increment can be written under the following incremental form:

D p n+1 -D pn -∆δ N n+1 √ 1 -d n+1 = 0 with N n+1 = 3 2 Z n+1 ∥Z n+1 ∥ , Z n+1 = σ dev n+1 (3.5) r n+1 -r n e -b∆δ - Ä 1 -e -b∆δ ä b » 1 -(d n+1 ) ω = 0 (3.6) d n+1 -d n - ∆δ (1 -d n+1 ) β ñ ⟨Y n+1 -Y 0 ⟩ S ô s = 0 (3.7)
These equations should be solved thanks to the well-known elastic prediction and iterative plastic" correction procedure using the radial return algorithm applied to a reduced number of equations, in such a manner that the following plastic ow conditions are fullled [START_REF] Saanouni | Damage mechanics in metal forming: Advanced modeling and numerical simulation[END_REF] 

f n+1 = ∥Z n+1 ∥ √ 1 -d n+1 - R n+1 » 1 -(d n+1 ) ω -σ y = 0 (3.8)
Chapter 4

Fully damaged element deletion methodology

Element deletion criterion

In our methodology, the damage variable d takes values ranging from 0.0 (no damage) to 1.0 (total damage). In practice, we consider that an element is fully damaged if the damage variable exceeds a critical damage threshold d c = 0.99 at all of the element's integration points. The value of d c is tuned to obtain the clean path of the cracks meanwhile considering a minimum number of elements as fully damaged. To our experience, with our model, when d c is bigger than 0.99 but less than 1.0, the parameter sensitivity is not that obvious. We remove this fully damaged element from the mesh if and only if its size does not exceed the smallest mesh size h d min , in order to limit volume loss and avoid severely distorted elements which can prevent the calculation from going on. If the size of some totally damaged elements is greater than h d min , the loading sequence must be reduced. The process is iterated until the size of all the elements to be removed is less than the given threshold h d min .

Numerical disturbance control

In the simulation analysis, if only the critical damage value criterion is used to perform element deletion, it may cause topological problems around crack surface as shown in Fig. 4 Bulk Identication (Fig. 4-2) and Layer Separation (Fig. 4-3). Bulk Identication process works on a set of elements selecting bulks of the elements from the set. A bulk of elements is a set of elements in which every element has at least one common face with another element and the total number of elements in it must more than a threshold number. For instance, if we use Bulk Identication on the conguration in Fig. 4-2, the set of elements composed of black cube is selected. Because the elements in red, yellow and green have no common face with another element and the total number of elements composed of blue cube is smaller than a given threshold number.

Layer Separation process asks for a set of nodes and the number of layers as input The second layer of nodes is composed of the red nodes from the the yellow elements other than blue nodes. The same process is iterated and red nodes are used to select the second layer of elements which attached to red nodes except from yellow elements.

Finally, all the elements in yellow and green are included in the output element set of Layer Separation. Based on the same process, set of elements can be used as input data.

Bulk Identication process is dened as 

E sum bulk = ∪ k i=1 E i bulk = BI(E, n
     LS 3 = LS(BI(E c ), 3) E k = (E all -BI(LS 3 -BI(E c ))) ∩ LS 3 (4.1)
in which n layer = 3 is a compromise between calculation cost and cleaning eect. If n layer is big enough, then lim n layer →∞ LS n = E all and Eq. 4.1 becomes to Eq. 4.2.

This Eq. 4.2 is more direct than Eq. 4.1 and it drastically cleans the crack surface, however the drawback is that calculation costs increase dramatically with increasing of card(E all ). In the algorithm, the Bulk Identication process is based on Layer separation process, the Layer separation process is based on the inverse connectivity and anti-duplication of attached element. This anti-duplication is aimed to remove the same elements in a layer which are collected by inverse connectivity. In practice, a maximum of 3 layers is used which greatly reduces the calculation costs.

E k = (E all -BI(E all -BI(E c ))) ∩ E all = BI(E all -BI(E c )) (4.2) 

Non-Eulerian conguration removal

Element killing changes the topology of the mesh, sometimes may make the mesh not comply with Euler polyhedron formula. Two typical conguration are illustrated in Fig. 4-4(a) single-node and in Fig. 4-4(b) single-edge. The removal process begins with single-edge identication and edge split followed by single-node identication and node split. Both single-node and single-edge are included in the surface of the 3D mesh. Single-edge identication is performed based on a denition that a surface edge to which more than 2 surface faces attached is single-edge. In order to remove this Non-Eulerian conguration, single-edges are split as following:

1) We build an element set E atch including all the elements having this single-edge as a common edge.

2) Bulk Identication process is used 

∪ k i=1 E i bulk = BI(E

Physical eld consistence

Element deletion process (numerical disturbance control and Non-Eulerian conguration removal) may change the topology of the 3D mesh. All the physical elds (integration or nodal) should be projected from old mesh to new mesh. In terms of integration elds, all values of killed elements are removed directly. However, some totally damaged elements (d > d c ) are kept by element deletion process. For these elements, the integration values are transferred using diuse approximation [START_REF] Breitkopf | An introduction to moving least squares meshfree methods[END_REF] and Shape function of element. The procedure is detailed in chapter 7. Herein, the information points are only the integration points of the elements which are not killed.

In terms of nodal elds, we only copy the values from old single-node to the two nodes created by splitting it. In addition, due to element deletion, some nodes which attached only to the killed elements are also killed. The nodal eld value of these nodes are removed directly. Above all, the physical elds are consistent between old topology and new topology.

The volume loss is often pointed out in an element deletion procedure but rarely quantied. Since the size of the deleted elements are limited to be no more than minimal size, only a minimal volume of the geometry is removed. We experienced that volume loss is far less than 0.1% and can be therefore neglected.

Chapter 5

Mesh size determination

In our methodology, mesh size is driven by the cumulative plastic strain and damage. The behavior of the ductile material can be separated into dierent phases:

purely elastic zones without plasticity, homogeneous plastic zones with low damage values, localized plastic zones with moderate damage values, and highly localized plastic zones with severe damage values. We propose empirical mesh size indicators based on the cumulative plastic strain p = ´t 0 ṗdt with ṗ = » 2 3 D p : D p and the damage value d. In the purely elastic zones, the cumulative plastic strain p is zero and the mesh size is set to the maximum mesh size h max . Within the homogeneous plastic zone where p ≤ p * , the mesh size decreases linearly with respect to p from h max to h p max .

Here p * is a threshold value satisfying a given criterion which maximizes the value of the second invariant of the Cauchy stress, i.e. J 2 (σ(p * , . . .)) = max(J 2 (σ(p, . . .))).

Finally, within the highly localized plastic zone where p > p * , high ductile damage values may appear, and the mesh gradation needs to be tuned to take account of how the severe damage develops. The change in mesh size with respect to the cumulative plastic strain p is therefore described by an exponential function decreasing from h p max to h p min . When the damage variable d exceeds a given threshold d min , mesh size is driven by the damage variable d and reduces as an exponential function from h p min to h d min . Finally, when the damage variable d exceeds a threshold d max , the smallest damage-related mesh size h d min is prescribed. All the related functions are listed in Table 6.1 and change in mesh size with respect to physical quantities is plotted in 

p = 0 h p = h max Homogeneous plastic zone p ≤ p * h p = (h p max -hmax) p * p + h max Localized plastic zone p > p * h p = (h p min -h P max )(1 -e -κ 1 (p-p * ) ) + h P max Moderate damage zone d min < d ≤ d max h d = (h d min -h p )(1 -e -κ 2 (d-d min ) ) + h d max Severe damage zone d > d max h d = h d min
In Table 6.1, κ 1 and κ 2 are two user-tuned parameters which control the gradient of the mesh size. The choice of the smallest mesh size h d min is important, and when making this choice a number of factors must be considered:

• The accurate geometrical representation of cracks

• The computational cost of the simulation, which depends on the number of elements and on stability requirements for the loading sequences in an explicit framework

• Mesh dependency, given that mechanical behavior is strongly linked to local ductile damage that leads to softening, can be controlled. The idea is to choose the smallest mesh size as an intrinsic parameter when identifying the material parameters.

In the metal forming process, the mesh distortion and the entanglement are often caused by large geometry deformation. Therefore, the level of the deformation can be used to indicate the level of mesh distortion and entanglement. The cumulative plastic strain is a variable which describes the geometry deformation in FEM. Therefore, cumulative plastic strain p is chosen as one of the size indicators. As a result, when p increases to a certain level in a zone, the elements in the zones are rened in order to solve the distortion and the entanglement. As described above, we choose a quadratic tetrahedron element which has four nodes at four vertices and six nodes at the middle of the six edges to discretize the geometry. If the element is deformed, the edges of the element will be bended and kinked at the middle points as illustrated in Fig. 6-2. The mesh renement (using bisection technique as will be described in the following chapter 6) is performed, the kinked edges are divided into two segments for the rened elements. We can see also in the last sub-gure in Fig. 6-2, none of the edges of the all elements is kinked and the elements are no longer distorted.

When the mesh is repaired by renement, the topology changes so that eld transfer process is introduced. As discussed in chapter 7, the numerical errors in the eld transfer process cannot be avoided, but should be reduced and controlled. Therefore, the mesh size should also be suitable to limit the numerical error in the eld transfer in a minimum level. For this reason, the damage variable is also considered as a size indicator. Because in the large geometrical deformed zones, the damage variable is also highly located. The mesh should be rened enough so that transferring this high gradient eld with a high precision. In addition, as will be discussed in the chapter 7, in the eld transfer process (transfer the value of state variables from the old mesh (deformed) to the new mesh (rened)), the size of the old mesh should be small enough before the gradient of eld localizes. Therefore, for both cumulative plastic strain and damage variable, we propose a exponential function to describe the size map so that the mesh is rened earlier than the linear function during the metal forming process. In the purely elastic zones, the cumulative plastic strain p is zero and the mesh size is set to the maximum mesh size h max . Within the homogeneous plastic zone where p ≤ p * , the mesh size decreases linearly with respect to p from h max to h p max .

Here p * is a threshold value satisfying a given criterion which maximizes the value of the second invariant of the Cauchy stress, i.e. J 2 (σ(p * , . . .)) = max(J 2 (σ(p, . . .))).

Finally, within the highly localized plastic zone where p > p * , high ductile damage values may appear, and the mesh gradation needs to be tuned to take account of how the severe damage develops. The change in mesh size with respect to the cumulative plastic strain p is therefore described by an exponential function decreasing from h p max to h p min . When the damage variable d exceeds a given threshold d min , mesh size is driven by the damage variable d and reduces as an exponential function from h p min to h d min . Finally, when the damage variable d exceeds a threshold d max , the smallest damage-related mesh size h d min is prescribed. All the related functions are listed in Table 6.1 and change in mesh size with respect to physical quantities is plotted in Fig. 6-1. 

p = 0 h p = h max Homogeneous plastic zone p ≤ p * h p = (h p max -hmax) p * p + h max Localized plastic zone p > p * h p = (h p min -h P max )(1 -e -κ 1 (p-p * ) ) + h P max Moderate damage zone d min < d ≤ d max h d = (h d min -h p )(1 -e -κ 2 (d-d min ) ) + h d max Severe damage zone d > d max h d = h d min
In Table 6.1, κ 1 and κ 2 are two user-tuned parameters which control the gradient of the mesh size. The choice of the smallest mesh size h d min is important, and when making this choice a number of factors must be considered:

• The accurate geometrical representation of cracks

• The computational cost of the simulation, which depends on the number of elements and on stability requirements for the loading sequences in an explicit framework

• Mesh dependency, given that mechanical behavior is strongly linked to local ductile damage that leads to softening, can be controlled. The idea is to choose the smallest mesh size as an intrinsic parameter when identifying the material parameters.

In the metal forming process, the mesh distortion and the entanglement are often caused by large geometry deformation. Therefore, the level of the deformation can be used to indicate the level of mesh distortion and entanglement. The accumulative when p increases to a certain level in a zone, the elements in the zones are rened in order to solve the distortion and the entanglement. As described above, we choose a quadratic tetrahedron element which has four nodes at four vertices and six nodes at the middle of the six edges to discretize the geometry. If the element is deformed, the edges of the element will be bended and kinked at the middle points as illustrated in Fig. 6-2. The mesh renement (using bisection technique as will be described in the following chapter 6) is performed, the kinked edges are divided into two segments for the rened elements. We can see also in the last sub-gure in Fig. 6-2, none of the edges of the all elements is kinked and the elements are no longer distorted. When the mesh is repaired by renement, the topology changes so that eld transfer process is introduced. As in chapter 7, the numerical errors in the eld transfer process cannot be avoided, but should be reduced and controlled. Therefore, the mesh size should also be suitable to limit the numerical error in the eld transfer in a minimum level.

For this reason, the damage variable is also considered as a size indicator. Because in the large geometrical deformed zones, the damage variable is also highly located.

The mesh should be rened enough so that transferring this high gradient eld with a high precision. In addition, as will be discussed in the chapter 7, in the eld transfer process (transfer the value of state variables from the old mesh (deformed) to the new mesh (rened)), the size of the old mesh should be small enough before the gradient of eld localizes. Therefore, for both cumulative plastic strain and damage variable, we propose a exponential function to describe the size map so that the mesh is rened earlier than the linear function during the metal forming process. 

Adaptive local mesh renement with bisection technique

Ideally, the remeshing technique should adopt the prescribed mesh size and mesh gradation given by the size indicators detailed in chapter 5 above. In practice, in order to capture the gradient of the elds during the transfer process with accuracy, the mesh size must be smaller than that given by the size indicators, especially along the crack path. That means the size indicators give the maximum size of element on the mesh. Here we propose a local remeshing method based on a bisection technique [START_REF] Rassineux | Simultaneous surface and tetrahedron mesh adaptation using mesh-free techniques[END_REF].

The main goal of the proposed technique is to avoid global remeshing and therefore to modify the current mesh as little as possible. This local remeshing requirement is important for two reasons. First, the usual argument against 3D remeshing is its computational cost, often deemed to be prohibitive, but a local remeshing has a considerably lower cost than a global remeshing. Second, a local remeshing restricts topology changes to the active regions, thus avoiding spurious and unnecessary eld transfer (reducing the numerical diusion). The numerical diusion in a 3D context is a crucial issue during the eld transfer process which is more obvious than in 2D context. A local remeshing can signicantly limit the numerical diusion in small zones and also reduces the cost of eld transfer procedures themselves. The bisection technique is detailed in [START_REF] Rassineux | Simultaneous surface and tetrahedron mesh adaptation using mesh-free techniques[END_REF] and only a brief reminder of the main steps is given here. The whole process is based on edge subdivision. Element size distribution from mesh size indicators is provided by a background octree. If the length of a tetrahedron edge is smaller than the minimum information size obtained from the octree at each vertex and at the middle of the edge, the edge must be split.

Once all the edges to be split have been identied, the process consists in remeshing one by one the tetrahedra in which at least one edge must be split. As all existing subdivision patterns of tetrahedra have been pre-calculated as illustrated in Fig. 6-3, this rst remeshing step is very fast. However, experience shows that a further tetrahedron shape optimization is needed after all subdivisions. This optimization step consists in local remeshing around a node, an edge or a face of a tetrahedron in order to improve the mesh quality. To ensure the computational eciency of the remeshing, this treatment is not performed on all elements, but limited to the elements that do not satisfy a given quality criterion [START_REF] Rassineux | 3d mesh adaptation. optimization of tetrahedral meshes by advancing front technique[END_REF]. During these local modications, new nodes may be added, but the location of the nodes remains unchanged.

Since the process is based on bi-section subdivision, there is a size ratio of 2 between adjacent elements around the split elements. In our work we remarked that in order to prevent the creation of ill-shaped elements and to ensure accuracy when transferring highly localized physical elds, the size ratio should not exceed 2.

Consequently, in each loading step, the overall splitting process can be carried out only once. If there are still a large number of elements that need to be divided again according to size indicator, then the loading sequence should be reduced. Attention should also be paid to the initial mesh in which the size ratio should be less than 2. usually move away from each other so that there will not be contact between these two surfaces. Therefore, if the goal is just to simulate a tensile test, we can leave the crack surfaces serrated. However, if the numerical simulation of a compression test or some other tests related to friction are carried out, the two surfaces of the crack may contact with each other and relative displacement may happen. In such cases, the serrated crack surfaces must be smoothed so that the contact surface pairs can be clearly dened. A clear denition of the contact surface pairs is that the nodes on the two surfaces are located on or near the other surface and none of them penetrate into the other surface as shown in Fig. 6-4. In addition, if an indentation test is carried out, the surfaces of the specimen will contact with the surface of the indenter. Even if no crack appears, the clear denition of the contact surface pair is still needed.

Crack surface smoothing

As a consequence, smoothing the surface is the premise of a clear denition of the contact surface pairs. Furthermore, if the coarsening process is taken into account in order to reduce the computational cost, a smoothed surface is required to enable the coarsening process. Even if the satisfying smoothed state should be attained by iterating CCCSSM several times, the computational cost is still at a negligible level. In our work, the surfaces to be smoothed are only the crack surfaces. Given that the cracks propagate step by step and in each step the serrated crack surfaces are only small parts of the entire crack surfaces, we can assume that the serrated crack surfaces formed in one step are quasi planar as long as the length of the step is small. The method does not preserve the sharp features of the surface, because the crack surfaces are supposed to have no sharp features as in other problems. The CCCSSM is dierent from CCSS that the number of nodes and elements are constrained to be constant and therefore no new node or element is added into the surface mesh. This global method can be used locally by xing a chain of nodes which enclose a closed patch of surface and only changing the position of the nodes within the patch. In this section, a brief introduction of the method is rst given and then the implementation of the method in the nite element simulation is explained.

Introduction of CCCSSM

The CCCSSM is introduced in this section. Suppose a 3D surface mesh composed of arbitrary polygons (triangles, quadrangles or mixed) is going to be smoothed. This smoothing process is then carried out in 6 steps:

1) For each face in the mesh, a face point FP is added as shown in Fig. 6-6(a). It is dened as the average of all the original vertices of this face.

2) For each edge, an edge point EP is added as shown in Fig. 6-6(b). It is dened as the average of its two original vertices and two face points in the adjacent faces.

3) For each node N, the average of the face points in all of its n adjacent faces is calculated and denoted as CFP = 1 n ∑ n 1 FP as shown in Fig. 6-6(c).

4) For each node N, the average of the edge points in all of its n adjacent edges is calculated and denoted as CEP = 1 n ∑ n 1 EP as shown in Fig. 6-6(d).

5) The new position N ′ of this node is dened as the barycenter of the average of FP, EP and N as following:

N ′ = CFP + 2CEP + (n -3)N n (6.1)
6) The smooth mesh is nally generated by inducing the new positions N ′ for all the nodes N, however keep the topology of the mesh unchanged.

7) The above 6 steps are iterated if needed. edge and feature surface (Fig. 67) so that no unrealistic crack shape or deformation happen. Therefore, the surfaces to be smoothed should not include such original features even if some of their nodes are included in the crack surface. In addition, damage or cumulative plastic strain elds are always highly localized (high gradient)

in the zones around the crack tips which at the same time results in gravely decreasing of element sizes according to the size indicators. The smoothing of the crack tip which is followed by a volume mesh generation can disturb the size of the mesh (making the size of elements somewhere bigger than the size limit given by the size indicator)

around the crack tip. The physical elds such as cumulative plastic strain are highly localized in the vicinity of crack tips. If the mesh in these zones are changed, then the mesh size should respect the renement size indicators so that when the highly localized eld are transferred, the numerical diusion can be minimized. However, the smoothing process does not follow the renement size indicators. The solution is to smooth only the crack surfaces but not the crack tips. Above all, the crack surfaces to be smoothed should be carefully determined as well as the related node sets. 

           ∂Ω = ∂Ω smth + ∂Ω f ix (6.3a) ∂Ω smth = ∂Ω pcs (6.3b) ∂Ω f ix = ∂Ω os + ∂Ω f cs + ∂Ω ct (6.3c)
Before explaining the determination of the surface separation, we dene two sets which help to formulate the surface separation. Firstly, planar node set is dened and denoted as (∂Ω) N p . This set includes all the nodes which are not dened as sharp nodes. A node N on the surface mesh is regarded as a sharp node, if the summation of the surrounding angles is smaller than a threshold angle. The planar node set can be expressed as in 6.4 in which (∂Ω) N is a node set including all the nodes of ∂Ω. The angle α N i is a surrounding angle between two adjacent edges attached to the node N , I is the total number of surrounding angles and ξ N is the defect angle. This threshold ξ * is the threshold value which is usually set to 1.8π (strictly planar when it is 2π).

Next, planar face set is dened and denoted as (∂Ω) F p . This set includes all the faces (triangles) which have at least one planar node as its vertex. The planar face set can be expressed as in Eq. 6.5 in which (∂Ω) F is a face set including all the faces of ∂Ω. Because the original skin is adapted according to the geometry curvature at the beginning of the simulation, the original skin of the geometry is usually composed of only the planar faces. Therefore, if we extract the complete planar face set (∂Ω) F p from the whole surfaces ∂Ω), it becomes to the union of (∂Ω) f cs and (∂Ω) os as expressed in 6.6a. The crack tip as its denition can be easily stored during the totally damaged element deletion process in the same loading step as expressed in Eq. 6.6b. Finally, we substitute Eq. 6.3c, 6.6a and 6.6b into Eq. 6.3a obtaining 6.6c which indicates the determination of the nal surfaces to be smoothed.

(∂Ω) N p = { N |N ∈ (∂Ω) N ; ξ N ≥ ξ * , ξ N = I ∑ i=1 α N i } (6.4) (∂Ω) F p = ¶ F |F ∈ (∂Ω) F ; ∃N ∈ F, N ∈ (∂Ω) N p © (6.5)
           (∂Ω) F p ⇔ ∂Ω os + ∂Ω f cs (6.6a) (∂Ω) F ct ⇔ ∂Ω ct (6.6b) ∂Ω smth = ∂Ω -∂Ω f ix ⇔ (∂Ω) F -(∂Ω) F p + (∂Ω) F ct (6.6c)
Thirdly, a ridge edge set is dened as Eq. 6.8 in which F 1,2 are two faces attached to edge E and V N 1,2 are normal vectors of F 1,2 which always point outwards from elements (Fig. [START_REF] Bouchard | Numerical modelling of crack propagation: automatic remeshing and comparison of dierent criteria[END_REF][START_REF] Bouchard | Crack propagation modelling using an advanced remeshing technique[END_REF][START_REF] Boussetta | Adaptive remeshing based on a posteriori error estimation for forging simulation[END_REF][START_REF] Brainerd | Catmull-clark subdivision surfaces[END_REF][START_REF] Brancherie | On a consistent eld transfer in non linear inelastic analysis and ultimate load computation[END_REF]. The normal vectors of these two faces point outwards the volume and denotes as

∂Ω smth = ∂Ω -∂Ω f ix :⇒ (∂Ω) F -(∂Ω) F p -(∂Ω) F ct (6.7) (∂Ω) E r = ¶ E|E ∈ (∂Ω) E ; F 1,2 ∈ (∂Ω) F p ; θ E > θ * , θ E =< V N 1 , N N 2 > © (6.8) 6.3.
-→ V n 1 and -→ V n 2 .
The angle between these two normal vectors is denoted as θ. if the angle θ is bigger than a threshold value θ * , then the common edge E is determined as a sharp edge.

The smoothing process changes the position of the nodes so that before performing it, the exact set of nodes to be smoothed should be determined. As explained in the section 6.3.2.1, even if a node is included in the surface to be smoothed, it may not be moved. As illustrated in Fig. 67, some sharp nodes on the original skin of the geometry are denoted as feature nodes N f tr . Some sharp edges on the original skin are denoted as feature edges E f tr . The sharp nodes located along the feature edges are denoted as feature edge nodes N f e . The sharp nodes located on the original skin are denoted as feature surface nodes N f s . In order to avoid unrealistic deformation, the feature surface nodes N f s should be kept on the original skin, the feature edge nodes N f e should keep located along the feature edges E f tr and the feature nodes N f tr should be xed.

In practice, all the nodes of the present crack surface are smoothed except from feature nodes. After smoothing, the feature edge nodes are projected onto the feature edge and the feature surface nodes are projected onto the original skin. As a results, the original features of the geometry are not destroyed by the smoothing process.

The CCCSSM changes the density of the nodes and tends to relocate the nodes into an isotropic distribution as illustrated in Fig. 6-11. The variation of the density of the nodes changes the element size near the surface in the further step. However, this is not a problem in our case. Because only the crack surface is smoothed during propagation so that it is not necessary to keep the node density in these zones; on the other hand, even if the element sizes are changed, they are still smaller than minimum sizes h min which does not deteriorate the quality of our hybrid eld transfer process.

Reliability of crack surface smoothing

The smooth process atens the serrated surfaces. A relatively large displacement of the nodes along the surface of the 3D mesh occurs while the nodes elsewhere are xed. The topology of the mesh may change at the boundary of the smoothed surface.

A 2D example is shown in Fig. 6-12, the blue points and lines are respectively the nodes and edges of the mesh before smoothing; the red points and lines are the nodes and edges of the mesh after smoothing; the black lines are the edges which are not moved during the smoothing; the thick lines are the boundary of the mesh. The shows that some elements are inverted which means one or more vertices of these elements move across their own edges and overlap with the other elements. These This local surface remeshing corrects the topology of the surface mesh and ameliorates the quality of the volume mesh which is generated from the surface mesh. After smoothing the crack surface, we need to generate the tetrahedron mesh near the crack surface and therefore to extract closed triangle meshes. A mesh generator based on advancing front technique is used [START_REF] Rassineux | 3d mesh adaptation. optimization of tetrahedral meshes by advancing front technique[END_REF] and the quality of the tetrahedron mesh is mostly dependent on the quality of the triangle surface mesh. Therefore, the quality of the smoothed surface mesh must be optimized. A number of authors have proposed quality criteria for triangles [START_REF] Sarrate | Numerical representation of the quality measures of triangles and triangular meshes[END_REF]. In our work, as illustrated in Fig. 6-13, the quality of the triangle is based on radius of its inscribed circle (r) and circumscribed circle (R). Because the ratio r/R equals 0.5 for a regular triangle, the quality of a arbitrary triangle can be dened as the ratio r/R 0.5 The CCCSSM tends to form an isotropic distribution of the nodes on the surface, but does not change the topology of the mesh. This isotropic distribution of the nodes optimizes the mesh quality on the surface in a current topology, but do not optimize the mesh quality in a global view (i.e. if topology is changed, the mesh quality can still be improved). For example, as illustrated in Fig. 6-14 (b), the nodes are distributed isotropically, however, there are 3 triangles in red which are evidently smaller than their neighbors. Such node is then regarded as a bad node. These 3 small triangles are created by smoothing a sharp node as in Fig. 6-14 (a). Even if the quality of these 3 triangles can be accepted, deleting them may ensure a better quality of tetrahedron mesh. In practice, each node on the surface is checked. If there The similar conguration is illustrated in Fig. 6-15 (b). When there is a very small triangle enclosed by larger triangles, we can regard such triangle as bad triangle (the red triangle in Fig. 6-15 (b)). This conguration can be generated by smoothing the serrated mesh in Fig. 6-15 (a). If a bad triangle is deleted, the topology of the surface mesh is changed. A chain of edges is formed as in Fig. 6-15 (c). We suppose that such edge chain is nearly in a plane after enough smoothing. The patch within this edge chain is triangulated by just connecting the nodes along the edge chain. In practice, each original triangle is checked. If the sizes of all neighboring triangles are twice larger than this center triangle, then this triangle is denoted as bad triangle.

Surface mesh quality improvement

(a) (b) (c)
The bad triangle as well as the its neighboring triangles are deleted. The triangulation of a planar contour of n nodes into n -2 triangles has been widely discussed [START_REF] Briere De Lâisle | Optimization of tetrahedral meshes[END_REF]. The technique is based on the determination of all triangulation congurations.

The idea is that a n-node contour can be decomposed into n -2 triangles and a (n -1)-node contour as shown in Fig. 6-16. When n reaches 10, the number of triangles to compute is 120 and the number of triangulations is 1430. In practice, the determination of the conguration stops at n = 10.

All of the basic triangulation congurations for each possible value of n are predesigned. The qualities of triangles in all possible triangulation congurations are calculated. Among them, the conguration which has the highest minimum quality value is chosen as the nal triangulation conguration as in Fig. 6-15 (d).

Edge swapping is also an ecient method to locally improve the quality of the surface mesh as illustrated in Fig. 6 the surface mesh surface mesh. However, this shrinkage of the volume is nearly negligible compared to the total volume of the specimen. In our case the crack surface is rather small compared to the whole surface of the specimen. Therefore, the shrinkage of the volume of the specimen can be compensated by relocating the smoothed surface with a small identical displacement along the local normal direction of the surface at each node on the crack surface, as illustrated in Fig. 6-18 (a). The relocation only concerns about the nodes on the crack surface, whereas not all of them. As mentioned in section 6.3.2.2, the feature node, feature edge and original skin should not deformed articially when the surface is relocated. The same projection for feature edge nodes and feature surface nodes are made after relocating the surface, as illustrated in Fig.

6-18 (b)

. This surface relocating method can be easily implemented into numerical calculation and does not destroy the geometry of the crack surface, as illustrated in 6-18 (c).

In practice, the surface relocation is the problem to calculate the displacement on the smoothed surface. The volume before surface smoothing is calculated and denoted as V 0 which is the volume needed after surface relocating. The volume after surface smoothing is calculated and denoted as V smth . Based on the small volume variation assumption, we can suppose that the dierence between these two volume has a linear relationship with the identical displacement -→ d . The volume variation caused by feature edge node and feature surface node projection can be regarded as innitesimal and neglected. Therefore, the length of identical displacement can be obtained by Eq. 6.9. 

||

- → d || = V 0 -V smth || -→ S smth || (6.

∏

, going along the referenced direction -→ d and ending at the point P S is denoted as -→ X . We call the vector -→ X as position vector. Because the piece is very small, we can assume that the distance from this small piece d -→ S to the referenced plane is the distance between its center and the referenced plane. If this distance is denoted as l, then this position vector can be expressed as:

-→ X = l -→ d . The volume of this surface V can be expressed as in Eq. 6.10. In terms of nite element triangle surface mesh, the volume V can be calculated by discretizing the Eq. 6.10. Firstly, in the Cartesian coordinate system, the surface is translated to the rst quadrant (x >= 0, y >= 0, z >= 0) as illustrated in Fig. 6-21.

V ∂Ω = ‹ ∂Ω -→ X • d - → S = ‹ ∂Ω l - → d • - → n dA (6.10) -→ V n = -→ AB × -→ AC = 2A i -→ n i (6.11)
Secondly, as illustrated in Fig. 6-20, the triangle ABC is the ith element of the surface mesh which has 3 vertexes A(x i

A , y i A , z i A ), B(x i B , y i B , z i B ) and C(x i C , y i C , z i C ). The point P i ctr (x i ctr , y i ctr , z i ctr ) is the center of the triangle ABC in which x i ctr = (x i A + x i B + x i C )/3, y i ctr = (y i A + y i B + y i C )/3 and z i ctr = (z i A + z i B + z i C )/3. The vector -→ V n i (x i Vn , y i Vn , z i Vn )
is the normal vector of the triangle ABC. If the area of the triangle ABC is denoted as A i , then the normal vector -→ V n can be expressed as in Eq. 6.11. Thirdly, the position vector of the triangle ABC is denoted as l i -→ d and the discretization of Eq. 6.10 can be expressed in Eq. 6.12. Finally, the axis oz is chosen as the referenced direction and therefore the plane xoy is set as the referenced plane. In this case, we can substitute

the term A i - → d • -→ n i by 1 2 z i
Vn and substitute l i by z i ctr in the Eq. 6.12 so that to get Eq. 6.13.

V ∂Ω = N tri ∑ i=1 l i A i -→ d • -→ n i (6.12) V ∂Ω = N tri ∑ i=1 z i ctr 1 2 z i Vn = 1 6 N tri ∑ i=1 z i ctr (z i A + z i B + z i C ) (6.13)
6.5 Example of surface smoothing process with an analytical crack Our surface smoothing is a local process. It is not necessary to consider the whole geometry surface at the same time even if the surface separation process is performed.

In the example, we only consider a small part around the crack. As illustrated in the The CCCSSM is implemented on the red surface in Fig. 6-23 (d) and the smoothed surface is displayed in Fig. 6-24 (a). If we look at the smoothed surface along the oz axis as in Fig. 6-24 (b), we can nd that there are some bad elements which have low quality and the small elements which more than two times smaller than Secondly, the new mesh is generated either locally or globally. Finally, the necessary physical state variables both at nodal points and at integration points (if needed) are transferred from the old mesh to the new mesh. In this work, we give the main emphasis on the transfer step. When dealing with all Lagrangian nite element analysis, the following general requirements should be followed during the transfer process: 53 self-consistency, conservation of equilibrium and respect of constitutive equations. In practice, in terms of dierent analysis, dierent requirements are needed, for example minimization of numerical diusion [START_REF] Peri¢ | Transfer operators for evolving meshes in small strain elasto-placticity[END_REF] and two directions of transfer between dissimilar meshes [START_REF] Dureisseix | Information transfer between incompatible nite element meshes: application to coupled thermo-viscoelasticity[END_REF]. In this work, we focus on eld transfer process implemented in metal forming process with crack initiation and propagation. In this analysis, on the one hand, some physical elds have large gradient such as cumulative plastic strain eld and localize in a small zone such as the vicinity of a crack tip. The numerical diusion caused by eld transfer should be strictly limited, otherwise, the large gradients and high localization cannot be captured after the transfer process. On the other hand, because the path of the crack is always along the trajectory of the maximum damage value during the simulation, the crack propagation, especially in 3D, is very sensitive to this maximum damage which determines the direction of the crack propagation. As a consequence, in our work, the preservation of extrema of the eld is of great importance.

Dierent transfer processes have been investigating in order to deal with various adaptive methodologies. The evaluated space is discretized by nite elements. We dene 4 characteristic discretized positions, namely, nodal points of the old mesh denoted as N P old , integration points of the old mesh denoted as IP old , nodal points of the new mesh denoted as N P new and integration points of the new mesh denoted as IP new . With respect to the data ow during the integration eld transfer process in which the data ow begins at IP old and ends at IP new , transfer methods can be classied into 3 groups.

In the rst group, the state variables at integration points of the old mesh are extrapolated to the nodal points of the old mesh and the values at the integration points of the new mesh are interpolated using element shape function of old mesh or by meshless interpolation based on N P old . This process can be expressed as: [START_REF] Kr Jayadevan And R Narasimhan | Finite element simulation of wedge indentation[END_REF]. The extrapolation at N P old can be obtained by either averaging [START_REF] Lee | Error indicators and adaptive remeshing in large deformation nite element analysis[END_REF] or by weighted averaging [START_REF] Cheng | A mesh re-zoning technique for nite element simulations of metal forming processes[END_REF] the values at IP new around each nodal point. These methods are quick. The extrapolation can be performed continuously by nite element function based least square methods [START_REF] Hinton | Local and global smoothing of discontinuousnite element functions using a least squares method[END_REF] in which the discrete state variables at integration points are smoothed continuously at the nodal points. The number of integration points should be sucient to interpolate the eld to the element nodal points. The continuous elds can also be obtained after the discrete extrapolation at nodal points [START_REF] Loubignac | Continuous stress elds in nite element analysis[END_REF]. Most of the authors [START_REF] Kr Jayadevan And R Narasimhan | Finite element simulation of wedge indentation[END_REF][63] use nite element shape function interpolation to calculate the values at IP new from N P old . The principle is to locate an integration point of the new mesh in a containing element of the old mesh [START_REF] Henry | Adaptive 2d nite element simulation of metal forming processes[END_REF].

IP old → N P old → IP new [88][49]
In the second group of transfer, the nodal points in the new mesh are added in the scheme transfer and this process can be expressed as: IP old → N P old → N P new → IP new . Peric et al. [START_REF] Peri¢ | Transfer operators for evolving meshes in small strain elasto-placticity[END_REF] propose such kind of transfer process: the rst part IP old → N P old is performed by nite element shape function based least squares [START_REF] Hinton | Local and global smoothing of discontinuousnite element functions using a least squares method[END_REF]. The second part N P old → N P new and the third part N P new → IP new are carried out using nite element shape functions interpolation in the old and new mesh respectively. J. Mediavilla et al. [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF] follow this kind of transfer process but propose to transfer only a minimal set of variables in order to eliminate the inconsistencies [START_REF] Espinosa | Adaptive fem computation of geometric and material nonlinearities with application to brittle failure[END_REF]. This minimal set should be composed of fully representative variables while the remaining ones are derived from the constitutive equations. Javani et al. [START_REF] Hr Javani | Three-dimensional nite element modeling of ductile crack initiation and propagation[END_REF] propose a transfer process based on the work of Mediavilla et al.. Instead of local extrapolation in the rst part, the authors use a global least square smoothing based on shape functions. After the reconstruction of all the elds, balancing iterations are done to restore global equilibrium by assuming the material behavior to be elastic in order to guarantee convergence. In the context of metal forming processes, the cumulative plastic strain is very large in the zone where the fracture occurs, the elements of the old mesh in such zones are usually severely distorted which ruins the shape function based interpolations. As a solution, instead of using shape functions, to perform N P old → N P new , Dureisseix et al. [START_REF] Dureisseix | Information transfer between incompatible nite element meshes: application to coupled thermo-viscoelasticity[END_REF] propose to use a mortar-like procedure in which the energy conservation is preserved piece-wisely. Ortiz and Quigley [START_REF] Ortiz | Adaptive mesh renement in strain localization problems[END_REF] uses a transfer process based on Hu-Washizu principle in order to keep consistency together with issues on conservation of equilibrium.

In the third group, state variables at integration points in old mesh are di-cost which could be prohibitive in a 3D context. Khoei et al. [START_REF] Ar Khoei | Three-dimensional cohesive fracture modeling of non-planar crack growth using adaptive fe technique[END_REF] propose a modied superconvergent patch recovery (MSPR) technique combining with a global 3D remeshing with moderate mesh size gradation. The basis functions to construct the interpolation around the crack tip are based on local polar coordinated trigonometric functions. Even if the gradation of the mesh can be controlled, a global remeshing together with a global transfer increase the cost of the simulation and the potential eects of numerical diusion.

The above brief survey shows that a reliable transfer process should maintain the consistency of the constitutive equations and satisfy the equilibrium equations, while minimizing numerical diusions [START_REF] Peri¢ | Transfer operators for evolving meshes in small strain elasto-placticity[END_REF]. However, if all the state variables are transferred to the new mesh independently, an unsatised equilibrium state at the beginning of the next adaptive step might happen. Cao [START_REF] Cao | Numerical simulation of 3d ductile cracks formation using recent improved lode-dependent plasticity and damage models combined with remeshing[END_REF] proposed a general method to solve this problem and ensure consistency and equilibrium. In this method, an additional small step is inserted before the next adaptive loading step. In this small step, the large IP old →NP new →IP new : rst, state variables at integration points in the old mesh are transferred by the Diuse Interpolation technique to nodal points in the new mesh, and a new information point selection strategy is used to improve the robustness of the Diuse Interpolation method; second, the state variables are interpolated by shape function from the element in the new mesh to the integration points in the new mesh in order to obtain the elds with greater consistency [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF]. The consistency and equilibrium are recovered using Cao's method. We discuss the details of our transfer operator in Section ??. In Section 7.6 we transfer an analytic eld using dierent transfer operators and compared the results. In Section ?? we then use dierent transfer operators to simulate the metal-forming process and we compare the initiation and propagation of cracks are compared to experimental results. The Diuse Interpolation method has been widely discussed in the literature [START_REF] Labergere | Strain rate distribution and localization band width evolution during tensile test[END_REF][11] and only a short reminder is given in this section. The method is aimed to reconstruct the local scalar eld S (X -X 0 ) around the vicinity of the evaluation point M (X 0 ) by a polynomial function based approximation as expressed in Eq.7.1 in which P (X -X 0 ) is the basis of the approximation, A (X 0 ) is the unknown coefcient vector which depends on the location of the evaluation point X 0 and X is the global coordinate components vector.

S (X -X

0 ) = P T (X -X 0 ) • A (X 0 ) (7.1)
In this work, we propose a linear approximation in 3D Cartesian coordinate system to perform the approximation. Because this linear approximation works more robust than quadratic or higher order approximation, when the mesh size is well reduced according the the plastic strain and damage. Therefore, Eq.7.1 can be developed as:

S (X -X 0 ) = ï 1 x -x 0 y -y 0 z -z 0 ò •           a 0 a 1 a 2 a 3           (7.2)
The coecient vector A is obtained by minimizing the following objective function Eq.7.3:

Min : J A (X -X 0 ) = ∑ n i=1 w ∞ i (S (X i -X 0 ) -S i ) 2 = ∑ n i=1 w ∞ i Ä P T (X i -X 0 ) • A -S i ä 2 (7.3)
in which n denotes the number of information points to build the approximation, X i is the coordinates of the information point M i and S i is the value at M i . The interpolating weight w ∞ i is given by Eq.7.4, in which R (X 0 ) denotes the radius of the vicinity. This interpolating weight is close to zero when the information point is located near the boundary of the vicinity and becomes singular when the information point is located close to M 0 . In practice, in order to enclose all information points, the radius is slightly increased and dened as R (X 0 ) = 1.05max (∥X i -X 0 ∥) [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF].

w ∞ i = w i 1 -w i , with w i = Ç 1 - ∥X i -X 0 ∥ R (X 0 ) å 2 • Ç 1 + 2 ∥X i -X 0 ∥ R (X 0 ) å (7.4)
The minimization is carried out by solving linear equations: ∂J A ∂A = 0. Coecient vector A is obtained by solving Eq. 7.5 where X is the local coordinate matrix centered at M 0 . W is the diagonal interpolating weight matrix. The value at the evaluation point M 0 is given by α 0 .

Ä X T W X ä A = X T W S (7.5) with X =           1 x 1 -x 0 y 1 -y 0 z 1 -z 0 1 x 2 -x 0 y 2 -y 0 z 2 -z 0 . . . . . . . . . . . . 1 x n -x 0 y n -y 0 z n -z 0           , w =           w ∞ 1 0 • • • 0 0 w ∞ 2 0 . . . . . . 0 . . . 0 0 • • • 0 w ∞ n           , A =           a 0 a 1 a 2 a 3           , S =           S 1 S 2 . . . S n           .
The results of the Diuse Interpolation method strongly depends on the distribution of the n information points M i . A linear 1D example with dierent information point selection strategies is illustrated in Fig. 7-2. The coordinates of the points are plotted on the horizontal axis and the values at the points on the vertical axis. The points in the vicinity of the evaluation point M 0 are plotted as circles. The selected information points are plotted as the blue circles. The black line denotes the interpolation function which is used to estimate the value S new at the evaluation points M 0 (X 0 ) denoted as red star. The estimated value from the selection based only on distance (the closest points [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF][10]) is illustrated in Fig. 7-2(a). Only the points on the left side of the evaluation point are selected as information points and the ones on the right side are missed because they are relatively far from the evaluation point. As a result, even if a sucient number of points to build the approximation is selected, the estimated value is overestimated and the gradient of the eld may not be reproduced faithfully. Another information point selection strategy selects all the neighboring points within the vicinity of the evaluation point, no matter how far they are from M 0 . Even if the points in all directions (left and right side) are considered, a high number of information point is selected. Using a linear basis, only 2+1 information points [START_REF] Breitkopf | Integration constraint in diuse element method[END_REF] are necessary to build this 1D interpolation. This selection strategy also leads to an overestimation of the value at M 0 therefore numerical diusion arises, because the interpolation is no longer local. The numerical diusion caused by these two selection strategies is more severe as the mesh gradation increases, especially in a 3D context. In order to minimize the numerical diusion and get a more reliable interpolation result, an isotropic information point selection based on both distance and direction is proposed. The points in every direction (right and left side) are considered and only the nearer ones are selected as information points as shown in Fig. 7-2(c). The numerical diusion is limited at a large extent while capturing the gradient of the elds.

Local vicinity of the evaluation pointDetermination of neighboring points

The information points should be as close as possible to the evaluation points.

In addition, a visibility criterion [START_REF] Brancherie | On a consistent eld transfer in non linear inelastic analysis and ultimate load computation[END_REF][71] should be considered. A visibility criterion prevents for instance from choosing points on dierent sides of the crack lips as illustrated in Fig. 7-3. In our transfer method, the potential information points are the integration points of the old mesh. Therefore, it is ecient to use element connectivity, which provides an ecient way to determine a local set of neighboring points while satisfying a visibility criterion, to determine the local vicinity of the evaluation point. An evaluation point is rst chosen. The element which contains the point is then determined. This containing element is also dened as the rst element layer around the evaluation point. The second layer is composed of all elements which share any one of the vertices of the rst layer element except from the containing element. Other layers can be dened using the same process. All the integration points of the elements in these layers are searched as the neighboring points within the vicinity. In practice, no more than three layers are used, otherwise the neighboring points are no longer local. Some authors regard all of these neighboring points directly as information points in a 2D context [10][45]. In this work, a 4-monomial-linear basis (Eq.7.2) is chosen to build the interpolation and therefore 4+1 information points are theoretically enough to create a continuous interpolation [START_REF] Breitkopf | Integration constraint in diuse element method[END_REF]. However, the number of elements in the rst two layers can be as many as between 50 and 100, even for a good quality tetrahedron mesh. As a result, the number of neighboring points can be far more than the necessary number (5) of information points, especially when higher order element which has more than one integration points are used. As explained in section 7.2 (Fig. 7-2(b)), if all of the neighboring points are regarded as information points, the severe numerical diusion can be induced. Therefore, a selection from these neighboring points should be performed to reduce the number of information points to an appropriate. 

Isotropic information point selection strategy

As explained in section 7.2, both distance and relative direction between neighboring points and the evaluation point should be considered quantitatively at the same time (Fig. 7-2(c)) and therefore a compromise should be made between these two aspects. We propose rst to construct a distance weight and a direction weight for each neighboring point assessing these two aspects respectively. Then a compromise between them is made by a selection weight. The information points are nally selected according to the selection weight. In this work, the weight w i in Eq. 7.4 is used as the distance weight. Emphasis is given on the construction of direction weight which is the crux of the selection strategy. We rst only consider direction and the goal is to select a set of information points which are located in every radial direction starting from the evaluation point. Several radial direction vectors are chosen as referenced directions which are emitted from the evaluation point and point evenly to its vicinity. If information points can be selected along every referenced direction, then we may agree that the information points are located in every radial direction. We dene such set of information points as isotropically distributed information points and call the process as isotropic information point selection.

In practice, the neighboring points are not exactly along the referenced directions but located near them. The idea is to locally select the nearest neighboring point with respect to every referenced directions then the information points can be isotropically distributed in the vicinity of the evaluation point. As a consequence, the direction weight is constructed locally for each referenced direction independently in its own sub-region. The sub-region of a referenced direction is used to categorize a group of neighboring points which are considered around this referenced direction. In addition, such a local direction weight should be monotonically decreasing from referenced direction to the boundary its sub-region. To simplify the process, we can rst project all the neighboring points onto a unit sphere centered at the evaluation point. Then a referenced direction becomes a referenced point on the sphere surface and its subregion becomes a referenced patch on the sphere surface centered at a referenced point. As a consequence, the process to choose a set of isotropically distributed referenced directions and dene their sub-regions becomes the partition of a sphere surface into isotropically distributed sub-regions. In addition, in each sub-region, at most one neighboring point (the nearest to the referenced point) is selected as information point, the number of information points is usually linked to the number of sub-regions. Based on these facts, we can qualitatively list 4 requirements for the sphere partition as following:

1) If the sphere is partitioned into N tot sub-regions, the possible value of N tot should be as many as possible

2) The area of each sub-region should be as identical as possible (equal area)

3) The shape of each sub-region should be as identically compact as possible (equal shape).

4) The distances between a sub-region and its neighboring sub-regions should be as identical as possible (locally dispersive distribution).

In this section, the method to partition the sphere is rst discussed. The construction of direction weight is then explained. Finally, the selection of the information points and the related problems are presented.

Partition of a unit sphere surface

Dierent criteria are used to carry out the partitioning. Sometimes several criteria are given such as arbitrary number of partitions, equal area partitions or square-like partitions. However, usually these criteria cannot be satised completely at the same time and most authors give priority order to them. Leopardi [START_REF] Leopardi | A partition of the unit sphere into regions of equal area and small diameter[END_REF] proposed a recursive zonal equal area sphere partitioning algorithm which guarantees that the areas of subregions are equal and makes the diameters of sub-regions as small as possible. This algorithm can be extended to partition higher dimensional sphere. Beckers et al.

[3] propose a general rule to cut a disk into an imposed number of equal-area cells then using a mapping process to cut a hemisphere into similar sub-regions as the disk. In this method, the aspect ratio is enforced in order to make the sub-regions close to the square. Most of sphere partition techniques cannot impose an arbitrary number of sub-regions before partitioning. However, the technique should give as many possibilities of partitions as possible. Based on Beckers' work, we propose a method to partition a disk into several sub-regions and project this partition patterns onto sphere partition with the feasible numbers of sub-regions as many as possible.

In section 7. 

Partition of a unit disk

In order to project a 2D disk partition onto isotropic 3D sphere partition, the 2D disk partition should also be isotropic. We have 4 requirements for isotropic partition:

the possible number N tot is as many as possible, equal area, equal square-like shape and dispersive location. Since these requirements cannot be satised completely at This method also provides a transformation way when the partition on a disk is projected onto hemisphere, for instance, on a hemisphere the separation curves can be meridians and small circles parallel to the bottom circle of the hemisphere, as shown in Fig. 7 We propose a new sphere partition method here. In this method, disk partition is rst done and the hemisphere partition is projected from the disk partition. The whole sphere partition is obtained by making a mirror symmetry of the hemisphere partition with respect to its equator plane. Given that the possible numbers of total sub-regions should be as many as possible and the identicalness of the area of all the sphere is odd sub-regions are given the most priority, we propose two kinds of congurations of the disk partition: rst conguration is that the area of all the sub-regions on a disk is the same as illustrated in Fig. 7-4(a); second conguration is that the areas of all the sub-regions along the boundary of the disk are only half of the others, as illustrated in Fig. 7-5(a). We can see that the sphere partition derived from the rst conguration of disk partition has even number of layers as in Fig. 7-4(c). The sphere partition derived from the second conguration of disk partition has odd number of layers as in Fig. 7-5(c). The total number of layers on the sphere is a characteristic parameter of the partition, denoted as K. The number of layers on a disk is denoted as T , which is a function of K and can be expressed in Eq. 7.6. The partitions corresponding to these two congurations are discussed in detail below.

T =      K/2, if K is even (K -1)/2, if K is odd (7.6)
When K is even and equals to 6, as in Fig. 7-4(c), T equals to 3. The number of sub-regions in t layer is denoted as N t | T 1 and t increases from the center to the boundary on the disk. To be mentioned, the span lengths of all T layers are the same [START_REF] Beckers | A general rule for disk and hemisphere partition into equal-area cells[END_REF] and denoted as ∆r in Fig. 7-6. The equal area requirement can be expressed as 

A 1 = A t .
A 1 = A t ⇒ π∆r 2 N 1 = π(t∆r) 2 -π[(t -1)∆r] 2 N t ⇒ N t = (2t -1)N 1 (7.7)
According to this requirement, we can develop that the number of sub-regions in t layer N t is only determined by the number in the rst layer N 1 as in Eq.7.7. The number in the rst layer N 1 is then another characteristic parameter of the partition.

We can see later that it determines the other partition requirements. When K is even, the equal area requirement can be satised completely. However, when K is odd, this requirement is discussed later. Before the square-like shape requirement is discussed, two coecients to describe the 2D shape are introduced, namely aspect ratio and shape coecient. Aspect ratio of a shape (sub-region) as in Fig. 7-6 is dened as λ = ∆r/∆c in which ∆r is span length and ∆c is the chord of the shape which is an arc intersecting with the middle point of the span length. Shape coecient is dened as ξ = ρ 2 /A in which ρ is the perimeter and A is the area. Dierent values of these two coecients for dierent shapes are given in Fig. 7-7. We can see from the Fig. 7-7(a) that the aspect ratio of a square λ squa equals to 1 and its shape coecient ξ squa equals to 16. Therefore, if we dene λ t | T 1 as the aspect ratio and ξ t | T 1 as the shape coecient of sub-regions in the t layer, then the identically square-like shape requirement can be expressed as: aspect ratio λ t ≈ λ squa = 1 and shape coecient ξ t ≈ ξ squa = 16. With respect to the even K basic partition conguration, the aspect ratio in t layer can be expressed in Eq.7.8.

λ t = ∆r 2π(t -1/2)∆r/N t (7.8)
Since the equal area is given the priority, it should be satised rst so that we cannot directly set λ t = λ squa . Given the Eq.7.7 which is derived from equal area requirement, substitute Eq. 7.7 into Eq.7.8 we can obtain Eq.7.9.

λ t = ∆r(2t -1)N 1 2π(t -1/2)∆r = N 1 π (7.9)
Under the basic partition conguration and equal area requirement, the aspect ratio in t layer λ t is only determined by the number in the rst layer N 1 as in Eq.7.9.

Since π ≈ 3.14 and N 1 ∈ N + , we can imagine that when N 1 = 3, the value of aspect ratio λ t = 0.955 is the closest to 1 and when N 1 decreases or increases, λ t goes away from 1. If square-like shape is only measured by the aspect ratio, we can conclude that the number of sub-regions in the rst layer is close to 3, the shape of the sub-regions are more square-like. However, aspect ratio close to 1 is not enough to describe the square-like shape. As illustrated in Fig. 7-7(c), even if the aspect ratio of the trapezoid equals exactly to 1 but it is not a square, because the shape coecient is not equals to 16. The shape coecient in t layer denoted as ρ t | T 1 can be expressed as in Eq. 7.10. 

ξ t = ρ 2 t A t = Ç 2∆r + 2πt∆r N t + 2π(t -1)∆r N t å N t π(t∆r) 2 -π[(t -1)∆r] 2 = 4N 1 π (1+ π N 1 ) 2 (7.10)
According to Eq.7.10, shape coecient in t layer ξ t is also only determined by the number in the rst layer N 1 . The Eq.7.10 is plotted in Fig. 78. We can see from the Fig. 78, when N 1 = 3, the shape coecient ξ t is nearly equal to ξ squa = 16.

When N 1 decreases or increases, the value of ξ t goes away from 16. However, there is an exception when N 1 = 1 there is only one sub-region in the rst layer and this sub-region becomes a circle. As illustrated in Fig. 7-7(d), the shape coecient of a circle is expressed as: ξ 1 (N 1 = 1) = (2π∆r) 2 π∆r 2 = 12.57 ̸ = 4(1+π) 2 π = 21.84. There is also an exception of aspect ratio when there is only one sub-region in the rst layer:

λ 1 (N 1 = 1) = 2∆r 2∆r = 1 ̸ = 1 π = 0.3185.
Even if the shape of this sub-region is no longer identical square-like (ξ 1 (N 1 = 1) = 12.57 ≪ 16) as the other sub-regions, it is still compact (λ 1 (N 1 = 1) = 1 = λ squa ) so that the partition patterns in which N 1 = 1 are still possible to be considered.

When K is odd, for example as in Fig. 7-5(c) K = 5, there are T = (5 -1)/2 = 2 layers with equal span length ∆r and one layer with shorter span length α∆r(0 < α < 1) within the disk. The coecient α is termed the span length coecient. In this conguration, the sub-regions in all T layers have the same features as when K is even. The only dierence appears in the T + 1 layer. Therefore, we focus only on the T + 1 layer and discuss all the partition requirements the same as K is even. The area of the sub-regions in T + 1 layer A T +1 can be computed as in Eq. 7.11

A T +1 = 2π[(T + α)∆r] 2 -2π(T ∆r) 2 N T +1 = 2πα∆r 2 (2T + α) N T +1 (7.11)
The equal area requirement A 1 = A T +1 is then expressed as in Eq.7.12:

A 1 = A T +1 ⇒ π∆r 2 N 1 = 2πα∆r 2 (2T + α) N T +1 ⇒ N T +1 = 2αN 1 (2T + α) (7.12)
In contrast to the layers 1 through T , where N t depends only on N 1 , in layer T + 1

the number of sub-regions N T +1 depends on N 1 , α, and T . The aspect ratio of the sub-regions in the T + 1 layer λ T +1 can be computed as in Eq.7.13:

λ T +1 = 2α∆r ∆c T +1 = 2α∆r 2π(T + α)∆r/N T +1 = 2α 2 (2T + α) π(T + α) (7.13)
In layers 1 through T , the equal aspect ratio λ t = λ 1 is directly satised when there is an equal area A t = A 1 . In layer T + 1, if the equal aspect ratio is considered, we can obtain Eq.7.14.

λ 1 = λ T +1 ⇒ N 1 π = 2α 2 (2T + α)N 1 π(T + α) ⇒ 2α 3 + 4T α 2 -α -T = 0 (7.14)
Coecient α depends only on the number of layers T , so we can dene α as α(T ).

When T increases, α decreases and converges to 0.5. As shown in Fig. 789, the blue points represent the implicit solution of α(T ), and the red line is the explicit tting solution of α(T ) = 0.0524T -0.8638 +0.4991. The number of layers T can be determined by the characteristic parameter K as T (K). Therefore, the span length coecient depends only on K as α(K).

Then the perimeter ρ T +1 can be calculated as in Eq.7.15: Substitute Eq. 7.12 and Eq. 7.14 into Eq. 7.15, we can obtain Eq. 7.16:

ρ T +1 = 4∆r[α + πT 2αN 1 (2T + α) ] = 4α∆r[1 + πT N 1 (α + T ) ] (7.16)
Given Eq. 7.12 in which A T +1 = A 1 = (π∆r 2 )/N 1 , the shape coecient ξ T +1 can be expressed as in Eq.7.17:

ξ T +1 = ρ 2 T +1 A T +1 = 16α 2 ∆r 2 [1 + πT N 1 (α + T ) ] 2 N 1 π∆r 2 = 16N 1 α 2 π [1 + πT (α + T )N 1
] 2 (7.17)

The shape coecient ξ T +1 depends on the number of layers T and number of subregions in the rst layer N 1 . The variation of ξ T +1 with respect to N 1 and T is plotted in Fig. 7-11. Above all, the characteristic parameters N 1 and K determine the shape of all the sub-regions as well as the number of sub-regions in all the layers, which in fact determines the total number of sub-regions. We only discuss the total number of the sub-regions on a sphere denoted N sph tot (N 1 , K). In the odd K conguration, the number of sub-regions in the T + 1 layer is not an integer because, as expressed in Eq.7.12, the span length coecient is not an integer. In practice, we round N T +1 up and down to integers ⌈N T +1 ⌉ and ⌊N T +1 ⌋ which satisfy the relation ⌈N T +1 ⌉ -⌊N T +1 ⌋ = 1. As a consequence, in the odd K conguration, one pair (N 1 , K) corresponds to two N sph tot , as in Eq.7.18. All the possible values of N sph tot with 1 ≤ N 1 , K ≤ 10 are plotted as blue points in Fig. 7-11, in which no rounding is done for the odd K conguration. Even if not all the positive integers are feasible, our partition method includes as many positive integers as possible for N sph tot .

N sph tot (N 1 , K) = K ∑ k=1 N k =                    2 ∑ T t=1 N t , if K is even 2 ∑ T t=1 N t + ⌈N T +1 ⌉ or 2 ∑ T t=1 N t + ⌊N T +1 ⌋, if K is odd (7.18)
We can see from the gure that some of the N sph tot may correspond to more than one characteristic parameter pair (N 1 , K). For example, N sph tot = 12 characteristic parameter pairs can be either (N 1 = 1, K = 5) or (N 1 = 6, K = 2). Our goal is to select a better characteristic parameter pair (N 1 , K) for each possible corresponding total number of sub-regions N sph tot . Because the area of each sub-region is nearly the same, better here means that the shape of each sub-region is more square-like (aspect ratio λ squa = 1 and the shape coecient ξ squa = 16). One coecient, namely shape deviation σ(N 1 , k), is dened as the sum of unied standard deviations of these two parameters λ and ξ, as in Eq.7.19, in order to measure the deviations of all the sub-regions from squares. The pair (N 1 , K) corresponding to the same N sph tot which minimizes the shape deviations among all the possible (N 1 , K) pairs is nally used.

σ(N 1 , K) = Ã 1 N tot Ntot ∑ i=1 Ç λ i -λ squa λ squa å 2 + Ã 1 N tot Ntot ∑ i=1 Ç ξ i -ξ squa ξ squa å 2 (7.19)
In the example of N sph tot = 12, based on the denition of shape deviation, we have σ(1, 5) = 0.68 < 1.02 = σ(6, 2) which determines the better solution for N sph tot = 12

is the pair (N 1 = 1, K = 5). The shape deviation σ(N 1 , K) with 1 ≤ N 1 , K ≤ 10 is then plotted in Fig. 7-12. We can see from the gure that for the same number of total layers K, the better solution is usually at N 1 = 3. In addition, for the same number of sub-regions as in the rst layer N 1 , K does not greatly inuence the decision, other than where N 1 = 1. As we explained above, when N 1 = 1, the only sub-region becomes a circle, which substantially modies the aspect ratio and the shape coecient.

Up to now, a partition pattern N sph tot has corresponded to only one parameter pair (N 1 , K) that determines the number of layers and the number of sub-regions in each layer. However, the relative positions of the sub-regions between adjacent layers are still exible; we may imagine that the sub-regions in a layer are located along a circle and that they may be moved along the circle. In order to satisfy the fourth partitioning requirement, namely that the distribution of every sub-region should be locally dispersive, these relative positions need to be carefully determined. The location of a sub-region can be indicated by its geometric center, which is dened as the middle point of its chord ∆c, as illustrated in Fig. 7-6. Since the relative positions between sub-regions in the same layer are xed (when the number of sub-regions in a layer is determined), only the relative positions between sub-regions in adjacent layers can be optimized. Relative positions between pairs of adjacent layers are determined in two steps as follows.

In the rst step we consider on two arbitrary adjacent layers t int and t ext (t int < t ext

). As illustrated in Fig. 7-13, we denote layer t int as the interior layer and its subregions as interior sub-regions whose geometric centers are shown as red dots. Layer t ext is the exterior layer, and its sub-regions are exterior sub-regions whose geometric centers are shown as blue dots. One of the straight boundaries of a sub-region within a layer is regarded as its reference. The relative position can be dened as an angle denoted as φ between two references of the two adjacent layers. This angle φ is optimized, in order to satisfy the locally dispersive distribution requirement for all of the sub-regions in the exterior layer. In the next step, beginning from the rst layer to the T layer (even K) or the T + 1 layer (odd K), the angles φ t (t > 1) between Let us focus on this rst step and suppose there are two adjacent layers as illustrated in Fig. 7-13. The number of sub-regions in the interior layer is denoted as N int and the number of sub-regions in the exterior layer is denoted as N ext . First, we concentrate on one exterior sub-region with geometric center P ext j , together with its neighboring sub-regions. As illustrated in Fig. 7-14, the target sub-region might for example be the sub-region indicated by dashed lines and with a blue dot as its geometric center. In this case the neighboring sub-regions are the two sub-regions in the same layer, two (red geometric center) in the inner layer, and three (yellow geometric center) in the outer layer. The locally dispersive distribution for this sub-region means that the distances between its geometric center and the geometric centers of neighboring sub-regions should be as equal as possible. As described above, we only consider two layers (red and blue) and the distances between geometric centers in the same layer are constant. Therefore, only the distance between the geometric center of target sub-region and the geometric center of the neighboring sub-regions in the interior layer are considered. In practice, if we draw a segment between the geometric center of j exterior sub-region P ext j and the center of the disk denoted as P ctr , we will always nd that this segment P ctr P ext j intersects with an arc ˝ P int i P int i+1 whose two extremes are two geometric centers of the two interior adjacent sub-regions i and i + 1, namely P int i and P int i+1 . These two sub-regions are then dened as the neighbor- ing sub-regions and the corresponding distances are denoted as l i,j and l i+1,j . Above all, the locally dispersive distribution requirement for this target sub-region can be expressed as the minimization of the objective function J(φ) = l 2 i,j + l 2 i+1,j . In terms of all the exterior sub-regions, the same objective function can be built as Eq.7.20.

The relative positions between the two layers determine the angle φ * that minimizes Eq.7.20.

J(φ) = N tot ∑ j=1 (l 2 i,j + l 2 i+1,j ) (7.20)
The length of the segment P ctr P ext j is denoted as r ext , and the segment P ctr P int i (P ctr P int i+1 ) is denoted as r int in Fig. 7-13. The angle between P ctr P int i and P ctr P ext j is denoted as φ i,j and the angle between P ctr P int i+1 and P ctr P ext j is denoted as φ i+1,j .

The two distances l i,j and l i+1,j are then expressed as Eq. 7.21, where r int and r ext are constant when t int and t ext are determined.

     l 2 i,j = (r int ) 2 + (r ext ) 2 -2r int r ext cos(φ i,j ) l 2 i+1,j = (r int ) 2 + (r ext ) 2 -2r int r ext cos(φ i+1,j ) (7.21)
As illustrated in Fig. 7-15, the angle between the point P ext 

    φ int i+1,ref = (2N int i+1,ref + 1)π/N int φ ext ref,j = (2N ext ref,j + 1)π/N ext (7.22)
Given that the sub-regions i and i + 1 are adjacent, the two angles φ i,j and φ i+1,j can be expressed as Eq.7.23.

     φ i,j = 2π/N int -φ i+1,j φ i+1,j = φ int i+1,ref + φ ext ref,j -φ (7.23)
Substituting Eq.7.22 into Eq.7.23 we obtain Eq.7.24:

     φ i,j = (1 -2N int i+1,ref )π/N int -(2N ext ref,j + 1)/N ext + φ = ε i,j + φ φ i+1,j = (2N int i+1,ref + 1)π/N int + (2N ext ref,j + 1)/N ext -φ = ε i+1,j -φ (7.24)
in which the two variables ε i,j (N int , N ext ) and ε i+1,j (N int , N ext ) correspond simply to the numbers of sub-regions in the interior layer and the exterior layer. If we substitute Eq.7.21 and Eq.7.24 into Eq.7.20, we nd that the objective function also depends only on the two numbers N int and N ext as in Eq.7.25:

J(φ) = N tot ∑ j=1 (l 2 i,j + l 2 i+1,j ) = N ext ∑ j=1 {2(r int ) 2 + 2(r ext ) 2 -2r int r ext [cos(ε i,j + φ) + cos(ε i+1,j -φ)]} = N ext ∑ j=1 {2(r int ) 2 + 2(r ext ) 2 -2r int r ext [(cosε i,j + cosε i+1,j )cosφ -(sinε i,j -sinε i+1,j )sinφ]} = N ext ∑ j=1 [2(r int ) 2 + 2(r ext ) 2 -2r int r ext (ψ cos j cosφ -ψ sin j sinφ)] (7.25)
where ψ cos j is dened as ψ cos j = cosε i,j + cosε i+1,j and ψ sin j is dened as ψ sin j = sinε i,jsinε i+1,j . With respect to the denition of the angle φ * which gives a locally dispersive distribution between these two layers and where N ext is always bigger than N int , we know that the value of φ * is limited in the interval [0, 2π/N ext ]. The derivation of the objective function is expressed in Eq.7.26. φ * (N int , N ext ) = -arctan(

∑ N ext j=1 ψ sin j ∑ N ext j=1 ψ cos j ) (7.27) 
With respect to Eq.7.27, φ * is only depend on the number of sub-regions in interior layer N int and the number of sub-regions in exterior layer N ext , as illustrated in Fig. 7-16. The relative position between t -1 and t layers φ t is the cumulative value of φ * within t layers as expressed in Eq. 7.28.

φ t =      0, if t = 1 ∑ t i=2 φ * (N t-1 , N t ), if t ≥ 2 (7.28)
Above all, a characteristic parameter pair (N 1 , K) corresponds a unique conguration of disk partition and the relative positions of all the sub-regions are xed. All the possible solutions of disk partition with 6 ≤ K ≤ 20 are displayed in Fig. 7891011121314151617.

We can see that there are no solution for N tot = 7, N tot = 11 and N tot = 17, because with these values no conguration satisfying the 4 requirements can be found. A 3D sphere partition is obtained by making a hemisphere partition symmetry with respect to its equator plane. A hemisphere partition can be projected from a disk partition. To be mentioned, the equal area requirement has also the priority in sphere partition. Therefore, the projection process should keep the area ratio identical between each sub-region on the disk and its projection on the sphere. In order to get equal ratio requirement in sphere partition, Lambert azimuthal equalarea projection [START_REF] John | An equal-area map projection for polyhedral globes[END_REF] is used. In practice, a disk can be partitioned in polar coordinate system (φ disk , r disk ) and a sphere partition can be expressed in spherical coordinate system (φ, θ, r). The Lambert azimuthal equal-area projection is performed as in Eq.7.29 in which is the radius of the partitioned disk. 

                 φ = φ disk θ 1 = 2arcsin( √ 2r disk 2R disk ) r = 1 (7.29)
This equation in which 0 ≤ φ ≤ 2π and 0 ≤ θ 1 ≤ π/2 projects a disk partition onto a hemisphere. The corresponding whole sphere partition is then expressed by the symmetry process as:

θ 2 = π -2arcsin( √ 2r disk 2R disk ) in which π/2 ≤ θ 2 ≤ π.

Local direction weight construction

To be mentioned, the information point selection strategy is aimed to select a set of information points which are isotropically distributed around the evaluation point.

As discussed in section 7.4, this isotropic distribution of the information point set is based on the isotropic distribution of sub-regions, because in each sub-region, an information point is selected. Therefore, the ideal information point to be selected in each sub-region is the neighboring point whose radial projection point on the sphere is located just on the geometry center of this sub-region. If this is happened in all sub-regions, the information points are distributed isotropically as the sub-regions.

However, the projection of a neighboring point is usually not located on the geometry center of the sub-regions. Therefore, a local direction weight should be constructed in order to measure the selection priority of a neighboring point with respect to the distance between its projection and geometry center. On a sphere surface, it is better to use angular distance instead of length distance between two points.

A local angular distance here is dened in a local spherical coordinate system (∆φ, ∆θ, r) and the lth sub-region on the unit sphere is illustrated in Fig. 7-18, in order to denote the variables. The red point P ctr l (0, 0, 1) is the geometry center of the sub-region and is also the reference point of the local spherical coordinates. The blue point M proj i (∆φ i,j , ∆θ i,j , 1) is the projection of a neighboring point on the unit sphere with 0 ≤ ∆φ i,j ≤ ∆φ l and 0 ≤ ∆θ i,l ≤ ∆θ l . The local angular distance β loc i,j of the projection M proj i can be dened as a function of the two angular components of its coordinates, as expressed in Eq.7.30:

β loc i,l = h(∆φ i,l , ∆θ i,l ) with 0 ≤ β loc i,l ≤ ∆β loc l (7.30)
With this denition, the local direction weight w dir i,l can be dened as in Eq.7.31.

w dir i,l (M proj i , P ctr l ) =      f (β loc i,l ) if 0 ≤ β loc i,l ≤ ∆β loc l 0, otherwise (7.31) 
In our partition technique, all the sub-regions are regarded as the same importance. Therefore, the local direction weight should be the same along the boundary of dierent sub-regions. For example, when M proj i is located at the boundary of the l 1 and l 2 sub-regions, we have β loc i,l 1 = ∆β loc l 1 and β loc i,l 2 = ∆β loc l 2 . The local direction weight of M proj i should be equal in the two sub-regions. This can be expressed as an equivalence criterion in Eq.7.32 so that no dierence is generated for dierent subregions. This equivalence criterion is the same as the C 0 continuous criterion for the nite element shape function.

w dir i,l 1 = f (β loc i,l 1 ) = f (∆β loc l 1 ) = f (β loc i,l 2 ) = f (∆β loc l 2 ) = w dir i,l 2 (7.32) 
As the partition method explained in section 7.4.1.1, we can know that the shape of the sub-regions are similar but not totally the same which results in dierent local angular distance for the same point on the boundary of dierent sub-regions as

∆β loc l 1 ̸ = ∆β loc l 2
. The simplest way to guarantee the equivalence criterion is to unify the local angular distance β loc i,l into the uniformed angular distance β unif i,l in each sub-region as in Eq.7.33, in order to get the equivalence as ∆β unif

l 1 = ∆β unif l 2 = ∆β unif . β unif i,l = g(β loc i,l ) with 0 ≤ β unif i,l ≤ ∆β unif (7.33)
As a consequence, the equivalence criterion (Eq.7.32) can be satised as expressed in Eq.7.34.

w dir i,l 1 = f (β unif i,l 1 ) = f (∆β unif ) = f (β unif i,l 2 ) = w dir i,l 2 (7.34) 
If we substitute Eq.7.30 into Eq.7.33 and consider that there is no special requirements for function g(•) and h(•), we can know that the uniformed angular distance is directly the function of two local angular coordinates, as expressed in Eq.7.35.

β unif i,l = g(h(∆φ i,l , ∆θ i,l )) = gh(∆φ i,l , ∆θ i,l ) (7.35) 
The simplest way to build a function gh(•) in an interval [0, ∆β unif ] is a linear function as in Eq.7.36. This equation gives a continuous function for the uniformed angular distance in a sub-region. The contour lines of this function in a sub-region is illustrated in the Fig. 78910111213141516171819.

β unif i,l = max ( ∆β unif l ∆β loc l ∆φ i,l , ∆β unif l ∆β loc l ∆θ i,l ) (7.36) 
According to the meaning of direction weight, the maximum value should be given to the geometry center, since the most prior selection is the neighboring point whose projection is located in the geometry center. The minimum value should impose to the boundary, since the least prior one is located on the boundary. Therefore, the direction weight should monotonically decreases from geometry center (β unif i,l = 0)

to the boundary (β unif i,l = ∆β unif ). In a rst study, we choose a cosine function of uniformed angular distance which is satised to the requirement as the direction weight function, as expressed in Eq.7.37. Since the weight should be positive so that the uniformed direction weight equals to π/2.

w dir i,l (M proj i , P ctr l ) =      cos(β unif i,l ) if 0 ≤ β unif i,l ≤ π/2 0, otherwise (7.37) 
To be mentioned, the direction weight should be combined with distance weight in order to get a compromise as nal selection weight. Therefore, we want to scale the direction weight and control the variation of direction weight. Based on this idea, we introduce two parameters to ameliorate the Eq.7.37, such as: shape parameter γ and scale parameter ν, as expressed in Eq. 7.38.

w dir i,l (M proj i , P ctr l ) =      ν[cosγ(cosβ unif i,l -1) + 1] if 0 ≤ β unif i,l ≤ π/2 0, otherwise (7.38) 
As its name, shape parameter inuence the shape of direction weight function.

In order to illustrate the direction weight function, we plot partitioned sphere-like surfaces with the total number of sub-regions N tot = 38 as in Fig. 7-20. The radii of these sphere-like surfaces are the direction weight function with γ = 0.45π, γ = 0.4π and γ = 0.3π. We can see from the Fig. 7-20, when γ decreases, more priority is given near the geometry center which means the neighboring points there are much more likely to be selected than near the boundary. In fact, when scale parameter ν = 1, the maximum of direction weight max(w dir i,l ) = 1 and the minimum min(w dir i,l ) = cosγ.

The other value of scale parameter is just used to scale the function linearly.

Selection of Information points from neighboring points through selection weight

Diuse interpolation should be performed locally which means the information points should be as near to the evaluation point as possible. If a neighboring point is nearly located on the evaluation point, it should be prior selected as an information point no matter where its projection is on the sub-region. That is the reason why we should consider the interpolating distance weight as well as the local direction 

w i,l = w dir i,l • w ∞ i (7.39)

Another way to select isotropic information point

We present here another way to select an isotropic distribution of information points within the smallest vicinity of the evaluation point. This method is a previous work. Even if in this work, the number of sub-region is xed at 14, it has an advantage that each sub region has more similar compact shape in the space. In this method, the determination of neighboring points can be the same as in section 7.3.

Our information point selection method is aimed to select an appropriate number of information points which are distributed isotropically in the space around the evaluation point. The contribution of any neighboring point to the information point selection is a compromise between its distance to the evaluation point and its radial direction to the evaluation point. Therefore, two types of weights are considered According to this basic idea, we nd another way which is more general. In this method, the vicinity space is also partitioned into several sub-region, however it is no longer based on partition of the sphere but based on a group of the direction vectors.

The partition process is carried out by choosing a number of referenced direction vectors which are isotropically distributed around the evaluation point. Fig. 7-21

shows three kind of space partition processes with dierent numbers of referenced direction vectors (sub-regions). As a major requirement, the sub-regions must cover the whole vicinity space, so that all neighboring points are taken into account. As we shall see, these sub-regions overlap and as a consequence, the local direction weight of this neighboring point must be computed in each sub-region. The sub-region to which a neighboring point is categorized maximizes the direction weight.

For the sake of clarity, the construction of local direction weights and the process of selecting a set of isotropically distributed information points are described with a 2D conguration as illustrated in Fig. 7-22. The evaluation point M 0 is plotted as a red star. Neighboring points M i are represented with black circles.

The referenced direction vector of one sub-region l among q sub-regions is denoted as -→ dv l . The angle between ---→ M 0 M i and direction vector -→ dv l is denoted as β i,l and given by β i,l -→ dv l is computed using Eq. (7.40a)(7.40b).

(M i , -→ dv l ) = ⟨ ---→ M 0 M i , -→ dv l ⟩.
w dir i,l (M i , -→ dv l ) =      cos(β i,l ) -cos(γ) 1 -cos(γ) , if cos(β i,l ) ≥ cos(γ) (7.40a) 0, otherwise (7.40b) 
where γ is a parameter witch controls the boundary of each sub-regions. In order to cover all the vicinity space of the evaluation point, γ must be greater than a threshold γ min . γ min is a priori calculated and depends on the chosen set of referenced direction vectors. At point M i , the eective direction weight is dened by a maximum criterion

‹ w dir i,l * i = max(w dir i,l | q l=1 )
, where l * i is the number of the sub-region that satises this criterion. This denition of eective direction weight can be expressed as: ‹

w dir i,l * i = w dir i,l • δ l l * i , (δ l l * i
is the Kronecker delta), which means that eective direction weight ‹ w dir i,l * i has no inuence outside the sub-region numbered as l * i . Therefore, a surface which covers all the vicinity space and divides the space into sub-regions can be formed by the eective direction weight function when β i,l varies continuously. This surface is the partition surface illustrated in Fig. 7-21.

A step-by-step illustration of the process of categorizing all the neighboring points into the sub-regions by eective direction weights is given in Fig. 7-24 using the same The same process can be performed in 3D. The only dierence is the choice of direction vectors. In practice, the number of sub-regions is linked to the number of points needed to build the approximation. We chose a partition based on q = 14 direction vectors and therefore 14 sub-regions. This value is well adapted to the density of neighboring points when 10-node tetrahedral elements are used. Six directions are given by the global coordinate axis, and the other eight directions are

given by the diagonals of eight virtual quadrants centered at the evaluation point with edges parallel to the global coordinate axis, as shown in Fig. 7-21. The selection weight matrix w sel = w sel i,l , which provides the selection weight of ith neighboring point in the lth sub-region, is expressed as in Eq. (7.41): i . In addition, in order to make sub-regions cover all the neighboring points, it is necessary that γ ≥ γ min . The local direction weight is given more prominence, if the gradation of the mesh is sti. The parameter γ exerts more inuence on the nal results, if the number of referenced vector q is small (for instance q = 6). We experienced that with q equals to 14, the variation of parameter γ has little inuence on the interpolation results. In practice, γ = 1.05γ min .

w sel i,l = ‹ w dir i,l * i • w ∞ i (7.41) (a) γ = π/2 (b) γ = π/4 (c) γ = π/8
When the selection weight matrix w sel is constructed for all sub-regions at all neighboring points, the information points are chosen in each sub-region respectively.

These information points maximize the selection weights in their own sub-regions.

The nal selection is displayed in Fig. 7-26. The selected information points are of selected information points is less than the total number of sub-regions. As a consequence, on the one hand, the number of information points may not be sucient to build the Diuse Interpolation. On the other hand, even if the number is enough, their distribution is no longer isotropic what may spoil the accuracy of the Diuse Interpolation. This lack of neighboring point problem may be caused by two reasons, namely, the elements in certain directions are rather at so that no integration points within them can be captured as neighboring points in a rst element layer or the evaluation point is located at the surface of the mesh (as illustrated in a 2D example in Fig. 7-27(a)) and no element is located in certain directions so that no integration point can be taken into account (as illustrated in a 2D example in Fig. 7 This problem is illustrated in a 1D example in Fig. 7-28 in which the neighboring points are denoted as small circles, the information points are denoted as blue circles and the evaluation point is denoted as a star. In Fig. 7-28(b), only the neighboring points located at the left side of the evaluation points can be selected as information points what causes the lack of information points at the right side. As a consequence, the value at the evaluation points is overestimated. We propose here an information compensation process which reconstructs a set of virtual neighboring points which are the symmetrical set of real neighboring points. The information points are then selected from all the neighboring points including both real and virtual as illustrated in Fig. 7-28(c). We can see that the technique provides a better approximation at the boundaries. In order to check the isotropy of the information point set, we transfer all the points from the Cartesian coordinate system X(x, y, z) to a spherical coordinate system Θ(r, φ, θ) centered at the evaluation point M 0 , where φ denotes the precession angle between 0 and 2π, and θ denotes the nutation angle between -π/2 and π/2. The precession interval is then divided evenly into eight sections and the nutation interval is divided evenly into four sections. If there are two or more empty sections in φ, or one or more empty sections in θ, then the third layer of elements is used, in order to obtain more neighboring points. Otherwise, to estimate the value at the evaluation point, the Diuse Interpolation is performed based only on the distance weight w ∞ i .

The whole iterative strategy is schemed in Fig. 7-29.

Analytic eld transfer examples

Our 3D hybrid eld transfer is aimed to be implemented in 3D h-adaptive nite element methodology [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF], especially for the simulation of ductile damage and crack propagation. The importance of such implementation is to transfer highly localized eld (cumulative plastic, stress and damage) from a coarse mesh to a ner mesh (after adaptation). Because the cracks are linked and sensitive to the highly localized damage eld, the extrema value of the eld should be preserved as much as possible with a minimum numerical diusion. We notice that the more localized the eld is, the more important for the eld transfer operator is to preserved extrema value.

In order to validate the advantages of extrema value preservation and numerical diusion minimization of the eld transfer in this work, dierent transfer operators are used to transfer a given analytic eld f (x, y, z) with several extrema values having dierent level of localization from coarse mesh to ne mesh. The localization level of eld f (x, y, z) at a point P 0 (x 0 , y 0 , z 0 ) describes the average variation of the eld in all directions within a vicinity denoted as Ω P 0 of the point P 0 . In order to give a standard concept to arbitrary elds, the variation is proposed to be uniformed by the dierence of maximum and minimum value of a eld. Therefore, the denition of localization level is given in Eq.7.42 and denoted as ζ(f ). (7.42) in which l eig (x 0 -x, y 0 -y, z 0 -z) is the eigen length dening the vicinity Ω P 0 in the direction --→ P 0 P ( the point P (x, y, z) is an arbitrary point in the vicinity). The boundary of the vicinity Ω P 0 is denoted as ∂Ω P 0 . The integration can be discretized for nite element mesh in which the value of the elds only located at the integration points of the element. In practice, the element E 0 which contains the point P 0 is searched. Then the vicinity Ω P 0 can be dened as the volume composed of all the n elements E i attached to this element E 0 including itself. All the other points P (x, y, z) are discretized into all the integration points of all the n -1 attached elements. In order to eliminate the inuence of various element sizes, the eigen-length in the E i element direction, it is dened as in Eq.7.43 and denoted as l eig i .

ζ(f ) = 1 area(∂Ω) ' ∂Ω f (x 0 ,y 0 ,z 0 )-f (x j ,y j ,z j ) maxf (x,y,z)-minf (x,y,z) • 1 l eig (x 0 -x,y 0 -y,z 0 -z) d∂Ω
l eig i = 2 » (x 0 -x j ) 2 + (y 0 -y j ) 2 + (z 0 -z j ) 2 h(E 0 ) + h(E i ) (7.43)
In which h(•) denotes the size of the element. Above all, assume that each element has m integration points, the discretized denition of localization level in nite element can be expressed in Eq.7.44

ζ(f ) = 1 n×m-1 ∑ n i=1 ∑ m j=1 f (x 0 ,y 0 ,z 0 )-f (x i,j ,y i,j ,z i,j ) maxf (x,y,z)-minf (x,y,z) • h(E 0 )+h(E i ) 2 √ (x 0 -x i,j ) 2 +(y 0 -y i,j ) 2 +(z 0 -z i,j ) 2 (7.44)
in which (i, j) means the jth integration point in the ith element and x 0 ̸ = x i,j , y 0 ̸ = y i,j and z 0 ̸ = z i,j .

(a) The cuboid with mesh size equals to 10 (b) The cuboid with mesh size equals to 5 In order to represent the analytic eld within the mesh clearly, the x coordinate of an integration point is used as its position so that the 3D eld can be plotted in a 2D plane. The initial eld denoted as f init on the coarse mesh is created at integration points of all the elements. The 2D representation of f init is plotted in In an adaptive methodology, the mesh is adapted many times and the elds are transferred after each remeshing step. The errors caused by remeshing and transferring are cumulated during the simulation and should be minimized. However, the errors must be controlled during transfer process. The L 2 error between the analytic eld denoted as f on the coarse mesh and the transferred eld denoted as f on the ne mesh is used and expressed in Eq.7.46. 

f (x, y, z) =                                 
e L 2 = ñˆΩ ( f (x, y, z) -f (x, y, z) ) 2 dΩ Ω ô 1/2 (7.46)
Two transfer operators, Avg -SF and Hyb -DD, are used to transfer the same analytic eld (Eq.7.45) on the same cuboid geometry . The size ratio between coarse mesh and ne mesh is xed to 3. We can see from the Fig. 7-36 that with the size of the coarse mesh declining, the error e L 2 caused by both transfer operators declines. In addition, this error caused by Avg-SF operator is always higher than Hyb-DD operator. We do not compare the error cause by Di-Dist, because without isotropic information point selection the error is much bigger than the other and cannot be controlled by reducing the coarse size mesh. Furthermore, we x the size of the coarse mesh equals to 10. Four dierent discretization ways are use to generate the ne meshes for dierent size ratio. The analytic eld (Eq.7.45) is transferred from the coarse mesh to these ne meshes by Hyb-DD operator. We can see from Fig. 7-35 that no matter how the geometry is discretized, the error e L 2 depends only on the size ratio. when size ratio is bigger than 2, the error caused by Hyb-DD operator converges to a constant value. This property provides a robustness way to limit the error if local remeshing is implemented in the simulation which leads to the size ratio no smaller than 2 in a local zone between two meshes.

As explained in section 7.4.3, the transfer process near the boundary should be specially treated by an information compensation process. In order to show the eect We can see that the compensation process reduces the numerical diusion near the boundary of the geometry, especially in the localized zones. This is because the numerical diusion is limited. However, we remark that due to a contraction of the extrema of the damage eld, the Avg -SF operator delays the initiation of the crack, which reduces the reliability of the simulation, especially in an industrial context. This delay in initiation can be seen more clearly when the ex- For the specimens R = 6mm and R = 15mm, the Load-Elongation curves from the simulations have a good agreement with those from the experiments. 8.2. The maximum mesh size h max is tuned according to the geometry dimension of the specimen. In our case, the thickness of the specimen is only 2mm so that h max can not be too much bigger than 2mm, otherwise the quality of the elements in the original mesh can be very low. The determination of the minimum mesh size h d min is a crucial issue in this methodology. This parameter is identied by decreasing the value and comparing the elongation-loading curve from numerical simulation with the one from experiment until the dierence between these curves converge. The dierent values of minimum mesh size is used to simulate a tensile test on the double notched specimen with R = 6mm. As shown in Fig. 8-4, the curves with dierent values of h min is displayed and compared with the experimental curve. When the h d min = 0.1mm and h d min = 0.2mm the curves are nearly the same and give a good agreement with the experimental curves. Therefore, the minimum mesh size in this tensile test is set to h d min = 0.1mm. The two parameters κ 1 and κ 2 are the parameters to control the shape of the size indicator functions (κ 1 for plastic strain and κ 2 for damage). The bigger the κ 1 and κ 2 are the mesh size decreases more quickly with the plastic strain and the damage increase. The Fig. 8-16 shows the spatial discretization of the sheet steel with the quadrangle axisymmetric CAX4R and the renement in the zones near the contact with the rays matrix and the punch. We can visualize the state of the sheet steel at dierent displacement U of the punch.When the displacement is U = 0.439mm, we can nd a plastic ow of the sheet steel without fracture but a highly localized eld of cumulative plastic strain in the contact zone with the tool leaving. The size of the elements in these zones are gradual and the renement is concentrated according to the band of the localization. When the displacement reaches to 0.457mm, two macro-cracks occur on both sides of the thickness of the specimen which nally meet with each other and result in a completely fractured sheet steel.

During the whole period of the propagation of the two cracks, the size of the minimum mesh size h d min is concentrately located in the highly damaged zones. Since the cracks propagate, the mesh is automatically coarsened in the inactive zones in order to recover the elements in an acceptable number. In this 2D example, quadrangle element is used to discretize the geometry and a global remeshing process is performed. However, in a 3D context, a global remeshing is not practical in terms of both the precision and the computational cost. Therefore, a new coarsening method is needed to be performed in a 3D context.

The Fig. 8-16 shows a good agreement of the crack surface obtained by numerical model to the experimental micrography of the cutting zone of the DP600 sheet steel. 

Conclusion and perspectives

A 3D h-adaptive methodology is proposed especially for the simulation of crack initiation and propagation during ductile metal forming processes. Both eciency and robustness of this methodology are validated with a series of tensile tests in which the location of crack initiation and the path of crack propagation were well observed on the specimens. In addition, the elongation-load curves from the simulation also give a good agreement with the ones from the experiments. From these numerical results, we can also see that the mesh gradation captures the evolution of the plastic ow with accuracy which validates our size indicators.

Our 3D h-adaptive methodology demonstrates that the time spent in the remeshing process which is of concern for most authors is not an important issue here due to a local remeshing. Compared to the CPU time cost by ABAQUS/Explicit 4 ⃝ solver, the cost of remeshing process is negligible, a point which is rarely mentioned or even prevent authors from using a standard nite element method. The hybrid eld transfer with improved point selection strategy avoids the potential shortcomings (numerical diusion and peak value decline) occurring after numerous remeshing and eld transfer processes, especially in the highly localized zones. In addition, all these problems altogether are not mentionned in the litterature, especially the decline of the peak value. The adaptive length of each loading step is controlled by the rate of plastic strain as well as the severely distorted elements.

Based on the validation of tensile tests, our h-adaptive methodology can be ex-tended to various 3D metal forming tests, bending, blanking, deep drawing or forging.

These metal forming processes may be more complex with respect to the meshing and remeshing process. In processes like blanking or deep drawing, there is relative motion between the contact surface pairs of parts and tools. Therefore, the contact surface pair should be carefully identied in each loading step to ensure that there is no penetration between these two surfaces. In order to achieve this, two aspects should be taken into consideration. On the one hand, the mesh size of the part should be small enough to follow the curvature of the tool, otherwise, the two discretized surfaces would not be into perfect contact with each other. A size indicator based on the curvature of the geometry is needed to guarantee the suitable mesh size. This size indicator can be built as A. Rassineux proposed in 2000 [START_REF] Rassineux | Surface remeshing by local hermite diuse interpolation[END_REF]. The curvature of the geometry can be expressed as a function of the defect angle at the surface node of the tool. The referenced mesh size proposed by geometric size indicator can be expressed as a function of the curvature. This referenced size can be given to each triangle on the part surface at their geometry center. The curvature value at the geometry center of part surface triangle can be interpolated by improved diuse approximation method. This referenced size proposed by geometric size indicator should be considered together with the referenced size proposed by physical size indicator.

The simplest way to do this is to choose a nal referenced size which is the smaller one among these two sizes. On the other hand, a criterion used to judge whether the penetration occurs should be given. Because of the smoothing process, the two surfaces in the contact pair can be regarded as smoothed surface. As a result, we check all the nodes on the two surfaces to verify whether penetration occurs. All the nodes on the two surfaces should be outside each other and located with a minimum distance from each other.

An error indicator based on the evolution of the plastic strain ṗ and the evolution of damage value ḋ can be designed in order to identify the optimized parameters of the size indicators in the simulation. The determination of the length of each loading step can also be optimized. For example, the length of each loading step may not only depend on the number of totally damaged elements or the sizes of these elements but also depends on the evolution of the plastic strain ṗ and the evolution of damage value ḋ. In order to reduce the computational cost, a new linear tetrahedron element inspired from the work of Feulvarch [START_REF] Feulvarch | A stable p1/ p1 nite element for nite strain von mises elasto-plasticity[END_REF] and which avoid locking problems can be developped or used in the context of explicit simulations instead of the present quadratic tetrahedron element.

The proposed elastoplastic model based on local formulation leads to constitutive equations (for elasticity, plasticity, mixed hardening, damage, friction) with material parameters having a clear intrinsic character. The strong coupling between the plastic behavior and the ductile damage leads to an induced softening which generates inevitably mesh-dependent numerical solutions of the initial and boundary value problems (IBVP). In that case, the plastic ow with damage localizes inside narrow (shear) bands having a nite width which is highly mesh sensitive. The simplest way to control this mesh dependency, in this case of a fully local formulation, consists of assuming that all the damage material parameters (S, s, β and Y 0 ) are identied by imposing a relevant minimal mesh size which provides the best t of the reference (experimental) curve. This smallest mesh size becomes a kind of intrinsic material parameter. As a consequence, the whole h-adaptive process is controlled by this smallest mesh size imposed in the fully damaged zones. It is worth mentioning that this approximate way to trigger the mesh dependency may be replaced by a more straightforward non-local formulation as the micromorphic models [START_REF] Saanouni | Damage mechanics in metal forming[END_REF]. As our method is quasi-independent to the model, it can be implemented in the non-local formulation model directly without being changed too much. A strong discontinuity method [START_REF] Bonnaillie-Noël | Eect of micro-defects on structure failure coupling asymptotic analysis and strong discontinuity[END_REF] may also be used with our methodology to simulate the crack initiation and propagation.

In terms of the present methodology, the critical zones are only the active zones where the plastic strain accumulates. In these zones, the mesh is rened. In fact, after the crack tip passes through these zones, the plastic strain is constant. In such zones, in most cases, no deformation will occurs so that the mesh will not be distorted or entangled unless in cases in which the crack may close for instance. Therefore, we can coarsen the mesh in such zones. The coarsening process can reduce signicantly the number of the elements in the model. For example, if we double the size of elements in a 3D zone, the number of the elements may be 8 times less. For the plate specimens which have a relative small thickness, the coarsening of the volume mesh can be done by rst coarsening the surface mesh and then generating the volume mesh in the surface mesh. The coarsening of the surface mesh can be an iterative process:

rstly, the small triangles are deleted from the mesh and the holes caused by removing these triangles are repatched by the optimized surface meshing technique explained in section 6.3.4; secondly, the surface mesh is smoothed so that the quality of the mesh is enhanced; nally, the rst two steps are iterated until the mesh size requirements are fullled with respect to the input size map. Based on our surface meshing technique, it is better not to delete more than one small elements which are adjacent at the same time so that holes created by deleting these small triangles are not too big.

Otherwise, the boundary of the holes is composed of too many segments which leads to a huge number of congurations to be considered when we generate surface mesh in the hole and the huge number of congurations costs too much. Since the mesh renement causes a mesh gradation within the geometry, we could not only coarsen the zones with minimum mesh size. The main goal of the mesh coarsening is mostly to avoid a full remeshing or at least a limited number of times. The determination of the coarsening zones and the size indicator for coarsening the mesh should be made in order to coarsen the mesh automatically at each loading step. 

- → φ ( -→ X ) = -→ x ( - → X , t) (A.1)
The displacement vector and the velocity vector for each material point are usually denoted by Eq. A.2 and Eq. A.3:

-→ u = -→ x - - → X (A.2) -→ v = ∂ - → u ∂t = ∂ -→ x ∂t (A.3)
For quantifying the change of material point in a solid body, the relationship between d∂ -→ X and d∂ -→ x is dened as follows:

d∂ -→ x = ∂ -→ φ ( -→ X , t) ∂ -→ X d∂ -→ X (A.4)
where the deformation gradient tensor F is given by:

F = ∂ -→ φ ( -→ X , t) ∂ - → X = 1 + ∂ -→ u ∂ -→ X (A.5)
For any physically admissible deformation, the volume of the deformed element

d - → f = σ • -→ n dS (A.12)
where -→ n denotes a unit vector normal to the surface dS.

A.1.2 Total Strain rate decomposition

In nite deformation mechanics, it is useful to assume that the total transformation gradient F is multiplicatively decomposed into elastic (recoverable) and plastic (irreversible) parts giving as: It is worth noting that the fully coupled constitutive equations derived above, are valid under the small strain assumption. To be used in metal forming by large viscoplastic deformations, they should be extended to the nite strain framework in such a manner that the objectivity requirement is fullled. This is made using an updated Lagrangian description for which the total small strain rate tensor ε transforms to its Eulerian counterpart D dened as a symmetric part of the Eulerian velocity gradient tensor. If the elastic part of the total strain tensor is assumed very small compared to the plastic one, the total strain rate can be approximated by the following additive decomposition:

-→ F = -→ F e • -→ F p (A.
D = εJ e + εp (A.14)
in which εJ e stands for the Jaumann derivative of the small elastic strain tensor and εp represents the nite plastic strain tensor. To simplify the notation, in the following, the elastic strain is expressed by ε e and the plastic strain is ε p where ε p = ´ε p dt.

A.1.3 Principle of indierence and material objectivity

On the other hand, to fulll the objectivity requirement at nite strain, the rotational objective rates are used to calculate the derivatives of any tensorial variable.

The objectivity requirement is ensured by using the so called rotational frame formulation [!!Dougui 1989!!]. It leads to express the constitutive equations in a rotated, deformed and damaged (Eulerian) conguration obtained from the current one by the orthogonal rotation tensor Q, solution of the following kinematic equation:

T Q = Q T • T • Q (A.15)
in which Q is the orthogonal rotation tensor, solution of the following kinematical constitutive equation:

W Q = QT • Q T and Q(t = 0) = 1 (A.16)
where W Q is the rotation rate tensor which can be chosen in order to obtain some classical rotational objective derivatives as Jaumann, or Green-Naghdi derivation [Dougui 1989]. This rotated frame formulation keeps unchanged the basic structure of the constitutive equations as formulated in small strain hypothesis while ensuring the objectivity requirement. Using this rotated objective formulation a complete set of constitutive equations can be formulated for metal forming simulation.

A. Modelling in the thermodynamics structure requires the introduction of state variables. These variables could be divided into observable variables and internal variables. Observables are the total strain ε and temperature T . Internal variables represent the dierent dissipative phenomena to be modelled as isotropic hardening, kinematic hardening, heat ow and damage. So r represents the isotropic hardening strain, r c is isotropic dynamic recrystallisation strain, α is kinematic hardening strain, d is the isotopic damage, s is entropy and -→ q is heat ux vector. All observable and internal variables are summarized in Table 3-1 with their associated variables. These state variables are dened according to three hypotheses. The rst assumes strain equivalence [START_REF] Jl Chaboche | Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals[END_REF]; the second implies the stress equivalence [START_REF] Hayhurst | The eect of creep constitutive and damage relationships upon the rupture time of a solid circular torsion bar[END_REF] and the third involves the elastic energy equivalence [START_REF] Cordebois | Damage induced elastic anisotropy[END_REF]. The elastic energy equivalence can aect not only the stress though damage but also elastic strain. Later, this theory is introduced into total energy equivalence [START_REF] Saanouni | On the anelastic ow with damage[END_REF] which can apply to damage of elastic and inelastic material behaviour.

For an EVR containing micro-crack damage is opened in tension state and even leads to a failure. If now the same EVR is loaded in compression, due to a reversal of the stress, micro-cracks can close gradually until to a total closure if the solicitation of compression is sucient. In this case the modulus of elasticity and hardening could be able to restore to their initial values before damage gradually. This recovery eect of physical properties after closure of micro-cracks is called quasi-unilateral eect ([47]

[52] [24] [66]). With an isotropic damage, we can dene eective variables in unilateral condition following Ladevèze and Lemaitre approach. For all tensor variable T written in its principal reference, we dene one positive part < T > + and one negative part where Y e is the elastic part of the damage energy release rate, Y r is isotropic hardening part.

A.2.3 Time-independent intrinsic dissipation

The framework of the so called Generalised Standard Material [START_REF] Germain | Continuum thermodynamics[END_REF] As every problem has a critical time step, for assuring the stability of the IBVP we dene the critical time step as follows: ∆t ≤ min(2/ω max , 2/ω d max ).

A.4 Local integration scheme

The computation of {F e int } (see Eq. A.39) needs the calculation of the stress tensor at the end of the time step. This passes through the integration of the overall set of constitutive equations developed above. They are fully coupled non-linear ODEs (Ordinary Dierential Equations) to be linearized by using appropriated time discretization scheme. In this work, a fully implicit return mapping algorithm is used together with an exponential (asymptotic) development applied to the hardening equations.

Moreover, special developments have been made in this fully isotropic case, in order to reduce the ODEs number to only two scalar equations coming from the time discretization of the yield function (Eq. A.43a) and the damage equation (Eq.A.43b) [START_REF] Saanouni | Numerical modelling in damage mechanics[END_REF]: However, in order to save the CPU time from engineering point of view, the damage equation can be approximated by the following explicit formula:

                     f (∆λ, d n+1 ) = ||Z * n+1 || M -1-dn √ 1-d n+1
d n+1 = d n + ∆λ (1 -d n ) β Ç Y n+1 (∆λ, d n ) -Y 0 S å (A.45)
Accordingly, only the Eq. A.43a is solved iteratively thanks to the Newton method in order to compute the single unknown ∆λ. where ω d is a state variable that increases monotonically with plastic deformation.

At each increment during the analysis the incremental increase in ω d is computed as following:

ω d = ∆ε pl ε pl (η, εpl ) ≥ 0 (B.2)
For the ductile damage initiation criterion the equivalent plastic strain is given by the following function of the stress triaxiality η:

ε pl d (η, εpl ) = ε + T sinh[k 0 (η --η)] + ε - T sinh[k 0 (η -η + )] sinh[k 0 (η --η + )] (B.3)
where ε + T and ε - T correspond to the equivalent plastic strain at ductile damage initia- tion for equibiaxial tensile and equibiaxial compressive deformation, respectively. For isotropic materials the stress triaxiality in equibiaxial tensile deformation state η + , is 2/3, and in equibiaxial compressive deformation state η -, is -2/3. The denition of η in Abaqus, as a ratio of the equivalent mean stress to the Mises equivalent stress, diers from that used by [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF] by a factor of 1/3. Consequently, the value of k 0 used in the above expression is three times the value used in [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF]. The above expression has three parameters that must be obtained experimentally: ε + T , ε - T , and k 0 . These parameters depend on the material, strain rate, and possibly the temperature. For each strain rate of interest, three experiments are needed at dierent values of stress triaxiality to obtain the three material parameters. ε + T can be obtained directly from the Erichsen test (η = η + ). Three-point bending of sheet coupons (with width/thickness > 4) under plane strain tension (η = 1/ √ 3) and fracture at the notch root of waisted tensile coupons in uniaxial tension (η = 1/3) may provide two additional experiments to determine ε - T and k 0 . In the Erichsen and three-point bending experiments the local fracture strain can be derived by placing a grid on the specimen's surface; in 134 the waisted tensile experiment the fracture strain can be obtained from the sheet thickness in the fracture plane [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF]. For the aluminum alloy used in this example the experimentally obtained ductile failure parameters at quasi-static and dynamic strain rates (250s -1 ) are listed in Table B.1. The other material parameters are given by Hooputra et al. [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF]. The shear criterion is a phenomenological model for predicting the onset of damage due to shear band localization. The model assumes that the equivalent plastic strain at the onset of damage, ε pl S , is a function of the shear stress ratio and strain rate:

ε pl S (θ S , εpl ). Here θ S = (q + k s p)/τ max is the shear stress ratio, τ max is the maximum shear stress, and k s is a material parameter. A typical value of k S for aluminum is k S = 0.3 [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF]. The criterion for damage initiation is met when the following condition is satised:

ω S = ˆdε pl ε pl S (θ S , εpl ) (B.4)
where ω S is a state variable that increases monotonically with plastic deformation.

At each increment during the analysis the incremental increase in ω S is computed as following:

ω S = dε pl ε pl S (θ S , εpl ) ≥ 0.

(B.5)

For the shear damage initiation criterion the equivalent plastic strain at the onset of damage is given by the following function of the shear stress ratio, θ S [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF]:

ε pl S (θ S , εpl ) = ε + S sinh[f (θ S -θ - S )] + ε - S sinh[f (θ + S -θ S )] sinh[f (θ + S -θ - S )] (B.6)
where θ S = (1 -k S η)/ψ with ψ = τ max /σ eq , and ε + S and ε - S correspond to the equiv- alent plastic strain at shear damage initiation for equibiaxial tensile and equibiaxial compressive deformation, respectively. The parameters θ + S and θ - S correspond to the values of θ S at η = η + and η = η -, respectively. This expression has four parameters that must be determined experimentally: k S , ε + S , ε - S , and f . These parameters depend on the material and strain rate. 
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 214 Figure 2-1: Overview scheme of the 3D adaptive methodology of ductile crack simulation
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 22 Figure 2-2: The data ow of both mesh and state variables in the calculation loop

- 1 .

 1 The green elements have damage value d < d c and should be kept while red elements have damage value d > d c should be deleted. The blue line indicates the crack surface. Because of numerical disturbances, some deleted elements result in voids in the material and some kept elements form independent volumes. These numerical disturbances come from complicated topology of unstructured tetrahedron mesh. These unrealistic congurations are also caused as a result of the eld transfer process based on shape function and diuse approximation discussed in chapter 7. These disturbances are removed with an automatic crack surface cleaning process.
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 41 Figure 4-1: The numerical disturbance control process
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 4 Figure 4-2: Illustration of bulk identication
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 44 Figure 4-4: Non-manifold congurations
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 51 Figure 5-1: Evolution of the empirical size indicators
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 526612 Figure 5-2: Example of largely deformed element and its renement
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 61 Figure 6-1: Evolution of the empirical size indicators
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 62 Figure 6-2: Example of largely deformed element and its renement
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 63 Figure 6-3: Three basic types of bisection renement congurations[START_REF] Rassineux | Surface remeshing by local hermite diuse interpolation[END_REF] 
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 64 Figure 6-4: The removal of contact surface pair penetration
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 65 Figure 6-5: An example of closed and open surface
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 66 Figure 6-6: The process of Catmull-Clark surface subdivision
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 67 Figure 6-7: The feature topology around the crack
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 610 Figure 6-10: Example of sharp edge
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 22 Determination of the node set to be smoothed Before determining the node set to be smoothed, the determination of sharp edges is illustrated in the Fig. 6-10. Two boundary faces F 1 and F 2 have a common edge E.
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 611 Figure 6-11: The density of the nodes changes caused by smoothing process
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 6 Fig.6-12(a) shows that an element becomes very at after smoothing. Fig.6-12(b) 

  (a) Flat element (b) Inverse element
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 612 Figure 6-12: Example of bad element caused by smoothing
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 613 Figure 6-13: Denition of triangle quality

Figure 6 - 14 :

 614 Figure 6-14: Improvement of surface mesh by deleting small elements

are 3

 3 triangles connected to this node, then the sizes of the 3 adjacent triangles are calculated. If these 3 triangles have the similar sizes (none of them is 2 times larger than the other) and are smaller than the other neighboring triangles (at least two time smaller), then this node is a bad node and is deleted (the adjacent triangles are also deleted). A new triangle is created directly as illustrated in Fig.6-14 (c).
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 615 Figure 6-15: Improvement of surface mesh by remeshing

  -17. If the red edge in 6-17 (a) is swapped as in

Figure 6 - 16 :Figure 6 - 17 :

 616617 Figure 6-16: The illustration of planar contour meshing
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 618 Figure 6-18: Illustration of surface relocation
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 6 Figure 6-19: Calculation of the volume enclosed by an arbitrary oriented closed surface

9 )Fig. 6 -

 96 Fig. 6-19, we chose an arbitrary referenced direction and its unit direction vector is denoted as -→ d and set a referenced plane ∏ which is vertical to the referenced direction -→ d and has the whole surface ∂Ω at one side of itself. We suppose that d -→ S is a small oriented piece on the surface ∂Ω. If the area of the small piece is denoted as dA and the unit normal vector of the small piece is denoted as -→ n , then the small piece can be expressed as: d -→ S = -→ n dA. The center point of the small piece d -→ S is denoted as P S . The vector starting from the referenced plane

Figure 6 - 21 :

 621 Figure 6-21: Translation of the mesh to the rst quadrant

Figure 6 - 22 :

 622 Figure 6-22: An example of crack smoothing in a loading step

Figure 6 - 23 :

 623 Figure 6-23: Implementation of CCCSSM in the analytic example

Fig. 6 -

 6 Fig. 6-23 (a), the small part around the crack is composed of the set of blue elements. This small part is obtained by searching two layers of elements around the nodes of the crack surface by E blue = LS(N cs , 2) which can be seen clearly in the Fig. 6-23 (b). The nodes (grey cubes) which are going to be smoothed is illustrated in Fig. 6-23 (c) and the surface which is nally smoothed by CCCSSM and the nodes (white lines) which are going to be projected on the feature edges and feature surfaces are illustrated in Fig. 6-23 (d).
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 624 Figure 6-24: Illustration of surface quality optimization

Figure 6 - 25 : 51 Figure 6 - 26 :Fig. 6 - 7 Field transfer 7 . 1

 625516266771 Figure 6-25: Reliability verication of the mesh topology after smoothing and relocating

  viscous forces are imposed to the geometry until the consistency and equilibrium are retained (the extra forces vanish) and all the elds are smoothed by the constitutive equations. Cao notes that the possibility of convergence and the speed of convergence depend on the numerical diusion caused by the transfer process. This additional step converges very fast, if the numerical diusion is small. Following on from Cao's work, we propose a transfer operator which minimizes the numerical diusion, leading to a very rapid convergence of consistency and recovery of equilibrium. Given the advantages of minimizing numerical diusion in MLS-based meshless methods and of maintaining as much consistency as possible in shape function interpolation, we propose a hybrid transfer operator as a fourth group incorporating the two methods:
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 71 Figure 7-1: The procedure of hybrid eld transfer operator

Figure 7 - 2 :

 72 Figure 7-2: 1D linear diuse interpolations using dierent information point selection strategies

Figure 7 - 3 :

 73 Figure 7-3: Visibility criterion

4 . 1 . 1 ,

 411 2D disk partition is discussed. In section 7.4.1.2, a projection technique from 2D disk partition to 3D sphere partition is proposed. In section 7.4.2, the construction of a selection weight is given. The selection of information points by a selection weight is explained nally in section 7.4.3.

  the same time, a priority is given to the equal area. Following the basic partition patterns proposed by Beckers, a disk is rst partitioned into several layers which have the same width by circles and each layer is then partitioned into several sub-regions which have the same area by radial straight segments. Examples of partition of a disk are shown in Fig.7-4(a). The advantages of this method is the convenience to control the area and shape of each sub-region and the full use of the disk boundary.

  -4(b) and 7-5(b).
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 74 Figure 7-4: Basic conguration of partition when the total number of layers on a sphere is even
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 75 Figure 7-5: Basic conguration of partition when the total number of layers on a
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 76 Figure 7-6: Variables in a sub-region
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 77 Figure 7-7: Aspect ratio and shape coecient of dierent polygons
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 78177 Figure 7-8: ξ t is determined only by N 1
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 7 Figure 7-11: N sph tot is determined by both N 1 and K Figure 7-12: σ is determined by both N 1 and K

Figure 7 - 13 :Figure 7 - 14 :

 713714 Figure 7-13: The locally dispersive location is determinted by an angle φ between exterior and interior layers

j

  and the reference of exterior layer is denoted as φ ext ref,j . The angle between the point P int i+1 and the reference of interior layer is denoted as φ int i+1,ref . These two angles are expressed as Eq.7.22 in which the variable N int i+,ref is the number of interior sub-regions within the angle φ int i+1,ref and the variable N ext ref,j is the number of exterior sub-regions within the angle φ ext ref,j .
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 7157 Figure 7-15: Illustration of dierent angles related to determination of locally dispersive location φ
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 71720412 Figure 7-17: All possible disk partition patterns with N sph tot ≤ 20
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 718719 Figure 7-18: Local angles within a sub-region

  (a) γ = 0.45π (b) γ = 0.4π (c) γ = 0.3π
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 720 Figure 7-20: The inuence of coecient γ on the shape of direction weight in all sub-regions
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 721 Figure 7-21: Partitioning the space into sub-regions with respect to referenced direction vectors
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 7723 Figure 7-22: A 2D conguration of point cloud used to discribe the information point selection strategy
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 724 Figure 7-24: Categorizing all the neighboring points into the sub-regions by eective direction weights

Figure 7 - 25 :

 725 Figure 7-25: Inuence of γ on the eective direction weight function
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 728 Figure 7-28: 1D example of the inuence of the boundary on the interpolation results
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 729 Figure 7-29: Iterative process of improved point selection strategy implemented in Diuse Interpolation
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 730 Figure 7-30: The coarse and the ne mesh on a cuboid
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 731 Figure 7-31: The shape of the analytic eld f (x, y, z)
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 7 Figure 7-32: The localization level of the initial analytic eld ζ(f )

  tan((x + 80)atan(0.5)/40) + (z + y)/80, if -80 ≤ x < -40, tan((x + 20)/20 * atan(0.5)) + (z + y)/80, if -40 ≤ x < -20, tan((x + 20)/25 * atan(3.5)) + (z + y)/80, if -20 ≤ x < 5, tan((x -20)/15 * atan(2.5)) + (z + y)/80 + 1, if 5 ≤ x < 20, tan((x -20)/20 * atan(1.0)) + (z + y)/80 + 1, if 20 ≤ x < 40, tan((x -80)/40 * atan(2.0)) + (z + y)/80, if 40 ≤ x < 80.

Fig. 7 -

 7 Fig.7-33 (a) in which the black lines are the upper and lower analytic limit of the eld. Five transfer operators are used to transfer the eld f init from the coarse mesh to the ne mesh: the second group transfer (I P old → N P old → N P new → IP new ) with averaging extrapolation and shape function interpolations abbreviated as Avg-SF operator, transfers in the third group (I P old → IP new ) based on meshless moving least square method with and without isotropic information point selection abbreviated as
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 7 Figure 7-34: A 2D illustration of localization level of the corresponding initial and transferred elds
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 735736 Figure 7-35: The errors from hybrid eld transfer in function of size ratio between coarse and ne mesh

Figure 7 - 37 :

 737 Figure 7-37: Information compensation process improves the transferred eld while reducing the numerical diusion
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 814 Figure 8-1: Dimension of the specimen used to perform the tensile test
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 8283 Figure 8-2: Experiment and numerical results with dierent transfer operators of crack initiation on the specimen
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 84 Figure 8-4: The elongation-load curves of the tensile tests on the specimen R = 6mm using various minimum mesh size and the corresponding experimental result
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 8586 Figure 8-5: Tensile test: specimen dimensions (in mm) and boundary conditions
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 87 Figure 8-7: Comparison of experimental and 3D numerical results for specimen R = 2mm

Fig. 8 -Figure 8 - 8 :

 888 Fig.8-11 shows the increase in the numbers of vertex nodes, total nodes and the elements during the simulation for the R = 6mm specimen. As we explained in chapter 6 above, the remeshing process, including mesh renement, mesh optimization, element deletion and eld transfer, has a very low computational cost in comparison to the solver. In Fig.8-12 (R = 6mm) the x axis is the number of loading sequence and the y axis is the cumulative CPU time at the end of each loading sequence: in
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 89810 Figure 8-9: Comparison of experimental and 3D numerical results for specimen R = 15mm
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 811812 Figure 8-11: Numbers of nodes and elements variation during a simulation
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 813 Figure 8-13: The crack initiation and propagation on the specimen
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 814 Figure 8-14: The crack initiation and propagation on the specimen
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 815 Figure 8-15: The geometry of the cutting tool
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 816 Figure 8-16: Evolution of the mesh and the plastic deformation at dierent displacement of the punch U and comparison between numerical and experimental fracture surfaces

Figure 8 - 17 :

 817 Figure 8-17: The cutting force as function of the punch displacement
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 1 Figure A-1: Illustration of the solid deformation

  [START_REF] Breitkopf | An introduction to moving least squares meshfree methods[END_REF] where -→ F e is the gradient of elastic transformation and -→ F p is the gradient of plastic transformation.Lee[START_REF] Erastus | Elastic-plastic deformation at nite strains[END_REF] introduced the notion of relaxed conguration C r which is between the initial conguration C 0 and the current conguration C t in order to decompose the total transformation into plastic and elastic parts as shown in Fig. A-2.
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 2 Figure A-2: Decomposition of total transformation gradient
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 121 is used to analyse the mechanical dissipation. The von Mises yield function and pseudo pasltic dissipation potentials are introduced[START_REF] Saanouni | On the anelastic ow with damage[END_REF] [START_REF] Saanouni | Damage modeling in metal forming processes[END_REF] [81][START_REF] Saanouni | Numerical simulation of damage in metal forming processes[END_REF] [START_REF] Labergère | 2d adaptive mesh methodology for the simulation of metal forming processes with damage[END_REF] [37][START_REF] Saanouni | Advanced micromorphic elatoplastic constitutive equations with various length scales for metal forming simulation[END_REF]:f (σ, R; d) = ||σ -X|| √ 1 -d -R d γ -σ y ≤ 0 (1-d) β < Y -Y 0 S > S+1 (A.33)where, ||σ|| = » (3/2)σ dev : σ dev denes the well-known von Mises equivalent stress in which σ dev is the deviatoric part of the stress tensor. The parameters a and b reect the nonlinear property of the kinematic and isotropic hardening respectively and S, s and β characterize the nonlinear evolution of the ductile damage. Applying the generalized normality rule to the above dened local yield function and dissipation potential leads to the following evolution equation:Ḋp = λ∂F ∂σ = λñ = λ n √ 1 -d (A.34) (3-66.b) is solved with respect to the temperature in order to obtain T n+1 knowing all the mechanical elds at t n+1 . The solution of the IBVP by using the element presented above is performed using the dynamic explicit resolution scheme in a standard way in ABAQUS/Explicit. The Eq.((39)a) that gives the stress and state variables at t n+1 and the Eq.((39)b) are solved in parallel for each time increment [t n , t n+1 ] in order to compute the micromorphic damage variable at t n+1 . Note that the stability of the dynamic explicit solution is governed by the following stability condition: ∆t ≤ ξ 2 -ξ) in which ω max is the highest eigenvalue of the mechanical system and ξ ≤ 1 is a damping parameter. An approximation of the stability time limit for the solution of the mechanical problem is given by: ∆t ≤ 2ω e maxwhere ω e max is the biggest elementary eigenvalue. The stability time limit is dened as follows and can be written under the form ∆t ≤ min( L e C d ) with L e being the size of the element and C d is the velocity of a solid wave passing through the element and is given byC d = √ λe+2µe ρ so that ∆t ≤ min Ä L e » ρ λ e + 2µ eä . For the same reasons, the stability for the solution is also governed by a time step dened as: ∆t ≤ 2 ω d max where ω d max is the biggest eigenvalue of the micromorphic problem regarding the nonlocal damage.

  ) ∆λ + C a (1 -e -a∆λ ) + σ y ] (A.43a) g(∆λ, d n+1 ) = d n+1 -d n -∆λY * n+1 (A.43b)in which the deviatoric tensor Z * is expressed as a function of the trial stress tensor σ * :
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		1: State relations and evolution equations
		state relation	Evolution equation
	Cauchy stress	σ = ρ ∂Ψ ∂ε e	= (1 -d)Λ : ε e	D p = δn
	Isotropic			
	hardening			

  , t n+1 = t n + ∆t and all the variables are known at t n i.e.: σ n , D pn , Q n , R n and d n and values at t n+1 should be computed.

	⃝ FE codes using the
	VUMAT subroutine in order to simulate any cold or hot sheet or bulk metal forming
	processes using Dynamic Explicit (DE) resolution procedure.
	The computation of the internal force vectors requires the knowledge of the stress
	tensor at the end of the time step. This passes through the numerical integration
	of the overall set of constitutive equations developed above written in the rotated
	deformed and damaged conguration. The overall loading path is discretized into
	several non-constant loading steps dened by t n

  Layer Separation process is dened as E layer = LS(N, n layer ) with N is an arbitrary set of nodes, n layer is the number of layers and E layer is the set of elements of n layer

	is an arbitrary set of elements, n bulk is the threshold number, E i bulk is one of the k
	bulks of elements and E sum bulk is also a sum set of element of all k subsets E i bulk . If n
	is omitted, then a default value is given by n = card(A)/10 in which A is the total
	geometry and card() is the number of elements in the geometry. This default value
	usually works well because the bulk part is always much bigger than the rest parts.
	layers deriving from N . Suppose that E c is a set of elements which have a damage
	value d > d c , E k is a set of elements which should be killed and E all is an element set
	including all the elements in the model, then crack surface cleaning process is carried
	out through Eq. 4.1.

bulk ) with E

the Single-node is split k -1 times and k -1 new nodes are cre- ated so that k nodes overlap in the space but belongs to k bulks of elements independently

  . If k = 1, we do nothing because this is an Eulerian node.

		atch , 1) to get k sub bulks
	of elements E i bulk	
	3) The Single-edge is split k -1 times and k -1 new edges are created so that
	k edges overlap in the space but belongs to k bulks of elements independently.
	Single-edge split does not split nodes, however it transforms some Eulerian nodes
	to be single-nodes. These new single-nodes can be coped with the same as old
	single-nodes which exist before single-edge split. Similar to single-edge split,
	single-node split works as following:	
	1) For each surface node, we built an element set E atch including all the elements
	having this node as a common node
	2) Bulk Identication process is used	∪ k i=1 E i bulk = BI(E atch , 1) to get k sub bulks
	of elements E i bulk	
	3) If k > 1,	

Table 5 .

 5 1: Equations of empirical size indicators

	Behavior phases	Evolution of plasticity p and damage d	Size indicators
	Purely		
	elastic zone		
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		1: Equations of empirical size indicators
	Behavior phases	Evolution of plasticity p and damage d	Size indicators
	Purely		
	elastic zone		

  If we partition the whole surface into two parts: the ones to be smoothed denoted as ∂Ω smth and the ones to be xed denoted as ∂Ω f ix , the whole surface can then be expressed as in Eq. 6.3a. The surfaces to be smoothed is the present crack surface as in Eq. 6.3b and the surfaces to be xed is the other part as in Eq. 6.3c.

	Former crack surface	Present crack surface	Crack tip
	Original skin		
		The whole crack	
	Figure 6-8: The seperation of the crack	
	6.3.2.1 Seperation of the geometry surface	

During tensile test, when cracks propagate with loading sequence increasing, we can divide cracks into two parts, namely crack surfaces and crack tips. The interfaces of elements deleted and kept in present loading step are dened as crack tips and the ones in the former loading step are dened as crack surfaces. In the simulation, we only smooth crack surfaces and keep crack tips intact. Suppose we get a 3D mesh denoted as Ω in which elements in damage zone have been deleted so that cracks appear. The boundary of this mesh (the whole surfaces of the geometry) denoted as ∂Ω can be partitioned into four parts original skin (OS) denoted as ∂Ω os , former crack surfaces (FCS) denoted as ∂Ω f cs , present crack surface (PCS) denoted as ∂Ω pcs and crack tip (CT) denoted as ∂Ω ct . This partition is illustrated in Fig.

6

-8 and can be expressed as in Eq. 6.2. ∂Ω = ∂Ω os + ∂Ω f es + ∂Ω pcs + ∂Ω ct (6.2) Figure 6-9: Example of sharp node

Table 8 .

 8 

		2: The value of parameters for size indicators
	h max h p max	h p min	h d min	d min d max κ 1	κ 2
	5.0	2.0	0.3	0.1	0.1	0.9	10.0	10.0
	Our h-adaptive methodology is based on local elastoplastic damage model which
	inevitably yields mesh-dependent numerical solutions. The plastic ow leads to a
	highly localized narrow damage (shear) bands, which makes the results sensitive to

the smallest mesh size. The simplest way to control this mesh dependency in terms of

Table 8 .

 8 

	3: The values of material parameters for the steel DP600
	E(GP a)	ν	σ y (M P a) Q(M P a) b	C	a
	220	0.29	410	1010	2.0	7000	40.0
	S	s	β	Y 0	γ	h	h d min
	22	1.2	2.0	0.8	4.0	0.0	0.05

  2 Modelling of material behaviour with damageDamage in materials can be dened as an eective surface density of microcracks or microcavities present in any plane of a representative volume element. Damage, in the context of continuum damage mechanics (CDM), is a thermodynamic state variable. It accounts for the progressive deterioration of the load-carrying capacity of the material. The damage process develops in material microstructure as result of micro-void formation. The understanding and measurement of the basic damage process in ductile materials is important to predict failure of material behaviour ([START_REF] Lemaitre | A continuous damage mechanics model for ductile fracture[END_REF] 

	[59] [20] [18] [77]).

A.2.1 State and eective state variables A.2.1.1 State variables

Table A .

 A 1: Experimentally determined ductile failure parametersThe damage can not be measured directly, so it is only be tested by its eect on the mechanical behaviour of material. To describe the eect of damage behaviour, eective variables should be used ([19] [50] [77][START_REF] Saanouni | Finite element simulation of 3d sheet metal guillotining using advanced fully coupled elastoplastic-damage constitutive equations[END_REF]).

	State variables Observable Internal	Associated variables
	Total strain ε	Elasticity ε e	σ
	Isotropic hardening r	R
	Isotropic damage d	Y
	A.2.1.2 Eective variables		

Table B

 B 

	.1: Experimentally determined ductile failure parameters
	Parameter	Dynamic ( ε = 250s -1 )
	ε + T ε -T	0.44 1494.0
	k 0	8.6304

  Hooputra et al. have used tensile specimens with a groove (rectangular cross-section and groove depth=half the sheet thickness) at 45 • to the loading direction (θ S = 1.469), specially designed tensile specimens with a groove parallel to the loading direction (pure shear, θ S = 1.732), and Erichsen tests (θ S = 1.6) in conjunction with the above expression to determine ε + S , ε - S , and f . The value of the material parameter k S is taken as 0.3. For the aluminum alloy used in this example the experimentally obtained shear failure parameters at quasi-static and dynamic strain rates (250s 1 ) are listed in TableB.2.

	Table B.2: Experimentally determined shear failure parameters
	Parameter	Dynamic ( ε = 250s -1 )
	ε + S ε -S	0.35 1.2
	f	2.05
	k S	0.3

rectly transferred to integration points of the new mesh which can be expressed as:

IP old → IP new . Some authors [START_REF] Habraken | An automatic remeshing technique for nite element simulation of forming processes[END_REF][85] use a weighted averaging method based on the square of inverse distance to transfer the state variables directly from old mesh to new mesh. However, when the mesh has a big gradation or a higher order element is used, such averaging methods encounter a decline of extrema of the elds after transfer which is rarely discussed in the literature. Pires et al. [START_REF] Fm Andrade Pires | On the nite element prediction of damage growth and fracture initiation in nitely deforming ductile materials[END_REF] propose a moving least square (MLS) technique using cosine shaped approximation weights.

In this technique, the selection of information points only depends on distance. A similar method is proposed by Labergere et al. [START_REF] Labergere | Numerical simulation of continuous damage and fracture in metal-forming processes with 2d mesh adaptive methodology[END_REF]. The approximation weights are replaced by diuse interpolation weights which also only depends on distance. The main advantages of these MLS based methods are that the transferred results are not inuenced by the quality of the elements in old mesh and any type of elements can be used. We remark that the topology of the mesh contains the distribution of information points with respect to the evaluation point on both distance and direction aspects. Neglecting the topology of the mesh and selecting information points only by the nearest distance in these meshless techniques lead to a loss of direction information. The experience shows that much attention must be paid to the direction aspect when selecting information points, especially when the gradient of the eld and the mesh size gradation become large. Otherwise, much numerical diusion is generated. This topic is detailed in the following section. In addition, according to most authors, the use of meshless methods in the transfer scheme IP old → IP new reduces the numerical diusion and preserves the extrema values. As a drawback, consistency and equilibrium may be lost [START_REF] Pavanachand | Remeshing issues in the nite element analysis of metal forming problems[END_REF] [START_REF] Mediavilla | A robust and consistent remeshing-transfer operator for ductile fracture simulations[END_REF]. In order to get consistent elds after transfer, Rashid [START_REF] Rashid | Material state remapping in computational solid mechanics[END_REF] propose a method based on weak enforcement of equality between piecewisely constant elds on two meshes. The eciency of the technique is based on an approximated determination of the volume intersection between the two meshes by boxes. In this scope, Brancherie et al. [START_REF] Brancherie | On a consistent eld transfer in non linear inelastic analysis and ultimate load computation[END_REF] propose a technique to ensure consistency and equilibrium. The equilibrium is satised locally by imposing null divergence of stress eld when choosing the basis function to construct the interpolation. The respect of the constitutive equations is obtained at a computational

R

The points not considered The neighboring points The information points

The evaluation point R The radius convering all the information points The ideal situation is to select one information point in each sub-region so that the number of information points equals to the total number of sub-regions. However, this is not always the case. Sometimes, there is no neighboring point located in a sub-region and no information point can be selected. In this situation, the number Numerical and experimental results

Comparison of crack propagation with dierent transfer operators

During the metal forming processes, several integration elds, such as: stress, cumulative plastic strain and damage are highly localized in the zones where cracks appear. The representation of cracks is usually dependent on damage variable. Saanouni [START_REF] Saanouni | Damage mechanics in metal forming: Advanced modeling and numerical simulation[END_REF] propose an element deletion method in which the cracks are represented by deleting the totally damaged elements in the mesh. An element is considered as totally damaged when the damage value exceeds a maxima threshold value at all of its integration points. The element deletion method is widely discussed in h-adaptive method [17][40]. The technique is proved to be sensitive to the extrema value of the eld. Therefore, preservation of the extrema of the eld such as: damage and cumulative plastic strain elds is of the great importance for the crack initiation and propagation with respect to eld transfer.

In order to validate the implementation of Hyb-DD eld transfer operator in the metal forming analysis, a tensile test is carried out on a specimen made of 2mm thick commercial cold-rolled SPCC steel [START_REF] Niu | Tensile fracture behaviors in double-notched thin plates of a ductile steel[END_REF]. The dimension of the specimen is illustrated in Fig. 8-1. It was clamped by two rigid grippers: Gripper 1 was moved at a constant velocity and Gripper 2 was xed. A h-adaptive methodology with local perimental and numerical elongation-load curves are compared. As shown in Fig. 8-3, with the Avg-SF operator the greatest load is less than in the experimental results, and crack initiation is delayed, meaning that the total elongation time is longer in the simulation than in the experiment, before the specimen becomes totally fractured. In the simulation using the Hyb-DD operator, even though the time required for the specimen to become totally fractured is slightly less than in the experiment results, this operator describes faithfully the initiation of the crack. Hybrid transfer is therefore seen to give more reliable simulation results than Avf-SF transfer when crack initiation is the most important concern.

Tensile test on a series of double notched specimens

In order to validate the robustness of our h-adaptive methodology, we use the same material as in section 8.1 table 8.1. The similar geometry as in Fig. 8-5 is used but with a series of various radii of the U notch denoted as R and chosen as 2mm, 6mm, and 15mm for the three specimens. The advanced elasto-plastic behavior model fully coupled with ductile damage in large deformation is introduced, which has been used and developed in several theses of LASMIS (citer des papiers du LASMIS). This adaptive 3D numerical metal forming methodology is based on the ductile damage at nite strain and its eect on the other mechanical elds.

A.1.1 Mathematical Description of nite transformations

In the beginning, the mathematical description of the nite transformations is illustrated briey, which consider the continuum deformation gradient, introduce a discrete version of the deformation gradient, and nally present the strain tensors.

For simplicity, we assume a xed Cartesian coordinate system and a continuous body composed of particles that are identied by the position vectors which specify their place in the initial conguration C 0 . A motion maps a particle from its initial position -→ X in the reference conguration C 0 , to its position -→ x in the current conguration C t as shown in Fig. A-1.

The deformation includes volume changes, shape changes and rigid body motions.

must be positive (no matter how much you deform a solid, you canât make material disappear). Therefore, all physically admissible displacement elds must satisfy the conditions in Eq. (3-6):

where J is the measure of the volume change which generates by the deformation.

In order to measure the rate of deformation, the velocity gradient L in conguration C t is introduced and can be expressed in terms of the deformation gradient:

The velocity gradient L can be decomposed into the stretch rate tensor D and the spin tensor Ω as follow:

To quantify the interaction force between two material points, the Cauchy stress tensor is introduced and denoted as σ. The other stress tensor can be dened in C t which through the Kirchho tensor as in Eq. A.10.

τ = Jσ

(A.10) with:

where ρ 0 and ρ represent separately the mass density of the material at a point in the current conguration and in the initial conguration.

Make d -→ f as the force on the element of surface dS in the current conguration, we have Eq. A.12:

Similarly, we introduce:

Eq. A.18 expresses the negative part of the trace T , when this T is strictly negative.

According to the theory of energy equivalence with general relations of isotropic damage between the state variables and the eective variables, applying the decompositions above to the stress tensor and elastic strain tensor, the following equations can be obtained:

The parameter h(0 ≤ h ≤ 1) is a constant which characterizes the eect of the closure of micro-cracks in a loading state of compression.

A.2.2 State potential and state relations

After dening the state variables and the eective variables, we can dene the potential state and deduce the state relations. The Helmholtz free energy is used as a state potential in the strain space. Written under additive form of a elastic and an inelastic term, this free energy is written assuming:

Then the thermoelastic part of the Helmholtz energy is written as:

Concerning the inelastic part it is given by:

where Q is the isotopic hardening modulus and C is the kinematic hardening modulus.

From the state potential dened above, we can easily derive the state relations as following:

where, n3(σ dev X)/2||σ -X|| is the outside normal to the yield surface in the stress space and λ is the plastic multiplier. The plastic multiplier λ appearing in all the evolution equations will be deduced from the consistency condition associated to the yield function Eq. A.32: ḟ (σ, X, R; d) = 0

A.3 Models of contact and friction between surfaces

Then, in this paragraph the contact problem with friction between solids in the modelling of process will be illustrated. It is well known, that the friction contact between the billet and the die plays an important role in forging process. The modeling of the contact with friction under mechanical conditions is not a very easy task due to the wears aecting deeply the friction condition at the interface. The contact with friction is simply described according to the very classical Coulomb model available in ABAQUS.

A.3.1 Coulomb friction model

The Coulomb friction model is used for most contact problems with friction. This model is based on the concept of threshold and the intervention of the contact pressure. The Coulomb's friction model is dened by Eq. (3-58):

where µ is the friction coecient which is between 0.01 (thick lm lubrication) and 0.5 (without lubrication: dry contact); τ is the equivalent tangential stress; v g is the 127 relative tangential velocity at the contact point lying on the contact boundary and p is the normal contact pressure. 

A.3.2.1 Global resolution scheme

The problem proposed above is dened by a classical variational problems of the equilibrium problem. By using the displacement based (Galerkin) nite element method, for each element (e) in its current (deformed, heated and damaged) conguration with volume V and boundaries Γ, can be dened: 

To simplify the resolution scheme, the elementary mass matrix [M e ] is generally diagonalised by using a lumped mass matrix algorithm.

[B e ] is the matrix of interpolation for the total strain tensor:

By using a classical highly nonlinear algebraic system expressing the dynamical equilibrium of the work piece and tools at each time step, Eq. A.38 can be easily written as the following:

The system (Eq. A.42) is solved successively over each time step t n , t n+1 = t n +∆t as following: First, the mechanical equation (3-66.a) is solved at constant temperature T n thanks to the explicit scheme available in ABAQUS. The displacement eld is obtained as well as the stress and state variables at t n+1 . Second, the thermal equation

APPENDICES

An elastoplastic model integrated with damage is proposed by ABAQUS [1] in which Hooputra et al. [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF] have shown that the extruded aluminum alloy EN AW-7108 T6 displays plastic orthotropy due to the nature of the extrusion processing and have used the Barlat symmetric yield locus (Barlat et al., 1991) to t the experimental data.

In this example we neglect the orthotropy and assume both the elastic and the plastic behavior to be isotropic with the yield surface described by the Mises yield function.

The assumption of isotropic plasticity may appear to be too restrictive for the accurate prediction of failure in extruded alloys. However, in crashworthiness simulations the assumption of isotropy usually yields acceptable results when compared with experimental observations. Two main mechanisms can cause the fracture of a ductile metal: ductile fracture due to the nucleation, growth, and coalescence of voids; and shear fracture due to shear band localization. Based on phenomenological observations, these two mechanisms call for dierent forms of the criteria for the onset of damage [START_REF] Hooputra | A comprehensive failure model for crashworthiness simulation of aluminium extrusions[END_REF].

The ductile criterion is a phenomenological model for predicting the onset of damage due to nucleation, growth, and coalescence of voids. The model assumes that the equivalent plastic strain at the onset of damage ε pl d , is a function of stress triaxiality and strain rate: ε pl d (η, εpl ) where η = -p/q is the stress triaxiality, p is the pressure stress, q is the Mises equivalent stress, and εpl

is the equivalent plastic strain rate. The criterion for damage initiation is met when the following condition