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RESUME

Les corrections d'ordre supérieur en dérivées applicables a la théorie de supergravité a onze di-
mensions constituent un puissant outil pour étudier la structure microscopique de la théorie M.
Plus particulierement, I'invariant supersymétrique a l'ordre huit en dérivées est nécessaire a la co-
hérence quantique de la théorie, mais il n'en existe A ce jour aucune expression compléte. Dans
cette thése, aprés une introduction formelle aux théories de supergravité, nous présentons une
technique appelée principe d’action, dont le but est de générer le superinvariant complet associé
au terme de Chern-Simons d'ordre huit en faisant usage du formalisme superespace. Bien que ce
résultat ne soit pas encore atteint, nous en déterminons certaines caractérisiques, et ouvrons la
voie 4 une résolution systématiques des étapes de calcul a venir. Dans le chapitre suivant, nous
présentons les principales fonctionnalités du programme informatique élaboré pour gérer les im-
posants calculs liés au principe d’action. Ce programme est particuliérement adapté au traitement
des matrices gamma, des tenseurs et des spineurs tels qu'ils surviennent en superespace. Enfin,
a l'aide de cet outil, nous abordons un autre sujet calculatoire : la condensation fermionique en
supergravité IIA massive. En utilisant la formulation superespace des supergravités IIA, nous dé-
rivons les termes de l'action quartiques en fermions, puis en imposant une valeur moyenne dans
le vide non-nulle, nous montrons qu'il est possible de construire une solution de géométrie de
Sitter dans deux cas simples.

ABSTRACT

High-order derivative terms in eleven dimensional supergravity are a powerful tool to probe the
microscopic structure of M-theory. In particular, the superinvariant at order eight in number of
derivatives is required for quantum consistency, but has not been completely constructed to this
day. In this thesis, after a formal introduction to supergravity, we focus on a technique called
the action principle, with the aim of generating the full superinvariant associated to the Chern-
Simons term at order eight, using the superspace formalism of supergravity. Although we do not
construct the superinvariant, we determine some of its characteristics, and pave the way for a sys-
tematic treatment of the computations leading to the desired result. Then we present the main
features of the computer program we built for dealing with the calculations encountered in the
application of the action principle. It is specifically designed to deal with gamma matrices, tensors
and spinors as they appear in superspace. Finally, with the help of this program, we tackle ano-
ther computationally intensive subject : the fermionic condensation in IIA massive supergravity.
We use the superspace formulations of IIA supergravities to find the quartic fermion term of the
action, and by imposing a non-vanishing vacuum expectation value for this term, we realize a de
Sitter solution in two simple cases.



RESUME ETENDU

La supergravité regroupe un ensemble de théories ayant pour particularité d’étre invariantes par
transformation de supersymétrie locale. Autrement dit, I'algébre de supergravité inclut, en plus
des translations et des transformations de SO(1,d), un ensemble de générateurs fermioniques
anti-commutants, appelés supercharges. L'algébre ainsi formée, dite de super-Poincaré, intégre
les translations locales, et décrit donc des théories incluant la relativité générale. Le nombre de

supercharges, dénoté N, est contraint par la dimension de l'espace-temps d.

Le supergravité N =1 3 onze dimensions, formulée en 1978 par E. Cremmer, B. Julia, et J. Scherk
(CJS) est particuliére a plus d'un titre. D’abord, onze est la dimension maximale de 'espace-temps
pour laquelle il est possible de décrire une théorie de supergravité pertinente du point de vue
physique (en effet, la présence de plus de 32 supercharges conduirait a inclure des champs de spin
supérieur a 2, considérés non-physiques). Ensuite, la théorie est unique, et joue un role particulier
dans le réseau de dualités liant les différentes théories de cordes, les supergravités, et la théorie
M. Plus particuliérement, en plus d’étre liée a la supergravité IIA par réduction dimensionnelle, la
supergravité CJS est comprise comme étant la limite & basse énergie de la théorie M. En ce sens, il
est attendu que son Lagrangien admette des corrections d'ordre supérieur a deux en dérivées (en
tant que développement autour de ce point de basse énergie) afin de rendre compte du comporte-
ment microscopique de la théorie M. Ces corrections constituent un moyen détourné de sonder

la structure de la théorie M, dont la formulation microscopique n'est pas établie.

Le premier chapitre de la thése consiste en une introduction générale aux théories de supergravité,
ainsi qu'une présentation des principaux outils nécessaires a la compréhension des chapitres sui-
vants. Tout d'abord y sont définis les champs impliqués dans différentes théories de supergravité
(le graviton et son superpartenaire le gravitino, les flux, etc.), et les structures mathématiques
qui les supportent. Ensuite, l'algeébre de super-Poincaré est introduite, et particularisée aux deux
cas étudiés par la suite : la supergravité CJS a onze dimensions, et la supergravité IIA a dix di-
mensions. Enfin, le superespace est briévement décrit, et quelques outils de théorie des groupes

appliquée au calcul tensoriel sont présentés.

Le deuxiéme chapitre porte sur le calcul des superinvariants de la supergravité CJS. En premier
lieu, la formulation classique de la supergravité a onze dimensions est présentée en détails, puis la

formulation en superespace, sur laquelle se basent les parties a venir. Le principe d’action est alors



introduit : en se basant sur la formulation de la théorie en superespace, et en utilisant le terme
de Chern-Simons, il est possible de générer I'invariant supersymétrique a un ordre donné, via la
résolution d’'une série d'équations en superespace. Ce principe, aussi appelé supersymétrisation
du terme de Chern-Simons, est ensuite appliqué a la génération des invariants a l'ordre 2, puis
5 en dérivées. Lapplication du principe a I'invariant d'ordre 8, dont la présence est requise pour
la cohérence quantique de la théorie, est inachevée. Toutefois, le développement effectué permet
tout de méme a déterminer certaines caractéristiques probables de I'invariant, et ouvre la voie &

une résolution systématique des équations a venir.

Le troisiéme chapitre présente en détail le programme informatique construit pour gérer les cal-
culsliés ala supersymétrisation du terme de Chern-Simons. En effet, les équations de superespace
rencontrées dans le second chapitre ont des particularités qui rendent difficile leur manipulation :
elles contiennent des (anti-)symétrisations sur de grands nombres d'indices, font intervenir des
tenseurs dont les indices spinoriels doivent étre traités explicitement, et impliquent de nom-
breuses matrices gamma requérant des transformations non-triviales. Les principales fonctions

du programme y sont listées, et quelques applications pratiques y sont données 4 titre d'exemple.

Le quatrieme chapitre se concentre sur les théories de supergravité a dix dimensions, et plus
particuliéerement la théorie IIA massive de Romans. Il existe deux théories massives de super-
gravité IIA a dix dimensions, nommées Romans et HLW, qui dans leur limite de masse nulle
redonnent la supergravité IIA sans masse (qui elle est obtenue par réduction dimensionnelle de la
théorie a onze dimensions). Ces trois théories admettent une description unifiée, qui prend forme
dans la résolution des identités des Bianchi en superespace, aprés avoir imposé une contrainte
conventionnelle sur la torsion. Cette méthode, en plus de regrouper les trois supergravités, offre
une maniere systématique de trouver les équations du mouvement complétes des théories a dix
dimensions (incluant les termes fermioniques). Ainsi, en se concentrant sur la supergravité IIA
de Romans, et en faisant usage des outils informatiques développés dans le troisiéme chapitre,
il est possible de déterminer les termes quartiques en fermions intervenant dans les équations
du mouvement (et la procédure peut étre facilement généralisée aux autres supergravités). En
imposant une valeur moyenne dans le vide non nulle pour le terme quartique ainsi obtenu, on
montre qu’il est possible, dans deux cas simples, de réaliser des solution de géométrie « de Sitter

» se basant sur la valeur non-nulle du condensat de fermions.

Enfin, en plus de définitions et de conventions, les annexes de la thése contiennent une partie
des calculs du premier chapitre qui ne sont pas développés dans le corps de texte, ainsi qu'un bref
répertoire des fonctions accessibles dans le programme informatique du troisiéme chapitre.
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A. Relative shift in frequency of an atomic clock

Introduction

HE STANDARD MODEL [1-3] is a theory aiming to describe elementary particles and their
T interactions at microscopic level. With the use of relatively few empirical adjustments’, it
provides a mathematical framework which allows to predict the behavior of particles with as-
tounding accuracy. On the other hand, the theory of General Relativity [4] describes gravitation
at large scale, i.e. the dynamics of objects at the level of planets, stars, and galaxies. Although it is
formulated in very distinct terms, its predictions are just as precise as the standard model.

Both theories have made bold predictions which have been successfully verified, from the exis-
tence of the Higgs boson in 2012 [5, 6], to the detection of gravitational waves in 2016 [7]. Both
have been extensively tested, and provide some of the most precise agreement with empirical
results in physics. In 2010, researchers managed to measure the time dilatation due to a 33 cm
difference in height of an atomic clock (figure A, [8]), and found a good agreement with general
relativity. In 2014, the fine structure constant was computed using the 12672 10th order Feyn-
man diagrams associated to the electron propagation (figure B, [9]), and agrees with experimental
value by more than 10 digits *.
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B. Sample of the Feynman diagrams calculated
to obtain the anomalous magnetic moment of the

at the surface of the earth, then lifted by 33 cm. electron a. = 0.001156652181643(764)

1. Depending on what is taken into account, the standard model is usually said to have 19 to 29 free parameters. Their
value is directly adjusted from experiments, and mainly contains the particle masses and the coupling constants

2. Currently, those results might not be the most precise tests of the theories, but they are particularly striking for
grasping the level of accuracy mentioned



The standard model is a relativistic quantum field theory whose last bricks were laid in the late
1970’s. It incorporates field theory, quantum mechanics, and special relativity :

— it is a field theory : the basic objects are spacetime-dependent fields of various kinds. The
theory makes use of a Lagrangian density, from which the dynamics of the fields can be
deduced. Particles are represented by excited states of those fields;

— itis a quantum mechanical theory : the fields are operators acting on a Fock space, and their
dynamics can be described using the path integral formulation, for a given action and initial
state. The results must be understood as a probability of transition from an initial state to
a final state;

— itisaspecial relativistic theory : its formulation is the same in every inertial reference frame,
and spacetime is endowed with a Minkowski metric, which allows for Lorentz transforma-
tions.

General Relativity 1is a classical geometric theory of gravity formulated in 1915 :

— itisageometric theory of gravity : instead of describing this interaction through particles or
forces, it describes how the shape of spacetime itself is affected by mass and energy, through
the metric (which intuitively defines how spacetime bends);

— itis classical : the theory can be described using field theory, but solutions are found using
the least action principle, and the usual quantum apparatus cannot be applied.

A symmetry is a transformation that can be applied on a physical object (spacetime, or any
field), which does not alter the observable content of the theory. In the Standard Model, sym-
metries dictates a lot about the nature and properties of particles. They are usually split in two
groups : spacetime and internal symmetries. Spacetime (or external) symmetries, obviously, are
symmetries that can be applied on spacetime. Using some group theoretical arguments, those
symmetries can be shown to attach properties to the particles of the theory. Internal symmetries,
or gauge symmetries, are spacetime-dependent transformations that apply on the fields them-
selves. They give rise to the fundamental interactions between particles, and require the existence
of mediating bosons.

In the Standard Model (and in most other theories), the external symmetries include Lorentz
transformations and spacetime translations, thus forming the Poincaré group of transformations.
The internal symmetries belong to SU(3) x SU(2) x U(1), and give rise to the corresponding
fundamental force : strong, weak and electromagnetic interactions. General Relativity is only
diffeomorphism invariant, meaning its formulation is unchanged under any coordinate transfor-
mation. Via the curvature of spacetime, it describes the gravitational force alone.

Most of the time (actually, in all current physical experiments), the dissociation between gravity
and the other forces does not prevent researchers from doing extremely precise predictions, for
gravity is orders of magnitude weaker than the other forces®. At the surface of the earth, all

3. One simple way to perceive this is to consider two electrons at the surface of the earth, 1 centimeter apart from
each other. In this configuration, the two particles are several hundred thousand times more attracted to each other (by
electromagnetic effects) than they are to the entire earth (by gravity).

10



standard model calculations make use of a flat Minkowski metric, neglecting the effect of gravity
on the particles. On the other hand, when dealing with computations at cosmological scale, one
rarely cares about weak quantum effects happening at microscopic scale.

There are some places in the universe, though, where one can encounter strong spacetime cur-
vature at microscopic scale, namely near black holes. As out of reach as they are, a complete
theory should be able to handle them, and describe how gravity behaves with the other forces, at
microscopic scale. Moreover, the standard model has some shortcomings which might suggest it
is incomplete : its mathematical coherence remains to be proven, and it lacks a few features that
are now thought to exist, such as dark matter or neutrino masses. But more importantly, it is
now believed that the standard model is an effective theory, only valid below a certain energy scale.

There is indeed a canonical way to formulate gravity as a quantum field theory, but all attempts
to quantize it in the conventional way (as a quantum field theory) have failed at renormalization,
and inescapably lead to infinite quantities. Physicists attempted to widen the standard model,
by looking for a group of transformations that contains internal and spacetime symmetries in a
non trivial way. However, the Coleman-Mandula theorem, published in 1967 [10], stated thatin a
coherent and physically relevant quantum field theory, the internal and external symmetries could
only be combined as a direct product. However, it was soon realized in [11] that the underlying
algebra could include anti-commuting generators of transformations, or fermionic charges, that
led to a new class of theories escaping the reach of the premises of [11].

Supersymmetry is a theory in which the Poincaré algebra is extended to a Za-graded lie algebra
including the anti-commuting fermionic generators F' (and the usual bosonic generators B). The
super-algebra thus formed is schematically,

[B,B]=B, |[B,F]=F,  {F F}=B.

Several supersymmetry transformations can be included in the algebra; their number is denoted
by N To this new algebra of external transformations can be attached other internal gauge sym-
metries, and thus construct a theory with interactions. The first rudimentary 4D supersymmetric
theory is the Wess-Zumino model [12], and was soon extended to include internal symmetries.

Of course, supersymmetry has heavy phenomenological implications. First of all, each particle
is required to have a superpartner of equal mass, with a 1/2 difference in spin. For example, in
the Minimal Supersymmetric Standard Model, the Z boson of spin 1 is paired with the Zino
fermion of spin 1/2, the bottom quark of spin 1/2 is paired with a bottom squark of spin 0, etc.
Since none of those new particles has been detected, a realistic supersymmetry must be broken
to allow particles and their partners to have different masses (conveniently, those hypothetical
heavy partners provide a candidate for dark matter).

Most notably, this new symmetry allows the three coupling constants of the standard model to
meet at high energies (see figure above), encouraging the elegant idea of a unifying gauge group

11
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comprising SU(3) x SU(2) x U(1) [14]. However, although supersymmetric theories are promising
and diverse, they do not address the issue of gravity, and cannot qualify as completely unifying
theories.

Supergravity is alocal (or gauged) supersymmetry, meaning that what previously was a global
transformation (from a boson to a fermion, and vice versa) now acquires a spacetime dependency.
Equipped with this unconventional transformation, the algebra of symmetries can be shown to
include local translations, which are the infinitesimal versions of diffeomorphisms, thus descri-
bing gravity.

The first model with a local supersymmetry in 4 dimensions, containing four scalars and a spinor
field, was built in 1976. It was soon extended to proper supergravity theories (involving a spin-2
graviton and a spin-3/2 superpartner, the gravitino) [15, 16], generalized to higher dimensions,
and higher number of supergravity transformations (N > 1). Even though at first, those theo-
ries were considered viable models for unifying all fundamental forces, their poor behavior under
renormalization discarded this possibility. Supergravities are now mainly studied with regard to
their relation to string theory.

String theory is currently considered to be one of the most promising frameworks in which our
current description of all forces and particles can be unified. In string theory, fundamental objects
are not described by point particles, but strings propagating through spacetime. This approach has
the advantage of describing gravity naturally, without running into the divergences previously
mentioned. It was first built with bosonic strings in 26 spacetime dimensions, and then extended
to supersymmetric strings living in a ten-dimensional (10d) spacetime. At low energy, the string
extension can be ignored, and one recovers a theory describing point-like objects propagating in
ten dimensions, with local supersymmetry invariance. Thus, 10d supergravities can be viewed as
low-energy effective theories *, and in that sense, they admit high energy corrective terms due to
the extended character of strings.

4. In this regard, their non-renormalizability is acceptable, since they would require an infinite series of corrections to
be “UV-complete”.

12



All known 10d string theories are related by dualities (cf. figure below, where the arrows represent
the dualities connecting different theories), meaning that a particular limit of one of these leads
to the same observable quantities in another.

S Heterotic , T . Heterotic T
Typel +— S0(32) 7 EsxE Type lIA <— TypeIIB
N !
M-Theory
4
11d SuGra

This led to the conjecture that all of them emerge as particular limits of an eleven-dimensional
(11d) theory whose low-energy limit is 11d supergravity [17]. This theory, called M-theory, is still
lacking a complete microscopic description. In this regard, supergravities can be studied as limits of
string theories (or M-theory), and could lead to low energy effective 4D theories upon dimensional
compactification [18].

Anomalies are violations of gauge symmetries of the classical action at the quantum level (i.e.
when computing loop diagrams). In order for a theory to be consistent, it must be anomaly
free. This requirement can either lead to the introduction of new terms, or new constraints on
the theory in order to preserve classical symmetries. One notable example of this is the Green-
Schwarz mechanism [19], which cancels different types of anomalies in /' = (1, 0) string theory
by adding a well-chosen term in the classical action (and also requires the gauge group of the
theory to be SO(32) or Eg x Ej).

In the same way, 11d supergravity is subject to anomalies that should vanish for the consistency
of its quantum limit. However, since M-theory is not fully formulated, the necessary corrections
to 11d supergravity cannot be constructed “microscopically”, and must be computed using me-
thods intrinsic to supergravity. Although difficult, building those terms is a powerful tool to probe
M-theory, check its consistency, and learn about its microscopic structure. Several methods have
been used so far, but they only lead to a fraction of the terms that should constitute the full
correction.

The thesis is structured as follow :

— Chapter 1 establishes the formal framework of supergravities in any dimension : it briefly
describes the fields of supergravity, its algebra, the superspace formalism, and a few com-
putational tools that will be useful in the following;

— Chapter 2 focuses on 11d supergravity : it presents the original formulation of the theory, its
casting in superspace, and most importantly describes how to compute the superinvariant
using the supersymmetrization of the Chern-Simons term;

— Chapter 3 is more technical : it presents the computational package that was built when
trying to deal with the calculations of the previous chapter. Since it is particularly well suited
for the purpose of superspace computation and gamma matrices gymnastic, it can be useful
more generally;

13



— Chapter 4 makes use of the various tools for superspace manipulations assembled in the
preceding chapters to tackle another computationally intensive work related to supergra-
vity : the determination of quartic fermionic terms in 10d massive IIA supergravity, for the
purpose of generating fermionic condensates that can alter the cosmological solutions of
the theory.
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Supergravities

This chapter is devoted to the presentation of some of the general features of supergravity. The
geometric structures and the usual fields that will play a role in the following chapters are intro-
duced, along with the basic principles of superspace. Finally, some techniques and definitions of
group theory widely used in chapter 2 and 4 are defined.

1.1 Formal framework of supergravity

Defining the fields of supergravity in a relatively precise way requires the introduction of a few
mathematical structures. Inevitably, those theories contain a graviton and a gravitino, whose
structure and properties can only be grasped adequately with the help of some formalism.

A fiber bundle generalizes the notion of direct product between two spaces, to make it applicable
for manifold, whose coordinates can only be defined locally (and accordingly, a fiber bundle can
only be locally identified to a product space). Formally, it is a structure written (E, B, F, ), where

— F is a smooth manifold called the total space (the local equivalent of B x F);
— B and F are smooth manifolds called the base and the fiber;

— Elements of E can be projected on B using the surjection 7. For every z € E, there is
a neighborhood U C B around 7(x) whose inverse image by 7 can be trivialized by the
diffeomorphism ¢ : 7~ 1(U) — U x F, such that o(z) = 7(x).
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This is often summed up by the requirement that the following diagram should commute,

W U) 45 UxF

LA ' p
U

(where py is the projection onto the first element) i.e. over each U in B, 7~ (U) is diffeomorphic
to U x F, through ¢. However, this decomposition is restricted to an open set U, and cannot in
general be extended to the whole space B. Besides, different trivializations ¢y, @2, on U have to
be compatible, in the sense that, for each point u € 7~ 1(p),

e1(u) = (p, f1)

@2(U)=(P,f2)} = fha=gn-fi,

where, g12 belong to a group G, called the structure group.

A principal bundle is a special case of fiber bundle that includes a few more requirement. It is a fiber
bundle (P, B, G, 7) in which the fiber (previously called F) is the same as the Lie group G. This
structure is equipped with a smooth and free group action of GG on the total space P x G — P,
and this action is compatible with the local trivialization : for u € P such that p(u) = (p, h),
o(ug) = @(u)g = (p,h)g = (p,hg). Although we shall not use it explicitly, the definition
of the principal bundle is at the center of the formalism of gauge theories, in which the local
transformations from G are encoded in the fiber over every point p of spacetime.

A section of a fiber bundle associates to every point in B a specific element of the fiber in F', thus
forming an element of . A section of a fiber bundle (E, B, F, ) isa smoothmap s : B — E
such that 7 o s = I, meaning that for and element p € B, s(p) gives an element of £ which
is indeed over p. In practice, the section is defined locally : for U C B, s is a smooth map
U — 7 1(U) such that for p € B, p(s(p)) = (p, f) with f € F.

Every smooth manifold is naturally equipped with a vector bundle called the tangent bundle. It is
the bundle that hosts the gradient of functions defined from B to R. The tangent bundle of a d-
dimensional manifold B is the 2d-dimensional bundle (T'B, B, R, 1), where the fiber at a point
pin Bis called T, B. Alocal set of coordinates {@,,, m = 1...d} on U C B defines the coordinate

basis {%, m=1... d} :forp € U, an element V' of T}, B is written,

This vector bundle has a dual, simply constructed by attaching to each point p the dual of 7,3,
Ty B. This dual vector bundle is called 7% B, and its element can be expressed in a basis {dz™, m =
1...d} complementary to the coordinate basis, i.e. (dz", ) = 0", such that elements of the
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dual bundle are written :
L =1,dz™.

A pseudo-Riemannian manifold is a smooth manifold is equipped with an inner product on its
tangent space : for every p € B, there is a non-degenerate * bilinear form g, : T,B x T,B — R
(such that if V' and W are smooth vector fields, p +> gp(‘/;,, Wp) is smooth). This inner product
allows to talk about the length of vectors, angles, etc.

Every smooth manifold comes equipped with a principal bundle, called the frame bundle. For each
p € B, the basis of the tangent vector space T}, B can be changed via an action of the group
GL(d,R), such that a vector V' can be written *

V = vm—a =" oy —8
N dxm oz Oy"
~—~
€ GL(d,R)

for two basis %im and 33%, related by the invertible Jacobian matrix gg% This frame bundle can
be written (P, B, GL(d,R), ), and represents all the basis transformations allowed over each
point p.

Besides, if the manifold is pseudo-Riemannian, it can be associated to a more specific principal
bundle called the orthonormal frame bundle. In most physical cases, pseudo-Riemannian manifolds
have a metric of signature (1,d-1), meaning that, at each point p € M, there exists a basis in
T, M in which the metric is diagonal with values &(1, -1, ..., -1). Since there is a vast range of
basis which preserve this property, one can define the principal bundle composed, at each point,
of the change of basis that preserve the diagonal metric. Such elements are members of O(1, d-1)
(actually restricted to SOT(1,d-1), since we are interested in basis with the same orientation
and time direction).

The spin bundle is a complex vector bundle that can be built from the orthonormal frame bundle.
One first has to lift the SO(1, d-1) bundle to its double cover, the Spin(1, d-1) principal bundle
Pg, and make the Spin(1, d-1) group act on a 2[%?)-dimensional complex vector space V through

a representation p. The quotient (Pg x V')/G is a complex vector bundle, with the equivalence,

(u,v) € Ps x V

(u,v) ~ (ugaﬂ(gil)”) with { g € Spin(1,d-1)

This complex vector bundle is equipped with a Clifford action form 7'M verifying

vi,v9 € TM, T'(v1)'(v2) + ['(v2)T'(v1) = 2g(v1, v2) (1.1)

1. A Riemannian manifold requires the bilinear form to be a proper scalar product, i.e. it must be definite positive.
2. The notation % comes from the fact that vectors can be viewed as operators action on functions f : B — R, as

VIfll, = o™ a?c{n . Conversely, derivatives of those functions form a vector space over each point of the manifold.

17



which can be written in components with gamma matrices, as
Iyl + 0l = 200l

Finally, the action of Spin(1,d-1) over V is built using this representation of the Clifford alge-
bra : upon a local Lorentz transformation parameterized by the function €, (), elements of V'
transform using the representation %an of spin(1,d-1),

an

Y.

Ly = F[mrn} ) Y — eéemn(z)

1.2 Geometric objects & Fields of supergravity

We now have the required structures to define the physically relevant objects that arise in super-
gravity theories :

— spacetime is a smooth pseudo-Riemannian manifold M whose metric has signature
+£(1,-1...-1);
— areal (complex) scalar field is a functions from M to R (C);

— avector field is a section of the vector bundle over M ;

— atensor field is a section of tensor products of the vector bundle and its dual : TM ® - - - ®
TM* ® cee

— a spinor field is a section of the spin bundle over M.

The fields defined in this list are abstractly defined globally, over the whole spacetime manifold.
Of course, in most cases those fields are considered through local sections, and depend on a local
coordinate chart in M.

Vielbein

At any point p of a pseudo-Riemannian manifold, consider two vectors V' and W, locally written
v™ 0y, and w"0,,. The bilinear form ¢ can be expressed as an element of 7*M ® T* M acting on
vectors :

g = gmn dz"™ @ dz" and gV Oy W) = G, VW™ 1= 0wy,

However, at each point p, one can defineabasis of {€?,a = 1...d} in T M such that g is diagonal,
and accordingly, a basis {¢?,a = 1...d} of Ty M such that

g =g e’ ®e’ and g(v%eq, wbeb) = Nap V0 1= 0w, .

The dual basis of e is denoted e,, and verifies (%, ep) = 0;. The coordinate and flat basis are
related by the vielbein e, and the inverse vielbein €]’ :

a a m m
e’ =ep dr and eq = €y Om
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Usually, when tensors are used without reference to the basis, indices from a to [ refer to the flat
basis of the tangent space, while letters from m to z refer to the coordinate basis. For example, the
relation 1.1 defining gamma matrices in curved spacetime can be express in the flat basis as,

Lol'y + 1 = 2770Lb]I
where the matrices I',, are related to I'y, through the relation I'y,, = e, I,

It must be remarked that each vielbein over a point of the manifold is defined up to a Lorentz
transformation. Indeed, the transformation %, — A%, €% induces a vielbein which still diagona-
lize the metric,

b b d
Imn = 621 Nab €, > 627, Aac Nab Ay €n = 9Gmn
—————

Tled

since the Lorentz group is defined as the set of metric preserving transformations. Thus, the viel-
bein field has a gauge freedom consisting of local Lorentz transformations.

Spin connection

m

np» and define the covariant deriva-

On any Riemannian manifold, one can define a connection I
tive of vectors, covectors and tensors through,

DnTo? = 0, TP + T4, TP — T T4,
which is easily generalized for any type of tensors. In the flat basis, it is possible to define another
object, called the spin connection w, so that it is compatible with the connection I' by imposing
the condition D, V" = egDme (where the derivative on the lhs uses I', whereas the derivative
on the rhs uses the spin connection). This leads to,

a __ _a n P n a
wmy = ey Iy ey — ey Omey,

where w is the connection one-form over the SO(1, d-1) orthonormal frame bundle previously
defined. It can be viewed as a the gauge field of the local Lorentz transformations that can be
applied on the vielbein, and is a s0(1, d-1) valued one-form,

wh = (wm)y, dz™, Wap = —Wha -

which defines a covariant derivative acting on vectors components expressed in the flat basis
(while the covariant derivative defined with gamma acts with vectors with coordinate indices),

Dy Tob = 8, To + wimy Tl — wimbe ToC .
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Spinors, which are naturally defined in flat spacetime, can be covariantly derivated using the spin

connection as well, as

1
D)™ = Omt)® + Jwm™ (Tap)” 47 (1.2)

Torsion

In general relativity, the connection is required to be metric compatible, meaning D), gpmn = 0
(such that the squared norm of a covariantly constant vector V"*V" gy, is preserved upon parallel
transport). This imposes the form,

1 1
anp - igmr (angrp + 8pgrn - 87”gnp) + 5 (Tmnp + Tnmp + Tpmn) )

rm C™np
where I' is the Levi-Civita connection, and C"™,, is called the contorsion. The torsion 7' is an
unconstrained tensor defined in terms of the connection as 7™, = 2l Generally, the torsion
is defined on any basis of the tangent space as the tensor associated to the application T,M? —
T,M,T(u,v) = Vyv—Vyu—[u,v], where u, v and T'(u, v) are vectors in T'M . Form the principal
bundle point of view, the torsion 2-form can be defined using the vielbein, as

T = De® = de® + w% 1 e’

1
= QTmn“ dx™ A dz"™ .

Classical general relativity imposes the torsion to be zero, but as we will see in the next chapters,
non-vanishing torsions are extensively used in higher-dimensional supergravities.

Curvature

Similarly, the curvature can be defined in the coordinate basis as a tensor

Rinp? = 2(a[mr3ﬂp + T an]p)

[m|s

or more generally, in any set of coordinates by the tensor associated to the application T, M3 —
T,M, R(u,v)w = V,Vyw — V,V,w — V [u,0]w, Where u, v, w, and R(u,v)w are vectors in
T M . From the principal bundle point of view, it can be defined as the curvature 2-form, using the
g-valued connection,

R = Dw%, = dw® + w® A w%

= Ry dax™ ndx™ .
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Both the curvature and the torsion can be expressed in the coordinate or the flat basis. In any case,
they must respect some geometrical relations, called the Bianchi identities (BI),

dT? + w A T? = €A R%,
dR% + w AR — wpa R = 0. (1.3)

The Ricci tensor and the scalar curvature, that appear in the gravitational part of the action and
equations of motions, are obtained via the following contractions,

n m ab
Ryn = g qun,pq = €, Ron
mp, n m_n ab
R =y pg qun,pq = €4 €pLimn

Form fields

Higher dimensional supergravities also include fields called fluxes, or p-form fields, whose beha-
vior mimic those of F'and A in Maxwell’s electromagnetism. Generally, a form is a smooth section
of the totally anti-symmetrized tensor product of the dual tangent bundle. In practice, a p-form
w is written

w

1 | dz™ A ...Ad2™ wy,, m. on the coordinate basis,
- = L--p w e /\
p!

eMa ... ne® W .a, on the flat basis,

Symmetry transformations

Let’s consider a symmetry transformation applied on the coordinates, of the form x — y, with
y = t(x). Any tensor is abstractly defined without reference to the coordinate system, and can be
expressed in both. For a tensor from T'M & T* M, it reads,

0 0
T = Tab(x) dz® ® @ = %b(y) dya ® 87yb s (1~4)

where T,(2) and 7;°(y) are different functions of different coordinates. Being only interested in
the local variation of the field, one can express the rhs of (1.4) in the (dz, a%) basis as

and recover the variation 67.% at z, caused by the transformation z — vy, as:

a $d
L) = T o) @) — L), (@.5)

In the following chapter, we will be concerned about the variation of forms. In that case, and with
the transformation x — y being infinitesimal (y(z) = = + &), the variation of a k-form ¢ is

21



expressed using (1.4), and reads,

5§(x)¢m1mk = fp ap¢m1...mk +n (8[m1\§p) (rbp\mlmk] ) (1.6)

which corresponds to the Lie derivative L of ¢. Although Lie derivatives can be applied on any
type of tensors, they take a particularly simple form when applied on differential forms, using the
exterior derivative d and the interior product t,

ted = Gyt E Opma.my, AT 0 ndz™E

dd) = m 8}? ¢m1mk dzPrdx™ A ... Aadx™F .

Lo = (dig+1ed)d, where { (1.7)

1.3 Algebra of supersymmetry

The algebra of transformations in supersymmetric theories is composed of the generators of Lo-
rentz transformations M, translations P,,, and supersymmetry transformations (), with a hid-
den spinor index . It can also host what'’s called central charges denoted Z (which commute with
all other members), and R-symmetry charges R acting on the ’s. The bosonic part of the algebra
has the same structure in all dimensions :

(M, MP9] = 452 M7

[n""r]
[P, Mpq] = 77m[qu]
[P, P,) =0

The spinorial operators (Q, called supercharges, have the same structure as the corresponding
spinors of the theory, and change accordingly with the dimension of spacetime. The two example
below are the algebras of 11d and 10d IIA supergravity. In 10d, there are 2 x 16 Majorana-Weyl
supercharges, of chirality (4) and (—), whereas in 11d, there are 32 real Majorana supercharges :

{Q+,QL}) = %(1 +T'1,)[™CP, .
{QvQ } = (ch) Pm

1
,Mma - 3 Fnr

{Q« } 2( ) Q+ {Q, M,,} = %(Fm‘)Q

{Q+. Q=0

Some fundamental properties can be derived only from examination of this algebra. For example,
[P, Qo] = 0 implies [P?,Q,] = 0, with P? being one of the Casimir invariant of the Poincaré
group that represent the invariant mass of a state. Thus, all fields related by a supersymmetric
transformation have the same mass (this requires the symmetry to be broken for this theory to
be phenomenologically relevant).

Basic features of 11d supergravity can also be derived with a few manipulations. If we consider a

massless representation (P F,, = 0), one can always describe such a state by the impulsion
(E,E,0,...,0) by going to the suitable reference frame. According to Wigner’s classification,
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those states will be indexed by the irreducible representations of their little group. The bosonic part
of the group is reduced from SO(1, d-1) to SO(d-2), and spinors, supercharges, and gamma ma-
trices also have to be decomposed in a less trivial way : if the matrices vy, verify {ym, ¥n} = 0mn
in (d-2) Euclidean dimensions, then the matrices I'y,

Iy =io?®1, I'=c'®l, Lpp=0>@9m_1 (m=2,...,d-1),
verify {I';,, I'n} = 7mn in d-dimensional Minkowski spacetime. In this particular representa-

tion, going from (d-2) to (1,d-1) dimensions splits the spinors (and the supercharges) in two
components of the same size. For example, ind = 11,

) (+)
v=(e) e=(ga),
where 1 and @) contain 32 components, while the quantities with (+) or (—) contain 16. The

conjugation matrix C(1y) can also be split as io? @ Cy, such that the anti-commutator of the
supercharges becomes, in matrix form,

@ = B@ -t c =26 (' 7).

Written in terms of Q(*) and Q(~), one has
Q5.5 = 2B 16, Q0,057 =1, Q) =0.

The anti-commutation of Q((j) allows to build a Clifford algebra in a canonical way :
half of the charges are set to be creation ope-

Helicity ® state Multiplicity rators, the other half are destruction operators,
> 10) N whose action cancel the Clifford vacuum state
3/ Qi 10) 3 |0). Thus, in our 11l-dimensional example, the
" physical states are created by the 8 charges

-1 Qil Q’L2|0> 28 (+) .
) 0 ‘ Q') acting on the vacuum, and add up to a
e @i, Qi Qis[0) > total of 256 states corresponding to the to-
© Qi - Qiu|0) 70 tal degrees of freedom of 11d supergravity (cf.
1/2 Qi - Qis)0) 56 chapter 2). Through dimensional reduction to
1 Qi - - - Qigl0) 28 4 dimension (cf. chapter 4), the existence of
3/2 Qiy - .- Qi-]0) 8 more supercharges would have led to helicities
2 Q1 ...Qs|0) 1 greater than 2, leading to physical inconsisten-

.4
cies .

3. Helicity in not defined in dimensions other than 4. This number refers to the helicity of the representations once
compactified to 4d, where it is easy to prove that the operators () raise helicity.

4. A supersymmetry theory involving a spin-2 and a spin-5/2 partner was considered in [20]. It was discarded as a
physically relevant theory due its inability to describe a non-zero graviton-graviton scattering amplitude.
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1.4 Superspace formulation

Superspace can be viewed as an extension of usual space in which supergravity transformations
arise in a more natural way, and where the spinors are treated on an equal footing with vectors
and tensors. Besides, as we will see in the next chapter, it is also a powerful computational tool in
which all the calculations of this thesis are implemented.

The basic idea of superspace consist in supplementing the usual space, whose points are labeled
by coordinates {z"",m = 0...d-1}, with anti-commuting coordinates {6*,u = 1... 2[%]}
Introducing anti-commuting variables allows to write the superalgebra in terms of commutators
only, and a general transformation corresponding to an element of the superalgebra can be written
as an exponential with those variables 6 as parameters. A finite supertranslation then takes the
form,

G (x,@,a) _ e—i(—mem +60°Q+0-Q) 7
where the gray part can be discarded when dealing with Majorana spinors. Thus, these anti-
commuting variables must be as numerous as the spinor components, and must be of the same
type (Majorana, Weyl, etc.). In 11d, since spinors are Majorana, one needs 32 real 6%, while in
10d IIA, the Majorana-Weyl spinors require 2 x 16 variables of opposed chirality, #¢ and 6. To
distinguish the two parts of the superspace, the usual commutative part is often called even part,
or the body, and the anti-commutative part is called the odd part, or more exotically, the soul. Of
course, those coordinates give rise to their own part of the tangent space, dual tangent space, and
frame bundle. Tensors can now belong to both parts of the tangent space, and can take the form,
for example,

) 0
T =T,.,"° dz® el iy
dz® ® dé © 559 595

Using the generalized coordinates ZM = (2™, "), we extend the flat basis (and its dual) as,

o
EA = B4 azM E,=EM —_
Md ) A A GZM’

where F4) is the supervielbein, verifying,
n
By EY =6b) = om0
0 9y

A general superfield is written with capital indices, each of which can take values in both parts of
the superspace. In the following, we will mainly consider superforms written in flat superspace
with the following convention,

1
H = E EAk/\. . .AEAl HAlAk ’
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where the supervielbein inherit the anti-commutation property of the coordinates,

—1) ifAorBiseven
" { (+1) if Aand B are odd } e

and, conversely commuting 940p brings the opposite sign. A superfield hides a huge number of
degrees of freedom : each capital index can be particularized to an even or odd value, e.g.

EANEP Hyp = E°AE* Hoyp + 2 E*A E® Hoo + EPA E“ Hop (1.8)

and each of those H depend on # and z, such that, in 11d superspace, the Taylor expansion of
Hap is,

32
1 ,
HAB(.QJ,H) = HAB(.’E> + E E (L Lo (Hul---/t2>AB . (1.9)
i=1

In the remainder of the thesis, we are not so much interested in the 6 Taylor expansion of the
field as we are in the index expansion. In the following, we will mainly be interested in the forms
at § = 0, meaning that the development (1.8) is valid, but the last part of (1.9) vanishes.

All the geometric objects defined above are generalized to superspace : the spin connection 2%,
the torsion tensor 1'%, and the curvature two-form R%, become,

RAB = DQAB = dQAB+QACAQCB

1.10
TA = DEA = dEA+EB.QB,, (1.10)

QAB = dZM(QM)AB — {

and all of them can be expanded as in (1.8). In the following, we shall establish some restrictions
on the structure of the supermanifold, by imposing the Lorentz manifold condition, i.e.

1
0% = Z(rab)aﬁ 0%, Q% = Q% = 0. (1.11)
The last condition of (1.11) can be viewed as the requirement that there be no mixing between the
odd and even part of the manifold upon parallel transport, while the first condition simply states

that the supercovariant derivative of a spinor,
D™ = Onp™ + w5 0°
corresponds to the derivative (1.2) for M = m.

Superspace diffeomorphism transformation of the coordinates, ZM — Z’ M _ M 4 M acts
on superforms as in (1.6) and (1.7), where the Lie Derivative is generalized to superspace. As an
example, the supersymmetry transformations of the gravitino and the spinor can be found in (D.4)
and (D.5) of appendix D.2.2, in ten-dimensional ITA superspace. In the remaining of the thesis we
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shall use the conventions of [21] where all forms are given in “superspace conventions”,

1

fq)mlmmpdajmp/\ ...oadz™ , d (‘I)(p)A\IJ(q)) = (I)(p)/\ d\IJ(q) + (_1)q dq)(p)/\\lf(q) .

®e) =

These are better suited for the discussions of the next chapters, in which we mainly manipulate
elements in the superspace formulation (of 11d and IIA supergravities), where these conventions
are the natural ones.

Integration of actions in superspace are defined using either the canonical volume form (i.e. the
Hodge dual of 1), or the wedge product of a form and its Hodge dual. The Hodge star is defined as
follows,

*(dxal/\ - Adxap) == g-ap

by blO*p
by.bio_p AT 1AL .. AdT ,
(d-p)! P

so that,

1
(I)(p)/\*(l)(p) = (*1)H¢m1mmpq)ml'”mp .

1.5 A word about irreducible representations

In the next chapters, we make use of some group theoretic notions that we briefly recall in this
section. A representation of a group G is a map p from G to a vector space V, such that the group
structure is preserved :

p:G—=GLV) | g1.92 € G, plg1)p(g2) = p(9192) (1.12)

with a matrix product on the lhs, and a group product on the rhs. Such a representation is reducible
if one can find a subset H of V such that H is stable by the action of G :

Vhe H,Vge G, p(g)he H.

On the contrary, an irreducible representation (or irrep) only has trivial stable subsets (0 and V'
itself), meaning it transforms “as one” under the group action. Irreducible representations of
groups play an important role in physics, and in this thesis, where it is extensively used in tenso-
rial calculations.

Let’s focus on the two groups that will appear in the following : the symmetric group S,, and the
d-dimensional Lorentz group SO(1, d-1).

1.5.1  Symmetric group S,

The symmetric group S, consists of all permutation of n distinguishable elements. It is finite,
contains n! members, and it is possible to make it act on tensors with n indices. For example, a
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member s = {é % ;)} of S5 acts on a 3-indices tensor T as

s
Talagag — Tasalaz .

Actually, defining this action only require 7" to be a repertory of ordered indices, rather than a true
tensor. If those objects can be summed, it becomes possible to define invariant quantities. One of
the simplest example is a fully anti-symmetrized tensor :

1 1 1 Sn
T[a1a2a3] = éTalazas - éTazalas + = éTagagal I :l:T[magag] .

which will lead to = itself when acted upon by any member of S3. Young diagrams (and young
tableaux) are useful to generalize this, and find all subsets of invariant tensors for S,.

First, let’s consider a representation of S,, on R™, provided with the basis consisting of all the
tensor product of the basis vectors {ej, -+ ,e,} of R™:

{€1®“'®€TL7”' 7en®...®el} ::{el.._,r“... 76’I’L---1} .

In this basis, a vector (-4, ...,7)isthen -4 e;_, +...+7ey,. 1. For example, on S3, the symme-

tric group acts on R, and the element g = {% g 21)’} corresponds to the GL(R®) matrix,

€123
€132
€213
€231
€312
€321

OO OOO
R OO OoOOoOOo
SO oo~ O
O OO OO
SO oo OoO
[NoNal e N

where the shaded elements correspond to the basis vectors. For example, equipped with this re-
presentation the action p(g) - (2 e123-3€231) = (2e312-3 €123) corresponds to,

€123
€132
€213
€231
€312
€321

p(g)-

corRoOoR
|
o—~ocoo~

Whether or not this representation of Sj is reducible can then be stated clearly, since it corres-
ponds to finding a basis of R® for which the whole group action acts as a block diagonal matrix.
For example, the case of Sy is very simple : the basis is {ej2, €21 }, and the two elements of the
group act as,

) P P (£ ) R O
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It is trivial to express this group action in the basis {€12 + €12, €21 — €12}, on which the group acts
diagonally,

({1 2 >: L 0fenten ({1 2}): 10 |epten
P 1 2 01 €12—€21 P 2 1 0 -1 (312*(—,’21'

Thus, the action of S on R? can be split on two irreducible separate subspaces of dimensions
1. The case of S3 is less obvious, and higher dimensions are absolutely non-trivial. That’s were
Young diagrams come into play : each diagram composed of n boxes represents an irreducible
representation of Sy, and the multiplicity of the associated standard Young tableau give both the
multiplicity of the representation, and the dimension of the invariant subspace ® on R™. Going
back to S5 and writing all the associated standard Young tableaux allows to determine the diagonal
form of the group action (even-though the ways of finding the subspaces is still unspecified),

Young diagram Standard Young tableau
[(ri1 — I T
3
H:I — — (1.13)
~

[e2[vo] =]

0 —

The basis on which this configuration is realized can be built from the standard tableaux, using a
simple procedure : Each element of the “naive” basis must be (1) successively symmetrized over
the indices numbers specified in each row of the tableau, (2) anti-symmetrized over the indices
specified in each column, (3) permute the indices of the e;"s to span the subspace. Applied on the

first element ej93, with the tableau , it gives,

€123 — €321 + €213 — €231

(1) (2) (3) ) €213 — €312 + €123 — €132
€123 — €123+ €213 — €123 — €321 T €213 — €231 —7 \ ¢149 — 931 + €319 — €391

From the six possible indices permutations of the last step, only 2 will be independent, as ex-
pected, since the subspace associated to this diagram is 2-dimensional. Doing the same for the

second standard tableau will lead to an isomorphic (but different) subspace, while and
both lead to a 1-dimensional subspace corresponding to the fully symmetric and anti-symmetric
configurations. The new basis is composed of independent elements, span the whole space, and
indeed leads to a group action of the form (1.13).

5. A standard young tableau is a Young diagram with boxes labeled by numbers strictly increasing from left to right,
and top to bottom. The links between Young diagrams/tableaux and the irreps of S, is a non-trivial statement. The proof
can be found in [22].
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By doing so for each standard Young diagram of n boxes, one can find all the irreps of S,,. What
have been done on the e;; ® - - - ® €;,, can be easily translated for a tensor T, _;, , by applying on
the indices all that has been applied to the basis. Thus, there is a systematic way to decompose all
tensors according to the irreps of the symmetric group. Practical examples of decomposition can
be found in Appendix (C.1).

1.5.2 Lorentz group SO(1,d-1)

The Lorentz group SO(1,d-1) is the group obtained after reduction of the frame bundle to the
orthonormal frame bundle. Thus, tensors expressed in the non-coordinate basis are SO(1, d-1)-
tensors, expressed in the vielbein basis. As such, they form a space on which SO(1, d-1) acts,

Tal...an — Aalbl . Aalbl Tbl...bn (n < d) s

and they can be decomposed according to irreducible representations of this group. Irreducible re-
presentations of simple Lie algebras are indexed by Dynkin labels, whose general form is (i1 . . . i),
where each i is an integer, and n depends on the dimension of the algebra ®. The Dynkin labels
containing 1 as single non-zero entry represent the fundamental representation, from which the
other can arise through tensor products. In the following, we will restrict the discussion to groups
used in the thesis : SO(1,10) and SO(1,9), whose corresponding complex algebras are respecti-
vely B5 and D5.

The Dynkin labels of B5 and D5 are of the form (47 ... 145). Of course, it possible to establish a
standard correspondence between fundamental Dynkin labels and some usual representations :

SO(1,10) dim SO(1,9) dim
(00000) 1 scalar (00000) 1 scalar
(10000) 11  vector (10000) 10 vector
(01000) 55 2-form (01000) 45 2-form
(00100) 165 3-form (00100) 120 3-form
(00010) 330 4-form (00010) 16  chiral spinor (+)
(00001) 32  spinor (00001) 16  chiral spinor (—)

The tensor product of two irreducible representations leads to another representation, which is in
general reducible. Fortunately, it is possible to systematically decompose representations obtained
by product of irreps into direct sums of irreps [22]. For example, a 2-tensor without symmetry in
its indices (i.e. living in a tensor product of a vector space with itself V' ® V) is decomposed as :

(10000) ® (10000) = (20000) & (01000) @ (00000)
Tmn - LT L I |
121 - 65 + 55 + 1,

6. More precisely, it depends on the dimension of its Cartan subalgebra. For a complete review of the classification of
irreducible representation of semi-simple Lie algebras, see [22].
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where S is traceless symmetric, A is anti-symmetric, and [ is a scalar. Those decompositions into
irreducible representations are extremely useful when trying to solve equations involving ten-
sors, for they allow to separate the expression into unrelated subparts. Let’s consider the equation
FopeGq = HgpH,q, involving tensors in 11 dimensions, whose rhs and lhs decompose into irre-
ducible representations of B5 as,

(00100) ® (10000) = (00010) & (01000) & (10100)
(01000)%®5 = (00000) & (00010) & (02000) & (20000) .

The only common irrep shared on both sides is (00010), meaning that this equation can only
constrain the 4-form part of its constituents. Hence it can be equivalently written as Fl,;,.Gq) =
H{q,H q)- The same principle can be applied on arbitrarily large cases, and is widely use for the
resolution of Bianchi identities in superspace.
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Supersymmetrization of the Chern-Simons term

in eleven-dimensional supergravity

2.1 Supergravity in 11 dimensions

As mentioned in the introduction, supergravity in eleven dimensions plays a particular role in
the collection of supergravities. Eleven is the highest spacetime dimension allowing for a physi-
cally relevant supergravity theory, since a supersymmetry in higher dimensions would exceed the
maximal number of supercharges, and lead to compactified 4d theories with spins greater than 2.
Besides, this d= 11, N/ = 1 supergravity can withstand only very few modifications : its connec-
tion form can be slightly generalized (cf. section 4.1.1, [23]), but it is unique, does not admit a
cosmological constant [24], and only has an on-shell formulation [23, 25].

2.1.1 Cremmer-Julia-Scherk (CJS) supergravity

The eleven dimensional supergravity action [26] was built in 1978, starting with an analysis of the
degrees of freedom available to find the physical objects involved. It contains only three fields : the
graviton gy, the gravitino v, and a 3 form field C,;;,,. On-shell degrees of freedom are found
by analyzing the little group representations, which is SO(9) in the case of massless fields in 11
dimensions.

The graviton g,,, — The first field that is required to describe a gravity theory is the graviton
gmn- It had to be present in 11d supergravity, since it was known that 10 is the highest spacetime
dimension in which there cannot be a symmetric tensor field [27]. The graviton is either represen-
ted by the metric gy, itself, or its associated vielbein e? . Either way, each of them must contain
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the same number of degrees of freedom when all the non-relevant ones are removed :

SO(9) symm.

2-tensor det(g)#0
~ =
9mn — (1/2)-9-(9+1) — 1 = 44,
ey, — 99 —(1/2)-8-9 —1 = 44.
~ ——
StO(Q) Lorentz gauge  det(e)#0
2-tensor
The gravitino 1, — The superpartner of the graviton is the gravitino ¢y,. It is a spin 3/2 spinor

bearing a spacetime index, and a spinor index often implicit. [t is a Rarita-Schwinger field, living in
the (10001) representation of SO(1, 10) (it is traceless : I}y, = 0), and its degrees of freedom
are counted as follows :

g — 2l — 2ls] = 128,
SO(9) spinor  traceless

The supersymmetric transformation of the graviton and the gravitino have a common part in all
supergravities, namely

Oc Y o< Dipe, deen, o €1y, . (2.1)
The 3-form C' — The existence of the 3-form C was deduced via a counting of the remaining

degrees of freedom : it contains exactly the right number to equate the bosonic and fermionic
ones. A 3-indices anti-symmetric tensor of SO(9) represents (g) = 84 free components. With
this field, there are 128 fermionic and 84 + 44 = 128 bosonic degrees of freedom (on-shell).

Theaction — Eleven dimensional supergravity action was originally formulated by E. Cremmer,
B. Julia and J. Scherk in [26]. With a few cosmetic changes to suit our conventions, it has the form:

_ 1 [ 1
S—HZ/d x\/g[ 4R(w) (2.2)

i w4+ w
— 4, ™D N )
5 ¥ ( 5 > (U (2.3)
. i Ie. Gmnrs (2.4)
48 mnrs 2.4

1 7 7 ~
+ 155 (i TSP 4y, 412 407 TP ) (Gmpq + Gmpq) (2.5)

- "1 Tsmnp Gr1.‘.r4GT5~~-TSCmTLP ] (2'6)

Vo(12)*

where the first 3 terms are familiar : the Einstein-Hilbert action (2.2), the Rarita-Schwinger action
(2.3), and the kinetic term for the 3-form field C' (2.4). The field G is the supercovariant version
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of G, the field-strength of C'. It is a 4-form whose expression in components is

émnpq = Gmnpq +3 @[mrnpd}q]
GCnpr = 40 Cropa) -

R(w) is the scalar curvature, and the term & is the spin connection one-form, equal to (w2,)," +

(K)o, where K is the contorsion tensor :

2
~ . R
Wmab = Wmab + ¢ Z W I_‘mabcd ¢d
~ (0 . K2 - -
Wmab = Wyop T2 ?(wm Ty o — Ym Loty + Uy I %)

(0)

mab

Levi-Civita tensor, related to the Levi-Civita symbol by

and w is the usual connection defined in terms of the vielbein. In the last term, €""11 is the

67‘1”./’“11 — \/g Eal...all erl . 67’11

al trail 0
itself defined as
+1 if (a1 . ..a11) is an even permutation of (0. .. 10)
—€M M =€y ay =4 -1 if (aq ...aq1) is an odd permutation of (0. .. 10)
0 if an index is repeated
Local supersymmetry —  The supersymmetry that mixes the three fields, but leaves the action

invariant acts with the local spinorial parameter €(x) as,

3 _
O Crnnr = 5 € F[mn¢'r}

Ocen, = —i el
) i
Setim = Dn(@) e 1o (0 ~STGL) Foe 67
and the superalgebra closes, as can be seen from the table below, where the transformation
[0¢,, e, | is applied on the three fields, giving :

Diffeomorphism Supersymmetry Lorentz Gauge
em ! (Om&l) e + €7 Oneq,)  + 62T+ (&3)% ey, + 0
Umi o OnE)Un +E Onm) 4 iDmés i) lm + 0+ K
Comr = 30 &) Cppr] + 1 (0pCrnmr) + 3&2Tpnthy)  + 0 + O (€a)nr)

where f(i)’s are the emerging parameters of transformations, which depend on €1, €2, and the
fields themselves. The term KCp, is proportional to the equation of motion of ¥,,, thus making
the algebra close only on-shell (once the equations of motion are imposed).
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The action was found by postulating the existence of first three terms ((2.2), (2.3) and (2.4)
without the hatted fields), with the supersymmetric proto-transformation rules (2.1). Invariance
was imposed by steps, first by adding the last two counter-terms ((2.5) and (2.6), without the
hatted fields), and modifying the transformation rule of the gravitino. Then, in order to cancel
the remaining 3- and 4-fermion terms, supercovariant hatted fields were defined and added to
the action.

In the following sections, and the manipulations presented therein, we rely on the use of the last
term of the action called the Chern-Simons (CS) term. Unlike the other terms, the Chern-Simons
term is integrated without the canonical volume form d'!'x, /g, and should rather be expressed as
an integral over the top form,

2
(12)4/G/\G/\C.

Since C'is subject to a transformation C' — C' 4 dA, it is worth verifying that this action is indeed
gauge invariant. Using integration by parts, and the Bianchiidentity dG = 0, the general variation
of C' reads,

2
(12)43/GAGA50.

The fact that a single term is obtained allowed to use the Chern-Simons term as the last keystone
to make the action supersymmetric. Replacing dC' by dA cancels the whole term (via integration
by parts, and up to border terms), and makes this term gauge invariant, despite the appearance of

C.

2.1.2 Eleven-dimensional supergravity in superspace formalism

In order to establish conventions, and present the main objects that will be useful in the remaining
of the chapter, this section briefly presents 11d supergravity formulated in superspace [28, 29]. As
previously stated in (1.4), eleven-dimensional superspace consists of eleven even and thirty-two
odd dimensions, with structure group the eleven-dimensional spin group. Let A = (a, «) be flat
tangent superindices, where @ = 0, ...10 is a Lorentz vector index and & = 1,...32 is a Majo-
rana spinor index. Curved superindices will be denoted by M = (m, 1), with the corresponding
supercoordinates denoted by ZM = (2™, 6"). The supercoframe is denoted by E4 = (E¢, E?)
while its dual is denoted by Eg4 = (E,, Ey).

We shall assume the existence of a connection one-form Q4 with values in the Lie algebra of the
Lorentz group. The associated supertorsion and supercurvature tensors, defined in (1.10), are :

1 1
TA = 5ECAEB Tpc” RaP =SBV ~E€ Repa® (2.8)

The assumption of a Lorentzian structure group implies that the components of the curvature
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two-form obey the Lorentz condition defined in (1.11). The super-Bianchi identities (BI) for the
torsion and the curvature,

DT = EB.Rp*, DR, =0, (2.9)

follow from the definitions (2.8). Moreover, a theorem due to Dragon [30] ensures that for a
Lorentz structure group the second BI above follows from the first and need not be considered
separately.

Aswas shownin [28, 29], very few constraints on the superfields, together with the Bianchi identi-
ties, lead to the equations of motion of supergravity. The Bianchi identities are usually geometrical
identities that must be automatically satisfied. The first step for finding the superspace formula-
tion of supergravity is to enforce a particularly well-chosen value for one of the low dimensional
components of the torsion, called the rigid constraint,

Tog® = i(Iap - (2.10)

With this restriction imposed, the Bianchi identities cease to be automatically satisfied, and must
be solved. In the first two articles [28, 29], the superspace generalization of G and C,

EP....~E* Gapcp , EC. EBL B4 Cupe, Gapcp = 404Cpeopy ,

are introduced by hand before the computation, accompanied by their corresponding Bl : dG' = 0.
However, it was shown in [31] that the resolution of the BI 2.9 require the existence of a closed
four-form, which naturally brings back G and C'*. Remarkably then, solving the torsion Bianchi
identity with the sole constraint (2.10) is enough to recover ordinary eleven-dimensional super-
gravity, and to define all mixed components of the superfields involved. All the non-zero mixed
components, and spinorial derivative of fields are reported in appendix (B.1.2).

The four-form arising during the process can also be used to introduce a seven-form G'7, although
2

the four-form G is still needed. The identities force those forms to obey [31, 32]
1
dG4 =0, dG7 + §G4/\G4 =0, (2.11)

where the bosonic components correspond to the eleven-dimensional supergravity four-form and
its Hodge-dual, respectively :

(G7)m1...m7 — (*G4)m1...m7 .

The superspace resolution of the BI finally leads to the equations of motion (B.1.2), whose inte-

1. Itwas also proven in [31] that there exists a dimension one-half spinor field, that was set to zero. It was later shown
in [] that this term could be interpreted as the dimension one-half of the scale connection, and that this corresponding
connection vanishes on a topologically trivial manifold.

2. The G'7 Bl receives a correction at the eight-derivative order, cf. (2.44) below.
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gration leads to the superspace action,

, (2.12)

1 1
S:/(R*l 3 Gyn* Gy — 5 C3AG4/\G4)

where it is understood that only the bosonic (11, 0) components of the forms enter this formula
(the vertical bar denotes the evaluation of a superfield at 8# = 0).

Reduced units (A = ¢ = 1) make all physical dimensions of the action coalesce into a single one,
called length of mass dimensions (with - [X]mass = [XJiength). In terms of mass dimension, the
requirement that the action be dimensionless imposes,

K] = % [dz] = -1 [Grnpg] = 1
[(,%] =1 [Cmnp] =0 [Q;Z)m] =

5] = -

[o0s] = 3 [E7] = -1.

D=

Accordingly, the mixed superspace components of the fields will have a mass dimension increasing
by 1/2 with each switching from a fermionic index to a bosonic index,

1
[Gabcd] =1 y [Gabcd] - 5 5 [Gaﬁcd] =0 y etc.

2.2 Supersymmetrization of the Chern-Simons term

Eleven-dimensional supergravity is believed to be the low-energy limit of M-theory [17], the
conjectured non-perturbative completion of string theory. As such it is expected to receive an
infinite tower of higher-order corrections in an expansion in the Planck length or, equivalently,
in the derivative expansion. At present such higher-order corrections cannot be systematically
constructed within M-theory, so one must resort to indirect approaches.

One such approach is to calculate the higher-order corrections within perturbative string theory,
in particular type IIA in ten dimensions, which is related to eleven-dimensional supergravity
by dimensional reduction (cf. 4.1.1). The effective action of string theory can be systematically
constructed perturbatively in a loop expansion in the string coupling,

Set = Y 939 / dzvae,,
g=0

where g is the loop order, g, is the string coupling constant, G is the spacetime metric and £,
is the effective action at order g. Besides, each £, admits a perturbative expansion in an infinite
series of higher-order derivative terms. Moreover it is expected that each £, should correspond
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to an independent superinvariant in ten dimensions (see e.g. [33]).

The bosonic part of the tree-level effective action takes schematically the following form,

1
Lo= Lus + 0" (Io(R) = Sh(R) + -+ ) +0(a), (2.14)
where L4 is the (two-derivative) Lagrangian of ten-dimensional IIA supergravity, and the el-
lipses stand for terms which have not been completely determined yet. The first higher-derivative
correction starts at order o/ (eight derivatives), and the I, I1 in (2.14) are defined as follows,

1
Iy(R) = t8t8R4 + §€1othR4 ,
I (R) = —610610R4 + 4810thR4 . (2.15)

These were constructed by directly checking invariance under part of the supersymmetry trans-
formations, without using superspace, in [34] (Those two terms, with the tensors €;9 and tg,
stand for large expressions quartic in the Riemann tensor). The terms in (2.15) linear in B
are, up to a numerical coefficient, Hodge-dual to the Chern-Simons term BrXg [35, 36]. The
eight-form Xg, see (2.43) below, is related by descent to the M5-brane anomaly polynomial and
isalinear combination of (tr??)? and tr R*. Note that the Chern-Simons term drops out of (2.14).

The superinvariant Iy can be further decomposed into two separate N' = 1 superinvariants in ten
dimensions [34], Iy = - 6 Iy, + 24 Iy, where,

Toa = <t8+§5103> (rR?) "+

1
Iy = (tg + 56103) trR* + - - ,
correspond to the supersymmetrization of the Ba(trR?)? and BatrR* Chern-Simons terms
respectively. As we show in the following, if the uplift of Io,, lo, gives rise to two separate super-
invariants in eleven dimensions, they will necessarily have to be cubic or lower in the fields.

The one-loop effective action takes the following form [37, 38],

L1 = o (Io(R) + %Il(R) £o) + 0@, (2.16)
In particular we see that in this case the Chern-Simons term does not drop out, cf. (2.15). The
ellipses above indicate terms which are not completely known, although partial results exist
thanks to five- and six-point amplitude computations [39—42]. Contrary to the tree-level super-
invariant £ which is suppressed at strong coupling, the uplift of the one-loop superinvariant £
is expected to survive in eleven dimensions, and thus to be promoted to an eleven-dimensional
superinvariant. We will refer to the latter as the supersymmetrization of the Chern-Simons term
CrXg, the uplift of the ten-dimensional Chern-Simons term, where C'is the three-form potential
introduced above.
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An argument of [43], which we review in the following, guarantees that if the supersymmetri-
zation of the Chern-Simons term is quartic or higher in the fields, then it is unique at the eight-
derivative order °. The uniqueness of this superinvariant is also supported by the results of [44-46]
which uses the Noether procedure to implement part of the supersymmetry transformations of
eleven-dimensional supergravity. The results of these references constrain the supersymmetriza-
tion of the Chern-Simons term to be of the form,

1 1
AL = l6 (t8t8R4 — 5511611}24 — 6611t80R4 + R3G2 =+ - ) + O(ﬂ) R (2.17)

where [ is the Planck length. The ellipses indicate terms which were not determined by the analysis
of [44-46], while the R3G? terms were only partially determined. The reduction of the above to
ten dimensions is consistent, as expected, with the one-loop IIA superinvariant (2.16). In addi-
tion the quartic interactions R?(0G)? and (9G)* were determined in [47] by eleven-dimensional
superparticle one-loop computations in the light cone, and in [48-50] by a different method
which uses tree amplitudes instead. * The tgtg R terms have also been obtained by four-graviton
one-loop amplitudes in eleven dimensions [51, 52], while it can be shown [53] that higher loops
do not contribute to the superinvariant (2.17).

In this chapter, we reexamine the problem of calculating supersymmetric higher-order derivative
corrections to eleven-dimensional supergravity from the point of view of the action principle ap-
proach. This method relies on the superspace formulation of the theory and is particularly well
suited to the supersymmetrization of Chern-Simons terms.

2.2.1 De Rham cohomology and Weil triviality

The calculations involved in the supersymmetrization of the Chern-Simons terms require the use
of cohomology groups in superspace. In this section, before presenting the action principle, we
review the various superspace cohomology groups that will be useful in the following. Let {2 be the
space of superforms of any degree, and 2" be the space of n-superforms. Thanks to the nilpotency
of the exterior superderivative, one can define de Rham cohomology groups in superspace in the
same way as in the case of bosonic space, as the ensemble of non-exact closed forms,

H"={weW|dw=0}/{w~w+d\AeQ" '} .

The fact that the topology of the odd directions is trivial means that the de Rham cohomology of
a supermanifold coincides with the de Rham cohomology of its underlying bosonic manifold. We
shall also assume that the body is trivial, thus making the supermanifold trivial i.e. every d-closed
superform is d-exact, and the cohomology groups defined above should all be empty.

There is an important caveat to the previous statement : it is only valid when the cohomology

3. The existence of independent superinvariants starting at order higher than eight in the derivative expansion will
of course spoil the uniqueness of the superinvariant at higher orders.
4. There is disagreement between [47] and [49] concerning part of the (6G)4 terms.
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is computed on the space of unconstrained superfields. Once physical constraints are imposed
it ceases to be automatically satisfied. Adopting the terminology of [54], we shall call Weil-trivial
those d-closed superforms which are also d-exact on the space of constrained (also referred to as
“on-shell”, or “physical”) superfields. The cohomology groups computed on the space of constrai-
ned superfields will be denoted by H™(phys), as in [43]. There is no a priori reason why H" (phys)
should coincide with the cohomology of the body of the supermanifold, meaning that H™ (phys)
may very well be non-empty.

2.2.2 7-cohomology

The space of superforms €2 can be further graded according to the even, odd degrees of the forms.
We denote the space of forms with p even and ¢ odd components by 279 so that,

"= Z OPa
prg=n
A (p, q)-superform w € QP4 can be expanded as follows (in the flat basis),

1
w = qu!EﬁqA. . ./\Eﬂl/\Eap/\. oA EM Way...apf1...Bq - (2.18)

In the following we will use the notation @, ;) € QP? for the projection of a superform ® € Q"
onto its (p, ¢) component.

The exterior superderivative d, when written out in this basis will give rise to components of the
torsion as it acts on the coframe. Thus, dw can be divided according to four bigradings, d : QP4 —
Qptla p Qpatl 4 Qp=la+2 4 Op+2.4-1 Following [55] we split d into its various components
with respect to the bigrading,

d=dy+dy+7+1¢, (2.19)

where dp, d are even, odd derivatives respectively, such that dj, : QP9 — Qptlha ¢ o P —
QP4+ The operators 7 and t are purely algebraic and can be expressed in terms of the torsion.
Explicitly, for any w € (274 we have,

(dbw)m---apﬂﬁl--ﬂq = (p + 1)X (2.20)
p
(D[alw@---apﬂ]ﬁl--ﬂq + 9 Taraz|” Welas...ap41181...8, T 4 (1" Tiay (81" w|a2---ap+1hlﬂ2---ﬁq))
(

dfw)al...apﬁl...ﬁqﬂ =(¢g+1)x (2.21)

q
((_1)pD(51\wal---aplﬁz-ﬂqﬂ) + 5 L1l Warap|Bs 1) TP (1) Tgyfan] WCIaz---apHBQ---BqH))

1

(Tw)al-~~ap—161~--,8q+2 = 5((] + 1)(q + 2) T(,81,32|C wcal.‘.ap_1|,83..ﬂq+2) (2'22)
1

(tw)al...ap+261..ﬂq71 = §(p + ]')(p + 2) T[a1a27 wag...aerg]yBl‘..Bq,l . (2'23)

39



When the exterior derivative is reapplied on the terms above, and the terms gathered according to
their bigradings, the nilpotency of the exterior derivative, d* = 0, implies the following identities :

(p—2, g—4) 0=r2

(p—1, q+3) 0=dfr+7dy
(p, ¢+2) 0= d? +dp7 + 7dp

(p+1, q+1) 0= dpdp +dydy + 7t +t7 (2.24)
(p+2, q) 0 =dj +dst+tds

(p+3, 1) 0 = dpt + tdy

(p+4, 4—2) 0=1t%.

The first and the last of these equations are algebraic identities and are always satisfied. On the
other hand, as a consequence of the splitting of the tangent bundle into even and odd directions,
the remaining identities are only satisfied provided the torsion tensor obeys its Bianchi identity.

The first of the equations in (2.24), the nilpotency of the 7 operator, implies that we can consider
the cohomology of 7, as first noted in [55] (see also [32] for some related concepts). Explicitly we
set the (p, q) graded 7-cohomology group,

HPY = {we QP |7w =0} /{w ~w+TA X € QPFLI21

As in the case of de Rham cohomology, one could make a distinction between cohomology groups

computed on the space of unconstrained superfields and those computed on the space of physical
fields.

Suppose now that the rigid constraint (2.10) is imposed so that 7 reduces to a gamma matrix. It
was conjectured in [43], consistently with the principle of maximal propagation of [56], that in this
case the only potentially nontrivial 7-cohomology appears as a result of the so-called M2-brane
identity,

(Fa)(oq()éQ (Fab)a3a4) =0. (2.25)

Explicitly, for p = 0, 1, 2, one may form only the following 7-closed (p, ¢)-superforms,

Way...aq = Sal...aq
b
Waay..aq = (Fab)(alaQP as...aq) (2.26)
Waba...cq = (Fab)(alagUagA..aq) >
with S, P, U, arbitrary non-7-exact superfields. It can be seen using (2.25) that the forms w above
correspond to nontrivial elements of HZ'? with p = 0, 1, 2. The conjecture of [43] means that all

nontrivial cohomology is thus generated, and that all H?*? groups are trivial for p > 3. This was
subsequently proven in [57] and [58-61].
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2.2.3 Spinorial cohomology

Following [43], let us now define a spinorial derivative ds which acts on elements of 7-cohomology,
d, : HP? — g2 For anyw € [w] € HZ? we set,

ds[w] == [dyw] . (2.27)
To check that this is well-defined, one first shows that d w is 7-closed,
Tdjw = —dyTw =0,

where we used the second equation in (2.24). Moreover dg[w] is independent of the choice of
representative,

[dy(w+7A)] = [djw — 7dfA] = [dyw] .
Furthermore it is simple to check that d* = 0,
d?[w] = d[dyw] = [d?’(ﬂ] = —[(dp7 + 7dp)w] =0,

where we took into account the third equation in (2.24). We can therefore define the corresponding
spinorial cohomology groups HY*? as follows,

HP = {w e HP|dew =0} / {w ~w + dsA\, A € HPI1) (2.28)

The notion of spinorial cohomology was originally introduced in [56, 62] and applied in a series
of papers with the aim of computing higher-order corrections to supersymmetric theories [63—
671, and more recently in [68—70]. The spinorial cohomology as presented above was introduced
in [43] and is independent of the value of the dimension-zero torsion. It reduces to the spinorial
cohomology of [56, 62] upon imposing the rigid constraint (2.10).

2.3 The action principle

The action principle, also known as ectoplasmic integration, is a way of constructing superinvariants
in D spacetime dimensions as integrals of closed D-superforms [71, 72]. Indeed if L is a closed
D-superform, the following action is invariant under supersymmetry,

1

/ dPgem-mop, |, (2.29)

where a vertical bar denotes the evaluation of a superfield at ##* = 0. This can be seen as follows.
Consider an infinitesimal super-diffeomorphism generated by a super-vector field &. The corres-
ponding transformation of the action reads,

0L = L¢L = (dig +igd)L = digL, (2.30)
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where we took into account that L is closed. On the other hand, local supersymmetry transfor-
mations and spacetime diffeomorphisms are generated by £| and, in view of (2.30), the integrand
in (2.29) transforms as a total derivative under such transformations. The action is thus invariant
assuming boundary terms can be neglected.

This method is particularly well-suited to actions with Chern-Simons terms and indeed has been
used to construct all Green-Schwarz brane actions [73, 741, see [75, 76] for more recent applica-
tions to other theories and [77] for applications to higher-order corrections.

The idea is as follows : let Zp be the CS term and Wpy1 = dZp its exterior derivative. Obviously
W1 is a closed form. On the other hand one might be led to conclude that the de Rham coho-
mology group of rank D + 1 must be trivial on a supermanifold whose body is D-dimensional,
hence W41 must also be exact. However, since we are dealing with physical fields, we are interes-
ted in the Weil-triviality of W1, and its exactness has to be checked. If it is indeed Weil-trivial,
it can be written as Wp41 = dKp where now, contrary to Zp, Kp is a globally-defined (gauge-
invariant) superform. It follows that Lp := Zp — Kp is a closed superform, and can therefore
be used to construct a supersymmetric action as in (2.29). To summarize,

non-gauge gauge
invariant invariant
T
~~ =
W12 = d ZU = d KH (2 31)
Zin — K

non-zero and closed

We shall parameterize the derivative expansion in terms of the Planck length [, so that the CJS
two-derivative action corresponds to zeroth order in [. In section (2.3.1), we show that if Z;; is
taken to be the usual Chern-Simons term of CJS supergravity, applying this method only recovers
the O(I°) action. For higher-derivative invariant to appear, some sort of modified Chern-Simons
term has to be chosen as a starting point. Concerning the five derivative or O(I?) case of section
(2.3.2), the superinvariant was already computed in [66] and contained a modified Chern-Simons
term which can be used as a Z11 for our method. In the 8 derivative or O(ZG) case of section (2.4),
as was shown in [36, 78], the requirement that the M5-brane gravitational anomaly is cancelled
by inflow from eleven dimensions requires the existence of certain Chern-Simons terms at the
eight-derivative order in the eleven-dimensional theory. This is the modified Chern-Simons term
Z11, that should lead to the complete O((%) invariant.

As we will see in details in the following, in practice one solves for the flat components of the

superform Kp in a stepwise fashion in increasing engineering dimension. Once all flat compo-
nents of K p have been determined, Lp follows, and the explicit form of the action (2.29) can be
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extracted using the formula,

= D ...e01
Lml...mD‘ = emp €my Lal...aD’
ap az o0
+D €mp " Cmy wml LO[l(lQ...aD‘
ap ap—-1 o0
+ D emD mp-—1 wml Lal--AanlaD‘
ap [e%1
+ mp ‘wml Lal...aD’ ’ (2'32)
where ¥9, = E;,%| and e,,* := E,,°| are identified as the gravitino and the vielbein of (bo-

sonic) spacetime respectively. In particular the bosonic terms of the Lagrangian can be read off
immediately from L, . q,-

2.3.1  CJS supergravity in the action principle formulation

As a reminder, the eleven-dimensional supergravity action reads,
1 1
S = (R* 1-— 5 G4/\G7 — 6 Cg/\G4/\G4)’ N (2.33)
where the CS terms is in last position. From the point of view of the action principle we have,
1 1
11 = _6 C3raGynGy , Wig :=dZy1 = _6 GinGynGy .

As mentioned before, a first consistency test would be to verify that the action principle applied
on this CS term actually leads back to the regular action. Most of the computation is included in
appendix (A.1), but the first few steps are sketched below. According to (2.31), K1; defined as

1
dK11 =dZn = & GynGynGy (2.34)

should lead to the expected O(I°) Lagrangian. This equation can be developed on the vielbein
basis, and gives the equation in superspace components,

11 - 11!
D[AlKAQ...Alg) + ? T[AlAQ‘ KF‘A3...A12) = _6(47')3 G[A1...A4 GA5...A8 GAQ...Alz) ) (235)

where all 12 capital indices can either belong to the odd or even part of the basis. Thus, it can be
split in several expressions graded according to their number of even/odd indices (and similarly,
according to their mass dimension). We then have a total of thirteen equations, ranging from
(12,0) to (0,12) odd/even indices. Since building the Lagrangian only requires the top bosonic
component K, 4,, of the superform K, it is tempting to look to directly at the last equation,
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namely °

11 11!

2 3/2
DalKCSQ?..alg + ?Ta1a2’y K’(yaé--)-am = _W G[a1...a4 Ga5.~.as Gag...a12) 5

where the desired top term K () appears only once. However, it happens to be accompanied by a
term K (3/2) which must be determined by the previous equation, itself containing the term K1),
etc. The 13 equations are nested in such a way that they can only be solved from bottom to top, i.e.
from K(-7/2) to K(?). Let’s examine the first few equations, from mass dimension -3/2 to -1/2:

fas...a12

dim -2 | 0= Do, K20, + LT 0, KLY

. -1 -3/2 -1/2
dim -3 | 0= LD K wranoas — S Du K& D r + 4 <353Tme;a3/_L e ) ,
(2.36)

For all of them, the G* part cancels, and one has to find the right values for the K’s of dimension
-7/2 to -1, such that the equations are verified. The mass dimensions of the physical fields which
can be involved in the construction of Ky are,

[Day] =1 [Ta1a,"] = 3/2 [Gabap] = [Tap”] =0
[Dal] = 1/2 [Tao/j] =1 [Gabcd] =1

However, since the dimensions of the first K are negative, none of them can be expressed as a
combination of fields or gamma matrices, and must be set to zero. The equation in (2.36) are

trivially satisfied.

The following equation, of dimension 0, has a non-zero rhs and involves K 0) o0 K-2),

0 0
5 Da1 Kaz...aﬁal.uaa + §Da1 Kaz.“agal...aﬁ +
11/ 5 5 12
? (22 Tmagf KfOtB...OéGdl...a6 + E Talazv K’Yasn-%oélmaﬁ + ﬁ Talalry K’Ya2-~0¢6a2~--“6>
—— ——
0 0

11! 18
_W ﬁ a1020£1a2Ga3a4a3a4Ga5a6a5a6 .

Since all the previous K’s are zero, it takes the simple form,

(Ff)oqonKfal...aeag...aG =90 (Fmag)alag (Pa3a4>a3a4 (Fa5a6)a5a6 y

where the right hand side comes from the value of G4 that was computed in the superspace
formulation of CJS supergravity, in section (2.1.2). Using the M2-brane identity as well as the

5. The superscript in parenthesis over K indicates the mass dimension of the component. This should not be confused
with one of the other superscripts used elsewhere.
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so-called M5-brane identity,

(Fe)OtIOZQ (Feal~-~a4)043064 =3 (FalaQ)OCIOéQ (Fa3a4)043044 ’

it is easy to check that the solution is given by,

Kal...a7a1...a4 =42 (Fal...a5)a1a2 (Fa6a7)a3a4 s (2.37)

plus any 7-exact term, of the form Kg, . asa1..04 = B(I'f)arasSas...arazas, Where S can be any-
thing of the right dimension. However, these sort of solutions, besides having the potential to be
quite large, come with a numerical coefficient that cannot be constrained, and most of all, lead to
exact terms in K7 (that have no effect on the superinvariant).

The expression (2.37) is the first non-zero component of K, with mass dimension 0. It will be
re-injected in the next equation, on dimension 1/2, and so on. The remaining steps are included
in the appendix (A.1). The top component K (@) first appears in the equation of dimension 2, and
must be

1
K

ay..ai1 — 5 Eal...allGdl...d4Gdlmd4 . (2.38)

The equation of dimension 5/2 does not bring any new component of K, but serves as a consis-
tency check for the expressions we found for the last few K’s. At this point, we have constructed
the explicit expression of the 12 components of K7; and have seen that they are unique up to
T-exact terms. In particular, its purely bosonic component takes the following form,

1

72

K(2) = ﬁeall/\.../\ea1 (

1
a1 Gy..dy Gdl"'d“) =3 GnGr . (2.39)
The result, however, does not yet resemble the CJS action (2.33) : taking L1; = Z1; — K11 we get,

1 1
S - / (— §G4/\G7 - 6 Cg/\G4/\G4)} .

Actually, we have to use the equation of motion of CJS supergravity in order to retrieve the correct
form of the action. It may seem paradoxical to use the equation of motion of an action that is not
yet established, but this section is a consistency test, not a true derivation of the CJS action. The
volume element is defined as,

1
dV =%1 = _ﬁ €aq...a11 €a1 e eall y

and by taking the trace of the third relation of the Einstein equation (B.4), it follows,

_ b dids i, _ L
R*1—144Gd1md4G dV—GG/\*G.

K@ can thus be splitin two part: —R* 1+ % G * G, and taking Z1; — K71 lead to the expected
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action.

2.3.2 The O(I?) correction (five derivatives)

It was shown in [66], by directly computing the relevant spinorial cohomology group, that there
is a unique superinvariant at the five derivative level (order I? in the Planck length). The modified
eleven-dimensional action to order I3 reads,

1 1
S = / (R* 1— 5 Gyn* Gy — 603AG4/\G4 + l3( CgAG4At1"R2 + 2t1“R2A * G4))‘ , (2.40)

where an arbitrary numerical coefficient has been absorbed in the definition of I and trR? :=
R, ARp%; it is understood that only the bosonic (11,0) components of the forms enter the for-
mula above. This action can also be easily understood from the point of view of the action principle
as follows. Consider the twelve-form corresponding to the CS term at order I3,

Z11 == CgAG4/\tI‘R2 y W12 == dZ11 == G4AG4AtrR2 .
Applying the action principle in this non-trivial case requires a solution K to the equation,
dK11 = GurGaaR™P ARy, . (2.41)

or, in components,

11!
F
Dig, K, 400) + > Tip,n,) Kriag.a1,) = 1an? Riay asjeres Blazay @ Glas..as Gag. Ar)

The dimensions of the physical fields are the same as before, with the addition of [Rgpeq] = 2. The
dimensions of the various components of K range from - 1/2 (K, .. .ay,) to 5 (Kg, .. ay,)- Just
like in the previous case, the first few K's vanish for dimensional (or group theoretical) reasons.
However, the remaining steps are far less direct, and are only described in appendix (A.2). For the
sake of having at least one example in the main text, we shall skip to the second-to-last equation,
of dimension 5, leading to the expression of the top component of K,

2 10
E DalKazal...ag + E DalKag...a10a1a2
11 /1 15 10
+ ? (66 Ta1a2f Kfa1...a10 + ﬁ Tamz7 K“/a1a2&3ma10 + ﬁ Tflloél’Y K’7012f12-~~010>

11! 1
= W (2 % ROqOéQCICQ RCLl(lQCQCl G(Zg...ae, Ga7...a1o
2

ci1c2
-1 ﬁ Ralal Ra2a20201 Ga3a4a5a6 Ga7-~a10

1
- cic2
+ 2 11 RG«1¢12 RGSG4C201 GG«5G«6CY1CY2 Ga7ll8043044 .

It involves several of the previous K's, and requires a large amount of correspondences between
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different groups of terms to be consistent. Using the equations of motion (B.1.2), a lot of gamma
matrix algebra, and the BI (2.9), (2.11) it is possible to find a solution in components,

5) _ b1...bs cic2
chl...an = —165 €ay...a7 Gb1~-~b4 Rasag Ra10a116201
or,

K| = (-2G7trR?) | .

Taking L1; = Z11 — K11 we obtain the following superinvariant at order I3,
AS = / (C3/\G4/\tI'R2 + 2 G?/\tI'R2)‘ ,

which precisely correspond to the order-I? corrective terms in (2.40). Contrary to the previous
case, this is a non-trivial application of the action principle, and it leads to a correct superinvariant.

As explained in [66], on a topologically trivial spacetime manifold this superinvariant can be re-
moved by an appropriate field redefinition of the 3-form superpotential. However on a spacetime
with non-vanishing first Pontryagin class, the superinvariant cannot be redefined away. Since we
placed ourselves in a trivial space, the correction at this order is not physically relevant, and only
constitutes a proof of concept.

2.4 The O(I°) correction (eight derivatives)

Aswas shown in [36, 78], the requirement that the M 5-brane gravitational anomaly is cancelled by
inflow from eleven dimensions implies the existence of certain CS terms Z7; at the eight-derivative
order in the eleven-dimensional theory. The corresponding twelve-form reads,

Z11 = 1503, X5, Wio = dZ1 = 15Gan Xy, (2.42)
where Xg is related to the M5-brane anomaly polynomial by descent,
g1 212
Xg=trR* — Z(trR ), (2.43)

andwe have set (trR?)? := tr R trR? and trR* := R,’ARyAR. %A R4®. This Chern-Simons term
can also be viewed as a O(1°) modification of the four- and seven-form Bianchi identities :

dG4 =0, dG7 + %G4/\G4 = ZGXg , (2.44)

where a numerical coefficient has been absorbed in the definition of [. We expand the forms per-
turbatively in [,

Gi=GV +10¢V 4., G =6V +1560 ... (2.45)
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and similarly for the supercurvature R4%. Note that in the expansion above the bosonic com-

ponents of the lowest-order fields, GSTOLZ,_m , etc, are identified with the fieldstrengths of the su-

pergravity multiplet, while the higher-order fields Gz(ll) etc, are composite higher-derivative fields
which are polynomial in the fieldstrengths of the supergravity fields. Solving perturbatively the
BI at each order in I, taking into account that the exterior superderivative d = d2™ 9y, is zeroth-

order in [, implies,

dc\” = o, dcy) + e ¢ =0, )
2.4
dat = o, daM + aV.al? = x{V,
where we have set 16 Xg = [6X él) + - --. Note that X, él) only involves the lowest-order curvature

RO Letus expand the twelve-form Wy, perturbatively in I, Wiy = 6 W1(21) + .-+, so that,
wi) =xP.60=dzy, zn=x{.c. (2.47)

It then follows from (2.46) that this can also be written in a manifestly Weil-trivial form as follows,
wh) =dkyn,  Ki=60.60 -26,.a. (2.48)

In particular we see that it suffices to solve the four- and seven-form Bl in order to determine the
order-1% superinvariant corresponding to L1y = Z11 — K11,

AS =16 / (28 ? — 6ONGD +26P160)] (2.49)

where it is understood that only the bosonic (11,0) components of the forms enter. This is the
superinvariant corresponding to the supersymmetrization of the CS term (2.42). The action would
then read to this order,

S = / (R<0> *1— %GEP)A «GO — écg% e (2.50)

+ 0(x{n - 06 26 6) )

where R, G(9) are identified with the fieldstrengths of the physical fields in the supergravity
multiplet, while the first-order fields R™"), G!) should be thought of as gauge-invariant functions
of the physical fields.

To conclude this part, there are two paths that lead to the superinvariant : one can either solve
dK11 = Gan Xg directly, and find a Lagrangian as in the first two cases, or solve simultaneously
the two Bls for G4 and G, including the Xy term. As we will see, for the first few terms, those

two approaches are equivalent, and lead to the exact same difficulty.

We see that the action above is in agreement with the expectation that the bosonic part of the

48



derivative-corrected supergravity action should be of the form,
1 1 6
S = (R* 1— 5 Garnx Gy — 803AG4/\G4 +1 (Xg/\Cg + AL % 1)) , (2.51)

with AL afunction of R, G and their derivatives. Since AL is gauge invariant, we see in particular
that the CS terms do not receive higher-order corrections beyond eight derivatives : varying (2.51)
with respect to C's implies,

1 )
dx Gy + §G4/\G4 —Xg—i—E(AL*l) . (2.52)

[t is straightforward to see that the second term on the right-hand side above is exact by virtue of
the fact that AL is gauge invariant and thus only depends on C5 through G4. Indeed the variation
of the C3 dependent terms in the AL part of the action (2.51) can be written (possibly up to
integration by parts) in the form [ ®71ddC5, for some seven-form ®7. Therefore by appropriately
correcting the lowest-order duality relation by higher-derivative terms, Gy = xG4 + O(15), one
arrives at the modified BI (2.44).

2.4.1 Argument for the existence of O(I°) invariant

Let’s start by trying to solve the seven-form BI at O(1%). Since the first non-zero component of
Gflo) is G ogab, the term Ggl)A Gflo) drops out of the fully fermionic equation in components,

D, GV

_ s (1) _ (1)
(a1] Yaz...as) QZ(F) G (Xs )

(a1az] flas..ag) ap-ag

Based on what is known about superinvariants in D < 11 dimensions [79], it is plausible to
assume that the superinvariant (2.49) corresponding to the supersymmetrization of the CS term
(2.42) should be quartic or higher in the fields. As pointed out in [43], a necessary condition for
the superinvariant to be quartic is that the order-1® sevenform should be quartic or higher in the
fields. Since G(()}; cannot be quartic or higher in the fields, as can be seen by dimensional analysis,
the order-1 seven-form BI (2.46) must be solved for Gé}% = 0. Then, the equation above simplifies
to,

(1) _ (1)
(Ff)(alag\ Gf\ozg...ag) - (X8 )almag ) (2.53)

It then follows, for consistency, that the purely spinorial component of the M5-brane anomaly
8-form X g must be 7-exact.

If, instead of solving the G'7 BI, we apply the action principle as in the first to case of (2.3.2), the
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equation for K11 in components reads,

11 I
D[Al KA2---A12) + D) T[A1A2| KF|A3---A12) =

11!

coc3 c4C1
(4')4 (G[A1A4 R‘A5A6|C152 R|A7A8| R|A9A10|CBC4 R|A11A12)

1
_ ci1c2 dido
- 4 G[A1---A4\ R\A5A6|C1C2 R|A7A8| R|A9A10|d1d2 R\A11A12) )

(2.54)

Where the mass dimension of the various components of K1; involved range from [Ky, . ay,] = %

to [Ka, .a1,] = 8 (and the dimension of the other fields are unchanged). As usual, let’s proceed in
increasing dimension.

Dimensions 3 and 7/2 —  If we assume that the superinvariant at O(1%) is quartic or higher in
fields, the first potentially non-vanishing component of K7; appears at dimension 4 (it is of the
form G*), thus forcing :

K62 _ g® _KT) g

aq...011 aial...a0 ajaz0q...a9

which make the equations of dimension 2, 5/2 and 3 trivially satisfied (since the rhs also vanishes
for the three first equations).

Dimension 4 — At the next dimension, after simplification eq. (2.54) takes the form,

(M) KLY

farazas...ao

— c1C2 C3C4q
- 2520 (FCUGQ)OCIOCZ (ROC3OC4 R0l50465203 Ra7a8 Ra9a100401

1

cic did
- Z Ra3a4 1 Rasaﬁclcz Ra7as 1 Ra9a10d1d2>

- (Falaz)a1a2 Xéi)...am' (2.55)
Explicitly, the term (trR?)? reads (omitting the factor - 1/4),

gr (D) (T22) (D) (M) Gluguy ™ Gugusyoys Gususzom Gugur %!

ﬁ (Fuoul (FUQW ) (Fu‘l% ) (Fvo...v5) Guoul vout Guzusyoyl GU4U5vov1 Gv2~--U5

)
Far (DH0m) (T2 (o050 ) (D0 ) Guguy ™ Gugusyrys Gro.vs G
)

42 64

[\

24;L - (Fuom (D213 ) ([¥0--+v5 ) ([0~ ) Guguyvovrs Gususwows Gog...vs Gws..ws
24;1 = (Fuom ) (Fvo...vs ) (Fwo...w;ayoyl ) (Fxo...m Your ) Guoquvl GUQ...'U5 Gwo...w3 szom173
2441 64 [o--usyoss ) (Fvomvg Yoy1 ) (Fwo...w320Z1 ) (Fwonms 2021 ) Guomus Gv0.~~1)3 Gw0-~w3 leomrs )
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while the term trR* reads,

6%1 (Fuom ) (Pu2u3 ) (Fu4u5 ) (Fu6u7) GUOUI vout Gm%ono Guwsyl z1 GU6U7 o

i (Fuoul ) (Fuwg ) (Pu4U5 ) (on.‘.vs) GUOM vout Guwwoyo Guwsvl Y1 sz---vs

[rot ) [eets ) (FUOW% ) (Fwo...w5 ) Guou1vow0 GU2u3U1w1 GU2...U5 ng...ws
)

5 ( (

64 (FUOU1 (FUQUJ (FUO”'UZLIO)(FUJOW’UJLL%()) Guoull}oyOGuzugwoyonl...'U4G’LU1...’LU4
o ( (
(

,;;

FuOul) FUO 'U4y0)(Fwo---w4y1)(Fﬂ?o---$3y0y1) GuoulvowoGa:o...mgle...v4Gw1...w4

)(FUO oo (IO ) (Tag.ows %) Gug.us Goo..vs Guwg.ows Gg..g -

64

If the purely fermionic component of X§g can be cast in the 7-exact form of eq. (2.53), this equation
becomes,

(Falaz)amz Xc(v?..‘alo = (FGIGQ)CYICY2 (Ff)asou; Gfas---oqo
= (Ff)OélCQ (3 (F[alag\)agoq G‘f]ag)...oqo - 2 (Ffal)a3a4 Ga2a5u.a10)

= (Ff)OqOQ (3 (F[a1a2|)a3a4 G|f}a5...a10) )
which yields,

Kfalagag...alo - 3 (F[a1a2|)aga4 G|f]0¢5...0¢10 .

Both methods previously evoked lead to the same requirement : the fermionic X'g must be 7-exact.

T-exactness of X3 — Since (2.55) contains many different types of terms, it is useful to re-
duce this expression by simplifying every pair of gamma matrices whose bosonic indices contain
contractions, using the decompositions in appendix B.1. Applying those Fierzings several times
(until the whole expression reaches a fixed point), and using the I'(®) /T'(6) hodge duality, we arrive
at an expression with terms of the form rAr@r@r@ r@r@r@r6) o TEATETEG),
contracted with G* (without any contractions among gamma matrices),

(Falm)(Fa3a4)<ra5a6)(ra7a8) G31a2,a3a47asaeya7as (2'56)
(D102 (D9304) (D930 ) ([O7-012) G s (257)
(FalaQ)(Fa3a4)(Fa5 ag)(ralo a14) G§1a2,a3a4705 .a9;a10---a14 (2'58)

and we have suppressed spinorial indices for simplicity of notation. In the above, Gala2 arags

G? G:

o sararer Carass. saro..ars» denote certain sums of G* terms with 8,4,2 indices contracted
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respectively. More explicitly,

4 _ 7 efg h ,
Gala2;a3a4;a5a6;a708 T 9733 G Ga2a7a8€Ga3a5a6 Ga4,f9/t +o
4 — 25 I :
Galaz;a3a4;a5a6;a7...a12 ~ 9934 Ga1a7 Ga2a11a12,/ Ga3a4aga10Ga5a6asg +e
4 1
Ga1a2;a3a4;a5...a9;a10...a14 = 91136 Galazam' Ga3a5a11,/‘Ga4a12a13¢114Gaaawsag +y

where the ellipses stand for more than a hundred terms of this form (and summed indices are
shaded). No obvious cancellations appear between these three types of terms, at this point. Let us
further analyze how X g is decomposed into irreducible components. First, the product of four
gamma matrices contains a symmetric product of eight spinor indices which can be decomposed
as follows, in irreps of Bs,

(00001)®s® = 1(00000) & - - - @ 1(40000) & 2(00004) & 2(10002) ® 2(01002) . (2.59)

45 terms with multiplicity 1 3 terms with multiplicity 2

Each irrep on the right-hand side above corresponds to a gamma-structure which can be thought
of as a Clebsch-Gordan coefficient form the product (00001)®58 to all the particular irreps. For
example, the gamma-structure corresponding to (00002) is (I'“*)(T'¢, ) (I'*?)(Te,ay...a5 ), Since it
allows, roughly speaking, to make a 5-form out of 8 symmetrized spinor indices.

Next, the product of four four-forms G can be decomposed as follows in irreps of B,

(00010)®5* = 4(00000) @ - - - & 6(00004) @ - - - & 3(40000) , (2.60)

95 terms, various multiplicites

and all 95 terms except (00006), (00008), (01006), and (10006) can be found in (00001)®s8,
This analysis implies that the contraction of four gamma matrices with four 4-forms G can be
decomposed into 51 gamma-structures, each contracted with (multiple) G* terms corresponding
to the same irrep of Bs.

For example, the term (00000) in the decomposition of (00001)®5® gives rise to a single gamma-
structure contracted with the four possible G* terms giving rise to a scalar. Explicitly we have,

(T (Tey ) (T2)(Tey) (al GG GGy + -+ u G1)P Gz GV s G(?’/)(l/)) :

for some constants oy, . . . , g, and where the dots stand for the two remaining independent com-
binations of G* that form a scalar. Similarly, the (00004) gives rise to the following term,

(81 () (Y (Tt-8) () 4 3y (Lo (2001 () -0 )

X (Oél Ga1a2b161 Ga3b2b361 Ga4a5a6 2 Gb4b5b6€2 + -+ Qg Ga1a2a3b3 Ga4a5a6b2 Gb1b2€162 Gb5b66162) )
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for some constants (i, 82, a1,...,as and where the dots stand for the 4 remaining combi-
nations of G* that are in (00004). The 51 gamma-structures involved in the decomposition of
X®) can all be found explicitly, and only three of them are not 7-exact : (04000), (03002), and
(02004). In other words, except for the structures corresponding to these three irreps all other
gamma-structures appearing in X g involve at least one contraction with a ro.

Going back to (2.56) : the Gﬁla%m;amg term, by virtue of its contraction with the four gamma

matrices, transforms in the symmetrized product of four Young diagrams H, cf. appendix C.1.
Decomposing in irreducible representations of Sg,

[ ] YT1
H®S4 _ @ @ @ ® [ N B}EE{ (5 terms) (2.61)

At the same time Gila%_“;amg admits a decomposition into modules of Bs x Sg, > p Vr X R,

where Vp is the plethysm of the module V' = (10000) of Bs with respect to the Young diagram

R of Sg. Moreover only the plethysms corresponding to the right-hand side of (2.61) will appear

4
aiaz;...;aras

dule Vg corresponding to each R on the right-hand side of (2.61), using [80], with the result that
only the plethysm corresponding to Y'T'1 contains (04000), while neither (02004) nor (03002) is
contained in any of the plethysms corresponding to the Young diagrams on the right-hand side
of (2.61).

in the decomposition of G under Bj X Sg. On the other hand we can compute the mo-

aras:..ar...azo t€rmM of (2.57) admits the following decomposition in irreps of Sia,

YT2
[]
[ ]
H®33 & = o - (16 terms) (2.62)

Only the plethysms corresponding to the Young diagrams on the right-hand side of (2.62) will
appear in the decomposition of G31a2;m;a7ma12 under Bs x Si2. On the other hand it can be
shown that only the plethysm corresponding to Y72 contains (03002), while neither (04000)
nor (02004) is contained in any of the plethysms corresponding to the Young diagrams on the

right-hand side of (2.62).

Finally, the Gila%m;alomau term of (2.58) admits the following decomposition in irreps of S14,

YT4

YT3 ]
®s2 ] ]

H®52 ® = [ ] - & & - (23 terms) (2.63)




Moreover only the plethysms corresponding to the Young diagrams on the right-hand side of
(2.63) will appear in the decomposition of Ggla%;ammm under Bs x S14. On the other hand it
can be shown that only the plethysm corresponding to Y'7'3 contains (02004) ; only the plethysm
corresponding to Y T4 contains (03002), while (04000) is not contained in any of the plethysms

corresponding to the Young diagrams on the right-hand side of (2.63).

Using the method of appendix C.1, the gamma matrices in (2.56) and (2.58) can be projected
respectively onto Y'T'1 and Y'T'3. The terms (2.56), (2.58) can thus be shown to vanish. Moreover,
it can be seen that the cancellations are sensitive to the relative coefficient between (trR?)? and
trR* inside Xg. In other words, it can be shown that (trR?)? and tr R* are not separately T-exact.

Next equations — Moreover, it can be shown that all higher components of K77 solving W12 =
dK11 are automatically guaranteed to exist. To see this, let us define the twelve-form,

Iig == Whp — dKi1,
which is closed by construction,
0= (dl)p,l?)—p =Tlpt111-p + df—rp712—p + dep—1713—p +tlp—2,14—p - (2.64)

On the other hand, as we saw above, provided (2.53) holds, condition W15 = dK7; is solved up
to dimension 4, i.e. I 12—, = 0 for p = 0,1,2. Setting p = 2 in (2.64) then gives 7139 = 0,
which implies I3 9 = 0 up to a 7-exact piece that can be absorbed in K4 7, since all 7-cohomology
groups Hf’m_p are trivial for p > 3, cf. section 2.2.2. By induction we easily see that I}, 12—, = 0,
for all p > 3. In other words, provided (2.53) holds, the Weil-triviality condition Wi = dK7j; is

guaranteed to admit a solution.

2.4.2 How many superinvariants?

We have seen that provided the modified BI (2.44) are satisfied, there will be at least one superin-
variant at eight derivatives, cf. (2.49). A second independent superinvariant can also be similarly
constructed as follows. Consider the twelve-form,

1
Wll2 = 6G4/\G4/\G4 . (2.65)

Expanding perturbatively to order [ we obtain,

1 1
Wi = inf)AGf)AGS) =dZu,  Zu=; a0, clV (2.66)

The above can also be written in a manifestly Weil-trivial form using (2.46),

Wll(Ql) =dKi, Ky = —G§°)AG§” . (2.67)
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The order-1% superinvariant corresponding to Z1; — K7j; then reads,
1
AS =1 / GYA (2 GO O + G§°)> : (2.68)

where it is understood that only the bosonic (11,0) components of the forms enter. The above
superinvariant does not contain the correct CS terms required by anomaly cancelation, cf. (2.51),
and should therefore be excluded by the requirement of quantum consistency of the theory.
However if one is only interested in counting superinvariants at order [ in the classical theory,
the above superinvariant is perfectly acceptable and its existence is guaranteed provided the BI
are obeyed to order (5.

Dropping the requirement of quantum consistency, relying on classical supersymmetry alone, one
may also consider the following two 12-forms,

Uip = I5GuntrR* Vig = I5Gun(trR?)? | (2.69)

so that U-$V is the Weil-trivial 12-form corresponding to the CS terms of eleven-dimensional
supergravity required for anomaly cancellation, cf. (2.42). It follows that either U, V are both Weil-
trivial, or neither U nor V' is Weil-trivial. If the former is true, there would exist gauge-invariant
11-forms Ky, Ky so that at order I® we have UY) = dKy and V(Y = dKy. One can then
construct two corresponding superinvariants using the action principle,

ASy = I8 / (nR* O - Ku),  ASy =1 / (B2 ~Kv) . 79

By the argument at the end of the last section, ASy, ASy should correspond to a modified
BI obtained by replacing the right-hand side of the second equation in (2.44) by trR?, (trR?)?
respectively. Then K7, Ky would still be given by (2.48) but with Gfll , G71 solutions of the new
modified BI.

Together with the superinvariant AS’ of (2.68), we would then have a total of at least three inde-
pendent superinvariants at the eight-derivative order, with only one linear combination thereof,
AS of (4.34), corresponding to the quantum-mechanically consistent eight-derivative correction.
As we saw in section 2.4.1, if ASy, ASy exist they must necessarily be cubic or lower in the field
(this requirement is also proven independently of all the development of section (2.4.1) in the
appendix (A.3). It is shown that attempting to supersymmetrize V fails if the condition that the
superinvariant AV must be quartic is not dropped.)

2.4.3 Integrability

The perturbative expansion of the curved components following from (2.45) reads,

0 1
Gty = G§\4)1..‘M4 +1° G5\4)1.‘.M4 +--
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and similarly for G7 and R4®Z. Note that in terms of flat components there is a mixing between
zeroth order and order 16 due to,

d = EA@A _ E(O)A¢g)) 4 ZG(E(O)Aq)S) 4 E(l)Acbg))) +

where we have expanded the coframe, EA = FOA L 6pMA L .. and we have considered an
arbitrary one-form @ for simplicity. However, if one restricts to the top bosonic component of a
superform at = 0 as in (2.29), then there is no mixing :

20| = €,200| + yo oY), oV = e, 0] + y2 o],

where e,,%, 12, were defined below (2.32). Indeed the O(1%) corrections to the coframe E4 only
start at higher orders in the #-expansion and could be systematically determined as in e.g. [81]
once the O(1°%) corrections to the torsion components have been determined.

In practice the Bl are solved for the flat components of the superforms involved, G(Xl)m Ay G(All)... Ay
etc, at each order in /. Consequently the corresponding BI, dG4 = 0 etc, are only shown to be
satisfied up to terms of the next order in [. In principle there may be an integrability obstruction
to the solution of the Bl at next-to-leading order in the derivative corrections, although that
would most probably be prohibitively difficult to check in practice. In the following we shall see
that the integrability of a certain superinvariant is guaranteed provided the Bl admit solutions to
all orders in I. Note however that all-order integrability need not be a consequence of the BL.

The phenomenon of inducing a higher-order correction at next-to-leading order is also well unders-
tood at the level of the component action, S = S (0) 4 165(1) 1 ... The condition of invariance
of the action under supersymmetry transformations 6 = 6% + [66(1) 4 ... reads,

50 50) — ¢ 7 5051 4 5(1)g(0) — 7 (2.71)

and similarly at higher orders. The term 6" S() in the second equation above is proportional
to the lowest-order equations of motion. Therefore in constructing S!) we only need to check
its invariance with respect to the lowest-order supersymmetry transformations 6(°) and only up
to terms which vanish by virtue of the lowest-order equations of motion. This corresponds, in
the superspace approach, to the fact that in solving the first-order Bl one uses the zeroth-order
equations for the various superfields. Once S is thus constructed, the correction §(!) to the
supersymmetry transformations can be read off. Since §(1).S™) £ ( in general, this induces a
correction S to the action and a corresponding correction §(?) to the supersymmetry transfor-
mations, and so on.

The existence of an intergrability obstruction can also be understood in the context of the Noether
procedure. Indeed at next-to-leading order we have,

§2) 50 1 5(1)g(1) L 50 g2 —
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Therefore there must exist an action S(?) such that its variation with respect to lowest-order
supersymmetry transformations is equal to —6() S up to terms that vanish by virtue of the
lowest-order equations of motion. This condition will not be automatically satisfied for every S().

In particular one would like to know how many of the independent superinvariants at order I8
presented in section 2.4.2 survive to all orders in the derivative expansion. Assuming M-theory
is a non-perturbatively consistent theory, we expect the superinvariant (2.49), corresponding to
the supersymmetrization of the CS term required for anomaly cancellation, to be integrable to all
orders. Moreover, assuming this superinvariant is at least quartic in the fields, a similar argument
as the one detailed below (2.64) shows that it must be unique at order 16 [43].

In addition, if one assumes that the Bl admit a solution to all orders in a perturbative expansion
in [, then there is one linear combination of the superinvariants presented in section 2.4.2 that is
guaranteed to exist to all orders in [. Indeed in that case the twelve-form,

1
Wio = (l6X8 — §G4/\G4)/\G4 = d(G7AG4) >

is Weil-trivial by virtue of (2.44), which should now be considered valid to all orders in [. However
thisis not the superinvariant which corresponds to the supersymmetrization of the anomaly term,
cf. (2.49). Indeed by the usual action principle procedure the twelve-form above would give rise to
the superinvariant,

1
AS = / <l6X8/\Cg - §G4AG4/\03 — G?/\G4>‘ . (2.72)

Expanding to order (% and assuming G receives a non-vanishing correction at this order, we see
that (2.72) does not coincide with (2.49) and the corresponding 18-corrected action is different
from (2.50).

In conclusion, under the aforementioned assumptions, we would then expect (at least) two inde-
pendent superinvariants to exist to all orders in a perturbative expansion in /. Only one of these,
the one corresponding to the supersymmetrization of the CS anomaly term, will be quantum-
mechanically consistent.

2.5 A systematic approach to the O([%) invariant

2.5.1 Overview of the equations to come

The developments of the previous section, although providing information about Xg and the
superinvariant, do not offer a practical path to actually solve the equations leading to the su-
perform K. The solution of Ké‘f?,_agal.._as involves four tensors GG contracted with four gamma
matrices, where the non-7 exact combinations of matrices, (04000), (03002) and (02004) should
vanish (cf. (2.59) and (2.60)). And all the other 45 irreps have to be determined, and belong to

Kt(zdf?..aaoq...as (with a particular coefficient for each one).
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With the help of the computer program described in chapter 3, decomposing such expressions
into irreducible components is in principle a simple procedure. However, in this case the large
number of spinor indices (00001)®98 combined with the four tensors G' (00010)®%* leads to
some difficulty. Although this is still an unfinished work, the methods described in this sections
might be useful for finding a systematic treatment of the superspace equations leading to the
desired action.

First, we notice that all the equations of higher dimensions will be of the form

(Ff)(oqozg|Kfa1...ak|oz3...a12_k) = T[a1...ak}(a1...o<12_k) 5 (2~73)

where T is any expression involving gamma matrices and gauge-invariant fields of the theory. For
example, at dimension 9/2, it will involve at most terms like TDR, GRT, RDT, T3, GTDG,
G3T, DTDG, and G?DT. A way of dealing with equation (2.73) would be to decompose the rhs
inirreps of SO(1, 10), and check that all terms either vanish or belong to the solution for K. This
possibility in examined in the following paragraphs.

2.5.2 An ansatz for the decomposition

Let’s go back to the equation (2.53) that states the 7-exactness of Xg (and also defines the solution
for K11 of dimension 4),
1) _ v
(Ff)(ala2|Gf|oc3...ocg) - XC(XI)MQS :
The irreps shared between (00001)®5% and (00010)®$* represent all the terms that can enter

the decomposition of Xg. They both come with a particular multiplicity, and represent a certain
contraction of the four G tensors or gamma matrices. It is partially reported in the table below,

irrep mﬁirirll)rlrifity s%ratlfgiﬁie mgﬁ?}fﬁéty sttfl?cst?ll;e
(00014) 1 Fereal...a4rb1...b6F01...C6' 1 Ga1---a4Gb1...b4 Gb5b60102 GC3---CG
(31000) 1 Iy ey Ty g 1 Gardids ™ Gidzdser Gerdsds > Gpdgdges
(10102) 1 LD Tpypgi Lo 19 (7)

(01002) 2 { T Tela102Toy s } 23 (?)

[arae F[b1 bo Lpgn, F65176]

The main problem in finding the terms with (?7) is that the multiplicity of the irreps makes it
complicated to find the right non-redundant G* terms. For example the irrep (10102) has a mul-
tiplicity of 19 : it is very difficult to write all of them by hand. When taking into account all the
multiplicities of the irreps above (for both gamma matrices and GG%), we obtain a total of 405 term
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for the decomposition in irreps. The algorithm allowing to generate this ansatz for one particular
irrep is as follows,

— Write all non-equivalent permutations of the 16 indices on the expression G, ...q, Gas...as
Gh,..bs Gbs..bs, leading to 16!/(41)4 /4! = 2627 625 terms. °

— Contract certain indices from all the terms above, according to the number of free indices
required for projecting into the desired representation. This leads to a large number of re-
dundant terms.

— Remove the duplicate terms by finding all non-trivially identical contractions (cf. sec-
tion 3.2.4)

— Project all the terms in the Young diagram corresponding to the SO(1, 10) irrep. Attribute
to each of them a coefficient z;.

— Find the condition on the z; required to make the whole sum vanish. The number of z;
in the solution (whose value is expressed in terms of the other coefficients) should be at
least equal to multiplicity of the SO(1, 10) irrep, and constitute an acceptable basis for the
decomposition in the desired irrep.

For example, let’s build the term (01102) coming from (00001)®$® with a multiplicity 1, and from
(00010)®5* with a multiplicity 14. One of the possible gamma matrices configuration (among
many others) is

(F[m)(Fagag])(Fa4a5)(Fa6a7asb1b2) . (2~74)

The irrep (01102) is a “2-3-5-form” requiring 10 free indices. Among the 16 indices of G*, six
have to be contracted with each other. Since the first step of the algorithm leads to all the possible
position of indices, we can arbitrarily choose to contract (b3, bs), (b5, bg) and (b7 bg). The 641
different terms obtained go down to 267 when the trivially and non-trivially equivalent terms are
removed. Then, projecting all those candidates on the Young tableau corresponding to (2.74)

ae|a1|a4
ar|az(as
ag|as
b
[b2]

and requiring the sum (of the 267 projections) to vanish leads exactly to 14 terms, expressed as
linear combinations of the others. All of them have the same free indices as (2.74), and contracting
them leads to the (01102) part of the ansatz. The same process has to be repeated for all other
irreducible representations available.

This method actually leads to an ansatz of 438 terms, instead of 405, since it sometimes leads to
a non-minimal set for the G* part. All the coefficients have to be determined using contractions
with all possible sets of four gamma matrices (since there are 8 symmetrized indices). This adds

6. Generating such a high number of terms can be quite challenging in itself, and requires to proceed with care.
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up to 15 different cases, which all require to explicitly develop the symmetry of the eight fermio-
nic indices. For each case, we must compute 438287!l = 1103 760 traces which contain at most
eight gamma matrices. The simplest of this contractions, with TMWTMTMTM) have already been
computed, and the other should soon follow. However, given the substantial amount of com-
putational power required, the higher contractions might be prohibitively long, or too memory
consuming for a standard computer.

In principle, this method of decomposition allows to compute systematically the ansatz for the
decomposition of any expression involving gamma matrices and tensors, and can be used to solve
all the equations of the form (2.73). The next few equations might involve expressions that are too
large to be computed in practice, but since the amount of spinorial indices decreases with the mass
dimension, there shall be less and less room for gamma matrices algebra, which greatly simplifies
computations.
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The SSGamma package :

Tensors, spinors and gamma matrices

The computations presented in the previous chapter crucially depend on the use of a computer
program. Most of them involve a large amount of terms, gamma matrices in high dimensions,
(anti-)symmetrizations over numerous indices, etc. A Mathematica package, specifically designed
to fit our needs was developed and extensively used throughout chapter 2 and 4. It is named
SSGaMMA, shorthand for SUPERSPACE GAMMA, and this chapter aims at introducing its main
features.

In this chapter, basic knowledge of the Mathematica syntax is required. The main introduction to
Mathematica programming is available in [82].

3.1 Motivations and requirements

The package presented in this section is derived from the already very useful Mathematica package
called Gamma [83]. Gamma was built to deal with gamma-matrix algebra, Fierz transformations,
and some simple calculations regarding tensors and spinors. It is remarkable in many ways : it’s
easy to use, works in all spacetime dimensions, and allows to make use of the rich Mathematica
ecosystem to define new functions effortlessly. However, when dealing with the superspace related
issues of the first chapter, several shortcomings had to be addressed in order to handle some of the
computations. Let’s use as an example a typical superspace equation encountered in chapter 2 :

1 - 11!
Dia,Ka,..ap) + 0l Tia, a0 Krjas..Ap) = e Ria; Asleres Baza, " Glas..as Gag.. Ar) -
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This expression contains 12 (anti-)symmetrized superspace indices, each of which can be either
fermionic or bosonic. It also contains a derivative applied to a tensors K whose mixed components
(i.e. with both types of superspace indices) probably have a definition in terms of gamma matrices
and other fields. Finally, it contains two superspace R and G tensors, which give rise to four G
tensors when evaluated with the right indices. Dealing with this simple expression thus directly
leads to a few requirements :

— Handle large (anti-)symmetrizations efficiently, i.e. by taking into account the symmetries
of the tensors on which they are applied.

— Operate with tensors with mixed symmetries, i.e. with symmetric and anti-symmetric parts,
and with both bosonic and fermionic indices.

— Be able to deal with large expressions involving gamma-matrix algebra that appear when
symmetrizations are made explicit (traces, expansions, etc.)

— Manage to simplify and merge non-trivially identical terms containing several contracted
identical tensors (like the four G tensors above).

— Be flexible enough to allow an easy implementation of new functions.

Several existing programs already have some of the required features listed above. The closest
existing program is Cadabra [84], but for the purposes of this work, it lacks flexibility : since it is
programmed in C++, any additional function requires a substantial amount of effort to be imple-
mented.

3.2 Main features and functions

The five following sections present most of the functions that can be used in the package. Several
of them are very similar to what already existed in Gamma [83]. However, as [ mention before, all
of them have been completely adapted, either to broaden their range of application, or to improve
them in a particular way. The nature of the modifications is not always mentioned, for it often
consists of technical details about Mathematica programming.

3.2.1 Spacetime dimensions and conventions

The spacetime dimension must be specified using the instruction SETDIM : SetDim[11] (for 11
dimensions). The package was built for 11-dimensional Majorana, and 10-dimensional Majorana-
Weyl spinors. For now, it cannot deal with Dirac or symplectic spinors, although a generalization
might be set up without too much effort. The practical manipulation of spinors is presented in
the section (3.2.3).

Secondly, one can chose the convention associated to the Levi-Civita tensor, namely,
d/2
€ai...ag — j:2[ / ]tl’ (’Yal...a,i) s

by using the function SETEPSILONCONVENTION, with the value 1 or-1: SetEpsilonConvention[+1].
This choice will also affect the Hodge duality relation of section (3.2.2).
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3.2.2 Gamma matrices

Basic gamma-matrix manipulations — A symbolic gamma matrix (’y“)aﬁ is represented by
the function TG (for Tensor Gamma), where both bosonic and spinor indices must be specified as
arguments. The program do not explicitly consider the 2[%/2] x 219/2] matrix elements, but simply
defines symbolic matrices verifying the Clifford relation (*y*) = % The up or down position of
spinor indices must be indicated using {1, o} or {0, o} :

In[1]:= TG[{a},{{0,a},{1,5}}].

By default, the matrices are denoted 7, but other nameslike I' can be specified using TG [I", {a}, {{0, a}, {1, 5}}].

As usual, those matrices can be easily combined into anti-symmetrized blocks (’y“bc)aﬁ =

a C B
(Ylevby) " as

In[1]:= TG[{a,b,c},{{0,a},{1,5}}].

Any product of these block of matrices, for example (y**¢yde~/ ghi)aﬁ is written as

In[1]:= TG[{a,b,c},{d,e},{f,g,h,i},{{0,a},{1,83}].

The product can be explicitly computed by using the function GME (for Gamma Matrices Expan-
sion) :

In[1]:= GME @ TG[{a,b},{c},{{0,a},{1,8}}]
Out[1]= 52 ('Ya)ocﬂ — 0y (7C)aﬂ + (’Vabc)ocﬂ

which corresponds to the expansion given by

Min(n,k)

n k . L(i— i(n—1 ai...a; _a; a
,yal...an,yblmbk — Z <Z> (/L> 7! (—1)2( 1)+i( ) 6[[1)11171 vy PR n}biJrlmb’n]' (31)

=0

The generalized Kronecker § defined by 0, ' = 5{;11 . 5;:]] is represented by the function TD*
(for Tensor Delta) :

TD[{ay...an},{b1...b,1}]

Similarly, the generalized Levi-Civita symbol is called with TE (for Tensor Epsilon) :

In[1]:= TE[{ai,...,aq}]
Out[1]= €4;.. a4

When there is more than one product, the function GME has to be applied several times. In the
special case where the product contains repeated indices in adjacent matrices, the function GMC
(for Gamma Matrices Contraction) is automatically applied

In[1]:= GMC @ TG[{a,b,e},{e,c},{{0,a},{1,3}}]

1. In TD and TE, instead of § and €, custom name can be specified by TD[A, ...] and TE[e, ...]
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Dut[11= — 96 (va)a” + 967 ()a” — 8 (Yave)a”

using the formula

aj...an€i...e _
’}/ " p’)/ep...elbl...bk -
Min(n,k) [p—1

. n k - n-1 a Qg
Z H(D—n—k—l-q-z) (z) <2> il (-1)2 L (i-1)+i( )5[[611 . i1 a’”]bm...bn}

=0 =0

When the contracted indices are separated by a gamma matrix, like (’y“la?efyblbﬂclcw)aﬂ , the
product is developed using 3.1 in reverse :

aijage ai1a2

B
(7 ’71)1()2761026)0(6 = (7 ’767b1b2761026)a5 - 5‘[3a1 (“YGZ}’Yblbﬂclch)a (3~2)

where we only get terms without contracted indices between gamma matrices (the second term
in the rhs of 3.2), and terms of the form

e1...e B
( t Z’Ybl by Ver...cneq.. el) )

where the first matrix only contains indices (e; .. . e;) that appear in the last matrix. It is then
possible to expand this product to find,

(LE) (k-in+i)
(761“ el’Yln b Ver...cneq .. ez = Z i! p' ( > 1)%(2 D) (_1)§(p—1)+p(k—i—p)
i=0 p=0
! =i\ (n+\ ]
) (H ( D_k_n_mw)) (p )( . ) S IR YRR O
m=0

where y1 ...y = biy1...bpand 21 ... 255 = b1...b; ¢1...¢cp, and (...) represent all the
permutations over b . . . bg.

If the spinor indices of a gamma matrix are contracted, the trace can be explicitly computed using
the function GMT (for Gamma Matrix Trace). The following three examples are computed for
D = 11, with Dirac matrices :

In[1]:= GMT @ TG[{a,b},{c},{{0,a},{1,a}}] — (v**7.)a"
Out[1]= O

In[2]:= GMT @ TG[{a,b},{c,d},{{0,a},{1,a}}] — (Y*Ved)a
Out[2]= —64 62

In[3]:= GMT @ TG[{a;...as},{as...a11},{{0,a},{1,03}] — (Vay..asVas..ap o’
Out[3]= —32 €4, .. a,
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In some cases, two gamma matrices can appear with contracted spinorial indices. In order to make
the contraction explicit (and be able to apply the previous function), the matrices must be gathered
using GMS (for Gamma Matrices Simplification) :

Out[1]= (’Yab)aﬂ (%d)ﬁs

In[2] := GMS[%]
Out [21=(YapYed) o’

It is sometimes useful to use the hodge duality for gamma matrices, in order to quicken a compu-
tation, or simply to regroup identical terms. The function GMD (for Gamma Matrix Duality) will
transform a gamma matrix into its hodge dual via the formula,

1

: La(d- Lk
Yai..ap = @n (i)4/2H+1 (21)3e(d-D) (_1)3k(k-D)

b1...bg— *
k btk Vo1 bgw Vs

€aq...a
where v* is the chirality matrix. The matrices that have to be transformed can be specified by
calling the function with a list of integers as a second argument. It represents what order of gamma
matrix must be dualized :

Out [1]= (’711102)aﬁ(7b1~-b9)/35

In[2]:= GMD[%,{9}]
Out [2]= % €by...bgeren ('Yaum)aﬁ (’76162)[35

Aword about computation time — Those manipulations can be extremely demanding in terms
of computational resources, mainly due to the inevitable symmetrizations of indices that have to
be made explicit. To get a sense of the numbers involved, let’s consider the two following examples :

b1...bs

ai...as B

(7 Y 701.-.Cn)aﬁ and (’7a1b101 Yasbaco - -+ VannCn)a

and look at the number of terms contained in the product expansion, and the time it took Mathe-
matica to compute them :

n | Number of terms ‘ Time(s) n | Number of terms ‘ Time(s)
3 12206 1.0 nd 3 490 <0.1
) 94 428 7.5 4 13562 14

7 383283 28.6 5 539 041 51.1

Luckily, the products one encounters in real-life situations often appear contracted with tensors,
whose symmetries can be used to simplify the computation. If T"and H are two 5-indices and

2-indices anti-symmetric tensors contracted with some indices of the gamma matrices, the com-
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putation is significantly faster, and the number of terms is greatly reduced :

(’Valma57b1mb5701...cn)a6 Toybrerasby Hagbses  and  (Yaybyey Yagbocs - - - ’Yanbncn)aﬂ Taybycrazby Hasbsces
n | Number of terms ‘ Time(s) n ‘ Number of terms ‘ Time(s)
3 1138 0.2 3 26 <0.1
and
5 7654 0.9 4 465 0.3
7 31332 2.9 5 16 058 3.0

However, those results are given with non-evaluated Kronecker deltas, and still need a few further
simplifications. For instance, the last expression, containing 16 058 terms looks like,

c2 sbscs sasasbses B8 azaq B
<5a1 6b4c4 5a261b261 (Vas)oé + 5a1a2 (7a551b2b3b4b50162036465)a +. ) Ta1a2b1b201 Ha3b363’

where all the Kronecker can be eliminated using the function DELTASIM (for Delta Simplification),
whose role is to apply the Kronecker deltas, one by one, on the adjacent tensors :

b b5
Dut [1]= 52? (522%’; (SZ;bszgf (7@3)aﬁ Hugbgcg Ta1a2b1b201
In[2] :=DeltaSim[%]

- bsb
Out [2]= (534;%; 62;17?!7;5? (’Yag)aﬁ Ha3b303 Ta2b1b2clc2
In[3] :=DeltaSim[%]

cs sasbszbscy B by Saabsbsca B
Out [3] 5b4 6a2b1b201 (7113)& Ha3a5b3 Ta2b1520102 + 6aé 6a2b1b2c1 (Pyaz)a H03b365 T02b1b26162

In[3]:=DeltaSim[%]
Out [3]= (5;:1’ ('Yag)aﬁ Ha3a5b3 Ta4b3b5<:2<:4 + 52; (’ya3)a6 Ha:3b3c5 Ta4b3b56284

This part of the computation can sometimes be even more demanding than the actual computa-
tion of the traces. In order to control its behavior, it is preferable not to call this function automa-
tically. For large expressions, when trying to compute expansions of gamma matrices by recursive
application of GME, it might be fruitful to check whether or not DeltaSim must be called in bet-
ween the GMEs, or if it must be called at the end of the expansion.

3.2.3 Tensors and spinors

SSGaMMA allows to manipulate spinors and tensors of any symmetries, with any number of bo-
sonic and fermionic indices, with various indices symmetries.

Defining tensors and spinors — A tensor is declared using the function TENSDEE, specifying
the name as first argument, then all the indices (in a list), the anti-symmetric indices, the symme-
tric indices, and if needed the group-swapping symmetry.

— A 6-indices tensor T', anti-symmetric in its first, second and fourth indices, symmetric in
its third and fifth indices, without symmetry in its sixth index :
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In[1] := TensDef [T,{ai,as,b1,as,ba,c1},{{a1,as,as}},{{b1,ba3}]
Out[1]= Canonical formmm of the temnsor: Tg, q,b,asbscy

ASym positions: {1,2,4} Sym positions: {3,5}

— A tensor anti-symmetric in its first and second indices, in its third and fourth indices, with
a symmetry by exchange of the two pairs :

In[1] := TensDef [R,{a,b,c,d},{{a,b},{c,d}},{{}},ASymSwap->{1,2}]
Out[1]= Canonical form of the tensor: Riped

ASym positions: {1,2}{3,4} Sym positions: {}

— A three-indices tensor without any symmetries :

In[1] := TensDef [G,{a,b,c},{{}},{{}}]
Out[1]= Canonical form of the temsor: Gup.

ASym positions: {} Sym positions: {}

— A three-indices tensor without any symmetries :

In[1] := TensDef [¢,{a,b,{1,\alpha}},{{}},{{a,b}}]
Out[1]= Canonical form of the tensor: ,,"

ASym positions: {} Sym positions: {a,b}

The tensors declared in this way will automatically sort their indices according to their symmetries,
and produce the right 1 factor if needed. The tensors already defined can be displayed by calling
TensDef [ ] (without arguments) :

In[1] := TensDef[]
Out [1]= Canonical form of the tensor: Gupeq
ASym positions: {a,b,c,d} Sym positions: {}
Canonical form of the tensor: T,;“
ASym positions: {a,b} Sym positiomns: {}

Tensors with other names are assumed anti-symmetric

As noted, all tensors whose name has not been defined are considered fully anti-symmetric by de-
fault. If a tensor has been declared, its name should not be used for anything else (and it must keep
the same number of indices as in the declaration). The list of defined tensors can be cleared with
the instruction TensClear [], and a specific tensor can be removed from it using TensClear [T]
(for a tensor named T).

Spinorsin 11 dimensions — In 11 dimensions, the spinors are Majorana with 32 components.
The properties of the conjugation matrix are,

Cop = —Cha, CopCPY =67, P = CPepg,
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and the spinor bilinears are written as,

Py = 92 (41)af x5
= _wvcva(v(i))aﬁxﬁ
=~y (") x5
where the gamma matrix with both indices upward is implicitly contracted with the conjugation

matrix. In SSGAMMA, the conjugation matrix is defined to be the gamma matrix without bosonic
index, such that ) = 1), C*? g must be written,

In[1]:= TS[Y, {{1,a}}1**TG[{},{{0,a},{0,8331**TS[v), {{1,5}}]
Out [1]= ¢¥* *x 1),

Equivalently, a bilinear with a (?) matrix can be written,

In[1]:= TS[¢, {{1,a}}]**TG[{n,p},{{0,a},{0,83 1*+TS[y, {{1,5}}]
Out[11= (Ynp)as @ xxhP

or with any other position of the fermionic indices, as long as they are contracted in NW-SE
or NE-SW position. Two identical fermionic indices at the same up/down position must never
occur : their contraction is not defined, and will result in errors.

Spinors in 10 dimensions — In 10 dimensions, spinors are Majorana-Weyl with 32 compo-
nents. They can be split in two chiral parts, denoted using the up/down position of the fermionic

indices, i.e. TS[¢),{{0,a}}] is right-chiral, while TS [¢/, {{1,a}}] is left-chiral.

The conjugation and gamma matrices split accordingly (cf. appendix D.2.1), and we can choose,

s« 0 m o mn\o 0
O:[oﬂ 5;3]’ o (V") as | [ _ (Y™™)%s e
5% 0 (Y™f 0 0 (7)o"

Thus, in 10 dimensions, fermionic indices have positions allowed depending on the order of the
gamma matrix. Except this particular rule, all other manipulations are the same as in the previous
case, except that we manipulate half matrices (16x16). Bilinears are declared, for example, as

In[1]:= TS[v, {0,a}}]**TG[{n,p},{{1,a},{0,83} 1 **TS[v, {{1,5}}]
Out [1]= ('Vnp)aﬁ Qba**?/)ﬁ

Note that the matrix () g can only be involved in a bilinear with two opposite chirality spinors,
since the contrary would require (7,,,)*?, which is not defined.

Manipulation of tensors & spinors — Derivatives can be applied on any expression using the
function DER, deployed using the Leibniz rule. The process can be repeated several times :
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In[1]:= 2*TS[B,{a,b}]*TS[F,{a,b,c}]1*TS[R,{c,d,e,f}]
Out[11= 2B, Fape Rcdef

In[2] :=Der[%,d]
Out [2] =2 (DdBab) Fabc Rcdef + QBab (DdFabc) Rcdef + 2Bab Fabc (DdRcdef)

In[3]:=Der[%,el
Out [3]= Z(DeDdBab) Fape Rcdef + Q(DdBab) (DeFabc) Rcdef + ...

SSGAaMMA also has a non-commutative product that can be useful for spinors and superspace
fields with mixed indices. It is based on the built-in function NONCOMMUTATIVEMULTIPLY, which
was vastly modified to suit our particular needs. Just like the function TIMES is implicitly called
using *, NONCOMMUTATIVEMULTIPLY is called via sx*. For example, two anti-commuting spinors
are declared using,

In[1]:= 11+TS[p,{{1,a}}]1**TS[A,{{0,a}}]
Out [1]= 11 p%**x)\,

The anti-commutation only cares for tensors : constants and gamma matrices are automatically
excluded,

In[1]:
Out[1]

2#¢%TS [0, {{1, a3} **x (21 +22) **TS [X, {{0, a}}] **TG [{a},{{0,5},{0,0}}]
11 (21 + 22)(Va) g5 1** Ao

Contrary to the usual product, NONCOMMUTATIVEMULTIPLY will not automatically re-order the
tensors on which it is applied. This role is played by another function, NCS (for NonCommutati-
veSimplify). NCS has two effects : it sorts the tensors linked by a non-commutative product,

In[1]:
Out[1]

TS[p,{{1,a}}1**TS v, {{1, B3} **TS [1,{{0, 5}}]
ppF*LP sk

In[2]:=NCS[%]
Out [2]= A—ua**yﬁ**pg

(notice that this sorting does not necessarily gather contracted spinors) and it takes out of the pro-
duct all tensors that should not anti-commute with the rest. More precisely, the package considers
that anti-commutation comes from spinor indices : objects with an even number of such indices
(including zero) must commute. However, since it sometimes happens that a bosonic tensor in
introduced to be replaced later by an object with spinors indices, tensors are not automatically ex-
cluded from the non-commutative product. Calling NCS on an expression with a bosonic tensor
acts as,

In[1]:= TS[p,{{0,8}}1*+TS[H ,{a,b,c}]**TS[A,{{0,a}}]
Out [1]= pgxxHope** Ao
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In[2] :=NCS[%]
Out[2]= —H . )\a**ﬂﬁ

Delaying the exclusion of H . allows to replace it by, for example, Ag(’yabc)‘k)\e, which is compo-
sed of two spinors (whose place is in the non-commutative product).

In addition to the usual derivative, there exists a non-commutative derivative, called NCDER. It
behaves like DER, but obeys the non-commutative Leibniz rule when it crosses a spinor index. For
example,

Out [1]1= pgx*Hape** Ao

In[2]:= NCDer[%,{1,€}]
Out [2]= (DEAOL) **Habc**ﬂﬁ - )‘Oé** (DEHabc) **:uﬁ + Aa**Habc** (DCIU’B)

When working with all the non-commutative functions, one restriction must be kept in mind :
there must be only one anti-commutative product in each expressions. For example, the following
term

Out[11= 11 pgx*xHgpokpug**A,

will ultimately lead to errors at some point. If this sort of expression comes out, it is possible
to transform the TIME product into a NONCOMMUTATIVEPRODUCT using the replacement rule
% /. Times->NonCommutativeMultiply. All tensors will then be gathered into a single non-
commutative group.

The function FACTORTENS regroups stricly identical tensorial expressions (the dummy indices
need to be properly renamed for the function to work) :

Out[1]= 2z ("}’a)aﬁ Gap +2 22 (")’a)ozﬁ Gab

In[2] := FactorTens[%]
Out [2]= (21 +222)(Va)a® Gab

Finally, the function LATEXREADY attempts to convert a Mathematica expression to the Latex
syntax (although a few rearrangements might still be necessary) :

Out [1]= 172 z1 5211 (YarazVer )ag Goib

In[2] := LatexReady[%]
Out[2]= \frac{12}{7} \; z1 \; \delta_{a_{1}}"{b_{1}} \; (\gamma_{a_{1}
a_{2}N\gamma_{c_{1}})_{{\alpha}{\beta}} \; G{}_{b_{1}b_{2}}

70



3.2.4 General functions

Renaming summed indices —  The function RD (for RenameDummy) rename indices in a

simple way, in order to merge tensorial expressions that only differ by the names of contracted

indices. The new indices are taken from the six last letters of the alphabet, from ug, w1, ... to
. 28, 29 .

OUt [1:|= Ga1a3 Ga1a4 Ga2a3 Ga2a4 + Ga1a2 Ga1a4 Gazag Ga3a4 + Ga1a2 Ga1a3 Ga2a4 Ga3a4

In[2]:
Out [2]

RD [%]
3 Guoul Guou2 Gu1u3 G’U,ng

RD actually calls two functions, RDR and RDL, renaming the dummy indices form right to left,
then from left to right. When RD fails to merge two identical set of tensors, those two functions
can be applied independently for better results (for example, RDOLGRDLORDRORDR[. . .] might so-
metimes help). This algorithm behind this function is exactly the same that is used in the original
package GAMMA. The function was only adapted to better correspond to the “Mathematica style”
of programming, relying heavily on pattern matching; those simple changes allowed to speed up
the execution by a factor 10 to 50.

In general, the canonical simplification of contracted tensorial expression is a notoriously hard
problem (although in most cases, the function RD is sufficient). Of course, when all contrac-
ted tensors are distinguishable, their order can be determined easily, and there is no renaming
problem (in this program, they are sorted by alphabetical order, then by number of indices, and
finally, by alphabetical order of the list of indices). But when several contracted tenors are identi-
cal, renaming contracted indices quickly become a tricky problem.

Let’s consider a problematic case where four 2-indices tensors G are contracted. The function SUM-
GRAPH allows to represent the contractions in the form of graphs, where each vertex is a tensor,
and each edge is a contracted index shared by the two vertex concerned :

OUt [1]= Guouluz Gu0u3U4 GU1U2U5 GU3U4U5 + Guouluz Guou1u3 Guz’U,4’u,5 GU3’U,4’U,5

In[2]:
Out [2]

SumGraph [%]

G3 G3 + G3 GS
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With this sort of graphic representation, one clearly realize that those two expressions are actually
very similar : swapping the position of two vertex in one of the graphs leads to the other one.
However, no matter how RD, RDR or RDL are applied, those two tensors cannot be renamed to
the same form (in order for Mathematica to merge them). This example is one of the simpler
cases where this sort of complication can appear, but it becomes more and more frequent when
manipulating larger expressions.

The function CANONICALRD is made to overcome this issue. It requires a much greater analysis,
and is therefore considerably slower than RD. But as can be seen in the following example, it suc-
cessfully simplifies the expression :

OUt [1:|= Guoul'uQ Gu0u3U4 Gu1UQU5 Gu3u4u5 + Guoul'uQ Gu0u1U3 GuQU4’U,5 Gu3u4u5

In[2]:

RD[%] // AbsoluteTiming

CanonicalRD[%%] // AbsoluteTiming

Out [21= {0.00051, Guyu,us Guguss Gurusus Gususus + Gugus s Gugus s Gugus G ¥
{0.0041, 2Guyuius Guousus Guonsus Gusugus

CanonicalRD works by finding a canonical form for the adjacency matrix associated to the tenso-
rial expressions. In order to understand the scope and the limits of the function, let’s review its
inner details by considering the following expression * :

Aaoalagag Aa0a5a7a9 Aalagagag Aa2a4a5a9 Aa2a4a6a7

whose graph and adjacency matrix are

oSO WO

OO

O OO W

O OO

O = —=O
2

AA

Finding a canonical tensor ordering is equivalent to finding a canonical basis permutation for the
adjacency matrix. A simple way to assign an order to different matrices is to flatten it, and then
ordering them numerically. This method defines an order between any matrices (whether or not
they are isomorphic). For example, among the following two matrices, the first one is the greater :

1 2 17
2 0 1| -[121201110]
1 1 0]
N (3.3)
0 2 17
2 1 1| -[021211110]
1 1 0]

1. The algorithm that is presented in this section is freely inspired from [85] and [86].

72



Finding the right vertex order (or tensor order) can simply be made by determining the greatest
adjacency matrix among all the basis permutations. This method is by far the easier to implement,
but has to order n! matrices corresponding to the basis permutations (for n identical tensors).
In most cases, n! remains small, since one rarely deals with expressions involving 12 contracted
identical tensors.

However, in an attempt to improve this scaling property, the algorithm first splits the identical
tensors into groups, distinguishing them by their number of links with other vertex. The adjacency
matrix of our five tensors A can be split in three groups,

vertex1 ([0 1 3 0 0| — 13

vertex2 (1 0 0 2 1| — 112

vertex3 [3 0 0 0 1| — 13 3 distinguishable groups (13, 112, 22)
vertex4 [0 2 0 0 2| — 22

vertexs [0 1 1 2 0| — 112

respectively containing two, two and one tensor. It is then possible to assign a pre-order to the
matrix, by arranging the basis according to a simple numerical order 31 > 22 > 112. A valid pre-
ordered matrix is shown at the lhs of 3.4, where the two first basis vectors can still be exchanged,
as well as the third and fourth. Thelast one is alone in its group, and will remain at the last position.

Now is the time to determine the global order of the matrix using the criteria 3.3. Since the matrix
is pre-ordered, the algorithm has to review only 2! 2! 1! configurations, instead of 5!. The highest
matrix available is shown in the rhs of 3.4 :

vertex3 [0 3]0 10 vertex1 [0 3 1 0 O
vertex1 |3 0|1 010 global ordering ~ VErtex 3 3 0 01 0
vertex2 [0 1|0 1]2 —— >  wvertex2 |1 0 0 1 2 (3.4)
vertexs [1 0|1 012 vertexs [0 1 1 0 2
vertexa [0 0|2 2|0 vertex4 [0 0 2 2 0

At this point, a canonical tensor order is fixed, and the indices can be renamed from left to right.
Our example above gives

_Auouluzug Auou4usu6 Auunugug Augu3U4U5 Aungugug .

This is the canonical renamed form of this expression, and every non-trivially isomorphic term
would have been projected in this exact same term.

Some significant complications arise when one considers tensors with symmetries by exchange
of groups of indices (like the Riemann tensor), because it is then necessary to decompose the
tensor into all its exchangeable parts. The basic principle remains the same : pre-order the matrix
as much as possible according to base-permutation invariant criteria, and determine the greatest
matrix among the remaining permutations.
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Symmetry and Anti-Symmetry —  Most of the time, when tensorial expressions involve
(anti)symmetrized indices, it is beneficial, in terms of efficiency, to keep the symmetry implicit.
In this sense, the two following function are critically useful :

— AC (for Anti-symmetric Canonical Order) regroups a set of given indices, and order them in
alphabetical order, with a minus sign for odd permutations.

— SC (for Symmetric Canonical Order) regroups a set of given indices, and order them in
alphabetical order.

Both AC and SC make the expression vanish if they are applied on obviously symmetric and anti-
symmetric indices, respectively. Those functions can be applied on any expression containing all
the required indices.

Out [1]= 260102 A, ., +6bb2 A, ..

aias aipaz

In[2]:

SC[%,{as,as}]
AC[%%,{az, as}]
Out[2]= 36%1% A,

__§bibz2
6(11 as AQS aq

The function ASYM and Sym do the opposite :
— ASYM makes anti-symmetry explicit on a given list of indices,

— SyM makes symmetry explicit on a given list of indices.

These functions work on bosonic and fermionic indices as well. Applied on a simple expression,
this gives,

Out [1] =<'7a1a2a3)a6 Aasas

In[2]:= ASym[%,{a1,as,a3}]
Sym [%% ) {a37 a4}]

Out [2] = % ( - Aa4as (Pyalazas)oéﬁ + A02115 (701a3a4)0£5 - Aala5 (’ya203a4)aﬂ>
% (Aaws (')’awzaa)aﬂ + Aazas (7a1a2a4)a6)

The functions SYM and ASym quickly become rather demanding, since anti-symmetrizing n in-
dices can lead to n! terms. Fortunately, one can take into account the preexisting symmetries of
the tensors involved in the (anti)symmetrization, and considerably reduce the number of relevant
permutations. The following example, although anti-symmetrized over 14 indices, only contains
3432 terms, computed in a quarter of a second :

Out [1] =Aa azazasasagar Bbibabsbabsbgbr

In [2] = Asym [%>{a17a27a37a47a57a67a77 b17b21 b37 b47 b57 b67 b7}]
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= 1
Out [2]= 3432 (Aa1a2a3a4a5a6a7 Bb bobsbabsbebr T Aarasazasasasby Barbabsbabsbsb, + 3430 terms)

while in the next case, the same anti-symmetrization leads to 14! terms, which is far too much to
be computed and stored in a regular computer :

Out [11=A,, Ba, Cas Day Eas Fag Gar Hoy I, Jbs Koy Loy Mp, No,

In[2]:
Out [2]

ASym[%,{a1,az2,as,a4,as,as, ar, by, ba, b3, by, bs, bg, br}]

Error

The function SYMCHECK is designed to identify particular symmetries by exchanges of tensors
that make an expression vanish. For example, the following term, with H being an anti-symmetric
tensor, is annihilated by SyMCHECK

Out[1]1= HupTeoTep

In[2]:
Out [2]

SymCheck [%]
0

since (ab) is anti-symmetric on Hp, and symmetric on Te,Tep. This function is general enough
to handle the vast majority of real-life case. However, it is not exhaustive, in the sense that highly
non-trivial cancellations might not be detected.

Gamma tracelessness of tensors — The function GMET allows to simplify an expression
involving contracted gamma matrices and gamma-traceless tensors. A gamma-traceless ten-
sors verifies (Va)ag Tal..,anﬂ = 0, which also implies simplification of expressions of the form
(’yalman)aﬁ Tal...akﬁ for k < m. Using the expansion 3.1, one can apply the following relation

ay...anby... B 1 _ n
('7 ! b bk)a Tbl...bk = (—1)2k(k b k! (k}) (V[al...ak|)o¢6 ﬂak+1...an] )

in order to simplify some expressions. Note that the name of the traceless tensor must be specified
in the second argument of GMET :

Out [1] = ('Yabcde)aﬁ Jb@ﬁ

In[2]:
Out [2]

GMET [%,J]
—6 (’Ya)aﬂ chﬁ

3.2.5 Group theory functions

A explained in section (1.5.1), tensors can host representations of the symmetric group (or equi-
valently, the group SU(NN)). There are several ways to project a tensor into a corresponding Young
diagram, using the function IRRTENS *. The projection of a 4 indices tensor T into the Young di-

2. The standard way of projecting a tensor in irreps of S,, can be found in [87], or more generally in [22]
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gram is called by

In[1]:= IrrTens[T,{{a,b},{c},{d}}]
Out[1]= %(%Tabcd + tTabde + 5 (3 Tacvd — §Thead)
+%(%Tacdb - %Tbcda) + %(%Tadbc - %deac) + %(%Tadcb - %deca))

The output has all the symmetries expected of the irrep B:D When the function is called, the
tensor 7', anti-symmetric in its two first indices, is added to the list of defined tensors (and then
cannot be used for anything else unless it is manually removed). In simple case, when the Young
Diagram just has two columns, it is possible to remove all traces by specifying NoTrace—True as
argument. IrrTens then projects the tensors into an irreducible representation of SO(1,d — 1)
instead of a representation of the permutation group.

In[1] := IrrTens[T,{{a,b},{c}}, NoTraces—Truel
Out [1]= %(Tabc + %(Tacb - Tbca)) + 1%( - 55 Tarlrl + 52 Tbrlrl)

The function IRRTENS can also be applied on more general expressions, involving several types of
tensors or gamma matrices, as long as the indices involved in the Young diagram are free to be
(anti)symmetrized :

In[1] := IrrTens[2*TG[{a,b,c},{{0,a},{1,3}}1*TS[H,{d,e}],{{a,b},{d}}]
Out [1] = % (% ((’ybcd)aﬂHae - (Vacd)o/BHbe) + (r}/abc)aﬁHde)

The general factor appearing on the left makes sure that IrrTens is indeed a projector, i.e. that
IrrTens? = IrrTens.

The function IRRYT allows to compute the tensor product of two (or more) Young diagrams. For

example, the product Hj ® H is

In[1]:= IrrYT[{2,1},{2}]
Out[1]1= {{3,2},{4,1},{2,2,1},{3,1,1}}

By default, the result is given as several lists of numbers representing the Young diagrams in-
side the product. For a visual representation, the user has to specify the optional argument

show—True :

In[1]:= IrrYT[{2,1},{2}, show—True]
Out[1]l= {{3,2},{2,2,1},{3,1,1},{2,1,1,13}}}

11| 7lla|
1 ®_1b i

If more than two diagrams are sent in arguments, the function returns the irreps corresponding

14|

[s]r]~
+
[s]r]~
+
EHEERE

to the whole product, but the diagrams drawn show the steps leading to the complete result :
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In[1]:= IrrYT[{2,1},{2},{1} show—True]
Out [1]= {{{4,2},{5,1},{3,2,1},{4,1,1}}, ... }

1
[ e [o] - AR «

1[1] 1[1]ala] [1[i]]2]7 11a] [1]1]ala]
1 @ [a]a]e] - 1la T 12 =
- — a a
11| |1]1]a]
11| aa| s 11a|a| 1| [1]1]a 11a| 11|a|a| T G
® = + + al +|1]a +|1]|b + |1 + +
1] i llalb 1jb b b a b | 4| 4|
- a | b b

Since this algorithm behaves very badly for large Young diagrams, it is recommended to use this
function with care (it quickly leads to interminable calculations).

Finally, the function ALLSTANDARDYT returns all the standard Young tableaux associated to a spe-
cific arrangement of indices specified as argument. For example, all the standard Young tableaux

ﬂﬂ
associated to can be displayed using,

In[1]:= AllStandardYT[{{a,b,c},{d}}]
Out [1]= {{{a,b,c},{d}}, {{a,b,d},{c}}, {{a,c,d},{b}}}

3.3 Some neat examples

This section presents in some details a few well-chosen examples, which show how to handle func-
tions defined above in real life situations. Moreover, most of those examples are closely related to

manipulations that are mentioned in chapter 1 and 3.

3.3.1 gamma-matrix identities and Fierzing

The program does not automatically computes Fierz identities, but provides a framework in which
it is relatively easy to find and apply all sorts of identities related to gamma matrices. Let’s start
with a simple example in 11 dimensions, where one wants to simplify (or decompose into simpler
parts) the expression

6162)

(’Y (12| (Vae1ez)|a3)a4 ) (3.5)

which contains one free bosonic index, and four spinor indices, three of which are symmetrized.
This set of matrices can be viewed as a Clebsch-Gordan coefficient from the product of irreps
(00001) ® (00001)®35 to the irrep (10000). Since (00001) ® (00001)®3% = 2(10000) + ...,
there are two independents irreps that can be found having the same indices content as 3.5. One
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can then assume that 3.5 can be split into two simpler terms (with unknown coefficients). In order
to determine them, one defines the quantity

!

I31a2a3,a4 = (76162)(a1a2|(7@6162)|a3)a4 — 21 (’761)(a1a2|(7a61)|a3)a4 — 22 (’Ya)(ala2|c|a3)a4 =0

and try to contract it with several sets of gamma matrices to obtain enough constraints on z7 and
z9. First, one has to make the symmetry over the spinor indices explicit, in order to contract with
two well-chosen gamma matrices, here yP1P2~41 :

In[1]:= GMSISymIIY, 0yes oy » T001, 2, 331 %
TG [{p17p2}’{{1 ,al}’{l ,al}}] *TG [{(h, QQ},{{l ’a3}y{1 ,a4}}]]

Out[1]= f% 2 (Yaras Vg )as " (YasasYprps)ar - Garasasas + 10 other traces

Finally, one can launch the actual computation of all the traces, apply the Kroneckers, and factorize
the result to obtain

In[3]:
Out [3]

FactorTens@FullDeltaSim@FullGMT [%]
128 (54 4 821 — 29) 6LLP2

3 aqi

This first condition in not enough to determine the two coefficients. A second contraction, with
»ypl---Ps,YQL--QS leads to

Out [4]= % (10+ZQ) €ap1...p5q1...qs

The two coefficients must now verify

10 + 2o =0 z1 = —8
54+821—ZQ =0 22:—10

The example above is one of the simplest form of identities that can be shown, and does not
reflects the potential of the program. Let’s consider a less trivial example of identity, and suppose
one has to simplify the expression

a1a261...e4) 304 b1

(7 (ara] (7a 623364)|a3o¢4| (7 el)|a5a6)

containing six symmetrized spinorial indices, and where one forces the bosonic indices (a; . . . aq, b1)
to be in the irrep (10010). The decomposition of a symmetrized product of six spinors leads to
several irreps, among which only one (10010) representation : (00001)®%% = 1(10010) +....As
above, one can expect a relation

Ial...a4,b1 —
ag...0q

alazel...e4)

b : b
(v (aras] (V2™ epeselasaal (Ve )asas) = 21 (F %) (aran) (1) jagas] () jasag) = 0

In this case, the free indices have to be projected into the (10010) representation by contracting

. . . (10010)
them with the irreducible tensor Ta1 anasas by’
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In[1]:= [31-04 " *IrrTens [T, {{a1, as, a3, as},{b:1}}]

and then only, the symmetrization of the spinor indices and the contraction with three gamma
matrices can be made. The first non-zero contraction is obtained with (P1P2 )12 (14192)*3%4 (471 )X506
and leads to

8192

F (1 + 15Z1) (16 TP1P2Q1QQT1 =+ 8 TppoQﬂ"ﬂh + b 521TP1P2612U0110 =+ 8 Tplqw27"1p2 + b 6;1szqw2uouo> .

The only value z; can take is then —1/15. Of course, all the equations on z; found via other contrac-
tions (there are 10 of them) must be consistent with this one. Those can be checked for consis-
tency, although in principle the first equation is enough the determine z; without ambiguity.

3.3.2 Replacement rules

Let’s consider a completely different setup, where one is dealing with derivatives in superspace.
For example, consider a computation leading to a spinorial and bosonic derivative acting on a
superspace tensor T with three indices

Out [1]= 2(DaDuThs) -

Usually, mixed components of superspace tensors can be expressed using bosonic tensors, spinors
and gamma matrices. Moreover, in all examples considered in this thesis, spinorial derivatives
applied on tensors can be expressed in terms of other tensors. In this case, we will assume that
T3 = (7a) 8" H, and that we already know the effect of a spinorial derivative on H.

In order to develop and simplify the previous expression, it is necessary to replace the tensor T’
by its expression involving H, and then use the derivative (anti)commutation relations to apply
the spinor derivative on H.

By default, the program considers a derivative applied on a tensor as a single object that cannot
be broken. In order to modify 7" itself, one first has to use the command EXPLICITDER :

In[2]:= ExplicitDer[%]
Out[2]= 2 Der[T}3°,{a,{0,a}}]

which separates the derivative from the tensor, and displays it as a deactivated function applied
on T' (hence the coloring), with the indices of the derivatives as arguments. At this point, it is
perfectly possible to replace the function DER by any user-defined operator with a replacement
rule % /.Der->Operator (thus using the function DER only for its Leibniz rule property), but it
does not concern our current goal. Now the derivative is separated from the T, one can simply
replace T by its expression in terms of H,

In[3]:
Out [3]

% /. TSIT,{b,fi_,f> 3] :> TG[{c},{f1, f2}}]*TS[H,{bc}]
2 Der [(7e)s" Hyc,{a,{0,a}}]
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and then use the Mathematica function ACTIVATE to re-apply DER on its new argument. The
gamma matrix automatically goes through the derivations, and one simply gets

In[4] := Activatel[%]
Out [4]= 2(7)5" (DaDaHye) -

To further expand the expression, on can use the rule that specifies the commutation relation of
superspace derivatives,

[Da,Dp) Ve = ~Tap®Dg+ RapcPVe

to reverse the order of D,, and D, (since we made the assumption that D, H is known),

In[5]:= % /. Derl[x ,{d, ,ds }1:> Der[x,{ds,d;}]
+ TSI[T,{d;,d>,e}]*Der[x,e] + TSI[T,{d;,d>,{1,0}}]1*Der[x,{0,6}1+ ...
Out [5]= Q(WC)ﬂe(DaDaHbc + TaaéHtSc + TaaeHec +.. )

where the dots stand for the superspace Riemann tensor involved in the relation. Other replace-
ment rules can then be applied to substitute D, Hy. by its non-superspace value, or replace any
other part of the expression that requires simplification. Once the basic syntax of TS and TG is
known, it become quite handy to replace or modify terms inside large expressions.

Of course, all the usual apparatus of Mathematica is available, like the repeated replacement (using
the operator //.), or the conditional replacement (using /;). For example, the following instruc-
tion

In[4]:= Y% /. TS[s_,1_List]l/;(s==H||s==G):> 0

replaces all tensors from the previous expression by zero, only if their name is H or G.

3.3.3 Superspace & non-commutative fields

Finally, we shall now consider a simple example of non-commutative spinor manipulation. Let’s
place ourselves in 10 dimensions, with two anti-commuting Majorana-Weyl spinors denoted A,
and p%, involved in the following expression,

(YN (vapN)? (3.6)

that we want to simplify by Fierzing. In components, given the conventions adapted in (3.2.3),
the expression has the form,

Ia,B _ (,Yabc)aq (,Yab),BEQ Aq )\62 ’

The superspace manipulations of chapter 4 often lead to large expressions containing terms very
similar to this one (with several non-contracted spinor indices, sometimes (anti)symmetrized).
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Most of the time, equivalent configurations are mixed up in several different forms, and some
Fierzing transformation have to be performed in order to get a manageable expression. In SS-
GAMMA, our example will be displayed in the form

Out[1]= )\51 *x )‘62 (’yabc)ael (’Yabc)ﬁez

As in the previous cases, possible all possible decompositions are found using irreducible repre-
sentation. Here, the term (3.6) has two free fermionic indices (v, 3) of the same chirality, that
decompose as,

(00001)®2 = (10000) & (00100) & (00002) ,

i.e. a vector, a 3-form, and a self-dual 5-form (in this product, we ignored on purpose the anti-
commutation property of the spinors). The product can then be cast on the basis,

21 (" ) ()P
23 (A28 1) (s )P

25 (M1 1) (hy s )P

The z; are coefficients to be determined by enforcing the cancellation of —I*?4-21(- - )+ 23(-- )+
25(- - -). The free indices can be contracted with 7(1), 7(3) and 7(5) (with the function GMS, GMT,
GME and DELTASIM), respectively leading to,

Out[11= 16 (18 + 21) Ayy**Ay, (Ya, )"0
48 (-1 + 2 23) )\uo**>\uo (’yhl}whs)uou1
1920 zj5 /\uo**/\uo ('Y}uwhs)u()ul + 16 z5 )‘uo**/\’uo €hy---hsuz--ug (7'“2"'“6)%“1

The parameters seem sufficiently constrained, but applying the function SYMMETRYCHECK on the
first and the third make them vanish, by virtue of the symmetry properties of the anti-commuting
product (alternatively, a gamma matrix of the third term can be dualized using GMD, and cancels
against the other). The remaining constraint only applies to 23, and requires z3 = 1/2, while the
others must be zero (of course, in this case, z; and z5 could be discarded from the beginning, but
some cases involving bigger identities are less trivial).

As can be seen from the last few examples, there is no systematic way of dealing with Fierzing
in the package. This choice is deliberate : it turns out that gamma-matrix identities are so diverse
that we preferred to keep a slightly less automatized process, allowing the user to deal with a far
broader range of identities.
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Fermionic condensation in ITA supergravity

4.1 IIA supergravities

4.1.1 Basic features of IIA supergravities

Contrary to the eleven-dimensional case, several types of supergravity exist in ten dimensions.
The maximal number of supercharges is 32, and since the dimension is even, different types are
distinguished by the chirality of their supercharges,

Type I IIA  IIB
N (1,0)  (L,1)  (2,0)

The subject of the present chapter only concerns IIA supergravity, and particularly, one of the
massive deformations of it (which includes massless IIA as the m — 0 limit).

Compactification from eleven-dimensional supergravity — Supergravity in eleven dimen-
sions has been compactified in several ways, thus leading to several other supergravity theories.
The main purpose of finding a ' = 1 eleven-dimensional supergravity was to reduce it to the
four-dimensional NV = 8 maximal supergravity [88], and it was later used to build the " = (1, 1)
theory in ten dimensions [89]. The two compactifications above follow the prescription of Kaluza-
Klein theory [90] : going from an 11 to a k-dimensional space requires to split the manifold as
follows,

M11 — Mk X Tll—k (1 < k < 10)

(Xo, X1,...,X10) — (0, T1,- -y The1, 21, - -+, Z11—k) 5
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and separate the fields accordingly, depending on whether they carry indices from M, of T11_.
Besides, all fields are assumed to loose their dependency on the compactified dimensions.

Let’s take M1; — Mo x S as an illustration, and denote indices from 7'My (T'M0) with capital
(lowercase) letters. Fields defined on Mj; are denoted with a bold symbol. The usual partitioning
of the vielbein will dictate the splitting of the other bosonic fields, and reads,

where two new fields were introduced : a vector A and a scalar field ¢, the dilaton (the triangular
form can be preserved upon supersymmetric transformation using the Lorentz gauge freedom).
1 4
This splitting of the vielbein lead to the metric splitting gy1 = e 5% + e3?(dz + A)®2. Form
fields on Mg are decomposed using the rule
— oM

M,
Fal---an =€, --- ean" FMl..‘Mn

n—1 1 2
. —Ii= — = m m £ mi m m
=e 12 ? (e vid N S V2nes? 011 A eqy - o€ ") Foyomo,

an]

— e BP0 +V21eETT)? A Pty 0

The last term of this expression, F11q,. 4,, can be renamed as a new (n-1) form since its first
index is now fixed. If this form field in 11 dimensions can be written as n 9y, Cpy,...01,,)> then
the same expansion has to be applied on the rhs, thus leading to the introduction of a (n — 2)
form, C11 as...a,, by the same process. In order to reconstruct a supersymmetric action in 10d, the
gravitino must be decomposed as

’d) 'l,bm = e_i(b(l/}m + %anm/\) + \/éAmwll
M — ’
Y = 22end A

where a spinor A have been introduced. Since spinors in 10d are Majorana-Weyl, both ,,, and A
can be projected on a right and left chiral parts using § (1 £ I'yy).

The transformations rules in 11 dimensions are also decomposed in a similar fashion. The para-
meters are split, and give rise to new symmetries in the reduced theory. For example, the trans-
formation of the 11d vielbein under diffeomorphism dx,, = &, (),

0eEqy = €7 (0pEqy) + (0mE") ER,
will impose the gauge transformation A4,, — A, + \"/—158771511 (when restricted to the A, part

of the vielbein). The remaining 10d supersymmetric transformations are computed straightfor-
wardly from 11d, with the addition of a 10d Lorentz rotation with parameter € I'11 1", A. The 10d
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theory thus obtained contains 10 fields :

N e Gy =dC3
](\}[1) N {AZZ Ef\‘/[ =< C, G, =dC5 — { Gz = dC5 + G Oy )
o Go =dC

and the Lagrangian, with the supersymmetric transformation rules can be found in ([89]).

Massive deformations of ten-dimensional supergravity — The compactification of the pre-
vious section leads to a supergravity where all fields are massless. However, there are two ways to
deform this theory to include a massive object (these were found in [91] and [92], and it was later
proven in [93] that no other deformations are allowed). The first one involves a compactification
from a generalized 11d supergravity, while the second one is based on a mechanism taking place
within ITA massless supergravity :

— HLW supergravity (for Howe, Lambert, and West [92]) was built by dimensional compac-
tification from a slightly generalized version of 11d supergravity, where the Spin(1, 10)
connection is extended to a Spin(1,10) x RT connection,

wal — AP+ 51]‘2](.

With this adjustment, re-deriving the equations of motion using the superspace Bianchi
identities leads to a theory that is equivalent to the original (up to a super-Weyl transfor-
mation) if the space Mj; is simply connected [23]. However, when considering a compac-
tification on (the non-simply connected space) Mig x S, one obtains a different theory of
supergravity that includes a massive vector field.

— Romans supergravity [91] was the first massive deformation built from IIA supergravity,
and does not rely on 11d supergravity. In this theory, the mass is introduced by hand, by
merging the fields Cy and the field strength G in a modified field-strength Gy = G +
mC. Then, gauging the theory and adding suitable terms in the Lagrangian to preserve
supersymmetry leads to a Lagrangian where C' can be absorbed in Cs, thus leading to a
massive but non-gauge-invariant Cy [94].

4.2 Dilatino condensates in massive IIA supergravity

In this chapter, we are interested in giving a non-zero expectation value to the dilatino condensate
in (massive) ITA supergravity. For that purpose we need to know the terms both quadratic and
quartic in the dilatino.

4.2.1 Fermionic condensation in IIA supergravity

Fermionic condensates have been considered in the past mostly in the context of heterotic theory
[95-102] and, to a lesser extent, in eleven-dimensional supergravity [103, 104]. Of course, spinor
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vacuum expectation values (vevs) must vanish in a Lorentz-invariant vacuum, however scalar
quadratic- and quartic-fermion condensates are allowed by the symmetry of the vacuum and may
be generated by quantum effects.

In type IIA theory there is a single scalar that can be constructed in ten dimensions out of four
dilatini, as can be seen by the decomposition of the possible arrangement of right- and left-chiral
anti-commuting Spin(1,9) spinors,

(00001)®4% ¢ (00000)
(00010) ® (00001)®43 ¢ (00000)
(00010)®42 ® (00001)®4% < 1 x (00000)

The presence of a unique quartic-dilatino term in the action thus gives a simple and interesting
possibility to generate a positive cosmological constant via fermionic condensation. For this to
be actually possible, the quartic dilatino term has to be positive. Since massless IIA supergravity
was derived in [89, 105, 106] with quartic fermions terms, and in [107] for massive ITA, one
could therefore use these references to provide the “missing” quartic-fermion terms of Romans
supergravity. However, previous attempts failed to conclude whether the quartic-fermion terms
in [89, 105—107] agree with each other.

On the other hand all ITA supergravities admit a unified superspace formulation, given in [93], in
which the quartic-fermion terms are given implicitly (unfortunately their explicit form was not
worked out in this paper). With the help of SSGAMMA, our strategy will be to first determine the
fermionic action, Sy, up to gravitino terms. This action Sy, that we call the dilatino-condensate
action is obtained from the full fermionic action by setting the gravitino to zero.

4.2.2 Massive IIA in superspace, with fermionic fields

As mentioned above, all [TA supergravities emerge from a common superspace derivation, starting
not from a correspondence between physical fields and superfields, but directly by the resolution
of the super-Bianchi identities. This set up provides more freedom, as it allows a progressive iden-
tification of the emerging structures with the physical fields. The geometrical superfields involved,
and the corresponding Bianchi identities are,

DE4 = T4 DTA = EB R,P

dQAB+QACA QCB :RAB DRAB =0. (4.2)
The first step to resolve the Bianchi identities is to use the redefinition freedom of the vielbein and
the spin connection to define the most simple, yet general starting point for the low dimensional
fields involved in the equations. For example, the most general value of the mass-dimension zero
torsion is given by the following product of irreps,

(10000) ® (00001)®52 = 1(00000) & ... =  Tug® = f()(V)ap »
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where f(¢) could be any function of the dimension zero dilaton. However, it is possible to start
with a simpler version of this, defining all the possible shifts of E, {2 and T as,

hA(B; = EY 0B = 0T4p% = 2d1ap)© + 2Dpahp)C — 2hiaP Tpip)© + Tap” hp© .
dag® = EX 6Qu5°
It is then possible to use all the degrees of freedom of h and d to redefine the components of T as
it suits us best. In the example above, using one of the h components among (haﬂ ,h%g, and hab)
allows to shift to a more familiar ansatz for the torsion,

gauge fixing
—_—

Tog:  f(@)(Y)as —i(7%)as

Once all the components of h and d are exhausted, the proper resolution of the Bianchi identities
can begin with the values,

Tap® = =i(7")as T =0

T = —i(7°)°8 T =0 Tap™ =0 (42)

Then follows a rather tedious process, where the Bianchiidentities are systematically written (from
mass dimension 1/2 to 2), and solved. Of course, since only a few torsion are already determined
(4.2), this requires the introduction of fields that are identified with those of IIA supergravities.
Let’s consider as an example the first identity on the torsion, of dimension 1/2:

DTpy)" + T(ap) Tepy) = Riapy® = 0,

where the Riemann tensor vanishes due to the Lorentz condition, and where the symmetrized in-
dices can take both up and down position, depending on the chirality they represent (thus leading
to 23 equations). All indices in lower position, with the ansatz (4.2), reads,

Tap (Y )e) =0, (4.3)

The mass dimension one half imposes the use of a spinor, that is taken to be the dilatino A, of ITA
supergravity. Then we have to find the most general expression involving A, that obeys equation
(4.3). Since

(00010)®52 ® (00001) = 2(00001) & ...

there are two ways of building an expression with A that have the index content of the torsion
T3¢ It should have the following structure,

21 Madp) + 22 (V)ap(yf )
where the two coefficients can be constrained by imposing the Bl with this particular ansatz. It

leads zo = %21. The other seven versions of this Bl partially define the other lower components of
the torsion, and all involve one of the two chiral spinors A, or 4. The next Bl will involve several
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objects that require the introduction of new fields. For example, it will contain unconstrained
terms like Dy g, and T,o.” that have to be decomposed as,

(00001)®(00010) (00000) S5} (01000) P (00002)
Da'u'B Ldg + Lef (’Yef)aﬁ + Lel..‘e4 (761.'.64)016

(10000)®(00001)®(00010) (00000) @ (01000) ® (00002) ) (00002)
1 2 e e 1 e 2
T | VAV 00 + VI (396 + (W)PHY) + (u)aPHY)

where the tensors H and V' can potentially be interpreted as other physical fields of the theory.
Similarly to Dy i?, the expression D%\ is decomposed as L/ 05 +. ... Thevalueof the two dimen-
sion 1 parameters (L, L’) will later turn out to determine which supergravity is obtained by all this
development. Indeed, the equations of motion for the dilatini (obtained at dimension 3/2) and
the bosonic fields (obtained at dimension 2) are similar to one of the three known supergravities,
depending on the value of L and L/, as

Massless Romans HLW
L = 2(u)) L = ime? + 3(u)) L = 3m+3(u)) (4.4)
L= —3(p)) L' = —gme* — §(uA) L= gm—3(pN),

where, as expected, the massless case is retrieved from both massive supergravities. In the fol-
lowing, the discussion is restricted to the Romans case, bearing in mind that all can be adapted
effortlessly for all three theories. The equations of motion for the spinors are obtained at the BI
of dimension 3/2, and are written in (4.25) of [93]. Finally, the usual Bianchi identities and the
equation of motion for the bosonic fields all emerge from the dimension 2 superspace Bianchi
identity,

1

2
o E §
DiaTjeja” + 5Tatal TR + 3

1 2
*-DocirablS + 5 3

3 3 T[ab|ETE046 = Raba(;v

where the index E span the whole superspace, and the indices (o, d) can both be in up/down
position, thusleading to four inequivalent equations. At that point, all the relevant quantities have
been defined, and those identities are just constraints on the physical fields. The 2 x 2 possible
positions of the fermionic indices lead to four identities, that are explicitly written in (3.91) of
[93],as A = B = C = D = 0". Setting all fermionic superfields to zero and restricting to the
x-space component of the bosonic superfields (i.e. the lowest-order term in the theta-expansion),
the content of the B = C = 0 equations can be seen to be equivalent to the following set of

1. Asmentioned above, in the reference [93], fermionic fields are set to zero. Our present computation does not make
this assumption, so that each expression A, B3, C and D now contains all the fermionic terms. We could therefore find
the exact Bianchi identities and equations of motion for the fields using these four expressions. However, we shall set the
fermionic fields to zero, and use a simpler method that we explain below.
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equations,

0=dLy + Eme*K;

0=1idLy — 5 K3nLy + 4K1nLy

0=id*Ly + 8KinxLy + 24 K3nLy

0=rid*Ly + 12Kiax Ly + 864 K3nx Ly . (4.5)

The A = D = 0 equations can be seen to be equivalent to,

0=dK,

0=idKs — 4K K3 (4.6)
0=1id* K3 — 8Kinx Ky — 2 Lonx Ly — T68LynLly — S me’” Ly

0=idx K — 12K1ax K1 — 2 LonxLy — 144 K3nx K3 — 4608 Lynx Ly + 2m?e*?

together with the Einstein equation,

Ry = gmn(EVK(l) + 18K(1) — 2—5m e ¢)
. 64/ 1,
120V K ) — 16K K — > (2L(2)mn - ggan(z)) 4.7)

+ 48(3KF0 i gmnK)) = 768 (4L, - % gmnLy) -

9 2 .
where we have set @(p) = @y i, @, q)(p)mn :

Moreover in order to put the Einstein equation in the form (4.7) we have made use of the last

= Prmy...m, P2 P, for any p-form .

equation in (4.6). Note that the latter can be obtained by acting on the equations of motion of
the fermionic superfield, cf. (4.16) below, with a spinor derivative and contracting the free spinor
indices with each other.

The first equation in (4.6) above can be solved by introducing a scalar field ¢,

1
Kqy = 5d¢, (4.8)

where the normalization has been chosen so that ¢ is identified with the dilaton. The equations
above are not automatically expressed in the Einstein frame in ten dimensions. To transform to
the Einstein frame we define a new Weyl-rescaled metric,

30

gmn =€2"0mn - (4~9)
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The Einstein equation then takes the form,

.1 1 e 64 1,
Bonn = = 50m0000 = em®etgn = - (2Ll — g Lly)
1 3
+ 48(3K 0 — 19mn D)) = T68(4L3)00 = S0mnlly) - (4.10)

where Ry, is the Ricci tensor of g; the contractions on the right-hand side are taken with respect
to the unrescaled metric g.

The equations above can be recognized as the bosonic equations of Romans supergravity. For
example one can readily make contact with the formulation of [21] by using the following dictio-
nary,

Here Lo Ly K3 Gmn R m
There —I%F —2146_2¢H T;e_wG Imn -R Sm,

(4.11)

[\

up to fermionic bilinear terms which will be determined in the following, cf. (4.19) below. Using
these more familiar fields, the equations of motion read,

. 3 1 1 4
0= V2p_ 230/2F2 | — ~0[g2 _ ~ 0/2G2 _ Z,2.50/2
Qb 86 + 126 966 5m e
0 = d(e*?/%4%F) + e®?H 3G
1 4
0= d(e™%%H) + ¢*? PG = GG + Zme***4F

0 = d(e?/%G) — HAG, (4.12)

where the covariant derivative V and the Hodge star # are taken with respect to the rescaled metric

g, and,
0= R + 20 O+ —m?e5/2 +le3¢/2(2F2 P )
= flmn T 50m® On o5 9mn 4 (2)mn 8gmn (2)
1 1 1 3
- ¢ 2 A 2 L p/2 2 YA 2

where the contractions on the right-hand side are computed using §. Moreover the forms obey
the following Bianchi identities,

4
dF = gmH, dH =0, dG = HAF' . (4.14)

It can also be checked that the equations of motion integrate to the following bosonic action in
the Einstein frame, cf. (2.1) of [21],

-1 8 1 1 1
_ 10,. /A - 2, © 2.5¢/2 L 3¢/2p2 L —¢pp2 ®/2 2
Sb—/d x\/g(R—i—2(8¢) —|—25m e —|—2!2€ F +3!26 H —|—4!26 G )—I—CS,

(4.15)
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where contractions are taken with respect to the rescaled metric and CS denotes the Chern-Simons
term.

The dilatino terms —  As explained in the introduction, we are interested in determining the
fermionic action up to gravitino terms. The fermionic equations of motion appear at dimension
3/2 and are given in (4.25) of [93],

iV = —2*547%62% - %(M)u — ?L(a) (Y@ p)
— 12Ky (v + 3K 5 () + %(Wg)u)(v(?’)k)
iV = %mewf\ + ?(;M)A - ?L(m (v®\)
— 12Ky (YW p) = 3K (3 (v ) + %(M(s)k)(v(?’)u) : (4.16)

These are exact superfield equations, i.e. valid to all orders in the theta-expansion. In order to
identify the fermionic part of the action giving rise to these equations we must first address the
following two issues : Firstly, once the fermionic superfields are turned on, the bosonic equations
(4.5), (4.6), (4.7) will be violated by terms quadratic and quartic in the fermion superfields. In
other words, these equations are not valid as full-fledged superspace equations for superfields. In
particular, the superspace Bianchi identities for the superforms at mass dimension 1, read,

0 = dK;

- 18 .
0 = dLQ—i—gme% K3
0= dk3+4l KlAKg

. 2% . . .
0 = diy + §Z LonKy — 4i Kynly (1.17)

where the hatted superfields differ in general from the unhatted ones by spinor superfield bili-
nears. Explicitly in components the Bianchi identities read :

R 1 X
0 = DuKp) + 5TABFKF
R R 6 R
0 = DuaLpey + Tiap" Loy + 3 me*® Kapc
R 3 R .
0 = DiaKpep) + §T[AB|FKF|CD) +4i KaKpcp)

) ) 4i . L
0 = DuLpepr) + 2T ap " Lrcpr) + 3 LiapKcpr) — 4t KiaLpepe) - (4.18)
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These can be solved following the standard procedure, taking into account the expressions for the
superfield components of [93]. The solution reads,

Ka:Ka

3
Lap = Lap + 3 M’yabA

8
Kape = Kape — é WYabekt + % AYabeA
Labed = Labed + 3% WYabed 5 (4.19)
for the top (bosonic) components and
K, = % Aa L = —% O Kapa = 11*2 (VabA)a Lapea = 9% (Yabett) o
K = % e Log= —% J2 Ko™ = —é (Yabtt)™ Lape™ = —% (YabeA)®
Koop = i (Ya)ap Lapa” = 1;2 (Yab)a”
K% = i (7a)™” Lap®p = 1;2 (Yab)“ 5 »

for the remaining components. The ordinary bosonic forms are identified with the lowest-order com-
ponents in the theta-expansion of the hatted superfields in (4.19).

Secondly, solving the Bianchi identities (4.1) at dimension 3/2, one can show that the torsion
must be decomposed as Ty, = Tos + 'y[aTb] + 'yabT where the T are

344 8 8
T% = gorlu+gle 2 (7P p) + *L(4)(7(4)M)
8 vy — O @y M (3))
+ 9 m(HA) - 15803 3)(VA) — @(M’Y(:@)M)(’Y ) (4.20)
344 8
Ta = —55c LA+ 5Ly (v YN = =Ly N
8 16 11
+ oK) + KD ) — 250N (6P (4.21)
~ 31 1
T = —2*0(%9)V(1)M) —sLe (VPN + L(4)( N
1 3
+ gKu)(%(L 1) 20K 5 (V) + 160(M( HA) (1 1) (4.22)
~ 31 1
Toa = —2*0(%51)V(1))\) - *L(z)(%gz) ) — *L(4)( W)
1 3 3
- ( ) (3) (3)
+ K (N + 55K ) (127 A) + 155 (113 (77 A) (4.23)

Then the two terms AT® := T + (ths 4.20) and AT, := -T,, + (ths 4.21) vanish on-shell
(cf. (4.9),(4.10) of [93]). Hence we are free to add to the right-hand sides of equations (4.16) terms
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proportional to AT above. When integrated to a fermionic action, they induce terms proportional
to TNy, Top®. Given that T is the trace of the dimension 3/2 torsion, these are gravitino terms
which we set to zero here.?

Let us take as our starting point the fermionic equations (4.16), adding to the right-hand sides
the terms ¢; AT, co ATy, as explained in the previous paragraph, for some coefficients ¢, ca.
Provided we take co = ¢y, the resulting equations can be integrated into the following fermionic
action :

1 (270 — 43¢1)e®®*m(AA)

Sp = / 410/ e(6-8c1/99 [(Z\vamA) ~ 5

1 - 1 2 _
— (1 — 601) 63¢/4an(AanF11A) + (g — ﬁcl) 6_QS/ZFImnp(AFTnnprllA)

c1 4G g (ATTPIA) 4 %(15 — cl)(/_XA)z} ,

+

1080

where the Dirac gamma matrices I'"”* and the Majorana fermions A are given in (D.10), (D.11) res-

pectively; we have expressed the final result in terms of the rescaled metric (4.9) and the bosonic

forms in (4.11), with the understanding that the unhatted forms therein are now replaced by the
corresponding hatted ones given in (4.19) :

F = _7L(2) s H =243 €2¢IA{(3) 5 G :=192 €2¢IA/(4) . (4.24)

The total action (up to gravitino terms) is thus given by : S = Sy, + a.S for some coefficient o to
be determined. Next consider the dilaton equation of motion,
9 4 944 32

- o1
0= —2iV- Ky — 24K(y) — em?e'? — S- L) — 48K(y) — 384L{,) — éjmew()\u)

— 8P i) Liay + 8((MPIN) = (1)) K5y — 3200 W) Ly + 14400)*,  (4.25)

which is an exact superfield equation obtained from the Bianchi identities at dimension 2; it re-
duces to the bosonic dilaton equation given in (4.12) upon setting to zero the fermionic super-
fields, and transforming to the Einstein-frame metric. As explained above, we can modify equa-
tion (4.25) by adding on the right hand-side a term of the form cg A\ AT* + c4u*AT,, which
vanishes on-shell. This will generate gravitino terms A, T®, *Ty, which we can then set to zero.
Demanding that the resulting equation of motion coincides with the dilaton equation coming
from Sy, + .S, gives an overdetermined system of equations for the unknown coefficients (c,
€1, --.,c4). The solution reads,

27

a=—80, 0120221, c3=c4=—45.

2. The precise relation between Ty}, and the gravitino can be derived using the procedure described in detail in e.g. [81]
and it is of the form : e, %€, "1 = Vim¥n) + O(¥). In particular it vanishes upon setting 15, = 0.
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Plugging back the above into the action we obtain,
S =S, — 80 / dz\/g [(]XFmeA) + % >4 m(AA)

1 . 1 -
+3 S AE, L (AT T A) + 4—Oe—¢/2Hmnp(Arm"PrHA)

33

1 _
+ 755 € Crnpg (AT™P18) +

A 2
= (An)?], (4.26)

where the bosonic part of the action S, was given in (4.15). The Einstein equation can be used as
a further consistency check. The dimension 2 superspace Bianchi identities give,

1 3i 8 : ;
Rye = me( = 5em?e™ + SV - K+ 18K7, + 5 LYy — 123 + 288L%

= 2 0wme® — 200w + 600 92) — (10 w)] K
+ 240 W) Ly — 108(>\u)2>
+12iV K,y — 16K,K,. — %z@)bc + 144K, — 307203,
+ 4i(Ma Vo A) + iy Ver) — %(/\miu)ﬁcﬁ = 36[(M7 ) — (170" )] Koy
— 192(Ay(, 7" 1) Ly - (4.27)
Proceeding as before, we note that the two terms AT := —T% + (rths 4.22) and AT, :=

—Taa + (rhs 4.23) vanish on-shell (cf. (4.9), (4.10) of [93]). Therefore the right-hand side of the
Einstein equation (4.27) can be modified by a term of the form, c5(AT{(y7,)A) + c6(AT(yVe) 1) +
7 Moe(ATA) + cg Mye(AT ). Demanding that the Einstein equation thus modified agrees with
the Einstein equation coming from (4.26) leads once again to a highly overdetermined system of
equations. As required for consistency, a unique solution exists and is given by,

8l

65266:—24, Cr = Cg — 1

4.2.3 General dilatonic vacua

Since the superspace formalism presented above turns out to be in a frame different from the
Einstein frame, the dilatino-condensate action (4.26) cannot be compared to the actions in
[89, 105, 106], which are also in the Einstein frame, by simply setting the gravitino in those
references to zero.

The dilatino v, of the superspace formulation is canonically related (through the suspersymme-
try transformations) to the metric g,,,, whereas the dilatino ¥,,, of appendix D.12 is canonically
related to the rescaled Einstein-frame metric gy, cf. (4.9). The action (4.26) is obtained by setting
the superspace gravitino to zero which thus corresponds to,

3
V=0 +— v, = —ZFmA’ (4.28)
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as can be seen from the dictionary (D.11). More generally, setting the gravitino to zero is a
frame-dependent statement. This can be seen directly from the supersymmetry transforma-
tion for the vielbein (D.3) which, when evaluated at the lowest order in the §-expansion, gives
deem® = —i(ey*m) — i((Y*%m), up to a Lorentz transformation. More generally, it canonically
associates the vielbein of the metric ¢\#) with the gravitino P where,

G =G, W) =V -BTwA,  BER, (4.29)
and we have used, Jgp = £ V¢ = () + (Cp). It follows that setting the gravitino 1% to zero
corresponds to,

@b(ﬁ) =0 +— VY,,=p06I'RA, (4.30)

m

which generalizes (4.28) to an arbitrary frame. In particular, we distinguish the following cases,

) vanishing superspace-frame gravitino
, vanishing Einstein-frame gravitino
, vanishing string-frame gravitino .

™
Il
Blm O el

The four-fermion part of the ITIA Lagrangian in [89] is given as a sum of 24 terms expressed in
terms of \Ifgp , AGP (where G P stands for Giani-Pernici, cf. appendix D.2.3). Substituting (4.30)
in [89] corresponds to setting,

OGP =vVarnl,\F . UGP = e 0y r (4.31)

where ¢ := v/2(8 + 1/12), with 8 € R. We thus obtain the following expression for the (A))?
term in [89],

26v2 5 29 ,
—Cc — —¢c¢
3 4

7 2 7
+ AT o N) 2 (——=¢3 — 5¢Y + A el N) 2 (= =% + —c3 + v2¢% — 6¢

( p)(gﬁ )+ ( pPuA) (=3 7 )
1773 4

= (32¢2 — 276263 + 5 AN, (4.32)

1, 21,

(S‘anrll/\)2< ) + (;\anpq)\)Q(ic -5 ¢ )

where in the last equality we used the following Fierz identities,

(AL T110)% = 6 (AN)? (AT pnpl'110)? = —48 (AN)?
(AT npA)? = 48 (AN)? (AT pnpg)? = =336 (AN . (4.33)

Furthermore substituting (4.30) in the massive IIA action of [91], completing it with the quartic-
fermion term (4.32) and normalizing to our conventions, cf. appendix D.2.3, we obtain the one-
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parameter family of dilatonic-condensate pseudoactions,

S =S+ /dl%\@{a — 1448%)AT™V ,, A) — (368% — 108 + O) e*?/4m(AN)

1 9 ) = _
7(2952 - 5B+ 1—6)e3¢/4an(Arm"rnA) — (4p% + §6)6_¢/2Hmnp(AFm"pF11A)
1 3 1773 ,

58— 22)e? Granpg (AL™™7A) — (862 — 69v2c° + —“c )(AA)?} :

1
2132
4( Ch 16

S 2
where S}, is given in (4.15), and ¢ was defined below (4.31). To sum up, this action is obtained
from the action of [91] completed with the quartic-fermion terms of [89], by imposing (4.30) with
arbitrary parameter (3. Of course, setting the gravitino to zero is in general inconsistent, since the
gravitino couples linearly to terms of the form (flux)x (dilatino) and (dilatino)3. However, in a
Lorentz-invariant vacuum, where linear and cubic fermion vevs vanish, this does not lead to an
inconsistency. These dilatino-condensate actions of the present paper should thus be regarded
as pseudoactions : book-keeping devices whose variation with respect to the bosonic fields gives
the correct bosonic equations of motion in the presence of dilatino condensates. Moreover the
fermionic equations of motion are trivially satisfied in the Lorentz-invariant vacuum.

Setting 8 = —3/4 in (4.34) we recover the action (4.26). The dilatonic-condensate pseudoactions
SE, St obtained by setting the Einstein-frame, string-frame gravitino to zero (3 = 0, 1/4 res-
pectively) read,

21
SE / d%z\/g [ AT™V,,A) — 2065¢/4 (AA)+m(AA) (4.34)
3 mn 1 ATmn
—3—2@3¢/4Fm (AT rllA)+@e¢/4Gmnpq(Ar PaA)
and
St = S + / dz\/g [ AT™V,,A) — 5e5¢/4m(m)—g(m)2 (4.35)

1 - 1 _ 1 _
- §eg¢/4an(AFm"F11A) - ge“i’/%ﬁfﬂm(Ar"mPPHA) - ﬂe<f>/4Gm,qu(AF’W‘?A)

Note that the quartic-dilaton term in S can potentially generate a positive cosmological constant,
contrary to the quartic-dilaton term in S*¢, which is negative. The dilaton and Einstein equations
following from action (4.34) are written in appendix (D.1), and the form equations read,

) 9, 5 . )
0= d<* [*/2F - (2087 = S5+ 1—6)e3¢/4(Ar(2)r11A)]) + 2 H %G
] 1 4
0= d(#[e™H — (248 + 25)e—¢/2(Ar( TUA)]) +e?2F00G = SGaG + Zme™/4F

0= d(;[eW?G ~ (2187 - %5 2 )e?4(AT )A)D ~HAG, (4.36)

16

where we have defined: (AD(,)A) := ﬁ(l_\f‘ml mp\) Az A adz™, similarly to our definition

95



for the bosonic forms. In addition to the equations above, the forms obey the Bianchi identities
given in (4.14).

4.2.4 de Sitter vacua

Having obtained the general dilatino-condensate action (4.34), we can look for de Sitter solutions
supported by non-vanishing dilatino condensates. Let us be clear that these are formal solutions of
IIA supergravity, obtained by simply assuming non-vanishing values of the dilatino condensates
of the theory. Our approach is similar to e.g. [103], in that we do not offer any concrete scenario
or mechanism for the generation of the dilatino condensate. We will use for that purpose the
dilatino-condensate pseudoaction (4.34), obtained by setting the Einstein-frame gravitino to zero
(B8 = 0), although the analysis can be easily extended to a general value of the parameter /3.

dS10 — In this section we show that the massless ITA theory admits ten-dimensional de Sitter
vacua supported by the quartic-dilatino condensate, with constant dilaton and vanishing flux.
The only potentially non-vanishing condensates in the ten-dimensional Lorentz-invariant va-
cuum are the scalar condensates (AA) and (AA)2. Note in particular that these vevs are a priori
independent. *

With these assumptions, setting m, 5 = 0, we see that the Bianchi identities (4.14), the form
equations in (4.36) and the dilaton equation (D.1) are trivially satisfied. Moreover the Einstein
equation (D.2) reduces to,

R 3 .
—Rypn = W(AA)ngn :

For a non-vanishing quartic-dilatino condensate we thus obtain a simple realization of dSj¢ in

massless ITA theory. * The de Sitter radius is set by the value of the condensate.

dS4 X Mg without flux — Let us now consider compactifications, on six-dimensional Kihler-
Einstein manifolds Mg, of massless IIA supergravity to a maximally-symmetric Lorentzian mani-
fold M 3 with vanishing flux, ', H, G = 0, and constant dilaton which we also set to zero for
simplicity, ¢ = 0. More specifically, we assume that the ten-dimensional spacetime is of direct
product form M; 3 x Mg,

ds? = ds*(M; 3) + ds*(Ms) . (4.37)
Moreover,

_R,uu =Q Guv » —Rpn = Womn » (4.38)

3. Strictly-speaking these vevs should be denoted by (AA) and ((AA)?) respectively, where ((AA)?) # (AA)? in
general. Omitting the brackets should hopefully not lead to confusion.

4. Note that in our “superspace” conventions for the forms, R<0R>0 corresponds to de Sitter, anti-de Sitter
space respectively.
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where g, gmn are the components of the metric in the external, internal space respectively; we
have chosen the parameterization so that positive 2 corresponds to de Sitter space, and similarly
for w (cf. footnote 4).

The internal manifold being Kihler-Einstein, it admits a nowhere-vanishing spinor, 7, of positive
chirality, which we take to be commuting. Moreover the spinor obeys,

V) = 1Pmn,

where dP is proportional to J, the Kihler form of Mg. Furthermore J can be expressed as an
bilinear,

in'ygm=J .

We decompose the chiral and anti-chiral components of the dilatino, A and p respectively,
cf. (D.11), as follows,

A=X+®n+cec., p=x-®n+cc., (4.39)

where x4 (x-) is a chiral (anti-chiral) anti-commuting Weyl spinor of M; 3. The rationale for
this decomposition is that, in the effective action describing the compactification on Mg, (4.39)
should give rise to “light” four-dimensional spinors x4 ;° it generalizes to the Kihler-Einstein
case the decomposition of [95], where Mg is taken to be a Calabi-Yau. Similar decompositions
were adopted in e.g. [100].

It follows from (4.39) that, for a Lorentz-invariant four-dimensional vacuum, the dilatino bilinear
condensates take the form,

(A =R(4),  (ATA) =RA)J,  (ALyHA) = S(A4) voly + R(A) %JQ ,

where the complex number A := 4 (x4 x-) is the four-dimensional quadratic-dilatino conden-
sate, and voly is the volume element of M 3. Furthermore, setting m, 3 = 0, we see that the
Bianchi identities (4.14), the form equations (4.36) and the dilaton equation (D.1) are all automa-
tically satisfied. The mixed (u, m) components of the Einstein equations (D.2) are automatically
satisfied, while the internal and external components of the Einstein equations reduce to,

3
ON=w= 2@(AA)2 , (4.40)
where we have used that vevs of the form ([\I‘(mvn)/\) vanish. For a non-vanishing quartic-

dilatino condensate we thus obtain a simple realization of dS4 X Mg in massless IIA theory. The
curvature of de Sitter space and the internal manifold are both set by the value of the condensate.

5. Although certainly plausible, this is hard to show in general beyond the Calabi-Yau case.
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A few concluding remarks can be made. First, those two simple examples of de Sitter background
are supported by the non-vanishing vev of the quartic fermions terms computed in (4.2.3), and
the existence of those configurations depends on the coefficient of the (AA)? term in the action
(4.34) (we emphasize, however, that we do not provide a concrete scenario that would establish
the existence of this non-vanishing fermionic background). Besides, throughout this chapter, we
only focused on the dilatini terms of Romans supergravity. However, the superspace formalism
from which it emerges, together with the package of chapter 3 ° can also be used to study HLW
supergravity, or gravitini terms that were discarded in our analysis.

6. Actually, given the very small differences between HLM and Romans in the superspace formalism (cf. (4.4)), going
from one to the other requires a very reasonable amount of work.
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Conclusions

S A CONCLUSION, of this thesis, let’s briefly review the subjects covered and examine some
future directions.

As explained in the introduction, the quantum consistency required in eleven dimensional super-
gravity calls for particular terms of higher order in the Planck length, or in derivative order. If the
conjectured M-theory is a microscopic completion of this supergravity, it is plausible to expect the
existence of a full supersymmetric invariant completing the anomaly-canceling term considered
in chapter 2. Finding superinvariants is a notoriously hard problem, and several techniques, based
on IIA string computations or supersymmetry have been developed to this end. However, only
a few terms were computed, and the full superinvariant remains to be found. We tackled this
problem from the point of view of the action principle, which relies on the superspace formulation
of supergravity to generate supersymmetric invariants. In principle, this technique leads to the
full correction associated to the Chern-Simons term.

Although this program has not been completed, several conclusions were made about the struc-
ture of the expected superinvariants. Our results strongly support the T-exactness of Xg. Besides,
the existence of the superinvariant is ensured if this condition is fulfilled. Finally, a systematic
approach to the resolution was initiated, and might be applied in the next steps of the resolution
(provided there is no computational barrier).

Dealing with these rather lengthy computations leads to the development of a Mathematica pa-
ckage called SSGAMMA. It is designed to handle with ease the type of algebra we encounter when
working with tensors and superspace equations : gamma gymnastic and Fierzing, spinors and
tensors with explicit fermionic and bosonic indices, large (anti-)symmetrizations, group theoretic
functions, etc. Even though it still needs some polishing, we hope this program will be useful for
future manipulations in eleven- or ten- dimensional supergravity, and that it will contribute to
further developments in the domain of superinvariants. The package was also extended to deal
with ten-dimensional spinors and gamma matrices, to tackle another computationally intensive
problem presented in chapter 4.

All versions of IIA supergravity were proven to emerge from the same superspace origin : solving
Bianchi identities with well-chosen conventional constraints on the torsion leads to both massive
supergravities (with the massless case as a zero-mass limit), via particular choices for two para-
meters emerging from the calculation. This approach is interesting in that it gives a systematic
way of computing the complete fermion terms (which were only implicitly given in [93]). With
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the much-needed help of SSGAMMA, we generated the equations of motion including the quadra-
tic and quartic fermion terms of Romans supergravity. Then, in two simple cases, we generated
de Sitter backgrounds made possible by the non-zero vev of the quartic fermion term. This su-
perspace approach was employed to study the quartic dilatino terms in Romans supergravity, but
could be extended to all IIA supergravities, where fermion terms are often left aside due to the

lengthy calculations they entail.
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WEeil triviality in eleven dimensional supergravity

A1 Weil triviality at O(1°)

In this section we give the details of the solution of the superspace equation Wiy = dKj; at
lowest order in the Planck length. As a byproduct, we shall see that the solution for K;; given in
section (2.3.1) is unique up to exact terms. We look for the solution of the equation,

1
dKq; = —6 G4rnGynGy , (A1)

where K11 must be gauge-invariant, i.e. function of the field strengths of the physical fields. The
explicit construction of K7i; in flat components proceeds by solving the equation at each mass
dimension in a stepwise fashion, from dimension -3 to 2 (i.e. from Ko, oy, to Koy ay,). In
components the equation (A.1) reads,

11
2

11!

F
Dia, K, a00) + o Tiagay) Krjag.a,) = Ton? Glay..ay Gas.as Gag.ay),  (A2)

where the torsion term arises from the the action of the exterior derivative on the supervielbein.
The notation [ABC') represents the graded anti-symmetrization (i.e. symmetrization or anti-
symmetrization, depending on the bosonic or fermionic nature of the indices). In the following,
anti-symmetrization of the indices a; and symmetrization of the indices v; is always implied.

The mass dimensions of the physical fields which will be involved in the construction of K1, are,
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[Day] =1 [Tarax®] = 3/2 (Gabap] = [Tap"] = 0
[Day] =1/2 7] =1 [Gabea) = 1

From dimension -3 to -1/2

From dimension -3 (12 odd indices) to —1/2 (7 odd and 5 even indices), the right hand side
of (A.1) always vanishes. Given the dimensions of the field strengths of the physical fields, the
first non-vanishing component of Kii is Ko, .. .aya;...a7, appearing for the first time in the 0-
dimensional equation (6 fermionic indices and 6 bosonic indices). For example, the equation (A.2)
at dimension —1/2 reads,

)
ﬁ Da1Ka2...a7a1...a5 - ﬁDalKGLQ---C%Oq...Oq +
11/ 5 7 35
2(33 Ta1a2f Kfas..aza1..a5 — ﬁTalaz€K6a3...a5a1...a7 — %Tawqe Kea2...a7a2...a5> _0,

(-1/2) -3/2)

. -1 -2 .
and involves " K5,/ 2) a1 ..ag0 K& Lagar..ass K& obay as and K& agay..a5, which cannot be ex-
pressed in terms of the physical fields : the equation is thus trivially satisfied.

DimensionO—(Al...Aﬁ—>a1...a6,A7...A12—>a1...a6)

At dimension 0, eq. (A.2) reads :

0 0
5 Do K caanan + 5D Kaytgmn g +
3 (35 Tores” Ko + 3y Tovos” Kiss g + 5 T Kio s )
0

— — 574 77 Goonmin Gesnsasos Graoneacs -

Most terms vanish and the equation simplifies as follows,
(Ff)alag Kfal...a6a3...a6 =90 (Falaz)OllOlQ (Fa3a4)a3a4 (Fa5a6)a5a6-
Using the M2-brane identity as well as the so-called M5-brane identity,
(IVaras (Ceas...as)azas = 3 (Paraz)aras (Tagas)azas » (A3)

1. In the following we will use superscripts to indicate the dimension. This should not be confused with the notation
in the main text, e.g. (2.45) where the superscript denotes the order in the derivative expansion.
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it is easy to check that the solution is given by,

Ka1...a7a1...a4 =42 (Fal...a5)a1a2 (Fa6a7)a3a4 . (A4)
Dimension 1/2-(A1...A5 — Q1 ...05, Aﬁ...A]_Q — al...a7)
At dimension 1/2, eq. (A.2) reads,

Do, (F<5)F(2)):0 0
5 7 ——
ﬁ DalKag...ag,al...(m - E Da1 Ka2...a7a1...a5 +

11/ 5 35 7
<33 o Kfag .asay...ar %Talaze Kea3...a7a1...a5 - ﬁTmoqe Keag...agag...ag;) - 0,
S———— S—
0 0

which simplifies to,

(Ff)oé1a2Kfa1...a7a3...a5 =0.

Since [Kfa,..aras..a5) = 1/2 and there is no gauge-invariant field with that dimension, we
conclude,

Kal...asoq...a:; =0. (AS)
Dimension 1-(A4;... A4 = a1...04, As... A9 — a1 ...ag)
At dimension 1, eq. (A.2) reads,

0 da, (F(S)I‘@)):O

8
Dozl Kozg 0401 ...a8 E DalKGQ...ngél...(X4 +

1 14 16
2 11 Toqozg Kfa3a4a1 .ag + ,Taqag’y Kvag...agoq...az; + 33 ,TGL1OC1’y K7a2---044(12---a8>
N—_————™—

33
0
11! 12
- _W % a1a2a3a4Ga5a6a1a2Ga7agoc3oz4 9
which becomes, using (B.2),
56 .
(Ff>a1a2Kfal~--a8043044 - ? ? Galazasf (Ff)alfm (Fa4~-~a8)a3a4

+ 18 i Gfghi (Falnﬂﬁfghi)alaz (Fa7a8)a3a4

+ 701 (Fa1a2)a1a2 (Fa3a4)a3a4Ga5...a8 . (A.6)
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The last term above can be expanded as,

) 70 .
704 (Cayas)aran (Fa3a4)a3a4 Gas.os = 1 (Ff)amz (Ffal.--a4)a3a4 Gas..as

3
of 56 .
= 42 (3 (]-_‘ )041042 (F[fal.,.a4|)oc3a4 G|a5“.a8} - ? ? (F )011042 (F[al...a5|)a3a4 G|a6a7a8]f :

Similarly, the second term on the right-hand side of (A.6) can be written in a manifestly 7-exact

form,
7 fghi 7 fohi (i
18 (Tay...a6 Jaras Lazas)asay = BET) €jai...ap (I)aras (Faras)asas
1 o 1 o
- 2 e[jm...a(slfghZ (I)aras (F|a7a8})a3a4 + 9 eal---a7fgh2 (F])OqOQ (Fasj)a3a4 :

0
Then eq. (A.6) takes the following form,

. . . 1. o
(F])a1a2Kja1...aso¢3a4 = (FJ)QIQQ (421 (F[jal...a4)a3a4 Ga5...ag] - 5 t E[jal...a6|“m ‘ (F\a7a8])a3a4 Gil...i4) :

Since the cohomology group H2*? is trivial, the solution to the above equation reads,

1

. . - 91...14 . .
Kal.‘.agalag - 422 (Fal...a5)a1a2 Gag...ag — 51 6(11...(17 (Fagag)oqag Gll...’L4 )

2

up to T-exact terms.

Dimension3/2-(A1...A3 — Q1...0Q3, A4...A12 — al...ag)
At dimension 3/2, eq. (A.2) reads,

0
9 Pt ——
72D041Koz2a3a1...a9 - EDal Kag...agal...oz3 -
1/1

6 9
Toqozgf Kfal.‘.agag + Tauzg’y K7a3...a9041...a3 + Talal’y K”/azagag...ag =0 5
2\ 22 Nt

11 22
0

which becomes, using (B.2),

(Ff)maszal.--agas =+ 252 (Fa1.v-a5)a20¢3 (F%a?)alF Tasagﬁf
-3 6<11---a7“ml4 (Fasag)maz (Phiz)asf Ti3i4ﬁy

+ 504 (Fa1a2)(a1a2\ (Fa3..-a7)|a3F) Tasagﬂ/ . (A7)

The decomposition of K g, . 494 in irreducible components is given by

(10000) ® (00001) = (10001) & (00001) ,

111



whereas T, is in the representation (01001). It follows that,

Kal...alooq =0 y (AS)

and moreover the right-hand side of (A.7) must vanish identically. This can be verified by e.g. ta-

king the Hodge dual of (I';,i, )asr in the second term of (A.7), and using the gamma-tracelessness
of Ty, cf. (B.4).

Dimension 2 - (A1A2 — 1 (2, A3 c. A12 —af ... alo)

At dimension 2, eq. (A.2) reads,

2 10
ﬁ DalKagal...aw + ﬁDa1Ka2...a10a1a2 +

11/ 1 10 15
2(66 Ta1aszfa1...a10 + ﬁTa1a27K7a3...a10a1oz2 + 22Ta10¢1'yK’Ya202~-~a10)
11! 18

6(4!)3 % a1a2a3a4Ga5a6a7a8Ga9a10a1a2 ’

which becomes, using (B.2),

(Ff)maszalmam =

. . 1. S
— 101 (422 (Paz---ae)alaz da1 Ga7---a1o - 5 ¢ eaz---as“m24 (Fagam)maz da1 Gi1---i4>

) ) 1. o
— 201 Ta10116 (42 t (Faz---a(s)wéz Ga7---a10 - 5 ? eaz---as“mZ4 (Fagaw)eaz Gi1---i4>
— 1575 Gal---a4Ga5---as (Fagam)maz . (A.9)

Multiplying by I'") and taking the trace leads to,
1
Kal...all = 5 fal...allGdl..,d4Gd1md4 . (A~1O)

On the other hand contracting (A.g9) with '3 or 1 imposes that the contraction of the right-
hand side must be identically zero. This can indeed be straightforwardly verified using (B.4).
Dimension 5/2 - (Al — 1, A2 e A12 —a... all)

The equation at dimension 5/2 does not contain any additional information, but serves as a consis-
tency check for the expressions we found for K, . q,,. [t reads,

1 11 11/ 2 10
EDmKaL..au - ﬁDmKaz..-anm - 9 (12 Ta1a27Kva3---a11a1 - 12Ta1a17Kvaz-..au> =0,
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which becomes, using (B.2) and (A.10),

1

i €a1...a11 -DOtl GadeG(led - 33OiGa1aggh (thag...ag Ta10a11)a1 + 2310iGa1...a4 (Fa5 T

...a9

Using (B.3), (B.1) we then obtain the constraint,

5 dyds . 7 by...be
O = 6(IL]_...(111 Td1d2 (Fd3d4)5041 G ! 4 + Z 6(11.‘.[15 ! 6 (Fbl...bg Ta6a7)a1 Gag...(lll

- 990 6Cl,l...(l7b1ngh (Fblbg Tagag)al Gamaugh ) (A~11)

which can be seen to be automatically satisfied by contracting (A.11) with €4, ._4,,. The next equa-
tion (of dimension 3) is trivially satisfied, since the purely bosonic component of a 12-form va-
nishes automatically in eleven dimensions.

A2 Weil triviality at O(1?)
In this section we are looking for the solution to the equation,
dK11 = G4nGanR\ Ry, . (A.12)

We will construct all components of K11 explicitly and confirm that the solution of section 2.3.2
is unique up to exact terms. The resolutions of the first few equations are entirely developed, but
the last ones are only sketched. In components the equation above takes the following form,

11 11!

F
D[A1 KA2_.A12) + ? 1_’[141142‘ KF|A3...A12) = m R[A1A2|c152 R|A3A4|C201 G\As---As GAg...A12) .

(A.13)

The dimensions of the physical fields are the same as before, with the addition of [Rgpeq] = 2. The
dimensions of the various components of K range from - 1/2 (Kq, . .ay,) to 5 (Ka, . ay,)-

Dimension 0 to 3/2

Since the dimension of K, ._a,, 18 —1/2, it must be set to zero as it cannot be expressed in terms
of the physical fields. The equation of dimension 0 then takes the form,

11 11!
Da1 Kag._,au + ? Ta1a2f Kfa:;mam = w RalazclcQ Ra3a46201 gas...agfag-..am 5
0 0
which simplifies to,
(M) a0z Kfag.arz =0 (A.14)
Since [Kfay..a1,] = 0and H? is non-trivial, a 7-non-exact solution involving only gamma

matrices could exist. In that case Kyq,...q,, would necessary transform as a scalar, since the only
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available gauge-invariant superfield of zero dimension is a constant. On the other hand,
(10000) ® (00001)®s1 =1 x (00000) + - - - ,
i.e. the decomposition of K tq,.. .«,, contains a unique scalar combination. It follows that,

Kfa3~-~0¢12 X (Ff)a3a4 (Fa)a5a6 (Fa)a'?aS (Fb)o@alo (Fb)a11a12 ‘

However it can be verified that this expression does not satisfy eq. (A.14), unless K4, a4...01, = 0.

The right-hand side of eq. (A.13) vanishes from dimension 0 to dimension 3/2, and the equations

to solve are all similar to (A.14) : The component K, (E}{j)alag will be set to zero because there is
no gauge-invariant field of dimension 1/2. The components Kaﬂzawlmas, Ké?ézzwwlma? will

be set to zero, up to exact terms, as a consequence of the triviality of Hg”g, Hfﬁ.

Dimension2-(A1...A8—>a1...a8,A9...A12—>a1...a4)

This is the first equation with a non-zero right-hand side,

0 0
8 — 4 —_——

E Da1 Ka2,..aga1...a4 + E Da1 Kag...a4o¢1...o¢8

11 /14 1 16
+? <33 Ta1azf Kfa1...a4a3...as + ﬁ Tawz'y K’yoc1-..asa3a4 + ﬁ Ta1041’y K’Yoé3---a8a2---a4 )
N———— ~—————

0 0
4 11!

= % W Q1 2C1C2 R0430440201 Ga1a2a5a6 Ga3a4a7as ’
which becomes, using (B.2),
(Ff)oqaz Kfal--~a4a3~~-as = —1801 (Ff)a1a2 (Ffal...a4)a3a4 Ra5a66162 Ra7a80201 .
Since H.,S- 6 g trivial, the solution reads,

K(Q) - _18OZ (Fal...a5)a1a2 Ra3a4C162RO¢50¢6CQC1 9

ai...asq...o6

up to T-exact terms.
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Dimension5/2-(A1...A7—>a1...a7,A8...A12—>a1...a5)

At dimension 5/2, eq. (A.13) reads,

0

7 5 —_—
E DalKaz...a7a1...a5 - ﬁ Da1 Kag...a5a1...oz7
11,7 ) 35
—? (ﬁ Talagf Kfal...a5a3...a7 + ﬁ Ta1az’y Kva1-..a7a3.--a5 + % Talal’y K’YOC3---067E2---‘15 )
0 0

11! 1
:W (2 ﬁ Ralagclcg Ra3a16201 Ga2a3a4a5 Ga4a5a5a7)7
which becomes, using (B.2),

(Ff)OqOZQ Kfal...a5a3...a7 =
. 1
=120 (Tay..a5) a1 0s Ragas ((Felez)az’)a(s (F[qcz Te1ez])a7 + ﬂ(rclczqmm)asab‘ (Leyes T6364)a7>

+ 18007 (Famz)oqom (Fa3a4)a3a4Ra5a66162Ra7a5C201 . (A.15)

The second term in (A.15) can be written,

18001 (P[a1a2|)0410¢2 (P|a3a4|)043064 Ra5a60162Ra7|a5]6261 (A.16)
= 6001 (Pg)oqaz (Fg[a1a2a3a4|)a3a4 R05066182Ra7|a5]02c1
. 6 1
= 6001 ()0 ( SClgsossosns Rors”™ Pt + 5 Carosoios)osos oo™ R ) -

One can then verify that the second term on the right-hand side of (A.16) cancels with the first
term on the right-hand side of (A.15). Since the first term on the right-hand side of (A.16) isin a
T-exact form and HE 9 ig trivial, the solution reads,

5/2 _ - c1c2
K(gl./..g,(;al...a5 = 7201 (Fal...a5)a1a2 Roga, Rosageses s

up to T-exact terms.
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DimensionS-(Al...AG — 1 ...04g, A7...A12 —>a1...a6)
At dimension 3, eq. (A.13) reads,

0

1 1 —_——N—

5 a2 .apal...ae + 2 Da1 Ka2 .agaq...06

1 ) ) 6

? <2 [e5Re %} Kfa1 .agQ3...06 + ﬁ Talag7 K’ya1...a6a3...a6 + ﬁTalalﬂy K’yag...agag,..a6>

SN— SN——
0 0
11! 12
:4(41)2 ( T Raya,*? Ragascaer Gasasoson Gasagasas

1
+ 2 TE)ZL ROLlOLQClCZ Ra30¢40201 Ga1a2015046 Ga3...a6

3
+ 2 ﬁ Ralaz crez Ralagczcl Ga3a4a3a4 Gasagasag )

which becomes, using (B.2),

S . 1
_Z ? (Ff)oqag Kfa1...a6a3...a6 = 2 Da1 Ka2 .agay...ag

1
Da1 Kag...aeal...ag
€
3T Kea2...a6a2...(l6

ajol
cic2
— 2700 Roé1a1 Ra2a26201 Ga3a4a3a4 Ga5a6045066

c1co
+ 225 Ralon Ra3a40201 Gmagasag Gag...a(;

c1co
+ 1350 R, qs Royaseser Gagasosas Gasasasas -

Let us now examine separately each group of terms in the equation above with the same type of
field content. There are four G® terms which read,

— 2251 G, ..as (Tasag )aras Roasas ™ Rasagercs
— 360 (T4, a5 )aras Rasasercs Tesas® Tere” (Dag) g
+ 720 (Tay a5 )aras Ragaseres Teras® Tage” (Tes) pag
— 5404 (Ta; a5 ) (are| Tagan Rlazaa ™ Rlasag)czer - (A.17)

The last term in (A.17) can be split in two parts,
- 2 € c1C2 4 € c1c2
_540 (4 6 (Fal..,as )ale Tagag Ra3a4 Ra5agcgc1 ‘|' 6 (Fal,..a5 )a1a2 Taﬁag Rea4 Ra5agcgcl .

The first one leads to,

5
. b1...b cic . cic
(Fg)oqag (8 ? €gay...as L4 Gbl..‘b4 Ra3a4 1e2 Ra5a60201 + 2251 Gal...a4 (Fa5a6)a1a2 Ra3a4 122 Ra5a66201 )
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where the first term is 7-exact, and the second term cancels with the first one in (A.17). It can
then be verified that the three remaining G* terms cancel out. Moreover there are three terms of

the schematic form G(DG),

- 3602 (Falmas)alag Ra3a40162 dCQTC1065/8(Fa6)5046
= 7200 (T ") 0105 Ragay ™ quaeasﬁ(F@)ﬂae
— 1801 (Falmas)alcm Roga, ™ dag Rasascacs 5 (A.18)

which cancel each other out. There are two RG terms which read,

— 1350 (Tayaz)araz (Tasas)asas Rasas™? Rasageact (A.19)
+45(Cay..a5)araz Ragas ™ ((FeleQ Lag)asas Bezereres — 2 (T Ty )asag Rcweelez) .

The first term of (A.20)can be put in a 7-exact form,

— 1350 (L'ayaz)aras (Lagas)agas Rasas ™ Rasageaer =
(Fg)OqOéQ ( — 6301 (F[gal...a4|)013044 R|a5a6]6162 Rasa(sCQCl + 180 (Fal.--as)aw@ Ra696162 Rasaaczcl) )

while the remaining RG terms cancel out. There are two T'? terms which read,

+ 2700 (Fala2)a1a2 (FU«30«4)043064 Ra5a501€2 RaGU«GCQCl

. e 1
10807 (Tay..as Jasaz (T )asas (Teres Teses)Jas

+ ﬁ(rcwzelmm)agm (Leyen Te3e4)a5>Raaa602C1 .

The first term can be put in a T-exact form,

2700 (Famz)amz (Pa3a4)a3a4 RasascICQ Racaeczq =
1 7 2
g 2700 (Fg)aw@ <5 (Fgal---a4)a3a4 ROésasqc2 Ra6a60201 + g (Fal---as)aswl Ra5a60162 Ra690261> )

while the remaining 7'T" terms cancel out. Taking the triviality of H* into account, the non-
vanishing terms extracted from the RG, T2 and G? terms lead to the solution,

(3) — ) _ c1C2 c1C2
Kal..,a7a1...a4 =5041¢ (Fal---GS)OCIOQ Ra6a7 ROZ5OZGC2CI + 2 ROCSQG Ra6a7c251

1
. b1...b
- 5 1 €a1...a7 ! 4 Gbl...b4 Ra1a20102 Ra3a402c1 9 (A~2O>

up to T-exact terms.
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Dimension7/2-(A1...A5—>a1...a5,A6...A12—>a1...a7)

At dimension 7/2, eq. (A.13) reads,

5 7

E DalKag...a5a1...a7 - E DalKaQ...a7a1...a5
11 /5 7 35
—? <33 Ta1a2foa1...a7a3...a5 - ﬁTa1a27K’7a1...a5a3ma7 + %Talaviﬁa&uasa?mW)

11! 1
- W <2 ﬁ Ra1a1 ae Ra2a30201 Ga4a5043a4 Ga6a7a5a6

1
+ 4 % Ra1a1 cre Ra2a30261 Ga2a3a4a5 Ga4...a7> .

The right-hand side of the equation above contains terms of the form G(DT), T(DG), TR, and
TG?. The first two groups of terms simply vanish (without the use of any equations of motion or
BI). Two T-exact terms can be extracted from RT and T'G2, and the remaining terms cancel out.
This leads to the solution,

K(7/2) =20161¢ (Falu-GS)alaZ Rasa70102 Ra3a80261

aj...agqy...a3
bi...by cico
+ 46a1...a7 Gbl...b4 Ralaz Ra3a86261 )

up to T-exact terms.

Dimension4-(A1...A4—>a1...a4,A5...A12—>a1...ag)

At dimension 4, eq. (A.13) reads,

4 8
E Da1Koz2...a4a1...a8 + ﬁ DalKaQ...agozl...oc4
11 /1 14 16
+? <11 Ta1a2foa1...asoz3a4 + ﬁTawzfy K7a1...a4a3...as + ?BTMM’YKWMMO‘M%-“S)
11!
:4(4|)2 <1260 Ralfm e Ra3a40261 Ga5a6a3a4 Ga7a8a5a6

cica
+35 Rozlocg Ra3a40201 Ga1a2a3a4 Ga5...a3
cica
+4-210 Ralaz Ra1a20261 Ga3a4a5a6 Ga7asa3a4

- 2 ' 840 Ralal cre2 RaQaQCQCl Ga3a4o¢3a4 Ga5a6a7a8> N
The terms in the equation above can be cast in eight groups : R?, RG?, R(DG), G*, G*(DG),

GT? T(DT), and G(DR). Parts of the terms of the form R?, G?R, and GT? can be put in a
T-exact form, while the remaining terms cancel out. Taking into account the BI,

DalRazasclcz = _Ta1a2’yR’ya301CQ 5 (A.21)
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we see that the term G(DR) cancel against a term from GT2. Taking into account the equation
of motion of G we see that a term from G?(DG) cancels against a term in G*,

1 .
6al...a7blmb4 Dangl.,.b4 = 5 Gal...agblmbd DCGCbl...bg =105 Gal...a4 Ga5...a8 . (A.22)

We are thus led to the solution,

4 _ . c1c2
K(gl?..agoq...az = —15124 (Fal~-~a5)a1a2 RGGOL? Rasagczcl
by...b
- 6 60,1...0,7 ! 4 Gbl...b4 Ra1a26162 Ragagczcl

by...b
+ 12 €a1...a7 ! 4 Gb1...b4 RalachCQ Ra2a90201 I

up to T-exact terms.

Dimension9/2-(A1...A3Hal...ag,Azl...AlgHal...ag)

At dimension 9/2, eq. (A.13) reads,

3 9
EDalKagagal...ag - EDalKag...agal.“ag

11 /1 6 9
—? <22 Ta1a2foa1...a9a3 + ﬁTamzv K‘/aln-asasmag + 22Ta1a1’yK’YOl2a3a2-~a9>

11! 1
— <2 m RalonCICQ Ra3a16261 Gag...a5 Gaﬁ...ag

3
+ 4 % Ra1a26102 Ra1a36261 Ga2a3a4a5 G(ZG...CL9> .

The terms in the equation above can be cast in seven groups : R(DT), RTG, G2 (DT), G3T, T3,
TG(DG) and T(DR). One term of the form RT'G is T-exact, while all the remaining terms can
be seen to cancel out, using (A.21) and (A.22) to convert a term of the form T'(DR) to the form
T3, and a term of the form T'G(DG) to the form G3T. Up to T-exact terms, the component of
dimension 9/2 then reads,

(9/2) _ . b1...by ci1co
Kal...agoqaz - 6016&1--417 Gb1-..b4 Ra8a9 Ra1a106201 .
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Dimensions 5- (AlAg — 1 (9, A3 A A12 —a... aw)

At dimension 5, eq. (A.13) reads,

2 10

E DalKa2a1...ag + E DalKGQ-nalOOélOéQ
11 /1 15 10
+? <66 Ta1a2f Kfal,,,alo + E Tala2'y K’yoqagag...am + §Ta1a1’y K’)/agag...al())
11! 1
:4(4')2 (2 % Ra1a20102 Ra1a26201 Ga3---(l6 Ga'?---alo
2

ci1co
-1 ﬁ Ralal Ra2a20201 Ga3a4a5a6 Ga7---a10

1
ci1C2
+ 2 11 Ra1a2 Ra3a4czc1 Ga5a6cx1cx2 Ga7a8a3a4 .

The terms in the equation above can be cast in nine groups : RT?, GT(DT), G*T?, GR?,
GR(DG), RG?, R(DR), G*(DR), and T?(DG). One term in GR? is T-exact, while all the
remaining terms cancel out, as can be seen using eq. (A.21) and (A.22) to convert a term of the
form R(DR) to the form RT?, a term of the form G?(DR) to the form G*T?, and a term of the
form T%(DG@) to the form G?T2. Up to T-exact terms, the component of dimension 5 then reads,

K(S) = —165 6(11...a7blmb4 Gbl...b4 RagaQCICQ Ramaucgcl . (A23)

ai...ail

Dimension 11/2 - (A1 — 1, AQ .. A12 — ay ... a11)

Since there is no new component of K appearing, this equation should be satisfied automatically,

1 11 11 /1 5

E DalKaL..au - E DalKaz-uaan - ? <6 Ta1a2f Kfa2---a11 - 6 TalazV K’Yalas-..au)
11! 2

— 4(4')2 (6 RalachCZ RaQaSCQCl Ga4...a7 Gag...a11> .

The equation contains six types of terms : T R2, GR(DT), G*TR, GT(DR), RT(DG), and T3G.
As expected all the terms cancel out, as can be seen using (A.21) and (A.22) to convert a term of
the form GT(DR) to the form T3G, and a term of the form RT(DG) to the form G*TR.

A.3  Supersymmetrization at O(I°), with half of the X5 term

Instead of considering the full Xg tensor required for quantum consistency, we can first attempt
to symmetrize one of its two parts, as mentioned in (2.4.2). In this section, we consider the first
member of Xg, namely tr(R?)atr(R?), whose simple form allows for a particular treatment. At
O(13), if one defines Gy so that :

dG\ = GV tr(R?)?, (A.24)
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where tr(R?) is at O(I3), then the twelve-form W75 associated to the Chern-Simons term verifies,
at O(1°) :

W12 = GELO)/\U’(RQ)Q

(A':24) dG(71)A tY(RQ) = dKH,

where K11 can be simply expressed as G(71)A tr(R?). In that case, the O(1%) superinvariant corres-
ponding to this supersymmetrization is,

AS = 6 / (xR Cf” - GV weR?)

and the whole difficulty lies in finding the term G;l) defined by (A.24). This should be considerably

(1)
7

simpler than dealing with the entire term Xg, since the equation for G’ only contains eight

indices (instead of 12). In superspace components, eq. (A.24) becomes :

| 7 1 1 AV
ﬁ (D[Al GAQ...Ag) + B} T[AIAQ‘F GF|A3...A3)> = <4‘ G[Al...A4|> <2' R|A5A6| ! 2) <2| R|A7A8)0201

N———

or more explicitly :

2D(4, Gay ag) T TTiaa5)" Griag..ag) = 105 Gla, . ay) Rias a6 Rias ag)enen

with the dimensions ranging from [Gq, o] = 1/2t0 [Ga, . o.] = 4.

Dimension 1 — Since [Gq, ..o, = 0, it can only be composed of gamma matrices, and must
also be gauge invariant. This means it can only behave as a scalar, but (00000) ¢ (00001)®s7, so
Ga,...ar = 0. The first equation (of dimension 1) then takes the form :

—1 (Ff)OqOQ Gfoc3...a3 =0. (A.25)
According to (2.26), G fqy;...as admits solutions of the form (I'fe, Jazas S as...as, where S is in

the representation (10000) ® (00001)®s4 = 2(00010) @ - - - . There must exist two expressions
of dimensions 1 involving the field G. The two following independent expressions (valid a priori),

(Ff81)(F6182)(F62h1mh4) Ghl...h4
(ngl)(Felez...e5)(Fezmes}llmhzl) Ghl...h4 (A~26)

appear to be T-exact. For example, the first one can be expanded using one of the gamma identities
of (B.1) as

(Tper) (1267 (D"2h2)(TM) — (Tg, ) (Tey 1"4)) Gy (A.27)

Using the identity (T'*)(T4p) = O, the first term of (A.27) (T f™)(Th2hs)(Th1) Gy, p, can be
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forced into the 7-exact form (Fh‘*)(I‘mhl)(Fh?hi‘)G‘hél]hl._.hg'. The second one, (I'ft) (I'y,)

(Felglhl'“h“) Gh,...hy» can be put as well in the form (Fgl)(Fmel)(Fel|gl]h1“'h4) Ghy..hy-

The same can be done with the second term of (A.26), and every other expression which might be
candidate for G fqy...ag- The only valid solution (up to T-exact terms) is then G'ta;..a5 = 0.

Dimension 3/2 — The following equation is :

—i (Ff)aum Gfa1a3...a7 =0.

According to (2.26), the only possible solutions for G ¢4, as...a, have the form (Ffal) Sasagar- The
representation of Sy agas 15 (00001)®53, which contains only 1 irrep (01001). There must be a
single solution involving the torsion field 7", which can be, for example 2 (I' t4, Jaras (I''%?)asas
T%,es a5, Where z is a constant that cannot be fixed for the moment.

Dimension 2 — The equation of dimension 2 is the first which has a non-zero rhs,

2.

(Ff)oqom Gfa1a2a3~~-016 =6 (Falaz)aw@ Roc3Oé4CIC2 Ra50¢60201 B g Lz DalGalaw@---aG . (A28)
The spinorial derivative of G, ayas...a, Will contain a term 2(I'q;a5)aras (T?)asas (T3)asas
Re, . e,-Althoughitis closed, this term happens to be non-7-exact, which means eq. (A.28) cannot
be verified unless z is set to 0. If eq. (A.28) with z = 0 admits a solution for G, the rhs must be
T-exact. However, if some 7-exact terms can be extracted from the rhs, there inescapably remains,

(PGIQQ ) ((FUOUI ) (Fu2u3) Guoul Uqus GU2U3U4U5 + (FUOUI ) (Fu2u7) GU2U3u4U5 GMGU7UOU1 )

which cannot be cast in the right form. This conclusion is only valid given the assumption that the
superinvariant must be quartic or higher in the fields (if this condition is dropped, then Gy, ..o,
need not be zero, eq. (A.25) changes, and all the following equations take a different form. This
confirms what was said in section (2.4.2) : for U and V' to be separately Weil-trivial, they must be
cubic or lower in the fields.
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Eleven dimensional CJS supergravity

B.1 Conventions & Fields in eleven-dimensional supergravity

In this section we give our conventions for the eleven-dimensional gamma matrices, and list the
Fierz identities used in the analysis presented in section (2.4.1) of the main text.

B.1.1 Gamma matrices

Hodge duality for gamma matrices in 11 dimensions is defined as follows (with the Hodge star
operator defined in 1.4),

K[ = —(—1)gn(n—Dpl-n) (B.1)
The symmetry properties of the gamma matrices are given by,
(Falma")aﬂ _ (_1)%(71—1)(71—2) (Fal...an)ﬁa ,

where T'(%) is identified with the anti-symmetric charge conjugation matrix C,, g, acting as a metric

on spinors,

7/’11 = Ca,@ WB 5 s Coz,@c/j’é = 55

123



B.1.2 Eleven-dimensional superspace fields

In this section we review the properties of on-shell eleven-dimensional superspace at lowest

order in the Planck length [29]. The expression of all the mixed components of tensors and their

spinorial derivative below are found when solving the superspace Bianchi identities with the

conventional constraint (cf. 2.1.2).
The non-zero superfield components are,

Gaba,B =—1 (Fab)aﬁ
Tog” = =i (T )ag

1 B 1
Taaﬁ = o (Fde)Oé Gabcd + 7(Fab0de)aﬁGdee
36 8
i 1 y
Rocﬁab = 6 ((th)aﬁ Gghab + ﬂ (Fabghm)ocﬁ Gghij)
1
Raabe = 5 ((PaTbc)a - 2(F[ch]a)a) .

The action of the spinorial derivative on the superfields reads,

DoGapeq = 61 (F[ab|)o¢e fr|cd]6
Do Raped = d[a|Ra|b]cd — Ty Reaed + 2 T[a\ofRdb]cd

1 B
DaTabﬁ = Z Rabcd(FCd)a - 2D[aTb]aﬁ - 2T[a|a6T[b}e/B :

The equations of motion for the field-strengths G,R and T are given by,

1 b1...b
Dfoa1a2a3 = _@ €a1a2a3b1...b4c1..,c4G Lo 4GC1...C4
(]‘—‘ )ae Tab — 0
1 1 fah 1 fohi
Rab - inabR = E Gafgth — énabeghiG )

B.1.3 Fierz identities

(B.2)

(B.3)

(B.4)

The following Fierz identities were used in the analysis. Anti-symmetrization over the a; and b;

indices is always understood, as well as symmetrization over all fermionic indices of the gamma

matrices (which are suppressed here to avoid cluttering the notation),
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(L* ) Ly bger) =

+ 12065 72 (D) (Tey )

+ 1) (Ty...b5)

— 60085 (L', )T )
+ 255, (De, ) (D%,

1
— 1505 (6;}11 (D%293) (109495, ) + (a & b))

+ 600 518 (14492 ) (L)

(D3 (T bgey.eg) =
+ 360,75 (De ) ()

— 10851 (D) (T 24,,)
+ 2165 (1°2%) (D)

1
— 36 ((F“l)(Fa2“3b1...b3) +(a b))
+ 32467122 (T99)(Ty,)

(Fa161...65)(rblelme5) —
+ 2405, (Te, ) (I')
+ 1680 (I'"**)(I'y,)

(Do) (T poey.es) =
— 360" (e, )(I')
+ 24 (De ) (T %50, )
— 42(T"92)(Ty,,)
+ 16862 (1%2)(T,)
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(Fal..-aélelez)(Fbl,,.b4€162) -

—12 % <(F“1“2)(F“3“4b1...b4) + (a < b)>

+ 2884y, (D94 (Dpgp, )

1
— 96 (5;11 (D92)(T93%y, ) + (a < b))

+ 1928;1 3 (T94) (T, )

+ 2 (Pel ) (1‘\61&1 ...a4b1 ...b4 )

— 144 5(?111;122 (Pel ) (Fe1a3a4 b354)
485713 (Do) (T, )

(Fa1a261.--54)(Fblbgelu.eél) -
+ 48O (Ce)(T)

— 96 (¢, ) (D112, 4,)

+ 168 (14192)(Ty,p,)

+ 6727 (L))

(T ) (Feyeg) =
+ 4320 (Te, ) ()

(1‘\(1181‘..64)(111)161.“64) —
—~ 96057 (I,)(T)
+ 336 (I)(Ty,)

(T ) (Feye5) =
— 720 (Te,)(I')



(Dar--aaer) (Fb1--~b461) -

+ 6 % ((F“I“Q)(F“R’““bl“.bél) +(a < b))

= 720y, (D) (Toyp,)

= a5 (35 )+ @)
+ 96552 (D) ()

— 1 (I‘61)(I‘€1a1...a4b1mb4>

+ 726,57 (Dey )(T3%,0,)

25 (0)(T)

L) Toy.byey) =
+1 (Fel)(r‘elalbu-bz;)
+ 12 5;;111 (sz)(Fb3b4)

(Fa1...a4el)(rb1...b561) _
— 60 ,,7a1b1 (Fazag)(]_—\a4b2...b5)
— 60 Nayby (Fa2)(1-\a3a4b2...b5)

— 72005} 02 nc1b1n02b2 7763173 (Fa4)(rb4b5)
+ 240 5181110(133 nclbl nc2b2 77f33b3 (Pa4)(rb4b5)

+ 140 77&1 by (F[ag ) (Fa3a4b2...b5])

(Fal...a36162)(Fbl_..b3€1€2) -
- 2463075 (Dey)(T)
3607 (D) (01205,
— 5480 (D) (Cyap)

1
— 125 () + @)
+ 108 6,52 (1%) (')

(Falel)(rhfn) =+1 (Fal)(rbl)
— 10, (T, )(I)

(Falel)(rbl'"b5el) —
. 6 (F[al)(l‘\blu.bs])
— Byl (D, ) (Testet)
+ 1 (Fa1)(rb1...b5)

— 120 521112122 nc1b1nc2b2 (Fel)(re1a3a4b3...b5)

126



Group theory & Tensorial representations

C.1 Tensor representation of Young diagrams

A Young diagram with n boxes, see [87] for a review, represents an irreducible representation of
the symmetric group \S,,. It is possible to give explicit expressions for Young diagrams in the form
of tensors. The method is more easily understood using a specific example. Consider a tensor
T4 aza3a, Without any a priori symmetry properties, and let us construct its projection onto

. Several symmetry operations will have to be applied on the tensor, but the Young diagram
does not state which indices correspond to its different boxes. First one must determine all the
standard tableaux, i.e. all the Young diagrams with numbered boxes, with increasing numbers
in all rows and columns. Different Young tableaux corresponding to the same Young diagram

give equivalent but distinct representations of the symmetric group. The diagram has three
[1]2]3] [1]3]4] [1]2]4]
standard tableaux, [4] ,[2] , and[3] ", to which correspond three tensors, TW 7) and TG

respectively.

To obtain the tensor corresponding to a given standard tableau, one must first symmetrize over
the indices indicated in each row, and then anti-symmetrize over the indices indicated in each
column. For example, (T™M)4, 4030, will be obtained by first symmetrizing over the indices a1, as
and as,

(Ta1a2a3a4 + Ta1a3a2a4 + Ta2a1a3a4 + Ta2a3a1a4 + Ta3a1a2a4 + Ta3a2a1a4) P
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and then anti-symmetrizing over a; and aq,

(H(I)T)alaza;alm = (T(I))a1a2a3a4 =
1
é (Ta1a2a3a4 + Ta1a3a2a4 + Ta2a1a3a4 + Ta2a3a1a4 + Ta2a3a4a1 + Ta2a4a3a1+

Ta3a1a2a4 + Ta3a2a1a4 + Ta3a2a4a1 + Ta3a4a2a1 + Ta4a2a3a1 + Ta4a3a2a1) .

The overall normalization above can be straightforwardly determined by imposing IV T =

F
T, where HMWT = TM) is the projection of the tensor T' onto the Young tableau :

F
For example the tensors 7" and T'), associated with and respectively, obey the fol-
lowing properties,

(T™) (ablefa) = O (T japega = 0
(T(l))[a|bc|d] = (T(l))abcd (T(2))[ab]cd = (T(2))abcd
(T apera = (T abea (T apedy = (T) apea -

More generally, each T has exactly three independent orderings of indices, which can be taken
to be T(£11214a3a2, Té;)llaw?, and Téiggam. Any symmetry operation on the indices of () can be

expressed as a linear combination of these three orderings, e.g.,

(1) _ L a L a
ai(azazaq) Ttg11)14a3a2 + § T(gzt)haz;as + g Ttgzt)lsalm

(1) 1 I a 1
T[alag}a3a4 - 5 T6516)14a3¢12 + 5 T6522l1a4a3 +0 T(§2¢)13a1a4 '

A tensor T projected onto a non-standard tableau can be expressed as a linear combination of the
three standard ones. For example it is straightforward (but tedious) to check that the projection

F
onto the non-standard tableau can be decomposed as,

(H(4)T>a1a2a3a4 = T(£11()14a3a2 + Tcgzllazla?, + 0 T(Jg()lgal(u (Cl)
+0 Tt§12z)z4a3a2 - Tag()zla4a3 + T6522¢)13a1a4 (C2>
+ Tég()z1a3a4 +0 T(gt)zlcuag - Tc5§213a1a4 . (C3)

Every other tableau (corresponding to the same Young diagram 5--) and any symmetry ope-
ration on the indices can be expressed as a linear combination of those nine elements. The
automatization of general decompositions onto Young tableaux, such as the one above, has been
implemented in SSGAMMA.

More generally a tensor T4, 45054, Without any a priori symmetry properties can be decomposed
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into ten Young tableaux,

o1 _ 7 N
D Djjj @ 3 e 2 HE‘ D &5 , (C.9)
T T(1,2,3) T/(l 2) Tr(1,2,3) TA

where T T(2) and T®) are the Young tableaux appearing on the right-hand side of (C.3) above,

and correspond to the term 3 . The remaining Young tableaux in the decomposition can be
explicitly constructed using the same method.

Consider now a tensor 1" with a symmetry structure given by, e.g., Bj ® [ The previous de-
composition of [1®* can also be used to decompose T into its irreducible components. Indeed,

a tensor with structure Bj ® [J can be viewed as a particular set of symmetry operations
performed on the indices of a tensor without any symmetry (i.e. with structure []1%%). Therefore
T can be expressed as a linear combination of the tensors already used in the decomposition (C.4).

The following example shows the decomposition of the symmetric product of two 3-forms H,

ai...ag - arazaszdtlagasag @j
@ The ten-

There are five standard tableaux corresponding to each of the Young dlagrams
sors corresponding to these Young tableaux can be denoted by T, ... T() and 7/ ... 77)
respectively. In the particular example above, it can be shown that,

_ (1) /(1) /(1 (1
HalagagHa4a5a6 Ta1a2a3a4a5ab + Ta1a2a3a4a5a6 =+ a1a2a3a4a6as5 a1a2a3a5a6a4

i.e. only the tensors ™) and 7', corresponding tol and 5] respectively, enter the decompo-
sition.
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Ten dimensional ITA supergravities

D.1 Dilaton and Einstein equations from Romans generalized action

The dilaton and Einstein equations following from the action (4.34) of chapter 4 read,

o 3 1 1 4
) O 3¢/202 L g L g0 E 9 5470 D
0= qu—i—ge F 126 H —|—96€ G +5me (D.1)

5 2 21 5¢/4 A 3 2 9 5 3¢p/4 ATmn
— = — + — - = - =B34+ — Fon (AT 1 A

4(36ﬁ 1083 20)6 m(AA) 8(295 25 16)6 ( 117)

1 2 1 7¢/2 N D 1 2 1 3 ¢/4 A Tmn

- - mn, _ _Ip_ "2 . 7PN
+ 2(45 + 35)6 H (AT A) %6 (218 Qﬁ 16)6 Grnpq(A A)

and,

R 1 1 R 1 1,
0= Ryn + §8m¢an¢ + %m265¢/2gmn + Z€3¢/2 <2Fy2rm - ggmnF2)

1 1 1 3
= *¢>< H2 — g H2> = ¢/2<4 2 % G2>
+ 126 3 mn 4gmn + 486 Gmn 8gmn

1 1
(1 - 1448?) <§(AF(mvn)A) + Egmn(AI"ViA))

1773

- 1an((:sﬁﬁ2 — 1083 + %)ef’d’/‘*m(M) + (8¢* — 69v2¢% + (]\A)Q)

8
- 5(29/32 - 5/3 + E)e ¢/ F' (AL)iT'11A)
1 _ 3 N 1 N n 3
1 1,3 . 1 ]
— 5y (2187 = 58— 1p)e?! <2G(m TH(AL)ijkA) = SmnGia) (AF(4)A)) . (D2)
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D.2 Conventions & Fields in ten-dimensional supergravity

D.2.1 Gamma matrices

In our conventions, the position of fermionic indices in ten dimensions is correlated with chirality.
We manipulate Majorana-Weyl spinors u® and A, of opposite chiralities. Correspondingly, gamma
matrices and the conjugation matrix can be chosen to split as,

@ 0 . mn\a 0
C - < 0 5 ) ﬁ) ’ m — (’Y ) B : rmn — (’7 ) B et
—0,% 0 (y™)*? 0 0 (v"™)a”

where the position of fermi indices now determine which bilinear is allowed. The spin flip formula,

Co-lret-an — (_1)%(n71)(n72)071 Ta1--an

)

is still valid, but has to be particularized according to the splitting defined above.

D.2.2 The supersymmetry transformations

Although we do not directly make use of this in this thesis, it is instructive to work out the explicit
form of the supersymmetry transformations. A superdiffeomorphism generated by the supervec-
tor field fA acts on the vielbein as follows,

SeEry = €N (OnEfy) + (0meN) BY = Ve + P Tpn?, (D.3)

up to a {-dependent Lorentz transformation. The supersymmetry transformation of the gravitini,
Y = Eﬁi\, Yma = Ema
€Y := €%, (4 := &, |, where the vertical bar denotes the lowest-order term in the theta-expansion.
We thus obtain,

, with parameters (€%, (4 ), is obtained from the above by setting

S = Vime” + en (" Tac™ + (5T %))
5¢ma = vaoz + emC(GBT,Bca + C,BTBCQN y (D4)

up to gravitino-dependent, cubic fermion terms which we do not need to consider here. Corres-
pondingly the supersymmetry transformation of the dilatini reads,

5 = (T p® + V)
= Le+ Km’)/mc - Lmn’}/mn6 + Kmanman + Lmnzoq"Ymnpq6

Ao = (°V5ha + (V00|
=—L(+ Km’ymf - Lmn'ymnc - [(mnp'ymnpE - Lmnpq'ymnpqc s (D.5)
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where we have taken (4.5),(4.6) of [93] into account. Together with (4.8),(4.11) above we obtain,
suppressing spinor indices,

] 1
e 3045 = Eamgi)”ymg“ + fme5¢/4e

3 (30/4 . L g/ . L 4 .
4+ = 16 o/ Fon mn - ﬂe o/ Hmnp,ymnp<+ @e(ﬁ/ Gmnpq,ymnpq6

' 1
e30/45) = %amwme — me™

1
€_¢/2Hmnp'7mnp€ 76¢/4Gmnpq§/mnpq< 5 (D~6)

192

3 3¢/4 ~mn ¢
¢ Fme YO o

up to cubic fermion terms; the curved gamma matrices 4 are defined with respect to the rescaled
metric (4.9). Similarly for the gravitino transformations we obtain,

0ma = Vi€ — 57m5 + F, f7m ff - Frzne'}/ef
fgh’y fghC+ Hl?g ,yghé- Ge fgh hYm fgh€_|_ G?nefg’)/efge

0hyy = Vine + Sym( + F, f’YmefC - me,yeg
- I_Ifgh/-}/Tnfgh6 + H2 h’yg €+ Gefghrym cfgh C Gme gfyefgg ) (D7)

where we used (4.3) of [93]. Furthermore using (4.6) of [93] and (4.8),(4.11) above we obtain,

6¢ma - v C + m65¢/4 Ym€ + aeéf)’Y mC + *63¢/4F efIm ef€ + 3 9 3¢/4F ’Y €

4+ — 24 ¢/2Hfgh7 fgh C‘i‘ ¢/ Grnefy ~ef9e

A 27
s, = Ve — — 5 5¢/4A mC + 8e¢’y me+§e3¢/4Ff’y ef(—i— 3¢/4F ¢

1
= 51 P g e = e GG (D8

up to cubic fermion terms; V is the covariant derivative associated to the spin connection of the
rescaled metric (4.9) so that,

. 3 - 3
63¢/2Wnkm = Wnkm T gnkam¢ gnmaka y VX = VX + gangi)(’ynmX) s (D~9)
where w, w are the spin connections of g, g respectively, and x is a fermion of either chirality.

To make contact with the supersymmetry transformations as given in e.g. [21] we use the follo-
wing ten-dimensional Dirac-matrix notation :

0 _i(’AYm)oc,B 5,% 0 -1 0 5,%
I'ny=1{ .. , 'y = , = , (D.
<Z(7m)aﬂ 0 H 0 —ds ¢ 3¢ o ) B0
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and define the Dirac-Majorana spinors,

W, = 38 (f;;a> — Zrm/\ . A=e38r, (23) . O =38 (fg) . (D.11)

which obey the reality conditions ¥,,, = WI'C~! etc. In terms of these, the supersymmetry
transformations (D.6), (D.8) take the form,

1 m ~ m65¢/4 3€3¢/4 2 67¢/2 3 e¢/4 4
oA = {—2r Viné — = T Fi TPy + o Hz IOy - @G(@F( >} 0,
and
R 5¢/4 3¢p/4
Sy, = {vm . mio T — 664 Frp(Ta™ — 146,,"TP)'y
O p ma g npenpy, + S omer_ 205 apenlg
W npq( m — 90m ) 11+ % npq'r( m - ? m )} , (D12)

respectively, up to cubic fermion terms. These are precisely the supersymmetry transformations
expressed in the conventions of [21].

D.2.3 A note on conventions

In this section we compare our conventions to those of [89, 91]. The translation between the
conventions of the present paper and those of [21] was explained previously.
The fermionic fields in [91] are related to those in the present paper via,

1
NG

where the R superscript denotes the fields in that reference. Moreover the bosonic fields of [91]

¢R:‘I’m, AR: A7

are related to those in the present paper via,

1 1 1
R R H R
m B(?) = iF(Q) 9 G(3) - 5 (3) 5 F(4) = §G(4)

~

4 1
mR: gm’ ¢R:—§¢, RR:—R (D13)

With these field redefinitions it can be seen that at the fermionic vacuum (4.28) the action of [91]
precisely reduces to that given in (4.26), (4.15) of the present paper, up to the quartic-fermion
term which was not computed in [91].

On the other hand the quartic-fermion terms are identical in the massive and massless IIA theo-

ries. In order to compare with the quartic-fermion terms of massless IIA as given in [89] we note

that, upon setting k = 1 therein, the fermionic qpf;'LP ,AGP of that reference are related to the ones
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in this thesis via,

1
U, = —&f A= —T1 \CF .
Thus the fermionic vacuum (4.28) corresponds to setting,
3 ~ 2V2
vl = —Q—ﬂFHFmAGP c o wEl = =S, (D.14)

where WGP .= ¢ GP 1 (1/2/12)T'1 1T, ACF.
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Repertory of Gamma functions

This section is a succinct dictionary of functions available in SSGamma. Each function introduced
in chapter 3 is described in a few words (some optional arguments and features are left aside,
but can be found in the main text). Throughout this section, we adopt a convenient notation to
represent the arguments of functions :
— Lists with unspecified elements are represented by 1, e.g. {a1, 4, £},
— Integers are represented by i,
— Symbols are represented by s, e.g. a; or 1" are symbols,
— The letters above can be combined. A list of integers is denoted 1i, e.g. {1,0,7}, and
1s is a list of symbols, e.g. {ag, T, Bsg7}. 1ls represents a list of list of symbols, e.g.
{{a,v}, {83}
— Anargument followed by ... represents a unspecified number of repetitions of that same
type of argument, e.g. 1i. .. can be {1,2}, or {1,2},{4,3}, etc,,

— Theword expr denote an unspecified expression on which the function can be applied.

Symbols with underscores are not supported by Mathematica, and they are displayed here for
aesthetic reasons (e.g. s14 have to be replaced by 514 to be a valid index). To sum up, the expression
below,

Fun[s...,expr,11i,{{i,s},{i,s}}]

represents a function called Fun, that can be applied on an expression expr, where the first argu-
ment is a series of symbols, whose third argument has to be a list of list of integers, followed by
something like {{1,a:},{0,a}}.
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TG[s:v,1s...,{{i,s},{i,s}}]

TE[s:€,1s]

TD[s:0,1s,1s]

GME [expr,11s]

GMC [expr,11s]

GMT [expr,11s]

GMS [expr]

GMET [expr, s]

DeltaSim[expr,1ls]

TensDef [s,1,11s,11s]

TensDef []

TensClear([s...]

TS[s,1s]

Der [expr,s]

NCDer [expr,{i,s}]

ExplicitDer [expr]

RD[expr,i]

Defines a single, or a contraction of several vy matrices of name by de-
fault, with bosonic indices 1s and two fermionic indices specified in the
last argument.

Defines a Levi-Civita symbol, with default name €, with indices 1s (as nu-
merous as Dim).

Defines a generalized Kronecker symbol, with default name 9, with two
set of indices as two last arguments.

Simplifies all contracted v matrices inside expr. Computation can be qui-
ckened by specifying lists of anti-symmetrized indices lls.

Simplifies in expr all « matrices with repeated bosonic indices in
contracted. Computation can be quickened by specifying lists of anti-

symmetrized indices lls.

Simplifies v matrices with contracted fermionic indices in expr. Compu-
tation can be quickened by specifying lists of anti-symmetrized indices

1ls.

Regroups 7y matrices with contracted fermionic indices into a single series
of v matrices.

Simplifies the v-traceless tensor named s wherever it is contracted with
~ matrices in expr.

Applies all Kronecker deltas if some of their indices are contracted with
other objects. Computation can be quickned by specifying lists of anti-
symmetrized indices 11s.

Adds in the dictionary the tensor named s, with indices 1 (specified by
a symbol for even, and {i,s} for odd indices), with symmetric/anti-
symmetric sets of indices specified as third/fourth argument.

Just displays all tensors in the dictionary with their specificity.

Removes tensors named s... from the dictionary. Without arguments, all
tenors are removed.

Writes a tensor named s, with indices 1s. If it is in the dictionary, it in-
herits the properties attached to its name. If it is not, it is assumed totaly
anti-symmetric.

Applies an operator D with index s, verifying the Leibniz rule over
tensors.

Applies an operator D with index {1, s}, verifying the anti-commutative
Leibniz rule over spinors.

Separates the derivative from the tensor it is applied on, for performing
a replacement of the tensor (the derivative must be reactivated with the
built-in function ACTIVATE.

Renames all contracted indices in expr, with symbol taken from the list
U, UT - - - 28, 29

136



CanonicalRD [expr]

ASym[expr,1s]
Sym[expr,1s]
AC[expr,1s]
SC[expr,1s]

SumGraph [expr]

FactorTens [expr]

IrrTens [expr,1ls]

IrrYT[1i...]

Renames all contracted indices in expr in a canonical way, thus gathering
all non-trivially isomorphic tensor contractions, with symbol taken from
the list ug, uq . .. 23, 29.

Explicitly anti-symmetrizes the indices 1s in expr.
Explicitly symmetrizes the indices 1s in expr.
Makes implicit the anti-symmetry of the indices 1s.
Makes implicit the symmetry of the indices 1s.

Gives a visual representation of tensor contractions in expr. Vertex
are tensors, superscripts are the number of indices, subscripts are free
indices.

Gathers all identical tensorial expressions in expr, factorizing all
constants.

Generates a tensorial representation of the Young diagram over the in-
dices specified in 11s.

Computes the product of Young diagrams specified by 11i.
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