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Motivation

Cloud computing opens new possibilities for more flexible and efficient services. However, one of the issues of migrating to the cloud is that it involves a third-party implementation and enforcement of security policies [START_REF] Rosado | Security Analysis in the Migration to Cloud Environments[END_REF]. In such environments, many security aspects must be faced, including risk management, data privacy and isolation, security-by-design applications, vulnerability scans, among others. Besides preventive solutions (e.g., encryption, firewalls), it also becomes necessary to have a system that interrelates all monitored security mechanisms from different points of observation. On the other hand, new attacks emerge every day, and thus, threat detection systems start playing a key role in security schemes, identifying possible attacks.

According to recent reports [START_REF]Insider threat report[END_REF], 90% percent of organizations feel vulnerable to insider attacks. The main enabling risk factors include too many users with excessive access privileges (37%), an increasing number of devices with access to sensitive data (36%), and the increasing complexity of information technology (35%). Also, a majority of 53% confirmed insider attacks against their organization in the previous 12 months (typically less than five attacks). Twentyseven percent of organizations say insider attacks have become more frequent. Additionally, organizations are shifting their focus on detection of insider threats (64%), followed by deterrence methods (58%) and analysis and post-breach forensics (49%). The use of user behavior monitoring is accelerating; 94% of organizations deploy some method of monitoring users and 93% monitor access to sensitive data. Also, technical reports from the industry [START_REF]Cisco 2017 Annual Cybersecurity Report[END_REF], [START_REF] Ernst | Managing insider threat: A holistic approach to dealing with risk from within[END_REF] state that threat researchers also examined data ex-filtration trends, using a machine-learning algorithm to profile 150,000 users in 34 countries, all using cloud service providers, from January to June 2017. After profiling users for six months, researchers spent 1.5 months studying abnormalities, flagging 0.5% of users for suspicious downloads. These users downloaded, in total, more than 3.9 million documents from corporate cloud systems, or an average of 5200 documents per user during the 1.5-month period. Of the suspicious downloads, 62% occurred outside of normal work hours; 40% took place on weekends. By benefiting from machine learning techniques, algorithms can learn and improve themselves by studying high volumes of available data, but more efficient learning procedures are needed, in order to increase these detection rates.

More specifically, cloud-based threat detection techniques are commonly divided into three groups, namely pattern-based, behavior-based and hybrid (first two combined). In the first case, attacks are described as rules or expressions in related grammar (signatures), and the newly collected data of the system under test are verified with respect to the set of such signatures. For behavior-based techniques, "normal" system actions are somehow defined, and the monitoring system can later serve for concluding if the monitored environment is differing from the defined behavior. In this case, different statistical models, as well as self-learning techniques, can be effectively utilized. Nevertheless, some proposed algorithms commonly suffer from high falsepositive detection rates, encouraging the use of hybrid approaches by companies and academic institutions.

Unsupervised learning is arguably more typical of human and animal learning. It is also more widely applicable than supervised learning since it does not require a human expert to label the data manually. Labeled data are not only expensive to acquire, but it also could dismiss the information [START_REF] Murphy | Machine Learning: A Probabilistic Perspective, ser. Adaptive computation and machine learning[END_REF].

The advantage of such neurally-inspired clustering approaches lies in their ability to learn the representation of a feature space without supervision. A further interesting property is the fact that they typically perform dimensionality reduction. GNG represents an extension of the Neural Gas (NG) algorithm in which the number of neurons is not fixed a-priori as in NG, but grows over time. This feature is especially interesting in such clustering tasks where the number of clusters is previously unknown.

This research describes the difficulty in modeling and detecting insider threat considering three factors. First, it is a low-rate problem because detected incidents are relatively rare events. Second, it is a misperceived problem because security audits are in place focusing mostly on external attacks. Third, it is a high-impact problem because unlike an external threat, insider threat tends to go undetected and can involve long-term malicious activities. An example of this is that most of the insider attacks were only discovered through manual (non-automated) detection of an irregularity or failure of an information system [START_REF] Kowalski | Insider Threat Study: Illicit Cyber Activity in the Information Technology and Telecommunications Sector[END_REF].

Moreover, this threat is more dangerous in a cloud environment than in a traditional Information technology (IT) infrastructure because the insider may gain access to data from other Cloud Internet Service Client (CSC) hosted by the Cloud Internet Service Provider (CSP). Studies conducted by Verizon [START_REF] Baker | Data Breach Investigations Report[END_REF], [START_REF] Widup | verizon data breach investigations report[END_REF] indicate that internal breaches continue to be much more damaging than other sources of attack. Besides, they indicate that there are more insider breaches this year than ever before. However, companies focus mostly on preventing external attacks.

Although several research works have addressed relevant indicators when trying to detect malicious insider threats [START_REF] Claycomb | Insider threats to cloud computing: directions for new research challenges[END_REF], [START_REF] Costa | An ontology for insider threat indicators: development and application[END_REF], [START_REF] Duncan | An overview of insider attacks in cloud computing[END_REF], [START_REF] Kandias | An insider threat prediction model[END_REF], [START_REF] Kandias | The insider threat in cloud computing[END_REF], [START_REF] Nkosi | Insider threat detection model for the cloud[END_REF]. However, to the best of our knowledge, very few publications [START_REF] Claycomb | Insider threats to cloud computing: directions for new research challenges[END_REF], [START_REF] Duncan | An overview of insider attacks in cloud computing[END_REF], [START_REF] Kandias | The insider threat in cloud computing[END_REF] discuss their implications in a cloud environment.

Furthermore, when aiming to detect this malicious activity, the confidentiality and privacy of CSPs and CSCs concerning their internal organization and policies, create barriers for the collection and utilization of data for research purposes. Moreover, despite the predictions and possible creative attacks presented by researchers, there is very little evidence of actual events involving the type of insider described in the Cloud Security Alliance (CSA)'s [START_REF]The Treacherous 12 -Cloud Computing Top Threats in 2016[END_REF] document. Additionally, addressing malicious activities also presents challenges since they vary according to the cloud service model, CSC characteristics such as services used, job types and organizational hierarchy.

When tackling this threat, existing solutions aim at performing a detection approach considering hard-task implementations or information assumptions. Such is the case of detection schema dealing with broad access to data sources (e.g., logs) and even, labeled data. Also, the studied methods are typically implemented in batch mode, and thus they cannot be easily extended to anomaly detection problems with streaming data or online settings.

Lastly, they treat the employee's behavior as a one-class problem, i.e., new examples are classified as either belonging to the target class or as an anomaly or novelty. This may differ from reality, where user's behavior may vary in time and is dependent on daily changing activities, varying policies and roles.

Problem statement

The research goal of the present work is to determine whether user behaviors, network traffic and cloud-based attributes can be used as an indicator to identify insider threats. If there is a relationship between malicious users and their behaviors that are different from normal users, it is possible to identify insider threats using these predictive indicators.

Therefore, the goal of this work is then formulated as follows:

Given a monitoring engine that outputs unlabeled employees' activity traces, and a collection of their past online activity, we want to detect employees behaving abnormally concerning their past actions, with high accuracy and a low false positive rate, at a current time step and in an unsupervised approach. This goal is pursued by the proposal and deployment of an anomaly detection system based on the extension of a set of existing techniques.

Accordingly, the following research questions arise:

• Data treatment: Which data should be considered to analyze the user's anomaly?

• Which algorithms are best suited for detecting the insider threat?

• How these existing algorithms should be adapted, if necessary?

We note that this thesis does not aim to find one universal best technique. It is not plausible because the experiments will be conducted with a specific type of data, namely, network traces from the OpenStack cloud implementation. This thesis will explore only a few ways to measure the detection performance between different techniques. Nevertheless, the proposed solution is conceived by means of an extensive modular approach, therefore tackling the future reduction augmentation of more monitoring attributes.

Contributions

The main contribution of this work is the analysis, modeling and validation for the insider threat detection. Moreover, this work presents a fundamental methodology for assessing a detection from a behavioral data-driven point of view, exposing data-related detection challenges, implementations trade-offs with respect to detection performance, finally giving a broader view of considering factors at the moment of dealing with such a complex threat scenario.

The first contribution consists of a literature review and a study providing a closer relationship between existing techniques and tools for effective threat detection in cloud environments. Also, an evaluation is performed of a group of existing detection techniques concerning cloud computing principles and security challenges nowadays. Finally, an experimental study is presented of some commonly utilized datasets and their association with threats in the last five years.

We assessed the following methodology: we covered the topics of detection systems and detection techniques in the cloud. The selection of works derived in both a systematic review of the detection architectures and the second in a detailed examination of the detection techniques. As existing detection techniques tend to target specific threats (or their groups), an experimental evaluation of the applicability was also presented, for known detection approaches against nontargeted threat groups.

The second contribution is focused on the derivation and validation of the dataset for cloudbased malicious insider threat. Consequently, it addresses a dataset generation methodology that takes into account various issues, including statistical analysis as well as the creation of cloud-related user scenarios. The contribution is motivated by the complexity of the problem itself as well as by the absence of open, realistic cloud-based datasets. Also, it presents a dataset validation criteria based on a set of predefined rules that include statistical evaluation. Finally, there is a design and presentation of a cloud-based proof-of-concept with malicious insider attacks.

The third and main contribution of this work tackles the detection of the threat mentioned above through an anomaly detection framework. The latter addresses the insider threat employing machine learning techniques, due to their ability to look into data and look for patterns which can be learned and improved adaptively in time. In detail, motivated by the abovepresented insider threat detection characteristics, the particular technique in use considers an unsupervised and online approach, allowing the solution to identify different user behaviors for present and new data, in a stream-fashion.

Moreover, this contribution is part of a modular design, capable of dealing with several data input sources, from different nature, namely user actions using text representation, network traffic and cloud-related attributes. For the first set of features, and given the fact that generally, machine learning algorithms rely on numeric representations, further analysis of the different ways of text representation is also examined.

Furthermore, the novel framework for the insider threat makes efficient use of domain knowledge given by known enterprise policies and security experts (e.g., cloud administrator) utilizing them as additional contextual information. This idea is explored both as attributes used by the detection algorithm automatically, and also in virtue of labeling/identifying anomalies that could be treacherous.

Finally, to illustrate the generality of the proposed framework, experimental evaluation is applied to different insider threat case scenarios. This benchmark work evaluates the relevance of the different data sources, along with the context-based anomaly detection approach.

Publications

The aforementioned contributions have been published in different conference proceedings and are part of several citations by academic peers. A complete list of the publications related with the present work is the following:

1. [ In addition, there have been contributions to the European MUSA project (Multi-Cloud Secure Applications) [START_REF] Musa | [END_REF], within the framework of the H2020 program, the main objective of which is to support the security lifecycle management of distributed applications, heterogeneous cloud resources. Lastly, we are currently preparing a paper to the "Computers & Security" Journal, where the insider threat detection framework and related experimental findings form the main contributions.

Organization of the thesis

The thesis is organized in seven chapters. A brief description of the chapter contents are below given.

Chapter 1: Introduction. It provides a general background, context and motivations. The main objectives and research questions are stated, as well as the thesis structure, main contributions and publications.

Chapter 2: State of the Art. It discusses the related concepts of the main security challenges in a cloud scenario, along with the most relevant monitoring mechanisms to protect its assets from threats. We also provide a study of the most important threats followed by a deep analysis and interrelation of the specific techniques to detect each one of them. Additionally, this chapter presents the most utilized techniques to tackle the insider threat. 

Introduction

This chapter presents a study of existing threat detection techniques in cloud computing, together with an experimental evaluation of a subset of them. We consider the threats defined in the Cloud Security Alliance (CSA) report as well as the techniques for their detection, starting from classical signature-based approaches and finishing with recent machine learning based techniques.

As the topic of providing security in the cloud remains essential, it is worth mentioning that the state of the art presented in this work is not the first covering this subject. However, existing works (e.g., [START_REF] Jouad | Security challenges in intrusion detection[END_REF], [START_REF] Kene | A review on intrusion detection techniques for cloud computing and security challenges[END_REF], [START_REF] Khorshed | A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing[END_REF], [START_REF] Modi | A survey of intrusion detection techniques in Cloud[END_REF], [START_REF] Osanaiye | Distributed denial of service (DDoS) resilience in cloud: Review and conceptual cloud DDoS mitigation framework[END_REF], [START_REF] Patel | An intrusion detection and prevention system in cloud computing: A systematic review[END_REF]) mostly focus on either analyzing system requirements and cloud security gaps, or describing detection techniques along with some attacks.

It is required then to combine both approaches to provide a broad view of the state of the art of the problem. Below, we briefly sketch some existing works summarizing security issues in the cloud and discuss the motivation for expanding the research on this field.

Preliminaries

Security issues in the cloud

According to the National Institute of Standards and Technology [START_REF] Mell | SP 800-145. The NIST Definition of Cloud Computing[END_REF], cloud computing is a model for enabling ubiquitous, elastic, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services). Its service models, known as Software as a Service (SaaS), Platform as a Service (PaaS) and IaaS have specific and shared security challenges. The first provides a CSC the capability to use applications running on a cloud infrastructure by a CSP. PaaS provides the CSC with tools to deploy their applications on top of the cloud infrastructure. The latter gives provision to the CSC in processing, storage, networks, and other fundamental computing resources where the consumer can deploy and run arbitrary software, which can include operating systems and applications. Security challenges reside in the coexistence since PaaS, as well as SaaS services, are hosted on top of IaaS. Therefore, any threat in IaaS can impact the security of both, PaaS and SaaS, and vice versa [START_REF] Hashizume | An analysis of security issues for cloud computing[END_REF].

We further enumerate critical cloud aspects trying to provide the explanations how these elements can influence the design of a cloud-based threat detection system. In particular, we consider:

• Virtualized environment Brings elasticity by allowing multiple Virtual Machine (VM) management and pooling in the same physical resources.

• Multi-tenancy Enables the use of a single resource by multiple customers that may or may not belong to the same organization.

• Data life cycle Defines no fixed infrastructure and security boundaries on applications and data on the cloud.

• Network dynamics Concerns non-linear, non-stationary and complex dynamical characteristics of the network flows.

• Access Takes into account the fact that data are transmitted using the Internet and may require credentials, authentication, identity management and anonymization.

Overview of cloud-related threats

Following the European Network and Information Security Agency [START_REF] Enisa | ENISA Threat Landscape 2015[END_REF] we consider a threat as an event that can exploit a vulnerability, intentionally or accidentally, and obtain, damage, or destroy an asset. An attack is a sequence of components and interfaces that a threat actor or a condition can use to achieve a threat against an asset. The threat actor or actors gain access to the assets via attack vectors and vulnerabilities present in the technology components that host or provide direct access to the targeted assets. Threat detection systems are deployed in cloud environments with the intent to prevent, address and mitigate the attacks pursued by the threat actors, thereby protecting the assets.

Common threat guidelines have been proposed reflecting the current concerns among experts [START_REF] Csa | The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF], [START_REF] Enisa | ENISA Threat Landscape 2015[END_REF], [START_REF] Fernandes | Security issues in cloud environments: a survey[END_REF], [START_REF] Hashizume | An analysis of security issues for cloud computing[END_REF], resulting in data threats such as breaches or losses, account hijacking, insecure application programming interfaces, DoS, malicious insiders, abuse of cloud services and shared technology. These have been previously reviewed in [START_REF] Vaquero | Locking the sky: a survey on IaaS cloud security[END_REF], together with the relevant vulnerabilities and countermeasures analysis [START_REF] Hashizume | An analysis of security issues for cloud computing[END_REF]. From the preceding sources, we list below the considered group of threats in this work, along with two threat groups gathered from the aforementioned studies: Other attacks (corresponding to known attack patterns from network datasets, such as port scan) and Malware (e.g., Kelihos and Zeus), illustrated in Figure 2.2.

• Data-related threats Treated as the top threats among industry experts [START_REF] Csa | The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF]. A data breach is an incident in which protected or confidential information is released, viewed, stolen or processed by an entity not authorized to do so. It concerns IaaS, PaaS and SaaS as they all keep sensitive data.

• Account Hijacking Specified as a process in which an individual or organization's cloud account is stolen or hijacked by an attacker. This threat is relevant to cloud architectures since attackers can often access critical areas of deployed cloud computing services, allowing them to compromise the confidentiality, integrity and availability of IaaS, PaaS and SaaS services.

• Malicious Insider Defined as a threat to an organization occasioned by a current or former employee, contractor, or another business partner who has or had authorized access to an organization network, system, or data. This action intentionally exceeded or misused the access in a manner that negatively affected the confidentiality, integrity, or availability of the organization information or information systems.

• Denial of Service Meant to prevent components from being available in a cloud environment; that concerns, for example addressing to APIs for SaaS outage or specific Distributed Denial of Service (DDoS) at the infrastructural layer [4].

• Shared Technology threats Existent in all delivery models, including multi-tenant architectures (IaaS), re-deployable platforms (PaaS), or multi-customer applications (SaaS) [START_REF] Csa | The Notorious Nine: Cloud Computing Top Threats in 2013[END_REF].

Cloud threat detection systems

Threat detection systems usually correspond to a hardware device or software application that monitors an activity (e.g., from network, VM host, user) for malicious policy violations. Previous works (e.g., [START_REF] Patel | An intrusion detection and prevention system in cloud computing: A systematic review[END_REF], [START_REF] Vasilomanolakis | Taxonomy and Survey of Collaborative Intrusion Detection[END_REF]) have stated several features of detection systems; among those, fault-tolerance, real-time execution, self-monitoring, minimum operational, interoperability, selfadaptiveness, scalability. A multi-criteria analysis of Intrusion Detection System (IDS) was presented in [START_REF] Zbakh | A multi-criteria analysis of intrusion detection architectures in cloud environments[END_REF], following these and other cloud computing requirements such as performance and availability along with CSA-inspired criteria, such as service level expectations, secured and encrypted communication channels, detection methods used and their accuracy, among others. System architectures may vary if they are distributed, centralized, agent-based [START_REF] Idrissi | Mobile Agents with Cryptographic Traces For Intrusion Detection in the Cloud Computing[END_REF] or collaborative; the positioning of various observation points also defines different types of architectures. The monitoring layers can be classified as follows: In general, data collection and preparation are performed through a sensor or existing dataset. This information works as an input for the data analysis and detection, which corresponds to the module of the algorithms implemented to detect suspicious activities, detailed in the following sections. 

Pattern-based approach and related techniques

Also known as "signature-based", "knowledge-based" or "misuse-based", this approach operates over a set of rules that define a threat pattern or a known authorized pattern. They are known to have a high level of accuracy [START_REF] Shirazi | Anomaly detection in the cloud using data density[END_REF], but are limited to only known rules and attacks. Therefore, pattern-based techniques cannot detect variants of known or unknown attacks. Moreover, keeping signature or knowledge databases updated may be a hard task.

Latest research focuses on facilitating to cloud administrators the determination of new attack patterns by updating signature databases more efficiently. To assess this automatic and offline analysis, Hamdi et al. [START_REF] Hamdi | A cloud-based architecture for network attack signature learning[END_REF] proposed Inductive Logic Programming, while Huang et al. [START_REF] Huang | Event Pattern Discovery on IDS Traces of Cloud Services[END_REF] used Growing Hierarchical Self Organizing Maps (GHSOM) for the characterization of attack signatures. Other techniques that we further discuss are grouped as so-called rule-based.

Rule-based

For known or variants of known attacks, rule-based context methods have been considered in a number of works.

Watermarking was studied for data breaches detection by Garkoti et al. [START_REF] Garkoti | Detection of Insider Attacks in Cloud Based e-Healthcare Environment[END_REF]. Threats may occur in any stage of the data cycle (Section 2.2.1) and digital watermarking is a reviewed technique for detecting data tampering. Specifically, the authors introduced spatial domain watermarking, encryption and logging modules for clinical data. Concerning insider threats and further potential data-related threats, Kumar et al. [START_REF] Kumar | Detection of Data Leakage in Cloud Computing Environment[END_REF] considered a method related to the wellknown Bell-LaPadula model, which aims to determine the organization employee who leaked the data. This model is built on the concept of subjects and objects (i.e., a file). They define levels where subjects have access to objects following security policies. Various cryptographic and watermarking techniques are later applied to identify the internal user involved in the leakage.

Fingerprinting was considered for malicious insider threat detection by Gupta et al. [START_REF] Gupta | A fingerprinting system calls approach for intrusion detection in a cloud environment[END_REF] through the analysis of commonly used programs by a VM. They assumed that the signature of frequent executions remains reasonably constant and detects malicious modifications of the system call sequences executed from the VM to the hypervisor.

Provable Data Possession (PDP) formalized in [START_REF] Ateniese | Provable data possession at untrusted stores[END_REF], is related to data losses preserving the data integrity. Basically, a CSC uploads data for storage and keeps meta-data for later verification. The classical idea behind this technique can only be applied to static (or appendonly) files. Hence, Erway et al. [START_REF] Erway | Dynamic Provable Data Possession[END_REF] presented a framework based on Dynamic Provable Data Possession, which extends the PDP traditional approach. It supports provable updates to the stored data, using a new version of authenticated dictionaries based on rank information.

Sequence alignment commonly used in bioinformatics, was proposed by Kholidy et al. [START_REF] Kholidy | CIDD: A Cloud Intrusion Detection Dataset for Cloud Computing and Masquerade Attacks[END_REF] to detect account or service hijacking threats, specifically for masquerade attacks. They introduced Heuristic Semi-Global Alignment algorithm, which tests matching patterns of user's session sequences (e.g., mouse movements, system calls, opened windows titles, written commands, opened file names) with the previously stored arrays.

Dependency Graphs were proposed by Yaseen et al. [START_REF] Yaseen | Mitigating insider threat in cloud relational databases[END_REF]. Based on applying knowledge and dependency graphs one can detect and predict malicious insiders in relational databases. The authors considered the network overhead and system performance for variables, including the number of queries per insider, the number of insiders and percentage of accessibility for data items in relational databases.

Behavior-based approach and related techniques

Also known as anomaly-based detection, this approach involves the collection of data in order to construct a model of normal behavior and then to test newly observed behaviors against potential anomalies. As this is a sophisticated task, some works have proposed a mixed approach (e.g., [START_REF] Katz | CoBAn: A context based model for data leakage prevention[END_REF], [START_REF] Pandeeswari | Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN[END_REF], [START_REF] Xiong | Anomaly secure detection methods by analyzing dynamic characteristics of the network traffic in cloud communications[END_REF]) where the following statistical and machine learning methods are combined. We have differentiated existing techniques in statistical, machine learning-based and clustering techniques. We hereafter assume that statistical methods mostly use specific formulas or functions to compute the corresponding characteristics of the data attributes; machine learning, on the other hand, "works" when such functions cannot be derived, and thus, it utilizes more complex relationships between the data for further threat prediction.

Statistical

These approaches are in general predefined by a threshold in order to identify anomalies. As an example one can consider a type of Denial of Service (DoS) -Economic Denial of Sustainability (EDoS) -issued by [START_REF] Baig | Controlled Virtual Resource Access to Mitigate Economic Denial of Sustainability (EDoS) Attacks against Cloud Infrastructures[END_REF], where the authors compared user demands against thresholds of patterns.

Principal Component Analysis (PCA) was used by Marnerides et al. [START_REF] Marnerides | Assessing the impact of intra-cloud live migration on anomaly detection[END_REF] for DoS and netscan detection, not only for reducing datasets dimensionality but also to separate the normal data from anomalous.

Signal analysis such as Ensemble Empirical Mode Decomposition (E-EMD) was presented in [START_REF] Marnerides | Malware detection in the cloud under Ensemble Empirical Mode Decomposition[END_REF]. The authors proposed a data-driven method for malware, motivated by the fact that the algorithm can sufficiently decompose data as signals and describe clouds' non-linear and non-stationary network traffic and hypervisor information.

Catastrophe theory studies the way systems respond to the continuous modifications from the variables that control them, producing sudden changes from one system state to another (e.g., from normal state to anomalous). Xiong et al. [START_REF] Xiong | Anomaly secure detection methods by analyzing dynamic characteristics of the network traffic in cloud communications[END_REF] introduced a catastrophe function to describe network traffic anomalies in cloud communications.

Machine learning-based

These methods allow improving the performance of their objective by learning from previous results. The results summarized in this subsection are illustrated in Figure 2.2, where we group these techniques with their underlying models for detecting security threats in the cloud.

Decision trees are used in [START_REF] Chou | An adaptive network intrusion detection approach for the cloud environment[END_REF], where they preprocessed unlabeled data with an unsupervised clustering algorithm. After labeling, a model based in incremental tree inducer is trained, therefore updating itself.

SVM technique for cloud threat detection was proposed by Watson et al. [START_REF] Watson | Malware Detection in Cloud Computing Infrastructures[END_REF]. The authors studied an online novelty implementation of a supervised one-class SVM algorithm, an extension of traditional two-class SVM which outputs either a known class (VM normal behavior) or unknown classes to the classifier, for each particular input vector.

Artificial Neural Network (ANN) expose their accuracy based on the configuration of their hidden layers and training phase. Pandeeswari et al. [START_REF] Pandeeswari | Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN[END_REF] preprocessed hypervisor attributes with Fuzzy C-Means clustering and utilized feed-forward neural networks with back-propagation algorithm for each of them. They later combined the results of the ANNs with a fuzzy aggregation module. A Synergetic Neural Network (SNN) was addressed by Xiong et al. [START_REF] Xiong | Anomaly secure detection methods by analyzing dynamic characteristics of the network traffic in cloud communications[END_REF], given the dynamics of the network's traffic. Their argument relied on the fact that under some situations, the changing trend of the cloud-based network traffic is only determined by a few primary factors and less contribution of others.

Self Organizing Map (SOM) techniques were also addressed by Li et al. [START_REF] Li | VISO: Characterizing Malicious Behaviors of Virtual Machines with Unsupervised Clustering[END_REF], by proposing a cluster system that identified Nmap malicious behaviors in VMs through system call distributions in order to derive rules for SVM detection.

Clustering

These techniques are utilized under the assumption that normal data instances lie distance-wise closer to a given centroid of a cluster, whereas anomalous data points are recognized due to their much longer distance (e.g., K-means). Density-based approaches rely on the fact that normal data instances belong to large and dense clusters, while anomalies either belong to small or sparse clusters.

The idea is that data points in the same cluster are as similar as possible, and consequently, data points in different clusters differ to a high degree. One of the major challenges regarding clustering is to come up with a function that describes similarity between data points, known as similarity function. Algorithms for clustering can be divided into two main categories, namely, partitional and hierarchical algorithms.

K-means technique was followed by Marnerides et al. [START_REF] Marnerides | Assessing the impact of intra-cloud live migration on anomaly detection[END_REF], while showing the clustering method is directly affected by live-migrations. In this testbed, they detected DoS and netscan threats successfully when arose, but also achieved high scores when only migration and normal traffic occurred. Additionally, it was utilized for detecting shared technologies threat, as seen in Figure 2.2. For example, in [144], the authors combined a two-stage detection mode based on statistical similarity tests from the cache miss times from hosts, Central Processing Unit (CPU) and memory utilization collected from VMs, for later clustering.

Density-based technique was proposed by Shirazi et al. [START_REF] Shirazi | Anomaly detection in the cloud using data density[END_REF] where they divided all measured variables into clusters and evaluated mean and standard deviation, based on the Euclidean distance threshold. The same clustering idea was used with the dimension reasoning technique (based on Local Outlier Factor) for memory leakage and malicious port scan, by Huang et al. [START_REF] Huang | Anomaly detection and identification scheme for VM live migration in cloud infrastructure[END_REF].

Hybrid-based approach and related techniques

Depending on the architecture and a set of threats to be detected, the use of techniques in cloud architecture can require a hybrid approach.

While signature-based approach is more rigorous in its detection, behavior-based methodology is able to "learn" new threats. Therefore, the combination of previously mentioned approaches in Sections 2.3.1 and 2.3.2 may reach a more extensive and accurate detection. As an example, Modi et Patel. [START_REF] Modi | A novel hybrid-network intrusion detection system (H-NIDS) in cloud computing[END_REF], used SNORT [START_REF] Caswell | Snort 2.0 Intrusion Detection[END_REF] for signature-based detection, whereas for anomaly-based detection they focused on Bayesian, associative and decision tree classifiers. Some of the studies addressing both approaches can be found in [START_REF] Kholidy | CIDD: A Cloud Intrusion Detection Dataset for Cloud Computing and Masquerade Attacks[END_REF], [START_REF] Modi | A novel hybrid-network intrusion detection system (H-NIDS) in cloud computing[END_REF], [START_REF] Shamsolmoali | C2DF: High Rate DDOS filtering method in Cloud Computing[END_REF], [START_REF] Yu | A cloud computing based architecture for cyber security situation awareness[END_REF].

Discussion

The classification described in the previous sections shows that signature-based methods commonly relate to content-based detection techniques since they test known patterns or accepted actions. Data-related, malicious insider and account hijacking threats (e.g., confidential documents leakage, allowed user behaviors) are mostly studied in this category. For a visual representation of these dependencies, links are depicted in Figure 2.2, where rule-based groups only share relations with the previously mentioned threats and are not associated with DoS, shared technology threats or malware.

As usual, detection techniques discussed above have their unique strengths and weaknesses. From the results of this study (Figure 2.2 and Section 2.3.2), one can see that the most reviewed group of techniques are the statistical-based and machine learning, often utilized for network traffic and DoS detection. The first relies on the assumption that normal data instances fit a statistical model and anomalies are compared to this model through inference tests, which may be unhandy for diverse data. Entropy-based techniques offer a deeper examination as they consider the irregularities in the information content of the data being collected. Machine learning algorithms are also efficient due to their self-learning capability. Other approaches such as clustering, add an interesting enhancement since they automatically create and label clusters for future classification.

Also, evaluating the effectiveness of a given detection technique against a particular threat (or a group of them) is mainly performed through corresponding experimentation. For that reason, it is highly relevant building proper datasets that contain heterogeneous normal and abnormal realistic behaviors with a broad spectrum of threat patterns. Consequently, it may be intuitive to handle combined datasets, as mentioned in the previously cross layer-based system. This implies selecting relevant features, focusing on minimizing used bandwidth during monitoring, improving detection performance and removing redundant data, while keeping lower computational complexity (e.g., machine learning techniques, where the time taken to train the classifier is dataset size dependent).

Literature regarding this matter has used self-generated test-beds [START_REF] Huang | Anomaly detection and identification scheme for VM live migration in cloud infrastructure[END_REF], [START_REF] Jeyanthi | An Enhanced Entropy Approach to Detect and Prevent DDoS in Cloud Environment[END_REF], [START_REF] Marnerides | Assessing the impact of intra-cloud live migration on anomaly detection[END_REF], [START_REF] Shirazi | Anomaly detection in the cloud using data density[END_REF], [START_REF] Watson | Malware Detection in Cloud Computing Infrastructures[END_REF] while others relied on the well-known datasets: KDD [START_REF] Chou | An adaptive network intrusion detection approach for the cloud environment[END_REF], [START_REF] Pandeeswari | Anomaly Detection System in Cloud Environment Using Fuzzy Clustering Based ANN[END_REF], [START_REF] Shamsolmoali | C2DF: High Rate DDOS filtering method in Cloud Computing[END_REF] and DARPA [START_REF] Chou | An adaptive network intrusion detection approach for the cloud environment[END_REF], [START_REF] Xiong | Anomaly secure detection methods by analyzing dynamic characteristics of the network traffic in cloud communications[END_REF]. These last two correspond to the group of threats with more references in Figure 2.2. However, they suffer from several deficiencies for testing in cloud environments as they do not include behaviors such as stated in Section 2.2.1. Accordingly, a dataset containing new malware patterns was used and is presented in the next section.

Experimental evaluation of studied techniques and known threats

The aim of the experimental evaluation was to identify the concrete challenges of the thesis and to study the missing relation between some threats and a technique of each group. These connections were formerly determined by the reviewed publications, where Figure 2.2 graphically illustrates which set of techniques has been utilized for detecting different threat categories (from Section 2.2.2). We conducted experiments to estimate the effectiveness of these techniques against other threat types, therefore contributing by adding new links to our study.

To the best of our knowledge, such experiments were not performed before in the time of study, i.e., 2016, for the following detection algorithms against the utilized dataset: SVM, MLP feed-forward Neural Network, and LSTM Recurrent Neural Network, K-means and entropybased. We have selected one technique of each group to perform a more exhaustive analysis. The first is commonly used as benchmark experiments outperforming in most cases ( [START_REF] Khorshed | A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing[END_REF], [START_REF] Patel | An intrusion detection and prevention system in cloud computing: A systematic review[END_REF]); hence, it was of our interest to see how it performs for the chosen dataset's attacks. The second and third techniques enhance the dynamic classification requirement, presented in Section 2.3.

Moreover, the study targeted the usage of techniques with self-learning capabilities (i.e., that handle new data after the training phase). Following this idea, MLP and LSTM present relevant characteristics. The last two techniques belong to the clustering and statistical categories, respectively. K-means is a learning algorithm that groups attribute vectors in clusters, based on the notion of similarity. We considered botnets as threats worth of studying since cloud virtualization and service models may allow an easier path to their execution. Moreover, we aim to provide another experimental evaluation to the given found studies [START_REF] Marnerides | Assessing the impact of intra-cloud live migration on anomaly detection[END_REF], [START_REF] Watson | Malware Detection in Cloud Computing Infrastructures[END_REF] regarding this threat.

We utilized the CTU-13 Dataset [START_REF] García | An empirical comparison of botnet detection methods[END_REF], which comprehends real network traffic capture of more than 5000 hosts labeled in background, normal and botnet behaviors. In particular, this traffic concerns different types of DDoS, port scanning, C&C attacks, among others, there is no single threat pattern, and our experimental schema relied on the trial of arbitrary techniques against this range of attack patterns. Training and testing distributions were respectively 83.39% (50.57% and 49.43% for normal and botnet traffic) and 16.61% (13.95% and 86.04% for normal and botnet traffic), accounting more than 90 million packets. Results were analyzed by widely used metrics Precision, Recall, Accuracy and False Positive Rate (FPR).

Data preparation consisted in reading NetFlows1 , selecting and normalizing their attributes in header-based features (e.g., source IP address, destination IP address and port, protocol), content-based features (e.g., source bytes) and time-based features (e.g., session duration). As tried to simulate the monitoring of continuous data streaming flows arriving from the cloud, all techniques were implemented using online learning, by feeding the algorithms with timely ordered dataset in batches.

In particular, SVM was used as a binary classifier. We applied it with linear kernel, taking into account good experimental results presented in [START_REF] Khorshed | A survey on gaps, threat remediation challenges and some thoughts for proactive attack detection in cloud computing[END_REF]. For MLP, experiments consisted of finding hyper-parameters values and analyzing their impact against the detection metrics mentioned. Given the low standard deviation while changing the number of training iterations, we proceeded experiments with this parameter fixed at 50 epochs. Model setup was a two-layer hidden network, with 36 hidden neurons each. The variability of the latter consisted in increasing the number of neurons, obtaining higher recall and precision values, but also raising the FPR.

For LSTM, we also experimented with various training parameters and topologies. Hidden layer consisted of two LSTM memory blocks, with two cells each and peephole connections. Adam algorithm [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] was considered as the optimizer while MSE as a loss function. We applied an arbitrary exponential learning decay of 0.97. Time step size, batch size and epoch in ranges from [START_REF] Bates | Detecting coresidency with active traffic analysis techniques[END_REF]200], [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF]500], [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF]800] respectively, while modifying the learning rate from 0.0001 to 0.1.

For K-means technique we applied the Mini Batches function, a faster approximate version of the more "expensive" K-means clustering [START_REF] Sculley | Web-scale k-means clustering[END_REF]. The configuration was set for the algorithm to create two clusters, normal and abnormal (botnet traffic). This configuration falls upon the thesis's assumption, i.e., normal connections are frequent whereas attacks are very rare, of SVM showed to be more stable than the others for all the metrics, while Artificial Neural Network-based techniques depended on the topology and training parameters. One can see from Table 2.1 that overall the techniques perform above 79% for Recall and Precision indicators. Nevertheless, LSTM and Entropy techniques do it also by increasing the FPR. The latter is probably due to our static threshold configuration and that chosen features may have dismissed or not fully exploited the dataset threat behavior.

Insider threat related works

In virtue of the literature mentioned above review and analysis, together with the proposed grouping of detection techniques, we were able to see the different aspects of all threats and the approaches for solving them. Consequently, we have decided to tackle in depth the study of detection towards the insider threat, which is one of the most difficult studied threats, due to its challenges regarding monitoring, data accessibility and later processing for its detection, among others.

Cloud and non-cloud related detection techniques

The insider threat issue has been studied from different optics in the current literature. From this fact, an overview of the past approaches can be found in [START_REF] Gheyas | Detection and prediction of insider threats to cyber security: a systematic literature review and meta-analysis[END_REF], [START_REF] Liu | Detecting and preventing cyber insider threats: a survey[END_REF]. These works cover multiple detection approaches and usecases. As an example of them, we can see various categories such as: real-time and non-real time, host-based, network-based monitoring levels, supervised, semi-supervised and unsupervised, as well as different detection algorithms such as machine learning-based, information theoreticbased, among others.

Statistical approaches assume that the data follow some standard or predetermined distributions, and this type of approaches aim to find the outliers which deviate from such distributions. However, most distribution models are assumed uni-variate, and thus the lack of robustness for multidimensional data is a concern. Nevertheless, the assumption or the prior knowledge of the data distribution is not easily determined for practical problems.

In distance-based methods, the distances between each data point of interest and its neighbors are calculated. If the result is above some predetermined threshold, the target instance will be considered as an outlier.

In density-based methods, the approach is to use the density (i.e., well connected points), such as local outlier factor (LOF), to measure the "outlier-ness" of each data instance. For example, based on the local density of each data instance, the LOF determines the degree of "outlier-ness", which provides suspicious ranking scores for all samples. However, it is worth noting that the estimation of local data density for each instance is very computationally expensive, especially when the size of the dataset is large.

Though not initially intended for detecting the insider threat in cloud environments, the previously mentioned techniques contribute to how to analyze users interacting with assets from many perspectives and utilizing them for the scope of this work, where the insider threat is examined by its actions in a cloud environment.

Machine learning approaches have also been used for tackling this threat. An example is Tuor et al. [START_REF] Tuor | Deep learning for unsupervised insider threat detection in structured cybersecurity data streams[END_REF], which used real-time unsupervised Deep Neural Network (DNN) and Recurrent Neural Network (RNN). They treated their system in an online fashion by training a single RNN with a supplementary data structure that stores a finite window of past inputs and hidden and cell states for each user. Each time a new feature vector arrives into the model, the hidden and cell states for that user are then used for context when calculating the forward pass and back-propagating error. Although their model benefits from the internal relationships of DNN, it begins outputting verdicts while completely untrained, therefore anomaly scores are very high for the first period.

In another schema, Yen et al. [START_REF] Yen | Beehive: large-scale log analysis for detecting suspicious activity in enterprise networks[END_REF] presented a machine learning approach that analyses different network-based logs in an enterprise, namely proxy, Dynamic Host Configuration Protocol (DHCP), Virtual Private Network (VPN), Lightweight Directory Access Protocol (LDAP). They later utilized PCA with the K-means clustering algorithm with labeled data for evaluation purposes.

Also PCA was used by the authors in [START_REF] Legg | Automated insider threat detection system using user and role-based profile assessment[END_REF], which employed unsupervised feature transformation on their own developed dataset. Their system then creates a tree-structure for each profile, constructs set of features that describe particular anomalies of interest and computes a PCA decomposition to identify features that exhibit high deviation.

As an example of a distance-based approach, authors in [START_REF] Böse | Detecting insider threats using radish: a system for real-time anomaly detection in heterogeneous data streams[END_REF] proposed an unsupervised k-Nearest Neighbors (k-NN) with a k-d tree data structure in order to find the k-NN of each new data input. The smallest distance (nearest neighbor) to this new observed point is treated as the anomaly score of the input. If the anomaly score exceeds a fixed threshold, then the point is treated as anomalous. This criterion relies on the common drawback of having high false positives using a fixed threshold while newer data inputs may vary and evolve through the employee's behavior in time.

Along with the presented approaches, state-based approaches can be seen for anomaly detection in time-series data. These models assume that there is some underlying hidden state and previous state that generate the observations and that this hidden state evolves through time, possibly as a function of the inputs. Rashid et al. [START_REF] Rashid | A new take on detecting insider threats: exploring the use of hidden markov models[END_REF] used Hidden Markov Model (HMM) which they trained for a five-week period. Later they were able to predict further inputs' anomalies against a fixed threshold.

Graph-based approaches have also been introduced into the insider threat detection. They intend to model user-system interactions through topological properties, e.g., system components and user nodes can be connected if they have interacted between each other. Parveen et al. [START_REF] Parveen | Insider threat detection using stream mining and graph mining[END_REF] utilized using system-calls data and proposed a graph-based approach to create multiple models for a batch of system calls and their parameters which, finally, constitute an ensemble to detect subsequent batches in a streaming manner. During each iteration, a batch is tested with all the models, and a weighted majority voting mechanism is applied to make a decision. Afterwards, the least weighted model is replaced with the new model.

In [START_REF] Eberle | Insider threat detection using a graph-based approach[END_REF], the authors have used Email and Cell phone logs, specifically analyzing the correspondence patterns. A normative pattern (a graph substructure) is learned from the entire graph that describes an insider's correspondences by minimizing the description length (MDL) and an incident of interest is raised when a test graph substructure is inconsistent with the normative pattern (by looking for modifications, insertions, and deletions in the graph structure).

In [START_REF] Moriano | Insider threat event detection in user-system interactions[END_REF], the authors proposed a bipartite graph between two types of nodes: users and system components. Their methodology includes studying the evolution of the user graph to identify topological properties that characterize the system's normal behavior. Among these observed properties, those that do not follow the norm of the regular pattern are assumed to indicate the presence of an anomalous event.

Additionally, within the scope of graph-based approaches, tree or partitional techniques have also been used lately [START_REF] Gamachchi | Graph based framework for malicious insider threat detection[END_REF], [START_REF] Gavai | Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data[END_REF]. Gavai et al. [START_REF] Gavai | Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data[END_REF] utilized a modified version of the Isolation Forest (IF) method at the task of detecting insider threat from network logs. The process continues until each individual point in the dataset is isolated in a leaf. Every point receives a score that relates to the average number of splits required over the IF trees to isolate it into a leaf node. They modify this algorithm to identify the anomalous points that arise from the averaging across the forest and also record the corresponding features that are the reason for their isolation.

Other authors [START_REF] Gamachchi | Graph based framework for malicious insider threat detection[END_REF] use IF with logs from LDAP, proxy and email services, and apply the algorithm to detect suspicious users by looking into the graphs and their sub-graphs.

Non-insider threat related anomaly detection studies also contribute to the knowledge in discovering anomalies as a data mining practice in general (an extensive survey can be found in [START_REF] Pimentel | Review: a review of novelty detection[END_REF]). Along with clustering proposals such as ClusStream under the seminal work of [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF], there can also be found techniques within the previously named categories.

One of these sets of algorithms worth mentioning is SOM-based network models, which are suitable for online processing of unlabeled data in numerous anomaly detection applications [START_REF] Bouguelia | An adaptive algorithm for anomaly and novelty detection in evolving data streams[END_REF] as much as in the security domain [START_REF] Garcíarodriguez | Surveillance and human computer interaction applications of self-growing models[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF].

Cloud-based related datasets Authors of [START_REF] Kholidy | CIDD: A Cloud Intrusion Detection Dataset for Cloud Computing and Masquerade Attacks[END_REF] proposed a cloud-based dataset for masquerade attacks, i.e., where an attacker assumes the identity of an authorized user for malicious purposes. They utilized network and host traces from two machines of the DARPA dataset [START_REF]Darpa intrusion detection evaluation[END_REF], consisting in host-based audits from Windows NT and Unix Solaris, along with their corresponding Transmission Control Protocol (TCP) data. They correlated a seven-week dataset and labeled the users from both machines into different roles according to their login session time and the characteristic of the user task (e.g., programmer, secretary, system administrator). Later they assigned every user to a labeled VM.

Additionally, non-cloud related literature on dataset generation shows a variety of approaches. RUU dataset was provided by [START_REF] Salem | Modeling user search behavior for masquerade detection[END_REF], also concerning masquerade attacks. They built a sensor host for Windows OS that captured user's registry actions, process execution and window touches. They collected normal users and analyzed differences against masquerade users, following a controlled exercise. Carnegie Mellon's Computer Emergency Response Team (CERT) generated a collection of synthetic insider threat test datasets [START_REF] Brian | Generating test data for insider threat detectors[END_REF] to produce a set of realistic models.

ISCX dataset was proposed by [START_REF] Shiravi | Toward developing a systematic approach to generate benchmark datasets for intrusion detection[END_REF], under the notion of profiles that contained detailed descriptions of intrusions and abstract distribution models for applications, protocol and lower network level entities.

The ADFA dataset [START_REF]Adfa ids datasets[END_REF] was proposed by [START_REF] Creech | Generation of a new ids test dataset: time to retire the kdd collection[END_REF] with modern attack patterns and methodology. This dataset was composed of thousands of system call traces collected from a contemporary Linux local server, with six types of up-to-date cyber attacks involved.

Conclusion

In this Chapter, we studied the relation between security threats and detection techniques in cloud environments. As a result, we conclude that data-related threats and malicious insider activities are mostly pursued by rule-based detection techniques. On the other hand, networkbased threats such as DoS and botnet attacks can be effectively tackled with statistical and machine learning techniques. Likewise, whenever behavior-based or hybrid approaches are used, training data phase remains crucial to establish a wide spectrum of normal behaviors in cloud architectures. In this sense, more research needs to be performed to correctly discriminate them from real threats. Through Figure 2.2, we have granted a visually synthesized comprehension of which algorithms have been studied for specific threats. However, we noted the absence of some links between them, raising questions regarding the use of certain techniques for threat detection. We think this may be because "well-accepted" methods have proven to be effective to known attack patterns in the past (e.g., SVM and DoS). On the other hand, the existent links are due to the tryout of novel techniques against classic threat patterns or the use of traditional techniques on top of cloud-environment settings.

The latter motivated to study the applicability of existing detection approaches against new threats. Consequently, we attempted at experimenting with a SVM, two ANNs, a statistical and a clustering method; performed an online detection and obtained results to counteract these unseen techniques with a dataset of recent malware vectors. In particular, it was experimentally proven that SVM behaves well as an "all-around" classifier, keeping good accuracy while low false alarm rates. In contrast, we observe additional studies should be pursued for neural network detectors as they rely on more parameters. This characteristic adds more complexity at the moment of detecting different types of threats, as they are commonly tuned for a particular test-bed.

At the same time, we note that although many of detection techniques have evaluated their accuracy given FPR, Precision; only a few studies are testing their performance in a holistic approach that contemplates specific cloud computing characteristics (named in Section 2.3), such as scalability, fault-tolerance or adaptiveness.

Additionally, high throughput interfaces and maintainable knowledge database repositories demand a scalable solution. At the same time, cloud-dynamic behavior varies regarding CSC's needs, and it can imply the discovery functionality for modified IaaS, PaaS or SaaS configurations. Therefore, it is important to keep in mind a flexible implementation approach that can detect anomalies adapted to each new requirement.

Furthermore, we have decided to tackle in depth the study of detection techniques towards one of the most difficult enumerated threats, such as the insider threat. By being one of the least treated threats due to its monitoring and detection difficulties, the assessment of a detection framework for this threat has also gained momentum in the last years in the literature. Nevertheless, many of the presented approaches solve the detection of anomalous behaviors only partially in a cloud-related scenario.

Each category of methods discussed in this paper has its own strengths and weaknesses, and faces different challenges for complex datasets. We consider some of the studied methods presented in [START_REF] Pimentel | Review: a review of novelty detection[END_REF], such as SOM-based methods, which benefit from the ability to address high-dimensionality problems, and the flexibility of having no a-priori assumptions about the properties of the data distribution, therefore allowing the adaptation of the learning process in time.

Along with the discussed threats and techniques, this state of the art approached in depth towards the insider threat. With regards to this threat, the literature mentioned above raises many questions about the proper characterization of malicious insider threat and which features could adequately describe it for later detection techniques' analysis. Additionally, most of the presented datasets correspond to one-time implementations, which limits the generation and analysis to that particular test-bed configuration. In this respect, an automatic dataset generation is aimed, which will establish different scenarios with more dynamics taken into consideration. This feature also makes the analysis modifiable, extensible and reproducible.

Finally, this survey also proves the absence of a universal approach for identifying various threats of different nature. Additionally, focusing on multiple cloud service features will provide an integral perspective of different behaviors working together. Developing such approach or at least making steps towards deriving a broader yet effective cloud threat detection system, without a doubt, form a group of hot topics for future research work.

Chapter 3

Modeling the Insider Threat 

Introduction

In this Chapter, a model for the insider threat is presented. This model is an abstraction of a user or employee in a company executing actions towards a cloud environment. The main objective is to describe the most relevant aspects to consider at the moment modeling a user and/or malicious insider, by means of utilizing psychological and technical attributes.

complexity taking into account new actors involved, as well as their dependencies. Consequently, a role-based categorization was proposed by [START_REF] Claycomb | Insider threats to cloud computing: directions for new research challenges[END_REF], where an insider threat could be (i) A malicious insider from the CSC, accessing cloud services or (ii) A malicious insider from the CSP, accessing to sensitive company data. In addition to these, more actors were presented by [START_REF] Duncan | An overview of insider attacks in cloud computing[END_REF]: (i) A malicious insider from the Internet Service Provider (ISP) for each zones; (ii) External CSPs if resources are outsourced to other providers; and (iii) Cloud provisioning services (brokers).

User profiling research and recollection of real cases [START_REF] Collins | Common sense guide to mitigating insider threats[END_REF] present no common pattern with respect to subject's psychological characteristics. However there are risk indicators [START_REF] Greitzer | Developing an ontology for individual and organizational sociotechnical indicators of insider threat risk[END_REF], [START_REF] Legg | Towards a conceptual model and reasoning structure for insider threat detection[END_REF], [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF] related to the motivational factors that may underlie malicious insider exploits, which are supported by studies indicating that most of these attacks (81%) are planned [START_REF] Shaw | The role of behavioral research and profiling in malicious cyber insider investigations[END_REF].

From these representations of insider user profiling, we derive our model definition in the following section. Moreover, we propose a threat ontology with a probabilistic approach, where the disposition factor to perform malicious activities mentioned above is considered to occur with a given probability in time.

Insider's opportunity A generic set of models usually refer as the Capabilities Motives and Opportunity (CMO) model [START_REF] Parker | Fighting Computer Crime: A New Framework for Protecting Information[END_REF], [START_REF] Sarkar | Assessing insider threats to information security using technical, behavioural and organisational measures[END_REF], [START_REF] Schultz | A framework for understanding and predicting insider attacks[END_REF]. This model postulates that to commit an attack, the insider must first have the: 1. Capability to commit the attack, 2. Motive to do so, 3. Opportunity to commit the attack.

These three attributes are also present in our model, and in addition, we illustrate how an insider may relate each of these and come to perform the malicious act through the relationship with other elements. In particular, the notion of the opportunity dimension is well defined within the literature relating to threat assessment and risk management [START_REF] Nurse | Understanding insider threat: a framework for characterising attacks[END_REF]. Given the capability (e.g., skills) and motive (e.g., revenge, greed), the insider must also have an opportunity. This opportunity is enhanced when the insider is able to exploit a weakness present in the organization's assets.

As mentioned, while this attribute has been well defined within the rational decision literature with respect to threat assessment and risk management [START_REF] Jones | Risk Management for Computer Security: Protecting Your Network & Information Assets[END_REF], [START_REF] Nurse | Understanding insider threat: a framework for characterising attacks[END_REF], there have also been models proposed regarding insiders' perception of risk and endogenous characteristics that are unique to insiders [START_REF] Farahmand | Understanding insiders: an analysis of risk-taking behavior[END_REF], [START_REF] Greitzer | Developing an ontology for individual and organizational sociotechnical indicators of insider threat risk[END_REF], [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF]. The two main key notions are that (i) in order to perform a malicious act, an employee has to perceive an opportunity; (ii) when this opportunity is perceived, the employee also has a perceived risk in terms of the action's potential consequences (i.e., getting caught). Therefore, while traditional risk assessments focus mostly on technical vulnerabilities, insider threat assessments need two more dimensions: the employees' and organization factors (e.g., policies, practices).

In addition to that, in the context of a cloud environment the relationship between the employees and the organization's assets, lead to more complex vulnerabilities. Moreover, as relevant cloud-based characteristics were addressed in Section 2.2.1, there are several security challenges inherent to this environment.

An insider threat assessment is a statement of threats posed by 'trusted' insiders of an organization that are related to vulnerabilities, assets, and insider threat agents. In order for a malicious insider to bring its capability to bear against a target, the employee must have the correct conditions to do so; and in order for their capabilities to be effective and have an impact on the target, the target must be vulnerable to attack.

Consequently, we define the levels of opportunity for an insider and follow quantification methodology of authors in [START_REF] Sarkar | Assessing insider threats to information security using technical, behavioural and organisational measures[END_REF], namely: 1. Define the vulnerabilities associated to the assets interacting with him or her; 2. Highlight the security controls that are appropriate to mitigate the exploit of the asset. Concerning the first aspect, ISO 27005 [START_REF] De Normalización | Information technology-Security techniques -Information security risk management[END_REF] defines a vulnerability as:

A weakness of an asset or group of assets that can be exploited by one or more threats.

We extend this description with European Union Agency for Network and Information Security (ENISA)'s more specific annotation:

The existence of a weakness, design, or implementation error that can lead to an unexpected, undesirable event compromising the security of the computer system, network, application, or protocol involved.

By means of assessing the different vulnerabilities, the CSA provided with recommended controls for all the previous detailed threats from Section 2.2.2. They released the "Security Guidance for Critical Areas in Cloud Computing" and the "Security as a Service Implementation Guidance", providing best practices for securing Cloud Computing (CC) infrastructures. Some of the recommended security controls for the malicious insider threat are

• Compliance (CCM CO-03): Third-party audits.

• Data Governance (CCM DG-01): Information leakage.

• Information security (CCM IS-08): User access restriction/authorization.

• Human Resources Security (CCM HR-01): Background screening.

• Information Security (CCM IS-19): Audit tools access.

• Information Security (CCM IS:18): Encryption.

Proposed modeling approach

The definition of an ontology involves complex interconnections in different domains. The following areas have been considered, in order to better characterize employee's activities in an organization.

An insider is modeled by two main attributes, namely Intra-psychological behavior and cyber behavior:

• Intra-psychological behavior considers the humans' state of mind behind the malicious activity i.e., the reasons why they performed the malevolent actions, their psychological motives and the characterization of their intent.

• Cyber behavior considers humans' behaviors in relation with a cyber cloud asset i.e, the way employees interact with the organization's resources.

Additionally, we itemize our assumptions regarding the behavior of an insider with respect to the rest of the organizational cloud-related assets, along with the dataset generation.

The insider threat is a rare event hence, we consider its occurrence rather low. Therefore, as treated as an anomaly, we consider the probability of an opportunity is low in most of the organizational environments.

User Model

The model proposed in the following paragraphs aims to consider each one of these domains as part of the abstraction of an employee, and moreover interrelate them to derive more complex scenarios for posterior detection analysis.

Definition of entities

We consider the following entities to generate patterns of activity, as shown in Figure 3.2. They are divided into two groups. On one hand user-related entities, namely:

Profile is defined as an abstract representation of person's attributes in an organization, to facilitate the reproduction of realistic behaviors. Each Profile is composed of a Psychological factor, a Cyber factor, a Context and a Role.

Psychological factor is related to the human characteristics of a person. This category adds a dynamic realism by means of human attributes, such as the attitude for the given job. This factor can be personalized and distinguished by its intention in time.

Cyber factor is related to the professional or technical characteristics of a person based on their Role. This category adds attributes such as the way of interacting with the company's resources.

Role is associated to the job of the Profile in a given organization. Moreover, the Role is defined through the entity Policy, which is composed of a Permission related to an action towards an Asset.

Context consists of attributes related to specific time and location conditions where the Profile is performing its Role (e.g., location from where the actions are being executed, time of the day, IP from where actions are being executed, cloud instance the employee is trying to access).

Permission is the type of authorization a Role has for a given Asset (e.g., read, modify).

Asset consists of any valuable hardware or software component, property of a CSC in the CSP stack (e.g., physical servers, VMs, applications, databases, communication infrastructure), depending on SaaS, PaaS or IaaS models.

On the other hand, the simulation also includes the event-related entities:

Sequence is a list of (sequential) actions performed by the same Profile under a given time interval. For that matter, an action a is defined as a symbol in an alphabet Σ. Based on this alphabet, the approach generates three types of Sequences:

(i) Pseudo-random sequences, defined as a Set R ⊂ Σ * of finite pseudo-random actions.

Lines 2 to 7: Algorithm defines the delay for which it will create an Event from a pseudorandomly chosen Profile. This generation is done with an exponential distribution, in order to model the pseudo-random generated sequences as a Poisson process (line 6).

Lines 10 to 14: An agent function takes the form of a Profile assigned by a Role and Time Between Events (tbe) with a given distribution (e.g., For Normal distribution with mu and sigma given by the Context).

Lines 17 to 18: The three types of sequences will be generated. Each of these group of sequences is given by the Policy entity, which relates an action to a given cloud Asset. The algorithm allows to give specific weights (pol.seq_weights) to the three types of sequences. Later, the event is executed for that particular assignation.

Lines 20 to 23: Under a certain disposition given by the Psychological factor, each Profile will have an anomalous behavior. The function GenAnomaly can either change the Context or the sequence, introducing a single instance of such anomaly.

Line 25: The agent sleeps until a next scheduled event, which will be again normal or abnormal of a certain type. This is handled by the mentioned tbe, which takes values under the "working hours" context from the Profile.

Algorithm 1 Dataset generator

1: function Event_generator(prof iles, tba, timeout, disposition_thresh, w loc , w wh , w seq )

2:
while time < timeout do 3:

prof ile ← pseudo_random_choice(prof iles)

4:

delay ← exponential_distrib(1/tba) 5:
Agent(prof ile)

6:

Wait(delay) As above-mentioned, this attribute aims at modeling the employee's psychological disposition with respect to performing a malicious act. Furthermore, each agent has the potential to become a malicious insider based on a combination of emotional and rational affecting their affective disposition and decision process, correspondingly. For the representation of this Profile's attribute we utilized Epstein's [START_REF] Epstein | Agent_Zero:Toward Neurocognitive Foundations for Generative Social Science[END_REF] theoretical Agent_Zero, which is an ABM endowed with distinct emotional/affective, cognitive/deliberative, and social modules. This structure is grounded in contemporary neuroscience, where internal components interact to generate observed, often far-from-rational, individual behavior.

Unlike [START_REF] Epstein | Agent_Zero:Toward Neurocognitive Foundations for Generative Social Science[END_REF], who treats the three mentioned components (each belongs to the interval [0, 1]) as additive parts of the equation to be compared against a general threshold, we propose that an agent's disposition to perform a malicious activity, is going to be based primarily by the affective component. This takes place under the hypothesis that an emotionally satisfied employee would not perform an illicit activity even if the rational component may be appealing (e.g., if there was a low risk and/or high reward associated). Following that idea, only if the affective component's value exceeds its personal disgruntlement threshold, the agent will secondly perform a cognitive decision process considering personal judgments (e.g., the value given to a reward), along with organizational context variables. This decision process will determine the optimal action to be taken. The above-mentioned general methodology for obtaining the psychosocial factor is formalized in the Algorithm 2.

Affective component

To represent this element we use Epstein's affective component of the Agent_Zero model. In it, he uses the seminal Rescorla-Wagner model of conditioning [START_REF] Rescorla | A theory of Pavlovian conditioning: variations on the effectiveness of reinforcement and non-reinforcement[END_REF], which is based in Reinforcement Learning (RL) and depicted as equation 3.2

∆D = α(F t -E t ) (3.2)
This equation is also used by Sokoloswky et al. [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF] in their specific model for the insider threat. They represent α as the level of attention the agent gives to the disgruntlement ∆D (also known as salience). This value can vary between 0 and 1, where 0 indicates that the affective component is irrelevant and 1 indicates that it has maximum relevance.

F t represents the observed outcome (commonly known as reward or punishment). Following [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF]'s lead, it is the actual level of fulfillment the employee interprets from the organization. Lastly, E t will be the agent's personal expectation of fulfillment.

In other words, for each simulation time t, the difference between the expected fulfillment and the actual experienced fulfillment will determine the level of surprise or disgruntlement ∆D towards the organization. This is interpreted as the employee's ability to observe, learn or adapt himself in regarding the organization environmental characteristics (e.g., organizational culture, internal policies). Following [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF]'s definition, the expectation of a user at simulation time t + 1 is

E t+1 = ω init F 0 + ω actual F t + ω historic F ω init + ω actual + ω historic (3.3)
Where E t+1 is the expectation for the next time of the simulation, F t=0 is the initial fulfillment (e.g., assumed to value 1 when the employee begins to work in an organization), F t is the actual level of fulfillment at simulation time t and F is the average of fulfillment values throughout the simulation. According to each agent's arbitrary configuration, weights (namely ω init , ω actual and ω historic ) can have different values, emulating different employees' characteristics, which for instance, may give more relevance to the overall historic fulfillment or their initial fulfillment, rather than the actual one.

In our model, we propose a definition for the fulfillment observed by the agent at time t as

F t = 1 with probability p t 0 with probability 1 -p t (3.4)
Where p t ≈ 1 considering that in general, organizations normally have good environmental characteristics and that events that may negatively impact employees are rather scarce. Finally, if the agent's disposition exceeds its personal disposition threshold τ , then rational component will take place, as 3.2. We observe both agents start the simulation without any disgruntlement (D 0 = 0). As time goes by, the fulfillment experienced within the organization decays (F = 0, shown as the a dark blue line event at the top of the figure), while the expectation remained high (E > 0). In this case, there is an increment in the level of disgruntlement for both agents. This level begins to decrement as the posterior observed fulfillment values remain high (F = 1, shown as the light blue line event at the top of the Figure). The different disgruntlement decays for both agents may also be observable, along with the increase whenever a single unexpected event occurs. These different behaviors derive from the salience factor α, from Equation 3.2, and from the mentioned weights in Equation 3.3.

Disgruntled ⇐⇒ ∆D > τ (3.5) 

Rational component

The proposed rational component is based on the work of [START_REF] Kahneman | Prospect Theory: An Analysis of Decision under Risk[END_REF], also proposed in [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF] and [START_REF] Farahmand | Understanding insiders: an analysis of risk-taking behavior[END_REF]. It is referred as a descriptive model of human decision making under risk. In our case, the model describes how an employee aughts to take actions that maximize their expected reward also considering their assessed or perceived opportunity, in relation with to the organization's cloud environment.

We propose a simplified metric that sufficiently models the employee's decision process, by considering the perceived opportunity with respect to their skills to exploit the organizations' vulnerabilities. Specifically, we consider the agent's decision to perform a malicious act, is based on this parameter, as well as on their reward and risk values.

This environment is modeled considering organizational attributes, which are not entirely known by the agent. As mentioned in Section 3.2, all possible contextual variables (e.g., security policies, assets architecture, organizational culture) ultimately fall under a probability of Both agents have an disgruntlement threshold of 0.5, while the α is 0.8 and 0.5 respectively. ω init is 0.001, while both give different relevance to the actual fulfillment value (ω actual is 0.299 and 0.099, respectively). The assigned value to the historic fulfillment ω historic is 0.7 and 0.9 respectively. perceived opportunity to commit a malicious act. The quantification of opportunity po_value, is perceived subjectively as an arbitrary parameter by the agent and is based on the assessment of the system's vulnerability and the existence of implemented security controls.

Following this path, a methodology for deriving the opportunity perceived by the insider is proposed. The user reasoning considers four steps:

1. Identification of the organization's assets involved in the cloud implementation.

2. Identification of the Security Control (SC) that protects these assets.

3. Identification of which SCs are "implemented" or "not implemented" in the cloud environment.

4. Quantification of the number of not implemented SCs over the total of SCs, seen as the vulnerability level for each asset (not_pct_implemented_SCs).

5. Estimation of the perceived opportunity of the insider. Therefore, we define the perceived opportunity of an insider, aiming to perform a malicious activity towards an asset as

po_value = β • not_pct_implemented_SCs (3.6)
where β is a parameter that can have three values, namely high medium and low, which are proportional to the skill of the employee (also defined as high, medium and low).

As mentioned in Section 3.3, we define it this way due to the fact that employees may not know all the organizational vulnerabilities associated when planning a malicious activity, but it could be partially estimated given the employee's experience or knowledge within the organization. Nevertheless, we consider this probability rather low, under the assumption that the insider threat is a rare event, therefore the probability of an opportunity is low in most of the contextual environments. In detail, the model is formed by the tuple po_value, A, reward_value, risk_tolerance

(3.7)
Where po_value is the above-mentioned opportunity the agent perceives for pursuing a malicious activity (thus, the probability of risk is 1 -po_value). A = {perform malicious activity, not perform malicious activity} is the set of possible actions to perform. The parameter reward_value depicts the relevance that the employee gives to the reward by means of the action perform malicious activity, while risk_tolerance is the degree of uncertainty of being caught that the employee is willing to withstand. Moreover, three levels of risk_tolerance and reward value have been defined. This values represent profiles such as risk-averse, risk-neutral and risk-greedy. For the reward value parameter sweeps, we have defined high, medium and low attractiveness. Thus, at every simulation time t, the organization's environmental context is at an opportunity state with probability po_value, according to the agent. Given this probability, the agent will choose an action a t ∈ A according to their personal decision policy. The above-mentioned general methodology for obtaining the rational factor is formalized in the Algorithm 3.

The policy used for this component is given by the relation between expected payoff values between the risk and the reward

V reward = reward_value • po_value (3.8) V risk = 1 risk_tolerance (1 -po_value) (3.9) 
P erf orm malicious activity ⇐⇒ V reward > V risk (3.10) where 1/risk_tolerance determines the risk-profile (i.e., greedy, neutral or averse). To illustrate this methodology, the following example is provided, followed by the Figure 3.4 Example. We define two agent's (namely Agent 1 and 2) with different rational attributes. Both have same value to reward (0.5), nevertheless Agent 1 is risk-greedy (0.9) while Agent 2 is frequency. The second advantage is the fact that it can help distinguishing an insider threat towards masquerade attacks, by means of analyzing the content of the Sequences.

The actions may vary according to the different assets and the level of granularity intended to simulate. For instance, as Figure 3.6 depicts, actions may differ for an agent whose role is a Developer, a DBA or a Cloud Administrator (formerly System Administrator) (CloudAdmin).

This set of actions will be also dependent on the cloud context regarding the architecture's configuration, such as service model, type of access layer for accessing the cloud services, execution commands for configuring the architecture, among others. Thus, for a Database (DB) asset a Developer could have actions such as read, while the DBA could have the former, in addition to create_role, create_user in the database user's access, or create, update and delete for the database records. The CloudAdmin on the other hand, interacts with the asset VM and its Operative System (OS), in case of an IaaS model. This interaction is done via the Command-line Interface (CLI) or an Application Programming Interface (API), which determines another set of possible actions.

As mentioned in previous Section 3.4.1, the cyber factor is based in these Role-Asset relations, where every Role has a predefined set of authorized actions. These actions are the base for deriving the Predefined, Random and Hybrid Sequences. By means of generating different profile agents with the same Role, a cyber factor Skill is proposed and defined as the average time in seconds an employee takes to execute a set of actions. This attribute may be considered as a particular technical characteristic of the employee, as it relates with professional competences that allow the execution of actions in a more or less efficient, cautious or creative way.

As the formerly presented Algorithm 1 for generating the simulation data, for every time step t a Sequence is obtained and an Event is scheduled. At the end of the simulation the result is a collection of Events E for each profile.

Accordingly, let E = [e 1 , e 2 , . . . , e n ] be the collection of n events where e n has the form of the tuple from Equation 3.1. Formally, for a single profile we initially have

E =    t 1 sequence 1 context 1 label 1 . . . . . . . . . t n sequence n context 1 label n   
The objective is now to group this Event matrix E into sessions S with respect to the Skill Algorithm 4 Methodology for grouping events into sessions 1: function Cyber_factor(profile, malicious_labels, normal_label)

2:

E ← profile.events, where e i = < t i , sequence i , context i , label i > 3:

D = { d i | d i = t i+1 -t i } 4: I = { i i | d i > skill_threshold } 5: StartEnd = { (s i , e i ) | (s i , e i ) = (i i , i i+1 ) ∈ I } 6:
for all (s, e) ∈ StartEnd do return S = {{ t j , session_seq j , context j , session_cnt j , duration j } | j ∈ StartEnd } 18: end function parameter. The criteria for grouping the different attributes of the matrix E into sessions are formalized in the Algorithm 4 and described in the following paragraphs. As a first step, the algorithm calculates the time differences between all the events and collects it in set D (line 3).

R 1 P 1 P 2 R 2 R 3 t 1 t 2 t 3 t 4 R 1 P 1 P 2 R 2 R 3 R 1 P 1 P 2 R 2 R 3 R 1 P 1 P 2 R 2 R 3 (i) (ii) (iii)
Secondly, from E it obtains the matrix indexes where duration exceeds the Skill time i.e., threshold, and collects them in the set Index I (line 4). In other words, consecutive events which time is lower than this threshold, will be considered as part of the same session S. Consequently, it builds a set with start and end pairs that define the session indexes of beginning and end within the matrix E.

Thirdly, it joins all sequences from events within the StartEnd set. Accordingly it derives the number of events for each session, the duration and obtains the final label and context for the session, by the following criteria.

In case the subset of events has more than one malicious label (line 10) it keeps the label with higher frequency or the first found (in case of equally distributed malicious labels). The same criterion is calculated by using the statistical mode to obtain a single context (line 15).

Accordingly, an example is given in Figure 3.7 for time duration between each events t 1 , t 2 , t 3 and t 4 and different Skill seconds. We can observe that for this example, an employee with low average time or high skills will lead to sessions with shorter sequences of actions, while a low-level skill will derive in longer sequences. This is an assumption under the basis that a low-skilled employee may take a longer time (e.g., type in, decide which operation to use and how) due to the lack of efficacy or experience in performing his role.

Anomaly behavior model

The threat scenarios used in this section concerned collected use cases from security groups [START_REF] Collins | Common sense guide to mitigating insider threats[END_REF] and previous malicious insider datasets adapted to simulate the interaction with cloud assets (e.g., [START_REF] Kholidy | CIDD: A Cloud Intrusion Detection Dataset for Cloud Computing and Masquerade Attacks[END_REF], [START_REF] Salem | Modeling user search behavior for masquerade detection[END_REF]). These examples are classified in content-based and event-based: where an employee goes rogue pursuing a sparse event concerning IP theft, sabotage or other. The second group of concern, studies the statistical information of the events, and analyses them following a graph dependency with respect to the assets in time.

The present work aims to tackle both of these groups of threats. Moreover, the anomaly behavior model describes the activities an employee performs with respect to the cloud assets. The profile for every employee under a specific role is performed by using the logged username or hostname. Therefore, anomalies performed by the attacker are considered by studying contentbased and contextual features with respect to their historic data and possibly with the rest of the employees with the same Role. We cover the following threat anomaly cases, listed in Table 3.1. Unusual hour of access This behavior consists of an activity performed by an employee different from normal working hours (e.g., between 7:00p.m. -8:00a.m.). The working hours parameter is derived from the profile configuration, specifically the Context attribute. This relies on the fact that some privileged users, such as systems administrators, typically connect remotely to various systems outside office hours in the normal course of their daily activities.

Verifying the intention selector module

This function corresponds to the M1: Intention in Figure 3.8 and it has relation with the employee's Psychological factor characteristics. The Figure 3.8 depicts inputs and outputs as

• Inputs -Disposition threshold constant disposition_thresh ∈ [0, 1] -Psychological factor function P t : R → [0, 1] • Output -Intention i t ∈ {0, 1}
where 1 is perform a malicious activity and 0 is not perform a malicious activity.

This function follows a time-dependent probabilistic approach where for each time step t of the simulation, the intention of the employee is obtained when performing an Event. This is done through Equation 3.10.

i t = 1 if p t > disposition_thresh 0 otherwise (3.11)
Consequently, let n be the number of instances obtained, where the matrix M1 n×3 of inputs and outputs consists in

   disposition_thresh 1 p 1 i 1 . . . . . . . . . disposition_thresh n p n i n   
Let the average count of x occurrences be defined as

C x = 1 n n j=1 [i = x] (3.12)
whereas the average count of malicious occurrences is C 1 . Therefore, the condition derived for this function is

Pre-/postcondition 1 : if disposition_thresh ∈ [0, 1] then C 1 ≤ disposition_thresh

Verifying the intention category selector module

This function corresponds to the M2: Intention Category Selector in Figure 3.8 and it has relation with the election of the anomaly types, presented in Table 3.1. This is done according to the constants w loc , w wh and w seq , which are defined in the simulation's initial configuration. The Figure 3.8 depicts the inputs and outputs at step t of the simulation as • Output -Label of the event l t ∈ {LOC, WH, SEQ} For C i with i ∈ {LOC, WH, SEQ} correspond to the average occurrences for events WH, LOC and SEQ, respectively. Therefore, the conditions derived for this function are Pre-/postcondition 2 : if w wh + w loc + w seq = 1 then C wh ≤ w wh Pre-/postcondition 3 : if w wh + w loc + w seq = 1 then C loc ≤ w loc Pre-/postcondition 4 : if w wh + w loc + w seq = 1 then C seq ≤ w seq

Verifying the sequence generator module

This function corresponds to the M3: Sequence Generator in Figure 3.8 and it has relation with the employee's Cyber factor attributes. As mentioned in Section 3.3, these characteristics are derived by generating the sequences of actions the employee is going to execute. This is done by considering the following inputs, designated in the initial configuration for the simulation: (i) the set of actions the employee is allowed to execute, according to the cloud Asset and the Role's policies; (ii) the predefined sequences of actions, related to the Profile; (iii) the percentage for the predefined sequences within the output matrix of sequences S n×1 ; (iv) the skill 1 (Cyber factor, detailed in Section 3.4.4) or level of sophistication to perform the actions to the particular Assets. The Figure 3.8 depicts inputs and outputs at step t of the simulation as

• Inputs -Alphabet of actions, defined as Σ -Predefined sequences subset, defined as P ⊂ Σ * -Predefined sequences presence percentage pct p ∈ [0, 100]

-Technical Skill skill ∈ R + -Event label l t ∈ {LOC, WH, SEQ, NORMAL} • Output
-Sequence of actions s t to be executed Therefore, for the presence of predefined sequences in final output matrix 2 , the conditions derived for this function are: Pre-/postcondition 5 : if pct p ∈ [0, 100] then 100 • C {p ∈ P} > pct p 1 Defined as the average time in seconds an employee takes to execute a set of actions. 2 Where Cp is the average count of sequences p, as described in Equation 3.12.

Verifying the event scheduler module

This function corresponds to the M4: Event Scheduler in Figure 3.8 and it has relation with the employee's contextual behavior characteristics. These characteristics are derived by the modification of time and location variables, in case the label of the event (Equation 3.1) is WH or LOC. For this matter, the location position is mapped from the contextual information (i.e., ip_source) and is defined as a categorical variable pos ∈ P OS, where P OS is a set of all possible countries' acronyms. In other words, it corresponds to the geographical origin from where the sequence of actions s t is executed (e.g., FR for France, RU for Russia). The Figure 3 

Validation criteria

Defining suitable criteria for dataset validation is a complex process, since there are no general methodologies in the literature [START_REF] Claycomb | Insider threats to cloud computing: directions for new research challenges[END_REF]. While the insider threat simulation is implemented, some points of the proposed approach need to be validated before using them on real use cases. To this end, three validation criteria have been defined. The first two (namely, items 1 and 2) add an a priori degree of realism to detect plausible attacks, as the result of consulting with the CSC use cases in industrial reports. The third (namely, item 3) relies on a posteriori verification and proves the applicability of the proposed approach given the nature of the data for prediction or detection techniques.

1. Similarity with respect to the average number of events per day: industrial case studies indicate a number of actions an employee should do on a monthly basis. In this case, for example an expert knows that a security administrator can initiate an action at any given time (e.g., 24x7 service availability) while a DBA Role should not initiate more than N Events per month, that consider a database back-up Sequence. The generated Events, should be statistically based on realistic behaviors for every Profile entity and each threat scenario. Such statistical data can be either provided by an "oracle" aware of the activities for each Role, or from traces of real case studies for later extrapolation.

2. Sequences' realism: the pseudo-random generated set of Sequences for each Event, should be validated to make sense in the context of the Permission-Asset tuple. In other words, independent actions to a given Asset, for example, "data elimination" or "tampering" from a database, might not have a pre-defined order. In the case of other tuples, such as actions to a VM Asset, it might be intuitive to generate Sequences with a given order (i.e., an action of shutting a VM down cannot be followed by any other operation that assumes the VM is operational). The latter means that the set of invariants from the second group includes the ordering of the actions performed, i.e., action "B" in a Sequence cannot be executed by a given Profile unless the action "A" has been processed.

Anomaly detection techniques benchmarking:

For an accurate prevention of this threat, proper anomaly detection benchmarking can be performed. For this matter, the dataset should contain "well distributed" labeled Events or its technique should recognize possible label imbalance (under the assumption that malicious Events are less frequent than normal ). This is relevant at the moment of experimenting with detection techniques such as supervised machine learning models, as they can try to fit anomalies with normal events.

Experimental results of the dataset generation

The simulation methodology was implemented using an ABM, where an agent has a psychological and cyber behavioral factors for every iteration step in the simulation. The benefit of an ABM strategy is that it provides a mean to represent complex adaptive behaviors by focusing on the attributes of the individual heterogeneous employees' entities (agents) and how they interact within a larger system. Additionally, it allows the possibility to simulate entities simultaneously interacting with the different CSC's Assets at the same time.

The implementation assumes that an organization is made of a certain number of heterogeneous employees. As mentioned in Section 3.4.1 and detailed in Algorithm 2, those employees have the potential to become a malicious insider based on a combination of emotional, rational and social factors affecting their disposition. We designed different scenarios where we derived three profiles varying: Equations 3.2 (Rescorla-Wagner), different weights for the Expectation Equation 3.3 and different reward_value, risk_tolerance parameters within the Equation 3.10. The presentation of these results is gathered in the following Section.

Experimental results

As we represent each profile's behavior following a role-based approach, we utilize as an example the role of a DBA, defined as a user in charge of administrative actions towards the database, such as installation, patching and upgrade of the database. This includes the ownership of all objects of the database and the ability to create and modify roles, users and data files. The aim of this set of experiments is to the benefit of observing different scenarios for posterior detection analysis. For that matter, the agent's characterization is then derived from the variables from two different groups. The first relies on the input variables for the disposition function (Table 3.2), and the second group (Table 3.3) is derived with respect to cloud-related, contextual and cyber parameters (e.g., number of agents in simulation, roles for each agent, set of actions).

The actions for these experiments were taken from the set A = {C, R, U, D}. Note that in the implementation in Chapter 5, these actions can be fictitious or real commands towards an implemented asset. As mentioned in Section 3.4.1, each Profile's Role has pseudo-random, predefined and hybrid group of generated Sequences followed by a normal behavior. The following illustrations represent the used examples of the events a DBA can perform and, therefore, define the DBA normal behavior:

• A DBA in a working day, logs into the DBMS and enrolls a new user with write permission over a database.

• A DBA regularly works remotely on Wednesdays, logging into the DBMS from location a, while the rest of the week from location b.

On the other hand, the following expressions can be represented as generated Sequences for an anomalous DBA behavior:

• LOC anomaly: A DBA logs in from a public IP that does not belong to the company and performs a Sequence of actions. In this case, the insider may connect to any machine via port 3389 (RDP), 23 (Telnet) or 22 (SSH).

• WH Anomaly: A DBA, logs in and performs numerous Sequences of actions on the database.

• SEQ Anomaly: A DBA, logs in and performs different Sequences of actions on the database than its normal behavior.

Three types of Profiles (DBA 1, DBA 2) with the same DBA Role have been outlined, differentiating them by a created Cyber factor named "skill level" as described in Table 3.3. This factor defines the time taken to perform a Sequence of actions with low, medium and high skills and prompts the Sequences' length. We also have modeled the three profiles with the Psychological factor derived from different parameters to be malicious in Table 3.2.

Such cases are depicted in Figure 3.5, where the profile generation is performed under the assumptions given by the industrial case studies [START_REF] Kowalski | Insider Threat Study: Illicit Cyber Activity in the Information Technology and Telecommunications Sector[END_REF]. Additionally, in our example the generation of Events is treated by the "No. Monthly events" which we have settled at 10 Events per day. Along with the implementation previously described in this section, a scalability benchmark was performed and exposed in Tables 3.4 and 3.5. Table 3.4 depicts different the simulation for different time duration (in months) with a fixed number of employees (agents). This variable is compared with the time the simulation takes to finish (calculation time) and the amount of information in MBytes for the generated output. 

Discussion

Cloud computing security is ripe with new opportunities for future research, including cloudrelated insider threats. As mentioned previously, we do not believe the nature of the insider will change due to CC's impact, but the opportunities for attacks will broaden. The validation of human behavior and social interactions poses a challenge because of the random nature of the system being simulated and the difficulty of gathering empirical evidence due to this variability [START_REF] Sokolowski | An agent-based approach to modeling insider threat[END_REF]. From a theoretical validity point of view, the agent-based modelbased approach is grounded in renowned relevant theories. From an empirical point of view, we utilized statistical and structural information from industrial case studies, gathered primarily by the CERT [START_REF] Kowalski | Insider Threat Study: Illicit Cyber Activity in the Information Technology and Telecommunications Sector[END_REF].

Also, foundational work in risk management suggests that if an individual has motive, capability, and opportunity, then they are likely to conduct an attack. However, a crucial question here is, what constitutes as "enough" motive, or "enough" capability? Likewise, somebody may well exhibit all these, and yet still choose not to attack. Much previous literature also discusses the concept that if an individual is disgruntled then they may choose to act out.

Conclusion

In this chapter, we have addressed some important research topics regarding insider threat resulting in an enriched user model for further simulation and dataset generation. Accordingly, we outline the design of the aimed synthetic data, while discussing cloud-based indicators, and psychological-technical human factors, finally proposing a socio-technical approach to insider threats.

Additionally, in Sections 3.4 and 3.6, the model for deriving insider threat scenarios was introduced, along with the simulator's pre-/post conditions description.

This checking process was designed to test whether or not the agent-based model was capable of reproducing the conditions of the preliminary conceptual model. The methods for checking the simulation's pre-/post conditions included iterative programmatic testing ("debugging") and exploratory analysis of the simulated data obtained from execution of the model. The simulation analysis included a parameter sweep, in which the model input variables were adjusted systematically followed by an individual time series experiment.

Additionally, we studied the performance of the ABM implementation, detailed in Table 3.4 and Table 3.5. The first related to the calculation time taken to provide the dataset scenario, as we varied the simulation duration in a range of [START_REF] Baig | Controlled Virtual Resource Access to Mitigate Economic Denial of Sustainability (EDoS) Attacks against Cloud Infrastructures[END_REF][START_REF] Carvallo | Multi-cloud applications security monitoring[END_REF] months while setting the number of users to three. The second correlates the same variables when the number of users is increased and the simulation time is fixed at 5 months.

The proposed model provides a promising exploration characterization of the insider threat, from an ABM model paradigm. The results exposed allow the use of this software to derive different characterizations, not only considering distinct psychological attributes but also benefiting itself from different cyber behaviors.

As a conclusion, we can say that the results obtained will be very useful for intrusion detection techniques and, in particular, for these working on malicious insider threats.

Results with regards of simulation and calculation time, aside with the dataset sizes, reveals the outcome behaves scalable enough, where simulated data equivalent to a year takes only 11 minutes of simulation time.

Introduction

In this Chapter, an overview of the proposed framework is first given, and each component is described in greater detail. Moreover, the primary objective is to describe the most relevant aspects to consider at the moment of distinguishing anomalies with a clustering technique for established insider threat scenarios. These scenarios are studied as a result of the implementation of an insider threat model, described in Chapter 3. This model is composed of a combination of probabilities to be malicious, and different actions towards cloud assets. This detection scenario is complicated, where defining possible precursors for an insider threat in terms of observable traces of the employees' actions, and integrating these contributions in an analytic model is a significant challenge.

There are numerous alternative ways of doing this, and therefore it cannot be in the scope of this thesis to evaluate them all. By considering this matter, we have defined some specific objectives based on the intent to solve use-case scenarios.

As discussed throughout this work, we denote the realistic assumptions under which our solution is made.

• First, by definition, an insider has legitimate access to the organization's resources. As such, it is difficult to define the necessary criteria to discern legitimate activity from that which is non-legitimate. Regardless of how effective anomaly detection is, "anomalous behavior can never equate exclusively to misuse or lack of legitimacy".

• Second, regarding these insider's activities, as many others have stated [START_REF] Lee | Self-adaptive and dynamic clustering for online anomaly detection[END_REF], [START_REF] Leung | Unsupervised anomaly detection in network intrusion detection using clusters[END_REF], [START_REF] Portnoy | Intrusion detection with unlabeled data using clustering[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF], we consider that normal data constitute an overwhelmingly large portion1 of the collected data in a reasonable mid-term time window, while anomalies either belong to small or sparse clusters.

• Third, compared to the traditional approaches of post-attack analysis and subsequent change of policy, predicting threats from data offers the benefit of continuous and an online evaluation [START_REF] Böse | Detecting insider threats using radish: a system for real-time anomaly detection in heterogeneous data streams[END_REF], [START_REF] Gavai | Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data[END_REF]. Therefore, CSCs need reacting in a timely manner to these threats, as insiders could comprise the availability, confidentiality or integrity of their assets.

Assumptions listed above allow obtaining the following main contributions of this Chapter, namely: 1. A detection technique and corresponding experimental results; 2. A monitoring solution for IaaS-based services regarding the detection of malicious insiders; 3. A list of attributes that should be considered for malicious activities in cloud applications under an IaaS model.

The structure of the chapter begins with the preliminaries (Section 4.2 and the main concepts related to anomalies, the data representation and the algorithms that served as inspiration for the anomaly detection framework design. Later, the main solution is presented (Section 4.3), concerning the data analysis of the different attributes, and the main contribution of the present work. Discussion (Section 4.4) gives detailed insights on the results found while the last part of the chapter (Section 4.5) ends with the conclusions.

Preliminaries

Anomalies

Many names are used as synonyms for anomalies in the literature, including outliers, abnormalities, discordants or discords [START_REF] Aggarwal | Outlier Analysis[END_REF]. Chandola et al. [START_REF] Chandola | Anomaly detection: a survey[END_REF] defined an anomaly as Patterns in data that do not conform to a well-defined notion of normal behavior.

Chandola et al. make the distinction between noise and anomaly, with the latter being outliers of interest to the subject analyzing the data whereas the former is not. The only effect noise has, is to hinder the data analysis task.

Given that the present work focuses on the automated detection of anomalies, rather than on their interpretation by analysts, such distinction is not considered relevant; therefore, "anomaly", "noise" and "outlier" are understood here as synonyms, unless explicitly stated otherwise.

Anomalies can be categorized as follows [START_REF] Chandola | Anomaly detection: a survey[END_REF].

• Point anomalies: data instances that are considered anomalous with respect to the rest of the data. They are the simplest form of anomaly and the focus of most research on anomaly detection.

• Contextual anomalies: data instances that are only considered anomalous in a specific context. This context must be induced from the data, and thus it requires each instance to be defined using both:

-Contextual attributes, which are used to determine the context of that instance; e.g., temporal, geographical characteristics, for a character sequence.

-Behavioral attributes, which determine the non-contextual properties of the instance, e.g., the employee's activity towards a cloud asset.

Data collection and representation

Data collection

As mentioned in Chapter 2, by means of detecting anomalies in a targeted environment, a detection system may collect data from different points of observations (e.g., hypervisor-based, network-based or host-based).

The proposed data collection is enriched by comparing two different points of data capture: a profile-based view from the local network of the company, and a cloud-end view that analyses data from the services with whom the clients interact. The latter is considered from an end-user or CSC perspective, i.e., we assume we do not have a sensor in a CSP proprietary observation point, but instead we do where the CSC has access.

When the activity of a particular type described above is unusual in a way or to a degree known to correlate with malicious insider actions, we can treat these features as relevant indicators.

Representation of user sequences of actions

There are two major challenges in sequence classification. First, most of the classifiers, such as decision trees and ANNs, can only take input data as vectors of features. Second, even with various feature selection methods, we can transform a sequence into a set of features, the feature selection is not a trivial task. The reason is because the dimensionality of the feature space for the sequence data can be very high, and the computation can be costly [START_REF] Xing | A brief survey on sequence classification[END_REF].

At the moment of working only with system call sequences, the various implementations differ in how data are represented. In general, these representations can be grouped into two categories based on their feature extraction methods: (i) Frequency-based methods (ii) Sequence-based methods.

Frequency-based methods rely on the number of occurrences of each system call. For example, using a "bag of words" representation (which is commonly used in text classification), a system call anomaly detection can be mapped into this representation.

Thus, previous works [START_REF] Abed | Applying bag of system calls for anomalous behavior detection of applications in linux containers[END_REF], [5], [START_REF] Eldardiry | Multi-domain information fusion for insider threat detection[END_REF], [START_REF] Gavai | Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data[END_REF], [START_REF] Kang | Learning classifiers for misuse and anomaly detection using a bag of system calls representation[END_REF], [START_REF] Parveen | Insider threat detection using stream mining and graph mining[END_REF], [START_REF] Senator | Detecting insider threats in a real corporate database of computer usage activity[END_REF], [START_REF] Tuor | Deep learning for unsupervised insider threat detection in structured cybersecurity data streams[END_REF], [START_REF] Xie | Evaluating host-based anomaly detection systems: a preliminary analysis of adfa-ld[END_REF], [START_REF] Yen | Beehive: large-scale log analysis for detecting suspicious activity in enterprise networks[END_REF] related to frequency-based approach mostly utilize the "bag of words" representation or considering the number of occurrences in a arbitrary time window, since it is a manner of transforming the sequences into a propitious vector input for machine learning algorithms.

For example, Gavai et al. [START_REF] Gavai | Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data[END_REF] utilized features related to email (e.g., number of emails sent in a day) and web usage (e.g., average time spent on websites), log-in and log-out (e.g., number of log-ins) to detect anomalous activities. Instead of only counting the number of occurrences, some approaches improve detection by applying a ranking, based on the relative order of frequency values [START_REF] Varghese | Process profiling using frequencies of system calls[END_REF]. Also, following the frequency-based approach, Parveen et al. [START_REF] Parveen | Insider threat detection using stream mining and graph mining[END_REF] utilized a compression-based frequent pattern discovery in order to propose a graph-based anomaly detection. Song et al. [START_REF] Song | System level user behavior biometrics using fisher features and gaussian mixture models[END_REF] used the system level data with a Windows sensor, to further detect user behavior bio-metrics with a Gaussian Mixture Model (GMM). For this, they transformed their data into vectors of the number of occurrences (e.g., number of unique processes, number of user touches, number of files touched). Senator et al. [START_REF] Senator | Detecting insider threats in a real corporate database of computer usage activity[END_REF] also followed a graph-based anomaly detection scheme, by treating proxy, email and LDAP logs as the number of occurrences, and the percentage of the logs dedicated to emails, attachments on sent emails, among others.

Sequence-based methods use the order of the sequences as information. They can be divided into three large categories [START_REF] Xing | A brief survey on sequence classification[END_REF].

1. The first category is feature-based classification, which transforms a sequence into a feature vector and then applying conventional classification methods. Feature selection plays an important role in this kind of methods.

2. The second category is sequence distance-based classification. The distance function which measures the similarity between sequences determines the quality of the classification significantly.

3. The third category is model-based classification, such as using HMM and other statistical models to classify the sequences (e.g., [START_REF] Rashid | A new take on detecting insider threats: exploring the use of hidden markov models[END_REF]).

Network-based representation

Network core equipment such as routers, switches, firewalls, all have the ability to collect the network traffic passing through which, traditionally, are considered essential data sources for detecting intrusions. Moreover, some works have identified such network logs' great potential for addressing insider threats (e.g., [START_REF] Liu | Detecting and preventing cyber insider threats: a survey[END_REF]).

The proposed work has focused on retrieving the most relevant attributes from a Deep Packet Inspection (DPI) tool, in order to reconstruct the network behaviors and interaction patterns, through the parsing of the packet headers, and obtaining relevant statistics through the algorithm's analysis.

The proposed set of attributes is the result of a monitoring implementation (Chapter 5).

IaaS-based representation

As mentioned, the proposed work has focused on IaaS assets, such as virtual machines and images and network properties within the cloud implementation, correspondent to a CSC. In order to correctly detect anomalies towards the cloud, and in consideration of the usually restrictive access CSPs grant to CSCs, it is desirable to characterize the behavior of the usage of these assets, through monitoring and collection of propitious information related to them. Hence, the proposed set of attributes, whose implementation and calculation is specified in Chapter 5, along with their analysis in this Chapter, advises a sufficient group of features, capable of adequately representing the characterization of the normal usage of them, along with showing when anomalous activities take place.

Clustering methods

We remind from Chapter 2 that the purpose of the clustering techniques is to divide a dataset into distinct groups, or clusters. Opposite to categorization, which aims to sort the data points into predefined groups, clustering aims to find unknown structures in the dataset and do knowledge discovery. Since clustering deals with unlabeled data, these techniques are unsupervised.

This approach properly treats the proposed challenges and is chosen in the present work by means of detecting anomalies for the insider threat.

Growing Neural Gas (GNG) From its first presentation by Fritzke [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF], this algorithm has been extended for different purposes in the past years. Generic contributions (e.g., [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF]) have been done in the data mining field by means of experimentation with different machine learning datasets (e.g., UCI datasets [START_REF]Uc irvine machine learning repository[END_REF]), and also it has been proposed as a solution in specific applications domains. This algorithm has proven to be an efficient solution in several application fields such as image recognition (e.g., MRI [6], Robotic 3D motion images [START_REF] Viejo | Using gng to improve 3d feature extraction-application to 6dof egomotion[END_REF]) and anomaly detection (e.g., [START_REF] Bouguelia | An adaptive algorithm for anomaly and novelty detection in evolving data streams[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF]).

In more detail, GNG is an incremental self-organizing approach which belongs to the family of topological maps such as SOM [START_REF]Self-Organizing Maps, 3rd[END_REF] or NG [START_REF] Martinetz | A "neural gas" network learns topologies[END_REF]. It is an unsupervised clustering algorithm capable of representing a high dimensional input space in a low dimensional feature map and discover topological relationships of the data.

This technique presents many advantages to other unsupervised clustering techniques. With respect to its predecessors, SOM and NG, it does not need to fix the graph size in advance. Additionally, it allows the continuous learning and growth of the network automatically. This Neurons can also be removed if they are identified as being superfluous (Deletion). Finally, the original algorithm finishes learning (Stopping) when the stopping criterion is achieved.

The presented processes are described in detail, denoting how our approach has adapted and extended them for anomaly detection purposes for the insider threat.

Learning The original GNG of Algorithm 5 learns through fixed parameters α 1 and α 2 for bmu 1 and bmu 2 , respectively, as shown in Equation 4.1. This is a disadvantage that makes the network less adaptive to the incoming data. In other words, every time a neuron "wins", it will update its prototype (w i in Equation 4.1) by a fraction of the absorbed input.

By means of utilizing similar approaches as in [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], in the proposed algorithm the learning rates are dependent of the number of times the neuron has won. This corresponds to the following definitions

w u = w u + α 1 * (x -w u ) w i = w i + α 2 * (x -w i ), ∀i ∈ N u (4.1)
As said, the learning rate determines the extent to which the winner and the neighbors of the winner are adapted towards the input signal.

In this work, we adopt an adaptive learning rate over time presented by [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF] as

α 1 = 1 H bmu 1 (t) α 2 = 1 100 H bmu 1 (t) (4.2)
In this case, time parameter H bmu 1 (t) represents the number of input signals for which this particular neuron has been a winner thus far, at time step t. The scheme considered follows the K-means approach, in the sense that every neuron is always the exact arithmetic mean of the input signals it has been a winner for [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF]. This scheme is adopted because it makes the position w n of the neuron n more stable by decreasing the learning rate when it becomes a winner for increasing input patterns.

To consider a broader set of learning rate approaches for the best suit of the insider threat scenario, an additional adaptive approach has been included in the analysis. This adaptive learning model proposed in [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] considers the Equation 4.2 presented by [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF] and extended it as

α 1 = 1 H bmu 1 (t) • e x i -w 1 T 1 α 2 = 1 100 • H bmu 1 (t) • e x i -wn T 1 , ∀n ∈ N u (4.3) 
where T i is a similarity threshold, also presented in [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF]. For classification purposes, the proposed model in [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] adds an exponential decay function to the existent in Equation 4.2.

Algorithm 5 Original GNG [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF] Input: DS and model params M = (λ, β, α 1 , α 2 ) Output: Neurons N = {u 1 , . . . , u n } and prototypes W = {w 1 , . . . , w n } Modify the age of all edges emanating from bmu 1

6:

Add the distance between x and bmu 1 to error variable: error(bmu) ← error(bmu) + xw bmu 1 2

7:

Move bmu 1 and its direct neighbors:

w bmu 1 ← w bmu 1 + α 1 • x -w bmu 1 2 w i ← w i + α 2 • (x -w i ), ∀i ∈ N u 8:
if i-th x data is an integer multiple of λ then 9:

InsertNeuron (Algorithm 6)

10:

end if

11:

Delete each isolated neuron

12:

Decrease the error of all neurons: E ← Eβ • E 13: end for Insertion As seen in Algorithm 5, a new neuron is inserted every λ steps. Authors of [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] added a similarity threshold parameter T i that compares the BMU's distance with all its neighbors, and determines whether a neuron should be inserted following the original procedure of Algorithm 6.

Algorithm 6

Original GNG [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF] Neuron Insertion Input: Graph G Output: Updated Graph G 1: Find neuron q with the maximum accumulated error, error(q) 2: Find the neighbor f of q with the largest accumulated error 3: Add a new neuron r, half-way between neurons f and q: w r = 0.5 • (w f + w f ) 4: Insert edges connecting the new neuron r with neurons q and f 5: Remove the original edge between neurons q and f The similarity threshold can be calculated in two ways. If the neuron has direct topological neighbors, the threshold is updated like so in Equation 4.4, by using the maximum distance between bmu 1 and its neighbors.

T i = argmax n∈N i w i -w n (4.4)
If the neuron n has no neighbors, T n is updated as the minimum distance of neuron n and all other neurons in the graph G, like so in Equation 4.5:

T n = argmin n∈N i \{i} w i -w n (4.5)

Community detection

When we have a set of feature vectors learned by a clustering algorithm such as the mentioned GNG, we obtain a graph G, as seen in Figure 4.2, in which each neuron represents a cluster of inputs, and edges represent the distance (e.g., Euclidean) between these clusters. Now we would like to know the general structure of this graph, i.e., Ĝ = argmax p (G|D) where D is our input vector distribution. Community detection has been studied as the graph partitioning in computer science for decades and remains quite challenging. Algorithms to detect reasonably good quality communities have been proposed and improved extensively, especially in recent years, such as Girvan Newman algorithm, spectral clustering, random walk, modularity optimization and statistical inference [START_REF] Han | Community detection by label propagation with compression offlow[END_REF]. This graphical model is used to interpret the clustering structure, based on the topology to make anomaly predictions.

Evaluation metrics

Intuitively, the goal of clustering is to assign input vectors that are similar to the same cluster, and to ensure that vectors that are dissimilar are in different clusters. Hence, by performing an unsupervised organization of the data, there exists an underlying ground-true set of clusters, and the set of clusters found by our algorithm.

Where,

S v = b v -a v max(a v , b v ) (4.7)
In this case, a v is the average distance between vertex v and all the other vertices in the same cluster as it is, and b v is the average distance between v and all the vertices in the nearest cluster that are not v's. The silhouette index for a given cluster is the average value of silhouette for all its member vertices. The silhouette index can assume values between -1 and 1, with a negative value being undesirable, as it means that the average internal distance of the cluster is greater than the external one.

Modularity This metric has been proposed through many definitions in the literature (e.g., [START_REF] Newman | Modularity and community structure in networks[END_REF]). One of the most utilized is the Louvain method [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF] which is a validation metric for topological clustering. Modularity states that a good cluster should have a bigger than expected number of internal edges and a smaller than expected number of inter-cluster edges when compared to a random graph with similar characteristics.

In particular, the Louvain method of community detection is an algorithm for detecting communities in networks that relies upon a heuristic for maximizing the modularity. The method consists of repeated application of two steps. The first step is a "greedy" assignment of neurons to communities, favoring local optimization of the modularity. The second step is the definition of a new coarse-grained network in terms of the communities found in the first step. These two steps are repeated until no further modularity-increasing reassignments of communities are possible.

The Louvain method achieves modularities comparable to pre-existing algorithms, typically in less time, so it enables the study of much larger networks. It also generally reveals a hierarchy of communities at different scales, and this hierarchical perspective can be useful for understanding the global functioning of a graph.

External criteria

The proposed algorithm for the insider threat detection is to be evaluated using three performance measures.

Confusion Matrix

The confusion matrix [START_REF] Stehman | Selecting and interpreting measures of thematic classification accuracy[END_REF] is commonly used to determine how well a classification model performs. It provides the information about the actual normal and abnormal number of instances, and the number of normal and abnormal instances in the analyzed results. Table 4.2 shows the confusion matrix for a two-class classifier. "True (T)" indicates that the prediction is correct, and "False (F)" is incorrect. "Positive (P)" is used to indicate an abnormal class and "Negative (N)" a normal class.

Consequently, there are four kinds of data in the confusion matrix to show the correct and incorrect predictions of the two classes: 1) True Positive (TP), 2) False Positive (FP), 3) True Negative (TN) and 4) False Negative (FN). For example, TP indicates the number of abnormal instances that are predicted correctly.

Rate Measures

The basic evaluation measures are derived from the information that the confusion matrix provides. The definitions and the formulations of these evaluation measures are explained below. The Precision is the percentage of the correctly predicted anomalies (TP), computed over all predicted anomalies.

P recision =

T P T P + F P (4.8)

The Recall is the percentage of the correctly predicted anomalies (TP) over all the actual anomalies. Recall is also known as the true positive rate or sensitivity.

Recall =

T P T P + F N (4.9)

The False Positive Rate (FPR) is the percentage of the normal cases that are incorrectly predicted as anomalies (FP) over all the actual normal cases.

F P R = F P T N + F P (4.10) 
The False Negative Rate (FNR) is the percentage of the anomalies that are incorrectly predicted as normal cases (FN) over all the actual anomalies.

F N R = F N F N + T P (4.11)
The F1-score is the harmonic average of the precision and recall.

F 1 -score = 2 • precision • recall precision + recal (4.12)
The above-mentioned preliminaries serve as a base for the proposed solution for the insider threat detection, presented in the following sections.

Proposed solution

Our approach is based on the design and monitoring of novel features from enterprise data that are reflective of insider threat behavior, and subsequent analysis of these data to identify inconsistent, statistically rare behavior that can be indicative of insider threat activity.

In Section 4.1, we presented the problem statement, denoted our assumptions and discussed the challenges to be faced. As a result of this analysis, this section details the proposed solution, with the following characteristics. 3. Detection of all relevant features that serve as input for the OSAD module. This module relies on the clustering of the sequences and contextual information into groups, using the Euclidean metric as the distance measure.

4. Analysis of the employee-based clusters, where we identify a certain percentage of the outliers as the anomalous events.

5. Derivation of an anomaly score and perform an identification of where and why the event deviates from normal behavior.

In order to better feed our detection algorithm, an analysis of the extracted features is considered. This is part of the data processing phase from Figure 4.3 and it involves two steps (the following Section 4.3.1 and Section 4.3.2), for both, network and cloud collected data. The first step relies on visualizing relation between features, and also describing the variability and importance of these features information-wise. The second step concerns the feature scaling in order to better feed our algorithm.

Feature analysis

As a result, the monitored data are presented in the Table 4.32 and Table 4. 4.

With respect to the relation between features, since our features dimensionality is not extremely high, we observe their correlation and variability. For that, the relationship between all features are depicted in Figure 4.4.

We monitored a total of 19 IaaS-based features related to the CSC's network, server instances and the images (e.g., Counts for server's resize, paused, hard reboot). Table 4.3 shows only the non-zero final features.

IaaS-based feature set descriptive statistics can be found in Table 4.3 and the correspondent pair plot in Figure A.1 in Annex A. From these two, we observe that only Server Total Mean, Server Active Mean, Server Other Mean and Server Reboot Mean are non redundant, in contrary of the rest (visible in Table 5.4), which always provide the same information. This is rather obvious given the fact that our simulated actions, in the scope of this thesis, did not consider any of the other monitored statuses towards the OpenStack implementation.

Nevertheless, given the fact our framework proposes the incremental addition of future actions, we implemented the whole possibility of the monitoring feature set. For example, if there is a new action that corresponds to suspend a VM or re-size a VM's RAM parameters, the features of Server Suspended Mean and Server Resize Mean would become relevant, respectively. Image Total Mean 3.028E+00 1.746E-01 3.000E+00 3.000E+00 3.000E+00 3.000E+00 4.500E+00 Image Total 25q 3.025E+00 1.613E-01 3.000E+00 3.000E+00 3.000E+00 3.000E+00 4.250E+00 Server Shutoff Mean 1.622E-02 1.107E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 Server Reboot Mean 4.481E-01 3.853E-01 0.000E+00 1.250E-01 3.333E-01 1.000E+00 1.000E+00 Server Total Mean 1.145E+00 3.747E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.000E+00 Server Active Mean 6.760E-01 3.888E-01 0.000E+00 5.000E-01 8.000E-01 1.000E+00 1.000E+00 Server Delete Mean 4.879E-03 6.759E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 Server Password Mean 1.884E-02 1.360E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 Server Stop Mean 1.636E-02 1.180E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 Server Snapshot Mean 2.041E-02 1.414E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 Memory Mb Usage Var 5.121E-05 1.899E-03 0.000E+00 0.000E+00 0.000E+00 1.146E+00 3.730E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.000E+00 Server Total 25q

1.143E+00 3.772E-01 0.000E+00 1.000E+00 1.000E+00 1.000E+00 2.000E+00 Security Rules Mod 2.408E-02 1.533E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.000E+00 Server Severity 1.456E+00 1.829E+00 0.000E+00 5.000E-01 1.000E+00 2.000E+00 1.800E+01 Image Severity 9.138E-02 5.156E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3.000E+00 Network Severity 1.685E-01 1.073E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 7.000E+00 Other important fact while analyzing these features, is that we may be missing their correct values by the monitoring sampling time. This is the case, for example, of Image Delete Mean, where even though it is documented as a possible state, it is very immediate, therefore can be only captured in logs. To overcome this issue for this feature and others, we have used aggregated features that measure the variability of the total amount of servers and images, making this information accessible for the detection engine (more details regarding its calculation can be found in the next chapter).

Network-based feature set descriptive statistics can be found in Table 4.4 and their correlation plot in Figure A.2 in Annex A. From these two, we observe that some of the features show a relatively linear relation (e.g., Total Packets and Total Bytes) while for others it is more evident (e.g, Total Packets and HyperText Transfer Protocol (HTTP)'s content length; Download Payload Bytes and Total Bytes). To complement this information, Figure 4.4 depicts the correlation between all collected features. The reader can see that there are positive and negative correlations between some features.

Within the positive correlations we have the tuple Download (DL) Data Vol and Total Bytes. Thus, most of the times the user's activities rely on a download procedure, rather than an upload (hence the lower correlation with Upload (UL) Data Vol). This is fairly evident since the content length for a POST HTTP query is set to 0 while waiting for a HTTP response [START_REF] Fielding | Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing[END_REF].

Also, for the relation between Total Bytes and Session Time, we observe there are two behaviors in the traffic: we see that there are high values of session time (in seconds) when Total Bytes has both low and high values. The reason may be due to the fact that employees may perform small sets of activities dealing with heavy loads (e.g., downloading a file), while also executing large sets of non-byte-demanding actions (e.g., editing the details of a VM) within a session. These two possible practices, of course, weaken the correlation (observable in Figure 4.4) making it a hard task to analyze them in an unsupervised manner.

Consequently, after this analysis, these two features are kept as relevant information at the moment of detecting the examples mentioned above. 2.724E+00 1.907E+00 0.000E+00 0.000E+00 4.000E+00 4.000E+00 8.000E+00 HTTP 204 8.458E-02 5.755E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.000E+00 HTTP 401 9.882E-02 6.209E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 4.000E+00

Table 4.4 -Network-based features descriptive statistics for dataset

On the other hand, UL Data Vol is somewhat correlated with the Session Time. We infer that this may be due to sessions that correspond to long list of actions, that are not bytesdemanding and/or that may take more time (e.g., an employee performing a list of activities in the search of a file).

In conclusion, by means of no over-fitting the further clustering steps, we choose to reduce our feature set by eliminating Total Pkts, since the same information can be deducted in Total Bytes.

User-based feature set can be viewed in Figure 4.4. As previously mentioned, differently from the data processing task based on network and IaaS-based feature vectors, the users' actions are represented by letters in the form of a list. However, this list does not have explicit features. For this purpose, from both training and testing datasets, we obtain the list of actions for each of the employee's simulated sessions. For every action (defined by letter) there is a correspondent letter in the following alphabet: ["D", "L", "P", "S", "R", "T", "Z", "X"], as described in the previous Chapter 3; the implementation is explained in Chapter 5.

Experimental work has been carried out to determine the most suitable representation for a discrete sequence of actions. These results have been organized concerning the treatment of the strings in numerical in Table A.1 in Annex A.

From the corresponding experimental results detailed in Table A.1 in Annex A, we decided to use the alphabet representation of the employee's actions. By use of the sequence treatment presented in the preliminaries, we observed the relationship of these actions in relation with network and IaaS-based feature sets. This relationship is presented in Figure 4.4, where several inferences of the monitored data can be made.

The representation of the employee's actions is based in an n-gram, transforming strings into numerical vectors. As an example, for n-grams of length n = 4 , if the list of actions is ["L", "L", "R", "L"], and "L" and "R" are the two existing actions in the alphabet, the resultant n-gram for that example will be the vector [START_REF] Aggarwal | A framework for clustering evolving data streams[END_REF][START_REF] Abed | Applying bag of system calls for anomalous behavior detection of applications in linux containers[END_REF] if the order of representation for the alphabet is "L", "R".

Thus, for every action present in a sequence, the correlation plot in Figure 4.4 will show the relationship with the rest of the attributes. In other words, it represents the relationship with the rest of the features, whenever present.

At the same time, we cannot say much about the time-related features (e.g., Response Time, Session Time, Interaction Time) because these may not categorize the presence of these actions for different length sequences of actions.

Nevertheless, we can still infer that the action is "L" (i.e., action that is equivalent to listing the VM's details), for instance, when present, the feature Total Bytes and UL Data Volume are negatively correlated with it, while the response time is positively correlated. This characteristic indicates that this action is non-byte demanding, but it is embedded in long sessions or sequences of actions.

Additionally, we may see that the "D" (i.e., download image) action is in fact clearly correlated with the feature DL Data Vol and resembles also some relationship with the Transaction Count.

Also, we see that for the "T" (i.e., terminate instance) there is a weak correlation with our aggregated feature Server Severity.

Lastly, we observe that the latter is also weakly correlated with the "S" (i.e., stop instance) action, which both consist of security threats regarding service availability.

In conclusion, all these complex relationships motivate the use of Server Severity, Image Severity and Network Severity as contextual features, in order to help decrease the number of false rate positives in our detection algorithm.

Dynamic feature transformation process

The features selected in the precedent section rely on both numeric and symbolic or categorical values.

On the one hand, for the numeric features we proceed with a data standardization, which re-scales the input vectors to have a mean of 0 and standard deviation of 1 (unit variance). This relies on the fact that we have unbounded attributes (e.g., Session Time), where anomalous values could be possibly high. In this case, standardization (over normalization) is more useful, getting reasonable transformed values for normal values (otherwise the normal values will be "squished" by the outliers extreme values; for example, for values [0, 1, 2, 1E100], the normalization would result in [0.0, 0.0, 0.0, 1.0]).

Another reason to perform this feature scaling phase is that our dataset (composed by m collected samples by the selected n features) has features with different scales. For example, while Server Active Mean belongs to the interval [0, 1] we have Total Bytes which can go from low values to as high as the HTTP communication is intended to be (e.g., a 1GB download). For that concern, most of machine learning algorithms are not scale-invariant (e.g., for ANN these different scales may affect the weight of the neurons passing through).

Hence, for a set of m vectors DS = {x 1 , . . . , x m }, where each vector x i is x i = (x 1 i , . . . , x n i ) given by n features, µ n and σ n are the mean and standard deviation for the feature n. The standardization value is given by the Equation 4.13.

z i = x n i -µ n σ n (4.13)
One can see that subtracting the mean will only shift the feature distribution left (or right, if the mean is negative). Dividing by the standard deviation will only stretch the histogram horizontally and vertically. Neither operation will change the shape of the distribution.

In our proposed solution, we consider a clustering approach, by means of calculating the Euclidean distance between arriving data vectors. In this case, the values of the feature dimensions On the other hand, the categorical features are treated just as it is, in virtue of tagging each feature vector with known contextual information in the detection process.

Aside from these categorical features, by means of comparing our solution with different subset of features, we made use of the different employee's simulated actions, also collected from the same monitoring process, following the mentioned technique in Section 4.2.

As our solution adopts an offline and online phase, we note the importance of the offline training dataset size, since it will allow to fit the standardization scales for each feature more robustly. For the online phase, since our case involves an online data-stream, a continuous standardization of the data is required. This means whenever a new feature vector arrives, it will be treated accordingly by this module and then applied to the main algorithm.

Online Streaming Anomaly Detection Algorithm (OSAD)

In this section, we introduce the OSAD and describe some of its novel contributions within the detection of the insider threat. The structure of the following work concerns:

• The internal details of the proposed algorithm through novel contributions with respect to the original algorithm detailed in Section 4.2, in the application for the insider threat in Section 4. First of all, the algorithm implements a data-stream approach, where the data are treated onthe-fly by the algorithm. As mentioned in the previous section, this stream is defined as a list of vectors DS, namely x 1 , . . . , x m , data streams arriving at time t 1 , . . . , t m , where

x i = (x 1 i , . . . , x n i ) is a vector in ℜ n space.
At every time-step t the model is represented by a graph G where each neuron represents a cluster, following the GNG baseline described in Section 4.2.3.

Our detection procedure functions in two phases: offline and online learning. At the first phase, the objective is to make the ANN learn the intrinsic relationships between a large dataset. This is based on the assumption that by capturing user activities in a medium-term, we are able to analyze the normal usage and overall behavior for each employee.

At the second phase, the objective is to detect and predict anomalies near real time. The proposed algorithm extends GNG and analyses new data for deciding if every incoming input belongs to an anomaly or to a normal behavior for the user. Both phases are explained in detail in the following sections.

OSAD and other models' comparison

The Algorithm 5 in Section 4.2 explained how the original GNG can be resumed in 4 dominant procedures: (i) Learning, (ii) Insertion, (iii) Deletion, and (iv) Stopping. The OSAD algorithm proposes to go beyond the original methodology proposed in [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF], [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] by adapting these functionalities to an evolving network to properly detect insider threat anomalies.

Learning As said in Section 4.2.3, the learning rate determines the extent to which the winner and the neighbors of the winner are adapted towards the input signal.

The original GNG in Algorithm 5 learns through fixed parameters α 1 and α 2 for bmu 1 and its neighbors, respectively, as shown in Equation 4.1. This is a disadvantage that makes the network very sensitive to new incoming data. In other words, every time a neuron "wins", it will update its prototype by a factor of the absorbed input.

Consequently, since this learning is done always by the same factor and independently of the network evolving characteristics, it outcomes that every neuron will be much more susceptible to the input pattern they lastly won, making this solution more prone to errors in the case the neuron wins an input with a high distance from its prototype.

Additionally, the two detailed adaptive propositions of [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] make use of the number of times the neuron has won, by means of decreasing its learning once it has absorbed many inputs. This means the more it wins, the less it needs to keep "learning". This can also be seen in Figure 4.5, which depicts the evolution of the learning rate parameter for the most winning distance. Every fluctuation indicates the neuron won among the others, however the absorbed input was rather different than its prototype. This could also be read as the absorbed input was a "surprise" for the neuron. On the other hand, from Figure 4.6b a reader can see there are not many differences in the recorded time lapse. Moreover, every step in the figure means that the region of the neuron and its neighbors is increasing spatially.

Therefore, visible peaks in Figure 4.5c are due to all the presented factors. Also, the mentioned λ also controls the neuron's insertion, which can also modify the neighborhood of the bmu 1 . Hence, not only the adaptiveness of the learning procedure is important, but also the insertion rate.

In terms of insider threat behaviors, this could be sensitive to the heterogeneity of the employee's actions towards the cloud assets.

As a result of this analysis, this work adopted the adaptive learning rate over time presented by [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF] in Equation 4.2.

Insertion The original GNG of Algorithm 6 inserts neurons at an arbitrary fixed-rate (i.e., every λ steps). This is a disadvantage given the nature of the network, which may evolve as new behaviors happen. Hence, it is necessary to apply a different approach as in [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] through a different criterion for neuron insertion. Inspired in the latter ideas, the proposed algorithm runs with the presented adaptive approach in [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF], inserting neurons only when the input vector's distance to the BMU is bigger than an adaptive threshold.

Additionally, this work extends the previous models by inserting neurons via a domain knowledge contextual data, derived in Chapter 5. The experimental comparison by means of using the proposed extension, with the different insider threat scenarios is detailed in the experimental results in Chapter 6. if CheckInReservoir(x i , w bmu 1 ) then It can also be seen that for the utilized dataset, the author of [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF] (green curves in Figure 4.7) have the lowest number of neurons in the graph G. This is the result of an insertion rate that is not sufficiently efficient, given the fact that at the end of every iteration, more than half of the created neurons are deleted because they never won any input. This is also visible in Figure 4.7b where the number of neurons with absorbed inputs is rather stable. This means that the tendency is that incoming inputs are absorbed by the same set of neurons. In consequence, for different input behaviors, the error of the neuron will grow, as seen in Figure 4.7c.

Deletion The original GNG of Algorithm 6 eliminates edges when the age value exceeds the age max . This results in some isolated neurons to be deleted. An extension of this work was provided by authors in [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF] who added a parameter for every neuron's winning frequency or density of absorbed inputs, in order to delete isolated neurons under a frequency threshold parameter. On the other hand, authors in [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] also included the distance from these neurons towards their neighbors.

Although in all previous works deletion has the main functionality of dismissing obsolete neurons while prevailing the scalability of the network, this is a disadvantage for an anomaly detection case scenario. Even though it allows the network to be highly dynamic in terms of representing new evolving behaviors, it may discard anomalies as they are rare events. Hence, it is necessary to apply a different approach through a different criterion for neuron deletion.

The proposed solution in the present work, concerns two differences with respect to previous works. First, the deletion procedure is executed at the end of every iteration (i.e., a full run of data feed to the algorithm), therefore the adaptive threshold is only calculated at this step. This benefits from allowing the graph to adapt for a longer period of time, and make better use of newly inserted neurons that have not won any incoming vector. This advantage is also seen in Figure 4.8 where the proposed algorithm has a lower deletion rate, hence it keeps more data in the graph, while keeping good global error values, such as in Figure 4.7c, with respect to the other models.

Second, the obsolete neurons and its neighbors are kept in memory, by use of a reservoir, which is a generic concept utilized in previous stream clustering approaches (e.g., [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF], [START_REF] Zhang | Data streaming with affinity propagation[END_REF]). [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF]) the result will depend also on the amount of data the network has absorbed so far and how the connections have been made for the normal and anomalous data.

On the one hand, if the deletion is made at the end of every iteration (for a fixed number of data inputs), the procedure will consider a much more trained network, therefore will eliminate poorly connected neurons after that longer time. On the other hand, this procedure may result in the creation of a higher number of isolated-never-won neurons. Therefore, the moment of executing this functionality is not a trivial task as it depends on the data.

To tackle this issue with a conservative approach, the proposed algorithm deletes neurons with less than two neighbors, after a predefined number of read inputs, namely iteration. At that point it first considers those neurons that have no absorbed inputs. Later, and with the purpose of preserving the possible treacherous neurons, it stores those in the reservoir.

Algorithm 9 OSAD Neuron Deletion

Input: H, G, w = (w(image), w(server), w(network)) Output: Reservoir end if 15: end for All adaptive thresholds, namely T h , T server , T image , T network proposed in the Algorithm 9 are calculated at the moment of finishing an iteration. Therefore, they are updated through the calculation of the current state of the graph G for the set of number of hits H, server severity prototypes, image severity prototypes and network severity prototypes, respectively.

1: Reservoir ← {} 2: T h ← mean(H) 3: T server , T image , T network ← GetSeverityThresholds(w) 4: neurons ← GetNeuronsWithLessThanTwoNeighbors(G) 5: for all n ∈ neurons do 6: if H n is T h then 7: G ← DeleteNeuron(n) 8:
For the latter, the severity calculation strategy for every soon-to-be-deleted neuron is described in Algorithm 8. Under the assumption that most of the three severities behave under certain regular values (mean), the strategy considers all reservoir candidates which w i is higher than the mean plus one standard deviation.

For greater detail, Figure 4.8 depicts the distribution of the deleted neurons for the proposed algorithm, in comparison with the other models. For this purpose, labels have been included in the analysis to verify the ground-truth behavior of the procedure.

A deeper analysis was carried for the remaining deleted anomalous neurons in Figure 4.8c. These neurons consequently correspond to either neurons with few absorbed inputs or with a value for any of the severities which are not that critical. The first case relies on the fact that Reservoir By utilizing the contextual severity criteria in Algorithm 8, the proposed methodology benefits itself from the use of a reservoir for keeping neurons with certain treacherous characteristics. The workflow of this procedure is succinctly extracted from the algorithm's output and listed in the following example.

Example of the algorithm's output for reservoir management. The overall behavior of the reservoir can be seen in Figure 4.9, which describes the evolution of the number of neurons and their absorbed inputs across the learning steps. From the illustrations it can be seen the values are the same for both, the number of neurons, and for the number of inputs for each neuron. This results shows that for this example, all the neurons within the reservoir contain only 1 absorbed input.

Stopping The original GNG of Algorithm 5 can use different stopping criteria such as the maximal number of neurons and the global error between two training iterations. Authors in [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] proposed a stopping criterion based on the silhouette scores' variation (defined in Section. 4.2.5) in time.

Although this metric may accurately depict the clustering quality of the algorithm, this fixed criterion has to be evaluated for the insider threat detection scenario. As also previously mentioned, the proposed algorithm works with a streaming approach; therefore the procedure can learn in a continuous manner, absorbing new inputs that could be part of new user behaviors. and inter-cluster similarity of them. Thus, of course, this coefficient is going to be heavily dependent on the number of neurons the algorithm removes or keeps in the graph. Such is the case of the algorithms of [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] and [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], which have higher silhouette scores. However, their deletion rate is higher than the OSAD algorithm.

Phase 1.1: Offline training

Once the algorithm has integrated all data points into the neuron topology, the present work proposes to combine this technique with the use of communities. Although there is no universal definition of what a community is, most existing algorithms rely on the principle that neurons tend to be more connected within a community than across communities. This scheme is a simple, efficient and easy-to-implement method for identifying families of clusters in large networks. end for 27: end function Consequently, the partition of the graph G is computed, which maximizes the modularity using the Louvain heuristics. The resultant partition is the neurons' grouping that ends with the highest modularity. This procedure allows the algorithm to obtain cluster "families" for further labeling.

Algorithm 10 Normal Cluster Labeling

Input: Graph G, T h , Communities C = {c 1 , . . . , c n } Output: Normal neurons N = {n 1 , . . . , n m } 1: medoids ← GetMedoids(G, C) 2: N ← {} 3: count_per_com ← GetAbsorbedInputsPerCommunity(C) 4: N C + ← PercentileCriteria(count_per_com

Phase 1.2: Cluster labeling propagation

We proposed a strategy for labeling the communities shown in Algorithm 10.

Through the new community structure for the graph, an analysis is made to every community and its belonging neurons. By means of detecting the employee's behavior through their clustered data, three labeling behavior categories have been defined:

• Normal: behavior related to the former assumptions of this work, described in Chapter 1.

• Treacherous: behavior that is related to the highest severity labels (i.e., network, image and server) and/or contextual anomalous levels (i.e., outside working hours).

• Unknown: behavior that has not been possible to classify in any of the previous two.

Normal labeling procedure is done by three criteria, namely PercentileCriteria (line 8) MostWinningNeurons (line 15), and NearestCommunities (line 20). Firstly, under the second assumption in Section 4.1, the number of input vectors that fell under each community of neurons it is considered. Afterwards, the threshold correspondent to the percentile by which the distribution is equal to the mean plus one standard deviation, is calculated. A conservative criterion is therefore used by labeling as normal communities (N C) those that have more inputs than this threshold.

Consequently, the algorithm considers as N C only the clusters which have the number of inputs as high as that percentile of the cluster's input distribution. This value is set adaptively, and therefore, it depends on the historical data distribution of the absorbed inputs for all the neurons in the graph G after every iteration step.

Nevertheless, it could happen that our training data are not condensed into one big normal cluster with other smaller ones, but that is instead spread through multiple clusters with very short distances between them. Moreover, from experimental evaluations and mentioned insider threat scenarios (e.g., [START_REF] Carnegie Mellon | Insider Threat Test Dataset[END_REF]) it was seen that there are many kinds of normal activities, giving small spread clusters that may not even be close to each other. In the context of cloud CSC employee's actions, this may be due to:

• Employee's actions varying broadly in time.

• Employee's actions not being executed in the same predefined manner.

• Employee's new actions currently gaining cluster density. This possibility would result in the labeling of such normal clusters, as unknown. To overcome this case, if there is no clear bigger cluster, the second MostWinningNeurons proposed criterion is utilized, which labels as normal, the communities where the set of highest-winning neurons' reside.

The last criterion makes use of a second-level topology analysis, which aims at relating communities based on their inter-cluster distance. The intuition behind this procedure is to consider communities that are close to each other, to have the same label. Accordingly, NearestCommunities obtains the medoid for each community and calculates the distance between them. and the predictions with respect to possible anomalies are made at predefined times, near real time. The latter is done by determining the overall behavior status of the graph G.

We also note the depiction of the precedent algorithms, denoted by OSADNeuronInsertion(•), OSADNeuronDeletion(•), NormalClusterLabeling(•) and Treacherous-ClusterLabeling(•), which consider for their calculation, each respective function arguments under the notation (•).

Algorithm 12 Online Streaming Anomaly Detection (OSAD)

Input: DS and model params M = (β, α 1 , α 2 , η), E, W, N Output: Anomaly score s t 1: for all x ∈ DS do

2: bmu 1 ← argmin bmu 1 ∈U x -w bmu 1 3: bmu 2 ← argmin bmu 2 ∈U \bmu 1 x -w bmu 2 4:
if neuron insertion is necessary then 5:

OSADNeuronInsertion(•) (Algorithm 7) 6: else 7:
Modify the age of all edges emanating from bmu 1

8:

Add the distance between x and bmu 1 to error variable error(bmu 1 ) Moreover, the final prediction component (line 17) discussed is anomaly estimation. The model produces anomaly scores, which are used to rank each user's graph G giving a ratio for treacherous and/or anomalies, normal and unknown behavior in time. This allows to analyze in specific, how these normal, treacherous and unknown neurons/clusters behave and evolve. The latter is a posterior separate study out of the scope of this work, relevant at the moment of predicting future behaviors, indicative of future normal behaviors or insider threat characteristics.

Discussion

The proposed algorithm describes an unsupervised clustering technique through the interrelation of a two-phase process: (1) learning, deletion and insertion procedures and (2) community labeling.

The adaptive learning rate allows the algorithm not only to consider data inputs that genuinely resemble to the existing ones for that BMU, but also to increase its specificity at every step, through decreasing the learning rate. Although this is an important enhancement towards an online detection strategy, it may have some drawbacks. For the most part, it makes it significantly data-dependent. This issue may be sensitive when dealing with evolving data-streams, new monitoring points of observation, new attributes to consider, among others. For instance, if data evolve drastically into new normal behaviors and new anomalies, most of the too-specific existing neurons will not be good candidates, therefore increasing the number of insertions and topology of the network.

Nevertheless, the insertion neuron procedure benefits from being non-dependent of arbitrary a-priori parameters. By comparing every distance of the data input x with its bmu 1 , against both, a dynamic neighborhood threshold and severities contextual data; the algorithm guarantees those outliers (e.g., anomalies) are not to be absorbed by either well-adapted neurons or neurons at their early adaptive stage. This design is an advantage for the latter set of neurons, which in case of absorbing that input, would increase their local error.

Moreover, the anomalous or treacherous neurons will, by their nature, be part of sparse regions and will have very few wins in time and therefore, likely to be deleted. To treat this matter, the concept of reservoir has granted the possibility of saving that information for further treatment.

Frizke's approach (Algorithm 5) for deletion considers the age of the edges, namely if the age between two neurons is older than a predefined parameter, the edge is deleted. The subsequent step of the algorithm is to eliminate all isolated neurons after this edge deletion. Others [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF], [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF] have included a density parameter, considering also the number of times the neuron has "won" (i.e., BMU) an input. Additionally, Sun et al. [START_REF] Sun | Online growing neural gas for anomaly detection in changing surveillance scenes[END_REF] considered not only this information but also the average distance of every neuron i towards their neighbors, dist i , compared with a threshold.

Although the update of this value is considering the evolution of the network, it has some drawbacks when the anomalies have a very different distribution than the normal behavior. Their threshold is calculated by averaging all neurons scores score i = exp -dist i . Therefore regions where neurons have distant neighbors will decrease this averaged threshold. An example of this behavior obtained for 5 iteration cycles and an insert λ value of 4, where this strategy caused the deletion of neurons with 273 or 163 winning times, due to the existence of scarce regions in the graph.

Experiments have shown that the evolution behavior of the reservoir is that it adapts slowly. As it is intended to keep neurons that would have been deleted otherwise, under the latter criterion they have low winning times H n . These could be neurons that have absorbed anomalous data or new normal behaviors at an early stage. In both cases, if they are probably returning into the network, they will most likely be in the lower tail of the H win times network distribution. Consequently, they are possible candidates for the deletion at the next iteration, as seen in the example from algorithm's output for reservoir management. This particularity, of course, can be overcome if those neurons absorb new inputs before the deletion process arrives. Finally, if they do not, they will return to the reservoir.

Conclusion

The proposed framework tackled the insider threat detection through an efficient and adaptive online learning and labeling schema. The procedure extends previous works by means of a better adaption for the insider threat monitored data. These adapting properties consisted of providing new insertion and deletion criteria, by using contextual information to increase the labeling precision and the quality of the clustering for anomaly detection of the insider threat.

Moreover, the proposed model adjusts itself according to the different scenarios in Section 6.2, fitting their data accordingly in the graph G. From the experimental study in Chapter 6, the OSAD detection approach effectively reduces the FPR while maintaining good quality clustering values and not dismissing anomalous/treacherous data. This result is a definite advantage to consider because it means the model can be effectively used for different employees and different feature subsets while maintaining its clustering performance.

Additionally, the overall framework allows the extension of both employee's actions to be executed, along with the plausible augmentation of new attributes or features to monitor. This characteristic makes the proposed work generic for an anomaly detection procedure of the insider threat.

Furthermore, it incorporates a security detection procedure, by means of removing obsolete neurons, which are later classified according to their severity. This scheme is an improvement since it allows the network to evolve according to new input patterns. Additionally, the collected data in the reservoir can be interpreted as a kind of memory that may be useful again under specific conditions, for example when new inputs are too distant from all existing neurons. Therefore, these "obsolete" neurons preserve the knowledge of previous situations, and they could be taken for evaluation by an expert for future decisions, playing a role in a longer learning cycle of the employees or profiles in a company.

Introduction

In the Chapter 4, the novel anomaly detection framework was described in detail, including the principal procedures required to apply its methodology. A further expansion of this research is the implementation of this methodology using a suitable tool. However, it is required to find such a tool in order to extend it with the proposed functionalities.

This chapter firstly presents the implementation details for the simulator described in Section 3, and the considerations taken for the generation of the employee's actions.

Secondly, it presents the implementation details of the proposed anomaly detection framework employing monitoring agents in a two-layer strategy. First, the MMT tool, a modular, extensible monitoring DPI [START_REF] Wehbi | Events-based security monitoring using mmt tool[END_REF] used to verify properties of network protocols. This tool is flexible enough to be used with other purposes than testing network protocols, making it suitable for implementing the proposed solution. In addition to this tool, this chapter presents the deployment and implementation of another monitoring agent, which is capable of retrieving Network Events Every Network Event or flow corresponds to a single action from the employee generated by the simulation, therefore we construct the session that corresponds to the list of actions generated by the simulation tool. This is done by means of keeping in memory the incoming flows and collecting the following respective attributes in Table 5 The construction of the object Network Session, is based on the aggregation of several Network Event objects. This is done by the designation of the tuple (profile name, event id, asset) and the aggregation of the network attributes until any of the following conditions is satisfied:

• Complete session: is considered when the ith-action attribute is equal to the number of total actions within the session.

• Timeout: is considered when an event is not completed (i.e., previous condition is not met), i.e., when TCP/IP packets are re-transmitted, fragmented, or when the analysis of the data stream of actions is delayed. We utilized a timeout of four minutes in our implementation.

Moreover, from the Simulation timestamp and Simulation location we include two attribute values, namely 0 or 1, describing whether the simulated actions were intended to be within the working hours and within the organization's dependencies, respectively. Lastly, the Label is kept for the purpose of evaluating the proposed detection solution.

IaaS events Every IaaS event or flow corresponds to a single active monitoring check made to retrieve information from the OpenStack cloud. This type of event is not related to any specific employee and thus it is used for future merging with the Network Session objects. The final attributes are formerly retrieved from two main categories:

• Instance state: describes the current stable (not transitional) state of the VM. That is, if there is no ongoing compute API call (running task), the instance state should reflect the VM state expected by the CSC. When combined with task states, a better picture can be formed regarding the server's "health" and progress;

• Task state: represents what is happening to the instance at the current moment and allow a better view into what a server is doing. These tasks can be generic, such as "spawning", or specific, such as "powering-off".

The latter becomes relevant at the moment of performing an active monitoring with a noninvasive manner. We make use of a combination of these two categories of attributes, in order to benefit from two sources instead of one that may miss an occurrence.

By this compound methodology, it was possible to retrieve absent information from the VM state in the percentages depicted in Table 5.3 following a 10 second active check configuration. This was obtained by combining data from both data subsets, where some VM state attributes resulted in a constant value of 0, meaning they were not foreseen by our monitoring configuration. A example of this case is RESTART state being updated in the Server Reboot Mean by the finding of Task state powering-on and powering-off. The final list of attributes or features can be found in the first column of Table 5.4.

Events Aggregation

The second step is the aggregation of the data by means of merging of the Network Session and IaaS Session datasets. This is done following the methodology in Algorithm 13 and calculated as shown in Tables 5.2 and Table 5.4. Most features are calculated following the mean or average, where "•" is the Hadamard product (element-wise) of each of the events attribute lists. This is because it is intended to capture the tendencies among all aggregated sessions. Two other mathematical operations are performed to the rest of the features, followed by the variance of the session individual features treated as Boolean. The first case relies on the intention to capture the variability rather than the general tendency, because abrupt changes could signify anomalies. The second case (e.g., security rules' modification) aims to capture any alteration made to the network port rules. This means that for the scope of this work the feature is not intended to gain information on how much the rules were modified, rather than the fact that this modification took place. The intuition behind the latter is that it could only take one single modification (e.g., an addition of a rule) to perform an attack. end if 11: end for Table 5.4 presents all the features captured from the IaaS-based probe and it is divided according to the monitored instance, namely, Image, Sever and Network. Additionally, an overall metric concerning the memory usage of all the instances is introduced.

As mentioned in Section 4.3.1, some of the features share no information due to several factors. First, the sampling mechanism may not have the adequate resolution to retrieve data, due to missing the assets' states applying the active monitoring. Second, the absence of an action that reveals information towards this feature. Nevertheless, the monitoring agent is implemented and capable of retrieving future actions that may change the empty-value attributes.

Additional representations

In order to distinguish anomalies more efficiently, three attributes have been proposed, based on the previous knowledge concerning the security threats intended to detect. They have been introduced due to two main reasons.

First, the profitability of information knowledge within the enterprise. In other words, relevant information can be retrieved from the employees in charge of the common practices and security policies of the company (e.g., human resources, security and/or operation administrative) in what respects to job roles, and more importantly, regarding the company's cloud assets (e.g., cloud administrator, system administrator). For the former group, utilizing this already-existing information is convenient. The second group has the knowledge information on the configuration of the cloud implementation. This configuration could imply an IaaS ser-

IaaS Event

Calculation Second, the know-how already seen in many monitoring and information logging references in the literature, such as the RFC 31641 . The latter presents a set of recommendations for categorizing messages with a severity indication for that message. More specifically, they present predefined scales of integers to define different severity levels (e.g., 0 to 9 where 0 is informative, and 9 is critical). These scales serve as information for the specific group of people that derived them, and therefore depend on the relevance they give to each of the components. These monitoring and auditing considerations have served as inspiration for the belowproposed schema. Moreover, in the proposed case scenario of a company with their assets in the cloud, the three aggregated features that are proposed, consider the help of the above mentioned decisive players. Consequently, the below-detailed severity definitions and scale factors are adjustable to each company's needs and experts opinions.

That being said, these three features cannot be instantaneously checked when collecting the data since it would demand a higher level of monitoring complexity.

In detail, not all severity levels have the same degree of urgency. Some require immediate human attention, some require eventual human attention, and some point to areas where attention may be needed in the future.

Consequently, we propose three severity categories, with respect to the instance to which they are related. They are defined as:

• Server Severity: describes the presence of a compromise for a VM in either availability, confidentiality or integrity.

• Image Severity: describes the presence of a compromise for an Image in either availability, confidentiality or integrity.

• Network Severity: describes the presence of a compromise for a property of the network in either availability, confidentiality or integrity.

Hence, they are created at the moment of merging the collection of IaaS Events with a specific Network Event. They are calculated as the weighted sum of the IaaS Event features, where the weigh is a factor dependent on the attribute, as seen in Table 5.5 and Table 5.6.

Discussion

With respect to the presented IaaS-based probe, it is worth mentioning the absence of monitoring tools from a tenant point of view. This is the case of existing tools such as Amazon's Cloudtrail2 , where CSC can monitor the anomalies with respect to the assets in the cloud for Amazon EC2 instance changes, EC2 large instance changes, console sign-in failures, authorization failures, Identity and Access Management (IAM) policy changes, to name a few. Then, there is a benefit -though not free -to monitor anomalies in companies' assets in the cloud. In contrast, an OpenStack implementation does not have this monitoring feature by default, and it should be agreed for CSC's and CSP's parts.

Our proposed schema, on the other hand, does not have this possibility because OpenStack services are entirely independent; there is no service that monitors the access to their endpoints. Many API servers log the requests when debug logging is enabled, but even so, all these logs occur in a CSP's domain. This situation is an issue regarding the relevant plausible data to capture because much information is lost during an active monitoring mechanism (e.g., a log-in failure action may happen in less than a second, while active monitoring probes are retrieving information every 5 seconds).

Instead, a more effective mechanism would be to collect the log data from cloud services and passively foresee every single change in the CSC's activities. In this sense, our contribution aims at allowing CSC's to monitor their assets in OpenStack with similar efficiency, while having limited information.

Furthermore, the overall monitoring and detection framework has been designed with a single tenant use in mind. This solution is intended to give every company whose desire is to detect the insider threat, the possibility to monitor their assets not only in a single cloud application but also multi-cloud (i.e., one tenant with multiple cloud services connected). In its current form, this makes sense for organizations with a small number of single or multi-cloud services, to consolidate their security management and keep track of anomalies in time.

From a technical perspective, what needs to be considered is the scalability of the framework once a higher number of security metrics are observed or aggregated. These could be in the aim of adding not only IaaS-based events but also, monitoring the availability, confidentiality or integrity of applications embedded in the IaaS assets. For instance, the wish to monitor a new module (e.g., an application on top of IaaS) may require the addition of another probe and a new set of arrangements for the calculation of simple or aggregated attributes.

For the solution proposed, we have chosen to deploy the network and IaaS-based probes on the organization's side for three main reasons.

First, even if the collected traffic at the organization's gate is considering all network communications that could be non-cloud related, the MMT tool allows the filtering of this traffic and permits the reporting of only the protocols and destination of interest. Like so, we have filtered only the HTTP network flows, along with the destination IP of the machine hosting the cloud. Nevertheless, the architecture benefits from the adaptability of the MMT tool, in the direction of detecting anomalies related to network protocols (e.g., such as CERT's dataset, which presents insider threat scenarios using log-ins from different ports and protocols).

Second, this benefits within the scope of security. By having a local implementation, the enterprise has additional protection for the monitored data at storage, whose communication does not go through the public internet and the access to it is under the security policies of the company. This policy contrasts the idea of having the monitoring probes, storage and detection engine as additional assets in the cloud, which makes them more visible to possible cloud administrators that could perform malicious actions through the direct access to them.

Lastly, we also consider the billing aspect by means of externalizing all the monitoring traffic from the different probes to the organization's premises. This benefits from having sensors that are actively using resources, such as I/O read/write, bandwidth usage and storage capacity.

Conclusion

In this chapter, the details of the implementation were explained, both for the simulator in Chapter 3, as well as for the anomaly detection framework in Chapter 4. This work was done by proposing a set of simulated activities or actions, that considered the internal states of the assets involved, in order to have an automatic derivation of generated actions. Also, we extended the existing monitoring sensors by means of deriving a new IaaS-based probe. Finally, we presented the architecture of the collected events, along with the preprocessing management to serve as a precise input for the detection engine.

In the next Chapter 6, we present the experimental results obtained with the use of the developed framework.

Introduction

This section presents the experiments which have been carried out to measure the quality of the proposed algorithm of Section 4. For this reason, the section contains the results of a series of experiments which have been carried to evaluate the effectiveness and usability of the developed framework, aiming to distinguish insider threat anomalies by considering different data attributes. This is done by benefiting from the flexibility of the user model simulation presented in Section 3. A study of four detection scenarios is presented, each one of them relying on typical insider threat characteristics found in the literature and in the industrial reports.

Additionally, the section provides experimental results by means of comparing the proposed algorithm in Chapter 4 with different hyper-parameters, different distance metrics used in the GNG-based algorithm; different dataset imbalance ratios, distinct users, among others. These comparisons have been discussed through the evaluation metrics presented Section 4.2.5.

Detection scenarios

For the synthetic experiments, the following datasets have been created. The first two differ in two main characteristics: the user's lexicographical sequences of actions, and the use of contextual data to identify anomalies.

The four presented scenarios contain the same type of sequence anomalies, but rely on different data subsets for their detection.

Scenario 1: Using Network, IaaS features

The subset used in this scenario consists in all network-based and IaaS-based features described in Chapter 4 through the implementation described in Chapter 5.

Scenario 2: Using Network, IaaS and action sequences' features

The subset used in this scenario consists in all network-based and IaaS-based features described in Chapter 4 through the implementation described in Chapter 5. In addition to that set of features, this scenario includes the sequence of actions executed by the employee, provided by the insider threat model from Chapter 3.

Scenario 3: Using Network, IaaS and contextual features

Following the same characterization of the CERT dataset, where some anomalous actions occur out of the scope of user-days [START_REF] Young | Use of domain knowledge to detect insider threats in computer activities[END_REF], [START_REF] Young | Detecting unknown insider threat scenarios[END_REF], the elaboration of this dataset scenario extends the previous features (network-based, IaaS-based and sequences) to anomalies using this particularity, along with anomalous location.

Scenario 4: Using Network, IaaS, actions sequences' and contextual features

This scenario comprehends the features' set of action sequences, network-based and IaaS-based, along with the contextual working hours and location features. These two Boolean features are now randomly assigned to 1 whenever the label is of the data input, i.e., "seq" (anomaly). The purpose of these additional attributes is to see if these two extra features help improving the detection.

Experimental results

Analysis of the global error and learning procedure

The process of neuron's learning has been previously described in Section 4.2.3. The criterion of Fritzke's original GNG [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF] was presented, along with the adaptive proposal of [START_REF] Furao | An incremental network for on-line unsupervised classification and topology learning[END_REF] described in Equations 4.1 and 4.2, respectively. As explained before, the latter consists in a variable that updates itself for every time-step new input vector arrival and its winning neuron bmu 1 , related to the bmu 1 's number of wins.

The hyper-parameters' configuration for all the algorithms was fixed to be able to compare how the scenarios affect the overall global error, along with the internal metric results. The values were used with a fixed step interval between neurons insertion λ of 50, and an edge deletion of age max of 80. The learning rate trials were made with the values from [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF], namely α 1 = 0.1 α 2 = 0.01, the original GNG [START_REF] Fritzke | A growing neural gas network learns topologies[END_REF] α 1 = 0.2 α 2 = 0.006, another arbitrary α 1 = 0.5 α 2 = 0.1. Additionally, the adaptive learning rate was evaluated, following Equation 4.2. For this example, each iteration has 1000 input samples, all results are averaged over 10 algorithm runs. Moreover, a reader can also see that the initial accumulated errors are different since the first two GNG neuron's prototypes are initiated randomly following a uniform distribution. The results of the learning and overall detection procedure for all different subset scenarios, can be seen in Figure 6.1, through the global error of the network for every iteration step. They depict the accumulated error, correspondent to the sum of all neurons' errors at that particular time step. The iteration number 0 corresponds to how the algorithm learned by passing through the data only once (e.g., online manner). Additionally, Table 6 

Analysis of the deletion procedure

The process of deleting neurons whenever a criterion is met has been previously described in Section 4.3.3.1. This procedure has a different behavior when utilizing different feature subsets. Such variations can be seen in Figure 6.2, where specifically in Figure 6.2b the deleted number of neurons per iteration is very low. In detail, scenarios 2 and 4 show higher values than the others. This may be due to a higher insertion rate, but a low bmu 1 winning rate. From the results in Figure 6.2 it is also clear that the number of neurons deleted is scarce throughout the experiments. This means that the data tend to be absorbed always by previously winning neurons. This tells us the dataset consists in similar characteristics for normal behaviors (biggest majority of the dataset), therefore they are usually absorbed by neurons that know "well" their characteristics. Also, this tells us that the neurons are tightly connected between in these regions, not allowing the deletion criterion to eliminate them by reason of poor connection of low winning rate.

The latter characteristic also benefits from the reservoir, experimented against and described in the following section.

OSAD Severities and reservoir

Severities As mentioned in Chapter 4, the OSAD makes use of the contextual data given by an expert, resulting in three severity features, namely server, image and network. The algorithm utilizes this information in an adaptive manner by means of thresholds T h , T server , T image , T network , at the moment of inserting and deleting neurons. An example of this calculation is depicted in Figure 6.3 where the red dot represents the percentile, correspondent to the x-axis.

Although these thresholds do not depend on the different subset scenarios, they do rely upon the amount of data inputs the algorithm is fed with.

The thresholds are calculated every time an insertion and deletion is about to take place, therefore considering all the data absorbed by the graph at that moment. Consequently, the three severities result in a better representation of the data distribution, after every iteration step or as the algorithm continues learning in time.

quence is no different from an "X" or "T" sequence at the vectorization transformation).

Scenario 4, will then inherit the misconceptions of the sequences, therefore obtaining the highest FPR of all four. The result is also due to the addition of the two Boolean contextual attributes, which are discussed next.

Regarding the benefits of contextual information, via the addition of location and working hours attributes, scenario 3 and 4 have considered a Boolean constant changed to 1 whenever the input vector was labeled as anomalous. Although it corresponds to additional data, it provides less information to the algorithm. Even if they are sufficiently correlated with the anomalous, these two additional features do not have much variability (either 0 or 1). Nevertheless, this could be enhanced with new ways of dealing with contextual data, given the fact that the algorithm at the moment of learning, utilizes the Euclidean distance (i.e., the root of a sum of squares). This distance metric is applied for different dimensional vector, i.e., the 34 or above-depending on the scenario, resulting in these two features to play a minor role.

Other experimental Comparisons

Balanced vs unbalanced dataset

We know that whenever dealing with anomaly detection, the general assumption made in the literature and in our work, is the fact of having a big proportion of the data to behave in a way, and having a small portion of the data that follows another conduct.

That being said, for our unsupervised case, there are some disadvantages while working with a balanced dataset. As previously mentioned in Chapter 4, the anomaly detection engine follows a labeling methodology for prediction that relies on the representation of this unbalanced proportion. For this matter, it is counter-intuitive to train a learning algorithm with evenly distributed classes, impairing the labeling phase, based on similarities and sizes.

Nevertheless, the aim of this experiment was also to evaluate the labeling criteria presented in Section 4.3.3.3 given a bigger anomalous proportion within the dataset.

To analyze the effects, experiments with two different anomaly/normal ratios were carried. For both settings random number of samples was taken, restricted with the same ratio between anomalous and normal samples. First scenario, namely scn-18 consisted in 448 normal and 79 anomalous samples giving a ratio of 0.176, while second scenario, namely scn-33 consisted in 526 normal and 181 anomalous samples giving a ratio of 0.334. The experiment considered a number of iterations to also see the evolution and fluctuations.

Consequently, the applied data representation consisted in n-grams. The advantage behind this is because it converts text (actions) into numerical values, which are the value type only plausible for the detection algorithm.

Additionally, experimental results were carried for different representations of sequence features as numerical data, partly analyzed in Chapter 4 (specifically in the Feature Analysis Section 4.3.1) and depicted in Table A.1. These experiments considered not only the n-gram representation for n length of 1, 2, and 3, but also the alphabet-to-vector representation.

Thus, considering this relevant factor for detection purposes, requires further investigation. Following that path, preliminary experimental work is being carried, in order to make use of other data representations such as "bag-of-words" or window-based techniques and compare them against the already performed experiments.

Second, the performance of the reservoir within the detection framework. The was a noticeable advantage regarding the evaluation metrics, by the proposition of the reservoir. All results showed to have good precision and very low FPR, and in some case very good recall values. These results have benefited from the mentioned vault, which keeps for some time, the predicted as treacherous neurons.

However, in some of the scenarios, a steady increment of the number of neurons could be seen (e.g., Figure 6.4). This result was the case for a poorly-learned graph, therefore including neurons that held merged normal and treacherous input vectors.

Hence, new adaptions to this matter are already being considered and evaluated experimentally. Preliminary studies are being held in order to examine a fading function, capable of deleting neurons within the reservoir, that have not been put back into the algorithm's graph in a period.

Lastly, the detection frameworks' distance metric. In most high dimensional applications the choice of the distance metric is not obvious, and the notion for the calculation of similarity is very heuristical. For example, some distance metrics may be known to have poor accuracy (e.g., Mean Character Difference) and others may behave accurately but with a high computational complexity cost (e.g., Cosine measure and Mahalanobis distance, both O(3n) where n is the number of features, as stated in [START_REF] Shirkhorshidi | A comparison study on similarity and dissimilarity measures in clustering continuous data[END_REF]) for high dimensional data, which is the case for our generated data.

Regarding this matter, additional metrics have been evaluated against, but need further investigation for all the benchmarks mentioned above. Also, further ideas of applying compound criteria of combined distances, is in the research interest.

Finally, by means of pursuing prompt detection, preliminary studies are being done upon different dataset sizes. This factor gives more insights into the amount of time for training in order to reach a stable graph, while also experimenting with different iteration values. Also, it gives crucial information regarding the processing and storage capabilities (e.g., reservoir ) to consider when aiming to implement the anomaly-based detection framework in production conditions.

Conclusion

In this Chapter, we attempted to benchmark the proposed model of Chapter 4 concerning datasets in consideration of different user profiles, distance metrics, dataset imbalance ratio, among others.

Results show that the OSAD properly clusters the different scenarios, finding topological structures that closely reflect the structure of the input distribution. Moreover, when evaluated against ground-truth classification, it is seen throughout all the experiments, that the results have good decision performance. Also, experiments were carried for two different employees, given from the simulation configuration. It is seen then, that the F1scores can vary significantly for different profile behaviors. Thus, two conclusions are provided: first, the dataset generation is, in fact, capable of resulting in datasets with different levels of heterogeneity, and second, the detection framework should be further improved to obtain good results for both profiles and moreover, a broader set of profile configurations.

Additionally, the nature of the threats being a rare event makes the possibility of having evenly distributed datasets, a hard task. From both experiments carried within this scope, the detection framework behaved showing low FPR values and a precision rate above the 75%. This result is precisely the benefit of all the adaptive modules of the OSAD algorithm and even more, of the labelling module, which uses contextual data. Hence, even for less unbalanced classes, it is able to use the contextual severity criterion to find the treacherous neurons in the graph.

Nonetheless, this can be overcome by data processing techniques such as under-sampling, which should be added to the overall non-unsupervised implementation. Hence for evaluation purposes and techniques benchmarking, we think it is an interesting approach to consider while working with supervised or semi-supervised learning techniques.

Moreover, for insider threat detection, we are usually only interested in the performance of the detector when its FPR is low. Otherwise, too many employees will be falsely suspected of being malicious insiders, and conducting countermeasures for all of them becomes impractical. With this respect, the OSAD algorithm outperforms the compared algorithms, and maintains a low FPR in all evaluated benchmark experiments.

In summary, clear advantages can be found via the utilization of an unsupervised clustering technique, given the fact that obtained results prove it can adequately detect anomalies in different cases. 

Chapter 7

Conclusion and perspectives

Main results

Insider threats present many challenges, given that they consist in actions of humans and not machines, and detection techniques will inevitably incorporate characteristics of human behavior as opposed to the more purely technical domains of network data generation. Moreover, providing data for insider threat research presents an unusual challenge for many reasons.

In order to detect this threat, there are two options: those requiring use or collection of real user data, and those using synthetic data. In order to collect real data, a CSC must directly monitor and record the behavior and actions of its employees. However, confidentiality and privacy concerns create barriers to the collection and manipulation of such data for research, development, and evaluation.

Accordingly, the works organized and presented in this document describe a solution to detect the threat mentioned above, utilizing an unsupervised approach, an adaptive technique towards evolving behaviors, and an extensible framework for deriving datasets regarding this threat, as well as monitoring its most important attributes.

The first contribution of this work aimed at designing and developing a simulation engine, capable of tackling these issues and resulting in datasets for detection purposes. It is able to derive different scenarios from different aspects. On the one hand, given a probabilistic approach, the developed simulation engine allows modeling a user relative to the technical skills they have towards cloud assets, and also depending on their psychological predisposition to perform an anomalous or treacherous act. Also, following a higher optic, it allows the simulation of a single or multiple users in a company, all of them executing real requests to a cloud implementation. This approach is a crucial advantage at the moment of deriving different enterprise scenarios, in the lack of real data, granting adaptability to the specific needs of industrial corporations.

The second and main contribution represents the base of the whole detection framework for the efficient detection of the insider threat. It corresponds to a novel anomaly-based detection framework, and it is framed under the application and extension of a machine learning technique, adapted for the anomaly detection of the insider threat. This module is designed to represent past, present and evolving behaviors of employee's actions towards the cloud assets of a company. Structurally, it is composed of two main algorithms: a training phase and online phase. The design has been carried in such a way that the training phase can determine whenever the trained algorithm has stabilized, by internal clustering metrics such as the modularity. The algorithm then has learned the normal and abnormal behaviors of the user after capturing data in an elapsed period, and by iterating itself through that data until the resultant graph topology does not show significant fluctuations.

Additionally, the framework proposed a continuous adjustment of community detection, where the clusters are reconstructed based on the adaptation against new incoming data, proving to be capable of identifying new emerging treacherous communities of neurons/clusters, together with normal communities, which also evolve, grow, split-up or become more behavior-specific in time.

The latter procedure works in conjunction with the proposed labeling criteria, which has been evaluated extensively against different experiments in Section 6. Results show the proposed detection accurately identifies anomalous behaviors, under different benchmark studies. Furthermore, compared to other clustering techniques presented in Chapter 4, the proposed solution also shows better comparative FPR and F1-score results at the moment of identifying treacherous actions.

This contribution also consisted in presenting novelties in the sections of data representation for further detection. The detection framework combined user-based data (i.e., literal strings representing actions), network-based and cloud-based attributes, along with contextual knowledge information.

Regarding the benchmark results in Chapter 6, for the analysis of the 4 scenarios and considering the low-FPR premise, it is better to work with contextual data (FPR for scenario 3 presents the lowest at 0.001%) rather than with sequences. Accordingly, the best performance is held by scenarios 3 (presenting the lowest at 0.001%) and 1. They both show very similar characteristics, low FPR while having good precision at the moment identifying all the treacherous neurons in the graph.

Hence, in virtue of an efficient trade-off between the number of features to monitor, it is advised to pursue the set given by scenario 3, and moreover, if efficiency and implementation is a relevant issue, the feature set of scenario 1 is a good candidate, which holds good values for F1-score, while only utilizing network traces and IaaS-related features.

Concerning the different data attributes of study, the essential features for the anomalous and treacherous detection were classified by their contribution with random forests. This well-known machine learning method is often utilized for feature selection. However, it requires ground-truth labels, namely, it is a supervised technique. Since the proposed work aims at achieving results in an unsupervised manner, the methodology to assess this estimation was using the proposed labeling criteria given by the framework, and then concluding on the relevant features for each of the normal, treacherous and unknown classes.

Results from that analysis concluded that regarding the comparative importance between the different subsets, the network-based features contributed with more information, due to their variability and richer numerical representation. Relevant features of this group are Total Pkts, Response Time, DL Data Vol, UL Data Vol, Octet Stream Type and Session Time. These features could be then selected as a priority subset, if needed to increase computational efficiency.

IaaS-based features also proved to supply complementary information, such as Server Shutoff Mean, Server Delete Mean and Server Stop Mean. This is logical, given the fact that the anomalous activities concerned these three actions. Moreover, when looking into the contextual attributes' relevance, obtained results showed these attributes paid a crucial role in contributing to the identification of treacherous traces, both in: (1) internal features fed by the OSAD algorithm, and (2) using the proposed labeling criteria.

Sequences on the other hand, whenever present, add information since they are specifying the real action to which the trace corresponds. Results, in this case, show the importance given to the overall dataset, depends mainly on two aspects. First, on the action sequences derived by the insider threat simulation, especially their level of randomness at the profile configuration stage. The configuration relates to their length and the occurrence of every action within them. Second and most importantly, their importance depends on the way they are represented (e.g., numerically, as strings).

Moreover, the proposed n-gram string-to-vector representation of the actions does not seem to provide vital information. The reason depends on the factors mentioned above, which for the generated datasets, may not have been too heterogeneous and fundamentally different between them (i.e., normal generated actions were slightly longer in string-length than the anomalous) therefore, at the moment of vectorizing them numerically, they did not differ much. Nevertheless, the extensible approach derived from the simulation in Chapter 3 allows further investigation in this matter, through the generation of longer and more complex sequences of actions.

All conclusions considered above give essential insights of the relevant attributes to consider whenever wanting to detect behaviors that diverge from the typical usage of cloud resources, considering the suggestions at the moment of implementing monitoring sensors, prepossessing the data, and detecting correspondingly.

Another aspect of the proposed solution is the concept of reservoir, which is a concept previously applied (e.g., [START_REF] Ghesmoune | A new growing neural gas for clustering data streams[END_REF] but for different purposes than anomaly detection). In the present work, this component has been designed to allow keeping historical track of all the decisions of the users during their requests towards the cloud. At the same time, it effectively tackles the issue of belated detection characteristics this threat has in particular. All benchmark experiments were also analyses concerning this component, in Chapter 6. Results depicted the expected behavior, in most cases, i.e., the module serves as a temporary vault for treacherous neurons. Consequently, for most cases, results depict increments of the number of neurons, followed by decrements. Correspondingly, it effectively permits the company to audit and make decisions promptly when anomalies are detected.

The third contribution of this work represents the validation process of the proposed framework. By means of characterizing different scenarios, we make use of various subsets to prove the anomalies' classification through different datasets. As a consequence, through the adaptive learning, the experimental work shows that the proposed schema benefits from several factors. First of all, it makes every neuron more stable and also more specific to its particular prototype. This means that after a long constant time period, every neuron will have clustered more similar input vectors, decreasing the accumulated local error and improving the topological structure of the graph G. Moreover, this means the heterogeneous behavior a user can have in a company, is properly described by a set of these neurons, therefore tackling the characterization of evolving execution tasks by the employees. Furthermore, by virtue of the contextual added features, the framework is able to label certain behaviors for future decision making.

The fourth contribution of this work is formed by the implementation of the aforementioned monitoring approach, composed by two principal components: a DPI for network traffic provided by MMT, along with the proposed implementation for monitoring relevant IaaS features, capable of detecting critical situations. By virtue of the latter module, the framework is able to monitor an extensive set of attributes, that automatically retrieve the IaaS information from the cloud. This also has a flexible approach in mind, by being able to obtain information on not only existing assets, but also capable of incorporating new assets, as part of cloud principal characteristics. Additionally, it has an extensive modular design in mind, by means of monitoring not only the relevant attributes for the portrayed threat scenarios, but also additional future actions the simulation could consider executing.

Perspectives

The proposed model in Chapter 3 considers the fundamental characteristics to illustrate a user model: different technical capabilities, psychological propensity (motive) and the opportunity to execute an attack. On this behalf, it is considered that adding an inter-psychological factor would enrich the simulation. This factor would be useful to characterize more complex psychological and social dynamics. Following the latter, there is much more to explore as to enterprise schema/hierarchies and how social interactions could also be affected by them. These attributes may consider the representation of different organization logistics, among others. Also, it would permit to model insider threat scenarios such as collusion or social engineering. All these characteristics may extend the Context entity of the proposed user model. For example, some organizations may have a crossfunctional business structure, where the employees are expected to interact across functional areas, therefore, the normal behavior is broader and could be more heterogeneous.

Concerning the evaluation of the proper functioning of the simulation tool, further enhancements can also be made regarding its analysis through richer techniques, such as statistical control. This method was mentioned in the discussion during the defense of this work, and presents benefits at the moment of working with a simulation tool that generates different datasets every time, therefore having an inherent statistical nature. Accordingly, the use of a method like this, would enhance the evaluation of the different properties following a criteria based in acceptable ranges with intervals of trust, also provided at the configuration step of the simulation; instead of rigid comparatives such as fix thresholds.

Also, by incorporating the knowledge of the consequences after pursuing a malicious act, the user model comportment could enrich themselves by the use of reinforcement learning theory. This machine learning technique falls under the idea of a more complex insider model that allows reasoning about the risk associated and its consequences, as well as richer conducts in the context of personal motives, capabilities, and opportunity.

Finally, further studies in this area may contribute to the derivation of an organizational tool that benefits from studying their employees and analyze risky behaviors regarding vulnerability scans.

Concerning the specific components of the proposed detection framework, more experiments could be done towards the optimization of the reservoir. Its capacity is limited and in some cases could accumulate too many neurons, such as an abrupt group of anomalies arrival or highseverity behaviors. For that concern, it is necessary to implement enriched policies in order to maintain relevant information only. For instance, in the case of the examples mentioned above, the reservoir could be capable of executing a different procedure, such as different deletion for buffer optimization, along with a possible alert notification.

Regarding anomaly detectors' functionality, future explorations can be done on how feature selection can play a role in the cyber-security domain, and further studies should be carried to obtain more efficient ways of data representation in continually evolving threat patterns. This research would also be advantageous since it results in algorithms that require less storage volume, and lower demand for resources concerning processing. Lastly, additional relevant features from knowledge in the domain may be studied, helping via contextual information, for more efficient learning engine in the detection framework. Moreover, contextual information was used internally by the detection algorithm. Nevertheless, further studies regarding the use of these features separately by means of categorizing the incoming vectors in a precedent step may also optimize the algorithm's performance by having fewer dimensions. Such would be the case of the use for the proposed severities and the policy based contextual information location and working hours.

Regarding data collection, enhancements could be made, building new security monitoring methodologies in order to enforce availability and reliability. Consequently, various challenges need to be considered such as, for example, storing and synchronizing in distributed environments that have different Availability Zones (AZs) as well as multiple tenants, distributed logically and geographically.

Moreover, concerning monitoring implementation and also for the detection engine, a new design of a parallel version of the proposed method would take advantage of data-intensive computing platforms, such as Apache Spark. One way to do this would be to parallelize independent parts of the data and process them in parallel while sharing the same graph of neurons. Another alternative would be to design algorithms to adequately split and distribute the graph of neurons on multiple machines running in parallel.

Lastly, the proposed solution can be evaluated against more insider threat case scenarios. For this matter and although non-cloud related, the CERT dataset [START_REF] Carnegie Mellon | Insider Threat Test Dataset[END_REF] can be considered, i.e., the known and used (e.g., [START_REF] Gavai | Supervised and unsupervised methods to detect insider threat from enterprise social and online activity data[END_REF], [START_REF] Goldstein | A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data[END_REF], [START_REF] Tuor | Deep learning for unsupervised insider threat detection in structured cybersecurity data streams[END_REF]) insider threat dataset from the past years. Therefore, further work towards the evaluation of detection performance with this dataset is of major interest. 
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 21 Figure 2.1 -Classification of threat detection techniques
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Figure 3 .

 3 Figure 3.3 depicts two examples for the variables in Equation3.2. We observe both agents start the simulation without any disgruntlement (D 0 = 0). As time goes by, the fulfillment experienced within the organization decays (F = 0, shown as the a dark blue line event at the top of the figure), while the expectation remained high (E > 0). In this case, there is an increment in the level of disgruntlement for both agents. This level begins to decrement as the posterior observed fulfillment values remain high (F = 1, shown as the light blue line event at the top of the Figure). The different disgruntlement decays for both agents may also be observable, along with the increase whenever a single unexpected event occurs. These different behaviors derive from the salience factor α, from Equation 3.2, and from the mentioned weights in Equation 3.3.
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 33 Figure 3.3 -Example of affective component for two simulated agents within a month period.Both agents have an disgruntlement threshold of 0.5, while the α is 0.8 and 0.5 respectively. ω init is 0.001, while both give different relevance to the actual fulfillment value (ω actual is 0.299 and 0.099, respectively). The assigned value to the historic fulfillment ω historic is 0.7 and 0.9 respectively.
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 34 Figure 3.4 -Example of rational component for two simulated agents within a month period
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 36 Figure 3.6 -Example of actions for a DBA and Developer with respect to cloud and organization assets

Figure 3 . 7 -

 37 Figure 3.7 -Skill for (i) 200 seconds, (ii) 100 seconds and (iii) 60 seconds

•-

  Inputs Intention i t ∈ {0, 1} -Weight for Unusual location of access anomaly (LOC) w loc ∈ [0, 1] -Weight for Unusual hour of of access anomaly (WH) w wh ∈ [0, 1] -Weight for Unusual list of tasks anomaly (SEQ) w seq ∈ [0, 1]

  .8 depicts inputs and outputs at step t of the simulation as • Inputs -Sequence of actions executed, defined by s t -Input location from where the event was executed pos init_t -Working hours context given by the role ctx t -Event label l t ∈ {LOC, WH, SEQ, NORMAL} • Output -Sequence of actions executed, defined by s t -Output location from where the event was executed pos out_t -Timestamp of the event ts t -Event label l t ∈ {LOC, WH, SEQ, NORMAL} As mentioned, in case the Event label is wh, the resultant timestamp of the event has to be outside the hour range of the WH derived from the context ctx t . Same modification methodology is treated with the Event label LOC, where the final location position of the Event pos out_t has to be different from the initial pos init_t . Therefore, the conditions derived for this function are Pre-/postcondition 6 : if l t = wh then ts t / ∈ ctx t Pre-/postcondition 7 : if l t = loc then pos init_t = pos out_t

2 .

 2 All five characteristics are assessed through a three-stage methodology. As depicted in Figure 4.3 and in more detail in the Section 5, our framework is constituted by: 1. Data collection of the employee's activities, through the monitoring of the cloud environment, mainly done through network's DPI/Deep Flow Inspection (DFI), and active monitoring modules. Analysis of all the collected data, by means of data extraction, aggregation and processing through feature selection (Section 4.3.1).
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 44 Figure 4.4 -Correlation plot for all features

3 . 3 . 1 ;•

 331 The detection methodology through the first learning phase in Section 4.3.3.2 along with the novel labeling proposal in Section 4.3.3.3. 

Algorithm 7

 7 OSAD Neuron Insertion Input: x i and model params M = (λ, α 1 , α 2 ), T bmu 1 , w bmu 1 Output: Neurons N = {u 1 , . . . , u n } and prototypes W = {w 1 , . . . , w n } 1: if x > T bmu 1 or ContextualSeverityCriterion then 2:

  server n , image n , network n ← GetNeuronSeverity(n) 11: if server n > T server or image n > T image or network n > T network then 12: Reservoir[n] ← w n 13: G ← DeleteNeuron(n) 14:

  )

← 9 :

 9 NearestCommunities(N C, medoids) 7: N ← All neurons from N C 8: function PercentileCriteria(count_per_com) for all community_counts ∈ count_per_com do 10: if (community_count, community) ≥ percentile(count_per_com) then 11: end function 15: function MostWinningNeurons(T h , C) 16: for all n ∈ GetNeuronsWithHitsBiggerThan(T h ) do 17: N C ← community where n belongs 18: end for 19: end function 20: function NearestCommunities(N C, medoids) 21:max_intra_cluster ← max(GetCommunitiesMSE(N C, medoids))

14 : 15 : 16 :

 141516 if i-th x step is multiple of η then Decrease the error of all neurons: E ← Eβ * E Unknown neurons U ← N Normal neurons L ← NormalClusterLabeling(•) (Algorithm 10) Treacherous neurons T ← TreacherousClusterLabeling(•) (Algorithm 11) 17: s t for normal, treacherous and unknown ← length(L) N , length(T ) N , length(U ) N 18: end for
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Table 2 .

 2 1 -Average detection performance for SVM, MLP, LSTM, K-means and entropy-based techniques.

	Metric (%)	SVM	MLP	LSTM K-means Entropy
	Recall	88.255 80.956 81.168	83.431	99.202
	Precision	98.506 99.367 79.431	94.071	97.105
	FPR	3.773	2.170	4.131	1.547	1.576
	Accuracy	89.077 83.530 69.515	65.370	96.407

  seq ← choose_seq(pol.rnd_seq, pol.predef _seq, pol.hyb_seq, pol.seq_weights) anomaly ← gen_anomaly(prof ile, w loc , w wh , w seq )

	3.4.3 Psychological factor
		Algorithm 2 Psycho-social factor for
		agents in simulation
		Obtain Affective_component D t
		if ∆D > τ then
		a t ← Rational_component
		return a t
		else
		return 0
		end if
	7:	end while
	8: end function
	16:	if disposition then
	17:	
	18:	Run_Event(seq, probile, label)
	19:	else
	20:	
	21:	label ← anomaly.label
	22:	seq ← anomaly.seq
	23:	Run_Event(seq, prof ile, label)
	24:	end if
	25:	Wait(tbe)
	26:	end for
	27: end function

9: function Agent(prof ile)

10: role ← prof ile.role 11: ctx ← prof ile.context 12: tbe ← normal_distribution(ctx) 13: disposition ← psychological_factor(prof ile.psycho_attrs, disposition_thresh) 14: label ← "normal" 15:

for all pol ∈ role.policies do

Table 3 .

 3 1 -Summary of anomalies concerning cyber behaviorUnusual list of tasks This behavior consists of an intent performed by an employee to pursue an unusual set of commands, such as elevation of privileges (i.e., obtaining further privileges with respect to the CSC's asset), storing remote information, creating new services (e.g., VM for further malicious activities), performing an unusual instruction to the Database Management System (DBMS). The characteristic for this anomaly consists in observing unusual commands.

	Anomaly	Acronym Description	Example
	Unusual list of tasks	SEQ	Intention to perform an	Data deletion
			activity to an asset that	
			damages the integrity,	
			confidentiality or avail-	
			ability of the asset	
	Unusual hour of access WH	Intention to perform an	Activity at 3 a.m.
			activity to an asset out-	
			side the general working	
			hours for the particular	
			role	
	Unusual location of ac-	LOC	Intention to perform an	Connection from em-
	cess		activity to an asset	ployee's house to cloud
			from an unusual differ-	services
			ent source address	

Table 3 .

 3 2 -Sweep parameters for Disposition function in simulation

	Parameters	DBA 1 DBA 2
	Rational probability V reward 0.5	0.5
	Rational probability V risk	0.1	0.5
	Affective probability ω init	0.001	0.001
	Affective probability ω actual	0.3	0.15
	Affective probability ω historic 0.9	0.7
	Disgruntled threshold (τ )	0.2	0.5

Table 3 .

 3 3 -DBAs Parameters for cloud-related, contextual and cyber factors

	Parameters	DBA 1	DBA 2
	IP 192.168.1.*	.100	.110
	Location	France	France
	WH	9am-6pm	9am-6pm
	Skill level	30 (high)	60 (med)
	No. Daily Events 10	10

Figure 3.9 -Histogram example of sequences' length for Profile with high, medium and low skills

Table 3 .

 3 

		4 -Benchmark for simulation time in months	
	Simulation time (months) Calculation time (minutes) Storage capacity (MBytes)
	8	7	26
	12	11	40
	15	13	50
	20	19	66

Table 3 .

 3 

		5 -Benchmark for number of users
	Simulated users Calculation time (minutes) Storage capacity (MBytes)
	6	2	300
	12	8	1000
	24	27	4300
	36	59	8700

Table 4 .

 4 1 -Notations for the proposed and compared algorithms

	Notation Range Description
	DS		Stream of n-dimensional data vectors
	x(i)	∈ R +	Value for feature i in vector x
	N	∈ N	Set of neurons
	N u	∈ N	Set of neurons connected to neuron u
	w u w(i)	∈ R d ∈ R +	Prototype w u = (w 1 u , w 2 u , ..., w d u ) of neuron u List of prototype for feature i for all neurons in G
	error(u) ∈ R +	Local accumulated error variable of neuron u
	E	∈ R +	Set of l errors for neurons {u 1 , u 2 , . . . , u l }
	bmu 1	∈ N	BMU (nearest neuron to the x i input)
	bmu 2	∈ N	Second BMU
	H	∈ N 0	Set of hits for all neurons N
	H u	∈ N 0	Number of hits for neuron u
	α 1	∈ [0, 1] bmu 1 (the nearest neuron) adaptation factor
	α 2	∈ [0, 1] bmu 1 's neighbor adaptation factor
	β	∈ [0, 1] Global error factor update
	λ	∈ N	Cycle interval between neuron insertion
	η	∈ N	Cycle interval between neuron deletion
	age max	∈ N	Oldest age allowed for an edge
	T server	∈ R +	Threshold for server severity in G
	T image	∈ R +	Threshold for image severity in G
	T network	∈ R +	Threshold for network severity in G

1 :

 1 Initialize two neurons with prototype vectors w 1 , w 2 ∈ R d 2: for all x ∈ DS do

	3:	Find 1st neuron (winner):
		bmu

1 ← argmin bmu 1 ∈N xw bmu 1 4: Find 2nd nearest neuron (second winner): bmu 2 ← argmin bmu 2 ∈N \bmu 1 xw bmu 2 5:

Table 4 .

 4 2 -Definition of confusion matrix

	ACTUAL	PREDICTED Positive Negative
	Positive	TP	FN
	Negative	FP	TN

Table 4 . 3

 43 

-Descriptive statistics for IaaS-features for generated dataset

  Update the local accumulated number of wins H bmu 1 ← H bmu 1 + 1 Moreover, by means of reviewing the efficiency of the past approaches in comparison with the proposed in this work, Figure 4.7 shows how the network size changes for every model. For this particular experiment, training data consisted in 800 samples of 36 features each, feature set correspondent to the scenario 1 described in Section 6.2.1 from Chapter 6. The experiments from Figure 4.7 correspond to 18 iterations over the same data. The insertion λ step was 50, hence the step curves in Figure 4.7a. Algorithm 8 OSAD Contextual Severity Criterion Input: x i , prototypes w(i) ∀i ∈ {server, image, network} severity Output: Boolean 1: list i ← w(i), ∀i ∈ {server, image, network} 2: T i ← mean(list i ) + std(list i ), ∀i ∈ {server, image, network} 3: boolean_n ← if x(server_severity) > T server 4: boolean_i ← if x(image_severity) > T image 5: boolean_s ← if x(network_severity) > T network 6: Return boolean_n or boolean_i or boolean_s From Figure 4.7 a reader can see that overall the proposed OSAD models have a low global error (Figure 4.7c), a steady insertion/deletion rate (Figure 4.7a) while keeping its neurons with absorbed inputs.

	3:	InsertFromReservoir
	4:	else
	5:	InsertOuterNeuron
	6:	end if
	7:	Continue
	8: end if
	9: if i-th x data is an integer multiple of λ then
	10:	InsertNeuron (Algorithm 6)
	11: end if
	12:	

  Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label count: "T": 4). Winning hits less than thresh 21.56 < 100.12 • Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False, Learning phase: Including neuron 2 from reservoir • Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label count: "T": 5). Hits less than thresh 23.56 < 96.83 • Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False,

	1. Iteration 1
	• Network severity: False
	2. Iteration 2
	• Network severity: False
	3. Iteration 3

• Learning phase: Including neuron 2 from reservoir • Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label count: "T": 6). Hits less than thresh 25.56 < 100.74 • Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False, Network severity: False 4. Iteration 4 • Learning phase: Including neuron 2 from reservoir • Deleting neurons with less than 2 neighbors: neuron 2, neighbors: 26, (sequence label count: "T": 7). Hits less than thresh 27.56 < 98.53 • Sending neuron 2 to reservoir due to Severity Server: True, Image severity: False, Network severity: False

  .2.

	Network Event	Network Session	Calculation
	Start Timestamp	Start Timestamp	event.start_timestamp[first]
		Session Time	event.start_timestamp[last]
			-event.start_timestamp[first]
		End Timestamp	event.start_timestamp[last]
			+ event.data_transfer_times[last]
	Total Bytes	Total Bytes	sum(event.total_bytes)
	Total Packets	Total Packets	sum(event.total_packets)
	Response time	Response time	sum(event.durations)
	UL Data Volume	UL Data Volume	sum(event.ul_data_vols)
	DL Data Volume	DL Data Volume	sum(event.dl_data_vols)
	Source bytes	Source bytes	sum(event.source_bytes)
	HTTP Method	POST Method Count	sum(event.post_method_counts)
		GET Method Count	sum(event.get_method_counts)
		PUT Method Count	sum(event.put_method_counts)
		DELETE Method Count sum(event.delete_method_counts)
	Transaction count	Transaction count	sum(event.transaction_counts)
	Data Transfer time Duration	sum(event.data_transfer_times)
		Table 5.2 -Network features
	Additionally, the user-agent attribute from the HTTP contains the following simulation
	attributes.		
		Simulation Attributes
	Asset	Number of actions	Simulation location
	Profile name (employee's name) Event Id		Label
	ith-Action	Simulation timestamp

Table 5 .

 5 

		3 -Percentage of traceable records with merging methodology
	Profile	Instance action	Task state	Recovered records Percentage
	Employee 1 Server Reboot	reboot	1037	42.378
		Image Snapshot	createImage	189	100.000
		Server Terminate	delete	39	100.000
		Stop server	stop	162	100.000
		Server Change Password changePassword 172	100.000
	Employee 2 Server Reboot	reboot	2550	41.050
		Image Snapshot	createImage	195	100.000
		Server Terminate	delete	40	100.000
		Stop server	stop	167	100.000
		Server Change Password changePassword 180	100.000

  Algorithm 13 Network-IaaS Events' Merging Input: Network Session List, IaaS Session List per profile Output: Network-IaaS Sessions per profile 1: for all net_session ∈ N etworkSessions do

	2:	init_ts ← net_session.init_timestamp
	3:	end_ts ← net_session.end_timestamp
	4:	iaas_sessions ← FilterIaaSRecords(init_ts, end_ts, iaas_sessions)
	5:	if iaas_sessions not empty then
	6:	iaas aggregated ← AggregateIaaSSession(net_session, iaas_sessions)
	7:	netiaas_sessions ← AddNetworkIaasSession(net_session, iaas aggregated )

8:

Table 5 .

 5 4 -IaaS-featuresvice model, where this group of people would know the internal network topology and rules' composition. If the company's services also include applications on top of the IaaS, practical information can be retrieved on what respects to acceptable behaviors, such as CPU loads, applications' up-time, number of VMs or replicas that should be active, port access rules, among others.

	for IaaS-Session Event object

Table 5 .

 5 5 -Severity factors for Image and Server

	(a) Server severity		(b) Image severity	
	Valid Server IaaS attributes	Factor	Image IaaS attributes	Factor
	Server Active Count	0	Image Active Count	
	Server Build Count	1	Image Queued Count	
	Server Rebuild Count	1	Image Preparing Count	
	Server Queue Resize Count	1	Image Deactivated Count	
	Server Prep Resize Count	1	Image Unknown Count	
	Server Resize Count	1	Image Failed Count	
	Server Verify Resize Count	1	Image Delete Count	
	Server Reboot Count	2	Image Pending Delete Count	
	Server Hard Reboot Count	2	Image Killed Count	
	Server Password Count	3	If Sum of Image Active Counts is 0	
	Server Paused Count	3	If Total Image Total Counts is 0	
	Server Suspended Count	4		
	Server Migrating Count	4		
	Server Rescue Count	5		
	Server Delete Count	5		
	Server Unknown Count	5		
	Server Stopped Count	5		
	Server Shutoff Count	7		
	If sum of Servers Count is 0	9		
	If sum of Active Servers' Count is 0 9		

Table 5 .

 5 6 -Severity factors for network in the cloud

	Network attributes	Factor
	Security rules' Count 9

Table 6 .

 6 1 -Experimental results for different learning rates

Table 6 .

 6 .1 depicts how the different learning rates affect the overall clustering quality and global error. 2 -Adaptive neuron insert comparison (proposed algorithm and original)

	ID Profile	Time	Feats	Mod.	Sil. Coef. Neurons Global E. Local Acc. E.
	1	Cloud Admin High Fix	13.987	36	0.435	0.187	18	15941.9	0.716±1.618
	1	Cloud Admin High Adaptive	66.820	36	0.841	0.035	324	2276.62	0.012±0.042
	1	Cloud Admin Medium Fix	18.031	36	0.51	0.159	27	41599.3	1.09±7.241
	1	Cloud Admin Medium Adaptive 66.106	36	0.795	0.371	231	10678.5	0.01±0.036
	2	Cloud Admin High Fix	12.926	44	0.392	0.07	18	24132.7	0.999±2.207
	2	Cloud Admin High Adaptive	58.287	44	0.838	0.374	276	2562.72	0.016±0.051
	2	Cloud Admin Medium Fix	16.509	44	0.439	0.337	27	39912.3	1.102±7.274
	2	Cloud Admin Medium Adaptive 72.009	44	0.834	0.369	306	12816.3	0.01±0.033
	3	Cloud Admin High Fix	12.158	38	0.386	0.251	18	20338.3	0.878±3.434
	3	Cloud Admin High Adaptive	51.932	38	0.848	0.382	298	3200.21	0.008±0.019
	3	Cloud Admin Medium Fix	20.524	40	0.473	0.205	27	35685.6	0.901±5.217
	3	Cloud Admin Medium Adaptive 73.782	40	0.82	0.27	270	7128.76	0.01±0.043
	4	Cloud Admin High Fix	17.482	42	0.43	0.115	18	22965.9	0.848±2.049
	4	Cloud Admin High Adaptive	62.872	42	0.832	0.116	310	2601.34	0.014±0.029
	4	Cloud Admin Medium Fix	16.528	44	0.508	0.222	27	43936.91 1.16±6.634
	4	Cloud Admin Medium Adaptive 67.223	44	0.818	0.22	248	12663.3	0.014±0.058

Table 6 .
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		S.1	S.2	S.3	S.4
	F1-score	0.637	0.271	0.616	0.803
	FPR	0.004	0.037	0.001	0.476
	FNR	0.575	0.843	0.584	0.391
	Precision	0.963	0.936	0.991	0.940
	Recall	0.504	0.159	0.461	0.752
	FN	2664.000	7764.000	2627.000	1067.000
	FP	76.000	95.000	17.000	108.000
	TP	1968.000	1441.000	1870.000	1659.000
	TN	19556.000 9646.000 16164.000 18253.000

3 -Averaged external metric results for four scenarios with the OSAD algorithm

  Table A.1 -Experimental results for sequence features as numerical data

		Time	Internal Modularity Silhouette Coms. found Normal Threat Unknown ARI Labeling	NMI	External F1	Accuracy FPR
	Cloud Admin High Alphabet Seq Only	34.603316	0.834946	0.631	13	1	0	12	0.237659	0.325467 0.472 0.770	0.256
	Cloud Admin High Alphabet Seq and other Feats	54.830397	0.818913	-0.036	17	12	0	5	0.264090	0.058151 0.371 0.884	0.057
	Cloud Admin Medium Alphabet Seq Only	46.414830	0.809578	0.566	11	2	0	9	0.048926	0.074710 0.096 0.769	0.233
	Cloud Admin Medium Alphabet Seq and other Feats 118.933960 0.859154	0.237	20	9	0	11	0.019910	0.016907 0.059 0.710	0.289
	Cloud Admin High 1-gram Seq-only	41.656105	0.813539	0.537	11	3	0	8	0.530819	0.244589 0.664 0.901	0.109
	Cloud Admin High 2-gram Seq-only	35.361977	0.825814	0.779	11	5	0	6	-0.013859 0.121068 0.123 0.600	0.364
	Cloud Admin High 3-gram Seq-only	29.207140	0.745466	0.513	8	5	0	3	0.703185	0.228799 0.761 0.958	0.001
	Cloud Admin High 1-gram Seq-feats	60.447913	0.841771	0.129	15	7	0	8	0.001458	0.084937 0.181 0.532	0.465
	Cloud Admin High 2-gram Seq-feats	55.331043	0.855454	0.426	19	7	0	12	0.073439	0.066765 0.298 0.669	0.332
	Cloud Admin High 3-gram Seq-feats	65.185473	0.875944	0.297	21	4	0	17	-0.022123 0.084752 0.230 0.462	0.577
	Cloud Admin Medium 1-gram Seq-only	26.534031	0.750503	0.864	9	4	0	5	0.881494	0.047153 0.885 0.997	1.000
	Cloud Admin Medium 2-gram Seq-only	25.847943	0.753429	0.875	10	3	0	7	0.043974	0.032048 0.088 0.762	0.240
	Cloud Admin Medium 3-gram Seq-only	30.556918	0.748077	0.630	10	3	0	7	0.038691	0.035276 0.079 0.776	0.223
	Cloud Admin Medium 1-gram Seq-feats	89.450220	0.844221	0.057	19	10	0	9	0.008669	0.019387 0.040 0.745	0.249
	Cloud Admin Medium 2-gram Seq-feats	94.517919	0.842157	0.406	15	10	0	5	0.009375	0.010454 0.038 0.863	0.127
	Cloud Admin Medium 3-gram Seq-feats	105.978900 0.882283	0.378	18	8	0	10	0.044174	0.016188 0.089 0.757	0.245
	Cloud Admin High 1-gram Seq-only	24.502653	0.722063	0.652	8	2	0	6	0.181339	0.301477 0.404 0.750	0.261
	Cloud Admin High 2-gram Seq-only	27.673261	0.736586	0.499	9	3	0	6	0.127958	0.170443 0.329 0.739	0.249
	Cloud Admin High 3-gram Seq-only	26.197885	0.764599	0.737	10	6	0	4	0.227217	0.121573 0.421 0.797	0.191
	Cloud Admin High 1-gram Seq-feats	57.601754	0.822315	0.413	14	5	0	9	0.191802	0.098439 0.353 0.815	0.149
	Cloud Admin High 2-gram Seq-feats	65.644418	0.827478	0.146	15	7	0	8	0.061508	0.072392 0.261 0.694	0.280
	Cloud Admin High 3-gram Seq-feats	56.945146	0.861759	0.388	16	8	0	8	0.102926	0.071671 0.276 0.758	0.208
	Cloud Admin Medium 1-gram Seq-only	34.623877	0.770876	0.921	10	5	0	5	0.825137	0.060661 0.831 0.996	1.000
	Cloud Admin Medium 2-gram Seq-only	36.335605	0.794424	0.677	10	5	0	5	0.572979	0.026143 0.582 0.991	1.000
	Cloud Admin Medium 3-gram Seq-only	29.444148	0.781443	0.707	9	5	0	4	0.658056	0.031687 0.667 0.992	1.000
	Cloud Admin Medium 1-gram Seq-feats	73.175335	0.815612	0.323	14	4	0	10	-0.001401 0.005482 0.048 0.488	0.518
	Cloud Admin Medium 2-gram Seq-feats	113.543062 0.872850	0.439	15	7	0	8	-0.000645 0.007493 0.023 0.576	0.421
	Cloud Admin Medium 3-gram Seq-feats	108.910944 0.866384	0.350	17	7	0	10	0.015151	0.014741 0.050 0.698	0.301

Network protocol developed by Cisco for the collection and monitoring of network traffic flow data generated by NetFlow-enabled routers and switches.

Usually considered bigger than 80% for the presented experimental work, but without the loss of generality it can be adjusted to other values.

The IaaS description details can be found in[START_REF]Openstack Server Statuses description[END_REF].

The BSD Syslog Protocol

Service that enables compliance and security auditing by logging all actions taken by users towards the CSC's assets
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