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Abstract

This thesis studies the consumption/investment problem for the spread financial market

defined by the Ornstein–Uhlenbeck (OU) process. Recently, the OU process has been used

as a proper financial model to reflect underlying prices of assets. The thesis consists of 8

Chapters.

Chapter 1 presents a general literature review and a short view of the main results obtained

in this work where different utility functions have been considered.

The optimal consumption/investment strategy are studied in Chapter 2 for the power utility

functions for small time interval, that 0 < t < T < T0. Main theorems have been stated and

the existence and uniqueness of the solution has been proven. Numeric approximation for the

solution of the HJB equation has been studied and the convergence rate has been established.

In this case, the convergence rate for the numerical scheme is super geometrical, i.e., more

rapid than any geometrical ones. A special verification theorem for this case has been shown.

In this chapter, we have studied the Hamilton–Jacobi–Bellman (HJB) equation through the

Feynman–Kac (FK) method. The existence and uniqueness theorem for the classical solution

for the HJB equation has been shown.

Chapter 3 extended our approach from the previous chapter of the optimal consumption/in-

vestment strategies for the power utility functions for any time interval where the power

utility coefficient γ should be less than 1/4.

Chapter 4 addressed the optimal consumption/investment problem for logarithmic utility

functions for multivariate OU process in the base of the stochastic dynamical programming

method. As well it has been shown a special verification theorem for this case. It has been

demonstrated the existence and uniqueness theorem for the classical solution for the HJB

equation in explicit form. As a consequence the optimal financial strategies were constructed.

Some examples have been stated for a scalar case and for a multivariate case with diagonal

volatility.

Stochastic volatility markets has been considered in Chapter 5 as an extension for the previous

chapter of optimization problem for the logarithmic utility functions.
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Chapter 6 proposed some auxiliary results and theorems that are necessary for the work.

Numerical simulations has been provided in Chapter 7 for power and logarithmic utility

functions. The fixed point value h for power utility has been presented. We study the con-

structed strategies by numerical simulations for different parameters. The value function for

the logarithmic utilities has been shown too.

Finally, Chapter 8 reflected the results and possible limitations or solutions.

Keywords Financial spread markets · Ornstein–Uhlenbeck processes · Optimal consump-

tion/investment problem · Stochastic control · Dynamical programming · Hamilton–Jacobi–

Bellman equation · Feynman–Kac mapping · Numerical schemes.

Mathematics Subject Classification (2010) primary MSC 60P05 · secondary MSC 60G05
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Résumé

Dans cette thèse, on étudie le problème de la consommation et de l’investissement pour le

marché financier de "spread" (différence entre deux actifs) défini par le processus Ornstein

- Uhlenbeck (OU). Ce manuscrit se compose de sept chapitres. Le chapitre 1 présente une

revue générale de la littérature et un bref résumé des principaux résultats obtenus dans ce

travail où différentes fonctions d’utilité sont considérées.

Dans le chapitre 2, on étudie la stratégie optimale de consommation/investissement pour les

fonctions puissances d’utilité pour un intervalle de temps réduit à 0 < t < T < T0. Dans ce

chapitre, nous étudions l’équation de Hamilton–Jacobi–Bellman (HJB) par la méthode de

Feynman - Kac (FK). L’approximation numérique de la solution de l’équation de HJB est

étudiée et le taux de convergence est établi. Il s’avère que dans ce cas, le taux de conver-

gence du schéma numérique est super–géométrique, c’est-à-dire plus rapide que tous ceux

géométriques. Les principaux théorèmes sont énoncés et des preuves de l’existence et de

l’unicité de la solution sont données. Un théorème de vérification spécial pour ce cas des

fonctions puissances est montré.

Le chapitre 3 étend notre approche au chapitre précédent à la stratégie de consommation/

investissement optimale pour tout intervalle de temps pour les fonctions puissances d’utilité

où l’exposant γ doit être inférieur à 1/4.

Dans le chapitre 4, on résout le problème optimal de consommation/investissement pour les

fonctions logarithmiques d’utilité dans le cadre du processus OU multidimensionnel en se

basant sur la méthode de programmation dynamique stochastique. En outre, on montre un

théorème de vérification spécial pour ce cas. Le théorème d’existence et d’unicité pour la

solution classique de l’équation de HJB sous forme explicite est également démontré. En

conséquence, les stratégies financières optimales sont construites. Quelques exemples sont

donnés pour les cas scalaires et pour les cas multivariés à volatilité diagonale.

Le modèle de volatilité stochastique est considérée dans Chapter 5 comme une extension du

chapitre précédent des fonctions logarithmique d’utilité.

Le chapitre 6 propose des résultats et des théorèmes auxiliaires nécessaires au travail.

Le chapitre 7 fournit des simulations numériques pour les fonctions puissances et loga-

rithmiques d’utilité. La valeur du point fixé h de l’application de FK pour les fonctions



x

puissances d’utilité est présentée. Nous comparons les stratégies optimales pour différents

paramètres à travers des simulations numériques. La valeur du portefeuille pour les fonctions

logarithmiques d’utilité est également obtenue.

Enfin, nous concluons nos travaux et présentons nos perspectives dans le chapitre 8.

Mots-clés Marché financier de "spread" · Le processes d’Ornstein–Uhlenbeck · Problème op-

timal d’investment et de consommation · Contrôle stochastique · Programmation dynamique

· L’équation de Hamilton–Jacobi–Bellman · L’application de Feynman–Kac · Schémas

numériques.

Classification par sujet de mathématiques (2010) primaire MSC 60P05 · secondaire MSC

60G05



Table of contents

List of figures xiii

1 Introduction 1

1.1 Spread markets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Dynamic programming method . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Optimisation for power utility function on small time interval 11

2.1 Market model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Main parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Hamilton–Jacobi–Bellman (HJB) equation . . . . . . . . . . . . . . . . . . 16

2.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Properties of the Feynman–Kac (FK) mapping . . . . . . . . . . . . . . . . 20

2.6 Properties of the fixed-point function h . . . . . . . . . . . . . . . . . . . . 25

2.7 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Proof of Theorem 2.4.1 . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.2 Proof of Theorem 2.4.2 . . . . . . . . . . . . . . . . . . . . . . . 33

2.7.3 Proof of Theorem 2.4.3 . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7.4 Proof of Proposition 2.5.1 . . . . . . . . . . . . . . . . . . . . . . 34

2.7.5 Proof of Proposition 2.5.3 . . . . . . . . . . . . . . . . . . . . . . 34

2.7.6 Proof of Lemma 2.7.1 . . . . . . . . . . . . . . . . . . . . . . . . 36

3 Optimisation for power utility functions for any time interval 39

3.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Properties of optimal strategies . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Optimisation for logarithmic utility functions 45

4.1 Market model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Hamilton–Jacobi–Bellman equation . . . . . . . . . . . . . . . . . . . . . 47



xii Table of contents

4.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 Proof of Theorem 4.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.2 Proof of Theorem 4.3.2 . . . . . . . . . . . . . . . . . . . . . . . . 54

5 Stochastic volatility model 57

5.1 Market model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Hamilton–Jacobi–Bellman equation . . . . . . . . . . . . . . . . . . . . . 59

5.3 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Proof of Theorem 5.3.1 . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Proof of the verification Theorem 5.3.2 . . . . . . . . . . . . . . . 63

6 Toolbox 65

6.1 Cauchy Problem for linear parabolic equations . . . . . . . . . . . . . . . . 65

6.2 Cauchy Problem for quasilinear parabolic equations . . . . . . . . . . . . . 67

6.3 Verification theorem for positive utility functions . . . . . . . . . . . . . . 68

6.4 Verification theorem for any utility fucntions . . . . . . . . . . . . . . . . . 71

6.5 Technical Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.5.1 The smoothness properties of the process in Eq. (2.2.6) . . . . . . 75

7 Numerical Simulation 79

7.1 Numerical Simulation for power utility functions . . . . . . . . . . . . . . 79

7.2 Numerical Simulation for logarithmic utility functions . . . . . . . . . . . 81

8 Conclusion 87

References 89

Appendix A The R simulation codes 95

A.1 Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . . . . . . . . . 95

A.2 Simulation for power utility . . . . . . . . . . . . . . . . . . . . . . . . . . 96

A.3 Simulation for log utility . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



List of figures

1.1 Ornstein-Uhlenbeck process . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 The function g(t) with different parameters κ and σ . . . . . . . . . . . . . 14

7.1 The Limit function h(s, t) . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2 The wealth process x∗ with the parameters α∗ and c∗ when σ = 0.1, r = 0.05

and κ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3 The value function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4 The wealth process with the parameters α and c when σ = 1, r = 0.01 and

κ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.5 The wealth process X with the parameters α and c when σ = 1, r = 0.1 and

κ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.6 The wealth process X with the parameters α and c when σ = 1, r = 0.2 and

κ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7.7 The wealth process X with the parameters α and c when σ = 1, r = 0.5 and

κ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.8 The wealth process with the parameters α and c when σ = 5, r = 4 and κ = 5. 83

7.9 The wealth process X with the parameters α and c when σ = 5, r = 0 and

κ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.10 The wealth process with the parameters α and c when σ = 20, r = 0.01 and

κ = 0.5 with n = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.11 The wealth process X with the parameters α and c when σ = 20, r = 0 and

κ = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.12 The wealth process with the parameters α and c when σ = 0.1, r = 0.01 and

κ = 5 with n = 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.13 The wealth process X with the parameters α and c when σ = 0.1, r = 0.1

and κ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



xiv List of figures

7.14 The wealth process X with the parameters α and c when σ = 0.1, r = 0.2

and κ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.15 The wealth process X with the parameters α and c when σ = 0.1, r = 1 and

κ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.16 The wealth process X with the parameters α and c when σ = 0.1, r = 3 and

κ = 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



Chapter 1

Introduction

One of the fundamental problems in financial mathematics is distributing the endowment

between assets to obtain a high return at the end of the time contract. Robert Merton has

been the first to investigate a consumption/investment problem for Black–Scholes (Bl–Sch)

markets with constant coefficients (Merton, [64]). In his paper, he formulated the optimiza-

tion problem and maximized utilities. Thereafter, the interest in the consumption/investment

problem has increased among researchers. Therefore, Merton’s classical problem has been

generalized and extended by considering more complicated forms such as including transac-

tion costs and bankruptcy. This thesis studies the optimal consumption/investment problem

during a fixed time interval [0,T ] for a financial market generated by risky spread assets

defined through the Ornstein–Uhlenbeck (OU) processes. The interest in the subject came

from a paper that studied a one dimensional pure investment problem with one spread of

risky assets for a finite time interval (Boguslavsky and Boguslavskaya, [13]). It considered

a power utility over the final wealth X
γ
T for −∞ < γ < 1 by using OU process to model the

spread for risky assets.

In this thesis, we develop the problem proposed in (Boguslavsky and Boguslavskaya [13])

by adding a riskless asset and a consumption to the model. Therefore, from financial per-

spectives, the investor has more options to choose from during a pre-specified time interval,

either investing or consuming. So, in this research our goal is to optimize this problem to get

the optimal solution in order to help the trader to take a good decision.

We suppose that a spread (difference) of risky assets follows an OU process which is given

by

dSt =−κ(St−θ)dt +σdWt ,

where κ > 0 is the speed of mean reverting, σ > 0 is a noise component and Wt is a Wiener

process. So, this process will revert to it’s long term mean θ . For simplifying, it is been
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assumed that the long term mean θ is zero. The process St is normally distributed and is

given by

St = θ +(Ss−θ)e−κ(t−s)+σ

∫ t

s

e−κ(t−u)dWu ,

with the following parameters

E
(
St+s|St

)
= θ +(St−θ)e−κs and Var

(
St+s|St

)
=

(
1− e−2κs

2κ

)
σ2 .

As seen in Fig. 1.1 below, the Ornstein–Uhlenbeck process is presented for a single path in

Fig. 1.1a and for 10 paths in Fig. 1.1b with mean reverting equals to zero and parameters σ

and κ equal to one in the single path and κ = 0.5 in multipath. The trader’s position αt in

(a) One path Ornstein-Uhlenbeck process (b) Multipath Ornstein-Uhlenbeck process

Fig. 1.1 Ornstein-Uhlenbeck process

the risky asset at time t and the consumption ct until time t are the control parameters in our

optimization problem with the assumption that short selling is allowed. Noting that, there is

no conditions on wealth. The wealth dynamics for the control parameters is given by

dXυ
t
= (rXυ

t
−κ1αtSt− ct)dt +αtσdWt . (1.0.1)

Our goal is to maximize the utility for all admissible strategies υ = (α,c) ∈ V (ς) , i.e., for

ς = (x,s),

J∗(ς) = sup
υ∈V

J(ς ,υ) := sup
υ∈V

Eς

(∫ T

0

f(cu)du+h(Xυ
T
)

)
, (1.0.2)

where Eς is the conditional expectation under the condition that ς0 = (X0,S0) = ς and Xυ
T

is

the terminal wealth over the strategy υ and the functions f and h are representing the utility

functions.

In this thesis, we use power and logarithmic utility functions.
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1.1 Spread markets

This thesis focuses on the spread of risky assets, also called the relative spread trading, which

can be explained as pairs trading in a financial market. The idea of spread trading is not

new, it has been used for nearly three decades in Wall Street market. Among the pioneers of

this idea was Nunzio Tartaglia’s quantitative group at Morgan Stanley investment bank and

financial services company.

Several studies have used the notion of spread to examine the behavior of the financial

markets. For example, for the precious metals markets, studies have examined the spread

of gold futures and the Treasury bill futures (Monroe and Cohn [69]). In addition, spread

has been studied for oil markets. For example, Grima and Paulson [32] investigated the long

term price relationship between futures prices of crude oil, unleaded gasoline, and heating

oil. Such problems are of prime interest for practical investors such as those in the electricity

and gas markets, and also in other sectors like microstructure level within the airline industry.

However, although the idea of pairs trading is widely used, the academic research about it is

still small (Gatev et al. [29]).

In this thesis, we are concerned with the time-series approach of pairs trading. Moreover,

these problems for Bl-Sch markets and stochastic utility markets are considered in many

papers (see, for example, Karatzas and Shreve [44], Klüppelberg and Pergamenchtchikov

[48], Duffie et al. [17] and Berdjane and Pergamenchtchikov [9]). The affine processes

proposed in Duffie et al. [17] and Kraft et al. [45] to be used in the financial markets in

the general framework, however, unfortunately we can not use these methods due to the

additional variable in the HJB equation corresponding to the risky asset.

The aim of the spread (or pairs trading) strategy is to gain profits from mispricing of two

assets. Therefore, the actual price of an asset is not of high importance, but rather the

anomalies of this asset (Gatev et al. [29]). In order to break down the concept of spread in

more detail, we have to explain first the notion of cointegration. In this dissertation, we are

concerned with certain types of assets. They have to be cointegrated, which means that the

assets should be correlated and have certain behavior together over time. Therefore, they

diverge from each other for a certain volatility and they return back to their mean-reverting

point. This gives the opportunity to get a profit when the price of the two assets diverges

from the standard value.

This thesis is not concerned with the idea of how to choose the assets as it is beyond our

focus. However, there are several papers that have studied the choice of pairs by using some

tests such as the Minimum Distance method (MDM), Augmented Dickey-Fuller (ADF) Test
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and Grander Causality (GC) (see, for example, Raghava and Bharadwaj[75]). Therefore,

in order to know how this mechanism works, let us assume that we have two assets and

these two assets are cointegrated. Thus, they have to converge over time to their standard

position. The speculator can profit by going short or long between these two assets as they

divert from the mean-reverting point. More precisely, going long for the asset that is below

the mean-reverting line and going short in the other asset that is above the mean-reverting

line. Therefore, this strategy is quite useful in any market case. It enables the investor to

hedge the exposure of the market. In our model development, firstly we use the OU process

to model the spread markets. It is a mean-reverting and stationary process (see, for example,

Boguslavsky and Boguslavskaya [13] and the references therein).

1.2 Dynamic programming method

We recall what means the dynamic programming method for deterministic systems.

To this end, we fix a terminal time T , the controlled dynamics ODE





ẋ(s) = f (x(s),υ(s)), t ≤ s≤ T,

x(t) = x.

with the associated payoff functional

Jx,t [υ(·)] =
∫ T

t

r(x(s),υ(s))ds+g(x(T )) .

Definition 1.2.1. For x ∈ R
n, 0≤ t ≤ T , define the value function V (x, t) to be the greatest

payoff possible if we start at x ∈ R
n at time t. In other words,

V (s, t) := supυ∈V Jx,t [υ(·)] x ∈ R
n,0≤ t ≤ T .

Notice then that

V (x,T ) = g(x) x ∈ R
n .

We want to show that the value function V satisfies a certain nonlinear partial differential

equation.
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Theorem 1.2.1 (Hamilton-Jacobi-Bellman equation). Assume that the value function V is a

C1 function of the variables (x, t). Then V solves the nonlinear partial differential equation

Vt(x, t)+max
υ∈V
{ fff (x,υ) ·∇xV (x, t)+ r(x,υ)}= 0, x ∈ R

n,0≤ t ≤ T ,

with the terminal condition

V (x,T ) = g(x) (x ∈ R
n).

Remark 1.2.1. We can write the latter HJB equation as

Vt(x, t)+H(x,∇xV ) = 0 (x ∈ R
n,0≤ t ≤ T ) ,

and for the PDE Hamiltonian

H(x, p) := max
υ∈V

H(x, p,υ) = max
υ∈V
{ fff (x,υ) · p+ r(x,υ)}

where x, p ∈ R
n and x · y is the scalar product.

Proof. The proof is stated in (Lawrence [56], Theorem 5.1)

Dynamic programming method is used to design optimal control by firstly solving the HJB

equation and computing the value function V . Then by using the obtained value function and

the HJB equation to find the optimal control α∗(.). In order to do this we define a parameter

value α(x, t) ∈ A where the maximum in HJB is attained for each x ∈R
n and each 0≤ t ≤ T ,

i.e., select α(x, t) such that

Vt(x, t)+ fff (x,α(x, t))∇̇xV (x, t)+ r(x,α(x, t)) = 0 .

Then by Solving the following ODE

{
ẋ∗(s) = fff (x∗(s),α(x∗(s),s)) t ≤ s≤ T ,

x(t) = x ,

we define the optimal control

α∗(s) := α(x∗(s),s) .

In the stochastic dynamic programming, we use the Feynnman-Kac (FK) formula given in

this theorem.
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Theorem 1.2.2. Let K(x) be a nonnegative, continuous function, and let f (x) be bounded

and continuous. Suppose that u(x, t) is a bounded function that satisfies the following partial

differential equation

ut =
1

2
uxx−K(x)u ,

and the initial condition

u(x,0) = f (x) .

Then

u(x, t) = Ex exp

{
−
∫ t

0

K(Ws)ds

}
f (Wt) ,

where under the probability measure Px, the process (Wt)t≥0 is Wiener process started at x.

In the stochastic dynamic programming, usually through the FK formula, one obtains

that the value in Eq. (1.0.2) satisfies the HJB equation which is parabolic PDE of the second

order.

1.3 Problems

Generally, in this thesis, we consider the following market model.





dŠt = rŠtdt, Š0 = 1,

dSt =−κStdt +σdWt , S0 > 0 ,

where κ > 0 is the market mean-reverting parameter from R and σ > 0 is the market volatility.

We assume that the bond’s interest rate r ≤ κ . Let now α̌t be the number of riskless assets

(bonds) denoted by Š and let αt be the investment position in risky assets (stocks) at the

moment 0≤ t ≤ T , and the consumption rate is given by a non negative integrated function

(ct)0≤t≤T (Karatzas and Shreve [44]). Thus, the wealth process is given by

Xt = α̌t Št +αtSt ,

and therefore,

dXt = α̌tdŠt +αtdSt− ctdt.

We define the financial strategy as

υ = (υt)0≤t≤T = (αt ,ct)0≤t≤T .
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Then the differential equation for the wealth process for the financial strategy can be written

as

dXυ
t
= (rXυ

t
−κ1αtSt− ct)dt +αtσdWt ,

where κ1 = κ + r > 0. Our main goal is to maximize the value function Eq. (1.0.2) for

different utility functions f and h.

In Chapter 2 and Chapter 3, we consider the power utility functions, i.e., f(x) = h(x) = xγ ,

where 0 < γ < 1. According to the dynamical programming method, we need to study the

corresponding Hamilton–Jacobi–Bellman (HJB) equation. In order to find the HJB solution,

we will use probabilistic representation for the parabolic partial differential equation (PDE) on

the basis of the Feynman–Kac (FK) mapping. Therefore, we develop the fixed-point method

for the FK mapping by constructing a special completed metrical space in C1,0
(
R× [0,T ]

)

and we show that in the introduced metrical space the FK mapping is contracted. In addition,

through the fixed-point solution for the FK mapping we show the existence and uniqueness

theorem for the HJB equation. Then we represent the HJB solution through the fixed-point of

the FK’s mapping. Moreover, we develop the verification theorem method for this problem

by applying the general verification theorem for a general optimal stochastic control problem

for the positive utility functions. We also study the moment properties for the optimal wealth

process to provide the uniform integrability property for the HJB solution calculated for

the optimal strategy. Therefore, we show a new special verification theorem for the spread

markets by checking all conditions stated in the general optimal stochastic control problem.

Lastly, we do the following numerical analysis for the application of the constructed optimal

strategies. Using the contracted properties of the FK mapping we find the upper bound in

the explicit form for the approximation accuracy of the iterative scheme. Minimizing the

obtained upper bound, we highlight that the convergence rate is super geometrical, i.e. more

rapid than any geometrical one.

In Chapter 4 and Chapter 5, we consider the logarithmetic utility functions, i.e.,

f(x) = h(x) = lnx, for the problem Eq. (1.0.2). We find the HJB solution in the explicit form

and we construct the optimal strategies. In this thesis the optimal strategies are found by the

following plan.

• We consider the optimization problem in a framework of the optimal stochastic

control and to resolve this problem we use the dynamical programming method.

• According to the dynamical programming method, we need to study the correspond-

ing Hamilton–Jacobi–Bellman (HJB) equation.
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• To find the HJB solution in the power utility case, we will use the probabilistic

representation for the parabolic partial differential equation (PDE) on the basis of the

Feynman–Kac (FK) mapping.

• We develop the fixed-point method for the FK mapping:

1. we construct a special completed metrical space in C1,0
(
R× [0,T ]

)
;

2. we show that in the introduced metrical space the FK mapping is contracted;

3. through the fixed-point solution for the FK mapping we show the existence and

uniqueness theorem for the HJB equation;

4. we represent the HJB equation through the fixed-point of the FK’s mapping.

• We develop the verification theorem method:

1. we apply the general verification theorem for a general optimal stochastic

control problem for the positive utilities functions;

2. we study the moment properties for the optimal wealth process to check the

uniform integrability property for the HJB solution calculated for the optimal

strategy;

3. we show the verification theorem for the spread markets by checking all condi-

tions stated in the general optimal stochastic control problem.

• We do the following numerical analysis for the application of the constructed optimal

strategies for power utility case:

1. using the contracted properties of the FK mapping we find the upper bound in

the explicit form for the approximation accuracy of the iterative scheme;

2. minimizing the obtained upper bound, we highlight that the convergence rate is

super geometrical, i.e. more rapid than any geometrical one.

This thesis is organised as follows: In Chapter 2, we consider the optimization for power

utility function in a scalar case where the time interval is quite small. We proof a modified

verification theorem for spread markets. In addition the Cauchy problem is been studied for

this problem in order to proof the existence of its the solution.
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In Chapter 3, the time interval issue is no longer a problem. So, the optimization for

power utility function is considered for any time interval.

In Chapter 4, we study the optimization problem for logarithmic utility functions for

multi-dimensional case. This problem is different than the previous two problems that been

discussed in the first two chapters. In this problem we have not a nonlinear term in the

HJB equation that we obtain, however, the methods that been used before for the power

utility function case do not apply for this case. In this chapter, the solution for the HJB

equation has been obtained explicitly. The verification theorem in this cas is shown as well.

In addition, some examples have been demonstrated for scalar case and for diagonal volatility

in multivariate case.

In Chapter 5, we continue the study of the optimization problem for stochastic volatility

markets.

In Chapter 6, the auxiliary lemmas and theorems have been stated such as Cauchy

problem and special verification theorems. Finally, numerical analysis has been shown

in Chapter 7 by using different parameters to show the effect of these parameters on the

strategies and wealth.





Chapter 2

Optimisation for power utility function

on small time interval
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This Chapter deals with an optimal consumption/investment problem during a fixed time

interval [0,T ] for a financial market generated by risky spread assets defined through the

Ornstein–Uhlenbeck (OU) processes. We consider a small time interval where the maturity

time T < T0. The investor will make decisions regarding to investing and consuming for a

portfolio based on a power utility function of the form xγ for γ ∈ (0,1). Through this chapter,

we develop a new method for the probabilistic analysis of the parabolic PDE. Similarly
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to (Berdjane and Pergamenchtchikov [9]), we study the Hamilton–Jacobi–Bellman (HJB)

equation through the Feynman–Kac (FK) representation.

2.1 Market model

Let (Ω,FT ,(Ft)0≤t≤T ,P) be a standard filtered probability space with the Wiener process

(Wt)0≤t≤T and Ft = σ{Wu,u ≤ t}. Our financial market consists of one riskless asset

(Št)0≤t≤T and risky spread asset (St)0≤t≤T , and is governed by the following equations:





dŠt = rŠtdt, Š0 = 1,

dSt =−κStdt +σdWt , S0 > 0.
(2.1.1)

Here the constant κ > 0 is the market mean-reverting parameter from R and σ > 0 is the

market volatility. We assume that the interest rate r of riskless asset (bond) Š should be less

than κ . Let now α̌t be the number of shares in the riskless asset Š and αt be the investment

position in risky assets (stocks) at the moment 0≤ t ≤ T , and the consumption rate is given

by a non negative integrated function (ct)0≤t≤T [44]. Thus, the wealth process is given by

Xt = α̌t Št +αtSt .

Using the self financial principle from [44] then the wealth process Xt can be written as

dXt = α̌tdŠt +αtdSt− ctdt. (2.1.2)

We define the financial strategy as

υ = (υt)0≤t≤T = (αt ,ct)0≤t≤T .

So, replacing now in (2.1.2) the differentials dŠt and dSt by their definitions in (2.1.1), we

obtain the differential equation for the wealth process corresponding to the financial strategy

υ :

dXυ
t
= (rXυ

t
−κ1αtSt− ct)dt +αtσdWt , (2.1.3)

where κ1 = κ + r > 0.

Definition 2.1.1. The financial strategy υ = (υt)0≤t≤T is called admissible if this stochastic

control process is adapted and the equation (2.1.3) has a unique strong non negative solution
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and the following conditions hold.

∫ T

0

α2
t

dt < ∞ and

∫ T

0

ctdt < ∞.

We denote by V the set of all admissible financial strategies. For initial endowment x > 0,

admissible strategy υ ∈ V , and state process ςt = (Xυ
t
,St), we introduce the following

objective function for 0 < γ < 1

J(ς , t,υ) := Eς ,t

(∫ T

t

cγ
u
du+ϖ(Xυ

T
)γ

)
, (2.1.4)

where ϖ > 0 is some fixed constant, Eς ,t is the conditional expectation with respect to

ςt = ς = (x,s). We set J(ς ,υ) = J(ς ,0,υ). Our goal is to maximize the objective function

(2.1.4), i.e.

sup
υ∈V

J(ς ,υ) .

To do this we use the dynamical programming method. Therefore, we need to study the

optimization problem for the objective function (2.1.4), i.e., for any 0≤ t ≤ T ,

J∗(ς , t) = sup
υ∈Vt

J(ς , t,υ) , (2.1.5)

where Vt is the set of all admissible financial strategies υ ∈ V such that (υu)t≤u≤T is Ft,u

adapted, Ft,u = σ{Ws−Wt , t ≤ s≤ u}.
Remark 2.1.1. The coefficient 0 < ϖ < ∞ explains the investor’s preference between con-

sumption and pure investment problem. Therefore, we did not consider the case where ϖ = 0,

as in reality the trader is more interested in the terminal wealth than consumption.

2.2 Main parameters

First we introduce the following ordinary differential equation

ġ(t)−2γ2g(t)+ γ1g2(t)+ γ3 = 0 and g(T ) = 0,

where ġ is the derivative of g,

γ1 =
σ2

1− γ
, γ2 =

γκ1

1− γ
+κ, κ1 = κ + r and γ3 =

γκ2
1

(1− γ)σ2
.
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One can check directly that

g(t) = γ̌2−ϑ − 2ϑ(γ̌2−ϑ)

eω(T−t)(γ̌2 +ϑ)− γ̌2 +ϑ
, (2.2.1)

where γ̌2 = γ2/γ1, γ̌3 = γ3/γ1, ω = 2ϑγ1 and ϑ =
√

γ̌2
2 − γ̌3 .

Note that, as seen in Fig. 2.1, the function g(t) is decreasing, i.e., max0≤t≤T g(t) = g(0). One

can check directly that

g(0)≤
√

γκ1

σ2
. (2.2.2)

From Fig. 2.1, we set r = 0.1 and γ = 0.2. We see that the function g(t) is aggressively

decreasing in Fig. 2.1c at time t = 0.9 when we choose κ = 5 and σ = 1. However for

Fig. 2.1a and (Fig. 2.1b) the function curve is less aggressive when we consider respectively

κ = 1 and σ = 1 (κ = 1 and σ = 0.5). Taking into account that r ≤ κ , we get that γ̌2
2
≥ γ̌3.

(a) (b) (c)

Fig. 2.1 The function g(t) with different parameters κ and σ .

Furthermore, we set

B1 =
1

γ1



√

π

2T
+

√
|π−4T σ2ϖ

1
γ−1 |

2T


 and B0 = q̌1T, (2.2.3)

where q̌1 =

√
γκ1

2
+ rγ +(1− γ)ϖ

1
γ−1 +

γ1

2
B2

1
. We denote by C

1,0
+

(
R× [0,T ]

)
, the set of

all positive functions from C1,0
(
R× [0,T ]

)
, i.e. the set of all R× [0,T ]→ R+ continuous

partial derivatives with respect to the first variable s and continuous functions in the second

variable t. Now we introduce the following set

X =
{

h ∈C1,0
+

(
R× [0,T ]

)
: sup

s,t
h(s, t)≤ B0, sup

s,t
|hs(s, t)| ≤ B1

}
. (2.2.4)
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For some κ > 1, which we will precise later, we introduce the metric in this space

ρ( f ,h) = sup
s∈R ,0≤t≤T

e−κ(T−t)ϒ f ,h(s, t), (2.2.5)

where ϒ f ,h(s, t) = |h(s, t)− f (s, t)|+ |hs(s, t)− fs(s, t)|. Now, for any 0≤ t ≤ T and s ∈ R,

we introduce the process (ηs,t
u
)t≤u≤T as the solution of the following stochastic differential

equation

dηs,t
u

= g1(u)η
s,t
u

du+σdW̌u, ηs,t
t

= s, (2.2.6)

where g1(t) = γ1g(t)− γ2 and (W̌u)u≥0 is a standard Brownian motion. It is clear that

ηs,t
u
∼N (s µ(u, t),σ2

1
(u, t)), with

µ(u, t) = exp

{∫ u

t

g1(ν)dν

}
and σ2

1
(u, t) = σ2

∫ u

t

µ2(u,z)dz .

Now, for any h ∈X , we define the FK mapping as

Lh(s, t) =
∫ T

t

EΨh(η
s,t
u
,u)du, (2.2.7)

where Ψh(s, t) = Γ0

(
s, t,h(s, t),hs(s, t)

)
and

Γ0(s, t,y1,y2) =
σ2y2

2

2(1− γ)
+

σ2g(t)

2
+ rγ +(1− γ)ϖ1G(s, t,y1). (2.2.8)

Here, the coefficient ϖ1 = ϖ−1/(1−γ) and

G(s, t,y) = exp

{
− 1

1− γ

(
s2

2
g(t)+ y

)}
. (2.2.9)

We assume that T < T0 and

T0 = min(P1,P2,P3) , (2.2.10)

where

P1 =
κ(1− γ)

2(3+ γ)κ2

, P2 =
γ(1− γ)

(3+ γ)(γ +1)σ2g(0)
, P3 =

π

4σ2

and κ2 = κ2
1

(
1/σ2 +1/2+g(0)/κ1

)
.

As seen in Table 2.1, the value of T0 has been shown for different parameters r, κ , σ and γ .
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Table 2.1 Time limit T0 with differenct parameters r, κ , σ and γ

Remark 2.2.1. Note that we will use the FK mapping (2.2.7) to study the HJB equation which

will be defined in the next section.

2.3 Hamilton–Jacobi–Bellman (HJB) equation

Denoting by ςt = (Xt ,St), we can rewrite equations (2.1.1) and (2.1.3) as,

dςt = a(ςt ,υt)dt +b(ςt ,υt)dWt , (2.3.1)

where

a(ς ,u) =

(
rx−κ1αs− c

−κs

)
, b(ς ,u) =

(
ασ

σ

)
and u = (α,c) .

Now, for the Eq. (2.1.3), we introduce the Hamilton function. For any

q =

(
q1

q2

)
, M =

(
M11 M12

M21 M22

)
,

we set,

H(ς ,q,M) := sup
u∈Θ

H0(ς ,q,M,u) and (2.3.2)

H0(ς ,q,M,u) := a′(ς ,u)q+
1

2
tr[bb′(ς ,u)M]+ cγ ,
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where Θ = R×R+ and the prime ”′” here denotes the transposition. In order to find the

solution to the value function (2.1.5), we need to solve the HJB equation which is given by





zt(ς , t)+H(ς , t,∂ z(ς , t),∂ 2z(ς , t)) = 0, t ∈ [0,T ],

z(ς ,T ) = ϖxγ , ς ∈ R+×R ,
(2.3.3)

where

∂ z(ς , t) =

(
zx

zs

)
and ∂ 2z(ς , t) =

(
zxx zxs

zsx zss

)
.

Moreover, here

H0(ς , t,q,M,u) =
α2σ2

2
M11 +(σ2M12−κ1sq1)α +

1

2
σ2M22

+ rxq1−κsq2− cq1 + cγ .

Note that, in view of the definition (2.3.2), the Hamilton function H(ς , t,q,M) =∞ if M11≥ 0

or q1 ≤ 0, and for M11 < 0 and q1 > 0,

H(ς , t,q,M) = H0(ς , t,q,M,u0) ,

where the optimal value u0 = (α0,c0) is defined as

α0 = α0(s,q,M) =
κ1sq1

σ2M11
−M21

M11
and c0 = c0(s,q,M) = (

q1

γ
)

1
γ−1 . (2.3.4)

Taking these into account, then by (2.3.3), we obtain the following form for the HJB equation

zt(ς , t)+
1

2

(σ2zxs−κ1szx)
2

σ2|zxx|
+

σ2zss

2
+ rxzx−κszs

+(1− γ)(
zx

γ
)

γ
γ−1 = 0,

(2.3.5)

where z(ς ,T ) = ϖxγ . To study this equation we use the following representation

z(x,s, t) = ϖxγ exp

{
s2

2
g(t)+Y (s, t)

}
. (2.3.6)
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The function g(·) is defined in (2.2.1), and





Yt(s, t)+
1
2
σ2Yss(s, t)+ sg1(t)Ys(s, t)+ΨY (s, t) = 0,

Y (s,T ) = 0,
(2.3.7)

where ΨY (s, t) is given in (2.2.8) and the function g1(·) is defined in (2.2.6). As we will see

later that equation (2.3.7) has a solution in C2,0(R× [0,T ]) which can be represented as a

fixed point for the FK mapping

h(s, t) = E

∫ T

t

Ψh(η
s,t
u
,u)du = Lh(s, t) . (2.3.8)

To construct the optimal strategies we use the optimal value of the Hamilton function (2.3.4)

and the solution given by equation (2.3.6). We set

α̌0
(
ς , t
)
= α0

(
s, t,∂ z(ς , t),∂ 2z(ς , t)

)
and č0(ς , t) = c0

(
s, t,∂ z(ς , t),∂ 2z(ς , t)

)
.

It is easy to see that in this case, these functions can be represented as

α̌0
(
ς , t
)
=

κ1szx(ς , t)

σ2zxx(ς , t)
− zxs(ς , t)

zxx(ς , t)
= β̌ (s, t)x,

č0(ς , t) =

(
zx(ς , t)

γ

) 1
γ−1

= Ǧ(s, t)x,

(2.3.9)

where

β̌ (s, t) =
1

1− γ

(
sg(t)+hs(s, t)−

κ1

σ2
s
)

and Ǧ(s, t) = ϖ
1

γ−1 G(s, t,h(s, t)).

Now we set the following stochastic equation to define the optimal wealth process, i.e., we

set

dX∗
t
= a∗(t)X∗

t
dt +b∗(t)X∗

t
dWt , (2.3.10)

where a∗(t) = A∗(St , t), b∗(t) = B∗(St , t),

A∗(s, t) = r−κ1sβ̌ (s, t)− Ǧ(s, t) and B∗(s, t) = σβ̌ (s, t) . (2.3.11)
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By Itô formula we can obtain that

X∗
t
= xexp

{∫ t

0

a∗(u)du

}
E0,t(b

∗) (2.3.12)

and

E0,t(b
∗) = exp

{∫ t

0

b∗(u)dWu−
1

2

∫ t

0

(b∗(u))2du

}
.

Using the stochastic differential equation (2.3.10) we define the optimal strategies:

α∗
t
= α̌0(ς∗

t
, t) and c∗

t
= č0(ς∗

t
, t), (2.3.13)

where ς∗
t
= (X∗

t
,St)

′ and X∗
t

is defined in (2.3.10). The prime ”′” denotes the transposition.

Remark 2.3.1. Note, the main difference in the HJB equation (2.3.5) from the one in (Bo-

guslavsky and Boguslavskaya [13]) is the last nonlinear term, as we see, we can not use

the solution method from (Boguslavsky and Boguslavskaya[13]). One can check that the

solution for pure investment problem from (Boguslavsky and Boguslavskaya[13]) can be

obtained in Eq. (2.3.13) as ϖ → ∞.

2.4 Main results

First we study the HJB equation.

Theorem 2.4.1. Assume that 0 < T < T0, with T0 is given in Eq. (2.2.10), then equation

Eq. (2.3.5) has the solution defined by Eq. (2.3.6), where Y is the unique solution of Eq. (2.3.7)

in X and is the fixed point for the FK mapping, i.e., Y = h, and h = Lh.

Theorem 2.4.2. Assume that 0 < T < T0, then the optimal value of J(t,ς ,υ) is given by

max
υ∈V

J(ς , t,υ) = J(ς , t,υ∗) = ϖxγ exp

{
s2

2
g(t)+h(s, t)

}
,

where the optimal control υ∗ = (α∗,c∗) for all 0≤ t ≤ T is given in Eq. (2.3.13) with the

function Y defined in Eq. (2.3.8). The optimal wealth process (X∗
t
)0≤t≤T is the solution to

Eq. (2.3.10).

Let us now define the approximation sequence (hn)n≥1 for h as h0 = 0, and for n≥ 1, as

hn = Lhn−1
. (2.4.1)
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In the following theorems we show that the approximation sequence goes to the fixed function

h, i.e. h = Lh.

Theorem 2.4.3. For any 0 < δ < 1/2, the approximation

∥ h−hn ∥= O(n−δn) as n→ ∞,

where ∥ f ∥= sup
s,t (| f (s, t)|+ | fs(s, t)|).

Remark 2.4.1. Note that the convergence rate for the fixed-point solution is super geometrical.

Now we define the approximation. We set

α∗
n
(ς , t) = β̌n(s, t)x and c∗

n
(ς , t) = Ǧn(s, t)x

where

β̌n(s, t) =
1

1− γ

(
sg(t)+

∂hn(s, t)

∂ s
− κ1

σ
s

)
and Ǧn(s, t) = ϖ

1
γ−1 G(s, t,hn(s, t)).

Theorem 2.4.4. For any 0 < δ < 1/2

sup
ς

0≤t≤T

(∣∣α∗(ς , t)−α∗
n
(ς , t)

∣∣+
∣∣c∗(ς , t)− c∗

n
(ς , t)

∣∣
)
= O(n−δn), as n→ ∞.

Remark 2.4.2. As it is seen from Theorem 2.4.1 the approximation scheme for the HJB

equation implies the approximation for the optimal strategy with super geometrical rate. i.e.

more rapid than any geometrical ones.

2.5 Properties of the Feynman–Kac (FK) mapping

We need to study the properties of the mapping (2.2.7).

Proposition 2.5.1. The space (X ,ρ) is the completed metrical space.

Proposition 2.5.2. Assume that T ≤ π/4σ2. Then Lh ∈X for any h ∈X , i.e.

Lh : X →X .
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Proof. The function Lh(s, t) is given in Eq. (2.2.7) and can be written as

Lh(s, t) =
σ2

2

∫ T

t

g(u)du+
σ2

2(1− γ)
E

∫ T

t

h2
s
(ηs,t

u
,u)du+ rγ(T − t)

+(1− γ)ϖ
1

γ−1 E

∫ T

t

G(ηs,t
u
,u,h(ηs,t

u
,u))du,

with G(s, t,y) is given in Eq. (2.2.9).

Therefore,

|Lh(s, t)| ≤
σ2

2
g(0)(T − t)+

σ2

2(1− γ)
BBB2

1
(T − t)+ rγ(T − t)

+(1− γ)ϖ
1

γ−1 (T − t)≤ B0, (2.5.1)

where B0 and B1 are given in Eq. (2.2.3). Then by taking the derivative with respect to s, we

get

∂

∂ s
Lh(s, t) =

σ2

2(1− γ)

∂

∂ s
E

∫ T

t

h2
s
(ηs,t

u
,u)du

+(1− γ)ϖ
1

γ−1
∂

∂ s
E

∫ T

t

G(ηs,t
u
,u,h(ηs,t

u
,u))du.

From Lemma 6.5.1 and as ∥ G
(
ηs,t

u
,u,h(ηs,t

u
,u)
)
∥t,∞≤ 1, we have

∣∣∣∣
∂

∂ s
Lh(s, t)

∣∣∣∣≤
σ2

2(1− γ)

√
2(T − t)

π
BBB2

1
+(1− γ)ϖ

1
γ−1

√
2(T − t)

π
.

Then by taking into account the definition of BBB1 in Eq. (2.2.4) we obtain,

∣∣∣∣
∂

∂ s
Lh(s, t)

∣∣∣∣≤
σ2

2(1− γ)

√
2T

π
BBB2

1
+(1− γ)ϖ

1
γ−1

√
2T

π
≤BBB1.

So, we get that Lh ∈X . Hence Proposition 2.5.2.

Proposition 2.5.3. For all f ∈X , for all s, and 0≤ t ≤ T ,

∂

∂ s
L f (s, t) =

∫ T

t

(∫

R

Γ0

(
z, t, f (z,u), fs(z,u)

)
ρ̌(s, t,z,u)dz

)
du,
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where Γ0 is as in (2.2.8) and

ρ̌(s, t,z,u) =
∂

∂ s
ϕ(s, t,z,u) = K

µ(u, t)

σ1(u, t)
ϕ(s, t,z,u) , (2.5.2)

where

ϕ(s,z,u) =
e−

K2

2

√
2πσ1(u, t)

and K(s,z,u) =
z− sµ(u, t)

σ1(u, t)
. (2.5.3)

Proposition 2.5.4. The mapping L is contraction in X , i.e. for any 0 < λ < 1, there exists

κ ≥ 1 in the metric (2.2.5) such that for any h and f ∈X ,

ρ(Lh,L f )≤ λρ(h, f ) . (2.5.4)

Proof. Using the definition of the mapping Lh given in (2.2.7), we obtain that for any h and

f from X ,

Lh−L f =
σ2

2(1− γ)
E

∫ T

t

(
h2

s
(ηs,t

u
,u)− f 2

s
(ηs,t

u
,u)

)
du

+(1− γ)ϖ
1

γ−1 E

∫ T

t

(
G

(
ηs,t

u
,u,h(ηs,t

u
,u)

)
−G

(
ηs,t

u
,u, f (ηs,t

u
,u)

))
du .

Taking into account that the function G is lipschitzian, i.e. for any y1 ≥ 0 and y2 ≥ 0

∣∣G(s, t,y1)−G(s, t,y2)
∣∣≤ 1

1− γ
|y1− y2| ,

we obtain that

|Lh−L f | ≤
σ2

2(1− γ)

∣∣∣∣∣

∫ T

t

E
(

h2
s
(ηs,t

u
,u)− f 2

s
(ηs,t

u
,u)
)

du

∣∣∣∣∣

+ϖ
1

γ−1 E

∫ T

t

∣∣∣h(ηs,t
s
,u)− f (ηs,t

u
,u)
∣∣∣du. (2.5.5)

Recall that f and h belong to X , i.e. the difference for the squares of their derivatives can

be estimated as
∣∣h2

s
(z,u)− f 2

s
(z,u)

∣∣≤ 2B1|hs(z,u)− fs(z,u)|. Therefore,

∣∣Lh(s, t)−L f (s, t)
∣∣≤
(

σ2B1

(1− γ)
+ϖ

1
γ−1

)∫ T

t

ϒ∗
h, f (u)e−κ(T−u) eκ(T−u)du,
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where ϒ∗
h, f (t) = sup

y∈Rp ϒh, f (y, t). In view of definition (2.2.4),

∣∣Lh(s, t)−L f (s, t)
∣∣≤
(

σ2B1

(1− γ)
+ϖ

1
γ−1

)
ρ(h, f )

∫ T

t

eκ(T−u)du

≤
(

σ2B1

(1− γ)
+ϖ

1
γ−1

)
ρ(h, f )

κ
eκ(T−t).

Therefore, for all 0≤ t ≤ T ,

sup
s∈R
|Lh(s, t)−L f (s, t)| ≤

B̃1

κ
ρ(h, f )eκ(T−t) and B̃1 =

σ2B1

(1− γ)
+ϖ

1
γ−1 .

The partial derivative of L (s, t) with respect to s is given by

∂

∂ s
Lh(s, t) =

σ2

2(1− γ)
E

∂

∂ s

∫ T

t

h2
s
(ηs,t

u
,u)du

+(1− γ)ϖ
1

γ−1 E
∂

∂ s

∫ T

t

G(ηs,t
u
,u,h(ηs,t

u
))du.

By taking the expectation we obtain

∂

∂ s
Lh(s, t) =

σ2

2(1− γ)

∫ T

t

∫

R

h2
s
(z,u)

∂

∂ s
ϕ(z,u)dz du

+(1− γ)ϖ
1

γ−1

∫ T

t

∫

R

G(z,u,h(z,u))
∂

∂ s
ϕ(z,u)dz du,

where ρ̌(s, t,z,u) = ∂ϕ(s, t,z,u)/∂ s and ϕ(s, t,z,u) is given in (2.5.3). Therefore, for u > t

and for some constant c∗ ≥ 0

sup
s∈R

∫

R

|ρ̌(s, t,z,u)|dz ≤ c∗√
u− t

. (2.5.6)

Putting now α̂1 = σ2(2−2γ)−1 and α̂2 = (1− γ)ϖ
1

γ−1 , we obtain that

∣∣ ∂

∂ s
Lh(s, t)−

∂

∂ s
L f (s, t)

∣∣∣=
∣∣∣∣
∫ T

t

∫

R

(
α̂1(h

2
s
(z,u)− f 2

s
(z,u))

+ α̂2(G(z,u,h(z,u))−G(z,u, f (z,u))
)

ρ̌(s, t,z,u)dzdu

∣∣∣∣.
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Here, note that

∣∣∣α̂1(h
2
s
(z,u)− f 2

s
(z,u))+ α̂2(G(z,u,h(z,u))−G(z,u, f (z,u))

∣∣∣≤ B2ϒ∗
f ,h(u),

where B2 =
(

2α̂1B̃1 + α̂2(1− γ)
)

. Thus,

∣∣∣∣
∂

∂ s
Lh(s, t)−

∂

∂ s
L f (s, t)

∣∣∣∣≤ B2

∫ T

t

ϒ∗
f ,h(u)

(∫

R

|ρ̌(s, t,z,u)|dz

)
du.

Using here the bound (2.5.6), we obtain that

∣∣∣ ∂

∂ s
Lh(s, t)−

∂

∂ s
L f (s, t)

∣∣∣ ≤ B2

√
2

π

∫ T

t

1√
u− t

ϒ∗
f ,h(u)e−κ(T−u) eκ(T−u)du.

Using again here the definition (2.2.4) we get

∣∣ ∂

∂ s
Lh(s, t)−

∂

∂ s
L f (s, t)

∣∣∣≤
√

2

π
B2 ρ( f ,h)

∫ T

t

eκ(T−u)

√
u− t

du

≤ 2

π
B2 ρ( f ,h)eκ(T−t)

∫ T

t

e−κ(u−t)

√
u− t

du≤ B2 ρ( f ,h)
eκ(T−t)

√
κ

.

Therefore,
∣∣ ∂

∂ s
Lh(s, t)−

∂

∂ s
L f (s, t)

∣∣∣≤ B2ρ( f ,h)
eκ(T−t)

√
κ

.

Thus

∣∣Lh(s, t)−L f (s, t)
∣∣+
∣∣∣∣

∂

∂ s
Lh(s, t)−

∂

∂ s
L f (s, t)

∣∣∣∣

≤
(

B̃1

κ
eκ(T−t)+B2

eκ(T−t)

√
κ

)
ρ( f ,h) .

So, taking into account that κ > 1, we get

ρ(Lh,L f )≤
B̃2√
κ

ρ( f ,h) where B̃2 = B̃1 +B2. (2.5.7)

Choosing here κ = (B̃2)
2/λ 2, we obtain the inequality (2.5.4). Hence Proposition 2.5.4.

□
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Proposition 2.5.5. For the mapping L there exists a unique fixed point h from X , i.e.

Lh = h, such that for any n≥ 1 and for any κ > (B̃2)
2

ρ(h,hn)≤ B∗λ n, λ =
B̃2√
κ
, (2.5.8)

where B∗ = (B0 +B1)/(1−λ ), with B0 and B1 are defined in Eq. (2.2.3).

Proof. We want to show that the approximation sequence (hn)n≥1 converge to a fixed point

h, where h0 = 0 and hn = Lhn−1
for n ≥ 1. Using here Proposition 2.5.3, we obtain that

ρ(hn,hn+1) = ρ(Lhn−1
,Lhn

)≤ λρ(hn−1,hn). Therefore,

ρ(hn,hn+1)≤ λρ(Lhn−1
,Lhn

)≤ λ 2ρ(hn−2,hn−1)≤ ...≤ λ nρ(h0,h1).

Note that Eq. (2.2.4) implies directly that ρ(h0,h1)≤ B0 +B1. So, for m > n,

ρ(hn,hm)≤ (λ n +λ n+1 + ...+λ m−1)(B0 +B1)≤
∞

∑
i=n

λ i(B0 +B1).

Therefore, there exists h, such that ρ(hn,h)→ 0, i.e., for all n, we obtain Eq. (2.2.5). Hence

Proposition 2.5.5.

2.6 Properties of the fixed-point function h

In this section we study some regularity properties for the function h. First we study the

smoothness with respect to the variable s.

Proposition 2.6.1. If h ∈X is a fixed point for L i.e. h = Lh, then for any 0 < β < 1,

sup
0≤t≤T

sup
s1,s2

∣∣hs(s1, t)−hs(s2, t)
∣∣

|s1− s2|β
< ∞.

Proof. As
∂

∂ s
h(s, t) =

∫ T

t

∫

R

Ψh(z,u) ρ̌(s, t,z,u)dzdu,

where Ψh(z,u) and ρ̌(s, t,z,u) are given in (2.2.8) and (2.5.2) respectively. Therefore,

∣∣∣∣
∂

∂ s
h(s1, t)−

∂

∂ s
h(s2, t)

∣∣∣∣=
∣∣∣∣
∫ T

t

Ψh(z,u)

(∫

R

(
ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)

)
dz

)
du

∣∣∣∣.
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If ∆ = |s1− s2|> 1 then,

1

∆β

∣∣∣ ∂

∂ s
h(s1, t)−

∂

∂ s
h(s2, t)

∣∣∣≤
∫ T

t

(∫

R

∣∣ρ̌(s1, t,z,u)
∣∣dz

)
du

+
∫ T

t

(∫

R

∣∣ρ̌(s2, t,z,u)
∣∣dz

)
du < ∞.

For 0 < ∆ < 1, then,

1

∆β

∣∣∣ ∂

∂ s
h(s1, t)−

∂

∂ s
h(s2, t)

∣∣∣≤BBB0

∫ T

t

(∫

R

∣∣ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)
∣∣

∆β
dz

)
du ,

where from (2.5.1),
∫ T

t
Ψh(z,u) du≤BBB0, and BBB0 is given in (2.2.3). Let

I(∆) =
∫ T

t

(∫

R

∣∣ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)
∣∣

∆β
dz

)
du.

Then we can rewrite it as

I(∆) =
∫ t+∆1

t

∫

R

∣∣ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)
∣∣

∆β
dz du

+
∫ T

t+∆1

∫

R

∣∣ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)
∣∣

∆β
dz du.

Putting ∆1 = ∆2β we obtain that

I(∆)≤ 1

∆β

∫ t+∆1

t

(∫

R

∣∣ρ̌(s1, t,z,u)
∣∣dz+

∫

R

∣∣ρ̌(s2, t,z,u)
∣∣dz

)
du

+
1

∆β

∫ T

t+∆1

∫

R

∣∣ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)
∣∣dzdu.

Taking into account the bound (2.5.5), we estimate the integral I(∆) as

I(∆)≤
√

2√
π

+
1

∆β

∫ T

t+∆1

∫

R

∣∣ρ̌(s1, t,z,u)− ρ̌(s2, t,z,u)
∣∣dz du.
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Then

I(∆)≤
√

2√
π

+
1

∆β

∫ T

t+∆1

∫ s2

s1

(∫

R

∣∣ρ̌s(v, t,z,u)
∣∣ dz

)
dv du,

where

ρ̌s =
∂

∂ s
ρ̌(v, t,z,u) =

µ2

√
2πσ3

1

e
−K2

2

(
K2−1

)

and K = K(s,z,u) is given in (2.5.3). Thus

|ρ̌s| ≤
1√

2πσ3
1

e
−K2

2

(
K2 +1

)
,

and ∫

R

|ρ̌s(v, t,z,u)|dz =
1

σ2
1

∫

R

|K2 +1|e−K2

2 dK ≤ c∗

σ2
1

.

Taking into account that σ−2
1 ≤ c∗(u− t)−1 for some c∗ > 0, we get

I(∆)≤ 2
√

2√
π

+ c∗∆1−β
∫ T

t+∆1

1

u− t
du≤ c∗+∆1−β (| ln∆1|+ | lnT |).

Hence Proposition 2.6.1.

Now we need to study the smoothness property with respect to t. We show now that the

function f and its derivatives are Höldarians.

Proposition 2.6.2. Let h = Lh, with h ∈ X . Therefore, for all t, for all N ≥ 1, and

0 < β < 1/2,

sup
0≤t1≤T

0≤t2≤T

sup
|s|≤N

(∣∣h(s, t1)−h(s, t2)
∣∣+
∣∣hs(s, t1)−hs(s, t2)

∣∣
|t1− t2|β

)
< ∞ .

Proof. Firstly, note that

h(s, t) =
∫ T

t

Γ(s, t,u)du and Γ(s, t,u) =
∫

R

Ψh(z,u)ϕ(s, , t,z,u) dz.
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Therefore, for any 0≤ t1 ≤ t2 ≤ T ,

h(s, t2)−h(s, t1) =
∫ T

t2

(
Γ(s, t2,u)du−Γ(s, t1,u)

)
du−

∫ t2

t1

Γ(s, t1,u)du .

Let now ∆ = t2− t1 and ∆1 = ∆2β for some 0 < β < 1/2. Taking into account that Γ is

bounded, we obtain that for some c∗ > 0,

1

∆β

∣∣h(s, t2)−h(s, t1)
∣∣≤ c∗

∆β
I(∆)+ c ∆1−β ,

where I(∆) =
∫ T

t2

∫
R
|Ω(z,u)|dzdu and Ω(z,u) = ϕ(s, t2,z,u)−ϕ(s, t1,z,u). We represent this

term as I(∆) = I1(∆)+ I2(∆), where

I1(∆) =
∫ t2+∆1

t2

∫

R

|Ω(z,u)|dzdu and I2(∆) =
∫ T

t2+∆1

∫

R

|Ω(z,u)|dzdu.

It is clear that I1(∆)≤ 2∆1. To estimate the term I2(∆) note that

|Ω(z,u)|= |ϕ(s, t2,z,u)−ϕ(s, t1,z,u)| ≤
∫ t2

t1

∣∣ϕt(s,θ ,z,u)
∣∣dθ ,

where

ϕt(s,θ ,z,u) =
∂

∂ t
ϕ(s, t,z,u) =

(
σ2(u, t)

2
√

2π σ3
1 (u, t)

− KK̇√
2πσ1

)
e−

K2

2 .

The dot ” · ” here is the derivative with respect to t and σ2 = σ̇1. Denoting by µ1 = µ̇ , we

obtain that

K̇ =
∂

∂ t

(z− sµ

σ1

)
=

sµ1

σ1

− z− sµ

σ2
1

σ̇1 =−
sµ1

σ1

− 1

2
K

σ2

2σ2
1

.

Taking into account that µ1 is bounded, we obtain that for some c∗ > 0,

∣∣∣∣
∂

∂ t
ϕ(s, t,z,u)

∣∣∣∣≤ c∗ (1+ |s|)e−
K2

2
(K2 + |K|+1)

σ3
1

.

Therefore, for some c∗ > 0 and u > t

∫

R

∣∣∣∣
∂

∂ t
ϕ(s, t,z,u)

∣∣∣∣ dz≤ c∗(1+ |s|)
u− t

,
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and we get

|I2(∆)| ≤ c∗ (1+ |s|)
∫ t2

t1

(∫ T

t2+∆1

1

u−θ
du

)
dθ

≤ c∗ (1+ |s|) ∆

∫ T

t2+∆1

du

u− t2
≤ c∗ (1+ |s|)∆| ln∆1|.

Therefore, for some c∗ > 0

limsup
∆→0

1

∆β

∣∣h(s, t2)−h(s, t1)
∣∣≤ c∗ (1+ |s|).

Now to prove the second part we firstly take the partial derivative of the function h which

may be represented by

∂

∂ s
h(s, t) =

1√
2π

∫ T

t

µ(u, t)

σ2
1 (u, t)

(∫

R

Ψh(u,z) K e−
K2

2 dz

)
du. (2.6.1)

Then,

∂

∂ s
h(s, t) =

∫ T

t

µ(u, t)

σ1(u, t)

(∫

R

Ψh(sµ +σ1 K,u)K
e−

K2

2

√
2π

dK

)
du

=
∫ T

t

µ(u, t)

σ1(u, t)

(
E Ψh(sµ(u, t)+σ1(u, t) ξ ,u)ξ

)
du,

where ξ ∼ N (0,1). So, we can represent the derivative (2.6.1) as

∂

∂ s
h(s, t) =

∫ T

t

q(t,u)du and q(t,u) = q1(t,u)q2(t,u),

where q1(t,u) = Eξ Ψh(sµ(u, t)+σ1(u, t)ξ ,u) and q2(t,u) = µ(u, t)/σ1(u, t). Setting now

q3(u) = q(t2,u)− q(t1,u), we obtain that

∂

∂ s
h(s, t2)−

∂

∂ s
h(s, t1) =

∫ T

t2

q3(u)du−
∫ t2

t1

q(t1,u)du.
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Now we recall that the function Ψh is bounded, i.e. |q(t,u)| ≤ c∗/
√

u− t for some c∗ > 0.

Therefore,

∣∣∣∣
∂

∂ s
h(s, t2)−

∂

∂ s
h(s, t1)

∣∣∣∣≤
∫ T

t2

∣∣q3(u)
∣∣du+

∫ t2

t1

c∗√
u− t1

du

≤ I∗
1
(∆)+ I∗

2
(∆)+2c∗

√
∆,

where

I∗
1
(∆) =

∫ t2+∆1

t2

∣∣q3(u)
∣∣du and I∗

2
(δ ) =

∫ T

t2+∆1

∣∣q3(u)
∣∣du.

Similarly, for 0 < t1 < t2

I∗
1
(∆)≤ c∗

∫ t2+δ1

t2

(
1√

u− t2
+

1√
u− t1

)
du ≤ 4c∗

√
∆1.

To estimate I∗
2
(∆), note that

∣∣q3(u)
∣∣=
∣∣q1(u, t2) q2(u, t2)−q1(u, t1) q2(u, t1)

∣∣

≤
∣∣∣q2(u, t2)

(
q1(u, t2)−q1(u, t1)

)∣∣∣+
∣∣∣q1(u, t1)

(
q2(u, t2)−q2(u, t1)

)∣∣∣.

Moreover, noting that

q2(u, t) =
µ(u, t)

σ1(u, t)
≤ 1

σ1(u, t)
≤ c∗√

u− t
,

we obtain that for u > t,

∣∣q3(u)
∣∣≤ c

(∣∣q2(u, t2)−q2(u, t1)
∣∣+ 1√

u− t1

∣∣q1(u, t2)−q1(u, t1)
∣∣
)
.

From the definition of q1, we can obtain that for some c∗ > 0,

∣∣q2(u, t2)−q2(u, t1)
∣∣≤

∫ t2

t1

1

(u−θ)
3
2

dθ ≤ ∆

(u− t2)
3
2

,

and ∣∣q3(u)
∣∣≤ ∆

(u− t2)
3
2

+
c∗√

u− t1

∣∣q1(u, t2)−q1(u, t1)
∣∣.
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It should be noted that Proposition 2.6.1 implies that for any 0 < β < 1 and for some c∗ > 0,

∣∣∣Ψh(s2, t)−Ψh(s1, t)
∣∣∣≤ c∗|s2− s1|β .

So,

∣∣q1(u, t2)−q1(u, t1)
∣∣≤ c∗ (1+ |s|β )

(
|µ(u, t2)−µ(u, t1)|β +

∣∣σ1(u, t2)−σ1(u, t1)
∣∣β
)
.

We recall that |σ1(u, t2)−σ1(u, t1)| ≤ δ/
√

u− t2. Therefore,

∣∣q1(u, t2)−q1(u, t1)
∣∣≤ (1+ |s|β )

( ∆β

(
√

u− t2)
β

)
≤ (1+ |s|β )

( ∆β

(
√

u− t2)
β

)
.

Thus,
∣∣q3(u)

∣∣≤ ∆

(u− t2)
3
2

+
(1+ |s|β )√

u− t2

∆β

(
√

u− t2)
β
.

As a result,

I∗
2
(∆)≤ (1+ |s|β )

∫ T

t2+∆1

(
∆

(u− t2)
3
2

+
∆β

(u− t2)
β
2 +

1
2

)
du

≤
(

∆√
∆1

+∆β (∆1)
1−β

2

)(
1+ |s|β

)
.

Therefore, for any 0 < β < 1/2,

lim∆→0

I∗
1
(∆)+ I∗

2
(∆)

∆β
< ∞.

Hence, Proposition 2.6.2.
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2.7 Proofs

2.7.1 Proof of Theorem 2.4.1

Let h ∈X be the fixed point for the mapping L , i.e. h = Lh. Consider now the following

equation

Yt(s, t)+
σ2Yss(s, t)

2
+ sg1(t)Ys(s, t)+Ψh(s, t) = 0, Y (s,T ) = 0, (2.7.1)

where g1(t) = γ1g(t)− γ2 > 0 and Ψh(s, t) is given in (2.2.7). Then we change the variables

as u(s, t) = Y (s,T − t). So we get

ut(s, t)−
σ2uss(s, t)

2
− sg1(T − t)us(s, t)−Ψh(s,T − t) = 0, u(s,0) = 0. (2.7.2)

We can rewrite the previous equation as

ut(s, t)−
σ2uss(s, t)

2
+a(s, t,u,us) = 0, u(s,0) = 0,

where a(s, t,u, p) =−sg1(T − t)p−Ψh(s,T − t). Taking into account that

Ψmax = sup
s∈R

sup
0≤t≤T

Ψh(s,T − t)< ∞,

we obtain that a(s, t,u,0)u =−Ψh(s,T − t)|u| ≥ −Ψmax|u|, i.e. the condition in (6.2.4) holds

with Φ(r) = Ψmax and b = 0. In view of Propositions 2.6.1 and 2.6.2, the function Ψh

satisfies the Hölder condition C5) for any 0 < β < 1/2. By using Theorem 6.2.1 we obtain

that equation (2.7.2) has a bounded solution. Therefore, there exists a solution of equation

(2.7.1). In order to prove this theorem we use the probabilistic representation. Now, we

define a stopping time τn

τn = inf
{

n≥ t : |ηs,t
u
| ≥ n

}
∧T,

where the process (ηs,t
u
)u≥t is defined in (2.2.6). By Itô formula we obtain that

Y (s, t) =−
∫ τn

t

(
(Yt(η

s,t
u
,u)+g1(u)η

s,t
u

Ys(η
s,t
u
,u)+

σ2

2
Yss(η

s,t
u
,u)
)

du

−
∫ τn

t

Ys(η
s,t
u
,u) dW̌u +Y (ηs,t

τn
,τn).
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Taking into account equation (2.3.7), we obtain that

Y (s, t) =
∫ τn

t

Ψh(η
s,t
u
,u) du−

∫ τn

t

Ys(η
s,t
u
,u) dW̌u +Y (τn,η

s,t
τn
).

As E
∫ τn

t
Ys(η

s,t
u
,u) dW̌u = 0, we obtain

Y (s, t) = E

∫ τn

t

Ψh(η
s,t
u
,u) du+EY (τn,η

s,t
τn
).

Note here that the solution of equation (2.7.1) is bounded. So, by Dominated Convergence

theorem and in view of the boundary condition in (2.7.1) we obtain that

lim
n→∞

EY (ηs,t
τn
,τn) = E lim

n→∞
Y (ηs,t

τn
,τn) = EY (ηs,t

T ,T ) = 0.

Moreover, taking into account that Ψh ≥ 0, by the Monotone Convergence theorem we obtain

Y (s, t) = E lim
n→∞

∫ τn

t

Ψh(η
s,t
u
,u) du = E

∫ T

t

Ψh(η
s,t
u
,u)du,

i.e. Y (s, t) = Lh(s, t) = h. Hence Theorem 2.4.1. □

2.7.2 Proof of Theorem 2.4.2

To proof this theorem we use the verification theorem 6.3.1 and find the solution to the HJB

equation(2.3.5) using FK mapping with h a fixed point for the mapping L . Therefore, the

function

z(ς , t) = ϖxγ exp

{
s2

2
g(t)+h(s, t)

}
, (2.7.3)

is the solution of the HJB equation (2.3.5). By using this function we calculate the optimal

control variables in (2.3.9) and we obtain the strategies (2.3.10) - (2.3.13). Hence H3). Now

we want to check condition H4). First note that the equation

dς∗
t
= a(ς∗

t
, t)dt +b(ς∗

t
, t)dWt , t ≥ 0, and ς∗0 = x ,

is identical to the linear equation (2.3.10). By the assumptions on the market parameters, the

coefficients a(t) and b(t) are continuous. So, it has the positive solution Eq. (2.3.12) and

therefore, we obtain H4). To check the condition H5), we need the following Lemma.
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Lemma 2.7.1. If 0 < T < T0, then there exists some δ̌ > 1 such that

sup
τ∈Mt

E
(

zδ̌ (ς∗τ ,τ)|ςt = ς
)
< ∞, (2.7.4)

where Mt is the set of all stopping times with t ≤ τ ≤ T and the function z is given in (2.7.3).

Lemma 2.7.1 yields condition H5), where z(ς , t) = ϖxγ exp{s2g(t)/2+h(s, t)} and h is the

fixed point (2.3.8). Now, the verification Theorem 6.3.1 implies Theorem 2.4.2. □

2.7.3 Proof of Theorem 2.4.3

We set ∆n(y, t) = h(y, t)−hn(y, t). So, from Eq. (2.5.8), we obtain that

ϒ∗
h,hn

(y, t) = sup
(y,t)∈K

(|∆n(y, t)|+ |Dy∆n(y, t)|)≤ eκT ρ(h,hn)

≤ (B0 +B1)
λ n

1−λ
eκT = (B0 +B1)exp{H(λ ,κ)},

where H(λ ,κ) = κT +n lnλ − ln(1−λ ) and B0 and B1 are defined in (2.2.3).

So, if we take κ = n(B̃2)
2 with B2 defined in Eq. (2.5.7), then we obtain, for λ = 1/

√
n, that

ϒ∗
h,hn

(y, t) = O(n−δn),

for any 0 < δ < 1/2. Hence Theorem 2.4.3. □

2.7.4 Proof of Proposition 2.5.1

One can check directly that the set X is closed in the set C1,0 (R× [0,T ]) which is complete.

So, the space (X ,ρ) is complete also. Hence Theorem 2.5.1. □

2.7.5 Proof of Proposition 2.5.3

Firstly, note that from the definition of the mapping in (2.2.7) we get that for any δ > 0,

Lh(s+δ , t)−Lh(s, t)

δ
=
∫ T

t

∫

R

(
Ψh(z,u)

(
ϕ(s+δ , t,z,u)−ϕ(s, t,z,u)

δ

)
dz

)
du .
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Taking into account that the function ρ̌ is continuously differentiable, we can rewrite

ϕ(s+δ , t,z,u)−ϕ(s, t,z,u)

δ
=

1

δ

∫ s+δ

s

ρ̌(ν , t,z,u)dν = ρ̌(s, t,z,u)+DDDδ (s, t,z,u),

where ρ̌(s, t,z,u) = ∂ϕ(s, t,z,u)/∂ s and

DDDδ (s, t,z,u) =
1

δ

∫ s+δ

s

(
ρ̌(ν , t,z,u)− ρ̌(s, t,z,u)

)
dν .

So,

Lh(s+δ , t)−Lh(s, t)

δ
=
∫ T

t

(∫

R

Ψh(z,u)ρ̌(s, t,z,u)dz

)
du+GGGδ ,

where GGGδ =
∫ T

t

(∫
R

Ψh(z,u)DDDδ (s, t,z,u)dz
)

du. Now we have to prove that the term GGGδ goes

to zero as δ → 0.

As the function Ψh(s, t) is bounded for h ∈X , therefore,

|GGGδ | ≤Ψ∗
∫ T

t

1

δ

(∫ s+δ

s

LLL(ν ,u)dν

)
du≤Ψ∗

∫ T

t

LLL∗δ (u)du ,

where Ψ∗ = supz∈R, 0≤t≤T |Ψh(z,u)| , the function LLL∗δ (u) = maxs≤ν≤s+δ LLL(ν ,u) and

LLL(ν ,u) =
∫

R

|ρ̌(ν , t,z,u)− ρ̌(s, t,z,u)|dz .

We can check directly that for some c∗ > 0

sup
0<δ<1

LLL∗δ (u)≤
c∗√
u− t

.

Moreover, note that for some N > 1

LLL(ν ,u)≤
∫

|z|≤N

|ρ̌(ν , t,z,u)− ρ̌(s, t,z,u)|dz+
∫

|z|>N

|ρ̌(ν , t,z,u)− ρ̌(s, t,z,u)|dz .
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The first part approaches zero when N→ 0, and

∫

|z|>N

|ρ̌(ν , t,z,u)|dz =
µ(u, t)√

2πσ1(u, t)

∫

|σ1y+νµ|>N

|y|e−
y2

2 dy

≤ µ(u, t)√
2πσ1(u, t)

∫

|y|>N1

|y|e−
y2

2 dy→ 0 as N→ ∞ ,

where N1 =
(
N− (|s|+δ )|µ|

)
/σ1, and s,µ,σ1 are fixed.

Thus, for any s, t, and u,

lim
δ→0

LLL∗δ (u) = 0 . (2.7.5)

So, by Lebesgue dominated convergence theorem,

∫ T

t

LLL∗δ (u)du→ 0 .

Hence Theorem 2.5.3. □

2.7.6 Proof of Lemma 2.7.1

Proof. From the optimal wealth process given in Eq. (2.3.10) through Itô formula we have

that

X∗
t
= xexp

{∫ t

0

a∗(u)du

}
E0,t(b

∗),

where the function a∗ and b∗ are defined in Eq. (2.3.10) and

E0,t(b
∗) = exp

{∫ t

0

b∗(u)dWu−
1

2

∫ t

0

(b∗(u))2du

}
.

We will show Lemma 2.7.1 for δ̌ = 1+(1− γ)/2γ , taking into account that

z(ς , t)≤ c∗xγ exp{s2g(0)/2}. To this end it is sufficient to show that

sup
τ∈Mt

E

(
(X∗τ )

δ1 exp

{
δ̌1

2
S2

τ

}∣∣∣∣Xt = x,St = s

)
< ∞,
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where δ1 = γδ̌ = (1+ γ)/2 < 1 and δ̌1 = g(0)δ̌ . Note that
(
Et,u

)
u≥t

is supermartingale and

EEt,τ(b
∗)≤ 1 for any stopping time τ ∈M . Moreover, note that

Sτ = e−κ(T−t)s+ξt,τ and ξt,τ = σe−κτ
∫ τ

t

eκudWu.

Since |Sτ | ≤ |s|+ |ξt,τ |, one needs to check that

sup
τ∈Mt

E
(
(X∗τ )

δ1 exp
{

δ̌1ξ 2
t,τ

})
< ∞.

By Hölder inequality we obtain that for p = (1+δ1)/2δ1 and q = (1+δ1)/(1−δ1)

Eς ,t(X
∗
τ )

δ1 exp
{

δ̌1ξ 2
t,τ

}
≤
(

Eς ,t(X
∗
τ )

δ2

) 1
p
(

Eς ,t exp
{

qδ̌1ξ 2
t,τ

}) 1
q
,

where δ2 = pδ1 = (1+δ1)/2 < 1. Note that

Eς ,t(X
∗
τ )

δ2 = xδ2Eexp

{
δ2

∫ τ

t

a∗(u)du

}(
Et,τ(b

∗)
)δ2

.

By Hölder inequality, for r = 1/δ2 and q1 = 1/(1−δ2)

Eς ,t(X
∗
τ )

δ2 ≤ xδ2

(
Eexp

{
δ2

1−δ2

∫ τ

t

a∗(u)du

})1−δ2(
Et,τEt,τ(b

∗)
)δ2

≤ xδ2

(
Eexp

{
δ2

1−δ2

∫ T

t

|a∗(u)|du

})1−δ2

.

(2.7.6)

Moreover, note that

|a∗(t)| ≤
(

g(0)+
κ1

σ2

)
κ1s2 +κ1|s|B1 +1+ r ≤ κ2s2 + c∗,

where c∗ is some constant and κ2 = κ2
1
(1/σ2 +1/2)+g(0)κ1. So, for some c∗ > 0

∫ T

t
|a∗(u)|du≤ 2κ2

∫ T

t
ξ 2

t,udu+ c∗.

Let us show now that

Eexp

{
κ̃2

∫ T

t
ξ 2

t,udu

}
< ∞,
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where κ̃2 = 2δ2κ2/(1−δ2) =
(

2(3+ γ)κ2
1

(
1/σ2 +1/2+g(0)/κ1

))
/(1− γ).

Eexp

{
κ̃2

(∫ T

t
ξ 2

t,udu
)}

=
∞

∑
m=0

κ̃m
2

m!
E

(∫ T

t
ξ 2

t,udu

)m

< ∞.

Moreover, note that in view of the Hölder inequality

E

(∫ T

t
ξ 2

t,udu

)m

≤ (T − t)m−1
∫ T

t
Eξ 2m

t,u du.

Taking into account that ξt,u ∼N (0,
∫ u

t
e−2κ(u−v)dv), we obtain that

Eξ 2m
t,u = (2m−1)!!

(∫ u

t

e−2κ(u−v)dv
)m

≤ m!

κm

and

E

(∫ T

t

ξ 2
t,udu

)m

≤ m!
T m

κm
.

Therefore,

Eexp

{
κ̌2

∫ T

t

ξ 2
t,udu

}
=

∞

∑
m=0

κ̌m
2

m!
E

(∫ T

t

ξ 2
t,udu

)m

≤
∞

∑
m=0

(
κ̌2

κ
T

)m

.

In view of the definition of T0 in Eq. (2.2.10) we obtain that the condition T < T0 implies

that T < κ/κ̌2, i.e. this series is finite. Moreover, by Proposition 6.5.3, we have that

Eξt,τ ≤ m!(2σ2T )m for all m≥ 1, and for any τ ∈Mt , So

Eς ,t exp{qδ̌1ξ 2
t,τ}= 1+

∞

∑
m=1

(qδ̌1)
m

m!
Eξ m

t,τ

≤ 1+
∞

∑
m=1

(qδ̌1)
m

m!
m!(2σ2T )m ≤ 1+

∞

∑
m=1

(2qδ̌1σ2T )m < ∞,

for T < 1/2qσ2δ̌1 = γ(1− γ)/(3+ γ)(1+ γ)σ2g(0), which is true due to the condition

T < T0. Hence Lemma 2.7.1
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In this chapter we consider the problem Eq. (2.1.5) for any time interval. Therefore, This

can be considered to be a generalisation to the previous chapter.

3.1 Main results

First we study the HJB equation Eq. (2.3.3).

Theorem 3.1.1. Assume that ϖ ≥ (16T/π)1−γ , then equation (2.3.3) has the solution defined

by (2.3.6), where Y is the unique solution of (2.3.7) in X and is the fixed point for the FK

mapping, i.e., Y = h, and h = Lh.

Theorem 3.1.2. Assume that ϖ ≥ (16T/π)1−γ and 0 < γ < 1/4, then the optimal value of

the objective function (2.1.5) is given by

J∗(ς , t) = J(ς , t,υ∗) = ϖxγ exp

{
s2

2
g(t)+h(s, t)

}
,

where h is a fixed point solution and the optimal control υ∗
t
= (α∗

t
,c∗

t
) for all 0≤ t ≤ T is

given in (2.3.13) with the function h ∈X defined in (2.3.8), i.e. h = Lh. The optimal wealth

process (X∗
t
)0≤t≤T is the solution to (2.3.10).
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Proof. The proofs of main theorems are proven by making use of verification theorem 6.3.1

and Lemma 3.2.2 similarly to the proofs of Theorem 2.4.1 and Theorem 2.4.2 respectively.

Remark 3.1.1. It should be noted that in Theorem 3.1.1 and Theorem 3.1.2, we impose only

some conditions on the parameter ϖ as a function of the time interval [0,T ]. There is no other

conditions on ϖ and T . This means that for any time interval T > 0, we treat the optimization

problem Eq. (2.1.5) with some fixed coefficients ϖ more than some threshold depending

on T . In this sense, we find the optimal strategy for Eq. (2.1.5) for any time interval [0,T ].

Different from the previous chapter, we have no additional conditions on T . We only impose

that 0 < γ < 1/4.

3.2 Properties of optimal strategies

We need to study the properties of the mapping (2.2.7).

Proposition 3.2.1. Assume that ϖ ≥ (16T/π)1−γ . Then Lh ∈ X for any h ∈ X , i.e.

Lh : X →X .

Proof. The proof follows from Proposition 2.5.2.

Lemma 3.2.2. If 0 < γ < 1/4, then there exists some δ̌ > 1 such that

sup
τ∈Mt

E
(

zδ̌ (ς∗τ ,τ)|ς
∗
t
= ς
)
< ∞, (3.2.1)

where Mt is the set of all stopping times with t ≤ τ ≤ T and the function z is given in (2.7.3).

Proof. From the optimal wealth process given in (2.3.10) and through Itô formula we have

that

X∗
t
= xexp

{∫ t

0

a∗(u)du

}
E0,t(b

∗) ,

where the functions a∗ and b∗ are defined in (2.3.10) and

E0,t(b
∗) = exp

{∫ t

0

b∗(u)dWu−
1

2

∫ t

0

(b∗(u))2du

}
.

Therefore,

X∗
t
= xexp

{∫ t

0

k∗(u)du+
∫ t

0

b∗(u)dWu

}
and k∗(u) = K∗(Su,u) ,
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where K∗(s, t) = A∗(s, t)− (B∗(s, t)2)/2 and the functions A∗(s, t) and B∗(s, t) are defined in

(2.3.11). Taking into account the bound in inequality (2.2.2), we obtain that

z(ς , t)≤ c∗xγ exp

{
s2

2
g(0)

}
≤ exp

{
s2√γκ1

2σ2

}
.

Therefore, it is sufficient to show that

sup
τ∈Mt

E

(
ϒτ

∣∣∣∣Xt = x,St = s

)
< ∞, (3.2.2)

where ϒv = (X∗
v
)δ1 exp

{
δ2

S2
v

σ2

}
. It is clear that

E

(
ϒτ

∣∣∣∣Xt = x,St = s

)
= xδ1 E exp

{
δ1Jt,τ +δ2

S2
t,τ

σ2

}
, (3.2.3)

where Jt,v =
∫ v

t
k∗

t
(u)du+

∫ v

t
b∗

t
(u)dWu, k∗

t
(u) = K∗(St,u,u), b∗

t
(u) = B∗(St,u,u) and for u > t

St,u = e−κ(u−t)s+σξt,u and ξt,u = e−κu

∫ u

t

eκvdWv .

Note now, that the upper bound from Eq. (6.5.5) in Proposition 6.5.4 implies that for any

N > 0

sup
τ∈Mt

EeN|ξt,τ | < ∞ . (3.2.4)

Therefore, we can write that
S2

t,u

σ2
= ξ 2

t,u + Št,u ,

where the term Št,u satisfies the property (3.2.4). Moreover, taking into account that

dξ 2
t,u =−2κξ 2

t,udu+du+2ξt,udWu , ξt,t = 0 ,

So, the power in the exponential in the left side of the equality (3.2.3) can be represented as

δ1Jt,v +δ2

S2
t,v

σ2
= Lt,v + Št,u , and Lt,v =

∫ v

t

ζ1(t,z)dWz +
∫ v

t

ζ2(t,z)dz ,
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where ζ1(t,z) = δ1b∗
t
(z)+2δ̌1ξt,z and ζ2(t,z) = δ1k∗

t
(z)−2δ̌1κξ 2

t,z + δ̌1. Therefore, to show

(3.2.2) it sufficient to check that

sup
τ∈Mt

E exp
{

Lt,τ + Št,τ

}
< ∞ . (3.2.5)

Taking into account here that

sup
τ∈Mt

Eexp

{
2

∫ τ

t

ζ1(t,z)dWz−2

∫ τ

t

ζ 2
1
(t,z)dz

}
≤ 1 ,

we obtain through the Cauchy–Schwarz inequality, that for any τ ∈Mt

Eexp
{

Lt,τ

}
≤
√

E exp

{
2

∫ τ

t

Dt(v)dv+2Št,τ

}
,

where Dt(v) = ζ2(t,v)+ζ 2
1
(t,v).

Note now that, from the definitions of A∗(s, t) and B∗(s, t) in (2.3.10), we can represent

these functions as

a∗
t
(v) =

κ2
1

1− γ
g̃(v)ξ 2

t,v + ǎ∗t(v) and b∗
t
(v) =− κ1

1− γ
g̃(v)ξt,v + b̌∗t(v) ,

where g̃(v) = 1−σ2g(v)/κ1 and the functions ǎ∗
t
(v) and b∗

t
(v) are such that for any N > 0,

Eexp

{
N

∫ T

t

|ǎ∗t(v)dv

}
< ∞ (3.2.6)

and b̌∗t(v) is bounded i.e., sup
t≤v≤T

|b̌∗t(v)| < ∞. Note, that the function Dt(v) can be

represented as

Dt(v) = G(v)ξ 2
t,v + Ďt(v) ,

where the function Ďt(v) satisfies the property (3.2.6). The function ǧ(v) can be represented

as

G(v) =−t1 g̃2(v)+ t2g̃(v)− t3 . (3.2.7)

Here,

t1 =

(
1

2
−δ1

)
δ1κ2

1

(1− γ)2
, t2 =

δ1κ1

1− γ
(κ1−4δ2) and t3 = 2δ2 (κ−2δ2) .
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If we take here

δ̌ =
1

2
√

γ
, δ1 = γδ̌ =

√
γ

2
and δ2 =

δ̌
√

γκ1

2
=

κ1

4
,

then we obtain that

G(v) =−(1−√γ)
√

γκ2
1

4(1− γ)2
g̃2(v)− κ1(2κ−κ1)

4
≤ 0 .

So, this implies the upper bound (3.2.1) and, taking into account that δ̌ > 1 for γ < 1/4 we

come to Lemma 3.2.2.
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This chaper deals with an optimal investment/consumption problem during a fixed time

interval [0,T ] for a financial market generated by one non-risky Š asset and risky spread

(difference) assets St defined through the general multivariate Ornstein–Uhlenbeck (OU)

processes with constant volatility for logarithmic utility functions.

4.1 Market model

Let (Ω,FT ,(Ft)0≤t≤T ,P) be a standard filtered probability space with Wiener processes

W = (Wt)0≤t≤T ∈ R
m and Ft = σ{Wu,u≤ t}. Our financial market consists of one riskless

bond (Št)0≤t≤T and risky spread stocks (St)0≤t≤T governed by the following equations:





dŠt = rŠtdt, Š0 = 1,

dSt = AStdt +σdWt , S0 > 0 ,
(4.1.1)



46 Optimisation for logarithmic utility functions

where r ≥ 0 is the interest rate for riskless asset, the d vector risky assets

St = (S1(t),S2(t),S3(t), . . . ,Sd(t)), the standard Brownian motion (Wt)0≤t≤T with values in

R
m, the volatility σ is a d×m matrix such that (σσ ′)−1 exists, and the d×d mean reverting

matrix A is given by

A =




a11 a12 . . . a1d

a21 a22 . . . a2d
...

. . .

ad1 ad2 . . . add




, (4.1.2)

We assume that

sup
x∈Rd

x′Ax

|x|2 < 0 , (4.1.3)

Reλi(A)< 0. where ′ denotes the transposition. Note that this condition implies that the real

parts of the eigenvalues are negative i.e. Reλi(A)< 0. Let now α̌t be the number of riskless

assets Š and αt = (α1(t),α2(t), . . . ,αd(t)) ∈ R
d be the number of risky assets at the moment

0≤ t ≤ T , and the consumption rate is given by a non negative integrated function (ct)0≤t≤T

[44]. Thus the wealth process for Xt = α̌t Št +α ′
t
St is given by

dXt = α̌tdŠt +α ′
t
dSt− ctdt ,

which can be written as

dXt = (rXt−α ′
t
Ŝt− ct)dt +α ′

t
σdWt , (4.1.4)

where Ŝt = A1St = (Ŝ1(t), . . . , Ŝd(t))
′ ∈ R

d and A1 = rId−A, the prime ′ denotes the trans-

position. Note that in this case the matrix A1 is invertible, i.e. there exists A−1
1 . In the sequel

we denote the financial strategy by υt = (αt ,ct)
′ ∈ Θ = R

d ×R+ and the wealth process

(4.1.4) corresponding to this strategy by Xυ
t

. Moreover, we set ςυ
t
= (Xυ

t
,St)

′ ∈ R
n, where

n = d +1.

In this dissertation, we use the logarithmic utility functions, i.e., we need the following

definition for the admissible strategies.

Definition 4.1.1. The strategy υ = (υt)0≤t≤T is called admissible if it is adapted, equation

(4.1.4) has a unique nonnegative strong solution and the following conditions hold.

E

(∫ T

0

(lnct)−dt

)
< ∞, E sup

0≤t≤T

(
ln(Xυ

t
)
)
− < ∞ , (4.1.5)
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and ∫ T

0

|αt |2dt <+∞.

We denote by V the set of all admissible financial strategies.

Now for any υ ∈ V and ς = (x,s)′ from Ξ = R+×R
d , we define the objective function as

JJJ(ς ,υ) := Eς

(∫ T

0

(lncu)du+ϖ ln(Xυ
T
)
)
,

where Eς is the expectation under condition ςυ
0
= ς . Our goal in this thesis is to maximize

this function, i.e.

JJJ∗(ς) := sup
υ∈V

JJJ(ς ,υ) . (4.1.6)

To study this problem we use the stochastic dynamic programming method. To this end we

need to consider the optimization problems on the interval [t,T ] for any 0≤ t < T . For the

problem on the interval [t,T ] we use the strategies υ from V such that the process (υu)t≤u≤T

is adapted to the field family (Ft,u)t≤u≤T , where Ft,u = σ{Wv−Wt , t ≤ v≤ u}. The class

of such strategies we denote by Vt . Now we need to study the value functions (JJJ∗(ς , t))0≤t≤T

defined as

JJJ∗(ς , t) = sup
υ∈Vt

Eς ,t

(∫ T

t

(lncu)du+ϖ ln(Xυ
T
)
)
,

where ϖ > 0 and Eς ,t is the expectation under condition ςυ
t
= ς = (x,s) ∈ Ξ. Thus we need

to study the HJB equation which is given in the following section.

4.2 Hamilton–Jacobi–Bellman equation

Using the process ςυ
t

, we can rewrite the wealth and stock equations given in Eq. (4.1.1) and

(4.1.4) respectively in the following form

dςυ
t
= ǎ(ςυ

t
,υt)dt + b̌(ςυ

t
,υt)dWt , ς0 = ς , (4.2.1)

where ǎ ∈ R
n and b̌ is the matrix of n×m functions such that for any ς = (x,s) ∈ Ξ

ǎ(ς ,u) =

(
rx−α ′ŝ− c

s̃

)
and b̌(ς ,u) =

(
α ′σ

σ

)
,
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where ŝ = A1s, and we denote by s̃ = As = (s̃1, . . . , s̃d)
′ ∈ R

d , the control variable u = (α,c)

with α ∈ R
d and c ≥ 0. Now, for any qqq = (qqq1, . . . ,qqqn)

′ ∈ R
n and n× n symmetric matrix

MMM = (MMMi j)1≤i, j≤N , we set the Hamilton function as

H(ς ,qqq,MMM) := sup
u∈Θ

H0(ς ,qqq,MMM,u), Θ = R
d×R+, (4.2.2)

where

H0(ς ,qqq,MMM,u) := ǎ′(ς ,u)qqq+
1

2
tr[b̌b̌′(ς ,u)MMM]+ lnc .

In order to study problem (4.1.6), we need to solve the HJB equation which is given by





zt(ς , t)+H(ς ,∂ z(ς , t),∂ 2z(ς , t)) = 0, t ∈ [0,T ],

z(ς ,T ) = ϖ lnx, ς ∈ R
n,

(4.2.3)

where ∂ z(ς , t) = (zx,zs1
, . . . ,zsd

)′ ∈ R
n and

∂ 2z(ς , t) =




zxx zxs1
zxs2

. . . zxsd

zxs1
zs1s1

zs1s2
. . . zs1sd

...
. . .

zxsd
zsds1

zsds2
. . . zsdsd




n×n

.

To calculate the Hamilton function (4.2.2), note that

H0(ς ,qqq,MMM,υ) =(rx−α ′ŝ− c)qqq1 +
d

∑
i=1

s̃iqqq1+i

+
1

2

(
α ′σσ ′αMMM11 +2

d

∑
i=1

< σσ ′α >i MMM1,1+i

+
d

∑
k,i=1

< σσ ′ >ki MMM1+k,1+i

)
+ lnc .

The symbol < X >i denotes the i th element of the vector X and < Y >i j denotes the (i, j) th

element of the matrix Y . Note that due to (4.2.2), if MMM11 ≥ 0 or qqq1 ≤ 0 then the Hamilton

function H(ς ,qqq,MMM) = ∞. So, we maximize the function H0(ς ,qqq,MMM,υ) over α and c under

condition that MMM11 < 0 and qqq1 > 0. We obtain that optimal values for this maximization
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problem are given by

α0(s,qqq,MMM) =
(σσ ′)−1τ

MMM11

and c0(s,qqq,MMM) =
1

qqq1

, (4.2.4)

where τ = τ(s,qqq1,µ) = qqq1ŝ−σσ ′µ and µ = (MMM1,1+1, . . . ,MMM1,1+d)
′. Now we replace α0

i
and

c0 into H0 to obtain the Hamilton function, so we get

H(ς ,qqq,MMM) =rxqqq1− lnqqq1 +
τ ′(σσ ′)−1τ

2|MMM11|
+

d

∑
i=1

s̃iqqq1+i

+
1

2

d

∑
k,i=1

< σσ ′ >ki MMM1+i,1+k−1 .

From the preceding Hamilton function and the HJB equation (4.2.3), we obtain





zt + rxzx +
τ ′

0
(σσ ′)−1τ0

2|zxx|
−1− lnzx +

d

∑
i=1

s̃izsi
+

1

2

d

∑
k,i=1

< σσ ′ >ki zsisk
= 0 ,

z(ς ,T ) = lnx, for any ς ∈ Ξ,

(4.2.5)

where τ0 = τ(s,∂ z/∂x,∂ 2z/∂x∂ s). To write the solution for this equation, we need to intro-

duce the d×d matrix g = (gi j)1≤i, j≤d which is the solution of the following differentiable

equation

ġ+
1

2
ρ(t)A′

1
(σσ ′)−1A1 +(g+g′)A = 0, g(T ) = 0 . (4.2.6)

Here, the dot ” · ” denotes the derivative. Moreover, we set

f (t) =
d

∑
k,i=1

< σσ ′ >ki (g̃ki(v)+ g̃ik(v))+ f0(t) , (4.2.7)

where g̃(t) =
∫ T

t
g(v)dv,

f0(t) =
1

2
r
(

t2−2t(T +1)+T (T +2)
)
−ρ(t) lnρ(t) and ρ(t) = T − t +1 .

We show that the equation (4.2.5) has the following solution

z(x,s, t) = ρ(t) lnx+ s′g(t)s+ f (t) . (4.2.8)

Remark 4.2.1. As we see in the HJB equation, the additional variable s ∈ R
d is the main

difference from the Bl-Sch market.



50 Optimisation for logarithmic utility functions

4.3 Main results

First of all we have to study the HJB equation (4.2.5) to calculate the value function (4.1.6).

Theorem 4.3.1. The function (4.2.8) satisfies the HJB equation (4.2.5).

Furthermore, to construct the optimal strategies we set

α̌0
(
ς , t
)
= α0(ς ,∂ z,∂ 2z) =−(σσ ′)−1ŝx and č0(ς , t) = c0(ς ,∂ z,∂ 2z) =

x

ρ(t)
.

(4.3.1)

Recall that ŝ = A1s = (ŝ1, . . . , ŝd)
′ ∈ R

d . Using these functions we define the optimal

strategies υ∗ = (α∗,c∗) as

α∗(t) = α̌0(ς∗
t
, t) =−(σσ ′)−1ŜtX

∗
t

and c∗(t) = č0(ς∗
t
, t) =

X∗
t

ρ(t)
. (4.3.2)

Here ς∗
t
= (X∗

t
,St) and X∗

t
is the optimal wealth process defined by the following stochastic

differential equation

dX∗
t
= X∗

t
a∗(t)dt +X∗

t
(b∗(t))′dWt , X∗

0
= x , (4.3.3)

where

a∗(t) = r− Ŝ
′
t
(σσ ′)−1Ŝt−

1

ρ(t)
and b∗(t) = σ

′
(σσ ′)−1Ŝt .

Now we show that these processes are optimal solutions for the problem (4.1.6).

Theorem 4.3.2. The processes (4.3.2) and (4.3.3) are the optimal strategies for the problem

(4.1.6) and

J∗(x,s, t) = z(x,s, t) = ρ(t) lnx+ s′g(t)s+ f (t) , (4.3.4)

where ρ,g and f are given in (4.2.6).

Example 1. For one dimensional case where a riskless and risky assets are given respectively

by 



dŠt = rŠtdt, Š0 = 1,

dSt =−κStdt +σdWt , S0 > 0 ,
(4.3.5)

where r ≥ 0 is the interest rate of the riskless asset, κ > 0 and σ are respectively the mean

reverting speed and the volatility for risky assets. Therefore, for κ1 = κ + r > 0, the optimal
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strategies and the HJB equation are given by

α∗(t) = α̌0(ς∗
t
, t) =−

κ1StX
∗
t

σ2
and c∗(t) = č0(ς∗

t
, t) =

X∗
t

ρ(t)
,

where α̌0 and č0 are defined in Eq. (5.3.5). Moreover, the differential wealth process for this

example is given by

dX∗
t
= X∗

t
a∗(t)dt +X∗

t
b∗(t)dWt , (4.3.6)

where

a∗(t) = r+κ2
1
S2

t
/σ2−1/ρ(t) and b∗(t) = κ1St/σ .

Example 2. For multidimensional case where the market assets are given by





dŠt = rŠtdt, Š0 = 1,

dSt = AStdt +σdWt , S0 > 0 ,
(4.3.7)

where r is the interest rate for riskless asset Š and St = (S1(t),S2(t),S3(t), . . . ,Sd(t)) ∈ R
d

is a d−dimensional vector of risky assets, (Wt) is a standard Brownian motion with values in

R
d , the market volatility matrix σ = diag(σ1,σ2, . . . ,σd), and the mean reverting matrix A

is given by

A =




a11 a12 . . . a1d

a21 a22 . . . a2d
...

. . .

ad1 ad2 . . . add




,

with negative real eigenvalues i.e. Reλi(A)< 0. The optimal wealth process (X∗
t
)0≤t≤T is

defined by the following stochastic equation

dX∗
t
= X∗

t
a∗(t)dt +X∗

t
(b∗(t))′dWt , X∗

0
= x ,

where

a∗(t) = r+
d

∑
i=1

Ŝ2
i
(t)

σ2
i

− 1

ρ(t)
, b∗(t) = (b∗

1
(t), . . . ,b∗

d
(t))′ and b∗

i
(t) = Ŝi(t)/σi .
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Using the preceding stochastic differential equation, the optimal strategies

υ∗ = (α∗,c∗) for all 0≤ t ≤ T is of the form:

α∗
i
(t) = α̌0

i
(ς∗

t
, t) =−

Ŝi(t)X
∗
t

σ2
i

and c∗(t) = č0(ς∗
t
, t) =

X∗
t

ρ(t)
,

where α̌0
i
= (α̌0

1
, . . . , α̌0

d
) ∈ R

d .

Remark 4.3.1. It should be noted that the behaviour of theses optimal strategies are described

by the transformed spread process Ŝt = A1S′
t
. In the scalar case this is the same as St .

However, in the general multidimensional case we need to take into account all components

of the spread processes.

4.4 Proofs

4.4.1 Proof of Theorem 4.3.1

Proof. Now, by taking the derivatives of z(ς , t) defined in (4.2.8) with respect to t and s and

apply them into equation (4.2.5) we obtain

s′ġ(t)s+ ḟ (t)+ rρ(t)+
d

∑
k,i=1

(< σσ ′ >ki (gki +gik))− lnρ(t)−1

+
d

∑
j=1

d

∑
l=1

A jlsl < (g+g′)s > j +
ρ(t)ŝ′(σσ ′)−1ŝ

2
= 0 ,

where the dot ” · ” denotes the first derivative and g is a d×d matrix defined in (4.2.6). Then

this can be written as

s′
(

ġ(t)+
1

2
ρ(t)A′

1
(σσ ′)−1A1−A′(g+g′)

)
s+ ḟ (t)+

d

∑
k,i=1

< σσ ′ >ki (gki +gik))−1

− lnρ(t)+ rρ(t) = 0 .

After calculation we get that for s ∈ R
d ,

f (t) =
d

∑
k,i=1

< σσ ′ >ki (g̃ki(v)+ g̃ik(v))+ f0(t) ,
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and

s′
(
ġ(t)+

1

2
ρ(t)A′

1
(σσ ′)−1A1−A′(g+g′)

)
s = 0, g(T ) = 0 ,

where

g̃(t) =
∫ T

t

g(v)dv and f0(t) =
1

2
r
(

t2−2t(T +1)+T (T +2)
)
+ρ(t) lnρ(t) .

The last term in the preceding equation can be written as

< A′(g+g′)>i j =
d

∑
l=1

< A′ >il (gl j +g jl) ,

=
d

∑
l=1

(
< A >li gl j+< A >li g jl

)
.

Let we denote by H = (hi j)1≤i, j≤d , where h = vect(H) a vector in R
m such that h =

(h1,h2, . . . ,hm), with h( j−1)d+i =< H >i, j and Z(t) = vect(g(t)) where Z( j−1)d+i = gi j.

Therefore, the last equation becomes

< A′(g+g′)>i j =
d

∑
l=1

< A >li

(
Z( j−1)d+l +Z(l−1)d+ j

)
,

=
d

∑
l=1

< A >li Z( j−1)d+l +
d

∑
l=1

< A >li Z(l−1)d+ j ,

=
d

∑
l=1

d

∑
k=1

(
< A >li 111{k= j}Z(k−1)d+l+< A >ki 111{l= j}Z(k−1)d+l

)
.

This can be written in the following form

Vect(A′(g+g′)) = ΓZ ,

where Γ = (γ̌s,t) and γ̂s,t =< A >li 111{k= j}+ < A >ki 111{l= j}, with s = ( j− 1)d + i and t =

(k−1)d + l. Therefore, for all m×m matrix Γ, with m = d2,

< A′(g+g′)>i j=< ΓZ >i j ,

where Γ = (γ̂s,t)1≤s,t≤m. Thus, equation (4.2.6) can be written as

Ż−ΓZ +
1

2
ρ(t)b̃ = 0 , Z(T ) = 0 ,
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where b̃ = vect(A′
1
(σσ ′)−1A1) ∈ R

m. Therefore, the solution of Z(t) is given by

Z(t) = b̃
1

2

∫ T

t

ρ(v)eΓ(v−t)dv . (4.4.1)

This proves Theorem 4.3.1.

4.4.2 Proof of Theorem 4.3.2

Proof. We apply the verification Theorem 6.4.1 to the Problem (4.1.6) for the stochastic

control differential equation (4.2.1). First note, that from the definition of the risk asset in

(4.1.1) it follows that for t < u < T and s ∈ R
d

Su = eA(u−t)s+ξt,u and ξt,u =
∫ u

t

eA(u−v)σdWv . (4.4.2)

It should be noted that the upper bound (1.1.11) of Proposition 1.1.2 in [39] implies directly

that

E

(
sup

t≤u≤T

|ξt,u|2
)

< ∞ . (4.4.3)

Therefore, Theorem 4.3.1 and the last inequality in (4.1.5) imply the condition H1).

Moreover, note that the linear equation (4.3.3) has the strong unique solution X∗
t

given as

X∗
t
= xexp

{∫ t

0

(
a∗(u)−

∣∣b̌∗(u)
∣∣2 /2

)
du+

∫ t

0

(b̌∗(u))′dWu

}
. (4.4.4)

Therefore, the strategy υ∗ = (υ∗
t
)0≤t≤T with υ∗

t
= (α∗

t
,c∗

t
) defined in (4.3.2) and (4.3.3)

belongs to the class V and satisfies the condition H2). To check the condition H3) we have

to show the upper bound (6.4.5), i.e.

Eς ,t sup
t≤u≤T

|z(ς∗
u
,u)|< ∞ (4.4.5)

for any ς ∈ R+×R
n. Taking into account that in the HJB solution (4.2.8) the functions g

and f are bounded it suffices to check that

Eς ,t sup
t≤u≤T

(
| ln(X∗

u
)|+ |Su|2

)
< ∞ .
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So, in view of (4.4.2) and (4.4.3) one needs to check that

Eς ,t sup
t≤u≤T

| ln(X∗
u
)|< ∞ . (4.4.6)

For this, taking into account the representation (4.4.4), it suffices to check that

Eς ,t

∫ T

t

(
|ǎ∗(u)|+

∣∣b̌∗(u)
∣∣2
)

du+

√
Eς ,t sup

t≤u≤T

(∫ u

t

(b∗(v))′dWv

)2

< ∞ .

Note now, that from the definition of the functions ǎ∗(t) and b̌∗(t) in (4.3.3) and the conditions

of this theorem, we have that

|ǎ∗(t)| ≤ c1(1+ |St |2) and |b̌∗(t)| ≤ c2|St | (4.4.7)

for some constant c1 > 0 and c2 > 0. Moreover, using Doob’s martingale inequality, the

equality (4.4.3) and the bound (4.4.2) we obtain that

Eς ,t sup
t≤u≤T

(∫ u

t

(b∗(v))′dWv

)2

≤ 4Eς ,t

(∫ T

t

(b∗(u))′dWu

)2

= 4Eς ,t

∫ T

t

|b∗(u)|2du < ∞ .

The last inequality follows immediately from Eq. (4.4.5) and the second bound in Eq. (4.4.7).

This proves Theorem 4.3.2.
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In this Chapter, we consider the stochastic volatility markets which are popular in

mathematical finance (see, for example, [22], [25], [34], etc.).

5.1 Market model

Let (Ω,FT ,(Ft)0≤t≤T ,P) be a standard filtered probability space with (Ft)0≤t≤T adapted

independent Wiener processes (W
(1)

t )0≤t≤T and (W
(2)

t )0≤t≤T . Our financial market consists

of one riskless bond (Št)0≤t≤T and risky spread stocks (St)0≤t≤T governed by the following

equations: 



dSt =−κStdt +σ(yt)dUt , S0 > 0 ,

dyt = Λ(yt)dt +βdW
(2)

t , β > 0 ,
(5.1.1)

where y0 is a fixed nonrandom initial value, Ut =

√
1− β̌ 2W

(1)
t + β̌ W

(2)
t and 0 < β̌ < 1.

Here the constant κ > 0 is the market mean-reverting parameter from R and σ(y)> 0 is the

market volatility. We assume that the interest rate r ≤ κ . Let now α̌t and αt be the number of
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riskless assets Š and risky assets S respectively in the moment 0≤ t ≤ T , the consumption

rate is given by a non negative integrated function (ct)0≤t≤T [44]. Then the wealth process

Xt = α̌t Št +αtSt satisfies the following equation

dXt = (rXt−αtκ1St− ct)dt +αtσ(yt)dUt , (5.1.2)

where the initial endowment X0 > 0 is a fixed nonrandom constant and κ1 = κ + r. We

denote by V of all adapted processes υt = (αt ,ct) such that almost sure

∫ T

0

α2
t

dt < ∞ ,
∫ T

0

ctdt < ∞

and the equation (5.1.2) has an unique strong non negative solution. In the sequel we denote

ςt = (Xt ,St ,yt)
′ , (5.1.3)

where ”′” denotes the transposition. We denote by V the class of alll admissible financial

strategies defined in Definition 4.1.1 for the Eq. (5.1.2).

Then for any υ ∈ V and ς = (x,s,y) ∈ R
3, we define the objective function as

J(ς ,υ) := Eς

(∫ T

0

(lncu)du+ϖ ln(Xυ
T
)
)
,

where Xυ is the wealth process (5.1.2) corresponding to the strategy υ ∈ V and Eς is the

expectation under condition ς0 = ς = (x,s,y). The coefficient ϖ > 0 is a some parameter

giving the preferences between consumptions and investments. Our goal, in this Chapter, is

to maximize this function, i.e.

J∗(ς) := sup
υ∈V

J(ς ,υ) . (5.1.4)

To study this problem we use the stochastic dynamic programming method. To this end we

need to study the value functions (J∗(ς , t))0≤t≤T defined as

J∗(ς , t) = sup
υ∈Vt

Eς ,t

(∫ T

t

(lncu)du+ϖ ln(Xυ
T
)
)
,

where Eς ,t is the expectation under condition ς0 = ς = (x,s,y) and Vt is the set of all

admissible financial strategies υ ∈ V which are adapted to Ft,u = σ{W (1)
s
−W

(1)
t ,W (2)

s
−
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W
(2)

t , t ≤ s≤ u} on the interval t ≤ u≤ T . Thus we need to study the HJB equation which is

given in the following section.

5.2 Hamilton–Jacobi–Bellman equation

First, we rewrite the stock and wealth equations in the following form

dςt = ǎ(ςt ,υt)dt + b̌(ςt ,υt)dWt , Wt =

(
W

(1)
t

W
(2)

t

)
, (5.2.1)

where ǎ ∈ R
3 and b̌ is the matrix of 3× 2 functions such that for any ς = (x,s,y) and

υ = (α,c)

ǎ(ς ,u) =




rx−ακ1s− c

−κs

Λ(y)


 and b̌(ς ,u) =




ασ(y)

√
1− β̌ 2 ; ασ(y)β̌

σ(y)

√
1− β̌ 2 ; σ(y)β̌

0; β


 .

(5.2.2)

Now, for any qqq = (qqq1,qqq2,qqq3)
′ ∈ R

3 and 3× 3 symmetric matrix MMM = (MMMi j)1≤i, j≤3, we

set the Hamilton function as

H(ς ,qqq,MMM) := sup
υ∈Θ

H0(ς ,qqq,MMM,υ), Θ ∈ R×R+, (5.2.3)

where

H0(ς ,qqq,MMM,υ) := ǎ′(ς ,υ)qqq+
1

2
tr[b̌b̌′(ς ,υ)MMM]+ lnc .

In order to study problem (5.1.4), we need to solve the HJB equation which is given by





zt(ς , t)+H(ς ,∂ z(x, t),∂ 2z(x, t)) = 0, t ∈ [0,T ],

z(x, t) = ϖ lnx, ς ∈ R
3,

(5.2.4)

where ∂ z(x, t) = (zx,zs,zy)
′ ∈ R

3 and

∂ 2z(x, t) =




zxx zxs zxy

zxs zss zsy

zxy zys zyy




3×3

.
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To calculate the Hamilton function (5.2.3), note that

H0(ς ,qqq,MMM,υ) =(rx−ακ1s− c)qqq1 +κsqqq2 +Λ(y)qqq3 +
1

2
α2σ2(y)MMM11 +ασ2(y)MMM12

+ασ(y)ββ̌MMM13 +
1

2
σ2(y)MMM22 +σ(y)ββ̌MMM23 +

1

2
β 2MMM33 + lnc .

We can represent this function as

H0(ς ,qqq,MMM,υ) =
1

2
α2σ2(y)MMM11 +αQ(ς ,qqq,MMM)− cq1 + lnc+Q0(ς ,qqq,MMM) , (5.2.5)

where Q(ς ,qqq,MMM) = σ2(y)MMM12 +σ(y)ββ̌MMM13−κ1sqqq1 and

Q0(ς ,qqq,MMM) = rxqqq1 +κsqqq2 +Λ(y)qqq3 +
1

2
σ2(y)MMM22 +σ(y)ββ̌MMM23 +

1

2
β 2MMM33

Note that due to (5.2.3), if MMM11 ≥ 0 or qqq1 ≤ 0 then the Hamilton function H(ς ,qqq,MMM) = ∞.

So, we maximize the function H0(ς ,qqq,MMM,υ) over α and c under condition that MMM11 < 0 and

qqq1 > 0. We obtain that optimal values for this maximization problem are given by

α0(ς ,qqq,MMM) =
Q(ς ,qqq,MMM)

σ2(y)|MMM11|
and c0(ς ,qqq,MMM) =

1

qqq1

. (5.2.6)

Now we replace α0
i

and c0 into H0 to obtain the Hamilton function, so we get

H(ς ,qqq,MMM) =
Q2(ς ,qqq,MMM)

2σ2(y)|MMM11|
−1− lnqqq1 +Q0(ς ,qqq,MMM) . (5.2.7)

Setting Q̃(ς , t) = Q(ς ,∂ z,∂ 2z, t) and Q̃0(ς , t) = Q0(ς ,∂ z,∂ 2z, t), we can represent the equa-

tion (5.2.4) as

zt +
Q̃2(ς , t)

2σ2(y)|zxx|
−1− lnzx + Q̃0(ς , t) = 0 , (5.2.8)

where z(x, t) = lnx for any ς ∈ R+×R
2.

5.3 Main results

First of all we have to study the HJB equation (5.2.8) to calculate the value function (5.1.4).

To this end we define the following linear partial derivative equations for the functions g(y, t),
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h(y, t) and f (y, t).

gt +
β 2

2
gyy +2κg+Λ(y)gy =−

κ2
1
ρ(t)

σ2(y)
, g(y,T ) = 0 . (5.3.1)

Then

ht +
β 2

2
hyy +κh+Λ(y)hy =−σ(y)ββ̌gy , h(y,T ) = 0 . (5.3.2)

Finally,

ft +
β 2 fyy

2
+Λ(y) fy = ϒ(y, t) , f (y,T ) = 0 , (5.3.3)

where ϒ(y, t) = 1+ lnρ(t)− rρ(t)−σ2(y)g/2−σ(y)β β̌hy .

Theorem 5.3.1. Assume that the functions σ(·) and Λ(·) are bounded, continuously derivable

with bounded derivatives and infy∈Rσ(y)> 0. Then the HJB solution is

z(x,s,y, t) = ρ(t) lnx+
s2

2
g(y, t)+ sh(y, t)+ f (y, t) , ρ(t) = T − t +1 , (5.3.4)

where the functions g, h and f are bounded and defined by the partial equations (5.3.1),

(5.3.2) and (5.3.3).

Now, using the form from (5.3.4) or z(x,s,y, t) we construct the optimal strategies. We

set

α̌0
(
ς , t
)
= α0(ς ,∂ z,∂ 2z) =− κ1s

σ2(y)
x and č0(ς , t) = c0(ς ,∂ z,∂ 2z) =

x

ρ(t)
. (5.3.5)

Using these functions, we define the optimal strategies υ∗ = (α∗,c∗) as

α∗(t) = α̌0(ς∗
t
, t) =− κ1St

σ2(yt)
X∗

t
and c∗(t) = č0(ς∗

t
, t) =

X∗
t

ρ(t)
. (5.3.6)

Here ς∗
t
= (X∗

t
,St ,yt)

′ and X∗
t

is the optimal wealth process defined by the following stochas-

tic differential equation

dX∗
t
= X∗

t
a∗(t)dt +X∗

t
b∗(t)dUt , X∗

0
= x , (5.3.7)

where

a∗(t) = r+
κ1S2

t

σ2(yt)
− 1

ρ(t)
and b∗(t) =− κ1St

σ(yt)
.
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Theorem 5.3.2. Assume that the functions σ(·) and Λ(·) are bounded, continuously derivable

with bounded derivatives and infy∈Rσ(y) > 0. Then the process υ∗
t
= (α∗

t
,c∗

t
) defined in

(5.3.6) and (5.3.7) is the solution for the problem (5.1.4).

5.4 Proofs

5.4.1 Proof of Theorem 5.3.1

Proof. Let us use the following form for the HJB equation Eq. (5.2.8)

In this case Q̃(ς , t) =−κ1sρ(t)/x and

Q̃0(ς , t) = rρ(t)+κszs +Λ(y)zy +
σ2(y)zss

2
+σ(y)ββ̌ zsy +

β 2zyy

2
.

Moreover, the last function can be represented as

Q̃0(ς , t) =
s2

2
K2(y, t)+ sK1(y, t)+K0(y, t) , (5.4.1)

where

K2(y, t) =
β 2

2
gyy +2κg+Λ(y)gy , K1(y, t) = κh+Λ(y)hy +σ(y)ββ̌gy +

β 2

2
hyy

and

K0(y, t) = rρ(t)+
σ2(y)g

2
+Λ(y) fy +σ(y)β β̌hy +

β 2 fyy

2
.

Therefore, from the equation (5.2.8) we obtain that

s2

2

(
gt +

κ2
1
ρ(t)

σ2(y)
+K2(y, t)

)
+ s(ht +K1(y, t))+ ft−1− lnρ(t)+K0(y, t) = 0 .

From here we obtain the following linear partial equations (5.3.1), (5.3.2) and (5.3.3). By

changing the variable t→ T − t in (5.3.1) and using the condition of this theorem, we can

apply Theorem 6.1.1 for any 0 < l < 1, i.e. this equation has the unique bounded solution

with the bounded derivatives. So, we can do the same for the equations (5.3.2) and (5.3.3).

This proves Theorem 5.3.1.
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5.4.2 Proof of the verification Theorem 5.3.2

Proof. We apply the verification Theorem 6.4.1 to the Problem (5.1.4) for the stochastic

control differential equation (5.2.1). First note, that Theorem 5.3.1 implies the condition

H1) with the function (5.3.4). Moreover, note that the linear equation (5.3.7) has the strong

unique solution X∗
t

given as

X∗
t
= xexp

{∫ t

0

(
ǎ∗(v)−

(
b̌∗(v)

)2
/2
)

dv+
∫ t

0

b̌∗(v)dUv

}
. (5.4.2)

Therefore, the strategy υ∗ = (υ∗
t
)0≤t≤T with υ∗

t
= (α∗

t
,c∗

t
) defined in (5.3.6) and (5.3.7)

belongs to the class V and satisfies the condition H2). To check the condition H4) we have

to show the upper bound (6.4.5), i.e.

Eς ,t sup
t≤u≤T

|z(ς∗
u
,u)|< ∞ (5.4.3)

for any ς ∈ R+×R
2. Taking into account that in the HJB solution (5.3.4) the functions g, h

and f are bounded it suffices to check that

Eς ,t sup
t≤u≤T

(
| ln(X∗

u
)|+S2

u

)
< ∞ .

Moreover, note that for t < u < T

Su = e−κ(u−t)s+ξt,u and ξt,u =
∫ u

t

e−κ(u−v)σ(yv)dWv .

So, one needs to check that

E

(
sup

t≤u≤T

ξ 2
u

∣∣∣yt = y

)
< ∞ and Eς ,t sup

t≤u≤T

| ln(X∗
u
)|< ∞ . (5.4.4)

It should be noted that the first inequality follows immediately from the upper bound

Eq. (6.5.4). As to the last inequality in (5.4.4) in view of the representation (5.4.2) it

suffices to check that

Eς ,t

∫ T

t

(
|ǎ∗(u)|+

(
b̌∗(u)

)2
)

du+

√
Eς ,t sup

t≤u≤T

(∫ u

t

b̌∗(v)dWv

)2

< ∞ .
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Note now, that from the definition of the functions ǎ∗(t) and b̌∗(t) in (5.3.7) and the conditions

of this theorem, we have that |ǎ∗(u)| ≤ c(1+S2
u
) and |b̌∗(u)| ≤ c|Su| for some constant c > 0.

Moreover, using Doob’s martingale inequality we obtain that

Eς ,t sup
t≤u≤T

(∫ u

t

b̌∗(v)dWv

)2

≤ 4Eς ,t

(∫ T

0

b̌∗(u)dWu

)2

= 4Eς ,t

∫ T

0

|b̌∗(u)|2du .

Therefore, to obtain the last inequality in (5.4.4) we need to check that

E

(∫ T

t

ξ 2
u

du

∣∣∣yt = y

)
< ∞ .

This bound follows immediately from the first inequality (5.4.4). This proves Theorem 5.3.2.
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In this chapter we state a toolbox

6.1 Cauchy Problem for linear parabolic equations

Suppose u(y, t) is the classical solution of the following nonlinear problem





ut−∑
n
i, j=1

ai j(y, t)uyiy j
+∑

n
j=1

a j(y, t)uy j
+a(y, t)u = ϒ(y, t) ,

u(y,0) = ϕ(y) , y ∈ R
n .

(6.1.1)

We need the following condition.

CL) Assume that there exist the constants 0 < cmin ≤ Cmax < ∞ such that for any y ∈ R
n,

t ∈ [0,T ] and (z1, . . . ,zn) ∈ R
n

cmin ≤
n

∑
i, j=1

ziz jai j(y, t)≤ Cmax .
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Now we recall some notations from [54]. Let now be l > 0 non integer, i.e. l = [l]+{l},
where [l] is the integer part and l is the fractional and 0 < {l}< 1. We denote by H l(Rn)

the Banach space of the R
n→ R functions φ having m = [l] derivatives which satisfy the

Hölder conditions with the exponent α = {l} and bounded the Hölder constants. The norm

is defined as

|φ |(l) =
m

∑
j=0

∑
i1+...in= j

sup
y∈Rn

| ∂ j

(∂y1)
i1 . . .(∂yn)

in
φ(y)|+ ∑

i1+...in=m

〈
∂ j

(∂y1)
i1 . . .(∂yn)

in
φ

〉α

,

where

⟨u⟩α = sup
x,y∈Rn

|u(x)−u(y)|
|x− y|α .

Moreover, the space H l,l/2(Rn× [0,T ]) is the Banach space of all Rn× [0,T ]→ R

functions u(y, t) which for any p+2r ≤ m have the continuous bounded derivatives

∂
p
i1,...,in

∂ ru =
∂ p∂ r

(∂y1)
i1 . . .(∂yn)

in(∂ t)r
u , i1 + . . .+ in = p .

The norm in this case is defined as the following:

|u|(l) =
m

∑
j=0

∑
p+2r= j

∑
i1+...in=p

sup
y∈Rn,t∈[0,T ]

|∂ p
i1,...,in

∂ ru(y, t)|+ |u|(l)
y

+ |u|(l/2)
t

,

where

|u|(l)
y

= ∑
p+2r=m

∑
i1+...in=p

〈
∂

p
i1,...,in

∂ ru
〉α

y

and

|u|(l/2)
t

= ∑
p+2r=m−1

∑
i1+...in=p

〈
∂

p
i1,...,in

∂ ru
〉(α+1)/2

t
+ ∑

p+2r=m

∑
i1+...in=p

〈
∂

p
i1,...,in

∂ ru
〉α/2

t
.

Here the Hölder constants are defined as

⟨u⟩α
y
= sup

x,y∈Rn,t∈[0,T ]

|u(x, t)−u(y, t)|
|x− y|α and ⟨u⟩α

t
= sup

x∈Rn,t,u∈[0,T ]

|u(x, t)−u(x,u)|
|t−u|α .

Now we give the uniqueness and existence theorem for the Cauchy problem (6.1.1).

Theorem 6.1.1 (Theorem 5.1, Chapter 4, section 5, p.320 of [54]). Assume that the condition

CL) holds. Moreover, let l > 0 be a non integer number for which the functions ai j(y, t),
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a j(y, t) and a(y, t) belong to the class H l,l/2(Rn× [0,T ]). Then for any ϒ ∈H l,l/2(Rn×
[0,T ]) and ϕ ∈H l+2(Rn), the equation (6.1.1) has an unique solution from the space

H l+2,l/2+1(Rn× [0,T ]) such that for some constant c > 0

|u|(l+2) ≤ c
(
| f |(l)+ |ϕ|(l+2)

)
. (6.1.2)

6.2 Cauchy Problem for quasilinear parabolic equations

Suppose u(x, t) is the classical solution of the following nonlinear problem





L u≡ ut−∑1≤i, j≤n ai j(x, t,u,ux)uxix j
+a(x, t,u,ux) = 0 ,

u|t=0 = u(x,0) = ψ0(x).

(6.2.1)

We assume that there exists some functions (a1,a2, ...,an), such that

ai j(x, t,u, p)≡ ∂ai(x, t,u, p)

∂ p j

and (6.2.2)

A(x, t,u, p)≡ a(x, t,u, p)−
n

∑
i=1

∂ai

∂u
pi−

n

∑
i=1

∂ai

∂xi

. (6.2.3)

Now for any N ≥ 1,

ΓN = {(x, t) : |x| ≤ N, 0≤ t ≤ T} .

We introduce the following conditions for ensuring the existence of the solution u(x, t) of

Cauchy problem.

Suppose that the following conditions hold.

C1) For all N ≥ 1,

ψ0(x) ∈H
2+β (ΓN) and max

En

| ψ0(x) |< ∞.

C2) There exists b≥ 0 and some R+→ R+ function Φ, such that for all x ∈ R
n, u ∈ R

and for all 0≤ t ≤ T ,

A(x, t,u,0)u≥−Φ(|u|)|u|−b, (6.2.4)

and ∫ ∞

0

dτ

Φ(τ)
= ∞.
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C3) For t ∈ (0,T ] for arbitrary x, u, p ∈ R
n, and any ξ = (ξ1,ξ2, ...,ξn) ∈ R

n, there

exists 0 < ν < µ such that

∑
1≤i, j≤n

ai j(x, t,u, p)ξiξ j ≥ 0 and ν |ξ |2 ≤ ai j(x, t,u, p)ξiξ j ≤ µ|ξ |2.

C4) The functions ai(x, t,u, p) and a(x, t,u, p) are continuous, the functions (ai)1≤i≤n

are differentiable with respect to x,u and p ∈ R
n , and for any N ≥ 1 there exists

µ1 = µ1(N) such that

sup
(x,t)≤ΓN

|u|≤N

p∈Rn

∑
n
i=1

(
|ai|+

∣∣∂ai

∂u

∣∣)(1+ |p|)+∑
n
i, j=1 | ∂ai

∂x j
|+ |a|

(1+ |p|)2
≤ µ1(N).

C5) For all N ≥ 1, and for all |x| ≤ N, 0 ≤ t ≤ T , |u| ≤ N and |p| ≤ N, the functions

ai, a, ∂ai/∂ p j, ∂ai/∂u, and ∂ai/∂xi are continuous functions satisfying a Hölder

condition in x, t, u and p with exponents β , β/2, β and β respectively for some

β > 0.

Theorem 6.2.1 ( See Theorem 8.1, Chapter 5, Section 8, p.495 of [54]). Assume that the

conditions C1)–C5) hold. Then there exists at least one solution u(x, t) of Cauchy problem

(6.2.1) that is bounded in R
n× [0,T ] which belongs to H 2+β ,1+β/2(ΓN) for any N ≥ 1.

6.3 Verification theorem for positive utility functions

Now we give the verification theorem from [9]. Consider on the interval [0,T ], the stochastic

control process is given by the n−dimensional Itô process with its values in Ξ⊆ R
n.





dςυ
t

= a(ςυ
t
, t,υ)dt +b(t,ςυ

t
,υ)dWt , t ≥ 0,

ςυ
0 = x ∈ Ξ⊆ R

n,
(6.3.1)

where (Wt)0≤t≤T is a standard m−dimensional Brownian motion. We set

Ft = σ{Wu,0 ≤ u ≤ t} for any 0 < t ≤ T . We assume that the control process υt takes

values in some set Θ⊆R
q for some integer q≥ 1. Note that, a takes its values in R

n and b is

the n×m matrix. Moreover, we assume that the coefficients a and b satisfy the following

conditions:
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V1) For all t ∈ [0,T ] the functions a(., t, .) and b(., t, .) are continuous on Ξ×Θ.

V2) For every deterministic vector υ ∈Θ, the stochastic differential equation

dςυ
t
= a(ςυ

t
, t,υ)dt +b(ςυ

t
, t,υ)dWt ,

has a unique strong solution.

Now we introduce an admissible control process for the equation (6.3.1). The stochastic

control process υ = (υt)t≥0 = (αt ,ct)t≥0 is called admissible on [0,T ] if it is (Ft)0≤t≤T

progressively measurable with values in Θ, and equation (6.3.1) has a unique strong a.s.

continuous solution ςυ
t
∈ Ξ such that

∫ T

0
(|a(ςυ

t
, t,υt)|+ |b(ςυ

t
, t,υt)|2)dt < ∞ a.s..

We denote by V the set of all admissible control processes with respect to equation (6.3.1).

Moreover, let f : Ξ× [0,T ]×Θ→ [0,∞) and h : Ξ→ [0,∞) be continuous utility functions.

Now we consider the cost function

JJJ(x, t,υ) = Ex,t

(∫ T

t

f(ςu,u,υu)du+h(ςυ
T
)

)
, 0≤ t ≤ T, (6.3.2)

where Ex,t is the expectation under condition on ςt = x. We consider for this function, the

following optimal control problem,

sup
υ∈V

JJJ(x,0,υ) .

To this end, we used dynamical programming method, according to which one needs to

study the optimization problems on the interval [t,T ] for any 0 ≤ t ≤ T , i.e., to solve the

optimization problem

JJJ∗(x, t) := sup
υ∈Vt

JJJ(x, t,υ) , (6.3.3)

where Vt is the set of all admissible financial strategies υ ∈ V which are adapted to

Ft,u = σ{Ws−Wt , t ≤ s≤ u} on the interval t ≤ u≤ T .

To this end we introduce the Hamilton function, i.e. for any ς and 0≤ t ≤ T , with q ∈ R
n
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and symmetric n×n matrix M we set

H(x, t,q,M) := sup
θ∈Θ

H0(x, t,q,M,θ),

where

H0(x, t,q,M,θ) := a′(x, t,θ)q+
1

2
tr[bb′(x, t,θ)M]+ f(x, t,θ).

In order to find the solution to (6.3.3) we investigate the HJB equation





zt(x, t)+H(x, t,zx(x, t),zxx(x, t)) = 0, t ∈ [0,T ],

z(x,T ) = h(x), x ∈ R
n.

(6.3.4)

Here, zt denotes the partial derivative of z with respect to t, zx(x, t) the gradient vector with

respect to x in Ξ and zxx(x, t) denotes the symmetric hessian matrix, that is the matrix of the

second order partial derivatives with respect to x.

We assume the following conditions hold:

H1) The functions f and h are non negative.

H2) There exists a function z(x from C2,1(Rn× [0,T ]), t) from R
n× [0,T ]→ (0,∞)

which satisfies the HJB equation .

H3) There exists a measurable function θ ∗ : Rn× [0,T ]→Θ such that for all x ∈R
n and

0≤ t ≤ T ,

H(x, t,zx(x, t),zxx(x, t)) = H0(x, t,zx(x, t),zxx(x, t),θ
∗(x, t)).

H4) For any x ∈ Ξ and 0≤ t ≤ T , there exists a unique strong solution to the Itô equation

dς∗
u
= a(ς∗

u
,u,υ∗

u
)du+b(ς∗

u
,u,υ∗

u
)dWu, ς∗

t
= x, t ≤ u≤ T,

where υ∗
u
= θ ∗(ς∗

u
,u), the optimal control process υ∗ = (υ∗

s
)t≤s≤T ∈ Vt .

H5) There exists some δ̌ > 1 such that for all x ∈ R
n and 0≤ t ≤ T

sup
τ∈Mt

Ex,t (z(ς
∗
τ ,τ))

δ̌ < ∞ ,

where Mt is the set of all stopping times in [t,T ].
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Theorem 6.3.1. Assume that conditions H1)- H5) hold, then for any 0≤ t ≤ T the process

(υ∗
s
)t≤s≤T defined in H5) is a solution for the problem (6.3.3) and z(x, t) = JJJ∗(x, t).

6.4 Verification theorem for any utility fucntions

In this section, we consider the optimization problem Eq. (6.3.3) for any utility functions f

and h. To this end we need to modify the definition of admissible strategies.

Definition 6.4.1. The stochastic control process υ =(υt)t≥0 =(αt ,ct)t≥0 is called admissible

on [0,T ] with respect to Eq. (6.3.1) if it is (Ft)0≤t≤T progressively measurable with values

in Θ, and Eq. (6.3.1) has a unique strong a.s. continuous solution (ςυ
t
)0≤t≤T such that

E

∫ T

0

(f(ςu,u,υu))− dt < ∞ , E sup
0≤t≤T

(h(ςυ
t
))− < ∞ , (6.4.1)

and

∫ T

0
(|ǎ(ςυ

u
,u,υu)|+ |b̌(ςυ

u
,u,υu)|2)dt +

∫ T

0

|f(ςu,u,υu)|du < ∞ a.s. . (6.4.2)

We denote by V the set of all admissible control processes with respect to equation Eq. (6.3.1).

Our goal is to study the problem Eq. (6.3.3) for the admissible strategies defined in the

Definition 6.4.1. To this end we introduce the Hamilton function, i.e. for any x and 0≤ t ≤ T ,

with qqq ∈ R
n and symmetric n×n matrix MMM we set

H(x, t,qqq,MMM) := sup
θ∈Θ

H0(x, t,qqq,MMM,θ), (6.4.3)

where

H0(x, t,qqq,MMM,θ) := ǎ′(x, t,θ)qqq+
1

2
tr[b̌b̌′(x, t,θ)MMM]+ f(x, t,θ).

In order to find the solution to Eq. (4.1.6), we investigate the HJB equation





zt(x, t)+H(x, t,zx(x, t),zxx(x, t)) = 0, t ∈ [0,T ],

z(x,T ) = h(x), x ∈ R
n.

(6.4.4)

Here, zt denotes the partial derivative of z with respect to t,zx(x, t) the gradient vector with

respect to x in R
n and zxx(x, t) denotes the symmetric hessian matrix, that is the matrix of the

second order partial derivatives with respect to x.

We assume the following conditions hold:
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H1) There exists a Ξ× [0,T ]→ R function z(x, t) from C2,1 (Ξ× [0,T ]) which satisfies

the HJB equation.

H2) There exists a measurable function θ ∗ : Rn× [0,T ]→ Θ, such that for all x ∈ R
n and

0≤ t ≤ T ,

H(x, t,zx(x, t),zxx(x, t)) = H0(x, t,zx(x, t),zxx(x, t),θ
∗(x, t)).

H3) Assume that for any υ ∈ V , any 0≤ t ≤ T and x,

Ex,t sup
t≤u≤T

(
z(ςυ

u
,u)
)
− < ∞ .

H4) For any x ∈ Ξ and 0≤ t ≤ T , there exists a unique strong solution with values in Ξ to

the Itô equation

dς∗
u
= ǎ(ς∗

u
,u,υ∗

u
)du+ b̌(ς∗

u
,u,υ∗

u
)dWu, ς∗

t
= x, t ≤ u≤ T,

where υ∗
u
= θ ∗(ςu,u), the optimal control process υ∗ = (υ∗

s
)t≤s≤T ∈ Vt and

Ex,t sup
t≤u≤T

|z(ς∗
u
,u)|< ∞ . (6.4.5)

Theorem 6.4.1. Assume that conditions H1)- H4) hold, then for any 0≤ t ≤ T , the process

(υ∗
s
)t≤s≤T is a solution to the problem Eq. (6.3.3).

Proof. For υ ∈ V , let Xυ be the associated wealth process with initial value Xυ
0
= x. Now,

for any fixed L > 0 define a stopping time

τL = inf

{
s≥ t :

∫ s

t

|b̌′(ςυ
u
,u)∂ς z(ςυ

u
,u)|2du≥ L

}
∧T .

Note that condition (6.4.2) implies that τL→ T as L→ ∞ a.s.. By continuity of z(., .) and of

(ςυ
t
)0≤t≤T we obtain

lim
L→∞

z(ςυ
τL
,τL) = z(ςυ

T
,T ) = h(ςυ

T
) a.s. . (6.4.6)

To simplify we use the notation ǎt = ǎ(ςt ,υt , t) and b̌t = b̌(ςt ,υt , t). Then by Itô formula

dz(ςt , t) = zt(ςt , t)dt +
n

∑
i=1

∂

∂ςi
z(ςt , t)dςi +

1

2

n

∑
i, j=1

∂ 2

∂ςi∂ς j
z(ςt , t)d < ςi,ς j >t . (6.4.7)
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By using Eq. (6.3.1), the preceding equation becomes

dz(ςt , t) =zt(ςt , t)+(∂ z(ςt , t))
′ǎυ

t
dt +

1

2
tr
(
b̌υ

t
(b̌υ

t
)′∂ 2z(ςt , t)

)
dt

+
(
∂ z(ςt , t)

)′
b̌υ

t
dWt .

Taking the integration for both sides we get

z(ςτL
,τL)− z(ςt , t) =

∫ τL

t

Audu+
∫ τL

t

(
∂ z(ςu,u)

)′
b̌υ

t
dWu ,

where Au = zu(ςu,u)+ (∂ z(ςu,u))
′ǎυ

u
+ tr

(
b̌υ

u
(b̌υ

u
)′∂ 2z(ςu,u)

)
/2. Taking into account that

Ex,tz(ςt , t) = z(x, t) and

Ex,t

∫ τL

t

(
∂ z(ςu,u)

)′
b̌υ

t
dWu = 0 ,

we obtain that

z(x, t) = Ex,tz(ςτL
,τL)−Ex,t

∫ τL

t

Audu .

Moreover, noting that zu(x,u) =−H(x,zx,zxx), we can represent the processes −Au as:

−Au = H
(
ςu,∂ z(ςu,u),∂

2z(ςu,u)
)
−H0

(
ςu,∂ z(ςu,u),∂

2z(ςu,u),υu

)
+ f(ςu,u,υu) .

So, for υ ∈ V ,

−Au ≥ f(ςu,u,υu) .

As to this term, note that,

∫ τL

t

f(ςu,u,υu)du =
∫ τL

t

(f(ςu,u,υu))+du−
∫ τL

t

(f(ςu,u,υu))−du .

We recall that

E

∫ T

0

(f(ςu,u,υu))−du < ∞ .

Therefore, we obtain by the Monotone Convergence Theorem that

lim
L→∞

E

∫ τL

0

f(ςu,u,υu)du = E

∫ T

t

f(ςu,u,υu)du .
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Note also, that in view of the condition H3)

Ex,t sup
L≥1

(z(ςυ
τL
,τL))− ≤ Ex,t sup

t≤u≤T

(z(ςυ
u
,u))− < ∞ .

We thereby Fatou’s Lemma obtain that

lim
L→∞

Ex,tz(ς
υ
τL
,τL)≥ Ex,t lim

L→∞
z(ςυ

τL
,τL) = Ex,tz(ς

υ
T
,T ) = Ex,th(ςT ) .

Finally, we obtain that

z(x, t)≥ Ex,t

(∫ T

t

f(ςυ
u
,u,υu)du+h(ςT )

)
= J(x, t,υ) .

Therefore, z(x, t)≥ J∗(x, t) for all 0≤ t ≤ T . Similarly, replacing the strategies υ given by

the optimal strategies υ∗ as defined in H2) and H4) we obtain

z(x, t) = Ex,t

∫ τL

t

f(ςυ
u
,u,υu)du+Ex,tz(ς

∗
τL
,τL) .

The upper bound (6.4.5) implies that the family {z(ς∗τL
,τL)}L≥1 is uniformly integrable.

Therefore, the limit equation (6.4.6) yields

lim
L→∞

Ex,tz(ς
∗
τL
,τL) = Ex,t lim

L→∞
z(ς∗τL

,τL) = Ez(ςT ,T ) = Ex,th(ς
∗
T
) ,

and we obtain

z(x, t) = lim
L→∞

Ex,t

∫ τL

t

f(ς∗
u
,u,υ∗

u
)du+ lim

L→∞
Ex,tz(ς

∗
τL
,τL)

= Ex,t

(∫ T

t

f(ς∗
u
,u,υ∗

u
)du+h(ς∗

T
)

)
= J(x, t,υ∗) .

We arrive at z(x, t) = J∗(x, t). This proves Theorem 6.4.1.
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6.5 Technical Lemmas

6.5.1 The smoothness properties of the process in Eq. (2.2.6)

Lemma 6.5.1. For any bounded function Q in X and for u > t,

∣∣∣∣
∂

∂ s

∫ T

t

EQ(ηs,t
u
,u)du

∣∣∣∣≤ Q∗
t

2

σ

√
2(T − t)

π
,

where

Q∗
t
= sup

s∈R
t≤u≤T

|Q(s,u)| .

Proof. By Fubini theorem, if a function Q > 0, then

∂

∂ s
E

∫ T

t

Q(ηs,t
u
,u)du =

∂

∂ s

∫ T

t

EQ(ηs,t
u
,u)du .

As

EQ(ηs,t
u
,u) =

1

σ1(u, t)

∫

R

Q(y,u)ϕ
(y− sµ(u, t)

σ1(u, t)

)
dy ,

where

ϕ(θ) =
1√
2π

e−
θ2

2 and θ =
z− xµ(u, t)

σ1(u, t)
.

Then we have that,

EQ(ηs,t
u
,u) =

1√
2πσ1(u, t)

∫

R

Q(y,u)exp

{
− (y− sµ(u, t))2

2σ2
1 (u, t)

}
dy .

Thus by deriving the last expression with respect to s we get

∂

∂ s
EQ(ηs,t

u
,u) =

µ(u, t)√
2πσ3

1 (u, t)

∫

R

Q(y,u)(y− sµ(u, t))exp

{
− (y− sµ(u, t))2

2σ2
1 (u, t)

}
dy .

Then by letting

v =
y− sµ(u, t)

σ1(u, t)
,

the preceding equation becomes

∂

∂ s
EQ(ηs,t

u
,u) =

µ(u, t)√
2πσ1(u, t)

∫

R

Q(sµ(u, t)+ vσ1(u, t),u)ve−v2/2dv.
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By taking the absolute value for both sides we get

∣∣∣∣
∂

∂ s
EQ(ηs,t

u
,u)

∣∣∣∣≤
µ(u, t)√

2πσ1(u, t)

∫

R

|Q(sµ(u, t)+ vσ1(u, t),u)||v|e−v2/2dv ,

≤ Q∗
t

µ(u, t)√
2πσ1(u, t)

∫

R

|v|e−v2/2dv ,

= Q∗
t

√
2

π

µ(u, t)

σ(u, t)
(∫ u

t
µ2(u,z)dz

)1/2
,

where Q∗
t
= sup

y∈R,u≥t
|Q(y,u)|. Therefore,

| ∂

∂ s
EQ(ηs,t

u
,u)| ≤ Q∗

t

√
2

π

µ(u, t)

σ1(u, t)
.

Since the integral

∫ T

t

µ(u, t)

σ1(u, t)
du =

∫ T

t

e−
∫ u

t
g1(v)dv

σ
√∫ u

t
e−2

∫ u
z g1(v)dvdz

du ,

≤
∫ T

t

1

σ
√

u− t
du =

2

σ

√
T − t.

Therefore,

∣∣∣∣∣
∂

∂ s
EQ(ηs,t

u
,u)

∣∣∣∣∣≤ Q∗
t

√
2

π

1

σ
√

u− t
. (6.5.1)

Then by taking the integral from t to T ,

∣∣∣∣
∂

∂ s

∫ T

t

EQ(ηs,t
u
,u)du

∣∣∣∣≤ Q∗
t

√
2

π

∫ T

t

1

σ
√

u− t
du≤ Q∗

t

2

σ

√
2(T − t)

π
. (6.5.2)

Hence Lemma 6.5.1.
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In the sequal we need the following condition:

H
¯

: There exists γ > 0 such that

y∗ f (t,y)≤−γ|y|2 ∀t ∈ R+, y ∈ R
q.

Lemma 6.5.2 ( Lemma 1.1.1 in [39]). Let y be the solution of the following equation

dyt = f (t,yt)dt +GtdWt , y0 = 0 (6.5.3)

with f satisfying (H
¯

) and ||G||T ≤M where T ∈ R+ and M = MG is a constant.

Then for every integer m≥ 1 the following inequalities hold:

E|yt |2m ≤ km(t) ∀t ∈R+,

E|yτ |2m ≤ cm(T ) ∀τ ∈TT ,

where

km(t) := (2m−1)!!M2m(
1− e−2γt

2γ
)m,

cm(T ) := m(2m−1)!!M2
∫ T

0
km−1(u)du.

Proposition 6.5.3 (Proposition 1.1.2 in [39]). Let y be the solution of Eq. (6.5.3). Under the

assumptions of Lemma 6.5.2

E|yt |2m ≤ m!(2M2t)m,

E|yτ |2m ≤ m!(2M2T )m ∀τ ∈TT ,

E max
0≤t≤T

|yt |2m ≤ (3+m lnm)m!(2M2T )m. (6.5.4)
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Proposition 6.5.4 (Proposition 1.1.5 in [39]). Let y be the solution of Eq. (6.5.3). Under the

assumptions of Lemma 6.5.2

E|yt |2m ≤ m!(M2/γ)m,

E|yτ |2m ≤ 2mm!(M2/γ)mγT ∀τ ∈TT , (6.5.5)

E max
0≤t≤T

|yt |2m ≤ (3+m lnm)2mm!(M2/γ)m(1∨ (γT )).
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7.1 Numerical Simulation for power utility functions

For optimisation problem with power utility function, we simulate the function represented

by the fixed-point h(s, t) given by

Lh(s, t) =
∫ T

t

EΨh(η
s,t
u
,u)du, (7.1.1)

where Ψh(η
s,t
u
,u) is given in Eq. (2.2.7). We set h0 = 0 and

hn(s, t) = Lhn−1
(s, t) for n≥ 1 .

The main goal is to implement the fixed point scheme. We use Monte Carlo method to

calculate the expectation in Eq. (7.1.1) we generate a large number N of random paths of

the process (ηs,t
u
)u≥t then we replace the integral by the empirical mean using Monte Carlo

method. We consider the following parameter values with σ = 1, γ = 0.5, κ = 0.5 and

r = 0.05 for the time interval [0,1] and 1000 times of iteration.

To simulate the strategies for the problem considering power utility functions in Chapter 2,



80 Numerical Simulation

Fig. 7.1 The Limit function h(s, t)

we use the following equations for optimal strategies given in Eq. (2.3.13).

α∗
t
= α̌0(ς∗

t
, t) = β̌ (s, t)x∗ and c∗

t
= č0(ς∗

t
, t) = Ǧ(s, t)x∗,

where

β̌ (s, t) =
1

1− γ

(
sg(t)+hs(s, t)−

κ1

σ2
s
)

and Ǧ(s, t) = ϖ
1

γ−1 G(s, t,h(s, t)).

As seen in Fig. 7.2 that the graph for both the wealth and the consumption is nearly identical.

This is due to the function G that in this case, it almost equals to one. In addition, we assumed

that ϖ = 1.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.2 The wealth process x∗ with the parameters α∗ and c∗ when σ = 0.1, r = 0.05 and

κ = 5.
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7.2 Numerical Simulation for logarithmic utility functions

For 1−dimensional case. Fig. 7.3 shows the value function z(ς , t) given in Eq. (4.2.8) by

z(x,s, t) = ρ(t) lnx+ s′g(t)s+ f (t) .

The optimal strategies for 1− dimensional case as in Example 1 are given by

α∗(t) = α̌0(ς∗
t
, t) =−

κ1StX
∗
t

σ2
and c∗(t) = č0(ς∗

t
, t) =

X∗
t

ρ(t)
.

The differential wealth process for this example is given by

dX∗
t
= X∗

t
a∗(t)dt +X∗

t
b∗(t)dWt ,

where a∗(t) and b∗(t) are given in Eq. (4.3.6). The following parameters have been used:

T = 1, r = 0.01, κ = 0.1, σ = 0.5 with the initial endowment x = 100.

Fig. 7.3 The value function.

Now, we simulate the optimal strategies α∗
t

and c∗
t

given in Eq. (2.3.13) with the optimal

wealth process x∗
t
. In the following figures, we used different parameters to show the

behaviour of the strategies with different values of r,κ and σ . As seen in the figures below,

the behaviour of the wealth process is increasing constantly when κ has large values (see

Fig. 7.8a and Fig. 7.12a ). However, it is clear that the wealth process is decreasing when

κ has a quite small value as seen in Fig. 7.4a and Fig. 7.10a. In addition we see that the

volatility in the investment process increases and decreases depending on the fraction κ1/σ2.

Thus the range of volatility in figures (Fig. 7.4b - Fig. 7.11b) is less than the ones in figures (

Fig. 7.12b - Fig. 7.15b) which jumps to 4000 points or even more aggressively in Fig. 7.16b.

This is due to the higher number we get from the fraction which is nearly 50 and 70 for
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Fig. 7.16b where the volatility reaches 105.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.4 The wealth process with the parameters α and c when σ = 1, r = 0.01 and

κ = 0.5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.5 The wealth process X with the parameters α and c when σ = 1, r = 0.1 and

κ = 0.5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.6 The wealth process X with the parameters α and c when σ = 1, r = 0.2 and

κ = 0.5.

Remark 7.2.1. As seen in the previous simulations , that we illustrate the optimal calculations
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(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.7 The wealth process X with the parameters α and c when σ = 1, r = 0.5 and

κ = 0.5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.8 The wealth process with the parameters α and c when σ = 5, r = 4 and κ = 5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.9 The wealth process X with the parameters α and c when σ = 5, r = 0 and κ = 5.

Remark 7.2.2. Numerical simulation is a technique for practice and learning that can be

applied to many different disciplines such as financial markets. It is a technique to amplify

real experiences with guided ones that evoke or replicate substantial aspects of the real market

in a fully interactive fashion. It provides a valuable tool in learning practical dilemmas.
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(a) Wealth process X∗
t

(b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.10 The wealth process with the parameters α and c when σ = 20, r = 0.01 and

κ = 0.5 with n = 1000.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.11 The wealth process X with the parameters α and c when σ = 20, r = 0 and

κ = 0.5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.12 The wealth process with the parameters α and c when σ = 0.1, r = 0.01 and

κ = 5 with n = 1000.
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(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.13 The wealth process X with the parameters α and c when σ = 0.1, r = 0.1 and

κ = 5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.14 The wealth process X with the parameters α and c when σ = 0.1, r = 0.2 and

κ = 5.

(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.15 The wealth process X with the parameters α and c when σ = 0.1, r = 1 and

κ = 5.
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(a) The wealth process X∗
t

. (b) Optimal investment α∗
t

. (c) Optimal consumption c∗
t
.

Fig. 7.16 The wealth process X with the parameters α and c when σ = 0.1, r = 3 and

κ = 5.



Chapter 8

Conclusion

In conclusion, this thesis considered an optimisation problem for consumption and investment

in two cases power and logarithmic utility functions by choosing Ornstein-Uhelnbeck process

to model the spread between risky assets. For power utility functions, two cases had been

discussed for small time interval and for any time interval [0,T ]. For the first case, the choice

of time is small and the maturity time should be less than T0 where it depends on the mean

reverting κ , the market volatility σ and the utility coefficient γ . In the second case we have no

conditions on time interval, however the coefficient ϖ that describes the investor’s preference

between pure investing or consuming is conditioned to be greater than or equal to the fraction

(16T/π)1−γ .

For logarithmic utility functions it had been used the dynamic programming method

to solve the Hamilton-Jacobi-Bellman equation and two examples had been stated to show

the problem in scalar case and in multivariate case where the volatility σ was considered

to be diagonal matrix. Moreover, explicit solutions had been stated for the HJB equation.

In addition, the verification theorem had been applied to show that there exists a unique

strong solution for the Itô equation given by the strategy proposed. Nonetheless, numerical

simulations had been stated for the scalar case of logarithmic utility case to demonstrate

the behaviour of the strategies and the wealth process by considering different values of the

mean-reverting and volatility. As shown that the wealth process is decreasing relatively with

κ . The optimal consumption/investment strategy for logarithmic utility functions had been

explicitly calculated. In addition, we extended the work by considering stochastic volatility

of the same problem.

This dissertation had discussed the optimisation strategies for both power and logarithmic

utilities. However, it is been assumed that the market has no constrains and transaction

costs. As a result, it is recommended for further work considering these conditions. In

addition, in this thesis, it had been considered the scalar case for power utility functions. Prof.
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Pergamenshchikov and me are working now on multivariate case of this problem. Therefore,

further researches are recommended to develop these problems to fulfil the real market, such

as taking into account the transaction costs.
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Appendix A

The R simulation codes

A.1 Ornstein-Uhlenbeck process

1 #************ Mathematica program ************

2 #******************** For single path ***************

3 proc[k_, \[Sigma]_] :=

4 ItoProcess[\[DifferentialD]s[

5 t] == -k s[t] \[DifferentialD]t + \[Sigma] \[DifferentialD

]w[t],

6 s[t], {s, 0}, t, w \[Distributed] WienerProcess[]]

7 proc[1, 1]

8 paths = RandomFunction[proc[1, 1], {0, 10, 0.01}, 1]

9 ListLinePlot[paths]

10 #******************** For multipath ***************

11 proc[k_, \[Sigma]_] :=

12 ItoProcess[\[DifferentialD]s[

13 t] == -k s[t] \[DifferentialD]t + \[Sigma] \[DifferentialD

]w[t],

14 s[t], {s, 0}, t, w \[Distributed] WienerProcess[]]

15 paths = RandomFunction[proc[0.5, 1], {0, 10, 0.01}, 10]

16 ListLinePlot[paths]



96 The R simulation codes

A.2 Simulation for power utility

1 #********************Wiener process****************

2 n ←←← 10∧∧∧5 # Number of increments that we made (steps).

3 T ←←← 1 # Terminal time (usually we use it =1).

4 t0 ←←← 0 # Initial time

5 dt ←←← (T- t0)/n # Increments size (delta)

6 t ←←← seq(t0, T, length=n+1)

7 W ←←← c(t0, cumsum(sqrt(dt)*rnorm(n)))

8 plot(t, W, type="l", main="Wiener process", ylim=c(-1,1))

9 #-------- Another method for Wiener process----------

10

11 T ←←← 1; t0 ←←← 0; N ←←← 1000

12 xi ←←← rnorm(n=1000, 0, 1) #Create normal distributed random

13 variable with mean=0

14 # and standard deviation=1 also with n=1000 random

15 variables to chose from.

16 plot(xi, type="l") #type="l" to connect point.

17 Wt ←←← sqrt((T-t0)/N)*cumsum(xi) #To add continuously

18 # xi[i+1]=sqrt((T-t0)/N) *(xi[i]+rnorm(1) )

19 plot(Wt, type="l")

20 length(Wt)

21 #****For the value function in Power Utility ******

22 #----------- Defining the Constantes --------------

23 sigma ←←← 1; gamma ←←← 0.5; kapp ←←← 0.5; r ←←← 0.05

24 gamma1 ←←← (sigma∧∧∧2)/(1-gamma)

25 gamma2 ←←← (gamma*(kapp+r)/(1-gamma))+kapp

26 c1 ←←← 1; c ←←← 0.5; T ←←← 1; M ←←← 1000

27 #--------------For the Integral function-----------

28 integ ←←← function(t,u,m){

29 v ←←← t+(u-t)*(0:(m-1))/m

30 g1 ←←← gamma1*(c1-exp(-c*(T-v)))-gamma2

31 return(sum(g1)*(u-t)/m)

32 }

33 integ(0,0.4,100000) ### quel m prendre pour

34 avoir une bonne approximation de l’integrale ?

35 Sigma2 ←←← function(t,u,m){
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36 v ←←← t+(u-t)*(0:(m-1))/m

37 mu2 ←←← integ(v,u,m)**2

38 return(sum(mu2)*(u-t)/m)

39 }

40 Sigma2(0,0.4,100000)

41 z ←←← T*(0:(M-1))/M

42 xi ←←← rnorm(1000,0,1)

43 #----------- Eta function -------------

44 eta ←←← function(s,t,u,z,m){

45 return(sum((z≤≤≤u)*integ(z,u,m)*xi)*((u-t)/m)
46 *sqrt(Sigma2(t,u,m))+s*exp(integ(t,u,m)))

47 }

48 eta(1,0,0.4,z,100000)

49 #------------ G function ---------------

50 G ←←← function(s,t,y)

51 {

52 gt ←←← c1-exp(-c*(T-t))

53 return(exp(-(1/(1-gamma))*(gt*s*s/2+y)))

54 }

55 G(0.44,0.4,1)

56 #------------- Gamma0 function ----------

57 Gamma0 ←←← function(s,t,y1,y2)

58 {

59 gt ←←← c1-exp(-c*(T-t))

60 return((gamma1/2)*y2**2+(sigma**2)*gt/2

61 +r*gamma+(1-gamma)*1*G(s,t,y1))

62 }

63 Gamma0(1,4,1,0)

64 #---------- Expectation function --------

65 EPsi ←←← function(s,t,u,etaa,h,hs,N)

66 { e ←←← 0

67 for (i in 1:N){

68 va ←←← rnorm(1000,0,1)

69 eta(s,t,u,z,10000)

70 e ←←← e+sum(Gamma0(etaa,u,h,hs))

71 }

72 return(e/N)
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73 }

74

75 EPsi(0.44,0.4,.6,eta(1,0,0.4,z,100000),0,0,1000)

76

77 #---------------- L function ---------------

78 L ←←← function(s,t,h,hs,T,m)

79 { l ←←← (T-t)/m

80 N ←←← 1000

81 u ←←← t+(0:(m-1))*l

82 return(l*sum(EPsi(s,t,u,eta(s,t,u,z,10000),h,hs,N)))

83 }

84

85 L(0.44,0.4,0,0,1,10000)

86

87

88 #***************** Second try *********************

89 m ←←← 100; K ←←← 6; I ←←← 5; J ←←← 5

90 s1 ←←← (0:(I-1))/I

91 t1 ←←← T*(0:(J-1))/J

92 h ←←← array(rep(0,I*J*K),dim=c(I,J,K))

93 hs ←←← array(rep(1,I*J*K),dim=c(I,J,K))

94 for (k in 1:K-1)

95 {

96 for (j in 1:J)

97 {

98 h[1,j,k+1]=L(s1[1],t1[j],h[1,j,k],1,T,m)

99 h[2,j,k+1]=L(s1[2],t1[j],h[2,j,k],1,T,m)

100 hs[1,j,k+1]=(h[2,j,k+1]-h[1,j,k+1])/(s1[2]-s1[1])

101 for (i in 2:I-1)

102 {

103 h[i-1,j,k+1]=L(s1[i-1],t1[j],h[i-1,j,k],1,T,m)

104 ## pas forcement utile

105 h[i,j,k+1]=L(s1[i],t1[j],h[i,j,k],1,T,m)

106 h[i+1,j,k+1]=L(s1[i+1],t1[j],h[i+1,j,k],1,T,m)

107 #hs[i,j,k+1]=(h[i+1,j,k+1]-h[i-1,j,k+1])/(s1[i+1]-s1[i-1

])

108
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109

110 }

111 #h[I,j,k+1]=L(s1[I],t1[j],h[I,j,k],1,T,m)

112 hs[I,j,k+1]=(h[I-1,j,k+1]-h[I,j,k+1])/(s1[I-1]-s1[I])

113 }

114 }

115 h[2,,]

116 hs[1,,]

117 s1

118 #---------------------------------------------------

119 #--------------- To plot the strategies ------------

120 A1 ←←← r(T-0) -

121 x ←←← exp(A1)

122 alpha11 ←←← (s1*4+hs+s1*(kapp+r))*x

123 plot(alpha11)

124 #second try

125 T ←←← 1

126 r ←←← 0.01

127 n ←←← 10

128 gamma ←←← 0.2

129 kappa ←←← 5

130 sigma ←←← 0.1

131 kappa1 ←←← kappa+r

132 dt ←←← T/n

133 dw ←←← rnorm(n,0,sqrt(T/n))

134 s0 ←←← 0

135 x0 ←←← 100

136 s ←←← c(s0)

137 x ←←← c(x0)

138 s ←←← array(rep(0,n))

139 I ←←← 5

140 J ←←← 5

141 s1 ←←← (0:(I-1))/I

142 x ←←← array(rep(0,n))

143 astar ←←← array(rep(0,n))

144 bstar ←←← array(rep(0,n))

145 t ←←← T*(0:(n-1))/n
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146 rho ←←← T-t+1

147 astar[1] ←←← r+kappa1∧∧∧2*s0∧
∧∧2/sigma∧∧∧2-1/rho[1]

148 bstar[1] ←←← -kappa1*s0/sigma

149 for (i in 2:(n)) {

150 s[1] ←←← s0

151 x[1] ←←← x0

152 #astar[1] ←←← 0

153 s[i] ←←← s[i-1] - kappa*s[i-1]*dt + sigma*dw[i-1]

154 astar[i] ←←← r-kappa1*s[i]*(s[i]+ hs[i] - kappa1*s[i]/sigma
∧∧∧

2)

155 /(1- gamma)

156 bstar[i] ←←← sigma*(s[i]+hs[i]- kappa1*s[i]/sigma
∧∧∧2)

157 /(1- gamma)

158 x[i] ←←← x[i-1] + astar[i-1]*x[i-1]*dt +bstar[i-1]*(x[i-1])

159 *dw[i-1]

160 }

161 alphastar ←←← x*(s +hs -(kappa1*s)/sigma
∧∧∧2)/(1 - gamma)

162 cstar ←←← x*exp(-(s
∧∧∧2/2 +h)/(1 - gamma))

163 #----------------------------------------------

164 #------------------- Plot ---------------------

165 nbcol ←←← 100

166 jet.colors ←←← colorRampPalette( c("blue", "green") )

167 color ←←← jet.colors(nbcol)

168 facetcol ←←← cut(zfacet, nbcol)

169

170 persp(s1, t1, h, col = color[facetcol])

171

172 #persp(s1, t1, h, col = color[facetcol], phi = 30, theta = -30,

173 xlab = "S", ylab = "t", zlab ="Z", ticktype = "detailed")

174

175 # Strategies

176 T ←←← 1

177 r ←←← 0.05

178 #n ←←← 10

179 gamma ←←← 0.20

180 kappa ←←← 5

181 sigma ←←← 0.1
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182 kappa1 ←←← kappa+r

183 #dt ←←← T/n

184 dt ←←← T/J

185 #dw ←←← rnorm(n,0,sqrt(T/n)

186 dw ←←← rnorm(n,0,sqrt(T/J))

187 #s0 ←←← 0

188 x0 ←←← 100

189 #s ←←← c(s0)

190 #X ←←← c(x0)

191 #s ←←← array(rep(0,n))

192 S ←←← array(rep(0,I))

193 #I ←←← 10 #it was 5

194 #J ←←← 10 # it was 5

195 #s1 ←←← (0:(I-1))/I

196 X ←←← array(rep(0,J))

197 astar ←←← array(rep(0,J))

198 bstar ←←← array(rep(0,J))

199 cstar ←←← array(rep(0,J))

200 t ←←← T*(0:(J-1))/J

201 rho ←←← T-t+1

202 gt ←←← c1 - ((2*theta*c1)/(exp(omega*(T-t))*c-c))

203

204

205 for (j in 2:J) {

206 #s[1] ←←← s0

207

208 #astar[1] ←←← 0

209 S[j] ←←← S[j-1] - kappa*S[j-1]*dt + sigma*dw[j-1]

210 }

211

212 max(S)

213 min(S)

214

215 ds=(max(S)-min(S))/I

216 ds

217 indice=rep(1,J)

218 compteur=0
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219 for (j in 1:J) {

220 compteur=0

221 while (S[j]≥≥≥ min(S)+compteur*ds){

222 compteur=compteur+1

223 #print("YY")

224 }

225 indice[j]=compteur

226 }

227

228 astar[1] ←←← r-kappa1*S[1]*(S[1]*gt[1]+ hs[indice[1],1,6] -

kappa1*S[1]/sigma
∧∧∧2)/(1- gamma)+G(S[1],1,h[indice[1],1,6])

229

230 bstar[1] ←←← sigma*(S[1]*gt[1]+hs[indice[1],1,6]- kappa1*S[1]/

sigma∧∧∧2)/(1- gamma)

231 X[1] ←←← x0

232 for (j in 2:J) {

233 #s[1] ←←← s0

234

235 #astar[1] ←←← 0

236 #S[j] ←←← S[j-1] - kappa*S[j-1]*dt + sigma*dw[j-1]

237 astar[j] ←←← r-kappa1*S[j]*(S[j]*gt[j]+ hs[indice[1],j,6] -

kappa1*S[j]/sigma
∧∧∧2)/(1- gamma)+G(S[j],1,h[indice[1],j,6])

238 bstar[j] ←←← sigma*(S[j]*gt[j]+hs[indice[1],j,6]- kappa1*S[j]/

sigma∧∧∧2)/(1- gamma)

239 X[j] ←←← X[j-1] + astar[j-1]*X[j-1]*dt +bstar[j-1]*(X[j-1])*dw

[j-1]

240 }

241 alphastar ←←← X*(S*gt +hs[indice[1],,6] -(kappa1*S)/sigma
∧∧∧2)/(1

- gamma)

242 for (j in 1:J) {

243 cstar[j] ←←← X[j]*G(S[j],t[j],h[indice[1],j,6])

244 }

245

246 plot(t,cstar,type="l", xlab="t", ylab="C*")

247 plot(t,alphastar,type="l", xlab="t", ylab="alpha*", col="blue")

248 plot(t,X,type="l", xlab="t", ylab="X*", col="green")
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A.3 Simulation for log utility

1 ### defining the variables ###

2

3 T=1

4 r=0.01

5 kappa=0.1

6 kappa1=kappa+r

7 sigma=0.5

8 x=100

9 s ←←← seq(-10,10, length=30)

10 t ←←← seq(0,1, by=.1)

11

12 ## The function g

13 g ←←← function(t)(-kappa1∧∧∧2/2*sigma∧
∧∧2 )

14 *((-2*kappa*exp(2*kappa*(t-T))

15 + t-T-1 + exp(2*kappa*(t-T)) - 1 )/(4* kappa∧∧∧2))

16

17 ## The function f

18 f ←←← function(t) sigma∧∧∧2*g(t) + T-t-(T-t+1)* log(T-t+1)

19

20 ## The function Z

21 Zvarsigma ←←← function(s,t) log(T-t+1) +s∧∧∧2*g(t)+f(t)

22

23 ## The plot ###

24

25 z ←←← outer(s,t, Zvarsigma)

26 jet.colors ←←← colorRampPalette( c("blue", "green") )

27 nbcol ←←← 100

28 color ←←← jet.colors(nbcol)

29 nrz ←←← nrow(z)

30 ncz ←←← ncol(z)

31 zfacet ←←← z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]

32 facetcol ←←← cut(zfacet, nbcol)

33

34 persp(s, t, z, col = color[facetcol], phi = 30, theta = -30,

xlab = "S",
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35 ylab = "t", zlab ="Z", ticktype = "detailed")

36 # ticktype -- to give details in the numbers or values of each

variable

37

38 ## The strategies ##

39 rho ←←← T-t+1

40 astar ←←← r+(kappa1*s
∧∧∧2/sigma∧∧∧2)-1/rho

41 bstar ←←← -kappa1*s/sigma

42 xstar ←←← seq(0.1,100)

43 alphastar←←← s*xstar/sigma
∧∧∧2

44 persp(s, xstar,alphastar, xlab = "S", ylab = "xstar", zlab ="

alpha∧∧∧*")

45 cstar ←←← xstar/(T-t+1)

46 persp(xstar, t, cstar, xlab = "xstar", ylab = "t", zlab ="c∧∧∧*"

)

Listing A.1 The value function
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