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Résumé (en français)

Contexte et organisation de cette thèse
Un algorithme est une suite d’instructions qui doivent être suivies afin de retrouver une solution

à un problème donné. La complexité en temps d’un algorithme est donnée par le nombre d’étapes
nécessaires pour retrouver une solution. La complexité en mémoire est la quantité d’espace néces-
saire au déroulement de l’algorithme. Pour un problème donné, il existe autant d’algorithmes qu’il
y a de façons de résoudre ce problème, ce qui fait beaucoup, en général. Tous ces algorithmes ne
sont pas équivalents en ce sens qu’ils n’ont pas tous la même complexité en temps et en mémoire.
Généralement, nous considérons que le « meilleur » algorithme est celui avec la plus petite com-
plexité en temps. Ce n’est pourtant pas toujours le cas, selon ce que nous recherchons. En effet, il
existe des algorithmes qui ont la meilleure complexité en temps en théorie, mais qui sont cependant
totalement inutilisables en pratique (par exemple [LG14]).

Cette thèse traite principalement de plusieurs problèmes rencontrés en cryptologie et en calcul
formel. En m’intéressant aux aspects algorithmiques de ces problèmes, j’ai souvent été confrontée
à cet écart entre la théorie et la réalité. Les travaux que j’ai effectués portent surtout sur l’algèbre
linéaire, avec des applications en cryptologie et principalement en cryptanalyse.

J’ai tout d’abord travaillé sur des problèmes d’algèbre linéaire creuse exacte. Ce genre de
problèmes apparait en particulier comme une sous-routine des algorithmes de factorisation et de
logarithmes discrets [CAD15].

En parallèle, avec l’essor de la cryptographie post-quantique, je me suis intéressée à la crypto-
graphie à base de réseaux euclidiens. Plus particulièrement, j’ai participé à la mise en place d’un
générateur pseudo-aléatoire basé sur le problème (Ring) Learning With Roundings [BPR12]. Plus
récemment, je me suis penchée sur une variante du problème Learning With Errors sans réduction
modulaire.

Enfin, j’ai travaillé sur le problème des anniversaires généralisé. Je me suis intéressée à un cas
particulier de ce problème, appelé le problème 3XOR. Ce problème est notamment connu pour avoir
des applications dans la cryptanalyse du mode de chiffrement authentifié COPA (voir [Nan15]). En
réfléchissant à des moyens d’améliorer les techniques pour résoudre ce problème, j’ai été amenée à
regarder des problèmes d’algèbre linéaire sur F2, certains se ramenant à des problèmes de théorie
des codes.

En résumé, on pourrait situer mes travaux de thèse dans trois domaines différents, mais reliés
entre eux: (1) l’algèbre linéaire creuse exacte modulo un nombre premier, (2) l’algèbre linéaire
exacte sur F2, (3) l’algèbre linéaire dense avec du bruit. Nous avons la progression suivante:

(1) matrices creuses → aléatoires−−−−−−−−−−−−−−−−−−→ (2) exact → bruit−−−−−−−−→ (3)

C’est ainsi que j’ai choisi d’organiser cette thèse: du creux vers le dense, de l’exact vers le bruité.
Il est à noter cependant que ce choix est arbitraire, et dans les faits, les trois parties de cette thèse
peuvent se lire indépendamment les unes des autres.

Contributions de cette thèse

Algèbre linéaire creuse exacte

Pour résoudre un système linéaire dense, calculer le rang ou encore le déterminant d’une matrice
dense dans un corps, on utilise généralement la méthode du pivot de Gauss (ou de la factorisation
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Contributions

LU). Etant donné une matrice A de taille n×m, on décompose A de la manière suivante: A = LU ,
où L est trapézoïdale inférieure avec une diagonale non nulle, de taille n × r, U est trapézoïdale
supérieure de taille r ×m, dont les coefficients sur la diagonale sont tous égaux à 1. r représente
ici le rang de la matrice A. Il est également possible de calculer une factorisation PLUQ. Dans ce
cas, la matrice A est décomposée en A = PLUQ, où L et U sont comme énoncé au dessus, et P et
Q sont des matrices de permutations, respectivement des lignes et des colonnes de A.

Pour résoudre le même genre de problème, dans le cas de l’algèbre linéaire creuse, il existe
principalement deux familles d’algorithmes : Les méthodes directes et les méthodes itératives. Les
méthodes directes sont similaires au cas dense en ce sens où elles visent à construire une version
échelonnée de la matrice de départ. Ce processus produit généralement à la sortie une matrice
plus dense que celle de départ. Ce phénomène s’appelle le remplissage. Lorsque ce remplissage
devient trop important, le processus ralentit et peut même échouer si la mémoire nécessaire n’est
pas disponible. Les méthodes itératives, d’un autre côté, sont sûres. La matrice de départ n’est
jamais modifiée et les opérations effectuées sont généralement des produits de matrice-vecteur qui
ne nécessitent pas beaucoup de mémoire supplémentaire. Leur complexité en temps est également
prévisible, de l’ordre de O (rnz(A)), où r est le rang de la matrice A et nz(A) le nombre de
coefficients non nuls dans A. Cependant, lorsque A est très creuse et/ou structurée elles sont
généralement plus lentes que les méthodes directes. Toutefois, ces méthodes représentent souvent
la seule possibilité dans le cas des matrices où le remplissage rend les algorithmes directs inutilisables
en pratique.

Dans une étude de 2002, Dumas et Villard [DV02] ont testé et comparé différents algorithmes
dédiés au calcul du rang de matrices creuses modulo un premier p assez petit (typiquement, les
entiers modulo p tiennent sur un mot machine). Plus particulièrement, ils comparent un algorithme
de pivot de Gauss creux (méthode directe) avec la méthode de Wiedemann (méthode itérative)
sur une collection de matrices que d’autres chercheurs leur ont procurées et qui est disponible
en ligne [Dum12]. Ils ont observé que, bien que les méthodes itératives n’échouent jamais et
peuvent être assez efficaces, les méthodes directes peuvent être parfois bien plus rapides. C’est
particulièrement le cas lorsque la matrice de départ est « presque triangulaire », et que la méthode
du pivot de Gauss n’a alors presque rien à faire.

Il s’en suit que les deux méthodes sont valables. En pratique, il est possible de faire la chose
suivante: « Essayer une méthode directe, si il y a trop de remplissage, arrêter et recommencer
avec une méthode itérative ». Notons également que ces deux méthodes peuvent être combinées.
Effectuer k étapes du pivot de Gauss, diminue la taille de la « matrice résiduelle » d’autant, tout
en augmentant le nombre de coefficients non-nuls. La stratégie suivante peut alors être considérée:
« Tant que le produit (nombre de lignes restantes) × (nombre de coefficients non-nuls) décroit,
effectuer une étape du pivot de Gauss. Lorsque ce produit ne décroit plus, passer à une méthode
itérative ». Par exemple, ce genre de méthode a été utilisé par [KAF+10] et [KDL+17] en tant que
sous-routine respectivement pour la factorisation d’un entier de 768-bit et le calcul d’un logarithme
discret modulo un entier de 768-bit. L’algorithme que nous avons mis en place dans [BD16] se
prête également très bien à ce genre d’hybridation.

Mise en place d’un nouvel algorithme de pivot de Gauss creux [BD16]. Le but initial de
ce premier article, écrit conjointement avec Charles Bouillaguet, était de vérifier si les conclusions
de l’étude [DV02] pouvaient être affinées en utilisant un algorithme de pivot de Gauss creux plus
sophistiqué. Pour cela nous nous sommes inspirés des méthodes d’éliminations utilisées dans le
monde numérique. Nous nous sommes intéressés en particulier à un algorithme de factorisation
PLUQ, dû à Gilbert et Peierls et appelé GPLU [GP88].

Dans un premier temps, nous avons effectué des tests afin de comparer l’algorithme GPLU à
l’algorithme du pivot de Gauss existant dans la libraire LinBox [Lin08]. Nos résultats montrent que,
bien que l’algorithme GPLU semble être plus souvent plus rapide que l’algorithme de LinBox, il
est difficile de départager ces deux algorithmes qui ont chacun leurs points forts et leurs faiblesses.
Plus de détails à ce propos sont donnés dans le chapitre 3.

Dans un deuxième temps, nous avons mis au point un nouvel algorithme de factorisation PLUQ
s’appuyant sur les avantages des deux algorithmes cités précédemment. Notre algorithme fonctionne
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Résumé

plus ou moins de la manière suivante: Nous permutons au préalable les lignes et les colonnes
de la matrice de manière à obtenir une matrice dont la sous-matrice principale sera triangulaire
supérieure. Les coefficients sur sa diagonale seront alors choisis comme pivots. Nous nous servons
ensuite de ces pivots pour éliminer les coefficients en dessous et nous réitérons la méthode.

Nous avons implémenté cette méthode dans une librairie appelée SpaSM, qui nous a servi à
tester nos idées en pratique. Cette librairie est disponible publiquement à l’adresse suivante:

https://github.com/cbouilla/spasm

Nous avons comparé cet algorithme à la fois avec l’algorithme du pivot de Gauss implémenté
dans LinBox et l’implémentation de l’algorithme GPLU de SpaSM. Il en ressort que notre nouvel
algorithme est toujours plus rapide que l’algorithme de LinBox et presque toujours plus rapide que
l’algorithme GPLU. De plus, nous l’avons également comparé à la méthode de Wiedemann pour
certaines matrices assez larges qui ne pouvaient pas être traitées par une méthode directe avant.
Nous obtenons une accélération considérable dans certains cas, notre algorithme pouvant être plus
de 100 fois plus rapide en utilisant une méthode de sélection de pivots assez naïve. Ce nouvel
algorithme ainsi que ces expériences sont détaillés dans le chapitre 4.

Amélioration des heuristiques de sélection de pivots [BDV17]. Lors du calcul d’une
factorisation PLUQ, les permutations P et Q des lignes et des colonnes de A doivent être choisies
de manière à ce que les matrices L et U soient les plus creuses possible. Nous prétendons qu’une
bonne stratégie de sélection de pivots est essentielle pour réduire le remplissage lors des étapes
d’éliminations. Malheureusement, il a été prouvé que trouver la séquence de pivots qui minimise ce
remplissage revient à résoudre un problème d’optimisation, dont le problème décisionnel associé est
NP-complet [Yan81]. Nous devons alors utiliser des heuristiques qui nous permettent de trouver
une « bonne » séquence de pivots.

Dans ce deuxième article, écrit avec Charles Bouillaguet et Marie-Emilie Voge, nous nous
sommes focalisés sur les méthodes de sélections de pivots dits « structurels », c’est à dire de pivots
qui apparaissent naturellement dans la matrice après permutation des lignes et des colonnes. Il
s’agit exactement du genre de pivots que nous recherchons lors de la première phase de l’algorithme
décrit au dessus. Dans [BD16] nous nous reposions sur une heuristique simple proposée par Faugère
et Lachartre en 2010 [FL10]. Les travaux de [BDV17] consistent à présenter des alternatives
à cette méthode. Nous présentons notamment une heuristique gloutonne, facilement parallelis-
able, qui nous permet de retrouver jusqu’à 99.9 % du nombre total des pivots dans certains cas.
Une version parallèle de cet algorithme nous permet de calculer le rang de certaines très grosses
matrices de [Dum12] en quelques secondes (quelques minutes pour les plus grosses matrices), al-
ors que l’implémentation (séquentielle) de l’algorithme de Wiedemann disponible dans LinBox met
plusieurs heures, voire plusieurs jours à produire le même résultat. Dans le cas le plus extrême,
notre algorithme était capable de calculer le rang de la matrice en moins de quatre minutes en
utilisant 24 cœurs d’un cluster. Nous avons essayé de calculer le rang de cette même matrice avec
l’algorithme (séquentiel) de Wiedemann, mais notre programme a été coupé au bout de 16 jours
par les gestionnaires. Enfin, il nous faut mentionner que cette méthode ne fonctionne pas tout le
temps. Il y a en effet des matrices de [Dum12] pour lesquelles nous sommes toujours incapables de
calculer le rang en utilisant des méthodes directes, et pour lesquelles, l’algorithme de Wiedemann
reste la seule solution. Plus de détails sur ces résultats sont donnés dans le chapitre 5.

Ainsi, dans cette partie de ma thèse, je me suis focalisée sur la mise en place d’algorithmes de
factorisation LU creuse efficace en pratique. Une grande partie de mon travail a été de réfléchir à
des façons d’adapter des méthodes utilisées en analyse numérique au contexte de l’algèbre linéaire
exacte. À ce titre, j’ai réfléchi à plusieurs méthodes, que j’ai implémentées dans SpaSM. Une
seule s’est finalement avérée suffisamment efficace. J’ai également contribué à la mise au point de
nouvelles heuristiques de sélection de pivots, et j’en ai implémenté une décrite en section 5.2.

v
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Problème 3XOR

Le problème des anniversaires est un outil très utilisé en cryptanalyse. Étant donné deux listes
L1 et L2 de chaines de bits tirées uniformément aléatoirement dans {0, 1}n, trouver x1 ∈ L1 et
x2 ∈ L2 tel que x1 ⊕ x2 = 0 (le symbole ⊕ représente ici l’opération exclusive-OR entre deux
chaînes de bits). On peut facilement vérifier qu’une solution existe avec forte probabilité, dès que
|L1| × |L2| � 2n. Cette solution peut être trouvée en temps O

(
2n/2

)
par des algorithmes assez

simples (trier les listes et les parcourir est une possibilité). En 2002, Wagner [Wag02] a proposé
une généralisation de ce problème à k listes. Pour un k fixé nous appelons ce problème le problème
kXOR. Wagner a montré que le problème 4XOR peut se résoudre en temps et en espace O

(
2n/3

)
si

on prend en entrée des listes de tailles 2n/3, au lieu de 2n/4, la taille minimale que les listes doivent
avoir afin qu’il y ait une solution avec forte probabilité.

Améliorer les algorithmes pour le problème 3XOR [BDF18]. Dans cet article écrit avec
Charles Bouillaguet et Pierre-Alain Fouque, nous nous sommes intéressés au cas du problème 3XOR.
Nous supposons qu’il existe trois listes L1,L2,L3 qui peuvent contenir un nombre arbitrairement
grand d’entrées et chacune de ces entrées est une chaîne de bits tirée de manière uniformément
aléatoire et indépendamment des autres dans {0, 1}n. Le but est alors de trouver (x1,x2x3) ∈
L1×L2×L3 tel que x1⊕x2⊕x3 = 0. Dans ce cas, l’algorithme de Wagner n’apporte rien de plus
que la méthode quadratique « classique » qui consiste à créer toutes les paires d’éléments (x1,x2)
de L1 × L2 et de vérifier si x1 ⊕ x2 est dans L3.

En 2014 Nikolić et Sasaki [NS15] ont proposé une amélioration de l’algorithme de Wagner,
basée sur des résultats de probabilités dus à Mitzenmacher [Mit96]. Leur algorithme est en théorie
de l’ordre de

√
n/ ln(n) fois plus rapide que l’algorithme de Wagner, pour des listes de taille

2n/2 ln(n/2)/
√
n/2. Quelques années auparavant cependant, Joux avait déjà proposé un meilleur

algorithme [Jou09]. Son idée était de trouver une matrice carréeM de taille n, inversible à coefficient
dans F2 et de résoudre le problème en considérant les listes L′1,L′2 et L′3, où L′i = {xM, où x ∈ Li}.
En effet, on peut vérifier que si (x1,x2,x3) est solution au problème avec les listes L1,L2,L3, alors
(x1M,x2M,x3M) est solution au problème avec les listes L′1,L′2,L′3. De plus, si M est inversible,
il y a équivalence. Joux propose de choisir la matrice M de telle sorte que n/2 éléments de L3
commencent par n/2 zéros. Ce genre de matrices se trouve facilement. Il cherche ensuite tous les
couples (x1,x2) de L′1 × L′2 qui coïncident sur les n/2 premiers bits et vérifie si x1 ⊕ x2 est dans
L′3. Cette méthode lui permet de gagner un facteur de l’ordre de

√
n par rapport à la méthode de

Wagner, et est donc en ce sens meilleure que la méthode de Nikolić et Sasaki. Combiner ces deux
méthodes dans un nouvel algorithme semble être assez difficile.

Indépendamment, Bernstein [Ber07] a proposé un compromis données/mémoire assez simple
qu’il a appelé le « Clamping », qui permet de réduire la taille des listes d’entrée et également la
longueur n des chaines de caractères considérées. En effet, si les listes de départ sont de taille 2`
où ` > n, il est toujours possible de se ramener à un problème en dimension n′ avec des listes de
taille 2n′/3, en supprimant toutes les entrées qui ne commencent pas par k zéros où k est tel que
n′ = n − k = (` − k)/3. Plus de détails à propos de ces diverses méthodes sont donnés dans le
chapitre 7

Nous pouvons remarquer que la mémoire est souvent le facteur limitant de tous ces algorithmes.
À ce titre, nous prétendons que garder les listes les plus petites possibles est la meilleure stratégie
à aborder. Le « Clamping » de Bernstein va d’ailleurs dans ce sens. Malheureusement dans le
cas où les listes de départ font exactement 2n/3, le meilleur algorithme semble être l’algorithme
quadratique décrit un peu plus haut.

La contribution majeure de notre travail consiste alors à la mise en place d’un nouvel algorithme
qui généralise l’idée de Joux à n’importe quelle taille de listes. Cette généralisation consiste à
réitérer sa méthode plusieurs fois, en parcourant ainsi toutes les entrées de la troisième liste. De
manière succincte, nous sélectionnons une sous-liste arbitraire de taille bien choisie d’éléments z
dans la troisième liste et nous trouvons une matrice M telle que zM commence par un nombre
fixé k de zéros. Nous cherchons ensuite tous les couples (x,y) tel que (x ⊕ y)M commence par k
zéros, nous vérifions ensuite si il existe un z dans la sous-liste choisie telle que z = x ⊕ y. Nous
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réitérons la procédure avec une nouvelle sous-liste, jusqu’à ce que toutes les entrées de L3 aient
été balayées une fois et une seule. Cette méthode nous permet d’être de l’ordre de n fois plus
rapide que l’algorithme quadratique. Nous proposons également des idées afin de réduire le nombre
d’itérations (d’un facteur constant) de la procédure. De plus, en utilisant le « Clamping », notre
méthode nous permet en théorie de trouver une solution au problème plus rapidement que celle de
Nikolić et Sasaki dans les mêmes conditions. Tout ceci est détaillé dans le chapitre 8.

Enfin, il nous faut rappeler qu’en 2005, Baran, Demain et Pǎtraşcu [BDP05] ont proposé un
algorithme générique sous-quadratique pour le problème 3SUM qui étant donné trois ensembles
d’entiers A,B,C consiste à trouver un triplet (a, b, c) ∈ A × B × C tel que a + b = c. Nous
montrons que cet algorithme peut être facilement transposé dans le cas du problème 3XOR. En
théorie, il est environ n2/ log2 n fois plus rapide que l’algorithme quadratique dans les mêmes
conditions. Cependant cet algorithme nous semble difficilement pratique. Nous développons cela
dans le chapitre 9.

En résumé, dans cette deuxième partie, j’ai cherché à répondre à la question suivante : « Si
quelqu’un veut résoudre le problème 3XOR en pratique, comment devrait-il s’y prendre ? » Afin
de répondre à cette question, j’ai commencé par implémenter les différents algorithmes existants
(Wagner, Nikolić et Sasaki, et Joux), pour de petites valeurs de n, allant jusqu’à 64. Ceci nous
a permis de constater que ce qui réclame plus de mémoire que strictement nécessaire devient très
vite difficile à utiliser en pratique. Partant de là, j’ai réfléchi à des méthodes capables de résoudre
ce problème dans le cas où la taille des listes doit être minimale. L’algorithme présenté dans le
chapitre 8 est l’aboutissement de ce travail de recherche.

Problèmes liés à Learning With Errors
Le problème Learning With Errors (LWE) proposé par Regev en 2005 [Reg05] est un problème

fondamental de la cryptographie à base de réseaux euclidiens. Ce problème peut-être vu dans un
contexte d’algèbre linéaire de la manière suivante : étant donnés une matrice A de taille m × n,
m > n et un vecteur c, à coefficient dans Z/qZ, le but est de trouver s tel que As + e = c (mod q),
où e est un « petit » vecteur d’erreur. Ce problème est prouvé aussi difficile que certains problèmes
difficiles de réseaux euclidiens, pour des paramètres bien choisis. Il existe plusieurs variantes de
ce problème (par exemple Ring-LWE, Module-LWE), où la matrice A est plus ou moins structurée.
D’autres variantes consistent à imposer certaines conditions sur le secret s (par exemple binaire,
creux), ou sur l’erreur.

Nous nous intéressons ici à deux autres variantes un tant soit peu différentes. La première
variante que nous considérons est appelée Learning With Rounding (LWR). Le problème LWR a
été proposé par Banerjee, Peikert et Rosen en 2012 [BPR12] comme une version dé-randomisée de
LWE. Le système considéré est alors légèrement différent : étant donnés une matrice A de taille
m× n, m > n et un vecteur c à coefficients dans Z/qZ le but est de trouver s tel que : bAsep = c
(mod p), où b·ep peut être vue comme la fonction qui retourne les log p premiers bits des coefficients
du vecteur en argument.

L’autre est une variante de LWE sans réduction modulaire, que nous appelons ILWE pour Integer-
LWE. Le système considéré sur Z est alors As + e = c, où l’erreur e peut être assez grande.
Ce problème apparait naturellement dans certains domaines tels que l’apprentissage statistique
ou l’analyse numérique et semble avoir moins d’applications en cryptographie. Nous pouvons
cependant en citer une, et pas des moins intéressantes. En effet, comme cela a déjà été évoqué
dans [EFGT17], il est possible, après avoir récupéré des informations complémentaires par canaux
auxiliaires, de retrouver entièrement la clé secrète du schéma de signature BLISS [DDLL13] en
résolvant un tel système. Rappelons que si BLISS ne fait pas partie des candidats à la compétition
du NIST, il reste malgré tout un des schémas de signature post-quantique assez répandu: en effet, il
existe plusieurs implémentations, sur différentes plateformes tel que des FPGA et microcontrôleurs.
BLISS a également été implémenté dans la suite VPN strongSwan.

Construction d’un nouveau PRG basé sur LWR. [BDFK17] Les auteurs de [BPR12] ont
prouvé que résoudre LWR pour des paramètres bien choisis est au moins aussi difficile que résoudre
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LWE, et se ramène donc à des problèmes difficiles de réseaux euclidiens. Partant de cette hypothèse,
ils ont créé une famille de fonctions pseudo-aléatoires, connue sous le nom de BPR, dont la sécurité
est prouvée, en admettant la difficulté de LWE. Cette famille est cependant non pratique en raison
de la taille de ses paramètres. En 2014, les auteurs de [BBL+14] ont proposé de réduire la taille
des paramètres afin d’avoir une famille de fonctions pseudo-aléatoires efficaces (dont le temps
d’exécution est comparable à celui d’AES). Cette famille s’appelle SPRING pour « Subset Product
with Rounding over a rING ». Les réductions de sécurité de BPR ne s’appliquent plus dans
le cas de SPRING, les paramètres étant trop petits. Dans ce travail en commun avec Charles
Bouillaguet, Pierre-Alain Fouque et Paul Kirchner, nous proposons un générateur pseudo-aléatoire
dans la lignée de SPRING, plus rapide que les instances proposées par les auteurs de [BBL+14].
Nous présentons également une analyse de sécurité de notre primitive et proposons des idées pour
réduire la taille des clés de SPRING, qui reste l’un des principaux inconvénients de ce type de
construction, enfin, nous présentons une implémentation optimisée de notre schéma, sur Intel en
utilisant les instructions SSE2 et AVX2, ainsi que sur ARM en utilisant les instructions NEON. Le
code de ces implémentations est disponible publiquement à cette adresse :

https://github.com/cbouilla/spriiiiiiiing

Cette construction est détaillée dans le chapitre 12.

LWE sur les entiers [BDE+18]. Dans cet article en collaboration avec Jonathan Bootle, Thomas
Espitau, Pierre-Alain Fouque et Mehdi Tibouchi, nous présentons le problème ILWE, pour Integer-
LWE, et nous discutons de sa difficulté. C’est sans grande surprise que nous le trouvons beauc-
oup plus facile à résoudre que LWE, et ce, même lorsque l’erreur e est grande (mais pas super-
polynomiale en la variance de A). Nous montrons que d’un point de vue théorie de l’information,
le nombre de lignes minimal m que A doit avoir pour que le problème soit faisable est de l’ordre
de Ω

(
σ2
e/σ

2
a

)
, où σ2

a représente la variance de A et σ2
e est la variance de l’erreur.

Le meilleur algorithme que nous proposons pour résoudre ce problème est la méthode des
moindres-carrés. Dans ce cas précis, la valeur minimale de m est de l’ordre de
Ω
(
max((σ2

e/σ
2
a) · logn, n)

)
. Nous proposons également une méthode qui, d’après les travaux de

Candes et Tao [CT07], permet de retrouver s dans le cas où m < n, lorsque s est très creux et de
densité connue.

Notre principale motivation concernant ce problème était d’améliorer l’attaque proposée par les
auteurs de [EFGT17]. Dans ce papier, les auteurs remarquent qu’il est possible de récupérer deux
fonctions du secret s de BLISS, par canaux auxiliaires. L’une d’entre elles est quadratique, l’autre
linéaire mais bruitée. Les auteurs de [EFGT17] ont alors rejeté l’idée d’exploiter cette dernière
information, car cela reviendrait à résoudre un problème analogue à LWE en grande dimension,
et se sont focalisés sur la fonction quadratique. Cependant, le système linéaire bruité considéré
est en réalité une instance ILWE, et est donc facile à résoudre en utilisant les techniques énoncées
ci-dessus. De plus, il s’applique à toutes les clés de BLISS (L’attaque de [EFGT17] ne s’applique
qu’à 7% des clés).

Nous proposons également des tests afin de corroborer les résultas énoncés plus haut. En
particulier, nous proposons une simulation de l’attaque par canaux auxiliaires contre BLISS. En
utilisant la méthode des moindres-carrés, nous sommes capable de retrouver les secrets de BLISS–0,
BLISS–I et BLISS–2 en quelques minutes. En comparaison l’attaque de [EFGT17] peut prendre
plusieurs jours CPU. Le seul point noir est qu’il faut récupérer un nombre considérable de traces
par canaux auxiliaires. Ces travaux sont détaillés dans le chapitre 14.

En résumé, dans cette troisième partie j’ai regardé deux aspects de la cryptologie basée sur
le problème LWE. J’ai commencé par contribuer à la construction d’une nouvelle primitive de
cryptographie symétrique, que j’ai implémentée sur Intel avec instructions SSE2 et sur ARM avec
instructions NEON, en m’inspirant du code des auteurs de [BBL+14]. Dans un second temps,
j’ai réfléchi sur des méthodes pour résoudre le problème LWE sur les entiers, afin d’améliorer des
attaques par canaux auxiliaires contre une signature post-quantique. Plus précisément, j’ai regardé
comment modéliser ce problème en programmation linéaire et en programmation linéaire entière.
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Pour ce faire, j’ai créé plusieurs modèles sous Gurobi [GO18]. La méthode des moindres carrés
semble cependant s’avérer être la plus efficace pour résoudre ce problème.

Autres travaux

En parallèle des travaux liés à ma thèse, j’ai eu l’occasion de m’intéresser à la détection de
logiciels malveillants dans des fichiers PDF, en utilisant des méthodes d’apprentissage automatisé
(machine-learning en anglais). Il s’agit d’un travail commun avec Bonan Cuan, Aliénor Damien et
Mathieu Valois, accepté en tant que « position paper » à SECRYPT2018. Il a été réalisé dans le
cadre de l’évènement REDOCS organisé par le pré-GDR sécurité.

Détection de logiciel malveillant dans des PDF [CDDV18]. Des milliers de fichiers PDF
sont disponibles sur le web. Ils ne sont pas tous aussi inoffensifs qu’ils paraissent. En réalité, les
PDF peuvent contenir divers objets tel que du JavaScript et/ou du code binaire. Il arrive que
ces objets soient malicieux. Un PDF peut alors essayer d’exploiter une faille dans le lecteur afin
d’infecter la machine sur laquelle il est ouvert. En 2017, soixante-huit failles ont été découvertes
dans Adobe Acrobat Reader [CVE17]. Plus de cinquante d’entre elles peuvent être exploitées pour
faire tourner un code arbitraire. Il est a noter que chaque lecteur de PDF a ses propres vulnér-
abilités, et un PDF malicieux peut trouver un moyen d’en tirer parti. Dans ce contexte, plusieurs
travaux ont proposé d’utiliser des techniques dite d’apprentissage automatisé (machine learning en
anglais) afin de détecter les PDF malicieux ([Kit11, MGC12, Bor13] par exemple). Ces travaux
reposent plus ou moins sur la même idée: repérer des caractéristiques dites « discriminantes »
(c-à-d qui apparaissent le plus souvent dans des PDF malicieux) et trier les PDF en utilisant un
algorithme de classification. Pour un PDF donné, cet algorithme de classification prendra en entrée
les caractéristiques sélectionnées et, en considérant le nombre d’occurences de chacune d’entre elles,
déterminera si le PDF est sain ou si il peut être malveillant. Dans ce travail, nous nous sommes
focalisés sur des méthodes d’apprentissage supervisé : l’algorithme de classification est au préalable
entrainé avec des PDF dont l’état (sain ou malveillant) est connu. Une phase de test est ensuite
réalisée, afin de vérifier la précision des prédictions effectuées par l’algorithme. Plusieurs approches
ont été considérées, à la fois dans le choix des caractéristiques discriminantes et dans le choix de
l’algorithme de classification lui-même. En réalité beaucoup d’algorithmes de classification peuvent
être utilisés: NaiveBayes, DecisionTree, RandomForest et SVM en sont des exemples. Les
auteurs de [MGC12] commencent par décrire leur propre manière de sélectionner les caractéristiques
discriminantes et utilisent ensuite un algorithme RandomForest pour la classification, alors que
Borg [Bor13] se repose sur le choix de caractéristiques discriminantes proposé par Stevens [Ste06]
et utilise un algorithme SVM (Support Vector Machine) pour la classification. Les deux approches
semblent donner des résultats précis.

Cependant, il est toujours possible de contourner ce genre d’algorithmes de détection. Plusieurs
attaques ont été proposées à cet effet (par exemple [AFM+13, BCM+13]). Les auteurs de [BCM+13]
proposent une attaque par descente de gradient dans le but d’échapper à la vigilance des SVM
et des algorithmes de classification basés sur des réseaux de neurones. D’un autre côté, les
auteurs de [AFM+13] expliquent comment il est possible d’obtenir des informations sur l’ensemble
d’entrainement d’un algorithme de classification cible. Pour ce faire, ils utilisent un autre algorithme
de classification, qui agit sur un ensemble d’algorithmes de classification, entrainés avec différents
ensembles de données. Leur but est de détecter ainsi des propriétés intéressantes dans l’ensemble
d’entrainement utilisé par l’algorithme de classification cible et de tirer parti de cette connaissance
pour attaquer l’algorithme de classification en question.

Dans [CDDV18], nous présentons trois aspects de la détection de logiciels malveillants dans les
PDF. La première partie de notre travail a consisté à implémenter notre propre algorithme de clas-
sification. Nous avons utilisé un SVM, car cet algorithme produit de bons résultats tout en restant
assez simple. Nous avons exploré différentes possibilités concernant le choix des caractéristiques
discriminantes. Notre premier choix était basé sur la sélection proposée par Stevens [Ste06]. Nous
avons par la suite affiné ce choix en sélectionnant également les caractéristiques qui, relativement à
notre ensemble de données, nous paraissaient les plus discriminantes. Nous avons entraîné et testé
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notre SVM avec un ensemble de 10 000 PDF sains et 10 000 PDF malicieux provenant de la base
de donnée Contagio [Con13]. Nous avons ainsi obtenu un algorithme de classification dont le taux
de succès était supérieur à 99%.

Dans un second temps, nous avons cherché à contourner notre SVM en forgeant des PDF
malicieux de différentes manières, la plus prometteuse étant une attaque de type descente de gradi-
ent très similaire à celle proposée par les auteurs de [AFM+13].

Enfin, nous avons réfléchi à la façon d’éviter ce type d’attaques. Nous proposons trois méthodes.
La première consiste à instaurer un seuil pour chaque caractéristique, empêchant ainsi à un adver-
saire d’augmenter considérablement le nombre d’objets. Nous avons également proposé un choix
de caractéristiques plus approprié, afin de rendre notre SVM plus résistant aux attaques de type
descente de gradient. Enfin, nous avons proposé de ré-entraîner notre SVM avec des PDF forgés.
Ces diverses contremesures nous ont permis de bloquer jusqu’à 99.99% des attaques par descente
de gradient.
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“All computer science is algorithm.”

– Donald Knuth –
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Chapter 1
Foreword

In this chapter, we present some important definitions and notations that will be used
throughout this thesis.

1.1 Mathematical Notations and Basic Definitions.

Useful notations. We denote by ⊕ the bitwise exclusive-OR (XOR) operation. The base-2
logarithm of some value x is denoted by log(x) or log x. The natural logarithm of x is denoted by
ln(x) or ln x. If we denote by A a list or a table, the i-th element of this list/table is denoted by
A[i]. If A is empty we note A = ⊥, let S be a finite set. We denote by |S| its cardinality.

Set and algebraic structures. We denote by Z the set of integers, N the set of positive integers,
by R the field of real numbers and by C the field of complex numbers. Given a positive integer a, we
denote by Za the ring Z/aZ of integers modulo a. Let p be a prime number. We denote by Fp = Zp,
the finite field with p elements. Let n be a positive integer, we denote by Fnp the n-dimensional
vector space over Fp. Given a ring R, we denote by R∗ the group of invertible elements of R.

Vectors and vector spaces. Let Fnp be a vector space over Fp, and let k be a positive integer
such that 1 ≤ k ≤ n. A vector v of Fnp is written in bold. The first coefficient of a vector is usually
indexed by 0. Let v be a vector, we denote either by v[i] or by vi the coefficient of v indexed by
i. We denote by vi[j] the coefficient indexed by j of a vector vi. Unless stated otherwise, vectors
are row vectors. Given two vectors a and b of Fnp , we denote by 〈a,b〉 =

∑
i aibi the inner product

or dot product of a and b. Given two vectors a and b, both with coefficients in Fp, possibly of
different length, we denote by a|b the concatenation of a and b.

The vector subspace V of Fnp spanned by {x1, . . . ,xk} is denoted by V = Span{x1, . . . ,xk}.
Let Fnp be a vector space. For all 1 ≤ i ≤ n, ei is the vector of Fnp such that the i-th coefficient of
ei is 1, and all the other ones are 0. B = (e1, . . . , en) is the canonical basis of Fnp . We recall that a
vector subspace of Fnp with the hamming metric is called a linear code. In this thesis, we consider
only binary linear code (i.e. p = 2). A binary linear code is usually referred only as a “code” for
simplicity. A code C of length n and dimension k is called a [n, k]-code. If its minimum distance
d (i.e. the Hamming weight of the non-zero vector which has the smallest Hamming weight) is
known, C can also be referred as a [n, k, d]-code.

Matrices. Let A be an n-by-m matrix over Fp. The first row (resp. column) of A is usually
indexed by 0. We denote aij the coefficient on row i and column j, and by Aij some sub-matrix of
A indexed by i and j. The rank of A is the number of rows (resp. columns) of A that are linearly
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independent. An n-by-n matrix is said to be square. Unless stated otherwise, we denote by ai the
row of A indexed by i, and by taj the column of A indexed by j.

A square matrix A, such that aij = aji for all (i, j) is said to be symmetric. We denote by
tA the transpose matrix of A. We call lower trapezoidal any n-by-m matrix L whose coefficients
lij with j > i are zeroes. Equivalently, an n-by-m matrix U is called upper trapezoidal if all its
coefficients uij with j < i are zeroes.

A matrix which is both lower and upper trapezoidal is called a diagonal matrix. For instance the
identity matrix of size n, is the square diagonal matrix, with n rows and columns, whose coefficients
on the diagonal are 1.

Let A be an n-by-m matrix over Fp. The minimum polynomial of A is the monic polynomial
(i.e. single-variable polynomial whose leading coefficient is 1) µ over Fp of least degree such that
µ(A) = 0. Let v be a vector of Fnp and λ be a an element of the algebraic closure of Fp, such that
λtv = Atv. We call v eigenvector of A and λ eigenvalue of A associated to v. The determinant
det(A) of A is equal to the product of the eigenvalues.

Bit Strings. A bit is an element of {0, 1}. Let n be a positive integer. A bit-string s of length
n is a vector of n bits. The set of all n-bit vectors can be seen as the vector space Fn2 , with the
XOR (⊕) being the sum. As we represent bit-strings as vectors, we choose to index by 0 the least
significant bit (LSB). For instance the 4-bit string associated to 13 is: 1011.

Probability. Let A be an event. The probability that A happens is denoted by P[A]. Let X be a
discrete random variable that can take values in a discrete set S. When defined, the expected value
of X, denoted E[X], is given by the sum E[X] =

∑
k∈S kP[X = k]; when defined, the variance of

X, denoted Var(X), is given by E[X2 − E[X]2]; the standard deviation of X, denoted by σ(X) is
given by

√
Var(X). Given a parameter a > 0, we recall that by Markov’s inequality we have:

P[X ≥ a] ≤ E[X]
a

.

It follows Chebychev’s inequality:

P[|X − E[X]| ≥ a] ≤ Var(X)
a2 ,

and Chernoff generic bounds:

P[X ≥ a] ≤ E[etX ]
eta

, ∀t > 0.

We have a special case when X is the sum of n independent random variables from {0, 1}n. If we
denote by µ the mean of X, we have:

P[X ≥ (1 + δ)µ] ≤ e−
−δ2
2+δ µ, ∀δ > 0

P[X ≤ (1− δ)µ] ≤ e−µδ
2

2 , ∀0 < δ < 1

Given a probability distribution χ, we call σ its standard deviation and µ its mean. If µ = 0, χ is
said to be centred.

Asymptotic notations. We use the standard Landau notations: O,Ω,Θ, o, ω. We use the Õ
notation to hide poly-logarithmic factors. In other words:

f(n) = Õ (g(n)) ⇐⇒ ∃c ∈ N, such that f(n) = O (g(n) logc n) .

We also use the following notations:

f(n) = poly (n) ⇐⇒ ∃c ∈ N, such that f(n) = O (nc) ,

and
f(n) = negl (n) ⇐⇒ ∃c ∈ N, such that f(n) = o(n−c).

2
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1.2 Cryptologic Background.

Basics. Strictly speaking cryptography aims to construct schemes that provide secure communi-
cation in presence of a third party called adversary. Cryptanalysis aims to attack these schemes,
and point out their weakness. Cryptology is the study that regroups both cryptography and crypt-
analysis. In this thesis, however, we use the word “cryptography” as a synonym of “cryptology”,
which is quite common. Cryptography has many goals, the first one being assuring confidentiality
of a communication (i.e. a third cannot have read the messages), but also integrity (i.e. a message
cannot by modified by a third party) and authenticity (i.e. the origin of the message is certified).

We can divide modern cryptography in two families: symmetric cryptography and asymmetric
cryptography. In symmetric cryptography, two parties – let us call them Alice and Bob – that aims
to communicate share a common secret information, called secret key that they use to encrypt
message and/or authenticate them. In asymmetric cryptography, Bob has a pair of keys (sk, pk),
where sk is his private key, and is known only by him, and pk is his public key, which can be known
by anyone. Now, if Alice wants to send a message to Bob, she uses pk to encrypt the message, and
only Bob, who knows sk, is able to decrypt it. Bob can also use his secret key to sign a message,
and Alice (or anyone who has access to the message) can check that Bob is indeed the sender of
the message using pk.

Asymmetric cryptography is based on hard problems, and is slow, but its security can be proven.
It is in practice not used to communicate but more to exchange keys in a secure way, or prove one’s
identity. Symmetric cryptography on the other hand is fast, but its security usually relies on the
fact that no attack is known. It is used to encrypt longer messages.

In this thesis, we are more interested by underlying problems we may encounter in cryptography,
than these practical considerations, so we will not develop any further.

Cryptographic problems. As mentioned above, symmetric cryptography is usually not based
on hard problems. It is still hard to break because no public information related to the secret
is known. The attacks consist mostly in finding correlations between different ciphers and/or
messages and try to guess informations on the secret key from that. As such one of the most
important problem in symmetric cryptography is the birthday problem: given a function f that
produces random outputs find two different inputs x and y, such that f(x) = f(y). It is well known
that this problem can be solved in O (2n/2), where n is the bit-length of any output of f . The
second part of this thesis is dedicated to a variant of this problem.

Asymmetric cryptography on the other hand relies on somehow hard mathematical problems.
We can cite for instance the famous RSA scheme [RSA78], which relies on the hardness of factoring
an integer n = pq, where p and q are large primes, or the Diffie-Helman protocol [DH76], which
relies on the hardness of solving the discrete logarithm problem in a finite group. However, with
the threat of the upcoming quantum computer, these two problems may one day become easy, and
all cryptography based on them insecure.

To remedy this situation, post-quantum cryptography has been developed in the last few years.
It regroups all the schemes that are, for now, assumed to be secured against quantum algorithms.
We can distinguish five main families of post-quantum schemes: Lattice-based cryptography, code-
based cryptography, multivariate cryptography, isogeny-based cryptography, and hash-based cryp-
tography. In the third part of this thesis we will talk more about hard problems we may encounter
in Lattice-based cryptography: in particular, the LWE problem.

1.3 Algorithms and Complexity

Decision problems and complexity classes. We call decision problem a problem whose ex-
pected answer is either yes or no, depending on input values. A decision problem is said to be
decidable if there exists an algorithm that always terminates and returns a correct answer, “yes”
or “no”, to said problem.

A decision problem P belongs to the NP class (Non deterministic Polynomial time), if there
exists a polynomial time verifier to the problem when the answer is “yes”. In other words, given an
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instance X of P, such that the answer to P is “yes”, there exists a certificate c such that given X
and c, V returns “yes” in polynomial time. Furthermore, if c′ is not a valid certificate, V will return
“no” when given as input X and c′, and this even if the actual answer to P is “yes”. Similarly a
problem is said to belong to the co-NP class if P is decidable, and if there exists a polynomial time
verifier to the problem when the answer is “no”. A problem P belongs to the P class, if it can be
solved in polynomial time by a deterministic algorithm.

A problem P is said to be NP-Complete, if P is in NP, and any other problem in NP is reducible
to P in polynomial time. Basically, this means that any instance of any problem Q in NP can be
transformed into an instance of P in polynomial time. We can define co-NP-Completeness in a
similar way.

A problem P is said to be NP-Hard, if P is a decision problem, and is at least as hard to solve
as any problem of the NP class. Note that P is not necessarily in NP. In fact, it is not even required
that P is decidable.

The list of complexity classes given here is far from being an exhaustive one. However, this is
enough for the rest of this thesis.

Search and optimisation problems. A search problem consists in finding a solution that sat-
isfies some conditions on the input value, if this solution exists. The associated decision problem
would be to determine whether the solution exists. Given a search problem which has many solu-
tions, an optimisation problem consists in finding the “best” one among all of them. More precisely,
given an instance X of a search problem P, and given S the set of all possible solutions to P, the
goal is to find an element s ∈ S that either minimise or maximise a given measure of s. The
associated decision problem to an optimisation problem would be, to determine if there exists a
solution s ∈ S such that the measure is smaller (resp. greater) than a given bound k.

We can extend the notion of NP-Completeness and NP-Hardness to optimisation problems as
follows: we say a problem P is an NP-Complete (resp. NP-Hard) optimisation problem if the
associated decision problem is NP-Complete (resp. NP-Hard).
Remark 1. This is abusing the definitions of NP-Completeness and NP-Hardness. Indeed, only
decision problems can be called either NP-Complete or NP-hard. However, these definitions, al-
though formally incorrect, are pretty convenient and appear to be widely utilised in the literature
(e.g. [RT75, Yan81, GHL01]).

NP-Complete/NP-Hard optimisation problems and approximations. When an optimi-
sation problem is considered hard, it is usual not to search for the best solution, but to settle for
a good solution instead. Sometimes it is possible to find an approximate solution to one of these
problems with a proof that the solution is “close” to the optimal one, meaning that the distance be-
tween the solution returned in the worst case and the optimal solution is proved to be smaller than
some specific bound. Problems which can be approximated this way are said to be approximable.
An algorithm which can find such a solution is called approximation algorithm.

Some problems are easy to approximate within a constant multiplicative factor, other are proved
to be impossible to approximate within constant or even polynomial multiplicative factors unless
P = NP . In this case, we have to search for other means to find “good” solutions to a problem.
We use heuristics. A heuristic is also a way to find an approximate solution to a given optimisation
problem, but unlike approximation algorithm, we have no guarantee on the quality of the solution
thus found. It may be very close to the optimal if we are lucky, but it can also be very far.
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Introduction

“The enchanting charms of this sublime
science reveal only to those who have the
courage to go deeply in it.”

– Carl Friedrich Gauss –

Sparse Linear Algebra

A sparse matrix is essentially a matrix in which a large proportion of the coefficients are zeroes.
An example of a sparse matrix is given in Figure 1.1: The black pixels here represent non-zero
coefficients and the white ones are zeroes.

Given a matrix A, one may want to compute its rank, or solve a linear system x · A = b, or
compute its determinant. In dense linear algebra, we would usually solve these problems using
gaussian elimination.

Our concern is to solve these problems, when the input matrix is sparse (i.e. if most of its
coefficients are zero). In this case, there are essentially two families of algorithms to solve these
problems: iterative methods and direct methods.

Iterative Methods and Direct Methods

Iterative methods. Iterative methods are widely used in exact linear algebra, as they allow to
handle the largest instances of the problems mentioned above. They work mostly by computing
vector-matrix products, and the matrix A is never changed. Their main advantage is that they
always terminate and return the desired solution, and that their space complexity is rather small,
as they require only to store the matrix plus two vectors. Their execution time is easy to predict,
and they are parallelisable up to a certain point. Their main draw back is that they require to
perform on average O (n) matrix vector products, whose time complexity is proportional to the
number of non-zero coefficients of A. For very sparse or/and structured matrices, this is usually too
much. The most famous of these methods are the Wiedemann Algorithm [Wie86] and its parallel
version Block-Wiedemann [Cop94].

Direct methods. Direct methods (e.g. Gaussian Elimination), usually work by computing an
echelonised version of the input matrix A, in order to obtain a triangular matrix in its stead. The
main issue of these methods, is that the triangular matrix thus obtained is often much denser
than the original one. In fact, during the echelonisation process, some entries that were originally
zeroes become non-zero ones. This phenomenon is called fill-in. Because of this, it is quite hard
to evaluate the time complexity of these methods, and the space complexity is usually a limiting
factor. Because of the fill-in, these methods can become very slow, and sometimes, we may run
out of memory, which causes the procedure to fail. This is why they are not very populated in the
world of exact linear algebra.

In a paper from 2002, Dumas and Villard [DV02] surveyed and benchmarked algorithms ded-
icated to rank computations for sparse matrices modulo a small prime number p. In particular,
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Contributions

Figure 1.1 – An example of sparse matrix: GAG/mat364 from [Dum12].

they compared the efficiency of sparse gaussian elimination and the Wiedemann algorithm on a
collection of benchmark matrices that they collected from other researchers and made available on
the web [Dum12]. They observed that while iterative methods are fail-safe and can be practical,
direct methods can sometimes be much faster. This is in particular the case when matrices are
almost triangular, so that gaussian elimination barely has anything to do.

Our concern is with direct methods. We aim to develop new algorithms to reduce this fill-in,
and thus increase their chance of success. We focussed on the topic of sparse gaussian elimination
as these algorithms can be applied to any matrix, square or not, and possibly rank-deficient.

Sparse Gaussian Elimination

There are essentially two ways to compute a sparse gaussian elimination. The first is very similar
to the dense algorithm: at each step one pivot is chosen, and the coefficients below are eliminated.
This requires to update the matrix every time. The second one works by solving a sequence of
triangular systems. The choice of the pivot is made afterward “in the dark”. We found out that
both of these methods have their own strengths and weaknesses, and none of them is clearly better
than the other.

Pivot selection heuristics. A good choice of pivot is primordial to maintain sparsity during the
echelonisation process. Unfortunately, finding the pivots that will minimise the fill-in is known to
be an NP-Complete optimisation problem. Sparse gaussian elimination methods then use heuristics
to select hopefully good pivots. These heuristics are called pivoting strategies.

Our Contributions

In [BD16], our original intention was to check whether the conclusions of the survey of Dumas and
Villard [DV02] could be refined by using more sophisticated sparse elimination techniques from the
numerical world. To do so, we developed the SpaSM software library (SPArse Solver Modulo p).
Its code is publicly available in a repository hosted at:

https://github.com/cbouilla/spasm

We mostly focused on the computation of the rank because it raises the same challenges as
solving linear systems while being slightly simpler. Our algorithm can nonetheless be easily adapted
to other linear algebra problems (e.g. linear system solving, determinant computation).

We implemented the algorithms described in [BD16] and [BDV17] as well as some other –
less successful – ones, in this library. This was necessary to test their efficiency in practice. We
benchmarked them using matrices from Dumas’s collection [Dum12], and compared them with
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the algorithms used in [DV02], which are publicly available inside the LinBox [Lin08] library. This
includes a sparse gaussian elimination, and the Wiedemann algorithm. We obtained large speedups
on some cases, in particular the pivot selection heuristic we developed in [BDV17] allowed us to
compute the rank of some of the largest matrices from [Dum12], in a few minutes. Before that,
these matrices could only be handled by iterative methods, and it required many days.

The algorithms we present here can possibly work over any field. However, we recall that in the
numerical world, preserving sparsity is not the only concern. One also has to cope with numerical
stability. As our work focusses on exact linear algebra, this is not a problem for us.

Organisation of the Part

In Chapter 2, we recall basic definitions for sparse linear algebra and graph theory, that will be
utilised in the rest of the part. We also describe the data structures used to store sparse matrices
and sparse vectors, as well as useful algorithms such as the ones to solve sparse triangular systems.

In Chapter 3, we start by giving a high-level description of the most famous iterative method:
the Wiedemann Algorithm, as well as the parallel Block-Wiedemann Algorithm. Afterward, we
recall how the two types of Gaussian elimination mentioned above work. We also present some
pivoting strategies. Finally, we give a brief overview of the existing implementation of sparse
gaussian elimination in exact linear algebra, as well as in the numerical world. We take this
opportunity to introduce our own library, SpaSM.

In Chapter 4, we present an algorithm which was the main contribution of [BD16]. This
Algorithm combines methods from both the classical gaussian elimination and the GPLU algorithm.
This new algorithm basically consists in picking a set of pivots that can be chosen “a priori” without
performing any arithmetical operation, but only doing permutations of the rows and columns of
the initial matrix. Once these pivots are selected, all non-zero coefficients bellow can be eliminated
in one fell swoop. Using a simple pivot-selection heuristic designed in the context of Gröbner
basis computation [FL10], we were able to achieve large speedup on some cases (100× and more)
compared to previous algorithms. In particular, this method always outperforms the sparse gaussian
elimination implemented in LinBox.

Finally, in Chapter 5, we recall that the problem of finding the largest set of such a priori pivots
is a difficult task. It is indeed equivalent to solving a graph NP-complete optimisation problem.
We propose two new pivots selection heuristics that we introduced first in [BDV17]. One of them
in particular has proved to be very efficient, allowing us to find up to 99.9% of all the pivots in
some cases. We also present a parallel version of our algorithm, which is quite scalable.
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Chapter 2
Of Sparse Matrices, Graphs and Sparse Triangular Systems

In this chapter, we recall important definitions related to (sparse) linear algebra and
present the usual data structure that we actually utilise to store sparse matrices and
sparse vectors. We also recall some important definitions from graph theory. Armed
with these tools, we explain how we can actually solve sparse triangular systems. The
algorithm described here will be utilised as a subroutine in the following chapters.

2.1 Sparse Matrices

It is not really easy to define formally what a sparse matrix is, as the word “sparse” refers to a
vague notion. Usually, we say that a matrix is sparse if most of its coefficients are zeroes. On the
other side, if many coefficients are non-zeroes, we say that the matrix is dense. It is, however, not
clear what the words “many” and “most of” mean. Let us try to have a better understanding of
this notion. Let A be an n-by-m matrix. We denote by nz(A) the number of non-zero coefficients
of A. The density of matrix A is defined by the following formula:

d(A) := nz(A)
n ·m . (2.1)

In other words, the density of A is the ratio: number of non-zero coefficients divided by total
number of coefficients.

Let ε ≤ 1 be a positive parameter. We can define the ε-sparsity of a matrix as follows:

Definition 2.1. A matrix A of density d(A). A is ε-sparse if d(A) ≤ ε

Another way to define the words “sparse” and “dense” would be to refer to the data structure
that is used to store the matrix. For instance in [Dav06], Davis calls “dense” every n-by-m matrix
A whose entries are stored in a bi-dimensional table, with n rows and m columns. On the contrary,
A is called “sparse” if it is stored using a special data structure, that keeps only the non-zeroes
coefficients in memory.

2.1.1 Notations and Definitions

In the rest of the part, we assume that p is a prime number, and Fp is the finite field with p
elements.

Let v be a vector of Fnp . We denote by vi the (i+ 1)-th coefficient of v (indexation starts at 0),
and by vi a vector indexed by some parameter i.

Let A be an n-by-m matrix over Fp. We denote by r its (possibly unknown) rank. If r =
min(n,m), A is said to be full rank. If r < min(n,m), A is said to be rank-deficient.

11
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A non zero entry of A is an entry (i, j) such that aij is non-zero. The collection of entries (i, i)
of a matrix is called main diagonal of the matrix.

We recall that a lower trapezoidal matrix is an n-by-m matrix L whose entries above the main
diagonal are zeroes. Equivalently, an n-by-m matrix U is upper trapezoidal if all its coefficients
below the main diagonal are zeroes. In the following example, L is lower trapezoidal and U is upper
trapezoidal.

L =




1 0 0 0
2 0 0 0
0 1 −2 0
0 2 0 1


 , U =




2 0 0 1 0
0 1 −1 0 0
0 0 1 0 76
0 0 0 0 5


 (2.2)

A lower triangular (resp. upper triangular) matrix is a square lower trapezoidal (resp. upper
trapezoidal) matrix. In the example above, L is lower triangular. U , on the other hand, is not
upper triangular, as it contains more columns than rows.

Remark 1. The coefficients on the main diagonal of a lower or upper trapezoidal matrix are not
necessary non-zeroes.

When writing down a sparse matrix, it is usual to forget the zero coefficients. Therefore, the
following 4-by-4 matrix over F5:

A =




1 0 0 2
0 4 0 0
3 0 1 0
0 0 0 4


 , (2.3)

becomes:

A =




1 2
4

3 1
4


 (2.4)

2.1.2 Data Structures

Let A be an n-by-m matrix over Fp. We present two data structures that can be utilised to store
A. These data structures aim to store only the non-zero coefficients of A. However, it may happen
that a coefficient aij , whose value is zero, is actually stored in these structures, if some numerical
cancellation has occurred for instance. For now on, we will call “non-zero” entry of A every entry
(i, j) that is actually stored, while using one of this structure, even if the coefficient aij is null. Let
us call nz the number of non-zero entries according to this definition. In the following, we denote
by nzmax an upper bound on nz.

Remark 2. nzmax is in fact the allocated size to store the non-zero coefficients of the matrix. When
it is possible, we try to have nzmax = nz = nz(A).

Triplet format. This is perhaps the simplest and most intuitive way to represent a sparse matrix.
We consider here a list of all the non-zeroes coefficients of the matrix given in an arbitrary order.
Hence, we require two tables Ai and Aj of indexes, respectively representing the rows and columns
indexes i and j, such that (i, j) is a non-zero entry. We also need a table Ax of elements of Fp, to
store the value of aij . These three tables are of size nzmax.

To have a better understanding of this structure, let us have a look at a small example. Let us
consider the matrix defined in Equations 2.3 and 2.4. We can write A in triplet format as follows:
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Ai Aj Ax
0 3 2
2 2 1
1 1 4
0 0 1
3 3 4
2 0 3

Remark 3. There are many ways to write a matrix in triplet format (in fact, there are nzmax!
ways). The dense representation, on the other hand, is unique.

It is quite easy to understand this structure, which is quite similar to the way sparse matrices
are actually stored in data basis (e.g. [Dum12]). It is also quite easy to transpose a matrix stored
that way, all we have to do is to exchange tables Ai and Aj. However, it is not the most appropriate
one for most of the algorithms we will describe in the following sections. Thus, we will now describe
a more suitable structure in the paragraph bellow.

Compressed Sparse Row format. To store A in Compressed Sparse Row (CSR) format, we
require two tables Ap and Aj of indexes, with Ap of size n+1 and Aj of size nzmax ≥ nz(A). We also
require a table Ax of size nzmax, of elements of Fp, to store the value of the non-zero coefficients of
A.

Let us abuse notations by calling nz(ai) the number of non-zero entries on the (i+ 1)-th row of
A. We define Ap in the following way:

1. Ap[0] = 0,

2. ∀i ∈ {0, . . . , n}, Ap[i+1] = Ap[i] + nz(ai).

It is easy to check that Ap[n] is equal to nzmax.
The indexes j of the columns such that the entries (i, j) are non-zero, are stored from Aj[Ap[i]]

to Aj[Ap [i+1] - 1], in arbitrary order. The corresponding numerical values are stored accord-
ingly in Ax.

Let us go back to our example given by Equations 2.3 and 2.4. We give a way to store this
matrix in CSR format bellow:

Ap Aj Ax
0 0 1
2 3 2
3 1 4
5 2 1
6 0 3

3 4

Remark 4. Once again, there are many ways to store a given matrix A using this structure.
Remark 5. Accessing to a given column of a matrix stored in CSR format requires basically to go
through all non-zero entries of the matrix. On the other hand, it is quite easy to access a given
row of the matrix.

Usually, these kinds of data structures require less storage than a dense representation of the
matrix. This gain of space has a price. It is harder to access the data. None of these structures
enables us to obtain the value of aij in constant time.

Storing a sparse vector. We are now concerned about the storage of sparse vectors. We give
a simple structure to store them.

Definition 2.2. Let b be a sparse vector. The set of indices i such that bi 6= 0 is called the
non-zero pattern, or just the pattern of b. This set is denoted by B.
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a b c d

e f g

(a) Example of undirected graph.

a b c d

e f g

(b) Example of directed graph.

Figure 2.1 – Examples of graphs.

In practice, we store the pattern of b in a table bi, and we store the corresponding numerical
values in a table bx. For instance, the pattern of the following vector:

b =
(
0 0 2 0 1 0 1

)
,

is B = {2, 4, 6}. We could store it the following way:

bi bx
4 1
2 2
6 1

Sometimes, we may temporarily need to store a sparse vector in a dense structure. We say that
we “scatter” the vector. The pattern table enables us to directly find where the non-zero entries
are, without having to scan through the whole vector. We proceed as follows:
for all i < nz(b) do

Set j← bi[i]
Get bj

Remark 6. This “scatter” technique is a good compromise between sparse and dense data structure.
Unfortunately, it cannot be applied to sparse matrices. Indeed, “scattering” a sparse matrix into a
dense one would require to much memory.

2.2 A Bit of Graph Theory

There is a strong link between sparse linear algebra and graph theory. Indeed, it is common
knowledge that a (sparse) graph can be represented by sparse matrices. As such, many of the
problems that we will encounter in the rest of the part can also be expressed in terms of graphs.

Before going any further, we recall some important notions of graph theory, that will later be
useful.

2.2.1 Important Definitions

A graph is a pair G = (V,E) where V is the set of vertices or nodes, and E ⊆ V × V is the set of
edges that connect together two vertices. We must distinguish between to types of graphs: directed
and undirected graphs.

In a undirected graph, each edge (x, y) ∈ E is identical to the edge (y, x). In other word, the
edge goes from x to y and goes back from y to x.

In a directed graph, each edge (x, y) ∈ E is an arrow. x is called the tail of the arrow, and y is
called the head. In this case, the edge goes from x to y, but does not go back from y to x.

We present an example of undirected graph in Figure 2.1a. as well as an example of directed
graph in Figure 2.1b

Remark 1. Every undirected graph is equivalent to a directed graph: we simply have to replace
each edge by two arrows with opposite directions.
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a b

c d e

f

Figure 2.2 – Example of a Direct Acyclic Graph (DAG).

Let G = (V,E) be a directed or undirected graph. Let (x, y) be an edge, we say that y is a
direct successor of x and x is a direct predecessor of y. We call degree of x the number of direct
successors of x. In an undirected graph, two vertices x and y are said to be adjacent if there is an
edge between them.

We say that an edge e connects or joins two nodes x and y if e = (x, y). An edge e is said to
be incident to a node x if there is a node y such that e = (x, y) or e = (y, x). Similarly a node x
is said to be incident to an edge e, if there is a node y such that e = (x, y) or e = (y, x). We will
abusively say that x is a node (or a vertex) of e. Two edges e1 and e2 that are incident to a same
node are said to be co-incident.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊂ V and E′ ⊂ E ∩ (V ′ × V ′). Let V ′ be
a subset of V . We say that G′ = (V ′, E′) is the subgraph of G induced or vertex-induced by V ′, if
E′ = E ∩ (V ′ × V ′). Let E′ be a subset of G. We say that G′ = (V ′, E′) is edge-induced by E′ if V ′
is the set of endpoints of the edges from E′.

Let’s take a walk. Let G = (V,E) be an undirected or directed graph. A walk is defined as a
sequence of alternating vertices and edges v1, e1, v2, e1, ..., ek−1, vk, that are not necessarily distinct,
such that all vi are in V and all ei are in E, and where each edge ei = (vi, vi+1). The length of a
walk is the number of edges that compose it. In this case, the length of the walk is k− 1. A trail is
a walk such that all edges e1, . . . , ek are distinct. A path is a trail such that all vertices v1, . . . , vk
are distinct, except possibly the first and the last one. A closed walk is a walk such that the first
vertex v1 and the last one vk are equal. A circuit is a closed trail. A cycle is a closed path.

Example 2.1. In the example given in Figure 2.1a, the following sequence a, (a, b), b,
(b, f), f, (f, e), e, (e, b), b, (b, f), f is a walk of length 5. This is not a trail as (b, f) comes twice in the
sequence. On the other hand, the sequence a, (a, b), b, (b, f), f, (f, e), e, (e, b), b, (b, g), g is a trail of
length 5, as no edge is repeated. This is however not a path, as the vertex b is repeated twice, and
is not at the extremities. The sequence b, (b, c), c, (c, g), g, (g, b), b, (b, e), e, (e, a), a, (a, b), b is also a
trail. Furthermore it is a circuit as it is closed (it starts and ends with the same vertex b). The
sequence a, (a, b), b, (b, g), g, (g, d), d, is a path of length 3. The sequence e, (e, b), b, (b, c), c, (c, f), f,
(f, c), e is also a path. The only repeated vertex is e, which is at the extremities. This means that
this sequence is also a cycle.

We now assume that G is a directed graph. A semi-walk is defined as a sequence of alternating
vertices and edges v1, e1, v2, e1, ..., ek−1, vk, that are not necessarily distinct, such that all vi are in V
and all ei are in E, and where each edge ei = (vi, vi+1) or ei = (vi+1, vi). We can define accordingly
the terms semi-trail, semi-path, semi-circuit and semi-cycle. A directed graph G that contains no
cycle is called a directed acyclic graph (DAG). We give an example of a DAG in Figure 2.2. No
cycle appears in this graph, however there are a lot of semi-cycles (e.g. a, (a, c), c, (d, c), d, (a, d), a).

As a walk (or a semi-walk) is uniquely defined by the edges of which it consists, for now on, any
walk v1, e1, v2, e1, ..., ek−1, vk will simply be represented by the sequence of its edges e1, e1, ..., ek−1.

We say that a node x is reachable by a node y if there exists a path from y to x. For instance x
is reachable by x via a a path of length 0. Given a node y, we call successor of y any node x that is
reachable by y. In particular, a direct successor of y is a successor that can be reached from y via
a path of length 1. In a similar way, we call predecessor of x, any node y such that x is reachable
by y. If x is a direct successor of y, y is a direct predecessor of x.
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a b e

c d f

Figure 2.3 – An example of a graph G with two connected components. The blue one is even a
strongly connected one.

a

b

c d

e f g

Figure 2.4 – Example of a spanning tree in green.

Connected graphs and strongly connected graphs. An undirected graph G is said to be
connected if for all pairs of vertices (x, y) ∈ V × V , there is a path between x and y. A directed
graph G is said to be connected if for all pairs of vertices (x, y) ∈ V × V , there is a semi-path
between x and y. An undirected graph G is said to be strongly connected if for all pairs of vertices
(x, y) ∈ V × V , there is a path between x and y.

A subgraph G′ of G is a connected component of G if it is a connected graph, which is not strictly
included in another connected subgraph G′′ of G.

A subgraph G′ of G is a strongly connected component of G if it is a strongly connected graph
which is not strictly included in another strongly connected subgraph G′′ of G.

In Figure 2.3, we give an example of a graph G with two connected components. The blue
one is a strongly connected component. It is easy to check that for all pairs of nodes (x, y) ∈
{a, b, c, d} × {a, b, c, d} there is a path that connects x to y. The sub-graph induced by {a, b, c} is
also a strongly connected graph. It is not however a strongly connected component of G, as it is
included in the subgraph induced by {a, b, c, d}.

Trees and forests. An undirected acyclic graph with only one connected component is called a
tree. An undirected acyclic graph with more than one connected component is called a forest.

Let G = (V,E) be an undirected graph. We call spanning tree of G, a sub-graph T = (V ′, E′),
of G, such that V ′ = V , and T is a tree. An example of a spanning tree is given in Figure 2.4.

2.2.2 Graph Search

Let G = (V,E) a graph and s ∈ V a vertex of G. Graph search algorithms allow to find all the
successors of s in G. There are essentially two ways to proceed: using a Breadth-first search (BFS)
or using a Depth-first search (DFS). These two algorithms are well-known in graph theory, as such,
we will not fully describe them, but only recall their idea. A full description of these algorithms
can for instance be found in [CLRS01].

During these procedures, the nodes can take three colours: white (unmarked), red (visited),
and black (treatment over).
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c | ⊥

Figure 2.5 – Example of breadth-first search.

Remark 2. We actually need only two additional colours, (here red and black) in these two pro-
cedures. The white colour represents a default colour all nodes have at the beginning of the
procedures.

Breadth-first search (BFS). At the beginning of the procedure, all nodes save s are unmarked,
and s is marked in red. We also dispose of a queue that contains only s. At each step, the first
element x of the queue is dequeued, each of its uncoloured direct successors is marked in red and
enqueued. Once this is done, we mark x in black (its treatment is over) and add it in the list R of
the successors of s. This procedure lasts until there is no element left in the queue. At the end, we
return R. We give an example to illustrate this procedure in figure 2.5. As each edge is visited at
most once and each node only a constant number of times, the time complexity of the procedure
is O (|V |+ |E|).

Depth-first search. At the beginning of the procedure, all nodes save s are white, and s is red.
We also dispose of a stack which only consists of s. At each step, while the node on the top of
the stack still has unmarked direct successors we arbitrarily choose one of them, mark it in red an
push it on the stack. Whenever the node on the top of the stack has no more unmarked direct
successors, we mark it in black, pop it out of the stack, and add it to the list R of the successors
of s. This procedure lasts until there is no element left in the stack. At the end, we return R. We
give an example to illustrate this procedure in Figure 2.6. Once again, each edge is at most visited
once, and each node only a constant number of times. Then the worst case time complexity of this
procedure is O (|V |+ |E|).

Sorting a DAG in topological order. Recall that a DAG G does not contain any cycle. In
particular, this means that there exists at least one node s such that s does not have any predecessor.
We say that s is a source. We also have that for two nodes x and y, if y is a successor of x, then
x is not a successor of y. It may be useful to have the nodes of G sorted in a way such that for
any node x, all the predecessors come before x, and all its successors come after. Such an order is
called a topological order.

Proposition 2.1. A DFS ran on a DAG and a node s returns the successors of s, sorted in
topological order.

Remark 3. In fact, the last element of R will be our source s, and for all indexes i and j, such that
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Figure 2.6 – Example of a depth-first search.

R[i] is a predecessor R[j], we will have i > j. This looks more like a “reverse” topological order.
To actually get the entries in topological order, as defined above, you will have to reverse R.

This is a well known result in graph theory. We recall the proof as it was given in [CLRS01].

Proof. We need to show that for any two distinct vertices x, y, if there is a edge x→ y, then y comes
before x in R. When the edge x → y is explored during the procedure, y is not red. Otherwise y
would have been an ancestor of x, contradicting the fact that G is a DAG. Hence, y is either black
(already treated) or white (not yet encountered). If y is white, then y is added to the stack, and
marked as a descendant of x, it will then be popped from the stack and added to R before x. If
y is black, then its treatment is finished, meaning its is already in R, so x will eventually come
after.

2.2.3 Bipartite Graph and Matching

A bipartite graph is a graph G = (V,E) where V can be split in two disjoint sets X and Y , such
that every edge of E connects a vertex from X with a vertex from Y . We can denote G by the
triplet (X,Y,E). An example of a bipartite graph is given by Figure 2.7.
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 2.7 – Example of a bipartite graph.

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 2.8 – Example of two maximal matchings. The blue one is even a perfect matching.

Let G = (X,Y,E) be an undirected bipartite graph. A matching in G, is a subsetM of E such
that if (x1, y1) ∈ M and (x2, y2) ∈ M, then x1 6= x2 and y1 6= y2. In other words, a matching can
be seen as a set of edges without common vertices. This notion can be extended to non-bipartite
graphs.

A matchingM is said to be maximal if there is no matchingM′ such thatM (M′ ⊂ E. A
matchingM is said to be maximum if there is no matchingM′ such that |M′| ≥ |M|. A matching
M is said to be perfect if it matches all vertices of the graph. This assumes that |X| = |Y |.
Remark 4. A maximum matching is also maximal. In fact, if there was another matchingM′ such
thatM (M′ ⊂ E, then |M′| > |M|.
Remark 5. It is well known that it is possible to find a maximum matching in a bipartite graph
in time O ((|X|+ |Y |)|E|), using the Ford-Fulkerson algorithm [FF56]. It is possible to make this
drop to O

(√
|X|+ |Y ||E|

)
, using the Hopcroft-Karp algorithm [HK73]. A generalisation of the

later algorithm by Blum [Blu99] allows to find a maximum in a general graph G = (V,E) in time
O
(√
|V ||E|

)
. This is however not the topic of this thesis so we do not detail any further.

Let G = (X,Y,E) be an undirected bipartite graph, and let M be a matching in G. We call
alternating path in G any path in which the edges alternatively belong and do not belong to the
matching. An augmenting path is an alternating path such that the first and the last edges are not
in the matching.

We illustrate these notions in Figure 2.8. We give two examples of maximal matching in a
bipartite graph. The red one is not maximum, as there is an other matching (the blue one) that
consists of more edges. The blue one, on the other hand is maximum, and even perfect. Considering
the blue matching, the path

(x4, y4), (y4, x2), (x2, y1), (y1, x1), (x1, y2), (y2, x3), (x3, y3), (y3, x5), (x5, y5)

is an alternating one. If we consider the red matching, the same path is an augmenting one.

2.2.4 Independent Sets.

Let G = (V,E) be an undirected graph. We call independent set of G any subset I of V such that
for every two vertices in I there is no edge connecting the two. The size of an independent set I
is the number of vertices it contains. We denote it by |I|. A set V \ I, where I is an independent
set, is called a vertex cover.

An independent set I of G is said to be maximal if there is no independent set I ′ of G such
that I ( I ′. An independent set I of G is said to be maximum if there is no independent set I ′,
such that |I ′| > |I|. Examples of independent sets are given in Figure 2.9. The two independent
sets shown on this figure are maximal.
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Figure 2.9 – Example of two maximal independent sets. The right one is even maximum.

Remark 6. We can easily check that a maximum set is also a maximal one. Indeed, if there was an
independent I ′ such that I ( I ′, then |I ′| > |I|.

Maximum independent set problem. Finding a maximum independent set is an NP-Hard
optimisation problem. Approximating the problem is also a difficult task [Hås99].

In this thesis we are particularly interested in finding a large independent set in a bipartite
graph G = (R,C,E). In this case the problem is simpler. Indeed, in 1931 Köning proved the
following result:

Theorem 2.2 (Köning’s theorem). In any bipartite graph, the number of edges in a maximal
matching is equal to the number of vertices in a minimal vertex cover.

Furthermore, it is possible to find a minimal vertex set in a bipartite graph using maximum
matching algorithms such as the Hopcroft-Karp one, and thus to find a minimum vertex cover S
in a bipartite graph in O

(√
|R ∪ C||E|

)
. The set I = (R ∪C) \ S is a maximum independent set.

We do not detail this method here, but choose to present a greedy algorithm that allows us to
find a hopefully large independent set in quasi-linear time O (|R ∪ C| log |E|), that will be utilised
as a subroutine in an algorithm presented in Section 5.2.

The idea is quite naive. If there remain more row vertices than column vertices, add the row
vertex of smallest degree to I and remove it, and all the columns vertices to which it is connected
from the graph. Otherwise, do the same with the column vertex of smallest degree. We summarise
this procedure in Algorithm 1.

Algorithm 1 Finding a (large) independent set in bipartite graph.
Require: G = (R,C,E).
Ensure: I: an independent set of G.

1: Set I ← ⊥
2: while G 6= ⊥ do
3: if |R| ≥ |C| then
4: Search for a vertex v of smallest degree in R
5: else
6: Search for a vertex v of smallest degree in C
7: Set I ← I ∪ {v}
8: for all x such that (v, x) ∈ E do
9: remove x from G

10: remove v from G

We illustrate this procedure in Figure 2.10: as we choose R0 which is a row of smallest degree
and add it to our empty set I. This forces us to remove the column C1 to which R0 is connected
from the graph. The node R1 is not connected anymore and we can add it to I for free. Now,
we have more columns than rows, we add C0 (which is of smallest degree) to I and remove R2,
to which C0 is connected, from the graph. Once again, this allows us to add a node, C2, to I
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for free. We have now the same number of rows than columns. We decide to add R3 to I, hence
removing both C3 and C4, which gives us R4 for free. We finally end up with an independent set
I = {R0, R1, C0, C2, R3, R4}.

This can be implemented in time O ((|R|+ |C|) log |E|) using two binary heaps to store remain-
ing vertices of each kind.

2.2.5 Sparse Matrices and Graphs

Matrix representation of a graph. Let G = (V,E). We call adjacency matrix of G, the |V |-by-
|V | matrix A, indexed by the nodes of G, such that aij = 1 if there is (vi, vj) ∈ E and 0 otherwise.
We give an example of a directed graph and its adjacency matrix in Figure 2.11.

We call incidence matrix of an undirected graph G, the |V |-by-|E| matrix A, where the rows
represent the nodes of G and the columns the edges, such that aij = 1 if vi is a node of ej , and 0
otherwise. If G is a directed graph, it is still possible to define its incidence matrix the following
way: we say that aij = 1 if vi is the head of ej , −1 if it is its tail, and 0 otherwise. If G = (X,Y,E)
is an undirected bipartite graph, we call occurrence matrix of G the |X|-by-|Y | matrix A, where
the rows represent the nodes in X and the columns represent the nodes in Y . We give an example
of a bipartite graph and its occurrence matrix in Figure 2.12.

These representations are unique modulo rows and columns permutations.

Sparse matrices seen as graph. If we consider only its pattern (i.e. the positions of non-zero
coefficients and not their actual values), any sparse matrix can be associated to a sparse graph.

Symmetric matrices can be seen as adjacency matrices of undirected graphs. When a matrix is
square but non symmetric, it can be seen as the adjacency matrix of a directed graph. A non-square
matrix can be seen as the occurrence matrix of an undirected bipartite graph.

Triangular matrices and DAG. We first need to introduce the notion of (α, β, γ)-adjacency
matrix, for any graph G with no loop (i.e. an edge that connect a vertex to itself). Given three
fixed parameters α, β, γ it is possible to define the (α, β, γ)-adjacency matrix of G, where for all
i 6= j, aij = α if there is (vi, vj) ∈ E, and β otherwise, and all diagonal coefficients are γ.

The adjacency matrix defined above is in fact a (1, 0, 0)-adjacency matrix.
Let U be an upper-triangular matrix of size n with non-zero diagonal. We claim that the pattern

of U can be seen as the (1, 0, 1)-adjacency matrix of a DAG G.
Indeed, if G = (V,E), with V = {v0, . . . , vn−1}, for all i, j such that i 6= j, (vi, vj) ∈ E if and

only if uij 6= 0. Yet, uij 6= 0 implies that j > i, as the matrix is upper triangular, and i 6= j. Then
(vi, vj) ∈ E only if j > i. Then, if there is a path between two nodes vi and vj in G then j > i,
hence there is no cycle in G.

Furthermore, we also claim that if G is a DAG with n nodes, then there is an upper-triangular
matrix U of size n with non-zero diagonal, such that U is the (1, 0, 1)-adjacency matrix of G.

The argument is quite similar. We consider here that the nodes in V are sorted in topological
order. Then for all couples of nodes (vi, vj), (vi, vj) ∈ E implies that i < j. In other words,
for all i, j such that i 6= j, ui,j 6= 0 implies that i < j. We give an example of a DAG and its
(1, 0, 1)-adjacency matrix in Figure 2.13. In what follows, the (1, 0, 1)-adjacency matrix of a DAG
G will abusively be called “adjacency matrix” of G, for simplicity.

2.3 Sparse Triangular Solving

We are now going to present algorithms to solve a linear system x · U = b, where U is a sparse
upper triangular matrix of size n stored using a CSR data structure. We assume that all diagonal
coefficients of U are non-zero.

We need to distinguish two cases, depending if the right-hand side (RHS) b of the system is
dense or sparse.
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R0 R1 R2 R3 R4

C0 C1 C2 C3 C4

I = ⊥

R0 R1 R2 R3 R4

C0 C1 C2 C3 C4

I = {R0}

R1 R2 R3 R4

C0 C2 C3 C4

I = {R0, R1, C0}

R3 R4

C2 C3 C4

I = {R0, R1, C0, C2, R3}

R4

I = {R0, R1, C0, C2, R3, R4}

Figure 2.10 – Illustration of the independent set search method.
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Figure 2.11 – Example of a directed graph and its adjacency matrix.
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Figure 2.12 – Example of a bipartite graph and its occurrence matrix.
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Figure 2.13 – Example of a DAG and its (1, 0, 1)-adjacency matrix.

Algorithm 2 Solving upper triangular system: dense algorithm.
Require: b, U .
Ensure: x such that x · U = b

1: x← b
2: for j = 0 to n− 1 do
3: for i = 0 to j − 1 do
4: xj ← (xj − xiuij)/ujj
5: return x
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2.3.1 With Dense RHS.

For each index j, 0 ≤ j ≤ n:

bj =
j∑

i=0
xiuij , (2.5)

Assuming that ujj is non-zero, we can reverse this equation, and thus:

xj = 1
ujj


bj −

j−1∑

i=0
xi


 . (2.6)

If U were stored using a dense data structure, we would use the classical method described in
Algorithm 2. However, we recall that our matrix U is stored using a CSR data structure, and this
column-by-column algorithm is not fitted to this kind of structure. We need to swap the two for
loop. Furthermore, as U is sparse, it is quite useless to go through all entries; looking only at the
non-zero ones is enough. All in all, we come up with Algorithm 3.

Algorithm 3 Solving upper triangular system: sparse matrix, dense RHS.
Require: b, U .
Ensure: x such that x · U = b

1: x← b
2: for i = 0 to n− 1 do
3: xi ← xi/uii
4: for all j > i such that uij 6= 0 do
5: xj ← xi − xiuij
6: return x

Following the same idea, Algorithm 4 can be utilised to solve x · L = b, where L is a lower
triangular matrix of size n, stored using a CSR structure. In this case, we assume that all lii are
non-zero coefficients.

Algorithm 4 Solving lower triangular system: sparse matrix, dense RHS.
Require: b, L.
Ensure: x such that x · U = b

1: x← b
2: for i = 0 to n− 1 do
3: xi ← xi/uii
4: for all j > i such that uij 6= 0 do
5: xj ← xi − xiuij
6: return x

2.3.2 With Sparse RHS.

We consider now a system xA = b where both A and b are sparse. A first naive idea to solve
this kind of system would be to scatter b into a dense vector x, and to solve the system in similar
fashion to dense RHS case, using Algorithm 5.

We denote by f the total number of field operations (additions and multiplications) over Fp
that are to be performed during the procedure (i.e. during steps 4 and 6). Considering that the
time complexity of the scatter procedure is proportional to the number of non-zero coefficients of
the input vector, step 1 requires O (nz(b)) operations. Furthermore, as n tests are to be performed
in step 3, the time complexity of this procedure would be O (n+ nz(b) + f). However, if U and b
are both sparse, we can hope that x will also be sparse. Then, assuming that we know the non-zero
pattern of x, X , in advance, and that X is sorted, we do not have to check whether xi is non-zero
anymore, and using Algorithm 6, we can find x in O (nz(b) + f).
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Algorithm 5 Solving upper triangular system: sparse matrix, sparse RHS: first idea.
Require: b, U .
Ensure: x such that x · U = b

1: x← b
2: for i = 0 to n− 1 do
3: if xi 6= 0 then
4: xi ← xi/uii
5: for all j > i such that uij 6= 0 do
6: xj ← xi − xiuij
7: return x

Algorithm 6 Solving upper triangular system: sparse matrix, sparse RHS.
Require: b, U .
Ensure: x such that x · U = b

1: x← b
2: for all i ∈ X do
3: xi ← xi/uii
4: for all j > i such that uij 6= 0 do
5: xj ← xi − xiuij
6: return x

Finding X . All we have to do now is to find and sort X . According to Algorithm 6, a coefficient
xj of x is non-zero, either if bj is non-zero or if there is an index i such that xjuij 6= 0. If we assume
for a while that there has been no numerical cancelation, then we have the following implications:

1. bj 6= 0 =⇒ xj 6= 0,

2. xi 6= 0 and ∃j, uij 6= 0 =⇒ xj 6= 0.

These implications are illustrated by Figure 2.14. This is in fact a graph problem, as it was
noticed by Gilbert and Peierls in [GP88].

Theorem 2.3 (Gilbert and Peierls [GP88]). Define the directed graph GU = (V,E) with nodes
V = {1 . . .m} and edges E = {(i, j)|uij 6= 0}. Let ReachU (i) denote the set of nodes reachable from
i via paths in GU and for a set B, let ReachU (B) be the set of all nodes reachable from any nodes
in B. Assuming there is no numerical cancellation, the non-zero pattern X = {j|xj 6= 0} of the
solution x to the sparse linear system x ·U = b is given by X = ReachU (B), where B = {i|bi 6= 0}.

Proof. The proof is quite trivial. We only have to rewrite the two conditions in terms of graph:
i ∈ X if either one of the two following conditions is satisfied:

1. j ∈ B =⇒ j ∈ X ,

2. i ∈ X and ∃j, (i, j) ∈ E =⇒ j ∈ X .

From here we can easily conclude that X and ReachU (B) are the same set.

xi

xj uii

uij

ujj

Figure 2.14 – xi and uij implies xj 6= 0.

25



From here, we can find the elements of X by performing a graph search. This leaves us with
sorting them. If xj and xi both belong to X , and if we want to replace xj by xj − xiuij (step 5 of
Algorithm 6), we need to have computed xi before we compute xj . In other words, if there is an
edge (i, j) ∈ E, then i must come before j in X . Thus, X must be sorted in topological order. We
perform a DFS to obtain X in this order. This can be performed in time O (nz(x) + nz(U)).
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Chapter 3
Of Sparse Linear Algebra: Iterative vs Direct Methods,

Left vs Right

In this chapter, we present some aspects of the state of the art in sparse linear algebra.
We briefly recall the idea of the most famous of the iterative methods: the Wiedemann
Algorithm, before focusing on direct methods. We present two famous sparse gaussian
elimination algorithms, as well as some pivoting strategies that aim to reduce the fill-
in. Finally, we give a brief overview of various software that implement sparse gaussian
eliminations. We also present our own library SpaSM.

3.1 Iterative Methods

Iterative methods can be used in exact linear algebra to perform the usual operations on sparse
matrices (e.g. computation of the rank, solving linear systems). They basically work by performing
a series of matrix-vector products, and only need to store one or two vectors in addition to the
matrix. The matrix itself is never modified.

This thesis focuses on direct method however, as such, we do not get into the details of how
iterative methods works. We just briefly recall the idea of the Wiedemann and Block-Wiedemann
algorithm, and refer the interested reader to [Wie86, Cop94, Kal95] for more details about these
methods.

3.1.1 Wiedemann Algorithm

High level idea. We consider first the easy case where A is square. Let A be an n-by-n matrix,
and b an arbitrary vector in Fnp . We consider the following sequence:

b,bA, . . . ,bAn, . . . (3.1)

Let Pb the monic polynomial with scalar coefficients of minimum degree such that bPb(A) = 0.
If we denote by µA the minimal polynomial of A (i.e. monic polynomial with scalar coefficients of
minimum degree such that µA(A) = 0), then Pb divides µA and thus deg(Pb) ≤ deg(µA).

Indeed, we can easily check that P = {P | bP (A) = 0} is an ideal of Fp[X]. Every ideal of Fp[X]
is principal, meaning generated by a single element of minimum degree. Here Pb is a generator of
P. Furthermore, we have bµA(A) = 0, and thus µA is in P, as such, µA is a multiple of Pb.

If you know how to compute Pb, you can easily:

1. Solve xA = b, if A is full rank,

2. Find a vector in the kernel of A, if A is rank-deficient,

27
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3. Compute the µA.

First notice that Pb(X) = c + Q(X)X, for some c ∈ Fp and some Q ∈ Fp[X]. We can check
that c = 0 only if A is rank deficient. We first have the equivalence:

c = 0 ⇐⇒ 0 is a root of Pb.

Then, if c = 0, 0 is root of µA, and thus 0 is an eigenvalue of A, and thus, A is rank deficient. As
such, if A is full rank then Pb(X) = c+Q(X)X, for some c ∈ F∗p. Then, as long as bPb(A) = 0 we
have cb + bQ(A)A = 0, and thus

(−c−1bQ(A)) ·A = b,

Thus −c−1bQ(A) is solution to xA = b.
Now, Pb(X) = Q(X)X implies that A is rank-deficient. Furthermore, as bPb(A) = 0 we have:

(bQ(A)) ·A = 0

Thus bQ(A) is a non trivial element of the kernel of A.
Finally, if you know how to compute Pb for any arbitrary b of Fnp , then you can compute many

of such polynomials for different b vectors. The minimal polynomial µA of tA will be the least
common multiple of all polynomials found this way.

If A is a non square n-by-m matrix over Fp, then, it is possible to build a m-by-n sparse matrix
B, such that if A is full rank, the m-by-m matrix BA is also full rank with high probability. It is
possible to use the Wiedemann algorithm on this matrix BA. However, the results obtained will
hold for A only with a certain probability, and thus the procedure will have to be repeated more
times.

Computing the polynomial Pb. It can be done using the Berlekamp-Massey algorithm. Choose
a random vector u ∈ Fnp , and compute the sequence:

〈u,b〉, 〈u,bA〉, . . . , 〈u,bA2n〉. (3.2)

We can compute its minimal polynomial Pu,b using the Berlekamp-Massey algorithm. Pu,b divides
Pb and is actually equal to Pb with probability greater than 1/(6 logn).

Computing the rank of a matrix. The computation of the rank r of a matrix A using Wiede-
mann Algorithm is a little more tricky. The point is to find some square matrix Ã whose minimum
polynomial µÃ is of degree d, such that with high probability r = d + c, where c is a known con-
stant. Then, to compute the rank r of A, you find the minimum polynomial of this matrix Ã using
Wiedemann Algorithm.

There are results from [KS91] and [EK97] which explain how to find such a matrix Ã. In fact,
Kaltofen and Saunders [KS91] showed that if A is square of size n and if U1 and U2 are two upper-
triangular Toeplitz matrices, with a unit diagonal, such that all coefficients above the diagonal are
randomly chosen in F∗p, and if D is a diagonal matrix, whose diagonal coefficients are also randomly
chosen in F∗p, then the minimum polynomial of the matrix Ã = U1A

tU2D will have degree r + 1.
with probability 1− (3n(n+ 1))/2(p− 1). Another result from Eberly and Kaltofen [EK97] states
that if A is a non-necessarily square n-by-m matrix, and if D1 and D2 are two random diagonal
matrices whose diagonal coefficients are in F∗p, then the minimum polynomial of Ã = D1

tAD2AD1
will have degree r with high probability. We refer the interested reader to [KS91, EK97] for more
details about these methods.

Block-Wiedemann Algorithm In [Cop94], Coppersmith proposed a generalisation of the method
above. In fact, to compute the minimum polynomial of Ã, one has to compute several sequences
like the one given in Equation 3.2, for different random vectors u and v. Instead of computing
them one after the other, Coppersmith proposed to compute them all in the same time. In other
words, he does not compute elements of the type:
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x = 〈u,bAi〉 = utAitb,

anymore, but:

X = 〈U,BAi〉 = U tAitB,

where U , B and X are now matrices over Fq. Computing the entries of X can then be done in
parallel.

3.1.2 Discussion

Iterative methods can be slow but they are sure. Their time complexity is essentially O (rnz(A))
where r is the rank of A, and their running time is quite easy to predict. However, they can
sometimes be very slow. The matrix A can be seen as some kind of “black box” that is only used
to compute the sequences. As such, it is never modified and the extra space required is then small,
and thus they cannot fail by lack of memory. For this reason, they are the only option for matrices
on which direct methods are impractical.

Opposed to the iterative methods, the direct methods work by computing an echelonised version
of the input matrix. In this case the matrix is inevitably modified, and eventually become denser.
This makes the direct methods quite unpredictable, as their running time will depend of this fill-in.
They can become very slow, or even fail by lack of memory. On the other hand, when they work
they are usually faster than the iterative methods.

In [DV02] survey, Dumas and Villard actually benchmarked both methods on matrices from
the [Dum12] collection. They showed that when direct methods terminate, they can be much faster
than Wiedemann Algorithm. It follows that both methods are worth trying. In practical situations,
a possible workflow could be: “try a direct method; if there is too much fill-in, abort and restart
with an iterative method”.

Lastly, it is well-known that both methods can be combined. Performing one step of elimination
reduces the size of the “remaining” trailing sub-matrix (called the Schur complement) by one, while
increasing the number of non-zeros. This may decrease the time complexity of running an iterative
method on the Schur complement. This strategy can be implemented as follows: “While the product
of the number of remaining rows and remaining non-zeros decreases, perform an elimination step;
then switch to an iterative method”. For instance, one phase of the record-setting factorisation of a
768-bit number [KAF+10] was to find a few vectors on the kernel of a 2 458 248 361×1 697 618 199
very sparse matrix over F2 (with about 30 non-zero per row). A first pass of elimination steps (and
discarding “bad” rows) reduced this to a roughly square matrix of size 192 796 550 with about
144 non-zero per row. A parallel implementation of the block-Wiedemann [Cop94] algorithm then
finished the job.

3.2 Sparse Gaussian Elimination

We may essentially distinguish two ways of computing a gaussian elimination of a sparse matrix:
one very similar to the dense gaussian elimination in which at each step, a pivot is chosen, and the
coefficients below are then eliminated, by computing an appropriate linear combination of the rows.
The other one, due to Gilbert and Peierls [GP88], processes the matrix row-by-row (or column-
by-column). At each step, it starts with the elimination step on a given row i, and the pivot on
this row is arbitrary chosen afterward. In this section, we present both of these methods and we
compare them.

3.2.1 Gaussian Elimination and PLUQ Factorisation

We start this section by recalling what a PLUQ factorisation and a gaussian elimination are.
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PLUQ factorisation. Given an n-by-m matrix A, of rank r ≤ min(n,m), there are matrices
P,L, U and Q such that PA = LUQ, with L lower trapezoidal n-by-r matrix with non-zero coef-
ficients on its diagonal, U upper trapezoidal r-by-m matrix with unit coefficients on its diagonal,
P is a permutation matrix acting over the rows of A, and Q a permutation matrix acting over the
columns of U .

This decomposition is not unique.
Remark 1. Usually, in the literature, L has unit coefficients on its main diagonal, while U has
non-zero coefficients on its main diagonal. In the paragraphs above, we choose to do it the other
way round, mainly for implementation reasons.

To compute such a factorisation of A, we utilise a procedure that is called gaussian elimination.

Gaussian elimination. The gaussian elimination is an algorithm that given an n-by-m input
matrix A of (unknown) rank r computes and returns a row echelon form U of A, that is an r-by-m
upper trapezoidal matrix U whose rows are linear combinations of the rows of A. Those linear
combinations can be stored, if required, in a matrix L.

Algorithm 7 Dense Gaussian Elimination.
Require: A
Ensure: L, U, such that LU = A

1: L← 0, U ← A
2: r ← min(i, j)
3: for j = 0 to r − 1 do
4: uj ← u−1

jj · uj
5: ljj ← ujj
6: for i = j + 1 to n− 1 do
7: ui ← ui − uij · uj
8: lij ← −uij

We recall the usual (dense) algorithm: at each step i, choose a coefficient aij 6= 0 called the
pivot and “eliminate” every coefficient under it by adding suitable multiples of row i to the rows
below. A description of this procedure is given in Algorithm 7. Here, we denote by ui the row of
U indexed by i. For simplicity, we assume here that the matrix A is full rank, and that there is no
permutation of the rows and the columns.
Remark 2. In some case, for instance if we want to compute the rank or the determinant of the
matrix, keeping L in memory is not required. We only need to know U .

This method is said to be right-looking, because at each step it accesses the data stored at
the bottom-right of A. This contrasts with left-looking algorithms (or the up-looking row-by-row
equivalent described in Section 3.2.3) that accesses the data stored in the left of L. We illustrate
the notions of right-looking, left-looking and up-looking in Figures 3.1a, 3.1b and 3.1c. The dark
area is the echelonisation front. While the algorithms process, they only access data in the shaded
area.

3.2.2 The Classical Right-Looking Algorithm

If we assume that we have performed k steps of the PLUQ decomposition, with k ≤ r, then we
have

PAQ−1 =
(
A00 A01
A10 A11

)
, (3.3)

such that A00 is square, nonsingular and can be factored as A00 = L00 ·U00. It leads to the following
factorisation of A :

PAQ−1 =
(
A00 A01
A10 A11

)
=
(
L00
L10 I

)
·
(
U00 U01

S

)
, (3.4)
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L

U

S

(a) right-looking.

L

U

A

(b) left-looking.

L
U

A

(c) up-looking.

Figure 3.1 – Data access pattern of several PLUQ factorisation algorithms.

According to Equations 3.3 and 3.4 we have the following relations:

1. L00U01 = A01 =⇒ U01 = L−1
00 A01,

2. L10U00 = A10 =⇒ L10 = A10U
−1
00 ,

3. L10U01 + S = A11 =⇒ S = A11 − L10U01.

From here, we first have:

S = A11 −A10U
−1
00 U01, (3.5)

and replacing U01 by the expression given above, we find that the Equation 3.5 is equivalent to:

S = A11 −A10A
−1
00 A01. (3.6)

S thus defined is the Schur Complement of A11 in A. This is a hopefully sparse (n−k)-by-(m−k)
matrix. We denote by si (resp. ui) the i-th row of S (resp. U).

The way we proceed to deal with step k+1 is akin to the dense case: we choose a pivot sij in S,
and use it to cancel the coefficients s`j for all ` 6= i such that s`j 6= 0. In order to do so, we replace
s` by s` − (s`j/sij) · si, and update the permutation, so that sij will be on the top-left corner of S.

However, during this elimination process, some coefficients s`t that were initially zero, may
become non-zero. See for instance, the example bellow:

(
1 2 2 −1
−1 1 3 2

)
−→

(
1 2 2 −1

2 2 1 3 −1 2

)
.

After eliminating entry (1, 0) using entry (1, 1) as pivot, the second row of the matrix become dense.
This is what we call fill-in. It can be dealt with, up to some point, using pivoting strategies.

3.2.3 The Left-looking GPLU Algorithm

The GPLU Algorithm was introduced by Gilbert and Peierls in 1988 [GP88]. It is also abundantly
described in [Dav06], up to implementation details. During the k-th step, the k-th column of L and
U are computed from the k-th column of A and the previous columns of L. The algorithm thus only
accesses data on the left of the echelonisation front, and the algorithm is said to be “left-looking”.
It does not compute the Schur complement at each stage.

We are now going to present a row-by-row (as opposed to column-by-column) variant of this
method which is then “up-looking”.

The main idea behind the algorithm is that the next row of L and U can both be computed by
solving a triangular system. If we ignore row and column permutations, this can be derived from
the following 3-by-3 block matrix expression :



L00
l10 1
L20 l21 L22






U00 u01 U02

u11 u12
U22


 =



A00 a01 A02
a10 a11 a12
A20 a21 A22


 .
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Here (a10 a11 a12) is the k-th row of A. L is assumed to have unit diagonal. Assume we have
already computed (U00 u01 U02), the first k rows of U . Then we have:

(
l10 u11 u12

)
·



U00 u01 U02

1
Id


 =

(
a01 a11 a21

)
. (3.7)

Thus, the whole PLUQ factorisation can be performed by solving a sequence of n sparse triangular
systems.

Selecting the pivots. To solve the triangular system, we need to make sure that u11 is non-
zero, only because it is how the sparse triangular solver algorithms described in section 2.3.2 work.
However, it may happen that, during the process, u11 become zero. There are two possible cases:

1. If u11 = 0 and u12 6= 0, then we can permute the column j0 where u11 is with another
(arbitrary) one j1, such that j0 < j1. This means that we will have to deal with a permutation
Q over the columns of A all the time.

2. If u11 = 0 and u12 = 0, then there is no way we can permute the columns of U to bring
a non-zero coefficient on the diagonal. This means that the current row of A is a linear
combination of the previous rows.

When the factorisation is over, the number of non-empty rows of U is the rank r of the matrix A.
As detailed below, the choice of the pivots is important while performing an LU factorisation.

Choosing a “bad” pivot at a given step can produce too much fill-in and cause the process to abort.
In the case of the GPLU algorithm the pivots selection has to be done in the dark, with the short-
term objective to keep U sparse (since this keeps the triangular solver fast). It is however possible
to pre-select a set of good pivots before the beginning of the procedure, so that, when the time
comes, a good pivot will be chosen. This kind of pre-computation step is called static pivoting.

As long as U stay sparse, the GPLU algorithm performs the elimination steps very efficiently.
However, aside from possibly pre-selected pivots, the GPLU algorithm does not use any strategy to
choose a “good pivot” at a given step. In this case, it becomes harder to prevent fill-in to appear.

3.2.4 Pivoting Strategies

The fill-in which occurs during sparse gaussian elimination can be dealt with up to a certain point
by what is called pivoting strategies. These strategies aim to find “a good” set of pivots, meaning
a set of pivots that will reduce the fill-in during the elimination step. In the following example,
choosing the top-left entry as a pivot and performing an elimination step results in a fully dense
submatrix, while choosing the bottom-right entry leads to no fill-in at all.




⊗ × × × ×
× ×
× ×
× ×
× ⊗




However finding this set is quite hard. In fact, it has been conjectured by Rose and Tar-
jan [RT75], and proved later by Yannakakis [Yan81] that this is an NP-Complete optimisation
problem.

Instead of finding the “best pivots”, it is usual to deal with “good pivots” that can be found
using heuristics.

Dynamic Pivoting.

The right-looking algorithm enjoys a clear advantage in terms of pivot selection, because it has the
possibility to explore the Schur complement. The short-term objective of pivot selection is to keep
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the Schur complement sparse. At each step, before performing the elimination, the “best possible”
pivot is chosen in the Schur Complement and the permutations P and Q are updated.

These strategies, that consist in choosing each pivot “on-line”, during the numerical factorisation
are called dynamic pivoting. Markowitz pivoting [Mar57] chooses the next pivot in a greedy way,
to minimise fill-in caused by the next elimination step while excluding those that would lead to
numerical instability. At each step, the Markowitz pivoting strategy chooses a pivot aij that
minimise the product (ri − 1)(cj − 1), where ri (resp. cj) is the number of non zero elements on
the row i (resp. the column j) of the Schur Complement. This product is called the Markowitz
cost. Furthermore, when utilised to solve a sparse numerical system, the pivot must also be chosen
to preserve numerical stability. Indeed, aij can be chosen as a pivot only if |aij | ≥ umaxk |akj |, for
some parameter 0 < u ≤ 1.

Dynamic pivoting strategies are more likely to reduce fill-in, however, searching for the “best
possible” pivot at each step takes a lot of time.

Static Pivoting.

In this case, the choice of the pivots is made in advance, before any elimination step is performed,
and does not take much time.

For instance, in the numerical world, when the input matrix is square and invertible but not
symmetric, pivots are chosen to maintain both sparsity and numerical accuracy. As such, the actual
choice of pivots will ultimately depend on numerical values that are not known in advance, and
choosing an a priori sequence of pivots is quite difficult. One option is to look at the structure
of A + tA or AtA. These two matrices are symmetric. When a matrix Ã is symmetric positive
definite, a sparse Cholesky factorisation Ã = tLL can be computed. In that case, the pivots are
on the diagonal, and many algorithms have been designed to select an a priori order on the pivots,
meaning a permutation such that tPÃP is easier to factorise than Ã. Approximate Minimum
Degree [ADD96] or Nested Dissection [Geo73] are such algorithms. They only exploit the structure
of A (the locations of non-zero entries) and disregard the numerical values. The idea is to use these
symmetric pivot-selection algorithms to define an order in which the rows of A will be processed.
Then, during the numerical factorisation, choose inside each row the pivot that maximises accuracy
(this is called “partial pivoting”).

Structural pivots. When the coefficients of the input matrix live in an exact field such as Q
or Zp, numerical accuracy is no longer a problem. However, numerical cancellation becomes much
more likely (and does occur if A is rectangular or rank-deficient). We must then be careful not to
choose as pivot a coefficient that may be eliminated during the procedure.

Entries that can be used as pivots can sometimes be identified based solely on the pattern of
non-zero entries. In the following matrix, circled entries can be chosen as pivots regardless of the
actual values. We call these structural pivots.

Example 3.1.

c1 c2 c3 c4 c5 c6 c7 c8 c9





r1 ⊗ × × × ×
r2 ⊗ × × × ×
r3 ⊗ × × ×
r4 × × ⊗
r5 × × ⊗ ×
r6 × × × × × ×
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Table 3.1 – Running time (in seconds) of the two algorithms on extreme cases.

Matrix rows columns non-zero rank Right-Looking GPLU
A 100 000 1 000 995 076 1000 3.0 0.02
B 100 000 1 000 4 776 477 200 1.7 9.5

The rows and columns can be permuted as follows:

c1 c5 c7 c2 c3 c4 c6 c8 c9





r1 ⊗ × × × ×
r4 ⊗ × ×
r5 ⊗ × × ×
r2 ⊗ × × × ×
r3 ⊗ × × ×
r6 × × × × × ×

A set of k structural pivots has been identified if the rows and columns of the matrix can be
permuted such that the top-left k × k submatrix is upper-triangular, as shown in this example.

3.2.5 Left or Right?

We discuss the efficiencies of the right-looking gaussian elimination algorithm implemented in Lin-
Box and our implementation of the GPLU algorithm in SpaSM.

These two algorithms are incomparable. We illustrate this by exhibiting two situations where
each one consistently outperforms the other. We generated two random matrices with different
properties (situations A and B in Table 3.1). The entries of matrix A are identically and indepen-
dently distributed. There are zero with probability 99%, and chosen uniformly at random modulo
p otherwise. GPLU terminates very quickly in this case because it only process the first ≈ 1000
rows before stopping, having detected that the matrix has full column-rank.

In matrix B, one row over 1000 is random (as in matrix A), and the 999 remaining ones are
sparse linear combinations of a fixed set of 100 other random sparse rows (as in matrix A). The
right-looking algorithm discovers these linear combinations early and quickly skips over empty rows
in the Schur complement. On the other hand, GPLU has to work its way throughout the whole
matrix.

We now give further “real” examples of the behaviour of these two algorithms, using matrices
from [Dum12]. We quickly observed that no algorithm is always consistently faster than the other;
one may terminate instantly while the other may run for a long time and vice-versa. In order to
perform a systematic comparison, we decided to set an arbitrary threshold of 60 seconds, and count
the number of matrices that could be processed in this amount of time. LinBox could dispatch 579
matrices, while SpaSM processed 606. Amongst these, 568 matrices could be dealt with by both
algorithms in less than 60s. This took 1100s to LinBox and 463s to SpaSM. LinBox was faster 112
times, and SpaSM 456 times. These matrices are “easy” for both algorithms, and thus we will not
consider them anymore.

Table 3.2 shows the cases where one algorithm took less than 60s while the other took more.
There are cases where each of the two algorithms is catastrophically slower than the other. We
conclude there is no clear winner (even if GPLU is usually a bit faster). The hybrid algorithm
described in the following chapter outperforms both.

3.3 Implementations of Sparse Gaussian Elimination

3.3.1 In the Numerical World

A large body of work has been dedicated to sparse direct methods by the numerical computation
community. Direct sparse numerical solvers have been developed during the 1970’s, so that several
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Table 3.2 – Comparison of sparse elimination techniques. Times are in seconds.

Matrix Right-looking GPLU
Franz/47104x30144bis 39 488
G5/IG5-14 0.5 70
G5/IG5-15 1.6 288
G5/IG5-18 29 109
GL7d/GL7d13 11 806
GL7d/GL7d24 34 276
Margulies/cat_ears_4_4 3 184
Margulies/flower_7_4 7.5 667
Margulies/flower_8_4 37 9355
Mgn/M0,6.data/M0,6-D6 45 8755
Homology/ch7-8.b4 173 0.2
Homology/ch7-8.b5 611 45
Homology/ch7-9.b4 762 0.4
Homology/ch7-9.b5 3084 8.2
Homology/ch8-8.b4 1022 0.4
Homology/ch8-8.b5 5160 6
Homology/n4c6.b7 223 0.1
Homology/n4c6.b8 441 0.2
Homology/n4c6.b9 490 0.3
Homology/n4c6.b10 252 0.3
Homology/mk12.b4 72 9.2
Homology/shar_te2.b2 94 1
Kocay/Trec14 80 31
Margulies/wheel_601 7040 4
Mgn/M0,6.data/M0,6-D11 722 0.4
Smooshed/olivermatrix.2 75 0.6
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software packages were ready-to-use in the early 1980’s (MA28, SPARSPAK, YSMP, ...). For in-
stance, MA28 is an early “right-looking” sparse LU factorisation code described in [DER89, DR79].
It uses Markowitz pivoting [Mar57] to choose pivots in a way that maintains sparsity.

Most of these direct solvers start with a symbolic analysis phase that ignores the numerical
values and just examines the pattern of the matrix. Its purpose is to predict the amount of fill-
in that is likely to occur, and to pre-allocate data structures to hold the result of the numerical
computation. The complexity of this step often dominated the running time of early sparse codes.
In addition, an important step was to choose a priori an order in which the rows (or columns) were
to be processed in order to maintain sparsity.

Sparse linear algebra often suffers from poor computational efficiency, because of irregular
memory accesses and cache misses. More sophisticated direct solvers try to counter this by using
dense linear algebra kernels (the BLAS and LAPACK) which have a much higher FLOPS (Floating-
point Operation Per Second) rate.

The supernodal method [AGL+87] works by clustering together rows (or columns) with similar
sparsity pattern, yielding the so-called supernodes, and processing them all at once using dense
techniques. Modern supernodal codes include CHOLDMOD [CDHR08] (for Cholesky factorisation)
and SuperLU [DEG+99]. The former is used in Matlab on symmetric positive definite matrices.

In the same vein, the multi-frontal method [DR83] turns the computation of a sparse LU
factorisation into several, hopefully small, dense LU factorisations. The starting point of this
method is the observation that the elimination of a pivot creates a completely dense sub-matrix
in the Schur complement. Contemporary implementations of this method are UMFPACK [Dav04]
and MUMPS [ADKL01]. The former is also used in Matlab in non-symmetric matrices.

Finally some implementation of left-looking LU algorithms are also available, for instance, in the
SPARSPAK library cited earlier. The GPLU algorithm is implemented in Matlab, and is used for
very sparse non symmetric matrices. It is also the heart of the specialised library called KLU [DN10],
dedicated to circuit simulation. Another implementation is also available in the CSPARSE library.

3.3.2 In Exact Linear Algebra

The world of exact sparse direct methods is much less populated. Besides LinBox, we are not aware
of many implementations of sparse gaussian elimination capable of computing the rank of a matrix
modulo p. According to its handbook, the MAGMA [BCP97] computer algebra system computes the
rank of a sparse matrix by first performing sparse gaussian elimination with Markowitz pivoting,
then switching to a dense factorisation when the matrix becomes dense enough. The Sage [Sag13]
system uses LinBox.

Some specific applications rely on exact sparse linear algebra. All competitive factoring and
discrete logarithms algorithms work by finding a few vectors in the kernel of a large sparse matrix.
Some controlled elimination steps are usually performed, which make the matrix smaller and denser.
This has been called “structured gaussian elimination” [LO90]. The idea is to declare some columns
that have a “large number” of non-zero coefficients as “heavy”, and to work so that the sparsity
will be preserved only on the remaining “light” columns. It basically works as follows:

1. Remove all columns that only have one non-zero coefficient, and the rows in which these
non-zero coefficients are.

2. Among the light columns, select the heaviest and declare them as “heavy”.

3. Delete some rows that have a large number of non-zero coefficients in the “heavy” columns.

4. For each row, which consists only of one coefficient that is either 1 or -1 on a “light” column,
subtract appropriate multiples of this row from all other rows that have a non-zero coefficient
on said light column, in order to make these coefficients zero.

The process can be continued until the matrix is fully dense (after which it is handled by a
dense solver), or stopped earlier, when the resulting matrix is handled by an iterative algorithm.
The current state-of-the-art factoring codes, such as CADO-NFS [CAD15], seem to use the sparse
elimination techniques described in [Cav00].
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Modern Gröbner basis algorithms [Fau99, Fau02] work by computing the reduced row-echelon
form of particular sparse matrices. An ad hoc algorithm has been designed, exploiting the mostly
triangular structure of these matrices to find pivots without performing any computation [FL10]
(more detail about this method is given in Section 4.1.2). An open-source implementation,
GBLA [BEF+16], is available.

SpaSM. While working on this topic, we developed the SpaSM software library (SPArse Solver
Modulo p). Its code is publicly available in a repository hosted at:

https://github.com/cbouilla/spasm

This software is implemented in C. The matrices are stored in the CSR format. Our code is
heavily inspired by CSPARSE (“A Concise Sparse Matrix Package in C”), written by Davis and
abundantly described in his book [Dav06]. It has been modified to work row-wise (as opposed to
column-wise), and more importantly to deal with non-square or singular matrices. It also provides
an implementation of the GPLU algorithm. In its default setting, it proceeds the following way:
transpose the matrix if it has more columns than rows, use a greedy structural pivots selection
heuristic we proposed in [BDV17], before actually starting the factorisation.

All the algorithms that we will describe in the two following chapters have been implemented in
this library. We essentially focussed on the computation of the rank of sparse matrices, with minor
adaptations, it can also solve other related problems (e.g. solving sparse systems, computation of
the determinant, finding a basis of the kernel).
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Chapter 4
Of a New Hybrid Algorithm: Getting the Best of Two Worlds

In this chapter we present a new sparse gaussian elimination algorithm, that combines
strategies from both the classical right-looking Algorithm and the GPLU Algorithm.
Using a simple pivots selection heuristic due to Faugère and Lachartre, we are able to
outperform both of the two methods afore-mentioned. We also compare ourself with
the Wiedemann Algorithm from LinBox on large matrices, and figure out that in some
case our new algorithm is up to 100× faster. We focus on the computation of the rank,
as it raises the same challenge as solving systems while outputting only a single inte-
ger. This is basically the work presented in a publication at CASC 2016, with Charles
Bouillaguet [BD16].

4.1 A New Hybrid Algorithm
The right-looking method chooses the pivot in the Schur Complement step by step. It can greedily
choose the “best” pivot possible (i.e. the one that produces minimum fill-in in next step Schur
Complement). However, using such heuristic at each step takes time. In the GPLU algorithm, the
choice is done once and for all and so does not take much time, but the choice of pivots at a given
step is not the best possible. In this section, we introduce an algorithm which is a good compromise
between right-looking and left-looking methods.

4.1.1 High Level Idea of the Procedure

The main idea behind it is the following:

1. Find a set of “a priori” pivots in A, without performing any arithmetical operations.

2. If possible, compute the Schur complement S of A with respect to these pivots.

3. Compute the rank of S by any means (including recursively).

In the first step, we search for permutations P and Q of the rows and the columns of A, such
that a triangular submatrix, with non-zero coefficients on the diagonal appears on the top left of A.
The coefficients on the diagonal are pivots of A, and they can be used to eliminated all coefficients
bellow.

The first two steps of this procedure are represented in Figure 4.1. The rows and the columns
of the input matrix A (Figure 4.1a) are permuted so that a triangular structure appears on the
top of the matrix (Figure 4.1b). Then the elimination step is performed to compute S in one fell
swoop (Figure 4.1c).

It is easy to estimate the size of S. If A is an n-by-m matrix, and if k pivots have been found
during the first step of the procedure, the S will be an (n − k)-by-(m − k) matrix. If it is small
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4.1. A New Hybrid Algorithm

A

(a) Original Matrix.

A00 A01

A10 A11

(b) Structural Pivots.

A00 A01

S

(c) Schur Complement.

Figure 4.1 – Structural pivots and Schur Complement computation.
.

Figure 4.2 – Example of a Gröbner Basis matrix: Grobner/c8_mat11 from [Dum12].

enough, it can be stored as a dense matrix, and we can compute its rank using dense gaussian
elimination.

If S is large, there are two possible cases: S is either sparse enough to be computed and stored
on the CSR format, or S is dense. As we will discuss in the next section, it is possible to estimate
the density of S beforehand, and adapt our algorithm accordingly.

In the first case, several options are possible. We can either use the same technique recursively,
or switch to GPLU, or switch to the Wiedemann algorithm. Some guesswork is required to find the
best strategy. By default we found that allowing only a limited number of recursive calls (usually
less than 10, often 3) and the switching to GPLU yields good results.

If S is big and dense, in most of the cases there is nothing we can do. In these cases, we have
to abort and report failure. However, there are some particular cases (when the rank of S is very
small), where we can still compute the rank of S without actually forming the matrix [SY09].

4.1.2 Initial Choice of Structural Pivots: The Faugère-Lachartre Heuristic

In [BD16], we propose to utilise the Faugère-Lachartre (FL) heuristic [FL10], as it is simple, easy
to implement, and already leads to good results, while remaining fast.

At the aim of computing the row-echelon form of sparse matrices arising from Gröbner basis
computations, Faugère and Lachartre [FL10] have observed that the leftmost entry of each row can
be chosen as a pivot if no other pivot has previously been chosen on the same column. Because
the Gröbner-basis matrices are nearly triangular (see Figure 4.2), this strategy often finds 99.9%
of the maximum number of pivots of these particular matrices.

The idea of the procedure is the following: Each row is mapped to the column of its leftmost
coefficient. All these coefficients are then “candidate pivots”. When several rows have the same
leftmost coefficient, we select the candidate on the sparsest row. Finally we move the selected rows
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Figure 4.3 – Illustration of the Faugère-Lachartre heuristic.

before the others and sort them by increasing position of the leftmost coefficient.
We illustrate this method in Figure 4.3. Rows 0 and 4 have their leftmost coefficient on the

same column. They are both “candidates”. As row 4 contains more zero-coefficient, we choose (4, 0)
as a pivot, to keep the matrix U as sparse as possible. Same goes for rows 2, 6 and 7. Permuting
the rows in ascending order gives a upper-triangular leading principal sub-matrix.

Finding more structural pivots. We claim that being able to find many structural pivots is
desirable. In the extreme case, if all pivots can be found based on the structure of the matrix, then
the echelonisation process can be carried over without any arithmetic operation, just by permuting
the rows and columns — and without any fill-in.

Unfortunately, finding the largest set of structural pivots is an NP-Complete optimisation prob-
lem [GHL01]. This is why we have to be content with a hopefully large set of pivots, that can be
found using heuristics. In the next chapter, we will discuss more about this problem, and present
some new strategies we designed in order to find larger sets, and thus improve the whole procedure.

4.2 Dealing with the Schur Complement

4.2.1 Computation

If k structural pivots are found in the first step of the procedure, we are given permutation P and
Q such that the k-by-k upper-left block of PAQ−1 is upper-triangular with non-zero diagonal and
A can be decomposed as follows:

PAQ−1 =
(
A00 A01
A10 A11

)
=
(
L00

I

)
·
(
U00 U01
A10 A11

)
,

where L00 is a diagonal matrix with non-zero coefficients on its diagonal, and U00 is upper triangular
with unit coefficients on its diagonal. This is in fact the part of U provided by the Faugère-Lachartre
heuristic. What we aim to compute is S = A11 − A10U

−1
00 U01, the Schur Complement of A with

respect to U00. We can compute S row-by-row. To obtain the ith row, si of S, we follow the same
idea than the one of the GPLU algorithm. Let us denote by (ai0 ai1) the ith row of (A10 A11) and
consider the following system:

(x0 x1) ·
(
U00 U01

Id

)
= (ai0 ai1). (4.1)

We get x1 = ai1 − x0U01 = ai1 − ai0U−1
00 U01. From the definition of S given by Equation 3.5, we

have x1 = si. Thus S can be computed solving a succession of sparse triangular systems. Because
we chose U to be as sparse as possible, this process is fast. Furthermore, as the rows of S can be
computed independently (unlike the GPLU algorithm), it is possible to parallelise the computation
of S. It is also possible to estimate the density of S beforehand. This is how we proceed:

1. Pick t random rows of the matrix (A10 A11), for some parameter t < n− k.

2. For each of these rows (ai0 ai1), solve the system 4.1 and compute the density of si.
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4.2. Dealing with the Schur Complement

3. Compute the average density.

If the t rows are randomly chosen, we can hope that this will give us a relatively good estimation
of the density of S. If this estimated density is lower than this threshold, then we can obtain it
entirely following the idea described above. If it is greater than some threshold, for instance 0.1,
we decide that S would be to dense to be computed. In this case the situation is more complicated,
and most of the time, our algorithm is likely to fail.

4.2.2 Special Cases

Useful results. We assume that we have found k pivots already, and denote by M a t-by-n− k
random matrix. We have:

M ·
(
A10 A11

)
=
(
A′0 A′1

)
.

Let X = (X0 S
′) be a matrix satisfying the following equation.

(
X0 S′

)
·
(
U00 U01

I

)
=
(
A′0 A′1

)
.

We have S′ = A′1 −A′0U−1
00 U01. According to the definition of A′0 and A1, we obtain:

S′ = M(A11 −A10U
−1
00 U01),

and thus we have:

S′ = MS (4.2)

Remark 1. We can easily see that the rank rS′ of S′ is at most equal to the rank rS of S. Recall
that the rank of a matrix is equal to the dimension of the vector space spanned by its rows. Let
CS be the vector subspace of Fp spanned by the rows of S, and CS′ be the vector subspace of Fp
spanned by the rows of S′. We can quickly check that CS′ ⊆ CS . In fact For all x in CS′ , there is
a y such that x = yS′, and then x = (yM)S and thus x ∈ CS . It is enough to prove rS′ ≤ rS .

We claim that if M is an n-by-m full rank matrix, with n ≥ m, then this is indeed an equality.
It is quite easy to see that when M is square and thus invertible. In this case, S = M−1S′. Then,
from Remark 1, we have rS ≤ rS′ , and thus rS = rS′ .

The case n > m is slightly more difficult to prove. We claim that in this case, there still is an
m-by-n matrix M̄ such that S = M̄S′, and thus we are still able to use the result from Remark 1
to prove the equality. Indeed, if M is full rank, then there is an m-by-m sub-matrix of M0 such
that M0 is invertible. We denote by P the permutation that pushes this sub-matrix on the top of
M . We denote by M1 the sub-matrix of M such that:

PM =
(
M0
M1

)
.

Let M̄ be the matrix defined as follows:

M̄ =
(
M−1

0 0
)
· P.

We have:

M̄ ·M =
(
M−1

0 0
)
· (PM)

=
(
M−1

0 0
)
·
(
M0
M1

)

= Im. (4.3)
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Chapter 4. Of a New Hybrid Algorithm

It follows that M̄S′ = M̄MS = S.
Unfortunately, this result cannot be extended to the case where M is an n-by-m full rank

matrix with n ≤ m. Indeed, it is a fact that in this case, there is no m-by-n matrix M̄ such that
M̄M = Im. Unluckily, this is exactly the case that matters to us in the current situation.

We can still prove the following heuristic result:

Lemma 4.1. If M is an n-by-m random matrix with n < m, such that S′ = MS. If we denote rS
and rS′, respectively the rank of S and S′, then, with high probability, rS ≥ rS′.

Proof. Let us denote by S0 an arbitrary rS-by-m sub-matrix of S, such that S0 spans the vectorial
subspace CS . Let I be the subset of {0 . . . n− 1} such that S0 is induced by the rows indexed by
I. We denote S1 the sub-matrix of S induced by the rows from {0 . . . n − 1} \ I. Let M0 be the
m-by-rS sub-matrix induced by the columns from I, and let M1 be the sub-matrix induced by the
columns from {0 . . . n− 1} \ I. We have:

S′ = M0 · S0 +M1 · S1. (4.4)

As Span{S0} = CS , in particular any rows of S1 is actually a vector from Span{S0}. Thus,
there is an (n− r)-by-rS matrix R, such that:

S1 = RS0.

It follows that:

S′ = (M0 +M1R) · S0. (4.5)

We denote M ′ the matrix M0 +M1R. This is an m-by-rS matrix, with m ≥ rS . Furthermore,
if M is a random matrix, then M ′ will also be a random matrix, as the linear combination of
two random matrices, M0 and M1. Thus with hight probability M ′ will be full rank. Indeed, the
probability that a random m-by-k matrix, with m ≤ k is full is given by:

P[matrix is full rank] =
∏m
i=0(qk − qi)
qkm

≥ (qk − qm−1)m

qkm

≥ qkm(1− qm−1−k)m

qkm

≥ (1− qm−1−k)m

In our case, M ′ is then full rank with probability greater than (1− qm−1−rs). From the discussion
above, it follows that the rank of S′ is equal to the rank of S0 with high probability. As the rank
of S0 is indeed rS , this concludes the proof.

Tall and skinny Schur complement. It is beneficial to consider a special case, when S has
much more rows than columns (we transpose S if it has much more columns than rows).

This situation can be detected as soon as the pivots have been selected, because we know that
S has size (n − k) × (m − k). In this case where S is very tall and very narrow, it is wasteful
to compute S entirely, even if S is sparse. For instance, a naive solution consists in choosing a
small constant ε, building a dense matrix S′ of size (m − k + ε)-by-(m − k) with random (dense)
linear combinations of the rows of S, and computing its rank using dense linear algebra. S′ can
be formed, using the trick described above by taking random linear combinations of the remaining
rows of A, and then solving triangular system, just like before.

In fact, denoting by M the (m− k + ε)-by-(n− k) matrix which represents these linear combi-
nations, it follows from Equation 4.2 that S′ = MS. Furthermore, as discussed above, if we denote
r′S the rank of S′ and rS the rank of S, we have rS′ = rS , with high probability.
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4.3. Implementation and Results

Large and dense Schur complement with small rank. As mentioned before, when S is large
and dense, our procedure will most likely fail. There is however, a favourable case that arises when
the number of structural pivots found during the first step of the algorithm is close the rank of
A. In this case, the rank of S will be small and the L and U matrices obtained during the PLUQ
factorisation will be very thin, and we can hope to store them in memory. In order to compute the
rank of S without actually computing S, we implemented the following technique:

1. Guess an upper-bound rmax on the rank of S,

2. Choose a random rmax-by-(n− k) matrix M ,

3. Compute S′ = M × S (dense but small),

4. Compute a dense gaussian elimination of S′,

5. If S′ has full rank, set rmax to 2rmax and restart the procedure.

4.3 Implementation and Results

All the experiments we carried on an Intel core i7-3770 with 8GB of RAM. Only one core was ever
used. We used J.-G. Dumas’s Sparse Integer Matrix Collection [Dum12] as benchmark matrices.
We restricted our attention to the 660 matrices with integer coefficients. Most of these matrices
are small and their rank is easy to compute. Some others are pretty large. In all cases, their rank
is known, as it could always be computed using the Wiedemann algorithm. We fixed p = 42013 in
all tests.

We give here the results we presented in [BD16]. Using the refined pivots selection algorithm
from [BDV17], described in the next chapter, we were able to outperformed these results, especially
for the largest matrices from [Dum12] as discussed in Section 5.4.

Comparison with other direct methods. In section 3.2.5, we claimed that our algorithm
outperforms both the right-looking algorithm of LinBox and our own implementation of GPLU.
Indeed, in Table 4.1, we present the timing of our algorithm along with the timing of the fastest of
the two afore-mentioned methods, for the same set of matrices than in section 3.2.5. We can see that
our algorithm is almost always the fastest, and always at least as fast as the best previous algorithm
(which in this case appears to be GPLU), save for the case of the matrix Mgn/M0,6.data/M0,6-D11,
where the GPLU algorithm is 0.2 second faster than our algorithm in our benchmark.
Remark 1. We can also wonder how our algorithm compares to GBLA [BEF+16] and to the SGE
implemented in CADO-NFS [CAD15]. This is difficult, because they are both tailored for very
specific matrices. GBLA has been designed for matrices arising in Gröbner basis computations,
and exploits their specific shape. For instance, they have (hopefully small) dense areas, which
GBLA rightly store in dense data structures. This phenomenon does not occur in our benchmark
collection, which is ill-suited to GBLA. GBLA is nevertheless undoubtedly more efficient on Gröbner
basis matrices. Something similar can be said about the SGE, which also exploits the fact that
some columns are dense, and do not care about the fill-in in these areas.

Direct methods vs. iterative methods. We now turn our attention to the remaining matrices
of the collection, the “hard” ones. Some of these are yet unnameable to any form of elimination,
because they cause too much fill-in. However, some matrices can be processed much faster by our
hybrid algorithm than by any other existing method.

For instance, relat9 is the third largest matrix of the collection; computing its rank takes a
little more than two days using the Wiedemann algorithm. Using the “Tall and Narrow Schur
Complement” technique described in Section 4.2.2, the hybrid algorithm computes its rank in 34
minutes. Most of this time is spent in forming a size-8937 dense matrix by computing random dense
linear combinations of the 9 million remaining sparse rows. The rank of the dense matrix is quickly
computed using the Rank function of FFLAS-FFPACK [FFL14]. A straightforward parallelisation
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Chapter 4. Of a New Hybrid Algorithm

Table 4.1 – Comparison of sparse elimination techniques. Times are in seconds.

Matrix Best(LinBox, GPLU) Hybrid
Franz/47104x30144bis 39 1.7
G5/IG5-14 0.5 0.4
G5/IG5-15 1.6 1.1
G5/IG5-18 29 8
GL7d/GL7d13 11 0.3
GL7d/GL7d24 34 11.6
Margulies/cat_ears_4_4 3 0.1
Margulies/flower_7_4 7.5 2.5
Margulies/flower_8_4 37 3.7
Mgn/M0,6.data/M0,6-D6 45 0.1
Homology/ch7-8.b4 0.2 0.2
Homology/ch7-8.b5 45 10.7
Homology/ch7-9.b4 0.4 0.4
Homology/ch7-9.b5 8.2 3.4
Homology/ch8-8.b4 0.4 0.5
Homology/ch8-8.b5 6 2.9
Homology/n4c6.b7 0.1 0.1
Homology/n4c6.b8 0.2 0.2
Homology/n4c6.b9 0.3 0.2
Homology/n4c6.b10 0.3 0.2
Homology/mk12.b4 9.2 1.5
Homology/shar_te2.b2 1 0.2
Kocay/Trec14 31 4
Margulies/wheel_601 4 0.3
Mgn/M0,6.data/M0,6-D11 0.4 0.6
Smooshed/olivermatrix.2 0.6 0.1
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4.3. Implementation and Results

Table 4.2 – Some harder matrices. Times are in seconds. M.T. stands for “Memory Thrashing”.

Matrix n m |A| Right-looking Wiedemann Hybrid
kneser_10_4 349651 330751 992252 923 9449 0.1
mk13.b5 135135 270270 810810 M.T. 3304 41
M0,6-D6 49800 291960 1066320 42 979 0.1
M0,6-D7 294480 861930 4325040 2257 20397 0.8
M0,6-D8 862290 1395840 8789040 20274 133681 7.7
M0,6-D9 1395480 1274688 9568080 M.T. 154314 27.6
M0,6-D10 1270368 616320 5342400 22138 67336 42.7
M0,6-D11 587520 122880 1203840 722 4864 0.5
relat8 345688 12347 1334038 M.T. 244 2
rel9 5921786 274667 23667185 M.T. 127675 1204
relat9 9746232 274667 38955420 M.T. 176694 2024

using OpenMP brings this down to 10 minutes using the 4 cores of our workstation. The same goes
for the rel9 matrix, which is similar.

The rank of the M0,6-D9 matrix, which is the 9-th largest of the collection, could not be
computed by the right-looking algorithm within the limit of 8GB of memory. It takes 42 hours to
the Wiedemann algorithm to find its rank. The standard version of the hybrid algorithm finds it
in less than 30 seconds.

The shar_te.b3 matrix is an interesting case. It is a very sparse matrix of size 200200 with
only 4 non-zero entries per row. Its rank is 168310. The right-looking algorithm fails, and the
Wiedemann algorithm takes 3650s. Both GPLU and the hybrid algorithm terminate in more than
5 hours. However, performing one iteration of the hybrid algorithm computes a Schur complement
of size 134645 with 7.4 non-zero entries per row on average. We see that the quantity n|A|, a rough
indicator of the complexity of iterative methods, decreases a little. Indeed, computing the rank of
the first Schur complement takes 2422s using the Wiedemann algorithm. This results in a 1.5×
speed-up.

All-in-all, the hybrid algorithm is capable of quickly computing the rank of the 3rd, 6th, 9th,
11th and 13th largest matrices of the collection, whereas previous elimination techniques could not.
Previously, the only possible option was the Wiedemann algorithm. The hybrid algorithm allows
large speedup of 100×, 1000× and 10000× in these cases.
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Chapter 5
Of Better Pivots Selections Heuristics

In this chapter, we recall that finding a set of structural pivots is equivalent to find
a matching without alternating cycles in a bipartite graph. Unfortunately this problem
has been proved to be an NP-Complete optimisation problem by Golumbic, Hirst and
Lewenstein. We then present two heuristics that allow us to find an hopefully large set of
structural pivots. The second one, in particular, has proved to be very efficient allowing
us to recover up to 99.9% of the total number of pivots in some cases. This work has led
to a publication at PASCO 2017 [BDV17] in a joined work with Charles Bouillaguet and
Marie-Emilie Voge.

5.1 Searching for Structural Pivots
Given a matrix A, and a set of pivots P of A, We call pivotal row any row i such that there exists
a j such that aij ∈ P. We define a pivotal column accordingly.

5.1.1 Bi-Partite graph, Matching, and Alternate Path

Because two pivots cannot be on the same row, nor on the same column, we claim that P induces
a matching in G. This holds true, for any set of pivots, be they chosen a priori or during the
factorisation. Indeed, P = {ai1,j1 . . . aik,jk} for some k ≥ 1, such that all the i indexes on one hand
and all the j indexes on the other hand are distinct. Rewriting this in terms of graph, this gives
P = {(ri1 , cj1), . . . (rik , cjk)}, such the same node ri (resp. cj) does not appear several times.

As such, the size of a maximal matching gives an upper-bound on the rank of a sparse matrix.
This bound is however not tight. For instance, in the following matrix,

(
1 1 1
1 1 1

)
,

the two circled entries form a maximal matching between rows and columns, yet the matrix has
rank 1. The elimination of the first entry makes the second candidate pivot disappear.

In terms of matching, the definition of structural pivots implies the absence of alternating
cycles on the graph, with respect to the matching defined by the pivots. Given a matching,M, an
alternating cycle is a cycle such that one edge over two is in M and one edge over two is not. A
matching that does not induce alternating cycles is said to be uniquely restricted [GHL01], because
it is the single matching between these vertices in the graph.

Structural pivots and uniquely restricted matching. We now recall an important theorem
mentioned in [HS93, GHL01], which formalise the link between uniquely restricted matching (from
now on denoted by URM) and structural pivots.
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Figure 5.1 – Matching in bi-partite graph, and matrix representation.

Theorem 5.1. There exist row and column permutations P and Q such that the k × k principal
submatrix of PAQ is upper-triangular if and only if there exists a uniquely restricted matching of
size k in the bipartite graph G associated to A.

This theorem is not original. Nevertheless, we are going to prove it again, for completeness.
Here is an idea of the proof of this theorem. Given a matchingM = {(r1, c1), . . . , (rk, ck)} over

a bipartite graph G, we form the directed graph GM as follows: its vertices are {1, . . . , k} and there
is an arrow from i to j in GM if and only if there is an edge between ri and ci in G. We show that
M is an URM is equivalent to saying that GM is a DAG. As the (1, 0, 1)-adjacency matrix of GM
is formed by extracting rows r1, . . . , rk and columns c1, . . . , ck of the occurrence matrix of G, it is
enough to prove the theorem.

Figure 5.2 illustrates this idea. We have a bipartite graph G and a matchingM in red, next to
it we represent the associated graph GM, and the occurrence matrix A of G which also appears to
be the (1, 0, 1)-adjacency matrix of G.

First, we prove the following lemma:

Lemma 5.2. There is a one-to-one correspondence between alternating paths of G with respect
to M starting by a row vertex ri, ending with a column vertex cj, and in which all vertices are
matched on the one hand, and (directed) paths of GM on the other hand.

Proof of Lemma 5.2. Let (v1, v2) . . . (vk−1, vk) be a directed path in GM. Then (rv1 , cv2)(cv2 , rv2) . . .
(rvk−1 , cvk) is an alternating path in G: the edges (rvi , cvi) belong to the matching, and the edges
(rvi , cvi+1) exist in G by definition of GM.

Let (rv1 , cv2), (cv2 , rv2) . . . (rvk−1 , cvk) be an alternating path in G. We assume, without loss of
generality, that {rvi , cvi} ∈ M for all i. The edges (rvi , cvi+1) connect two matched vertices in G,
but they do not belong to the matching. This implies that there are edges (vi, vi+1) in GM. Thus
(v1, v2), . . . , (vk−1, vk) is a directed path in GM.

Example 5.1. In Figure 5.2, the directed path (0, 1), (1, 3), (3, 5) in GM corresponds to the alter-
nating path (r0, c1)(c1, r1), (r1, c3), (c3, r3)(r3, c5) in G.

This correspondence makes it easy to prove Theorem 5.1.

Proof of Theorem 5.1. If PAQ has an upper-triangular k × k principal submatrix, then we form
the matching

M = {(P (i), Q(i)) | 1 ≤ i ≤ k} .
The associated directed graph GM is acyclic: its adjacency matrix is the k × k upper-triangular
principal submatrix of PAQ. There is no alternating cycle in A: by the correspondence given in
Lemma 5.2, this would imply a cycle in GM.

Conversely, let M = {(r1, c1), . . . , (rk, ck)} be a uniquely restricted matching on A. By the
correspondence given in Lemma 5.2, this implies that the associated directed graph GM is acyclic.
Let M denote its adjacency matrix (it is a submatrix of A, as argued above). GM can be topo-
logically sorted: with a simple DFS, we find a permutation P of its vertices such that PMP is
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Figure 5.2 – A graph G with a matching M , the associated graph GM and the matrix A.

upper-triangular. This is enough for our purpose: we build row and column permutations P ′ and
Q′ such that the first k rows (resp. columns) are rP (1), . . . , rP (k) (resp. cP (1), . . . , cP (k)). It follows
that the principal k × k submatrix of P ′AQ′ is PMP , which is upper-triangular.

The maximum URM problem. To our knowledge the interest in maximum matching without
alternating cycle first appears in [CC79]. However the notion of matching without (or with) alter-
nating cycle had already been used before. Matchings with alternating cycle appear in [TIR78] to
enumerate perfect and maximum matchings in bipartite graphs.

The problem of finding a maximum URM in a given graph was then formally introduced in
[GHL01] under the name Maximum Uniquely Restricted Matching problem, following the work of
[HS93]. The authors of [GHL01] showed that this is an NP-Complete optimisation problem for
general and bipartite graphs. Some other results for special classes of graphs were given.

5.2 A Quasi-Linear Heuristic Algorithm for the Maximum URM
Problem

This algorithm is based on the works of [Bra02] and [Sch13] which are related to connectivity and
ear decomposition of graphs.

The algorithm. Let G = (R,C,E) be a bipartite undirected graph. If G is an acyclic graph (i.e.
G is either a tree or a forest as G is an undirected graph), then by definition, any matching of G
will be an URM.

The idea is thus to compute a spanning tree T of G, then remove all vertices from T that induce
cycles in G. We consider then the subgraph T ′ induced by the remaining vertices. Any matching
of T ′ will be a URM of G.

The difficult part is to detect what are the vertices that may cause cycles. Let us denote by
V the set of vertices x such that for all y such that (x, y) ∈ E, (x, y) is an edge of T . We could
for instance consider the subgraph T ′ induced by the set V , but this would require to remove too
many vertices, possibly all of them. Indeed V may even be empty.

We choose instead the following approach: Consider the graph G′ formed by the edges not in
T , and let I be an independent set of G′, and we consider the subgraph T ′ of T induced by I ∪ V .
We claim that a matching of T ′ will be a URM of G. Indeed, consider a cycle in G, it cannot
be contained inside T , because T is a tree. Therefore, there is an edge x ↔ y of the cycle in G′.
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Figure 5.3 – Illustration of Algorithm 8.

Because I is an independent set of A′, it cannot contain both x and y. This implies that x and y
cannot both be matched inM. This shows that the cycle cannot be alternating.

The whole procedure is summarised in Algorithm 8. We also show an example in Figure 5.3.
Figure 5.3a represents the input matrix. In Figure 5.3b, we represent the associated bi-partite
graph G on the left. The part in blue is a spanning tree of G. The grey edges are the edges of the
graph G′. The grey vertices are the vertices of G′. On the right, we represent the subtree T ′. The
grey nodes are the nodes that belong the independent set I of G′. The red edges are the edges of
the matching.

Complexity analysis. Computing the spanning tree T of G and the graph G′ and V can be
done in time O (|R|+ |C|+ |E|), using a DFS. Once I is determined, computing T ′ is also an easy
task. Computing a maximum matching on a tree can also be done in time O (|E|) recursively.
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Original matrix
rank 168310

Faugère-Lachartre
65536 pivots

Tree-based
73492 pivots

Greedy
160740 pivots

Figure 5.4 – The Homology/shar_te.b3 matrix, and the structural pivots found by each algorithm.

The difficulty lies in the computation of the independent set I. We used the method described in
Section 2.2.4. This gives us a total running time of O (n log nz(A) + nz(A)).
Remark 1. We could instead have used the Hopcroft-Karp algorithm [HK73] for minimum vertex
cover algorithm, to find a maximum independent set, instead of a “large” one. However, the time
complexity required would have been O (n+ nz(A)(

√
n+m)

)
. We chose to favour speed rather

than optimised results.

Algorithm 8 URM computation using spanning trees.
Require: G = (R,C,E).
Ensure: M: a URM matching of G.

1: Compute T = (R,C,ET ): a spanning tree of G.
2: Let E′ ← E \ ET
3: Let G′ = (R′, C ′, E′) be the subset of G edge-induced by E′.
4: Let V ← (R \R′) ∪ (C \ C ′).
5: Compute I: an independent set of G′.
6: Compute T ′: the subgraph of T induced by V ∪ I.
7: ComputeM: a maximum matching on T ′.

Discussion. There are cases where this strategy outperforms the Faugère-Lachartre heuristic (see
Figure 5.4). However, in most cases it yields disappointingly bad results. We believe that it might
only work well on very sparse matrices where T contains a non-negligible fraction of all non-zero
entries.

5.3 A Simple Greedy Algorithm

The algorithm we are now going to present is the major contribution of [BDV17].

5.3.1 Description of the Procedure

Let us start by giving an intuitive idea of this algorithm. We start with an (empty) UR matching
P and make it grow in a greedy way: we examine each candidate edge (r, c), where r and c are
unmatched rows/columns; we check whether adding it to the matching would create an alternating
cycle; if not, we add it to the matching.

Adding (r, c) to the matching creates an alternating cycle if and only if there is already an
alternating path (r, c1), (c1, r1) . . . (rk, c) in A with respect to P. This means that c is reachable
from r, via an alternating path. This makes it possible to check all candidate non-zero entries on
the row r by performing a graph search.

If c is reached during the process, then (r, c) is a bad candidate and cannot be selected as pivot.
On the other hand, if at the end of the search there still is an unvisited column c, then it means
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that (r, c) is a valid candidate and can be selected as pivot. The detail of this procedure is given
in Algorithm 9.

Algorithm 9 URM computation by detecting cycles.
Require: G = (R,C,E), an (empty) URM matchingM.
Ensure: M: a larger URM matching of G.

1: for all unmatched i do
2: Set Qi ← ⊥ . Initialisation
3: for all j such that aij 6= 0 do
4: if j is matched then
5: Enqueue j in Qi
6: else
7: Mark j as “candidate”
8: while Qi 6= ⊥ do . BFS
9: Dequeue the first element j of Qi

10: if j not matched then
11: continue
12: Let k be the row matched to j
13: for all ak` such that ` is not marked “visited” do
14: if ` is marked as “candidate” then
15: Remove the mark on `
16: mark ` as visited
17: Enqueue ` in Qi
18: for all j such that aij 6= 0 do . Detection
19: if j is marked as “candidate” then
20: SetM←M∪ {(i, j)}
21: break
22: for all j such that aij 6= 0 and j marked as “candidate” do . Clean up
23: Remove the mark on j

Remark 1. Notice that, if at the end of the search, there are several valid candidates, our algorithm
chooses the first to come. There may be a more clever way to proceed, in order to preserve
sparsity. We could have for instance chosen the sparsest column instead, or the column such that
the number of non-zero elements on non-pivotal rows is the smallest. However, we have not tested
if these heuristics will indeed lead to significantly better results.

Complexity analysis. The worst case complexity of the method is O (n · nz(A)), which is the
same complexity as the Wiedemann algorithm. However, we observed that, in practice, this is
much faster. Our sequential implementation terminates in a few hours on our largest benchmark,
versus many expected months for Wiedemann.
Remark 2. Most of the time is spent in the BFS step. We use the following early-abort strategy to
speed it up. During the initialisation step, we count the number of candidates. During the BFS,
each time we unmark a candidate, we decrement this counter. If it reaches zero, we jump to the
clean-up step. On our collection of benchmarks, this gives a noticeable improvement.

Mixing the approaches. Note that this procedure can be started with a non-empty matching.
In fact, one can first find a set of structural pivots using another technique (e.g. the F.-L. algorithm),
and then enlarge the matching using this greedy algorithm. As a matter of fact, we figured out
that the following strategy yields good results in many cases:

1. Find the F.-L. pivots, and add them to the matching.

2. For each non-pivotal column, if the upmost non-zero coefficient is on a non-pivotal row, add
it to the matching.
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r1 ⊗ × × × ×
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r4 × × ⊗
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r6 × × × • • •
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r4 × × ⊗
r5 × × ⊗ ×
r6 × × × • • •

(a) All three candidates are “bad”.
r1 r3 r6

c1 c3 c8

(b) Alternating cycle with (r6, c8).

Figure 5.5 – Example of “bad” candidates.

3. Complete the matching using the greedy procedure above.

Case (2) is a particular case of the general algorithm given above. In the matrix from Exam-
ple 3.1, the first three pivots are found performing step 1 of the previous strategy. The fourth is
selected performing step 2. The last one is selected performing step 3. We represent the candidates
on the last row by black bullets. As it is shown in Figure 5.5a, none of them can be selected, as in
all the cases, an alternative cycle would appear. For instance, Figure 5.5b, gives an illustration of
the alternating cycle obtained choosing candidate (r6, c8).

This greedy algorithm is capable of finding 99.9% of all the pivots in some matrices, when the
other strategies we tried were not as good.
Remark 3. In certain cases, it can be interesting to permute the columns of the matrix first, to
increase the number of structural pivots found by the FL algorithm. For instance, in the case of
the GL7d matrices from Dumas’s collection, we figured out that flipping them horizontally (i.e.
permuting the first column with the last column, the second first with the second last and so on)
enables us to find up to 50% more structural pivots with the FL algorithm. This is the case on the
GL7d12 matrix shown in Figure 5.6a

5.3.2 A Parallel Algorithm

Because structural pivots search dominates the running time of our rank computations, we chose
to parallelise the greedy algorithm described above. This raised interesting problems.

We denote by qinv the array of m integers, such that:

qinv[j] =
{
i if (i, j) is inM
−1 if j is not matched

We also consider the array mark of m bytes, which for each rows i, contains the state of j while
processing row i. For instance, we can have:

Parallelisation Strategy. The basic approach is to process k rows on k threads simultaneously.
The description of the matching qinv is shared between threads, as well as npiv, an integer counting
the size of the matching. In an ideal world, each thread would do its own job and update the
matching independently.

The problem is that every time a thread adds an edge to the matching, new alternating paths
are created in the graphs. Depending on the timing of operations, these paths may or may not
be explored by concurrent BFS searches. More precisely, what may happen, is that two threads
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(a) The original GL7d12 matrix. (b) GL7d12 after vertical swap.

Figure 5.6 – Swapping the GL7d12 matrix to find more FL pivots.
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Figure 5.7 – Illustration of what can go wrong during parallelisation.

terminate their treatment more or less at the same time and choose pivots that together will create
an alternating cycle. If you look at the example illustrated by Figure 5.7, two threads T1 and T2,
respectively process rows 3 and 4. We assume that T1 marks column 3 as candidate and starts
its BFS. Shortly after T2 terminates its treatment and adds (4, 6) to M. Unaware of that, T1
chooses (3, 3) as pivot. This produces an alternating cycle (3, 3), (3, 6), (4, 6), (6, 3). In the rest of
this section we are going to explain how we can bypass this problem.

Simple transactional approach. To avoid expensive synchronisations between threads, we used
an optimistic approach based on transactions, as found in concurrent databases.

In its simplest form, it works by processing each row, using the algorithm of Section 5.3, in
a transaction. Either the matching is not modified during the lifespan of the transaction, and
it succeeds. If the matching has been modified, then the transaction rollbacks and has to be
restarted. In most of the cases, examining a row does not reveal any new pivot, so that rollbacks
are relatively rare. The redundant work that may occur is more than compensated by the nearly
complete elimination of synchronisations. The procedure executed by each thread to process a row
i is given by Algorithm 10.

The goal of this strategy is to minimise time spent in the critical section. In practice, we
observed that time spent waiting to enter the critical section is negligible.
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Algorithm 10 Simple transactional approach.
Require: A matrix A, a row i, the array qinv and npiv.
Ensure: An update of qinv and npiv.

1: Copy npiv in a local variable npiv′. . Start transaction
2: Process row i . Sequential process
3: if ∃ j such that aij is still a valid candidate then . Commit
4: Set bad← False
5: Enter critical section
6: if npiv > npiv′ then
7: Set bad← True
8: else
9: Set npiv← npiv + 1

10: Set qinv[j]← i

11: Exit critical section
12: if bad = True then . Rollback
13: go to step 1.

Refined transactional approach. It is possible to refine this approach, to eliminate potential
redundant work created by rollback. To this end, we add another shared array of m integers,
journal, such that journal[k] is the column of the k-th edge added to the matching.

When a thread tries to commit a new pivot aij and fails, then it has “missed” pivots on columns:

journal[npiv’], . . . , journal[npiv-1].

The corresponding rows are given by the array qinv. Then, during the rollback, you don’t have
to restart all the BFS, but only to check if these new pivots have not created cycles. The point
is that if one of this new pivots is on a column jpiv such that aijpiv is zero and jpiv has not been
visited during the BFS, it can safely be ignored. Otherwise, the process has to be re-started.

It can be done using the procedure given by Algorithm 11. This eliminates almost all the extra
work caused by rollbacks, while keeping the advantages.

Lock-free implemenation. Pushing things to the extreme, it is possible to implement both
transactional strategies without lock nor critical section, if a compare-and-swap (CAS) hardware
instruction is available (the CMPXCHG instruction is available on x86 processors since the 1990’s).
The C11 standard specifies that this functionnality is offered by the function:

atomic_compare_exchange_strong

of <stdatomic.h>. The CAS(A,B,C) instruction performs the following operation atomically: if
A = B, then set A← C and return True, else return False.

If the journal is a linked list, then it can be updated atomically using a CAS. Each cell contains
the column index of a pivot and a pointer to the next cell, journal is then a pointer to the first
cell (or NULL initially). The simple strategy is then implemented as described in Algorithm 12.

When a transaction rollbacks, the “missed” pivots are those found by walking the journal list
until the next link points to journal’. This allows to implement the “refined” strategy easily. It is
necessary to perform the (potentially redundant) update of qinv in step 4: another thread could
have been interrupted in step 3 after updating journal but before setting qinv[j].

We did not implement this lock-free strategy, because the critical section did not appear to be
a bottleneck. However, we have shown that it is possible to get rid of it.
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Algorithm 11 Refined transactional approach.
Require: A matrix A, a row i, the arrays qinv and journal and npiv.
Ensure: An update of qinv and npiv.

1: Initialise Qi with pivotal columns.
2: Copy npiv in a local variable npiv′. . Start transaction
3: Process row i with the BFS . Sequential process
4: if ∃ j such that aij is still a valid candidate then . Commit
5: Set bad← False
6: Enter critical section
7: if npiv > npiv′ then
8: Set bad← True
9: else

10: Set journal[npiv]← j
11: Set npiv← npiv + 1
12: Set qinv[j]← i

13: Exit critical section
14: if bad = True then . Rollback
15: for npiv′ ≤ k < npiv− 1 do
16: j ← journal[k]
17: if aij 6= 0 then
18: Enqueue j
19: go to step 2
20: Remove the mark on indexed still marked as candidate . Clean-up

Algorithm 12 Lock-free approach.
Require: A matrix A, a row i, the arrays qinv and journal and npiv.
Ensure: An update of qinv and npiv.

1: Initialise Qi with pivotal columns.
2: Copy journal in a local variable journal′.
3: Allocate empty linked-list new_journal . Start
4: Process row i with the BFS . Sequential process
5: if ∃ j such that aij is still a valid candidate then . Commit
6: Allocate new entry (j, journal′) to new_journal.
7: Set good← CAS(journal, journal’, new_journal).
8: if good = True then . journal = journal’: no new pivots
9: Set qinv[j]← i

10: else . Rollback
11: Free new_journal
12: go to step 2
13: Remove the mark on indexed still marked as candidate . Clean-up
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Table 5.1 – Benchmark matrices.

GL7/GL7dk |A| n m rank
15 6,080,381 460,261 171,375 132,043
16 14,488,881 955,128 460,261 328,218
17 25,978,098 1,548,650 955,128 626,910
18 35,590,540 1,955,309 1,548,650 921,740
19 37,322,725 1,911,130 1,955,309 1,033,568
20 29,893,084 1,437,547 1,911,130 877,562
21 18,174,775 822,922 1,437,547 559,985
22 8,251,000 349,443 822,922 262,937

Table 5.2 – Benchmark Machines Specifications.

Name CPU Type # CPU cores/CPU L3 Cache/CPU
A Xeon E5-2670 v3 2× 12 30MB
B Xeon E5-4620 4× 8 16MB
C Xeon E5-2695 v4 2× 18 45MB

5.4 Experiments, Results and Discussion

The algorithms described here have been implemented in C (using OpenMP) and assembled in
SpaSM. Our code computing the rank modulo a word-size prime p (in our tests p = 42013) in
parallel can be reduced to a single C file of 1200 lines of code (including IO).

We used the matrices from algebraic K-theory [DEGU07] as benchmarks (GL7/GL7dk, where
k ranges between 10 and 26). They are amongst the largest in Dumas’s sparse matrix collec-
tion [Dum12], and computing their rank is challenging. It was only feasible using iterative methods
to this point — and it required many days. Table 5.1 gives standard information about them.

We benchmarked our implementation on three parallel machines, denoted by A, B, and C with
different characteristics, summarised in table 5.2. A belongs to the university of Lille-1’s cluster;
B was kindly made available to us by the ANR HPAC project and is located in the university
Grenoble-Alpes; C is used for teaching HPC at the Paris-6 university. They all contain Intel Xeon
E5-xxxx CPUs with varying number of cores and amount of L3 cache. We focused performance
measurement on the structural pivot selection phase, because its running time is dominating in
practice, and because the way we compute the rank of the dense Schur Complement is rather
naive.

Table 5.3 shows the number of structural pivots found using the FL heuristic and the greedy
algorithm of section 5.3, as well as the proportion of the rank that this represent (i.e. 100 ×
#pivots/rank). In order to maximise the number of pivots found by the FL heuristic, we first
flipped the matrices horizontally (we swap the first and the last column, the second first and the
second last,...). For the last matrices (GL7dk, with k ≥= 20), we also transposed them as we figured
out that this yields better results.

Table 5.4 gives the performances of the greedy algorithm. For each machine A, B, and C, the
first column gives the running time (in seconds) of the algorithm using only one core, the second
column gives the running time of the algorithm using all available cores. Finally the last column
gives the speedup obtained using parallelisation (running time using one core / running time using
all cores).

We discuss these results for two matrices: the easiest case (GL7d15) and the hardest case
(GL7d19). We compare their timing with Wiedemann Algorithm.

5.4.1 Comparison with Wiedemann Algorithm

According to [DEGU07], for the considered matrices, the sequential running time of the sequential
Wiedemann algorithm is estimated between 67 hours (GL7d15) and 322 days (GL7d19, the hardest
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Table 5.3 – Number of structural pivots found using the FL heuristic and the greedy algorithm.

GL7dk # FL pivots % of the rank # greedy pivots % of the rank
15 128,452 97.28 132,002 99.97
16 317,348 96.69 328,079 99.96
17 602,436 96.10 626,555 99.94
18 879,241 95.39 920,958 99.92
19 980,174 94.83 1,032,419 99.89
20 817,944 93.21 877,317 99.97
21 522,534 93.31 559,784 99.96
22 246250 93.65 262817 99.95

Table 5.4 – Parallel efficiency of the greedy algorithm.

Machine A Machine B Machine C
GL7dk 1 core (s) 24 cores (s) speedup 1 core (s) 32 cores (s) speedup 1 core (s) 36 cores (s) speedup
15 18 1 15.2 26 1 26.0 22 1 26.9
16 148 7 20.0 301 13 23.9 180 5 33.4
17 687 36 18.9 1502 105 14.4 897 29 30.9
18 2206 123 17.9 5649 388 14.6 2594 94 27.7
19 3774 222 17.0 9284 692 13.4 4212 197 21.4
20 1272 72 17.8 3657 197 18.5 1483 56 26.3
21 359 18 19.5 886 36 24.5 446 14 31.7
22 49 3 18.8 68 3 26.2 57 2 30.1

case). A parallel implementation of the Block-Wiedemann algorithm on a SGI Altix 370 with 64
Itanium2 processors allowed the authors of [DEGU07] to compute the rank of GL7d15 in 2.25 hours
using 30 processors and to compute the rank of GL7d19 in 35 days using 50 processors in parallel.

We tried to check how these results held the test of time by running the sequential computation
using LinBox (sequential Wiedemann algorithm) on a single core of machine A. The rank of GL7d15
was found in 3 hours. We could not compute the rank of GL7d19: unfortunately, the cluster
manager killed our job after only 16 days.

In strong contrast to these numbers, on a single core of A our code computed the rank of GL7d15
in 18 seconds, and the rank of GL7d19 in 1 hour (wall-clock time).

Furthermore, the parallel implementation of our algorithm computed the rank of these matrices
in 0.8 seconds for GL7d15 and GL7d19 in 4 minutes (wall-clock time), using 36 cores of machine C.
Remark 1. To be totally fair, we should compare the parallel implementation of our algorithm with
a parallel implementation of the Block-Wiedemann Algorithm on the same machine, using the same
number core. However, proper public implementation of the Block-Wiedemann Algorithm on a field
that is not F2 are hard to come by. The only one we know of is the one implemented in CADO-
NFS, which is tuned for matrices arising from factorisation and discrete logarithm. The optimisation
made in that way makes this code hardly customisable to our needs. However, considering that
our sequential implementation is much faster that the sequential Wiedemann algorithm on these
matrices, and that our parallel implementation does not scale too bad depending on the matrix
and the machine (see discussion below), we have every reason to hope that for these matrices, our
algorithm is also faster than the Block-Wiedemann Algorithm.

5.4.2 Scalability

The most interesting case is the largest matrix, GL7d19, whose rank computation is the toughest.
It is the matrix where our parallel implementation scales worst (Figure 5.8a). With the smaller
GL7d16, on the other hand, we observe near-perfect scalability (Figure 5.8b).

Figures 5.8a and 5.8b show that, given one matrix, our parallel implementation does not scale
the same way on every benchmark machine. We noticed that our implementation does not scale
very well on B, reaching a parallel efficiency (speedup/ #cores) of 63.01% in average using 32
cores. In fact, for the worst case (GL7d19) the parallel efficiency is 41.91%. On the other hand, the
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(a) Structural pivot search, GL7d19. (b) Structural pivot search, GL7d16.

Figure 5.8 – Scalability of the Greedy Algorithm.

implementation scales better on C, where we reach a parallel efficiency of 79.28% in average using
36 cores, and which can be up to 92.81% in the best case (GL7d16).

This phenomenon may be due to the size of the L3 Cache. The qinv array describing the
matching is accessed frequently, in an unpredictable manner, by all the threads. Each thread also
accesses frequently and unpredictably its own mark array defined as in equation 5.1 (the queue of
each thread, on the other hand, is accessed with good spatial and temporal locality).

mark[j] =





1 if j is already matched to another row
0 if (i, j) is a valid candidate
−1 if (i, j) is a bad candidate

(5.1)

We thus expect the L3 cache of each CPU to contain a copy of qinv plus one mark per thread.
When k threads run on each CPU, this amount of data requires (4 + k)m bytes.

This suggests that a strong performance degradation is likely to occur when this quantity goes
beyond the size of the L3 cache. On machine B, for the GL7d19 matrix, this should happen when
more than 4 threads run on each CPU. And indeed, we observe a severe drop in parallel efficiency
when using more than 16 threads on the 4 CPUs.

This might also explain why transposing the last matrices helps: they have much more columns
than rows.

Lastly, this bottleneck could potentially be alleviated a little by using more efficient marks,
using only 2 bits per column instead of 8. However, doing so would require more bit-twiddling, and
its effect on the overall performance has yet to be evaluated.
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Conclusion

We have designed an efficient algorithm for sparse gaussian elimination over finite fields. We
mostly focus on the computation of the rank, because it raises the same issues as solving linear
system, (i.e. computing a PLUQ factorisation of a matrix) while returning only a single integer.
This algorithm basically consists of three steps: selecting a set of structural pivots before performing
any arithmetical operations, computing the Schur Complement of the matrix with respect to these
pivots in one fell swoop, and computing the rank of this Schur Complement by any means, for
instance recursively.

One issue we may encounter is when the Schur Complement is big and totally dense. Generally
in this case, there is nothing we can do, and we will have to abort and report memory failure. Some
favorable cases happen when the number of structural pivots found beforehand is close to the rank.
Then we can utilise tricks that will return the rank of the Schur Complement, without having to
compute it.

We implemented it and benchmarked it using matrices from the Sparse Integer Matrix Col-
lection of J.-G. Dumas. Using a simple pivot selection heuristic due to Faugère and Lachartre,
our algorithm already outperformed both the classical right-looking algorithm, and the GPLU al-
gorithm. This algorithm could also process more matrices than these two previous algorithms,
without suffering from memory issue, and was also more efficient than the iterative methods for
these large matrices when rank computation takes days with the Wiedemann Algorithm.

We eventually discuss of the importance of finding a large set of structural pivots before starting
any elimination step. However, finding the largest set of such pivots is an NP-complete optimisation
problem. We have to be content with an hopefully large set of them. At this aim, we proposed two
new pivots selection heuristics, and among them, one which appears to be very efficient.

This new method allows us to compute the rank of bigger matrices than before, in a tiny
fraction of the time that was needed before, using iterative methods. Furthermore, this method
is parallelisable, and scales rather well for most of the matrices, depending on the RAM of the
machine.

We have to highlight the limitations of our algorithm. It will not always work efficiently and
will even fail badly on matrices where the fill-in is unavoidable. Our experience suggests that a
large number of structural pivots can often be found in matrices that are somewhat triangular,
such as the GL7dk matrices. In this case, the algorithm we present is more likely to be able to
exploit this structure to allow much faster operations than the “slow-but-sure” iterative methods.

Finally, we can wonder if our method can be applied as a sub-routine during the linear algebra
step of factorisation and discrete logarithms problems.
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Introduction

“There are 364 days when you can get un-
birthday presents, and only one for birthday
presents, you know.”

– Lewis Carroll –

The 3SUM Problem is a well-known problem in computer science and many geometric problems
have been reduced to it. We study the 3XOR variant which is more cryptologically relevant. In
this problem, the attacker is given black-box access to three random functions F,G and H and
she has to find tree inputs x, y and z such that F (x) ⊕ G(y) ⊕H(z) = 0. In the case where only
2n/3 queries are made to each of the functions, the folklore quadratic algorithm, which consists in
creating all F (x) ⊕ G(y) and checking if there is a z such that H(z) = F (x) ⊕ G(y), solves this
problem in O

(
22n/3

)
in time and O

(
2n/3

)
in space.

Generalised Birthday Problem and Cryptography

The 3XOR problem is a difficult case of the more general kXOR (or k-list) problem, also known
as the generalised birthday problem. The birthday problem is a widely used cryptanalytical tool:
given two lists L1 and L2 of bit-strings drawn uniformly at random from {0, 1}n, find x1 ∈ L1 and
x2 ∈ L2 such that x1 ⊕ x2 = 0. It is widely known that a solution exists with high probability
as soon as |L1| ⊕ |L2| � 2n holds. This solution can be found in O

(
2n/2

)
time and space by

simple algorithms: if the two lists are sorted, scanning one of them is a possibility. The generalised
birthday problem (GBP) is defined as follows: given k lists of uniformly random n-bit vectors, find
an element in each one of the lists such that the XOR of all these elements is equal to a target
value (often assumed to be zero). This problem, in this general definition, has been introduced by
Wagner [Wag02]. In the same paper, Wagner also proposed an algorithm which solves the GBP
for all values of k, but works best when k is a power of two, but is rather disappointing in the case
k = 3, in the sense that it could not be solved faster than the classical 2-list birthday problem.
Wagner kXOR algorithm works by querying the functions more than strictly required from an
information-theoretic point of view. This gives some leeway to target a solution of a specific form,
at the expense of processing a huge amount of data. This method was later refined by Minder and
Sinclair [MS12] in order to find a solution even when the lists are smaller than required by Wagner
setting.

Before Wagner, the GBP problem had been studied only for a specific number of lists, usually
k = 4. Schroeppel and Shamir [SS81] proposed an algorithm which finds all solutions to the 4XOR
problem, with low memory consumption. Blum, Kalai and Wasserman [BKW03] used a similar
idea while they designed their notorious BKW algorithm to solve the learning parity with noise
(LPN) problem.

The 3XOR Problem in Cryptography

The 3XOR problem has received less attention in comparison. In [Nan15], Nandi exhibited a
forgery attack against the COPA mode of operation for authenticated encryption requiring only
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Contributions

2n/3 encryption queries and O
(
22n/3

)
operations. This attack works by reducing the problem of

forging a valid ciphertext to the one of solving an instance of the 3XOR problem. This attack
was later improved by Nikolić and Sasaki [NS15] to O

(
2n/2−ε

)
operations at the cost of making

a little less than 2n/2 queries to the COPA oracle. At this end, Nikolić and Sasaki designed an
improved 3XOR algorithm, and they obtained a speedup of about

√
n/ ln(n) compared to the

classical birthday algorithm. However, five years before Nikolić and Sasaki, Joux [Jou09, § 8.3.3.1]
had already proposed a better algorithm with which he obtained a speedup of about

√
n compared

to Wagner.

Time and Memory Tradeoffs

The bottleneck of the kXOR (and more precisely the 3XOR) algorithms is that they usually
require the manipulation of a huge amount of memory which quickly makes them impractical.
Time-memory tradeoffs were proposed by Bernstein [Ber07] and improved later by Bernstein et
al. [BLN+09] for the general kXOR problem. We found one of this tradeoff, called the “clamping
trick”, particularly interesting in the context of 3XOR. The idea is the following: when more queries
than actually needed are performed, one may choose to keep only the entries that are zeroes on the
first ` bits, with ` chosen so that the product of the sizes of the three lists would be exactly 2n−`.
This reduces the problem to the one of finding a 3XOR over n− ` bits, in the case where there will
be only one solution to the problem with high probability.

Other time-memory tradeoffs have been proposed by Nikolić and Sasaki [NS15], in the case of
the kXOR when k is a power two.

Our Contributions

In [BDF18], we have presented a new 3XOR algorithm that generalises Joux’s method. Our al-
gorithm can be applied to any size of input lists, and may be utilised to find all solutions to the
3XOR problem (and not only one). When the three input lists have the same size 2n/3, it has a time
complexity of O

(
22n/3/n

)
and O

(
2n/3

)
in space, and thus gains a ×n speedup compared to the

quadratic algorithm in this case. This algorithm is practical: it is up to 3× faster than the quadratic
algorithm. Furthermore, using Bernstein’s “clamping trick”, we show that it is possible to adapt
this algorithm to any number of queries, so that it will always be better than the Nikolić-Sasaki Al-
gorithm in the same settings. To gain a deeper understanding of these problems, we propose to solve
actual 3XOR instances for the SHA256 hash function. We present practical remarks, along with a
96-bit 3XOR of SHA256. We also revisit a 3SUM algorithm by Baran-Demaine-Pǎtraşcu [BDP05]
which is asymptotically n2/ log2 n times faster than the quadratic algorithm when adapted to our
3XOR problem, but is otherwise completely impractical.

Organisation of the Part

In Chapter 6 we give a formal definition of the problem, recall its context along with a few appli-
cations. We also present the computational model, as well as algorithmic and probabilistic tools
that we will utilise throughout the part.

In Chapter 7 we revisit previous work such as Wagner 4XOR algorithm. We explain why this
method does not work well for the case of the 3XOR. We present later improvements by Joux and
Nikolic-Sasaki, and we detail Bernstein’s clamping trick.

In Chapter 8 we present the main contribution of [BDF18]: our new algorithm for the 3XOR
problem. We also present time-memory tradeoff using the clamping trick, and explain how large
values of n should be handled in practice. We also present some possible improvements of our
algorithm, that may allow us to gain constant factors, on the running time. Finally we present our
experimentations, give some implementation details, and present a 3XOR over 96-bit of SHA256.

In Chapter 9 we present an adaptation of a 3SUM algorithm to our 3XOR case. This algorithm
due to Baran Demain and Pǎtraşcu [BDP05], and usually called BDP, is asymptotically faster than
any other. However, in our particular case, we claim that it is impractical, and we will explain why.
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Chapter 6
Of the 3XOR Problem: Context and Preliminaries

In this chapter, we give some generalities about the 3XOR problem. We namely
recall some important probability results related to this problem, and we also present
the computational model that we will utilise. We recall some applications and related
problems, and finally we present the algorithmic tools that we will need in the following
chapters.

6.1 Generalities
We can define the 3XOR problem as follows:
Problem 6.1. Let A, B and C be three arbitrary large lists whose entries are uniformly random
bit-strings of {0, 1}n. Find (a,b, c) ∈ A× B × C such that a ⊕ b⊕ c = 0.

6.1.1 Notations and Definitions

Usually, n will represent the size of our problem, meaning the length of the bit-strings we consider
in our problem. From now on we will see an n-bit string as a vector of Fn2 .

Given a list L we denote by L[i] the element of the list indexed by i, meaning the (i + 1)-th
element of L as the indexation starts at 0. Given a parameter i, We denote by Li, a list indexed
by i. We denote by L[i..j] the sublist containing the elements L[i],L[i + 1], . . .L[j − 1], by L[i..]
the sublist containing all elements of L starting from L[i], and by L[..i], the sublist containing all
elements of L up to L[i− 1] included. This is similar to the “slice” notation in Python.

For a given vector x, x[i..j] denotes the sub-vector formed by taking the coordinates from i to
j − 1. We define x[i..] and x[..i] accordingly. For instance, L[i][..`] denotes the sub-vector formed
by taking the first ` coordinates of the (i + 1)-th element of L. Given an n-bit vector x and a
parameter 0 < ` < n, we call `-bit prefix of x the sub-vector x[..`]. We denote by L[p] the sublist
of L composed by all vectors whose first bits are p (the size of this prefix is usually clear, given
the context). If x and y are two bit-strings, we denote by (x|y) the bit-string obtained, when
concatenating x and y.

Given a list L containing n-bit vectors and an n-bit vector y over F2, we denote by L ⊕ y the
list L ⊕ y = {x⊕ y|x ∈ L}.

Given a list L containing n-bit vectors and an n-by-n matrix M over F2, we denote by LM the
list LM = {xM |x ∈ L}

Given two lists A and B, and an integer 0 < ` ≤ n, we call join of A and B on the first ` bit,
the sublist A ./` B of A × B such that for all (a,b) ∈ A ./` B, a[..`] = b[..`]. More formally, we
have:

A ./` B = {(a,b) ∈ A× B|(a ⊕ b)[..`] = 0}. (6.1)
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Following the same idea, we denote by A ./`,p B the sublist of A × B such that for all (a,b) ∈
A ./`,p B, a[..`]⊕ p = b[..`]. Then again, we have:

A ./`,p B = {(a,b) ∈ A× B|(a ⊕ b)[..`] = p}. (6.2)

Given a list L, we call size of L the number of elements in L. We denote this size by NL.
Accordingly, NA, NB and NC respectively represent the size of the lists A,B and C. Let p be a
given prefix, we denote by Np

L the size of the sublist L[p] of the elements of L that share the same
prefix p.

6.1.2 Probability Results

Balls into bins. We consider the following model: we have N balls that we dispatch into m bins.
Each ball is put into a bin chosen uniformly at random and independently from the other balls, so
that the probability that a given ball falls into a given bin is 1/m. Here, the balls represent vectors,
and the bins all possible values they can take.

In this setting, the probability that any two balls collide (i.e. are in the same bins) is:

P[2 given balls in 1 bin] =
m∑

i=1
P[(ball 1 in bin i) ∩ (ball 2 in bin i)]

=
m∑

i=1
P[ball 1 in bin i]P[ball 2 in bin i]

=
m∑

i=1

1
m2 = 1

m
. (6.3)

In terms of vectors, this could be translated as the probability that two (logm)-bit vectors have
the same value.

Now, if we throw N balls uniformly at random in m bins, the expected number Nb of balls in
any given bin b is:

E[Nb] =
N∑

i=1
P[Ball i is in bin b]

=
N∑

i=1

1
m

= N

m
. (6.4)

We have the following result:

Theorem 6.1 (Stated as in Shoup [Sho09]). Suppose that N balls are thrown uniformly at random
and independently into m bins. The probability that at least one bin contains more than one is
bounded as follows:

1− e−
N(N−1)

2m ≤ P[There is a bin with more than 1 ball] ≤ N(N − 1)
2m

For instance, if N = 2n/2 is m = 2n, then the probability that there is a collision will be close
to 1/2.

Now, given a pack of m balls thrown uniformly at random into m bins, we may wonder how
many balls are there in the bin that contains the most balls? In his thesis, Mitzenmacher [Mit96]
actually answers this question.

Theorem 6.2 (Mitzenmacher [Mit96, Lemma 2.14]). The maximum load is Θ(ln(m)/ ln(ln(m))),
with high probability.
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In terms of vectors, this means that given a list of m uniformly random vectors of Flogm
2 , we

can expect to find Θ(ln(m)/ ln(ln(m))) that are identical.
Remark 1. Before Mitzenmacher, it was already a known result that the maximum load is
O (ln(m)/ ln(ln(m))) [Gon81]. In [Mit96], Mitzenmacher proved that this bound is actually tight.

Birthday Paradox and generalisations. We assume now that we have two packs of balls. The
first pack contains N1 blue balls and the second pack contains N2 red balls. The question we may
ask is: what is the expected number of collisions between blue balls and red balls? In other words,
we are asking the number of pairs of balls with one red ball and one blue ball, such that the two
balls share the same bin.

To answer this question, we consider the variable Xij that is 1 if the blue ball i and the red ball
j collide and 0 otherwise. The number of balls that collide can be given by X =

∑N1
i

∑N2
j Xi,j .

We have:

E[X] =
∑

i

∑

j

E[Xij ]

=
∑

i

∑

j

P[2 balls in 1 bin] = N1N2
m

. (6.5)

From here, we can see that we dare to expect to have a collision between a blue and a red ball,
we need to have E[X] = 1, and then:

N1N2 = m. (6.6)

In terms of vectors, this means that if we have two lists L1 and L2 of (logm)-bit vectors, and
we hope to have a couple (x1,x2) ∈ L1 ⊕L2 such that x1 = x2, then the product of the size of L1
and L2 must be m. We also have the following result:

Theorem 6.3 (Stated as in Vaudenay [Vau05]). If N1 = α
√
m red balls and N2 = β

√
m blue balls

are thrown independently and uniformly at random into m bins, then the probability that there is
no bin that simultaneously contains red and blue balls, satisfies

P[No bin contains a red ball and a blue ball] −−−−−→
m→+∞

e−αβ

Wagner’s Generalised Birthday Problem, is slightly harder to represent with balls and bins.
Still, we give a similar result for the case of the 3XOR. We assume that we have two packs of balls
the first pack contains red balls that are each indexed by one integer 0 ≤ i < NA, different for
each ball, the second pack contains blue balls that are indexed by two integers 0 ≤ j < NB and
0 ≤ k < NC such that a couple (j, k) will uniquely represent a ball. We throw uniformly at random
the balls of these two packs into m bins. The pack of red balls represents one of the input list,
say A that contains NA elements, and the pack of blue balls represents the list B ⊕ C of the xor of
the elements of the two other lists, such that B contains NB elements and C contains NC elements.
For instance, the ball indexed by (j, k) stands for the element B[j] ⊕ C[k]. It is clear that there
are overall NBNC blue balls. Then according to Equation 6.5, the expected number of collisions
between a blue and a red ball will be:

E[Ncol] = NANBNC
m

, (6.7)

and then if we have:

NANBNC = m, (6.8)

we can expect to have one collision, and one only, between the blue and the red balls. In terms
of lists, this means that there we expect to find one couple (a,u) ∈ A × (B ⊕ C) such that a = u.
Then if Equation 6.8 is satisfied, we expect to find a 3XOR between A, B and C.
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Following the same idea, it is possible to prove that the expected number of solutions of the
kXOR problem is:

E[Ncol] =
∏k
i=1Ni

m
, (6.9)

where Ni is the size of Li, and then, if:

k∏

i=1
Ni = m,

we can expect to have one collision, and one only, with high probability.

6.1.3 Computational Model

We are considering a word-RAM (Random Access Machine) model. In other words, we consider
that we have a machine in which each “memory cell” contains a w-bit word. We assume that
the usual arithmetic (addition, subtraction, multiplication, integer division, modulo) and bitwise
operations (AND, OR, XOR, NOT) on w-bit words, as well as comparison of two w-bit integers and
memory access with w-bit addresses, are constant time. Furthermore we assume that w = θ(n).
This model is said to be transdichotomous (i.e. the machine words fit the size of the problem).

We also assume that we have black-box access to three oracles A,B and C. When queried with
an n-bit integer i, the oracle A returns the n-bit value A(i) = A[i] (the (i + 1)-th element of the
list A). The same goes for B and C. It is understood that, in most cryptographic applications of
the 3XOR problem, querying the oracles actually corresponds to evaluating a cryptographic prim-
itive. As such, we assume that the oracles implement random functions. We can now reformulate
Problem 6.1 in a way that suits better our model:

Problem 6.2. Given three random oracles A, B and C, that produce n-bit (apparently) uniformly
random values, find integers i, j and k, such that A(i)⊕B(j)⊕C(k) = 0.

The machine on which the actual algorithms run is allowed to query the oracles, to store
anything in its own memory and to perform elementary operations on w-bit words. An algorithm
running on this machine solves the 3XOR problem if it produces a triplet (i, j, k) such that A[i]⊕
B[j]⊕ C[k] = 0.

The relevant performance metrics of these algorithms are the amount of memory they need (M
words), the number of elementary operations they perform (T) and the number of queries they
make to each oracle (Q).

Most algorithms for the 3XOR problem begin by querying the oracle A on consecutive integers
0, 1, . . . , NA − 1 (the same goes for B and C with respective upper-bounds of NB and NC) and
storing the results in memory. We therefore assume that algorithms start their execution with a
“local copy” of the lists, obtained by querying the oracles, except when explicitly stated otherwise.

To avoid degenerate cases, we assume that the number of queries to the oracles are expo-
nentially smaller than 2n. More precisely, we assume that there is a constant ε > 0 such that
max{NA, NB, NC} < 2(1−ε)n.

Recovering colliding inputs. It is usually simpler in practice to implement algorithms that
produce the colliding values (A[i],B[j], C[k]) instead of the colliding inputs (i, j, k). The reason for
that is that most algorithms sort at least one of the lists, so that L[i] is not longer at index i in
the array holding L. It would be possible to store pairs (A[i], i) in memory, sorting on A[i] and
retaining the association with i at the expense of an increased memory consumption. In practice it
is much simpler to find the colliding values, then re-query the oracles again to find the corresponding
inputs, at the expense of doubling the total number of queries.
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6.2 Applications and Related Problems

6.2.1 Applications of the 3XOR Problem

There are only a few applications in cryptography for the 3XOR problem, the best-known one
being a forgery attack against the COPA mode of authenticated encryption. We recall the idea of
this attack in the following subsection.

However, a sensible improvement for the 3XOR problem may help to improve Wagner’s method
for the kXOR problem when k is not a power of two.

Attack against COPA Based Authenticated Encryption Schemes

This attack was initially proposed by Nandi [Nan15], and shortly after Nikolić and Sasaki proposed
a variant using their 3XOR algorithm as subroutine. We briefly recall the idea of the attack here.

COPA mode of authenticated encryption. COPA is a block authenticated encryption mode,
that basically works as follows: given an input message M which actually consists of d − 1 n-bit
vectors denoted m0 . . .md−2 and (possibly) one last vector md−1 of length s with 0 ≤ s < n, it
returns:

FCOPA(m0 . . .md−1) =
{

c0| . . . |cd−2|t if s = 0 (there is no md−1).
c0| . . . |cd−2|XLS(md−1|t) if s > 0 (the last block is incomplete),

where t is the authentication tag, and XLS is a pseudo-random permutation (PRP). t depends only
on the first d − 1 message blocks and on the secret key. In other words, given two different md−1
and m′d−1, the vectors t obtained while computing FCOPA(m0 . . .md−1) and FCOPA(m0 . . .m′d−1)
will be identical. The output of XLS(md−1|t) and XLS(m′d−1|t) on the other hand will be totally
different.

A ciphertext (c|t′) is valid if and only if the following conditions are all satisfied:

• c is the ciphertext corresponding to first d− 1 message blocks.

• t′ is either the authentication tag t (if the last block is complete) or XLS−1(t′) = (md−1|t),
where t is the authentication tag (if the last block is incomplete).

A verifier who knows the secret key can check these two conditions.

Remark 1. The actual function FEnc used to encrypt m0, . . . ,md−2 is not really important here, as
the attack is fully based on a flaw in the design of the XLS PRP. We can even assume that FEnc is
a random injective function.

Let us just say that, in a simplified version, XLS is an invertible function that given as input a
bit-string (p|q) where p is of length n and q is of length n−1, returns as output a bit-string (c|d),
where c is of length n and d is of length n− 1. In [Nan14], Nandi proposes a distinguisher against
XLS, which he revisits in [Nan15]. Basically, Nandi notices that if two queries, XLS(p1|q1) = (r1|s1)
and XLS(p1|q2) = (r2|s2), are made to the XLS oracle, then with probability 1/2, XLS−1(r2|s3) =
(p3|q3), with:

1. s3 = s1 ⊕ q1 ⊕ q2 ⊕ (s1 ⊕ q1 ⊕ s2 ⊕ q2)≪2;

2. q3 = (s1 ⊕ q1)≪2 ⊕ q2 ⊕ (q2 ⊕ s2)≪2,

where the≪ 2 operator denotes a 2-bit left rotation. If XLS was indistinguishable from a truly
random permutation, this probability would have been 2−n+1. This flaw in the design of XLS leads
to a forgery attack against the COPA authenticated encryption family.
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Attack against COPA. This is a chosen-plaintext attack. The attacker is assumed to have access
to a COPA oracle, and can query it with whatever message suits her. The general idea of the attack
is the following: For any fixed mi ∈ {0, 1}n, and for (p1|q1) as above, we have:

FCOPA(mi|p1|q1) = (ci|r1|s1),

where ci is the encryption of mi, and (r1|s1) = XLS(p1|s1). We also have:

FCOPA(mi|p1|q2) = (ci|r2|s2),

and with probability 1/2, there is a p3 such that:

FCOPA(mi|p3|q3) = (ci|r2|s3),

with q3 and s3 defined as above. The point is that p3 is unknown, and it is not possible to make
decryption queries to find it. The decryption query is then simulated by solving an instance of the
3XOR problem. We summarise this attack in Algorithm 13.

Algorithm 13 Nandi’s attack against COPA.
Require: A COPA oracle FCOPA, a parameter N ≥ 2n/3.
Ensure: A forged cipher (C, T ), where T is a valid tag, or ⊥ if the attack fails.

1: for 0 ≤ i < N − 1 do
2: Choose mi ∈ {0, 1}n and set (ci|ti)← FCOPA(mi)
3: Set qi ← ti[1..]
4: Set b such that |I| = |{i s.t. ti[0] = b}| ≥ N/2.
5: Partition I into I1 and I2 such that |I1| = |I2|.
6: Choose an arbitrary m ∈ {0, 1}n−1

7: for all i ∈ I do
8: Set (ci|ri|si)← FCOPA(mi|m)
9: Build the lists A ← {qi for i ∈ I}, B ← {(rj ⊕ qj)≪2 for j ∈ I2} and C ← {qk ⊕ (rk ⊕ qk)≪2}

10: Find (ai,bj , ck) ∈ A× B × C such that ai = bj ⊕ ck
11: if (a, b, c) not found then
12: return ⊥
13: Set s∗ ← (sj ⊕ qj ⊕ qk)⊕ (sj ⊕ qj ⊕ sk ⊕ qk)
14: return (ci|rj |s∗).

Nandi claims that the output (ci|ri|s∗) is a valid ciphertext with probability 1/4. Indeed, to be
valid (ci|rj |s∗) must satisfy (ci|ri|s∗) = FCOPA(mi|m∗), for some m∗ ∈ {0, 1}n − 1. According to
the definition of FCOPA this amounts to saying that XLS((m∗|ti[0])|ti[1..]) = (ri|s∗). If we denote
by p∗ the vector (m∗|ti[0]) and by qi the vector ti[1..] we have the following equivalence: (ci|ri|s∗)
is valid, if and only if there is p∗ ∈ {0, 1}n which satisfies the two following conditions:

[Condition 1 ] p∗[n− 1] = b

[Condition 2 ] XLS(p∗|qi) = (ri|s∗)

Now, recall that (rk|sk) = XLS(p|qk) and (rj |sj) = XLS(p|qj), where p = (m|b). Then with
probability 1/2, XLS−1(rk, s∗) = (p∗|q∗), with:

1. s∗ = (sj ⊕ qj ⊕ qk)⊕ (sj ⊕ qj ⊕ sk ⊕ qk)

2. q∗ = (sj ⊕ qj)≪2 ⊕ qk ⊕ (qk ⊕ sk)≪2

s∗ is actually chosen to satisfy this in step 13. And the 3XOR step ensures that qj = q∗. So,
with probability 1/2, Condition 2 is satisfied. Condition 1 is also satisfied with probability 1/2,
as p∗ is uniformly distributed. The two conditions are independent. It follows that the attack will
succeed with probability 1/4.
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Other Applications

An improved 3XOR algorithm is also interesting for searching parity check relations in fast corre-
lation attacks, with k = 3. The authors of [CJM02], studied the problem only with k ≥ 4.

A recent work concerning Time/Memory tradeoff for the BKW algorithm [EHK+18] accepted
at CRYPTO 2018, propose to consider finding cXORs for a constant c > 2, instead of 2XORs,
to cancel some blocks of bits. They claim then that the LPN problem can then be solved in
time T = 2log c k

log k+o(1) and memory M = 2
log(c)k
(c−1)k+o(1). This allows them to reduce the memory

consumption almost by a factor 1/c of the algorithm, at the cost of increasing the by a (log c)
factor the running time exponent. The parameter c should not be too high however, otherwise
the running time will be too high. In a personal conversation with the authors of [EHK+18], they
stated that an algorithm which solves the 3XOR problem significantly faster than the birthday
problem could possibly lead to an interesting time-memory tradeoff in BKW. Unfortunately, all
existing algorithms for the 3XOR problem (including ours) only gain a polynomial factor compared
to birthday search, which disappears in the o(1) component of the exponent. Finally, we recall that
the idea of computing cXORs instead of 2XORs has been studied before, first by Levieil and
Fouque [LF06] and more recently by Zang et al. [ZJW16].

6.2.2 Related Problems

Generalised Birthday Problem and Variants

Generalised Birthday Problem. In 2002, Wagner introduced the Generalised Birthday Prob-
lem (GBP) [Wag02]. He considers an arbitrary number of lists k, with k > 2. His goal was to
find an element xi in each one the Li lists such that: x1 ⊕ x2 ⊕ . . . ⊕ xk = 0. This problem is
also known as the k-list or the kXOR problem. Wagner studied the difficulty of this problem in
different settings. In particular, he proposed an efficient algorithm for the case where k is a power
of two (see Section 7.2.1 for the case k = 4). The authors of [EHK+18] also improved Wagner’s
method for some values of k, using dissection techniques [DDKS12]. However, the particular case
of the 3XOR problem remains a difficult case of the Generalised Birthday Problem.

Approximate-3XOR Quite recently, Both and May [BM17] have studied the following variant
of the 3XOR problem: Given three lists A, B and C, of n-bit vectors, find (a,b, c) ∈ A⊕B⊕C such
that wt(a⊕b⊕c) = δn, for some approximation parameter δ ∈ [0, 1/2]. In this case, they were able
to design an algorithm which solves this problem quite efficiently, even for somewhat small values
of δ. For instance, when δ = 0.1, they achieved a running time of about 20.2818n. However, when
δ = 0 (i.e. the case of the actual 3XOR problem), their method is similar to the one in [NS15], and
brings no improvement compared to previous work.

Decisional 3SUM/3XOR and Complexity Assumption

The (decisional) 3SUM problem with three lists of size N has been widely studied, in the world
of complexity theory. Indeed, many geometric problems can be reduced to it in sub-quadratic
time, and thus are said to be 3SUM-hard [GO95]. Testing whether a set of points in the plane
contains three collinear points is a notable example thereof. It has been conjectured that solving the
decisional 3SUM problem requires Ω

(
N2) operations [Eri95]. More recent works [Pat10, KPP16]

tend to thinks that it can be solved in time Ω
(
N2−o(1)

)
.

The 3XOR variant of this problem has been less studied than the 3SUM. Nonetheless, it has
been shown that a O (N2−ε) algorithm for the (decisional) 3XOR with lists of size N would imply
a faster-than-expected algorithm for listing triangles in a graph [Vio12, JV13]. A recent result
from [DSW18], accepted at MFCS’18, shows that if the 3XOR problem can be solved in time
Ω
(
n2−o(1)

)
, it would also reduce the time complexity of the offline SetDisjointness and offline

SetIntersection problems. The interesting point is that a similar result for these two problems
had been proved before in [KPP16], with the 3SUM problem. This makes the authors of [DSW18]
wonder if there might be some relation between the optimal expected time for the 3XOR problem
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and the 3SUM problem. For the record, given a finite set C, finite families A and B of subsets of
C, and q pairs of subset (S, S′) ∈ A×B, the offline SetDisjointness problem consists in finding
all of the q pairs (S, S′) with S ∩ S′ 6= ∅, and the offline SetIntersection problem consists in
listing all elements of the intersections S ∩ S′ of the q pairs (S, S′).
Remark 2. The 3XOR problem of which we talk in this section is slightly different than the one
we are concern with. Indeed, the input lists are supposed to be of size at most N , that are not
necessarily uniformly random, and there may be no solution at all, while in our case, the lists
consist of uniformly random elements, and may be as big as we want, so that there will be at least
one solution. The two problems are however very similar. In our case, randomness allows us to
use some algorithmic tricks, which may not apply directly to a more generic case (e.g. radix sort,
dispatch procedure).

6.3 Algorithmic Tools

Algorithms for the 3XOR problem process exponentially-long lists of random n-bit vectors. In this
section, we review the algorithmic techniques needed to perform three reoccurring operations on
such lists: sorting, testing membership and right-multiplication of each vector by an n× n matrix.
We recall that these operations can be performed in time and memory that is proportional to the
size of the input lists.

6.3.1 Hashing

The simplest algorithm for the 3XOR problem works by considering all pairs (a,b) ∈ A × B and
checking if a ⊕ b ∈ C. This is guaranteed to find all solutions. The problem is to quickly test
whether an element belongs in a list C.

It has long been known that hashing allows for dictionaries with O (1) access-time and constant
multiplicative space overhead [FKS84]. This is enough to make the algorithm above run in time
O (NANB +NC). In this case, it is thus beneficial to let C be the largest of the three lists. All we
need to do now, is to find a hash table that will fit our problem.

Linear probing. A simple hash table of size 2NC with linear probing allows to test membership
with 2.5 probes on average [Knu98, §6.4]. We recall that linear probing is a scheme used to resolve
collisions in hash tables. Let us consider a hash table T , with hash function h. To insert an element
x in T , check if T [h(x)] is empty. If so, x is inserted at index h(x). If not, probe index h(x) + 1,
then h(x) + 2, and so on, until an empty cell is found. We give an example of a hash table that
utilise linear probing in Figure 6.1. In this example, the hash function utilised is h : x→ x mod 8,
the insertion order is given on the right. To search for a given x in T , first probe h(x). If T [h(x)]
contains something else than x, then probe T [h(x) + 1], and so on, until finding either an empty
cell (x does not belong to the table), or a cell whose stored key is x.

Because the hashed elements are uniformly random, taking some lowest-significant bits yields
a very good hash.

Cuckoo hashing. Linear probing is already good, but Cuckoo Hashing improves the situation
to 2 probes in the worst case [PR01]. In this case two arrays of size NC , T1 and T2, with two hash
functions h1 and h2 are considered. If x belongs to the hash table, it is either in T1[h1(x)] or in
T2[h2(x)]. To insert an element x in the table, set T1[h1(x)] to x. If T1[h(x)] was not empty, then
there was a key y stored in this cell before. The insertion removes y from table T1, so we have to
insert it in T2[h2(y)]. If there was already a key z stored in T2[h2(y)], then z is removed, so we insert
it in T1[h1(z)], and so on. We illustrate this in Figure 6.2. This process may fail because of cycles,
in which case the two arrays have to be rebuilt with new hash functions. Insertion requires an
expected constant number of operations. In principle, Cuckoo hashing needs a family of universal
hash functions, which is a drawback in our case, as their evaluation is in general computationally
costly. We may use the usual universal hash functions ha,b : x 7→ (ax + b) mod p, where p is a
prime.
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`

Figure 6.3 – Illustration on the join over ` bits.

We found that Cuckoo hashing was about 2× faster than linear probing. It allows to make the
quadratic algorithm quite efficient, with only a small constant hidden in the O notation: around
10 CPU cycles are enough to process a pair.
Remark 1. Note that the size of the hash tables above are given as an example. The same methods
would also work with tables (slightly) smaller.

6.3.2 Sorting and Joining

The evaluation of the “join” A ./` B of two lists A and B of size 2αn is ubiquitous in generalised
birthday algorithms following Wagner’s ideas. All these algorithms rely on a common idea: they
target a solution a ⊕ b ⊕ c = 0 such that c[0..`] = 0 (for some a priori fixed value of `), which
implies that a[..`] = b[..`]. These special solutions can be found efficiently by performing a linear-
time join operation between A and B. Algorithm 14 is thus the workhorse of these techniques. An
illustration of the join is given in Figure 6.3.

It is also possible to check if a pair (a,b) of A ./` B XORs to an element of C as the algorithm
goes. For that, we only have to slightly modify Algorithm 14 into Algorithm 15

Radix sort. It is well-known that an array of N random `-bit vectors can be sorted in linear
time [Knu98, §5.2.5]: the randomness of the input allows to beat the Ω(N logN) lower-bound of
comparison-based sorting. Here is a way to do it using O(

√
N) extra storage: perform two passes of

radix sort (see Figure 6.4 for an illustration of the radix sort) on 0.5 logN bits, then finish sorting
with insertion sort. Morally, for each pass of radix sort, we initialise

√
N counters corresponding

to the possible prefixes, then we scan through the list, pick up the 0.5 logN -bit prefix of each
vector, increment the corresponding counter. Then the entries can directly be dispatched in the
right output bucket.

Each pass of radix sort requires
√
N words to store the counters. Besides that, the input array

can in principle be permuted in-place [Knu98, §5.2.1]. The two passes of radix sort guarantee that
the array is sorted according to its first logN bits. This reduces the expected number of inversions
from ≈ N2/4 to ≈ N/4. Thus, the expected running time of the insertion sort will be linear.

Complexity analysis of Algorithm 15. Step 1 of Algorithm 15 runs in time linear in NA+NB.
Steps 11 to 18 are repeated at most NA + NB times and require a constant number of operations
on w-bit words. The test of step 15 is executed once for each pair (a,b) ∈ A × B with a[..`] =
b[..`]. The expected number of such pairs is NANB/2`. Considering that we also have to initialise
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Algorithm 14 Join.
Require: Lists A,B and a parameter 0 < ` < n.
Ensure: All A ./` B.

1: Sort A and B according to their first ` bits
2: Set A ./` B ← ⊥
3: Set i← 0, j ← 0
4: while i < NA and j < NB do
5: if A[i][..`] < B[j][..`] then
6: i← i+ 1
7: else if A[i][..`] > B[j][`] then
8: j ← j + 1
9: else

10: Set p← A[i][..`], j0 ← j
11: while i < NA and A[i][..`] = p do
12: j ← j0
13: while j < NB and B[j][..`] = p do
14: A ./` B ← A ./` B ∪ {(A[i],B[j])}
15: j ← j + 1
16: i← i+ 1

Algorithm 15 Join and test membership.
Require: Lists A,B and a hash table T which contains n-bit vectors c such that c[..`]
Ensure: All (a, b) ∈ A× B such that a⊕ b ∈ C.

1: Sort A and B according to their first ` bits
2: Initialise a hash table with entries of C
3: Set Res← ⊥
4: Set i← 0, j ← 0
5: while i < NA and j < NB do
6: if A[i][..`] < B[j][..`] then
7: i← i+ 1
8: else if A[i][..`] > B[j][`] then
9: j ← j + 1

10: else
11: Set p← A[i][..`], j0 ← j
12: while i < NA and A[i][..`] = p do
13: j ← j0
14: while j < NB and B[j][..`] = p do
15: if TestMembership(A[i]⊕ B[j], T ) = True then
16: Res← Res ∪ {(A[i],B[j])}
17: j ← j + 1
18: i← i+ 1
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a hash table with the elements of C, the total expected running time of the algorithm is thus
O
(
NA +NB +NC +NANB/2`

)
.

6.3.3 Matrix Multiplication

We consider a n×n matrix M over F2. Computing the list AM naively would require O (n×NA)
operations. Fortunately, if NA = 2αn, this can improved to O (2αn) operations, using a trick similar
to the “method of Four Russians” [KADF70].

The method of the Four Russians. We briefly recall how the original Four Russian method
works, before explaining our adaptation to our case. The authors of [KADF70] consider two square
matrices A and B of size N with N = O (logw), where w is the size of a machine word and they
aim to compute the product C = AB. To do so, they first split B into blocks Bij of size t× t where
t = ε logN and ε is an arbitrary parameter greater than 0.

For each i, j they create a lookup table Tij corresponding to Bij such that for all v ∈ Ft2,
Tij [v] = vBij . Then, for all rows ai of A, they split a into slices of t entries. Denoting by aki the
k-th slice of ai, for each row ci of C, a slice cji of ci satisfies cji = a1

iA1j ⊕ · · · ⊕ aN/ti A(N/t)j .
The computation of each aki Akj can be done in constant time by looking at the table. Computing

a slice cji of ci, can then be done by simply computing N/t XORs. All in all, this method requires
to compute N(N/t) such slice, and thus this computation has a time complexity of:

T = O
(
N3

t

)
= O

(
N3

logN

)
,

and the computation of the tables requires:

T = O
((

N

logN

)2
N ε logN

)
= O

(
N ε+2

logN

)
.

Indeed, there are (N/t)2 tables to compute, each one containing 2t vectors, and the computation
of an entry of each table requires to compute a vector-matrix product of size where the matrix is
square of logN . This product can be computed in O (logN) as long as logN = O (w). The extra
memory required is:

M = O
(
N2+ε

logN2

)
.

This method has been widely studied and has known some improvements, decreasing the asymp-
totic complexity in the last few years [BW09, Cha15, Hua15].
Remark 2. This method was called the 4 Russians’ Method “after the cardinality and the nationality
of its inventors” Arlazarov, Dinic, Kronrod and Faradzev. It is however not clear if the four authors
were actually Russians at the time they designed it (in 1970).

A different tradeoff. We are interested in a different case where we want to compute the product
of a 2αn-by-n matrix A and an n-by-n matrix M , where n = Θ(w).

Following the same idea as [KADF70], we divideM into slices of t = n α
1+ε rows (for an arbitrary

ε > 0), and for each slice i, we precompute all the 2
α

1+εn linear combinations of the rows and store
these in a table Ti. This takes 2

α
1+εn word operations.

Then, for each row ai of A, the vector-matrix product aiM can then be evaluated by dividing
ai into slices of size n α

1+ε , and by looking at the corresponding entries Tk[aki ] for all k and XORing
together the 1+ε

α resulting vectors.
We claim that computing aiM takes only a constant number of operations. Indeed, we actually

only need to compute n/t XORs, with our definition of t, this consists in a constant number of
XORs that can each be computed in constant time as long as n = Θ(w). We will need to repeat
this step 2α·n times. Hence, the whole complexity of the procedure is O (2αn) word operations, but
it requires to use O

(
2

α
1+εn

)
extra memory.

78



Chapter 7
Of Previous 3XOR Algorithms: Revisiting and Discussing Them

In this chapter, we revisit and discuss previous algorithms such as the naive quadratic
algorithm, Wagner kXOR algorithms, and the later improvements in the 3XOR case by
Nikolić and Sasaki, and by Joux. We also present a time-memory tradeoff introduced by
Bernstein called the clamping trick.

7.1 The Quadratic Algorithm
A naive algorithm. We assume that we have made NA queries to A, NB queries to B and
NC queries to C, such that the product NANBNC = 2n. We expect to have exactly one triplet
(a,b, c) ∈ A× B × C such that a ⊕ b⊕ c = 0.

In this setting, we can find the solution to the problem using the folklore quadratic algorithm,
which basically does the following:

1. Take all pairs (a,b) from A× B,

2. If (a,b) ∈ C, return (a,b,a ⊕ b) and terminate the procedure,

3. Else, discard the pair and continue with an other one.

Armed with the algorithmic tools described in Section 6.3, the expected time of the procedure
will be T = O (NANB +NC) and the memory required will be M = O (NA +NB +NC).

For instance, if we decide to make 2n/3 queries to each oracles, which is the minimum number
of queries required to have a solution with high probability, we will have T = O

(
22n/3

)
and

M = O
(
2n/3

)
. As the algorithm is proportional to the product NANB, we can decide to make less

queries to oracles A and B: only 2n/4, and then increase the number of queries to C up to 2n/2 so
that there will still be a solution with high probability. In this particular setting, we have reduced
the time complexity of the quadratic algorithm described above to T = O

(
2n/2

)
, at the cost of

increasing both the total number of queries and the space complexity to O
(
2n/2

)
.

This naive example shows that this problem is not as simple as it seems, and that time-memory
tradeoffs are to be taken into account.

A worst-case quadratic algorithm. Recently Dietzfelbinger, Schlag and Walzer [DSW18]
proposed a variant of this quadratic algorithm that allowed them to solve the problem in time
O (NA(NC +NB) +NC logNC), even in the worst-case, without hash tables. They actually pre-
compute a binary tree associated to the one of the list (say C), such that:

• The leafs of the tree are the element of the lists C
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1000

0100 0010

0010 0111 0001 1111

0001 0010 1100 1101

Figure 7.1 – Tree associated to the list {(0001), (0010), (0111), (1100), (1101), (1111)}.

• The inner nodes are bit strings x, such that the first non-zero bit of x, indicates the position
of the first bit which differs in the leafs of the sub-tree whose root is x.

This kind of structure is sometimes referred as Patricia Tree (e.g. [Knu98, § 6.3]). For a given
inner node x whose first non zero bit is x[i]. We denote by LeftSubtree(T,x) the sub-tree of
T , whose root is the left child of x. Equivalently RightSubtree(T,x) is the sub-tree of T , whose
root is the right child of x. All the leafs c` of LeftSubtree(T,x) are such that c`[i] = 0, and all
the leafs cr of RightSubtree(T,x) are such that cr[i] = 1. An example of such a tree is given in
Figure 7.1.

The authors of [DSW18] use as a subroutine a Traverse procedure, which takes as input a
vector a and a tree T associated to the list C, and returns the sorted list a ⊕ C in time O (NC).
This procedure is given in Algorithm 16. Using this trick, they are able to search a 3XOR in time
O (NA(NC +NB) +NC logNC +NB logNB) using the following procedure:

1. Pre-compute the tree T associated to the elements of C and sort B.

2. For all a ∈ A, compute the sorted list a ⊕ C.

3. Scan through the lists a ⊕ C and B to search for collisions.

Step 1 can be performed in time O (NC logNC +NB logNB) (this step consists mostly in sorting
the lists). Step 2 consists in visiting the nodes of a binary tree which contains at most 2NC−1 nodes,
and this step has to be performed O (NA) times so the total complexity of step 2 is O (NANC).
Finally step 3 requires about O (NC +NB) operations, and has to be performed O (NA) times.

Algorithm 16 Dietzfelbinger, Schlag and Walzer Traverse algorithm.
Require: A tree T associated to the list C, a vector a
Ensure: The list L = a ⊕ C in sorted order.

1: if T = {c} then . T consists only of one node
2: Emit a ⊕ x
3: else
4: Let r be the root of T . T has at least three nodes
5: if a ⊕ r > a then
6: Traverse(LeftSubtree(T, r),a)
7: Traverse(RightSubtree(T, r),a)
8: else
9: Traverse(RightSubtree(T, r),a)

10: Traverse(leftSubtree(T, r),a)

7.2 Wagner’s Algorithm for the kXOR Problem

In this section we recall the idea of Wagner’ s algorithm for the kXOR problem. We detail the case
k = 4, where the method works well and explain why it cannot easily be transposed to the case
k = 3.
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7.2.1 Wagner’s 4-Tree Algorithm

We first explain Wagner’s Algorithm in the case of the 4XOR problem. We consider four lists L1,
L2, L3 and L4, containing 2n/3 n-bit entries each. In this setting, from Equation 6.9, the expected
number of solutions to the problem is:

E[Ncol] = 24n/3

2n = 2n/3.

The idea of the 4-tree algorithm is to choose some arbitrary n/3-bit prefix p such that the
targeted solution (x1,x2,x3,x4) ∈ L1 × L2 × L3 × L4 satisfies: x12 = x1 ⊕ x2, x34 = x3 ⊕ x4, and
x12[..n/3] = x34[..n/3] = p. For simplicity, we assume that p = 0.

According to Wagner, such a solution (x1,x2,x3,x4) exists with high probability. Indeed, if
you consider the joined list L1 ./n/3 L2 and if you denote by N12 the number of couples (x1,x2) ∈
L1 ./n/3 L2 (i.e. couples (x1,x2) ∈ L1× L2 such that x1[..n/3] = x2[..n/3]), Equation 6.5 implies:

E[N12] = 22n/3

2n/3
= 2n/3.

Similarly, E[N34] = 2n/3, where N34 is the number of elements in L3 ./n/3 L4.
A solution, to the problem is then given by two couples: (x1,x2) in L1 ./n/3 L2 and (x3,x4) in

L3 ./n/3 L4 such that if we denote by x12 the XOR x12 = x1⊕x2 and x34 the XOR x34 = x3⊕x4,
x12 and x34 agree on the remaining 2n/3 bits. In other words,

x12[n/3..] = x34[n/3..].

The expected number of solutions is then:

E[Nsol] = N12N34
22n/3 ' 22n/3

22n/3 = 1.

This method is summarised in Algorithm 17.
Remark 1. This method is called the 4-tree Algorithm because it can be illustrated by a tree with
four leaves representing the input lists (see Figure 7.2).

Algorithm 17 Wagner’s 4-Tree Algorithm.
Require: Lists L1,L2,L3 and L4 of size 2n/3
Ensure: A triplet (x1,x2,x3) ∈ L1 × L2 × L3 such that x1 ⊕ x2 ⊕ x3 ∈ L4

1: Compute the list L1 ./n/3 L2.
2: Initialise a hash table T containing the x1 ⊕ x2 for all (x1,x2) ∈ L1 ./n/3 L2
3: Find a couple (x3,x4) ∈ L3 ./n/3 L4 such that x3 ⊕ x4 ∈ T .
4: Set y← x3 ⊕ x4, and set i← 0
5: do
6: Set (x1,x2)← (L1 ./n/3 L2)[i]
7: i← i+ 1
8: while x1 ⊕ x2 6= y
9: return (x1,x2,x3)

Complexity analysis. The time and space complexity of Algorithm 17 is O
(
2n/3

)
. Indeed, as

discussed in Section 6.3, creating the join list L1 ./n/3 L2 can be done in time T = O (N1 +N2 +N12),
and in space M = O (√N1 +

√
N2
)
using Algorithm 14. Initialising a hash table with the ele-

ments of L1 ./n/3 L2 can then be done in time and space O (N12). Step 3 can be done in time
T = O (N3 +N4 +N34 +N12) and space M = O (√N3 +

√
N4
)
using Algorithm 15. Recovering

the couple (x1,x2) of L1 ./n/3 L2 such that x1⊕x2 = x3⊕x4 will require at most to scan through
the entire list L1 ./n/3 L2.

All in all, this results in a time complexity of
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L1 L2 L3 L4

2n/3

n

{x1 ⊕ x2|(x1,x2) ∈ L1 ./n/3 L2} {x3 ⊕ x4|(x3,x4) ∈ L3 ./n/3 L4}

2n/3

n/3 2n/3

x1 ⊕ x2 ⊕ x3 ⊕ x4 = 0

Figure 7.2 – Illustration of Wagner 4-tree Algorithm.

T = O (N1 +N2 +N3 +N4 +N12 +N34) = O
(
2n/3

)
,

and a space complexity of

M = O
(
N12 +

√
N1 +

√
N2 +

√
N3 +

√
N4
)

= O
(
2n/3

)
.

Remark 2. This algorithm can easily be generalised to solve the kXOR problem when k is a power
of two. Indeed, the procedure has just to be reiterated a certain number of times. The algorithm
would then work with a time and space complexity of O

(
k2n/(log k+1)

)
, and require input lists of

size 2n/(log k + 1).

7.2.2 The 3XOR Case

We are more concerned with the 3XOR problem. In this case, the idea behind Wagner’s algorithm
does not pay off, and does not yield anything better than the quadratic algorithm. Indeed, let us
consider three lists A,B and C each containing N strings of length n. We choose an arbitrary `-bit
prefix p, and we target a special solution (a,b, c) ∈ A× B × C such that c[..`] = p.

Following the same idea as previously, it is possible to build the join list A ./` B. If we denote
by Njoin the number of elements of this list, we will have:

E[Njoin] = N2

2` .

If we actually want Njoin to be equal to N , so that the computation of the join list will require
exactly O (N) operations, we will have:

N = 2`.
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Furthermore, the expected number Np of vectors c of C such that c[..`] = p is:

E[Np] = N

2` = 2`

2` = 1.

Let us call c this single element. From here (a,b, c) – with (a,b) ∈ A ./` B – is a solution to
the 3XOR problem, if a⊕b and c agree on their (n− `) last bits. The expected number of couples
of A ./` B that actually satisfies this condition is:

E[Nsol] = 2`

2n−` ,

and thus, there will be a solution with high probability, as long as ` = n−`. It follows that ` = 1/2.
In a nutshell, Wagner’s algorithm applied to the 3XOR problem requires as input three lists

A,B and C of size 2n/2, and search for a pair of elements (a,b) ∈ A ⊕ B such that a ⊕ b matches
a single specific target in C. This is exactly the same as the naive birthday search with two lists.

Remark 3. We do not require NC to be 2n/2. In fact, we can consider a list C reduced to only one
element c from the beginning of the procedure. In this case the arbitrary prefix p is c[..n/2].

Improving Wagner’s idea. Although Wagner’s method does not seem to work as it is for the
case of the 3XOR, it has known improvement in the following years. Indeed, let us denote by Np

C
the size of C[p], and assume that NA = NB = 2` so that the expected size of A ./`,p B will also be
2`, then the expected number of couples (a,b) from A ./`,p B that satisfy a ⊕ b = c for some c in
C[p] is:

E[Nsol] = 2`Np
C

2n−` .

If we actually want to have only one solution with high probability, ` must satisfy:

`+ log(Np
C ) = n− `. (7.1)

Then, choosing NA = NB = 2n/2/
√
Np
C , one can find a solution to the 3XOR problem with

input lists A,B, C[p] in time and space:

T = M = O

 2n/2√

Np
C


 , (7.2)

using the following, simple procedure:

1. Set y to be a vector of Fn2 such that y[..`] = p and set C[p] ← C[p] ⊕ y and A ← A⊕ y

2. Initialise a hash table T with the entries of C[p]

3. Search a couple (a,b) ∈ A ./` B such that a ⊕ b ∈ T using Algorithm 15.

Remark 4. We can assume without loss of generality that the prefix p is 0. Indeed, for all y of Fn2 ,
if a ⊕ b ⊕ c = 0 then (a ⊕ y) ⊕ b ⊕ (c ⊕ y) = 0. From here, if p is not 0, we can find a vector
y such that y[..`] = p and replace the elements c of C[p] by c ⊕ y, and the elements a of A by
a ⊕ y without changing the set of solutions. That is exactly what is done in step 1 of the method
described above. This can be done in time O (NA +Np

C
)
without extra space.

The difficult part remains to compute the list C[p] in time and space that is proportional to
2n/2/

√
Np
C , so that the time and space complexity claimed in Equation 7.2 will still hold. Two

methods that actually do this job were independently proposed by Joux [Jou09] on one hand, and
Nikolić and Sasaki [NS15] on the other hand. We will recall these two methods in the two following
sections.
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7.3 Nikolić and Sasaki’s Algorithm

7.3.1 Description of the Procedure

The high-level idea of Nikolić and Sasaki’s improvement of Wagner’s algorithm is the following.
They start with three lists A,B, C such that NA = NB = NC = 2`, with ` being a little less than
n/2. Then they search for the most frequent `-bit prefix p in C, and they consider the sublist
C[p] of C, of the elements c such that c[..`] = p (the other elements of C are discarded). Then,
for every pair (a,b) of A ./`,p B they test whether a ⊕ b is in C[p] using the method described
previously. A description of this method is given by Algorithm 18. We also summarise the whole
idea in Figure 7.3.

Algorithm 18 Nikolić and Sasaki’s Algorithm.
Require: Lists A,B, C of size 2`
Ensure: A couple (a,b) ∈ A× B such that a ⊕ b ∈ C

1: Initialise a table TC of size 2` with zeroes
2: Set pmax ← 0
3: for 0 ≤ i < 2` do
4: c← C[i]
5: TC [c[..`]]← TC [c[..`]] + 1
6: if TC [c[..`]] > TC [pmax] then
7: Set pmax ← c[..`]
8: Set y← (pmax|0) such that y is of length n
9: Init a hash table T with c⊕ y for all c of C[pmax]

10: for 0 ≤ i < 2` do
11: A[i]← A[i]⊕ y
12: Find a couple (a,b) ∈ A ./n/2 B such that a ⊕ b is in T
13: return (a ⊕ y,b)

Remark 1. There is no need to actually store A ./`,p B. We can check if a couple (a,b) of A ./`,p B
is in C as the process goes using Algorithm 15.

7.3.2 Choice of the parameters and complexity.

According to Mitzenmacher’s thesis [Mit96], if we consider lists of 2` uniformly random elements,
the size of the sublist C[p], where p is the most frequent `-bit prefix in C, will be Np

C = Θ(`/ ln(`)).
Indeed, if we see our vectors as “balls” and all the possible prefixes they can take as “bins”, we are
searching for the number of balls in the bin that contains the maximum load (see section 6.1.2).
From Theorem 6.2, we obtain Np

C = Θ(`/ ln(`)).
According to Equation 7.1, a solution will be found with high probability as long as:

` = 1
2(n− log(Np

C )). (7.3)

Considering the actual expected value of Np
C , we have:

` = n

2 − ε(`),

where ε(`) ' log(`)− log(ln(`)). Thus

` ' n

2 − log(n/2) + log(ln(n/2)),

and it follows that the expected time space and queries complexity of the procedure is

T = M = Q = O
(

2n/2√
n/ ln(n)

)
. (7.4)
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A B C

2`

n

A ← A⊕ (p|0) B

C[p]
p Θ(`/ ln `)

`

{a⊕ b|(a,b) ∈ A ./` B}

C[p] ← C[p] ⊕ (p|0)

2`

`

a⊕ b⊕ c = 0

Figure 7.3 – Illustration of Nikolić and Sasaki’s Algorithm.
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Nikolić and Sasaki thus obtain a
√
n/ ln(n) speedup compared to Wagner and the Quadratic Al-

gorithm.

7.4 Joux’s Algorithm

Before Nikolić and Sasaki, Joux had already proposed a better improvement of Wagner’s algo-
rithm [Jou09]. He considers three lists, A,B and C such that NA = NB = 2n/2/

√
n/2, and

NC = n/2. The list C is then much smaller than the two other lists. Joux then proposes to find an
invertible matrix M , and to compute the lists A′ = AM , B′ = BM , and C′ = CM , such that all
vectors c from C′ have the same n/2-bit prefix c[..n/2] = 0.

If M is an invertible matrix, then finding a 3XOR with input lists A,B and C, is equivalent
to finding a 3XOR with input lists A′, B′ and C′. Indeed, if a ⊕ b ⊕ c = 0, for some (a,b, c) ∈
A×B×C, then aM ⊕bM ⊕ cM = 0, and reciprocally, if a′⊕b′⊕ c′ = 0, for some (a′,b′, c′) then
a′M−1 ⊕ b′M−1 ⊕ c′M−1 = 0.

Algorithm 19 Joux’s Algorithm.
Require: Lists A,B of size 2n/2/

√
n/2 and C of size n/2.

Ensure: A couple (a,b) ∈ A× B such that a ⊕ b ∈ C
1: Compute an n-by-n matrix M , such that ∀c′ = cM with c ∈ C, c′[..`] = 0.
2: Set A ← AM , B ← BM and C ← CM
3: Init a hash table T with the elements of C
4: Find a couple (a,b) ∈ A ./n/2 B such that a ⊕ b is in T
5: return (aM−1,bM−1)

Joux’s method is detailed in Algorithm 19. We also illustrate it in Figure 7.4.

7.4.1 Finding the matrix M

We give the following more general result, which will also be useful in Chapter 8:
Let ` be an integer such that 1 ≤ ` ≤ n/2. Let C be any (n − `)-by-n matrix. Then, C can

be decomposed using the PLUQ factorisation into: C = PLUQ, where P and Q are permutation
matrices, respectively of size (n − `)-by-(n − `) and n-by-n, L is lower-trapezoidal (i.e. a non
necessary square matrix whose coefficients above the main diagonal are zeroes) with non-zero
diagonal and U is upper-trapezoidal with non-zero diagonal. L is a (n − `)-by-r matrix and U is
a r-by-n matrix, where r is the rank of C. We denote U0 the r-by-r triangular sub-matrix U , and
U1 the sub-matrix of U such that U = (U0|U1).

Proposition 7.1. Let M be the n-by-n matrix such that:

M−1 =
(

0 In−r
U0 U1

)
·Q.

M is, indeed, invertible, and if we denote by X the (n− `)-by-r matrix X = PL, we have:

CM = (0|X).

The proof of this statement is trivial, but we still give it for completeness.

Proof. It is easy to see that M is indeed invertible. In fact, if we denote by M̄ the matrix:

M̄ =
(

0 In−r
U0 U1

)
,

as defined in Proposition 7.1, if we permute the first n− r rows of M̄ and the last r ones, we have
a triangular matrix, with a non-zero diagonal. Q is a permutation matrix so, it is invertible. Then
the product M̄Q is invertible.

86



Chapter 7. Of Previous 3XOR Algorithms

A B

C

2n/2√
n/2

n

n/2

AM BM

CM

n/2

{a⊕ b|(a,b) ∈ AM ./n/2 BM}

2n/2

n/2

n/2

a⊕ b⊕ c = 0

Figure 7.4 – Illustration of Joux’s Algorithm.
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Moreover, let X be a (n− `)-by-r matrix. We have the following relation:

(
0 X

)
·
(

0 In−r
U0 U1

)
=
(
XU0 XU1

)
= XU.

We can set X to be equal to PL. Indeed, P is an (n − `)-by-(n − `) matrix, and L is an
(n− `)-by-r matrix, so their product will be an (n− `)-by-r matrix. In this case

(
0 X

)
· M̄ = PLU = CQ−1,

and then
(
0 X

)
· M̄ = C.

Choosing M = Q−1M̄−1 and reversing the equation above concludes the proof.

Here, we are concerned with the case ` = n/2. This result tells us that we can always find a
matrix M , such that for each vector c from C, (cM)[..n− r] = 0, where r is the size of any linearly
independent subset of C that spans Span{C}). As the vectors from C are uniformly random, it is
more likely that r = NC = n/2. However if by accident r < n/2, then c′ = cM will start with more
than n/2 zeroes, and thus c′[..n/2] = 0.

Remark 1. In [Jou09], Joux stated that, as the vectors of C are likely to be linearly independent,
there exists a basis B of Fn2 , such that the last n/2 vectors of B are the vectors of C. M can then
be chosen as the matrix that transforms each vector of Fn2 to the basis B. Then, for all c ∈ C, cM
will start with n/2 zeroes.

7.4.2 Complexity analysis.

Finding the matrix M can be done in time O (n3) by computing a naive PLUQ factorisation over
F2. Then, using the trick described in section 6.3.3, it is possible to perform the basis change in
time and space O

(
2n/2/

√
n/2

)
. Solving the 3XOR instance after that can be done in time and

space O
(
2n/2/

√
n
)
as discussed in Section 7.2.2.

In this case, the expected size of the join list is:

E[Njoin] = 2n

(n/2) · 2n/2 = 2n/2

n/2 ,

which is a bit smaller than NA = NB = 2n/2/
√
n/2.

Remark 2. One can think of improving Joux’s method choosing more balanced parameters. Indeed,
we could decide to set NA = NB = 2`, and NC = n − `, and search for a matrix M such that the
first ` bits of each vectors of C are zeroes. The expected size of the joined list A ./` B would then
be 2`, and following Equation 7.1, if:

` = n

2 −
1
2 log (n− `),

there will be a solution with high probability, and the time and space complexity of the procedure
would be O

(
2`
)
. The speedup obtained compared to Joux’s algorithm, however, does not seem to

be significant. Indeed, The first order approximation of ` gives us:

` ' n

2 −
log(n/2)

2 ,

and thus, 2` ' 2n/2/
√
n/2 which is exactly the size of A and B.
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7.5 Time and Memory Tradeoffs

7.5.1 Discussion

Wagner’s Algorithm and the ones inspired by it used the same kind of tradeoff: increasing both
queries and memory complexity in order to reduce the time complexity. We are tempted to say
that Joux’s Algorithm is the “best” of the algorithms described, as it has the best time complexity.
However, the huge amount of data that is required quickly becomes a bottleneck, as explained in
the concrete example below.

Example 7.1 (Computation of a 96-bit 3XOR). We are given three oracles A, B and C that, upon
queries, return 96-bit uniformly random outputs each. We aim to find a 3XOR between these
outputs.

On a standard 64-bit computer, Joux’s algorithm requires around 245.2 operations, but just
storing the lists will already require 1.3 petabyte of memory. This makes this procedure hardly
practical.

On the other hand, if we choose to reduce the size of the lists to 296/3 = 232 elements each, and
to utilise the quadratic algorithm to solve the problem, then the number of operations required will
be about 264, but storing the list will only require about 206 gigabyte of memory, which is already
easier to handle.

In short, if we want to solve a 3XOR in practice, it is important to keep the lists small, as the
memory will quickly become the limiting factor.

To deal with this issue, Bernstein proposed in [Ber07] a tradeoff which was afterward called
“clamping” [BLN+09].

Remark 1. In [NS15], Nikolić and Sasaki also proposed a tradeoff to reduce the memory of the
kXOR problem, where k is a power of two. As their method does not immediately apply to the
case of the 3XOR, we do not recall it here.

7.5.2 Bernstein’s Clamping Trick

The idea, which may at first seem counterintuitive, is that the amount of data can be reduced if
more queries than strictly required are allowed. Assume that 2αn (resp. 2βn, 2γn) queries to oracles
A (resp. B, C), and that α+ β + γ ≥ 1. Let us denote by κ the parameter:

κ = (α+ β + γ − 1)/2. (7.5)

When querying the oracles, it is possible to immediately reject the outputs that are not zero on the
first κn bits. Naturally, this only works when κ ≥ min(α, β, γ). Doing this “clamping”, one comes
up with three lists A,B and C of (1− κ)n-bit entries.

Furthermore, from Equation 6.4, the expected size NA of the list A satisfies:

E[NA] = 2αn

2κn = 2(α−κ)n.

Th same goes for the expected size E[NB] = 2(β−κ)n of B and E[NC ] = 2(γ−κ)n of C. Then, we have:

log(NANBNC) = n(α+ β + γ − 3 · κ).

With the definition of κ from above, this leads to:

log(NANBNC) = n(3/2− 1/2 · (α+ β + γ)) = n(1− (α+ β + γ − 1)/2),

Then, the product NANBNC is equal to 2(1−κ)n. Hence, this trick allows to reduce the size of the
instance to (1− κ)n instead of n.
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Same number of queries to each oracle. In the particular case where each oracle is queried
the same number of times, say 2λn, then κ satisfies:

(1− κ)
3 n = (λ− κ)n. (7.6)

Now, denoting n′ the quantity (1 − κ)n, it is clear that performing the clamping over κn bits
leads to three lists A,B and C of N vectors of length n′, with:

E[N ] = 2(λ−κ)n = 2n′/3.

For instance, assume that 2n/2 queries to each of the oracles are allowed. We have κ = 1/4, and
then, solving the 3XOR problem, can be done in O

(
2n/2

)
operations using only O

(
2n/4

)
words

of memory. In fact, the three lists we obtain contain roughly 2n/4 entries of n′ = 3 · n/4 bits. A
solution to the problem can then be found by any algorithm that is able to recover a solution to the
problem over n′ bits when the size of the three input list is 2n′/3. Using the quadratic algorithm
described above, this would require O

(
22·n′/3

)
= O

(
2n/2

)
operations.

Minimising the product TM. When it comes to time and memory tradeoff, one way to quantify
the actual cost of an algorithm is the product TC where C is the cost (for instance in Euros) of
a machine. For simplicity, we reduce the price of a machine to its amount of available memory.
If someone can afford to pay for M′ in memory, and spend T′ running the algorithm, he can run
MT/M′T′ separate computation, assuming that M′ divide M and T divide T′. Indeed, he can get
access to M/M′ processors to run T/T′ sequential computations of the algorithm. It is clear now,
that it is worthwhile to keep the product TM low.

We claim that if querying the oracles can be done in constant time, and if we denote by Ttot
the time complexity required to create the lists and to process them, then, in this setting, making
2n/2 queries to the oracles, and performing the clamping on κn = n/4 bits actually minimises the
product TtotM.

Indeed, if we assume that the oracles can be queried in constant time, then the time required
to create the lists and to process them using the quadratic algorithm will be:

Ttot = O
(
2λn + 22(λ−κ)n

)
. (7.7)

With κ defined as in Equation 7.5, we actually have:

λ− κ = λ− 3λ− 1
2 = 1− λ

2 .

Then, Equation 7.7 becomes:

Ttot = O
(
2λn + 2(1−λ)n

)
. (7.8)

If λ < 1/2 then it is the processing part that dominates procedure. On the over hand, when
λ > 1/2, the creation of the lists dominates the whole procedure. We reach the equilibrium when
λ = 1/2. The memory required is

M = O
(
2(1−λ)n/2

)
. (7.9)

Let λ ≥ 1/2. In this case the creation of the lists dominates the procedure and we have:

TtotM = O
(
2λn2(1−λ)n/2

)

Taking the log and forgetting the constants hidden in the O notation, this gives:
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log(TtotM) = λn+ (1− λ)n/2

= (2λ+ 1− λ)
2 n

= λ+ 1
2 n (7.10)

And then:

TtotM = O
(
2(λ+1)n/2

)
. (7.11)

This reaches its minimum 23n/4 when λ = 1/2.
Consider now the case λ ≤ 1/2. Processing the lists dominates the procedure and we have:

TtotM = O
(
2(1−λ)n2(1−λ)n/2

)

= O
(
23(1−λ)n/2

)
(7.12)

This reaches its minimum 23n/4 when λ = 1/2, which actually proves our claim.
For completeness, we give the Time-Memory product of Joux and Nikolić-Sasaki’s methods:

(TtotM)Joux = O
(2n

n

)
, (TtotM)NS = O

(2n lnn
n

)
.

Remark 2. This is assuming that querying the oracles can be done in constant time. However, as
we will discuss in section 8.4.1, sometimes querying the oracles can take a lot of time. In this case
it can be interesting to perform the clamping on less bits, even if it means processing larger lists.
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Chapter 8
Of a New 3XOR by Linear Change of Variable Algorithm

In this chapter, we propose a new algorithm which is asymptotically n times faster than
the quadratic algorithm. It is a generalisation of Joux’s Algorithm. This new algorithm
is faster in practice than the quadratic algorithm for relevant parameter sizes. We also
present some constant time improvements, and give some implementation details along
with a 3XOR of SHA256. This work is the main contribution of a paper [BDF18] accepted
at ToSC/FSE 2018. This is joint work with Charles Bouillaguet and Pierre-Alain Fouque.

8.1 A New Algorithm
Similar to Joux’s algorithm, we exploit the fact that when M is an n × n invertible matrix over
F2, then a⊕ b⊕ c = 0 if and only if aM ⊕ bM ⊕ cM = 0. The sets of solutions in A×B × C and
AM × BM × CM are the same.

8.1.1 Algorithm Description

The idea of our algorithm is to select an arbitrary slice of n − k vectors from C and to choose a
matrix M such that the first k entries of the slice become zero. The Algorithm then finds all the
triplets a ⊕ b ⊕ c = 0 where c belongs to the slice. Repeating this procedure for all slices yields
all the possible solutions. This procedure is fully described in Algorithm 20. We illustrate it in
Figure 8.1.

Algorithm 20 3XOR by linear change of variables.
Require: Lists A,B and C of respective size NA, NB and NC .
Ensure: All (a,b) ∈ A× B such that a ⊕ b ∈ C

1: Set `← dlog min(NA, NB)e.
2: Res← ⊥
3: for 0 ≤ i < NC/(n− `) do
4: Set j ← i(n− `) and k ← min((i+ 1)(n− `), NC)
5: Compute an n-by-n matrix M , such that ∀c′ = cM with c ∈ C[j..k], c′[..`] = 0.
6: Set A′ ← AM , B′ ← BM and C′ ← C[j..k]M
7: Init a hash table T with the elements of C′
8: Search couples (a′,b′) ∈ A′ ./` B′ such that a′ ⊕ b′ is in T
9: if Such a pair (a′,b′) is found then

10: Res← Res ∪ {(aM−1,bM−1}

Remark 1. It is possible to keep only one copy of each list and to perform the basis change in place.
Instead of Step 6 we should do:
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AM BM C[i..i+ (n− `)]M

already

treated

n− k

k

not yet

treated

Figure 8.1 – Illustration of Algorithm 20.

Set A ← AM−1
prevM (and same for B, C)

Set M−1
prev ←M−1.

At the first iteration, M−1
prev must be initialised to the identity matrix.

Remark 2. Note that this procedure returns all solutions to the 3XOR problem. The Nikolić-Sasaki
algorithm, for instance returns only one among many.

8.1.2 Complexity Analysis

Theorem 8.1. Algorithm 20 finds all the solutions to 3XOR problem with A, B and C in expected
time:

T = O
(

(NA +NB)NC
n

)
, (8.1)

and space M linear in NA +NB +NC.

Proof. We first observe that the algorithm only needs to store two copies of the input lists (This
can be brought down to a single copy, updated in-place). This establishes the linear space claim.

We can assume without loss of generality that NA ≤ NB. Following the same arguments as
the ones detailed in Section 7.4, one iteration of the main loop takes on average O (NA +NB)
operations, and the extra memory required is still on average O (NA +NB). In fact finding the
basis change, and applying it requires O (|A|+ |B|) operations, and additional memory that is
lower than c2` for some constant c. The definition of ` ensures that the space complexity of this
procedure is lower that cNA. Step 8 requires O

(
NA +NB +NANB/2`

)
operations. The choice of

`, once again, ensures that this is in fact O (NA +NB).
These steps are repeated NC/(n− log(NA)). The hypothesis that log(A) < (1− ε)n guarantees

that the denominator is Ω(n), and yields the claimed complexity.
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Using this algorithm, it is beneficial to choose C as the smallest of the three lists.

8.2 Useful Tricks

8.2.1 Mixing our Algorithm and the Clamping Trick

As discussed in section 7.5.2, it is possible to reduce both the space (M) and time (T) complexity,
if more queries (Q) are allowed.

We assume that 2λn queries to each oracles are allowed, then using the clamping trick, we can
reduce the problem to the one finding a 3XOR over (1− κ)n bits, with κ = (3λ− 1)/2. The size of
the input lists will then be about 2(1−λ)n/2 = 2λn/3. Processing them with Algorithm 20 will have
a time complexity of

T = O
(

2(1−λ)n

n

)
, (8.2)

and space complexity of

M = O
(
2(1−λ)n/2

)
. (8.3)

Comparison with [NS15]. Let us assume for instance that 2n/2−ε queries to each of the oracles
are allowed. Then, following Equations 8.2 and 8.3, combining the clamping trick and Algorithm 20
leads to a 3XOR in time O

(
2n/2+ε/n

)
and space O

(
2(n/2+ε)/2

)
.

Nikolić and Sasaki [NS15] allow themselves to perform 2n/2−ε queries to each of the oracles,
where

ε ' 1
2 log

(
n/2

ln(n/2)

)
.

They come up with an algorithm that has a time and space complexity about O
(
2n/2/

√
n/ lnn

)

(see section 7.3). With the same number of queries, we are able to solve the 3XOR problem, using
only M machine words, where:

M = O
(
2n/4 · 2ε/2

)

= O
(
2n/4 · 2log(n/ ln(n))/4

)

= O
(

2n/4 · 4
√
n/ ln(n)

)
,

and in time T, such that:

T = O
(

2n/2+ε

n

)

= O
(

2n/2 ·
√
n/ ln(n)
n

)

= O
(

2n/2√
n ln(n)

)
.

This gives us a ln(n) speedup compared to Nikolić and Sasaki’s Algorithm with the same number
of queries, and our method requires much less space.
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Minimising the product TM. Let us assume that querying the oracles can be done in constant
time. We denote by Ttot the time complexity required to create the lists and to process them.

Proposition 8.2. Making 2n/2−logn queries to the oracles and performing the clamping on κn =
n/4 + log(n)/4 bits minimises the product TtotM.

Proof. In this setting, we have:

Ttot = O
(

2λn + 22(λ−κ)n

n

)
= O

(
2λn + 2(1−λ)n−logn

)
.

This reaches its equilibrium when:

λeqn = (1− λeq)n− logn

λeq = 1
2

(
1− logn

n

)
.

When λ > λeq, the generation of the lists dominates the procedure, When λ < λeq processing the
lists dominates the procedure. According to Equation 7.11, when λ ≥ λeq, we have:

TtotM = O
(
2(λ+1)n/2

)
.

This reaches its minimum for λ = λeq. When λ ≤ λeq, we have:

TtotM = O
(
2(1−λ)n−logn2(1−λ)n/2

)

= O
(
23(1−λ)n/2−log(n)

)

= O
(

23(1−λ)n/2

n

)
.

This reaches its minimum for λ = λeq. Furthermore, this minimum is:

TtotM = O
(

23n/2

4
√
n

)
,

which is a very small gain (only 4
√
n) compared to the Time-Memory product obtained in Sec-

tion 7.5.2.

Remark 1. Once again, in practice, performing the clamping on less bits can be advantageous,
depending on the time required to query the oracles.

8.2.2 Computing a 3XOR for Large n

The word RAM [FW93] model is helpful to think about the complexities of algorithms, however,
it hits limitations when one tries to actually implement things. In fact, we may have to cope with
values of n that are actually larger than the size of a word w. The clamping trick is already a good
way to reduce the size of our problem, but it may not be enough. We used the following two-step
strategy to deal with this problem:

1. Find and store all (i, j, k) such that A[i][..w]⊕ B[j][..w]⊕ C[k][..w] = 0

2. For each triplet (i, j, k) thus found, check if A[i][w..]⊕ B[j][w..]⊕ C[k][w..] = 0
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A B C

w n− w

A B C

w n− w

Figure 8.2 – Dealing with n larger than a machine word.

This idea is illustrated by Figure 8.2. The first step can easily be handled by Algorithm 20. We
run our Algorithm on lists Ā, B̄ and C̄ of size 2n/3, that contains w-bit entries.

Then, from results given in Section 6.1.2 Equation 6.7, we expect to find Nsol triplet (i, j, k) in
the first step of the procedure, with

E[Nsol] = 2n−w.

Checking these solutions in the second step should require about O (Nsol) = O (2n−w) opera-
tions, and no extra storage.
Remark 2. This trick can also be applied to the Quadratic Algorithm. In fact, it can be applied to
any 3XOR algorithm that, given as input A, B and C, can return all triplets that are solutions.

8.3 Constant-Factor Improvements
In this section, we discuss possible improvements of Algorithm 20. Our goal is to reduce the number
of iterations of the main loop. This would mean dealing with larger sublists of C at each iteration.
In Algorithm 20, at each iteration, an invertible n-by-n matrix M is found, that sends the first `
bits of n− ` arbitrary vectors to zero. In this chapter we discuss means to find matrices that have
the same effect on more than n − ` vectors, in order to process larger slices in each iteration. As
such, less iterations would be needed.

Let w denote the size of a machine word, and let m = min(w, n) (i.e. m is the size of the
instance that will actually be processed using Algorithm 20). We recall our goal is to find many
(one per iteration of Algorithm 20) (m−`)-dimensional subspace V of Fm2 such that V ∩C contains
more than m− ` elements. We could for instance proceed as follows:

1. Find a sublist C̄ of C of size N̄C > (n− `) and an invertible matrix M such that all elements
of C̄M starts with ` zeroes.

2. Perform one iteration of Algorithm 20

3. Set C to C \ C̄ and go to step 1.

This is a “one-at-a-time” approach. At each step, we search for the sublist C̄, and thus, if we
do not want the complexity of our procedure to increase, we have to set up a “budget” of O (NC)
in time and space.

Another way to approach this problem would be to precompute all sublists C̄i in advance, and
execute Algorithm 20 afterward. This would give the following “all-at-once” type of approach:

1. Permute the entries of C so that, for known parameters N0, N1, . . . , with Ni > n − `, the
first N0 entries of C span a subspace V0 of dimension n − `, the following N1 span an other
subspace V1 of dimension n− `, and so on.
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2. Run Algorithm 20, such that at each iteration i of the main loop, Ni vectors of C are trans-
formed to vectors which start with n− ` zeroes.

As the pre-computation is done in advance, we can slightly increase our “budget” to O (N2
C/n

)
.

In this case, the time complexity should not increase, as C is the smallest of all the lists (if they
are of different size).

8.3.1 Description of the Problem

We are given a list C which contains NC uniformly random entries of n bits each. We aim to
find an invertible matrix M that maximises (or at least increases) the number of x ∈ C such that
(xM)[..`] = 0. Here M can be seen as a basis change matrix. Our problem is thus to find a basis
B = (b1, . . . ,bn) of F2 such that, if we call C′ the list C written in this new basis, the subset of the
elements of C′ that starts with ` zeroes is the largest possible.

We choose B = (b1, . . . ,bn) to be a basis of Fn2 , such that there is a “large” sublist C0 of C such
that for all c in C0, c is in Span{b`+1, . . . ,bn} (i.e. the subspace of Fn2 spanned by b`+1, . . . ,bn).
Let M be the n-by-n invertible matrix that transforms all vectors of Fn2 to basis B.
Remark 1. We can easily check that for all c ∈ C0, the vector c′ = cM satisfies c′[..`] = 0. Indeed,
c being a linear combination of b`+1, . . .bn implies that there are αi for ` < i ≤ n in F2, such that

c =
n⊕

i=`+1
αibi.

Then, by linearity:

c′ = cM =
n⊕

i=`+1
αiMbi

=
n⊕

i=`+1
αiei.

Reciprocally, if c′ = α`+1e`+1 ⊕ . . .⊕ en, we have:

c = c′M−1 =
n⊕

i=`+1
αiM

−1ei

=
n⊕

i=`+1
αibi.

The problem is then to find an invertible n-by-n matrix M over F2, such that for all c in C0,
(cM)[..`] = 0. In other words, if C is a NC0-by-n matrix, whose rows are vectors from C0, and X
an arbitrary (n− `)-by-n matrix, we want to find an invertible n-by-n matrix M such that

CM = (0|X). (8.4)

From here, it is clear that our problem can be reformulated in more algebraic terms.
If we denote by V0, the (n− `)-dimensional subspace of Fn2 containing all vectors whose first `

coordinates are zeroes. The basis change matrix M should be chosen such that it sends the largest
number of input vectors from C to V0. Alternatively let V be the pre-image of V0 through M : xM
belongs to V0 if and only if x belongs to V .

Finding a subspace V having a large intersection with the input list is the actual difficult task.
Indeed, once a basis (b`+1, . . . ,bn) is found, building an invertible matrix M that sends V to V0
is easy. We therefore are facing the following computational problem:
Problem 8.1. Let N,n, ` be three parameters. Given a list L of N uniformly random vectors of Fn2 ,
the goal is to find a (n− `)-dimensional subspace V of Fn2 , such that V ∩ L is as large as possible.

98



Chapter 8. Of a New 3XOR by Linear Change of Variable Algorithm

In our case, the list L is C, N = NC and we do not have to find only one, but many of such
subspaces (one per iteration of Algorithm 20). Furthermore, we do not want this pre-computation
step to dominate the whole procedure. As such, we set a “budget” of: O (N) operations in both
time and space if this research is done at each iteration, or O (N2/n

)
in time and O (N) in space if

all subspaces are to be pre-computed in advance. As such, we give up on finding optimal solutions
and instead look for heuristics that produce quick results.

Let L̄ be the (hopefully large) sublist of L such that ∀x ∈ L̄, x ∈ V . We propose two approaches
to compute L̄ from L. One of them starts with an empty list L̄ and adds new elements in it, as the
algorithm goes. The other one starts with L̄ = L and at each step, removes from L̄ elements that do
not belong to V . This latter approach consists in searching for a vector space of dimension (n− `)
over F2, defined by a system of equations that are more often satisfied by vector from L than not.
We claim that this problem is related to decoding problems. As such, we start by recalling some
coding theory background in the following subsection. We will then present this decoding-based
method in Section 8.3.3. Finally, we will present the other method, which consists in searching for
linear dependencies in L, in Section 8.3.4. This method allows us to find several (n−`)-dimensional
vector spaces, and thus, to pre-compute all sub-sets at once, before actually running Algorithm 20.

Unfortunately, both methods described here only enable us to gain a constant factor on the
number of iterations and nothing more significant.

8.3.2 Coding Theory and Information Set Decoding

Basic Facts About Random Linear Binary Code

A linear binary (error-correcting) code C of length n and dimension k, or as it is sometimes called
a [n, k] binary code is a subspace of Fn2 of dimension k. It contains 2k codewords of n bits. We call
the ratio R := k/n the rate of C. A linear code C can be seen as the linear span of the rows of a
k-by-n matrix G called the generator matrix of the code. Formally:

C = {xG|x ∈ Fk2}. (8.5)

A linear code C can also be seen as the kernel of an (n − k)-by-n matrix H called the parity
check matrix of the code. Formally:

C = {c ∈ Fn2 |ctH = 0} (8.6)

We call (Hamming) weight of a codeword c and we denote by wt(c) the number of non-zero
coefficients of c.
Remark 2. This definition can be extended to any finite field Fq. In fact, in general, a [n, k] linear
code is defined as being a k-dimensional subspace of Fnq , with a metric (usually the Hamming
metric, sometimes the rank metric).

Small Weight Codewords

Minimum distance and Relative distance. The minimum-distance d of the code is the min-
imum weight of non-zero codewords. A [n, k] code of minimum distance d is sometimes denoted as
a [n, k, d] code. We denote by δ := d/n the relative distance of the code.

Determining the minimum-distance of a linear code is a difficult problem. In fact, given a
(small) positive integer 0 < w < n, determining whether d is smaller than w is NP-complete.
However, if C is a random code, more can be said about it. In fact, if we denote by H the binary
entropy function:

H :[0, 1]→ [0, 1]
x 7→ −x log x− (1− x) log(1− x), (8.7)

We can approximate the relative distance δ of C using the following equation:

H(δ) = 1−R. (8.8)
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This is due to the fact that a random linear code “almost reaches” the Gilbert-Vashamov bound [Gil52,
Var57].

Theorem 8.3 (Asymptotic version of the Gilbert-Varshamov bound for binary codes). Let n and
k be positive integers, let R = n/k, and let δ be a real in (0, 1/2] that satisfies:

R ≤ 1−H(δ), (8.9)

then there exists a linear [n, k, d] code over F2, with d ≥ δn. Moreover, with high probability, any
random linear [n, k] code over F2 should satisfy:

R = 1−H(δ), (8.10)

where d = δn is the minimum distance of the code.

This is a well known result of coding theory, that we are not going to prove here. A complete
demonstration can be found in [Rot06], for the case of a linear code over any finite field Fq.

Syndrome decoding problem. We are interested in finding a minimum-weight codeword in a
random linear binary code C (i.e. a word c ∈ C such that wt(c) = d). This is related to the
Syndrom Decoding Problem (SDP).
Problem 8.2 (SDP). Given a matrix (n − k)-by-n matrix H (the parity check matrix of our code
C ), a target vector s (called syndrome), the goal is to find a vector x such that: wt(x) = t, for
some small known t < n− k.
Remark 3. In the particular setting where the target is s = 0, and t = d is the minimum-distance
of C , an algorithm which solve the SDP returns a minimum weight codeword in C .

Unfortunately, the associated decisional problem is known to be NP-Complete [BMVT78]. The
first ideas to solve the SDP problem were introduced by McEliece [McE78] in the security analysis
of his cryptosystem, and the problem has been widely studied since. The most famous algo-
rithm is the Las Vegas randomised Information Set Decoding procedure, which was introduced by
Prange [Pra62] and has been improved several time since (e.g. [LB88, Ste88, MMT11, BJMM12,
MO15]).

Information Set Decoding

Prange’s original idea. The first ISD algorithm is due to Prange [Pra62]. His idea is to find a
permutation P of the columns of H. Then denoting H̄ the matrix HP , he aims to find a vector x̄
in Fn2 , such that:

1. x̄tH̄ = s,

2. wt(x̄) = t,

3. x̄[n− k..] = 0.

Then, x = x̄P will be solution to the syndrome decoding problem. Indeed:

x̄tH̄ = c =⇒ xP tP tH = c
=⇒ xtH = c. (8.11)

Remark 4. If the procedure described in Algorithm 21 ends, then it actually solves the Syndrome
decoding problem. In fact, we assume that at some point, a permutation P that satisfies the three
conditions stated above is picked. Then, we can obtain a row-reduced echelon form of H̄, computing
the Gauss-Jordan elimination of H̄. In other words, as H̄ is full-rank, we can find an invertible
matrix V of size (n− k), such that V H̄ looks as follows:
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Algorithm 21 Prange’s ISD Algorithm.
Require: A (n− k)-by-n matrix H, a syndrome s, an integer 0 < t < n− k.
Ensure: A vector x such that wt(x) = t and xtH = s.

1: Set x1 ← 0
2: while wt(x1) 6= t do
3: Pick a random permutation P of the columns of H
4: Set H̄ ← HP
5: Find an invertible matrix V such that V H̄ is the row-reduced echelon form of H̄
6: Set x1 ← stV
7: Set x← (x1|0)
8: return xP

V H̄ = (In−k|X),

where, X is an arbitrary matrix. Then, if we denote by x1 the vector of Fn−k2 such that x1 := stV ,
and by x the vector of Fn2 such that x = (x1|0), we have:

xtH̄ = xt(V H)tV −1

= (x1|0)
(
In−k
tX

)
tV −1

= x1
tV −1

= stV tV −1

= s (8.12)

The expected time complexity of this algorithm in the general case has been analysed in [CG90],
and is about O (2n · F (k/n)), with:

F (R) = (1−R)(1−H(δ/(1−R))). (8.13)

This simple procedure has known many improvements, first by Lee and Brickell [LB88], which
gain a polynomial time factor compared to Prange Algorithm. Stern [Ste88] and Dumer [Dum91],
improved this idea to reduce the worst case complexity. May, Meurer and Thomae [MMT11] re-
duced again this worst case complexity using representation techniques, and this was later improved
in Becker, Joux, May and Meurer [BJMM12]. This last algorithm (BJMM) is currently the best
known asymptotic algorithm for decoding random linear in the worst case. In [MO15], May and
Ozerov proposed a way to speed-up the BJMM algorithm, by improving the time complexity of
a sub-routine called the “Nearest-Neighbour problem”. This idea was recently improved by Both
and May [BM18], leading to an asymptotic speed-up of the BJMM algorithm in the worst case.
Independently, Canteau and Chabaud proposed in [CC98] a variant of the ISD designed specifically
to find a small weight codeword.

However, since Stern’s algorithm, all these improvements actually mean to reduce the worst
case complexity (i.e. when the rate of the code is around 0.46), and are not significant in other
cases. Furthermore, the more recent variants are harder to implement, and require more extra
storage. We claim that Lee and Brickell’s algorithm should be efficient enough for our application,
while remaining simple.

Lee and Brickell’s Algorithm Lee and Brickell [LB88] propose a way to relax Prange’s algo-
rithm, in order to amortise the cost of the Gauss-Jordan elimination. Like before, they search for
a specific permutation P of the column of H and, if we denote H̄ the matrix HP , they search for
a vector x̄ in Fn2 , such that for a specific integer 0 ≤ p ≤ t:

1. x̄tH̄ = s,
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2. wt(x̄[..n− k]) = t− p,

3. wt(x̄[n− k..]) = p.

Remark 5. Prange’s algorithm can be seen as the special case where p = 0.

Algorithm 22 Lee and Brickell’s ISD Algorithm.
Require: A (n− k)-by-n matrix H, a syndrome s, an integer 0 < t < n− k, an integer 0 ≤ p < t.
Ensure: A vector x such that wt(x) = t and xtH = s.

1: Set x1 ← 0, x2 ← 0
2: while True do
3: Pick a random permutation P of the columns of H
4: Set H̄ ← HP
5: Find an invertible matrix V such that V H̄ is the row-reduced echelon form of H̄
6: Set X to the sub-matrix build from the k last column of V H̄
7: for all x2 s.t. wt(x2) = p do
8: Set x1 ← stV + x2

tX
9: if wt(x1) = w − p then

10: Set x← (x1|x2)
11: return xP

We detail the Lee-Brickell method in Algorithm 22. Once again, we can see that if the algo-
rithm ends, it returns a solution to the syndrome decoding problem. Indeed, we assume that a
permutation P that satisfies the three conditions above has been picked. We have V H̄ = (In−k|X).
Then, if we consider the couple of vectors (x1,x2) ∈ Fn−k2 × Fk2, such that x1 := stV + x2

tX̄, and if
we denote x the vector of Fn2 such that x = (x1|x2), we have:

xtH̄ = xt(V H)tV −1

= (x1|x2)
(
In−k
tX

)
tV −1

= (x1
tV + x2

tX)tV −1

= (stV + x2
tX + x2

tX)tV −1 (8.14)

and as we are working over F2, it follows:

xtH̄ = stV tV −1 = s (8.15)

Remark 6. Usually taking p = 2 is optimal.
This procedure does not allow to reduce significantly the time complexity of Prange’s algorithm.

In fact, it can only gain a polynomial factor bounded by n(n− k).

8.3.3 Finding Biased Equations over L
Recall that an (n − `)-dimensional subspace of Fn2 is defined by a system of ` linear equations in
n variables. Finding a vector space V having a large intersection with L amounts to finding `
linear equations that are simultaneously biased over L (i.e. more often simultaneously true than
the contrary).

We propose a greedy approach to find these equations: first initialise a list L̄ to L, find a biased
equation E1 over L̄, then remove from L̄ all vectors that do not satisfy E1, and re-iterate the
method `− 1 times. This reduces the problem to that of finding a single biased equation over L.

Finding the most biased equation over L̄ is tempting but too expensive: an exhaustive search
would require O

(
2n+k

)
operations and FFT-like methods such as the Walsh transform still have

a workload of order O (k · 2n). We have to settle for a hopefully “good” if not optimal bias.
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Intuition of the method. Finding a biased linear equation over L is a decoding problem. Con-
sider the binary linear code C spanned by the columns of L, and denote G the generator matrix of
C . If the columns of L are linearly independent (which is most likely the case as, they are uniformly
random), then G is the matrix whose columns are the entries of L. Let y be a low-weight codeword:
this means that there is a vector x such that y = xG and y has a low Hamming weight (amongst
all possible vectors y). We claim that x describes the coefficients of one of the most biased linear
equations over L.

Indeed, for some 0 ≤ i < N , y[i] = 0 if and only if 〈x, tgi〉 = 0, where tgi is the column of G
indexed by i. By definition of G, this is the same as saying that

y[i] = 0 ⇐⇒ 〈x,L[i]〉 = 0.
If we call E the equation defined by the coefficients of x, then

y[i] = 0 ⇐⇒ E(L[i]) = 0.
Now, if y has low Hamming weight, it means that y[i] is more often 0 than not. This is enough to
prove that x actually describes the coefficients of one of the most biased linear equations over L.

As discussed in Section 8.3.2, ISD algorithms can find codewords c of Hamming weight wt(c) = d
where d is the minimum distance of the code. Their complexity is exponential in the length of the
code (here, the length of the code is equal to the number of vector in the input list), and thus we
has to set an upper-bound Nmax, on the length of the code we can expect to process given a time
budget of N operations. We will actually determine Nmax later.

Thus, before using decoding algorithm, we have to reduce the input list below Nmax. To this
end, we initialise L̄ to L and while the size of N̄ of L̄ is greater than Nmax, we choose an arbitrary
equation E , and remove from L̄ all entries that do not satisfy E . Each iteration of this process
should halve the size of L̄.

Procedure description. Let Nmax and ε be fixed parameters such that Nmax represents an
upper bound on the length of the initial code C , and a parameter ε. Our method basically works
as follows:

1. Initialise L̄ to L, N̄ to N and t (a counter to the number of equations) to 0.

2. While N > Nmax, select an arbitrary equation and remove from L̄ all the elements that do
not satisfy this equation. At each iteration increment t.

3. While t < `:

(a) Find a small weight codeword c in the code spanned by the columns of L. Indeed we
search for a c such that wt(c) ≤ d+ ε, where d is the minimum distance of the code and
ε a small approximation parameter.

(b) Remove from L̄ all entries L̄[i] such that c = 1.

This procedure is detailed in Algorithm 23.

Theorem 8.4. Algorithm 23 returns a subset of L that spans a (n−`)-dimensional subspace of Fn2 .

Proof. We claim that at each iteration of the Search biased equations loop, L̄ consists of vectors
which belong to a vector subspace of Fn2 of dimension n− t.

Indeed, at the end of the Filter step, L̄ ⊂ Vk, where Vk is the vector subspace of Fn2 consisting
of vectors whose first k coordinates are zeroes.

Now, recall that c is a codeword which belongs to the code spanned by the columns of L̄. This
means that there exists a vector x ∈ FN̄2 such that c = xtG. The for loop at the end of Algorithm 23
removes from L̄ all vectors that are not orthogonal to x. It follows that after this step, L̄ consists
of vectors that live in Vt+1 = Vt ∩ {0,x}⊥. Vt+1 is indeed a vector space, as the intersection of two
vector spaces. Furthermore, because c is non-zero, at least one vector will be removed from the
list. This vector belongs to Vt but is not in Vt+1. It follows that the dimension of Vt+1 is at least
one less that the dimension of Vt.
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Algorithm 23 ISD-based Approach.
Require: A list L (Sorted in ascending order) of size N , two parameters: Nmax and ε.
Ensure: A (hopefully large) sublist L̄, such that all entries of L̄ satisfy ` linear equations.

1: Set t← dlogNC/Nmaxe . Initialisation
2: j ← 0
3: while L[j][..t] = 0 do . Filter
4: j ← j + 1
5: Set L̄ ← L[..j]
6: while t < ` do . Search biased equations
7: Create G the matrix whose rows are the entries of L̄
8: Estimate the minimum distance d of the code C spanned by tG
9: Find a non-zero codeword c in C s.t. wt(c) ≤ d+ ε.

10: Set t← t+ 1
11: for all i s.t. c[i] = 1 do
12: Remove L̄[i] from L̄

Estimation of Nmax. Knowing N the size of the initial list L it is possible to estimate the upper
bound Nmax over the length of the code that the ISD algorithm can process within our time budget.

Let us denote by f the function f(x, y) := x · F (y/x) (for 0 < y < x), where F is the function
given by Equation 8.13. As discussed in Section 8.3.2, a minimum-weight codeword in a code C of
length Nmax and dimension n− ` can be found using the Lee-Brickell Algorithm in time less than
O
(
2f(Nmax,n−`)

)
.

If we denote by TISD, the total time spent in the k−` iterations of the Biased equation research,
we claim that

TISD ≤ (k − `) · 2f(Nmax,n−`). (8.16)

The function f(x, y) grows with x, and also grows with y when y < 0.1207x. This is enough to
prove Inequality (8.16), assuming that Nmax is much larger than n− `.

To be sure that the complexity of Algorithm 23 does not exceed O (N), we want to find the
maximum value of Nmax so that TISD < N . We decide to choose Nmax so that

(k − `) · 2f(Nmax,n−`) = N. (8.17)

Interesting considerations. Let us assume that we dispose of three lists of size 2`, for some
parameter ` < n/2. An interesting question would be: is it possible to reduce the time and space
complexity of Joux’s algorithm using the following simple variant?

1. Find a sublist C̄ of C such that C̄ span a (n−`)-dimensional subspace of Fn2 using the procedure
above

2. Compute an invertible matrix M such that the elements of C̄M start with ` zeroes

3. Solve the 3XOR problem with input lists AM , BM and C̄M .

Indeed, if C is large enough, according to Equation 7.2, choosing ` so that 2` = 2n/2/
√
N̄C ,

would allow to reduce the time and space complexity of the procedure to:

T = M = O
(

2n/2/
√
N̄C

)
.

Estimating the value of ` and of NC can be done numerically (for instance using the bisection
algorithm).Table 8.1 gives an estimation of the parameters for some values of n and k. Unfortu-
nately, it allows to gain only a constant speedup about

√
2 compared to Joux’s Algorithm, and

requires a lot of space. However, in practice, for small values of n, this method is faster than both
Joux and Nikolić-Sasaki algorithms.
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Table 8.1 – Parameter estimation of the ISD-based algorithm for some value of n.

n ` Nmax expected size of L̄
64 28 382 81
128 60 1996 154
256 123 9894 285
512 252 60271 545

Table 8.2 – Benchmarks.

(a) n = 52

method avg. time (s) |L1|+ |L2|+ |L3|
Joux 39.0 52′644′552
NS 65.74 100′663′296
ISD 24.18 41′943′040

(b) n = 64

method time (s) |L1|+ |L2|+ |L3|
Joux 1387 3′037′000′532
NS 1933 6′442′450′944
ISD 900 5′368′709′120

Indeed, we implemented this algorithm, along with the ones of Joux and Nikolić-Sasaki in C
using M4RI [AB12] to deal with binary matrices. Our objective was to compare these different
algorithms in practice on small values of n (up to 64) where the computation is feasible.

As the probability of success of the classic birthday algorithm on n bits, with input lists of size
2n/2 is close to 1/2, we adjusted the size of the lists in order to get a 99% success probability in
each case.

We carried out benchmarks using a small parameter (n = 52) on a workstation (Intel Core i7,
16 Gb RAM) and a larger parameter (n = 64) on a server (Intel Xeon E5-2686 v4, 488Gb RAM).
The results are given by Table 8.2. These benchmarks confirm that the algorithm described above
is actually faster than the previous state of the art by a factor 1.5, as expected.

8.3.4 Finding Linear Dependencies Using Wagner’s Algorithm

Let 2 ≤ k < `. The main idea is to search for distinct elements x0, . . .xk of L such that:

x0 = x1 ⊕ · · · ⊕ xk.

Then, assuming that x1, . . . ,xk are linearly independent, they can be chosen as vectors of a basis
B of V . Let us assume that L̄ ⊇ {x0,x1, . . .xk}. If we are able to find about (n − `)/k such
(k+ 1)-tuples, then the size N̄ of L̄ will be at least (n− `)(k+ 1)/k. As we need to create O (N/n)
of such sublists, we would like to find O (N) tuples.

To find these tuples, we actually need to solve the (k + 1)XOR problem, where all the input
lists are L (a slight variation is required to enforce a “pairwise distinct” condition). Indeed, if
(x0,x1, . . .xk) ∈ Lk+1 is a solution to the (k + 1)XOR problem, then x0 ⊕ · · · ⊕ xk = 0 and, in
particular, x0 = x1 ⊕ · · · ⊕ xk.
Remark 7. The smaller k is, the more substantial the gain is. On the other hand, the problem is also
harder to solve. Indeed, if k = 2, finding only one triplet (x0,x1,x2) ∈ L3 such that x0 = x1 ⊕ x2
would require to solve a 3XOR instance. This is already too hard.

We claim that setting k equal to 3 is a good choice in our case. This would allow us to find
sublists of size at least 4(n− `)/3.

Intermediate result. Let us assume that N = α2n/3 for some parameter α. Let t be a well
chosen parameter. Following Wagner 4-tree algorithm, we can, for instance do the following:

1. Compute the join list Ljoin = L[..N/2] ./t L[N/2..]. The parameter t is chosen so that the
expected size of Ljoin is N .

2. Compute the set S of all ((x1,y1), (x2,y2)) ∈ Ljoin[..N/2]×Ljoin[N/2..], such that x1⊕y1⊕
x2 ⊕ x3.
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L {x⊕ y|(x,y) ∈ Ljoin}

S

N

N/2

N/2

n

N

N/2

N/2

t

Figure 8.3 – Variant of Wagner 4tree algorithm.

This is actually exactly Wagner 4-tree algorithm, with a different choice of parameters that
suits our problem better. We summarise this idea in Figure 8.3.

Proposition 8.5. The procedure above returns a set S of α3/16 quadruplets (x1,y1,x2,y2) ∈ L4

such that x1 ⊕ y1 ⊕ x2 ⊕ y2 = 0, in time and space O
(
α2n/3

)
.

Proof. We divide our proof in two parts. First we are going to prove that this procedure actually
solves the problem, then we will show that the time and space complexity given are indeed exact.
1. The procedure above returns α3/16 solutions to the 4XOR problem. The size of both of the lists
L[..N/2] and L[N/2..] is N/2 = (α/2)2n/3. Thus the expected size of the list Ljoin is:

E[Njoin] = α222n/3

22+t = α222n/3−t−2.

If we want E[Njoin] = N , t must satisfy:

α222n/3−t−2 = α2n/3

α2n/3−t−2 = 1.

Taking the logarithm, this leads to:

log(α) + n/3− t− 2 = 0,

and thus

t = log(α) + n/3− 2. (8.18)

Then, the expected number of elements in S will be:

E[Nsol] = α222n/3

22+n−t .
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Replacing t by the value given in Equation 8.18, we obtain:

E[Nsol] = α223n/3−2+log(α)−n−2 = α3

16 .

2. The procedure above has a time and space complexity of O
(
α2n/3

)
. As discussed in Section 6.3,

the first step can efficiently be computed in time and space O (N), using Algorithm 14. The second
step requires first to store half of the entries of Ljoin in a hash table, and then for the remaining
entries, to compute one XOR and to search for some matching element in said hash table. This
can also be done in time and space O (N).

Instead of doing the join on the first t bits, we can choose to take a random subset J of
{0, . . . , n− 1}, and compute the lists Ljoin of couples (x, y) that agree on the columns indexed by
J . If we reiterate the procedure above O (N/n) times, with different subsets J we can find about
α3 ·N/(16n) quadruplets (x0,x1,x2,x3) such that x0 = x1 ⊕ x2 ⊕ x3.

We claim that we should get enough quadruplets as long as N ≥ 3√16n · 2n/3. Indeed, we
already mentioned that we need about N quadruplets. And we have just shown that if N = α2n/3,
we should get about Nsol = (N/n) · (α3/16) solutions with N/n iteration of the previous method.
If α ≥ 3√16n, this gives:

Nsol ≥
N

n
· 16n

16 ,

and thus Nsol ≥ N .
Remark 8. It is also possible to apply a variant of the 4-tree algorithm, which enforces the condition
pairwise distinct, with L4 as input. This should allow us to get rid of the constant factor 1/16.

Computing All Sublists at Once Using the 4XOR-Based Algorithm

Recall that the problem we want to solve is the following: find several sublists of C such that
all these sublists span (disjoint) (m − `)-dimensional subspaces of Fm2 (where m = min(n,w) is
the size of the instance to be processed). We can find them all at once, before actually running
Algorithm 20.

In this setting, if we do not want the time complexity of the pre-computation step, to dominate
the whole algorithm, we have to set a “budget” of O (N2

C/m
)
for this pre-computation step. Using

the method we have just described, if NC = 2m/2, we are in the interesting case where we will find
about 2m/2 such quadruplets with only a constant number of iteration of the procedure above, and
thus in time and space O (NC).

We then need to isolate a (large) subset of pairwise disjoint quadruplets. Finding the biggest
possible subset is the 4D MATCHING problem. Given four finite disjoint sets X,Y, Z, T . Let S be
a subset of X × Y × Z × T , and let M ⊆ S such that if (x1, y1, z1, t1) ∈M and (x2, y2, z2, t2) ∈M
then x1 6= x2, y1 6= y2, z1 6= z2, t1 6= t2.
M is said to be maximal if there is no matchingM′ such thatM (M′ ⊆ S.
M is said to be maximum if there is no matching M′ ⊆ S such that |M′| > |M|. These

definitions are illustrated by Figure 8.4.
Finding amaximum 4D matching is NP-Complete optimisation problem. However, anymaximal

4D matching is a 4-approximation to a maximum 4D matching, and it can be found efficiently by
a greedy algorithm. Let M denote a 4D matching, and r denote its cardinality. We claim that
performing the method above a constant number of time, we should be able to create a matching
M such that r ' 2n/2.

We build a permuted list D as follows: start from an empty list; for each {x, y, z, t} ∈ M,
append C[x], C[y], C[z] and C[t] to D. Finally, append C −D to D, in any order. We obtain sublists
1/4 larger that with the original Algorithm 20. This algorithm can be updated to exploit D, with
a running time reduced by 25%.
Remark 9. This method can possibly be improved. Indeed, assume that:

x0 = x1 ⊕ x2 ⊕ x3,
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(a) Maximal 4D matching that is not maximum.
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(b) Maximum 4D matching.

Figure 8.4 – A maximal matching is shown on Figure 8.4a. This matching is not maximum. A
larger one is shown on Figure 8.4b.

and

y0 = x0 ⊕ y1 ⊕ y2.

Assuming that x1,x2,x3,y1 and y2 are linearly independent, they can be chosen as basis vectors.
Then five basis vectors give two linear dependencies. This is however a very small gain, and we
have not given much thought of how it can be exploited.

8.4 Experimentation and Results
In order to have a better understanding of the tradeoffs we presented in this section as well as the
previous one, we chose to tackle an academic “practical” problem: Computing a 3XOR on n bits
of the SHA256 hash function, for the largest possible value of n.

Most of the literature devoted to the generalised birthday problem is mostly theoretical, in
particular because the exponential space requirement of theses algorithms makes them quickly
impractical. One notable exception is this paper from Bernstein et al. [BLN+09], which provides
the source code of a high quality implementation of Wagner’s k-list algorithm. Studying this code
was enlightening to us.

We performed our tests on a “Haswell” Core i5 CPU. Our implementation of the quadratic
algorithm (see Section 7.1) takes about 340 CPU hours, while our implementation of Algorithm 20
(see Section 8.1) takes 105 CPU hours.

8.4.1 Computing a 96-bit 3XOR

General method. Note that 232 queries to each oracles should be enough to find a 3XOR with
high probability. In fact, if we create lists A,B and C of size 232, the product of the size of the lists
is 296, and then there should be a solution to the problem with high probability.

We allow ourself to make 248 queries, which is then more than strictly required from an infor-
mation theoretic point of view. This enable us to perform a clamping on 24 = (3 · 48− 96)/2 bits.
We come up with three lists A, B and C of about N entries, with

N = 248−24 = 224.

As the entries all started with 24 zeroes, we only had to consider n′ = 96 − 24 = 72 bits for each
of them to solve the 3XOR problem in A, B and C. In this setting, only one solution is expected.

The size of a word on a standard machine is w = 64 which is less than 72. To find our
solution, we use the trick described in Section 8.4.2, which enables us to solve the 3XOR problem,
on bit-strings that do not fit in a machine word. We actually proceeded as follows:

We can create the lists Ā, B̄ and C̄, such that for all i Ā[i] = A[i][..64] (resp. B̄[i] = B[i][..64]
and C̄[i] = C[i][..64]) These three lists were of size about 224, and contained 64-bit entries.

Processing them with either the Quadratic Algorithm or Algorithm 20 should allow us to find
about 272−64 = 28 = 256 64-bit solutions. For each of them, we can recover the corresponding
triplets (i, j, k) by creating Ā, B̄ and C̄ over again.
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Once this is done, for each triplet (i, j, k) we only have to get (A[i][64..],B[j][64..], C[k][64..])
and check if A[i][64..]⊕ B[j][64..]⊕ C[k][64..]. This means about 256 tests to perform.

Creating the lists cannot be neglected. A single core of a modern CPU is capable of evalu-
ating SHA256 on single-block inputs about 20 million times per second, so that creating the lists
takes 11,851 CPU hours sequentially. Put another way, generating the input lists is 100 times
slower than actually processing them.

It would have been smarter to do the clamping on 22 bits instead of 24. This would have
reduced the total running time by a 2.5 factor at the expense of making the lists 4 times bigger.
This is ultimately dependent on the speed at which oracles can be evaluated.

8.4.2 Clusters, Cache, Register and Other Gory Details

The Quadratic algorithm : A more practical design. The summary description given above
suggests to allocate a hash table that holds the whole C list. Most accesses to this hash table are
likely to incur the penalty of a cache miss, and this can be avoided at no cost. We dispatch the
entries of A,B and C into buckets of small expected size using their most-significant bits. An
eventual 3XOR must lie in A[u] × B[v] × C [u⊕v] for some u,v. The idea is to process buckets
of C one-by-one, storing them in a small hash table. Then, we consider all the pairs from the
corresponding bins of A and B. This yields Algorithm 24. The parameters k and ` should be
chosen so that the hash table created at step 5 and the corresponding portions of A and B fit in
the L3 cache.

Algorithm 24 Cache-Friendly Quadratic Algorithm.
Require: Lists A,B, C of size NA, NB and NC , and two parameters k and `
Ensure: A couple (x,y) ∈ A× B such that x⊕ y ∈ C

1: Sort A, B and C on their first k bits.
2: for all 0 ≤ i, j < 2` do
3: for i2k−` ≤ u < (i+ 1)2k−` do
4: u← BinaryRepresentation(u)
5: Initialise a hash table T with the entries of C[u]

6: for j2k−` ≤ v < (j + 1)2k−` do
7: v← BinaryRepresentation(v)
8: for all x ∈ A[v] and all y ∈ B[u⊕v] do
9: if TestMembership(x⊕ y, T ) = True then

10: return (x,y)

Parallelisation is easy: all iterations of the outer loops on i, j can be done concurrently on
several machines. The three-level loop structure guarantees that one iteration of Steps 3 to 10
only needs to read 2n−` entries of each list. ` is ideally chosen so that the corresponding portions
of both A and B fit in L3 cache. 218 entries of A and B fit in 2 Megabytes of L3 cache, and a
few minutes will be necessary to process the corresponding 236 pairs. Memory bandwidth is not a
problem, and the quadratic algorithm scales well on multi-core machines. The algorithm can also
be run on machines with limited memory. Algorithm 24 runs at 10–11 cycles per pair processed on
a “Haswell” Core i5 CPU.

Implementation of Algorithm 20. The efficient implementation of joins is a non-trivial prob-
lem, which has been studied for a while by the database community. We used a reasonably efficient
sort-join, but it turns out that hash-joins have the favours of the experts (for now).

The longest operation of each iteration is the sorting step of Algorithm 20, which accounts for
50% of the total running-time. We use three passes of radix-256 sort for the case of n = 96 (where
the value of the k parameter is 24). The out-of-place version is 2–3× faster than the in-place
version (but requires twice more memory). We use the M4RI library [AB12] to compute the PLUQ
factorisation. To solve our n = 96 problem, a single iteration of Algorithm 20 runs at 75 CPU
cycles per list item processed on the same “Haswell” Core i5 CPU.

109



8.4. Experimentation and Results

It is easy to parallelise the loop on i (each iteration takes slightly less than 1s for n = 96). The
problem is that both the full A and B must fit in RAM, as they are entirely read in each iteration.
When the lists only have 224 entries (as it is the case for n = 96), they only require 256 Megabytes.
On a multi-core machine, one iteration can be run concurrently per core. One potential problem is
that this may saturate the memory bandwidth: each iteration reads 1.25 Gigabytes from memory in
about 1s, so on a large chip with 18 cores/36 threads, up to 22.5 Gigabytes/s of memory bandwidth
would be required.

A further problem is that, for larger values of n, it becomes impossible to keep many independent
copies of the lists in memory. In that case, the sorting and merging operations themselves have to
be parallelised, and this is a bit less obvious. If a single copy of the lists does not fit in memory, a
distributed sort/merge will be required, and it is likely that the communication overhead will make
this less efficient than the quadratic algorithm.

Distributed computation. It is easy to run these algorithms on clusters of loosely-connected
machines. We used a simple master-slave approach, in which the iterations to be parallelised are
numbered. When a slave node becomes ready, it requests an iteration number to the master node.
When it has finished processing it, it sends the partial solutions found in the iteration back to the
master. The master stores a log of all accomplished iterations. Communications were handled by
the ∅MQ library [Hin13]. We actually ran the algorithms on several hundred cores concurrently.

8.4.3 Result and Future Work

Consider the three ASCII strings:

x = FOO-0x0000B70947F064A1

y = BAR-0x000013F9e450DF0b

z = FOOBAR-0x0000e9B2CF21D70a

We can check that:

SHA256(x) = 000000a9 4fc67b35 beed47fc addb8253 911bb4fa ecaee2d9 f46f7f10 5c7ba78c
^ SHA256(y) = 00000017 d29b29eb a0ef2522 db22d0cc 5d48d2f9 36149197 6430685b 1266ee76
^ SHA256(z) = 000000be 9d5d52de 1e0262de e51c1119 edff081d 868fe419 879932ab bbcfe66e
=====================================================================================

= 00000000 00000000 00000000 93e54386 21ac6e1e 5c359757 17c625e0 f5d2af94

After completing this 96-bit 3XOR, we embarked on a project to compute a 128-bit 3XOR on
SHA256. To this end, we found a way to use off-the-shelf bitcoin miners, which evaluate SHA256
about one million times faster than a CPU core. Bitcoin miners naturally produce bit-strings whose
SHA256 is zero on (at least) the 32 most significant bits. We plan to accumulate three lists of 232

entries, and then to use Algorithm 20 to find 232 partial solutions on 64 bits, amongst which one
should lead to a 128-bit 3XOR (thanks to the extra 32 bits of clamping).
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Chapter 9
Of an Adaptation of the Baran-Demaine-Pǎtraşcu Algorithm to

the 3XOR Problem

In this chapter, we revisit an algorithm that was introduced by Baran, Demaine and
Pǎtraşcu. After briefly recalling how this works in the 3SUM case, we present an adapta-
tion to the 3XOR problem. We show that this algorithm has an asymptotic complexity of
O
(
22n/3 log2 n/n2

)
. However, as we discuss, this algorithm is not practical. This consists

in the second contribution of [BDF18].

9.1 BDP Algorithm for the 3SUM Problem

Initially this algorithm was designed for the 3SUM problem over (Z,+), where the size of the three
lists is bounded by some parameter N . The goal was to determine whether a 3SUM exists in the
input lists or not and to return it, when appropriate. Formally the problem considered by the
authors of [BDP05] can be stated as follows:
Problem 9.1. Given three lists A, B and C of N integers each, search for a triplet (a, b, c) ∈ A×B×C,
such that a+ b = c if it exists.

The idea of BDP is to first dispatch the elements into buckets, that represent sub-instances,
and solve only the sub-instance that may contain a solution. For each of these sub-instances a
constant time preliminary test is performed beforehand. If the test passes, then a full search is
required. Else, it is certain that no solution will be found in this sub-instance, and there is no need
for further investigation. Our 3XOR adaptation is based on the same idea.

For the record, we give a more detailed version of BDP 3SUM algorithm below:

1. Fix a parameter m = O (logN/ log logN), hash the three lists separately and dispatch them
into n/m buckets, using a hash function h1 which returns a k-bit value and satisfies the
following linearity property: if x + y = z, then h1(z) = h1(x + y) ∈ h1(x) + h1(y) + {0, 1}
mod 2k.

2. The i-th bucket of each list is denoted by Abi ,Bbi , and Cbi . Considering a pair of buckets
(Abi ,Bbj), there exist exactly two buckets Cbi1 , Cbi2 such that for all (x, y) ∈ Abi ×Bbi , if x+y ∈ C,
then x+ y ∈ Cbi1 or x+ y ∈ Cbi2 . This is due to the linearity property of h1.

3. For all (Abi ,Bbj , Cbi1∪Cbi2) that may contain a solution, solve the sub-instance using the following
procedure:

(a) If the buckets consist of more than 3m elements, treat the exceeding elements indepen-
dently, so that all buckets have, after that, at most 3m elements. This is basically doing
O (N/m) additional search.
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(b) The problem consists now in solving sub-instances (Abi ,Bbj , Cbi1 ∪Cbi2) so that the number
of elements in the lists is bounded by O (m). The authors of [BDP05] use a second level
of hashing, to pack all the elements of a bucket on a single word. To do so, they use
a linear hash function h2 which returns an s-bit value with s = Θ(logw). For the C
buckets they pack two elements per values, h2(z) and h2(z)− 1. They check if there is a
triplet (h2(x), h2(y), h2(z)) such that h2(x)+h2(y) ∈ h2(z)+{0, 1} mod 2s, in constant
time, by looking-up at a pre-computed table. If such a triplet does not exist, they know
there is no solution for sure. However, if such a triplet exists, they have to solve the full
instance to check if (x, y, z) is actually a solution.

If log(N) = O (w), BDP Algorithm has a time complexity of O
(
N2/ log2(N)

(log logN)2

)
, assuming the

lists are sorted. This result was actually proved in [BDP05]. We do not demonstrate it over again,
as the proof is very similar to the one that will be given in the Section 9.3, concerning our own
algorithm.

9.2 Our Adaptation of BDP

We consider three lists A, B and C of 2n/3 n-bit elements (this can be generalised to different sizes
of input lists). The adaptation described here is asymptotically n/ log2 n times faster than the
algorithm we describe in Chapter 8, but is hardly practical.

9.2.1 High Level Description of the Procedure

Let u be a bit-string of length smaller than n. We recall that A[u] represents the sublist of A that
starts with the prefix u. The high-level idea of the procedure is the following:

1. Dispatch A, B and C in buckets according to their first k bits.

2. For each triplets of buckets (A[u],B[v], C[u⊕v]), perform a preliminary constant time test. The
test returns False when it is certain that no solution will be found in this triplet.

3. For each triplet that has not been rejected, use the quadratic algorithm on this reduced
instance.

4. A bucket may contain more elements than desired for the preliminary test. In this case, these
exceeding elements are to be treated separately.

Basically for each triplet of buckets, this test consists in checking if there is a partial collision
on s bit, with s a well-chosen parameter. To do that, we have previously pre-computed a table
T . Each triplet is associated to a specific bit-string t of T so that the T [t] = 0 implies there is no
solution in this sub-instance for sure. We describe this test in more details below.

9.2.2 Preliminary Test

Let w = Θ(n) denote the size of a word. Let s be such that s = κ1 · log(w), with κ1 a constant
to be determined. Let k < n/3 be the parameter defined above, and P ≥ 1 a parameter to be
determined, such that 3Ps ≤ w.

Let T be a table of 23·P ·s elements. For each index t, where t can be represented as in Figure 9.1:

T [t] =
{

1 if ∃ i, j, ` s.t. a[i]⊕ b[j]⊕ c[`] = 0
0 otherwise. (9.1)

Then, for all three sets of s-bit vectors, that contain each at most P elements, one can check if
a solution to the 3XOR problem exists by a constant time look-up in T .

By construction, |T | = 23·P ·s. We do not want the additional space to exceed the space required
to store the lists. We set:
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t =

P · s P · s P · s

s s

a1 aP b1 bP c1 cP

Figure 9.1 – Representation of an index t of the table T .

3 · P · s = min(1/3 · n,w). (9.2)

For all x ∈ Fn2 , let h be the function that returns s consecutive bits of x starting from bit k, or
formally h : x → x[k..k + s]. For all 0 ≤ u < 2k, we denote u the binary representation of u such
that: u is a bit-string of length 2k, u[0] is the least significant bit of u (i.e. u[0] = u mod 2). We
denote by h(A[u]) the list:

h(A[u]) = {a = h(x), s.t. x ∈ A[u]}.
We define h(B[u]) and h(C[u]) accordingly for all values of u.
For all 0 ≤ v, w < 2k, we accordingly denote v and w, the binary representations of v and w. A

triplet of buckets (A[u],B[v], C[w]) may contain a solution of the 3XOR problem, only if w = u⊕v.
Now, for each of such triplets (A[u],B[b], C[u⊕v]), the idea of the algorithm is to check if a solution
may exist or not by first checking if there is a solution to the instance (h(A[u]), h(B[v]), h(C[u⊕v])).
In other words, we check whether there is a partial solution over s bits.

If this test fails, we know for sure that there is no solution and we can move on to the next
triplet of buckets, without having to perform any other operation. On the other hand, if the test
passes, we only know that there is a solution to the 3XOR problem with probability (1/2)n−k−s.

Solving each of the 22k small instances (h(A[u]), h(B[v]), h(C[u⊕v])) can be done in constant time,
using table T .
Remark 1. One can notice that if a bucket contains more than P vectors then these additional
vectors are not considered during the preliminary test. Thus, we have to treat them separately
afterward. However, if we choose P to be equal to κ2 ·m, with a well chosen κ2, we can ensure
that the number of buckets that will contain more than P elements is very small.

Using Chernoff bounds, we figured out that, if we choose κ2 to be around 4.162, the probability
that a bucket will contain more than P elements will be 2−4·m.
Remark 2. Taking this into account, we have:

m = 2n/3−k = Θ(n/ logn). (9.3)

This is a direct consequence of the definition of P and s and of Equation 9.2.

9.2.3 Full Description of the Procedure

Let k be a parameter such that A, B and C are dispatched into 2k buckets according to their first k
bits. For each small set A[u] (resp. B[v] and C[u⊕v]), we keep a Ps-bit vector tA[u] (resp. tB[v] and
tC [u ⊕ v]), in which the elements of h(A[ul]) (resp. h(B[v]) and h(C[u⊕v])) are stored. With this
construction, assuming that the number of elements of each bucket does not exceed P , a solution
to the instance (h(A[u]), h(B[v]), h(Cu⊕v)) exists if and only if T [tA[u] | tB[v] | tC [u⊕v]] = 1. The
procedure described in Algorithm 25 is used to initialise the tables tA, tB and tC .

If there are exceeding elements in the buckets they are to be treated independently. All in all,
this leads to Algorithm 26:
Remark 3. After us, the authors of [DSW18] have proposed another adaptation of the BDP algo-
rithm for the 3XOR problem. Their algorithm is designed to solve the problem for the case where
the lists are sets of elements that are non necessarily random. As such, they had to use linear hash
functions for the dispatch step, and for the preliminary test. Their version is then closer to the
original BDP algorithm than ours.
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Algorithm 25 Initialise vectors.
Require: Lists A dispatched into 2k buckets.
Ensure: The table tA

1: for 0 ≤ u < 2k do
2: Set tA[u]← ⊥.
3: for 0 ≤ i < max(P,Nu

A) do
4: tA[u]← vA[u] | h

(
A[u][i]

)

Algorithm 26 Adaptation of BDP algorithm to our problem.
Require: Three lists A, B and C and the precomputed table T
Ensure: All couples (A[i],B[j]) such that A[i]⊕ B[j] is an element of C

1: Dispatch A,B and C, according to their first k bits
2: Use Algorithm 25 to create the tables tA, tB and tC
3: for 0 ≤ u, v < 2k do
4: t← tA[v]|tB[u⊕ v]|tC [u]
5: if T [t] = 1 then . There may be a solution in this sub-instance
6: for all couples (A[i],B[j]) in A[u] × B[u⊕v] do
7: if A[i]⊕ B[j] is in C[u] then
8: return (A[i],B[j])
9: else if A[v] > P then . There is more than P elements of A that start by v

10: for all couples (A[i],B[j]) in A[v][P..]× B[u⊕v] do
11: if A[i]⊕ B[j] is in C[u] then
12: return (A[i],B[j])
13: else if B[u⊕v] > P then . There is more than P elements of B that start by u⊕ v
14: for all couples (A[i],B[j]) in A[v] × B[u⊕v][P..] do
15: if A[i]⊕ B[j] is in Cu then
16: return (A[i],B[j])
17: else if C [u] > P then . There is more than P elements of C that start by u
18: for all couples (A[i],B[j]) in A[v] × B[u⊕v] do
19: if A[i]⊕ B[j] is in Cu then
20: return (A[i],B[j])
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9.3 Complexity Analysis and Discussion

9.3.1 Complexity Analysis

Theorem 9.1. With input lists of size 2n/3, the time complexity of the BDP algorithm in our
model is

O
(

22n/3 · log2(n)
n2 +Ntest ·

n2

log2 n

)
,

where Ntest is the number of triplets that pass the test. The expected value of Ntest is:

E[Ntest] =
(

22·n/3

m
− 1

)
·
(

1−
(

1− 1
wκ1
·
(

1− 1
wκ1

))Θ(n3/ log3(w))
)

+ 1.

When n grows to infinity, Ntest is equivalent to 1. Thus, the asymptotic complexity of this
algorithm is

O
(

22n/3 · log2 n

n2

)
.

Before we prove this theorem, we need first to introduce some intermediate results.

Lemma 9.2. Let us denote by Ntest the number of triplets (A[u],B[v], C[u⊕v]). The time complexity
of our adaptation of the BDP Algorithm is:

TBDP = O
(

22n/3 · log2 n

n2 +Ntest ·
n2

log2 n

)
.

Proof. The time complexity of the full procedure is:

TBDP = Tdispatch + 22·k · Ttest +Ntest · Tsolve + Tadditional,

where: Tdispatch is the time it takes to dispatch the elements of the three lists according to their k
first bits. As discussed in Section 6.3,

Tdispatch = O (NA +NB +NC) = O
(
2n/3

)
.

Ttest is the time complexity of testing one sub-instance (A[u],B[v], C[u⊕v]). This is constant
time, by a lookup in a precomputed table. We will have to perform this test for all triplets
(A[u], B[v], C [u⊕v]), that means 22·k times.

Tsolve is the time required to solve one small instance (A[u],B[v], C[u⊕v]). If we denote by N [u]
A

the number of elements in A[u], and accordingly N [v]
B and N [u⊕v]

C , the number of elements in B[v]

and C[u⊕v].

Tsolve = O
(
(N [u⊕v]
C +N

[u]
A ·N

[v]
B )

)
.

Furthermore, as N [u⊕v]
C , N [u]

A and N [v]
B are all O (m),

Tsolve = O
(
m2
)
.

Tadditional is the time required for additional searches, when a bucket contains more than P
elements. As we have chosen P so that this event is very unlikely, this can be neglected.

All in all we obtain:
TBDP = O

(
2n/3 + 22·k +Ntest ·m2

)
.

In addition, we have 2k = 2n/3/m and m = Θ(n/ log(n)). This is enough to conclude the proof
of this lemma.
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Lemma 9.3. The expected number of triplets that pass the test is:

E[Ntest] =
(
22·k − 1

)
·
(

1−
(

1− 1
wκ1
·
(

1− 1
wn−κ1

))Θ(n3/ log3(w))
)

+ 1.

Proof. Let us consider a sub-instance (A[u],B[v], C[u⊕v]). Let (a,b, c) ∈ A[u] × B[v] × C[u⊕v]. Re-
calling that h(a) (resp. h(b), h(c)) represents s arbitrarily chosen bits of a (resp. b, c), that are
uniformly random, the probability πFP that h(a) ⊕ h(b) = h(c), knowing that a ⊕ b 6= c with
(a,b, c) ∈ A[u] × B[v] × C[u⊕v] is:

πFP = 1
2s ·

(
1− 1

2n−k−s
)
.

Using Chernoff bounds, we know that the size of the small lists h(A[u]), h(B[v) and h(C[u⊕v])
are Θ(m) with high probability. Then, we can estimate the probability that a given instance is a
false positive to the preliminary test is:

P[False positive] =
(
1− (1− πFP )Θ(m3)

)
,

with m = Θ(n/ log(w)).
Furthermore, given the size of the list, we expect only to find one solution. Thus, we expect

only one true positive in the preliminary test. Then, there should be only one triplet among 22k

that contains a solution. The 22k − 1 others are expected to contain none.
From here, we can estimate that Ntest is:

E[Ntest] = (22k − 1) ·
(
1− (1− πFP )Θ(n3/ log3(w))

)
+ 1.

Lemma 9.4. If w(n) ∈ Θ(n), and β > 0 is a constant, then choosing κ1 = 3, ensures that
Ntest ∼

0+
1.

Proof. We set k(n) = n/3 − Θ
(

log(n/w(n))
)
. In particular n − k(n) = 2n/3 + Θ

(
log(n/w(n))

)
.

We also set:

F (n) =
(

1− 1
w(n)κ1

(
1− 1

w(n)n−k(n)−κ1

))β·n3/ log3(w(n))

and then
ln(F (n)) = β · n3

log3(w(n))
· ln

(
1− 1

w(n)κ1

(
1− 1

w(n)n−k(n)−κ1

))
.

We first prove that the ln factor is asymptotically equal to −1/w(n)κ1 + O (1/n2κ1
)
. At this

end, we need to consider the function:

g(n) = w(n)2n/3+γ log(n/ log(w(n))),

for some constant γ > 0.

ln(g(n)) =
(2n

3 + γ log n

logw(n)
)

logw(n).

As w(n) = Θ(n), we have limn→+∞ ln(g(n)) = +∞. It follows that:

lim
n→+∞

1
w(n)n−k(n) = 0,
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hence, as γ, κ are positive,
lim

n→+∞

1
w(n)κ1

− 1
w(n)n = 0.

Thus,

ln
(

1−
( 1
w(n)κ1

− 1
w(n)n−k(n)

))
=

+∞
−
( 1
w(n)κ1

− 1
w(n)n−k(n)

)
+O

( 1
w(n)2κ1

+ 1
w(n)2(n−k(n)

)

=
+∞
− 1
w(n)κ1

+O
( 1
n2κ1

)
.

It follows that:
ln(F (n)) =

+∞
−β · n3

log3(w(n))
· 1
w(n)κ1

+O
(

1
n3 log3(n)

)
.

As w(n) ∈ Θ(n), there are two constants β1, β2 strictly greater than 0, and a certain n0 such that
for all n ≥ n0,

−β1 ·
n3−κ1

log3(w(n))
+O

(
n3−2κ1

log3(n)

)
≤ ln(F (n)) ≤ −β2 ·

1
log3(w(n))

+O
(
n3−2κ1

log3(n)

)
.

Choosing κ1 ≥ 3 will ensure ln(F (n)) → 0 when n grows up to infinity. We choose then κ1 = 3.
From here we can deduce the following equation:

lim
n→+∞

(
1− 1

w(n)3

(
1− 1

w(n)n−3

))β·n3/ log3(w(n))
= 1, (9.4)

or in a simpler way:
(1− 1/πFP )Θ(n3/ log3(w)) = 1

The proof Lemma 9.4, is trivial from here.

Theorem 9.1 is a direct consequence of all these results.

9.3.2 Theory vs Practice

While it is asymptotically more efficient than any other algorithms introduced here, the BDP
algorithm fails in practice for reasonable values of n (e.g. n = 96). In fact, for n = 96, and w = 64,
from Equation 9.2, we have:

3 · P · s = 3 · κ1 log(w) · κ2m = 32.

Choosing κ1 = 3 as in Lemma 9.4, and κ2 = 4.162, as in Remark 1, we obtain:

m = 32
3 · 3 · 4.162 · log 64 = 32

224.748 ' 0.142.

The best we could hope, in that case, is to process “batches” composed of... a tenth of an entry!
Remark 1. We have been told that this comparison is not fair, as in practice one will not use
the Chernoff bounds, and would rather choose a smaller value of P and decide to treat exceeding
elements independently, hoping that there will be only a few of them. We claim that even in this
case, this algorithm is still impractical.

Indeed, assume that we choose to take κ2 = 1 so that P will be exactly m. Then, we obtain
m ' 0.593, which is still less than one element.

It would be interesting to know for which value of n this method would be worth trying. We
have not thought about the question much, but it seems quite hard to answer. Indeed, what appears
to be a limiting factor here is the size of the machine word, which is a constant 64, and do not grow
with n as in the RAM model. Increasing the value of n on a 64-bit machine, will then probably
lead to even worst results.
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Conclusion

Here, we discussed about the 3XOR problem. We revisited and discussed previous algorithms,
from the most naive quadratic one, to improvements of Wagner’s method, by Joux in one hand
and Nikolić and Sasaki in the other. We also took into account several problems such as memory
consumption, and query complexity. We presented Bernstein “clamping trick” to reduce the first
one, at the cost of increasing the later. We claimed that, when querying the oracles costs a lot of
time, it may be interesting to reduce slightly the number of queries, at the cost of increasing the
space and the time complexity.

Once we had all these practical considerations in mind, we presented a new algorithm, which
generalises the idea of Joux to any size of input lists. The algorithm we presented in Section 8 can
be applied to recover all solutions to the 3XOR problem and not only one. Whenever only one
solution is required, we can use the clamping trick to reduce both the running time and the memory
consumption of our algorithm. We showed that, in this case, for the same number of queries, our
algorithm is asymptotically faster than the Nikolić-Sasaki one, and requires to manipulate much less
data. We also presented some possible improvements of our algorithm which aimed to reduce the
number of iterations of the whole procedure. Unfortunately, we only managed to gain a constant
improvement in theory, and we have not yet tested how these methods would behave in practice.
We also explained our experiments and gave some details about the implementation. In practice,
our algorithm ran about 3 times faster than our implementation of the quadratic algorithm for
n = 96.

In the last chapter, we presented an older algorithm due to Baran, Demain and Pǎtraşcu
that solves the 3SUM problem over the integers. After recalling the general idea of the method, we
transposed it to the case of the 3XOR problem. This algorithm has the best asymptotic complexity,
but is impractical.

At the aim of understanding the time-space-query tradeoffs and other practical considerations
for larger values of n better, we have embarked on a project to compute a 128-bit 3XOR of SHA256.
At this aim, we have acquired an Antminer S7 bitcoin-miner, to generate the lists and perform the
clamping. With the default settings the clamping was done on 36 bits of the output. After tuning
the bitcoin-miner, we reduced this clamping to 33 bits. This allows us to reduce the time required
for generating the lists, at the cost of increasing their size and thus the time complexity of the
procedure. For now on we are able to generate enough samples to solve a 3XOR over 120-bit of
SHA256, and we keep-on mining.

There are still open questions. First of all: is there a setting where the 3XOR problem can be
solved faster than O

(
2n/2−o(1)

)
? Although it seems very unlikely due to conjecture upper bounds

for the 3SUM problem, nothing is clear yet. In fact, we do not even know for sure if the 3XOR
problem is indeed as hard as the 3SUM problem.

Another interesting point would be to know whether our algorithm can be transposed into the
3SUM setting. In this case, one will encounter some issues due to carries, that will introduce errors.
Hopefully these errors will be small and can be dealt with efficiently, enumerating the solutions to
an approximate-3SUM instance.

Finally, it could also be interesting to see if our algorithm could be applied to other kXOR
instance. when k = 2α · 3, the instance would naturally reduce itself to a 3-XOR using Wagner
k-tree algorithm. When k = 3β, we may possibly generalise the notion of joined list, and compute
lists of the type:
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Li ./` Lj ./α Lk = {(xi,xj ,xk) ∈ Li × Lj × Lk|xi[..`]⊕ xj [..`]⊕ xk[..`] = 0}.
With our algorithm it is possible to compute all triplets which satisfy this condition, but the
required time will be almost quadratic in the size of the input lists. On the other hand, this would
require to compute and store less lists. And so, it is not clear whether there is something that
could be gained compared to Wagner’s algorithm. It would also be interesting to know whether a
similar method can be applied to other values of k (e.g. 5, 7). We have not given much thought
to the matter so far, but we do not see why this would not work. However, once again, we do not
know if the gain compared to Wagner’s algorithm would be worthwhile.
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Introduction

“From error to error, one discovers the en-
tire truth.”

– Sigmund Freud –

Learning With Errors

Regev introduced the learning with error (LWE) problem in 2005 [Reg05]. Given an m-by-n
matrix over Z, with m > n, and a vector c of Zm, this problem basically consists in solving the
noisy system

As + e = c mod q,

where e is a short error vector, whose coefficients are sampled according to a specific distribution
over Zq (typically a discrete Gaussian distribution). Regev showed that, for suitable parameters,
this problem is as hard as worst-case lattice problems, in the quantum setting. A few years later,
Brakerski et al. [BLP+13] showed a similar reduction in the classical setting. These results are
a cornerstone of modern lattice-based cryptography, which is to a large extend based on LWE or
related problems.

Variants of the Problem.

Adding structure and different distributions. Many variants of the LWE have been de-
veloped in the last few years, mostly with the goal of improving the efficiency of Lattice-based
cryptography. An important part of these works has been to extend LWE to different kinds of
structure. This started with the introduction in 2009 of Polynomial-LWE (PLWE) by Stehlé et
al. [SSTX09]. One year later, the celebrated ring variant (RLWE) of LWE was proposed by Lyuba-
shevsky, Peikert and Regev [LPR10, LPR13]. Langlois and Stehlé introduced the module variant of
LWE (MLWE) in 2015 [LS15], and finally Roşca et al. [RSSS17] introduced the Middle-Product-LWE
variant (MPLWE). A recent study from Roşca, Stehlé and Wallet presents new reductions results
concerning these different problems [RSW18].

Another important line of work concerning the LWE problem is devoted to the analysis of
the problem with different distributions. Typically, papers have studied the case where the error
distribution is a non-Gaussian one and/or very small [AG11, MP13, DMQ13], other have studied the
case where the secret s is sampled from a non-uniform distribution [ACPS09, BLP+13, AFFP14,
BG14, BGPW16, Alb17], or even when the matrix A is not uniform [Gal11, HM17]. The case
where auxiliary information about the secret is provided has also been widely studied [GKPV10,
DGK+10, LPSS17].

Finally, in the context of the recent NIST post-quantum cryptography contest, further exotic
variants have emerged. We can mention for instance Compact-LWE [Liu17, LLKN17], that has been
broken [BTX18, XY18, LLPX18]; the learning with truncation variant that is considered in pqN-
TRUSign [HPWZ17]; and the Mersenne variants of RLWE, introduced for the ThreeBears [Ham17]
and Mersenne-756839 [AJPS17].
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Contributions

Learning with rounding. Another important variant of the LWE problem is the learning
with rounding (LWR) problem. This problem was first introduced in 2012 by Banerjee, Peik-
ert and Rosen [BPR12], as a de-randomisation of LWE, and its security has been studied since
(e.g. [AKPW13, BGM+16]). Here is the considered variant:

bAsep = c mod p,

where b·ep function basically consists in dropping the least significant bits of the input vector. It
has been shown in the articles aforementioned that, for certain parameters, this problem is at least
as hard as the LWE problem. Note that a ring variant RLWR has been introduced at the same time
that the LWR problem.

This de-randomisation allows for instance to build deterministic symmetric primitives such as
pseudorandom functions and pseudorandom generators [BPR12, BBL+14, BGL+14, BDFK17], or
authenticated encryption schemes [BBSJ16] based on the LWE problem.

LWE over the integers. In a paper accepted in ASIACRYPT 2018, we introduced a simple
variant of LWE in which the computations are carried out over Z rather than Zq. More precisely,
we consider a problem which we called ILWE, for Integer-LWE, which consists in recovering the
secret s ∈ Zn of the following noisy system:

As + e = c,

where the coefficients of A and e follow some fixed distributions on Z. This problem may occur
more naturally in statistical learning theory or numerical analysis than it does in cryptography.
Indeed, as opposed to LWE, it is usually not hard. It can even be easily solved when the error
is larger (but not super-polynomially larger in σa) than the product As, under relatively mild
conditions on the distributions involved.

Our Contributions
We present here two contributions related to the LWE problem. The first one is the design of a
cryptographic primitive, more precisely a pseudorandom generator, based on the RLWR problem.
This is the main contribution of [BDFK17]. The other contribution we present here is related to
the ILWE problem aforementioned. We propose a rigorous treatment of the question of its hardness,
in particular we analyse the number of samples required to solve this problem, and we explain how
it can be utilised to recover BLISS secret keys, in a side channel attack.

Building Pseudorandom Generators Using RLWR
The SPRING pseudorandom function (PRF) has been described by Banerjee, Brenner, Leurent,
Peikert and Rosen in 2014 [BBL+14]. It is quite fast, only 4.5 times slower than the AES (without
hardware acceleration) when used in counter mode. SPRING is similar to a PRF introduced by
Banerjee, Peikert and Rosen in 2012 [BPR12], whose security relies on the hardness of the LWR
problem, which can itself be reduced to hard lattice problems. However, there is no such chain
of reductions relating SPRING to lattice problems, because it uses small parameters for efficiency
reasons.

Consequently, the heuristic security of SPRING is evaluated using known attacks and the
complexity of the best known algorithms for breaking the underlying hard problem.

Design. In [BDFK17], we proposed a simpler, faster PRG derived from SPRING and revisit the
security of all these schemes. On a desktop computer, our variant, called SPRING-RS for SPRING
with rejection-sampling, is four times faster than SPRING-CRT, and using AVX2 instructions, it is
twice more efficient than the AES-128 without AES-NI instructions and 5 times less efficient than
the AES-128 with AES-NI instructions on recent CPUs.

As the main disadvantage of SPRING is its large key size, we also propose several ways to
reduce it. The first one uses a 128-bit secret key and another PRG in order to forge the secret
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polynomials of SPRING. The other ones use “smaller” instantiations of SPRING in a bootstrapping
phase to generate the secret polynomials. We distinguish two cases. (1) In the first case, we use
a SPRING instantiation with five secret polynomials to forge other secret polynomials that will
be the secret key of another SPRING instantiation, and we reiterate the process until we have a
(k + 1)-polynomial SPRING instantiation. In this case, all secrets are reset at each step, and we
never use the same polynomial in two different instantiations. (2) In the second case, we assume
that our SPRING instantiation has circular security, and we use only the three first polynomials
a, s1, s2 to forge the next polynomial, using this partial SPRING instantiation, and we reiterate
the process until all si are forged. This reduces the key to 3072 bits.

Security analysis. We propose an update of the security estimation of the underlying RLWR
problem, using the public LWE-estimator from Albrecht et al. [APS15]. We also propose a new
attack against SPRING, to distinguish the output of a SPRING PRG from uniform. This attack
can be applied to all SPRING variants. We choose to describe it only for the case of SPRING-RS
Finally, we propose an algebraic attack, with the assumption that an adversary may have learned
exactly which coefficients have been rejected using side-channel timing attacks. Then, he will have
to solve a polynomial system, using Gröbner bases algorithms, to recover the coefficients of the
secret polynomials.

Improved Side-Channel attack against BLISS.

The second contribution is devoted to analysing the ILWE problem where the matrix A and the
error e follow fixed distributions. As already mentioned, this problem is much easier than LWE.
We however give a concrete analysis of the hardness of the problem. We also provide almost tight
bounds on the number of samples needed to recover the secret s.

Our main motivation for studying the ILWE problem is a side-channel attack against the BLISS
lattice-based signature scheme described by Espitau et al. [EFGT17].

Side-Channel attack against BLISS. BLISS [DDLL13] is one of the most prominent, efficient
and widely implemented lattice-based signature schemes, and it has received significant attention in
terms of side-channel analysis. Several papers [BHLY16, PBY17, EFGT17] have pointed out that,
in available implementations, certain parts of the signing algorithm can leak sensitive informations
about the secret key via various side-channels like cache timing, electromagnetic emanations and
secret-dependent branches. They have shown that this leakage can be exploited for key recovery.

We are in particular interested in the leakage that occurs in the rejection sampling step of
BLISS signature generation. Rejection sampling is an essential element of the construction of
BLISS and other lattice-based signatures following Lyubashevsky’s “Fiat–Shamir with aborts”
framework [Lyu09]. Implementing it efficiently in a scheme using Gaussian distributions, as is the
case for BLISS, is not an easy task, however, and as observed by Espitau et al., the optimisation
used in BLISS turns out to leak two functions of the secret key via side-channels: an exact, quadratic
function, as well as a noisy, linear function.

The attack proposed by Espitau et al. relies only on the quadratic leakage, and as a result uses
very complex and computationally costly techniques from algorithmic number theory (a generali-
sation of the Howgrave-Graham–Szydlo algorithm for solving norm equations). In particular, not
only does the main part of their algorithm take over a CPU month for standard BLISS parameters,
but also technical reasons related to the hardness of factoring make their attack only applicable to
a small fraction of BLISS secret key (around 7%; these are keys satisfying a certain smoothness
condition). They note that using the linear leakage instead would be much simpler if the linear
function was exactly known, but cannot be done due to its noisy nature: recovering the key then
becomes a high-dimensional noisy linear algebra problem analogous to LWE, which should therefore
be hard.

However, the authors missed an important difference between that linear algebra problem and
LWE: the absence of modular reduction. The problem can essentially be seen as an instance of
ILWE instead, and our analysis thus shows that it is easy to solve. This results in a much more
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Contributions

computationally efficient attack taking advantage of the leakage in BLISS rejection sampling, which
moreover applies to all secret keys.

Hardness of ILWE On the theoretical side, our first contribution is to prove that, in an information-
theoretic sense, solving the ILWE problem requires at leastm = Ω

(
(σe/σa)

)2 samples from the ILWE
distribution when the coefficients of the error e are drawn from a sub-Gaussian distribution of stan-
dard deviation σe, and the coefficients of the matrix A are drawn from a sub-Gaussian distribution
of standard deviation σa. We show this by estimating the statistical distance between the distri-
butions arising from two distinct secret vectors s and s′. In particular, the ILWE problem is hard
when σe is super-polynomially (in σa) larger than σa, but can be easy otherwise, including when
σe exceeds σa by a large polynomial factor.

We then provide and analyse concrete algorithms for solving the problem in that case. Our
main focus is least squares regression followed by rounding. Roughly speaking, we show that this
approach solves the ILWE problem with m samples when m ≥ C ·(σe/σa)2 logn for some constant C
(and is also a constant factor larger than n, to ensure that the noise-free version of the corresponding
linear algebra problem has a unique solution, and that the covariance matrix of the rows a of A
is well-controlled). Our result applies to a very large class of distributions for A and e including
bounded distributions and discrete Gaussians. It relies on sub-Gaussian concentration inequalities.

Interestingly, ILWE can be interpreted as a bounded distance decoding problem in a certain
lattice in Zn (which is very far from random), and the least squares approach coincides with
Babai’s rounding algorithm for the approximate closest vector problem (CVP) when seen through
that lens. As a side contribution, we also show that even with a much stronger CVP algorithm
(including an exact CVP oracle), one cannot improve the number of samples necessary to recover
s by more than a constant factor. And on another side note, we also consider alternate algorithms
to least squares when very few samples are available (so that the underlying linear algebra system
is not even full-rank), but the secret vector is known to be sparse. In this case, linear programming
techniques from [CT07] can solve the problem efficiently.

We provide experimental results both for the plain ILWE problem and the BLISS attack which
are consistent with the theoretical predictions (only with better constants). In particular, we obtain
a much more efficient attack on BLISS than the one in [EFGT17], which moreover applies to 100%
of possible secret keys. The only drawback is that our attack requires a larger number of traces
(around 20000 compared to 512 in [EFGT17] for BLISS–I parameters).

Organisation of the Part

In Chapter 10, we present some important notions and definitions that will be useful throughout
this part. We also introduce more formally the LWE problem, and some of its variants, or related
problems. Finally, we present a quick overview of the most famous attacks against LWE.

In Chapter 11, after having recalled important definitions related to pseudorandom functions
(PRFs) and pseudorandom generators (PRGs), we present the BPR family of PRFs. This family is
actually proved to be a secure family of PRFs, assuming the hardness of LWE, but is unpractical.
We also present the practical variants SPRING-BCH and SPRING-CRT from [BBL+14], that do not
enjoy the security reduction.

In Chapter 12, we present our instantiation of SPRING: The SPRING-RS family PRGs. We also
introduce a family of PRFs derived from SPRING-RS, as well as a security analysis of our scheme.

In Chapter 13, we describe the BLISS signature scheme and explain why it is vulnerable to
side-channel attacks. We show how it is possible to obtain an ILWE instance that would allow us to
recover the secret. We also quickly mention the previous attack from [EFGT17], without getting
into the details.

Finally, in Chapter 14 we formally introduce the ILWE problem, and present an analysis of its
hardness, first from an information theoretic point of view, and then we present concrete ways to
solve this problem, the most promising one being the well-known least squares method. Finally,
we give the details of the distributions of the ILWE instance arising from the BLISS side-channel
attack, and we present experimental results.

126



Chapter 10
Of Learning With Errors and Related Problems

In this chapter, we recall some important notions, related to lattices, and probability
distributions. We also present LWE and other related problems. Finally, we give a quick
overview of some of the most famous attacks against LWE.

10.1 Generalities

10.1.1 Notations and Definitions

In this part, to comply with related work, vectors are usually column vectors. Furthermore, the
indexation starts with 1 instead of 0. Let x be a vector.

For r ∈ R, we denote by bre the nearest integer to r (rounding down when r is half integer).

Norm, matrices, and eigenvalues. Let x = (x1 . . . xn) ∈ Rn, and let p ∈ [1,+∞) be an
integer. The p-norm of x is given by ‖x‖p = (|x1|p + · · ·+ |xn|p)1/p, and the infinity norm is given
by ‖x‖p = max(|x1|, . . . , |xn|). Let r > 0 and let c ∈ Rn. For p ∈ [1,+∞], we denote by B(p)

m (c, r)
the n-dimensional closed ball of centre c and radius m with respect to the p-norm: namely the
subset of Rn such that:

B(p)
m (c, r) = {x ∈ Rn | ‖x− c‖p ≤ r}.

Let A be an m-by-n matrix over R. For p ∈ [1,+∞] the norm operator denoted by ‖A‖op
p , with

respect to the p-norm is given by:

‖A‖op
p = sup

x∈Rn{0}

‖Ax‖
‖x‖p

= sup
‖x‖p=1

‖Ax‖.

Recall that given a matrix A, an eigenvalue of A is an element λ of C such that there is a vector v
and Av = λv. We denote by λmax(A) the scalar:

λmax(A) = max{|λ|, such that λ is an eigenvalue of A},

and accordingly,
λmin(A) = min{|λ|, such that λ is a, eigenvalue of A}.

We also have the following useful equality:

‖A‖op
2 =

√
λmax(tAA) (10.1)

This is due to the fact that:

‖A‖op
2 = sup

x6=0

〈Ax, Ax〉
〈x,x〉 = sup

x6=0

txtAAx
txx .
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The ratio RtAA(x) = txtAAx/txx is called Rayleigh quotient of tAA. Now, as tAA is symmetric,
there is an orthonormal basis that diagonalises tAA. In this basis:

RtAA(x) =
∑
i

λi(tAA)x2
i

∑

i

x2
i .

In particular, this is maximal when x is an eigenvector of tAA associated to λmax(tAA). In this
case, RtAA(x) = λmax(tAA), which proves our claim.

Rings. Let n be a power of 2, We denote by R the polynomial ring:

R := Z[X]/(Xn + 1).

Concretely all elements a ∈ R are polynomials of degree at most n− 1, and can be represented as
follows:

a =
n−1∑

i=0
ai+1X

i

a is uniquely determined by its coefficients (a1, . . . , an). We associate a to the vector over Zn whose
coefficients are (a1, . . . , an), and we abuse the notation, by denoting this vector also by a. We also
associate to the polynomial a, the skew-circulant matrix:

A =




a1 −an . . . −a3 −a2

a2 a1
. . . −a4 −a3

...
... . . . . . . ...

an−1 an−2 . . . a1 −an
an an−1 . . . a2 a1




(10.2)

We have the following properties:

Proposition 10.1. Let A and B be two skew-circulant matrices respectively associated to polyno-
mials a and b of R. Let C be the matrix: C = AB. Then:

1. C is skew-circulant

2. C = BA

3. The first column of C defines the coefficients of the polynomial c such that c = ab = ba.

4. The vector c satisfies c = Ab = Ba.

Let q be a positive integer, we denote by Rq the ring:

Rq := Zq[X]/(Xn + 1). (10.3)

Concretely all elements a ∈ Rq are polynomials of degree at most n−1, whose coefficients ai, for all
1 ≤ i ≤ n, are elements of Zq. Similarly we can define the vector a ∈ Znq of the coefficients (a1 . . . an)
of the polynomial a. We also define the skew-circulant matrix A associated to the polynomial a
as in Equation 10.2. The properties given in Proposition 10.1 still hold in Rq. We denote by R∗
(resp. R∗q) the group of invertible elements of R (resp. Rq).

Lattices. Let m ≥ n. A Lattice is a discrete additive subgroup of Rm. In other words, let
{b1, . . . ,bn} be a family of linearly independent vectors of Rm.

L = b1Z + . . .bnZ = {
n∑

i=1
xibi |x = (x1, . . . , xn) ∈ Zn}.

The family {b1, . . . ,bn} is called basis of L. Given the m-by-n full rank matrix B whose columns
are given by b1, . . . ,bn, B is said to be the basis matrix of L. For now, we will indifferently refer
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Figure 10.1 – Example of a “good” and a “bad” basis in a lattice.

to a basis or to the basis matrix whose columns are the basis vector. We denote by Λ(B) the
lattice whose basis is B. This basis is not unique. Furthermore, as we will discuss later, some bases
are “better” than other ones. A “good basis” of a lattice L satisfies some norm and orthogonality
properties. In Figure 10.1, the red basis is a “bad” one. On the other hand, the vector in the blue
basis are short and as orthogonal as possible, it is a “good” basis.

The dimension of L is given by m, and its rank is given by n. If m = n, then L is said to be
a full-rank lattice. In this thesis we only need to consider full rank lattices. Recall that given a
subset S of Rn, Span{S} is the vector subspace of Rn spanned by the elements of S. Let L be a
lattice of dimension n. For 1 ≤ i ≤ n, we can define the i-th successive minimum of L, with respect
to the p-norm as:

λ
(p)
i = min{r ∈ N : dim Span{L ∩ B(p)

n (0, r)} ≥ i}.
In particular the first minimum of L in the p-norm is defined by:

λ
(p)
1 (L) = min

x∈Lr{0}
‖x‖p =





min
x∈Lr{0}

(
m∑

i=1
xpi

)1/p

if p < +∞

min
x∈Lr{0}

(
max
i
|xi|
)

if p = +∞

We call dual of a lattice L = Λ(B), the lattice:

L∗ = {x ∈ Rm | tBx = 0}.

The dual of a lattice is unique and does not depend on the choice of the basis. Let B be an m-by-n
full-rank matrix whose coefficients are in Zq. The q-ary lattice of dimension m and rank n spanned
by B is defined as follows:

L = Λq(B) = {y = Bx mod q | x ∈ Zn}

and its dual:
L∗ = {x ∈ Zm | tBx = 0 mod q}.

Remark 1. Let L = Λq(B) be a q-ary lattice of dimension m and rank n. There exists a full-rank
lattice L′ over Zm, such that ∀y ∈ L any representant of y in Zm is in L′. Furthermore, if z ∈ L′,
then there is a vector y ∈ L such that y = z (mod q)

Indeed, let y be a vector of L′, and ȳ be any representant of y in Zm. There is a vector u ∈ Zm
such that: v = Bx + qu. Now, v belongs to the lattice L′ over Zm such that:

L′ =
{

v =
(
B qIm

)
·
(

x
u

)
| x ∈ Zn,u ∈ Zm

}
.

Now, let v be an element of L′, in particular there is an x ∈ Zn, such that v = Bx (mod q). Thus
v is a representant in Zn of some y ∈ L.
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10.1. Generalities

10.1.2 Probability Distributions.

Distributions. Let S be a discrete set. We denote by U(S) the uniform distribution over S. Let
X be a random variable, that follows a distribution χ. We write X ∼ χ. We write x  χ to say
that x is drawn in S according to χ. If χ is a discrete probability distribution over S. For all s ∈ S,
we denote by χ(s) the probability P[X = s] that a given sample X ∼ χ is equal to s. In particular,
for any function f : S → R,

E[f(s)] =
∑

s∈S
f(s)χ(s).

Let χ1 and χ2 be two probability distributions over S. We define the statistical distance
∆(χ1, χ2) of χ1 and χ2 as:

∆(χ1, χ2) = 1
2
∑

s∈S
|χ1(s)− χ2(s)|.

If ∆(χ1, χ2) is small enough, then χ1 and χ2 are the same distribution. We also define the Kullback-
Leibler (KL) divergence as:

DKL(χ1||χ2) =
∑

s∈S
χ1(s) ln χ1(s)

χ2(s) . (10.4)

The statistical distance and the KL divergence are related by Pinsker’s inequality:

∆(χ1, χ2) ≤
√

1
2DKL(χ1||χ2). (10.5)

Indistinguishability. Let η ∈ N \ {0} be a parameter. Let χ1 and χ2 be two distributions over
S. χ1 and χ2 are said to be statistically indistinguishable with respect to the (security) parameter
η if:

∆(χ1, χ2) ≤ negl (η) .

Given an adversary A, who can run any probabilistic polynomial time (in η) algorithm A
outputting a single bit. The advantage of A distinguishing χ1 and χ2, is defined by:

Advχ1,χ2(A) = |P[A(χ1)] = 1| − |P[A(χ2)] = 1|

We say that χ1 and χ2 are computationally indistinguishable if:

Advχ1,χ2(A) ≤ negl (η) .

In other words, two distributions are computationally indistinguishable, if there is no polynomial
time (in η) algorithm A whose behaviour significantly changes depending whether its input is drawn
from χ1 or from χ2.

Furthermore, from [VV14, BCG16], given two distributions χ1, χ2, distinguishing whether χ1 =
χ2 or ∆(χ1, χ2) ≥ ε requires at least Ω

(
1/ε2) samples.

Rejection sampling. Rejection sampling is a method that was introduced by von
Neumann [vN51]. It is used to sample a random variable from a target probability distribution χ,
given a source bound to a different probability distribution χ′. To do so, a sample x is drawn from
χ′ and is accepted with probability:

P[sample x accepted] = χ(x)
Mχ′(x) ,

where M > 0 is a real. If x is not accepted, then the procedure is restarted. It is possible to prove
that if for all x, χ(x) ≤M ·χ′(x), then this rejection sampling procedure produces the distribution
χ. The parameter M is chosen so that the number of times the procedure will have to be restarted
is as small as possible.
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Discrete Gaussian and sub-Gaussian distributions. Let ρr be the function that maps x
from R to

ρr = exp
(
−πx

2

r2

)
.

First notice that the sum S =
∑
x∈Z ρ(r) converges. Indeed:

S = 1 + 2
∑

x∈Nr{0}
ρr(x) = 1 + 2

∑

x∈Nr{0}
exp

(
−πx

2

r2

)
.

And, as:

x2 exp
(
−πx

2

r2

)
−−−→
x→∞

0,

There exists k > 0 such that for all x ≥ k

exp
(
−πx

2

r2

)
≤ 1
x2 .

As the
∑
x∈N 1/(x2) <∞, this is enough to conclude that S is well-defined.

The discrete Gaussian distribution Dn
r over Z is defined as the distribution, in which x ∈ Z is

drawn with probability:
Dr(x) = ρr(x)∑

y∈Z ρr(y) .

Let ρr be the function that maps a vector x from Rn to

ρr(x) = exp
(
−π‖x‖

2
2

r2

)
.

Once again, it is possible to show that
∑

x∈Zn ρr(x) is well-defined. We call discrete Gaussian
distribution Dn

r over Zn, the distribution, in which x ∈ Zn is drawn with probability:

Dn
r (x) = ρr(x)∑

y∈Zn ρr(y) .

Given an n-dimensional lattice L, for all positive real ε, the smoothing parameter ηε(L) of L is
the smallest r such that ∑

x∈L∗r{0}
ρ1/r(x) ≤ ε.

The notion of a sub-Gaussian distribution was introduced by Kahane in [Kah60], and can be
defined as follows:

Definition 10.1. A random variable X over R is said to be τ -sub-Gaussian for some τ > 0 if the
following bound holds for all s ∈ R:

E
[
exp(sX)

] ≤ exp
(τ2s2

2
)
. (10.6)

A τ -sub-Gaussian probability distribution is defined in the same way.

Let X be a sub-Gaussian random variable, there is a minimal τ such that X is τ -sub-Gaussian.
This τ is sometimes called the sub-Gaussian moment of the random variable (or of its distribution).

As expressed in the following lemma, sub-Gaussian distributions always have mean zero, and
their variance is bounded by τ2.

Lemma 10.2. A τ -sub-Gaussian random variable X satisfies:

E[X] = 0 and E[X2] ≤ τ2.
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10.1. Generalities

Proof. For s around zero, we have:

E[exp(sX)] = 1 + sE[X] + s2

2 E[X2] + o(s2).

Since, on the other hand, exp(s2τ2/2) = 1 + s2

2 τ
2 + o(s2), the result follows immediately from

Equation 10.6.

Many usual distributions over Z or R are sub-Gaussian. This is in particular the case for
Gaussian and discrete Gaussian distributions, as well as all bounded probability distributions with
mean zero.

Lemma 10.3. The following distributions are sub-Gaussian.

1. The centred normal distribution N (0, σ2) is σ-sub-Gaussian.

2. The centred discrete Gaussian distribution Dr of parameter r is r√
2π -sub-Gaussian for all

r ≥ 0.283.

3. The uniform distribution Uα over the integer interval [−α, α] ∩ Z is α√
2 -sub-Gaussian for

α ≥ 3.

4. More generally, any distribution over R of mean zero and supported over a bounded interval
[a, b] is

(
b−a

2
)
-sub-Gaussian.

Moreover, in the cases (1)–(3) above, the quotient τ/σ ≥ 1 between the sub-Gaussian moment and
the standard deviation satisfies:

1. τ/σ = 1;

2. τ/σ <
√

2 assuming r ≥ 1.85;

3. τ/σ ≤
√

3/2

respectively.

The most interesting property concerning sub-Gaussian distributions is that they satisfy a very
strong tail bound.

Lemma 10.4. Let X be a τ -sub-Gaussian distribution. For all t > 0, we have

P[X > t] ≤ exp
(
− t2

2τ2

)
. (10.7)

Proof. Set t > 0. For all s ∈ R we have, by Markov’s inequality:

P[X > t] = P[exp(sX) > est] ≤ E[exp(sX)]
est

since the exponential is positive. Using the fact that X is τ -sub-Gaussian, we get:

P[X > t] ≤ exp
(
τ2s2

2
)

est
= exp

(
s2τ2

2 − st
)

and the right-hand side is minimal for s = t/τ2, which exactly gives Equation 10.7.

It is possible to extend the notion of sub-Gaussian random variables to higher dimension. First
we recall the following lemma:

Lemma 10.5. Let X1, . . . , Xn be independent random variables such that Xi is τi-sub-Gaussian.
For all µ1, . . . , µn ∈ R, the random variable X = µ1X1 + · · ·+ µnXn is τ -sub-Gaussian with:

τ2 = µ2
1τ

2
1 + · · ·+ µ2

nτ
2
n.
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Proof. Since the Xi’s are independent, we have, for all s ∈ R:

E[exp(sX)] = E
[
exp

(
s(µ1X1 + · · ·+ µnXn)

)]

= E
[

exp(µ1sX1) . . . exp(µnsXn)
]

=
n∏

i=1
E
[

exp(µisXi)
]
.

Now, since Xi is τi-sub-Gaussian, we have

E
[
exp(µisXi)

] ≤ exp
(
s2(µiτi)2

2

)

for all i. Therefore:

E[exp(sX)] ≤
n∏

i=1
exp

(
s2(µiτi)2

2

)

≤ exp
(
s2((u1τ1)2 + · · ·+ (unτn)2)

2

)

≤ exp
(
s2τ2

2

)

with τ2 = µ2
1τ

2
1 + · · ·+ µ2

nτ
2
n as required.

We can now define what a τ -sub-Gaussian random vector is:

Definition 10.2. A random vector x in Rn is called a τ -sub-Gaussian random vector if for all
vectors u ∈ Rn with ‖u‖2 = 1, the inner product 〈u,x〉 is a τ -sub-Gaussian random variable.

Clearly, from Lemma 10.5 if X1, . . . , Xn are independent τ -sub-Gaussian random variables, then
the random vector x = (X1, . . . , Xn) is τ -sub-Gaussian. Indeed, for any u ∈ Rn, of norm ‖u‖2 = 1,
we have: 〈u,x〉 is τ ′-sub-Gaussian with

τ ′ = τ(u2
1 + . . . u2

n) = τ‖u‖2 = τ.

The bound on the sub-Gaussian moment can be used to derive a bound with high probability
on the infinity norm as follows:

Lemma 10.6. Let v be a τ -sub-Gaussian random vector in Rn. Then:

Pr
[‖v‖∞ > t

] ≤ 2n · exp
(
− t2

2τ2

)
.

Proof. If we write v = (v1, . . . , vn), we have ‖v‖∞ = max(v1, . . . , vn,−v1, . . . ,−vn). Therefore, the
union bound shows that:

Pr
[‖v‖∞ > t

] ≤
n∑

i=1
Pr[vi > t] + Pr[−vi > t]. (10.8)

Now each of the random variables v1, . . . , vn,−v1, . . . ,−vn can be written as the scalar product
of v with a unit vector of Rn. Therefore, they are all τ -sub-Gaussian. If X is one of them, the
sub-Gaussian tail bound of Lemma 10.4 shows that Pr[X > t] ≤ exp

(− t2

2τ2
)
. From Equation 10.8,

we obtain the desired result.

A nice feature of sub-Gaussian random vectors is that the image of such a random vector under
any linear transformation is again sub-Gaussian.

Lemma 10.7. Let x be a τ -sub-Gaussian random vector in Rn, and A ∈ Rm×n. Then the random
vector y = Ax is τ ′-sub-Gaussian, with τ ′ = ‖AT ‖op

2 · τ .
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Proof. Fix a unit vector u0 ∈ Rm. We want to show that the random variable 〈u0,y〉 is τ ′-sub-
Gaussian. To do so, first observe that:

〈u0,y〉 = 〈tAu0,x〉 = µ〈u,x〉

where µ = ‖tAu0‖2, and u = 1
µ
tAu0 is a unit vector of Rn. Since x is τ -sub-Gaussian, we know

that the inner product 〈u,x〉 is a τ -sub-Gaussian random variable. As a result, by Lemma 10.5 in
the trivial case of a single variable, we obtain that 〈u0,y〉 = µ〈u,x〉 is (|µ|τ)-sub-Gaussian. But
by definition of the operator norm, |µ| ≤ ‖tA‖op

2 , and the result follows.

10.2 Algorithmic Problems

10.2.1 Some Hard Lattice Problems

We give here a brief overview of some of the most important problems on lattices. As these are not
the topic of this thesis, we will not develop them.

We consider a lattice L defined by one of its basis B, and some approximation factor γ ≤ 1.
We define these problems in the 2-norm.

The shortest vector problem with approximation factor γ (SVPγ) consists in finding a vector
x ∈ L such that 0 < ‖x‖2 ≤ γλ

(2)
1 (L). In other words, the goal is to find a non-zero vector x ∈ L

such that its norm is smaller than γ times the norm of the smallest non-zero vector in L.
Given a parameter d > 0, the gap shortest vector problem with approximation factor γ (GapSVPγ)

consists in deciding whether λ(2)
1 (L) ≤ d or λ(2)

1 ≥ γd.
The shortest independent vector problem with approximation factor γ (SIVPγ) consists in finding

n linearly independent vectors xi ∈ L such that maxi ‖xi‖2 ≤ γλ(2)
n (L).

Given a target vector t ∈ Rn, the closest vector problem with approximation factor γ (CVPγ)
consists in finding a vector x ∈ L such that ‖x− t‖2 ≤ γdist(t,L) = γ infe∈L ‖e− t‖2.

Given a target vector t ∈ Rn, such that dist(t,L) ≤ γ−1λ
(2)
1 (L), the bounded distance decoding

problem with approximation factor γ (BDDγ) consists in finding a vector x ∈ L such that ‖x−t‖ =
dist(t,L).

The decisional problems associated to the problems stated above are known to be NP-Hard for
certain values of γ, and polynomial for some other ones.

10.2.2 Learning With Errors

The Learning With Errors (LWE) problem has been introduced by Regev [Reg05] in 2005. This
problem is one of the two most fundamental problems in lattice-based cryptography, along with
the Short Integer Solution (SIS) problem.

Let n and q be parameters and let χ be an error distribution over Z. Let m be an arbitrarily
big integer.
Problem 10.1 (LWEn,m,q,χ). Given a uniformly random m-by-n matrix A over Zq, a vector c ∈ Zmq ,
a secret uniformly random vector s ∈ Znq and an unknown noise vector e ∈ Zm, such that each
coefficient of e is draw from χ, the goal is to solve the following system:

As + e = c mod q (10.9)

We can also define the decision variant of this problem. Let us consider a secret vector s ∈ Znq ,
and an error distribution χ over Z. We call LWE distribution with respect to s and χ, and denote
by As,χ, the distribution over Znq ×Zq, obtained by choosing a vector a ∈ Znq uniformly at random,
and returning (a, 〈a, s〉 + e), where e is a noise variable drawn from χ. The decisional version of
LWE, denoted by DecLWEn,m,q,χ is then defined as follows:
Problem 10.2 (DecLWEn,m,q,χ). Let s ∈ Znq be a uniformly random secret vector. The goal is to
distinguish between m independent samples from As,χ, and m samples drawn independently from
the uniform distribution over Znq × Zq.
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An LWE sample.

· + = mod q

· + = mod q

An RLWE sample.

Figure 10.2 – LWE and RLWE samples.

Hardness of the problem. Regev [Reg09] proved that solving DecLWEn,m,q,χ is as hard as
solving LWEn,m,q,χ. In the same paper, he also proved that there exists a polynomial quantum
reduction from SIVP to LWE, when the modulus q is prime. Later, Brakerski et al. [BLP+13]
proved that there also exists a classical polynomial reduction from GapSVP to LWE. These results
can be summarised in the following theorem:

Theorem 10.8 (As stated in [Lep14], from [LLS14]). Let m, q ≥ 2 be integers, and let α ∈ (0, 1) be
such that αq ≥ 2

√
n. Let χ be a centred discrete Gaussian distribution over Z of standard deviation

αq.

1. If q = poly (n) is prime, there exists a quantum polynomial reduction from SIVPγ in dimension
n to LWEq,n,m,χ, with γ = Õ(n/α).

2. For any q, there exists a classical polynomial time reduction from GapSVPγ, in dimension
Θ(
√
n) to LWEq,n,m,χ, with γ = Õ(n2/α).

As these problems are known to be NP-Hard for certain values of γ, some instances of DecLWE
are NP-Hard. Other ones are polynomial.

Ring variant. Lyubashevski, Peikert and Regev introduced in [LPR10], a ring variant of LWE.
As we do not actually need the general definition which requires to introduce too many notions, we
will only focus on the particular case of cyclotomic polynomial rings R = Z[X]/(Xn + 1), where n
is a power of 2. Let Rq be the ring Zq[X]/(Xn+1). We can define the search Ring-LWE (or RLWE)
problem as follows:
Problem 10.3 (RLWEn,m,q,χ). Let s be a secret uniformly random polynomial of Rq. Given 2m
polynomials, a(i), c(i) = a(i) · s + e(i) where all the a(i) polynomials are drawn uniformly at random
from Rq, and the coefficients of the ei polynomials are drawn independently according to χ. The
goal is to recover s.

This problem can be reformulated in terms of matrices. Indeed, if we denote by a(i)
1 . . . a

(i)
n the

coefficients of a(i). Then, a(i) can be represented by the following skew-circulant matrix:

A(i) =




a
(i)
1 −a(i)

n . . . −a(i)
2

a
(i)
2 a

(i)
1

. . . −a(i)
3

... . . . . . . ...
a

(i)
n . . . a

(i)
2 a

(i)
1




(10.10)

Then, if we consider the c(i), s and e(i) polynomials as vectors of Zq, they satisfy the following
relation:

A(i)s + e(i) = c(i) mod q

The RLWEn,m,q,χ problem is then to solve the following noisy system:



A(1)

A(2)

...
A(m)



· s +




e(1)

e(2)

...
e(m)




=




c(1)

c(2)

...
c(m)




mod q. (10.11)
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We illustrate an LWE sample and an RLWE instance in Figure 10.2.
Let us consider a secret vector s ∈ Rq, and an error distribution χ over Z. We call RLWE distri-

bution with respect to s and χ, the distribution over Rq × Rq, obtained by choosing a polynomial
a ∈ Rq uniformly at random, and returning (a,as + e), where each coefficient of e is drawn from
χ. The decisional version of RLWE, denoted by DecRLWEn,m,q,χ is then defined as follows:

Problem 10.4 (DecRLWEn,m,q,χ). Let s ∈ Rnq be a uniformly random secret polynomial. The goal
is to distinguish between m independent samples from a RLWE distribution with respect to s and
χ, and m samples drawn independently from the uniform distribution over Rq ×Rq.
Remark 1. Before [LPR10], Stehlé et al. [SSTX09] introduced the Polynomial Learning With Error
problem PLWE, which consider the following ring Zq[X]/(f(X)), where f(X) is a monic irreducible
polynomial of Z[X]. The instances of RLWE we described above are also instances of PLWE, with
f(X) = Xn + 1.

Other variants of the LWE problem have been introduced afterward, we can mention module-
LWE (MLWE) from Langlois and Stehlé [LS15] and more recently middle-product-LWE (MPLWE)
from Roşca et al. [RSSS17]. As these variants are not in the topic of this thesis, we will not describe
them. We refer the interested reader to [LS15, Lan14] for MLWE and [RSSS17] for MPLWE. For
reductions and links between all these problems, we refer the reader to [RSW18].

Remark 2. Usually the secret s is not chosen uniformly at random, but instead, is rather small.
Sometimes s may follow the same distribution χ than the error e. There are other variants where
the coefficients of s are drawn from a small subset of Z (e.g. {0, 1} or {0, 1,−1}), in other case the
secret may be sparse. This remark holds for both LWE and RLWE.

10.2.3 Learning With Rounding

In [BPR12], Banerjee, Peikert and Rosen introduced the Learning With Rounding (LWR) problem,
and its ring analog, as “derandomised” version of the (Ring) LWE problem. Indeed, their idea was
to generate the error terms efficiently and deterministically, while preserving the hardness of the
problem. Instead of adding a small random error vector to the product As, they proposed to apply
a “rounding” that will map the product to the nearest element in Zp, where p < q. To do so, they
introduced a rounding function b·ep that maps each element x of Zq to bxep in Zp, such that:

bxep =
⌊
p

q
x̄

⌉
mod p, (10.12)

where x̄ ∈ (−q/2, . . . q/2] ∩ Z is a specific representation of x modulo q.

Remark 3. This definition can be extended coefficient-wise to Rq. In other words, for all x of Rq,
bxep is the polynomial y of Rp such that for all 0 ≤ i < n, yi = bxiep. The ceil function d·ep and
the floor function b·cp are defined accordingly.

Formally, the (search) LWR problem can be defined as follows:

Problem 10.5 (LWRn,m,q,p). Given a uniformly random m-by-n matrix A over Zq, a vector c ∈ Zmp ,
and a secret uniformly random vector s ∈ Znq , the goal is to solve the following system:

bAsep = c mod p, (10.13)

Let us consider a secret vector s ∈ Znq and a parameter p < q. We call LWR distribution with
respect to s and p and denote by Ls,p, the distribution over Znq ×Zp, obtained by choosing a vector
a ∈ Znq uniformly at random, and returning (a, b〈a, s〉ep). The decisional version of LWR, denoted
by DecLWRn,m,q,χ is then defined as follows:

Problem 10.6 (DecLWRn,m,q,p). Let s ∈ Znq be a uniformly random secret vector. The goal is to
distinguish between m independent samples from Ls,p, and m samples drawn independently from
the uniform distribution over Znq × Zp.
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Ring variant. The authors of [BPR12] also proposed a ring variant RLWR of their problem.
Below, we recall the definition of the (search) RLWR problem:

Problem 10.7 (RLWEn,m,q,p). Let s be a secret uniformly random polynomial of Rq. Given 2m
polynomials, a(i), c(i) =

⌊
a(i) · s

⌉
p
, where all the a(i) polynomials are drawn uniformly at random

from Rq. The goal is to recover s.

Once again, this can be reformulated in terms of matrices and vectors. Let A(i) be the matrix
associated to a(i), where A(i) is defined as in Equation 10.10. Solving the RLWR problem amounts
to solve the following rounded system:






A(1)

A(2)

...
A(m)



· s



p

=




c(1)

c(2)

...
c(m)




mod p. (10.14)

Let us consider a secret vector s ∈ Rq. We call RLWR distribution with respect to s and p, the
distribution over Rq × Rp, obtained by choosing a polynomial a ∈ Rq uniformly at random, and
returning (a, basep). The decisional version of RLWR, denoted by DecRLWRn,m,q,p is then defined
as follows:

Problem 10.8 (DecRLWEn,m,q,p). Let s ∈ Rnq be a uniformly random secret polynomial. The goal
is to distinguish between m independent samples from a RLWR distribution with respect to s and
p, and m samples drawn independently from the uniform distribution over Rq ×Rp.

Reduction to (Ring)LWE. The authors of [BPR12] also showed that for any distribution over
the secret s, the (Ring)LWR problem is at least as hard as the (Ring)LWE problem. Formally, they
gave the following result:

Theorem 10.9 ([BPR12]). Let χ be a B-bounded distribution over Z, and let q ≥ pBnω(1). Let
m = poly (m).

1. For any distribution over sZq, DecLWRn,m,q,p is at least as hard as DecLWEn,m,q,χ, for the
same distribution over s.

2. For any distribution over sRq, DecRLWRn,m,q,p is at least as hard as DecRLWEn,m,q,χ, for the
same distribution over s.

This theorem was proved by the authors of [BPR12]. Later proofs by [AKPW13, BGM+16,
ASA16] aimed to reduce the modulus q to about Bmpn, considering a fixed number of samples m.

Error rates. One important notion is the one of error rates. It allows to quantify the possible
values the error can take. Consider an LWEn,m,q,χ instance. We assume the error distribution χ
to be centred of mean 0. Let α > 0 be a parameter such that the magnitude of an error e ∼ χ
is roughly αq.The parameter α is called the relative error rate of the LWE error distribution. The
quantity αq is called the absolute error rate.

It is possible to estimate the error rate of an LWR instance. Consider the following LWR system:

bAsep = c mod p,

where A is an m-by-n matrix over Zq, and s is a vector of Znq . Let us denote by e the vector of Znq
such that e = As − bAsep mod q. e is in a way the “error vector” of the instance. Let ei be an
arbitrary coefficient of e. ei can take about q/p values. Indeed, the bit-length of ei is logq − log p.
If we represent Zq as the set: {−(q − 1)/2, . . . , (q − 1)/2}, then |ei| belongs to [0, q/(2p)) ∩ Z, and
thus, we say that the absolute error rate αq is q/(2p), and thus, the relative error rate α is thus
given by 1/(2p).
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10.2.4 Other Related Problems

For completeness, we recall the definition of the (Inhomogeneous) Shortest Integer problem ((I)SIS),
as well as the Learning Parity with Noise (LPN), even though they are not essential for this thesis.

SIS and ISIS. The shortest integer solution problem (SIS) is with LWE the most important prob-
lem used in lattice cryptography. It has been introduced by Ajtai in [Ajt96], where it has been
shown that there is connection between worst-case lattice problems and the average-case SIS.

The SIS problem in 2-norm can be defined as follows. Given a uniformly random n-by-m matrix
where m = poly (n), a positive integer q, and a parameter β > 0 the goal is to find a non-zero vector
x ∈ Zm such that Ax = 0 (mod q) and ‖x‖2 ≤ β.

Micciancio and Regev [MR07] showed that for large enough q the SIS problem thus defined is,
on average, at least as hard as SIVPγ with γ = Õ (

√
nβ).

The inhomogeneous ISIS variant of SIS, can be defined as follows. Given a uniformly random
n-by-m matrix, where m = poly (n), a positive integer q, a parameter β > 0, and a target vector
c ∈ Zn, the goal is to find a non-zero vector x ∈ Zm such that Ax = b (mod q) and ‖x‖2 ≤ β.
Remark 4. It is possible to convert an LWE instance into a particular ISIS one. Indeed, consider
the following LWE instance:

As + e = c mod q,

where A is an m-by-n matrix, with m > n. We can rewrite it as:

(
A Im

)(s
e

)
= c mod q.

Now, denoting by A′ the matrix
(
A Im

)
and by x the vector

(
s
e

)
, we come up with the following

ISIS instance:
A′x = c mod q.

Peikert and Rosen [PR06] on one hand and Lyubashevsky and Micciancio [LM06] on the other
hand both proposed a ring variant of the (I)SIS problem.

LPN. The learning parity with noise problem LPN can essentially be defined as follows: Given an
m-by-n matrix A over Z2, a parameter τ ∈ (0, 0.5), and an error vector e, whose coefficients are
each drawn independently from a Bernouilli distribution of parameter τ , the goal is to solve the
following noisy system:

As⊕ e = c.

Remark 5. It is possible to see LPN as a particular case of LWE with q = 2. In fact, in [Reg05],
Regev introduced LWE as a generalisation of LPN to moduli other than 2.

10.3 Overview of the Most Usual Attacks Against LWE
We give a brief overview of some of the most usual algorithms used to solve the LWE problem. We
present here some lattice-based algorithms, as well as the combinatorial BKW algorithm, and some
algebraic methods due to Arora and Ge. As this is not the topic of this thesis, we just recall the
idea of these different methods, without detailing their optimisation, nor their complexity analysis.

In this section, we consider the following noisy system from Equation 10.9, and shown in
Figure 10.3 and we present some algorithms that aim to solve it.

10.3.1 Solving LWE Via Lattice Reduction

High level idea. We consider the following lattice:

L = Λq(A) = {v ∈ Zm | v = As, s ∈ Zn}. (10.15)
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c A

s

e=

· +

mod q

Figure 10.3 – LWE system, where A is an m-by-n matrix.

e c v v A

s

= − =⇒ =

· mod q

Figure 10.4 – Reducing an LWE instance to a CVP one.

We assume for now that we know how to solve the CVP problem over L. Then we can find a vector
v ∈ L, such that ‖v − c‖ is small. Now, writing e as c − v and setting As = v mod q, we can
easily recover s using linear algebra, as A consists of more rows than columns. We illustrate this
in Figure 10.4

To find this vector v, there are several possibilities. One can for instance reduce the problem
to an SVP instance in a lattice in dimension one larger. This technique due to Kannan is called
embedding [Kan87]. Another method would be to solve CVP directly: for instance by enumerating
all lattice points that are in a “small” ball centred in v. We refer the reader to [AKS01, AKS02,
GNR10, HPS11] for details about these methods. It is also possible to find the closest vector to b
in L using projections techniques [Bab86]. We briefly recall these methods below.

Solving CVP using embedding techniques. We consider the lattice L given in Equation 10.15.
We aim to find v in L such that the vector e = c− v is small.

The idea is to consider the matrix:

A′ =
(
A c
0 κ

)
,

where κ is a well chosen constant (e.g. following [Gal11] κ = 1). A′ spans a q-ary lattice L′ of
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=
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Figure 10.5 – Reducing LWE to an SVP one.

dimension (m+ 1). In particular we have:

A′
(
−s
1

)
=
(
−A c
0 κ

)(
−s
1

)

=
(
−As + c

κ

)

=
(

e
κ

)
.

Thus,
(

e
κ

)
is a short vector in L′. Now, if we find a short vector

(
e
κ

)
in L, and set v = c− e, we are

essentially done.
To find a short vector in L′, we consider the lattice L̃′ over Zm+1 consisting of the vectors(

A′ qIm
)
x for x ∈ Zn+1+m and we find a “good” basis using lattice reduction algorithm (e.g. LLL,

BKZ). A short vector ỹ in L̃ will give a short vector y in L. We illustrate this in Figure 10.5

Solving CVP directly. It is also possible to solve CVP in L with target c directly. For that, we
consider the lattice L̃ over Zm consisting of the vectors

(
A qIm

)
x, for x ∈ Zn+m. The idea, once

again, is to find a “good” basis B, then for a well chosen parameter r, to enumerate all vectors of
L̃ that are in a ball of centre c and radius r. Using this method, it is guaranteed to find the closest
vector v to c in L̃. There are several ways to chose the parameter r. For instance, r can be chosen
as ‖b1‖ where b1 is the shortest vector of the basis B, if B is reduced enough. One can also decide
to choose a small value for r, and if the search fails, increase r and restart.

Another possibility, due to Babai [Bab86] is to project c on the lattice L̃. The first intuitive
way to do this is very easy to apprehend. Given a basis B of L̃, where the basis vector are denoted
by b1, . . . ,bm, the target vector c can be expressed as follows:

c =
n∑

i=1
αibi,

where αi ∈ R, for all i. Then, it is possible to set v to the vector:

v =
n∑

i=1
bαiebi.

Doing so, however, it is not guaranteed that v will be the closest vector to c.
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A c

b

A(1) c(1)

... ...

A(2) c(2)

b

A(r) c(r)

b

Figure 10.6 – Representation of the BKW algorithm.

The other method due to Babai, called Babai nearest plane consists in solving the problem
inductively in smaller dimension. In brief, if b1, . . . ,bn define a basis of L̃, one can consider the
subspace of Rn, V = Span{b1, . . .bn−1}. Then the idea is to find a vector y1 ∈ L such that the
distance from c to the plane V + y1 is minimal. Then, denoting by c∗ ∈ V + y1 the orthogonal
projection of w onto V + y1, and by c1 the vector c1 = c∗ − y1 ∈ V , the problem is now to find
the closest vector from c1 in the lattice L̃′ = L̃ ∩ U . The solution v to the CVP instance will then
be v = y1 + y2 + · · ·+ yn.

Reduced basis. As we have already mentioned, given a lattice L some bases of L are quite
“good” and other are “bad”. We say that a basis is “good” when it consists of short vectors that
are more or less orthogonal to each other. It is quite easy to see that if we dispose of such a basis,
solving the SVP problem, or the CVP problem becomes quite easy. In particular, if one of the
vectors b1 of the basis B satisfies ‖b1‖2 ≤ γλ(2)

1 , then solving SVPγ is trivial.
On the other hand, if the basis B consists of long vectors, then the problem is much harder.

Moreover, finding a “good” basis of a lattice L when given a “bad” one is not an easy task. This
is the goal of lattice basis reduction algorithms. The celebrated LLL Algorithm, due to Lenstra,
Lenstra and Lovász [LLL82] already finds bases of quite good quality in polynomial time. However,
this is usually not enough for cryptanalysis application.

Schnorr and Euchner’s block-wise BKZ Algorithm [SE94] is usually preferred, as it provides bases
of better qualities. Morally this algorithm takes as input a basis B of a lattice L and a parameter
β and output a reduced basis B′, where the vectors b′1 . . .b′n are ordered from the shortest to the
largest, such that: for all 1 ≤ i ≤ n, ‖b′i‖ = λ

(2)
1 (Λ(B′i..k)), where B′i..k is the sub-matrix of B′

containing the columns b′j to b′k, and where k = min(j + β − 1, n). From here, we can see that the
quality of the basis increases with the parameter β (the block-size). For instance, if β = m where
m is the dimension of L then, in particular ‖b1‖ = λ

(2)
1 (L). However, the complexity of the BKZ

algorithm also significantly increases as the parameter β grows.
Finally, we need to mention that the BKZ algorithm has known notable improvements in the

last few years. Chen and Nguyen proposed an implementation called BKZ-2.0 [CN11] also fully
described in [Che13]. In particular, their implementation utilises many heuristics such as prepro-
cessing of local bases [Kan83], and efficient enumeration algorithms [GNR10, HPS11]. A public
implementation of this algorithm has been made available by its authors. As for more public imple-
mentation of lattice reduction algorithms, we refer the interested reader to the FPLL library [dt16]
also available as a Sage package. We can also mention the IALatRed library [EJ16].
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10.3.2 Blum Kalai and Wasserman Algorithm

This algorithm was initially designed by Blum Kalai and Wasserman [BKW03] to solve the Learning
Parity with Noise (LPN) problem, which can be seen as a particular case of the LWE problem over
F2. It has later been adapted to solve LWE (e.g. [ACF+15, KF15, DTV15]). The idea of the
BKW Algorithm is to perform a variant of the Gaussian elimination, that aims to cancel blocks
of coefficients, instead of only one, at each iteration. Then, if the error is still small enough, and
if the attacker disposes of sufficiently many samples, she can recover a part of the secret. By
re-iterating the procedure, she can find back all coefficients of s. We illustrate this method in
Figure 10.6. Morally, we consider blocks of b coefficients, for a well chosen parameter b. We assume
for simplicity that n is a multiple of b. The vectors are afterward dispatched into buckets according
to their first b coefficients. In each bucket, one vector is chosen to be used to eliminate the first
b coefficients of all other vectors of the bucket with small linear combinations (it is similar to the
pivot in Gaussian elimination). The same changes are applied to the right-hand side c. Only the
vectors that start with b zeroes are kept. The process is re-iterated with the next block, and again,
until we come up with a smaller matrix of the type:

(
0 A′

)
.

The system As + e = c, can then be re-written as:

(
0 A′

)
s + e′ =

(
0 A′

)(s0
s1

)
+ e′ = c′,

where s1 consists in the last b coefficients of the secret s. It follows that:

A′ · s1 + e′ = c′.

If we still dispose of enough samples, and if the error has not grown to much, (we can hope it will
be the case, as only small linear combinations of the error were made), it is possible to recover s1.
To recover the full secret, we have to re-iterate the method, considering the smaller LWE instance:

A0s0 + e = b−A1s1.

where A0 represents the first columns of A, and A1 the last b ones.

10.3.3 Algebraic Attacks

The algebraic attack against LWE were introduced by Arora and Ge [AG11]. This attack works by
replacing the noisy LWE linear system by a polynomial system free of noise and then linearising
the system. Albrecht et al. proposed a variant of this method using Gröbner basis instead of
linearisation [ACF+15].

Let α be the relative error rate of the LWE instance. With high probability, each coefficient of
e belongs to [−αq, αq] ∩ Z. Now consider the polynomial P such that:

P (X) = X
αq∏

i=1
(X − i)(X + i).

The degree of P is 2αq+ 1. For each coefficient ei of e, it is quite clear that with high probability,
P (ei) = 0. In particular, if the number m of LWE sample we dispose of is large enough, it is
possible to build an m-by-n polynomial system in n unknown and of degree 2αq + 1. If m =
mAG = nO(2αq+1), it is possible to find a solution to this system by linearisation.

Albrecht et al. [ACF+15] were able to drop this value to m = θ
√
mAG, were θ = n2−β, for some

constant β (e.g. β = 1/5).
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Chapter 11
Of RLWR-based Pseudorandom Functions and Pseudorandom

Generators

In this chapter, we recall generalities about the pseudorandom functions and pseudo-
random generators. We also present the BPR family of PRFs as well as two previous
SPRING instantiations, SPRING-BCH and SPRING-CRT.

11.1 Pseudorandom Functions and Pseudorandom Generators

11.1.1 Generalities

Definitions. Pseudorandom functions (PRFs) and Pseudorandom Generators (PRGs) are fun-
damental tools in symmetric cryptography.

Definition 11.1 (PRF). Given two positive integers k and m (possibly distinct), a PRF F is a
deterministic function mapping k-bit strings into m-bit strings, such that, upon the choice of a
random and secret key, F is computationally indistinguishable from a truly random function, via
adaptive “black-box” oracles calls.

In other words, if we consider two black-box oracles F and G, such that one of them implements
F , and the other implements a truly random function, and an adversary who:

1. does not know which oracle implement which function,

2. cannot see what is actually implemented inside,

3. can make adaptive calls to each of the oracles,

the adversary cannot efficiently distinguish which one of the oracles implement F , with good prob-
ability.

Definition 11.2 (PRG). Given two positive integers k and m, with m ≥ k, a PRG G is a
deterministic function mapping k-bit strings into m-bit strings, and whose output distribution is,
upon the choice of a random input, computationally indistinguishable from the uniform distribution.

Proof of security vs efficiency. We can distinguish two classes of PRFs and PRGs: those who
actually admit security proofs assuming the hardness of some problems (e.g. [GGM84, BBS86]),
and those whose security is conjectured and is supported by the fact that there is no known attack,
see for instance AES [DR99], the Keccak function [BDPVA09], among others. The first class is
mainly theoretical, and the design of these PRFs/PRGs are impractical or too inefficient for real
word uses. Design of the second classes are usually very fast, but may possibly become vulnerable
to new types of attack.
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In an intend to bridge this gap between efficiency and theoretical security, several works have
been proposed in the last few years. Lyubashevsky et al. introduced in 2008 [LMPR08] a hash
function, that enjoys an asymptotic proof of security, and is quite efficient for practical parameters.
A few years later, along with the introduction of the LWR problem, the authors of [BPR12] proposed
a family of PRFs, called BPR, that enjoys a proof of security, but remains impractical for the
parameters proposed in [BPR12]. The authors of [BBL+14] chose to relax the conditions on the
secret key and the size of the modulus to obtain an efficient variant of the BPR family of PRFs.
Their design still enjoys a strong algebraic structure, even though there is no proof of security for
their chosen set of parameters.

11.1.2 Building One From the Other

PRG from PRF. Once we have a PRF f : {0, 1}k → {0, 1}m, it is quite easy to build a PRG
G : {0, 1}k → {0, 1}m′ , with m′ ≥ m, using a counter mode. In fact, let x ∈ {0, 1}k be a random
input of f , and let (xn) be an arbitrary sequence of bit-strings such that:

1. x0 = x

2. xi+1 = g(xi), for all i and for some function g that satisfies ∀i < j g(xi) 6= g(xj).

For instance, if we denote by x the integer whose bits representation is x, g can be the function
x→ x+ 1. Usually the Gray-code counter mode is preferred (see below).

Let α be a positive integer and set m′ = α ·m. G can be constructed such as in algorithm 27

Algorithm 27 PRG constructed from a PRF f .
Require: A PRF f : {0, 1}k → {0, 1}m, a seed x0, and the function g to update the sequence (xn).
Ensure: An apparently uniformly random bit-string y of length m′ = αm.

1: Set x← x0.
2: Set y← empty string
3: Set m′ ← 0
4: while m′ < αm do
5: Set y0 ← f(x)
6: Set y← (y|y0)
7: Set x← g(x)
8: Set m′ ← m′ +m

9: return y

Gray-code counter mode. Given a positive integer k, A Gray code is a simple way to order
bit-strings of length k, such that two successive values of the counter differ only by one bit. Assume
the counter starts with 0. To transform the i-th value x of a counter to the (i+1)-th, the (j+1)-th
bit of the counter has to be flipped, where j is the number of trailing zeroes in the binary expansion
of (i+ 1). Let us denote by i the binary expansion of i. We give an example below, for bit-strings
of length 3:

i x i
0 000 000
1 100 100
2 110 010
3 010 110
4 011 001
5 111 101
6 101 011
7 001 111
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Figure 11.1 – Computation of Fx(1101) with the GGM construction.

PRF from PRG. It is also possible to construct a PRF from a PRG, although the transformation
is not practical. This construction is due to Goldreich, Goldwasser and Micali [GGM84], and
therefor known as the GGM construction. We briefly recall its idea.

Let us consider a PRG G, that maps k-bit strings to 2k-bit strings, and let us denote by G0
and G1 the functions such that:

G(x) = G0(x)|G1(x),

for any x ∈ {0, 1}k. Let x be a random bit string of length k, and consider the family of functions
Fx, that map `-bit string into k-bit, for some ` such that for all y ∈ {0, 1}`,

Fx(y) = xy,

where for all string y, xy is defined as follows:

xy =
{

x if y is empty
Gy[k−1](xy[..k−1]) if y is of length at least 1

For instance, if ` = 4, Fx(1101) = G1(G0(G1(G1(x)))). This is illustrated by Figure 11.1.
The authors of [GGM84] showed that Fx is a secure PRF, as long as G is a secure PRG.

11.2 The BPR Family of PRF

In [BPR12] Banerjee Peikert and Rosen proposed along with the definition of (Ring-)LWR, a new
family of PRF known as BPR. We explain how this family is build below.

11.2.1 Design

Let p, q and k be positive integers, let a, s1, . . . sk be secret polynomials of R∗q . The function Fa,(si)
is defined in the following way:

Fa,{si} : {0, 1}k → Rp

x = (x1, . . . , xk) 7→
⌊
a ·

k∏

i=1
sxii

⌉
(11.1)

Furthermore, the authors of [BPR12] assumed that the si polynomials are drawn independently
from some B-bounded distribution χ over Rq such that B ≥ nΩ(k), and that the modulus q is also
larger than nΩ(k). Then assuming the hardness of RLWEn,q,χ the function Fa,{si} is a secure PRF.
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Theorem 11.1 ([BPR12]). Let χ be the distribution over R where each coefficient is chosen inde-
pendently from a discrete Gaussian distribution Dr, for some r > 0, and let q ≥ pk(

√
n·ω(
√

logn))k ·
nω(1). If each si is drawn independently from χ, the function Fa,{si}, as defined in Equation 11.1
is pseudorandom, assuming the hardness of Dec-RLWEn,q,χ.

A full proof of this theorem, for the ringless variant of the function, is given in [BPR12]. We
are not going to prove it over again in here, but only to recall the general idea of the proof.

The problem here is that such large parameters make the whole scheme totally impractical.
However, as it was already noticed by the authors of [BPR12], choosing parameters that large seems
to be an artefact of the proof, and the scheme may still be secure for appropriately distributed si,
small modulus q, and large k.

11.2.2 Idea of the Security Proof

In their proof, the authors of [BPR12] consider the function Ga,{si} that maps bit-strings of length
k to a polynomial of Rq, such that:

Ga,{si} = a
k∏

i=1
sxii .

In fact, Ga,{si} is the unrounded counterpart of Fa,{si}. They also define the G̃(i) family of functions
as follows:

• G̃(0)
a is a constant equal to a ∈ Rq.

• G̃(i) = G̃
(i)
G(i−1),si,e

for 0 < i ≤ k, is a function that maps an i-bit string to a polynomial of
Rq, as follows:

G̃(i)(x|xi) = G̃(i−1)(x) · sxii + xiex,

where ex ∈ Rq is an error polynomial, such that for all x ∈ {0, 1}i−1, ex is chosen indepen-
dently from χ.

This leads to a function G̃ = G̃(k), which can be seen has a randomised counterpart of G.
Remark 1. With the construction above, the gap between G and G̃(i) grows exponentially in k.

By induction over i, and assuming the hardness of LWE, It is possible to prove that G̃(i) is
pseudorandom for all 1 ≤ i ≤ k. Then, it is possible to show that

⌊
G̃(x)

⌉
p

=
⌊
Ga,{si}(x)

⌉
p

=
Fa,{si}(x), for all x (assuming the si polynomials are small). This proves that Fa,{si} is also a
pseudorandom function.

11.3 The SPRING Family of PRF

In [BBL+14], Banerjee et al. proposed a new family of PRF called SPRING for subset product
with rounding over a ring. Their construction is very similar to BPR with smaller parameters
so that the design will be practical. They actually proposed efficient software implementations on
Intel and ARM processor. A FPGA (Field-Programmable Gate Array) implementation was also
proposed [BGL+14].

11.3.1 Design

Let k ∈ {64, 128} be the length of the input. Let n = 128, q = 257 and p = 2. Let m ≤ n be a
positive integer which will be the length of the output of the PRF, and let g be a function (to be
determined later) which takes as input a polynomial of Rp and returns a bit-string of length m.
Let R be a function from Rq to {0, 1}m such that for all b in Rq, R(b) = g(bbep).

Let a, s1, . . . , sk, be polynomials of R∗q chosen independently and uniformly at random. We
define the function Fa,(si) such that:
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Fa,(si) : {0, 1}n → {0, 1}m

x = (x1, . . . xk)→ R(a ·
k∏

i=1
sxii ) (11.2)

Discussing the choice of parameters. The authors of [BBL+14] claim that choosing their
parameters as above yields to a good compromise between efficiency and security. They also state
that the choice of q = 257 is akin to the one made by Lyubashevsky et al. for the design of the
SWIFFT hash function [LMPR08]. In fact, working modulo 257 allows efficient implementations
of the Fast Fourier Transform (FFT), using vector instructions available on Intel and ARM CPUs.

However, no proof of security exists for a scheme with these kind of parameters yet. Further-
more, working with a small odd moduli q implies that the rounding function b·ep has a noticeable
bias of 1/q.

Definition 11.3. The bias of a distribution χ over Zp is defined as follows:

bias(χ) =
∣∣∣E
[
e2iπX/p

]∣∣∣ ,

where X ∼ χ.

We are now going to prove that SPRING is indeed biased for the case p = 2. The proof still
holds for p ∈ {4, 8, 16}.

Proposition 11.2. Whether q is odd, the output of SPRING has a bias of 1/q.

Proof. Let us denote by χ the distribution of the output of SPRING. From the definition of the
bias, we have:

bias(χ) =
∣∣∣e0χ(0) + eiπχ(1)

∣∣∣ = |χ(0)− χ(1)|

As q is odd, it follows:

bias(X) =
∣∣∣∣
q + 1

2q − q − 1
2q

∣∣∣∣ = 1
q
.

Remark 1. In [BPR12], the value of q was so huge that the bias of 1/q was not an actual issue.
To deal with this problem, the authors of [BBL+14] propose two solutions, that we are respec-

tively going to detail in section 11.3.2 and 11.3.3

11.3.2 SPRING-BCH.

The first way proposed by the authors of [BBL+14] is to choose the function g to be a bias reducing
function. They consider a [128, 64, 22] BCH code, of generator matrix G, and they choose g to be
defined as follows:

g : {0, 1}128 → {0, 1}64

x 7→ txG

They claim that this reduces the bias of the output of SPRING-BCH to 1
q22 . Indeed, Alberini

and Rosen proved the following result:

Proposition 11.3 ([AR13]). If G is the generator of a a binary linear [n,m, d] code, and if D is
a distribution over {0, 1}m, of independent bits with a bias bias(D) ≤ ε, then bias(G.D) ≤ εd.
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Remark 2. This holds true for any family of binary linear code. The authors of [BBL+14] choose
to use a (extended) BCH code mainly for implementation-related reasons.

To recover the original biased output, an adversary would have to solve the Syndrome Decoding
Problem (SDP) with respect to the dual code. This problem is particularly hard when the rate k/n
of the code is close to 1/2, so the choice of the parameters [128, 64, 22] makes SPRING-BCH quite
safe against this kind of attacks. On the other hand, this requires to halve the length of the output.
For now the most efficient attack consists in detecting this small bias of 2−176, in the output.

11.3.3 SPRING-CRT
The second idea proposed by the authors of [BBL+14] is to work on the ring R2q instead of Rq.
This still allows efficient implementations, while removing the bias.

Indeed, by the Chinese Remainder Theorem, there is a simple ring isomorphism between R2q
and R2 × Rq. Indeed, for all (b2,bq, b̄2, b̄q) ∈ R2 × Rq × R2q × R2q, such that b2 = b̄2 (mod 2)
and bq = b̄q (mod q), the pair (b2,bq) ∈ R2 × Rq corresponds to a single b = q · b̄2 + (q + 1)b̄q
(mod p)

From here, the authors of [BBL+14] claim that it is possible to compute an unbiased rounding
over R2q. They do as follows: They consider the rounding function b·e2 : R2q → R2,

bbe2 =
⌊
qb̄2 + (q + 1)b̄q)

⌉
.

From the definition of b·e2 given in Equation 10.12, we get:

bbe2 =
⌊
b̄2 + b̄q + (1/q) · b̄q

⌉
mod 2

Choosing the coefficients of b̄q from [−q/2 . . . q/2)∩Z, such that each coefficient of (1/q) · b̄q is
in the interval [−1/2, 1/2), and then

bbe2 = b̄q + b̄2 mod 2. (11.3)

However, the structure of the ring R2q may be exploited by an attacker. We briefly recall the
idea of the attack below.

Birthday Attack against SPRING-CRT. This attack was already introduced by Banerjee et
al. [BBL+14] in the security analysis of their scheme. We choose to recall only the global idea of
the method, to point out the flaw in the design of SPRING-CRT, without getting into the details.

The main idea is to cancel the R2 component of the output of SPRING-CRT in order to recover
the bias. To this aim, Banerjee et al. propose to split the input x of the function in two parts:
x = (w|z), where w is of length t.

Denoting by bw the polynomial bw =
∏
i s
wi
i and by bz the polynomial bz =

∏
i s
zi
i+t, the

SPRING-CRT function can be re-written as follows:

F (w|z) = babwbze2 .
The goal in the attack is to find two bit-strings w and w′, such that w 6= w′ and bw = bw′

(mod 2). Then, for all P ∈ Rq,

bwP = bw′P mod 2.

In particular, this holds when P = abz for any z. Let us denote by Q the polynomial Q = bwP,
and by Q′ the polynomial Q′ = bw′P. From Equation 11.3,

bQe = Q̄2 + Q̄q mod 2 = y2 ⊕ yq,

where y2,yq ∈ {0, 1}n, such that Q̄2 = y2 (mod 2) and Q̄q = yq (mod 2). We define Q̄′2, Q̄′q,y′2,y′q
accordingly. We have:

bQe ⊕ bQe′ = y2 ⊕ yq ⊕ y′2 ⊕ y′q.
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Banerjee et al. claim that y2 = y′2. Indeed, recall that Q̄2 = b̄w,2 · P̄2, and Q̄′2 = b̄w′,2 · P̄2.
Moreover, b̄w′,2 = b̄w,2 (mod 2). This is enough to prove that y2 = y′2.

It follows that, for all z, F (w|z) ⊕ F (w′|z), the R2 component is cancelled out, and there are
some yq,y′q, such that F (w|z) ⊕ F (w′|z) = yq ⊕ y′q, where yq and y′q both have the same bias of
1/q. It follows that F (w|z)⊕ F (w′|z) has a bias of 1/q2.

All in all, an adversary can then recover the bias in SPRING-CRT with 22n/2q4/(4n) queries and
space complexity, and in time 2nq4/2.
Remark 3. Banerjee et al. notice that the attack would still work if one searches for pairs (w,w′)
such that w 6= w′ and (bw + bw′)s = 0 (mod 2), for some s being a power 2. The probability
of finding the couple is increased, at the cost of reducing the bias, as more XORs will have to be
computed. This allows them to drop the time complexity of their attack to 2n/tq4t/(2t).

11.3.4 PRGs from SPRING

Using the counter mode, it is possible to turn every SPRING PRF into a PRG. The internal state
is therefore composed of two k-bit integers i, j and a unit polynomial P in R∗q (or R∗2q in the case
of SPRING-CRT). Each time the PRG is clocked:

1. i is incremented

2. The (`+ 1)-th bit of j is flipped, where ` is the number of trailing zeroes in i.

3. The polynomial P is multiplied by sj (resp. s−1
j ) when the `-th bit of j is 1 (resp. 0).

The initial value of P is the secret element a, which is part of the key. As an example, we show
how this internal state evolves in the first 4 rounds:

Round Counter Update P
0 000 P← a a
1 100 P← P · s1 as1
2 110 P← P · s2 as1s2
3 010 P← P · s−1

1 as2
4 011 P← P · s3 as2s3

The rounding is then applied to the internal state. The bias-reducing function is applied when
required (in the case of SPRING-BCH) and the output string is then updated.

We utilised the same kind of construction for our own SPRING PRG, described in the following
chapter.
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Chapter 12
Of a New SPRING PRG: SPRING with Rejection-Sampling

In this chapter, we present a new SPRING PRG called SPRING-RS. We first de-
scribe the design of this new instantiation and propose some ways to reduce its large
key size. We also present a PRF derived from SPRING-RS. Finally, we discuss the se-
curity of our scheme, and present some attacks. This work has led to a publication
in PQCrypto2017 [BDFK17], with Charles Bouillaguet, Pierre-Alain Fouque and Paul
Kirchner.

12.1 SPRING-RS
We introduce here a new PRG based on SPRING using rejection-sampling to eliminate the bias.
Indeed, consider the case q = 2α + 1, for some integer α, a random element a of Zq is either a
random α-bit vector, or is equal to 2α = −1 (mod q) (see Figure 12.1).

Bit α is thus equal to one less often than the other bits. The probability that bit α of a is
one is 1/q, whereas, for another bit i < α, the probability that bit i of a is one is (q − 1)/(2q).
As such, we decided to consider the bit α as a bad value that has to be rejected, as explained
below. We call this instantiation of SPRING, SPRING-RS for SPRING with rejection-sampling. It
allows us to remove completely the bias. On the down side, SPRING-RS cannot be used as such
as a PRF, as the rejection-sampling makes its output length variable from one call to another.
Nonetheless we show that it can be used to make a reasonable PRG, when in counter-mode. Just
like [BBL+14] we propose to use a counter-like mode using a Gray-code for efficiency. Then, when
running SPRING in counter mode, we can compute the successive subset products with only one
polynomial multiplication at each step. Finally, we show that it is still possible to build a SPRING-
RS based PRF, if we are willing to reduce the length of the output.

12.1.1 Idea of the Design

Let R = Zq[X]/(Xn + 1), where n is a power of two and q is a power of two plus one. Recall the
SPRING function:

Fa,{si}(x1 . . . xk) = R
(

a
k∏

i=1
sxii

)

0 α

Good values.

0 α

Bad value.

Figure 12.1 – Illustration of the rejection sampling applied in SPRING-RS.
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We build our PRG as described in Section 11.3.4. After the internal state has been updated, a
variable number of pseudorandom bits are extracted from the new value of P.

Extracting bits from the polynomial is done by the rounding operation. We apply the following
rounding function to the n coefficients of P in parallel:

Zq −→ Zp ∪ {⊥}

R : x 7→
{
⊥ if x = −1 mod q

bpx/qc otherwise

Algorithm 28 PRG based on SPRING using a rejection sampling instantiation.
Require: ` ≥ 0, d the width of available hardware vectors, the secrets parameters ã ∈ Rq and

s̃ ∈ (Rq)k, Fast Fourier evaluation of the secret polynomial a and (si)ni=0.
Ensure: An `-bits long sequence of (pseudorandom) Zp elements.

1: # Initialization
2: P̃ ← ã
3: P ← fft−1

128(P̃ )
4: L← empty string
5: i← 0
6: j ← 0
7: size← 0
8: while size < ` do
9: # Extract output

10: (v0,v1, . . . ,vr−1)← Dispatch(P )
11: for i = 0 to r − 1 do
12: v′ ← Rounding (vi)
13: if ⊥ 6∈ v′ then
14: L← L‖v′
15: size← size+ d · log2(p)
16: # Update internal state
17: i← i+ 1
18: u← CountTrailingZeroes(i)
19: j ← j ⊕ (1� u)
20: if j & (1� u) 6= 0 then
21: P̃ ← P̃ · s̃i
22: else
23: P̃ ← P̃ · s̃i−1

24: P ← fft−1
128(P̃ )

25: return L

This results in a sequence of n symbols. The ⊥ are then “erased” from the output, yielding a
variable number of elements of Zp, which are appended to the pseudorandom stream.

This produces uniformly distributed outputs in Zp when the secrets a and the si polynomials
are uniformly distributed in Zq. Rejecting one of the possible values (here, −1) effectively restricts
the input set to q − 1 elements. As long as p divides q − 1, exactly (q − 1)/p inputs yield each
possible output.

Tuning for Vector Instructions. To obtain high performance implementations on modern
hardware, it is necessary to be able to exploit vector instructions. In particular, it may be beneficial
to tune some aspects of the function to the underlying hardware. Let d and r be integers such that
d · r = n, for any vector b in Zq, let v0,v1, . . . ,vr−1 be d-wide vectors with coefficients in Zq such
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that: 


v0
v1
...

vr−1




=




b1 b2 . . . bd
bd+1 bd+2 . . . b2d

...
b(r−1)d+1 b(r−1)d+1 . . . bn



. (12.1)

Typically, d should be the width of available hardware vectors.
For each vector vi, such that (v0, . . .vr−1) represents the internal state P of the PRG, we

apply the rounding function to all coefficients in parallel. If the resulting vector contains ⊥, we
reject the whole vector. Even though this also discards “good” coefficients, it allows a performance
gain, because examining individual coefficients inside a hardware vector is often very inefficient.
With d = 1, there is no wasted output. With d = 8 (SSE2 instructions on Intel CPUs, or NEON
instructions on ARM CPUs), about 2.7% of the good coefficients are wasted. With d = 16 (AVX2
instructions), this goes up to 5.7%. This loss is a small price to pay compared to the twofold
speedup that we get from using twice bigger hardware vectors.

12.1.2 The SPRING-RS PRG

All in all, we come up with the following construction. Let (k, n, q, p, d) be parameters such that:

k = 64, n = 128, q = 257, p ∈ {2, 4, 8, 16}, d ∈ {1, 8, 16}.

[Initialisation] The internal state polynomial P is initialised to a. The counter is initialised
to 0.

[Update] At each step, P is multiplied by a secret polynomial si (or s−1
i ) according to the

Gray code.

[Rounding] The rounding operation is performed. We recover a polynomial Q ∈ Rp, dis-
patched into buckets of d coefficients.

[Rejection Sampling] If there is a coefficient Qi = −1 in a bucket, the whole bucket is rejected.
Otherwise, the output stream is updated with the binary expansion of the coefficients of
“good” buckets.

The whole procedure is detailed in Algorithm 28. We also illustrate how one iteration works in
Figure 12.2.

Remark 1. In order to speedup computation, the secret polynomials are stored in their FFT eval-
uated form. Then, only one FFT per step has to be performed to recover the coefficients of the
polynomial P . This was already the case in previous SPRING instantiation [BBL+14].

12.1.3 Reducing the Key’s Size

One of the main disadvantage of SPRING is the large size of its key (8 kB). We present here several
ways to reduce the size of the key for all instantiations of SPRING. The key is composed of k + 1
secret polynomials a, s1, . . . , sk over R∗q . Each of such polynomials requires at least 1024 bits.

The most intuitive and most efficient way to reduce the key size of SPRING is to use a 128-bit
master secret key denoted by Km, and use it to generate pseudo-randomly the secret polynomials
using... another PRG. This is a bit unsatisfying: why not use the other PRG in the first place?
However, this would be beneficial if the other PRG is slow or even not cryptographically secure
(consider the Mersenne Twister for instance).

In order to drop the need for another PRG, it would be natural to use SPRING to “bootstrap”
itself and generate its own secret polynomials. We propose two ways to do so.
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Figure 12.2 – Illustration of one iteration of SPRING-RS.

Using five secret polynomials. One possibility is to consider that the “master” key is composed
of the 5 polynomials a0, s0,1, s0,2, s0,3, s0,4. Then, we may evaluate the “mini-SPRING” function
F 0

a0,s0 such that, F 0
a0,s0(x) = S

(
a0 ·

∏4
i=1 sxi0,i

)
, for all x ∈ {0, 1}4. Using this small instantiation of

SPRING-RS with p = 16, we may generate up to 8192 pseudo-random bits. This is large enough to
forge seven polynomials with very high probability. We call a1, s1,1, . . . , s1,6 these new polynomials.
We reiterate the process with the mini-SPRING function F 1

a1,s1 , and the output given by this PRG
is large enough to forge between thirty and thirty-one polynomials. If we reiterate the process once
more with those new polynomials, we will be able to forge the 65 polynomials a, s1, . . . , sk of the
full SPRING-RS. Using such a trick, we can substantially reduce the size of the key (from about 8
kB to about 700B).

Using three secret polynomials. It is possible to push this idea a bit further assuming the
circular security of SPRING-RS. In that case, the “master” key is composed of the three secret poly-
nomials a, s1, s2, and we define the nano-SPRING function F 0

a,s such that, F 0
a,s(x) = S (a · sx1

1 · sx2
2 ),

for all x ∈ {0, 1}2. Using this small instantiation of SPRING-RS, we can generate an output long
enough to forge a new polynomial. This will be the next secret polynomial, s3. We reiterate the
process with the micro-SPRING function F 1

a,s, which is such that F 1
a,s(x) = S(a · ∏3

i=1 s
xi
i ). We

do not reset the Gray Counter, as long as the previous values will only give the output of F 0
a,s.

The new output thus generated is long enough to forge s4. If we reiterate the process once more,
we will get an output long enough to generate two more polynomials. We reiterate it over again
—two more times should be enough— until all the si are forged. We never reset the Gray Counter,
otherwise an adversary may know all the si thus obtained.

12.1.4 A SPRING-RS PRF

It is clear that the rejection-sampling process often yields sequences of less than n log2 p output bits.
This makes it less-than-ideal to implement a PRF, which is always expected to return a specified
amount of output bits. However, building a PRF is still possible if we accept a reduction in output
size.
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With the chosen parameters, we know that at least 96 Zp elements survive the erasure process
with probability greater than 1− 2−156. Therefore, a possible yet inelegant workaround consists in
making a PRF that returns the first 96 non-erased outputs. In the unlikely event that less than 96
truncated coefficients are available, the PRF output is padded with zeroes. The probability of this
event is so low that it is undetectable by an adversary.

Implementing such a PRF efficiently is likely to be difficult, because of the amount of bit
twiddling and juggling that is involved. Furthermore, unlike the CTR mode, we need to compute
the product of many polynomials. To make this implementation efficient, we choose to store the
discrete logarithms of the secret polynomials, as it was proposed in [BBL+14] and [BGL+14] so that
the subset-product becomes a subset-sum. Each exponentiation by the final summed exponents is
computed by a table look-up.

12.2 Security Analysis

Secure PRF and PRG over a polynomial ring Rq are described in [BPR12], assuming the hardness of
Ring-LWE problem. However, for the BPR family to be secure, we need to make two assumptions:

1. The parameter q must be large (exponential in the input length k).

2. The si are drawn from the error distribution of the underlying RLWE instantiation.

In [BBL+14], Banerjee et al. show that relaxing those statements does not seem to introduce any
concrete attack against the SPRING family, and its security seems to be still very high, even though
SPRING is not provably secure. In our instantiation we slightly weaken SPRING by introducing
two changes : (1) the rounding function S we use returns more bits, so more information about the
internal state is returned, (2) some coefficients are rejected, so using side-channel timing attacks,
an adversary may learn that some coefficients are equal to −1 (the rejected value). However, as
we shall discuss in the following part, we do not think that this may undermine the security of
SPRING. In fact, we believe that SPRING-RS is actually more secure than the previously proposed
variants. Indeed, the best attack against SPRING-CRT requires about 2128 bit operations and 2119

space, the best attack against SPRING-BCH consists in detecting a small bias of 2−176, and we claim
that our best attack against SPRING-RS requires 264 operations, but succeeds with advantage about
2−900 for the adversary.

Recall that the SPRING-RS function is given by:

Fa,{si}(x1, . . . , xk) = R
(

a
∏

i

sxii

)
,

where a, si ∈ R∗q . We have q = 257, n = 128 and p ∈ {2, 4, 8, 16}.

12.2.1 Security of the RLWR Instance.

We first aim to estimate the security of the underlying Ring-LWR instance, and not the actual
SPRING scheme. The same kind of security analysis has been proposed by the authors of [BBL+14],
for their sets of parameters. The authors analyse the complexity of various attacks: lattice reduc-
tions, BKW [BKW03], and algebraic attacks [AG11]. We propose an update of these results, for
all of our sets of parameters.

Here, we assume that an attacker can generate 2k a ∈ Rq polynomials, that she can control,
then having access to a Ring-LWR oracle which, when queried with a returns c = ba · sep, she
aims to recover the secret polynomial s. Denoting by e the error term e = a · s− ba · sep · p. The
polynomial e is in Rq, but each one of its coefficients belongs to [−q/(2p), q/(2p)). The considered
equation can be re-written: c = a · s + e, or, with matrices and vectors:

c = A · s + e.
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Table 12.1 – Complexity of the (Ring-)LWR instance, using the BKW algorithm.

p 2 4 8 16
Time 2141.6 2108.6 293.5 277.7

Space 2122.9 299.2 283.5 267.5

Considering this as an LWE instance in dimension n, with modulus q and error rate α = 1/(2p),
it is possible to estimate the complexity of all generic attacks against LWE using public LWE-
estimator such as [APS15].

We found out the best attack against this LWR instance is BKW, for all values of p ∈
{2, 4, 8, 16}. In Table 12.1, we present the time and space complexity of this attack. This is an
update of the estimations proposed in [BDFK17], using Albrecht et al. LWE-estimator [APS15].

12.2.2 Birthday Type Attack on SPRING-RS
We assume that the adversary knows that she is facing a SPRING-RS PRG, and her goal is to
predict a part of the output.

Intuition of the attack. Let t < k be a positive integer. For all x ∈ {0, 1}n, x can be decomposed
the following way:

x = (x1, . . . , xt, xt+1, . . . , xk−1, xk).

If we denote by z the bit-string of length (k − t − 1), such that z1 = xt+1, z2 = xt+2, . . . ,
zk−t−1 = xk−1, and by bz the polynomial of Rq such that:

bz :=
k−t−1∏

i=1
szii+t =

k−1∏

i=t+1
sxii .

The idea is to find two strings z1 and z2 such that:

1. z1 6= z2

2. bz1 = bz2

Then we will also have bz1sk = bz2sk. The problem is that given a vector z we do not know
bz. We then have to find a z1 and a z2 that satisfy conditions 1 and 2, without being actually able
to check the latter.

Let z be in {0, 1}k−t−1, let w ∈ {0, 1}t be an arbitrary string, and let x ∈ {0, 1}n be such that
x = (w|z|0). Consider the string yw,z defined as the output of Fa,(si)(x). For simplicity, we ignore
the rejection sampling for the moment. yw,z is then a bit-string of size log p · n that satisfies:

yw,z = R(a
t∏

i=1
swii · bz).

Now, if w is a fixed bit-string of length t, for two bit-strings z1 and z2 such that bz1 = bz2 , we
will have:

yw,z1 = yw,z2 . (12.2)

Suppose now that z1 and z2 are two bit-strings such that z1 6= z2 and the relation given by
Equation 12.2 holds for sufficiently many values of w, we claim that bz1 = bz2 with high probability.

Taking 2t = log q/ log p different values of w should be enough. In this setting, if there are two
distinct bit-strings z1 and z2 such that yw,z1 = yw,z2 for all values of w then, bz1 = bz2 with high
probability. Actually the number false positive is at most 22(k−t−1)/plog q/ log p·n.

We consider for now on that 2t ' log q/ log p. In particular, this means that t = 1, when p = 16,
and in this case, w is only one bit. Indeed log q/ log p ' 8/4 = 2.
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Description of the attack. Formally, we assume that the attacker has access to a bit-string y
of length m > 2k−1 ·n log p which is the output of a SPRING-RS PRG G, of parameter k, n, p, used
in counter mode initialised at 0.

The length of the sequence generated by 2k−1 calls to Fa,(si) is at most 2k−1 ·n log p, and exactly
this value if no rejection-sampling has occurred (which is very unlikely).

Let us denote by d the size of a vector with respect to the available hardware instructions.
Recall that each time a “bad” coefficient appears, all d coefficients of the vector are rejected.

The attacker proceeds as follows:

1. She gets the subsequence y′ of y of length 2k−1 · n log p

2. She stores each possible subsequence of y′ of length log q ·n, with a step of d log p, into a hash
table: the first subsequence goes from index 1 to index log q ·n, the next one goes from index
d log p to log q · n+ d log p, and so on.

3. If a collision occurs, then there is a collision between the internal polynomials with high
probability, and the attacker will be able to predict that another collision will occur further
in the output string.

The probability that no rejection has been performed on a given log q · n-bit sequence is:

P[no rejection] =
(

1− 1
q

)2tn
. (12.3)

The probability that the attack succeeds is then the probability that a collision will occur, and
that no rejection sampling has been performed on the sequence. It is given by the following formula:

P[Success] = P[collision ∩ no rejection],
= P[collision | no rejection] · P[no rejection]. (12.4)

We need to estimate the probability of the event: “A collision occurs, knowing that the strings
are of length log q · n.” This can be represented in a balls-into-bins model (see Section 6.1.2). We
are given 2k/(d log p) balls, that we want to dispatch into qn bins. Assuming that we throw them
uniformly at random (i.e. that each strings “looks like” a uniformly random one), the probability
that two balls will be in the same bin satisfies:

P[Two balls collide] = P[
⋃

i<j

ball i and ball j are in the same bin],

≤
∑

i<j

P[ball i and ball j are in the same bin],

≤
(

2k−1/(d log p)
2

)
1
qn
,

≤ 22(k−1)

2d2 log2 p
· 1
qn
. (12.5)

Remark 1. This holds true only if the output behaves like a uniformly random string. Otherwise
the probability of collision increases. In the case of SPRING-RS, the rejection sampling ensures
that the output is uniformly distributed.

From Equations 12.3, 12.4 and 12.5, the probability that the attack will succeed will be:

P[Success] ≤ 22k−3

qnd2 log2 p
·
(

1− 1
q

)2tn
.

We give the value of this probability in Table 12.2 for all possible parameters of SPRING-RS.

157



12.3. Implementation and Results

Table 12.2 – Probability that the attack will succeed for various SPRING-RS parameters.

p = 2 p = 4 p = 8 p = 16
d = 1 (No vector instruction) 2−3046 2−941 2−913 2−909

d = 8 (Intel SSE2 & ARM NEON) 2−3052 2−947 2−919 2−915

d = 16 (Intel AVX2) 2−3054 2−949 2−921 2−917

12.2.3 Side-Channel Leakage

An obvious drawback of rejection sampling is the irregular rate at which output is produced. It
is conceivable that a timing attack could reveal some information about the internal state of the
PRG.

We consider a powerful adversary who is able to discover exactly which coefficients are rejected
(she knows both their locations and the actual value of the counter x).

Therefore, the attacker has access to equations of the form (a
∏
i s
xi
i )j = −1 over Zq where the

xi exponents are known and the unknowns are the coefficients of a and si. Denote by wt(x) the
Hamming weight of x, then each of these equations can be converted into a polynomial of degree
1 + wt(x) over the coefficients of a and all si.

If the first 2tn log2 p key-stream bits are observed, then we expect n2t/q coefficients to be
rejected. This yields this many polynomial equations in n(t + 1) variables, of which n

( t
δ−1
)
/q are

expected to be of degree δ. With the chosen parameters, δ ≥ 12 is needed to obtain more equations
than unknowns. With δ = 12, we obtain the smallest possible over-determined system, with 2032
polynomial equations in 1664 unknowns, of degree mostly larger than 2. Note that the ideal spanned
by these polynomial is not guaranteed to be zero-dimensional. No known technique is capable of
solving arbitrary systems of polynomial equations of this size. In particular, the complexity of
computing a Gröbner basis of this many equations can be roughly estimated [Fau99, BFS04]: it is
about 22466.

When t grows up to 64, the system becomes more over-determined: with t = k = 64, the
largest possible value, we obtain 263 equations in 8320 variables, with degrees up to 65. Storing
this amount of data is completely unpractical. Neglecting this detail, we argue that a Gröbner basis
computation will crunch polynomials of degree larger than 12: there are 2128 monomials of degree
12 in 8320 variables and only 2114 degree-12 multiples of the input equations (the computation
generically stops when these two quantities match).

As such, we expect any Gröbner basis computation to perform, amongst others, the reduction
to row echelon form of a sparse matrix of size 2114 × 2128, a computationally unfeasible task.

12.3 Implementation and Results

12.3.1 Performances

Just like the designers of the original SPRING did, we implemented our variant using SIMD in-
structions available on most desktop CPUs. We borrow most implementation techniques from the
designers of SPRING. This is in particular the case of an efficient implementation of polynomial
multiplication in R∗257 thanks to a vectorized FFT-like algorithm using the SSE2 instructions set
available in most desktop CPUs. These instructions operate on 128-bit wide “vector registers”,
allowing us to perform arithmetic operations on batches of eight Z257 coefficients in a single in-
struction.

We pushed the implementation boundary a little further by writing a new implementation
of this operation using the AVX2 instructions set, providing 256-bit wide vector registers. These
instructions are available on Intel CPUs based on the “Haswell” microarchitecture or later. Without
surprise, this yields a twofold speedup and raises a few interesting programming problems.

Note that the AVX2-optimised FFT algorithm can be back-ported to all the cryptographic con-
structions relying on the same polynomial multiplication modulo 257, such as [BBL+14, LMPR08,
LBF08], yielding the same 2× speedup.
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Table 12.3 – Implementation results for SPRING variants, in Gray code counter mode (CTR).
Speeds are presented in processor cycles per output byte. Starred numbers indicate the use of
AES-NI instructions. Daggers indicate the use of AVX2 instructions.

SPRING-BCH SPRING-CRT AES-CTR SPRING-RS
ARM Cortex A7 445 [not implemented] 41 59

Core i7 “Ivy Bridge” 46 23.5 1.3∗ 6
Core i5 “Haswell” 19.5† [not implemented] 0.68∗ 2.8†

We compare our implementation of SPRING-RS with previous SPRING implementations, and
with AES in counter mode, in Table 12.3. We can see that our implementation of SPRING-RS is
competitive with AES especially on ARM, where no NI instructions are available.

12.3.2 Implementation Details

Our only innovation compared to the implementation of [BBL+14] is the implementation of the
rejection-sampling process, which is straightforward, as well as an implementation of fast polyno-
mial multiplications using AVX2 instructions, that we describe next.

The problem comes down to computing a kind of FFT of size 128 modulo 257. We store
Z257 in 16-bit words, in zero-centered representation. Using SSE2 instructions, and hardware
vector registers holding 8 coefficients, a reasonable strategy is to perform one step of Cooley-Tukey
recursive division, after which two size-64 FFTs have to be computed. This is done efficiently by
viewing each input as an 8× 8 matrix, performing 8 parallel size-8 FFTs on the rows, multiplying
by the twiddle factors, transposing the matrix, and finally performing 8 parallel FFTs. The use of
vector registers allows to perform the 8 parallel operations efficiently.

When AVX2 instructions are available, we have access to vector registers holding 16 coefficients.
Several strategies are possible, and we describe the one we actually implemented. We view the input
of a size-128 FFT as a 16 × 8 matrix. We perform 16 parallel size-8 FFTs on the rows, which is
easy using the larger vector registers. Transposing yields a 8× 16 matrix, and we need to perform
8 parallel size-16 FFTs on its rows.

This is the non-obvious part. To make full use of the large vector registers, we decided to store
two rows in each vector register. Because the first pass of this size-16 FFT requires operations
between adjacent rows, a bit of data juggling is necessary. We store rows 0 and 8 in the first
register, rows 1 and 9 in the second, etc. This is done with the VPERM2I128 instruction. Because
the last pass requires operations between rows i and i + 8, which is again not possible if they are
in the same register, we perform the same data-juggling operation again. This puts the rows back
in the right order.

Performing the rejection sampling is easy. With AVX2 instructions, we use the VPCMPEQW to
perform a coefficient-wise comparison with (−1, . . . ,−1), and a VPMOVMSKB to extract the result of
the comparison into a 16-bit integer. It is slightly different on an ARM processor with the NEON
instructions set as there is nothing like VPMOVMSKB. However, we achieve the same result, using
some tricks. We first convert the int16x8_t NEON vector into a int8x16_t NEON vector, and
then we ZIP the low and the high part of this vector. This gives two int8x8_t NEON vector, d0
and d1. We use the VSRI on d0 and d1 with constant 4, then we transfer the low and the high
part of the obtained vector in ARM registers. Then, we obtain what we need using shift and xor.
When only 128-bit vectors are available, the rejection sampling is easier to program with d = 8
(where d is the vector width), whereas d = 16 is slightly more programmer-friendly when 256-bit
vectors are available. This is not a very hard constraint though, as both values of d can be dealt
with efficiently using both instructions sets.
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Chapter 13
Of the BLISS Signature Scheme and Side-Channel Leakage

In this chapter, we recall how the BLISS signature scheme works. We also explain
why it is vulnerable to side-channel attacks, and we introduce the principal motivation
of the work described in the next and last chapter.

13.1 The BLISS Signature Scheme

BLISS is a signature scheme proposed by Ducas, Durmus, Lepoint and Lyubashevsky [DDLL13],
based on the RLWE problem. It is based on the “Fiat-Shamir with abort” paradigm of Lyuba-
shevsky [Lyu09]. In particular, signature generation involves a rejection sampling step.

In this section, we first recall the idea of Lybashevsky “Fiat-Shamir with abort” scheme, and
we present the BLISS signing algorithm.

13.1.1 Lattice-based Signature Using the Fiat-Shamir Heuristic

Let us first recall an useful trick, which is an important pillar of the “Fiat-Sharmir with abort”
paradigm.

Basics about identification schemes. A standard three rounds identification scheme is a pro-
tocol between two entities: the prover P and the verifier V, which consists in commit, challenge
and response stages, plus a verification step. To prove her identity to V, P has to prove that she
knows some secret information sk (her secret key) corresponding to some public information pk (her
public key), without revealing any information on sk. To understand how these kinds of protocols
work, we consider, as an example, the Schnorr identification scheme [Sch89].

Let q be a large prime number, and let us assume that the discrete logarithm problem in Zq
cannot be solved efficiently by any adversary. Let p be a large prime divisor of q − 1, and let
sk ∼ U(Zp) be P’s secret key. Let g be a generator of Zq of order p, and h = gs. P publishes the
public key pk = (q, g, h).

The interaction between P and V is basically the following:

[Commit.] P generates x  U(Zp) and sends y = gx to V.

[Challenge.] V generates c  U(Zp) and sends c to P.

[Response.] P computes z = y + csk (mod p) and sends z to V.

[Verification step.] V computes gz and checks whether gz = yhc.
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Using the Fiat-Shamir heuristic [FS86], it is possible to convert this interactive proof of knowl-
edge into a digital signature by replacing V’s random challenge by a hash value, c = H(y, µ), where
µ is the message to sign, and H some known hash function. Then P sends (z, c, µ) to V. To check
the signature, V can compute: y′ = h−cgz, and check whether H(y′, µ) is equal to c.

Lattice-based signature and Fiat-Shamir with abort. In [Lyu08], Lyubashevsky presented
a three rounds identification scheme using lattices. He encountered a small issue however. The
response z to a given challenge c depends on the secret. To cope with this problem, Lyubashevsky
proposed to use rejection sampling, to change the distribution of the response. This implies that
with a certain probability the protocol has to be abort and restarted.

To understand better these notions, let us first consider this simple example heavily inspired
by [Lyu12]. Let q be a positive integer, and Dr, be the centred discrete Gaussian distribution of
parameter r. We first consider the three rounds identification protocol where P has to prove to V
that she knows sk = S where S is an m-by-n matrix with small coefficients over Zq. Her public key
is given by pk = (A, T ), where A is an n-by-m matrix over Zq, and T is the n-by-n matrix which
satisfies T = AS (mod q). The interaction between P and V is basically the following:

[Commit.] P picks x  Dm
r and sends y = Ax mod q to V.

[Challenge.] V generates c  U (Zn) and sends c to P.

[Response.] P computes z = Sc + x, and then performs a rejection sampling step. If z fails
the test, she aborts and restarts the protocol. Else she sends z to V.

[Verification step.] V checks that ‖z‖ is small (i.e. z follows the distribution Dm
r ) and that

Az = Tc + y mod q.

The rejection sampling step is crucial for the security of this protocol. Indeed, whenever c ∼
U (Zn), and x ∼ Dm

r , the distribution of z = Sc + x will be Dm
r shifted by the vector Sc, and

thus depends on the distribution of S. We call this shifted distribution Dm
r,Sc. Rejection sampling

is then used to make z appears as if it was sampled from Dm
r .

Using the Fiat-Shamir heuristic, it is possible to convert this protocol into the following signature
scheme. Let H be a known hash function which outputs elements of Zn with small norm.

[Initialisation.] Pick x  Dm
r and set y = Ax mod q.

[Hash step.] Set c = H(Ay mod q, µ), where µ is the message to sign.

[Rejection Sampling.] Set z = Sc+y. Return the signature (z, c) with probabilityDm
r (z)/Dm

r,Sc,
otherwise restart.

To check whether the signature is valid, the verifier checks if c = H(Az− Tc (mod q), µ).
Remark 1. The signature scheme we describe above is basically the one from [Lyu12]. The BLISS
signature scheme from [DDLL13] that we present below is an optimised ring variant of this scheme.

13.1.2 High-Level Description of BLISS

We consider the usual ring R = Z[X]/(Xn + 1), and Rq the ring of the elements of R modulo q.

Keys generation. BLISS keys generation is based on the NTRU assumption: if one picks two
short secret polynomials s1, s2 ∈ Rq, such that the coefficients of s1 and s2 are small compared to
q, and such that s1 is invertible, then the public key v defined as the quotient s2/s1 (mod q) will
appear to be pseudorandom.

In BLISS, the secret key consists in two polynomials (s1, s2) ∈ R2 that are sparse, and of known
density. Their non-zero coefficients are also quite small (in [−2, 2] for s1 and in [−3, 5] for s2), and
the public key v1 is basically v1 = 2vq (mod 2q), where vq = s2/s1 (mod q). We explain how the
keys are generated (in a simplified version) in Algorithm 29
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Algorithm 29 BLISS keys generation algorithm, simplified version.
1: function KeyGen( )
2: do
3: Sample f ,g ∈ R uniformly with dδ1ne coefficients in {−1, 1}, dδ2ne coefficients in {−2, 2},

and what remains is 0.
4: Set (s1, s2)← (f , 2g).
5: Set s← (s1, s2).
6: while f is not invertible mod q
7: Set vq ← (2g + 1)/f (mod q)
8: Set v1 ← 2aq (mod 2)q
9: return (pk = v1, sk = s)

Signing algorithm. To sign a message µ, one must first generate commitment values y1,y2 ∈ R,
according to a discrete Gaussian distribution Dn

r . A hash c of the message, together with a
compressed version of u = −vqy1 + y2 (mod q) is then computed. Then, the pair (z1, z2) is
generated, such that zi = yi + (−1)bsic, where b is a random bit. To ensure that (z1, z2, c) is
independent of s, the procedure is restarted with probability:

1− 1
M exp(−||sc||2/(2σ2)) cosh(〈z, sc〉)/σ2 ,

where s = (s1|s2) and z = (z1|z2). Finally the signature consists in the triplet (z1, z†2, c), where z†2
is a compressed version of z2.

Algorithm 30 BLISS signing algorithm.
1: function Sign(µ, pk = v1, sk = s = (s1, s2))
2: y1,y2 ← Dn

r

3: u = ζ · v1 · y1 + y2 mod 2q
4: c← H(bue2d mod p, µ)
5: choose a random bit b
6: z1 ← y1 + (−1)bs1c
7: z2 ← y2 + (−1)bs2c
8: continue with probability 1/

(
M exp(−‖sc‖2/(2σ2)) cosh(〈z, sc〉/σ2); otherwise restart

9: z†2 ← (bue2d − bu− z2e2d) mod p

10: return (z1, z†2, c)

Note that:

−vqz1 + z2 = −vq(y1 + (−1)bs1) + y2 + (−1)bs2 mod q

= −vqy1 + y2 + (−1)b(−vqs1 + s2) mod q

= −vqy1 + y2 + (−1)b(−s2 + s2) mod q

= −vqy1 + y2 = u mod q

Similarly, the compressed version of u can be expressed only with vq, z1, and z2, so that the
verification is possible. We explain how BLISS verification works in Algorithm 31. The first two
conditions consist in verifying that z is distributed according to D2n

r .

Compressing the signature. To reduce the size of the signature, the authors of [DDLL13]
choose to drop a part of the bits of z2. This choice is similar to the one made in [GLP12]. Morally,
the authors of [DDLL13] set a parameter d (which is the number of bits) they aim to drop. For all
integer x in [−q, q), according to Equation 10.12. we denote by bxe2d the d “high-order bits” of x
such that:

x = bxe2d · 2d +
⌊
x mod 2d

⌉
,
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Algorithm 31 BLISS verifying algorithm.
1: function Verify(µ, pk = v1)
2: if ‖(z1, 2†z†2)‖2 > B2 then reject
3: if ‖(z1, 2†z†2)‖∞ > B∞ then reject
4: if c 6= H(bζa1z1 + ζqce+ z†2 (mod p), µ) then reject
5: accept

and we extend this definition coefficient-wise to a polynomial of Rq. Then, z†2 is defined as:

z†2 = bue2d − bu− z2e2d mod p,

where p = 2q/2d.

Rejection sampling. Once again, we can see that the distribution D2n
r,sc of z = (z1|z2) depends

on s. To remove this dependency, the authors of [DDLL13] utilise rejection sampling.
In order to make sure that the distribution of z is independent of the secret key s = (s1|s2), a

signature candidate (z, c) should be kept with probability:

D2n
r (z)

MD2n
r,sc(z) = 1

M exp(−||sc||2/(2σ2)) cosh(〈z, sc〉)/σ2 .

Computing this expression, involving transcendental functions, with sufficient precision is not an
easy task. All existing implementations of BLISS [DL13, POG15, S+17] rely instead on the iterated
Bernoulli trials techniques described in [DDLL13, §6] and fully detailed in [Lep14, §4.3]. We recall
how these techniques work in Algorithm 32. The values ci = 2i/f are precomputed, and the xi’s
are the bits in the binary expansion of x =

∑`−1
i=0 2ixi. BLISS uses x = K − ‖sc‖2 for the input to

the exponential sampler, and x = 2〈z, sc〉 for the input to the cosh sampler.

Algorithm 32 Sampling algorithms for the distributions Bexp(−x/2σ2) and B1/ cosh(x/σ2).

1: function SampleBernExp(x)
2: for i = 0 to `− 1 do
3: if xi = 1 then
4: Sample a← Bci

5: if a = 0 then return 0
6: return 1

1: function SampleBernCosh(x)
2: if x < 0 then x← −x
3: Sample a← Bexp(−x/f)
4: if a = 1 then return 1
5: Sample b← B1/2
6: if b = 1 then restart
7: Sample c← Bexp(−x/f)
8: if c = 1 then restart
9: return 0

A signature (z, c) is kept if and only if both functions SampleBernExp(logM − ||sc||2) and
SampleBernCosh(2〈z, sc〉) return 1.

13.2 Side Channel Attack against BLISS

13.2.1 Leakage

Based on their description, it is clear that neither SampleBernExp nor SampleBernCosh runs
in constant time. In fact, they iterate over the bits of their input and part of the code is executed
when the bit is 1, and skipped when it is 0. Espitau et al. [EFGT17] observe that the inputs
xexp = (logM − ||sc||22 of SampleBernExp and 2〈z, sc〉 of SampleBernCosh can then be read
off directly on a trace of power consumption or electromagnetic emanations. This is very similar to
the way naive square-and-multiply implementations of RSA leaks the secret exponent via simple
power analysis [KJJR11]. It follows that a side-channel analysis allows to recover the squared norm
||sc||2 and the scalar product 〈z, c〉.
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13.2.2 Recovering the Secret From the Norm Leakage

In [EFGT17], Espitau et al. proposed an attack that exploits the norm leakage ||sc||22. Their attack
is based on a result due to Howgrave-Graham and Szydlo [HGS04], and describing it would require
to introduce number theory notions that are beyond the topic of this thesis. We will instead try to
give an idea of this attack, without getting into the details.

Let us denote by S the matrix:

S =
(
S1 0
0 S2

)
,

where S1 (resp. S2) is the skew-circulant matrix associated to the polynomial s1 (resp. s2). Then,
considering c as a vector over Zn,

||sc||22 =
(
tc tc

)
·
(
tS1 0
0 tS2

)(
S1 0
0 S2

)(
c
c

)

Denoting by X the matrix:

X =
(
X1 0
0 X2

)
=
(
tS1S1 0

0 tS2S2

)

X1 and X2 are two skew-circulant matrices, whose first line is of the type:

(x0 x1 . . . xn/2 0 − xn/2 . . . − x2,−x1),

as both X1 and X2 are the products of two conjugate skew-circulant matrices. Then, X consists
of only n distinct unknowns, and thus only n linearly independent equations of the type:

||sc||22 =
(
tc tc

)
·X

(
c
c

)
,

are required to fully recover X. Then, it is possible to recover the coefficients of the matrices X1
and X2, which appear to be the matrices associated respectively to s1s̄1 and s2s̄2.

The authors of [EFGT17] then utilise the Howgrave-Graham-Szydlo Algorithm, which basically
allows to recover si ∈ R = Z[X]/(Xn + 1) from the product sis̄i, as long as si satisfies some good
properties. Indeed, at some point the Howgrave-Graham-Szydlo Algorithm requires to factorise
the norm N (si) of si. As such, the authors of [EFGT17] restrict their attack to “weak” keys of
BLISS, where this factorisation can be easily computed in the classical setting.

Remark 1. It may be interesting to notice that all instances of the BLISS post-quantum signature
scheme are vulnerable to this attack, using quantum integer factorisation algorithms such as Shor’s
Algorithm [Sho99].

All in all, Espitau et al. show that it is possible to exploit the norm leakage in practice to recover
the secret key from a little more than n signature traces (n = 512 in most of BLISS instances).
However, their method is mathematically quite involved, and computationally costly (it actually
takes over a month of CPU time for typical parameters). Furthermore, its major drawback is that
it applies only to weak keys of BLISS, whose norm can easily be factorised (about 7% of BLISS
secret keys).

13.2.3 Recovering the Secret Keys From the Scalar Product Leakage

We are more interested in the scalar product leakage, which is linear rather than quadratic in the
secret key, and should thus be easier.
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Easy case: BLISS without compression. As already noticed by the authors of [EFGT17], in
a simplified version of BLISS where (z = (z1|z2), c) is returned as a signature, it is very easy to
recover the secret key from about 2n side-channel traces. Indeed, the side-channel leakage gives
access to traces:

〈z, sc〉 = 〈z1, s1c〉+ 〈z2, s2c〉. (13.1)

Denoting by c̄ the conjugate of c, with respect to the inner product (i.e. the matrix associated to
c̄ in the polynomial basis of R is the transpose of that of c), it is possible to rewrite Equation 13.1
as follows:

〈z, sc〉 = 〈z1c̄, s1〉+ 〈z2c̄, s2〉
= 〈a, s〉,

where we let:

a = (z1c̄, z2c̄) ∈ Z2n.

Now, if we collect leakage values from about 2n signatures, we can build the following linear
system:

b = As,

where bi = 〈z(i), sc(i)〉 is known from side-channel leakage, and the i-th row a(i) of A can be
computed from the public signature (z, c(i)). Then, s can be fully recovered, simply by solving a
linear system.

Real BLISS signatures. In the actual BLISS scheme, the element z2 is returned in a compressed
form z†2. The linear system arising from the scalar product leakage is then noisy. Indeed:

〈z, sc〉 = 〈z1c̄,+〉〈z2c̄, s2〉
= 〈z1c̄, s1〉+ 〈2dz†2c̄, s2〉+ 〈(z2 − 2dz†2)c̄, s2〉
= 〈z1c̄, s1〉+ 2d〈z†2c̄, s2〉+ e

= 〈a, s〉+ e,

where we let

a = (z1c̄ | 2dz†2c̄) ∈ Z2n and e = 〈z2 − 2dz2†, s2c〉.
a can be computed from the signature, and is therefor known to the attacker, whereas e remains
unknown. Recovering s then amounts to solving a problem similar to LWE in dimension 2n. This
led the authors of [EFGT17] to conclude that this leakage cannot be exploited.

We claim that, because this system does not involve any modular reduction, solving it is sig-
nificantly easier than solving an LWE instance. We will prove this claim in the next chapter.

166



Chapter 14
Of the LWE over the Integer Problem and How to Solve it

In this chapter, we present the Integer-LWE problem, we give a concrete analysis of
hardness, and present ways to solve it. We detail the parameters of the instantiations
arising from a BLISS side-channel, and propose experimental results. This basically
consists of a paper that has been accepted in ASIACRYPT’18. This is joint work with
Jonathan Bootle, Thomas Espitau, Pierre-Alain Fouque and Mehdi Tibouchi.

14.1 LWE over the Integer

14.1.1 Definition of the Problem

We define here a variant of the LWE problem “over the integers" (i.e. without modular reduction).
We call this problem ILWE for “Integer-LWE”.

Definition 14.1 (ILWE Distribution). For any secret vector s ∈ Zn and any two probability
distributions χa, χe over Z, the ILWE distribution Ds,χa,χe associated with those parameters is a
probability distribution over Zn × Z, where samples from Ds,χa,χe are of the form:

(a, b) = (a, 〈a, s〉+ e), with a ∼ χna , e ∼ χe.

Remark 1. When the distributions χe and χa are clear given the context, we will simply denote
the ILWE distribution Ds.

Problem 14.1 ((Search) ILWEn,m,χa,χe). We define the ILWEn,m,χa,χe problem as the computational
problem in which, given m samples {(ai, bi)}1≤i,≤m from a ILWE distribution Ds,χa,χe for some
secret s ∈ Zn, one is asked to recover the vector s.

In terms of linear algebra, this problem consists in solving the noisy system:

b = As + e, (14.1)

where A is m-by-n matrix, whose coefficients are drawn independently in Z according to the
distribution χa, and e is a noise vector where each coefficient is drawn independently according to
the distribution χe.

Remark 2. In the more general form, we impose no restriction on the distribution of the secret s.
In our tests, we however focused on somehow sparse secret s, whose non-zero coefficients are small
(typically in {±1,±2}), which is similar to the distribution of the secrets of BLISS.
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14.1.2 Information Theoretic Analysis

One of the first question we can ask regarding the ILWE problem is how hard it is in an information-
theoretic sense. In other words, given two vectors s, s′ ∈ Zn, we may wonder how close the
ILWE distributions Ds,χa,χe ,Ds′,χa,χe associated to s and s′ are, or equivalently, how many samples
we need to distinguish between them (even with unlimited computing power).

At least when the error distribution χe is either uniform or Gaussian, the statistical distance
between Ds and Ds′ admits a bound of the form O

(
σa
σe
‖s− s′‖

)
.

Furthermore the distributions are statistically indistinguishable when σe is superpolynomially larger
than σa. In fact, we prove the following theorem:

Theorem 14.1. Suppose that χe is either the uniform distribution Uα in [−α, α] ∩ Z, for some
positive integer r, or a centered discrete Gaussian distribution Dr, with r ≥ 1.60. Then, for any
two vectors s, s′ ∈ Zn, the statistical distance between Ds and Ds′ is bounded as:

∆(Ds,Ds′) ≤ C ·
σa
σe
‖s− s′‖2,

where C = 1/
√

12 in the uniform case and C = 1/
√

2 in the discrete Gaussian case.

Before actually proving this theorem, we first need to prove some intermediate results.

Lemma 14.2. The statistical distance between Ds and Ds′ is given by:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)],

where χe + t denotes the translation of χe by the constant t, and the expectation is taken over
a← χna .

Proof. By definition of the statistical distance, we have:

∆(Ds,Ds′) = 1
2

∑

(a,b)∈Zn+1

|Ds(a, b)−Ds′(a, b)| .

Now to sample from Ds, one first samples a according to χna , independently samples e according
to χe, and then returns (a, b) with b = 〈a, s〉+ e. Therefore:

Ds(a, b) = χna(a) · χe(b− 〈a, s〉),

and similarly for Ds′ . Thus, we have:

∆(Ds,Ds′) = 1
2

∑

(a,b)∈Zn+1

∣∣χna(a) · (χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)
)∣∣

=


∑

a∈Zn
χna(a)


 · 1

2


∑

b∈Z

∣∣χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)
∣∣

 .

Setting e = b− 〈a, s〉, we have:
∣∣χe(b− 〈a, s〉)− χe(b− 〈a, s′〉)

∣∣ =
∣∣χe(e)− χe(〈a, s〉+ e− 〈a, s′〉)

∣∣ =
∣∣χe(e)− χe(e+ 〈a, s− s′〉)

∣∣ ,

and thus,

∆(Ds,Ds′) =


∑

a∈Zn
χna(a)


 · 1

2


∑

x∈Z

∣∣χe(e)− χe(e+ 〈a, s− s′〉)
∣∣

 .

We now observe that:
1
2
∑

x∈Z

∣∣χe(x)− χe(x+ 〈a, s− s′〉)
∣∣

is exactly the statistical distance ∆(χe, χe − 〈a, s− s′〉), and therefore we do obtain:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)]

as required.
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In other words, this means that if we are able to bound the statistical distance between χe and a
translated distribution χe+t, we can bound ∆(Ds,Ds′). We provide such a bound over ∆(χe, χe+t)
when χe is either uniform in a centred integer interval, or a discrete Gaussian distribution. First,
we need to recall the following result from Micciancio and Regev [MR04].

Lemma 14.3 (From [MR04, Lemma 4.2]). For any n-dimensional lattice L, unit vector u ∈ Rn,
and reals 0 < ε < 1 and r ≤ 2ηε(L):

∣∣∣∣∣ E
x∼Dr

[〈x,u〉2 ≤ r2

2π ]
∣∣∣∣∣ ≤

εr2

1− ε

Now, we can prove the second important lemma:

Lemma 14.4. Suppose that χe is either the uniform distribution Uα in [−α, α]∩Z for some positive
integer α, or the centred discrete Gaussian distribution Dr with parameter r ≥ 1.60. In either case,
let σe =

√
E[χ2

e] be the standard deviation of χe. We then have the following bound for all t ∈ Z:

∆(χe, χe + t) ≤ C · |t|/σe,

where C is the same constant as in Theorem 14.1.

Proof.

Case 1: χe is U [−α, α] ∩ Z. We have:

∆(χe, χe + t) = 1
2
∑

x∈Z
‖χe(x)− χe(x− t)‖

= 1
2
( ∑

x∈[−α,−α+t)∩Z
|χe(x)|+

∑

x∈[−α+t,α]∩Z
|χe(x)− χe(x)|+

∑

x∈(α,α+t]∩Z
|χe(x)|

)

= 1
2

∑

x∈([−α,−α+t)∪(α,α+t])∩Z
|χe(x)|

= 1
2 ·

1
2α+ 1 · |S|,

where S = ([−α,−α+ t) ∪ (α, α+ t]) ∩ Z. In particular:

|S| =
{

2|t| if t ≤ 2α
2(2α+ 1) otherwise

Thus:

∆(χe, χe + t) = min(1, |t|/(2α+ 1)) ≤ |t|
2α+ 1 .

Moreover, the variance of this uniform distribution is given by σ2
e = 2

2α+1
∑α
x=1 x

2 = α(α + 1)/3.
It follows:

(2α+ 1)2 = 4α(α+ 1) + 1 = 12σ2
e + 1 ≥ 12σ2

e

Then,

∆(χe, χe + t) ≤ |t|√
12σe

,

which concludes the proof for the case χe being U [−α, α] ∩ Z.

169



14.1. LWE over the Integer

Case 2: χe is a discrete Gaussian distribution Dr. Recall that:

χe(x) = 1
ρr(Z) · exp

(
− πx2

r2

)
.

In order to bound the statistical distance between χe and χe + t, we use first the Kullback-Leibler
(KL) divergence (cf. Equation 10.4 ). We have:

DKL(χe‖χe + t) =
∑

x∈Z
χe(x) · ln χe(x)

χe(x− t)
.

By definition of χe, the ln factor can be written as:

ln χe(x)
χe(x− t)

= ln exp
(
− πx

2 − (x− t)2

r2

)

= −π2tx− t2
r2 .

Therefore, we have:

DKL(χe‖χe + t) =
∑

x∈Z
πχe(x) · t

2 − 2tx
r2

= E
[
π
t2 − 2tχe

r2

]

= πt2

r2

since χe is centred.
From Pinsker’s inequality given in Equation 10.5 we can bound the statistical distance as follows:

∆(χe, χe + t) ≤
√

1
2DKL(χe‖χe + t).

It follows that:
∆(χe, χe + t) ≤

√
π

2 ·
|t|
r

Moreover, if r satisfies r ≥ 2ηε(Z) for some ε ∈ (0, 1), then by Lemma 14.3, we have:
∣∣∣E[χ2

e]−
r2

2π

∣∣∣ ≤ εr2

1− ε.

Hence σe =
√
E[χ2

e] ≤ r
√

1
2π + ε

1−ε , which gives:

∆(χe, χe + t) ≤
√
π

2

( 1
2π + ε

1− ε

)
· |t|
σe

= Cε ·
|t|
σe

where C2
ε = 1

4 + π
2

ε
1−ε . Taking for example ε = 1/(1 + 2π), we get:

C2
ε = 1

4 + π

2 ·
1

1 + 2π − 1 = 1
4 + 1

4 = 1
2 .

Thus, we get
∆(χe, χe + t) ≤ C · |t|/σe,

with C = 1/
√

2 as required, provided that r ≥ 2ηε(Z), ε = 1/(1+2π). We can find numerically that
the smoothing parameter ηε(Z) of Z, with respect to ε is 0.7955, which concludes the proof.

The proof of Theorem 14.1 comes immediately by combining results from Lemma 14.2 and
Lemma 14.4.
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Proof of Theorem 14.1. Lemma 14.2 gives:

∆(Ds,Ds′) = E
[
∆(χe, χe − 〈a, s− s′〉)],

and according to Lemma 14.4, the statistical distance on the right-hand side is bounded as:

∆(χe, χe + 〈a, s− s′〉) ≤ C

σe
·
∣∣〈a, s− s′〉

∣∣.

It follows that:

∆(Ds,Ds′) ≤
C

σe
· E
[∣∣〈a, s− s′〉

∣∣
]
≤ C

σe

√
E
[
〈a, s− s′〉2

]
,

where the second inequality is a consequence of the Cauchy-Schwarz inequality. Now, notice that
for all 1,≤ i, j,≤ n, E[aiaj ] = σ2

aδij . That is because each ai is drawn independently from a centred
distribution χa. It follows that, for any fixed u ∈ Zn, we can write:

E
[
〈a,u〉2

]
= E

[ ∑

1≤i,j≤n
uiujaiaj

]

=
∑

1≤i,j≤n
uiujE[aiaj ]

= σ2
a‖u‖22.

In particular:
E[〈a, s− s′〉2] = σ2

a‖s− s′‖22,
and thus

∆(Ds,Ds′) ≤ C ·
σa
σe
‖s− s′‖2

This shows that distinguishing between Ds and Ds′ requires about m samples, with:

m = Ω
( 1
‖s− s′‖2

(σe
σa

)2)
. (14.2)

In particular, recovering s (which implies distinguishing Ds from all Ds′ with s′ 6= s) requires m
samples, with:

m = Ω
(
(σe/σa)2

)
. (14.3)

In what follows, we will describe efficient algorithms that actually recover s from only slightly
more samples than this lower bound.
Remark 3. Contrary to the results of the next section, which will apply to all sub-Gaussian dis-
tributions, we cannot establish an analogue of Lemma 14.4 using only a bound on the tail of the
distribution χe. For example, if χe is supported over 2Z, then ∆(χe, χe + t) = 1 for any odd t.

14.2 Solving ILWE
In this section, we present efficient algorithms to solve the ILWE problem. We are given m samples
(ai, bi) from the ILWE distribution Ds,χa,χe , and we aim to recover s ∈ Zn. Since s can a priori be
any vector, we, of course, need at least n samples to recover it. We are thus interested in the case
when m ≥ n. We recall here the system given in Equation 14.1:

b = As + e,

where each coefficient of the m-by-n matrix A is drawn independently from χa, and each coefficient
of e is drawn independently from χe. The couple (A,b) is known, whereas s and e remain unknown.
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To recover s we propose to find first an approximate solution s̃ ∈ Rn of the noisy linear
system (14.1) and to simply round that solution coefficient by coefficient to get a candidate
bs̃e = (bs̃1e , . . . , bs̃ne) for s. If we can establish the bound:

‖s− s̃‖∞ < 1/2 (14.4)

or, a fortiori, the stronger bound ‖s− s̃‖2 < 1/2, then it follows that bs̃e = s and the ILWE problem
is solved.

The main technique we propose to use is least squares regression. Under the mild assumption
that both χa and χe are sub-Gaussian distributions, we will show that the corresponding s̃ satisfies
the bound (14.4) with high probability when m is sufficiently large. Moreover, the number m of
samples necessary to establish those bounds, and hence solve ILWE, is only a lnn factor larger than
the information-theoretic minimum given in (14.3) (with the additional constraint that m should
be a constant factor larger than n, to ensure that A is invertible and has well-controlled singular
values).

We also briefly discuss lattice reduction as well as linear programming (LP) methods. We show
that even an exact-CVP oracle cannot significantly improve upon the lnn factor of the least squares
method. On the other hand, if the secret is known to be very sparse, there exist LP techniques
which can recover the secret even in cases when m < n, where the least squares method is not
applicable.

14.2.1 The least square Method

The first approach we consider to obtain an estimator s̃ of s is the linear, unconstrained least
squares method.

Description of the method. For all 1 ≤ i ≤ m, we have:

bi − 〈ai, s〉 = ei.

s̃ is chosen as a vector in Rn minimising the sum:

g(x) =
m∑

i

e2
i =

m∑

i

(bi − 〈ai,x〉2).

This minimum is found by setting the gradient of g to zero. Recalling that the gradient of g is
given by the vector:

∇g(x) =




∂g(x)
∂x1...
∂g(x)
∂xn


 ,

we come up with a system of n equations of the form:

−2
m∑

i=1
eiaij s̃i = 0, 1 ≤ j ≤ n.

It follows that s̃ is simply a solution to the linear system:

tAAs̃ = tAb.

As a result, we can compute s̃ in polynomial time (at most O(mn2)) and it is uniquely defined if
and only if tAA is invertible.

In the rest of the section, we will show that taking m = Ω
(
max(n,

( σe
σa

)2 lnn)
)
, should lead

to an invertible matrix tAA. Furthermore, this bound appears to be quite tight in practice, as
discussed in Section 14.4.
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Analysing the least square Method

It is intuitively clear that tAA should be invertible when m is large. Indeed:

tAA =
m∑

i=1
aitai

where the ai vectors are the independent identically distributed rows of A, so by the law of large
numbers, 1

m
tAA converges almost surely to E

[
ata
]
as m grows to infinity, where a is a random

variable in Zn sampled from χna . Furthermore, we have, for all 1 ≤ i, j,≤ n:

E
[
(ata)ij

]
= E[aiaj ] = δijσ

2
a,

and therefore we expect tAA to be close to mσ2
aIn for large m.

Intermediate results. Making the heuristic argument above rigorous is not an easy task. As-
suming some tail bounds on the distribution χa, it is possible to prove that, with high probability,
the smallest eigenvalue λmin(tAA) is not much smaller than mσ2

a (and in particular tAA is invert-
ible) for m sufficiently large, with a concrete bound on m. This type of bound on the smallest
eigenvalue is exactly what we need for the rest of our analysis.

When χa is bounded, it is possible to apply a form of the so-called Matrix Chernoff inequality,
such as [Tro12, Cor. 5.2]. However, we would prefer a result that applies to discrete Gaussian
distributions as well, so we only assume a sub-Gaussian tail bound for χa. Such result can be
derived from the following lemma adapted from Hsu et al. [HKZ12].

Lemma 14.5. Let χ be a τ -sub-Gaussian distribution of variance 1 over R, and consider m random
vectors x1, . . . ,xm in Rn sampled independently according to χm. For any δ ∈ (0, 1), we have:

Pr
[
λmin

(
1
m

m∑

i=1
xitxi

)
< 1− ε(δ,m)

]
< δ

and

Pr
[
λmax

(
1
m

m∑

i=1
xitxi

)
> 1 + ε(δ,m)

]
< δ

where the error bound ε(δ,m) is given by:

ε(δ,m) = 4τ2



√

8 ln 9 · n+ 8 ln(2/δ)
m

+ ln 9 · n+ ln(2/δ)
m


 .

Using this lemma, it is possible to show that if χa is a sub-Gaussian distribution, λmin(tAA) is
close to mσ2

a, with probability 1− 2−η for m = Ω(n+ η) (and similarly for λmax). Indeed, we can
prove the following theorem:

Theorem 14.6. Suppose that χa is τa-sub-Gaussian, and let τ = τa/σa. Let A be an m×n random
matrix sampled from χm×na . There exist constants C1, C2 such that for all α ∈ (0, 1) and η ≥ 1, if
m ≥ (C1n+ C2η) · (τ4/α2) then

Pr
[
λmin

(tAA
)
< (1− α) ·mσ2

a

]
< 2−η. (14.5)

and similarly,
Pr
[
λmax

(tAA
)
> (1 + α) ·mσ2

a

]
< 2−η.

Furthermore, one can choose C1 = 28 ln 9 and C2 = 29 ln 2.
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Proof. Let ai be the i-th row of A, and xi = 1
σa

ai. Then the coefficients of xi follow a τ -sub-
Gaussian distribution of variance 1, and every coefficient of each one of the xi is independent from
all the others, and so the xi vectors satisfy the hypotheses of Lemma 14.5. It follows:

1
m

m∑

i=1
xitxi = 1

mσ2
a

m∑

i=1
aitai = 1

mσ2
a

tAA.

Therefore, Lemma 14.5 shows that:

P
[
λmin

(tAA
)
<
(
1− ε(2−η,m)

) ·mσ2
a

]
< 2−η

and
P
[
λmax

(tAA
)
>
(
1 + ε(2−η,m)

) ·mσ2
a

]
< 2−η

with ε(δ,m) defined as above. Thus, to obtain Equation 14.5, it is enough to take m such that
ε(2−η,m) ≤ α.

The value ε(δ,m) can be re-written as 4τ2 · (√8ρ+ ρ) where ρ =
(

ln 9 ·n+ ln(2/δ)
)
/m. For the

choice of m in the statement of the theorem, we necessarily have ρ < 1 since σa ≤ τa, and hence
τ4 ≥ 1. It follows that, ε(δ,m) ≤ 16τ2 · √ρ. Thus, to obtain the announced result, it is enough to
choose:

m ≥ 28τ4

α2

(
ln 9 · n+ ln 21+η

)
,

which concludes the proof.

From now on, let us suppose that the assumptions of Theorem 14.6 are satisfied for some
α ∈ (0, 1) and η. In particular, tAA is invertible with overwhelming probability, and we can thus
write:

s̃ = (tAA)−1 · tAb.
As discussed in the beginning of this section, we would like to bound the distance between the
estimator s̃ and the actual solution s of the ILWE problem in the infinity norm, so as to obtain an
inequality of the form of Equation 14.4. Since b = As + e, we have:

s̃− s = (tAA)−1tAb− s
= (tAA)−1tA

(
As + e

)− s
= s + (tAA)−1tAe− s
= (tAA)−1tAe

Let us denote M the matrix (tAA)−1tA. We assume that all the coefficients of e are τe-sub-
Gaussian. Since they are also independent, following the definition of a sub-Gaussian vector, the
vector e is a τe-sub-Gaussian random vector in the sense of Definition 10.2. Therefore, it follows
from Lemma 10.7 that s̃− s = Me is τ̃ -sub-Gaussian, where:

τ̃ = ‖tM‖op
2 · τe

= τe

√
λmax(M tM)

= τe

√
λmax

(
(tAA)−1tA ·A(tAA)−1)

= τe

√
λmax

(
(tAA)−1)

= τe√
λmin(tAA)

.

As a result, under the hypotheses of Theorem 14.6, s̃− s is a τe
σa
√

(1−α)m
-sub-Gaussian random

vector, except with probability at most 2−η.
We can utilise Lemma 10.6, to bound ‖s̃ − s‖∞. This is all we need to establish a sufficient

condition for the least squares approach to return the correct solution to the ILWE problem with
good probability.
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Determining the number of samples. We can now give a lower bound on the number of
samples required. We prove the following theorem, for every sub-Gaussian distribution.

Theorem 14.7. Suppose that χa is τa-sub-Gaussian and χe is τe-sub-Gaussian, and let (A,b =
As + e) the data constructed from m samples of the ILWE distribution Ds,χa,χe, for some s ∈ Zn.
There exist constants C1, C2 > 0 (the same as in the hypotheses of Theorem 14.6) such that for all
η ≥ 1, if:

m ≥ 4 τ
4
a

σ4
a

(C1n+ C2η) and m ≥ 32 τ
2
e

σ2
a

ln(2n)

then the least squares estimator s̃ = (tAA)−1tAb satisfies ‖s− s̃‖∞ < 1/2, and hence bs̃e = s, with
probability at least 1− 1

2n − 2−η.

In the typical case when τa and τe are no more than a constant factor larger than σa and σe,
Theorem 14.7 with η = ln(2n) says that there are constants C,C ′ such that whenever

m ≥ Cn and m ≥ C ′ · σ
2
e

σ2
a

lnn (14.6)

one can solve the ILWE problem with m samples with probability at least 1 − 1/n by rounding
the least squares estimator. The first condition ensures that tAA is invertible and controls its
eigenvalues; a condition of that form is clearly unavoidable to have a well-defined least squares
estimator. On the other hand, the second condition gives a lower bound of the form (14.3) on the
required number of samples; this bound is only a factor lnn worse than the information-theoretic
lower bound, which is quite satisfactory.

Proof of Theorem 14.7. Applying Theorem 14.6 with α = 1/2 and the same constants C1, C2 as
introduced in the statement of that theorem, we obtain that for m ≥ τ4

a
σ4
a
(4C1n+ 4C2η), we have

P
[
λmin

(
ATA

)
< mσ2

a/2
]
< 2−η. (14.7)

Therefore, except with probability at most 2−η, we have λmin
(
ATA

) ≥ mσ2
a/2. We now assume

that this condition is satisfied.
From above s̃ − s is a τ̃ -sub-Gaussian random vector with τ̃ = τe/

√
λmin(ATA). Applying

Lemma 10.6 with t = 1/2, we therefore have:

P
[‖s̃− s‖∞ >

1
2
] ≤ 2n · exp

(
− 1

8τ̃2

)

≤ 2n · exp
(
− λmin(ATA)

8τ2
e

)

≤ exp
(

ln(2n)− mσ2
a

16τ2
e

)
.

Thus, if we assume that m ≥ 32 τ
2
e
σ2
a

ln(2n), it follows that:

P
[‖s̃− s‖∞ >

1
2
] ≤ exp

(
ln(2n)− 2 ln(2n)

)
= 1

2n.

This concludes the proof.

14.2.2 Using an Exact-CVP Oracle

Solving the ILWE problem by computing a least square estimator and simply rounding it can be
seen as an application of Babai’s rounding algorithm for CVP. Indeed, consider the following lattice:

L := {tAAx | x ∈ Zn}.

L is full rank when tAA is invertible (i.e. whenm is large enough). The ILWE problem can be solved
by recovering the vector v = tAAs ∈ L given a close vector tAb, and then returning (tAA)−1v.
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Recovering v from tAb = v+ tAe is essentially an instance of the BDD problem in L. Now, since for
large m, the matrix tAA is almost scalar, and hence the corresponding lattice basis of L is somehow
already reduced, one can try to solve this problem by applying a CVP algorithm like Babai rounding
directly on this basis. This is indeed exactly what we did in the least square approach.

One could ask whether applying another CVP algorithm (e.g. Babai’s nearest plane algorithm)
could allow us to solve the problem with asymptotically fewer samples: for instance, get rid of the
lnn factor in Equation 14.6. The answer is no. In fact, we have this much stronger result:

Theorem 14.8. One cannot improve Condition 14.6 using the strategy above, even given access
to an exact-CVP oracle for any p-norm, p ∈ [2,∞].

Indeed, given such an oracle, the secret vector v can be recovered uniquely if and only if the
vector of noise tAe lies in a ball centred on v and of radius half the first minimum of L in the
p-norm, λ(p)

1 (L) = minx∈L\{0} ‖x‖p, that is:

‖ATe‖p ≤
λ

(p)
1 (L)

2 . (14.8)

To take advantage of this condition, we need to get sufficiently precise estimates of both sides.

Estimation of the First Minimum.

As the matrix tAA is almost diagonal, one can estimate accurately the value of λ(p)
1 (L). Indeed,

tAA has a low orthogonality defect, so that it is in a sense already reduced. Hence, the shortest
vector of this basis constitutes a very good approximation of the shortest vector of L. We have in
fact, the following lemma:

Lemma 14.9. Suppose that χa is τa-sub-Gaussian, and let τ = τa/σa. Let A be an m-by-n random
matrix sampled from χm×na . Let L be the lattice generated by the rows of the matrix tAA. There
exist constants C1, C2 (the same as in Theorem 14.6) such that for all α ∈ (0, 1), p ≥ 2 and η ≥ 1,
if m ≥ (C1n+ C2η) · (τ4/α2) then

P
[
λ

(p)
1 (L)

(tAA
)
> mσ2

a(1 + α)
]
≤ 2−η. (14.9)

Proof. By norm equivalence in finite dimension, for all x ∈ Rn we have ‖x‖p ≤ ‖x‖2 for all
p ∈ [2,+∞]. In particular, this implies that: λ(p)

1 (L) ≤ λ
(2)
1 (L). This bound is actually sharp.

Without loss of generality it is then enough to prove the result in 2-norm.
We first notice that λmax(tAA) = ‖tAA‖op

2 . Indeed, we have:

‖tAA‖op
2 =

√
λmax(t(tAA)tAA) =

√
λmax((tAA)2) = λmax(tAA)

Now, from Theorem 14.6, we can assert that except with probability at most 2−η, ‖tAA‖op
2 ≤

mσ2
a(1 + α). Therefore, for any vector x ∈ Zn, we have by definition of the operator norm:

‖tAAx‖2 ≤ mσ2
a‖x‖2(1 + α),

with high probability. In particular, for any x ∈ Zn such that ‖x‖2 = 1, we have

λ
(2)
1 (L) ≤ ‖tAAx‖2 ≤ (1 + α)mσ2

a,

except with probability at most 2−η.

Estimation of the p-Norm of tAe

Suppose that χe is a centred Gaussian distribution of standard deviation σe. The distribution of
tAe for e ∼ χne is then a Gaussian distribution of covariance matrix σ2

e
tAA ≈ mσ2

aσ
2
eIn.

We have the following results:
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Lemma 14.10. For all p ∈ [2,∞),

n1/pσeσa

√
m

2π ≤ E
[‖tAe‖p

]
, (14.10)

and
C∞σeσa

√
m lnn ≤ E

[‖tAe‖∞
]
, (14.11)

with C∞ = 3
2(1− 1/e)− 1/

√
2π ' 0.23.

Proving these results would require to introduce too many probability notions. As such we will
simply admit them here. We simply state that the case p <∞ is a consequence of [Sta84]. We also
refer the interested reader to [vH14] for the case p =∞.

Lemma 14.11. There exist absolute constants K, c > 0, such that:

1
2E
[
‖tAe‖p

]
≤ ‖tAe‖p ≤

3
2E
[
‖tAe‖p

]
, (14.12)

except with probability Ke−cβ(n,p,1/2), with:

β(m, p, ε) =





ε2n if 1 < p ≤ 2
max(min(2−pε2n, (εn)2/p), εpn2/p) if 2 < p ≤ c0 lnn
ε lnn if p > c0 lnn

,

for any 0 < ε < 1 and for 0 < c0 < 1 a fixed constant.

This is a consequence of a theorem from Dvoretzky [Dvo61] whose proof can be found in [PVZ17].
We refer the interested reader to [Dvo61, PVZ17] for more detail.

Summing up

For any fixed p, the probability that Equation 14.12 is false can be made as small as desired for
large enough n. We can therefore assume that Equation 14.12 occurs with probability at least 1−δ
for some small δ > 0.

In this case, Condition 14.8 asserts that if E
[
‖tAe‖p

]
> λ

(p)
1 (L) then s cannot be decoded

uniquely in L. Now using the result of Lemma 14.9 with α = 1/2 and the previous estimates, we
know that this is the case when:

n1/pσeσa

√
m

2π >
3
2mσ

2
a, that is, m <

(
σe
σa

)2 2n2/p

9π ,

when p <∞, and

0.23σeσa
√
m lnn > 3

2mσ
2
a, that is, m < 0.02

(
σe
σa

)2
lnn,

otherwise. In both cases, it follows that we must have m = Ω
(
(σe/σa)2 lnn

)
for the CVP algorithm

to output the correct secret with probability greater than δ. Thus, this approach cannot improve
upon the least squares bound 14.7 by more than a constant factor.

14.2.3 Linear Programming Approach

LP and MILP modelisation.

Linear Programming (LP) is a method for the optimisation of a linear objective function subject to
linear inequality constraints. The variables considered in this model are real variables, represented
using floating point arithmetic. Integer Linear Programming (ILP) is a variant of LP where the
variables are integers. Finally in Mixed Integer Linear Programming (MILP) both real and integer
values can appear in the same model. The state of the art in MILP solver is Gurobi [GO18], which
is known to be one of the best software to solve problems that have been, beforehand, transformed
into a MILP model.
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Algorithms and complexity. LP problems can be solved in polynomial time in the number of
equations. ILP problems and MILP problems, on the other hand, are NP-hard.

The most famous algorithm for LP problem is the simplex method, which is known to solve
random problems efficiently (in a cubic number of steps), but whose worst case time complexity
is exponential in the number of variables of the LP system [KM70]. The most efficient worst-case
polynomial time (in number of variables of the system) algorithm is Kamarkar’s algorithm, which
is known to solve LP problems in O (n3.5L

)
operations, where n is the number of variables of the

system, and can be encoded using L bits. We are not going to recall how these two algorithms
work here, as this is not the point of this section. We refer the interested reader to [Dan51] for
details about the simplex method, and to [Kar84], for Kamarkar’s algorithm.

To solve ILP and MILP problems, the usual method is to relax first the problem in a LP setting,
where an approximate solution can be found efficiently using Kamarkar’s algorithm for instance.
Once this solution is found, if there is at least one coefficient which is not an integer, new constraints
are added to the program, that are satisfied by all integer coefficients of the approximate solution,
but violated by the non-integer ones. The process is repeated until an integer solution is found.
The usual way to proceed is the following. The initial problem is split into two sub-problems. In
the first one, a constraint is added to ensure that the non-integer coefficient is greater than or equal
to the ceiling of the approximate value. In the second one, a constraint is added to ensure that
the non-integer coefficient is lower than or equal to the floor of the approximate value. For more
detail, we refer the reader to [Gom58, BCCN96, Mit98].

LWE and ILP. The LWE problem seems to be quite easy to rewrite in the (M)ILP setting. Indeed,
given an LWEn,m,q,χe system:

b = As + e mod q,

we can consider the following ILP program:

Find s subject to: (14.13)
(
A qIn

)(s
u

)
≤ b +B

(
A qIn

)(s
u

)
≥ b−B

where B is a bound over the elements drawn from χe. Other constraints can be added, if we know
that the secret is draw from a B′-bounded distribution, for instance.

Along these lines, Herold and May [HM17] find a way to attack a variant of an LWE-based
crypto-system, due to Galbraith [Gal13] where the matrix A consists only of 0 and 1 coefficients.
Using ILP, they were able to recover messages u from the cipher-text c, where tuA = tc (mod q),
for the set of parameters given in [Gal13]. Their attack did not allow them to recover the secret s
of the LWE system, however.

As in the ILWE setting, there is no modular reduction, we are tempted to use the following ILP
program to solve our problem:

Find s subject to: (14.14)
As ≤ b +B

As ≥ b−B.

Furthermore, as in BLISS case, we know exactly the L1 norm N1 of the secret, we can add the
following constraints:

−ui ≤ si ≤ ui∑
ui = N1
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Remark 1. It is also possible to model exactly the absolute value a of a variable x using MILP
constraints, using the following linear program:

Minimise a:
x ≤ a
x ≥ −a

This, however, proves rather disappointing. Indeed, MILP solvers tend to be very slow when
the integers they have to handle are large. Unfortunately for us, the range of the coefficients of A
seems to be a bit too large.

We then decided to utilise an LP relaxation of our model (with floating numbers), and then
see if we can recover the solution with a simple rounding. Once again, all of our attempts have
proved to be disappointing. We were never able to beat the number of samples required by the
least squares method.

However, as discussed below, there is still a case where the LP methods can beat the least
square method: when the secret is very sparse.

Sparse Secret and Compressed Sensing

Up until this point, we have only considered the case where the number m of samples is greater
than the dimension n. Indeed, without additional information on the secret s, this condition is
necessary to get a well-defined solution to the ILWE problem even without noise.

Now suppose that the secret s is known to be sparse, more precisely that its number of non-zero
coefficient is at most S, with S � n known. We say that s is S-sparse. Even if the positions of
these non-zero coefficients are not known, knowledge of the sparsity S may help in determining the
secret, possibly even with fewer samples than the ambient dimension n with the sole additional
knowledge of its sparsity. Of course more than S samples are, however, necessary.

Such a recovery is possible using compressed sensing techniques, following the results of Candès
and Tao in [CT06, CT07].

Compressed sensing. Compressed sensing is a method due to Candès and Tao [CT06] to recover
a sparse solution to an underdetermined linear system As = b. In [CT07], the same authors show
that this method can be extended to solve noisy system. The idea of compressed sensing can be
summarised as follows: in many cases, finding the solution s̃ to the system As = b with minimum
Hamming weight amounts to finding the solution s̃ to As = b, such that ||s̃||1 is minimised [CT06].
The latter can easily be re-written in a LP setting, and then solved quite efficiently with LP
techniques.

Noisy systems and Dantzig selector. When the considered system is noisy, it is possible to
find a sparse solution, using what is called the Dantzig selector [CT07]. The goal is to recover the
solution s̃ to a system As+e = b, that minimise ‖s̃‖1 under the constraint ‖tAe‖∞ ≤ σeσe

√
2 lnn·N ,

where σe is the standard deviation of the noise, andN is an upper bound on the norm of the columns
of A. This solution can be easily recovered with the following LP model:

min
n∑

i=1
ui such that − ui ≤ s̃i ≤ ui and

−σe
√

2 lnn ·N ≤ [tA(b−As̃)]i ≤ σe
√

2 lnn ·N.

Remark 2. The estimator s̃ is what is called the Dantzig selector. This name was chosen by Candès
and Tao as a tribute to George Dantzig, the inventor of the simplex method, who died in 2005,
while the two authors of [CT07] were working on their paper.

ILWE with sparse secret. When facing an ILWE instance As + e = b, such that s is known to
be S-sparse, we can use the aforementioned technique to recover the secret. The idea is once again
to find an approximate solution s̃, such that ‖s̃− s‖∞ is small enough to fully recover s.
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Table 14.1 – Maximum value of the ratio σe/σa to recover a S sparse secret in dimension n with
the Dantzig selector .

n

(S/n)
0.1 0.3 0.5 0.7 0.9

128 16.2 9.4 7.3 6.1 5.4
256 15.2 8.8 6.8 5.7 5.0
512 14.3 8.3 6.4 5.4 4.8
1024 13.6 7.8 6.0 5.1 4.5
2048 13.0 7.5 5.8 4.9 4.3

We search for a solution s̃ = (s̃1, . . . , s̃n) of the following linear program with 2n unknowns
s̃i, ũi, 1 ≤ i ≤ n:

min
n∑

i=1
ui such that − ui ≤ s̃i ≤ ui and

−σeσa
√

2m lnn ≤ [tA(b−As̃)
]
i
≤ σeσa

√
2m lnn.

(14.15)

If the distributions χe and χa are Gaussian distributions of respective standard deviations σe
and σa, the quality of the output of the program defined by Equation 14.16 is quantified as follows:

Theorem 14.12 (adapted from [CT07]). Suppose s ∈ Zn is any S-sparse vector so that ln(mσ2
a/n)S ≤

m. Then in many cases, s̃ obeys the relation

‖s̃− s‖22 ≤ 2C2
1S lnn

(
σe√
mσa

)2
(14.16)

for some constant C1 ≈ 4.

Hence as before, if ‖s̃ − s‖22 ≤ 1/4, we will have ‖s̃ − s‖∞ ≤ 1/2 and one can then decode
the coefficients of s by rounding s̃. From the theorem above, this condition is satisfied with high
probability as soon as:

2C2
1
S lnn
m

(
σe
σa

)2
≤ 1

4 .

Here, we focus on solving the ILWE problem using only a small number of samples, typically,
m ≤ n. Thus, we deduce that the compressed sensing methodology can be successfully applied
when

2C2
1S lnn

(
σe
σa

)2
≤ m

4 ≤
n

4 ,

and then,

S ≤ n

8C2
1 lnn

(
σa
σe

)2
. (14.17)

Let us discuss the practicality of this approach with regards to the parameters of the ILWE prob-
lem. First of all, note that in order to make Condition 14.17 non-vacuous, one needs σe and σa to
satisfy:

2C1

√
2 lnn
n
≤ σa
σe
≤ 2C1

√
2 lnn,

where the lower bound follows from the fact that S is a positive integer, and the upper bound
from the observation that the right-hand side of 14.17 must be smaller than n to be of any interest
compared to the trivial bound S ≤ n. Practically speaking, this means that this approach is only
interesting when the ratio σe/σa is relatively small; concrete bounds are provided in Table 14.1 for
various sparsity levels and dimensions ranging from 128 to 2048.
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Table 14.2 – Sets of BLISS parameters.

BLISS–0 BLISS–I BLISS–II BLISS–III BLISS–IV

n′ = 2n 512 1024 1024 1024 1024
Modulus q 7681 12289 12289 12289 12289

Secret key densities (δ1, δ2) (0.55, 0.15) (0.3,0) (0.3,0) (0.42,0.3) (0.45,0.06)
σ 100 215 107 250 271
κ 12 23 23 30 39
d 5 10 10 9 8

14.3 Application to the BLISS Case
We first recall the parameters of BLISS in Table 14.2.

14.3.1 Description of the Attack

Recall that by side channels, it is possible to have access to traces

b = 〈z, sc〉 = 〈a, s〉+ e,

where, e is an error term e = z2 − 2dz2s2, a = (z1c̄ | 2dz†2c̄) ∈ Z2n is known from the signature,
and s is the secret key we aim to recover. This is indeed an ILWE instance in dimension n′ = 2n.
Before actually solving it, let us determine the distributions χa and χe of coefficients of a and of the
error e. It should therefore be feasible to recover the full secret key with the least squares method
using about m = Ω

(
(σe/σa)2 lnn

)
.

Below, we detail the distributions χa and χe, and give an estimation of the value of σe and σa

Distribution of the error. Let us denote by w the vector z2 − 2dz†2 and by u the vector s2c,
so that e = 〈w,u〉. Roughly speaking, z†2 is essentially obtained by keeping the (log q − d) most
significant bit of z2, in a centred way. Therefore, we heuristically expect each coefficient of w to
belong to [−2d−1, 2d−1] ∩ Z. In other words, we claim that w ∼ U n

α , with α = 2d−1. In particular,
the variance of these coefficients is α(α+ 1)/3 ' 22d/12.

As for u, its coefficients are obtained by the sum of κ coefficients of s2. We recall that s2 = 2g+1,
where each coefficient of g is a random polynomial with δ1 · n coefficients in {−1, 1} and δ2 · n
coefficients in {−2, 2}. Then, ignoring the constant coefficient which is shifted by 1, s2 can be seen
as a vector with δ1 ·n coefficients equal to ±2 and δ2 ·n coefficients equal to ±4. This is a somewhat
complicated distribution to describe, but we do not make a large approximation by pretending
that all coefficients are sampled independently from {−4,−2, 0, 2, 4} with respective probability
δ2/2, δ1/2, (1− δ1 − δ2), δ1/2, δ2/2. With this approximation, the distribution of each coefficient of
u is clearly centred, and thus the variance of each coefficient of u is given by:

κE[s2[i]2] = κ(16δ2 + 4δ1).
Now, if u = (u1, . . . , un), and w = (w1, . . . wn), under the heuristic approximation above, the

error e follows a certain bound distribution χe of variance σ2
e , given by:

σ2
e = E[e2]

= E
[
( n∑

i=1
wiui

)2
]

= E


(∑

i,j

wiwjuiuj
)



=
∑

i,j

E[wiwjuiuj ].
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Table 14.3 – Parameter estimation for ILWE instances arising from the side channel attack.

BLISS–0 BLISS–I BLISS–II BLISS–III BLISS–IV

n′ = 2n 512 1024 1024 1024 1024
σa (theory) 346 1031 513 1369 1692
σe (theory) 1553 49695 49695 38073 24535
σa1 (exp.) 347 1031 513 1370 1691
σa2 (exp.) 349 2009 1418 1782 1814
σe (exp.) 1532 42170 32319 38627 23926

Since u and w are independent and the distribution of their coefficients is centred, this expres-
sion can be simplified as follows:

σ2
e =

∑

i

E[w2
i u

2
i ]

=
∑

i

E[w2
i ]E[u2

i ]

= nVar(wi)Var(ui)

= n
22d

12 κ(4δ1 + 16δ2)

= 22d

3 (δ1 + 4δ2)κn.

Distribution of a. Let us denote by a(1) the vector z1c̄, and by a(2), the vector 2dz†2c̄, so that
a can be rewritten as a = (a(1)|a(2)). We first consider the distribution of a(1).

The rejection sampling ensures that the coefficients of z1 are independent and distributed ac-
cording to a discrete Gaussian Dα, of standard deviation σ. Furthermore, c is a random polynomial
with coefficients in {0, 1}n of Hamming weigh wt(c) = κ, and c∗ has a similar shape, up to the
sign of coefficients. It follows that the coefficients of z1c̄ are all linear combinations with ±1 coeffi-
cients of exactly κ independent samples from Dn

α, and the signs clearly do not affect the resulting
distribution.

Therefore, we denote by χa the distribution obtained by summing κ independent samples from
Dα. The coefficients of a(1) follow χa. It is not exactly correct that z1c̄ follows χna , as the coefficients
are not rigorously independent, but we heuristically ignore that subtlety and pretend it does. Note
that χa has a variance of:

σ2
a = κVar(Dα) = κσ2.

As z†2 is essentially the (log q − d) most significant bit of z2, the distribution of 2dz†2 is close
to that of z2. The distributions cannot coincide exactly however, since all the coefficients of 2dz†2
are multiples of 2d (which is not the case for z2). The difference does not matter much, for our
purpose, and we will heuristically assume that the entire vector a is distributed as χ2n

a .

14.3.2 Experimental Distributions

A number of approximations which cannot be precisely satisfied in practice, were made in the
description of the distributions given in the previous section. In order to verify our claims, we did
the following experiment: we carried out a numerical simulation, comparing our estimates for the
standard deviation of e, a1, and a2 with the actual standard deviation obtained from the actual
rejection sampling leakage in BLISS.

These simulations were carried in Python using the numpy package. We collected 10000 BLISS
traces for each set of parameters, and computed the corresponding e values (that we stored in a
table Te) as well as the a(1) and a(2) vectors, and stored each of their coefficients respectively in
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Figure 14.1 – Results for σe = 2000.

tables T1 and T2. We then asked numpy to compute the standard deviation of each table. We
summarise these results in Table 14.3. As we can see, the experimental values match the heuristic
estimate quite closely overall.

14.4 Experiments

We are now going to present experimental results for recovering ILWE secrets using linear regression.
We first focus ILWE instances in dimension n with discrete Gaussian distributions χa and χe of
respective standard deviation σa and σa, for various values of n, σa, σe. Then, we consider instances
arising from BLISS side-channel leakage, leading to BLISS secret key recovery.

14.4.1 Plain ILWE

Recall that the ILWE problem is parametrised by n,m ∈ Z and probability distributions χa and
χe. Samples are computed as b = As + e, where s ∈ Zn, b ∈ Zm, A being an m-by-n matrix with
entries drawn from χa, and e ∈ Zm with entries drawn from χe. Choosing χa and χe as discrete
Gaussian distributions with standard deviations σa and σe respectively, we investigated the number
of samples, m required to recover ILWE secret vectors s ∈ Zn for various concrete values of n, σa
and σe. We sampled sparse secret vectors s uniformly at random from the set of vectors with
d0.15ne entries set to ±1, d0.15ne entries set to ±2, and the rest zero. Choosing s according to this
distribution is not entirely an arbitrary decision. Indeed, it is quite similar to the distribution of
the secret in BLISS, (choosing δ1 = δ2 = 0.15) up to a 2 constant.

We present two types of experimental results for plain ILWE. In our first experiment, we first
estimated the number of samples m required to recover the secret perfectly, for different values of
n, σa, and σe. Then, fixing m, we ran several tests (10 per triplet (n, σa, σe)) and checked if we were
indeed able to fully recover s over the random choices of s, A and e. In Table 14.4, we summarise
the results obtained.

The second experiment consisted in investigating the distribution of the minimum value of m
required to recover the secret perfectly, over the random choices of s, A, and e, when the linear
regression method was run to completion. In other words, for fixed n, σa, and σe, more and more
samples were generated until the secret could be perfectly recovered.

The results obtained for σe = 2000 are plotted in Figure 14.1. The figure plots the dimension
n against the interquartile mean number of samples m required to recover the secret, for σa = 100,
200, and 500. The error bars show the upper and lower quartiles for the number of samples required.
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Table 14.4 – Practical results of the experiments on ILWE.

n σa σe m Success

100 1000 3300 6/10
100 2000 11500 6/10
100 5000 65000 4/10
200 1000 900 5/10
200 2000 4000 7/10
200 5000 17000 4/10
300 1000 550 10/10
300 2000 1890 8/10
300 5000 9000 7/10
400 1000 350 8/10
400 2000 800 5/10
400 5000 5750 7/10
500 1000 350 10/10
500 2000 700 6/10

12
8

500 5000 3300 4/10

100 1000 5600 9/10
100 2000 14500 6/10
100 5000 95000 7/10
200 1000 1300 6/10
200 2000 4700 8/10
200 5000 23000 6/10
300 1000 900 9/10
300 2000 1800 5/10
300 5000 12000 8/10

25
6

400 1000 550 10/10

n σa σe m Success

400 2000 1300 9/10
400 5000 6000 5/10
500 1000 450 7/10
500 2000 950 8/10

25
6

500 5000 4200 5/10

100 1000 5100 7/10
100 2000 16000 4/10
200 1000 1600 9/10
200 2000 5200 7/10
300 1000 1000 8/10
300 2000 2600 8/10
400 1000 900 10/10
400 2000 1500 4/10
500 1000 800 10/10

51
2

500 2000 1250 8/10

100 1000 5950 10/10
100 2000 19000 5/10
200 1000 2250 6/10
200 2000 5900 6/10
300 1000 1550 7/10
300 2000 3350 6/10
400 1000 1350 9/10
400 2000 2300 7/10
500 1000 1500 10/10

10
24

500 2000 1900 8/10
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Table 14.5 – Estimated value of S for n = 1024, depending on the ratio σe/σa.

σe/σa 10 5 10/3 5/2 2
S 0.01 0.05 0.1 0.18 0.23

Table 14.6 – Number of samples required to recover the secret key.

# Trials Min LQ IQM UQ Max

BLISS–0 12 1203 1254 1359.5 1515 1641
BLISS–I 12 14795 18648 20382.9 21789 24210
BLISS–II 8 19173 20447 22250.3 24482 29800

The results of our second experiment are consistent with the theoretical results given in Sec-
tion 14.2.1. Indeed, according to Equation 14.6, we require

m ≥ C ′ · σ
2
e

σ2
a

lnn

samples in order to recover the secret correctly. The dimension n on the horizontal axis of each
graph is plotted on a logarithmic scale. Therefore, theory predicts that we should observe a straight
line, which the graph confirms.

The LP modelling is disappointing. For the values of n, σa, σe given in Table 14.4, the LP
modelling does not pay off. Indeed, for the same value of m, we were never able to fully recover
the secret with Gurobi using the following model:

Find s̃ such that:
−σeσa

√
2m lnn ≤ [tA(b−As̃)

]
i
≤ σeσa

√
2m lnn.

Adding constraints on ‖s̃‖1 as in the program given in Equation 14.16, did not help.
Another interesting aspect would have been to investigate how the sparse be compressed-sensing

methods behave in real-life. The problem is that, when σe > σa, they can only be applied for large
values of n. Indeed, from Equation 14.17, for known values of n, σe, σa, it is possible to give an upper
bound on the number of non-zero coefficients the secret must have for these methods to work. A
quick simulation for n = 1024 proves that S would be too small for practical experiment. We detail
the value of S thus obtained in table 14.5. We tried to run tests for n = 16384, S = 3,m = 15000
and σe/σa = 2. As the generation of that amount of samples took a lot of time, we try to do it on
a cluster. Unfortunatetly, our job was killed after a week.

14.4.2 BLISS leakage

The tests we performed were simulations. We did not actually mount a real side channel attack.
The attack was implemented using SAGEMath, and ran on a laptop with 2.60GHz processor.

Table 14.7 – Typical timings for secret key recovery.

Typical ILWE sample gen. Typical time for regression

BLISS–0 ≈ 2min ≈ 5sec
BLISS–I ≈ 10min ≈ 2min
BLISS–II ≈ 10min ≈ 2min
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14.4. Experiments

Considering an instance of the ILWE problem which arises from a BLISS side-channel leakage,
we used linear regression to recover BLISS secret keys. Several trials were performed. For each of
them more and more ILWE samples were generated until the secret key could be recovered. For
BLISS–0, the secret key was fully recovered using only linear regression. For BLISS–I and BLISS–
II, the secret key could not be entirely recovered because of memory issues. However, we noticed
that in practice, we could recover the first half of the secret key correctly using far fewer samples.
Since the two halves of the secret key are related by the public key, this is sufficient to compute the
entire secret key. Therefore, for BLISS–I and BLISS–II, we stopped generating samples as soon as
the least squares estimator correctly recovered the first half of the secret.

For these two different scenarios, we obtained the results displayed on Table 14.6, which gives
information on the range (Min and Max), Lower (LQ) and Upper (UQ) quartiles, and interquartile
mean (IQM) of the number of samples required. Typical timings for the attacks are displayed in
Table 14.7. Timings are in the orders of minutes and seconds. By comparison, some of the attacks
from [EFGT17] took hours, or even days, of CPU time.
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Conclusion

We focused mainly on two variants of the LWE problem: the (Ring-)LWR problem and the
Integer-LWE problem.

We first proposed a new PRG based on the RLWR problem, belonging to the SPRING family, and
called SPRING-RS. This new scheme is faster than previous SPRING instantiation: SPRING-BCH
and SPRING-CRT, and we claim that it is not less secure. Furthermore, we proposed experimen-
tation which shows that our SPRING variant is a very efficient stream-cipher. This leads us to
thinks that lattice-based cryptography can be used with high performance.

The concrete security of SPRING however is hard to estimate. Unlike the BPR family, SPRING
do not enjoy reduction to worst-case lattice problem. As such our security estimate only relies on
the best known attacks up to now. It could be interesting to see if SPRING-RS is vulnerable to
other kind of attacks than the one we described, and if so, if these attacks could be back-ported to
the other SPRING instantiations, and (possibly with some adaptation) to other LWR/LWE based
cryptographic primitive.

The second part of our work was to study a variant of the LWE problem “without the modulus”,
that we called ILWE (for Integer-LWE). We first show that this problem is not hard, and we gave
relatively tight bounds on the number of samples that have to be used to recover the secret of
such an instance. This work was motivated by a side-channel attack against the BLISS signature
scheme. In this setting, we were effectively able to recover BLISS secret key in the case of BLISS–0,
BLISS–I and BLISS–II.

We would like to stress that the methods we present to attack ILWE are not new, and some are
even widely used in numerical analysis or statistical learning theory. A concrete analysis of this
problem was, to our mind, quite interesting however. Finally, it could be interesting to see if this
attack could work for other schemes that rely on the “Fiat-Shamir with abort” paradigm, typically
the Dilithium signature proposed as a candidate to the NIST competition.
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General Conclusion

“All’s well that ends better.”

– J.R.R. Tolkien –

This thesis focuses on the algorithmic aspect of various problems related to linear algebra and
cryptography. In this last chapter, we summarise all the results that have been presented here, and
present some open problems.

In the first part of this thesis, we proposed a new sparse gaussian elimination algorithm, which
is always faster than both the classical (right-looking) sparse gaussian elimination algorithm, and
the (left-looking) GPLU algorithm. We also proposed new pivots selection heuristics, which prove
to be very efficient in some cases. Finally, we showed, that in some cases, our algorithm is also
much faster than the iterative Wiedemann Algorithm. In the future, it could be interesting to see
if this algorithm could be utilised as a subroutine in factorisation or discrete logarithm problems.

The second part focused on the 3XOR problem. We proposed a new algorithm, which is a
generalisation of a previous algorithm from Joux, which can recover all solutions to the problem
and works for all size of input lists. It is in theory n times faster than the quadratic algorithm,
with input lists 2n/3, where n is the bit-length of the entries of the lists. We also proposed an
adaptation of Baran Demain and Pǎtraşu 3SUM algorithm to the 3XOR setting. We showed that,
in our context, this algorithm is unpractical. In the future, it could be interesting to see whether
our algorithm can be applied modulo some changes to other groups (e.g. 3SUM over Z). An other
interesting aspect would be to know if it can be utilised to improve the kXOR problem where k is
not a power of two.

Finally, the third and last part of this thesis is dedicated to problems related to LWE. We mainly
focused on two variants of this problems: the (Ring-)LWR problem and the Integer-LWE problem.
We first presented a new PRG based on the RLWR problem. Although this PRG does not enjoy
security reduction to hard lattice problems, we claim that it seems to be secure. In particular
the underlying RLWR seems hard to solve using the state of the art LWE algorithms. The second
contribution is the study of the ILWE problem. We showed that this problem is in fact much simpler
than LWE, and can be solve using the least squares method. Finally, we presented an application of
this problem in a side-channel attack against the BLISS signature scheme. In the future, It could
be interesting to see whether this attack could also work on other lattice-based signatures which
relies on the same “Fiat-Shamir with abort” paradigm, typically the Dilithium candidate to the
NIST post-quantum cryptography contest.
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In Workshop on Algorithms and Data Structures, pages 409–421. Springer, 2005. vii,
66, 111, 112

[BDPVA09] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak sponge
function family main document. Submission to NIST (Round 2), 3(30), 2009. 143

[BDV17] Charles Bouillaguet, Claire Delaplace, and Marie-Emilie Voge. Parallel sparse pluq
factorization modulo p. In Proceedings of the International Workshop on Parallel
Symbolic Computation, PASCO 2017, pages 8:1–8:10. ACM, 2017. v, x, 8, 9, 37, 44,
47, 51

[BEF+16] Brice Boyer, Christian Eder, Jean-Charles Faugère, Sylvian Lachartre, and Fayssal
Martani. GBLA - gröbner basis linear algebra package. CoRR, abs/1602.06097, 2016.
37, 44

[Ber07] Daniel Bernstein. Better price-performance ratios for generalized birthday attacks,
2007. vi, 66, 89

[BFS04] Magali Bardet, Jean-Charles Faugere, and Bruno Salvy. On the complexity of gröbner
basis computation of semi-regular overdetermined algebraic equations. In Proceedings
of the International Conference on Polynomial System Solving, pages 71–74, 2004. 158

[BG14] Shi Bai and Steven Galbraith. Lattice decoding attacks on binary lwe. In Australasian
Conference on Information Security and Privacy, pages 322–337. Springer, 2014. 123

[BGL+14] Hai Brenner, Lubos Gaspar, Gaëtan Leurent, Alon Rosen, and François-Xavier Stan-
daert. Fpga implementations of spring. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 414–432. Springer, 2014. 124, 146, 155

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon Rosen. On the
hardness of learning with rounding over small modulus. In Theory of Cryptography
Conference, pages 209–224. Springer, 2016. 124, 137

[BGPW16] Johannes Buchmann, Florian Göpfert, Rachel Player, and Thomas Wunderer. On the
hardness of lwe with binary error: revisiting the hybrid lattice-reduction and meet-in-
the-middle attack. In International Conference on Cryptology in Africa, pages 24–43.
Springer, 2016. 123

[BHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush,
gauss, and reload–a cache attack on the bliss lattice-based signature scheme. In Inter-
national Conference on Cryptographic Hardware and Embedded Systems, pages 323–
345. Springer, 2016. 125

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In
EUROCRYPT, pages 520–536. Springer, 2012. 100, 101

[BKW03] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. Journal of the ACM (JACM), 50(4):506–519,
2003. 65, 142, 155

[BLN+09] Daniel Bernstein, Tanja Lange, Ruben Niederhagen, Christiane Peters, and Peter
Schwabe. FSBday: Implementing Wagner’s Generalized Birthday Attack. In IN-
DOCRYPT, pages 18–38, 2009. 66, 89, 108

193



Bibliography

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pages 575–584. ACM, 2013. 123, 135

[Blu99] Norbert Blum. A simplified realization of the Hopcroft Karp approach to maximum
matching in general graphs. Inst. für Informatik, 1999. 19

[BM17] Leif Both and Alexander May. The approximate k-list problem. IACR Transactions
on Symmetric Cryptology, 2017(1):380–397, 2017. 73

[BM18] Leif Both and Alexander May. Decoding linear codes with high error rate and its
impact for lpn security. In International Conference on Post-Quantum Cryptography,
pages 25–46. Springer, 2018. 101

[BMVT78] Elwyn Berlekamp, Robert McEliece, and Henk Van Tilborg. On the inherent in-
tractability of certain coding problems (corresp.). IEEE Transactions on Information
Theory, 24(3):384–386, 1978. 100

[Bor13] Knut Borg. Real time detection and analysis of pdf-files. Master’s thesis, Gjovik
University College, 2013. ix

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and
lattices. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 719–737. Springer, 2012. iii, vii, 124, 136, 137, 144, 145,
146, 147, 155

[Bra02] Ulrik Brandes. Eager st-ordering. In Proceedings of the 10th Annual European Sympo-
sium on Algorithms, ESA ’02, pages 247–256, London, UK, UK, 2002. Springer-Verlag.
49

[BTX18] Jonathan Bootle, Mehdi Tibouchi, and Keita Xagawa. Cryptanalysis of compact-lwe.
In Cryptographers’ Track at the RSA Conference, pages 80–97. Springer, 2018. 123

[BW09] Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial algorithms.
In Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium
on, pages 745–754. IEEE, 2009. 78

[CAD15] CADO-NFS, an implementation of the number field sieve algorithm, 2015. Release
2.2.0. iii, 36, 44

[Cav00] Stefania Cavallar. Strategies in filtering in the number field sieve. In Algorithmic
Number Theory, 4th International Symposium, ANTS-IV, Leiden, The Netherlands,
July 2-7, 2000, Proceedings, pages 209–232, 2000. 36

[CC79] Guy Chaty and Mikael Chein. Ordered matchings and matchings without alternating
cycles in bipartite graphs. Utilitas Mathematica, 16:183 – 187, January 1979. 49

[CC98] Anne Canteaut and Florent Chabaud. A new algorithm for finding minimum-weight
words in a linear code: application to McEliece’s cryptosystem and to narrow-sense
BCH codes of length 511. IEEE Trans. on Information Theory, 44(1):367–378, 1998.
101

[CDDV18] Bonan Cuan, Aliénor Damien, Claire Delaplace, and Mathieu Valois. Malware de-
tection in PDF files using machine learning. In Proceedings of the 15th International
Joint Conference on e-Business and Telecommunications, ICETE 2018 - Volume 2:
SECRYPT, Porto, Portugal, July 26-28, 2018., pages 578–585, 2018. ix, x

[CDHR08] Yanqing Chen, Timothy Davis, William Hager, and Sivasankaran Rajamanickam.
Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Up-
date/Downdate. ACM Trans. Math. Softw., 35(3):22:1–22:14, October 2008. 36

194



Bibliography

[CG90] John Coffey and Rodney Goodman. The complexity of information set decoding.
IEEE Transactions on Information Theory, 36(5):1031–1037, 1990. 101

[Cha15] Timothy Chan. Speeding up the four russians algorithm by about one more logarithmic
factor. In Proceedings of the twenty-sixth annual ACM-SIAM symposium on Discrete
algorithms, pages 212–217. Society for Industrial and Applied Mathematics, 2015. 78

[Che13] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement completement
homomorphe. PhD thesis, Paris 7, 2013. 141

[CJM02] Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation attacks: An algo-
rithmic point of view. In EUROCRYPT, pages 209–221. Springer, 2002. 73

[CLRS01] Thomas Cormen, Charles Eric Leiserson, Ronald Rivest, and Clifford Stein. Introduc-
tion to algorithms, volume 6. MIT press Cambridge, 2001. 16, 18

[CN11] Yuanmi Chen and Phong Nguyen. Bkz 2.0: Better lattice security estimates. In In-
ternational Conference on the Theory and Application of Cryptology and Information
Security, pages 1–20. Springer, 2011. 141

[Con13] Contagio: Malware dump. http://contagiodump.blogspot.fr/2013/03/
16800-clean-and-11960-malicious-files.html, 2013. x

[Cop94] Don Coppersmith. Solving homogeneous linear equations over F2 via block wiedemann
algorithm. Mathematics of Computation, 62(205):333–350, 1994. 7, 27, 28, 29

[CT06] Emmanuel Candès and Terence Tao. Near-optimal signal recovery from random pro-
jections: Universal encoding strategies? IEEE transactions on information theory,
52(12):5406–5425, 2006. 179

[CT07] Emmanuel Candès and Terence Tao. The dantzig selector: Statistical estimation when
p is much larger than n. The Annals of Statistics, 35(6):2313–2351, 2007. viii, 126,
179, 180

[CVE17] CVEDetails. Adobe vulnerabilities statistics. https://www.cvedetails.com/
product/497/Adobe-Acrobat-Reader.html, 2017. ix

[Dan51] George Dantzig. Maximization of a linear function of variables subject to linear in-
equalities. New York, 1951. 178

[Dav04] Timothy Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multi-
frontal method. ACM Transactions On Mathematical Software, 30(2):196–199, June
2004. 36

[Dav06] Timothy Davis. Direct Methods for Sparse Linear Systems (Fundamentals of Algo-
rithms 2). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA,
2006. 11, 31, 37

[DDKS12] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. Efficient dissection of
composite problems, with applications to cryptanalysis, knapsacks, and combinatorial
search problems. In CRYPTO, pages 719–740. Springer, 2012. 73

[DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signa-
tures and bimodal gaussians. In Advances in Cryptology–CRYPTO 2013, pages 40–56.
Springer, 2013. vii, 125, 161, 162, 163, 164

[DEG+99] James Demmel, Stanley Eisenstat, John Gilbert, Xiaoye Li, and Joseph Liu. A supern-
odal approach to sparse partial pivoting. SIAM J. Matrix Analysis and Applications,
20(3):720–755, 1999. 36

195

http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
http://contagiodump.blogspot.fr/2013/03/16800-clean-and-11960-malicious-files.html
https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html
https://www.cvedetails.com/product/497/Adobe-Acrobat-Reader.html


Bibliography

[DEGU07] Jean-Guillaume Dumas, Philippe Elbaz-Vincent, Pascal Giorgi, and Anna Urbanska.
Parallel computation of the rank of large sparse matrices from algebraic k-theory. In
Parallel Symbolic Computation, PASCO 2007, International Workshop, 27-28 July
2007, University of Western Ontario, London, Ontario, Canada, pages 43–52, 2007.
57, 58

[DER89] Ian Duff, Albert Erisman, and John Reid. Direct Methods for Sparse Matrices. Nu-
merical Mathematics and Scientific Computation. Oxford University Press, USA, first
paperback edition edition, 1989. 36

[DGK+10] Yevgeniy Dodis, Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod
Vaikuntanathan. Public-key encryption schemes with auxiliary inputs. In Theory of
Cryptography Conference, pages 361–381. Springer, 2010. 123

[DH76] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE transac-
tions on Information Theory, 22(6):644–654, 1976. 3

[DL13] Léo Ducas and Tancrède Lepoint. A proof-of-concept implementation of bliss. Avail-
able under the CeCILL License at http://bliss.ens.di.fr, page 9, 2013. 164

[DMQ13] Nico Döttling and Jörn Müller-Quade. Lossy codes and a new variant of the learning-
with-errors problem. In Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, pages 18–34. Springer, 2013. 123

[DN10] Timothy Davis and Ekanathan Palamadai Natarajan. Algorithm 907: KLU, A Direct
Sparse Solver for Circuit Simulation Problems. ACM Trans. Math. Softw., 37(3), 2010.
36

[DR79] Ian Duff and John Reid. Some design features of a sparse matrix code. ACM Trans.
Math. Softw., 5(1):18–35, March 1979. 36

[DR83] Ian Duff and John Reid. The multifrontal solution of indefinite sparse symmetric
linear. ACM Trans. Math. Softw., 9(3):302–325, September 1983. 36

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 1999. 143

[DSW18] Martin Dietzfelbinger, Philipp Schlag, and Stefan Walzer. A subquadratic algorithm
for 3xor. arXiv preprint arXiv:1804.11086, 2018. 73, 79, 80, 113

[dt16] The FPLLL development team. fplll, a lattice reduction library. Available at https:
//github.com/fplll/fplll, 2016. 141

[DTV15] Alexandre Duc, Florian Tramer, and Serge Vaudenay. Better algorithms for lwe and
lwr. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 173–202. Springer, 2015. 142

[Dum91] Ilya Dumer. On minimum distance decoding of linear codes. In Proc. 5th Joint Soviet-
Swedish Int. Workshop Inform. Theory, pages 50–52, 1991. 101

[Dum12] Jean-Guillaume Dumas. Sparse integer matrices collection, 2012. http://hpac.imag.
fr. iv, v, 8, 9, 13, 29, 34, 40, 44, 57, 205

[DV02] Jean-Guillaume Dumas and Gilles Villard. Computing the rank of sparse matrices over
finite fields. In Victor G. Ganzha, Ernst W. Mayr, and Evgenii V. Vorozhtsov, editors,
CASC’2002, Proceedings of the fifth International Workshop on Computer Algebra in
Scientific Computing, Yalta, Ukraine, pages 47–62. Technische Universität München,
Germany, September 2002. iv, 7, 8, 9, 29

[Dvo61] Aryeh Dvoretzky. Some results on convex bodies and banach spaces. In International
Symposium Linear Spaces, Academic Press, Jerusalem, pages 123–160, 1961. 177

196

https://github.com/fplll/fplll
https://github.com/fplll/fplll
http://hpac.imag.fr
http://hpac.imag.fr


Bibliography

[EFGT17] Thomas Espitau, Pierre-Alain Fouque, Benoît Gérard, and Mehdi Tibouchi. Side-
channel attacks on bliss lattice-based signatures: Exploiting branch tracing against
strongswan and electromagnetic emanations in microcontrollers. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages
1857–1874. ACM, 2017. vii, viii, 125, 126, 164, 165, 166, 186

[EHK+18] Andre Esser, Felix Heuer, Robert Kübler, Alexander May, and Christian Sohler.
Dissection-bkw. In CRYPTO. Springer, 2018. 73

[EJ16] Thomas Espitau and Antoine Joux. Ialatred. Available at https://almasty.lip6.
fr/~espitau/latred.html, 2016. 141

[EK97] Wayne Eberly and Erich Kaltofen. On randomized lanczos algorithms. In Proceedings
of the 1997 international symposium on Symbolic and algebraic computation, pages
176–183. ACM, 1997. 28

[Eri95] Jeff Erickson. Lower Bounds for Linear Satisfiability Problems. In SODA, pages
388–395, 1995. 73

[Fau99] Jean-Charles Faugère. A new efficient algorithm for computing gröbner bases (f 4).
Journal of pure and applied algebra, 139(1):61–88, 1999. 37, 158

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases without
reduction to zero (f5). In Proceedings of the 2002 International Symposium on Symbolic
and Algebraic Computation, ISSAC ’02, pages 75–83, New York, NY, USA, 2002. ACM.
37

[FF56] Lester Ford and Delbert Fulkerson. Maximal flow through a network. Canadian
journal of Mathematics, 8(3):399–404, 1956. 19

[FFL14] The FFLAS-FFPACK group. FFLAS-FFPACK: Finite Field Linear Algebra Subrou-
tines / Package, v2.0.0 edition, 2014. http://linalg.org/projects/fflas-ffpack.
44

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with
o(1) worst case access time. J. ACM, 31(3):538–544, June 1984. 74

[FL10] Jean-Charles Faugère and Sylvain Lachartre. Parallel gaussian elimination for gröbner
bases computations in finite fields. In PASCO, pages 89–97, 2010. v, 9, 37, 40

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In Advances in Cryptology—CRYPTO’86, pages 186–194.
Springer, 1986. 162

[FW93] Michael L Fredman and Dan E Willard. Surpassing the information theoretic bound
with fusion trees. Journal of computer and system sciences, 47(3):424–436, 1993. 96

[Gal11] Steven Galbraith. Algorithms for the closest and shortest vector problem. Mathematics
of Public Key Cryptography, 2011. 123, 139

[Gal13] Steven Galbraith. Space-efficient variants of cryptosystems based on learning with
errors. url: https://www. math. auckland. ac. nz/˜ sgal018/compact-LWE. pdf, 2013.
178

[Geo73] Alan George. Nested dissection of a regular finite element mesh. j-SIAM, 10(2):345–
363, April 1973. 33

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions. In Foundations of Computer Science, 1984. 25th Annual Symposium on, pages
464–479. IEEE, 1984. 143, 145

197

https://almasty.lip6.fr/~espitau/latred.html
https://almasty.lip6.fr/~espitau/latred.html
http://linalg.org/projects/fflas-ffpack


Bibliography

[GHL01] Martin. Golumbic, Tirza. Hirst, and Moshe Lewenstein. Uniquely restricted matchings.
Algorithmica, 31(2):139–154, 2001. 4, 41, 47, 49

[Gil52] Edgar N Gilbert. A comparison of signalling alphabets. Bell System Technical Journal,
31(3):504–522, 1952. 100

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Ro-
bustness of the learning with errors assumption. In Innovations in Computer Science
- ICS 2010. Tsinghua University Press, 2010. 123

[GLP12] Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based
cryptography: A signature scheme for embedded systems. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 530–547. Springer, 2012.
163

[GNR10] Nicolas Gama, Phong Nguyen, and Oded Regev. Lattice enumeration using extreme
pruning. In Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 257–278. Springer, 2010. 139, 141

[GO95] Anka Gajentaan and Mark Overmars. On a class of O(n2) problems in computational
geometry. Computational geometry, 5(3):165–185, 1995. 73

[GO18] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. ix, 177

[Gom58] Ralph Gomory. Outline of an algorithm for integer solutions to linear programs.
Bulletin of the American Mathematical society, 64(5):275–278, 1958. 178

[Gon81] Gaston Gonnet. Expected length of the longest probe sequence in hash code searching.
Journal of the ACM (JACM), 28(2):289–304, 1981. 69

[GP88] John Gilbert and Tim Peierls. Sparse partial pivoting in time proportional to arith-
metic operations. SIAM Journal on Scientific and Statistical Computing, 9(5):862–874,
1988. iv, 25, 29, 31

[Ham17] Mike Hamburg. Post-quantum cryptography proposal: Threebears (draft), 2017. 123

[Hås99] Johan Håstad. Clique is hard to approximate withinn 1- ε. Acta Mathematica,
182(1):105–142, 1999. 20

[HGS04] Nick Howgrave-Graham and Mike Szydlo. A method to solve cyclotomic norm
equations. In International Algorithmic Number Theory Symposium, pages 272–279.
Springer, 2004. 165

[Hin13] Pieter Hintjens. ZeroMQ: messaging for many applications. O’Reilly, Sebastopol, CA,
2013. 110

[HK73] John Hopcroft and Richard Karp. An nˆ5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on computing, 2(4):225–231, 1973. 19, 51

[HKZ12] Daniel Hsu, Sham Kakade, and Tong Zhang. Tail inequalities for sums of random
matrices that depend on the intrinsic dimension. Electron. Commun. Probab., 17:13
pp., 2012. 173

[HM17] Gottfried Herold and Alexander May. Lp solutions of vectorial integer subset sums–
cryptanalysis of galbraith’s binary matrix lwe. In IACR International Workshop on
Public Key Cryptography, pages 3–15. Springer, 2017. 123, 178

[HPS11] Guillaume Hanrot, Xavier Pujol, and Damien Stehlé. Algorithms for the shortest and
closest lattice vector problems. In International Conference on Coding and Cryptology,
pages 159–190. Springer, 2011. 139, 141

198



Bibliography

[HPWZ17] Jeffrey Hoffstein, Jill Pipher, William Whyte, and Zhenfei Zhang. A signature scheme
from learning with truncation. Technical report, Cryptology ePrint Archive, Report
2017/995, 2017. 123

[HS93] Daniel Hershkowitz and Hans Schneider. Ranks of zero patterns and sign patterns.
Linear and Multilinear Algebra, 34(1):3–19, 1993. 47, 49

[Hua15] Huacheng Yu. An Improved Combinatorial Algorithm for Boolean Matrix Multiplica-
tion. CoRR, abs/1505.06811, 2015. 78

[Jou09] Antoine Joux. Algorithmic cryptanalysis. CRC Press, 2009. vi, 66, 83, 86, 88

[JV13] Zahra Jafargholi and Emanuele Viola. 3sum, 3xor, triangles. CoRR, abs/1305.3827,
2013. 73

[KADF70] Alexander Kronrod, Vladimir Arlazarov, Yefim Dinic, and I Faradzev. On economic
construction of the transitive closure of a direct graph. In Sov. Math (Doklady),
volume 11, pages 1209–1210, 1970. 78

[KAF+10] Thorsten Kleinjung, Kazumaro Aoki, Jens Franke, Arjen Lenstra, Emmanuel Thomé,
Joppe Bos, Pierrick Gaudry, Alexander Kruppa, Peter Montgomery, Dag Arne Osvik,
Herman te Riele, Andrey Timofeev, and Paul Zimmermann. Factorization of a 768-bit
RSA modulus. In Advances in Cryptology - CRYPTO 2010, 30th Annual Cryptology
Conference, Santa Barbara, CA, USA, August 15-19, 2010. Proceedings, pages 333–
350, 2010. iv, 29

[Kah60] Jean-Pierre Kahane. Propriétés locales des fonctions à séries de Fourier aléatoires.
Stu. Math., 19:1–25, 1960. 131

[Kal95] Erich Kaltofen. Analysis of coppersmith’s block wiedemann algorithm for the parallel
solution of sparse linear systems. Mathematics of Computation, 64(210):777–806, 1995.
27

[Kan83] Ravi Kannan. Improved algorithms for integer programming and related lattice prob-
lems. In Proceedings of the fifteenth annual ACM symposium on Theory of computing,
pages 193–206. ACM, 1983. 141

[Kan87] Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathe-
matics of operations research, 12(3):415–440, 1987. 139

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In
Proceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311. ACM, 1984. 178

[KDL+17] Thorsten Kleinjung, Claus Diem, Arjen Lenstra, Christine Priplata, and Colin Stahlke.
Computation of a 768-bit prime field discrete logarithm. In Advances In Cryptology-
Eurocrypt 2017, Pt I, volume 10210, pages 185–201. Springer International Publishing
Ag, 2017. iv

[KF15] Paul Kirchner and Pierre-Alain Fouque. An improved bkw algorithm for lwe with
applications to cryptography and lattices. In Annual Cryptology Conference, pages
43–62. Springer, 2015. 142

[Kit11] Jarle Kittilsen. Detecting malicious pdf documents. Master’s thesis, Gjovik University
College, 2011. ix

[KJJR11] Paul Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi. Introduction to dif-
ferential power analysis. Journal of Cryptographic Engineering, 1(1):5–27, 2011. 164

[KM70] Victor Klee and George J Minty. How good is the simplex algorithm. Technical report,
WASHINGTON UNIV SEATTLE DEPT OF MATHEMATICS, 1970. 178

199



Bibliography

[Knu98] Donald Knuth. Searching and sorting, volume 3 of The Art of Computer Programming.
Addison-Wesley, Reading, Massachusetts, second edition, 10 January 1998. This is a
full BOOK entry. 74, 76, 80

[KPP16] Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum
conjecture. In Proceedings of the twenty-seventh annual ACM-SIAM symposium on
Discrete algorithms, pages 1272–1287. Society for Industrial and Applied Mathematics,
2016. 73

[KS91] Erich Kaltofen and David Saunders. On wiedemann’s method of solving sparse linear
systems. In International Symposium on Applied Algebra, Algebraic Algorithms, and
Error-Correcting Codes, pages 29–38. Springer, 1991. 28

[Lan14] Adeline Langlois. Lattice - Based Cryptography - Security Foundations and Construc-
tions. PhD thesis, Informatique Lyon, École normale supérieure, 2014. Thèse de
doctorat dirigée par Stehlé, Damien. 136

[LB88] Pil Joong Lee and Ernest Brickell. An observation on the security of McEliece’s public-
key cryptosystem. In Workshop on the Theory and Application of of Cryptographic
Techniques, pages 275–280. Springer, 1988. 100, 101

[LBF08] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque. SIMD Is a Message
Digest. Submission to NIST, 2008. 158

[Lep14] Tancrède Lepoint. Design and implementation of lattice-based cryptography. PhD
thesis, Ecole Normale Supérieure de Paris-ENS Paris, 2014. 135, 164

[LF06] Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Security and
Cryptography for Networks, 5th International Conference, SCN 2006, Maiori, Italy,
September 6-8, 2006, Proceedings, pages 348–359, 2006. 73

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th international symposium on symbolic and algebraic computation, pages
296–303. ACM, 2014. iii

[Lin08] The LinBox Group. LinBox – Exact Linear Algebra over the Integers and Finite Rings,
Version 1.1.6, 2008. iv, 9

[Liu17] Dongxi Liu. Compact-lwe for lightweight public key encryption and leveled iot au-
thentication. In ACISP, volume 17, 2017. 123

[LLKN17] Dongxi Liu, Nan Li, Jongkil Kim, and Surya Nepal. Compact-lwe: Enabling practically
lightweight public key encryption for leveled iot device authentication, 2017. 123

[LLL82] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials with ra-
tional coefficients. Mathematische Annalen, 261(4):515–534, 1982. 141

[LLPX18] Haoyu Li, Renzhang Liu, Yanbin Pan, and Tianyuan Xie. Ciphertext-only attacks
against compact-lwe submitted to nist pqc project. Cryptology ePrint Archive, Report
2018/020, 2018. https://eprint.iacr.org/2018/020. 123

[LLS14] Fabien Laguillaumie, Adeline Langlois, and Damien Stehlé. Chiffrement avancé à
partir du problème learning with errors, 2014. 135

[LM06] Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are
collision resistant. In International Colloquium on Automata, Languages, and Pro-
gramming, pages 144–155. Springer, 2006. 138

[LMPR08] Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. Swifft: A
modest proposal for fft hashing. In International Workshop on Fast Software Encryp-
tion, pages 54–72. Springer, 2008. 144, 147, 158

200

https://eprint.iacr.org/2018/020


Bibliography

[LO90] Brian LaMacchia and Andrew Odlyzko. Solving large sparse linear systems over finite
fields. In Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, 1990, Proceedings,
pages 109–133, 1990. 36

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learn-
ing with errors over rings. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 1–23. Springer, 2010. 123, 135, 136

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning
with errors over rings. Journal of the ACM (JACM), 60(6):43, 2013. 123

[LPSS17] San Ling, Duong Hieu Phan, Damien Stehlé, and Ron Steinfeld. Hardness of k-lwe
and applications in traitor tracing. Algorithmica, 79(4):1318–1352, 2017. 123

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module
lattices. Designs, Codes and Cryptography, 75(3):565–599, 2015. 123, 136

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under active attacks.
In International Workshop on Public Key Cryptography, pages 162–179. Springer, 2008.
162

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice and factoring-
based signatures. In International Conference on the Theory and Application of Cryp-
tology and Information Security, pages 598–616. Springer, 2009. 125, 161

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 738–
755. Springer, 2012. 162

[Mar57] Harry Markowitz. The elimination form of the inverse and its application to linear
programming. Manage. Sci., 3(3):255–269, April 1957. 33, 36

[McE78] Robert J McEliece. A public-key cryptosystem based on algebraic. Coding Theory,
4244:114–116, 1978. 100

[MGC12] Davide Maiorca, Giorgio Giacinto, and Ignio Corona. A Pattern Recognition System
for Malicious PDF Files Detection,, pages 510–524. Springer Berlin Heidelberg, 2012.
ix

[Mit96] Michael David Mitzenmacher. The power of two random choices in randomized load
balancing. PhD thesis, PhD thesis, Graduate Division of the University of California
at Berkley, 1996. vi, 68, 69, 84

[Mit98] John E Mitchell. Branch-and-cut algorithms for integer programming, 1998. 178

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding Random Linear
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Resumé

Dans cette thèse, nous discutons d’aspects algorithmiques de trois différents problèmes, en lien
avec la cryptographie.

La première partie est consacrée à l’algèbre linéaire creuse. Nous y présentons un nouvel al-
gorithme de pivot de Gauss pour matrices creuses à coefficients exacts, ainsi qu’une nouvelle heu-
ristique de selection de pivots, qui rend l’entière procédure particulièrement efficace dans certains
cas.

La deuxième partie porte sur une variante du problème des anniversaires, avec trois listes. Ce
problème, que nous appelons problème 3XOR, consiste intuitivement à trouver trois chaînes de ca-
ractères uniformément aléatoires de longueur fixée, telles que leur XOR soit la chaîne nulle. Nous
discutons des considérations pratiques qui émanent de ce problème et proposons un nouvel algo-
rithme plus rapide à la fois en théorie et en pratique que les précédents.

La troisième partie est en lien avec le problème learning with errors (LWE). Ce problème est
connu pour être l’un des principaux problèmes difficiles sur lesquels repose la cryptographie à base
de réseaux euclidiens. Nous introduisons d’abord un générateur pseudo-aléatoire, basé sur la va-
riante dé-randomisé learning with rounding de LWE, dont le temps d’évaluation est comparable avec
celui d’AES. Dans un second temps, nous présentons une variante de LWE sur l’anneau des entiers.
Nous montrons que dans ce cas le problème est facile à résoudre et nous proposons une application
intéressante en re-visitant une attaque par canaux auxiliaires contre le schéma de signature BLISS.

Abstract

In this thesis, we discuss algorithmic aspects of three different problems, related to cryptography.
The first part is devoted to sparse linear algebra. We present a new Gaussian elimination algo-

rithm for sparse matrices whose coefficients are exact, along with a new pivots selection heuristic,
which make the whole procedure particularly efficient in some cases.

The second part treats with a variant of the Birthday Problem with three lists. This problem, which
we call 3XOR problem, intuitively consists in finding three uniformly random bit-strings of fixed length,
such that their XOR is the zero string. We discuss practical considerations arising from this problem,
and propose a new algorithm which is faster in theory as well as in practice than previous ones.

The third part is related to the learning with errors (LWE) problem. This problem is known for
being one of the main hard problems on which lattice-based cryptography relies. We first introduce a
pseudorandom generator, based on the de-randomised learning with rounding variant of LWE, whose
running time is competitive with AES. Second, we present a variant of LWE over the ring of integers.
We show that in this case the problem is easier to solve, and we propose an interesting application,
revisiting a side-channel attack against the BLISS signature scheme.
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