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“Spacetime tells matter how to move; matter tells spacetime how to curve”

John Wheeler
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Abstract
***

In this thesis, we study topological defects in cosmology and condensed mat-
ter physics. We propose to investigate the analogy between defects that appear
in these two realms with respect to aspects of formation and gravity. For in-
stance, we discuss the analogy between cosmic strings and disclinations existing
in liquid crystals. In particular, we concentrate our efforts on the study of grav-
ity/geometric aspects of two linear defects: wiggly cosmic string and hyperbolic
disclination. The gravitational field of wiggly strings is analogous to the one
of regular strings, but with a non-vanishing Newtonian potential. For that
reason, besides the spacetime has conical geometry, the string also produces
gravitational pullings on objects located in its vicinity. This new fact leads to
new effects in addition to the already expected gravitational lensing. In fact,
we find that both massive and massless fields are confined to the string when
we examine non-perpendicular propagation to the string axis. This statement
is based on the analysis of trajectories and by applying the wave formalism.
Finally, we propose the design of an optical waveguide having the specific re-
fractive index likely to simulate the effects of wiggly strings in the laboratory.
Even though the hyperbolic disclination is very similar to the ordinary one, the
resulting medium is an anisotropic metamaterial, in which the ratio between
ordinary and extraordinary permittivities is negative. In fact, as our analysis
concerning the hyperbolic medium is very close to the previous one for the wig-
gly string, we also apply the wave formalism together with geometrical optics
treatment to understand how light propagates. Interestingly, we find that for
one specific director field arrangement of the hyperbolic liquid crystal metama-
terial, light is confined and directed to the metamaterial axis. More specifically,
we come into possession of an optical device that concentrates light rays, no
matter how they are injected in it.
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Résumé
***

Dans cette thèse, notre étude porte sur les défauts topologiques en cosmolo-
gie et en physique de la matière condensée. Nous proposons d’étudier l’analogie
entre les défauts qui apparaissent dans ces domaines. Par exemple, nous discu-
tons l’analogie entre les cordes cosmiques et les disinclinaisons présentes dans
les cristaux liquides. Cependant, nous concentrons nos efforts sur l’étude de
la gravité et des aspects géométriques des défauts linéaires; cordes cosmiques
«ondulées» et les disinclinaisons hyperboliques. Le champ gravitationnel des
cordes ondulées est analogue à celui des cordes régulières mais avec un poten-
tiel newtonien non nul. Pour cette raison, outre le fait que l’espace-temps a
une géométrie conique, les cordes produisent également une traction gravita-
tionnelle sur les objets situés dans leur voisinage. Ceci a pour conséquence:
l’apparition de nouveaux effets en plus de la lentille gravitationnelle. En réal-
ité, nous constatons que les champs massiques et non-massiques sont confinés
au voisinage de la corde quand nous examinons la propagation non perpendic-
ulaire à son axe. Cette affirmation est basée sur l’analyse des trajectoires et
l’application du formalisme ondulatoire. Enfin, nous proposons la conception
d’un guide d’onde optique ayant l’indice de réfraction spécifique permettant de
simuler l’effet des cordes ondulées en laboratoire. Bien que la disinclinaison
hyperbolique soit très similaire à la disinclinaison ordinaire, le milieu résultant
est un métamatériau anisotrope dans lequel le rapport entre les permittivités
ordinaire et extraordinaire est négatif. En fait, notre analyse concernant la
disinclinaison hyperbolique étant très proche de la précédente pour la corde
ondulée, nous appliquons alors le formalisme ondulatoire avec des traitements
d’optique géométrique pour comprendre la propagation de la lumière. Nous
trouvons que pour un agencement spécifique du champ directeur du cristal liq-
uide hyperbolique, la lumière est confinée et dirigée vers l’axe du métamatériau.
Plus précisément, on obtient un dispositif optique qui concentre les rayons de
lumière, quelles que soient les conditions d’injection.
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Introduction
***

The ambition to explain the origin of the Universe is as old as the humanity
itself, and such intent was not always led by a scientific method. Mysticism,
religion and philosophy also had such topic in debate in many civilizations at
different times of our history. However, the scientific questioning about the ori-
gin of the Universe inaugurates cosmology, which has been developed by many
great scientific minds through the history [Wei89; Ste06]. Nevertheless, “the
most sophisticated cosmology” only started in the beginning of twentieth cen-
tury with pioneering work on expanding Universe by Lemaître [Lem27], based
on the theory of relativity, and corroborated a little later by Hubble [Hub29]
in his work on galaxy redshifts. At present, cosmology is mostly related to the
ideas of the Big Bang, a well accepted theory also known as standard cosmol-
ogy, which states the Universe is homogeneous and isotropic with origin around
14 billion years ago. According to the Big Bang model, at the beginning, the
Universe was hot and dense and from then it is expanding and cooling down
continuously. Nonetheless, this course would have been interrupted by an early
period of large and fast expansion named as inflation era. Namely, following
the inflationary epoch, an extremely hot and dense quark-gluon plasma, where
quarks and gluons are no longer confined takes place [Che14]. The early times
of evolution are characterized by many symmetry breaking phase transitions
which may be responsible for creating topological defects. Thus, the study of
topological defects is of great importance because the more we understand about
them, the more we will know about the early stages of the Big Bang and how
it has evolved [Kib97; VS94]. Even though the standard cosmology is in agree-
ment with the most fundamental observational measurements (for example the
anisotropies from the Cosmic Microwave Background (CMB) radiation and the
redshifts of the galaxies), it is still nowadays subject of criticism and alternative
theories (such as bouncing cosmology [IS18], for instance) have been proposed
to replace it, by reason of supposedly presenting cosmological discordances with
some of the observational data [LC17].

Topological defects can be described as topologically stable ground state
configurations in field theories with finite energy. In this context, string-like
solutions (known as cosmic strings) have been discussed for the first time by
Nielsen and Olesen [NO73]. Other possible cosmic topological solutions are
the domain walls, monopoles and textures [VS94]. However, cosmic strings
are without a shadow of a doubt the most interesting cosmic defects, mostly
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because they are the only ones1 to have favorable cosmological conditions for
their existence after the inflation period. Here, we intend to understand their
role in the early Universe and to recall the possible manners of observing them
in the present day. We also discuss aspects of formation and evolution, and
some of their many cosmological implications. Topological defects can also be
found in the Condensed Matter Physics (CMP) realm under many forms. As in
cosmology, they are expected to appear during Spontaneous Symmetry Break-
ing (SSB) processes at phase transitions. Indeed, this assumption has been
confirmed by the Kibble mechanism [Kib76], a mechanism first created to ex-
plain formation and evolution of cosmic defects, but which also holds to explain
the arising of defects in CMP systems. A first example is provided by appear-
ance of vortex lines during quench-induced phase transition in superfluid helium
[Zur85] as well as disclination lines in the isotropic-nematic phase transition in
Liquid Crystals (LCs) [Chu+91; Bow+94]. Hence, defects in cosmology have
topological analogues in the CMP context as they share common topological
properties. As the Grand Unified Theory (GUT) proposed in particle physics is
mostly based on the notion of symmetry breaking, we realize that such objects
are an interesting link between particle physics, field theory, cosmology, and
CMP. In addition, the study of such structures is not just important for the
understanding of the GUT and early history of the Universe, but also for their
unusual physical properties. Interestingly, defects in both context (cosmological
and CMP) mentioned here also exhibit analogy with respect to the way light
propagates around them. For example, cosmic strings create unusual geome-
tries in the surrounding spacetime, so that light propagating in their vicinity
behaves in a characteristic way that can be used for observing evidences of their
existence.

This thesis mainly seeks to study the geometric (gravity) aspects of some
topological defects. More specifically, we are interested in line-like defects, cos-
mic strings in cosmology and line disclinations in CMP. We are going to examine
how these objects influence light and particle propagation. We have organized
this thesis as follows: in Chapter 2 we introduce the topological defects, where
we briefly summarize the essential ideas concerning its formation. In Chapter
3, we introduce the linearized gravity of regular cosmic strings. Still here, we
describe a geometric method for disclinations based on Fermat’s principle and
cosmic string gravity. Our main work is introduced in Chapters 4 and 5 of the
manuscript. In Chapter 4 we examine the effects of the wiggly cosmic string
on both massless and massive fields and we propose an analogy with an optical
waveguide [Aze+17]. In Chapter 5 we investigate light propagation in a liquid
crystal metamaterial endowed with a hyperbolic disclination [Aze+18]. Finally,
Chapter 6 is intended to conclusions and perspectives.

Below we find a list with articles that have been published or submitted
during the preparation of this thesis:

• Frankbelson dos S Azevedo et al. “Wiggly cosmic string as a waveguide
for massless and massive fields”. In: Physical Review D, 96 8 (2017), p.

1Textures are also supposed to exist at present. However, they are not considered topo-
logical defects at all. We will discuss that in the next Chapter.
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084047;

• Frankbelson dos S Azevedo et al. “Optical concentrator from a hyperbolic
liquid crystal metamaterial”. In: eprint arXiv:1806.11514 (2018).2.

In the course of this manuscript, we will adopt the metric signature con-
vention (+,−,−,−) and will use Einstein’s summation convention on repeated
indices. Greek letters3 are used to describe indices in relativity that take the
values 0,1,2,3. Besides, we will consider the units as h̄= c= 14.

2Accepted and published in EPL (Europhysics Letters), 124 3 (2018), p. 34006 after this
thesis manuscript has been submitted.

3We were forced to use in some instances same Greek letters to represent physical variables
and indices.

4For convenience, in Sections 5.3 and A.3 we do not consider c= 1.
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Figure 2.1: Sphere and torus are exam-
ples of objects with different topology.

Topological defects are exotic ob-
jects that appear in both, condensed
matter systems and in the Universe,
during the phase transitions in na-
ture. Interestingly, they share the
same mechanism of formation, known
as Kibble mechanism [Kib76], and for
that reason ideas of cosmology may be
tested in the laboratory. Among the
defects that can be found in CMP, we
can cite the magnetic flux lines in su-
perconductors [Abr57], vortex lines in superfluids [Zur85] and domain structures
in ferromagnetic materials [Kit49]. The appearance of disclination lines in Ne-
matic Liquid Crystals (NLCs) together with a large variety of other defects
in other phases of liquid crystals [Klé89] show up as a nice matter of study
still nowadays. The possible cosmic defects are the domain walls, monopoles,
textures and cosmic strings [VS94].

In the next sections of this chapter we are going to give more details about
topological defects and their formation.

2.1 Topological Defects Formation
According to the Hot Big Bang Model, which describes the history of the Uni-
verse from the initial instant (“explosion”) to the present days, the Universe
started about 14 billion years ago and since then it has expanded and cooled
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down. During the earliest times of evolution the existing expansion rate sce-
nario had been interrupted by an inflation era, that is a period of very rapid
(exponential) expansion where the Universe was dominated by a vacuum en-
ergy density. To understand how the Universe has expanded one may study
the thermodynamics of the CMB. In the past, the CMB radiation was much
hotter and then dominated the gravity of the Universe. This period is known as
radiation era. However, as time went on, the CMB cooled down and decreased
energy. At some point, the radiated energy became equal to the energy of the
ordinary matter (matter-radiation equality). At present, we live in the matter
era, where the gravity of all matter in the Universe is much greater than the
radiation gravity. Therefore, by measuring the content of the energy of the
matter and radiation of a large region of space, we are able to understand how
this region expands with the Universe [HH05]. Incidentally, observations of the
anisotropy spectrum of the CMB have been mentioned as evidence for sup-
porting the idea of an accelerating Universe [Spe+03]. With the expansion of
the early Universe it has undergone a succession of phase transitions involving
spontaneous symmetry breaking mechanisms which may have led to formation
of cosmic topological defects [KT90]. To better understand the general idea of
a SSB phase transition let us to have a look at a very common example, the
freezing of water to ice5. When the water is still a liquid at some tempera-
ture it is constituted of translational and rotational symmetry (high symmetry).
However, once the water temperature cools down it gets frozen and such symme-
tries are broken. That is, the symmetry of the system is reduced to the discrete
symmetry (low symmetry) of the ice crystal. During such process, the crys-
talline orientations of the ice are led to be different in different parts, so that
some “defects” are then formed. At this point, we recognize a strong connec-
tion between particle physics and cosmology, since the Standard Model (SM) of
particle physics is mostly based on the concept of symmetry breaking. Indeed,
the early universe has been often studied as a manner of testing the ideas of
the SM at non-accessible energy scales to terrestrial accelerators. By the way,
the SM has been tested to a very high precision and shows up that below an
energy scaleMGUT ∼ 1016 GeV [Wei08], the electroweak interactions (weak and
electromagnetic forces), represented by the symmetry group SU(2)×U(1) and
the strong interactions associated with the gauge group SU(3) can be unified,
forming what is called Grand Unified Theory. The idea here is that in the early
times (close to the singularity) of the Hot Big Bang model, when the universe
was at the highest temperature, all interactions were merged into a single one.
Actually, gravity is the only force that does not make part of the GUT; besides
being a geometric theory, at the nuclear scale, such interaction is insignificantly
weak as compared to the others fundamental forces. However, at the Planck
energy scale (MPl ∼ 1019 GeV ), the gravitational interaction becomes as strong
as the others forces [Kib97]. Above MGUT, strong and electroweak interactions
unify within a larger gauge symmetry group G, where grand unified theories
involving Supersymmetry (SUSY) have been considered as suitable description
for such energy scales [Baj+04; Fuk+05; Rab11]. For such reason, SUSY GUT

5This example have also been mentioned by Chuang et al [Chu+91] and Gangui [Gan01]
with the same intent of exemplify a symmetry breaking phase transition.



2.2. Topological Classification of Defects 7

arises as a possible way to unify all the four fundamental forces of nature in a
single one (this unification is often called as Theory of Everything) [Kib97].

As we have mentioned before, the ideas of the GUT are generally speak-
ing based on the notion of SSB phase transitions: a system represented by a
high symmetric group G is spontaneously broken to a subgroup H with less
symmetry,

G→H→ ·· ·SU(3)×SU(2)×U(1)→ SU(3)×U(1)em.

That happens always the system cools down to a critical temperature T =
Tc defined by symmetry breaking scales [Vil85]. Thus, the symmetries of the
system are no longer determined by the group G, but by the smaller group H
(the unbroken subgroup) instead. The choice of the minimum of the system
corresponding to some point at the ground states (or vacuum manifold), is
randomly determined and can differ for different regions of the space if the
regions are separated by a distance greater than some finite correlation length
ξ. Such mechanism can lead to formation of defects, and it is known as Kibble
mechanism [Kib76], being generic for all type of phase transitions, including
those in CMP systems. As it happens in CMP systems where the symmetries
spontaneously broken are restored as the system increases temperature until
it reaches some critical temperature Tc, spontaneously broken symmetries in
field theories (e.g. symmetries of elementary particles) are also expected to be
restored above a critical temperature. In the cosmological context the breaking
pattern showed above implies in successive phase transitions in the very early
Universe, in which defects are formed [KT90; VS94].

In what follows, we briefly discuss about the topology of the defects: domains
walls, monopoles, textures and cosmic strings.

2.2 Topological Classification of Defects
In order to determine what kind of topological defect emerges for a given SSB
transition G→H, one may study the content of homotopy groups πk(G/H) of
the vacuum manifoldM=G/H, since the defect to arise is strictly determined
by the topology ofM. When the vacuum manifoldM has a non-trivial topol-
ogy, is multiply connected, πk(G/H) 6= 1 (1 corresponds to the trivial topology),
stable topological defects of dimension6 2−k will appear with a characteristic
length scale of the size of the correlation length ξ [VS94; JRS03; Ken06].

Below, we present further details about domain walls, monopoles and tex-
tures, where the type of non-trivial mapping of the vacuum manifoldM in each
defect is specified. Cosmic strings being the main topic of this manuscript will
be left for a more extensive presentation in Section 2.3 and Chapter 3.

6This rule does not hold for the formation of textures where k = 3 as evidenced in the
table 2.1.
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2.2.1 Domain Walls
Domain walls appear when the vacuum manifold M of the SSB phase tran-
sition is disconnected, consisting of several components. In this case we have
a breaking of a discrete symmetry associated, as π0(M) is non-trivial, where
π0 is the homotopy group representing disconnected components. For instance,
the symmetry breaking G→H, where G=Z2 and H is the trivial group, leads
the vacuum manifold to be given by M = G/H = Z2. Therefore, the homo-
topy content of the vacuum manifold is π0(M) = Z2, where the Z2 symmetry
Φ→−Φ is spontaneously broken when the field chooses on 〈Φ〉 = ±η. Hence,
domain walls are formed at the boundaries whenever the field changes between
regions of the different vacuum expectation values +η and −η, see Fig. 2.2. The
formation of analogous defects in CMP is known as grain boundaries [KT90;
VS94].

-η η
ϕ

V

Figure 2.2: Symmetry breaking potential V (Φ) = λ
4 (Φ2−η2)2.

Topological defects are source of gravitational fields which are important to
be considered due to their cosmological implications. The gravitational effects
by domain walls are exotic. Indeed the gravity of walls (2D defects) is very
different from ordinary massive planes, the gravitational field of such objects
is repulsive rather than attractive. Then, test particles are repelled when in
presence of the walls, besides walls repel one another. However, contrary of
cosmic strings, light is not deflected by domain walls [Vil81; KT90].

2.2.2 Monopoles
The monopoles (and hedgehogs in CMP) are point-like defects formed when the
vacuum manifoldM possess non-contractible two-spheres S2, that is π2(M) 6=
1. For example, monopoles arise when the SO(3) group is spontaneously bro-
ken to U(1) group. In this case the vacuum manifold has homotopy group
π2(G/H) = π1(H)/π1(G) =Z/Z2 [KT90]. Since π2(G/H)∼= π1(H), if G is sim-
ply connected7 π1(G) = π2(G) ∼= 1, then once a symmetry group G is broken
down to a subgroup H = U(1) monopoles are formed with homotopy group
π1(U(1)) = Z. The first field theory solution of monopoles were found inde-
pendently by ’t Hooft [Hoo74] and Polyakov [Pol96], and for that reason it is

7This is not the case of the SO(3) group since it is multiply connected.
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known as ’t Hooft-Polyakov monopoles. ’t Hooft showed their existence through
the Georgi-Glashow model [GG72] which possesses the symmetry of the SO(3)
group, but it is represented by symmetry breaking pattern G→H in which the
group of symmetry SU(2) is broken to U(1) group. Thus, as the SU(2) group is
simply connected, we have π2(SU(2)/U(1))∼= π1(U(1))∼=Z. A very interesting
fact is that since the GUT passes by several stages of breaking of symmetries
down to U(1) group: H = SU(3)×U(1), the existence of monopoles was un-
avoidable in the very early Universe, as they are predicted into the GUT. Even
though we do realize that monopoles (as others defects) are expected to exist
in virtue of topological reasons, still in the year of 1931, Paul Dirac [Dir31] al-
ready predicted the magnetic monopoles from quantum electrodynamics theory
without using any topological arguments.

Barriola and Vilenkin [BV89] have provided an approximate solution of the
Einstein field equations for a static global monopole, where the spacetime is
revealed to be spherically symmetric. On the surface θ = π/2 (or z = const.),
the gravitational effect is that of a conical geometry due to a deficit angle (as in
the cosmic string metric (3.13) in Section 3.2) plus the gravitational contribution
of a tiny mass at the core. Exact solutions of the Einstein equations [HL90;
SL91] showed that the gravitational field of the core of monopoles is repulsive.
However, except the tiny repulsive effect of the core, monopoles do not exert
gravitational pulling on surrounding massive objects. Moreover, the geometry
around a monopole generates gravitational lensing in a similar fashion to any
spherically symmetric object. Besides, monopoles have been believed to cause
some other interesting cosmological implications: anisotropies in the cosmic
microwave background, density fluctuations that can evolve into clusters and
galaxies and a moving monopole can produce wakes which lead to accretion of
matter surrounding it [VS94].

We should mention here that domain walls and monopoles are apparently
discarded to exist after the inflation era; if there exist such defects somewhere
in the Universe, because of their huge amount of energy they would have domi-
nated the energy density of the Universe and then close it. In fact that was the
main reason motivating the idea of inflation, because if the Universe has inflated
by a huge factor, the existence of defects as domain walls and monopoles should
be highly constrained or totally diluted at present [Kib97; JRS03].

2.2.3 Textures
Textures are very generic defects that occur always when a non-abelian group
of symmetries is continuously broken. The vacuum manifold possesses the
non-trivial homotopy group π3(M) 6= 1 with non-contractible three-spheres S3

[Tur91]. As an example of symmetry breaking that gives rise to such objects
we have the SO(4) group spontaneously broken to SO(3), so that we obtain
π3(SO(4)/SO(3)) = Z [VS94; Gan01]. Contrary to other defects, formation of
textures does not require the scalar field to vanish anywhere. As the scalar
field is present everywhere in the ground state, the energy is then uniformly
distributed. For that reason, textures have no core unlike cosmic strings, for
example [Gan01]. Actually, they may not be considered absolutely as defects
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also because the scalar field is not topologically constrained to the vacuum man-
ifold [VS94; Kib97]. Texture-like objects also appear in superfluid 3He, some
LCs phases and quantum chromodynamics. They could be three, two and one
dimensional objects, and also point-like defects (the Skyrmions in three dimen-
sions [Sky61]) [Chu+91; VS94].

Although textures can exist as stable objects, they may also be unstable and
they can collapse. The collapse of textures can lead to strong gravitational fields
which are very different from those with collapse of ordinary matter [VS94]. The
solution for the Einstein equations from a spherically symmetric collapse shows
that the spacetime geometry depends on a deficit angle which is time and space
dependent, see Nötzold [Nöt91] for example. Besides, if massive objects have no
angular momentum with respect to the texture origin, there are no gravitational
force acting on them.

Interestingly, textures could survive to the inflation period because of their
massless forming feature. Then, they are expected to be observed at present.
Indeed, Cruz et al [Cru+07] have detected features from the CMB consistent
with existence of cosmic textures. However, five years later a work by Feeney
et al [Fee+12] which considers a more extensive data showed no evidence of
textures.

In the Table 2.1, we have summarized the different types of possible cosmic
topological defects.

Table 2.1: Summary of defects according topology and dimension.

Topological defect Dimension Classification Non trivial mappings inM

Domain walls 2 π0(M) Disconnected

Cosmic strings 1 π1(M) Non-contractible loops

Monopoles 0 π2(M) Non-contractible S2 spheres

Textures - π3(M) Non-contractible S3 spheres

In the next section we show how cosmic strings can be formed in the Abelian
field theory based on the U(1) group, which contains string-like solutions.

2.3 Cosmic Strings
The theoretical justifications are more favorable for the existence of cosmic
strings “nowadays”, since there exist some models where they have been formed
during late stages of the inflation period. Because of that and their incredible
cosmological consequences, cosmic strings have dominated the subject (cosmic
topological defects) in the literature during the past years [Kib97]. To realize
the importance of cosmic strings, it is enough to remind that they have been
considered as seeds for formation of galaxies [Zel80; Vil85], for quite some time



2.3. Cosmic Strings 11

until this idea was ruled out by cosmic microwave background measurements.
Besides cosmic strings being well predicted into the GUT, the supersymmetric
extension (SUSY GUT) to this model provides a route to the formation of such
objects as well. For instance, Jeannerot et al [JRS03] examined all possible SSB
patterns from the large possible SUSY GUT gauge groups down to the standard
model SU(3)×SU(2)×U(1) and concluded that cosmic string formation was
unavoidable. However, the SUSY still has to pass experimental verification,
since the first run of the LHC found no evidence for supersymmetry. Another
possibility for generation of cosmic strings is during the brane inflationary epoch
[DT99]. More specifically, they may have been abundantly produced by brane
collision towards the end of this period [ST02]. In this case, cosmic strings
are seen as lower-dimensional D-branes which are one-dimensional in the non-
compact directions. On the contrary of GUT strings, strings in braneworld
appear with a spectrum in tension.

Cosmic strings and disclinations/dislocations (line-like defects) in CMP ap-
pear as the topology of the vacuum manifold is non-trivial due to the existence
of non-contractible loops (can not be contracted to a point) in the vacuum man-
ifold [VS94; Kib76]. The simplest model that gives rise to cosmic strings con-
sists in the Abelian theory of a local (or global) symmetry breaking of the U(1)
gauge group. The field solutions for this theory was first found by Nilsen-Olesen
[NO73]. In formation of strings the non-trivial homotopy group is π1(M) =Z,
where the fundamental group Z is the group of integers that transform with
a phase multiple of 2π, with ground state given by M = S1, which defines a
circle [HK95; CK10]. In this theory the field Φ is a complex scalar that self
interacts according to a “Mexican hat” potential V (Φ) = (λ/4)(Φ∗Φ− η2/2)2.
Below a critical temperature Tc, the scalar field first null at high temperatures,
acquires a vacuum expectation value 〈Φ〉 = (η/

√
2)eiϑ(θ), where ϑ(θ) is an ar-

bitrary phase factor varying on the scale of a correlation length ξ. That is,
the choice of the phase factor is given independently in different regions of the
space separated by length ξ. Besides, the periodicity of the function ϑ(θ) de-
fines a circle where any winding must be defined as: n = (ϑ(2π)−ϑ(0))/2π,
which is integer number known as winding number (“topological invariant”)
[Pre86]. Local cosmic strings have an interior magnetic flux which is quantized
by the winding number as ΦB = 2πn/e, in the same way as the magnetic flux
lines in superconductors [Abr57]. The asymptotic form of the field solutions far
from the core assumes that the energy decays exponentially to zero at infinity
as the energy per unit of length of string is finite. For a U(1) cosmic string,
the mass per unit of length is given by µ0 = T0 ≈ η2, where T0 is the string
tension. In the GUT scale, η ≈ 1016 GeV, which means a cosmic string with
enormous energy [VS94]. In the case of a global symmetry breaking, the same
topological conditions for formation of local cosmic strings are considered but
now the vector potential in the U(1) Lagrangian is set to zero. In other words,
this means absence of magnetic flux associated to global strings. For a global
cosmic string the mass energy density is of the form µ0 ≈ 2πη2 lnR/δ, where R
is a cut-off radius and δ is the string core thickness [Vil84; VS94].
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2.3.1 Observational Evidences of Cosmic Strings
There are many theoretical justifications for the existence of cosmic strings, but
the observational evidences are still feeble and mostly indirect. Nevertheless,
if cosmic strings do exist, important cosmological effects should be observed
as consequence. Among the possible ways of observing their presence in the
Universe are: the gravitational lensing signatures (see Section 3.2.1) and grav-
itational waves left behind by such objects. The presence of a cosmic string
somewhere in the Universe affects light trajectories, forming double images of
objects behind the string. Such effect is known as planar gravitational lensing
and has not been detected yet. Curiously, the observation of a pair of giant
elliptical galaxies was erroneously reported by Sazhin et al. [Saz+03], as de-
tection of lensing signatures induced by a cosmic string. However, high quality
data from the Hubble space telescope showed that was not a lensing effect (two
images of the same galaxy), but a pair of similar galaxies [AHP06; Saz+06].
Another possibility for detecting cosmic strings is through observation of gravi-
tational waves, since the oscillating string loops created as a mechanism for loss
of energy by strings emit gravitational radiation. Infinite cosmic strings also
emit gravitational radiation as the small-scale structures (wiggles) on the string
are source of gravitational waves as well [VV85; VS94; HK95; BPOS18]. Cosmic
strings can also be observed by formation of a wake of matter behind moving
strings. Actually, this is an important fact that may corroborate the density
inhomogeneity in the Universe. However, maybe the most suitable manner to
observe strings is through the measurements of the induced anisotropies in the
cosmic microwave background radiation [Kib97; CPV11]. For example, the con-
ical geometry of a cosmic string may cause discontinuity in the temperature of
the cosmic microwave background as a string moves through the space. Such
phenomenon is known as Kaiser-Stebbins effect [KS84].

Data on the CMB collected from Planck Satellite have not confirmed the
existence of these objects yet, but they have set upper boundaries on their
mass-energy density Gµ0 < 10−7 (c = 1) [Ade+14]. As warned by Copeland
and Kibble [CK10], “Both cosmic strings and superstrings are still purely hypo-
thetical objects. There is no direct empirical evidence for their existence, though
there have been some intriguing observations that were initially thought to pro-
vide such evidence, but are now generally believed to have been false alarms.
Nevertheless, there are good theoretical reasons for believing that these exotic
objects do exist, and reasonable prospects of detecting their existence within the
next few years.” Indeed, the search for cosmic strings is currently still very
active and it happens in all the fronts mentioned above: CMB radiation mea-
surements [Her+17] and gravitational wave bursts [SES17].

It is worth mentioning here that topological defects found in CMP systems
have been explored as a laboratory for better understanding of the ideas of cos-
mology. For example, string-like defects as line disclinations in liquid crystals,
vortex-line in superfluid helium and magnetic flux lines in type II superconduc-
tors have been used for creating analogies with cosmic strings. On the other
hand, such analogies have helped out the CMP defects be better comprehended
by themselves.
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In the next section, we explain the formation of linear defects in LCs, so
that it becomes clear how incredible is the analogy behind these two “different
universes”.

2.4 Topological Defects in Liquid Crystals
In 1888, the botanist Friedrich Reinitzer reported the physicist Otto Lehmann
about the existence of certain organic substance (cholesteryl benzoate) that curi-
ously exhibited properties of both liquid and solid. Besides having been assigned
to Lehmann the invention of the term liquid crystal to describe such substance,
he was the first to detect the birefringence (anisotropy) and main structural
properties of nematic8 substances. But it was just in 1922 that Georges Friedel
in collaboration with Grandjean rigorously described the mesophases (nematic,
smectic and cholesteric) according a molecular order criterion [Fri22]. Surpris-
ingly, even after these interesting findings, the study of LCs gradually lost inter-
est. The interest for physics of liquid crystal was intentionally revived by Frank
[Fra58], who introduces the word “disinclination” later renamed disclination for
line singularities in LCs. However, maybe the most important fact about the
study of LCs was the contribution of Pierre-Gilles de Gennes, rewarded by the
Nobel Prize in 1991 for his studies on Soft Matter.

The structure of a liquid crystal can be understood as a fluid made of rod-
like (cigar-shaped) molecules being symmetric by rotation about its own axis.
At high temperatures no order is established, as thermal agitation effects do-
main dipole ordering effects all molecules are equally oriented, and the phase
is isotropic (an ordinary liquid). However, when the temperature cools down
interactions (dipole-dipole interactions) between the molecules lead them to be
nearly aligned (approximately parallel to each other on average). Such ordered
configuration is known as nematic phase, which is symmetric under rotations
around a parallel axis to the molecules (average order). The orientation of the
molecules in the LCs is measured by introduction of an order parameter, which
is zero in the isotropic phase and non-zero in the nematic phase. Such order pa-
rameter is related to a unit three vector ~n named director field, which describes
the average direction of alignment relative to the axes ~a (unit vector) of the in-
dividual molecules, see Fig. 2.4. If we chose ~n along the axis z, we find that the
degree of orientational order is given by s = (1/2)〈3cos2 θ−1〉 [Tsv42]. For the
most ordered phase, we would have θ= 0 or θ= π, with the molecules ~a parallel
to the optical axis ~n. On the other hand, when the sample is entirely random
we should get s = 0. Because the molecules are rod-like the director vector has
no preferred polarity, that is ~n and −~n are equivalent. The orientation of the
director field leads to formation of defects, and it is given by an angle that
changes as 2πm, where the topological factor m gives the strength (winding
number) of the defect. For example, when the director field ~n goes around π
along a closed loop as we circle around the defect, m=±1/2 disclinations arise.
On the other hand, when the director points outwards or inwards everywhere,

8The nomenclature nematic was introduced later by Friedel to describe Lehmann’s thread-
like liquids.
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defects with strength m=±1 appear. More precisely, for disclination in the z-
const plane (~n confined to planes perpendicular to the defect axis), the director
field components are ~n= cos(mφ+φ0)x̂+sin(mφ+φ0)ŷ, where m measures the
director field rotation as one goes around the defect, φ is the angular coordinate
and φ0 is a constant parameter. The two-dimensional cross-section for m = 1
disclinations is well represented in Fig. 2.3 [KL07; GPP95].

(a) (b)

Figure 2.3: Director field configurations for disclinations in NLCs with m= 1.
(a) For φ0 = 0 (radial director field). (b) For φ0 = π/2 (circular director field) .

Although defects in LCs are unwanted in most technological applications
(as in displays, for example), once they are well controlled they could become
a nice aspect for many other devices (microlenses, vortex beam generators...)
[GBY17]. In Chapter 5, we will discuss the optical properties of a medium made
of NLCs that works as an optical concentrator device. Moreover, topological
defects in NLCs are on their own of great interest for the study of physics be-
cause their stupendous physical properties, and of course, due to the possibility
of using them as a way of “testing” ideas of cosmology in the laboratory, taking
advantage of the similarity with aspects of formation and light propagation.

Below, we discuss more about the interface between liquid crystals and cos-
mology by showing how defects are formed in the nematic phase and how this
process obeys the Kibble mechanism. The isotropic-nematic phase transition
will provide a better insight into the formation of defects during a SSB process,
regarding to concepts in cosmology which are not easly tractable.

2.4.1 Isotropic-Nematic Phase Transition
Spontaneous phase transitions in LCs are strictly related to the production of
defects in cosmology, as the Kibble mechanism used to describe the formation
and evolution of defects in the cosmological context revealed to be relevant
in the formation of defects in nematic liquid crystals [Chu+91; Bow+94]. In-
deed, the different phases in LCs can be obtained through SSB transitions,
which lead to the appearance of topological defects exactly as it happens in
cosmology; the sample in the most symmetric phase (at high temperatures)
cools down into a less symmetric phase (at low temperatures), and during this
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process “defects” can appear. This is exactly what we have in the isotropic-
nematic phase transition; suitably we can identify the isotropic phase where
the molecules are randomly oriented as having the symmetry (invariant un-
der spatial rotations and translations) of the SO(3) group, and as the phase
transition occurred the symmetry is reduced to the O(2) group that character-
ize the order parameter in the nematic phase, where the molecules are locally
aligned. Therefore, the transition from the isotropic to the nematic phase can
be understood as a spontaneous breaking of symmetry (global because the ab-
sence of gauge fields in NLCs) with pattern given by SO(3)→ O(2), in which
M = SO(3)/O(2) = S2/Z2 represents the ground states of the nematic phase.
Here, the unbroken group is invariant under rotations about the molecular axis
and rotations of π about axes which are perpendicular to the molecular axis.
Analogously to what happens in cosmology, during such transition we also have
formation of defects. The string-like defects (disclination lines) are formed due
to the non-trivial topology π1(M) = Z2 of the ground state manifold. The Z2
string corresponds to the non-trivial path (non-trivial loop in M) to identify
two diametrically opposite points on the S2 sphere, since the director field ro-
tates π as one goes around the defect [Chu+91; Pre86; Rao02]. In figure 2.4 we
attempt to schematize the isotropic-nematic phase transition.

Figure 2.4: The isotropic-nematic phase transition being represented (with
director field ~n and molecular axes ~a).

Interestingly, there is a model in relativistic field theory (cosmology) that
treats of the same spontaneous breaking pattern discussed here, named Alice
string electrodynamics (also called Alice string theory) [Sch82], which is per-
fectly analogue to the formation of Z2 strings in NLCs [Pre86; VS94; HK95].

2.4.2 Nematic Liquid Crystals as a Laboratory for Cosmology
In this section, we briefly discuss how strings arise in the isotropic-nematic
phase transition in a liquid crystal sample by means of the Kibble mechanism,
which by the way was first suggested to account for formation of defects in cos-
mology. Zurek [Zur85] was the first to suggest an experiment in a CMP system
(superfluid helium) for observing formation of defects according to predictions
of cosmological theories. A bit later in two very cited works by Chuang et
al [Chu+91] and Bowick et al [Bow+94], the same proposal with using NLCs
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came up; the probability of formation of a network of disclination lines ob-
served during the isotropic-nematic phase transition is in total agreement with
the expected theoretical value via Kibble mechanism for the ground state of
the nematic liquid phase, see Fig. (2.5). As the sample of NLCs cools down,

(a) (b) (c)

(d) (e)

Figure 2.5: A sequence of five images of defects formation at the isotropic-
nematic phase transitions in liquid crystal. (a) Bubble nucleation (2s), (b) growth
(3s), (c) bubble coalescence (5s), (d) string formation (11s) and (e) string coars-
ening (23s) [Bow+94].

the bubbles of the ground state (nematic phase) nucleate. During the bubble
nucleation the director field takes random directions, and for energetic reasons
they will be roughly oriented inside each bubble. Here, the correlation length
will depend on aspects such as the rate of collisions between bubbles and the
bubble sizes. The small bubbles have too much energy, then they reduce the
total energy of the system by growing, which consequently leads them to merge
again. As a set of bubbles collide there is a considerable probability of discli-
nation (string) and loops are formed at the bubble boundaries. Besides the
Kibble mechanism successfully predicted the density of strings per bubble, it
also provides the scaling dynamics of the string network and aspects of the
defect-antidefect correlation [Bow+94; Chu+91].

We have here a perfect analogy of what happens in the laboratory during
the cooling of a NLCs sample with phase transitions in the very early Universe.
In fact, disclinations are perfectly analoguous to global cosmic strings; because
the absence of gauge fields in NLCs, the global strings become most similar to
NLCs dynamics than local cosmic strings do [HK95].

In the next chapter, we discuss further details about the geometric aspects of
linear topological defects. There exists a way to propose an effective geometry
to study of light ray trajectories in LCs and it is showed to be analogue to the
geometry of the cosmic string spacetime.
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Figure 3.1: The geometry surrounding
a cosmic string affecting light trajectories
[Gan01].

Cosmic strings are very intrigu-
ing linear objects having sizes much
greater than their width (the same
of an atomic nucleus, or smaller)
and possessing an enormous energy.
For instance, an ordinary GUT string
with length at the order of the di-
ameter of the Sun would have ap-
proximately the same solar mass
[HK95]. Cosmic strings are analogs
of linear defects in condensed mat-
ter physics, following the same mech-
anism of formation and evolution.
Among them, the line disclinations
are present in nematic liquid cristals
[Chu+91; Bow+94]. The analogy also
holds from the stand point of gravita-
tion [Mor00], as effects on light prop-
agation due to both objects are equiv-
alent [SM05]. Hence, we emphasize that CMP systems are an incredible labo-
ratory for testing cosmological ideas.

In the following we present the gravitational effects of regular9 cosmic strings.
9In the remainder of this thesis, besides the term regular, we also make mention to regular

string as idealized, straight and unperturbed string.
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Besides, we discuss more about the analogy between cosmic strings and disclina-
tions, showing a geometric method for propagation of light of particular interest
in our work.

3.1 Geometric Theory of Gravitation
The Special Theory of Relativity (STR) replaces the Newtonian mechanics in
the study of moving bodies with speed at the order of the speed of light. The
STR states that each event is represented for the four coordinates (x,y,z, t) in
the Minkowskian spacetime

ds2 = dt2−dx2−dy2−dz2 = ηµνdx
µdxν , (3.1)

where ηµν = diag (1,−1,−1,−1). However, the generalization of this theory
taking into account gravity gave rise to a most general theory, named General
Theory of Relativity (GTR). An important statement in this theory is that a
non-inertial frame is equivalent to a given gravitational field, that is, we can
not distinguish between the motion of a particle under the influence of a grav-
itational field or in a reference frame with the same acceleration than by the
gravitational field, this is the so called Principle of Equivalence. Therefore, the
GTR differs from the STR with respect to the geometry of the space represent-
ing each one; whereas the later is described in a flat spacetime, the former is
associated with a curved spacetime (pseudo-Riemannian manifold) as a direct
consequence of the principle of equivalence. Therefore, the line element in a
curved geometry is given by

ds2 = gµνdx
µdxν , (3.2)

where gµν are the components of the metric tensor which depends on the space
and time coordinates. In general relativity, gravity is essentially comprehended
as an effect of the geometry of the spacetime. This fact is well represented in
the Einstein field equations:

Rµν−
1
2gµνR = κTµν , (3.3)

with κ being a constant called Einstein’s gravitational constant. Rµν is the Ricci
tensor components,

Rµν =
∂Γγµν
∂xγ

−
∂Γγµγ
∂xν

+ ΓσµνΓγγσ−ΓσµγΓγνσ, (3.4)

where
Γµγσ = 1

2g
µλ

(
∂gλγ
∂xσ

+ ∂gλσ
∂xγ

− ∂gγσ
∂xλ

)
(3.5)

is the usual Levi-Civita connection of Riemann spaces (Christoffel symbols).
The Ricci scalar curvature R is obtained by taking a contraction of the Ricci
tensor R= gµνRµν . The left-hand side of this equation provides the geometry of
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the spacetime whereas the right-hand side, Tµν , gives the mass (energy) content
of the gravitational source. Then, we have an equivalence between energy and
geometry, where the presence of a given object in the Universe deforms the
geometry of the surrounding spacetime as a reaction to its amount of energy.
Thus, the general relativity is indeed a geometric theory, with gravity not being
an ordinary force but a property of spacetime geometry. The Newtonian gravity
is retrieved in the ordinary Euclidean space for the weak energy limit of the
Einstein equations. In addition, the value of the constant κ in the equation
(3.3) is derived as the Newtonian limit is reached [Car01; Car04].

3.1.1 Geodesic Equation
Another important feature of general relativity is the way a given object located
in a curved spacetime moves. Actually, the object moves in accordance with
the geometry in its vicinity, namely, the gravitational field tells how the particle
has to move, defining the geodesics [WF00]. The motion of a particle in a
Riemannian manifold can be derived from the variational principle

δ
∫ (

gµν
dxµ

ds

dxν

ds

)1/2
ds= 0, (3.6)

where s is a parameter along the geodesic line with ds = (gµνdxµdxν)1/2 and
from which geodesic equations follow,

d2xγ

ds2 + Γγαβ
dxα

ds

dxβ

ds
= 0. (3.7)

Here, Γγαβ is the usual Levi-Civita connection (see Eq. (3.5)). Regarding the
equation above, we assumed ds2 6= 0, such that

gµν
dxµ

ds

dxν

ds
= 1 (3.8)

along the geodesic line. This is valid for timelike geodesics, which describe the
motion of massive particles in the gravitational field. Here, the affine parameter
s in Eq. (3.8) can be identified as the proper time. On the other hand, for null
geodesics, where we have ds2 = 0, the parameter s cannot be used as the affine
parameter along the geodesic line. However, we should still find another affine
parameter λ for which the null geodesic equation are given in the form (3.7)

d2xγ

dλ2 + Γγαβ
dxα

dλ

dxβ

dλ
= 0, (3.9)

where now
gµν

dxµ

dλ

dxν

dλ
= 0 (3.10)

along the geodesic line. The null geodesics describe the light propagation in the
gravitational field [Car01; Car04].
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3.2 Weak Field Approximation for Regular Cosmic
String

The Einstein field equations are commonly difficult to solve. In order to get
exact solutions10, restrictions are imposed on the metric and energy-momentum
tensor, such that the problem is endowed with a significant degree of symme-
try. Moreover, when the gravitational field is weak enough, a method called
linearized gravity (or weak field approximation) can be used as a great ap-
proximation for solving several problems. The idea of such method consists
in expanding the components of the metric tensor as gµν = ηµν + hµν , where
ηµν is the ordinary component of the Minkowskian space and |hµν | � 1 is a
perturbative term responsible for the curved spacetime.

In order to study the influence of a regular cosmic string on the geometry
of the spacetime, one inserts the components of the energy-momentum tensor
associated to these objects in Einstein field equations. Generally, equations in
this context are solved only numerically [Gar85; LCM87]. But, some simpli-
fications can be done in order to get qualitative information on the geometry.
For instance, by considering the energy of the string confined to its core, the
string energy-momentum tensor components can be approximated as δ-function
source. That is, the string thickness is considered to be much smaller than any
other dimensions. With this assumption, and considering that the gravity of
the string is sufficiently weak to allow the use of the linearized Einstein field
equations, Vilenkin [Vil81] was able to supply the spacetime geometry of a cos-
mic string for the first time. Note that the weak field approximation cannot be
used in the case of supermassive strings, but only when η <<mP , with η being
the energy scale of the symmetry breaking and mP the Planck mass [VS94].

By considering the zero thickness limit, a static straight cosmic string located
along the z-axis has the energy-momentum tensor components given by [Vil81;
Vil85; VS94]:

Tµν = µ0δ(x)δ(y) diag (1,0,0,1), (3.11)

where µ0 is the energy density per unit length of the string. For an unperturbed
string (with no wiggle/kink), the energy density µ0 exactly matches the line
tension T0, such that the equation of state of the string is written as µ0 = T0
[Car90]. On the z-axis (string core), the spacetime curvature is infinite, whereas
outside the string we may assume the gravitational field as being sufficiently
weak such that the spacetime is nearly Minkwoskian gµν = ηµν + hµν , with
|hµν | � 1 being a perturbative term. Therefore, we can use the linearized
Einstein equations, to obtain

hµν = 8Gµ0 ln(r/r0) diag (0,1,1,0), (3.12)

with r=
(
x2 +y2

)1/2
and r0 is a cutoff length (set as the effective string radius)

[Vil81; Pet94]. This solution is valid only within the region r0 < r� r0e1/4Gµ0 ,
10The term “exact solutions” does not mean that the properties of the metric are fully

known, but that solutions are given in term of the well-known analytic functions [Ste+09].
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since the logarithm diverges at small and large distances from the defect. In-
troducing a new radial coordinate ρ as (1−8Gµ0 ln(r/r0))r2 = (1−8Gµ)ρ2, we
obtain the line element in the new coordinates to order Gµ0 as

ds2 = dt2−dz2−dρ2− (1−8Gµ0)ρ2dθ2. (3.13)

Finally, defining a new angular coordinate by φ= (1−4Gµ0)θ, the line element
(3.13) gets the Minkowskian form

ds2 = dt2−dz2−dρ2−ρ2dφ2. (3.14)

This metric describes the spacetime where the geometry is flat everywhere (lo-
cally flat), except on the string core (ρ = 0). The geometry is not globally
Euclidean, since the angular coordinate φ ranges from 0 to 2π(1−4Gµ0). That
is, the string introduces a small deficit angle in the spacetime, which is given
by ∆ = 8πGµ0, with Gµ0� 1. Therefore, straight strings are linear defects for
which the geometry is globally that of a cone [Vil81; VS94; HK95]. For a better
understanding of the conical geometry of Eq. (3.14), see representation in Fig.
3.2; a slice is removed from a flat space and with identification of the edges,
we get a cone. This process of “cut and glue” is known in theory of defects in
solids as Volterra process [KV92]. Perhaps knowing the geodesics is the best

Figure 3.2: Cone of an angular deficit ∆ (adapted from [FM08]).

way to understand the conical geometry of the cosmic string spacetime. In the
conical space in the xy-plane, see figure (3.3), the frame in the left represents
the geodesics in the coordinates of the metric (3.13), which are curved lines
deflected by an angle ∆. In the right frame, the geodesics for the metric (3.14)
are straight lines that intersect at one point on the space.

Although we have considered here the zero thickness limit model of cos-
mic strings, models in which they are considered as extended gravitational
sources (with finite radius), with uniform/non-uniform energy density in its
interior, show that the interior spacetime matches the exterior spacetime, being
Minkowskian minus a wedge exactly as in Eq. (3.14) [His85; GI85; Lin85].

3.2.1 Gravitational Lensing
Regular cosmic strings do not exert gravitational pulling on non-relativistic
particles at rest in its vicinity. That is, particles will keep their state of motion
due to non-existence of any gravitational force acting on them. To understand
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Figure 3.3: Geodesics in the conical space (left) and geodesics in the flat space
with deficit angle ∆ (right) (adapated from [FNB16b]).

it, first note that for a static gravitational source the components of the energy-
momentum tensor can be written as

Tµν = diag (σ,−p1,−p2,−p3), (3.15)

and then the Newtonian limit of the Einstein field equations is

∇2Φ = 4πG(σ+p1 +p2 +p3), (3.16)

with Φ being the Newtonian potential. For a non-relativistic gravitational
source, pi << σ, then ∇2Φ∼= 4πGσ. However, for a straight string along z-axis,
p1 = p2 = 0 and p3 = −σ (equivalence between energy density and tension),
which leads the right-hand side of the Eq. (3.16) to vanish. Hence, this is a
suggestion that straight strings do not interact with surrounding objects [VS94].
Otherwise, we can note that the Newtonian limit of the Einstein equations lead
to the identification:

Φ = h00
2 , (3.17)

which means Φ = 0 since h00 = 0 for regular strings [Car04]. In fact, the absence
of a non-vanishing Newtonian potential is a consequence of the equality between
the mass density and tension on the string: effects due to the energy density
are canceled by effects of the tension, which acts as a gravitational source of
opposite sign (negative pressure) [Kib97].

Even though regular strings do not produce any gravitational pulling, the
globally conical geometry of their spacetime gives rise to interesting phenomena
[VS94]. For example, the geometry around straight strings affects propagation
of light giving rise to a phenomenon known as planar gravitational lensing; a
light source behind the string will appear to the observer as two images, see Fig.
(3.4). According to geometry of the Fig. (3.4), the angular separation ϕ = 2γ
between the two images is given by [Sch09]

ϕ= ∆
(

1 + l

d

)−1
. (3.18)
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Figure 3.4: Planar gravitational lensing by a straight cosmic string (adapted
from [Sch09]).

If the angular separation between the string and the source is greater than ϕ only
a single image is formed [Vil84]. Unlike to what happens with stars (Eintein’s
rings), lensing effects by cosmic strings are purely planar. For a GUT string
the angular separation is typically of the order of ≈ 2 arcsec [Saz+03; Saz+07].

3.3 Geometric Method for Disclination
The first geometric model for description of topological defects was built by
Katanaev and Volovich [KV92], where they showed that defects in elastic solids
(disclinations, dislocations... ) can be described in the framework of Riemann-
Cartan geometry. Following this standpoint, in this section, we describe an
effective metric spacetime from which we can study the propagation of light in
NLCs endowed with disclination into the gravity background.

In uniaxial anisotropic media as nematic liquid crystals, light propagation
is described in terms of two indices, n⊥ the ordinary refractive index where the
medium behaves as an isotropic medium and n||, the extraordinary refractive
index that depends on the direction of propagation. In what concerns light
propagation, one has to distinguish between an ordinary ray and an extraordi-
nary ray. The ordinary ray propagates in such a way that the electric field of
the electromagnetic wave remains perpendicular to the director ~n. For instance,
if we assume that the xz-plane contains the parallel vectors ~N (“refractive index
vector”) and wavevector ~k (that is Ny = ky = 0), by solving Fresnel equation for
uniaxial media, we find that the ordinary wave is polarized along the y-axis, and
therefore orthogonal to the plane formed by the optic axis ~n and wave vector ~k
[KL07]. On the other hand, the extraordinary wave propagates in such a way
that the ~E has a non-vanishing component along ~n, and the Poynting vector ~S
differs in direction from that of the wave vector ~k. In this case, energy velocity
(energy propagation) is thus governed by a ray index

N2
r = n2

⊥ cos2β+n2
|| sin2β (3.19)

with β being the angle between the director field and the Poynting vector, and
differs from phase velocity, governed by another index, the phase index

N2
p =

n2
⊥n

2
||

n2
|| cos2 γ+n2

⊥ sin2 γ
(3.20)
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with γ being the angle between the director field and the wave vector [BW99;
KL07]. Since the ray path is parametrized by the arc length l, the tangent unit
vector along the path is thus ~t = d~r/dl and the angle β which measures the
tangent orientation with reference to the director is given by cosβ = ~t ·~n, see
Fig. 3.5. In polar coordinates, ~r(l) = rr̂, thus ~t = ṙr̂+ rφ̇φ̂ where the “dot”
stands for d/dl. For the radial director field configuration 2.3(a) with n̂ = r̂,

Figure 3.5: The parameter l and the position vector ~r(l) along the ray path,
the tangent vector ~t and the director field n̂ (optical axis) (adapted from [SM06]).

we thus have cosβ = ṙ. Besides, the two-dimensional Euclidean line element
in polar coordinates dl2 = dr2 + r2dφ2 leads to ṙ2 + r2φ̇2 = 1. In fact, this also
follows from the normalization constraint |~t|2 = 1. Therefore, we get sinβ = rφ̇.
Rescaling the coordinates according to ρ= n⊥r, the ray index in configuration
(a) is then

N2
r = ρ̇2 +α2ρ2φ̇2, (3.21)

where α = n||/n⊥. It is clear that due to the anisotropy, Nr depends on the
position on the curve followed by light, Nr =Nr(~r) . Note that the isotropic limit
holds for n⊥ = n||. Extraordinary rays propagation obey the eikonal equation,

~∇Nr = d

dl

(
Nr

d~r

dl

)
(3.22)

which follows from the fact that the energy propagation for extraordinary rays
obeys a variational prescription (Fermat’s principle)

δ
∫ B

A
Nrdl = 0, (3.23)

where dl is the arc length element along the path, and A and B are two generic
points on the path. Both Fermat’s principle and geodesics in a Riemannian
manifold obey a variational principle, then we realize that the equation (3.23)
is a nice example of analogue gravity. Fermat’s principle can be viewed as
equivalent to Eq. (3.6), from which the geodesic equation Eq. (3.7) in an
analogue Riemann space follows. That is, light rays obeying Fermat’s principle
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can be identified as geodesics in some Riemannian geometry [BW99]. Hence, the
metric tensor is essentially determined by the refraction index [SM06; BDL16]:

∫ B

A
ds=

∫ B

A
Nrdl, (3.24)

where ds is the spatial part of the metric spacetime. That is, known the effec-
tive refractive index of a given medium it is possible to determine an effective
geometry for light propagation. Therefore, light trajectories can be identified
as geodesics in the curved spacetime:

ds2
4D = dt2−

∑
i,j

gijdx
idxj , (3.25)

where the sum term is purely the spatial part of the metric. The given trajec-
tories by Fermat’s principle in a three-dimensional spatial metric are the same
from null geodesics in a four-dimensional metric, that considers the time co-
ordinate part [PM11a]. From Eq. (3.24), we identifying ds2 = N2

r dl
2, and by

using Eq. (3.21), we obtain the line element

ds2 = dρ2 +α2ρ2dφ2, (3.26)

which is exactly the cross-section with t = const. and z = const. of the cosmic
string given by metric Eq. (3.13),

ds2
4D = dt2−dρ2−α2ρ2dφ2−dz2, (3.27)

where α2 = 1− 8Gµ0 for the straight string. In a similar manner, the line
element of the circular director field configuration 2.3(b), where n̂= φ̂, is given
by Eq. (3.27) but now with α= n⊥/n||. Hence, light in a nematic liquid crystal
with a disclination defect feels the effective conical geometry of a regular cosmic
string. However, there is an important fact to be mentioned here: since for NLCs
composed of elongated molecules, typically n⊥ <n|| (optically positive nematic)
[KL07], this leads the disclination of configuration 2.3(a) to be analogue of
the more exotic cosmic string with excess of deficit angle (µ0 < 0), while the
disclination configuration 2.3(b) mimics the ordinary cosmic string of positive
mass density (µ0 > 0) [Mor00; SM05].

Light trajectories around a disclination are the geodesics of the effective
geometry Eq. (3.27) as have been found in Refs. [PPFM98; SM06] they exhibit
lensing effects as predicted by the conical geometry. Besides simulating the
spacetime of cosmic strings, liquid crystals also have been used to mimic the
Schwarzschild spacetime [PM11b].

Although we did not use it here, there is an alternative geometric model to
study light propagating in a anisotropic medium. This method is based on the
geometry of Finsler [JR94], and leads to the same result when used to describe
disclination defects as the Riemannian geometry [SM05]. For more details about
the more general Finslerian method, see Appendix A.1.

In Chapter 5 of this manuscript, we return to use the geometric method
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(Riemannian geometry) discussed in this section when the study of light prop-
agation in a hyperbolic metamaterial based on nematic liquid crystal.
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Figure 4.1: The “wiggliness” of long
strings (in yellow) and small string loops
(in red) in the matter era [AS90].

More realistic and refined mod-
els for cosmic strings show that long
strings may not be perfectly straight
but involve small-scale perturbations
such as kinks and wiggles on them
[AS90; BB90]. These cosmic strings are
known as wiggly strings, which are basi-
cally a generalization of the regular cos-
mic string models [VV91; VS94]. How-
ever, the presence of wiggles generates a
far away gravitational field contribution
that may be responsible for an elliptical
distortion of the shape of background
galaxies [DB07; Fen12] or for the accre-
tion of dark energy around the defect
[GDJM06]. Besides, wiggles are a miti-
gating factor for increasing formation of
wakes of matter behind a moving string
[Kib97; CPV11].

In this chapter we present the wiggly string gravity and its effect on prop-
agation of massless and massive fields along the string axis. Besides that, we
propose an analogy with an optical waveguide likely to mimic the wiggly string
in laboratory [Aze+17].
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4.1 The Wiggly Cosmic String
Because the similarity between regular and wiggly string, the gravity of those
objects might be analogue. Roughly speaking, these objects differ from each
other as the quantity of energy per unit length of string is larger on the wiggly
string ought to the wiggles [HW90]. Thus, the averaging of the effect of these
perturbations (wiggles) along the string increases the linear mass density µ̃ and
decreases the string tension T̃ , respecting the equation of state µ̃ T̃ = µ2

0. In fact,
this is reached when we consider that the propagation of longitudinal speed cL =
(−dT̃ /dµ̃)1/2 for sound-type perturbations and transverse speed cT = (T̃ /µ̃)1/2

for extrinsic perturbations are equivalent [Car90; Vil90; Gan01].
Similarly to the straight string case, an infinite wiggly string at rest ly-

ing along z-axis has the components of the energy-momentum tensor given by
[VV91; VS94]

Tµν = δ(x)δ(y) diag (µ̃,0,0, T̃ ). (4.1)

Using the weak field approximation method to solve the Einstein’s equations,

h00 = h33 = 4G(µ̃− T̃ ) ln(r/r0),
h11 = h22 = 4G(µ̃+ T̃ ) ln(r/r0), (4.2)

are obtained as solution for the perturbative terms at gµν = ηµν +hµν , where
ηµν stands for the ordinary flat spacetime metric. Here, r =

(
x2 +y2

)1/2
and r0

is a constant of integration that can be considered as the effective radius of the
string [Vil81; Pet94]. Introducing a new radial coordinate r′ as (1−h11)r2 =
(1− 4G(µ̃+ T̃ ))r′2, the linearized line element representing the spacetime of a
wiggly string can be found as11 [VV91; VS94]:

ds2 = (1 + 8ε ln(r/r0))dt2−dr2−α2r2dθ2− (1−8ε ln(r/r0))dz2, (4.3)

where α2 = 1−4G(µ̃+ T̃ ), with 4G(µ̃+ T̃ )� 1 meaning that the conical deficit
angle ∆̃ = 4Gπ(µ̃+ T̃ ) associated to the string is very small. The straight string
metric (3.13) is recovered by setting µ̃ = T̃ = µ0 (absence of wiggles). The pa-
rameter ε is defined as the excess of mass-energy density, 2ε=G(µ̃− T̃ ). It must
be emphasized that G(µ̃+ T̃ ) and ε are two independent parameters; the former
accounts for the discrepancy between flat and conical geometries, whereas the
latter accounts for the discrepancy between straight and wiggly strings. The
solution Eq. (4.3) is only valid within the region r0 < r� r0e1/8ε, in order to
avoid the logarithmic divergence at small and large distances from the defect.
This metric is very similar to that from unperturbed string at least in the sense
of representing a globally conical space, but now the deficit angle is larger than
in the straight string case. The excess of mass-energy density represented by
the parameter ε, leads the wiggly string to exert a gravitational pull on neigh-
boring objects. Indeed, the term h00 6= 1 provides a non-vanishing Newtonian
potential Φ = h00/2 = 2G(µ̃− T̃ ) lnr/r0 [HK95; VS94]. Hence, a very important

11For mere convenience the primes from r in Eq. (4.3) have been dropped.
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distinction from the regular strings comes out: because of the presence of wig-
gles non-relativistic massive particles will experience an attractive force when
in the vicinity of a wiggly string.

In the next sections of this chapter, we are going to investigate effects caused
by presence of the wiggles on propagation of light and massive particles around
the wiggly string.

4.2 Propagation of Massless Fields
If we consider the direction of propagation as being perpendicular to the wiggly
string (in the z = const. plane), then it can be shown that the effective wiggly
string metric can be reduced to [VS94]:

ds2 = (1 +h00)[dt2−dr2− (1−8Gµ̃)r2dθ2]. (4.4)

Taking into account that equation (3.10) gives the light trajectories (null geodesics),
it is simple to notice that any conformal factor (that appears multiplying all
terms) in the metric tensor will not produce any effect on null geodesics. Hence,
the factor (1 +h00) in the metric tensor (4.4) does not affect light trajectories
and can be dropped. Therefore, in a plane perpendicular to the string light
trajectories in the spacetime given by metric (4.3) reduces to trajectories in the
spacetime of metric (3.13). Thus, light behaves in the same way as in the vicin-
ity of a regular straight string, that is, without experiencing any gravitational
pulling. However, light is still affected by the conical geometry, in such a way
that gravitational lensing effect is observed, but now the deficit angle to be con-
sidered in Eq. (3.18) is given by ∆̃ = 8πGµ̃. The angular separation is larger for
the wiggly string spacetime, since it has a larger effective mass per unit length.
Because the small-scale structure on the wiggly strings a large number of small
images are formed in addition to the double images [DLKV97].

On the other hand, when the direction of propagation is not chosen to be
perpendicular to the string, the wiggly string exerts gravitational pulling on
light passing by, as the background spacetime is not locally Euclidean. Hence,
new effects on propagation of light can be expected as we consider light prop-
agating along the string. The wave equation governing propagation of a scalar
field (light as a scalar wave) in a curved background geometry needs to account
for its curvature. This is done by using the 4-dimensional Laplace-Beltrami
operator in the wave equation [Ful89; PM11a]

1√
−g

∂µ(
√
−ggµν∂ν)Φ = 0, (4.5)

where Φ = Φ(r,θ,z, t) is the scalar wave amplitude and g = det(gµν) with gµν
being the metric tensor components. By writing equation (4.5) for the back-
ground spacetime of a wiggly string, we obtain in terms of the metric (4.3) the
following equation:

−(1−h00)∂2
t Φ + 1

r
∂r (r∂r)Φ + 1

α2r2∂
2
θΦ + (1 +h00)∂2

zΦ = 0. (4.6)
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As the field is single-valued, Φ has to be periodic in θ, Φ(θ) = Φ(θ+2π). Then,
to solve equation (4.6) we make the ansatz

Φ(r,θ,z, t) = eilθei(ωt−kz)R(r), (4.7)

where the wave vector k ∈ R, l = 0,±1,±2... specifies the angular momentum
and ω is an angular frequency. Substituting the general solution (4.7) into
equation (4.6), we get

−1
r

d

dr

(
r
dR

dr

)
+ l2

α2r2R+h00
(
ω2 +k2

)
R =

(
ω2−k2

)
R. (4.8)

Defining the dimensionless variables ρ= r/γ, ρ0 = r0/γ, where γ=
[
8ε
(
ω2 +k2

)]−1/2
,

then multiplying Eq. (4.8) by γ2 ∼ O(ε−1) and rearranging terms gives the
eigenvalue equation:

−1
ρ

d

dρ

(
ρ
dR

dρ

)
+
(

l2

α2ρ2 + ln ρ

ρ0

)
R = ζ̄R (4.9)

with

ζ̄ = 1
8ε
ω2−k2

ω2 +k2 . (4.10)

We note that the second term in the left-hand side plays the role of an effec-
tive potential. As this potential behaves logarithmically, the energy scale cannot
be fixed at infinity so we work in the following with ω−dependent length units
such that ρ0 = 1. Eq. (4.9) is formally equivalent to the Schrödinger equation
that describes the 2D hydrogen atom; a system formed by a proton of charge
q and an electron of charge −q that interact in a two dimensional space via
a logarithmic potential V (ρ) = q2 ln ρ

ρ0
, where ρ is the distance separating the

two particles and ρ0 a length scale [AA85]. Such logarithmic behavior is in-
deed the correct form for the 2D Coulomb potential since it is the one that
satisfies the Gauss’ theorem in two dimensions. As in the Schrödinger equation
for the 2D hydrogen model where the potential term is attractive and infinite
for infinite radius and near the origin (V →∞ as ρ→∞ and ρ→ 0), the
potential term Veff = l2

α2ρ2 + ln ρ
ρ0

in Eq. (4.9) (see figure 4.2) only accommo-
dates for bound states with no scattering states for the system [AA85; Eve+90;
GMM13]. As a consequence, in the geometrical optics limit, trajectories are
radially bounded helices around the string, as appears in Fig. 4.3, explicitly
showing the gravitational pulling by the string. This is in agreement with Ref.
[AS00], where geodesics near a Brans-Dicke wiggly cosmic string were also found
to be bounded. The minimum and maximum radii are solutions of the tran-
scendental equation ζ̄ = Veff whereas the pitch is given by the ratio between the
angular and effective linear momenta l

k . In the case of l = 0 the trajectory is
rectilinear.

Concerning the solution of Eq. (4.9), Gesztesy and Pittner [GP78] and
Garon et al [GMM13] used a semi-classical treatment, the Bohr–Sommerfeld
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Figure 4.2: Effective potential, Veff (in units where ρ0 = 1), for l = 2. The
horizontal solid line represents the ground state ζ̄ at that value of l.

(a) (b)

Figure 4.3: Possible ray paths corresponding to the geometric optics limit of a
scalar wave propagating along the wiggly string: (a) when the “total energy” ζ̄
is at the minimum of the effective potential and (b) at some point above it.

quantization, to find the spectrum of the two dimensional hydrogen atom. How-
ever, we should emphasize that such approach is an approximate solution. In
order to find a more accurate solution, a complete treatment of quantum me-
chanics, numerical methods have to be applied. Indeed, we can find in the
literature some methods used to do so through different techniques: linear vari-
ational method [AA85] and “shooting” method [Eve+90]. In addition to these,
Garon et al [GMM13] have used a Finite Difference Method (FDM) in which
the Hamiltonian (dimensionless form) is converted into a matrix, and then the
eigenvalues of the matrix are numerically found, which consequently gives the
energy spectrum of the hydrogen atom. They also show that such method is
in agreement with the semi-classical model. For that reason, in order to solve
equation (4.9) we used the FDM (for more details see Appendix A.2) and com-
puted numerically the radial part of the waves traveling along the wiggly string
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with their corresponding eigenvalues. The different states are labeled by quan-
tum numbers n (radial quantum number) and l. In Fig. 4.4, we plot the lowest
three eigenvalues ζ̄nl of the wave equation (4.9) and the corresponding radial
wave amplitudes Rnl(ρ) for l = 0,±1,±2. Although Eq. (4.9) is not exactly a
Bessel equation, it is in fact nearly equivalent to it. This becomes clear when we
observe the shape of the numerical solutions shown in Fig. 4.4, as they rapidly
converge towards Bessel functions.
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Figure 4.4: Wave modes for the first lowest eigenvalues n= 1,2,3 of Eq. (4.9)
for each l = 0,1,2.

It has been suggested that cosmic structures with a non-vanishing Newtonian
potential could generally behave as gravitational waveguide for light and massive
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particles [DM89; Bim+98]. In the following, we examine this proposition for
the wiggly string. From Eq. (4.10) we see that the wave modes that propagate
along the wiggly string axis are quantized by n and l with dispersion relation
given by:

ω2
nl = 1

n2
1
k2 (4.11)

where

n1 =
[

1−8εζ̄nl
1 + 8εζ̄nl

]1/2

(4.12)

plays the role of an effective refractive index. From Eq. (4.11) we see that
modes are propagative along the string provided that the following requirement
is fulfilled:

0< ζ̄nl <
1

4G(µ̃− T̃ )
. (4.13)

This constraint establishes that the number of wave modes propagating along
the wiggly string is large but finite as in an ordinary electromagnetic waveguide.
As we would expect, we find that the allowed modes, besides being quantized
by n and l, their frequency also depend on both the energy density and tension
of the string.

4.3 Propagation of Massive Fields
Since light propagating along a wiggly string is radially confined, as seen in the
previous section, it is interesting to investigate what happens to massive parti-
cles under the same circumstances. In order to study this possibility we write
the Klein-Gordon equationin the wiggly string background geometry [Ful89]:[

1√
−g

∂µ(
√
−ggµν∂ν)−m2

]
Φ(r,θ,z, t) = 0, (4.14)

where now Φ is a complex scalar field describing spinless relativistic particles.
Using the ansatz given in Eq. (4.7) in Eq. (11), and following the same proce-
dures used above in the case of massless particles propagation, we arrive to an
identical eigenvalue equation as (4.9), but with eigenvalues given by

Ēnl = 1
8ε
ω2−k2−m2

ω2 +k2 , (4.15)

thus the wavefunctions Rnl(ρ) and the eigenvalues Ēnl are numerically identical
to the solution of the equation (4.9) (see figure (4.4)). In addition, the discussion
on the geometric optics limit of the propagating massless field is still valid for
massive particles. However, inclusion of the mass term in the dispersion relation
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now introduces a cutoff:

ω2
nl = 1

n2
2
k2 +ω2

c (4.16)

where n2 is an effective refractive index defined by

n2 =
[

1−8εĒnl
1 + 8εĒnl

]1/2

, (4.17)

which has an identical generic form than n1, and

ω2
c = m2

1−8εĒnl
(4.18)

is a cutoff frequency. The dispersion relation (4.16) presents a forbidden band

Figure 4.5: The angular frequency ωnl in terms of the wavelength k for different
values of n1 and n2. While the dashed lines corresponding to massless particles
are obviously linear and the solid lines which correspond to the massive case have
a quadratic start, both cases are fixed by mode-dependent parameters.

as it occurs for electromagnetic waves propagating in an unmagnetized plasma
[Jac99]. The wave will propagate along the string when its frequency is larger
than the cutoff frequency ωc. On the other hand, for frequencies less than ωc
solutions are evanescent waves as the wave number k becomes imaginary. Thus,
such waves named cutoff modes can not propagate. At high frequencies, ω�ωc,
we recover the massless dispersion relation (4.11). Moreover, the constraint

0< Ēnl <
1

4G(µ̃− T̃ )
, (4.19)

like in the massless case, sets a limit to a finite number of propagating modes.
Besides the dependence on the density of energy and tension of the wiggly
string, the allowed propagating modes also depend on the mass of the particle.

There is obviously a strong similarity between the propagation of both mass-
less and massive scalar fields along a wiggly cosmic string and the propagation
of electromagnetic waves in optical waveguides, as it could be observed through
the trajectories obtained from the geometrical optics limit and solution of wave
equations.
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We further explore this analogy by proposing a way of designing an optical
fiber that mimics the wiggly string in the context described above.

4.4 Optical Analogues of Spacetimes
The analogy between 3D gravity and optics is an old topic that started with
the pioneering works of Gordon on Fresnel dragging effect in moving dielectrics
[Gor23b]. To understand how to describe dielectric media as an effective metric
(spacetime), let us present the Gordon’s metric (or optical metric). First, we
generalize a medium with refractive index n in three dimensional space to space-
time of gravity. Fermat’s principle shows that electromagnetic waves perceive
a 3D geometry given by

dl2 = n2(dx2 +dy2 +dz2), (4.20)

which is easily translated into a spacetime geometry as dl2 = dt2− dl2. After
multiplying the spacetime metric by a conformal factor n−2, we obtain the
following metric tensor components

gµν =


n−2 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (4.21)

In this geometry, the medium influences only the measure of time through the
element g00 = n−2. We can rewrite the metric tensor (4.21) as

gµν = ηµν + (n−2−1)uµuν , (4.22)

where ηµν is the ordinary Minkowski metric and uµ = (1,0,0,0) = uµ in the
co-moving frame. In fact, uµ = ηµνuν = dxµ/ds is regarded as the local four-
velocity of the medium [LP10]. Equation (4.22) is known either as Gordon’s
metric or optical metric and establishes the spacetime of a such moving media
[Gor23b].

On the other hand, it is well known (see [Car04], for example) that pho-
tons moving in a spacetime with a non-vanishing Newtonian potential, leads to
deflection of light and gravitational time delay, that is equivalent to photons
propagating in an anisotropic medium with refractive index given by

n= 1−2Φ, (4.23)

where Φ is the Newtonian potential. Fermat’s principle applied for a medium
with refractive index as the one in Eq. (4.23) leads to the same equation
of motion obtained with theory of gravity for light propagating in a space-
time with g00 component of the metric tensor having a perturbed term (g00 =
η00+“perturbation” ) which is originated from the Newtonian potential (space-
time perturbed by a non-vanishing Newtonian potential).
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It is worth noting that the ideas presented here follow the same key idea as
what occurs when considering propagation of light in NLCs (see Section 3.3).

In the following section, we provide an optical analogue spacetime of the
wiggly string, by design an optical fiber having such a refractive index likely to
reproduce the effect of the wiggly string in the laboratory.

4.4.1 An Optical Waveguide Analogue of the Wiggly String
It has been proposed that, by spatially varying the doping concentration, the
refractive index profile of optical fibers can be used to control optical trans-
mission in a designer-specified way [LBM11]. Following this standpoint, we
investigate the proposition of a graded-index optical fiber that reproduces some
of the properties of the scalar field propagation along a wiggly string.

In general, the wave equations for electromagnetic waves propagating along
a circular fiber are coupled [Jac99]. This implies that there is no separation into
purely TE or TM modes but, in the specific case of a fiber with an azimuthally
symmetric refractive index, if the fields have no dependence on the azimuthal
angle, the equations uncouple into separate scalar wave equations of the form[

1
r

∂

∂r

(
r
∂

∂r

)
+ ∂2

∂z2 +n2(r)ω2
]

Φ = 0, (4.24)

where ω is the angular frequency, n(r) is the optical fiber refractive index and
Re(Φ) represents any real component of the field. For waves propagating along
the optical fiber (z-direction), the ansatz Φ(r,z) = e−ikzR(r), (where k ∈ R)
substituted into Eq. (4.24) gives

−1
r

d

dr

(
r
dR

dr

)
−n2(r)ω2R+k2R = 0. (4.25)

Here, we choose the refractive index to be given by (see Fig. 4.6):

n(r) =
(

1−Ωln r

r0

)1/2
, (4.26)

with the dimensionless parameter Ω� 1 in order to be consistent with the wig-
gly string parameter ε. The quantity r0 is considered to be much smaller than
the radius rf of the fiber and defines an opaque core radius. This way, by consid-
ering propagation in the region r0 < r < rf , the logarithmic singularity at r = 0
is avoided. Like in the previous sections, we change r to dimensionless units
by doing the change of variables ρ= r/ν, ρ0 = r0/ν and setting ν = Ω−1/2ω−1.
Then, the dimensionless equation for the optical fiber can be written as:

−1
ρ

d

dρ

(
ρ
dR

dρ

)
+
(

ln ρ

ρ0

)
R = β̄nR, (4.27)
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Figure 4.6: Refractive index in terms of the r coordinate (for Ω = 0.01 and with
r in units of the opaque radius r0). The value of the refractive index decreases
with the increasing of the distance from the center of the optical waveguide. The
maximum value of n(r) is found at r = r0.

where

β̄n = 1
Ω

(
1− k2

ω2

)
. (4.28)

The radial amplitudes of the wave and their corresponding eigenvalues in
the optical fiber with the refractive index given by Eq. (4.26) obey equations
identical to the ones of massless and massive particles propagating with l = 0
in the spacetime of a wiggly string. For a given z = const. plane, the intensity
profiles for the propagating waves described by Eq. (4.9) are given by 2πρR2

nl(ρ).
In Fig. 4.7, we plot the intensity distribution for different wave modes, solutions
of Eq. (4.9). The optical fiber modes described by Eq. (4.27) correspond to
the cases where l = 0.

Here, we remark that the coupled equations for the electromagnetic field in
the circular optical fiber, in the more general case where the field depends on
the azimuthal angle but the refractive index remains azimuthally symmetric,
give rise to hybrid HE modes (no longer TE or TM) [Jac99]. The case of a
step-index fiber was studied in Ref. [Sni61] which found the field to be of the
form Rl(ρ)eilθ, where Rl is a Bessel function. Even though Eq. (4.9) is not a
Bessel equation, its symmetries and the shape of the numerical solutions shown
in Fig. 4.4, suggest that a solution in terms of an expansion on Bessel functions
might be rapidly convergent. The θ-dependence of the scalar fields solutions,
for l 6= 0, is therefore reminiscent of what happens in the circular optical fiber.
Also, it would be interesting to compare the coupled electromagnetic vector field
equations for a wave propagating along a circular optical fiber with refractive
index given by Eq. (4.26) with the electromagnetic field equations in the wiggly
string background.
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Figure 4.7: Intensity profiles for the first few solutions R2
nl of Eq. (4.9), with

n = 1,2,3 and l = 0,1,2. The profiles are disposed as in a matrix where n and l
give the line and column number, respectively. The first column corresponds to
the optical fiber modes described by Eq. (4.27).

4.5 Conclusions
In this chapter, we examined the effect of wiggly cosmic strings on propagation
of massless and massive fields. We found that waves propagating along the
string axis experience the small-scale perturbations which make the propaga-
tion qualitatively different from that of waves propagating in the background
spacetime with a unperturbed cosmic string. The non-vanishing Newtonian
potential acts as an inhomogeneous dielectric medium so that the massless par-
ticles are radially confined in a vicinity of the defect axis. Therefore, the wiggly
string spacetime behaves as a gravitational waveguide in which wave modes are
quantized. These latter depend on the string energy density and string tension.
The number of allowed modes is finite as in a ordinary optical waveguide. On
the other hand, the presence of wiggles cause gravitational pullings on massive
objects, making the waveguide effect to be also valid for massive fields prop-
agation. In this case, the frequencies of the waves also depend on the mass
of the particle. Finally, we proposed the design of an optical fiber with a non
homogeneous refractive index profile likely to mimic the effect of a perturbed
cosmic string. The radial solutions with the corresponding eigenvalues were
found by using a numerical method. Although we have considered here the
propagation of massive and massless scalar fields along a wiggly string, the ex-
tension to vector fields like vector bosons or the electromagnetic field can be of
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interest. However, we believe that what we have done here already provides a
very interesting analogy between optics (optical fiber) and spacetime (wiggly
string), to test expected behaviors of light propagating near wiggly string in the
laboratory.

In the next Chapter of this thesis, we will study the hyperbolic metamate-
rial, a medium made of a liquid crystal endowed with a disclination [Fum+15].
That medium can be related to a particular effective geometry where its metric
simulates a negative refractive index. Since a negative index environment is a
strong criterion to enable the waveguide effect [SC11], the hyperbolic metama-
terial seems to be a plausible medium for observing such effect.
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Figure 5.1: Light rays being guided
around a cloaked region by a metama-
terial medium [PSS06].

The metamaterials are optical ma-
terials that come up with possibil-
ity to have negative refractive indices
[SPW04]. This characteristic besides
provides many uses in technological ap-
plications and advances in the science
of transformation optics [CCS10], also
leads to get more analogies with cos-
mological systems. Recently, metama-
terials have been proposed as a way
to mimic aspects of curved spacetime
in laboratory [GZZ09; ML15]. For in-
stance, by manipulating the effective
refractive index of the medium, Sheng
et al. [She+13] were able to repro-
duce gravitational lensing and trapping
of light. Anisotropic metamaterial has
also been used to simulate black holes [Smo11; FNB16a] and spining cosmic
string [ML10]. Incidentally, electronic metamaterials may also be used to emu-
late peculiar spacetime conditions, like a discontinuous Lorentzian to Kleinian
metric signature change [Fig+16] which has also been modeled by optical meta-
materials [SN10].

In this Chapter we present a new class of defects, the hyperbolic disclinations
existing in a metamaterial made of nematic liquid crystal. We further apply
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the geometric method previously introduced for finding the effective geometry
of the medium. Then, we examine how light propagates in the metamaterial.

5.1 Hyperbolic Liquid Crystal Metamaterial
Hyperbolic metamaterial are subclass of metamaterials mostly artificial, but
that can be also found in nature [NK15; KGP15]. Among the many forms
to perform hyperbolic metamaterials, the most common realization is layered
metal–dielectric structures [Pod+13]. The Hyperbolic Liquid Crystal Meta-
material (HLCM) is an example of artificial metamaterial that can be made
from nematic liquid crystal layers alternate with metallic nanorods [Fig+17].
The HLCM have been used for design of hyperlens [JAN07; JAN06], and also
for analogies in cosmology [Fig+16; Fig+17]. From the optical point of view,
HLCM is a promising example of an unixial anisotropic medium that could
exhibit permittivities of different signs, the ratio between ordinary and extraor-
dinary permittivities is negative. The ordinary and extraordinary refractive in-
dices in HLCM are appropriately given in terms of the permittivities, n2

⊥ = ε⊥
and n2

|| = ε|| [KL07]. The material shows a metallic behaviour along a com-
mon direction ~n (director field) of the nematic phase, resulting in a negative
permittivity ε|| < 0 along that direction. Strictly speaking, negative index ma-
terial cannot circumvent dispersion phenomena and losses [WNW05]. However,
losses due to metallic plasmonic components might be offset by using gain me-
dia [BS03; Nog+08] or highly doped oxides with lower dissipation levels [NB10;
Wes+10]. As usual in transformation optics, in the design of hyperlenses or
invisibility cloaks [Ves02; LP09; KS11], we will consider metamaterials in ho-
mogenization regime for which losses have been reduced so that one may focus
on kinematic aspects of light propagation.

We examine the optical properties of two different configurations of HLCM
with optical axis defined by circular and radial director field. First, we consider
the director field as n̂= φ̂ (circular director field), and then we consider as n̂= r̂
(radial director field), see Fig. 5.2. Actually, these are basically a generalization
to three dimensions of the nematic liquid crystal configurations showed in Fig.
2.3. Hence, we are able to apply the same geometric method introduced in the
Section 3.3. In three dimensional cylindrical space with ray path parametrized
by arc length l (see Fig. 3.5), we have ~r(l) = rr̂+zẑ, thus ~t= ṙr̂+rφ̇φ̂+ żẑ where
ẋ = dx/dl, and the normalization constraint follows, |~t|2 = ṙ2 + r2φ̇2 + ż2 = 1.
For configuration 5.2 (a), we thus have cosβ = ~t ·~n = rφ̇ and sin2β = ṙ2 + ż2.
The ray index in the form (3.19) is then

N2
r = ε⊥r

2φ̇2−|ε|||(ṙ2 + ż2). (5.1)

Similarly, the ray index in configuration 5.2 (b) is given by

N2
r = ε⊥ṙ

2−|ε|||(r2φ̇2 + ż2). (5.2)
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(a)

HLCM

Glass

(b)

HLCM

Glass

Figure 5.2: Two different cylindrical configuration of HLCM (according to di-
rector field arrangement) covered with a reflective material. (a) Director field con-
figuration for HLCM with optical axis as n̂= φ̂ (circular director field), obtained
from planar anchoring of the molecules at the boundaries. (b) Director config-
urations for HLCM as n̂ = r̂ (radial director field), obtained from homeotropic
anchoring of the molecules at the boundaries.

Rescaling the coordinates according to ρ = r
√
|ε‖|, ζ = z

√
|ε‖|, the elementary

optical path ds2 =N2
r dl

2 writes as:

ds2 =N2
r dl

2 =−dρ2 +α2ρ2dφ2−dζ2, (5.3)

for configuration 5.2 (a) and

ds2 =N2
r dl

2 = α2dρ2−ρ2dφ2−dζ2, (5.4)

for configuration 5.2 (b), where α2 = ε⊥
|ε|||

. From Eqs. (5.3) and (5.4), we see
that the spatial coordinate along which the refractive index is negative behaves
as a “pseudotime coordinate”. By the way, this is an important aspect moti-
vating the study of such defects with respect to light propagation [Fum+15]
and also for analogies in cosmology [Fig+17]. Once the line elements given in
Eqs. (5.3) and (5.4) are formally equivalent of the line disclination metric in
NLCs as in Fig. (2.3), we say that such metrics represent a so called hyperbolic
disclination. The term “hyperbolic” comes from the fact that due to the exhi-
bition of negative permittivity in metamaterials, the extraordinary rays obey
a hyperbolic dispersion relation (the dependence of the refractive index on the
frequency is hyperbolic) [JAN06]. For example, the HLCM dispersion relation
for configuration Fig. 5.2 (a) is given by

−

(
k2
r +k2

z

)
∣∣∣ε‖∣∣∣ +

k2
φ

ε⊥r2 = ω2. (5.5)

Next we discuss propagation of light into HLCM media, in both geometrical
optics limit and in the framework of wave theory.
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5.2 Light Trajectories in the HLCM Media
A large number of applications ranging from solar energy harvesting to optical
sensing has been explored in order to focus (concentrate) light in the most
efficient way. The first attempts were made by using lenses of dielectric material,
but for a long time diffraction phenomena forbid beam sizes below half of a
wavelength. Recently, plasmonic structures [MM11] and optical metamaterials
[Pen00] are probably the best candidates to overcome the usual physical limits.
These latter are artificial media that can be used in superlenses working beyond
the diffraction limit.

In the remaining of this Chapter, we examine the possibility to focus light
with a cylindrical device made from the HLCM configurations presented be-
fore, see Fig. 5.2. In both HLCM media, the optical path can be elegantly
reinterpreted in terms of non-Euclidean geometry: following a pioneering idea
by Gordon [Gor23a] discussed in Section 4.4, light propagation inside a refrac-
tive medium occurs in a similar fashion to light propagation on a Riemannian
manifold. As will be illustrated next, differential geometry techniques is ex-
tremely powerful when dealing with calculations of light trajectories or with
how to generalize the wave equation.

First, we consider the geometrical optics limit and start analyzing the path
followed by light in the HLCM device with a purely circular director field (see
Fig. 5.2 (a)). From the optical path Eq. (5.3), the metric tensor components
representing such medium are given by:

gij =

−1 0 0
0 α2ρ2 0
0 0 −1

 . (5.6)

The constants of motion are given by the Killing vectors, which correspond to
the cyclic variables of the metric. A quick examination of Eq. (5.6) reveals
two Killing vectors, (∂φ)i = (0,1,0)T and (∂ζ)i = (0,0,1)T (here T denotes the
transposition operation used to represent column vectors), associated with the
covectors:

(∂φ)i = gij(∂φ)j = (0,α2ρ2,0), (5.7)
(∂ζ)i = gij(∂ζ)j = (0,0,−1). (5.8)

These vectors obey the Killing equations, which give the constants of motion:

(∂φ)i
dxi

dλ
= C̃, (5.9)

(∂ζ)i
dxi

dλ
= A. (5.10)

Here λ is an affine parameter such that ds2 = Bdλ2 with B > 0 in order to
preserve the causal regions in terms of the two variables. Denoting by x′ = dx

dλ ,
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one gets

ζ ′ = A, (5.11)

ρ2φ′ = C̃

α2 = C. (5.12)

In the remainder, propagation along increasing values of z will be considered,
therefore A > 0. A third constant of motion is obtained from energy conserva-
tion. From the line element Eq. (5.6) we get

− (ρ′)2 +α2ρ2(φ′)2− (ζ ′)2 =B. (5.13)

In fact, Eq. (5.13) can also be deduced for instance from the eikonal equation
kµk

µ = 0 (see Appendix A.3). Now substituting Eqs. (5.11) and (5.12) into Eq.
(5.13), we obtain

ρ′2

2 −
α2C2

2ρ2 = −(A2 +B)
2 = E. (5.14)

Note that the particular form of the relation (5.14) requires that the energy
parameter E ≤ 0. With this assumption, we solve equation (5.14) to obtain:

ρdρ√
ρ2
M −ρ2

=±Kdζ, (5.15)

where ρM and K are constants given by

ρM = α|C|√
2|E|

(5.16)

and

K =

√
2|E|
A

(5.17)

with K being positive, K > 0. Defining by ρ0 the radius (position) at which
the ray is injected at ζ = 0, one finds the two families of solutions. The first
family corresponds to the positive sign, then corresponding to rays of increasing
radius:

ρ(ζ) =
√
ρ2
M − ((ρ2

M −ρ2
0)1/2−Kζ)2. (5.18)

We see that the orbits are confined with maximum radius ρM , with a given ray
reaching the value ρM for

zM = (ρ2
M −ρ2

0)1/2√
|ε‖|K

. (5.19)

For moderate injection angles, the light ray is not able to reach the outer metallic
layer before falling down onto the defect core. In other words, rays undergo a
total internal reflection for any frequency preserving the hyperbolic feature of
the nematic phase. For large injection angles, light rays may reach the outer
metallic layer but will be reflected back inside the HLCM to finally converge
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on the core. The second family of solutions in Eq. (5.15) is obtained when
considering the negative sign, which corresponds to rays of decreasing radius:

ρ(ζ) =
√
ρ2
M − ((ρ2

M −ρ2
0)1/2 +Kζ)2. (5.20)

Here, the ray can decrease down to the defect core and hence be guided along
the axis of the cylinder. When the light rays get closer to the defect core the
angular momentum term in (5.14) gets very large and hence, the light rays make
more turns, see (Fig. 5.3 and 5.4). By combining Eq. (5.18) with Eq. (5.12),
we obtain for the first family of solutions,

φ(ζ) = 1
α

tanh−1
(
Kζ− (ρ2

M −ρ2
0)1/2

ρM

)
(5.21)

and, by substituting Eq. (5.20) into Eq. (5.12), we get

φ(ζ) = 1
α

tanh−1
(
Kζ+ (ρ2

M −ρ2
0)1/2

ρM

)
(5.22)

for the second family of solutions. By manipulating Eq. (5.18) and Eq. (5.21),
we find ρ= ρ(φ) as being the confined Poinsot spiral:

ρ(φ) = ρM
coshαφ. (5.23)

By combining Eq. (5.20) and Eq. (5.22) we obtain the same Eq. (5.23). With
equation (5.23) we can get the confined trajectories for light traveling in a plane
z = const. We see that the smaller the value of α, the stronger is the spiraling
behavior as 1/α can be understood as the “spiraling strength” (vorticity) of the
defect [Fum+15; JAN07; Fig+17]. The same effect can be visualized in the
three dimensional trajectories obtained from the parametric equations ρ(ζ) and
φ(ζ), see Fig. 5.4. For large values of α, for example α = 20, the rays travel in
nearly straight lines radially toward the defect core, see Fig. 5.3.

Figure 5.3: Projection of the trajectories onto the x− y plane with ρ in units
of ρM , for a few values of α.

We now examine the path followed by light in the HLCM device with a
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purely radial director field (see Fig. 5.2 (b)). The metric tensor components in
that case are given by:

gij =

α
2 0 0

0 −ρ2 0
0 0 −1

 . (5.24)

The two Killing vectors are the same as in the circular case, (∂φ)i = (0,1,0)T

and (∂ζ)i = (0,0,1)T, associated with the covectors:

(∂φ)i = gij(∂φ)j = (0,−ρ2,0), (5.25)
(∂ζ)i = gij(∂ζ)j = (0,0,−1). (5.26)

Following the same procedure as before, the Killing equations are straightfor-
wardly obtained as:

ζ ′ = A, (5.27)
ρ2φ′ = C. (5.28)

For this case the energy conservation gives

ρ′2

2 −
C2

2α2ρ2 = B+A2

2α2 = E. (5.29)

The constant E in Eq. (5.29) is positive, then the solution is not exactly the
same as Eq. (5.14) where E is negative. We can also see that, since the first
term in the left-hand side of Eq. (5.29) cannot be zero, there is no turning point
for the light trajectories (the trajectories are unbounded). Indeed, contrary to
the first HLCM configuration Fig. 5.2 (a) light is not confined; if the ray starts
with increasing ρ at ρ0 it will never decrease to the defect core, unless it is
reflected by an outer layer. These arguments hold when looking at the equation
ρ(φ) ∼ 1

sinhαφ , which is another case of Poinsot’s spiral, but not of a confined
type now.

We then conclude that the circular field configuration should be favored
to design a device to concentrate light. We also emphasize that, in practice,
such configuration also avoids instabilities such as the escape in third dimen-
sion [MK72] that might break the director field arrangement and therefore the
guiding effects.

5.3 Propagating Wave Modes
With the purpose of supporting the concentration effect, we are now examining
the structure of the optical modes that propagate in the device (HLCM with
circular director field, see Fig. 5.2(a)). In the scalar wave approximation, the
complex amplitude Φ of the wave is governed by the generalized form of the
d’Alembert equation

∇i∇iΦ−
1
c2
∂2Φ
∂t2

= 0, (5.30)
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(a)

(b)

(c)

Figure 5.4: Light trajectories in three dimensions for ρM = 1, ρ0 = 0.8, K = 0.64
and α= 0.1,0.2; the figures on the left (right) side refer to α= 0.1 (α= 0.2). (a)
Light path for rays of increasing radius starting at ρ0 = 0.8. (b) Light path for
rays of decreasing radius starting at ρ0 = 0.8. (c) Light path for rays starting at
ρ0 = ρM .

where∇i∇i is the Laplace-Beltrami operator, whose action on the wave function
Φ is given by (see equation (4.5))

∇i∇iΦ = 1√
|g|
∂i

(√
|g|gij∂jΦ

)
. (5.31)

In the case of harmonic time dependence of the form Φ(ρ,φ,ζ, t) =ψ(ρ,φ,ζ)e−iωt,
Helmholtz equation is obtained from Eq. (5.31) as

− 1
ρ

∂

∂ρ

(
ρ
∂ψ

∂ρ

)
+ 1
α2ρ2

∂2ψ

∂φ2 −
∂2ψ

∂ζ2 + ω2

c2
ψ = 0, (5.32)

where ω is the angular frequency of the light rays. Using the ansatz as

ψ(ρ,φ,ζ) = F`,kζ (ρ)e±i`φe±ikζζ (5.33)
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we obtain the equation

ρ2d
2F`,kζ
dρ2 +ρ

dF`,kζ
dρ
−
[(
ω2

c2
+k2

ζ

)
ρ2− `2

α2

]
F`,kζ = 0. (5.34)

Equation (5.34) is the modified Bessel differential equation of imaginary
order i`/α, with solutions [Dun90; Olv+10]

F`,kζ (ρ) = e`Ĩ`/α (ω̄ρ) +f`K̃`/α (ω̄ρ) , (5.35)

where ω̄ is given by
ω̄ =

√
k2
ζ +ω2/c2 (5.36)

with e`,f` being constants of integration. The functions Ĩ`/α = ReIi`/α and
K̃`/α =Ki`/α are linearly independent solutions of Eq. (5.34), with Ii`/α,Ki`/α

being the modified Bessel functions of first and second kind, respectively [Olv+10].
Note that, in an ordinary defect-free Euclidean space, the radial solution of
Helmholtz equation would be a linear combination of J`(ρ

√
ω2/c2−k2

ζ ) and
Y`(ρ

√
ω2/c2−k2

ζ ) instead of <(Ii`/α(ρ
√
ω2/c2 +k2

ζ )) and Ki`/α(ρ
√
ω2/c2 +k2

ζ ),
which is the case here. We can see the effect in the solution of the metamaterial
character of the metric via:

(i) the introduction of imaginary order Bessel functions;

(ii) the change of Bessel to modified Bessel functions and

(iii) the role of the defect amplitude through the appearance of α in the imag-
inary order of the modified Bessel functions.

The modified Bessel functions Ĩ`/α, K̃`/α oscillate rapidly near the origin, as
one can see from their behaviors as ρ→ 0+ [Dun90; Olv+10],

Ĩ`/α(ω̄ρ) =
(

sinh(π`/α)
π`/α

)1/2
cos

[
`

α
ln
(
ω̄ρ

2

)
−γ`/α

]
+O(ω̄2ρ2), (5.37)

K̃`/α(ω̄ρ) =−
(

πα/`

sinh(π`/α)

)1/2
sin
[
`

α
ln
(
ω̄ρ

2

)
−γ`/α

]
+O(ω̄2ρ2), (5.38)

where γ`/α is a constant defined as γ`/α ≡ arg Γ(1 + i`/α), with Γ being the
Gamma function. The rapid oscillations are due to the logarithmic argument
of the trigonometric functions. Furthermore, for a fixed `, the smaller the value
of α, the stronger the oscillations become (reducing the value of α shrinks the
period of the trigonometric functions). This behavior can be visualized in Figs.
5.5 (a) and (b). Despite the similarities between Ĩ`/α and K̃`/α near the origin,
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their asymptotic behavior is exponential [Dun90; Olv+10],

Ĩ`/α(ω̄ρ) =
(

1
2πω̄ρ

)1/2
eω̄ρ

[
1 +O

(
1
ω̄ρ

)]
, (5.39)

K̃`/α(ω̄ρ) =
(

π

2ω̄ρ

)1/2
e−ω̄ρ

[
1 +O

(
1
ω̄ρ

)]
. (5.40)

The first solution can be dismissed as it diverges at larges distances from the

(a) (b)

Figure 5.5: The corresponding radial wave amplitudes K̃ for fixed ` = 1, α =
0.17,0.5 and ω̄ = 1,2. (a) for α= 0.5 and (b) for α= 0.17. The solid and dashed
lines refers to ω̄ = 1 and ω̄ = 2, respectively. The smaller the value of α, the more
the fields oscillate near the origin. At large distances (logarithmic scale on the
x−axis here) the behavior is exponential and it does not depend on `/α.

axis, which means that e` = 0. Hence, as expected from the geometrical optics
limits, the field concentrates along the axis of the device.

For a given z = const. plane, the intensity distribution for the propagating
fields may be represented in terms of |K̃`/α(ω̄ρ)|2, see Fig. 5.6. We see that
the bigger the value of α for a fixed `, the brighter the rings are (fields of high
amplitudes). Besides, the bigger the value of ω̄, the smaller the light rings are
(the more concentrated fields are the ones near the origin).

5.4 Conclusions
In this Chapter, we studied two configuration of HLCM in order to investigate
the possibility to focus light, more specifically the circular field configuration
appears as a favorable candidate for designing optical concentrators. Both ge-
ometrical optics and wave optics treatments show that light is indeed concen-
trated while propagating in the HLCM medium. No matter how the rays are
injected, they will fall onto the defect core with or without being reflected in the
outer layer of the cylindrical concentrator. Because the losses, an optical device
made from metamaterials will support evanescent waves. Thus, the length of
the optical concentrator has to be short enough to avoid that the losses cancel
the field propagation before it reaches the center of the device.

In practice, it has been shown that a given combination of materials forming
metamaterials will keep hyperbolic properties only within a range of frequency
defined in terms of the plasma frequency of the constituent materials [Smo11].
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Figure 5.6: |K̃|2 intensity profiles, representing the transverse field distribu-
tions. All plots are in the same scale and with `= 1. The ones on the left (right)
correspond to ω̄ = 0.67 (ω̄ = 1). The top (bottom) ones correspond to α = 0.90
(α= 0.83).

However, hyperbolic metamaterials allow the propagation of waves with very
large wavevectors, and consequently very small wavelengths [Fer+15] that are
restricted to the metamaterial unit cell size (then introducing a natural cutoff)
[Smo18].

Although we did not emphasize this before, our analysis showed a singu-
larity at the origin that may be understood as an obstacle. Such singularity
appears due to the model we use does not include a realistic description of the
defect core, as the curvature associated to the core is concentrated on the axis.
The singularity should not show up with model considering a distribution of
curvature around the axis, i.e. to soften the singularity would be necessarily for
a more realistic description of the core [AO90]. This would lead the defect core
to have a finite size, leading to two different regions (interior and exterior to
the core), with trajectories that match at the limit of the core. This also would
prevent too strong oscillations near the center of the optical concentrator.
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Conclusions and Perspectives
***

In this thesis we have studied general aspects of topological defects from for-
mation (Kibble mechanism) to their geometric effects on the dynamics of fields.
The formation of topological defects is unavoidable according to the Grand
Unified Theory. Cosmic defects may have been formed during the early times
of the Universe as consequence of phase transitions occurring as the Universe
expanded and cooled down. All possible defects, the domain walls, monopoles,
textures and cosmic strings were discussed here. The latter was better ex-
plored since they are not ruled out by their mass energy content. Because their
disastrous consequences for the viability of the present Universe, structures as
domain walls and monopoles are not expected to exist after the inflation period.
Although there are favorable evidences for the existence of cosmic strings, they
are still not sufficient to ensure it. This work also dealt with interesting aspects
about the analogy between condensed matter (liquid crystals is a great labora-
tory for cosmology) and cosmological objects. Besides it occurs with respect to
their formation (since the Kibble mechanism is well established in both realms)
the analogy also holds true in the geometric (gravitational) point of view, the
way light propagates in the presence of such objects is analogous. For example,
light trajectories in nematic liquid crystal endowed with disclination are exactly
the same of the geodesics followed by light in the spacetime of cosmic strings.

However, our focus in this thesis was on the geometric (gravitational) aspects
of the topological defects, wiggly string (in cosmology) and hyperbolic discli-
nation (in nematic liquid crystal). Both defects proved to cause interesting
effects on propagating fields as we examined trajectories and wave propagation
in their background. For example, in Chapter 4, we saw that either massive
and massless fields are confined to the wiggly string axis like it happens with
electromagnetic waves in ordinary waveguides. Hence, we proposed the design
of an optical waveguide likely to mimic the dynamics of fields on the spacetime
of wiggly strings. In Chapter 5, we investigated the propagation of light in the
HLCM, that is a medium in which the ratio between ordinary an extraordi-
nary permittivities is negative. We conclude from geometrical optics treatment
and wave formalism that light rays are concentrated along the defect axis no
matter how they are initially injected. Thus, the HLCM behaves as a perfect
optical concentrator device. Actually, we saw that such behaviour occurs for
one specific director field configuration, the circular one. The same behavior is
not found for the radial director field configuration.
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In particular, as a perspective for future work we mention the study of prop-
agating electromagnetic waves along the wiggly string and a possible correspon-
dence with an optical fiber. This is more complex than the problem presented
here since the vector field equations are coupled and cannot be reduced to scalar
wave equations. Moreover, networks of cosmic topological defects have been
proposed as models for solid dark matter [BS99]. This suggests that one might
explore the optical signatures of a network of wiggly strings. For instance, for a
periodic array of strings one might expect some of the properties of a photonic
crystal, like the appearance of band gaps in the dispersion relation, which limit
the propagation to the allowed regions of the spectrum. Finally, it is in our
interest to use the Finsler geometry to investigate soft matter systems where
the Riemannian geometry does not apply.

We have mentioned in Chapter 2 that the analogy between Alice strings
and m=±1/2 (half-integer) disclinations in NLCs. For that reason, we started
investigating the gravity of Alice string (to our knowledge this is an absolute un-
known aspect), since we have seen that light propagation in a medium endowed
with m=±1 disclinations is given by geodesics in the background spacetime of
an ordinary cosmic string. At the present time, we have not finished with such
investigation, but we do believe the Alice string spacetime is a perfect analogue
of the effective geometry found for half-integer disclinations [SDMCM09]. This
subject is presently under investigation and we hope to have results in the near
future.
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A.1 Finslerian Method
An appropriate space for a geometrical description of light propagation is thus
of a Finsler geometry [JR94; SM06], for which the line element is of the form

ds=Nrdl = F (x, ẋ)dτ (A.1)

where dl is the infinitesimal arc length along the curve followed by the propa-
gating rays and ẋµ = dxµ/dτ measuring local direction and F (x, ẋ) the Finsler
function. Joets and Ribotta [JR94] have chosen F (x, ẋ) = Nr, where Nr is
the ray index which governs the Energy velocity, see Section 3.3. Then, they
have shown that the light rays which obey Fermat’s principle for the energy
propagation of the extraordinary ray

δ
∫
Nrdl = 0 (A.2)

are the geodesics in Finsler space

d2xλ

dτ2 + Γλαβ
dxα

dτ

dxβ

dτ
− d lnNr

dτ

dxλ

dτ
= 0. (A.3)

If the parameter τ is chosen to be the arc length l in Eq. (A.1), F = 1 and the
Finsler geodesic equation simplifies into Riemannian geodesic equation (3.7).
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By using the identity ds2 = N2
r dl

2 = gαβdx
αdxβ = F (x, ẋ)2dτ2, we obtain the

Finslerian metric tensor components as

gαβ = 1
2
∂2F 2

∂xα∂xβ
. (A.4)

Hence, it turns out that the use of Riemannian geometry to be exactly the same
of the general Finslerian approach [SM06].

A.2 Numerical Analysis
In order to solve the wave radial equation (Eq. (4.9)) for propagating massless
and massive fields on the background spacetime of the wiggly string we have
used a finite difference method.

Following, we give more detail about such method and its application to our
problem.

A.2.1 Finite Difference Method
FDM consists in to replace derivatives into differential equations with discrete
differences approximations [MUGGMV96; Dat05; BF11; FG11]:

dψ

dx
= ψj+1−ψj−1

2∆x +O(∆x2) (A.5)

and

d2ψ

dx2 = ψj+1−2ψj +ψj−1
∆x2 +O(∆x2), (A.6)

on a regular grid xj = j∆x, with j = 0,1,2...,N,N + 1. Such approximations
can be used to solve any differential equation leading to eigenvalue equations:

Mψj = λψj , (A.7)

where M is a sparse matrix representing the discretized operator (the Hamil-
tonian in wave equations) and ψj = ψ(xj) is a vector. In theory, the matrix M
can be infinitely large, but in practice we need to truncate it to a finite number
of element, say N . For that, we have to set the boundary values ψ0 and ψN+1
equal to zero. In fact, such boundary condition is appropriate for the case where
the “potential” is infinitely large at the point 0 and at the point N +1 (as it is
the case of Eq. (4.9)), since wavefunctions are essentially zero at these points
anyway. Therefore, after doing so, we get a finite matrix of dimension N ×N .
Hence, solving equation (A.7) give us the N eigenvalues (λ1,λ2, ...λN ), and in
turn, each one has an associated eigenvector.
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A.2.2 Applying the Finite Difference Method
In the equation (4.9) the logarithmic term is infinitely large at the points 0 and
∞. In this case, we can use the boundary conditions R(0) = 0 and R(ρ∞) =
0, where ρ∞ represents the value in which ρ is infinitely large. Hence, our
discretization has a step size defined as:

∆ρ= ρ∞
N
, (A.8)

with N being the number of points on the grid. It is clear that decreasing the
value of ∆ρ the method becomes more efficient.

By following the proceeding in Ref. [Gar11] we make a change of variables
in the equation (4.9) of the type u= ρ1/2R, then

−d
2u

dρ2 +
[

(l/α)2−1/4
ρ2 + lnρ

]
u= ζ̄u. (A.9)

For l = 0 we have to require that our wavefunction goes to zero faster, setting
u= ρR, we obtain

−d
2u

dρ2 + 1
ρ

du

dρ
+
[

(l/α)2−1
ρ2 + lnρ

]
u= ζ̄u. (A.10)

Obviously we will use equation (A.9) for l 6= 0 and equation (A.10) for l = 0.
Both equations (A.9) and (A.9) obey the specified boundary conditions.

We have to set the two free parameters of our discretization, ρ∞ and N .
For N large means more eigenvalues to be obtained and consequently better
efficiency, however, it can becomes a hard work for the computer. Then, we
can increase N as large as the computer permit it. In fact, we need that the
eigenvalues with small n and l have converged to some accuracy. In the case
of ρ∞, we need to find a value so that u(ρ∞) = 0. A prior we can looking at
eigenvalues for large n and l and choose ρ∞ so that wavefunction goes to zero
within this bound [FG11; Gar11]. For our case, we have found values around
N = 10000 and ρ∞ = 400, that is ∆ρ = 4/100. Here, we have used a trick,
since we are looking at eigenvalues and eigenfunctions for small n and l, we can
decrease ρ∞ to improve our result. At the end of the day, our calculation was
done by setting ρ∞ = 40, then ∆ρ= 4/1000.

A.2.3 Discretization Codes
We can implement the FDM using any language or numerical package that
takes advantage of the sparsity feature of the matrix M . Following, we present
the discretization code written in Mathematica and Python languages.

Listing A.1: Discretization code for equation (A.9) in Mathematica language
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Wiggly waveguide
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
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WigglyWaveguide [ pinf_ ,NN_,L_, \ [ Alpha ]_] :=

Module [ {Mat , ret , d , l , sdata , dp , idex , p } ,
dp = p in f /NN;
l = L^2/\[Alpha ] ;
d = 0 . 2 5 ;
sdata = {} ;

For [ idex = 2 , idex <= NN − 1 , idex = idex + 1 ,
p = idex dp ;
sdata =
Join [ sdata , {{ idex , idex } −> (Log [ p ] + ( l − d)/p^2 + 2.0/dp^2) ,
{ idex , idex + 1} −> −1.0/dp^2 , { idex , idex − 1} −> −1.0/
dp ^2} ] ;
] ;

idex = 1 ;
p = idex dp ;
sdata =
Join [ sdata , {{ idex , idex } −> (Log [ p ] + ( l − d)/p^2 + 2.0/dp^2) ,
{ idex , idex + 1} −> −1.0/dp ^2} ] ;

idex = NN;
p = idex dp ;
sdata =
Join [ sdata , {{ idex , idex } −> (Log [ p ] + ( l − d)/p^2 + 2.0/dp^2) ,
{ idex , idex − 1} −> −1.0/dp ^2} ] ;

Mat = SparseArray [ sdata ] ;
Return [Mat ] ;
]

Listing A.2: Discretization code for equation (A.10) in Mathematica language
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Wiggly waveguide
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

WigglyWaveguide [ pinf_ , NN_, L_, \ [ Alpha ]_] :=

Module [ {Mat , ret , d , l , sdata , dp , idex , p } ,
dp = p in f /NN;
l = L^2/\[Alpha ]_;
d = 1 ;
sdata = {} ;

For [ idex = 2 , idex <= NN − 1 , idex = idex + 1 ,
p = idex dp ;
sdata =
Join [ sdata , {{ idex , idex } −> (Log [ p ] + ( l − d)/p^2 + 2.0/dp^2) ,
{ idex , idex + 1} −> −1.0/dp^2 + 1 . 0/ ( p 2 .0 dp) , { idex ,
idex − 1} −> −1.0/dp^2 − 1 . 0/ ( p 2 .0 dp ) } ] ;
] ;

idex = 1 ;
p = idex dp ;
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sdata =
Join [ sdata , {{ idex , idex } −> (Log [ p ] + ( l − d)/p^2 + 2.0/dp^2) ,
{ idex , idex + 1} −> −1.0/dp^2 + 1 . 0/ ( p 2 .0 dp ) } ] ;

idex = NN;
p = idex dp ;
sdata =
Join [ sdata , {{ idex , idex } −> (Log [ p ] + ( l − d)/p^2 + 2.0/dp^2) ,
{ idex , idex − 1} −> −1.0/dp^2 − 1 . 0/ ( p 2 .0 dp ) } ] ;

Mat = SparseArray [ sdata ] ;
Return [Mat ] ;
]

The discretization code in the first listing above can be found in Ref. [Gar11],
where it was used in the context of the 2D hydrogen atom. Here, we have used
it to solve our wave equation 4.9, which is indeed mathematically similar to the
Schrödinger equation for the 2D hydrogen atom. The second listing code is not
given in the Ref. [Gar11], but we also provide it here and it is showed to provide
the same results found in such reference. Bellow, we present the listing code to
be used for the users of Python from where they could get the same results.

Listing A.3: Discretization code for equations (A.9) and (A.10) in Python
language

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Wiggly waveguide
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def Discret izeWigglyWaveguide ( length , s i z e , L , l , d ) :
dx = length / s i z e
x = np . l i n s p a c e (dx , length , s i z e )

main = [ np . l og (x ) + ( l − d) / x ∗∗ 2 + 2 / dx ∗∗ 2 ]

i f L != 0 :
other = (−1 / dx ∗∗ 2) ∗ np . ones ( s i z e − 1)
sData = np . d i a g f l a t (main , 0) + np . d i a g f l a t ( other , −1)
+ np . d i a g f l a t ( other , +1)

e l s e :
upper = (−1 / dx ∗∗ 2 + 1 / (2 ∗ x [ : −1 ] ∗ dx ) )
lower = (−1 / dx ∗∗ 2 − 1 / (2 ∗ x [ 1 : ] ∗ dx ) )
sData = np . d i a g f l a t (main , 0) + np . d i a g f l a t ( lower , −1)
+ np . d i a g f l a t ( upper , +1)

return x , spar s e . csc_matrix ( sData )

# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
# Wiggly waveguide
# ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

def WigglyWaveguide ( c on f i g ) :
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l ength = con f i g [ ’ l ength ’ ]
s i z e = con f i g [ ’ s i z e ’ ]
L = con f i g [ ’L ’ ]
alpha = xu . _get_kwarg ( ’ alpha ’ , con f i g , 1)

l = L∗∗ 2 / alpha ∗∗ 2
d = 0.25 i f L != 0 e l s e 1

return Discret izeWigglyWaveguide ( length , s i z e , L , l , d )

A.3 Eikonal Approximation
The eikonal approximation has been used to study optics in metamaterials
[Ves02; JAN07; FNB16a] and supplies the same light trajectories as the Fer-
mat’s principle. Therefore, we show here that the eikonal approximation is also
an alternative to study light propagation in hyperbolic metamaterial. By per-
forming straightforward calculations we are able to obtain the same equations
when using Fermat’s principle (differential geometry tools) found in Chapter 5
of this manuscript.

The metric that defines the hyperbolic metamaterial of circular director field
Fig. 5.2 (a) can be written in terms of the permittivities as (see Eq. (5.1)):

gµν =


−1 0 0 0
0 −

∣∣∣ε‖∣∣∣ 0 0
0 0 ε⊥r

2 0
0 0 0 −

∣∣∣ε‖∣∣∣

 . (A.11)

Therefore, proceeding in the same manner as in refs. [JAN07; FNB16a], and
also [LL75], the eikonal equation kµkµ=0 becomes

gµν
∂Ψ
∂xµ

∂Ψ
∂xν

= 0 (A.12)

− 1
c2

(
∂Ψ
∂t

)2
− 1∣∣∣ε‖∣∣∣

(
∂Ψ
∂r

)2
+ 1
ε⊥r2

(
∂Ψ
∂φ

)2
− 1∣∣∣ε‖∣∣∣

(
∂Ψ
∂z

)2
= 0, (A.13)

where Ψ is the eikonal. Substituting the usual relations ω=−∂tΨ and ki = ∂iΨ,
one gets

−

(
k2
r +k2

z

)
∣∣∣ε‖∣∣∣ +

k2
φ

ε⊥r2 = ω2

c2
, (A.14)

which is nothing more than the usual hyperbolic dispersion relation for meta-
materials (see Eq. 5.5). Rescaling the coordinates according to ρ= r

√∣∣∣ε‖∣∣∣ and
ζ = z

√∣∣∣ε‖∣∣∣, the above equation becomes

−k2
ρ +

k2
φ

α2ρ2 −k
2
ζ = ω2

c2
, (A.15)
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with α2 = ε⊥/
∣∣∣ε‖∣∣∣. According to ref. [LL71], the wave vector plays the same

role in geometrical optics as the momentum of the particle in mechanics, while
the frequency plays the role of the Hamiltonian. Therefore, we can use the
Hamilton equations in the form

ẋi = ∂ω

∂ki
, k̇i =− ∂ω

∂xi
. (A.16)

From Eq. (A.15), we recognize kφ and kζ as constants of motion. As for the
other equations:

ζ̇ =−c
2

ω
kζ ≡ A, (A.17)

φ̇= c2

ω

kφ
α2ρ2 ⇒ ρ2φ̇= c2

ω

kφ
α2 ≡

C̃

α2 ≡ C, (A.18)

ρ̇=−c
2

ω
kρ. (A.19)

As one can see, Eqs. (A.17) and (A.18) are the same equations Eqs. (5.11) and
(5.12). Since the Hamiltonian (frequency) does not depend explicitly on time,
it is constant. Thus, substituting equations (A.17)–(A.19) in Eq. (A.15), one
gets the following

− ρ̇2 +α2ρ2φ̇2− ζ̇2 = c2 ≡B, (A.20)

which is exactly the same equation (5.13) obtained in Chapter 5 of this manuscript
with help of Fermat’s principle.
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Résumé Détaillé sur la Thèse
***

Dans cette thèse, notre étude porte sur les défauts topologiques en cosmologie
et en physique de la matière condensée. Nous proposons d’étudier l’analogie
entre les défauts qui apparaissent dans ces domaines. Par exemple, nous discu-
tons l’analogie entre les cordes cosmiques et les disinclinaisons présentes dans
les cristaux liquides. Cependant, nous concentrons nos efforts sur l’étude de
la gravité et des aspects géométriques des défauts linéaires; cordes cosmiques
«ondulées» et les disinclinaisons hyperboliques. Le champ gravitationnel des
cordes ondulées est analogue à celui des cordes régulières mais avec un po-
tentiel newtonien non nul. Pour cette raison, outre le fait que l’espace-temps
a une géométrie conique, les cordes exercent également une traction gravita-
tionnelle sur les objets situés dans leur voisinage. Ceci a pour conséquence:
l’apparition de nouveaux effets en plus de la lentille gravitationnelle. Bien que
la disinclinaison hyperbolique soit très similaire à la disinclinaison ordinaire, le
milieu résultant est un métamatériau anisotrope dans lequel le rapport entre
les permittivités ordinaire et extraordinaire est négatif.

1 Introduction
Selon le modèle du Big Bang, qui décrit l’histoire de l’Univers depuis l’instant
initial jusqu’à nos jours, l’Univers a débuté il y a environ 14 milliards d’années
et depuis lors, il s’est élargi et refroidi. Au début de l’Univers, il y avait une
séquence de transitions de phase qui brisaient la symétrie,

G→H→ ·· ·SU(3)×SU(2)×U(1)→ SU(3)×U(1)em.

Dans le contexte cosmologique, le schéma présenté ci-dessus implique des transi-
tions de phase successives au tout début de l’univers, dans lesquelles des défauts
peuvent se former [KT90; VS94].

Les transitions de phase spontanées dans les cristaux liquides sont stricte-
ment liées à la production de défauts en cosmologie, le mécanisme de Kibble
utilisé pour décrire la formation et l’évolution de défauts dans le contexte cos-
mologique s’est révélé pertinent pour la formation de défauts dans les cristaux
liquides nématiques [Chu+91; Bow+94]. En effet, les différentes phases des
cristaux liquides peuvent être obtenues par brisure spontanée de symétrie, ce
qui conduit à l’apparition de défauts topologiques exactement comme cela se
produit en cosmologie; l’échantillon dans la phase la plus symétrique (à hautes
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températures) se refroidit en une phase moins symétrique (à basses tempéra-
tures), et pendant ce processus, des «défauts» peuvent apparaître, voir Fig. 1.

Figure 1: La transition de phase isotrope-nématique est représentée (avec le
directeur ~n et les axes moléculaires ~a). Le vecteur ~n nommé directeur est un
vecteur unitaire avec symétrie miroir ~n = −~n, qui décrit la direction moyenne
d’alignement des molécules.

Nous avons ici une analogie parfaite avec ce qui se passe en laboratoire lors du
refroidissement d’un échantillon de cristaux liquides nématique avec transitions
de phase au tout début de l’Univers.

Parmi les défauts qui peuvent avoir été formés dans l’Univers, nous avons les
cordes cosmiques. Ce sont des objets linéaires très intrigants ayant des longueur
beaucoup plus grandes que leur largeur (la même taille d’un proton, ou plus
petit) et possédant une énergie énorme. Par exemple, une corde ordinaire dont
la longueur est égale à celle du diamètre du Soleil aurait approximativement la
même masse solaire [HK95]. En considérant la limite d’épaisseur zéro, une corde
cosmique linéaire statique située le long de l’axe z possède les composantes de
tenseur énergie-impulsion données par [Vil81; Vil85; VS94]:

Tµν = µ0δ(x)δ(y) diag (1,0,0,1), (1)

où µ0 est la densité d’énergie par unité de longueur de la corde. Pour une corde
non perturbée (sans «wiggle»), la densité d’énergie µ0 correspond exactement à
la tension T0, de sorte que l’équation d’état de la corde est écrite sous la forme
µ0 = T0 [Car90]. En résolvant les équations d’Einstein linéarisées, on obtient
(c= 1) [VS94; Vil81]:

ds2 = dt2−dr2−α2r2dθ2−dz2, (2)

où α2 = 1− 8Gµ0 avec Gµ0 < 10−7 [Ade+14]. Cette métrique décrit l’espace-
temps où la géométrie est plane partout (localement plane), sauf sur le noyau
de la corde (r = 0). C’est-à-dire que la corde introduit un petit angle de déficit
dans l’espace-temps, qui est donné par ∆ = 8πGµ0. Par conséquent, les cordes
linéaires sont des défauts pour lesquels la géométrie est globalement celle d’un
cône [Vil81; VS94; HK95].

La conséquence la plus directe de la géométrie globalement conique est l’effet
de lentille gravitationnelle planaire. La présence d’une corde cosmique dans
l’univers peut affecter les trajectoires lumineuses, en formant une double image
d’objets derrière la corde.
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Les cordes cosmiques sont des analogues des disinclinaisons présentes dans
les cristaux liquides nématiques. L’analogie est également valable du point de
vue de la gravitation [Mor00], car les effets sur la propagation de la lumière
du aux deux objets sont équivalents. [SM05]. Dans les milieux anisotropes
uniaxiaux sous forme de cristaux liquides nématiques, la propagation de la
lumière est décrite en termes de deux indices, n⊥, l’indice de réfraction ordinaire
où le milieu se comporte comme un milieu isotrope et n||, l’indice de réfraction
extraordinaire dépend de la direction de propagation. En ce qui concerne la
propagation de la lumière, il faut distinguer entre un rayon ordinaire et un
rayon extraordinaire. Dans ce cas, la propagation de l’énergie est donc régie
par

N2
r = n2

⊥ cos2β+n2
|| sin2β (3)

où β est l’angle entre le directeur et le vecteur de Poynting.
Les rayons lumineux obéissant le principe de Fermat peuvent être identifiés

comme géodésiques dans certaines géométries riemanniennes [BW99]:
∫ B

A
Nrdl︸ ︷︷ ︸

Principe de Fermat

=
∫ B

A
ds︸ ︷︷ ︸

Géométries riemanniennes

(4)

Ainsi, le trajet optique dans un milieu avec des propriétés de réfraction sont des
géodésiques dans la géométrie effective:

ds2
4D = dt2−

∑
i,j

gijdx
idxj .

︸ ︷︷ ︸
ds2 =N2

r dl
2

(5)

Les trajectoires données selon le principe de Fermat dans une métrique spa-
tiale tridimensionnelle sont les mêmes que pour les géodésiques nulles dans une
métrique à quatre dimensions [PM11].

2 Propagation de la Lumière et des Champs Massifs
le Long d’une Corde Ondulée

Des modèles plus réalistes pour les cordes cosmiques montrent que les longues
cordes ne sont peut-être pas parfaitement linéaires, mais impliquent des pertur-
bations et des déformations [AS90; BB90]. Ces cordes cosmiques sont connues
sous le nom de cordes ondulées [VV91; VS94]. L’effet de ces perturbations le
long de la corde augmente la densité de masse linéaire µ̃ et diminue la tension
de la corde T̃ , en respectant l’équation d’état µ̃ T̃ = µ2

0 [Car90; Vil90; Gan01].
De la même manière que la corde linéaire, une corde ondulée le long de l’axe z
a les composantes du tenseur énergie-moment donné par [VV91; VS94]

Tµν = δ(x)δ(y) diag (µ̃,0,0, T̃ ). (6)
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En utilisant la méthode d’approximation de champ faible pour résoudre les
équations d’Einstein, l’élément de ligne représentant l’espace-temps d’une corde
ondulée peut être trouvé comme (c= 1) [VV91; VS94]:

ds2 = (1 + 8ε ln(r/r0))dt2−dr2−α2r2dθ2− (1−8ε ln(r/r0))dz2, (7)

où α2 = 1−4G(µ̃+ T̃ ), avec 4G(µ̃+ T̃ )� 1, ce qui signifie que l’angle de déficit
∆̃ = 4Gπ(µ̃+ T̃ ) associé à la corde est très petit. Cette métrique est très simi-
laire à celle d’une corde non perturbée, du moins en ce sens qu’elle représente
un espace globalement conique, mais son angle de déficit est devient plus grand.
L’excès de densité d’énergie représenté par le paramètre ε (2ε = G(µ̃− T̃ )) en-
traîne la corde ondulée à exercer une attraction gravitationnelle sur les objets
voisins [HK95; VS94].

Si nous considérons que la lumière se propage le long de la corde, sa propa-
gation sera donc affecté par de nouveaux effets. L’équation d’onde régissant la
propagation d’un champ scalaire (la lumière en tant qu’onde scalaire) dans une
géométrie de fond incurvée doit prendre en compte sa courbure [Ful89; PM11]:

∇µ∇µΦ = 1√
−g

∂µ(
√
−ggµν∂ν)Φ = 0. (8)

Selon la métrique de la corde ondulée et en utilisant le ansatz Φ(r,θ,z, t) =
eilθei(ωt−kz)R(r), où k ∈ R et l = 0,±1,±2..., on obtient l’équation de valeur
propre:

−1
ρ

d

dρ

(
ρ
dR

dρ

)
+
(

l2

α2ρ2 + ln ρ

ρ0

)
︸ ︷︷ ︸

Veff

R = ζ̄R (9)

avec

ζ̄ = 1
8ε
ω2−k2

ω2 +k2 . (10)

L’équation ci-dessus est formellement équivalente à l’équation de Schrödinger
qui décrit l’atome d’hydrogène en 2D. Par contre, le terme potentiel de l’équation
ci-dessus, Veff = l2

α2ρ2 + ln ρ
ρ0
, n’est pas pris en compte que pour les états liés.

En conséquences, les trajectoires sont des hélices radialement confinées, comme
indiqué dans la Fig. 3. La figure 3 montre explicitement l’attraction gravita-
tionnelle par la corde.

Nous avons calculé numériquement la partie radiale des ondes se propageant
le long de la corde ondulée avec leurs valeurs propres correspondantes, voir la
Fig. 4. Les différents états sont étiquetés par les nombres quantiques n (nombre
quantique radial) et l. Le nombre de modes d’ondes pouvant se propager est
grand mais fini. En plus d’être quantifiés par n et l, leurs fréquence dépend
également de la densité d’énergie et de la tension de la corde.

Il est intéressant d’examiner ce qui se passe avec des particules massives
dans les mêmes circonstances précédentes. Afin d’étudier cette possibilité, nous
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Figure 2: Potentiel effectif, Veff (dans les unités où ρ0 = 1), pour l= 2. La ligne
continue horizontale représente l’état fondamental ζ̄ à la valeur de l.

(a) (b)

Figure 3: Les trajets de rayons: (a) lorsque «l’énergie totale» ζ̄ est au minimum
du potentiel effectif et (b) à un certain point au-dessus de celui-ci.

écrivons l’équation de Klein-Gordon (h̄ = 1) dans la géométrie de la corde on-
dulée [Ful89]: [

1√
−g

∂µ(
√
−ggµν∂ν)−m2

]
Φ(r,θ,z, t) = 0. (11)

Nous arrivons à une équation de valeur propre identique à celle de la propagation
de champ sans masse, mais maintenant avec valeur propre

Ēnl = 1
8ε
ω2−k2−m2

ω2 +k2 . (12)

Les fonctions d’onde Rnl(ρ) et les valeurs propres Ēnl sont numériquement iden-
tiques à la solution de propagation de champ sans masse. La discussion sur la
trajectoire du champ sans masse est toujours valable pour les champs massifs.
Cependant, pour la propagation de champs massifs, une fréquence de coupure
ωc est requise dans la relation de dispersion.

Il existe une forte similitude entre la propagation des champs scalaires le
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Figure 4: Modes d’onde pour les premières valeurs propres n = 1,2,3 de
l’équation (9) pour chaque l = 0,1,2.

long d’une corde cosmique ondulée et la propagation d’ondes électromagné-
tiques dans des guides d’ondes optiques. Nous explorons cette analogie en pro-
posant un moyen de concevoir une fibre optique imitant la corde ondulée dans
le contexte décrit ci-dessus.

Nous concevons un guide d’onde d’indice de réfraction n= n(r) où les champs
sont azimutalement symétriques. Ainsi, pour les ondes se propageant le long de
la fibre optique Φ(r,z) = e−ikzR(r), on obtient l’équation d’onde radiale:

−1
r

d

dr

(
r
dR

dr

)
−n2(r)ω2R+k2R = 0. (13)

Nous choisissons l’indice de réfraction donné par

n(r) =
(

1−Ωln r

r0

)1/2
, (14)

avec le paramètre sans dimension Ω� 1 et r0 est un rayon central opaque. Par
conséquent, un guide d’onde optique à l’indice de réfraction n(r) =

(
1−Ωln r

r0

)1/2

imitera les effets d’une corde ondulée pour les champs se propageant avec l = 0.
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Figure 5: Profils d’intensité pour les premières solutions R2
nl de l’équation (9),

avec n = 1,2,3 et l = 0,1,2. Les profils sont disposés comme dans une matrice
où n et l donnent le numéro de ligne et de colonne, respectivement. La première
colonne correspond aux modes de la fibre optique.

3 Propagation de la Lumière dans une Disinclinaison
Hyperbolique

Les métamatériaux sont des matériaux optiques offrant la possibilité d’avoir des
indices de réfraction négatifs [SPW04]. Cette caractéristique fournit de nom-
breuses utilisations dans les applications technologiques et conduit également
à d’autres d’analogies avec les systèmes cosmologiques. Récemment, des méta-
matériaux ont été proposé comme moyen d’imiter les aspects de l’espace-temps
incurvé en laboratoire [GZZ09; ML15].

Nous présentons ici une nouvelle classe de défauts; la disinclinaison hyper-
bolique existant dans un métamatériau constitué de cristaux liquides néma-
tiques. Nous examinons les propriétés optiques de deux configurations dif-
férentes de métamatériaux, l’axe optique défini par un directeur circulaire et
radial. En premier lieu, nous le considérons le directeur comme étant n̂= φ̂ (di-
recteur circulaire), puis nous considérons comme n̂ = r̂ (directeur radial), voir
Fig. 6. Le trajet optique ds2 =N2

r dl
2 peut donc être trouvé sous la forme:

ds2 =N2
r dl

2 =−dρ2 +α2ρ2dφ2−dζ2, (15)

pour la configuration 6 (a) et

ds2 =N2
r dl

2 = α2dρ2−ρ2dφ2−dζ2, (16)

pour la configuration 6 (b), avec α2 = ε⊥
|ε|||

.
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Figure 6: Les deux configurations cylindriques (en fonction de la disposition
du directeur) recouvertes d’un matériau réfléchissant. (a) Configuration du di-
recteur avec n̂ = φ̂ (directeur circulaire). (b) Configuration du directeur avec
n̂= r̂ (directeur radial).

L’équation de conservation de l’énergie pour la propagation de la lumière
dans le dispositif est donnée par:

ρ′2

2 −
α2C2

2ρ2 = −(A2 +B)
2 = E, (17)

où le paramètre de énergie E ≤ 0, puisque A > 0 et B > 0. En manipulant ces
équations, on trouve ρ= ρ(φ) :

ρ(φ) = ρM
coshαφ, (18)

avec ρM = α|C|√
2|E|

qui est le rayon maximum des trajectoires. Cette solution est
connue sous le nom de spirale de Poinsot confiné, voir Fig. 7. Plus la valeur de

Figure 7: Projection des trajectoires sur le plan x−y avec ρ en unités de ρM ,
pour quelques valeurs de α.

α est faible, plus le comportement en spirale est fort. Pour les grandes valeurs
de α, par exemple α = 20, les rayons se déplacent presque linéairement vers
le centre de dispositif. Le même effet peut être visualisé dans les trajectoires
tridimensionnelles, voir Fig. 8.

Pour le dispositif avec disposition du directeur radial, la conservation de
l’énergie donne:

ρ′2

2 −
C2

2α2ρ2 = B+A2

2α2 = E. (19)
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(a) (b)

(c)

Figure 8: Trajectoires en trois dimensions pour ρM = 1, ρ0 = 0.8, K = 0.64
et α = 0.1,0.2; l’image à gauche (droite) font référence à α = 0.1 (α = 0.2). (a)
Trajectoire pour les rayons croissant à partir de ρ0. (b) Trajectoire pour les rayons
décroissant à partir de ρ0. (c) Trajectoire pour les rayons à partir ρ0 = ρM .

Les trajectoires ne sont pas confinées et la lumière n’est pas concentrée. Ces
arguments découlent de l’équation ρ(φ) ∼ 1

sinhαφ , autre cas de la spirale de
Poinsot, mais pas du type confiné.

Nous concluons que la configuration du directeur circulaire devrait être priv-
ilégiée pour concevoir un dispositif permettant de concentrer la lumière.

Nous examinons maintenant la structure des modes optiques qui se propa-
gent dans le dispositif muni du directeur circulaire, voir Fig. 6 (a). En util-
isant, l’approximation d’onde scalaire, par la forme généralisée de l’équation de
d’Alembert:

∇i∇iΦ−
1
c2
∂2Φ
∂t2

= 1√
|g|
∂i

(√
|g|gij∂j

)
Φ− 1

c2
∂2Φ
∂t2

= 0. (20)

En cas de dépendance temporelle de la forme Φ(ρ,φ,ζ, t) =F`,kζ (ρ)e±i`φe±ikζζe−iωt,
où ω est la fréquence angulaire, nous obtenons l’équation

ρ2d
2F`,kζ
dρ2 +ρ

dF`,kζ
dρ
−
[(
ω2

c2
+k2

ζ

)
ρ2− `2

α2

]
F`,kζ = 0. (21)

On retrouve l’équation différentielle de Bessel modifiée d’ordre imaginaire i`/α,
avec les solutions [Dun90; Olv+10]

F`,kζ (ρ) = e`Ĩ`/α (ω̄ρ) +f`K̃`/α (ω̄ρ) , (22)

où ω̄=
√
k2
ζ +ω2/c2 et e`,f` sont constantes d’intégration [Olv+10]. La première

solution peut être rejetée car elle diverge à de grandes distances de l’axe, ce qui
signifie que e` = 0. Comme nous avons obtenu de l’optique géométrique, les
champs se concentrent le long de l’axe du dispositif, comme le montre la figure
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(a) (b)

Figure 9: Les amplitudes d’onde radiale K̃ pour les valeurs fixes ` = 1, α =
0.17,0.5 et ω̄ = 1,2. (a) pour α = 0.5 et (b) pour α = 0.17. Les lignes continues
et pointillées font référence à ω̄ = 1 et ω̄ = 2, respectivement. Plus la valeur de
α est faible, plus les champs oscillent près de l’origine. Sur de grandes distances,
le comportement est exponentiel et ne dépend pas de `/α.

9. Pour un plan z= const., la distribution d’intensité des champs en propagation
peut être représentée sous la forme |K̃`/α(ω̄ρ)|2, voir Fig. 10.

Figure 10: Ceux à gauche (droite) correspondent à ω̄ = 0.67 (ω̄ = 1). Ceux du
haut (bas) correspondent à α= 0.90 (α= 0.83). Tous les cas sont pour `= 1.

4 Conclusions
Nous constatons que les champs massiques et non-massiques sont confinés à la
corde cosmique «ondulée» quand nous examinons la propagation non perpen-
diculaire à son axe. Cette affirmation est basée sur l’analyse des trajectoires et
l’application du formalisme ondulatoire. Enfin, nous proposons la conception
d’un guide d’onde optique ayant l’indice de réfraction spécifique permettant
de simuler l’effet des cordes ondulées en laboratoire. En fait, notre analyse
concernant la disinclinaison hyperbolique étant très proche de la précédente
pour la corde ondulée, nous permet d’appliquer le formalisme ondulatoire avec
des traitements d’optique géométrique pour comprendre la propagation de la
lumière. Nous trouvons que pour un agencement spécifique du directeur (di-
recteur circulaire) du cristal liquide hyperbolique, la lumière est confinée et
dirigée vers l’axe du métamatériau. Plus précisément, on obtient un dispositif
optique qui concentre les rayons de lumière, quelles que soient les conditions
d’injection.
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