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a b s t r a c t Time series with missing values occur in almost any domain of applied sciences. Ignoring missing values can lead to a loss of efficiency and unreliable results, especially for large missing sub-sequence(s). This paper proposes an approach to fill in large gap(s) within time series data under the assumption of effective information. To obtain the imputation of missing values, we find the most similar sub-sequence to the sub-sequence before (resp. after) the missing values, then complete the gap by the next (resp. previous) sub-sequence of the most similar one. Dynamic Time Warping algorithm is applied to compare sub-sequences, and combined with the shape-feature extraction algorithm for reducing insignificant solutions. Eight well-known and real-world data sets are used for evaluating the performance of the proposed approach in comparison with five other methods on different indicators. The obtained results proved that the performance of our approach is the most robust one in case of time series data having high autocorrelation and cross-correlation, strong seasonality, large gap(s), and complex distribution.
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Notations and Abbreviations

Introduction

Context of the subject

Huge time series can now be considered thanks to the availability of effective low-cost sensors, and the wide deployment of remote sensing systems. But collected data are commonly incomplete for various reasons such as sensor errors, transmission problems, incorrect measurements, bad weather conditions (outdoor sensors) for manual maintenance, etc. Missing data are a major drawback which particularly affects marine samples [1,2]. An example of recent data is a characterization of seawater collected by the MAREL Carnot station. This station is a marine water monitoring platform in the eastern English Channel located in Boulogne-sur-Mer, France ( [3]). Its objective is to find out how the bloom of algae (phytoplankton) disrupted the coastal ecosystem of the eastern Channel. The aforementioned data contain 19 large time series sampled every 20 minutes including fluorescence, turbidity, oxygen saturation, . . . , and measured by sensors. The analysis of this dataset with extraordinary size and shape allows us to reveal events such as algal blooms and to understand phytoplankton processes in detail. But the data include a vast number of missing values viz., 62.2% for phosphate, [START_REF] Hsu | KNN-DTW Based Missing Value Imputation for Microarray Time Series Data[END_REF].9% for nitrate, 27.22% for pH, 12.32% for fluorescence and so on. Most of proposed models for time series analysis suffer from one major drawback, which is their inability to process incomplete datasets, despite their powerful techniques. They usually require complete data, ie. without missing values (MV). Missing data produce a loss of information and can generate inaccurate data interpretation. So how can missing values be dealt with? Ignoring or deleting is a simple way to solve this drawback (also known as complete case analysis). However, this solution has to pay a high price because of losing valuable information, especially when dealing with a small dataset. This is prominent in time series data where the considered values depend on the previous ones. Furthermore, an analysis based on the systematic differences between observed and unobserved data leads to biased and unreliable results [4]. Thus, the filling procedure is a mandatory and precursory pre-processing step before performing other steps such as modeling/classification, etc. The imputation technique is a conventional method to handle the MV problem [5]. In addition, it is necessary to select or propose imputation methods that suit to the type of data and that are consistent with the missing values mechanism.

For low frequency systems with a monthly sampling or small missing sequence, they can be easily filled in and they do not affect the global results. In this case, a linear or polynomial regression (of order 2) can use to complete missing values. But problems arise when completing missing values of high frequency systems with quick dynamics change such as MAREL Carnot data and purpose [6]. Moreover, the lack of data is not randomly distributed and the size of consecutive missing values (called a gap) is large. The analysis of such data can result in biased interpretations. For example, pH signal contains the largest gap of 234 days, and in this case, we cannot detect phytoplankton bloom (this can only occur in a duration of one day to one month). Thus, imputation techniques such as moving average or regression methods are not effective. Completion becomes more complex when adding variability (and noise) due to the high frequency system. In other words, for time series data, present values and past ones are often related. Thus, it is important to consider the whole history (i.e. dynamics) of each signal to complete each gap. To deal with the problem of missing values, a natural solution is to look for the same behavior or shape within time series which amounts to retrieving similar values in the series before or after the missing values. Then missing data are completed with the sequence of following/previous similar values.

Approaches and methodology

Dynamic Time Warping (DTW, also called elastic matching) [7] is an effective and well-known method for measuring similarity between two linear/nonlinear time series. The success of DTW in data mining [8], information retrieval and pattern recognition [9,10,11] leads us to study its ability to complete missing values in our context of detection and modelization of event states from time series data. This method calculates a geometric distance between two curves to assess their similarity. The method accepts temporal and local expansions. The algorithm consists in mapping pairs of points that minimizes the Euclidean distance between them, so an overall similarity cost is defined as a sum of intensity distance between all paired points. The elastic matching is widely used in speech or handwriting recognition. Sakoe and Chiba [7] proposed this method to calculate the elastic distance in recognizing spoken words (a word can be pronounced with different sound and length variation). For handwriting recognition, Rath and Manmatha [12] used images of words in their experience and showed that the elastic pairing was an effective method to take into account a spatial variability of the word. DTW matching cost was also used for data classification [13]. Petitjean et al. [14] proposed the DBA (DTW Barycenter Averaging) approach to compute an average of a set of sequences under DTW. Then, DBA was particularly used instead of the Euclidean distance in the K-means algorithm to successfully cluster satellite image time series.

Another class of approaches to handle missing data problem is the fuzzy set theory. This theory makes it possible to deal with imprecise and uncertain circumstances [15]. Imprecision is classically due to sensors. Hence, time series can be considered as fuzzy as pointed out by Chen et al. [16]. Unfortunately, time series are also saddled by problems of incompleteness (missing data) and randomness (noise). This inclines us to focus on fuzzy similarity measures by proposing a more generic uncertainty model. Our study follows the success of existing techniques of weighting similarity measures and fuzzy-based similarity measure. Indeed, these methods tend to produce accurate predictions. Some notable areas where weighted similarity measures are employed are numerous as retrieval systems [15], recommendation systems [17], and collaborative filtering [18,19]. While fuzzy-based similarity measure has also been successfully used in [20,15,17] .

The robustness of these approaches has opened a new scope by weighting similarity measures based on fuzzy logic to solve the incompleteness problem in time series data. A classical approach to build a new fuzzy-weighted similarity measure is to use a rule-based technique. This technique has been widely implemented in different applications like online learning [21], time series prediction [22], knowledge extraction from data streams [23], equilibrium problem in economics [24] or in [15], and so on. These potentials lead us to deploy a rule-based technique to build a fuzzy-weighted similarity measure which is applied to complete large missing values in uncorrelated multivariate time series.

Contributions of the PhD thesis

The thesis focuses on the investigation and the development of algorithms to complete missing values in time series. Two types of data are studied to propose imputation methods including univariate and uncorrelated multivariate time series. The contributions of the study are stated as follows:

• The first contribution is the proposition of new features allowing better describe global shape and dynamics of a signal (named, shape-feature extraction algorithm). This algorithm is then used to extract features of phytoplankton signals in order to identify phytoplankton species.

• Our second contribution is to propose an effective method, namely DTWBI (DTW Based Imputation), to complete successive missing data in mono-dimensional time series. This method is based on the combination of the proposed shape-feature extraction and Dynamic Time Warping approaches. The performance of the algorithm is compared with published methods on various real and synthetic databases. We then propose a framework to compare the performance of different DTW variants for the univariate imputation task in marine context.

• The third contribution is an extension of DTWBI to fill large missing data in low/uncorrelated multivariate time series, called DTWUMI (DTW based Uncorrelated Mul-tivariate Imputation). This approach is also based on the elastic matching and shapefeature extraction algorithms. A comparison between DTWUMI approach and state-ofthe-art algorithms is implemented to assess the performance of the proposed algorithm on different real and simulated databases.

• The fourth contribution focuses on developing a novel approach for filling successive missing values in low/un-correlated multivariate time series with a high level of uncertainty management, namely FSMUMI (Fuzzy Similarity Measure based Uncorrelated Multivariate Imputation). In this way, we propose to use a novel fuzzy weighted similarity measure based on fuzzy grades of basic similarity measures and fuzzy rules. To evaluate the ability of the proposed approach, we compare it with other published methods on various large time series.

• The final contributions are concrete applications of the DTWBI method i) to complete the MAREL Carnot database and then perform a detection and characterization of usual/rare events in these time series and ii) to forecast univariate meteorological time series collected in Vietnam.

Outline of the PhD thesis

The manuscript is divided into three parts: an introductory part presenting general notions and mechanisms related to missing data, the experiment protocol and indicators to evaluate imputation methods (Chapter 1), a main part covering the completion of the missing data in mono-dimensional and multidimensional time series (Chapters 2 and 3), then an application part dedicated to classify phytoplankton species, detect rare/extreme events in a real dataset and forecast univariate meteorological time series (Chapter 4). Chapter 1 first introduces the definition of univariate/multivariate time series. It then presents the mechanism of missing data described by Little and Rubin ([25]) and our concepts about categorization of missing values. The characterization of univariate time series is also discussed. Finally, the design of the experiments is mentioned including the experimental protocol for the imputation task and criteria using to evaluate completion algorithms.

Chapter 2 is devoted to the first main contribution of this thesis. It provides the basic foundation of Dynamic Time Warping approach and how the DTW works. A review of different versions of DTW is also presented. A new imputation approach (DTWBI) for univariate time series is proposed. This approach is based on the combination of the shape-feature extraction and Dynamic Time Warping methods. Another contribution of this chapter is the proposition of a framework for filling missing values in univariate time series. Thus a comparison of different versions of DTW is performed for the imputation task. The goal is to identify the most suitable methods for the imputation of marine univariate time series ensuring that results are reliable and high quality.

Chapter 3 highlights the second main contribution of this study. We propose two novel methods to estimate missing data for low/un-correlated multivariate time series. In these two approaches, we take advantage of the property of low/un-correlated multivariate data but we exploit this feature in two different aspects. In the first approach, we apply the major principle of DTW method and shape-feature extraction algorithm to complete large missing values. In the second approach, we impute large gaps in low/un-correlated multivariate data with a high level of uncertainty. In this way, we build a new hybrid similarity measure based on fuzzy grades of basic similarity measures and on fuzzy logic rules. Experimental results of the two proposed approaches are compared with results obtained from the state-of-the-art methods.

Chapter 4 corresponds to applications of the shape-feature extraction algorithm and DTWBI approach via three specific developments:

• The first application focuses on the classification of phytoplankton species. Accordingly, we propose the shape-feature extraction algorithm to extract features of phytoplankton signals obtained from flow cytometry (FCM). We then compare the performance of various classifiers on the proposed type of features and two other types of features to find the most convenient features type for the classification of phytoplankton.

• The second part of this chapter is devoted to high frequency MAREL Carnot data. The objective is to complete missing values of this dataset and then carry out a detection of rare/extreme events using multi-level spectral clustering approach.

• The third part is dedicated to compare univariate forecasting methods for meteorological time series. Inspired from the imputation process, we apply DTWBI to forecast univariate time series and perform a comparison of different univariate forecasting algorithms.

Finally, we conclude this PhD thesis with a highlight of our contributions and discuss possibilities for further research that could be investigated. This thesis is a part of CPER MARCO project (marco.univ-littoral.fr) and is made in collaboration with IFREMER LER-BL (https://wwz.ifremer.fr/manchemerdunord/Environnement/LER-Boulogne-sur-Mer), LOG UMR CNRS (http://log.cnrs.fr) and VNUA (http://www.vnua.edu.vn/). 

Chapter 1

Time series

A time series is a collection of observations (a sequence of data points), typically consisting of successive measurements made over a time interval.

Lots of useful information can be obtained from collected time series. They are very common in statistics, signal processing, pattern recognition, econometrics, mathematical finance, weather forecasting, intelligent transport and trajectory forecasting, earthquake prediction, control engineering, astronomy, communications engineering, and largely in any domain of applied science and engineering which involves temporal measurements.

Usually, we can distinguish univariate from multivariate time series. We use capital letters to denote multi-variables, and lowercase letters to denote univariate.

Univariate time series refers to data from one variable recorded sequentially in uniform intervals, for example, hourly energy consumption, daily temperature in a city. x = {x t |t = 1, 2, • • • , N} denotes a univariate time series of N successive observations indexed in time.

Multivariate time series is used when a group of time series variables are involved and their interactions may be considered. A multivariate time series is represented as a matrix X N×M with M collected signals of length N. x(t, i) denotes the value of the i-th signal at time t.

x t = {x(t, i), i = 1, • • • , M} is the vector at the t-th observation of all variables.

Missing data mechanisms

Missing data, or missing values infer the existence of observations whose values are either not collected or lost after registering or corresponding to wrong values (out of the sensor range) in the database. In the literature, missing data mechanisms can be divided into three categories.

Each category is based on one possible cause: "Missing data are completely random" (Missing Completely At Random, MCAR, in the literature), "Missing data are random" (Missing At Random, MAR) and "Missing data are not random" (Missing Not At Random, MNAR) ( [25]).

A detailed discussion is presented as follows:

• Missing Completely At Random, MCAR Missing data are considered as MCAR when the missingness of data is unrelated to any value (the values of missing variable itself or the values of any other variable). This means these missing data points make a random subset of the data and are completely unsystematic. For example, when a person refuses to disclose his income, this does not affect his actual income nor the income of his family. Similarly, ignoring MCAR missing values does not make the data analysis biased but will increase the standard error of the sample estimates due to the reduced sample size [26].

• Missing At Random, MAR Missing data are MAR, that means probability of missing values depends only on the observed data, but not the missing data. In the other hand, the missing values of a variable depend on available values of itself and other variables. This makes it possible to estimate missing data based on other variables. For instance, evaluating students participating in a subject includes two exams: midterm exam and final one. In order to take the final exam students must pass the midterm exam. Assuming that a student fail the midterm exam and he/she drops out of the course. Thus, the missing final exam for this student is MAR.

• Missing Not At Random, MNAR Missing data are MNAR if the propensity of missing values depends on other missing values. Thus with this type of missing data, we cannot estimate incomplete data from existing variables. To extend the previous example, when a student may pass the midterm exam but he/she may be absent at for the final exam.

It is important to understand causes that produce missing data in order to develop an adaptable imputation task. This can in-turn aid in the selection or proposition of an appropriate imputation algorithm ( [27]). But in practice, understanding the causes remains a challenging task when missing data cannot be known at all, or when these data have a complex distribution ( [28]).

We note that these missing mechanisms are just assumptions about reasons for the lack of data in the context of analysis. Thus from a hypothetical standpoint, they cannot be verified (except for the MCAR hypothesis) and there are no characteristics of the data itself. Similarly, assigning sub-sequences of missing values to "a category can be blurry" ( [27]). Commonly, most current research works focus on the three types of missing data previously defined to find out corresponding imputation methods. But Molenberghs et al. advised that it would always be better to check the robustness of the analytical results to different assumptions with sensitivity analysis ( [29], Part V). For these reasons, in this study, we consider missing data as 2 types: isolated missing values and gap -missing consecutive values. Let consider some terminologies and a real marine dataset to illustrate the problem. Given an univariate time series x = {x t |t = 1, 2, • • • , N} with N observations. A single hole at time t is an isolated missing value when observations at time t -1 and t + 1 are available. We note x t = NA (NA stands for Not Available).

• T-gap missing values

A hole of size T , also called gap, is an interval [t : t + T -1] of consecutive missing values and is denoted x[t : t + T -1] = NA. We define a large gap when T is larger than the known-process change, so it depends on each application.

To clarify these definitions, let us consider the MAREL Carnot dataset ( [30]). These data contain single and large holes. For example, oxygen saturation series has 131,472 observations but only 81.9% are available. This series comprises 4,004 isolated missing values and many consecutive missing data. The size of these gaps is highly variable from one hour to few months, the largest gap of this signal is composed of 3,044 missing points corresponding to 42 days. According to Dickley scheme [6] on phytoplankton dynamics, we can only evaluate algae blooms when missing data range from 1 week to 2 weeks. For larger gaps, we cannot detect the phytoplankton boom dynamics or composition. CHAPTER 1. PRELIMINARIES

Time series characterization

Filling gaps in time series requires firstly to characterize the data. This step is essential, whatever the basis of data, in order to extract useful information from the dataset and makes the dataset easily exploitable. It is particularly interesting to carry out an exploratory of data analysis to choose or propose suitable imputation algorithms. The decomposition of a time series can be carried out according to two models:

Composition of time series

The additive model used is:

x t = m t + s t + e t
(1.1)

Time series characterization

The multiplicative model used is:

x t = m t * s t * e t (1.2)
Note that the logarithmic transformation of a multiplicative model makes an additive one: 

Auto-correlation function (ACF)

Besides these four components, when analyzing time series data, we also consider the autocorrelation factor (ACF). This coefficient measures linear dependence between pairs of observations y(t) and y(t

+ h), h = 1, 2, • • • (h is lagged values, autocorrelation values range from -1 to +1
). ACF provides an additional important indication of the properties of time series (i.e.

how past and future data points are related). Therefore, it can be used to identify the possible structure of time series data, and to create reliable forecasts and imputations ( [27]). High auto-correlation values mean that the future is strongly correlated to the past.

The calculation of the autocorrelation provides an important indication of the properties of a time series such as the determination of frequencies and amplitudes. It is thus possible to find the main periods of a signal from a correlogram. Indeed, when the correlation coefficient tends to 1, we can say that the offset τ corresponds to a period. This coefficient ρ(τ) is defined via the ratio of the functions of the coefficient of auto-covariance γ(τ) [33] as follows:

ρ(τ) = γ(τ) γ(0) (1.4) 
It should be noted that when the signal is stationary, having a constant variance, the autocorrelation coefficient becomes eq. :

ρ(τ) = γ(τ) σ 2 (1.5)
When ρ = -1 indicates a perfect negative linear relationship, ρ = 0 represents no linear relationship, and ρ = 1 indicates a perfect positive linear relationship. 

Correlation

Correlation (correlation between variables) is a measure of the statistical relationship between two variables. This coefficient can give a suggestion on what convenient methods can be used for the imputation task. This means a dataset presents high correlation between pairs of variables, it might be suitable to use models that exploit information between variables. Here the Pearson product-moment correlation coefficient has been used as a measure. It is calculated by dividing the covariance of two variables by the product of their standard deviation as function 1.11.

Cross-correlation (recurrent data for univariate time series)

Cross correlation (also called lagged correlation) is a common phenomenon of many natural physical systems. It indicates the relationship between two time series: one series may be shifted in time relative to the other one (related to past lags of the other one). This coefficient is particularly important to evaluate the causal relationship between two signals in time, as a function of number of offset observations. We consider N pairs of observations on two time CHAPTER 1. PRELIMINARIES series x t and y t , with h is the lag. Following Chatfield [33], the cross-covariance function is computed as:

c xy (h) = 1 N N-h ∑ t=1 (x t -x)(y t+h -ȳ), h = 0, 1, • • • , N -1 (1.6) or c xy (h) = 1 N N ∑ t=1-h (x t -x)(y t+h -ȳ), h = -1, -2, • • • , -(N -1) (1.7)
where x and ȳ are the means of x t and y t respectively.

This cross correlation measure can be calculated by obtaining the covariance between two time series, and normalizing it with respect to the standard deviations of both time series.

r xy (h) = c xy (h) c xx (0)c yy (0) (1.8) 
with c xx and c yy are the variances of x t and y t .

Two terms of "lead" and "lag" relationships are used to refer to the cross-correlation function as described by equations 1.6 or 1.7. The equation 1.6 means that x t is shifted h samples back in time relative to y t . In this case x t is said to "lead" y t or y t is said to "lag" x t . The equation 1.7 displays the reverse situation. Therefore, we use a technique comprising three steps to evaluate the results as follows:

Experiments protocol

• The 1 st step: Create artificial missing data by deleting data values from full time series.

• The 2 nd step: Apply the imputation algorithms previously mentioned to complete missing data. The result of this step thus is time series containing imputed values.

• The 3 rd step: Assess the performance of proposed methods and compare with published algorithms. In this step, we evaluate the performance of each imputation method by comparing the imputed values with the true values (the original full time series). We use different performance indicators as defined in next section.

Measurements for evaluating imputation methods

In this study, the completion data and observed data are compared to assess the performance of imputation methods. To do this, seven performance indicators are introduced including Similarity (Sim), Normalized Mean Absolute Error (NMAE), Root Mean Squared Error (RMSE), coefficient of determination (R 2 ), FB (Fractional Bias), FSD (Fraction of Standard Deviation and FA2. Depending on each application that we use some of these indices. The indicators are computed as follows:

1. Similarity: defines the similar percentage between the imputed values (y) and the respective true values (x). It is calculated by:

Sim(y, x) = 1 T T ∑ i=1 1 1 + |y i -x i | max(x)-min(x) (1.9) 20 CHAPTER 1. PRELIMINARIES
Where T is the number of missing values. A higher similarity (similarity value ∈ [0, 1]) highlights a better ability method for the task of completing missing values. If signal is a constant (x = constant), we set max(x)min(x) = 1.

NMAE:

The Normalized Mean Absolute Error between the imputed values y and the respective true values time series x is computed as:

NMAE(y, x) = 1 T T ∑ i=1 |y i -x i | V max -V min (1.10)
Where V max , V min are the maximum and the minimum values of input time series (time series has missing data) by ignoring the missing values. The NMAE value lies in the range of 0 to ∞. In case of constant signal, we set V max -V min = 1.

A lower NMAE value means better performance method for the imputation task.

3. R 2 score: is calculated as the square of Pearson's coefficient (with p-value) y and x. The coefficient is a measure of the strength of the linear relationship between two variables.

In the imputation context, this coefficient measures the degree of association between the imputed values y and the corresponding actual values (x). The R 2 parameter ranges between 0 and 1. Hence, a value closer to 1 indicates a strong predictive ability (imputation values are very close to true values). The correlation coefficient is computed as follows [34]:

R = ∑ T i=1 (x i -x)(y i -ȳ) ∑ T i=1 (x i -x) 2 ∑ T i=1 (y i -ȳ) 2 (1.11)
4. RMSE: The Root Mean Square Error is a frequently used measure to evaluate the quality of a model (an estimator or a predictor). RMSE is defined as the average squared difference between the imputed values y and the respective true values x. Formally, it is computed as:

RMSE(y, x) = 1 T T ∑ i=1 (y i -x i ) 2 (1.12)
This indicator is very useful for measuring overall precision or accuracy. The range of RMSE lies between 0 to ∞. A RMSE of zero illustrates that a perfect imputation model but in reality, it cannot be achieved. In general, the most effective method would have the lowest RMSE.

1.4. Experiments protocol 5. FSD (Fraction of Standard Deviation) of y and x is defined as follows:

FSD(y, x) = 2 * |SD(y) -SD(x)| SD(y) + SD(x) (1.13)
This fraction indicates whether a method is acceptable or not (here SD stands for Standard Deviation). For the imputation task, if FSD is closer to 0, the imputation values are closer to the real values.

6. FB -Fractional Bias between the imputed values y and the respective true values time series x is defined by eq. 1.14. This parameter determines whether the imputation values are overestimated or underestimated relatively to those observed. A model is considered as perfect when its FB tends to zero, and as acceptable when -0.3 ≤ FB ≤ 0.3

FB(y, x) = 2 * mean(y) -mean(x) mean(y) + mean(x) (1.14) 
7. FA2: represents the fraction of data points that satisfied smoothing amplitude cover. It is calculated as:

FA2(y, x) = length(0.5 ≤ y x ≤ 2) length(x) (1.15)
A model is considered perfect when FA2 is equal to 1.

Illustration

We illustrate the computation of these indicators by giving an example. Six different signals are created (including: Query, Reference, Reference2, Reference3, Reference4 and Reference5 (see figure 1.4)) in the following way:

The Query is composed of three periods with three different sine waves.

The Reference is generated from the Query by changing its phase.

Three signals Reference2, Reference3 and Reference4 are just three constant lines.

The final series, Reference5, is yielded by adding small noise to the Query. The noise is generated from a uniform distribution of the same size of the query between 0 and 0.1.

Table 1.1 shows the values of previous criteria between the Query and various references.

Zero value means that the two signals are similar. From the above results we can find that these are very useful indicators to evaluate imputation algorithms. 

Chapter conclusion

In this chapter, we first introduce notions of univariate and multivariate time series. Then missing data concept is presented and missing data mechanisms are discussed. The next part of this chapter, we inform the characterization of time series including the decomposition of time series data (trend, seasonality,...), the auto-correlation, the correlation and the recurrent data.

Finally, the experiments protocol is mentioned to the validation and evaluation of imputation methods comprising experimental process and performance measurements.

Introduction

In this chapter, we present a detailed methodology to impute missing values in univariate time series based on combining the shape-feature extraction and Dynamic Time Warping (DTW) algorithms. Firstly, it is important to understand the meaning and context of the applied approach, so they are introduced in Section 2. 

Introduction

Time series with missing values occur in almost domains of applied sciences. These missing data may occur for a variety of reasons, for instance during maintenance, failure of measuring instruments, data transmission problem etc. This is particularly the case for marine samples ([1], [2]). Furthermore, most time series analysis algorithms and most statistical softwares are not designed to handle data with missing values. They often require complete data. However, the regularization of time series makes it possible to complete missing values [35]. For low frequency systems with monthly sampling, it is simple to apply a linear or polynomial regression or moving average to fill in the series. Problems arise when completing missing values of high frequency systems with quickly dynamics change.

For example, the MAREL-Carnot dataset, sampling frequency every The first potential consequence of this method is information loss which could lose efficiency ( [36]). The second consequence is about the systematic differences between observed and unobserved data that leads to biased and unreliable results ( [4]).

Therefore, it is crucial to propose a new technique to estimate missing values. One prospective approach to solve missing data problems is the adoption of imputation techniques ( [5]).

These techniques should ensure that the obtained results are efficient (having minimal standard errors) and reliable (effective, curve-shape respect).

In the literature, regarding imputation methods, a large number of successful approaches have been proposed for completing missing data. For multivariate time series, efficient imputation algorithms estimate missing values based on the values of other variables (correlations between variables). However, handling missing values within univariate time series data differs from multivariate time series techniques. We must only rely on the available values of this unique variable to estimate the incomplete values of the time series. Moritz et al. [27] showed that imputing univariate time series data is a particularly challenging task.

Fewer studies are devoted to the imputation task for univariate time series. Allison [37] and

Bishop [START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF] proposed to simply substitute the mean or the median of available values to each missing value. These simple algorithms provide the same result for all missing values leading to bias result and to undervalue standard error ( [START_REF] Crawford | A comparison of anlaytic methods for non-random missingness of outcome data[END_REF], [START_REF] Sterne | Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls[END_REF]). Other imputation techniques for univariate time series are linear interpolation, spline interpolation and the nearest neighbor interpolation. These techniques were studied for missing data imputation in air quality datasets ( [5]). The results showed that univariate methods are dependent upon the size of the gap: the larger gap, the less effective technique. Similarity Measure (VWSM) algorithm ( [START_REF] Chiewchanwattana | Imputing incomplete time-series data based on varied-window similarity measure of data sequences[END_REF]). This method is better than the spline interpolation, the multiple imputation, and the optimal completion strategy fuzzy c-means algorithms.

However, this research only focused on filling one isolated missing value, but did not consider sub-sequence missing. Dynamic Time Warping (DTW) [7] is an effective and well-known method for measuring similarity between two linear/nonlinear time series. The success of DTW in data mining [8],

information retrieval and pattern recognition [9,10,11] leads us to study its ability to complete missing values in time series. In addition, taking advantage of available values to estimate the missing values makes it possible to reconstruct data with more plausible values. Thus, the aim of this chapter is to propose an algorithm to fill large gap(s) in univariate time series based on Dynamic Time Warping ( [7]) by exploiting the information of available values. We do not deal with all the missing data over the entire series, but we focus on each large gap where series-shape change could occur over the duration of this large gap.

Further, the distribution of missing values or entire signal could be very difficult to estimate, so it is necessary to make some assumptions. Our approach makes an assumption that the information on missing values exists within the univariate time series and takes into account the time series characteristics.

Here, the main focus of this chapter is to investigate and propose a new algorithm for completing large gap based on DTW method. Therefrom, we first introduce and discuss the main ideas of Dynamic Time Warping approach and then summarize several modifications of DTW.

2.2 Literature review of Dynamic Time Warping

Classical DTW algorithm

In time series analysis, finding out the similarity between two time series is a vital task for numerous applications of time series. However, how do we define the similarity of two sequences (i.e time series)? And how do we find similar sequences quickly in a large databases with different type of data format? Euclidean distance is the most popular measure that allows to determine similarity and to index between two time series. But this distance is a very brittle and it cannot index time series accurately with two different time phases. So we need a method that permits to shift elastically on the time axis, and to contain sequences that are similar, but out of time phase.

Dynamic Time Warping or elastic matching was initially proposed to recognize spoken CHAPTER 2. DTW-BASED IMPUTATION APPROACH FOR UNIVARIATE TIME SERIES words [7], and then it has been widely used in many applied applications like pattern recognition [9,10], shape retrieval [START_REF] Bartolini | Warp: Accurate retrieval of shapes using phase of fourier descriptors and time warping distance[END_REF][START_REF] Marzal | Contour-Based Shape Retrieval Using Dynamic Time Warping[END_REF], gene expression [START_REF] Aach | Aligning gene expression time series with time warping algorithms[END_REF], and so on. Unlike the Euclidean distance, DTW optimally aligns with "warps" the data points of two time series (see figure 2.1 and figure 2.2). It consists in calculating a geometric distance between two curves in order to find their similarity. The method accepts temporal and local deformations, i.e two curves may have different lengths. The algorithm involves finding the optimal match between pairs of points which minimizes an Euclidean distance with certain restrictions. Let us present the DTW algorithm in detail.

Time warping

Given two time series x and y of length N and M respectively, where: x = {x 1 , x 2 , . . . , x N } and y = {y 1 , y 2 , . . . , y M }.

We want to align two time series based on minimized distance on a common time-axis.

Calculating DTW alignment between these two time series includes some steps. The first step is to create a cost matrix (N × M), where each (i th , j th ) item is the distance between The goal is to find a warping path which has the minimal overall distance.

Dynamic programming (DP) algorithm is used to find this warping path. DP is a robust method to deal with a big problem by dividing this problem into a collection of simple subproblems. Then each sub-problem is individually solved. The final results are combined from Note that while the two sequences have an overall similar shape, they are not aligned in the time axis. Euclidean distance, which assumes the i th point in one sequence is aligned with the i th point in the other, will produce a pessimistic dissimilarity measure. The nonlinear Dynamic Time Warped alignment allows a more intuitive distance measure to be calculated [START_REF]GenTXWarper -Dynamic Time Warping algorithm for gene expression time series[END_REF] all solutions to resolve the given problem. The next time, if the same sub-problem occurs, it will be simple to look up previously computed solution instead of recalculating its result.

DTW uses the dynamic programming equation (2.1) to determine dist(i, j) -the cost matrix.

The equation (2.1) can be considered as a symmetric formulation, because both points around the diagonal of the considered point have equal weights.

dist(i, j) = d(x i , y j ) + min{dist(i -1, j -1), dist(i -1, j), dist(i, j -1)} (2.1)

The next step, the warping path between time series is found by using the cost matrix which is filled by accumulated distances (defined by eq.2.1). Figure 2.3 shows the DTW process to find the warping path between x and y time series. Back-tracking the cost matrix, the warping path can be retrieved by applying a greedy method. Searching the warping path begins from dist(N, M) and backtracks to the bottom left, with the assessment of all the adjacent cells from left, down, diagonally. If one of these adjacent cells has the smallest value, it will be added to the starting point of the warping path until dist(1, 1) is reached.

Many warping paths can be generated from the equation (2.1), so in order to find the optimal warping path from these achievable warping paths, some criteria (constraints) must be satisfied.

These constraints make it possible to reduce the search space for warping paths and to increase the ability of the DTW algorithm. [START_REF]GenTXWarper -Dynamic Time Warping algorithm for gene expression time series[END_REF] and local criteria are described in the following:

• Local path criteria:

1. Boundary condition: p 1 = (1, 1) and p k = (N, M). The starting and ending points of the warping path must be the first and the last points of aligned sequences.

Monotonicity condition

: i 1 ≤ i 2 ≤ • • • ≤ i k and j 1 ≤ j 2 ≤ • • • ≤ j k . This condition
preserves the time-ordering of points.

3.

Step size condition (continuity): i li l-1 ≤ 1 and j lj l-1 ≤ 1. This criteria limits the warping path from long jumps (shifts in time) while aligning sequences (all points are matched).

Although warping path satisfies local constraints but it demands computing time. A question arises, how to speed up the calculation of DTW? A solution is to use global path criteria.

• Global path criteria:

Warping path satisfies the global path constrains is a path should be close to the diagonal.

This means that it restricts warping path how far it is from the diagonal (also called a warping window) in the cost matrix. This permits to improve the computing time of In the literature, many studies investigated to speed up the process of finding the warping path. Sakoe-Chiba band [7] and Itakura parallelogram [START_REF] Itakura | Minimum prediction residual principle applied to speech recognition[END_REF] are two criteria widely used.

Sakoe-Chiba is one of the simplest and most commonly used window, using equation (2.2) to decrease the calculation of cells in the cost matrix (figure 2.4a)

|i l -j l | ≤ r (2.2)
Itakura parallelogram [START_REF] Itakura | Minimum prediction residual principle applied to speech recognition[END_REF] is one of the most popular global constraints but it is not as simple as Sakoe-Chiba window. Figure 2.4b presents the Itakura parallelogram. The warping path must be satisfied global constraints (i.e. it is in the lozenge).

DTW algorithm has been applied in numerous domains and has a wide range of applications. To make it more applicable, many improvements of classical DTW have been proposed, which produced diverse variants of DTW method. In the following sections, we will discuss several modifications of this algorithm.

DDTW -Derivative Dynamic Time Warping

DDTW [START_REF] Eamonn | Derivative dynamic time warping[END_REF] is the modification of classical DTW to improve the DTW limitations. DTW tries to explain variability in the y-axis by warping the x-axis (a single point on one time series maps onto a large subsection of another time series -called this undesirable behavior "singularities"). It fails to find obvious, natural alignments in two sequences simply because a feature SERIES (i.e peak, valley, inflection point, plateau etc.) in one sequence is slightly higher or lower than its corresponding feature in the other sequence. Figure 2.5 illustrates this problem.

The modification is made on distance measure. In fact, DDTW estimates local derivatives of the data to find the correct warping. Keogh and Pazzani proposed to use square of distances of estimated derivatives instead of using Euclidean distance. With a given sequence x = {x 1 , x 2 , . . . , x N }, its derivative can be calculated by following equation:

Dx = (x i -x i-1 ) + x i+1 -x i-1 2 2 , 1 < i < N (2.3) DDTW's time complexity is O(M × N)
, which is the same as DTW. It is simple to calculate and it does not need to remove offset translation.

AFBTW -Adaptive Feature Based Dynamic Time Warping

Although DDTW has taken into account local shape of time series (derivation) but it does not take care of global shape of the time series. Hence, both DTW and derivative DTW may fail to align a pair of sequences on their common trends or patterns. To avoid this, Xie et al. [START_REF] Ying | Adaptive Feature Based Dynamic Time Warping[END_REF] proposed a new modification of DTW named Adaptive Feature Based Dynamic Time Warping. For each point in a sequence x = {x 1 , x 2 , . . . , x N }, a global feature and a local feature are calculated as follows:

• f local (x i ), the local feature of the data point x i , is defined as a vector of two components:

f local (x i ) = (x i -x i-1 , x i -x i+1 ) = (( f local (x i )) 1 , ( f local (x i )) 2 ) (2.4)

Literature review of Dynamic Time Warping

• Global feature of a data point x i :

f global (x i ) = (x i - i-1 ∑ k=1 x k i -1 , x i - N ∑ k=i+1 x k N -i ) = (( f global (x i )) 1 , ( f global (x i )) 2 ) (2.5)
In this method, instead of using Euclidean distance between x i and y j , the authors proposed to use a distance calculating as follows:

dist(x i , y j ) = w 1 dist local (x i , y j ) + w 2 dist global (x i , y j ) (2.6)
where dist(x i , y j ) is the overall distance between x i and y j . w 1 and w 2 weights are used to adjust the percentage influence of local and global criteria, and

w 1 + w 2 = 1, 0 ≤ w 1 ≤ 1, 0 ≤ w 1 ≤ 1. dist local (x i , y j
) and dist global (x i , y j ) are distances between x i and y j based on their local features and global features, and they are computed in the following:

dist local (x i , y j ) = |( f local (x i )) 1 -( f local (y j )) 1 | + |( f local (x i )) 2 -( f local (y j )) 2 | (2.7) dist global (x i , y j ) = |( f global (x i )) 1 -( f global (y j )) 1 | + |( f global (x i )) 2 -( f global (y j )) 2 |
(2.8)

Dissimilarity-based elastic matching

In the previous studies, the cost function provided by DTW, DDTW and AFBDTW is a relative measure, which cannot be easily interpreted by itself. It is a mean distance, which depends on the intensities of both signals. In order to make the response similar to the one of a human expert, Caillault et al. [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF] proposed a bounded measure of dissimilarity, between 0 and 1, that adapts the DTW matching cost. The authors defined a dissimilarity s, replacing the Euclidean distance d, as a ratio of distances:

s(x i l , y j l ) = d(x i l , y j l ) max{d(x i l , 0), d(y j l , 0)} (2.9)

where x = {x 1 , x 2 , . . . , x N }, y = {y 1 , y 2 , . . . , y M } and P = {(i l , j l ), l = 1 . . . k, i l = 1 . . . N, j l = 1 . . . M} is a matching path between the points of x and y signals.

In this work, an extended approach is also proposed allowing to calculate DTW distance on CHAPTER 2. DTW-BASED IMPUTATION APPROACH FOR UNIVARIATE TIME SERIES multidimensional signals (see [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF] for more detail).

Dynamic Time Warping-D algorithm (DTW-D)

Chen et al. [START_REF] Chen | DTW-D: Time series semi-supervised learning from a single example[END_REF] proposed an other version of DTW devoted to applications of time series semisupervised learning. The authors exploited the difference/delta between DTW and Euclidean Distance (ED) for the time series classification task. They showed that DTW-D provides better discrimination than DTW through experiments. Given two time series x and y, DTW-D distance is defined as follows:

DTW -D(x, y) = DTW (x, y)/(ED(x, y) + ε) (2.10)
where ε is a very small positive number that is used to avoid divide-by-zero error.

Illustration

In order to better understand these DTW algorithms, we have conducted a number of experiments to compare DTW, DDTW and AFBDTW. To examine the performance of different DTW versions for detecting the correct warping between two sequences we reuse the same signals in Chapter 1. Here, we focus on 3 following cases (the remaining cases, see in the appendix B):

The first case: We build the Query, and the Reference is produced by shifting the Query.

This means we know the correct warping.

The second case: We use the Query and create a line of 0 (we called the Reference4)

The third case: We take the Query and the Reference5 is yielded by making a copy of the Query and then adding small noise.

We can then use these pairs of signals as input of the three algorithms and compare warping paths. • DTW: the smallest value is the 5 th pair (Query and Reference5), the second one is the 4 th pair (Query and Reference4), followed by the 2 nd pair and the 1 st pair, and finally is the 3 rd pair.

• DDTW: the smallest distance is the 5 th pair (Query and Reference5), the second one is the 1 st pair (Query and Reference), followed by the 2 nd and the 4 th pair, and finally is the 3 rd pair.

• AFBDTW: the smallest cost is the 5 th pair (Query and Reference5), the second one is the 1 st pair, then following by the 2 nd pair, and lastly is the 3 rd and 4 th pairs. Here, we consider a large gap when T ≥ 6%N for small time series (N < 10, 000) or when T is larger than the known-process change. In this work, we always create the query with the same size of the considered gap in order to look for the similar window having the same dynamics. Furthermore, the algorithm is expandable by choosing a window after the gap. Here we build a query before the gap if its position is in the second half of the signal otherwise after the gap. This ensures that there is always enough data to search similar window.

To find the Qs similar sub-sequence, we use the principles of Dynamic Time Warping -DTW ( [7]), especially transformed from original data to Derivative Dynamic Time Warping -DDTW data ( [START_REF] Eamonn | Derivative dynamic time warping[END_REF]). The DDTW data are used because we can obtain information about the shape of sequence ( [START_REF] Eamonn | Derivative dynamic time warping[END_REF]). The dynamics and the shape of data before a gap are a key-point of our method. The elastic matching is used to find a similar window to the Q query of T size in the search database. Once the most similar window is identified, the following window will be copied to the location of missing values. Fig. 2.10 describes the different steps of our approach. In the proposed method, the shape-feature extraction algorithm ( [START_REF] Phan | Comparative study on supervised learning methods for identifying phytoplankton species[END_REF]) is applied before using DTW algorithm (cf. Fig. 2.10) in order to reduce the computation time. In general, time complexity of DTW requires O(N 2 ), so this is a very useful step to decrease computation time of the proposed method. A reference window is selected to calculate DTW cost only if the correlation between the shape-features (also called the global features) of this window and the ones of the query is very high. In addition, we apply the shape-feature extraction algorithm because it better presents the shape and dynamics of series through 9 elements, such as moments (the 1 st moment, the 2 nd moment, the 3 rd moment), number of peaks, entropy, etc (see [START_REF] Phan | Comparative study on supervised learning methods for identifying phytoplankton species[END_REF] for more detail). This is an important objective of the proposed method (i.e. we take into account the global shape of sequences before considering the local shape DTW). In Algorithm 1, we just mention the finding of similar windows before the gap. In case of finding similar windows after the gap, the method just needs to shift the corresponding index.

The detail of DTWBI (namely DTW-Based Imputation) algorithm is introduced in Algorithm 1. For each gap, DTWBI will be divided into 2 major stages. The first stage is to find a global threshold to determine two sub-sequences being similar (Step 4: in Algorithm 1). This threshold is calculated as follows: after creating the query Q, for each step_threshold, if the global shape between a reference window R i and the query Q is similar (this means that the consine value between global features of the two windows is greater than θ _cos), we will calculate DTW-cost between R i and Q. The DTW-threshold is estimated as the minimum distance obtained from all sequences R i analyzed with Q.

The second stage is to retrieve the most similar window to the query. Similarly to the first stage, with each step_sim_win, we only compute DTW cost between a sliding reference R i and the query Q as the correlation condition is satisfied. We then compare this DTW cost to the threshold to determine if this R i reference is similar to the query Q. R i reference and Q query are considered similar if their DTW cost is less than the threshold. We thereafter select the most similar window Qs with the minimum DTW cost of all the similar windows ( Step 5: in Algorithm 1). Lastly, the gap is completed by the Q f s vector after the Qs.

Validation procedure

This part is designed to validate our proposal and compare with state-of-the-art methods of data imputation (namely, na.interp, na.locf, na.approx, na.aggregate, na.spline). We assess these methods in terms of their efficacy of accuracy and shape between actual data with completion data using criteria for evaluation as defined in Chapter 1. In the following, we present the datasets, univariate time series imputation methods, and experimental results.

Data presentation

In this study, we analyze 8 datasets in order to evaluate the performance of the proposed technique. Four datasets come from TSA package ( [START_REF] Hyndman | Automatic time series forecasting: the forecast package for r, used package in 2016[END_REF]). These datasets are chosen because they are usually used in the literature, including Airpassenger, Beersales, Google, and SP. Besides, we also choose other datasets from various domains in different places:

1. Airpassenger -Monthly total international airline passengers from 01/1960 to 12/1971. 

k ← i + T -1 8:
Create a reference window:

R(i) = SDB[i : k] 9: Calculate global feature of Q and R(i): g f Q, g f R 10: Compute cosine coefficient: cos = cosine(g f Q, g f R) 11: if cos ≥ θ _cos then 12:
Calculate DTW cost: cost = DTW _cost(Q, R(i)) 

k ← i + T -1 22:
Create a reference window:

R(i) = SDB[i : k] 23: Calculate global feature of Q and R(i): g f Q, g f R 24: Compute cosine coefficient: cos = cosine(g f Q, g f R) 25:
if cos ≥ θ _cos then 26:

Calculate DTW cost: cost = DTW _cost(Q, R(i)) As introduced in Chapter 1, characterizing data is an important step that allows to choose an appropriate algorithm as well as to easily interpret results. In order to obtain useful information from the dataset and makes the dataset easily exploitable, we analyzed these series. ). A seasonal model is fitted to the data, and then interpolation is made on the seasonally adjusted series, before re-seasonalizing. So, this method is especially devoted to strong and clear seasonality data.

2. na.locf (last observation carried forward) (zoo R-package): This method replaces any missing value by the most recent available value prior to it ( [START_REF] Zeileis | zoo: S3 infrastructure for regular and irregular time series[END_REF]). This is one of the most simple algorithm which takes into account characteristics of time series. Because in fact, it has often a clear relation between a considered observation (at t n ) and its previous one (at t n-1 ), so this method is quite strong. For all data with daily sampling, this method is suited: the value of the next day seems similar to its predecessor (for example daily temperature). But it has disadvantages when there are large differences between observed value at moment t n and its previous point at t n-1 (especially in the case of time series having strong seasonality). In [START_REF] David | Missing data and the trouble with LOCF[END_REF], the author pointed out that the mean and covariance structure are usually distorted when using this method. Molenberghs et al. showed that locf is generally biased even under MCAR ( [START_REF] Molenberghs | Analyzing incomplete longitudinal clinical trial data[END_REF]).

In general, this method assumes that the outcome would not change after the last observed value. Therefore, there has been no time effect since the last observed data.

na.approx (zoo R-package):

This method is integrated in the zoo R-package. It use a linear interpolation to estimate each missing value ( [START_REF] Zeileis | zoo: S3 infrastructure for regular and irregular time series[END_REF]). The difference between this method and na.interp is that na.interp takes into account the seasonal component and na.approx does not take this. Therefore, with signals have no the seasonal factor, imputation results of the two methods are the same.

na.aggregate (zoo R-package): This algorithm applies a generic function to replace each

NA with aggregated values. This allows to complete a NA by using the overall mean, monthly means, etc ( [START_REF] Zeileis | zoo: S3 infrastructure for regular and irregular time series[END_REF]). In our experiment, we use the overall mean. With this computation, na.agrregate does not exploit the characteristics of time series. In particular, this method is not good when time series having a strong trend.

na.spline (zoo R-package):

This algorithm uses a polynomial (cubic) interpolation to complete missing data ([56]).

Results and discussion

For assessing the results, we apply the experiment protocol as previously defined in Chapter

1. In the present study, 5 missing data levels are considered on 8 datasets. When the size of 2.3. Dynamic Time Warping-based imputation for univariate time series a dataset (number of instants of the dataset) is less than or equal to 10,000 samples, we create gaps with different sizes: 6%, 7.5%, 10%, 12.5%, 15% of overall dataset size. In contrast, when the size of a dataset is greater than 10,000 sampling points, gaps are built at rates 0.6%, 0.75%, 1%, 1.25%, and 1.5% of the dataset size (here the largest gap of the water level time series is 1,972 missing values, corresponding to the missing rate 1.5%). For each missing rate, the algorithms are conducted 10 times by randomly selecting the missing positions on the data.

We then run 50 iterations for each dataset.

Results are analyzed in two respects comprising quantitative performance and visual ability.

• Comparison of quantitative performance

For this part, we compare similarity (Sim), NAME, RMSE, FSD of the real data with the imputed data resulting from the six imputation methods. similarity than it has on Google series. The na.aggegate method replaces missing values by overall mean. However, SP series has a clear trend; therefore, na.aggregate method seems not to be effective with series having a strong trend.

CO2 concentrations, Mackey-Glass chaotic, Phu Lien temperature, water level datasets Table 2.5 illustrates the results of different methods on 4 datasets comprising CO2 concentrations, Mackey-Glass chaotic, Phu Lien temperature, water level datasets. These datasets have a seasonality component (except Mackey-Glass chaotic series but this dataset is regularly repeated), without any trend (excluding CO2 concentrations dataset) and high auto-correlation. Our method demonstrates the best ability for completing missing data on these series: the highest similarity, the lowest NMAE, RMSE and FSD at any missing level. Furthermore, on Airpassenger, Beersales, Google and SP datasets, the similarity of our approach is lower, but the difference value of this indicator between the proposed method and the best method is small. On the contrary, for these four datasets, our method outperforms the remaining techniques on any indicator and at any missing rate. The different values of these indicators between the proposed method and the other ones are quite large. The results confirm that the imputation values generated from the proposed method are close to the real values on datasets having high auto-correlation (see Fig. 2.11, the ACF maximum values of water and chaotic series are approximate 1), which means that there is a strong relationship between the available and the unknown values.

Following the proposed method, the second one is na.aggregate method applied on the Mackey-Glass chaotic series, Phu Lien temperature and water level series. As mentioned 2.3), these datasets have no trend, that is why na.aggregate could demonstrate its ability. However, on the C02 series with clear trend, fully opposed to these 3 datasets, the performance of this method is the worst one.

Although na.interp method is well indicated for handling datasets with seasonality component: here for these 4 datasets this approach does not illustrate its capability. It gives the same results as na.approx method and lower results than our approach and the na.aggregate one (on the Mackey-Glass chaotic, Phu Lien temperature and water series). For any dataset, na.spline method indicates the lowest performance. However on the water series, this method has the least performance for completing missing values. This means that the spline method is not suitable for this task.

In all datasets, FSD value of na.aggregate and na.locf methods always equals 2, because they use the same value for all missing data (last value for na.locf method; overall mean for na.aggregate). Also, to be more persuasive about imputation results, we have conducted a new comparison as follows: we randomly chose 10 windows having the same size of the gap, then compute the average values to fill in the gap. Next we compare the results with all the above methods using the same indicators as previously defined. 2.4, considering low rates of missing data, the proposed approach is less effective than na.interp and na.aggregate methods for Airpassenger time series. However, when looking at Fig. 2.14, we find that the shape of the imputation values generated from DTWBI method is very similar to the shape of true values. Despite high similarity, low RMSE and NMAE, the shape of imputation values yielded from na.aggregate method (Fig. 2.13) is not as good as the proposed method (Fig. 2.14). As analyzed above, the na.interp method better deals with seasonal factor, so their imputed values are asymptotic to the real values (Fig. 2.13).

Fig. 2.15 illustrates the visual comparison of DTWBI imputation values and real values

on water level series at position 23,282, and at 0.6% rate of missing values (corresponding to 789 missing points). The proposed method proves again its capability for the task of completing missing values. We see that the shape of the imputation values generated from our method and the one of the true values are almost completely identical. ). In contrast to our approach, handling seasonal factor of na.interp method is ineffective on water level dataset. This method does not provide good result such as on Airpassenger series (Fig. 2.13); its performance is the same as na.approx method (Fig. 2.17). Fig. 2.18 especially points out the obvious inefficiency of na.spline method for the task of completing missing values, considering series with high auto-correlation and large gap size (789 missing values in this case).

In this work, we also calculate Cross-Correlation (CC) coefficients between the query with each reference window, and then we find the maximum coefficient. CC demonstrates that a pattern (here that is the query) exists or not in the database. High CC value means that there exists the recurrence of the pattern in the database. Therefore, we could easily find the pattern. Table 2.6

indicates the maximum of cross-correlation between the query and reference windows. This result is fully interpreted: for 4 datasets including CO2 concentrations, Mackey-Glass chaotic series, Phu Lien temperature and water level, their cross-correlation between the query and reference windows are very high for each missing level (Table 2.6). This corresponds to the results in Table 2.5: the proposed method yields the highest similarity and the lowest NMAE, RMSE, FSD. It also means that the imputation values generated from DTWBI method are very close to the true ones. For Google (#3) and SP (#4) datasets, we see that CC are not high, that is why our approach does not well prove its ability. With Airpassenger dataset (#1), when CC are greater than or equal to 0.94, the proposed method highlights better results than other methods.

On Beersales dataset (#2), DTWBI gives improved results in the case of higher CC.

From these results, we can notice that the proposed method gives the best performance in the case of high CC coefficient (> 0.9). Indeed, CC is an indicator that gives information about the pattern recurrence in the data. Based on this indicator, we can predict if one pattern may occur in the past or in the following data from the position we are considering. From the above analyses, we can see that our algorithm outperforms other imputation methods when datasets have high auto-correlation and cross-correlation, no trend, strong seasonality, and complex distribution, especially in the case of large gap(s). High cross-correlation means that these datasets are recurrent, or in other words, these time series will repeat themselves over some periods. The drawback of this method is the computation time. The proposed algorithm may take a long time to find the imputation values when the size of the given data is large. The reason is the search for all possible sliding windows to find a reference window having the SERIES maximum similarity to the query.

Conclusion

In this study, we complete missing data on univariate time series based on the combination of shape-feature extraction and DTW algorithms. The search of similar sequences by elastic matching makes it possible to complete a database with missing values while respecting as much as possible the dynamics and the shape of signals. Whereas applying the shape-feature extraction algorithm allows to reduce the computing time of the proposed method.

The proposed imputation approach, namely DTWBI, for univariate time series data with circular list permits to process a large dataset. DTWBI method has been tested on 8 datasets with various size, ranging from small to very large database (Airpassenger, Beersales, Google, SP, Co2 concentrations, Mackey-Glass chaotic, Phu Lien temperature, and water level). The accuracy of imputation values yielded by DTWBI is compared with 5 existing methods (na.interp, na.locf, na.approx, na.aggegate and na.spline) using 4 quantitative indicators (similarity, NMAE, RMSE and FSD) applied to 5 different simulation missing levels. We also compare the visual performance of these methods. The experiments show that our approach gives better results than the other existing methods, and is the best robust method in the case of time series having high cross-correlation and auto-correlation, large gap(s), complex distribution, and strong seasonality. However, the proposed framework is restricted to applications where the necessary assumption of recurring data in the time series is set up (high cross-correlation indicator), and it requires computation time for very large missing intervals.

In the past decades, several studies investigated to improve classical DTW for better comparing the similarity between two curves by integrating the notions of slope (DDTW [START_REF] Eamonn | Derivative dynamic time warping[END_REF]) and of curvature (AFBDTW [START_REF] Ying | Adaptive Feature Based Dynamic Time Warping[END_REF]) or by changing the final DTW cost applied to classify [START_REF] Chen | DTW-D: Time series semi-supervised learning from a single example[END_REF] or by comparing multidimensional series [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF]. In order to assess the ability of different DTW versions for filling in missing data, in the next section we perform a comparison of some DTW variants (including DWT, DDTW, AFBDTW, DTW-D) applied to univariate time series imputation.

Comparison of various DTW versions for completing missing values in univariate time series

Comparison of various DTW versions for completing

missing values in univariate time series

Introduction

In the previous section, we have proposed DTWBI method using classical DTW for reconstructing database. And in the section 2.2 we have discussed several variants of DTW introduced to improve the finding the similar of two sequences. In order to identify which variant is more suitable for the imputation task, in this part, we carry out a comparison of the performance of different DTW metrics applied to univariate time series imputation.

Dynamic Time Warping (DTW) [7] approach is used when no information are available, the idea is to find a similar shape in a database to fill the missing values. Related works to DTW are cited below, rare works deal with large gaps in univariate time series. On the other hand, there is no application for surveying imputation algorithms with large gap(s) size using directly DTW in the case of univariate time series. A gap is large when the process could have significant changes during this missing period. In addition, recall that for handing missing data within univariate time series, we must only rely on the available values of this unique variable to estimate the incomplete values.

Therefore, the objective of this part is to build a framework for filling missing values in SERIES univariate time series and to perform a comparison of different similarity DTW metrics for the imputation task. This allows to suggest the most suitable metric for the imputation of marine univariate time series ensuring that results are reliable and high quality.

Imputation based on DTW metrics

We keep the same idea as DTWBI approach to perform completing missing data. That is, in the previous section we have used the original DTW, this section we apply 3 different versions of DTW for univariate time series imputation, namely, Derivative DTW (DDTW) [START_REF] Eamonn | Derivative dynamic time warping[END_REF], DTW-D [START_REF] Chen | DTW-D: Time series semi-supervised learning from a single example[END_REF], and AFBDTW (Adaptive Feature Based DTW) [START_REF] Ying | Adaptive Feature Based Dynamic Time Warping[END_REF]).

The approach consists in finding the most similar sub-sequence (Qs) to a query (Q), with

Q is the sub-sequence before a gap of T size at position t (Q = X [t -T : t -1]
). Then, we complete this gap by the following sub-sequence of the Qs when this window is determined.

The mechanism is illustrated on the figure 2.9.

To obtain the Qs similar sub-sequence, we used different versions of DTW (as above mentioned). The dynamics and the shape of data before (resp. after) a gap are key-point of this technique. The elastic matching is used to find similar window to the Q query of T size in the search database. Once the most similar window is identified Qs, the following window Q f s will be copied to the location of missing values.

Data presentation

Five datasets are used for evaluating the performance of different DTW versions, including:

Cua Ong temperature, Gas online, Chlorophyll-a, fluorescence, and water level. The last three datasets are collected by IFREMER (France) in the eastern English Channel [3]. We have chosen 4 new datasets and reused water level signal in order to focus on marine data which were provided by the project we participate (CPER MARCO of our university (Chlorophyll-a, fluorescence, water level) and Vietnam (Cua Ong temperature)). Another goal is also to test our algorithm for different applications (so that we use Gas online series).

• Cua Ong temperature in o C -daily mean air temperature at the Cua Ong meteorological station in Vietnam from 1/1/1973 to 31/12/1999. In order to obtain useful information from the dataset and makes the dataset easily exploitable, we analyzed these series. 

Results and discussion

For assessing the results of imputation algorithms, we use the experiment protocol as designed in Chapter 1. This consists of three steps. In the first step, we create artificial missing data by deleting data values from full time series. The second step consists in applying the imputation algorithms to complete missing data. Finally, the third step compares the performance of different DTW metrics on various indicators as previously defined. We consider 5 missing data levels on 5 datasets. Gaps are built at rates 0.6%, 0.75%, 1%, 1.25%, and 1.5% of the dataset size (here missing sequences of the water level time series correspond to around 10 days (789 NAs) to 1 month (1972 NAs)). For each gap, the algorithms are conducted 10 times by randomly selecting the missing positions on the data. We then run 50 iterations for each dataset. 

Conclusion

This part compares a visual and quantitative performance of different DTW versions for univariate time series imputation. The obtained results show that when considering the accuracy of imputation values, DTW is the best robust and when regarding the shape of completed val- One way to solve the problem of missing values in this case is to find the same behavior or shape. This is equivalent to retrieve similar values. In the literature, similarity measures are used for broad range of applications such as classification, anomaly detection [START_REF] Han | Data Mining: Concepts and Techniques[END_REF], retrieval system [15], recommendation systems [17], imputation [START_REF] Phan | Dynamic time warping-based imputation for univariate time series data[END_REF] and pattern recognition [20]. So, our idea to deal with large gaps in low/un-correlated multivariate time series, is to retrieve similar sub-sequences on unique signal having missing values by using a similarity measure.

Moreover, weighting of different similarity measures could provide better prediction accuracy in many applications such as [15,17,18,19]. Particularly, imperfect time series can be modelled using fuzzy sets introduced by Zadeh [START_REF] Zadeh | Fuzzy sets[END_REF][START_REF] Zadeh | The concept of a linguistic variable and its application to approximate reasoning[END_REF]. The fuzzy approach makes it possible to deal with imprecise and uncertain circumstances [15]. The successfully use of fuzzy-based similarity measure [20,15,17] and weighting of different similarity measures [17,18,19] leads us to study the ability of fuzzy-weighted similarity measure to complete missing values in uncorrelated multivariate time series. To develop a new fuzzy-weighted similarity measure, in this study, we use a rule-based technique. This technique is power and widely employed in different studies like [15,21,22,23,24].

According to our knowledge, there is no application devoted to complete large gap(s) in uncorrelated multivariate time series using a fuzzy-weighted similarity measure and directly using DTW cost as a similarity criterion. Therefore, in this chapter, we propose two new approaches for filling large missing values in low/un-correlated multivariate time series by exploiting features of the uncorrelated data as follows:

1. DTWUMI method 3.1. Introduction

• We extend our previous method (DTWBI) to impute large missing values in uncorrelated multivariate time series, namely DTWUMI.

• We just consider one query and this query is built by taking into account all the signals either before or after each gap (i.e. preserving the time index for all the variables). The last allows to assure an acceptable similarity for each signal within the time series in the same temporal window.

• We only find the most similar window to the query and only utilize DTW cost as the similarity criterion to retrieve similar windows.

• We directly use data from the window following or preceding of the most similar window on the signal containing the considered gap to fill in the missing values.

FSMUMI method

• Since time series data are multidimensional but they are uncorrelated (or lowcorrelated), so we take advantage of this feature to handle each signal one by one. This is explained in step of building queries: on each incomplete signal, for each gap, we build two queries, one query before the gap and one query after this gap.

• We take into account an uncertainty factor. So, we develop a new fuzzy-weighted similarity measure by weighting of different popular similarity distances based on fuzzy logic. To obtain this similarity measure we propose to use a new fuzzy-rule interpolation scheme that adapts to the fuzzy rule-based structure and adapts to the finding of missing patterns in time series.

• We retrieve the two most similar windows with two queries on the data before the gap and data after the gap (this means that we process two separated databases) on the signal containing the gap using the new similarity measure.

• The final imputation values are the average of 2 vectors following and preceding of the two most similar windows.

And then we will compare both methods with published algorithms Moreover, estimating the distribution of missing values and whole signals is very difficult, so our approaches make an assumption of effective patterns (or recurrent data, here a pattern corresponds to the sub-sequence before (resp. after) a gap) on each signal.

The rest of this chapter is organized as follows. Section 3.2 details the DTWUMI approach based on the combination of DTW and shape-feature extraction methods, validation procedure (including data presentation, several state-of-the-art multivariate time series imputation algorithms), results and discussion, and conclusions for this part. Section 3.3 investigates the second proposal, FSMUMI, with the same subsections to the Section 3.2. Finally, conclusions are drawn and future work is presented in Section 3.4.

Dynamic Time Warping-based uncorrelated

multivariate time series imputation

DTWUMI -Proposed approach

In this part, we present our method for imputing missing intervals of low/un-correlated multivariate time series data based on DTW metric, named DTWUMI.

Let us recall some notations of multivariate time series and the concept of large gap.

A multivariate time series is represented as a matrix X N×M with M collected signals of size N. x(t, i) is the value of the i-th signal at time t. x t = {x(t, i), i = 1, • • • , M} is the feature vector at the t-th observation of all variables.

X is referred as incomplete time series when it contains missing values (or values are Not Available-NA). We define the term gap of T -size at position t as a portion of X where at least one signal of X between t and t + T -1 containing consecutive missing values (∃i|∀t

∈ [t,t + T -1], x(t, i) = NA).
Here, we deal with large missing values in low/un-correlated multivariate time series. For isolated missing values (T = 1) or small T -gap, classical techniques can be applied such as the mean or the median of available values [37,[START_REF] Bishop | Pattern Recognition and Machine Learning (Information Science and Statistics)[END_REF]. A T -gap is large when the duration T is longer than known change process. For instance, in phytoplankton study, T is equal to one hour for characterizing Langmuir cells and one day for algal bloom processes [6]. For small time series (N < 10, 000) without knowledge about an application and its change process (this depends on each application), we set a large gap when T ≥ 5%N. The major idea of our approach consists in finding the most similar sub-sequence (Qs) to a 3.2. Dynamic Time Warping-based uncorrelated multivariate time series imputation query (Q), with Q is the sub-sequence before (resp. after) a gap,

Q = X [t -T : t -1] = x 1 [t -T ] x 1 [t -T + 1] . . . x 1 [t -1] . . . x M [t -T ] x M [t -T + 1] . . . x M [t -1]
We then complete this gap by the following (resp. preceding) sub-sequence of the Qs of the signal containing the gap. In addition, the DTW algorithm requires long computational time. In order to decrease the computation time, before using DTW method to estimate imputation values, we deployed the shape-features extraction algorithm [START_REF] Phan | Comparative study on supervised learning methods for identifying phytoplankton species[END_REF]. We only calculate DTW cost of the query and a reference window when the correlation between the shape-features of this window and the ones of the query is very high. The shape-features extraction algorithm is utilized because it better maintains the shape and dynamics of series through 9 global features (see [START_REF] Phan | Comparative study on supervised learning methods for identifying phytoplankton species[END_REF] for more details).

Validation procedure

To validate our approach and compare with published methods (including MI, MICE, na.approx, missForest), we conduct experiments on 3 different datasets with the same protocol and gaps.

The experiments process includes 3 steps as previously mentioned in Chapter 1. We assess these methods in terms of their efficacy of accuracy and shape between actual data and completion data using criteria for evaluation as defined in Chapter 1. In the following, we present the datasets and multivariate time series imputation methods. After completing missing values, completion data will be compared with actual values in the full series to evaluate the ability of different imputation methods. Therefore, it is necessary to fill missing values in the water temperature. To ensure the fairness of all algorithms, filling in the water temperature series is performed by na.interp method ([53]).

Multivariate time series imputation algorithms

We compare our method with several commonly multivariate time series imputation approaches used state-of-the-art (including MI, MICE, na.approx, missForest). R language is applied to implement all these methods.

MI-Multiple Imputation

In the imputation methods introduced in Chapter 2 as na.approx, na.locf,. . . , each missing value is replaced by a value (in the literature, this is called a single imputation). Instead of completing a missing point by a single value, MI substitutes each missing value with a set of m plausible values [START_REF] Rubin | Multiple Imputation for Nonresponse in Surveys[END_REF]. MI procedure includes 3 steps (figure 3.3):

• Imputation: The missing data are completed m times to yield m complete data sets.

• Analysis: The m complete data sets are analyzed by using standard methods.

• Pooling: The m analyzed data sets are combined to a final result. 5. Repeat step 2 to 4 for all the remaining variables x 2 , . . . , x M in turn (it is called a cycle). The result of this step is that all missing data in dataset have been completed by estimations from regressions.

6. Repeat step 2 to 5 to create a number of cycles m.

In step 3, the regression model should be chosen to adapt the characteristics of variable. For example, a logistic regression should be used if x 1 is binary.

At the end of a cycle, one imputed data set is generated. This process is iterated m time to produce m multiple data sets. And then these m sets are combined by applying rules of Rubin.

m parameter should be specified by the user.

Linear interpolation -na.approx (zoo package) [START_REF] Zeileis | zoo: S3 infrastructure for regular and irregular time series[END_REF]: This algorithm uses a generic function with interpolated values to estimate missing data.

missForest [START_REF] Daniel | MissForest-non-parametric missing value imputation for mixed-type data[END_REF]: This approach is based on random forest algorithm to fill in missing data, particularly in the case of mixed-type data. It involves 2 stages:

• The 1 st stage: For each variable missForest builds a random forest model on the observed part.

• The 2 nd stage: The model, is built in the first stage, is used to predict missing values in the variable.

The algorithm performs these two steps until a stopping criterion is met or the user specified maximum of iterations is reached. The difference between the previous and the new imputation data is computed after each iteration. The imputation process will stop as soon as the difference has become larger once. In other words, the last imputation was less accurate than the previous one. So, the final results are the imputation values of the before last iteration (excepting the case that the user provides a number of iterations). For further details see [START_REF] Daniel | MissForest-non-parametric missing value imputation for mixed-type data[END_REF].

Results and discussion

For evaluating the results, we apply the experiment protocol as previously defined in the chapter 1. In the present study, 7 missing data levels are considered on 3 datasets. Gaps are built at rates 1%, 2%, 3%, 4%, 5%, 7.5% and 10% of the dataset size on every signal (here missing sequences on each variable of the MAREL Carnot series correspond to around 15 days (353 consecutive missing) to 5 months (3,533 NAs)). For each missing ratio, the algorithms are performed 5 times by randomly selecting the missing positions on the data. We then run 35 iterations for each data set. With the NNGC series (table 3.1), the na.approx method always produces the worst result for every indicator. On the simulated and MAREL Carnot datasets, this method gives quite good results when comparing the quantitative performance: the lowest FB and/or FSD at some missing rates (simulated series), the second rank on similarity, R 2 , FA2 for all missing ratios (MAREL Carnot dataset). However, when looking at the shape of imputation values generated from of this method, it absolutely shows the worst shape (figure 3.5, 3.6).

In this study, we also carry out comparing the visualization performance of imputation val- 

Conclusion

In this part, we propose an effective method for uncorrelated multivariate time series imputation, namely DTWUMI. We have performed several experiments on artificial and real datasets to demonstrate the capability of our approach and compared it with published algorithms (na.approx, MI, MICE, and missForest) on quantitative and shape indicators. The visual performance of these methods is also evaluated. The obtained results clearly show that our approach provides better performance than the other existing methods in case of time series having low or non-correlations between variables and large gap(s). However, the proposed algorithm is requires to applications with the necessary assumption of recurring data and sufficient large datasets size.

Proposed method based on an hybrid similarity measure

In the previous section, we have presented our first proposal to complete large gaps in uncorrelated multivariate time series using the DTW cost as a similarity criterion. In this section we continue to introduce our second proposal for the imputation task by exploiting the property of data (i.e uncorrelated between variables) and by taking into account an uncertainty factor. In this way we develop a new similarity measure which is used for finding similar patterns in each signal.

In this section, before focusing on our algorithms, we present a review on fuzzy similarity measure and its applications.

Methods based on fuzzy similarity measure

Indeed similarity-based approaches are a promising tool for time series analysis. However, many of these techniques rely on parameter tuning, and they may have shortcomings due to 3.3. Proposed method based on an hybrid similarity measure dependencies between variables. The objective of this study is to fill large missing values in uncorrelated multivariate time series. Thus, we have to deal with a high level of uncertainty.

There are many methods and theories to model uncertainties such as probabilistic models, belief function theory [START_REF] Rekik | Dynamic object construction using belief function theory[END_REF], Dempster-Shafer [START_REF] Niu | Mechanical Systems and Signal Processing[END_REF], fuzzy sets [START_REF] Zadeh | Fuzzy sets[END_REF], etc. Mikalsen et al. [100] proposed to use GMM (Gaussian mixture models) and cluster kernel to deal with uncertainty.

This method needs ensemble learning with numerous learning datasets that are not available in our case at the moment (marine data). So we have chosen to model this global uncertainty using fuzzy sets (FS) introduced by Zadeh [START_REF] Zadeh | Fuzzy sets[END_REF]. These techniques consider that measurements have inherent imprecision rather than randomness.

Uncertainty is classically presented using three conceptually distinctive characteristics: fuzziness, randomness and incompleteness. This classification is interesting for many applications, like sensor management (image processing, speech processing, time series processing)

and practical decision making. This paper focuses on (sensor) measurements treatment, but is also relevant for other applications.

Incompleteness often affects time series prediction (time series obtained from marine data such as salinity, temperature, ...). So it seems natural to use fuzzy similarity between subsequences of time series to deal with these three kinds of uncertainties (fuzziness, randomness and incompleteness). Fuzzy sets are now well-known and we only need to remind the basic definition of "FS". Considering the universe X, a fuzzy set A ∈ X is characterized using a fuzzy membership function µ A :

µ A : X → [0, 1], (3.1) 
where µ A (x) represents the membership of x to A and is associated to the uncertainty of

x. In our case, we will consider similarity values between the sub-sequences as defined in the following. One solution to deal with uncertainty brought by multivariate time series is to use the concept of fuzzy time series [START_REF] Sadael | Short-term load forecasting method based on fuzzy time series, seasonality and long memory process[END_REF]. In this framework, the variable observations are considered as fuzzy numbers instead of real numbers. In our case the same modelling is used considering distance measures between sub-sequences and then we compute the fuzzy similarities to find the similar successive values in time series.

Fuzzy similarity is a generalization of the classical concept of equivalence and defines the resemblance between two objects (here sub-sequences of time series). Similarity measures of fuzzy values have been compared in [START_REF] Costas | A comparative assessment of measures of similarity of fuzzy values[END_REF] and have been extended in [16]. In [START_REF] Costas | A comparative assessment of measures of similarity of fuzzy values[END_REF], Pappis and Karacapilidis presented three main kinds of similarity measures of fuzzy values, including:

• measures based on the operations of union and intersection,

• measures based on the maximum difference,

• measures based on the difference and the sum of membership grades.

In [START_REF] Wilbik | A distance metric for a space of linguistic summaries[END_REF][START_REF] Wilbik | A fuzzy measure similarity between sets of linguistic summaries[END_REF], the authors used these definitions to propose a distance metric for a space of linguistic summaries based on fuzzy protoforms. Almeida et al. extended this work to put forward linguistic summaries of categorical time series [START_REF] Rui | Linguistic summaries of categorical time series for septic shock patient data[END_REF]. The introduced similarity measure takes into account not only the linguistic meaning of the summaries, but also the numerical characteristic attached to them. In the same way, Gupta et al. [15] introduced this approach to create an hybrid similarity measure based on fuzzy logic. The approach is used to retrieve relevant documents. In the other research, Al-Shamri and Al-Ashwal presented fuzzy weightings of popular similarity measures for memory-based collaborative recommend systems [17].

Concerning the similarity between two sub-sequences of time series, we can use the DTW cost as a similarity measure. However, to deal with the high level of uncertainty of the processed signals, numerous similarity measures can be used to compute similarity like the cosine similarity, Euclidean distance, Pearson correlation coefficient, and so on. Moreover, a fuzzyweighted combination of scores generated from different similarity measures could comparatively achieve better retrieval results than the use of a single similarity measure [15,17].

Based on the same concepts, we propose to use a fuzzy rules interpolation scheme between grades of membership of similarities fuzzy values. This method makes it possible to build a new hybrid similarity measure for finding similar sub-sequence in time series.

FSMUMI-Proposed approach

The proposed imputation method is based on the retrieval and the similarity comparison of available sub-sequences (namely Fuzzy Similarity Measure-based Uncorrelated Multivariate Imputation, FSMUMI). In order to compare the sub-sequences, we create a new similarity measure applying a multiple fuzzy rules interpolation. The proposed approach involves three major stages. The first stage is to build two queries Qa and Qb. The second stage is devoted to find the most similar windows to the queries. This method focus on filling large missing values in low/un-correlated multivariate time series. For this type of data, we cannot take advantage of the relations between features to estimate missing values. So we must base our approach on observed values on each signal to complete missing data on itself. This means that we can complete missing data on each variable, one by one. Further, an important point of our approach is that each incomplete signal is processed as two separated time series, one time series before the considered gap and one time series after this gap. This allows to increase the search space for similar values. Moreover, applying the proposed process (one by one), FSMUMI makes it possible to handle the problem of wholly missing variables (missing data at the same time index in the all variables).

In the next section, we present the way to compute the new similarity measure between sub-sequences. Then, we provide details of the proposed approach to impute the successive missing values of low/un-correlated multivariate time series.

Fuzzy weighted similarity measure between sub-sequences

To introduce a new similarity measure using multiple fuzzy rules interpolation to solve the missing problem, two questions arise here: which measures will be taken as fuzzy? How can they be "fuzzified"?

To answer the first question, we take into account 3 different distance measures between two sub-sequences

Q (Q = {q i , i = 1, • • • , T }) and R (R = {r i , i = 1, • • • , T }) including: Cosine
distance, Euclidean distance (these two measures are widely used in the literature) and Similarity distance (this one was presented in our previous study [START_REF] Phan | Dynamic time warping-based imputation for univariate time series data[END_REF]). These three measures are defined as follows:

• Cosine distance is computed by eq 3.2. This coefficient presents the cosine of the angle between

Q and R Cosine(Q, R) = ∑ T i=1 q i .r i ∑ T i=1 (q i ) 2 . ∑ T i=1 (r i ) 2 (3.2)
3.3. Proposed method based on an hybrid similarity measure

• Euclidean distance is calculated by eq 3.3

ED * (Q, R) = T ∑ i=1 (q i -r i ) 2 (3.3)
To satisfy the input condition of fuzzy logic rules, we normalize this distance to [0, 1] by this function ED = 1/(1 + ED * (q, r)).

• Similarity measure is defined by the function 3.4. This measure indicates the similarity

percentage between Q and R Sim(Q, R) = 1 T T ∑ i=1 1 1 + |q i -r i | max(Q)-min(Q) (3.4)
To answer the second question, we use these 3 distance measures (or attributes) to generate 4 fuzzy similarities (see figure 3.9), then applied to a fuzzy rule interpolation scheme (see And finally, the new (interpolated) similarity measure is given by eq 3.5:

FBSM = w1 * Cosine(Q, R) + w2 * ED(Q, R) + w3 * Sim(Q, R) (3.5)
where w1, w2, w3 are the weights of the Cosine, ED and Sim measures respectively. Thus uncertainty modelled using FS is kept during the similarity computation and makes it possible ). We use FuzzyR R-package [START_REF] Garibaldi | FuzzyR: Fuzzy Logic Toolkit for R[END_REF] to develop this system.

All input and output variables are expressed by 4 linguistic terms as low, medium, mediumhigh and high. A trapezoidal membership function is handled in this case to match input and output spaces to a degree of membership (figure 3.9). The multiple fuzzy rules interpolation is applied to create the fuzzy rules base. Thus, in our case 64 fuzzy rules are introduced. Each fuzzy rule is presented in the following form:

Rule R: IF (Cosine is lv1) and (ED is lv2) and (Sim is lv3) THEN (w1 is lw1) and (w2 is lw2) and (w3 is lw3) in which lvi, lwi ∈ {low, medium, medium-high, high}, and i = 1, 2, 3.

FSMUMI approach

This part presents the detail of FSMUMI method. The proposed model is described in Algorithm 2 and is mainly divided into three phases:

• The first phase -Building queries (cf. 1 in Fig 3 .7)

For each incomplete signal and each T -gap, two referenced databases are extracted from the original time series and two query windows are built to retrieve similar windows. The data before the gap (noted Db) and the data after this gap (denoted Da) are considered as two separated time series. We noted Qb is the sub-sequence before the gap and Qa is the respective sub-sequence after the gap. These query windows have the same size T as the gap.

• The second phase -Finding the most similar windows (cf. For the Db database, we build sliding reference windows (noted R) of size T . From these R windows, we retrieve the most similar window (Qbs) to the Qb query using the new

Algorithm 2 FSMUMI algorithm

Input: X = {x 1 , x 2 , . . . , x M }: incomplete uncorrelated multivariate time series N: size of time seres t: index of a gap (position of the first missing of the gap) T : size of the gap step_threshold: increment for finding a threshold step_sim_win: increment for finding a similar window Output: Y -completed (imputed) time series 1: for each incomplete signal x j ∈ X do 2:

for each gap at t index in x j do 3: Divide x j into two separated time series Da, Db: Da =

x j [t + T : N], Db = x j [1 : t -1] 4:
Completing all lines containing missing parameter on Da, Db by a max trapezoid function 5:

Construct queries Qa, Qb-temporal windows after and before the gap

Qa = Da[1 : T ], Qb = Db[t -T + 1 : t -1] 6:
for Db data do 7:

Step a: Find the threshold in the Db database Replace the missing values at the position t by average vector of the window after Qbs and the one previous Qas We first find the threshold, which allows to consider two windows to be similar. For each increment step_threshold, we compute a f bsm similarity measure between a sliding window R and the query Qb. The threshold is the maximum value obtained from the all f bsm calculated ( Step a: in Algorithm 2).

We then find the most similar window to the Qb query. For each increment similar window step_sim_win, a f bsm of a R sliding reference and the Qb query is estimated.

We then compare this f bsm to the threshold to determine if this R reference is similar to the Qb query. We finally choose the most similar window Qbs with the maximum f bsm of all the similar windows ( Step b: in Algorithm 2).

The same process is performed to find the most similar window Qas in Da data.

In the proposed approach, the dynamics and the shape of data before and after a gap are a key-point. This means that we take into account both queries Qa (after the gap) and Qb (before the gap). This makes it possible to find out windows that have the most similar dynamics and shape to the queries. 

Validation procedure

To analyze the relevance of the proposed approach, it is important to compare with state-ofthe-art methods. This validation step will be conducted on the main application of this thesis.

Our approach is compared with well-known methods (including Amelia II, FcM, MI, MICE, missForest, na.approx, and DTWUMI) and experiments are performed on three multivariate time series with the same protocol and the same gaps. The experiments process includes 3 steps as previously mentioned in Chapter 1. These methods are assessed in terms of their efficacy of accuracy and shape between true values and completion data using criteria for evaluation 93 3.3. Proposed method based on an hybrid similarity measure as defined in Chapter 1. The datasets and multivariate time series imputation methods are described in detail below.

Datasets description

For assessment of the proposed approach and comparison of its performance to several published algorithms, we use 3 multivariate time series, one from UCI Machine Learning repository, one simulated dataset (this allows us to handle the correlations between variables and percentage of missing values) and finally a real time series hourly sampled by IFREMER (France) in the eastern English Channel. The two last datasets (Simulated dataset and MAREL-Carnot dataset) have been mentioned in the previous part (DTWUMI).

• Synthetic dataset [START_REF] Eamonn | An indexing scheme for fast similarity search in large time series databases[END_REF]: The data are synthetic time series, including 10 features, 100,000 sampled points. All data points are in the range -0.5 to +0.5. The data appear highly periodic, but never exactly repeat. They have structure at different resolutions. Each of the 10 features is generated by independent invocations of the function:

y = 7 ∑ i=3 1 2 i sin(2π(2 2+i + rand(2 i ))t); 0 ≤ t ≤ 1 (3.6)
where rand(x) produces a random integer between 0 and x.

These data are very large so we choose only a subset of 3 signals for performing experiments.

• Simulated dataset: see the section 3.2.2.1.

• MAREL-Carnot dataset: see the section 3.2.2.1.

Multivariate imputation approaches

In the present study, we perform a comparison of the proposed algorithm with 7 other approaches (comprising Amelia II, FCM, MI, MICE, missForest, na.approx, and DTWUMI) for the imputation of multivariate time series. We use R language to execute all these algorithms.

1. Amelia II (Amelia II R-package) [START_REF] Honaker | Amelia II: A program for missing data[END_REF]: This method supposes that all the variables in a dataset have Multivariate Normal Distribution (MVN) and missing data are Missing at Random. Figure 3.10 illustrates different steps of this approach. 2. FcM-Fuzzy c-means based imputation: This approach involves 2 steps. The first step is to group the whole data into k clusters using fuzzy-c means technique. A cluster membership for each sample and a cluster center are generated for each feature. The second step is to fill in the incomplete data by using the membership degree and the center centroids [START_REF] Li | Towards missing data imputation: A study of fuzzy k-means clustering method[END_REF]. We base on the principles of [START_REF] Li | Towards missing data imputation: A study of fuzzy k-means clustering method[END_REF] and use the c-means function [START_REF] Meyer | Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071)[END_REF] to develop this approach.

3. MI -Multiple Imputation (MI R-package) [START_REF] Su | Multiple imputation with diagnostics (mi) in R: Opening windows into the black box[END_REF]: This method has been presented in section 3.2.2.2.

MICE -Multivariate Imputation via Chained Equations (MICE R-package) [97]:

This method has been presented in section 3.2.2.2.

5. missForest (missForest R-package) [START_REF] Daniel | MissForest-non-parametric missing value imputation for mixed-type data[END_REF]: This method has been presented in section 3.2.2.2.

6. Linear interpolation -na.approx (zoo R-package) [START_REF] Zeileis | zoo: S3 infrastructure for regular and irregular time series[END_REF]: This method has been presented in section 3.2.2.2.

3.3.

Proposed method based on an hybrid similarity measure 7. DTWUMI [START_REF] Phan | DTW-Approach for uncorrelated multivariate time series imputation[END_REF]: In the previous section, we have introduced details of this method.

Results and discussion

In comparison with our previous proposal and state-of-the art approaches, we implemented the same protocol and evaluation criteria: seven missing data levels on three large uncorrelated datasets. On each signal, we build simulated gaps in the complete signal with different rates ranging from 1%, 2%, 3%, 4%, 5%, 7.5% and 10% of the data (here the biggest gap of synthetic dataset is 10,000 missing values). For every missing ratio, the approaches are run 5 times by randomly choosing the positions of missing on the data. We then perform 35 iterations for each dataset.

This section provides experiment results obtained from the proposed approach and compares its ability with the seven published approaches. Results are discussed in three parts, i.e quantitative performance, visual performance and execution times.

Quantitative performance comparison

Tables 3.4, 3.5, 3.6 illustrate the average ability of various imputation methods for synthetic, simulated and MAREL-Carnot time series using 6 measurements as previously defined. For each missing level, the best results are highlighted in bold. These results demonstrate the improved performance of FSMUMI to complete missing data in low/uncorrelated multivariate time series.

Synthetic dataset: Table 3 rates. Although this dataset never exactly repeats itself and our approach is proposed under the assumption of recurrent data but the FSMUMI approach proves its performance for the imputation task even if the missing size increases.

Among the considered methods, the FcM-based approach is less accurate at lower missing rates but it provides better results at larger missing ratios as regards the accuracy indices. Simulated dataset: Table 3.5 illustrates the evaluation results of various imputation algorithms on the simulated dataset. The best values for each missing level are highlighted in bold.

Our proposed method outperforms other methods for the imputation task on accuracy indices: the highest similarity, R 2 and the lowest RMSE at every missing ratio. However, when considering other indices such as FA2, FSD and FB, FSMUMI no longer shows its performance. It gains only at a 4% rate for the FB index and at 10% ratio for FA2. In contrast to FSMUMI, DTWUMI provides the best results for FSD indicator at all missing levels and FA2 at the first 5 missing ratios (from 1% to 5%).

Different from the synthetic dataset, on the simulated dataset, the FcM-based method is always ranked the third at all missing rates for similarity and RMSE indicators. Following

FcM is missForest algorithm for the both indices.

Although, in the second experiment, data are built by various functions but they are quite complex so that na.approx does not provide good results. In contrast to the two datasets above, on the MAREL-Carnot data, na.approx indicates quite good results: the permanent second or third rank for the accuracy indices (the 1 st order at 5% missing rate on R 2 score), the lowest FSD (from 3% to 5% missing rates) and FB at some other levels of missing data. But when looking at the shape of imputation values generated from this method, it absolutely gives the worst results (figure 3.13).

Other approaches (including FcM-based imputation, MI, MICE, Amelia, missForest) exploit the relations between attributes to estimate missing values. However, three considered datasets have low correlations between variables (roundly 0.2 for MAREL-Carnot data, ≤ 0.1 for simulated and synthetic datasets). So these methods do not demonstrate their performance for completing missing values in low/un-correlated multivariate time series. Otherwise, our algorithm shows its ability and stability when applying to the imputation task for this kind of data.

DTWUMI approach was proposed to fill large missing values in low/un-correlated multivariate time series. However, this method is not as powerful as the FSMUMI method. DTWUMI only produces the best results at 2% missing level on the MAREL-Carnot dataset, and is always at the second or the third rank at all the remaining missing rates on the MAREL-Carnot and the simulated datasets. That is because the DTWUMI method only finds the most similar window to a query either before a gap or after this gap, and it uses only one similarity measure, the DTW cost, to retrieve the most similar window. In addition, another reason may be that DTWUMI has directly used data from the window following or preceding the most similar window to completing the gap. 

Visual performance comparison

In this study, we also compare the visualization performance of completion values yielded by various algorithms. Figure 3.11 and figure 3.12 illustrate the form of imputed values generated from different approaches on the synthetic series at two missing ratios 1% and 5%.

At a 1% missing rate, the shape of imputation values produced by na.approx method is closer to the one of true values than the form of completion values given by our approach.

However, at a 5% level of missing data, this method no longer shows the performance (figure 3.12). In this case, the proposed method proves its relevance for the imputation task. The shape of FSMUMI's imputation data is almost similar to the form of true values (figure 3.12).

Looking at figure 3.13, FSMUMI one more time proves its capability for uncorrelated multivariate time series imputation: completion values yielded by FSMUMI are virtually identical to the real data on the MAREL-Carnot dataset. When comparing DTWUMI with FSMUMI, it is clear that FSMUMI gives improved results (figure 3.11, 3.12 and 3.13).

Computation time

Besides, we perform a comparison of the computational time of each method on the synthetic series (in second -s). Table 3.7 indicates that na.approx method requires the shortest running time and DTWUMI approach takes the longest computing time. The proposed method, FS-MUMI, demands more execution time as missing rates increase. However, considering the quantitative and visual performance of FSMUMI for the imputation task (table 3.4, figue 3.12 and figue 3.13), the required time of the proposed approach is fully acceptable. 

Time index

Values q q q q q q q q q q q q q q q q q q q True values FSMUMI na.approx DTWUMI 

Time index

Values q q q q q q q q q q q q q q q q q q q True values FSMUMI na.approx missForest DTWUMI Figure 3.12: Visual comparison of completion data of different imputation approaches with real data on the 1 st signal of synthetic series with the gap size of 5000 

Conclusion

This work proposes a novel approach for uncorrelated multivariate time series imputation using a fuzzy-weighted similarity measure, namely FSMUMI. This method makes it possible to manage uncertainty with the comprehensibility of linguistic variables and parameter adaptation. FSMUMI has been tested on different datasets and compared with published algorithms (Amelia II, FcM, MI, MICE, missForest, na.approx, and DTWUMI) on accuracy and shape criteria. The visual ability of these approaches is also investigated. The experimental results definitely highlight that the proposed approach yielded improved performance in accuracy over previous methods in the case of multivariate time series having large gaps and low or non-correlation between variables. However, the proposed algorithm is necessary to make an assumption of recurrent data and sufficiently large dataset.

Chapter conclusion

The occurrence of missing data happens in most scientific domains and most kinds of data.

This poses serious problems in data analysis and data mining such as bias results or loss of algorithms power. Therefore, imputation data are valuable/significant techniques to deal with incompleteness data. Imputation data process is to complete missing data in an incomplete dataset. Techniques of imputation are applied to retrieve efficient estimation of missing values based on available data. In this chapter, we propose two new approaches, namely DTWUMI and FSMUMI, for imputing large consecutive missing data in uncorrelated multivariate time series. Handling incompleteness for this type of data has received little attraction compared to the imputation task for correlated data. In these two approaches, we take advantage of the property of low/un-correlated multivariate data in two different aspects:

Chapter conclusion

DTWUMI is an extension of our previous proposal (DTWBI). This approach is based on combining DTW and shape-feature extraction algorithms. To conserve time indices of all the variables in the dataset, only one query Q is built by taking into account all the signals either before or after each gap. DTWUMI thereafter finds the most similar window to the query using DTW cost as the similarity criterion. This approach applies shape-feature extraction method to decrease the computation time before using DTW algorithm to retrieve similar windows. Since data are low/uncorrelated, so imputation data are the vector following or preceding of the most similar window on the signal containing considered gap. In the DTWUMI, we take care of the same time index of all the variables by creating a query window (i.e Q is a matrix of all the signals) either before or after the gap, and find the most similar window (a matrix) to the query.

But imputation values are only a vector in the signal having the considered gap.

In the second proposal, FSMUMI, we introduce an uncertain factor that allows to manage a high level of uncertainty, specifically:

-Develop a new similarity measure based on weighting some usually distances by applying fuzzy rules interpolation scheme.

-And then we use the new measure to find the most similar windows. There are some differences between these two methods:

• Step of building query: FSMUMI builds two vector queries (instead of one query matrix as introduced in the DTWUMI): Qb -a vector previous the considered gap and Qaa vector next to the gap. Accordingly, we create two search databases (i) Db -a database before the gap and (ii) Da -a database after the gap on the signal having the gap. And we find similar windows on these two databases.

• Step of filling missing data: The final imputation data are the average of two vectors preceding and following of the most two similar windows.

The two proposed methods are mainly compared with state-of-the-art imputation approaches and comparisons are made in terms of accuracy and shape indices between real data and completion data. Also, the visual performance of these approaches is also investigated. DTWUMI is compared with missForest, MI, MICE and na.approx methods on NNGC, simulated and MAREL Carnot datasets. Whereas FSMUMI was compared with 6 well-known methods (MI, MICE, missForest, na.approx, Amelia, FCM) and with DTWUMI on simulated dataset, synthetic dataset and MAREL Carnot dataset.

CHAPTER 3. IMPUTATION APPROACHES FOR UNCORRELATED MULTIVARIATE TIME SERIES

The experimental results clearly show that our approaches yielded improved performance in accuracy than previous methods in the case of multivariate time series having large gaps and low or non-correlation between variables. However, the proposed algorithms are necessary to make an assumption of recurrent data and sufficient large dataset.

The present works open a broad range of applications, we plan to (i) combine FSMUMI/ DTWUMI method with other algorithms such as Random Forest or Deep learning in order to efficiently fill incomplete data in any type of multivariate time series; (ii) investigate this approach applied to short-term/long-term forecasts in multivariate time series. We could also investigate type-2 fuzzy sets (T2FSs) [START_REF] Mendel | Type-2 fuzzy made simple[END_REF] that are an extension of the ordinary fuzzy set (also called type-1 fuzzy sets, T1FS). Type-2 fuzzy set can handle more uncertainty because their membership functions are fuzzy. It is completely described by two functions (primary and secondary fuzzy grades). Further, collected data usually contain noise (real data plus noise).

So that T2FS ( [START_REF] Yazdanbakhsh | A systematic review of complex fuzzy sets and logic[END_REF]) should be considered to solve missing data problems in both types of time series: univariate and multivariate time series using a new similarity measure [START_REF] Ullah | Similarity measures for t-spherical fuzzy sets with applications in pattern recognition[END_REF] for example. In case of bi-variate time series with small dataset, complex fuzzy sets ( [START_REF] Yazdanbakhsh | A systematic review of complex fuzzy sets and logic[END_REF]) can be studied instead of ordinary FSs that have given good results using an adaptive scheme.

List of Publications and valuations related to this chapter 

Classification of phytoplankton species

Phytoplankton plays an important role in marine ecosystem. It is defined as a biological factor to assess marine quality. The identification of phytoplankton species has a high potential for monitoring environmental, climate changes and for evaluating water quality. However, phytoplankton species identification is not an easy task owing to their variability and ambiguity due to thousands of micro and pico-plankton species. Therefore, the aim of this part is to build a framework for identifying phytoplankton species and to perform a comparison on different features types and classifiers. We propose a new type of features extracted from raw signals of phytoplankton species in section 4.1.2. Then, in section 4.1.4 we analyze the performance of various classifiers on the proposed features type as well as two other features types for finding the most robust one.

Introduction

Phytoplankton is an important factor in environmental, economic and ecological policies. Being main producer of oxygen, phytoplankton is also an important food item in both aquaculture as well as mariculture. A question is raising: "how do changes in the global environment affect abundance, diversity, and production of plankton and nekton?" [START_REF] Grosjean | Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system[END_REF]. Many researchers show that environment changes strongly affect to phytoplankton and that it responds promptly 4.1. Classification of phytoplankton species with discriminant vector forest and specifically mix of linear discriminant analysis with learning vector quantization, and random forest. Accuracy of the last combination achieves around 75% in the task of categorizing 29 zooplankton species. In the work of classifying binary zooplankton images, Luo et al. [START_REF] Luo | Recognizing Plankton Images From the Shadow Image Particle Profiling Evaluation Recorder[END_REF] investigated the performance of some classifiers, namely: SVM, RF, C4.5 DTs, and the cascade correlation neural network. SVM proves the highest classification performance with 90% and 75% on the six and seven classes, respectively.

Concerning phytoplankton species identification/ classification, many classification algorithms were used for this task such as Artificial Neural Networks (ANNs) using FCM data [START_REF] Balfoort | Automatic identification of algae: neural network analysis of flow cytometric data[END_REF][START_REF] Boddy | Neural network analysis of flow cytometric data for 40 marine phytoplankton species[END_REF][START_REF] Boddy | Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data[END_REF][START_REF] Frankel | Use of a neural net computer system for analysis of flow cytometric data of phytoplankton populations[END_REF][START_REF] Frankel | Application of neural networks to flow cytometry data analysis and real-time cell classification[END_REF][START_REF] Wilkins | Identification of phytoplankton from flow cytometry data by using radial basis function neural networks[END_REF] (72 phytoplankton species have been successfully identified by ANN [START_REF] Boddy | Identification of 72 phytoplankton species by radial basis function neural network analysis of flow cytometric data[END_REF]). In another work, several methods namely: DTs, Naive Bayes (NB), ridge Linear Regression (LR), k-NN, SVM, bagged and boosted ensembles were applied to categorize phytoplankton images with 12 classes and an unknown class [START_REF] Blaschko | Automatic in situ identification of plankton[END_REF]. A system using SVM classifier for automated taxonomic classification of phytoplankton sampled with imaging-in-flowcytometry is developed by Sosik and Olson [START_REF] Sosik | Automated taxonomic classification of phytoplankton sampled with imaging-in-flow cytometry[END_REF]. In the work of Blaschko et al. [START_REF] Hallstan | Comparison of classification-then-modelling and species-by-species modelling for predicting lake phytoplankton assemblages[END_REF], the accuracy of two modelling approaches for predicting boreal lake phytoplankton assemblages and their ability to detect human impact were studied. They used random forest to predict biological group membership and species. Verikas et al. [START_REF] Verikas | An Integrated Approach to Analysis of Phytoplankton Images[END_REF] have recently investigated to detect, recognize, and estimate abundance objects representing the P.minimum species in phytoplankton images. The classification performance of SVM and RF methods was compared on 158 phytoplankton images.

It is found that the number of studies using plankton signals (FCM data) is less than the ones using plankton images. Most of studies based on signals used available features generated from a FCM system. However, only a few earlier studies used FCM signals (both available features and raw signals) to compare the performance of classification methods [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF]. In addition, RF has proved its performance in many applications of plankton species identification/classification [START_REF] Grosjean | Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system[END_REF][START_REF] Gorsky | Digital zooplankton image analysis using the ZooScan integrated system[END_REF][START_REF] Irigoien | Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment[END_REF][START_REF] Hallstan | Comparison of classification-then-modelling and species-by-species modelling for predicting lake phytoplankton assemblages[END_REF]. With the best of our knowledge, there is no application that combines the 

Feature-extraction algorithm

The idea of our proposal is to propose some features that can better represent dynamics and shape of signals. Among of the possible features, signal moments and entropy give improved results. Denoted x = {x i |i = 1, 2, • • • , N} are the values of each signal (curve). With each raw signal, 9 elements are calculated as follows:

• Percentile: The per th percentile of x's values is the value that cuts off the first per percent of x's values when these values are sorted in ascending order (per = 30 is used in this study).

• Max: It is the maximum of x's values:

max(x) = max{x 1 , x 2 , . . . , x N } (4.1)
• First moment: It is the mean of x's values:

x = mean(x) = ∑ N i=1 x i N (4.2)
• Standard derivation: It is the standard derivation of x's values, based on the 2 nd moment central:

ST D(x) = 1 N N ∑ i=1 (x i -x) 2 = √ µ 2 (4.3) 
• Median: The median of x's values is the value separating the higher half and the lower half. It is the middle number when the data is sorted from lowest value to highest value.

• Third moment: It is the 3 rd moment of x's values:

γ 1 = µ 3 µ 3/2 2 (4.4)
where µ 2 and µ 3 are the second and third central moments. γ 1 = 1 is the normalized 3 rd moment central (Skewness coefficient). We can know the data distribution thanks to this coefficient.

• Nop: It is the number of peaks of x's values calculated from the second derivative.

• Length: It is the length of the curve.

Classification of phytoplankton species

• Entropy: It is based on the Shannon entropy formula:

entropy(x) = - N ∑ i=1 p i log(p i ) (4.5) 
with p i is the probability of x i

Consequently, for each signal, a features vector of dimension 9 is extracted.

Methodology

Data presentation

In this study, we reuse the data of the previous study [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF] (Data presentation and Signal acquisition). The data is acquired from 7 culture samples, whose particles belong to 7 distinct phytoplankton species: Chaetoceros socialis, Emiliania Huxleyi, Lauderia annulata, Leptocylindrus minimus, Phaeocystis globosa, Skeletonema costatum and Thalassiosira rotula. Each species is equally represented by 100 shape-profiles and each culture sample was labeled by biologists using a microscope [START_REF] Guiselin | An optimised protocol to prepare Phaeocystis globosa morphotypes for scanning electron microscopy observation[END_REF]. So, the data set has 700 (100×7) phytoplankton cells.

Signal acquisition

Multi-signals were gathered in the LOG laboratory1 from different phytoplankton species living in Eastern Channel, with a CytoSense flow cytometer (CytoBuoy2 ), and labeled by biologists [START_REF] Guiselin | An optimised protocol to prepare Phaeocystis globosa morphotypes for scanning electron microscopy observation[END_REF] once having them isolated from the natural environment. Flow cytometry is a technique used to characterize individual particles (cells or bacteria) derived by a liquid flow at high speed in front of a laser light. Different signals either optical or physical are provided:

forward scatter (reflecting the particle length), sideward scatter (being more dependent on the particle internal structure) and several wavelengths of fluorescence that depend upon the type of its photosynthetic pigments measures.

More precisely, in the used signal library, each detected particle is described by 8 monodimensional raw signals issued from the flow cytometer in identical experimental conditions (same sampling rates, same detection threshold, etc.):

• one signal on forward scatter (FWS), corresponding to the cell length;

• two signals on sideward scatter (SWS), corresponding to the internal structure, in high and low sensitivity levels (SWS HS, SWS LS);

• two signals on red fluorescence (FLR), λ em > 620 nm in high and low sensitivity (FLR HS, FLR LS), which characterize chlorophyll pigments;

• one signal on orange fluorescence (FLO), 565 nm < λ em < 592 nm, in low sensitivity (FLO LS);

• two signals on yellow fluorescence (FLY), 545 nm < λ em < 570 nm, in high and low sensitivity (FLY HS, FLY LS).

These signals are composed of voltage measures (µV), and their sampling period was here chosen to correspond to 0.5 µm displacement of the water flow. Consequently, the longer the cell is, the higher the number of sampled measures is, and the time axis can be interpreted as a spatial length axis. Phytoplankton species identification is a hard task so all these signals are used to make the particles characterization. Each particle of our experiment is consequently characterized by the 8 signals described above. Figure 4.1 present some signal samples of Chaetoceros socialis, Lauderia annulata and Skeletonema costatum species.

Phytoplankton descriptor

After acquiring phytoplankton raw signals from the FCM system, phytoplankton descriptor must be computed to represent the phytoplankton species, that will be presented to a classifier.

The phytoplankton descriptor describes properties of a phytoplankton cell (for example length, number of peaks . . . of each raw signal or the ratio of dissimilarity of each pairs of phytoplankton cells). In this work, these properties are typically called "features". We investigate three types of features : derived features, proposed features (as above mentioned) and dissimilarity features [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF].

Derived features

For each signal, 4 elements are extracted by a Cytobuoy machine including: length, height, integral, and number of peaks. So each phytoplankton cell is represented by a vector of 32 features.

Proposed features

As mentioned above in our proposal, 9 characteristics will be extracted from each signal.

However, when applying to the phytoplankton classification, we have modified some features to adapt the data in the following: • Entropy: With this application p i is computed as follows:

p i = x i ∑ N i=1 x i
because we could exploit all the values of each signal.

For each signal 9 features are extracted. Consequently, the proposed features vector is 72 dimensions.

Dissimilarity features

As described in Chapter 2, Dynamic Time Warping [7] is an algorithm devoted to align two sequences (may vary in time) by warping the time axis until finding an optimal matching between the two sequences according to suitable metrics. However, it is not easy to interpret the matching cost. Thus, Caillaut et al. [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF] proposed a dissimilarity distance that adapts the DTW matching cost and can deal with multidimensional signals.

They replaced the distance d (L 1 -distance or L 2 -distance) by a dissimilarity s (s ∈ [0, 1]normalized dissimilarity degree):

s(x i l , y j l ) = d(x i l , y j l ) max{d(x i l , 0), d(y j l , 0)} (

where x = {x 1 , x 2 , . . . , x N } and y = {y 1 , y 2 , . . . , y M } are two signals of different size. The algorithm makes a matching P = {(i l , j l ), l = 1 . . . k, i l = 1 . . . N, j l = 1 . . . M} between the points of x and y signals, according to some time conditions.

Therefore, each phytoplankton cell is presented by a vector of 700 dissimilarity features, in which a feature is the DTW dissimilarity between considered cell and one cell in the dataset.

Classification

After feature extraction, a classifier is learned for identification of different phytoplankton species. In the following, we review several prominent classification models:

1. k-Nearest Neighbors k-nearest neighbors [START_REF] Altman | An introduction to kernel and nearest-neighbor nonparametric regression[END_REF] has been widely used in classification problems because it is simple, effective and nonparametric [START_REF] Aha | Instance-based learning algorithms[END_REF]. For each sample of a test set, we found k cases in the train set that is minimum distance between the feature vectors of the sample 4.1. Classification of phytoplankton species and those of the train set. A decision of the label of a new sample is based on majority vote of the k label found.

Support Vector Machine

The basic idea of support vector machine [START_REF] Vapnik | The Nature of Statistical Learning Theory[END_REF] is to find an optimal hyper-plane for linearly separable patterns in a high dimensional space where features are mapped onto.

The work is to detect the one that maximizes the margin around the separating hyperplane from training set. A decision on the label of a new sample is based on its distance with the trained support vectors.

Random Forest

Breiman [START_REF] Breiman | Random forests[END_REF] proposed random forest, a classification technique obtained by constructing an ensemble of decision trees, in which each decision tree uses a different bootstrap sample of the response variables and at each node, a small subset of randomly selected variables from original ones for the binary splitting. For predicting new data, a RF aggregates the outputs of all trees.

4. Regularized Random Forest (RRF), Guided RRF (GRRF), Guided RF (GRF) RRF, GRRF, GRF are different modified versions of the original RF. But these methods are just similar to initial RF method in the step of predicting new data, and they are different in step of finding features to build each decision tree of forest. Indeed, RRF was proposed for improving feature selection on the decision tree by limiting the choice of new feature at each tree node and evaluating features (using Gini index) on a part of the training data [START_REF] Deng | Feature selection via regularized trees[END_REF]. This process of feature selection is greedy because variables are selected based on a subsample of data variables at each node.

GRRF [START_REF] Deng | Gene selection with guided regularized random forest[END_REF] is an enhanced RRF. This approach uses the feature importance scores generated from an initial random forest to guide the feature selection process in RRF for avoiding of selecting not strongly relevant features. While GRRF selects a subset of relevant and non-redundant features, GRF selects a subset of "relevant" features. So GRF often selects a lot more features than GRRF (sometimes most of the features), but it may lead to better classification accuracy than GRRF. Nevertheless, each tree of GRF is built independently and GRF can be implemented in a distributed computing framework [START_REF] Deng | Gene selection with guided regularized random forest[END_REF].

Experiment and discussion

We have conducted a set of experiments on various types of features and classification models to evaluate their performance on phytoplankton species data (as mentioned above).

Experimental set up

To conduct all experiments, we use a computer with 64 bits Window 7, core i7, CPU 3.0

GHz and 8 GB main memory. For computing the proposed features we use the following Rpackages: base, stats, moment [START_REF] Komsta | moments: Moments, cumulants, skewness, kurtosis and related tests[END_REF], and entropy [START_REF] Hausser | entropy: Estimation of Entropy, Mutual Information and Related Quantities[END_REF]. We utilize the latest R-packages of RF [START_REF] Breiman | Random forests[END_REF], RRF (RRF, GRRF, and GRF)[151], e1071 package (SVM) [START_REF] Meyer | Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071)[END_REF], class package (k-NN) [START_REF] Venables | Modern Applied Statistics with S[END_REF] for classifying. Other R-packages like FactoMineR [START_REF] Lê | FactoMineR: A package for multivariate analysis[END_REF], lda [START_REF] Chang | lda: Collapsed Gibbs Sampling Methods for Topic Models[END_REF], have been used to find the most important features.

Concerning SVM, after testing different kernels on different types of features, we choose polynomial kernel of SVM (degree =3) for the derived features and the dissimilarity features, RBF kernel of SVM for the proposed features (tune.svm function [START_REF] Meyer | Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071)[END_REF] is used to find out the optimal coefficients (γ = 0.01 and C = 32, for example)). With k-NN, one of the most important parameters is to choice of suitable value of K. In our experiment, we test with different values of k (k = 1 to 10) and this model gives the best results when k = 1.

For RF, the basic two parameters are specified to train the model are: ntree -number of trees to be constructed in the forest and mtry -number of input variables randomly sampled as candidates at each node. In this study, ntree = 500 is fixed for all RF versions. mtry of RF, γ of GRRF and γ of GRF are default values: the square root of the number of features [START_REF] Breiman | Random forests[END_REF], 0.1 Table 4.2 shows that when combining SVM with the proposed features gives better results (97.31%) than combining SVM with derived features (94.9%, Table 4.1) and dissimilarity features (94.76%, Table 4.3). In contrast to the SVM, k-NN has the lowest performance (82.74%, table 4.2), which implies that combining k-NN with the proposed features as well as with the derived features is not favorable for identifying phytoplankton species. This method drops its performance (table 4.2) because it is very sensitive to the 3 rd moment (values of 3 rd moment range from 0 to 69,000,000 while values of other features are too small). Besides, for more robust verification of the proposal features and classifiers, 5-fold cross validation is performed, in which 3 folds for learning, 1 fold for validation and 1 fold for testing. RF method always proves the best performance 98.57%, following by GRF 97.86%. SVM and GRRF have the same accuracy 97.14%. The performance of GRF is 95.71% and the last is k-NN with 79.29%. capability for the task of identifying phytoplankton species. We find that when using the dis-123 4.1. Classification of phytoplankton species similarity features (based on DTW), the accuracy of the k-NN classifier is better than when combining k-NN with the derived features (L-1, 87.9% -table 4.1 ) or with the proposed features (L-2, 82.7% -table 4.2 ). This result is entirely interpretable because through experimental tests we demonstrate that the combination of 1-NN with DTW distance "has proven exceptionally difficult to beat" [13]. Concerning RRF, GRRF and GRF, with this type of features, the performance of these methods are less than their performance when they combine with the derived features and with the proposed features. However, RF has always stable in the best classification capacity, the same result as k-NN 97.44%.

In addition, in this study we also compare the results of target assignment of the same clas- Besides the comparison of performance of different classifiers and results of target assignment, we carry out identifying which attribute affects the response variable (true label) on the derived features and the proposed features. A supervised technique: Linear Discriminant Analysis (LDA) [START_REF] Chang | lda: Collapsed Gibbs Sampling Methods for Topic Models[END_REF] is used for analyzing. This technique permits to detect a linear combination of predictor variables (features) that best characterizes or separates two or more classes (targets).

sifier
In fact, with the derived features, the hflo_ls feature (the height of signal on orange fluorescence FLO in low sensitivity, which corresponds to the maximum feature of the proposed features) is strong relative to the target variable (28.29% of contribution for all LD components). With the proposed features: the entropy_flo_ls variable (the entropy of signal on orange fluorescence FLO in low sensitivity) is the most important feature which affects the classification variable (46.15%). This result shows that, on the 8 signals, the signal on orange fluorescence FLO in low sensitivity is the most influential to the response variable. On the other hand, the classification results of all RF versions using the proposed features (table 4.2) are higher than their results using the derived features (table 4.1). From these analyses, we find that the proposed features are very significant for the task of classifying phytoplankton species.

Based on the results of classification of seven phytoplankton species (tables 4.1, 4. RF has high accuracy classifier and stability because for the classification situation, Breiman [START_REF] Breiman | Random forests[END_REF] pointed out that accuracy of classification can be improved by aggregating the results of many simple classifiers that have little bias by averaging or voting. From the above results and analysis, we suggest combining the proposed features with RF for identifying of phytoplankton species.

Conclusion

In this work, we compare a quantitative performance of six classification methods for identifying phytoplankton species. The obtained results prove that RF with the proposed features is the best robust for phytoplankton species identification. The study highlights two main contributions. Firstly, we propose new features extracted from raw FCM signals. Secondly, we provide a quantitative comparison of different classification algorithms applied to different features types. Besides, we also compare target assignment of the same classifier on different features types as well as different classifiers on the same features type. In addition, we carry out analyzing on the derived features and the proposed features to identify which attribute affect the target variable. The present work will permit combining classifiers (e.g. RF method with k-NN method) or features types (e.g. the derived features with the proposed features) to improve classification results.

Event detection in a multidimensional time series

As mentioned in the previous section, algal (including phytoplankton) bloom is a very important phenomenon that can help to develop appropriate strategies to avoid economic losses and environmental or ecosystem effect. This work is carried out within the framework of a collaboration between IFREMER and LISIC, especially for the CPER MARCO project. In this section, we emphasize the importance of completing missing data before classification and/or modelisation step to avoid incorrect interpretations of signal dynamics. We base on the previous work of Kevin Rousseeuw (PhD thesis) on a HMM/SC model. This model did not take 4.2. Event detection in a multidimensional time series into account gaps. So here we complete the signals to improve the dynamic parameters of the HMMs. This study highlights to detect specific events in multivariate time series.

Data presentation

Before the step of detecting and modeling environmental states, it is necessary to characterize the acquired data. This step is essential in order to extract the useful information and make it easily exploitable. This is particularly interesting to carry out an exploratory data analysis to choose or propose adaptive algorithms of data processing.

Here, we explore the data acquired by the MAREL-Carnot station. . After verifying that the data are in the expert range and re-sampling nutrient data, the percentage of missing values for these five years ranges from less than 1 % to more than 28% .

Preprocessing data

Before performing a detection of rare/extreme events on the MAREL Carnot dataset, we need to pre-process the data including data correction (this is based on sensor ranges and expert ranges), time alignment, completion of missing data and normalization of data. The acquisition frequency of MAREL-Carnot data is 20 minutes. However, the measurements of various sensors are not done simultaneously, so there is a time shift that can range from a few seconds to a few minutes. The characteristics of the seawater do not radically change every minute, so in order to synchronize the measurements, after deleting the information on the seconds, a time alignment with interval of 20 minutes is performed. For each hour (noted hh), we obtain the alignment as follows:

• 

• Completion of missing data

As mentioned above, MAREL Carnot data contain a lot of missing values. There are many isolated missing points and gaps. We apply DTWBI to complete gaps when their size are larger or equal to 9 missing values (corresponding to 3 hours). For isolated missing values and gaps which are smaller than 9 missing points, we use two algorithms as following :

1. Imputing isolated missing -1NA: replacing a missing value by the average of the previous value and the following one of the missing value at time index t.

2. Imputing small T-gaps (for Marel case T<=9 -corresponding to less than 3 hours):

This method is an extension of the previous one (we named Weighted Moving Average method). The difference is in the update step of the considered window. This algorithm involves 3 steps as follows:

- if (x(i) = NA) then 4:

x(i)=(x(i-1)+x(i+1))/2 x N = x N-1 12: end if 13: Return y = x -with imputed series x(i) = w l (i)+w r (i) 

• Normalization of data

In this step, we perform scaling and centering data.

Event detection

To discover specific states in this large database, a multi-level spectral clustering approach [START_REF] Grassi | Results from measurements in the eastern English Channel : MAREL Carnot station[END_REF] is performed. Figure 4.6 illustrates different steps to do this task. It consists in performing At the third level stopped by the expert interpretation, 8 new states has been discovered (figure 4.8). Figure 4.8a) illustrates these events and indicates that the 7 th state has a punctual dynamics like intermittent 1 and extreme event 2 . This is strongly correlated with high phosphate values (Figure 4.8b) highlighted by a PCA analysis.

The completion process allows now to better characterize the dynamics of these events 1 Intermittent: occurring at irregular intervals 2 Extreme: out of statistic or small events like storm, dam opening, etc. 

Conclusion

The goal of this application is to detect events in large MAREL-Carnot data without any priori biological knowledge. These data were collected from the high frequency multi-sensors of the MAREL-Carnot. Preprocessing is one of the essential steps before detecting rare/extreme events including correct out-of-range values, align the sensors on an identical time scale and complete the missing data using different proposed algorithms.

To detect specific events, multi-level spectral clustering approach has been applied. Experiment results show that this method allows to • define states in multivariate time series,

• detect, identify and characterize these states,

• extract labels of rare or extreme events. the three past decades, numerous approaches have been proposed to improve accuracy and efficiency of time series forecasting, especially using nonlinear models. Cheng et al. [START_REF] Cheng | Time series forecasting for nonlinear and non-stationary processes: A review and comparative study[END_REF] pointed out that nonlinear models outperform linear ones for time series forecasting in many applications, such as stock prices [33] and climatology [START_REF] Mudelsee | Climate Time Series Analysis[END_REF].

Artificial Neural Networks (ANN) have become a useful approach to model nonlinear processes such as forecasting rainfall [START_REF] Mandal | Short-term rainfall prediction using ANN and MT techniques[END_REF][START_REF] El-Shafie | Dynamic versus static neural network model for rainfall forecasting at Klang River Basin, Malaysia[END_REF], or predicting sea level [START_REF] Imani | Caspian Sea level prediction using satellite altimetry by artificial neural networks[END_REF]. In [START_REF] Nguyen | An artificial neural network model for rainfall forecasting in Bangkok, Thailand[END_REF] Dynamic Time Warping (DTW) [7] is an effective method for measuring similarity between two linear/nonlinear time series. This method is successfully applied in pattern recognition [9,10], in imputation [START_REF] Phan | Dynamic time warping-based imputation for univariate time series data[END_REF]. For the forecasting task, there are few studies using DTW to predict future values. In [START_REF] Tsinaslanidis | A prediction scheme using perceptually important points and dynamic time warping[END_REF] Tsinaslanidis and Kugiumtzis used perceptually important points and DTW for stock market forecasting.

Compared to other methods, only few research has been devoted to predict time series using a Bayesian network-based method, although Aguilera et al. showed the capability of Bayesian networks in environmental modeling in [START_REF] Aguilera | Bayesian networks in environmental modelling[END_REF].

Thus this work does not propose a novel forecasting method. However we emphasize on comparing the performances of different univariate approaches by building a framework for forecasting hydro-meteorological univariate time series. Five time series data are applied to the six models we choose for anticipating future values including SES, Snaive, SARIMA, FFNN, DTWBI, and BSTS. This allows to suggest the most suitable method, among the abovementioned methods, for predicting hydro-meteorological univariate time series ensuring that results are reliable and of high quality.

In addition, for univariate forecasting methods, we must only rely on the available values of this unique variable to estimate future values, without other outside explanatory variables [START_REF] Frank | Forecasting women's apparel sales using mathematical modeling[END_REF]. And, Smith and Agrawal [START_REF] Smith | A Comparison of Time Series Model Forecasting Methods on Patent Groups[END_REF] pointed out that "when attempting to forecast univariate time series data, it is generally accepted that parsimonious model techniques are followed.

In the next section, we focus on univariate forecasting methods. Then, Section 4. 

Time series forecasting methods

In this part, several adapted methods for forecasting meteorological univariate time series are mentioned and then will be deployed.

• SES -Simple Exponential Smoothing: ES methods, including a number of ad hoc techniques, used for extrapolating different types of univariate time series. The new forecast at time t + 1 is the exponentially weighted average of all t past observations: y 1 , y 2 , . . . , y t [START_REF] De Gooijer | 25 years of time series forecasting[END_REF].

y t+1|t = t ∑ n=0 α(1 -α) n y t-n (4.7) 
where 0 ≤ α ≤ 1

• Snaive -Seasonal-naive: sets all the forecast values to be the value of the last observation and takes into account the seasonal period as eq.4.8. Hence, this method considers that the most current observed value is the only important one and all the previous observations do not provide information to estimate future values.

y t+h = y t+h-km (4.8)
where m is a seasonal period, k = 1 + (h-1)/m, h is a number of periods for forecasting.

• SARIMA -Seasonal-ARIMA: the forecast values of a stationary time series can be estimated by an additive linear function composed of p past observations (autoregressive) and q random errors (moving average) as eq.4.9, denoted as ARIMA(p, d, q) ([157]), and d is the differencing number used to make a series y to be stationary.

y t = p ∑ n=1 α n × y t-n + ε t + q ∑ n=1 β n × ε t-n (4.9)
Seasonal ARIMA model is developed from ARIMA by taking into account seasonal factors. SARIMA is labeled as SARIMA(p, d, q)(P, D, Q)s, where upper-cases are counterpart of ARIMA model for the seasonal model and s is number of periods per season.
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both in the temporal and value axis. Once the most similar window is identified, the following sub-sequence Q f s of the Qs is considered as the forecast values. The dynamics and the shape of data before the forecast values are key-point of this technique (see [START_REF] Phan | Dynamic time warping-based imputation for univariate time series data[END_REF]).

• FFNN -Feed-forward neural network: Artificial Neural Network is proposed from inspiring the interconnection neurons of the human. FFNN maps the set of inputs to the set of outputs (both data inputs and outputs are digital). FFNN allows to automatically extract global features before the last decision step (output layer) considering only one hidden layer. A FFNN with no hidden layers is also called linear perceptron: its inputs are directly mapped to the outputs unit via the weighted connections.

Experiment protocol

We have performed a set of experiments on five meteorological time series using six different univariate models to evaluate their forecasting performance.

Experiment set up

R language is used to conduct all experiments. We utilize the latest forecast R-packages [START_REF] Rob | Automatic time series forecasting: the forecast package for R[END_REF] (for FFNN, Ses and Snaive), astsa [START_REF] Stoffer | astsa: Applied Statistical Time Series Analysis[END_REF] for SARIMA, bsts [START_REF] Scott | bsts: Bayesian Structural Time Series[END_REF] (for BSTS). For DTWBI, we develop ourselves (upon request). For SARIMA, auto.arima() [START_REF] Rob | Automatic time series forecasting: the forecast package for R[END_REF] is employed to optimize the parameters p, d, q, P, D, Q. For FFNN, we use the default parameters: input nodes are the number of seasonal lags applied to seasonally adjusted data, and number of nodes in the single hidden layer is half the number of input nodes. And for BSTS, we choose niter = 50 with specified seasonality component for each forecasting rate.

Data presentation

In this section, we describe the data used for the study. Five hydro-meteorological time series are used for evaluating the performance of forecasting methods (table 4.8). These five datasets were collected at three meteorological stations in Vietnam. They have different sampling frequency and time measurement duration (short or long period). In order to obtain useful information from the datasets and to make the datasets easily exploitable, we analyzed these series. In this study, 5 forecasting data levels are considered on 5 datasets. For Phu Lien datasets with monthly sampling frequency, we predict 6, 12, 18, 24 and 30 future months. For the infra daily series, the forecasting size is ranged from 0.5% 0.75%, 1%, 1.25% and 1.5% of the dataset size. For each forecasting level, all the algorithms are conducted 5 times by back-warding the predicted position of each repetition with a size of forecasting. We then run 25 iterations for each dataset.

After the prediction of future values, we compared the performance of six different forecasting methods based on four evaluation metrics including Similarity, NMAE, RMSE and FB.

These indicators have been defined in Chapter 1. In addition, all five series have a seasonality component, so we choose SARIMA to make a prediction. Although ARIMA is a benchmark method for the forecasting task and for each time series we use R function auto.arima() [START_REF] Rob | Automatic time series forecasting: the forecast package for R[END_REF] to optimize parameters but with these time series this model does not present its ability.

Results and discussion

Looking at the Cua Ong temperature dataset (table 4.11), FFNN continues to demonstrate its predictability for meteorological univariate time series at the first two levels (0.5% and 0.75%). But at higher ratios from level 3 to level 5, DTWBI proves its predictability: the largest value for Similarity, and the smallest value considering error and bias indices.

Ses and Snaive methods were proposed for forecasting data with seasonality or no trend.

When considering accuracy indices, they yield quite good results (table 4.9, 4. 10 and 4.11).

In this study, we also compare the visualization performance of forecasting values generated from different methods. From the above results and analysis, we suggest to use DTWBI approach for forecasting meteorological univariate time series when considering the shape of predicted values and to apply FFNN when regarding the quantitative accuracy. 

Conclusion

Chapter conclusion

In this chapter we have presented three different applications:

The first application is devoted to identify phytoplankton species. In this work, we propose an algorithm that allows to extract the global characteristics of signal. Then it is applied to extract features of phytoplankton signals obtained from the FCM. Through experiments, it clearly shows that the combination of the proposed features with RF provides better results for the phytoplankton classification.

Conclusions and future work

Conclusions

Missing data are the first weakness of most statistical models and data analysis methods. Despite their suitability of performances, missing data make them unable to operate. Completing missing data is a necessary precondition for a majority of approaches. Therefore, in this work we present our research on the missing data problem. The main contribution is the investigation and development of different techniques to impute large consecutive missing values in time series data. We focus on two types of data: univariate and uncorrelated multivariate time series. In the special case of those two types of time series, the imputation task is a remaining challenge because we cannot take advantage of inter-variable correlations to estimate missing values. Hence, we must exploit observed data in the incomplete time series itself to compute missing data.

The first main objective of this study is the proposition of an effective method to fill large missing values in univariate time series. In this context, we take into account time series characteristics to develop an appropriate and efficient strategy. We have opted for the elastic matching approach combined with a shape-feature extraction algorithm to propose DTWBI method.

Experiments carried out on well-known and real-world datasets show that the completion of missing data by finding the most similar sequences using the elastic matching is a robust solution. Looking for similar sequences by elastic matching enables to complete missing values in database while conserving as much as possible the dynamics and the shape of signals. Using the shape-feature extraction algorithm greatly decreases the computing time. In addition, we study different variants of the DTW approach (including DDTW, AFBDTW and DTW-D) and in particular we focus on the comparison of these variants for the univariate imputation task.

Chapter conclusion

The objective of this comparison is to suggest the most adaptable version to fill incompleteness in univariate time series according to the desired goal. Experimental results point out that when considering the accuracy of imputation values, DTW is more convenient and when regarding the shape of imputation values for the large gaps and big datasets, AFBDTW is more suitable.

The second major goal of this study is to deal with missing values in low/un-correlated multivariate time series. In the literature, most proposed approaches address the missing problem in correlated multivariate data by taking advantage of the relations between variables. Fewer studies pay attention to solve the incompleteness issue in low/un-correlated multivariate time series.

Thus, we have investigated two algorithms to complete large missing values in low/uncorrelated multivariate data by exploiting the propriety of this type of data.

The first algorithm is an extension of DTWBI, namely DTWUMI (DTW-Uncorrelated Multivariate Imputation). As in DTWBI, we based our approach on the combination of DTW method and shape-feature extraction algorithm. DTWUMI's originality consists in a conjoint multivariate matching. So, we take care of the time index of all the variables. This is shown in the query creation (a matrix of all the variables before or after a gap) and finding similar windows steps. However, only a vector following (or preceding) of the most similar window in the signal containing the considered gap is used to complete the gap.

The second algorithm, namely FSMUMI, takes into account a factor of uncertainty. In this way, we develop a novel similarity measure based on fuzzy grades of basic similarity measures and fuzzy logic rules. In other words, the characteristic of low/un-correlation data is also exploited. Each signal is individually processed. Then, for each gap in this individual signal, we consider the data before this gap and after the gap as two separated univariate time series. The novel fuzzy-weighted similarity measure is applied to find similar windows in each univariate time series. Once imputation values from two separated time series are available, the gap is completed by averaging the both vectors of imputation values.

Experimental results on simulated and real datasets show that both proposed algorithms provide improved performance for the imputation task, not only in accuracy indices but also in the shape of imputation values. Moreover, they are capable of solving the problem of wholly missing variables (missing rows problem).

In this study, in addition to the investigation of various imputation techniques, we have also proposed an algorithm to extract global characteristics of signal (called the shape-feature extraction algorithm). This method is then applied to compute features of phytoplankton signals.

Through experiments, it clearly indicates that the combination of the proposed features with Random Forest provides better results for the phytoplankton classification. The shape-feature extraction algorithm is also combined with DTW approach in the two previous proposed algorithms (DTWBI and DTWUMI), with the aim of reducing the calculation time.

Besides, in this thesis DTWBI is applied in two specific applications. Experimental results are very promising:

In the first application, DTWBI is employed to complete large gaps in the MAREL Carnot dataset, then a multi-level spectral clustering approach is performed to detect rare/extreme events in the data without any prior biological knowledge. The results show that this protocol is able to detect/identify and characterize states and to extract labels of rare/extreme events.

In 

Perspectives for future work

Based on the results presented in this thesis, we will now detail several perspectives for future research directions to improve the overall system.

Improvement of the performance of imputation algorithms

• In this thesis we propose DTWBI algorithm, which enables to impute large consecutive missing values in univariate time series, based on the combination of the shape-feature extraction and elastic matching approaches. This method is evaluated and compared with state-of-the-art approaches which do not allow to complete large periods of lacking data (detailed in Chapter 2). The obtained results are encouraging but in the DTWBI algorithm we only consider one query either before or after the considered gap. Therefore, an investigation of this algorithm should be expanded by taking into account two queries, one query before and one query after the gap. Moreover, data before and data after the gap will be considered as two referenced time series. This would, on the one hand, enrich the learning base and, consequently, improve the prediction ability of the method. On the other hand, this permits to envisage dynamics (important key) of data before and after • In this study, the detection of extreme/rare events in MAREL Carnot dataset using an unsupervised method (multi-level spectral clustering) has been discussed in Chapter 4.

similar subsequences (Chapter 2 and 3). For anomaly detection application, the similarity measure is also an important key to determine "how closely matched are two given observations" ( [START_REF] Cheng | Detection and Characterization of Anomalies in Multivariate Time Series[END_REF]). Motivated from this, future research and further developments of anomaly detection in univariate/multivariate by using similarity measures could be considered.

• In Chapter 4, the shape-feature extraction algorithm is proposed and then applied to classify phytoplankton species. In section 4.1, a better ability for the classification task when combining RF and the proposed features is pointed out. Nevertheless, an improvement of this identification framework could be implemented as follows: firstly, we could combine different types of features, then apply feature-selection methods to select meaningful features which will be used to identify phytoplankton species. This would to extend our work in other learning contexts. 

Introduction

Recent advances in monitoring systems, communication and information technology, storage capacity and remote sensing systems make it possible to consider huge time series databases. These databases have been collected over many years with intraday samplings. However, they are usually incomplete due to sensor failures, communication/transmission problems or bad weather conditions for manual measures or maintenance. This is particularly the case for marine samples [3,26] . Incomplete missing data are problematic [8] because most data analysis algorithms and most statistical softwares are not designed to handle this kind of data.

Let consider some terminologies and a real marine data set to illustrate the problem. A time series Other classical solution consists in ignoring missing data or listwise deletion. But it is easy to imagine that this drastic solution may lead to serious problems, especially for time series data (the considered values would depend on the past values). The first potential consequence of this method is information loss which could lose efficiency [20] . The second consequence is about systematic differences between observed and unobserved data that leads to biased and unreliable results [9] .

x = { x t | t = 1 , 2 , • • • , N} is a set of N
Therefore, it is crucial to propose a new technique to estimate missing values. One prospective approach to solve missing data problems is the adoption of imputation techniques [12] . These techniques should ensure that the obtained results are
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JID: PATREC [m5G; August 30, 2017;13:44 ] efficient (having minimal standard errors) and reliable (effective, curve-shape respect). According to our knowledge, there is no application for filling time series data with large missing gap(s) size for univariate time series. We therefore investigate and propose an algorithm to complete large gap(s) of univariate time series based on Dynamic Time Wrapping [28] . We do not deal with all the missing data over the entire series, but we focus on each large gap where series-shape change could occur over the duration of this large gap. Further, the distribution of missing values or entire signal could be very difficult to estimate, so it is necessary to make some assumptions. Our approach makes the assumption that the information about missing values exists within the univariate time series and takes into account the time series characteristics.

This paper is organized as follows. First,we discuss the related work in Section 2 . The analysis of time series data is discussed in Section 3 . The proposed approach is introduced in Section 4 . Experimental results and discussion on 8 data sets are illustrated in Section 5 . Conclusion is set out in Section 6 .

Related work

In the literature, missing data mechanisms can be divided into three categories. Each category is based on one possible cause: "Missing data are completely random" (Missing Completely At Random, MCAR, in the literature), "Missing data are random" (Missing At Random, MAR) and "Missing data are not random" (Not Missing At Random, NMAR) [17] . It is important to understand the causes that produce missing data to develop an imputation task. This can help to select an appropriate imputation algorithm [19] . But in practice, understanding the causes remains a challenging task when missing data cannot be known at all, or when these data have a complex distribution [8] . Similarly, assigning sub-sequences of missing values to a category can be blurry [19] . Commonly, most current research works focus on the three types of missing data previously defined to find out corresponding imputation methods. Regarding imputation methods, a large number of successful approaches have been proposed for completing missing data.

Concerning the imputation task for multivariate time series, many studies have been investigated using machine learning techniques as [16,25,30] and model techniques such as [6,7,11,14,23,24,27,29,31,33,35] . The efficiency of these algorithms is based on correlations between signals or their features, and missing values are estimated from the observed values. However, handling missing values within univariate time series data differs from multivariate time series techniques. We must only rely on the available values of this unique variable to estimate the incomplete values of the time series. Moritz et al. [19] showed that imputing univariate time series data is a particularly challenging task.

Fewer studies are devoted to the imputation task for univariate time series. Allison [1] and Bishop [2] proposed to simply substitute the mean or the median of available values to each missing value. These simple algorithms provide the same result for all missing values leading to bias result and to undervalue standard error [5,32] . Other imputation techniques for univariate time series are linear interpolation, spline interpolation and the nearest neighbor interpolation. These techniques were studied for missing data imputation in air quality data sets [12] . The results showed that univariate methods are dependent on the size of the gap in time: the larger gap, the less effective technique. Walter et al. [36] carried out a performance comparison of three methods for univariate time series, namely, ARIMA (Autoregressive Integrated Moving Average), SARIMA (Seasonal ARIMA), and linear regression. The linear regression method was more efficient and effective than the other two methods, only when rearranging the data in periods. This study treated non-stationary seasonal time series data but it did not take into account series without seasonality. Chiewchanwattana et al. proposed the Varied-Window Similarity Measure (VWSM) algorithm [4] . This method is better than the spline interpolation, the multiple imputation, and the optimal completion strategy fuzzy c-means algorithms. However, this research only focused on filling one isolated missing value, but did not consider sub-sequence missing. Moritz et al. [19] performed an overview about univariate time series imputation comparing six imputation methods. Nevertheless, this study only considered the MCAR type.

Time series characterization

Filling large gaps within time series requires firstly to characterize the data. This step permits to extract useful information from the data set and makes the data set easily exploitable. The four specific components of time series are trend, seasonal, cyclical and random change: There are different techniques to decompose time series into components. "Decompose a time series into seasonal, trend and irregular components using moving averages" (R-starts package, [22] ) is the most common technique. In this study, we use this technique to analyze time series data. Auto-correlation function (ACF) provides an additional important indication of the properties of time series (i.e. how past and future data points are related). Therefore, it can be used to identify the possible structure of time series data, and to create reliable forecasts and imputations [19] . High auto-correlation values mean that the future is strongly correlated to the past. Fig. 1 indicates the auto-correlation of Mackey-Glass chaotic, water level and Google data sets in our experiment.

The proposed method -DTWBI

In this part, we present a new method for imputing missing values of univariate time series data.

A time series x is referred as incomplete time series when it contains missing values (or values are Not Available-NA). Recall that the portion of a time series between two points x t and x t+ T -1 with x i = NA ( i = t : t + T -1) is called a gap of T -size at position t . In this paper, we consider a large gap when T ≥ 6% N for small time series ( N < 10, 0 0 0) or when T is larger than the known-process change.

The proposed approach finds the most similar sub-sequence ( Qs ) to a query ( Q ), with Q (cf. Fig. 2 ) is the sub-sequence before a gap of T size at position t ( Q = x [ t -T : t -1] ), and completes this gap by the following sub-sequence of the Qs .

To find the Qs similar sub-sequence, we use the principles of Dynamic Time Warping -DTW [28] , especially transformed from original data to Derivative Dynamic Time Warping -DDTW data [13] . The DDTW data are used because we can obtain information about the shape of sequence [13] . The dynamics and the shape of data before a gap are a key-point of our method. The elastic matching is used to find a similar window to the Q query of T size in the search database. Once the most similar window is identified, the following window will be copied to the location of missing values. Fig. 2 describes the different steps of our approach. The detail of DTWBI (namely DTW-Based Imputation) algorithm is introduced in Algorithm 1 . In the proposed method, the shape-feature extraction algorithm [21] is applied before using DTW algorithm in order to reduce the computation time. As we know DTW's time complexity is O ( N 2 ), so this is a very useful step to decrease computation time of DTW method. A reference window is selected to calculate DTW cost only if the correlation between the shape-features (also called the global features) of this window and the ones of the query is very high. In addition, we apply the shape-feature extraction algorithm because it better presents the shape and dynamics of series through 9 elements, such as moments (the 1 st moment, the 2 nd moment, the 3 rd moment), number of peaks, entropy, etc (see [21] for more detail). This is an important objective of the proposed method. In Algorithm 1, we just mention the finding of similar windows before the gap. In case of finding similar windows after the gap, the method just needs to shift the corresponding index.

Experimental results and discussion

Data presentation

In this study, we analyzed 8 data sets in order to evaluate the performance of the proposed technique. 4 data sets come from TSA package [10] . These data sets are chosen because they are usually used in the literature, including Airpassenger, Beersales, Google, and SP. Besides, we also choose other data sets from various domains in different places: 

Univariate time series imputation algorithms

The performance of the proposed method compared with 5 other existing methods for univariate time series (namely, na.interp, na.locf, na.approx, na.aggregate, na.spline) is evaluated in this paper. All these methods are implemented using R language (na stands for Not Available):

1. na.interp (forecast R-package): linear interpolation for nonseasonal series and Seasonal Trend decomposition using Loess (STL decomposition) for seasonal series to replace missing values [10] . A seasonal model is fitted to the data, and then interpolation is made on the seasonally adjusted series, before re-seasonalizing. So, this method is especially devoted to strong and clear seasonality data. 2. na.locf (last observation carried forward) (zoo R-package): any missing value is replaced by the most recent non-NA value prior to it [37] . Conceptually, this method assumes that the outcome would not change after the last observed value. Therefore, there has been no time effect since the last observed data. 3. na.approx (zoo R-package): generic function for replacing each NA with interpolated values [37] . 4. na.aggregate (zoo R-package): generic function for replacing each NA with aggregated values. This allows imputing using the overall mean, by monthly means, etc [37] . In our experiment, we use the overall mean. 5. na.spline (zoo R-package): polynomial (cubic) interpolation to fill in missing data [37] .

Imputation performance indicators

After the completion of missing values, we assess the performance of our method, and then compare it with existing imputation methods based on four different metrics described as follows:

1. Similarity: Sim ( y, x ) indicates the similarity between actual data ( X ) and imputation data ( Y ). It is calculated by:

Sim (y, x ) = 1 T T i =1 1 1 + | y i -x i | max (x ) -min (x ) (1)
Where T is the number of missing values. A higher similarity (similarity value ∈ [0, 1]) highlights a better ability method for the task of completing missing values. 2. NMAE: The Normalized Mean Absolute Error between the imputed value y and the respective true value time series x is computed as:

NMAE(y, x ) = 1 T T i =1 | y i -x i | V max -V min ( 2 
)
Where V max , V min are the maximum and the minimum values of input time series (time series has missing data) by ignoring the missing values. A lower NMAE means better performance method for the imputation task.

RMSE:

The Root Mean Square Error is defined as the average squared difference between the imputed value y and the respective true value time series x . This indicator is very useful for measuring overall precision or accuracy. In general, the most effective method would have the lowest RMSE.

RMSE(y, x

) = 1 T T i =1 (y i -x i ) 2 (3) 
4. FSD: Fraction of Standard Deviation of the imputed value y and the respective true value time series x is defined as follows:

F SD (y, x ) = 2 * | SD (y ) -SD (x ) | SD (y ) + SD (x ) (4) 
This fraction indicates whether a method is acceptable or not (here SD stands for Standard Deviation). For the imputation task, FSD should be closer to 0, the imputation values are closer to the real values.

Experiment protocol

Indeed, we could not compare the ability of imputation algorithms on real missing data because the true values are not available. Therefore, we have to create simulated missing values on full data to compare the performance of imputation algorithms. For assessing the results, we use a technique based on three steps. In the first step, we create artificial missing data by deleting data values from known time series. The second step consists in applying the imputation algorithms to complete missing data. Finally, the third step compares the performance of the proposed method with published methods using the different imputation performance indicators as previously defined.

In the present study, 5 missing data levels are considered on 8 data sets. If the size of a data set (number of instants of the data set) is less than or equal to 10,0 0 0 samples, we create gaps with different sizes: 6%, 7.5%, 10%, 12.5%, 15% of overall data set size. In contrast, when the size of a data set is greater than 10,0 0 0 sampling points, gaps are built at rates 0.6%, 0.75%, 1%, 1.25%, and 1.5% of the data set size (here the largest gap of the water level time series is 1972 missing values, corresponding to the missing rate 1.5%). For each missing rate, the algorithms are conducted 10 times by randomly selecting the missing positions on the data. We then run 50 iterations for each data set.

Results and discussion

Comparison of quantitative performance

Table 2 shows imputation average results of DTWBI, na.interp, na.locf, na.approx, na.aggregate, na.spline methods applied on 8 data sets using 4 indicators: similarity, NAME, RMSE, FSD. size is greater than or equal to 10%, the proposed method has the highest similarity and the lowest NMAE and RMSE. On the Beersales data set, considering similarity and RMSE indicators: na.interp method provides the best result and the second one is our approach. By contrast to these two indicators, our method has better results on NMEA and FSD indicators at any missing rate. When comparing na.interp method to the na.approx one on the Airpassenger and Beersales data sets, we can see na.interp shows better performance than na.approx method on any indicators and at every level of missing data. These data sets have a seasonality component (except Mackey-Glass chaotic series but this data set is regularly repeated), without any trend (excluding CO 2 concentrations data set) and high auto-correlation. Our method demonstrates the best ability for completing missing data on these series: the highest similarity, the lowest NMAE, RMSE and FSD at any missing level. Furthermore, on Airpassenger, Beersales, Google and SP data sets, the similarity of our approach is lower, but the difference value of this indicator between the proposed method and the best method is small. On the contrary, for these four data sets, our method outperforms the existing techniques on any indicator and at any missing rate. The different values of these indicators between the proposed method and the other ones are quite large. The results confirm that the imputation values generated from the proposed method are close to the real values on data sets having high auto-correlation (see Fig. 1 , the ACF maximum values of water and chaotic series are approximate 1), which means that there is a strong relationship between the available and the unknown values.

Following the proposed method, the second one is na.aggregate one applied on the Mackey-Glass chaotic series, Phu Lien temperature and water level series. As mentioned above ( Table 1 ), these data sets have no trend, that is why na.aggregate could demonstrate its ability. However, on the C02 series with clear trend, fully opposed to these 3 data sets, the performance of this method is the worst one.

Although na.interp method is well indicated for handling data sets with seasonality component: here with these 4 data sets this approach does not illustrate its capability. It gives the same results as na.approx method and lower results than our approach and the na.aggregate one (on the Mackey-Glass chaotic, Phu Lien temperature and water series). For any data set, na.spline method indicates the lowest performance. However on the water series, this method has the least performance for completing missing values. This means that the spline method is not suitable for this task.

Comparison of the visual performance

Table 2 indicates the quantitative comparison of 6 different methods for the task of completing missing values. In this part, Figs. 3-5 , 7 , and 8 show the comparison of visual imputation performance of different methods.

Fig. 3 presents the shape of imputation values of 5 existing methods (na.interp, na.locf, na.approx, na.aggregate and na.spline) with the true values at position 106, the gap size of 9 on the Airpassenger series. As we can notice on Table 2 , considering low rates of missing data, the proposed approach is less effective than na.interp and na.aggregate methods for Airpassenger time series. However, when looking at Fig. 4 , we find that the shape of the imputation values generated from DTWBI method is very similar to the shape of true values. Despite high similarity, low RMSE and NMAE, the shape of imputation values yielded from na.aggregate method ( Fig. 3 ) is not as effective as the proposed method ( Fig. 4 ). As analyzed above, the na.interp method better deals with seasonal factor, so their imputed values are asymptotic to the real values ( Fig. 3 ). Fig. 5 illustrates the visual comparison of DTWBI's imputation values and real values on water level series at position 23,282, and at 0.6% rate of missing values (corresponding to 789 missing points). The proposed method proves again its capability for the task of completing missing values. We see that the shape of the imputation values generated from our method and the one of the true values are almost completely identical. Fig. 6 shows the matching pairs between the query and the most similar reference window for the considered case. The values of matching pairs are very close, which indicates the reason why the imputation values generated from DTWBI are very similar to the real values. In contrast to our approach, handling seasonal factor of na.interp method is ineffective on water level data set. This method does not provide good result such as on Airpassenger series ( Fig. 3 ); its perfor- mance is the same as na.approx method ( Fig. 7 ). Fig. 8 especially points out the obvious inefficiency of na.spline method for the task of completing missing values, considering series with high autocorrelation and large gap size (789 missing values in this case).

In this paper, we also calculate Cross-Correlation (CC) coefficients between the query with each reference window, and then we find the maximum coefficient. CC demonstrates that a pattern (here that is the query) exists or not in the database. High CC value means that there exists the recurrence of the pattern in the database. Therefore, we could easily find the pattern. Table 3 indicates the maximum of cross-correlation between the query and reference windows. This result is fully interpreted: for 4 data sets including CO 2 concentrations, Mackey-Glass chaotic series, Phu Lien temperature and water level, their cross-correlation between the query and reference windows are very high for each missing level ( Table 3 ). This corresponds to the results in Table 2 : the proposed method yields the highest similarity and the lowest NMAE, RMSE, FSD. It also means that the imputation values generated from DTWBI method are very close to the true ones. For Google (#3) and SP (#4) data sets, we see that CC are not high, that is why our approach does not well prove its ability. With Airpassenger data set (#1), when CC are greater than or equal to 0.94, the proposed method highlights better results than other methods. On Beersales data set (#2), in case of higher CC, DTWBI gives better results in case of lower CC.

From these results, we can notice that the proposed method gives the best performance in case of high CC coefficient ( > 0.9). Indeed, CC is an indicator that gives information about the pattern recurrence in the data. Based on this indicator, we can predict if one pattern may occur in the past or in the following data from the position we are considering. From the above analyses, we can see that our algorithm outperforms other imputation methods when data sets have high auto-correlation and cross-correlation, no trend, strong seasonality, and complex distribution, especially in case of large gap(s). High cross-correlation means that these data sets are recurrent, or in other words, these time series will repeat themselves over some periods. The drawback of this method is the computation time. The proposed algorithm may take a long time to find the imputation values when the size of the given data is large. The reason is the search for all possible sliding windows to find a reference window having the maximum similarity to the query.

Conclusion

In this paper, we have proposed a new imputation method for univariate time series data, namely DTWBI method. This methodology has been tested using 8 data sets: Airpassenger, Beersales, Google, SP, CO 2 concentrations, Mackey-Glass chaotic, Phu Lien temperature, and water level. The accuracy of imputation values produced by DTWBI is compared with 5 existing methods (na.interp, na.locf, na.approx, na.aggegate and na.spline) using 4 quantitative indicators (similarity, NMAE, RMSE and FSD). We also compare the visual performance of these methods. The experiments show that our approach gives better results than the other existing methods, and is the best robust method in case of time series having high cross-correlation and auto-correlation, large gap(s), complex distribution, and strong seasonality. However, the proposed framework is restricted to applications where the necessary assumption of recurring data in the time series is set up (high cross-correlation indicator), and it requires computation time for very large missing intervals. The present work will allow to extend the proposed approach to complete missing values of multivariate time series data in the future.

RÉSUMÉ

Les données manquantes constituent un challenge commun en reconnaissance de forme et traitement de signal. Une grande partie des techniques actuelles de ces domaines ne gère pas l'absence de données et devient inutilisable face à des jeux incomplets. L'absence de données conduit aussi à une perte d'information, des difficultés à interpréter correctement le reste des données présentes et des résultats biaisés notamment avec de larges sous-séquences absentes.

Ainsi, ce travail de thèse se focalise sur la complétion de large séquences manquantes dans les séries monovariées puis multivariées peu ou faiblement corrélées. 
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 211 Figure 1.1: Illustration of isolated and T-gap missing values
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 1234 Time series analysis means splitting the data into smaller periods in order to easily analyze. The four specific components of time series (including trend, seasonal, cyclical and random change) are presented as follows: Trend component: That is the change of variable(s) in terms of monitoring for a long time (denoted m t ). If a trend exists within the time series data (i.e. on the average data), the measurements tend to increase (or decrease) over time. It can be represented by a straight line or a smooth curve of low order (by a graph). Seasonal component: This component takes into account intra-interval fluctuations. It means there is a regular and repeated pattern of peaks and valleys within the time series related to a calendar period such as seasons, quarters, months, weekdays, and so on. Cyclical component: It is time that a pattern will repeat in the cycle for years. This component represents cyclical change (denoted s t ). In order to evaluate this component, it is necessary to observe values of time series every year. The difference between this component and the seasonal one is that its cycle lasts more than 1 year. Random change component: This component considers random fluctuations around the trend; this could affect the cyclical and seasonal variations of the observed sequence, but it cannot be predicted by previous data in the past of time series. This component (denoted e t ) is not cyclical.
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 12 Figure 1.2: Decomposition of weekly data (average) of Chla from the Ifremer IGA-Gravelines monitoring station over the period 1989 to 2014 using R-starts package.

Fig. 1 .Figure 1 . 3 :

 113 Fig. 1.3 shows the auto-correlation of Chlorophyll-a series. Values between the blue striped lines of auto-correlation are not statistically significant. Looking at the fig. 1.3, we find that repeating patterns of positive and negative auto-correlations, typical for seasonality: a shift of 52 instants for a correlation coefficient 0.47. This time offset represents 52 weeks (1 year). We
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 14 Figure 1.4: Simulated signals

  x i and y j . This distance can be measured by Manhattan measure, Euclidean distance or squared distance . . . . Then, DTW algorithm builds a matching sequence (warping path) of points P = (p 1 , p 2 , . . . , p k ) with p l = (i l , j l ) ∈ [1 : N] x [1 : M] for l ∈[1 : k], between the points of signals x and y according to some criteria (see Section Local path criteria and global path criteria).
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 21 Figure 2.1: Dynamic Time Warping example[START_REF]GenTXWarper -Dynamic Time Warping algorithm for gene expression time series[END_REF] 
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 22 Figure 2.2: Euclidean example.Note that while the two sequences have an overall similar shape, they are not aligned in the time axis. Euclidean distance, which assumes the i th point in one sequence is aligned with the i th point in the other, will produce a pessimistic dissimilarity measure. The nonlinear Dynamic Time Warped alignment allows a more intuitive distance measure to be calculated[START_REF]GenTXWarper -Dynamic Time Warping algorithm for gene expression time series[END_REF] 
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 224 Figure 2.4: Examples of global constraints: (a) Sakoe-Chiba band; (b) Itakura parallelogram.

Figure 2 . 5 :

 25 Figure 2.5: A) Two synthetic signals (with the same mean and variance). B) The natural "feature to feature" alignment. C) The alignment produced by dynamic time warping. Note that DTW failed to align the two central peaks because they are slightly separated in the Y-axis[START_REF] Eamonn | Derivative dynamic time warping[END_REF] 

Figure

  Figure 2.6, 2.7 and 2.8 illustrate i) the matching paths producing by different versions of

  The general architecture of our proposal DTWBI (Dynamic Time Warping-Based Imputation) is shown in Figure2.9. It involves 4 steps: 1-Building query, 2-Comparing sliding window, 3-Selecting window, 4-Filling gap. The proposed approach consists in finding the most similar sub-sequence (Qs) to a query (Q) (Step 2-Comparing sliding window and step 3-Selecting window), with Q is the subsequence before a gap of T size at position t (Q = x[t -T : t -1]) (Step 1-Building query), and completes this gap by Q f s -the following sub-sequence of the Qs (Step 4-Filling the gap).
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 29 Figure 2.9: General architecture of DTWBI: 1-Building query, 2-Comparing sliding window, 3-Selecting window, 4-Filling gap
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 2210 Figure 2.10: Detail diagram of DTWBI method for univariate time series imputation
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 211 Figure 2.11: ACF of Mackey-Glass chaotic, water level and Google time series
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 2 12 illustrates this comparison. Looking at figure 2.12, once again DTWBI demonstrates its ability versus the random selection of windows for complete missing values: the largest similarity, the smallest RMSE and FSD. • Comparison of visual performance Tables 2.4, 2.5 indicate the quantitative comparison of 6 different methods for the task of completing missing values. In this part, figures 2.13, 2.14, 2.15, 2.17, and 2.18 show the comparison of visual imputation performance of different methods.

Fig. 2 .

 2 Fig. 2.13 presents the shape of imputation values of 5 existing methods (na.interp, na.locf, na.approx, na.aggregate and na.spline) with the true values at position 106, the gap size of 9 on the Airpassenger series. As we can notice onTable 2.4, considering low rates

  NMAE RMSE FSD 1-Sim NMAE RMSE FSD 1-Sim NMAE RMSE FSD 1-Sim NMAE RMSE FSD
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 2213214 Figure 2.12: a) On the left, boxplot comparison of Similarity, RMSE and FSD on C02 dataset with a gap size of 6%, b) on the right boxplot comparison of Similarity, RMSE and FSD on Airpass dataset with a gap size of 15%
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 2 Fig. 2.16 shows the matching pairs between the query and the most similar reference window for the considered case. The values of matching pairs are very close, which indicates the reason why the DTWBI imputation values are very similar to the real values (fig. 2.15). In contrast to our approach, handling seasonal factor of na.interp method is

Figure 2 . 15 :

 215 Figure 2.15: Visual comparison of imputed values of the proposed method with true values on water level series at position 23,282 with the gap size of 789.

Figure 2 . 16 :

 216 Figure 2.16: Visual comparison of the query with the similar window on water level series at position 23,282 with the gap size of 789.

Figure 2 . 17 :

 217 Figure 2.17: Visual comparison of imputed values of different methods with true values on water level series at position 23,282 with the gap size of 789.
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 218553 Figure 2.18: Visual comparison of imputed values of spline method with true values on water level series at position 23,282 with the gap size of 789.

Hsu

  et al.[START_REF] Hsu | KNN-DTW Based Missing Value Imputation for Microarray Time Series Data[END_REF] used k-Nearest Neighbors (k-NN) and DTW algorithms for completing DNA data. They also performed comparing different versions of DTW algorithm for better prediction and computation performance. Nevertheless, the authors did not mention to complete long missing subsequences. In[START_REF] Oehmcke | kNN ensembles with penalized DTW for multivariate time series imputation[END_REF] a weighted k-NN version is combined with DTW to compare multiple points in time simultaneously. DTW-cost is used as distance metric instead of pointwise distance measurements. Kostadinova et al.[START_REF] Kostadinova | An Integrative DTW-based imputation method for gene expression time series data[END_REF] proposed an Integrative DTW-Based Imputation algorithm that is particularly suited for the estimation of missing values in gene expression time series data using multiple related information in datasets. This algorithm identifies an appropriate set of estimation matrices by using DTW-cost distance in order to measure similarities between gene expression matrices. Yang et al.[START_REF] Yang | Missing Value Imputation in Microarray Gene Expression Data[END_REF] also developed a method to impute missing values in microarray time-series data based on the combination of k-NN and DTW. In these three last cited works, the authors applied DTW method for completing missing values in multivariate data. Imputation for consecutively missing values in univariate data is not considered.
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 3 Figure 3.1 illustrates the mechanism of DTWUMI method.
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 3132 Figure 3.1: Illustration of the DTW-completion process: query building and similar sequence research, gap filling.
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 2 Dynamic Time Warping-based uncorrelated multivariate time series imputation3.2.2.1 Data presentationThree multivariate time series are handled in this study. We choose one from KEEL repository, one simulated dataset (this permits to control the criterion of correlations and the amount of missing data) and one real dataset hourly collected by IFREMER (France) in the eastern English Channel.NNGC1_F1_V1_003 (NNGC) dataset[93]: This time series contains transportation data (4 attributes and 1,745 instants) including highway traffic, traffic data of cars in tunnels, traffic at automatic payment systems on highways, traffic of individuals on subway systems, domestic aircraft flights, shipping imports, border crossings, pipeline flows and rail transportation. The data contains a time series of hourly frequency. Simulated dataset: In the second experiment, a simulated dataset including 3 signals is produced in the following: For the first variable, we use 5 sine functions that have different frequencies and amplitudes F= { f 1 , f 2 , f 3 , f 4 , f 5 }.Next, 3 various noise levels are added to data F, S = {F, F + noise1, F + noise2, F + noise3}. We then repeat S 4 times (this dataset has 32,000 sampled points). In this study, we treat with missing data in low/un-correlated multivariate time series. So to satisfy this condition, the two remaining signals are generated based on the first signal with the correlations between these signals are low (≤ 0.1%). We apply the Corgen function of ecodist R-package[START_REF] Goslee | The ecodist package for dissimilarity-based analysis of ecological data[END_REF] to create the second and the third variables.MAREL-Carnot dataset [3]:The third experiment is conducted on MAREL-Carnot dataset. This dataset consists of nineteen series such as phosphate, salinity, turbidity, water temperature, fluorescence, water level,... that characterize seawater. These signals were collected from the 1 st January 2005 to the 9 th February 2009 at 20 minutes frequency. Here they were hourly sampled, so they have 35,334 time samples. But the data include many missing values, the size of missing data varies on each signal. For assessing the performance of the proposed method and comparing with other approaches, we chose a subgroup including fluorescence, water level, and water temperature (the water level and the fluorescence signals are complete data, while water temperature contains isolated missing values and gaps). We select these signals because their correlations are low.

Figure 3 . 3 :Figure 3 . 4 : 4 .

 33344 Figure 3.3: Schema of MI algorithm

Tables 3 . 1 , 3 .

 313 2 and 3.3 present the average performance evaluation of different imputation algorithms for NNGC, simulated and MAREL Carnot time series for the 6 indicators. The best results for each missing rate are highlighted in bold. These results confirm the good ability of DTWUMI for filling missing values in uncorrelated multivariate time series. NNGC dataset:
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 335 Figure 3.5: Visual comparison of imputed values of different imputation methods with true values on NNGC series with the gap size of 17 on each signal.
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 36 Figure 3.6: Visual comparison of imputed values of different imputation methods with true values on MAREL Carnot dataset with the gap size of 353 on the 2 nd signal.

Figure 3 .

 3 Figure 3.7 demonstrates the mechanism of FSMUMI approach. Without loss of generality, in this figure, we consider a multivariate time series including 3 variables whose correlations are low.

Figure 3 . 7 :

 37 Figure 3.7: Scheme of the completion process: 1-Building queries, 2-Comparing sliding windows, 3-Selecting the most similar windows, 4-Completing gap.

figure 3 . 8 )

 38 figure 3.8) using the 3 attributes which provides 3 coefficients to calculate a new interpolated similarity measure. The universe of discourse of each distance measure is normalized to the value 1.
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 38 Figure 3.8: Computing scheme of the new similarity measure
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 39 Figure 3.9: Membership function of fuzzy similarity values

  2 and 3 in Fig 3.7)

8 :i ← 1 ; 11 : 17 :i ← 1 ;

 8111171 FSM ← NULL 9: while i ≤ length(Db) do 10: k ← i + T -1 Create a reference window: R(i) = Db[i : k] 12: Calculate a fuzzy-based similarity measure between Qb and R(i): f bsm Step b: Find similar windows in the Db database 18: Lopb ← NULL 19: while i ≤ length(Db) do 20: k ← i + T -1 21: Create a reference window: R(i) = Db[i : k] 22: Calculate a fuzzy-based similarity measure between Qb and R(i): f bsm 23: if f bsm ≥ threshold then 24: Save position of R(i) to Lopb 25:return position of Qbs -the most similar window to Qb having the maximum fuzzy similarity measure in the Lopb list.

Perform

  Step a and Step b for Da data 32:return position of Qas -the most similar window to Qa

  end for 37: return Y -imputed time series similarity measure f bsm as previously defined in subsection 3.3.2.1. Details are in the following:

•

  The third phase (cf. 4 in Fig 3.7) When results from both referenced time series are available, we fill in the gap by averaging values of the window previous Qas and the one following Qbs. The average values are used in our approach because model averaging makes the final results more stable and unbiased [107].

Figure 3 .

 3 Figure 3.10: A schematic of Amelia to multiple imputation with the EMB algorithm.
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 311 Figure 3.11: Visual comparison of completion data of different imputation approaches with real data on the 1 st signal of synthetic series with the gap size of 1000

FCM

  signals and RF to determine phytoplankton species. Therefore, our main contributions in this part are: (1) to propose a new type of features extracted from the raw signals of phytoplankton species; (2) to perform a comparative analysis of identifying phytoplankton species using a variety of advance machine learning models such as K-NN (1-NN), SVM, RF and several modification versions of RF. This permits to determine the best type of features for representing phytoplankton species and classifier for classifying phytoplankton species with high accuracy.
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 41 Figure 4.1: 8D-signals describing three species

[ 147 ] 121 4. 1 .

 1471211 and 1 [151], respectively. Each classifier is evaluated using a 4-fold cross validation to determine the recognition error rate and this cross validation is repeated 10 times. The data set of 700 (100×7) phytoplankton cells is divided into 4 subsets of 175 (25 × 7) cells. Each subset respects an equal target distribution. The learning phase uses three subsets and predicts the remains as test set. For classifying phytoplankton species, in the first step, we extract proposed features (derived features are available) and calculate dissimilarity of each pairs phytoplankton cells from the raw signals. In the next step, after finishing of the learning process, the classification models are used to predict test set. The average accuracy of classification methods are given in tables 4.1, 4.2, and 4.3. The results of contingency table between different models and between different features types of one in the 10 iterations are presented in tables 4.4, 4.5. The reliability of classification models is evaluated based on classification accuracy of the test sets. The classification results of six methods using different features types are illustrated Classification of phytoplankton species
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 2431244 , RF has proven its ability and stability for identifying phytoplankton species as combining APPLICATIONS: TOWARD CLASSIFICATION AND FORECASTING with different features types (the best performance when RF combining with the proposed features of 98.24%). In contrast, SVM and k-NN indicate less classification capability on the derived features and the proposed features although different kernels have been used and the parameters have been optimized to achieve the best result.
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 44 these steps. In this study, we choose 9 signals including: water temperature, salinity, dissolved oxygen, nitrate, phosphate, silicate, turbidity, water level and P.A.R.
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 441292 Figure 4.4: Schema of preprocessing data stage

  [ hh:00, hh:20 [ = hh:10 • [ hh:20 , hh:40 [ = hh:30 • [ hh:40 , hh:59 ] = hh:50 So the moment 01:21 will be labeled as the moment 01:30. Our database therefore consists of = 131,472 times starting on 01/01/2005 at 00:10 and ending on 31/12/2009 at 23:50 with a sampling time of 20 minutes. For nutrients with a lower frequency (12 hours), we re-sample with daily frequency.

  Calculate weighted moving average (direction left to right) w l -Calculate weighted moving average (direction right to left) w r -Compute the average of w l and w r to fill in missing values Algorithm 3 Isolated-completion algorithm Input: x = {x 1 , x 2 , . . . , x N }: incomplete time series Output: y -completed (imputed) time series 1: N=length(x) 2: for i=2 to N-1 do 3:

Algorithm 4

 4 Weighted moving average algorithm Input: x = {x 1 , x 2 , . . . , x N }: incomplete time series t -the first position of a T-gap T : size of the gap Output: y -completed (imputed) time series 1: for each T-gap in the x do

2 : 3 : 4 :

 234 for i = t to t + T -1 do Calculate left weighted moving average w l (i) = ∑ T j=1 j * x(i-T + j-1)T * (T +1)Calculate right weighted moving average w r (i) = ∑ T j=1 j * x(i+2 * Tj) T * (T +1)5:

Figure 4 . 5 :

 45 Figure 4.5: Comparison of incomplete(black) Turbidity, complete (blue) Turbidity and satellite Turbidity (red)

Figure 4 .

 4 Figure 4.7c) presents the distribution of states labeled by the prediction of SC on learning database at the first level. In 2005-2008, the state s2, in green color, is related to the period beginning in April and ending in December with dominance in the period May-October. The state s1, in red, is dominant in the period from November to April (figure 4.7c). Here data are classified time non-dependent but the system is able to detect the seasonal dynamics when considering the temperature signal: the first state occurs in autumn and winter with low temperature, and the second state takes place in spring and summer with high temperature (figure 4.7b).

133 4. 2 .Figure 4 . 6 :

 133246 Figure 4.6: Extreme events detection

Figure 4 . 7 :

 47 Figure 4.7: Results of the 1 st spectral clustering (b) -boxplot of temperature dispersion (c)states distribution per month with seasonal cycle in the period 2005-2008 and (d) -sequencing of the states in the period 2005-2008.

Figure 4 . 8

 48 Figure 4.8

Figure 4 .

 4 Figure 4.10 presents the shape of forecast values yielded by different methods on the Phu Lien humidity series. From this figure, it is clear that SES and Snaive methods do not produce a similar shape as the shape of true values. When comparing the quantitative indicators, DTWBI is only second or third rank, but when considering the shape of forecasting values, DTWBI is better than other methods. The dynamics and the form of predicted values produced by the DTWBI method are very similar to the form of true values.In this application, Cross-Correlation (CC) coefficients between the query and each sliding window (as defined in DTWBI method) are also calculated, and the maximum coefficient is computed. CC indicates the similarity of two series. For forecasting task, this coefficient demonstrates how past values affect future ones. High CC means that predicted values are

Fig. 1 .

 1 Fig. 1. ACF of Mackey-Glass chaotic, water level and Google time series.

Fig. 2 .

 2 Fig. 2. Diagram of DTWBI method for univariate time series imputation.

1 .

 1 Airpassenger -Monthly total international airline passengers from 01/1960 to 12/1971. 2. Beersales -Monthly beer sales in millions of barrels, from 01/1975 to 12/1990. 3. Google -Daily returns of the google stock from 08/20/04 to 09/13/06. 4. SP -Quarterly S&P Composite Index, 1936Q1-1977Q4. 5. CO 2 concentrations -This data set contains monthly mean CO 2 concentrations at the Mauna Loa Observatory from 1974 to 1987 [34] . 6. Mackey-Glass chaotic -The data is generated from the Mackey-Glass equation which is the nonlinear time delay differential [18] . 7. Phu Lien temperature -This data set is composed of monthly mean air temperature at the Phu Lien meteorological station in Vietnam from 1/1961 to 12/2014. 8. Water level -The MAREL Carnot data in France acquired from 2005 up today. For our study, we focus on the water level, sampling frequency of 20 min from 01/1/2015 to 31/12/2009 [15] .

  It corresponds to Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-based imputation for univariate time series data, Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.08.019

Fig. 3 .

 3 Fig. 3. Visual comparison of imputed values of different imputation methods with true values on Airpassenger series at position 106 with the gap size of 9.

Fig. 4 .

 4 Fig. 4. Visual comparison of imputed values of proposed method with true values on Airpassenger series at position 106 with the gap size of 9.

Fig. 5 .

 5 Fig. 5. Visual comparison of imputed values of the proposed method with true values on water level series at position 23,282 with the gap size of 789.

Fig. 6 .

 6 Fig. 6. Visual comparison of the query with the similar window on water level series at position 23,282 with the gap size of 789.

Fig. 7 .

 7 Fig. 7. Visual comparison of imputed values of different methods with true values on water level series at position 23,282 with the gap size of 789.

Fig. 8 .

 8 Fig. 8. Visual comparison of imputed values of spline method with true values on water level series at position 23,282 with the gap size of 789.

  Un premier axe de travail a été une recherche d'une requête similaire à la fenêtre englobant (avant/après) le trou. Cette approche est basée sur une comparaison de signaux à partir d'un algorithme d'extraction de caractéristiques géométriques (formes) et d'une mesure d'appariement élastique (DTW -Dynamic Time Warping). Un package R CRAN a été développé, DTWBI pour la complétion de série monovariée et DTWUMI pour des séries multidimensionnelles dont les signaux sont non ou faiblement corrélés. Ces deux approches ont été comparées aux approches classiques et récentes de la littérature et ont montré leur faculté de respecter la forme et la dynamique du signal. Concernant les signaux peu ou pas corrélés, un package DTWUMI a aussi été développe. Le second axe a été de construire une similarité floue capable de prendre en compte les incertitudes de formes et d'amplitude du signal. Le système FSMUMI proposé est basé sur une combinaison floue de similarités classiques et un ensemble de règles floues. Ces approches ont été appliquées à des données marines et météorologiques dans plusieurs contextes : classification supervisée de cytogrammes phytoplanctoniques, segmentation non supervisée en états environnementaux d'un jeu de 19 capteurs issus d'une station marine MAREL CARNOT en France et la prédiction météorologique de données collectées au Vietnam. Mots-clés: Imputation, données manquantes, séries temporelles univariées, séries temporelles multivariées non corrélées, Dynamic Time Warping, mesure de similarité, système d'inférence floue.

  

  

  

  

  

  log(m t * s t * e t ) = log(m t ) + log(s t ) + log(e t )

(1.3) 

There are different techniques to decompose time series into components. "Decompose a time series into seasonal, trend and irregular components using moving averages" (R-starts package,

[31]

) is the most common technique. The function 1.1 determines the trend component using a moving average, and removes it from the time series. Then, the seasonal figure is computed by averaging, for each time unit, over all periods. The seasonal figure is then centered. Finally, the error component is determined by removing trend and seasonal figure (recycled as needed) from the original time series. In this study, we use this technique to analyze all time series data.

Example: Chlorophyll-a (Chla) in µg/L -weekly Chlorophyll-a time series was measured by Ifremer IGA-Gravelines monitoring

[32] 

from 01/1/1989 to 24/12/2014.

Trend and seasonal analysis are provided in figure

1

.2. This figure shows that Chla series has no linear trend and an annual cycle.

Table 1 .

 1 

	1-FA2

1: Values of different indicators between the Query and various references 1-Sim 1 -R 2 RMSE NMAE FSD FB

  1. Next in Section 2.2, we present the main theoretical background of DTW method and several of its variants. Then, in Section 2.3.1 we describe our approach for univariate time series imputation. Sections 2.3.2 and 2.3.3 are to validate the proposed method and to compare with state-of-the-art approaches. The next part 2.4, we perform a comparison of different DTW versions for the imputation of univariate time series.

  There are two types of constraints: the first one is local criteria and the other one is global constraints. Local constraints perform slopes of the warping path (local path) so this allows to calculate the accurate path. Global constraints make less the search space for warping paths, and enhance the efficiency of DTW algorithm. These global CHAPTER 2. DTW-BASED IMPUTATION APPROACH FOR UNIVARIATE TIME SERIES Figure 2.3: DTW cost matrix with an illustration of matching path (red circle)

Table 2 .

 2 1 presents costs of each pair calculated by different DTW methods.

	2.6, 2.7 and 2.8 illustrate i) the matching paths producing by different versions of
	DTW, ii) signals after the deformation of three pairs: (Query vs Reference), (Query vs Refer-
	ence4) and (Query with Reference5).
	For the first case (Query vs Reference, figure 2.6), visually, matching path generated from
	DTW is the least effective of the three. The other DDTW and AFBDTW methods have a
	good warping path and a shape detection. However, for the second case (Query vs Reference4,
	figure 2.7), the warping path of DTW is less distorted as comparing with the one of DDTW

Table 2 .

 2 Given an incomplete time series x, with T -gap at position t (x i = NA, i = t : t + T -1).

	1: The matching cost of different methods
	DTW DDTW AFBDTW ED	DTW-D
	Query -Reference 2.09	0.04	200.28	41.90 0.05
	Query -Reference2 0.56	0.05	200.61	18.05 0.03
	Query -Reference3 2.27	0.06	201.25	37.21 0.06
	Query -Reference4 0.42	0.05	201.25	10.68 0.04
	Query -Reference5 0.03 0.02	200.11	0.72 0.05
	From this table and from the figure 2.8, it obviously demonstrates that the 5 th pair is the
	most similar. For the first pair, the Reference is created out of phase of the Query, and when
	looking at the figure 2.6, we see that DDTW gives the best warping path (this result is also
	shown in the table 2.1), following by AFBDTW and finally DTW with the most deformation.
	In contrast, for the 4 th pair, DTW yields the best matching path with at least warping.

  Build a search database before the gap: SDB = Dx[1 : t -2T ] and deleting all lines containing missing parameter SDB = SDB\{dx j , dx j = NA} 4: Step 4: Find the threshold 5: i ← 1; DTW _costs ← NULL 6: while i <= length(SDB) do

	Algorithm 1 DTWBI algorithm
	Input: x = {x 1 , x 2 , . . . , x N }: incomplete time series
	t: index of a gap (position of the first missing value of the gap)
	T : size of the gap
	θ _cos: cosine threshold (≤ 1)
	step_threshold: increment for finding a threshold
	step_sim_win: increment for finding a similar window
	Output: y -completed (imputed) time series
	1: Step 1: Transform x to DDTW data Dx = DDTW (x)
	2: Step 2: Construct a Q query -temporal window before the missing data Q = Dx[t -T :
	t -1]
	3: Step 3: 7:
	2. Beersales -Monthly beer sales in millions of barrels, from 01/1975 to 12/1990.
	3. Google -Daily returns of the google stock from 08/20/04 to 09/13/06.
	4. SP -Quarterly S&P Composite Index, 1936Q1 -1977Q4.

step_threshold 16: end while 17: threshold = min{DTW _costs} 18: Step 5: Find similar windows on the SDB 19: i ← 1; Lop ← NULL 20: while i < length(SDB) do

  

	13:	Save the cost to DTW _costs
	14:	end if
	15: i ← i + 21:

  Replace the missing values at the position t by vector after the Qs window having the minimum DTW cost in the Lop list.

		2.3. Dynamic Time Warping-based imputation for univariate time series
		5. CO2 concentrations -This dataset contains monthly mean CO2 concentrations at the
		Mauna Loa Observatory from 1974 to 1987 ([54]).
		6. Mackey-Glass chaotic -The data is generated from the Mackey-Glass equation which is
		the nonlinear time delay differential ([55]).
		7. Phu Lien temperature -This dataset is composed of monthly mean air temperature at the
		Phu Lien meteorological station in Vietnam from 1/1961 to 12/2014.
		8. Water level -The MAREL Carnot data in France are acquired from 2005 up today. For
		our study, we focus on the water level, sampling frequency of 20 minutes from 01/1/2005
		to 31/12/2009 ([3]).
	27:	if cost < threshold then
	28:	Save position of R(i) to Lop
	29:	end if
	30:	end if
	31:	i ← i + step_sim_win
	32: end while
	33: Step 6: 34: return y -with imputed series

Table 2

 2 

	.3

series to replace missing values (

[START_REF] Hyndman | Automatic time series forecasting: the forecast package for r, used package in 2016[END_REF]

Table 2

 2 

.4 and table

2.5 

show imputation average results of DTWBI, na.interp, na.locf, na.approx, na.aggregate, na.spline methods applied on 8 datasets using these indicators.

Airpassenger, Beersales, Google, SP datasets

The Airpassenger dataset has both trend and seasonality components (tabel 2.3). The results from Table

2

.4 indicate that when the gap size is greater than or equal to 10%, the proposed method has the highest similarity and the lowest NMAE and RMSE.

On the Beersales dataset, considering similarity and RMSE indicators: na.interp method provides the best result and the second one is our approach. By contrast to these two indicators, our method has better results on NMEA and FSD indicators at any missing rate. When comparing na.interp method to the na.approx one on the Airpassenger and Beersales datasets, we can see na.interp shows better performance than na.approx method on any indicators and at every level of missing data. It corresponds to the fact that these two datasets have a clear seasonality component. na.interp method takes into account the seasonality factor, so it can better handle seasonality than na.approx does, although both algorithms use the interpolation for completing missing data.

On Airpassenger and Beersales datasets, na.aggregate approach gives less efficient results than na.interp. But on Google series, na.aggregate method yields the best performance: the highest similarity and the smallest NMEA, RMSE indicators. Without any trend on this dataset, this method leads to the best result. For SP dataset, na.aggegate method still highlights a good performance on NMEA and RMSE, but this approach has lower

Table 2 .

 2 4: Average imputation performance indices of six methods on the Airpassenger, Beersales, Google and SP datasets. The best results are highlighted in bold.

	na.spline 0.45 0.175 106.1 0.95 0.51 0.731 6.3 0.88 0.66 12.34 2.928 1.6 0.39 0.136 162.5 0.68	na.aggregate 0.17 0.035 22.1 2 0.16 0.11 1.1 2 0.11 0.08 0.023 2 0.18 0.025 32 2	na.prox 0.2 0.043 26.5 1.17 0.17 0.117 1.1 1.42 0.14 0.11 0.031 0.99 0.19 0.032 41 1	na.locf 0.21 0.047 28.2 2 0.18 0.126 1.2 2 0.16 0.13 0.034 2 0.19 0.028 36.3 2	na.interp 0.14 0.025 15.6 0.35 0.11 0.069 0.7 0.17 0.14 0.11 0.031 0.99 0.21 0.033 43.6 0.49	15% DTWBI 0.1 0.02 12.8 0.36 0.16 0.054 1 0.1 0.15 0.13 0.031 0.29 0.19 0.029 40.7 0.59	na.spline 0.36 0.129 76.8 0.67 0.39 0.458 4 0.77 0.61 2.14 0.532 1.4 0.39 0.113 132.4 0.69	na.aggregate 0.18 0.035 21.8 2 0.16 0.109 1.1 2 0.12 0.08 0.024 2 0.186 0.024 31 2	na.prox 0.21 0.043 26.7 0.95 0.2 0.147 1.4 1.28 0.15 0.12 0.032 1.27 0.185 0.027 35.6 1.06	na.locf 0.2 0.044 26.9 2 0.18 0.127 1.2 2 0.16 0.13 0.035 2 0.19 0.027 36.1 2	na.interp 0.14 0.023 14.8 0.39 0.11 0.068 0.6 0.15 0.15 0.12 0.032 1.27 0.19 0.028 38.8 0.52	12.5% DTWBI 0.11 0.019 12.6 0.36 0.12 0.039 0.7 0.12 0.15 0.14 0.032 0.23 0.2 0.03 41.9 0.61	na.spline 0.38 0.134 78.3 0.52 0.45 0.558 4.9 0.67 0.58 4.68 1.118 1.13 0.24 0.049 63.2 0.45	na.aggregate 0.19 0.035 22.1 2 0.16 0.111 1.1 2 0.13 0.08 0.024 2 0.18 0.023 31.7 2	na.prox 0.21 0.041 24.6 1.03 0.18 0.124 1.2 1.24 0.15 0.1 0.03 1.22 0.17 0.024 33.5 1.14	na.locf 0.21 0.042 26.1 2 0.18 0.13 1.3 2 0.17 0.13 0.035 2 0.19 0.026 36.9 2	na.interp 0.14 0.021 13.1 0.34 0.11 0.068 0.7 0.18 0.15 0.1 0.03 1.22 0.18 0.025 36.3 0.56	10% DTWBI 0.11 0.02 12.7 0.36 0.16 0.054 1 0.13 0.16 0.13 0.032 0.23 0.19 0.029 40.1 0.57	na.spline 0.4 0.112 65.4 0.45 0.4 0.404 3.5 0.43 0.56 3.65 0.963 1.38 0.31 0.042 54.5 0.55	na.aggregate 0.19 0.033 20.2 2 0.18 0.112 1.1 2 0.13 0.08 0.024 2 0.2 0.022 29.1 2	na.prox 0.26 0.053 31.3 1.49 0.2 0.132 1.3 1.51 0.17 0.12 0.034 1.18 0.22 0.025 34 1.1	na.locf 0.23 0.046 27.4 2 0.19 0.123 1.2 2 0.18 0.13 0.035 2 0.23 0.026 34.8 2	na.interp 0.14 0.023 13.6 0.3 0.11 0.067 0.6 0.163 0.17 0.12 0.034 1.18 0.22 0.024 33.1 0.67	7.5% DTWBI 0.22 0.035 20.6 0.31 0.13 0.038 0.7 0.162 0.16 0.13 0.032 0.33 0.24 0.03 38.9 0.52	na.spline 0.29 0.057 35.1 0.52 0.32 0.26 2.3 0.55 0.5 1.81 0.473 1.02 0.37 0.045 56.8 0.41	na.aggregate 0.2 0.033 20.1 2 0.17 0.11 1.1 2 0.14 0.08 0.024 2 0.22 0.021 26.5 2	na.prox 0.23 0.037 21.8 1.01 0.2 0.136 1.3 1.5 0.17 0.11 0.032 1.11 0.27 0.028 37 1.03	na.locf 0.24 0.044 26.3 2 0.19 0.129 1.2 2 0.19 0.13 0.036 2 0.25 0.022 29.2 2	na.interp 0.15 0.019 11.1 0.24 0.11 0.063 0.6 0.15 0.17 0.11 0.032 1.11 0.26 0.028 36.3 0.54	6% DTWBI 0.22 0.034 21.1 0.24 0.12 0.035 0.7 0.14 0.17 0.14 0.034 0.44 0.26 0.026 35.5 0.7	1-Sim NMAE RMSE FSD 1-Sim NMAE RMSE FSD 1-Sim NMAE RMSE FSD 1-Sim NMAE RMSE FSD	Gap size Method Airpassenger Beersales Google SP
																		50													

Table 2 .

 2 5: Average imputation performance indices of six methods on CO2 concentrations, Mackey-Glass Chaotic, Phu Lien temperature and Water level datasets. The best results are highlighted in bold.

Table 2 .

 2 6: The maximum of cross-correlation between the query and reference windows.

	Gap size				dataset		
		#1	#2	#3	#4	#5	#6	#7	#8
	6%	0.88 0.92 0.58 0.78 0.99 1	0.91 1
	7.50%	0.91 0.91 0.55 0.74 0.99 0.99 0.91 1
	10%	0.94 0.87 0.5	0.67 0.98 0.99 0.91 1
	12.50%	0.95 0.89 0.44 0.65 0.98 0.99 0.9	1
	15%	0.95 0.85 0.4	0.65 0.98 0.99 0.9	1

#1-Airpassenger, #2-Beersales, #3-Google, #4-SP, #5-Co2 concentrations #6-Mackey-Glass chaotic, #7-Phu Lien temperature, #8-water level

Table 2

 2 .7 summarizes characteristics of the datasets.

Table 2 .

 2 7: Data characteristics by dataset: Number of the dataset, its name, the number of time samples, presence (Y=Yes else N=No) of trend, presence of seasonal cycle and sampling frequency

	N0 Dataset name	N0 of instants	Trend (Y/N)	Seasonal (Y/N)	Frequency
	1	Cua Ong temperature 9859	N	Y	Daily
	2	Gas online	1344	Y	Y	Weekly
	3	Chlorophyll-a	1352	N	N	Weekly
	4	Fluorescence	106000	N	Y	20 minutes
	5	Water level	131472	N	Y	20 minutes

Table 2 .

 2 From the results of these tables, we find that DTW metric provides the best results on the accuracy indices: the highest similarity and the lowest NMAE and RMSE at every missing level for all datasets. However, when considering on other indices such as FSD, FA2 and FB (we call shape indices), DTW no longer performs well as on the accuracy indicators. .4. Comparison of various DTW versions for completing missing values in univariate time series 9: Average imputation performance indices of various similarity metrics on Gas online series

	Tables 2.8, 2.9, 2.11, 2.10, and 2.12 show average results on 6 indicators (including similar-
	ity, NAME, RMSE, FSD, FA2, and FB) using different DTW versions for completing missing
	data applied on 5 time series.		
	Table 2.8: Average imputation performance indices of various similarity metrics on Cua Ong
	temperature series			
	Gap size	Metric	Accuracy indices 1-Sim NMAE RMSE FSD 1-FA2 FB Shape indices
		DTW	0.209 0.118	37.001 0.269 0.005 0.083
	0.6%	DDTW DTW-D	0.232 0.138 0.273 0.160	43.003 0.333 0.008 0.118 48.372 0.307 0.005 0.152
		AFBDTW 0.228 0.126	39.099 0.252 0.000 0.103
		DTW	0.212 0.122	38.033 0.168 0.014 0.090
	0.75%	DDTW DTW-D	0.237 0.145 0.270 0.184	44.627 0.200 0.008 0.141 53.756 0.267 0.064 0.175
		AFBDTW 0.224 0.142	44.297 0.188 0.030 0.131
		DTW	0.164 0.099	31.952 0.159 0	0.013
	1%	DDTW DTW-D	0.171 0.106 0.188 0.123	33.561 0.176 0.008 0.060 39.209 0.228 0.010 0.078
		AFBDTW 0.173 0.104	33.537 0.125 0.005 0.043
		DTW	0.150 0.108	34.315 0.151 0.003 0.036
	1.25%	DDTW DTW-D	0.166 0.124 0.160 0.119	39.871 0.298 0.002 0.076 37.711 0.228 0.008 0.074
		AFBDTW 0.155 0.113	36.699 0.181 0.003 0.072
		DTW	0.141 0.110	35.649 0.124 0.011 0.035
	1.5%	DDTW DTW-D	0.191 0.164 0.147 0.115	51.600 0.159 0.020 0.136 36.399 0.088 0.005 0.060
		AFBDTW 0.142 0.111	36.656 0.102 0.009 0.048

To assess accuracy and shape indices of theses imputation methods, 6 indicators are divided into two group: the first group is accuracy indices (including Similarity, NMEA, RMSE) and the SERIES second one is shape indices (comprising FSD, FB and FA2). These measurements are defined in Chapter 1.

With Cua Ong temperature (table 2.8) and Gas online (table 2.9) series, DTW still proves its ability on the FB index at all missing rate. For the remaining datasets (Fluorescence, water level, Chla datasets), DTW only highlights its performance at small missing rates. 2DTW-D method is proposed for semi-supervisor classification. Therefore, when we applied this method to complete missing values, DTW-D does not work well in all datasets at every missing level. Nevertheless, when looking at FSD indicator in the table 2.9, DTW-D gives the best results at large gaps (≥ 1%). The reason may be that Gas online series has both trend and CHAPTER 2. DTW-BASED IMPUTATION APPROACH FOR UNIVARIATE TIME SERIES

Table 2 .

 2 10: Average imputation performance indices of various similarity metrics on Fluorescence series .4. Comparison of various DTW versions for completing missing values in univariate time series

	Gap size	Metric	Accuracy indices 1-Sim NMAE RMSE FSD 1-FA2 FB Shape indices
		DTW	0.160 0.028	1.569 0.531 0.462 0.423
	0.6%	DDTW DTW-D	0.189 0.032 0.327 0.067	1.767 1.120 0.662 0.871 3.732 0.950 0.740 1.060
		AFBDTW 0.198 0.035	1.991 0.853 0.545 0.685
		DTW	0.187 0.032	1.800 0.616 0.512 0.505
	0.75%	DDTW DTW-D	0.190 0.034 0.378 0.101	1.883 1.364 0.731 0.974 5.272 1.175 0.802 1.219
		AFBDTW 0.212 0.036	2.068 0.654 0.576 0.724
		DTW	0.150 0.027	1.579 0.838 0.550 0.711
	1%	DDTW DTW-D	0.172 0.035 0.295 0.070	1.963 1.411 0.854 1.236 3.749 1.122 0.778 1.141
		AFBDTW 0.157 0.027	1.606 0.782 0.606 0.800
		DTW	0.157 0.027	1.655 0.913 0.630 0.794
	1.25%	DDTW DTW-D	0.175 0.034 0.362 0.104	1.925 1.415 0.825 1.132 5.740 1.218 0.834 1.302
		AFBDTW 0.160 0.030	1.756 0.778 0.629 0.744
		DTW	0.119 0.028	1.689 1.033 0.659 0.790
	1.50%	DDTW DTW-D	0.123 0.031 0.259 0.083	1.820 1.270 0.813 0.957 4.690 1.042 0.811 1.145
		AFBDTW 0.142 0.038	2.319 0.791 0.622 0.656
	seasonality component.		
	Besides, the shape of imputation values generated from methods using various DTW met-
	rics (DTW, DDTW, DTW-D, AFBDTW) are also analyzed. Fig. 2.19 presents the form of
	imputed values yielded by methods using different similarity metrics with the true values at po-
	sition 444, the gap size of 14 (approximate 3 months of missing values) on the Chlorophyll-a.
	DTW metric proves again its capability to deal with missing subsequence. The shape of the
	imputation values generated from the method using DTW and the one of true values are very
	close.			

After the comparison of quantitative and visual performance of different DTW versions, we carry out examining computational time of each metric. Table

2

.13 shows that for large datasets or large gaps, AFBDTW requires the longest computational time and DTW has at least computing time. 2

Table 2 .

 2 11: Average imputation performance indices of various similarity metrics on Chla series

	Metric	Accuracy indices	Shape indices
		1-Sim NMAE RMSE FSD 1-FA2 FB
	DTW	0.308 0.069	4.609 0.597 0.413 0.381
	DDTW	0.339 0.091	5.707 0.692 0.463 0.476
	DTW-D	0.356 0.090	5.915 0.831 0.450 0.543
	AFBDTW 0.386 0.089	5.962 0.759 0.463 0.641
	DTW	0.243 0.076	5.136 0.525 0.360 0.311
	DDTW	0.254 0.076	5.171 0.582 0.400 0.355
	DTW-D	0.303 0.094	6.481 0.897 0.480 0.492
	AFBDTW 0.281 0.086	5.876 0.646 0.460 0.535
	DTW	0.185 0.071	4.990 0.444 0.393 0.394
	DDTW	0.205 0.088	6.207 0.501 0.443 0.468
	DTW-D	0.236 0.093	6.557 0.642 0.486 0.637
	AFBDTW 0.198 0.086	6.046 0.545 0.450 0.486
	DTW	0.187 0.089	6.488 0.812 0.429 0.526
	DDTW	0.203 0.103	7.076 0.687 0.500 0.475
	DTW-D	0.216 0.105	7.352 0.775 0.518 0.409
	AFBDTW 0.222 0.104	7.136 0.686 0.512 0.404
	DTW	0.205 0.090	6.226 0.435 0.545 0.408
	DDTW	0.216 0.097	6.772 0.407 0.515 0.460
	DTW-D	0.218 0.097	6.865 0.655 0.550 0.463
	AFBDTW 0.217 0.098	6.721 0.510 0.525 0.376

Also, we calculate Cross-Correlation (CC) coefficients between the query and each reference window and the maximum coefficient is extracted. CC demonstrates that a pattern (here that is the query) exists or not in the database. High CC value means that there exists one or more recurrence of the pattern in the database, that means: it is easy to find similar patterns. In

Table 2 .

 2 14, we see that only for water level series, CC values are very high (approximate 1), this explains why the similarity values are very high and the error index is very low.

Table 2 .

 2 12: Average imputation performance indices of various similarity metrics on water level series Visual comparison of imputed values using different DTW metrics with true values on Chla series at position 444 at missing rate 1% (correspond to 14 weeks missing).

	Gap size	Metric	Accuracy indices 1-Sim NMAE RMSE FSD 1-FA2 FB Shape indices
		DTW	0.042 0.037	0.401 0.045 0	0.019
	0.6%	DDTW DTW-D	0.042 0.037 0.139 0.141	0.402 0.045 0 1.434 0.103 0.059 0.005 0.022
		AFBDTW 0.079 0.074	0.765 0.051 0.002 0.019
		DTW	0.037 0.033	0.355 0.017 0	0.009
	0.75%	DDTW DTW-D	0.042 0.038 0.154 0.162	0.401 0.019 0 1.624 0.075 0.082 0.010 0.010
		AFBDTW 0.076 0.073	0.750 0.039 0.008 0.022
		DTW	0.033 0.030	0.333 0.026 0	0.012
	1%	DDTW DTW-D	0.034 0.030 0.107 0.108	0.333 0.027 0 1.141 0.047 0.034 0.013 0.014
		AFBDTW 0.082 0.080	0.828 0.025 0.009 0.017
		DTW	0.039 0.035	0.373 0.025 0	0.009
	1.25%	DDTW DTW-D	0.039 0.035 0.086 0.086	0.373 0.025 0 0.965 0.034 0.019 0.019 0.009
		AFBDTW 0.047 0.044	0.471 0.018 0.001 0.009
		DTW	0.045 0.042	0.442 0.030 0	0.022
	1.5%	DDTW DTW-D	0.045 0.043 0.073 0.073	0.450 0.032 0 0.841 0.021 0.012 0.008 0.025
		AFBDTW 0.061 0.060	0.635 0.020 0.009 0.015
	Table 2.13: Computational time of methods using different DTW metrics at missing rate 0.6%
	on various series in second (s)		
	Method	Cua Ong temperature	Gas online	Chla Fluorescence	Water level
	DTW		12.459		1.670 1.08 774.718	2081.388
	DDTW		13.112		1.700 1.07 786.543	2126.847
	DTW-D	12.543		1.671 1.10 761.831	2088.375
	AFBDTW 62.602		1.539 1.07 14219.51	49095.888

ues for the large gaps and datasets, AFBDTW is more suitable. This work highlights two mains contributions. Firstly, we perform completing large missing subsequences in univariate time series data. Secondly, we provide a quantitative and visual comparison of different DTW algorithms applied to various datasets.

Table 2 .

 2 14: The maximum of cross-correlation between the query and reference windows. Section 2.3.1, we present the basic of DTW and its variants in the first part of this chapter. In the last section, we perform a comparison of different versions of DTW in order to determine a more customized method for the imputation of marine univariate time series ensuring that results are reliable and high quality. From the results, we can conclude that when considering the accuracy of imputation values, DTW is the best robust and when regarding the shape of completed values for the large gaps and datasets, AFBDTW is more suitable. Introduction proach exploits observed data on the univariate time series to estimate the missing values. In this chapter, we investigate to fill large incomplete data in low/un-correlated multivariate time series by taking advantage the property of uncorrelated multivariate data. Different applications based on FcM are investigated for the imputation task as[START_REF] Tang | A hybrid approach to integrate fuzzy C-means based imputation method with genetic algorithm for missing traffic volume data estimation[END_REF][START_REF] Berkan | A hybrid method for imputation of missing values using optimized fuzzy c-means with support vector regression and a genetic algorithm[END_REF][START_REF] Furukawa | On c-means Algorithm for Mixed Incomplete Data Using Partial Distance and Imputation[END_REF][START_REF] Azim | Hybrid model for data imputation: Using fuzzy c means and multi layer perceptron[END_REF][START_REF] Tang | On Missing Traffic Data Imputation Based on Fuzzy C -Means Method by Considering Spatial-Temporal Correlation[END_REF][START_REF] Saravanan | Missing value imputation using fuzzy possibilistic c means optimized with support vector regression and genetic algorithm[END_REF][START_REF] Ichihashi | Fuzzy c-Means classifier with deterministic initialization and missing value imputation[END_REF][START_REF] Furukawa | Missing Categorical Data Imputation for FCM Clusterings of Mixed Incomplete Data[END_REF]. Wang et al.[START_REF] Wang | Time series long-term forecasting model based on information granules and fuzzy clustering[END_REF] used FcM based on DTW to successfully forecast long-term time series.In general, most of the imputation algorithms for multivariate time series take advantage of dependencies between attributes to predict missing values. The correlations make it possible to estimate missing data using the available values of the other variables. However, it is not efficient for multivariate series having low-or un-correlated features (case of MAREL Carnot dataset). For handling missing values or intervals in this case, we must only rely on the observed values of the unique variable containing missing data to predict the incomplete values. Besides, completion of missing values for this type of data has received little attention in the literature when comparing with the imputation of correlated multivariate time series.

	Gap size	Cua Ong temperature	Gas online	Chla	Fluores-cence	Water level
	0.6% 0.751	0.921 0.93 0.657	0.997
	0.75% 0.762	0.889 0.92 0.694	0.996
	1%	0.780	0.819 0.86 0.710	0.996
	1.25% 0.789	0.788 0.86 0.753	0.996
	1.50% 0.825	0.778 0.87 0.731	0.996
	2.5 Chapter conclusion				
	Missing data frequently occurs in many applied domains and poses serious problems such as
	loss of efficiency and unreliable results for various approaches. Thus, imputation (complet-
	ing missing data) is very crucial task for many real applications. Over the years, numerous
	techniques have been developed by applying different approaches like model-based imputa-
	tion, machine learning-based imputation or fuzzy logic-based imputation etc. However, few
	studies are dedicated for the univariate imputation, especially the completion of large gaps. We
	have therefore proposed in this chapter, a novel method, namely DTWBI, for completing large
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3.1 Introduction

In the previous chapter we presented our proposal to fill missing data in univariate time series based on the combination of shape-feature extraction and DTW methods. The proposed ap-

3.1.

In view of the model-based imputation, two main methods were proposed. The first method was introduced by Schafer [64]. With the hypothesis that all variables follow a multivariate normal distribution, this approach is based on the multivariate normal (MVN) model to determine completion values. And, the second method, namely MICE, was developed by van Buuren et al. [65] and Raghunathan et al. [66]. This method uses chained equations to fill in incomplete data: for each variable with missing values, MICE computes the imputation data by exploiting the relations between all other variables. According to the concept of machine learning-based imputation, many studies focus on completion of missing data in multivariate time series. Stekhoven and Bühlmann [76] implemented missForest based on the Random Forest (RF) method for multivariate imputation. P.Bonissone et al. [77] proposed a fuzzy version of RF that they named fuzzy random forest FRF. At the moment FRF is only devoted to classification and in our case FRF may be only interesting to separate correlated and un-correlated variables in multivariate time series if necessary. In [71], Shah et al. investigated a variant of MICE which fills in each variable using the estimation generated from RF. The results showed that the combination of MICE and RF was more efficient than original methods for multivariate imputation. K-Nearest Neighbors (k-NN)-based imputation is also a popular method for completing missing values such as [72, 78, 59, 62, 61, 60]. This approach identifies the k most similar patterns in the space of available features to impute missing data.

The objective of these techniques is to separate the data into several clusters when satisfying the following conditions: maximizing the intercluster similarity and minimizing intracluster dissimilarity. Li et al.

[START_REF] Li | Towards missing data imputation: A study of fuzzy k-means clustering method[END_REF] 

proposed the k-means clustering imputation technique that estimates missing values using the final cluster information. The fuzzy c-means (FcM) clustering is a common extension of k-means. The squared-norm is applied to measure the similarity between cluster centers and data points.

Table 3

 3 Dynamic Time Warping-based uncorrelated multivariate time series imputation the highest similarity, R 2 , FA2 and the lowest RMSE at every missing level. MICE is following the missForest method on these indicators. However, when considering on other indices such as FSD and FB, missForest only proves its performance at small missing rates (≤ 3%). At larger missing levels (4%-7.5%), MICE provides the smallest FB indicator. And at 5%-10% missing rates MI gives best FSD. A lower value indicates better performance. The results can explain that NNGC dataset has high correlations between variables (approximate 0.79). MICE and missForest estimate missing data based on other observed variables. That is why these algorithms have better results and our algorithm does not prove its performance when completing datasets having high correlations. MI is also based on observed values for filling in missing data but under an assumption that all variables follow a multivariate normal distribution. So with this dataset, this method does not give good performance as MICE or missForest. R 2 , FA2, RMSE indicators at every missing level. In particular, our method further proves the ability to fill in incomplete data with large missing rates (7.5% and 10% on MAREL Carnot dataset). These gaps correspond to 110.4 and 147.2 days sampled at hourly frequency.

.1 shows a comparison of five imputation methods on NNGC dataset that has 7 missing ratios (1-10% missing values). We clearly find that missForest gives 3.2.

Simulated and MAREL Carnot datasets:

From the results of tables 3.2 and 3.3, it is clear that missForest, MI, and MICE do not demonstrate their performance for completing missing data on these two datasets. For all missing rates, MissForest is ranked the second as considering similarity and RMSE indices (the simulation data) and the third or below for all indicators (MAREL Carnot series). Because these two datasets have very low correlations between variables, especially for the simulated series which is an almost uncorrelated dataset. That explains why, DTWUMI illustrates the best ability for imputation task: the highest similarity, R 2 , FA2 and the lowest RMSE, FSD for all missing ratios (table

3

.5 -Simulated dataset). Regarding MAREL Carnot series, this dataset has low correlations (around 0.2), so that our approach, DTWUMI, does not show the capability to fill in missing values as it does in the simulated dataset (table

3

.6 -MAREL Carnot dataset). However, this method definitely indicates its imputation performance when considering similarity,
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 3 1: Average imputation performance indices of various imputation methods on NNGC series (1745 collected points)

	Gap size	Method	Accuracy indices 1-Sim 1-R 2 RMSE FSD FB Shape indices 1-FA2
		na.approx 0.2	0.99 11786 0.41 0.19 0.52
		MI	0.1	0.32 5774	0.02 0.01 0.26
	1%	MICE	0.03	0.06 2382	0.03 0.01 0.05
		missForest 0.02	0.02 1286	0.01 0.01 0.01
		DTWUMI 0.12	0.51 7591	0.03 0.12 0.3
		na.approx 0.18	0.96 11456 0.36 0.22 0.52
		MI	0.1	0.33 5644	0.04 0.05 0.31
	2%	MICE	0.04	0.11 3025	0.02 0.01 0.05
		missForest 0.02	0.02 1210	0.01 0.01 0.01
		DTWUMI 0.12	0.51 7591	0.1	0.08 0.3
		na.approx 0.18	0.99 11329 0.66 0.29 0.55
		MI	0.1	0.29 5317	0.04 0.02 0.24
	3%	MICE	0.03	0.11 3112	0.02 0.02 0.05
		missForest 0.02	0.02 1375	0.02 0.01 0.01
		DTWUMI 0.05	0.19 4219	0.05 0.08 0.08
		na.approx 0.18	0.99 11298 0.35 0.12 0.53
		MI	0.11	0.43 6647	0.05 0.06 0.3
	4%	MICE	0.04	0.17 3730	0.02 0.01 0.08
		missForest 0.03	0.09 2405	0.06 0.03 0.05
		DTWUMI 0.1	0.48 6935	0.05 0.06 0.22
		na.approx 0.17	0.99 10848 0.73 0.26 0.54
		MI	0.11	0.43 6823	0.02	0.06 0.29
	5%	MICE	0.04	0.14 3483	0.03	0.02 0.06
		missForest 0.03	0.09 2710	0.06 0.03 0.04
		DTWUMI 0.1	0.49 7116	0.05 0.04 0.22
		na.approx 0.19	0.99 11803 0.49 0.19 0.57
		MI	0.11	0.39 6408	0.01	0.05 0.28
	7.5%	MICE	0.04	0.13 3375	0.02	0.01 0.05
		missForest 0.03	0.07 2197	0.05 0.02 0.03
		DTWUMI 0.04	0.14 3452	0.03 0.04 0.06
		na.approx 0.18	1	11419 0.62 0.25 0.56
		MI	0.1	0.35 5892	0.008 0.02 0.27
	10%	MICE	0.04	0.13 3435	0.01 0.01 0.06
		missForest 0.02	0.05 1990	0.02	0	0.03
		DTWUMI 0.05	0.21 4402	0.02 0.04 0.08

Table 3 .

 3 2: Average imputation performance indices of various imputation algorithms on simulated dataset (32,000 collected points)

	Gap size	Method	Accuracy indices 1-Sim 1-R 2 RMSE FSD FB Shape indices 1-FA2
		na.approx 0.126 0.994 1.99	0.52 1.86	0.81
		MI	0.14	0.999 2.22	0.12 1.89 0.79
	1%	MICE	0.14	0.997 2.23	0.13 2.39 0.79
		missForest 0.11	0.996 1.69	0.89 5.49 0.85
		DTWUMI 0.085 0.51 1.22	0.01 5.86	0.58
		na.approx 0.11	0.998 1.99	0.48 2.41 0.8
		MI	0.13	0.997 2.31	0.06 7.12 0.8
	2%	MICE	0.12	0.999 2.25	0.08 3.75 0.8
		missForest 0.1	0.998 1.7	0.94 2.48 0.86
		DTWUMI 0.064 0.45 1.17	0.01 0.79 0.55
		na.approx 0.11	0.998 1.88	0.69 2.08 0.81
		MI	0.13	1	2.27	0.03 2.63 0.8
	3%	MICE	0.13	1	2.27	0.03 2.63 0.8
		missForest 0.1	1	1.71	0.91 2.49 0.85
		DTWUMI 0.064 0.45 1.16	0.01 1.72 0.54
		na.approx 0.11	0.999 2.14	0.42 2.08	0.79
		MI	0.12	1	2.3	0.03 5.66 0.8
	4%	MICE	0.12	0.999 2.26	0.04 10.07 0.8
		missForest 0.09	1	1.73	0.94 3.81 0.86
		DTWUMI 0.065 0.46 1.19	0.01 4	0.56
		na.approx 0.12	1	2.12	0.66 2.09	0.79
		MI	0.12	1	2.27	0.04 3.67 0.79
	5%	MICE	0.12	1	2.27	0.04 3.27 0.79
		missForest 0.1	1	1.75	0.94 1.92 0.85
		DTWUMI 0.07	0.46 1.19	0.01 2.55	0.58
		na.approx 0.11	1	1.86	0.84 2.09	0.82
		MI	0.12	0.999 2.24	0.03 7.95 0.79
	7.5%	MICE	0.12	1	2.23	0.02 5.54 0.79
		missForest 0.1	1	1.69	0.9	2.7	0.86
		DTWUMI 0.078 0.58 1.37	0.01 5.57	0.6
		na.approx 0.11	1	2.01	0.46 2.02	0.79
		MI	0.12	1	2.24	0.02 2.18 0.79
	10%	MICE	0.12	1	2.25	0.02 16.56 0.79
		missForest 0.09	1	1.7	0.91 1.35 0.86
		DTWUMI 0.064 0.47 1.18	0	4.49	0.56
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 3 3: Average imputation performance indices of various imputation algorithms on Marel dataset(35,334 collected points) 

	Gap size	Method	Accuracy indices 1-Sim 1-R 2 RMSE FSD FB Shape indices 1-FA2
		na.approx 0.068 0.15 1.62	0.07 0.03 0.21
		MI	0.19	0.44 4.48	0.42 0.24 0.48
	1%	MICE	0.16	0.46 4.51	0.37 0.2 0.39
		missForest 0.15	0.26 3.2	0.35 0.18 0.32
		DTWUMI 0.056 0.04 1.02	0.11 0.05 0.15
		na.approx 0.07	0.13 1.73	0.06 0.12 0.18
		MI	0.17	0.41 3.81	0.23 0.12 0.43
	2%	MICE	0.16	0.44 4.05	0.28 0.14 0.37
		missForest 0.13	0.24 2.76	0.24 0.14 0.26
		DTWUMI 0.06	0.04 1.07	0.1	0.03 0.16
		na.approx 0.08	0.17 1.8	0.09 0.07 0.19
		MI	0.21	0.49 4.53	0.41 0.33 0.47
	3%	MICE	0.19	0.53 5.17	0.49 0.36 0.41
		missForest 0.18	0.37 4.09	0.39 0.37 0.36
		DTWUMI 0.056 0.06 1.07	0.09 0.02 0.12
		na.approx 0.057 0.09 1.68	0.06 0.07 0.22
		MI	0.15	0.41 4.51	0.31 0.2 0.47
	4%	MICE	0.135 0.44 4.73	0.29 0.2 0.43
		missForest 0.12	0.22 3.46	0.31 0.18 0.34
		DTWUMI 0.048 0.05 1.27	0.06 0.05 0.19
		na.approx 0.064 0.11 1.81	0.06 0.06 0.21
		MI	0.15	0.41 4.36	0.21 0.21 0.44
	5%	MICE	0.13	0.4	4.42	0.27 0.23 0.41
		missForest 0.12	0.23 3.52	0.28 0.23 0.28
		DTWUMI 0.054 0.08 1.59	0.12 0.09 0.13
		na.approx 0.07	0.3	3.2	0.19 0.16 0.24
		MI	0.14	0.54 4.76	0.26 0.17 0.48
	7.5%	MICE	0.13	0.6	5.06	0.28 0.21 0.43
		missForest 0.1	0.41 3.35	0.28 0.14 0.33
		DTWUMI 0.061 0.25 2.11	0.12 0.08 0.18
		na.approx 0.083 0.23 3.09	0.15 0.16 0.27
		MI	0.13	0.43 4.35	0.16 0.14 0.46
	10%	MICE	0.12	0.5	4.78	0.21 0.18 0.41
		missForest 0.1	0.29 3.47	0.25 0.15 0.3
		DTWUMI 0.065 0.2	2.58	0.12 0.13 0.2
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	4: Average imputation performance indices of various imputation algorithms on syn-
	thetic dataset (100,000 collected points)		
	Gap size	Method	Accuracy indices 1-Sim 1-R 2 RMSE FSD	Shape indices FB 1-FA2
		FSMUMI	0.136 0.261 0.051	0.358 3.253	0.364
		Amelia	0.275 0.999 0.143	0.409 2.252	0.773
		FcM	0.231 0.722 0.096	1.889 2.208	0.996
	1%	MI	0.275 0.999 0.142	0.421 2.091	0.773
		MICE	0.258 0.944 0.13	0.406 2.452	0.72
		missForest 0.248 0.915 0.122	0.389 3.976	0.744
		na.approx	0.052 0.066 0.019	0.054 0.29	0.074
		DTWUMI 0.257 0.713 0.88	0.725 0.405	0.69
		FSMUMI	0.1	0.295 0.046	0.155 0.395	0.337
		Amelia	0.259 0.998 0.147	0.275 2.005	0.803
		FcM	0.208 0.686 0.104	1.863 2.289	0.987
	2%	MI	0.259 0.998 0.147	0.268 2.11	0.81
		MICE	0.244 0.968 0.14	0.255 7.616	0.759
		missForest 0.239 0.968 0.133	0.279 3.156	0.792
		na.approx	0.104 0.278 0.047	0.224 0.398	0.347
		DTWUMI 0.237 0.775 0.867	0.509 8.449	0.646
		FSMUMI	0.113 0.341 0.056	0.219 0.852	0.322
		Amelia	0.218 0.911 0.127	0.133 6.128	0.76
		FcM	0.214 0.601 0.1	1.832 1.759	0.989
	3%	MI	0.253 0.993 0.141	0.236 2.295	0.775
		MICE	0.21	0.873 0.118	0.208 5.118	0.703
		missForest 0.188 0.796 0.102	0.215 1.846	0.627
		na.approx	0.148 0.43	0.072	0.372 2.382	0.577
		DTWUMI 0.231 0.799 0.874	0.332 27.952 0.69
		FSMUMI	0.06	0.146 0.037	0.099 0.738	0.299
		Amelia	0.208 1	0.14	0.213 2.171	0.807
		FcM	0.155 0.759 0.095	1.85	2.09	0.986
	4%	MI	0.208 0.999 0.14	0.196 2.302	0.807
				97	
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	5: Average imputation performance indices of various imputation algorithms on simu-
	lated dataset (32,000 collected points)					
	Gap size	Method	Accuracy indices 1-Sim 1-R 2 RMSE FSD	Shape indices FB 1-FA2
		FSMUMI	0.083 0.515	1.033	0.159 2.51	0.574
		Amelia	0.157 1	2.206	0.232 3.619	0.794
		FcM	0.118 0.998	1.483	1.98	2.015	0.998
	1%	MI	0.16	0.999	2.241	0.2	0.915	0.799
		MICE	0.159 0.998	2.201	0.214 1.449	0.801
		missForest 0.127 0.998	1.608	0.836 12.034 0.861
		na.approx	0.146 0.992	1.901	0.393 18.997 0.777
		DTWUMI 0.09	0.552	1.156	0.007 6.022	0.562
		FSMUMI	0.068 0.487	1.166	0.194 1.971	0.611
		Amelia	0.12	0.998	2.312	0.107 2.191	0.794
		FcM	0.093 0.999	1.672	1.985 1.96	0.998
	2%	MI	0.12	1	2.307	0.123 3.949	0.789
		MICE	0.119 0.999	2.282	0.114 8.881	0.789
		missForest 0.096 1	1.769	0.941 2.777	0.858
		na.approx	0.118 1	2.261	0.721 2.059	0.786
		DTWUMI 0.074 0.523	1.545	0.008 3.686	0.583
		FSMUMI	0.068 0.453	1.053	0.076 10.649 0.582
		Amelia	0.13	0.999	2.212	0.062 3.779	0.794
		FcM	0.098 0.999	1.526	1.984 2.22	0.997
	3%	MI	0.13	0.999	2.197	0.078 9.374	0.795
		MICE	0.129 1	2.19	0.067 1.938	0.792
		missForest 0.102 0.999	1.626	0.855 2.407	0.851
		na.approx	0.116 0.997	1.938	0.518 1.974	0.818
		DTWUMI 0.073 0.526	1.189	0.01	8.725	0.567
		FSMUMI	0.064 0.412	1.067	0.061 1.374	0.568
		Amelia	0.122 1	2.305	0.032 2.446	0.764
		FcM	0.096 1	1.607	1.982 2.325	0.997
	4%							
				99				

2 

score). But when considering shape indicators, FSMUMI only provides the highest FA2 values at several missing levels (3%, 5%-10%). In particular, our method illustrates the ability to fill in incomplete data with large missing rates (7.5% and 10%): the highest similarity, R 2 , FA2 and the lowest RMSE, FSD (excluding at 7.5%), and FB. These gaps correspond to 110.4 and 147.2 days sampled at hourly frequency.

Table 3 .

 3 

	6: Average imputation performance indices of various imputation algorithms on
	MAREL-Carnot dataset (35,334 collected points)	
	Gap size	Method	Accuracy indices 1-Sim 1-R 2 RMSE FSD Shape indices FB 1-FA2
		FSMUMI	0.051 0.156 1.532	0.044 0.081 0.191
		Amelia	0.187 0.544 5.132	0.378 0.354 0.482
		FcM	0.156 0.342 4.037	0.4	0.347 0.338
	1%	MI	0.192 0.561 5.282	0.396 0.365 0.497
		MICE	0.166 0.608 5.596	0.423 0.35	0.436
		missForest 0.165 0.472 4.422	0.385 0.355 0.381
		na.approx	0.061 0.171 1.748	0.067 0.06	0.161
			101	
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 3 7: Computational time of different methods on the synthetic series in second (s)

	Method			Gap size (100,000 collected points)		
		1%	2%	3%	4%	5%	7.5%	10%
	FSMUMI	353.9	427.5	701.9	1037.8	1423.6	2525.5	3556.8
	Amelia	3.2	3.4	5.2	3.2	3.2	3.2	3.2
	FcM	40.9	39.8	40.0	41.1	41.2	46.7	45.6
	MI	844.1	714.0	739.1	723.3	724.5	719.7	726.5
	MICE	7021.1	9187.7	21909.6	13041.9	14833.9	19417.7	23812.6
	missForest 26833.8 24143.8 22969.9	32056.6	36485.8	42424.1	28521.1
	na.approx	0.11	0.089	0.167	0.09	0.088	0.088	0.094
	DTWUMI	5002.67 15714.8 37645.82 64669.71 86435.38 180887.78 273879
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	4.1. Classification of phytoplankton species
	The two previous chapters explained how to complete large consecutive missing values in
	univariate time series and in uncorrelated multivariate time series. This chapter illustrates some
	concrete applications in relation to the marine focus and projects (CPER MARCO project in France and other projects in Vietnam). We begin the chapter by introducing our proposal Chapter 4 (section 4.1), shape-feature extraction algorithm, which allows to effectively extract global
	features from a signal. Accordingly, to analyze pertinent of proposed algorithm we apply it
	to classify phytoplankton species. This proposed algorithm is already combined with DTWBI Applications: Toward classification and (Chapter 2) and DTWUMI (Chapter 3) in order to reduce computation time. In next sections,
	forecasting
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we present two other applications where DTWBI is applied. In the first application, DTWBI is employed to complete MAREL Carnot dataset, then we perform a detection of rare/extreme events (section 4.2). In the second application (section 4.3), based on the idea of imputation, we use DTWBI to forecast meteorological univariate time series.

Table 4 .

 4 1: Accuracy of test recognition of different classification models on the derived features (%)

	Classifier SVM k-NN RF	RRF GRRF GRF
	Fold1	95.89 88.63 96.91 95.37 95.66 95.94
	Fold2	94.06 86.8 96.17 95.26 96.06 95.43
	Fold3	95.03 87.6 96.63 95.54 96.06 94.97
	Fold4	94.63 88.57 96.86 96.23 96.46 95.37
	Average 94.9 87.9 96.64 95.6 96.06 95.43
	Table 4.2: Accuracy of test recognition of different classification models on the proposed fea-
	tures (%)									
	Classifier SVM k-NN RF	RRF GRRF GRF
	Fold1	96.74 82.11 97.65 95.89 95.77 96.86
	Fold2	97.54 83.12 98.57 96.29 94.83 97.37
	Fold3	97.66 82.97 98.63 96.97 96.86 97.26
	Fold4	97.32 82.74 98.12 96.68 96.69 97.54
	Average 97.31 82.74 98.24 96.46 96.03 97.26
	Table 4.3: Accuracy of test recognition of different classification models on the dissimilarity
	features (%)									
	Classifier SVM k-NN RF	RRF GRRF GRF
	Fold1	94.29 97.31 97.66 94.74 94.74 96.4
	Fold2	94.91 97.72 97.43 95.66 94.34 96.57
	Fold3	94.86 97.54 97.2 94.29 93.83 95.77
	Fold4	94.97 97.2 97.49 95.54 94.57 96.57
	Average 94.76 97.44 97.44 95.06 94.37 96.33
	Table 4.4: Contingency table of RF model on the dissimilarity features and the proposed fea-
	tures (T: true label, F: false label)								
					Proposed features		
	Random Forest	Fold 1	Fold 2	Fold 3	Fold 4
			T F T F T F T F
	Derived	T	164 7 165 2 166 1 168 3
	features	F	1	3	8	0	0	9	3	1
					122					

Table 4 .

 4 5: Contingency table of RF and k-NN models on the dissimilarity features These tables show that RF has the highest classification accuracy on all types of features when comparing to other classification methods. RRF, GRRF and GRF are improved versions of RF but they are recommended for high-dimensional data. In this study, all features types are not high-dimensional (number of dimensions are 32, 72, and 700 respectively), the RRF, GRRF as well as GRF therefore do not give the best results but they also provide good results on all features types.

						k-NN		
	Dissimilarity features	Fold 1	Fold 2	Fold 3	Fold 4
			T F T F T F T F
	Random Forest	T 171 3 168 2 170 0 167 2
		F	0	1	2	3	3	2	2	4
	in tables 4.1, 4.2, 4.3.								

Tables 4.1 and table 4.2 present the results of different classification models on the derived features and the proposed features. Regarding these two kinds of features, RF has proven the best capability for classifying on all folds, with classification accuracy average 96.64% (table 4.1) and 98.24% (table 4.2). The k-NN model and SVM model show a lower classification rate compared to all versions of RF with 87.90% and 94.90%, respectively (table 4.1).

Table 4 .

 4 

3 illustrates the classification results of different methods on the dissimilarity features. In contrast to the results in table 4.1 and table 4.2, k-NN method demonstrates superior

  on different features types (table 4.4) as well as different classifiers on the same features type (table 4.5). Table 4.5 is a contingency table of RF classifier on the derived features and the proposed features. In the 1 st fold, RF classifies correctly 165 samples on the proposed features and 171 samples on the derived features. However, only 164 samples are the same classified on the both of features types. Table V is a contingency table of k-NN and RF methods based on the dissimilarity features. In the 4 th fold, both RF and k-NN methods correctly classify 169 samples but only 167 samples are classified in common.

Table 4 .

 4 These data are collected from 2005 to present. For our study, we only focus on the period 2005-2009, including 2009 (table 4.6). This represents a database of 131,472 data acquisition instants for physico-chemical and biological (frequency 20 minutes) signals. For nutrient data including nitrate, phosphate, silicate, in this study, we re-sample with daily frequency. Figures 4.2and 4.3 illustrate these data. 6: Number and percentage of missing values for each signal of the MAREL-Carnot station in the period 2005-2009. APPLICATIONS: TOWARD CLASSIFICATION AND FORECASTING 4.3). Secondly, the data have episodic or continuous missing values over varying periods, for example in 2005-2006, no pH data were available for approximately 8 months (figure 4.2). The nutrient series have many holes (2005-2009) from one day to more than 2 months (70 days for silicate)

	Signal	Number of missing values	Percentage of missing values	Largest gap Median gap	Number of gaps
	Air temperature	18833	14.32%	1515	1	4738
	Corrected dissolved-oxygen	21868	16.63%	3044	1	4942
	Salinity	16440	12.50%	853	1	4783
	Oxygen saturation	23764	18.08%	3044	1	5005
	P.A.R	17501	13.31%	853	1	4915
	Non-corrected -dissolved oxygen	21814	16.59%	3044	1	4932
	pH	35789	27.22%	16843	1	4183
	Turbidity	17177	13.07%	853	1	5236
	Fluorescence	16182	12.31%	853	1	4816
	Sea-level	1	7.610 -6	1	1	1
	Water temperature	16428	12.5%	853	1	4780
	Nitrate	506	27.7%	51	2	98
	Phosphate	526	28.8%	56	2	97
	Silicate	500	27.4%	70	2	74

Firstly, we notice that the signals appear as noise and some signals have visible cycles like the temperatures and P.A.R. (Photo-synthetically Active Radiation) parameters (figure 4.2 and 4.2. Event detection in a multidimensional time series Figure 4.3: Signals collected from the MAREL-Carnot station during the period 2005-2009 128 CHAPTER 4.

  , Hung et al. investigated feed-forward neural network model and compared it with a simple persistent method for hourly rainfall forecasting (from 75 rain gauge stations) in Bangkok, Thailand. The results showed that FFNN model illustrated better ability to predict rainfall. Chattopadhyay and Chattopadhya [171] performed a comparison of traditional statistical autoregressive models and autoregressive NN model for univariate prediction of rainfall time series. The results of these studies present the improved performance of NN model when comparing it with the traditional statistical approaches.

  3.3 intro-4.3. Comparative Study on Univariate Forecasting Methods for Meteorological Time Series duces the experiments protocol. Results and discussion for forecasting meteorological univariate time series are provided in Section 4.3.4. Finally, conclusions are drawn and future work is presented.

Table 4 .

 4 8 summarizes their characteristics. All the five datasets have a seasonality component (i.e. an annual cycle), without any linear trend.To assess the capacity of forecasting algorithms, we used a technique including three steps. In the first step, data segments are deleted from each time series with different size of consecutive data. In the second step, all forecasting algorithm are applied as mentioned above to estimate the forecast values. Finally, after forecasting data, four performance indicators are computed between the predicted segment and the deleted true values.

		Table 4.8: Characteristics of time series
	N0	Dataset name	Period	# Samples Frequency
	1	Ba Tri humidity	2003-2007 7,304	6 hours
	2	Ba Tri air temperature	2003-2007 7,304	6 hours
	3	Cua Ong air temperature 1973-1999 9859	daily
	4	Phu Lien humidity	1961-2015 692	monthly
	5	Phu Lien air temperature 1961-2014 684	monthly
	4.3.3.3 Experiment process		

  Phu Lien temperature, Ba Tri humidity and Ba Tri temperature series: the highest similarity, the lowest NMAE and RMSE at every forecasting levels. The highest similarity (close to 1 with Sim ∈ [0, 1]), lowest NMAE and RMSE highlight an improved capability for the forecasting task. The results illustrate that the forecast values generated from the FFNN 4.3. Comparative Study on Univariate Forecasting Methods for Meteorological Time Series method are close to the real values. However, when considering the FB index, the indicator presents the bias of estimated values with real values, the FFNN only yields the best results at some levels.On Phu Lien temperature data (table 4.10), following the FFNN approach is DTWBI as predicting values from 6 to 30 months on the first 3 indices (Similarity, RMSE and NMAE).For FB index, DTWBI outperformed other methods for larger sizes of forecasting values, from 18 to 30 months. The third one is BSTS on this dataset for all indicators.In contrast to the three above datasets, BSTS method represents the best predictability on Sim, RMSE and NMAE measurements for all ratios on Phu Lien humidity (table 4.10). The second rank is SARIMA when considering the three indicators (excluding 2 nd level for Sim index).

	Tables 4.9, 4.10 and 4.11 present average results of different forecasting algorithms on 5 uni-
	variate time series for the 4 indicators. The best results for each forecasting rate are bold
	highlighted.
	These results show that FFNN method demonstrates better performance for forecasting
	future data on

Table 4 .

 4 True values and forecast values generated from different univariate methods on Phu Lien humidity series (forecast size of 18 months) close to past values. In table 4.12, we see that CC coefficients are very high only for Phu Lien temperature series, (approximate 1). These CC values make it possible to explain why the predicted values (generated from DTWBI, FFNN, SARIMA and BSTS) and the actual values are nearly identical: similarity values are very high, error and bias indices are very low.

	9: Performance indices of various forecasting algorithms on Ba Tri datasets (best re-
	sults in bold)						
	Method	Forecast size (%)	Ba Tri humidity 1-Sim NMAE RMSE FB	Ba Tri temperature 1-Sim NMAE RMSE FB
	DTWBI	0.5	0.15	0.13	11.75 0.02 0.17	0.08	23.75 -0.01
	FFNN		0.11	0.08	6.46	0	0.1	0.04	12.19 0.01
	SARIMA		0.13	0.09	8.03	0.01 0.21	0.09	25.76 0.04
	BSTS		0.19	0.16	13.14 -0.01 0.23	0.11	35.23 0
	ses		0.17	0.14	11.75 0.02 0.19	0.08	25.21 0.01
	snaive		0.22	0.18	14.55 -0.03 0.23	0.11	32.35 0.02
	DTWBI	0.75	0.16	0.14	12.71 0.02 0.18	0.08	27.09 0.03
	FFNN		0.1	0.08	6.62	0	0.14	0.06	17.59 0.02
	SARIMA		0.13	0.11	8.81	0.01 0.19	0.08	24.37 0.03
	BSTS		0.22	0.21	17.1	0.05 0.2	0.09	28.5	0.01
	ses		0.17	0.14	11.9	0.01 0.18	0.08	25.29 0.01
	snaive		0.2	0.19	15.56 0	0.22	0.11	34.51 0.01
	DTWBI	1	0.16	0.14	13.1	0.03 0.16	0.08	25.46 0.03
	FFNN		0.12	0.1	8.59	-0.01 0.11	0.05	15.95 0
	SARIMA		0.13	0.11	9.55	0	0.17	0.08	24.27 0.02
	BSTS		0.25	0.25	18.85 -0.13 0.28	0.17	52.62 -0.03
	ses		0.17	0.15	12.81 0	0.16	0.07	23.46 0
	snaive		0.25	0.25	19.56 -0.06 0.22	0.11	33.82 0.01
	DTWBI	1.25	0.15	0.15	13.87 -0.01 0.16	0.08	24.75 0.03
	FFNN		0.11	0.09	8.61	0	0.13	0.06	18.49 0
	SARIMA		0.14	0.12	10.36 0	0.16	0.08	23.64 0.02
	BSTS		0.24	0.25	20.42 -0.06 0.19	0.1	30.91 -0.02
	ses		0.17	0.16	13.26 0	0.16	0.07	23.71 0.01
	snaive		0.21	0.22	19.05 -0.04 0.19	0.1	31.73 -0.01
	DTWBI	1.5	0.11	0.11	10.46 0.01 0.14	0.07	21.9	0.03
	FFNN		0.09	0.08	7.91	-0.01 0.11	0.05	16.52 0.01
	SARIMA		0.14	0.13	10.84 0	0.16	0.08	24.06 0.02
	BSTS		0.23	0.24	19.56 -0.06 0.23	0.13	40.17 0.01
	ses		0.17	0.17	13.77 0	0.16	0.08	24.8	0
	snaive		0.18	0.19	16.81 0.05 0.18	0.09	30.07 -0.04
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 4 11: Performance indices of various forecasting algorithms on Cua Ong temperature (best results in bold)

	This work proposes a framework for meteorological univariate time series forecasting. Quanti-
	tative performance of different methods are compared on 5 various datasets using 4 quantitative
	indicators (similarity, NMAE, RMSE and FB). The visual performance of these methods is also
	evaluated. The obtained results clearly demonstrate that FFNN yielded improved performance
	when considering accuracy of forecast values and DTWBI is more appropriate when regard-
	ing the shape and dynamics of predicted values for forecasting meteorological univariate time
	series. These results are original for hydro-meteorological univariate time series. The present
	work will allow to compare different type of univariate time series and to forecast multivariate
	time series in the future.

  the second application, DTWBI is devoted to forecast meteorological univariate time series (section 4.3). We are based this work on the idea of imputation to predict future values in meteorological univariate time series. Experiments are conducted on five different univariate meteorological time series collected in Vietnam. The obtained results illustrate that DTWBI gives improved performance when considering the shape of forecast values.

  observations successive indexed in time, occurring in uniform intervals. A single hole at index t is an isolated missing value where observations at time t -1 and t + 1 are available, we note x t = NA ( NA stands for not available). A hole of size T , also called gap, is an interval [ t : t + T -1] of consecutive missing values and is denoted x [ t : t + T -1] = NA . We define a large gap when T is larger than the known-process change, so it depends

	on each application. At the MAREL Carnot station, a marine water
	monitoring platform in the eastern English Channel, France [15] ,
	19 large time series are collected every 20 min as fluorescence,
	turbidity, oxygen saturation and so on. These data contain single
	and large holes. For example, oxygen saturation series has 131,472
	observations and only 81.9% available. This series comprises 4004
	isolated missing values and many consecutive missing data. The
	size of these gaps are various from one hour to few months; the
	largest gap is a 3044 points corresponding to 42 days. Single holes
	and gaps having T < tide duration-holes (807 missing points)
	could be easily replaced by local averages. For the other gaps, the
	phytoplankton bloom dynamics or composition changes too fast to
	use linear or spline imputation method.

1 .

 1 Trend component : That is the change of variable(s) in terms of monitoring for a long time. If there exists a trend within the time series data (i.e. on the average data), the measurements tend to increase (or decrease) over time.2. Seasonal component : This component takes into accountintra-interval fluctuations. That means there is a regular and repeated pattern of peaks and valleys within the time series related to a calendar period such as seasons, quarters, months, weekdays, and so on.3. Cyclical component : This component equals the seasonal one,the difference is that its cycle duration is more than one year. 4. Random change component : This component considers random fluctuations around the trend; this could affect the cyclical and seasonal variations of the observed sequence, but it cannot be predicted by previous data (in the past of time series).
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 1 summarizes characteristics of the data sets. Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-based imputation for univariate time series data, Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.08.019
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	Table 1					
	Data characteristics.				
	N0	Data set name	N0 of instants	Trend (Y/N)	Seasonal (Y/N)	Frequency
	1	Air passenger	144	Y	Y	Monthly
	2	Beersales	192	Y	Y	Monthly
	3	Google	521	N	N	Daily
	4	SP	168	Y	Y	Quarterly
	5	CO 2 concentrations	160	Y	Y	Monthly
	6	Mackey-Glass chaotic	1201	N	N	
	7	Phu Lien temperature	648	N	Y	Monthly
	8	Water level	131 ,472	N	Y	20 min

, Beersales, Google, SP data sets

  The Airpassenger data set has both trend and seasonality components. The result from Table2indicates that when the gap Please cite this article as: T.-T.-H. Phan et al., Dynamic time warping-based imputation for univariate time series data, Pattern Recognition Letters (2017), http://dx.doi.org/10.1016/j.patrec.2017.08.019
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• Airpassenger

Table 2

 2 Average imputation performance indexes of six methods on eight data sets (best results in bold).

	Gap size Method	Airpassenger			Beersales			Google				SP		
			Sim	NMAE RMSE FSD	Sim	NMAE RMSE FSD	Sim	NMAE	RMSE FSD	Sim	NMAE RMSE FSD
	6%	DTWBI	0.777	0.034	21.1	0.24	0.88	0.035	0.7	0.14	0.83	0.14	0.034	0.43 0.74	0.026	35.5	0.7
		na.interp	0.85	0.019	11.1	0.24 0.89	0.063	0.6	0.15	0.83	0.11	0.032	1.11	0.74	0.028	36.3	0.54
		na.locf	0.76	0.044	26.3	2	0.81	0.129	1.2	2	0.81	0.126	0.036	2	0.75	0.022	29.2	2
		na.approx	0.77	0.037	21.8	1.01	0.8	0.136	1.3	1.5	0.83	0.11	0.032	1.11	0.73	0.028	37	1.03
		na.aggregate 0.8	0.033	20.1	2	0.83	0.11	1.1	2	0.86	0.082	0.024	2	0.78	0.021	26.5	2
		na.spline	0.71	0.057	35.1	0.52	0.68	0.26	2.3	0.55	0.5	1.813	0.473	1.02	0.63	0.045	56.8	0.41
	7.5%	DTWBI	0.782 0.035	20.6	0.3	0.87	0.038	0.7	0.1629 0.84	0.131	0.032	0.33 0.76	0.03	38.9	0.52
		na.interp	0.86	0.023	13.6	0.3	0.885 0.067	0.6	0.163	0.83	0.119	0.034	1.18	0.78	0.024	33.1	0.67
		na.locf	0.77	0.046	27.4	2	0.81	0.123	1.2	2	0.82	0.126	0.035	2	0.77	0.026	34.8	2
		na.approx	0.74	0.053	31.3	1.49	0.8	0.132	1.3	1.51	0.83	0.119	0.034	1.18	0.78	0.025	34	1.1
		na.aggregate 0.81	0.033	20.2	2	0.82	0.112	1.1	2	0.87	0.081	0.024	2	0.8	0.022	29.1	2
		na.spline	0.6	0.112	65.4	0.45	0.6	0.404	3.5	0.43	0.44	3.652	0.963	1.38	0.69	0.042	54.5	0.55
	10%	DTWBI	0.887 0.02	12.7	0.36	0.84	0.054	1	0.13	0.84	0.132	0.032	0.23 0.81	0.029	40.1	0.57
		na.interp	0.86	0.021	13.1	0.34 0.89	0.068	0.7	0.18	0.85	0.105	0.03	1.22	0.82	0.025	36.3	0.56
		na.locf	0.79	0.042	26.1	2	0.82	0.13	1.3	2	0.83	0.131	0.035	2	0.81	0.026	36.9	2
		na.approx	0.79	0.041	24.6	1.03	0.82	0.124	1.2	1.24	0.85	0.105	0.03	1.22	0.83	0.024	33.5	1.14
		na.aggregate 0.81	0.035	22.1	2	0.84	0.111	1.1	2	0.87	0.084	0.024	2	0.82	0.023	31.7	2
		na.spline	0.62	0.134	78.3	0.52	0.55	0.558	4.9	0.67	0.42	4.684	1.118	1.13	0.76	0.049	63.2	0.45
	12.5%	DTWBI	0.893 0.02	12.6	0.36 0.87	0.039	0.7	0.12	0.85	0.138	0.032	0.23 0.8	0.03	41.9	0.61
		na.interp	0.86	0.023	14.8	0.39	0.89	0.068	0.6	0.15	0.85	0.115	0.032	1.27	0.81	0.028	38.8	0.52
		na.locf	0.8	0.044	26.9	2	0.82	0.127	1.2	2	0.84	0.129	0.035	2	0.81	0.027	36.1	2
		na.approx	0.79	0.043	26.7	0.95	0.8	0.147	1.4	1.28	0.85	0.115	0.032	1.27	0.825 0.027	35.6	1.06
		na.aggregate 0.82	0.035	21.8	2	0.84	0.109	1.1	2	0.88	0.083	0.024	2	0.824	0.024	31	2
		na.spline	0.64	0.129	76.8	0.67	0.61	0.458	4	0.77	0.39	2.143	0.532	1.4	0.61	0.113	132.4	0.69
	15%	DTWBI	0.895 0.02	12.8	0.36	0.84	0.054	1	0.1	0.85	0.133	0.031	0.29 0.81	0.029	40.7	0.59
		na.interp	0.86	0.025	15.6	0.35 0.89	0.069	0.7	0.17	0.86	0.11	0.031	0.99	0.79	0.033	43.6	0.49
		na.locf	0.79	0.047	28.2	2	0.82	0.126	1.2	2	0.84	0.127	0.034	2	0.81	0.028	36.3	2
		na.approx	0.8	0.043	26.5	1.17	0.83	0.117	1.1	1.42	0.86	0.11	0.031	0.99	0.81	0.032	41	1
		na.aggregate 0.83	0.035	22.1	2	0.84	0.11	1.1	2	0.89	0.079	0.023	2	0.82	0.025	32	2
		na.spline	0.55	0.175	106.1	0.95	0.49	0.731	6.3	0.88	0.34	12.339 2.928	1.6	0.61	0.136	162.5	0.68
			CO 2 concentrations		Mackey-Glass Chaotic		Phu Lien temperature		Water level	
	6%	DTWBI	0.93	0.001	0.3	0.04 0.95	0.005	0.01	0.03	0.88	0.06	1.7	0.08 0.95	0.009	0.1	0.05
		na.interp	0.75	0.055	1.6	1.5	0.79	0.031	0.04	0.81	0.8	0.142	3.1	0.63	0.81	0.042	0.5	1.05
		na.locf	0.73	0.059	1.7	2	0.77	0.036	0.05	2	0.77	0.173	3.8	2	0.8	0.043	0.4	2
		na.approx	0.75	0.055	1.6	1.5	0.79	0.031	0.04	0.81	0.8	0.142	3.1	0.63	0.81	0.042	0.5	1.05
		na.aggregate 0.45	0.185	4.7	2	0.82	0.025	0.03	2	0.83	0.114	2.4	2	0.83	0.035	0.4	2
		na.spline	0.75	0.057	1.6	0.75	0.65	0.072	0.09	0.38	0.61	0.413	8.5	0.52	0.3	0.654	6.6	1.61
	7.5%	DTWBI	0.93	0.001	0.4	0.05 0.93	0.008	0.01	0.02	0.8788 0.061	1.7	0.06 0.96	0.007	0.1	0.02
		na.interp	0.74	0.057	1.6	1.38	0.8	0.031	0.04	1.04	0.79	0.147	3.2	0.98 0.82	0.038	0.4	0.97
		na.locf	0.76	0.053	1.6	2	0.77	0.038	0.05	2	0.77	0.171	3.7	2	0.81	0.043	0.5	2
		na.approx	0.74	0.057	1.6	1.38	0.8	0.031	0.04	1.04	0.79	0.147	3.2	0.98 0.82	0.038	0.4	0.97
		na.aggregate 0.45	0.186	4.7	2	0.83	0.025	0.03	2	0.83	0.113	2.4	2	0.83	0.036	0.4	2
		na.spline	0.74	0.058	1.6	0.79	0.69	0.062	0.08	0.39	0.58	0.701	14.5	0.8	0.2	1.228	12	1.71
	10%	DTWBI	0.93	0.001	0.4	0.04 0.93	0.008	0.01	0.01	0.8791 0.063	1.8	0.05 0.97	0.005	0.1	0.03
		na.interp	0.76	0.051	1.4	0.88	0.81	0.03	0.04	0.98	0.81	0.137	3	0.58	0.81	0.041	0.4	0.91
		na.locf	0.76	0.054	1.6	2	0.79	0.036	0.05	2	0.77	0.176	3.8	2	0.81	0.043	0.5	2
		na.approx	0.76	0.051	1.4	0.88	0.81	0.03	0.04	0.98	0.81	0.137	3	0.58	0.81	0.041	0.4	0.91
		na.aggregate 0.44	0.197	4.9	2	0.83	0.025	0.03	2	0.83	0.114	2.4	2	0.83	0.036	0.4	2
		na.spline	0.66	0.098	2.9	0.26	0.71	0.058	0.08	0.33	0.49	0.88	17.8	1.04	0.18	1.57	15.5	1.79
	12.5%	DTWBI	0.94	0.001	0.3	0.04 0.92	0.009	0.02	0.01	0.881	0.065	1.8	0.04 0.96	0.006	0.1	0.03
		na.interp	0.78	0.049	1.5	1.39	0.8	0.033	0.04	1.13	0.79	0.163	3.5	1.44	0.81	0.044	0.5	1.21
		na.locf	0.75	0.057	1.7	2	0.79	0.036	0.05	2	0.78	0.18	3.8	2	0.81	0.043	0.5	2
		na.approx	0.78	0.049	1.5	1.39	0.8	0.033	0.04	1.13	0.79	0.163	3.5	1.44	0.81	0.044	0.5	1.21
		na.aggregate 0.44	0.2	5	2	0.84	0.025	0.03	2	0.84	0.116	2.4	2	0.83	0.036	0.4	2
		na.spline	0.71	0.073	2.2	0.38	0.61	0.093	0.12	0.63	0.55	0.653	13.7	0.99	0.25	0.96	9.8	1.74
	15%	DTWBI	0.94	0.001	0.3	0.04 0.92	0.01	0.02	0.01	0.882	0.066	1.8	0.05 0.96	0.007	0.1	0.04
		na.interp	0.76	0.053	1.6	1.46	0.81	0.03	0.04	0.99	0.81	0.145	3.2	1	0.81	0.044	0.5	1.6
		na.locf	0.77	0.052	1.6	2	0.79	0.037	0.05	2	0.79	0.175	3.8	2	0.81	0.043	0.5	2
		na.approx	0.76	0.053	1.6	1.46	0.81	0.03	0.04	0.99	0.81	0.145	3.2	1	0.81	0.044	0.5	1.6
		na.aggregate 0.43	0.202	5.1	2	0.84	0.025	0.03	2	0.84	0.117	2.5	2	0.83	0.036	0.4	2
		na.spline	0.69	0.085	2.5	0.58	0.57	0.129	0.16	0.73	0.44	1.268	26.3	1.27	0.21	1.185	11.8	1.83

Table 3

 3 The maximum of cross-correlation between the query and reference windows. Airpassenger, #2-Beersales, #3-Google, #4-SP, #5-CO 2 concentrations #6-Mackey-Glass chaotic, #7-Phu Lien temperature, #8-water level.

	Gap size	Data set							
		#1	#2	#3	#4	#5	#6	#7	#8
	6%	0.88	0.92	0.58	0.78	0.99	1	0.91	1
	7.50%	0.91	0.91	0.55	0.74	0.99	0.99	0.91	1
	10%	0.94	0.87	0.5	0.67	0.98	0.99	0.91	1
	12.50%	0.95	0.89	0.44	0.65	0.98	0.99	0.9	1
	15%	0.95	0.85	0.4	0.65	0.98	0.99	0.9	1
	#1-								

Laboratoire d'Oceanologie et de Géosciences, UMR 8187: http://log.univ-littoral.fr

Cytobuoy system: http://www.cytobuoy.com

If (Cosine is medium) and (ED is medium) and (Sim is medium-high) then (w1 is medium) (w2 is medium) (w3 is medium-high) If (Cosine is medium) and (ED is medium) and (Sim is high) then (w1 is medium) (w2 is medium) (w3 is high) If (Cosine is medium) and (ED is medium-high) and (Sim is Low) then (w1 is medium) (w2 is medium-high) (w3 is Low) If (Cosine is medium) and (ED is medium-high) and (Sim is medium) then (w1 is medium) (w2 is medium-high) (w3 is medium) If (Cosine is medium) and (ED is medium-high) and (Sim is medium-high) then (w1 is medium) (w2 is medium-high) (w3 is medium-high) If (Cosine is medium) and (ED is medium-high) and (Sim is high) then (w1 is medium) (w2 is medium-high) (w3 is high) If (Cosine is medium) and (ED is high) and (Sim is Low) then (w1 is medium) (w2 is high) (w3 is Low) If (Cosine is medium) and (ED is high) and (Sim is medium) then (w1 is medium) (w2 is high) (w3 is medium)If (Cosine is medium) and (ED is high) and (Sim is medium-high) then (w1 is medium) (w2 is high) (w3 is medium-high) If (Cosine is medium) and (ED is high) and (Sim is high) then (w1 is medium) (w2 is high) (w3 is high) If (Cosine is medium-high) and (ED is Low) and (Sim is Low) then (w1 is medium-high) (w2 is Low) (w3 is Low) If (Cosine is medium-high) and (ED is Low) and (Sim is medium) then (w1 is medium-high) (w2 is Low) (w3 is medium) If (Cosine is medium-high) and (ED is Low) and (Sim is medium-high) then (w1 is medium-high) (w2 is Low) (w3 is medium-high)If (Cosine is medium-high) and (ED is Low) and (Sim is high) then (w1 is medium-high) (w2 is Low) (w3 is high) If (Cosine is medium-high) and (ED is medium) and (Sim is Low) then (w1 is medium-high) (w2 is medium) (w3 is Low) If (Cosine is medium-high) and (ED is medium) and (Sim is medium) then (w1 is medium-high) (w2 is medium) (w3 is medium) If (Cosine is medium-high) and (ED is medium) and (Sim is medium-high) then (w1 is medium-high) (w2 is medium) (w3 is medium-high) If (Cosine is medium-high) and (ED is medium) and (Sim is high) then (w1 is medium-high) (w2 is medium) (w3 is high) If (Cosine is medium-high) and (ED is medium-high) and (Sim is Low) then (w1 is medium-high) (w2 is medium-high) (w3 is Low) If (Cosine is medium-high) and (ED is medium-high) and (Sim is medium) then (w1 is medium-high) (w2 is medium-high) (w3 is medium) If (Cosine is medium-high) and (ED is medium-high) and (Sim is medium-high) then (w1 is medium-high) (w2 is medium-high) (w3 is medium-high) If (Cosine is medium-high) and (ED is medium-high) and (Sim is high) then (w1 is medium-high) (w2 is medium-high) (w3 is high) If (Cosine is medium-high) and (ED is high) and (Sim is Low) then (w1 is medium-high) (w2 is high) (w3 is Low) If (Cosine is medium-high) and (ED is high) and (Sim is medium) then (w1 is medium-high) (w2 is high) (w3 is medium) If (Cosine is medium-high) and (ED is high) and (Sim is medium-high) then (w1 is medium-high) (w2 is high) (w3 is medium-high) If (Cosine is medium-high) and (ED is high) and (Sim is high) then (w1 is medium-high) (w2 is high) (w3 is high) If (Cosine is high) and (ED is Low) and (Sim is Low) then (w1 is high) (w2 is Low) (w3 is Low) If (Cosine is high) and (ED is Low) and (Sim is medium) then (w1 is high) (w2 is Low) (w3 is medium) If (Cosine is high) and (ED is Low) and (Sim is medium-high) then (w1 is high) (w2 is Low) (w3 is medium-high) If (Cosine is high) and (ED is Low) and (Sim is high) then (w1 is high) (w2 is Low) (w3 is high) If (Cosine is high) and (ED is medium) and (Sim is Low) then (w1 is high) (w2 is medium) (w3 is Low) If (Cosine is high) and (ED is medium) and (Sim is medium) then (w1 is high) (w2 is medium) (w3 is medium)
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Values q q q q q q q q q q q q q q q q q q q True values FSMUMI na.approx DTWUMI to chemical perturbation [START_REF] Kansiz | Fourier transform infrared microspectroscopy and chemometrics as a tool for the discrimination of cyanobacterial strains[END_REF][START_REF] Schläpfer | Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results[END_REF][START_REF] Giordano | Fourier Transform Infrared Spectroscopy as a Novel Tool to Investigate Changes in Intracellular Macromolecular Pools in the Marine Microalga Chaetoceros Muellerii (bacillariophyceae)[END_REF][START_REF] Niemi | Rationale for a New Generation of Indicators for Coastal Waters[END_REF][START_REF] Christopher | The impacts of climate change in coastal marine systems[END_REF][START_REF] Domenighini | Fourier Transform Infrared Spectroscopy of Microalgae as a Novel Tool for Biodiversity Studies, Species Identification, and the Assessment of Water Quality1[END_REF]. The identification/classification of microscopic phytoplankton is therefore crucial for a wide variety of environmental monitoring applications in different domains such as: ecology (biodiversity), climate and economy. It is thus necessary to have a capable technique/tool which can provide detailed description of phytoplankton species population from water samples.

Up to now, studies in identification/classification of phytoplankton species are usually carried out by visual comparing the collected profiles with references ones, or by the microscope method [START_REF] Lund | The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting[END_REF][START_REF] Guiselin | An optimised protocol to prepare Phaeocystis globosa morphotypes for scanning electron microscopy observation[END_REF]. Using this microscope analysis method takes 3 to 4 hours for each sample (low frequency). It is laborious and extremely time-consuming. Hence, developing an automatic computer-aided machine system to identify/classify phytoplankton species is a required task.

Flow cytometry (FCM) analysis is a well-known and proven tool in aquatic ecology to quickly detect and quantify phytoplankton and bacteria (microorganism) from water samples [START_REF] Burkill | The Rapid Analysis of Single Marine Cells by Flow Cytometry [and Discussion[END_REF][START_REF] Hofstraat | Phytoplankton monitoring by flow cytometry[END_REF]. "The various light scatter, diffraction, and fluorescence parameters measured by analytic FCM can provide characteristic "signatures" for each microbial cell, which allow taxa to be discriminated with the use of pattern-recognition techniques" [START_REF] Malcolm | Comparison of five clustering algorithms to classify phytoplankton from flow cytometry data[END_REF]. Thus, the task of identifying phytoplankton species becomes the classification of multidimensional signals [START_REF] Caillault | Dissimilarity-Based Classification of Multidimensional Signals by Conjoint Elastic Matching: Application to Phytoplanktonic Species Recognition[END_REF].

Regarding pattern-recognition techniques, a number of successful approaches have been proposed for automated identification/classification of plankton species.

Concerning zooplankton identification/classification, several techniques including object classification technique for analyzing plankton images were developed by Hu and Davis [START_REF] Hu | Automatic plankton image recognition with co-occurrence matrices and support vector machine[END_REF] and Davis et al. [START_REF] Davis | Real-time observation of taxa-specific plankton distributions: an optical sampling method[END_REF]. In these two works, the images were collected from a plankton video recorder. A Support Vector Machine (SVM) is used for classifying a big image set (20,000 plankton images); the accuracy of classification on seven classes was achieved with the score of 71%. The performance of six classifiers: Multi-Layer Perceptron (MLP), K-Nearest Neighbors

(5-NN), SVM (using linear and Radial Basis Function (RBF) kernels), Random Forest (RF), and C4.5 Decision Trees (DTs) were studied for classifying zooplankton images obtained from the ZooScan system [START_REF] Gorsky | Digital zooplankton image analysis using the ZooScan integrated system[END_REF]. In this study, RF demonstrates the best performance and was followed by SVM using the linear kernel. Irigoien et al. [START_REF] Irigoien | Spring zooplankton distribution in the Bay of Biscay from 1998 to 2006 in relation with anchovy recruitment[END_REF] carried out a research on classifying in zooplankton images with 17 categories and RF gives the highest result. The ZooScan digital imaging system for automatic analysis of zooplankton images is built by Grosjean et al. [START_REF] Grosjean | Enumeration, measurement, and identification of net zooplankton samples using the ZOOSCAN digital imaging system[END_REF].

They tested individual classification algorithms as well as combinations of two or more different algorithms such as: double bagging associated with linear discriminant analysis, k-NN Four performance measures and various meteorological time series are used to determine a more customized method for forecasting.

Introduction

Time series forecasting is a matter of great importance in numerous domains [33,[START_REF] De Gooijer | 25 years of time series forecasting[END_REF]. In particular, forecasting hydro-meteorological data plays a key role to better understand climate change, environmental change, and then to adapt monitoring strategy, to deploy preventive or corrective actions. This means to define how past events affect future events. But this task is a remaining challenge because hydro-meteorological data are impacted by diverse phenomena and factors from the environment.

Classic methods for forecasting hydro-meteorological time series were investigated to address the issue of linear models [START_REF] De Gooijer | 25 years of time series forecasting[END_REF] These methods are well adapted to predict generic trends. However, they are not able (i)

to determine nonlinear features in data and (ii) to predict quick change inside the process. In Kalman filter: This step consists in decomposing a time series. Various state variables such as trend, seasonality, regression can be added in this step.

Spike-and-slab: This step selects the most important regression predictors.

Bayesian model averaging: This step combines the results and calculates prediction values.

• DTWBI: In a previous study [START_REF] Phan | Dynamic time warping-based imputation for univariate time series data[END_REF], we proposed DTWBI approach for completing missing values. Here, we consider forecasting values as missing data, and then we apply DTWBI method to compute these future values. Forecasting process is based on past values. This is fully compatible with DTWBI approach that fills missing values according to the recorded data. The approach consists in finding the most similar sub-sequence Qs to a query Q (the subsequence before the predicted position) by sliding windows based on the combination of shape-feature extraction algorithm [START_REF] Phan | Comparative study on supervised learning methods for identifying phytoplankton species[END_REF] and DTW method. This allows some distortions CHAPTER 4. APPLICATIONS: TOWARD CLASSIFICATION AND FORECASTING

In the second application, we have applied the DTWBI algorithm to fill in large gaps, and two other algorithms to complete small gaps in the MAREL-Carnot dataset. We then have employed a multi-level spectral clustering approach to detect events in the data without any biological prior knowledge. The results show that this protocol allows to (i) determine states in multivariate time series; (ii) detect, identify and characterize states, for example, detecting inaccurate data in the salinity range; and (iii) extract labels of rare/extreme events.

The third application focuses on comparing of different univariate forecasting methods for meteorological time series. In this work, we also apply DTWBI to predict future values. Experiments show that DTWBI gives improved results when considering the shape of forecast values.
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APPENDIX C. LIST OF FUZZY RULES

If (Cosine is high) and (ED is medium) and (Sim is medium-high) then (w1 is high) (w2 is medium) (w3 is medium-high)

If (Cosine is high) and (ED is medium) and (Sim is high) then (w1 is high) (w2 is medium) (w3 is high)

If (Cosine is high) and (ED is medium-high) and (Sim is Low) then (w1 is high) (w2 is medium-high) (w3 is Low)

If (Cosine is high) and (ED is medium-high) and (Sim is medium) then (w1 is high) (w2 is medium-high) (w3 is medium)

If (Cosine is high) and (ED is medium-high) and (Sim is medium-high) then (w1 is high) (w2 is medium-high) (w3 is medium-high)

If (Cosine is high) and (ED is medium-high) and (Sim is high) then (w1 is high) (w2 is medium-high) (w3 is high) 

Create a reference window:

Calculate global feature of Q and R (i ) : g f Q, g f R 10:

Compute cosine coefficient: cos = cosine (gf Q, g f R )

11:

if cos ≥ θ _ cos then 12:

Calculate DTW cost: cost = DT W _ cost(Q, R (i ))

13:

Save the cost to DT W _ costs i ← i + step _ sim _ win 32: end while 33: Step 6: Replace the missing values at the position t by vector after the Qs window having the minimum DTW cost in the Lop list. 34: return y -with imputed series the fact that these two data sets have a clear seasonality component. Na.interp method takes into account the seasonality factor, so it can better handle seasonality than na.approx does, although both algorithms use the interpolation for completing missing data.

On Airpassenger and Beersales data sets, na.aggregate approach gives less efficient results than na.interp. But on Google series, na.aggregate method yields the best performance: the highest similarity and the smallest NMEA, RMSE indicators. Without any trend on this data set, this method leads to the best result. For SP data set, na.aggegate method still highlights a good performance on NMEA and RMSE, but this approach has lower similarity than it has on Google series. The na.aggegate method replaces missing values by overall mean. However, SP series has a clear trend; therefore, na.aggregate method seems not to be effective with series having a strong trend.

In all data sets, FSD value of na.aggregate and na.locf methods always equals 2, because they use the same value for all missing data (last value for na.locf method; overall mean for na.aggregate). 

Abstract

Missing data are a prevalent problem in many domains of pattern recognition and signal processing. Most of the existing techniques in the literature suffer from one major drawback, which is their inability to process incomplete datasets. Missing data produce a loss of information and thus yield inaccurate data interpretation, biased results or unreliable analysis, especially for large missing sub-sequence(s). So, this thesis focuses on dealing with large consecutive missing values in univariate and low/un-correlated multivariate time series.

We begin by investigating an imputation method to overcome these issues in univariate time series. This approach is based on the combination of shape-feature extraction algorithm and Dynamic Time Warping method. A new R-package, namely DTWBI, is then developed.

In the following work, the DTWBI approach is extended to complete large successive missing data in low/un-correlated multivariate time series (called DTWUMI) and a DTWUMI Rpackage is also established. The key of these two proposed methods is that using the elastic matching to retrieving similar values in the series before and/or after the missing values. This optimizes as much as possible the dynamics and shape of knowledge data, and while applying the shape-feature extraction algorithm allows to reduce the computing time.

Successively, we introduce a new method for filling large successive missing values in low/un-correlated multivariate time series, namely FSMUMI, which enables to manage a high level of uncertainty. In this way, we propose to use a novel fuzzy based on fuzzy grades of basic similarity measures and fuzzy logic rules. Finally, we employ the DTWBI to (i) complete the MAREL Carnot dataset and then we perform a detection of rare/extreme events in this database (ii) forecast various meteorological univariate time series collected in Vietnam.

Keywords: Imputation, missing data, univariate time series, uncorrelated multivariate time series, Dynamic Time Warping, similarity measure, fuzzy inference system.