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Abstract
Photoacoustic imaging is a functional technique based on the creation of acoustic waves from tissues

excited by an optical source (laser pulses). The illumination of a region of interest, with a range of

optical wavelengths, allows the discrimination of the imaged media. This modality is promising for

various medical applications in which growth, aging and evolution of tissue vascularization have to be

studied. Thereby, photoacoustic imaging provides access to blood oxygenation in biological tissues and

also allows the discrimination of benign or malignant tumors and the dating of tissue death (necrosis).

The present thesis aims at developing a multispectral photoacoustic image processing chain for the

calculation of blood oxygenation in biological tissues. The main steps are, �rst, the data discrimination

(clustering), to extract the regions of interest, and second, the quanti�cation of the di�erent media in

these regions (unmixing).

Several unsupervised clustering and unmixing methods have been developed and their performance

compared on experimental multispectral photoacoustic data. They were acquired on the experimental

photoacoustic platform of the laboratory, during collaborations with other laboratories and also on a com-

mercial system. For the validation of the developed methods, many phantoms containing di�erent optical

absorbers have been produced. During the co-supervision stay in Italy, speci�c imaging modes for 2D and

3D real-time photoacoustic imaging were developed on a research scanner. Finally, in vivo acquisitions

using a commercial system were conducted on animal model (mouse) to validate these developments.

Aneline DOLET i





Résumé
L'imagerie photoacoustique est une modalité d'imagerie fonctionnelle basée sur la génération d'ondes

acoustiques par des tissus soumis à une illumination optique (impulsion laser). L'utilisation de di�érentes

longueurs d'ondes optiques permet la discrimination des milieux imagés. Cette modalité est prometteuse

pour de nombreuses applications médicales liées, par exemple, à la croissance, au vieillissement et à

l'évolution de la vascularisation des tissus. En e�et, l'accès à l'oxygénation du sang dans les tissus est

rendu possible par l'imagerie photoacoustique. Cela permet, entre autres applications, la discrimination

de tumeurs bénignes ou malignes et la datation de la mort tissulaire (nécrose).

Ce travail de thèse a pour objectif principal la construction d'une chaîne de traitement des données

photoacoustiques multispectrales pour le calcul de l'oxygénation du sang dans les tissus. Les principales

étapes sont, d'une part, la discrimination des données (clustering), pour extraire les zones d'intérêt, et

d'autre part, la quanti�cation des di�érents constituants présents dans celles-ci (unmixing).

Plusieurs méthodes non supervisées de discrimination et de quanti�cation ont été développées et

leurs performances comparées sur des données photoacoustiques multispectrales expérimentales. Celles-

ci ont été acquises sur la plateforme photoacoustique du laboratoire, lors de collaborations avec d'autres

laboratoires et également sur un système commercial. Pour la validation des méthodes développées, de

nombreux fantômes contenant di�érents absorbeurs optiques ont été conçus. Lors du séjour de cotutelle

de thèse en Italie, des modes d'imagerie spéci�ques pour l'imagerie photoacoustique 2D et 3D temps-réel

ont été développés sur un échographe de recherche. En�n, des acquisitions in vivo sur modèle animal

(souris) au moyen d'un système commercial ont été réalisées pour valider ces développements.
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Riassunto
La fotoacustica è una tecnica di imaging medico-funzionale basata sulla generazione di onde acustiche

da parte dei tessuti sottoposti a illuminazione ottica (tramite impulsi laser). L'uso di diverse lunghezze

d'onda ottiche consente di discriminare i diversi tessuti investigati. Questa tecnica è promettente per

molte applicazioni mediche. Per esempio, è possibile valutare la crescita, l'invecchiamento e l'evoluzione

della vascolarizzazione nei tessuti biologici. Infatti, l'imaging fotoacustico permette l'accesso ad infor-

mazioni sull'ossigenazione del sangue nei tessuti. È dunque possibile la discriminazione dei tumori benigni

o maligni e la valutazione della morte dei tessuti (necrosi).

L'obiettivo principale di questa tesi è di sviluppare metodi per calcolare l'ossigenazione del sangue

nei tessuti utilizzando dati fotoacustici multispettrali. Lo sviluppo prevede, come primo passo, la dis-

criminazione dei dati (clustering), �nalizzata ad evidenziare le aree di interesse, e come secondo passo, la

quanti�cazione dei diversi media presenti nelle aeree estratte (unmixing).

Sono stati sviluppati diversi metodi di discriminazione e quanti�cazione non supervisionati. I risultati

ottenuti con i vari metodi a partire dagli stessi dati fotoacustici multispettrali sperimentali sono stati

confrontati tra loro. I dati sperimentali sono stati acquisiti sulla piattaforma fotoacustica del laboratorio

e su un sistema commerciale, nell'ambito di collaborazioni con altri laboratori. Per la convalida dei

metodi sviluppati, sono stati fabbricati dei phantom con diversi assorbitori ottici. Durante il soggiorno

in Italia previsto nell'ambito del dottorato in co-tutela, sono stati sviluppati speci�ci modi di imaging

per la fotoacustica 2D e 3D in tempo reale su uno scanner di ricerca. In�ne, sono stati acquisiti dati su

piccoli animali (topi) utilizzando un sistema commerciale per convalidare questi sviluppi in vivo.
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Introduction

During the last century, improvements in the medical domain permitted the reduction of the death

rate linked to many diseases. This decrease comes from treatment enhancements, better diagnosis and

earlier illness detection. New technologies and techniques, principally in the medical imaging �eld, have

favored these improvements. Non-invasive and non-ionizing imaging techniques are particularly interest-

ing. Transportable systems, which can be moved to the patient, are also preferred. Ultrasound (US)

imaging techniques bring all these requirements together and a lot of imaging techniques have been de-

veloped around this modality during the last decades. For nearly thirty years, a new imaging modality,

close to US imaging, has been developed: photoacoustic (PA) imaging, which combines optical and ul-

trasound imaging. It adds to the US imaging the access to functional information. This characteristic is

of great interest for diagnostic and follow-up of diseases. Photoacoustic imaging requires developing new

acquisition systems and image processing algorithms to accurately access functional information.

The present thesis takes place in this context and aims at contributing to the photoacoustic imaging

�eld. Principally, the large number of photoacoustic acquisition systems makes di�cult the development

of robust image processing algorithms adapted to each one. The main objectives of this thesis are to

develop, test and validate a processing chain for photoacoustic dataset in order to measure with high

accuracy di�erent concentrations of an imaged medium. Validation was made on dataset coming from

di�erent acquisition systems to validate the robustness of the proposed methods. Also, since real-time

imaging is a remarkable characteristic of ultrasound imaging, we have developed a real-time photoacoustic

imaging mode on the ULA-OP256 research scanner, during my co-supervision stay in the MSDLab in

Florence.

The PhD manuscript is organized as follows. The photoacoustic imaging principle is initially reviewed

in Chapter 1. The modality, the multispectral aspect and its interests are introduced. A state of the

art is focused on systems and algorithms in the context of the thesis. Chapter 2 presents the �rst

contribution on experimental developments. The di�erent used systems, as well as the imaged samples,

are described. Real-time imaging developments are also presented and the dataset used to validate the

developed methods are introduced.

The proposed processing methods can be separated in two di�erent parts which have di�erent objec-

tives. At the beginning, the regions of interest (ROI) need to be identi�ed since, for each application,

only some biological tissues are of interest. This �rst step is called clustering step. Chapter 3 describes

the clustering methods and highlights their performances. The second processing part is presented in

Chapter 4 and applied only to the identi�ed ROI. It aims at quantifying the data contained in these

regions (unmixing step). The performances of several quanti�cation methods are compared.

Finally, Chapter 5 highlights the application of the proposed methods to in vivo data for the

calculation of blood oxygen concentrations. It also presents preliminary results on the evaluation of tissue

death. The manuscript ends with a general conclusion, including a discussion about the limitations of

the developed methods.
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Chapter 1

Photoacoustic imaging
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1.1 Introduction

The photoacoustic e�ect, also called optoacoustic or thermoacoustic e�ect, has been discovered in 1880

by Alexander Graham Bell who has created sound by periodically illuminating an object with sun light

[Bell 1880]. However, the sun light is not a satisfying optical source to allow technological developments

of this e�ect: not stable and hard to make pulsed illuminations. So, almost no developments were made

of this discovery during nearly a century. The development of stable pulsed optical excitations (pulsed

lasers) in the 70th started a new interest of the photoacoustic e�ect with various applications. First, it

has been used on gaz [Kreuzer 1971] and, some years later, the use on solid media has been validated

[Rosencwaig 1976]. It is during the 90th that techniques using the photoacoustic e�ect took their rise with

an increasing interest for medical applications [Li 2009]. Since then, the number of medical photoacoustic

imaging applications constantly grows up [Esenaliev 1997, Beard 1997, Castelino 2008, Arabul 2015].
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Chapter 1. Photoacoustic imaging

In this Chapter, the concept of photoacoustic imaging is explained. Its multispectral uses are intro-

duced and the main used processing methods and systems are presented. Some applications of multispec-

tral photoacoustic imaging are also highlighted. The context and the motivations of the present thesis

are then described as well as the organization of this manuscript.

1.2 Combination of optical and ultrasound imaging

1.2.1 Optical imaging

When biological tissues are excited by an optical source, the light propagates inside the media. During

the propagation, the light is submitted to various phenomena as scattering and absorption which means

that the light is attenuated. When an optical absorber is excited by a photon, its absorption leads to

the emission of a lower energy photon (�uorescence phenomenon) or an increase of temperature which

could permit the access to tissue functional information. These information are of particular interest for

various applications.

Lots of optical imaging techniques exist and are used depending on the targeted application. The

general idea is that the resolution decreases when the used optical source allows larger imaging depth.

For example, optical coherence tomography (OCT) has a resolution of some micrometers (≈ 5µm) and

an imaging depth of a few millimeters while optical microscopy (OM) can only image a few hundred of

micrometers with a resolution < 3µm (see Figure 1.1).

Figure 1.1: Optical and ultrasound imaging resolution over the imaging depth (based on [Dubois 2007]).

Other optical imaging systems with di�erent resolutions exist but, because of light attenuation in

biological tissue, the imaging depth is limited to a few centimeters. To avoid tissue burns, the optical

illumination needs to stay under the limitations of the standards NF EN 60 825.1 and NF EN 60 825.2

announced by the ANSI (American National Standards Institute) and the AFNOR (Association Française

de Normalisation). A maximum permissible exposure (MPE) for eyes and skin, depending on the used

wavelength, has then to be respected [Vallet 2015]. It means that the optical energy cannot be increased

to enlarge the imaging depth.
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Finally, even if the optical imaging investigation depth is low, its major interest is the access to

functional information with satisfactory contrast. However, the spatial resolution is around or superior to

1mm for an imaging depth up to few centimeters, according to various applications (blood vascularization

or tumors imaging). Thus, limited imaging depth and poor resolution do not allow its use for such

applications that however require knowing tissue functional information.

1.2.2 Ultrasound imaging

In ultrasound imaging, the probe transmits ultrasound waves that propagate inside the tissue. Bio-

logical tissues are composed of numerous inhomogenities that are localized at random positions. When

inhomogenities are submitted to an incident wave, they become ponctual sources that produce spherical

waves in all directions (Figure 1.2). This corresponds to US scattering. All the inhomogenities of the

imaged region become scatterers when submitted to US waves. These scatterers produce then US waves

that are back-propagated to the US probe which converts them into radiofrequency signal (RF signal).

Received signals are reconstructed to image the tissue using di�erent reconstruction methods.

Figure 1.2: Scattering phenomenon in US imaging [Zahnd 2007].

During their propagation, US waves are submitted to absorption and scattering; they are then at-

tenuated. The acoustic probes have to be sensitive enough to detect the attenuated US waves. Central

frequency of medical probes is usually between 2 and 20MHz.

The acoustic, or US, imaging can be considered as complementary to the optical imaging. When

imaging with array, the spatial resolution is around or superior to 100µm and the imaging depth can be

up to 20cm (Figure 1.1). US imaging gives access to structural information, because of the scattering,

but no functional information. Finally, ultrasound images have a low contrast compared to other imaging

modalities like optics. Photoacoustic imaging is the combination of both imaging techniques.
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1.3 Ultrasound wave generation with pulsed light illumination

1.3.1 Physical concept of the photoacoustic e�ect

A ROI is illuminated by an optical source, classically a pulsed laser beam. The optical absorbers of

the ROI undergo thermal expansion due to the absorption of the optical energy which is converted to

heat. This local and instantaneous expansion induces a pressure variation which creates acoustic waves

propagating in the medium. US waves propagate until the medium surface where they are collected with

an US probe. PA signals are simultaneously acquired on all the transducers of the probe and an image

is reconstructed using a delay-and-sum (DAS) algorithm [Polichetti 2018], which is one of the classical

reconstruction algorithm used in ultrasound imaging. These steps are reported in Figure 1.3.

Figure 1.3: Photoacoustic principle: (a) optical illumination, (b) thermal expansion of the optical ab-
sorbers, (c) ultrasound wave generation, (d) acquisition and reconstruction of a photoacoustic image.

1.3.2 Mathematical representations of photoacoustic signal

The di�erent steps of Figure 1.3 are described in the current section based on their mathematical

expressions. The �rst two steps of tissue optical illumination and optical absorber thermal expansion

(Figure 1.3(a-b)) are characterized by the laser pulse duration τop. It has to satisfy the thermal con-

�nement which makes the thermal di�usion negligible. This constraint is expressed by the following

equation:

τop �
d2s

4Dth
(1.1)

with ds the speci�c dimension of the considered structure (in meter) and Dth the thermal di�usivity

(in m2.s−1). Another constraint called constraint con�nement has to be respected to make the optical

absorber volumetric expansion negligible:

τop �
ds
c

(1.2)

with c the sound speed in biological tissues. The photoacoustic e�ect is optimally produced when both

constraints are satis�ed. Indeed, the optical absorbers have to come back to their initial states between

each optical illumination to produce the US waves.
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1.3. Ultrasound wave generation with pulsed light illumination

Let us consider a biological structure of approximately 10µm (e.g., red blood cell). In biological tissue,

Dth is around 0.14mm2.s−1 [Duck 1990] and c is usually considered around 1500m.s−1. According to

equations (1.1) and (1.2), τop has to be lower than 1.79e−4s and 6.67e−9s, respectively. Pulsed laser of

τop around 5ns− 10ns are so considered for photoacoustic imaging.

The third step of ultrasound wave generation (Figure 1.3(c)) can be expressed using the linear equa-

tions of �uid mechanics to rely the temperature variations to the pressure changes in biological tissue

under the previous constraints [Morse 1987, Vallet 2015]. The initial pressure p0(s) created by an optical

absorber at the spatial position s submitted to optical pulse illuminations is expressed by [Beard 2011]:

p0(s) = Γµa(s)φ(s) (1.3)

where Γ is the Grüneisen parameter (dimensionless) which expresses the proportion of optical energy

converted in pressure and depends on the temperature, µa is the absorption coe�cient of the considered

optical absorber (in cm−1) which depends on the used optical wavelength, and φ the optical �uence, i.e.,

the optical energy per unit area (in J.cm−2).

Considering soft tissue in ambient temperature, the Grüneisen parameter is Γ ≈ 0.25 [Li 2009]. The

initial pressure p0 generated by a blood vessel excited at 800nm with a �uence φ = 20mJ.cm−2 can be

calculated knowing its optical absorption µa ≈ 4.3cm−1. In this case, the generated initial pressure is

≈ 21.5kPa which corresponds to a temperature increase of ≈ 0.1K.

In photoacoustic imaging, the optical excitation is designed to respect the thermal con�nement and

constraint con�nement. The acoustic pressure generated is generally low compared to peak pressure of

medical ultrasound imaging. Considering the ultrasound attenuation in biological tissue [Szabo 1978],

the acoustic pressure acquired by the ultrasound probe is even lower. For this reason, the acquisition

geometry needs to be optimized in order to reconstruct the photoacoustic image with the best signal-to-

noise ratio (SNR).

1.3.3 Photoacoustic image reconstruction

Ultrasound signals acquired on each US probe transducer need to be beamformed to reconstruct

the photoacoustic images (Figure 1.3(d)). These signals, called radiofrequency signals (RF signals) or

radiofrequency data (RF data), are typically reconstructed using DAS algorithm (Figure 1.4).

A pixel at the spatial position s in the photoacoustic image I is reconstructed by delaying and

summing the signals as follows: 
I(s) =

D∑
q=1

Wqpq(τq(s))

τq(s) =
‖s−sq‖

c

(1.4)

with D the number of detected signals, i.e., the number of active transducers of the probe, Wq the

weighting factor applied to the signal acquired by the q-th transducer, pq the q-th transducer's RF signal

and τq(s) the travel time from the position s in the medium to the position sq of the q-th transducer.

Post-processing classically used in ultrasound imaging, like time gain compensation or interpolation, can

be applied to the reconstructed photoacoustic image I.
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The ultrasound speed in biological tissues has to be known to reconstruct the images. In soft tissues,

the ultrasound speed is close to the one of ultrasound in water. The typically used value is in the range

[1480m.s−1 ; 1540m.s−1].

Figure 1.4: Reconstruction of the photoacoustic images: DAS algorithm considering the delays (τq) and
weighting factors (Wq).

1.4 Interest of photoacoustic imaging

1.4.1 Photoacoustic characteristics

Photoacoustic imaging combines the advantages of acoustic and optical imaging. Imaging contrast

and functional information are given by optics. Resolution and large imaging depth are brought by

acoustic. The optimization of optical illumination gives the possibility to image ROI at a few centimeters

from the light source. The geometry which combines optical illumination and ultrasound probe is of

major importance. It depends mainly of the targeted medical application. In this work, two di�erent

geometries have been chosen: light and US probe in almost the same plane or light and US probe in

orthogonal planes.

As already mentioned, in photoacoustic the temperature increase is around 0.1K, which corresponds

to a few kPa pressure wave and leads to a low pressure amplitude. Pulsed lasers of around 5ns pulse

duration are also commonly used. Often, a ≈ 10Hz repetition frequency optical source is considered.

Medical ultrasound systems (probes and scanners) are used for photoacoustic imaging, with similar

image reconstruction methods [Wells 1977, Angelsen 2000] as the DAS algorithm. The optical absorbers

of biological tissues produce acoustic waves between 1MHz and 100MHz depending on the size of

the absorbers. The choice of the ultrasound probe used to acquire photoacoustic signal is then really

important and needs to be adapted to the targeted applications.

The photoacoustic signal is linked to the optical absorption of the imaged media. Depending on the

concentration of a single medium, the photoacoustic signal di�ers because the optical absorption varies.

For example, the dilution of a medium with a ratio of 0.5 involves an optical absorption of 0.5 compared

to the one of the pure medium. The concentration of a media impacts the photoacoustic signal which

allows then quanti�cation.
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A given medium can conduct to di�erent photoacoustic signals because (1) light attenuation impacts

the response of tissue as a function of depth (Figure 1.5), (2) various concentrations change the optical

absorption and (3) di�erent target sizes create ultrasound waves at di�erent frequencies. For many

studies in photoacoustic imaging, light or ultrasonic attenuations are not taken into account before

applying image processing method.

Finally, photoacoustic imaging is a non-ionizing and non-invasive imaging technique to access biolog-

ical tissue functional information with respect of light amplitude excitation.

Figure 1.5: Photoacoustic image of an homogeneous absorbing medium. The amplitude of the PA image
decreases as a function of depth because of light attenuation. The image axes are in mm.

1.4.2 Interest of multispectral illumination in photoacoustic imaging

Using a single optical wavelength already allows the di�erentiation between two di�erent media since,

e.g., oxygenated (HbO2) and deoxygenated (Hb) blood have di�erent optical absorptions at 650nm (see

Figure 1.6, green vertical line). Then, HbO2 and Hb exhibit di�erent PA signals, which allows their

di�erentiation.

As the absorption of a single medium is di�erent at each wavelength, the evolution shape of the

medium absorption over wavelengths is speci�c to a single medium. In this way, the use of several

wavelengths allows the di�erentiation of more than two media and increase the medium discrimination

accuracy. The spectral evolution of a medium is then considered for the di�erentiation or quanti�cation

of media using multispectral photoacoustic data [van Veen 2004, Beard 2011].

In multispectral PA imaging, the wavelength range has to be well chosen; e.g., HbO2 and Hb can be

di�erentiated by their PA spectral evolutions in the range [600nm ; 900nm] [Hill 2016], which is much

more di�cult in the range [250nm ; 550nm] (see Figure 1.6). The range [650nm ; 900nm] is largely used

for biological tissue imaging because, in this range, the optical absorption of water is low. As biological

tissues are principally composed of water, this wavelength range allows better imaging depth: it is called

the diagnostic window (in gray in the Figure 1.6).

Finally, the multispectral photoacoustic evolution of a single medium does not have the exact same

shape than the multispectral optical absorption evolution of this medium. The multispectral PA signal

is indeed linked to the used laser energy variations over wavelengths. It means that the photoacoustic

signal of a single medium can be di�erent depending on the light source used, then on the photoacoustic

system used to acquire the data. Developing processing methods to discriminate or quantify media using

photoacoustic imaging data acquired with di�erent systems is thus challenging.
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Figure 1.6: Absorption coe�cients of di�erent media as a function of the wavelengths. (a.u.; arbitrary
units) Green vertical line highlights Hb and HbO2 optical absorption at 650nm. The diagnostic window
is shown in gray.

1.5 Current researches in multispectral photoacoustic imaging

Multispectral PA imaging is a powerful modality to access functional information. Current researches

address the following topics: (1) PA image reconstruction [Treeby 2013, Arabul 2016, Ding 2017] taking

into account scattering and absorption as a function of wavelength. This is not addressed in this thesis as

a classical reconstruction algorithm is used (DAS) without considering these features. (2) PA acquisition

systems and applications. (3) Data processing methods for medium discrimination and quanti�cation.

1.5.1 Photoacoustic imaging systems and probes

Photoacoustic imaging can be done using classical optical sources coupled with ultrasound probes and

systems. Depending on the size of the desired imaged object, di�erent groups of systems exist to image

structures of size from some micrometers to some centimeters. System types are characterized by their

resolution and imaging depth (Figure 1.7), increasing from photoacoustic microscopy (PAM ≈ 100µm)

and photoacoustic tomography (PAT ≈ mm), to photoacoustic computed tomography (PACT ≈ cm).

These are the three main system groups [Wang 2016]. Considering the possible imaged region size:

PAT have the larger imaging size with some square centimeters, PACT image region of some square

millimeters and PAM of some square micrometers.

PAT acquires the ultrasound waves all around the ROI [Cai 2011]. The acquisition principle is not

extended here as an experimental PAT system is deeply presented later in Chapter 2. Brie�y, to detect

the ultrasound waves, the US probe (or a mono-element transducer) rotates all around the imaged sample.

Most of the time, it is the imaged sample that rotates inside a �xed laser/ultrasound probe geometry

(Figure 1.8(a) [Liu 2016]). These particular systems cannot be used for every application. It is possible

for sample like phantoms or small animals but not always for human body. Researches are then done to

develop di�erent probes to extend the PAT uses, like a concave arc-shape array used by [Brecht 2009],

which can be seen Figure 1.8(b). The interest of this type of systems is that it allows to image large

tissue volumes as it uses di�use optical illumination but with limited imaging depth.
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Figure 1.7: Resolution over imaging depth of PAT, PAM and PACT [Wang 2016].

Figure 1.8: (a) PAT acquisition system where the imaged sample rotates inside the Nd:YAG laser/US
probe system [Liu 2016] (see the List of abbreviations and symbols for the Figure abbreviations
meaning). (b) PAT acquisition system highlighting a arc-shape ultrasound probe [Brecht 2009].
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PAM is based on the focusing of light and ultrasound on a small region of interest to get micrometer

resolution. This type of systems is the best to image microvascularization or red blood cells [Moore 2016].

A PAM system is shown Figure 1.9, the optical excitation is a classically used laser and the US detector

is a transducer. Researches are currently done to improve the resolution and quality of this imaging

technique [Shelton 2010].

Figure 1.9: The optical excitation and US detector are focalized to obtain a thin resolution [Moore 2016].

PACT is a larger category as it clusters the system composed of laser source classically used in optical

imaging and US probe usually used in US imaging. No particular acquisition geometry is de�ned, the

laser and US probe can be put all around the imaged sample in every planes or axes (two di�erent

geometries are presented in the next Chapter). The only thing is that the geometry does not change

during the acquisitions by opposition to PAT systems which rotates. The US probe can be separated from

some optical sources [Montilla 2013] (Figure 1.10(a)). The optical sources and the US transducers can

also be grouped in a single PA probe, as it was developed in the European Union project FULLPHASE

[Beckmann 2014] and for the commercial system Vevo LAZR (Visualsonics, Fuji�lm, Figure 1.10(b)

[Needles 2013]) which is largely described later in this manuscript.

Depending on the targeted application, the desired resolution and the imaging depth, one of these

techniques is used to acquire multispectral photoacoustic images. Speci�c probes are also developed for

particular applications, as endoscopy probe for applications in interventional surgery, gastroenterology

or foetal medicine [Ansari 2015], and combined with one of these systems.

1.5.2 Examples of biological and medical multispectral photoacoustic applications

PA imaging is of great interest for a large range of applications where functional information of

biological tissue are required. From interventional surgery to drug delivery, passing through biological

media detection or quanti�cation (lipid, blood etc.), multispectral photoacoustic imaging is useful.

Interventional surgery requires discriminating between lots of biological tissues to avoid any mistake

during the surgical intervention. Studies on the use of PA imaging to discriminate, e.g., between nerves

and tendons, are investigated [Mari 2014, Mari 2015]. Indeed, these two biological tissues cannot be

discriminated based on ultrasound imaging which is most of the time used for interventional surgery.
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Figure 1.10: PACT set-up where optical source and US probe are (a) separated [Montilla 2013] or (b) close
to each other [Needles 2013].

Lipid detection to image atherosclerotic plaques in human carotid is also a large domain of research

in photoacoustic [Jansen 2013, Arabul 2015, Vallet 2015]. Quantifying the amount of lipid in a speci�c

carotid area allows the follow-up of the atherosclerotic plaque development and highlights the plaque

risk.

The larger application domain of photoacoustic imaging is based on the access to Hb and HbO2

concentrations which allows the calculation of the blood oxygenation rate. This is of great interest

for numerous applications: placental oxygenation investigation [Arthuis 2017], oxygen saturation rate

calculation (sO2) [Deán-Ben 2014], di�erentiation between malignant or benign tumors as part of the

follow-up of carcinomas [Bauer 2010] or to evaluate tissue death [Su 2012].

The photoacoustic e�ect can also be used for drug delivery [Dixon 2016]. Indeed, using light to heat

a structure can allow the release of some drugs �rstly contained inside this structure. The main interest

of photoacoustic imaging in this case is that this structure can be imaged and then tracked using average

energy. It thus allows drug release, using more optical energy to heat the structure, at the exact wanted

position.

1.5.3 Image processing methods

Each application and system requires particular image processing method to accurately assess the

desired information. Indeed, the photoacoustic signal of a medium varies depending on (1) the image

depth, (2) the sizes of the imaged structures, (3) the medium concentrations and (4) the acquisition

system. The discrimination or quanti�cation of media using multispectral photoacoustic imaging is then

challenging and numerous strategies have been developed, which can be supervised or unsupervised, to

cluster or unmix media [Cox 2012].

The algorithms mentioned in the current section are separated in two groups belonging to the targeted

results. Indeed, it is important to understand the di�erence made between the discrimination of data,

using clustering algorithms, and the quanti�cation of data, using unmixing algorithms. Considering a
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photoacoustic image acquired on a biological tissue composed of several di�erent media, the discrimination

aims at �nding if a pixel belongs, or not, to a medium. Each pixel of the data is thus labeled and each

label corresponds to a single medium. On the other hand, the quanti�cation of data aims at assessing

the concentration of the imaged media, which means that each pixel can be considered composed of (1) a

single pure medium, (2) a dilution of a medium or (3) a mix of media at di�erent concentrations. The

unmixing algorithms aim at decomposing each pixel according to di�erent criteria which have to be of

interest for the targeted application.

Also, the di�erence between supervised and unsupervised methods has to be clari�ed. Supervised

algorithms need to compare the data to existing references. In our context, the reference data could

be the reference spectra acquired on the media to cluster. The algorithms then label each pixel to the

closest reference. Di�erent meaning of closest can be taken into account using di�erent strategies. On

the contrary, unsupervised algorithms process the data without additional information.

Clustering methods

Di�erent clustering algorithms have been proposed in the literature to discriminate multispectral PA

data. Supervised algorithms based on least-square minimization [Kruizinga 2014] or intra-class corre-

lation [Mallidi 2008, Wang 2009] have been proposed for application in the detection of atherosclerotic

plaques. Methods based on wavelet-packet features, with training and testing steps, have been also de-

veloped [Zalev 2011]. For applications where only two di�erent media have to be discriminated, a limited

range of wavelengths can be chosen as studied by [Mari 2014, Mari 2015] for the discrimination of tendons

and nerves. Unsupervised methods have been also proposed to segment photoacoustic data [Bauer 2010]

and to analyse the media regarding a speci�c peak in their spectral evolutions [Daeichin 2016].

Unmixing methods

A supervised unmixing method called spectral-�tting and two unsupervised methods called prin-

cipal component analysis and independent component analysis have been compared for the detec-

tion of ICG and Cy7 inclusion in biological tissues [Glatz 2011]. An unsupervised unmixing method

to calculate sO2 was implemented in the commercial system Vevo LAZR (Visualsonics, Fuji�lm)

[Zhang 2007, Needles 2013, Arthuis 2017]. The method solves an inverse problem considering the molar

extinction coe�cient of Hb and HbO2.

All these developed methods highlight the di�culties to �nd a unique strategy, allowing the discrim-

ination or quanti�cation of media in multispectral photoacoustic imaging, which could be applied for

various applications and/or acquisition systems.

1.6 Motivations of the thesis

1.6.1 Objectives

The large range of acquisition systems and applications requires developing robust processing methods

which can be applied on several dataset, without acquisition system dependence. As the calculation of

blood oxygenation is of great interest for di�erent application, the major objective of the present thesis

is the development of a multispectral PA image processing chain for its calculation in biological tissues.

The main steps are, �rst, the data discrimination (clustering), to extract the ROI, and second, the

quanti�cation of the di�erent media in these ROI (unmixing).
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The proposed method has to be tested on various acquisition systems to validate its robustness. The

proposed clustering and unmixing algorithms are then compared on data acquired with three di�erent

systems: the PACT platform at CREATIS, a PAT system (collaboration with Prof. Zhen, MACAU)

and a Vevo LAZR commercial system. Finally, a real-time photoacoustic mode should be developed to

improve the experimental platform acquisition at CREATIS.

1.6.2 Targeted applications

The targeted application is the quanti�cation of oxygenation in vascularization since it is of great

interest for various biomedical applications. In the present thesis, two of these applications are focused

on: the discrimination of malignant or benign tumors and the dating of tissue death. As the calculation

of saturation in oxygen ratio (sO2) has already been implemented on a commercial system, the develop

method is validated comparing its result to the one given by the commercial system. The study on the

dating of tissue death is done on di�erent biological tissues and compare to the literature [Su 2012].

1.7 Manuscript organization

In this Chapter 1, the photoacoustic imaging concept has been presented as well as the state of

the art and the thesis objectives. According to the scheme colors of Figure 1.11, the set-up and dataset

are described in Chapter 2, as well as the co-supervision developments presented in section 2.4.

The clustering and unmixing developments and validation are presented respectively in Chapter 3 and

Chapter 4 where the proposed method performances are compared to the literature method perfor-

mances. Finally, the application tests and validation are shown Chapter 5.

Figure 1.11: Thesis objectives and contributions.
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Chapter 2

Multispectral photoacoustic imaging:

systems, imaged samples and dataset
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2.1 Introduction

The interest of multispectral photoacoustic imaging for di�erent applications conducted to its consid-

erable development in the last decade. Several experimental and commercial systems have been developed

to acquire multispectral photoacoustic data for biomedical applications with various optical excitations

and ultrasound devices for reception.

In this context, the di�erent processings developed during this PhD thesis have been validated on

di�erent experimental and commercial platforms. This Chapter presents the materials used to acquire

the photoacoustic dataset. The developments done to improve the experimental platform of CREATIS,

in collaboration with our partner MSDLab (Florence, Italy), are highlighted and the dataset used for the

validation are �nally presented.
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2.2 Experimental platforms

Three di�erent multispectral photoacoustic experimental platforms have been used during this thesis.

The main di�erence among all these set-up is the geometry between laser illumination, imaged samples

and ultrasound transducer/probe. These platforms and their respective geometry are presented in this

section and summarized in Appendix A.

2.2.1 Photoacoustic tomography (MACAU)

A multispectral photoacoustic tomography (PAT) acquisition set-up [Li 2015] was available during

the entire thesis, thanks to a collaboration with the University of Macau (People's Republic of Macau,

China). The acquisition set-up is presented Figure 2.1.

Figure 2.1: Experimental set-up used for the PAT acquisitions.

The optical excitation is a Nd:YAG pulsed laser with a pulse duration of 6ns, coupled to an optical

parametric oscillator (OPO) which enables the wavelength changes. The system allows multispectral

photoacoustic acquisition from 700nm to 930nm. The ultrasound transducer has a central frequency at

1MHz and is immersed in the water together with the phantom.

The laser highlights the top of the phantom and the US transducer acquires photoacoustic signals all

around it, every 3 degrees. Considering the acquisition of US signals, cylindrical phantoms are preferred.

To acquire signals with enough photoacoustic energy, the absorbing media are set close to the surface as

well as the ultrasound transducer to avoid too much optical energy attenuation. This system gives access

to RF data and a classical DAS algorithm is used for the reconstruction of PA tomographic images.

2.2.2 Experimental platform (CREATIS)

2.2.2.1 State of the art

An experimental multispectral photoacoustic platform is available for acquisition in CREATIS

[Vallet 2015], Figure 2.2. The multispectral optical excitation is a Nd:YAG pulsed laser (Quanta-Ray

INDI Series, Spectra-Physics, USA), with a pulse duration of 6ns and 10Hz repetition rate, coupled
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with an optical parametric oscillator (OPO - versaScan, SpectraPhysics, USA). With this system, it is

possible to acquire images with a large excitation wavelength range, from 410nm to 1250nm. There are

di�erent laser beam outputs that are reported on Figure 2.2(b). These outputs give di�erent wavelength

ranges. Only one output is used at the same time so the others are stopped by di�erent beam stops.

This laser is the property of CEA in Grenoble, France. With the help of Jean-Marc DINTEN of LISA-

CEA-LETI, which has provided a part of this photoacoustic system equipment, it has been possible to

realize photoacoustic acquisitions in CREATIS.

On this platform, di�erent ultrasound scanners can be used: SonixMDP (Ultrasonix Corp., Vancouver,

BC, Canada) or ULA-OP64 (Ultrasound Advanced Open Platform - 64 transmission/reception channels,

MSDLab, Florence, Italy - Figure 2.3(a)). As this thesis is in co-supervision with the MSDLab, the

use of this last ultrasound scanner has been preferred. For 2D imaging, two di�erent US linear array

probes are used: LA523E, Acuson - 192 elements, 7.8MHz center frequency, bandwidth 92% at −6dB

(Figure 2.3(b)) or CMUT probe, HF3, ACULAB - 192 elements, 10MHz center frequency, bandwidth

100% at −6dB (Figure 2.3(c)). For 3D imaging, a matrix array probe is used: Vermon - 8× 24 elements,

3.84MHz center frequency, bandwidth 65.1% at −6dB (Figure 2.3(d)).

Figure 2.2: (a) PACT platform at CREATIS. (b) Schematic of this experimental set-up.
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Figure 2.3: (a) ULA-OP64 research scanner. (b) Linear probe (LA523E). (c) CMUT probe (HF3).
(d) Matrix array probe (Vermon).

Di�erent geometries of interaction between the laser beam, the imaged sample and the US probe are

of interest like: (1) the linear one (Figure 2.4(a)), where the optical excitation hits the sample on one

side and the ultrasounds are acquired on the other side, and (2) the orthogonal geometry (Figure 2.4(b)),

where the detection is conducted on the top of the sample. Both geometries imply a good alignment to

acquire the most energetic photoacoustic signals.

Figure 2.4: Linear (a) and orthogonal (b) laser beam/imaged sample/ultrasound probe geometries.

In comparison with the tomographic set-up at MACAU, the platform of CREATIS allows the imaging

of samples (e.g., phantoms or biological tissues) of di�erent shapes and sizes. RF data are accessible and

the images are reconstructed with DAS algorithm. However, as the laser energy is not perfectly stable

over time, twenty images must be acquired at each wavelength. The dataset is then the average of these

twenty images for each wavelength.

2.2.2.2 Improvements

The above description corresponds to the initial state of the CREATIS photoacoustic system. The

experimental set-up has been improved during the present PhD. As the laser beam hitting the sample is

less than 5mm diameter, the possible imaged area is really small. To optimize the optical energy, tests

were conducted using di�erent lenses to enlarge the region of illumination. The objective is to enlarge

the laser beam while keeping enough optical energy to create detectable PA signal. The initial optical

energy needs to be high enough to create photoacoustic signal up to a depth of 1cm minimum taking into

account optical attenuation. Finally, to optimize the optical energy, optical �bers have been installed at

all the laser beam output (one for output 1 and one which can be used for output 2 and 3, Figure 2.2(b)).
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During my PhD project, the US team acquired a new ULA-OP scanner: ULA-OP256 (Ultrasound

Advanced Open Platform - 256 transmission/reception channels, MSDLab, Florence, Italy). Its instal-

lation at CREATIS has brought signi�cant improvements on the PA platform allowing new 2D and 3D

real-time imaging modes, detailed hereafter in paragraph 2.4.

2.2.3 Commercial system: Vevo LAZR (ANICAN)

An experimental biomedical imaging platform (ANICAN), which allows ex vivo and in vivo acquisi-

tions on animal models, was created by the collaboration Centre Léon Bérard/Centre de Recherche en

Cancérologie de Lyon/SFR-Santé/Equipex Phenocan in Lyon. A commercial multispectral PA system

(Vevo LAZR, Visualsonics, Fuji�lm) is available on this platform (Figure 2.5(a)). The particularity of

this system is that an optical �ber is directly inserted inside the US probe, the optical sources are then

close to the ultrasound transducers producing an hybrid US/PA probe (Figure 2.5(b)). The PA signals

are then acquired by the ultrasound transducers on the same side as the optical excitation (Figure 2.5(c)).

The optical source of the Vevo LAZR is a Nd:YAG pulsed laser with pulse duration of 5ns and 20Hz

repetition rate coupled with an OPO to access various wavelengths [Arthuis 2017]. The wavelength range

can be programmed from 680nm to 970nm. The PA probe is the LZ400, composed of 256 elements, that

acquires ultrasounds in the frequency range from 18MHz to 38MHz. The imaging possible depth is

≈ 1.5cm and the imaged ROI is of ≈ 1cm large.

The images are reconstructed with a DAS algorithm. RF data are not accessible and acquired dataset

are impacted by the time gain compensation (TGC) and other post-processing algorithms. The interest

of this platform is that ex vivo and in vivo acquisitions on small animals can be done as well as phantom

imaging with an investigation depth around 1.5cm.

Figure 2.5: (a) Multispectral photoacoustic commercial system: Vevo LAZR. (b) Hybrid US/PA probe.
(c) Sample inside the system with the bimodal US/PA probe ready for acquisitions.

2.3 Phantom manufacturing

Data and image processings developed in this work needed to be validated on reproducible, calibrated

and stable samples. Consequently, a large variety of phantoms has been made with speci�c geometry

and property.
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Cylindrical phantoms made in Macau for tomographic acquisitions are not presented here, a detailed

description can be found in [Li 2015]. We will focus hereafter on home-made phantoms designed for ac-

quisitions on the experimental platforms in Lyon. These phantoms and their developments are presented

in the next section.

2.3.1 Materials

The work of Maeva VALLET [Vallet 2015] has shown that both phantom in agar (4%) or polyvinyl

alcohol (PVA) have interesting acoustic and optical properties to mimic biological tissues. During my

PhD work, I preferred to develop phantoms in agar (4%) because the design and the production is much

faster than PVA and optical properties are easier to change.

Agar material is a powder that needs to be melt with water to create a gel. In our case, 4% in

weight of agar are put in a volume of water. First, the volume of water is heated up to 65◦C. At this

temperature, the agar powder is put in the water and stirred together. Finally, this mixture is heated

up to 80◦C to thicken it. The gel is cast in a mold, designed depending on the desired shape and size

(Figure 2.6), and put to the fridge until sti�ening (some hours, depending on the phantom thickness).

Figure 2.6: Three di�erent phantom molds. (a) White mold which is breakable to easily take out the
phantom. (b) Two transparent molds with di�erent heights.

2.3.2 Ink study

In photoacoustic, optical absorbers play an important role to create ultrasound waves. Inside a matrix

of pure 4% agar, optical absorbers are introduced in order to increase optical absorption and generate

photoacoustic signals. On the basis of previous works at CREATIS and several tests, I made my choice

for 6 di�erent colored inks (Drawing inks, KOH-I-NOOR Hardmuth, Czech Republic): black, brown,

yellow, red, blue and green.

Colored inks have important absorption in the visible spectral domain (≈ 400nm− 700nm). In order

to produce calibrated photoacoustic phantoms, it is essential to accurately know their absorbing optical

properties. To this end, a study of these inks was conducted to compare the absorption evolutions over

wavelengths, using (1) spectrophotometry, and (2) multispectral photoacoustic imaging [Dolet 2017].

Previously, a similar study had been conducted in [Cai 2011] but with a smaller range of wavelengths

and less optical absorbers.
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2.3.2.1 Materials and methods

Spectrophotometry

A standard spectrophotometer system that measures the contributions of both optical absorption

and scattering (i.e., the absorbance) is used. Absorbances are measured in the wavelength range

[400nm ; 1200nm], 1nm steps, with a Perkin Elmer Lambda900 spectrophotometer (Figure 2.7(a)) at

the Institut Lumière Matière (UCB Lyon 1). The maximum absorbance that can be measured by the

spectrophotometer made it impossible to perform the acquisitions directly on pure inks. The absorbance

measurements are thus performed on diluted inks, with a dilution factor of 1:1601 (Figure 2.7(b)).

These measurements have been done with the help of Elodie ROMEO and Thomas DEHOUX from

the Institut Lumière Matière.

Figure 2.7: (a) View of inside the spectrophotometer (diluted brown ink and water as reference in test
tubes for the acquisition). (b) Diluted inks for the optical spectrophotometry measurements.

Multispectral photoacoustic imaging

Multispectral photoacoustic signals are acquired on the experimental photoacoustic platform in CRE-

ATIS. In this study, the CMUT probe is used for the US detection. Acquisitions are made from 470nm

to 690nm, with 5nm steps on colored 4% agar phantoms with a dilution factor of 1:1629 (example of

phantom and acquisition in Figure 2.8). To make colored 4% agar phantoms, the same procedure as the

one presented before is used. The desired volume of ink is added directly after mixing the agar powder

with water at ≈ 65◦C. It is necessary to carefully mix the ink inside this mixture to have homogeneous

phantoms in terms of optical absorbers.

Comparison method

The data acquired with both modalities cannot be compared without previous cross-calibration. The

absorbances, or spectrophotometer spectra, measured with the spectrophotometer have �rst to be post-

processed to make them comparable to the multispectral photoacoustic signals, or photoacoustic spectra.

First, the photoacoustic laser energy has to be taken into account as it is not constant over wavelengths nor

over time. As the absorbance spectra of black ink presents a decreasing exponential shape (Figure 2.9(a)),

an optical signal is available for all of the wavelengths of the selected spectrum. Diluted black ink is then

used to calculate a calibration ratio (equation (2.1)), to normalize the spectrophotometer spectra and

compare them to the photoacoustic spectra:
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Figure 2.8: (a) Blue phantom in the set-up. (b) Blue phantom during the acquisition of the multispectral
photoacoustic signals.

Ratio =
Ablack

Sblack
(2.1)

where Ablack is the multispectral photoacoustic signal and Sblack is the absorbance measurement of black

ink. The ratio is applied to the �ve other absorbance spectra, corresponding to 5 di�erent inks:

SPA = S ×Ratio (2.2)

where SPA is the normalized absorbance measurement, which can be compared to the multispectral PA

signal, and S is the initial absorbance measurement. Using this ratio, the photoacoustic laser energy is

taken into account, assuming a constant energy distribution over all of the photoacoustic acquisitions.

The small di�erence of ink concentrations between spectrophotometer and multispectral photoacoustic

experiments (1:1601 vs 1:1629) is not taken into account. Meanwhile, a gain factor is applied to SPA

in order to minimize the root-mean square error (RMSE) between both measurements. This procedure

focuses on the spectrum qualitative shapes, but not on the quanti�cation of the absorbance. RMSE is

calculated as follows:

RMSE =

√√√√ L∑
i=1

‖ SPA −A ‖2 (2.3)

where L is the number of measured wavelengths. For each ink, the similarity between normalized

spectrophotometry and multispectral photoacoustic imaging can then be analyzed.

2.3.2.2 Results

In this study, six inks were used with black ink as reference. The comparison between spectropho-

tometry and multispectral photoacoustic signal is done on the �ve phantoms (brown, yellow, red, blue

and green inks). Note that the spectrophotometry absorbance for blue and green inks exhibit logically

a peak at 590nm and 600nm respectively. In the same time, in the range below 525nm for blue and

580nm for green, the measured signal by spectrophotometry is very low and the applied ratio is high.

We decided to restrict the study ranges above these wavelength values (> 525nm for blue and > 580nm

for green) avoiding to increase the noise.
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Figure 2.9: (a) Normalization ratio for spectrophotometry spectra measured with black ink. (b) PA
spectra (A, * marker) and normalized absorbance spectra (SPA, solid line) for (b) brown, (c) yellow, (d)
red, (e) blue and (f) green inks.
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As shown in Figure 2.9, the di�erent ink absorbances follow the same tendency as the multispectral

photoacoustic signals (Figure 2.9, solid lines and * markers, respectively). The blue ink, however, shows

a larger discrepancy. RMSE is calculated for all the inks to quantify this discrepancy and are given for

each ink on Figure 2.9. The best similarity between both measurements is for brown ink (RMSE of 0.09)

and the worse one is for blue ink (RMSE of 7.39). Indeed, for the blue ink, the absorbance peak is

much larger for the PA signal than for the spectrophotometry signal. The red ink also gives a high

RMSE (5.58) which comes from a large discrepancy for the smallest wavelengths. With the yellow ink,

there is a di�erence in the decay rate of the absorbance between both of these modalities. However, for

all the media, the agreement is largely comparable to the results reported in literature [Cai 2011], with

both of these modalities giving similar trends in absorbance for the same medium.

It is of major importance to accurately know the spectral properties of optical absorbers used to

produce calibrated phantom for photoacoustic. Indeed, the selected optical absorbers for setting a PA

designed to discriminate or quantify media depend on: (1) the spectral properties of optical absorbers and

(2) the wavelength range used for PA imaging acquisition. The interest of this study is that a medium

absorbance evolution over wavelength is often known, or easily measurable, while the multispectral PA

evolution is harder to get. This study con�rms then that optical absorbers, for photoacoustic phantom

design, can now be chosen regarding their absorbance evolution over wavelengths [Dolet 2017].

2.3.3 Multi-colored phantoms production

The processings developed during the present thesis aim at discriminating di�erent media. Their

validations need to be done on phantoms created with di�erent optical absorbers. The easiest way to

realize that is to produce a multi-colored phantom (e.g., bi-colored phantoms are shown Figure 2.10).

This type of phantoms is created in three steps (explained here for bi-colored phantoms): (1) a �rst

phantom of a single color is done, (2) it is cut in two parts and one of these is put again in the same

phantom mold, and (3) a 4% agar mixture is colored with a second color and put in the empty part of

the mold. After a few hours in the fridge, a bi-colored phantom is ready with no air between both colors

to avoid any problem for ultrasound propagation.

Figure 2.10: Three bi-colored phantoms: (a) red/green, (b) blue/red and (c) black/red.
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2.3.4 Inclusion production

2.3.4.1 State of the art

Multi-colored phantoms are produced to do preliminary tests but more complex phantoms are required

to go further. The objective is to put small optical absorbing objects in an uncolored 4% agar phantom

to acquire dataset with punctual photoacoustic signals. These objects are called inclusions and are also

made with colored 4% agar.

Firstly, I created spherical inclusions with a mold already used to create phantoms for US studies

(Figure 2.11(a)). This mold allows the creation of spherical inclusions with various diameters: 20mm,

15mm, 10mm and 5mm. To make these inclusions, colored 4% agar mixture is made and injected in the

mold with a needle (Figure 2.11(b)). When the inclusions are full, the mold is put in the fridge during 2

hours, which is enough as the inclusions are small. After unmolding the inclusions, they are �xed inside a

rectangular mold. To this end, some holes have been made in the mold to insert a nylon wire which holds

the inclusions (Figure 2.11(c)). Uncolored 4% agar is made to �ll the mold all around the inclusions.

After sti�ening in the fridge, the phantom is ready (Figure 2.11(d)). The wire used for the production

can stay inside the phantom or be removed, experimental tests show that it gives negligible PA signal

di�erences.

Figure 2.11: (a) Di�erent sizes of molds for spherical inclusions, red arrows show the holes for �lling.
(b) Needle used to �ll the inclusions. (c) Inclusions �xed inside a phantom mold. (d) Uncolored phantom
with colored inclusions (green and red).

The spherical inclusion production is long and needs a lot of attention. A single mold is available,

only one inclusion of each size can then be done at the same time. Each color has to be done at two

di�erent times, with hours in the fridge between. Also, the inclusions are small, it can then be a hard

and long work to �x them. It happens thus that the wire cut the inclusion, principally the smallest ones.
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To go further to validate the processings developed during this PhD, di�erent shapes and smaller

inclusions need to be created. Indeed, the laser beam is ≈ 5mm diameter large which depends on the

selected wavelengths. Imaging two spherical inclusions of 5mm diameter is then impossible. Moreover,

as the smallest inclusions are the hardest to hold, other sizes are most of the time used, and it is hard to

excite a region where both spherical inclusions are located.

2.3.4.2 Improvements

I designed a new mold to improve each of the points mentioned above. 8 rectangular inclusions of

each size can be done allowing the creation of di�erent colored inclusions of the same size at the same

time. It allows the creation of rectangular shape inclusions of 10mm, 8mm, 5mm and 3mm width and

35mm high (Figure 2.12(b)). Some big inclusions (from 5mm to 10mm) are kept available as the 5mm

are already hard to �x in the mold. The 3mm ones were only a test to know if this size could be used.

The mold had to support ≈ 80◦C, to put the hot agar inside, but also, the temperature of a freezer.

Indeed, for further photoacoustic developments, PVA could be later used and this material needs to go

to a freezer during some hours. The mold has then been done in acrylic resin material.

Figure 2.12: (a) Rectangular inclusion mold. (b) Rectangular inclusions of di�erent colors and sizes.
(c) Inclusions �xed inside a phantom mold.

2.4 Technological developments: real-time 2D/3D photoacoustic imag-

ing (CREATIS & MSDLab)

2.4.1 Reasons of the developments

After the improvements of CREATIS experimental platform described before, it was still di�cult to

acquire the desired dataset because no real-time display was available for US and PA imaging. An uncer-

tainty occurs on the acquired region and its localization. Indeed, as it can be seen on the Figure 2.8(b),

when a phantom is illuminated, optical di�usion at its surface makes di�cult to see exactly where the

laser beam hits the phantom (i.e., where there is enough optical energy to create PA signals).

28 Aneline DOLET



2.4. Technological developments: real-time 2D/3D photoacoustic imaging (CREATIS &
MSDLab)

To overcome this di�culty, a real-time PA mode needs to be developed on ULA-OP scanner. Real-

time display would facilitate the accurate alignment between the laser beam and the phantom's ROI. This

development was not possible on the ULA-OP64 because of the required processing capacities. However,

the US team of CREATIS acquired the new ULA-OP256 scanner which involves multi-lines parallel

beamforming. During my 6-months stay in the MSDLab (Florence, Italy), I do these developments on

this new scanner (Figure 2.13).

Figure 2.13: ULA-OP256 research scanner.

2.4.2 Real-time active/passive mode

2.4.2.1 Passive mode development

The �rst step of the development is to create a real-time mode to acquire 2D photoacoustic signal. A

previous PhD in collaboration between both laboratories (CREATIS & MSDLab) has worked on passive

ultrasound acquisition [Boulos 2017] for ultrasound cavitation studies. This mode aims at reconstructing

passive images without knowing the time when ultrasounds are created. This developed passive mode

has been adapted to photoacoustic imaging.

In photoacoustic imaging, US are created during optical excitations. The initial time that has to

be taken into account for reconstruction is the laser pulse. The synchronisation between the optical

illumination and the US acquisition has then to be very accurate. When this time is known, the passive

images are reconstructed using a classical DAS algorithm. DAS was already developed on the scanner

system as it is used also for classical ultrasound (active) imaging. For active image reconstruction, US

transmission and reception have to be taken into account (Figure 2.14(a)). The US waves then travel two

times the distance between the probe and the imaged object. For passive imaging, only this single distance

has to be taken into account as the ultrasounds are created by the optical absorption (Figure 2.14(b)).

The DAS algorithm already developed on the scanner has been adapted to this context.

Figure 2.14: (a) Active and (b) passive ultrasound time of �ight(s).
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2.4.2.2 Active/Passive display

As the �rst targeted application of the real-time photoacoustic mode is to well-align the laser beam and

the phantom's ROI, it is important to visualise in real-time this region. To this aim, active (ultrasound)

and passive (photoacoustic) acquisitions are underlaid in real-time and both images (ultrasound and

photoacoustic) are displayed on the same screen.

Other modes where two signals are displayed in real-time on the same screen have already been

developed on the ULA-OP256 scanner, e.g., for Doppler imaging [Tong 2016]. One of these modes has

been adapted with the reconstructed ultrasound and photoacoustic images. The ULA-OP256 system

was programmed to produce interleaved standard and passive B-Mode images. The multi-line parallel

beamformer of ULA-OP 256 reconstructs one passive image of 128 lines in real-time (0.4ms) every 100ms

(10Hz laser pulses). The time available between two consecutive laser pulses is exploited to produce

standard B-Mode images (each reconstructed in 1ms) that are overlapped to the passive ones on the

same real-time display.

2.4.2.3 3D real-time imaging

The acquisition of the new ULA-OP scanner at CREATIS also makes 3D photoacoustic imaging

possible. A 3D photoacoustic real-time mode was then implemented on the ULA-OP256 scanner. As

the 2D mode was already developed, it was used and adapted to create the 3D one. A matrix prototype

array probe (Vermon, Tours, France) is used. The probe is composed of 8× 24 elements with 3.84MHz

center frequency and a bandwidth of 65.1% at −6dB. The ULA-OP256 scanner is programmed to acquire

ultrasound images using diverging waves. For passive and active acquisitions 192 lines are used. The

images are reconstructed with a 3D DAS algorithm.

2.4.3 Technological transfer to CREATIS

The hardware developments presented above have been conducted in the MSDLab (Florence, Italy).

It was after installed on the experimental platform in CREATIS. On this platform, the laser cannot be

triggered by the ultrasound scanner so the inverse is done. For ULA-OP64, a generator is used to trig

the ULA-OP64 with the laser. The same has to be done for the ULA-OP256 scanner.

For the real-time mode, the required triggered signal is presented in red in Figure 2.15. Indeed, the

laser is a 10Hz pulse signal (blue signal in the Figure 2.15). When the ULA-OP256 scanner receives the

trigger signal to acquire a passive image, it needs 14µs to begin the acquisition. If a laser pulse triggers

an acquisition 14µs later, it means a photoacoustic signal o�set of around 21mm in depth, which cannot

be compensated in order to display the photoacoustic signal on the screen. In this way, as the 10Hz

pulses of the laser are very stable, the objective is to use a pulse laser to trig the photoacoustic acquisition

for the following one. It means that a laser pulse trigs a passive acquisition precisely 99.986ms after (PA

acquisition trigger signal is shown by yellow arrows in the Figure 2.15). The other pulses of the red signal

are the ones which permit the active acquisitions underlaid between each passive image. The number of

active acquisitions can be chosen by users as well as the time between each acquisition, according to the

needed reconstruction time.
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To realize this trigger, an ARDUINO card was tested but did not allow enough precision. A home-

made card permitting the desired trigger has been programmed by the MSDLab (Figure 2.16). It needs

to be powered by a computer using a USB cable. The laser output is plugged on the IN pin and the

OUT pin is linked to the triggered input of the ULA-OP256. The user can choose the number of active

acquisitions, and spacing between each one, using a terminal on the connected computer. 2D and 3D

photoacoustic modes are used with the same card, the di�erent image reconstruction times in 2D or 3D

just need to be taken into account.

Figure 2.15: Scheme of the ULA-OP256 triggered by the laser pulse. The yellow arrows represent the
trigger for passive acquisitions.

Figure 2.16: External card used to make the trigger between the laser and the ULA-OP256 scanner.
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2.4.4 Validation

2D real-time imaging

To validate the developed 2D real-time PA mode, the ULA-OP256 system is connected to the linear

probe LA523E. The imaged phantom is shown Figure 2.17(a). It is an uncolored 4% agar phantom with

two included graphite mines. The yellow rectangle on Figure 2.17(a) highlights the imaged region and the

orange ellipse, the laser beam size. The phantom is excited by a laser beam at 1064nm (Figure 2.17(b),

the visible green light is due to a residual laser component at 532nm). The phantom was translated

from left to right by maintaining the plane of the graphite mines aligned with the imaged region. The

photoacoustic signal is in blue while the active B-mode image is in black and white (Figure 2.17(c)).

Some artefacts are visible on Figure 2.17(c), particularly at the second phantom position (t1). They

are due to the photoacoustic signal multiple echoes. Because the ultrasounds do not well pass through

the graphite mines, the photoacoustic signal of the bottom graphite mine is lower than the one of the

other mine (Figure 2.17(c)-t1).

Figure 2.17: (a) Cross-sectional phantom image: the yellow rectangle highlights the region imaged with
the active mode and the orange ellipse, the laser beam size. (b) Photoacoustic set-up. The visible green
light is due to a residual laser component at 532nm. (c) Screenshots of the real-time display for di�erent
phantom positions. The photoacoustic signal is in blue.
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3D real-time imaging

The validation is done using the Vermon matrix array and a gold particle (Figure 2.18(a)) inserted

in an uncolored 4% agar phantom. The gold particle has a cylindrical shape of 1mm diameter by 3mm

length. Also in 3D, US and photoacoustic images are superimposed in real-time. The 3mm axis is shown

Figure 2.18(b)-right and the 1mm diameter circle plan Figure 2.18(b)-left. The photoacoustic signal is in

blue and the US images are in black and white. As the 2D imaging validation, the 1064nm wavelength

is used.

3D real-time imaging could be improved to cancel the artefact that can be seen in Figure 2.18(c-d).

Regarding now the resolution with a 6dB dynamic (Figure 2.18(c-d)), the resolution of PA imaging is a

little better than the one of US imaging. The lateral resolution of US imaging is of 3.5mm and 1.7mm

in the length and diameter planes, respectively. The length and diameter planes lateral resolutions are,

for PA imaging, 3.2mm and 1.4mm, respectively. The axial resolution is quite similar between both

modalities: 0.7mm for both techniques in the length plane and 1.7mm and 1.4mm in the diameter plane

for US and PA images, respectively. The 3D resolution is then consistent with the particle dimension.

2.5 Multispectral photoacoustic dataset

To validate the developed processings in this thesis, various dataset will be used. They could be

entirely composed of optical absorbers, to have a large ROI, or partially, with small ROI like inclusions,

which can be spaced or close. A large number of dataset has been used during these three years, but

only the ones used to present the results in this manuscript are presented.

2.5.1 Optical absorbers uniformly distributed in the phantom

The acquisition system used to acquire the dataset presented in this section is the Vevo LAZR.

Acquisitions are done using the full available range of wavelengths ([680nm ; 970nm] with 1nm steps) as

it does not require too much acquisition time (≈ 1min). Classicaly in multispectral PA imaging, between

5 and 10 wavelengths are used as it is enough to discriminate or quantify media with an acceptable

processing time. 8 of the acquired wavelengths are then selected (from 680nm to 820nm, 20nm steps) to

compose our dataset. The selected wavelengths were chosen in a range where the used optical absorbers

(blue and green inks) can be discriminated as their spectral evolutions are di�erent.

The colored phantoms used to acquire the dataset are composed of three di�erent 4% colored agar

parts. The left one is done using only blue ink (400g of water, 16g of agar and 380µL of ink) and the right

part, only green (400g of water, 16g of agar and 950µL of ink). Both parts are considered as relative ink

concentrations equal to 1 (i.e., pure media). Blue and green ink quantities are not equal because both

inks do not exhibit the same maximum photoacoustic signal amplitude. Based on the previous presented

study, the ink quantities have been chosen to obtain the same maximum photoacoustic signal amplitude

for both pure media.

The central part of the �rst described phantom is composed of a 0.53 dilution of blue ink relatively

to the pure considered concentration presented before. The concentration is not perfectly equal to 0.5

because of the 10µL pipette accuracy used to measure the ink dose (with a minimal possible dose of 20µL).

It is composed of 100g of water, 4g of agar, 50µL of blue ink. This phantom is shown Figure 2.19(a) and

is referred as B-Bdil-G(Vevo) for the rest of the manuscript.
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Figure 2.18: 3D US/PA imaging. (a) Cylindrical gold particle (1mm diameter and 3mm length).
(b) Screenshots of the real-time display at the center position. The photoacoustic signal is in blue.
(c) The three central slice of the 3D active (US) signal with a 6dB dynamic. (d) The three central slice of
the 3D passive (PA) signal with a 6dB dynamic. The resolution is given in each plane and is consistent
with the particle dimension. The image axes are in mm.
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Figure 2.19: (a) Blue / 0.53 blue dilution / green colored phantom. (b) Spectra of each region of interest.
(c) B-Bdil-G(Vevo) dataset. The image axes are in mm.
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Figure 2.20: (a) Blue / 0.42 blue & 0.67 green mix / green colored phantom. (b) Spectra of each region
of interest. (c) B-mix-G(Vevo) dataset. The image axes are in mm.
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A second phantom composed of three di�erent colored agar parts was produced with a central part

of a mix of blue and green inks (50g of water, 2g of agar, 20µL of blue ink and 80µL of green ink). This

mix corresponds to a blue concentration of 0.42 and a green one of 0.67 relatively to the pure considered

concentrations. This phantom can be seen Figure 2.20(a) and is now called B-mix-G(Vevo).

2.5.2 Small region of interest

2.5.2.1 Inclusions distant from each other

This dataset has been acquired in MACAU on the PAT set-up. The phantom is a cylindrical PVA

phantom of 45mm diameter with three 4-mm-diameter cylindrical inclusions (Figure 2.21(a)). Two in-

clusions are �lled with blood at two di�erent dilutions, corresponding to two di�erent concentrations

of oxygen inside these inclusions, and one is �lled with diluted black China ink (upper right in Fig-

ure 2.21(a)). The bottom blood inclusion is the one of non-diluted blood and the upper left one is diluted

blood with 0.5 dilution factor. The images are acquired at eight di�erent wavelengths from 700nm to

910nm (Figure 2.21(b)), with 30nm steps. This dataset is named Blood-Ink(PAT).

Figure 2.21: (a) Blood and ink inclusions cylindrical phantom, top view. (b) Spectra of each region of
interest. (c) Blood-Ink(PAT) dataset. The image axes are in mm.
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2.5.2.2 Inclusions close to each other

The dataset now presented has been acquired on the commercial system Vevo LAZR. The imaged

phantom is a small 4% agar phantom done in the rectangular inclusion mold. The inclusion size is 10mm

width. The acquisitions were done putting the phantom in water.

Two 5mm rectangular inclusions have �rst been done, one blue and one green, using the concentrations

corresponding to the pure media described before. These inclusions are put inside the 10mm inclusion

mold at two opposite corners (Figure 2.22). The rest of the inclusion is completed with a mix of 0.74

blue and 0.29 green (100g of water, 4g of agar, 70µL of blue ink and 70µL of green ink) relatively to the

considered pure media. This dataset is referred as IncB-mix-G(Vevo) in the following Chapters.

Figure 2.22: (a) Small phantom blue, green and both mix (0.74 blue and 0.29 green). (b) Spectra of
each inclusion part. (c) IncB-mix-G(Vevo) dataset. The image axes are in mm.

2.5.2.3 3D imaged region dataset

Only two, out of the three systems used during the present thesis, allow 3D ROI imaging. CREATIS

experimental platform with the matrix array probe Vermon and the Vevo LAZR commercial system

using a mechanical sweeping-translation of the LZ400 probe. The dataset presented in this section was

acquired on the Vevo LAZR commercial system with 0.1mm mechanical sweeping-translation steps.
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The imaged phantom is an uncolored 4% agar phantom with two 5mm diameter spherical inclusions,

one fully blue and one fully green, using the same relative full concentrations as for the other phantoms

(Figure 2.23). This dataset is called 3D(Vevo) for its use in the next Chapter.

Figure 2.23: (a) Uncolored 4% agar phantom with blue and green 5mm diameter spherical inclusions.
(b) Spectra of each inclusions. (c-e) Three di�erent slices of the 3D(Vevo) dataset for �ve wavelengths.
The image axes are in mm.

2.6 Conclusion

In this Chapter, the three photoacoustic systems used during this thesis have been presented. They

are based on two di�erent photoacoustic acquisition techniques: PAT and PACT. The acquired images

have then di�erent resolutions and the possible imaged ROI sizes can vary. To validate the developed

processing presented in the next Chapters, phantoms and inclusions of various sizes and shapes needed

to be produced. The developments done for their production have been highlighted. As the laser beam

of CREATIS photoacoustic experimental platform is narrow with low optical energy in the interesting

wavelength range, technological developments have been done to well image the ROI. These develop-

ments of real-time 2D and 3D PA/US modes and their installation to facilitate the acquisitions with the

CREATIS system have been described here. Meanwhile, the narrow beam still limits the exploitation of

data of this system.
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3.1 Introduction

Processing of medical imaging data usually requires a step called segmentation to identify regions of

potential interest. In the case of multispectral photoacoustic imaging, this step is called clustering. The

main goal of clustering is to group with the same label all the pixels having the same spectral properties.

The unsupervised proposed method for multispectral PA clustering will be presented as well as the most

used supervised methods of the literature.
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For a given medium which should be clustered in a single label, the proposed methods have to face

up to three main di�culties: (1) the concentration within the medium can change spatially, (2) the light

is attenuated as a function of depth and (3) US frequency and amplitude can change as a function of the

optical absorber dimension. Consequently, media discrimination in multispectral photoacoustic imaging

is a challenging task which requires robust clustering methods.

A part of this Chapter has been published in EURASIP Journal on Advances in Signal Processing

[Dolet 2018].

3.2 Pre-processings

3.2.1 Discrimination between background and regions of interest

When a region is imaged in PA imaging, some areas give photoacoustic signal, those with optical

absorbers, and others do not. Multispectral PA images are then composed of ROI with multispectral PA

signal (in purple Figure 3.1), and pixels containing only noise, called background, in green Figure 3.1.

Figure 3.1: Representation of multispectral photoacoustic dataset. (a) Signals from the imaged region
are acquired at di�erent wavelengths with two pixels identi�ed (in green and purple). (b) Spectra of two
di�erent pixels: in green, pixel from the background with low PA amplitudes at all wavelengths and in
purple, pixel from the ROI with signi�cant PA amplitudes.

Each pixel of multispectral photoacoustic data xi located at a position si has a spectrum Ai. The N

samples of the ROI, xi, are expressed as:

xi = [si , Ai] ∈ X with

si ∈ RS , the spatial position
Ai ∈ RL, the spectral pro�le
i ∈ [1 ;N ], the sample index

(3.1)

The aim of the proposed pre-processing is to discriminate the background from the ROI. The back-

ground is determined by applying a threshold related to the gradient calculation from a Sobel �ltering.

The Sobel threshold ThSobel is computed as follows:
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ThSobel = 2 ∗
√
G (3.2)

where G is the mean of the Sobel gradient magnitude [Pratt 1978]. The edges detected by the Sobel

�ltering are then only used to calculate G. ThSobel is applied on the sum over wavelengths of the initial

dataset to create a binary mask B of the same size as the PA data at a single wavelength: the background

pixels are set to 0 while the ROI pixels are set to 1. The following clustering methods are only applied

on the pixels out of the background.

3.2.2 Two strategies to deal with concentration di�erences

Depending on the targeted application, it might be important to discriminate di�erent concentrations

of a single medium, e.g., to determine the concentration of a contrast agent in the body [Mienkina 2009], or

to discriminate a single medium from all other media without considering its dilution, e.g., to determine

the level of vascularization for calculation of the oxygenation rate [Mercep 2017]. To allow these two

strategies, a normalization of the spectra is applied on each pixel of interest when no discrimination

between medium concentrations is needed. Indeed, the spectral shape of a medium is independent of

the concentrations of its constituents. To consider only the spectral shape without including the PA

amplitude, the spectra of each pixel is normalized as follows. Let us consider the spectra, Ai ∈ RL, of a
given pixel, where ai,λl is the discrete photoacoustic signal amplitude which is acquired at the wavelength

λl, l = 1 · · ·L, chosen according to the media for discrimination. We �rst integrate and normalize the

amplitudes of Ai, as:

a∗i,λl =

∑l
j=1 ai,λj∑L
j=1 ai,λj

(3.3)

where a∗i,λl is the normalized amplitude of ai,λl at the wavelength λl. This processing is applied to all of the

pixel spectra of the dataset matrix A and at all of the wavelengths λl of [λ1 ;λL]. The normalized dataset

has values from 0 to 1. Before any other processing, the dataset values are placed in the range [0; 255] with

or without this normalization step. This normalization by integration over the wavelengths is preferred

to normalization by the maximum value of the spectra. Indeed, the proposed normalization smooths the

noise, whereas the maximum normalization does not. On one hand, applying this normalization step to

the data allows di�erent concentrations of a single medium to be merged as a single cluster. On the other

hand, using non-normalized data allows discrimination between di�erent concentrations as if they were

associated with di�erent absorbing media.

3.3 Methods of the literature

Segmentation or classi�cation methods have been developed to discriminate between biological media

using multispectral photoacoustic dataset. Supervised methods, such as, spectral-�tting [Glatz 2011],

approaches based on the least-square criterion [Jansen 2013], and intra-class correlation [Wang 2009,

Mallidi 2008] have been proposed in the literature. These methods imply to know a reference spectrum

of each medium to identify during the clustering process.
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3.3.1 Endmembers calculation

Supervised clustering methods are based on a similarity calculation between a reference spectrum

and each dataset pixel spectrum. Most of the time, the reference spectrum of each constitutive medium

is not known, particularly for biological tissues. Indeed, even if the absorption spectra of some biological

components can be known (Figure 1.6), the real shape depends on the photoacoustic system used to

acquire the dataset. So, a reference spectrum, also called endmember, can be computed directly on the

acquired data for each constitutive medium, as the mean of its pixels spectra.

The k endmembers corresponding to the k constitutive components of the imaged area are calculated

from the binary mask B (section 3.2.1). B is manually labeled with a single label for each constitutive

medium. For each of the k labeled regions, the mean spectrum is calculated (endmember). The whole

endmembers are gathered into a matrix Ec of size k × L (k endmembers × L acquired wavelengths).

3.3.2 Spectral-�tting method

The spectral-�tting (SF) method is here used as a clustering method like described in [Glatz 2011]

to discriminate ICG from Cy7 injected in biological tissues. SF aims at �nding which of the endmember

best �ts the spectrum of a given pixel with a least-square criterion. The multispectral PA dataset matrix

A of N ×L measurements (N is the number of pixels in the imaged region and L the number of acquired

wavelengths) and the endmember matrix Ec are considered. The Moore-Penrose pseudoinverse matrix

E+
c is �rst calculated as follows:

E+
c = ET

c (EcE
T
c )
−1

(3.4)

The coe�cient corresponding to the probability, in the spectral-�tting sense, for a pixel to be part of a

cluster is given by the SF matrix, calculated by the following matrix inversion:

SF = AE+
c (3.5)

SF contains N × k coe�cients that are called abundance coe�cients as they represent the �tting of

the data with each of the endmember. To �nally cluster the data, the maximum abundance coe�cient

value over the k endmembers in SF , mi, as well as its position, ei, which corresponds to one of the

endmembers is found for each pixel. In the clustering result matrix of the spectral-�tting method, CSF

of size N × 1, the i-th pixel is labeled by the value ei. In equation (3.6), SFie is a coe�cient of SF with

i referring to a pixel and e to an endmember.


[mi , ei] = max

e∈[1;k]
(SFie)

CSFi = ei

(3.6)

The background pixels of the matrix CSF are labeled to zero where the other pixels are labeled in

the range [1 ; k].
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3.3.3 Least-square minimization algorithm

The least-square (LS) minimization algorithm used in the present thesis is inspired by the study

[Jansen 2013]. Using the same notations as before, the least-square distance lsie between the i-th pixel

spectra, Ai, and the e-th endmember, Ece , is calculated as follows:

lsie =

L∑
l=1

(Ai −Ece)
2 (3.7)

All the calculated least-square distances, lsie with i ∈ [1 ;N ] and e ∈ [1 ; k], are got into the matrix LS

of size N × k. Finally, the clustering result matrix CLS of size N × 1 is constituted of the endmember

label ei which corresponds to the minimum lsie coe�cient of the i-th pixel:
[si , ei] = min

e∈[1;k]
(LSie)

CLSi = ei

(3.8)

with si the smallest value of the vector [lsi1 . . . lsik] and ei the corresponding endmember label.

3.3.4 Intra-class correlation method

The intra-class correlation (ICC) is a method which uses both the spatial neighborhood and the

spectral feature of the pixels to compensate the tissue movements and the optical energy changes between

photoacoustic acquisitions at di�erent wavelengths [Mallidi 2008, Wang 2009]. As this method also uses

spatial features, better clustering results were expected. ICC aims at calculating the strength of the

linear relationship between the pixel spectra of the dataset and the endmembers. To take into account

the spatial features, the considered spectrum corresponds to the mean of the pixel spectra, in a neighbor

area of the i-th pixel Ai, calculated as follows:

Ai =
1

S

S∑
j=1

Aj (3.9)

with S the number of pixels in the considering neighbor area and Aj , j ∈ [1;S], these pixels spectra.

The intra-class correlation coe�cient iccie between the i-th averaged pixel spectrum, Ai, and the e-th

endmember, Ece , is calculated as follows:

iccie =
2×

∑L
l=1 (Ai −X)(Ece −X)∑L

l=1 (Ai −X)2 + (Ece −X)2
(3.10)

where X = A+Ec
2 with A and Ec the mean spectrum of the dataset and endmember matrix, respectively.

All the intra-class correlation coe�cients are placed into the matrix ICC of size N × k. The clustering
result matrix CICC of size N × 1 corresponds to the endmember label ei which is the maximal iccie
coe�cient of the i-th pixel, mi, explained by the following equation:
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
[mi , ei] = max

e∈[1;k]
(ICCie)

CICCi = ei

(3.11)

3.4 Spatio-spectral mean-shift

3.4.1 Rationale of the study

Even if the intra-class correlation used both spatial and spectral features, this method did not provide

the expected performance improvement. The reference spectra calculation clearly impacts the results of

the three previously presented methods. An unsupervised clustering method using the spatial and

spectral features is then proposed. This, compared principally to intra-class correlation, should avoid the

varying performances related with the reference spectra calculation.

To this end, the spatiotemporal mean-shift approach (STM-S) was adapted to our context. This algo-

rithm demonstrated good performances for magnetic resonance image clustering by taking into account

both spatial and temporal features [Mure 2015].

3.4.2 Spatio-spectral regularization

Based on the clustering algorithm developed for magnetic resonance imaging [Mure 2015], we proposed

here a spatio-spectral mean-shift (SSM-S). It means that the spectra of multispectral PA data are handled

instead of the temporal evolutions of longitudinal magnetic resonance images.

This algorithm requires two parameters, RS and Rλ, that are now presented. For a given pixel xi, let

us consider �rst its neighboring pixels in the spatial dimension within a radial distance RS (Figure 3.2(a)).

These pixels xj = [sj , Aj ] have to satisfy the equation:

1

RS
2 (si − sj)T (si − sj) ≤ 1 (3.12)

As the sample spectra of a same medium are close, Rλ is �xed as the maximum accepted distance

between the spectra of two samples of the same medium:

1

Rλ
‖ (Ai −Aj) ‖∞≤ 1 (3.13)

In equation (3.13), the in�nity norm is the most appropriated norm, because it allows pixels with

close spectral shapes to be merged even if the amplitudes at each wavelength are not exactly the same.

This also allows spectra with large di�erences in amplitude at a single wavelength to be di�erentiated,

because the spectral shapes of these pixels are then considered di�erent. However, di�erent norms could

be used, depending on the desired e�ect.
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Figure 3.2: The spatio-spectral mean-shift principle. (a) Pixel spatial features at the �rst iteration with
the RS parameter, and (b) spectra of three pixels with the Rλ parameter. The red pixel is the reference
pixel. Although the green and blue pixels are both in the spatial area of the reference pixel, only the
green pixel is used to update the features of the reference. Indeed, the spectrum of the blue pixel is not
close enough to the one of the reference sample (by at least one wavelength; the blue and red spectra are
separated by a distance greater than Rλ).

Only the pixels that satisfy both constraints (as part of the spatial area de�ned above and spectrally

close to the reference spectrum, controlled by Rλ) are used for the update of the reference pixel (Fig-

ure 3.2(b)), by computing the means of their positions and of their spectra. Iteration of the spectral

mean-shift algorithm is then achieved through the following calculation:

x
[t+1]
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N∑
j=1

gs(s
[t]
i ; s

[t]
j ) · gλ(A

[t]
i ;A

[t]
j ) · x[t]j
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j=1
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[t]
i ; s

[t]
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[t]
i ;A
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j )

(3.14)

where gs(s
[t]
i ; s

[t]
j ) = 1 if equation (3.12) is respected, or it is 0 otherwise, and gλ(A

[t]
i ;A

[t]
j ) = 1 if

equation (3.13) is respected, 0 otherwise. These steps are applied iteratively to all pixels xi of the

imaged region X until convergence of the procedure; i.e., stabilization of the featured value throughout

the �ltering process. At each iteration, the shift of each updated pixel during the regularization process

is calculated. The algorithm stops when the sum of all these shifts becomes lower than a pre-de�ned

threshold. The result of this SSM-S algorithm can easily be used to segment the imaged region. Even if

the result contains too many clusters compared to the desired result, all of the pixels with close spectra

are labeled together.

The main advantage of mean-shift spatial regularization is that two areas of the imaged region can

be merged into the same cluster even if they are spatially distant, as long as their spectra are close.

Moreover, this helps two nearby pixels to be clustered together even if their spectra have small amplitude

or shape di�erences. Indeed, the same medium might be present at di�erent locations within the imaged

regions of interest, and two close pixels are likely to belong to the same medium.

The setting of both parameters RS and Rλ is presented in section 3.5.5.
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3.4.3 Cluster number reduction

With SSM-S, a medium is represented by more than one label because of light attenuation and

ultrasonic dispersion impacting the amplitude spectra of a single medium. This is due to the strong

amplitude di�erences between these labeled spectra, which are obtained even if their shapes are similar.

Here, only the k largest labeled areas are kept, while k is the number of media to be discriminated.

The other pixels are kept unlabeled. Thus, the labeled areas correspond to the di�erent media to

be discriminated. To reduce the number of labels, spatial features post-processing is applied in the

nearest neighbor manner. The sets of P labeled pixels and N − P unlabeled pixels can be referred to as

Y = {yi}i=[1;P ] and Z = {zj}j=[1;N−P ], respectively, with:yi = [si ; pi]

zj = [sj ; pj = 0]
(3.15)

where pi ∈ R is the associated label of a pixel xi. For each unlabeled pixel zj ∈ Z, the closest spatial

pixel yi∗ in Y is found, and pj takes the value of its corresponding index pi∗ , as follows:

i∗|j = argmin
i=[1;P ]

‖ sj − si ‖

then pj = pi∗

(3.16)

As all of the background pixels are equal to 0 at each wavelength since the pre-processing is applied,

these pixels are easily clustered together by the SSM-S. However, with this method, some pixels of the

ROI can be clustered with the background if, for all wavelength, the PA signal is always below Rλ.

The SSM-S processing steps are summarized in Figure 3.3.

Figure 3.3: The spatio-spectral mean-shift proposed pipeline.
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3.5 Results and performances

3.5.1 Quantitative validation method

The binary mask B manually labeled (section 3.3.1) is used as the ground truth reference for well-

clustered pixels. A quantitative measure WCP is calculated as the percentage of well-clustered pixels.

The number of well-clustered pixels is counted after the end of the considered algorithm procedure. WCP

is expressed relative to all of the pixels to cluster. To compute this criterion, a pixel merged with the

background is considered as well clustered. With this strategy, WCP ranges from 0% to 100%; i.e., from

"no well-clustered pixels" to "perfect discrimination result".

The aim of this evaluation is to determine whether or not the method can be used to discriminate

between di�erent media without considering the background. Consequently, the proposed validation

method is preferred to classical Dice similarity coe�cient (DSC) [Dice 1945] validation because DSC

is more restrictive than WCP. Indeed, the pixels clustered with the background make the performance

decrease with DSC which might appears less appropriate for the targeted application.

3.5.2 Medium dilution

The di�erent steps of all the clustering methods are highlighted for the Blood-Ink(PAT) dataset.

First, to remind the dataset, the photoacoustic signal acquired at 730nm is shown on Figure 3.4(a). The

sum over wavelengths of the noise removed by the pre-processing threshold can be seen in Figure 3.4(b),

it corresponds to less than 20% of the maximal dataset photoacoustic signal value. The binary mask

B as well as its labeling, with and without the normalization step, are presented in Figure 3.4(c-e-g),

respectively. On Figure 3.4(c), pixels of interest are in black while Figure 3.4(e) shows the ground truth

when no normalization is applied, with each inclusion corresponding to a single label. Figure 3.4(g)

highlights the ground truth when the normalization step is applied, both blood inclusion have then the

same label. The calculated endmembers without and with normalization can be seen Figure 3.4(d-f),

respectively. Finally, the normalized dataset are shown in Figure 3.4(h). Only two spectra are shown in

Figure 3.4(f) because the normalization aims at merging both blood inclusions altogether which means

that only two media (ink and blood) have to be discriminated.

Blood-Ink(PAT) without normalization step

First, the clustering is done on the dataset without normalization. Three media have to be discrimi-

nated: pure blood, diluted blood and ink (k = 3). The SF, LS and ICC results are presented in Figure 3.5.

The �rst three lines correspond to diluted blood, pure blood and ink abundance maps, respectively. The

last line of images shows the clustering result maps followed by the WCP performance values. Each

column presents a method results: from left to right, SF, LS and ICC. These methods have similar

performances (WCPSF = 76%, WCPLS = 71% and WCPICC = 78%). ICC result is given after the

optimization of the average area size S. This area is a square of RS−ICC side size (S = RS−ICC
2). Here,

RS−ICC = 8pixels. In this case, ICC and its use of spatial feature seems to improve the discrimination

result.
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Figure 3.4: Pre-processings and endmembers calculation of Blood-Ink(PAT) dataset. (a) Photoacoustic
image at 730nm. (b) Noise removed by the pre-processing threshold. (c) Binary mask B, the pixels of
interest are in black. (d) Endmembers. (e) Labeling of the binary mask B which corresponds to the
ground truth when no normalization is done. (f) Normalized endmembers. (g) Labeling of the binary
mask B when the normalization step is applied. (h) Normalized data. The image axes are in mm.
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Figure 3.5: Blood-Ink(PAT) dataset clustering literature method results without normalization.
First three lines: diluted blood, pure blood and ink abundance maps from �rst to third line, respectively.
Last line: clustering result maps (pure blood in red, diluted blood in blue and ink in black) with WCP
performance values. Columns, from left to right: SF, LS and ICC method results. The image axes are
in mm.
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To highlight the SSM-S algorithm post-processing steps, they are detailed in Figure 3.6. The algo-

rithm is tuned with the optimized values: RS = 15pixels and Rλ = 19a.u. The resulting map is presented

in Figure 3.6(a). For the post-processing �rst step, the unlabeled pixels are in gray (Figure 3.6(b)). These

pixels are the ones grouped in small clusters by the SSM-S algorithm. The result map (Figure 3.6(c))

clearly highlights that SSM-S gives the best discrimination result compared to SF, LS and ICC (Fig-

ure 3.5). Indeed, really few pixels at the inclusion boundaries are misclustered (pointed by the purple

arrow in Figure 3.6(c)) which means that the post-processing well clustered the unlabeled pixels with the

spatially closest medium. On this dataset, SSM-S assesses a WCP performance of 99%.

Figure 3.6: Blood-Ink(PAT) dataset SSM-S method without normalization. (a) Result of SSM-S
procedure with numerous clusters. (b) The k = 3 biggest clusters are kept (ink in black, pure ink in red
and diluted blood in blue), the unlabeled pixels are in gray. (c) SSM-S �nal result, the purple arrow
shows the misclustered pixels at the inclusion boundary. The image axes are in mm.

Blood-Ink(PAT) with normalization step

The normalization step can also be applied aiming to cluster both blood inclusions altogether. Only

two media have here to be discriminated: blood and ink (k = 2). The ground truth B labeling is

presented in Figure 3.4(g) and highlights the desired discrimination result. Figures 3.7 and 3.8 present

the literature method and SSM-S results when the normalization step is done, respectively. The SSM-S

parameters are tuned with the same values as without normalization (RS = 15pixels and Rλ = 19a.u.)

and RS−ICC is optimized with the value of 1pixel which means that the spatial features is not taken into

account as it decreases the performance in this context. When the normalization is applied, RS−ICC is

always optimized with the value of 1pixel.

SF, LS and ICC give really similar results (Figure 3.7). Indeed, the resulting maps cannot be distin-

guished with eyes and theWCP values are close (WCPSF = 85%,WCPLS = 87% andWCPICC = 87%).

As RS−ICC = 1pixel, and compared to the results without normalization, it is normal that the ICC does

not give better performance than SF and LS because the spatial feature is not taken into account. Fig-

ure 3.8 shows the di�erent steps of the SSM-S method. It highlights that the SSM-S procedure already give

interesting result with two huge clusters well corresponding to both media to discriminate (Figure 3.8(a-

b)). Indeed, only few pixels at the bottom inclusion boundaries are unlabeled (in gray Figure 3.8(b),

highlighted by the yellow arrow). The SSM-S gives the best performance reaching a WCPSSM−S value

of 98%. Only some pixels are misclustered at the blood inclusions boundaries (Figure 3.8(c), highlighted

by the purple arrows).
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Figure 3.7: Blood-Ink(PAT) dataset clustering method results with normalization. First two lines:
pure blood and ink abundance maps. Last line: clustering map results (blood in red and ink in black)
withWCP performance values. Columns, from left to right: SF, LS and ICC method results. The image
axes are in mm.

Figure 3.8: Blood-Ink(PAT) dataset SSM-S method with normalization. (a) Result of SSM-S pro-
cedure which shows the reduced number of clusters, as both media clusters are already well done. (b)
The k = 2 biggest clusters are kept (ink in black and blood in red), the unlabeled pixels are in gray at
the bottom inclusion boundary (highlighted by the yellow arrow). (c) SSM-S result after post-processing,
purple arrows show the misclustered pixels at the blood inclusion boundaries. The image axes are in
mm.
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For Blood-Ink(PAT) dataset, the SSM-S method is the one reaching the best performances with

and without applying the normalization step (see Table 3.1 which summarizes the used parameter values

and the method performances). Almost all the pixels of interest are well clustered, only a few pixels at

the blood inclusions boundaries are grouped with the ink cluster. Regarding the dataset (Figure 3.4(a)),

all the inclusion boundary pixels exhibit really low photoacoustic signal. As the ink spectra are the ones

with the lowest amplitudes (Figure 3.4(e)), it is not surprising that some of the boundaries pixels are

clustered with this medium.

The di�erent clustering steps and method principles have been highlighted on this �rst dataset. For

all the others, only the endmembers and �nal result map for each clustering method is presented and

discussed in this Chapter.

Blood-Ink(PAT)

Normalization
Parameters WCP (%)

k
RS−ICC RS Rλ SF LS ICC SSM-S
(pixels) (pixels) (a.u.)

without 3 8
15 19

76 71 78 99
with 2 1 85 87 87 98

Table 3.1: Blood-Ink(PAT) dataset summary of the used parameter values and the clustering method
performances. The best results are highlighted in red.

B-Bdil-G(Vevo) dataset

The results presented in Figure 3.9 come from the application of all the clustering methods to the

B-Bdil-G(Vevo) dataset. The di�erent processings have been done using the optimized parameters:

when no normalization is applied (RS−ICC = 3pixels, RS = 30pixels and Rλ = 2a.u.), and with the

normalization step (RS−ICC = 1pixel, RS = 30pixels and Rλ = 4a.u.). These values are summarized

in the Table 3.2. Figure 3.9(a-b) shows the endmembers used as references for the supervised cluster-

ing methods. It can be seen that without normalization, diluted blue and green reference spectra are

really close as well as blue and green spectra with normalization. It highlights how the clusterization is

challenging. As the normalization step aimed at clustering the diluted medium with the pure one, only

two media (blue and green) have to be discriminated when the normalization is applied and only two

endmembers are shown in Figure 3.9(b).

The results are presented as follows, Figure 3.9(c-d) shows the map results without and with nor-

malization respectively. From up to bottom, the method result maps are presented: ground truth, SF,

LS, ICC and SSM-S results. The performances are highlighted next to the result maps and summarized

in Table 3.2. When no normalization is applied, the supervised methods assess similar performances,

only the ICC is less performant here (WCPSF = 65%, WCPLS = 63%, and WCPICC = 54%). With

normalization, the supervised methods have also really similar results which cannot be distinguished with

eyes on the result maps (WCPSF = 71%, WCPLS = 70%, and WCPICC = 70%). With both strategies

(without or with normalization), SSM-S reaches the best performances with WCPSSM−S = 86% and

WCPSSM−S = 90%, respectively.
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Figure 3.9: B-Bdil-G(Vevo) dataset results without (a-c) and with (b-d) normalization, respectively.
(a) Endmembers used as references for the supervised methods when no normalization is applied. (b) End-
members calculated when the normalization step is processed. (c) Method result maps without normal-
ization, from up to bottom: ground truth, SF, LS, ICC and SSM-S results (the diluted blue cluster is
represented in cyan). The performances are also highlighted next to the results. (d) Same as (c) but
with the application of the normalization step. The image axes are in mm.
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B-Bdil-G(Vevo)

Normalization
Parameters WCP (%)

k
RS−ICC RS Rλ SF LS ICC SSM-S
(pixels) (pixels) (a.u.)

without 3 3
30

2 65 63 54 86
with 2 1 4 71 70 70 90

Table 3.2: B-Bdil-G(Vevo) dataset summary of the used parameter values and the clustering method
performances. The best results are highlighted in red.

Both dataset results presented in this section test the behaviour of the algorithms on data with

diluted medium. It has been highlighted that SSM-S give always the best performances in this context,

with a WCP value superior to 86% and the result maps clearly allow to distinguish and localize the

di�erent imaged media. The pre-processing normalization step has also been tested and it well permits

the merging of pure and diluted medium altogether. The proposed method has then been validated on

diluted media for two di�erent acquisition systems.

3.5.3 Mix of media

B-mix-G(Vevo) dataset

The methods are now tested on phantoms with mix of media. This �rst phantom is entirely com-

posed of optical absorbers. Figure 3.10 presents the clustering results with the optimized parameters

summarized in Table 3.3. When no normalization is done, RS−ICC = RS = 30pixels and Rλ = 10a.u.

With the application of the normalization step, only RS−ICC value is modi�ed and takes the value of

1pixel. In this context, the normalization aims at merging the mix with one of the pure media. As the

green medium gives photoacoustic signal for every used wavelengths and the mix is principally composed

of green (0.67), it should be clustered with the pure green medium.

The results are presented in Figure 3.10. Without normalization, the best performance is assessed

by SSM-S algorithm (WCPSSM−S = 94%). ICC also well performs (WCPICC is of 89%) and its result

map (Figure 3.10(c)) clearly highlights the three di�erent phantom parts. The two other methods have

lower performances (WCPSF = 69% and WCPLS = 62%) as the mix and green medium parts are not

well discriminated (Figure 3.10(c)). Regarding the green and mix endmembers (Figure 3.10(a)) which are

really similar, the results of SF and LS are not surprising. This case shows the performance improvements

using the spatial features with the high WCP values of ICC and SSM-S.

When the normalization is applied and the mix grouped with the pure green, all the supervised

methods allows a well discrimination (WCP ≈ 93%). However, here the proposed method misclusters

the mix and grouped it with the blue phantom part which leads to a really low WCP (38%). Figure 3.11

highlights the SSM-S method steps to understand this surprising result. The SSM-S procedure gives

three big clusters that clearly correspond to the three di�erent phantom parts (Figure 3.11(a)), and some

other smaller clusters. The �rst step of the post-processing only keeps the k biggest clusters. In this

context, k = 2 as the mix should be clustered with pure green. Figure 3.11(b) shows that the biggest

clusters correspond to the ones of green and mix. The post-processing strategy clusters then the blue

part with the mix cluster as it is based only on spatial features. This result only comes from this spatial

post-processing but no the SSM-S regularization which is e�cient in this situation.
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Figure 3.10: B-mix-G(Vevo) dataset results without (a-c) and with (b-d) normalization, respectively.
Endmembers used as references for the supervised methods when (a) no normalization or (b) the nor-
malization step is processed. (c) Method result maps without normalization, from up to bottom: ground
truth, SF, LS, ICC and SSM-S results (the mix is represented in orange). The performances are also
highlighted next to the result maps. (d) Same as (c) but with the application of the normalization step.
The image axes are in mm.

B-mix-G(Vevo)

Normalization
Parameters WCP (%)

k
RS−ICC RS Rλ SF LS ICC SSM-S
(pixels) (pixels) (a.u.)

without 3 30
30 10

69 62 89 94
with 2 1 93 92 93 38

Table 3.3: B-mix-G(Vevo) dataset summary of the used parameter values and the clustering method
performances. The best results are highlighted in red.

IncB-mix-G(Vevo) dataset

This dataset is of particular interest as there are two di�erent media in the axial direction, which

means that the light is absorbed by some imaged media and also other media have to be imaged deeper.

It leads to important light attenuation, so photoacoustic signal decreases over depth. Moreover, there are

high photoacoustic signals at the horizontal inclusion boundaries (Figure 2.22) that do not correspond to

a particular absorbing medium. To test the clustering methods, these boundaries are manually removed.
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Figure 3.11: SSM-S steps with B-mix-G(Vevo) dataset and with the normalization applied. (a) SSM-S
procedure result with numerous clusters. (b) Unlabeling step. Only the k = 2 biggest clusters are kept.
The unlabeled pixels are in gray. The image axes are in mm.

The mix is here considered as a particular medium that has to be clustered alone, whether the

normalization is applied or not. The results are presented in Figure 3.12. The used parameters are re-

ported in Table 3.4. The supervised method results are similar without or with normalization application

(WCP ≈ 52% and WCP ≈ 57%, respectively). The pure media are well clustered but the mix seems

harder to discriminate. Regarding the endmembers and normalized endmembers (Figure 2.22(a-c)), the

blue and mix reference spectra are really close which explains the algorithm di�culties to discriminate

these two media.

The proposed SSM-S method performs the best discrimination (WCP = 71% without normalization,

WCP = 68% with normalization). Pure blue, pure green and one of the two mix parts are well clustered

whether the normalization is applied or not (Figure 2.22(b-d)). However, the other mix part is clustered

with the blue medium. It can be explained by the fact that the mix is principally composed of blue

(0.7 of blue and 0.3 of green).

With this particular light attenuation, both mix parts could be considered as di�erent absorbing

media as they are not excited by the same optical energies. Using k = 4 and four endmembers in the

processing chains clearly shows that it is the light attenuation which impacts the clustering performances.

Indeed, Figure 3.13(a-c) highlights the similarity of the blue and up mix parts spectra as well as the one

of the green and bottom mix parts in both cases of normalization. This explained the di�culties of the

supervised methods to perform on this dataset (WCP ≈ 60% with or without normalization). Anyway,

the SSM-S method assesses high performances in this context which highlights the interest of the proposed

method (Figure 3.13(b-d)).

IncB-mix-G(Vevo)

Normalization
Parameters WCP (%)

k
RS−ICC RS Rλ SF LS ICC SSM-S
(pixels) (pixels) (a.u.)

without
3

3

40

2 51 51 54 71
with

1
10 52 59 59 68

without
4

1 2 57 61 58 97
with 10 55 68 68 95

Table 3.4: IncB-mix-G(Vevo) dataset summary of the used parameter values and the clustering method
performances. The best results are highlighted in red.
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Figure 3.12: IncB-mix-G(Vevo) dataset results without (a-c) and with (b-d) normalization, respec-
tively. Endmembers used as references for the supervised methods when (a) no normalization or (b) the
normalization step is processed. (c) Method result maps without normalization, from up to bottom:
ground truth, SF, LS, ICC and SSM-S results (the mix is in orange). The performances are also high-
lighted next to the result maps. (d) Same as (c) but with the application of the normalization step. The
image axes are in mm.
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Figure 3.13: IncB-mix-G(Vevo) dataset results, considering k = 4, without (a-c) and with (b-d)
normalization, respectively. Endmembers used as references for the supervised methods when (a) no
normalization or (b) the normalization step is processed. (c) Method result maps without normalization,
from up to bottom: ground truth, SF, LS, ICC and SSM-S results (the both mix parts are in orange and
magenta). The performance are also highlighted next to the result maps. (d) Same as (c) but with the
application of the normalization step. The image axes are in mm.
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3.5.4 3D dataset

The 3D(Vevo) dataset is processed only with the SSM-S method. The objective is to highlight that

the parameters RS and Rλ have to be tuned according to the imaged media and not the region of interest

geometry. Indeed, it could be thought that the RS parameter really in�uences the result while the �rst

feature which has to be taken into account is the spectral one. The dataset used here is composed of two

pure media (k = 2).

Figure 3.14 shows the result maps with the SSM-S tuned with RS = 30pixels and Rλ = 10a.u.

The algorithm is used only in 2D. The data is processed slice by slice (Figure 3.14(a-b-c)) and then

reconstructed in 3D (Figure 3.14(d-e)). As the regions of interest are spherical inclusions, the algorithm

is tested with di�erent distances between both pure media using the same RS parameter. Figure 3.14(a-

b-c) highlight the well SSM-S performances on spaced (a) or close (c) media. It qualitatively highlights

that the region of interest geometry does not in�uence the setting of RS and Rλ.

Figure 3.14: SSM-S result on 3D(Vevo) dataset. (a-b-c) Di�erent slices of the volume highlighting
the performances for space to close ROI. (d-e) 3D reconstruction of the SSM-S results processed slice by
slice. The image axes are in mm.
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3.5.5 Setting of RS and Rλ

A quantitative study has also been conducted to explain the setting of both SSM-S parameters. The

results are shown on the Blood-Ink(PAT) dataset when normalization is carried out to merge the two

dilutions of blood (Figure 3.8). Figure 3.15 shows the WCP performances for di�erent parameter values.

It can be seen that with very small Rλ (i.e., where too many clusters are created) or very large Rλ
(i.e., where the di�erent media are clustered together), the performances decrease. However, the range

where Rλ is well adapted to the data is large enough (i.e., from 5 a.u. to 15 a.u. in the present case),

and in this range, RS does not particularly a�ect the performance. Moreover, when Rλ is above this

range, the reduction of RS provided increased performance. It is explained by the fact that it helps

the agglomeration of close pixels that are probably of the same medium. Finally, even if these settings

change a little for each dataset, choosing Rλ inferior to 20a.u. with RS in the range of 10pixels to 45pixels

provides good performances for all of the dataset, which makes the proposed algorithm easy to use.

Figure 3.15: Setting of RS and Rλ. Success map for varying RS and Rλ with the Blood-Ink(PAT)
dataset, when the normalization step is included. (Scale in %)

3.6 Conclusion

This Chapter presents a comparative study of three di�erent supervised clustering methods (SF, LS

and ICC) and the unsupervised proposed method: SSM-S. The clustering is tested on dataset acquired on

two di�erent acquisition systems: the PAT and Vevo LAZR commercial systems. All the performances

are summarized Table 3.5 where it can be seen that SSM-S gives the best result in each case except

one particular, only because of the spatial post-processing. Indeed, even if the SSM-S procedure gives

three main clusters well corresponding to the three phantom parts, the two main clusters kept by the

post-processing are the ones of the mix and green parts and not the ones of both pure media.
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The proposed SSM-S method improves then the discrimination of multispectral photoacoustic dataset.

It has been validated on diluted media as well as on mix of media and particular light attenuation (light

passing through two di�erent absorbing media). Also, this Chapter highlights that using the spatial

features, in addition with the spectral one, already improves the discrimination. Compared with ICC

method, unsupervised clustering better performs as the endmember calculation dependence is overcome.

Considering 3D imaging, the SSM-S algorithm should be adapted to process the volume. This,

instead of applying the procedure slice by slice, could reduce the misclustered pixels. Indeed, using the

RS parameter in the 3 directions would allow to group more voxels with close spectra altogether.

Normalization
Parameters WCP (%)

k
RS−ICC RS Rλ SF LS ICC SSM-S
(pixels) (pixels) (a.u.)

Blood-Ink(PAT)
without 3 8

15 19
76 71 78 99

with 2 1 85 87 87 98

B-Bdil-G(Vevo)
without 3 3

30
2 65 63 54 86

with 2 1 4 71 70 70 90

B-mix-G(Vevo)
without 3 30

30 10
69 62 89 94

with 2 1 93 92 93 38

IncB-mix-G(Vevo)

without
3

3

40

2 51 51 54 71
with

1
10 52 59 59 68

without
4

1 2 57 61 58 97
with 10 55 68 68 95

Table 3.5: Clustering parameters and results summary. The best performance for each dataset and
strategy are highlighted in red.
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4.1 Introduction

In photoacoustic imaging dataset, each pixel can be considered as a weighted sum, i.e a mix, of the

imaged pure media where the weights represent the media concentrations. The pure medium spectra are

called endmembers and the weights, the abundance coe�cients. The study of multispectral photoacoustic

dataset unmixing, where the objective is to access these concentrations, is presented in this Chapter.

To unmix the photoacoustic data, regions of interest are discriminated from the background with the

processing method presented in section 3.2.1. Unmixing methods are applied only to these regions of

interest. In the previous Chapter 3, we have shown that supervised methods conducted to the calcu-

lation of reference spectra, which has a large impact on the results. Only unsupervised strategies will

then be considered in this Chapter. First strategy is the use of unsupervised unmixing methods, from

photoacoustic literature, that gives the abundance coe�cients. Second, unsupervised methods that only

extract the endmembers are exploited and combined to a supervised but robust unmixing method, used

with the endmembers previously extracted.
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4.2 Abundance calculation

4.2.1 In multispectral photoacoustic imaging �eld

4.2.1.1 Principal component analysis

As already used in [Glatz 2011], principal component analysis (PCA) can be used to unmix di�erent

media using multispectral photoacoustic imaging. This method is a blind source unmixing technique

which assumes that the source components are statistically uncorrelated. It means that it is an unsuper-

vised unmixing method which can be used only if the di�erent imaged medium spectra are considered as

statistically uncorrelated. We assume this hypothesis in our context.

PCA is a linear orthogonal transformation from the initial dataset to a new coordinate system where

each axis corresponds to an uncorrelated principal component. The PCA algorithm gives: (1) the ex-

tracted uncorrelated principal component matrix which could correspond to the endmembers matrix and

is then referred as EPCA and (2) the transformation matrix which corresponds to the abundance matrix

UPCA. This is summarized by the following equation:

A = UPCAEPCA (4.1)

PCA extracts more components than the number of pure media in the imaged region. The endmem-

bers kept in EPCA are the �rst k extracted components which correspond to the k larger eigen values.

The EPCA matrix is then of size k × L. The UPCA abundance matrix considered is restricted to the k

abundance coe�cients corresponding to the endmembers kept (UPCA of size N × k).

4.2.1.2 Independent component analysis

Independent component analysis method (ICA) was also used by [Glatz 2011] and is another blind

source separation technique. The assumption considered here is that the sources are statistically inde-

pendent, which is a stronger assumption than the one considered for PCA. We assume this hypothesis in

our context.

The ICA method is a transformation from the initial dataset to a new coordinate system where each

axis corresponds to an independent component. The ICA algorithm gives: (1) the extracted independent

components matrix EICA and (2) the abundance matrix U ICA. This is summarized by the following

equation:

A = U ICAEICA (4.2)

The independent components extracted with the ICA algorithm are more numerous than the number

of pure media in the imaged region. The k larger independent components are kept in EICA (size

of k × L). The U ICA abundance matrix is restricted to the k abundance coe�cients corresponding to

the endmembers kept (U ICA of size N × k).
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4.2.2 In remote sensing �eld

4.2.2.1 Rationale for the study

The methods of the photoacoustic imaging literature previously presented do not assess abundance

matrix which allows an accurate calculation of medium concentrations. Mainly, the abundance coe�cient

matrix U can have some negative values which is contrary to satisfactory concentration values. Indeed,

an endmember concentration is equal to zero if the medium is absent in the considered pixel, equal to

one if it is a pure medium pixel and in ]0 ; 1[ if the pixel is composed of the medium; e.g. diluted medium

or mix of media. The abundance matrix should then be constrained to the following requirements:

(1) abundance coe�cient values should be in the range [0 ; 1] and (2) for a single pixel, the sum of all the

k coe�cients, corresponding to the k endmembers, should be inferior (diluted medium) or equal (pure

medium or mix of media) to 1.

These kind of unmixing constraints are found in remote sensing �eld where the imaged area contains,

for example, road, building, sea, or forest that correspond to the media to unmix. The abundance, or

concentration, is then the percentage area of a pixel containing a medium. Indeed, as the resolution is

of some meters, di�erent media can be found inside a single pixel. Both previously presented constraints

are then also required in this �eld.

As remote sensing unmixing is a huge and already deeply explored domain, numerous algorithms have

already been developed and tested, which is not the case in our photoacoustic context. Moreover, the

hyperspectral images dataset in remote sensing �eld are close to the multispectral photoacoustic ones.

Both techniques image 2D or 3D region of interest at di�erent wavelengths (from 2 to 20 in multispectral

PA and more than 100 in remote sensing). These similarities motivated the study and adaptation of

di�erent unmixing methods, used in remote sensing, for their application to multispectral PA unmixing

to accurately access medium concentrations.

4.2.2.2 Linear mixing model

Data unmixing requires solving a mixing model which can be linear or non-linear. In multispectral

imaging, the interesting area is imaged at di�erent wavelengths. Each pixel in the image is characterized

by a spectrum which is the collection of acquired intensity values at each wavelength. A pixel's spectrum

is either pure and considered as an endmember, or mixed (i.e., composed of a mixture of the endmembers).

The linear mixing model (LMM) [Keshava 2002] has then to be considered in our context considering

a mixed pixel as a convex combination of the endmembers. More formally, it can be de�ned by the

following equation:

Ai =
∑k

j=1 ujiEj + gi, ∀ i ∈ [1;N ] (4.3)

where Ai ∈ RL is the L-dimensional spectrum of the i-th pixel, k denotes the number of endmembers,

uji is the abundance of the j-th endmember in the i-th pixel, i.e. coe�cient of the matrix U , Ej is the

L-dimensional spectrum of the j-th endmember, gi is a vector of Gaussian white noise accounting for

sensor noise and error of the model. All vectors are column vectors. The abundances, because they are

contributions, must be positive and their sum has to be equal to one:
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{
uji ≥ 0,∑k

j=1 uji = 1
(4.4)

The LMM is a simple but very representative model which was extensively studied in remote sensing,

see for example the survey in [Keshava 2002]. For medical applications, the LMM can be a powerful

tool for quantifying media in order to accurately assess the medium concentrations. In this context, a

spectrum is assumed to be either fully concentrated, diluted or a mix of several endmembers. The LMM

can be naturally extended to this scenario, where the spectra of fully concentrated media are regarded

as pure spectra and their concentrations in diluted spectra are regarded as abundances. However, the

sum-to-one constraint should be relaxed given that a mixed spectrum can be a diluted version of the

endmember; e.g., it can be equal to 50% of the endmember. This can be done by simply adding a zero

endmember in the LMM, also known as a shadow endmember.

4.2.2.3 Unmixing pipeline

In remote sensing literature, di�erent unsupervised algorithms are presented to extract the end-

members and/or to estimate the abundance matrix. Unsupervised methods, such as Group lasso with

unit sum and positivity constraints (GLUP) [Ammanouil 2014] or vertex component analysis (VCA)

[Nascimento 2004], can do both in the same time like the previously presented methods PCA and

ICA but considering the constraints of equation (4.4). Other unsupervised methods, such as N-FINDR

[Winter 1999], only extract the endmembers. It then requires the use of a supervised algorithm to cal-

culate the abundances, again considering the constraints of equation (4.4). A supervised method, called

fully constrained least-square (FCLS) [Heinz 2001], has reached interesting performances in remote sens-

ing �eld when endmembers are accurately extracted. It has been used together with GLUP and VCA

(considering only the extracted endmembers) and N-FINDR. It could also be used with endmembers

calculated with other strategies.

Because of the FCLS performances, this method is used to calculate the abundance matrix in this

comparison study. The other algorithms (GLUP, VCA and N-FINDR) are compared to �nd the most

appropriate one to extract endmembers from multispectral photoacoustic dataset.

4.2.3 Endmember extraction methods

4.2.3.1 Group lasso with unit sum and positivity constraints

GLUP assumes that the endmembers are unknown but present in the image, among the observations

[Ammanouil 2014]. Given this assumption, and without loss of generality, the linear mixing model

(equation (4.3)) can be reformulated as follows:

Ai =
∑N

j=1 uGjiAj + gi, ∀ i ∈ [1;N ] (4.5)
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Similarly as in section 4.2.2.2, uGji is the abundance ofAj inAi. On one hand, ifAj is an endmember,

the row UGj of the matrix UG, which is the abundance matrix calculated with GLUP algorithm, has

non-zero entries and represents the corresponding abundance map. On the other hand, if Aj is a mixed

pixel, UGj has all its elements equal to zero. As a consequence, UG admits N − k rows of zero, the

other rows being equal to rows of U . The premise in GLUP is that UG allows the identi�cation of the

endmembers in A through its non-zero rows. This property is exploited in GLUP in order to �nd the

endmembers among the observations. The unmixing problem under investigation requires that UG only

has a few rows di�erent from zero, in addition to the non-negativity and sum-to-one constraints which

leads to the following convex optimization problem:

min
UG

(12
∑N

j=1 ‖ (A−AUG) ‖2
F

+ µ
∑N

j=1 ‖ UGj ‖2) subject to

uGji ≥ 0 ∀ i, j∑N
j=1 uGji = 1 ∀ i

(4.6)

with µ ≥ 0 a regularization parameter, and A = [A1, . . . ,AN ] the dataset matrix. The �rst term

in equation (4.6) ensures that the observations match the model of equation (4.5), the second term

is the Group Lasso regularization which induces sparsity by possibly driving several rows of UG to

zero [Yuan 2006]. The minimization is constrained to ensure that the abundances obey the positivity

and the sum-to-one constraints. The resulting optimization is solved using a primal dual method (see

[Ammanouil 2014]). In conclusion, GLUP allows to identify the endmembers in A by identifying the non-

zero rows in UG. Note that GLUP also provides the estimated abundances corresponding to the non-zero

rows in the estimated matrix UG. Similarly to [Ammanouil 2014], given the endmembers estimated by

GLUP, FCLS is used to estimate the abundances.

4.2.3.2 Vertex component analysis

VCA also assumes the presence of pure pixels in the data [Nascimento 2004]. The principle of this

algorithm is to project data onto a direction orthogonal to the subspace constituted from the endmembers

already extracted. The new extracted endmember is the farthest signal in this projection. A new

subspace, considering this endmember, is calculated and the same procedure is iteratively done until the

extraction of the asked number of endmembers, k.

The �rst step of this algorithm is to �nd the initial considered subspace. It can be calculated using two

di�erent methods depending on the dataset SNR. If the SNR is superior to SNRth (equation (4.7)), this

�rst subspace is calculated using singular value decomposition (SVD) algorithm [Scharf 1991]. Otherwise,

the considered subspace is constructed with the k − 1 �rst axes extracted by PCA. SNRth is de�ned as

follows:

SNRth = 15 + 10 log10(k) (4.7)

Let us named the z-th subspace SUBz of the z-th iteration. The vector vz orthonormal to SUBz

is calculated as follows:

vz =
rz − SUBzSUB+

z rz

‖ rz − SUBzSUB+
z rz ‖

(4.8)
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with rz is a zero-mean random Gaussian vector and SUB+
z the pseudoinverse matrix of SUBz. The

following equation then describes the projection of the dataset A onto vz.

f z = vTzA (4.9)

The extreme data of f z is found and considered as an endmember. This new endmember is then

added to the already extracted ones to create the subspace considered in the next iteration. When the

k endmembers are extracted, they are put into their matrix EV . The unmixing matrix containing the

abundance coe�cient UV is calculated projecting the dataset A onto EV . In order to compare each of

the method to extract the endmembers, only EV is considered to use FCLS for the abundance estimation.

4.2.3.3 N-FINDR

N-FINDR is a method which also assumes that a pure pixel for each medium to unmix is present in

the dataset [Winter 1999, Plaza 2005]. The �rst step is the random generation of a set of k endmembers

producing then the matrix EN0 . At each iteration z, the following volume is calculated:

V z =
|det(Etempz )|

(k−1)! with Etempz =

[
1 . . . 1

ENz1
. . . ENzk

]
(4.10)

where ENzp
is the p-th endmember contained in ENz (which is the matrix of endmembers at the z-

th iteration). All the N dataset pixels of A (xi, i ∈ [1 ;N ]) iteratively takes place in the Etempz matrix

at the position of each ENzp
vector, p ∈ [1 ; k]. The volume V z+1 is again calculated. For example:

V z+1 =

∣∣∣∣∣det
[

1 . . . 1

ENz1
. . . xi . . . ENzk

]∣∣∣∣∣
(k − 1)!

(4.11)

If the new calculated volume is greater than the previous one, V z and Etempz are updated with the new

values. A pixel xi of the dataset A is then considered as an endmember and inserts in the matrix Etempz

as follows:

if V z+1 > V z, V z = V z+1 and ENz =
[
ENz1

. . . xi . . . ENzk

]
(4.12)

When all the N pixels of the dataset have been tested, the k calculated endmembers are in the �nal

matrix EN . No abundance coe�cients are calculated with this method, the FCLS is used to this end.

4.2.3.4 Spatio-spectral mean-shift

The SSM-S clustering method has been previously presented in Chapter 3 as a multispectral PA

clustering method. The spatio-spectral regularization allows the access to the clustering result and to

the representative spectrum of each cluster (the average spectrum of each cluster).
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As already explained in Chapter 3, the spatio-spectral regularization creates more cluster than the

number of media to cluster. To reduce the number of clusters, only the k largest labeled areas are

kept. The representatives spectra of these k clusters, calculated by the SSM-S, can be considered as the

endmembers to use the FCLS. These spectra are got into the matrix ES of the endmembers extracted

by the SSM-S.

4.2.4 Abundance estimation

To estimate the abundances knowing now the endmembers, an unmixing method, which demonstrated

interesting performances in remote sensing unmixing, called fully constrained least-square (FCLS), is

used. This method takes into account the constraints of equation (4.4) which are required in our context.

FCLS solves the following equation:

min
U

(12
∑N

j=1 ‖ (A−UE) ‖2
F
) with

uji ≥ 0 ∀ i, j∑N
j=1 uji = 1 ∀ i

(4.13)

which is a similar problem to the GLUP one, presented in equation (4.6), with µ = 0 and using the

estimated endmembers matrix E rather than the dataset matrix A. FCLS is better conditioned than the

problem of equation (4.6) because the endmembers are now known. It should then lead to well abundance

assessments.

Depending on the method used to extract the endmembers, the considered estimated endmembers

matrix E could be: EG, EV , EN or ES if GLUP, VCA, N-FINDR or SSM-S are used, respectively. It

generates then the matrix UG, UV , UN or US if GLUP, VCA, N-FINDR or SSM-S are used, respectively.

4.3 Results and performances

4.3.1 Method of validation

All the unmixing methods presented above calculate abundance maps corresponding to each medium

to unmix in the considering dataset. To measure the performances of the di�erent methods, these

abundance maps are compared to the ground truth.

To do so, regarding a single abundance map, corresponding to an endmember, an average concen-

tration value is calculated on each part of the dataset (using the mask B and its labeling, presented

in the previous Chapter). For example, on a phantom composed of a pure medium and a dilution of

it, two average values are calculated: one on the pure medium part and one on the dilution region. As

we assume that the pure medium, corresponding to the endmember of interest, is present in the imaged

region, these average values are normalized by the maximum. If the unmixing is well done, the maximum

value corresponds to the pure medium of the considered endmember and is then set to 1. The other

normalized values correspond then to the concentration relative to the pure medium.

This calculation is done on all the abundance maps given by the di�erent unmixing methods. The

normalized average values are compared to the ground truth to measure the performances of the di�erent

algorithms.
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4.3.2 On medium dilution

Blood-Ink(PAT)

First, the results of the unmixing methods of the literature in multispectral photoacoustic imaging

(PCA and ICA) are presented for the Blood-Ink(PAT) dataset (Figure 4.1 and Table 4.1). The Figure

highlights the abundance maps of PCA (a) and ICA (b). The described ground truth can be seen

in Figure 4.2, �rst column. Table 4.1 gives the results of PCA and ICA using the validation method

presented before, as well as the ground truth. The result did not provide a satisfactory unmixing as

the pure ink part is not accurately localized. Indeed, on the ink abundance map, the maximum average

value is found in the pure blood inclusion (highlighted in blue in the Table). Also for ICA, the maximum

average value in the blood abundance map is found in the diluted blood inclusion (highlighted in green

in the Table). The PCA and ICA abundance maps contained negative values that do not �t a possible

concentration value. This is mostly the reason why the results cannot be exploited to access medium

concentrations. Indeed, the uncorrelated principal components, and the independent components, could

not be considered as an accurate representation of pure media.

The impossible use of PCA and ICA algorithms to access accurate medium concentrations motivates

the use of FCLS which is under positivity and sum-to-one constraints. Indeed, these constraints allow

the access to medium concentrations and can be exploited to their assessment. For the other presented

dataset, PCA and ICA results are no more presented. Only the comparison on GLUP, VCA, N-FINDR

and SSM-S combined with FCLS is now done.

Figure 4.1: PCA and ICA results on the Blood-Ink(PAT) dataset. (a) PCA and (b) ICA algorithms
abundance maps. The image axes are in mm.

Figure 4.2 presents the results of the unmixing methods coming from remote sensing �elds (GLUP,

VCA and N-FINDR), as well as the proposed SSM-S. All these methods are used to extract the endmem-

bers from the dataset. The FCLS is after used to calculate the abundance maps and �nally measure the

average concentration in each ROI. All the endmembers extraction are �rst presented to highlight where

the pure media are found depending on the considered method.
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Blood-Ink(PAT)

ROI Blood endmember Ink endmember

Ground truth

0.5 0

1 0

0 1

PCA

0.91 0.68

1 1

0.87 0.01

ICA

1 0.55

0.45 1

0.44 0.87

Table 4.1: Blood-Ink(PAT) dataset unmixing results summary for PCA and ICA methods.

Considering all the pixels of interest to apply the GLUP requires too much computation time. In

this way, 200 pixels are randomly chosen inside the ROI and the endmember extraction is done only

considering them. These pixels, as well as their spectra, are presented in Figure 4.3(a-b), respectively.

The GLUP extracted endmembers are chosen in both pure media (Figure 4.3(c), red arrow shows the

position of the pure blood extracted endmember and dark green arrow the one of the pure ink endmem-

ber). The corresponding spectral evolutions are presented in Figure 4.3(d) as well as the added shadow

endmember (only composed of zero values).

The abundance maps calculated by the FCLS with these three endmembers are highlighted Figure 4.2,

second column. The �rst two lines validate the well unmixing of both pure inclusions (right-up for the

pure ink one and the bottom one for pure blood) as they are entirely present in the corresponding

abundance map with high concentration values (and low concentration values in the other abundance

map). The shadow endmember map highlights that the diluted blood inclusion (left-up) is the one of

unpure medium as it is mostly present in this map. Regarding both other maps, it can be linked to

the blood medium and then considered as a dilution of it because it is also really present in the blood

endmember abundance map. Table 4.2 summarizes these concentration measurements.
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Compared with PCA and ICA calculation, both pure media are well localized. However, the calculated

blood dilution is of 0.91 for a ground truth of 0.5. The concentration calculated on the ROI of pure media,

in the other pure medium abundance map, are of ≈ 0.86 for both instead of 0. Even if the localization of

pure medium regions of interest is satisfactory, the calculated concentrations are high compared to the

ground truth.

Figure 4.2: Remote sensing unmixing method results on the Blood-Ink(PAT) dataset. The �rst line
shows the abundance maps corresponding to the blood endmember, the second to the ink endmember
and third the abundance of the shadow endmember. Each column gives the results of a method combined
with FCLS: ground truth, GLUP, VCA, N-FINDR and SSM-S (from left to right). The image axes are
in mm.

The endmembers extracted by VCA, N-FINDR and SSM-S algorithms are presented in Figures 4.4, 4.5

and 4.6, respectively. The extractions of VCA and N-FINDR show the endmembers found in the pure

blood inclusion, as for GLUP extraction. It means that the ink extracted endmember is not a real

representation of the pure medium. By contrary, the SSM-S gives representative endmembers as they

are calculated on the correct ROI.

For all these methods, the pure media are well localized but the calculated average concentrations

are higher than the ground truth. The closest, to the ground truth, calculated dilution is reached with

VCA algorithm and has a value of 0.75 instead of 0.5. Even if this value is the best one calculated on

this dataset, it highlights too low performance. The concentrations that should be close to 0 are superior

to 0.2 which is also too far from the ground truth to be considered as correct.
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Figure 4.3: GLUP endmember extraction. (a) 200 randomly chosen pixels. (b) 200 spectra of the
randomly chosen pixels. (c) Both extracted endmembers positions. (d) Both extracted endmembers as
well as the added shadow endmember. The image axes are in mm.

Figure 4.4: VCA endmember extraction. (a) Both extracted endmembers positions that are at the
boundaries of the pure blood inclusion. The ink extracted endmember is then not really of the pure
medium. (b) Both extracted endmembers as well as the added shadow endmember. The image axes are
in mm.
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Figure 4.5: N-FINDR endmember extraction. (a) Both extracted endmembers positions that are in the
same inclusion. The ink extracted endmember does not come from the pure medium. (b) Both extracted
endmembers as well as the added shadow endmember. The image axes are in mm.

Figure 4.6: SSM-S endmember extraction. (a) Class kept during the post-processing. The average spectra
of each class corresponding to both pure media (in dark green for ink and red for blood) are the extracted
endmembers. (b) Both extracted endmembers as well as the added shadow endmember. The image axes
are in mm.
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Blood-Ink(PAT)

ROI Blood endmember Ink endmember

Ground truth

0.5 0

1 0

0 1

GLUP

0.91 0.79

1 0.86

0.87 1

VCA

0.75 0.40

1 0.20

0.26 1

N-FINDR

0.91 0.78

1 0.78

0.87 1

SSM-S

0.89 0.53

1 0.45

0.70 1

Table 4.2: Blood-Ink(PAT) dataset unmixing results summary for GLUP, VCA, N-FINDR and SSM-S
combined with the FCLS algorithm.
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B-Bdil-G(Vevo)

The unmixing methods coming from the remote sensing �eld as well as the SSM-S are now compared

on the B-Bdil-G(Vevo) dataset. As the extraction method steps have been largely presented on the

Blood-Ink(PAT) dataset, the focus is now only on the results: the extracted endmembers and the

abundance maps.

The endmembers extracted with GLUP, VCA, N-FINDR and SSM-S are presented in Figure 4.7(a-

d), respectively. All the extracted endmembers are di�erent and allows the discrimination of both pure

media (here, blue and green 4% agar). The added shadow endmembers are also present in the Figure.

Figure 4.7: Endmembers extracted with (a) GLUP, (b) VCA, (c) N-FINDR and (d) SSM-S.

The abundance maps are presented in Figure 4.8 and the calculated average concentrations are sum-

marized Table 4.3. For all the methods, the pure media are well localized and the green abundance maps

clearly highlight the green part. The best one is assessed with SSM-S as really low green abundances

are calculated for both blue phantom parts. Indeed, the corresponding average concentrations are 0.05

and 0.07 for blue and diluted blue parts, respectively. The blue abundance maps have, on the contrary,

higher values for the green part. However, the SSM-S blue abundance map have the lowest value (0.26).

Meanwhile, SSM-S allows the calculation of a dilution value of 0.51 instead of 0.53 for the ground truth.

For this dataset, the unmixing pipeline SSM-S/FCLS reached the best performances (highlighted in red

in the Table 4.3) and allows the access to an accurate blue dilution factor.
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Figure 4.8: Remote sensing unmixing method results on the B-Bdil-G(Vevo) dataset. The �rst column
shows the abundance maps corresponding to the blue endmember, the second to the green one. Each line
gives the results of a method combined with FCLS: ground truth, GLUP, VCA, N-FINDR and SSM-S,
from up to bottom. The image axes are in mm.
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B-Bdil-G(Vevo)

ROI Blue endmember Green endmember

Ground truth

1 0

0.53 0

0 1

GLUP

1 0.34

0.72 0.28

0.38 1

VCA

1 0.33

0.72 0.29

0.56 1

N-FINDR

1 0.39

0.73 0.33

0.61 1

SSM-S

1 0.05

0.51 0.07

0.26 1

Table 4.3: B-Bdil-G(Vevo) dataset unmixing results summary for GLUP, VCA, N-FINDR and SSM-S
combined with the FCLS algorithm.
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4.3.3 On mix of media

The unmixing methods are now compared on a mix of media with the B-mix-G(Vevo) dataset. The

endmembers extracted by the di�erent methods are presented in Figure 4.9. Each extracted endmember

is di�erent but all the blue ones have similar shape which corresponds to the classical multispectral shape

of this blue ink photoacoustic signal. The added shadow endmembers are also present in the Figure.

Figure 4.9: Endmembers extracted with (a) GLUP, (b) VCA, (c) N-FINDR and (d) SSM-S.

The abundance maps are presented in Figure 4.10 and the average concentration values are summa-

rized Table 4.4. The blue abundance maps calculated with the endmembers extracted with GLUP and

VCA highlight the pure blue medium part (left) but the pure green part is di�cult to localize. Indeed,

the abundance values are similar in central and right parts. However, on the N-FINDR and SSM-S blue

abundance maps the three parts can be distinguished. On the SSM-S abundance map, the green part

of the phantom has really low concentration which is close to the ground truth as it can also be seen

in Table 4.4 with an average value of 0.1. For the green abundance maps, all the methods allow the

discrimination of the blue part (left) from the mix part (central). VCA abundance map does not permit

the discrimination of the mix (central) and green (right) parts but the discrimination is possible with the

other methods.

Regarding the average concentration values of Table 4.4, the �rst remarkable value is the blue calcu-

lated concentration of the mix assess with VCA with the value of 0.42 which is exactly the ground truth

value (highlighted in blue in the Table). However, with VCA algorithm, the green concentration in the

mix as well as the value of the pure media in the opposite abundance maps are higher than the ground
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Figure 4.10: Remote sensing unmixing method results on the B-mix-G(Vevo) dataset. The �rst column
shows the abundance maps corresponding to the blue endmember, the second to the green one. Each line
gives the results of a method combined with FCLS: ground truth, GLUP, VCA, N-FINDR and SSM-S,
from up to bottom. The image axes are in mm.
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B-mix-G(Vevo)

ROI Blue endmember Green endmember

Ground truth

1 0

0.42 0.67

0 1

GLUP

1 0.11

0.83 0.73

0.62 1

VCA

1 0.20

0.42 0.89

0.27 1

N-FINDR

1 0.15

0.64 0.75

0.39 1

SSM-S

1 0.02

0.35 0.73

0.10 1

Table 4.4: B-mix-G(Vevo) dataset unmixing results summary for GLUP, VCA, N-FINDR and SSM-S
combined with the FCLS algorithm.
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truth (0.89 for the green concentration in the mix instead of 0.67 ; 0.27 instead of 0 for the blue concen-

tration in pure green part ; 0.20 instead of 0 for the green concentration in pure blue part). Considering

now the result given by the SSM-S/FCLS pipeline (in red in the Table 4.4). The calculated mixture

is composed of 0.35 of blue and 0.73 of green instead of 0.42 and 0.67, respectively. It corresponds to

an error of less than 7% which is already interesting result to target biological application. Also, the

abundance parts where the concentration should be 0 have calculated values lower than 0.1 using SSM-S

which is really satisfactory and better than any other compared methods. The pipeline SSM-S/FCLS is

here validated for the unmixing of mix of media.

4.4 Conclusion

Di�erent quanti�cation methods of multispectral photoacoustic dataset have been compared to assess

the medium concentrations. PCA and ICA algorithms were already used for another application in the

photoacoustic imaging �eld [Glatz 2011] but do not allow the calculation of concentrations as their

abundance maps contain negative values.

Considering the other compared methods to extract the endmembers (GLUP, VCA, N-FINDR

and SSM-S), the results obtained on the Blood-Ink(PAT) dataset are far from the ground truth. The

dilutions calculated with GLUP, N-FINDR and SSM-S are all of ≈ 0.9 instead of 0.5. Even the lower av-

erage dilution value calculated, with VCA, is still of 0.75 which corresponds to an error of 25%. This asks

an important question about the blood dilution ground truth as the measurement method is unknown.

Using the Vevo LAZR, we have demonstrated that SSM-S procedure combined with FCLS algorithm

allows the accurate assessment of medium concentration for dilution and mix of media.

Lots of acquisition systems are used in the photoacoustic �eld. Meanwhile, the multispectral PA

images are largely impacted by the laser energy, the acquisition geometry (optical excitation vs US

probe) and the targeted applications. The assessment of medium concentrations is then challenging

because of this variability. The regions of interest of the imaged area �rst need to be extracted. To

this end, we suggest to use a threshold calculated from Sobel �ltering to discriminate between the

background and the ROI. The di�erent media present in the ROI can accurately be discriminated

using the SSM-S procedure to cluster the photoacoustic data. The proposed SSM-S algorithm also

extracts the endmembers of the dataset, corresponding to the pure media, which can be used with

the FCLS to correctly assess the medium concentrations of the imaged area.

In the present PhD, this pipeline has been proposed and validated as a robust procedure to unmix the

multispectral photoacoustic data in order to assess the imaged media concentrations. The sum-to-one

constraint imposed in the FCLS can however be discussed. Indeed, it is a strong assumption particularly

when diluted media are imaged. To relax this constraint, a shadow endmember has been introduced in

this study but other choices could have been done. For example, other unmixing algorithms are developed

in the remote sensing �eld to deal di�erently with it. Our proposed strategy has anyway permitted the

accurate calculation of dilution medium and mix of media concentrations, with an error lower than 7%

which is acceptable for biological applications and will be tested in the next Chapter.
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5.1 Introduction

The proposed strategy, based on both clustering and unmixing methods (SSM-S and FCLS), is used on

biological tissues to calculate the oxygen saturation rate (sO2). This measurement is of great interest for

various medical applications like the follow-up of tumors or the evaluation of tissue aging [Su 2012]. This

Chapter presents �rstly, preliminary results on tumor tissues imaged with the Vevo LAZR and secondly,

a study on the evaluation of tissue death, conducted on the experimental platform of CREATIS. These

studies allow �rst tests of the SSM-S and FCLS algorithms on in vivo and ex vivo biological tissues

dataset.

For in vivo imaging, the sO2 values calculated on tumors with our methods are compared to the

values displayed by the Vevo LAZR. Indeed, such equipment provides a real-time measurement of the

sO2 concentration map that can be stored after the acquisitions. For the ex vivo acquisition, the evaluation

of tissue death is studied on di�erent types of meat. However, no ground truth is known in such case.

The photoacoustic signal and sO2 changes over time are analysed with acquisitions at di�erent times on

the experimental platform.
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5.2 sO2 calculation on tumors

5.2.1 Data acquisitions

The acquisitions have been done with the Vevo LAZR system on one MMTV-NeuT balb/c mouse.

This type of transgenic mouse spontaneously developed breast tumors which can be seen with the PA

system after 17 weeks (between 5mm3 and 10mm3 size). The tumors can be seen with the naked eyes

after around two more weeks. The studied mouse has been developed for another study conducted by

the Dr PETRILLI (Centre de Recherche en Cancérologie de Lyon, France) who lends us the mouse for

our acquisitions. These acquisitions have been done when the mouse had 20 weeks (Figure 5.1, the white

arrows show some tumors). The mouse ROI were shaved the day before with commercial hair remover

cream (VEET, Cream hair remover, Reckitt Benckiser, UK) to avoid any imaging noise coming from the

mouse hairs. The mouse was anesthetized with a mix of around 3.5% of iso�urane and 96.5% of oxygen

before the PA acquisitions. During the imaging, the mouse was kept asleep inhaling the same mix but

with only around 1.5% of iso�urane inside the white box (Figure 5.1(a)) to minimize the movements

between acquisitions at di�erent wavelengths. The heartbeat and breathing are controlled by several

detectors of the system at the mouse paws (highlighted by red arrows on Figure 5.1) and inside the white

box, respectively. It allows the follow-up of the mouse health and monitors the acquisitions in order

to acquire images at the same position. Heartbeat and breathing motions are so avoided as much as

possible.

The dataset used to test our strategy is composed of 15 images acquired from 680nm to 960nm,

20nm steps. The results are compared to the Vevo LAZR sO2 map. To this end, acquisitions on the

same tumors are also done using the Vevo LAZR Oxy-Hemo mode.

Figure 5.1: Mouse with breast tumors in the Vevo LAZR system. White and red arrows highlight tumors
and heartbeat detectors, respectively.
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5.2.2 sO2 calculation pipeline

5.2.2.1 On Vevo LAZR system

The Oxy-Hemo mode acquires two photoacoustic images at 750nm and 850nm. With both im-

ages, the concentrations of Hb and HbO2 (expressed by [Hb] and [HbO2], respectively) are measured

[Visualsonics 2018]. The saturation in oxygen is then calculated with the expression:

sO2 =
[HbO2]

[Hb] + [HbO2]
(5.1)

This is the classically used ratio in biomedical applications to access oxygenation information [Li 2009,

Deán-Ben 2014]. Both concentration maps are saved, as well as the Vevo LAZR sO2 displayed map for

further comparisons.

5.2.2.2 SSM-S unmixing strategy

The pre-processing threshold (section 3.2.1) is �rst applied on the dataset. The SSM-S is after

processed to extract the endmembers corresponding to Hb and HbO2 media. Finally, the abundance

maps of both media are calculated with the FCLS algorithm. The sO2 of each pixel is assessed using the

abundance maps and the equation (5.1).

5.2.3 Results

The abundance maps, corresponding to the concentrations assessed, extracted with our strategy can

be compared to the ones saved with the Vevo LAZR. The sO2 maps are calculated and can be compared

with (1) the Vevo LAZR abundance maps and equation (5.1), (2) the abundance maps calculated with the

proposed method and equation (5.1) and (3) the saved display of Vevo LAZR. The last one (saved display)

is however the less quantitative as no information about the post-processing applied by Visualsonics on

the resulting images is provided. The study is done on two di�erent tumors. Skin, tumor and other

biological tissues are present in the imaged area. The measurements are done on all these tissues but the

study is focusing on the values calculated only on the tumors.

The SSM-S extracted endmembers are presented in Figure 5.2(b) and come from two out of the three

main clusters created by the SSM-S (Figure 5.2(a)). The third cluster corresponds to the background.

FCLS is used with these endmembers to calculate the concentration (or abundance) maps of Hb and

HbO2 (Figure 5.3(a), left and center). With this strategy, lots of pixels have high assessed concentration

which leads to concentration and sO2 (Figure 5.3(a), right) maps with high contrast. This is not correct

regarding sO2 display (Figure 5.3(c)) but also considering the biological characteristics of the tumor. By

contrary, the Vevo LAZR concentration maps and the sO2 map calculated with equation (5.1), presented

in Figure 5.3(b), are qualitatively closer to the values displayed by the Vevo LAZR. However, a threshold

seems to have been applied before the display because more pixels have sO2 values in the sO2 map

calculated with the Vevo concentration maps and equation (5.1) than in the display.

Aneline DOLET 87



Chapter 5. Application: evaluation of blood oxygen concentration

Figure 5.2: SSM-S procedure to extract the endmembers. (a) 3 main clusters kept after the SSM-S
procedure (red, yellow and white). The black pixels are the unlabeled ones. (b) Extracted endmembers
corresponding to HbO2 (yellow pixels in (a)) and Hb (white pixels in (a)). The image axes are in mm.

Figure 5.3: Hb and HbO2 concentration maps and sO2 map (in %) calculated with (a) SSM-S, FCLS and
equation (5.1) and (b) Vevo LAZR concentration maps and equation (5.1), from left to right, respectively.
(c) Vevo LAZR display: left, US image of the tumor and right, sO2 map. (d) sO2 calculation errors (in %)
between our method and the Vevo LAZR one. The image axes are in mm.
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To measure quantitatively our method performances, errors between the two sO2 maps for which sO2

values are accessible (Figure 5.3(a-b), right) are computed. To this end, the absolute di�erence between

both measurements is calculated for each pixel. The error is then in % and its map is presented in

Figure 5.3(d). The ROI average error is of 39.17% which is high. Some pixels have really good sO2

agreement and so low error but others have errors superior to 50% which is not convincing concentration

assessment.

The validation has been done on another tumor (Figure 5.4). The same comments can be done and

the average error value on all the ROI is of 37.09% which is again too high to be exploited (Figure 5.4(d)).

Here, the ROI contains lots of pixel from deeper tissues that do not correspond to the tumor. The average

error needs then to be calculated on a smaller region (green rectangle on Figure 5.4(d)). The average

error value of the tumor is then more exploitable because it is smaller (23.42%) but it is still an important

error value.

Figure 5.4: Hb and HbO2 concentration maps and sO2 map (in %) calculated with (a) SSM-S, FCLS and
equation (5.1) and (b) Vevo LAZR concentration maps and equation (5.1), from left to right, respectively.
(c) Vevo LAZR display: left, US image of the tumor and right, sO2 map. (d) sO2 calculation errors (in %)
between our method and the Vevo LAZR one. The green rectangle highlights the selected area to calculate
the average error value only on the tumor. The image axes are in mm.
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5.2.4 Discussion

The sO2 map of Vevo LAZR is smoother in comparison to our own results. It could come from di�erent

reasons and settings. For example, an average �lter applied on the concentration maps or directly on the

data before the calculation. Anyway, regarding the similarity of both endmembers extracted by the SSM-

S (Figure 5.2(b)), the unmixing results on both tumors are not surprising. Considering as endmembers

the average spectra of both larger SSM-S clusters is probably not a good strategy in this context. Indeed,

in tumor tissues, pure Hb and HbO2 are not the most present media. As it can be seen on the Vevo

LAZR display, the calculated sO2 values are principally between 25% and 75% which corresponds to mix

of both pure media. The endmembers actually extracted represent then mix of media instead of pure

media. Assuming that pure Hb and HbO2 are not present in numerous pixels, di�erent strategy can be

tested to extract endmembers according to the present data.

The SSM-S can be used to extract more than 3 clusters (tested with 10) and the endmembers can be

selected among these clusters (Figures 5.5(a) and 5.6(a)). The selection is done by comparison with the

theoretical absorbance spectra of Hb and HbO2. The closest extracted endmember, to the theoretical

spectrum, is considered for the FCLS calculation for both media. The sO2 map calculated with FCLS and

the resulting errors map are presented on the same Figure (center and right, respectively) as well as the

average error value. On Figure 5.6, the average error value calculated on the reduce ROI is highlighted

in green. With such strategy, the average error values are reduced (see Table 5.1 which summarized all

these values) but still too high to consider the result exploitable for tumor follow-up.

Endmember extraction First presented tumor
Second presented tumor

All the ROI Reduced ROI
3 main SSM-S clusters 39.17% 37.09% 23.42%

10 main SSM-S clusters 31.76% 32.20% 19.93%

Theoretical spectra 18.30% 26.69% 16.84%

From Vevo LAZR sO2 map 17.40% 23.48% 15.04%

Table 5.1: Summary of the average sO2 error values.

The high errors could come from (1) the bad endmember extractions or/and (2) the sum-to-one

constraint of FCLS algorithm which is maybe a strong hypothesis in biological tissues, principally for

medium dilutions. Both of these questions have been tested. First, to test the endmember extraction,

the FCLS has been used with the theoretical spectra of Hb and HbO2. The considered endmembers and

the calculated sO2 and error maps are shown (Figures 5.5(b) and 5.6(b)) for both tumors. The average

error values are clearly reduced with this method, principally for the �rst presented tumor (18.3% instead

of 39.17% in the �rst tested strategy, see Table 5.1 for others values). This means that the endmember

extraction needs to be improved for biological tissue case. Second, the FCLS algorithm has been tested

with endmembers linked to the Vevo LAZR to test the sum-to-one hypothesis in biological tissues case.

To this end, the endmembers have been extracted from the data regarding the sO2 map calculated using

the Vevo LAZR concentration maps (Figures 5.3(b) and 5.4(b)). The maximal and minimal sO2 values

have been detected in this Vevo LAZR map and the corresponding data spectra have been extracted and

considered as HbO2 and Hb endmembers, respectively. The results are again improved with this strategy

(Figure 5.5(c) and 5.6(c) and Table 5.1) which is not surprising as we used the considered ground truth

to �nd the endmembers. However, the average errors are still around 16%. The sum-to-one constraint

should then probably be relaxed using another strategy than shadow endmember in the present case.
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Figure 5.5: Test of new strategies for sO2 calculation with FCLS on the �rst presented tumor: (a) consid-
ering pure Hb and HbO2 present in the data but in small quantity, (b) using the theoretical absorbance
spectra of Hb and HbO2 and (c) extracting the endmembers from the Vevo LAZR sO2 map which is
considered as the ground truth and presented at the Figure bottom. The image axes are in mm.
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Figure 5.6: Test of new strategies for sO2 calculation with FCLS on the second presented tumor: (a) con-
sidering pure Hb and HbO2 present in the data but in small quantity, (b) using the theoretical absorbance
spectra of Hb and HbO2 and (c) extracting the endmembers from the Vevo LAZR sO2 map which is
considered as the ground truth and presented at the Figure bottom. The image axes are in mm.
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In this study, the proposed method for sO2 calculation has been compared to the sO2 values calculated

by the Vevo LAZR Oxy-Hemo mode on two di�erent tumors. As the results were signi�cantly far from

the Vevo LAZR ground truth, we investigate some other strategies testing the potential obstacles. The

endmember extraction and sum-to-one constraint relaxation needs to be deeply studied but the primarily

results on biological tissues of our strategy (considering the presence of pure Hb and HbO2 but in small

quantity) is still encouraging. Moreover, the ground truth of oxygenation rate in the imaged tumors

is not known. It is then di�cult to know which method allows the assessment of the more accurate

sO2 values. Also, considering the presence of only Hb and HbO2 media in the imaged area is maybe a

too strong hypothesis. The water and other tissue absorbances should probably be taken into account.

Finally, other wavelength values could be tested to highlight their impact on the results. In the future, it

will be interesting to compare our results with the optimal map provided in real-time by the Vevo LAZR.

However, for such comparison, the full processing and post-processing applied in the system have to be

known.

5.3 Evolution of tissue death

5.3.1 Acquisitions and methods

Photoacoustic acquisitions have been conducted on the experimental platform of CREATIS using

the CMUT probe for US detection (presented in section 2.2.2). Seven di�erent meats have been studied:

duck, chicken, pork, veal, tournedos, heifer and beef. All the meats were bought in a supermarket without

knowing the animal death time. The evolution studied is then the sO2 changes in the meat in ambient

air (25◦C) from an initial time. The temperature inside the meat has been carefully checked during all

the acquisitions and kept constant to be sure that none evolution could come from temperature changes.

All the acquisitions have been done from 470nm to 690nm with 10nm steps. For each meat, 20 ac-

quisitions have been conducted at di�erent times: from initial time to 4h and from 19h to 20h, one

every 30 minutes. The sO2 is calculated for each meat and for each acquisition time. To this end, the

FCLS is used to calculate the concentration maps of Hb and HbO2. Equation (5.1) is then used for

sO2 calculation. As the optical excitation region is really small on the CREATIS experimental platform,

we cannot assume that Hb and HbO2 are present, as pure media, in the imaged area. The theoretical

multispectral evolutions of these media (Figure 5.7) are then considered as endmembers instead of using

SSM-S to their extraction. Because this strategy has given satisfactory result on tumor tissue, it seemed

to be the best choice in this context.

5.3.2 Results

The results are presented only for two di�erent meats but the relative evolutions of the photoacoustic

signal and of the sO2 over time are similar for all the tested meats. Figures 5.8 and 5.9 present the result

for the beef and pork meat, respectively. The photoacoustic signal increases over time keeping a shape

relatively similar (Figures 5.8(a) and 5.9(a)). Only the acquisitions after 19h have di�erent shapes for the

wavelengths under 550nm. Comparing both meats, the beef gives higher photoacoustic signal than the

pork (maximum values of 4.2a.u. and 3a.u., respectively). This was expected as it is principally blood

that gives photoacoustic signal and beef is a bloodier meat compare to pork.
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Figure 5.7: Theoretical multispectral absorption evolutions of Hb and HbO2 used as endmembers in
unmixing.

The calculated sO2 has decreasing values over time which is not surprising as the oxygenation of

tissues after death should decrease (Figures 5.8(b) and 5.9(b)). The link between the increase of PA

signal and the decrease of sO2 is particularly impressive. Indeed, a rise in photoacoustic signal is clearly

linked to a decrease of sO2. For example, on pork (Figure 5.9), the sO2 is not exactly decreasing over

time: sO2 = 78.61% at 19h and sO2 = 78.64% at 19h30. Meanwhile, the photoacoustic signal at 19h is

higher (in purple) than the one at 19h30 (in gray) which is not logical compare to other photoacoustic

signal evolutions over time, but it is according to the sO2 evolution.

5.3.3 Discussion

The photoacoustic signal evolution over time after death has been clearly highlighted in this study

as it was already done in [Su 2012]. Here, the photoacoustic signal evolutions and the sO2 changes over

time after tissue death have been linked. However, no sO2 ground truth exists in this study, only the

decrease of relative sO2 values can be linked to the increase of photoacoustic signal. The sO2 values

interpretation is then complex. The cause of these evolutions is however not explained in this study. Of

course, the evolution comes from oxygenation changes in the tissue but it is probably linked to lots of

other changes. For example, it should also come from the decrease of water amount inside the meat. The

meat becomes drier over time and it impacts the photoacoustic signal as water absorbs the optical energy

in the studied wavelength range. Sti�ening, elasticity changes or other evolutions impact for sure the

acquired photoacoustic signal but the contribution of these changes in the photoacoustic signal evolution

is not quanti�ed here. Only the meat temperature has been checked during all the procedure so, at least,

it should not come from it.
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Figure 5.8: Study on beef. (a) Photoacoustic spectra for the di�erent acquisitions and (b) sO2 calculated
from the photoacoustic signal acquired at each acquisition time.
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Figure 5.9: Study on pork. (a) Photoacoustic spectra for the di�erent acquisitions and (b) sO2 calculated
from the photoacoustic signal acquired at each acquisition time.
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5.4 Conclusion

Oxygenation rate (sO2) has been calculated with the proposed quanti�cation pipeline in two di�erent

cases: (1) tumor oxygenation and (2) evolution of tissues after death. In both studies, the proposed

method gives satisfactory preliminary results even if further study needs to be done. Indeed, it allows the

calculation of satisfactory sO2 values compared to the ones given by the Vevo LAZR Oxy-Hemo mode.

Also, satisfactory relative sO2 values have been calculated from photoacoustic signal acquired on the

experimental platform of CREATIS.

However, no sO2 ground truths were available for both studies which leads to di�cult accurate

conclusion and only relative values can then be interpreted. It could be of great interest to compare the

calculated values to real sO2. To this end, comparable studies could be conducted removing some blood

during the acquisitions and calculating the sO2 with blood test. One solution could be to image, on the

Vevo LAZR, a known solution of Hb and HbO2 to evaluate the accuracy of both proposed strategies.

Similar acquisition could also be conducted on the CREATIS platform.
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Conclusion and perspectives

Photoacoustic (PA) imaging is a promising medical imaging technique which is of interest for sev-

eral applications. The access to functional information, combined with the structural information of

ultrasound imaging, makes photoacoustic imaging a powerful diagnostic technique. Since this technique

is relatively recent, di�erent PA processing methods have been developed but few of them are enough

robust to be applied to data acquired on various experimental systems.

In this context, the objective of the present thesis was to develop a processing chain for the discrimi-

nation and quanti�cation of media using multispectral photoacoustic images. An unsupervised clustering

method, called spatio-spectral mean-shift (SSM-S), has been validated to discriminate the PA signal

from the imaged media. This algorithm, based on spatial and spectral characteristics, has been shown

able to cluster the investigated media. However, this algorithm also extracts the reference spectra of

the pure imaged media to allow the use of a supervised unmixing algorithm, called fully constrained

least-square (FCLS), to calculate the concentration of each pure medium in all of the pixels. Such

algorithm, with constraints linked to the positivity of concentrations and the concentrations sum lower

than or equal to 1, outperforms the literature strategies. These developments were tested on di�erent

acquisition systems: a photoacoustic tomography (PAT) set-up, a photoacoustic computed to-

mography (PACT) experimental platform and a commercial system. This pipeline (SSM-S/FCLS)

has been validated and shown as a powerful quanti�cation method to access imaged media concentrations

usable on di�erent acquisition systems.

During this PhD, the PACT experimental platform of CREATIS has been improved with the co-

supervision laboratory. Two real-time photoacoustic modes have been developed and installed in

the platform allowing real-time imaging in 2D and 3D. This improvement makes the acquisitions easier

and could allow to image moving media in further studies. For example, within the frame of a recent

collaboration with a laboratory in Rennes, France, the follow-up of nanoparticles in the body using

photoacoustic imaging can be studied [Ciancone 2018]. Indeed, it could be of interest to release drugs

in a speci�c location in the body. By con�ning the drug in the nanoparticles, PA imaging could allow

following-up their movement. Furthermore, the photoacoustic e�ect could also be used to break the

nanoparticles in order to release the drug in the desired area.

In vivo and ex vivo studies were conducted to validate all the developments of this project. The

calculation of the blood oxygenation rate (sO2) in biological tissue, quantifying the oxygenated

(HbO2) and deoxygenated (Hb) blood in photoacoustic dataset, has been validated in two di�erent

cases. First, the performance of the proposed pipeline has been compared to the one of a commercial

photoacoustic acquisition system (Vevo LAZR) for the calculation of the sO2 in mouse breast tumors.

Second, the evolution of biological tissues after death has been studied on the experimental platform of

CREATIS. The increase of photoacoustic signal over time has been linked to the decrease of the sO2.

Further studies should however be conducted to quantify the importance of oxygenation changes in the

photoacoustic signal increase. Indeed, it is also linked to other changes like drying or sti�ening of tissue

and elasticity changes. The contribution of all these changes in the photoacoustic evolutions could be

deeper investigated to characterize the tissue evolution after death. The assessment of tissue death time

could then be studied with multispectral photoacoustic imaging in further studies.
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Chapter 5. Application: evaluation of blood oxygen concentration

During this work, various processing methods and acquisition systems have been considered for PA

imaging. Some ideas have been excluded in the scope of the PhD but could deserve a deeper study for

future work. First, as deep learning algorithms are now used in di�erent �elds with good performance

[Leclerc 2017, Gasse 2017], it would be interesting to test it in the photoacoustic domain. However,

a major drawback of such strategy is the database creation. Indeed, numerous data are required to

train robust deep learning algorithms and the large variability of acquisition systems could hamper these

developments. Deal with the tests of this type of algorithms in depth in photoacoustic �elds could anyway

be of interest as soon as enough data have been collected with the corresponding ground truths.

3D real-time photoacoustic imaging has also been developed during this PhD. It needs to be further

studied. For example, CREATIS and LABTAU collaboration allows the use of 4 Verasonics ultrasound

systems altogether to display and acquire high quality 3D images. One objective would be to test this

unique platform (3 systems with similar performance in the community) in photoacoustic imaging. The

increase of the number of elements of the probes would also lead to a higher contrast and better resolution.

Finally, the 3D real-time mode already developed could also be deeply used to develop, test and validate

the proposed unmixing strategy on volume.

Finally, photoacoustic imaging is a powerful technique to access blood functional information. It

could be really interesting to combine this information with the blood �ow using photoacoustic and

Doppler imaging, respectively. As the co-supervision lab of the present PhD mainly works on Doppler

imaging, it could be of great interest to continue this collaboration to deeply study the combination of

both approaches. It could be particularly interesting to study atherosclerosis evaluating the plaques with

photoacoustic imaging and assessing the blood �ow information (artery diameter reduction or blood whirl

outbreak) with Doppler imaging.
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Appendix

A Experimental platforms characteristics
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