
HAL Id: tel-02001901
https://theses.hal.science/tel-02001901v1

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware Acceleration for Homomorphic Encryption
Joël Cathebras

To cite this version:
Joël Cathebras. Hardware Acceleration for Homomorphic Encryption. Hardware Architecture [cs.AR].
Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLS576�. �tel-02001901�

https://theses.hal.science/tel-02001901v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
8S

A
C

LS
57

6

Hardware Acceleration for
Homomorphic Encryption

Thèse de doctorat de l’Université Paris-Saclay
préparée à Université Paris-Sud

Ecole doctorale n◦580 sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Mathématiques et Informatique

Thèse présentée et soutenue à Palaiseau, le 17 décembre 2018, par

JOËL CATHÉBRAS

Composition du Jury :

Lionel Torres
Professeur, Université de Montpellier,
LIRMM Président

Lilian Bossuet
Professeur, Université Jean-Monnet de Saint-Etienne,
Laboratoire Hubert Curien Rapporteur

Arnaud Tisserand
Directeur de recherche CNRS,
Lab-STICC Rapporteur

Caroline Fontaine
Chargée de recherche CNRS,
CNRS & ENS Cachan, LSV Examinateur

Mariya Georgieva
Associate researcher,
EPFL & Inpher, Inc. Examinateur

Renaud Sirdey
Directeur de recherche,
Commissariat à l’Énergie Atomique (CEA), List Directeur de thèse

Alexandre Carbon
Ingénieur Chercheur,
Commissariat à l’Énergie Atomique (CEA), List Encadrant

Nicolas Ventroux
Chef de laboratoire,
Commissariat à l’Énergie Atomique (CEA), List Co-Encadrant

Peter Milder
Associate professor, Stony Brook University,
Department of ECE Invité

2

Contents

Remerciements 7

Résumé en français 9

Introduction 21

1 Review of homomorphic encryption and its practicability 27

1.1 Introduction . 27
1.1.1 Technical introduction to homomorphic encryption 27
1.1.2 Basic notions for homomorphic encryption 27

1.2 State of the art of homomorphic cryptography 29
1.2.1 History towards FHE . 29
1.2.2 Four generations of FHE schemes . 30
1.2.3 Additional considerations and positioning 32

1.3 The Learning With Errors (LWE) problem and its ring variant (RLWE) . . . 33
1.3.1 The LWE problem . 33
1.3.2 The LWE problem over rings . 35

1.4 Homomorphic encryption in practice . 37
1.4.1 Mitigating data expansion impact . 37
1.4.2 Choosing an HE scheme and a plaintext space 40

1.5 Implementation of RLWE-based schemes . 41
1.5.1 Positioning on hardware implementation 41
1.5.2 Hardware implementation issues . 42
1.5.3 Related works on hardware implementation 43

1.6 Conclusion and positioning of this thesis . 46

2 De�nition of an acceleration strategy for the FV scheme 47

2.1 The Fan and Vercauteren (FV) SHE scheme 47
2.1.1 Preliminaries . 47
2.1.2 Cryptosystem primitives . 48
2.1.3 Security assumptions . 49
2.1.4 Correctness w.r.t. noise growth . 49
2.1.5 FV parameter sets . 52
2.1.6 Concluding remarks . 53

2.2 Pro�ling and hardware implementation strategy 53
2.2.1 Experimental description . 53
2.2.2 Pro�ling results . 54

3

2.2.3 Analysis w.r.t. existing implementation strategies 55
2.3 Exploration of the RNS/NTT coupled approach 56

2.3.1 Simpli�ed arithmetic through RNS . 56
2.3.2 NTT-based polynomial ring multiplications in RNS 58
2.3.3 Feasibility of the coupled approach . 60
2.3.4 Concluding remarks on the RNS/NTT coupled approach 62

2.4 The full RNS variant of FV . 62
2.4.1 RNS base extension and RNS scale-and-round for FV 63
2.4.2 Additional optimization . 65
2.4.3 Pro�ling . 66

2.5 Conclusion . 67
2.6 Annexes: details on FV primitives . 68

3 Automatic generation of multi-�eld NTT architectures 71

3.1 Related works and strategy motivation . 71
3.2 From SPIRAL DFT towards multi-�eld NTT designs 72

3.2.1 Initial streaming DFT structure . 73
3.2.2 Finite-�eld arithmetic . 77
3.2.3 Modi�cation of twiddle factors handling 79

3.3 Proposition of a multi-�eld NTT design . 80
3.3.1 Design overview . 80
3.3.2 Data path . 81
3.3.3 Twiddle path . 83

3.4 Synthesis results and comparisons . 86
3.4.1 Overhead of the twiddle path . 87
3.4.2 Comparisons with a straightforward storage of twiddle factor sets . . . 87

3.5 Conclusion . 88

4 On-the-�y computation of NTT twiddle factors 91

4.1 On the issue of generating multiple twiddle factor sets 91
4.1.1 Reminders on twiddle factors . 91
4.1.2 Throughput requirement . 92
4.1.3 Recurrence relationship for a single set generation 92

4.2 Data-�ow oriented twiddle factor set generator 93
4.2.1 Design overview . 93
4.2.2 Computing the twiddle sets . 94
4.2.3 Sorting the twiddle sets . 97
4.2.4 Remarks . 99

4.3 Choice of a recurrence relationship . 100
4.3.1 General problem presentation . 100
4.3.2 An optimized recurrence relationship 102
4.3.3 Adapting the generic design . 103

4.4 Synthesis results and comparisons . 105
4.4.1 Study of the hardware cost . 105
4.4.2 Comparisons with an external storage 106

4.5 Conclusion . 106

4

5 Exploration of a hybrid strategy for the full RNS variants of FV 109
5.1 Proposal of a hybrid computing system . 109

5.1.1 Computation details for ciphertext multiplication 110
5.1.2 Study of the communication requirements 112
5.1.3 Hybrid system overview . 114

5.2 GPU acceleration of RNS speci�c functions 115
5.2.1 The implemented algorithms . 115
5.2.2 Implementations, comparisons and perspectives 116

5.3 Exploration of e�cient RPM designs . 119
5.3.1 Reminder of previous chapters . 119
5.3.2 Hardware design of an RPM through NWC 120
5.3.3 Proof-of-concept implementation . 122
5.3.4 Projections over FV's parameter sets 123
5.3.5 Concluding remarks . 127

5.4 Conclusion . 128

Conclusions and perspectives 131

Personal bibliography 135

Bibliography 137

5

6

Remerciements

Maintenant que ce travail de thèse est terminé, je mesure ce qu'il doit à la présence de
nombreux acteurs, et puisque j'en ai la possibilité, j'aimerais qu'ils trouvent ici l'expression
de ma gratitude.

Celle-ci va en premier lieu à mon employeur et à mon unité de rattachement, sans qui je
n'aurais pas e�ectué ce travail, le Commissariat à l'Énergie Atomique (CEA) et le Départe-
ment Architecture Conception et Logiciels Embarqués (DACLE) du Laboratoire d'Intégration
des Systèmes et Technologies (LIST), qui ont �nancé mes travaux et qui ont mis à ma dispo-
sition le matériel pour les mener à bien.

Merci à Arnaud Tisserand d'avoir jugé mon travail avec bienveillance et intérêt lors de mon
jury à mi-parcours, puis d'avoir accepté d'en être rapporteur en vue de sa soutenance. J'ai
été honoré de la con�ance qu'il m'a manifesté en me donnant l'opportunité de présenter mes
travaux au séminaire sécurité des systèmes électroniques embarqués de Rennes.

J'aimerais également remercier Lilian Bossuet d'avoir accepté d'être rapporteur de ce tra-
vail, de l'avoir examiné avec bienveillance, et de m'avoir fait l'honneur de le trouver pertinent.

Je souhaite remercier Lionel Torres, que je sais par ailleurs très occupé, de m'avoir fait
l'amitié d'accepter de participer à ce jury et de le présider. Merci également à Caroline
Fontaine et Mariya Georgieva d'avoir apporté dans ce jury une expertise cryptographique
supplémentaire et d'avoir jugé ce travail digne d'intérêt.

En�n, je souhaite exprimer un remerciement tout particulier à Peter Milder pour la col-
laboration que nous avons eu pendant trois ans et pour sa participation en vidéoconférence à
mon jury de thèse. J'espère que nous aurons l'occasion de travailler de nouveau ensemble.

Ma reconnaissance va également à mon encadrement pour sa présence tout au long de ces
trois ans. Je veux en premier lieu remercier mon directeur de thèse Renaud Sirdey. Merci
Renaud pour nos nombreux échanges qui ont grandement contribué à mon épanouissement
dans mon sujet de recherche, et merci tout particulièrement pour le calme avec lequel tu as
tempéré mon sur-perfectionnisme et mon manque de con�ance en moi.

Je souhaite également remercier Nicolas Ventroux, chef du LCE, et Alexandre Carbon
pour m'avoir accueilli dans leur équipe et con�é ce sujet de thèse. Merci pour votre présence
et votre soutien, pour vos relectures attentives, et pour m'avoir encouragé à valoriser la forme
tout autant que le fond.

J'aimerais remercier toutes les personnes avec qui j'ai partagé, de près ou de loin, mon
quotidien professionnel pendant ces trois ans. Beaucoup restent anonymes dans ces lignes
mais ont contribué à ma bonne intégration dans ce cadre de travail. Certaines y ont participé
plus directement et j'aimerai ici les remercier : Marie-Isabelle, Colette, Sandra et Murièle pour

7

leur précieux soutien, qu'il soit administratif ou logistique ; Mickaël pour sa disponibilité pour
résoudre les petits problèmes informatiques du quotidien ; Renaud pour toute l'expérience
d'intégration d'IP qu'il m'a partagé. Je désire aussi exprimer ma gratitude à Khali� pour son
écoute et son aide précieuses en conception FPGA (son domaine d'expertise). Merci également
à Thierry pour son intérêt et son expérience scienti�ques qui ont enrichi à plusieurs reprises
mes ré�exions, et à Jean-Marc pour ses bon-plans et son aide bienvenue plus d'une fois.

Je n'oublie pas mes collègues doctorants : compagnons de voyages, de petits ou de grands
pots, de profondes ou de légères discussions, de galères inattendues, d'aide mutuelle et de
rédactions endiablées. Merci Julien, Vincent, Johannes, Jason, Gabriel et Guillaume, c'est
un plaisir d'avoir appris à vous connaitre petit à petit. Les gentils stagiaires sont aussi à
l'honneur ici : merci Aurore, Fabio et Thibault pour votre présence colorée à la dynamique
sympathique. Une mention particulière à Aurore et Jason pour vos relectures e�caces et
bienvenues. Ma gratitude s'exprime également à tous les collègues avec qui j'ai partagé un
bureau et qui ont su apprécier les expressions singulières de ma joie et de ma fatigue.

J'aimerais remercier en�n les personnes impliquées d'une autre manière dans ces trois années
de ma vie. En premier lieu mes parents et mes frères qui ont vécu, sans (trop) rechigner, les
montagnes russes de mon moral. Merci Paul, Charles et Raphaël d'avoir composé avec mes
disponibilités éparses et de me faire la joie de votre amitié depuis si longtemps. Merci Ludivine
pour ta compagnie et les formules voyage dont nous avons le secret. Merci Simon et Robin
pour vos relectures aux temps forts de rédaction.

En�n, je souhaite également remercier toutes les personnes qui ont pensé à moi pendant
ces cinq derniers mois. Je ne saurais vous citer tous, mais sachez que vos messages et/ou
votre présence à ma soutenance me sont allés droit au c÷ur.

Pour conclure, j'aimerais remercier deux personnes qui sont des jalons singuliers de ma
vie : merci François-Xavier pour ton amitié et nos échanges vivi�ants; merci Marie-Émeline
pour ta présence o�erte simplement et pour tout ce qui en naît.

8

Résumé en français

Introduction

Les technologies numériques se sont très vite imposées comme essentielles au fonctionnement
des sociétés actuelles, et cette tendance ne semble pas sur le point de s'inverser. L'accès
croissant des pays en développement à ces technologies, la forte proportion d'utilisateurs au
sein des jeunes générations, ainsi que le confort qu'elles apportent au quotidien, sont autant
de raisons de croire qu'elles ne disparaîtront pas dans un avenir proche. La di�usion des
technologies du numérique pose la question de la con�dentialité des données et conduit à
la recherche de réponses techniques aidant à protéger la vie privée (voir, par exemple, le
concept de Privacy-by-Design [1]). Cette thèse entend contribuer à ces enjeux, en considérant
notamment le domaine de la cryptologie.

Science du secret au sens étymologique du terme, l'objet d'étude de la cryptologie est plus
vaste que la simple con�dentialité de l'information. Son but est de proposer des outils et de
bonnes pratiques pour garantir l'intégrité, l'authenticité et la con�dentialité des informations
à protéger. À cette �n, elle est divisée en deux disciplines : la cryptographie et la cryptanalyse.
La cryptographie est consacrée à la protection de l'information, et la cryptanalyse consiste
à retrouver l'information ainsi protégée. Cette opposition permanente est une source de
perfectionnement des outils cryptographiques [2, 3]. Dans cette thèse, notre intérêt s'oriente
davantage vers la cryptographie, mais il faut garder à l'esprit que ces deux disciplines ne
doivent pas être considérées indépendamment.

Face à l'augmentation des coûts de maintenance des infrastructures informatiques, le marché
des services informatiques centralisés connaît une forte croissance. Par exemple, l'essor de la
virtualisation et des réseaux à très haut débit permet à des entités spécialisées de fournir des
espaces de stockage et de la puissance de calcul à d'autres entités dont le numérique n'est
pas le c÷ur de métier. La question de l'externalisation de données con�dentielles, que ce
soit pour leur stockage et/ou leur traitement, est donc pertinente. La cryptographie classique
(symétrique et asymétrique) ne permet que de sécuriser l'échange et le stockage des informa-
tions. Mais il est également nécessaire de garantir la con�dentialité des données pendant les
traitements.

En 1978, Rivest, Adleman et Dertouzos introduisirent la notion de cryptographie homo-

morphe qui permettrait de tels services. Le principe est d'avoir un processus de chi�rement
qui préserve une structure entre le domaine chi�ré et le domaine clair, permettant ainsi de
dé�nir des opérations dans le domaine chi�ré à e�et équivalent aux opérations usuelles sur les
clairs. Ce n'est qu'à la �n des années 2000 que la cryptographie homomorphe a véritablement
émergé avec une première solution théorique. Depuis, de nombreux travaux de recherche ont
permis de se rapprocher d'une mise en application de ce nouveau type de cryptographie. D'une

9

part, ces travaux simpli�ent les constructions mathématiques sous-jacentes aux schémas de
chi�rement homomorphe, et d'autre part, ils explorent des optimisations algorithmiques pour
pro�ter d'implémentations plus e�caces.

Néanmoins, ce paradigme cryptographique semble induire intrinsèquement des complexités
mémoire et calculatoire importantes. Par exemple, un chi�ré homomorphe est environ 105

fois plus grand que la donnée qu'il chi�re, et une opération dans le domaine chi�ré est environ
106 fois plus lourde que son équivalente claire. En conséquence, les acteurs impliqués dans la
recherche sur la mise en application de cette nouvelle cryptographie ont besoin d'optimisations
supplémentaires telles que l'accélération matérielle.

Cette thèse

La cryptographie homomorphe est un domaine encore en éclosion. Bien que de nombreuses
applications soient à l'étude, peu ont le mérite d'être pratiquement explorées, et encore moins
sont déjà réalisables à grande échelle. Néanmoins, la recherche progresse rapidement vers
son utilisation en dehors des laboratoires, et nous espérons que certaines des contributions
associées à cette thèse pourront aider ce développement.

La problématique. L'objectif principal de la recherche sur la cryptographie homomorphe
est de dé�nir des schémas de chi�rement pour lesquels il y a un équivalent dans le domaine
chi�ré pour tout traitement applicable sur des données. Cet objectif est appelé chi�rement
entièrement homomorphe (FHE : Fully Homomorphic Encryption). Le fait qu'il se soit écoulé
près de trente ans entre l'introduction du concept et la première construction théorique d'un
schéma n'est pas un hasard. En e�et, deux problèmes théoriques se recoupent.

Le premier est la di�culté de trouver des expressions de problèmes mathématiques, as-
surant la sécurité des schémas, qui permettent de construire des opérations équivalentes. Le
second est la présence nécessaire, aussi pour des questions de sécurité, d'un bruit de chi�re-
ment. L'amplitude du bruit dans les chi�rés augmente avec les opérations dans le domaine
chi�ré. Au-delà d'un certain seuil, le processus de déchi�rement cesse de fonctionner.

Avec les recherches qui ont suivi la première construction théorique d'un schéma FHE,
certaines solutions intermédiaires ont rapproché la cryptographie homomorphe d'un usage
concret. De même, la recherche sur l'accélération matérielle de ces solutions intermédiaires
doit faire face à deux di�cultés principales. La première est la variété des schémas proposés :
en moins de dix ans, quatre générations de schémas ont déjà été proposées. Ainsi, les avantages
et inconvénients des schémas n'ont pas pu être pleinement et objectivement comparés sur une
période de temps si courte. Il en résulte donc un positionnement plus qualitatif dans le choix
des schémas à considérer pour une accélération matérielle. La deuxième di�culté est que
le paramétrage de ces schémas est fortement dépendant de l'application à réaliser dans le
domaine chi�ré. Cela est dû principalement à la croissance du bruit de chi�rement, qui exige
que les paramètres soient correctement dimensionnés. Ainsi la stratégie d'accélération doit
être su�samment �exible pour rester pertinente avec l'accroissement des paramètres.

Contributions scienti�ques. Au cours de ce travail, nous avons surtout abordé la ques-
tion de la dynamique des paramètres. La littérature a proposé les éléments de base sur
lesquels reposent nos contributions, à savoir d'une part l'utilisation du système modulaire de

représentation (RNS : Residue Number System) pour s'attaquer à la complexité apportée par
l'arithmétique des grands nombres entiers, et d'autre part l'utilisation des transformées de

10

Fourier sur corps �nis (NTT : Number Theoretical Transform) pour réduire la complexité
algorithmique asymptotique de la multiplication polynomiale. Sur cette base, nous soutenons
que l'association du RNS et de la NTT permet de dé�nir des architectures hybrides de calcul,
qui promettent une accélération signi�cative des traitements dans le domaine chi�ré. Cette
thèse résulte d'une analyse approfondie du chi�rement de Fan et Vercauteren (FV), ainsi que
des travaux sur la résolution des principales di�cultés à combiner la représentation RNS et
la multiplication de polynôme par NTT pour des grands paramètres.

Nos principales contributions sont les suivantes. Tout d'abord, nous avons analysé l'ap-
proche couplée RNS/NTT et théoriquement validé sa faisabilité jusqu'à de très grands en-
sembles de paramètres. Deuxièmement, nous avons exploré l'accélération GPU de certains
algorithmes spéci�ques au RNS, grâce à l'utilisation et à la poursuite des travaux de Bajard
et al. [4] et Halevi et al. [5] pour adapter complètement FV au RNS. Troisièmement, nous
avons conçu et mis en ÷uvre un accélérateur orienté �ux de données pour des multiplications
de polynômes résiduels e�caces et étudié sa capacité à passer à l'échelle.

Cette dernière contribution fait l'objet d'une attention particulière a�n de surmonter cer-
tains problèmes de conception qui limitaient auparavant la faisabilité de l'approche couplée
RNS/NTT pour des grands paramètres. En particulier, nous proposons une solution pour
précalculer localement les valeurs nécessaires aux opérations de NTT, sans impact sur les per-
formances. Ceci est obtenu grâce à deux contributions : la conception d'un circuit de NTT
changeant ses corps �nis de dé�nition à la volée, et la conception d'un générateur de facteur
de rotation pour les NTT sur les di�érents corps �nis. En�n, pour répondre à la question
de la grande variation des paramétrages en fonction des di�érentes applications du chi�re-
ment homomorphe, la génération automatique des descriptions HDL (Hardware Description

Language) de nos circuits a été explorée.

État de l'art et positionnement

Les chi�rements homomorphes sont capables d'e�ectuer des opérations sur des données chi�rées
sans les déchi�rer au préalable. Cette capacité vient du choix d'un homomorphisme comme
fonction de déchi�rement d'un schéma. La dé�nition d'un homomorphisme met directement
en évidence la caractéristique désirée : il s'agit d'une correspondance conservant une certaine
organisation entre deux structures algébriques du même type (groupes, anneaux, corps...).
En considérant l'espace des clairs et l'espace des chi�rés comme des structures algébriques,
un homomorphisme consiste alors à avoir une équivalence entre certaines opérations dans les
domaines chi�ré et clair.

On quali�e de partiellement homomorphe (Partial Homomorphic Encryption : PHE) un
chi�rement dont l'ensemble des fonctions évaluables est restreint à un sous-ensemble des fonc-
tions internes sur l'ensemble des clairs. Par exemple, si la fonction de déchi�rement est un
homomorphisme de groupe additif (resp. groupe multiplicatif), alors seules les fonctions com-
posées d'additions (resp. de multiplications) auront un équivalent dans l'ensemble des chi�rés.
On parlera de chi�rement presque homomorphe (Somewhat Homomorphic Encryption : SHE)
lorsque la fonction de déchi�rement est un homomorphisme d'anneaux, c'est à dire qu'il leur
est possible d'évaluer à la fois des additions et des multiplications dans le domaine chi�ré,
mais que ces chi�rement sont limités en opération dans le domaine chi�ré par l'accroissement
du bruit de chi�rement. En�n, on parlera de chi�rement complètement homomorphe (Fully
Homomorphic Encryption : FHE) si toutes les fonctions internes de l'ensemble des clairs
appartiennent à l'ensemble des fonctions évaluables dans le domaine chi�ré.

11

Analyse de l'état de l'art des chi�rements homomorphes. L'e�ervescence de la
recherche autour de la cryptographie homomorphe peut être déroutante pour qui s'intéresse à
des considérations pratiques telles que la sécurité et la performance. La première génération
résulte de la première construction de schéma complètement homomorphe proposé par Gen-
try en 2009 avec l'introduction d'une opération de réamorçage (bootstrapping) très coûteuse.
La deuxième améliore la gestion du bruit des schémas en évitant de passer par l'opération
de réamorçage, et introduit ainsi la notion de chi�rement homomorphe par niveau (L-FHE
: Leveled Fully Homomorphic Encryption). La troisième génération est une simpli�cation
conceptuelle de la deuxième génération et propose des schémas homomorphes par niveau
structurellement plus simples. En�n, la quatrième génération réintroduit une opération de
réamorçage plus performante. Cette fois, c'est chaque opération sur les chi�rés qui réamorce
le bruit.

Lorsque l'on s'intéresse à la maturité des schémas, il semble que ceux qui sont construits
sur les variantes du problème mathématique LWE (et en particulier ceux basés sur RLWE)
soient actuellement les plus équilibrés en termes de sécurité et d'e�cacité. En e�et, les amélio-
rations de la deuxième génération, puis des troisième et quatrième générations, dépendaient
principalement de l'apparition du problème de l'apprentissage avec erreurs (LWE : Learning
With Errors). Les schémas basés sur LWE manipulent des matrices et/ou des vecteurs d'en-
tiers modulaires. La variante RLWE (Ring-LWE) manipule des matrices et/ou des vecteurs
de polynômes modulaires. La quatrième génération construit également ses schémas sur des
variantes du problèmes LWE. Cependant, son schéma le plus prometteur (TFHE [6]) a choisi
une structure algébrique légèrement di�érente des autres pour améliorer les performances de
ses primitives. Il manipule des polynômes à coe�cients réels modulo un. Par conséquent,
ce schéma n'est pas confronté aux mêmes problématiques d'implémentation et nécessite des
approches di�érentes des schémas basés sur RLWE.

Au moment de notre positionnement, la littérature nous a amené à considérer que les
schémas construits sur RLWE sont ceux qui se rapprochent le plus d'une utilisation concrète.
En particulier, les schémas FV [7] 2ème génération) et SHIELD [8] 3ème génération) sont bien
acceptés par la communauté. Notre étude de l'état de l'art de l'implémentation du chi�rement
homomorphe s'est donc concentrée sur les problèmes propres à ce type de schémas.

Analyse des stratégies d'implémentation existantes. Le choix de considérer les im-
plémentations matérielles pour les chi�rements homomorphes était un parti pris de cette
thèse. Ceci se justi�e par les limitations en performance que l'on expérimente avec des im-
plémentations purement logicielles. Ainsi, notre étude s'est focalisée sur les problématiques
d'implémentation matérielle et l'état de l'art associé.

Le problème principal concerne la taille importante des paramètres des schémas RLWE,
nécessaire pour des raisons de sécurité et d'exactitude. Ce problème se complique en considé-
rant en plus la dynamique des paramètres due aux contraintes applicatives. Pour en avoir une
petite idée, le degré des polynômes manipulés peut atteindre plusieurs dizaines de milliers,
et la taille de leurs coe�cients peut atteindre plusieurs centaines de bit. Par conséquent, les
complexités mémoire et calculatoire des opérations sous-jacentes sont particulièrement impor-
tantes. Ces opérations sont des multiplications de polynômes, des réductions modulaires de
polynômes, des additions de polynômes, des opérations de mise à l'échelle et d'arrondi, et des
réductions modulaires.

Notre analyse de la littérature nous a fait constater la di�culté de proposer une approche
cohérente qui puisse englober toutes les dimensions de la problématique d'implémentation.

12

Par exemple, les approches de multiplication de polynômes les plus �exibles permettent, au
détriment de complexités asymptotiques moins intéressantes, de simpli�er les opérations de
mise à l'échelle et de réduction modulaire. Ces approches ne trouvent leur justi�cation que
jusqu'à une certaine taille de paramètres. Au contraire, les approches de multiplication de
polynômes basées sur la transformée de Fourier sur corps �ni (NTT : Number Theoretical

Transform), qui ont à ce jour la meilleure complexité asymptotique connue, sont plus com-
plexes à mettre en ÷uvre.

Une première di�culté est due au routage des coe�cients pour les algorithmes de transfor-
mée de Fourier itératifs. Une deuxième di�culté concerne la gestion des facteurs de rotation
des NTT. Lorsque les paramètres du schéma grossissent, l'espace mémoire requis pour ces
facteurs (resp. le coût de communication pour les acheminer) augmente fortement le coût
matériel (resp. la bande-passante nécessaire). Une troisième di�culté concerne la gestion des
très grands coe�cients. Sur cette question, l'approche la plus prometteuse semble être l'u-
tilisation d'une représentation non-positionnelle des nombres appelée RNS (Residue Number
System). Cependant, bien que le couplage du RNS avec les approches par NTT est théorique-
ment valide, le choix de la base de représentation RNS est restreint par les contraintes d'ex-
istence des NTT. Ainsi, certains choix permettant de faire de l'arithmétique modulaire à bas
coût ne sont pas possibles. À cela s'ajoute la di�culté de faire e�cacement les opérations de
mise à l'échelle et d'arrondi en représentation RNS.

Au regard de toutes ces problématiques, il nous a semblé plus important de rechercher
une approche d'accélération �exible plutôt que dédié à la performance brute. Pour cela, nous
avons limité l'étude de cas à un schéma homomorphe spéci�que, a�n de proposer une approche
qui tienne compte, autant que possible, de toutes les dimensions du problème.

Positionnement. Après avoir étudié les di�érentes générations de chi�rements homomor-
phes, nous avons concentré notre étude sur les schémas homomorphes par niveau basés sur
le problème RLWE. Ce choix implique que les paramètres dimensionnants dépendent de l'ap-
plication à e�ectuer dans le domaine chi�ré. L'approche d'accélération matérielle devra donc
tenir compte de la dynamique des paramètres.

Ce positionnement a été suivi d'une analyse des di�érentes approches d'implémentation
matérielle pour l'accélération de la cryptographie homomorphe. Cette analyse pose la question
de la dé�nition d'une stratégie d'implémentation qui prenne en compte toutes les dimensions
du problème de complexité mémoire et calculatoire provenant de la dynamique des paramètres.
Cette stratégie devrait être su�samment �exible pour améliorer la performance du schéma L-
FHE tout en évitant les spécialisations prématurées qui ne sont pas adaptées à la dynamique
des paramètres.

A�n de dé�nir une telle stratégie à la lumière des travaux connexes, nous avons choisi de
faire une étude approfondie du schéma homomorphe FV. Ce dernier est plutôt bien accepté
par la communauté de recherche autour du chi�rement homomorphe. Par conséquent, la suite
de notre travail s'est concentrée sur l'accélération matérielle du chi�rement FV.

Analyse du chi�rement FV

L'analyse approfondie du schéma FV en vue de son accélération matérielle nous a introduit
aux problématiques concrètes du choix des paramètres. Dans un premier temps, nous avons
présenté ses primitives, les structures algébriques manipulées, ainsi que les équations d'ac-
croissement du bruit. Les paramètres dimensionnants que sont le degré des polynômes et la

13

taille des coe�cients ont un impact majeur dans cet accroissement du bruit, surtout lors des
multiplications de chi�rés. De même, ils ont un impact important sur la di�culté du prob-
lème RLWE sous-jacent assurant la sécurité du schéma. Les travaux de thèse de Guillaume
Bonnoron [9] présentent une méthode de dérivation des paramètres prenant en compte tout
ces aspects, ainsi que des exemples concrets de paramètres. À partir de cette vue d'ensemble,
la problématique générale des schémas homomorphes par niveau est compréhensible. A�n
d'évaluer des applications de taille conséquente dans le domaine chi�ré, les paramètres aug-
mentent considérablement. Ainsi, la restriction de l'éventail des paramètres n'est pas possible
sans considérer des cas particuliers d'utilisation du schéma FV.

Après la présentation du schéma et de ses paramètres, l'étape suivante consiste à identi�er
et à quanti�er les goulots d'étranglement de la performance des opérations homomorphes avec
FV. Le pro�lage d'une application homomorphe typique a quanti�é la complexité dominante
des multiplications de chi�rés et des opérations de relinéarisation. Les opérations sous-jacentes
de multiplication de polynômes et de mise à l'échelle sont les principales opérations limitant
les performances. Sur la base de notre analyse des travaux de l'état de l'art sur ces prob-
lématiques, nous avons choisi d'explorer la faisabilité de l'approche couplée RNS/NTT pour
l'accélération du crypto-calcul avec FV. Après une présentation détaillée du RNS et des mul-
tiplications de polynômes par NTT dans notre contexte, nous avons pu faire une liste de
toutes les contraintes à prendre en compte pour l'utilisation conjointe de ces deux approches.
L'étude de ces contraintes se termine par une validation théorique et pratique de l'approche
couplée.

Une problématique particulière de l'utilisation de la représentation RNS est celle de
l'opération de mise à l'échelle. Les travaux concomitants de Bajard et al. [4] et de Halevi et
al. [5] ont décrit des méthodes e�caces pour en améliorer la performance dans le cas de FV.
L'analyse du pro�lage présenté par Halevi et al. [5] a�ne notre propre pro�lage. Il oriente con-
crètement notre stratégie d'implémentation matérielle vers l'accélération des multiplications
de polynômes résiduels, des opérations d'extension de base RNS, et des opérations de mise
à l'échelle en RNS. En raison de la complexité dominante des multiplications de polynômes,
nous nous sommes donc concentrés principalement sur leur accélération.

Les opérations de NTT, qui servent de briques de base aux algorithmes de multiplication
de polynômes, sont assez di�ciles à paralléliser en raison d'accès mémoires complexes. Cela
rend les grandes NTT peu adaptées aux architectures SIMD génériques telles que les GPU.
Notre choix est donc d'explorer des solutions d'accélération s'appuyant sur du matériel dédié
pour ces opérations.

Étant donné les problèmes d'implémentation mis en évidence par les travaux connexes
quant à la gestion des facteurs de rotation, notre stratégie consiste à générer et utiliser à
la volée ces di�érents ensembles de facteurs. Ceci exige de s'attaquer à deux problématiques
principales de conception. La première est de pouvoir générer e�cacement des circuits de NTT
multi-corps. Il s'agit de circuits de NTT capables d'e�ectuer des transformées sur di�érents
corps �nis sans impact signi�catif sur les performances. La seconde est la conception d'un
générateur d'ensembles de facteurs de rotation pour les di�érents corps �nis dé�nis par la
base RNS. Il faut que cette génération soit sans conséquences lourdes sur le coût du matériel
et sur le débit des opérations de NTT.

14

Proposition de circuits de NTT multi-corps

Les problématiques de conception de circuits de NTT sont structurellement les mêmes que
celles des transformées de Fourier discrète (DFT : Discrete Fourier Transform). Or, le do-
maine du traitement du signal a déjà beaucoup contribué à l'implémentation matérielle des
DFT. Nous avons en particulier considéré que le projet SPIRAL [10] constitue un point de
départ particulièrement intéressant pour automatiser la conception de circuit de NTT. En
e�et, le projet SPIRAL porte sur l'automatisation du développement logiciel et matériel pour
le traitement du signal.

La perspective à moyen terme est de pouvoir concevoir rapidement des circuits de NTT
selon des contraintes de coût matériel et de performance de calcul. Cela permettra à un
concepteur de systèmes d'ajuster les performances de ses opérateurs de NTT en fonction des
exigences applicatives et des autres éléments du système. Au cours de cette thèse, seuls les
circuits en �ot-de-données complètement déroulés (fully-streaming) ont été étudiés et adaptés
en circuit de NTT multi-corps. En raison de contraintes de temps, nous nous sommes con-
centrés sur ce type d'architectures qui o�re les débits les plus élevés. C'est en e�et ce qui est
principalement requis par notre contexte applicatif.

L'adaptation de SPIRAL pour la génération de NTT consiste en la génération de circuits
de DFT dans lesquels l'arithmétique complexe est remplacée par de l'arithmétique modulaire
et les facteurs de rotation complexes sont remplacés par les facteurs de rotation du corps �ni
considéré. Dans le cas d'une DFT, SPIRAL précalcule les facteurs de rotation et les stocke
dans des mémoires non-programmables (ROM) à la génération du circuit. Cette approche
convient à la DFT, car les facteurs de rotation ne sont pas susceptibles de changer. Cependant,
notre cas applicatif nous impose de trouver un moyen de reprogrammer ces facteurs de rotation
sans impact majeur sur le débit du circuit de NTT. En e�et, le corps �ni de dé�nition de
la NTT est di�érent pour chaque canal RNS (chaque élément de la base RNS), et ainsi les
ensembles de facteurs de rotation sont di�érents.

Dé�nition d'une NTT multi-corps. La répartition des facteurs de rotation au sein du
circuit de NTT est connue par le générateur SPIRAL. Plutôt que d'implémenter les mémoires
des facteurs de rotation directement dans le chemin de données du circuit de NTT, nous
proposons de dissocier ces mémoires de ce dernier, a�n de les rendre programmables. Nous
dé�nissons la notion de banque de facteurs de rotation, qui consiste en la concaténation de
toutes les mémoires, initialement dans le chemin de données, et stockant un unique jeu de
facteurs de rotation pour un corps �ni spéci�que. En plus des facteurs de rotation, une telle
banque stocke les autres valeurs spéci�ques au corps �ni, comme l'élément associé de la base
RNS.

Pour éviter de réduire le débit du circuit de NTT lors de la reprogrammation d'une banque
de facteurs de rotation, notre solution s'appuie sur un ensemble de G banques di�érentes.
Ces G banques vont être successivement accédées par le chemin de données et reprogrammées
avec un nouvel ensemble de facteurs de rotation. Ce nombre G est lié au nombre maximum
de canaux RNS pouvant être simultanément présents dans le chemin de données. Si nous
notons T le débit du chemin de données (nombre de cycles d'horloge entre deux transformées)
NTT et latNTT sa latence, l'architecture comporte G = dlatNTT /T e+ 1 banques di�érentes.
Notre solution s'accompagne de la dé�nition d'un module de reprogrammation des banques
de facteurs qui garantie un débit de reprogrammation adapté à celui du circuit de NTT.

15

Analyse de notre contribution. Notre proposition de circuit NTT multi-corps implique
un surcoût matériel par rapport à un circuit de NTT dé�ni pour un unique corps �ni. Ce
surcoût est principalement dépendant du nombre G de banques de facteurs instanciées. Les
modules contrôlant les accès et la programmation des banques ont un impact relativement
faible sur la consommation de ressources matérielles. Pour les paramétrages considérés dans
cette thèse, G était toujours égal à quatre. Ce surcoût qu'implique notre solution n'est pas
très important par rapport aux avantages qu'il apporte dans notre contexte.

Pour mettre en évidence ces avantages, nous comparons la manipulation de notre gestion
de facteurs de rotation à la volée avec une stratégie de stockage local présente dans l'état de
l'art. Elle consiste à stocker tous les facteurs de rotations, pour tous les canaux RNS, dans
des mémoires non-programmables (ROM) initialisées à la génération du circuit. L'avantage
d'utiliser notre approche se concrétise avec l'accroissement des tailles de paramètres du schéma
FV. La taille des bases RNS (nombre de corps �nis di�érents) et le degré des polynômes
(nombre de facteurs de rotation pour chaque corps �ni) augmentent de manière signi�cative.
Notre traitement à la volée des ensembles de facteurs de rotation réduit de 20% à 90% les
éléments de mémorisation e�ectivement instanciés pour fournir le même résultat. Ceci permet
à notre approche d'être praticable pour des jeux de paramètres de FV signi�cativement plus
grands que l'état de l'art (profondeur multiplicative de 30 avec une sécurité de 128-bit).

Notre gestion des facteurs de rotation à la volée permet d'envisager des multiplieurs de
polynômes en représentation RNS à haut débit. Néanmoins, à elle seule, cette gestion à la
volée ne fait que déporter le problème du stockage de ces facteurs de rotation. Ils devront
être acheminés vers le circuit de NTT multi-corps d'une manière ou d'une autre. Dans le
cas où les facteurs sont stockés à l'extérieur de l'accélérateur (mémoire du processeur hôte
par exemple), il faut s'attendre à une diminution des performances e�ectives à cause des
communications plus lourdes. En e�et, l'opérateur de NTT devra recevoir les ensembles
de facteurs de rotation en plus des données utiles. A�n de ne pas impacter ces temps de
communications, notre stratégie consiste à générer à la volée ces ensembles de facteurs.

Génération à la volée des facteurs de rotations

Après avoir proposé une approche pour générer des circuits de NTT multi-corps avec SPIRAL,
la deuxième problématique que nous abordons est celle de la génération des ensembles de
facteurs de rotation. Nous proposons dans cette thèse des générateurs de ces ensembles qui
respectent les exigences de débit de nos circuits de NTT multi-corps. La problématique
consiste donc en la génération des puissances d'éléments de di�érents corps �nis pour laquelle
notre contexte impose un débit minimal.

La première di�culté se situe dans le choix d'une méthode de génération. Cette di�culté
tient à la fois de la dépendance entre les éléments d'une séquence de puissances à générer
et de la latence des multiplicateurs modulaires qui produisent de nouveaux éléments. Ainsi,
certaines bulles inévitables se produisent dans la génération d'un seul ensemble de facteurs
de rotation. La méthode choisie impactera signi�cativement la latence d'une génération, et le
coût matérielle pour la mener à bien.

La deuxième di�culté se situe dans le respect du débit minimal requis entre les généra-
tions des di�érents ensembles. Du fait des inévitables bulles dans la génération d'un unique
ensemble de facteurs, la génération séquentielle de ces ensembles ne permet pas d'atteindre le
débit requis.

16

Ainsi, nous proposons des solutions qui répondent à ces di�cultés. Premièrement, nous
formalisons une solution pour respecter le débit requis par le circuit de NTT multi-corps entre
deux ensembles de facteurs de rotation consécutifs. Cette première proposition consiste en
une solution d'ordonnancement de multiples générations d'ensembles autours d'une unique
ressource de calcul. Deuxièmement, nous proposons un choix de relation de récurrence pour
la génération de chacun des ensembles de facteurs. Cette relation de récurrence permet de
minimiser l'espace de stockage intermédiaire requis tout en minimisant la latence de chaque
génération pour la quantité de ressources de calcul disponible.

Analyse de notre contribution. La génération à la volée des ensembles de facteurs de ro-
tation permet d'alléger les communications entre une zone de stockage externe à l'accélérateur
et ce dernier. Pour quanti�er cet allègement des communications, nous avons comparé notre
approche à une stratégie de stockage externe similaire à certains travaux de l'état-de-l'art.
Les métriques de comparaisons sont les empreintes mémoires et les bandes passantes requises
pour alimenter un circuit de NTT multi-corps. L'empreinte mémoire est dé�nie ici comme
la quantité de mémoire utilisée par un programme hôte pour utiliser l'accélérateur de NTT
considéré.

L'empreinte mémoire des facteurs de rotation pour la stratégie de stockage externe va de
19,2 koctets à 2,6 Moctets en fonction des jeux de paramètres considérés. Notre stratégie de
génération de ces facteurs requiert quand à elle seulement 2,2 koctets au maximum.

En considérant un circuit de NTT cadencé à 200MHz, la stratégie de stockage externe de-
mande au moins 0,75 Goctets/s de bande passante entre l'espace de stockage et l'accélérateur
pour les seuls facteurs de rotation. Avec notre générateur, la bande passante nécessaire pour
acheminer les éléments initiaux des générations est de maximum 15 koctets/s.

De pair avec notre proposition de circuits de NTT multi-corps, notre générateur de facteurs
de rotation permet la conception de circuits de multiplication de polynômes résiduels à haut
débit à base de NTT. Dans le contexte de l'accélération matérielle du chi�rement FV, cela
ouvre des perspectives intéressantes pour la dé�nition d'une accélération matérielle e�cace.
En s'appuyant sur notre analyse générale du chi�rement FV, nous présentons une proposition
d'architecture système utilisant nos blocs matériels de base pour l'accélération matérielle de
la version complètement RNS de FV.

Exploration d'une accélération hybride pour l'approche couplé
RNS/NTT

L'analyse du chi�rement FV menée au début de cette thèse a mis en évidence la nécessité d'ac-
célérer à la fois les opérations de mise à l'échelle en RNS et les multiplications de polynômes
résiduels. Cela s'explique par la stratégie d'accélération choisie se basant sur l'approche cou-
plée de la représentation RNS et des multiplications de polynômes basées sur la NTT. La
représentation RNS s'attaque à la complexité induite par les grands coe�cients, et les ap-
proches de convolution par NTT s'attaquent à la complexité induite par le grand degré des
polynômes.

Parmi les contributions de cette thèse, nous avons présenté des blocs de base pour l'accélé-
ration matérielle des opérations de multiplication de polynômes résiduels. Le choix du matériel
dédié pour ces opérations est motivé par la di�culté d'exploiter le parallélisme d'une NTT sur

17

des architectures SIMD génériques en raison d'accès complexes aux données. Contrairement
à la NTT, les fonctions spéci�ques au RNS intègrent un parallélisme trivial par rapport au
degré des polynômes. Ce parallélisme est facilement exploitable avec des architectures SIMD
génériques comme les GPU. Ainsi, notre ré�exion considère l'exploration d'une architecture
hybride de calcul pour l'accélération du crypto-calcul avec FV. Les fonctions spéci�ques au
RNS sont accélérées par un GPU, et l'arithmétique polynomiale par un co-processeur dédié.

En plus d'étudier le gain obtenu par l'accélération hybride sur chacune des opérations
accélérées, nous nous sommes également intéressés à la problématique de la communication
entres les unités de calcul du système. En e�et, le �ot d'opérations, imposé par la structure des
primitives de FV, requiert des échanges continus de données entre le GPU et le co-processeur.
Quanti�er ces échanges au regard des performances de chacune des unités de calcul est la
première étape pour dimensionner un bus système pertinent. Au regard des quantités de
données, notre première proposition d'interconnexion s'appuie sur un bus PCIe.

Analyse de notre contribution. Lors d'un stage e�ectué dans le cadre de cette thèse,
l'accélération GPU des fonctions spéci�ques au RNS a été explorée. Pour les plus petits jeux
de paramètres, le temps passé en communication entre l'hôte et le GPU est plus important que
les calculs eux-mêmes. Même pour l'ensemble le plus large, le temps consacré aux communi-
cations est non-négligeable. Néanmoins, même avec des temps de communication importants,
les opérations spéci�ques au RNS béné�cient d'une accélération signi�cative. Pour une implé-
mentation concrète de cette architecture hybride, cela indique que les communications entre
les di�érentes unités de calcul devront être gérées �nement pour qu'elles limitent au minimum
les performances.

A partir de nos briques de base de NTT multi-corps et de générateur de facteurs de rota-
tions, nous avons fait une proposition de co-processeur pour la multiplication de polynômes
résiduels. Nos briques de base permettent la faisabilité de cet accélérateur même pour des
grands jeux de paramètres. Notre accélérateur permet une accélération signi�cative de ces
multiplications de polynômes par rapport à l'implémentation de Halevi et al. [5], en étant
au moins 22 fois plus rapide pendant la multiplication de chi�rés et au moins 4 fois plus
rapide lors de l'opération de relinéarisation. De plus, cette accélération reste pertinente avec
la croissance des jeux de paramètres, soit de 22 à 31 fois plus rapide pendant la multiplication
de chi�rés et de 4 à 9 fois plus rapide pour la relinéarisation.

Pour motiver la pertinence de notre système de calcul hybride, nous avons ensuite estimé
l'accélération obtenue pour le calcul d'une opération de multiplication de chi�rés et relinéari-
sation avec FV. Le tableau 1 présente ces projections pour di�érents jeux de paramètres. Ces
paramètres sont caractérisés par la profondeur multiplicative accessible par les chi�rés. Le
temps de communication pour les accès GPU a été pris en compte. Notre système permet
d'envisager une multiplication de données chi�rées jusqu'à 14 fois plus rapide qu'une version
logicielle bien optimisée (Halevi et al. [5]). Cette accélération réduit le temps de multiplication
de chi�rés à 62 ms pour les paramètres permettant une capacité d'évaluation d'une profondeur
multiplicative de 30, et à 21 ms pour une profondeur multiplicative de 20. Néanmoins, ces
projections sont obtenues en faisant des hypothèses simpli�catrices sur les communications et
les entrelacements avec d'autres opérations sous-jacentes comme les additions de polynômes
résiduels. Ces résultats prospectifs motivent cependant le perfectionnement de l'accélérateur
dédié pour l'arithmétique polynomiale ainsi que la réalisation d'un prototype du système
hybride de calcul.

18

Table 1: Projection de l'accélération obtenue avec notre proposition de système hybride de
calcul pour la primitive FV.Mul&Relin. Les colonnes RNS regroupent les opérations spé-
ci�ques au RNS. Les colonnes RPM regroupent toutes les opérations de multiplication de
polynômes requises par l'opération FV.Mul&Relin.

Parameters Timing basis from [5] Our hybrid system

L n log2 q Total RNS RPM Misc. Total speedup RNS RPM

1 211 54 3.6 1.3 2.2 0.1 0.67 ×5.37 0.51 0.06
5 212 108 12.7 3.8 8.6 2 3.28 ×3.87 1.05 0.23
10 213 216 57.6 14.4 41.8 2.6 7.13 ×8.08 3.32 1.21
20 214 432 252 71.3 175.3 2.2 20.7 ×12.17 11.17 7.33
30 215 594 887 233.1 630.6 2.6 61.21 ×14.49 33.14 25.47

Conclusion et perspectives

Les recherches pour du crypto-calcul e�cace se poursuivent. Tout au long de cette thèse, nous
avons cherché à prendre en compte la complexité de l'implémentation du chi�rement homo-
morphe. Cette complexité est premièrement celle du choix du chi�rement à considérer pour
une accélération matérielle. Notre analyse de l'état de l'art nous a orienté vers les schémas
homomorphes basés sur le problème RLWE, et en particulier le schéma FV. Deuxièmement,
le choix de la stratégie d'accélération doit prendre en compte de nombreux éléments. Le
plus important à notre avis est la grande variété des paramétrages qui implique la nécessité
d'une stratégie d'accélération �exible. En ce sens, nous avons choisi une stratégie couplant la
représentation des nombres en RNS et la multiplication de polynômes par NTT. Nos contri-
butions montrent en particulier la possibilité d'avoir des circuits de NTT multi-corps avec une
génération locale des facteurs de rotation, pour un coût matériel peu sensible aux variations
des paramètres de FV.

Au cours de ce travail, nous avons ouvert la voie à la conception d'une architecture de micro-
serveur pour le crypto-calcul avec FV. Nous avons commencé à explorer les problématiques
de communication qui se poseraient dans un tel système. Quelques pistes pourraient être
intéressantes à explorer dans le cas où l'interconnexion PCIe proposée dans cette thèse serait
insu�sante. Par exemple, en explorant l'intégration du GPU et du matériel dédié pour l'arith-
métique polynomiale plus près de la mémoire du CPU. En restant dans une approche multi-
SoC, nous pourrions considérer l'interface Coherent Accelerator Processor Interface (CAPI)
d'IBM. Pour une approche plus intégrée en un single-SoC hétérogène, nous pourrions explorer
l'UltraPath Interconnect (UPI) d'Intel. En�n, tant qu'à considérer la conception d'un ASIC,
il serait intéressant d'examiner certaines technologies spéci�ques telles que l'intégration de
mémoire 3D.

La problématique de conception de système de communication à faible latence et haut
débit se retrouve dans d'autres domaines, notamment ceux dont les performances de calcul
dépendent davantage de la quantité de données à traiter que des calculs eux-mêmes. De
ce point de vue, l'accélération du chi�rement homomorphe est similaire à l'accélération du
traitement d'images et de vidéos à la volée.

19

20

Introduction

Digital technologies at the heart of our lives

It is no secret that digital technology has very quickly established itself as essential to the
functioning of developed societies. And this trend does not seem to be about to reverse. A
�rst impress of this can be obtained looking at the number of internet subscribers that in-
creased from 400 millions to 3.2 billions between 2000 and 2015 [11]. In particular, developing
countries play an important role in this growth. Considering then that the part of internet
users in the younger generations is signi�cantly larger than for older's ones [12], we can assume
that the internet population will continue to grow. More generally, the ease brought by these
technologies for many daily tasks gives another reason to believe that they will not disappear
in the near future.

These technologies bring with them many economic, societal and cultural opportunities.
For instance, specialized medical care brought by massive data collection [13]. But they can
also be the source of misuses and imbalances in each of these dimensions. An example of
this is the 2015 spy toy controversy [14]. This is only one example among others of abusive
data collection of persons who neither have the knowledge of this collection, nor the ability
to protect themselves from it. Many of these issues are being addressed by the political
sphere and by national and international entities (for example, the 2018 revision of the french
law Informatique et Libertés [15]. Addressing the moral question of the proper use of these
technologies results in legal delimitation expressing the rights and responsibilities of each
party. For instance, see the note from the Commission Nationale de l'Informatique et des

Libertés (CNIL) on the control of Internet use at work [16].
However, the legal sphere only provides a guarantee of judicial sanction for the misuse of

technology. It should not be forgotten that a person who deliberately wants to abuse these
technologies is able to do so. Let us recall the obvious: this is deeply linked to individual
morals that legal sphere cannot entirely control, and the only solution to solve this problem
is to encourage personal moral re�ection and healthy questioning. Nevertheless, the existence
of this misuse can have a serious impact on society. Therefore, as far as possible, some means
must be found to prevent the upcoming of abuses, and why not within technology itself.

In this thesis, we are interested in the question of data privacy that arises with this
technologies. In particular, in the technical answers that help to protect this privacy (for
instance, see the concept of Privacy-by-Design [1]). But before considering any answer, let's
try to deepen our knowledge of the issues.

The question of data privacy

It is not a trivial re�ection to consider the reasons and limits within which the privacy of data
must be guaranteed. Without wishing to contribute to this re�ection, we would like to list

21

some common cases in which data privacy is considered important or even essential.
A �rst case, and we believe it is essential, is the right of every human being to have its

intimacy respected (Article 12 of United Nations Universal Declaration of Human Rights,
Article 9 of the French Civil Code ...).

Another case is the protection of sensitive information. Some examples of such are: the
precise location of a nuclear arsenal, or critical diplomatic discussions. If the privacy of the
data carrying this type of information is not guaranteed, the safety of people is at risk.

The last case we are discussing here concerns the economic �eld. Namely, the competitive
advantages provided by certain technical knowledge and/or expertise that are materialized
by an accumulation of data. In most cases, a company's competitive advantages help it to
remain pro�table, and thus enable it to meet certain needs of its employees.

These common cases are only examples of where data privacy is indeed important. They
nonetheless indicate that it would be irresponsible not to look for ways to prevent data
misuse. Indeed, although a technical solution cannot be a cure to the underlying problem, it
can nevertheless be an aid to the prevention of greater ills. In this thesis, we are interested
in a technical answer called cryptology.

Cryptology: a technical answer to data privacy

Cryptology is, in its etymological meaning, the science of secrecy. Its subject of study is larger
than the simple con�dentiality of information. Its purpose is to propose some tools and best
practices to guarantee integrity, authenticity and privacy of information to protect.

Historically, the secrecy of information was more closely related to art than science. And
its uses were more or less restricted to the military and political spheres. With the advent of
digital technologies, the need to protect information changed scale and cryptology democra-
tized itself.

In practice, this science is divided into two disciplines: cryptography and cryptanaly-
sis. Cryptography is about protecting information (etymologically: writing of a secret), and
cryptanalysis is about analyzing the secret (etymologically: analysis of the secret). The �rst
seeks to protect information and the second to discover it. This permanent opposition is a
source of improvement and re�nement of cryptographic tools [2, 3]. In this thesis, we are
more interested in the cryptography �eld, but we hope the reader understands that these two
disciplines should not be considered independently.

Securing the exchange of information. The basic principle of cryptography is to scram-
ble information to make it unreadable or uninterpretable to unauthorized persons. This is
called an encryption process and the resulting information is encrypted. This masking of
exchanged information is done using a secret element shared by the right holders called a
secret key. The same secret element is also used to retrieve the original information from the
encrypted domain. This is called a decryption process. Encryption and decryption are usually
called the primitives of a cryptographic scheme. This common secret is actually the basis of
what we call symmetric cryptography. Some examples of symmetric cryptographic schemes
are DES, AES, Trivium, etc..

With the advent of telecommunication, the issue of exchanging this common secret arose.
Indeed, the secret had itself to transit through telecommunication channels that are insecure.
In the 1970s, this problem gave rise to the notion of asymmetric cryptography. In that case,
the information is scrambled using a public element called a public key, and the information is

22

retrieved using a private key. The security of the information is based on some mathematical
problems that are hard to solve in the general case but that become easier with a trapdoor.
In a nutshell, the public key creates an instance of a mathematical problem by scrambling
the information, and the private key is the trapdoor given to a right holder to solve the
mathematical problem and hence to retrieve the information. Asymmetric cryptography
is less e�cient than its symmetric counterpart with respect to communication cost. This
is due to an inherent growth in information size while scrambling that does not occur in
symmetric cryptography. In practice, asymmetric cryptography is used for secret sharing and
authentication protocols but not for the proper exchange of information. Some examples of
asymmetric cryptographic schemes are RSA and ElGamal.

Preserving privacy during data processing. Faced with the constant increase in the
cost of maintaining IT infrastructures, the market for centralized IT services is growing rapidly.
The question of outsourcing the storage and processing of private data is therefore highly
relevant. Symmetric and asymmetric cryptography only allow to secure the exchange and
storage of information. But what is required in this case is to guarantee the con�dentiality of
the data also during their processing.

In 1978, Rivest, Adleman and Dertouzos introduced the notion of homomorphic cryptogra-
phy that would allow such data processing. The principle is to have a decryption process that
preserves some structure between the encrypted and clear domains allowing the de�nition of
equivalent operations. It is only in the late 2000s that homomorphic cryptography has truly
emerged with a theoretical solution.

Since then, many research works have improved the practicality of this new type of cryp-
tography. Firstly, by theoretical simpli�cations of these cryptographic schemes, and secondly,
by algorithmic optimizations for e�cient implementations.

Nevertheless, this cryptography paradigm seems to have inherently large memory and
computational complexities. To give an idea of the order of magnitude, an homomorphic
ciphertext is around 105 times larger than the data it encrypts, and an operation in the
encrypted domain is around 106 times heavier than its clear counterpart. As a result, the
actors involved in research on the practicality of this new cryptography are in needs of further
optimizations such as dedicated hardware acceleration.

The principle of hardware acceleration is to build a dedicated computing architecture for
the realization of a speci�c task. This has to be considered in opposition to a general purpose
computing architecture, which is designed to be e�cient in the average case of algorithmic
needs for a wide variety of applications. This thesis is a contribution for designing such
dedicated hardware architectures for homomorphic encryption acceleration.

This thesis

Homomorphic cryptography is a �eld that is still emerging. Although many applications are
being considered, few have the merit of being explored, and even fewer are already feasible on
a large scale. Nevertheless, research is making fast-paced progresses towards its use outside
the laboratories. And we hope that some of the contributions associated to this thesis may
help this development.

Before mentioning our scienti�c contributions, we will detail a bit the general problematic
of homomorphic cryptography and that of its hardware acceleration. From this we will present
the results of our work.

23

The problematic

The main goal of research on homomorphic cryptography is to de�ne an encryption scheme
that has encrypted equivalents for all the operations that can be applied on data. This goal
is referred to as Fully Homomorphic Encryption (FHE). The fact that it took almost 30 years
between the introduction of the concept and the �rst theoretical construction of an FHE
scheme is no coincidence. Indeed, two intersecting theoretical problems exist.

The �rst is the di�culty of �nding expressions of mathematical problems that allow ho-
momorphic encryption schemes to be constructed. Just like for asymmetric cryptography,
these mathematical problems ensure the security of the schemes. But they also in�uence
the algebraic structures of the cleartext and ciphertext spaces, and hence the construction of
equivalent operations.

The second is the necessary presence of an encryption noise. But the noise amplitude
in the ciphertexts grows with operations in the encrypted domain. Above a certain noise
threshold, the decryption process stop working.

With the research that followed the �rst theoretical construction of an FHE scheme, some
intermediate solutions brought the usages of homomorphic encryption close to being practical
at large scale. Nevertheless, the research on hardware acceleration for these schemes has to
cope with two main issues.

The �rst is the variety of scheme propositions. In less than 10 years, four generations of
schemes have already been proposed. Hence, their respective maturities and advantages could
not be fully and objectively compared over such a short period of time. And of course, each
has its own algebraic characteristics which makes di�cult, if not impossible, the de�nition
of a computing architecture that would accelerate homomorphic encryption in general. The
result is therefore a more qualitative positioning in the choice of schemes to consider for
hardware acceleration. During the preparation of this thesis, our analysis of the state-of-
the-art of homomorphic cryptography made us consider a particular scheme named after its
authors Fan and Vercauteren (FV). It appears as one of the main representatives of the second
generation of HE schemes and is well accepted in the FHE community.

The second problematic is that the most mature HE schemes from our point of view
have their parameterization dependent on the applications to be performed in the encrypted
domain. And of course, it would have been too easy if the parameter ranges were small. This
is due to the schemes' noise growth which requires the noise gauge to be sized properly. In
the case of the FV scheme, the handled elements are polynomials with large degree and large
coe�cients. Both degree and coe�cients get signi�cantly larger with the noise absorption
capacity.

Scienti�c contributions

During this work, we have particularly addressed the issue of the wide range of the sizing
parameters. The literature has proposed the basic elements upon which are built our contri-
butions. Namely, the use of Residue Number System (RNS) to tackle the complexity brought
by large integer arithmetics, and the use of Number Theoretical Transforms (NTT) to reduce
the asymptotic complexity of polynomial multiplications. Building on this, we argue that
the coupled approach of RNS and NTT allows the de�nition of hybrid computing systems,
which promise a signi�cant acceleration of encrypted-domain computing with the FV scheme.

24

This thesis results from the in-depth analysis of FV as well as contributions to solve the main
di�culties of combining the use of RNS and NTT for large parameters.

Our main contributions are therefore the following. First, an analysis of the RNS/NTT-
coupled approach and a theoretical validation of its feasibility up to very large parameter
sets. Second, the exploration of GPU acceleration of some RNS speci�c algorithms brought
by concomitant works for the full adaptation of FV to RNS. Third, the design and a proof-
of-concept implementation of a data �ow oriented hardware for e�cient residue polynomial
multiplications, and the study of its capability to scale.

This last contribution is the subject of particular attention in order to overcome certain
design problems that have previously limited the feasibility of the coupled approach at large
scale. In particular, we propose a solution to locally pre-compute the values necessary for
NTT computations without impacting the operations' throughput. This is achieved with two
contributions: the design of a fully-streaming multi-�eld NTT, and the design of a twiddle
factor set generator. Finally, to take into account the issue of signi�cant changes in FV pa-
rameters w.r.t. an application, the automatic generation of RTL descriptions for the proposed
designs has been explored.

Outline of this document

This document begins by positioning our work within the state-of-the-art of homomorphic
encryption acceleration. First, we identify a subset of well-accepted schemes at the time of
this thesis begun, and present their implementation issues. It is followed by a discussion on
the existing solutions and related works addressing these issues. The �rst chapter ends with
our arguments in favor of our decision to make the FV scheme the subject of an in-depth study
to propose a hardware acceleration strategy consistent with the wide ranges of its parameters.

In the second chapter, the FV encryption scheme is detailed. The study of its performance
pro�le orients us towards an implementation strategy based on the RNS representation and
NTT-based polynomial multiplications. This strategy is theoretically validated for the wide
spectrum of FV parameters. Analyzing closely the related work on a fully RNS version of FV
allowed us to re�ne this strategy by addressing both RNS speci�c functions and NTT-based
Residue Polynomial Multiplication (RPM).

The third and fourth chapters provide details on basic hardware blocks for the e�cient
design of NTT-based RPM. Both concern the problem of managing pre-computed values for
NTT. The third chapter deals more speci�cally with the automatic generation of RTL circuits
for data-�ow multi-�eld NTTs with a particular focus on the handling of the twiddle factor
sets. The fourth chapter presents an on-the-�y generation approach of these twiddle factors
satisfying the throughput requirements imposed by the NTT circuits.

Based on the analysis and contributions of previous chapters, the �fth chapter presents
our proposal of an hybrid computing system for the acceleration of FV. Firstly, the GPU
acceleration of RNS-speci�c functions is studied. Secondly, an architecture's proposal for
RPMs is detailed. Together these two studies allow a performance projection for an hybrid
GPU/FPGA computing system.

Finally, a general conclusion summarizes the present work and o�ers perspectives.

25

26

Chapter 1

Review of homomorphic encryption

and its practicability

This chapter presents a review of homomorphic cryptography and its implementations. The
primary objective is to position ourselves within the research activity around Homomorphic
Encryption (HE). As far as possible, we present the elements that make our qualitative choices
understandable. The second objective is to introduce the notions that appear in the various
discussions in this document as arguments for our choices.

After having introduced the basic notions of homomorphic encryption, a state of the art
of the HE schemes is presented, and our positioning is expressed. The detailed presentation
of the LWE and RLWE problems makes it possible to present the research for using HE in
practice. Finally, we highlight the implementation issues that must be addressed and we
summarize the related works on this matter.

1.1 Introduction

1.1.1 Technical introduction to homomorphic encryption

HE schemes are able to perform operations on encrypted data without decrypting them �rst.
This ability comes from choosing a homomorphism as the decryption function of the encryp-
tion scheme. The de�nition of a homomorphism directly highlights the desired feature: it is
a structure-preserving map between two algebraic structures of the same type (groups, rings,
�elds ...). Considering the plaintext space and the ciphertext space as algebraic structures,
having a homomorphism is then to have a map that expresses an equivalence between some
operations in the encrypted and clear domains.

To summarize, a HE scheme has its decryption function to be a homomorphism. Given an
algebraic operation ◦ over the ciphertext space and an algebraic operation ∗ in the plaintext
space, the decryption function is a homomorphism for these operations if and only if:

Dec(ct1 ◦ ct2) = Dec(ct1) ∗Dec(ct2), for all ct1, ct2 in ciphertext space.

It is said that an equivalent of ∗ exists in the ciphertext space by decryption homomorphism.

1.1.2 Basic notions for homomorphic encryption

This subsection presents some basic notions for the proper understanding of the homomorphic
cryptography's state-of-the-art.

27

Semantic security. This notion has been introduced in 1982 by Goldwasser and Micali [17]
and further detailed in 1984 [18]. It states that it should be unfeasible to e�ciently retrieve
information about messages from the knowledge of a polynomial number of ciphertexts and
the public elements of the encryption scheme. This is analogous to information theoretic
security w.r.t. a computationally-bounded adversary.

More precisely, the semantic security notion is equivalent to ciphertext indistinguishabil-

ity under chosen-plaintext attack. Meaning that an attacker is not able to distinguish two
ciphertexts encrypting the same message. In particular, Goldwasser and Micali show that
probabilistic encryption may be needed for that purpose, which is the case for homomorphic
cryptography. It is well known that HE schemes are necessarily probabilistic, and this has
two main consequences.

First consequence: there is a signi�cant data size expansion between clear and encrypted
data. Because the ciphertext space has to be signi�cantly larger than the plaintext space to
insure ciphertext indistinguishability. Thus, with the help of a well-constructed probabilistic
encryption, the upcoming of exploitable patterns in ciphertexts should be highly unlikely,
even after publicly known operations over encrypted data.

Second consequence: the ciphertexts are noisy because probabilistic encryption adds a
noise during the encryption. As already mentioned, this is one of the main issue for the
construction of practical homomorphic schemes. More details follow along with the de�nition
of the correctness notion.

Correctness. A homomorphic scheme is correct if the decryption function always gives the
appropriate plaintext. In the presence of noisy ciphertexts, the decryption function acts as a
�lter that erase the noise under a certain noise threshold. The problem with homomorphic
encryption is that operations in the encrypted domain make the noise term to grow. However,
the decryption function is able to erase only a given amount of noise, and becomes random
otherwise. Until recent works (onwards 2014), no homomorphic scheme has been found with
an e�cient enough bootstrapping procedure to perform encrypted operations that do not
increase the noise.

The noise growth during a ciphertext operation is dependent on operands' noise level.
For a generic study of the noise constraints for parameter selection, it is suitable to consider
a worst-case and an optimal scenarios. The worst-case scenario considers a binary tree of
operations from fresh ciphertexts towards a depth L operation (Figure 1.1a). Hence, the
noise level of the operands is at each level the maximum possible. The optimal scenario
considers that every operation is performed with one of the operand being a freshly encrypted
ciphertext (Figure 1.1b).

Homomorphic cryptography terminology. The main goal of homomorphic cryptogra-
phy is the de�nition of Fully Homomorphic Encryption (FHE) schemes. A FHE scheme has
an encrypted equivalent for all applicable functions in the clear domain. However, the cou-
pled di�culty of de�ning schemes with appropriate homomorphism properties while handling
noisy ciphertext makes things a little tricky. Intermediate solutions are easier to build and,
as a result, di�erent terminologies appear.

Partially Homomorphic Encryption (PHE) quali�es schemes with homomorphism proper-
ties only for functions composed of a subset of the plaintext space's algebraic operations. For
example, if the decryption function is a homomorphism of additive group (respectively mul-
tiplicative group), hence only functions composed of additions (respectively multiplications)

28

ct
(3)
14

×

ct
(2)
13

×

ct
(1)
11

×

ct
(0)
7ct

(0)
6

ct
(1)
10

×

ct
(0)
5ct

(0)
4

ct
(2)
12

×

ct
(1)
9

×

ct
(0)
3ct

(0)
2

ct
(1)
8

×

ct
(0)
1ct

(0)
0

(a) Binary tree of multiplications

ct
(3)
6

×

ct
(2)
4

×

ct
(1)
2

×

ct
(0)
0 ct

(0)
1

ct
(0)
3

ct
(0)
5

(b) Optimized circuit for multiplication

Figure 1.1: Tree models that consider the worst and optimal scenarios regarding the noise
growth for a degree L function in the encrypted domain. The considered operation is the
ciphertext multiplication and the multiplicative depth L is equal to three. The exponents in
brackets are the ciphertext depths with respect to multiplication.

have an equivalent in the encrypted domain.
Somewhat Homomorphic Encryption (SHE) is the term that qualify schemes that have

their decryption function to be at least a ring homomorphism. It means that both plaintext
additions and multiplications have equivalents in the encrypted domain. Nevertheless, they
are not FHE schemes due to the noise threshold limiting their evaluation capability.

Now that the basic notions have been settled, the next section presents the state-of-the art
of homomorphic cryptography.

1.2 State of the art of homomorphic cryptography

1.2.1 History towards FHE

The concept of Homomorphic Encryption (HE) has been introduced by Rivest, Adleman and
Dertouzos in 1978 under the term of privacy homomorphisms [19]. This work has followed the
highlight of multiplicative homomorphism property of the �rst version of the RSA cryptosys-
tem. Its main motivation was to bring together what seems to be two irreconcilable services:
sensitive data exploitation and time-sharing data bank. This initial paper has settled funda-
mental and desirable features of privacy homomorphisms. It has also given some basic yet
insecure constructions of such desirable schemes.

In particular, Rivest et al. has noticed that a scheme that is homomorphic for predicates
(like comparisons) may become insecure under some simple assumptions on the data bank side.
This was mostly due to deterministic encryption that makes the retrieval of information about
messages easier when exploiting known properties of the encryption scheme (set ordering, test
to zero, etc.). The notion of semantic security from Goldwasser and Micali has brought a
theoretical solution to this problem. Nevertheless, both important data size expansion and
noisy ciphertext has come along with probabilistic encryption.

29

At this point, an open problem for homomorphic cryptography was to de�ne secure en-
cryption scheme that is able to evaluate in the encrypted domain all functions applicable
in the plaintext domain. This desired goal is called Fully Homomorphic Encryption (FHE).
Both problematics of �nding an appropriate decryption homomorphism and handling noisy
ciphertext have been inherently linked since.

Between 1978 and 2009, the research have proposed only imperfect solutions regarding that
goal, although some of them are su�cient for some kind of applications. In particular, the
works essentially proposed Partial Homomorphic Encryption schemes. Additive homomorphic
schemes have been constructed like the Goldwasser-Micali encryption scheme [17] in 1982 or
the Pallier encryption scheme [20] in 1999. As well as multiplicative homomorphic schemes.
For instance, the Elgamal encryption scheme [21] in 1985, based on the Di�e-Hellman key
exchange.

Other works have dealt with the de�nition of Somewhat Homomorphic Encryption schemes.
The trouble was to make both addition and multiplication possible in the encrypted domain.
A noticeable work in that area is the one of Boneh, Goh and Nissim in 2005 [22]. They made
possible an in�nite number of additions plus one multiplication in the encrypted domain.

The �rst SHE scheme is brought by Aguilar-Melchor, Gaborit and Herranz in 2008 [23],
and improved in 2010 [24]. They allow the evaluation of a circuit of multiplicative depth d at
the cost of a ciphertext size's growth exponential with d.

Finally, the very �rst theoretical Fully Homomorphic Encryption scheme is brought by
Gentry in 2009. It is based on a SHE scheme using a noise management technique called
bootstrapping. This technique theoretically avoid an in�nite expansion of the ciphertext size
for homomorphic evaluation by reducing the level of noise. To achieve this, Gentry proposes
to homomorphically re-encrypt a ciphertext to homomorphically decrypt it just after. This
reduces the noise as the decryption function is a noise �lter, and this is theoretically secure
because everything happen in the encrypted domain.

Even if his initial construction was impractical, Gentry's work is commonly viewed as the
FHE breakthrough. In this thesis, we have only considered schemes that resulted from the
works of Aguilar-Melchor et al. and of Gentry. At the time of writing, it is classic to consider
four generations of Homomorphic Encryption schemes. The next subsection presents these
four generations.

1.2.2 Four generations of FHE schemes

First generation: bootstrapping. Before Gentry's paper of 2009 [25], PHE and SHE
schemes were known, but no concrete solutions to build FHE schemes existed. Gentry has
based his construction of the �rst FHE scheme on what he called a bootstrapping procedure: it
consists in evaluating the scheme decryption function in the encrypted domain. A SHE scheme
having su�cient noise gauge for bootstrapping plus at least another encrypted operation
(addition or multiplication) becomes a FHE scheme.

Gentry proposes to see the decryption function as a noise reducing procedure. By over-
encrypting a ciphertext and homomorphically apply the decryption function, the result is still
encrypted but with a "fresh" noise level. Gentry assumes that the scheme is still secure with a
public encrypted version of the private key. This security assumption is called circular security.
Further SHE/FHE schemes still rely on similar assumptions. All known noise management
techniques require somehow a partial and/or a masked knowledge of the secret.

30

The �rst implementations of bootstrapping-based FHE schemes were impractical [26, 27].
This is due to the important noise growth of the chosen SHE and their complex decryption
circuit. The size of the scheme elements and the primitives' performance are truly not as
competitive as those of further generations. For example, the smallest parameter set for
the best implementation of Gentry's scheme [27] results in a public key of 17 Mbyte and
bootstrapping procedure in 6 second on an high-end server system. Hence, we mention these
schemes for completeness but our discussions will not consider them anymore.

Nevertheless, Gentry's initial work has opened the gate to numerous advances in the
de�nition of more e�cient SHE and FHE schemes.

Second generation: Leveled-FHE (L-FHE). The schemes of the second generation
are not stricto sensus fully homomorphic, but can nevertheless address applications with an
arbitrary prior-�xed complexity. This is due to less radical noise management techniques than
bootstrapping that keep the noise under the threshold limit a �xed number of times. The
parameters of these schemes are chosen for a given evaluation capability in the encrypted
domain, characterized in practice by the multiplicative depth of the considered application.
This is because the noise growth during additions is negligible compared to its growth during
multiplications. The common quali�cation for this kind of schemes is Leveled-FHE.

The initial techniques are called modulus switching or key switching and appear with
the works of Brakerski and Vaikuntanathan [28, 29]. In particular, the modulus switching

technique became the angular stone of a well accepeted scheme called BGV [30]. A ladder
of moduli is used to control the noise level in the ciphertexts. A ciphertext is constructed
with element modulo the product of all the modulus in the ladder. After a multiplication,
a modulus is simply "removed" of the ladder by scaling down the ciphertext. Doing so
reduces proportionally the ciphertext's noise making room to perform further multiplications.
With this technique, the noise growth is linear with the multiplicative depth of the evaluated
function; in contrary to a quadratic noise growth in concomitant SHE schemes.

A disadvantage of having a moduli ladder is that the size of a ciphertext varies along
the operations in the encrypted domain. In [31] Brakerski observed that the desired linear
noise growth could be achieved without a moduli ladder. The resulting schemes are called
scale-invariant. Brakerski constructs the �rst scale-invariant scheme upon a problem called
the Learning With Errors problem (LWE). A scheme builds upon a ring variant of the LWE
problem (RLWE) is quickly proposed by Fan and Vercauteren (FV [7]). The FV scheme is
still now a well-accepted candidate for practical HE applications.

Third generation: conceptual simpli�cations for L-FHE. The third generation revis-
its the second generation to simplify the construction of Leveled-FHE schemes. They avoid
the need of extra primitives which purpose are to limit the noise growth or to restructure
ciphertexts due to non-canonical scheme primitives. Among the works from this generation,
the initial GSW [32] and SHIELD [8] are the most popular. They are both based on Brakerski
schemes [31].

From a practical point of view, third generation schemes are more specialized than those
of second generation. They have a highly reduced noise growth considering applications that
only require multiplications with one of the operands being a fresh ciphertext. This scenario
has been presented in Figure 1.1b when presenting the correctness notion. Hence, the schemes
of the third generation are promising candidate for the applications that �t in this scenario.

31

Fourth generation: gate bootstrapping. The fourth generation revisits the bootstrap-
ping approach [33, 34, 35, 6]. This generation makes bootstrapping being inherently linked
with an arithmetic operation rather than solely a noise-reducing procedure. In a nutshell, any
arithmetic operation results in a fresh ciphertext. Hence, the level of noise is not cumulative
anymore because the ciphertext is always a fresh one. Some works call this approach gate

bootstrapping, in reference to the equivalent bitwise operations considering a binary message
space.

This generation is really promising for a generalized use of homomorphic cryptography,
and in particular the TFHE [6] scheme. This scheme evaluates its bootstrapped gate in the
order of tenth of milliseconds. However, its relative youth makes di�cult the quali�cation of
the proper maturity and requires the exploration of e�cient implementation strategies before
considering dedicated hardware implementations.

1.2.3 Additional considerations and positioning

At �rst, the research's e�ervescence around homomorphic cryptography can be confusing for
whom is interested in practical considerations on SHE/FHE. Nevertheless, when looking for
maturity, it seems that LWE-based schemes (and in particular those over its ring variant
RLWE) are currently the most balanced in terms of security and e�ciency.

Indeed, the improvements of the second generation, and later of the third and fourth
generations, were mainly dependent on the upcoming of the Learning With Errors (LWE)
problem. This problem is introduced by Regev in 2005 [36] and formalized by the same author
in 2010 [37]. The LWE-based schemes often handle matrices and vectors of integer elements.
Its ring variant RLWE makes the schemes to handle matrices and vectors of polynomial ring
elements.

The fourth generation also constructs its schemes over the LWE problems. But its most
promising scheme TFHE [6] has chosen an algebraic structure slightly di�erent from others to
improve primitive performances. In particular, it considers polynomials with real coe�cients
modulo one. Consequently, it does not face up the same implementation problems, and hence
requires di�erent implementation approaches.

The literature considers also other mathematical problems for the HE context. Since the
second generation, some works [38, 39, 40] have constructed schemes upon NTRU [41] and
NTRU' [42] hardness. These problems are related to the search for the shortest vector in
a lattice under some additional security assumptions. Due to attacks exploiting sub�elds'
presence in some overstretched versions of these NTRU assumptions [43, 44], NTRU-based
schemes are not considered su�ciently secure for the homomorphic cryptography context.
Indeed, in order to be competitive, these schemes require choosing parameters that put them
dangerously closer to simpler resolution of the underlying NTRU problem.

Another family of cryptosystem regroups a list of improvements over a scheme introduced
by van Djik et al. [45] in 2010. Unlike the other schemes, which are more or less related to
lattices, they rely on a problem over the integers called the Approximate Greatest Common

Divisor (AGCD) problem. These schemes [46, 47, 48, 49] are conceptually simpler than those
over lattices. However, they do not have the same practical e�ciency, in particular regarding
the size of the handled keys and ciphertexts. For example, in the scale-invariant scheme
proposed by Coron et al. [48], for a reasonable security setting (λ = 80) the public key size is
roughly 100 GByte and the key generation took 213 hours on a high-end server system.

32

The current literature makes us consider that RLWE-based schemes are the closest to
concrete utilization. In particular, the FV scheme [7] (2nd generation) and the SHIELD [8]
(3rd generation) are well accepted as Leveled-FHE schemes. For its part, the leading scheme
of the fourth generation (TFHE) seems not to require similar implementation approaches
than FV and SHIELD. Nevertheless, we assume unlikely that TFHE totally eclipses FV and
SHIELD, because the utilization context for these schemes are not likely to be the same. We
are therefore interested in the issues of implementing the HE schemes based on the RLWE
problem.

After these considerations on the state-of-the-art of homomorphic cryptography, we now
discuss implementation issues. Beforehand, the LWE and RLWE problems are described in
order to present their parameters and their algebraic structures.

1.3 The Learning With Errors (LWE) problem and its ring vari-
ant (RLWE)

The Learning With Error (LWE) problem and its ring variant (RLWE) have led to major
improvements in homomorphic cryptography. They give the most accepted schemes of sec-
ond and third generations. They allow simpler construction with algebraic structures and
operations giving relatively good execution performances. Furthermore, they also give good
reasons to believe in their hardness.

1.3.1 The LWE problem

The Learning With Errors problem is introduced by Regev in 2005 [36] and formalized by the
same author in 2010 [37]. Regev proves this problem to be secure under quantum-reduction to
approximate general lattice problems. The reduction proof has been enriched with classical
approaches [50, 51]. It means that for some adequate parameters this problem is at least
as di�cult as some problems over lattices, whose di�culties are quite well accepted. Even
if some blurs remain in the concrete choice of parameters, the LWE problem is a promising
candidate for post-quantum cryptography. Most of the underlying descriptions follow the
survey of Regev in [37] and thesis works of Migliore [52] and Bonnoron [9].

Introducing example. A particular formalism describes the LWE problem as the task of
recovering a secret vector s ∈ Znq given a sequence of random approximate linear equations on
s. To clarify this description, here is the example given in Regev's survey.

Consider vectors of dimension n = 4 with elements uniformly sampled modulo q = 17,
and consider also an error distribution χ on ±1, For a given secret s ∈ Z4

17, a new random
approximate linear equation is produced as follow. Sample uniformly an element a over Z4

17,
sample an error e from χ, and express equation over the variable x ∈ Z4

17:

〈a,x〉 mod 17 ≈ (〈a, s〉+ e) mod 17.

The problem instance consists in �nding x = s = (s1, s2, s3, s4) ∈ Z4
17 given an arbitrary

number w of random approximate linear equations. For instance with s = (0, 13, 9, 11).

33

14s1 + 15s2 + 5s3 + 2s4 (mod 17) ≈ 8
13s1 + 14s2 + 14s3 + 6s4 (mod 17) ≈ 16
6s1 + 10s2 + 13s3 + 1s4 (mod 17) ≈ 3

3s1 + 6s2 + 4s3 + 5s4 (mod 17) ≈ 16
...

6s1 + 7s2 + 16s3 + 2s4 (mod 17) ≈ 3

The hardness of this problem is function of n, q and the probability distribution χ that
sample the error. The following paragraphs detail these notions with a more formal de�nition
of the LWE problem.

LWE de�nition. Let n ≥ 1 and q ≥ 2 be two integers, and χ a probability distribution
over the set of integers (−q/2, q/2] (noted by convention Zq). The naming convention refers
to n as the dimension, q as the modulus and χ as the error distribution of the LWE instance.
A classical choice for χ is a zero centered normal distribution of standard deviation σ rounded
to the nearest integer. An LWE instance is then de�ned by its three parameters n, q, and σ
(further called error size).

Given s ∈ Znq , let As,χ be a probability distribution over Znq × Zq. This distribution is
obtained by following the process hereafter: choose a vector a ∈ Znq uniformly at random,
choose an integer e ∈ Zq according to χ, and then output (a, 〈a, s〉 + e) ∈ Znq × Zq. Note
that elements given by As,χ are approximate linear equations similar to those in the simple
example of previous paragraph.

Considering the distribution As,χ, it is said that an algorithm solves (n, q, σ)-LWE if, for
any s ∈ Znq and given an arbitrary number of independent samples from As,χ, it outputs s
with high probability. Among all known algorithms solving the LWE problem, none require
less than 2O(n) memory or time complexity for correctly chosen (n, q, σ). Meaning that
it is possible to construct LWE instances that cannot be solved given a computationally
bounded adversary. At least in the present state of our knowledge concerning the di�cult
underlying problems. Among the reasons to believe in the hardness of the LWE problem,
the most important are the proven reductions of LWE hardness to worst-case hardness of
standard lattice problems [36, 50, 51]. The hardness of the latter's problems is well accepted
considering their resistance to research e�orts to solve them.

Simple scheme construction. Upon this problem, Regev proposed a simple asymmetric
scheme that is detailed here. The purpose is to understand how the LWE problem could be
used to construct an encryption scheme. The scheme is called REG in this description.

Let (n, q, σ) be an LWE instance hard to solve for a given number w of approximate
linear equations.

• REG.SecretKeyGen(λ): sample s from Znq , and output sk = s.

• REG.PublicKeyGen(sk, w): sample w vectors a1, ...,aw uniformly from Znq and w error
o�sets e1, ..., ew from χ.
Return pk = {(ai, bi)}wi=1, with bi = 〈ai, s〉/q + ei.

• REG.Encrypt(pk, w, m ∈ {0, 1}): to encrypt a binary message m, choose a random
subset S of the w public key elements {(ai, bi)}wi=1.
Compute c0 =

∑
S ai and c1 = m/2 +

∑
S bi.

Return ct = (c0, c1) ∈ Znq × Zq.

34

• REG.Decrypt(sk, ct): compute r = c1 − 〈c0, s〉/q.
Return m = 0 if r is closer to 0 than to 1/2 , return m = 1 otherwise.

The proof of correctness follows from an appropriate choice of parameters and some prob-
ability analysis (see [36]).

Choice of parameters. As introduced in previous paragraphs, the hardness of the LWE
problem (and hence the security of the schemes) is dependent of its parameters (n, q, σ).
Since 2005, numerous works have re�ned the practical choice of parameters. This derivation
is mainly empirical and relies on some estimation models of all known attacks against LWE.
The current state-of-the-art estimator is maintained by Albrecht [53].

In the case of LWE instances for homomorphic encryption, the additional dimension of
correctness must be taken into account in the derivation of parameters. The resulting deriva-
tion rules have multiple elements to consider making them quite complex at �rst sight. Here
are some simple thumb rules regarding the derivation of parameters.

Security is mainly improved when increasing the dimension n of the underlying problems,
but n has also an error magni�er e�ect. Indeed, the error size σ should not be too small
regarding the dimension (σ > ω(

√
n)) in order to e�ectively mask enough information for the

LWE problem to be di�cult. Correctness is improved when the noise is very small in front of
the modulus (σ � q). Nevertheless, larger q decreases security for a given n [37] (q < 2poly(n)).
Thus when going for better correctness, one has to be careful to not reach the upper bound
on q or the lower bound on σ.

We note that this re�nement of parameters remains an active research area, and in partic-
ular for more specialized version of LWE like the Learning With Errors over Rings (RLWE).

From a practical point of view, the LWE-based schemes have rather large elements to handle.
Thus, their practical uses tend to be expensive in terms of memory usage, performance and
communication cost. These practical issues are particularly noteworthy for FHE applications
as the parameters must be large enough for correctness. These are the reasons for the FHE
community to explore LWE problem specializations to more structured algebraic structures
like polynomial rings.

1.3.2 The LWE problem over rings

The Learning With Errors over Rings (RLWE) is a specialized version of the Learning With
Errors problem to polynomial rings over �nite �elds. This specialization allows the addition
of extra-algebraic structures in order to improve the e�ciency of cryptographic schemes built
upon the problem. The RLWE problem is formalized by Lyubashevsky et al. [54] in 2010.

RLWE de�nition. The hereafter de�nition of RLWE is slightly di�erent from [54], and
this should be taken into account for rigorous hardness analysis [55]. Nevertheless, this has
only an in�uence on the parameter selection (in particular in the noise distribution). The two
de�nitions are equivalent from an computational perspective.

Let R be a ring of degree n over the integers, q a positive integer and χ a probability distri-
bution over Rq = R/qR, the quotient ring de�ned by the modulus q. For simplicity, consider
R to be the set of polynomials with integer coe�cients provided with polynomial addition
and polynomial multiplication. Similarly, consider Rq as R with integer coe�cients modulo

35

q. The distribution χ may be seen as sampling n coe�cients from a normal distribution over
[−q/2, q/2[, with standard deviation σ, to construct a polynomial of Rq.

Given s ∈ Rq, let As,χ be the probability distribution over Rq ×Rq obtained by following
the process hereafter. Choose an element a ∈ Rq uniformly at random, choose an element
e ∈ Rq according to χ, and then output (a, (a · s+ e) mod q) ∈ R2

q .
Considering the distribution As,χ, it is said that an algorithm solves (n, q, χ)-RLWE if,

for any s ∈ Rq and given an arbitrary number of independent samples from As,χ it outputs s
with high probability. The decision version of the problem consists in distinguishing samples
from As,χ from uniform samples in R2

q .

Simple encryption scheme. When formalizing the problem, Lyubashevsky et al. [54]
present a simple asymmetric encryption scheme called here LPR.

Select a polynomial ring R = Z[X]/(F (X)), a modulus q and a probability distribution
χ, with (n = deg(F), q, σ) depending on the security parameter λ. Choose also a plaintext
modulus t, de�ning the ring Rt in which the message will be encoded before encryption.

• LPR.SecretKeyGen(λ): sample s from χ, and output sk = s ∈ Rq.

• LPR.PublicKeyGen(sk): sample a uniformly from Rq, e from χ.
Compute p0 = [−(a · s+ e)]q and set p1 = a.
Return pk = (p0,p1) ∈ R2

q .

• LPR.Encrypt(pk, m ∈ Rt): Let ∆ = b qt c, and u, e1, e2 being samples from χ.
Compute c0 = [p0u+ e1 + ∆m]q and c1 = p1u+ e2.
Return ct = (c0, c1) ∈ R2

q .

• LPR.Decrypt(sk, ct): Return m =
[
b tq · [c0 + c1 · s]qe

]
t
.

To express the correctness requirement, let consider that [c0 + c1s]q = [∆[m]t + v]q. The
polynomial v is commonly called the noise term of the ciphertext (c0, c1). It follows that the
decryption is correct if ‖v‖∞ < (∆− rt(q))/2, with rt(q) = t(q/t−∆).

RLWE hardness. In the initial paper of Lyubashevsky et al. [54] formalizing the RLWE
problem, the authors prove the hardness of search-RLWE by a quantum reduction of worst-
case problems over ideal lattices. In a recent paper Peikert et al. [56] give an equivalent
result for decision-RLWE over which most of SHE schemes rely on. Nevertheless, the RLWE
problem and its parameters characterization are not as well explored as for LWE.

Parameterization for RLWE-based schemes often extrapolates that of LWE-based ones.
Thus, it does not take into account the speci�cities of RLWE algebraic structures. Hence,
the upcoming of RLWE cryptanalysis changing this parametrization is a potential event to
consider. Nevertheless, it seems reasonable that further cryptanalysis will not deeply change
the ranges of parameters.

The following paragraph details the algebraic structures of RLWE-based schemes consid-
ered for e�cient construction of FHE.

Algebraic structures. The RLWE problem de�ned in [54] is focused on the polynomial
rings R = Z[X]/(Φm(X)) of integer polynomials modulo a cyclotomic polynomial of order m.
By de�nition, Φm(X) =

∏
η(X − η) where η ranges over the m-th primitive roots of unity.

36

The quantum hardness reduction from ideal lattice problems has been proven for general
cyclotomic �eld [54], and recently even for any number �eld [56]. Most RLWE instances
choose the m = 2k-th cyclotomic polynomials in practice. It implies that Φm(X) = Xn + 1
with n = m/2. The attractive complexity brought by a special case of FFT-based polynomial
multiplication motivates this choice. These approaches are presented later in this chapter.

In addition to the n resulting from the choice of R, the RLWE problem requires the
selection of an integer modulus q > 1 that bounds the size of the polynomial coe�cients.
Accordingly to q, Zq de�nes the set of integer [−q/2, q/2[, and this notation is extended to
de�ne Rq = Zq[X]/(Φm(X)) the subset of R with coe�cients in Zq. In practice, the handled
elements are viewed as integer polynomials reduced modulo (Φm(X), q). The hardness result
of Peikert et al. [56] yield for any modulus q as long as it has the appropriate size regarding
n and χ.

The previous description of the LWE and RLWE problems provide a better understanding
of the state-of-the-art for the implementation of homomorphic encryption. The objective is
to understand our positioning in relation to the multiplicity of works addressing issues at
di�erent levels.

1.4 Homomorphic encryption in practice

One of the main implementation issue for homomorphic encryption is the data size expansion
resulting from the necessity of semantic security. Another issue is the wide variety of applica-
tions in conjunction with only intermediate solutions for encrypted-computing. The second
issue is particularly present when considering L-FHE schemes as we do. Without considering
any particular application, it is nonetheless important to consider how the schemes and their
parameterizations in�uence the e�ciency of an encrypted application.

In this section the literature's solutions to these problems are presented. First, it intro-
duces known techniques to mitigate the impact of the data-size expansion. Then, it presents
a typical example of HE scheme comparison and �nally exposes the question of choosing a
plaintext space w.r.t. a message encoding method.

1.4.1 Mitigating data expansion impact

Data size expansion has two major impacts. First, an important computational overhead
compared to a non-encrypted application (roughly millions of times slower). Second, commu-
nications are quickly problematic when going for applications with lots of data.

Beside the search for homomorphic schemes with reduced data size expansion, two meth-
ods to address this issue are commonly presented. One results from the exploitation of the
algebraic structures of some schemes to pack multiple messages in independent ciphertext's
"slots". This technique is known as batching and addresses the two dimensions of the data
expansion problem. The other is known as transciphering and "only" addresses the com-
munication overhead. It is based on the ability of an homomorphic scheme to evaluate the
decryption function of classical symmetric schemes.

Batching. The batching technique for homomorphic cryptography is introduced by Smart
and Vercauteren in 2010 [26] and formalized a little after in [57].

37

In a nutshell, this technique is the exploitation of the Chinese Remainder Theorem (CRT)
to decompose the scheme message space into multiple sub-spaces. Not all the schemes are able
to use this technique due to the algebraic structure of their message space. The presentation
here mainly refers to schemes based upon the RLWE problem.

Smart and Vecauteren propose to select the polynomial F (X) for the ring R as a monic
irreducible polynomial over Zq[X] but as a reducible polynomial over Zt[X]. They present the
odd m-th cyclotomic polynomials as possible candidates for F (X). This choice is motivated
by their desirable factorization property over Zt[X], and in particular for t = 2.

When t = 2, Φm(X) factors over Z2[X] into r = (ϕ(m)) I/d distinct polynomials of degree
d, with d being the smallest integer such that 2d = 1 mod m.

Φm(X) =

r∏
g=1

Fg(X) , Fg ∈ Z2[X] and deg(Fg) = d for all g in {1, . . . , r}. (1.1)

Due to this decomposition, the polynomial ring Z2[X]/(Φm(X)) is isomorphicII to the
product ring Z2[X]/(F1(X))×...×Z2[X]/(Fr(X)). Moreover, each �nite �eld Z2[X]/(Fg(X))
is isomorphic to the Galois �eld of order 2d. Hence, an element of Z2[X]/(Φm(X)) may embed
up to r elements of any Galois �eld of order 2k with k | d. In particular for k = 1, it implies
that an element of the message space may embed up to r binary elements in independent
"slots". For a more detailed presentation of the technique, please refer to [57].

As this technique only exploits the algebraic structure of the message space without mod-
ifying anything in the ciphertext space, it consequently gives a r times speed up at roughly no
cost. Nevertheless, it has to be considered that only slot-wise operations are straightforwardly
available in the ciphertext space. Some techniques to handle the slots while in the ciphertext
domain exist though [58].

The main limitation of this technique is that it is not compatible with an optimization for
polynomial multiplications known as Negative Wrapped Convolution (NWC). Indeed, F (X)
has to be a power-of-two cyclotomic polynomial for NWC, which is not suitable with batching
for binary message. One may �nd a plaintext space parameter t that allows batching with
power of two cyclotomic polynomials. Nevertheless, non-binary message may be inconvenient
at another level. This is more detailed in subsection 1.4.2.

To conclude, this technique is a promising approach to reduce the computational and
communication overheads. A limitation is its di�cult integration with the choice of polynomial
multiplication through NWC (only non-binary message).

Transciphering. The transciphering approach has been introduced by Naehrig et al. [59]
in 2011. This approach is an essential element of what is called hybrid homomorphic frame-

work [60] which proposes a practical approach for homomorphic outsourced computation.
The principle is to use a classical symmetric encryption scheme to upload the sensible

data to the homomorphic server. This implies that the upward communication overhead is
almost nonexistent (beside the key exchange). The encryption scheme is then transformed
from classic to homomorphic directly on the server. This is possible due to the capacity of

IThe function ϕ : N∗ → N∗ refers to the Euler's totient function. This function returns, for any natural
m > 0, the number of integer n mutually prime with m, for all n ≤ m.

IIBy CRT applied to polynomials.

38

the homomorphic scheme to evaluate in the encrypted domain the decryption circuit of the
classical symmetric scheme.

This approach has been improved by Canteaut et al. [61] to reduce the transciphering
latency. They propose to use a lightweight additive IV-based stream cipher as the classical
symmetric scheme.

PRFC

SC

IV

K1, ... , KG

PRFH

(SC)H

(IV)H

(K1)H, ... ,(KG)H

H (D1)H, ... , (DG)HD1, ... , DG

user domain server domain

EncH

PH PH

EncH

EncH

initialisation

keystream generation

data transfert

(D1)C, ... , (DG)C

homorphic
application

Figure 1.2: Stream cipher based transciphering.

Figure 1.2 presents the principle of their stream-based transciphering protocol. The user
and the homomorphic sever agree on a Pseudo-Random Fonction (PRF) and on a homo-
morphic encryption scheme. The PRF function is used to generate keystream elements: in
classical form on the user side, and in homomorphic form on the server side. For this key-
stream generation, the user only need a classical secret key (S)C and a set of Initialization
Vector IV. On the server side, only the homomorphically encrypted secret (SC)H and initial-
isation vector (IV)H are required to generate the homomorphic form of the keystream. The
data transfer from the user to the server is then a simple classical encryption of the data
using the keystream generated on the user side. At reception, the server over-encrypt those
data with the homomorphic scheme and apply the homomorphic XOR operation (ciphertext
addition) with the homomorphic version of the keystream. The resulting elements are then
the homomorphic ciphertexts of the initial data.

As speci�ed in the Figure 1.2, the communication is decomposed in three di�erent phases.
First, the initialization consists in the choice of the PRF and homomorphic scheme, and in
the key exchange. Second, the keystream generation that is somehow independent of the
concrete transfer of the payload as it can be performed in advanceI. Third, the data transfer

is done without any data overhead because the symmetric scheme does not have any. The
server has only to transcipher the received data with the homomorphic keystream when they
are required for further homomorphic computations.

As a drawback, this approach imposes to chose the homomorphic scheme parameters such
that it can evaluate the PRF function plus the application desired by the user. This has a
signi�cant impact on L-FHE schemes as they have to dimension their parameters to have a
su�cient noise gauge.

IFrom time to time, a new IV may be required to refresh the keystream generation, but this may be
considered negligible as the user and server may also agree on an IV generation protocol without compromising
the security.

39

It is important to note also that it only solves the communication overhead for upward
communications. Downward communications would require transciphering from homomor-
phic encryption to classic encryption and that is not possible. Nevertheless, numerous appli-
cations would not require large downward communications and the overhead is still reasonable
to pay.

1.4.2 Choosing an HE scheme and a plaintext space

The question of concrete choice of homomorphic scheme is of importance for whom want to
implement a secure outsourced application. For instance, only a truly FHE scheme is able to
address generic cloud computing applications with function not known beforehand. In this
case, the fourth generation appears as the most promising. In other scenarios, like a cloud
medical storage system, it is reasonable to consider that all the functions to apply on the
private data are speci�ed beforehand. In this case, a dedicated L-FHE scheme from second
or third generation is enough.

Nevertheless, even when only considering the latter case, each scheme have their practical
advantages. A signi�cant example of this is given with the comparison of the FV and SHIELD
made by Guillaume Bonnoron during his PhD thesis [9].

Furthermore, even when considering a single scheme, the choice of a plaintext space (mod-
ulus t) along with a message encoding method may have a signi�cant impact on the e�ciency
of the homomorphic evaluation. The second paragraph of this subsection details the current
knowledge on this matter.

Comparison of FV and SHIELD. Despite being both constructed upon the RLWE
problem, the two schemes are quite di�erent. FV ciphertexts are vectors of polynomials in
R2
q and SHIELD ciphertexts are matrices of polynomial in RN×2q with N = 2 · dlog2(q)e.
Comparing the schemes noise growth, Bonnoron shows that FV is more suitable than

SHIELD for the evaluation of arbitrary binary circuit (bounded by scenario of Figure 1.1a).
In that case, both FV and SHIELD parameters need to expand to guarantee correctness and
security for larger multiplicative depth. Due to its vector structure, a FV ciphertext is then
much smaller than a SHIELD ciphertext.

When considering optimized circuits that require multiplication with fresh ciphertexts
(scenario of Figure 1.1b), SHIELD noise growth is far lower tan FV's one. Hence SHIELD
parameters (n, q, σ) do not need to expand much to satisfy security and correctness for larger
multiplicative depth evaluation capability. For FV, the parameters still have to expand quite
signi�cantly to satisfy the required multiplicative depth.

When considering batching as an SIMD computational improvement, the favorable noise
growth of a batched SHIELD ciphertext in the case of an optimized circuit does not apply
anymore (it is even worse with arbitrary circuits). Thus, batching with SHIELD requires a
great expansion of its parameters to ensure correctness and security. Hence, SHIELD becomes
quickly non-advantageous compared to FV over which batching does not signi�cantly impact
parameter ranges.

This comparative example shows the disparity of HE schemes. Further comparisons of this
type are still necessary to have a quantitative classi�cation of the di�erences and use-cases of
the di�erent schemes.

40

Plaintext space and message encoding choices. For RLWE-based homomorphic schemes,
the decryption homomorphism expresses the equivalence between operations on Zq[X]/(Φm(X))
(ciphertext space) and operations on Zt[X]/(Φm(X)) (plaintext space). The encrypted ap-
plication has then to de�ne how its data are encoded over the message space. Both t and the
encoding method impact the e�ciency of the encrypted computation.

The encoding methods are dependent of the use of the batching optimization. Without
batching, a simple encoding of a message consists in setting the message as the coe�cient
of degree zero of a polynomial in Zt[X]/(Φm(X)). With batching the encoding consists in
setting the r messages as coe�cient of degree zero of the r polynomials in Zt[X]/(Fg(X))
with g in 1, ..., r. In both examples, the encrypted computations are equivalent to operations
in Zt (modular arithmetic modulo t).

Concerning the choice of t, handling binary message (t = 2) allows the use of compar-
isons in the ciphertext domain (test of bit-sign, masking, etc.). Thus, it could simplify the
homomorphic evaluation for conditional operations. Nevertheless, the use of binary mes-
sages requires to decompose the clear application into an equivalent boolean circuit. This
may increase the number of encrypted operations to perform. To get a rough idea, consider
the boolean circuit of an 8-bit adder rather than being able to perform the addition in one
equivalent homomorphic operation (t = 28).

A recent work from Jäschke and Armknecht [62] speci�cally addresses the problem of
choosing this parameter t. They study this choice with regards to encoding methods for
e�cient natural, integer and rational arithmetic in the encrypted domain.

Considering the number of operations to perform in the encrypted domain, they show
that the optimal choice for t is 2, given the straightforward encoding methods described
above. They also consider an encoding in Galois FieldI GF (tk) (k in 2, ..., n or 2, ..., d in
case of batching). Nevertheless, it appears to always requires more operations than with the
straightforward method.

Considering now the multiplicative depth metric, they observe that small prime values
for t may result in shallower depth than t = 2, but such choices for t are hardly suitable
for generalized encrypted applications. Hence, the authors conclude that the optimal choice
for t with respect to the encoding method depends on the application. In this thesis, we
consider binary message space (t = 2), as it appears to us the most suitable for non-specialized
applications.

After having considered the work around the practical usage of homomorphic encryption,
we now focus on the implementation of RLWE-based encryption schemes.

1.5 Implementation of RLWE-based schemes

In this section, we are interested in the problems of implementing RLWE-based schemes. We
are therefore seeking to position our work within the related works.

1.5.1 Positioning on hardware implementation

Usually, homomorphic encryption schemes are �rst implemented in software. This allows to
test the scheme proposals, and to easily explore algorithmic optimizations.

IThis encoding takes into account the overall plaintext structure (polynomial of degree less than k with
coe�cient in Zt) that is isomorphic to GF (tk).

41

For this thesis, it was already a decision to position ourselves on a hardware implemen-
tation. This is explained by the performance limitations one experiments with software only
solutions for encrypted-computing. For instance, considering the encrypted-computing appli-
cation on genomic data from Singh et al. [63], the timings are in the order of half an hour
for computing the equivalent of 20 thousands logic gates. Thus, existing software implemen-
tations have not received any particular attention in this work. However, we mention here
some of them that are present in the literature, in case the reader wishes to go further.

To the best of our knowledge, four open software libraries implementing homomorphic
schemes based on the RLWE problem are currently available. SEAL [64] from Microsoft Re-
search, PALISADE [65] from the New Jersey Institute of Technology (NJIT), FV-NFLlib [66]
from CryptoExpert, and Cingulata [67] from CEA-List. The literature mention other imple-
mentations accessible when asking the authors. Among others we mentions the FV-FULL-
RNS from Bajard et al. [4] and the SHIELD implementations [8, 68].

During our work, we discuss in particular a variant of FV implemented in the PALISADE
library that is proposed by Halevi, Polyakov and Shoup [5]. This variant is a simpli�cation of
Bajard et al.'s work [4] making the FV scheme fully compatible with a di�erent representation
of number called the Residue Number System (RNS). The reasons and the description of this
representation are presented throughout this document.

Before presenting existing hardware implementations related to RLWE-based homomorphic
encryption, we �rst discuss the di�erent implementation issues from an high level point of
view.

1.5.2 Hardware implementation issues

The initial problem concerns the large size of the parameters n and q. It is complicated by
their high dynamics coming from the variation of multiplicative depth requirements for dif-
ferent encrypted applications. Both problem take their roots from security and correctness
requirements as explained in section 1.3. To get an approximate idea, the degree n can reach
several thousand, and the modulus q several hundred bits. Consequently, both the computa-
tional and memory complexities of the underlying operations are of major importance.

These operations are polynomial multiplications, polynomial reductions, polynomial ad-
ditions, scale-and-rounds and modular reductions. In practice, polynomial additions are not
problematic compared to the others, thus the literature does not mention any speci�c opti-
mization for them.

The most expensive operation is commonly the multiplication of polynomials. This is due
to its quadratic complexity with the degree n considering the schoolbook algorithm. But
two other types of algorithms are commonly known to reduce this complexity. The �rst
regroups Karatsuba [69] and Toom-Cook [70] algorithms extended to polynomials. Their
complexities are respectively O(n1.585) and O(n1.465). The second regroups the algorithms
based on Number Theoretical Transfrom (NTT) [71] (Fourier transform over a �nite-�eld)
with asymptotic complexity in O(n log n).

The polynomial multiplication is usually followed by a polynomial modular reduction to
get back to the considered polynomial ring. The complexity of this polynomial modular re-
duction is dependent of the hamming weightI h of the polynomial modulus, and of course also

42

of the degree n [72]. It also possible to compute these polynomial reductions by transposing
integer reduction algorithms to the polynomials (Barrett reduction for instance). A special
case of NTT-based algorithm for polynomial multiplication, called Negative Wrapped Convo-
lution (NWC), allows to directly perform the multiplication in the considered polynomial ring
without the necessity of a polynomial reduction. The drawback is that it is only compatible
with power of two cyclotomic polynomial rings (i.e. R = Z[X]/(Xn + 1)), and hence it makes
the batching of binary messages non-possible.

A scale-and-round operation is applied to each coe�cient of a polynomial. Thus, it has
a linear complexity with n and a constant complexity dependent of the sizes of the scaling
value and coe�cients. Usually, this scaling value involves a division by q. Depending on the
choice of q, this operation may be made trivial (q a power of two). But some other design
choices may also restrict the form of q.

Finally, the coe�cient arithmetic is most of the time modulo q. Thus, the choice of an
e�ective modular reduction allows the complexity of higher level operations to be positively
in�uenced. Once again, depending on the choice of q, this operation may be made trivial, or
just have a reduced cost.

Now that the general implementation issues for the RLWE schemes have been presented,
we will be able to clarify these issues by considering the related works.

1.5.3 Related works on hardware implementation

The intersection of these issues makes di�cult a proper comparison of all the works that led
to hardware implementations. Numerous approaches at application level may drive the im-
plementation choices. For instance, choosing to use the batching technique imposes to avoid
NWC for polynomial multiplications, or choosing a power of two modulus q is incompatible
with RNS representation. Furthermore, a good part of the existing works transpose some
approaches from non-homomorphic lattice-based cryptography toward the homomorphic con-
text. The resulting hardware will often not be fully compliant with the actual problematic of
the HE context.

To take into account this situation, we try to avoid premature comparisons. We have
chosen to classify the di�erent works according to their approach to implement polynomial
multiplication. However, this level of classi�cation hardly takes into account the other lower
level choices that may have motivated the authors. Thus, we will start by mentioning some
fairly general techniques to solve these lower-level problems. Then, related works will be
described w.r.t. their choices of polynomial multiplications.

Residue Number System. The large modulus q in�uences the complexity of the basic
arithmetic. With its growth for large multiplicative depth, the classic multi-precision arith-
metic shows some limitations. It involves a lack of parallelism due to intermediate result
propagation leading to important implementation cost and/or low execution performances.
Consequently, some work in the literature have proposed a di�erent representation system
called the Residue Number System (RNS).

The RNS is a non-positional representation of numbers according to a basis of mutually
prime moduli q1, ..., qk. This representation is a direct consequence of the Chinese Reminder

Inumber of non-zero coe�cients

43

Theorem (CRT) which expresses the ring isomorphism Zq ∼=
∏

1≤i≤k Zqi . Under this represen-
tation, modular arithmetic modulo q =

∏
1≤i≤k qi is performed with k smaller and independent

modular operations. For additions, subtractions and multiplications, the RNS representation
is an e�cient way of creating parallelism, but when it comes to divisions, some more complex
computations are required.

Modular arithmetic. With or without RNS representation, the question of computing
modular arithmetic arises. For modular additions and modular subtractions, input operands
are usually bounded by the considered modulus (q or the qi's in case of RNS representation).
Thus, they require only one addition, one subtraction and one comparison to be performed.

In the case of a modular multiplication, a reduction operation must be performed. Avoid-
ing the use of slow algorithms like Euclid division, the complexity of fast algorithm depends
on the considered modulus. In LWE-based cryptography, security does not restrict the choice
of q, but its size log2 q. When there are no additional restrictions due to particular implemen-
tation approaches, one may choose q to be a power of two. Hence, the divisions and modular
reductions are trivially performed.

Considering RNS representations, the di�erent modulus qi have to be co-primes. It forces
oneself to look for less trivial modular reduction algorithms. One may be interested in some
special primes like Mersenne's or more generally Solinas' primes. For these primes, modular
reductions are performed with modular additions and shifts.

For NTT-based polynomial multiplications, the modulus q has to be chosen such that
the NTT exists. This is often incompatible with special modulus like powers of two or Soli-
nas' primes. In this case, the litterature considers even more generalized modular reduction
approaches like Montgomery reduction [73] or Barrett reduction [74].

Polynomial multiplication. The design choices made for the hardware implementation of
RLWE-based encryption focus mainly on the objectives of e�cient polynomial multiplications.

In the litterature, we found only Mkhinini et al. [75] implementing the schoolbook algo-
rithm. Despite its simple adaptation to any choice of n and q, the implementation is limited
in execution performance due to its asymptotic complexity in O(n2).

Once again, we found only one work that implement the polynomial multiplications using
the Karatsuba algorithm, and no work implementing Toom-Cook algorithms. The in-depth
work of Migliore et al. [76] shows the advantages and the limitations of the Karatsuba ap-
proach. Due to the absence of major constraints in the application of Karatsuba, they are
able to �nely tune the FV's parameters for the desired security and multiplicative depth re-
quirement. In particular, their approach is compatible with batching of binary messages and
they are free to choose q as a power of two. Nonetheless, the complexity of Karatsuba can
only compete with NTT-based approaches up to some point in the growth of parameter sets.
They identify the performance turning point for (n = 6144, log2 q = 512) compared to the
implementation of T. Pöppelmann et al. [77] (n = 16384, log2 q = 512).

Numerous work have chosen NTT-based polynomial multiplication. The main motivation
is the reduced asymptotic complexity, but this does not come without a certain complexity
of implementation. In a nutshell, a NTT is a Fourier Transform over a �nite-�eld, and re-
quires the existence of a primitive root of unity over this �eld. Hence, fast algorithms for this
transform allows the computation of convolutions in O(n log n) rather than O(n2), but this

44

at the cost of O(n) precomputed values called twiddle factors. An attractive variant of NTT-
based polynomial multiplication is the previously mentioned Negative Wrapped Convolution
(NWC). It allows to perform the convolution on n-points rather than on 2n for a classic NTT-
based convolution, and it gives the result directly modulo Xn+ 1. This is advantageous when
choosing power of two cyclotomic polynomial rings (more described in Chapter 2). Neverthe-
less, the complexity of implementing NTT-based approaches in addition to the restrictions
for their existence often lead to limited design �exibility.

The most detailed NTT-based implementation we found are those of Pöppelmann et al. [77]
and Roy et al. [78]. The former implements a cached-NTT to improve the data locality when
computing the NTTs. Due to restrictions on q for the existence of the NTT, they could
not choose a modulus being a power of two, hence they consider Solinas primes for e�cient
modular reduction. They implement only two sets of parameters (n = 4096, log2 q = 124)
and (n = 16384, log2 q = 512), and notice the problematic of the large coe�cient sizes, in
particular for the scale-and-round operations.

The second work, from Roy et al. [78], presents a co-processor implementing building block
operations for NTT, RNS representation and scale-and-round operations. In particular they
consider the RNS representation to increase the parallelism during NTT-based polynomial
multiplications. To reduce the memory complexity, they also choose to store only a subset of
the twiddle factors and to compute the others on-the-�y. This implies around 10,000 bubbles
in the computation of the NTTs. Their co-processor is designed to handle polynomial with
degree up to n = 215 and, as they do not implement the NWC, they choose to implement a
Barrett polynomial reduction. Finally, it has to be noted they also have limitations in the
calculation of the scale-and-round operations. This is mainly due to the necessity of going
back from the RNS representation to a classical multi-precision representation.

Among the other works, Öztürk et al. proposed in 2015 [79] and in 2017 [80] two di�erent
versions of an RNS/NTT based accelerator. In both version, they implement iterative NTTs.
In the �rst version they choose to pre-compute the di�erent NTT twiddle factor sets on the
host side, and send them along with the polynomial coe�cients to their accelerator. In the
later version they store all the coe�cient inside the BRAMs of the targeted FPGA. In the
�rst case, it involves higher communication cost, and in the second case it involves a large
storage cost.

In 2017 Cousins et al. [81] developed data �ow NTT as a primitive of a co-processor for
SHE applications. The data �ow approach for NTTs allows a higher throughput at the cost
of duplicated twiddle factors. They chose to store the NTT twiddle factors in ROM �lled up
at compile time. They note that the storage cost for these twiddles is rather prohibitive.

Finally, other works can be mentioned as variants of those presented above. We have not
seen any signi�cant improvement in the latter. Among others: Khairallah et al. [82] implement
of a cached-NTT but consider RNS representation contrary to Pöppelmann et al. [77], and
Chen et al. [83] with memory access NWC addressing rather small degree n ∈ [256; 2048] and
small modulus log2 q < 57.

Remarks on related works. Our review of the literature has led us to note the di�culty
of proposing a consistent approach with respect to all the implementation issues. Indeed,
the most �exible polynomial multiplication approaches allow to simplify scaling and modular
reduction operations. But this only pays up to some size of parameter sets.

The NTT-based approaches for polynomial multiplication are more complex to implement.
A �rst issue due to the growth of n is the routing of coe�cients required by iterative-NTT

45

algorithms. This explains the works of Pöppelmann et al. [77] and Khairallah et al. [82]
exploring cached-NTT algorithms. These algorithms are designed to take the best from a
distributed computing environment.

A second issue is in the handling of twiddle factors. When both n and q get larger, the
required storage capacity for these values, or the communication cost for bringing them in,
is problematic as one may see in Cousins et al. [81] and Öztürk et al. [79, 80] works. This
explain the choice of Roy et al. [78] to compute them on-the-�y.

A third issue is in the handling of scale-and-round operations with NTT-based polynomial
multiplications. Indeed, the NTT does not allow simple choice for q to compute these scaling
operations (as seen in Pöppelmann et al. [77]). The RNS representation seems to make it
worse for this particular case as seen in Roy et al.'s work [78]. This is because they have to
get back into a classic multi-precision representation for this particular operation.

With regards to all the di�erent issues, it appears to us more important to look for a
�exible acceleration approach than one that is too early optimized for performances. And
for this, we will require to �x the case-study to a speci�c HE scheme. Then we will look to
propose an approach that takes into account, as much as possible, all the dimensions of the
problem.

1.6 Conclusion and positioning of this thesis

Throughout this chapter we have taken the time to present homomorphic encryption. In
particular, we have sought to describe as much as possible the elements that in�uence hardware
acceleration strategy for this new cryptography.

After studying the di�erent generations of encryption, we focused our study on L-FHE
schemes based on the RLWE problem. This choice implies that sizing parameters are de-
pendent on the considered encrypted application. Hence, the hardware acceleration approach
must take into account the large dynamic of parameters.

This was followed by a presentation of the di�erent application approaches for the practi-
cal use of homomorphic cryptography. This introduces to the batching optimization and the
transciphering approach that should be considered for proposal of consistent hardware acceler-
ation strategy. In particular, the transciphering involves in practice a minimal multiplicative
depth requirement.

Finally, the exploration of related works on the implementation of RLWE-based schemes
present the issue of de�ning an implementation strategy that takes into account all the mem-
ory and computational problems. This strategy should be �exible enough to improve the
practicability of L-FHE while avoiding too much premature specialization that are not suit-
able with the growth of parameters.

In order to de�ne such a strategy in the light of the related works, we choose to consider
a speci�c case study. We select for this the FV scheme as a representative of the second
generation of HE scheme, being quite well-accepted by the FHE community. Therefore, our
work has been focused on the hardware acceleration of FV.

46

Chapter 2

De�nition of an acceleration strategy

for the FV scheme

This chapter presents our analysis of the Leveled-FHE scheme of Fan and Vercauteren (FV)
towards the de�nition of a �exible hardware acceleration strategy.

After introducing the FV scheme along with some details on security, correctness and
parameterization, a �rst implementation strategy is set upon the analysis of a performance
pro�ling. The proposed strategy consists in coupling the RNS representation of numbers with
NTT-based polynomial ring multiplications. The feasibility of the coupled strategy is then
studied, and some concomitant works completing the strategy are reminded. Our analysis of
the FV scheme concludes by the orientation of our work toward the exploration of an hybrid
computing approach.

2.1 The Fan and Vercauteren (FV) SHE scheme

For completeness, this section describes the RLWE-based L-FHE scheme proposed by Fan and
Vercauteren in 2012. In addition to the primitives' presentation, this description is intended
to give an idea of the complexity of parameter derivation. These parameters must ensure
both security and correctness of the scheme.

The primitives' description is based on the original paper from Fan and Vercauteren [7].
The discussion about corectness is based on the paper of Lepoint et al. [84] which is itself
based on Bos et al.'s work [39].

2.1.1 Preliminaries

The motivation of Fan and Vercauteren is to transpose the LWE-based scale-invariant scheme
of Brakerski [31] to the RLWE problem. They construct their cryptosystem over the scheme
from Lyubashevsky et al. [54], presented in the previous chapter (subsection 1.3.2). They
essentially adapt the scheme to make it homomorphic by de�ning addition and multiplication
primitives.

They easily construct an addition primitive but things get more complex for multiplication.
They de�ne a multiplication primitive in three distinct steps. First, the proper multiplication
operation is a tensor product where ciphertexts are seen as vector of R2

q . The resulting vector
is then a non-canonical ciphertext in R3

q . Second, the non-canonical ciphertext is scaled by

47

t/q to reduce the noise level. Third, the non-canonical ciphertext is relinearized to get back
to a canonical form (vector in R2

q).
They present two solutions to perform the relinearization operation. Both rely on a

"special RLWE sample" called the relinearization key masking a part of the secret (i.e. s2).
The �rst one requires a decomposition of s2 in a base T . The second involves another modulus
g, chosen large enough to e�ciently mask s2.

The following description of FV's primitives is based on a set of parameters that are more or
less related to correctness and security. The required level of security is expressed according to
a parameter λ representing the minimum number of operations (2λ) to break the cryptosystem.
We remind also that the correctness requirement is expressed according to the multiplicative
depth L of the encrypted application. Finally, as introduced in Subsection 1.4.2, the choice
of the plaintext modulus t is made depending on the encrypted application.

These requirements involve the derivation of the following parameters:

- n: degree of the cyclotomic polynomials de�ning the polynomial ring R.
- q: ciphertext modulus de�ning Rq the ciphertext ring.
- σ: error size of a normal distribution χ over Rq.
- T : (relinearization version 1) decomposition base. For convenience, lT = blogT (q)c.
- g: (relinearization version 2) relinearization modulus, requiring also an extended error
distribution χ′ over R of standard deviation σg.

2.1.2 Cryptosystem primitives

To avoid cluttering the reader with the mathematical de�nitions of FV primitives, we de-
scribe here only their functionality. Details are available in the appendix of this chapter in
Section 2.6.

Core primitives. The core primitives de�ne the generation of the private and public keys,
and the encryption and decryption processes.

- FV.SecretKeyGen(λ): provides the private key sk ∈ R2.
- FV.PublicKeyGen(sk): provides the public key pk ∈ R2

q .
- FV.RelinKeyGen(sk, T or g): provides the relinearization key rlk ∈ (RlTq or R2

gq).
- FV.Encrypt(pk, m): encrypts a message m ∈ Rt in a ciphertext ct = (c0, c1) ∈ R2

q .
- FV.Decrypt(sk, ct): decrypts a ciphertext ct to retrieve the encrypted message m.

Evaluation primitives. The evaluation primitives are the basic operations of encrypted
computing. These are the ones that are of particular interest to us in this thesis.

- FV.Add(cta, ctb): performs an encrypted addition equivalent to an addition over Rt.
- FV.Mul(cta, ctb): performs an encrypted multiplication equivalent to a multiplication
over Rt. This primitive performs both the tensor product and the scaling by t/q to
reduce the noise. The result is a non-canonical ciphertext c̃t = (�c0,�c1,�c2) ∈ R3

q .
- FV.Relin(c̃t, rlk): relinearizes a ciphertext to get back to a canonical form ct ∈ R2

q .
- FV.Mul&Relin(cta, ctb, rlk): performs the multiplication and the relinearization in a
single �ow.

48

The e�ciency of FV primitives is mainly dependent on the parameters of the scheme.
The derivation of these parameters is quite complex and relies on security and correctness
requirements. In order to present the parameterization process, security assumptions and
correctness requirements are presented in the following subsections. It is then followed by
examples of parameter sets to get a fair idea of the parameter ranges.

2.1.3 Security assumptions

In this subsection are presented security matters for completeness of the presentation. In
particular, the weak circular security assumption is required to construct the relinearization
primitive, and the binary secret assumption reduces the noise in ciphertexts. Both assumption
are essential for the e�ciency of the scheme.

Decision RLWE. The FV scheme relies on the decision version of the RLWE problem
introduced in the previous chapter. At the time of their initial work, the proof of hard-
ness reduction of decision-RLWE was based only on cyclotomic number-�elds. Consequently,
the FV de�nition considers cyclotomic polynomial rings, which are R = Z[X]/(F (X)) with
F (X) = Φm(X) being a cyclotomic polynomial. About the modulus q, they had the knowl-
edge that hardness does not rely on a special shape for q [85], but on its size with respect to
n and σ.

A legitimate question is to know if the results of Peikert et al. [56] could be applicable to
the FV de�nition, and if it would change its structure somehow. It could makes us consider
other polynomial rings that may be more convenient for practical implementations. It seems
that it applies without any structural consequences. Nevertheless, as a precaution, this work
won't rely on this assumption. Hence, it continues to consider FV with cyclotomic polynomial
rings only.

Weak circular security. The particular step of relinearization transforms a non-canonical
ciphertext to its canonical form. This particular step requires a partial knowledge of the
square of the secret (i.e. s2). Indeed, both versions of relinearization rely on masked versions
of s2 that are added as a special error term into a classical RLWE sample. They make
the assumption that the scheme is still secure knowing this special RLWE sample called
relinearization key.

Binary secret. In order to reduce the noise in ciphertext, Fan and Vercauteren rely on a
security result from LWE settings and they make the assumption that it carries over RLWE
settings. Namely, that the secret and the noise elements for encryption could be sampled
from R2 instead of Rq. For the secret, they actually take it with a low Hamming weight h
(number of non-zero coe�cient) to reduce the private key size, while still ensuring su�cient
entropy.

2.1.4 Correctness w.r.t. noise growth

In this subsection are presented correctness matters for the completeness of the presentation.
In particular, we seek to highlight the in�uence of the parameters on the noise and its growth.
This is important to get a proper understanding on the complexity of FV parameterization.

For the following descriptions, we will consider these notations. We note a ciphertext and
its polynomials ct = (c0, c1) ∈ R2

q . To distinguish di�erent level of noise for a ciphertext, we

49

will note ct(l) a ciphertext at level l for the considered operation (addition or multiplication).
The level is de�ned w.r.t. a binary tree of operations as presented in Chapter 1. We set
∆ = b qt c, and we note rt(q) = t(q/t − ∆). Finally, there are two types of sampling in our
discussion. When we refer to a particular distribution (e.g. χ), it is considered a sampling
according to this distribution. In other cases, it is considered a uniform distribution over the
concerned set.

Basic notions. By de�nition, the noise of a ciphertext encrypting a plaintext element m ∈
Rt is the polynomial v such that [c0+c1s]q = [∆[m]t+v]q. For a more in-depth understanding
of the de�nition, please refer to the details of the FV primitives in the Section 2.6. Note also
that the decryption function erases the noise when scaling by t/q and rounding to the nearest
integer. The �nal reduction modulo t gives back the message.

In order for the decryption to be correct, the noise vmust not grow past a certain threshold:
‖v‖∞ < (∆ − rt(q))/2. In practice, one is interested in upper-bounding the noise growth to
easily express the correctness requirement w.r.t. the application. Hence, in order to choose
the parameters of the scheme, the initial noise and its growth along homomorphic operations
have to be known.

Beforehand, here are some important constants involved in the noise equations:

• Bkey: the in�nite norm's upper bound of an element sampled from the uniform distri-
bution over R2. In this case, Bkey = 1.

• Berr: the in�nite norm's upper bound of an element sampled from the χ distribution
over Rq. This value is usually taken as Berr = 6σ.

• δ: the expansion factor of the considered ring R. By de�nition, δ = sup
a,b∈R

{
‖ab‖
‖a‖‖b‖

}
, and

express the maximum norm's expansion during a product in R. When considering the
Euclidean norm ‖ · ‖, δ is bounded by

√
n. Numerous work consider the in�nite norm

‖ · ‖∞ for convenience, and hence bound δ by n, with n being the dimension of the ring.

In our case, the handled polynomial are actually sampled accordingly to some probability
distribution, and so tighter bounds on δ may be found. For example, Halevi et al. in
[5] take δ = 2

√
n on experimental grounds. As it is not the purpose here to re�ne this

upper bound, δ = n is considered as a �rst acceptable approximation.

After these preliminaries, the initial noise, the additive noise and the multiplicative noise
are studied.

Initial noise. The initial noise is the one of a freshly encrypted ciphertext. For studying
the correctness, an upper bound has to be considered. It is reminded that the public key is
constructed from the secret polynomial s sampled from R2, a polynomial a sampled from Rq
and an polynomial e sampled from χ: pk = ([−(as+ e)]q,a).

Furthermore, when encrypting a message m, a polynomial u is sampled from R2 and two
polynomials e1 and e2 are sampled from χ. Hence, when evaluating the fresh ciphertext with
the secret s to highlight the noise, the following equation is derived.

c0 + c1s = ∆m− (as+ e)u+ e1 + (au+ e2)s
= ∆m− eu+ e1 + e2s
= ∆m+ vinit

50

Hence, ‖vinit‖∞ = ‖ − eu+ e1 + e2s‖∞ < Berr(1 + 2δBkey). We note this bound B0 and
according to the considered approximations for δ and Berr it is roughly 6σ(1 + 2n).

Additive noise. The addition of two ciphertexts cta = (a0,a1) and ctb = (b0,b1) gives

ctadd =
(

[a0 + b0]q , [a1 + b1]q

)
. Considering the addition of two fresh ciphertexts, the noise

level of the operands is bounded by B0. Evaluating the resulting ciphertext ctadd with the
secret s to highlight the noise gives the following upper bound:∥∥∥v(1)add∥∥∥∞ < 2B0 + rt(q).

Hence, in a case of a binary tree of ciphertext additions, the noise level at depth L is upper
bounded by: ∥∥∥v(L)add

∥∥∥
∞
< 2L (B0 + rt(q))− rt(q).

We note this bound B(L)
add and according to the considered approximations and the de�nition

of B0 above, it is roughly 2L(6σ(2n+1)+rt(q))−rt(q). The impact of the scheme parameters
(n, q, σ) over the additive noise level is relatively small.

Multiplicative noise. The noise growth after a ciphertext multiplication is slightly more
complex to upper bound. The presented bound is extracted from Lepoint et al. [84] which is
itself based on the work from Bos et al. [39]. We consider here only the �rst version of the
relinearization.

Considering the multiplication of two fresh ciphertexts, it can be shown that:∥∥∥v(1)mult∥∥∥∞ < δt(4 + δBkey)B0 + δ2Bkey(Bkey + t2) + δlTTBerr.

It is reminded that lT = blogT qc and T is the decomposition basis for relinearization. In the
case of a binary tree of ciphertext multiplications, the noise level at depth L is upper bounded
by: ∥∥∥v(L)mult

∥∥∥
∞
< CL1 B0 + LCL−11 C2,

where C1 = δt(4 + δBkey) and C2 = δ2Bkey(Bkey + t2) + δlTTBerr.

We note this bound B
(L)
mul and, according to the considered approximations, C1 is roughly

t(n2 + 4n) and C2 roughly n2(1 + t2) + 6nlTTσ.
Contrary to additions, the noise at multiplicative depth L is highly dependent on the

scheme parameters (n, q, σ). In particular, the dominant term is in O(n2L+3/2). Note that
the re�nement of δ on experimental grounds may help to not oversize the parameters. For
instance, in Halevi et al.'s work [5] the multiplicative noise bound is actually O(nL+1).

As the multiplicative noise is tremendously larger than the additive noise, the noise gauge
of ciphertexts is usually derived from the multiplicative depth requirements. This is a fair
approximation for general studies. Nevertheless, when one knows the concrete application to
be performed in the encrypted domain, the noise gauge may be re�ned taking into account the
concrete �ow of homomorphic operations. From now on, we will consider the multiplicative
depth L to be the generic requirement for homomorphic evaluation capability.

51

2.1.5 FV parameter sets

In previous subsections, security and correctness notions have been introduced. The discussion
now proceeds to the concrete choice of parameters. The objective is to get a fair idea of the
sizing parameters in order to set up a consistent acceleration strategy.

Parameter derivation aims to select the smallest parameter set (n, q, σ) that respects
security and correctness requirements. For security, the literature mainly relies on estimation
model for each known attack against LWE. The state-of-the-art estimator of LWE's security is
maintained by Albrecht [53]. For correctness, each designer relies on the correctness equations
detailed in previous subsection. This is done with respect to the application/implementation-
related parameters (L, t, T ...).

Algorithm 1 FV's parameters selection extracted from [9].
Determines (n, q, σ) according to (λ, L, t, T)

1: function ChooseParams(λ, L, t, T)
2: n = 0
3: do
4: n = n+ 1
5: σ = 2

√
n

6: q = MinModulus(λ, L, t, T)
7: while SecEstimation(n, q, σ) > λ
8: return (n, q, σ)
9: end function

Algorithm 1 presents a simple method to choose FV's parameter sets. This algorithm is
extracted from Bonnoron's PhD thesis [9] and relies on two functions: SecEstimation and
MinModulus. SecEstimation uses Albrecht estimator [53] and should be updated with every
improvement of the underlying attack models. The choice σ = 2

√
n is motivated for security

by the paper of Lyubashevsky et al. [54]. MinModulus simply returns the minimal modulus
for which the correctness equation for multiplicative depth L is veri�ed.

Table 2.1: Table extracted from Bonnoron PhD thesis [9]. FV parameters (n�log2 q) ob-
tained with Algorithm 1. Security estimation for the LWE instances according to the LWE-
estimator [53] commit 61ac716. Other parameters: σ = 2

√
n, t = 2 and considering δ = n.

L
λ = 80 bits λ = 128 bits

T = 232 T = 264 T = 232 T = 264

1 (1,188�54) (1,982�87) (1,878�55) (3,106�88)
5 (3,711�159) (4,507�193) (6,014�166) (7,292�200)
10 (7,120�303) (7,917�337) (11,625�317) (12,844�351)
15 (10,715�454) (11,549�489) (17,507�475) (18,729�509)
20 (14,405�611) (15,187�645) (23,491�639) (24,755�673)

As an example, Table 2.1 presents some parameters extracted from Bonnoron's PhD thesis
obtained with the method described in Algorithm 1. The version of the LWE-estimator used
for the SecEstimation function is referenced by its commit number (commit 61ac716).

The parameters are quite large and they involve basic polynomial elements of important

52

sizes. A polynomial in Rq is 8kB for the smallest parameter set and 2MB for the largest. It
is noticeable that for almost all parameter sets, the modulus q does not �t into a single-word
with regards to standard computing architectures.

Regarding element sizes, an FV ciphertext is at least 16kB and up to 4MB for the con-
sidered parameters (to encrypt a 1-bit message). A private key is simply a polynomial in R2,
and hence could �t in 3kB for the largest considered setting. The public elements composed
of the public key and the relinearization key represent 48kB up to 50MB of data, with the
relinearization key of 32kB and 46MB respectively.

2.1.6 Concluding remarks

In this section, the FV scheme has been presented with some in-depth on security and correct-
ness in order to understand the derivation of FV parameters. From this overview, the general
problematic of L-FHE scheme is understandable. In order to evaluate large applications in
the encrypted domain, the sizing parameters increase signi�cantly. And in addition to this
issue, the on-going re�nement of LWE and RLWE parameters for security does not allow us
to focus the implementation e�orts on particular parameter sets.

After the presentation of the scheme and its parameters, the next step is to identify and
quantify the performance bottlenecks of homomorphic evaluation with FV. The next section
presents the pro�ling of a typical homomorphic evaluation.

2.2 Pro�ling and hardware implementation strategy

A straightforward application to evaluate in the encrypted domain is a transciphering key-
stream generation. As seen in the previous section, a FV's ciphertext is at least 104 times
larger than the data it encrypts. Hence, the transciphering protocol described in subsec-
tion 1.4.1 appears mandatory for a generalized usage of homomorphic encryption.

In this context, the generation of homomorphic keystream elements becomes a major
computational workload on the server side, which is somehow independent of the user's appli-
cation. Consequently, we choose to quantify the performance bottlenecks of the FV primitives
with a homomorphic keystream generation.

2.2.1 Experimental description

The implementation of the FV scheme from Carpov et al. [86] is used in our experiment.
They implement the scheme with the second version of the relinearization primitive. This
implementation is based on GMP [87] for multi-precision arithmetic and FLINT [88] for
polynomial arithmetic.

The choice of FV parameters is controlled by the Cingulata library [67] which contains
the scheme implementation. At the time of the experimentation, the derivation rules followed
FV's initial paper [7]. Consequently, the parameters are subject to security caution for the
following reason. The initial derivation strategy proposed by Fan and Vercauteren is only
based on Linder and Peikert analysis of the LWE security from 2011 [89]. Hence, the derivation
does not take into account Albrecht work on practical hardness of the LWE from 2015 [90]
and 2017 [91]. Nevertheless, the size of the parameters is su�cient to give an overview of the
performance bottlenecks.

The choice of the Pseudo-Random Fonction (PRF) for transciphering follows the initial
proposition of Canteaut et al. [61] when they introduced stream-based transciphering (i.e.

53

Trivium [92]). We brie�y describe the Trivium cipher for a better understanding of the
pro�ling results.

Trivium has a 288-bit internal state. At initialization, the 80-bit key and a 80-bit Initial-
isation Vector (IV) are stored in this internal state at speci�c locations. At each cycle, the
cipher performs a step which consists in one shift of the 288-bit shift register, and in 11 XOR
and 3 AND of some speci�c bits.

During a �rst phase lasting for 1152 steps, the key and the IV are shu�ed into the 288-bit
register. After this warm-up phase, an pseudo-random bit is outputted at each cycle.

Because Trivium multiplicative depth (AND operations) increases with the number of
steps performed, the number of homomorphic keystream elements generated per warm-up is
limited. In our case, we generate 57 keystream elements with a noise level L = 12 for each
warm-up.

The pro�ling of the generation of 57 homomorphic keystream elements is performed using
the Valgrind tool suite [93].

Table 2.2: Pro�ling results of homomorphic evaluation of Trivium-12. FV implementation
from Carpov et al. [86]. λ < 80, L = 19, n = 8192, t = 2, log2 q = 913, log2 σ = 383 ,
log2 g = 2739, , log2 σg = 783. Valgrind 3.10 on Intel Core i7-3770.

HE Evaluation # calls Cycles (×106) % Parent % Total

H Trivium 1 26,846,959 100 % 100 %
+ WarmUp 1 25,576,914 95.27 % 95.27 %
++ FV.Mul&Relin 3,456 25,420,474 99.39 % 94.69 %
+++ FV.Mul 13,824 10,860,382 42.72 % 40.45 %
+++ FV.Relin 3,456 13,577,587 53.41 % 50.57 %
+++ Others 62,208 982,505 3.87 % 3.66 %
++ FV.Add 10,368 134,693 0.52 % 0.50 %
++ Others 31,105 21,747 0.09 % 0.08 %
+ KSGen 1 1,270,045 4.73 % 4.73 %
++ FV.Mul&Relin 171 1,258,445 99.09 % 4,69 %
+++ FV.Mul 684 537,532 42.71 % 2.00 %
+++ FV.Relin 171 672,219 53.42 % 2.50 %
+++ Others 3,078 48,694 3.87 % 0.18 %
++ FV.Add 798 10,366 0.82 % 0.04 %
++ Others 1,526 1,234 0.10 % 0.00 %

2.2.2 Pro�ling results

The results of the pro�ling are detailed in Table 2.2. Without surprises, the warm-up phase is
far more expensive than actual generation of homomorphic keystream elements as it requires
1152 warm-up steps to generate only 57 useful elements. If one increases the number of useful
elements generated to make the warm-up pro�table, it results in less noise gauge left for the
concrete encrypted application. This highlights the need for an adequate Pseudo-Random

54

Function (PRF) for SHE transciphering protocol. This is in particular addressed in Méaux
PhD. thesis [60].

Our focus is more on the primitives of FV. In both warm-up and keystream generation
parts, the FV.Mul&Relin primitive is the principal performance bottleneck, even with three
times less calls than for FV.Add primitive. The workload of FV.Relin is also signi�cantly
heavier than the workload of FV.Mul (53.4% Vs 42.7%). Note that FV.Relin is supposed to
have twice less polynomial multiplications to perform in the second version of the relineariza-
tion (see Section 2.6). The di�erence is mainly due to the coe�cients of the polynomials
manipulated during relinearization being four times larger than those manipulated during
FV.Mul. This highlights the impact of large coe�cients on performance bottlenecks.

Digging a bit more into these two steps, they both rely on polynomial multiplications.
The underlying algorithms are dependent on the chosen library for polynomial arithmetic. In
our case, the FLINT library calls two di�erent approaches: one based on FFT convolution
(similar to Schönhage-Strassen algorithm for large integer multiplication), and the other based
on Kronecker substitution (basically reduces the problem of polynomial multiplication to a
large integer multiplication). The concrete choice of algorithm during computation depends
on the FLINT library's internal metrics. Nevertheless, polynomial multiplications represent
87.41 % of the total estimated cycles of the overall encrypted Trivium execution.

Our pro�ling corroborates the literature's orientations of improving ciphertext multiplica-
tions. In particular, the underlying polynomial multiplications have a prominent in�uence on
the performance bottlenecks. Even with an highly optimized library like FLINT, these poly-
nomial multiplications are problematic sue to large degree n. This highlights the requirement
of accelerating polynomial multiplications in this context.

It is also noticeable that the coe�cient size has a signi�cant impact on polynomial multi-
plication performances, even with highly optimized library like GMP. This information raises
the need for a strategy to manage large coe�cients (modulus q).

In addition to this pro�ling analysis, we have already mentioned that FV parameters
must grow in order to evaluate more complex applications. Hence, the need of an hardware
approach that scales-up with the parameters is added to those previously expressed.

It appears to us more important to look for a �exible acceleration approach than for one
that is too early optimized for speci�c parameters. In the following subsection, the existing
strategies to address the highlighted implementation problematic are discussed. It results in
a �rst de�nition of our hardware implementation strategy.

2.2.3 Analysis w.r.t. existing implementation strategies

The challenge in implementing the FV scheme � and more generally for RLWE-based HE
schemes � is to address both the complexity brought by large modulus q and the complexity
brought by large degree n.

In subsection 1.5.3, the Residue Number System (RNS) has been mentioned to tackle
large multi-precision arithmetic due to large q. Indeed, multi-precision arithmetic is limited
due to intermediate result propagation. This implies di�culties to exploit parallelism leading
to important implementation costs or low execution performances. The RNS brings straight-
forward parallelism and allows a designer to �x himself the size of the RNS basis elements.
Hence, the main limitations of multi-precision in our context are theoretically non-existent
with RNS.

55

Subsection 1.5.3 introduces also the existing approaches for polynomial ring multiplica-
tions. A quick summary is given here as a reminder. The naive approach to compute polyno-
mial multiplications appears not suitable for homomorphic encryption due to the quadratic
complexity over their degree O(n2).

The Karatsuba and Toom-Cook polynomial multiplications have reduced asymptotic com-
plexities (O(n1.585) and O(n1.465)) compared to the naive approach. They maintain a large
�exibility in the choice of the polynomial ring R and thus allow batching of binary plaintexts.

NTT-based approaches have a more important constant complexity, which makes them
rather costly to implement. Nevertheless, they have the best known asymptotic complexi-
ties O(n log n) to date. NTT-based approaches are more restrictive regarding FV's param-
eterization. For instance, the Negative Wrapped Convolution (NWC) reduces the choice of
polynomial ring, and is not compatible with batching of binary plaintexts.

Considering the need for �exibility over FV's parameters, Karatsuba or Toom-Cook seem
straightforward choices. Nevertheless, this �exibility comes at the cost of limited asymptotic
performances. Indeed, the in-depth work of Migliore et al. [76] identify this limitation. From
this point of view, our choice would rather be to explore NTT-based approaches.

What �nally makes us decide for the latter is the consideration that NTT architectures
are really close to those for Discrete Fourier Transform (DFT). Hence, the lack of �exibility of
NTT is somehow compensated by years of research from the data signal processing community
on e�cient DFT architectures. This is not the case for Karatsuba/Toom-Cook approaches
that are mainly used at software level.

Our choice is then to improve the performance of the FV scheme considering RNS repre-
sentation and NTT-based polynomial multiplications. Our goal of �exibility is de�ned with
respect to the ability of accelerating FV's primitives for a large range of parameter sets.

The next section makes a more formal description of the RNS and the NTT-based poly-
nomial multiplications considered in the context of FV. It is followed by the validation of the
theoretical feasibility of the RNS/NTT coupled approach for very large parameters.

2.3 Exploration of the RNS/NTT coupled approach

2.3.1 Simpli�ed arithmetic through RNS

The Residue Number System (RNS) is a non-positional representation of numbers according
to a basis of mutually prime moduli B = q1, ..., qk. This representation is a direct conse-
quence of the Chinese Remainder Theorem (CRT) which expresses the ring isomorphism
Zq ∼=

∏
1≤i≤k Zqi . The particular terminology calls the Zqi 's the RNS channels.

The RNS representation of an element x ∈ Zq is simply obtained by computing its residues
modulo each element of the RNS basis B, and by concatenating them into a set of residue
{xi}qi∈B, with xi = [x]qi . The CRT gives the transformation back from RNS representation
to classical representation. Its expression requires some additional notations. For all qi in the
RNS basis B, we denote q∗i = q/qi ∈ Z and q̃i = (q∗i)

−1 ∈ Zqi . Put in another way, q∗i is the
product of all the elements of B beside qi, and q̃i is the multiplicative inverse of q∗i in Zqi .
Hence, the reconstruction of x ∈ Zq from the xi's is done as follow:

x =

∑
qi∈B

xi · q̃i · q∗i

q

. (2.1)

56

Under RNS representation, modular arithmetic modulo q =
∏

1≤i≤k qi is performed with k
small and independent modular operations. This essentially stands for additions and multi-
plications, but regarding divisions things get trickier.

For two numbers x and y in Zq, their RNS representation according to the basis B is noted
(x1, ..., xk) and (y1, ..., yk). The computation of x + y in Zq is simply the additions of the
residues in each RNS channel:

[x+ y]q ⇐⇒ ([x1 + y1]q1 , ..., [xk + yk]qk).

Similarly, x× y in Zq is then computed with the multiplications of the residues in each RNS
channel:

[x× y]q ⇐⇒ ([x1 × y1]q1 , ..., [xk × yk]qk).

Division is straightforwardly performed in RNS under the following conditions: x has to be
a multiple of y, and y has a multiplicative inverse in Zq. Expressed di�erently, x mod y = 0,
and y is mutually prime with q. Hence the RNS representation of x/y is:

[x/y]q ⇐⇒ ([x1 × y−11]q1 , ..., [xk × y−1k]qk),

where y−1i is the multiplicative inverse of yi in Zi.
When the conditions are not met, it is required to get more information about the division

operands. A possible solution is to get back into a positional representation system like classic
multi-precision or MRS (Mixed Radix System) [94]. The inconvenient is that changing the
representation is rather costly as it can be seen in Roy et al.'s work [78].

In our context, the RNS representation is straightforwardly adapted to the polynomials
used in the FV cryptosystem. The RNS representation of a polynomial a in Rq is simply the
concatenation of the polynomials ai in the Rqi 's (qi ∈ B). The coe�cients of the polynomial
ai being the residues modulo qi of the coe�cients of the polynomial a.

For all primitives requiring only polynomial additions and polynomial multiplications, the
adaptation to RNS representation is straightforward. Due to scale-and-round operations,
FV.Decrypt and FV.Mul need a special adaptation to make them fully compatible with the
RNS.

In the literature, two works have proposed the adaptation of these primitives to RNS
while avoiding expensive transformations to and from a positional representation. The �rst is
from Bajard, Eynard, Hasan and Zucca [4] in 2016, and the second is from Halevi, Polyakov
and Shoup [5] in 2018. Here we are just interested in the feasibility of a full RNS variant for
FV, but it is nevertheless important to note that it is not for free. This will be detailed in
Section 2.4.

Most of the polynomial arithmetic of original FV stands in Rq, so the coe�cient range is
bounded by q. The only exception is during FV.Mul where the tensor product of the two
ciphertexts is performed in R. This is due to the way the noise is scaled down by the scale-
and-round operation after the tensor product. Consequently, the values taken by the resulting
polynomial's coe�cients are bounded by 2δq2. From this, we can express the requirements in
terms of RNS basis to compute the primitives of the full RNS variant of FV.

For operations over Rq, one has to select a RNS basis B = (qi)
k
i=1 and set q =

∏k
i=1 qi

such that q has the appropriate size for security and correctness. Then, the operations over
Rq are performed through k independent operations over the Rqi 's.

57

For the tensor product over R, one may simply choose an additional basis B′ = (pj)
k′
j=1

such that
∏k
i=1 qi ×

∏k′

j=1 pj is strictly larger than 2δq2. This implies that p =
∏k′

j=1 pj must
be strictly larger than 2δq. Then, the multiplication over R requires the basis extension from
RNS basis B to the basis B∪B′. Once we have the representation according to the latter basis,
the polynomial multiplication is performed through K = k + k′ independent multiplications
over the Rqi 's and Rpj 's. The special operation of basis extension will be expanded upon in
section 2.4.

The RNS representation does not improve the complexity of the polynomial multiplication,
it just bounds the size of the arithmetic performed in each RNS channel while bringing
in parallelism with respect to the basis sizes. The next subsection details the NTT-based
approaches to compute the polynomial ring multiplications.

2.3.2 NTT-based polynomial ring multiplications in RNS

The Number Theoretical Transform (NTT) [71] is comparable to a Fourier transform, but
stands over a Galois Field F = GF(pd). Let us consider a n-sequence in F noted a = (ai)

n−1
i=0 .

For n a divisor of pd − 1 and ω an element of order n in the multiplicative group F∗, the
transform of a noted A = (Ai)

n−1
i=0 is given by:

For all i in {0, ..., n− 1}, Ai =
n−1∑
j=0

ajω
ij . (2.2)

Note that additions and multiplications are those of the Galois �eld F. The inverse transform
of the sequence A is given by:

For all i in {0, ..., n− 1}, ai = n−1
n−1∑
j=0

Ajω
−ij . (2.3)

With n−1 (respectively ω−ij) being the multiplicative inverse of n (respectively ωij) over F. A
multiplicative inverse of an element g in F is the element g−1 such that g · g−1 = 1 according
to F multiplication. The elements ωij and ω−ij are called twiddle factors in this work.

Both the NTT and its inverse are e�ciently computed using Fast Fourier Transform (FFT)
approaches. The resulting asymptotic complexity is in O(n log n). Furthermore, the NTT
shares convolution properties with the FFT. It results in the de�nition of e�cient approaches
for polynomial multiplications over �nite-�elds.

In the case of FV and more generally in the case of RLWE-based cryptosystems, it is
required to perform multiplication over R = Z[X]/(F (X)) and/or Rq = Zq[X]/(F (X)).
Using a RNS representation of the polynomial's coe�cients according to some basis of co-
prime moduli {qi}Ki=1, both multiplications over R and Rq are performed through multiple
multiplications over the Rqi 's. To adapt the above NTT de�nition to this context, one has to
consider �nite-�elds Fi = GF (qi), isomorphic to Zqi = Z/qiZ, over which n-points NTT are
de�ned.

For further discussions, a n-point NTT (resp. INTT) over Fi is noted NTTn,i (resp.
INTTn,i). We note ωi an element of order n in the multiplicative group F∗i . It exists if and
only if n = 1 mod qi (n is a divisor of qi − 1).

58

Without taking into account the polynomial modular reduction to get the result in Rqi , let
us consider polynomial multiplication over Fi[X]. Let ai and bi be polynomials in Fi[X], both
of degree n, and N ≥ 2n such that N divides qi− 1. With � being point-wise multiplications
of same size's vector, the polynomial product ci = ai · bi is computed as follow:

ci = INTTN,i (NTTN,i(ai)�NTTN,i(bi)) . (2.4)

For further comparisons, this approach is called Padded Convolution (PC). In this case, one
has to pad with zeros the two n-sequence ai and bi. Hence, the product ci is exactly of degree
2n. A polynomial modular reduction modulo F (X) is then performed to get the result in Rqi .
See Wu's paper [72] for an example of polynomial reduction. Both padding with zeros and
polynomial modular reduction may be avoided using special cases of NTT-based convolutions.
These approaches are known as wrapped convolutions.

With F (X) = Xn−1, the product over Rqi is performed without zero-padding and without
polynomial reduction by computing:

ci = INTTn,i (NTTn,i(ai)�NTTn,i(bi)) . (2.5)

This convolution is known as Positive Wrapped Convolution (PWC).

When F (X) = Xn + 1, the product over Rqi is also performed without zero-padding and
without polynomial reduction. But this time, the input polynomials are weighted with a
vector of the powers of a n-th primitive root of −1 over the �nite-�eld Fi. The output
polynomial is also weighted but with a vector of the inverse powers of the n-th primitive root
of −1. Let ψi be such a primitive root of −1, meaning that ψni = qi − 1 mod qi and for all
k < n, ψki 6= qi − 1 mod qi. The element ψi exists over Fi if and only if 2n = 1 mod qi.

With Ψi = (ψki)n−1k=0 and Ψ−1i = (ψ−ki)n−1k=0 , the product over Rqi is then performed by
computing:

ci = Ψ−1i � INTTn,i (NTTn,i(Ψi � ai)�NTTn,i(Ψi � bi)) . (2.6)

This convolution is known as Negative Wrapped Convolution (NWC).

Comparison of NTT-based approaches. As previously mentioned, the e�ciency of
NTT-based polynomial ring multiplication stands upon the e�ciency of Fast Fourier Trans-
form adapted to NTT. Many di�erent algorithms with asymptotic complexity of O(n log n)
exist to perform such transforms. Each one of them has been proposed to address di�erent
size n and/or di�erent computing architecture. When going for hardware implementation, one
prefers to deal with transforms' size being a power of two. For simplicity, it is what we have
considered in this thesis. Table 2.3 gives a high-level comparison of the di�erent NTT-based
approaches for multiplication over Rqi .

The Positive Wrapped Convolution (PWC) approach seems to be the best from a com-
putational and memory complexity point of view. The problem of PWC is the restriction of
F to Xn − 1 that is not compatible with the FV scheme because it is not possible to �nd a
cyclotomic polynomial of this form.

Comparing Padded Convolution (PC) and Negative Wrapped Convolution (NWC), the
choice is in between: being able to have a �ner choice over F while having to compute

59

Table 2.3: Comparison of NTT-based approaches to perform a polynomial multiplication over
Rqi . Considering n being a power of 2 and NTTs computed with the radix-2 Cooley-Tuckey
algorithm. The table gives the numbers of multiplications and additions over the �nite-�eld
Fi, the number of precomputed values, the restrictions over the choices of F (X) and qi, and
if polynomial reduction is then required in our context. It is reminded that N ≥ 2n.

Conv.
of Fi # of Fi # of pre. Restrict. Restrict. Poly.
mult add/sub values over F (X) over qi reduc.

PC 3/2N logN + 2N 3N logN N + 1 none N = 1 mod qi yes
PWC 3/2n log n+ 2n 3n log n n+ 1 Xn − 1 n = 1 mod qi no
NWC 3/2n log n+ 5n 3n log n 2n+ 1 Xn + 1 2n = 1 mod qi no

polynomial reductions, or avoiding polynomial reductions while restricting F to Xn + 1.
In favor of the �rst solution one should consider the batching method for binary plaintext
being possible. In favor of the second, it is at this time the best performing approach to
compute Rqi 's products. In further discussions, the two approaches are considered as viable
alternatives.

As previously expressed during their descriptions, these approaches bring some restrictions
over the choice of the RNS basis elements. Hence, it appears necessary to study the feasibility
of the RNS/NTT-coupled approach in our context.

2.3.3 Feasibility of the coupled approach

The restrictions on the feasibility of our approach mainly concern the RNS basis elements.
Indeed, the Padded Convolution does not restrict the choice of F (X) and therefore n. The
other potential restriction on n is that F (X) has to be a cyclotomic polynomial by de�ni-
tion of the FV scheme. This being inherent to the FV scheme, it is not dependent on the
implementation approach.

Concerning the RNS basis elements, a �rst restriction is that they have to be mutually
prime. A second restriction concerns their size, in order to limit the cost of the arithmetic in
the RNS channel. Hence, their maximum size noted here s (maxB∪B′{log2 qi)} should be less
than 64 bits. For convenience, all elements should also be roughly of the same size as long as
this complies with the following restrictions.

A restriction inherent to the FV scheme is that the product of the element of the �rst basis
B should have the appropriate size for security and correctness. Furthermore, the product of
the element of the uni�ed basis B ∪ B′ should be larger than 2δq2. This is summarized by
log2 q =

∑
B log2 qi and log2(2nq

2) <
∑
B∪B′ log2 qi, considering that δ is bounded by n.

The following restriction is brought by the NTT-based polynomial multiplication. Depend-
ing on the degree n of F (X) and on the choice of PC or NWC, the restriction is di�erent.
In our case it is considered that the instantiated convolution's size is always a power of 2 for
simpler hardware implementations. In the case of NWC, the degree n of handled polynomials
is exactly a power of 2, and the restriction is 2n = 1 mod qi. In the case of PC, the degree
n of handled polynomials is not necessarily a power of 2 but the instantiated convolution is
(N > 2n). Hence, the restriction is in practice equivalent to NWC's one. Consequently, the

60

restriction on the RNS basis elements is: all element qi in B∪B′ should verify 2m = 1 mod qi,
with 2m equals to N for PC or 2n for NWC.

Finally, the last restriction is related to e�cient modular arithmetic in the RNS channel.
If the modular arithmetic is not relatively easy to perform, the RNS will not be bene�cial.

All the identi�ed constraints on RNS basis elements are summarized here:
constraint 1: they must be mutually prime.
constraint 2: they should be small (≤ 64 bits) and roughly of same size for simpler
hardware implementations.
constraint 3: there must be enough of them to verify log2 q =

∑
B log2 qi and

log2(2nq
2) <

∑
B∪B′ log2 qi.

constraint 4: they must all verify 2n = 1 mod qi with n a power of 2.
constraint 5: it should be easy to perform modular arithmetic in the RNS channel they
de�ne.

Algorithm 2 Prime selection from NFLlib [95]

Input: s: prime size, m: margin bits, n: max polynomial degree, K: number of primes.
Output: (p0,...,pK−1) a list of advantageous primes.
1: β = 2s+m, i = 1, primeList=(), t = 0
2: do
3: c = β/2m − i · 2n+ 1
4: if isPrime(c) and c > (1 + 1/23m) · β/(2m + 1) then
5: append c to primeList

6: t+ +
7: end if
8: i = i+ 1
9: while c > (1 + 1/23m) · β/(2m + 1) or t < K

Proposed selection of RNS basis elements. With respect to all the restrictions in the
choice of RNS basis elements, the prime selection algorithm from the NFLlib [95] theoretically
answers all our need. Algorithm 2 is a slightly modi�ed version of the one proposed by Aguilar-
Melchor et al. to �t with our notations and context.

The argument margin bits is here to force them most signi�cant bits of the selected primes
to zero. This is here to allow lazy modular reduction while performing the NTT in software
(see Harvey's work [96]). It could also be bene�cial to reduce hardware cost, but this is not
explored in this thesis.

Algorithm 2 allows to tune easily the size s of the desired primes, while ensuring that
selected primes verifyI qi = 1 mod 2n. Hence, constraints 1, 2 and 4 are veri�ed.

The NFLlib is also providing a dedicated Barrett's modular reduction algorithm for the
selected primes. This algorithm will be described in Chapter 3. Consequently, the last
constraint that must be veri�ed is their existence in su�cient number (and this for di�erent
prime's size s and di�erent degree n).

We have implemented the Algorithm 2 using the GMP library for primality test. We then
try to �nd as many primes as possible for s between 18 and 62, and polynomial degree n
between 210 and 217.

IWhich is equivalent to verifying 2n = 1 mod qi when qi is prime.

61

18 22 26 30 34 38 42 46 50 54 58 62
1

10

100

1,000

10,000

100,000

log2 q = 2000

log2 q = 150

Size of primes in bits

N
um

b
er

of
pr
im
es

fo
un
d

required

n = 210

n = 211

n = 212

n = 213

n = 214

n = 215

n = 216

n = 217

Figure 2.1: Number of primes of size s found with Algorithm 2 for di�erent polynomial
degree n. For NWC the degree of the polynomials F is exactly n, and for PC the degree of
the polynomial is up to n. The continuous lines indicate the required number of prime to
compose B and B′ for di�erent size of q.

Figure 2.1 shows the result of the experiment. For s > 30, the number of available primes
to construct the RNS basis is clearly su�cient for all parameter sets studied in subsection 2.1.5.
Another result we found in this experiment is that using smaller than 30-bit primes may result
in di�culty to �nd enough primes for very large FV parameter sets. As we want an hardware
approach that scale with as much FV parameter sets as possible, we will then consider primes
of size at least 30 bits.

2.3.4 Concluding remarks on the RNS/NTT coupled approach

This section has presented the RNS/NTT coupled approach that we consider to address the
performance bottleneck brought by polynomial ring multiplications. It has �rst contextualized
the RNS representation and the NTT-based polynomial multiplication methods. Then the
theoretical feasibility of the RNS/NTT coupled approach has been shown.

While describing the use of RNS for FV, concomitant works were mentioned to have
adapted the primitives FV.Decrypt and FV.Mul&Relin. In addition to the feasibility of the
full RNS variant of FV, we would like to consider the impact of these modi�cations on the
computational performances of homomorphic evaluation. In particular, the pro�ling from [5]
indicates that a non-negligible part of the performance complexity (20% to 38%) is located
in RNS speci�c functions during FV.Mul&Relin.

The next section details the full RNS variant proposed by Halevi et al. [5], and discusses
its pro�ling.

2.4 The full RNS variant of FV

As presented in subsection 2.3.1, the problem of the RNS in FV's context is the di�cult
adaptation of the scale-and-round operations involved in the decryption and multiplication

62

primitives. In 2016, Bajard et al. [4] proposed a �rst adaptation of these steps. The modi�-
cations involve a small increase in the noise growth that have an almost negligible impact on
the parameter derivation. Their experimental results shows a speedup of at least 4 times for
decryption and 1.7 times for multiplication compared to the schoolbook FV.

In 2018, Halevi et al. [5] proposed a simpli�ed full RNS variant, with a reduced computa-
tional complexity compared to Bajard et al.'s one. Their variant is slightly more noisy, but
still resulting in an almost negligible impact on parameters.

This section describes with our own words, the version implemented by Halevi et al. for
completeness seek. A reader already familiar with this work can skip this section.

2.4.1 RNS base extension and RNS scale-and-round for FV

For e�cient adaptation of the FV.Decrypt and FV.Mul primitives, one has to consider some
RNS speci�c tricks. First, a basis extension that allows to perform the ciphertext tensor
product in R during the FV.Mul primitive. Second, some methods that perform the scale-
and-round operations inherent to FV.Decrypt and FV.Mul primitives.

Base extension. Let us consider an element x ∈ Zq and its RNS representation in basis B
noted {xi}ki=1. The basis extension operation computes the residue of x for a new RNS basis
element pj from the initial knowledge of {xi}ki=1.

Beforehand, note that the equality from Equation 2.1, expressing the reconstruction of x
from {xi}ki=1, may be rewritten as follow:

x =
(k∑
i=1

[xiq̃i]qi · q∗i︸ ︷︷ ︸
∈[− q

2
, q
2
)

)
− v · q, for some v ∈ Zk =

[
−k

2
,
k

2

)
. (2.7)

We remind that q∗i = q/qi ∈ Z and q̃i = (q∗i)
−1 ∈ Zqi .

To compute a new residue x′j = [x]pj without going back to the positional representation
of x, one has to compute the element v from Equation 2.7. The computation that gives v is:

v =

⌊
k∑
i=1

[xiq̃i]qi
qi

⌉
. (2.8)

This calculation is made in three steps in our case. First, compute for all i in [1, k] the
yi = [xiq̃i]qi (single precision modular arithmetic). Second, compute for all i in [1, k] the
zi = yi/qi (�oating-point arithmetic). Third, accumulate all the zi and round to the nearest
integer to obtain v.

Once the element v is known, the new residue x′j = [x]pj is computed following the
equation:

x′j = [x]pj =

[
k∑
i=1

yi · [q∗i]pj − v · [q]pj

]
pj

. (2.9)

This involves only single-precision modular arithmetic with only pre-computed values, beside
the yi's and v that depend on x. The pre-computed values are:(

q̃i, [q∗i]pj , and [q]pj
)
∀ (i, j) ∈ [1, k]× [1, k′]. (2.10)

Repeat the computation of [x]pj for all the pj of a basis B′ to perform the desired operation
of basis extension.

63

The basis extension operation has been presented. Now, we consider the operations of scale-
and-round for decryption and for multiplication. For this, a third expression of the equality
of Equation 2.1 is required:

x =
(∑
i∈B

xi · q̃i · q∗i︸ ︷︷ ︸
∈[− qiq

4
,
qiq

4
)

)
− v′ · q, for some v′ ∈ Z. (2.11)

The scale-and-round operations involved in decryption and multiplication primitives are of
the form: y = bt/q · xe. Depending on the case, the operand x and the required results
are di�erent. This results in two di�erent situations that are treated in a similar way but
involving di�erent pre-computed values.

Scale-and-round operation for decryption. For the decryption primitive, the element
x is in the interval [−q/2, q/2) and the desired y should be returned modulo t.

Hence, by straightforwardly propagating the t/q factor in Equation 2.11, the RNS scale-
and-round operation may be expressed as follow:

y =

[⌊
t

q
· x
⌉]

t

=

[⌊
k∑
i=1

xi · (q̃i ·
t

qi
)

⌉]
t

. (2.12)

Halevi et al. propose to pre-compute the q̃it/qi and decompose them into their integer and
fractional parts:

q̃it

qi
= ωi + θi, with ωi ∈ Zt and θi ∈

[
−1

2
,
1

2

)
. (2.13)

Consequently, the scale-and-round operation during decryption is simply performed by:

y = [w + v]t, with w =

[
k∑
i=1

xiωi

]
t

and v =

⌊
k∑
i=1

xiθi

⌉
. (2.14)

Scale-and-round operation for multiplication. In the multiplication primitive, the el-
ement x is in [−qp/2, qp/2) and the desired y should be returned modulo q. This requires
the de�nition of extra terms related to Q = qp. For each qi ∈ B, Q∗i = Q/qi = q∗i p and
Q̃i = [(Q∗i)

−1]qi . Similarly, for each pj ∈ B′, Q′∗j = Q/pj = qp∗j and Q̃
′
j = [(Q′∗j)−1]pj . Hence,

by straightforwardly propagating the t/q factor in Equation 2.11 we have the following:

t

q
· x =

 k∑
i=1

xi ·
Q̃ipt

qi
+

k′∑
j=1

x′j · Q̃′ip
∗
j t

− v′pt. (2.15)

Furthermore, this expression is nicely simpli�ed considering it modulo each element pj of the
RNS basis B′, namely:[⌊

t

q
· x
⌉]

pj

=

[⌊
k∑
i=1

xi ·
Q̃ipt

qi

⌉
+ x′j ·

[
Q̃′jp

∗
j t
]
pj

]
pj

. (2.16)

Hence, they propose to pre-compute in advance the (Q̃ipt/qi)'s and the
[
Q̃′jp

∗
j t
]
pj
's. Similarly

than for decryption, the (Q̃ipt/qi)'s are decomposed them into their integer and fractional

64

parts (Ωi + Θi). The integer parts are reduced modulo each pj ∈ B′ and the fractional parts
are directly stored as �oating-points. Namely, all the precomputed values are:(

Ωi,j = [Ωi]pj , Θi, Λj =
[
Q̃′jp

∗
j t
]
pj

)
∀ (i, j) ∈ [1, k]× [1, k′]. (2.17)

During multiplication, the RNS scale-and-round operation gives its results back in the basis
B′ (i.e. modulo p rather than modulo q). Namely, for each element pj ∈ B′:

yj = [V +Wj]pj , with V =

⌊
k∑
i=1

xiΘi

⌉
and Wj =

[
Λjx

′
j +

k∑
i=1

xiΩi,j

]
pj

. (2.18)

To get back to Zq, a basis change is performed by executing the basis extension operation
from B′ to B followed by a deletion of the residue of the basis B′. This �nal step requires the
pre-computation of the following values:(

p̃j , [p∗j]qi , and [p]qi
)
∀ (i, j) ∈ [1, k]× [1, k′]. (2.19)

All the RNS speci�c operations to adapt the FV primitives have been presented. The
choice of Halevi et al. to use �oating-point arithmetic at some point implies some possible
approximation errors. In particular, to guarantee that their decryption procedure is correct
considering these errors, they change the correctness requirement to: ‖v‖∞ < (∆− rt(q))/4.
This is equivalent to considering one bit of additional noise in the ciphertext.

From an implementation point-of-view, it is important to note that, in the case of a
polynomial, these operations must be performed for each coe�cient. Hence, their is a high-
level of parallelism accessible with respect to n. For large RNS basis, an additional level of
parallelism may be achieve with respect to k and k′. But it is more limited than the previous
one.

A last optimization of the full RNS variants of FV concerns a smart adaption of the
relinearization primitive. This optimization, already introduced by Bajard et al., is brie�y
presented in next subsection.

2.4.2 Additional optimization

The optimization consists in modifying the relinearization key of FV to smoothly adapt to RNS
the �rst version of the relinearization primitive. Namely, rather than using the decomposition
basis T to mask the secret s2 (i.e. T is2), Halevi et al. propose to mask it with s2i = s2q̃iq

∗
i

(this implies that [s2i]qj = [s2]qj if j = i and 0 otherwise).
Consequently, the new primitive is:

FV.RelinKeyGen(sk, B):
for each qi ∈ B sample ai uniformly from Rq, ei from χ.
Compute r0,i =

[
−(ai · s+ ei) + s2q̃iq

∗
i

]
q
and r1,i = ai.

Return rlk = {(r0,1, r0,2, ..., r0,k), (r1,1, r1,2, ..., r1,k)}.

After the multiplication primitive the polynomials of the non-canonical ciphertext (c̃t =
(�c0,�c1,�c2)) are in RNS representation according to the basis B. Consequently, if we take
�c2,i = [�c2]qi the new relinearization is simply:

65

FV.Relin(c̃t, rlk):

Compute �c2,0 =
[∑k

i=1 r0,i�c2,i

]
q
and �c2,1 =

[∑k
i=1 r1,i�c2,i

]
q
.

Return ctmul =
(

[�c0 + �c2,0]q , [�c1 + �c2,1]q

)
.

This concludes the adaptation of the FV scheme to the RNS representation. More infor-
mation on the techniques and their consequences on noise growth can be found in the original
papers. In the next subsection are presented the impact of these adaptations over the pro�ling
of FV homomorphic evaluation complexity.

2.4.3 Pro�ling

In their paper, Halevi et al. present a pro�ling of their full RNS variant. In particular some
timing for FV.Mul and FV.Relin and FV.Dec. The latter will not be presented because we are
mainly interested in the FV primitives for homomorphic operations. In particular, they detail
the pro�ling of the FV.Mul primitive that include their main contributions. The pro�ling
expresses the computation workload with respect to basis extensions, scale-and-rounds and
NTTs for Residue Polynomial Multiplications (RPMs).

Table 2.4: Pro�ling of the full RNS variant of the FV scheme implemented by Halevi et al. [5].
The FV.Mul&Relin primitive is detailed w.r.t. the time spent in the RNS speci�c functions
of basis extension (Bext.) and scale-and-round (Sc&Rnd), and in the Residue Polynomial
Multiplications (RPM).

FV.Mult&Relin details

Total FV.Mul FV.Relin Bext. +
RPM Others

L n Sq k ms ms ms Sc&Rnd

1 211 55 1 3.57 3.16 0.41 37.2 % 61.2 % 1.6 %
5 212 110 2 12.7 10.1 2.58 30.3 % 67.8 % 2 %
10 213 220 4 57.6 38.9 18.7 25 % 72.4 % 2.6 %
20 214 440 8 252 174 78.3 28.3 % 69.5 % 2.2 %
30 215 605 11 887 555 332 26.3 % 71.1 % 2.6 %
50 216 1,026 19 4,434 2,368 2,066 26.7 % 70.5 % 2.8 %
100 217 2,042 38 29,884 12,890 16,994 21.6 % 75.2 % 3.2 %

In our case, we present the pro�ling from a slightly di�erent angle. This is to highlight the
part spent in RNS speci�c functions and the time spent to perform the equivalent of RPM.
Hence, this requires some reasonable estimations to get the pro�ling presented in Table 2.4.
Namely, it is estimated that 95% of the relinearization is spent performing the equivalent of
RPM operations. In addition, it is considered that the internal products for RPM calculations
represent 80% of the miscellaneous operations of their FV.Mul's detailed pro�ling.

This pro�ling shows that the main performance bottleneck of the FV.Mul&Relin primitive
is the RPM operations which represent more than 60% of the computation workload. Never-
theless, compared to our �rst pro�ling in section 2.2, the relative time spent in the polynomial
multiplications is reduced. Indeed, the additional operations to make the full RNS variant
possible have also a non-negligible complexity.

66

Consequently, both RNS speci�c operations and Residue Polynomial Multiplications must
be accelerated for an e�cient implementation of the full RNS variants of the FV scheme.

2.5 Conclusion

In this chapter, we have detailed our analysis of the FV scheme towards its hardware acceler-
ation. In a �rst time, we have presented its primitives and detailed the complexity of deriving
FV parameters. In particular, the wide range of sizing parameters is inherently linked with
the general use of the FV scheme.

In a second time, a pro�ling of a typical homomorphic evaluation has highlighted the
computational complexity brought by large polynomial degree n and large modulus q. This is
particularly the case during polynomial multiplications. Based on an analysis of the related
works, we have chosen to explore the feasibility of the coupled approach RNS/NTT for the
acceleration of FV.

The third section described more precisely the use of RNS representation and NTT-based
polynomial multiplications in our context. It ends with a theoretical validation of the coupled
approach according to all the prerequisites imposed by RNS and NTT.

The adaptation of the FV.Decrypt and the FV.Mul primitives to RNS brought by Bajard
et al. and further simpli�ed by Halevi et al. was described in the fourth section. The section
concluded on the pro�ling showing the computational complexity partition of the full RNS
FV.Mul&Relin primitive.

After this in-depth analysis, our acceleration strategy is de�ned by accelerating the two
types of operations identi�ed in the fourth section. Firstly, Residue Polynomial Multiplica-
tions (RPMs), and secondly, basis extension and scale-and-round operations. Due to compu-
tational complexity partition, our main focus is on RPMs.

As seen in Subsection 2.3.2, RPM operations may be performed through padded convolu-
tions followed by polynomial reductions or through negative wrapped convolutions. In both
case, the underlying NTTs require some precomputed values being dependent on the current
�nite-�eld (RNS channel). For convenience, we call a twiddle factor set the concatenation of
the twiddle factors for a speci�c �nite-�eld.

NTT operations are rather di�cult to parallelize due to complex data access patterns
making large NTT unfriendly for generic SIMD architectures. Hence, our choice is to explore
dedicated hardware for accelerating these operations.

Our strategy is then to design basic blocks for the computation of NTT and the on-the-�y
generation and usage of the twiddle factor sets. This is motivated by implementation issues
highlighted by related works (more detailed in Chapter 3).

This strategy requires to address two main design issues. The �rst one is to be able to
e�ciently generate multi-�eld NTT circuits. Namely, NTT circuits that are able to perform
transforms on di�erent �nite-�elds without signi�cant impact on performances. The second is
to design a generator for the twiddle-factor sets of the di�erent RNS channels without heavy
consequences on hardware cost and on NTT circuit's throughput. In this thesis, we present
a solution for each of the design issue. Chapter 3 presents our exploration of automatic
generation of multi-�eld NTT circuits. Chapter 4 presents our generic architecture for the
on-the-�y generation of twiddle factor sets.

Based on these contributions, the last chapter of this manuscript proposes a system level
approach for the hardware acceleration of FV.

67

2.6 Annexes: details on FV primitives

We remind here the principal parameters of the FV schemes

- λ: security parameter. This parameter in�uences the choice of others with respect to
theoretical and empirical hardness of the decision-RLWE problem.
- L: multiplicative depth. This parameter in�uences the choice of others with respect to
correctness property.
- n: degree of the cyclotomic polynomials de�ning R.
- t: plaintext modulus de�ning Rt the plaintext ring.
- q: ciphertext modulus de�ning Rq the ciphertext ring.
- σ: error size of a normal distribution χ over Rq.
- T : decomposition base (relinearization version 1). For convenience, lT = blogT (q)c.
- g: relinearization modulus (relinearization version 2).
- σg: error size of a normal distribution χ′ over R (relinearization version 2).

Core primitives. The core primitives de�ne the generation of the private and public keys,
and the encryption and decryption processes.

• FV.SecretKeyGen(λ): sample s from R2 with su�cient entropy with respect to security
parameter λ, and output sk = s.

• FV.PublicKeyGen(sk): set s = sk, sample a uniformly from Rq, e from χ and output
pk = (p0,p1) = ([−(a · s+ e)]q, a).

• FV.RelinKeyGen:

� V1 (sk, T): set s = sk.
For i ∈ [0; lT] sample ai uniformly from Rq, ei from χ.
Compute r0,i =

[
−(ai · s+ ei) + T i · s2

]
q
and r1,i = ai.

Return rlk1 = {(r0,0, r0,1, ..., r0,lT), (r1,0, r1,1, ..., r1,lT)}.
� V2 (sk, g): set s = sk, and sample a uniformly from Rgq, e from χ′.
Compute r0 = [−(a · s+ e) + g · s2]gq and r1 = a.
Return rlk2 = (r0, r1).

• FV.Encrypt(pk, m): for a plaintext element m ∈ Rt, let (p0,p1) = pk, and ∆ = b qt c.
Sample u uniformly from R2, e1, e2 from χ.
Compute c0 = [p0 · u+ e1 + ∆ ·m]q and c1 = [p1 · u+ e2]q.
Return ct = (c0, c1) ∈ R2

q .

• FV.Decrypt(sk, ct): set s = sk, (c0, c1) = ct and return m =
[⌊

t
q · [c0 + c1 · s]q

⌉]
t
.

Evaluation primitives. These primitives present basic operations for encrypted-computing.

• FV.Add(cta, ctb): set (a0,a1) = cta and (b0,b1) = ctb.
Compute c0 = [a0 + b0]q and c1 = [a1 + b1]q.
Return ctadd = (c0, c1).

68

• FV.Mul(cta, ctb): set (a0,a1) = cta and (b0,b1) = ctb.

Compute �c0 =
[⌊

t
q (a0b0)

⌉]
q
, �c1 =

[⌊
t
q (a0b1 + a1b0)

⌉]
q
and �c2 =

[⌊
t
q (a1b1)

⌉]
q
.

Return c̃t = (�c0,�c1,�c2).

• FV.Relin:

� V1(c̃t, rlk1): set (�c0,�c1,�c2) = c̃t, and {(r0,0, ..., r0,lT), (r1,0, ..., r1,lT)} = rlk.
Decompose �c2 in base T : (�c2,0, ...,�c2,lT).

Compute �c2,0 =
[∑lT

i=0 r0,i�c2,i

]
q
and �c2,1 =

[∑lT
i=0 r1,i�c2,i

]
q
.

Return ctmul =
(

[�c0 + �c2,0]q , [�c1 + �c2,1]q

)
.

� V2(c̃t, rlk2): set (�c0,�c1,�c2) = c̃t, and (r0, r1) = rlk.

Compute �c2,0 =
[⌊

1
g (�c2r0)

⌉]
q
and �c2,1 =

[⌊
1
g (�c2r1)

⌉]
q
.

Return ctmul =
(

[�c0 + �c2,0]q , [�c1 + �c2,1]q

)
.

• FV.Mul&Relin(cta, ctb, rlk).
Step 1: c̃t = FV.Mul(cta, ctb).
Step 2: Return FV.Relin(c̃t, rlk).

69

70

Chapter 3

Automatic generation of multi-�eld

NTT architectures

This chapter presents a contribution for the de�nition of e�cient basic blocks for Residue
Polynomial Multiplications (RPMs) in the context of homomorphic cryptography. The prob-
lematic addressed here is the on-the-�y change of �nite-�eld for a data-�ow NTT circuit.

First, related works on hardware design for polynomial multiplication using the coupled
approach RNS/NTT are discussed. Thus, our strategy will be motivated with respect to the
implementation issues. Second, we highlight the capability of design space exploration of the
SPIRAL DFT generator that is inherent to our strategy. Then our proposal of data-�ow
multi-�eld NTT is detailed, while showing the feasibility of the automatic generation of such
designs. Finally, the hardware cost and the bene�ts of our proposal are presented.

3.1 Related works and strategy motivation

Before describing the related works, we remind that the pre-computed values for NTT and
INTT are indi�erently called twiddle factors. This twiddle factors are dependent on the �nite-
�eld over which the NTT is de�ned, and a twiddle factor set refers to the twiddle factors of
a speci�c �nite-�eld.

Now the terminology has been reminded, the related works on the implementation of RNS
and NTT-based polynomial multiplications are presented.

In [79], Öztürk et al. proposed a RNS and NTT based polynomial multiplication. As
their architecture is not pipelined, it cannot start a new residue polynomial multiplication
before the previous one �nishes. Its latency is then paid numerous time for the computation
of a polynomial multiplication over R (as much as the size of the extended RNS basis).
Furthermore, Öztürk et al. chose to pre-compute the di�erent NTT twiddle factor sets on
the host side, and send them along with the polynomial coe�cients through the bus on which
their accelerator is connected. Doing so, the communication cost between the host and the
accelerator is doubled.

Cousins et al. [81] developed an Homomorphic Encryption Processing Unit to accelerate
the LTV scheme, which is not scale-invariant like FV, but also has its bottleneck complexity
in polynomial ring multiplications. They implemented a pipelined NTT as a primitive of the
HEPU, and contrary to [79], they chose to store the NTT twiddle factors in ROM �lled up at

71

compile time. As they point out, the storage capacity required for the di�erent twiddle factor
sets, one for each element pi of the modulus chain, is quite important and uses a large part
of the available BRAM on the targeted FPGA. This problem arises also for the FV scheme
when polynomials are handled under RNS representation of their coe�cients.

Sinha Roy et al. [78] present a co-processor (HE-processor) implementing building block
operations for RLWE-based schemes, and in particular NTT and RNS primitives. They im-
plement a memory access iterative NTT with improved routing of coe�cients. They store in
ROM only a subset of each required twiddle factor set and compute the others when needed.
This results in a reduced memory requirement (O(k log2(n))) compared to [81] (O(kn)). Nev-
ertheless, they note that the computation of the other twiddles inserts some bubbles into the
NTT computation (up to ∼ 10, 000 bubbles for n = 216).

In view of implementation issues expressed in the literature, we choose to consider multi-
�eld NTTs with on-the-�y computation of the twiddle factor sets. Thus, it requires the design
of multi-�eld NTT circuits and of generators of twiddle factor sets. In this chapter we consider
the former, and the latter is the subject of Chapter 4.

As already expressed, a NTT is similar to a Discrete Fourier Transform (DFT) in which
complex arithmetic is replaced with modular arithmetic. With this in mind, our work explores
the generalization of the hardware backend of the SPIRAL tool, from Milder et al. [97], to
generate NTT designs in addition to DFT designs. Regarding time constraints, only data-�ow
architectures for NTT are considered in this thesis. Nevertheless, further work could explore
the adaptation of our �rst solution to other type of DFT architecture generated by SPIRAL.

3.2 From SPIRAL DFT towards multi-�eld NTT designs

The SPIRAL project addresses the automation in software and hardware development for
data signal processing. Thus, the DFT structure has already been explored in details forming
an ideal starting point to generalize towards NTT implementations. For example, in his
PhD thesis work, LingChuan Meng [98] explores the automatically generating tuned software
libraries for modular polynomial multiplication. However, a similar extension to SPIRAL's
hardware generation capability has not been explored; for example [97] focuses using SPIRAL
to generate hardware for linear DSP transforms; while [99] generates hardware for sorting
networks.

The perspective is to be able to express high level directives to an NTT design generator,
allowing a system designer to tune the performances of its NTT according to application
and system requirements. Tuned parameters could be related to lattice-based cryptosystem
parameters, like NTT size n and manipulated word size s, or part of the implementation
parameters like architecture type, radix size r or streaming width w.

During this thesis only fully-streaming DFT architecture has been studied and adapted to
multi�led NTT architectures. Due to time constraints, we focused on the architecture type
that has the highest throughput performances, as it is what is required by our application
context.

72

3.2.1 Initial streaming DFT structure

This subsection presents the initial structure of streaming DFT transforms generated by
the SPIRAL hardware back-end. In the same time, an overview of the SPIRAL tool is
given. This is to consider the potential automation capability it brings in our approach.
Most of descriptions and examples here are reformulations and contextualizations of Milder's
papers [100, 97].

Matrix formulae. SPIRAL purpose is the automation of optimized software and hardware
for data signal processing transforms. The starting point of an optimization is a denseI matrix
representation of the considered transform. Namely, a transform of size n is represented by a
matrix n×n (An) and the transformation of a n-sized vector x is simply the product y = An ·x.
For example, the discrete Fourier transform on n-point is de�ned as y = DFTn · x. In this
example, x and y are n-point complex vectors and DFTn =

[
ωkln
]
0≤k,l<n, with ωn = e−2iπ/n.

Staying in a dense representation of the transform makes us compute O(n2) arithmetic
operations to obtain the transformed vector y. Hopefully, fast algorithms exist for many
transforms, and the computation of y could be reduced to a quasi-linear arithmetic cost
(O(n log n)). The backbone behind SPIRAL optimization methods is the Kronecker's formal-
ism that expresses fast algorithms as some particular decompositions of the dense matrices
into a product of structured sparse matrices.

In SPIRAL, this decomposition is performed with the help of a formal language that
represents algorithms with matrix formulae. Using the Backus-Naur formalism to describe
the language, a matrix formula is simply de�ned as follow:

matrixn ::= matrixn · · ·matrixn
|
∏
imatrixn

| Ik ⊗matrixm , where n = km
| basen

basen ::= Dn = diag(d0, ..., dn−1) | Pn | An

The �rst two lines state that a matrix formula can be decomposed into a product or an iterative
product of matrix formulae. The second line Ik ⊗matrixm expresses the decomposition of
the initial matrixn into k parallel instances of matrixm (n = km). The matrix Ik is the matrix
identity of size k× k, and ⊗ is the Kronecker product. Finally, a matrix formula may simply
refer to a generic terminal elements like a diagonal matrix Dn, a permutation matrix Pn, or
some computational basic blocks matrix An.

For instance, the DFT transform of size 4 could be decomposed into DFTs of size 2
following the algorithm of Cooley-Tukey:

X = DFT4 · x = (P4 · (I2 ⊗DFT2) · P4 ·D4 · (I2 ⊗DFT2) · P4) · x

For a more detailed presentation of the formal language, the underlying permutations and/or
example of concrete uses, please refer to [97].

The formal language is used by SPIRAL to rewrite a considered transform by selecting
and combining some known fast algorithms under platform and/or user requirements. In the
case of DFT, SPIRAL uses the Kronecker representations of Pease FFT, mixed-radix FFT

IDense matrices are de�ned in opposition to sparse matrices which have most of their coe�cients equal to
zero.

73

and Bluestein FFT for its rewriting process. The resulting matrix formula then describes a
speci�cally optimized fast algorithm for the considered transform.

From an hardware implementation point of view, the matrix formula represents a theo-
retical data path computing the transform. To instantiate this data path, a correspondence
between terminal elements and some hardware basic blocks is theoretically enough. Never-
theless, to simply make this correspondence mostly results in unfeasible data path for large
sized problems. That is why the tool re�nes the matrix formulae with additional information.

Hardware formulae. The extended capability of SPIRAL brought by Milder et al. en-
riches the matrix formulae with hardware related information. This allows the propagation of
hardware implementation decisions into the matrix formulae. An enriched formula is called a
hardware formula.

Basically, this enrichment simply adds the information of sequential reuse of basic RTL
blocks. Milder et al. de�nes two types of sequential reuse: streaming and iterative reuses.
The streaming reuse enriches Kronecker product formulae in order to add the information of

size
(m × n)
vector { {n An

{n An... ...
{n An

(a) No reuse: Im ⊗An

...

{n An

... {

mn/w cycles

{n An

...

w words
per cycle{ {

w/n blocks

(b) Partial reuse: Imn/w ⊗sr
(
Iw/n ⊗An

)
one streamed vector

(m × n)

{n words
per cycle An

...

{

{

m cycles
(c) Full reuse: Im ⊗sr An

Figure 3.1: Example of streaming reuses.

An

... An{
m blocks

(a) No reuse:
∏

mAn

AnAn

... {
d blocks, reused m/d times

(b) Partial reuse:
∏ir

m/dAn

An{1 block, reused m times
(c) Full reuse:

∏ir
mAn

Figure 3.2: Example of iterative reuses.

reuse in time of some basic blocks, rather than full parallelism in space. Figure 3.1 presents
this streaming reuse principle. A Kronecker product may be enriched with full, partial or no
streaming reuse decisions.

The iterative reuse enriches an iterative product on identical formulae in order to express
reuse of the same data path multiple times. This is implemented in hardware with feedback
mechanisms. As seen in Figure 3.2 an iterative product formula may be enriched with full,
partial or no iterative reuse decisions.

74

{n ... {

mn/w cycles

{n ...

w words
per cycle{

AnAn

...

AnAn

...

... ...

w/n blocks
per stages

{

d stages, reused k/d times

Figure 3.3: Combined streaming and iterative reuse:
∏ir
k/d

(∏
d

(
Inm/w ⊗sr

(
Iw/n ⊗An

)))
Finally, iterative and streaming reuse may be combined to enrich more complex matrix

formulae. An example of mixed sequential reuse is given in Figure 3.3.
These design decisions have consequences in terms of resource utilization, throughput and

latency, which are propagated from terminal basic blocks up to the overall transform formula.
As a consequence, the SPIRAL tool is able to explore multiple implementation solutions, and
choose one meeting some system level requirements.

The presentation of the formula rewriting processes highlights the design space exploration
capability of the SPIRAL hardware backend. Its use to generate NTT designs is seen as a
guarantee of �exibility in our application context. In particular, it would be particularly inter-
esting to be able to generate NTTs of di�erent sizes without signi�cant additional development
costs.

Our discussion is now mainly focused on the DFT basic blocks used by SPIRAL. The
purpose is to de�ne the required basic blocks for the generation of multi-�eld NTT.

DFT basic blocks. The SPIRAL DFT hardware generation starts its formula rewriting
processes from the Pease FFT algorithm.

DFTrt =

(
t−1∏
l=0

Lr
t

r (Irt−1 ⊗DFTr)C
(l)
rt

)
P r

t

r (3.1)

The Kronecker formulation of the decimation in frequency Pease FFT algorithm is presented
in equation 3.1. The algorithm parameter r is the radix basis of the transform. This parameter
has an in�uence on the possible size of the DFT (it should be a power of r, namely n = rt).
The algorithm is then decomposed in t number of stages (t = logr(n)), performed after an
initial permutation P r

t

r (the operation's order is from right to left).

The matrices C(l)
rt are diagonal matrices that represent multiplications with the twiddle

factors. Exponent l expresses that these matrices are dependent of the considered stages
l ∈ 0, ..., t− 1, in contrary to the matrices Lr

t

r that are only dependent on r and t. The
matrix DFTr is a basic bloc implementing an r-point DFT. The matrices Lr

t

r are permutation
matrices that prepare the stage's outputs for the next stage.

Both streaming and iterative reuse can be applied on this matrix formula. The kronecker
product Irt−1⊗DFTr could be streamingly reused with any width w such that w is a multiple
of r and divides rt−1. The iterative

∏t−1
l=0(...) could be iteratively reused with depth d that

divides t. Figure 3.4 presents some illustration of di�erent reconstruction of equation 3.1 to
match sequential reuse directives. Contrary to the matrix formula, the schematics are read
from left to right.

75

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2

DFT2w8
2

w8
2

w8
3

w8
2

w8
1

R2
8

C8
(2)

I4⊗DFT2

L2
8

C8
(1)

C8
(0)

L2
8

L2
8I4⊗DFT2

I4⊗DFT2

(a) No sequential reuse

DFT2 DFT2 DFT2Perm Perm Perm Perm× ×
lookup lookup

(b) Streaming reuse, width w = 2

DFT2 DFT2 DFT2

Perm Perm Perm Perm
× ×
lookup lookup

DFT2 DFT2 DFT2× ×
lookup lookup

(c) Streaming reuse, width w = 4

DFT2

Perm
Perm×

lookup

(d) Mixed reuse, streaming width w =
2 and depth d = 1

Figure 3.4: Illustration of sequential reuse impact on a DFT circuit. Example for a radix-2

DFT on 8 points: DFT23 =
(∏2

l=0 L
8
2(I4 ⊗DFT2)C

(l)
8

)
P 8
2 .

For the resulting DFT hardware formulae to be transformed into proper HDL description,
the SPIRAL hardware backend should be able to generate some generic basic blocks. For the
generation of streaming permutations appeared after streaming reuse rewriting, Püschel et
al. [101] proposed a solution that is used in SPIRAL.

Regarding the diagonal matrices C(l)
rt the generation is simply done by instantiating a

multiplier on each streaming way that requires multiplication with twiddle factors di�erent
from one. Due to streaming reuse rewriting, some instantiated multipliers may have to ac-
cess di�erent twiddle factors. Hence, a lookup table storing all required twiddle factors is
instantiated along with the multiplier.

Finally, the DFTr basic blocks are just the decimation in frequency version of the radix-r
butter�ies.

From the previous presentation, two observations are important for our objective. First,
besides the basic matrix DFTr and the diagonal matrices C(l)

rt , nothing is under the in�uence
of arithmetic and only re�ects the structure of the algorithm. Second, SPIRAL has full
knowledge of which twiddle factors are involved in each stage of the DFT circuit.

76

Hence, to generate NTT rather than DFT, we simply have to replace the complex arith-
metic by modular arithmetic, and replace complex twiddle factors in lookup table by NTT
twiddle factors. No structural change of the algorithm is required. In the next subsection,
the modular arithmetic that we choose to implement is presented.

3.2.2 Finite-�eld arithmetic

The previous subsection has presented the DFT generation capability of the SPIRAL hardware
backend. It was pointed out that it is su�cient to replace complex arithmetic by modular
arithmetic and complex twiddle factors by NTT twiddle factors to generate NTTs in place of
DFTs.

In this section we present the modular arithmetic operators required to perform an NTT
over a �nite-�eld. The �nite-�elds considered are the Zpi = Z/piZ, with pi some s-bit primes
over which the n-point NTT is de�ned.

The modular arithmetic is dependent of the modulus pi considered. We remind that the
modulus pi are the RNS basis element in our context. Consequently, they are chosen using
the NFLlib prime selection algorithm presented in Chapter 2.

Modular additions and subtractions. The modular additions and modular subtraction
are de�ned by: cadd = a + b mod pi and csub = a − b mod pi, with a, b ∈ Zpi . As the
input operands a and b are elements of the �nite-�eld, it implies 0 ≤ a, b < pi. Hence the
modular addition and subtraction are simply performed with one comparison and at most
two additions/subtractions.

a b p

c

01

−

+

<

(a) Modular addition

a b p

c

<

0 1

−

+

(b) Modular subtraction

Figure 3.5: Modular additions and subtractions over Zpi

Figure 3.5 gives some examples of hardware implementation for modular adder and mod-
ular subtracter. In order to develop generic hardware basic blocks, the modulus pi is also
considered as an input operand. The proposed operators are pipelined, thus have two cycles
latency and output one result every cycle.

Modular multiplications. A multiplication over Zpi is de�ned by cmul = a ∗ b mod pi.
Even if we know the dynamic range of the input operand, the modular reduction is not neces-
sarily trivially performed after a multiplication. As discussed in Chapter 2, the modulus pi is
selected using the prime selection algorithm from NFLlib [95] (see Algorithm 2). This library

77

gives also a Barrett-like reduction algorithm that takes advantage of the prime characteris-
tics. Consequently, this reduction has been chosen to implement a basic block for modular
multiplication.

Algorithm 3 Modular multiplication from NFLlib [95]

Input: a, b ∈ [0 , pi), pi selected with Algorithm 2, vi = bβ2/pic mod β (β = 2s+m)
Output: r = a× b mod pi
1: q ← vi · u1 + 2m · u mod β2

2: r ← u− bq/βc · pi mod β
3: if r ≥ pi then
4: r ← r − p
5: end ifreturn r

The modi�ed Barrett reduction from NFLlib is presented in Algorithm 3. It requires a
(s + m)-bit reciprocal related to the modulus pi (vi = b22(s+m)/pic mod 2(s+m). Both the
prime pi and the reciprocal vi are considered as input operands in the de�nition of a generic
modular multiplier basic block.

−
...

⨯

...

...

...

+

<<m

⨯

⨯

...

...
<

−

0

1
a
b

pi

vi

c

u = a⨯b vi⨯u1

(u = u1β+u0)
q =

viu1+2mu mod β2
r =

u−⌊q/β⌋pi mod β
⌊q/β⌋⨯pi

c =
(r<pi)? r : r−pi

LMULLMUL LMUL1 1 1

Figure 3.6: Hardware schematic of the NFLlib modular multiplication algorithm

Figure 3.6 presents the schematic of the proposed basic bloc modular multiplier. The
operator is fully pipelined and has a latency LMMUL = 3LMUL + 3 with LMUL the latency
of a s-bit multiplier. Signal widths have not been noted on the schematic, but only the
appropriate widths are used at each operations. For example the third multiplication only
requires the s+m lower bits of the adder results. The total hardware cost of this operator is
dominated by the three multipliers and the pipeline registers.

Due to time constraint, we have implemented the modular multiplication rather straight-
forwardly. Some additional works could explore the optimization of this design to reduce its
latency and its hardware cost. Any improvement on the modular multiplication block could
be bene�cial for the overall NTT design.

Now that we have presented the modular arithmetic basic blocks, the last requirement for
multi-�eld NTT generation is to handle multiple NTT twiddle factor sets. A solution to this
design problematic is presented in next subsection.

78

3.2.3 Modi�cation of twiddle factors handling

For DFT hardware generation, SPIRAL pre-computes the twiddle factors and stores them
in the di�erent lookup tables (ROM) at compile time. This approach is suitable for DFT as
the twiddle factors do not change over time. Similarly, if one has only a single �nite-�eld
on which performing the NTT, this solution is the most suitable. But in our case, the RNS
representation imposes us to �nd a way to reprogram these lookup tables without major
impact on performances.

Reminder on twiddle factor sets. In the case of DFT, the twiddle factors are the �rst
n/2 powers of the n-th primitive root of unity over C (i.e.

(
e(2kπ/n)

)
0≤k<n/2). Similarly for

NTT, the twiddle factors are the powers of a n-th primitive root over the �nite-�eld Zpi . As
a reminder, the de�nition of a n-th primitive root over Zpi is an element ωi such that ωni = 1
mod pi and ωki 6= 1 mod pi for 1 ≤ k < n. Hence the twiddle factors required for an NTT
over the �nite �eld Zpi are Ωi =

{
ωki mod pi

}
0≤k<n/2.

For inverse DFT, the twiddle factors are the multiplicative inverse of those for forward
DFT (i.e.

(
e−(2kπ/n)

)
0≤k<n/2). Similarly, the twiddle factors for inverse NTT are Ω−1i ={

ω−ki mod pi

}
0≤k<n/2

.

Finally, the n-point inverse DFT requires the precomputed multiplicative inverse of n over
the complexes in order to scale down the outputted vector. The inverse NTT also requires
this multiplicative inverse of n over the considered �nite-�eld noted n−1i = n−1 mod pi. For
simplicity, this is implicit in the following discussions.

Hence, beside the �nal scaling, the forward NTTs and the inverse NTT share the same
architecture. The only di�erence is in the twiddle sets, namely Ωi for the forward one and
Ω−1i for the inverse one.

The distribution of the twiddle factor sets in the di�erent lookup tables is imposed by the
structure of the Pease FFT algorithm. Each stage of the resulting NTT circuit may embed
up to w/2 multipliers and memory elements to store the required twiddles for this stage.

NTT2 NTT2 NTT2

Perm Perm Perm
×

NTT2 NTT2 NTT2× ×

Initial
Perm

Stage 0
Stage 1 Stage 2

NTT2

Perm
×

NTT2×

Stage 3

ωi
0; ωi

2;
ωi

4; ωi
6

ωi
1; ωi

3;
ωi

5; ωi
7

ωi
0; ωi

4

ωi
2; ωi

6ωi
4

pipi pi pi

pipi pi pi

pi;vi

pi;vi

pi;vi pi;vi

pi;vi

Figure 3.7: Example of the initial twiddle factors partition for a fully-streaming NTT24 with
streaming width equal to 4. The �nite-�eld speci�c values are highlighted in blue.

As an illustration, Figure 3.7 presents the composition of the di�erent lookup table for
a fully-streaming 16-point NTT with a streaming width of 4 elements per cycle. The other
�nite-�led speci�c values are colored in blue. Namely, the prime pi and the reciprocal vi that
are required for the arithmetic operations.

79

The distribution of the twiddle factors accross the NTT circuit is known by the SPIRAL
hardware generator. Hence, rather than implementing the memory elements directly in the
data path, our proposed solution disassociates the twiddle memory elements of their stages,
making them programmable, and handling them as a bank of memory elements. From now on,
a twiddle bank refers to the concatenation of all twiddle memory elements for a speci�c RNS
channel. In addition to the twiddle factors, a twiddle bank will also store the other �nite-�eld
speci�c values, namely the prime pi and its reciprocal vi. Each twiddle bank stores a twiddle
factor set and a (pi, vi) pair of one RNS channel at a time, and could be reprogrammed with
a new set when required.

To not insert bubbles during the reprogramming of a twiddle bank, our solution imple-
ments a circular access and reprogramming of G di�erent twiddle banks. This number G is
related to the maximum number of simultaneous RNS channels in the NTT data path. If
we note T = n/w the throughput of the NTT data path and latNTT its latency, hence the
architecture instantiates G = dlatNTT /T e+ 1 of them.

The main modi�cation for the generated NTT data path is that it has to consider all the
�nite-�eld speci�c values as inputs. The resulting multi-�eld design is presented in the next
section.

3.3 Proposition of a multi-�eld NTT design

The section presents our proposed multi-�eld NTT architecture by means of cyclical access and
reprogramming of twiddle banks. As presented in section 5.3 the generation of the di�erent
twiddle factor sets is made outside of the NTT circuit.

A global design overview is given in a �rst subsection, introducing in particular the distinc-
tion between the twiddle path and the data path. The data path characteristics are detailed
in a second subsection, and the twiddle path's ones in a third subsection.

3.3.1 Design overview

The proposed solution makes the distinction between the data path and the twiddle path. The
data path implements the NTT algorithm itself, and the twiddle path handles the di�erent
twiddle factor sets. This is illustrated in Figure 3.8.

next_twiddles
Twiddle
input

next_data
NTT DATA PATH

Data
input

next_out

Data
output

NTT TWIDDLE PATH

synchronisation twiddle values

Figure 3.8: Number Theoretical Transform (NTT) �ow. Schematic for w = 2.

The two paths have their own distinct �ows. The twiddle path receives new twiddle factor
sets one cycle after it has been announced by the next_twiddles signal. The data path
begins a new NTT computation one cycle after the reception of the next_data signal The
end of the computation is signaled by the next_out signal.

80

To achieve a proper functioning of the overall design, a twiddle factor sets must be given
to the twiddle path some time before the corresponding NTT computation start. This is to
take into account the programming of the twiddle factor sets into a twiddle bank. The data
path is then responsible of sending synchronization signals towards the twiddle paths. The
twiddle path consequently feeds the data path with the appropriate twiddle factors.

The data path is generated by SPIRAL to which has been added the basic NTT blocks
by specifying the modular arithmetic operators presented in previous section. For a proof of
concept solution of the multi-�eld NTT generation, the twiddle path is generated by a python
script.

The next subsections present in details the SPIRAL generated data path and its charac-
teristics, and how the twiddle path is generated.

3.3.2 Data path

The data path simply performs the permutations and the arithmetic operations to compute
the NTT. The computation is performed in a single �ow from the �rst stage to the last stage.

Each stage of the NTT data path is responsible of sending synchronization signals to the
twiddle path when it starts its computation over a di�erent �nite-�eld. Consequently, the
twiddle path connects the concerned stage with the proper twiddle bank storing the required
twiddles and pre-computed values.

multi-�eld NTT stage. A NTT stage consider all the �nite-�eld speci�c values as inputs.
Each step has di�erent requirements in terms of expected �nite-�eld values, but the principle
of access to them is always the same.

next_data

NTT DATA PATH

Data
input

next_out

Pe
rm

M
ul

tip
lie

rs

N
T

T
r

... ...
...... Data

output

Stage l

next_l FFValues_l

p

Figure 3.9: Stage structure for a NTT stage.

Figure 3.9 presents the basics of a NTT stage in our solution. The synchronization signal
next_l is extracted from the control �ow directly coming from the next_data signal. Hence,
when next_l is asserted it tells the twiddle path that the stage l will have data of a new
�nite-�eld incoming on the next clock cycle. Upon this information the appropriate �nite
�eld values (FFValues_l) are fed to the stage.

For the proper generation of the twiddle path, the �nite-�eld values expected by each stage
of the NTT must be be known. Hence, when SPIRAL generates the NTT data path, some
information on its resulting structure should be propagated to our twiddle path generator.

Information for twiddle path generator. For automatic generation of the twiddle path,
the SPIRAL tool should precise the structure of the NTT data path. Namely, it consists in
the number of stages of the NTT, and for each one, the required �nite-�eld speci�c elements.
In these required elements are included the prime pi, the reciprocal vi (if needed), the di�erent

81

memory elements for the required twiddle for this stage (if necessary), and for each memory
element of a stage, the powers of the required twiddle factors.

Each stage is identi�ed by an index l ∈ [0, t−1] , with t = logr n. Each memory element of
a stage is identi�ed by an index m ∈ [0, w/2− 1], which indicates on which pair of streaming
way is located the associated multiplier on the data path.

For instance, here is the information expected by the twiddle path generator for the circuit
in Figure 3.7:

- stage l = 0→ (pi, no reciprocal, no memory element).
- stage l = 1→ (pi, vi, 1 memory element):
� memory element m = 1→ twiddle powers [4]
- stage l = 2→ (pi, vi, 2 memory elements):
� memory element m = 0→ twiddle powers [0, 4]
� memory element m = 1→ twiddle powers [2, 6]
- stage l = 3→ (pi, vi, 2 memory elements):
� memory element m = 0→ twiddle powers [0, 2, 4, 6]
� memory element m = 1→ twiddle powers [1, 3, 5, 7]

Note that a memory element is uniquely identi�ed in the twiddle bank by the pair of indexes
(l,m). With this information, the interface between the data path and the twiddle path is
straightforward, as well as for the structure of a twiddle bank. For this example, a twiddle
bank is composed of:

- 1 register for the prime pi.
- 1 register for the reciprocal vi.
- 1 register indexed (l = 1, m = 1).
- 2 memory of depth 2: one indexed (l = 2, m = 0) and the other (l = 2, m = 1).
- 2 memory of depth 4: one indexed (l = 3, m = 0) and the other (l = 3, m = 1).

And the FFValues signals are:

- FFValues_0 = {p_0}
- FFValues_1 = {p_1, v_1, tw_1_1}
- FFValues_2 = {p_2, v_2, tw_2_0, tw_2_1}
- FFValues_3 = {p_3, v_3, tw_3_0, tw_3_1}

The last remaining information required by the twiddle path generator is how the read-
accesses for the twiddles in memories are synchronized with the NTT data path. Actually, the
order in which the twiddle factors are read from the memories is the same as in the original
DFT design. Hence, the address generators already generated by SPIRAL are reused in our
solution. More details are given when presenting the twiddle path.

In this subsection, we have presented the principle of the fully-streaming multi�led NTT
data paths. In particular, we have described how each stage of the NTT synchronizes itself
with the twiddle path. In addition, we have highlighted the information required by the
twiddle path generator to generate a twiddle path consistent with the data path. Its internal
structure and the functioning of the twiddle path is presented in next subsection.

82

3.3.3 Twiddle path

The twiddle path handles di�erent twiddle factor sets from up to a maximum of G di�erent
�nite-�eld. Each of the G twiddle factor sets is stored in a di�erent twiddle bank. It is
reminded that a twiddle bank is the concatenation of memories and registers required by the
data-path to store a single twiddle factor set.

next_twiddles
GA

IDP

PRG Twiddle
input

IPRG

write enables

write addresses

read addresses

num_prg

CTRL TWB 1

...

{pi, vi, ωi
0, ... , ωi

w/2-1}

prg

ne
xt

pr
g

STWB
TWB G...

...

NTT TWIDDLE PATH

next_[0:t-1] FFValues_[0:t-1]

num_[0:t-1]

Figure 3.10: Twiddle path internal structure.

The principle of the twiddle path is described here. The description refers to Figure 3.10.
The twiddle path cyclically reprograms the di�erent twiddle banks whenever a new twiddle
factor set is inputted (signaled by next_twiddles). It cyclically feeds the di�erent stages with
their expected �nite-�eld values (FFValues_l) when requested by the corresponding next_l
signals. To guarantee a collision-free access and reprogramming of the twiddle banks, the
number of instantiated twiddle banks G is one plus the maximum number of RNS channels
simultaneously present in the data path.

The G di�erent twiddle banks (TWB [1:G]) are instantiated in the STWB module. On
one side, this set of twiddle banks is connected with a data path interconnect (IDP). On the
other side, it is connected with a program interconnect (IPRG).

The IDP module is controlled by the CTRL module under the in�uence of the synchro-
nization signals coming from the data path. Similarly, the IPRG module is controlled by the
CTRL module under the in�uence of the next_prg signal issued by the programming module
(PRG).

The PRG module is responsible of the reprogramming of the twiddle banks. This program-
ming is requested at each input of a new twiddle factor set, signaled by the next_twiddles
signal. The PRG module signals to CTRL that a new program �ow is coming with the
next_prg signal.

The twiddle banks not currently programmed are accessed accordingly to the read address
signals generated by the GA module. For each memory in a twiddle bank, the generation of
read address signals is reset by the control signals from the data path �ow.

Programming a twiddle bank. We remind that a twiddle bank (TWB) is the concate-
nation of all the twiddle memories and registers required by the data path, plus a pair of
registers storing the (pi, vi) pair.

83

The programming of a twiddle bank is performed with the same throughput as the data
path throughput. We remind that the throughput of a fully-streaming NTT in our case is
T = n/w. Namely a new n-point NTT is performed at least every T cycles. Moreover, it is
reminded that their is exactly n/2 di�erent twiddle factors for a n-point NTT. Consequently,
it is su�cient for the programming phase to have a streaming �ow of w/2 twiddles per cycle.

IPRG

CTRL

GA

PRG

rd_addr_[*]

wr_addr_[*]
next_twiddles 1

0

=g

++
0

num_prg

Combinatorial
logic

prg

ne
xt

pr
g

in_p
in_v

in_tw_[0:w/2-1]} prg_p
prg_v
prg_tw_[0:w/2-1]}
we_g_[*]
prg_g}

Figure 3.11: Principle of the program in-
terconnect module (IPRG).

TWB g
prg_g

v_gv
p_gp

prg_v
prg_p

wr_addr_2_1
we_g_2_1

1
0

Mem 2_1 tw_g_2_1
prg_tw_0

rd_addr_2
wr_addr_2_0

we_g_2_0
1
0

Mem 2_0 tw_g_2_0
prg_tw_0

wr_addr_3_1
we_g_3_1

1
0

Mem 3_1 tw_g_3_1
prg_tw_1

rd_addr_3
wr_addr_3_0

we_g_3_0
1
0

Mem 3_0 tw_g_3_0
prg_tw_0

we_g_1_0 tw_g_1_1
prg_tw_0 Reg 1_0

Figure 3.12: Twiddle bank internal struc-
ture. Example for n = 16 and w = 4.

To reprogram a twiddle bank, the pair (pi, vi) and the twiddle factors {ωji }0≤j<n/2 are
sent through PRG along with appropriate write address and write enable signals for each
storing location of the bank. As seen in Figure 3.11, the bank currently programmed receives
the we_g_[*] signals from PRG: bank number g is reprogrammed when num_prg is equal to
g. Other banks are only addressed for reads, using the simple mechanism of address selection
in �gure 3.12.

The choice of the bank currently programmed is done by cyclically updating the num_prg
register in {1, ..., G} with the arrival of a new programming phase, signaled with next_prg
going high for one cycle.

Generating the program �ow. The twiddle path generator knows, for each memory
element of a twiddle bank, which twiddle factors are expected. In addition to this, the twiddle
path generator has to know how the twiddle factor sets are inputted to the PRG module. This
depends on how the twiddle generator presented in Chapter 4 outputs the values.

1
in_tw_0
in_tw_1

0

in_tw_(w/2-1) w/2-1

k*w/2

k*w/2+w/2-1

k*w/2+1
(T-1)*w/2

(T-1)*w/2+w/2-1

(T-1)*w/2+1...
...

...

...

...

...

...

...

...

...

...

...

...

Figure 3.13: Input formalism for the di�erent twiddle factor sets.

Actually, the twiddle factor sets are inputted in increasing order of powers, namely
{ω0

i , ω
1
i , ..., ω

n/2
i }. Moreover, they are inputted w/2 elements per cycles in order to respect the

84

required programming throughput. Figure 3.13 illustrates this formalism which is respected
by the twiddle generator presented in Chapter 4.

From now on we call a bunch of twiddle the w/2 consecutive twiddles received in a cycle.
Hence, to uniquely identify a speci�c twiddle factor in the input �ow, all that is required is:
its bunch number k ∈ [0 : T − 1] and its index in the bunch i ∈ [0 : w/2 − 1]. Consequently
the PRG module should know, for each memory element of a twiddle bank, the (k,i) pairs of
the expected twiddles.

tw(k, i) = ω
kw
2
+i

i , ∀(k, i) ∈ [0, T − 1]× [0, w/2− 1]. (3.2)

In our caseI, due to the well structured distribution of the twiddles into the di�erent
registers and memories of a twiddle factor bank, each memory element expects its twiddles
from a single bunch index i. Namely, the bunch index from which the twiddles are extracted is
given by i = power mod w/2, with "power" being the power of any twiddle for that memory
element.

Similarly, each memory element expects its twiddles from the bunches of index k following
a friendly arithmetic progression with the common di�erence being a powers of two.

Consequently, for each memory element of a twiddle bank, the desired PRG module's
behavior is easily implemented using a counter with an initial o�set value and a step value.
These counter's characteristics can be expressed in function of the stage index l and the
streaming way index m that identify the memory element.

o�set(l,m) =
m · n

2(l+1) · w/2

step(l) =

{
0 if the storage element is a register.

w·n
2(l+2)·w/2 if the storage element is a memory.

Note that only the counters with step values larger than one are actually implemented.
Indeed, the o�set values represent the �rst bunches from which twiddles are extracted. A
step value of 0 indicates that only one twiddle is extracted from the �ow as it feeds a register
in the twiddle bank. A step value of 1 represents that a twiddle is extracted from the �ow
at each cycle. Hence, all the information needed to extract the concerned twiddles may be
centralized in a single global counter. Furthermore, a global counter is implemented anyway to
control the programming phase. Consequently, it is actually this one that in practice replace
all counters with a step value less than two.

To illustrate this, we give an example with a the 16-point fully-streaming NTT, with a
streaming width of 4 (Figure 3.7). The input twiddle �ow is:

in_tw_0 → 0 2 4 6
in_tw_1 → 1 3 5 7

The counter and bunch's index associated to each register and each memory of the twiddle
banks are:

- Reg (1,1)→ counter(o�set = 2, step = 0); index : 0 ⇒ Extracts [4]
- Mem (2,0)→ counter(o�set = 0, step = 2); index : 0 ⇒ Extracts [0,4]

In, r, and w being powers of two.

85

- Mem (2,1)→ counter(o�set = 1, step = 2); index : 0 ⇒ Extracts [2,6]
- Mem (3,0)→ counter(o�set = 0, step = 1); index : 0 ⇒ Extracts [0,2,4,6]
- Mem (3,1)→ counter(o�set = 0, step = 1); index : 1 ⇒ Extracts [1,3,5,7]

The result of the extraction is what is expected in each memory element of a twiddle bank.

Feeding the data path. The mechanism instantiated in the IDP module that allows feed-
ing the appropriate FFValues to each data path stages is similar to the selection of the
programmed twiddle bank.

IDP

CTRL

++
0 num_l

Combinatorial logic

next_data

NTT DATA PATH

Data
input

next_out

Pe
rm

M
ul

tip
lie

rs

N
T

T
r

... ...
...... Data

output

Stage l
next_l

p

num_l
...

FFValues_1_l

FFValues_G_l

...

...

...

Figure 3.14: Selection of �nite-�eld values for a stage l.

This mechanism is illustrated in Figure 3.14. The twiddle bank from which the FF-
Values_l are read is selected according to the control register num_l located in the CTRL
module. The arrival of a di�erent �nite �eld in the data path �ow is signaled by a next
signal. On its reception, the cyclic update of the corresponding num register in the CTRL
module is performed .

The next signals are also responsible of the re-synchronization of the read address gener-
ators concatenated in the GA module. This is not shown in Figure 3.14 for simplicity.

In this section, we have presented the principle of our circular handling of twiddle factor
sets. This solution allows to de�ne a fully-streaming NTT circuit that is able to handle
multiple RNS channel without loss of performances. In the next section, the hardware cost
overhead of our solution is studied.

3.4 Synthesis results and comparisons

In this section, the cost of our circular handling of twiddle factor sets is studied. In a �rst
time, the cost of our solution is compared to the cost of a single-�eld NTT. In a second
time, we take into account the context of RNS representation and compare our solution with
another approach from the literature.

The integration of our proposal in SPIRAL for automatic generation of the NTT data
paths has not been fully completed yet. Hence, we can only present the synthesis results for

86

the twiddle path. We developed a python script that has automatized the generation of the
twiddle factor paths for radix-2 fully-streaming NTT (r = 2). Synthesis have been performed
with the default mode of Xilinx Vivado's synthesizer (2018.1). The targeted FPGA is a Virtex
7 xc7vx690t from Xilinx.

3.4.1 Overhead of the twiddle path

In Table 3.1, we have detailed the di�erences in terms of resource utilization between our
twiddle path and the cost of the twiddle handling for a single-�eld NTT. The resource cost
of the twiddle handling of a single-�eld NTT is roughly the cost of one of our twiddle bank.

Table 3.1: Resource utilization of twiddle paths for multi-�eld NTT compared to single-�eld
NTT. The resource utilization in the latter case is considered to be that of a single twiddle
bank (TWB). The resource utilization is expressed w.r.t. the resource available on a Xilinx
Virtex 7 xc7vx690t.

(n, w, s, G) Res.
Our Twiddle Path

% TWB
% Total STWB PRG CTRL GA

(212, 2, 30, 4)
LUTs 0.59 2,567 2,043 355 117 51 0.13 562
FFs 0.45 3,912 3,512 237 97 66 0.11 944
BRAMs 1.9 28 28 � � � 0.48 7

(214, 2, 30, 4)
LUTs 0.71 3,055 2,350 498 137 70 0.15 658
FFs 0.52 4,495 3,968 289 115 91 0.13 1,083
BRAMs 5.17 76 76 � � � 1.29 19

(214, 8, 30, 4)
LUTs 1.83 7,950 6,117 1,577 202 51 0.37 1,581
FFs 1.7 14,658 13,568 813 115 66 0.40 3,458
BRAMs 7.62 112 112 � � � 1.9 28

(214, 8, 46, 4)
LUTs 2.5 10,826 8,997 1,573 202 51 0.53 2,301
FFs 2.47 21,350 20,064 993 115 66 0.59 5,082
BRAMs 16.3 240 240 � � � 4.08 60

The overhead of our circular-handling of twiddle factor set is mainly dependent of the
number of instantiated twiddle banks G. The surrounding parts have a relatively small impact
on resources utilization. For the parameter sets considered in this thesis, G was always equal
to four, and it is very unlikely become larger in our context. Indeed, for G to get larger, the
ratio T = n/w has to be reduced. If one increases w, he has to face bandwidth and hardware
cost issues (see Section 5.3), and the minimal n for RLWE security is chosen above 2048 in
practice.

The overhead of our twiddle path is not very important compared to the advantages it
brings in our context. This is highlighted in the next subsection.

3.4.2 Comparisons with a straightforward storage of twiddle factor sets

With the RNS/NTT coupled approach for polynomial multiplication, a basic handling of
multiple twiddle factor sets could be very costly. Our twiddle handling allows a designer to

87

Table 3.2: Resource utilization for a local storage compared to our on-the-�y handling of
twiddle factor sets.

Parameters Storage as in [81] Our Twiddle Path

L n Sq s k + k′ w MB BRAM MB BRAM(%)

1 211 54

30

5

2

0.31 25 0.25 20 (-20 %)
5 212 108 8 0.98 56 0.49 28 (-56 %)
10 213 216 16 3.93 176 0.98 44 (-75 %)
20 214 432 30 14.75 570 1.97 76 (-87 %)
30 215 594 41 40.30 1,394 3.93 136 (-90 %)

20 214 432 30 30

2

14.75

570

1.97

76 (-87 %)
4 660 88 (-87 %)
8 840 112 (-87 %)
16 1,200 160 (-87 %)

20 214 432

30 30

2

14.75 570 1.97 76 (-87 %)
41 22 14.78 693 2.69 126 (-82 %)
51 18 15.04 594 3.34 132 (-78 %)
58 16 15.20 592 3.80 148 (-75 %)
62 15 15.24 585 4.06 156 (-73 %)

consider the twiddle factors as inputs for an NTT-based hardware accelerator. Consequently
one does not have to locally store all the twiddle factor sets (one for each RNS channel) in
order to implement the coupled approach.

To highlight the bene�t of our strategy, we compare our twiddle factor handling with a
local storage strategy as in the work of Cousins et al. [81]. We remind that they have also
implemented a fully-streaming NTT but they have chosen to store the NTT twiddle factors
in ROMs �lled up at compile time.

Note that we do not directly compare with their synthesis results as they are not accessible
in their paper. What we did is a projection of the BRAM utilization based upon the utilization
of one of our twiddle bank multiply by the number twiddle factor sets.

In Table 3.2, the advantage of using the circularly-bu�ered handling of twiddle factor sets
rather than full local storage appears clearly. Our on-the-the �y handling of twiddle factor
sets reduces from 20 % up to 90 % the BRAMs utilization in the context of FV acceleration.
This allows our multi-�eld NTTs to address larger FV's parameter sets.

3.5 Conclusion

In this chapter we have explored an approach for the de�nition of an e�cient NTT-based poly-
nomial multiplier for FV acceleration. Our choices to explore the adaptation of the SPIRAL
DFT generator in our context is motivated by the presentation of its design space exploration
capability. This theoretically allows us to consider very large degree n for FV accelerations.
But the twiddle factor handling system has to be compatible with the RNS representation in
order to not losse execution performance due to the reprogramming of twiddle factor sets.

The main contribution of this chapter is the de�nition of a fully-streaming multi-�eld NTT,

88

without loss of performances and without major hardware cost overhead. This is achieve by
circularly-bu�ering the multiple twiddle factor sets. Another contribution is the hint that
the automatic generation of such architectures is possible for generalized NTT circuits. In
particular, this work has shown the feasibility of automatic generation of fully-streaming
multi-�eld NTTs. We believe that there are no major constraints to the adaptation of our
solution to other type of architecture generated by SPIRAL, and more generally to any types
of NTT circuits.

With regard to the hardware acceleration of FV, our twiddle factor handling allows the de-
sign of high throughput NTT-based residue polynomial multipliers, while having an hardware
cost independent of the RNS basis sizes. Nevertheless, our solution alone only postpones the
storage of twiddle factors. Thus, a decrease in performance due to heavier communications
has to be considered. Hopefully, our twiddle factor generator presented in the next chapter
propose a solution to this problem.

89

90

Chapter 4

On-the-�y computation of NTT

twiddle factors

In previous chapter the strategy of on-the-�y generation of twiddle factor sets has been mo-
tivated. This chapter presents our solution for this generation. The problematic is reminded
with some in-depth on the throughput requirement in our context. Then, a generic design
that achieve the throughput requirement is presented. This is followed by the proposal of an
optimized recurrence relationship to generate a single twiddle set. Finally, the hardware cost
and the bene�ts of this generator are presented.

4.1 On the issue of generating multiple twiddle factor sets

Our application context considers the acceleration of the full RNS variant of FV. In particular,
we are currently focused on the de�nition of an e�cient hardware implementation of NTT-
based Residue Polynomial Multiplier (RPM).

In the �rst subsection, the expected pre-computed values for NTT-based RPMs are re-
minded. It shows that there is no fundamental di�erence in the generation of twiddle factors
for Padded Convolution (PC) and Negative Wrapped Convolution (NWC) in practice. Then
the distinction between the throughput requirement and the choice of a recurrence relationship
is expressed.

4.1.1 Reminders on twiddle factors

The computation of a n-point NTT over the �nite-�eld Zpi requires the choice of a primitive
n-th root of unity ωi ∈ Zpi . The transformation of the n-sequence a ∈ Znpi is also a n-sequence
A such that:

For all j in {0, ..., n− 1}, Aj =
n−1∑
k=0

ωjki ak mod pi. (4.1)

The inverse transformation is de�ned by:

For all k in {0, ..., n− 1}, ak = n−1i

n−1∑
j=0

ω−kji Aj mod pi. (4.2)

The values ω−kji and n−1i are the multiplicative inverse of ωkji and n over Zpi .

91

In the case of a RPM through PC, the polynomials of degree n are padded with zeros up
to N elements (N a power of two in practice such that N ≥ 2n). The convolution is then

performed on N -points sequences. It then requires the twiddle factor set {ωki }
N/2−1
i=0 for NTT

and {ω−ki }
N/2−1
i=0 for inverse NTT.

For RPM through NWC, the convolution is directly performed on n-points, but requires
extra pre-computed values. Namely, a primitive n-th root of −1 over Zpi noted ψi that
de�ne weight vectors Ψi = (ψji)0≤j<n and Ψ−1i = (ψ−ji)0≤j<n. The NWC is then a weighted
convolution on n-points, and the actual twiddle factors for NTT and inverse NTT are subset
of Ψi and Ψ−1i .

We indi�erently call twiddle factors the pre-computed values required to computes these
operations. In both PC and NWC, we have to generate 2k-sequence of powers of a �nite-�eld
value. Consequently, our discussion will only consider this generic expression of the problem.

In addition to this, our context imposes the generation of multiple sequences in data �ow
while respecting a given throughput.

4.1.2 Throughput requirement

Our exploration of fully-streaming approach requires a twiddle factor set generation with the
same throughput as the data path of the considered convolution (PC or NWC). As seen in
the previous chapter, the throughput of the data path is only dependent on the transform
size n and the streaming width w. Namely, T = n/w cycles separates two consecutive RNS
channels in the data path. Thus, our generation module has to output a new twiddle factor
set of n elements every T = n/w cycles. Consequently, the solution to respect the throughput
is to be able to generate exactly w elements per cycle. Being able to generate more than
w per cycle is considered sub-optimized as it would require having more computing element
than what is strictly necessary.

The di�culties of this generation come both from the dependence between the elements
of the sequence of powers and from the latency of the modular multipliers that computes
the elements. Some inevitable bubbles occur in the generation of a single twiddle factor set.
Hence, generating one set after the other does not achieve the required throughput.

The next section details our proposed generic architecture solution that achieve the re-
quired throughput. Basically, this is done by overlapping multiple set generations. But
beforehand, let us consider the problematic of choosing a recurrence relationship to generate
a single twiddle factor set.

4.1.3 Recurrence relationship for a single set generation

The choice of the recurrence relationship for the generation of a twiddle factor set has a major
in�uence on the hardware e�ciency of the solution. Indeed, there is a compromise to �nd
between the latency of a generation and the intermediate storage required to perform the
generation.

The choice of this recurrence relationship is equivalent to the search for an overlap in
a dependency graph. Di�erent solutions can be found regarding di�erent constraints. In
our case, we propose an optimized solution that makes intermediate storage independent
of the size of the sequence to generate. This solution is expressed after having introduced
straightforward sub-optimized solutions in our context. This is detailed in section 4.3.

92

Now that both the throughput problematic and the recurrence relationship problematic
have been settled, our solutions are detailed in two di�erent sections.

4.2 Data-�ow oriented twiddle factor set generator

In this section is presented our solution to achieve the desired throughput of multiple twiddle
factor sets. The principle is that when there are inevitable bubbles in the generation of a set,
the generator �lls these bubbles with calculations from other set's generations ready to be
performed. This results in a mixed set output sequence from which each twiddle factor set
has to be sorted out.

4.2.1 Design overview

In our generic design solution, the generation of the sequence is separated from the sorting
process. Consequently, the generator is composed of two modules as presented in Figure 4.1.
The COMPUTE module is responsible for the generation, and the SORT module for sorting
the di�erent sequences. The generator handles up to H di�erent twiddle set generations at
the same time.

IN
PU

T
 IN

T
ER

C
O

N
N

EC
T

O
U

T
PU

T
IN

T
ER

C
O

N
N

EC
TGEN

HANDLER 1

GEN
HANDLER H

...

MM
UNIT

COMPUTE CONTROL

da
_[1

:H
]

se
l_a

rg
s

se
l_o

ut
s

M
M

B
_a

rg
s

GenCtrl_[1:H]

start

COMPUTE

BUFFER 1

BUFFER H

...

BUFFER
CONTROL
SORT

num
valid

o_next

outputs
w +2
words

}...vi

pi

ψi
1

...
ψi

w

C
O

N
N

EC
T

Figure 4.1: Generation of twiddles (GEN TW) �ow.

From a high level point of view, it is required to compute n elements in T cycles, so if
the generator outputs w elements per cycle the required throughput is achieved. Hence, our
generator instantiates exactly w modular multipliers (MM UNIT) and the rest of the design
take care of feeding these computing units and sorting the results.

The COMPUTE module schedules the di�erent set generations on the computing resource
MM UNIT. The outputs of the COMPUTE module are associated with a num and a valid
signals, which allow the proper sorting of the twiddle factor sets.

Each set generation is associated to a speci�c GEN HANDLER. Each GEN HANDLER
organizes the intermediate storage and the computations according to the chosen recurrence
relationship for a single set generation. More details are given in section 4.3.

93

The COMPUTE CONTROL module instantiates the scheduling process that guarantee a
sequential access of the di�erent set generation to the MM BANK.

The SORT module instantiates H di�erent bu�ers in which the twiddle factor sets are
sorted. When a twiddle set generation is completed, the BUFFER CONTROL initiates
the output of the n-sequence, w elements per cycle. The concerned GEN HANDLER and
BUFFER are then re-used for a new twiddle set generation.

The number H of simultaneous twiddle set generations depends on the latency of a sin-
gle generation. Thus, it is dependent on the recurrence relationship and on the latency
of the pipelined modular multipliers. Indeed, both in�uence the number of bubbles in
a single set generation that has to be �lled up with other generations. Nevertheless, H
is chosen as the smallest value necessary to reach the desired throughput. That is H =
dLat_GENTWmax/T e+ 1, with Lat_GENTWmax being the largest possible latency of the
GEN TW module.

Due to the scheduling implemented in COMPUTE CONTROL a twiddle factor set gen-
eration has its latency dependent on the workload of the generator. The maximum latency
Lat_GENTWmax occurs when the GEN TW module is used at maximum capacity: one new
set generation request every T cycles. The minimum latency Lat_GENTWmin occurs when
the GEN TW module is used at minimum capacity: one single set generation.

We have given an overview of our twiddle factor set generator. In the next subsections, the
di�erent sub-modules are detailed.

4.2.2 Computing the twiddle sets

The COMPUTE module handles the scheduling of the required twiddle factor sets. This
module is composed of H GEN HANDLER modules. Each takes care of a speci�c twiddle
factor set generation. The COMPUTE CONTROL module organizes the sequential access of
the GEN HANDLERs to the MM UNIT by scheduling them according to a priority rule.

Modular multipliers unit. The purpose of the MM UNIT module is to compute the next
w elements of the di�erent twiddle set generations. This module has no control unit as it
simply executes the computation of elements accordingly to its current inputs.

MM 0 MM w-1...

INTERCONNECTION

mmb args
p v

...

...
R0 Rw-1}

mmb res

Figure 4.2: MM UNIT principle.

94

The Figure 4.2 presents the principle of the MM UNIT unit. All the modular multipliers
are con�gured by the (p, v) pair on input specifying the �nite-�eld of the current arguments
mmb args. The number of arguments and their connection to the modular multipliers depend
on the chosen recurrence relationship. The results (mmb res) feed the generation handlers
and the COMPUTE CONTROL is responsible of updating the valid control signal of the
appropriate GEN HANDLER.

Generation handler. Each generation is started by giving some seed elements along with
the associated (pi, vi) pair. Namely, the prime de�ning the �nite-�eld Zpi and its reciprocal
for e�cient modular multiplication. In our case, we consider w elements to stay consistent
with the required throughput.

A GEN HANDLER module implements the chosen recurrence relationship upon the re-
ception of the initial seed elements. This requires a dynamic storage of some intermediate
results, and preparation of the next computations. The general principle is described here.

CACHE

CTRL

GEN HANDLER

newvalid

p
v

compute

pi
vi

da

mmb res
mmb args

}...ψi
1...

ψi
w

tw outs

p
v

1

0 w
words

w
words

Figure 4.3: Generation handler general principle.

As illustrated in Figure 4.3, a GEN HANDLER merely consists in a cache memory and
two main outputs registers. The storage elements are controlled by a control module un-
der the in�uence of three control signals and some internal counters. These control signals
compute,valid and new are generated by COMPUTE CONTROL from Figure 4.1.

The signal new indicates that the current inputs are seed elements for a new twiddle set
generation. This signal implies the local storage of the �nite-�eld speci�c pair (pi, vi), and
the re-initialization of the CTRL module.

The signal compute indicates that COMPUTE CONTROL has scheduled this speci�c
GEN HANDLER to use the MM UNIT. Consequently, the CACHE is accessed to prepare the
arguments (mmb args) of the next computation of the twiddle set. In order to be scheduled,
GEN HANDLER has to indicate whenever it is ready to perform new computations for its
set generation. This is done by setting the da signal to logic high.

Finally, the signal valid indicates that the current w inputs are valid elements, of the
current set generation. These elements have been produced by MM UNIT after the GEN
HANDLER has been scheduled by COMPUTE CONTROL. This valid signal implies the
preparation of the tw outs register that outputs the following w elements of the sequence.

95

The CTRL sub-module keeps trace of the current state of the generation. This state is
managed using three di�erent counters: # data # store, and # compute. The �rst keeps
trace of the number of elements already generated, the second the number of elements stored
in CACHE, and the third the number of times GEN HANDLER has been scheduled by
COMPUTE CONTROL.

These pieces of information are required for the translation of the input control signals
into a cache management and an output register management consistent with the chosen
recurrence relationship for a set generation. In section 4.3, this generation handler principle
is detailed with an example.

Computation control. The purpose of COMPUTE CONTROL is to schedule a sequential
access of the di�erent twiddle set generations to the MM UNIT. The desired result is that
the MM UNIT is constantly performing new computations, thus the required throughput is
achieved.

In our solution, the scheduling process chooses one GEN HANDLER, among those ready
to be scheduled, accordingly to a decreasing priority with the advancement of their twiddle
set generation. If a new set generation is starting, it preempts any computation for that cycle,
and becomes the highest priority generation.

In practice, if each start of set generation is separated by at least T cycles, each set will
be completed, and their order of completion will be the same as their starting orderI. As a
consequence, only the knowledge of the highest priority generation at a given time is necessary
to know the order of priority of all current generations. The respect of the T cycles interval
between two generation starts is considered to be under the responsibility of the surrounding
system.

Combinatorial
Logic

++
0 prior

...

...

... ...

Lat_GH_args Lat_MMB Lat_GH_outs

num

valid

sel_args sel_outs
GenCtrl_[1:H]

da_[1:H]
start

Figure 4.4: COMPUTE CONTROL principle.

Figure 4.4 illustrates the resulting module that essentially consists in a pipelined propa-
gation of the scheduling results. The prior register indicates the generation currently with
the highest priority. This register is cyclically updated in 1, ...,H as new generations are
requested (reception of the start signal). The signals da_[1:H] are coming from the di�er-
ent GEN HANDLER [1:H]. They indicate the GEN HANDLERS that are currently able to
perform new computations, and thus which are eligible in the current scheduling session.

IThe number of modular multipliers in MM UNIT is chosen to exactly reach the requested throughput T .
If the start of a set generation do not respect this throughput, our scheduling rule will cause the generations
to preempt each others and some deadlocks occur.

96

The scheduling session may have three di�erent outcomes: one computation is scheduled,
no computation is scheduled, or a new generation is started.

In the �rst case, the index of the GEN HANDLER elected is propagated into the num
shift register and a logic high signal is propagated in the valid shift register. The compute
signal of the appropriate GEN HANDLER is set to logic high.

In the second case, a logic low signal is propagated in the valid shift register and no GEN
HANDLER compute signal is set.

In the third case, the prior signal is updated and the index of the GEN HANDLER
receiving the responsibility of the new generation is propagated into the num shift register.
A logic high signal is also propagated in the valid shift register.

The other control signals driving the COMPUTE module behavior are updated accordingly
to the propagation of the scheduling results into the two shift registers. The depth of these
shift registers depends on the recurrence relationship and on the latency of the modular
multipliers. At the end of the two shift registers, the num and valid signals are propagated
to the SORT MODULE presented in the next subsection.

All the principal sub-modules of COMPUTE have been presented. The INPUT INTER-
CONNECT and the OUTPUT INTERCONNECT are just simple routing modules that em-
bedding multiplexers and registers for the realization of the expected functionality.

The next section presents the sorting of the di�erent set generations.

4.2.3 Sorting the twiddle sets

The SORT module sorts the di�erent twiddle factor sets from the mixed output sequence of
the COMPUTE module. To do so, it temporarily stores the sets in H di�erent bu�ers, each
associated to a GEN HANDLER. When a generation is completed, it outputs the n-sequence
in a single �ow.

BUFFER 1

BUFFER H

CTRL
IN

SORT MODULE

num
valid

o_nextCTRL
OUT

last_[1:H]

se
l_o

ut

BUFFER CONTROL

first_H
we_H
wr_addr_H
rd_addr

...

first_1
we_1
wr_addr_1
rd_addr

IN
T

ER
C

O
N

N
EC

T

tw_1

tw_w

vi
pi

... } tw_1

tw_w

vi
pi

...}

Figure 4.5: SORT module.

97

Figure 4.5 presents a detailed illustration of the SORT module. Each BUFFER is actually
a bunch of w memories, and each memory is associated to one of the w streaming ways.

The BUFFER CONTROL module is decomposed into two sub-modules. The �rst one
(CTRL IN) updates the INPUT INTERCONNECT and generates the write-address and
write-enable signals for the currently fed BUFFER. The second one is responsible for the
output of the n-sequences once they are completed.

The details of the di�erent sub-modules are described in the following paragraphs.

Bu�er module. A BUFFER module is composed of w single port memories and a pair
of registers to store the (pi, vi) values. It is controlled by four signals: a read-address, a
write-address, a write-enable and a �rst signal.

MEM w

we_h

rd_addr
wr_addr_h 1

0 ...
MEM 1

...

...
tw_1

tw_w

v
p

vi

pi

tw_h_w

tw_h_1

v_h
p_h

first_h
BUFFER h

Figure 4.6: BUFFER module.

The Figure 4.6 illustrates the internal structure of a BUFFER module. Each memory of
the BUFFER module is a depth T single port memory and stores the twiddles from the cor-
responding streaming way. All the memories are accessed for read or for write simultaneously
and the we signal is used to select between the address signals.

The (pi, vi) pair is stored when the �rst elements of the twiddle factor set are inputted.
This is signaled by the �rst signal generated by the BUFFER CONTROL module.

Bu�er control. The BUFFER CONTROL module is organized into two sub-modules. One
is responsible for sorting the elements coming from the COMPUTE module, and the other
handle the output of a twiddle factor set as soon as it is completely sorted.

The CTRL IN sub-module is illustrated Figure 4.7a. For each bu�er, a counter is cyclically
updated between 0 and T − 1 whenever a new valid bunch of w elements is generated by the
corresponding GEN HANDLER. The current value of the counter is used as write address for
the BUFFER, and the we signal is simply generated from valid and num.

When the counter is updated to 0, the �rst signal is issued, specifying that it is a new
twiddle set. Similarly, when the counter is updated to T −1, a last signal is set to specify that
a twiddle set is ready to be outputted. The CTRL OUT sub-module (Figure 4.7b) receives
this signal and handles the output of the twiddle set.

98

++
0 cnt_h

num
valid

first_h

=h we_h

last_h=T-2
wr_addr_h

logic

and

and

and

=T-1

(a) CTRL IN sub-module.

++
0 addr

last_[1:H]

num_out

rd_addr

o_next...
... sel_out

logic

Lat_MEM+1
1

H

...

(b) CTRL OUT sub-module.

Figure 4.7: The two sub-modules of the SORT CTRL module.

The CTRL OUT sub-module is illustrated Figure 4.7b. Whenever a last signal is received
from the CTRL IN sub-module, the corresponding bu�er is ready to be outputted. Neverthe-
less, the di�erent last signals may �re with di�erent intervals between each other. This is due
to the �uctuating latency of the COMPUTE module with respect to its current workload.
Consequently, the CTRL OUT sub-module has to store in FIFO order the di�erent output
requests, and treats them one after the other.

As long as there is a twiddle factor set ready to be outputted, a read address generator is
incremented from 0 to T − 1. The corresponding bu�er's index is propagated as the sel_out
signal, controlling the output multiplexer of the SORT module. The o_next signal is only
set for one cycle before the actual output of the twiddle set.

4.2.4 Remarks

The overview of a generic twiddle factor generator has been given in this section. The principle
is to �ll up the bubbles of a set generation by overlapping di�erent set generations over
time. We choose to instantiate as few computing units as possible with exactly w modular
multipliers. The di�erent twiddle set generations access this bank sequentially according to
a priority scheduling rule.

The SORT module is only dependent on the size of the sequence to generate n and the
streaming width required w. But the choice to instantiate depth T memories in the BUFFER
modules could be furthermore improved. Indeed, the size of these bu�ers could be only
dependent on the number of bubbles in the generation of a set. The actual number of bubbles
is far lower than T in our application context, but knowing its exact value is a bit tricky. Due
to time constraints, we did not further explore this improvement.

The COMPUTE module is also dependent on the chosen recurrence relationship generat-
ing a twiddle factor set. In particular, it derives the concrete implementations of the GEN
HANDLERs and the MM UNIT. Finally, the number H of simultaneous twiddle set gener-
ation depends on the overall latency of the generator module with respect to the required
throughput. When T is large in front of a modular multiplier latency (which is true for
the considered parameter sets), H = 3 is su�cient to saturate the MM UNIT with twiddle
computations and achieve the required throughput.

In next section the choice of the recurrence relationship is discussed and two di�erent
choices are presented. In particular, we show that the second is optimized in our context.

99

4.3 Choice of a recurrence relationship

This section presents the problematic of generating n-sized sequence of powers of a number.
Two recurrence relationship and their speci�c implementations in our generator are presented.
This presentation uses a graph formalism to represent the problem and the proposed genera-
tion heuristic.

4.3.1 General problem presentation

The purpose of our generator is to generate multiple n-sized power sequences of numbers with
a throughput of T = n/w. In other words, it has to generate a new sequence {aki }

n−1
k=0 (i ∈ N)

every T cycles. In our case both n and w are powers of two, and the elements ai are parts of
some �nite-�elds de�ned by some prime pi (Zpi).

In general, the generation of a sequence {ak}n−1k=0 requires at least the knowledge of the
initial number a. Here we consider that we have been given w initial elements at the beginning
of a sequence generation. These initial elements are then used to compute further elements
which themselves make the computation of further elements possible. This principle is applied
until the n-sequence is computed. The problem here is that there exist a large number of
recurrence relationships to generate a n-sequence of powers of a number.

a1 a2 a3

a4

a4

a5

a5

a5

a6

a6

a6

a6

a6

a6

1
1

1
1

1
1 1

1

1
1

1

1
1

1
1
1

1
1

1
1

2

2

2

Figure 4.8: Dependency graph of the powers of a. Here n = 6 and only multiplication
operations with 2 operands are considered.

In Figure 4.8, a graph formalism is used to represent the dependencies between the elements
of the 6-sequence of powers of an element a.

Each node of the graph represents one of the powers to be generated. The oriented arcs
identify the parent(s) of each node, and the arc's weight represents the kinship factor of the
two nodes. Considering here only multiplication with two operands, the input kinship factor
of each node is exactly 2, and the weight of each arc is 1 or 2. There are as many nodes for
the k-th element as there are ways to calculate it. The number of nodes is then exponential
with k, but generating the sequence is to choose an overlap of the dependency graph. We call
overlap here a sub-graph containing only once each element of {ak}n−1k=0 .

100

Many overlaps are possible, but some are more convenient than others regarding practical
implementation of the considered generation (overall latency, intermediate storage required,
complexity of computing structure, ...). In our case, we want methods of �nding overlaps
that are expressed with a recurrence relationship. This requirement guarantees that the
implementation in hardware of the generation is simple.

a1 a2 a3

a4

a4

a5

a5

a5

a6

a6

a6

a6

a6

a6

1
1

1
1

1
1 1

1

1
1

1

1
1

1
1
1

1
1

1
1

2

2

2

(a) Overlap minimizing intermediate storage
and number of computing units

a1 a2 a3

a4

a4

a5

a5

a5

a6

a6

a6

a6

a6

a6

1
1

1
1

1
1 1

1

1
1

1

1
1

1
1
1

1
1

1
1

2

2

2

(b) Overlap minimizing latency

Figure 4.9: Examples of overlaps given by two di�erent recurrence relationships. Examples
for n = 6.

The Figure 4.9 illustrates two examples of overlaps generated obtained with a recurrence
relationship. The �rst one (Figure 4.9a) is obtained with repetitive multiplications with the
�rst element a.

U0 = 1
U1 = a
Uk+1 = U1 × Uk , ∀ k ∈ [1 ; n− 2] ∩ N

This recurrence relationship minimizes the intermediate storage needed to generate the n-
sequence. Indeed, only the �rst element a needs to be kept during the overall computation.
This is the straightforward computation of the geometric sequence of common ratio a.

The drawback of this solution is that the generation has the largest latency possible.
Indeed, when considering multipliers with a latency larger than 1, each new elements has to
wait for the generation of the previous one. This result in a overall latency of (n − 1) times
the latency of the computing unit.

The second overlap in Figure 4.9b is obtained with a solution that focuses on being able to
compute further elements as soon as possible. Hence, considering 2-operands multiplication,
the recurrence relationship generating the overlap is:

U0 = 1
U1 = a
U2k = Uk × Uk , ∀ k ∈ [1 ; n/2− 1] ∩ N
U2k+1 = Uk × Uk+1

101

This recurrence requires the ability to dynamically store (and potentially overwrite) elements
in memory close to computing units. At established regime, it results in a proportion of two
generated elements for one already known. This means that only the �rst n/2 �rst elements
of the sequence has to be known to be able to compute the further n/2 elements. Moreover,
if the oldest stored intermediate elements are dynamically overwritten with new ones during
the sequence computatio. Hence, the required intermediate storage space is O(n/4) elements.

The second recurrence relationship is estimated more interesting in our context. Minimizing
the latency of the generation makes us instantiate less simultaneous set generation H. But
this solution has an important drawback, that is the required intermediate storage of O(n/4)
elements. This is problematic for large FV's parameter sets. Furthermore, the ability of
generating the element as soon as possible is of no use in practice. Indeed, the �xed number
of computing resources implies a maximum of w elements generated per cycle.

It is actually possible in our case to �nd a recurrence relationship that minimizes both the
latency and the intermediate storage. Its expression is dependent on the number of computing
units and their latency.

The next subsection presents this optimized recurrence relationship.

4.3.2 An optimized recurrence relationship

We remind that we consider w initial elements at the beginning of a sequence generation,
and that the number of computing units is exactly w. Thus, a n-sequence is then composed
of T = n/w bunch of w elements each, and two consecutive bunches have their powers only
increased by w. Hence, two di�erent bunches have necessarily their powers separated by a
multiple of w (illustrated in Figure 4.10). Consequently, only some powers multiple of w plus
one bunch have to be accessible to be able to compute further bunches. The question is then
to �nd the number of powers multiple of w that are strictly necessary to achieve the lowest
latency in the generation of the T bunches.

a1

a2

a3

a4

t=0

a5

a6

a7

a8

t=1

a9

a10

a11

a12

t=2

a13

a14

a15

a16

t=3

a8×

a4×

a4×

Figure 4.10: Bunch-wise generation of the n-sequence. Example for n = 16 and w = 4.

This is easy to express once the recurrence relation that links the bunches together is
formalized.

102

Our recurrence relationship. We expressed as follow the optimized recurrence relation-
ship over which our generation is built:

t0 =

a1

...
aw

fi = aiw , ∀ i ∈ [1, n/w − 1]
tr = tk � fr−k−1 , ∀ r, k ∈ [1, n/w − 1]

From the initial knowledge of the bunch t0 we already know the �rst factor f1 = aw.
A new bunch computation is the point-wise multiplication of a known bunch with a known
factor. If we currently have access to the k-th bunch, the computation of the r-th bunch
(r > k) requires the knowledge of the factor fi such that i = r − k − 1.

In addition to this recurrence relationship, we make an additional design choice. Namely,
we always compute the r-th bunch with the last received bunch k. Consequently, the value
i = r−k−1 is upper bounded (noted imax) by the latency between a compute request and the
reception of the generated bunch. This latency is dominated by the latency of the modular
multipliers which is mainly dependent on the size of the handled elements. For instance,
our pipelined modular multipliers of subsection 3.2.3 have a latency of 21 cycles for 30-bit
elements and 57 for 62-bit elements. Consequently, if we store only imax factors (typically <
60), we are able to start at any time, and under any preemption circumstances, a continuous
�ow of computation of further bunches.

Now, we have an intermediate storage independent of n while having the minimal possible
latency for the sequence generation with an initial knowledge of w elements. In the next
subsection we present how it is instantiated in our generic twiddle set generator.

4.3.3 Adapting the generic design

To adapt our generic twiddle generator to the chosen recurrence relationship, we only need to
specify the MM UNIT input interconnection, and the cache structure of the GEN HANDLER
modules. The MMUNIT argument connection is straightforward and presented in Figure 4.11.

MM 1 MM w-1...

arg 0 p v

...

...
R1 Rw-1

arg 1 arg w

MM 0

R0

MM w-2

Rw-2

arg w-1arg 2

Figure 4.11: MM UNIT argument connection for the optimized solution.

The adaptation of the GEN HANDLERs is a bit more complex. Before presenting the
control of the memory element, the internal structure of the cache is presented. The following
description refers to the Figure 4.12. A GEN HANDLER cache implements w registers for the
last received bunch, and a bank of imax registers for the factors fi. Due to our COMPUTE
module structure, imax = min(LMM + 4, T − 1) in our case.

Now, the update rules for the cache and the output registers under the three di�erent
control events are described. In addition, the generation of the da signal is also made explicit.

103

CACHE

new
valid

compute

mmb res

mmb args}...ψi
1...

ψi
w 1

0

reg_0_0

reg_0_G-1

...

[A-1:0]

CTRL da

...

reg_1

reg_w

...

[A-1:0]

...... }}
Figure 4.12: GEN HANDLER cache structure for the optimized solution.

• When new set generation is required (new = '1').
The output registers tw_out is set with the w �rst value of the sequence (a0, a1, ..., aw−1)
(not shown in Figure 4.12). The bunch on input is stored in the cache, and its w-th
element is permanently stored in the bank of registers.

• When the computation of a new bunch is scheduled (compute = '1').
The last received bunch is set in the mmb args register along with one of the factors
from the register bank. The factor chosen is dependent on the #compute and #data

counter such that the recurrence relation i = n− k − 1 is veri�ed.

• When a new bunch is received (valid = '1').
The output registers tw_out receive the w next element of the sequence (not shown in
Figure 4.12). The bunch on input replaces the last received bunch in the cache. If we
do not have all the imax factors yet (#store < imax), the w-th element of the bunch on
input is stored in the register bank.
A special case has to be treated: the �rst valid signal after a new set generation
initialization does not actually notify a new bunch. It results from the COMPUTE
CONTROL pipeline that has integrated the initial bunch. Consequently, nothing has
to be done in that case as everything already happened in response to the new signal.

• Relation that trigger the da signal.
It is dependent on the control signals and on the internal counters (#data, #store and
#compute). It is always set when new is received. It is also set whenever the number
of factor fi stored and the last received bunch allows the computation of a new bunch.
This is veri�ed when #data + #store > #compute (considering here that input signals
have immediate e�ects on counters so as not to complicate things). Of course, this is
done only if we still have bunch to compute (i.e #compute < T − 1).

All the speci�cities of our recurrence relationship on our generic twiddle generator have
been described. In the next section the hardware cost of our generator is presented. Its positive
impact in the context of NTT-based residue polynomial multiplication for FV acceleration is
also quanti�ed.

104

4.4 Synthesis results and comparisons

In this section, the cost of our twiddle factor set generator is studied. In a �rst time, the
in�uence of each sub-module on the total hardware cost is detailed. The scalability of our
solution upon the sizing parameters n, w and the size of the primes element s is presented.
And �nally, we compare our local generation solution with another approach to handle the
twiddle factor sets. Namely, the external storage proposed by Öztürk et al. in [79].

For comparison purposes, we developed a python script for automatized generation of twid-
dle factor generators. Synthesis have been performed with the default mode of Xilinx Vi-
vado's synthesizer (2018.1). For relative resource utilization, the targeted FPGA is a Virtex
7 xc7vx690t from Xilinx.

4.4.1 Study of the hardware cost

In Table 4.1, the partition of the resource utilization in our twiddle factor generator is pre-
sented for two di�erent parameter sets.

Table 4.1: Detailed hardware cost partition of our twiddle factor generator.

(n, w, s) Modules
Resources

Logic LUTs SRLs FFs BRAMs DSP48

432,368 864,736 1,470 3600

(212, 2, 30)

GEN_TW 2,281 360 5,530 12 22
+CMPT 1,967 359 4,668 0 22
++SGH 1,343 0 3,072 0 0
++MMU 442 356 1,086 0 22
++CTRL 94 3 45 0 0
+SORT 314 1 856 12 0
++SBUF 98 0 546 12 0
++CTRL 91 1 66 0 0
+misc. 228 0 709 0 0

(214, 8, 30)

GEN_TW 4,496 1152 11,504 48 88
+CMPT 3,739 1151 9,184 0 88
++SGH 1,674 0 4,152 0 0
++MMU 1,614 1,148 3,792 0 88
++CTRL 96 3 55 0 0
+SORT 757 1 2,296 48 0
++SBUF 662 0 1,626 48 0
++CTRL 95 1 66 0 0
+misc. 370 0 1,789 0 0

The critical resources are in practice DSP and BRAM slices. These resources are respec-
tively used in the COMPUTE module for the w modular multipliers in MM UNIT and in the
SORT module for the H BUFFERs.

105

The resource utilization upon sizing parameters is presented in Figure 4.13. For the con-
sidered ranges of parameters, the in�uence of the sequences' size n to generate only impacts
the number of BRAMs used. In practice, our generator could be made less sensitive to the
variation of n. Our solution for the sorting module choose to wait for the entire sequence
to be generated before letting it �owing out of the generator. But the su�cient bu�ers size
is actually only dependent on the number of bubbles in the generation of a set. Hence, the
required bu�er size could be far lower than in the currently solution.

The in�uence of the streaming width w impacts the hardware consumption of every re-
sources except the BRAMs. In practice, this parameter should not get too large due to the
tremendous bandwidth requirement it imposes on the NTT data path side. Even so, the
resource consumption of is still under 10% of a Virtex 7 xc7vx690t capacity for the largest w
we have considered.

Finally, the in�uence of the size of handled elements have balanced impact on every
resources. Once again, this seems a good strategy in our context to increase the size s to
improve the overall performances of the FV.Mul&Relin primitive.

4.4.2 Comparisons with an external storage

We already mentioned that our twiddle factor generator completes our multi-�eld NTTs for
the de�nition of NTT-based RPMs independent of the RNS basis size. In particular, this
on-the-�y generation allows to avoid extra communications for bringing the twiddle factor
sets locally to the accelerator. In this subsection, we quantify this advantage in the context of
FV hardware acceleration. To do so, we compare our twiddle factor generation to a strategy
similar to what is done in the work Öztürk et al. in 2015 [79]. Namely, the storage of all
twiddle sets on external memories (from the accelerator's viewpoint).

In particular, we compare the two approaches on their memory footprint and their required
bandwidth to feed a multi-�eld NTT. The memory footprint is de�ned here as the quantity
of memory used by a host program to use the considered accelerator. We remind the input
needs of our multi-�eld NTT twiddle path: w/2 words of s-bit per cycle. The result of the
comparison is presented in Table 4.2.

In the external-storage approach the memory footprint requires O(kn/2) elements of size
s, compared to O(kw/2) with our twiddle set generator. The memory footprint of the twiddle
factors goes from 19.2 kBytes to 2.6 MBytes for the considered parameter sets. This is not
critical in practice, but still, it could be avoided with local generation requiring at most
2.2 kbytes.

The stronger disadvantage of the external storage in our case is the input bandwidth
requirements for bringing the twiddle in the accelerator. When considering a NTT clocked
at 200MHz, storing the twiddle sets on external memories requires at least 0.75 GB/s, of
communication bandwidth between the storage space and the accelerator. And this, only for
the twiddle factors. With our twiddle set generator, only w words of s-bit are required every
T cycles, thus saving precious bandwidth to feed the accelerator with data leading to e�ective
speedup.

4.5 Conclusion

The general contribution of this chapter is the de�nition of a data �ow oriented twiddle set
generator that respects the throughput requirement of our streaming NTT data paths. In

106

Table 4.2: Memory footprint and communication bandwidth requirements for an external
storage strategy and our local generation of twiddle factor sets.

Parameters External Storage Local Generation

L n Sq s k + k′ w
MEM BW MEM BW
kB GB/s B kB/s

1 211 54

30

5

2

19.2

0.75

80 2.93
5 212 108 8 61.4 128 1.46
10 213 216 16 246 256 0.73
20 214 432 30 922 480 0.37
30 215 594 41 2,519 656 0.18

20 214 432 30 30

2

922

0.75 480 0.37
4 1.5 720 1.10
8 3 1,200 3.66
16 6 2,160 13.18

20 214 432

30 30

2

922 0.75 480 0.37
41 22 924 1 528 0.5
51 18 940 1.3 504 0.62
58 16 950 1.5 512 0.71
62 15 952 1.6 480 0.76

particular we propose a generic solution to achieve the desired throughput.
A more speci�c contribution is our proposal of recurrence relationship for optimized gen-

erations of twiddle factor sets. Our choice minimizes both the latency of a set generation and
the intermediate storage space required to do so.

Finally, we also highlight that the SORT module could be made independent of the size
n of the sequences to generate.

Along with our proposal of multi-�eld NTT circuits, our twiddle factor generator allows
the design of high throughput NTT-based Residue Polynomial Multipliers. And this, while
having a reduced in�uence of the RNS basis' size on the hardware cost. In the context of the
hardware acceleration of FV, this opens interesting perspectives for the de�nition of e�cient
hardware acceleration.

In the following chapter, we present a proposition of a computing system that use our
basic hardware blocks for the hardware acceleration of the full RNS variants of FV.

107

1024 2048 4096 8192 16384 32768

0%

5%

10%
2
5
6
3

2
5
9
9

2
6
4
1

2
6
0
9

2
6
4
9

2
7
0
1

5
5
1
0

5
5
2
0

5
5
3
0

5
5
4
0

5
5
5
0

5
5
6
0

3 6 1
2 2
1

4
5

9
0

2
2

2
2

2
2

2
2

2
2

2
2

n, s = 30, w = 2

LUTs FFs BRAM DSP

(a) In�uence of the NTT size n.

2 4 8 16 32

0%

5%

10%

2
6
4
9

3
6
2
5

5
6
4
8

9
6
5
4 1
7
7
5
4

5
5
5
0

7
5
3
2

1
1
5
0
4

1
9
4
5
8 3
5
3
7
0

4
5

4
2 4
8

4
8

4
8

2
2 4
4

8
8

1
7
6

3
5
2

n = 16384, w, s = 30

LUTs FFs BRAM DSP

(b) In�uence of the streaming width w.

30 38 46 54 62

0%

5%

10%

2
6
4
9

3
3
8
8

4
7
3
9

5
7
9
8

7
8
8
3

5
5
5
0

7
4
8
7

1
1
1
4
3

1
3
6
6
4

1
9
7
1
8

4
5 5
7 6
9 8
1 9
3

2
2 2
8 4
8 5
6 8
4

n = 16384, w = 2, s

LUTs FFs BRAM DSP

(c) In�uence of the prime size s.

Figure 4.13: Post-synthesis estimations of resource utilization for twiddle generator under the
in�uence of sizing parameters. The relative resource utilization is estimated with respect to
a virtex 7 xc7vx690t.

108

Chapter 5

Exploration of a hybrid strategy for

the full RNS variants of FV

The analysis conducted in Chapter 2 has highlighted the necessity of accelerating both RNS
speci�c operations and Residue Polynomial Multiplications (RPM). This came from the imple-
mentation strategy considering the coupled approach of RNS representation and NTT-based
polynomial multiplications. The RNS representation tackles the complexity brought by the
large modulus q, and the NTT-based polynomial multiplications tackle the complexity brought
by large degree n.

In previous chapters, some basic blocks have been proposed for the hardware acceleration
of the RPM operations. Dedicated hardware acceleration has been motivated by the di�culty
of exploiting NTT parallelism on generic SIMD architectures due to unfriendly data-accesses.

Contrary to NTTs, the RNS speci�c functions embed trivial parallelism with respect to the
degree n of the polynomials. This parallelism is easily exploitable with generic SIMD archi-
tectures like GPUs. In addition, having fewer di�erent operations to accelerate on dedicated
hardware signi�cantly reduces the cost of the accelerator development.

Hence, our strategy considers the exploration of GPU accelerated RNS speci�c functions,
and dedicated hardware acceleration for polynomial arithmetic. This result in a proposal of a
hybrid computing system to accelerate the FV scheme. For prototyping, it is considered that
the dedicated hardware for RPM is implemented on a FPGA, but there is also the possibility
of targeting an ASIC. This is not explored in this work.

In a �rst section, we explore from an high-level point-of-view the communication and
computation requirements for the hybrid computing system. This result in a proposal of
such a system. A second section presents the perspectives for accelerating the RNS-speci�c
functions on GPUs. Then, the third section explores the e�ciency of an NWC-based RPM
design that use our basic hardware blocks presented in previous chapters. Finally, this chapter
concludes with the performance perspectives of our hybrid computing system proposal.

5.1 Proposal of a hybrid computing system

This section presents the motivations for a hybrid computing system for the acceleration of
FV homomorphic evaluations. Our proposition considers the full RNS variant of FV proposed
by Bajard et al. [4] and further improved by Halevi et al. [5]. The discussions are focused
on the FV.Mul&Relin primitive, because the impact of the FV.Add primitive on execution
performances is considered too small to require special consideration at this time.

109

In a �rst subsection, the computational requirements of the system are summarized. This
concludes by the computational partition on GPU and dedicated hardware. Then a high-level
study of the communication requirements between the di�erent computing units is given.
Finally, the third subsection presents our proposal of system architecture.

5.1.1 Computation details for ciphertext multiplication

For the following discussions, Residue Polynomial Multiplication (RPM) refers to a multi-
plications over the Rqi . Similarly, Residue Polynomial Addition (RPA) refers to additions
over the Rqi 's. Modular multiplications will be noted MM and �oating-point multiplications
FM. In the counting of basic operations, we do not take into account modular additions and
�oating-point additions. Finally, we note k the size of the initial RNS basis B, and k′ the size
of the second RNS basis B′.

The FV.Mul&Relin primitive begins with the operation of basis extension to enlarge the
dynamic of the polynomial's coe�cients. We remind that this is because the tensor product
must be computed over R rather than Rq. If we consider that the (kk′+k+k′) single-precision
integers are pre-computed and accessible, this operation requires 4n(kk′ + k + k′) MMs and
4n(k+1) FMs. After basis extension, the polynomials are then represented with k+k′ residue
polynomials over in the uni�ed RNS basis B ∪ B′.

The basis extension is followed by the tensor product over R. A naive approach for
computing the tensor product requires up to four multiplications over R (Figure 5.1a). With
a Karatsuba-like approach, the number of these polynomial multiplications could be reduced
to 3, but at the cost of 3 more polynomial additions (Figure 5.1b). Thus, taking into account
the RNS representation, there are 4(k+ k′) RPMs and (k+ k′) RPAs for the naive approach.
For the Karatsuba-like approach it represents 3(k + k′) RPMs and 4(k + k′) RPAs. As the
polynomial multiplications are far more expensive that polynomial additions, the karatsuba-
like approach is considered here. As presented in subsection 2.3.2 the implementation size of
NTT is considered a power of two, even for the padded-convolution approach. The number
of pre-computed values is then the same for both padded-convolution and negative wrapped
convolution. Namely, 2n+ 1 for each RPM and thus (2n+ 1)(k + k′) in total.

+

×
×

×
×

a0
a1

b0
b1

cta

ctb }

} }
c0
~

c1
~

c2
~

ct~

(a) Naive

_

×

×

+

+

×
+

a0
a1

b0
b1

cta

ctb }

} }
c0
~

c1
~

c2
~

ct~

(b) Karatsuba-like

Figure 5.1: Ciphertext tensor product

×
×

×

...

×
×

×

...

q
.∑

q
.∑

c2,1
~

c2,2
~

c2,k
~

...

r0,1
r0,2

r0,k

...

r1,1
r1,2

r1,k

...
...

...
...

c2
~

+

+

rlk }
}

c0
~

c1
~

c0

c1
ctmul}

Figure 5.2: Ciphertext relinearization.

The tensor product is followed by the scale-and-round operations. As introduced at the
end of Chapter 2, this operation is done in two steps. First by computing the scale-and-round

110

operation over the basis B′. Second by changing the basis from B′ to B. The operations
requires some pre-computed values: (2k′(k + 1) + k) single-precision integers and k �oating-
points in total. It is then performed in 3n(2k′(k+ 1) + k) MMs and 3n(k′+ k+ 2) FMs. The
resulting polynomials are back in Rq, which means that their RNS representations is only
according to the basis B.

Finally, the last operation is the relinearization that requires the knowledge of the relin-
earization key. This key is composed of 2k polynomials over Rq, which is equivalent to 2k2

polynomials over the Rqi 's in RNS representation. As seen in Figure 5.2, the relinearization
performs the scalar products of (rj,i)

k
i=1 ∈ Rkq with (c̃2,i)

k
i=1 ∈ Rq1 × ... × Rqk , for j ∈ 0, 1.

This is 2k multiplications and 2k additions over Rq, equivalent to 2k2 RPMs and 2k2 RPAs
in RNS.

Table 5.1 gives the number of basic operations required to perform the basis extension
(Bext) and the scale-and-round (Sc&Rnd) steps for di�erent parameter sets. The total size of
the pre-computed values is also given. The reciprocal required for e�cient modular reduction
is counted in the pre-computed values. These pre-computed values represent a really small
storage compared to the size of the payloads to handle. And regarding the advantage of
having them pre-computed, it is then considered that these values are permanently stored.

Table 5.1: Summary of number of basic operations to performs for the basis extension and
the scale-and-round operations. The MM columns refer to modular multiplications and the
FM columns to �oating-point multiplications. Modular and �oating-point additions are not
considered. The column pre. refers to the total of pre-computed values.

Parameters pre. Bext. (×103) Sc&Rnd (×103)

n log2 q k k′ kB MM FM MM FM

211 54 1 2 0.17 41 16 55 31
212 108 2 3 0.34 180 49 246 86
213 216 4 5 0.84 950 164 1,327 270
214 432 8 9 2.41 5,833 590 8,356 934
215 594 11 12 4.09 20,316 1,573 29,393 2,458
216 1026 19 20 10.68 109,838 5,243 161,022 8,061
217 2052 38 39 38.65 817,364 20,447 1,211,105 31,064

Table 5.2 summarizes the number of residue polynomial operations to perform for the
ciphertext tensor product and the ciphertext relinearization. The size of the relinearization
key and the total amount of data that twiddle factors represent for performing RPMs are
also given. The reciprocal required for e�cient modular reduction is counted in the pre-
computed values. It is noticeable that the size of the relinearization key become problematic
for very large parameter sets. Similarly, but at lower scale, the number of pre-computed values
involved in the calculation of the RPMs grows signi�cantly with the parameter sets.

Concluding remarks. The basis extension and scale-and-round operations are computa-
tionally dependent on the capability of performing a large amount of modular and �oating-
point operations. From several tenth of thousands operations for the smallest parameters up
to several hundred of millions for the largest ones. The friendly parallelism over n represents

111

Table 5.2: Summary of number of residue polynomial operations to performs for the di�erent
tensor product and the relinearization. The size of the relinearization key is given in column
"rlk" and the size for the pre-computed values in column "pre.".

Parameters rlk pre. Ten. Prod. Relin.

n log2 q k k′ kB kB RPM RPA RPM RPA

211 54 1 2 29 86 9 12 2 2
212 108 2 3 229 287 15 20 8 8
213 216 4 5 1,835 1,032 27 36 32 32
214 432 8 9 14,680 3,900 51 68 128 128
215 594 11 12 55,509 10,552 69 92 242 242
216 1026 19 20 331,219 35,783 117 156 722 722
217 2052 38 39 2,649,750 141,297 231 308 2,888 2,888

from 211 up to 217 parallel and independent threads. This could be e�ciently exploited by
a generic SIMD architecture like a GPU. Furthermore, the pre-computed values for the com-
putation of these two steps represent a negligible amount of permanently used GPU memory
(39kB for the largest parameters).

The tensor product and the relinearization require e�cient polynomial arithmetic. In
a �rst approximation, hardware cost and execution time of RPA operations is considered
negligibles. Even if the number of RPM operations to perform is rather small, its complexity
is whats bound the FV.Mul&Relin e�ciency in practice. Our choice is to accelerate these
RPMs on dedicated hardware by exploiting our basic blocks presented in Chapters 3 and 4.
Doing so, the problematic of handling the pre-computed values is solved by generating and
using them on-the-�y. The relinearization key size does not allow us to directly store it locally
to the hardware accelerator, thus it is considered as an operand similarly as a ciphertext. For
prototyping, the dedicated hardware is considered to be implemented on a FPGA.

5.1.2 Study of the communication requirements

The �ow of operations is partitioned over the FPGA and the GPU units. Figure 5.3 presents
this partition, plus the quantity of data to exchange between the di�erent steps.

A potential performance limitation already identi�able is the ping-pong communication
between the FPGA and the GPU. A solution to this problem could be to mask the com-
munications with computations (stream CUDA for GPU, DMAs and su�cient IO bu�ers on
FPGA, ...). In this thesis, we consider the problematic of e�cient computation to be more
crucial than the potential communication congestion brought by this hybrid computing ap-
proach. Nevertheless, Table 5.3 gives an insight on the data loads involved for some FV's
parameter sets close to those of Halevi et al. [5].

For the smallest parameterization, the unitary communications between the di�erent com-
puting unit are at least of 30 kB and goes up to 200 kB. Considering a �ow of communication
and computation for continuous ciphertext multiplications, the total amount of data to be
simultaneously exchanged is roughly 500 kB. For the largest parameters, the unitary commu-
nications exchange from 79.7 MB up to 323 MB of data. This represent 923.8 MB of data to
be simultaneously exchanged in the case of a continuous �ow of FV.Mul&Relin operations.

112

GPU

FPGA

a0a1

cta}
b0b1

ctb}

Relinearization
c0c1

ctmul

}

Tensor product

Basis extension

Scale-and-round

D0= 4nk log(qi)

D1= 4n(k+k') log(qi)

D2= 3n(k+k') log(qi)

D3= 3nk log(qi)

D4= 2nk log(qi)

Figure 5.3: Partition of the FV.Mul&Relin operation over the GPU and FPGA. The quantity
of data exchanged (in bits) is presented in between each step of the ciphertext multiplication.

Table 5.3: Quantity of data (MB) to be exchanged between the di�erent steps of the
FV.Mul&Relin calculation. The last columns group together the sum of the input and output
data of the FPGA and GPU computing units for an FV.Mul&Relin operation. The size of
the RNS basis elements is log2 qi = 54-bit.

Parameters FPGA GPU

n log2 q D0 D1 D2 D3 D4 in out in out

211 54 0.07 0.2 0.15 0.05 0.03 0.25 0.18 0.21 0.25
212 108 0.26 0.66 0.49 0.2 0.13 0.85 0.62 0.75 0.85
213 216 1.05 2.36 1.77 0.79 0.52 3.15 2.29 2.82 3.15
214 432 4.19 8.91 6.68 3.15 2.1 12.06 8.78 10.88 12.06
215 594 11.53 24.12 18.09 8.65 5.77 32.77 23.86 29.62 32.77
216 1026 39.85 81.79 61.34 29.88 19.92 111.67 81.26 101.19 111.67
217 2052 159.38 322.96 242.22 119.54 79.69 442.5 321.91 401.6 442.5

This high-level study motivates the choice of a PCIe interconnection between the di�erent
computing units. Even if the proper bandwidth requirements could only be expressed with
the consideration of the computation timings, the amount of data is already an indication of
the interconnection performance required. The choice of PCIe simpli�es also the realization
of an acceleration prototype as it is a standard connection available on most of GPU cards
and FPGA prototyping boards. Table 5.4 gives a quick summary of the maximal throughput
that PCIe inteconnection could achieve. This throughput is dependent on the generation and
the number of lane of the instantiated PCIe interconnection.

Now that the computation workload and the communications requirements have been
expressed, the next subsection propose such a hybrid computing system. FPGA for the
computation of the di�erent steps of the FV.Mul&Relin primitive.

113

Table 5.4: Summary of available bandwidth with the di�erent generations of PCIe.

Gen.
year

line/code
Transfer rate Throughput (GB/s)

intro. (GT/s)/lane ×1 ×2 ×4 ×8 ×16

1.0 2003 8b/10b 2.5 0.25 0.5 1.0 2.0 4.0
2.0 2007 8b/10b 5.0 0.5 1.0 2.0 4.0 8.0
3.0 2010 128b/130b 8.0 0.99 1.97 3.94 7.88 15.8
4.0 2017 128b/130b 16.0 1.97 3.94 7.88 17.75 31.5
5.0 (2019) 128b/130b 32.0 3.938 7.88 15.75 31.51 63.0

5.1.3 Hybrid system overview

In this subsection, we give an overview of a hybrid computing system for the acceleration of
encrypted-computing with FV.

Figure 5.4 presents our proposed hybrid computing architecture articulated around a PCIe
interconnections. The control of the overall computation is made by an host CPU. The CPU
is also responsible of the non-bottleneck operations required during an FV homomorphic
evaluation (FV.Add and FV.Encrypt).

CPU PCIe
root

Memory

PCIe
switch

FPGA

GPU Memory

Memory

Computation control
FV.Add
FV.Encrypt

Tensor product
Relinearization

Basis extension
Scale-and-roundOn chip / In board

PCIe bus

Figure 5.4: Proposed system architecture to accelerate FV homomorphic evaluation. The
CPU controls the overall computations, the GPU accelerates the RNS speci�c functions and
the FPGA accelerates the tensor products over R and the relinearization primitive.

The computation workload for the GPU is quite well identi�ed thanks to the work of
Halevi et al. [5]. During this thesis, an internship has been proposed to get a �rst idea of the
acceleration potential bring by the GPU. The result of this work are summarized in section 5.2.
The perspectives of this GPU acceleration are also discussed in this section.

The computation workload on the FPGA is expressed in terms of residue polynomial arith-
metic. Namely, Residue Polynomial Multiplication (RPM) and Residue Polynomial Addition
(RPA) over the residue polynomial rings (Rqi 's) are required. Due to time constraint, this
thesis only focuses on the de�nition of e�cient RPM operations on FPGA. This is motivated
by their predominant part in the performance bottleneck of the FV homomorphic evalua-
tion. In particular, we choose to investigate RPM through Negative Wrapped Convolution
as it gives the polynomial reduction for free. Our investigation and the perspectives of RPM
through NWC are presented in section 5.3.

114

5.2 GPU acceleration of RNS speci�c functions

In this section we present preliminary results of the acceleration given by the GPU. This
acceleration is highlighted by comparing an hand-made CPU and GPU implementations.
Both basis extension and scale-and-round operations are implemented following Halevi et
al.'s paper [5].

This implementation has been obtained with the help of Aurore Mattio who made her
master thesis on the subject. This section is then a part of her internship's results that have
been adapted to the current discussion.

In a �rst subsection a detailed description of the implemented algorithm is given. In a
second subsection, the experimentation that highlights the GPU acceleration is described.
Finally the results of the experimentation and some discussions conclude this section.

5.2.1 The implemented algorithms

In Section 2.4, the basis extension and the scale-and-round operations have been presented. In
this subsection, the concrete algorithms implemented during Mattio's internship are detailed.

For the following, we remind the notations used in Chapter 2. The �rst RNS basis is
composed of the element noted qi, namely B = {qi}ki=1. We note q∗i = q/qi ∈ Z and q̃i =
(q∗i)

−1 ∈ Zqi . The second RNS basis is composed of the element noted pj , namely B′ =
{pj}k

′
j=1. And similarly p∗j = p/pj ∈ Z and p̃j = (p∗j)

−1 ∈ Zpj . Finally, the special elements
associated to the uni�ed basis B ∪ B′ are: Q = qp, Q∗i = Q/qi = q∗i p and Q̃i = [(Q∗i)

−1]qi for
each qi ∈ B, and Q′∗j = Q/pj = qp∗j and Q̃

′
j = [(Q′∗j)−1]pj for each pj ∈ B′.

The other elements required for basis extension and scale-and-round operations are:

- µi,j = [q∗i]pj ∀ (i, j) ∈ [1, k]× [1, k′].
- νj,i = [p∗j]qi ∀ (j, i) ∈ [1, k′]× [1, k].
- φj = [q]pj ∀ j ∈ [1, k′].
- ψj = [p]qi ∀ i ∈ [1, k].

- Ωi,j = [Ωi]pj , with Ωi being the integer part of
Q̃ipt
qi

, ∀ (i, j) ∈ [1, k]× [1, k′].

- Θi is the fractional part of
Q̃ipt
qi

, ∀ i ∈ [1, k].

- Λj =
[
Q̃′jp

∗
j t
]
pj
∀ j ∈ [1, k′].

Algorithm 4 presents the implemented basis extension for each coe�cient of the inputted
polynomials. Similarly, the scale-and-round operation follows Algorithm 5 for each coe�cient
of the inputted polynomials.

In both algorithms, the calculation of the v and v′ values are performed with �oating-point
arithmetic. The modular multiplications are implemented following the modular reduction
algorithm of the NFLlib [95].

As previously stated, the straightforward parallelism to exploit with GPU is the one
brought by the degree n of the polynomials. Nevertheless, as seen in Algorithm 4 and Al-
gorithm 5, large basis size results in large inner-loops. A second level of parallelism is then
potentially accessible. The implementation of this additional level of parallelism is more tricky
than the �rst one as it involves some data dependencies between threads. This second level
of parallelism is not taken into account in the following experimentation.

Now that we have basically presented how the operations are implemented, the experi-
mentation that highlight the GPU acceleration of these operations is described.

115

Algorithm 4 Basis extension algorithm, following Halevi et al. [5]

Precomp: (q̃i, µi,j , φj) ∀ (i, j) ∈ [1, k]× [1, k′]

Input: x = {xi}ki=1 ∈ B, coe�cient of a polynomial in Rq.
Output: X = {Xi}k+k

′

i=1 ∈ B ∪ B′, coe�cient of a polynomial in Rqp.
1: v = 0
2: for 1 ≤ i < k do
3: Xi = xi
4: yi = xiq̃i mod qi
5: v = v + yi

qi
6: end for
7: v = round(v)
8: for 1 ≤ j < k′ do
9: Xk+j = 0
10: for 1 ≤ i < k do
11: Xk+j = (Xk+j + yiµi,j) mod pj
12: end for
13: Xk+j = (Xk+j − vφj) mod pj
14: end for

5.2.2 Implementations, comparisons and perspectives

The purpose of our experimentation is double. First, look for an insight on the potential
acceleration brought by the GPU on the RNS speci�c functions. Second, quantify the cost of
the communications between the host and the GPU. This second information is interesting
in order to have a better estimation of the criticality of the communication problematic.

Experimental setup. The basis implementation is a single threaded C/C++ version of
the algorithms, running on an Intel(R) Core(TM) i7-3770 CPU at 3.40GHz, with 8GB of
memory. The operating system is Red-Hat 7.0, and the code was compiled with gcc 4.8.5
with the optimization option -O2.

The GPU implementation use CUDA-8.0 and is parallelized only over the dimension n
(degree of the polynomials). The host cpu is an Intel(R) Xeon(R) CPU E5-2643 v4 running
at 3.40GHz, with 128GB of memory. The GPU on which are performed the operations is a
Maxwell GTX Titan X clocked at 1GHz, with 12GB of memory, and connected to the host
through a PCIe bridge gen.2 x16 lanes. The CUDA toolsuit version 8.0 is used to compile the
code.

For each operations (basis extension and scale-and-round), the timings for input and
output communications and the actual GPU computation are measured. For each set of
parameters the operations have been run 1000 times to average out the timings.

Experimental results. The timing results are presented in Table 5.5. Those timings take
into account the communications between the host and the GPU. The results highlight the
acceleration potential of the GPU, even if the exploited parallelism is only with respect to
the parameter n. For the �rst parameter sets, the acceleration increases with the degree n.
Nevertheless, this trend is stabilizing, and even reversing for the largest ones. This could be
explained both by the degree n being larger that the number of physical threads available on

116

Algorithm 5 Algorithm of scale-and-round for FV.Mul&Relin, following Halevi et al. [5]

Precomp1: (Ωi,j , Θi, Λj) ∀ (i, j) ∈ [1, k]× [1, k′]
Precomp2: (p̃j , νj,i, ψi) ∀ (i, j) ∈ [1, k]× [1, k′]

Input: X = {Xi}k+k
′

i=1 ∈ B ∪ B′, coe�cient of a polynomial in Rqp.
Output: x = {xi}ki=1 ∈ B, coe�cient of a polynomial in Rq such that x = [bt/q ·Xe]q.
1: v′ = 0
2: for 1 ≤ i < k do
3: v′ = v′ +XiΘi

4: end for
5: v′ = round(v′)
6: for 1 ≤ j < k′ do
7: tmp = Xk+jΛj mod pj
8: for 1 ≤ i < k do
9: tmp = (tmp + Ωi,jXi) mod pj
10: end for
11: x′j = (tmp + v′) mod pj
12: end for . At this point, x′ = {x′j}k

′
j=1 = [bt/q ·Xe]p in basis B′

13: v = 0 . Hence, we change the basis: B′ → B
14: for 1 ≤ j < k′ do
15: yj = x′j p̃j mod pj
16: zj =

yj
pj

17: v = v + zj
18: end for
19: v = round(v)
20: for 1 ≤ i < k do
21: xi = 0
22: for 1 ≤ j < k′ do
23: xi = (xi + yjνj,i) mod qi
24: end for
25: xi = (xi − vψi) mod qi
26: end for . We only keep the residue in basis B, namely {xi}ki=1

117

Table 5.5: Timing in milliseconds for the basis extension and the scale-and-round operations
on CPU and GPU, for di�erent parameter sets.

Parameters CPU GPU

n log2 q Bext Sc&Rnd Bext su Sc&Rnd su

211 54 0.585 0.977 0.079 ×7.4 0.064 ×15.3
212 108 1.688 2.816 0.162 ×10.4 0.135 ×20.9
213 216 7.724 13.411 0.524 ×14.7 0.409 ×32.8
214 432 46.103 80.274 1.604 ×28.7 1.583 ×50.7
215 594 162.163 286.106 4.81 ×33.7 4.634 ×61.7
216 1026 875.98 1,532.584 29.565 ×29.6 29.856 ×51.3
217 2052 6,836.377 11,498.993 235.866 ×29 275.89 ×41.7

Table 5.6: Timing details in microseconds for the GPU acceleration of the basis extension
and the scale-and-round operations. The in/out columns presents the timing for loading and
unloading data from the GPU.

Parameters Bext Sc&Rnd BW (GB/s)

n log2 q in cmpt out in cmpt out in out

211 54 9 22 47 15 31 17 2.55 1
212 108 18 39 104 26 61 47 4.97 1.48
213 216 44 109 369 67 179 162 7.38 1.61
214 432 300 432 871 594 477 512 3.62 2.3
215 594 662 2,855 1,293 1,565 2,629 440 4.1 5.61
216 1026 2,175 20,619 6,770 3,759 22,736 3,360 5.01 2.99
217 2052 5,793 205,891 24,181 11,740 252,360 11,789 6.88 3.36

the GPU, and by the size of the RNS basis that makes the inner-loops more costly. Another
interesting point is that for all the parameter sets except for the two largest ones, the basis
extension is slower than the scale-and-round operation. Indeed, it should not be the case
as the second operation is more complex than the �rst. This motivates the investigation of
communication costs.

The details of the GPU timing is given in Table 5.6. For the four �rst parameter sets,
the time spent in communications is more than twice as long as the actual computations.
Even for the larger set, the timing spent in communications is roughly 13% (respectively
9%) of the overall timing for basis extension (respectively scale-and-round). The impact
of communications is mainly due to unloading the results from the GPU. And comparing
the mean bandwidth usage for the input and output communications, it seems that the
input/output communication capability of the GPU is unbalanced.

Considering now the communication payloads on input and output of each operations.
The basis extension takes a polynomial in B and output a polynomial in B ∪ B′, the data
amount on output is twice the amount on input. The scale-and-round takes a polynomial in
B ∪ B′ and outputs a polynomial in B, the data amount on output is twice less the amount

118

on input. Hence, the strange timing of Table 5.5 seems to be explained by the unbalanced
communication capability of the GPU.

Due to time constraints, we did not investigate further this phenomenon. But this is
an important information for one who wants to instantiate the proposed hybrid computing
system. This indicates that the communication with the GPU should be more �nely addressed
for a concrete implementation. Nevertheless, even with salient communication timing, the
operations bene�t of a non-negligible acceleration.

5.3 Exploration of e�cient RPM designs

Our proposal for a hybrid computing architecture delegates residue polynomial arithmetic to
dedicated hardware. According to the recent pro�ling of Halevi et al. [5], the most critical
operations to implement in FPGA are the Residue Polynomial Multiplications (RPM).

This section presents an example of e�cient NTT-based residue polynomial multiplications
using our basic blocks presented in previous chapters. In particular it studies the acceleration
of RPM through data-�ow oriented Negative Wrapped Convolution (NWC), with on the �y
generation of twiddle factors.

Our proposal for a NWC-based residue polynomial multiplier is detailed in the �rst sub-
section. A proof-of-concept implementation of this RPM design is presented in a second
subsection. It includes also a projection of this design on the wide range of parameter sets.
Finally, a third subsection concludes by highlighting the main conclusions of this RPM ap-
proach and drawing some perspectives.

5.3.1 Reminder of previous chapters

Chapter 3 has presented a solution to generate multi-�eld NTT circuits. As NTTs are similar
to a Discrete Fourier Transform (DFT), our work has explored the generalization of the
hardware backend of the SPIRAL tool, from Milder et al. [97], to generate NTT designs in
addition to DFT designs. Hence, we have modi�ed the DFT hardware produced by SPIRAL
to convert it into a practical NTT structure for RPMs by making two sets of changes. First,
we have replaced the DFT's arithmetic blocks with those that perform modular arithmetic.
Second, we have adapted the twiddle factors handling.

We remind that due to time constraints, we focused our contribution on data-�ow NTT
circuits. For the following discussion, we consider these data-�ow multi-�eld NTT circuits as
basic blocks. Nevertheless, it is important to consider that these multi-�eld NTTs dissociate
the twiddle path from the actual data path of the NTT. The data path implements the
NTT algorithm itself, and the twiddle path instantiates the circularly-bu�ered handling of
the twiddle factor sets. Consequently, an NTT twiddle path may feed multiple parallel NTT
data paths.

Chapter 4 has presented our solution to avoid extra costs on communication and/or memory
on the accelerator for managing the twiddle factor sets. That is, a twiddle factor set generator
that generates the pre-calculated values for NTT-based RPMs, without major impact on
hardware performance and cost.

We remind that a twiddle factor set is a sequence of powers of a special element in the
considered �nite-�eld. Namely, if we note ψi this special element over the �nite-�eld Zqi ,

119

Twiddle path

Data path

vi

pi

ψi
1

ni
-1

...

VEC
PW
MM

GEN
TW

GEN
ITW

GEN
PCTW

VEC
NTT

PW
MM INTT PW

MM

w+2
words

w/2+2
words

2
words

w/2+2
words

w+2
words

2w
words

w
words

...

Ai

Bi

Ci

ψi
w

w+3
words

next_tw

next_in
next_out

Figure 5.5: Residue Polynomial Multiplier (RPM) �ow.

the twiddle factor set is the sequence Ψi = {ψji }0≤j<n. By considering data-�ow oriented
RPMs, the impact on computational performance is avoided by adapting the throughput of
the twiddle factor set generator with the throughput of the RPM data path.

5.3.2 Hardware design of an RPM through NWC

As we have seen in Chapter 2, both Padded Convolution (PC) and Negative Wrapped Con-
volution (NWC) are suitable for implementing RPM in our context. In this subsection we
explored an RPM design through NWC as it does not require the implementation of a poly-
nomial modular reduction. Nevertheless, it is considered that the two approaches are quite
comparable in terms of hardware cost and performances, assuming that e�cient data-�ow
oriented polynomial modular reduction is possible. But, the veracity of this assumption has
not been veri�ed in this thesis.

In the following description, multiplication refers to multiplication over the ring Zpi . As
presented in section 3.2.3, modular multiplications are performed following the NFLlib algo-
rithm [95] for modular reduction. This requires the prime qi and the reciprocal vi as inputs.

Moreover, we remind that an NWC requires the knowledge of a n-th primitive root of −1
over the considered �nite-�eld Zqi . In the following, we note ψi such a n-th primitive root
of −1. This means that ψni = qi − 1 mod qi and for all k < n ψki 6= qi − 1 mod qi. With
Ψi = (ψki)n−1k=0 and Ψ−1i = (ψ−ki)n−1k=0 , the NWC over Zqi is performed by computing:

ci = Ψ−1i � INTTn,i (NTTn,i(Ψi � ai)�NTTn,i(Ψi � bi)) . (5.1)

The overall architecture �ow is presented in Figure 5.5 without the arti�cial latency for
representation simplicity. The architecture is generic regarding the size of the NTT n, the
width of the data path w (called streaming-width), and the prime size s in bits, with n and
w being powers of two and s ≤ 64.

120

There are two parallel paths in this architecture: the twiddle path and the data path. On
one side, the twiddle path feeds the data path with the appropriate twiddle values, consistent
with the actual polynomial ring (Rqi = Zqi [X]/(Xn + 1)) of the residue polynomials Ai and
Bi. On the other side, the data path performs the negative wrapped convolution of the two
input polynomials seen as n-sequence of coe�cients.

Data path. Five distinct steps are required to perform a NWC on inputted polynomials.
The �rst step is performed by VEC PW MM and consists of inner-products of the input

polynomials with the weight-vector Ψi = (ψji)0≤j<n to output the polynomials Ψi � Ai and
Ψi �Bi. Only the n �rst elements of the twiddle factor set are required.

The second step VEC NTT computes forward NTT on each input and outputs simul-
taneously the transformed polynomials NTTi (Ψi �Ai) and NTTi (Ψi �Bi). It needs Ωi =
{ωji }0≤j<n/2 = {ψ2j

i }0≤j<n/2 which is a subset of the values involved in Ψi.
The third step PW MM corresponds to the inner-product of the two weighted polynomials

in the NTT domain NTTi (Ψi �Ai) � NTTi (Ψi �Bi). Only the pair (qi, vi) is required to
perform this inner-product.

The fourth step INTT reverts the polynomial from the NTT domain, and twiddles Ω−1i =

{ω−ji }0≤j<n/2 = {ψ−2ji }0≤j<n/2 are required. Ω−1i is a subset of the weight-vector Ψ−1i used
in the �fth step.

Finally, the �fth step PWMM performs, in a single step, the scaling by n−1i mod qi required
at the end of INTT, and the inner-product with the weight-vector Ψ−1i = (ψ−ji)0≤j<n. Thus,
only the n last elements of the twiddle factor set are required.

Twiddle path. As emphasized in the description of the data path, the twiddle values are not
all required at the same time. Consequently, the computation of the twiddles is decomposed
in three steps.

The �rst step consists of the generation of the n �rst powers of ψi, namely Ψi = {ψji }0≤j<n.
Along with the corresponding (qi, vi) pair, they feed the �rst three steps of the data path.
The twiddle generator GEN TW, described in Chapter 4, only requires the �rst w elements
(ψ1

i , ..., ψ
w
i) of the Ψi sequence. It then outputs the n sized sequence at a rate of w elements

per cycle, after a certain latency.
The second step GEN ITW outputs, after a certain latency, the sequence Ψ−1i = {ψ−ji }0≤j<n

at a rate of w elements per cycle. The computation of this sequence is done by �rst computing
the sequence {ψ−(n−j)i }0≤j<n, and then reordering it to obtain {ψ−ji }0≤j<n. The sequence to
reorder is computed by subtracting each element of Ψi from pi

I. Half of the Ψ−1i sequence
feeds the inverse NTT, because only {ψ−2ji }0≤j<n/2 is required.

The third step GEN PCTW scales the sequence outputted by GEN ITW by n−1i (inverse
of n in Zqi). It then feeds the point-wise multiplier (again with (qi, vi)) at the end of the
data-�ow which, thus, can complete the negative wrapped convolution.

Data-�ow operations. The overall architecture is data-�ow oriented, meaning that it
starts a new polynomial multiplication, over a di�erent RNS channel (polynomial ring Zqi [X]/(Xn+
1)), every T = n/w cycles. From now on, T will be identi�ed as the throughput of the RPM
design.

IFirst ψn
i = −1 mod pi implies ψ

2n
i = 1 mod pi. Then, ψ

−(n−j)
i = ψ−n

i ψj
i = ψn

i ψ
j
i mod pi. And, lastly,

ψn
i ψ

j
i = (qi − 1)ψj

i = qi − ψj
i mod qi. Hence, qi − ψj

i = ψ
−(n−j)
i mod qi.

121

For the RPM to achieve a throughput of T = n/w cycles, the di�erent twiddle sequences,
computed by the twiddle path, have to be generated with the same throughput. Chapter 4 de-
tails the twiddle factor generator that is able of generating the initial sequence Ψi = {ψji }0≤j<n
from the knowledge of w << n seed elements (ψ1

i , ..., ψ
w
i). Then, the generation of subsequent

sequences with the required throughput is quite straightforward.

5.3.3 Proof-of-concept implementation

This subsection describes the result of a proof-of-concept implementation for a set of small
cryptosystem parameters n = 4096, w = 2 and s = 30. Then, it studies the scaling of
our approach to sets of larger cryptosystem parameters by projecting the change of SPIRAL
generated DFT into multi-�eld NTT. This part allows us to explore performances of the RPM
architecture on most of the parameter sets from [5]. Finally, it shows the positive impact of
the twiddle set generator on the scalability of the overall RPM for BFV-like homomorphic
schemes.

BCHI

DS CTRL REGS

WRAP
ctrls
config

DMA 0 FIFO IN 0 Ai

DMA 1 FIFO IN 1 Bi

DMA 2 FIFO OUT Ci

Host/GPU
Polynomial Ring

Multiplier

Ci=Ai×Bi mod FP
C

Ie
 E

n
d
p
oi

n
t

AXI-L

AXI-F

AXI-F

AXI-F

Figure 5.6: Proposal of a plausible system integration of a Residue Polynomial Multiplier.

Figure 5.6 illustrates the implemented design. The targeted prototyping board is an
Alpha-Data board ADM-PCIE-7V3, embedding a Xilinx Virtex 7 xc7vx690t, and connected
to host PC through PCIe Gen3 ×8 lanes. A basic AXI to IP wrapper has been instantiated
with 3 FIFOs large enough to bu�er 2 residue polynomial each. Namely, three �fo of depth
1024×256-bit. In addition to the basic status signals, the wrapper's control registers store
two con�guration sets, which consist in the twiddle seeds along with the prime and associated
reciprocal (qi, vi, ψ1

i , ..., ψ
w
i). Namely, 2×128-bit of con�guration registers.

The proof-of-concept NWC design is synthesized, placed and routed along with the Bridge
Host Controler Interface (BHCI) IP, provided by Alpha-Data, controlling the PCIe and DMAs
that access the RPM design. Synthesis, placement and route have been completed with
integrated tools of Xilinx Vivado 2016.3. The resulting implementation achieved a running
frequency of 200MHz without particular e�ort.

In Table 5.7, the resource utilization post-implementation is shown for the proof-of-concept
NWC design. Considering only the NWC design w.r.t. the FPGA resources, the critical re-
sources are DSP and BRAM tiles with respectively 14,4% and 14,2% utilization, 12,5% for
LUT, and 8,3% for LUTRAM. The larger part of the resource utilization comes from the
NTTs (70,2% of DSPs, 70,8% of BRAMs, and 77,4% of LUTs). The twiddle path, embedding
our twiddle factor generator, uses roughly around 10%-13% of DSPs, BRAMs and LUTs. The
inner-products in the overall data-�ow use 17% of DSPs, and the various latencies synchroniz-
ing the data path and the twiddle path together represent 20% of the BRAMs utilization. The
hardware cost for the synchronization (Others column) is considered constant as it becomes
relatively small for larger n.

122

Table 5.7: Resource utilization post implementation on a Virtex xc7vx690t. Synthesis, place-
ment and route using Xilinx Vivado 2016.3. Frequency 200MHz.

Ressources RPM BCHI

type available % total NTT MM GTW Others & WRAP

LUT 432,368 12.5 54,188 41,964 5,198 5,906 1,120 27,775
LUTRAM 173,992 8.3 14,402 10,710 2,056 1,550 86 5,425
FF 864,736 7.7 66,444 50,961 6,755 7,761 967 39,614
BRAM 1,470 14.2 208 147 0 21 40 153
DSP 3,600 14.4 517 363 88 66 0 48
IO 600 � � � � � � 59
Pcie 3 � � � � � � 1

The concrete test of the implemented design has not been completed due to some wrapper
issues. Indeed, our wrapper has been implemented with AXI-stream port for the connection
with the BCHI. Unfortunately, we didn't succeed to make the DMAs to work with AXI-
stream; we only managed to make them work with AXI-full connections. Hence, we should
have modi�ed our IP wrapper in consequence, but due to time constraints, this have not been
possible yet.

This proof-of-concept has nevertheless validated the approach from a functional point-
of-view. This also allowed us to obtain the relative cost of the system integration for this
approach. And �nally, it also gave us a theoretical running frequency from which we can
project some performances and bandwidth requirements for larger parameter sets.

5.3.4 Projections over FV's parameter sets

In order to analyze the scalability of our hardware acceleration approach, its characteristics
under the in�uence of concrete parameter sets are studied in this section. What is interest-
ing us at this point is an estimation of the achievable performance of a data-�ow oriented
NTT-based RPM. These performance are relevant if and only if it is practically possible to
achieve the design. Hence, this section presents both projection on hardware costs and on the
computing performance of our NWC design.

Projection methodology. The following estimations are built on two basis: the previously
presented implementation for n = 4096, w = 2 and s = 30, and the estimated changes of
SPIRAL generated DFT into NTT. For each estimation, we analyze the resource count of the
appropriate DFT design, and adjusted the costs of the arithmetic, memories, and required
bandwidth to match the requirements of the corresponding modi�ed NTT design. When
considering a data-�ow design, going from DFT to NTT mainly impacts the hardware cost
of the design, as the throughput does not change for a speci�c transform size. Similarly, the
impact on the latency of changing DFT into NTT is not considered here regarding the number
of pipelined RPM to perform in practice.

For the following discussions, a DSP refers to a 7 series DSP48E1, and a BRAM refers
to a 36Kb Block RAM. Estimations of resource utilization are based on the corresponding
Xilinx IP core generators for unsigned multiplier and single port RAM memories. Note that

123

no potential synthesizer optimizations have been taken into account. Finally, the number of
LUT is neglected because it does not appear as a critical resource in practice.

We remind that in Chapter 3 the concrete synthesis results are given for the twiddle path
of the multi-�eld NTT. Similarly, Chapter 4 details the concrete synthesis results for the
twiddle factor set generator. In the following discussions, we do not consider the results of
the synthesis, but those of our projection. These projections are su�cient to validate the
consistency of our RPM design, although these projections are pessimistic. For instance, for
the parameter set (n = 214, w = 4, s = 30), our projections estimate that one twiddle path of
a multi-�eld NTT is utilizing 112 BRAMs slices and our synthesis result shows that it actually
uses only 88 of them (see Chapter 3). Another example for the estimation of the GENTW
module resources utilization, for the parameter set (n = 214, w = 4, s = 30) our projections
estimate the usage of 48 BRAMs and 48 DSPs, and our synthesis result indicates 42 BRAMs
and 44 DSPs (see Chapter 4).

Projections on hardware costs. The following discussion refers to Figure 5.7 presenting
our projection results on resource utilization. All sizing parameters n, w and s have a signif-
icant impact on resource utilization. Figure 5.7a presents the in�uence of the degree of the
polynomials n, Figure 5.7b the in�uences of the streaming width w, and Figure 5.7c the in�u-
ence of the size of the primes. The limit value represents the available hardware/bandwidth
resource within Alpha-Data board used for our proof-of-concept. This limit takes also into
account the BCHI and the wrapper resource utilization plus a 10% margin for a concrete
implementation.

The degree n of the handled polynomials mainly impacts the number of BRAM required.
Its in�uence on DSP utilization is linear due to the number of stages being in O(log2 n) and n
being power of two. The bandwidth requirement to fully load the design is constant due to the
data-�ow approach that makes it only dependent on the streaming-width w, the prime size
s, and the running frequency. The estimated number of BRAM used goes from 226 (roughly
1 MB of data) for n = 212 up to 1074 (roughly 4.8 MB of data) for n = 215. With larger
degree n (> 215), the BRAMs utilization limits the feasibility of the design. The larger part
of the utilization (> 64 %) is used to implement the permutations of the NTT data paths.
Hence, a potential solution to address larger degree is to implement the design on a FPGA
with increased number of available BRAMs, or to improve the resource e�ciency of the NTT
permutations.

The streaming width w improves the throughput of the RPM signi�cantly. Indeed, the
number of cycles between two RPM computations is T = n/w. For instance, considering
n = 214, it is 32, 768 cycles for w = 2 down to 4096 for w = 16. But due to a larger streaming-
width, this has an heavy drawback on the DSP utilization (from 636 up to 4, 836 DSP slices),
and on the required communication bandwidth (from 4.5 GB/s up to 36 GB/s for a 200MHz
clock frequency). Thus, increasing the streaming-width to improves the performances of the
design seems not to be a viable solution.

The element size s (size in bit of the RNS basis elements) is interesting to consider because
it in�uences the size of the RNS basis for a given parameter q. Doing so reduces the number
of RPM to perform for a ciphertext multiplication. This parameter has a balanced impact
on BRAM utilization, DSP utilization and required communication bandwidth. Nevertheless,
some increments of s have a more signi�cant impact on DSP utilization, this is due to the
architectural characteristic of the DSP elements. Similarly, with increased s, the latency of

124

modular multiplications may be larger if one wants to keep the same running frequency.

To conclude on these projections, they show the feasibility of RPM through data-�ow NWC.
Nonetheless, they indicate some limitations to address very large parameter sets n > 215 due
to BRAM utilization. They also gives some indications on how to improve the computing
performance of the design. Our recommendations on this matter would be to tune the size of
the RNS basis element s rather than the streaming-width w.

Even if these projections are pessimistic, they nonetheless express the �exibility of our
RPM design for our application context. We assume that this is su�cient to validate the
relevance of the following timing projections.

Execution performance scalability. To study the execution performance of the RPM
design, we estimate the resulting timing and compare with the pro�ling from Halevi et al. [5]
already presented in Chapter 2. Table 5.8 reminds this pro�ling over which execution perfor-
mance comparisons are based.

Table 5.8: Timing estimate of the FV.Mul&Relin primitive derived from the pro�ling of Halevi
et al. [5]. Single-threaded mode, Linux CentOS, Intel Core i7-3770 CPU 4 cores at 3.40GHz
and 16 GB of RAM; plaintext space t = 2, s = 54-bit, security λ > 128. We remind that L
is the multiplicative depth evaluation capability of the FV scheme.

L n Sq k k′
Total

CRT ext.
Mul.RPM Relin.RPM Others

& Scaling

ms ms % ms % ms % ms %

1 211 54 1 2 3.6 1.3 37.2 1.8 50.3 0.4 10.9 0.1 1.6
5 212 108 2 3 12.7 3.8 30.3 6.1 48.4 2.5 19.3 0.3 2.0
10 213 216 4 5 57.6 14.4 25.0 24 41.6 17.8 30.8 1.5 2.6
20 214 432 8 9 252 71.3 28.3 100.9 40 74.4 29.5 5.7 2.2
30 215 594 11 12 887 233.1 26.3 315.2 35.5 315.4 35.6 23.3 2.6

In Table 5.9 the acceleration results over di�erent parameter sets from [5] are presented.
The distinction is made between the RPMs involved in the tensor product (Mul.RPM) and the
RPMs involved in the relinearization (Relin.RPM). The number of RPM performed during
these steps depends on RNS basis sizes k and k′. Namely, the tensor product requires 3(k+k′)
RPMs, and the relinearization requires 2k2 of them. The timings are estimated considering
all the RPMs being performed in a single �ow.

In the �rst part of the table, the estimated acceleration of our NWC-design for di�erent
FV's parameter sets is highlighted. It is noticeable that the approach gives a signi�cant
speedup over the RPM computations: at least 22.2 for the RPM of the tensor product and 4
for the RPM of relinearization. Furthermore, this speedup remains relevant with the growth
of the parameter sets: from 22.2 up to 31.3 for tensor product and from 4.0 up to 9.5 for
relinearization. Another element that has to be pointed out being the better speedup obtained
for the tensor product than for relinearization. This element is discussed in details a little
further.

The second part of the table shows the expected improvement of the acceleration when
increasing the streaming-width w of our design. The speedup is estimated up to 219 for

125

the tensor product and up to 32.3 for the relinearization. Nonetheless, we remind that the
hardware cost to do so is non-negligible, and that the required bandwidth to concretely achieve
this performances is particularly high.

Finally, the third part shows the concrete impact of reducing the size RNS basis by in-
creasing the size of their elements. Namely, the speedup lays from 27.4 up to 54.8 for the
RPMs during tensor product and from 4 up to 18.5 for the RPMs during relinearization.
We recall that the impact on hardware cost is relatively light. Hence, the resulting speedup
improvement are quite interesting to consider for a concrete implementation.

Table 5.9: Estimated performance of our RPM design over the di�erent parameter sets. The
RPM throughput is estimated with a 200MHz clock frequency. The number of cycles between
two consecutive RPM calculation is T = n/w. The number of RPM for the tensor product is
3(k + k′) and 2k2 for relinearization. The speedup are expressed relatively to the estimated
timings of Table 5.8.

Parameters RPM Mul.RPM Relin.RPM

L n Sq s k k′ w 1/ms # ms(su) # ms(su)

1 212 54

30

2 3

2

195.3 15 0.08(×23.4) 8 0.04(×9.5)
5 213 108 4 5 97.7 27 0.28(×22.2) 32 0.33(×7.5)
10 213 216 8 8 48.8 48 0.98(×24.4) 128 2.62(×6.8)
20 214 432 15 15 24.4 93 3.69(×27.4) 450 18.4(×4.0)
30 215 594 20 21 12.2 126 10.1(×31.3) 882 65.5(×4.8)

20 214 432 30 15 15

2 24.4

93

3.69(×27.4)

450

18.4(×4)
4 48.8 1.84(×54.8) 9.22(×8.1)
8 97.7 0.92(×109.5) 4.61(×16.1)
16 195.3 0.46(×219) 2.30(×32.3)

20 214 432

30 15 15

2 24.4

93 3.69(×27.4) 450 18.4(×4)
41 11 11 69 2.70(×37.3) 242 9.91(×7.5)
51 9 9 54 2.21(×45.6) 162 6.64(×11.2)
58 8 8 48 1.97(×51.3) 128 5.24(×14.2)
62 7 8 45 1.84(×54.8) 98 4.01(×18.5)

We would like to come back to the di�erences in acceleration between the tensor product and
the relinearization. This is explained because our approach accelerates RPM operations rather
than NTT operations. When considering the complexity at RPM level, some optimization
possible at NTT level are not accessible. For instance, the relinearization key could be stored
already in NTT domain, hence the number of NTT to perform in the relinearization is k2+2k.
This has to be compared to the 2k2 operations to performs at RPM level. But the other way
around, considering the complexity at NTT level would make us consider more operations
during the tensor product.

The number of operations to performed for the di�erent abstraction levels are compared
in Table 5.10. Our discussion here only considers the operations of similar complexity (RPM
and NTT). At RPM level, we have roughly half less operations to perform than at NTT level
during the tensor product, but during relinearization there is almost twice more operations to

126

perform when the RNS basis get larger. But it also appears that the loss during relinearization
is not compensated by our gain during tensor product. Namely, for the the setting (n = 214,
log2 q = 432), we perform 68 less operations at RPM level than NTT level during the tensor
product, but 99 more operations during the relinearization. Consequently, for large parameter
sets, its seems more relevant to consider the acceleration of operation at NTT level rather
than at RPM level.

Table 5.10: Di�erences of considering the calculation complexity at RPM level rather than
NTT level. The count of number of operations for the NTT level are based on the implemen-
tation of Halevi et al. [5]. The size of the RNS basis elements is s = 54-bit.

Parameters Ten. Prod. Relin.

n log2 q k k′ RPM NTT MM RPM NTT MM

211 54 1 2 9 21 18,432 2 3 4,096
212 108 2 3 15 35 61,440 8 8 32,768
213 216 4 5 27 63 221,184 32 24 262,144
214 432 8 9 51 119 835,584 128 80 2,097,152
215 594 11 12 69 161 2,260,992 242 143 7,929,861
216 1026 19 20 117 273 7,667,711 722 399 47,316,974
217 2052 38 39 231 539 30,277,616 2,888 1,520 378,535,800

5.3.5 Concluding remarks

In the literature, the main problematic for the de�nition of scalable RPM designs is the
handling of the multiple twiddle factor sets brought by the RNS representation. In this
thesis, we have explored the on-the-�y computations of these twiddle factor sets. These
speci�c contributions have been described in previous chapters. In this section we have shown
an example of the exploitation of these basic blocks for the de�nition of a scalable RPM
designs.

In particular, a proof-of-concept NWC-based RPM has validated the feasibility of our
approach. The projections that have followed give good insurances on the �exibility brought
by our basic blocks. From the best of our knowledge, our design strategy is the �rst that
gives performances enhancement while being able to scale up to large parameter sets for an
achievable hardware cost and communication bandwidth in the context of Leveld-FHE.

Moreover, some improvements are possible. The highlighted limitations of considering
the complexity at RPM rather than NTT level motivates de�nition of residue polynomial
arithmetic at a lower abstraction level. Doing so breaks the rigidity of a large data-�ow RPM
design. This could be replaced by several smaller and independent NTT data-�ow, and hence
increasing the exploited parallelism at NTT level.

In the next section, the results of the exploration of FPGA acceleration of RPMs and
those of the exploration of GPU acceleration for RNS speci�c functions are concatenated.
This allows us to conclude on the estimated acceleration of our hybrid computing system for
encrypted-computing with FV.

127

5.4 Conclusion

In the two previous sections, both the acceleration of GPU for RNS speci�c functions and the
acceleration of an NWC-based RPM on FPGA have been explored.

To motivate the pertinence of our hybrid computing system, we estimate the acceleration
obtained for the computation of one FV.Mul&Relin. Table 5.11 presents the resulting projec-
tions when considering 54-bit primes elements to compose the RNS basis. The communication
timing for GPU accesses has been taken into account.

Table 5.11: Projection of the acceleration obtained with our hybrid computing system pro-
posal for the FV.Mul&Relin primitive. Communication timings obtained during the experi-
mentation on GPU are included. The RNS columns regroup basis extensions and scale-and-
round operations. The RPM columns regroup RPMs for tensor product and for relinearization.
RPMs timings are for w = 2 and s = 54.

Parameters Timing basis from [5] Our hybrid system

L n log2 q Total RNS RPM Misc. Total speedup RNS RPM

1 211 54 3.6 1.3 2.2 0.1 0.67 ×5.37 0.51 0.06
5 212 108 12.7 3.8 8.6 2 3.28 ×3.87 1.05 0.23
10 213 216 57.6 14.4 41.8 2.6 7.13 ×8.08 3.32 1.21
20 214 432 252 71.3 175.3 2.2 20.7 ×12.17 11.17 7.33
30 215 594 887 233.1 630.6 2.6 61.21 ×14.49 33.14 25.47

Our hybrid computing approach is quite well justi�ed by these estimations. It should be
noted that the greatest acceleration concerns the parameterization for the greatest multiplica-
tive depth in the encrypted domain. It allows us to consider a multiplication of encrypted data
up to 14 times faster than the well-optimized software version of Halevi et al. [5]. This accel-
eration reduces the time for en encrypted multiplication to 62 ms for an evaluation capacity
of a multiplicative depth of 30, and to 21 ms for a multiplicative depth of 20.

The dedicated hardware acceleration for RPMs is based on the two contributions from
Chapters 3 and 4 that allow the practical feasibility of this accelerator: e�cient handling
of twiddle factor sets for multi-�eld NTT circuits, and on-the-�y generation of these sets.
Together, these approaches signi�cantly reduce the number of BRAMs used to store twiddle
factors: from 37% to 84% for multiplicative depths from 5 to 30. They also reduce the required
bandwidth to �ll up the RPM accelerator with the twiddle factors from hundreds of MB/s to
only several kB/s.

Nevertheless, a limitation of this projection is that we make the assumption that the com-
plexity of the tensor product and relinearization is equivalent to the complexity of computing
the underlying RPMs. It is not totally true as these RPMs operations are in practice in-
terleaved with Residue Polynomial Additions (RPA). Hence, future works should propose an
FPGA acceleration for both RPMs and RPAs. It is assumed that our contributions on the
de�nition of multi-�eld NTT circuits and twiddle factor generators could de�nitely help this
purpose.

These prospective results motivate the re�nement of the dedicated accelerator for polyno-
mial arithmetic as well as the realization of the prototype of hybrid acceleration.

128

212 213 214 215
0%

20%

40%

n, w = 2, s = 30

NTT_DP PWMM GTW

DSP utilization

212 213 214 215
0%

50%

100%

n, w = 2, s = 30

NTT_DP NTT_TP GTW

BRAM utilization

212 213 214 215
0%

50%

100%

n, w = 2, s = 30

In Out

BW utilization

(a) In�uence of n over utilization of FPGA resources.

2 4 8 16
0%

50%

100%

150%

w, n = 214, s = 30

2 4 8 16
0%

20%

40%

60%

80%

100%

w, n = 214, s = 30

2 4 8 16
0%

200%

400%

w, n = 214, s = 30

(b) In�uence of w over utilization of FPGA resources.

30 41 51 58 62
0%

20%

40%

60%

80%

s, n = 214, w = 2

30 41 51 58 62
0%

20%

40%

60%

80%

s, n = 214, w = 2

30 41 51 58 62
0%

50%

100%

s, n = 214, w = 2

(c) In�uence of s over utilization of FPGA resources.

Figure 5.7: Estimation of resource utilization under the in�uence of sizing parameters. The
relative resource utilization is estimated with respect to the quantity of resources of a virtex
7 xc7vx690t for DSP and BRAM, and with respect to the bandwidth capacity of a PCIe
gen 3 x8 lanes for the required bandwidth. Bandwidth requirements are expressed for a
200MHz running frequency. The di�erent legend entries refer to di�erent parts of the design:
NTT_DP to the three NTT data paths, NTT_TW to the two NTT twiddle path, PWMM to
the four point-wise modular multiplications, and GTW to the overall twiddle path (GENTW
+ GENITW + GENPCTW). The arti�cial latency for synchronization between the twiddle
and data path have not been taken into account.

129

130

Conclusions and perspectives

Retrospective

This thesis contributed to the preservation of privacy during data processing. In particular,
it addressed the problematic of low execution performances of encrypted-computing with
homomorphic cryptography by the exploration of dedicated computing architectures.

In a �rst chapter, we presented our position within the homomorphic cryptography re-
search area. We identi�ed the RLWE-based HE schemes as a promising family, well-accepted
by the FHE community. In particular, we chose to focus on L-FHE schemes like FV and
SHIELD as they appeared at the beginning of this thesis more mature than the fourth gener-
ation's scheme TFHE. The main issue in implementing these schemes remains the management
of wide ranges of parameters that makes the de�nition of a hardware acceleration strategy
more di�cult. After having reviewed the techniques and questions for the concrete use of
these schemes, a state-of-the-art of hardware implementation was presented. Our analysis of
the latter concluded with our objective of de�ning a scalable hardware acceleration strategy
with respect to the variety of parameter sets, and with our choice of speci�cally studying the
FV scheme for that purpose.

Chapter 2 presented our analysis of the FV scheme towards its hardware acceleration. It
�rst presented the scheme while highlighting the complexity of its parameterization. We then
analyzed its requirements for the acceleration of polynomial ring multiplications by making
a performance pro�ling of a typical encrypted application. Our analysis of the related works
for the acceleration of these operations led us to choose an acceleration strategy based on
coupling the RNS and the NTT approaches. After having presented both RNS and NTT
utilization in this context, we validated the feasibility of their coupling for up to very large
parameter sets. We then incorporated it into the dynamics of the literature by describing a
full RNS variant of FV, concomitant with our work. The chapter was concluded with details
on the full RNS variant pro�ling, indicating the relevance of accelerating both RNS speci�c
functions and NTT-based residue polynomial multiplications.

Chapters 3 and 4 detailed our contributions to the design of polynomial ring multiplication
architectures with the RNS/NTT coupled approach. These contributions make possible the
consideration of large parameter sets, and thus the hardware acceleration for large encrypted-
computing applications. In particular, they allow a more e�ective management of twiddle
factors in this context on two aspects. Firstly, by an on-the-�y handling of the di�erent
twiddle sets feeding the data path of a multi-�eld NTT circuit. Secondly, by an on-the-�y
generation of these twiddle sets from a greatly reduced number of seed elements. For these two
contributions, we proposed an automatic generation of RTL circuits for a natural integration
with the SPIRAL tool. The automation of these circuits facilitates the exploration of the
design space for e�cient NTT-based residue polynomial multiplications.

131

Finally, Chapter 5 presented our proposal of a hybrid computation system for the accel-
eration of the RNS/NTT coupled approach for FV. In particular, it showed the acceleration
expectations for each parts of the ciphertext multiplication. The GPU acceleration of RNS
speci�c functions gave promising timings up to 33 times (respectively 61 times) faster than
on CPU for basis extension (respectively scale-and-round). Although, some additional de-
velopments on communications and on workload management would be bene�cial for proper
integration of the hybrid system. A proof-of-concept implementation of a residue polynomial
multiplier was also presented in that chapter. The study of its scalabilty con�rmed that our
basic blocks presented in Chapters 3 and 4 allow the conception of high-throughput RPM de-
signs for large parameter sets. The remaining limitations are located in the BRAMs utilization
and in the communication bandwidth required to fully load the accelerator. Together, the
GPU and FPGA acceleration made us project a signi�cant acceleration for encrypted com-
puting with FV. Our acceleration projections allow us to hope an order of magnitude of gain
in the execution time for ciphertext multiplication with respect to state-of-the-art software
implementations.

Perspectives

Research on e�cient encrypted-computing continues. Throughout this thesis, we have sought
to take into account the complexity of implementing homomorphic encryption. This complex-
ity is �rstly to position oneself within the di�erent families and generations of HE schemes.

A lull can be felt in the literature since 2016, but many things remain to be done to clarify
the bene�ts and use cases of each scheme. At least, this is the impression that emerges when
one has to make a development e�ort towards hardware. It is always possible that one scheme
may take precedence over the others in a slightly more radical way. In this case our thoughts
go towards TFHE. Despite this, we hope that our scienti�c contributions will allow to take
the use of homomorphic encryption for data privacy a step further.

Hardware acceleration for FV. In this thesis, we have shown the possibility of having
a generation of twiddle factors for NTTs for a hardware cost independent of FV parameters
as well as performing an automated generation of multi-�eld NTT circuits by associating
SPIRAL and the twiddle path generator.

The re�nement of our twiddle path generator for a closer interaction with SPIRAL's
hardware backend could open e�cient design space exploration for NTT-based RPM circuits.
In a mid-term future, this generation could even be the source of an all-in-one IP for �nite-�eld
NTTs. That being said, it would still be necessary to carry out a more in-depth study of the
various use-cases and their associated solutions (multi-�eld or single-�eld, choice of modulus,
etc.).

Concerning the RPM operation, our work reduces the cost of coupling NTT and RNS to-
gether. Thus, it o�ers good perspectives for the concrete acceleration of encrypted-computing
with FV. In particular, for the feasibility of an accelerator embedding all residue polynomial
operations (RPMs and RPAs). Thus, the overall tensor product and relinearization could be
performed locally on the dedicated hardware accelerator. The hardware cost overhead for
data-�ow RPA is rather small, but the local storage of numerous residue polynomials in that
case could be problematic. This could motivate to explore external bu�ering solutions using
DDR memories, directly accessed by the dedicated hardware, or even multi-FPGA approaches
to separate the tensor product from the relinearization.

132

As a consequence, we have paved the way towards the design of a micro-server architecture
for encrypted-computing along the lines of Chapter 5. Yet, our work only started to explore
the communication problematics which would crop up in such a system. Our �rst choice of
using PCIe interconnect could be suitable for a proof-of-concept hybrid system. This could
be improved to increase communication bandwidth and hence furthemore improve the accel-
erations. For instance, by exploring the integration of the GPU and dedicated hardware for
polynomial arithmetic closer to CPU memory. Staying in a multi-SoC approach, one could
consider IBM's Coherent Accelerator Processor Interface (CAPI). A more integrated hetero-
geneous single-SoC may explore Intel's UltraPath Interconnect (UPI). Finally, considering an
ASIC design, it would be interesting to take a closer look at some speci�c technologies such
as 3D memory integration. This is a classic design problematic for application domains that
have their computational performance more dependent on the quantity of data to handle than
on the computations themselves. From this point of view, the acceleration of homomorphic
encryption is similar to the acceleration of on-the-�y images and videos processing.

Hardware acceleration for TFHE. The implementation issues of the TFHE scheme are
quite di�erent from those of FV. Indeed, the complexity of large parameterization dynamic
is less present.

However, computational complexity is also related to the ability of performing e�cient
polynomial multiplications. The polynomials have real coe�cients modulo 1, and therefore
a hardware acceleration by Fourier transform could also be considered. Consistently with
our approach, the SPIRAL's DFT generator could once again be a good starting point which
hints that even simpli�ed versions of the accelerators designed in this thesis may be su�cient
to accelerate TFHE in hardware.

Post-quantum cryptography. After the call from the National Institute of Standards
and Technology (NIST) for post-quantum cryptography, we note that some candidates are
using the algebraic structure of polynomial rings. For example, a preliminary analysis on the
CRYSTAL-KYBER proposal [102] hints that this cryptosystem could bene�t from NTT-based
polynomial ring multiplications. This would especially be important for high-performances
encryption server e.g. at the corporate end of a VPN.

In this case, the derivation of the parameters is very di�erent from the homomorphic
context. Our handling of twiddle factor sets would not be required due to su�ciently small
constant modulus (q = 7681 for CRYSTAL-KYBER). However, as observed for elliptic-curve
cryptography [103], the RNS could be useful to obfuscate manipulations of the secret against
side-channel attacks, or simply to accelerate the primitives by involving multi-key parallelism.
Thus our work on RNS/NTT coupling could be a starting point for the exploration of e�cient
hardware implementation strategy.

With or without RNS, the adaptation of the hardware backend of SPIRAL, as was done
in this thesis, could generate e�cient NTT circuits for a high-performance post-quantum
cryptography.

133

134

Personal bibliography

Publications

J. Cathébras, A. Carbon, P. Milder, R. Sirdey, N. Ventroux. Data Flow Oriented Hard-
ware Design of RNS-based Polynomial Multiplication for SHE Acceleration. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2018(3), 69-88.

J. Cathébras, A. Carbon, R. Sirdey, N. Ventroux. An Analysis of FV Parameters
Impact Towards Its Hardware Acceleration. 5th Workshop on Encrypted Computing

and Applied Homomorphic Cryptography (WAHC 2017). In: Brenner M. et al. (eds) Financial
Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science, vol 10323,
91-106. Springer, Cham.

Patents

J. Cathébras, A. Carbon, R. Sirdey, N. Ventroux. Processeur NTT par �ot. Numéro
de dépot INPI 1856351.

J. Cathébras, A. Carbon, R. Sirdey, N. Ventroux. Circuit de génération de facteurs
de rotation pour processeur NTT. Numéro de dépot INPI 1856340.

Communications

Conference on Cryptographic Hardware and Embedded Systems (CHES 2018), september
2018, Amsterdam, Netherlands. Presentation:
Data Flow Oriented Hardware Design of RNS-based Polynomial Multiplication
for SHE Acceleration.

Colloque du GDR SoC/SiP, june 2017, Bordeaux, France. Poster:
An Analysis of FV Parameters Impact Towards Its Hardware Acceleration.

5th Workshop on Encrypted Computing and Applied Homomorphic Cryptography (WAHC
2017),april 2017, Sliema, Malta. Presentation:
An Analysis of FV Parameters Impact Towards Its Hardware Acceleration.

Journées Codage & Cryptographie, april 2017, La Bresse, France. Presentation:
An Analysis of FV Parameters Impact Towards Its Hardware Acceleration.

135

Architectures des Systèmes Matériels et Logiciels Embarqués et Méthodes de Conception
Associées, march 2017, Nancy, France. Poster:
An Analysis of FV Parameters Impact Towards Its Hardware Acceleration.

136

Bibliography

[1] European Union Agency for Network and Information Security (ENISA). Data Protec-
tion - Privacy by Design. https://www.enisa.europa.eu/topics/data-protection/privacy-
by-design. Accessed: 2018-10-07.

[2] D. Kahn. The Codebreakers: The Comprehensive History of Secret Communication from

Ancient Times to the Internet. Scribner, 1996.

[3] J. Stern. La science du secret. Sciences. Editions Odile Jacob, 1998.

[4] Jean-Claude Bajard, Julien Eynard, Anwar Hasan, and Vincent Zucca. A Full RNS
Variant of FV like Somewhat Homomorphic Encryption Schemes. In Selected Areas in

Cryptography - SAC, St. John's, Newfoundland and Labrador, Canada, August 2016.

[5] Shai Halevi, Yuriy Polyakov, and Victor Shoup. An Improved RNS Variant of the BFV
Homomorphic Encryption Scheme. Cryptology ePrint Archive, Report 2018/117, 2018.
https://eprint.iacr.org/2018/117.

[6] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. TFHE: Fast
Fully Homomorphic Encryption over the Torus. Cryptology ePrint Archive, Report
2018/421, 2018. https://eprint.iacr.org/2018/421.

[7] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homomorphic En-
cryption. IACR Cryptology ePrint Archive, 2012:144, 2012.

[8] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. SHIELD: Scalable Homo-
morphic Implementation of Encrypted Data-Classi�ers. IEEE Transactions on Com-

puters, 65(9):2848�2858, sep 2016.

[9] Guillaume Bonnoron. A Journey Towards Practical Homomorphic Encryption. PhD
thesis, Université de Bretagne Sud, 2018.

[10] Franz Franchetti, José Moura, and Markus Püschel. Spiral - Software/Hardware Gen-
eration for Performance. http://www.spiral.net. Accessed: 2018-10-07.

[11] International Telecommunication Union. ICT Facts and Figures 2015.
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf.
Accessed: 2018-10-07.

[12] International Telecommunication Union. ICT Facts and Figures 2017.
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2017.pdf.
Accessed: 2018-10-07.

137

[13] Bastien Lepine. Le Big Data, l'IA et le Machine Learning transforment les soins de
santé. https://www.lebigdata.fr/big-data-soins-de-sante. Accessed: 2018-10-07.

[14] Bastien Lepine. Enfants et Big Data : la collecte de données, un danger selon l'UNICEF.
https://www.lebigdata.fr/enfants-big-data-danger. Accessed: 2018-10-07.

[15] Commission Nationale de l'Informatique et des Libertés (CNIL). Loi 78-17 du 6 janvier
1978 modi�ée. https://www.cnil.fr/fr/loi-78-17-du-6-janvier-1978-modi�ee. Accessed:
2018-10-07.

[16] Commission Nationale de l'Informatique et des Libertés (CNIL). Le contrôle de l'util-
isation d'internet et de la messagerie électronique. https://www.cnil.fr/fr/le-controle-
de-lutilisation-dinternet-et-de-la-messagerie-electronique. Accessed: 2018-10-07.

[17] Sha� Goldwasser and Silvio Micali. Probabilistic Encryption & How to Play Mental
Poker Keeping Secret all Partial Information. In Proceedings of the fourteenth annual

ACM symposium on Theory of computing - STOC'82. ACM Press, 1982.

[18] Sha� Goldwasser and Silvio Micali. Probabilistic Encryption. Journal of Computer and
System Sciences, 28(2):270�299, apr 1984.

[19] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On Data Banks and Privacy
Homomorphisms. Foundations of secure computation, 4(11):169�180, 1978.

[20] Pascal Paillier. Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In Advances in Cryptology � EUROCRYPT '99, pages 223�238. Springer
Berlin Heidelberg.

[21] T. Elgamal. A Public Key Cryptosystem and a Signature Scheme Based on Discrete
Logarithms. IEEE Transactions on Information Theory, 31(4):469�472, jul 1985.

[22] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF Formulas on Cipher-
texts. In Theory of Cryptography, pages 325�341. Springer Berlin Heidelberg, 2005.

[23] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively Homomor-
phic Encryption with d-Operand Multiplications. Cryptology ePrint Archive, Report
2008/378, 2008. https://eprint.iacr.org/2008/378.

[24] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additively Homomorphic
Encryption with d -Operand Multiplications. In Advances in Cryptology - CRYPTO

2010, 30th Annual Cryptology Conference, Santa Barbara, CA, USA, August 15-19,

2010. Proceedings, pages 138�154, 2010.

[25] Craig Gentry et al. Fully Homomorphic Encryption using Ideal Lattices. In STOC,
volume 9, pages 169�178, May 2009.

[26] Nigel P Smart and Frederik Vercauteren. Fully Homomorphic Encryption with Rela-
tively Small Key and Ciphertext Sizes. In Public Key Cryptography�PKC 2010, pages
420�443. Springer, Jan 2010.

[27] Craig Gentry and Shai Halevi. Implementing Gentry's Fully-Homomorphic Encryp-
tion Scheme. In Advances in Cryptology�EUROCRYPT 2011, pages 129�148. Springer,
February 2011.

138

[28] Zvika Brakerski and Vinod Vaikuntanathan. E�cient Fully Homomorphic Encryption
from (Standard) LWE. In 2011 IEEE 52nd Annual Symposium on Foundations of

Computer Science. IEEE, oct 2011.

[29] Zvika Brakerski and Vinod Vaikuntanathan. Fully Homomorphic Encryption from Ring-
LWE and Security for Key Dependent Messages. In Phillip Rogaway, editor, Advances in
Cryptology � CRYPTO 2011, pages 505�524, Berlin, Heidelberg, 2011. Springer Berlin
Heidelberg.

[30] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) Fully Homo-
morphic Encryption Without Bootstrapping. In Proceedings of the 3rd Innovations in

Theoretical Computer Science Conference, pages 309�325. ACM, Jan 2012.

[31] Zvika Brakerski. Fully Homomorphic Encryption Without Modulus Switching from
Classical GapSVP. In Advances in Cryptology�CRYPTO 2012, pages 868�886. Springer,
2012.

[32] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic Encryption from Learning
with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Ad-

vances in Cryptology�CRYPTO 2013, pages 75�92. Springer, 2013.

[33] Jacob Alperin-Sheri� and Chris Peikert. Faster Bootstrapping With Polynomial Error.
In Advances in Cryptology�CRYPTO 2014, pages 297�314. Springer, 2014.

[34] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping Homomorphic Encryption
in Less Than a Second. In Elisabeth Oswald and Marc Fischlin, editors, Advances in
Cryptology � EUROCRYPT 2015, pages 617�640. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

[35] Jean-François Biasse and Luis Ruiz. FHEW with E�cient Multibit Bootstrapping. In
Proceedings of the 4th International Conference on Progress in Cryptology � LATIN-

CRYPT 2015 - Volume 9230, pages 119�135, Berlin, Heidelberg, 2015. Springer-Verlag.

[36] Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryp-
tography. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of

Computing, STOC '05, pages 84�93, New York, NY, USA, 2005. ACM.

[37] Oded Regev. The Learning with Errors Problem (Invited Survey). In Proceedings of

the 2010 IEEE 25th Annual Conference on Computational Complexity, CCC '10, pages
191�204, Washington, DC, USA, 2010. IEEE Computer Society.

[38] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-�y Multiparty
Computation on the Cloud via Multikey Fully Homomorphic Encryption. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 1219�1234.
ACM, 2012.

[39] Joppe W Bos, Kristin Lauter, Jake Loftus, and Michael Naehrig. Improved Security
for a Ring-Based Fully Homomorphic Encryption Scheme. In Cryptography and Coding,
pages 45�64. Springer, 2013.

[40] Yark�n Doröz and Berk Sunar. Flattening NTRU for Evaluation Key Free
Homomorphic Encryption. Cryptology ePrint Archive, Report 2016/315, 2016.
https://eprint.iacr.org/2016/315.

139

[41] Je�rey Ho�stein, Jill Pipher, and Joseph H. Silverman. NTRU: A Ring-Based Public
Key Cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267�
288, Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[42] Damien Stehlé and Ron Steinfeld. Making NTRU as Secure as Worst-Case Problems
over Ideal Lattices. In Kenneth G. Paterson, editor, Advances in Cryptology � EURO-

CRYPT 2011, pages 27�47, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[43] Martin Albrecht, Shi Bai, and Léo Ducas. A Sub�eld Lattice Attack on Overstretched
NTRU Assumptions. In Matthew Robshaw and Jonathan Katz, editors, Advances in
Cryptology � CRYPTO 2016, pages 153�178, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[44] Paul Kirchner and Pierre-Alain Fouque. Revisiting Lattice Attacks on Overstretched
NTRU Parameters. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology � EUROCRYPT 2017, pages 3�26, Cham, 2017. Springer International
Publishing.

[45] Marten Van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully Homo-
morphic Encryption over the Integers. In Advances in cryptology�EUROCRYPT 2010,
pages 24�43. Springer, May 2010.

[46] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and Mehdi Tibouchi. Fully
Homomorphic Encryption over the Integers with Shorter Public Keys. In Advances in

Cryptology�CRYPTO 2011, pages 487�504. Springer, 2011.

[47] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Public Key Compres-
sion and Modulus Switching for Fully Homomorphic Encryption over the Integers. In
Advances in Cryptology�EUROCRYPT 2012, pages 446�464. Springer, April 2012.

[48] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-Invariant Fully
Homomorphic Encryption over the Integers. In Public-Key Cryptography�PKC 2014,
pages 311�328. Springer, 2014.

[49] Jung Hee Cheon and Damien Stehlé. Fully Homomophic Encryption over the Integers
Revisited. In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology �

EUROCRYPT 2015, pages 513�536, Berlin, Heidelberg, 2015. Springer Berlin Heidel-
berg.

[50] Chris Peikert. Public-key Cryptosystems from the Worst-case Shortest Vector Problem:
Extended Abstract. In Proceedings of the Forty-�rst Annual ACM Symposium on Theory

of Computing, STOC '09, pages 333�342, New York, NY, USA, 2009. ACM.

[51] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical Hardness of Learning with Errors. In Proceedings of the Forty-�fth Annual

ACM Symposium on Theory of Computing, STOC '13, pages 575�584, New York, NY,
USA, 2013. ACM.

[52] Vincent Migliore. Hardware Cybersecurity and Design of Dedicated Components for the

Acceleration of Homomorphic Encryption Schemes. PhD thesis, Université de Bretagne
Sud, September 2017.

140

[53] Martin Albrecht. lwe-estimator, Sage Module for Estimating the Concrete Security of
LWE Instances.

[54] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On Ideal Lattices and Learning

with Errors over Rings, pages 1�23. Springer Berlin Heidelberg, Berlin, Heidelberg,
2010.

[55] Chris Peikert. How Not to Instantiate Ring-LWE. In Proceedings of the 10th Inter-

national Conference on Security and Cryptography for Networks - Volume 9841, pages
411�430, Berlin, Heidelberg, 2016. Springer-Verlag.

[56] Chris Peikert, Oded Regev, and Noah Stephens-Davidowitz. Pseudorandomness of Ring-
LWE for Any Ring and Modulus. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2017, pages 461�473, New York, NY, USA,
2017. ACM.

[57] N.P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations. Cryptology
ePrint Archive, Report 2011/133, 2011. https://eprint.iacr.org/2011/133.

[58] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic Encryp-
tion with Polylog Overhead. Cryptology ePrint Archive, Report 2011/566, 2011.
https://eprint.iacr.org/2011/566.

[59] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic en-
cryption be practical? In Proceedings of the 3rd ACM workshop on Cloud computing

security workshop, pages 113�124. ACM, 2011.

[60] Pierrick Méaux. Hybrid Fully Homomorphic Framework. PhD thesis, PSL Research
University, December 2017.

[61] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María Naya-
Plasencia, Pascal Paillier, and Renaud Sirdey. Stream Ciphers: A Practical Solution for
E�cient Homomorphic-Ciphertext Compression. In Fast Software Encryption, pages
313�333. Springer Nature, 2016.

[62] Angela Jäschke and Frederik Armknecht. (Finite) Field Work: Choosing the Best En-
coding of Numbers for FHE Computation. Cryptology ePrint Archive, Report 2017/582,
2017. https://eprint.iacr.org/2017/582.

[63] Kalpana Singh, Renaud Sirdey, and Sergiu Carpov. Practical Personalized Genomics
in the Encrypted Domain. In 2018 Third International Conference on Fog and Mobile

Edge Computing (FMEC). IEEE, apr 2018.

[64] Kim Laine, Hao Chen, and Rachel Player. Simple Encrypted Arith-
metic Library. https://www.microsoft.com/en-us/research/project/simple-encrypted-
arithmetic-library. Accessed: 2018-08-24.

[65] Yuriy Polyakov, Kurt Rohlo�, and Gerard Ryan. PALISADE Lattice Cryptography
Library. https://git.njit.edu/palisade/PALISADE. Accessed: 2018-08-24.

[66] Tancrède Lepoint. FV-NFLlib. https://github.com/CryptoExperts/FV-NFLlib. Ac-
cessed: 2018-08-24.

141

[67] Pascal Aubry, Sergiu Carpov, Paul Dubrulle, Simon Fau, Vincent Herbert, Malika Iz-
abachène, Thanh-Hai Nguyen, Donald Nokam-Kuate, Patrick Ruf, Kalpana Singh, Oana
Stan, and Renaud Sirdey. Cingulata: Homomorphic Cryptography Compiler Toolchain
and Runtime Environment. https://github.com/CEA-LIST/Cingulata. Accessed: 2018-
08-24.

[68] Alhassan Khedr and Glenn Gulak. SecureMed: Secure Medical Computation Using
GPU-Accelerated Homomorphic Encryption Scheme. 22:597�606, mar 2018.

[69] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by automatic
computers. 145:293�294, 1962.

[70] Stephen. A. Cook. On the Minimum Computation Time of Functions. PhD thesis,
Harvard University, 1966.

[71] John M Pollard. The Fast Fourier Transform in a Finite Field. Mathematics of compu-

tation, 25(114):365�374, 1971.

[72] Huapeng Wu. On Computation of Polynomial Modular Reduction. Technical report,
The Center for Applied Cryptographic Research, University of Waterloo, 2000.

[73] Peter L. Montgomery. Modular Multiplication without Trial Division. Mathematics of

Computation, 44(170):519�519, may 1985.

[74] Paul Barrett. Implementing the Rivest, Shamir and Adleman Public Key Encryption
Algorithm on a Standard Digital Signal Processor. In Advances in Cryptology � CRYP-

TO' 86, pages 311�323. Springer Berlin Heidelberg.

[75] A. Mkhinini, P. Maistri, R. Leveugle, R. Tourki, and M. Machhout. A �exible RNS-
based large polynomial multiplier for Fully Homomorphic Encryption. In 2016 11th

International Design & Test Symposium (IDT). IEEE, dec 2016.

[76] Vincent Migliore, Maria Mendez Real, Vianney Lapotre, Arnaud Tisserand, Caroline
Fontaine, and Guy Gogniat. Hardware/Software Co-Design of an Accelerator for FV
Homomorphic Encryption Scheme Using Karatsuba Algorithm. IEEE Transactions on

Computers, 67(3):335�347, mar 2018.

[77] Thomas Pöppelmann, Michael Naehrig, Andrew Putnam, and Adrian Macias. Accel-
erating Homomorphic Evaluation on Recon�gurable Hardware. In Lecture Notes in

Computer Science, pages 143�163. Springer Berlin Heidelberg, 2015.

[78] Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov, and Ingrid
Verbauwhede. Modular Hardware Architecture for Somewhat Homomorphic Function
Evaluation. In Lecture Notes in Computer Science, pages 164�184. Springer Berlin
Heidelberg, 2015.

[79] Erdinç Öztürk, Yarkin Doröz, Berk Sunar, and Erkay Savas. Accelerating Somewhat
Homomorphic Evaluation using FPGAs. IACR Cryptology ePrint Archive, 2015:294,
2015.

[80] Erdinc Ozturk, Yarkin Doroz, Erkay Savas, and Berk Sunar. A Custom Accelerator
for Homomorphic Encryption Applications. IEEE Trans. Comput., 66(1):3�16, January
2017.

142

[81] David Bruce Cousins, Kurt Rohlo�, and Daniel Sumorok. Designing an FPGA-
Accelerated Homomorphic Encryption Co-Processor. IEEE Transactions on Emerging

Topics in Computing, 5(2):193�206, apr 2017.

[82] M. Khairallah and M. Ghoneima. Tile-Based Modular Architecture for Accelerating
Homomorphic Function Evaluation on FPGA. In 2016 IEEE 59th International Midwest

Symposium on Circuits and Systems (MWSCAS), pages 1�4, Oct 2016.

[83] Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy Sinha Roy, Ray C.C.
Cheung, Derek Pao, and Ingrid Verbauwhede. High-Speed Polynomial Multiplication
Architecture for Ring-LWE and SHE Cryptosystems. Cryptology ePrint Archive, Report
2014/646, 2014. https://eprint.iacr.org/2014/646.

[84] Tancrède Lepoint and Michael Naehrig. A comparison of the homomorphic encryption
schemes FV and YASHE. In Progress in Cryptology�AFRICACRYPT 2014, pages 318�
335. Springer, 2014.

[85] Adeline Langlois and Damien Stehlé. Hardness of Decision (R)LWE for any Modulus.
IACR Cryptology ePrint Archive, 2012:91, 2012.

[86] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. Armadillo: A Compilation Chain
for Privacy Preserving Applications. In Proceedings of the 3rd International Workshop

on Security in Cloud Computing. Association for Computing Machinery (ACM), 2015.

[87] Torbjörn Granlund and the GMP development team. GNU MP: The GNU Multiple

Precision Arithmetic Library, 5.0.5 edition, 2012. http://gmplib.org/.

[88] W. B. Hart. Fast Library for Number Theory: An Introduction. In Proceedings of the

Third International Congress on Mathematical Software, ICMS'10, pages 88�91, Berlin,
Heidelberg, 2010. Springer-Verlag. http://�intlib.org.

[89] Richard Lindner and Chris Peikert. Better Key Sizes (and Attacks) for
LWE-Based Encryption. Cryptology ePrint Archive, Report 2010/613, 2010.
https://eprint.iacr.org/2010/613.

[90] Martin R. Albrecht, Rachel Player, and Sam Scott. On the Concrete Hardness of
Learning With Errors. Journal of Mathematical Cryptology, 9(3), jan 2015.

[91] Martin R. Albrecht. On Dual Lattice Attacks Against Small-Secret LWE and Parameter
Choices in HElib and SEAL. In Lecture Notes in Computer Science, pages 103�129.
Springer International Publishing, 2017.

[92] Christophe De Canniere and Bart Preneel. TRIVIUM Speci�cations. eSTREAM,

ECRYPT Stream Cipher Project, 2006.

[93] Nicholas Nethercote, Robert Walsh, and Jeremy Fitzhardinge. "building workload char-
acterization tools with valgrind". In 2006 IEEE International Symposium on Workload

Characterization. Institute of Electrical and Electronics Engineers (IEEE), oct 2006.

[94] Jean-Claude Bajard and Thomas Plantard. RNS bases and conversions. In Franklin T.
Luk, editor, Advanced Signal Processing Algorithms, Architectures, and Implementations
XIV. SPIE, oct 2004.

143

[95] Carlos Aguilar-Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier Kil-
lijian, and Tancrède Lepoint. NFLlib: NTT-Based Fast Lattice Library. In Topics in

Cryptology - CT-RSA 2016, pages 341�356. Springer Nature, 2016.

[96] David Harvey. Faster Arithmetic for Number-Theoretic Transforms. Journal of Symbolic
Computation, 60:113�119, jan 2014.

[97] Peter Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Computer Gener-
ation of Hardware for Linear Digital Signal Processing Transforms. ACM Transactions

on Design Automation of Electronic Systems, 17(2):1�33, apr 2012.

[98] Lingchuan Meng. Automatic Library Generation and Performance Tuning for Modular

Polynomial Multiplication. PhD thesis, Drexel University, 2015.

[99] Marcela Zuluaga, Peter Milder, and Markus Püschel. Streaming Sorting Networks.
ACM Trans. Des. Autom. Electron. Syst., 21(4):55:1�55:30, May 2016.

[100] Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Discrete Fourier
Transform Compiler: From Mathematical Representation to E�cient Hardware. CSSI
Technical Report CSSI-07-01, Carnegie Mellon University, 2007.

[101] Markus Püschel, Peter A. Milder, and James C. Hoe. Permuting Streaming Data Using
RAMs. Journal of the ACM, 56(2):1�34, apr 2009.

[102] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky, John M. Schanck,
Peter Schwabe, Gregor Seiler, and Damien Stehle. CRYSTALS - Kyber: A CCA-
Secure Module-Lattice-Based KEM. In 2018 IEEE European Symposium on Security

and Privacy (EuroS&P). IEEE, apr 2018.

[103] Karim Bigou. Etude théorique et implantation matérielle d'unités de calcul en représen-

tation modulaire des nombres pour la cryptographie sur courbes elliptiques. PhD thesis,
Université de Rennes 1, 2014. Français.

144

Titre : Accélération matérielle pour la cryptographie homomorphe

Mots clés : Protection des données, Cryptographie homomorphe, Accélération matérielle

Résumé : Dans cette thèse, nous nous proposons
de contribuer à la définition de systèmes de crypto-
calculs pour la manipulation en aveugle de données
confidentielles. L’objectif particulier de ce travail est
l’amélioration des performances du chiffrement ho-
momorphe. La problématique principale réside dans
la définition d’une approche d’accélération qui reste
adaptable aux différents cas applicatifs de ces chiffre-
ments, et qui, de ce fait, est cohérente avec la grande
variété des paramétrages. C’est dans cet objectif que
cette thèse présente l’exploration d’une architecture
hybride de calcul pour l’accélération du chiffrement de
Fan et Vercauteren (FV).
Cette proposition résulte d’une analyse de la com-
plexité mémoire et calculatoire du crypto-calcul avec
FV. Une partie des contributions rend plus effi-

cace l’adéquation d’un système non-positionnel de
représentation des nombres (RNS) avec la multipli-
cation de polynôme par transformée de Fourier sur
corps finis (NTT). Les opérations propres au RNS,
facilement parallélisables, sont accélérées par une
unité de calcul SIMD type GPU. Les opérations de
NTT à la base des multiplications de polynôme sont
implémentées sur matériel dédié de type FPGA. Des
contributions spécifiques viennent en soutien de cette
proposition en réduisant le coût mémoire et le coût
des communications pour la gestion des facteurs de
rotation des NTT.
Cette thèse ouvre des perspectives pour la définition
de micro-serveurs pour la manipulation de données
confidentielles à base de chiffrement homomorphe.

Title : Hardware acceleration for homomorphic encryption

Keywords : Data Privacy, Homomorphic Cryptographie, Hardware Acceleration

Abstract : In this thesis, we propose to contribute to
the definition of encrypted-computing systems for the
secure handling of private data. The particular objec-
tive of this work is to improve the performance of ho-
momorphic encryption. The main problem lies in the
definition of an acceleration approach that remains
adaptable to the different application cases of these
encryptions, and which is therefore consistent with the
wide variety of parameters. It is for that objective that
this thesis presents the exploration of a hybrid com-
puting architecture for accelerating Fan and Vercaute-
ren’s encryption scheme (FV).
This proposal is the result of an analysis of the
memory and computational complexity of crypto-

calculation with FV. Some of the contributions make
the adequacy of a non-positional number represen-
tation system (RNS) with polynomial multiplication
Fourier transform over finite-fields (NTT) more effec-
tive. RNS-specific operations, inherently embedding
parallelism, are accelerated on a SIMD computing
unit such as GPU. NTT-based polynomial multiplica-
tions are implemented on dedicated hardware such
as FPGA. Specific contributions support this proposal
by reducing the storage and the communication costs
for handling the NTTs’ twiddle factors.
This thesis opens up perspectives for the definition of
micro-servers for the manipulation of private data ba-
sed on homomorphic encryption.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Remerciements
	Résumé en français
	Introduction
	Review of homomorphic encryption and its practicability
	Introduction
	Technical introduction to homomorphic encryption
	Basic notions for homomorphic encryption

	State of the art of homomorphic cryptography
	History towards FHE
	Four generations of FHE schemes
	Additional considerations and positioning

	The Learning With Errors (LWE) problem and its ring variant (RLWE)
	The LWE problem
	The LWE problem over rings

	Homomorphic encryption in practice
	Mitigating data expansion impact
	Choosing an HE scheme and a plaintext space

	Implementation of RLWE-based schemes
	Positioning on hardware implementation
	Hardware implementation issues
	Related works on hardware implementation

	Conclusion and positioning of this thesis

	Definition of an acceleration strategy for the FV scheme
	The Fan and Vercauteren (FV) SHE scheme
	Preliminaries
	Cryptosystem primitives
	Security assumptions
	Correctness w.r.t. noise growth
	FV parameter sets
	Concluding remarks

	Profiling and hardware implementation strategy
	Experimental description
	Profiling results
	Analysis w.r.t. existing implementation strategies

	Exploration of the RNS/NTT coupled approach
	Simplified arithmetic through RNS
	NTT-based polynomial ring multiplications in RNS
	Feasibility of the coupled approach
	Concluding remarks on the RNS/NTT coupled approach

	The full RNS variant of FV
	RNS base extension and RNS scale-and-round for FV
	Additional optimization
	Profiling

	Conclusion
	Annexes: details on FV primitives

	Automatic generation of multi-field NTT architectures
	Related works and strategy motivation
	From SPIRAL DFT towards multi-field NTT designs
	Initial streaming DFT structure
	Finite-field arithmetic
	Modification of twiddle factors handling

	Proposition of a multi-field NTT design
	Design overview
	Data path
	Twiddle path

	Synthesis results and comparisons
	Overhead of the twiddle path
	Comparisons with a straightforward storage of twiddle factor sets

	Conclusion

	On-the-fly computation of NTT twiddle factors
	On the issue of generating multiple twiddle factor sets
	Reminders on twiddle factors
	Throughput requirement
	Recurrence relationship for a single set generation

	Data-flow oriented twiddle factor set generator
	Design overview
	Computing the twiddle sets
	Sorting the twiddle sets
	Remarks

	Choice of a recurrence relationship
	General problem presentation
	An optimized recurrence relationship
	Adapting the generic design

	Synthesis results and comparisons
	Study of the hardware cost
	Comparisons with an external storage

	Conclusion

	Exploration of a hybrid strategy for the full RNS variants of FV
	Proposal of a hybrid computing system
	Computation details for ciphertext multiplication
	Study of the communication requirements
	Hybrid system overview

	GPU acceleration of RNS specific functions
	The implemented algorithms
	Implementations, comparisons and perspectives

	Exploration of efficient RPM designs
	Reminder of previous chapters
	Hardware design of an RPM through NWC
	Proof-of-concept implementation
	Projections over FV's parameter sets
	Concluding remarks

	Conclusion

	Conclusions and perspectives
	Personal bibliography
	Bibliography

