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Résumé en français Introduction

Les technologies numériques se sont très vite imposées comme essentielles au fonctionnement des sociétés actuelles, et cette tendance ne semble pas sur le point de s'inverser. L'accès croissant des pays en développement à ces technologies, la forte proportion d'utilisateurs au sein des jeunes générations, ainsi que le confort qu'elles apportent au quotidien, sont autant de raisons de croire qu'elles ne disparaîtront pas dans un avenir proche. La diusion des technologies du numérique pose la question de la condentialité des données et conduit à la recherche de réponses techniques aidant à protéger la vie privée (voir, par exemple, le concept de Privacy-by-Design [START_REF]Data Protection -Privacy by Design[END_REF]). Cette thèse entend contribuer à ces enjeux, en considérant notamment le domaine de la cryptologie.

Science du secret au sens étymologique du terme, l'objet d'étude de la cryptologie est plus vaste que la simple condentialité de l'information. Son but est de proposer des outils et de bonnes pratiques pour garantir l'intégrité, l'authenticité et la condentialité des informations à protéger. À cette n, elle est divisée en deux disciplines : la cryptographie et la cryptanalyse. La cryptographie est consacrée à la protection de l'information, et la cryptanalyse consiste à retrouver l'information ainsi protégée. Cette opposition permanente est une source de perfectionnement des outils cryptographiques [START_REF] Kahn | The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet[END_REF][START_REF] Stern | La science du secret[END_REF]. Dans cette thèse, notre intérêt s'oriente davantage vers la cryptographie, mais il faut garder à l'esprit que ces deux disciplines ne doivent pas être considérées indépendamment.

Face à l'augmentation des coûts de maintenance des infrastructures informatiques, le marché des services informatiques centralisés connaît une forte croissance. Par exemple, l'essor de la virtualisation et des réseaux à très haut débit permet à des entités spécialisées de fournir des espaces de stockage et de la puissance de calcul à d'autres entités dont le numérique n'est pas le c÷ur de métier. La question de l'externalisation de données condentielles, que ce soit pour leur stockage et/ou leur traitement, est donc pertinente. La cryptographie classique (symétrique et asymétrique) ne permet que de sécuriser l'échange et le stockage des informations. Mais il est également nécessaire de garantir la condentialité des données pendant les traitements.

En 1978, Rivest, Adleman et Dertouzos introduisirent la notion de cryptographie homomorphe qui permettrait de tels services. Le principe est d'avoir un processus de chirement qui préserve une structure entre le domaine chiré et le domaine clair, permettant ainsi de dénir des opérations dans le domaine chiré à eet équivalent aux opérations usuelles sur les clairs. Ce n'est qu'à la n des années 2000 que la cryptographie homomorphe a véritablement émergé avec une première solution théorique. Depuis, de nombreux travaux de recherche ont permis de se rapprocher d'une mise en application de ce nouveau type de cryptographie. D'une part, ces travaux simplient les constructions mathématiques sous-jacentes aux schémas de chirement homomorphe, et d'autre part, ils explorent des optimisations algorithmiques pour proter d'implémentations plus ecaces.

Néanmoins, ce paradigme cryptographique semble induire intrinsèquement des complexités mémoire et calculatoire importantes. Par exemple, un chiré homomorphe est environ 10 5 fois plus grand que la donnée qu'il chire, et une opération dans le domaine chiré est environ 10 6 fois plus lourde que son équivalente claire. En conséquence, les acteurs impliqués dans la recherche sur la mise en application de cette nouvelle cryptographie ont besoin d'optimisations supplémentaires telles que l'accélération matérielle.

Cette thèse

La cryptographie homomorphe est un domaine encore en éclosion. Bien que de nombreuses applications soient à l'étude, peu ont le mérite d'être pratiquement explorées, et encore moins sont déjà réalisables à grande échelle. Néanmoins, la recherche progresse rapidement vers son utilisation en dehors des laboratoires, et nous espérons que certaines des contributions associées à cette thèse pourront aider ce développement. v prolémtiqueF L'objectif principal de la recherche sur la cryptographie homomorphe est de dénir des schémas de chirement pour lesquels il y a un équivalent dans le domaine chiré pour tout traitement applicable sur des données. Cet objectif est appelé chirement entièrement homomorphe (FHE : Fully Homomorphic Encryption). Le fait qu'il se soit écoulé près de trente ans entre l'introduction du concept et la première construction théorique d'un schéma n'est pas un hasard. En eet, deux problèmes théoriques se recoupent.

Le premier est la diculté de trouver des expressions de problèmes mathématiques, assurant la sécurité des schémas, qui permettent de construire des opérations équivalentes. Le second est la présence nécessaire, aussi pour des questions de sécurité, d'un bruit de chirement. L'amplitude du bruit dans les chirés augmente avec les opérations dans le domaine chiré. Au-delà d'un certain seuil, le processus de déchirement cesse de fonctionner.

Avec les recherches qui ont suivi la première construction théorique d'un schéma FHE, certaines solutions intermédiaires ont rapproché la cryptographie homomorphe d'un usage concret. De même, la recherche sur l'accélération matérielle de ces solutions intermédiaires doit faire face à deux dicultés principales. La première est la variété des schémas proposés : en moins de dix ans, quatre générations de schémas ont déjà été proposées. Ainsi, les avantages et inconvénients des schémas n'ont pas pu être pleinement et objectivement comparés sur une période de temps si courte. Il en résulte donc un positionnement plus qualitatif dans le choix des schémas à considérer pour une accélération matérielle. La deuxième diculté est que le paramétrage de ces schémas est fortement dépendant de l'application à réaliser dans le domaine chiré. Cela est dû principalement à la croissance du bruit de chirement, qui exige que les paramètres soient correctement dimensionnés. Ainsi la stratégie d'accélération doit être susamment exible pour rester pertinente avec l'accroissement des paramètres.

gontriutions sienti(quesF Au cours de ce travail, nous avons surtout abordé la question de la dynamique des paramètres. La littérature a proposé les éléments de base sur lesquels reposent nos contributions, à savoir d'une part l'utilisation du système modulaire de représentation (RNS : Residue Number System) pour s'attaquer à la complexité apportée par l'arithmétique des grands nombres entiers, et d'autre part l'utilisation des transformées de Fourier sur corps nis (NTT : Number Theoretical Transform) pour réduire la complexité algorithmique asymptotique de la multiplication polynomiale. Sur cette base, nous soutenons que l'association du RNS et de la NTT permet de dénir des architectures hybrides de calcul, qui promettent une accélération signicative des traitements dans le domaine chiré. Cette thèse résulte d'une analyse approfondie du chirement de Fan et Vercauteren (FV), ainsi que des travaux sur la résolution des principales dicultés à combiner la représentation RNS et la multiplication de polynôme par NTT pour des grands paramètres.

Nos principales contributions sont les suivantes. Tout d'abord, nous avons analysé l'approche couplée RNS/NTT et théoriquement validé sa faisabilité jusqu'à de très grands ensembles de paramètres. Deuxièmement, nous avons exploré l'accélération GPU de certains algorithmes spéciques au RNS, grâce à l'utilisation et à la poursuite des travaux de Bajard et al. [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] et Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] pour adapter complètement FV au RNS. Troisièmement, nous avons conçu et mis en ÷uvre un accélérateur orienté ux de données pour des multiplications de polynômes résiduels ecaces et étudié sa capacité à passer à l'échelle.

Cette dernière contribution fait l'objet d'une attention particulière an de surmonter certains problèmes de conception qui limitaient auparavant la faisabilité de l'approche couplée RNS/NTT pour des grands paramètres. En particulier, nous proposons une solution pour précalculer localement les valeurs nécessaires aux opérations de NTT, sans impact sur les performances. Ceci est obtenu grâce à deux contributions : la conception d'un circuit de NTT changeant ses corps nis de dénition à la volée, et la conception d'un générateur de facteur de rotation pour les NTT sur les diérents corps nis. Enn, pour répondre à la question de la grande variation des paramétrages en fonction des diérentes applications du chirement homomorphe, la génération automatique des descriptions HDL (Hardware Description Language) de nos circuits a été explorée. enlyse de l9étt de l9rt des hi'rements homomorphesF L'eervescence de la recherche autour de la cryptographie homomorphe peut être déroutante pour qui s'intéresse à des considérations pratiques telles que la sécurité et la performance. La première génération résulte de la première construction de schéma complètement homomorphe proposé par Gentry en 2009 avec l'introduction d'une opération de réamorçage (bootstrapping) très coûteuse. La deuxième améliore la gestion du bruit des schémas en évitant de passer par l'opération de réamorçage, et introduit ainsi la notion de chirement homomorphe par niveau (L-FHE : Leveled Fully Homomorphic Encryption). La troisième génération est une simplication conceptuelle de la deuxième génération et propose des schémas homomorphes par niveau structurellement plus simples. Enn, la quatrième génération réintroduit une opération de réamorçage plus performante. Cette fois, c'est chaque opération sur les chirés qui réamorce le bruit.

Lorsque l'on s'intéresse à la maturité des schémas, il semble que ceux qui sont construits sur les variantes du problème mathématique LWE (et en particulier ceux basés sur RLWE) soient actuellement les plus équilibrés en termes de sécurité et d'ecacité. En eet, les améliorations de la deuxième génération, puis des troisième et quatrième générations, dépendaient principalement de l'apparition du problème de l'apprentissage avec erreurs (LWE : Learning With Errors). Les schémas basés sur LWE manipulent des matrices et/ou des vecteurs d'entiers modulaires. La variante RLWE (Ring-LWE) manipule des matrices et/ou des vecteurs de polynômes modulaires. La quatrième génération construit également ses schémas sur des variantes du problèmes LWE. Cependant, son schéma le plus prometteur (TFHE [START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF]) a choisi une structure algébrique légèrement diérente des autres pour améliorer les performances de ses primitives. Il manipule des polynômes à coecients réels modulo un. Par conséquent, ce schéma n'est pas confronté aux mêmes problématiques d'implémentation et nécessite des approches diérentes des schémas basés sur RLWE.

Au moment de notre positionnement, la littérature nous a amené à considérer que les schémas construits sur RLWE sont ceux qui se rapprochent le plus d'une utilisation concrète. En particulier, les schémas FV [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF] 2 ème génération) et SHIELD [START_REF] Khedr | SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classiers[END_REF] 3 ème génération) sont bien acceptés par la communauté. Notre étude de l'état de l'art de l'implémentation du chirement homomorphe s'est donc concentrée sur les problèmes propres à ce type de schémas.

enlyse des strtégies d9implémenttion existntesF Le choix de considérer les implémentations matérielles pour les chirements homomorphes était un parti pris de cette thèse. Ceci se justie par les limitations en performance que l'on expérimente avec des implémentations purement logicielles. Ainsi, notre étude s'est focalisée sur les problématiques d'implémentation matérielle et l'état de l'art associé.

Le problème principal concerne la taille importante des paramètres des schémas RLWE, nécessaire pour des raisons de sécurité et d'exactitude. Ce problème se complique en considérant en plus la dynamique des paramètres due aux contraintes applicatives. Pour en avoir une petite idée, le degré des polynômes manipulés peut atteindre plusieurs dizaines de milliers, et la taille de leurs coecients peut atteindre plusieurs centaines de bit. Par conséquent, les complexités mémoire et calculatoire des opérations sous-jacentes sont particulièrement importantes. Ces opérations sont des multiplications de polynômes, des réductions modulaires de polynômes, des additions de polynômes, des opérations de mise à l'échelle et d'arrondi, et des réductions modulaires.

Notre analyse de la littérature nous a fait constater la diculté de proposer une approche cohérente qui puisse englober toutes les dimensions de la problématique d'implémentation.

Par exemple, les approches de multiplication de polynômes les plus exibles permettent, au détriment de complexités asymptotiques moins intéressantes, de simplier les opérations de mise à l'échelle et de réduction modulaire. Ces approches ne trouvent leur justication que jusqu'à une certaine taille de paramètres. Au contraire, les approches de multiplication de polynômes basées sur la transformée de Fourier sur corps ni (NTT : Number Theoretical Transform), qui ont à ce jour la meilleure complexité asymptotique connue, sont plus complexes à mettre en ÷uvre.

Une première diculté est due au routage des coecients pour les algorithmes de transformée de Fourier itératifs. Une deuxième diculté concerne la gestion des facteurs de rotation des NTT. Lorsque les paramètres du schéma grossissent, l'espace mémoire requis pour ces facteurs (resp. le coût de communication pour les acheminer) augmente fortement le coût matériel (resp. la bande-passante nécessaire). Une troisième diculté concerne la gestion des très grands coecients. Sur cette question, l'approche la plus prometteuse semble être l'utilisation d'une représentation non-positionnelle des nombres appelée RNS (Residue Number System). Cependant, bien que le couplage du RNS avec les approches par NTT est théoriquement valide, le choix de la base de représentation RNS est restreint par les contraintes d'existence des NTT. Ainsi, certains choix permettant de faire de l'arithmétique modulaire à bas coût ne sont pas possibles. À cela s'ajoute la diculté de faire ecacement les opérations de mise à l'échelle et d'arrondi en représentation RNS.

Au regard de toutes ces problématiques, il nous a semblé plus important de rechercher une approche d'accélération exible plutôt que dédié à la performance brute. Pour cela, nous avons limité l'étude de cas à un schéma homomorphe spécique, an de proposer une approche qui tienne compte, autant que possible, de toutes les dimensions du problème.

ositionnementF Après avoir étudié les diérentes générations de chirements homomorphes, nous avons concentré notre étude sur les schémas homomorphes par niveau basés sur le problème RLWE. Ce choix implique que les paramètres dimensionnants dépendent de l'application à eectuer dans le domaine chiré. L'approche d'accélération matérielle devra donc tenir compte de la dynamique des paramètres.

Ce positionnement a été suivi d'une analyse des diérentes approches d'implémentation matérielle pour l'accélération de la cryptographie homomorphe. Cette analyse pose la question de la dénition d'une stratégie d'implémentation qui prenne en compte toutes les dimensions du problème de complexité mémoire et calculatoire provenant de la dynamique des paramètres. Cette stratégie devrait être susamment exible pour améliorer la performance du schéma L-FHE tout en évitant les spécialisations prématurées qui ne sont pas adaptées à la dynamique des paramètres.

An de dénir une telle stratégie à la lumière des travaux connexes, nous avons choisi de faire une étude approfondie du schéma homomorphe FV. Ce dernier est plutôt bien accepté par la communauté de recherche autour du chirement homomorphe. Par conséquent, la suite de notre travail s'est concentrée sur l'accélération matérielle du chirement FV.

Analyse du chirement FV L'analyse approfondie du schéma FV en vue de son accélération matérielle nous a introduit aux problématiques concrètes du choix des paramètres. Dans un premier temps, nous avons présenté ses primitives, les structures algébriques manipulées, ainsi que les équations d'accroissement du bruit. Les paramètres dimensionnants que sont le degré des polynômes et la taille des coecients ont un impact majeur dans cet accroissement du bruit, surtout lors des multiplications de chirés. De même, ils ont un impact important sur la diculté du problème RLWE sous-jacent assurant la sécurité du schéma. Les travaux de thèse de Guillaume Bonnoron [START_REF] Bonnoron | A Journey Towards Practical Homomorphic Encryption[END_REF] présentent une méthode de dérivation des paramètres prenant en compte tout ces aspects, ainsi que des exemples concrets de paramètres. À partir de cette vue d'ensemble, la problématique générale des schémas homomorphes par niveau est compréhensible. An d'évaluer des applications de taille conséquente dans le domaine chiré, les paramètres augmentent considérablement. Ainsi, la restriction de l'éventail des paramètres n'est pas possible sans considérer des cas particuliers d'utilisation du schéma FV.

Après la présentation du schéma et de ses paramètres, l'étape suivante consiste à identier et à quantier les goulots d'étranglement de la performance des opérations homomorphes avec FV. Le prolage d'une application homomorphe typique a quantié la complexité dominante des multiplications de chirés et des opérations de relinéarisation. Les opérations sous-jacentes de multiplication de polynômes et de mise à l'échelle sont les principales opérations limitant les performances. Sur la base de notre analyse des travaux de l'état de l'art sur ces problématiques, nous avons choisi d'explorer la faisabilité de l'approche couplée RNS/NTT pour l'accélération du crypto-calcul avec FV. Après une présentation détaillée du RNS et des multiplications de polynômes par NTT dans notre contexte, nous avons pu faire une liste de toutes les contraintes à prendre en compte pour l'utilisation conjointe de ces deux approches. L'étude de ces contraintes se termine par une validation théorique et pratique de l'approche couplée.

Une problématique particulière de l'utilisation de la représentation RNS est celle de l'opération de mise à l'échelle. Les travaux concomitants de Bajard et al. [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] et de Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] ont décrit des méthodes ecaces pour en améliorer la performance dans le cas de FV. L'analyse du prolage présenté par Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] ane notre propre prolage. Il oriente concrètement notre stratégie d'implémentation matérielle vers l'accélération des multiplications de polynômes résiduels, des opérations d'extension de base RNS, et des opérations de mise à l'échelle en RNS. En raison de la complexité dominante des multiplications de polynômes, nous nous sommes donc concentrés principalement sur leur accélération.

Les opérations de NTT, qui servent de briques de base aux algorithmes de multiplication de polynômes, sont assez diciles à paralléliser en raison d'accès mémoires complexes. Cela rend les grandes NTT peu adaptées aux architectures SIMD génériques telles que les GPU. Notre choix est donc d'explorer des solutions d'accélération s'appuyant sur du matériel dédié pour ces opérations.

Étant donné les problèmes d'implémentation mis en évidence par les travaux connexes quant à la gestion des facteurs de rotation, notre stratégie consiste à générer et utiliser à la volée ces diérents ensembles de facteurs. Ceci exige de s'attaquer à deux problématiques principales de conception. La première est de pouvoir générer ecacement des circuits de NTT multi-corps. Il s'agit de circuits de NTT capables d'eectuer des transformées sur diérents corps nis sans impact signicatif sur les performances. La seconde est la conception d'un générateur d'ensembles de facteurs de rotation pour les diérents corps nis dénis par la base RNS. Il faut que cette génération soit sans conséquences lourdes sur le coût du matériel et sur le débit des opérations de NTT.

Proposition de circuits de NTT multi-corps

Les problématiques de conception de circuits de NTT sont structurellement les mêmes que celles des transformées de Fourier discrète (DFT : Discrete Fourier Transform). Or, le domaine du traitement du signal a déjà beaucoup contribué à l'implémentation matérielle des DFT. Nous avons en particulier considéré que le projet SPIRAL [START_REF] Franchetti | Spiral -Software/Hardware Generation for Performance[END_REF] constitue un point de départ particulièrement intéressant pour automatiser la conception de circuit de NTT. En eet, le projet SPIRAL porte sur l'automatisation du développement logiciel et matériel pour le traitement du signal.

La perspective à moyen terme est de pouvoir concevoir rapidement des circuits de NTT selon des contraintes de coût matériel et de performance de calcul. Cela permettra à un concepteur de systèmes d'ajuster les performances de ses opérateurs de NTT en fonction des exigences applicatives et des autres éléments du système. Au cours de cette thèse, seuls les circuits en ot-de-données complètement déroulés (fully-streaming) ont été étudiés et adaptés en circuit de NTT multi-corps. En raison de contraintes de temps, nous nous sommes concentrés sur ce type d'architectures qui ore les débits les plus élevés. C'est en eet ce qui est principalement requis par notre contexte applicatif.

L'adaptation de SPIRAL pour la génération de NTT consiste en la génération de circuits de DFT dans lesquels l'arithmétique complexe est remplacée par de l'arithmétique modulaire et les facteurs de rotation complexes sont remplacés par les facteurs de rotation du corps ni considéré. Dans le cas d'une DFT, SPIRAL précalcule les facteurs de rotation et les stocke dans des mémoires non-programmables (ROM) à la génération du circuit. Cette approche convient à la DFT, car les facteurs de rotation ne sont pas susceptibles de changer. Cependant, notre cas applicatif nous impose de trouver un moyen de reprogrammer ces facteurs de rotation sans impact majeur sur le débit du circuit de NTT. En eet, le corps ni de dénition de la NTT est diérent pour chaque canal RNS (chaque élément de la base RNS), et ainsi les ensembles de facteurs de rotation sont diérents. hé(nition d9une x multiEorpsF La répartition des facteurs de rotation au sein du circuit de NTT est connue par le générateur SPIRAL. Plutôt que d'implémenter les mémoires des facteurs de rotation directement dans le chemin de données du circuit de NTT, nous proposons de dissocier ces mémoires de ce dernier, an de les rendre programmables. Nous dénissons la notion de banque de facteurs de rotation, qui consiste en la concaténation de toutes les mémoires, initialement dans le chemin de données, et stockant un unique jeu de facteurs de rotation pour un corps ni spécique. En plus des facteurs de rotation, une telle banque stocke les autres valeurs spéciques au corps ni, comme l'élément associé de la base RNS.

Pour éviter de réduire le débit du circuit de NTT lors de la reprogrammation d'une banque de facteurs de rotation, notre solution s'appuie sur un ensemble de G banques diérentes. Ces G banques vont être successivement accédées par le chemin de données et reprogrammées avec un nouvel ensemble de facteurs de rotation. Ce nombre G est lié au nombre maximum de canaux RNS pouvant être simultanément présents dans le chemin de données. Si nous notons T le débit du chemin de données (nombre de cycles d'horloge entre deux transformées) NTT et lat N T T sa latence, l'architecture comporte G = lat N T T /T + 1 banques diérentes. Notre solution s'accompagne de la dénition d'un module de reprogrammation des banques de facteurs qui garantie un débit de reprogrammation adapté à celui du circuit de NTT. enlyse de notre ontriutionF Notre proposition de circuit NTT multi-corps implique un surcoût matériel par rapport à un circuit de NTT déni pour un unique corps ni. Ce surcoût est principalement dépendant du nombre G de banques de facteurs instanciées. Les modules contrôlant les accès et la programmation des banques ont un impact relativement faible sur la consommation de ressources matérielles. Pour les paramétrages considérés dans cette thèse, G était toujours égal à quatre. Ce surcoût qu'implique notre solution n'est pas très important par rapport aux avantages qu'il apporte dans notre contexte.

Pour mettre en évidence ces avantages, nous comparons la manipulation de notre gestion de facteurs de rotation à la volée avec une stratégie de stockage local présente dans l'état de l'art. Elle consiste à stocker tous les facteurs de rotations, pour tous les canaux RNS, dans des mémoires non-programmables (ROM) initialisées à la génération du circuit. L'avantage d'utiliser notre approche se concrétise avec l'accroissement des tailles de paramètres du schéma FV. La taille des bases RNS (nombre de corps nis diérents) et le degré des polynômes (nombre de facteurs de rotation pour chaque corps ni) augmentent de manière signicative. Notre traitement à la volée des ensembles de facteurs de rotation réduit de 20% à 90% les éléments de mémorisation eectivement instanciés pour fournir le même résultat. Ceci permet à notre approche d'être praticable pour des jeux de paramètres de FV signicativement plus grands que l'état de l'art (profondeur multiplicative de 30 avec une sécurité de 128-bit).

Notre gestion des facteurs de rotation à la volée permet d'envisager des multiplieurs de polynômes en représentation RNS à haut débit. Néanmoins, à elle seule, cette gestion à la volée ne fait que déporter le problème du stockage de ces facteurs de rotation. Ils devront être acheminés vers le circuit de NTT multi-corps d'une manière ou d'une autre. Dans le cas où les facteurs sont stockés à l'extérieur de l'accélérateur (mémoire du processeur hôte par exemple), il faut s'attendre à une diminution des performances eectives à cause des communications plus lourdes. En eet, l'opérateur de NTT devra recevoir les ensembles de facteurs de rotation en plus des données utiles. An de ne pas impacter ces temps de communications, notre stratégie consiste à générer à la volée ces ensembles de facteurs.

Génération à la volée des facteurs de rotations

Après avoir proposé une approche pour générer des circuits de NTT multi-corps avec SPIRAL, la deuxième problématique que nous abordons est celle de la génération des ensembles de facteurs de rotation. Nous proposons dans cette thèse des générateurs de ces ensembles qui respectent les exigences de débit de nos circuits de NTT multi-corps. La problématique consiste donc en la génération des puissances d'éléments de diérents corps nis pour laquelle notre contexte impose un débit minimal.

La première diculté se situe dans le choix d'une méthode de génération. Cette diculté tient à la fois de la dépendance entre les éléments d'une séquence de puissances à générer et de la latence des multiplicateurs modulaires qui produisent de nouveaux éléments. Ainsi, certaines bulles inévitables se produisent dans la génération d'un seul ensemble de facteurs de rotation. La méthode choisie impactera signicativement la latence d'une génération, et le coût matérielle pour la mener à bien.

La deuxième diculté se situe dans le respect du débit minimal requis entre les générations des diérents ensembles. Du fait des inévitables bulles dans la génération d'un unique ensemble de facteurs, la génération séquentielle de ces ensembles ne permet pas d'atteindre le débit requis.

Ainsi, nous proposons des solutions qui répondent à ces dicultés. Premièrement, nous formalisons une solution pour respecter le débit requis par le circuit de NTT multi-corps entre deux ensembles de facteurs de rotation consécutifs. Cette première proposition consiste en une solution d'ordonnancement de multiples générations d'ensembles autours d'une unique ressource de calcul. Deuxièmement, nous proposons un choix de relation de récurrence pour la génération de chacun des ensembles de facteurs. Cette relation de récurrence permet de minimiser l'espace de stockage intermédiaire requis tout en minimisant la latence de chaque génération pour la quantité de ressources de calcul disponible. enlyse de notre ontriutionF La génération à la volée des ensembles de facteurs de rotation permet d'alléger les communications entre une zone de stockage externe à l'accélérateur et ce dernier. Pour quantier cet allègement des communications, nous avons comparé notre approche à une stratégie de stockage externe similaire à certains travaux de l'état-de-l'art. Les métriques de comparaisons sont les empreintes mémoires et les bandes passantes requises pour alimenter un circuit de NTT multi-corps. L'empreinte mémoire est dénie ici comme la quantité de mémoire utilisée par un programme hôte pour utiliser l'accélérateur de NTT considéré.

L'empreinte mémoire des facteurs de rotation pour la stratégie de stockage externe va de 19,2 koctets à 2,6 Moctets en fonction des jeux de paramètres considérés. Notre stratégie de génération de ces facteurs requiert quand à elle seulement 2,2 koctets au maximum.

En considérant un circuit de NTT cadencé à 200MHz, la stratégie de stockage externe demande au moins 0,75 Goctets/s de bande passante entre l'espace de stockage et l'accélérateur pour les seuls facteurs de rotation. Avec notre générateur, la bande passante nécessaire pour acheminer les éléments initiaux des générations est de maximum 15 koctets/s. De pair avec notre proposition de circuits de NTT multi-corps, notre générateur de facteurs de rotation permet la conception de circuits de multiplication de polynômes résiduels à haut débit à base de NTT. Dans le contexte de l'accélération matérielle du chirement FV, cela ouvre des perspectives intéressantes pour la dénition d'une accélération matérielle ecace. En s'appuyant sur notre analyse générale du chirement FV, nous présentons une proposition d'architecture système utilisant nos blocs matériels de base pour l'accélération matérielle de la version complètement RNS de FV. Exploration d'une accélération hybride pour l'approche couplé RNS/NTT L'analyse du chirement FV menée au début de cette thèse a mis en évidence la nécessité d'accélérer à la fois les opérations de mise à l'échelle en RNS et les multiplications de polynômes résiduels. Cela s'explique par la stratégie d'accélération choisie se basant sur l'approche couplée de la représentation RNS et des multiplications de polynômes basées sur la NTT. La représentation RNS s'attaque à la complexité induite par les grands coecients, et les approches de convolution par NTT s'attaquent à la complexité induite par le grand degré des polynômes.

Parmi les contributions de cette thèse, nous avons présenté des blocs de base pour l'accélération matérielle des opérations de multiplication de polynômes résiduels. Le choix du matériel dédié pour ces opérations est motivé par la diculté d'exploiter le parallélisme d'une NTT sur des architectures SIMD génériques en raison d'accès complexes aux données. Contrairement à la NTT, les fonctions spéciques au RNS intègrent un parallélisme trivial par rapport au degré des polynômes. Ce parallélisme est facilement exploitable avec des architectures SIMD génériques comme les GPU. Ainsi, notre réexion considère l'exploration d'une architecture hybride de calcul pour l'accélération du crypto-calcul avec FV. Les fonctions spéciques au RNS sont accélérées par un GPU, et l'arithmétique polynomiale par un co-processeur dédié.

En plus d'étudier le gain obtenu par l'accélération hybride sur chacune des opérations accélérées, nous nous sommes également intéressés à la problématique de la communication entres les unités de calcul du système. En eet, le ot d'opérations, imposé par la structure des primitives de FV, requiert des échanges continus de données entre le GPU et le co-processeur. Quantier ces échanges au regard des performances de chacune des unités de calcul est la première étape pour dimensionner un bus système pertinent. Au regard des quantités de données, notre première proposition d'interconnexion s'appuie sur un bus PCIe. enlyse de notre ontriutionF Lors d'un stage eectué dans le cadre de cette thèse, l'accélération GPU des fonctions spéciques au RNS a été explorée. Pour les plus petits jeux de paramètres, le temps passé en communication entre l'hôte et le GPU est plus important que les calculs eux-mêmes. Même pour l'ensemble le plus large, le temps consacré aux communications est non-négligeable. Néanmoins, même avec des temps de communication importants, les opérations spéciques au RNS bénécient d'une accélération signicative. Pour une implémentation concrète de cette architecture hybride, cela indique que les communications entre les diérentes unités de calcul devront être gérées nement pour qu'elles limitent au minimum les performances.

A partir de nos briques de base de NTT multi-corps et de générateur de facteurs de rotations, nous avons fait une proposition de co-processeur pour la multiplication de polynômes résiduels. Nos briques de base permettent la faisabilité de cet accélérateur même pour des grands jeux de paramètres. Notre accélérateur permet une accélération signicative de ces multiplications de polynômes par rapport à l'implémentation de Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF], en étant au moins 22 fois plus rapide pendant la multiplication de chirés et au moins 4 fois plus rapide lors de l'opération de relinéarisation. De plus, cette accélération reste pertinente avec la croissance des jeux de paramètres, soit de 22 à 31 fois plus rapide pendant la multiplication de chirés et de 4 à 9 fois plus rapide pour la relinéarisation.

Pour motiver la pertinence de notre système de calcul hybride, nous avons ensuite estimé l'accélération obtenue pour le calcul d'une opération de multiplication de chirés et relinéarisation avec FV. Le tableau 1 présente ces projections pour diérents jeux de paramètres. Ces paramètres sont caractérisés par la profondeur multiplicative accessible par les chirés. Le temps de communication pour les accès GPU a été pris en compte. Notre système permet d'envisager une multiplication de données chirées jusqu'à 14 fois plus rapide qu'une version logicielle bien optimisée (Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]). Cette accélération réduit le temps de multiplication de chirés à 62 ms pour les paramètres permettant une capacité d'évaluation d'une profondeur multiplicative de 30, et à 21 ms pour une profondeur multiplicative de 20. Néanmoins, ces projections sont obtenues en faisant des hypothèses simplicatrices sur les communications et les entrelacements avec d'autres opérations sous-jacentes comme les additions de polynômes résiduels. Ces résultats prospectifs motivent cependant le perfectionnement de l'accélérateur dédié pour l'arithmétique polynomiale ainsi que la réalisation d'un prototype du système hybride de calcul. Au cours de ce travail, nous avons ouvert la voie à la conception d'une architecture de microserveur pour le crypto-calcul avec FV. Nous avons commencé à explorer les problématiques de communication qui se poseraient dans un tel système. Quelques pistes pourraient être intéressantes à explorer dans le cas où l'interconnexion PCIe proposée dans cette thèse serait insusante. Par exemple, en explorant l'intégration du GPU et du matériel dédié pour l'arithmétique polynomiale plus près de la mémoire du CPU. En restant dans une approche multi-SoC, nous pourrions considérer l'interface Coherent Accelerator Processor Interface (CAPI) d'IBM. Pour une approche plus intégrée en un single-SoC hétérogène, nous pourrions explorer l'UltraPath Interconnect (UPI) d'Intel. Enn, tant qu'à considérer la conception d'un ASIC, il serait intéressant d'examiner certaines technologies spéciques telles que l'intégration de mémoire 3D.

La problématique de conception de système de communication à faible latence et haut débit se retrouve dans d'autres domaines, notamment ceux dont les performances de calcul dépendent davantage de la quantité de données à traiter que des calculs eux-mêmes. De ce point de vue, l'accélération du chirement homomorphe est similaire à l'accélération du traitement d'images et de vidéos à la volée.

Introduction Digital technologies at the heart of our lives

It is no secret that digital technology has very quickly established itself as essential to the functioning of developed societies. And this trend does not seem to be about to reverse. A rst impress of this can be obtained looking at the number of internet subscribers that increased from 400 millions to 3.2 billions between 2000 and 2015 [11]. In particular, developing countries play an important role in this growth. Considering then that the part of internet users in the younger generations is signicantly larger than for older's ones [12], we can assume that the internet population will continue to grow. More generally, the ease brought by these technologies for many daily tasks gives another reason to believe that they will not disappear in the near future.

These technologies bring with them many economic, societal and cultural opportunities. For instance, specialized medical care brought by massive data collection [START_REF] Lepine | Le Big Data, l'IA et le Machine Learning transforment les soins de santé[END_REF]. But they can also be the source of misuses and imbalances in each of these dimensions. An example of this is the 2015 spy toy controversy [START_REF] Lepine | Enfants et Big Data : la collecte de données, un danger selon l'UNICEF[END_REF]. This is only one example among others of abusive data collection of persons who neither have the knowledge of this collection, nor the ability to protect themselves from it. Many of these issues are being addressed by the political sphere and by national and international entities (for example, the 2018 revision of the french law Informatique et Libertés [15]. Addressing the moral question of the proper use of these technologies results in legal delimitation expressing the rights and responsibilities of each party. For instance, see the note from the Commission Nationale de l'Informatique et des Libertés (CNIL) on the control of Internet use at work [START_REF]Le contrôle de l'utilisation d'internet et de la messagerie électronique[END_REF].

However, the legal sphere only provides a guarantee of judicial sanction for the misuse of technology. It should not be forgotten that a person who deliberately wants to abuse these technologies is able to do so. Let us recall the obvious: this is deeply linked to individual morals that legal sphere cannot entirely control, and the only solution to solve this problem is to encourage personal moral reection and healthy questioning. Nevertheless, the existence of this misuse can have a serious impact on society. Therefore, as far as possible, some means must be found to prevent the upcoming of abuses, and why not within technology itself.

In this thesis, we are interested in the question of data privacy that arises with this technologies. In particular, in the technical answers that help to protect this privacy (for instance, see the concept of Privacy-by-Design [START_REF]Data Protection -Privacy by Design[END_REF]). But before considering any answer, let's try to deepen our knowledge of the issues.

The question of data privacy

It is not a trivial reection to consider the reasons and limits within which the privacy of data must be guaranteed. Without wishing to contribute to this reection, we would like to list some common cases in which data privacy is considered important or even essential.

A rst case, and we believe it is essential, is the right of every human being to have its intimacy respected (Article 12 of United Nations Universal Declaration of Human Rights, Article 9 of the French Civil Code ...).

Another case is the protection of sensitive information. Some examples of such are: the precise location of a nuclear arsenal, or critical diplomatic discussions. If the privacy of the data carrying this type of information is not guaranteed, the safety of people is at risk.

The last case we are discussing here concerns the economic eld. Namely, the competitive advantages provided by certain technical knowledge and/or expertise that are materialized by an accumulation of data. In most cases, a company's competitive advantages help it to remain protable, and thus enable it to meet certain needs of its employees.

These common cases are only examples of where data privacy is indeed important. They nonetheless indicate that it would be irresponsible not to look for ways to prevent data misuse. Indeed, although a technical solution cannot be a cure to the underlying problem, it can nevertheless be an aid to the prevention of greater ills. In this thesis, we are interested in a technical answer called cryptology.

Cryptology: a technical answer to data privacy

Cryptology is, in its etymological meaning, the science of secrecy. Its subject of study is larger than the simple condentiality of information. Its purpose is to propose some tools and best practices to guarantee integrity, authenticity and privacy of information to protect.

Historically, the secrecy of information was more closely related to art than science. And its uses were more or less restricted to the military and political spheres. With the advent of digital technologies, the need to protect information changed scale and cryptology democratized itself.

In practice, this science is divided into two disciplines: cryptography and cryptanalysis. Cryptography is about protecting information (etymologically: writing of a secret), and cryptanalysis is about analyzing the secret (etymologically: analysis of the secret). The rst seeks to protect information and the second to discover it. This permanent opposition is a source of improvement and renement of cryptographic tools [START_REF] Kahn | The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet[END_REF][START_REF] Stern | La science du secret[END_REF]. In this thesis, we are more interested in the cryptography eld, but we hope the reader understands that these two disciplines should not be considered independently.

euring the exhnge of informtionF The basic principle of cryptography is to scramble information to make it unreadable or uninterpretable to unauthorized persons. This is called an encryption process and the resulting information is encrypted. This masking of exchanged information is done using a secret element shared by the right holders called a secret key. The same secret element is also used to retrieve the original information from the encrypted domain. This is called a decryption process. Encryption and decryption are usually called the primitives of a cryptographic scheme. This common secret is actually the basis of what we call symmetric cryptography. Some examples of symmetric cryptographic schemes are DES, AES, Trivium, etc.. With the advent of telecommunication, the issue of exchanging this common secret arose. Indeed, the secret had itself to transit through telecommunication channels that are insecure. In the 1970s, this problem gave rise to the notion of asymmetric cryptography. In that case, the information is scrambled using a public element called a public key, and the information is retrieved using a private key. The security of the information is based on some mathematical problems that are hard to solve in the general case but that become easier with a trapdoor. In a nutshell, the public key creates an instance of a mathematical problem by scrambling the information, and the private key is the trapdoor given to a right holder to solve the mathematical problem and hence to retrieve the information. Asymmetric cryptography is less ecient than its symmetric counterpart with respect to communication cost. This is due to an inherent growth in information size while scrambling that does not occur in symmetric cryptography. In practice, asymmetric cryptography is used for secret sharing and authentication protocols but not for the proper exchange of information. Some examples of asymmetric cryptographic schemes are RSA and ElGamal.

reserving privy during dt proessingF Faced with the constant increase in the cost of maintaining IT infrastructures, the market for centralized IT services is growing rapidly. The question of outsourcing the storage and processing of private data is therefore highly relevant. Symmetric and asymmetric cryptography only allow to secure the exchange and storage of information. But what is required in this case is to guarantee the condentiality of the data also during their processing.

In 1978, Rivest, Adleman and Dertouzos introduced the notion of homomorphic cryptography that would allow such data processing. The principle is to have a decryption process that preserves some structure between the encrypted and clear domains allowing the denition of equivalent operations. It is only in the late 2000s that homomorphic cryptography has truly emerged with a theoretical solution.

Since then, many research works have improved the practicality of this new type of cryptography. Firstly, by theoretical simplications of these cryptographic schemes, and secondly, by algorithmic optimizations for ecient implementations.

Nevertheless, this cryptography paradigm seems to have inherently large memory and computational complexities. To give an idea of the order of magnitude, an homomorphic ciphertext is around 10 5 times larger than the data it encrypts, and an operation in the encrypted domain is around 10 6 times heavier than its clear counterpart. As a result, the actors involved in research on the practicality of this new cryptography are in needs of further optimizations such as dedicated hardware acceleration.

The principle of hardware acceleration is to build a dedicated computing architecture for the realization of a specic task. This has to be considered in opposition to a general purpose computing architecture, which is designed to be ecient in the average case of algorithmic needs for a wide variety of applications. This thesis is a contribution for designing such dedicated hardware architectures for homomorphic encryption acceleration.

This thesis

Homomorphic cryptography is a eld that is still emerging. Although many applications are being considered, few have the merit of being explored, and even fewer are already feasible on a large scale. Nevertheless, research is making fast-paced progresses towards its use outside the laboratories. And we hope that some of the contributions associated to this thesis may help this development.

Before mentioning our scientic contributions, we will detail a bit the general problematic of homomorphic cryptography and that of its hardware acceleration. From this we will present the results of our work.

The problematic

The main goal of research on homomorphic cryptography is to dene an encryption scheme that has encrypted equivalents for all the operations that can be applied on data. This goal is referred to as Fully Homomorphic Encryption (FHE). The fact that it took almost 30 years between the introduction of the concept and the rst theoretical construction of an FHE scheme is no coincidence. Indeed, two intersecting theoretical problems exist.

The rst is the diculty of nding expressions of mathematical problems that allow homomorphic encryption schemes to be constructed. Just like for asymmetric cryptography, these mathematical problems ensure the security of the schemes. But they also inuence the algebraic structures of the cleartext and ciphertext spaces, and hence the construction of equivalent operations.

The second is the necessary presence of an encryption noise. But the noise amplitude in the ciphertexts grows with operations in the encrypted domain. Above a certain noise threshold, the decryption process stop working. With the research that followed the rst theoretical construction of an FHE scheme, some intermediate solutions brought the usages of homomorphic encryption close to being practical at large scale. Nevertheless, the research on hardware acceleration for these schemes has to cope with two main issues.

The rst is the variety of scheme propositions. In less than 10 years, four generations of schemes have already been proposed. Hence, their respective maturities and advantages could not be fully and objectively compared over such a short period of time. And of course, each has its own algebraic characteristics which makes dicult, if not impossible, the denition of a computing architecture that would accelerate homomorphic encryption in general. The result is therefore a more qualitative positioning in the choice of schemes to consider for hardware acceleration. During the preparation of this thesis, our analysis of the state-ofthe-art of homomorphic cryptography made us consider a particular scheme named after its authors Fan and Vercauteren (FV). It appears as one of the main representatives of the second generation of HE schemes and is well accepted in the FHE community.

The second problematic is that the most mature HE schemes from our point of view have their parameterization dependent on the applications to be performed in the encrypted domain. And of course, it would have been too easy if the parameter ranges were small. This is due to the schemes' noise growth which requires the noise gauge to be sized properly. In the case of the FV scheme, the handled elements are polynomials with large degree and large coecients. Both degree and coecients get signicantly larger with the noise absorption capacity.

Scientic contributions

During this work, we have particularly addressed the issue of the wide range of the sizing parameters. The literature has proposed the basic elements upon which are built our contributions. Namely, the use of Residue Number System (RNS) to tackle the complexity brought by large integer arithmetics, and the use of Number Theoretical Transforms (NTT) to reduce the asymptotic complexity of polynomial multiplications. Building on this, we argue that the coupled approach of RNS and NTT allows the denition of hybrid computing systems, which promise a signicant acceleration of encrypted-domain computing with the FV scheme. This thesis results from the in-depth analysis of FV as well as contributions to solve the main diculties of combining the use of RNS and NTT for large parameters.

Our main contributions are therefore the following. First, an analysis of the RNS/NTTcoupled approach and a theoretical validation of its feasibility up to very large parameter sets. Second, the exploration of GPU acceleration of some RNS specic algorithms brought by concomitant works for the full adaptation of FV to RNS. Third, the design and a proofof-concept implementation of a data ow oriented hardware for ecient residue polynomial multiplications, and the study of its capability to scale.

This last contribution is the subject of particular attention in order to overcome certain design problems that have previously limited the feasibility of the coupled approach at large scale. In particular, we propose a solution to locally pre-compute the values necessary for NTT computations without impacting the operations' throughput. This is achieved with two contributions: the design of a fully-streaming multi-eld NTT, and the design of a twiddle factor set generator. Finally, to take into account the issue of signicant changes in FV parameters w.r.t. an application, the automatic generation of RTL descriptions for the proposed designs has been explored.

Outline of this document

This document begins by positioning our work within the state-of-the-art of homomorphic encryption acceleration. First, we identify a subset of well-accepted schemes at the time of this thesis begun, and present their implementation issues. It is followed by a discussion on the existing solutions and related works addressing these issues. The rst chapter ends with our arguments in favor of our decision to make the FV scheme the subject of an in-depth study to propose a hardware acceleration strategy consistent with the wide ranges of its parameters.

In the second chapter, the FV encryption scheme is detailed. The study of its performance prole orients us towards an implementation strategy based on the RNS representation and NTT-based polynomial multiplications. This strategy is theoretically validated for the wide spectrum of FV parameters. Analyzing closely the related work on a fully RNS version of FV allowed us to rene this strategy by addressing both RNS specic functions and NTT-based Residue Polynomial Multiplication (RPM).

The third and fourth chapters provide details on basic hardware blocks for the ecient design of NTT-based RPM. Both concern the problem of managing pre-computed values for NTT. The third chapter deals more specically with the automatic generation of RTL circuits for data-ow multi-eld NTTs with a particular focus on the handling of the twiddle factor sets. The fourth chapter presents an on-the-y generation approach of these twiddle factors satisfying the throughput requirements imposed by the NTT circuits.

Based on the analysis and contributions of previous chapters, the fth chapter presents our proposal of an hybrid computing system for the acceleration of FV. Firstly, the GPU acceleration of RNS-specic functions is studied. Secondly, an architecture's proposal for RPMs is detailed. Together these two studies allow a performance projection for an hybrid GPU/FPGA computing system.

Finally, a general conclusion summarizes the present work and oers perspectives.

Chapter 1

Review of homomorphic encryption and its practicability

This chapter presents a review of homomorphic cryptography and its implementations. The primary objective is to position ourselves within the research activity around Homomorphic Encryption (HE). As far as possible, we present the elements that make our qualitative choices understandable. The second objective is to introduce the notions that appear in the various discussions in this document as arguments for our choices.

After having introduced the basic notions of homomorphic encryption, a state of the art of the HE schemes is presented, and our positioning is expressed. The detailed presentation of the LWE and RLWE problems makes it possible to present the research for using HE in practice. Finally, we highlight the implementation issues that must be addressed and we summarize the related works on this matter.

Introduction

Technical introduction to homomorphic encryption

HE schemes are able to perform operations on encrypted data without decrypting them rst. This ability comes from choosing a homomorphism as the decryption function of the encryption scheme. The denition of a homomorphism directly highlights the desired feature: it is a structure-preserving map between two algebraic structures of the same type (groups, rings, elds ...). Considering the plaintext space and the ciphertext space as algebraic structures, having a homomorphism is then to have a map that expresses an equivalence between some operations in the encrypted and clear domains.

To summarize, a HE scheme has its decryption function to be a homomorphism. Given an algebraic operation • over the ciphertext space and an algebraic operation * in the plaintext space, the decryption function is a homomorphism for these operations if and only if:

Dec(ct 1 • ct 2 ) = Dec(ct 1 ) * Dec(ct 2 ), for all ct 1 , ct 2 in ciphertext space.
It is said that an equivalent of * exists in the ciphertext space by decryption homomorphism.

Basic notions for homomorphic encryption

This subsection presents some basic notions for the proper understanding of the homomorphic cryptography's state-of-the-art. emnti seurityF This notion has been introduced in 1982 by Goldwasser and Micali [START_REF] Goldwasser | Probabilistic Encryption & How to Play Mental Poker Keeping Secret all Partial Information[END_REF] and further detailed in 1984 [START_REF] Goldwasser | Probabilistic Encryption[END_REF]. It states that it should be unfeasible to eciently retrieve information about messages from the knowledge of a polynomial number of ciphertexts and the public elements of the encryption scheme. This is analogous to information theoretic security w.r.t. a computationally-bounded adversary.

More precisely, the semantic security notion is equivalent to ciphertext indistinguishability under chosen-plaintext attack. Meaning that an attacker is not able to distinguish two ciphertexts encrypting the same message. In particular, Goldwasser and Micali show that probabilistic encryption may be needed for that purpose, which is the case for homomorphic cryptography. It is well known that HE schemes are necessarily probabilistic, and this has two main consequences.

First consequence: there is a signicant data size expansion between clear and encrypted data. Because the ciphertext space has to be signicantly larger than the plaintext space to insure ciphertext indistinguishability. Thus, with the help of a well-constructed probabilistic encryption, the upcoming of exploitable patterns in ciphertexts should be highly unlikely, even after publicly known operations over encrypted data.

Second consequence: the ciphertexts are noisy because probabilistic encryption adds a noise during the encryption. As already mentioned, this is one of the main issue for the construction of practical homomorphic schemes. More details follow along with the denition of the correctness notion.

gorretnessF A homomorphic scheme is correct if the decryption function always gives the appropriate plaintext. In the presence of noisy ciphertexts, the decryption function acts as a lter that erase the noise under a certain noise threshold. The problem with homomorphic encryption is that operations in the encrypted domain make the noise term to grow. However, the decryption function is able to erase only a given amount of noise, and becomes random otherwise. Until recent works (onwards 2014), no homomorphic scheme has been found with an ecient enough bootstrapping procedure to perform encrypted operations that do not increase the noise.

The noise growth during a ciphertext operation is dependent on operands' noise level. For a generic study of the noise constraints for parameter selection, it is suitable to consider a worst-case and an optimal scenarios. The worst-case scenario considers a binary tree of operations from fresh ciphertexts towards a depth L operation (Figure 1.1a). Hence, the noise level of the operands is at each level the maximum possible. The optimal scenario considers that every operation is performed with one of the operand being a freshly encrypted ciphertext (Figure 1.1b).

romomorphi ryptogrphy terminologyF The main goal of homomorphic cryptography is the denition of Fully Homomorphic Encryption (FHE) schemes. A FHE scheme has an encrypted equivalent for all applicable functions in the clear domain. However, the coupled diculty of dening schemes with appropriate homomorphism properties while handling noisy ciphertext makes things a little tricky. Intermediate solutions are easier to build and, as a result, dierent terminologies appear.

Partially Homomorphic Encryption (PHE) qualies schemes with homomorphism properties only for functions composed of a subset of the plaintext space's algebraic operations. For example, if the decryption function is a homomorphism of additive group (respectively multiplicative group), hence only functions composed of additions (respectively multiplications) ct
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(b) Optimized circuit for multiplication Figure 1.1: Tree models that consider the worst and optimal scenarios regarding the noise growth for a degree L function in the encrypted domain. The considered operation is the ciphertext multiplication and the multiplicative depth L is equal to three. The exponents in brackets are the ciphertext depths with respect to multiplication. have an equivalent in the encrypted domain.

Somewhat Homomorphic Encryption (SHE) is the term that qualify schemes that have their decryption function to be at least a ring homomorphism. It means that both plaintext additions and multiplications have equivalents in the encrypted domain. Nevertheless, they are not FHE schemes due to the noise threshold limiting their evaluation capability. Now that the basic notions have been settled, the next section presents the state-of-the art of homomorphic cryptography.

State of the art of homomorphic cryptography 1.2.1 History towards FHE

The concept of Homomorphic Encryption (HE) has been introduced by Rivest, Adleman and Dertouzos in 1978 under the term of privacy homomorphisms [START_REF] Ronald L Rivest | On Data Banks and Privacy Homomorphisms[END_REF]. This work has followed the highlight of multiplicative homomorphism property of the rst version of the RSA cryptosystem. Its main motivation was to bring together what seems to be two irreconcilable services: sensitive data exploitation and time-sharing data bank. This initial paper has settled fundamental and desirable features of privacy homomorphisms. It has also given some basic yet insecure constructions of such desirable schemes.

In particular, Rivest et al. has noticed that a scheme that is homomorphic for predicates (like comparisons) may become insecure under some simple assumptions on the data bank side. This was mostly due to deterministic encryption that makes the retrieval of information about messages easier when exploiting known properties of the encryption scheme (set ordering, test to zero, etc.). The notion of semantic security from Goldwasser and Micali has brought a theoretical solution to this problem. Nevertheless, both important data size expansion and noisy ciphertext has come along with probabilistic encryption. At this point, an open problem for homomorphic cryptography was to dene secure encryption scheme that is able to evaluate in the encrypted domain all functions applicable in the plaintext domain. This desired goal is called Fully Homomorphic Encryption (FHE). Both problematics of nding an appropriate decryption homomorphism and handling noisy ciphertext have been inherently linked since.

Between 1978 and 2009, the research have proposed only imperfect solutions regarding that goal, although some of them are sucient for some kind of applications. In particular, the works essentially proposed Partial Homomorphic Encryption schemes. Additive homomorphic schemes have been constructed like the Goldwasser-Micali encryption scheme [START_REF] Goldwasser | Probabilistic Encryption & How to Play Mental Poker Keeping Secret all Partial Information[END_REF] in 1982 or the Pallier encryption scheme [START_REF] Paillier | Public-Key Cryptosystems Based on Composite Degree Residuosity Classes[END_REF] in 1999. As well as multiplicative homomorphic schemes. For instance, the Elgamal encryption scheme [START_REF]A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms[END_REF] in 1985, based on the Die-Hellman key exchange.

Other works have dealt with the denition of Somewhat Homomorphic Encryption schemes. The trouble was to make both addition and multiplication possible in the encrypted domain. A noticeable work in that area is the one of Boneh, Goh and Nissim in 2005 [START_REF] Boneh | Evaluating 2-DNF Formulas on Ciphertexts[END_REF]. They made possible an innite number of additions plus one multiplication in the encrypted domain.

The rst SHE scheme is brought by Aguilar-Melchor, Gaborit and Herranz in 2008 [START_REF] Aguilar Melchor | Additively Homomorphic Encryption with d-Operand Multiplications[END_REF], and improved in 2010 [START_REF] Aguilar Melchor | Additively Homomorphic Encryption with d -Operand Multiplications[END_REF]. They allow the evaluation of a circuit of multiplicative depth d at the cost of a ciphertext size's growth exponential with d.

Finally, the very rst theoretical Fully Homomorphic Encryption scheme is brought by Gentry in 2009. It is based on a SHE scheme using a noise management technique called bootstrapping. This technique theoretically avoid an innite expansion of the ciphertext size for homomorphic evaluation by reducing the level of noise. To achieve this, Gentry proposes to homomorphically re-encrypt a ciphertext to homomorphically decrypt it just after. This reduces the noise as the decryption function is a noise lter, and this is theoretically secure because everything happen in the encrypted domain.

Even if his initial construction was impractical, Gentry's work is commonly viewed as the FHE breakthrough. In this thesis, we have only considered schemes that resulted from the works of Aguilar-Melchor et al. and of Gentry. At the time of writing, it is classic to consider four generations of Homomorphic Encryption schemes. The next subsection presents these four generations.

Four generations of FHE schemes

pirst genertionX ootstrppingF Before Gentry's paper of 2009 [START_REF] Gentry | Fully Homomorphic Encryption using Ideal Lattices[END_REF], PHE and SHE schemes were known, but no concrete solutions to build FHE schemes existed. Gentry has based his construction of the rst FHE scheme on what he called a bootstrapping procedure: it consists in evaluating the scheme decryption function in the encrypted domain. A SHE scheme having sucient noise gauge for bootstrapping plus at least another encrypted operation (addition or multiplication) becomes a FHE scheme.

Gentry proposes to see the decryption function as a noise reducing procedure. By overencrypting a ciphertext and homomorphically apply the decryption function, the result is still encrypted but with a "fresh" noise level. Gentry assumes that the scheme is still secure with a public encrypted version of the private key. This security assumption is called circular security. Further SHE/FHE schemes still rely on similar assumptions. All known noise management techniques require somehow a partial and/or a masked knowledge of the secret.

The rst implementations of bootstrapping-based FHE schemes were impractical [START_REF] Nigel | Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes[END_REF][START_REF] Gentry | Implementing Gentry's Fully-Homomorphic Encryption Scheme[END_REF]. This is due to the important noise growth of the chosen SHE and their complex decryption circuit. The size of the scheme elements and the primitives' performance are truly not as competitive as those of further generations. For example, the smallest parameter set for the best implementation of Gentry's scheme [START_REF] Gentry | Implementing Gentry's Fully-Homomorphic Encryption Scheme[END_REF] results in a public key of 17 Mbyte and bootstrapping procedure in 6 second on an high-end server system. Hence, we mention these schemes for completeness but our discussions will not consider them anymore.

Nevertheless, Gentry's initial work has opened the gate to numerous advances in the denition of more ecient SHE and FHE schemes.

eond genertionX veveledEpri @vEpriAF The schemes of the second generation are not stricto sensus fully homomorphic, but can nevertheless address applications with an arbitrary prior-xed complexity. This is due to less radical noise management techniques than bootstrapping that keep the noise under the threshold limit a xed number of times. The parameters of these schemes are chosen for a given evaluation capability in the encrypted domain, characterized in practice by the multiplicative depth of the considered application. This is because the noise growth during additions is negligible compared to its growth during multiplications. The common qualication for this kind of schemes is Leveled-FHE.

The initial techniques are called modulus switching or key switching and appear with the works of Brakerski and Vaikuntanathan [START_REF] Brakerski | Ecient Fully Homomorphic Encryption from (Standard) LWE[END_REF][START_REF] Brakerski | Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages[END_REF]. In particular, the modulus switching technique became the angular stone of a well accepeted scheme called BGV [START_REF] Brakerski | Leveled) Fully Homomorphic Encryption Without Bootstrapping[END_REF]. A ladder of moduli is used to control the noise level in the ciphertexts. A ciphertext is constructed with element modulo the product of all the modulus in the ladder. After a multiplication, a modulus is simply "removed" of the ladder by scaling down the ciphertext. Doing so reduces proportionally the ciphertext's noise making room to perform further multiplications. With this technique, the noise growth is linear with the multiplicative depth of the evaluated function; in contrary to a quadratic noise growth in concomitant SHE schemes.

A disadvantage of having a moduli ladder is that the size of a ciphertext varies along the operations in the encrypted domain. In [START_REF] Brakerski | Fully Homomorphic Encryption Without Modulus Switching from Classical GapSVP[END_REF] Brakerski observed that the desired linear noise growth could be achieved without a moduli ladder. The resulting schemes are called scale-invariant. Brakerski constructs the rst scale-invariant scheme upon a problem called the Learning With Errors problem (LWE). A scheme builds upon a ring variant of the LWE problem (RLWE) is quickly proposed by Fan and Vercauteren (FV [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF]). The FV scheme is still now a well-accepted candidate for practical HE applications. hird genertionX oneptul simpli(tions for vEpriF The third generation revisits the second generation to simplify the construction of Leveled-FHE schemes. They avoid the need of extra primitives which purpose are to limit the noise growth or to restructure ciphertexts due to non-canonical scheme primitives. Among the works from this generation, the initial GSW [START_REF] Gentry | Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based[END_REF] and SHIELD [START_REF] Khedr | SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classiers[END_REF] are the most popular. They are both based on Brakerski schemes [START_REF] Brakerski | Fully Homomorphic Encryption Without Modulus Switching from Classical GapSVP[END_REF].

From a practical point of view, third generation schemes are more specialized than those of second generation. They have a highly reduced noise growth considering applications that only require multiplications with one of the operands being a fresh ciphertext. This scenario has been presented in Figure 1.1b when presenting the correctness notion. Hence, the schemes of the third generation are promising candidate for the applications that t in this scenario.

pourth genertionX gte ootstrppingF The fourth generation revisits the bootstrapping approach [START_REF] Alperin | Faster Bootstrapping With Polynomial Error[END_REF][START_REF] Ducas | FHEW: Bootstrapping Homomorphic Encryption in Less Than a Second[END_REF][START_REF] Biasse | FHEW with Ecient Multibit Bootstrapping[END_REF][START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF]. This generation makes bootstrapping being inherently linked with an arithmetic operation rather than solely a noise-reducing procedure. In a nutshell, any arithmetic operation results in a fresh ciphertext. Hence, the level of noise is not cumulative anymore because the ciphertext is always a fresh one. Some works call this approach gate bootstrapping, in reference to the equivalent bitwise operations considering a binary message space.

This generation is really promising for a generalized use of homomorphic cryptography, and in particular the TFHE [START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF] scheme. This scheme evaluates its bootstrapped gate in the order of tenth of milliseconds. However, its relative youth makes dicult the qualication of the proper maturity and requires the exploration of ecient implementation strategies before considering dedicated hardware implementations.

Additional considerations and positioning

At rst, the research's eervescence around homomorphic cryptography can be confusing for whom is interested in practical considerations on SHE/FHE. Nevertheless, when looking for maturity, it seems that LWE-based schemes (and in particular those over its ring variant RLWE) are currently the most balanced in terms of security and eciency.

Indeed, the improvements of the second generation, and later of the third and fourth generations, were mainly dependent on the upcoming of the Learning With Errors (LWE) problem. This problem is introduced by Regev in 2005 [START_REF] Regev | On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[END_REF] and formalized by the same author in 2010 [START_REF] Regev | The Learning with Errors Problem (Invited Survey)[END_REF]. The LWE-based schemes often handle matrices and vectors of integer elements. Its ring variant RLWE makes the schemes to handle matrices and vectors of polynomial ring elements.

The fourth generation also constructs its schemes over the LWE problems. But its most promising scheme TFHE [START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF] has chosen an algebraic structure slightly dierent from others to improve primitive performances. In particular, it considers polynomials with real coecients modulo one. Consequently, it does not face up the same implementation problems, and hence requires dierent implementation approaches.

The literature considers also other mathematical problems for the HE context. Since the second generation, some works [START_REF] López-Alt | On-the-y Multiparty Computation on the Cloud via Multikey Fully Homomorphic Encryption[END_REF][START_REF] Joppe W Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF][START_REF] Doröz | Flattening NTRU for Evaluation Key Free Homomorphic Encryption[END_REF] have constructed schemes upon NTRU [START_REF] Hostein | NTRU: A Ring-Based Public Key Cryptosystem[END_REF] and NTRU' [START_REF] Stehlé | Making NTRU as Secure as Worst-Case Problems over Ideal Lattices[END_REF] hardness. These problems are related to the search for the shortest vector in a lattice under some additional security assumptions. Due to attacks exploiting subelds' presence in some overstretched versions of these NTRU assumptions [START_REF] Albrecht | A Subeld Lattice Attack on Overstretched NTRU Assumptions[END_REF][START_REF] Kirchner | Revisiting Lattice Attacks on Overstretched NTRU Parameters[END_REF], NTRU-based schemes are not considered suciently secure for the homomorphic cryptography context. Indeed, in order to be competitive, these schemes require choosing parameters that put them dangerously closer to simpler resolution of the underlying NTRU problem.

Another family of cryptosystem regroups a list of improvements over a scheme introduced by van Djik et al. [START_REF] Van Dijk | Fully Homomorphic Encryption over the Integers[END_REF] in 2010. Unlike the other schemes, which are more or less related to lattices, they rely on a problem over the integers called the Approximate Greatest Common Divisor (AGCD) problem. These schemes [START_REF] Coron | Fully Homomorphic Encryption over the Integers with Shorter Public Keys[END_REF][START_REF] Coron | Public Key Compression and Modulus Switching for Fully Homomorphic Encryption over the Integers[END_REF][START_REF] Coron | Scale-Invariant Fully Homomorphic Encryption over the Integers[END_REF][START_REF] Hee | Fully Homomophic Encryption over the Integers Revisited[END_REF] are conceptually simpler than those over lattices. However, they do not have the same practical eciency, in particular regarding the size of the handled keys and ciphertexts. For example, in the scale-invariant scheme proposed by Coron et al. [START_REF] Coron | Scale-Invariant Fully Homomorphic Encryption over the Integers[END_REF], for a reasonable security setting (λ = 80) the public key size is roughly 100 GByte and the key generation took 213 hours on a high-end server system.

The current literature makes us consider that RLWE-based schemes are the closest to concrete utilization. In particular, the FV scheme [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF] (2 nd generation) and the SHIELD [START_REF] Khedr | SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classiers[END_REF] (3 rd generation) are well accepted as Leveled-FHE schemes. For its part, the leading scheme of the fourth generation (TFHE) seems not to require similar implementation approaches than FV and SHIELD. Nevertheless, we assume unlikely that TFHE totally eclipses FV and SHIELD, because the utilization context for these schemes are not likely to be the same. We are therefore interested in the issues of implementing the HE schemes based on the RLWE problem.

After these considerations on the state-of-the-art of homomorphic cryptography, we now discuss implementation issues. Beforehand, the LWE and RLWE problems are described in order to present their parameters and their algebraic structures.

The Learning With Errors (LWE) problem and its ring variant (RLWE)

The Learning With Error (LWE) problem and its ring variant (RLWE) have led to major improvements in homomorphic cryptography. They give the most accepted schemes of second and third generations. They allow simpler construction with algebraic structures and operations giving relatively good execution performances. Furthermore, they also give good reasons to believe in their hardness.

The LWE problem

The Learning With Errors problem is introduced by Regev in 2005 [START_REF] Regev | On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[END_REF] and formalized by the same author in 2010 [START_REF] Regev | The Learning with Errors Problem (Invited Survey)[END_REF]. Regev proves this problem to be secure under quantum-reduction to approximate general lattice problems. The reduction proof has been enriched with classical approaches [START_REF] Peikert | Public-key Cryptosystems from the Worst-case Shortest Vector Problem: Extended Abstract[END_REF][START_REF] Brakerski | Classical Hardness of Learning with Errors[END_REF]. It means that for some adequate parameters this problem is at least as dicult as some problems over lattices, whose diculties are quite well accepted. Even if some blurs remain in the concrete choice of parameters, the LWE problem is a promising candidate for post-quantum cryptography. Most of the underlying descriptions follow the survey of Regev in [START_REF] Regev | The Learning with Errors Problem (Invited Survey)[END_REF] and thesis works of Migliore [START_REF] Migliore | Hardware Cybersecurity and Design of Dedicated Components for the Acceleration of Homomorphic Encryption Schemes[END_REF] and Bonnoron [START_REF] Bonnoron | A Journey Towards Practical Homomorphic Encryption[END_REF].

sntroduing exmpleF A particular formalism describes the LWE problem as the task of recovering a secret vector s ∈ Z n q given a sequence of random approximate linear equations on s. To clarify this description, here is the example given in Regev's survey.

Consider vectors of dimension n = 4 with elements uniformly sampled modulo q = 17, and consider also an error distribution χ on ±1, For a given secret s ∈ Z The hardness of this problem is function of n, q and the probability distribution χ that sample the error. The following paragraphs detail these notions with a more formal denition of the LWE problem. vi de(nitionF Let n ≥ 1 and q ≥ 2 be two integers, and χ a probability distribution over the set of integers (-q/2, q/2] (noted by convention Z q ). The naming convention refers to n as the dimension, q as the modulus and χ as the error distribution of the LWE instance. A classical choice for χ is a zero centered normal distribution of standard deviation σ rounded to the nearest integer. An LWE instance is then dened by its three parameters n, q, and σ (further called error size).

Given s ∈ Z n q , let A s,χ be a probability distribution over Z n q × Z q . This distribution is obtained by following the process hereafter: choose a vector ∈ Z n q uniformly at random, choose an integer e ∈ Z q according to χ, and then output (, , s + e) ∈ Z n q × Z q . Note that elements given by A s,χ are approximate linear equations similar to those in the simple example of previous paragraph.

Considering the distribution A s,χ , it is said that an algorithm solves (n, q, σ)-LWE if, for any s ∈ Z n q and given an arbitrary number of independent samples from A s,χ , it outputs s with high probability. Among all known algorithms solving the LWE problem, none require less than 2 O(n) memory or time complexity for correctly chosen (n, q, σ). Meaning that it is possible to construct LWE instances that cannot be solved given a computationally bounded adversary. At least in the present state of our knowledge concerning the dicult underlying problems. Among the reasons to believe in the hardness of the LWE problem, the most important are the proven reductions of LWE hardness to worst-case hardness of standard lattice problems [START_REF] Regev | On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[END_REF][START_REF] Peikert | Public-key Cryptosystems from the Worst-case Shortest Vector Problem: Extended Abstract[END_REF][START_REF] Brakerski | Classical Hardness of Learning with Errors[END_REF]. The hardness of the latter's problems is well accepted considering their resistance to research eorts to solve them.

imple sheme onstrutionF Upon this problem, Regev proposed a simple asymmetric scheme that is detailed here. The purpose is to understand how the LWE problem could be used to construct an encryption scheme. The scheme is called REG in this description. Let (n, q, σ) be an LWE instance hard to solve for a given number w of approximate linear equations.

• REG.SecretKeyGen(λ): sample s from Z n q , and output sk = s. • REG.PublicKeyGen(sk, w): sample w vectors 1 , ..., w uniformly from Z n q and w error osets e 1 , ..., e w from χ.

Return pk = {( i , b i )} w i=1 , with b i = i , s /q + e i .
• REG.Encrypt(pk, w, m ∈ {0, 1}): to encrypt a binary message m, choose a random subset S of the w public key elements {( i , b i )} w i=1 .

Compute 0 = S i and 1 = m/2 + S b i .

Return ct = ( 0 , c 1 ) ∈ Z n q × Z q .

• REG.Decrypt(sk, ct): compute r = 1 -0 , s /q.

Return m = 0 if r is closer to 0 than to 1/2 , return m = 1 otherwise.

The proof of correctness follows from an appropriate choice of parameters and some probability analysis (see [START_REF] Regev | On Lattices, Learning with Errors, Random Linear Codes, and Cryptography[END_REF]). ghoie of prmetersF As introduced in previous paragraphs, the hardness of the LWE problem (and hence the security of the schemes) is dependent of its parameters (n, q, σ). Since 2005, numerous works have rened the practical choice of parameters. This derivation is mainly empirical and relies on some estimation models of all known attacks against LWE. The current state-of-the-art estimator is maintained by Albrecht [START_REF] Albrecht | lwe-estimator, Sage Module for Estimating the Concrete Security of LWE Instances[END_REF].

In the case of LWE instances for homomorphic encryption, the additional dimension of correctness must be taken into account in the derivation of parameters. The resulting derivation rules have multiple elements to consider making them quite complex at rst sight. Here are some simple thumb rules regarding the derivation of parameters.

Security is mainly improved when increasing the dimension n of the underlying problems, but n has also an error magnier eect. Indeed, the error size σ should not be too small regarding the dimension (σ > ω( √ n)) in order to eectively mask enough information for the LWE problem to be dicult. Correctness is improved when the noise is very small in front of the modulus (σ q). Nevertheless, larger q decreases security for a given n [START_REF] Regev | The Learning with Errors Problem (Invited Survey)[END_REF] (q < 2 poly(n) ). Thus when going for better correctness, one has to be careful to not reach the upper bound on q or the lower bound on σ.

We note that this renement of parameters remains an active research area, and in particular for more specialized version of LWE like the Learning With Errors over Rings (RLWE).

From a practical point of view, the LWE-based schemes have rather large elements to handle. Thus, their practical uses tend to be expensive in terms of memory usage, performance and communication cost. These practical issues are particularly noteworthy for FHE applications as the parameters must be large enough for correctness. These are the reasons for the FHE community to explore LWE problem specializations to more structured algebraic structures like polynomial rings.

The LWE problem over rings

The Learning With Errors over Rings (RLWE) is a specialized version of the Learning With Errors problem to polynomial rings over nite elds. This specialization allows the addition of extra-algebraic structures in order to improve the eciency of cryptographic schemes built upon the problem. The RLWE problem is formalized by Lyubashevsky et al. [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF] in 2010. vi de(nitionF The hereafter denition of RLWE is slightly dierent from [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF], and this should be taken into account for rigorous hardness analysis [START_REF] Peikert | How Not to Instantiate Ring-LWE[END_REF]. Nevertheless, this has only an inuence on the parameter selection (in particular in the noise distribution). The two denitions are equivalent from an computational perspective.

Let R be a ring of degree n over the integers, q a positive integer and χ a probability distribution over R q = R/qR, the quotient ring dened by the modulus q. For simplicity, consider R to be the set of polynomials with integer coecients provided with polynomial addition and polynomial multiplication. Similarly, consider R q as R with integer coecients modulo q. The distribution χ may be seen as sampling n coecients from a normal distribution over [-q/2, q/2[, with standard deviation σ, to construct a polynomial of R q .

Given s ∈ R q , let A s,χ be the probability distribution over R q × R q obtained by following the process hereafter. Choose an element ∈ R q uniformly at random, choose an element e ∈ R q according to χ, and then output (, ( • s + e) mod q) ∈ R 2 q . Considering the distribution A s,χ , it is said that an algorithm solves (n, q, χ)-RLWE if, for any s ∈ R q and given an arbitrary number of independent samples from A s,χ it outputs s with high probability. The decision version of the problem consists in distinguishing samples from A s,χ from uniform samples in R 2 q .

imple enryption shemeF When formalizing the problem, Lyubashevsky et al. [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF] present a simple asymmetric encryption scheme called here LPR. Select a polynomial ring R = Z[X]/(F (X)), a modulus q and a probability distribution χ, with (n = deg(F ), q, σ) depending on the security parameter λ. Choose also a plaintext modulus t, dening the ring R t in which the message will be encoded before encryption.

• LPR.SecretKeyGen(λ): sample s from χ, and output sk = s ∈ R q .

• LPR.PublicKeyGen(sk): sample uniformly from R q , e from χ.

Compute p 0 = [-( • s + e)] q and set p 1 = .

Return pk = (p 0 , p 1 ) ∈ R 2 q .

• LPR.Encrypt(pk, m ∈ R t ): Let ∆ = q t , and u, e 1 , e 2 being samples from χ.

Compute 0 = [p 0 u + e 1 + ∆m] q and 1 = p 1 u + e 2 . Return ct = ( 0 , 1 ) ∈ R 2 q . • LPR.Decrypt(sk, ct): Return m = t q • [ 0 + 1 • s] q t .
To express the correctness requirement, let consider that

[ 0 + 1 s] q = [∆[m] t + v] q .
The polynomial v is commonly called the noise term of the ciphertext ( 0 , 1 ). It follows that the decryption is correct if v ∞ < (∆ -r t (q))/2, with r t (q) = t(q/t -∆).

vi hrdnessF In the initial paper of Lyubashevsky et al. [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF] formalizing the RLWE problem, the authors prove the hardness of search-RLWE by a quantum reduction of worstcase problems over ideal lattices. In a recent paper Peikert et al. [START_REF] Peikert | Pseudorandomness of Ring-LWE for Any Ring and Modulus[END_REF] give an equivalent result for decision-RLWE over which most of SHE schemes rely on. Nevertheless, the RLWE problem and its parameters characterization are not as well explored as for LWE.

Parameterization for RLWE-based schemes often extrapolates that of LWE-based ones. Thus, it does not take into account the specicities of RLWE algebraic structures. Hence, the upcoming of RLWE cryptanalysis changing this parametrization is a potential event to consider. Nevertheless, it seems reasonable that further cryptanalysis will not deeply change the ranges of parameters.

The following paragraph details the algebraic structures of RLWE-based schemes considered for ecient construction of FHE.

elgeri struturesF The RLWE problem dened in [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF] is focused on the polynomial rings R = Z[X]/(Φ m (X)) of integer polynomials modulo a cyclotomic polynomial of order m. By denition, Φ m (X) = η (X -η) where η ranges over the m-th primitive roots of unity.

The quantum hardness reduction from ideal lattice problems has been proven for general cyclotomic eld [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF], and recently even for any number eld [START_REF] Peikert | Pseudorandomness of Ring-LWE for Any Ring and Modulus[END_REF]. Most RLWE instances choose the m = 2 k -th cyclotomic polynomials in practice. It implies that Φ m (X) = X n + 1 with n = m/2. The attractive complexity brought by a special case of FFT-based polynomial multiplication motivates this choice. These approaches are presented later in this chapter.

In addition to the n resulting from the choice of R, the RLWE problem requires the selection of an integer modulus q > 1 that bounds the size of the polynomial coecients. Accordingly to q, Z q denes the set of integer [-q/2, q/2[, and this notation is extended to dene R q = Z q [X]/(Φ m (X)) the subset of R with coecients in Z q . In practice, the handled elements are viewed as integer polynomials reduced modulo (Φ m (X), q). The hardness result of Peikert et al. [START_REF] Peikert | Pseudorandomness of Ring-LWE for Any Ring and Modulus[END_REF] yield for any modulus q as long as it has the appropriate size regarding n and χ.

The previous description of the LWE and RLWE problems provide a better understanding of the state-of-the-art for the implementation of homomorphic encryption. The objective is to understand our positioning in relation to the multiplicity of works addressing issues at dierent levels.

Homomorphic encryption in practice

One of the main implementation issue for homomorphic encryption is the data size expansion resulting from the necessity of semantic security. Another issue is the wide variety of applications in conjunction with only intermediate solutions for encrypted-computing. The second issue is particularly present when considering L-FHE schemes as we do. Without considering any particular application, it is nonetheless important to consider how the schemes and their parameterizations inuence the eciency of an encrypted application.

In this section the literature's solutions to these problems are presented. First, it introduces known techniques to mitigate the impact of the data-size expansion. Then, it presents a typical example of HE scheme comparison and nally exposes the question of choosing a plaintext space w.r.t. a message encoding method.

Mitigating data expansion impact

Data size expansion has two major impacts. First, an important computational overhead compared to a non-encrypted application (roughly millions of times slower). Second, communications are quickly problematic when going for applications with lots of data.

Beside the search for homomorphic schemes with reduced data size expansion, two methods to address this issue are commonly presented. One results from the exploitation of the algebraic structures of some schemes to pack multiple messages in independent ciphertext's "slots". This technique is known as batching and addresses the two dimensions of the data expansion problem. The other is known as transciphering and "only" addresses the communication overhead. It is based on the ability of an homomorphic scheme to evaluate the decryption function of classical symmetric schemes.

fthingF The batching technique for homomorphic cryptography is introduced by Smart and Vercauteren in 2010 [START_REF] Nigel | Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes[END_REF] and formalized a little after in [START_REF] Smart | Fully Homomorphic SIMD Operations[END_REF].

In a nutshell, this technique is the exploitation of the Chinese Remainder Theorem (CRT) to decompose the scheme message space into multiple sub-spaces. Not all the schemes are able to use this technique due to the algebraic structure of their message space. The presentation here mainly refers to schemes based upon the RLWE problem.

Smart and Vecauteren propose to select the polynomial F (X) for the ring R as a monic irreducible polynomial over Z q [X] but as a reducible polynomial over Z t [X]. They present the odd m-th cyclotomic polynomials as possible candidates for F (X). This choice is motivated by their desirable factorization property over Z t [X], and in particular for t = 2.

When t = 2, Φ m (X) factors over Z 2 [X] into r = (ϕ(m)) I /d distinct polynomials of degree d, with d being the smallest integer such that 2 d = 1 mod m. Φ m (X) = r g=1 F g (X) , F g ∈ Z 2 [X] and deg(F g ) = d for all g in {1, . . . , r}. (1.1)
Due to this decomposition, the polynomial ring

Z 2 [X]/(Φ m (X)) is isomorphic II to the product ring Z 2 [X]/(F 1 (X))×...×Z 2 [X]/(F r (X)). Moreover, each nite eld Z 2 [X]/(F g (X)
) is isomorphic to the Galois eld of order 2 d . Hence, an element of Z 2 [X]/(Φ m (X)) may embed up to r elements of any Galois eld of order 2 k with k | d. In particular for k = 1, it implies that an element of the message space may embed up to r binary elements in independent "slots". For a more detailed presentation of the technique, please refer to [START_REF] Smart | Fully Homomorphic SIMD Operations[END_REF].

As this technique only exploits the algebraic structure of the message space without modifying anything in the ciphertext space, it consequently gives a r times speed up at roughly no cost. Nevertheless, it has to be considered that only slot-wise operations are straightforwardly available in the ciphertext space. Some techniques to handle the slots while in the ciphertext domain exist though [START_REF] Gentry | Fully Homomorphic Encryption with Polylog Overhead[END_REF].

The main limitation of this technique is that it is not compatible with an optimization for polynomial multiplications known as Negative Wrapped Convolution (NWC). Indeed, F (X) has to be a power-of-two cyclotomic polynomial for NWC, which is not suitable with batching for binary message. One may nd a plaintext space parameter t that allows batching with power of two cyclotomic polynomials. Nevertheless, non-binary message may be inconvenient at another level. This is more detailed in subsection 1.4.2.

To conclude, this technique is a promising approach to reduce the computational and communication overheads. A limitation is its dicult integration with the choice of polynomial multiplication through NWC (only non-binary message).

rnsipheringF The transciphering approach has been introduced by Naehrig et al. [START_REF] Naehrig | Can homomorphic encryption be practical[END_REF] in 2011. This approach is an essential element of what is called hybrid homomorphic framework [START_REF] Méaux | Hybrid Fully Homomorphic Framework[END_REF] which proposes a practical approach for homomorphic outsourced computation.

The principle is to use a classical symmetric encryption scheme to upload the sensible data to the homomorphic server. This implies that the upward communication overhead is almost nonexistent (beside the key exchange). The encryption scheme is then transformed from classic to homomorphic directly on the server. This is possible due to the capacity of I The function ϕ : N * → N * refers to the Euler's totient function. This function returns, for any natural m > 0, the number of integer n mutually prime with m, for all n ≤ m.

II By CRT applied to polynomials.

the homomorphic scheme to evaluate in the encrypted domain the decryption circuit of the classical symmetric scheme. This approach has been improved by Canteaut et al. [START_REF] Canteaut | Stream Ciphers: A Practical Solution for Ecient Homomorphic-Ciphertext Compression[END_REF] to reduce the transciphering latency. They propose to use a lightweight additive IV-based stream cipher as the classical symmetric scheme. Figure 1.2 presents the principle of their stream-based transciphering protocol. The user and the homomorphic sever agree on a Pseudo-Random Fonction (PRF) and on a homomorphic encryption scheme. The PRF function is used to generate keystream elements: in classical form on the user side, and in homomorphic form on the server side. For this keystream generation, the user only need a classical secret key (S) C and a set of Initialization Vector IV. On the server side, only the homomorphically encrypted secret (S C ) H and initialisation vector (IV) H are required to generate the homomorphic form of the keystream. The data transfer from the user to the server is then a simple classical encryption of the data using the keystream generated on the user side. At reception, the server over-encrypt those data with the homomorphic scheme and apply the homomorphic XOR operation (ciphertext addition) with the homomorphic version of the keystream. The resulting elements are then the homomorphic ciphertexts of the initial data.

PRF C S C IV K 1 , ... , K G PRF H (S C ) H (IV) H (K 1 ) H , ... ,(K G ) H H (D 1 ) H , ... , (D G ) H D 1 , ... ,
As specied in the Figure 1.2, the communication is decomposed in three dierent phases. First, the initialization consists in the choice of the PRF and homomorphic scheme, and in the key exchange. Second, the keystream generation that is somehow independent of the concrete transfer of the payload as it can be performed in advance I . Third, the data transfer is done without any data overhead because the symmetric scheme does not have any. The server has only to transcipher the received data with the homomorphic keystream when they are required for further homomorphic computations.

As a drawback, this approach imposes to chose the homomorphic scheme parameters such that it can evaluate the PRF function plus the application desired by the user. This has a signicant impact on L-FHE schemes as they have to dimension their parameters to have a sucient noise gauge.

I From time to time, a new IV may be required to refresh the keystream generation, but this may be considered negligible as the user and server may also agree on an IV generation protocol without compromising the security.

It is important to note also that it only solves the communication overhead for upward communications. Downward communications would require transciphering from homomorphic encryption to classic encryption and that is not possible. Nevertheless, numerous applications would not require large downward communications and the overhead is still reasonable to pay.

Choosing an HE scheme and a plaintext space

The question of concrete choice of homomorphic scheme is of importance for whom want to implement a secure outsourced application. For instance, only a truly FHE scheme is able to address generic cloud computing applications with function not known beforehand. In this case, the fourth generation appears as the most promising. In other scenarios, like a cloud medical storage system, it is reasonable to consider that all the functions to apply on the private data are specied beforehand. In this case, a dedicated L-FHE scheme from second or third generation is enough.

Nevertheless, even when only considering the latter case, each scheme have their practical advantages. A signicant example of this is given with the comparison of the FV and SHIELD made by Guillaume Bonnoron during his PhD thesis [START_REF] Bonnoron | A Journey Towards Practical Homomorphic Encryption[END_REF].

Furthermore, even when considering a single scheme, the choice of a plaintext space (modulus t) along with a message encoding method may have a signicant impact on the eciency of the homomorphic evaluation. The second paragraph of this subsection details the current knowledge on this matter. gomprison of p nd rsivhF Despite being both constructed upon the RLWE problem, the two schemes are quite dierent. FV ciphertexts are vectors of polynomials in R 2 q and SHIELD ciphertexts are matrices of polynomial in R N ×2 q with N = 2 • log 2 (q) . Comparing the schemes noise growth, Bonnoron shows that FV is more suitable than SHIELD for the evaluation of arbitrary binary circuit (bounded by scenario of Figure 1.1a). In that case, both FV and SHIELD parameters need to expand to guarantee correctness and security for larger multiplicative depth. Due to its vector structure, a FV ciphertext is then much smaller than a SHIELD ciphertext.

When considering optimized circuits that require multiplication with fresh ciphertexts (scenario of Figure 1.1b), SHIELD noise growth is far lower tan FV's one. Hence SHIELD parameters (n, q, σ) do not need to expand much to satisfy security and correctness for larger multiplicative depth evaluation capability. For FV, the parameters still have to expand quite signicantly to satisfy the required multiplicative depth.

When considering batching as an SIMD computational improvement, the favorable noise growth of a batched SHIELD ciphertext in the case of an optimized circuit does not apply anymore (it is even worse with arbitrary circuits). Thus, batching with SHIELD requires a great expansion of its parameters to ensure correctness and security. Hence, SHIELD becomes quickly non-advantageous compared to FV over which batching does not signicantly impact parameter ranges.

This comparative example shows the disparity of HE schemes. Further comparisons of this type are still necessary to have a quantitative classication of the dierences and use-cases of the dierent schemes. lintext spe nd messge enoding hoiesF For RLWE-based homomorphic schemes, the decryption homomorphism expresses the equivalence between operations on Z q [X]/(Φ m (X)) (ciphertext space) and operations on Z t [X]/(Φ m (X)) (plaintext space). The encrypted application has then to dene how its data are encoded over the message space. Both t and the encoding method impact the eciency of the encrypted computation.

The encoding methods are dependent of the use of the batching optimization. Without batching, a simple encoding of a message consists in setting the message as the coecient of degree zero of a polynomial in Z t [X]/(Φ m (X)). With batching the encoding consists in setting the r messages as coecient of degree zero of the r polynomials in Z t [X]/(F g (X)) with g in 1, ..., r. In both examples, the encrypted computations are equivalent to operations in Z t (modular arithmetic modulo t).

Concerning the choice of t, handling binary message (t = 2) allows the use of comparisons in the ciphertext domain (test of bit-sign, masking, etc.). Thus, it could simplify the homomorphic evaluation for conditional operations. Nevertheless, the use of binary messages requires to decompose the clear application into an equivalent boolean circuit. This may increase the number of encrypted operations to perform. To get a rough idea, consider the boolean circuit of an 8-bit adder rather than being able to perform the addition in one equivalent homomorphic operation (t = 2 8 ).

A recent work from Jäschke and Armknecht [START_REF] Jäschke | Finite) Field Work: Choosing the Best Encoding of Numbers for FHE Computation[END_REF] specically addresses the problem of choosing this parameter t. They study this choice with regards to encoding methods for ecient natural, integer and rational arithmetic in the encrypted domain.

Considering the number of operations to perform in the encrypted domain, they show that the optimal choice for t is 2, given the straightforward encoding methods described above. They also consider an encoding in Galois Field I GF (t k ) (k in 2, ..., n or 2, ..., d in case of batching). Nevertheless, it appears to always requires more operations than with the straightforward method.

Considering now the multiplicative depth metric, they observe that small prime values for t may result in shallower depth than t = 2, but such choices for t are hardly suitable for generalized encrypted applications. Hence, the authors conclude that the optimal choice for t with respect to the encoding method depends on the application. In this thesis, we consider binary message space (t = 2), as it appears to us the most suitable for non-specialized applications.

After having considered the work around the practical usage of homomorphic encryption, we now focus on the implementation of RLWE-based encryption schemes.

Implementation of RLWE-based schemes

In this section, we are interested in the problems of implementing RLWE-based schemes. We are therefore seeking to position our work within the related works.

Positioning on hardware implementation

Usually, homomorphic encryption schemes are rst implemented in software. This allows to test the scheme proposals, and to easily explore algorithmic optimizations. I This encoding takes into account the overall plaintext structure (polynomial of degree less than k with coecient in Zt) that is isomorphic to GF (t k ).

For this thesis, it was already a decision to position ourselves on a hardware implementation. This is explained by the performance limitations one experiments with software only solutions for encrypted-computing. For instance, considering the encrypted-computing application on genomic data from Singh et al. [START_REF] Singh | Practical Personalized Genomics in the Encrypted Domain[END_REF], the timings are in the order of half an hour for computing the equivalent of 20 thousands logic gates. Thus, existing software implementations have not received any particular attention in this work. However, we mention here some of them that are present in the literature, in case the reader wishes to go further.

To the best of our knowledge, four open software libraries implementing homomorphic schemes based on the RLWE problem are currently available. SEAL [START_REF] Laine | Simple Encrypted Arithmetic Library[END_REF] from Microsoft Research, PALISADE [START_REF] Polyakov | PALISADE Lattice Cryptography Library[END_REF] from the New Jersey Institute of Technology (NJIT), FV-NFLlib [START_REF] Lepoint | [END_REF] from CryptoExpert, and Cingulata [START_REF] Aubry | Cingulata: Homomorphic Cryptography Compiler Toolchain and Runtime Environment[END_REF] from CEA-List. The literature mention other implementations accessible when asking the authors. Among others we mentions the FV-FULL-RNS from Bajard et al. [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] and the SHIELD implementations [START_REF] Khedr | SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classiers[END_REF][START_REF] Khedr | SecureMed: Secure Medical Computation Using GPU-Accelerated Homomorphic Encryption Scheme[END_REF].

During our work, we discuss in particular a variant of FV implemented in the PALISADE library that is proposed by Halevi, Polyakov and Shoup [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. This variant is a simplication of Bajard et al.'s work [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] making the FV scheme fully compatible with a dierent representation of number called the Residue Number System (RNS). The reasons and the description of this representation are presented throughout this document.

Before presenting existing hardware implementations related to RLWE-based homomorphic encryption, we rst discuss the dierent implementation issues from an high level point of view.

Hardware implementation issues

The initial problem concerns the large size of the parameters n and q. It is complicated by their high dynamics coming from the variation of multiplicative depth requirements for different encrypted applications. Both problem take their roots from security and correctness requirements as explained in section 1.3. To get an approximate idea, the degree n can reach several thousand, and the modulus q several hundred bits. Consequently, both the computational and memory complexities of the underlying operations are of major importance.

These operations are polynomial multiplications, polynomial reductions, polynomial additions, scale-and-rounds and modular reductions. In practice, polynomial additions are not problematic compared to the others, thus the literature does not mention any specic optimization for them.

The most expensive operation is commonly the multiplication of polynomials. This is due to its quadratic complexity with the degree n considering the schoolbook algorithm. But two other types of algorithms are commonly known to reduce this complexity. The rst regroups Karatsuba [START_REF] Karatsuba | Multiplication of many-digital numbers by automatic computers[END_REF] and Toom-Cook [START_REF] Stephen | On the Minimum Computation Time of Functions[END_REF] algorithms extended to polynomials. Their complexities are respectively O(n 1.585 ) and O(n 1.465 ). The second regroups the algorithms based on Number Theoretical Transfrom (NTT) [START_REF] John | The Fast Fourier Transform in a Finite Field[END_REF] (Fourier transform over a nite-eld) with asymptotic complexity in O(n log n).

The polynomial multiplication is usually followed by a polynomial modular reduction to get back to the considered polynomial ring. The complexity of this polynomial modular reduction is dependent of the hamming weight I h of the polynomial modulus, and of course also of the degree n [START_REF] Wu | On Computation of Polynomial Modular Reduction[END_REF]. It also possible to compute these polynomial reductions by transposing integer reduction algorithms to the polynomials (Barrett reduction for instance). A special case of NTT-based algorithm for polynomial multiplication, called Negative Wrapped Convolution (NWC), allows to directly perform the multiplication in the considered polynomial ring without the necessity of a polynomial reduction. The drawback is that it is only compatible with power of two cyclotomic polynomial rings (i.e. R = Z[X]/(X n + 1)), and hence it makes the batching of binary messages non-possible.

A scale-and-round operation is applied to each coecient of a polynomial. Thus, it has a linear complexity with n and a constant complexity dependent of the sizes of the scaling value and coecients. Usually, this scaling value involves a division by q. Depending on the choice of q, this operation may be made trivial (q a power of two). But some other design choices may also restrict the form of q.

Finally, the coecient arithmetic is most of the time modulo q. Thus, the choice of an eective modular reduction allows the complexity of higher level operations to be positively inuenced. Once again, depending on the choice of q, this operation may be made trivial, or just have a reduced cost. Now that the general implementation issues for the RLWE schemes have been presented, we will be able to clarify these issues by considering the related works.

Related works on hardware implementation

The intersection of these issues makes dicult a proper comparison of all the works that led to hardware implementations. Numerous approaches at application level may drive the implementation choices. For instance, choosing to use the batching technique imposes to avoid NWC for polynomial multiplications, or choosing a power of two modulus q is incompatible with RNS representation. Furthermore, a good part of the existing works transpose some approaches from non-homomorphic lattice-based cryptography toward the homomorphic context. The resulting hardware will often not be fully compliant with the actual problematic of the HE context.

To take into account this situation, we try to avoid premature comparisons. We have chosen to classify the dierent works according to their approach to implement polynomial multiplication. However, this level of classication hardly takes into account the other lower level choices that may have motivated the authors. Thus, we will start by mentioning some fairly general techniques to solve these lower-level problems. Then, related works will be described w.r.t. their choices of polynomial multiplications.

esidue xumer ystemF The large modulus q inuences the complexity of the basic arithmetic. With its growth for large multiplicative depth, the classic multi-precision arithmetic shows some limitations. It involves a lack of parallelism due to intermediate result propagation leading to important implementation cost and/or low execution performances. Consequently, some work in the literature have proposed a dierent representation system called the Residue Number System (RNS).

The RNS is a non-positional representation of numbers according to a basis of mutually prime moduli q 1 , ..., q k . This representation is a direct consequence of the Chinese Reminder I number of non-zero coecients Theorem (CRT) which expresses the ring isomorphism Z q ∼ = 1≤i≤k Z q i . Under this representation, modular arithmetic modulo q = 1≤i≤k q i is performed with k smaller and independent modular operations. For additions, subtractions and multiplications, the RNS representation is an ecient way of creating parallelism, but when it comes to divisions, some more complex computations are required.

wodulr rithmetiF With or without RNS representation, the question of computing modular arithmetic arises. For modular additions and modular subtractions, input operands are usually bounded by the considered modulus (q or the q i 's in case of RNS representation). Thus, they require only one addition, one subtraction and one comparison to be performed.

In the case of a modular multiplication, a reduction operation must be performed. Avoiding the use of slow algorithms like Euclid division, the complexity of fast algorithm depends on the considered modulus. In LWE-based cryptography, security does not restrict the choice of q, but its size log 2 q. When there are no additional restrictions due to particular implementation approaches, one may choose q to be a power of two. Hence, the divisions and modular reductions are trivially performed.

Considering RNS representations, the dierent modulus q i have to be co-primes. It forces oneself to look for less trivial modular reduction algorithms. One may be interested in some special primes like Mersenne's or more generally Solinas' primes. For these primes, modular reductions are performed with modular additions and shifts.

For NTT-based polynomial multiplications, the modulus q has to be chosen such that the NTT exists. This is often incompatible with special modulus like powers of two or Solinas' primes. In this case, the litterature considers even more generalized modular reduction approaches like Montgomery reduction [START_REF] Peter | Modular Multiplication without Trial Division[END_REF] or Barrett reduction [START_REF] Barrett | Implementing the Rivest, Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor[END_REF].

olynomil multiplitionF The design choices made for the hardware implementation of RLWE-based encryption focus mainly on the objectives of ecient polynomial multiplications.

In the litterature, we found only Mkhinini et al. [START_REF] Mkhinini | A exible RNSbased large polynomial multiplier for Fully Homomorphic Encryption[END_REF] implementing the schoolbook algorithm. Despite its simple adaptation to any choice of n and q, the implementation is limited in execution performance due to its asymptotic complexity in O(n 2 ).

Once again, we found only one work that implement the polynomial multiplications using the Karatsuba algorithm, and no work implementing Toom-Cook algorithms. The in-depth work of Migliore et al. [START_REF] Vincent Migliore | Hardware/Software Co-Design of an Accelerator for FV Homomorphic Encryption Scheme Using Karatsuba Algorithm[END_REF] shows the advantages and the limitations of the Karatsuba approach. Due to the absence of major constraints in the application of Karatsuba, they are able to nely tune the FV's parameters for the desired security and multiplicative depth requirement. In particular, their approach is compatible with batching of binary messages and they are free to choose q as a power of two. Nonetheless, the complexity of Karatsuba can only compete with NTT-based approaches up to some point in the growth of parameter sets. They identify the performance turning point for (n = 6144, log 2 q = 512) compared to the implementation of T. Pöppelmann et al. [START_REF] Pöppelmann | Accelerating Homomorphic Evaluation on Recongurable Hardware[END_REF] (n = 16384, log 2 q = 512).

Numerous work have chosen NTT-based polynomial multiplication. The main motivation is the reduced asymptotic complexity, but this does not come without a certain complexity of implementation. In a nutshell, a NTT is a Fourier Transform over a nite-eld, and requires the existence of a primitive root of unity over this eld. Hence, fast algorithms for this transform allows the computation of convolutions in O(n log n) rather than O(n 2 ), but this at the cost of O(n) precomputed values called twiddle factors. An attractive variant of NTTbased polynomial multiplication is the previously mentioned Negative Wrapped Convolution (NWC). It allows to perform the convolution on n-points rather than on 2n for a classic NTTbased convolution, and it gives the result directly modulo X n + 1. This is advantageous when choosing power of two cyclotomic polynomial rings (more described in Chapter 2). Nevertheless, the complexity of implementing NTT-based approaches in addition to the restrictions for their existence often lead to limited design exibility.

The most detailed NTT-based implementation we found are those of Pöppelmann et al. [START_REF] Pöppelmann | Accelerating Homomorphic Evaluation on Recongurable Hardware[END_REF] and Roy et al. [START_REF] Sinha | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF]. The former implements a cached-NTT to improve the data locality when computing the NTTs. Due to restrictions on q for the existence of the NTT, they could not choose a modulus being a power of two, hence they consider Solinas primes for ecient modular reduction. They implement only two sets of parameters (n = 4096, log 2 q = 124) and (n = 16384, log 2 q = 512), and notice the problematic of the large coecient sizes, in particular for the scale-and-round operations.

The second work, from Roy et al. [START_REF] Sinha | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF], presents a co-processor implementing building block operations for NTT, RNS representation and scale-and-round operations. In particular they consider the RNS representation to increase the parallelism during NTT-based polynomial multiplications. To reduce the memory complexity, they also choose to store only a subset of the twiddle factors and to compute the others on-the-y. This implies around 10,000 bubbles in the computation of the NTTs. Their co-processor is designed to handle polynomial with degree up to n = 2 15 and, as they do not implement the NWC, they choose to implement a Barrett polynomial reduction. Finally, it has to be noted they also have limitations in the calculation of the scale-and-round operations. This is mainly due to the necessity of going back from the RNS representation to a classical multi-precision representation.

Among the other works, Öztürk et al. proposed in 2015 [START_REF] Öztürk | Accelerating Somewhat Homomorphic Evaluation using FPGAs[END_REF] and in 2017 [START_REF] Ozturk | A Custom Accelerator for Homomorphic Encryption Applications[END_REF] two dierent versions of an RNS/NTT based accelerator. In both version, they implement iterative NTTs. In the rst version they choose to pre-compute the dierent NTT twiddle factor sets on the host side, and send them along with the polynomial coecients to their accelerator. In the later version they store all the coecient inside the BRAMs of the targeted FPGA. In the rst case, it involves higher communication cost, and in the second case it involves a large storage cost.

In 2017 Cousins et al. [START_REF] Bruce Cousins | Designing an FPGA-Accelerated Homomorphic Encryption Co-Processor[END_REF] developed data ow NTT as a primitive of a co-processor for SHE applications. The data ow approach for NTTs allows a higher throughput at the cost of duplicated twiddle factors. They chose to store the NTT twiddle factors in ROM lled up at compile time. They note that the storage cost for these twiddles is rather prohibitive.

Finally, other works can be mentioned as variants of those presented above. We have not seen any signicant improvement in the latter. Among others: Khairallah et al. [START_REF] Khairallah | Tile-Based Modular Architecture for Accelerating Homomorphic Function Evaluation on FPGA[END_REF] implement of a cached-NTT but consider RNS representation contrary to Pöppelmann et al. [START_REF] Pöppelmann | Accelerating Homomorphic Evaluation on Recongurable Hardware[END_REF], and Chen et al. [START_REF] Donglong | High-Speed Polynomial Multiplication Architecture for Ring-LWE and SHE Cryptosystems[END_REF] with memory access NWC addressing rather small degree n ∈ [256; 2048] and small modulus log 2 q < 57.

emrks on relted worksF Our review of the literature has led us to note the diculty of proposing a consistent approach with respect to all the implementation issues. Indeed, the most exible polynomial multiplication approaches allow to simplify scaling and modular reduction operations. But this only pays up to some size of parameter sets.

The NTT-based approaches for polynomial multiplication are more complex to implement. A rst issue due to the growth of n is the routing of coecients required by iterative-NTT algorithms. This explains the works of Pöppelmann et al. [START_REF] Pöppelmann | Accelerating Homomorphic Evaluation on Recongurable Hardware[END_REF] and Khairallah et al. [START_REF] Khairallah | Tile-Based Modular Architecture for Accelerating Homomorphic Function Evaluation on FPGA[END_REF] exploring cached-NTT algorithms. These algorithms are designed to take the best from a distributed computing environment.

A second issue is in the handling of twiddle factors. When both n and q get larger, the required storage capacity for these values, or the communication cost for bringing them in, is problematic as one may see in Cousins et al. [START_REF] Bruce Cousins | Designing an FPGA-Accelerated Homomorphic Encryption Co-Processor[END_REF] and Öztürk et al. [START_REF] Öztürk | Accelerating Somewhat Homomorphic Evaluation using FPGAs[END_REF][START_REF] Ozturk | A Custom Accelerator for Homomorphic Encryption Applications[END_REF] works. This explain the choice of Roy et al. [START_REF] Sinha | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF] to compute them on-the-y.

A third issue is in the handling of scale-and-round operations with NTT-based polynomial multiplications. Indeed, the NTT does not allow simple choice for q to compute these scaling operations (as seen in Pöppelmann et al. [START_REF] Pöppelmann | Accelerating Homomorphic Evaluation on Recongurable Hardware[END_REF]). The RNS representation seems to make it worse for this particular case as seen in Roy et al.'s work [START_REF] Sinha | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF]. This is because they have to get back into a classic multi-precision representation for this particular operation.

With regards to all the dierent issues, it appears to us more important to look for a exible acceleration approach than one that is too early optimized for performances. And for this, we will require to x the case-study to a specic HE scheme. Then we will look to propose an approach that takes into account, as much as possible, all the dimensions of the problem.

Conclusion and positioning of this thesis

Throughout this chapter we have taken the time to present homomorphic encryption. In particular, we have sought to describe as much as possible the elements that inuence hardware acceleration strategy for this new cryptography.

After studying the dierent generations of encryption, we focused our study on L-FHE schemes based on the RLWE problem. This choice implies that sizing parameters are dependent on the considered encrypted application. Hence, the hardware acceleration approach must take into account the large dynamic of parameters.

This was followed by a presentation of the dierent application approaches for the practical use of homomorphic cryptography. This introduces to the batching optimization and the transciphering approach that should be considered for proposal of consistent hardware acceleration strategy. In particular, the transciphering involves in practice a minimal multiplicative depth requirement.

Finally, the exploration of related works on the implementation of RLWE-based schemes present the issue of dening an implementation strategy that takes into account all the memory and computational problems. This strategy should be exible enough to improve the practicability of L-FHE while avoiding too much premature specialization that are not suitable with the growth of parameters.

In order to dene such a strategy in the light of the related works, we choose to consider a specic case study. We select for this the FV scheme as a representative of the second generation of HE scheme, being quite well-accepted by the FHE community. Therefore, our work has been focused on the hardware acceleration of FV.

Chapter 2

Denition of an acceleration strategy for the FV scheme This chapter presents our analysis of the Leveled-FHE scheme of Fan and Vercauteren (FV) towards the denition of a exible hardware acceleration strategy.

After introducing the FV scheme along with some details on security, correctness and parameterization, a rst implementation strategy is set upon the analysis of a performance proling. The proposed strategy consists in coupling the RNS representation of numbers with NTT-based polynomial ring multiplications. The feasibility of the coupled strategy is then studied, and some concomitant works completing the strategy are reminded. Our analysis of the FV scheme concludes by the orientation of our work toward the exploration of an hybrid computing approach.

The Fan and Vercauteren (FV) SHE scheme

For completeness, this section describes the RLWE-based L-FHE scheme proposed by Fan and Vercauteren in 2012. In addition to the primitives' presentation, this description is intended to give an idea of the complexity of parameter derivation. These parameters must ensure both security and correctness of the scheme.

The primitives' description is based on the original paper from Fan and Vercauteren [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF]. The discussion about corectness is based on the paper of Lepoint et al. [START_REF] Lepoint | A comparison of the homomorphic encryption schemes FV and YASHE[END_REF] which is itself based on Bos et al.'s work [START_REF] Joppe W Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF].

Preliminaries

The motivation of Fan and Vercauteren is to transpose the LWE-based scale-invariant scheme of Brakerski [START_REF] Brakerski | Fully Homomorphic Encryption Without Modulus Switching from Classical GapSVP[END_REF] to the RLWE problem. They construct their cryptosystem over the scheme from Lyubashevsky et al. [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF], presented in the previous chapter (subsection 1.3.2). They essentially adapt the scheme to make it homomorphic by dening addition and multiplication primitives.

They easily construct an addition primitive but things get more complex for multiplication. They dene a multiplication primitive in three distinct steps. First, the proper multiplication operation is a tensor product where ciphertexts are seen as vector of R 2 q . The resulting vector is then a non-canonical ciphertext in R 3 q . Second, the non-canonical ciphertext is scaled by t/q to reduce the noise level. Third, the non-canonical ciphertext is relinearized to get back to a canonical form (vector in R 2 q ). They present two solutions to perform the relinearization operation. Both rely on a "special RLWE sample" called the relinearization key masking a part of the secret (i.e. s 2 ). The rst one requires a decomposition of s 2 in a base T . The second involves another modulus g, chosen large enough to eciently mask s 2 .

The following description of FV's primitives is based on a set of parameters that are more or less related to correctness and security. The required level of security is expressed according to a parameter λ representing the minimum number of operations (2 λ ) to break the cryptosystem. We remind also that the correctness requirement is expressed according to the multiplicative depth L of the encrypted application. Finally, as introduced in Subsection 1.4.2, the choice of the plaintext modulus t is made depending on the encrypted application.

These requirements involve the derivation of the following parameters:

n: degree of the cyclotomic polynomials dening the polynomial ring R.

q: ciphertext modulus dening R q the ciphertext ring.

σ: error size of a normal distribution χ over R q .

-T : (relinearization version 1) decomposition base. For convenience, l T = log T (q) .

g: (relinearization version 2) relinearization modulus, requiring also an extended error distribution χ over R of standard deviation σ g .

Cryptosystem primitives

To avoid cluttering the reader with the mathematical denitions of FV primitives, we describe here only their functionality. Details are available in the appendix of this chapter in Section 2.6.

gore primitivesF The core primitives dene the generation of the private and public keys, and the encryption and decryption processes.

-FV.SecretKeyGen(λ): provides the private key sk ∈ R 2 .

-FV.PublicKeyGen(sk): provides the public key pk ∈ R 2 q . -FV.RelinKeyGen(sk, T or g): provides the relinearization key rlk ∈ ( R l T q or R 2 gq ).

-FV.Encrypt(pk, m): encrypts a message m ∈ R t in a ciphertext ct = ( 0 , 1 ) ∈ R 2 q .

-FV.Decrypt(sk, ct): decrypts a ciphertext ct to retrieve the encrypted message m.

ivlution primitivesF The evaluation primitives are the basic operations of encrypted computing. These are the ones that are of particular interest to us in this thesis.

-FV.Add(ct a , ct b ): performs an encrypted addition equivalent to an addition over R t .

-FV.Mul(ct a , ct b ): performs an encrypted multiplication equivalent to a multiplication over R t . This primitive performs both the tensor product and the scaling by t/q to reduce the noise. The result is a non-canonical ciphertext ct = (£ 0 ,£ 1 ,£ 2 ) ∈ R 3

q . -FV.Relin( ct, rlk): relinearizes a ciphertext to get back to a canonical form ct ∈ R 2 q . -FV.Mul&Relin(ct a , ct b , rlk): performs the multiplication and the relinearization in a single ow.

The eciency of FV primitives is mainly dependent on the parameters of the scheme. The derivation of these parameters is quite complex and relies on security and correctness requirements. In order to present the parameterization process, security assumptions and correctness requirements are presented in the following subsections. It is then followed by examples of parameter sets to get a fair idea of the parameter ranges.

Security assumptions

In this subsection are presented security matters for completeness of the presentation. In particular, the weak circular security assumption is required to construct the relinearization primitive, and the binary secret assumption reduces the noise in ciphertexts. Both assumption are essential for the eciency of the scheme. heision viF The FV scheme relies on the decision version of the RLWE problem introduced in the previous chapter. At the time of their initial work, the proof of hardness reduction of decision-RLWE was based only on cyclotomic number-elds. Consequently, the FV denition considers cyclotomic polynomial rings, which are R = Z[X]/(F (X)) with F (X) = Φ m (X) being a cyclotomic polynomial. About the modulus q, they had the knowledge that hardness does not rely on a special shape for q [START_REF] Langlois | Hardness of Decision (R)LWE for any Modulus[END_REF], but on its size with respect to n and σ.

A legitimate question is to know if the results of Peikert et al. [START_REF] Peikert | Pseudorandomness of Ring-LWE for Any Ring and Modulus[END_REF] could be applicable to the FV denition, and if it would change its structure somehow. It could makes us consider other polynomial rings that may be more convenient for practical implementations. It seems that it applies without any structural consequences. Nevertheless, as a precaution, this work won't rely on this assumption. Hence, it continues to consider FV with cyclotomic polynomial rings only.

ek irulr seurityF The particular step of relinearization transforms a non-canonical ciphertext to its canonical form. This particular step requires a partial knowledge of the square of the secret (i.e. s 2 ). Indeed, both versions of relinearization rely on masked versions of s 2 that are added as a special error term into a classical RLWE sample. They make the assumption that the scheme is still secure knowing this special RLWE sample called relinearization key. finry seretF In order to reduce the noise in ciphertext, Fan and Vercauteren rely on a security result from LWE settings and they make the assumption that it carries over RLWE settings. Namely, that the secret and the noise elements for encryption could be sampled from R 2 instead of R q . For the secret, they actually take it with a low Hamming weight h (number of non-zero coecient) to reduce the private key size, while still ensuring sucient entropy.

Correctness w.r.t. noise growth

In this subsection are presented correctness matters for the completeness of the presentation. In particular, we seek to highlight the inuence of the parameters on the noise and its growth. This is important to get a proper understanding on the complexity of FV parameterization.

For the following descriptions, we will consider these notations. We note a ciphertext and its polynomials ct = ( 0 , 1 ) ∈ R 2 q . To distinguish dierent level of noise for a ciphertext, we will note ct (l) a ciphertext at level l for the considered operation (addition or multiplication). The level is dened w.r.t. a binary tree of operations as presented in Chapter 1. We set ∆ = q t , and we note r t (q) = t(q/t -∆). Finally, there are two types of sampling in our discussion. When we refer to a particular distribution (e.g. χ), it is considered a sampling according to this distribution. In other cases, it is considered a uniform distribution over the concerned set. fsi notionsF By denition, the noise of a ciphertext encrypting a plaintext element m ∈ R t is the polynomial v such that [ 0 + 1 s] q = [∆[m] t +v] q . For a more in-depth understanding of the denition, please refer to the details of the FV primitives in the Section 2.6. Note also that the decryption function erases the noise when scaling by t/q and rounding to the nearest integer. The nal reduction modulo t gives back the message.

In order for the decryption to be correct, the noise v must not grow past a certain threshold: v ∞ < (∆ -r t (q))/2. In practice, one is interested in upper-bounding the noise growth to easily express the correctness requirement w.r.t. the application. Hence, in order to choose the parameters of the scheme, the initial noise and its growth along homomorphic operations have to be known.

Beforehand, here are some important constants involved in the noise equations:

• B key : the innite norm's upper bound of an element sampled from the uniform distribution over R 2 . In this case, B key = 1.

• B err : the innite norm's upper bound of an element sampled from the χ distribution over R q . This value is usually taken as B err = 6σ. In our case, the handled polynomial are actually sampled accordingly to some probability distribution, and so tighter bounds on δ may be found. For example, Halevi et al. in [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] take δ = 2 √ n on experimental grounds. As it is not the purpose here to rene this upper bound, δ = n is considered as a rst acceptable approximation.

After these preliminaries, the initial noise, the additive noise and the multiplicative noise are studied. snitil noiseF The initial noise is the one of a freshly encrypted ciphertext. For studying the correctness, an upper bound has to be considered. It is reminded that the public key is constructed from the secret polynomial s sampled from R 2 , a polynomial sampled from R q and an polynomial e sampled from χ: pk = ([-(s + e)] q , ).

Furthermore, when encrypting a message m, a polynomial u is sampled from R 2 and two polynomials e 1 and e 2 are sampled from χ. Hence, when evaluating the fresh ciphertext with the secret s to highlight the noise, the following equation is derived.

0 + 1 s = ∆m -(s + e)u + e 1 + (u + e 2 )s = ∆m -eu + e 1 + e 2 s = ∆m + v init Hence, v init ∞ = -eu + e 1 + e 2 s ∞ < B err (1 + 2δB key ).
We note this bound B 0 and according to the considered approximations for δ and B err it is roughly 6σ(1 + 2n).

edditive noiseF The addition of two ciphertexts ct a = ( 0 , 1 ) and ct b = ( 0 , 1 ) gives ct add = [ 0 + 0 ] q , [ 1 + 1 ] q . Considering the addition of two fresh ciphertexts, the noise level of the operands is bounded by B 0 . Evaluating the resulting ciphertext ct add with the secret s to highlight the noise gives the following upper bound:

v (1) add

∞ < 2B 0 + r t (q).
Hence, in a case of a binary tree of ciphertext additions, the noise level at depth L is upper bounded by:

v (L) add ∞ < 2 L (B 0 + r t (q)) -r t (q).
We note this bound B (L)

add and according to the considered approximations and the denition of B 0 above, it is roughly 2 L (6σ(2n + 1) + r t (q)) -r t (q). The impact of the scheme parameters (n, q, σ) over the additive noise level is relatively small. wultiplitive noiseF The noise growth after a ciphertext multiplication is slightly more complex to upper bound. The presented bound is extracted from Lepoint et al. [START_REF] Lepoint | A comparison of the homomorphic encryption schemes FV and YASHE[END_REF] which is itself based on the work from Bos et al. [START_REF] Joppe W Bos | Improved Security for a Ring-Based Fully Homomorphic Encryption Scheme[END_REF]. We consider here only the rst version of the relinearization.

Considering the multiplication of two fresh ciphertexts, it can be shown that:

v (1) mult ∞ < δt(4 + δB key )B 0 + δ 2 B key (B key + t 2 ) + δl T T B err .
It is reminded that l T = log T q and T is the decomposition basis for relinearization. In the case of a binary tree of ciphertext multiplications, the noise level at depth L is upper bounded by:

v (L) mult ∞ < C L 1 B 0 + LC L-1 1 C 2 ,
where C 1 = δt(4 + δB key ) and C 2 = δ 2 B key (B key + t 2 ) + δl T T B err .

We note this bound B (L) mul and, according to the considered approximations, C 1 is roughly t(n 2 + 4n) and C 2 roughly n 2 (1 + t 2 ) + 6nl T T σ.

Contrary to additions, the noise at multiplicative depth L is highly dependent on the scheme parameters (n, q, σ). In particular, the dominant term is in O(n 2L+3/2 ). Note that the renement of δ on experimental grounds may help to not oversize the parameters. For instance, in Halevi et al.'s work [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] the multiplicative noise bound is actually O(n L+1 ).

As the multiplicative noise is tremendously larger than the additive noise, the noise gauge of ciphertexts is usually derived from the multiplicative depth requirements. This is a fair approximation for general studies. Nevertheless, when one knows the concrete application to be performed in the encrypted domain, the noise gauge may be rened taking into account the concrete ow of homomorphic operations. From now on, we will consider the multiplicative depth L to be the generic requirement for homomorphic evaluation capability.

FV parameter sets

In previous subsections, security and correctness notions have been introduced. The discussion now proceeds to the concrete choice of parameters. The objective is to get a fair idea of the sizing parameters in order to set up a consistent acceleration strategy.

Parameter derivation aims to select the smallest parameter set (n, q, σ) that respects security and correctness requirements. For security, the literature mainly relies on estimation model for each known attack against LWE. The state-of-the-art estimator of LWE's security is maintained by Albrecht [START_REF] Albrecht | lwe-estimator, Sage Module for Estimating the Concrete Security of LWE Instances[END_REF]. For correctness, each designer relies on the correctness equations detailed in previous subsection. This is done with respect to the application/implementationrelated parameters (L, t, T ...).

elgorithm I FV's parameters selection extracted from [START_REF] Bonnoron | A Journey Towards Practical Homomorphic Encryption[END_REF]. Determines (n, q, σ) according to (λ, L, t, T ) 1: funtion ChooseParams(λ, L, t, T ) 2:

n = 0 3: do 4: n = n + 1 5: σ = 2 √ n 6: q = MinModulus(λ, L, t, T ) 7:
while SecEstimation(n, q, σ) > λ 8:

return (n, q, σ) 9: end funtion Algorithm 1 presents a simple method to choose FV's parameter sets. This algorithm is extracted from Bonnoron's PhD thesis [START_REF] Bonnoron | A Journey Towards Practical Homomorphic Encryption[END_REF] and relies on two functions: SecEstimation and MinModulus. SecEstimation uses Albrecht estimator [START_REF] Albrecht | lwe-estimator, Sage Module for Estimating the Concrete Security of LWE Instances[END_REF] and should be updated with every improvement of the underlying attack models. The choice σ = 2 √ n is motivated for security by the paper of Lyubashevsky et al. [START_REF] Lyubashevsky | On Ideal Lattices and Learning with Errors over Rings[END_REF]. MinModulus simply returns the minimal modulus for which the correctness equation for multiplicative depth L is veried. [START_REF] Aguilar Melchor | Additively Homomorphic Encryption with d -Operand Multiplications[END_REF]755673) As an example, Table 2.1 presents some parameters extracted from Bonnoron's PhD thesis obtained with the method described in Algorithm 1. The version of the LWE-estimator used for the SecEstimation function is referenced by its commit number (commit 61ac716).

The parameters are quite large and they involve basic polynomial elements of important sizes. A polynomial in R q is 8kB for the smallest parameter set and 2MB for the largest. It is noticeable that for almost all parameter sets, the modulus q does not t into a single-word with regards to standard computing architectures.

Regarding element sizes, an FV ciphertext is at least 16kB and up to 4MB for the considered parameters (to encrypt a 1-bit message). A private key is simply a polynomial in R 2 , and hence could t in 3kB for the largest considered setting. The public elements composed of the public key and the relinearization key represent 48kB up to 50MB of data, with the relinearization key of 32kB and 46MB respectively.

Concluding remarks

In this section, the FV scheme has been presented with some in-depth on security and correctness in order to understand the derivation of FV parameters. From this overview, the general problematic of L-FHE scheme is understandable. In order to evaluate large applications in the encrypted domain, the sizing parameters increase signicantly. And in addition to this issue, the on-going renement of LWE and RLWE parameters for security does not allow us to focus the implementation eorts on particular parameter sets.

After the presentation of the scheme and its parameters, the next step is to identify and quantify the performance bottlenecks of homomorphic evaluation with FV. The next section presents the proling of a typical homomorphic evaluation.

Proling and hardware implementation strategy

A straightforward application to evaluate in the encrypted domain is a transciphering keystream generation. As seen in the previous section, a FV's ciphertext is at least 10 4 times larger than the data it encrypts. Hence, the transciphering protocol described in subsection 1.4.1 appears mandatory for a generalized usage of homomorphic encryption.

In this context, the generation of homomorphic keystream elements becomes a major computational workload on the server side, which is somehow independent of the user's application. Consequently, we choose to quantify the performance bottlenecks of the FV primitives with a homomorphic keystream generation.

Experimental description

The implementation of the FV scheme from Carpov et al. [START_REF] Carpov | Armadillo: A Compilation Chain for Privacy Preserving Applications[END_REF] is used in our experiment. They implement the scheme with the second version of the relinearization primitive. This implementation is based on GMP [START_REF] Granlund | GNU MP: The GNU Multiple Precision Arithmetic Library[END_REF] for multi-precision arithmetic and FLINT [START_REF] Hart | Fast Library for Number Theory: An Introduction[END_REF] for polynomial arithmetic.

The choice of FV parameters is controlled by the Cingulata library [START_REF] Aubry | Cingulata: Homomorphic Cryptography Compiler Toolchain and Runtime Environment[END_REF] which contains the scheme implementation. At the time of the experimentation, the derivation rules followed FV's initial paper [START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF]. Consequently, the parameters are subject to security caution for the following reason. The initial derivation strategy proposed by Fan and Vercauteren is only based on Linder and Peikert analysis of the LWE security from 2011 [START_REF] Lindner | Better Key Sizes (and Attacks) for LWE-Based Encryption[END_REF]. Hence, the derivation does not take into account Albrecht work on practical hardness of the LWE from 2015 [START_REF] Albrecht | On the Concrete Hardness of Learning With Errors[END_REF] and 2017 [START_REF] Albrecht | On Dual Lattice Attacks Against Small-Secret LWE and Parameter Choices in HElib and SEAL[END_REF]. Nevertheless, the size of the parameters is sucient to give an overview of the performance bottlenecks.

The choice of the Pseudo-Random Fonction (PRF) for transciphering follows the initial proposition of Canteaut et al. [START_REF] Canteaut | Stream Ciphers: A Practical Solution for Ecient Homomorphic-Ciphertext Compression[END_REF] when they introduced stream-based transciphering (i.e.

Trivium [START_REF] De | TRIVIUM Specications. eSTREAM, ECRYPT Stream Cipher Project[END_REF]). We briey describe the Trivium cipher for a better understanding of the proling results.

Trivium has a 288-bit internal state. At initialization, the 80-bit key and a 80-bit Initialisation Vector (IV) are stored in this internal state at specic locations. At each cycle, the cipher performs a step which consists in one shift of the 288-bit shift register, and in 11 XOR and 3 AND of some specic bits.

During a rst phase lasting for 1152 steps, the key and the IV are shued into the 288-bit register. After this warm-up phase, an pseudo-random bit is outputted at each cycle.

Because Trivium multiplicative depth (AND operations) increases with the number of steps performed, the number of homomorphic keystream elements generated per warm-up is limited. In our case, we generate 57 keystream elements with a noise level L = 12 for each warm-up.

The proling of the generation of 57 homomorphic keystream elements is performed using the Valgrind tool suite [START_REF] Nethercote | building workload characterization tools with valgrind[END_REF]. 

Proling results

The results of the proling are detailed in Table 2.2. Without surprises, the warm-up phase is far more expensive than actual generation of homomorphic keystream elements as it requires 1152 warm-up steps to generate only 57 useful elements. If one increases the number of useful elements generated to make the warm-up protable, it results in less noise gauge left for the concrete encrypted application. This highlights the need for an adequate Pseudo-Random Function (PRF) for SHE transciphering protocol. This is in particular addressed in Méaux PhD. thesis [START_REF] Méaux | Hybrid Fully Homomorphic Framework[END_REF].

Our focus is more on the primitives of FV. In both warm-up and keystream generation parts, the FV.Mul&Relin primitive is the principal performance bottleneck, even with three times less calls than for FV.Add primitive. The workload of FV.Relin is also signicantly heavier than the workload of FV.Mul (53.4% Vs 42.7%). Note that FV.Relin is supposed to have twice less polynomial multiplications to perform in the second version of the relinearization (see Section 2.6). The dierence is mainly due to the coecients of the polynomials manipulated during relinearization being four times larger than those manipulated during FV.Mul. This highlights the impact of large coecients on performance bottlenecks.

Digging a bit more into these two steps, they both rely on polynomial multiplications. The underlying algorithms are dependent on the chosen library for polynomial arithmetic. In our case, the FLINT library calls two dierent approaches: one based on FFT convolution (similar to Schönhage-Strassen algorithm for large integer multiplication), and the other based on Kronecker substitution (basically reduces the problem of polynomial multiplication to a large integer multiplication). The concrete choice of algorithm during computation depends on the FLINT library's internal metrics. Nevertheless, polynomial multiplications represent 87.41 % of the total estimated cycles of the overall encrypted Trivium execution.

Our proling corroborates the literature's orientations of improving ciphertext multiplications. In particular, the underlying polynomial multiplications have a prominent inuence on the performance bottlenecks. Even with an highly optimized library like FLINT, these polynomial multiplications are problematic sue to large degree n. This highlights the requirement of accelerating polynomial multiplications in this context.

It is also noticeable that the coecient size has a signicant impact on polynomial multiplication performances, even with highly optimized library like GMP. This information raises the need for a strategy to manage large coecients (modulus q).

In addition to this proling analysis, we have already mentioned that FV parameters must grow in order to evaluate more complex applications. Hence, the need of an hardware approach that scales-up with the parameters is added to those previously expressed.

It appears to us more important to look for a exible acceleration approach than for one that is too early optimized for specic parameters. In the following subsection, the existing strategies to address the highlighted implementation problematic are discussed. It results in a rst denition of our hardware implementation strategy.

Analysis w.r.t. existing implementation strategies

The challenge in implementing the FV scheme and more generally for RLWE-based HE schemes is to address both the complexity brought by large modulus q and the complexity brought by large degree n.

In subsection 1.5.3, the Residue Number System (RNS) has been mentioned to tackle large multi-precision arithmetic due to large q. Indeed, multi-precision arithmetic is limited due to intermediate result propagation. This implies diculties to exploit parallelism leading to important implementation costs or low execution performances. The RNS brings straightforward parallelism and allows a designer to x himself the size of the RNS basis elements. Hence, the main limitations of multi-precision in our context are theoretically non-existent with RNS. Subsection 1.5.3 introduces also the existing approaches for polynomial ring multiplications. A quick summary is given here as a reminder. The naive approach to compute polynomial multiplications appears not suitable for homomorphic encryption due to the quadratic complexity over their degree O(n 2 ).

The Karatsuba and Toom-Cook polynomial multiplications have reduced asymptotic complexities (O(n 1.585 ) and O(n 1.465 )) compared to the naive approach. They maintain a large exibility in the choice of the polynomial ring R and thus allow batching of binary plaintexts.

NTT-based approaches have a more important constant complexity, which makes them rather costly to implement. Nevertheless, they have the best known asymptotic complexities O(n log n) to date. NTT-based approaches are more restrictive regarding FV's parameterization. For instance, the Negative Wrapped Convolution (NWC) reduces the choice of polynomial ring, and is not compatible with batching of binary plaintexts.

Considering the need for exibility over FV's parameters, Karatsuba or Toom-Cook seem straightforward choices. Nevertheless, this exibility comes at the cost of limited asymptotic performances. Indeed, the in-depth work of Migliore et al. [START_REF] Vincent Migliore | Hardware/Software Co-Design of an Accelerator for FV Homomorphic Encryption Scheme Using Karatsuba Algorithm[END_REF] identify this limitation. From this point of view, our choice would rather be to explore NTT-based approaches.

What nally makes us decide for the latter is the consideration that NTT architectures are really close to those for Discrete Fourier Transform (DFT). Hence, the lack of exibility of NTT is somehow compensated by years of research from the data signal processing community on ecient DFT architectures. This is not the case for Karatsuba/Toom-Cook approaches that are mainly used at software level.

Our choice is then to improve the performance of the FV scheme considering RNS representation and NTT-based polynomial multiplications. Our goal of exibility is dened with respect to the ability of accelerating FV's primitives for a large range of parameter sets.

The next section makes a more formal description of the RNS and the NTT-based polynomial multiplications considered in the context of FV. It is followed by the validation of the theoretical feasibility of the RNS/NTT coupled approach for very large parameters.

Exploration of the RNS/NTT coupled approach 2.3.1 Simplied arithmetic through RNS

The Residue Number System (RNS) is a non-positional representation of numbers according to a basis of mutually prime moduli B = q 1 , ..., q k . This representation is a direct consequence of the Chinese Remainder Theorem (CRT) which expresses the ring isomorphism Z q ∼ = 1≤i≤k Z q i . The particular terminology calls the Z q i 's the RNS channels.

The RNS representation of an element x ∈ Z q is simply obtained by computing its residues modulo each element of the RNS basis B, and by concatenating them into a set of residue {x i } q i ∈B , with x i = [x] q i . The CRT gives the transformation back from RNS representation to classical representation. Its expression requires some additional notations. For all q i in the RNS basis B, we denote q * i = q/q i ∈ Z and qi = (q * i ) -1 ∈ Z q i . Put in another way, q * i is the product of all the elements of B beside q i , and qi is the multiplicative inverse of q * i in Z q i . Hence, the reconstruction of x ∈ Z q from the x i 's is done as follow:

x =   q i ∈B x i • qi • q * i   q .
(2.1)

Under RNS representation, modular arithmetic modulo q = 1≤i≤k q i is performed with k small and independent modular operations. This essentially stands for additions and multiplications, but regarding divisions things get trickier.

For two numbers x and y in Z q , their RNS representation according to the basis B is noted (x 1 , ..., x k ) and (y 1 , ..., y k ). The computation of x + y in Z q is simply the additions of the residues in each RNS channel:

[x + y] q ⇐⇒ ([x 1 + y 1 ] q 1 , ..., [x k + y k ] q k ).
Similarly, x × y in Z q is then computed with the multiplications of the residues in each RNS channel:

[x × y] q ⇐⇒ ([x 1 × y 1 ] q 1 , ..., [x k × y k ] q k ).
Division is straightforwardly performed in RNS under the following conditions: x has to be a multiple of y, and y has a multiplicative inverse in Z q . Expressed dierently, x mod y = 0, and y is mutually prime with q. Hence the RNS representation of x/y is:

[x/y] q ⇐⇒ ([x 1 × y -1 1 ] q 1 , ..., [x k × y -1 k ] q k ), where y -1 i is the multiplicative inverse of y i in Z i .
When the conditions are not met, it is required to get more information about the division operands. A possible solution is to get back into a positional representation system like classic multi-precision or MRS (Mixed Radix System) [START_REF] Bajard | RNS bases and conversions[END_REF]. The inconvenient is that changing the representation is rather costly as it can be seen in Roy et al.'s work [START_REF] Sinha | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF].

In our context, the RNS representation is straightforwardly adapted to the polynomials used in the FV cryptosystem. The RNS representation of a polynomial in R q is simply the concatenation of the polynomials i in the R q i 's (q i ∈ B). The coecients of the polynomial i being the residues modulo q i of the coecients of the polynomial .

For all primitives requiring only polynomial additions and polynomial multiplications, the adaptation to RNS representation is straightforward. Due to scale-and-round operations, FV.Decrypt and FV.Mul need a special adaptation to make them fully compatible with the RNS.

In the literature, two works have proposed the adaptation of these primitives to RNS while avoiding expensive transformations to and from a positional representation. The rst is from Bajard, Eynard, Hasan and Zucca [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] in 2016, and the second is from Halevi, Polyakov and Shoup [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] in 2018. Here we are just interested in the feasibility of a full RNS variant for FV, but it is nevertheless important to note that it is not for free. This will be detailed in Section 2.4.

Most of the polynomial arithmetic of original FV stands in R q , so the coecient range is bounded by q. The only exception is during FV.Mul where the tensor product of the two ciphertexts is performed in R. This is due to the way the noise is scaled down by the scaleand-round operation after the tensor product. Consequently, the values taken by the resulting polynomial's coecients are bounded by 2δq 2 . From this, we can express the requirements in terms of RNS basis to compute the primitives of the full RNS variant of FV.

For operations over R q , one has to select a RNS basis B = (q i ) k i=1 and set q = k i=1 q i such that q has the appropriate size for security and correctness. Then, the operations over R q are performed through k independent operations over the R q i 's.

For the tensor product over R, one may simply choose an additional basis B = (p j ) k j=1 such that k i=1 q i × k j=1 p j is strictly larger than 2δq 2 . This implies that p = k j=1 p j must be strictly larger than 2δq. Then, the multiplication over R requires the basis extension from RNS basis B to the basis B ∪B . Once we have the representation according to the latter basis, the polynomial multiplication is performed through K = k + k independent multiplications over the R q i 's and R p j 's. The special operation of basis extension will be expanded upon in section 2.4.

The RNS representation does not improve the complexity of the polynomial multiplication, it just bounds the size of the arithmetic performed in each RNS channel while bringing in parallelism with respect to the basis sizes. The next subsection details the NTT-based approaches to compute the polynomial ring multiplications.

NTT-based polynomial ring multiplications in RNS

The Number Theoretical Transform (NTT) [START_REF] John | The Fast Fourier Transform in a Finite Field[END_REF] is comparable to a Fourier transform, but stands over a Galois Field F = GF(p d ). Let us consider a n-sequence in F noted = (a i ) n-1 i=0 .

For n a divisor of p d -1 and ω an element of order n in the multiplicative group F * , the transform of noted e = (A i ) n-1 i=0 is given by: For all i in {0, ..., n -1},

A i = n-1 j=0 a j ω ij . (2.2) 
Note that additions and multiplications are those of the Galois eld F. The inverse transform of the sequence e is given by: For all i in {0, ..., n -1},

a i = n -1 n-1 j=0 A j ω -ij . (2.3)
With n -1 (respectively ω -ij ) being the multiplicative inverse of n (respectively ω ij ) over F. A multiplicative inverse of an element g in F is the element g -1 such that g • g -1 = 1 according to F multiplication. The elements ω ij and ω -ij are called twiddle factors in this work.

Both the NTT and its inverse are eciently computed using Fast Fourier Transform (FFT) approaches. The resulting asymptotic complexity is in O(n log n). Furthermore, the NTT shares convolution properties with the FFT. It results in the denition of ecient approaches for polynomial multiplications over nite-elds.

In the case of FV and more generally in the case of RLWE-based cryptosystems, it is required to perform multiplication over R = Z[X]/(F (X)) and/or R q = Z q [X]/(F (X)). Using a RNS representation of the polynomial's coecients according to some basis of coprime moduli {q i } K i=1 , both multiplications over R and R q are performed through multiple multiplications over the R q i 's. To adapt the above NTT denition to this context, one has to consider nite-elds F i = GF (q i ), isomorphic to Z q i = Z/q i Z, over which n-points NTT are dened.

For further discussions, a n-point NTT (resp. INTT) over F i is noted NTT n,i (resp. INTT n,i ). We note ω i an element of order n in the multiplicative group F * i . It exists if and only if n = 1 mod q i (n is a divisor of q i -1).

Without taking into account the polynomial modular reduction to get the result in R q i , let us consider polynomial multiplication over F i [X]. Let i and i be polynomials in F i [X], both of degree n, and N ≥ 2n such that N divides q i -1. With being point-wise multiplications of same size's vector, the polynomial product i = i • i is computed as follow:

i = INTT N,i (NTT N,i ( i ) NTT N,i ( i )) .
(2.4) For further comparisons, this approach is called Padded Convolution (PC). In this case, one has to pad with zeros the two n-sequence i and i . Hence, the product i is exactly of degree 2n. A polynomial modular reduction modulo F (X) is then performed to get the result in R q i . See Wu's paper [START_REF] Wu | On Computation of Polynomial Modular Reduction[END_REF] for an example of polynomial reduction. Both padding with zeros and polynomial modular reduction may be avoided using special cases of NTT-based convolutions. These approaches are known as wrapped convolutions.

With F (X) = X n -1, the product over R q i is performed without zero-padding and without polynomial reduction by computing:

i = INTT n,i (NTT n,i ( i ) NTT n,i ( i )) . (2.5)
This convolution is known as Positive Wrapped Convolution (PWC).

When F (X) = X n + 1, the product over R q i is also performed without zero-padding and without polynomial reduction. But this time, the input polynomials are weighted with a vector of the powers of a n-th primitive root of -1 over the nite-eld F i . The output polynomial is also weighted but with a vector of the inverse powers of the n-th primitive root of -1. Let ψ i be such a primitive root of -1, meaning that ψ n i = q i -1 mod q i and for all k < n, ψ k i = q i -1 mod q i . The element ψ i exists over F i if and only if 2n = 1 mod q i . With

Ψ i = (ψ k i ) n-1 k=0 and Ψ -1 i = (ψ -k i ) n-1 k=0
, the product over R q i is then performed by computing:

i = Ψ -1 i INTT n,i (NTT n,i (Ψ i i ) NTT n,i (Ψ i i )) . (2.6)
This convolution is known as Negative Wrapped Convolution (NWC).

gomprison of xEsed pprohesF As previously mentioned, the eciency of NTT-based polynomial ring multiplication stands upon the eciency of Fast Fourier Transform adapted to NTT. Many dierent algorithms with asymptotic complexity of O(n log n) exist to perform such transforms. Each one of them has been proposed to address dierent size n and/or dierent computing architecture. When going for hardware implementation, one prefers to deal with transforms' size being a power of two. For simplicity, it is what we have considered in this thesis. Table 2.3 gives a high-level comparison of the dierent NTT-based approaches for multiplication over R q i . The Positive Wrapped Convolution (PWC) approach seems to be the best from a computational and memory complexity point of view. The problem of PWC is the restriction of F to X n -1 that is not compatible with the FV scheme because it is not possible to nd a cyclotomic polynomial of this form.

Comparing Padded Convolution (PC) and Negative Wrapped Convolution (NWC), the choice is in between: being able to have a ner choice over F while having to compute Table 2.3: Comparison of NTT-based approaches to perform a polynomial multiplication over R q i . Considering n being a power of 2 and NTTs computed with the radix-2 Cooley-Tuckey algorithm. The table gives the numbers of multiplications and additions over the nite-eld F i , the number of precomputed values, the restrictions over the choices of F (X) and q i , and if polynomial reduction is then required in our context. It is reminded that N ≥ 2n.

Conv.

# of

F i # of F i # of pre. Restrict. Restrict.
Poly. mult add/sub values over F (X) over q i reduc.

PC 3/2N log N + 2N 3N log N N + 1 none N = 1 mod q i yes PWC 3/2n log n + 2n 3n log n n + 1 X n -1 n = 1 mod q i no NWC
3/2n log n + 5n 3n log n 2n + 1 X n + 1 2n = 1 mod q i no polynomial reductions, or avoiding polynomial reductions while restricting F to X n + 1.

In favor of the rst solution one should consider the batching method for binary plaintext being possible. In favor of the second, it is at this time the best performing approach to compute R q i 's products. In further discussions, the two approaches are considered as viable alternatives.

As previously expressed during their descriptions, these approaches bring some restrictions over the choice of the RNS basis elements. Hence, it appears necessary to study the feasibility of the RNS/NTT-coupled approach in our context.

Feasibility of the coupled approach

The restrictions on the feasibility of our approach mainly concern the RNS basis elements. Indeed, the Padded Convolution does not restrict the choice of F (X) and therefore n. The other potential restriction on n is that F (X) has to be a cyclotomic polynomial by denition of the FV scheme. This being inherent to the FV scheme, it is not dependent on the implementation approach.

Concerning the RNS basis elements, a rst restriction is that they have to be mutually prime. A second restriction concerns their size, in order to limit the cost of the arithmetic in the RNS channel. Hence, their maximum size noted here s (max B∪B {log 2 q i )} should be less than 64 bits. For convenience, all elements should also be roughly of the same size as long as this complies with the following restrictions.

A restriction inherent to the FV scheme is that the product of the element of the rst basis B should have the appropriate size for security and correctness. Furthermore, the product of the element of the unied basis B ∪ B should be larger than 2δq 2 . This is summarized by log 2 q = B log 2 q i and log 2 (2nq 2 ) < B∪B log 2 q i , considering that δ is bounded by n.

The following restriction is brought by the NTT-based polynomial multiplication. Depending on the degree n of F (X) and on the choice of PC or NWC, the restriction is dierent. In our case it is considered that the instantiated convolution's size is always a power of 2 for simpler hardware implementations. In the case of NWC, the degree n of handled polynomials is exactly a power of 2, and the restriction is 2n = 1 mod q i . In the case of PC, the degree n of handled polynomials is not necessarily a power of 2 but the instantiated convolution is (N > 2n). Hence, the restriction is in practice equivalent to NWC's one. Consequently, the restriction on the RNS basis elements is: all element q i in B ∪B should verify 2 m = 1 mod q i , with 2 m equals to N for PC or 2n for NWC.

Finally, the last restriction is related to ecient modular arithmetic in the RNS channel. If the modular arithmetic is not relatively easy to perform, the RNS will not be benecial.

All the identied constraints on RNS basis elements are summarized here:

onstrint IX they must be mutually prime. onstrint PX they should be small (≤ 64 bits) and roughly of same size for simpler hardware implementations.

onstrint QX there must be enough of them to verify log 2 q = B log 2 q i and log 2 (2nq 2 ) < B∪B log 2 q i . onstrint RX they must all verify 2n = 1 mod q i with n a power of 2. onstrint SX it should be easy to perform modular arithmetic in the RNS channel they dene.

elgorithm P Prime selection from NFLlib [START_REF] Aguilar-Melchor | NFLlib: NTT-Based Fast Lattice Library[END_REF] snputX s: prime size, m: margin bits, n: max polynomial degree, K: number of primes. yutputX (p 0 ,...,p K-1 ) a list of advantageous primes. 

1: β = 2 s+m , i = 1, primeList=(), t = 0 2: do 3: c = β/2 m -i • 2n + 1 4: if isPrime(c) and c > (1 + 1/2 3m ) • β/(2 m + 1)
i = i + 1 9: while c > (1 + 1/2 3m ) • β/(2 m + 1) or t < K
roposed seletion of x sis elementsF With respect to all the restrictions in the choice of RNS basis elements, the prime selection algorithm from the NFLlib [START_REF] Aguilar-Melchor | NFLlib: NTT-Based Fast Lattice Library[END_REF] theoretically answers all our need. Algorithm 2 is a slightly modied version of the one proposed by Aguilar-Melchor et al. to t with our notations and context.

The argument margin bits is here to force the m most signicant bits of the selected primes to zero. This is here to allow lazy modular reduction while performing the NTT in software (see Harvey's work [START_REF] Harvey | Faster Arithmetic for Number-Theoretic Transforms[END_REF]). It could also be benecial to reduce hardware cost, but this is not explored in this thesis.

Algorithm 2 allows to tune easily the size s of the desired primes, while ensuring that selected primes verify I q i = 1 mod 2n. Hence, constraints 1, 2 and 4 are veried.

The NFLlib is also providing a dedicated Barrett's modular reduction algorithm for the selected primes. This algorithm will be described in Chapter 3. Consequently, the last constraint that must be veried is their existence in sucient number (and this for dierent prime's size s and dierent degree n).

We have implemented the Algorithm 2 using the GMP library for primality test. We then try to nd as many primes as possible for s between 18 and 62, and polynomial degree n between 2 10 and 2 17 .

I Which is equivalent to verifying 2n = 1 mod qi when qi is prime. Another result we found in this experiment is that using smaller than 30-bit primes may result in diculty to nd enough primes for very large FV parameter sets. As we want an hardware approach that scale with as much FV parameter sets as possible, we will then consider primes of size at least 30 bits.

Concluding remarks on the RNS/NTT coupled approach

This section has presented the RNS/NTT coupled approach that we consider to address the performance bottleneck brought by polynomial ring multiplications. It has rst contextualized the RNS representation and the NTT-based polynomial multiplication methods. Then the theoretical feasibility of the RNS/NTT coupled approach has been shown.

While describing the use of RNS for FV, concomitant works were mentioned to have adapted the primitives FV.Decrypt and FV.Mul&Relin. In addition to the feasibility of the full RNS variant of FV, we would like to consider the impact of these modications on the computational performances of homomorphic evaluation. In particular, the proling from [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] indicates that a non-negligible part of the performance complexity (20% to 38%) is located in RNS specic functions during FV.Mul&Relin.

The next section details the full RNS variant proposed by Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF], and discusses its proling.

The full RNS variant of FV

As presented in subsection 2.3.1, the problem of the RNS in FV's context is the dicult adaptation of the scale-and-round operations involved in the decryption and multiplication primitives. In 2016, Bajard et al. [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] proposed a rst adaptation of these steps. The modications involve a small increase in the noise growth that have an almost negligible impact on the parameter derivation. Their experimental results shows a speedup of at least 4 times for decryption and 1.7 times for multiplication compared to the schoolbook FV.

In 2018, Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] proposed a simplied full RNS variant, with a reduced computational complexity compared to Bajard et al.'s one. Their variant is slightly more noisy, but still resulting in an almost negligible impact on parameters.

This section describes with our own words, the version implemented by Halevi et al. for completeness seek. A reader already familiar with this work can skip this section.

RNS base extension and RNS scale-and-round for FV

For ecient adaptation of the FV.Decrypt and FV.Mul primitives, one has to consider some RNS specic tricks. First, a basis extension that allows to perform the ciphertext tensor product in R during the FV.Mul primitive. Second, some methods that perform the scaleand-round operations inherent to FV.Decrypt and FV.Mul primitives.

fse extensionF Let us consider an element x ∈ Z q and its RNS representation in basis B noted {x i } k i=1 . The basis extension operation computes the residue of x for a new RNS basis element p j from the initial knowledge of {x i } k i=1 . Beforehand, note that the equality from Equation 2.1, expressing the reconstruction of x from {x i } k i=1 , may be rewritten as follow:

x = k i=1 [x i qi ] q i • q * i ∈[-q 2 , q 2 ) -v • q, for some v ∈ Z k = - k 2 , k 2 . (2.7) 
We remind that q * i = q/q i ∈ Z and qi = (q * i ) -1 ∈ Z q i . To compute a new residue x j = [x] p j without going back to the positional representation of x, one has to compute the element v from Equation 2.7. The computation that gives v is:

v = k i=1 [x i qi ] q i q i . (2.8) 
This calculation is made in three steps in our case. First, compute for all i in [1, k] the y i = [x i qi ] q i (single precision modular arithmetic). Second, compute for all i in [1, k] the z i = y i /q i (oating-point arithmetic). Third, accumulate all the z i and round to the nearest integer to obtain v.

Once the element v is known, the new residue x j = [x] p j is computed following the equation:

x j = [x] p j = k i=1 y i • [q * i ] p j -v • [q] p j p j . (2.9) 
This involves only single-precision modular arithmetic with only pre-computed values, beside the y i 's and v that depend on x. The pre-computed values are:

qi , [q * i ] p j , and

[q] p j ∀ (i, j) ∈ [1, k] × [1, k ]. (2.10)
Repeat the computation of [x] p j for all the p j of a basis B to perform the desired operation of basis extension.

The basis extension operation has been presented. Now, we consider the operations of scaleand-round for decryption and for multiplication. For this, a third expression of the equality of Equation 2.1 is required:

x = i∈B x i • qi • q * i ∈[- q i q 4 , q i q 4 ) -v • q, for some v ∈ Z.
(2.11)

The scale-and-round operations involved in decryption and multiplication primitives are of the form: y = t/q • x . Depending on the case, the operand x and the required results are dierent. This results in two dierent situations that are treated in a similar way but involving dierent pre-computed values.

leEndEround opertion for deryptionF For the decryption primitive, the element

x is in the interval [-q/2, q/2) and the desired y should be returned modulo t. Hence, by straightforwardly propagating the t/q factor in Equation 2.11, the RNS scaleand-round operation may be expressed as follow:

y = t q • x t = k i=1 x i • ( qi • t q i ) t .
(2.12)

Halevi et al. propose to pre-compute the qi t/q i and decompose them into their integer and fractional parts:

qi t q i = ω i + θ i , with ω i ∈ Z t and θ i ∈ - 1 2 , 1 2 . (2.13) 
Consequently, the scale-and-round operation during decryption is simply performed by:

y = [w + v] t , with w = k i=1 x i ω i t and v = k i=1
x i θ i .

(2.14) leEndEround opertion for multiplitionF In the multiplication primitive, the element x is in [-qp/2, qp/2) and the desired y should be returned modulo q. This requires the denition of extra terms related to Q = qp. For each q i ∈ B,

Q * i = Q/q i = q * i p and Qi = [(Q * i ) -1 ] q i . Similarly, for each p j ∈ B , Q * j = Q/p j = qp * j and Q j = [(Q * j ) -1 ] p j .
Hence, by straightforwardly propagating the t/q factor in Equation 2.11 we have the following:

t q • x =   k i=1 x i • Qi pt q i + k j=1 x j • Q i p * j t   -v pt. (2.15)
Furthermore, this expression is nicely simplied considering it modulo each element p j of the RNS basis B , namely:

t q • x p j = k i=1 x i • Qi pt q i + x j • Q j p * j t p j p j . ( 2 

.16)

Hence, they propose to pre-compute in advance the ( Qi pt/q i )'s and the Q j p * j t p j 's. Similarly than for decryption, the ( Qi pt/q i )'s are decomposed them into their integer and fractional parts (Ω i + Θ i ). The integer parts are reduced modulo each p j ∈ B and the fractional parts are directly stored as oating-points. Namely, all the precomputed values are:

Ω i,j = [Ω i ] p j , Θ i , Λ j = Q j p * j t p j ∀ (i, j) ∈ [1, k] × [1, k ].
(2.17)

During multiplication, the RNS scale-and-round operation gives its results back in the basis B (i.e. modulo p rather than modulo q). Namely, for each element p j ∈ B :

y j = [V + W j ] p j , with V = k i=1 x i Θ i and W j = Λ j x j + k i=1 x i Ω i,j p j . ( 2 

.18)

To get back to Z q , a basis change is performed by executing the basis extension operation from B to B followed by a deletion of the residue of the basis B . This nal step requires the pre-computation of the following values: pj , [p * j ] q i , and

[p] q i ∀ (i, j) ∈ [1, k] × [1, k ]. (2.19)
All the RNS specic operations to adapt the FV primitives have been presented. The choice of Halevi et al. to use oating-point arithmetic at some point implies some possible approximation errors. In particular, to guarantee that their decryption procedure is correct considering these errors, they change the correctness requirement to: v ∞ < (∆ -r t (q))/4. This is equivalent to considering one bit of additional noise in the ciphertext.

From an implementation point-of-view, it is important to note that, in the case of a polynomial, these operations must be performed for each coecient. Hence, their is a highlevel of parallelism accessible with respect to n. For large RNS basis, an additional level of parallelism may be achieve with respect to k and k . But it is more limited than the previous one.

A last optimization of the full RNS variants of FV concerns a smart adaption of the relinearization primitive. This optimization, already introduced by Bajard et al., is briey presented in next subsection.

Additional optimization

The optimization consists in modifying the relinearization key of FV to smoothly adapt to RNS the rst version of the relinearization primitive. Namely, rather than using the decomposition basis T to mask the secret s 2 (i.e. T i s 2 ), Halevi et al. propose to mask it with s 2 i = s 2 qi q * i (this implies that [s 2 i ] q j = [s 2 ] q j if j = i and 0 otherwise). Consequently, the new primitive is: FV.RelinKeyGen(sk, B):

for each q i ∈ B sample i uniformly from R q , e i from χ. Compute r 0,i = -( i • s + e i ) + s 2 qi q * i q and r 1,i = i . Return rlk = {(r 0,1 , r 0,2 , ..., r 0,k ), (r 1,1 , r 1,2 , ..., r 1,k )}.

After the multiplication primitive the polynomials of the non-canonical ciphertext ( ct = (£ 0 ,£ 1 ,£ 2 )) are in RNS representation according to the basis B. Consequently, if we take £ 2,i = [£ 2 ] q i the new relinearization is simply:

FV.Relin( ct, rlk): Compute ¢ 2,0 = k i=1 r 0,i £ 2,i q and ¢ 2,1 = k i=1 r 1,i £ 2,i q . Return ct mul = [£ 0 + ¢ 2,0 ] q , [£ 1 + ¢ 2,1 ] q .
This concludes the adaptation of the FV scheme to the RNS representation. More information on the techniques and their consequences on noise growth can be found in the original papers. In the next subsection are presented the impact of these adaptations over the proling of FV homomorphic evaluation complexity.

Proling

In their paper, Halevi et al. present a proling of their full RNS variant. In particular some timing for FV.Mul and FV.Relin and FV.Dec. The latter will not be presented because we are mainly interested in the FV primitives for homomorphic operations. In particular, they detail the proling of the FV.Mul primitive that include their main contributions. The proling expresses the computation workload with respect to basis extensions, scale-and-rounds and NTTs for Residue Polynomial Multiplications (RPMs). In our case, we present the proling from a slightly dierent angle. This is to highlight the part spent in RNS specic functions and the time spent to perform the equivalent of RPM. Hence, this requires some reasonable estimations to get the proling presented in Table 2.4. Namely, it is estimated that 95% of the relinearization is spent performing the equivalent of RPM operations. In addition, it is considered that the internal products for RPM calculations represent 80% of the miscellaneous operations of their FV.Mul's detailed proling.

This proling shows that the main performance bottleneck of the FV.Mul&Relin primitive is the RPM operations which represent more than 60% of the computation workload. Nevertheless, compared to our rst proling in section 2.2, the relative time spent in the polynomial multiplications is reduced. Indeed, the additional operations to make the full RNS variant possible have also a non-negligible complexity.

Consequently, both RNS specic operations and Residue Polynomial Multiplications must be accelerated for an ecient implementation of the full RNS variants of the FV scheme.

Conclusion

In this chapter, we have detailed our analysis of the FV scheme towards its hardware acceleration. In a rst time, we have presented its primitives and detailed the complexity of deriving FV parameters. In particular, the wide range of sizing parameters is inherently linked with the general use of the FV scheme.

In a second time, a proling of a typical homomorphic evaluation has highlighted the computational complexity brought by large polynomial degree n and large modulus q. This is particularly the case during polynomial multiplications. Based on an analysis of the related works, we have chosen to explore the feasibility of the coupled approach RNS/NTT for the acceleration of FV.

The third section described more precisely the use of RNS representation and NTT-based polynomial multiplications in our context. It ends with a theoretical validation of the coupled approach according to all the prerequisites imposed by RNS and NTT.

The adaptation of the FV.Decrypt and the FV.Mul primitives to RNS brought by Bajard et al. and further simplied by Halevi et al. was described in the fourth section. The section concluded on the proling showing the computational complexity partition of the full RNS FV.Mul&Relin primitive.

After this in-depth analysis, our acceleration strategy is dened by accelerating the two types of operations identied in the fourth section. Firstly, Residue Polynomial Multiplications (RPMs), and secondly, basis extension and scale-and-round operations. Due to computational complexity partition, our main focus is on RPMs.

As seen in Subsection 2.3.2, RPM operations may be performed through padded convolutions followed by polynomial reductions or through negative wrapped convolutions. In both case, the underlying NTTs require some precomputed values being dependent on the current nite-eld (RNS channel). For convenience, we call a twiddle factor set the concatenation of the twiddle factors for a specic nite-eld.

NTT operations are rather dicult to parallelize due to complex data access patterns making large NTT unfriendly for generic SIMD architectures. Hence, our choice is to explore dedicated hardware for accelerating these operations.

Our strategy is then to design basic blocks for the computation of NTT and the on-the-y generation and usage of the twiddle factor sets. This is motivated by implementation issues highlighted by related works (more detailed in Chapter 3).

This strategy requires to address two main design issues. The rst one is to be able to eciently generate multi-eld NTT circuits. Namely, NTT circuits that are able to perform transforms on dierent nite-elds without signicant impact on performances. The second is to design a generator for the twiddle-factor sets of the dierent RNS channels without heavy consequences on hardware cost and on NTT circuit's throughput. In this thesis, we present a solution for each of the design issue. Chapter 3 presents our exploration of automatic generation of multi-eld NTT circuits. Chapter 4 presents our generic architecture for the on-the-y generation of twiddle factor sets.

Based on these contributions, the last chapter of this manuscript proposes a system level approach for the hardware acceleration of FV.

Annexes: details on FV primitives

We remind here the principal parameters of the FV schemes λ: security parameter. This parameter inuences the choice of others with respect to theoretical and empirical hardness of the decision-RLWE problem.

-L: multiplicative depth. This parameter inuences the choice of others with respect to correctness property.

n: degree of the cyclotomic polynomials dening R.

t: plaintext modulus dening R t the plaintext ring.

q: ciphertext modulus dening R q the ciphertext ring.

σ: error size of a normal distribution χ over R q .

-T : decomposition base (relinearization version 1). For convenience, l T = log T (q) . g: relinearization modulus (relinearization version 2). σ g : error size of a normal distribution χ over R (relinearization version 2). gore primitivesF The core primitives dene the generation of the private and public keys, and the encryption and decryption processes.

• FV.SecretKeyGen(λ): sample s from R 2 with sucient entropy with respect to security parameter λ, and output sk = s.

• FV.PublicKeyGen(sk): set s = sk, sample uniformly from R q , e from χ and output pk = (p 0 , p 1 ) = ([-( • s + e)] q , ).

• FV.RelinKeyGen: ! V1 (sk, T ): set s = sk.

For i ∈ [0; l T ] sample i uniformly from R q , e i from χ. Compute r 0,i = -( i • s + e i ) + T i • s 2 q and r 1,i = i . Return rlk1 = {(r 0,0 , r 0,1 , ..., r 0,l T ), (r 1,0 , r 1,1 , ..., r 1,l T )}. ! V2 (sk, g): set s = sk, and sample uniformly from R gq , e from χ .

Compute r 0 = [-( • s + e) + g • s 2 ] gq and r 1 = .

Return rlk2 = (r 0 , r 1 ).

• FV.Encrypt(pk, m): for a plaintext element m ∈ R t , let (p 0 , p 1 ) = pk, and ∆ = q t . Sample u uniformly from R 2 , e 1 , e 2 from χ.

Compute 0 = [p 0 • u + e 1 + ∆ • m] q and 1 = [p 1 • u + e 2 ] q . Return ct = ( 0 , 1 ) ∈ R 2 q .
• FV.Decrypt(sk, ct): set s = sk, ( 0 , 1 ) = ct and return m

= t q • [ 0 + 1 • s] q t .
ivlution primitivesF These primitives present basic operations for encrypted-computing.

• FV.Add(ct a , ct b ): set ( 0 , 1 ) = ct a and ( 0 , 1 ) = ct b . Compute 0 = [ 0 + 0 ] q and 1 = [ 1 + 1 ] q .

Return ct add = ( 0 , 1 ).

• FV.Mul(ct a , ct b ): set ( 0 , 1 ) = ct a and ( 0 , 1 ) = ct b . Compute £ 0 = t q ( 0 0 ) q , £ 1 = t q ( 0 1 + 1 0 ) q and £ 2 = t q ( 1 1 ) q .

Return ct = (£ 0 ,£ 1 ,£ 2 ).

• FV.Relin: ! V1( ct, rlk1): set (£ 0 ,£ 1 ,£ 2 ) = ct, and {(r 0,0 , ..., r 0,l T ), (r 1,0 , ..., r 1,l T )} = rlk. Decompose £ 2 in base T : (£ 2,0 , ..., £ 2,l T ).

Compute ¢ 2,0 = l T i=0 r 0,i £ 2,i q and ¢ 2,1 = l T i=0 r 1,i £ 2,i q . Return ct mul = [£ 0 + ¢ 2,0 ] q , [£ 1 + ¢ 2,1 ] q . ! V2( ct, rlk2): set (£ 0 ,£ 1 ,£ 2 ) = ct, and (r 0 , r 1 ) = rlk. Compute ¢ 2,0 = 1 g (£ 2 r 0 ) q and ¢ 2,1 = 1 g (£ 2 r 1 ) q . Return ct mul = [£ 0 + ¢ 2,0 ] q , [£ 1 + ¢ 2,1 ] q .
• FV.Mul&Relin(ct a , ct b , rlk).

Step 1: ct = FV.Mul(ct a , ct b ).

Step 2: Return FV.Relin( ct, rlk).
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Chapter 3

Automatic generation of multi-eld NTT architectures

This chapter presents a contribution for the denition of ecient basic blocks for Residue Polynomial Multiplications (RPMs) in the context of homomorphic cryptography. The problematic addressed here is the on-the-y change of nite-eld for a data-ow NTT circuit. First, related works on hardware design for polynomial multiplication using the coupled approach RNS/NTT are discussed. Thus, our strategy will be motivated with respect to the implementation issues. Second, we highlight the capability of design space exploration of the SPIRAL DFT generator that is inherent to our strategy. Then our proposal of data-ow multi-eld NTT is detailed, while showing the feasibility of the automatic generation of such designs. Finally, the hardware cost and the benets of our proposal are presented.

Related works and strategy motivation

Before describing the related works, we remind that the pre-computed values for NTT and INTT are indierently called twiddle factors. This twiddle factors are dependent on the niteeld over which the NTT is dened, and a twiddle factor set refers to the twiddle factors of a specic nite-eld. Now the terminology has been reminded, the related works on the implementation of RNS and NTT-based polynomial multiplications are presented.

In [START_REF] Öztürk | Accelerating Somewhat Homomorphic Evaluation using FPGAs[END_REF], Öztürk et al. proposed a RNS and NTT based polynomial multiplication. As their architecture is not pipelined, it cannot start a new residue polynomial multiplication before the previous one nishes. Its latency is then paid numerous time for the computation of a polynomial multiplication over R (as much as the size of the extended RNS basis). Furthermore, Öztürk et al. chose to pre-compute the dierent NTT twiddle factor sets on the host side, and send them along with the polynomial coecients through the bus on which their accelerator is connected. Doing so, the communication cost between the host and the accelerator is doubled.

Cousins et al. [START_REF] Bruce Cousins | Designing an FPGA-Accelerated Homomorphic Encryption Co-Processor[END_REF] developed an Homomorphic Encryption Processing Unit to accelerate the LTV scheme, which is not scale-invariant like FV, but also has its bottleneck complexity in polynomial ring multiplications. They implemented a pipelined NTT as a primitive of the HEPU, and contrary to [START_REF] Öztürk | Accelerating Somewhat Homomorphic Evaluation using FPGAs[END_REF], they chose to store the NTT twiddle factors in ROM lled up at compile time. As they point out, the storage capacity required for the dierent twiddle factor sets, one for each element p i of the modulus chain, is quite important and uses a large part of the available BRAM on the targeted FPGA. This problem arises also for the FV scheme when polynomials are handled under RNS representation of their coecients.

Sinha Roy et al. [START_REF] Sinha | Modular Hardware Architecture for Somewhat Homomorphic Function Evaluation[END_REF] present a co-processor (HE-processor) implementing building block operations for RLWE-based schemes, and in particular NTT and RNS primitives. They implement a memory access iterative NTT with improved routing of coecients. They store in ROM only a subset of each required twiddle factor set and compute the others when needed. This results in a reduced memory requirement (O(k log 2 (n))) compared to [START_REF] Bruce Cousins | Designing an FPGA-Accelerated Homomorphic Encryption Co-Processor[END_REF] (O(kn)). Nevertheless, they note that the computation of the other twiddles inserts some bubbles into the NTT computation (up to ∼ 10, 000 bubbles for n = 2 16 ).

In view of implementation issues expressed in the literature, we choose to consider multield NTTs with on-the-y computation of the twiddle factor sets. Thus, it requires the design of multi-eld NTT circuits and of generators of twiddle factor sets. In this chapter we consider the former, and the latter is the subject of Chapter 4.

As already expressed, a NTT is similar to a Discrete Fourier Transform (DFT) in which complex arithmetic is replaced with modular arithmetic. With this in mind, our work explores the generalization of the hardware backend of the SPIRAL tool, from Milder et al. [START_REF] Milder | Computer Generation of Hardware for Linear Digital Signal Processing Transforms[END_REF], to generate NTT designs in addition to DFT designs. Regarding time constraints, only data-ow architectures for NTT are considered in this thesis. Nevertheless, further work could explore the adaptation of our rst solution to other type of DFT architecture generated by SPIRAL.

From SPIRAL DFT towards multi-eld NTT designs

The SPIRAL project addresses the automation in software and hardware development for data signal processing. Thus, the DFT structure has already been explored in details forming an ideal starting point to generalize towards NTT implementations. For example, in his PhD thesis work, LingChuan Meng [START_REF] Meng | Automatic Library Generation and Performance Tuning for Modular Polynomial Multiplication[END_REF] explores the automatically generating tuned software libraries for modular polynomial multiplication. However, a similar extension to SPIRAL's hardware generation capability has not been explored; for example [START_REF] Milder | Computer Generation of Hardware for Linear Digital Signal Processing Transforms[END_REF] focuses using SPIRAL to generate hardware for linear DSP transforms; while [START_REF] Zuluaga | Streaming Sorting Networks[END_REF] generates hardware for sorting networks.

The perspective is to be able to express high level directives to an NTT design generator, allowing a system designer to tune the performances of its NTT according to application and system requirements. Tuned parameters could be related to lattice-based cryptosystem parameters, like NTT size n and manipulated word size s, or part of the implementation parameters like architecture type, radix size r or streaming width w.

During this thesis only fully-streaming DFT architecture has been studied and adapted to multiled NTT architectures. Due to time constraints, we focused on the architecture type that has the highest throughput performances, as it is what is required by our application context.

Initial streaming DFT structure

This subsection presents the initial structure of streaming DFT transforms generated by the SPIRAL hardware back-end. In the same time, an overview of the SPIRAL tool is given. This is to consider the potential automation capability it brings in our approach. Most of descriptions and examples here are reformulations and contextualizations of Milder's papers [START_REF] Milder | Discrete Fourier Transform Compiler: From Mathematical Representation to Ecient Hardware[END_REF][START_REF] Milder | Computer Generation of Hardware for Linear Digital Signal Processing Transforms[END_REF].

wtrix formuleF SPIRAL purpose is the automation of optimized software and hardware for data signal processing transforms. The starting point of an optimization is a dense I matrix representation of the considered transform. Namely, a transform of size n is represented by a matrix n×n (A n ) and the transformation of a n-sized vector x is simply the product y = A n •x. For example, the discrete Fourier transform on n-point is dened as y = DFT n • x. In this example, x and y are n-point complex vectors and DFT n = ω kl n 0≤k,l<n , with ω n = e -2iπ/n . Staying in a dense representation of the transform makes us compute O(n 2 ) arithmetic operations to obtain the transformed vector y. Hopefully, fast algorithms exist for many transforms, and the computation of y could be reduced to a quasi-linear arithmetic cost (O(n log n)). The backbone behind SPIRAL optimization methods is the Kronecker's formalism that expresses fast algorithms as some particular decompositions of the dense matrices into a product of structured sparse matrices.

In SPIRAL, this decomposition is performed with the help of a formal language that represents algorithms with matrix formulae. Using the Backus-Naur formalism to describe the language, a matrix formula is simply dened as follow:

matrix n ::= matrix n • • • matrix n | i matrix n | I k ⊗ matrix m , where n = km | base n base n ::= D n = diag(d 0 , ..., d n-1 ) | P n | A n
The rst two lines state that a matrix formula can be decomposed into a product or an iterative product of matrix formulae. The second line I k ⊗ matrix m expresses the decomposition of the initial matrix n into k parallel instances of matrix m (n = km). The matrix I k is the matrix identity of size k × k, and ⊗ is the Kronecker product. Finally, a matrix formula may simply refer to a generic terminal elements like a diagonal matrix D n , a permutation matrix P n , or some computational basic blocks matrix A n .

For instance, the DFT transform of size 4 could be decomposed into DFTs of size 2 following the algorithm of Cooley-Tukey:

X = DFT 4 • x = (P 4 • (I 2 ⊗ DFT 2 ) • P 4 • D 4 • (I 2 ⊗ DFT 2 ) • P 4 ) • x
For a more detailed presentation of the formal language, the underlying permutations and/or example of concrete uses, please refer to [START_REF] Milder | Computer Generation of Hardware for Linear Digital Signal Processing Transforms[END_REF].

The formal language is used by SPIRAL to rewrite a considered transform by selecting and combining some known fast algorithms under platform and/or user requirements. In the case of DFT, SPIRAL uses the Kronecker representations of Pease FFT, mixed-radix FFT I Dense matrices are dened in opposition to sparse matrices which have most of their coecients equal to zero.

and Bluestein FFT for its rewriting process. The resulting matrix formula then describes a specically optimized fast algorithm for the considered transform.

From an hardware implementation point of view, the matrix formula represents a theoretical data path computing the transform. To instantiate this data path, a correspondence between terminal elements and some hardware basic blocks is theoretically enough. Nevertheless, to simply make this correspondence mostly results in unfeasible data path for large sized problems. That is why the tool renes the matrix formulae with additional information. rrdwre formuleF The extended capability of SPIRAL brought by Milder et al. enriches the matrix formulae with hardware related information. This allows the propagation of hardware implementation decisions into the matrix formulae. An enriched formula is called a hardware formula.

Basically, this enrichment simply adds the information of sequential reuse of basic RTL blocks. Milder et al. denes two types of sequential reuse: streaming and iterative reuses. The streaming reuse enriches Kronecker product formulae in order to add the information of reuse in time of some basic blocks, rather than full parallelism in space. Figure 3.1 presents this streaming reuse principle. A Kronecker product may be enriched with full, partial or no streaming reuse decisions.

size (m × n) vector { { n A n { n A n ... ...
The iterative reuse enriches an iterative product on identical formulae in order to express reuse of the same data path multiple times. This is implemented in hardware with feedback mechanisms. As seen in Figure 3.2 an iterative product formula may be enriched with full, partial or no iterative reuse decisions. Finally, iterative and streaming reuse may be combined to enrich more complex matrix formulae. An example of mixed sequential reuse is given in Figure 3.3.

These design decisions have consequences in terms of resource utilization, throughput and latency, which are propagated from terminal basic blocks up to the overall transform formula. As a consequence, the SPIRAL tool is able to explore multiple implementation solutions, and choose one meeting some system level requirements.

The presentation of the formula rewriting processes highlights the design space exploration capability of the SPIRAL hardware backend. Its use to generate NTT designs is seen as a guarantee of exibility in our application context. In particular, it would be particularly interesting to be able to generate NTTs of dierent sizes without signicant additional development costs.

Our discussion is now mainly focused on the DFT basic blocks used by SPIRAL. The purpose is to dene the required basic blocks for the generation of multi-eld NTT.

hp si loksF The SPIRAL DFT hardware generation starts its formula rewriting processes from the Pease FFT algorithm.

DFT r t = t-1 l=0 L r t r (I r t-1 ⊗ DFT r )C (l) r t P r t r (3.1)
The Kronecker formulation of the decimation in frequency Pease FFT algorithm is presented in equation 3.1. The algorithm parameter r is the radix basis of the transform. This parameter has an inuence on the possible size of the DFT (it should be a power of r, namely n = r t ). The algorithm is then decomposed in t number of stages (t = log r (n)), performed after an initial permutation P r t r (the operation's order is from right to left). The matrices C (l) r t are diagonal matrices that represent multiplications with the twiddle factors. Exponent l expresses that these matrices are dependent of the considered stages l ∈ 0, ..., t -1, in contrary to the matrices L r t r that are only dependent on r and t. The matrix DFT r is a basic bloc implementing an r-point DFT. The matrices L r t r are permutation matrices that prepare the stage's outputs for the next stage.

Both streaming and iterative reuse can be applied on this matrix formula. The kronecker product I r t-1 ⊗ DFT r could be streamingly reused with any width w such that w is a multiple of r and divides r t-1 . The iterative t-1 l=0 (...) could be iteratively reused with depth d that divides t. For the resulting DFT hardware formulae to be transformed into proper HDL description, the SPIRAL hardware backend should be able to generate some generic basic blocks. For the generation of streaming permutations appeared after streaming reuse rewriting, Püschel et al. [START_REF] Püschel | Permuting Streaming Data Using RAMs[END_REF] proposed a solution that is used in SPIRAL.

Regarding the diagonal matrices C (l) r t the generation is simply done by instantiating a multiplier on each streaming way that requires multiplication with twiddle factors dierent from one. Due to streaming reuse rewriting, some instantiated multipliers may have to access dierent twiddle factors. Hence, a lookup table storing all required twiddle factors is instantiated along with the multiplier.

Finally, the DFT r basic blocks are just the decimation in frequency version of the radix-r butteries.

From the previous presentation, two observations are important for our objective. First, besides the basic matrix DFT r and the diagonal matrices C (l) r t , nothing is under the inuence of arithmetic and only reects the structure of the algorithm. Second, SPIRAL has full knowledge of which twiddle factors are involved in each stage of the DFT circuit.

Hence, to generate NTT rather than DFT, we simply have to replace the complex arithmetic by modular arithmetic, and replace complex twiddle factors in lookup table by NTT twiddle factors. No structural change of the algorithm is required. In the next subsection, the modular arithmetic that we choose to implement is presented.

Finite-eld arithmetic

The previous subsection has presented the DFT generation capability of the SPIRAL hardware backend. It was pointed out that it is sucient to replace complex arithmetic by modular arithmetic and complex twiddle factors by NTT twiddle factors to generate NTTs in place of DFTs.

In this section we present the modular arithmetic operators required to perform an NTT over a nite-eld. The nite-elds considered are the Z p i = Z/p i Z, with p i some s-bit primes over which the n-point NTT is dened.

The modular arithmetic is dependent of the modulus p i considered. We remind that the modulus p i are the RNS basis element in our context. Consequently, they are chosen using the NFLlib prime selection algorithm presented in Chapter 2. Even if we know the dynamic range of the input operand, the modular reduction is not necessarily trivially performed after a multiplication. As discussed in Chapter 2, the modulus p i is selected using the prime selection algorithm from NFLlib [START_REF] Aguilar-Melchor | NFLlib: NTT-Based Fast Lattice Library[END_REF] (see Algorithm 2). This library gives also a Barrett-like reduction algorithm that takes advantage of the prime characteristics. Consequently, this reduction has been chosen to implement a basic block for modular multiplication.

elgorithm Q Modular multiplication from NFLlib [START_REF] Aguilar-Melchor | NFLlib: NTT-Based Fast Lattice Library[END_REF] snputX a, b ∈ [0 , p i ), p i selected with Algorithm 2,

v i = β 2 /p i mod β (β = 2 s+m ) yutputX r = a × b mod p i 1: q ← v i • u 1 + 2 m • u mod β 2 2: r ← u -q/β • p i mod β 3: if r ≥ p i then 4: r ← r -p 5: end ifreturn r
The modied Barrett reduction from NFLlib is presented in Algorithm 3. It requires a (s + m)-bit reciprocal related to the modulus p i (v i = 2 2(s+m) /p i mod 2 (s+m) . Both the prime p i and the reciprocal v i are considered as input operands in the denition of a generic modular multiplier basic block. Due to time constraint, we have implemented the modular multiplication rather straightforwardly. Some additional works could explore the optimization of this design to reduce its latency and its hardware cost. Any improvement on the modular multiplication block could be benecial for the overall NTT design. Now that we have presented the modular arithmetic basic blocks, the last requirement for multi-eld NTT generation is to handle multiple NTT twiddle factor sets. A solution to this design problematic is presented in next subsection.

p i v i c u = a⨯b v i ⨯u 1 (u = u 1 β+u 0 ) q = v i u 1 +2 m u mod β 2 r = u-⌊q/β⌋p i mod β ⌊q/β⌋⨯p i c = (r<p i )? r : r-p i L MUL L MUL L MUL 1 1 1

Modication of twiddle factors handling

For DFT hardware generation, SPIRAL pre-computes the twiddle factors and stores them in the dierent lookup tables (ROM) at compile time. This approach is suitable for DFT as the twiddle factors do not change over time. Similarly, if one has only a single nite-eld on which performing the NTT, this solution is the most suitable. But in our case, the RNS representation imposes us to nd a way to reprogram these lookup tables without major impact on performances. eminder on twiddle ftor setsF In the case of DFT, the twiddle factors are the rst n/2 powers of the n-th primitive root of unity over C (i.e. e (2kπ/n) 0≤k<n/2 ). Similarly for NTT, the twiddle factors are the powers of a n-th primitive root over the nite-eld Z p i . As a reminder, the denition of a n-th primitive root over Z p i is an element ω i such that ω n i = 1 mod p i and ω k i = 1 mod p i for 1 ≤ k < n. Hence the twiddle factors required for an NTT over the nite eld Z p i are Ω i = ω k i mod p i 0≤k<n/2 . For inverse DFT, the twiddle factors are the multiplicative inverse of those for forward DFT (i.e. e -(2kπ/n) 0≤k<n/2 ). Similarly, the twiddle factors for inverse NTT are

Ω -1 i = ω -k i mod p i 0≤k<n/2
.

Finally, the n-point inverse DFT requires the precomputed multiplicative inverse of n over the complexes in order to scale down the outputted vector. The inverse NTT also requires this multiplicative inverse of n over the considered nite-eld noted n -1 i = n -1 mod p i . For simplicity, this is implicit in the following discussions.

Hence, beside the nal scaling, the forward NTTs and the inverse NTT share the same architecture. The only dierence is in the twiddle sets, namely Ω i for the forward one and Ω -1 i for the inverse one.

The distribution of the twiddle factor sets in the dierent lookup tables is imposed by the structure of the Pease FFT algorithm. Each stage of the resulting NTT circuit may embed up to w/2 multipliers and memory elements to store the required twiddles for this stage. As an illustration, Figure 3.7 presents the composition of the dierent lookup table for a fully-streaming 16-point NTT with a streaming width of 4 elements per cycle. The other nite-led specic values are colored in blue. Namely, the prime p i and the reciprocal v i that are required for the arithmetic operations.
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The distribution of the twiddle factors accross the NTT circuit is known by the SPIRAL hardware generator. Hence, rather than implementing the memory elements directly in the data path, our proposed solution disassociates the twiddle memory elements of their stages, making them programmable, and handling them as a bank of memory elements. From now on, a twiddle bank refers to the concatenation of all twiddle memory elements for a specic RNS channel. In addition to the twiddle factors, a twiddle bank will also store the other nite-eld specic values, namely the prime p i and its reciprocal v i . Each twiddle bank stores a twiddle factor set and a (p i , v i ) pair of one RNS channel at a time, and could be reprogrammed with a new set when required.

To not insert bubbles during the reprogramming of a twiddle bank, our solution implements a circular access and reprogramming of G dierent twiddle banks. This number G is related to the maximum number of simultaneous RNS channels in the NTT data path. If we note T = n/w the throughput of the NTT data path and lat N T T its latency, hence the architecture instantiates G = lat N T T /T + 1 of them.

The main modication for the generated NTT data path is that it has to consider all the nite-eld specic values as inputs. The resulting multi-eld design is presented in the next section.

Proposition of a multi-eld NTT design

The section presents our proposed multi-eld NTT architecture by means of cyclical access and reprogramming of twiddle banks. As presented in section 5.3 the generation of the dierent twiddle factor sets is made outside of the NTT circuit.

A global design overview is given in a rst subsection, introducing in particular the distinction between the twiddle path and the data path. The data path characteristics are detailed in a second subsection, and the twiddle path's ones in a third subsection.

Design overview

The proposed solution makes the distinction between the data path and the twiddle path. The data path implements the NTT algorithm itself, and the twiddle path handles the dierent twiddle factor sets. This is illustrated in Figure 3 To achieve a proper functioning of the overall design, a twiddle factor sets must be given to the twiddle path some time before the corresponding NTT computation start. This is to take into account the programming of the twiddle factor sets into a twiddle bank. The data path is then responsible of sending synchronization signals towards the twiddle paths. The twiddle path consequently feeds the data path with the appropriate twiddle factors.

The data path is generated by SPIRAL to which has been added the basic NTT blocks by specifying the modular arithmetic operators presented in previous section. For a proof of concept solution of the multi-eld NTT generation, the twiddle path is generated by a python script.

The next subsections present in details the SPIRAL generated data path and its characteristics, and how the twiddle path is generated.

Data path

The data path simply performs the permutations and the arithmetic operations to compute the NTT. The computation is performed in a single ow from the rst stage to the last stage.

Each stage of the NTT data path is responsible of sending synchronization signals to the twiddle path when it starts its computation over a dierent nite-eld. Consequently, the twiddle path connects the concerned stage with the proper twiddle bank storing the required twiddles and pre-computed values. multiE(eld x stgeF A NTT stage consider all the nite-eld specic values as inputs.

Each step has dierent requirements in terms of expected nite-eld values, but the principle of access to them is always the same. For the proper generation of the twiddle path, the nite-eld values expected by each stage of the NTT must be be known. Hence, when SPIRAL generates the NTT data path, some information on its resulting structure should be propagated to our twiddle path generator. snformtion for twiddle pth genertorF For automatic generation of the twiddle path, the SPIRAL tool should precise the structure of the NTT data path. Namely, it consists in the number of stages of the NTT, and for each one, the required nite-eld specic elements. In these required elements are included the prime p i , the reciprocal v i (if needed), the dierent memory elements for the required twiddle for this stage (if necessary), and for each memory element of a stage, the powers of the required twiddle factors.

Each stage is identied by an index l ∈ [0, t-1] , with t = log r n. Each memory element of a stage is identied by an index m ∈ [0, w/2 -1], which indicates on which pair of streaming way is located the associated multiplier on the data path.

For instance, here is the information expected by the twiddle path generator for the circuit in Figure 3.7:

-stage l = 0 → (p i , no reciprocal, no memory element).

-stage l = 1 → (p i , v i , 1 memory element):

memory element m = 1 → twiddle powers [4] -stage l = 2 → (p i , v i , 2 memory elements): memory element m = 0 → twiddle powers [0, 4] memory element m = 1 → twiddle powers [2, 6] -stage l = 3 → (p i , v i , 2 memory elements): memory element m = 0 → twiddle powers [0, 2, 4, 6] memory element m = 1 → twiddle powers [1, 3, 5, 7]
Note that a memory element is uniquely identied in the twiddle bank by the pair of indexes (l,m). With this information, the interface between the data path and the twiddle path is straightforward, as well as for the structure of a twiddle bank. For this example, a twiddle bank is composed of:

-1 register for the prime p i .

-1 register for the reciprocal v i .

-1 register indexed (l = 1, m = 1).

-2 memory of depth 2: one indexed (l = 2, m = 0) and the other (l = 2, m = 1).

-2 memory of depth 4: one indexed (l = 3, m = 0) and the other (l = 3, m = 1).

And the pplues signals are:

-pplues_0 = {p_0} -pplues_1 = {p_1, v_1, tw_1_1} -pplues_2 = {p_2, v_2, tw_2_0, tw_2_1} -pplues_3 = {p_3, v_3, tw_3_0, tw_3_1}

The last remaining information required by the twiddle path generator is how the readaccesses for the twiddles in memories are synchronized with the NTT data path. Actually, the order in which the twiddle factors are read from the memories is the same as in the original DFT design. Hence, the address generators already generated by SPIRAL are reused in our solution. More details are given when presenting the twiddle path.

In this subsection, we have presented the principle of the fully-streaming multiled NTT data paths. In particular, we have described how each stage of the NTT synchronizes itself with the twiddle path. In addition, we have highlighted the information required by the twiddle path generator to generate a twiddle path consistent with the data path. Its internal structure and the functioning of the twiddle path is presented in next subsection.

Twiddle path

The twiddle path handles dierent twiddle factor sets from up to a maximum of G dierent nite-eld. Each of the G twiddle factor sets is stored in a dierent twiddle bank. It is reminded that a twiddle bank is the concatenation of memories and registers required by the data-path to store a single twiddle factor set. The G dierent twiddle banks (TWB [1:G]) are instantiated in the STWB module. On one side, this set of twiddle banks is connected with a data path interconnect (IDP). On the other side, it is connected with a program interconnect (IPRG).

The IDP module is controlled by the CTRL module under the inuence of the synchronization signals coming from the data path. Similarly, the IPRG module is controlled by the CTRL module under the inuence of the next_prg signal issued by the programming module (PRG). rogrmming twiddle nkF We remind that a twiddle bank (TWB) is the concatenation of all the twiddle memories and registers required by the data path, plus a pair of registers storing the (p i , v i ) pair.

The programming of a twiddle bank is performed with the same throughput as the data path throughput. We remind that the throughput of a fully-streaming NTT in our case is T = n/w. Namely a new n-point NTT is performed at least every T cycles. Moreover, it is reminded that their is exactly n/2 dierent twiddle factors for a n-point NTT. Consequently, it is sucient for the programming phase to have a streaming ow of w/2 twiddles per cycle. The choice of the bank currently programmed is done by cyclically updating the num_prg register in {1, ..., G} with the arrival of a new programming phase, signaled with next_prg going high for one cycle.

qenerting the progrm )owF The twiddle path generator knows, for each memory element of a twiddle bank, which twiddle factors are expected. In addition to this, the twiddle path generator has to know how the twiddle factor sets are inputted to the PRG module. This depends on how the twiddle generator presented in Chapter 4 outputs the values. Actually, the twiddle factor sets are inputted in increasing order of powers, namely {ω 0 i , ω From now on we call a bunch of twiddle the w/2 consecutive twiddles received in a cycle. Hence, to uniquely identify a specic twiddle factor in the input ow, all that is required is: its bunch number k ∈ [0 : T -1] and its index in the bunch i ∈ [0 : w/2 -1]. Consequently the PRG module should know, for each memory element of a twiddle bank, the (k,i) pairs of the expected twiddles.

tw(k, i) = ω kw 2 +i i , ∀(k, i) ∈ [0, T -1] × [0, w/2 -1]. (3.2)
In our case I , due to the well structured distribution of the twiddles into the dierent registers and memories of a twiddle factor bank, each memory element expects its twiddles from a single bunch index i. Namely, the bunch index from which the twiddles are extracted is given by i = power mod w/2, with "power" being the power of any twiddle for that memory element.

Similarly, each memory element expects its twiddles from the bunches of index k following a friendly arithmetic progression with the common dierence being a powers of two.

Consequently, for each memory element of a twiddle bank, the desired PRG module's behavior is easily implemented using a counter with an initial oset value and a step value. These counter's characteristics can be expressed in function of the stage index l and the streaming way index m that identify the memory element.

oset(l, m) = m • n 2 (l+1) • w/2 step(l) = 0 if the storage element is a register. w•n 2 (l+2)
•w/2 if the storage element is a memory. Note that only the counters with step values larger than one are actually implemented. Indeed, the oset values represent the rst bunches from which twiddles are extracted. A step value of 0 indicates that only one twiddle is extracted from the ow as it feeds a register in the twiddle bank. A step value of 1 represents that a twiddle is extracted from the ow at each cycle. Hence, all the information needed to extract the concerned twiddles may be centralized in a single global counter. Furthermore, a global counter is implemented anyway to control the programming phase. Consequently, it is actually this one that in practice replace all counters with a step value less than two.

To illustrate this, we give an example with a the 16-point fully-streaming NTT, with a streaming width of 4 (Figure 3.7). The input twiddle ow is:

in_tw_0 → 0 2 4 6 in_tw_1 → 1 3 5 7
The counter and bunch's index associated to each register and each memory of the twiddle banks are:

-Reg (1,1)→ counter(oset = 2, step = 0); index : 0 ⇒ Extracts [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] -Mem (2,0)→ counter(oset = 0, step = 2); index : 0 ⇒ Extracts [0,4] I n, r, and w being powers of two.

-Mem (2,1)→ counter(oset = 1, step = 2); index : 0 ⇒ Extracts [START_REF] Kahn | The Codebreakers: The Comprehensive History of Secret Communication from Ancient Times to the Internet[END_REF][START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF] -Mem (3,0)→ counter(oset = 0, step = 1); index : 0 ⇒ Extracts [0,2,4,6] -Mem (3,1)→ counter(oset = 0, step = 1); index : 1 ⇒ Extracts [START_REF]Data Protection -Privacy by Design[END_REF][START_REF] Stern | La science du secret[END_REF][START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF][START_REF] Fan | Somewhat Practical Fully Homomorphic Encryption[END_REF] The result of the extraction is what is expected in each memory element of a twiddle bank.

peeding the dt pthF The mechanism instantiated in the IDP module that allows feeding the appropriate pplues to each data path stages is similar to the selection of the programmed twiddle bank. This mechanism is illustrated in Figure 3.14. The twiddle bank from which the ppE lues_l are read is selected according to the control register num_l located in the CTRL module. The arrival of a dierent nite eld in the data path ow is signaled by a next signal. On its reception, the cyclic update of the corresponding num register in the CTRL module is performed .

The next signals are also responsible of the re-synchronization of the read address generators concatenated in the GA module. This is not shown in Figure 3.14 for simplicity.

In this section, we have presented the principle of our circular handling of twiddle factor sets. This solution allows to dene a fully-streaming NTT circuit that is able to handle multiple RNS channel without loss of performances. In the next section, the hardware cost overhead of our solution is studied.

Synthesis results and comparisons

In this section, the cost of our circular handling of twiddle factor sets is studied. In a rst time, the cost of our solution is compared to the cost of a single-eld NTT. In a second time, we take into account the context of RNS representation and compare our solution with another approach from the literature.

The integration of our proposal in SPIRAL for automatic generation of the NTT data paths has not been fully completed yet. Hence, we can only present the synthesis results for the twiddle path. We developed a python script that has automatized the generation of the twiddle factor paths for radix-2 fully-streaming NTT (r = 2). Synthesis have been performed with the default mode of Xilinx Vivado's synthesizer (2018.1). The targeted FPGA is a Virtex 7 xc7vx690t from Xilinx.

Overhead of the twiddle path

In Table 3.1, we have detailed the dierences in terms of resource utilization between our twiddle path and the cost of the twiddle handling for a single-eld NTT. The resource cost of the twiddle handling of a single-eld NTT is roughly the cost of one of our twiddle bank. Table 3.1: Resource utilization of twiddle paths for multi-eld NTT compared to single-eld NTT. The resource utilization in the latter case is considered to be that of a single twiddle bank (TWB). The resource utilization is expressed w.r. 
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The overhead of our circular-handling of twiddle factor set is mainly dependent of the number of instantiated twiddle banks G. The surrounding parts have a relatively small impact on resources utilization. For the parameter sets considered in this thesis, G was always equal to four, and it is very unlikely become larger in our context. Indeed, for G to get larger, the ratio T = n/w has to be reduced. If one increases w, he has to face bandwidth and hardware cost issues (see Section 5.3), and the minimal n for RLWE security is chosen above 2048 in practice.

The overhead of our twiddle path is not very important compared to the advantages it brings in our context. This is highlighted in the next subsection.

Comparisons with a straightforward storage of twiddle factor sets

With the RNS/NTT coupled approach for polynomial multiplication, a basic handling of multiple twiddle factor sets could be very costly. Our twiddle handling allows a designer to Table 3.2: Resource utilization for a local storage compared to our on-the-y handling of twiddle factor sets.

Parameters

Storage as in [START_REF] Bruce Cousins | Designing an FPGA-Accelerated Homomorphic Encryption Co-Processor[END_REF] yur widdle th IST @EUQ 7A consider the twiddle factors as inputs for an NTT-based hardware accelerator. Consequently one does not have to locally store all the twiddle factor sets (one for each RNS channel) in order to implement the coupled approach.
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To highlight the benet of our strategy, we compare our twiddle factor handling with a local storage strategy as in the work of Cousins et al. [START_REF] Bruce Cousins | Designing an FPGA-Accelerated Homomorphic Encryption Co-Processor[END_REF]. We remind that they have also implemented a fully-streaming NTT but they have chosen to store the NTT twiddle factors in ROMs lled up at compile time.

Note that we do not directly compare with their synthesis results as they are not accessible in their paper. What we did is a projection of the BRAM utilization based upon the utilization of one of our twiddle bank multiply by the number twiddle factor sets.

In Table 3.2, the advantage of using the circularly-buered handling of twiddle factor sets rather than full local storage appears clearly. Our on-the-the y handling of twiddle factor sets reduces from 20 % up to 90 % the BRAMs utilization in the context of FV acceleration. This allows our multi-eld NTTs to address larger FV's parameter sets.

Conclusion

In this chapter we have explored an approach for the denition of an ecient NTT-based polynomial multiplier for FV acceleration. Our choices to explore the adaptation of the SPIRAL DFT generator in our context is motivated by the presentation of its design space exploration capability. This theoretically allows us to consider very large degree n for FV accelerations. But the twiddle factor handling system has to be compatible with the RNS representation in order to not losse execution performance due to the reprogramming of twiddle factor sets.

The main contribution of this chapter is the denition of a fully-streaming multi-eld NTT, without loss of performances and without major hardware cost overhead. This is achieve by circularly-buering the multiple twiddle factor sets. Another contribution is the hint that the automatic generation of such architectures is possible for generalized NTT circuits. In particular, this work has shown the feasibility of automatic generation of fully-streaming multi-eld NTTs. We believe that there are no major constraints to the adaptation of our solution to other type of architecture generated by SPIRAL, and more generally to any types of NTT circuits.

With regard to the hardware acceleration of FV, our twiddle factor handling allows the design of high throughput NTT-based residue polynomial multipliers, while having an hardware cost independent of the RNS basis sizes. Nevertheless, our solution alone only postpones the storage of twiddle factors. Thus, a decrease in performance due to heavier communications has to be considered. Hopefully, our twiddle factor generator presented in the next chapter propose a solution to this problem. Chapter 4 On-the-y computation of NTT twiddle factors

In previous chapter the strategy of on-the-y generation of twiddle factor sets has been motivated. This chapter presents our solution for this generation. The problematic is reminded with some in-depth on the throughput requirement in our context. Then, a generic design that achieve the throughput requirement is presented. This is followed by the proposal of an optimized recurrence relationship to generate a single twiddle set. Finally, the hardware cost and the benets of this generator are presented.

On the issue of generating multiple twiddle factor sets

Our application context considers the acceleration of the full RNS variant of FV. In particular, we are currently focused on the denition of an ecient hardware implementation of NTTbased Residue Polynomial Multiplier (RPM).

In the rst subsection, the expected pre-computed values for NTT-based RPMs are reminded. It shows that there is no fundamental dierence in the generation of twiddle factors for Padded Convolution (PC) and Negative Wrapped Convolution (NWC) in practice. Then the distinction between the throughput requirement and the choice of a recurrence relationship is expressed.

Reminders on twiddle factors

The computation of a n-point NTT over the nite-eld Z p i requires the choice of a primitive n-th root of unity ω i ∈ Z p i . The transformation of the n-sequence ∈ Z n p i is also a n-sequence e such that: For all j in {0, ..., n -1},

A j = n-1 k=0 ω jk i a k mod p i . (4.1) 
The inverse transformation is dened by: For all k in {0, ..., n -1},

a k = n -1 i n-1 j=0 ω -kj i A j mod p i . (4.2) 
The values ω -kj i and n -1 i are the multiplicative inverse of ω kj i and n over Z p i .

In the case of a RPM through PC, the polynomials of degree n are padded with zeros up to N elements (N a power of two in practice such that N ≥ 2n). The convolution is then performed on N -points sequences. It then requires the twiddle factor set

{ω k i } N/2-1 i=0
for NTT and {ω

-k i } N/2-1 i=0
for inverse NTT. For RPM through NWC, the convolution is directly performed on n-points, but requires extra pre-computed values. Namely, a primitive n-th root of -1 over Z p i noted ψ i that dene weight vectors Ψ i = (ψ j i ) 0≤j<n and Ψ -1 i = (ψ -j i ) 0≤j<n . The NWC is then a weighted convolution on n-points, and the actual twiddle factors for NTT and inverse NTT are subset of Ψ i and Ψ -1 i . We indierently call twiddle factors the pre-computed values required to computes these operations. In both PC and NWC, we have to generate 2 k -sequence of powers of a nite-eld value. Consequently, our discussion will only consider this generic expression of the problem.

In addition to this, our context imposes the generation of multiple sequences in data ow while respecting a given throughput.

Throughput requirement

Our exploration of fully-streaming approach requires a twiddle factor set generation with the same throughput as the data path of the considered convolution (PC or NWC). As seen in the previous chapter, the throughput of the data path is only dependent on the transform size n and the streaming width w. Namely, T = n/w cycles separates two consecutive RNS channels in the data path. Thus, our generation module has to output a new twiddle factor set of n elements every T = n/w cycles. Consequently, the solution to respect the throughput is to be able to generate exactly w elements per cycle. Being able to generate more than w per cycle is considered sub-optimized as it would require having more computing element than what is strictly necessary.

The diculties of this generation come both from the dependence between the elements of the sequence of powers and from the latency of the modular multipliers that computes the elements. Some inevitable bubbles occur in the generation of a single twiddle factor set. Hence, generating one set after the other does not achieve the required throughput.

The next section details our proposed generic architecture solution that achieve the required throughput. Basically, this is done by overlapping multiple set generations. But beforehand, let us consider the problematic of choosing a recurrence relationship to generate a single twiddle factor set.

Recurrence relationship for a single set generation

The choice of the recurrence relationship for the generation of a twiddle factor set has a major inuence on the hardware eciency of the solution. Indeed, there is a compromise to nd between the latency of a generation and the intermediate storage required to perform the generation.

The choice of this recurrence relationship is equivalent to the search for an overlap in a dependency graph. Dierent solutions can be found regarding dierent constraints. In our case, we propose an optimized solution that makes intermediate storage independent of the size of the sequence to generate. This solution is expressed after having introduced straightforward sub-optimized solutions in our context. This is detailed in section 4.3. Now that both the throughput problematic and the recurrence relationship problematic have been settled, our solutions are detailed in two dierent sections.

Data-ow oriented twiddle factor set generator

In this section is presented our solution to achieve the desired throughput of multiple twiddle factor sets. The principle is that when there are inevitable bubbles in the generation of a set, the generator lls these bubbles with calculations from other set's generations ready to be performed. This results in a mixed set output sequence from which each twiddle factor set has to be sorted out.

Design overview

In our generic design solution, the generation of the sequence is separated from the sorting process. Consequently, the generator is composed of two modules as presented in Figure 4.1. The COMPUTE module is responsible for the generation, and the SORT module for sorting the dierent sequences. The generator handles up to H dierent twiddle set generations at the same time. From a high level point of view, it is required to compute n elements in T cycles, so if the generator outputs w elements per cycle the required throughput is achieved. Hence, our generator instantiates exactly w modular multipliers (MM UNIT) and the rest of the design take care of feeding these computing units and sorting the results.

The COMPUTE module schedules the dierent set generations on the computing resource MM UNIT. The outputs of the COMPUTE module are associated with a num and a vlid signals, which allow the proper sorting of the twiddle factor sets.

Each set generation is associated to a specic GEN HANDLER. Each GEN HANDLER organizes the intermediate storage and the computations according to the chosen recurrence relationship for a single set generation. More details are given in section 4.3.

The COMPUTE CONTROL module instantiates the scheduling process that guarantee a sequential access of the dierent set generation to the MM BANK.

The SORT module instantiates H dierent buers in which the twiddle factor sets are sorted. When a twiddle set generation is completed, the BUFFER CONTROL initiates the output of the n-sequence, w elements per cycle. The concerned GEN HANDLER and BUFFER are then re-used for a new twiddle set generation.

The number H of simultaneous twiddle set generations depends on the latency of a single generation. Thus, it is dependent on the recurrence relationship and on the latency of the pipelined modular multipliers. Indeed, both inuence the number of bubbles in a single set generation that has to be lled up with other generations. Nevertheless, H is chosen as the smallest value necessary to reach the desired throughput. That is H = Lat_GEN T W max /T + 1, with Lat_GEN T W max being the largest possible latency of the GEN TW module.

Due to the scheduling implemented in COMPUTE CONTROL a twiddle factor set generation has its latency dependent on the workload of the generator. The maximum latency Lat_GEN T W max occurs when the GEN TW module is used at maximum capacity: one new set generation request every T cycles. The minimum latency Lat_GEN T W min occurs when the GEN TW module is used at minimum capacity: one single set generation.

We have given an overview of our twiddle factor set generator. In the next subsections, the dierent sub-modules are detailed.

Computing the twiddle sets

The COMPUTE module handles the scheduling of the required twiddle factor sets. This module is composed of H GEN HANDLER modules. Each takes care of a specic twiddle factor set generation. The COMPUTE CONTROL module organizes the sequential access of the GEN HANDLERs to the MM UNIT by scheduling them according to a priority rule.

wodulr multipliers unitF The purpose of the MM UNIT module is to compute the next w elements of the dierent twiddle set generations. This module has no control unit as it simply executes the computation of elements accordingly to its current inputs. The Figure 4.2 presents the principle of the MM UNIT unit. All the modular multipliers are congured by the (p, v) pair on input specifying the nite-eld of the current arguments mm rgs. The number of arguments and their connection to the modular multipliers depend on the chosen recurrence relationship. The results (mm res) feed the generation handlers and the COMPUTE CONTROL is responsible of updating the vlid control signal of the appropriate GEN HANDLER. qenertion hndlerF Each generation is started by giving some seed elements along with the associated (p i , v i ) pair. Namely, the prime dening the nite-eld Z p i and its reciprocal for ecient modular multiplication. In our case, we consider w elements to stay consistent with the required throughput.

A GEN HANDLER module implements the chosen recurrence relationship upon the reception of the initial seed elements. This requires a dynamic storage of some intermediate results, and preparation of the next computations. The general principle is described here. The signal new indicates that the current inputs are seed elements for a new twiddle set generation. This signal implies the local storage of the nite-eld specic pair (p i , v i ), and the re-initialization of the CTRL module.

The signal ompute indicates that COMPUTE CONTROL has scheduled this specic GEN HANDLER to use the MM UNIT. Consequently, the CACHE is accessed to prepare the arguments (mm rgs) of the next computation of the twiddle set. In order to be scheduled, GEN HANDLER has to indicate whenever it is ready to perform new computations for its set generation. This is done by setting the d signal to logic high. Finally, the signal vlid indicates that the current w inputs are valid elements, of the current set generation. These elements have been produced by MM UNIT after the GEN HANDLER has been scheduled by COMPUTE CONTROL. This vlid signal implies the preparation of the tw outs register that outputs the following w elements of the sequence.

The CTRL sub-module keeps trace of the current state of the generation. This state is managed using three dierent counters: # data # store, and # compute. The rst keeps trace of the number of elements already generated, the second the number of elements stored in CACHE, and the third the number of times GEN HANDLER has been scheduled by COMPUTE CONTROL.

These pieces of information are required for the translation of the input control signals into a cache management and an output register management consistent with the chosen recurrence relationship for a set generation. In section 4.3, this generation handler principle is detailed with an example. gomputtion ontrolF The purpose of COMPUTE CONTROL is to schedule a sequential access of the dierent twiddle set generations to the MM UNIT. The desired result is that the MM UNIT is constantly performing new computations, thus the required throughput is achieved.

In our solution, the scheduling process chooses one GEN HANDLER, among those ready to be scheduled, accordingly to a decreasing priority with the advancement of their twiddle set generation. If a new set generation is starting, it preempts any computation for that cycle, and becomes the highest priority generation.

In practice, if each start of set generation is separated by at least T cycles, each set will be completed, and their order of completion will be the same as their starting order I . As a consequence, only the knowledge of the highest priority generation at a given time is necessary to know the order of priority of all current generations. The respect of the T cycles interval between two generation starts is considered to be under the responsibility of the surrounding system. I The number of modular multipliers in MM UNIT is chosen to exactly reach the requested throughput T .

Combinatorial

If the start of a set generation do not respect this throughput, our scheduling rule will cause the generations to preempt each others and some deadlocks occur.

The scheduling session may have three dierent outcomes: one computation is scheduled, no computation is scheduled, or a new generation is started.

In the rst case, the index of the GEN HANDLER elected is propagated into the num shift register and a logic high signal is propagated in the vlid shift register. The ompute signal of the appropriate GEN HANDLER is set to logic high.

In the second case, a logic low signal is propagated in the vlid shift register and no GEN HANDLER ompute signal is set.

In the third case, the prior signal is updated and the index of the GEN HANDLER receiving the responsibility of the new generation is propagated into the num shift register. A logic high signal is also propagated in the vlid shift register.

The other control signals driving the COMPUTE module behavior are updated accordingly to the propagation of the scheduling results into the two shift registers. The depth of these shift registers depends on the recurrence relationship and on the latency of the modular multipliers. At the end of the two shift registers, the num and vlid signals are propagated to the SORT MODULE presented in the next subsection.

All the principal sub-modules of COMPUTE have been presented. The INPUT INTER-CONNECT and the OUTPUT INTERCONNECT are just simple routing modules that embedding multiplexers and registers for the realization of the expected functionality.

The next section presents the sorting of the dierent set generations.

Sorting the twiddle sets

The SORT module sorts the dierent twiddle factor sets from the mixed output sequence of the COMPUTE module. To do so, it temporarily stores the sets in H dierent buers, each associated to a GEN HANDLER. When a generation is completed, it outputs the n-sequence in a single ow. The Figure 4.6 illustrates the internal structure of a BUFFER module. Each memory of the BUFFER module is a depth T single port memory and stores the twiddles from the corresponding streaming way. All the memories are accessed for read or for write simultaneously and the we signal is used to select between the address signals.

The (p i , v i ) pair is stored when the rst elements of the twiddle factor set are inputted. This is signaled by the (rst signal generated by the BUFFER CONTROL module. fu'er ontrolF The BUFFER CONTROL module is organized into two sub-modules. One is responsible for sorting the elements coming from the COMPUTE module, and the other handle the output of a twiddle factor set as soon as it is completely sorted.

The CTRL IN sub-module is illustrated Figure 4.7a. For each buer, a counter is cyclically updated between 0 and T -1 whenever a new valid bunch of w elements is generated by the corresponding GEN HANDLER. The current value of the counter is used as write address for the BUFFER, and the we signal is simply generated from vlid and num.

When the counter is updated to 0, the (rst signal is issued, specifying that it is a new twiddle set. Similarly, when the counter is updated to T -1, a lst signal is set to specify that a twiddle set is ready to be outputted. The CTRL OUT sub-module (Figure 4.7b) receives this signal and handles the output of the twiddle set. The CTRL OUT sub-module is illustrated Figure 4.7b. Whenever a lst signal is received from the CTRL IN sub-module, the corresponding buer is ready to be outputted. Nevertheless, the dierent lst signals may re with dierent intervals between each other. This is due to the uctuating latency of the COMPUTE module with respect to its current workload. Consequently, the CTRL OUT sub-module has to store in FIFO order the dierent output requests, and treats them one after the other.

As long as there is a twiddle factor set ready to be outputted, a read address generator is incremented from 0 to T -1. The corresponding buer's index is propagated as the sel_out signal, controlling the output multiplexer of the SORT module. The o_next signal is only set for one cycle before the actual output of the twiddle set.

Remarks

The overview of a generic twiddle factor generator has been given in this section. The principle is to ll up the bubbles of a set generation by overlapping dierent set generations over time. We choose to instantiate as few computing units as possible with exactly w modular multipliers. The dierent twiddle set generations access this bank sequentially according to a priority scheduling rule. The SORT module is only dependent on the size of the sequence to generate n and the streaming width required w. But the choice to instantiate depth T memories in the BUFFER modules could be furthermore improved. Indeed, the size of these buers could be only dependent on the number of bubbles in the generation of a set. The actual number of bubbles is far lower than T in our application context, but knowing its exact value is a bit tricky. Due to time constraints, we did not further explore this improvement.

The COMPUTE module is also dependent on the chosen recurrence relationship generating a twiddle factor set. In particular, it derives the concrete implementations of the GEN HANDLERs and the MM UNIT. Finally, the number H of simultaneous twiddle set generation depends on the overall latency of the generator module with respect to the required throughput. When T is large in front of a modular multiplier latency (which is true for the considered parameter sets), H = 3 is sucient to saturate the MM UNIT with twiddle computations and achieve the required throughput.

In next section the choice of the recurrence relationship is discussed and two dierent choices are presented. In particular, we show that the second is optimized in our context.

Choice of a recurrence relationship

This section presents the problematic of generating n-sized sequence of powers of a number. Two recurrence relationship and their specic implementations in our generator are presented. This presentation uses a graph formalism to represent the problem and the proposed generation heuristic.

General problem presentation

The purpose of our generator is to generate multiple n-sized power sequences of numbers with a throughput of T = n/w. In other words, it has to generate a new sequence {a k i } n-1 k=0 (i ∈ N) every T cycles. In our case both n and w are powers of two, and the elements a i are parts of some nite-elds dened by some prime p i (Z p i ).

In general, the generation of a sequence {a k } n-1 k=0 requires at least the knowledge of the initial number a. Here we consider that we have been given w initial elements at the beginning of a sequence generation. These initial elements are then used to compute further elements which themselves make the computation of further elements possible. This principle is applied until the n-sequence is computed. The problem here is that there exist a large number of recurrence relationships to generate a n-sequence of powers of a number. In Figure 4.8, a graph formalism is used to represent the dependencies between the elements of the 6-sequence of powers of an element a.

Each node of the graph represents one of the powers to be generated. The oriented arcs identify the parent(s) of each node, and the arc's weight represents the kinship factor of the two nodes. Considering here only multiplication with two operands, the input kinship factor of each node is exactly 2, and the weight of each arc is 1 or 2. There are as many nodes for the k-th element as there are ways to calculate it. The number of nodes is then exponential with k, but generating the sequence is to choose an overlap of the dependency graph. We call overlap here a sub-graph containing only once each element of {a k } n-1 k=0 .

Many overlaps are possible, but some are more convenient than others regarding practical implementation of the considered generation (overall latency, intermediate storage required, complexity of computing structure, ...). In our case, we want methods of nding overlaps that are expressed with a recurrence relationship. This requirement guarantees that the implementation in hardware of the generation is simple. 

   U 0 = 1 U 1 = a U k+1 = U 1 × U k , ∀ k ∈ [1 ; n -2] ∩ N
This recurrence relationship minimizes the intermediate storage needed to generate the nsequence. Indeed, only the rst element a needs to be kept during the overall computation. This is the straightforward computation of the geometric sequence of common ratio a.

The drawback of this solution is that the generation has the largest latency possible. Indeed, when considering multipliers with a latency larger than 1, each new elements has to wait for the generation of the previous one. This result in a overall latency of (n -1) times the latency of the computing unit.

The second overlap in Figure 4.9b is obtained with a solution that focuses on being able to compute further elements as soon as possible. Hence, considering 2-operands multiplication, the recurrence relationship generating the overlap is:

       U 0 = 1 U 1 = a U 2k = U k × U k , ∀ k ∈ [1 ; n/2 -1] ∩ N U 2k+1 = U k × U k+1
This recurrence requires the ability to dynamically store (and potentially overwrite) elements in memory close to computing units. At established regime, it results in a proportion of two generated elements for one already known. This means that only the rst n/2 rst elements of the sequence has to be known to be able to compute the further n/2 elements. Moreover, if the oldest stored intermediate elements are dynamically overwritten with new ones during the sequence computatio. Hence, the required intermediate storage space is O(n/4) elements.

The second recurrence relationship is estimated more interesting in our context. Minimizing the latency of the generation makes us instantiate less simultaneous set generation H. But this solution has an important drawback, that is the required intermediate storage of O(n/4) elements. This is problematic for large FV's parameter sets. Furthermore, the ability of generating the element as soon as possible is of no use in practice. Indeed, the xed number of computing resources implies a maximum of w elements generated per cycle.

It is actually possible in our case to nd a recurrence relationship that minimizes both the latency and the intermediate storage. Its expression is dependent on the number of computing units and their latency.

The next subsection presents this optimized recurrence relationship.

An optimized recurrence relationship

We remind that we consider w initial elements at the beginning of a sequence generation, and that the number of computing units is exactly w. Thus, a n-sequence is then composed of T = n/w bunch of w elements each, and two consecutive bunches have their powers only increased by w. Hence, two dierent bunches have necessarily their powers separated by a multiple of w (illustrated in Figure 4.10). Consequently, only some powers multiple of w plus one bunch have to be accessible to be able to compute further bunches. The question is then to nd the number of powers multiple of w that are strictly necessary to achieve the lowest latency in the generation of the T bunches. This is easy to express once the recurrence relation that links the bunches together is formalized.

yur reurrene reltionshipF We expressed as follow the optimized recurrence relationship over which our generation is built:

           t 0 =    a 1 ... a w f i = a iw , ∀ i ∈ [1, n/w -1] t r = t k f r-k-1 , ∀ r, k ∈ [1, n/w -1]
From the initial knowledge of the bunch t 0 we already know the rst factor f 1 = a w . A new bunch computation is the point-wise multiplication of a known bunch with a known factor. If we currently have access to the k-th bunch, the computation of the r-th bunch (r > k) requires the knowledge of the factor f i such that i = r -k -1.

In addition to this recurrence relationship, we make an additional design choice. Namely, we always compute the r-th bunch with the last received bunch k. Consequently, the value i = r -k -1 is upper bounded (noted i max ) by the latency between a compute request and the reception of the generated bunch. This latency is dominated by the latency of the modular multipliers which is mainly dependent on the size of the handled elements. For instance, our pipelined modular multipliers of subsection 3.2.3 have a latency of 21 cycles for 30-bit elements and 57 for 62-bit elements. Consequently, if we store only i max factors (typically < 60), we are able to start at any time, and under any preemption circumstances, a continuous ow of computation of further bunches. Now, we have an intermediate storage independent of n while having the minimal possible latency for the sequence generation with an initial knowledge of w elements. In the next subsection we present how it is instantiated in our generic twiddle set generator.

Adapting the generic design

To adapt our generic twiddle generator to the chosen recurrence relationship, we only need to specify the MM UNIT input interconnection, and the cache structure of the GEN HANDLER modules. The MM UNIT argument connection is straightforward and presented in Figure 4.11. The adaptation of the GEN HANDLERs is a bit more complex. Before presenting the control of the memory element, the internal structure of the cache is presented. The following description refers to the Figure 4.12. A GEN HANDLER cache implements w registers for the last received bunch, and a bank of i max registers for the factors f i . Due to our COMPUTE module structure, i max = min(L M M + 4, T -1) in our case. Now, the update rules for the cache and the output registers under the three dierent control events are described. In addition, the generation of the d signal is also made explicit. • When new set generation is required (new = '1').

The output registers tw_out is set with the w rst value of the sequence (a 0 , a 1 , ..., a w-1 ) (not shown in Figure 4.12). The bunch on input is stored in the cache, and its w-th element is permanently stored in the bank of registers.

• When the computation of a new bunch is scheduled (ompute = '1').

The last received bunch is set in the mm rgs register along with one of the factors from the register bank. The factor chosen is dependent on the #compute and #data counter such that the recurrence relation i = n -k -1 is veried.

• When a new bunch is received (vlid = '1').

The output registers tw_out receive the w next element of the sequence (not shown in Figure 4.12). The bunch on input replaces the last received bunch in the cache. If we do not have all the i max factors yet (#store < i max ), the w-th element of the bunch on input is stored in the register bank.

A special case has to be treated: the rst vlid signal after a new set generation initialization does not actually notify a new bunch. It results from the COMPUTE CONTROL pipeline that has integrated the initial bunch. Consequently, nothing has to be done in that case as everything already happened in response to the new signal.

• Relation that trigger the d signal.

It is dependent on the control signals and on the internal counters (#data, #store and #compute). It is always set when new is received. It is also set whenever the number of factor f i stored and the last received bunch allows the computation of a new bunch. This is veried when #data + #store > #compute (considering here that input signals have immediate eects on counters so as not to complicate things). Of course, this is done only if we still have bunch to compute (i.e #compute < T -1).

All the specicities of our recurrence relationship on our generic twiddle generator have been described. In the next section the hardware cost of our generator is presented. Its positive impact in the context of NTT-based residue polynomial multiplication for FV acceleration is also quantied.

Synthesis results and comparisons

In this section, the cost of our twiddle factor set generator is studied. In a rst time, the inuence of each sub-module on the total hardware cost is detailed. The scalability of our solution upon the sizing parameters n, w and the size of the primes element s is presented. And nally, we compare our local generation solution with another approach to handle the twiddle factor sets. Namely, the external storage proposed by Öztürk et al. in [START_REF] Öztürk | Accelerating Somewhat Homomorphic Evaluation using FPGAs[END_REF].

For comparison purposes, we developed a python script for automatized generation of twiddle factor generators. Synthesis have been performed with the default mode of Xilinx Vivado's synthesizer (2018.1). For relative resource utilization, the targeted FPGA is a Virtex 7 xc7vx690t from Xilinx.

Study of the hardware cost

In Table 4.1, the partition of the resource utilization in our twiddle factor generator is presented for two dierent parameter sets. The critical resources are in practice DSP and BRAM slices. These resources are respectively used in the COMPUTE module for the w modular multipliers in MM UNIT and in the SORT module for the H BUFFERs.

The resource utilization upon sizing parameters is presented in Figure 4.13. For the considered ranges of parameters, the inuence of the sequences' size n to generate only impacts the number of BRAMs used. In practice, our generator could be made less sensitive to the variation of n. Our solution for the sorting module choose to wait for the entire sequence to be generated before letting it owing out of the generator. But the sucient buers size is actually only dependent on the number of bubbles in the generation of a set. Hence, the required buer size could be far lower than in the currently solution.

The inuence of the streaming width w impacts the hardware consumption of every resources except the BRAMs. In practice, this parameter should not get too large due to the tremendous bandwidth requirement it imposes on the NTT data path side. Even so, the resource consumption of is still under 10% of a Virtex 7 xc7vx690t capacity for the largest w we have considered.

Finally, the inuence of the size of handled elements have balanced impact on every resources. Once again, this seems a good strategy in our context to increase the size s to improve the overall performances of the FV.Mul&Relin primitive.

Comparisons with an external storage

We already mentioned that our twiddle factor generator completes our multi-eld NTTs for the denition of NTT-based RPMs independent of the RNS basis size. In particular, this on-the-y generation allows to avoid extra communications for bringing the twiddle factor sets locally to the accelerator. In this subsection, we quantify this advantage in the context of FV hardware acceleration. To do so, we compare our twiddle factor generation to a strategy similar to what is done in the work Öztürk et al. in 2015 [79]. Namely, the storage of all twiddle sets on external memories (from the accelerator's viewpoint).

In particular, we compare the two approaches on their memory footprint and their required bandwidth to feed a multi-eld NTT. The memory footprint is dened here as the quantity of memory used by a host program to use the considered accelerator. We remind the input needs of our multi-eld NTT twiddle path: w/2 words of s-bit per cycle. The result of the comparison is presented in Table 4.2.

In the external-storage approach the memory footprint requires O(kn/2) elements of size s, compared to O(kw/2) with our twiddle set generator. The memory footprint of the twiddle factors goes from 19.2 kBytes to 2.6 MBytes for the considered parameter sets. This is not critical in practice, but still, it could be avoided with local generation requiring at most 2.2 kbytes.

The stronger disadvantage of the external storage in our case is the input bandwidth requirements for bringing the twiddle in the accelerator. When considering a NTT clocked at 200MHz, storing the twiddle sets on external memories requires at least 0.75 GB/s, of communication bandwidth between the storage space and the accelerator. And this, only for the twiddle factors. With our twiddle set generator, only w words of s-bit are required every T cycles, thus saving precious bandwidth to feed the accelerator with data leading to eective speedup.

Conclusion

The general contribution of this chapter is the denition of a data ow oriented twiddle set generator that respects the throughput requirement of our streaming NTT data paths. In RVH HFUT particular we propose a generic solution to achieve the desired throughput.

A more specic contribution is our proposal of recurrence relationship for optimized generations of twiddle factor sets. Our choice minimizes both the latency of a set generation and the intermediate storage space required to do so.

Finally, we also highlight that the SORT module could be made independent of the size n of the sequences to generate.

Along with our proposal of multi-eld NTT circuits, our twiddle factor generator allows the design of high throughput NTT-based Residue Polynomial Multipliers. And this, while having a reduced inuence of the RNS basis' size on the hardware cost. In the context of the hardware acceleration of FV, this opens interesting perspectives for the denition of ecient hardware acceleration.

In the following chapter, we present a proposition of a computing system that use our basic hardware blocks for the hardware acceleration of the full RNS variants of FV. Chapter 5

Exploration of a hybrid strategy for the full RNS variants of FV

The analysis conducted in Chapter 2 has highlighted the necessity of accelerating both RNS specic operations and Residue Polynomial Multiplications (RPM). This came from the implementation strategy considering the coupled approach of RNS representation and NTT-based polynomial multiplications. The RNS representation tackles the complexity brought by the large modulus q, and the NTT-based polynomial multiplications tackle the complexity brought by large degree n.

In previous chapters, some basic blocks have been proposed for the hardware acceleration of the RPM operations. Dedicated hardware acceleration has been motivated by the diculty of exploiting NTT parallelism on generic SIMD architectures due to unfriendly data-accesses.

Contrary to NTTs, the RNS specic functions embed trivial parallelism with respect to the degree n of the polynomials. This parallelism is easily exploitable with generic SIMD architectures like GPUs. In addition, having fewer dierent operations to accelerate on dedicated hardware signicantly reduces the cost of the accelerator development.

Hence, our strategy considers the exploration of GPU accelerated RNS specic functions, and dedicated hardware acceleration for polynomial arithmetic. This result in a proposal of a hybrid computing system to accelerate the FV scheme. For prototyping, it is considered that the dedicated hardware for RPM is implemented on a FPGA, but there is also the possibility of targeting an ASIC. This is not explored in this work.

In a rst section, we explore from an high-level point-of-view the communication and computation requirements for the hybrid computing system. This result in a proposal of such a system. A second section presents the perspectives for accelerating the RNS-specic functions on GPUs. Then, the third section explores the eciency of an NWC-based RPM design that use our basic hardware blocks presented in previous chapters. Finally, this chapter concludes with the performance perspectives of our hybrid computing system proposal.

Proposal of a hybrid computing system

This section presents the motivations for a hybrid computing system for the acceleration of FV homomorphic evaluations. Our proposition considers the full RNS variant of FV proposed by Bajard et al. [START_REF] Bajard | A Full RNS Variant of FV like Somewhat Homomorphic Encryption Schemes[END_REF] and further improved by Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. The discussions are focused on the FV.Mul&Relin primitive, because the impact of the FV.Add primitive on execution performances is considered too small to require special consideration at this time.

In a rst subsection, the computational requirements of the system are summarized. This concludes by the computational partition on GPU and dedicated hardware. Then a high-level study of the communication requirements between the dierent computing units is given. Finally, the third subsection presents our proposal of system architecture.

Computation details for ciphertext multiplication

For the following discussions, Residue Polynomial Multiplication (RPM) refers to a multiplications over the R q i . Similarly, Residue Polynomial Addition (RPA) refers to additions over the R q i 's. Modular multiplications will be noted MM and oating-point multiplications FM. In the counting of basic operations, we do not take into account modular additions and oating-point additions. Finally, we note k the size of the initial RNS basis B, and k the size of the second RNS basis B .

The FV.Mul&Relin primitive begins with the operation of basis extension to enlarge the dynamic of the polynomial's coecients. We remind that this is because the tensor product must be computed over R rather than R q . If we consider that the (kk +k +k ) single-precision integers are pre-computed and accessible, this operation requires 4n(kk + k + k ) MMs and 4n(k +1) FMs. After basis extension, the polynomials are then represented with k +k residue polynomials over in the unied RNS basis B ∪ B .

The basis extension is followed by the tensor product over R. A naive approach for computing the tensor product requires up to four multiplications over R (Figure 5.1a). With a Karatsuba-like approach, the number of these polynomial multiplications could be reduced to 3, but at the cost of 3 more polynomial additions (Figure 5.1b). Thus, taking into account the RNS representation, there are 4(k + k ) RPMs and (k + k ) RPAs for the naive approach. For the Karatsuba-like approach it represents 3(k + k ) RPMs and 4(k + k ) RPAs. As the polynomial multiplications are far more expensive that polynomial additions, the karatsubalike approach is considered here. As presented in subsection 2.3.2 the implementation size of NTT is considered a power of two, even for the padded-convolution approach. The number of pre-computed values is then the same for both padded-convolution and negative wrapped convolution. Namely, 2n + 1 for each RPM and thus (2n + 1)(k + k ) in total. The tensor product is followed by the scale-and-round operations. As introduced at the end of Chapter 2, this operation is done in two steps. First by computing the scale-and-round operation over the basis B . Second by changing the basis from B to B. The operations requires some pre-computed values: (2k (k + 1) + k) single-precision integers and k oatingpoints in total. It is then performed in 3n(2k (k + 1) + k) MMs and 3n(k + k + 2) FMs. The resulting polynomials are back in R q , which means that their RNS representations is only according to the basis B.
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Finally, the last operation is the relinearization that requires the knowledge of the relinearization key. This key is composed of 2k polynomials over R q , which is equivalent to 2k 2 polynomials over the R q i 's in RNS representation. As seen in Figure 5.2, the relinearization performs the scalar products of (r j,i ) k i=1 ∈ R k q with ( 2,i ) k i=1 ∈ R q 1 × ... × R q k , for j ∈ 0, 1. This is 2k multiplications and 2k additions over R q , equivalent to 2k 2 RPMs and 2k 2 RPAs in RNS.

Table 5.1 gives the number of basic operations required to perform the basis extension (Bext) and the scale-and-round (Sc&Rnd) steps for dierent parameter sets. The total size of the pre-computed values is also given. The reciprocal required for ecient modular reduction is counted in the pre-computed values. These pre-computed values represent a really small storage compared to the size of the payloads to handle. And regarding the advantage of having them pre-computed, it is then considered that these values are permanently stored. 5.2 summarizes the number of residue polynomial operations to perform for the ciphertext tensor product and the ciphertext relinearization. The size of the relinearization key and the total amount of data that twiddle factors represent for performing RPMs are also given. The reciprocal required for ecient modular reduction is counted in the precomputed values. It is noticeable that the size of the relinearization key become problematic for very large parameter sets. Similarly, but at lower scale, the number of pre-computed values involved in the calculation of the RPMs grows signicantly with the parameter sets.

gonluding remrksF The basis extension and scale-and-round operations are computationally dependent on the capability of performing a large amount of modular and oatingpoint operations. From several tenth of thousands operations for the smallest parameters up to several hundred of millions for the largest ones. The friendly parallelism over n represents Table 5.2: Summary of number of residue polynomial operations to performs for the dierent tensor product and the relinearization. The size of the relinearization key is given in column "rlk" and the size for the pre-computed values in column "pre.". from 2 11 up to 2 17 parallel and independent threads. This could be eciently exploited by a generic SIMD architecture like a GPU. Furthermore, the pre-computed values for the computation of these two steps represent a negligible amount of permanently used GPU memory (39kB for the largest parameters).

Parameters

The tensor product and the relinearization require ecient polynomial arithmetic. In a rst approximation, hardware cost and execution time of RPA operations is considered negligibles. Even if the number of RPM operations to perform is rather small, its complexity is whats bound the FV.Mul&Relin eciency in practice. Our choice is to accelerate these RPMs on dedicated hardware by exploiting our basic blocks presented in Chapters 3 and 4. Doing so, the problematic of handling the pre-computed values is solved by generating and using them on-the-y. The relinearization key size does not allow us to directly store it locally to the hardware accelerator, thus it is considered as an operand similarly as a ciphertext. For prototyping, the dedicated hardware is considered to be implemented on a FPGA.

Study of the communication requirements

The ow of operations is partitioned over the FPGA and the GPU units. Figure 5.3 presents this partition, plus the quantity of data to exchange between the dierent steps.

A potential performance limitation already identiable is the ping-pong communication between the FPGA and the GPU. A solution to this problem could be to mask the communications with computations (stream CUDA for GPU, DMAs and sucient IO buers on FPGA, ...). In this thesis, we consider the problematic of ecient computation to be more crucial than the potential communication congestion brought by this hybrid computing approach. Nevertheless, Table 5.3 gives an insight on the data loads involved for some FV's parameter sets close to those of Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF].

For the smallest parameterization, the unitary communications between the dierent computing unit are at least of 30 kB and goes up to 200 kB. Considering a ow of communication and computation for continuous ciphertext multiplications, the total amount of data to be simultaneously exchanged is roughly 500 kB. For the largest parameters, the unitary communications exchange from 79.7 MB up to 323 MB of data. This represent 923.8 MB of data to be simultaneously exchanged in the case of a continuous ow of FV.Mul&Relin operations.

GPU

FPGA a 0 a 1 ct a } b 0 b 1 ct b } Relinearization c 0 c 1 ct mul } Tensor product

Basis extension

Scale-and-round D 0 = 4nk log(q i ) D 1 = 4n(k+k') log(q i ) D 2 = 3n(k+k') log(q i ) D 3 = 3nk log(q i ) D 4 = 2nk log(q i ) Figure 5.3: Partition of the FV.Mul&Relin operation over the GPU and FPGA. The quantity of data exchanged (in bits) is presented in between each step of the ciphertext multiplication. Table 5.3: Quantity of data (MB) to be exchanged between the dierent steps of the FV.Mul&Relin calculation. The last columns group together the sum of the input and output data of the FPGA and GPU computing units for an FV.Mul&Relin operation. The size of the RNS basis elements is log 2 q i = 54-bit.

Parameters

FPGA GPU This high-level study motivates the choice of a PCIe interconnection between the dierent computing units. Even if the proper bandwidth requirements could only be expressed with the consideration of the computation timings, the amount of data is already an indication of the interconnection performance required. The choice of PCIe simplies also the realization of an acceleration prototype as it is a standard connection available on most of GPU cards and FPGA prototyping boards. Table 5.4 gives a quick summary of the maximal throughput that PCIe inteconnection could achieve. This throughput is dependent on the generation and the number of lane of the instantiated PCIe interconnection. Now that the computation workload and the communications requirements have been expressed, the next subsection propose such a hybrid computing system. FPGA for the computation of the dierent steps of the FV.Mul&Relin primitive. The computation workload for the GPU is quite well identied thanks to the work of Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. During this thesis, an internship has been proposed to get a rst idea of the acceleration potential bring by the GPU. The result of this work are summarized in section 5.2. The perspectives of this GPU acceleration are also discussed in this section.

n log 2 q D 0 D 1 D 2 D 3 D 4 in out
The computation workload on the FPGA is expressed in terms of residue polynomial arithmetic. Namely, Residue Polynomial Multiplication (RPM) and Residue Polynomial Addition (RPA) over the residue polynomial rings (R q i 's) are required. Due to time constraint, this thesis only focuses on the denition of ecient RPM operations on FPGA. This is motivated by their predominant part in the performance bottleneck of the FV homomorphic evaluation. In particular, we choose to investigate RPM through Negative Wrapped Convolution as it gives the polynomial reduction for free. Our investigation and the perspectives of RPM through NWC are presented in section 5.3. elgorithm R Basis extension algorithm, following Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] 

reompX ( qi , µ i,j , φ j ) ∀ (i, j) ∈ [1, k] × [1, k ] snputX x = {x i } k i=1 ∈ B, coecient of a polynomial in R q . yutputX X = {X i } k+k i=1 ∈ B ∪ B , coecient of a polynomial in R qp . 1: v = 0 2: for 1 ≤ i < k do 3: X i = x i 4: y i = x i qi mod q i 5: v = v + y i q i 6: end for 7: v = round(v) 8: for 1 ≤ j < k do 9: X k+j = 0 10: for 1 ≤ i < k do 11: X k+j = (X k+j + y i µ i,j ) mod p j 12:
end for 13:

X k+j = (X k+j -vφ j ) mod p j 14: end for

Implementations, comparisons and perspectives

The purpose of our experimentation is double. First, look for an insight on the potential acceleration brought by the GPU on the RNS specic functions. Second, quantify the cost of the communications between the host and the GPU. This second information is interesting in order to have a better estimation of the criticality of the communication problematic. ixperimentl setupF The basis implementation is a single threaded C/C++ version of the algorithms, running on an Intel(R) Core(TM) i7-3770 CPU at 3.40GHz, with 8GB of memory. The operating system is Red-Hat 7.0, and the code was compiled with gcc 4.8.5 with the optimization option -O2.

The GPU implementation use CUDA-8.0 and is parallelized only over the dimension n (degree of the polynomials). The host cpu is an Intel(R) Xeon(R) CPU E5-2643 v4 running at 3.40GHz, with 128GB of memory. The GPU on which are performed the operations is a Maxwell GTX Titan X clocked at 1GHz, with 12GB of memory, and connected to the host through a PCIe bridge gen.2 x16 lanes. The CUDA toolsuit version 8.0 is used to compile the code.

For each operations (basis extension and scale-and-round), the timings for input and output communications and the actual GPU computation are measured. For each set of parameters the operations have been run 1000 times to average out the timings. ixperimentl resultsF The timing results are presented in Table 5.5. Those timings take into account the communications between the host and the GPU. The results highlight the acceleration potential of the GPU, even if the exploited parallelism is only with respect to the parameter n. For the rst parameter sets, the acceleration increases with the degree n. Nevertheless, this trend is stabilizing, and even reversing for the largest ones. This could be explained both by the degree n being larger that the number of physical threads available on elgorithm S Algorithm of scale-and-round for FV.Mul&Relin, following Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] reompIX

(Ω i,j , Θ i , Λ j ) ∀ (i, j) ∈ [1, k] × [1, k ] reompPX (p j , ν j,i , ψ i ) ∀ (i, j) ∈ [1, k] × [1, k ] snputX X = {X i } k+k i=1 ∈ B ∪ B , coecient of a polynomial in R qp . yutputX x = {x i } k i=1 ∈ B, coecient of a polynomial in R q such that x = [ t/q • X ] q . 1: v = 0 2: for 1 ≤ i < k do 3: v = v + X i Θ i 4: end for 5: v = round(v ) 6: for 1 ≤ j < k do 7: tmp = X k+j Λ j mod p j 8: for 1 ≤ i < k do 9: tmp = (tmp + Ω i,j X i ) mod p j 10:
end for 11: x i = 0 22:

x j = (tmp + v ) mod p j 12: end for At this point, x = {x j } k j=1 = [ t/q • X ] p in
for 1 ≤ j < k do 23:

x i = (x i + y j ν j,i ) mod q i 24:
end for 25:

x i = (x i -vψ i ) mod q i 26: end for
We only keep the residue in basis B, namely {x i } k i=1 the GPU, and by the size of the RNS basis that makes the inner-loops more costly. Another interesting point is that for all the parameter sets except for the two largest ones, the basis extension is slower than the scale-and-round operation. Indeed, it should not be the case as the second operation is more complex than the rst. This motivates the investigation of communication costs. The details of the GPU timing is given in Table 5.6. For the four rst parameter sets, the time spent in communications is more than twice as long as the actual computations. Even for the larger set, the timing spent in communications is roughly 13% (respectively 9%) of the overall timing for basis extension (respectively scale-and-round). The impact of communications is mainly due to unloading the results from the GPU. And comparing the mean bandwidth usage for the input and output communications, it seems that the input/output communication capability of the GPU is unbalanced.

Considering now the communication payloads on input and output of each operations. The basis extension takes a polynomial in B and output a polynomial in B ∪ B , the data amount on output is twice the amount on input. The scale-and-round takes a polynomial in B ∪ B and outputs a polynomial in B, the data amount on output is twice less the amount on input. Hence, the strange timing of Table 5.5 seems to be explained by the unbalanced communication capability of the GPU.

Due to time constraints, we did not investigate further this phenomenon. But this is an important information for one who wants to instantiate the proposed hybrid computing system. This indicates that the communication with the GPU should be more nely addressed for a concrete implementation. Nevertheless, even with salient communication timing, the operations benet of a non-negligible acceleration.

Exploration of ecient RPM designs

Our proposal for a hybrid computing architecture delegates residue polynomial arithmetic to dedicated hardware. According to the recent proling of Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF], the most critical operations to implement in FPGA are the Residue Polynomial Multiplications (RPM). This section presents an example of ecient NTT-based residue polynomial multiplications using our basic blocks presented in previous chapters. In particular it studies the acceleration of RPM through data-ow oriented Negative Wrapped Convolution (NWC), with on the y generation of twiddle factors.

Our proposal for a NWC-based residue polynomial multiplier is detailed in the rst subsection. A proof-of-concept implementation of this RPM design is presented in a second subsection. It includes also a projection of this design on the wide range of parameter sets. Finally, a third subsection concludes by highlighting the main conclusions of this RPM approach and drawing some perspectives.

Reminder of previous chapters

Chapter 3 has presented a solution to generate multi-eld NTT circuits. As NTTs are similar to a Discrete Fourier Transform (DFT), our work has explored the generalization of the hardware backend of the SPIRAL tool, from Milder et al. [START_REF] Milder | Computer Generation of Hardware for Linear Digital Signal Processing Transforms[END_REF], to generate NTT designs in addition to DFT designs. Hence, we have modied the DFT hardware produced by SPIRAL to convert it into a practical NTT structure for RPMs by making two sets of changes. First, we have replaced the DFT's arithmetic blocks with those that perform modular arithmetic. Second, we have adapted the twiddle factors handling.

We remind that due to time constraints, we focused our contribution on data-ow NTT circuits. For the following discussion, we consider these data-ow multi-eld NTT circuits as basic blocks. Nevertheless, it is important to consider that these multi-eld NTTs dissociate the twiddle path from the actual data path of the NTT. The data path implements the NTT algorithm itself, and the twiddle path instantiates the circularly-buered handling of the twiddle factor sets. Consequently, an NTT twiddle path may feed multiple parallel NTT data paths.

Chapter 4 has presented our solution to avoid extra costs on communication and/or memory on the accelerator for managing the twiddle factor sets. That is, a twiddle factor set generator that generates the pre-calculated values for NTT-based RPMs, without major impact on hardware performance and cost.

We remind that a twiddle factor set is a sequence of powers of a special element in the considered nite-eld. Namely, if we note ψ i this special element over the nite-eld Z q i , the twiddle factor set is the sequence Ψ i = {ψ j i } 0≤j<n . By considering data-ow oriented RPMs, the impact on computational performance is avoided by adapting the throughput of the twiddle factor set generator with the throughput of the RPM data path.

Hardware design of an RPM through NWC

As we have seen in Chapter 2, both Padded Convolution (PC) and Negative Wrapped Convolution (NWC) are suitable for implementing RPM in our context. In this subsection we explored an RPM design through NWC as it does not require the implementation of a polynomial modular reduction. Nevertheless, it is considered that the two approaches are quite comparable in terms of hardware cost and performances, assuming that ecient data-ow oriented polynomial modular reduction is possible. But, the veracity of this assumption has not been veried in this thesis.

In the following description, multiplication refers to multiplication over the ring Z p i . As presented in section 3.2.3, modular multiplications are performed following the NFLlib algorithm [START_REF] Aguilar-Melchor | NFLlib: NTT-Based Fast Lattice Library[END_REF] for modular reduction. This requires the prime q i and the reciprocal v i as inputs.

Moreover, we remind that an NWC requires the knowledge of a n-th primitive root of -1 over the considered nite-eld Z q i . In the following, we note ψ i such a n-th primitive root of -1. This means that ψ n i = q i -1 mod q i and for all k < n ψ k i = q i -1 mod q i . With

Ψ i = (ψ k i ) n-1 k=0 and Ψ -1 i = (ψ -k i ) n-1 k=0
, the NWC over Z q i is performed by computing:

i = Ψ -1 i INTT n,i (NTT n,i (Ψ i i ) NTT n,i (Ψ i i )) .
(5.1)

The overall architecture ow is presented in Figure 5.5 without the articial latency for representation simplicity. The architecture is generic regarding the size of the NTT n, the width of the data path w (called streaming-width), and the prime size s in bits, with n and w being powers of two and s ≤ 64.

There are two parallel paths in this architecture: the twiddle path and the data path. On one side, the twiddle path feeds the data path with the appropriate twiddle values, consistent with the actual polynomial ring (R q i = Z q i [X]/(X n + 1)) of the residue polynomials A i and B i . On the other side, the data path performs the negative wrapped convolution of the two input polynomials seen as n-sequence of coecients. ht pthF Five distinct steps are required to perform a NWC on inputted polynomials.

The rst step is performed by VEC PW MM and consists of inner-products of the input polynomials with the weight-vector Ψ i = (ψ j i ) 0≤j<n to output the polynomials Ψ i A i and Ψ i B i . Only the n rst elements of the twiddle factor set are required.

The second step VEC NTT computes forward NTT on each input and outputs simultaneously the transformed polynomials N T T

i (Ψ i A i ) and N T T i (Ψ i B i ). It needs Ω i = {ω j i } 0≤j<n/2 = {ψ 2j i } 0≤j<n/2
which is a subset of the values involved in Ψ i . The third step PW MM corresponds to the inner-product of the two weighted polynomials in the NTT domain N T T i (Ψ i A i ) N T T i (Ψ i B i ). Only the pair (q i , v i ) is required to perform this inner-product.

The fourth step INTT reverts the polynomial from the NTT domain, and twiddles

Ω -1 i = {ω -j i } 0≤j<n/2 = {ψ -2j i } 0≤j<n/2 are required. Ω -1
i is a subset of the weight-vector Ψ -1 i used in the fth step.

Finally, the fth step PW MM performs, in a single step, the scaling by n -1 i mod q i required at the end of INTT, and the inner-product with the weight-vector Ψ -1 i = (ψ -j i ) 0≤j<n . Thus, only the n last elements of the twiddle factor set are required.

widdle pthF As emphasized in the description of the data path, the twiddle values are not all required at the same time. Consequently, the computation of the twiddles is decomposed in three steps.

The rst step consists of the generation of the n rst powers of ψ i , namely Ψ i = {ψ j i } 0≤j<n . Along with the corresponding (q i , v i ) pair, they feed the rst three steps of the data path. The twiddle generator GEN TW, described in Chapter 4, only requires the rst w elements (ψ 1 i , ..., ψ w i ) of the Ψ i sequence. It then outputs the n sized sequence at a rate of w elements per cycle, after a certain latency.

The second step GEN ITW outputs, after a certain latency, the sequence Ψ -1 i = {ψ -j i } 0≤j<n at a rate of w elements per cycle. The computation of this sequence is done by rst computing the sequence {ψ -(n-j) i } 0≤j<n , and then reordering it to obtain {ψ -j i } 0≤j<n . The sequence to reorder is computed by subtracting each element of Ψ i from p i I . Half of the Ψ -1 i sequence feeds the inverse NTT, because only {ψ -2j i } 0≤j<n/2 is required. The third step GEN PCTW scales the sequence outputted by GEN ITW by n -1 i (inverse of n in Z q i ). It then feeds the point-wise multiplier (again with (q i , v i )) at the end of the data-ow which, thus, can complete the negative wrapped convolution. htE)ow opertionsF The overall architecture is data-ow oriented, meaning that it starts a new polynomial multiplication, over a dierent RNS channel (polynomial ring Z q i [X]/(X n + 1)), every T = n/w cycles. From now on, T will be identied as the throughput of the RPM design.

I First ψ

n i = -1 mod pi implies ψ 2n i = 1 mod pi. Then, ψ -(n-j) i = ψ -n i ψ j i = ψ n i ψ j i mod pi.
And, lastly,

ψ n i ψ j i = (qi -1)ψ j i = qi -ψ j i mod qi. Hence, qi -ψ j i = ψ -(n-j) i mod qi.
For the RPM to achieve a throughput of T = n/w cycles, the dierent twiddle sequences, computed by the twiddle path, have to be generated with the same throughput. Chapter 4 details the twiddle factor generator that is able of generating the initial sequence Ψ i = {ψ j i } 0≤j<n from the knowledge of w << n seed elements (ψ 1 i , ..., ψ w i ). Then, the generation of subsequent sequences with the required throughput is quite straightforward.

Proof-of-concept implementation

This subsection describes the result of a proof-of-concept implementation for a set of small cryptosystem parameters n = 4096, w = 2 and s = 30. Then, it studies the scaling of our approach to sets of larger cryptosystem parameters by projecting the change of SPIRAL generated DFT into multi-eld NTT. This part allows us to explore performances of the RPM architecture on most of the parameter sets from [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. Finally, it shows the positive impact of the twiddle set generator on the scalability of the overall RPM for BFV-like homomorphic schemes. A basic AXI to IP wrapper has been instantiated with 3 FIFOs large enough to buer 2 residue polynomial each. Namely, three fo of depth 1024×256-bit. In addition to the basic status signals, the wrapper's control registers store two conguration sets, which consist in the twiddle seeds along with the prime and associated reciprocal (q i , v i , ψ 1 i , ..., ψ w i ). Namely, 2×128-bit of conguration registers. The proof-of-concept NWC design is synthesized, placed and routed along with the Bridge Host Controler Interface (BHCI) IP, provided by Alpha-Data, controlling the PCIe and DMAs that access the RPM design. Synthesis, placement and route have been completed with integrated tools of Xilinx Vivado 2016.3. The resulting implementation achieved a running frequency of 200MHz without particular eort.

BCHI
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In Table 5.7, the resource utilization post-implementation is shown for the proof-of-concept NWC design. Considering only the NWC design w.r.t. the FPGA resources, the critical resources are DSP and BRAM tiles with respectively 14,4% and 14,2% utilization, 12,5% for LUT, and 8,3% for LUTRAM. The larger part of the resource utilization comes from the NTTs (70,2% of DSPs, 70,8% of BRAMs, and 77,4% of LUTs). The twiddle path, embedding our twiddle factor generator, uses roughly around 10%-13% of DSPs, BRAMs and LUTs. The inner-products in the overall data-ow use 17% of DSPs, and the various latencies synchronizing the data path and the twiddle path together represent 20% of the BRAMs utilization. The hardware cost for the synchronization (Others column) is considered constant as it becomes relatively small for larger n. The concrete test of the implemented design has not been completed due to some wrapper issues. Indeed, our wrapper has been implemented with AXI-stream port for the connection with the BCHI. Unfortunately, we didn't succeed to make the DMAs to work with AXIstream; we only managed to make them work with AXI-full connections. Hence, we should have modied our IP wrapper in consequence, but due to time constraints, this have not been possible yet.

This proof-of-concept has nevertheless validated the approach from a functional pointof-view. This also allowed us to obtain the relative cost of the system integration for this approach. And nally, it also gave us a theoretical running frequency from which we can project some performances and bandwidth requirements for larger parameter sets.

Projections over FV's parameter sets

In order to analyze the scalability of our hardware acceleration approach, its characteristics under the inuence of concrete parameter sets are studied in this section. What is interesting us at this point is an estimation of the achievable performance of a data-ow oriented NTT-based RPM. These performance are relevant if and only if it is practically possible to achieve the design. Hence, this section presents both projection on hardware costs and on the computing performance of our NWC design. rojetion methodologyF The following estimations are built on two basis: the previously presented implementation for n = 4096, w = 2 and s = 30, and the estimated changes of SPIRAL generated DFT into NTT. For each estimation, we analyze the resource count of the appropriate DFT design, and adjusted the costs of the arithmetic, memories, and required bandwidth to match the requirements of the corresponding modied NTT design. When considering a data-ow design, going from DFT to NTT mainly impacts the hardware cost of the design, as the throughput does not change for a specic transform size. Similarly, the impact on the latency of changing DFT into NTT is not considered here regarding the number of pipelined RPM to perform in practice.

For the following discussions, a DSP refers to a 7 series DSP48E1, and a BRAM refers to a 36Kb Block RAM. Estimations of resource utilization are based on the corresponding Xilinx IP core generators for unsigned multiplier and single port RAM memories. Note that no potential synthesizer optimizations have been taken into account. Finally, the number of LUT is neglected because it does not appear as a critical resource in practice.

We remind that in Chapter 3 the concrete synthesis results are given for the twiddle path of the multi-eld NTT. Similarly, Chapter 4 details the concrete synthesis results for the twiddle factor set generator. In the following discussions, we do not consider the results of the synthesis, but those of our projection. These projections are sucient to validate the consistency of our RPM design, although these projections are pessimistic. For instance, for the parameter set (n = 2 14 , w = 4, s = 30), our projections estimate that one twiddle path of a multi-eld NTT is utilizing 112 BRAMs slices and our synthesis result shows that it actually uses only 88 of them (see Chapter 3). Another example for the estimation of the GENTW module resources utilization, for the parameter set (n = 2 14 , w = 4, s = 30) our projections estimate the usage of 48 BRAMs and 48 DSPs, and our synthesis result indicates 42 BRAMs and 44 DSPs (see Chapter 4).

rojetions on hrdwre ostsF The following discussion refers to Figure 5.7 presenting our projection results on resource utilization. All sizing parameters n, w and s have a significant impact on resource utilization. Figure 5.7a presents the inuence of the degree of the polynomials n, Figure 5.7b the inuences of the streaming width w, and Figure 5.7c the inuence of the size of the primes. The limit value represents the available hardware/bandwidth resource within Alpha-Data board used for our proof-of-concept. This limit takes also into account the BCHI and the wrapper resource utilization plus a 10% margin for a concrete implementation.

The degree n of the handled polynomials mainly impacts the number of BRAM required. Its inuence on DSP utilization is linear due to the number of stages being in O(log 2 n) and n being power of two. The bandwidth requirement to fully load the design is constant due to the data-ow approach that makes it only dependent on the streaming-width w, the prime size s, and the running frequency. The estimated number of BRAM used goes from 226 (roughly 1 MB of data) for n = 2 12 up to 1074 (roughly 4.8 MB of data) for n = 2 15 . With larger degree n (> 2 15 ), the BRAMs utilization limits the feasibility of the design. The larger part of the utilization ( > 64 %) is used to implement the permutations of the NTT data paths. Hence, a potential solution to address larger degree is to implement the design on a FPGA with increased number of available BRAMs, or to improve the resource eciency of the NTT permutations.

The streaming width w improves the throughput of the RPM signicantly. Indeed, the number of cycles between two RPM computations is T = n/w. For instance, considering n = 2 14 , it is 32, 768 cycles for w = 2 down to 4096 for w = 16. But due to a larger streamingwidth, this has an heavy drawback on the DSP utilization (from 636 up to 4, 836 DSP slices), and on the required communication bandwidth (from 4.5 GB/s up to 36 GB/s for a 200MHz clock frequency). Thus, increasing the streaming-width to improves the performances of the design seems not to be a viable solution.

The element size s (size in bit of the RNS basis elements) is interesting to consider because it inuences the size of the RNS basis for a given parameter q. Doing so reduces the number of RPM to perform for a ciphertext multiplication. This parameter has a balanced impact on BRAM utilization, DSP utilization and required communication bandwidth. Nevertheless, some increments of s have a more signicant impact on DSP utilization, this is due to the architectural characteristic of the DSP elements. Similarly, with increased s, the latency of modular multiplications may be larger if one wants to keep the same running frequency.

To conclude on these projections, they show the feasibility of RPM through data-ow NWC. Nonetheless, they indicate some limitations to address very large parameter sets n > 2 15 due to BRAM utilization. They also gives some indications on how to improve the computing performance of the design. Our recommendations on this matter would be to tune the size of the RNS basis element s rather than the streaming-width w.

Even if these projections are pessimistic, they nonetheless express the exibility of our RPM design for our application context. We assume that this is sucient to validate the relevance of the following timing projections.

ixeution performne slilityF To study the execution performance of the RPM design, we estimate the resulting timing and compare with the proling from Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] already presented in Chapter 2. Table 5.8 reminds this proling over which execution performance comparisons are based. In Table 5.9 the acceleration results over dierent parameter sets from [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] are presented. The distinction is made between the RPMs involved in the tensor product (Mul.RPM) and the RPMs involved in the relinearization (Relin.RPM). The number of RPM performed during these steps depends on RNS basis sizes k and k . Namely, the tensor product requires 3(k +k ) RPMs, and the relinearization requires 2k 2 of them. The timings are estimated considering all the RPMs being performed in a single ow.

In the rst part of the table, the estimated acceleration of our NWC-design for dierent FV's parameter sets is highlighted. It is noticeable that the approach gives a signicant speedup over the RPM computations: at least 22.2 for the RPM of the tensor product and 4 for the RPM of relinearization. Furthermore, this speedup remains relevant with the growth of the parameter sets: from 22.2 up to 31.3 for tensor product and from 4.0 up to 9.5 for relinearization. Another element that has to be pointed out being the better speedup obtained for the tensor product than for relinearization. This element is discussed in details a little further.

The second part of the table shows the expected improvement of the acceleration when increasing the streaming-width w of our design. The speedup is estimated up to 219 for the tensor product and up to 32.3 for the relinearization. Nonetheless, we remind that the hardware cost to do so is non-negligible, and that the required bandwidth to concretely achieve this performances is particularly high.

Finally, the third part shows the concrete impact of reducing the size RNS basis by increasing the size of their elements. Namely, the speedup lays from 27.4 up to 54.8 for the RPMs during tensor product and from 4 up to 18.5 for the RPMs during relinearization. We recall that the impact on hardware cost is relatively light. Hence, the resulting speedup improvement are quite interesting to consider for a concrete implementation. Table 5.9: Estimated performance of our RPM design over the dierent parameter sets. The RPM throughput is estimated with a 200MHz clock frequency. The number of cycles between two consecutive RPM calculation is T = n/w. The number of RPM for the tensor product is 3(k + k ) and 2k 2 for relinearization. The speedup are expressed relatively to the estimated timings of Table 5 We would like to come back to the dierences in acceleration between the tensor product and the relinearization. This is explained because our approach accelerates RPM operations rather than NTT operations. When considering the complexity at RPM level, some optimization possible at NTT level are not accessible. For instance, the relinearization key could be stored already in NTT domain, hence the number of NTT to perform in the relinearization is k 2 +2k. This has to be compared to the 2k 2 operations to performs at RPM level. But the other way around, considering the complexity at NTT level would make us consider more operations during the tensor product.

The number of operations to performed for the dierent abstraction levels are compared in Table 5.10. Our discussion here only considers the operations of similar complexity (RPM and NTT). At RPM level, we have roughly half less operations to perform than at NTT level during the tensor product, but during relinearization there is almost twice more operations to perform when the RNS basis get larger. But it also appears that the loss during relinearization is not compensated by our gain during tensor product. Namely, for the the setting (n = 2 14 , log 2 q = 432), we perform 68 less operations at RPM level than NTT level during the tensor product, but 99 more operations during the relinearization. Consequently, for large parameter sets, its seems more relevant to consider the acceleration of operation at NTT level rather than at RPM level. Table 5.10: Dierences of considering the calculation complexity at RPM level rather than NTT level. The count of number of operations for the NTT level are based on the implementation of Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. The size of the RNS basis elements is s = 54-bit.
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Concluding remarks

In the literature, the main problematic for the denition of scalable RPM designs is the handling of the multiple twiddle factor sets brought by the RNS representation. In this thesis, we have explored the on-the-y computations of these twiddle factor sets. These specic contributions have been described in previous chapters. In this section we have shown an example of the exploitation of these basic blocks for the denition of a scalable RPM designs.

In particular, a proof-of-concept NWC-based RPM has validated the feasibility of our approach. The projections that have followed give good insurances on the exibility brought by our basic blocks. From the best of our knowledge, our design strategy is the rst that gives performances enhancement while being able to scale up to large parameter sets for an achievable hardware cost and communication bandwidth in the context of Leveld-FHE.

Moreover, some improvements are possible. The highlighted limitations of considering the complexity at RPM rather than NTT level motivates denition of residue polynomial arithmetic at a lower abstraction level. Doing so breaks the rigidity of a large data-ow RPM design. This could be replaced by several smaller and independent NTT data-ow, and hence increasing the exploited parallelism at NTT level.

In the next section, the results of the exploration of FPGA acceleration of RPMs and those of the exploration of GPU acceleration for RNS specic functions are concatenated. This allows us to conclude on the estimated acceleration of our hybrid computing system for encrypted-computing with FV.

Conclusion

In the two previous sections, both the acceleration of GPU for RNS specic functions and the acceleration of an NWC-based RPM on FPGA have been explored.

To motivate the pertinence of our hybrid computing system, we estimate the acceleration obtained for the computation of one FV.Mul&Relin. Table 5.11 presents the resulting projections when considering 54-bit primes elements to compose the RNS basis. The communication timing for GPU accesses has been taken into account. Table 5.11: Projection of the acceleration obtained with our hybrid computing system proposal for the FV.Mul&Relin primitive. Communication timings obtained during the experimentation on GPU are included. The RNS columns regroup basis extensions and scale-andround operations. The RPM columns regroup RPMs for tensor product and for relinearization. RPMs timings are for w = 2 and s = 54.

Parameters

Timing basis from [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF] Our hybrid system L n log 2 q otl RNS RPM Misc. otl speedup RNS RPM Our hybrid computing approach is quite well justied by these estimations. It should be noted that the greatest acceleration concerns the parameterization for the greatest multiplicative depth in the encrypted domain. It allows us to consider a multiplication of encrypted data up to 14 times faster than the well-optimized software version of Halevi et al. [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. This acceleration reduces the time for en encrypted multiplication to 62 ms for an evaluation capacity of a multiplicative depth of 30, and to 21 ms for a multiplicative depth of 20.

The dedicated hardware acceleration for RPMs is based on the two contributions from Chapters 3 and 4 that allow the practical feasibility of this accelerator: ecient handling of twiddle factor sets for multi-eld NTT circuits, and on-the-y generation of these sets. Together, these approaches signicantly reduce the number of BRAMs used to store twiddle factors: from 37% to 84% for multiplicative depths from 5 to 30. They also reduce the required bandwidth to ll up the RPM accelerator with the twiddle factors from hundreds of MB/s to only several kB/s.

Nevertheless, a limitation of this projection is that we make the assumption that the complexity of the tensor product and relinearization is equivalent to the complexity of computing the underlying RPMs. It is not totally true as these RPMs operations are in practice interleaved with Residue Polynomial Additions (RPA). Hence, future works should propose an FPGA acceleration for both RPMs and RPAs. It is assumed that our contributions on the denition of multi-eld NTT circuits and twiddle factor generators could denitely help this purpose.

These prospective results motivate the renement of the dedicated accelerator for polynomial arithmetic as well as the realization of the prototype of hybrid acceleration. 

Conclusions and perspectives

Retrospective

This thesis contributed to the preservation of privacy during data processing. In particular, it addressed the problematic of low execution performances of encrypted-computing with homomorphic cryptography by the exploration of dedicated computing architectures. In a rst chapter, we presented our position within the homomorphic cryptography research area. We identied the RLWE-based HE schemes as a promising family, well-accepted by the FHE community. In particular, we chose to focus on L-FHE schemes like FV and SHIELD as they appeared at the beginning of this thesis more mature than the fourth generation's scheme TFHE. The main issue in implementing these schemes remains the management of wide ranges of parameters that makes the denition of a hardware acceleration strategy more dicult. After having reviewed the techniques and questions for the concrete use of these schemes, a state-of-the-art of hardware implementation was presented. Our analysis of the latter concluded with our objective of dening a scalable hardware acceleration strategy with respect to the variety of parameter sets, and with our choice of specically studying the FV scheme for that purpose.

Chapter 2 presented our analysis of the FV scheme towards its hardware acceleration. It rst presented the scheme while highlighting the complexity of its parameterization. We then analyzed its requirements for the acceleration of polynomial ring multiplications by making a performance proling of a typical encrypted application. Our analysis of the related works for the acceleration of these operations led us to choose an acceleration strategy based on coupling the RNS and the NTT approaches. After having presented both RNS and NTT utilization in this context, we validated the feasibility of their coupling for up to very large parameter sets. We then incorporated it into the dynamics of the literature by describing a full RNS variant of FV, concomitant with our work. The chapter was concluded with details on the full RNS variant proling, indicating the relevance of accelerating both RNS specic functions and NTT-based residue polynomial multiplications.

Chapters 3 and 4 detailed our contributions to the design of polynomial ring multiplication architectures with the RNS/NTT coupled approach. These contributions make possible the consideration of large parameter sets, and thus the hardware acceleration for large encryptedcomputing applications. In particular, they allow a more eective management of twiddle factors in this context on two aspects. Firstly, by an on-the-y handling of the dierent twiddle sets feeding the data path of a multi-eld NTT circuit. Secondly, by an on-the-y generation of these twiddle sets from a greatly reduced number of seed elements. For these two contributions, we proposed an automatic generation of RTL circuits for a natural integration with the SPIRAL tool. The automation of these circuits facilitates the exploration of the design space for ecient NTT-based residue polynomial multiplications.

Finally, Chapter 5 presented our proposal of a hybrid computation system for the acceleration of the RNS/NTT coupled approach for FV. In particular, it showed the acceleration expectations for each parts of the ciphertext multiplication. The GPU acceleration of RNS specic functions gave promising timings up to 33 times (respectively 61 times) faster than on CPU for basis extension (respectively scale-and-round). Although, some additional developments on communications and on workload management would be benecial for proper integration of the hybrid system. A proof-of-concept implementation of a residue polynomial multiplier was also presented in that chapter. The study of its scalabilty conrmed that our basic blocks presented in Chapters 3 and 4 allow the conception of high-throughput RPM designs for large parameter sets. The remaining limitations are located in the BRAMs utilization and in the communication bandwidth required to fully load the accelerator. Together, the GPU and FPGA acceleration made us project a signicant acceleration for encrypted computing with FV. Our acceleration projections allow us to hope an order of magnitude of gain in the execution time for ciphertext multiplication with respect to state-of-the-art software implementations.

Perspectives

Research on ecient encrypted-computing continues. Throughout this thesis, we have sought to take into account the complexity of implementing homomorphic encryption. This complexity is rstly to position oneself within the dierent families and generations of HE schemes.

A lull can be felt in the literature since 2016, but many things remain to be done to clarify the benets and use cases of each scheme. At least, this is the impression that emerges when one has to make a development eort towards hardware. It is always possible that one scheme may take precedence over the others in a slightly more radical way. In this case our thoughts go towards TFHE. Despite this, we hope that our scientic contributions will allow to take the use of homomorphic encryption for data privacy a step further. rrdwre elertion for pF In this thesis, we have shown the possibility of having a generation of twiddle factors for NTTs for a hardware cost independent of FV parameters as well as performing an automated generation of multi-eld NTT circuits by associating SPIRAL and the twiddle path generator.

The renement of our twiddle path generator for a closer interaction with SPIRAL's hardware backend could open ecient design space exploration for NTT-based RPM circuits. In a mid-term future, this generation could even be the source of an all-in-one IP for nite-eld NTTs. That being said, it would still be necessary to carry out a more in-depth study of the various use-cases and their associated solutions (multi-eld or single-eld, choice of modulus, etc.).

Concerning the RPM operation, our work reduces the cost of coupling NTT and RNS together. Thus, it oers good perspectives for the concrete acceleration of encrypted-computing with FV. In particular, for the feasibility of an accelerator embedding all residue polynomial operations (RPMs and RPAs). Thus, the overall tensor product and relinearization could be performed locally on the dedicated hardware accelerator. The hardware cost overhead for data-ow RPA is rather small, but the local storage of numerous residue polynomials in that case could be problematic. This could motivate to explore external buering solutions using DDR memories, directly accessed by the dedicated hardware, or even multi-FPGA approaches to separate the tensor product from the relinearization.

As a consequence, we have paved the way towards the design of a micro-server architecture for encrypted-computing along the lines of Chapter 5. Yet, our work only started to explore the communication problematics which would crop up in such a system. Our rst choice of using PCIe interconnect could be suitable for a proof-of-concept hybrid system. This could be improved to increase communication bandwidth and hence furthemore improve the accelerations. For instance, by exploring the integration of the GPU and dedicated hardware for polynomial arithmetic closer to CPU memory. Staying in a multi-SoC approach, one could consider IBM's Coherent Accelerator Processor Interface (CAPI). A more integrated heterogeneous single-SoC may explore Intel's UltraPath Interconnect (UPI). Finally, considering an ASIC design, it would be interesting to take a closer look at some specic technologies such as 3D memory integration. This is a classic design problematic for application domains that have their computational performance more dependent on the quantity of data to handle than on the computations themselves. From this point of view, the acceleration of homomorphic encryption is similar to the acceleration of on-the-y images and videos processing.

rrdwre elertion for priF The implementation issues of the TFHE scheme are quite dierent from those of FV. Indeed, the complexity of large parameterization dynamic is less present.

However, computational complexity is also related to the ability of performing ecient polynomial multiplications. The polynomials have real coecients modulo 1, and therefore a hardware acceleration by Fourier transform could also be considered. Consistently with our approach, the SPIRAL's DFT generator could once again be a good starting point which hints that even simplied versions of the accelerators designed in this thesis may be sucient to accelerate TFHE in hardware. ostEquntum ryptogrphyF After the call from the National Institute of Standards and Technology (NIST) for post-quantum cryptography, we note that some candidates are using the algebraic structure of polynomial rings. For example, a preliminary analysis on the CRYSTAL-KYBER proposal [START_REF] Bos | CRYSTALS -Kyber: A CCA-Secure Module-Lattice-Based KEM[END_REF] hints that this cryptosystem could benet from NTT-based polynomial ring multiplications. This would especially be important for high-performances encryption server e.g. at the corporate end of a VPN.

In this case, the derivation of the parameters is very dierent from the homomorphic context. Our handling of twiddle factor sets would not be required due to suciently small constant modulus (q = 7681 for CRYSTAL-KYBER). However, as observed for elliptic-curve cryptography [START_REF] Bigou | Etude théorique et implantation matérielle d'unités de calcul en représentation modulaire des nombres pour la cryptographie sur courbes elliptiques[END_REF], the RNS could be useful to obfuscate manipulations of the secret against side-channel attacks, or simply to accelerate the primitives by involving multi-key parallelism. Thus our work on RNS/NTT coupling could be a starting point for the exploration of ecient hardware implementation strategy.

With or without RNS, the adaptation of the hardware backend of SPIRAL, as was done in this thesis, could generate ecient NTT circuits for a high-performance post-quantum cryptography.
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  δ: the expansion factor of the considered ring R. By denition, δ = sup a,b∈R ab a b , and express the maximum norm's expansion during a product in R. When considering the Euclidean norm • , δ is bounded by √ n. Numerous work consider the innite norm • ∞ for convenience, and hence bound δ by n, with n being the dimension of the ring.

  then

Figure 2 . 1 :

 21 Figure 2.1: Number of primes of size s found with Algorithm 2 for dierent polynomial degree n. For NWC the degree of the polynomials F is exactly n, and for PC the degree of the polynomial is up to n. The continuous lines indicate the required number of prime to compose B and B for dierent size of q.

Figure 2 .

 2 Figure2.1 shows the result of the experiment. For s > 30, the number of available primes to construct the RNS basis is clearly sucient for all parameter sets studied in subsection 2.1.5. Another result we found in this experiment is that using smaller than 30-bit primes may result in diculty to nd enough primes for very large FV parameter sets. As we want an hardware approach that scale with as much FV parameter sets as possible, we will then consider primes of size at least 30 bits.
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 31 Figure 3.1: Example of streaming reuses.

Figure 3 . 2 :

 32 Figure 3.2: Example of iterative reuses.

Figure 3 . 3 :

 33 Figure 3.3: Combined streaming and iterative reuse: ir k/d

Figure 3 .

 3 4 presents some illustration of dierent reconstruction of equation 3.1 to match sequential reuse directives. Contrary to the matrix formula, the schematics are read from left to right.

DFT

  

Figure 3 . 4 : 2 l=0 L 8 2 (I 4 ⊗

 34224 Figure 3.4: Illustration of sequential reuse impact on a DFT circuit. Example for a radix-2 DFT on 8 points: DFT 2 3 = 2 l=0 L 8 2 (I 4 ⊗ DFT 2 )C (l) 8 P 8 2 .
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 3535 Figure 3.5: Modular additions and subtractions over Z p i

-
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 36 Figure 3.6: Hardware schematic of the NFLlib modular multiplication algorithm
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 37 Figure 3.7: Example of the initial twiddle factors partition for a fully-streaming NTT 2 4 with streaming width equal to 4. The nite-eld specic values are highlighted in blue.

Figure 3 . 8 : 2 .

 382 Figure 3.8: Number Theoretical Transform (NTT) ow. Schematic for w = 2.

Figure 3 . 9 :

 39 Figure 3.9: Stage structure for a NTT stage.

Figure 3 .

 3 Figure 3.9 presents the basics of a NTT stage in our solution. The synchronization signal next_l is extracted from the control ow directly coming from the next_dt signal. Hence, when next_l is asserted it tells the twiddle path that the stage l will have data of a new nite-eld incoming on the next clock cycle. Upon this information the appropriate nite eld values (pplues_l) are fed to the stage.For the proper generation of the twiddle path, the nite-eld values expected by each stage of the NTT must be be known. Hence, when SPIRAL generates the NTT data path, some information on its resulting structure should be propagated to our twiddle path generator.

Figure 3 . 10 :

 310 Figure 3.10: Twiddle path internal structure.

  The PRG module is responsible of the reprogramming of the twiddle banks. This programming is requested at each input of a new twiddle factor set, signaled by the next_twiddles signal. The PRG module signals to CTRL that a new program ow is coming with the next_prg signal. The twiddle banks not currently programmed are accessed accordingly to the read address signals generated by the GA module. For each memory in a twiddle bank, the generation of read address signals is reset by the control signals from the data path ow.

Figure 3 .

 3 Figure 3.11: Principle of the program interconnect module (IPRG).

Figure 3 .

 3 Figure 3.12: Twiddle bank internal structure. Example for n = 16 and w = 4. To reprogram a twiddle bank, the pair (p i , v i ) and the twiddle factors {ω j i } 0≤j<n/2 are sent through PRG along with appropriate write ddress and write enle signals for each storing location of the bank. As seen in Figure 3.11, the bank currently programmed receives the we_g_[*] signals from PRG: bank number g is reprogrammed when num_prg is equal to g. Other banks are only addressed for reads, using the simple mechanism of address selection in gure 3.12.
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 313 Figure 3.13: Input formalism for the dierent twiddle factor sets.
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 314 Figure 3.14: Selection of nite-eld values for a stage l.
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 41 Figure 4.1: Generation of twiddles (GEN TW) ow.

Figure 4 . 2 :

 42 Figure 4.2: MM UNIT principle.

Figure 4 . 3 :

 43 Figure 4.3: Generation handler general principle.
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 44 Figure 4.4: COMPUTE CONTROL principle.

Figure 4 .

 4 Figure 4.4 illustrates the resulting module that essentially consists in a pipelined propagation of the scheduling results. The prior register indicates the generation currently with the highest priority. This register is cyclically updated in 1, ..., H as new generations are requested (reception of the strt signal). The signals d_1XH are coming from the dierent GEN HANDLER [1:H]. They indicate the GEN HANDLERS that are currently able to perform new computations, and thus which are eligible in the current scheduling session.

Figure 4 . 5 :

 45 Figure 4.5: SORT module.

Figure 4 .

 4 Figure 4.5 presents a detailed illustration of the SORT module. Each BUFFER is actually a bunch of w memories, and each memory is associated to one of the w streaming ways. The BUFFER CONTROL module is decomposed into two sub-modules. The rst one (CTRL IN) updates the INPUT INTERCONNECT and generates the write-address and write-enable signals for the currently fed BUFFER. The second one is responsible for the output of the n-sequences once they are completed.The details of the dierent sub-modules are described in the following paragraphs.
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 46 Figure 4.6: BUFFER module.

  CTRL OUT sub-module.

Figure 4 . 7 :

 47 Figure 4.7: The two sub-modules of the SORT CTRL module.
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 48 Figure 4.8: Dependency graph of the powers of a. Here n = 6 and only multiplication operations with 2 operands are considered.

Figure 4 . 9 :

 49 Figure 4.9: Examples of overlaps given by two dierent recurrence relationships. Examples for n = 6.
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 410 Figure 4.10: Bunch-wise generation of the n-sequence. Example for n = 16 and w = 4.

Figure 4 .

 4 Figure 4.11: MM UNIT argument connection for the optimized solution.

Figure 4 .

 4 Figure 4.12: GEN HANDLER cache structure for the optimized solution.
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 413 Figure 4.13: Post-synthesis estimations of resource utilization for twiddle generator under the inuence of sizing parameters. The relative resource utilization is estimated with respect to a virtex 7 xc7vx690t.
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 52 Figure 5.2: Ciphertext relinearization.

Figure 5 . 4 :

 54 Figure 5.4: Proposed system architecture to accelerate FV homomorphic evaluation. The CPU controls the overall computations, the GPU accelerates the RNS specic functions and the FPGA accelerates the tensor products over R and the relinearization primitive.

y j = x j pj mod p j 16 : z j = y j p j 17 :

 1617 basis B 13: v = 0 Hence, we change the basis: B → B 14: for 1 ≤ j < k do 15: v = v + z j 18: end for 19: v = round(v) 20: for 1 ≤ i < k do 21:
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 55 Figure 5.5: Residue Polynomial Multiplier (RPM) ow.

Figure 5 . 6 :

 56 Figure 5.6: Proposal of a plausible system integration of a Residue Polynomial Multiplier.

Figure 5 .

 5 Figure 5.6 illustrates the implemented design. The targeted prototyping board is an Alpha-Data board ADM-PCIE-7V3, embedding a Xilinx Virtex 7 xc7vx690t, and connected to host PC through PCIe Gen3 ×8 lanes. A basic AXI to IP wrapper has been instantiated with 3 FIFOs large enough to buer 2 residue polynomial each. Namely, three fo of depth 1024×256-bit. In addition to the basic status signals, the wrapper's control registers store two conguration sets, which consist in the twiddle seeds along with the prime and associated reciprocal (q i , v i , ψ 1 i , ..., ψ w i ). Namely, 2×128-bit of conguration registers. The proof-of-concept NWC design is synthesized, placed and routed along with the Bridge Host Controler Interface (BHCI) IP, provided by Alpha-Data, controlling the PCIe and DMAs that access the RPM design. Synthesis, placement and route have been completed with integrated tools of Xilinx Vivado 2016.3. The resulting implementation achieved a running frequency of 200MHz without particular eort.In Table5.7, the resource utilization post-implementation is shown for the proof-of-concept NWC design. Considering only the NWC design w.r.t. the FPGA resources, the critical resources are DSP and BRAM tiles with respectively 14,4% and 14,2% utilization, 12,5% for LUT, and 8,3% for LUTRAM. The larger part of the resource utilization comes from the NTTs (70,2% of DSPs, 70,8% of BRAMs, and 77,4% of LUTs). The twiddle path, embedding our twiddle factor generator, uses roughly around 10%-13% of DSPs, BRAMs and LUTs. The inner-products in the overall data-ow use 17% of DSPs, and the various latencies synchronizing the data path and the twiddle path together represent 20% of the BRAMs utilization. The hardware cost for the synchronization (Others column) is considered constant as it becomes relatively small for larger n.

  Inuence of n over utilization of FPGA resources.

  = 2 14 , s = 30 (b) Inuence of w over utilization of FPGA resources.

  = 214 , w = 2 (c) Inuence of s over utilization of FPGA resources.

Figure 5 . 7 :

 57 Figure 5.7: Estimation of resource utilization under the inuence of sizing parameters. The relative resource utilization is estimated with respect to the quantity of resources of a virtex 7 xc7vx690t for DSP and BRAM, and with respect to the bandwidth capacity of a PCIe gen 3 x8 lanes for the required bandwidth. Bandwidth requirements are expressed for a 200MHz running frequency. The dierent legend entries refer to dierent parts of the design: NTT_DP to the three NTT data paths, NTT_TW to the two NTT twiddle path, PWMM to the four point-wise modular multiplications, and GTW to the overall twiddle path (GENTW + GENITW + GENPCTW). The articial latency for synchronization between the twiddle and data path have not been taken into account.

  

Table 1 :

 1 Projection de l'accélération obtenue avec notre proposition de système hybride de calcul pour la primitive FV.Mul&Relin. Les colonnes RNS regroupent les opérations spéciques au RNS. Les colonnes RPM regroupent toutes les opérations de multiplication de polynômes requises par l'opération FV.Mul&Relin.

		Parameters	Timing basis from [5]			Our hybrid system
	L	n log 2 q otl RNS RPM Misc. otl speedup RNS RPM
	1 2 11	54	3.6	1.3	2.2	0.1	0.67	×5.37	0.51	0.06
	5 2 12	108	12.7	3.8	8.6	2	3.28	×3.87	1.05	0.23
	10 2 13	216	57.6	14.4	41.8	2.6	7.13	×8.08	3.32	1.21
	20 2 14	432	252	71.3 175.3	2.2	20.7 ×12.17 11.17	7.33
	30 2 15	594	887 233.1 630.6	2.6 61.21 ×14.49 33.14 25.47
	Conclusion et perspectives					

Les recherches pour du crypto-calcul ecace se poursuivent. Tout au long de cette thèse, nous avons cherché à prendre en compte la complexité de l'implémentation du chirement homomorphe. Cette complexité est premièrement celle du choix du chirement à considérer pour une accélération matérielle. Notre analyse de l'état de l'art nous a orienté vers les schémas homomorphes basés sur le problème RLWE, et en particulier le schéma FV. Deuxièmement, le choix de la stratégie d'accélération doit prendre en compte de nombreux éléments. Le plus important à notre avis est la grande variété des paramétrages qui implique la nécessité d'une stratégie d'accélération exible. En ce sens, nous avons choisi une stratégie couplant la représentation des nombres en RNS et la multiplication de polynômes par NTT. Nos contributions montrent en particulier la possibilité d'avoir des circuits de NTT multi-corps avec une génération locale des facteurs de rotation, pour un coût matériel peu sensible aux variations des paramètres de FV.

  The problem instance consists in nding x = s = (s 1 , s 2 , s 3 , s 4 ) ∈ Z 4 14s 1 + 15s 2 + 5s 3 + 2s 4 (mod 17) ≈ 8 13s 1 + 14s 2 + 14s 3 + 6s 4 (mod 17) ≈ 16 6s 1 + 10s 2 + 13s 3 + 1s 4 (mod 17) ≈ 3 3s 1 + 6s 2 + 4s 3 + 5s 4 (mod 17) ≈ 16 . . .

	6s 1 + 7s 2 + 16s 3 + 2s 4 (mod 17) ≈ 3
	4 17 , a new random approximate linear equation is produced as follow. Sample uniformly an element over Z 4 17 , sample an error e from χ, and express equation over the variable x ∈ Z 4 17 :
	, x mod 17 ≈ ( , s + e) mod 17.

Table 2 . 1 :

 21 Table extracted from Bonnoron PhD thesis[START_REF] Bonnoron | A Journey Towards Practical Homomorphic Encryption[END_REF]. FV parameters (nlog 2 q) obtained with Algorithm 1. Security estimation for the LWE instances according to the LWEestimator[START_REF] Albrecht | lwe-estimator, Sage Module for Estimating the Concrete Security of LWE Instances[END_REF] commit 61ac716.

	L	λ = 80 bits	λ = 128 bits
		T = 2 32	T = 2 64	T = 2 32	T = 2 64
	1	(1,18854)	(1,98287)	(1,87855)	(3,10688)
	5	(3,711159)	(4,507193)	(6,014166)	(7,292200)
	10 (7,120303)	(7,917337) (11,625317) (12,844351)
	15 (10,715454) (11,549489) (17,507475) (18,729509)
	20 (14,405611) (15,187645) (23,491639)	

Other parameters: σ = 2 √ n, t = 2 and considering δ = n.

Table 2 .

 2 2: Proling results of homomorphic evaluation of Trivium-12. FV implementation from Carpov et al.[START_REF] Carpov | Armadillo: A Compilation Chain for Privacy Preserving Applications[END_REF]. λ < 80, L = 19, n = 8192, t = 2, log 2 q = 913, log 2 σ = 383 , log 2 g = 2739, , log 2 σ g = 783. Valgrind 3.10 on Intel Core i7-3770.

	ri ivlution	# calls Cycles (×10 6 ) % Parent	% Total
	r rivium	1	PTDVRTDWSW	IHH 7	IHH 7
	C rmp	1	PSDSUTDWIR WSFPU 7 WSFPU 7
	++ FV.Mul&Relin	3,456	25,420,474	99.39 %	94.69 %
	+++ FV.Mul	13,824	10,860,382	42.72 %	40.45 %
	+++ FV.Relin	3,456	13,577,587	53.41 %	50.57 %
	+++ Others	62,208	982,505	3.87 %	3.66 %
	++ FV.Add	10,368	134,693	0.52 %	0.50 %
	++ Others	31,105	21,747	0.09 %	0.08 %
	C uqen	1	IDPUHDHRS	RFUQ 7 RFUQ 7
	++ FV.Mul&Relin	171	1,258,445	99.09 %	4,69 %
	+++ FV.Mul	684	537,532	42.71 %	2.00 %
	+++ FV.Relin	171	672,219	53.42 %	2.50 %
	+++ Others	3,078	48,694	3.87 %	0.18 %
	++ FV.Add	798	10,366	0.82 %	0.04 %
	++ Others	1,526	1,234	0.10 %	0.00 %

Table 2 . 4 :

 24 Proling of the full RNS variant of the FV scheme implemented by Halevi et al.[START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. The FV.Mul&Relin primitive is detailed w.r.t. the time spent in the RNS specic functions of basis extension (Bext.) and scale-and-round (Sc&Rnd), and in the Residue Polynomial Multiplications (RPM).

	FV.Mult&Relin details

  Figure 3.13 illustrates this formalism which is respected by the twiddle generator presented in Chapter 4.

1 i , ..., ω n/2 i }. Moreover, they are inputted w/2 elements per cycles in order to respect the required programming throughput.

Table 4 .

 4 1: Detailed hardware cost partition of our twiddle factor generator.

				Resources		
	(n, w, s)	Modules	Logic LUTs SRLs	FFs	BRAMs DSP48
			432,368		864,736	1,470	3600
		qix_	PDPVI	QTH	SDSQH	IP	PP
		+CMPT	1,967	359	4,668	0	22
		++SGH	1,343	0	3,072	0	0
		++MMU	442	356	1,086	0	22
	(2 12 , 2, 30)	++CTRL	94	3	45	0	0
		+SORT	314	1	856	12	0
		++SBUF	98	0	546	12	0
		++CTRL	91	1	66	0	0
		+misc.	228	0	709	0	0
		qix_	RDRWT	IISP IIDSHR	RV	VV
		+CMPT	3,739	1151	9,184	0	88
		++SGH	1,674	0	4,152	0	0
		++MMU	1,614	1,148	3,792	0	88
	(2 14 , 8, 30)	++CTRL	96	3	55	0	0
		+SORT	757	1	2,296	48	0
		++SBUF	662	0	1,626	48	0
		++CTRL	95	1	66	0	0
		+misc.	370	0	1,789	0	0

Table 4 .

 4 2: Memory footprint and communication bandwidth requirements for an external storage strategy and our local generation of twiddle factor sets.

			Parameters		External Storage vol qenertion
	L n	S q	s	k + k w	MEM kB	BW GB/s	MEM f	BW kfGs
	1	2 11 54		5		19.2		VH	PFWQ
	5	2 12 108		8		61.4		IPV	IFRT
	10 2 13 216	30	16	2	246	0.75	PST	HFUQ
	20 2 14 432		30		922		RVH	HFQU
	30 2 15 594		41		2,519		TST	HFIV
						2		0.75	RVH	HFQU
	20 2 14 432 30 30	4 8	922	1.5 3	UPH IDPHH	IFIH QFTT
						16		6	PDITH	IQFIV
				30 30		922	0.75	RVH	HFQU
				41 22		924	1	SPV	HFS
	20 2 14 432	51 18	2	940	1.3	SHR	HFTP
				58 16		950	1.5	SIP	HFUI
				62 15		952	1.6

Table 5 .

 5 1: Summary of number of basic operations to performs for the basis extension and the scale-and-round operations. The MM columns refer to modular multiplications and the FM columns to oating-point multiplications. Modular and oating-point additions are not considered. The column pre. refers to the total of pre-computed values.

		Parameters		pre.	Bext. (×10 3 )	Sc&Rnd (×10 3 )
	n log 2 q	k k	kB	MM	FM	MM	FM
	2 11	54	1	2	0.17	41	16	55	31
	2 12	108	2	3	0.34	180	49	246	86
	2 13	216	4	5	0.84	950	164	1,327	270
	2 14	432	8	9	2.41	5,833	590	8,356	934
	2 15	594	11 12	4.09	20,316	1,573	29,393	2,458
	2 16 1026 19 20 10.68 109,838	5,243	161,022	8,061
	2 17 2052 38 39 38.65 817,364 20,447 1,211,105 31,064
	Table								

Table 5 .

 5 4: Summary of available bandwidth with the dierent generations of PCIe.In this subsection, we give an overview of a hybrid computing system for the acceleration of encrypted-computing with FV.Figure5.4 presents our proposed hybrid computing architecture articulated around a PCIe interconnections. The control of the overall computation is made by an host CPU. The CPU is also responsible of the non-bottleneck operations required during an FV homomorphic evaluation (FV.Add and FV.Encrypt).

	Gen.	year	line/code	Transfer rate		Throughput (GB/s)
		intro.			(GT/s)/lane	×1	×2	×4	×8	×16
	1.0	2003	8b/10b		2.5	0.25	0.5	1.0	2.0	4.0
	2.0	2007	8b/10b		5.0	0.5	1.0	2.0	4.0	8.0
	3.0	2010 128b/130b		8.0	0.99 1.97 3.94	7.88 15.8
	4.0	2017 128b/130b		16.0	1.97 3.94 7.88 17.75 31.5
	5.0 (2019) 128b/130b		32.0	3.938 7.88 15.75 31.51 63.0
	5.1.3 Hybrid system overview				
		Computation control FV.Add FV.Encrypt			Tensor product Relinearization
		CPU	PCIe root	switch PCIe	FPGA	Memory
			Memory			GPU	Memory
		On chip / In board		Basis extension Scale-and-round
		PCIe bus						

Table 5 .

 5 5: Timing in milliseconds for the basis extension and the scale-and-round operations on CPU and GPU, for dierent parameter sets.

	Parameters	CPU		GPU	
	n	log 2 q	Bext	Sc&Rnd	Bext	su Sc&Rnd	su
	2 11	54	0.585	0.977	0.079	×7.4	0.064 ×15.3
	2 12	108	1.688	2.816	0.162 ×10.4	0.135 ×20.9
	2 13	216	7.724	13.411	0.524 ×14.7	0.409 ×32.8
	2 14	432	46.103	80.274	1.604 ×28.7	1.583 ×50.7
	2 15	594	162.163	286.106	4.81 ×33.7	4.634 ×61.7
	2 16 1026	875.98	1,532.584	29.565 ×29.6	29.856 ×51.3
	2 17 2052 6,836.377 11,498.993 235.866	×29	275.89 ×41.7

Table 5 .

 5 [START_REF] Chillotti | TFHE: Fast Fully Homomorphic Encryption over the Torus[END_REF]: Timing details in microseconds for the GPU acceleration of the basis extension and the scale-and-round operations. The in/out columns presents the timing for loading and unloading data from the GPU.

	Parameters		Bext			Sc&Rnd		BW (GB/s)
	n	log 2 q	in	cmpt	out	in	cmpt	out	in	out
	2 11	54	9	22	47	15	31	17 2.55	1
	2 12	108	18	39	104	26	61	47 4.97	1.48
	2 13	216	44	109	369	67	179	162 7.38	1.61
	2 14	432	300	432	871	594	477	512 3.62	2.3
	2 15	594	662	2,855	1,293	1,565	2,629	440	4.1	5.61
	2 16 1026 2,175	20,619	6,770	3,759	22,736	3,360 5.01	2.99
	2 17 2052 5,793 205,891 24,181 11,740 252,360 11,789 6.88	3.36

Table 5 .

 5 7: Resource utilization post implementation on a Virtex xc7vx690t. Synthesis, placement and route using Xilinx Vivado 2016.3. Frequency 200MHz.

	Ressources				w			BCHI
	type	available	7	totl	NTT	MM GTW Others & WRAP
	LUT	432,368	IPFS SRDIVV 41,964 5,198 5,906 1,120	27,775
	LUTRAM 173,992	VFQ IRDRHP 10,710 2,056 1,550	86	5,425
	FF	864,736	UFU TTDRRR 50,961 6,755 7,761	967	39,614
	BRAM	1,470	IRFP	PHV	147	0	21	40	153
	DSP	3,600	IRFR	SIU	363	88	66	0	48
	IO	600	!	!					59
	Pcie	3	!	!					1

Table 5 .

 5 8: Timing estimate of the FV.Mul&Relin primitive derived from the proling of Halevi et al.[START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF]. Single-threaded mode, Linux CentOS, Intel Core i7-3770 CPU 4 cores at 3.40GHz and 16 GB of RAM; plaintext space t = 2, s = 54-bit, security λ > 128. We remind that L is the multiplicative depth evaluation capability of the FV scheme.15 594 11 12 887 233.1 26.3 QISFP 35.5 QISFR 35.6 23.3 2.6

	L n	S q	k	k	Total	CRT ext. & Scaling	wulFw elinFw Others
						ms	ms	%	ms	%	ms	%	ms	%
	1	2 11 54	1	2	3.6	1.3	37.2	IFV 50.3 HFR	10.9 0.1 1.6
	5	2 12 108 2	3	12.7	3.8	30.3	TFI 48.4 PFS	19.3 0.3 2.0
	10 2 13 216 4	5	57.6	14.4 25.0	PR	41.6 IUFV 30.8 1.5 2.6
	20 2 14 432 8	9	252	71.3 28.3 IHHFW 40	URFR 29.5 5.7 2.2
	30 2							

  .8.

			Parameters			RPM		wulFw	elinFw
	L n	S q	s	k	k	w 1/ms #	ms(su)	#	ms(su)
	1	2 12 54		2	3		195.3 15	0.08(×PQFR)	8	0.04(×WFS)
	5	2 13 108		4	5		97.7	27	0.28(×PPFP)	32	0.33(×UFS)
	10 2 13 216	30	8	8	2	48.8	48	0.98(×PRFR) 128 2.62(×TFV)
	20 2 14 432		15 15		24.4	93	3.69(×PUFR) 450 18.4(×RFH)
	30 2 15 594		20 21		12.2 126 10.1(×QIFQ) 882 65.5(×RFV)
							2	24.4		3.69(×PUFR)	18.4(×R)
	20 2 14 432 30 15 15	4 8	48.8 97.7	93	1.84(×SRFV) 0.92(×IHWFS)	450	9.22(×VFI) 4.61(×ITFI)
							16 195.3		0.46(×PIW)	2.30(×QPFQ)
				30 15 15			93	3.69(×PUFR) 450	18.4(×R)
				41 11 11			69	2.70(×QUFQ) 242 9.91(×UFS)
	20 2 14 432	51 9	9	2	24.4	54	2.21(×RSFT) 162 6.64(×IIFP)
				58 8	8			48	1.97(×SIFQ) 128 5.24(×IRFP)
				62 7	8			45	1.84(×SRFV)	98 4.01(×IVFS)

  61.21 ×14.49 33.14 25.47 

	1 2 11	54	3.6	1.3	2.2	0.1	0.67	×5.37	0.51	0.06
	5 2 12	108	12.7	3.8	8.6	2	3.28	×3.87	1.05	0.23
	10 2 13	216	57.6	14.4	41.8	2.6	7.13	×8.08	3.32	1.21
	20 2 14	432	252	71.3 175.3	2.2	20.7 ×12.17 11.17	7.33
	30 2 15	594	887 233.1 630.6	2.6				

État de l'art et positionnementLes chirements homomorphes sont capables d'eectuer des opérations sur des données chirées sans les déchirer au préalable. Cette capacité vient du choix d'un homomorphisme comme fonction de déchirement d'un schéma. La dénition d'un homomorphisme met directement en évidence la caractéristique désirée : il s'agit d'une correspondance conservant une certaine organisation entre deux structures algébriques du même type (groupes, anneaux, corps...). En considérant l'espace des clairs et l'espace des chirés comme des structures algébriques, un homomorphisme consiste alors à avoir une équivalence entre certaines opérations dans les domaines chiré et clair.On qualie de partiellement homomorphe (Partial Homomorphic Encryption : PHE) un chirement dont l'ensemble des fonctions évaluables est restreint à un sous-ensemble des fonctions internes sur l'ensemble des clairs. Par exemple, si la fonction de déchirement est un homomorphisme de groupe additif (resp. groupe multiplicatif), alors seules les fonctions composées d'additions (resp. de multiplications) auront un équivalent dans l'ensemble des chirés. On parlera de chirement presque homomorphe (Somewhat Homomorphic Encryption : SHE) lorsque la fonction de déchirement est un homomorphisme d'anneaux, c'est à dire qu'il leur est possible d'évaluer à la fois des additions et des multiplications dans le domaine chiré, mais que ces chirement sont limités en opération dans le domaine chiré par l'accroissement du bruit de chirement. Enn, on parlera de chirement complètement homomorphe (Fully Homomorphic Encryption : FHE) si toutes les fonctions internes de l'ensemble des clairs appartiennent à l'ensemble des fonctions évaluables dans le domaine chiré.

given an arbitrary number w of random approximate linear equations. For instance with s = (0, 13, 9, 11).

Remerciements

GPU acceleration of RNS specic functions

In this section we present preliminary results of the acceleration given by the GPU. This acceleration is highlighted by comparing an hand-made CPU and GPU implementations. Both basis extension and scale-and-round operations are implemented following Halevi et al.'s paper [START_REF] Halevi | An Improved RNS Variant of the BFV Homomorphic Encryption Scheme[END_REF].

This implementation has been obtained with the help of Aurore Mattio who made her master thesis on the subject. This section is then a part of her internship's results that have been adapted to the current discussion.

In a rst subsection a detailed description of the implemented algorithm is given. In a second subsection, the experimentation that highlights the GPU acceleration is described. Finally the results of the experimentation and some discussions conclude this section.

The implemented algorithms

In Section 2.4, the basis extension and the scale-and-round operations have been presented. In this subsection, the concrete algorithms implemented during Mattio's internship are detailed.

For the following, we remind the notations used in Chapter 2. The rst RNS basis is composed of the element noted q i , namely B = {q i } k i=1 . We note q * i = q/q i ∈ Z and qi = (q * i ) -1 ∈ Z q i . The second RNS basis is composed of the element noted p j , namely B = {p j } k j=1 . And similarly p * j = p/p j ∈ Z and pj = (p * j ) -1 ∈ Z p j . Finally, the special elements associated to the unied basis B ∪ B are:

The other elements required for basis extension and scale-and-round operations are:

-

Algorithm 4 presents the implemented basis extension for each coecient of the inputted polynomials. Similarly, the scale-and-round operation follows Algorithm 5 for each coecient of the inputted polynomials.

In both algorithms, the calculation of the v and v values are performed with oating-point arithmetic. The modular multiplications are implemented following the modular reduction algorithm of the NFLlib [START_REF] Aguilar-Melchor | NFLlib: NTT-Based Fast Lattice Library[END_REF].

As previously stated, the straightforward parallelism to exploit with GPU is the one brought by the degree n of the polynomials. Nevertheless, as seen in Algorithm 4 and Algorithm 5, large basis size results in large inner-loops. A second level of parallelism is then potentially accessible. The implementation of this additional level of parallelism is more tricky than the rst one as it involves some data dependencies between threads. This second level of parallelism is not taken into account in the following experimentation. Now that we have basically presented how the operations are implemented, the experimentation that highlight the GPU acceleration of these operations is described. Abstract : In this thesis, we propose to contribute to the definition of encrypted-computing systems for the secure handling of private data. The particular objective of this work is to improve the performance of homomorphic encryption. The main problem lies in the definition of an acceleration approach that remains adaptable to the different application cases of these encryptions, and which is therefore consistent with the wide variety of parameters. It is for that objective that this thesis presents the exploration of a hybrid computing architecture for accelerating Fan and Vercauteren's encryption scheme (FV). This proposal is the result of an analysis of the memory and computational complexity of crypto-calculation with FV. Some of the contributions make the adequacy of a non-positional number representation system (RNS) with polynomial multiplication Fourier transform over finite-fields (NTT) more effective. RNS-specific operations, inherently embedding parallelism, are accelerated on a SIMD computing unit such as GPU. NTT-based polynomial multiplications are implemented on dedicated hardware such as FPGA. Specific contributions support this proposal by reducing the storage and the communication costs for handling the NTTs' twiddle factors. This thesis opens up perspectives for the definition of micro-servers for the manipulation of private data based on homomorphic encryption.

Universit é Paris-Saclay

Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France