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Résumé

Nouvelle Physique aux Collisionneurs et dans l’Espace

La quête de la nouvelle physique est un défi impliquant à la fois la recherche de particules de
matière noire dans les halos galactiques, et celle, aux collisonneurs, de particules dont l’existence
est prédite par des théories au-delà du Modèle Standard, telles que la supersymétrie. Alors que
les contraintes expérimentales sur ces particules s’intensifient, il devient capital de combiner
les limites provenant de ces deux volets afin de guider la suite des recherches. Pour ce faire,
il est indispensable d’évaluer et de tenir compte correctement des incertitudes astrophysiques,
cosmologiques et nucléaires, pourtant souvent ignorées. La première partie de cette thèse est
dédiée à l’étude de ces incertitudes et leur impact sur les contraintes obtenues en supersymétrie,
ainsi que la complémentarité entre les contraintes des collisionneurs et de matière noire pour la
recherche de nouvelle physique. La deuxième partie est consacrée au développement d’outils de
calculs pour les détections directe et indirecte de matière noire, conçus afin de prendre correcte-
ment en compte les incertitudes astrophysiques et nucléaires, et à leur implémentation dans le
code public SuperIso Relic. Enfin la troisième partie du travail concerne l’étude des implications
cosmologiques d’une éventuelle découverte de nouvelles particules aux collisionneurs. Nous avons
montré qu’il serait possible de tester les hypothèses du modèle cosmologique standard et d’obtenir
des informations sur les propriétés de l’Univers primordial à une époque observationnellement
inaccessible.

Mots-clefs: Matière noire, Supersymétrie, Astroparticules, Physique des particules
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Abstract

New Physics at Colliders and in Space

The quest for new physics is a challenging task which involves, on the one hand, the search for
dark matter particles from space, and on the other hand, the search at colliders for particles pre-
dicted by theories beyond the Standard Model, such as supersymmetry. With the experimental
constraints on new particles getting stronger, it becomes crucial to combine the limits from both
sectors in order to guide future searches. To this end, it is essential to estimate and take into
account correctly the astrophysical, nuclear and cosmological uncertainties, which are most often
ignored.
The first part of this thesis is dedicated to the study of such uncertainties and to their impact on
the constraints applied on supersymmetry. Moreover, we investigate the interplay between the
constraints from colliders and dark matter searches in some detail. The second part concerns the
development and the implementation in the public code SuperIso Relic of numerical tools for the
calculation of direct and indirect dark matter detection constraints which were designed specif-
ically to take correctly into account the astrophysical and nuclear uncertainties. Finally, in the
third part of this work, we consider the cosmological implications of a hypothetical discovery of
new particles at colliders. We show that it would be possible to test the assumptions of the stan-
dard cosmological model and to obtain information on the properties of the primordial Universe
at an epoch which is beyond observational reach.

Keywords: Dark matter, Supersymmetry, Astroparticles, Particle physics
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We grow accustomed to the Dark

We grow accustomed to the Dark -
When Light is put away -
As when the Neighbor holds the Lamp
To witness her Goodbye -

A Moment - We uncertain step
For newness of the night -
Then - fit our Vision to the Dark -
And meet the Road - erect -

And so of larger - Darknesses -
Those Evenings of the Brain -
When not a Moon disclose a sign -
Or Star - come out - within -

The Bravest - grope a little
And sometimes hit a Tree
Directly in the Forehead -
But as they learn to see -

Either the Darkness alters -
Or something in the sight
Adjusts itself to Midnight -
And Life steps almost straight.

Emily Dickinson (1830–1886)





INTRODUCTION

We grow accustomed to the dark, as Emily Dickinson once wrote. At least, I really hope
so. This poem stroke me by its perfect connection with the research I have carried out
during my Ph.D., though it can certainly apply to any research in general. The exis-

tence of dark matter has been suggested for more than eighty years and, yet, its nature in terms
of particle content is still completely unknown. Contrary to ordinary matter, dark matter does
not emit nor absorb light, which makes it incredibly difficult to detect. Currently, the only way to
probe its existence is through the study of its gravitational interaction with astrophysical objects.
Dark matter is thus known to constitute 85% of the matter in the Universe. In particular, every
galaxy, including the Milky way, is embedded in a dark matter halo. One may therefore say that
we all live in the dark. Several experiments were designed to detect either the products of the an-
nihilation of dark matter particles in the galactic haloes, or the collision of a dark matter particle
with ordinary matter. However, no convincing signal has been detected yet.
The light could arise from particle physics, as a large panel of theories proposes candidate parti-
cles for dark matter. These theories emerged from the quest for “New Physics”, which is, in simple
words, the search for the missing pieces of the puzzle which will reveal to us the very foundations
of the Universe. One of the theories which have been regarded with the most interest by the
particle physics community for the last decades is Supersymmetry. It postulates the existence of
a whole set of particles which have not been detected yet, the lightest of these particles possibly
being the dark matter. Unfortunately, experimental collaborations are still struggling to detect
any of these supersymmetric particles at colliders. Great expectations were placed, in particular,
on the Large Hadron Collider at CERN which was crowned with success for the discovery of the
Higgs boson in 2012. However, superparticles, if they do exist, seem to be extremely good at hid-
ing.
Nevertheless, the discovery of nothing is still a discovery. Exactly like when you search your keys
in the night, you grope around, finding nothing, but thus knowing where not to look anymore,
until you finally have a catch. You will probably hit a few trees directly in the forehead during
the process, but you will eventually have the pleasure to go home. This is precisely the same here,
as we are able to derive constraints on dark matter and superparticle properties. Little by little,
we restrain the possibilities of where to find these particles, and someday, hopefully, a signal will
be detected. Perhaps we will first detect a dark matter particle from the galactic halo, which will
allow us to confirm or not the supersymmetric theory. Or vice-versa, we could first produce a new
kind of particle at colliders, which will unveil the key to dark matter.

The work I will present here focuses on the uncertainties related to the search for dark matter.
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It certainly caused me, at first, serious “evening of the brains”, but I hope that, in three years, I
have grown a little accustomed to the dark.
I will begin with a short historical introduction to dark matter and then I will introduce the the-
oretical bases of supersymmetry.
In a second part, I will present the study I have carried out, in collaboration with Prof. Alexandre
Arbey, Dr. Mathieu Boudaud and Prof. Nazila Mahmoudi, on the constraints derived from dark
matter and collider searches applied to the Minimal Supersymmetric Standard model. The stress
will be put on the astrophysical and nuclear uncertainties related to dark matter detection lim-
its. This part will conclude on the description of the numericals tools I have implemented in the
public code SuperIso Relic for the calculation of dark matter detection constraints.
The third and last part will take place in the hypothetical context where a dark matter particle
has been detected. In this case, it would be possible to calculate the average density of this par-
ticle from its annihilation rate, within the standard cosmological model. But what if this density
does not match with the measured dark matter density? It would inform us that the particle con-
tent at the beginning of the Universe differs from the one assumed in the standard cosmological
model. In fact, little is known on the Universe content before the primordial nucleosynthesis and
the discovery of a dark matter particle could allow us to deduce constraints on alternative cos-
mological models. We will perform this exercise for a couple of models including the presence of
a scalar field before Big Bang nucleosynthesis. This work was carried out in collaboration with
Prof. Alexandre Arbey, Prof. John Ellis and Prof. Nazila Mahmoudi.

xx



Part I

Introduction to Dark Matter and
Supersymmetry

1





C
H

A
P

T
E

R

1
THE QUEST FOR DARK MATTER PARTICLES

Dark matter is a hypothetical kind of matter which represents 85% of the mass of matter
in the Universe. By its nature, dark matter (DM) does not emit any light, which makes
its detection difficult. However, it is possible to detect its gravitational interaction with

ordinary “baryonic” matter. In this first chapter, I will start with a short historical review of the
observational evidences of the existence of dark matter, then I will present a few dark matter
models. Finally, I will describe the various types of experiment aiming at detecting dark matter
particles.

1.1 Evidences for dark matter

The idea that a part of the matter in the Universe may escape the observations because they
do not emit light or are just too dim to see was already seriously considered at the beginning of
the twentieth century. In 1904, Lord Kelvin hypothesized the existence of dark stars in the Milky
Way possibly not bright enough to be directly observable. Considering that the stars in our galaxy
are acting like molecules in a gas, Kelvin realized there was a way to calculate the total mass of
luminous and non-luminous matter from the velocity dispersion of the stars [1]. This method was,
however, later reconsidered by Henri Poincaré whose final calculation showed that the observed
velocity dispersion was in agreement with the mass of luminous matter [2]. It wasn’t until the
beginning of the 1930’s that a real discrepancy between the total mass and the luminous mass
of an astrophysical system was measured. From this point, the observational evidences for dark
matter multiplied at various astrophysical and cosmological scales.

1.1.1 Local Dark Matter

The first attempts to probe the existence of a population of dark astrophysical objects via their
gravitational interactions with luminous matter were, in fact, not the most successful. They were,
nevertheless, the first steps to great discoveries. It began with the observations of the stars in the
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sun vicinity (i.e. stars at a distance � 0.1 – 1 kpc from the sun). In 1915, Estonian astronomer
Ernst Öpik calculated the total local mass density by measuring the vertical oscillations of those
stars [3]. He eventually found that the motion of the stars could be explained by the mass of
luminous matter alone and that there were no need to assume the existence of dark matter.
Improved analyses were later carried out by Kapteyn [4] and Jeans [5] who found a total local
density of 0.099 M�pc−3 and 0.143 M�pc−3. Similarly, in 1932, Jan Hendrick Oort, Kapteyn’s
student, found a local density of 0.092 M�pc−3 [6]. None of them found an excessive amount of
dark matter and Oort argued that by taking into account the expected number of white dwarves,
his result was coherent with the contribution of ordinary matter alone.

It appears, actually, that the main source of uncertainties in the calculation of the amount of dark
matter does not come from the total density measurement, which is quite coherent between the
various analyses, but comes from the estimation of the amount of luminous matter. More precise
estimations were recently done and the local density of dark matter is now believed to be around
0.008 M�pc−3 (0.3 GeV cm−3), with large uncertainties. One can refer to the review on local dark
matter density by J.I. Read for further information [7].
While the study of vertical oscillations of stars in the Sun’s vicinity is not the most convincing
evidence of the existence of dark matter, the precise measurement of local DM density is crucial
for DM direct detection (see Section 1.3.2). The first really challenging measurements came, in
fact, from the observations of galaxy clusters.

1.1.2 Galaxy clusters

One of the first striking evidences for dark matter came from the Swiss astronomer Fritz Zwicky
in 1933 [8]. At that time, Zwicky was carrying out a project in Mount Wilson concerning the
measurement of galaxy cluster distances via the spectral red-shift related to the expansion of the
Universe. While observing the Coma galaxy cluster, he measured the velocity of eight galaxies
and deduced an approximate value of the total mass of the cluster using the virial theorem. This
value was 400 times greater than the one expected by summing the masses of luminous objects.
The discrepancy between the mass of luminous objects and the mass calculated via the Newtonian
law of gravity lead him to suggest the existence of a non-luminous type of matter composing the
cluster which he referred to as dunkle Materie or “dark matter”. His calculations should, however,
be reviewed as he took a value of the Hubble constant H0 = 558 km s−1 Mpc−1. The current
value of H0 is now ≈ 70 km s−1 Mpc−1, therefore the overdensity of 400 should be reduced to 50.
Nevertheless, the conclusion that the majority of the matter in the cluster must be dark remains
relevant.
Three years later, a similar study lead by Sinclair Smith showed that the mass of the Virgo
cluster was 200 times larger than expected [9], giving weight to Zwicky’s hypothesis. In 1959,
Kahn and Woltjer calculated the mass of the Local Group from the motion of Andromeda towards
the Milky Way [10]. They found that the Local Group was six times more massive than the
observed luminous matter and suggested that the missing mass was composed of very hot gas
in the intergalactic medium. At this time, it was not yet considered that dark matter cannot be
composed of ordinary particles.
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Figure 1.1: A purple haze shows dark matter flanking the "Bullet Cluster." X-rays observations

of hot gas is represented in pink. Image Credit: X-ray: NASA/CXC/M.Markevitch et al. Op-

tical: NASA/STScI; Magellan/U.Arizona/D.Clowe et al. Lensing Map: NASA/STScI; ESO WFI;

Magellan/U.Arizona/D.Clowe et al.

Today, the most convincing evidence of the existence of dark matter is based on the observation of
the Bullet Cluster (1E 0657-558), which consists in two colliding galaxy clusters at a co-moving
radial distance of approximately one giga-parsec from us [11]. Its observation in X-rays reveals
hot gas, represented in pink in figure 1.1, which forms a distinct arc characteristic of a shock-wave.
It is also possible to map the distribution of mass in the cluster by studying gravitational lensing.
Gravitational lensing is a phenomenon related to General Relativity. The bullet cluster, thanks
to its mass, deforms space-time around it. If a luminous object, such as a galaxy, is located behind
the Bullet Cluster in the line of sight, the space-time deformation bends the trajectory of the light
emitted by the galaxy. This effect allows us to observe the galaxy, but its image is slightly curved.
The study of this curvature is key to calculate the mass distribution of the Bullet Cluster, which
is represented by a purple haze in figure 1.1. One can notice that the location of mass is clearly
decorrelated from the position of hot gas in the Bullet Cluster. That can be easily explained if one
considers that the cluster is mainly composed of gas and dark matter. Ordinary matter, such as
the gas suffers from friction due to electromagnetic interaction. Therefore, when the two clusters
collided, ordinary matter tended to stay at the position of collision. This is not the case for dark
matter, which is not stopped by frictions. When the two clusters collided, dark matter continued
its motion by inertia. This explains why the mass, mainly carried by dark matter, is separated
from the gas in the Bullet Cluster. This observation was extremely important as it challenged
significantly models of modified gravity.

1.1.3 Spiral galaxies

Another remarkable evidence that dark matter exists comes from the study of the motion of lu-
minous matter in the periphery of spiral galaxies. The first obvious specimen for this kind of
observations is our neighbour, the Andromeda galaxy (M 31). In 1939, American astronomer Ho-
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race W. Babcock obtained the spectra of M31 and deduced the rotational velocity of the different
regions of the galaxy, up to ≈ 20 kpc from the center of the galaxy [12]. He found that outer re-
gions had an unexpectedly high velocity compared to the Keplerian velocity calculated from the
luminous mass of the galaxy. He explained this either by the presence of poorly luminous matter
in the outer region of the galaxy or by strong dust absorption. Similar unexpected results were
obtained by Oort when studying galaxy NGC 3115 [13].
Results on the Andromeda galaxy were improved after WWII, when Oort and his team realized
that German radars could be rehabilitated into radio-telescopes. They discovered that neutral hy-
drogen gas emitted interesting radio waves at 21 cm wavelength. The 21-cm line is now one of the
most important astrophysical probe. Oort’s student, Van de Hulst, was then able to measure the
rotational velocity of hydrogen gas up to 30 kpc from the center of Andromeda galaxy, improving
previous analyses [14].
Important optical and radio measurements followed in the next years, including the remarkable
works of Roberts [15], Rubin & Ford [16] and Roberts & Rots [17]. They all point towards the fact
that rotation velocity curves of spiral galaxies become flat at large radii from the center of the
galaxies, as can be seen in figure 1.2. In classical Newtonian dynamics, this velocity can be writ-

ten as v(r) =
√

GM(r)
r for a radius r from the galactic center, with M(r) the total mass contained

within a sphere of radius r. At large radii, where luminous matter becomes scarce, M(r) should
become constant and v(r) should then drop-off as r−1/2. The fact that v(r) becomes constant may
show that there is a large amount of dark matter at large radii, so that M(r) ∝ r. Today, it is
believed that every galaxy is surrounded by a large spherical dark matter halo.

Figure 1.2: Rotation curves for the galaxies M 31, M 101 and M 81 are shown as solid lines. The

rotation curve for our galaxy is shown as a dashed line. Figure from [17].

1.1.4 Cosmological Scale

According to the Big Bang model, the Universe starts with an extremely hot and dense state of
matter. During the first seconds of the Universe, the very high temperatures prevent any group
of particles from bonding. For instance, helium nuclei formed through the fusion of two protons
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and one or two neutrons are immediately destroyed by collisions with high energetic photons.
However, as the Universe expands, the photons lose energy and are not able to break the nuclei
anymore. The first light nuclei (helium-3, helium-4, lithium and beryllium), can thus be stably
produced. Approximatively 20 minutes after the Big Bang, the production of light nuclei freezes-
out as the temperature becomes too low for the production process to occur. The abundances of
light elements have not evolved since and remain observable today. This phenomenon is called
Big Bang Nucleosynthesis (BBN) and first was described by Alpher, Bethe and Gamow in 1948
[18]. It constitutes a crucial source of information in cosmology and allows us to constrain the
nature of dark matter, as we will see in section 1.2.1.
After BBN, the electrons and nuclei are still decoupled because of the photo-dissociation. Thus,
photons have very short mean free paths as they scatter on electrons and nuclei and are trapped
in the very hot and dense gas. It is only around 380 000 years after the Big Bang that the Universe
becomes cool enough for the electrons and the nuclei to finally couple. This is the recombination.
Atoms are formed and photons can eventually escape and propagate through the whole Universe.
This light is still observable as a nearly-perfect black body radiation with a temperature of 2.7K,
homogeneous and isotropic through the Universe. The Cosmic Microwave Background (CMB), as
it is called, was first observed by Penzias and Wilson in 1965 [19] and is now a pillar of cosmology.
Three main space telescopes were launched in order to study the CMB, starting with the Cosmic
Background Explorer (COBE) in 1989. It revealed tiny fluctuations in the CMB which can be
explained by overdensities at the epoch of recombination [20]. Those overdensities are believed to
be quantum fluctuations appearing at the very beginning of the Universe which grew into large
structures, such as clusters of galaxies and galaxies, by attracting matter thanks to their gravita-
tional potential. High precision measurements of the fluctuations followed with space-telescopes
WMAP [21] and Planck [22]. The analysis of the angular correlation of these fluctuations is key
to constraining cosmological parameters. The power spectrum associated to these correlations
displays multiple peaks (see figure 1.3). While the position of the first peak reveals information
on the total energy density ρtot of the Universe, the position of the second peak allows us to con-
strain non-baryonic dark matter density ρDM .
Within the framework of the standard model of cosmology ΛCDM, the Universe is composed of
radiation, baryonic matter, non-relativistic (“cold”) dark matter and dark energy, which accounts
for the accelerated expansion of the Universe. The total density can then be written :

ρtot = ρrad +ρb +ρDM +ρΛ . (1.1)

In cosmology, it is however convenient to use density parameters defined as Ω(i) = ρ(i)
ρc

where

ρc = 3H2

8πG is the critical density. By definition, if ρtot = ρc (Ωtot = 1) then the Universe is flat.
The last results from Planck mission showed that 1−Ωtot = 0.000± 0.005, that is to say that
the Universe is measured to be flat with a good precision. It also showed that Ωbh2 = 0.02230±
0.00014 and ΩDM h2 = 0.1188±0.0010 where h is the reduced Hubble constant h = H

100km/s/Mpc .
Thus, there should be five times more dark matter than ordinary matter to explain CMB fluctua-
tions.
Such observations are directly related to the formation of large structures of the Universe. In
1982, the CfA survey, which was the first extensive survey of galaxies in the local Universe
showed that galaxies were grouped into clusters and super-clusters connected by long filaments
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Figure 1.3: Left: CMB fluctuations from [25]. Right: Planck 2015 temperature power spectrum

from [22] is shown in the upper panel along with the best-fit base ΛCDM theoretical spectrum in

red plain line. Residuals with respect to this model are shown in the lower panel. The error bars

show ±1σ uncertainties.

[23]. Without dark matter, the matter could not have collapsed in time to form these current
structures. As baryonic matter interacts through electromagnetism, the resulting pressure in the
hot primordial gas slows down gravitational collapse. This is not the case for cold dark matter
which can easily form clusters and then accrete ordinary matter. In order to reproduce all the
features of large structures in numerical simulations, it is also needed that dark matter be non-
relativistic at the time of the formation of large structures. From this result, it is possible to rule
out neutrinos as dark matter candidates [24].
In the next section, we will see more specifically what are the possible candidates for dark matter.

1.2 Dark matter candidates

Numerous models have been built over the past decades in order to describe the nature of dark
matter. As it would be too long and tedious to describe them all, I will focus only on two types
of model and present a few examples at the end of this section. The first model is the most
natural approach as it postulates that dark matter consists in feebly luminous astrophysical ob-
jects, named MACHOs. This model is, however, severely constrained. The second one, the WIMP
hypothesis, is one of the most popular models in particle physics. In this model, dark matter is
described as a weak interacting massive particle (WIMP) beyond the Standard Model. It will be
at the center of the rest of my Ph.D. thesis.

1.2.1 Massive Astrophysical Compact Halo Objects (MACHOs)

One of the most immediate answers to the question of the nature of dark matter is that it should
be composed of ordinary matter too dim to be observed. Compact astrophysical objects such as
brown dwarves, red dwarves, white dwarves, neutron stars or black holes are very difficult to ob-
serve via their emission of light and could be excellent candidates for dark matter. Those kinds of
objects are commonly named Massive Astrophysical Compact Halo Objects (MACHOs). Several
evidences are, however, suggesting that MACHOs could only compose a small fraction of dark
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matter.
The first evidence involves micro-gravitational lensing. This phenomenon occurs when a massive
object lies in the line of sight of a star. If the massive object is compact enough, its gravitational
field will have for effect to enhance the apparent luminosity of the star behind it. In 1986 Bo-
hdan Paczyński proposed a method to detect MACHOs in the halo of the Milky Way [26], which
was, one year later, used with more detailed calculations in the Ph.D. thesis of Robert Nemirof
[27]. The method involves the observation of a nearby galaxy, such as the Magellanic Clouds. If
the halo of the Milky Way is entirely composed of MACHOs, they calculated that at any time,
any star in the Magellanic Clouds would have a probability of about one out of a million to be
magnified by the gravitational field of a MACHO. If a large amount of stars are monitored in
the Magellanic Clouds, it would therefore be possible to estimate the number of MACHOs in the
Milky Way halo. In addition, it would give limits on the mass of the compact objects as the du-
ration of a microlensing event is a function of the mass t ∼ 130days×

√
M

M� . From this relation,
one can deduce that with such a method, only MACHOs with masses ranging from ∼ 10−7M� to
∼ 102M� would be easily observable, which corresponds to times of observation ranging from a
couple of hours to a few years.
A project, simply called MACHO, was dedicated to this task. In 2000, after 5.7 years of observa-
tions of the Large Magellanic Cloud (LMC), using the 1.27-meter telescope at Mount Stromlo Ob-
servatory, the MACHO Collaboration published their results. From the monitoring of 40 million
stars in the LMC, only between 14 and 17 candidate microlensing events were identified. They
concluded that between 8% and 50% of the mass the Milky Way’s halo consisted of MACHOs [28].
Six years later, a similar project, EROS (Experience pour la Recherche d’Objets Sombres), pub-
lished the results of 6.7 years of monitoring of both Magellanic Clouds and showed that MACHOs
could not make more than 8% of the halo [29].
The second evidence showing that MACHOs can only account for a small fraction of dark matter
comes from cosmology. As seen in section 1.1.4, the study of the CMB shows that there is, in mass,
five times more non-baryonic dark matter than baryonic matter in the Universe. As MACHOs
count as baryonic matter, this would leave a large fraction of non-baryonic dark matter whose
nature remains unknown and would also severely constrain the density of MACHOs. It is also
possible to draw constraints on baryonic matter density from BBN. By observing the abundance
of light elements in the Universe, one can deduce the values of cosmological parameters such as
Ωb. In 1973, Reeves et al., managed to calculate an upper limit on the baryon density parameter
Ωb < 0.1 from the deuterium abundance fraction D/H [30]. Deuterium is a good indicator, as it is
believed to be only produced during BBN and not in stellar processes. Several studies measured
more precisely the deuterium abundance and showed that Ωb ≈ 0.02 with 10% precision, which
is coherent with CMB analyses [31–35]. Such a baryonic density leaves little room for MACHO
dark matter.
Recently, there has been a renewed interest for MACHOs with the observation of black hole merg-
ers by gravitational-wave interferometers LIGO and VIRGO [36]. The unexpectedly high masses
of the observed black holes may suggest that they were not created by the gravitational collapse
of a star but were produced at the very beginning of the Universe, during inflation, from small
overdensities. Primordial black holes could make a credible candidate for dark matter as they
evade cosmological constraints and also micro-lensing constraints, depending on their mass dis-
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tribution [37].
The hypothesis which draws the most the attention in particle physics remains, nevertheless,
that dark matter consists of weakly interacting massive particles.

1.2.2 The WIMPS

After the 70s, it was becoming clear that dark matter consists of exotic kinds of particles. Several
models in particle physics were proposed in order to find a candidate for dark matter particles.
Those candidates had features in common and a category of particles emerged from those mod-
els: the WIMPS, standing for Weakly Interacting Massive Particles [38]. The WIMPS consist in
particles heavy enough (m� 1−100 keV) to be non-relativistic and in thermal equilibrium at the
beginning of the Universe. As the Universe expands, those particles have the particular feature
of leaving thermal equilibrium and ceasing to annihilate at a co-moving density still observable
at present time. This is done via the freeze-out mechanism described below.
At thermal equilibrium, dark matter particles annihilate into Standard Model (ordinary) parti-
cles, and conversely, Standard Model particles annihilate into dark matter particles.

χχ�SM SM

Both processes equilibrate so that dark matter keeps an equilibrium density n = neq(T) which
decreases with temperature (steps (1) and (2) in figure 1.4). However, when the expansion rate of
the Universe becomes as large as the annihilation rate of dark matter, this decrease stops. Dark
matter density becomes too small for annihilation to occur and the dark matter co-moving density
“freezes-out” (step (3)). This remaining density is named the relic density.
The detailed calculation of the relic density from Boltzmann equation is done in Appendix A.
For a dark matter particle featuring weak interaction characteristics (m ∼ 100 GeV, 〈σv〉 ∼ 10−26

cm3s−1), one ends up with a cosmological dark matter density of the same order of magnitude as
the one observed by Planck satellite ΩDM h2 = 0.1188±0.0010. This is called the WIMP miracle.
It is also important to notice that dark matter relic density is inversely proportional to its anni-
hilation cross section:

Ω0
χh2 ∼ 3×10−27 cm3 s−1

〈σv〉 .

WIMPS are currently the subjects of a large variety of experiments around the world, which will
be described in section 1.3.

1.2.3 Examples of particle candidates

One of the most studied WIMPS in the literature is the neutralino, which will be described in
details in chapter 2 on supersymmetry. However, other models of particle physics exhibit some
WIMPS. This is the case of extra-dimension theories in which new spatial dimensions are intro-
duced in addition to the three dimensions that we all know. Those extra-dimensions are usually
compact so that they remain unnoticed at large scale. They can, however, have some importance
at a particle level. In particular, they may resolve the hierarchy problem [40], which will be de-
scribed in section 2.2.3. Moreover, to the particles of the Standard Model are attributed some
modes in relation to the extra-dimension. Those modes are assimilated to particles commonly
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1.2. DARK MATTER CANDIDATES

Figure 1.4: Evolution of WIMPs density.The comoving number density Y (left) and resulting

thermal relic density (right) of a 100 GeV, P-wave annihilating dark matter particle as a function

of temperature T (bottom) and time t (top). The solid contour is for an annihilation cross section

that yields the correct relic density, and the shaded regions are for cross sections that differ by 10,

102, and 103 from this value. The dashed contour is the number density of a particle that remains

in thermal equilibrium. From [39].

named Kaluza-Klein (KK) particles. A KK-parity may preserve the lightest KK-particle from de-
cay, which would make it a viable candidate for dark matter.

Another plausible candidate to dark matter, which is not a WIMP this time, is the axion, a
pseudo-scalar boson appearing through the breaking of the U(1) Peccei-Quinn symmetry which
is invoked to solve the strong CP problem. From astrophysical observations, it is possible to set
an upper limit to the axion mass of ∼ 16 MeV [41]. More recently, in 2016, the calculation of the
formation of axions during the post-inflation from lattice QCD [42] allowed us to define a range
of possible masses between 50 and 1500 μeV, which makes it a very light particle compared to
WIMPS. Moreover, axions are expected to interact extremely weakly with baryonic matter and
thus should not be in thermal equilibrium at the beginning of the Universe. Its density does not
“freeze-out” like a WIMP, but “freeze-in”. When propagating through a strong magnetic field,
axions have the property to be able to convert into photons. This particularity opens up the op-
portunity to detect them and is at the basis of experiments such as ADMX [43].

The panel of candidates is in fact very wide and it would be beyond the scope of this introduction
to make an exhaustive list. I could only name a few other models such as superheavy candidates
called “wimpzillas”, right-handed neutrinos, sterile neutrinos, etc..
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1.3 Dark matter particle detection

The experiments aiming at detecting WIMPS, and more generally at discovering hints of new
physics, can be grouped into three categories which correspond to the three different ways of
reading diagram 1.5: indirect detection (WIMP annihilation), direct detection (WIMP scattering
on ordinary matter) and collider experiments (WIMP production). In this section, I will describe
indirect and direct detection of dark matter. Collider experiments, more closely related to Super-
symmetry, will be treated in the next chapter.

Figure 1.5: The three different types of dark matter particle detection experiments.

1.3.1 Indirect detection

Indirect detection experiments focus on the annihilation of dark matter particles in galactic halos.
The annihilation of dark matter particles would produce high-energetic cosmic-rays which could
be detectable on Earth. For instance, dark matter could annihilate into gamma-rays, a pair of
electron/positrons, or quark/antiquarks which would then hadronize into protons/antiprotons. It
is possible to estimate the cosmic-ray spectra expected from ordinary astrophysical events and
then to compare it to experimental measurements to search for any deviation. An excess of cosmic-
rays in the measurements could be interpreted as a signal of dark matter particle annihilation.

Gamma-rays: Among the cosmic-rays, gamma-rays have the advantage of propagating straightly
through the galactic halo, while charged cosmic-rays are diffused by magnetic fields. Several ex-
periments are currently designed to detect gamma-rays, such as the space-telescope Fermi-LAT,
sensitive to GeV-scale energies, and ground-based Cherenkov telescopes H.E.S.S. [44], MAGIC
[45], VERITAS [46] and HAWC [47], which cover TeV-scale energies. Two types of targets are
privileged for gamma-rays: the center of the Milky Way and dwarf spheroïdal galaxies (dSphs).
It is expected that dark matter density is peaked at the center of our galaxy, which makes it an
ideal target for dark matter annihilation signal. In fact, a gamma-ray excess in the galactic cen-
ter has been measured by Fermi-LAT [48–53]. However, this excess could be explained either by
a dark matter signal or by the presence of milli-second pulsars [54] or even by the past activity
of the super-massive black-hole in the galactic center [55]. The second type of targets is dwarf
spheroïdal galaxies. These objects are particularly interesting as they are dominated by dark
matter and have a low astrophysical background emission of gamma-rays. No significant excess
have been detected in dSphs, but one can deduce, from their observations, severe limits on dark
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1.3. DARK MATTER PARTICLE DETECTION

matter annihilation cross section as a function of its mass and annihilation channel.

Antimatter: Contrary to gamma-rays, charged cosmic-rays are diffused by the galactic magnetic
field. Therefore, it is not possible to point telescopes towards a specific target and experiments
are sensitive to cosmic-rays produced by the entire galactic halo. However, the measurement of
their fluxes allows us to draw strong constraints on dark matter. The observation of antiparticles
is particularly interesting as their astrophysical background is expected to be very small.
In particular, antiprotons, measured by space telescopes PAMELA [56] and AMS-02 [57], are re-
garded with great interest. Antiprotons can be divided in two categories according to the way they
were produced. Primary antiprotons are produced by dark matter annihilation in pair with pro-
tons, whereas secondary antiprotons are created through the collision of high-energetic protons
produced in supernovae with the galactic medium. The theoretical flux of secondary antiprotons,
which constitutes the astrophysical background, can be summed to the flux of primary antipro-
tons, and then be compared to the flux measured experimentally. An excess has been claimed
from AMS-02 data corresponding to a WIMP with a mass around 100 GeV [58, 59]. However, the
significance of this excess is questionable considering the large theoretical uncertainties related
to the density profile of the dark matter halo, to the propagation of antiprotons through the galac-
tic medium and to the antiproton production cross section from proton-proton and proton-helium
interactions.
An excess of positrons has also been observed [60]. However, the lack of knowledge on positron
astrophysical background above a few GeV, makes any analysis challenging. As a matter of fact,
this excess can also be explained by the presence of young nearby pulsars.

Neutrinos: Dark matter particles are expected to be captured in the Sun through consecutive
scatterings on the hydrogen nuclei. The captured dark matter would then annihilate and produce
neutrinos that would be detected by experiments such as IceCube [61] or Super-Kamiokande [62].
Assuming equilibrium between dark matter capture and its annihilation, it is possible to draw
constraints on dark matter - proton scattering cross sections. These limits are in competition with
the spin-dependent cross-section limits obtained from dark matter direct detection, but have the
disadvantage of depending strongly on dark matter annihilation channel.

1.3.2 Direct detection

Considering the standard dark matter halo model in which the halo is described as a non-rotating
isothermal sphere, the mean dark matter particle velocity in Earth rest frame is the rotational ve-
locity of the sun around the Milky Way vrot ≈ 220 km/s. If dark matter has a local density around
0.3 GeV/cm3, as seen in section 1.1.1, and a typical mass for a WIMP m = 100 GeV then the flux
of dark matter on Earth would be ∼ 66000 particles/cm2/s or ∼ 10 million particles per second
through one hand. In view of this number, and assuming dark matter couples, though weakly,
with baryonic matter, one could expect to observe frequent interactions between dark matter and
ordinary particles. The principle of dark matter direct detection is to store a large quantity of
baryonic target material and to wait to observe tiny recoil energy deposits when DM particles
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scatter off target atomic nuclei. The larger is the time of exposure and the quantity of target
material, the larger will be the number of observed events. However, cosmic rays and radioactive
emissions, when interacting with the target material, can be mistaken with dark matter. For this
reason, direct detection experiments are based underground in order to block cosmic rays and
every components, including the target material, are cautiously selected to reduce radioactive
background. So far, no convincing signal has been detected, but stringent limits can be derived
on the WIMP-nucleon scattering cross sections (see figure 1.6).

Figure 1.6: Spin-independent WIMP-nucleon cross section limits as a function of WIMP mass at

90% confidence level for XENON1T, LUX, PANDAX-II and XENON100. Figure from [63].

The various direct detection experiments can be differentiated following several criteria:

Low or high WIMP mass: First, they are not all designed to observe WIMPS with the same
masses. Some experiments such as EDELWEISS [64], CDMS [65], or CRESST [66], were designed
to detect low-mass WIMPS (m < 10 GeV). In this specific case, the challenge is to reduce the en-
ergy threshold to which the detector starts to be sensitive in order to detect even lower masses.
Other experiments such as LUX [67], PANDAX II [68] and XENON1T [63] are dedicated to the
search of high-mass WIMPS ( 10 GeV � m � 1 TeV), the latest giving the strongest constraints
on the nucleon-WIMP scattering cross section.

Spin-dependent and spin independent interactions: Second, the WIMP-nucleus cross-section
is usually decomposed in a spin-independent (SI) and a spin-dependent (SD) contributions in the
zero momentum transfer limit. The choice of the target nuclei depends strongly on the type of
interactions (SI and/or SD) to which the experiment is designed to be sensitive. The SI WIMP-
nucleus cross-section can be written as

σSI
χ−N = 4μ2

π
[Z fp + (A−Z) fn]2 , (1.2)

where Z and (A−Z) are the number of protons and neutrons in the nucleus, μ is the WIMP-nucleus
reduced mass and f p and fn are the effective SI WIMP-proton and WIMP-neutron couplings. Using
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the common approximation f p ≈ fn, the WIMP-proton and WIMP-neutron SI cross sections are
equal and proportional to A2. In this context, the larger is the nucleon number, the stronger
are the interactions. Currently, the most stringent constraints are given by xenon experiments.
Argon target experiments, such as DarkSide-50 [69], give limits two orders of magnitude weaker.
The SD WIMP-nucleus cross-section can been written as

σSD
χ−N = 32μ2G2

F
π

J+1
J

[ap 〈Sp〉+an 〈Sn〉]2 , (1.3)

where GF is the Fermi constant, J is the total spin of the nucleus, f p and fn are the effective SI
WIMP-proton and WIMP-neutron couplings and 〈Sp,n〉 are the average spin contributions from
the protons and neutrons in the nucleus. ap and an are the WIMP-proton and WIMP-neutron SD
effective scattering amplitudes. If the number of protons and neutrons in the nucleus are even,
then the nucleus spin will be zero and there will be no way to detect a WIMP SD interaction.
Hence, argon experiments are not sensitive to spin-dependent interactions, since its atomic num-
ber is 18 and each of its stable isotope possesses an even number of neutrons. The target nucleus
needs to have an odd-number of protons to be sensitive to WIMP-proton SD interactions or an
odd-number of neutrons to be sensitive to WIMP-neutron SD interactions. In xenon target ex-
periments, for instance, the spin is carried by neutrons in neutron-odd isotopes (129X e, 131X e).
The best SD WIMP-neutron cross section limits are currently given by LUX [70] and PANDAX-2
[71]. Regarding the constraints on WIMP-proton SD cross sections, one of the strongest limits is
obtained by the PICO-60 experiment, using C3F8 target [72].

Method of detection: Finally, the experiments can be differentiated by their method of detec-
tion. In fact, the nuclear recoil generated by the scattering of a dark matter particle can be de-
tected via a phonon, scintillation or ionization signal or a combination of these. For instance, most
of the xenon experiments, which will be of great interest for us, use a combination of scintillation
and ionization signals.

One special feature of a dark matter signal is its annual modulation. As the Earth orbits around
the sun, the flux of dark matter is expected to vary according to the velocity of Earth with re-
gard to the dark matter “wind”. Thus, the number of events per unit of time is expected to be
modulated by ∼ 7% along a year. The DAMA/LIBRA collaboration, who used a matrix of NaI(Tl)
scintillation detectors, claimed to have observed a signal featuring 7 annual modulations with
8.2σ [73, 74]. However, this signal is very controversial as it was in conflict with XENON 10,
XENON 100, and CDMS [75], and its pertinence is still under investigation. The CoGeNT col-
laboration also claimed to have observed a signal coherent with DAMA/LIBRA [76] but realized,
shortly after, that they simply underestimated surface events [77].

The constraints on WIMP-nucleon scattering cross sections are expected to be remarkably im-
proved by experiments that will increase their total target mass and time of exposure, starting
with XENONnT [78], LZ [79] and DARWIN [80]. In ten years or so, the detectors should be sensi-
tive enough to reach the neutrino threshold, under which neutrinos will also be detected and will
become a problematic background. If no dark matter particle is discovered by then, directional
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detection will be key to pursue the search for DM particles [81].
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2
SUPERSYMMETRY

While the concept of dark matter was born from observations and now lacks a consis-
tent theory from a particle point of view, supersymmetry is conversely a purely theo-
retical formalism lacking observational evidences. Fortunately, both problems may be

connected as supersymmetry offers us candidates for dark matter. Any new advances on one side
could thus hopefully give further information on the other one.
In this chapter, I will discuss the main limitations of the Standard Model of particle physics and
will introduce the fundamental bases of supersymmetry, along with its most simple versions. I
will conclude by describing the principles of supersymmetric particle detection at colliders. This
chapter is inspired by the Supersymmetry book by Pierre Binetruy [82] and A Supersymmetry
Primer by Stephen P. Martin [83].

2.1 The Standard Model

The Standard Model (SM) of particle physics is built based on gauge symmetry classifies the ele-
mentary particles discovered so far and describes electromagnetic, weak and strong interactions.
It is, to this day, the most consistent and predictive model in particle physics.

2.1.1 Particle content

In the Standard Model, ordinary matter is composed of fermions of spin 1/2 which interact via
gauge bosons of spin 1: photons (electromagnetic interaction), W and Z bosons (weak interaction)
and gluons (strong interaction) (see figure 2.1). There are two main types of fermions: quarks
and leptons. The quarks interact through the strong interaction to form protons and neutrons.
Protons, for instance, are composed of two quarks of type up (electric charge Qem = 2/3) and one
quark down (Qem =−1/3). The leptons, contrary to the quarks, do not interact through the strong
interaction. However, there are similarly two types of leptons: charged leptons (electrons) and
neutral leptons (neutrinos) νe. Quarks and leptons exist in three different versions, or genera-
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tions, differing only by their mass. In other words, it exists two heavier versions of the ordinary
fermions (up, down , electron, νe), named (charm, strange, μ, νμ) and (top, bottom, τ, ντ). Finally,
fermions present two chiralities: left-handed or right-handed, except for neutrinos which are ob-
served exclusively with a left-handed chirality.
The only scalar field in the SM is the Higgs field, which couples to every quark and charged
lepton. Through the Brout-Englert-Higgs-Hagen-Guralnik-Kibble mechanism [84–89], related to
electroweak symmetry breaking, the Higgs field acquires a non-zero vacuum expectation value
(vev), and is thus responsible of the mass of the particles.

Figure 2.1: Elementary particles in the Standard Model

2.1.2 Symmetry groups

The essential tool in quantum field theory is the Lagrangian, which is an expression depending
on the various fields of the model and their derivatives. It defines the dynamics and the couplings
of the fields. In order to make the Lagrangian invariant under certain transformations of the
fermionic fields, one has to introduce vector (gauge) fields in the model. In this way, one can
retrieve naturally the three fundamental gauge interactions.
In the Standard Model, the Lagrangian must be invariant under three symmetries:

UY (1)⊗SUL(2)⊗SUc(3) .

The transformations of a field Ψ corresponding to these symmetries can be written in the general
form:
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Ψ(x)→ e−αi(x)Ti
Ψ(x) (2.1)

where Ti are the generators of the symmetry group and αi(x) are space-dependent angles.
In the case of UY (1), only one generator Y

2 exists. Y is a constant, named the hypercharge, which
is a property of the field. One gauge boson Bμ is associated to this generator.
The SUL(2) symmetry possesses three generators τi = σi

2 with σi the Pauli matrices, and three
corresponding gauge bosons W i=1,2,3. Left-handed fermions transform under SUL(2) in pairs

called “doublets”: Q =
(
uL

dL

)
and L =

(
eL

νL

)
, whereas right-handed fermions are singlets of the

SUL(2) symmetry and do not transform. Each component of a doublet differs by a quantity t3,
namely the third-component of the weak isospin. t3 = +1/2 for up-quarks and electrons and
t3 =−1/2 for down-quarks and neutrinos.
Finally, SUc(3) necessitates eight generators λa/2 where λa are the Gell-Mann matrices. Eight
gauge bosons, the gluons Ga

μ, a = 1,2, ...8, are associated to these generators. Quarks are triplets
of the SU(3) symmetry. Each representation of a quark with regards to this symmetry differs by
a quantum number named the color (green, blue, red).

These groups of symmetry are the basis for building the Standard Model Lagrangian, which I
will detail in the following.

2.1.3 Standard Model Lagrangian

The Lagrangian of the Standard Model can be divided in four parts:

LSM =LY ang Mills +LGauge interactions +LHiggs +LY ukawa. (2.2)

Gauge boson propagation
The first term, the Yang-Mills Lagrangian describes the propagation of the gauge bosons:

LY ang Mills =−1
4

(
BμνBμν+

3∑
i=1

W i
μνW iμν

8∑
i=1

Gi
μνGiμν

)
. (2.3)

Here, the objects Bμν, W i
μν and Gi

μν are defined by replacing F by B, W or G in the following
general equation:

Fi
μν = ∂μFi

ν−∂νFμ+ gεi jkF j
μFk

ν , (2.4)

where g is the coupling strength of the gauge symmetry and εi jk is the structure function of
the corresponding group. The structure function occurs in the anti-commuting relation [Ti,T j]=
iεi jkTk, where Ti are the group generators.

Gauge interactions
The second term describes the propagation of fermions and their interactions with gauge fields:

LGauge interactions =
3∑

i=1
Li,LγμDμLi,L + ei,RγμDμei,R

+Qi,LγμDμQi,L +ui,RγμDμui,R +di,RγμDμdi,R ,

(2.5)
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where the covariant derivative Dμ is defined as

Dμ = ∂μ+ ig
′
Bμ

y
2
+ ik2 g

3∑
i=1

W i
μ

σi

2
+ ik3 gs

8∑
a=1

Ga
μ

λa

2
, (2.6)

where g
′
, g and gs are the coupling strengths of UY (1), SUL(2) and SUc(3) respectively. k2 is set

to 1 for SU(2) doublets L and Q, and to 0 for other fields, while k3 = 1 for quarks, k3 = 0 otherwise.
This covariant derivative ensures the Lagrangian to be invariant under UY (1)⊗SUL(2)⊗SUc(3).

Higgs mechanism
It is not possible to write directly a mass term for the fermions in the Lagrangian without break-
ing the gauge symmetries. A solution is to introduce a doublet defined as:

φ= 1�
2

(
φ+

φ0

)
, (2.7)

where φ+ is a complex charged scalar field and φ0 is a neutral complex scalar field.
Its propagation is defined by the Lagrangian:

LHiggs = (Dμφ)†(Dμφ)−V (φ) , (2.8)

where V (φ) is a potential containing mass terms

V (φ)=−μ2φ†φ+λ(φ†φ)2, (2.9)

with μ and λ complex constants.
The minimization of V (φ) with respect to

∣∣φ∣∣ shows that the value of φ in the vacuum is non-zero

φ= 1�
2

(
0
v

)
. If μ2 is chosen to be negative and λ positive, v =

√
−μ2

λ
.

With an appropriate redefinition of the fields and gauge fixing, we are left with a neutral massive
scalar field h called the Higgs field, while the three other degrees of freedom of the Higgs doublet
are absorbed by the longitudinal components of W and Z bosons.
This mechanism breaks the electroweak UY (1)⊗SUL(2) symmetry, which is replaced by Uem(1)⊗
SU(2) at low energy. Uem(1) is the symmetry which describes the usual electromagnetic interac-
tion with Qem = t3 + Y

2 .
In this context, Bμ and W i

μ are not mass eigenstates. They mix to form the photon Aμ, W± and
Z0 bosons:

W+
μ =

W1
μ − iW2

μ�
2

, W−
μ =

W1
μ + iW2

μ�
2

,

Z0
μ =

g
′
Bμ− gW3

μ√
g2 + g′2

, Aμ =
g
′
Bμ+ gW3

μ√
g2 + g′2

.
(2.10)
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Yukawa couplings
The Higgs doublet couples with the quarks and charged leptons following the Lagrangian:

LY ukawa =−
3∑

i, j=1
yu

i, jQiφ̃u j,R + yd
i, jQiφ̃d j,R + yl

i, jLiφ̃e j,R , (2.11)

with φ̃ = iσ2φ∗, σ2 being the second Pauli matrix and yu, yd, yl are 3×3 matrices defining the
Yukawa Higgs couplings to fermions. As the Higgs doublet gets a non-zero vacuum expectation
value, these terms generate a mass for the fermions.

2.1.4 Beyond the Standard Model

The Standard Model proved to be successful in providing numerous experimental predictions, the
latest being the discovery of the Higgs boson at the LHC in 2012 [90, 91]. However, the SM has
some theoretical limits and is most probably the effective model at low energy of a more funda-
mental theory. For instance, it does not provide a satisfying explanation for the matter/antimatter
asymmetry, nor why only left-handed neutrinos are observed, and does not describe neutrino
masses and oscillation. This model also fails unifying gravitation with the three other fundamen-
tal interactions, and even more important for us, does not provide any good candidate for dark
matter. It is therefore necessary to build models beyond the Standard Model.
The recurrent idea when building a new model in particle physics is to assume the existence of
a new symmetry, similarly to the way the Standard Model was constructed. One of the theories
which have been regarded as the most promising for the last decades is supersymmetry and is
precisely based on the idea that a symmetry exists between fermions and bosons.

2.2 The supersymmetric hypothesis

The idea of supersymmetry (SUSY) was developed and formalized at the beginning of 70’s from
independent and very diverse studies [92–95]. It states that a symmetry exists between fermions
(particles with half-integer spins) and bosons (particles with integer spins). Formally, there should
be an operator allowing us to pass from a fermionic field to a bosonic field and vice-versa. The
fields could thus be grouped into families of at least two members (one fermion and one boson)
called supermultiplets, of same electric charge and colors. This theory involves unavoidably the
existence of undiscovered particles, “superpartners” of the particles already known. These super-
particles should not have the same mass as their partners, otherwise they would have already
been detected. Therefore, supersymmetry must be broken via some unknown mechanism. Nev-
ertheless, supersymmetry opens up the way to new exciting discoveries and allows us to solve
fundamental problems.

2.2.1 Grand Unified Theory

The unification of the three gauge fundamental interactions into one larger gauge symmetry is
a long-term problem. In the SM, the coupling constants of electromagnetism, strong and weak
interactions differ by several orders of magnitude at low energy and cannot be renormalized to a
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Figure 2.2: One-loop quantum corrections to the Higgs squared mass parameter due to a scalar

(left) and a fermion (right).

unified constant at a higher energy. In supersymmetry, the three coupling constants unify natu-
rally at an energy of ∼ 1016 GeV.

2.2.2 Supergravity and theory of everything

The next step would be to unify gravitation with the three gauge interactions. It appears that
when supersymmetry is made local, one can naturally retrieve Einsteins’s equations of General
Relativity. That is what is called Supergravity [96–98]. This theory is still non-renormalizable,
but could lead to a more fundamental theory. Moreover, it comes out that supersymmetry may
be necessary for the string theory to be consistent. Finally, supersymmetry is demonstrated to be
the only way to merge Poincaré’s group and internal symmetries such as the spin into one larger
group. It constitutes, in fact, the only loophole to the Coleman-Mandula no-go theorem.

2.2.3 Hierarchy problem

Another problem, more subtle but also more fundamental for particle theorists is related to the
calculation of the Higgs mass. The Higgs mass suffers indeed from quadratically divergent quan-
tum corrections from its interaction with scalars and fermions, as represented in figure 2.2.
The quantum loop corrections due to a scalar and a fermion can be written as:

ΔM2
H =+ λS

16π2Λ
2
UV + ... (2.12)

and

ΔM2
H =−

∣∣λ f
∣∣2

8π2 Λ2
UV + ..., (2.13)

with ΛUV a finite cut-off in the loop integrals, which is not necessarily the same from one correc-
tion to another.

In the SM, the different contributions to the quantum corrections do not compensate, except if in-
voking a large fine-tuning between the parameters, and the corrections to the bare mass diverge
abnormally compared to the observed mass of the Higgs boson MH ≈ 125 GeV. Supersymmetry
gives a very natural mechanism to avoid those divergences. For every fermion, composed of a left-
handed and right-handed part, exists two superpartner scalars corresponding to each chirality. If
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Figure 2.3: Proton decay into a pion and a positron in supersymmetry.

∣∣λ f
∣∣2 = λs, then the corrections due to the fermion and its superpartners compensate. Therefore,

no fine-tuning needs to be invoked.
However, this mechanism works well only if the masses of the superpartners are of the order of
the TeV. Beyond, higher order corrections become important and the naturalness is lost.

2.2.4 R-Parity and dark matter

Supersymmetry also provides candidate particles for dark matter. In fact, this feature arises from
the solution to another problem. Assuming supersymmetry exists, the proton should be able to
decay into a pion and a positron via a quark superpartner (squark), as shown in diagram 2.3.

However, the proton must have a half-life longer than the age of the Universe. Therefore, this
decay should be forbidden. By invoking a new discrete symmetry called R-parity [99], it is possible
to find a solution to this problem. If one notes

Rp = (−1)2S+3(B−L) , (2.14)

with S the spin of the particle, B its baryonic number and L its leptonic number, Rp =+1 for ordi-
nary particles and Rp =−1 for superparticles. If this multiplicative parity is conserved during an
interaction, vertices with an odd number of superparticles should be forbidden. This symmetry
would thus prevent proton decay.
Moreover, R-parity would also force superparticles to decay into one lighter superparticle and
some baryonic particles. Hence, the lightest supersymmetric particle (LSP) is preserved from de-
cay.
If the LSP is neutral and interacts weakly with baryonic matter, it can be considered as an obvi-
ous candidate for dark matter.

Numerous models of supersymmetry exist and differ essentially by the number N +1 of fields
contained in a supermultiplet. In the following, we will build the Lagrangian in the case N = 1
for the chiral and vector supermultiplets.
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2.3 Supersymmetric Lagrangian

In the model N = 1, in the absence of graviton, only two kinds of supermultiplets exist: chiral
and vector supermultiplets.

2.3.1 Chiral supermultiplet

The chiral supermultiplet is composed of a Weyl fermion ψ and a complex scalar superpartner φ.
In the case of massless fields, the most simple Lagrangian is the Wess-Zumino Lagrangian [94]
consisting only of kinetic terms

LWZ =−∂μφ∗∂μφ+ iψσμ∂μψ+F∗F . (2.15)

Here, F is a scalar auxiliary field added in order to make the Lagrangian invariant under super-
symmetry. F is indeed chosen to transform under supersymmetry in such a way that it compen-
sates exactly the transformation terms of the other fields. Infinitesimal transformations can thus
be written:

δφ=εψ, δφ∗ =εψ,

δψ=− iσμε∂μφ+εF, δψ=iεσμ∂μφ
∗ +εF∗,

δF =− iεσμ∂μψ δF =i∂μψσμε.

(2.16)

where ε is an anticommuting Weyl spinor, invariant under space-time transformations, which
characterizes the supersymmetric infinitesimal transformation.

Chiral supermultiplets Ψi = (ψi,φi,Fi) can interact between each other according to the interact-
ing Lagrangian

Lint =−1
2

W i jψiψ j +W iFi +h.c. (2.17)

where W is the superpotential defined as

W = 1
2

Mi jφiφ j + 1
6

yi j kφiφ jφk. (2.18)

I omitted in this last equation a term which appears only when a singlet exists in the model,
which will not be the case in the Minimal Supersymmetric Standard Model described in next
section.
The superscripts i and j in W i j and W i refer to the partial derivatives with respect to the scalar
fields φi and φ j.

W i = ∂W

∂φi
, W i, j = ∂2W

∂φi∂φ j
. (2.19)

The form of Lint is, in fact, specifically chosen in order to be invariant under supersymmetry. It
is important to note, for instance, that the superpotential cannot depend on φ∗. This feature is
important in the Higgs sector as the Standard Model Yukawa couplings is thus not allowed. In
order to get a Higgs mechanism consistent with supersymmetry, two Higgs doublets Hu and Hd
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will be required.

The auxiliary field can then be eliminated by making use of its equation of motion:

Fi =−W ∗
i , F∗i =−W i. (2.20)

The Wess-Zumino and interacting Lagrangians can finally be summed to form the total chiral
Lagrangian :

Lchiral =−∂μφi∗∂μφi + iψi
σμ∂μψi − 1

2

(
W i jψiψ j +W 8

i jψ
i
ψ

j
)
−W iW ∗

i . (2.21)

2.3.2 Gauge supermuliplet

The second basic supermultiplet is the gauge (or vector) supermultiplet. It is composed of a mass-
less gauge boson Aa

μ and a two-component Weyl fermion gaugino ξa. The propagations and inter-
actions between these two fields are described by the Lagrangian:

Lgauge =−1
4

Fa
μνFaμν+ iξ

a
σμDμξ

a + 1
2

DaDa , (2.22)

where a = 1,2, ...n with n = 8 for SU(3), n = 3 for SU(2) and n = 1 for U(1). Fa
μν is defined as in

equation 2.4 for the vector field Aμ, and the covariant derivative Dμ describes the interaction of
the fermion with gauge field.
One real bosonic field Da needs to be added to the Lagrangian for the sake of supersymmetry
invariance, similarly to the auxiliary field F of the chiral supermultiplet. The supersymmetric
transformations of the fields counterbalance in the Lagrangian according to:

δAa
μ =− 1�

2

(
εσμξ

a +ξ
a
σμε
)

, (2.23)

δξa = i
2
�

2

(
σμσνε

)
Fa
μν+

1�
2
εDa , (2.24)

δDa = i�
2

(
εσμDμξ

a +Dμξ
a
σμε
)

. (2.25)

2.3.3 Gauge interactions

Additional interactions can exist between the vector boson of a gauge supermultiplet Aa
μ and the

other fields. First, it is sufficient to replace partial derivatives by covariant derivatives in equa-
tion 2.15 to couple Aa

μ to the scalar and fermionic components of chiral multiplets. Then, Aa
μ can

also couple to the fermionic and auxiliary fields of the gauge multiplets via three types of cou-
plings which respect renormalizability: (φ∗Taψ)ξa, ξ(ψTaφ) and (φ∗Taφ)Da where Ta are the
generators of the gauge symmetry related to Aa

μ.

The total supersymmetric Lagrangian can finally be written under the form

L =Lchiral +Lgauge (2.26)

−
�

2 g(φ∗Taψ)λa −
�

2 gλ(ψTaφ)+ g(φ∗Taφ)Da. (2.27)
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Figure 2.4: The Minimal Supersymmetric Standard Model

The most simple version of this model is the Minimal Supersymmetric Standard Model, which
contains the minimal number of fields. In the next section, I will describe this model from a
phenomenological point of view.

2.4 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric extension of the Standard Model (MSSM) was developed by Pierre
Fayet in the late 70’s [100–102]. He showed that within the Standard Model, no particle could
be the superpartner of another. He was then able to built the supersymmetric model with the
minimum number of particles (see figure 2.4). The SM fermions are contained in chiral supermul-
tiplets along with their scalar partners named sfermions, while SM vector bosons are in gauge
supermultiplets with Weyl fermion superpartners called gauginos.

As mentioned previously, supersymmetry needs to be broken to explain the difference in mass
between SM particles and their supersymmetric partners. The mechanism of symmetry break-
ing is still under debate. However, it is possible to introduce an ad-hoc additional term to the
supersymmetric Lagrangian to study the phenomenology of the model at low energy. This term,
qualified as “soft” contains the mass terms for the superpartners.

Lsof t =− 1
2

(M1B̃B̃−M2W̃ iW̃i −M3G̃αG̃α+h.c.)

−m2
Hu

H†
uHu −m2

Hd
H†

dHd − (bHuHd +h.c.)

− (ũ∗
RauQ̃Hu − d̃∗

RadQ̃Hd − ẽ∗RaeL̃Hd +h.c.)

− Q̃†m2
Q̃Q̃− L̃†m2

L̃L̃− ũ∗
Rm2

ũR
ũR − d̃∗

Rm2
d̃R

d̃R − ẽ∗Rm2
ẽR

ẽR .

(2.28)

When a tilde is drawn over a field, we refer to its superpartner. For instance, ũR refers to the
superpartner of the right-handed up-quark. The terms in af are trilinear coupling matrices and
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those in mf̃ are soft squared mass matrices.

In the following, we will describe the phenomenology of the Higgs, sfermion, and gaugino sectors.

2.4.1 Higgs sector

To get a consistent supersymmetric Higgs mechanism for the electroweak symmetry breaking, it
is necessary to assume the existence of two Higgs doublets Hu = (H+

u ,H0
u
)

and Hd = (H0
d,H−

d
)
,

while there is only one doublet in the SM. The interactions between the two Higgs doublets Hu

and Hd are contained in the superpotential

WMSSM = ũ∗
RyuQ̃Hu − d̃∗

RydQ̃Hd − ẽ∗RyeL̃Hd +μHuHd . (2.29)

Hu couples to up-type quarks and Hd to down-type quarks and charged leptons. Those two com-
plex doublets represent eight degrees of freedom. After electroweak symmetry breaking, three of
them become the longitudinal modes of the W and Z bosons, leaving five physical mass-eigenstate
Higgs bosons: two neutral CP-even scalars h0 and H0, with mh0 < mH0 , two charged CP-even
scalar H±, and one neutral pseudo-scalar A0. The two neutral component of the Higgs doublet
acquire a vev:

〈H0
u〉 =

v sinβ�
2

, 〈H0
d〉 =

v cosβ�
2

, (2.30)

with v the vev in the Standard Model and β a free parameter of the model, usually used in the
form of

tanβ= 〈H0
u〉

〈H0
d〉

. (2.31)

This angle β, along with another mixing angle α, also appears in the matrix allowing us to pass
from the Higgs doublet elements to the mass eigenstates:(

H0
d

H0
u

)
= 1�

2

(
cosα −sinα

sinα cosα

)(
H0

h0

)
+ i

1�
2

(
cosβ sinβ

−sinβ cosβ

)(
Z0

L
A0

)
, (2.32)

(
H±

d
H±

u

)
= 1�

2

(
cosβ sinβ

−sinβ cosβ

)(
W±

L
H±

)
. (2.33)

The masses of the different Higgs bosons can be expressed at tree level in terms of β, the mass
of the lightest Higgs mh0 and the masses of Z and W± bosons. Simple relations between these
masses can then be written, such as:

m2
H0 +m2

h0 = m2
A0 +m2

Z , (2.34)

m2
H± = m2

A0 +m2
W , (2.35)

which assure that all the heavy Higgs bosons are of equal order of magnitude in mass.
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2.4.2 Sfermion sector

In the MSSM, every fermion has one or two superpartners called sfermions depending on its num-
ber of degrees of freedom, the s at the beginning of the name referring to scalar. For instance, the
left-handed and right-handed chiral component of quarks and charged leptons are each associ-
ated to one sfermion. The squarks and sleptons are commonly denoted by a r or a l according to
the chirality of their superpartners, but do not have a chirality on their own, as they are scalars.
One should be aware of this subtility when we will talk in the following of left/right-handed
sfermions. Neutrinos, however, are only observed with a left-handed chirality, and only have one
superpartner.
The superpartners of the left-handed and right-handed sfermions may mix according to the mass
matrices for up-type squarks, down-type squarks and charged leptons of the ith generation.

M̃2
ui

=
[

m̃2uiLL m̃2uiLR
m̃2uiRL m̃2uiRR

]

=
[

m2
Qi

+m2
ui
+ 1

6 (4M2
W −M2

Z) cos2β mui (A
∗
ui
−μcotβ)

mui (Aui −μ∗cotβ) m2
Ui

+m2
ui
+ 2

3 (−M2
W +M2

Z) cos2β

]
,

(2.36)

M̃2
di

=
[

m̃2diLL m̃2diLR
m̃2diRL m̃2diRR

]

=
[

m2
Qi

+m2
di
+ 1

6 (4M2
W −M2

Z) cos2β mdi (A
∗
di
−μcotβ)

mdi (Adi −μ∗cotβ) m2
Di

+m2
di
+ 2

3 (−M2
W +M2

Z) cos2β

]
,

(2.37)

M̃2
ei
=
[

m̃2eiLL m̃2eiLR
m̃2eiRL m̃2eiRR

]

=
[

m2
Li

+m2
ei
+ 1

6 (4M2
W −M2

Z) cos2β mei (A
∗
ei
−μcotβ)

mei (Aei −μ∗cotβ) m2
Ei

+m2
ei
+ 2

3 (−M2
W +M2

Z) cos2β

]
,

(2.38)

where mui , mdi and mei are the fermion masses, μ the Higgs-Higgsino mass term, Aui , Adi and
Aei trilinear soft couplings. mQi is the soft mass term associated to the SU(2) doublet formed by
the superpartners of the left-handed up-type and down-type quarks and mUi and mDi are the
mass terms of the right-handed up-squarks and down-squarks. Identically, mLi is the mass term
of the doublet formed by the left-handed selectron/sneutrino and mEi the mass term of the right-
handed charged lepton.
One can note that the non-diagonal terms are all proportional to the fermion mass. Hence, these
terms will be negligible for the first and second generation of sfermions, but mixings will occur
for the third generation. In the latter case, the trilinear couplings Ab, At and Aτ may have some
phenomenological importance. The right-handed and left-handed sbottoms, stops and staus will
respectively mix to form mass eigenstates

{
b̃1, b̃2

}
,
{
t̃1, t̃2

}
and {τ̃1, τ̃2} with indices 1,2 denoting

a classification in mass (mb̃1
< mb̃2

, ...).
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2.4.3 Gaugino-Higgsino sector

As for ordinary bosons, their superpartners are named by adding -ino at the end of the word.
The superpartner of the Higgs boson is, for instance, named higgsino. The superpartners of the
Higgs bosons are not mass eigenstates and mix with the superpartners of the photon, Z and
W± bosons. This gives four neutral gauginos called neutralinos χ̃0

1, χ̃0
2, χ̃0

3, χ̃0
4 and two charged

gauginos simply named charginos χ̃±
1 , χ̃±

2 . The indices attributed to neutralinos and charginos
refer to the hierarchy in mass mχ̃0

1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
. In the following, if no index is mentioned,

it will refer to the lightest neutralino. The lightest neutralino will be of the greatest interest to
us as it constitutes the most promising candidate for dark matter. Sneutrinos, in the case they
are the LSP, could also be eligible candidates. However, they interact too strongly with baryonic
matter and are already excluded by direct detection constraints [103].
When discussing the nature of the neutralino, we will refer to its fraction in higgsinos, and in
photon and Z superpartners. In fact, instead of considering the photon and Z superpartners,
we will refer to the gauge eigenstates before electroweak symmetry breaking B0 and W3. The
neutralino can thus be considered as a superposition of a bino, a wino and a higgsino and we will
use the basis Ψ0 = {B̃0, W̃3, H̃0

d, H̃0
u}. The mass eigenstates can then be calculated via the mixing

matrix N:

χ̃0
i = Ni, jΨ

0
j , with j ∈ {1,2,3,4} . (2.39)

Using this notation, we will consider that the lightest neutralino is:

• Bino-like if N2
1, 1 ≈ 1

• Wino-like if N2
1, 2 ≈ 1

• Higgsino-like if N2
1, 3 +N2

1, 4 ≈ 1

• Mixed otherwise.

The neutralino nature is important as each type presents different phenomenological properties.
For instance, bino-like neutralinos are known to have small annihilation cross sections and for
this reason, a large relic density. The different types of neutralino also behave differently in the
context of direct and indirect detection, as we will see in Part II. For instance, among the 13 dif-
ferent tree level neutralino annihilation channels enumerated in figure 2.5, wino-like neutralinos
will privilege the χχ→ WW channel, while higgsino-like neutralinos will mostly annihilate into
a pair of Z bosons.
As for direct detection, the neutralino interacts with the quark content of atoms through four
types of channel at tree level (see figure 2.6). The interaction through a CP-even Higgs boson is
spin-independent in the zero-momentum transfer approximation, while the interaction via a Z
boson is spin-dependent. The scattering via a squark in s-channel or t-channel has at the same
time a spin-dependent and spin-independent component.
As we will see in part II, the phenomenology of the different neutralino types can be substantially
different in the context of direct detection.
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Figure 2.6: Scattering channels of the lightest neutralino on a quark.

2.4.4 Constrained Models

The MSSM, though the simplest model of supersymmetry, presents more than one hundred free
parameters consisting essentially in superparticle masses, couplings and the ratio of the two
Higgs vacuum expectation values tanβ. This large number of free parameters does not allow to
perform any relevant scan in order to test the validity of the model. However, several ways were
thought to reduce the number of free parameters:

Constrained MSSM (CMSSM): The CMSSM [104] is directly related to the minimal model of
supergravity mSUGRA, which describes a mechanism of gravitation-mediated supersymmetry
breaking. Knowing how supersymmetry was broken allows us to reduce considerably the num-
ber of free parameters. In the CMSSM, only four free parameters remain at the GUT scale: the
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tanβ the ratio of the vevs of the two Higgs doublet

MA Mass of pseudo-scalar Higgs

M1, M2, M3 Bino, wino and gluino mass parameters

μ Higgs-Higgsino mass parameter

Mq̃, MũR , Md̃R
, Ml̃ , MẽR first/second generation sfermion masses

MQ̃ , Mt̃R , Mb̃R
, ML̃, Mτ̃R third generation sfermion masses

At, Ab, Aτ third generation trilinear coupling

Table 2.1: pMSSM 19 free parameters.

universal scalar mass m0, the gaugino mass parameter m1/2 , the universal trilinear coupling
A0, the ratio of the two Higgs vacuum expectation values tanβ. The sign of the higgsino mass
parameter μ is also to be chosen. The CMSSM constitutes a benchmark model tested by the vari-
ous experimental analyses. It is however already tightly constrained by the LHC, direct detection
and the measurement of the relic density.

The phenomenological MSSM (pMSSM) [105]: A more general set-up without the GUT scale
unification assumption is the phenomenological MSSM. By imposing natural constraints in re-
gards to the observed particle phenomenology, it is possible to reduce the number of free parame-
ters. In the case of the phenomenological MSSM, it is imposed that no new source of CP violation
and no Flavour Changing Neutral Current (FCNC) can emerge from supersymmetry, and that
there is a universality between the first and second generations of fermions. The number of free
parameters is thus reduced to only 19. For instance, in order to remove all new sources of CP-
violation, one can simply set all phases in the soft-SUSY breaking potential to zero, and it is
necessary to impose that the matrices for the sfermion masses and for the trilinear couplings
are diagonal in order to avoid FCNCs. Moreover, the first and second generation universality in-
volves that the sfermion masses are equal between the two first generations: mũ = mc̃, md̃ = ms̃,
mẽ = mμ̃... A complete list of the parameters is given in table 2.1 with their meanings.

2.4.5 Extensions of the MSSM

As we will see in the following, the MSSM is tightly constrained by current experiments. It is
therefore interesting to study other models of supersymmetry, and in particular, simple exten-
sions of the MSSM. The easiest way to extend the MSSM is to add a new kind of particle to the
SM, such as the axion and the graviton. The superpartners of these particles, the axino and the
gravitino can have interesting phenomenologies and could be a dark matter particle if they are
the LSP.
Another way to extend the MSSM is to add a gauge singlet. That is what is done in the next-to-
minimal supersymmetric standard model (NMSSM). This model has the advantage to solve the
so-called μ-problem. In the supersymmetric Lagrangian, in the term μHuHd, μ should be of the
order of magnitude of the electroweak scale in order to obtain non-zero vevs. This feature has
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no natural explanation in the MSSM, but find a straightforward solution in the NMSSM. The
singlet gives two additional Higgs scalar bosons compared to the MSSM: one CP-even scalar and
one CP-odd scalar. The supersymmetric counterparts of those particles form a fifth neutralino.

2.5 SUSY searches at colliders

Superparticles are the subject of active searches at colliders, even if no significant excess has
been measured yet. Though the 750 GeV excess at ATLAS [106] and CMS [107] made quite
a fuss, it eventually happened to be just a simple statistical fluctuation. Nevertheless, collider
results lead to strong constraints on the MSSM. Two types of colliders will be of interest for us:
electron/positron and proton/antiproton colliders.

2.5.1 Electron/positron Colliders

The Large Electron-Positron collider (LEP) at CERN, Geneva, is the largest electron-positron
circular collider ever constructed with 27km in circumference. During its period of activity (1989-
2000), the LEP reached a center of mass energy of 209 GeV and led to high-precision measure-
ments of the W and Z bosons.
Electron/positron collisions should produce all types of superparticle, except gluinos because of
colour conservation.

e+e− → χ̃+
i χ̃

−
j , χ̃0

i χ̃
0
j , l̃+ l̃−, ν̃ν̃∗, q̃q̃∗ .

Even if none of those processes has been observed, strong limits on the superparticle masses were
drawn. In 2001, the LEP was dismantled to leave place to the construction of the LHC.

2.5.2 Hadron Colliders

One of the most important hadron colliders and the largest before the LHC is the Tevatron. This
circular proton/antiproton collider of 1 km in diameter was in use at Fermilab from 1987 to 2011
and reached a center of mass energy of 1.96 TeV without detecting any superparticle.
The Large Hadron Collider (LHC), at CERN, Geneva, took over this search in 2010. It is the most
powerful hadron collider in the world with 27 km in circumference. Its activity can be divided in
two periods. From 2010 to 2013, the first run was performed with a center mass energy of 8 TeV,
leading to the detection of the Higgs boson in 2012. The LHC started its second run in 2015 with
an energy of 13 TeV, confirming the mass of the Higgs boson at ∼ 125 GeV.
Four detectors are built on the LHC ring:

• ATLAS and CMS are dedicated to high-precision measurements of SM observables and to
the search for new physics,

• LHCb is dedicated to flavour physics measurements,

• ALICE is designed for the study of heavy ions.
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Figure 2.7: Left: Monojet. Right: Example of SUSY direct searches with two leptons and missing

transverse energy in the final state.

Superparticles can be produced from the interaction of quarks and gluons at the electroweak
strength via the processes:

qq → χ̃+
i χ̃

−
j , χ̃0

i χ̃
0
j ud → χ̃+

i χ̃
0
j , ud → χ̃−

i χ̃
0
j ,

qq → l̃+i l̃−j , ν̃l ν̃
∗
l ud → l̃+Lν̃l , ud → l̃−Lν̃

∗
l ,

and at QCD strength via:
gg → g̃ g̃, q̃i q̃∗

j gq → g̃q̃i,

qq → g̃ g̃, q̃i q̃∗
j qq → q̃i q̃ j.

As superparticles are expected to decay quickly, except for the LSP, one can only search for their
decay products composed of SM particles and LSP. The LSP, as well as neutrinos, cannot be di-
rectly detected as they interact too weakly with matter. However, it is possible to calculate the
corresponding missing energy at the end of a reaction. As only particles with a momentum trans-
verse to the beam direction are detected, it is in fact only the energy E/ T corresponding to the
transverse momentum which is measured. As for quarks and gluons, they hadronize into jets be-
cause of QCD confinement. Eventually, any process in which superparticles are created leads to
a final state of the type {n leptons+m jets+E/ T with n m ∈N}. The search for this type of signals
is commonly named SUSY direct searches.
The emission of a gluon by a particle in the initial state followed by the production of two neu-
tralinos in the final state is another kind of processes named monojet which leads to the signal
jet + E/ T specific to the production of neutralinos (see figure 2.7).
However, those signals have a large background from Standard Model processes. In particular,
the production of W or Z bosons, which decay into charged leptons and neutrinos, leads to large
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WW ZZ γγ ττ bb Total decay width (GeV)

BR 0.2137 0.02619 0.002270 0.06272 0.5824 4.088×10−3

Table 2.2: SM Higgs branching ratios at mh = 125 GeV [108].
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Figure 2.8: The four main production processes of the Standard Model Higgs Model

missing transverse energy which can be mistaken with the production of a neutralino. It is there-
fore necessary to apply energy cuts in the analyses to reduce the background.

Another way of searching for hints of supersymmetry is to detect the production and decay of
Higgs bosons. First, one can measure the SM Higgs signal strength, which is the quantity compar-
ing the experimental signal of the production and decay of the Higgs bosons to the one calculated
in the Standard Model. It can be written in the general form :

μ
exp
X X→h→Y Y =

σ
exp
X X→h ×BRexp

h→Y Y

σSM
X X→h ×BRSM

h→Y Y

. (2.40)

In the case of no sign of new physics, μexp
X X→h→Y Y = 1. Otherwise, the production cross section

σ
exp
X X→h or the branching ratio BRexp

h→Y Y can get contribution from superparticle exchanges and
the signal strength deviates from 1. The main decay channels of interest for CMS and ATLAS are
into WW , ZZ, γγ ,ττ and bb, with predicted branching ratios reported in table 2.2.
There are also different processes of production of the Higgs boson: by gluon fusion (ggF), vector
boson fusion (VBF), and two additional processes associated with a production of a vector boson
or top quarks (VH) and (tth) (see figure 2.8).
Second, the search of heavy Higgs decay can also bring important constraints in the MSSM. The
neutral heavy Higgs bosons, for instance, are expected to decay into a pair of charged leptons or
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quarks or into light Higgs bosons h0:

A0/H0 →τ+τ−, μ+μ−, bb, tt ,

H0 →h0h0 ,

A0 →Zh0 .

Finally, measurements in flavour physics, in particular of the B meson decays, can bring indirect
constraints on supersymmetric models. The measurement of those processes can probe, indeed,
higher energy levels than direct searches, as superparticles do not need to be produced on-shell
but can possibly appear only at loop-level. The branching ratios BR(Bs → μ+μ−), BR(B → Xsγ)
and BR(B+ → τντ). for instance, do not show a significant deviation from their SM value, but put
strong constraints on the MSSM. The quark content of B mesons and kaons are listed in table 2.3.
The process B → Xsγ refers to de decay of any B meson into a photon and any kind of composite
particle containing a strange quark.

Meson B0 B+ B0
s K+ K0∗

Quark content db ub sb us ds

Table 2.3: Quark content of B mesons and Kaons.

Other observables in flavour physics, however, show some anomalies which are still under inves-
tigation. In particular, for the B0 → K0∗μ+μ− process, the quantity P

′
5 shows an anomaly of ∼ 3σ

[109] and the ratios RK = BR(B+→K+μ+μ−)
BR(B+→K+e+e−) and RK∗ = BR(B0→K∗0μ+μ−)

BR(B0→K∗0e+e−) show deviations with lepton
generation universality of about 2.5σ [110, 111]. If confirmed, those anomalies will constitute a
breakthrough in the search for new physics.
For the moment, however, we will restrain ourselves in applying constraints to the MSSM from
measurements of colliders which do not show any anomaly and we will investigate their interplay
with dark matter direct and indirect detection constraints.
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3
ROBUSTNESS OF DARK MATTER CONSTRAINTS AND INTERPLAY

WITH COLLIDER SEARCHES FOR NEW PHYSICS

3.1 Objectives of the analysis

With the increasing precision of collider measurements and dark matter searches, it is
important to assess carefully the constraining power of both sectors on supersymmetric
models in order to guide future searches. Several studies have been carried out on the

subject, focusing either on the excluded parameter space regions or on preferred regions deter-
mined from global fits (see e.g. [112–119]). However, while collider constraints are obtained in
environments under control, which therefore lead to relatively hypothesis-free limits, it is well
known that dark matter direct and indirect detection constraints suffer from large astrophysical
and nuclear uncertainties which are rarely taken into account in this kind of analyses.
In this work, we aimed at studying the regions in the MSSM excluded by collider constraints
and dark matter searches, taking a special care to assess the robustness of dark matter con-
straints with respect to astrophysical sources of uncertainties, namely the dark matter density
halo profile, dark matter velocity profile and cosmic-ray propagation through the galactic medium.
Nuclear uncertainties will be considered in next chapter.
This work was carried out in collaboration with Prof. Farvah Nazila Mahmoudi, Prof. Alexan-
dre Arbey and Dr. Mathieu Boudaud. It resulted in a publication in the Journal of High Energy
Physics [120].

3.2 Method

3.2.1 MSSM Scans

In order to define the excluded regions of the MSSM, it is necessary to perform a scan over its
parameters, or in other words, to choose randomly several sets of numerical values for the free
parameters. Each set of values is called a model point or a point in short. Then, we test the valid-
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ity of each point under the various experimental constraints. However, the most general MSSM
scenario presents more than one hundred free parameters. Considering this large number of para-
meters, one would need to generate an enormous amount of points in order to probe correctly the
entire parameter space, which requires gigantic computational resources. To cope with this prob-
lem, we consider the pMSSM in this analysis, which was described in section 2.4.4. As only a
small part of those parameters, namely tanβ, MA, M1, M2 and μ, plays a significant role in the
phenomenology that we consider, it is possible to perform an exhaustive scan. Moreover, the con-
clusions we draw in the pMSSM are expected to be valid in more general scenarios. In particular,
it was shown in [121, 122] that CP violation does not have important consequences on the dark
matter sector after imposing the experimental constraints from the electric dipole moments and
the Higgs coupling measurements. The results presented in the following thus remain valid also
for CP violating scenarios.

20 million points are generated with SOFTSUSY [123], with a flat random sampling using the
ranges given in Table 3.1 for the 19 pMSSM parameters. After checking the theoretical validity
of each point, we impose a few pre-constraints.
First, we impose the lightest neutralino to be the lightest supersymmetric particle using the set-
up presented in [124, 125]. This particle therefore constitutes dark matter. This choice is not as
restrictive as it may first appear since the neutralino can take different natures, namely bino-
like, wino-like, Higgsino-like and mixed-state, depending on the free-parameter values. Thereby,
it gives us the opportunity to study very different phenomenologies which could be relevant to
other dark matter models. We only consider here neutralinos with a mass mχ � 10 GeV. The case
of very light neutralinos was already studied in detail in [126–129].
Second we impose constraints on the light Higgs mass. The combined measurements of the Higgs
mass by ATLAS and CMS from Run 1 gives [130]

MhSM = 125.09±0.21(stat.)±0.11(syst.) GeV . (3.1)

While this measurement is very precise, the calculation of the Higgs mass in the MSSM is still
subject to larger uncertainties (see for example [131]). For this reason, we adopt the constraint:

122 GeV< MhSM < 128 GeV . (3.2)

At leading order, the light Higgs mass can be written in the MSSM as:

M2
h ≈ M2

Z cos2 2β

[
1− M2

Z

MA
2 sin2 2β

]
(3.3)

+ 3m4
t

2π2v2

[
log

MS
2

m2
t

+ Xt
2

MS
2

(
1− Xt

2

12MS
2

)]
,

where MS =√Mt̃1 Mt̃2 and Xt = At −μcotβ. Thereby, it limits in particular the stop masses and
mixing.
400 000 points remain after imposing those pre-constraints.
Next, we apply the constraints from dark matter searches, including the measurement of DM
relic density, and direct and indirect detection limits, which are described in detail below. Finally,
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Parameter Range (in GeV)

MA [50, 2000]

M1 [-3000, 3000]

M2 [-3000, 3000]

M3 [50, 3000]

Ad = As = Ab [-10000, 10000]

Au = Ac = At [-10000, 10000]

Ae = Aμ = Aτ [-10000, 10000]

μ [-3000, 3000]

MẽL = Mμ̃L [0, 3000]

MẽR = Mμ̃R [0, 3000]

Mτ̃L [0, 3000]

Mτ̃R [0, 3000]

Mq̃1L = Mq̃2L [0, 3000]

Mq̃3L [0, 3000]

MũR = Mc̃R [0, 3000]

Mt̃R [0, 3000]

Md̃R
= Ms̃R [0, 3000]

Mb̃R
[0, 3000]

tanβ [1, 60]

Table 3.1: pMSSM scan ranges.

we consider the limits from collider searches. As we do not intend to define a preferred parameter
region, there is no need to calculate some global likelihood. Instead, it is more straightforward to
apply the constraints separately at the 2σ level, apart from for the Higgs sector where a likeli-
hood analysis is used. This choice should not affect the conclusions of our study.

3.2.2 Dark matter constraints

3.2.2.1 Relic density

The dark matter abundance has been measured in the framework of the standard cosmological
model, and the Planck Collaboration has provided a precise evaluation of the cold dark matter
density [22]:

Ωch2 = 0.1188±0.0010 . (3.4)

Constraints on new physics scenarios which propose dark matter candidates can therefore be
obtained by comparing the computed dark matter density to the Planck value. SuperIso Relic
[132, 133] is used to calculate the relic density for our sample of points.
Several assumptions can nevertheless limit the constraining power of the relic density.
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The first uncertainties arise from the numerical calculations of the annihilation and co-annihilation
cross sections. Whereas in the simplest cases the calculation of the relic density relies on a few
decay channels, in the most compressed scenarios of the MSSM, more than 3000 channels can get
involved, severely limiting the calculation speed of the relic density. For this reason, the cross sec-
tions are generally considered at tree-level. Yet, in individual channels, higher-order corrections
can lead to 30% modifications or more [134]. However, in most cases, the relic density calculated
at tree-level differs by less than 10% from the one calculated at one-loop [135, 136]. Therefore, in
the general case, about 10% uncertainty can be associated to tree-level calculations of the relic
density.

A second limitation comes from QCD equations of state. Indeed, computing the relic density re-
quires the knowledge of the number of effective degrees of freedom of radiation density and en-
tropy. While it was originally thought that the primordial plasma could be treated as an ideal gas
above the QCD phase transition temperature, non-perturbative studies showed that at high tem-
perature, the ideal gas approximation does not work, and different models for this plasma have
been studied [137–139], leading to different sets of QCD equations of state. The consequences on
the relic density are however rather mild and can modify it by a few percent.
For these two reasons, we add to the Planck measurement error a theoretical uncertainty of 10%
in order to be conservative, and consider the 3.5σ interval

0.0772<Ωh2 < 0.1604 . (3.5)

However, we will disregard the lower dark matter density limit. Indeed, in the usual calculation
of relic density, the expansion of the Universe is considered to be dominated purely by the radia-
tion density. This hypothesis can however be falsified in many extensions of the standard model
of cosmology [140–144]. Similarly, entropy injection or non-thermal production of dark matter
particles can modify the relic density [145–149]. These modifications of the standard model of
cosmology can result in a change of the relic density by orders of magnitude, but are more likely
to increase it. Some of these alternative scenarios will be studied in Chapter 5.

3.2.2.2 Indirect detection

We calculate indirect detection constraints from AMS-02 antiproton and Fermi-LAT gamma-ray
data. The annihilation cross sections necessary for the interpretation of indirect detection data
are calculated with MicrOMEGAs [150–152], and PPPC4DMID [153] is used for the antiproton
and gamma spectra.

Antiprotons We derive constraints on the dark matter annihilation cross section 〈σv〉 from
the cosmic ray antiproton flux measured by PAMELA [56] as well as AMS-02 [57]. We apply the
same procedure described in [154] to derive the 95% C.L. upper limit on the annihilation cross
section 〈σv〉. The procedure was also implemented in SuperIso Relic and is detailed in section 4.3.
Practically, we solve the differential equation describing the propagation of antiproton through
the galactic medium, using a semi-analytical method, to calculate the primary and secondary
antiproton spectra at the Earth position. This calculation suffers from two sources of uncertain-
ties, namely on the propagation parameters, which account, in particular, for the diffusion and
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Figure 3.1: Dark matter density as a func-

tion of the distance from the galactic center

for Einasto, NFW and Burkert profiles.

Halo rs ρs R� ρ�
profile [kpc] [GeV/cm3] [kpc] [GeV/cm3]

NFW 19.6 0.32 8.21 0.383
Einasto

16.07 0.11 8.25 0.386
(α= 0.22)
Burkert 9.26 1.57 7.94 0.487

Table 3.2: Dark matter mass model parame-

ters for NFW [164], for Einasto [165] and for

Burkert [166] profiles.

convection of antiprotons through the galaxy, and also on the dark matter density profile of the
galactic halo. Therefore, we calculate the limits on the annihilation cross section for two sets of
propagation parameters and three different density profiles in order to estimate the error on our
constraints.

Three benchmark sets of propagation parameters MIN, MED, and MAX were proposed in [155].
These models are meant to be consistent with the boron over carbon (B/C) ratio. The MED model
corresponds to the best fit to the (B/C) ratio, whereas the MIN and MAX sets of parameters define
the lower and upper bounds for the primary p̄ flux. However, it was found recently from stud-
ies based on synchrotron radio emission [156–159], on cosmic ray positrons [160] as well as on
gamma rays [161], that the thin halo predicted by MIN is disfavoured. The study of secondary
positrons [162, 163] points towards the same conclusion. As a result, the MED model provides a
conservative lower bound to the dark matter antiproton signal. We thus calculate the limits only
for the MED and MAX models. The recent B/C data reported by AMS-02 and their future studies
would result in an improved determination of the parameters of the propagation models.

Concerning the DM density profiles, we use three different halo models, namely Navarro-Frenk-
White (NFW) [164], Einasto [165] and Burkert [166] profiles, in which dark matter particles are
isotropically distributed around the galactic center.

The NFW profile was defined from cosmological simulations [167] as

ρNFW(r)= ρs
rs

r

(
1+ r

rs

)−2
, (3.6)

where rs is the radius at which the logarithmic slope of the profile is −2 and ρs the dark mater
density normalization.

The Einasto profile on the other hand is defined as

ρEin(r)= ρs exp
{
− 2
α

[(
r
rs

)α
−1
]}

, (3.7)
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Figure 3.2: 95% C.L. upper limit of the neutralino annihilation cross section into W+W− (upper

left), bb̄ (upper right), tt̄ (lower left) and ZZ (lower right), derived from AMS-02 antiproton data.

and provides a better agreement with the latest simulations [168] and does not suffer from the
central divergence of the NFW profile ( equation 3.6).
The Burkert profile arises from the study of the star activity occurring in the inner galaxy [169].
It could sweep dark matter particles from the inner region, resulting in a core profile as observed
in many galaxies. Such profiles are parametrized by:

ρBur(r)= ρs(
1+ r

rs

)(
1+
(

r
rs

)2) . (3.8)

The parameters rs and ρs as well as the distance of the Solar system to the galactic center are
determined by dynamical observations of the Galaxy. We use the values determined by [164] for
NFW, by [165] for Einasto and by [166] for Burkert profile as reported in Table 3.2.

The 95% C.L. upper limits on the annihilation cross section derived from the AMS-02 data are
shown in Fig. 3.2 with respect to the dark matter mass for the W+W−, bb, tt and ZZ annihilation
channels.
One can note that the DM density is much larger in the Galactic center for the cuspy Einasto
and NFW profiles than for the Burkert one (see figure 3.1). The DM annihilation rate is thus en-
hanced at the galactic center for the two cuspy profiles, which leads to stronger constraints than
for the Burkert profile. Another important feature is that the limits derived using the MED model
are weaker than for the MAX model. The MAX model was indeed defined to give a maximum flux
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Figure 3.3: Compared DM annihilation cross section upper limit from PAMELA (dashed) and

AMS-02 (solid) antiproton data for the W boson channel with Burkert-MED and Einasto-MAX.

of antiprotons at the Earth position, so the constraints calculated using this model are logically
stronger. In any case, the theoretical uncertainties coming from the poor knowledge of the propa-
gation parameters is larger (up to a factor 4 on 〈σv〉) than the one arising from the choice of the
DM profile (up to a factor 2). For all annihilation channels, we find that the strongest constraint
is obtained using the Einasto profile and the MAX propagation model and the weakest constraint
is given by the Burkert profile and MED model. In the following, we will therefore use these two
cases to probe the uncertainties on indirect detection limits. Note also that the constraints for the
b quark channel become very stringent when mDM falls below 50 GeV, excluding the thermal
relic cross sections down to ∼ 10−29 cm3/s at 10 GeV.
For the sake of consistency, we perform the same analysis using PAMELA antiproton data. The
comparison between the results for the W boson channel obtained with AMS-02 and PAMELA
data are given in Fig. 3.3 for the Burkert-MED and Einasto-MAX cases. For mDM � 1 TeV, the
constraints derived from PAMELA data are more stringent than the AMS-02 ones. This can be
understood by the fact that below ∼1 TeV, the proton flux measured by PAMELA is larger than
the one reported by AMS-02 by a factor of up to 10%, leading to a larger yield of secondary
antiprotons and thus a smaller room left for the primary component. The proton fluxes reported
by the two experiments become similar above ∼1 TeV and in this regime, the experimental errors
of AMS are much smaller than the PAMELA ones, leading to slightly stronger constraints for
the more recent experiment. In the following of this paper, we consider only the results obtained
using the AMS-02 data since they are more recent and they provide globally more conservative
results.

Gamma rays We now turn to a combined analysis of the 19 confirmed dwarf spheroidal galax-
ies (dSphs) recently observed by Fermi-LAT [170].
We compute a delta-log likelihood for each of the points using the tabulated bin-by-bin likelihoods
released by the Fermi-LAT Collaboration for each target [171] and we exclude points at the 95%
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C.L. This procedure will be described in detail in section 4.3.2. We include statistical uncertainties
on the J-factors of each dwarf spheroidal galaxy by adding an additional J-factor likelihood term,
as prescribed by the Fermi-LAT collaboration in their study. J-factors probe the DM content of
the dSphs and the gamma-ray flux produced by dark matter is proportional to this quantity. It is
defined as the integral of the squared dark matter density along the line of sight:

J =
∫
ΔΩ

∫
l.o.s

ρ2
DM(r(l))dldΩ . (3.9)

Those J-factors were calculated assuming a NFW profile, but previous work showed that the lim-
its calculated with other halo profiles differed only by ∼30%, the strongest difference being for
Burkert halo profile [172]. One of the largest uncertainties on these limits seems to reside in the
choice of the dSphs sample used in the analysis. As pointed out in [170], adding galaxies with
low-significance excesses, such as Reticulum II and Tucana III, can weaken significantly these
limits. Assessing the effects of such uncertainties seems to be very delicate and we will use these
limits only for comparison with the constraints coming from antiprotons.

In addition, we considered the limits given by the HESS Collaboration [44]. As they do not use
the same set of parameter values for the DM halo profiles as ours, we renormalized their limits
following the J-Factors calculated for our different halo profiles NFW, Einasto and Burkert to be
consistent with the rest of our study. The strongest limit being obtained for the NFW profile, we
noticed that it barely reaches the distribution of our points without excluding any.

3.2.2.3 Direct detection

Calculation of constraints The standard method to apply the constraints from direct detec-
tion is to calculate the differential recoil rate dR

dE expected from each neutralino in our sample
of points and compare it to experimental results. This quantity is defined as the number of colli-
sions of a WIMP and a nucleus per unit of target material mass, per unit of time and per unit of
nuclear recoil energy:

dR
dE

= nχ

M

〈
v

dσ
dE

〉
= 2ρχ

mχ

∫
d3vvf (v, t)

dσi

dq2 (q2,v) , (3.10)

where nχ = ρχ/mχ is the number density of WIMPS, with ρχ the local DM mass density; f (v, t)
is the WIMP velocity distribution and dσi

dq2 (q2,v) is the differential WIMP/nucleus cross section,
with q2 = 2ME the momentum exchanged in the scatter. Using the form of the differential cross
section for the most commonly assumed couplings, equation 3.10 can be simplified as

dR
dE

= 1
2mχμ2 σ(q)︸ ︷︷ ︸
Particle physics

ρχη(vmin(E), t)︸ ︷︷ ︸
Astrophysics

, (3.11)

where σ(q) is an effective scattering cross-section and

η(vmin, t)≡
∫

v>vmin

d3v
f (v, t)

v
(3.12)
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is the mean inverse speed. vmin can be written as

vmin =
√

ME
2μ2 , (3.13)

where μ is the reduced mass μ= mχM/(mχ+M). The complete procedure have been implemented
in SuperIso Relic and will be described in chapter 4. At the time of this study, however, these
numerical tools were not finalized and we had to use a more direct approach. Direct detection
experimental collaborations release upper limits on the WIMP-nucleon cross sections with re-
spect to the WIMP mass and it is thus possible to exclude points only from the calculation of the
neutralino scattering cross sections. This approach is limited by the fact that the limits on the
spin-independent (SI) and spin-dependent (SD) cross sections have to be applied independently,
whereas a complete approach would have taken all types of interaction at once and would have
thus led to stronger constraints. In any case, our method remains conservative and we benefit
from the limits directly calculated by the different collaborations, which are difficult to retrieve
exactly.

All the scattering cross sections are calculated using MicrOMEGAs [152, 173]. For the SI con-
straint, however, one cannot compare directly these cross sections to the experimental upper
limits. Indeed, the limits are derived under the assumption that the WIMP-proton and WIMP-
neutron effective couplings f p and fn are equal in the WIMP-nucleus cross section formula

σSI
χ−N = 4μ2

π
[Z fp + (A−Z) fn]2, where A and Z are respectively the nucleon and proton number

in the nucleus. In our sample of points, this approximation is reasonable for Higgsino-like neu-
tralinos, but is not necessarily correct for other neutralino types. However, there is a simple way
to cope with this problem. The experimental WIMP-nucleon limits can be described more gen-
erally in terms of WIMP-nucleus cross section limits, averaged over all the target isotopes, and
renormalized to a WIMP-nucleon limit in the case f p = fn. Consequently, for a given point, the
appropriate quantity to compare with the experimental limit is:

σSI
χ−nucleon(A)=σSI

χ−p

∑
i ηiμ

2
Ai

[Z+ (Ai −Z) fn/ f p]2∑
i ηiμ

2
Ai

A2
i

, (3.14)

where the subscript i stands for the various isotopes present in the experiment and ηi is their
corresponding abundance. These quantities depend on the target nucleus and are, a priori, differ-
ent for xenon and argon. However, in our sample of points, we noticed that the relative difference

δ =
∣∣∣∣σSI

χ−nucleon(X e)−σSI
χ−nucleon(Ar)

σSI
χ−nucleon(X e)

∣∣∣∣ was quite small, verifying δ� 10% (δ� 1% for the great majority

of the points). The limits coming from xenon and argon experiments can then be easily compared,
the XENON1T limit being the strongest one for our points [63].
Concerning the SD cross section limits, such problems do not exist. For the WIMP-neutron cross
section, we apply the limit given by the LUX experiment [70] on our sample of points and for the
WIMP-proton cross section, we use the one given by the PICO-60 experiment [72]. We also tested
the limits given by IceCube [61], using the W+W− channel which is dominant for the wino-like
and Higgsino-like neutralinos, and verified that the points excluded by the IceCube limit were
already excluded by XENON1T or PICO-60.
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In addition, we examine how the uncertainties on the local dark matter density and on the disc
rotation velocity impact these limits.

Local dark matter density All the experimental limits are calculated using the benchmark
value ρ0 = 0.3 GeV/cm3 for the local DM density, but recent studies give a best fit value closer
to 0.4 GeV/cm3 [165, 166, 174]. The uncertainties on the local density value are still quite large,
one of the main sources residing in the knowledge of the baryon density in the galaxy. There may
also be a discrepancy between the value calculated from the study of the motion of nearby stars
and the one calculated from a global fit of stellar dynamics over the galaxy, assuming a spherical
dark matter halo. In our study, we consider that the local DM density lies between 0.2 and 0.6
GeV/cm3 (see [7] for a complete review) and we choose three different values to test the impact of
those uncertainties on the exclusions in our sample of points: ρ0 = 0.2, 0.4 and 0.6 GeV/cm3. By
rescaling the cross section coordinates, we obtain the limits for these three densities.

Velocity distribution Customarily, an isotropic Maxwellian distribution is assumed for the
WIMP velocity distribution f (v), with the galactic disk rotation velocity vrot being the most prob-
able speed. It corresponds to the Standard Halo Model describing the dark matter halo as a
non-rotating isothermal sphere [175, 176]. The canonical value for vrot is 220 km/s but it is be-
lieved that it can range from 200 to 250 km/s [177–179].
This velocity distribution is truncated at the escape velocity vesc at which a WIMP can escape
the galaxy potential well. Its value is subject to large uncertainties, vesc = 500−600 km/s, with
a benchmark value vesc = 544 km/s [180]. However, for WIMP masses mDM > 10 GeV, vmin is
relatively low. The velocity distribution is then integrated over a large range of velocities and
dR/dER is not sensitive to the tail of the distribution. Thus, the uncertainties on vesc should not
impact our analysis.

Other halo models have been proposed, such as the King Model which describes the finite size of
the halo and the gravitational interaction with ordinary matter in a more realistic way [181, 182]
or such as triaxial halo models [183]. In this study, we focus only on the uncertainties related to
the Standard Halo Model, which is the most widely used in the literature.

In order to test the impact of vrot uncertainties, we proceeded to a variable substitution in the
integral of the velocity distribution appearing in the calculation of the differential recoil rate per
unit detector mass (equation 3.10). To perform such a calculation, it was necessary to consider
that vesc ≈ ∞. This approximation induces errors only for low WIMP masses, which are not
concerned by our study. We were then able to rescale the upper limits originally calculated with
vrot = 220 km/s for two other values vrot = 200 and 250 km/s. Basically, taking smaller values for
vrot shifts the limit to the right relative to mDM , and taking larger values shifts it to the left. The
impact of ρ0 and vrot uncertainties on the XENON1T 90% C.L. upper limit is shown in Fig. 3.4.
The uncertainties on vrot within the considered values have a small impact compared to the local
density uncertainties. Moreover, the uncertainties on vrot have a mild influence on the neutralino
type of the excluded points and change the fraction of excluded points by less than 1%. For these
reasons, and for the sake of simplicity, we keep, in the rest of this study, the benchmark value
vrot = 220 km/s and vary only the local dark matter density value.
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Figure 3.4: XENON1T 90% C.L. spin-independent WIMP-nucleon cross section upper limit for

ρ0 = 0.4 GeV/cm3 and vrot = 220 km/s (black plain line). Uncertainties on these values are shown

by varying independently the DM local density (yellow band) and the disc rotation velocity (green

band).

3.2.3 Collider constraints

To the set of points in our analysis we apply constraints from LEP and Tevatron, from flavour
physics, as well as the LHC constraints from the Higgs sector and supersymmetry and monojet
direct searches.

3.2.3.1 LEP and Tevatron constraints

LEP and Tevatron have provided strong constraints on the supersymmetric particle masses [184],
which can be, in some cases, complementary to the constraints from the LHC. We apply to our
set of points the limits summarized in Table 3.3. The limits from the LEP on the mass of the
lightest neutralino will, however, not be considered here as it has been highlighted that they
can be evaded in specific cases [126–129]. As our study is focussed on neutralino dark matter,
we aimed at remaining as conservative as possible. The neutralino mass will nevertheless be
constrained by the light Higgs signal strength measurements, which can lead to stronger limits
than LEP [185–190].

3.2.3.2 Flavour constraints

Flavour constraints are complementary to dark matter and direct SUSY searches. They can probe
in fact higher energy levels as supersymmetric particles appear at loop level in the processes of
interest.

We will focus here on three major decays, namely Bs →μ+μ−, B → Xsγ and Bu → τν which capture
the main constraints in the MSSM.
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Particle Limits Conditions

χ̃0
2 62.4 tanβ< 40

χ̃0
3 99.9 tanβ< 40

χ̃0
4 116 tanβ< 40

χ̃±
1 94 tanβ< 40, mχ̃±

1
−mχ̃0

1
> 5 GeV

ẽR 73

ẽL 107

τ̃1 81.9 mτ̃1 −mχ̃0
1
> 15 GeV

ũR 100 mũR −mχ̃0
1
> 10 GeV

ũL 100 mũL −mχ̃0
1
> 10 GeV

t̃1 95.7 mt̃1 −mχ̃0
1
> 10 GeV

d̃R 100 md̃R
−mχ̃0

1
> 10 GeV

d̃L 100 md̃L
−mχ̃0

1
> 10 GeV

248 mχ̃0
1
< 70 GeV, mb̃1

−mχ̃0
1
> 30 GeV

220 mχ̃0
1
< 80 GeV, mb̃1

−mχ̃0
1
> 30 GeV

b̃1 210 mχ̃0
1
< 100 GeV, mb̃1

−mχ̃0
1
> 30 GeV

200 mχ̃0
1
< 105 GeV, mb̃1

−mχ̃0
1
> 30 GeV

100 mb̃1
−mχ̃0

1
> 5 GeV

g̃ 195

Table 3.3: Constraints on the SUSY particle masses (in GeV) from searches at LEP and the

Tevatron [184].

First, Bs →μ+μ− has a very strong constraining power in the MSSM. Indeed, this rare decay has a
very low Standard Model background, but can receive large scalar and pseudoscalar contributions
in supersymmetric scenarios. As those contributions enhance the branching ratio proportionally
to a factor tan6β/M4

A, small MA parameter regions and large tanβ are strongly constrained [191–
195].

Second, the inclusive decay B → Xsγ receives contributions from charged Higgs-top and chargino-
stop loops, which also restrict the charged Higgs, stop and chargino masses in the large tanβ

regions. As noted in section 2.4.1, the pseudoscalar and charged Higgs masses are connected at
tree level by the relation

M2
H+ = M2

A +M2
W , (3.15)

so that the pseudoscalar masses are also restricted.

Finally, the third transition, Bu → τν is a tree-level leptonic decay which can be mediated by a
W-boson or a charged Higgs. It also restricts the small MH+ and large tanβ region. The value of
the branching ratios of the three transitions is computed with SuperIso v3.7 [196–198], and we
apply the constraints shown in Table 3.4.
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Observable Experiment SM prediction

BR(Bs →μ+μ−)×109 3.0±0.65 [199] 3.54±0.27

BR(B → Xsγ)×104 3.32±0.15 [200] 3.34±0.22

BR(Bu → τντ)×104 1.06±0.19 [200] 0.82±0.29

Table 3.4: Experimental results and the corresponding SM values for the flavour physics observ-

ables used in this work. The experimental data represents the most recent measurements or official

combinations.

Channel Experimental value

h → γγ 1.14±0.19

h →WW 1.09±0.18

h → ZZ 1.29±0.26

h → bb 0.70±0.29

h → ττ 1.11±0.24

Table 3.5: List of the Higgs signal strengths used in this analysis [130].

3.2.3.3 Higgs constraints

Measurements in the Higgs sector can also bring significant constraints in the pMSSM. In this
study, we will apply the constraints from the measurement of the light Higgs signal strength and
from heavy Higgs decay.

Light Higgs signal strength The study of the light Higgs decay constrains in particular the
Higgs mixing angles α and β, and thus the mass of the pseudoscalar. Other MSSM parameters are
also concerned by the constraints, as the Higgs couplings can receive high-order corrections from
the presence of supersymmetric particles. LHC experiments have measured the signal strengths
of different channels of the light Higgs boson, i.e. the product of the production cross sections
times branching ratios. We use these measurements in our analyses, as given in Table 3.5. The
decays h →WW , ZZ,bb,ττ provide direct constraints on the couplings and thus on the Higgs mix-
ing angles. On the other hand, h → γγ is a loop-level decay, in which the main contributions arise
from top, stop, sbottom, chargino and charged Higgs loops [201]. Its measurement is therefore
particularly important to constrain the MSSM.

The Higgs decay branching ratios and widths are computed using ������ ��	
� [202]. The pro-
duction cross sections are calculated using ���� �	
	� [203], ���� ��	�� and ���� ��	�� [204].
The constraints are obtained through a likelihood analysis using the experimental and theoreti-
cal correlations from [130] and [205], respectively. Constraints are applied at the 95% C.L.

Heavy Higgs decay Other relevant searches in the context of dark matter are searches for
heavier Higgs bosons [185, 227–231]. In the limit when MA is large, the light Higgs couplings
are SM-like, and compatible with the current data. The heavier states are therefore expected to
be heavy. Nevertheless, the couplings of the H/A to the b quarks and τ leptons are enhanced
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Analysis Target 8 TeV 13 TeV

2-6 jets + MET g̃, q̃ 20 fb−1 [206] 13.3 fb−1 [207], 36.1 fb−1 [208]

7-11 jets +MET g̃, q̃ 20 fb−1 [206] 18.2 fb−1 [209], 36.1 fb−1 [210]

2-6 jets + 1 lepton + MET g̃, q̃ 20 fb−1 [206] 14.8 fb−1 [211]

2, 3 leptons + MET χ̃0
2, χ̃±

1 , �̃ 20 fb−1 [212] 13.3 fb−1 [213], 36.1 fb−1 [214]

jets + 0 lepton +MET t̃ 20 fb−1 [215] 13.3 fb−1 [216], 36.1 fb−1, [217]

jets + 1 lepton + MET t̃ 20 fb−1 [215] 13.2 fb−1 [218], 36.1 fb−1 [214]

b-jets + 2 leptons + MET t̃ 20 fb−1 [215] 13.3 fb−1 [219], 36.1 fb−1 [220]

2 b-jets + MET b̃, t̃ 20 fb−1 [215] 3.2 fb−1 [221], 36.1 fb−1, [222]

Monojet MET 20.3 fb−1 [223] 3.2 fb−1 [224]

mono-Z,W MET 20.3 fb−1 [225] 3.2 fb−1 [226]

Table 3.6: List of ATLAS searches implemented in this analysis.

by tanβ, so that it is possible to set strong limits in the small MA and large tanβ region when
searching for (pp)bb → H/A → ττ. We use the results of CMS with 12.9 fb−1 [232], and assess
the exclusion by comparing the calculated cross section times branching ratio with the published
tables. We note that it is sensitive to the same region which is probed by the branching ratio of
Bs →μ+μ−.

3.2.3.4 LHC direct search constraints

Direct searches from supersymmetric particles at the LHC provide amongst the most important
constraints on the MSSM parameter space. We consider in our study the LHC searches presented
in Table 3.6. Even if this list is not exhaustive, the most relevant searches for our study are
considered, i.e. the channels with the highest sensitivity which are rather uncorrelated.

SUSY direct searches The SUSY direct searches correspond to final states with at least two
SM particles and a large missing energy, carried by the invisible neutralinos. To assess the sensi-
tivity of the LHC searches at 8 and 13 TeV, we generate inclusive samples of SUSY events with
������ ��	
� [233, 234], using the CTEQ6L1 parton distribution functions [235]. ����� ���

[236] is then used to simulate the detector response and obtain the physics objects of the signal
events. For each of the analyses, the signal selection cuts are applied to the simulated events, and
the SM background events are taken from experimental publications. The CLs method [237] is
used to obtain the 95% confidence level (C.L.) exclusion in presence of background only.
As for the SUSY searches, we adopt the CTEQ6L1 parton distribution functions, hadronization is
performed using PYTHIA 8.150, and detector simulation with DELPHES 3.0. The cuts, selection
efficiencies, acceptances and backgrounds for the 8 and 13 TeV runs are taken from the experi-
mental publications cited in Table 3.6. In addition, as the systematic uncertainties can have an
important effect on these limits [238–240], we account for them by adding a 30% uncertainty to
the cross sections.
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Figure 3.5: Fractions of neutralino 1 types in our scan after imposing only the light Higgs mass

constraint.

Monojets and mono-W , Z Monojet and mono-W , Z searches on the other hand have been de-
signed in order to detect invisible particles in the final states through the detection of a hard
jet emitted by the initial states. The basic idea is to search for a jet with high pT associated to
a large missing ET . The main background for monojet searches stems from Z or W-boson and
a jet, with the Z-boson decaying to neutrinos and the W-boson decaying to leptons which are
missed by the detector. Considering models in which a single mediator relates the dark matter
particles to the SM particles reveals that the LHC can have a competitive or even superior reach
compared to the dark matter detection experiments [241–244]. However, the simple description
of dark matter production at the LHC based on a single mediator is not realistic with regard to
concrete models such as the pMSSM, in which co-annihilations are favoured by the relic density
constraints. Indeed, SUSY particles such as squarks or gluinos can be close in mass to the light-
est neutralino, so that the production of two squarks or gluinos associated to a hard jet can still
be seen as a monojet, because the jets produced in their decays would be soft enough to remain
undetected [239, 245–248]. In addition, several mediators can be involved. As a consequence, the
single mediator limits cannot be recast in the pMSSM in a simple way.
To study the exclusion by the monojet and mono-W , Z searches, we use MadGraph 5 [249] to
compute the full 2 → 3 matrix elements for all the combinations of pp → q̃/ g̃ + q̃/ g̃ + j/W /Z,
pp → �̃+ �̃+ j/W /Z and pp → χ̃+ χ̃+ j/W /Z, where q̃ refers to a squark of any type and gener-
ation, g̃ to the gluino, �̃ to any type of sleptons, χ̃ to any electroweakino. j corresponds to a hard
jet as required for the monojet searches, and W /Z for mono-W , Z searches.

3.3 Results

As a first step, we will impose the dark matter constraints individually on our sample of points
and examine the effect of astrophysical uncertainties. Then, we will study the interplay between
these constraints. Finally, we will combine dark matter and collider constraints and assess the
the impact of astrophysical uncertainties on our exclusions in this context.
A particular care will be taken to identify the nature of the neutralinos that are excluded.
In the following, the neutralino 1 (denoted χ) will be said to be bino-/wino-/Higgsino-like if it is
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composed of 90% of bino-/wino-/Higgsino component, respectively, or mixed state otherwise. In
Fig. 3.5, the composition of our sample of pMSSM points after imposing the light Higgs mass
interval is shown. Bino-like χ are the most represented points in our sample, followed by the
winos and Higgsinos, with an almost equal share of each component. The fraction of mixed states
is negligible.

3.3.1 Relic density constraints

We first consider the relic density constraint. The value of the neutralino relic density is com-
puted with SuperIso Relic v3.4 [132, 133]. In Fig. 3.6, the relic density is shown as a function
of the neutralino 1 mass, for the different types. Bino-like neutralinos 1 have in general large
relic densities, above the Planck measurement. This can be explained by the smaller couplings
of the binos with SM particles, which leads to smaller annihilation cross sections and therefore
larger relic densities. On the other hand, the Higgsino-like χ give smaller relic densities which
are close to the Planck measurements for χ masses around 1.3 TeV. The wino-like χ tend to have
even smaller relic densities, and the Planck line is naturally reached for a mass of 2.7 TeV. The
line at about 90 GeV in the figure corresponds to cross section enhancements through a Z-boson
resonance, which lower the relic density.

Imposing both the upper and lower relic density bounds generally leads to a selection of scenarios
with co-annihilations, for which the mass splitting of the neutralino 1 with the next-to-lightest
supersymmetric particle is small, or of scenarios where χ annihilations are enhanced through
a resonance of the Z-boson or one of the neutral Higgs bosons. This is demonstrated in Fig. 3.7.
The valid points require in general small mass splitting, apart from some spread binos with larger
mass splittings, which have a heavy Higgs boson or Z-boson resonance. For the case of winos, the
small mass splitting is due to a chargino with a mass very close to the χ mass. For the Higgsino
case, both the chargino 1 and the neutralino 2 have masses close to the neutralino 1 mass.
As discussed in Section 3.2.2.1, we consider only the upper bound of the Planck dark matter
density interval, which favours light wino- and Higgsino-like χ, and bino-like χ with strong co-
annihilations.

3.3.2 Indirect detection constraints

3.3.2.1 Constraints from AMS-02 and Fermi-LAT

We consider the constraints from AMS-02 antiproton and Fermi-LAT gamma ray data, which
probe specific dark matter annihilation channels. For both sets of constraints, the most important
parameters are the χ annihilation cross sections into specific channels. Annihilations to WW and
bb̄ are particularly interesting in the context of the pMSSM.
In Fig. 3.8, the total annihilation cross section times velocity 〈σv〉tot is shown as a function of
the neutralino 1 mass, for the different χ types. 〈σv〉tot is the sum of all the σv of the different
channels. The wino- and Higgsino-like neutralino 1 regions form two separate strips. The differ-
ent types of neutralinos 1 have specific main decay channels: binos annihilate mainly into tt̄, bb̄,
and in a lesser extent into Wh, Zh and ττ, Higgsinos into WW and ZZ, and winos into WW ,
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Figure 3.6: Neutralino relic density as a func-

tion of the neutralino 1 mass, for the differ-

ent neutralino types. The central value of the

Planck dark matter density is shown for com-

parison.

Figure 3.7: Points respecting both sides of

the Planck 2015 relic dark matter density

measurement in the mass splitting between

the neutralino and the next lightest super-

symmetric particle and the neutralino mass

parameter plane.

when the decay channels are open. When the above-mentioned channels are closed because of a
small neutralino 1 mass, the χ mostly decays to bb̄ and ττ, and less frequently into cc̄ and ss̄,
independently from their type. As seen earlier, winos more strongly annihilate than the other χ

types, followed by the Higgsinos. The binos, apart from the case of a resonant annihilation, are
more weakly annihilating and are far below the experimental limits.

Figure 3.8: Total annihilation cross section

as a function of the neutralino 1 mass for the

different neutralino types.

Figure 3.9: Lower limits of the points ex-

cluded by Fermi-LAT gamma ray and AMS-

02 antiproton data in the total annihilation

cross section vs. neutralino 1 mass parameter

plane.

In Fig. 3.9, the exclusion by Fermi-LAT and AMS-02 is shown in the 〈σv〉tot vs. neutralino 1 mass
parameter plane. In order to quantify the uncertainties related to indirect detection, we consider
separately the most conservative limits, i.e. obtained using Burkert profile and MED propagation
model, and the most stringent ones, i.e. using Einasto profile and MAX propagation model. The
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Figure 3.10: Total annihilation cross section as a function of the relic density. The vertical dashed

line corresponds to the central value of the Planck dark matter density.

conservative limits lead to the exclusion of neutralinos 1 with masses between 90 and 550 GeV,
which are mainly wino-like. The stringent limits exclude points with χ masses between 0 and 850
GeV. In the small mass region, as well as for masses above 90 GeV, the stringent exclusion limit
is strengthened by one order of magnitude in comparison to the conservative case. The stringent
case excludes large zones of the wino strip, and of the Higgsino one in a lesser extent. AMS-02
alone brings very strong constraints in the stringent case, beyond the Fermi-LAT limits.

3.3.2.2 Connections with relic density

Indirect detection constraints may be considered to be redundant with the relic density constraint.
This is generally true for simplified dark matter models [244], because the relic density is directly
related to the annihilation cross sections. However, in a complete model such as the MSSM, the
value of the relic density is often led by the co-annihilations, especially when both the upper and
lower bounds of the Planck dark matter density measurements are applied. This was already
shown in Fig. 3.7.
Yet, there is a strong complementarity between indirect detection and relic density, as shown in
Fig. 3.10. Considering the gray points, we see an anti-correlated region where the relic density
increases when the annihilation cross section decreases, which is due to the relation between
the relic density and the annihilation cross sections. This region is largely excluded by the upper
Planck bound. The points with small relic density have in general efficient co-annihilations, which
reduces the relic density. While these points are far from being excluded by the Planck upper
bound, they can be probed by the stringent AMS-02 limits obtained using the Einasto profile and
MAX propagation model. This clearly shows the complementarity between indirect detection and
relic density constraints.
In Section 3.2.2.1, we discussed how the relic density constraint can be falsified. One of the pos-
sibilities is that the dark matter density measured by Planck is made only in part of neutralinos,
the rest being made of other types of particles or more exotic objects. In such a case, galactic
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Figure 3.11: Points excluded by Fermi-LAT gamma ray and AMS-02 antiproton data in the total

annihilation cross section vs. neutralino 1 mass parameter plane, where the total annihilation

cross section is rescaled by the relic density. The AMS-02 upper limit with Einasto profile and

MAX propagation model for the bb̄ channel is plotted for comparison.

haloes would also be composed of different types of dark matters. Assuming that the mixture of
dark matters is in the same proportion in galaxies as in the large scale Universe, the neutralino
relic density is smaller than the measured dark matter density, and the dark matter density in
galactic haloes has to be rescaled by the ratio of the neutralino relic density over the dark matter
density, hence impacting the indirect detection limits. This is done in Fig. 3.11, in the total anni-
hilation cross section vs. neutralino 1 mass parameter plane, where the total annihilation cross
section is rescaled by the neutralino relic density over the measured dark matter density. Such
a rescaling strongly weakens the indirect detection limits. Indeed, even using the most stringent
AMS-02 constraints, only a very few points in the low mass region are still excluded, mostly in
the bb̄ channel. The large negative impact of the rescaling is due to the fact that the constraints
from indirect detection scale as the squared density, leading to a strong loss of sensitivity.

3.3.3 Direct detection constraints

3.3.3.1 Constraints from XENON1T, LUX and PICO-60

Contrary to relic density and indirect detection, which mainly depend on the annihilation and co-
annihilation cross sections, direct detection relies on the scattering cross section of neutralino 1
with nucleons. Direct detection is therefore complementary to indirect detection and relic density.

In Fig. 3.12, the generalized spin-independent WIMP-nucleon cross section – which roughly cor-
responds to the χ-xenon scattering cross section normalized to one nucleon, and which applies
to xenon-based experiments – is shown as a function of the neutralino mass, for the different
neutralino 1 types. Higgsinos are in general more strongly interacting than the winos, leading to
larger cross sections. In order to assess the consequences of the uncertainties on the obtained con-
straints, the recent limits of the XENON1T experiment are superimposed, for three values of the
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Figure 3.12: Generalized spin-independent neutralino scattering cross section as a function of the

neutralino mass. The lines show the XENON1T 90% C.L. upper limit for three different values of

the local dark matter density ρ0.

local dark matter density, namely ρ0 = 0.2, 0.4 and 0.6 GeV/cm3. Between the conservative line
corresponding to ρ0 = 0.2 GeV/cm3 and the most stringent limit obtained for ρ0 = 0.6 GeV/cm3,
there is at most a factor 3 difference. While this is a large factor, in the context of pMSSM it
does not change much the excluded region, which contains mainly Higgsino-like neutralinos 1.
Depending on the value of the local DM density, we find that direct detection excludes between
25% and 40% of our points.

In Fig. 3.13 the exclusion by the XENON1T data with ρ0 = 0.4 GeV/cm3 is shown in the (MA, tanβ)
parameter plane. For each bin, the fraction of excluded points is presented. This parameter plane
is of interest since the neutral Higgs bosons can mediate the scattering, with couplings propor-
tional to tanβ. About 100% of the points are excluded in a triangle region starting from the origin
of the plot and up to tanβ= 60 and MA = 600 GeV. A large fraction of the points with larger MA

can also be excluded. For comparison, the exclusion line from the CMS heavy Higgs searches for
H/A → ττ is also shown [232]. While the CMS limit extends beyond the 100% exclusion triangle
and constitutes a well-defined and robust exclusion in this parameter plane, direct detection still
adds complementary constraints for larger MA and smaller tanβ values.

LUX and PICO-60 also provide important constraints on the spin-dependent scattering cross
section with protons and neutrons. This is shown in Fig. 3.14, for ρ0 between 0.2 and 0.6 GeV/cm3.
The distribution of the points is different for the proton and neutron scatterings, because the wino-
neutralino 1 mixing term in the neutralino-quark-squark coupling is proportional to the isospin.
In both cases however, only the most strongly interacting Higgsinos are excluded, and the value
of ρ0 does not affect much the results.

Practically, LUX and PICO-60 spin-dependent constraints are redundant, since both exclude the
same points. The spin-independent XENON1T results give quite stringent constraints, which
exclude most of the points probed by LUX and PICO-60. After imposing the XENON1T con-
straints, the spin-dependent results exclude about 0.5% of the remaining points, with dominantly

58



3.3. RESULTS

Figure 3.13: Fraction of points excluded by direct detection constraints in the (MA, tanβ) parameter

plane. The CMS 13 TeV exclusion line from H/A → ττ searches [232] is also plotted for comparison.

Higgsino-like χ.

3.3.3.2 Connections with relic density

Direct detection constraints are not related to the relic density through annihilation cross sec-
tions, as for indirect detection. They are nevertheless complementary, since they provide con-
straints on different pMSSM parameters.
The same paradigm as for indirect detection can apply: if the relic density is smaller than the
observed dark matter density, it may be because the neutralino is not the sole component of
dark matter, thus the local dark matter density has to be rescaled accordingly to obtain the
local neutralino density. As a consequence, the limits become less constraining, since the effective
scattering cross sections are lowered by a factor proportional to the relic density. In comparison

Figure 3.14: Spin-dependent neutralino scattering cross section with proton (left panel) and with

neutron (right panel) as a function of the neutralino mass. The lines show the LUX and PICO-60

90% C.L. upper limits for three different values of the local dark matter density ρ0.
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Neutralino ρ0 = 0.2 ρ0 = 0.4 ρ0 = 0.6

types GeV/cm3 GeV/cm3 GeV/cm3

No With No With No With

Rescale Rescale Rescale Rescale Rescale Rescale

Binos 33.5% 21.8% 38.8% 27.7% 42.6 % 31.9%

Winos 18.6% 1.7% 25.0% 2.9% 29.4 % 3.7%

Higgsinos 50.2% 12.1% 63.2% 18.1% 71.1 % 22.7%

Mixed 99.5% 80.0% 99.7% 87.0% 99.8 % 89.9%

All 33.5% 8.8% 42.2% 12.1% 47.7 % 14.3%

Table 3.7: Fraction of points, valid after imposing the relic density upper limit, that are excluded

by direct detection limits, for the different neutralino types. The exclusions are set for different

values of the local DM density, which is rescaled or not by the relic density.

with indirect detection, the impact of the rescaling is less pronounced, because the rescaling is
proportional to the dark matter density for direct detection, whereas it is proportional to the
density squared for indirect detection.
In Table 3.7, the fractions of excluded points are given for the different neutralino 1 types, with
rescaling and without rescaling, for ρ0 = 0.2,0.4,0.6 GeV/cm3, after the upper limit of the relic
density is applied. First, in absence of rescaling, even in the most conservative case correspond-
ing to ρ0 = 0.2 GeV/cm3, direct detection imposes strong limits, and one third of the points are
excluded. The Higgsinos are the most affected, followed by the binos and winos. The mixed states
are almost completely excluded by direct detection, but their number is too small to draw statisti-
cally significant conclusions. When increasing the density to ρ0 = 0.6 GeV/cm3, the sensitivity is
enhanced, with about half of the points excluded, and 70% of the Higgsinos. With the relic density
rescaling, the exclusion power decreases strongly, as only 15% of the points remain excluded in
the most favourable case. The exclusion hierarchy is also modified in presence of rescaling, with
the binos being the most excluded neutralinos 1.

3.3.4 Combined dark matter constraints

We have seen that dark matter observables can lead to very strong constraints in the MSSM,
despite the astrophysical uncertainties. Each kind of constraints seems to exclude a preferred
nature of neutralino. The upper bound of dark matter density excludes mostly bino, while indirect
detection excludes mostly winos and direct detection Higgsinos. In the following, we will examine
more closely the interplay between these different constraints. We will focus only on the case
where neutralinos constitute the whole dark matter.
We define three cases in order to estimate the impact of the astrophysical uncertainties:

• CONSERVATIVE: ρ0 = 0.2 GeV/cm3 for direct detection, Burkert dark matter profile and
cosmic ray MED propagation model using AMS-02 data for indirect detection.

• STANDARD: ρ0 = 0.4 GeV/cm3 for direct detection, NFW dark matter profile using the
combined analysis of the 19 confirmed dwarf spheroidal galaxies observed by Fermi-LAT

60



3.3. RESULTS

CONSERVATIVE STANDARD STRINGENT

Figure 3.15: Fraction of pMSSM points excluded by upper bound of the dark matter density, direct

detection and indirect detection constraints.

for indirect detection.

• STRINGENT: ρ0 = 0.6 GeV/cm3 for direct detection, Einasto dark matter profile and cosmic
ray MAX propagation model using AMS-02 data for indirect detection.

In Fig. 3.15, the fraction of pMSSM points initially satisfying the light Higgs mass constraint,
which are excluded by the upper bound of the dark matter density, direct detection and indirect
detection constraints, is shown for the three cases of astrophysical assumptions. The & symbol
corresponds to the exclusive “and”. Points excluded simultaneously by the relic density and in-
direct detection constraints represent less than 1% of the total number of points, and are not
shown.

The relic density constraint excludes about 36% of the points. As already seen, direct detection
constraints are relatively insensitive to the choice of the local density of dark matter, and direct
detection excludes 25% of the points in the conservative case and 35% in the stringent case.
Indirect detection is more sensitive to the choice of profile and propagation model and excludes
less than 20% of the points in the conservative case and 30% in the stringent one. In all cases,
the simultaneous application of the dark matter constraints is very important, and allows us to
strongly reduce the number of valid points, even in the most conservative case.

In Fig. 3.16, the same analysis is performed for the different neutralino types separately. First,
the bino-like neutralinos 1 have in general weaker couplings, leading to large relic densities and
small annihilation and scattering cross sections. Thus, the bino-like points are strongly excluded
by the relic density, slightly probed by direct detection, and negligibly by indirect detection. There-
fore, the choice of the conservative or stringent constraints has a negligible effect, since the exclu-
sion is dominated by the relic density. Second, wino-like neutralinos 1 are dominantly excluded by
indirect detection, followed by direct detection. After these constraints, relic density only affects
a negligible fraction of points, which is why the exclusion by relic density does not appear in the
figure. For the winos, the choice of the conservative or stringent cases strongly affects the results,
leaving 50% of the points valid in the conservative case, and 28% in the stringent case. Again, the
standard case leads to results similar to the stringent case. Third, the Higgsino-like neutralinos
1 are mainly excluded by direct detection, which mildly depends on the astrophysical hypotheses.
Indirect detection also excludes a number of points, even if a large fraction of them is already
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BINO

CONSERVATIVE STANDARD STRINGENT

WINO

CONSERVATIVE STANDARD STRINGENT

HIGGSINO

CONSERVATIVE STANDARD STRINGENT

MIXED

CONSERVATIVE STANDARD STRINGENT

Figure 3.16: Fraction of pMSSM points excluded by the upper bound of the dark matter density,

direct detection and indirect detection constraints for the different neutralino 1 types.
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Figure 3.17: Fractions of neutralino 1 types in our scan after imposing the light Higgs mass limit,

LEP and flavour constraints, and relic density upper bound.

excluded by direct detection. As for the winos, relic density only excludes a negligible fraction of
points after the direct and indirect detection constraints. At the end, 40% of the Higgsinos remain
valid in the conservative case, and 20% in the stringent case. Finally, the mixed-state neutralinos
1 are completely excluded independently from the astrophysical hypotheses, and predominantly
by direct detection.

To summarise this section, dark matter constraints set strong constraints on the pMSSM parame-
ter space. However, while direct detection leads to relatively robust constraints, indirect detection
is more sensitive to the choice of galaxy halo profiles and cosmic ray propagation models.

3.3.5 Collider and Dark Matter constraints

In this section, the complementarity of collider and dark matter constraints will be studied. The
LHC results requires the computation of numerous cross sections, generation of events and detec-
tor simulation, which are computationally heavy and CPU-time consuming. In order to gain CPU
time, we perform the event generation and detector simulation only for model points which re-
spect the light Higgs mass constraint, flavour physics, and LEP and Tevatron constraints, as well
as the upper bound of the relic density. The points satisfying these constraints will be referred to
as “Accepted points” in the following.
In Fig 3.17, we present the type of neutralinos 1 for the accepted points. A comparison with
Fig. 3.5 showing the type of the points satisfying only the light Higgs mass limit, reveals that
most of the binos have been excluded, but that the fraction of winos in comparison with the Hig-
gsinos is unchanged. This is mainly due to the upper bound of the relic density, as explained in
Section 3.3.1. The LEP and flavour constraints do not probe directly the neutralino 1, but can af-
fect scenarios with light wino-like and Higgsino-like χ through the constraints on the charginos
and heavier neutralinos. Nevertheless, the exclusion power of these constraints is limited in com-
parison to the relic density one.
In the Higgs sector, the light Higgs mass constraint favours the decoupling limit where the heavy
Higgs bosons are heavy, and heavy stop masses with maximal mixing [185, 250–252]. Measure-
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Figure 3.18: pMSSM points in the (μ, M2) parameter plane. The accepted parameter points which

are in agreement with the LHC 8 and 13 TeV data from Higgs and direct searches are shown in

gray. The red points are in addition excluded by direct detection, the yellow points by indirect

detection and the orange points by direct and indirect detections simultaneously.

ments of the light Higgs production and decay channels also point towards large heavy Higgs
masses. In particular, the diphoton channel favours heavy charginos, stops and charged Higgs
bosons [185, 186, 253–255]. In addition, light Higgs decays into supersymmetric particles are
rather limited [185, 187–190]. These important limits provide strong constraints in the (μ, M2)
parameter plane. Indeed, both parameters are important for the neutralino and chargino mix-
ings, and μ is also important for the third generation squark mixings. The limits obtained from
the measurements of the light Higgs couplings are complemented by the electroweakino direct
searches at LEP and the LHC. This is illustrated in Fig. 3.18, where the small μ values are
excluded. The complementarity with dark matter constraints is rather clear. Direct detection ex-
cludes points spread over the plane. Indirect constraint severely excludes points with M2 � 600
GeV and |μ|� 150 GeV. One should however note that due to the multi-dimensional parameter
space, there could be points below the coloured regions that still survive the dark matter and
collider constraints.

The heavy Higgs searches, and in particular H/A → ττ searches, impose strong constraints in the
(MA, tanβ) parameter plane which is also relevant for direct detection as seen in Fig. 3.13. In
Fig. 3.19, we superimpose over the points in agreement with the LHC constraints those which
are excluded by direct detection. Similarly to direct detection, H/A → ττ searches probe the large
tanβ and small MA region (corresponding to the empty region in the upper right part in the
figure). We can see from the figure that the exclusion by direct detection is not well defined
and spread. Comparing with Fig. 3.13 reveals that the strongest and well defined exclusion by
direct detection in this plane occurs below the H/A → ττ limit. Both constraints are nevertheless
complementary and allow us to exclude points beyond the large tanβ and small MA region.

As a hadron collider, LHC is more sensitive to strongly interacting particles. In particular, gluinos
and squarks of the first and second generations are amongst the most actively searched particles,
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Figure 3.19: pMSSM points in the (MA, tanβ) parameter plane. The accepted model points which

are in agreement with the LHC 8 and 13 TeV data from Higgs and direct searches are shown in

gray. The black points are excluded by direct detection.

(a) (b)

Figure 3.20: (a) pMSSM points in the (Mχ, Mg̃,q̃) parameter plane. Mg̃,q̃ is the lightest mass among

the gluino and first and second generation squark masses. (b) pMSSM points in the (Mχ, Mt̃1 )

parameter plane. The accepted parameter points which are in agreement with the LHC 8 and 13

TeV data from Higgs and direct searches are shown in gray. The points which in addition agree

with dark matter constraints with conservative astrophysical hypotheses are in blue, and with

stringent hypotheses in red.

and LHC can probe masses as large as a few TeV in the most favourable scenarios. In Fig. 3.20,
the accepted pMSSM points are plotted in the minimum mass amongst the gluino and first and
second generation squark masses vs. neutralino 1 mass plane. We note that gluinos or squarks
as light as a few hundred GeV can still escape LHC searches in a general scenario as the pMSSM.
These points correspond mainly to compressed scenarios [256–259], where one or more supersym-
metric particles have masses close-by, leading to decays with particles or jets in the final state
which can leave the detectors undetected because of their small transverse energies. Dark mat-
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CONSERVATIVE STANDARD STRINGENT

Figure 3.21: Fraction of the pMSSM points satisfying the light Higgs mass, relic density, LEP and

flavour constraints excluded by direct and indirect detections and LHC constraints.

ter searches can be very important in these cases and exclude points which are not probed at the
LHC, as can be seen from the figure. Direct detection probes points spread over the plane. Indi-
rect detection can probe neutralino 1 masses up to 450 GeV in the conservative case, 800 GeV
in the stringent case, independently of the squark and gluino masses. We also see that after the
LHC constraints, light squarks or gluinos of a few hundred GeV in compressed or complicated
scenarios are still allowed, but after the dark matter constraints, they are less numerous and the
surviving points correspond to very small squark/gluino-neutralino 1 mass splittings, and in the
stringent case the squark and gluino masses are pushed beyond 450 GeV. So the complementar-
ity is obvious, as dark matter experiments can probe parameter regions which are not accessible
at the LHC, and vice versa.

Similar result for the lightest stop is presented in Fig 3.20. As for the gluino and squark case,
light stops are still allowed by collider constraints in compressed scenarios, which can still be
probed by dark matter detection experiments. Light stop scenarios which escape LHC detection
are still allowed, but the stop 1 mass is pushed beyond 500 GeV in the conservative case and 600
GeV in the stringent case, after imposing the direct and indirect detection limits.

Finally, the interplay of the LHC and dark matter constraints is presented in a quantitative way
in Fig. 3.21. It can be seen that the LHC has the major role in probing the pMSSM parameter
space, but dark matter detection constraints further probe the parameter space. The combination
of all constraints leads to an exclusion of between 85% and 92% of our sample.

Fig. 3.22 presents a more detailed view of the exclusion for the different neutralino 1 types. In
particular, it reveals that LHC excludes more than 65% of the points independent of the neu-
tralino 1 type. The role of dark matter constraints on the contrary is more type-dependent. As we
showed earlier, binos, Higgsinos and mixed states are more strongly probed by direct detection,
while indirect detection rather excludes winos. And whereas direct detection is mildly sensitive
to the choice of the astrophysical parameters, indirect detection is more sensitive to it.

Finally, in Fig. 3.23, the fraction of neutralino 1 types after imposing all the constraints is shown.
This figure is to be compared with Fig. 3.17, where only LEP, flavour and relic density constraints
were applied. We can see that the final fractions are still similar after applying all constraints,
with a larger proportion of winos, followed by a large proportion of Higgsino, and a small amount
of binos. This shows that the relic density constraint is the most type-selecting constraint. How-
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BINO

CONSERVATIVE STANDARD STRINGENT

WINO

CONSERVATIVE STANDARD STRINGENT

HIGGSINO

CONSERVATIVE STANDARD STRINGENT

MIXED

CONSERVATIVE STANDARD STRINGENT

Figure 3.22: Fraction of pMSSM points satisfying the light Higgs mass, relic density, LEP and

flavour constraints, and excluded by direct and indirect detections and LHC constraints, for the

different neutralino 1 types.
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CONSERVATIVE STANDARD STRINGENT

Figure 3.23: Fractions of neutralino 1 types in our scan after imposing all the constraints (including

only the upper bound for the relic density).

CONSERVATIVE STANDARD STRINGENT

Figure 3.24: Fractions of neutralino 1 types in our scan after imposing all the constraints, including

also the lower relic density limit.

ever, we note that the proportion of winos is much larger in the conservative dark matter case
than in the stringent case.

An important caveat here is in order. The fraction of points has no real statistical meaning, but
rather shows the tendency of the constraints to select certain types. To illustrate this, we show in
Fig. 3.24 the fraction of the types after applying all the constraints, including the Planck lower
bound. In this case, the Higgsinos are now the dominant surviving species, followed by the binos,
and the winos survive only in small proportion. It is interesting to note that in this case, the
choice of conservative or stringent astrophysical hypotheses does not affect much the results.

Finally, it is worth mentioning that great improvements in the sensitivity of the direct and in-
direct detection experiments are expected in the coming years. Concerning direct detection, in
the next few years XENONnT [78] and LZ [79] will push the XENON1T limit by two orders of
magnitude, and within ten years DARWIN [80] will allow us to gain one extra order of magni-
tude. This is illustrated in Fig. 3.25. For comparison, the gray points correspond to a sample of
our points which are in agreement with the current LHC 8 TeV and 13 TeV limits. Practically,
XENONnT/LZ will exclude most of the Higgsino points, and DARWIN will be able to probe a
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Figure 3.25: pMSSM points in the spin-

independent scattering cross section vs. neu-

tralino 1 mass parameter plane. The cur-

rent XENON1T upper limit is superim-

posed together with the prospective limits of

XENONnT/LZ and DARWIN.

Figure 3.26: Total annihilation cross section

as a function of the neutralino 1 mass. The

CTA prospective upper limits are superim-

posed for the Einasto, NFW and Burkert pro-

files.

large part of the wino region. In addition, we have shown that the constraining power of direct
detection is only mildly affected by the choice of the astrophysical assumptions, thus these limits
will provide relatively robust constraints on the pMSSM parameter space. The DARWIN limit
will however be close to the neutrino background, which constitutes a large obstacle to further
improvements. Nevertheless, the remaining points after DARWIN will have mainly wino-like
neutralinos 1, which will be probed by indirect detection.
For indirect detection, the Cherenkov Telescope Array (CTA) [260], dedicated to gamma rays, will
use a Cherenkov imagery technique similar to HESS, VERITAS or MAGIC, and will be able to
probe an energy range between a few tenths of GeV to above 100 TeV. Before 2030, CTA will also
further push the indirect detection limits by observing gamma rays at the center of the Milky
Way, as shown in Fig. 3.26. It is important to remark however, that contrary to the Fermi-LAT
limits, which are obtained from the observations of spheroidal dwarves and which are therefore
less affected by the dark matter profile, since CTA will focus on the galaxy center, it is subject
to strong uncertainties from the dark matter profile. Since the question of the existence of cuspy
profiles is unresolved [261], dark matter density distributions such as NFW or Einasto which
incorporate cuspy profiles, will lead to fundamentally different exclusion limits than a Burkert
profile with a core. This is illustrated in the figure, a Burkert profile will lead to limits which are
two orders of magnitude less constraining than the NFW or Einasto profile. Therefore, CTA will
be even more subject to astrophysical uncertainties, even if we can hope for an improvement of
our knowledge of the galactic center within the next decade.

We will now describe the implementation of direct and indirect dark matter detection in further
details.
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4
NEW EXTENSIONS AND FEATURES IN SUPERISO RELIC

The work on dark matter experimental limits in the MSSM required the development of
numerical tools for the computation of direct and indirect detection constraints. The re-
sulting code is integrated in the public program SuperIso Relic [132, 133, 262]. Several

public codes already feature the calculation of direct and indirect detection observables in su-
persymmetric models, such as micrOmegas [150–152], DarkSUSY [263, 264] or MadDM [265].
However, they are most often used with default parameter sets, neglecting the astrophysical and
nuclear uncertainties related to those constraints. In the DarkBit package [118], various sources
of uncertainties are considered, but this program is most commonly used to perform best-fit calcu-
lations, whereas SuperIso Relic is rather used to test the validity of supersymmetric model points
under experimental constraints. It was therefore useful to design the extensions of SuperIso Relic
for direct and indirect detection as a continuation of our previous work. With this extension, it
is possible to calculate a “conservative”, “standard” or “stringent” constraints, according to the
chosen set of uncertainties, for the latest experimental results of dark matter direct and indirect
searches. This code works for model points in the MSSM and NMSSM with a neutralino LSP. It
takes into account uncertainties from dark matter density and velocity profiles, as well as uncer-
tainties from cosmic-ray propagation. In addition, we considered, the uncertainties on the nuclear
form factors appearing in the calculation of direct detection observables.
The full description of the code can be found in the new SuperIso Relic manual which is submitted
to Comput. Phys. Commun. [262].

4.1 SuperIso Relic

SuperIso Relic is a public program written in C and Fortran for the computation of flavour observ-
ables and the relic density in the MSSM and NMSSM. It is an extension of the program SuperIso
[196–198] which computes, in particular, the Wilson coefficients and physical observables for the
most severely constraining processes in flavour physics, namely B → Xsγ, Bs → μ+μ−, Bu → τν

and for the inclusive and exclusive semileptonic decays, including the observables presenting
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anomalies, namely P
′
5, RK ,K∗ , RD,D∗ . The relic density module integrates the Boltzmann equation

which describes the evolution of the density of the lightest supersymmetric particle. The program
takes into account all annihilation and co-annihilation processes involved in the LSP thermal
freeze-out. By default, this calculation is carried out within the frame of the standard model of
cosmology, but the user also has the possibility of adding a dark source of density and entropy.
The routines for the calculation of the annihilation and co-annihilation amplitudes are integrated
in the SuperIso package. They were generated with a Mathematica [266] script which uses the
LanHEP [267] Lagrangian in FeynArts format, and calls FeynArts and FormCalc [268–271]. The
main routines in SuperIso Relic take in argument a SUSY LesHouches Accord file SLHA1 [272]
or SLHA2 [273] which summarizes in a standardized form the soft-parameter numerical values
of a given point. SLHA files can be generated by dedicated programs such as SOFTSUSY [123],
ISAJET [274], SPheno [275] and SuSpect [276]. The Higgs decay width and branching ratios, rel-
evant for the calculation of the relic density, are computed using HDECAY [202] or FeynHiggs
[277]. A summary of Superiso Relic structure can be found in figure 4.1.
In order to complete the panel of constraints in SuperIso Relic, I implemented routines for dark
matter direct and indirect detection rates for a neutralino LSP. In the following, I will detail this
implementation, focusing more on the phenomenology than on technical details.

4.2 Direct detection

4.2.1 Generalities

The calculation of direct detection constraints requires the computation of the differential recoil
rate per unit of target material mass dR

dE which was described in section 3.2.2.3. We recall here
the formula:

dR
dE

= 1
2mχμ2 σ(q)︸ ︷︷ ︸
Particle physics

ρχη(vmin(E), t)︸ ︷︷ ︸
Astrophysics

, (4.1)

where μ is the reduced neutralino-nucleus mass, σ(q) is an effective scattering cross section, ρχ

the local DM density and η(vmin(E), t) is the mean DM inverse speed.
In the general case where the target material is composed of more than one isotope, the total dif-
ferential recoil rate is the sum of each isotope contribution weighted by the isotope mass fraction.

dR
dE

=∑
i
ξi

dRi

dE
(4.2)

One can note that the first term on the right side of equation 4.1, in which appears the effective
cross section, depends only on the particle model which is used. The main source of uncertainties
in this term will come from nuclear form factors. The second term involves only astrophysical
observables, namely dark matter local density and velocity profile. The calculation of each term
will, therefore, be done separately.

The calculation of η(vmin, t) is performed with a Simpson method. The default velocity profile is
the standard halo model with vrot = 220±20 km/s, vesc = 544±50 km/s and ρχ = 0.4±0.2 GeV/cm3.
It is possible to calculate a “conservative”, “standard”, or “stringent” constraint in relation with
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Figure 4.1: SuperIso Relic structure
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the uncertainties of these three parameters. The effect of those uncertainties on XENON1T upper
limit was already presented in chapter 3 (figure 3.4). The results were obtained by performing a
variable substitution in equation 3.11. Here, a full computation will be presented. Results remain
similar between the two methods, however it is possible in the new implementation to define
another model of halo, beyond the standard model, which makes it much more powerful.
We will now focus only on the calculation of the effective cross section σi(q) and on its related
uncertainties.

4.2.2 Scattering cross sections

The effective WIMP/nucleus scattering cross section is commonly decomposed into a spin-dependent
and spin-independent component σi(q)=σSI

i (q)+σSD
i (q). Each component is the subject of a spe-

cial treatment, but both need the calculation of effective neutralino-quark couplings which will
be detailed, in the MSSM, in subsection 4.2.2.2.

4.2.2.1 SI and SD cross sections

The spin-independent term, in the case of a target nucleus composed of Z protons and (A−Z)
neutrons, can be written as:

σSI
i (q)= 4μ2

π
F2

SI (q)
[
Z× ASI

p + (A−Z)× ASI
n

]2
(4.3)

where FSI is a nuclear form factor which probes the nucleon content of the nucleus and ASI
p , ASI

n

are the proton/WIMP and neutron/WIMP effective scattering amplitudes. These amplitudes can
be calculated from the WIMP/quark effective couplings λSI

q weighted by the quark form factors.

ASI
p,n = ∑

q=u,d,s
f p,n

q λSI
q . (4.4)

The quark form factors f p,n
q probe the mass content of the quarks in the nucleons:

f N
q = mq

MN

〈
N|ΨqΨq|N

〉
. (4.5)

As for the spin-dependent counterpart, the effective cross section can be written as:

σSD
i (q)= 16μ2

2J+1
S(q) , (4.6)

where J is the the total spin of the nucleus and

S(q)= a2
0 S00(q)+a2

1 S11(q)+a0 a1 S01(q) . (4.7)

S00, S01 and S11 are structure factors which depend on the nature of the target isotope and a0

and a1 are defined as
a0 = ASD

p + ASD
n a1 = ASD

p − ASD
n , (4.8)
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where ASD
p,n are the WIMP/proton or neutron spin-dependent scattering amplitudes. In the same

way as for the spin-independent amplitude, ASD
p,n are calculated as the sum of the WIMP/quark

SD effective couplings λSD
q , weighted by quark form factors probing the spin content of the quarks

in the nucleons Δqp,n:

ASD
p,n = ∑

q=u,d,s
Δqp,nλSD

q . (4.9)

Δqp,n is defined as:

ΔqN = 1
2sμ

〈
N|Ψqγμγ

5Ψq|N
〉

, (4.10)

where sμ is the nucleon spin.

4.2.2.2 Neutralino/quark effective couplings

An important step in the calculation of the scattering cross sections consists in computing the ef-
fective couplings λSI

q and λSD
q . This calculation could be done automatically from any Lagrangian.

However, this method requires to separate the spin-dependent and spin-independent terms in
the Lagrangian and then to generate the respective scattering amplitudes. Such a process neces-
sitates a considerable modification of the way the amplitudes are generated in SuperIso Relic,
which is currently under development. For the moment, we preferred the implementation of ex-
plicit analytical formulae for the calculation of the SI and SD effective couplings in the (N)MSSM
based on the work by Drees & Nojiri [278].

The neutralino interacts with quarks at tree level by the exchange of CP-even Higgs bosons, Z
bosons or squarks, according to the diagrams in figure 2.6. The neutralino interactions with these
intermediate particles can be found in the following Lagrangians:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

LχχZ = −1
4

g
cosθW

(|N13|2 −|N14|2
)
χγμγ5χZμ

LχχH = g
2

(N12 − tanθW N11)
[
(cosαN13 − sinαN14)H0 − (sinαN13 + cosαN14)h0]χ(1+γ5

2

)
χ+h.c.

Lχqq̃ = ∑
i

2∑
r=1

qi r(ai r +bi rγ
5)χq̃i r +h.c.

(4.11)

where g is the SU(2) gauge coupling, θW the weak mixing angle and N is the neutralino mixing
matrix. In the last Lagrangian, the subscript i stands for the type of quark i = u, d, c, s, t, b and
r = 1, 2 refers to the two squarks related to a given quark. The coupling constants ai r and bi r are
calculated with

ai1 =−1
2
[
cosθqi

(
Xi +Zq

i
)+ sinθqi

(
Yi +Zq

i
)]

bi1 =−1
2
[
cosθqi

(
Xi −Zq

i
)+ sinθqi

(
Yi −Zq

i
)] (4.12)
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where

Xi = −g
�

2
[
t3

i N12 + (yi/2)tanθW N11
]

Yi = g
�

2 qiN11tanθW

Zu
i = g�

2

mu iN∗
14

MW sinβ
Zd

i = g�
2

md iN∗
13

MW cosβ
.

(4.13)

Here, t3
i and yi are the quark weak isospin and hypercharge respectively and θq, i is the squark

mixing angle. In order to obtain ai2 and bi2, one only has to replace cosθqi by −sinθqi and sinθqi

by cosθqi in equations 4.12.

In the non-relativistic limit, the solution of the Dirac equation takes the form Ψ=
(
ϕ

0

)
where ϕ is

a two-component spinor field. Using Dirac representation for γ matrices:

γ0 =
(
1 0
0 −1

)
γi =

(
0 σi

−σi 0

)
γ5 =

(
0 1
1 0

)
(4.14)

one can directly find that terms in Ψγ5Ψ vanish. Moreover, the terms in ΨγμΨ and ΨΨ can be
reduced to a scalar (spin-independent) component ϕ†ϕ while the terms in Ψγμγ5Ψ and ΨσμνΨ

yield the vector (spin-dependent) interactions ϕ†σiϕ. Furthermore, as the neutralino is a Majo-
rana particle, the terms χγμχ and χσμ,νχ also vanish.
The terms of the supersymmetric Lagrangian related to neutralino-quark scattering can thus
be rewritten into an effective four-fermion Lagrangian composed of a spin-dependent (SD) and
spin-independent (SI) part.

Leff =
∑

i
[diχγ

μγ5χqiγμγ
5qi︸ ︷︷ ︸

SD

+ f iχχqi qi + giχγ
μ∂νχ

[
qγμ∂νq−∂νqγμq

]︸ ︷︷ ︸
SI

] (4.15)

The exchange of a CP-even Higgs yields straightforwardly a spin-independent term in this La-
grangian while the exchange of a Z boson yields a spin-dependent term. Concerning the exchange
of squarks in the s or t-channel, a Fierz reordering of the gamma matrices is needed in order to
separate the SI and SD terms.
The coupling constants di, f i and gi read (from Drees & Nojiri [278]):

di = 1
4

( ∑
r=1,2

a2
i r +b2

i r

m2
q̃i r

− (mχ+mqi )2

)
− g2

8M2
W

(|N14|2 −|N13|2
)
t3

i (4.16)

f i = −1
4

( ∑
r=1,2

a2
i r −b2

i r

m2
q̃i r

− (mχ+mqi )2

)
+mqi

⎛⎝ ch0
χ ch0

qi

m2
h0

+
cH0
χ cH0

qi

m2
H0

⎞⎠ (4.17)

gi = −1
4

∑
r=1,2

a2
i r +b2

i r[
m2

q̃i r
− (mχ+mqi )2

]2 (4.18)

where ch0,H0

χ , ch0,H0

q are terms defining the couplings of the neutralino and quarks with the CP-
even Higgs bosons.
At leading order, λSD

i = di and λSI
i = f i. The term proportional to gi in the effective Lagrangian is

quadratically suppressed when the squark masses are large enough. However, in the specific case
where the squark masses are close to the neutralino mass, this term needs full treatment. The
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Figure 4.2: Loop diagrams involved in the spin-independent scattering amplitude

current qγμ∂νq−∂νqγμq can, in fact, be decomposed into a scalar and a twist-2 operator. The pro-
cedure to treat the twist-2 operator is explicitly described in Drees & Nojiri and was integrated
in the code.

4.2.2.3 QCD and SUSY-QCD corrections

Additional higher-order corrections were implemented for the spin-independent amplitude. The
neutralino can indeed interact with the gluon content of the nucleons via the diagrams including
heavy quark or squark loops described in figure 4.2.
At first approximation, these diagrams can be treated as effective interactions between the neu-
tralino and the heavy quarks and squarks, corrected by an appropriate form factor fQ related to
the gluon content of the nucleon. For heavy quarks, this form factor depends simply on the sum
of the light quark form factors:

f p,n
Q = 2

27

(
1− ∑

q=u,d,s
f p,n

q

)
(4.19)

However, this form factor is enhanced in the case of a Higgs boson exchange (diagrams (a)
and (b) in figure 4.2) due to QCD corrections. Diagram (a) requires to be corrected by a factor(
1+ 11αs(mQ )

4π

)
while diagram (b) has a corrective factor of

(
1+ 25αs(mQ̃ )

6π

)
[279], where αs is the

strong coupling constant. Considering box diagrams (c) and (d), this kind of treatment is only
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valid when m2
q̃ � (mq +mχ)2, which is not necessarily true for top quarks. In more general cases,

the box diagrams require a full calculation. Therefore, the loop integrals calculated in Drees &
Nojiri for box diagrams were also implemented.

Finally, the bottom quark mass may receive significant correction from gluino-squark loop in
SUSY scenarios. While down-type quarks couple normally only to the Higgs doublet Hd, this
correction allows also a small coupling between the b-quark and Hu. This SUSY-QCD correction
modifies the coupling of the b-quark to CP-even Higgs as described in [279]:

ch0

b = g
2MW

[
−mSM

b cos(α−β)+mMSSM
b sin(α−β) tanβ

]
, (4.20)

cH0

b = g
2MW

[
mSM

b sin(α−β)+mMSSM
b cos(α−β) tanβ

]
. (4.21)

Using the pMSSM sample of points described in section 3.2.1, we compared the neutralino-
nucleon amplitudes obtained with my code to the ones calculated with micrOMEGAs and Dark-
SUSY and found a good agreement, up to the order of the percent.

The implementation of the neutralino-nucleon scattering amplitudes in the NMSSM only re-
quired a small modification of the Higgs couplings, as the additional CP-even Higgs also par-
ticipates to the scattering process. These couplings were calculated using FormCalc and are pre-
sented in Appendix B.

4.2.3 Uncertainties on the nucleon and nuclear form factors

The nucleon and nuclear form factors appearing in the calculation of the differential recoil rate
suffer, in fact, from significant uncertainties. Depending on the type of target nuclei, this will
impact differently the amount of expected nuclear recoil events. For this reason, I calculated the
“conservative”, “standard” and “stringent” expected number of events μ for our pMSSM sample of
points, in the case of a xenon detector (XENON1T) and a fluorine detector (PICO60). μ is defined
by

μ= MT
∫∞

0
dE φ(E)

dR
dE

(E) , (4.22)

where M is the total of target material, T is the time of exposure and φ(E) is the efficiency of the
detector. Then, I studied the relative difference between the stringent and conservative case

η= μstringent −μconservative

μstandard
. (4.23)

4.2.3.1 Nucleon form factors

Spin-independent interaction:
Starting with the spin-independent nucleon form factors, f p,nu, f p,nd and f p,ns can be cal-

culated from only two parameters namely the light and strange quark contents of the nucleon,
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defined as

σl ≡
mu +md

2
〈N|uu+dd|N〉 , (4.24)

σs ≡ ms〈N|ss|N〉 . (4.25)

From these quantities, one can deduce:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

f p
d = 1

mp

2σl
mu
md

(1+α)
f n
d =mp

mn
f p
d

f p
u =αmu

md
f p
d f n

u =mp

mn
f p
u

f p
s = σs

mp
f n
s = σs

mn

(4.26)

where α is defined as

α=
〈
N|uu|〉〈
N|dd|〉 = 2z− (z−1)y

2+ (z−1)y
, (4.27)

with y= 1+ mu
md

ms
md

σs
σl

and

z =
〈
N|uu|N〉−〈N|ss|N〉〈
N|dd|N〉−〈N|ss|N〉 . (4.28)

The light quark content of the nucleons is known from lattice QCD results [280–283] and from
the analysis of pion-nucleon scattering [284–286]. As for the strange content of the nucleons, it
is deduced from lattice QCD calculations [287]. We take the range of values of σl , σs and z from
[288]:

σl = 46±11 MeV , (4.29)

σs = 35±16 MeV , (4.30)

z = 1.5±0.5 (4.31)

We calculate the conservative, standard and stringent expected number of events for XENON1T
and PICO60 experiments for our pMSSM sample of points, using a Powell method to minimize
or maximize the SI scattering cross section according to σl and σs uncertainties. The results are
shown in figure 4.3. The relative uncertainty is, in most cases, negligible for PICO60 experiment,
which is more sensitive to spin-dependent interactions. However, the relative uncertainty for
XENON1T is around 27%. This effect seems to be independent from the nature of the neutralino.

Spin-dependent interactions The nucleon SD form factors Δ(N)
q , can be computed from the

combinations of two parameters:

a3 = Δ
(p)
u −Δ

(p)
d , (4.32)

a8 = Δ
(p)
u +Δ

(p)
d −2Δ(p)

s , (4.33)
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Figure 4.3: Relative uncertainty on the number of expected events for XENON1T and PICO60

experiments, in relation with the uncertainties on nucleon SI form factors.

and Δ
(p)
s itself. a3 is known from neutron β decay measurements a3 = 1.2723±0.0023 [289] and

a8 = 0.585±0.023 from hyperon β decay results [290]. The uncertainties on these two parameters
are rather small compared to the error on Δ

(p)
s =−0.09±0.03, which is deduced from measurement

of the spin-dependent structure function of the deuteron from the COMPASS experiment [291].
Results on the relative uncertainty of the number of expected events are shown in figure 4.4. The
uncertainties are globally negligible, especially for XENON1T. For PICO60, most of the points
have a relative uncertainty of only 12 %.

Figure 4.4: Relative uncertainty on the number of expected events for XENON1T and PICO60

experiments, in relation with the uncertainties on nucleon SD form factors.
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4.2.3.2 Nuclear structure factors

Spin-independent interactions The SI form factor is essentially a Fourier transform of the
mass distribution of the nucleus. A good approximation is the Helm form factor [292, 293]:

F(q)= 3e−q2s2/2 sin(qrn)− qrn cos(qrn)
(qrn)3

, (4.34)

where s � 0.9 fm and r2
n = c2 + 7

3π
2a2 −5s2 is an effective nuclear radius with a � 0.52 fm and

c � 1.23A1/3 −0.60 fm. The uncertainties on the Helm form factors are expected to be rather low
at small momentum exchange. However, the user may define its own SI form factor if desired.

Spin-dependent interactions Large uncertainties on S01 and S11 structure factors exist from
long-range two-body currents due to pion exchange [294]. There is a correlation between S01 and
S11 errors, so it is a priori not accurate to take the lower and upper bounds of S01 and S11 to
assess the uncertainties on S. However, after a discussion with Javier Menéndez, co-author of
the paper, we agreed that this method would be quite accurate in most cases and would in any
cases just overestimate the uncertainties on S(q), so that we would stay conservative.
The uncertainties are especially relevant for isospin violating models, since S01 and S11 are pro-
portional to ASD

p − ASD
n . For XENON1T, the impact of those uncertainties are found to be negli-

gible. However, the uncertainties may be significant for PICO60, in particular for Higgsino-like
neutralinos (see figure 4.5). Indeed, the relative uncertainty on the expected number of events
for higgsino-like neutralinos is around 42 %. This can be easily explained since the effective SD
neutralino-quark coupling through a z boson exchange is proportional to the quark weak isospin
t3 and to the difference of the Higgsino mixing matrix elements |N14|2 −|N13|2.

Figure 4.5: Relative uncertainty on the number of expected events for PICO60 experiments, in

relation with the uncertainties on nuclear SD structure factors.

While the effects of all those uncertainties, considered altogether, may seem negligible in average
when performing a scan over SUSY parameters, they may in fact be significant when studying a
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given point. One should then preferably apply the conservative limits depending on the type of
study.

4.2.4 Experimental limits

We present finally the constraints from experimental results. The analyses may vary significantly
from an experiment to another. For instance, some collaborations chose to subtract the back-
ground noise from their data. This method necessitates to know extremely well the background
spectrum, but is meant to draw severe constraints. However, the experiments of interest for us
have not yet acquired a precise enough knowledge of their background. It is, nevertheless, pos-
sible to calculate good constraints without knowing the expected background. The most simple
method is to use a Poisson log-likelihood defined by

L
(
μ|No

)= (b+μ)No e−(b+μ)

No!
(4.35)

where μ is the total expected number of events from WIMP-nucleus scattering (equation4.22),
No is the number of observed events and b is the expected background. We marginalize over b by
chosing its value according to: {

b = No −μ if No >μ

b = 0 otherwise
(4.36)

A point will be excluded at 90% C.L. if the difference of its log-likelihoods respects

logL (μ= 0)− logL (μ)> 2.71
2

(4.37)

This method, however, does not use the spectral information of the events. In the case where at
least one event has been observed, it can be useful to use a more constraining method called the
maximum gap [295]. If No events are observed at recoil energies E1, E2, ..., ENo , we divide the
energy range over which the detector is sensitive into No +1 intervals [Ethreshold,E1], [E2,E1],...,[
ENo−1,ENo

]
,
[
ENo ,Emax

]
and we calculate the expected number of events in each interval.

xi = MT
∫Ei+1

Ei

φ(E)
dR
dE

dE (4.38)

Accordingly to the way these intervals are built, no events are observed in each of them.
The maximum gap is defined as the interval where xi = x is maximum. x is proportional to the
neutralino-nucleon cross-section, therefore for a strong coupling between the neutralino and or-
dinary matter, x may be very large while no event has been observed in this particular interval.
Thus, if x is too large, the point can be excluded.
We define C0, the probability of the maximum gap size being smaller than a particular value of x.
This quantity depends only on x and on the total number of expected events μ:

C0(x,μ)=
m∑

k=0

(kx−μ)ke−kx

k!

(
1+ k

μ−kx

)
(4.39)

where m is the greatest integer ≤μ/x. A point will be excluded at 90% C.L. when C0 > 0.9.
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Figure 4.6: 90% C.L. spin-independent up-

per limit for XENON1T (red), PANDAX-2

(blue) and DARWIN (green). Official limits

published by the collaborations are shown in

dashed lines while the limits calculated from

this work are in solid lines.

Figure 4.7: 90% C.L. spin-dependent upper

limit for PICO60. Official limit published by

the collaboration is shown in dashed lines

while the limit calculated from this work is in

solid line.

We implemented the constraints from the latest results of XENON1T, PANDAX-2 and PICO60,
as well as the prospective limit at 200 t×year of DARWIN. No events were observed during the
time of exposure of these experiments, except for PANDAX-2 who observed one event during RUN
9. However, the spectral information of this event is not publicly available. For this reason, we
apply a Poisson log-likelihood method for all experiments.
The efficiencies are taken from the GAMBIT package DDCalc [118]. They were calculated using
the TPCMC monte carlo [296] to model the detector response. TPCMC is Christopher Savage’s
private code which relies on NEST [297–299] for modeling the microphysics of a recoiling xenon
atom.

The SI limits are shown in figure 4.6 for XENON1T, PANDAX-2 and DARWIN, while the SD
limit for PICO 60 is shown in figure 4.6. These limits were obtained with the standard parameter
values of the dark matter halo ρχ = 0.3 GeV/cm3, vrot = 220 km/s and vesc = 544 km/s, except for
DARWIN prospective limit. In this last case, the constraints were marginalized over the astro-
physical parameters and a conservative recoil energy threshold of 6.6 keV has been applied in
order to reproduce the analysis of the collaboration.

4.3 Indirect detection

We will now turn to the calculation of the constraints from AMS-02 antiproton and Fermi-LAT
gamma-ray data. These two types of constraint are derived from different kinds of analyses. How-
ever, they both require the calculation of the antiproton (or gamma-ray) flux produced from one
dark matter annihilation. These two fluxes at production are computed following the same proce-
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dure described below.

4.3.1 Fluxes at production

Dark matter annihilates into pairs of Standard Model particles which consecutively hadronize
into high-energetic cosmic rays. In our case, we focus on the hadronization into antiprotons and
gamma rays. The flux at production of antiprotons or gamma rays can be expressed as the sum
over dark matter annihilation channels χχ→ p3 p4 of the antiproton (γ-ray) flux resulting from
the hadronization of particles p3 and p4 with an energy of Ep3 and Ep4 respectively, weighted by
the channel branching ratio:

dNprod

dK
(K)= ∑

χχ→p3 p4

BR(χχ→ p3 p4)
(dNp3

dK
(Ep3 ,K)+ dNp4

dK
(Ep4 ,K)

)
, (4.40)

where K is the kinetic energy of antiprotons (γ rays).

Noting that the center of mass energy of dark matter annihilation processes is
�

s = 2mχ, the
energies Ep3 and Ep4 can be calculated from energy and momentum conservation:

⎧⎨⎩Ep3 +Ep4 =
�

s ,
−→p3 +−→p4 =−→

0 ,
(4.41)

which gives ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ep3 =

�
s

2
+ M2

3 −M2
4

2
�

s
,

Ep4 =
�

s
2

+ M2
4 −M2

3

2
�

s
,

(4.42)

where M3 and M4 are the outgoing particle masses. In the case M3 = M4, we retrieve the simple
relation Ep3 = Ep4 =

�
s

2 = mχ.

One can directly generate the spectra dNp
dK (Ep,k) using PYTHIA [233, 234]. This work was done

in the PPPC4DMID [153, 300] in which one can find tabulated spectra
dNPPPC4DMID

χχ→pp
dK (mχ = Ep,K)

giving the flux of antiprotons (γ rays) produced by one annihilation of dark matter particles of a
given mass mχ annihilating via one of the following channels:

χχ→ e+e−, μ+μ−,τ+τ−, qq, cc, bb, , tt, W+W−, gg, γγ, νeνe, νμνμ, ντντ ,

where q stands for light quarks u, d, s.
These channels do not cover all the possible annihilation processes in the MSSM, so they cannot
be used directly. However, it is possible to deduce the fluxes produced by the hadronization of a
SM particle p with energy Ep from these tabulated spectra.

dNp

dK
(Ep,k)= 1

2

dNPPPC4DMID
χχ→pp

dK
(mχ = Ep,K) . (4.43)
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The spectra for the annihilation into light SM Higgs bosons of mass 125 GeV are also pro-
vided, however Higgs branching ratios may suffer from significant corrections in the MSSM. The
hadronization spectra of the lightest Higgs boson is therefore re-calculated using the branching
ratios computed with HDECAY [202] or FeynHiggs [277]

dNh

dK
(Eh,K)= ∑

h→p3 p4

BR(h → p3 p4)
(dNp3

dK
(Ep3 ,K)+ dNp4

dK
(Ep4 ,K)

)
, (4.44)

where Ep3 and Ep4 are calculated from equation 4.42 with
�

s = Eh. The hadronization spectra
of heavier Higgs bosons are then calculated in a similar way.

Finally, for the calculation of the neutralino annihilation branching ratios and cross section in
the MSSM and NMSSM, we use the routines computing the amplitudes of the annihilations
processes of the lightest neutralino into pairs of SM particles χχ → p3 p4. These routines were
already present in SuperIso Relic package, as they were generated, in the first place, for the
calculation of the relic density.
For a Majorana dark matter particle, at small velocity limit, the annihilation cross sections can
easily be calculated from these amplitudes, following :

〈σv〉χχ→p3 p4 =
|A |2χχ→p3 p4

128πm2
χ

[
1− M2

3 +M2
4

2m2
χ

+ (M2
3 −M2

4)2

16m4
χ

] 1
2

. (4.45)

These cross sections were compared to the ones calculated with micrOMEGAs. A very good agree-
ment was found between the two programs when all the mass parameters were set to the same
values. We notice, however, that the calculation of the amplitudes are quite sensitive to the value
of the electroweak boson masses and of the Weinberg angle.

4.3.2 Constraints from Fermi-LAT dwarf spheroïdal galaxies

We base our analysis of Fermi-LAT dwarf spheroïdal galaxies (dSphs) on [170]. Fermi-LAT collab-
oration performs a binned Poisson maximum-likelihood analysis in order to deduce dark matter
constraints. The energy range is seperated into 24 bins, logarithmically spaced from 500 MeV to
500 GeV. Tabulated log-likelihoods are provided by the collaboration for each dSph and energy
bin [171]. These tables allow us to estimate the log-likelihood L i

j for a dSph i and energy bin j
as a function of the gamma-ray flux produced by dark matter annihilation.
The flux produced by the dark matter halo of a dSph i in the energy bin

[
E j

min,E j
max

]
is calculated

as

Φi
j =

1
4π

〈σv〉
2m2

DM
× Ji ×

∫E j
max

E j
min

(dNprod

dEγ

)
channel

dEγ , (4.46)

where dNprod
dEγ

is the gamma-ray flux at production calculated as in subsection 4.3.1 and Ji is the

J-factor of the dSph defined as J =∫ΔΩ∫l.o.sρ
2
DM(r(l))dldΩ with ΔΩ the solid angle under which

is seen the dSph. The J-factor of each dSph is either deduced from their observed kinematics or,
when no measurements are available, from an empirical law which states that the J-factor scales
as the inverse square of the distance of the dSph.
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d.o.f.

Confidence

level 1σ 80% 90% 95% 2σ 99% 3σ 99.9% 4σ 5σ

1 1 1.64 2.71 3.84 4.00 6.63 9.0 10.83 16.00 25.00

2 2.30 3.22 4.61 5.99 6.18 9.21 11.83 13.82 19.33 28.74

3 3.53 4.64 6.25 7.8 18.02 11.34 14.16 16.27 22.06 31.81

4 4.72 5.99 7.78 9.49 9.72 13.28 16.25 18.47 24.50 34.56

5 5.89 7.29 9.24 11.07 11.31 15.09 18.21 20.52 26.77 37.09

Table 4.1: χ2 distribution table

In order to calculate the log-likelihood for a given dSph, we sum the log-likelihoods of every energy
bins. Then, we add a corrective term to take into account the uncertainties on the J-factor:

L i(Ji)=
∑

j
L i

j (Ji)−
(
log10(Ji)− log10(Jobs, i)

)2
2σ2

i
, (4.47)

where Ji is the true value of the J-factor, considered as a nuisance parameter, and Jobs, i is the
measured J-factor with error σi. For each dSph, a maximum log-likelihood is then calculated ac-
cording to the nuisance parameters. Finally, we sum the maximum log-likelihood of every dSphs.

L =∑
i

max
Ji

L i(Ji) (4.48)

The statistical test we use to draw constraints on dark matter is then calculated by subtracting
the log-likelihood in the case where no dark matter is assumed:

TS= 2(LDM −LnoDM) . (4.49)

This quantity follows a normal distribution and we will exclude points with TS < χ2
0, where χ2

0 is
a critical value which depends on the desired confidence level and on the number of degree of free-
dom. These critical values are listed in table 4.1. We chose the number of degree of freedom (d.o.f.)
as the number of annihilation channels which contribute at least to 1% of the total annihilation
cross section.
As already mentioned, the J-factor of some dSphs are calculated using an empirical relation. In
order to assess the uncertainties on the log J-factor, we use 3 different values of σi = 0.4, 0.6 or
0.8 dex for the “stringent”, “standard” and “conservative” options.
In addition, three different samples of dSphs are defined in Fermi-LAT analysis: a "conservative",
a "nominal" and an "inclusive" sample, depending on the ambiguity of the kinematics of the
galaxies. The "conservative" sample does not necessarily leads to a weaker limit compared to
the "inclusive" one, as some dSphs in the "nominal" and "inclusive" samples show slight but
non-significant excesses. Therefore, the delta log-likelihood is calculated for each sample. Our
“conservative” option use the largest delta log-likelihood, the “standard” option, the second largest
and the “stringent” option, the smallest.
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Figure 4.8: Model of propagation: the galactic medium is a thin disk of radius 20 kpc and cosmic

rays diffuse within a cylinder of half-height L.

4.3.3 Constraints from AMS-02 antiprotons

Contrary to gamma rays, antiprotons are diffused by turbulent magnetic fields in the galaxy.
Therefore, it is necessary to describe the propagation of cosmic rays in the galactic medium in
order to deduce the antiproton flux reaching Earth. To this end, I integrated in SuperIso Relic, a
code developed by Pierre Salati and Mathieu Boudaud, which is detailed in [154]. The propaga-
tion model used in this code is shortly described below. We use a two-zone diffusion model where
the galactic medium is a thin disk of R = 20 kpc radius and cosmic rays are diffused in a cylinder
of half-height L = and radius R (see figure 4.8).
The antiproton spectrum respects the differential equation of propagation:

∂ f
∂t

−K (K)·∇2 f + ∂

∂z
{sign(z) f Vconv}+ ∂

∂E

{
b(K ,�x) f −KEE(K)

∂ f
∂E

}
=Q , (4.50)

where f = dN
dK (r, z, E) is the antiproton spectrum at radius r and height z . We assume cylindrical

symmetry, which allows us to decompose f into Bessel transforms

f (r, z,E)=
+∞∑
i=1

Fi(z,E) J0 (αi r/R) . (4.51)

J0 is the Bessel function of zeroth-order and αi its ith zero, so that f (r = R, z,E)= 0. This method
allows us to solve semi-analytically the equation of transport, which reduces significantly com-
putation time compared to programs which adopt a full numerical approach such as GALPROP
[301].

The first term in the equation of transport 4.50 is set to zero since we only focus on steady-state
solutions.
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Model δ K0 [kpc2/Myr] L [kpc] Vconv [km/s] Va [km/s]

MIN 0.85 0.0016 1 13.5 22.4

MED 0.70 0.0112 4 12 52.9

MAX 0.46 0.0765 15 5 117.6

Table 4.2: Benchmark MIN, MED, and MAX sets of propagation parameters [155].

Space diffusion: The second term describes antiproton space diffusion with a coefficient

K (K)=K0βpδ , (4.52)

where β= v
c is the antiproton beta factor and p its momentum. K0 and δ are free parameters of

the model which set the normalization and momentum dependence of the diffusion coefficient.
The third term stands for convection processes, with a characteristic velocity Vconv on the outside
of the galactic disk. These processes tend to push antiprotons vertically outside the disk.

Energy losses: Then, the term in b(K ,�x) accounts for energy losses. Antiprotons undergo en-
ergy losses according to three main processes: through the ionization of the interstellar neutral
medium, through the scattering off thermal electrons in interstellar ionized matter, and through
convective processes. In addition, the inelastic but non-annihilating interactions of antiprotons
with the interstellar medium (tertiary component) are treated as in [154].

Diffusive re-acceleration: Finally, the last term on the left-hand side of equation 4.50 de-
scribes diffusive re-acceleration. The knots of the turbulent magnetic field can, in fact, drift with
a characteristic velocity va, which results in a second order Fermi acceleration of antiprotons.

This model presents in total five free parameters whose values can be defined at the convenience
of the user. However, the three benchmark propagation models MIN, MED and MAX, which give
a minimum, median and maximum antiproton flux at Earth, are directly provided (table 4.2 ).
The term on the right-hand side of equation 4.50 stands for the sources of antiprotons and will
be detailed below.

4.3.3.1 Source terms

Secondary antprotons: The astrophysical antiproton background, so-called secondary antipro-
tons, is mostly created through the interaction of proton and helium cosmic rays produced by
supernovae with hydrogen and helium atoms in the interstellar medium. This type of antiproton
accounts for one part of the source term in the equation of transport 4.50 :
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QII
p̄ (x,Kp̄)= 4π (1+NIS(Kp̄))

∑
i=p,He

∑
j=H,He

×
∫+∞

K0
i

dTi
dσi j→p̄X

dKp̄
(Ki→Kp̄)n j(x)Φi(x,Ki) ,

(4.53)

where Ki is the kinetic energy of the nucleon i. The differential cross section dσi j→p̄X /dKp̄ is
computed from the proton-proton differential cross section taken from [302] and the threshold
K0

p of this reaction is taken to be 7mp.
The factor NIS accounts for the fact that antineutrons are also produced, along with antiprotons,
in the interaction of cosmic rays with the interstellar medium. Antineutron consecutively decay
into antiprotons and contribute to the source term. Most of the antiprotons are, however, pro-
duced in proton-proton reactions.
The flux of proton and helium cosmic rays, at position x, Φi(x) are deduced from the fluxes mea-
sured at Earth position through a retropropagation technique.

Primary antiprotons: The production rate QI
p̄ of primary antiprotons produced by the anni-

hilation of two dark matter particles into the channel j is given by the expression (4.54)

QI
p̄(x,Kp̄)= η

(
ρ(x)
mDM

)2
〈σv〉dNprod

dKp̄
, (4.54)

where 〈σv〉 is the thermal average annihilating cross section, and η is equal to 1/2 (1/4) for a
Majorana (Dirac) type particle. dNprod

dKp̄
is the flux at production of antiprotons which is calculated

as in subsection 4.3.1.

4.3.3.2 Calculation of the constraints

We calculate the total antiproton spectrum at the Earth position as the sum of primary and
secondary antiproton contributions.

Φ⊕
tot(K ,φF , A)=Φ⊕

I (K ,φF )+Φ⊕
II(K ,φ f , A) .

The parameters A and φF are nuisance parameters over which we marginalize. They are related
respectively to the uncertainties on the antineutron production cross section and to the solar
modulation.

Uncertainties on the antineutron production cross section: The parameter NIS which
accounts for antineutron production in equation 4.53 is energy-dependent and suffers from large
uncertainties [302]. For this reason, we calculate the secondary antiproton spectra for the lower
and upper bound of NIS. The real secondary antiproton spectrum takes values between these two
bounds, according to a nuisance parameter A ∈ [0,1]

ΦII(A)= (1− A)×Φlower
II + A×Φ

upper
II . (4.55)
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Solar modulation: As antiprotons reach the sun vicinity, they enter the sphere of influence of
the sun magnetic field and of its cosmic-ray wind. It has for effect to decrease the kinetic energy of
antiprotons, especially for low-energetic particles (� 10 GeV). It is therefore necessary to modify
the spectrum at the Earth position calculated from the equation of transport. A simple way to do
this is to use a force-field approximation parametrized by the Fisk potential φF [303, 304]:

Φ⊕(K)=Φ0(K +|e|φF ) · K(K +2mp)

(K +mp +|e|φF )2 −m2
p

. (4.56)

where Φ⊕ is the antiproton spectrum at Earth and Φ0 the antiproton spectrum at the end of the
propagation but before entering into the solar influence. For AMS-02 data, we take φF ∈ [0.1,1].

In order to quantify the deviation of the theoretical spectrum from the antiproton spectrum mea-
sured by AMS-02, we calculate a χ2 as:

χ2(Φ⊕
tot)=

∑
i

(
Φ⊕

tot(Ei)−Φ⊕
AMS−02(Ei)

ΔΦ⊕
AMS−02(Ei))

)2

, (4.57)

where we sum over AMS-02 energy bins, with central values Ei. AMS-02 flux measurement
Φ⊕

AMS−02 is given with an error ΔΦ⊕
AMS−02 [305, 306].

We minimize the χ2 with respect to the nuisance parameters A and φF and we compare it to the
χ2 in the case where no dark matter is assumed.

Δχ2 = min
A,φF

{
χ2(Φ⊕

tot)
}−min

A,φF

{
χ2(Φ⊕

noDM)
}

. (4.58)

The Δχ2 thus obtained follows a normal distribution. For instance, if only one annihilation chan-
nel is dominant (1 d.o.f.), a point will be excluded at 2 σ if Δχ2 > 4.

The computation of antiproton primary and secondary spectra can be time-consuming when per-
forming large scans. This is the reason why we also provide tabulated spectra for the benchmark
sets of propagation parameters MIN, MED, MAX, and the three DM halo profiles used in chapter
3: Burkert, Einasto and NFW. Following our previous study, the “conservative” constraint is given
by Burkert MED, the “standard” by Einasto MED and the “stringent” Einasto MAX.
However, the user is completely free to define its own propagation parameters and DM density
profile, as long as it respects axisymmetry. The constraints can, in this way, be calculated directly
for the new sets of parameters. If the user wishes to perform large scans, we advise, nevertheless,
to generate tabulated spectra of primary and secondary antiprotons using the dedicated function
in SuperIso Relic.
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5
DARK MATTER CASTS LIGHT ON THE EARLY UNIVERSE

5.1 Introduction

In this chapter, we show that the discovery of new particles at colliders could allow us to probe the
content of the Universe at an epoch which is currently beyond observational reach. Indeed, before
BBN, the Universe is assumed to be radiation dominated in the standard cosmological model.
However, this assumption is not well justified, and it is possible to consider alternative scenarios
which alter the dark matter relic density. In this study, we consider two alternative scenarios
involving the presence of a scalar field before BBN and show their influence on different new
physics scenarios. We focus on scenarios including a WIMP which has a relic density calculated
in the standard cosmological model either too small or too large. We show that, in order to obtain
the correct relic density, strong constraints must be imposed on the scalar field properties. Two
benchmark points in the MSSM will be considered for this analysis and we will use a pMSSM-19
sample of points to assess the dependence of the scalar field constraints on the WIMP properties.
This work was carried out in collaboration with Prof. Alexandre Arbey, Prof. John Ellis and Prof.
Nazila Mahmoudi and is submitted to JHEP [307].

5.2 Relic density calculation

The relic density calculation is generally performed in the standard cosmological model, in which
the expansion rate of the Universe is given by the Friedmann equation. In the early Universe
when the radiation density dominates this reduces to:

H2 =
(

ȧ
a

)2
= 8πG

3
ρrad , (5.1)

where a is the cosmological scale factor and H the Hubble parameter. The radiation density reads

ρrad(T)= geff(T)
π2

30
T4 , (5.2)
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where geff is the effective number of degrees of freedom of radiation, which is given by the particle
content of the Standard Model and the QCD equation of state (see, for example, [137, 139]).
Assuming that, in a given BSM scenario, only the lightest BSM particle is stable, and constitutes
a suitable dark matter candidate that was originally in thermal equilibrium, the number of relic
particles is obtained by solving the Boltzmann evolution equation [308, 309]:

dn/dt =−3Hn−〈σeffv〉(n2 −n2
eq) , (5.3)

where n is the number density of BSM particles, neq is their equilibrium density, and 〈σeffv〉 is
the thermal average of the annihilation rate of pairs of BSM particles to SM particles.
To define 〈σeffv〉, it is useful to define first the annihilation rate of BSM particles i and j into SM
particles k and l:

Wi j→kl =
pkl

16π2 gi g jSkl
�

s

∑
internal d.o.f.

∫
|M (i j → kl)|2 dΩ , (5.4)

where M is the transition amplitude, s is the centre-of-mass energy squared, gi is the number of
degrees of freedom of the particle i, pkl is the final centre-of-mass momentum, given by

pkl =
[
s− (mk +ml)2

]1/2 [s− (mk −ml)2
]1/2

2
�

s
, (5.5)

and Skl is a symmetry factor equal to 2 for identical final particles and to 1 otherwise.
The thermal average of the effective cross section is given by:

〈σeffv〉 =

∫∞

0
dpeff p2

effWeff(
�

s )K1

(�
s

T

)

m4
relicT

[∑
i

gi

gLSP

m2
i

m2
1

K2

(mi

T

)]2 , (5.6)

where K1 and K2 are the modified Bessel functions of the second kind of order 1 and 2 respectively,
and Weff is an effective annihilation rate:

Weff ≡
1

g2
relic peff

∑
i j

gi g j pi jWi j , (5.7)

with
peff(

�
s )= 1

2

√
(
�

s )2 −4m2
relic , (5.8)

In order to solve the Boltzmann equation, it is necessary to have a link between time and temper-
ature, which is given under the assumption of adiabaticity by

dsrad

dt
=−3Hsrad , (5.9)

where the radiation entropy density is given by

s(T)= heff(T)
2π2

45
T3 , (5.10)

with heff the effective number of entropic degrees of freedom of radiation.
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To solve this set of equations, one defines the ratio of the number density of BSM particles to
the radiation entropy density Y (T) ≡ n(T)/srad(T), and the ratio of the relic particle mass to the
temperature, x ≡ mrelic/T, and combines them into [308, 309]:

dY
dx

=−
√

π

45G
g1/2∗ mrelic

x2 〈σeffv〉(Y 2 −Y 2
eq) , (5.11)

with

g1/2
∗ = heff�geff

(
1+ T

3heff

dheff
dT

)
. (5.12)

The freeze-out temperature Tf is the temperature at which the relic particle leaves the initial
thermal equilibrium, which is expected to happen at ∼ mrelic/10 ∼ 10−100 GeV in many BSM
WIMP scenarios.
Solving the equations down to the present temperature T0, we find that Y approaches a constant
asymptotic value and the relic density so obtained is [308, 309]:

Ωrelich2 = mrelics(T0)Y (T0)h2

ρ0
c

≈ 2.755×108 mrelic

1 GeV
Y (T0) , (5.13)

where ρ0
c is the critical density of the Universe, given by

H2
0 = 8πG

3
ρ0

c , (5.14)

and H0 is the Hubble constant. The relic density can then be compared to the measurements of
the dark matter density by the Planck Collaboration [22] to set constraints on the BSM scenarios.
In the following, we use �������� 	�
�� ��� [132, 133, 262] to compute the relic density. Since
it was shown that the theoretical uncertainties due to the cross section calculation at tree level
and to the uncertainties in the QCD equation of state are of the order of a tenth [134, 136, 137,
139, 144, 149], we add a 10% theoretical error to the Planck measurements and obtain the follow-
ing 95% C.L. interval:

0.095<Ωh2 < 0.1428. (5.15)

5.3 Cosmological scenarios

The standard relic density calculation can be modified by the presence of scalar fields in the early
Universe, which can affect the expansion rate by adding a new energy density, generate non-
thermal relic particles, or inject entropy and affect the relation between time and temperature.
In the following, we consider the case of a decaying pressureless scalar field and of quintessence
as realistic examples of cosmological models affecting the early Universe. Since the freeze-out
occurs at ∼ 10−100 GeV, a large deviation from the standard model of cosmology at this temper-
ature could modify strongly the results, without having other consequences for the observable
Universe. The strongest constraints that can be set on such cosmological scenarios are those
from BBN. In the following, we compute BBN constraints for the scenarios of interest using
�
������ ��� [310, 311] and the conservative limits on the abundances of the elements given
in [312].
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5.3.1 Decaying primordial scalar field

We consider a pressureless scalar field φ of mass mφ that decays into radiation with a width
Γφ, and into BSM particles with a branching ratio b [148, 313]. The evolution in time of the
scalar field density ρφ and the WIMP density n = ρχ/mχ can be determined from the following
equations:

dρΦ

dt
= −3HρΦ−ΓΦρΦ , (5.16)

dn
dt

= −3Hn−〈σv〉
(
n2 −n2

eq

)
+ b

mφ
ΓΦρΦ , (5.17)

where 〈σv〉 is the thermally-averaged WIMP annihilation cross section, neq is the WIMP equilib-
rium density, and H is the Hubble parameter, which depends on the total energy density in the
Universe:

H2 = 8π
3M2

p

(
ρφ+ρrad +ρχ

)
. (5.18)

We assume that the thermalisation of the decay products of the scalar field occurs instanta-
neously*. In order to obtain a relation between the time and the temperature, one may use the
following equation for the evolution of the radiation entropy density [316]:

dsrad

dt
= −3Hsrad + ΓΦρΦ

T
= −3H

(
1− Σ̃∗) srad , (5.19)

with

Σ̃∗ ≡ ΓΦρΦ

3H T srad
. (5.20)

The energy and entropy densities of radiation can be determined from the temperature according
to: ⎧⎪⎪⎨⎪⎪⎩

ρrad = π2

30
gef f (T)T4 ,

srad = 2π2

45
hef f (T)T3 ,

(5.21)

where gef f and hef f are the number of degrees of freedom of radiation energy and the entropy,
respectively. We use the QCD equation of state “B” of Ref. [137] in our analysis.
The decay width may conveniently be expressed as a function of the reheating temperature TRH

[148, 313], which is the temperature at which the scalar field density starts to be significantly
reduced:

Γφ =
√

4π3 gef f (TRH)
45

T2
RH

Mp
. (5.22)

We also define ρ̃φ ≡ ρφ/ρrad and the initial condition κφ ≡ ρφ(Tinit)/ργ(Tinit).
In the following we assume that the period of interest for the relic density occurs when the radi-
ation entropy density decreases with time, which corresponds to Σ̃∗ < 1. This imposes a maximal
temperature Tmax for the validity of the following discussion, which corresponds to the temper-
ature at which Σ̃∗ = 1. The above equations can be re-written as derivatives of YΦ = ρφ/srad and

*Discussions of the effect of other thermalisation assumptions can be found in [314, 315].
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Y = n/srad:

dYΦ

dx
=−α0

x
Σ̃∗

1− Σ̃∗
(
YΦ+ mχ

x

)
, (5.23)

dY
dx

=− α0

x
srad

1− Σ̃∗
1

3H
〈σv〉

(
Y 2 −Y 2

eq

)
− α0

x
Σ̃∗

1− Σ̃∗

(
Y − b

mφ

mχ

x

)
, (5.24)

with

α0 =
3g1/2∗ g1/2

e f f

he f f
≈ 3 , (5.25)

where x = mχ/T.

Eqs. (5.23) and (5.24) are controlled by the parameter Σ̃∗ defined in Eq. (5.20). In order to un-
derstand its role, we consider the entropy time-derivative equation (5.19) in the case where Σ̃∗ is
constant. If T ∝ tα and the scale factor a ∝ tβ, then H =βt−1 and we obtain:

3α=−3β(1− Σ̃∗) . (5.26)

Thus, β=−α/(1− Σ̃∗) and a ∝ t−α/(1−Σ̃∗) ∝ T−1/(1−Σ̃∗). After freeze-out, the WIMP density verifies
ρχ ∝ a−3, so ρχ ∝ T3/(1−Σ̃∗). The WIMP density will therefore be diluted very fast as Σ̃∗ → 1.
In fact, one can derive a maximum value for Σ̃∗ where d log(Σ̃∗)/d log(x) = 0. In the limit ρφ �
ρrad, Σ̃∗ ∝ x5/2Y 1/2

Φ according to Eq. (5.22). Thus the maximum value of Σ̃∗ is reached when
d log(YΦ)/d log(x)=−5. Using Eq. (5.23) we obtain the condition

−α0
Σ̃∗

MAX

1− Σ̃∗
MAX

(
1+ T

YΦ

)
= d log(YΦ)

d log(x)
=−5 , (5.27)

from which it follows that
Σ̃∗

MAX

1− Σ̃∗
MAX

= 5
α0

1

1+ T
YΦ

< 5
α0

� 1.66 , (5.28)

which leads to
Σ̃∗ < 5

α0

1
1+ 5

α0

≈ 0.625 . (5.29)

This prevents any singularities in the term Σ̃∗/1− Σ̃∗, but limits the strength of the dilution.
We have seen that the scalar field density can decrease in two ways: either by decay, or by dilution.
Thus, the presence of the scalar field may modify the WIMP relic density from that calculated in
the standard model of cosmology in three different ways. First, WIMPs can be diluted in the same
way as the scalar field. As this phenomenon only changes the evolution of the temperature with
time, it does not affect the WIMP density at a given temperature during thermal equilibrium,
since the equilibrium density is determined by the temperature alone. Secondly, if the scalar field
decays into BSM particles, the WIMP density may increase. If the decay happens before freeze-
out, however, the decay products will annihilate and there would be no consequence on the relic
density.
Thirdly, if the scalar field density is large enough, it will change significantly the Hubble param-
eter and the freeze-out will occur sooner, thus increasing the density at freeze-out compared to
the standard calculation. However, as we shall see, this last case corresponds also to that where
dilution is important. Therefore, the only way to increase the relic density is if the scalar field
decays also into BSM particles.

97



CHAPTER 5. DARK MATTER CASTS LIGHT ON THE EARLY UNIVERSE

Figure 5.1: Evolution with temperature of the scalar field density in representative power-law models

of quintessence.

5.3.2 Quintessence

As an alternative, we also consider a quintessence field†, which satisfies the continuity equation:

dρΦ

dt
= 3H(ρΦ+Pφ) , (5.30)

where the pressure and the energy density of the scalar field are Pφ = φ̇2/2−V (φ) and ρΦ =
φ̇2/2+V (φ), respectively.
We have computed the scalar field density evolution with the temperature for three different stan-
dard quintessence potentials V (φ) [317]: a double exponential [318], an inverse power law [319],
and a pseudo-Nambu-Goldstone boson potential [320]. We find that the scalar field density can
be well approximated for the three potentials with a power law of slope 6 at high temperatures
(zone 4 of Figure 5.1) and of slope 0 at low temperatures coinciding with the measured dark en-
ergy density (zone 1). In the case of the double exponential potential, two additional power-law
changes occur: the first to a slope 0 (zone 3) and then to a slope ranging from 3 to 6 (zone 2).
Hence, we consider a simplified model whose free parameters are the temperatures T34, T23, T12

at which the power-law changes occur, together with the slope in zone 2, n2.
In this model, there is no way to reduce the relic density compared to the standard cosmologi-
cal model. The only possible influence of the scalar field is the WIMP density at freeze-out. If
the scalar field density is large enough while the WIMP is in thermal equilibrium, the Hubble
parameter can be enhanced compared to the standard cosmological model. This would have the
effect of advancing freeze-out and thereby increasing the relic WIMP density.

5.4 New physics scenarios

In order to illustrate the possible implications of such cosmological scenarios, we consider vari-
ants of the minimal supersymmetric extension of the Standard Model (MSSM) with CP and R-

†See, for example, [317] for a review of quintessence models.
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parity conservation, which is representative of a large class of WIMP models. The lightest neu-
tralino is a well-motivated candidate for dark matter [321], and we assume in the following that
100% of cold dark matter is composed of neutralinos. The neutralino can be bino-like, wino-like,
higgsino-like or a mixed state. These candidates are weakly-interacting, and in conventional cal-
culations bino-like neutralinos have in general a too large a relic density, apart in cases where
they are associated with near-degenerate supersymmetric particles with which they can coanni-
hilate, or if annihilations are enhanced by resonances such as heavy Higgs bosons. Winos and
Higgsinos can reach a relic density close to the observed dark matter abundance via coannihila-
tions with charginos and/or neutralinos that are nearly degenerate with the lightest neutralino.
On the other hand, light winos and Higgsinos generally have too small a relic density.

In the following we first choose as specific examples one MSSM scenario which would yield over-
dense DM according to the standard cosmological calculation, and one that would yield under-
dense DM. We also consider a sample of points in the phenomenological MSSM (pMSSM) with 19
free parameters specified at a low energy scale (the pMSSM19).

5.4.1 Benchmark Point A

We first consider a point with a relic density that would be too large (Point A) according to the
standard cosmological calculation. For this we modify the parameters of the best-fit point of the
pMSSM with 11 free parameters specified at a low energy scale (the pMSSM11), which was found
in [322] taking into account the constraints from ∼ 36 fb−1 of LHC data at 13 TeV, including those
from direct searches for supersymmetric (SUSY) particles at the LHC, measurements of the Higgs
boson mass and signal strengths, LHC searches for the heavier MSSM Higgs bosons, precision
electroweak observables, the measurement of (g−2)μ [323], and flavour physics constraints from
B- and K-physics observables. In addition, the constraints from the direct dark matter detection
experiments PICO60 [72], XENON1T [63] and PandaX-II [68] were taken into account, together
with the previous accelerator and astrophysical measurements. The cosmological constraint on
the cold dark matter density measured by Planck [22] was also considered. The relic density at
this point is therefore close to the measured dark matter density, but it is possible to increase
the relic density while respecting the other constraints. This point has a bino-like neutralino of
mass 381 GeV. As commented above, binos tend to have a relic density that is too large. However,
thanks to the small mass splittings with the sleptons of the first and second generations, the
relic density of this points is very close to the measured dark matter density. In order to obtain
a larger relic density, we increase the mass parameter Ml̃1,2

of the sleptons of first and second
generation, taking Ml̃1,2

= 400 GeV. The mass of the lightest neutralino is 381 GeV and the next-
to-lightest supersymmetric particles are the right-handed selectron and smuon of mass 423 GeV.
The mass splitting is large enough so that the impact of the co-annihilations is limited. We obtain
a relic density Ωh2 = 1.27 according to the standard cosmological calculation, and a freeze-out
temperature Tfo ≈ 16 GeV. The parameters of Point A are given in Table 5.1 and the spectrum is
generated with �������� [123].
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M1 M2 M3 μ MA0 tanβ

-391 1240 -1714 -5739 4221 18.8

Mq̃1,2 Mq̃3 Ml̃1,2
Ml̃3

A0

1996 4058 400 1365 5372

Table 5.1: The pMSSM11 parameter values (in GeV) of Point A.

5.4.2 Benchmark Point B

In this case we modify the best-fit point in the constrained MSSM (CMSSM) found in [322]. This
point has a higgsino-like neutralino and a relic density close to the dark matter density measured
by Planck. We decrease M12 to 3872 GeV in order to get a lower value of the relic density: Ωh2 =
5.907×10−3 and use �������� [123] to calculate the spectrum. The parameters of point B are
given in Table 5.2.

M0 M12 tanβ A0 sign(μ)

10931 3872 52.9 9188 +1

Table 5.2: The CMSSM parameter values (in GeV when applicable) of Point B.

5.4.3 Sample of pMSSM19 Points

We consider in addition a sample of points in the pMSSM19 generated using �������� [123] with
a flat random sampling over the ranges given in Table 5.3 for the 19 parameters. After checking
the theoretical validity of each point, we require it to have a light Higgs boson with mass between
122 and 128 GeV. We also require the lightest neutralino to be the lightest supersymmetric parti-
cle that constitutes dark matter, using the set-up presented in [120, 124, 125]. As the neutralino
can be bino-like, wino-like, Higgsino-like or a mixed state, this approach allows considerable flex-
ibility, making our analysis sufficiently general that it can indicate the possibilities also in other
dark matter models.

5.5 Results

5.5.1 Decaying primordial scalar field

We consider first the cosmological scenario with a scalar field decaying into radiation and SUSY
particles. We perform a scan over the reheating temperature TRH and the initial scalar field
density parametrised as the ratio between the scalar field density and the photon density at
T = Tinit , κφ = ρφ

ργ
(T = Tinit), and calculate the relic density of Points A and B specified in Section

4. We consider different values of the parameter η= b
(

1 GeV
mφ

)
, in order to study the effect of non-

thermal production of SUSY particles on the relic density. In each case we derive constraints on
the scalar field parameters for our sample of pMSSM19 points so as to investigate the influence
of the neutralino properties on the limits derived from the relic DM density.
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Parameter Range (in GeV)

MA [50, 2000]

M1 [-3000, 3000]

M2 [-3000, 3000]

M3 [50, 3000]

Ad = As = Ab [-10000, 10000]

Au = Ac = At [-10000, 10000]

Ae = Aμ = Aτ [-10000, 10000]

μ [-3000, 3000]

MẽL = Mμ̃L [0, 3000]

MẽR = Mμ̃R [0, 3000]

Mτ̃L [0, 3000]

Mτ̃R [0, 3000]

Mq̃1L = Mq̃2L [0, 3000]

Mq̃3L [0, 3000]

MũR = Mc̃R [0, 3000]

Mt̃R [0, 3000]

Md̃R
= Ms̃R [0, 3000]

Mb̃R
[0, 3000]

tanβ [1, 60]

Table 5.3: The pMSSM19 parameter ranges used in our scan.

We start integrating the Boltzmann equations at a temperature Tinit = 40 GeV for point A and
Tinit = 20 GeV for point B. For our sample of pMSSM19 points, we use Tinit = 1.5×Tfo, where
Tfo is the freeze-out temperature in the standard cosmological model. These choices were made
in order to reduce the computation time while starting the calculation sufficiently long before
freeze-out and the decay of the scalar field.

5.5.1.1 Point with a large relic density

We first investigate the case where the neutralino has a relic density that is too large in the
standard cosmological model, illustrated by Point A. The results of the scan over the reheating
temperature TRH and the initial scalar field density κφ are shown in Figure 5.2, assuming that
the scalar field does not decay into SUSY particles (η = 0). We can distinguish two zones in this
figure: a zone at large initial scalar field density and small reheating temperature, where the relic
density is strongly reduced, and the complementary zone where the presence of the scalar field
does not modify the relic density. On the one hand, the dependence on κφ of the dilution is rather
clear: the larger κφ is, the larger Σ̃∗ is initially, and the dilution is stronger. On the other hand,
the value of the reheating temperature affects more the duration of the dilution than its strength.
As illustrated in Figure 5.3, when TRH is small, Σ̃∗ can remain at its maximum during a large
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Figure 5.2: The relic density log10(Ωh2) of Point A, indicated by the colour code in the legend, as a

function of TRH and κφ. Parameter sets consistent with the Planck constraints lie along the darker

shaded strip. The grey zone at small TRH is excluded by BBN constraints.

range of temperatures before its decrease due to the decay of the scalar field. The neutralino
and scalar field densities decrease during this period with a slope −5, as expected when Σ̃∗ is at
its maximum. For a large value of TRH , however, the fields are diluted over a smaller range of
temperatures and the total decrease is reduced.

Points respecting the Planck constraints, which we will refer to as accepted points, lie along a thin
line in the log10(κφ)/log10(TRH) plane. They follow a line of slope ∼ 1 at small TRH that changes
slightly at TRH ∼ 150 MeV to a slope 1.5. This transition is the result of the quark/hadronic phase
transition, which lowers the number of radiation degrees of freedom. In particular, below T ∼ 150
MeV, pions become non-relativistic and no longer contribute to the radiation density. This feature
is independent of the WIMP and scalar field properties, and is present in all the following results.

The line of accepted points becomes vertical at TRH ∼ Tfo, which is to be expected when the scalar
field decays completely during neutralino thermal equilibrium, as there is no possible modifica-
tion of the relic density. Thus, we can derive a maximum value of the reheating temperature
TRH � Tfo. One can also note that if TRH < TBBNlim

RH ∼ 6 MeV, the scalar field density is too large
during BBN, and the model is therefore excluded. This constraint is very general, as it is also
independent of the WIMP properties, and thus applicable to any WIMP model. This limit gives
us a lower bound for the reheating temperature, as well as a minimum value for the initial scalar
field density κφ using TRH = TBBNlim

RH . For Point A, we can deduce κφ � 0.1, but this minimum
value will depend on the nature of the WIMP.

No enhancement of the relic density is possible when η = 0. At small TRH and large κφ, where
the scalar field density could have increased the freeze-out temperature via its relation with
the Hubble parameter, and thereby increased the relic density, the densities are in fact already
significantly reduced by dilution. Therefore, in order to increase the relic density, it is necessary
to consider non-thermal production of the WIMP, i.e., η > 0. In the case of Point A, the region of
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[TRH = 0.01 GeV, κφ = 100, Tinit = 40 GeV]0 GeV] [TRH = 10

GeV, κφ = 100, Tinit = 40 GeV]

Figure 5.3: The evolution of the scalar field, neutralino and radiation densities normalised to the

radiation entropy density, and of the injection of entropy Σ̃∗, as a function of x = mχ/T.

interest will be at small TRH and large κφ, where the relic density is strongly reduced by dilution.
The scalar field decay into SUSY particles provides an additional contribution to the relic density,
and the DM density measured by Planck may be reached with the appropriate value of η. We
test four different values of η in Figure 5.4, and notice that the larger η is, the more the line of
accepted points is shifted towards small TRH .

We observe in Figure 5.5 that in the region of interest the relic density increases linearly with
η and TRH , which explains the observed feature. Similarly to what happens with the dilution,
the parameter η impacts the strength of the non-thermal production of neutralinos, while TRH

impacts the time between the freeze-out and the scalar field decay, during which the relic density
can benefit from this new contribution.

In the limit of large κφ and small TRH , we find that the evolution of the relic density with respect
to η and TRH can be approximated by:

Ωh2 ≈ η (α TRH +β) , (5.31)
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(a) η= 0 (b) η= 10−12

(c) η= 10−11 (d) η= 10−10

Figure 5.4: The effect of varying η on log10(Ωh2) for Point A, indicated by the colour code in the

legend.

where α and β are numerical factors that depend, a priori, on the WIMP properties. When η goes
to zero, the relic density vanishes, which is expected since, in this region of the parameter space,
the dilution due to the entropy injection is dominant in absence of non-thermal production. One
can also note that the effects of the dilution and of the non-thermal production equilibrate in such
a way that the above expression does not depend on κφ. For Point A, we find that α≈ 7.68×1010

GeV−1 and β≈ 2.62×107. This parametrisation enables us to find the value of η required to get
the correct relic density for a given reheating temperature. On the other hand, a maximum value
of η can be calculated by considering the reheating temperature where the BBN constraints start
excluding the model (T lim

RH ≈ 6×10−3 GeV):

ηMax =
Ωh2upperlim

DM

αT lim
RH +β

. (5.32)

For our benchmark point, we calculate ηMax ≈ 2.93×10−10. Thus, in this scenario the branching
ratio into SUSY particles must be very small, which can be traced back to our choice of a scalar
field with a substantial initial density. We note also that the variation in η does not modify the
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(a) (b)

Figure 5.5: The variation of the relic density normalised to the radiation entropy density as a

function of the temperature, for Tinit = 40 GeV and κφ = 100, when (a) varying the value of η with

fixed TRH = 0.01 GeV, and (b) varying the value of TRH with fixed η= 10−11.

constraints on κφ and TRH that we derived in the case η= 0. Strong constraints on the scalar field
parameters can therefore be derived, namely 6 MeV � TRH � Tfo, κφ � 0.1 and η� 2.93×10−10.

5.5.1.2 Point with a small relic density

As discussed previously, no enhancement of the relic density is possible when only entropy injec-
tion is considered. Therefore, one needs to allow the scalar field to decay into BSM particles. We
show in Figure 5.6 the result of scans over TRH and κφ for Point B with four different values
of η. In each scenario, the region of accepted points forms a U shape in the κφ /TRH plane. The
vertical right limit corresponds to TRH ∼ Tfo, and does not move significantly as η increases. The
vertical left limit, however, is shifted to the left along the TRH axis and the horizontal limit is
shifted downwards towards lower values of κφ. The constraints on TRH that we deduced for point
A hold also in this case: TBBNlim

RH � TRH � Tfo. However, it is difficult to find limits on κφ and η as
stringent as the ones we found for point A.
The largest effect is in the case where the scalar field decays entirely into BSM particles and not
into radiation. Thus, if a decay produces two SUSY particles, for example, b = 2 and mφ > 2mχ,
so η < 1/mχ. In such a case, all the SUSY particles produced by the scalar field decay, starting
from the neutralino freeze-out, constitute an overall contribution to the relic density that has
to be added to the value of the relic density in the standard model, i.e., Y = Ystand +Y T=Tfo

φ
/mχ.

Therefore, one has a constraint on the scalar field density at freeze-out.

5.5.1.3 pMSSM19 sample

In the following, we study how the constraints on the scalar field depend on the WIMP properties
disregarding the case of a relic density that is too small, as the constraints deduced in this case
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(a) η= 0 (b) η= 10−11

(c) η= 10−10 (d) η= 10−9

Figure 5.6: The effect of varying η on log10(Ωh2) for Point B, indicated by the colour code in the

legend.

already showed an explicit dependence on the freeze-out temperature and the relic density at
freeze-out.

We focus on the points in our pMSSM19 sample that have a relic density that is too large in
the standard cosmological model, which leaves us almost exclusively with bino-like neutralinos.
We calculated the values of κφ that give the correct relic density at TRH = TBBNlim

RH , as shown in
Figure 5.7, and find a very good correlation between the relic density calculated in the standard
model and κφmin .

The points in Figure 5.7 follow a line of slope ∼ 1. Thus, the minimum value of the initial scalar
field density increases with the value of the relic density in the standard model. This can be
understood because the larger the relic density at freeze-out is, the stronger must be the dilution
for a given reheating temperature. The small scatter of the points at low relic density is due to
numerical uncertainties alone, but we note a departure from this line at large Ωh2

stand, when
κφmin � 1. With a scalar field density of this order of magnitude, there is also a modification of
the Hubble parameter, which advances freeze-out. This mechanism tends to increase the relic
density, while the entropy injection decreases it. Overall, the dilution has a stronger effect, but
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Figure 5.7: The values of κφ required to reduce

the relic density to the measured DM density

with TRH = TBBNlim
RH and Tinit = 40 GeV as

a function of the relic density calculated in

the standard model of cosmology. The calcula-

tions were done for the sample of points in the

pMSSM19 characterised in Table 2.1.

Figure 5.8: The maximum value of the param-

eter η for the pMSSM19 sample of points as

a function of the neutralino mass. The values

of mχ/Tfo are colour-coded as indicated in the

legend.

a larger scalar field density is required to decrease the relic density down to the measured DM
density.
Next, we calculate the maximum value of η and find a clear dependence on the WIMP mass,
as seen in Figure 5.8. Indeed, the scalar field produces a fraction b of SUSY particles, which
contributes as mχ× b to the WIMP mass density. Therefore, the larger mχ is, the more the relic
density will be increased for a given value of η, and the smaller will be the maximum value of
η. At first approximation, the maximum value of η is inversely proportional to the WIMP mass.
However, another mechanism is at play: for the same neutralino mass, the larger Tfo is, the larger
the neutralino density at the freeze-out temperature is, and thus the smaller η must be in order to
reach the correct relic density. As Tfostand ≈ mχ/20, we can express a linear relation between ηlim

and mχ. However, as shown in Figure 5.8, when Tfo departs from this approximation towards
larger values, the second mechanism becomes more important, and we see a departure from the
linear relation between mχ and ηlim. This happens for neutralino masses smaller than ∼ 100 GeV
in our sample of points. In any case, η must be very small, of the order of ∼ 10−10 – 10−9.

5.5.2 Quintessence

We now turn to the study of the quintessence model. This scenario only has the power to increase
the relic density by advancing freeze-out. Therefore, we disregard the case of a standard relic
density that is too large.

5.5.2.1 Point with a small relic density

We have scanned over the three temperature parameters such that T0 < T12 < T23 < T34 with T0 =
2×10−13 GeV, the temperature of the CMB at present time. We performed the scans for the two
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(a) n2 = 3 (b) n2 = 6

Figure 5.9: The value of log10(Ωh2), colour-coded as indicated in the legend, in the T34, T23/T12

parameter plane of the quintessence model. The accepted parameter sets lie between the two dashed

lines, the grey region is excluded by BBN and the white region is not accessible in this model.

extreme values of the slope in zone 2 of Figure 5.1, namely n2 = 3 and n2 = 6. We have calculated
the relic density of our benchmark CMSSM point for each set of quintessence parameters, and
show the results in Figure 5.9.

The relevant parameters are T34 and the ratio T23/T12. The smaller T34 is, and the greater
T23/T12 is, the larger is the relic density. This can easily be understood as the larger the scalar
field density is around freeze-out, the larger will be the increase of the relic density, and a small
value of T34 and a large difference between T12 and T23 helps in obtaining a large scalar field
density at large temperatures. In the case n2 = 3, the accepted parameter sets follow a line of
slope ∼ 0.5, and we find a limit at T23/T12 ∼ 6×108 and T34 ∼ 10−4 GeV, where the line reaches
the limiting case T34 = T23. A minimum value of T34 can be found when T12 = T23, where we find
T34 � 2×10−9 GeV. In the case where n2 = 6, the same minimal value can be found. However,
the accepted parameter sets follow a line of slope 1, parallel to the limit T23 = T34. There are,
therefore, no maximum values for the temperature parameters.

In both cases, we note also that the accepted parameter sets are very close to the limit imposed
by BBN, which mainly depends on the density of the scalar field at a temperature T ∼ 1 MeV.

When T34 is smaller than 1 MeV, which must be the case for values of n2 close to 3, it is possible
to find simpler constraints on the scalar field properties. In this case, freeze out and BBN both
occur during phase 4 of the scalar field evolution in the model. The scalar field density can thus
be specified simply by its value at freeze-out, and determined at other temperatures according
to the slope n4 = 6. We can therefore disregard what happens in phases 1, 2 and 3. We show in
Figure 5.10 the evolution of the relic density for Point B with the ratio of the scalar field density
to the radiation density at freeze-out, ρ̃φ = ρφ

ρrad
(T = Tfo) when we consider only phase 4 of the

model.

The scalar field starts having an effect on the relic density when its density is comparable to the
radiation density at freeze-out. The Hubble parameter is thus significantly modified and freeze-
out is advanced. The relic density then increases with a slope ∼ 0.48. In addition, we note that
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Figure 5.10: The increase in the relic density for Point B as a function of the ratio of the scalar

density and the radiation density at 1 MeV. The grey region is excluded by BBN.

Figure 5.11: The value of the scalar field density at freeze-out that is required to increase the relic

density up to the observed DM density for our sample of pMSSM19 points. The neutralino mass is

shown in colour and parameter sets excluded by BBN are shown in grey.

points are excluded by BBN if
ρφ

ρrad
(T=Tfo)� 108, which corresponds to

ρφ

ρrad
(1 MeV)� 1.

5.5.2.2 pMSSM19 sample

In addition, we have calculated the value of ρ̃Φ(T = Tfo) required to obtain the correct relic den-
sity in our sample of pMSSM19 points. The result is presented in Figure 5.11, which shows the
dependence of ρ̃Φ(T = Tfo) on the standard relic density.

In a first approximation, ρ̃Φ(T = Tfo) scales as a power of the standard relic density, with an
exponent ∼−2. The smaller the standard relic density is, the larger the scalar field density must
be around freeze-out in order to increase the relic density up to the DM density. The exponent −2
can be understood from a simple calculation. Freeze-out occurs when the annihilation rate equals
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the expansion rate, in the standard cosmological model:

neq(Tstand
fo )〈σv〉Tf ostand

∼ H ∼ H0ρ
1/2
rad(T = Tf ostand ) , (5.33)

with H0 =
√

8π/3M2
p . The comoving neutralino density Ystand can then be expressed as:

Ystand = neq(Tf ostand )
srad(Tf ostand )

, (5.34)

which can be re-expressed using Eq. (5.33) as

Ystand =
H0ρ

1/2
rad(Tf ostand )

〈σv〉Tf ostand
srad(Tf ostand )

. (5.35)

When the scalar field density is very large in the quintessence model, compared to the radiation
density, we obtain similar equations:

neq(Tfo)〈σv〉T=Tfo ∼ H ∼ H0ρ
1/2
Φ (T = Tfo)= H0ρ

1/2
Φ (T = Tf ostand )×

(
Tfo

Tf ostand

)3
, (5.36)

and
Y = neq(Tfo)

srad(Tfo)
, (5.37)

where we have used in Eq. (5.36) the fact that the scalar field density evolves as Tn4 with n4 = 6.
The relic comoving density Y in this scenario can then be re-written using Eq. (5.36) as:

Y =
H0ρ

1/2
Φ (T = Tf ostand )×

(
Tfo

Tf ostand

)3
〈σv〉Tfo srad(Tfo)

= H0ρ
1/2
Φ (T = Tf ostand )

〈σv〉Tfo srad(Tf ostand )
. (5.38)

Finally, we can combine Eqs. (5.38) and (5.35) to obtain:

Y =Ystand
〈σv〉Tf ostand

〈σv〉Tfo

ρ1/2
Φ (T = Tf ostand )

ρ1/2
rad

. (5.39)

This gives us the ratio between the scalar field density and the radiation density at the standard
freeze-out temperature that is required to increase the relic density to the measured dark matter
density:

ρ̃Φ(Tf ostand )=
(

Y
Ystand

)2
×
(

〈σv〉Tfo

〈σv〉Tf ostand

)2

=
(
Ωh2

DM

Ωh2
stand

)2

×
(

Y (T = Tfo)/Y (T = present)
Ystand(T = Tf ostand )/Ystand(T = present)

)2
×
(

〈σv〉Tfo

〈σv〉Tf ostand

)2

.

(5.40)

We retrieve here the slope −2. We note, however, that this particular value appears only be-
cause n4 = 6, and thus depends on the quintessence model. Residual annihilations occurring
after freeze-out are taken into account by the factor

ξ=
(

Y (T = Tfo)/Y (T = present)
Ystand(T = Tf ostand )/Ystand(T = present)

)2
,

110



5.6. CONCLUSION

which takes a value ∼ 10 in our sample of pMSSM19 points. It was indeed already noted in [324]
that the residual annihilations, so-called relentless annihilations, can be particularly important
when H ∝ T2+ n

2 , with n ≥ 2. In the case of the quintessence model, n = 2, which corresponds
well to this regime. The value of ξ is model-dependent, however, and we show in Figure 5.11
that wino-like neutralinos, for instance, require a larger scalar field density than higgsino-like
neutralinos.
Finally, we note that for neutralinos with a standard relic density � 3× 10−4, the scalar field
density is too large at 1 MeV and our scenario is ruled out by BBN.

5.6 Conclusion

In this work, we showed that dark matter could be used as a powerful tool to probe the content of
the Universe at an epoch which is beyond observational reach. Assuming that a weakly interact-
ing massive particle is discovered at colliders and that the measurements of its annihilation and
co-annihilation cross sections are precise enough, it would be possible to calculate its relic den-
sity in the standard scenario where the Universe is radiation dominated before BBN and also to
constrain alternative models. As an example, we considered the case of a WIMP that would yield
a relic density either too small or too large in the standard cosmological model and constrained
the parameters of two cosmological models which present typical mechanisms to modify the relic
density: a primordial scalar field decaying into radiation and SUSY particles and a quintessence
model. Model points in the MSSM were taken in this analysis, but we showed that the constraints
were very general and would stand for most WIMP models. The detection of a dark matter par-
ticle would therefore be an important step in the understanding of the early Universe and would
constitute a new pillar of the cosmology, along with the Big Bang nucleosynthesis and the Cosmic
Microwave Background.
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GENERAL CONCLUSION

In this thesis, we have shown the importance of the uncertainties related to dark matter searches.
First we have presented a study of the constraints derived from dark matter searches and SUSY
searches at colliders applied to the Minimal Supersymmetric extension of the Standard Model,
focusing on neutralino dark matter. It showed that the various types of dark matter constraints,
namely from the relic density, direct and indirect detections, are very complementary, as they
exclude neutralinos of different natures. More precisely, the upper bound of the relic density ex-
cludes mostly bino-like neutralinos, whereas direct and indirect detection rather excludes Higgsi-
nos and winos respectively. Concerning direct detection, the constraints are limited, in particular,
by the uncertainties on the local dark matter density. As for indirect detection, the constraints suf-
fer from our poor knowledge of the dark matter density profile and of the propagation of charged
cosmic rays through the galactic medium. When combined with collider constraints, which are
obtained in an environment under control, direct detection constraints become quite robust with
respect to the mentioned uncertainties. This is not the case for indirect detection, whose con-
straints are still undermined by cosmic ray propagation uncertainties. Nevertheless, even in the
most conservative case, indirect detection excludes compressed scenarios which evade collider
constraints.
In a second part, we have presented the development of numerical tools in the public code Su-
perIso Relic designed to take into account correctly the astrophysical and nuclear uncertainties
on direct and indirect detection constraints. We implemented constraints from AMS-02, Fermi-
LAT, PANDAX-2, XENON1T and PICO60 and showed the importance of nuclear uncertainties
on direct detection limits.
In the last part, we showed that the content of the Universe could be constrained from the discov-
ery of new particles at colliders. We considered two alternative cosmological scenarios involving
the presence of a scalar field in the primordial Universe and showed that the discovery of a WIMP
with a standard relic density either too small or too large would allow us to set strong constraints
on the scalar field properties.
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RELIC DENSITY CALCULATION

A.1 Relic density without co-annihilation

A.1.1 General Solution

The evolution in time of a WIMP density in an expanding Universe is given by the Boltzmann
equation

dn
dt

=−3Hn−〈σannv〉(n2 −n2
eq) , (A.1)

where 〈σannv〉 is the average dark matter annihilation cross-section times the relative velocity of
the two particles annihilating and neq is the equilibrium density, which follows Fermi-Dirac or
Bose-Einstein statistics depending if the WIMP is a fermion or a boson

neq = g
(2π)3

∫
1

e−
E
T ±1

d3p , (A.2)

with g, the number of internal degrees of freedom of the WIMP, p its four-momentum and E =√
p2 +m2 , its energy . In the non-relativistic limit,

neq = g
(

mT
2π

)3/2
exp

(
−m

T

)
. (A.3)

As we want to calculate the temperature at which the WIMP density freezes-out, an additional
relation is necessary to relate the evolution of the temperature to time. This relation can be
calculated under the assupmtion of adiabaticity from the conservation of entropy

ds
dt

=−3Hs . (A.4)

Assuming that entropy is dominated by radiation, it is known as a function of the temperature

s = 2π2

45
hef f (T)T3 , (A.5)
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where hef f (T) is the effective number of entropic degrees of freedom of radiation.
Instead of using directly the temperature, it is more convenient to use the parameter x = m

T with
m, the mass of the WIMP. Then,

dn
dx

= dn
dt

dt
dx

. (A.6)

The first term on the right side of equation (A.6) can be replaced by equation (A.1) and the second
term by

dt
dx

= dt
ds

ds
dx

= −1
3Hs

ds
dx

.

Equation (A.6) becomes

dn
dx

=
[
−3Hn−〈σannv〉(n2 −n2

eq)
][ −1

3Hs
ds
dx

]
= n

s
ds
dx

−〈σannv〉(n2 −n2
eq)
[ −1

3Hs
ds
dx

]
which, divided by the entropy gives

dY
dx

= 〈σannv〉(Y 2 −Y 2
eq)
[

1
3H

ds
dx

]
, (A.7)

with Y = n
s .

From equation (A.5) one can deduce that

ds
dx

= −T2

m
ds
dT

= −T2

m
×
[

2π2

45

(
3T2hef f +T3 dhef f

dT

)]
= −6π2

45
T4

m
hef f

(
1+ 1

3
T

hef f

dhef f

dT

)
.

(A.8)

We also know that for a radiation-dominated Universe, H2 = 8π
3M2

p
ρrad, with ρrad = π2

30 gef f (T)T4,
and gef f (T) being the effective number of degrees of freedom of radiation.
Therefore,

H =
√

8π3

90M2
p

g1/2
e f f T2 (A.9)

and equation (A.8) becomes

dY
dx

=−
√

πM2
p

45
g1/2∗ m

x2 〈σannv〉(Y 2 −Y 2
eq) , (A.10)

with

g1/2
∗ = hef f

g1/2
e f f

(
1+ 1

3
T

hef f

dhef f

dT

)
. (A.11)
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In order to calculate the WIMP relic density at present time

Ω0
χ =

ρ0
χ

ρc
= 8π

3M2
p

ms0Y0

H2
0

, (A.12)

one should integrate equation (A.10) from x = 0 to x = mχ

T0
, with a background temperature T0 =

2.7K.

A.1.2 The WIMP miracle

After freeze-out, neq will continue to decrease as e−m/T so that eventually, Yeq � Y . In this con-
text, equation (A.10) can be rewritten as

dY
dx

= −λ(x)
x2 Y 2 , (A.13)

with λ(x) =
√

πM2
p

45 g1/2∗ m〈σannv〉. When only s-waves are considered, 〈σannv〉 is constant, and so
is λ(x). One can easily integrate equation (A.13) between freeze-out and today as

1
Y0

− 1
Yf

=λ

(
1
xf

− 1
x0

)
, (A.14)

which can be simplified, noticing that x0 � xf and Y0 �Yf ,

Y0 ≈
xf

λ
. (A.15)

Freeze-out corresponds to the moment when WIMP annihilation rate equals the rate of expan-
sion of the Universe. Thus, xf can be obtained by resolving the equation

neq(xf )〈σannv〉 = H(xf ) . (A.16)

Using equations (A.3) and (A.9), one obtains at first order approximation

xf = ln

(
0.038

g
g1/2

e f f

mMp〈σannv〉
)

. (A.17)

Thanks to the logarithm in the expression of xf , its value depends poorly on the exact value of
the WIMP mass or on its annihilation cross section. Taking m ≈ 100 GeV and a typical value for
weak interactions 〈σannv〉 ≈ 10−26 cm3/s, one obtains xf ≈ 20.
Replacing Y0 in equation (A.12),

Ω0
χ =

ρ0
χ

ρc
= 8π

3M2
p

ms0xf

H2
0λ

, (A.18)

and then

Ω0
χh2 = 16π5/2T3

0

9
�

5 M3
p

hef f (T0)

g1/2∗

xf

〈σannv〉 . (A.19)

119



APPENDIX A. RELIC DENSITY CALCULATION

Finally, replacing with numerical values,

Ω0
χh2 ∼ 3×10−27cm3s−1

〈σannv〉 . (A.20)

The “miracle” in this last equation is that if 〈σv〉 ∼ 3×10−26cm3s−1, which is a typical value for
weak interaction processes, one obtains the measured dark matter density Ω0

χh2 ≈ 0.1.
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We present here the couplings, in the NMSSM, between the neutral CP-even Higgs bosons and
the quarks, squarks and neutralino 1.
The couplings with the quarks differ for down-type and up-type quarks:

ci
q = g

2MW

(
mqri

q

)
, (B.1)

(B.2)

where g is the SU(2) gauge coupling, MW is the W boson mass, mq is the quark mass and ri
q

depends on the type of the quark:

ri
d = Hi1

cosβ
ri

u = H21

sinβ
(B.3)

with H the Higgs mixing matrice. The subscript i = 1,2,3 stands for the three CP-even neutral
Higgs bosons ordered by ascending masses.
The couplings with the squarks also depend on the type of the related quark, but also on the
squark number j = 1,2, defined so that mq̃1 < mq̃2 :

ci
q̃ j

= g
MW

(
Hi1cosβ−Hi2sinβ

)×α j

+ g
MW

m2
qri

q

− g
MW

sin(2θq)
2

(
Aq × ri

q +μ× ri
q̃

)
+λ tanβHi3

sin(2θq)�
2

mq ,

(B.4)

where θq is the squark mixing angle and Aq is the quark trilinear coupling. λ is a term appearing
in the NMSSM superpotential :

W = ũ∗
R yu

(
Q̃TεHu

)
− d̃∗

R yd

(
Q̃TεHd

)
− ẽ∗R ye

(
L̃TεHd

)
+λS

(
HT

u εHd

)
+ 1

3
κS3 , (B.5)
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where S is the NMSSM singlet.
The coefficients α j read:

α1 = t3 cos(θq)2 − q sin(θW )2cos(2θq) (B.6)

α2 = t3 sin(θq)2 + q sin(θW )2cos(2θq) , (B.7)

where t3 stands for the third-component weak isospin and q the electric charge.
Finally, the coefficient ri

q̃ is defined as:

ri
d̃
= Hi2

cosβ
ri

ũ = Hi1

sinβ
. (B.8)

We end by giving the couplings between the neutralino 1 and the Higgs:

ci
χ =

g
2

(
N12 − sinθW

cosθW
N11

)
× (Hi1N13 −Hi2N14)

+
�

2λ (Hi3N13N14 +Hi2N13N15 +Hi1N14N15)

−
�

2κHi3N2
15 ,

(B.9)

where Ni j is the neutralino mixing matrix.
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[45] J. Aleksić et al., “Optimized dark matter searches in deep observations of Segue 1 with
MAGIC,” JCAP 1402 (2014) 008, ��������������� ��������.

[46] VERITAS Collaboration, E. Aliu et al., “VERITAS Deep Observations of the Dwarf
Spheroidal Galaxy Segue 1,” Phys. Rev. D85 (2012) 062001, ��������	������
���������� �. [Erratum: Phys. Rev.D91,no.12,129903(2015)].

[47] HAWC Collaboration, A. Albert et al., “Dark Matter Limits From Dwarf Spheroidal
Galaxies with The HAWC Gamma-Ray Observatory,” Astrophys. J. 853 no. 2, (2018)
154, �������
	��	��

 ���������� �.

[48] D. Hooper and L. Goodenough, “Dark Matter Annihilation in The Galactic Center As Seen
by the Fermi Gamma Ray Space Telescope,” Phys. Lett. B697 (2011) 412–428,
�������	�	��
�� ��������.

[49] D. Hooper and T. Linden, “On The Origin Of The Gamma Rays From The Galactic Center,”
Phys. Rev. D84 (2011) 123005, ���������	�			� ���������� �.

[50] T. Daylan, D. P. Finkbeiner, D. Hooper, T. Linden, S. K. N. Portillo, N. L. Rodd, and T. R.
Slatyer, “The characterization of the gamma-ray signal from the central Milky Way: A
case for annihilating dark matter,” Phys. Dark Univ. 12 (2016) 1–23, ��������	���
	�
���������� �.

[51] K. N. Abazajian, N. Canac, S. Horiuchi, and M. Kaplinghat, “Astrophysical and Dark
Matter Interpretations of Extended Gamma-Ray Emission from the Galactic Center,”
Phys. Rev. D90 no. 2, (2014) 023526, ��������	���	�	 ���������� �.

[52] T. Lacroix, C. Boehm, and J. Silk, “Fitting the Fermi-LAT GeV excess: On the importance
of including the propagation of electrons from dark matter,” Phys. Rev. D90 no. 4,
(2014) 043508, ��������	�����
 ���������� �.

125



BIBLIOGRAPHY

[53] F. Calore, I. Cholis, C. McCabe, and C. Weniger, “A Tale of Tails: Dark Matter
Interpretations of the Fermi GeV Excess in Light of Background Model Systematics,”
Phys. Rev. D91 no. 6, (2015) 063003, ����������	�
�� ������.

[54] S. K. Lee, M. Lisanti, and B. R. Safdi, “Distinguishing Dark Matter from Unresolved Point
Sources in the Inner Galaxy with Photon Statistics,” JCAP 1505 no. 05, (2015) 056,
����������	
��� ��������	���.
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Weakly-Interacting-Massive-ParticleâĂŞNucleon Cross Section Limits from First Data
of PandaX-II Experiment,” Phys. Rev. Lett. 118 no. 7, (2017) 071301,
�����������	���� ��������. [Erratum: Phys. Rev. Lett.120,no.4,049902(2018)].

[72] PICO Collaboration, C. Amole et al., “Dark Matter Search Results from the PICO-60 C3F8

Bubble Chamber,” Phys. Rev. Lett. 118 no. 25, (2017) 251301, ��������	��	����
������������.

[73] DAMA Collaboration, R. Bernabei et al., “First results from DAMA/LIBRA and the
combined results with DAMA/NaI,” Eur. Phys. J. C56 (2008) 333–355,
������	�	������ ���������.

[74] DAMA, LIBRA Collaboration, R. Bernabei et al., “New results from DAMA/LIBRA,” Eur.
Phys. J. C67 (2010) 39–49, �������		���	�� ������������.

[75] D. Hooper, J. I. Collar, J. Hall, D. McKinsey, and C. Kelso, “A Consistent Dark Matter
Interpretation For CoGeNT and DAMA/LIBRA,” Phys. Rev. D82 (2010) 123509,
�������		���		� ��������.

[76] CoGeNT Collaboration, C. E. Aalseth et al., “Results from a Search for Light-Mass Dark
Matter with a P-type Point Contact Germanium Detector,” Phys. Rev. Lett. 106 (2011)
131301, �������		����	� ������������.

[77] J. H. Davis, C. McCabe, and C. Boehm, “Quantifying the evidence for Dark Matter in
CoGeNT data,” JCAP 1408 (2014) 014, ��������	��	�
� ��������.

[78] XENON Collaboration, E. Aprile et al., “Physics reach of the XENON1T dark matter
experiment,” JCAP 1604 no. 04, (2016) 027, �����������	��	� ��� �!��"�#���.

[79] LZ Collaboration, D. S. Akerib et al., “LUX-ZEPLIN (LZ) Conceptual Design Report,”
��������	
�	�
�	 ��� �!��"�#���.

[80] DARWIN Collaboration, J. Aalbers et al., “DARWIN: towards the ultimate dark matter
detector,” JCAP 1611 (2016) 017, ��������	��	�		� ���������$%�.

[81] F. Mayet et al., “A review of the discovery reach of directional Dark Matter detection,”
Phys. Rept. 627 (2016) 1–49, ��������	��	���� ������������.

127



BIBLIOGRAPHY

[82] P. Binetruy, Supersymmetry.
Oxford Graduate Texts. Oxford University Press, 2012.

[83] S. P. Martin, “A Supersymmetry primer,” ��������	
	�������� ���	
	��. [Adv. Ser.
Direct. High Energy Phys.18,1(1998)].

[84] F. Englert and R. Brout, “Broken Symmetry and the Mass of Gauge Vector Mesons,” Phys.
Rev. Lett. 13 (1964) 321–323. [,157(1964)].

[85] P. W. Higgs, “Broken symmetries, massless particles and gauge fields,” Phys. Lett. 12
(1964) 132–133.

[86] P. W. Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13
(1964) 508–509. [,160(1964)].

[87] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, “Global Conservation Laws and Massless
Particles,” Phys. Rev. Lett. 13 (1964) 585–587. [,162(1964)].

[88] P. W. Higgs, “Spontaneous Symmetry Breakdown without Massless Bosons,” Phys. Rev.
145 (1966) 1156–1163.

[89] T. W. B. Kibble, “Symmetry breaking in nonAbelian gauge theories,” Phys. Rev. 155 (1967)
1554–1561. [,165(1967)].

[90] CMS Collaboration, S. Chatrchyan et al., “Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC,” Phys. Lett. B716 (2012) 30–61,
������������� ���	
���.

[91] ATLAS Collaboration, G. Aad et al., “Observation of a new particle in the search for the
Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B716
(2012) 1–29, ������������� ���	
���.

[92] J.-L. Gervais and B. Sakita, “Field Theory Interpretation of Supergauges in Dual Models,”
Nucl. Phys. B34 (1971) 632–639. [,154(1971)].

[93] Yu. A. Golfand and E. P. Likhtman, “Extension of the Algebra of Poincare Group
Generators and Violation of p Invariance,” JETP Lett. 13 (1971) 323–326. [Pisma Zh.
Eksp. Teor. Fiz.13,452(1971)].

[94] J. Wess and B. Zumino, “Supergauge Transformations in Four-Dimensions,” Nucl. Phys.
B70 (1974) 39–50. [,24(1974)].

[95] D. V. Volkov and V. P. Akulov, “Is the Neutrino a Goldstone Particle?,” Phys. Lett. 46B
(1973) 109–110.

[96] D. Z. Freedman, P. van Nieuwenhuizen, and S. Ferrara, “Progress Toward a Theory of
Supergravity,” Phys. Rev. D13 (1976) 3214–3218.

[97] P. Van Nieuwenhuizen, “Supergravity,” Phys. Rept. 68 (1981) 189–398.
[98] S. Deser and B. Zumino, “Consistent Supergravity,” Phys. Lett. B62 (1976) 335.

[,335(1976)].
[99] G. R. Farrar and P. Fayet, “Phenomenology of the Production, Decay, and Detection of New

Hadronic States Associated with Supersymmetry,” Phys. Lett. 76B (1978) 575–579.
[100] P. Fayet, “Supersymmetry and Weak, Electromagnetic and Strong Interactions,” Phys.

Lett. 64B (1976) 159.
[101] P. Fayet and S. Ferrara, “Supersymmetry,” Phys. Rept. 32 (1977) 249–334.
[102] P. Fayet, “Spontaneously Broken Supersymmetric Theories of Weak, Electromagnetic and

Strong Interactions,” Phys. Lett. 69B (1977) 489.

128



BIBLIOGRAPHY

[103] T. Falk, K. A. Olive, and M. Srednicki, “Heavy sneutrinos as dark matter,” Phys. Lett.
B339 (1994) 248–251, ��������	
	�������� ���	
	��.

[104] G. L. Kane, C. F. Kolda, L. Roszkowski, and J. D. Wells, “Study of constrained minimal
supersymmetry,” Phys. Rev. D49 (1994) 6173–6210, ��������	
	���������
���	
	��.

[105] MSSM Working Group Collaboration, A. Djouadi et al., “The Minimal supersymmetric
standard model: Group summary report,” in GDR (Groupement De Recherche) -
Supersymetrie Montpellier, France, April 15-17, 1998.

��������	
	�������� ���	
	��.
���	�������	�����	��������������������������������	
	� �������	��.

[106] ATLAS Collaboration, M. Aaboud et al., “Search for resonances in diphoton events at�
s =13 TeV with the ATLAS detector,” JHEP 09 (2016) 001, ����������������

���	
�!�.

[107] CMS Collaboration, V. Khachatryan et al., “Search for Resonant Production of High-Mass
Photon Pairs in Proton-Proton Collisions at

�
s =8 and 13 TeV,” Phys. Rev. Lett. 117

no. 5, (2016) 051802, ��������������� ���	
�!�.

[108] B. Mellado Garcia, P. Musella, M. Grazzini, and R. Harlander, “CERN Report 4: Part I
Standard Model Predictions,”. ���	�������������������������"����.

[109] LHCb Collaboration, R. Aaij et al., “Angular analysis of the B0 → K∗0μ+μ− decay using 3
fb−1 of integrated luminosity,” JHEP 02 (2016) 104, �������"����� ���	
�!�.

[110] LHCb Collaboration, R. Aaij et al., “Test of lepton universality using B+ → K+�+�−

decays,” Phys. Rev. Lett. 113 (2014) 151601, ������������� ���	
�!�.

[111] LHCb Collaboration, R. Aaij et al., “Test of lepton universality with B0 → K∗0�+�−

decays,” JHEP 08 (2017) 055, ���������"��"��� ���	
�!�.

[112] L. Roszkowski, E. M. Sessolo, and A. J. Williams, “Prospects for dark matter searches in
the pMSSM,” JHEP 02 (2015) 014, ����������"�� ���	
	��.

[113] M. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G. Rizzo, “Lessons and prospects from
the pMSSM after LHC Run I,” Phys. Rev. D91 no. 5, (2015) 055002, �������������
���	
	��.

[114] A. Arbey, M. Battaglia, and F. Mahmoudi, “The Higgs boson, Supersymmetry and Dark
Matter: Relations and Perspectives,” Annalen Phys. 528 (2016) 179–186,
�������"���"��� ���	
	��.

[115] ATLAS Collaboration, G. Aad et al., “Summary of the ATLAS experiment’s sensitivity to
supersymmetry after LHC Run 1 ? interpreted in the phenomenological MSSM,”
JHEP 10 (2015) 134, �������"�������� ���	
�!�.

[116] G. Bertone, F. Calore, S. Caron, R. Ruiz, J. S. Kim, R. Trotta, and C. Weniger, “Global
analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II
and astroparticle experiments,” JCAP 1604 no. 04, (2016) 037, �������"��������
���	
	��.

[117] GAMBIT Collaboration, P. Athron et al., “GAMBIT: The Global and Modular
Beyond-the-Standard-Model Inference Tool,” ���������"������ ���	
	��.

129



BIBLIOGRAPHY

[118] GAMBIT Dark Matter Workgroup Collaboration, T. Bringmann et al., “DarkBit: A
GAMBIT module for computing dark matter observables and likelihoods,”
��������	
�	��	 ��������.

[119] GAMBIT Collaboration, P. Athron et al., “A global fit of the MSSM with GAMBIT,”
��������	
�	���� ��������.

[120] A. Arbey, M. Boudaud, F. Mahmoudi, and G. Robbins, “Robustness of dark matter
constraints and interplay with collider searches for New Physics,” JHEP 11 (2017) 132,
��������	��		�� ��������.

[121] A. Chakraborty, B. Das, J. L. Diaz-Cruz, D. K. Ghosh, S. Moretti, and P. Poulose, “125 GeV
Higgs signal at the LHC in the CP-violating MSSM,” Phys. Rev. D90 no. 5, (2014)
055005, ��������	����
 ��������.

[122] A. Arbey, J. Ellis, R. M. Godbole, and F. Mahmoudi, “Exploring CP Violation in the
MSSM,” Eur. Phys. J. C75 no. 2, (2015) 85, ���������	���� ��������.

[123] B. C. Allanach, “SOFTSUSY: a program for calculating supersymmetric spectra,” Comput.
Phys. Commun. 143 (2002) 305–331, �������	�	���
.

[124] A. Arbey, M. Battaglia, and F. Mahmoudi, “Implications of LHC Searches on SUSY
Particle Spectra: The pMSSM Parameter Space with Neutralino Dark Matter,” Eur.
Phys. J. C72 (2012) 1847, ���������	���� ��������.

[125] A. Arbey, M. Battaglia, and F. Mahmoudi, “Constraints on the MSSM from the Higgs
Sector: A pMSSM Study of Higgs Searches, B0

s−>μ+μ− and Dark Matter Direct
Detection,” Eur. Phys. J. C72 (2012) 1906, �����������	� ��������.

[126] A. Arbey, M. Battaglia, and F. Mahmoudi, “Light Neutralino Dark Matter in the pMSSM:
Implications of LEP, LHC and Dark Matter Searches on SUSY Particle Spectra,” Eur.
Phys. J. C72 (2012) 2169, �������	
�

� ��������.

[127] G. Belanger, G. Drieu La Rochelle, B. Dumont, R. M. Godbole, S. Kraml, and S. Kulkarni,
“LHC constraints on light neutralino dark matter in the MSSM,” Phys. Lett. B726
(2013) 773–780, ��������	�����
 ��������.

[128] C. Boehm, P. S. B. Dev, A. Mazumdar, and E. Pukartas, “Naturalness of Light Neutralino
Dark Matter in pMSSM after LHC, XENON100 and Planck Data,” JHEP 06 (2013)
113, ��������	��
��� ��������.

[129] A. Arbey, M. Battaglia, and F. Mahmoudi, “Supersymmetry with Light Dark Matter
confronting the recent CDMS and LHC Results,” Phys. Rev. D88 (2013) 095001,
��������	���
� ��������.

[130] ATLAS, CMS Collaboration, G. Aad et al., “Measurements of the Higgs boson production
and decay rates and constraints on its couplings from a combined ATLAS and CMS
analysis of the LHC pp collision data at

�
s = 7 and 8 TeV,” JHEP 08 (2016) 045,

��������	��	�� ��������.

[131] B. C. Allanach, A. Djouadi, J. L. Kneur, W. Porod, and P. Slavich, “Precise determination of
the neutral Higgs boson masses in the MSSM,” JHEP 09 (2004) 044, �������	�	����.

[132] A. Arbey and F. Mahmoudi, “SuperIso Relic: A Program for calculating relic density and
flavor physics observables in Supersymmetry,” Comput. Phys. Commun. 181 (2010)
1277–1292, ������	�	��	��� ��������.

130



BIBLIOGRAPHY

[133] A. Arbey and F. Mahmoudi, “SuperIso Relic v3.0: A program for calculating relic density
and flavour physics observables: Extension to NMSSM,” Comput. Phys. Commun. 182
(2011) 1582–1583.

[134] N. Baro, F. Boudjema, and A. Semenov, “Full one-loop corrections to the relic density in
the MSSM: A Few examples,” Phys. Lett. B660 (2008) 550–560, ��������	�
	��	
�������.

[135] N. Baro, F. Boudjema, G. Chalons, and S. Hao, “Relic density at one-loop with gauge boson
pair production,” Phys. Rev. D81 (2010) 015005, ��������	�
���� �������.

[136] J. Harz, B. Herrmann, M. Klasen, K. Kovarik, and Q. Le Boulc’h, “Neutralino-stop
coannihilation into electroweak gauge and Higgs bosons at one loop,” Phys. Rev. D87
no. 5, (2013) 054031, ������	�	�
���	 �������.

[137] M. Hindmarsh and O. Philipsen, “WIMP dark matter and the QCD equation of state,”
Phys. Rev. D71 (2005) 087302, ����������������	��� �������.

[138] M. Laine and Y. Schroder, “Quark mass thresholds in QCD thermodynamics,” Phys. Rev.
D73 (2006) 085009, ��������������.

[139] M. Drees, F. Hajkarim, and E. R. Schmitz, “The Effects of QCD Equation of State on the
Relic Density of WIMP Dark Matter,” JCAP 1506 no. 06, (2015) 025,
������	���
���	� �������.

[140] M. Kamionkowski and M. S. Turner, “THERMAL RELICS: DO WE KNOW THEIR
ABUNDANCES?,” Phys. Rev. D42 (1990) 3310–3320.

[141] P. Salati, “Quintessence and the relic density of neutralinos,” Phys. Lett. B571 (2003)
121–131, ����������������.

[142] S. Profumo and P. Ullio, “SUSY dark matter and quintessence,” JCAP 0311 (2003) 006,
��������������.

[143] D. J. H. Chung, L. L. Everett, K. Kong, and K. T. Matchev, “Connecting LHC, ILC, and
Quintessence,” JHEP 10 (2007) 016, ����������
���� �������.

[144] A. Arbey and F. Mahmoudi, “SUSY constraints from relic density: High sensitivity to
pre-BBN expansion rate,” Phys. Lett. B669 (2008) 46–51, ����������
���	 �������.

[145] T. Moroi and L. Randall, “Wino cold dark matter from anomaly mediated SUSY breaking,”
Nucl. Phys. B570 (2000) 455–472, ��������������.

[146] G. F. Giudice, E. W. Kolb, and A. Riotto, “Largest temperature of the radiation era and its
cosmological implications,” Phys. Rev. D64 (2001) 023508, �����������	��.

[147] N. Fornengo, A. Riotto, and S. Scopel, “Supersymmetric dark matter and the reheating
temperature of the universe,” Phys. Rev. D67 (2003) 023514, ��������������.

[148] G. Gelmini, P. Gondolo, A. Soldatenko, and C. E. Yaguna, “The Effect of a late decaying
scalar on the neutralino relic density,” Phys. Rev. D74 (2006) 083514, ������������	�.

[149] A. Arbey and F. Mahmoudi, “SUSY Constraints, Relic Density, and Very Early Universe,”
JHEP 05 (2010) 051, ����������
���� �������.

[150] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “MicrOMEGAs: A Program for
calculating the relic density in the MSSM,” Comput. Phys. Commun. 149 (2002)
103–120, ��������		����.

131



BIBLIOGRAPHY

[151] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “MicrOMEGAs 2.0: A Program to
calculate the relic density of dark matter in a generic model,” Comput. Phys. Commun.
176 (2007) 367–382, ������������	
.

[152] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “micrOMEGAs 3: A program for
calculating dark matter observables,” Comput. Phys. Commun. 185 (2014) 960–985,
��������	����� ��������.

[153] M. Cirelli, G. Corcella, A. Hektor, G. Hutsi, M. Kadastik, P. Panci, M. Raidal, F. Sala, and
A. Strumia, “PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter
Indirect Detection,” JCAP 1103 (2011) 051, �����������	�	 ��������. [Erratum:
JCAP 1210, E01 (2012)].

[154] M. Boudaud, M. Cirelli, G. Giesen, and P. Salati, “A fussy revisitation of antiprotons as a
tool for Dark Matter searches,” JCAP 1505 no. 05, (2015) 013, ����������	�
�
�������������.

[155] F. Donato, N. Fornengo, D. Maurin, and P. Salati, “Antiprotons in cosmic rays from
neutralino annihilation,” Phys. Rev. D69 (2004) 063501, ����������������.

[156] G. Di Bernardo, C. Evoli, D. Gaggero, D. Grasso, and L. Maccione, “Cosmic Ray Electrons,
Positrons and the Synchrotron emission of the Galaxy: consistent analysis and
implications,” JCAP 1303 (2013) 036, �����������	�� �������������.

[157] T. Bringmann, F. Donato, and R. A. Lineros, “Radio data and synchrotron emission in
consistent cosmic ray models,” JCAP 1201 (2012) 049, ��������������
�������������.

[158] E. Orlando and A. Strong, “Galactic synchrotron emission with cosmic ray propagation
models,” Mon. Not. Roy. Astron. Soc. 436 (2013) 2127, ��������
��
��
�������������.

[159] N. Fornengo, R. A. Lineros, M. Regis, and M. Taoso, “The isotropic radio background
revisited,” JCAP 1404 (2014) 008, �������������� ���������� !�.

[160] M. Di Mauro, F. Donato, N. Fornengo, R. Lineros, and A. Vittino, “Interpretation of
AMS-02 electrons and positrons data,” JCAP 1404 (2014) 006, ��������������
�������������.

[161] Fermi-LAT Collaboration, M. Ackermann et al., “Fermi-LAT Observations of the Diffuse
Gamma-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium,”
Astrophys. J. 750 (2012) 3, �������������
 �������������.

[162] J. Lavalle, D. Maurin, and A. Putze, “Direct constraints on diffusion models from
cosmic-ray positron data: Excluding the minimal model for dark matter searches,”
Phys. Rev. D90 (2014) 081301, �����������	�� �������������.

[163] M. Boudaud, E. F. Bueno, S. Caroff, Y. Genolini, V. Poulin, V. Poireau, A. Putze, S. Rosier,
P. Salati, and M. Vecchi, “The pinching method for Galactic cosmic ray positrons:
implications in the light of precision measurements,” Astron. Astrophys. 605 (2017)
A17, ������������
�� �������������.

[164] P. J. McMillan, “Mass models of the Milky Way,” Mon. Not. Roy. Astron. Soc. 414 (2011)
2446–2457, �������������� �������������.

[165] R. Catena and P. Ullio, “A novel determination of the local dark matter density,” JCAP
1008 (2010) 004, ������
������� ���������� !�.

132



BIBLIOGRAPHY

[166] F. Nesti and P. Salucci, “The Dark Matter halo of the Milky Way, AD 2013,” JCAP 1307
(2013) 016, ��������	
���� �������������.

[167] J. F. Navarro, C. S. Frenk, and S. D. M. White, “The Structure of cold dark matter halos,”
Astrophys. J. 462 (1996) 563–575, �����������	�	�.

[168] J. F. Navarro, A. Ludlow, V. Springel, J. Wang, M. Vogelsberger, S. D. M. White, A. Jenkins,
C. S. Frenk, and A. Helmi, “The Diversity and Similarity of Cold Dark Matter Halos,”
Mon. Not. Roy. Astron. Soc. 402 (2010) 21, ������	��	��� ����������.

[169] A. Burkert, “The Structure of dark matter halos in dwarf galaxies,” IAU Symp. 171 (1996)
175, �����������	
	
�. [Astrophys. J. 447, L25 (1995)].

[170] DES, Fermi-LAT Collaboration, A. Albert et al., “Searching for Dark Matter Annihilation
in Recently Discovered Milky Way Satellites with Fermi-LAT,” Astrophys. J. 834 no. 2,
(2017) 110, �����������	���
 �������������.

[171] Fermi-LAT Collaboration. ������������ !�������"#��$�%$&��&'($�����	��.

[172] Fermi-LAT Collaboration, M. Ackermann et al., “Searching for Dark Matter Annihilation
from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area
Telescope Data,” Phys. Rev. Lett. 115 no. 23, (2015) 231301, ��������	��	�
�
�������������.

[173] G. Belanger, F. Boudjema, A. Pukhov, and A. Semenov, “Dark matter direct detection rate
in a generic model with micrOMEGAs 2.2,” Comput. Phys. Commun. 180 (2009)
747–767, ������	�	����	 ��%�����.

[174] P. J. McMillan, “The mass distribution and gravitational potential of the Milky Way,” Mon.
Not. Roy. Astron. Soc. 465 (Feb., 2017) 76–94, ��������	��		���.

[175] K. Freese, J. A. Frieman, and A. Gould, “Signal Modulation in Cold Dark Matter
Detection,” Phys. Rev. D37 (1988) 3388–3405.

[176] A. K. Drukier, K. Freese, and D. N. Spergel, “Detecting Cold Dark Matter Candidates,”
Phys. Rev. D33 (1986) 3495–3508.

[177] M. J. Reid et al., “Trigonometric Parallaxes of Massive Star Forming Regions: VI. Galactic
Structure, Fundamental Parameters and Non-Circular Motions,” Astrophys. J. 700
(2009) 137–148, ������	�	����� �������������.

[178] P. J. McMillan and J. J. Binney, “The uncertainty in Galactic parameters,” Mon. Not. Roy.
Astron. Soc. 402 (2010) 934, ������	�	��
��� �������������.

[179] J. Bovy, D. W. Hogg, and H.-W. Rix, “Galactic masers and the Milky Way circular velocity,”
Astrophys. J. 704 (2009) 1704–1709, ������	�	���
� �������������.

[180] M. C. Smith et al., “The RAVE Survey: Constraining the Local Galactic Escape Speed,”
Mon. Not. Roy. Astron. Soc. 379 (2007) 755–772, ���������	������.

[181] I. R. King, “The structure of star clusters. III. Some simple dynamical models,” Astron. J.
71 (Feb., 1966) 64.

[182] S. Chaudhury, P. Bhattacharjee, and R. Cowsik, “Direct detection of WIMPs : Implications
of a self-consistent truncated isothermal model of the Milky Way’s dark matter halo,”
JCAP 1009 (2010) 020, �������		������ ����������)*�.

[183] N. W. Evans, C. M. Carollo, and P. T. de Zeeuw, “Triaxial haloes and particle dark matter
detection,” Mon. Not. Roy. Astron. Soc. 318 (2000) 1131, ���������			����.

133



BIBLIOGRAPHY

[184] Particle Data Group Collaboration, C. Patrignani et al., “Review of Particle Physics,”
Chin. Phys. C40 no. 10, (2016) 100001.

[185] A. Djouadi, “The Anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the
minimal supersymmetric model,” Phys. Rept. 459 (2008) 1–241, �����������	
�.

[186] A. Arbey, M. Battaglia, A. Djouadi, and F. Mahmoudi, “The Higgs sector of the
phenomenological MSSM in the light of the Higgs boson discovery,” JHEP 09 (2012)
107, �����	��
�	��� ��������.

[187] A. Arbey, M. Battaglia, A. Djouadi, and F. Mahmoudi, “An update on the constraints on
the phenomenological MSSM from the new LHC Higgs results,” Phys. Lett. B720
(2013) 153–160, �����	�		����� ��������.

[188] A. Djouadi, “Precision Higgs coupling measurements at the LHC through ratios of
production cross sections,” Eur. Phys. J. C73 (2013) 2498, �����	�������� ��������.

[189] M. Chakraborti, U. Chattopadhyay, A. Choudhury, A. Datta, and S. Poddar, “The
Electroweak Sector of the pMSSM in the Light of LHC - 8 TeV and Other Data,” JHEP
07 (2014) 019, �����	�������	 ��������.

[190] M. Chakraborti, U. Chattopadhyay, and S. Poddar, “How light a higgsino or a wino dark
matter can become in a compressed scenario of MSSM,” JHEP 09 (2017) 064,
�����	
�������� ��������.

[191] C.-S. Huang, W. Liao, and Q.-S. Yan, “The Promising process to distinguish
supersymmetric models with large tan Beta from the standard model: B —> X(s) mu+
mu-,” Phys. Rev. D59 (1999) 011701, ��������������.

[192] K. S. Babu and C. F. Kolda, “Higgs mediated B0 →μ+μ− in minimal supersymmetry,”
Phys. Rev. Lett. 84 (2000) 228–231, ������������
�.

[193] J. R. Ellis, K. A. Olive, and V. C. Spanos, “On the interpretation of Bs →μ+μ− in the
CMSSM,” Phys. Lett. B624 (2005) 47–59, �����������	��.

[194] D. Eriksson, F. Mahmoudi, and O. Stal, “Charged Higgs bosons in Minimal
Supersymmetry: Updated constraints and experimental prospects,” JHEP 11 (2008)
035, �������������	 ��������.

[195] A. Arbey, M. Battaglia, F. Mahmoudi, and D. Martìnez Santos, “Supersymmetry confronts
Bs →μ+μ− : Present and future status,” Phys. Rev. D87 no. 3, (2013) 035026,
�����	�	�����
 ��������.

[196] F. Mahmoudi, “SuperIso: A Program for calculating the isospin asymmetry of B —> K*
gamma in the MSSM,” Comput. Phys. Commun. 178 (2008) 745–754,
������
	�����
 ��������.

[197] F. Mahmoudi, “SuperIso v2.3: A Program for calculating flavor physics observables in
Supersymmetry,” Comput. Phys. Commun. 180 (2009) 1579–1613, �����������	��
��������.

[198] F. Mahmoudi, “SuperIso v3.0, flavor physics observables calculations: Extension to
NMSSM,” Comput. Phys. Commun. 180 (2009) 1718–1719.

[199] LHCb Collaboration, R. Aaij et al., “Measurement of the B0
s →μ+μ− branching fraction

and effective lifetime and search for B0 →μ+μ− decays,” Phys. Rev. Lett. 118 no. 19,
(2017) 191801, �����	
�����
�
 ��������.

134



BIBLIOGRAPHY

[200] Y. Amhis et al., “Averages of b-hadron, c-hadron, and τ-lepton properties as of summer
2016,” ���������	
��	 ��������.

[201] U. Haisch and F. Mahmoudi, “MSSM: Cornered and Correlated,” JHEP 01 (2013) 061,
�������	��
���� ��������.

[202] A. Djouadi, J. Kalinowski, and M. Spira, “HDECAY: A Program for Higgs boson decays in
the standard model and its supersymmetric extension,” Comput. Phys. Commun. 108
(1998) 56–74, ��������������.

[203] R. V. Harlander, S. Liebler, and H. Mantler, “SusHi: A program for the calculation of Higgs
production in gluon fusion and bottom-quark annihilation in the Standard Model and
the MSSM,” Comput. Phys. Commun. 184 (2013) 1605–1617, �������	�	
	��
��������.

[204] M. Spira. ������������
���
���
������� ���
��! .
[205] A. Arbey, S. Fichet, F. Mahmoudi, and G. Moreau, “The correlation matrix of Higgs rates

at the LHC,” JHEP 11 (2016) 097, ����������
���"" ��������.
[206] ATLAS Collaboration, G. Aad et al., “Summary of the searches for squarks and gluinos

using
�

s = 8 TeV pp collisions with the ATLAS experiment at the LHC,” JHEP 10
(2015) 054, �������"��
�""	" ��������.

[207] ATLAS Collaboration, “Further searches for squarks and gluinos in final states with jets
and missing transverse momentum at

�
s =13 TeV with the ATLAS detector,”

#$%#&�'()*�	�������.
[208] ATLAS Collaboration, “Search for squarks and gluinos in final states with jets and

missing transverse momentum using 36 fb−1 of
�

s = 13 TeV pp collision data with the
ATLAS detector,” #$%#&�'()*�	�����		.

[209] ATLAS Collaboration, “Pursuit of new phenomena in final states with high jet
multiplicity, high jet masses and missing transverse momentum with ATLAS at�

s = 13 TeV,” #$%#&�'()*�	������".
[210] ATLAS Collaboration, “Search for new phenomena with large jet multiplicities and

missing transverse momentum using large-radius jets and flavour-tagging at ATLAS
in 13 TeV pp collisions,” #$%#&�'()*�	�����.

[211] ATLAS Collaboration, “Search for squarks and gluinos in events with an isolated lepton,
jets and missing transverse momentum at

�
s = 13 TeV with the ATLAS detector,”

#$%#&�'()*�	�����"�.
[212] ATLAS Collaboration, G. Aad et al., “Search for the electroweak production of

supersymmetric particles in
�

s =8 TeV pp collisions with the ATLAS detector,” Phys.
Rev. D93 no. 5, (2016) 052002, �������"��
���"	 ��������.

[213] ATLAS Collaboration, “Search for supersymmetry with two and three leptons and
missing transverse momentum in the final state at

�
s = 13 TeV with the ATLAS

detector,” #$%#&�'()*�	�������.
[214] ATLAS Collaboration, “Search for electroweak production of supersymmetric particles in

the two and three lepton final state at
�

s = 13TeV with the ATLAS detector,”
#$%#&�'()*�	������.

[215] ATLAS Collaboration, G. Aad et al., “ATLAS Run 1 searches for direct pair production of
third-generation squarks at the Large Hadron Collider,” Eur. Phys. J. C75 no. 10,

135



BIBLIOGRAPHY

(2015) 510, ��������	
�	�
�
 �������. [Erratum: Eur. Phys. J. C76, no.3, 153
(2016)].

[216] ATLAS Collaboration, “Search for the Supersymmetric Partner of the Top Quark in the
Jets+Emiss Final State at sqrt(s) = 13 TeV,” ������������	�
�	��.

[217] ATLAS Collaboration, “Search for a Scalar Partner of the Top Quark in the Jets+ETmiss
Final State at

�
s = 13 TeV with the ATLAS detector,” ������������	���	�	.

[218] ATLAS Collaboration, “Search for top squarks in final states with one isolated lepton, jets,
and missing transverse momentum in

�
s = 13 TeV pp collisions with the ATLAS

detector,” ������������	�
�	�	.

[219] ATLAS Collaboration, “Search for direct top squark pair production and dark matter
production in final states with two leptons in

�
s = 13 TeV pp collisions using 13.3 fb−1

of ATLAS data,” ������������	�
�	�
.

[220] ATLAS Collaboration, “Search for direct top squark pair production in final states with
two leptons in

�
s = 13 TeV pp collisions with the ATLAS detector,”

������������	���	��.

[221] ATLAS Collaboration, M. Aaboud et al., “Search for bottom squark pair production in
proton/proton collisions at

�
s = 13 TeV with the ATLAS detector,” Eur. Phys. J. C76

no. 10, (2016) 547, �������
	
�	���� �������.

[222] ATLAS Collaboration, “Search for Supersymmetry in events with b-tagged jets and
missing transverse energy in pp collisions at

�
s = 13 TeV with the ATLAS detector,”

������������	���	��.

[223] ATLAS Collaboration, G. Aad et al., “Search for new phenomena in final states with an
energetic jet and large missing transverse momentum in pp collisions at

�
s =8 TeV

with the ATLAS detector,” Eur. Phys. J. C75 no. 7, (2015) 299, ��������	��	����
�������. [Erratum: Eur. Phys. J. C75, no.9, 408 (2015)].

[224] ATLAS Collaboration, M. Aaboud et al., “Search for new phenomena in final states with
an energetic jet and large missing transverse momentum in pp collisions at

�
s = 13

TeV using the ATLAS detector,” Phys. Rev. D94 no. 3, (2016) 032005,
�������
	��	���� �������.

[225] ATLAS Collaboration, G. Aad et al., “Search for dark matter in events with a hadronically
decaying W or Z boson and missing transverse momentum in pp collisions at

�
s = 8

TeV with the ATLAS detector,” Phys. Rev. Lett. 112 no. 4, (2014) 041802,
��������	 ��	�� �������.

[226] ATLAS Collaboration, “Search for dark matter produced in association with a
hadronically decaying vector boson in pp collisions at

�
s = 13 TeV with the ATLAS

detector at the LHC,” ������������	���	�	.

[227] L. Maiani, A. D. Polosa, and V. Riquer, “Probing Minimal Supersymmetry at the LHC with
the Higgs Boson Masses,” New J. Phys. 14 (2012) 073029, ��������	���  � �������.

[228] A. Arbey, M. Battaglia, and F. Mahmoudi, “Supersymmetric Heavy Higgs Bosons at the
LHC,” Phys. Rev. D88 no. 1, (2013) 015007, ��������	�����	 �������.

[229] N. D. Christensen, T. Han, and S. Su, “MSSM Higgs Bosons at The LHC,” Phys. Rev. D85
(2012) 115018, ��������	����	� �������.

136



BIBLIOGRAPHY

[230] T. Han, T. Li, S. Su, and L.-T. Wang, “Non-Decoupling MSSM Higgs Sector and Light
Superpartners,” JHEP 11 (2013) 053, ��������	
���� ��������.

[231] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, “Probing the Standard
Model with Higgs signal rates from the Tevatron, the LHC and a future ILC,” JHEP
11 (2014) 039, ��������	������ ��������.

[232] CMS Collaboration, “Search for a neutral MSSM Higgs boson decaying into ττ with
12.9 fb−1 of data at

�
s = 13 TeV,” �������������
�	��.

[233] T. Sjostrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual,” JHEP 05
(2006) 026, ������ 	
	����.

[234] T. Sjostrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1,” Comput.
Phys. Commun. 178 (2008) 852–867, ������	��	����	 ��������.

[235] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky, and W. K. Tung, “New
generation of parton distributions with uncertainties from global QCD analysis,”
JHEP 07 (2002) 012, ������ 	�	���.

[236] DELPHES 3 Collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco,
V. Lemaître, A. Mertens, and M. Selvaggi, “DELPHES 3, A modular framework for fast
simulation of a generic collider experiment,” JHEP 02 (2014) 057, ��������	��
��

������!�.

[237] A. L. Read, “Presentation of search results: The CL(s) technique,” J. Phys. G28 (2002)
2693–2704. [,11(2002)].

[238] H. Dreiner, M. Krämer, and J. Tattersall, “Exploring QCD uncertainties when setting
limits on compressed supersymmetric spectra,” Phys. Rev. D87 no. 3, (2013) 035006,
�������������� ��������.

[239] A. Arbey, M. Battaglia, and F. Mahmoudi, “Combining monojet, supersymmetry, and dark
matter searches,” Phys. Rev. D89 no. 7, (2014) 077701, ������������
�� ��������.

[240] H. Baer, A. Mustafayev, and X. Tata, “Monojets and mono-photons from light higgsino pair
production at LHC14,” Phys. Rev. D89 no. 5, (2014) 055007, ��������	����
�
��������.

[241] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, “Constraints
on Dark Matter from Colliders,” Phys. Rev. D82 (2010) 116010, �������		������
��������.

[242] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu, “Constraints
on Light Majorana dark Matter from Colliders,” Phys. Lett. B695 (2011) 185–188,
�������		�����
 ��������.

[243] LHC New Physics Working Group Collaboration, D. Alves, “Simplified Models for LHC
New Physics Searches,” J. Phys. G39 (2012) 105005, ��������	������ ��������.

[244] J. Abdallah et al., “Simplified Models for Dark Matter Searches at the LHC,” Phys. Dark
Univ. 9-10 (2015) 8–23, ��������	
�	���
 ��������.

[245] B. C. Allanach, S. Grab, and H. E. Haber, “Supersymmetric Monojets at the Large Hadron
Collider,” JHEP 01 (2011) 138, �������	�	���
� ��������. [Erratum:
JHEP09,027(2011)].

[246] M. Drees, M. Hanussek, and J. S. Kim, “Light Stop Searches at the LHC with Monojet
Events,” Phys. Rev. D86 (2012) 035024, ��������	������ ��������.

137



BIBLIOGRAPHY

[247] G. Cullen, N. Greiner, and G. Heinrich, “Susy-QCD corrections to neutralino pair
production in association with a jet,” Eur. Phys. J. C73 no. 4, (2013) 2388,
����������	
�
� ������.

[248] A. Arbey, M. Battaglia, and F. Mahmoudi, “Monojet Searches for MSSM Simplified
Models,” Phys. Rev. D94 no. 5, (2016) 055015, �������
��	����� ������.

[249] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H. S. Shao,
T. Stelzer, P. Torrielli, and M. Zaro, “The automated computation of tree-level and
next-to-leading order differential cross sections, and their matching to parton shower
simulations,” JHEP 07 (2014) 079, ���������
	���� ������.

[250] A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, and J. Quevillon, “Implications of a 125
GeV Higgs for supersymmetric models,” Phys. Lett. B708 (2012) 162–169,
����������	���� ������.

[251] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein, and L. Zeune, “MSSM
Interpretations of the LHC Discovery: Light or Heavy Higgs?,” Eur. Phys. J. C73 no. 4,
(2013) 2354, ����������	��

 ������.

[252] M. W. Cahill-Rowley, J. L. Hewett, A. Ismail, and T. G. Rizzo, “The Higgs Sector and
Fine-Tuning in the pMSSM,” Phys. Rev. D86 (2012) 075015, ����������	
���
������.

[253] M. Carena, S. Gori, N. R. Shah, and C. E. M. Wagner, “A 125 GeV SM-like Higgs in the
MSSM and the γγ rate,” JHEP 03 (2012) 014, ����������	���� ������.

[254] M. Carena, S. Gori, N. R. Shah, C. E. M. Wagner, and L.-T. Wang, “Light Stau
Phenomenology and the Higgs γγ Rate,” JHEP 07 (2012) 175, ���������
	
���
������.

[255] R. Benbrik, M. Gomez Bock, S. Heinemeyer, O. Stal, G. Weiglein, and L. Zeune,
“Confronting the MSSM and the NMSSM with the Discovery of a Signal in the two
Photon Channel at the LHC,” Eur. Phys. J. C72 (2012) 2171, ����������	����
������.

[256] T. J. LeCompte and S. P. Martin, “Large Hadron Collider reach for supersymmetric models
with compressed mass spectra,” Phys. Rev. D84 (2011) 015004, ���������
	����
������.

[257] T. J. LeCompte and S. P. Martin, “Compressed supersymmetry after 1/fb at the Large
Hadron Collider,” Phys. Rev. D85 (2012) 035023, ����������	���� ������.

[258] B. Bhattacherjee and K. Ghosh, “Degenerate SUSY search at the 8 TeV LHC,”
����������	���� ������.

[259] H. K. Dreiner, M. Kramer, and J. Tattersall, “How low can SUSY go? Matching, monojets
and compressed spectra,” Europhys. Lett. 99 (2012) 61001, ����������	����
������.

[260] CTA Collaboration, J. Carr et al., “Prospects for Indirect Dark Matter Searches with the
Cherenkov Telescope Array (CTA),” PoS ICRC2015 (2016) 1203, �������
��	�����
��������	���.

[261] J. Silk, “Challenges in Cosmology from the Big Bang to Dark Energy, Dark Matter and
Galaxy Formation,” JPS Conf. Proc. 14 (2017) 010101, ����������	�����
��������	���.

138



BIBLIOGRAPHY

[262] A. Arbey, F. Mahmoudi, and G. Robbins, “SuperIso Relic v4: A program for calculating
dark matter and flavour physics observables in Supersymmetry,” ��������	
�����
��������.

[263] P. Gondolo, J. Edsjo, P. Ullio, L. Bergstrom, M. Schelke, and E. A. Baltz, “DarkSUSY:
Computing supersymmetric dark matter properties numerically,” JCAP 0407 (2004)
008, ���������������	�	
�	� ����������.

[264] T. Bringmann, J. Edsjö, P. Gondolo, P. Ullio, and L. Bergström, “DarkSUSY 6 : An
Advanced Tool to Compute Dark Matter Properties Numerically,” ��������	��	��
��������.

[265] F. Ambrogi, C. Arina, M. Backovic, J. Heisig, F. Maltoni, L. Mantani, O. Mattelaer, and
G. Mohlabeng, “MadDM v.3.0: a Comprehensive Tool for Dark Matter Studies,”
��������	��			�� ��������.

[266] S. Wolfram, The mathematica book.
Wolfram Media, 2000.

[267] A. Semenov, “LanHEP — A package for automatic generation of Feynman rules from the
Lagrangian. Version 3.2,” Comput. Phys. Commun. 201 (2016) 167–170,
������������	�
 �����������������.

[268] T. Hahn, “Generating Feynman diagrams and amplitudes with FeynArts 3,” Comput.
Phys. Commun. 140 (2001) 418–431, �������������		���
	 ��������.

[269] T. Hahn and C. Schappacher, “The Implementation of the minimal supersymmetric
standard model in FeynArts and FormCalc,” Comput. Phys. Commun. 143 (2002)
54–68, �������������	�	��� ��������.

[270] T. Hahn and M. Rauch, “News from FormCalc and LoopTools,” Nucl. Phys. Proc. Suppl.
157 (2006) 236–240, �������������	
	���� ��������. [,236(2006)].

[271] T. Hahn and M. Perez-Victoria, “Automatized one loop calculations in four-dimensions and
D-dimensions,” Comput. Phys. Commun. 118 (1999) 153–165, ��������������	��
�
��������.

[272] P. Z. Skands et al., “SUSY Les Houches accord: Interfacing SUSY spectrum calculators,
decay packages, and event generators,” JHEP 07 (2004) 036, �������������	������
��������.

[273] B. C. Allanach et al., “SUSY Les Houches Accord 2,” Comput. Phys. Commun. 180 (2009)
8–25, ������	�	��		�� ��������.

[274] F. E. Paige, S. D. Protopopescu, H. Baer, and X. Tata, “ISAJET 7.69: A Monte Carlo event
generator for pp, anti-p p, and e+e- reactions,” �������������	���	�� ��������.

[275] W. Porod, “SPheno, a program for calculating supersymmetric spectra, SUSY particle
decays and SUSY particle production at e+ e- colliders,” Comput. Phys. Commun. 153
(2003) 275–315, �������������	�	��	� ��������.

[276] A. Djouadi, J.-L. Kneur, and G. Moultaka, “SuSpect: A Fortran code for the
supersymmetric and Higgs particle spectrum in the MSSM,” Comput. Phys. Commun.
176 (2007) 426–455, �������������	������ ��������.

[277] T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, and G. Weiglein, “FeynHiggs 2.7,” Nucl.
Phys. Proc. Suppl. 205-206 (2010) 152–157, �������		��	�
 ��������.

139



BIBLIOGRAPHY

[278] M. Drees and M. Nojiri, “Neutralino - nucleon scattering revisited,” Phys. Rev. D48 (1993)
3483–3501, ��������	
	�������� ���	
	��.

[279] A. Djouadi and M. Drees, “QCD corrections to neutralino nucleon scattering,” Phys. Lett.
B484 (2000) 183–191, ��������	
	��������� ���	
	��.

[280] L. Alvarez-Ruso, T. Ledwig, J. Martin Camalich, and M. J. Vicente-Vacas, “Nucleon mass
and pion-nucleon sigma term from a chiral analysis of lattice QCD data,” Phys. Rev.
D88 no. 5, (2013) 054507, ������������� ���	
	��.

[281] RQCD Collaboration, G. S. Bali, S. Collins, D. Richtmann, A. Schäfer, W. Söldner, and
A. Sternbeck, “Direct determinations of the nucleon and pion σ terms at nearly
physical quark masses,” Phys. Rev. D93 no. 9, (2016) 094504, ���������������
���	
����.

[282] ETM Collaboration, A. Abdel-Rehim, C. Alexandrou, M. Constantinou,
K. Hadjiyiannakou, K. Jansen, C. Kallidonis, G. Koutsou, and A. Vaquero Aviles-Casco,
“Direct Evaluation of the Quark Content of Nucleons from Lattice QCD at the Physical
Point,” Phys. Rev. Lett. 116 no. 25, (2016) 252001, ���������������� ���	
����.

[283] P. E. Shanahan, “Chiral Effective Theory Methods and their Application to the Structure
of Hadrons from Lattice QCD,” J. Phys. G43 no. 12, (2016) 124001, ����������������
���	
����.

[284] M. M. Pavan, I. I. Strakovsky, R. L. Workman, and R. A. Arndt, “The Pion nucleon Sigma
term is definitely large: Results from a G.W.U. analysis of pi nucleon scattering data,”
PiN Newslett. 16 (2002) 110–115, ��������	
	��������� ���	
	��.

[285] J. M. Alarcon, J. Martin Camalich, and J. A. Oller, “The chiral representation of the πN
scattering amplitude and the pion-nucleon sigma term,” Phys. Rev. D85 (2012) 051503,
�������������� ���	
	��.

[286] J. Ruiz de Elvira, M. Hoferichter, B. Kubis, and U.-G. MeiSSner, “Extracting the σ-term
from low-energy pion-nucleon scattering,” J. Phys. G45 no. 2, (2018) 024001,
���������������� ���	
	��.

[287] H.-W. Lin, “Lattice QCD for Precision Nucleon Matrix Elements,” ��������������
���	
����.

[288] J. Ellis, N. Nagata, and K. A. Olive, “Uncertainties in WIMP Dark Matter Scattering
Revisited,” ���������������� ���	
	��.

[289] Particle Data Group Collaboration, K. A. Olive et al., “Review of Particle Physics,” Chin.
Phys. C38 (2014) 090001.

[290] Asymmetry Analysis Collaboration, Y. Goto et al., “Polarized parton distribution
functions in the nucleon,” Phys. Rev. D62 (2000) 034017, ��������	
	���������
���	
	��.

[291] COMPASS Collaboration, V. Yu. Alexakhin et al., “The Deuteron Spin-dependent
Structure Function g1(d) and its First Moment,” Phys. Lett. B647 (2007) 8–17,
��������	
��������� ���	
���.

[292] R. H. Helm, “Inelastic and Elastic Scattering of 187-Mev Electrons from Selected
Even-Even Nuclei,” Phys. Rev. 104 (1956) 1466–1475.

140



BIBLIOGRAPHY

[293] J. D. Lewin and P. F. Smith, “Review of mathematics, numerical factors, and corrections
for dark matter experiments based on elastic nuclear recoil,” Astropart. Phys. 6 (1996)
87–112.

[294] P. Klos, J. Menéndez, D. Gazit, and A. Schwenk, “Large-scale nuclear structure
calculations for spin-dependent WIMP scattering with chiral effective field theory
currents,” Phys. Rev. D88 no. 8, (2013) 083516, ��������	
���
 ���������.
[Erratum: Phys. Rev. D89, no.2, 029901 (2014)].

[295] S. Yellin, “Finding an upper limit in the presence of an unknown background,” Phys. Rev.
D66 no. 3, (Aug, 2002) 032005, ��������	�	�		�.

[296] C. Savage, “Tpcmc: a time projection chamber monte carlo for dark matter searches.”
Private code.

[297] M. Szydagis, N. Barry, K. Kazkaz, J. Mock, D. Stolp, M. Sweany, M. Tripathi, S. Uvarov,
N. Walsh, and M. Woods, “NEST: A Comprehensive Model for Scintillation Yield in
Liquid Xenon,” JINST 6 (2011) P10002, ��������	���� �����������������.

[298] M. Szydagis, A. Fyhrie, D. Thorngren, and M. Tripathi, “Enhancement of NEST
Capabilities for Simulating Low-Energy Recoils in Liquid Xenon,” JINST 8 (2013)
C10003, ��������	��	� �����������������.

[299] “Nest,”. �������������������������������������.

[300] P. Ciafaloni, D. Comelli, A. Riotto, F. Sala, A. Strumia, and A. Urbano, “Weak Corrections
are Relevant for Dark Matter Indirect Detection,” JCAP 1103 (2011) 019,
�������		��	��
 ��������.

[301] A. E. Vladimirov, S. W. Digel, G. Johannesson, P. F. Michelson, I. V. Moskalenko, P. L.
Nolan, E. Orlando, T. A. Porter, and A. W. Strong, “GALPROP WebRun: an
internet-based service for calculating galactic cosmic ray propagation and associated
photon emissions,” Comput. Phys. Commun. 182 (2011) 1156–1161, �������		���
�
����� ����!"�.

[302] M. di Mauro, F. Donato, A. Goudelis, and P. D. Serpico, “New evaluation of the antiproton
production cross section for cosmic ray studies,” Phys. Rev. D90 no. 8, (2014) 085017,
�������
	��	��� ��������.

[303] L. J. Gleeson and W. I. Axford, “Cosmic Rays in the Interplanetary Medium,” Astrophys. J.
149 (1967) L115–L118.

[304] L. J. Gleeson and W. I. Axford, “Solar Modulation of Galactic Cosmic Rays,” Astrophys. J.
154 (1968) 1011.

[305] AMS Collaboration, M. Aguilar et al., “Precision Measurement of the Proton Flux in
Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic
Spectrometer on the International Space Station,” Phys. Rev. Lett. 114 (2015) 171103.

[306] AMS Collaboration, M. Aguilar et al., “Precision Measurement of the Helium Flux in
Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic
Spectrometer on the International Space Station,” Phys. Rev. Lett. 115 no. 21, (2015)
211101.

[307] A. Arbey, J. Ellis, F. Mahmoudi, and G. Robbins, “Dark Matter Casts Light on the Early
Universe,” ��������	��		##
 ��������.

141



BIBLIOGRAPHY

[308] P. Gondolo and G. Gelmini, “Cosmic abundances of stable particles: Improved analysis,”
Nucl. Phys. B360 (1991) 145–179.

[309] J. Edsjo and P. Gondolo, “Neutralino relic density including coannihilations,” Phys. Rev.
D56 (1997) 1879–1894, ����������	
��.

[310] A. Arbey, “AlterBBN: A program for calculating the BBN abundances of the elements in
alternative cosmologies,” Comput. Phys. Commun. 183 (2012) 1822–1831,
�����������
�
 ������������.

[311] A. Arbey, J. Auffinger, K. P. Hickerson, and E. S. Jenssen, “AlterBBN v2: A public code for
calculating Big-Bang nucleosynthesis constraints in alternative cosmologies,”
��������������� ������������.

[312] K. Jedamzik, “Big bang nucleosynthesis constraints on hadronically and
electromagnetically decaying relic neutral particles,” Phys. Rev. D74 (2006) 103509,
���������������	��� ��������.

[313] G. B. Gelmini and P. Gondolo, “Neutralino with the right cold dark matter abundance in
(almost) any supersymmetric model,” Phys. Rev. D74 (2006) 023510,
�����������������
� ��������.

[314] R. Allahverdi and M. Drees, “Thermalization after inflation and production of massive
stable particles,” Phys. Rev. D66 (2002) 063513, �����������������	� ��������.

[315] K. Mukaida and M. Yamada, “Thermalization Process after Inflation and Effective
Potential of Scalar Field,” JCAP 1602 (2016) 003, ��������������� ��������.

[316] E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys. 69 (1990) 1–547.
[317] S. Tsujikawa, “Quintessence: A Review,” Class. Quant. Grav. 30 (2013) 214003,

������
�	����� ����� �.
[318] T. Barreiro, E. J. Copeland, and N. J. Nunes, “Quintessence arising from exponential

potentials,” Phys. Rev. D61 (2000) 127301, �������������������	 ���������.
[319] P. G. Ferreira and M. Joyce, “Cosmology with a primordial scaling field,” Phys. Rev. D58

(1998) 023503, �������������������� ���������.
[320] J. A. Frieman, C. T. Hill, A. Stebbins, and I. Waga, “Cosmology with ultralight pseudo

Nambu-Goldstone bosons,” Phys. Rev. Lett. 75 (1995) 2077–2080,
�������������������� ���������.

[321] G. Jungman, M. Kamionkowski, and K. Griest, “Supersymmetric dark matter,” Phys. Rept.
267 (1996) 195–373, �����������
��.

[322] E. Bagnaschi et al., “Likelihood Analysis of the pMSSM11 in Light of LHC 13-TeV Data,”
Eur. Phys. J. C78 (2018) 256, ��������������� ��������.

[323] Muon g-2 Collaboration, G. W. Bennett et al., “Final Report of the Muon E821 Anomalous
Magnetic Moment Measurement at BNL,” Phys. Rev. D73 (2006) 072003,
����������!������
� ������!�.

[324] F. D’Eramo, N. Fernandez, and S. Profumo, “When the Universe Expands Too Fast:
Relentless Dark Matter,” JCAP 1705 (2017) 012, ��������
��	��
 ��������.

142


