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Cela a été un vrai plaisir de travailler avec vous et vous m’avez énormément appris.
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À mes amis pour leur soutien sans faille tout au long de ces années.

Et enfin à mes parents et mon frère ainsi que toute ma famille, sans qui je ne

serais jamais arrivé là où j’en suis.
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viii GENERAL INTRODUCTION (ENGLISH)

This thesis studies the theory, algorithms and applications of sparse spikes

super-resolution. Super-resolution is the problem of enhancing the level of details

of a given observed signal. The underlying high resolution information captured

is altered by the physical limitations of the system of acquisition and by random

perturbations. For example, it is involved in fields as diverse as astronomy, med-

ical imaging, geophysics or radar imagery. One of the most recent and impor-

tant application of super-resolution concerns fluorescent microscopy in Biology

where experimenters try to overcome the diffraction phenomenon (200nm lateral

limit resolution) by localizing precisely the positions of fluorophores (fluorescent

molecules attached to proteins) in a sample. The fluorophores can be mathemati-

cally modeled as spikes (i.e. a measure composed of a sum of Dirac masses with

positive amplitudes). Therefore, from an altered and noisy version of these spikes,

the aim is to recover the closest possible estimation of their true positions and am-

plitudes. This inverse problem is often called the sparse spikes super-resolution.

Because two fluorophores can be separated by a distance well below 200nm, one

needs to develop theoretical and numerical tools that can deal with this challeng-

ing problem. Our approach, in this thesis, is to consider an optimization problem

called the BLASSO which is a continuous version of the well-known LASSO. It

consists in the minimization of a sum the quadratic error between the altered cur-

rent estimate and the observations plus a regularization term (the total variation

norm for measures) enforcing sparsity. While there exist many theoretical guar-

antees for the recovery of such measures both in the noiseless and noisy case, the

question of the super-resolution in presence of noise when solving the BLASSO

is an open problem. We show, in 1D, that the non-degeneracy of what we call

the (2N−1)-vanishing derivatives pre-certificate (denoted ηW ) assures the recov-

ery of a unique measure composed of the same number of spikes as the original

measure, when the spikes of the initial measure are separated by a distance t → 0.

This recovery is possible only if the noise level drops faster than t2N−1. On the

numerical standpoint, we provide a grid-less algorithm, that we call the Sliding

Frank-Wolfe (SFW) algorithm, to solve the BLASSO (optimization problem on

measures) based on the Frank-Wolfe algorithm but with an added step where the

amplitudes and positions are moved continuously. It is inspired by [24]. A similar,

but different version of this algorithm has recently been studied in [22] where the

authors show that it reaches state of the art numerical performance in several appli-

cations, including fluorescent microscopy in 2D. We prove that if there is a unique

discrete measure solution of the BLASSO, then the SFW recovers this measure in

a finite number of steps improving drastically the only known convergence result

for this class of algorithm (weak-* convergence with an error of O(1/k) in the

objective function). Finally we apply our algorithm to the fluorescent microscopy

problem in a 3D designed setup close of experimental conditions and we compare

three different models of acquisition. We observe a typical spatial resolution of

less than 20nm along the three axis, which is a state of the art resolution.
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Sparse Spikes Super-Resolution

The sparse spikes super-resolution setting is of utmost importance and is rou-

tinely encountered in many imaging scenarios: in Astronomy, the stars can be

considered as point sources of light. In Biology, fluorescent proteins in cells can

also be seen as spikes. Moreover in these two applications, the acquisition pro-

cess induces an alteration of the ideal source signal. A classical way of measuring

whether a particular application is in the range of the sparse spikes super-resolution

framework is to use a two-point resolution criterion.

In resolution theory, a two-point resolution criterion defines the ability of a

system to resolve two points of equal intensities. As a point source produces a

diffraction pattern which is centered about the geometrical image point of the point

source, there are many resolution criteria depending on the size of the pattern. One

of the most common is Rayleigh resolution criterion [122] which states that two

points are resolved by a system if the central maximum of the intensity diffraction

of one point source coincides with the first minimum (if it exists) of the intensity

diffraction pattern of the other point. This defines a distance that only depends

on the system and which is called the Rayleigh length. A celebrated example in

Physics and Astronomy is the Airy disk which is the diffraction pattern obtained

when a light source hits a small circular aperture, see Figure 1. The observed

(a) Airy disk

Figure 1: Diffraction pattern obtain at infinity or at the focal plane of the optical

system when a light source at infinity illuminates a small circular aperture (Fraun-

hofer diffraction).

pattern is given by a function depending on J1 the Bessel function of the first kind

of order one and in this case the Rayleigh length is:

∆R = 1.22
λℓ

d
,

where λℓ is the wavelength and d the diameter of the aperture. For diffraction

patterns such as those given by Gaussians, there is no minimum of intensity around

the central maximum. That is why we prefer to use the separation criterion which
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states that a system can resolve two point sources if their diffraction patterns do

not overlap such that the resulting observation has only one central maximum. One

denotes by ∆S this limit distance. See Figure 2 for an illustration of this criterion.

We refer to [47] for more details about resolution theory.
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(a) Separation criterion satisfied (b) Separation criterion not satisfied
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(c) Separation criterion satisfied (d) Separation criterion not satisfied

Figure 2: Illustration of our separation criterion for diffraction patterns given by a

Gaussian impulse response in 1D and 2D. For a Gaussian with variance σ2, one

has ∆S = σ .

The challenge of sparse spike super-resolution in signal processing thus con-

sists in developing robust theoretical and numerical techniques that enable to sep-

arate two or more point sources separated by a distance well under the length ∆S

(with possibly no theoretical limit) in presence of noise. Providing such tools is

the main goal of this thesis. As we argue in this thesis, from a theoretical but also

practical perspective, the question of super-resolution is a signal-to-noise scaling

problem: how should the signal-to-noise ratio increase as a function of the number

of spikes and their respective distances.
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Mathematical Modelling

Sparse Signal Modelling

In many applications already highlighted, the source signal that one aims at

recovering from altered and noisy observations can be modeled by a collection of

spikes or point sources.

(x0,1,y0,1)

(x0,2,y0,2)

(x0,3,y0,3)

Figure 3: Illustration of the sparsity of a point source signal. Points (x0,i,y0,i) for

i ∈ {1, . . . ,3} in [0,1]2 (red spots) with amplitudes a0,i encoded by the diameter

of the spots. A uniform grid of [0,1]2 with 6× 6 points is displayed. For each

(x0,i,y0,i), one associates its closest neighborhood on the grid (blue spots). The

goal is to recover the amplitudes of these blue spots. Only a fraction of the points

on the grid have non-zero amplitudes hence the sparsity.

This type of source signals is qualified as sparse. To illustrate the concept

of sparsity in the particular case of spikes, let us consider a collection of positions

(x0,1,y0,1), . . . , (x0,N ,y0,N) in [0,1]2 with associated positive amplitudes a0,1, . . . ,a0,N .

One can see this example as a collection of stars in a portion of the sky with differ-

ent magnitudes (a0,i). If one uses a uniform grid with K2 points to discretize [0,1]2

and associate to each (x0,i,y0,i) for i ∈ {1, . . . ,N} its closest neighborhood on the

grid, then the goal is to recover a vector ã0 ∈RK2

with only N non-zero coefficients

corresponding to the a0,i. Provided that the grid is thin enough to capture sufficient

details, this means that N ≪ K2 so that ã0 is a sparse vector. See Figure 3 for an

illustration of this example. Sparsity can then be used beneficially in the recovery

process.

A grid is convenient to illustrate the concept of sparsity in the case of a point

source signal and is from the start a finite dimensional problem (in the end, a com-

puter can only store a finite amount of data). However the appropriate mathemat-

ical object to represent a collection of spikes are sums of Dirac masses with am-

plitudes. The mathematical framework where Dirac masses best fit in are Radon
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measures. Indeed a Dirac mass δx can be seen as a linear form over a space of

continuous functions (hence a Radon measure), corresponding to point-wise eval-

uation

δx : ϕ ∈ C0 7→ ϕ(x).

As a result, one can express the collection of spikes in [0,1]2 of the previous exam-

ple as

ma0,x̄0

def.
=

N

∑
i=1

a0,iδ(x0,i,y0,i),

where x̄0 = ((x0,1,y0,1), . . . , (x0,N ,y0,N)) ∈ ([0,1]2)N . ma0,x̄0
is a Radon measure

ma0,x̄0
: ϕ ∈ C0 7→

N

∑
i=1

a0,iϕ(x0,i,y0,i),

and it is now the sparse source signal that one aims to recover.

More generally, in the following and from now on, one denotes as X the domain

of positions of the Dirac masses. Depending on the context, X can be either Rd (or

a compact connected subset of Rd) or Td (the d-dimensional torus) for different

values of d ∈N∗.
Let us denote by M (X) the space of bounded Radon measures on X which can

be seen as the topological dual of the space C0(X ,R) of continuous functions on

X that vanish at infinity (see Definition 3 for a more accurate statement).

Imaging Operator

The source signal ma0,x̄0
∈M (X) that one aims at recovering is altered through

the acquisition process. For example when a telescope takes a picture of a portion

of the sky, ma0,x̄0
is convolved with the point spread function (PSF) of the optical

system. That is the only information that one has access to. This alteration process

is modeled by the action of a linear operator Φ defined on M (X), taking values in

a separable Hilbert space H and having the following form

Φ : m ∈M (X) 7→
∫

X
ϕ(x)dm(x) ∈H . (1)

ϕ , which one calls in the following the kernel of Φ, is a continuous function defined

on X and taking values in H . The choice of ϕ and H depends on the application.

In the following, one uses the term observations to denote:

y0
def.
= Φma0,x̄0

,

or its noisy version. See Figure 4 for an example of observations in the case of a

Gaussian convolution on R.

A few example of setups which are covered by the model (1) includes:

i) X = T, H = L2(T) and ϕ(x) = sin(2π fc(·−x))
sin(π(·−x))

which corresponds to a convo-

lution by the Dirichlet kernel with cutoff frequency fc,
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Figure 4: In red the spikes of the initial measure ma0,x̄0
and in black the observations

y0 = Φma0,x̄0
for a Gaussian convolution i.e. ϕ(x) = e

− ·−x

2σ2 ∈ L2(R).

ii) X = T, H = R2 fc+1 and

ϕ(x) =















1√
2cos(2πx)

...√
2cos(2π fcx)√
2sin(2πx)

...√
2sin(2π fcx),















∈R
2 fc+1

which is in some sense equivalent to (i) by taking the Fourier coefficients of

the observations,

iii) X = R, H = L2(R) and ϕ(x) = e
− (·−x)2

2σ2 ∈ L2(R) which corresponds to a

Gaussian convolution with variance σ2,

iv) X = [ε ,xb] for 0 < ε < xb, H = L2(R+) and ϕ(x) = s 7→ e−sx ∈ L2(R+)
which corresponds to a Laplace transform (see Chapter 2). Note that this

kernel is not translation invariant,

v) X = [ε ,xb] for 0 < ε < xb, H = RK and ϕ(x) = (e−skx)16k6K ∈ RK which

corresponds to a discretized Laplace transform (see Chapter 2). This kernel is

also not translation invariant,

vi) X =R2, H =L2(R2) and ϕ(x,y) = (u,v) 7→ e
− (u−x)2

2σ2
x e

− (v−y)2

2σ2
y ∈L2(R2) which

corresponds to a Gaussian convolution in 2D,

vii) Chapter 5 studies several examples in R3 built on a 2D discretized Gaussian

convolution.
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To summarize, from the observations y0 = Φma0,x̄0
or y= y0+w, where w∈H

represents some noise, the aim of the sparse spikes super-resolution problem is to

recover some object m “close” (for some measure of similarity which is typically

problem-dependent) of the source sparse signal ma0,x̄0
. This is an ill-posed inverse

problem because Φ is ill-posed in general. Following the classical approach of

regularization theory, a sparsity prior should thus be used to regularize the inversion

process.

State of the Art

The theory and practice of super-resolution can be roughly split in three parts:

• Theory: choice of a method and theoretical study of its performance.

• Algorithms: design of an exact or approximate solver and study of its ap-

proximation performance.

• Applications: countless subtlety and adaptation needs to be done to account

for real life problems, and we focus on in this thesis in particular on fluores-

cent microscopy imaging.

These three parts are addressed in this thesis. Part I is devoted to the first item and

Part II to the last two.

Theory

There are two main categories of theoretical approaches for the super-resolution

problem: Prony’s based and variational methods.

Prony’s Based Methods. Prony’s method [44], MUSIC (MUltiple SIgnal Clas-

sification) [130], ESPRIT (Estimation of Signal Parameters by Rotational Invari-

ance Techniques) [96] or Matrix Pencil [89] enables to recover exactly the signal

parameters for Fourier measurements in the noiseless case, because they do not

need to perform any discretization. There exist many extensions of Prony’s based

methods. While these methods were not primarily designed to deal with noise,

extensions have been developed in [28, 39]. Stability to noise is known to hold

under a minimum separation distance [106]. There exists also a Prony method in

a multivariate setup, see [116]. And extensions to non-bandlimited signals with

finite rate of innovation have been formulated [147, 48]

Prony’s based methods are better than LASSO (see below) for 1D Fourier mea-

surements. In other configurations, the comparison is less clear and sometimes it

may even be impossible to extend these methods.
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Variational Methods. Variational approaches are more resilient because they do

not impose any particular structure on the forward operator Φ, they can be adapted

to virtually any type of noise and they do not require the knowledge of the number

of sources. The idea to solve the previous sparse spikes deconvolution problem

(find m ”close” of ma0,x̄0
given only y) consists in minimizing among all source

signals possible the sum of a term measuring the error with respect to the observa-

tions (in all this thesis, it is the quadratic error) and a regularization term enforcing

sparsity.

We now detail the two main class of variational methods we focus on in this

thesis.

LASSO. In a finite dimensional setting, i.e. when the positions of the spikes

must lie on a grid G ⊂ X (see Figure 3 for example), one obtains the LASSO [142]

or Basis-pursuit problem, which is a ℓ1 regularized inversion, defined by solving

min
a∈R#G

1

2
‖ΦG a− y‖2

H

︸ ︷︷ ︸

fidelity term

+ λ ‖a‖1
︸ ︷︷ ︸

sparsity enforcing term

, (2)

where ΦG a
def.
= Φma,xG

and xG is the collection of points of G . It retains both the

features of subset selection (by setting to zero some coefficients, thanks to the

property of the ℓ1 norm to favor sparse solutions) and ridge regression (by shrinking

the other coefficients).

ℓ1 regularization techniques were first introduced in geophysics (see [37, 105,

127]) for seismic prospecting. Indeed, the density changes in the underground can

be modeled as a sparse spikes train. ℓ1 reconstruction property provides solutions

with few non-zero coefficients and can be solved efficiently with convex optimiza-

tion methods. Donoho theoretically studied and justified these techniques in [49].

In signal processing, the basis pursuit method [34] uses the ℓ1 norm to decompose

signals into overcomplete dictionaries.

Because a grid is used, in order to capture with a high precision the position

of the spikes of ma0,x̄0
, one needs to choose a grid with potentially a very small

step size. However this approach impairs the theoretical (an numerical, see be-

low) recovery properties because it leads to the phenomenon known as basis mis-

match [35, 51] and highly correlated atoms. It was proven recently in [55, 56]

that in a low noise regime, the LASSO on thin grid estimates twice the number of

spikes of the initial measure ma0,x̄0
.

These limitations of such a discrete LASSO method can be somehow alleviated

by considering a grid-free setting that we now detail.

BLASSO. Following recent works (see for instance [17, 24, 30, 42, 54]),

the sparse super-resolution method that we consider in this thesis is an infinite-

dimensional counterpart to (2), which can also be understood as a limit (for the

topology of measure) of the LASSO as the grid refined. This inverse problem
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solved over the space of Radon measures is called in [42] the BLASSO (B for

Beurling). The continuous “grid-free” setting makes the mathematical analysis

easier and allows us to make precise statement about the location of the recovered

spikes locations.

Therefore, the optimization problem (2) becomes:

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X). (Pλ (y))

There are several differences between the LASSO and the BLASSO Pλ (y):

1. one optimizes over M (X) rather than R#G and ΦG a = Φma,xG
for any

a ∈ R#G is replaced by Φm for any m ∈ M (X), which make Pλ (y) an

optimization problem over a non-reflexive Banach space rather than a finite

dimensional vector space,

2. the ℓ1 norm used in the regularization term (only valid in a finite dimen-

sional setting) is replaced by its infinite dimensional counterpart i.e. the total

variation norm defined by:

∀m ∈M (X), |m|(X)
def.
= sup

ψ∈C0

{∫

X
ψdm ; ‖ψ‖∞,X 6 1

}

.

It is the dual norm of ‖·‖∞,X on C0 and it indeed generalizes the ℓ1 norm to

the continuous setting of measures because:

∀a0 ∈R
N , ∀x̄0 ∈ XN , |ma0,x̄0

|(X) = ‖a0‖1 ,

As a result, similarly to the ℓ1 norm which favors solutions with only few

non-zero coefficients, the use of the total variation norm in Pλ (y) favors

sparse measures i.e. composed of Dirac masses.

The regularization parameter λ > 0 should be adapted to the noise level ‖w‖
H

.

Note there exists a variant of the BLASSO that estimates in the same time the initial

measure and the noise level, see [23]. In the noiseless case w = 0, one can make

λ → 0 in Pλ (y) and then end up with the following problem:

min
m∈M (X)

{|m|(X) ; Φm = y0} . (P0(y0))

It is a generalization of the classical basis pursuit

min
a∈R#G

{‖a‖1 ; ΦG a = y0} ,

defined originally in [34] in a finite dimensional setting, and written here over

the space of Radon measures. One refers to this problem as the basis pursuit for

measures. This is the problem studied in [30], in the case where Φ is an ideal
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low-pass filter on the torus (see Example (i)). The authors show that ma0,x̄0
is the

unique solution of P0(y0) if ∆(x̄0) >
C
fc

for some 0 <C 6 1.87 where

∆(x̄0)
def.
= min

i6= j
|x̄0,i− x̄0, j|. (3)

is the minimum separation distance between the spikes. In [65], the author proved

that C 6 1.26. And from [54], necessarily C >
1
2
.

From this last statement, one deduces that super-resolution is impossible in

general by solving P0(y0) (or Pλ (y)) without any assumption on the sign of the

amplitudes. Even if one can recover exactly the position of the spikes (if ∆(x̄0) is

large enough) in the continuous domain, super-resolution is the recovery of two or

more spikes that are possibly infinitely close. However the picture is completely

different when considering positive measures. For positive spikes (i.e. a0,i > 0),

exact recovery of ma0,x̄0
without noise (i.e. for P0(y0)) holds whatever ∆(x̄0) > 0

(provided sum injectivity assumption), see for instance [42]. Therefore the appro-

priate framework to study super-resolution are positive measures. Most of the time

it is the setup that we choose in this thesis.

The last result of [42] cited above is only valid in the noiseless case. The super-

resolution problem in presence of noise for the BLASSO is an open question. That

is the main topic of our work. In [24], it is shown that if the solution of P0(y0) is

unique then the measures recovered by Pλ (y) converge in the weak-* sense to the

solution of P0(y0) when λ → 0 and ‖w‖2
H

/λ → 0. In [29], the authors provide

a reconstruction error using the L1 norm of an ideal low-pass filtered version of

the recovered measures. The arguments used are refinements of [27]. In [7, 64],

error bounds are given on the locations of the recovered spikes with respect to

those of the input measure ma0,x̄0
. However, those works provide little information

about the structure of the measures recovered by Pλ (y). That point is addressed

in [54] where the authors show that if the vanishing derivatives pre-certificate (see

Section 1.2 for more details) ηV
def.
= Φ∗pV , where pV is the unique solution of

inf
{
‖p‖

H
; ∀i = 1, . . . ,N, (Φ∗p)(x̄0,i) = sign(a0,i), (Φ

∗p)′(x̄0,i) = 0
}

,

is non-degenerate i.e.

∀x ∈ X \
N⋃

i=1

x̄0,i, |ηV (x)|< 1 and |η ′′V (x̄0,i)| 6= 0,

then there exists a unique solution of Pλ (y) with the exact same number of spikes

as the original measure provided that λ and ‖w‖
H

/λ are small enough. Note that

one can easily see that if ‖ηV‖∞,X 6 1 then ηV is a certificate (also called dual

certificate) for ma0,x̄0
, because it satisfies all the requirements except ‖ηV‖∞,X 6

1, assuring that ma0,x̄0
is solution of P0(y0). Indeed, a certificate for a discrete

measure and for the problem P0(y0) is a continuous function in the image of Φ∗

that interpolates the sign of the amplitudes at the positions of the spikes and is lower
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than 1 in uniform norm (also called source condition in the literature [26]). The

intuition behind the definition of ηV is that the minimal L2-norm property together

with the interpolation of the signs with zero derivatives may favor ‖ηV‖∞,X 6 1.

Section 1.4 defines the (2N− 1)-vanishing derivatives pre-certificate denoted

ηW
def.
= Φ∗pW . It is the limit of ηV when the N spikes (all positive) of ma0,x̄0

cluster

at some point in the domain. pW is the unique solution of

inf
{

‖p‖
H

; (Φ∗p)(0) = 1, (Φ∗p)′(0) = 0, . . . , (Φ∗p)(2N−1)(0) = 0
}

.

Since ηV controls the stability of the support in a low noise regime, one can guess

that ηW plays a similar role (as a limit of ηV ) but when the spikes collapse at some

point.

Algorithms

There are different solvers depending on the approximation schemes of the

BLASSO which can be divided in three main categories:

• Fixed spatial discretization.

• Fixed spectral discretization and SDP formulation.

• Adaptive discretization via optimization over the space of measures.

Fixed spatial discretization. This approach leads to the LASSO. The typical

solvers are proximal methods. They rely on the fact that the LASSO has an

Hilbertian structure. Iterative Hard Thresholding (IHT) [19, 20] or Iterative Soft

Thresholding (IST) [41, 38] are algorithms which are part of the family of Iterative

Shrinkage-Thresholding Algorithms (ISTA). Their rates of convergence have been

largely studied in the literature [41, 50, 66]. Even if ISTA is simple to implement, it

is in general slow to convergence (the error in the objective function is typically in

O(1/k)). FISTA [9] gives a better non-asymptotic rate of convergence (O(1/k2)).
With discrete grids, in order to achieve a sharp localization of the spikes of the

initial measure, one needs to have a sufficiently small grid step size. But when the

size of the grid #G increases it makes each iteration slower and a more correlated

dictionaries which in turn deteriorate the constant of convergence. So that in prac-

tice, we often obtain a small cluster of non-zero weights in the neighborhood of

each true spike.

Fixed spectral discretization and SDP formulation. Following [30], one can

reformulate the BLASSO in the case of a low pass filter (X = T) into a semi-

definite program (SDP). In this case, one uses interior point methods to solve the

SDP followed by a root finding step. One of the drawback of this method is that

the root finding step may pose stability issues. Moreover the overall complex-

ity of an interior point method for the SDP is polynomial in O( f 2d
c ) where d is
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the dimension of the domain X . This has led to recent developments [32] where

the authors use a relaxed low rank SDP formulation of the BLASSO in order to

use a greedy method (see below). Finally these methods can only be applied to

certain type of forward operators (typically Fourier measurements) where Frank-

Wolfe and greedy methods and proximal methods can be used for a larger class of

operators Φ.

Adaptive discretization via optimization over the space of measures. In or-

der to directly solve the BLASSO, one needs to design algorithms that do not

use any Hilbertian structure and can instead deals with measures. Solvers that

are particularly well-fitted for this task are the Frank-Wolfe algorithm and greedy

methods. One can first cite the Matching Pursuit (MP) algorithm [109] which adds

new spikes by finding ones that best correlate with the residual, or the Orthogonal

Matching Pursuit (OMP) algorithm [144].

The Frank-Wolfe (FW) algorithm [69] also called the Conditional Gradient

Method (CGM) [104] is also adapted because it can minimizes a differentiable

function over a weakly compact and convex set (see Section 4.2.1 for more de-

tails). It has been proven that the rate of convergence of this algorithm in the

objective function is O(1/k). In [24], the authors proposed to consider the Frank-

Wolfe algorithm for the BLASSO but where a final update (at the end of each main

iteration) is performed thanks to a gradient descent on a non-convex optimization

problem. It is the starting point of the Sliding Frank-Wolfe algorithm (SFW) that

we propose in Chapter 4. A similar version of this modified Frank-Wolfe algorithm

has also been used lately [32] for an SDP relaxation, promoting low rank matrices,

of the BLASSO using Lasserre’s hierarchy, leading to an overall complexity of

O( f d
c log( fc)) per iteration (instead of a complexity polynomial in f 2d

c for SDP).

Application to Fluorescence Microscopy

The ability to recover high resolution images from blurred and noisy measure-

ments is a difficult challenge in imaging sciences. For example in Biology, key

events in cellular trafficking occur at the cell surface and high resolution images

are needed to capture them. The domain of fluorescence microscopy has recently

seen the arrival of new imaging techniques, which overcome the diffraction phe-

nomenon of standard optical microscopes that have a typical lateral resolution to

200nm and 500nm in depth.

Our interest turns to the PALM/STORM methods (Photoactivation Localiza-

tion Microscopy and Stochastic Optical Reconstruction Microscopy) [16, 132, 124]

which consist in turning on and off stochastically sparse subset of fluorophores in

a sample. The authors of these methods were awarded a Chemistry nobel prize in

2014 1. The fluorophores are fluorescent molecules attached to typically proteins

that can be seen as spikes. When individual random fluorophores are activated and

1https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/
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(a) PALM (b) Diffraction limited microscope

Figure 5: Comparison of PALM versus a classical diffraction limited microscope

for the imaging of two proteins : tdEos-paxillin (green) and PsCFP20-zyxin (red).

It demonstrates that these two focal adhesion proteins have very little over-lap

when visualized with super-resolution. In contrast, when the same field is vi-

sualized with a diffraction limited method, the two proteins appear almost com-

pletely colocalized. Bar is 2 microns. Images obtained from the Cell Image Library

http: // www. cellimagelibrary. org/ images/ 38602 .

fluoresce, an image is recorded. A few thousands images, each containing just

a few fluorophores, are collected. For each snapshot, a recovery is performed to

obtain the coordinates of the fluorophores. The PSF of the system can often be

approximated by a 2D Gaussian, thus if the fluorophores are separated enough,

the centers of the spots give a nanometer precision on the real positions of the

molecules, hence the breaking of the diffraction limit. PALM/STORM can then

achieve a resolution of 20 nm [16, 8, 67]. All the coordinates obtained from all the

snapshots are finally assembled to form the final super-resolve image. See Figure 5

for an example of an image obtained thanks to PALM.

The recovery step where the position of the fluorophores are obtained corre-

sponds typically to the solving of sparse spikes inverse problem. Being able to

locate with a high precision more and more fluorophores on each single snapshot

is crucial because it would enhance the temporal resolution of the acquisition (the

time needed to collect all the data) and therefore observe rapidly occurring events in

the cell. As a result this application requires high performance numerical schemes.

The Single Molecule Localization Microscopy (SMLM) contest 2 compares differ-

ent numerical methods and grid-less techniques perform the best [22].

In this thesis, one proposes to use our grid-less algorithm introduced in Chap-

ter 4 to study the recovery of fluorophores in a 3D volume (see Chapter 5). The

PALM/STORM methods only capture lateral information and most of the experi-

mental techniques and numerical schemes tackle only the 2D problem which is far

less challenging than the 3D framework. To obtain depth information in addition

2http://bigwww.epfl.ch/smlm/
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to lateral information, we combine the PALM/STORM model with three different

approaches:

• MA-TIRF (Multi-Angle Total Internal Reflection Fluorescence) [126, 21]

consists in exciting the fluorophores with a laser under different angles.

• Double-Helix [121] consists in a point spread function (PSF) composed of

two Gaussians that rotates with the depth.

• Astigmatism [90] consists in a PSF composed of a Gaussian whose horizon-

tal and vertical size vary with the depth.

The PALM+MA-TIRF does not exist yet on the market but the Morpheme team

(CNRS/INRIA/UCA) at the Institute of Biology Valrose (iBV) is currently working

on it. This work is the result of a collaboration with Emmanuel Soubies who was

part of the Morpheme team until recently.

Main Contributions

Chapter 1. Chapter 1 studies the recovery of the support for the BLASSO first

with no assumption on the sign of the amplitudes and secondly for positive ampli-

tudes. In the first case, we provide in Section 1.2 (in the general setting where X

has dimension d), thanks to a convergence result between pre-certificates, a new

proof using a constructive approach similar to the one developed in Chapter 3 of

the main result of [54] (Theorem 2) on the support recovery for Pλ (y) in a low

noise regime. In Section 1.3, we show that the vanishing derivatives pre-certificate

ηV , controlling the stability of the support in a low noise regime, is non-degenerate

if the spikes of the initial measure are separated enough.

In a second time, when considering the particular case of positive measures

(main setup of this thesis), we provide a novel pre-certificate called the (2N−1)-
vanishing derivatives pre-certificate, and denoted ηW , which arises naturally in the

study of the recovery of the support of positive spikes that cluster at some point

in the one dimensional domain X . It is defined in Section 1.4. We show that ηV

converges towards ηW . In Section 1.5, we prove that the non-degeneracy of ηW

is transferred to ηV when the spikes of the initial measures are close enough. It

means in particular that one can perform the recovery of the support in a low noise

regime (but with an unknown size with respect to separation between the spikes)

when the spikes of the initial measure collapse at some point.

Chapter 2. The previous chapter showed that ηW controls the recovery of the

support for the super-resolution problem (spikes collapsing at some point) in pres-

ence of noise. The crucial property of ηW involved in this matter is its (2N− 1)-
non-degeneracy (defined in Section 1.5). This chapter discusses the non-degeneracy

for several different imaging operators Φ. In Section 2.2, we show that ηW is al-

ways locally non-degenerate when Φ is a convolution operator. In the particular
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case of a Gaussian convolution, we provide a formula for ηW and one deduces

its non-degeneracy. In Section 2.3, one turns to ηW for Laplace measurements.

We show, by providing formulas, that ηW is non-degenerate when Φ is the un-

normalized and L2-normalized Laplace transform. This particular setup is of high

interest to us because the MA-TIRF fluorescent microscopy model uses a Laplace-

like transform for depth information recovery in the 3D volume of a sample. Fi-

nally in Section 2.4, one extends the definition of ηW to the case of several clus-

ters of spikes and shows that if the clusters are separated enough then the non-

degeneracy of the ηW (for several clusters) only depends on the non-degeneracy of

the classical ηW (single cluster). This result justifies our choice of defining ηW for

only one cluster of spikes.

Chapter 3. Chapter 1 proved that the non-degeneracy of ηW assures the recovery

of the support of the initial measures in a low noise regime when the distance be-

tween the spikes t → 0. However this result has limited practical interest because it

does not tell anything on the tradeoff between the noise level and the distance be-

tween the spikes t. In this chapter, one studies precisely this dependency answering

for the first time to the open question of super-resolution in presence of noise (in

a low noise regime). We prove that if ηW is non-degenerate, if the regularization

parameter λ and the noise w are in a domain whose size is proportional to t2N−1,

where N is the number of spikes of the initial measure, and if the ratio ‖w‖
H

/λ

is small enough then the BLASSO has a unique solution composed of the same

number of spikes as the initial measure. Moreover the recovered amplitudes and

positions converge toward those of the initial measure if the noise level drops to 0

faster than t2N−1.

We also show that the non-degeneracy of ηW is almost a sharp condition.

Chapter 4. We propose a grid-less algorithm to solve the BLASSO (the domain

X is d dimensional). We call it the Sliding Frank-Wolfe (SFW) algorithm. It is

a modification of the algorithm detailed in [24]. It is based on the Frank-Wolfe

algorithm and it adds iteratively new spikes to the recovered measure. The differ-

ence with the classical Frank-Wolfe algorithm is that the amplitudes and positions

are moved before adding a new spike, using beneficially the continuous nature

of the domain X . This update is performed in the same time for the amplitudes

and positions contrary to what is proposed in [24] and later in [22]. This differ-

ence is crucial in our proof of its convergence speed. The algorithm is detailed in

Section 4.2.1. Our main theoretical contribution in this chapter is that the SFW al-

gorithm converges towards the unique solution of the BLASSO in a finite number

of iterations if ηV is non-degenerate. This implies (in dimension 1) as a corol-

lary that the SFW algorithm solves the super-resolution problem in presence of

noise in a finite number of steps by recovering the unique measure solution of the

BLASSO (and composed of the same number of spikes as the initial measure) if

ηW is (2N−1)-non-degenerate. This convergence result dramatically improves the
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standard weak-* convergence (with an error in the objective function of O(1/k))
of the Frank-Wolfe algorithm.

In Section 4.3, one compares numerically the SFW algorithm with FISTA and

OMP and we show that it outperforms them in a Optimal Transport based metric

but also in a metric based on detection indices.

In Section 4.4, one studies the properties of the numerical inversion of the

Laplace transform using our algorithm by solving the BLASSO. In particular we

show that one obtains better results when normalizing the kernel and that the size of

the interval containing the discretization points of the Laplace transform influence

the ability to recover spikes near or far from the origin. This provides crucial

information for the experimentalists in order to design new imaging techniques

based on the MA-TIRF model (Chapter 5).

Chapter 5. We use our algorithm to solve the BLASSO for three different 3D

models to recover fluorophores positions in a cell. These models are based on

the PALM/STORM technic which is known to improve the lateral resolution to

as low as 20nm but offers no estimation of depth. In Section 5.2, we detail a

mathematical framework, close of the one encountered by experimenters, modeling

the acquisition of data for the models PALM+Double-Helix, PALM+MA-TIRF

and PALM+Astigmatism. One provides the forward operators Φ for these three

cases. In the particular case of the Double-Helix and Astigmatism, one gives a

formulation that deals with several camera mounted in parallel and acquiring data

in the same time from several focal planes.

In Section 5.3, one uses our algorithm to solve the BLASSO for these three

models in a designed framework close of experimental conditions, providing a new

way (grid-less approach) to tackle this 3D problem. We show that the best perfor-

mance is attained by the PALM+Double-Helix model followed by the PALM+MA-

TIRF model and finally the PALM+Astigmatism model. The peak performance

is attained in all cases when K = 4 (4 TIRF angles or 4 focal planes). For the

Double-Helix and Astigmatism, we show that considering at least two focal planes

(K = 2) instead of one (standard in the literature) improves significantly the recov-

ery performance. The resolution attained for both models is under 20 nm in all

dimensions. It provides valuable information for the experimenters because theses

methods does not exist on the market yet (PALM+Double-Helix with K > 1 has

even never been tested).
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Cette thèse étudie la théorie, les algorithmes et les applications de la super-

résolution de sources ponctuelles. La super-résolution consiste à améliorer le

niveau de détails d’un signal observé donné. L’information de haute résolution

sous-jacente capturée est altérée à cause des limitations physiques du système

d’acquisition et par des perturbations aléatoires. C’est un problème que l’on ren-

contre par exemple dans des champs aussi diverses que l’astronomie, l’imagerie

médicale, la géophysique ou l’imagerie radar. Une des applications les plus récentes

de la super-résolution de sources ponctuelles concerne la microscopie par fluores-

cence en Biologie où les expérimentateurs essayent de dépasser le phénomène de

diffraction (résolution latérale limite de 200nm) en localisant précisément la po-

sition de fluorophores (molécules fluorescentes attachées aux protéines) dans un

échantillon. Les fluorophores peuvent être modélisés mathématiquement par des

sources ponctuelles (c’est-à-dire une mesure composée d’une somme de masses

de Dirac ayant des amplitudes positives). Ainsi, à partir d’une version altérée et

bruitée de ces masses de Dirac, l’objectif est de reconstruire une estimation la plus

précise possible de leurs positions et amplitudes. Comme deux fluorophores peu-

vent être séparés d’une distance bien inférieure à la limite de diffraction de 200nm,

ce problème difficile requiert le développement d’outils théoriques et numériques

performants. Notre approche, dans cette thèse, consiste à étudier un problème

d’optimisation appelé le BLASSO et qui est une version continue du LASSO bien

connu des statisticiens. Le BLASSO revient à minimiser la somme de l’erreur

quadratique entre la version estimée et altérée du signal source et les données ob-

servationnelles, et d’un terme de régularisation (la norme de la variation totale des

mesures) qui va favoriser les solutions parcimonieuses. Bien qu’il existe de nom-

breuses garanties théoriques pour la reconstruction de telles mesures à la fois dans

le cadre sans bruit et avec bruit, la question de la super-résolution en présence de

bruit pour le BLASSO est un problème ouvert. Nous avons montré, en dimension

1, que la non dégénérescence de ce que nous appelons le pré-certificat aux 2N−1

dérivées nulles (noté ηW ) est une condition suffisante (et presque nécessaire) pour

la reconstruction d’une unique mesure composée du même nombre de masses de

Dirac que la mesure initiale lorsque ces dernières sont séparées par une distance

t → 0. Nous avons prouvé que cette reconstruction n’est valide que si le niveau

de bruit diminue plus rapidement que t2N−1. D’un point de vue numérique, nous

fournissons un algorithme sans grille, que nous appelons l’algorithme SFW, qui

résout le BLASSO (qui est un problème d’optimisation sur les mesures), basé sur

l’algorithme de Frank-Wolfe mais avec une étape supplémentaire où les ampli-

tudes et les positions des masses de Dirac sont déplacées continûment. Cet algo-

rithme est inspiré par [24]. Une version proche de cet algorithme a récemment

été étudiée dans [22] où les auteurs montrent que l’algorithme fournit un nouvel

état de l’art dans plusieurs applications comme la microscopie par fluorescence

2D. Nous avons démontré dans le cas où une unique mesure discrète est solution

du BLASSO, alors l’algorithme SFW reconstruit cette mesure en un nombre fini

d’itérations. Ceci améliore significativement la seule garantie théorique de conver-

gence connue jusqu’alors (convergence faible-* avec une erreur en O(1/k) en la



xxvii

fonction objective). Enfin nous avons appliqué notre algorithme au problème de la

microscopie par fluorescence dans un cadre 3D en simulant précisément les condi-

tions expérimentales et nous avons comparé trois modèles différents d’acquisition

des données. Les résultats montrent une résolution spatiale de moins de 20nm

selon les trois axes.

La super-résolution de sources ponctuelles

Le cadre de la super-résolution de sources ponctuelles est rencontré de manière

régulière dans de nombreux problèmes d’imagerie. En astronomie, les étoiles peu-

vent être considérées comme des sources ponctuelles de lumière. En biologie, les

protéines fluorescentes dans les cellules peuvent également être vues comme des

sources ponctuelles. Pour ces deux applications, le processus d’acquisition des

données induit une altération du signal source idéal.

Une manière classique de déterminer si une application donnée entre dans

le cadre de la super-résolution de sources ponctuelles est d’utiliser un critère de

séparation de deux points. En théorie de la résolution, un critère de séparation de

deux points définit la capacité d’un système de séparer deux points de même inten-

sité. Un des critères les plus connus est le critère de Rayleigh [122] qui dit que deux

points sont séparés par un système optique si le maximum d’intensité du motif de

diffraction d’un des deux points source coincide avec le premier minimum (s’il ex-

iste) de l’intensité du motif de diffraction de l’autre point source. Ce critère définit

une distance qui ne dépend que du système optique et qui est appelée la longueur

de Rayleigh. Un exemple connu en physique et en astronomie est la tache d’Airy

qui est le motif de diffraction obtenu quand une source de lumière rencontre une

petite ouverture circulaire, voir la figure 6.

(a) Tache d’Airy

Figure 6: Motif de diffraction obtenu à l’infini ou au plan focal d’un système op-

tique quand une source de lumière à l’infini illumine une petite ouverture circulaire

(diffraction de Fraunhofer).

Le motif observé est donné par une fonction dépendant de la fonction de Bessel
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J1 et dans ce cas la longueur de Rayleigh est donnée par

∆R
def.
= 1.22

λℓ

d
,

où λℓ est la longueur d’onde et d le diamètre de l’ouverture. Pour les motifs de

diffraction comme ceux donnés par des gaussiennes, il n’y a pas de minimum

d’intensité autour du maximum central. C’est pourquoi nous préférons utiliser le

critère de séparation qui dit qu’un système peut séparer deux sources ponctuelles

si leurs motifs de diffraction ne se superposent pas de sorte que l’observation

résultante n’a qu’un seul maximum central. Nous notons ∆S cette longueur limite.

Voir la figure 7 pour une illustration de ce critère. Nous référons à [47] pour plus

de détails sur la théorie de la résolution.
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(a) Critère de séparation satisfait (b) Critère de séparation non satisfait
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(c) Critère de séparation satisfait (d) Critère de séparation non satisfait

Figure 7: Illustration de notre critère de séparation pour les motifs de diffraction

donnés par des gaussiennes en 1D et 2D. Pour une gaussienne de variance σ2, on

a ∆S = σ .

Le défi de la super-résolution de sources ponctuelles consiste donc à développer

des techniques théoriques et numériques robustes permettant de séparer deux (voire

plus) sources ponctuelles séparées par une distance en dessous de ∆S et dont les
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données observationnelles sont contaminées par des perturbations aléatoires (bruit).

Fournir de tels outils est le principal objectif de cette thèse. Comme nous l’argu-

mentons dans cette thèse, la question de la super-résolution, à la fois d’un point de

vue théorique et numérique, est un problème de détermination du comportement

du rapport signal sur bruit : comment doit se comporter ce ratio en fonction du

nombre de sources ponctuelles et de leurs distances respectives.

Modélisation mathématiques

Modélisation de signaux parcimonieux

Dans beaucoup d’applications (certaines déjà mentionnées), le signal source

que l’on veut reconstruire à partir d’observations altérées et bruitées peut être

modélisé par une collection de sources ponctuelles.

(x0,1,y0,1)

(x0,2,y0,2)

(x0,3,y0,3)

Figure 8: Illustration de la parcimonie d’un signal composé de sources ponctuelles

donné par les points (x0,i,y0,i) pour i ∈ {1, . . . ,3} dans [0,1]2 (rouges) dont les

amplitudes a0,i sont encodées par le diamètre des disques. Une grille uniforme

de [0,1]2 composée de 6× 6 points est représentée. Pour chaque (x0,i,y0,i), on

lui associe son voisin le plus proche sur la grille (points bleus). Le but est de

reconstruire ces points bleus. Seulement une fraction des points sur la grille a des

amplitudes non nulles d’où la parcimonie.

Ce type de signaux est qualifié de parcimonieux. Pour illustrer le concept de la

parcimonie dans le cas particulier des sources ponctuelles, considérons un ensem-

ble de positions (x0,1,y0,1), . . . , (x0,N ,y0,N) dans [0,1]2 avec des amplitudes posi-

tives associées notées a0,1, . . . ,a0,N . On peut se représenter cette exemple comme

un ensemble d’étoiles dans une partie du ciel ayant des magnitudes (a0,i). Si on

utilise une grille uniforme composée de K2 points pour discrétiser le domaine

[0,1]2 et que l’on associe à chaque (x0,i,y0,i) pour i ∈ {1, . . . ,N} son plus proche

voisin sur la grille, alors l’objectif est de retrouver un vecteur ã0 ∈RK2

avec seule-
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ment N coefficients non nuls correspondant aux a0,i. Si la grille est assez fine pour

capturer suffisamment de détails, cela signifie que N ≪ K2 de sorte que ã0 est un

vecteur parcimonieux (peu de coefficients non nuls). Voir la figure 8 pour une il-

lustration de cet exemple. La parcimonie peut alors être utilisée avantageusement

dans le processus de reconstruction.

Une grille est pratique pour illustrer le concept de parcimonie dans le cas de

signaux à sources ponctuelles. De plus, dès le départ c’est un problème de di-

mension finie (un ordinateur ne peut stocker qu’une quantité finie de données).

Cependant les objets mathématiques appropriés pour représenter une collection de

sources ponctuelles sont les sommes de masses de Dirac qui sont des mesures de

Radon. En effet la masse de Dirac δx peut être vue comme la forme linéaire sur

l’espace des fonctions continues correspondant à l’évaluation en x

δx : ϕ ∈ C0 7→ ϕ(x).

Par conséquent, on peut exprimer la collection de sources ponctuelles dans [0,1]2

du précédent exemple comme

ma0,x̄0

def.
=

N

∑
i=1

a0,iδ(x0,i,y0,i),

où x̄0 = ((x0,1,y0,1), . . . , (x0,N ,y0,N)) ∈ ([0,1]2)N . ma0,x̄0
est une mesure de Radon

ma0,x̄0
: ϕ ∈ C0 7→

N

∑
i=1

a0,iϕ(x0,i,y0,i),

et c’est désormais le signal source parcimonieux que l’on souhaite reconstruire.

Plus généralement, dans la suite et à partir de maintenant, on notera X le do-

maine des positions des masses de Dirac. Selon le contexte, X peut-être soit Rd (ou

un sous ensemble compact d’intérieur non vide de Rd) ou Td (le tore de dimension

d) pour différentes valeurs de d ∈N∗.
On note M (X) l’espace des mesures de Radon bornées sur X et qui peut-être

vu comme le dual topologique de l’espace C0(X ,R) des fonctions continues sur X

qui tendent vers 0 à l’infini (voir la définition 3 pour un énoncé plus précis).

Opérateur modélisant le processus d’acquisition

Le signal source ma0,x̄0
∈M (X) que l’on souhaite reconstruire est altéré par le

processus d’acquisition. Par exemple quand un télescope prend une image d’une

partie du ciel, ma0,x̄0
est convolée avec la réponse impulsionnelle du système op-

tique. Le résultat de cette altération correspond à la seule information à laquelle

on a accès. Nous modélisons ce processus par l’action d’un opérateur linéaire Φ

défini sur M (X), prenant ses valeurs dans un espace de Hilbert séparable H et

ayant la forme suivante

Φ : m ∈M (X) 7→
∫

X
ϕ(x)dm(x) ∈H . (4)
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La fonction ϕ , que l’on appelle dans la suite le noyau de Φ, est une fonction con-

tinue définie sur X et prenant ses valeurs dans H . Le choix de ϕ et H dépend

de l’application considérée. Dans la suite, on utilise le terme observations pour

signifier les données collectées et représentant l’élément

y0
def.
= Φma0,x̄0

∈H ,

ou sa version bruitée (y
def.
= y0 + w où w est du bruit). Voir la figure 9 pour un

exemple d’observations dans le cas d’une convolution par une gaussienne sur R.

Figure 9: En rouge les masses de Dirac de la mesure initiale ma0,x̄0
et en noir les

observations y0 = Φma0,x̄0
pour une convolution par une gaussienne c’est-à-dire

ϕ(x) = e
− ·−x

2σ2 ∈ L2(R).

Plusieurs exemples importants sont couverts par le modèle (1):

i) X = T, H = L2(T) et ϕ(x) = sin(2π fc(·−x))
sin(π(·−x))

ce qui correspond à une convo-

lution par le noyau de Dirichlet ayant une fréquence de coupure fc,

ii) X = T, H = R2 fc+1 et

ϕ(x) =















1√
2cos(2πx)

...√
2cos(2π fcx)√
2sin(2πx)

...√
2sin(2π fcx),















∈R
2 fc+1

est équivalent à (i),

iii) X = R, H = L2(R) et ϕ(x) = e
− (·−x)2

2σ2 ∈ L2(R) ce qui correspond à une

convolution par une gaussienne de variance σ2,
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iv) X = [ε ,xb] pour 0 < ε < xb, H = L2(R+) et ϕ(x) = s 7→ e−sx ∈ L2(R+) ce

qui correspond à une transformée de Laplace (voir chapitre 2). On remarque

en particulier que ce noyau n’est pas invariant par translation,

v) X = [ε ,xb] pour 0 < ε < xb, H = RK et ϕ(x) = (e−skx)16k6K ∈ RK ce qui

correspond à une transformée de Laplace discrétisée (voir chapitre 2). Ce

noyau est aussi invariant par translation,

vi) X = R2, H = L2(R2) et ϕ(x,y) = (u,v) 7→ e
− (u−x)2

2σ2
x e

− (v−y)2

2σ2
y ∈ L2(R2) ce qui

correspond à une convolution par une gaussienne en 2D,

vii) le chapitre 5 étudie plusieurs exemples dans R3 construits à partir d’une con-

volution discrétisée par une gaussienne 2D.

Pour résumer, à partir des observations y0 = Φma0,x̄0
ou y = y0+w, le but de la

super-résolution de sources ponctuelles est de reconstruire un certain m ∈M (X)
“proche” (pour une certaine distance) du signal source parcimonieux ma0,x̄0

. C’est

un problème inverse mal posé car Φ n’est pas inversible. En suivant l’approche

classique de la théorie de la régularisation, nous allons utiliser un a priori parci-

monieux pour régulariser le processus d’inversion.

État de l’art

La théorie et la pratique de la super-résolution peuvent être grossièrement di-

visées en trois parties:

• théorie : choix d’une méthode et étude théorique de ses performances,

• algorithmes : création d’une méthode de résolution exacte ou approximée et

étude de ses performances d’approximation,

• applications : un grand nombre de subtilités et d’adaptations doit être pris

en compte pour rendre compte des problèmes de la vie courante, et nous

nous concentrons dans cette thèse sur le problème de la microscopie par

fluorescence.

Ces trois parties sont abordées dans cette thèse. La partie I concerne le premier

point et la partie II concerne elle les deux derniers.

Théorie

Il y a deux principales catégories d’approches théoriques pour le problème de

la super-résolution : celle basée sur la méthode de Prony et celle basée sur les

méthodes variationnelles.
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Méthodes basées sur Prony. La méthode de Prony [44], MUSIC (MUltiple SIg-

nal Classification) [130], ESPRIT (Estimation of Signal Parameters by Rotational

Invariance Techniques) [96] ou Matrix Pencil [89] permettent de reconstruire ex-

actement les paramètres du signal dans le cas de mesures de Fourier et en l’absence

de bruit car elle n’exige pas de discrétiser le domaine. Bien que ces techniques

n’ont pas été conçues à la base pour gérer une contamination des observations par

du bruit, il existe des extensions qui en sont capables, voir [28, 39]. La stabilité

au bruit est satisfaite sous une condition de séparation minimale [106]. Il existe

également une méthode de Prony dans un cadre multivarié, voir [116].

Les méthodes basées sur Prony ont de meilleures performances que le LASSO

dans le cas 1D pour des mesures de Fourier. Dans d’autres configurations, la com-

paraison est moins évidente et parfois il peut même être impossible de les étendre.

Méthodes variationnelles. Les approches variationnelles sont plus résiliantes

car elle n’impose pas de conditions particulières sur l’opérateur Φ modélisant

le processus d’acquisition des données. De plus elles peuvent potentiellement

s’adapter à n’importe quel type de bruit et n’exigent pas de connaı̂tre le nombre

de sources ponctuelles. L’idée pour résoudre le problème de la super-résolution

de sources ponctuelles présenté précédemment est de minimiser parmi tous les

signaux sources possibles la somme d’un terme mesurant l’erreur par rapport aux

observations (dans toute cette thèse, on considérera l’erreur quadratique) et d’un

terme de régularisation favorisant la parcimonie.

LASSO. Dans un contexte de dimension finie, c’est-à-dire quand les posi-

tions des masses de Dirac sont prescrites sur une grille G ⊂ X (voir la figure 8 pour

un exemple), on obtient le LASSO [142] qui est défini par

min
a∈R#G

1

2
‖ΦG a− y‖2

H

︸ ︷︷ ︸

terme de fidélité

+ λ ‖a‖1
︸ ︷︷ ︸

terme favorisant la parcimonie

, (5)

où ΦG a
def.
= Φma,xG

et xG est le vecteur des points de la grille G .

Les techniques de régularisation ℓ1 ont d’abord été introduites en géophysique

(voir [37, 105, 127]) pour la prospection sismique car les changements de densité

dans le sous-sol peuvent être modélisés par une somme de sources ponctuelles. La

reconstruction basée sur la régularisation ℓ1 fournit des solutions avec peu de coef-

ficients non nuls et peut être résolue efficacement avec des méthodes numériques

d’optimisation convexe. Donoho a étudié et justifié théoriquement ces techniques

dans [49]. En traitement du signal, la méthode de la poursuite de base [34] utilise

la norme ℓ1 pour décomposer des signaux sur des dictionnaires redondants.

Puisqu’une grille est utilisée, cela signifie qu’il faut potentiellement la choisir

de sorte que le pas soit très petit pour capturer avec grande précision la position

des masses de Dirac de ma0,x̄0
. Cependant cette approche a un effet négatif sur

les propriétés de reconstructions théoriques (et numériques) car cela engendre le
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phénomène de l’inadéquation de la base [35, 51] ainsi que des atomes fortement

corrélés. Récemment, il a été prouvé dans [55, 56] que dans un régime de petit

bruit, le LASSO sur une grille fine estime le double des masses de Dirac de la

mesure initiale ma0,x̄0
.

Ces limitations liées à l’approche discrète du LASSO peuvent être levées en

considérant dès le départ un cadre sans grille. Nous le détaillons dans le paragraphe

suivant.

BLASSO. Inspiré par de récents travaux (voir par exemple [17, 24, 30, 42,

54]), la méthode de super-résolution parcimonieuse que nous considérons dans

cette thèse est un homologue de dimension infinie du LASSO (2). Elle peut être

interprétée comme la limite (pour la topologie sur les mesures) du LASSO lorsque

la grille se raffine. Ce problème inverse défini sur l’espace des mesures de Radon

est appelé dans [42] le BLASSO (B pour Beurling). Le cadre sans grille simplifie

l’analyse mathématique (au prix du passage à la dimension infinie) et permet po-

tentiellement de faire des prédictions précises sur la position des masses de Dirac

reconstruites.

Ainsi, le problème d’optimisation (2) devient

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X). (Pλ (y))

Il y a plusieurs différences entre le LASSO et le BLASSO Pλ (y)

1. on optimise sur M (X) plutôt que sur R#G et ΦG a = Φma,xG
pour tout a ∈

R#G est remplacé par Φm pour tout m ∈M (X), ce qui fait de Pλ (y) un

problème d’optimisation sur un espace de Banach non réflexif plutôt que sur

un espace vectoriel de dimension finie,

2. la norme ℓ1 utilisée comme terme de régularisation (et qui est uniquement

utilisable en dimension finie) est remplacée par son homologue de dimension

infinie c’est-à-dire la norme de la variation totale définie par

∀m ∈M (X), |m|(X)
def.
= sup

ψ∈C0(X ,R)

{∫

X
ψdm ; ‖ψ‖∞,X 6 1

}

.

C’est la norme duale de ‖·‖∞,X sur C0(X ,R) et elle généralise bien la norme

ℓ1 au cadre continu des mesures car

∀a0 ∈R
N , ∀x̄0 ∈ XN , |ma0,x̄0

|(X) = ‖a0‖1 .

Par conséquent, comme pour la norme ℓ1 qui favorise les solutions avec peu

de coefficients non nuls, la norme de la variation totale utilisée dans Pλ (y)
va favoriser les mesures parcimonieuses c’est-à-dire celles composées de

masses de Dirac (ce sont les points extrémaux de la boule unité de M (X)
pour | · |(X)).
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Le paramètre de régularisation λ > 0 doit être adapté au niveau de bruit ‖w‖
H

.

Faisons remarquer avant de continuer qu’il existe une variante du BLASSO qui

estime à la fois la mesure initiale et le niveau de bruit, voir [23]. Dans le cas sans

bruit w = 0, on peut faire tendre λ → 0 dans Pλ (y) et alors obtenir le problème

suivant

min
m∈M (X)

{|m|(X) ; Φm = y0} . (P0(y0))

C’est une généralisation de la classique méthode de la poursuite de base

min
a∈R#G

{‖a‖1 ; ΦG a = y0} ,

introduite à l’origine dans [34] dans un contexte de dimension finie, et écrite ici

sur l’espace des mesures de Radon. Dans la suite on fera référence au problème

P0(y0) comme la méthode de la poursuite de base pour les mesures. C’est le

problème étudié dans [30], dans le cas où Φ est le filtre passe-bas idéal sur le

tore (voir l’exemple (i)). Les auteurs montrent que ma0,x̄0
est l’unique solution de

P0(y0) si ∆(x̄0) >
C
fc

pour une certaine constante 0 <C 6 1.87 où

∆(x̄0)
def.
= min

i6= j
|x̄0,i− x̄0, j|. (6)

est la distance minimale de séparation entre les masses de Dirac. Dans [65],

l’auteur démontre que C 6 1.26. De plus [54] prouve nécessairement que C >
1
2
.

D’après cette dernière relation, on en déduit que la super-résolution est impos-

sible de manière générale lorsque l’on résout P0(y0) (ou Pλ (y)) sans hypothèse

sur le signe des amplitudes. En effet même si on peut retrouver exactement la

position des masses de Dirac (si ∆(x̄0) est suffisamment grand) dans le domaine

continu des positions des sources ponctuelles, nous avons expliqué précédemment

que la super-résolution consiste à essayer de reconstruire deux (ou plus) masses

de Dirac possiblement infiniment proches. Cependant pour des masses de Dirac

positives (c’est-à-dire a0,i > 0), la reconstruction exacte de ma0,x̄0
pour le problème

sans bruit (i.e. pour P0(y0)) est satisfaite peu importe ∆(x̄0) > 0, voir par exem-

ple [42]. Par conséquent le bon cadre pour étudier la super-résolution est celui des

mesures positives. La plupart du temps dans cette thèse, nous nous placerons dans

ce contexte. Le résultat de [42] cité au-dessus est uniquement vrai lorsqu’il n’y a

pas de bruit contaminant les observations. Ainsi le problème de la super-résolution

en présence de bruit est une question ouverte. C’est le principal sujet de notre

travail.

Dans [24], il est montré que si la solution de P0(y0) est unique alors les

mesures solutions de Pλ (y) convergent pour la topologie faible-* vers la solu-

tion de P0(y0) quand λ → 0 et ‖w‖2
H

/λ → 0. Dans [29], les auteurs fournissent

une estimation de l’erreur en utilisant la norme L1 d’une version basse fréquence

des mesures reconstruites. Les arguments utilisés sont un raffinement de [27].

Dans [7, 64], les majorations de l’erreur sont données en terme de localisation des
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masses de Dirac reconstruites par rapport à celles de la mesure initiale. Cependant,

ces travaux ne donnent que peu d’informations sur la structure des mesures recon-

struites par Pλ (y). Cette question est adressée dans [54] où les auteurs montrent

que si le pré-certificat aux dérivées nulles (voir la section 1.2 pour plus de détails)

ηV
def.
= Φ∗pV , où pV est l’unique solution de

inf
{
‖p‖

H
; ∀i = 1, . . . ,N, (Φ∗p)(x̄0,i) = sign(a0,i), (Φ

∗p)′(x̄0,i) = 0
}

,

est non-dégénéré c’est-à-dire

∀x ∈ X \
N⋃

i=1

x̄0,i, |ηV (x)|< 1 and |η ′′V (x̄0,i)| 6= 0,

alors il existe une unique solution de Pλ (y) avec exactement le même nombre de

masse de Dirac que la mesure initiale ma0,x̄0
, pourvu que λ et ‖w‖

H
/λ soient suff-

isamment petits. Remarquons que l’on peut facilement montrer que si ‖ηV‖∞,X 6 1

alors ηV est un certificat pour ma0,x̄0
. Nous rappelons qu’un certificat pour une

mesure discrète ma0,x̄0
et pour P0(y0) est une fonction continue dans l’image de

Φ∗ qui interpole le signe des amplitudes à la position des masses de Dirac et qui est

plus petite que 1 en norme infinie (condition également appelée condition source

dans la littérature [26]). Or il se trouve que ηV satisfait toutes les conditions sauf

‖ηV‖∞,X 6 1 qui assure alors que ma0,x̄0
est solution de P0(y0). L’intuition derrière

la définition de ηV est que la propriété de norme minimale L2 ainsi que les condi-

tions d’interpolation avec dérivées nulles vont permettre d’obtenir ‖ηV‖∞,X 6 1.

La section 1.4 définie le pré-certificat aux (2N− 1) dérivées nulles que l’on

note ηW
def.
= Φ∗pW . C’est la limite de ηV quand les N masses de Dirac (toutes pos-

itives) de ma0,x̄0
se rapprochent en un point du domaine. pW est l’unique solution

de

inf
{

‖p‖
H

; (Φ∗p)(0) = 1, (Φ∗p)′(0) = 0, . . . , (Φ∗p)(2N−1)(0) = 0
}

.

Puisque ηV contrôle la stabilité du support dans un régime de petit bruit, on peut

imaginer que ηW va jouer un rôle similaire (en tant que limite de ηV ) lorsque les

masses de Dirac se rapprochent les unes des autres.

Algorithmes

Il y a plusieurs algorithmes en fonction des schémas d’approximation du BLASSO.

On peut rassembler ces derniers en trois catégories :

• discrétisation spatiale fixe,

• discrétisation spectrale fixe et formulation SDP,

• discrétisation dynamique grâce à une optimisation sur l’espace des mesures.
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Discrétisation spatiale fixe. Cette approche est celle qui mène au LASSO. La

classe d’algorithme qui correspond à ce cas est la famille des méthodes proxi-

males. Ces algorithmes reposent sur le fait que le LASSO a une structure hilberti-

enne. L’“Iterative Hard Thresholding” (IHT) [19, 20] ou l’“Iterative Soft Thresh-

olding” (IST) [41, 38] sont des algorithmes qui font partie de la famille des al-

gorithmes “Iterative Shrinkage-Thresholding” (ISTA). Leurs taux de convergence

ont été abondamment étudiés dans la littérature [41, 50, 66]. Bien que ISTA soit

simple à implémenter, sa convergence est relativement lente (l’erreur en la fonction

objective est typiquement en O(1/k)). FISTA [9] donne un meilleur taux de con-

vergence non asymptotique en O(1/k2). Lorsque l’on travaille avec une grille, il

est nécessaire qu’elle soit suffisamment fine pour obtenir une localisation suffisam-

ment précise des masses de Dirac de la mesure initiale. Cependant quand la taille

de la grille #G augmente, cela rend chaque itération plus lente et produit un dictio-

nnaire plus corrélé ce qui détériore les constantes de convergence. Par conséquent,

en pratique, on obtient souvent un petit groupe de coefficients non nuls dans un

voisinage de chacune des masses de Dirac de la mesure initiale.

Discrétisation spectrale fixe et formulation SDP. En s’inspirant de [30], il est

possible de reformuler le BLASSO dans le cas d’un filtre passe-bas (X = T) en un

problème SDP (semi-definite program). Dans ce cas, on utilise alors des méthodes

de points intérieurs pour le résoudre puis une étape de calcul de racines d’un

polynôme trigonométrique pour trouver les positions des masses de Dirac. Un

des désavantages de cette approche est l’étape de calcul de racines qui peut ren-

contrer des soucis de stabilité. De plus la complexité d’une méthode de points

intérieurs pour ce problème SDP est polynomiale en O( f 2d
c ) où d est la dimension

du domaine X . Cet état de fait a mené à de récents développements [32] où les au-

teurs ont utilisé une relaxation de faible rang de la formulation SDP du BLASSO

pour utiliser ensuite une méthode gloutonne (voir ci-dessous). Enfin cette approche

ne peut être appliquée que pour certains types d’opérateur Φ (mesures de Fourier)

alors que l’algorithme de Frank-Wolfe (et les méthodes gloutonnes) et les méthodes

proximales peuvent être employés pour des Φ plus généraux.

Discrétisation dynamique grâce à une optimisation sur l’espace des mesures.

Afin de résoudre directement le BLASSO, on a besoin d’algorithmes qui n’utilisent

pas une structure hilbertienne et peuvent à la place directement travailler avec des

mesures. Les algorithmes qui conviennent particulièrement bien à cette tâche sont

l’algorithme de Frank-Wolfe et les méthodes gloutonnes. On peut par exemple tout

d’abord penser à l’algorithme Matching Pursuit (MP) [109] qui ajoute de nouvelles

masses de Dirac en trouvant celles qui ont la meilleure corrélation avec le résidu,

ou à l’Orthogonal Matching Pursuit (OMP) [144].

L’algorithme de Frank-Wolfe (FW) [69], également appelé méthode du gradi-

ent conditionnel (CGM) [104], est aussi adapté à cette situation car il permet de

minimiser une fonction différentiable sur un ensemble convexe faiblement com-
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pact d’un espace de Banach (voir la section 4.2.1 pour plus de détails). Il a été

montré que le taux de convergence de cet algorithme (en la fonction objective) est

en O(1/k) si la fonction objective est convexe et si sa différentielle est lipschitzi-

enne [46]. Dans [24], les auteurs proposent d’appliquer FW au BLASSO avec en

plus une mise à jour des paramètres du signal à chaque fin d’itération via la minimi-

sation d’un problème non convexe. C’est le point de départ de l’algorithme Sliding

Frank-Wolfe (SFW) que nous proposons dans le chapitre 4 de cette thèse. Une

version similaire de cet algorithme de Frank-Wolfe modifié a été utilisée dans [32]

pour une relaxation SDP, favorisant les matrices de rang faibles, du BLASSO grâce

à la hiérarchie de Lasserre. Cette approche a une complexité en O( f d
c log( fc)) par

itération (au lieu de polynomial en O( f 2d
c ) pour la version SDP classique utilisant

une méthode de points intérieurs).

Application à la microscopie par fluorescence

La reconstruction d’images de haute résolution à partir d’observations altérées

et bruitées est un défi compliqué en traitement d’images. Par exemple en biologie,

le domaine de la microscopie par fluorescence a récemment vu l’arrivée de nou-

velles techniques d’imagerie qui permettent de dépasser la limite de diffraction des

microscopes optiques (qui ont une résolution latérale d’environ 200nm et axiale de

500nm).

(a) PALM (b) Microscope limité par la diffraction

Figure 10: Comparaison de PALM et d’un microscope optique classique pour

l’imagerie de deux protéines : tdEos-paxillin (vert) and PsCFP20-zyxin (rouge).

On remarque que ces deux protéines ne se chevauchent pas quand elles sont visu-

alisées grâce à PALM. À l’inverse elles apparaı̂ssent presque co-localisées quand

elles sont observées via le microscope optique. Images obtenues à partir de

http: // www. cellimagelibrary. org/ images/ 38602 .

Nous nous intéressons, dans cette thèse, aux méthodes PALM/STORM (Pho-

toactivation Localization Microscopy et Stochastic Optical Reconstruction Micros-

copy) [16, 132, 124] qui consistent à activer et éteindre de manière aléatoire un

sous ensemble restreint de fluorophores dans un échantillon. Les auteurs de ces
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méthodes ont été récompensés d’un prix nobel de chimie en 2014 3. Les fluo-

rophores sont des molécules fluorescentes attachés typiquement à des protéines

et peuvent être vus comme des sources ponctuelles de lumière (donc des masses

de Dirac). Quand des fluorophores sont activés de manière aléatoire et émettent

de la lumière, une image est enregistrée. Lors d’une acquisition, quelques mil-

liers d’images sont enregistrées. Pour chacune d’entre elles, une reconstruction

est effectuée afin d’obtenir les coordonnées (la localisation) des fluorophores. La

PSF du système peut souvent être approximée par une gaussienne 2D, ainsi si les

fluorophores sont suffisamment séparés le centre des taches donne une précision

nanométrique sur la vraie position des molécules ce qui permet au bout du compte

de dépasser largement la limite de résolution causée par la diffraction. Les tech-

niques PALM/STORM permettent d’obtenir une résolution latérale de l’ordre de

20nm [16, 8, 67]. Toutes les coordonnées récupérées par les reconstructions sont

alors rassemblées pour former une unique image super-résolue de l’échantillon ob-

servé. Voir la figure 10 pour un exemple d’image obtenue grâce à PALM.

L’étape de reconstruction correspond à la résolution d’un problème de super-

résolution de sources ponctuelles. La localisation avec grande précision de plus

en plus de fluorophores pour chaque image capturée est un point crucial car cela

permet d’améliorer la résolution temporelle de l’acquisition (c’est-à-dire le temps

total utilisé pour la collecte des données) et donc d’observer des évènements qui

se produisent dans des échelles de temps plus courtes. C’est pourquoi cette étape

exige des méthodes numériques très performantes. Le challenge Single Molecule

Localization Microscopy (SMLM) 4 compare différentes méthodes numériques et

les techniques sans grille sont celles qui ont les meilleurs résultats à l’heure de

l’écriture de ce manuscrit. Voir par exemple [22].

Dans cette thèse, nous proposons d’utiliser notre algorithme sans grille intro-

duit au chapitre 4 pour étudier la reconstruction de fluorophores dans un volume

3D (voir le chapitre 5). Les méthodes PALM/STORM ne permettent de reconstru-

ire qu’une information latérale et la plupart des techniques expérimentales et des

schémas numériques ne s’intéressent qu’au problème 2D qui est bien plus facile

que le problème 3D. Pour obtenir une information sur la profondeur, nous pro-

posons de combiner PALM/STORM avec trois approches différentes :

• MA-TIRF (Multi-Angle Total Internal Reflection Fluorescence) [126, 21]

qui consiste à exciter les fluorophores avec un laser suivant différents angles,

• la double hélice [121] qui produit une PSF composée de deux gaussiennes

qui tournent avec la profondeur,

• l’astigmatisme [90] qui produit une PSF composée d’une gaussienne dont

les dimensions horizontale et verticale changent avec la profondeur.

La technique PALM + MA-TIRF n’existe pas encore sur le marché mais l’équipe

Morpheme (CNRS/INRIA/UCA) à l’institut de biologie de Valrose (iBV) travaille

3https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2014/
4http://bigwww.epfl.ch/smlm/



xl INTRODUCTION GÉNÉRALE (FRANÇAIS)

actuellement sur ce projet. Cette partie de la thèse est le résultat d’une collaboration

avec Emmanuel Soubies (qui a fait parti de l’équipe Morpheme).

Contributions principales

Chapitre 1. Nous étudions la reconstruction du support pour le BLASSO, dans

un premier temps sans hypothèse sur le signe des amplitudes des masses de Dirac,

puis dans un second temps pour des amplitudes positives. Dans le premier cas, nous

fournissons dans la section 1.2 (lorsque le domaine X est de dimension d ∈ N∗)
une nouvelle preuve du résultat principal de [54] (théorème 2) sur la reconstruction

du support pour Pλ (y) dans un régime de petit bruit, en utilisant une approche

constructive similaire à celle développée dans le chapitre 3. Dans la section 1.3,

nous démontrons que le pré-certificat aux dérivées nulles ηV , contrôlant la stabilité

du support dans un régime de petit bruit, est non-dégénéré si les masses de Dirac

de la mesure initiale sont suffisamment séparées.

Dans le second cas, nous définissons un nouveau pré-certificat appelé le pré-

certificat aux (2N−1) dérivées nulles, et noté ηW , apparaı̂ssant naturellement lors

de l’étude de la reconstruction du support de mesures positives dont les masses

de Dirac se rapprochent en un point du domaine X supposé ici de dimension 1.

Cet objet est défini dans la section 1.4 où nous montrons que ηV converge vers ηW .

Dans la section 1.5, nous prouvons que la non-dégénérescence de ηW est transférée

à ηV quand les masses de Dirac de la mesure initiale sont suffisamment proches.

Cela signifie en particulier que l’on peut effectuer la reconstruction du support

dans un régime de petit bruit (mais dont la taille n’est pas connue par rapport à la

distance séparant les masses de Dirac) quand les masses de Dirac se rapprochent

infiniment en un point.

Chapitre 2. Le chapitre précédent montre que ηW contrôle la reconstruction du

support pour le problème de la super-résolution en présence de bruit. La pro-

priété centrale est sa (2N− 1) non dégénérescence (définie dans la section 1.5).

Le chapitre 2 s’attelle à l’étude de cette non dégénérescence pour plusieurs ex-

emples différents d’opérateur Φ (modélisant le processus d’acquisition). Dans la

section 2.2, nous démontrons que ηW est toujours localement non dégénéré si Φ

est un opérateur de convolution. Dans le cas particulier de la convolution par une

gaussienne, nous fournissons une formule simple pour ηW dont on déduit sa non

dégénérescence. Dans la section 2.3, on s’intéresse à ηW lorsque Φ est une trans-

formée de Laplace. Nous montrons, en fournissant des expressions, que ηW est non

dégénéré quand Φ est une transformée de Laplace non-normalisée et normalisée

pour la norme L2. Ces deux derniers cas nous intéressent particulièrement car ils

sont impliqués dans le modèle MA-TIRF en microscopie par fluorescence. Enfin

dans la section 2.4, nous étendons la définition de ηW au cas de plusieurs groupes

de masses de Dirac qui se rapprochent en plusieurs points différents du domaine

X . Nous démontrons que si ces points sont suffisamment éloignés alors la non
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dégénérescence de ηW ne dépend que de la non dégénérescence de ηW pour un

seul point de rapprochement. Ce résultat justifie rétrospectivement le choix de ne

s’intéresser à ηW que pour un seul groupe de masses de Dirac.

Chapitre 3. Dans le chapitre 1, nous avons démontré que la non dégénérescence

de ηW assure la reconstruction du support de la mesure initiale dans un régime de

petit bruit quand la distance entre les masses de Dirac tend vers 0. Cependant ce

résultat a peu d’intérêt en pratique car il ne donne aucune information sur le com-

promis qu’il y a entre le niveau de bruit et la distance minimale séparant les masses

de Dirac t. Dans ce chapitre, nous faisons l’étude précise de cette dépendance et

fournissons une réponse à la question ouverte de la super-résolution en présence

de bruit. Nous prouvons que si ηW est non dégénéré, alors si le paramètre de

régularisation λ et le bruit w sont dans un domaine dont la taille est proportion-

nelle à t2N−1, où N est le nombre de masses de Dirac de la mesure initiale, et si

le ratio ‖w‖
H

/λ est suffisamment petit alors le BLASSO a une unique solution

composée du même nombre de masses de Dirac que la mesure initiale. De plus les

amplitudes et positions reconstruites convergent vers ceux de la mesure initiale si

le niveau de bruit tend vers 0 plus vite que t2N−1. Nous montrons également que la

condition de non-dégénérescence de ηW est presque nécessaire.

Chapitre 4. Nous proposons un algorithme sans grille qui résout le BLASSO (le

domaine est supposé être de dimension d ∈ N∗). Nous l’appelons l’algorithme

Sliding Frank-Wolfe (SFW). C’est une modification de celui détaillé dans [24] et

est basé sur l’algorithme de Frank-Wolfe. Il ajoute de manière itérative de nou-

velles masses de Dirac à la mesure reconstruite. La différence fondamentale avec

l’algorithme de FW est que les amplitudes et les positions sont déplacées avant

chaque ajout de nouvelle masse de Dirac, via la minimisation d’un problème non

convexe. Cette mise à jour est faite en même temps sur les amplitudes et les po-

sitions contrairement à ce qui est proposé dans [24] et plus tard dans [22]. Cette

différence est importante car c’est l’ingrédient principal de l’étude de sa conver-

gence. L’algorithme est détaillé dans la section 4.2.1.

Notre contribution théorique principale dans ce chapitre montre que l’algorithme

SFW converge vers l’unique solution du BLASSO en un nombre fini d’itérations si

ηV est non dégénéré. On en déduit en particulier en dimension 1 que l’algorithme

est capable de résoudre numériquement le problème de la super-résolution en pré-

sence de bruit en temps fini en reconstruisant l’unique solution du BLASSO (com-

posée du même nombre de masses de Dirac que la mesure initiale) si ηW est

(2N − 1) non dégénéré. Ce résultat de convergence améliore significativement

la convergence classique pour la topologie faible-* (avec une erreur en la fonction

objective en O(1/k)) de l’algorithme de FW.

Dans la section 4.3, on compare l’algorithme SFW avec FISTA et OMP et

nous montrons qu’il fournit de meilleurs performances pour une métrique basée

sur le transport optimal et également pour des métriques basées sur des indices de
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détection.

Dans la section 4.4, nous étudions les propriétés de l’inversion numérique de la

transformée de Laplace en utilisant notre algorithme pour résoudre le BLASSO. En

particulier, nous montrons que l’on obtient de meilleurs résultats quand le noyau est

normalisé et puis que la taille de l’intervalle contenant les points de discrétisation

de la transformée de Laplace influence la capacité de reconstruire des masses de

Dirac proches ou éloignées de l’origine. Cela procure aux expérimentateurs des in-

dications très importantes pour la mise au point de nouvelles techniques d’imagerie

basées sur le modèle MA-TIRF.

Chapitre 5. Nous utilisons notre algorithme pour résoudre le BLASSO pour

trois modèles différents de reconstruction 3D de fluorophores dans une cellule.

Ces modèles sont basées sur les techniques PALM/STORM qui sont connues pour

améliorer la résolution latérale jusqu’à 20nm mais qui ne fournit pas d’estimation

de la profondeur des fluorophores. Dans la section 5.2, nous détaillons un cadre

mathématique qui est proche de celui rencontré par les expérimentateurs en pra-

tique et que nous utilisons pour nos tests numériques. Nous modélisons mathématiquement

les acquisitions pour les modalités PALM + double hélice, PALM + astigma-

tisme et PALM + MA-TIRF et nous prenons également en compte la possibilité

pour l’expéri-mentateur d’installer plusieurs caméras en parallèle enregistrant les

données simultanément à partir de plans focaux différents.

Dans la section 5.3, nous montrons que les meilleures performances sont obtenues

par le modèle PALM + double hélice suivi de PALM + MA-TIRF et enfin de PALM

+ astigmatisme. Les meilleurs résultats pour chacune des modalités sont obtenus à

chaque fois pour K = 4 (4 angles TIRF et 4 plans focaux). Pour la double hélice et

l’astigmatisme, nous montrons que considérer au moins deux plans focaux (K = 2)

au lieu d’un seul (ce qui est standard dans la littérature) améliore significativement

les performances de reconstruction. La résolution atteinte pour chacun des modèles

est en dessous de 20nm dans les 3 dimensions.



Part I

Sparse Super-Resolution of

Positive Measures
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Chapter 1

Asymptotic Analysis of Support

Recovery

The recovery of the support of the BLASSO in a low noise regime is con-

trolled by the non-degeneracy of the vanishing derivatives pre-certificate de-

noted ηV . We show, when no assumption is made on the sign of the ampli-

tudes of the spikes, that it is non-degenerate provided that the Dirac masses

are separated enough. In the case of positive spikes, there is no need for a

separation. One can thus study the super-resolution problem which is the

clustering of the spikes of the initial measure at some point in the domain.

We prove that ηV converges towards a new pre-certificate called the (2N−1)
vanishing derivatives pre-certificate and denoted ηW . We then show that a

particular notion of non-degeneracy for ηW is transferred to ηV when the

spikes are close enough to each other. This leads to a first result of stability

of the support in a low noise regime for the super-resolution problem when

solving the BLASSO.

3
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1.1 Introduction

Recall that one considers the following optimization problem

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X), (Pλ (y))

where Φ : M (X)→H is a linear operator defined by Φm =
∫

X ϕ(x)dm(x), with

M (X) the space of Radon measures and H a separable Hilbert space whose scalar

product is denoted 〈·, ·〉
H

. One has y = y0 + w = Φma0,x̄0
+ w. The noiseless

version of Pλ (y) is the basis pursuit for measures

min
m∈M (X)

{|m|(X) ; Φm = y0} . (P0(y0))

The main goal of this chapter is to provide an asymptotic analysis of Pλ (y) of

support recovery when the spikes of ma0,x̄0
are positive.

1.1.1 BLASSO Performance Analysis

In order to quantify the recovery performance of the methods P0(y0) and

Pλ (y), the following two questions arise:

1. Does the solutions of P0(y0) recover the input measure ma0,x̄0
?

2. How “close” is the solution of Pλ (y) to the solution of P0(y0) and what

definition of close one has to use ?

When the amplitudes of the spikes are arbitrary complex numbers, the answers

to the above questions require a large enough minimum separation distance ∆(x̄0)
between the spikes where:

∆(x̄0)
def.
= min

i 6= j
dX (x̄0,i, x̄0, j). (1.1.1)

where dX is a canonical distance on X i.e. for example:

∀x,x′ ∈R
d , dX (x,x) =

∥
∥x− x′

∥
∥ , (1.1.2)

when X = Rd , or:

∀x,x′ ∈ T
d , dX (x+Z

d ,x′+Z
d) = min

k∈Zd

∥
∥x− x′+ k

∥
∥ , (1.1.3)

when X = Td .

The first question is addressed in [30] where the authors showed, in the case of

Φ being the ideal low-pass filter on the torus, i.e. when X = T, H = L2(T) and

∀x ∈ X , ϕ(x) = ψ(·− x) where ψ(t) =
fc

∑
k=− fc

e2iπkt ,
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that ma0,x̄0
is the unique solution of P0(y0) provided that ∆(x̄0)>

C
fc

where C > 0

is a universal constant and fc the cutoff frequency of the ideal low-pass filter. In

the same paper, it is shown that C 6 2 when a0 ∈ CN and C 6 1.87 when a0 ∈RN .

In [65], the author proved that C 6 1.26. And we know from [54] that necessarily

C >
1
2
.

The second question receives partial answers in [7, 24, 29, 64]. In [24], it is

shown that if the solution of P0(y0) is unique then the measures recovered by

Pλ (y) converge in the weak-* sense to the solution of P0(y0) when λ → 0 and

‖w‖2
H

/λ → 0. In [29], the authors measure the reconstruction error using the L1

norm of an ideal low-pass filtered version of the recovered measures. In [7, 64],

error bounds are given on the locations of the recovered spikes with respect to

those of the input measure ma0,x̄0
. However, those works provide little information

about the structure of the measures recovered by Pλ (y). That point is addressed

in [54] where the authors show that under the Non Degenerate Source Condition

(see Section 5 for more details), there exists a unique solution to Pλ (y) with the

exact same number of spikes as the original measure provided that λ and ‖w‖
H

/λ

are small enough. Moreover in that regime, this solution converges to the original

measure when the noise drops to zero.

The major information to recall when studying the recovery of measures ma0,x̄0

composed of a sum of Dirac masses with no assumptions on a0 other that a0 ∈
RN or a0 ∈ CN , is that to guarantee the recovery of the support, the spikes must

be separated enough. Thus destroying any hope to perform super-resolution (i.e.

separate two or more point sources as close as possible).

1.1.2 BLASSO for Positive Spikes

For positive spikes (i.e. a0,i > 0), the picture is radically different, since exact

recovery of ma0,x̄0
without noise (i.e. (w,λ ) = (0,0)) holds whatever ∆(x̄0) > 0

(provided sum injectivity assumption), see for instance [42]. This means that one

can expect to solve, in this particular setting of positive measures, the problem of

super-resolution mentioned in Section . To emphasize this ability, we choose from

now on (in this framework of positive measures) to write ma0,x̄0
as:

ma0,tz0
=

N

∑
i=1

a0,iδtz0,i
,

where for all i ∈ {1, . . . ,N}, tz0,i ∈ X and a0,i > 0. The parameter t > 0 is used to

bring closer as much as we want the spikes of ma0,tz0
. As mentioned above, one

can then solve P0(y0,t) and recover ma0,tz0
when t → 0. However the problem

gets harder and harder because stability constants explode. As a result in pres-

ence of noise, there is a tradeoff between the noise level and t → 0 (the spikes

infinitely close). We propose to investigate this relation in Chapter 1 and Chap-

ter 3 in the context of support recovery, thus responding to the open problem of

super-resolution with noise on the data:
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• find a sufficient (and if possible necessary) condition on the noise level

‖w‖
H

with respect to t to guarantee the recovery of two (or more) positive

spikes separated by a distance proportional to t (with t → 0).

A recent work [113] shows that stable recovery is obtained if the signal-to-

noise ratio grows faster than O(1/t2N), closely matching optimal lower bounds

of O(1/t2N−1) obtained by combinatorial methods, as also proved recently [45].

Our main contribution is to show that the same O(1/t2N−1) signal-to-noise scaling

in fact guarantees a perfect support recovery of the spikes under a certain non-

degeneracy condition on the filter. This extends, for positive measures, the initial

results of [54] by providing an asymptotic analysis when t → 0.

MUSIC and related methods. There is a large body of literature in signal pro-

cessing on spectral methods to perform spikes location from low frequency mea-

surements. One of the most popular methods is MUSIC (for MUltiple Signal Clas-

sification) [130] and we refer to [100] for an overview of its use in signal processing

for line spectral estimation. In the noiseless case, exact reconstruction of the ini-

tial signal is guaranteed as long as there are enough observations compared to the

number of distinct frequencies [106]. Stability to noise is known to hold under a

minimum separation distance similar to the one of the BLASSO [106]. However,

on sharp contrast with the behavior of the BLASSO, numerical observations (see

for instance [39]), as well as a recent work of Demanet and Nguyen, show that this

stability continues to hold regardless of the sign of the amplitudes a0,i, as soon as

the signal-to-noise ratio scales like O(1/t2N−1). Note that this matches (when w is

a Gaussian white noise) the Cramer-Rao lower bound achievable by any unbiased

estimator [18]. This class of methods are thus more efficient than BLASSO for ar-

bitrary measures, but they are restricted to operators Φ that are convolutions with

a low-pass filter, which is not the case of our analysis for the BLASSO.

1.1.3 Contributions

In Section 1.2, we prove a convergence result between pre-certificates (see

Proposition 4) in a general setting (dimension d and low assumption on the kernel

ϕ) which leads to a new proof (constructive) of the main result of [54] (Theorem

2) on the support recovery in a low noise regime when solving the BLASSO.

In Section 1.3, Theorem 2 shows that the vanishing derivatives pre-certificate

ηV is non-degenerate if the spikes of the initial measure are separated enough.

Section 1.4 defines a new pre-certificate for the study of the BLASSO in a 1 di-

mensional framework: the (2N−1)-vanishing derivatives pre-certificate ηW . It is a

crucial object in this Thesis because it controls the recovery of the support in pres-

ence of noise when the spikes of the initial measure get closer and closer. We show

that ηV ,t converges towards ηW when the spikes collapse at 0 (see Proposition 9).

The main contribution of Section 1.5 is Theorem 3 which proves that any pre-

certificate close enough of ηW is non-degenerate provided that ηW is itself non-
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degenerate. The appropriate notion of degeneracy for ηW in order to obtain this

result is also defined in this Section. One finally proves using the convergence

of ηV ,t towards ηW that one can perform the recovery of the support in a domain

(unknown) in (λ ,w) when the spikes of the initial measure collapse at 0 (see Propo-

sition 10).
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1.2 A Primer on Certificates for Super-Resolution

In this Section, the goal is to set up some definitions for the rest of this thesis but

also to present some tools introduced in [54] which are the starting point of what is

presented in Part I of this thesis. Our main contribution in this Section consists in

Proposition 4 where we prove a convergence result between pre-certificates. This

leads to a new constructive proof of Theorem 1 (see Remark 2 at the end of this

Section for the main differences between our approach here and the one of [54]

(Theorem 2)). This new proof corresponds to a reasoning which is, in its core,

similar to the one that we use later in Chapter 3 to prove our main contribution of

Part I. As a result, we see this Section as a warm-up for what is coming next.

Before going any further, let us give some formal definitions that set up the

general framework of this thesis.

Measures.

Definition 1 (Set X of positions of spikes). The set of positions of spikes, denoted

X, is supposed to be a set such that
◦
X is a smooth manifold of dimension d ∈N∗.

In particular X is locally compact.

Definition 1 covers the particular case of X = Rd , X = Td or any compact

subset with non-empty interior of Rd .

Definition 2 (Continuous functions on X). We denote by C0(X ,H ) the set of con-

tinuous functions that vanish at infinity i.e.

∀ε > 0,∃K ⊂ X compact, sup
x∈X\K

‖ϕ(x)‖
H

6 ε ,

and by C k
0 (X ,H ) the set of continuous functions that vanish at infinity and k-

times differentiable on X. Note that when X is compact, C0(X ,H ) is just the set

C (X ,H ) of continuous functions on X.

Now we can define rigorously the space of real bounded Radon measures on X

using the Riesz representation theorem.

Definition 3 (Set M (X) of Radon measures). We denote by M (X) the set of real

bounded Radon measures on X which is the topological dual of C0(X ,R) endowed

with ‖·‖∞,X (the supremum norm for functions defined on X). It is also the set of

regular real Borel measures with finite total mass on X.

See [123] for more details on Radon measures.

Kernels. This paragraph details the assumptions that we use in the following on

the kernel ϕ . We recall that the operator modeling the alteration process of the

acquisition of the source signal Φ : M (X)→H has the form:

∀m ∈M (X), Φm
def.
=
∫

X
ϕ(x)dm(x), (1.2.1)
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For this to be valid and have a meaning but also to prove our results in the rest of

this thesis, we need to make some assumptions concerning the kernel ϕ . Given

the previous paragraph where we defined Radon measures, a readily requirement

for ϕ is its belonging to C0(X ,H ). We list in the following definition the other

assumptions that an admissible kernel ϕ must verify.

Definition 4 (Admissible kernels ϕ). We denote by KER(k), the set of admissible

kernels of order k. A function ϕ : X →H belongs to KER(k) if:

• ϕ ∈ C k(X ,H ),

• For all p ∈H , x ∈ X 7→ 〈ϕ(x), p〉
H

vanishes at infinity,

• for all 0 6 i 6 k, sup
x∈X

∥
∥Diϕ(x)

∥
∥<+∞.

where Diϕ is the i-th differential of ϕ .

In the remaining of this Section, we take X as in Definition 1, we suppose that

ϕ ∈ KER(2) and we consider the BLASSO:

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X), (Pλ (y))

where we recall the notation:

y
def.
= Φma0,x̄0

+w with ma0,x̄0
=

N

∑
i=1

a0,iδx0,i
. (1.2.2)

Moreover we make no assumption on the sign of the amplitudes a0 and x0 ∈
◦
XN .

The goal is to find sufficient conditions such that Pλ (y) has a unique solution ma,x̄

composed of exactly the same number of Dirac masses as ma0,x̄0
.

First we start by giving the subdifferential of the total variation norm in the

next Proposition (see [54] for a proof).

Proposition 1 (Subdifferential of | · |(X)). The total variation norm | · |(X) is con-

vex and lower semi-continuous with respect to the weak-* topology so its subdif-

ferential is non-empty at any m ∈M (X) and is given by:

∂ |m|(X) =

{

η ∈ C0(X ,R); ‖η‖∞,X 6 1 and

∫

X
ηdm = |m|(X)

}

.

In particular for a discrete measure ma,x̄, one has:

∂ |ma,x̄|(X) =
{

η ∈ C0(X ,R); ‖η‖∞,X 6 1 and ∀i, η(xi) = sign(ai)
}

.

From Proposition 1, we can then characterize discrete measures solutions of

the BLASSO. This is the aim of the next Proposition.
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Proposition 2. A discrete measure ma,x̄ = ∑
n
i=1 aiδxi

is solution of Pλ (y) if and

only if:

‖ηλ‖∞,X 6 1 and ∀i, η(xi) = sign(ai). (1.2.3)

where

ηλ
def.
= Φ

∗pλ with pλ
def.
=

1

λ
(y−Φma,x̄), (1.2.4)

Proof. Applying the Fermat’s rule leads to ma,x̄ solution of Pλ (y) if and only if:

ηλ
def.
= Φ

∗pλ ∈ ∂ |ma,x̄|(X). (1.2.5)

Then using the expression of the subdifferential of the total variation norm for a

discrete measure ma,x̄ given in Proposition 1, gives the expected result.

We recall that the adjoint of Φ i.e. Φ∗ : H → C0(X ,R) is given by:

∀p ∈H , ∀x ∈ X , (Φ∗p)(x) = 〈ϕ(x), p〉
H

.

See Figure 1.1, for an example of ηλ in a 2D setting. In particular it illustrates

the statement of Proposition 2.

(a) ηλ in 2D for a Gaussian with σ = 0.1

Figure 1.1: Illustration of ηλ for a Gaussian convolution in R2. White (rest. gray)

markers corresponds to the spikes of ma0,x̄0
(resp. ma,x̄). A ”+” (resp ”x”) is for

a positive (resp. negative) spikes. ma,x̄ is a solution of Pλ (y) and we see that

‖ηλ‖∞,X 6 1.
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Remark 1. If ηλ satisfies ‖ηλ‖∞,X 6 1 and for all i ∈ {1, . . . ,n}, ηλ (xi) = sign(ai)
then one obtains ∇ηλ (xi) = 0. The converse is of course wrong but the conditions:

∀i ∈ {1, . . . ,n}, (ληλ )(xi) = λ sign(ai) and ∇(ληλ )(xi) = 0, (1.2.6)

are much more tractable than:

∀i ∈ {1, . . . ,n}, (ληλ )(xi) = λ sign(ai) and ‖ηλ‖∞,X 6 1,

because ‖ηλ‖∞,X 6 1 involves an “infinite” number of inequalities.

We have characterized the solutions of Pλ (y) using ηλ , which in turn satisfies

some linear equations (1.2.6). Our approach is to show that a measure ma,x̄ built by

solving these linear equations for a given (λ ,w) has its ηλ verifying the optimality

condition (1.2.5) (provided some assumptions).

First note that ma0,x̄0
is a solution of the BLASSO when (λ ,w) = (0,0). More-

over in this case, one has:

∀i ∈ {1, . . . ,N}, (ληλ )(x0,i) = λ sign(a0,i) and ∇(ληλ )(x0,i) = 0.

Therefore we may parametrize, using the Implicit Function Theorem, the solutions

of Equations 1.2.6 in a neighborhood V of (0,0) in R×H by a function g ∈
C 1(V ,RN ×XN), such that for all (λ ,w) ∈ V , (a, x̄) = g(λ ,w) if and only if ηλ

(for ma,x̄) satisfies the Equations 1.2.6. This is shown in the next proposition.

But before continuing, we detail a few notations that we use very often in the

remaining of this thesis. Given x̄ = (x1, . . . ,xN) ∈ XN , we denote by Φx̄ : RN →H

the linear operator such that:

∀a ∈R
N , Φx̄(a)

def.
=

N

∑
i=1

aiϕ(xi), (1.2.7)

and by Γx̄ : (RN×R
N×·· ·×R

N

︸ ︷︷ ︸

d

)→H the linear operator defined by:

∀(a,b1, . . . ,bd) ∈R
N× (RN)d , Γx̄








a

b1

...

bd








def.
=

N

∑
i=1

(

aiϕ(xi)+
d

∑
j=1

b j,i∂ jϕ(xi)

)

.

(1.2.8)

One can also write

Γx̄ =
(

Φx̄ (Φx̄)
(1)
)

(1.2.9)

where (Φx̄)
(1)

(also denoted sometimes Φx̄
′) stacks all the first order derivatives of

ϕ for the different positions xi (one can also defined in the same way (Φx̄)
(k)

for

k > 1).
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Proposition 3. Suppose that Γx̄0
has full column rank. Then there exists neigh-

borhoods V and U of respectively (0,0) in R×H and (a0,x0) in RN ×XN , and

g ∈ C 1(V ,U) such that:

(a, x̄,λ ,w) ∈U×V and Equations (1.2.6) are satisfied

⇔
(λ ,w) ∈U and (a, x̄) = g(λ ,w).

Proof. Consider:

E(a, x̄,λ ,w) =
(

Φ
∗
x̄(y−Φma,x̄)−λ sign(a), (Φ∗

x̄)
(1)(y−Φma,x̄)

)

, (1.2.10)

= Γ
∗
x̄

(

y−Γx̄

(
a

0

))

−λ

(
sign(a)

0

)

. (1.2.11)

Then it is a C 1 function in a neighborhood of (a0, x̄0) because ϕ ∈ KER(2), and

E(a, x̄,λ ,w) = 0 if and only if Equations 1.2.6 are satisfied. One can check that:

∂E

∂ (a, x̄)
(a0, x̄0,0,0) = Γ

∗
x̄0

Γx̄0

(
IdN 0

0 Da0

)

where Da0
is a diagonal matrix whose coefficients are a0 repeated d-times (Da0

∈
RdN×dN , d is the dimension of X). Therefore if Γx̄0

has full column rank then ∂E
∂ (a,x̄)

is invertible and one can apply the Implicit Function Theorem and get the expected

conclusion.

Hence we have, for values of (λ ,w) small enough, a measure ma,x̄ (not yet

solution of Pλ (y)) composed of exactly the same number of spikes as ma0,x̄0
such

that (a, x̄) = g(λ ,w) where g is C 1 and for all i ∈ {1, . . . ,N}, ηλ (xi) = sign(ai)
and ∇ηλ (xi) = 0 (if λ 6= 0). In particular, this means that if we are able to prove

that ‖ηλ‖∞,X 6 1 then automatically ma,x̄ is a solution of the BLASSO.

It turns out that pλ , defined from ma,x̄ where (a, x̄) = g(λ ,w) i.e. (a, x̄,λ ,w)
verifies Equations (1.2.6), converges in H towards some particular pV ∈H when

max
(

λ ,
‖w‖H

λ

)

→ 0. This means that we may asymptotically obtain information

on ηλ = Φ∗pλ (and show ‖ηλ‖∞,X 6 1) from properties of ηV
def.
= Φ∗pV . But first

let us define ηV .

Following [54] (Section 4.1, Definition 6), we introduce below the so called

vanishing derivatives pre-certificate ηV , which is a function defined on X that in-

terpolates the spikes positions and signs with a minimal norm feature. Note that

ηV can be computed in closed form by solving the linear system (1.2.12). See

Figure 1.2 for an example of ηV in 2D.

Definition 5 (Vanishing Derivatives Precertificate, [54]). If Γx̄0
has full column

rank, there is a unique solution to the problem

inf
{

‖p‖
H

; ∀i = 1, . . . ,N, (Φ∗p)(x0,i) = sign(a0,i), (Φ
∗p)′(x0,i) = 0(RN)d

}

.
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(a) ηV in 2D for a Gaussian with σ = 0.1

Figure 1.2: Illustration of ηV for a Gaussian convolution in R2. White markers cor-

responds to the spikes of ma0,x̄0
. A ”+” (resp ”x”) is for a positive (resp. negative)

spike. ηV satisfies the requirements of Definition 6 (non-degeneracy).

Its solution pV is given by

pV = Γ
+,∗
x̄0

(
sign(a0)

0Rd

)

, (1.2.12)

where Γ
+
x̄0
= (Γ∗x̄0

Γx̄0
)−1Γ∗x̄0

is the pseudo-inverse of Γx̄0
, and we define the vanish-

ing derivatives precertificate as ηV
def.
= Φ∗pV .

Remark that ηV only depends on the initial measure ma0,x̄0
and the kernel ϕ .

The next Proposition shows, that indeed pλ converges towards pV when λ and

w get smaller with a sufficient signal to noise ratio.

Proposition 4 (pλ → pV ). If Γx̄0
has full column rank and ηλ = Φ∗pλ is defined

as in Equation (1.2.4) where (a, x̄) = g(λ ,w) as in Proposition 3, then one has:

pλ −−−−−−−−−−→
max

(

λ ,
‖w‖H

λ

)

→0

pV .

In particular ηλ converges towards ηV for ‖·‖∞,X and for k ∈ {0,1,2}:

sup
x∈X

∥
∥Dkηλ (x)−DkηV (x)

∥
∥−−−−−−−−−−→

max
(

λ ,
‖w‖H

λ

)

→0

0.
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Proof. Suppose that (λ ,w) ∈V and (a, x̄) = g(λ ,w). Then from Equation 1.2.11,

we deduce that: (
a

0

)

= Γ
+,∗
x̄ y−λ (Γ∗x̄Γx̄)

−1

(
sign(a)

0

)

,

hence:

pλ =
1

λ

(

y−Γx̄Γ
+,∗
x̄ y+λ Γ

+,∗
x̄

(
sign(a)

0

))

,

= pV +

(

Γ
+,∗
x̄

(
sign(a)

0

)

− pV

)

+
(
Γx̄0
−Γx̄Γ

+,∗
x̄ Γx̄0

)
(

a0

0

)

+Πx̄

w

λ
,

where Πx̄ = Id−Γx̄Γ
+,∗
x̄ is an orthogonal projection of H . We have that:

∥
∥
∥
∥

Γ
+,∗
x̄

(
sign(a)

0

)

− pV

∥
∥
∥
∥

H

→ 0 and
∥
∥Γx̄0

−Γx̄Γ
+,∗
x̄ Γx̄0

∥
∥→ 0,

when (λ ,w)→ (0,0) by continuity at (0,0) of the implicit function g. Therefore,

because ‖Πx̄‖6 1, we deduce that:

‖pλ − pV‖H
→ 0,

when (λ ,‖w‖
H

/λ )→ 0.

Figure 1.3 illustrates the convergence mentioned in the previous proposition in

the case of the Dirichlet kernel.

η
λ

co
n
v
er

g
in

g
to

w
ar

d
s

η
V

(a) (λ ,‖w‖H ) = (3,10−1) (b) (λ ,‖w‖H ) = (1,10−2) (c) (λ ,‖w‖H ) = (0.3,10−3)

Figure 1.3: Illustration of convergence of ηλ ,t towards ηV , as in Proposition 4, in

the case of Φ the ideal low pass filter i.e. : X = T, H = L2(T), ϕ is the Dirichlet

kernel with cutoff frequency fc = 8.

Proposition 4 is crucial to prove the transfer of properties from ηV to ηλ . The

following definition gives an assumption on ηV in order to prove that ‖ηλ‖∞,X 6 1.

Definition 6 (Non-Degeneracy of ηV ). We say that ηV is non-degenerate if:







∀x ∈ X \
N⋃

i=1

{x0,i}, |ηV (x)|< 1,

∀ i ∈ {1, . . . ,N}, det(D2ηV (x0,i)) 6= 0.

(1.2.13)

where D2ηV (x0,i) ∈Rd×d is the Hessian of ηV at x0,i.
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Figure 1.2 shows a case where ηV is non-degenerate. However in Figure 1.4,

ηV is degenerate because two of the spikes of ma0,x̄0
are not separated enough.

This non-degeneracy assumption on ηV together with Proposition 4 lead to the

proof of ‖ηλ‖∞,X 6 1 for the measure ma,x̄ built using the implicit function theorem.

We summarize this result in the next Proposition.

Proposition 5. If Γx̄0
has full column rank and if ηV is non-degenerate then pro-

vided that max
(

λ ,
‖w‖H

λ

)

6C for some C > 0 one gets:







∀x ∈ X \
N⋃

i=1

{xi}, |ηλ (x)|< 1,

∀ i ∈ {1, . . . ,N}, det(D2ηλ (xi)) 6= 0,

(1.2.14)

where ηλ = Φ∗pλ is defined as in Equation (1.2.4) where (a, x̄) = g(λ ,w) as in

Proposition 3. In particular ‖ηλ‖∞,X 6 1 and ma,x̄ is a solution of the BLASSO.

Proof. Knowing that ηV is non-degenerate, the aim is to prove that ‖ηλ‖∞,X 6 1

for ma,x̄ with (a, x̄) = g(λ ,w) provided sufficient conditions on (λ ,w).
We know from Proposition 4 that if max(λ ,‖w‖

H
/λ ) 6C1 for some C1 > 0

then:

∀ i ∈ {1, . . . ,N}, det(D2ηλ (xi)) 6= 0,

because ηV is non-degenerate thus det(D2ηλ (x0,i)) 6= 0 by Proposition 4. There-

fore, since ηλ (xi) = sign(ai) and ∇ηλ (xi) = 0, we deduce that |ηλ |< 1 in a neigh-

borhood Vi of the xi for all i ∈ {1, . . . ,N} (except of course at xi).

Finally using again Proposition 4 with the uniform convergence of ηλ towards

ηV , if max(λ ,‖w‖
H

/λ ) 6C2 for some C2 > 0 then:

∀x ∈ X \
N⋃

i=1

Vi, |ηλ (x)|< 1,

because ηV is non-degenerate thus |ηV | < 1 on this set. Taking C = min(C1,C2),
we obtain the expected result.

The previous Proposition proves that if ηV is non-degenerate then
∥
∥ηλ ,t

∥
∥

∞,X
6

1 which certifies the recovery of the support. However if ηV is degenerate, there

may still exists ma,x̄ composed of N spikes with
∥
∥ηλ ,t

∥
∥

∞,X
6 1. This is shown in

Figure 1.4.

As a byproduct of this detailed analysis of the convergence of the certificate

ηλ , we can recover the result of [54] (Theorem 2), but using a very different con-

structive proof (whereas [54] used compactness arguments). This new proof is im-

portant because it is at the heart of our analysis in Chapter 1 to obtain quantitative

super-resolution results as the spikes get close one from each other.



16 CHAPTER 1. ASYMPTOTIC ANALYSIS OF SUPPORT RECOVERY

(a) ηV is degenerate (b) ηλ still satisfies ‖ηλ ‖∞,X 6 1

Figure 1.4: Illustration that ηV is not always non-degenerate. Here the spikes at

(0.72,0.35) and (0.8,0.5) are of opposite signs and are too close w.r.t the size of

the PSF resulting in oscillations going above 1 in absolute value. However we

still recover the support of ma0,x̄0
because ‖ηλ‖∞,X 6 1 for the measure with gray

markers.

Theorem 1 (Exact Support Recovery). Assume that ϕ ∈ KER(2), Γx̄0
has full

column rank and ηV is non-degenerate. Then there exists C > 0 such that if

(λ ,w) ∈R∗
+×H satisfies:

max

(

λ ,
‖w‖

H

λ

)

6C,

then there is a unique solution ma,x̄ to Pλ (y) composed of N Dirac masses such

that (a, x̄) = g(λ ,w) where g is C 1. In particular, by taking the regularization

parameter λ = 1/C‖w‖
H

proportional to the noise level, one obtains:

|(a, x̄)− (a0,x0)|∞ = O(‖w‖
H
),

where |·|∞ is the ℓ∞ norm for vectors.

Proof. The existence of a solution ma,x̄ composed of the same number of spikes as

the initial measures, for max(λ ,‖w‖
H

/λ ) 6C, comes from Proposition 5.

For the uniqueness, we consider the dual problem of Pλ (y):

max
‖Φ∗p‖∞,X61

〈y, p〉
H
− λ

2
‖p‖2

H
,

which can be reformulated as follows:

max
‖Φ∗p‖∞,X61

∥
∥
∥

y

λ
− p

∥
∥
∥

2

H

.
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Since this last problem has a unique solution: the orthogonal projection of
y
λ on

the closed convex set {p ∈H ; ‖Φ∗p‖∞,X 6 1}, we get that the dual problem of

Pλ (y) has a unique solution. It is pλ = 1
λ (y−Φma,x̄) because ma,x̄ is a solution of

Pλ (y) and strong duality holds. Now take any mλ solution of Pλ (y). Then by the

optimality conditions, the support of mλ is included in the saturations points of ηλ

i.e. the support of ma,x̄. Let us denote ã∈RN the amplitudes of the Dirac masses of

mλ : mλ = ∑
N
i=1 ãiδxi

. Because mλ is a solution of Pλ (y), one has E(ã, x̄,λ ,w) = 0

so that Φ∗
x̄Φx̄ã = Φ∗

x̄Φx̄a. Φ∗
x0

Φx0
is invertible because Γx0

has full column rank.

Taking C smaller if necessary, one can thus assume by continuity of g that Φ∗
x̄Φx̄

is also invertible hence ã = a.

Finally the relation:

|(a, x̄)− (a0,x0)|∞ = O(‖w‖
H
).

is a consequence of the continuity of g at (0,0).

With this theorem, the difficulty of proving that ‖ηλ‖∞,X 6 1 for any ma,x̄ with

(a, x̄) = g(λ ,w) is traded with the difficulty of showing that ηV is non-degenerate.

However this is a much simpler condition because it only depends on the kernel ϕ

and the initial measure ma0,x̄0
. Moreover this theorem shows that ηV governs the

support recovery properties of the BLASSO in a low noise regime.

Remark 2. It is important to note that the path followed in this Section towards

Theorem 1 is not the one selected in [54]. Although the main ideas are quite

similar (implicit function theorem, convergence of pλ ...), the authors use a more

deductive reasoning. Indeed they start with a solution of the BLASSO and then

show that this solution must be composed of N spikes. Instead here, we start with

a candidate solution already composed of N Dirac masses and then show that this

is in fact a solution of the problem.



18 CHAPTER 1. ASYMPTOTIC ANALYSIS OF SUPPORT RECOVERY

1.3 A Result of Non-Degeneracy for ηV

Before moving to the core of this Chapter (the super-resolution problem), we

prove a result of non-degeneracy for ηV provided that the spikes of the initial mea-

sure are separated enough.

We consider in this section that ma0,x0
= ∑

N
i=1 a0,iδx0,i with a0,i ∈R and x0,i ∈X

where X is supposed to be un-bounded interval of R. This choice is made for the

sake of simplicity but it can be proved also when X is as in Definition 1 (dimension

d ∈N∗) but still un-bounded.

We saw in Section 1.2 that if ηV is non-degenerate then Pλ (y) admits a unique

solution composed of exactly the same number of spikes as ma0,x0
provided that

max(λ ,
∥
∥w

λ

∥
∥

H
) 6C for some constant C > 0. Moreover the amplitudes and posi-

tions of the unique solution of Pλ (y) are C 1 functions of the parameters λ and w

if ϕ ∈ KER(2).

We propose to show here that ηV is non-degenerate provided that the positions

x0 = (x0,i)16i6N of the spikes are separated enough i.e. ∆(x0) (see Equation (1.1.1)

for the definition) is large enough and some technical assumptions on ϕ .

A similar result can be found in [15] and used in [13, 14]. The authors have a

more quantitative approach by giving an estimation of the constants, in particular

the separation of the spikes, with respect to the size of the PSF. The difference with

our work is that they did not consider exactly the same certificate (not ηV ). They

also made the assumption that the operator Φ is a convolution which is not the case

here. And finally the authors use the non-degeneracy of their certificate to give a

robustness result not for Pλ (y) but for its discretization on a grid (replacing the

TV norm by the ℓ1 norm).

Theorem 2. Let X ⊂ R be an unbounded interval. If the following assumptions

are true:

(i) ϕ ∈ C 2(X ,H ),

(ii) ϕ , ϕ ′ are not colinear,

(iii) x∈X 7→
∥
∥D−1

x

∥
∥where Dx = (ϕ(x) ϕ ′(x))∗(ϕ(x) ϕ ′(x)) and x∈X 7→ ‖ϕ ′′(x)‖

H

are bounded above,

(iv) there exists a function ω : R+→R+ satisfying ω(t)→ 0 when t →+∞ such

that for all x,x′ ∈X, | 〈ϕ(x),ϕ(x′)〉
H
|, | 〈ϕ ′(x),ϕ(x′)〉

H
|, | 〈ϕ ′(x),ϕ ′(x′)〉

H
|,

| 〈ϕ ′′(x),ϕ(x′)〉
H
|) are all upper bounded by ω(|x− x′|),

(v) there exists C > 0 and r > 0 such that for all x ∈ X and all a ∈R∗, |η ′′V ,x|>C

on [x− r,x+ r] and sign(η ′′V ,x(x)) = −sign(a) where ηV ,x is the vanishing

derivatives precertificate for the measure aδx,

(vi) for all open neighborhood V of 0, there exists M > 0 such that for all x ∈ X:

∀x′ ∈ X \ (x+V ), |ηV ,x(x)|6 1−M,
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where ηV ,x is the vanishing derivatives precertificate for the measure aδx.

Then if ∆(x0) is large enough, then one has:

ηV (x) =
N

∑
i=1

ηV ,x0,i
(x)+ηR(x) with ‖ηR‖∞,X −−−−−−→

∆(x0)→+∞
0,

and ηV is non-degenerate i.e. for all x ∈ X \ {x0,1, . . . ,x0,N}, |ηV (x)| < 1 and for

all i ∈ {1, . . . ,N}, η ′′V (x0,i) 6= 0.

Proof. By definition Γx0
= (ϕ(x0,1) . . . ϕ(x0,N) ϕ ′(x0,1) . . . ϕ ′(x0,N)). We per-

mute the column of Γx0
, so that Γx0

= (ϕ(x0,1) ϕ ′(x0,1) . . . ϕ(x0,N) ϕ ′(x0,N)). As

a result, Γ∗x0
Γx0

= Dx0
+Hx0

where Dx0
is a block-diagonal matrix whose blocks

are for all i ∈ {1, . . . ,N}:

Dx0,i
=

(

‖ϕ(x0,i)‖2
H

〈ϕ(x0,i),ϕ ′(x0,i)〉H
〈ϕ ′(x0,i),ϕ(x0,i)〉H ‖ϕ ′(x0,i)‖2

H

)

,

and Hx0
is composed of the blocks for all i 6= j:

(〈
ϕ(x0,i),ϕ(x0, j)

〉

H

〈
ϕ(x0,i),ϕ ′(x0, j)

〉

H〈
ϕ ′(x0,i),ϕ(x0, j)

〉

H

〈
ϕ ′(x0,i),ϕ ′(x0, j)

〉

H

)

.

From Assumption (ii), we know that for all i ∈ {1, . . . ,N} Dx0,i
is invertible hence

Dx0
is also inversible. Moreover from Assumption (iv) we deduce that ‖Hx0

‖ → 0

when ∆(x0)→ +∞. As a result Γ∗x0
Γx0

is invertible when ∆(x0) is large enough

and ηV is well defined:

ηV = Φ
∗pV = Φ

∗
Γx0

(Γ∗x0
Γx0

)−1










sign(a0,1)
0
...

sign(a0,N)
0










.

We have:

(Γ∗x0
Γx0

)−1 = (Dx0
+Hx0

)−1 = D−1
x0
(I2N +Hx0

D−1
x0
)−1,

and since from assumption (iii), x ∈ X 7→
∥
∥D−1

x

∥
∥ is bounded above, we deduce that

∥
∥Hx0

D−1
x0

∥
∥→ 0 when ∆(x0)→ +∞. As a consequence, there exists ∆0 > 0 such

that if ∆(x0) > ∆0 then

(Γ∗x0
Γx0

)−1 = D−1
x0

+R(∆(x0)) with ‖R(∆(x0))‖ −−−−−−→
∆(x0)→+∞

0.
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We obtain that pV = pZ + pR with pZ = Γx0
D−1

x0










sign(a0,1)
0
...

sign(a0,N)
0










= ∑
N
i=1 pV ,i where

for all i ∈ {1, . . . ,N} pV ,i = (ϕ(x0,i) ϕ ′(x0,i))D−1
x0,i

(
sign(a0,i)

0

)

, and ‖pR‖H
→ 0

when ∆(x0)→+∞. Thus:

ηV = ηZ +ηR, (1.3.1)

where ηZ(x) = Φ
∗
x pZ =

N

∑
i=1

ηV ,i(x), (1.3.2)

and

∥
∥
∥η

(k)
R

∥
∥
∥

∞,X
−−−−−−→
∆(x0)→+∞

0, ∀k ∈ {0,1,2}, (1.3.3)

because for k ∈ {0,1}, |η (k)
R (x)| 6

∥
∥
∥ϕ (k)(x)

∥
∥
∥

H
‖pR‖H

6
√

ω(0)‖pR‖H
thanks

to Assumption (iv) and |η (2)
R (x)|6 K ‖pR‖H

thanks to Assumption (iii).

Step 1: For all i ∈ {1, . . . ,N}, one has:

η ′′Z (x0,i) = η ′′V ,i(x0,i)+∑
j 6=i

η ′′V , j(x0,i).

From Assumption (iv) and Equation (1.3.3):

∑
j 6=i

sup
[x0, j−r,x0, j+r]

|η ′′V , j| −−−−−−→
∆(x0)→+∞

0

sup
[x0, j−r,x0, j+r]

|η ′′R | −−−−−−→
∆(x0)→+∞

0.

As a result from Assumption (v), sup
[x0, j−r,x0, j+r]

|η ′′V ,i| > C and sign(η ′′V ,i(x0,i)) =

−sign(a0,i), we obtain that there exists ∆1 > ∆0 such that if ∆(x0) > ∆1 then

for all i ∈ {1, . . . ,N}:

|η ′′V (x0,i)|>
C

2
, (1.3.4)

sign(η ′′V (x0,i)) = −sign(a0,i). (1.3.5)

and:

∀x ∈
N⋃

i=1

B(x0,i,r), |η ′′V (x)|>
C

2
, (1.3.6)
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hence, using Equations (1.3.5) and (1.3.6), we deduce that for all x∈⋃N
i=1 B(x0,i,r),

|ηV (x)|6 1− C
4
(x− x0,i)2. In particular:

∀x ∈
N⋃

i=1

(
B(x0,i,r) \{x0,i}

)
, |ηV (x)|< 1. (1.3.7)

Step 2: From Assumption (iv), there exists r1 > r such that:

∀i ∈ {1, . . . ,N}, ∀x ∈ X \B(x0,i,r1), |ηV ,i(x)|6
1

3N
,

indeed ηV ,i(x) = 〈ϕ(x), pV ,i〉H = αi 〈ϕ(x),ϕ(x0,i)〉H + βi 〈ϕ(x),ϕ ′(x0,i)〉H for

some αi,βi ∈R. Hence:

∀x ∈ X \
N⋃

i=1

B(x0,i,r1), |ηZ(x)|6
1

3
.

From Equation (1.3.3), there exists ∆2 > max(2r1,∆1) such that if ∆(x0) > ∆2,

then |ηR(x)|6 1
3

for all x ∈ X \⋃N
i=1 B(x0,i,r1). Thus we get:

∀x ∈ X \
N⋃

i=1

B(x0,i,r1), |ηV (x)|6
2

3
. (1.3.8)

Step 3: From Assumption (vi), there exists M > 0 such that:

∀i ∈ {1, . . . ,N}, ∀x ∈B(x0,i,r1) \B(x0,i,r), |ηV ,i(x)|6 1−M.

Moreover, from Assumption (iv):

∀i ∈ {1, . . . ,N}, sup
x∈B(x0,i,r1)\B(x0,i,r)

∑
j 6=i

|ηV , j(x)| −−−−−−→
∆(x0)→+∞

0.

Thus, there exists ∆3 > ∆2 such that if ∆(x0) > ∆3 then for all i ∈ {1, . . . ,N}, for

all x ∈B(x0,i,r1) \B(x0,i,r), |ηZ(x)| 6 (1−M)+ M
3
= 1− 2M

3
and |ηR(x)| 6 M

3

(using again Equation (1.3.3)). As a result:

∀x ∈
N⋃

i=1

(
B(x0,i,r1) \B(x0,i,r)

)
, |ηV (x)|6 1−M

3
. (1.3.9)

Putting Equations (1.3.4), (1.3.7), (1.3.8), (1.3.9) all together, we deduce that

if ∆(x0) > ∆3, then

∀x ∈ X \{x0,1, . . . ,x0,N}, |ηV (x)|< 1,

∀i ∈ {1, . . . ,N}, η ′′V (x0,i) 6= 0,

i.e. ηV is non-degenerate.
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Remark 3. i) The statement of Theorem 2 and its proof are made on dimension

1 for clarity but the result can be easily generalize on Rd . In particular, in

Proposition 6 we show that the assumptions of Theorem 2 hold for the Gaus-

sian convolution and the Cauchy convolution: it is still true in Rd .

ii) The Assumption (ii) in Theorem 2, which states that ϕ ,ϕ ′ are linearly inde-

pendent may be replaced by the assumption that Γx0
has full column rank.

The following Proposition shows that we can apply Theorem 2 in the case

of a Gaussian convolution and a Cauchy convolution which means that for these

operators ηV is non-degenerate provided that the spikes are separated enough.

Proposition 6. Let X = R, then all the assumptions of Theorem 2 holds for a

Gaussian convolution and a Cauchy convolution.

Proof. For a Gaussian convolution one has:

∀x ∈R, ϕG(x)
def.
=

1√
2πσ2

e
− (·−x)2

2σ2 with σ > 0.

For a Cauchy convolution one has:

∀x ∈R, ϕC(x)
def.
=

1

πσ

1

1+ (·−x)2

σ2

with σ > 0.

We prove the Assumptions of Theorem 4 one by one:

(i) One has ϕG,ϕC ∈ C 2(R,L2(R)),

(ii) It can be easily check that ϕG,ϕ ′G and ϕC,ϕ ′C are both linearly independent,

(iii) Let us denote for all t ∈ R, x,x′ ∈ R, κG(t) =
1√

4πσ2
e
− t2

4σ2 and κC(t) =
1

2πσ
1

1+ t2

4σ2

. Then for all x,x′ ∈R, 〈ϕG(x),ϕG(x′)〉H = κG(x−x′) and 〈ϕC(x),ϕC(x′)〉H =

κC(x−x′). One has κ ′G(t) =− t
2σ2 κG(t), κ ′′G(t) = (− 1

2σ2 +
t2

4σ4 )κG(t), κ ′C(t) =

−πt
σ κC(t)2 and κ ′′C(t) =− π

σ κC(t)2− 2πt
σ κ ′C(t)κC(t). As a result for all x∈R:

‖ϕG(x)‖2
H

=
1√

4πσ2
,
∥
∥ϕ ′G(x)

∥
∥2

H
=

1

2σ2
√

4πσ2
,
∥
∥ϕ ′′C(x)

∥
∥2

H
= κ

(4)
G (0),

‖ϕC(x)‖2
H

=
1

2πσ
,
∥
∥ϕ ′C(x)

∥
∥2

H
=

1

2σ2
,
∥
∥ϕ ′′C(x)

∥
∥2

H
= κ

(4)
C (0).

Thus for the Gaussian convolution:

Dx =

(
1√

4πσ2
0

0 1

2σ2
√

4πσ2

)

,
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which implies that x 7→
∥
∥D−1

x

∥
∥ is bounded above (because constant, not sur-

prising for a convolution). And for the Cauchy convolution:

Dx =

(
1

2πσ 0

0 1
2σ2

)

,

which implies again that x 7→
∥
∥D−1

x

∥
∥ is bounded above (because constant).

(iv) Consider for all t ∈ R+, ωG(t) = max(|κG(t)|, |κ ′G(t)|, |κ ′′G(t)|). Then for

all x,x′ ∈R, | 〈ϕG(x),ϕG(x′)〉H |, | 〈ϕ ′G(x),ϕG(x′)〉H |, | 〈ϕ ′G(x),ϕ ′G(x′)〉H |,
and | 〈ϕ ′′G(x),ϕG(x′)〉H |) are all upper bounded by ωG(|x− x′|). Moreover

ωG(t)→ 0 when t → 0. It is the same argument for the Cauchy convolution.

(v) For the Gaussian convolution and from the computations above, we deduce

that for all x ∈R and for all a ∈R∗, ηV ,x = sign(a)
√

4πσ2κG(·− x). Hence

η ′′V ,x(x) = sign(a)
√

4πσ2κ ′′G(0) = −
sign(a)

2σ2 . We thus obtain the expected re-

sult.

Similarly for the Cauchy convolution, we have ηV ,x = sign(a)2πσκC(·− x)

hence η ′′V ,x(x) = sign(a)2πσκ ′′C(0) =−
sign(a)

2σ2 which is again what we want.

(vi) Let V a neighborhood of 0. Then for all x ∈R and for all a ∈R∗,

|ηV ,x|=







e
− (·−x)2

4σ2 for the Gaussian convolution,
1

1+ (·−x)2

4σ2

for the Cauchy convolution,

which are two positive functions equal to 1 at x, increasing for x′ 6 x and

decreasing for x′ > x. Thus by taking MG,MC as the minimum of 1 minus

these two functions on R \ (x+V ), we have the expected conclusion.

Figure 1.5 and 1.6 show ηV for respectively a Gaussian and a Cauchy convo-

lution for two examples: 3 spikes with an alternation of the signs (first column)

and 2 positive spikes (second column). For each example the spikes are progres-

sively brought closer. In the first line, we observe that ηV is non-degenerate and

that the approximation of ηV by ηZ , which is used in the proof of Theorem 2, is

perfect. When the spikes are too close (third and fourth line), the approximation is

no longer valid. In the case of the alternation of signs, we see that ηV is degenerate

(|ηV |> 1) in the last configuration.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.5: ηV for a Gaussian convolution for two examples: 3 spikes with an

alternation of the signs (first column) and 2 positive spikes (second column). For

each example the spikes are progressively brought closer.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.6: ηV for a Cauchy convolution for two examples: 3 spikes with an alter-

nation of the signs (first column) and 2 positive spikes (second column). For each

example the spikes are progressively brought closer.
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1.4 The (2N−1)-Vanishing Derivatives Pre-Certificate

In Section 1.2, we presented a result of the robustness to noise of the BLASSO

(Theorem 1). Proposition 4 proved that recovering a measure with the same num-

ber of spikes as the initial measure in a low noise regime λ → 0 and ‖w‖
H

/λ → 0

leads naturally to the definition of the vanishing derivatives pre-certificate ηV .

In this Section, we start to get into the core of this Thesis which is robustness

to noise of the super-resolution problem when solving the BLASSO. We recall the

framework. The set X is a smooth manifold of dimension 1 (previously dimension

d ∈ N∗). X is typically R, a compact subset of R, T or an interval of R. One

can assume without loss of generality that 0 ∈
◦
X . Let us consider a0 ∈ (R∗

+)
N and

z0 ∈ XN such that the aim is to recover for all t > 0 small enough:

ma0,tz0
=

N

∑
i=1

a0,iδtz0,i
,

which is a measure whose spikes cluster at 0 ∈
◦
X .

As a consequence, interested by the recovery of the support of ma0,tz0
when

t → 0, it is then natural, given the previous information, to look at ηV ,t (the t refers

to the t of initial measure ma0,tz0
) when t → 0.

Figure 1.7 shows ηV ,t when t → 0 in the case of a Gaussian convolution.

N
=

2

(a) t = 1.0 (b) t = 0.1 (c) t = 0.01

N
=

3

(d) t = 1.0 (e) t = 0.1 (f) t = 0.01

Figure 1.7: Limit of ηV ,t when t → 0 for a discretized Gaussian convolution with

2 or 3 spikes.

We remark that ηV ,t seems to converge towards some function. Therefore,

similarly as in Section 1.2, where ηV was used to show the non-degeneracy of ηλ

in a low noise regime and hence proving that ma,x̄ was a solution of the BLASSO,

this limit function may be helpful to show here the non-degeneracy of ηV ,t . Note

that the limit function seems to get flatter at 0 when N increases. The reason is, in

substance, because η ′V ,t has 2N−1 zeros, by Rolle’s Theorem, which collapse at 0

when t → 0.
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This Section is devoted to the formal definition of this particular function, see

Proposition 8.

1.4.1 Injectivity Hypotheses

But first, one needs to give some definitions. We introduce here an injectiv-

ity hypothesis which ensures the invertibility of Φ∗
tzΦtz and Γ∗tzΓtz for t > 0 small

enough.

In the case of the ideal low-pass filter Γx̄ has full column rank provided that

x̄ = (x1, . . . ,xN) ∈ XN has pairwise distinct coordinates (see [54], Section 3.6,

Proposition 6). That property is not true for a general operator Φ. However, in

this paper we focus on sums of Dirac masses that are clustered around the point

0 ∈ X , i.e. x̄ = tz for t > 0 and z ∈ RN with pairwise distinct components. The

following assumption, which is crucial to our analysis, shall ensure that Γtz has full

rank at least for small t.

Definition 7. Let ϕ : X →H . For all k ∈N, we say that the hypothesis Ik holds

if and only if

ϕ ∈ KER(k) and (ϕ0, . . . ,ϕk) are linearly independent in H , (Ik)

where ϕk ∈H is the kth derivative of ϕ at 0, i.e.

ϕk
def.
= ϕ (k)(0). (1.4.1)

In particular, ϕ0 = ϕ(0).

See Definition 4 for the definition of KER(k).

Given k ∈N, we define:

Ψk
def.
=
(
ϕ0 ϕ1 . . . ϕk

)
. (1.4.2)

If Ik holds, then Ψ∗kΨk is a symmetric positive definite matrix, where Ψk is defined

in (1.4.2).

To exemplify the meaning of this injectivity hypothesis, Proposition 7 below

considers the case X = T with Φ a convolution operator.

Proposition 7. Let ϕ̃ ∈ C k(T,R) (where ϕ(x) = ϕ̃(·− x)), then Ik holds if and

only if ϕ0 has at least k+1 non-zeros Fourier coefficients. In particular if Φ is the

ideal low-pass filter with cutoff frequency fc ∈N∗, Ik holds if and only if k 6 2 fc.

Proof. The functions (ϕ0, . . . ,ϕk) are linearly independent in L2(T) if and only if

their respective Fourier coefficients are linearly independent in ℓ2(Z). If (cn[ϕ0])n∈Z

denotes the Fourier coefficients of ϕ0, the Fourier coefficients of ϕ j are given by
(
(2iπn) jcn[ϕ0]

)

n∈Z
(with the convention that 00 = 1).
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If ϕ0 has k+1 nonzeros Fourier coefficients corresponding to pairwise distinct

frequencies (n0, . . .nk), those Fourier coefficients are given by the matrix product






cn0
[ϕ0] 0

. . .

0 cnk
[ϕ0]













1 (2iπn0) (2iπn0)2 . . . (2iπn0)k

1 (2iπn1) (2iπn1)2 . . . (2iπn1))k

...
...

...
. . .

...

1 (2iπnk) (2iπnk)
2 . . . (2iπnk)

k








Both the diagonal and the Vandermonde matrices are invertible, hence the family

of Fourier coefficients of (ϕ0, . . . ,ϕk) is linearly independent.

Conversely, if Ik holds, one can find k+1 Fourier coefficients, corresponding

to some frequencies n0, . . .nk, such that the matrix (cnℓ [ϕ j])06ℓ, j6k is invertible.

From the above factorization, we deduce that each cnℓ [ϕ0] must be nonzero for

0 6 ℓ6 k.

As we shall see in Section 3.4, the conditions IN−1 and I2N−1 imply re-

spectively the invertibility of Φ∗
tzΦtz and Γ∗tzΓtz, provided that t is small enough.

According to Proposition 7, in the special case of an ideal low-pass filter, these

conditions hold if and only if fc is large enough with respect to the number N of

spikes.

1.4.2 Convergence of ηV ,t when t → 0

Now we can properly define the limit function outlined at the beginning of this

Section.

Proposition 8 ((2N − 1)-Vanishing Derivatives Pre-certificate). If I2N−1 holds,

there is a unique solution to the problem

inf
{

‖p‖
H

; (Φ∗p)(0) = 1, (Φ∗p)′(0) = 0, . . . , (Φ∗p)(2N−1)(0) = 0
}

.

We denote by pW its solution, given by

pW = Ψ
+,∗
2N−1δ2N (1.4.3)

where

δ2N
def.
= (1,0, . . . ,0)T ∈R

2N , (1.4.4)

(1.4.5)

and we define the (2N−1)-vanishing derivatives pre-certificate as ηW
def.
= Φ∗pW .

With this proposition, one defines ηW for only one cluster of spikes (all the

spikes collapse at 0). This choice, made for the sake of simplicity, is later justified

in Section 2.4 where we consider the case of several clusters and shows that it is

enough to study the above simpler definition.

The following Proposition, which is a direct consequence of Lemma 7 in Chap-

ter 3, shows that indeed ηV ,t converges toward ηW .
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Proposition 9. If I2N−1 holds and ϕ ∈ KER(K) (for K > 2N− 1), then for t > 0

small enough Γtz0
has full column rank. Moreover

lim
t→0+

pV ,t = pW strongly in H ,

lim
t→0+

η
(k)
V ,t = η

(k)
W in the sense of the uniform convergence on X,

for all 0 6 k 6 K.

Figure 1.8 shows graphically this convergence of ηV ,t toward ηW of Φ a con-

volution by the Dirichlet kernel. Figure 1.9 and 1.10 show ηW for several values of

N. Notice again how it becomes flatter at 0 as N increases. This implies that ηV ,t

for small t gets closer to degeneracy as N increases. This is reflected in our main

contribution (Theorem 5) where the signal-to-noise ratio is required to scale with

t2N−1.

1

(a) t = 0.4

1

(b) t = 0.2

1

(c) t = 0.01

Figure 1.8: ηV ,t for several values of t, showing the convergence toward ηW . Φ is

the ideal low-pass filter with cutoff frequency fc = 10.

1

(a) N = 1 (ηV ,t = ηW )

1

(b) N = 2

1

(c) N = 3

Figure 1.9: ηW for several values of N when Φ is the ideal low-pass filter with a

cutoff frequency fc = 10.
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(c) N = 4
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(d) N = 7

Figure 1.10: ηW for a Gaussian convolution (x ∈ R, ϕ(x) = e
− (·−x)2

2σ2 ) for several

numbers of spikes and σ = 1.



30 CHAPTER 1. ASYMPTOTIC ANALYSIS OF SUPPORT RECOVERY

1.5 Transfer Theorem

From Proposition 9 of the previous Section 1.4, we can infer that the behavior

of ηV ,t is governed by specific properties of ηW for small values of t > 0.

This is the aim of this Section to study how the relation between ηV ,t and ηW

works and what properties can be transferred from ηW to ηV ,t . In particular, from

the discussion in Section 1.2, we are interested in the non-degeneracy of ηV ,t (see

Definition 6). We define the appropriate notion of non-degeneracy for ηW in Def-

inition 8 and we show in Theorem 3 that this non-degeneracy of ηW implies the

non-degeneracy of any sufficiently close η interpolating the signs of the spikes at

the associated positions. This is in particular the case for ηV ,t and it is stated in

Corollary 1.

Definition 8. Assume that I2N−1 holds and ϕ ∈ KER(2N). We say that ηW is

(2N−1)-non-degenerate if η
(2N)
W (0) 6= 0 and for all x ∈ X \{0}, |ηW (x)|< 1.

This is is goal of Chapter 2 to study when ηW is (2N−1)-non-degenerate.

Figure 1.11 shows some examples of ηW for different convolution operators

Φ (Dirichlet kernel, Gaussian kernel and Cauchy kernel). One can easily check

numerically that these ηW are (2N−1)-non-degenerate.

(a) Dirichlet (b) Gaussian (c) Cauchy

Figure 1.11: ηW for N = 4 and three different convolution operators Φ: Dirichlet

for fc = 10, Gaussian for σ = 0.05 and Cauchy for σ = 0.2.

Figure 1.12 shows ηW for a low pass filter with several different choices of

Fourier coefficients for the kernel and that it can be degenerate. Note that even

when |ηW | > 1, ηW seems to satisfies the curvature condition η
(2N)
W (0) < 0. We

prove this result for any convolution operator Φ in Chapter 2 with Proposition 11.

We can now state our main result of this Section which shows that any η inter-

polating N collapsing spikes to 0 with zero derivatives (i.e. η(tzi) and η ′(tzi) = 0),

and sufficiently close of ηW is non-degenerate in the sense defined for ηV (Defini-

tion 6).

Theorem 3. Suppose that ηW is (2N−1)-non-degenerate (Definition 8). Let RW >

0. Then, there exist CW > 0, tW > 0 such that for all t ∈ (0, tW ), all z ∈ XN with

pairwise distinct coordinates and |z|∞ 6 RW , and all η ∈ C 2N(X) with bounded
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Figure 1.12: ηW for a low pass filter for fc = 10 with increasing high frequency

content. The curve showing ηW is in blue when it is (2N−1)-non-degenerate and

in red when it is degenerate.

derivatives satisfying for 1 6 i 6 N, η(tzi) = 1 and η ′(tzi) = 0,

(

∀ℓ ∈ {0, . . . ,2N},
∥
∥
∥η (ℓ)−η

(ℓ)
W

∥
∥
∥

∞,X
6CW

)

=⇒
(

∀x ∈ X \
⋃

i

{tzi}, |η(x)|< 1 and ∀1 6 i 6 N, η ′′(tzi) < 0

)

.

Proof. The proof proceeds in two steps. First we show the result locally around 0

in X thanks to η
(2N)
W (0) < 0 (because η

(2N)
W (0) 6= 0 and |ηW |< 1 on X \{0}) and

then we extend the result to all X thanks to |ηW |< 1 on X \{0}.
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Locally. Let us prove that there exist CW > 0, tW > 0 such that for all t ∈ (0, tW ),
z ∈RN with pairwise disctinct coordinates and |z|∞ 6 RW , there exist r+ > 0 with

r+ > max
16i6N

tW zi and r− < 0 with r− < min
16i6N

tW zi such that for all η ∈ C 2N(X)∩
W2N,∞(X) satisfying for all 1 6 i 6 N, η(tzi) = 1 and η ′(tzi) = 0, the following

implication holds,

(

∀ℓ ∈ {0, . . . ,2N},
∥
∥
∥η (ℓ)−η

(ℓ)
W

∥
∥
∥

∞,X
6CW

)

=⇒
(

∀x ∈ (r−,r+) \
⋃

i

{tzi}, |η(x)|< 1 and ∀1 6 i 6 N, η ′′(tzi) < 0

)

.

First, we prove that, provided CW > 0, tW > 0 are small enough, η ′ has exactly

2N−1 zeros in (r−,r+).
Let t > 0 and η ∈ C 2N(X)∩W2N,∞(X) and z ∈RN with pairwise distinct co-

ordinates and |z|∞ 6 RW such that for all 1 6 i 6 N, η(tzi) = 1 and η ′(tzi) = 0. We

suppose that z1 < z2 < .. . < zN . By Rolle’s Theorem, for all 1 6 i 6 N−1, there

exists ci(t) ∈ (tzi, tzi+1) such that η ′(ci(t)) = 0. As a result η ′ has at least 2N−1

zeros in all (r−,r+) satisfying the requirements.

Now, let us assume by contradiction that η ′ has strictly more than 2N−1 zeros

for arbitrarily small values of CW , tW and in all (r−,r+) satisfying the requirements.

As a result, there are sequences (tk)k∈N where tk→ 0, (zk)k∈N (where each zk ∈RN

has pairwise distinct coordinates and |zk|∞ 6 RW ), (r+k )k∈N and (r−k )k∈N where for

all k ∈N, r+k > 0, r+k > max
16i6N

tk(zk)i, r+k → 0 and r−k < 0, r−k < min
16i6N

tk(zk)i and

r−k → 0. And there exists (ηk)k∈N ∈
(
C 2N(X)∩W2N,∞(X)

)N
such that for all

k ∈N

∀i ∈ {1, . . . ,N−1}, ηk(tk(zk)i) = 1 and η ′k(tk(zk)i) = 0,

∀ℓ ∈ {0, . . . ,2N},
∥
∥
∥η

(ℓ)
k −η

(ℓ)
W

∥
∥
∥

∞,X
6

1

k
,

and η ′k has at least 2N zeros in (r−k ,r+k ) (we already know that η ′k has at least 2N−1

zeros in (r−k ,r+k )). Thus, for all k ∈N, by applying successively Rolle’s Theorem,

we obtain that there exists xk ∈ (r−k ,r+k ) such that η
(2N)
k (xk) = 0. Since xk → 0

(because r−k ,r+k → 0) and

∥
∥
∥η

(2N)
k −η

(2N)
W

∥
∥
∥

∞,X
6

1
k
, we deduce that η

(2N)
W (0) = 0,

which is a contradiction. Hence η ′ has exactly 2N−1 zeros in some (r−,r+).
Using the same argument, we may also prove that for all i∈{1, . . . ,N}, η ′′(tzi) 6=

0. Let us now observe that, either for all 1 6 i 6 N, η ′′(tzi) > 0 or, for all 1 6

i 6 N, η ′′(tzi+1) < 0. Indeed, assume for instance by contradiction that for some

1 6 i 6 N−1, η ′′(tzi)> 0 and η ′′(tzi+1)< 0. Then, there exists ci(t) ∈ (tzi, tzi+1)
such that η(ci(t)) = 1. Applying Rolle’s Theorem on respectively (tzi,ci(t)) and

(ci(t), tzi+1), we obtain that η ′ vanishes at least twice in (tzi, tzi+1). It is a contra-

diction with the fact that η ′ has exactly 2N−1 zeros in (r−,r+) for all 0 < t < tW .
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As a result, there are only two possibilities: either η ′′(tzi) < 0 for all i (and

then for all x ∈ (r−,r+) \⋃i{tzi} η(x) < 1), or η ′′(tzi) > 0 for all i (and then

for all x ∈ (r−,r+) \⋃i{tzi} η(x) > 1). But since η
(2N)
W (0) < 0, there is some

x̃∈ (r−,r+) and some ε0 > 0 such that ηW (x̃)< 1−ε0. Choosing CW small enough

so that CW < ε0/2, we obtain that η(x̃) < 1− ε0/2. As a consequence, for all

x ∈ (r−,r+) \⋃i{tzi}, η(x) < 1. Finally we can suppose that ηW (x) > −1 on

(r−,r+) by imposing 0 <CW < infX ηW + 1.

To sum up, we have proved the following :

∀x ∈ (r−,r+) \
⋃

i

{tzi}, |η(x)|< 1 and ∀1 6 i 6 N, η ′′(tzi) < 0. (1.5.1)

Globally. As ηW is non-degenerate, we have supX\(r−,r+) |ηW | < 1. We can as-

sume that 0 <CW < (1− supX\(r−,r+) |ηW |)/2 and use ‖η−ηW‖∞,X 6CW so as to

obtain

∀x ∈ X \ (r−,r+), |η(x)|< 1. (1.5.2)

Gathering Equations (1.5.1) and (1.5.2), we obtain the claimed result.

A direct corollary of this Theorem is the fact that ηV ,t is non-degenerate for t

small enough if ηW is (2N−1)-non-degenerate.

Corollary 1. If ηW is (2N− 1)-non-degenerate then there exists t0 > 0 such that

for all ma0,tz0
(positive amplitudes) with t 6 t0 and |z0|∞ 6 RW , the ηV ,t defined for

ma0,tz0
is non-degenerate i.e. :

∀x ∈ X \
⋃

i

{tz0,i}, |ηV ,t(x)|< 1 and ∀1 6 i 6 N, η ′′(tz0,i) < 0.

Proof. From Proposition 9, we know that ηV ,t converges towards ηW when t → 0

so that ηV ,t satisfies all the assumptions of Theorem 3. Hence the conclusion.

Knowing that ηV ,t is always non-degenerate when t → 0 means that (thanks to

Theorem 1) one can recover by solving the BLASSO a unique measure composed

of the same number of spikes as the original measure N in presence of noise for

any t > 0. This is stated in the next Proposition.

Proposition 10 (Exact support recovery for positive spikes when t → 0). Assume

that I2N−1 holds and ϕ ∈ KER(2N). If ηW is (2N− 1)-non-degenerate then for

any z0 ∈ XN there exists t0 > 0 such that for all 0 < t < t0, the BLASSO Pλ (y)
has a unique solution ma,tz composed of the same number of spikes as ma0,tz0

if

(λ ,w) ∈R∗
+×H satisfies:

max

(

λ ,
‖w‖

H

λ

)

6Ct ,

for some Ct (depending on t).
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This is an interesting result which directly comes from Corollary 1 and The-

orem 1. However it does not tell how the constant Ct evolves with respect to t,

which is an important issue in theory but also in practice. Indeed it states that

one can solve a super-resolution problem in presence of noise when solving the

BLASSO but without telling whether for a given noise level, it actually works.

The main theoretical contribution of this Thesis, see Theorem 5) which is a much

stronger result than Proposition 10, consists in quantifying precisely with respect

to t (i.e. the separation between the spikes) the constraints on λ and w to assure the

recovery of the support of ma0,tz0
. This is the object of Chapter 3.



Chapter 2

Non-Degeneracy of ηW

Super-resolution is a challenging problem but also crucial for many applica-

tions (see for example Chapter 5). It corresponds in this thesis to the ability to

recover, thanks to the BLASSO, the support of a measure whose spikes clus-

ter at some position. This task is mathematically equivalent to the search of

a certificate, namely a continuous function bounded by one in uniform norm

that interpolates the sign of the amplitudes at the spikes’ positions. While

this problem is well understood in absence of noise [42, 30] or with noise

but when the spikes are separated enough [54], little is known when the data

are noisy and the spikes cluster. Chapter 1 proved that the recovery of the

support in this framework amounts to the study of the non-degeneracy of a

novel pre-certificate ηW called the (2N−1)-vanishing pre-certificate. In this

Chapter, we propose to study in depth the (2N− 1)-non-degeneracy of ηW

for several filters. We first prove that ηW is locally non-degenerate for any

convolution operator. We also provide a closed-form formula for ηW when

the forward operator Φ is a Gaussian convolution, which in turn enables to

show its non-degeneracy. Then we turn to ηW when Φ is not a convolution

operator (an advantage of our approach with the BLASSO) with the case of

forward operators built on a Laplace-like transform. These models are of

particular interest to us because they are involved in the MA-TIRF fluores-

cent microscopy model (see Chapter 5). In this framework, we provide again

several closed-form formula and show the non-degeneracy of ηW , justifying

the use of the BLASSO to solve these classes of problems. Finally, we gen-

eralizes ηW to the case of several clusters of spikes and proves that if they are

separated enough then the overall non-degeneracy lies on the non-degeneracy

of ηW for only one cluster. In particular, this accounts for the restriction of

our study to the setup of one cluster.

35
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2.1 Introduction

2.1.1 Recap and Positioning of this Chapter

In this chapter, we study the (2N−1)-non-degeneracy of ηW called the (2N−
1)-vanishing pre-certificate, for several different forward operators Φ. Chapter 1

proved that the recovery of the support of an initial measure

ma0,tz0
=

N

∑
i=1

a0,iδtz0,i
where ∀i, a0,i > 0 and tz0,i ∈ X ,

in a one dimensional domain X , when the spikes cluster at 0 (i.e. t → 0) and in

presence of noise, by solving the BLASSO

min
m∈M (X)

1

2
‖Φm− yt‖2

H
+λ |m|(X), (Pλ (yt))

depends on particular properties of ηW . ηW is a continuous function defined as

follows

ηW
def.
= Φ

∗pW ,

with pW the solution of

min
{

‖p‖
H

; (Φ∗p)(0) = 1, (Φ∗p)′(0) = 0, . . . , (Φ∗p)(2N−1)(0) = 0
}

.

Note that

pW = Ψ
+,∗
2N−1δ2N , (2.1.1)

so that ηW can be easily computed numerically. See Proposition 8 for the definition

of ηW .

1

(a) N = 1 (ηV ,t = ηW )

1

(b) N = 2

1

(c) N = 3

Figure 2.1: ηW for several values of N when Φ is the ideal low-pass filter with a

cutoff frequency fc = 10.

If ηW is (2N−1)-non-degenerate i.e.

η
(2N)
W (0) 6= 0 and ∀x ∈ X \{0}, |ηW (x)|< 1,

then one proved in Theorem 3 (Section 1.5) that this non-degeneracy is transferred

to any pre-certificate sufficiently close of ηW . Knowing in particular that the van-

ishing derivatives pre-certificate ηV ,t (see Definition 5) converges towards ηW when
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t → 0 (by Proposition 9) this implies the recovery of the support in presence of

noise via the BLASSO when t → 0 (see Proposition 10).

This transfer theorem (Theorem 3) is therefore an asymptotic way of build-

ing certificates (continuous functions assuring that a measure is solution of the

BLASSO). Being able to find a certificate for a measure recovering the support of

ma0,tz0
when the spikes are close (t→ 0) is crucial for the super-resolution problem.

There exists other approaches to obtain such functions:

• when the spikes are separated enough, one can show that ηV is non-degenerate

(see Theorem 2 in Section 1.3). This is also the case for a slightly different

certificate [15].

• By strong algebraic properties based on T-systems, the authors in [128] pro-

vide sufficient conditions for the noiseless recovery of spikes without sepa-

ration for a Gaussian convolution. And in [53], the author shows the non-

degeneracy of ηV using similar arguments for a Laplace kernel and two dif-

ferent Gaussian measurements configurations.

However, while these methods provide useful information, the study of the non-

degeneracy of ηW gives a systemic approach for any filter to the robustness to

noise of the super-resolution problem via the BLASSO. This chapter is devoted to

this task in various configurations.

2.1.2 Super-Resolution for Laplace Measurements

While in this chapter one presents a study of the non-degeneracy of ηW for

convolution operators Φ (see Section 2.2), one also looks at the particular case of

ηW for operators built on a Laplace-like transform. This class of operators is not

translation invariant like convolutions, but recall that it is one of the advantage of

our framework to be able to deal with such cases (unlike MUSIC or PRONY). The

reason behind the interest for Laplace kernels is the fact that it intervenes in the

MA-TIRF fluorescent microscopy model presented in Chapter 5 for the recovery

of fluorescent molecules in the 3D volume of a cell. Indeed it enables the recovery

of depth information because it models the evanescence of a laser in a sample and

its interactions with the fluorophores. As a result, showing the non-degeneracy of

ηW for such operators provides theoretical guarantees for the recovery of two or

more very close fluorescent molecules aligned along the depth axis. It then backs

up, for this application, the use of our algorithm, presented in Chapter 4, to solve

the BLASSO.

Solving the inverse problem Φm = y via the BLASSO when Φ corresponds to

Laplace measurements is a really challenging question. Indeed, Figure 2.2 shows

the ηW obtained from Laplace measurements for a varying x0 (ηW depends on

the position of clustering in this setting because the kernel is not invariant under

translation) with a fixed number of spikes N (plus the converse) and one sees that

ηW is very flat around x0, especially when N is large or x0 is far from the origin
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(a) N = 2 (b) x0 = 1

Figure 2.2: ηW for Laplace measurements for a varying x0 with fixed N = 2 and a

fixed x0 = 1 with varying N ∈ {2,4,6}.

(see Proposition 13 for more details on how this figure is obtained). This indicates

that the stability constants are not good. To better understand the difficulty of this

problem, one needs to go back to the definition of the Laplace transform.

The bilateral Laplace transform Lb is properly defined for distributions T ∈
D(R)′ at p = α + iβ ∈ C if e−α·T is a tempered distribution. Indeed Lb(T )(p)
is then just the Fourier transform of e−α·T evaluated at β

Lb(T )(p) = F
(
e−α·T

)
(β ).

This definition gives rigorously the bilateral Laplace transform of for example a

locally integrable function or even a Radon measure. For more detail on this matter,

see [131]. From the bilateral Laplace transform, using the Heaviside function, one

can define the classical Laplace transform of a function f at p ∈ C by

L ( f )(p) =
∫ +∞

0
f (x)e−pxdx.

L ( f ) is a holomorphic function and an inversion formula exists provided some

assumption on f (see [129, 10]). However in our applications, one only obtains a

finite number of values of L ( f ) on [0,+∞[, making it impossible to use the inver-

sion formula which requires the knowledge of L ( f ) on some α + iR (see [129]).

An the inversion of the Laplace transform from values of L ( f ) on R is very

unstable. Indeed, consider for example (see [10]) f a continuous function and

gn(x) = sin(nx). Then

L (gn)(p) =
n

n2 + p2
,

so that

lim
n→+∞

L ( f + gn)(p) = L ( f )(p),

but

lim
n→+∞

f + gn 6= f .
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2.1.3 Contributions

Section 2.2 studies ηW for a convolution operator. We show that in this case,

ηW always satisfies the condition η
(2N)
W (0) < 0 (see Proposition 11). In the par-

ticular case of a Gaussian convolution, we provide a formula for ηW (see Proposi-

tion 12) and we deduce that

∀x ∈R
∗, |ηW (x)|< 1.

As a result, ηW is (2N−1)-non-degenerate.

In Section 2.3, we turn to ηW for Laplace measurements. We show, by pro-

viding formulas, that ηW is non-degenerate when Φ is the un-normalized and L2-

normalized Laplace transform (see respectively Proposition 13 and 14).

Finally in Section 2.4, one extends the definition of ηW to the case of several

clusters of spikes (Definition 15). Theorem 4 shows that if the clusters are sepa-

rated enough then the non-degeneracy of the ηW (for several clusters) only depends

on the non-degeneracy of the classical ηW (single cluster). This result justifies our

choice of defining ηW in Chapter 1 for spikes collapsing at 0.
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2.2 ηW for a Convolution Operator

In this section, one investigates the (2N−1)-non-degeneracy of ηW when Φ is

a convolution operator i.e. :

Φm ∈M (X) 7→
∫

X
ϕ(x)dm(x) with ϕ(x) = ϕ̃(·− x).

For the various definitions involving ηW (injectivity hypothesis, non-degeneracy...),

see Section 1.4. Moreover we adopt here the same framework.

In the next Section 2.2.1, we prove a general statement on the non-degeneracy

of ηW when Φ is a convolution: the condition η
(2N)
W (0) < 0 is always satisfied.

Whether the other condition is verified, namely |ηW | < 1 (except at 0), has to be

checked on a case by case basis.

In Section 2.2.2, we study the particular case of the convolution with a Gaus-

sian. One provides a closed form formula for ηW in this setting and prove that it is

(2N−1)-non-degenerate (see Proposition 12).

In Section 2.2.3, Φ is a convolution by a low pass filter (X = T). One observes

numerically that ηW is (2N − 1)-non-degenerate but we were not able to prove

theoretically that |ηW |< 1 in T \{0}.

2.2.1 Local Non-Degeneracy of ηW

Looking at different examples of ηW when Φ is a convolution (see Figure 2.3),

one sees that ηW seems to always have the right curvature around 0 (concave). This

is a general fact stated in the next Proposition.

(a) Dirichlet (b) Gaussian (c) Cauchy

Figure 2.3: ηW for N = 4 and three different convolution operators Φ: Dirichlet

for fc = 10, Gaussian for σ = 0.05 and Cauchy for σ = 0.2.

Proposition 11. Assume that Φ is a convolution operator (i.e. for all x∈X, ϕ(x) =
ϕ̃(· − x) and H = L2(X)) and I2N holds. Suppose also, only in the case when

X is un-bounded, that for all 0 6 i 6 2N− 1, ϕ̃ (i)(x)→ 0 when |x| → +∞. Then

η
(2N)
W (0) < 0.

The proof of Proposition 11 relies on the study of the structure of the matrices

Ψ∗kΨk (See Equation (1.4.2) for the definition of Ψk). One starts by introducing the

notion of checkerboard matrices.
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Definition 9. Let n∈N∗ and A = (ai, j)i, j ∈Rn×n. We say that A is a checkerboard

matrix if for all (i, j) such that i+ j is odd, ai, j = 0.

For an odd n, such a matrix looks like










a1,1 0 a1,3 0 . . . 0 a1,n−2 0 a1,n

0 a2,2 0 a2,4 . . . a2,n−3 0 a2,n−1 0
...

...
...

...
. . .

...
...

...
...

0 an−1,2 0 an−1,4 . . . an−1,n−3 0 an−1,n−1 0

an,1 0 an,3 0 . . . 0 an,n−2 0 an,n










.

Lemma 1. The set of checkerboard matrices of size n ∈N∗ is an algebra over R.

As a result the inverse of a checkerboard matrix is also a checkerboard matrix.

Proof. The only difficulty is to show that the product of two checkerboard matri-

ces is also a checkerboard matrix. Let A = (ai, j)i, j and B = (bi, j)i, j be two such

matrices. Let (i, j) such that i+ j is odd. Then ∑
n
k=1 ai,kbk, j = 0 because if i+ k

is even then (i+ j)− (i+ k) = j− k is odd and j− k+ 2k = j+ k is odd, hence

b j,k = 0. On the contrary, if i+ k is odd then ai,k = 0. So AB is a checkerboard

matrix. The last statement holds because the inverse of any matrix is a polynomial

in that matrix.

Now we give a more precise result on the structure of some particular checker-

board matrices.

Lemma 2. Let A = (ai, j)16i, j62n+1 be a symmetric positive-definite checkerboard

matrix of size 2n+ 1 such that

ai, j = (−1)
i− j

2 a i+ j
2

,
i+ j

2

for all i, j ∈ {1, . . . ,2n+ 1} such that i+ j is even, and let (bi, j)16i, j62n+1 denote

the entries of A−1. Then b2n+1,2n+1 and b1,2n+1 are positive.

Proof. The fact that b2n+1,2n+1 is positive, is a direct consequence of the fact that

A−1 is symmetric positive-definite because so is A.

From the expression of the inverse of a matrix using cofactors, one sees that

b1,2n+1 = det(Â1,2n+1)/det(A), where Â1,2n+1 is the matrix obtained from A by

removing the first row and the last column. Since A is symmetric positive-definite,

det(A) > 0, and one needs only show that det(Â1,2n+1) > 0. But one can see that

Â1,2n+1 is a skew symmetric matrix of size 2n, hence

det(Â1,2n+1) = pf(Â1,2n+1)
2,

where pf(Â1,2n+1) is the Pfaffian of the matrix Â1,2n+1. For more details on the

Pfaffian (definition and proof of the result used here), see [101]. As a result:

det(Â1,2n+1) > 0.
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Moreover, Â1,2n+1 is invertible. Indeed if one denotes the columns of A (resp.

the columns Â1,2n+1) by C1, . . . ,C2n+1 (resp. Ĉ1, . . . ,Ĉ2n), one observes that for

0 6 i 6 n−1, Ĉ2i+1 ∈ E1 and Ĉ2(i+1) ∈ E2 where

E1 = Span{e2 j+1; 0 6 j 6 n−1},
E2 = Span{e2( j+1); 0 6 j 6 n−1},

with (ei)16i62n is the canonical base of R2n. Since E1 and E2 are in direct sum, if

Â1,2n+1 is not invertible it means that either (Ĉ2i+1)06i6n−1 or (Ĉ2(i+1))06i6n−1 is

linearly dependent. But it cannot be (Ĉ2(i+1))06i6n−1 because it would imply that

(C2(i+1))06i6n−1 is also linearly dependent, because

C2(i+1) =

(
0

Ĉ2(i+1)

)

,

which would contradict the invertibility of A.

So it means that (Ĉ2i+1)06i6n−1 must be linearly dependent. However from the

structure of the matrix A, one can see that for all 0 6 i 6 n−1

Ĉ2i+1 =


















0

(−1)i+1a2i+1,1

0

−(−1)i+1a2i+3,1

...

0

(−1)i+1a2(i+n)−1,1

0

−(−1)i+1a2(i+n)+1,1


















and Ĉ2(i+1) =


















(−1)i+1a2i+1,1

0

−(−1)i+1a2i+3,1

0
...

(−1)i+1a2(i+n)−1,1

0

−(−1)i+1a2(i+n)+1,1

0


















.

Thus, a linear combination between the elements of (Ĉ2i+1)06i6n−1 gives the same

linear combination between the elements of (Ĉ2(i+1))06i6n−1, which contradicts

for the same reason as before the invertibility of A.

Hence Â1,2n+1 is invertible and b1,2n+1 > 0.

The next result describes the structure of the matrices Ψ∗kΨk when Φ is a con-

volution operator (i.e. for all x ∈R, ϕ(x) = ϕ̃(·− x)) and k ∈N∗ is odd.

Lemma 3. Suppose that Φ is a convolution operator. Then for all k ∈N∗, Ψ∗kΨk

is a checkerboard matrix. Moreover if I2N holds, then the entries indexed by

(1,2N + 1) and (2N + 1,2N + 1) of (Ψ∗2NΨ2N)−1 are positive.

Proof. Let (i, j) such that i+ j is odd and for example i > j (Ψ∗kΨk is symmetric

so it does not matter). The entry (i, j) of Ψ∗kΨk is equal to

〈
ϕi−1,ϕ j−1

〉

H
.
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Recall that in the setting of Proposition 11, H = L2(X) and 〈 f ,g〉
H

=
∫

X f g.

Successive integrations by parts (we integrate the left term and derive the right

term) yield

〈
ϕi−1,ϕ j−1

〉

H
= (−1)

i− j+1
2

〈

ϕ i+ j−1
2
−1

,ϕ i+ j+1
2
−1

〉

H
,

〈
ϕi−1,ϕ j−1

〉

H
= (−1)

i− j−1
2

〈

ϕ i+ j+1
2
−1

,ϕ i+ j−1
2
−1

〉

H
.

Hence, by the symmetry of the scalar product, one obtains that

〈
ϕi−1,ϕ j−1

〉

H
= −

〈
ϕi−1,ϕ j−1

〉

H
.

This implies that
〈
ϕi−1,ϕ j−1

〉

H
= 0 for odd values of i+ j, so that Ψ∗kΨk is a

checkerboard matrix (see Definition 9).

Moreover, similar computations show that when i+ j is even

〈
ϕi−1,ϕ j−1

〉

H
= (−1)

i− j
2

〈

ϕ i+ j
2
−1

,ϕ i+ j
2
−1

〉

H
.

If I2N holds, Ψ∗2NΨ2N is symmetric positive-definite. As a result Ψ∗2NΨ2N satisfies

the assumptions of Lemma 2, so the entries (1,2N + 1) and (2N + 1,2N + 1) of

(Ψ∗2NΨ2N)−1 are positive.

One can now prove that η
(2N)
W (0) < 0 when Φ is a convolution operator and

I2N holds.

Proof of Proposition 11. Since ηW = Φ∗pW , we deduce that

η
(2N)
W (0) = 〈ϕ2N , pW 〉H =

〈
ϕ2N ,Ψ2N−1(Ψ

∗
2N−1Ψ2N−1)

−1δ2N

〉

H
.

Consider the symmetric positive definite matrix

Ψ
∗
2NΨ2N =

(
Ψ∗2N−1Ψ2N−1 Ψ∗2N−1ϕ2N

[Ψ∗2N−1ϕ2N ]∗ ‖ϕ2N‖2
H

)

∈R
2N×2N .

Observe that Ψ∗2N−1Ψ2N−1 is invertible, and that

S
def.
= ‖ϕ2N‖2

H
−
〈
ϕ2N ,Ψ2N−1(Ψ

∗
2N−1Ψ2N−1)

−1
Ψ
∗
2N−1ϕ2N

〉

H
6= 0.

Indeed, since (ϕ0, . . .ϕ2N) has full rank, one has

S = ‖(IdH −Π2N−1)ϕ2N‖2
H

> 0

where

Π2N−1
def.
= P(ImΨ2N−1)⊥ = IdH −Ψ2N−1(Ψ

∗
2N−1Ψ2N−1)

−1
Ψ
∗
2N−1.
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Thus, we may apply the block inversion formula, and (Ψ∗2NΨ2N)−1 is of the

form

(Ψ∗2NΨ2N)
−1 =

1

‖(IdH −Π2N−1)ϕ2N‖2
H

×
(

∗∗∗ −(Ψ∗2N−1Ψ2N−1)−1Ψ∗2N−1ϕ2N

−[(Ψ∗2N−1Ψ2N−1)−1Ψ∗2N−1ϕ2N ]∗ 1

)

Lemma 3 ensures that the entry (2N + 1,1) of (Ψ∗2NΨ2N)−1 is (strictly) positive.

This precisely means that

−
〈
ϕ2N ,Ψ2N−1(Ψ∗2N−1Ψ2N−1)−1δ2N

〉

H

‖(IdH −Π2N−1)ϕ2N‖2
H

> 0,

and as a result η
(2N)
W (0) = 〈ϕ2N , pW 〉H < 0.

From this result, one can show that the local non-degeneracy of ηW (η
(2N)
W (0)<

0) is transferred to any pre-certificate η sufficiently close of ηW in the sense that η

is non-degenerate in a neighborhood of the spikes positions tz. This is the object

of the following Remark.

Remark 4. Thanks to Proposition 11 and the first part of the proof of Theorem 3

(which is given in Section 1.5), note that the following is true: there exist CW > 0,

tW > 0 such that for all t ∈ (0, tW ), z ∈ XN with pairwise distinct coordinates and

|z|∞ 6 RW , there exists r+ > 0 with r+ > max
16i6N

tW zi and r− < 0 with r− < min
16i6N

tW zi

such that for all η ∈ C 2N(X)∩W2N,∞(X) satisfying for all 1 6 i 6 N, η(tzi) = 1

and η ′(tzi) = 0:

(

∀ℓ ∈ {0, . . . ,2N},
∥
∥
∥η (ℓ)−η

(ℓ)
W

∥
∥
∥

∞,X
6CW

)

=⇒
(

∀x ∈ (r−,r+) \
⋃

i

{tzi}, |η(x)|< 1 and ∀i ∈ {1, . . . ,N}, η ′′(tzi) < 0

)

.

However whether η is globally non-degenerate (i.e. |η |< 1 outside the neigh-

borhood) depends on the other part of the definition of the non-degeneracy of ηW :

|ηW | < 1. Thus, in general, we need an explicit expression of ηW to assert the

global non-degeneracy property.

2.2.2 ηW for the Gaussian Convolution

For the Gaussian convolution on X = R, we prove that ηW is always (2N−1)-
non-degenerate. This is stated in Proposition 12 below.

If one denotes by ηW ,σ , the (2N−1) vanishing derivatives pre-certificate asso-

ciated to the filter ϕσ : x ∈R 7→ e
− x2

2σ2 , then ηW ,σ = ηW ,1(
·
σ ). As a result we only

consider the case of σ = 1 in Proposition 12.



2.2. ηW FOR A CONVOLUTION OPERATOR 45

Proposition 12. Assume that X =R, H = L2(R) and Φ is a convolution operator,

i.e. for all x ∈R, ϕ(x) = ϕ̃(·− x), where ϕ̃ : x ∈R 7→ e−x2/2 is a Gaussian. Then

the associated (2N−1)-vanishing derivatives pre-certificate is:

∀x ∈R, ηW (x) = e−
x2

4

N

∑
k=1

x2k

22kk!
. (2.2.1)

In particular, ηW is (2N−1)-non-degenerate.

Figure 2.4 shows ηW for the Gaussian filter with an increasing number N of

spikes.
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Figure 2.4: ηW for a Gaussian filter.

Proof of Proposition 12. Let denote (ak)06k62N−1 the coefficients of the first col-

umn of the matrix (Ψ∗2N−1Ψ2N−1)−1. Then one knows that for all x ∈R,

ηW (x) =
N−1

∑
k=0

a2kϕ ⋆ϕ (2k)(x).

Since ϕ ⋆ϕ = x→√
πe−x2/4, we get that for all x ∈R,

ηW (x) =
√

πe−x2/4
N−1

∑
k=0

a2kĤ2k(x), (2.2.2)

where Ĥ2k is the Hermite polynomial of order 2k associated to x→ e−x2/4.

Now let us show (2.2.1) recursively on N ∈ N∗. If N = 1, we have that

ηW (x) = e−x2/4 because Ψ∗2N−1Ψ2N−1 = (
√

π). Suppose that the property is true

for some N ∈N∗, i.e. ,

ηW ,N(x) = e−x2/4
N−1

∑
k=0

x2k

22kk!
, (2.2.3)
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where we use the notation ηW ,N to recall that this is the function ηW for N spikes.

Then form for all x ∈R,

κ(x)
def.
= ex2/4 (ηW ,N+1(x)−ηW ,N(x)) .

κ is a polynomial of degree 2N (thanks to (2.2.2)), it satisfies κ(0) = 0 and for all

1 6 i 6 2N−1, κ (i)(0) = 0. As a result for all x ∈R,

κ(x) = λx2N ,

for some λ ∈R.

It remains to show that λ = 1
22NN!

. Remark that for all x ∈ R, κ (2N)(x) =

λ (2N)! and on the other hand κ (2N)(0) = −η
(2N)
W ,N (0) because η

(2N)
W ,N+1(0) = 0 by

definition of ηW ,N+1. So it is enough to show that,

η
(2N)
W ,N (0) = − (2N)!

22NN!
. (2.2.4)

Thanks to the Leibniz formula applied to (2.2.3), we have the following formula,

η
(2N)
W ,N (0) =

N−1

∑
k=0

(
2N

2k

)

Ĥ2N−2k(0)
(2k)!

22kk!
.

Since Ĥ2N−2k(0) = (−1)N−k (2N−2k−1)!
22N−2k−1(N−1−k)!

, thanks to Lemma 4 below, one ob-

tains,

η
(2N)
W ,N (0) =

N−1

∑
k=0

(2N)!

(2N−2k)!(2k)!
· (−1)N−k (2N−2k−1)!

22N−2k−1(N−1− k)!
· (2k)!

22kk!

= − (2N)!

22NN!

N−1

∑
k=0

N(N−1)!

(N−1− k)!k!
· 2 · (−1)N−1−k

(2N−2k)

= − (2N)!

22NN!
N

N−1

∑
k=0

(
N−1

k

)

(−1)N−1−k

∫ 1

0
xN−1−kdx

= − (2N)!

22NN!
N

∫ 1

0
(1− x)N−1dx

︸ ︷︷ ︸

=1/N

.

This ends the recursive proof and thus we have (2.2.1).

To conclude that ηW is (2N−1)-non-degenerate, it remains to show that for all

x ∈ R∗, |ηW (x)| < 1, since we already know that η
(2N)
W (0) < 0 thanks to (2.2.4).

But we have, thanks to (2.2.1), that for all x ∈R∗, 0 < ηW (x) < 1 since ∑
N−1
k=0

x2k

22kk!

is the truncated power series of ex2/4.
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Lemma 4. One has for all k ∈N,

Ĥ2k+2(0) = (−1)k+1 (2k+ 1)!

22k+1k!
. (2.2.5)

Proof. One knows that Hk+2(x) = xHk+1(x)− (k+ 1)Hk(x) where Hk is the Her-

mite polynomial of order k associated to x 7→ e−x2/2. Thus H2k+2(0) = −(2k +
1)H2k(0) and then,

H2k+2(0) = (−1)k+1 (2k+ 1)!

2kk!
. (2.2.6)

Now, remark that Ĥk(x) = 2−k/2Hk(x/
√

2), so that together with (2.2.6) we get

the expected result (2.2.5).

2.2.3 ηW for a Low-Pass Filter

When Φ is a convolution over the 1-D torus (X = T), one knows thanks to

Proposition 11 that η
(2N)
W (0) < 0 and one observesd numerically that |ηW | < 1

(except at 0) so that ηW is (2N−1)-non degenerate for the ideal low pass filter for

any value N such that N 6 fc.

Figure 2.5 shows ηW for an ideal low pass filter when N = 2 with fc increasing.
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Figure 2.5: ηW for the ideal low pass filter with fc increasing with N = 2.

However, for some filters, the associated ηW might be degenerate. This is il-

lustrated in Figure 2.6 where ηW is displayed for several filters with increasing

complexity i.e. we consider low pass filters with a fixed cutoff frequency, with

increasing extreme Fourier coefficients (starting with a slowly varying filter). Re-

mark that the last two ηW (in red) are degenerate, as they correspond to the filters

with the higher complexity (the Fourier coefficients increase the most with the fre-

quency).
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Figure 2.6: ηW for a low pass filter for fc = 10 with increasing high frequency

content. The curve showing ηW is in blue when it is (2N−1)-non-degenerate and

in red when it is degenerate.
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2.3 ηW for Laplace-like Operators

In this section, we propose to study ηW when Φ is not a convolution operator

(recall that this is one of the advantage of our approach). One considers a series

of operators based on the Laplace transform. The main reason behind our interest

for this setup is Chapter 5 where we study a 3D forward model for a fluorescent

microscopy problem which uses a Laplace transform for the recovery of depth

information. As a result, by looking at ηW for a Laplace transform, we aim at

providing some theoretical guarantees concerning the super-resolution problem in

this framework which can then back up our numerical experiments in Chapter 5.

In the next Section 2.3.1, we first detail the different models considered. In

Section 2.3.2, we give two formulas for ηW in two different setups (continuous)

and show that it is (2N−1)-non-degenerate.

2.3.1 Laplace-Based Forward Models

One considers in the following a Laplace-type transform. For the sake of sim-

plicity, we suppose that in all this section X = [ε ,xb] ⊂ R∗
+ is a compact inter-

val. This choice assures that ϕ satisfies all the required assumptions for every

of the Laplace-like transform models presented below. One supposes also that

H = L2(R+, µ) where µ is a positive Radon measure on X . The following kernel

is used:

∀x ∈ X , ϕ(x) =
(
s 7→ ξ (x)e−sx

)
∈H (2.3.1)

with ξ ∈ C (X) is non-negative. In particular here,

(Φ∗p)(x) = ξ (x)
∫

R+

e−sx p(s)dµ(s).

Here, µ is a weighting function. A high value of µ(s) indicates that a high

humber of measurements have been taken for the measurement indexed by s (or

equivalently that there is less noise in the measurement). A value µ(s) = 0 in-

dicates that this measurement is not available. In order to model discrete mea-

surements, one can define µ = ∑
K
k=1 µkδsk

where sk are the sampling values. This

corresponds to using H = RK and ϕ(x)
def.
= (ξ (x)µke−skx)K

k=1 ∈H .

The normalizing function ξ can be chosen freely. A common normalization

choice is

ξ (x)2 =
1

∫

R+
e−2sxdµ(s)

, (2.3.2)

which guarantees that ‖ϕ(x)‖
H

= 1 for all x ∈ X . See Section 2.3.2 for more

details for this normalization.

Note that both µ and ξ can be chosen freely by the user that wants to solve the

acquisition problem, since they act separately on the input and output variables x,s.
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The correlation function reads for these class of operators:

∀x,x′ ∈ X , cϕ(x,x′) = ξ (x)ξ (x′)
∫

R+

e−(x+x′)sdµ(s).

Note that the choice (2.3.2) of normalization ensures that cϕ(x,x) = 1

For instance, for a sampling density of the form µ(s) = e−αs for some α > 0,

one obtains

ξ (x) =
√

2(x+α) and cϕ(x,x′) = 2

√

(x+α)(x′+α)

x+ x′+ 2α
. (2.3.3)

Note that the parameter α has only the effect of shifting all Dirac location, i.e.

making the change of variable x 7→ x−α is equivalent to replacing α by 0.

We now detail in the following paragraphs, several particular cases covered by

Equation 2.3.1. We are particularly interested in this thesis in the last two models

presented (discretized un-normalized and discretized L2-normalized) because they

are involved in Chapter 5.

Un-normalized Laplace for µ = 1[0,+∞)L .

One supposes that µ = 1[0,+∞)L , where L is the Lebesgue measure on R+,

and ξ = 1. Then ϕ(x) = e−·x and one has:

cϕ(x,x′) =
1

x+ x′
(2.3.4)

∂ i
1∂

j
2 cϕ(x,x′) = (i+ j)!

(−1)i+ j

(x+ x′)i+ j
(2.3.5)

L2-Normalized Laplace for µ = 1[0,+∞)L .

One supposes that µ = 1[0,+∞)L , where L is the Lebesgue measure on R+ ,

and:

∀x ∈ X , ξ (x) =

√

1
∫

R+
e−2sxds

=
√

2x,

so that for all x ∈ X , ϕ(x) : s 7→
√

2xe−sx and ‖ϕ(x)‖
H

= 1. One gets:

∀x,x′ ∈ X , cϕ(x,x′)
def.
=
〈
ϕ(x),ϕ(x′)

〉

H
=

2
√

xx′

x+ x′
.

Un-normalized Band-limited Laplace.

One supposes that µ = 1[a,b]L , where 0 6 a < b and L is the Lebesgue mea-

sure on R+, and ξ = 1.

Then one has

cϕ(x,x′) = ∆e−m(x+x′)sinhc

(

∆
x+ x′

2

)

where sinhc(u)
def.
=

sinh(u)

u

so that ∆ = b−a encodes the bandwidth of the measurement, and m = (a+ b)/2

the decay of the kernel.
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L2-normalized Band-limited Laplace.

One supposes that µ = 1[a,b]L , where 0 6 a < b and L is the Lebesgue mea-

sure on R+, and ξ is defined so that ‖ϕ(x)‖
H

= 1.

The normalized Band-limited kernel has correlation:

cϕ(x,x′) =
sinh

(

∆
x+x′

2

)

√

sinh(∆x) sinh(∆x′)

2
√

xx′

x+ x′

Discretized Un-normalized Laplace.

One supposes that µ = ∑
K
k=1 δsk

and ξ = 1. Then ϕ(x) = (e−skx)K
k=1 ∈RK and:

cϕ(x,x′) =
K

∑
k=1

e−sk(x+x′).

If we make the assumption that we discretize uniformly the interval [a,b] i.e.

sk = a+ k
K−1

(b−a) for k ∈ {0, . . . ,K−1}, then:

cϕ(x,x′) = e−m(x+x′)
sinh

(

∆
K

K−1
x+x′

2

)

sinh
(

∆

K−1
x+x′

2

) ,

where ∆ = b−a and m = (a+ b)/2.

Discretized L2-normalized Laplace.

One supposes that µ = ∑
K
k=1 δsk

and ξ (x) =
(

∑
K
k=1 e−2skx

)−1/2
. Then ϕ(x) =

ξ (x)(e−skx)K
k=1 ∈RK , ‖ϕ(x)‖

H
= 1 and:

cϕ(x,x′) = ξ (x)ξ (x′)
K

∑
k=1

e−sk(x+x′).

If we make the assumption that we discretize uniformly the interval [a,b] i.e.

sk = a+ k
K−1

(b−a) for k ∈ {0, . . . ,K−1}, then:

cϕ(x,x′) =

√
√
√
√

sinh
(

∆

K−1
x
)

sinh
(

∆

K−1
x′
)

sinh
(
∆

K
K−1

x
)

sinh
(
∆

K
K−1

x′
)

sinh
(

∆
K

K−1
x+x′

2

)

sinh
(

∆

K−1
x+x′

2

) ,

where ∆ = b−a and m = (a+ b)/2.

2.3.2 Several Formulas for ηW

One supposes that N spikes are clustered at positions x0 ∈
◦
X . The aim of this

section is to provide some explicit formula for the (2N−1)-vanishing derivatives

pre-certificate ηW , in several particular cases. Because the Laplace based kernels

ϕ are not translation invariant, the results provided in this section depends on x0.
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The knowledge of ηW gives the asymptotic of the dual certificates, and its non-

degeneracy provides the error bounds given in Section 3.2 with Theorem 5. It

guarantees identifiability and stability for measures that are sufficiently clustered

around the point x0 ∈ X .

Let us recall that, if Ψ2N has full rank, ηW is the unique function of the form

ηW (x) =
2N−1

∑
k=0

αk∂ k
2 cϕ(x,x0), where (αk)06k62N−1 ⊂R and (2.3.6)

ηW (x0) = 1, η ′W (x0) = 0, . . . ,η
(2N−1)
W (x0) = 0. (2.3.7)

Preliminaries. One begins with two elementary lemmas. The first one is a simple

consequence of the Faa di Bruno lemma.

Lemma 5. Let I, I′ ⊂ R be open intervals, and h : I′→ I be a smooth diffeomor-

phism. Let x0 ∈ I, t0 := h−1(x0) ∈ I′, and let η : I →R be a smooth function.

Then η satisfies

η(x0) = 1, η ′(x0) = 0, . . . ,η2N−1(x0) = 0, (2.3.8)

if and only if ν
def.
= η ◦h satisfies

ν(t0) = 1, ν ′(t0) = 0, . . . ,ν (2N−1)(t0) = 0. (2.3.9)

Moreover, in that case, ν (2N)(t0) = η (2N)(x0)(h′(t0))2N .

The next one follows from the general Leibniz rule.

Lemma 6. Let I be an open interval, t0 ∈ I and let g : I → R, η : I → R be two

smooth functions. If η satisfies:

η(x0) = 1, η ′(x0) = 0, . . . ,η (2N−1)(x0) = 0, (2.3.10)

then P
def.
= η×g satisfies:

P(x0) = g(x0), P′(x0) = g′(x0), . . . , P(2N−1)(x0) = g(2N−1)(x0). (2.3.11)

In particular, if P ∈ R2N−1[T ], then P is the Taylor expansion of g at x0 of order

2N−1, and η
(2N)
W (x0) = −g(2N)(x0)/g(x0) provided that g(x0) 6= 0.

One can now provide expressions of ηW and show that it is (2N − 1)-non-

degenerate for the following cases.
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(a) N = 2 (b) x0 = 1

Figure 2.7: ηW for the un-normalized Laplace model for a varying x0 with fixed

N = 2 and a fixed x0 = 1 with varying N ∈ {2,4,6}.

Un-normalized Laplace. The following Proposition provides a formula for ηW

in this setting and proves that it is non-degenerate.

Proposition 13. ηW is (2N − 1)-non-degenerate. More precisely, we have the

following formula:

∀x ∈ X , ηW (x) = 1−
(

x− x0

x+ x0

)2N

. (2.3.12)

In Figure 2.7, one sees that when the position x0 where the spikes cluster in-

creases then the curvature of ηW at x0 decreases. This means that it is harder in this

situation to perform the recovery. It reflects the exponential decay of the kernel ϕ .

Similar observations are made in Chapter 4 and 5 in our numerical experiments.

Furthermore when N increases with a fixed x0 the curvature at x0 of ηW also de-

creases. This is logical because recovering more spikes that cluster at x0 is harder.

Proof of Proposition 13. From Equations (2.3.6) and (2.3.4), one sees that ηW has

the form

ηW (x) =
2N

∑
k=1

βk

(x+ x0)k
, where βk ∈R.

We set h : t 7→ (1/t− x0), ν
def.
= η ◦h so that

ν(t) =
2N

∑
k=1

βkt
k,

is a polynomial with degree at most 2N with ν(0) = 0. By Lemma 5, ν satis-

fies (2.3.9) at t0
def.
= 1

2x0
. As a result, ν(t) = 1+ β2N(t − t0)2N . The constant β2N

is fixed by the condition ν(0) = 0, so that ν(t) = 1−
(

t−t0
t0

)2N

, and ηW is given

by (2.3.12).

The 2N derivative is ν (2N)(t0) = − (2N)!
(t0)2N , so that ηW (x0) = − (2N)!

(2x0)2N < 0.
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L2-Normalized Laplace. The following Proposition provides a formula for ηW

in this setting and proves that it is non-degenerate.

Proposition 14. ηW is (2N − 1)-non-degenerate. More precisely, we have the

following formula:

∀x ∈ X , ηW (x) =
2
√

xx0

x+ x0

N−1

∑
k=0

(2k)!

22k(k!)2

(
x− x0

x+ x0

)2k

. (2.3.13)

(a) N = 2 (b) x0 = 1

Figure 2.8: ηW for the normalized Laplace model for a varying x0 with fixed N = 2

and a fixed x0 = 1 with varying N ∈ {2,4,6}.

In Figure 2.8, one sees that when the position x0 where the spikes cluster in-

creases then the curvature of ηW at x0 decreases. The interpretation is the same as

in the previous paragraph. When N increases with a fixed x0, ηW almost does not

change.

Proof of Proposition 14. From the general Leibniz rule, we have for all n∈{0, . . . ,2N−
1} and for all x,x′ ∈ X :

dn

dx′n
(cϕ(x,x′)) = 2

√
x

n

∑
k=0

(
n

k

)
dn−k

dx′n−k

(√
x′
) dk

dx′k

(
1

x+ x′

)

Evaluating this expression at x′ = x0, one gets that:

∂ n
2 cϕ(x,x0) =

√
x

n

∑
k=0

αk

(x+ x0)k+1
,

for some coefficients αk ∈R. As a result, ηW is the unique function the form

ηW (x) =
√

x
2N−1

∑
k=0

βk

(x+ x0)k+1

for some coefficients βk ∈ R, which satisfies (2.3.7). As before, we set t = 1
x+x0

,

that is x = h(t)
def.
= 1

t
− x0, and h is a diffeomorphism of (0,1/x0) onto (0,+∞).

Then:

ηW ◦h(t) =

√

1

t
− x0tP(t) =

√

t− t2x0P(t),
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where P(T ) = ∑
2N−1
k=0 βkT k ∈R2N−1[T ].

By Lemma 5 and Lemma 6, P is the Taylor expansion of order 2N − 1 of

g : t 7→ 1√
t−t2x0

at t0 = h−1(x0) =
1

2x0
. Setting t = u+ 1

2x0
, we note that:

1
√

t− t2x0

=
2
√

x0
√

1− (2ux0)2
and

1√
1− z2

=
N−1

∑
k=0

(2k)!

22k(k!)2
z2k + o(z2N−1).

One deduces that

1
√

t− t2x0

= 2
√

x0

N−1

∑
k=0

(2k)!

22k(k!)2
[2x0(t− t0)]

2k + o((t− t0)
2N−1).

As a result, P is given by P(t) = 2
√

x0 ∑
N−1
k=0

(2k)!
22k(k!)2 [2x0(t− t0)]

2k
and

ηW ◦h(t) =
√

t− t2x0P(t) (2.3.14)

= 1−
∑
+∞
k=M

(2k)!
22k(k!)2 [2x0(t− t0)]

2k

∑
+∞
k=0

(2k)!
22k(k!)2 [2x0(t− t0)]

2k
. (2.3.15)

One sees that |ηW ◦h(t)|< 1 for all t ∈ (0, 1
x0
) \{ 1

2x0
}, and by Lemma 6,

(ηW ◦h)(2N)(t0) = −g(2N)(t0)/g(t0) = −
((2N)!)2

(N!)2
x2N

0 < 0 (2.3.16)

so that ηW ◦h (hence ηW ) is (2N−1)-non-degenerate. One recovers ηW by com-

posing with h−1, noting that 2x0(t− t0) =
x0−x
x+x0

.
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2.4 The Case of Several Clusters of Spikes

In this section, we propose to generalize the definition of ηW seen in Section 1.4

to the case of several clusters of spikes instead of one (all the spikes that cluster

at 0). Then we show in Theorem 4 that if the ηW for one cluster is (2N−1)-non-

degenerate then it is also the case for ηW for several clusters provided that there are

separated enough. This result uses the same arguments than the one proved for ηV

(see Theorem 1.3 in Section 2).

The framework of this section is similar as the one of Section 1.4.

Consider a measure m(t) = ∑
K
k=1

(

∑
Nk

i=1 ak,iδxk+tzk,i

)

. We suppose that ak,i ∈R

such that for all k ∈ {1, . . . ,K}, sign(ak,i) = sk depends only on k. For all k ∈
{1, . . . ,K}, xk ∈ X are pairwise distinct and for all i ∈ {1, . . . ,Nk} zk,i ∈ X are also

pairwise distinct. As a result for t > 0 small enough, all the positions of the spikes

of m(t) are pairwise distinct and m(t) is composed of ∑
K
k=1 Nk spikes. The spikes

of m(t) cluster around the positions xk when t → 0, so that m(t) is composed of K

clusters. An example of such a measure is given in Figure 2.9.

Figure 2.9: An example of a measure composed of several clusters of spikes. In

red, the measure m(t) and in black the positions (xk)16k6K where the spikes of

m(t) cluster. Here K = 4, N1 = 3, N2 = 5, N3 = 4, N4 = 2.

From now on in this section, in order to avoid confusions, one denotes by

ηW ,x0
the (2N−1)-vanishing derivatives pre-certificate for one cluster of N spikes

at position x0 ∈ X (as defined in Section 1.4) and ηW ,x̄ the same object but in the

case of several clusters of spikes at positions x̄ = (x1, . . . ,xK).

The following Proposition is similar to Proposition 8 in Section 1.4 and defines

ηW ,x̄.

Proposition 15 (ηW ,x̄ for clusters of spikes). Let K > 1. One denotes by (x1, . . . ,xK)∈



2.4. THE CASE OF SEVERAL CLUSTERS OF SPIKES 57

◦
XK , (s1, . . . ,sK) ∈ {−1,1}K and N = (N1, . . . ,NK) ∈ (N∗)K respectively the posi-

tions of the K clusters, the signs of the amplitudes of the spikes at each cluster and

the number of spikes at each cluster.

Suppose that ϕ ∈ C 2‖N‖∞−1(X ,H ).
If Ψ2N−1 = (ϕ(x1) . . . ϕ (2N1−1)(x1) . . . ϕ(xK) . . . ϕ (2NK−1)(xK)) has full

column rank, then there is a unique solution to the problem

inf
{

‖p‖
H

; ∀k ∈ {1, . . . ,K}, (Φ∗p)(xk) = 1, . . . , (Φ∗p)(2Nk−1)(xk) = 0
}

.

One denotes by pW ,x̄ its solution, given by

pW ,x̄ = Ψ
+,∗
2N−1δ2N (2.4.1)

where δ2N = (s1,0, . . . ,0
︸ ︷︷ ︸

size 2N1

,s2,0, . . . ,0
︸ ︷︷ ︸

size 2N2

, . . . ,sK ,0, . . . ,0
︸ ︷︷ ︸

size 2NK

)T ∈R2∑
K
k=1 Nk . One defines ηW ,x̄

as ηW ,x̄
def.
= Φ∗pW ,x̄.

Definition 10 ((2N−1)-non-degeneracy of ηW ,x̄). One uses the same notations as

in Proposition 15. We suppose that ϕ ∈ C 2‖N‖∞(X ,H ).
We say that ηW ,x̄ is (2N−1)-non-degenerate if:

∀k ∈ {1, . . . ,K}, η
(2Nk)
W ,x̄ (xk) 6= 0,

∀x ∈ X \{x1, . . . ,xK}, |ηW ,x̄(x)|< 1.

Provided that the positions of the clusters are separated enough and some tech-

nical assumptions, we can show similarly as in Theorem 2 that ηW ,x̄ is (2N− 1)-
non-degenerate.

Theorem 4. Let X ⊂ R be an unbounded interval. Let x̄ = (x1, . . . ,xK) ∈ XK

with pairwise distinct coordinates, (s1, . . . ,sK)∈ {−1,1}K and N = (N1, . . . ,NK)∈
(N∗)K be respectively the positions of the K clusters, the signs of the amplitudes of

the spikes at each cluster and the number of spikes at each cluster. If the following

assumptions are true:

(i) ϕ ∈ C 2‖N‖∞(X ,H ),

(ii) Ψ2N−1 has full column rank,

(iii) for all (i, j) ∈ {0, . . . ,2‖N‖∞}2, x ∈ X 7→
〈

ϕ (i)(x),ϕ ( j)(x)
〉

H
is constant,

(iv) there exists a function ω : R+→R+ satisfying ω(t)→ 0 when t →+∞ such

that for all x,x′ ∈ X, for all for all (i, j) ∈ {0, . . . ,2‖N‖∞}2,

|
〈

ϕ (i)(x),ϕ ( j)(x′)
〉

H
|6 ω(|x− x′|),
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(v) there exists C > 0 and r > 0 such that for all N ∈ {1, . . . ,‖N‖∞} (representing

the number of spikes of the cluster), for all x0 ∈ X and for all x ∈ [x0− r,x0 +

r], η
(2N)
W ,x0

(x) 6−C,

(vi) for all open neighborhood V of 0, there exists M > 0 such that for all x0 ∈ X

(corresponding to the position of clustering of N ∈ {1, . . . ,‖N‖∞} spikes) :

∀x ∈ X \ (x0 +V ), |ηW ,x0
(x)|6 1−M.

Then if ∆(x̄) is large enough, ηW ,x̄ is non-degenerate i.e. for all x∈X \{x1, . . . ,xK},
|ηW ,x̄(x)|< 1 and for all k ∈ {1, . . . ,K}, η

(2Nk)
W ,x̄ (xk) 6= 0.

Proof. By definition Ψ∗2N−1Ψ2N−1 = (Bk,l)(k,l)∈{1,...,K}2 is a block matrix such that

Bk,l ∈R2Nk×2Nl , where:

Bk,l =
(〈

ϕ (i)(xk),ϕ
( j)(xl)

〉

H

)

06i62Nk−1, 06 j62Nl−1
.

From Assumption (ii), one knows that ηW ,x̄ is well defined, Ψ∗2N−1Ψ2N−1 is invert-

ible and:

ηW ,x̄ = Φ
∗pW ,x̄ = Φ

∗
Ψ2N−1(Ψ

∗
2N−1Ψ2N−1)

−1δ2N.

From Assumption (iv), we deduce that Ψ∗2N−1Ψ2N−1 → Dx̄ when ∆(x̄) → +∞,

where:

Dx̄
def.
=






B1,1

. . .

BK,K




 with Bk,k = Ψ

∗
2Nk−1Ψ2Nk−1,

is a block diagonal matrix. Indeed, when k 6= l, ‖Bk,l‖ → 0. Let us denote Hx̄ =
Ψ∗2N−1Ψ2N−1−Dx̄, so one has ‖Hx̄‖→ 0 when ∆(x̄)→+∞. Moreover:

(Ψ∗2N−1Ψ2N−1)
−1 = (Dx̄ +Hx̄)

−1 = D−1
x̄ (I +Hx̄D−1

x̄ )−1, (2.4.2)

and it turns out from assumption (iii) that Dx̄ does not depend on x̄, hence
∥
∥Hx̄D−1

x̄

∥
∥→

0 when ∆(x̄)→+∞. As a consequence, there exists ∆0 > 0 such that if ∆(x̄)> ∆0

then:

(Ψ∗2N−1Ψ2N−1)
−1 = D−1

x̄ +R(∆(x̄)) with ‖R(∆(x̄))‖ −−−−−−→
∆(x̄)→+∞

0. (2.4.3)

Note that:

Ψ2N−1D−1
x̄ δ2N =

K

∑
k=1

skΨ2Nk−1(Ψ
∗
2Nk−1Ψ2Nk−1)

−1δ2Nk
, (2.4.4)

so using the Definition of pW ,x̄ (see Equation (2.4.2)) and Equations (2.4.3), (2.4.4),

we deduce that pW ,x̄ =∑
K
i=1 sk pW ,xk

+ pR with pW ,xk
=Ψ2Nk−1(Ψ∗2Nk−1Ψ2Nk−1)−1δ2Nk
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defines the usual (2Nk− 1)-vanishing derivatives pre certificate (see Section 1.4)

for one cluster of spikes at position xk, and ‖pR‖H
→ 0 when ∆(x̄)→+∞. Thus:

ηW ,x̄ = ηZ +ηR =
K

∑
i=1

skηW ,xk
+ηR, (2.4.5)

where ηW ,xk
(x) = Φ

∗
x pW ,xk

, ∀k ∈ {1, . . . ,K}, (2.4.6)

and

∥
∥
∥η

(i)
R

∥
∥
∥

∞,X
−−−−−−→
∆(x̄)→+∞

0, ∀i ∈ {0, . . . ,2‖N‖∞}, (2.4.7)

because for all x ∈ X , |η (i)
R (x)|6

∥
∥
∥ϕ (i)(x)

∥
∥
∥

H
‖pR‖H

6 A‖pR‖H
for some A > 0

thanks to Assumption (iii).

Step 1: For all k ∈ {1, . . . ,K}, one has:

η
(2Nk)
Z (xk) = skη

(2Nk)
W ,xk

(xk)+ ∑
j 6=k

s jη
(2Nk)
W ,x j

(xk).

However:

∑
j 6=k

s jη
(2Nk)
W ,x j

(xk) = ∑
j 6=k

2N j−1

∑
i=0

α j,i

〈

ϕ (2Nk)(xk),ϕ
(i)(x j)

〉

H
,

for some α j,i ∈R, so that thanks to Assumption (iv) and Equation (2.4.7):

∑
j 6=k

|η (2Nk)
W ,x j

(xk)| −−−−−−→
∆(x̄)→+∞

0

|η (2Nk)
R (xk)| −−−−−−→

∆(x̄)→+∞
0.

As a result from Assumption (v), sup
x∈[xk−r,xk+r]

η
(2Nk)
W ,xk

(x)6−C, we obtain that there

exists ∆1 > ∆0 such that if ∆(x̄) > ∆1 then for all k ∈ {1, . . . ,K}:

|η (2Nk)
W ,x̄ (xk)|>

C

2
, (2.4.8)

sign(η
(2Nk)
W ,x̄ (xk)) = −sk. (2.4.9)

and:

∀k ∈ {1, . . . ,K}, ∀x ∈B(xk,r), |η (2Nk)
W ,x̄ (x)|> C

2
, (2.4.10)

hence, using Equations (2.4.9) and (2.4.10), we deduce that for all ∀k ∈ {1, . . . ,K},
x ∈B(xk,r), |ηW ,x̄(x)|6 1− C

2(2Nk)!
(x− xk)

2Nk . In particular:

∀x ∈
K⋃

k=1

B(xk,r) \{xk}, |ηW ,x̄(x)|< 1. (2.4.11)
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Step 2: From Assumption (iv), there exists r1 > r such that:

∀k ∈ {1, . . . ,K}, ∀x ∈ X \
K⋃

l=1

B(xl ,r1), | 〈ϕ(x), pW ,xk
〉
H
|6 1

3K
,

hence |ηZ(x)| 6 1
3
. From Equation (2.4.7), there exists ∆2 > max(2r1,∆1) such

that if ∆(x̄) > ∆2, then |ηR(x)|6 1
3

for all x ∈ X \⋃K
l=1 B(xl ,r1). Thus we get:

∀x ∈ X \
K⋃

l=1

B(xl ,r1), |ηW ,x̄(x)|6
2

3
. (2.4.12)

Step 3: From Assumption (vi), there exists M > 0 such that:

∀k ∈ {1, . . . ,K}, ∀x ∈B(xk,r1) \B(xk,r), |ηW ,xk
(x)|6 1−M.

Moreover, from Assumption (iv):

∀k ∈ {1, . . . ,K}, sup
x∈B(xk ,r1)\B(xk ,r)

∑
l 6=k

|ηW ,xl
(x)| −−−−−−→

∆(x̄)→+∞
0.

Thus, there exists ∆3 > ∆2 such that if ∆(x̄)> ∆3 then for all k ∈ {1, . . . ,K}, for all

x ∈B(xk,r1)\B(xk,r), |ηZ(x)|6 (1−M)+ M
3
= 1− 2M

3
and |ηR(x)|6 M

3
(using

again Equation (2.4.7)). As a result:

∀x ∈
K⋃

k=1

(
B(xk,r1) \B(xk,r)

)
, |ηW ,x̄(x)|6 1−M

3
. (2.4.13)

Putting Equations (2.4.8), (2.4.11), (2.4.12), (2.4.13) all together, we deduce

that if ∆(x̄) > ∆3, then:

∀x ∈ X \{x1, . . . ,xK}, |ηW ,x̄(x)|< 1,

∀k ∈ {1, . . . ,K}, η
(2Nk)
W ,x̄ (xk) 6= 0,

i.e. ηW ,x̄ is (2N−1)-non-degenerate.

The following Proposition shows that we can apply Theorem 4 in the case

of a Gaussian convolution i.e. ηW ,x̄ is (2N− 1)-non-degenerate provided that the

clusters of spikes are separated enough.

Proposition 16. Let us consider X = R and for all x ∈R, ϕ(x) = ψ(·− x) where

t 7→ψ(t) = 1√
2πσ2

e
− (·−x)2

2σ2 for σ > 0, i.e. Φ is a Gaussian convolution. Then all the

assumptions of Theorem 4 holds.

Proof. One proves the Assumptions of Theorem 4 one by one.

(i) One has ϕ ∈ C ∞(R,L2(R)),
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(ii) one can show by induction that for all k ∈ N, ∀x ∈ R, ϕ (k)(x) = Hk(· −
x)ϕ(x) where Hk is a polynomial of degree k. As a result

(ϕ(x1), . . . ,ϕ
(2N1−1)(x1), . . . ,ϕ(xK), . . . ,ϕ

(2NK−1)(xK)),

is linearly independent in L2(R), so Ψ2N−1 has full column rank,

(iii) for all x,x′ ∈ R, 〈ϕ(x),ϕ(x′)〉
H

= 1√
4πσ2

e
− (x−x′)2

4σ2
def.
= κ(x− x′). As a result

for all (i, j) ∈ {0, . . . ,2‖N‖∞}2:

∀(x,x′) ∈R
2,

〈

ϕ (i)(x),ϕ ( j)(x′)
〉

H
= (−1) jκ (i+ j)(x− x′), (2.4.14)

in particular, for all x ∈R,
〈

ϕ (i)(x),ϕ ( j)(x)
〉

H
= (−1) jκ (i+ j)(0) does not

depend of x,

(iv) thanks to Equation 2.4.14, for all (i, j) ∈ {0, . . . ,2‖N‖∞}2:

∀(x,x′) ∈R
2, |

〈

ϕ (i)(x),ϕ ( j)(x′)
〉

H
|6 sup

(i, j)∈{0,...,2‖N‖∞}2

|κ (i+ j)(x− x′)|
︸ ︷︷ ︸

def.
=ω(|x−x′|)

,

and ω(t)→ 0 when t →+∞,

(v) From (iii), for all N ∈ {1, . . . ,‖N‖∞} (representing the number of spikes of

the cluster) and x0 ∈R, η
(2N)
W ,x0

(x0) does not depend on x0 because

η
(2N)
W ,x0

(x0) =
N−1

∑
i=0

αi

〈

ϕ (2N)(x0),ϕ
(2i)(x0)

〉

H
,

for some αi ∈ R. As a result, η
(2N)
W ,x0

(x0) = η
(2N)
W ,0 (0) and one knows from

Proposition 12 that:

η
(2N)
W ,0 (0) = − (2N)!

σ2N22NN!
.

Let C
def.
= mini∈{1,...,‖N‖∞}

(2N)!
σ2N22NN!

, then for all N ∈ {1, . . . ,‖N‖∞} and x0 ∈R,

η
(2N)
W ,x0

(x0) 6−C,

(vi) one knows from Proposition 12 that for all N ∈ {1, . . . ,‖N‖∞} (representing

the number of spikes of the cluster) and x0 ∈R:

∀x ∈R, ηW ,x0
(x) = e

− (x−x0)
2

4σ2

N−1

∑
i=0

(x− x0)2i

σ2i22ii!
.

ηW ,x0
is increasing on R−, decreasing on R+, ηW ,x0

> 0 and ηW ,x0
(x0) = 1.

Let V be an open neighborhood of 0, then we deduce that:

mN,x0

def.
= sup

x∈R\(x0+V )

|ηW ,x0
(x)|< 1.
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mN,x0
does not depend on x0 because ηW ,x0

= ηW ,x1
(·− (x0− x1)). Let:

M
def.
= 1− max

N∈{1,...,‖N‖∞}
mN ,

then for all N ∈ {1, . . . ,‖N‖∞} and x0 ∈R:

sup
x∈R\(x0+V )

|ηW ,x0
(x)|6 1−M.

Figure 2.10 shows ηW ,x̄ for a Gaussian convolution for the example of Fig-

ure 2.9 i.e. K = 4, x̄ = (−5,−1,2.5,4), s = (1,−1,1,1), N = (3,5,4,2). ηW ,x̄ has

been computed numerically by using its definition in Proposition 15. One knows

from Propostion 16 and Theorem 4 that provided the clusters are separated enough

(∆(x̄) large enough), then ηW ,x̄ is (2N−1)-non-degenerate. One sees numerically

that indeed ηW ,x̄ is non-degenerate.

Figure 2.10: ηW ,x̄ for the Gaussian convolution with σ = 0.15, corresponding to

the example of Figure 2.9. The black spikes are only here to represent the positions

and signs of the different clusters of spikes. As a reminder, here: N1 = 3, N2 = 5,

N3 = 4, N4 = 2. One sees that ηW ,x̄ is flatter around the clusters where Ni is larger.

This a direct consequence of the definition of ηW ,x̄: when Ni is larger then there are

more derivatives of ηW ,x̄ at xi that are zero.

Figure 2.11 shows ηW ,x̄ for a Gaussian convolution for two typical examples:

three clusters with an alternation of signs and two positive clusters. The clusters are

progressively brought closer. At some point, one sees as expected that in the case

of the alternation of signs that ηW ,x̄ becomes degenerate (|ηW ,x̄| > 1). When the

clusters are separated enough, one sees that the approximation of ηW ,x̄ by ηZ used
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in the proof of Theorem 4 is almost perfect. This is due to the fact that x 7→ e−x2

decreases to 0 very quickly. In the case of the two positive clusters, we remark as

expected that ηW ,x̄ is always non-degenerate. From Proposition 16 and Theorem 4,

one knows that when the clusters are separated enough then ηW ,x̄ is non-degenerate.

This situation can be seen on the first line, second column of Figure 2.11 where the

approximation by ηZ is almost perfect. However when the two clusters are brought

closer, the approximation is no longer valid (theoretically and numerically). But

we could prove that ηW ,x̄ converges towards the classical ηW (only one cluster)

with N = N1 +N2, which one knows is non-degenerate for a Gaussian convolution

thanks to Proposition 12. ηW would then transfer its non-degeneracy to ηW ,x̄ when

the two clusters are close enough.
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Figure 2.11: ηW ,x̄ (in blue on the figures) for the Gaussian convolution for two

typical examples. The black spikes are only here to represent the positions and

signs of the different clusters of spikes. ηZ , which is used in the proof of Theorem 4

to approximate ηW ,x̄ and prove its non-degeneracy, is also represented (in dashed

red lines). For both examples, the spikes are progressively brought closer. The first

column corresponds to three clusters with one negative in the middle, N = (3,5,2)
and σ = 0.4. One sees in the more distant configuration that ηW ,x̄ is (2N−1)-non-

degenerate and is approximated perfectly by ηZ . In the intermediate configuration

ηW ,x̄ is still non-degenerate but the approximation by ηZ is less precise for the first

two clusters. In the last configuration, only the first two clusters are brought closer a

slightly more than in the previous configuration, leading to the degeneracy of ηW ,x̄.

The second column corresponds to two positive clusters, N = (3,8) and σ = 0.5.

One sees that ηW ,x̄ is always non-degenerate and in the more distant configuration,

the approximation by ηZ is almost perfect.



Chapter 3

Separation and Robustness of

BLASSO

Super-resolution theory is the question of analyzing the dependency between

a maximum allowable noise and a minimum separation characteristic dis-

tance. This chapter studies the signal-to-noise ratio required to assure the

recovery of the support via the BLASSO of an initial measure composed of a

sum of Dirac masses, whose minimum separation distance is controlled by a

parameter t. It can be seen as a quantitative counterpart of the recovery theory

derived in the previous chapter using the ηW pre-certificate. More precisely,

our main contribution proves that if ηW is (2N− 1)-non-degenerate and if

w/λ , w/t2N−1 and λ /t2N−1 are small enough (where λ is the regularization

parameter, w the noise and N the number of spikes of the initial measure),

then the BLASSO has a unique solution composed of N spikes whose ampli-

tudes and positions converge towards those of the initial measure when the

noise level drops faster than t2N−1. We prove also that the non-degeneracy

condition on ηW is almost sharp. The proof techniques rely on the construc-

tion, from the first order optimality conditions of the BLASSO, of a candi-

date solution assured to be an actual solution with the appropriate constraints

on λ and w, thanks to precise estimations of expansions of several involved

operators depending on t.

65
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3.1 Introduction

3.1.1 Recap and Positioning of this Chapter

Chapter 1 presented the asymptotic analysis of the support recovery in presence

of noise of the BLASSO i.e. the study of

min
m∈M (X)

1

2
‖Φm− yt‖2

H
+λ |m|(X), (Pλ (yt))

when t → 0 and where

yt
def.
= Φma0,tz0

+w with ma0,tz0
=

N

∑
i=1

a0δtz0,i
,

The positions of the spikes are in the one dimensional space X and the amplitudes

are positive. This analysis is motivated by the fact that for positive spikes, exact

support recovery without noise holds whatever the minimum separation between

the spikes if the kernel satisfies some injectivity assumption, see [42]. This led us

to define the (2N− 1)-vanishing derivatives ηW (Definition 8) and one proved in

Corollary 1 that its (2N−1)-non-degeneracy (see Definition 8) assures the recov-

ery of the support when solving Pλ (yt) with t → 0.

Chapter 2 studied precisely the non-degeneracy of ηW for several filters (gen-

eral convolution, Gaussian convolution, low pass filter but also different Laplace

transform based operators).

However up to now, one lacks a quantitative description of the constraints on

the regularization parameter λ and the noise w, with respect to the distance be-

tween the spikes t, so as to ensure the super-resolution in presence of noise via the

BLASSO. Indeed recall that in Corollary 1, one has only the existence of a domain

in which the recovery is possible, with no indication whatsoever of its size with

respect to t (which is, both in practice and in theory, a critical information).

The goal of this chapter is to fill this gap.

3.1.2 Previous Works

In [113], the authors shows that stable recovery is obtained, in a discrete frame-

work, if the signal-to-noise ratio grows faster than O(1/t2N), closely matching op-

timal lower bounds of O(1/t2N−1) obtained by combinatorial methods, see [45].

Spectral Methods such as MUSIC [130, 100] provide, in the noiseless case,

exact reconstruction of the initial signal as long as there are enough observations

compared to the number of distinct frequencies [106]. Stability to noise is known to

hold under a minimum separation distance similar to the one of the BLASSO [106].

However, contrary to the BLASSO, numerical observations [39] and [45] prove

that this stability continues to hold regardless of the sign of the amplitudes, as soon

as the signal-to-noise ratio scales like O(1/t2N−1). It matches, when w follows

a Gaussian distribution, the Cramer-Rao lower bound achievable by any unbiased
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estimator [18]. But it is important to note that they are restricted to forward models

Φ that are convolutions with a low-pass filter, which is not the case of our analysis

for the BLASSO.

3.1.3 Contributions

Section 3.2.1 presents our main theoretical contribution of Part I of this thesis.

Theorem 5 shows that the recovery of the support (i.e. the recovery of a measure

composed of the same number of spikes as the original measure), when the spikes

of the initial measure collapse at 0 (t → 0), is possible when solving the BLASSO,

if the (2N−1)-vanishing derivatives pre-certificate ηW is (2N−1)-non-degenerate

and if the regularization parameter λ and the noise w are in a domain whose size

is quantified with respect to t. In sharp contrast to the (simpler and less precise)

Corollary 1, this result provides quantitative estimate of the required signal-to-

noise ratio as a function of the separation distance t. Proposition 17 in Section 3.2.2

proves that the (2N−1)-non-degeneracy of ηW is almost a sharp condition.

The proof of Theorem 5 relies on precise estimations, that are gathered in Sec-

tion 3.4, of different operators built upon Φtz and Γtz when t → 0 and on a con-

vergence result of ηλ ,t
def.
= 1

λ Φ∗(yt −Φma,tz) towards ηW (which is an extension of

Proposition 4 seen in Section 1.2) proved in Proposition 22 of Section 3.6.
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3.2 Separation Influence on Robustness of Super-Resolution

Section 3.2.1 presents Theorem 5 which is our main theoretical contribution

of Part I of this thesis. Theorem 5 provides quantitative sufficient conditions to

guarantee the recovery of the support of ma0,tz0
when solving Pλ (yt) when t → 0.

3.2.1 Main Result

This section states Theorem 5, whose proof is spanned in Sections 3.4, 3.5 and

3.6. Section 3.3 gives a sketch of the proof to guide the reader through the remain-

ing of the chapter.

Theorem 5. Suppose that ϕ ∈KER(2N+1) and that ηW is (2N−1)-non-degenerate.

Then there exist constants (t1, tW ,C,CR,M) (depending only on ϕ , a0 and z0) such

that for all 0 < t < min (t1, tW ), for all (λ ,w) ∈ B
(
0,CRt2N−1

)
with

∥
∥w

λ

∥
∥

H
6C,

• the problem Pλ (yt) admits a unique solution,

• that solution has exactly N spikes, and it is of the form ma,tz, with (a,z) =
g∗t (λ ,w) (where g∗t is a C 2N function defined on B

(
0,CRt2N−1

)
⊂R×H ),

• the following inequality holds

|(a,z)− (a0,z0)|∞ 6 M

( |λ |
t2N−1

+
‖w‖

H

t2N−1

)

.

The values of the constants involved can be found in the proof of the theorem,

more precisely, (t1,C) are defined in Equation (3.6.1), CR is defined in Proposi-

tion 20, tW is defined in Theorem 3 and M is given in Corollary 2.

Some comments on Theorem 5:

i) the fact that ηW must be (2N− 1)-non-degenerate (see Definition 8) implies

that the injectivity hypothesis I2N−1 is satisfied (see Definition 7) and in par-

ticular ϕ ∈ KER(2N−1). However for this theorem to hold, one requires a bit

more regularity, namely ϕ ∈ KER(2N+1). This is because we perform Taylor

expansions in our proof up to the order 2N + 1 (see Lemma 9).

ii) The size of the domain in (λ ,w) in which one can perform the recovery of the

support is proportional to t2N−1. We believe that this ratio is optimal because

it corresponds to the Cramer-Rao lower bound achievable by any unbiased

estimator [18]. In [113], the authors show that stable recovery is obtained if

the signal-to-noise ratio grows faster than O(1/t2N), closely matching opti-

mal lower bounds of O(1/t2N−1) obtained by combinatorial methods, as also

proved in [45]. When N increases, it enforces that the domain gets smaller

and logically that the recovery is harder to perform. This is reflected in the

fact that ηW gets flatter around 0 when N increases (more derivatives equal to

0).
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iii) If λ ∼ ‖w‖
H

so that ‖w‖
H

/λ 6 C and ‖w‖
H

goes to 0 faster than t2N−1

then the amplitudes and positions (rescaled by t) of the recovered measure

ma,tz converge towards those of ma0,tz0
when t → 0.

3.2.2 Necessary Condition for the Recovery in the Limit t → 0

Theorem 5, states that under a non-degeneracy property which involves ηW , it

is possible to perform the recovery of the support of a measure ma0,tz0
in the limit

t → 0 when the data are contaminated by some noise, provided that

max(|λ |/t2N−1,‖w‖
H

/t2N−1,‖w‖
H

/λ ) 6C,

for some constant C > 0 depending only on the filter ϕ and (a0,z0). It is natural to

ask whether the non-degeneracy condition on ηW , in order to get the recovery of

the support in some low noise regime, is sharp.

The following Proposition shows that the (2N− 1)-non-degeneracy assump-

tion on ηW is almost sharp in the sense that the recovery of the support in a low

noise regime leads to ‖ηW‖∞,X 6 1.

Proposition 17. Suppose that I2N−1 holds and ϕ ∈KER(2N+1). Suppose also that

there exists a sequence (tn)n∈N such that tn → 0 and satisfying

∀n ∈N,∃(λn,wn),∃(an,zn) ∈R
N×R

N ,man,tnzn
is solution of Pλn

(ytn),

where ytn

def.
= Φma0,tnz0

+wn, (λn,wn)→ 0 with
‖wn‖H

λn
→ 0. Then

‖ηW‖∞,X 6 1. (3.2.1)

The proof of this result can be found at the end of this chapter.

Proposition 17 tells us in particular that if one wants to solve the super-resolution

problem in presence of noise by solving the BLASSO for a given acquisition oper-

ator Φ and if the associated ηW (which only depends on Φ) satisfies ‖ηW‖∞,X > 1,

then it is impossible to recover the support of the initial measure in a low noise

regime when the spikes cluster at some point. This shows that this ηW -based anal-

ysis of super-resolution via support stability is almost necessary and sufficient.
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3.3 Sketch of Proof

Section 3.3.1 details the main ideas of the proof of Theorem 5. In Section 3.3.2,

one gives the proof of Theorem 5 by gathering all the intermediary results proved

in the remaining sections of this chapter.

3.3.1 Main Steps

The elements of the proof are divided in three main steps. The path followed

is similar to the one already seen in Section 1.2. The goal is to build a candidate

solution to Pλ (yt) satisfying some first order optimality conditions and then show,

by performing several expansions and controlling precisely the terms involved, that

it is indeed a solution of the BLASSO.

Step 1 (Section 3.5.1 and 3.5.2). We start with the first order optimality equation

that any solution ma,tz, for fixed t > 0, of Pλ (yt) must satisfy i.e.

Γ
∗
tz (Φtza−Φtz0

a0−w)+λ

(
1N

0

)

= 0.

where

1N
def.
= (1,1, . . . ,1)T ∈R

N . (3.3.1)

It is obtained by applying Fermat’s rule to the problem Pλ (yt). Since the pa-

rameters (a,z,λ ,w) = (a0,z0,0R,0H ) are a solution of the equation, the idea is

to parametrize, in a neighborhood of (λ ,w) = (0R,0H ), the amplitudes and po-

sitions (a,z) in terms of (λ ,w) by applying the implicit function theorem so that

(a,z,λ ,w) is a solution of the first order equation. This process is detailed in Sec-

tion 3.5.1 and 3.5.2. The rest of the proof consists in proving that the measure ma,tz

is the unique solution of the problem Pλ (yt). But, before, we have to deal with

the domain of existence of the above parametrization.

Step 2 (Section 3.5.3). The implicit function theorem only provides the existence

of a neighborhood in (λ ,w) of (0R,0H ) where the parametrization holds, but we

do not know how its size depends on the parameter t. This issue is important be-

cause one of our aims is to determine the constraints on t (corresponding roughly

to the minimum distance between the spikes of the original measure), on the noise

level and on the regularization parameter λ so that the recovery of the support is

possible. Section 3.5.3 is devoted to show that the parametrization, which writes

(a,z) = g∗t (λ ,w) (see Equation (3.5.3) for the definition of the implicit function

g∗t ), of the solutions of the first order optimality equation holds in a neighborhood

of (0R,0H ) and of size proportional to t2N−1. This result corresponds to Propo-

sition 20. The proof uses an upper bound of dg∗t which is stated in Corollary 2.

Proposition 20 relies on asymptotic expansions (of Γtz for example), when t → 0,
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gathered and used in the proof of Lemma 11. Section 3.4 is devoted to these asymp-

totic expansions and it may be skipped at first reading.

Step 3 (Section 3.6). Up to now, we have constructed a candidate solution ma,tz

(composed of N spikes) where (a,z) = g∗t (λ ,w) is built by parametrizing the so-

lutions of the first order optimality equation. Moreover this parametrization holds

for all (λ ,w) in a ball of radius proportional to t2N−1. It remains to prove that

ma,tz is indeed the unique solution of Pλ (yt). To prove that ma,tz is a solution, it is

equivalent to check that

0 ∈ ∂

(

m 7→ 1

2
‖Φm− y0,t −w‖2

H
+λ |m|(X)

)

(ma,tz),

where y0,t = Φma0,tz0
and which reformulates into ηλ ,t

def.
= 1

λ Φ∗(y0,t +w−Φma,tz)∈
∂ |ma,tz|(X). This is done by first showing the convergence of ηλ ,t towards ηW

when (t,λ ,w)→ 0 in a well chosen domain, see Proposition 22, and then using

Theorem 3 and the fact that ηW is ensured to be (2N− 1)-non-degenerate (which

is one of the hypotheses of Theorem 5) to get the non-degeneracy of ηλ ,t and the

conclusion.

3.3.2 Putting all together

After this sketch, we now give the detailed proof. It uses Proposition 20

(parametrization of the solution of the first order optimality equation on a ball,

for the parameter (λ ,w), of radius proportional to t2N−1), Proposition 22 (conver-

gence of ηλ ,t towards ηW ), Theorem 3 (use of the (2N−1)-non-degeneracy of ηW

to transfer it to ηλ ,t), and Proposition 21 (upper bound on the error of ma,tz with

respect to ma0,tz0
).

Proof of Theorem 5. Let us first introduce a few notations. One denotes

∆0
def.
= ∆(z0), (3.3.2)

where ∆(z0) is introduced in (1.1.1). One denotes by B(x̄,r) (resp. B(x̄,r)) the

closed (resp. open) ℓ∞ ball in XN with center x̄ and radius r. One defines neighbor-

hoods of respectively z0 and a0 as

Bz0

def.
= B

(

z0,
∆0

4

)

and Ba0

def.
= B

(

a0,
mini(a0,i)

4

)

. (3.3.3)

When X = T, depending on the context, we may consider any x̄ as its unique repre-

sentative in (− 1
2
, 1

2
)N of its class in TN or as an element of TN (i.e. the entire equiv-

alence class). Moreover we make the assumption that for any z0 ∈ TN , one has in

fact z0 ∈ (−1
4
, 1

4
)N (i.e. its unique representative in (− 1

2
, 1

2
)N is in z0 ∈ (− 1

4
, 1

4
)N).
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Let us take t,λ ,w as in the hypotheses of the Theorem 5. Let (a,z) = g∗t (λ ,w),
where g∗t is the function constructed in Section 3.5. Let us define

pλ ,t
def.
=

1

λ
(Φtz0

a0 +w−Φtza) and ηλ ,t
def.
= Φ

∗pλ ,t .

By Proposition 22 combined with Theorem 3 where we take

RW
def.
= sup{|z|∞ ;z ∈Bz0

}, (3.3.4)

we have for 0 < t < min(tW , t1),

∀x ∈ X \
⋃

i

{tzi}, |ηλ ,t(x)|< 1 and ∀1 6 i 6 N, η ′′λ ,t(tzi) < 0, (3.3.5)

while ηλ ,t(tzi) = 1 = sign(ai) by definition.

We deduce that ηλ ,t is in the subdifferential of the total variation at ma,tz be-

cause

• ηλ ,t ∈ C0,

•
∥
∥ηλ ,t

∥
∥

∞,X
6 1 thanks to Equation 3.3.5,

• ∀1 6 i 6 N, ηλ ,t(tzi) = 1 = sign(ai) by definition of ηλ ,t (recall that (a,z) =
g∗t (λ ,w)).

As a result ma,tz is a solution to Pλ (yt) and pλ ,t is the unique solution to the

dual problem associated to Pλ (yt) (see Section 2.4 of [54] for details on dual

certificates and optimality conditions for Pλ (yt)).
Let m be another solution of Pλ (yt). Then the support of m is included in the

saturation points of ηλ ,t = Φ∗pλ ,t i.e. in {tz1, . . . , tzN}. As a result m = ma′,tz for

some a′ ∈RN and m satisfies the first order optimality equation

Γ
∗
tz (Φtza

′−Φtz0
a0−w)+λ

(
1N

0

)

= 0.

Hence Φ∗
tzΦtza

′ = Φ∗
tzΦtza and since Φtz has full rank (by assumption t is chosen

sufficiently small, see Lemma 7 for the proof), Φ∗
tzΦtz is invertible and a′ = a. So

m = ma,tz and Pλ (yt) admits a unique solution: ma,tz.

The bound on the error between (a,z) and the amplitudes and positions of the

initial measure (a0,z0) is a direct consequence of Proposition 21.
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3.4 Preliminaries

The proof of Theorem 5 relies to a large extent on the asymptotic behavior of

quantities built upon Φtz and Γtz for t > 0 small, such as (Φ∗
tzΦtz)−1 or (Γ∗tzΓtz)−1.

In this section, we gather several preliminary results that enable us to control that

behavior.

Approximate Factorizations. Our asymptotic estimates are based on an approx-

imate factorization of Φx̄ and Γx̄ using Vandermonde and Hermite matrices. It en-

ables us to study the asymptotic behavior of the optimality conditions of Pλ (yt)
when t → 0+. For z ∈RN , we let

Hz
def.
=









1 . . . 1 0 . . . 0

z1 . . . zN 1 . . . 1
...

...
...

...
(z1)2N−1

(2N−1)!
. . .

(zN)2N−1

(2N−1)!
(z1)2N−2

(2N−2)!
. . .

(zN)2N−2

(2N−2)!









∈R
2N×2N , (3.4.1)

so that H∗,−1
z is the matrix of the Hermite interpolation at points z1, . . .zN when

R2N−1[X ] is equipped with the basis
(

1,X , . . . , X2N−1

(2N−1)!

)

.

In the following, we consider z ∈Bz0
(see (3.3.3)) and t ∈ (0,1], so that Htz is

always invertible. Moreover, we shall always assume that at least ϕ ∈ KER(2N).

Proposition 18. The following expansion holds

Γtz = Ψ2N−1Htz +Λt,zDt , (3.4.2)

where Ψ2N−1 is defined in (1.4.2), Htz is defined in (3.4.1), and where

Λt,z
def.
=

((∫ 1

0
(zi)

2Nϕ (2N)(stzi)
(1− s)2N−1

(2N−1)!
ds
)

16i6N
,

(∫ 1

0
(zi)

2N−1ϕ (2N)(stzi)
(1− s)2N−2

(2N−2)!
ds
)

16i6N

)

Dt
def.
= diag(t2N , . . . , t2N , t2N−1, . . . , t2N−1).

Proof. This expansion is nothing but the Taylor expansions for ϕ and ϕ ′:

ϕ(tzi) = ϕ0 +(tzi)ϕ1 + . . .+
(tzi)2N−1

(2N−1)!
ϕ2N−1

+(tzi)
2N

∫ 1

0
ϕ (2N)(stzi)

(1− s)2N−1

(2N−1)!
ds, (3.4.3)

ϕ ′(tzi) = ϕ1 +(tzi)ϕ2 + . . .+
(tzi)2N−2

(2N−2)!
ϕ2N−1

+(tzi)
2N−1

∫ 1

0
ϕ (2N)(stzi)

(1− s)2N−2

(2N−2)!
ds. (3.4.4)
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The above expansion yields a useful factorization for Γtz,

Γtz = ΨtzHtz where Ψtz
def.
= Ψ2N−1 +Λt,zDtH

−1
tz .

The rest of this section is devoted to the consequence of that factorization for the

asymptotic behavior of Γtz and its related quantities. The main ingredient of this

analysis is the factorization of Htz as

Htz = diag(1, t, . . . , t2N−1)Hz diag

(

1, . . . ,1,
1

t
, . . . ,

1

t

)

. (3.4.5)

Let us emphasize that our Taylor expansions are uniform in z ∈ Bz0
. More

precisely, given two quantities f (z, t), g(z, t), we say that f (z, t) = g(z, t)+O
(
tk
)

if

limsup
t→0+

sup
z∈Bz0

∣
∣
∣
∣

f (z, t)−g(z, t)

tk

∣
∣
∣
∣
<+∞.

Lemma 7. The following expansion holds for t → 0+,

Ψtz = Ψ2N−1 +O(t) . (3.4.6)

Moreover, if I2N−1 holds then Ψtz and Γtz have full column rank for t > 0 small

enough and

(Ψ∗tzΨtz)
−1 = (Ψ∗2N−1Ψ2N−1)

−1 +O(t) (3.4.7)

Γ
+,∗
tz

(
1N

0

)

= Ψ
+,∗
2N−1δ2N +O(t) . (3.4.8)

Proof. We begin by noticing that

Λt,zDtH
−1
tz = t2N

Λt,zH
−1
z diag(1,1/t, . . . ,1/t2N−1)

= Λt,zH
−1
z diag(t2N , t2N−1, . . . , t).

The function z 7→ H−1
z is C ∞ and uniformly bounded on Bz0

, and (z, t) 7→ Λt,z is

C 0 on the compact set Bz0
× [0,1] hence uniformly bounded too. As a result, we

get (3.4.6).

Assume now that I2N−1 holds. Since Ψ∗2N−1Ψ2N−1 is invertible, there is some

R> 0 such that for every A in the closed ball B
(
Ψ∗2N−1Ψ2N−1,R

)
⊂R(2N−1)×(2N−1),

A is invertible. By the mean value inequality

∥
∥(Ψ∗2N−1Ψ2N−1)

−1−A−1
∥
∥6 sup

B∈B(Ψ∗2N−1Ψ2N−1,R)

∥
∥B−1(A−Ψ

∗
2N−1Ψ2N−1)B

−1
∥
∥

6



 sup
B∈B(Ψ∗2N−1Ψ2N−1,R)

∥
∥B−1

∥
∥





2

∥
∥A−Ψ

∗
2N−1Ψ2N−1

∥
∥ .
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Applying that to A= Ψ∗tzΨtz = Ψ∗2N−1Ψ2N−1+O(t) (since each term in the product

is uniformly bounded), we get (3.4.7).

Now, for the last point, we infer from Γtz = ΨtzHtz and the fact that Htz is

invertible that Γ
+,∗
tz = Ψ

+,∗
tz H

−1,∗
tz . Hence

Γ
+,∗
tz

(
1N

0

)

= Ψ
+,∗
tz δ2N = Ψtz(Ψ

∗
tzΨtz)

−1δ2N

where δ2N is defined in (1.4.4).

Each factor below being uniformly bounded in Bz0
× [0,1], we get

Γ
+,∗
tz

(
1N

0

)

= (Ψ2N−1 +O(t))
(
(Ψ∗2N−1Ψ2N−1)

−1 +O(t)
)

δ2N

= Ψ2N−1(Ψ
∗
2N−1Ψ2N−1)

−1δ2N +O(t) .

Projectors. In this paragraph, we shall always suppose that I2N−1 holds. An-

other important quantity in our study is the orthogonal projector P(ImΓtz)⊥ (resp.

P(ImΨ2N−1)⊥) onto (ImΓtz)⊥ (resp. (ImΨ2N−1)⊥). We define

Πtz
def.
= P(ImΓtz)⊥ = IdH −Γtz(Γ

∗
tzΓtz)

−1
Γ
∗
tz,

Π2N−1
def.
= P(ImΨ2N−1)⊥ = IdH −Ψ2N−1(Ψ

∗
2N−1Ψ2N−1)

−1
Ψ
∗
2N−1.

Observing that P(ImΓtz)⊥ = P(ImΨtz)⊥ , we immediately obtain from the previous

Lemma that Πtz = Π2N−1 +O(t).
By construction, ΠtzΦtz = ΠtzΦ

′
tz = 0, but the following proposition shows

that this quantity is also small if we replace Φtz with Φ′′
tz.

Lemma 8. There exists a constant L1 > 0 (which only depends on ϕ , a0 and z0)

such that
∥
∥ΠtzΦ

′′
tz

∥
∥

H
6 L1t2N−2

uniformly in z ∈Bz0
.

Proof. Applying a Taylor expansion to ϕ (2), we write

Φ
′′
tz = Ψ2N−1Ṽtz + t2N−2

Λ̃t,z

where

Ṽtz =











0 . . . 0

0 . . . 0

1 . . . 1
...

...
(tz1)2N−3

(2N−3)!
. . .

(tzN)2N−3

(2N−3)!











,

Λ̃t,z =
(

(zi)2N−2
∫ 1

0 ϕ (2N)(stzi)
(1−s)2N−3

(2N−3)!
ds

)

16i6N
.

(3.4.9)
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Hence

ΠtzΦ
′′
tz = Πtz(ΨtzṼtz +(ΨN−1−Ψtz)Ṽtz + t2N−2

Λ̃t,z)

= Πtz(−Λt,zDtH
−1
tz Ṽtz + t2N−2

Λ̃t,z) since ΠtzΨtz = 0.

Using (3.4.5), we see that

DtH
−1
tz Ṽtz = H−1

z diag(t2N , t2N−1, . . . , t)Ṽtz

= t2N−2H−1
z Ṽz, hence

ΠtzΦ
′′
tz = t2N−2

Πtz(−Λt,zH
−1
z Ṽz + Λ̃t,z).

Since ‖Πtz‖ 6 1 and the continuous function (z, t) 7→ −Λt,zH
−1
z Ṽz + Λ̃t,z is uni-

formly bounded on the compact set Bz0
× [0,1], we obtain

∥
∥ΠtzΦ

′′
tz

∥
∥

H
6



 sup
(z′,t ′)∈Bz0

×[0,1]

∥
∥Λt ′,z′H

−1
z′ Ṽz′ + Λ̃t ′,z′

∥
∥

H



 t2N−2

We study further the projector Πtz when it is not evaluated at the same z as Γtz.

Lemma 9. If ϕ ∈KER(2N+1), then there is a constant L2 > 0 (which only depends

on ϕ , a0 and z0) such that for all z ∈Bz0
, all t ∈ (0,1],

∥
∥
∥
∥

ΠtzΓtz0

(
a0

0

)∥
∥
∥
∥

H

6 L2t2N |z− z0|∞ .

Proof. Let us observe that

ΠtzΓtz0
= Πtz(Ψ2N−1Htz0

+Λt,z0
Dt)

= Πtz(ΨtzHtz0
+(Ψ2N−1−Ψtz)Htz0

+Λt,z0
Dt)

= Πtz(−Λt,zDtH
−1
tz Htz0

+Λt,z0
Dt) since ΠtzΨtz = 0.

Observing that

DtH
−1
tz Htz0

= t2NH−1
z Hz0

diag (1, . . . ,1,1/t, . . . ,1/t) = H−1
z Hz0

Dt ,

we get

ΠtzΓtz0
= Πtz

(
Λt,z0

(Id2N−H−1
z Hz0

)+ (Λt,z0
−Λt,z)H

−1
z Hz0

)
Dt .

For k ∈ {2N− 1,2N}, the function (u,s, t) 7→ ukϕ (2N)(stu) is defined and C 1

on the compact sets (since ϕ ∈ KER(2N+1))

∀1 6 i 6 N,

[

z0i−
∆0

4
,z0i +

∆0

4

]

× [0,1]× [0,1],
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where ∆0 is defined in (3.3.2). Thus there is a constant C > 0 (which does not

depend on t nor z ∈Bz0
) such that

∣
∣
∣
∣

∫ 1

0

(

(zi)
kϕ (2N)(stzi)− (z0i)

kϕ (2N)(stz0i)
) (1− s)k−1

(k−1)!
ds

∣
∣
∣
∣
6C |zi− z0i| ,

hence ‖Λt,z0
−Λt,z‖6C |z− z0|∞ .

As a result, since ‖Πtz‖6 1 and z 7→ H−1
z Hz0

is bounded on Bz0
,

∥
∥Πtz(Λtz0

−Λt,z)H
−1
z Hz0

∥
∥

H
6C sup

z′∈Bz0

∥
∥H−1

z′ Hz0

∥
∥ |z− z0|∞ .

As for the left term, Λtz0
is bounded uniformly in t ∈ [0,1], and the mapping z 7→

H−1
z Hz0

is C 1 on Bz0
. As a result, there is a constant C̃ > 0 such that

∀z ∈Bz0
,
∥
∥IdN−H−1

z Hz0

∥
∥6 C̃ |z− z0|∞ .

To conclude, we observe that Dt

(
a0

0

)

= t2N

(
a0

0

)

, and we combine the above

inequalities to obtain

∥
∥
∥
∥

ΠtzΓtz0

(
a0

0

)∥
∥
∥
∥

H

6



C sup
z′∈Bz0

∥
∥H−1

z′ Hz0

∥
∥+ C̃ sup

t∈[0,1]

‖Λtz0
‖



 t2N |z− z0|∞ .

Asymptotics of the vanishing derivatives precertificate. We end this section

devoted to the asymptotic behavior of quantities related to Γtz by studying the sec-

ond derivative of the vanishing derivatives precertificate ηV ,t (see Definition 5, and

[54] for more details). Theorem 3 ensures that the second derivatives of ηV ,t do

not vanish at z0,i, 1 6 i 6 N. However, it does not provide any estimation of those

second derivatives. That is the purpose of the next proposition.

In view of Section 3.5, it will be useful to study those second derivatives not

only for the precertificates that are defined by interpolating the sign at tz0 but more

generally for the precertificates that are defined to interpolate the sign at tz for any

z ∈Bz0
.

Proposition 19. Assume that ϕ ∈ KER(2N+1) and that I2N−1 holds. Then

Φ
′′
tz
∗
Γ
+,∗
tz

(
1N

0

)

= t2N−2η
(2N)
W (0)dz +O

(
t2N−1

)
, (3.4.10)

where dz ∈R
N , dz,i

def.
=

2

(2N)! ∏
j 6=i

(zi− z j)
2 for 1 6 i 6 N. (3.4.11)
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Proof. We proceed as in the proof of Lemma 8 by writing Φ′′
tz = Ψ2N−1Ṽtz +

t2N−2Λ̃t,z (see (3.4.9)) and Ψtz = ΓtzH
−1
tz . We obtain

Φ
′′
tz = ΨtzṼtz + t2N−2

Λ̃t,z− t2N−2
Λt,zH

−1
z Ṽz.

The first term yields

Ṽtz
∗
Ψ
∗
tzΓ

+,∗
tz

(
1N

0

)

= Ṽtz
∗
Ψ
∗
tzΨtz(Ψ

∗
tzΨtz)

−1H−1,∗
tz

(
1N

0

)

= Ṽtz
∗δ2N = 0. (3.4.12)

As for the second term, we take the Taylor expansion a little further (using integra-

tion by parts),

∫ 1

0
ϕ (2N)(stzi)

(1− s)2N−3

(2N−3)!
ds =

ϕ2N

(2N−2)!
+

tzi

∫ 1

0
ϕ (2N+1)(stzi)

(1− s)2N−2

(2N−2)!
ds,

so as to obtain

Λ̃t,z = (ϕ2N , . . . ,ϕ2N)diag(ez)+O(t) , where ez
def.
=

(
(zi)2N−2

(2N−2)!

)

16i6N

∈R
N

and, as usual, O(t) is uniform in z ∈ Bz0
. From Lemma 7, we also know that

Γ
+,∗
tz

(
1N

0

)

= pW +O(t), hence

Λ̃
∗
t,zΓ

+,∗
tz

(
1N

0

)

= diag(ez)






〈ϕ2N , pW 〉H
...

〈ϕ2N , pW 〉H




+O(t) = η

(2N)
W (0)ez +O(t) .

(3.4.13)

Now, we proceed with the last term. Similarly, by integration by parts,

Λt,z =
(
ϕ2N . . . ϕ2N

)
diag( fz)+O(t).

where fz is defined by

fz
def.
=

(
(z1)2N

(2N)!
, . . . ,

(zN)2N

(2N)!
,
(z1)2N−1

(2N−1)!
, . . . ,

(zN)2N−1

(2N−1)!

)

∈R
2N . (3.4.14)

Hence,

Λ
∗
t,zΓ

+,∗
tz

(
1N

0

)

= diag( fz)






〈ϕ2N , pW 〉H
...

〈ϕ2N , pW 〉H




+O(t) = η

(2N)
W (0) fz +O(t).
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To conclude, we study Ṽz
∗H−1,∗

z (which is uniformly bounded on Bz0
). In

R2N−1[X ] endowed with the basis
(

1,X , . . . , X2N−1

(2N−1)!

)

, H∗
z is the matrix of the linear

map which evaluates a polynomial and its derivatives at {z1, . . . ,zN}. On the other

hand Ṽz
∗ represents the evaluation of the second derivative at {z1, . . . ,zN}. Thus,

Ṽz
∗H−1,∗

z fz = (P′′(zi))16i6N ,

where P is the unique polynomial in R2N−1[X ] which satisfies

∀ i = 1, . . . ,N, P(zi) =
(zi)2N

(2N)!
and P′(zi) =

(zi)2N−1

(2N−1)!
.

One may check that

P(X) =
X2N

(2N)!
− 1

(2N)!

N

∏
i=1

(X− zi)
2

and P′′(zi) =
z2N−2

i

(2N−2)!
− 2

(2N)! ∏
j 6=i

(zi− z j)
2.

As a result,

−Ṽz
∗H−1,∗

z Λ
∗
t,zΓ

+,∗
tz

(
1N

0

)

= η
(2N)
W (0)(dz− ez)+O(t) , (3.4.15)

where O(t) is uniform in z ∈ Bz0
. We obtain the claimed result by summing

(3.4.12), (3.4.13) and (3.4.15).
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3.5 Building a Candidate Solution

Now that the technical issues regarding the asymptotic behavior of Γtz have

been settled, we are ready to tackle the study of the BLASSO. In this section, we

build a candidate solution for Pλ (yt) by relying on its optimality conditions.

3.5.1 First Order Optimality Conditions

The optimality conditions for Pλ (yt) (see [54]) state that any measure of the

form ma,tz = ∑
N
i=1 aiδtzi

is a solution to Pλ (yt) if and only if the function defined

by ηλ ,t
def.
= Φ∗pλ ,t with pλ ,t

def.
= 1

λ (Φtz0
a0 +w−Φtza) satisfies

∥
∥ηλ ,t

∥
∥

∞,X
6 1 and

ηλ ,t(tzi) = sign(ai) for all 1 6 i 6 N.

Observe that we must have η ′λ ,t
(tzi) = 0 for all 1 6 i 6 N. Moreover, in our

case, since we assume that a0,i > 0 we have in fact ηλ ,t(tzi) = 1.

In order to build such a function ηλ ,t , let us consider the function ft defined for

some fixed t > 0 on
(
RN
)2×R×H by

ft(u,v)
def.
= Γ

∗
tz (Φtza−Φtz0

a0−w)+λ

(
1N

0

)

(3.5.1)

where u = (a,z) and v = (λ ,w). (3.5.2)

Now, let us write u0
def.
= (a0,z0). Notice that ma,tz is a solution to Pλ (yt) if and only

if ft(u,v) = 0 and
∥
∥ηλ ,t

∥
∥

∞,X
6 1. Our strategy is therefore to construct solutions of

ft(u,v) = 0 and to prove that
∥
∥ηλ ,t

∥
∥

∞,X
6 1 provided (λ ,w) and ηW satisfy certain

properties. More precisely we start by parametrizing the solutions of ft(u,v) = 0,

in a neighborhood of (u0,0), using the Implicit Function Theorem.

The following Lemma 10 (whose proof is omitted and corresponds to simple

computations) shows that ft is smooth and gives its derivatives.

Lemma 10. If ϕ ∈ KER(k+1) for some k ∈N∗ then ft is of class C k and for all

(u,v) ∈
(
RN
)2× (R×H )

∂u ft(u,v) = Γ
∗
tzΓtzJta + t

(
0 diag(Φ′∗

tz(Φtza−Φtz0
a0−w))

0 diag(Φ′′∗
tz (Φtza−Φtz0

a0−w))

)

∂v ft(u,v) =

((
1N

0

)

,−Γ
∗
tz

)

where Jta
def.
=

(
IdN 0

0 t diag(a)

)

.

3.5.2 Implicit Function Theorem

Suppose that I2N−1 holds and ϕ ∈ KER(2N+1). By the results of Section 3.4,

there exists 0 < t0 < 1 such that for 0 < t < t0 and all z ∈Bz0
, Γ∗tzΓtz is invertible.
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In the following we shall consider a fixed value of such t0 provided by Lemma 11

below which also ensures additional properties.

Now, let t ∈ (0, t0) be fixed. By Lemma 10, ft is C 2N , ∂u ft(u0,0) = Γ∗tz0
Γtz0

Jta0

is invertible and ft(u0,0) = 0. Hence by the Implicit Function Theorem, there

exists Vt a neighborhood of 0 in R×H , Ut a neighborhood of u0 in
(
RN
)2

and

gt : Vt →Ut a C 2N function such that

∀(u,v) ∈Ut ×Vt , ft(u,v) = 0 ⇐⇒ u = gt(v).

Moreover, denoting dgt the differential of gt , we have

∀v ∈Vt , dgt(v) = − (∂u ft(gt(v),v))
−1

∂v ft(gt(v),v).

3.5.3 Extension of the Implicit Function gt

Our goal is to prove that ma,tz is the solution of the BLASSO, where (a,z) =
u = gt(v). To this end, we shall exhibit additional constraints on v ∈ Vt , such

as the scaling of the noise ‖w‖
H

or λ with respect to t, in order to ensure that
∥
∥ηλ ,t

∥
∥

∞,X
6 1. However, the size of the neighborhood Vt provided by the Im-

plicit Function Theorem is a priori unknown, and it might implicitly impose even

stronger conditions on λ and w as t → 0+.

Hence, before studying whether
∥
∥ηλ ,t

∥
∥

∞,X
6 1, we show in this section that

we may replace Vt with some ball with radius of order t2N−1 and still have a

parametrization of the form u = gt(v) satisfying ft(gt(v),v) = 0 where ft is de-

fined in (3.5.1).

Let V ∗t =
⋃

V∈V V , where V is the collection of all open sets V ⊂R×H such

that

• 0 ∈V ,

• V is star-shaped with respect to 0,

• V ⊂B
(
0,CT t2N−2

)
, where CT > 0 is a constant defined by Lemma 11 below,

• there exists a C 2N function g : V → (RN)2 such that g(0) = u0 and ft(g(v),v) =
0 for all v ∈V ,

• g(V ) ⊂Ba0
×Bz0

.

Observe that V is nonempty (by the Implicit Function Theorem in Section 3.5.2)

and stable by union, so that V ∗t ∈ V . Indeed, all the properties defining V are easy

to check except possibly the last two. Let V ,Ṽ ∈ V and g, g̃ be corresponding func-

tions. The set
{

v ∈V ∩Ṽ ; g(v) = g̃(v)
}

is nonempty (because g(0) = u0 = g̃(0))
and closed in V ∩Ṽ . Moreover, it is open since for any v∈V ∩Ṽ , v∈B

(
0,CT t2N−2

)

and, by Lemma 11 below, the Implicit Function Theorem applies at (g(v),v), yield-

ing an open neighborhood in which g and g̃ coincide. By connectedness of V ∩ Ṽ ,
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g and g̃ coincide in the whole set V ∩Ṽ . As a result, the function g∗t : V ∗t → (RN)2,

defined by

g∗t (v)
def.
= g(v) if v ∈V , V ∈ V , and g is a corresponding function, (3.5.3)

is well defined. Moreover, g∗t is C 2N and g∗t (V
∗

t ) ⊂Ba0
×Bz0

.

Before proving that V ∗t contains a ball of radius of order t2N−1 and studying the

variations of g∗t , we state Lemma 11 mentioned above.

Lemma 11. If I2N−1 holds and ϕ ∈ KER(2N+1) then there exists t0 ∈ (0,1) and

CT > 0 (which only depend on ϕ and u0) such that for all t ∈ (0, t0), if

u = (a,z) ∈Ba0
×Bz0

and v = (λ ,w) ∈ B
(
0,CT t2N−2

)
, (3.5.4)

then the matrix

Gtz(λ ,w)
def.
= Ψ

∗
tzΨtz + tH∗,−1

tz FtzJ
−1
ta H−1

tz , (3.5.5)

where Ftz
def.
=

(
0 0

0 −diag (Φ′′∗
tz qtz)

)

, (3.5.6)

and qtz
def.
= λ Γ

∗,+
tz

(
1N

0

)

+Πtzw+ΠtzΓtz0

(
a0

0

)

, (3.5.7)

is invertible and the norm of its inverse is less than 3
∥
∥(Ψ∗2N−1Ψ2N−1)−1

∥
∥.

If, moreover, ft(u,v) = 0, then

∂u ft(u,v) = H∗
tzGtz(λ ,w)HtzJta

and this is an invertible matrix.

Let us precise that by (λ ,w) ∈B
(
0,CT t2N−2

)
, we mean that |λ |<CT t2N−2 and

‖w‖
H

<CT t2N−2.

Proof. We consider t0 ∈ (0,1) small enough so that for 0 < t < t0 and all z ∈Bz0
,

Γ∗tzΓtz is invertible and

∥
∥(Ψ∗tzΨtz)

−1
∥
∥6 2

∥
∥(Ψ∗2N−1Ψ2N−1)

−1
∥
∥ by Lemma 7, (3.5.8)

∣
∣
∣
∣
λ Φ

′′∗
tz Γ

∗,+
tz

(
1N

0

)∣
∣
∣
∣
∞

6
4(2RW )2N

(2N)!

∣
∣
∣λη

(2N)
W (0)

∣
∣
∣ t

2N−2 by Proposition 19. (3.5.9)

In the last equation, we have used the fact that
∣
∣∏ j 6=i(zi− z j)2

∣
∣6 (2RW )2N (where

RW = sup{|z|∞ ;z ∈Bz0
} is defined in Equation (3.3.4)).

We also know that for some constants L1,L2 > 0 which only depend on ϕ and

u0,

∣
∣Φ

′′∗
tz Πtzw

∣
∣
∞
6 ‖w‖

H
L1t2N−2 by Lemma 8,

and

∣
∣
∣
∣
Φ
′′∗
tz ΠtzΓtz0

(
a0

0

)∣
∣
∣
∣
∞

6 L1L2
∆0

4
t4N−2 by Lemma 8 and Lemma 9,
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for all z ∈Bz0
= B

(

z0, ∆0

4

)

, t ∈ (0, t0), where ∆0 is defined in (3.3.2).

Combining those inequalities with (3.5.9), we see that

∣
∣Φ

′′∗
tz qtz

∣
∣
∞
=

∣
∣
∣
∣
λ Φ

′′∗
tz Γ

∗,+
tz

(
1N

0

)

+Φ
′′∗
tz Πtzw+Φ

′′∗
tz ΠtzΓtz0

(
a0

0

)∣
∣
∣
∣
∞

6 |λ | 4

(2N)!

∣
∣
∣η

(2N)
W (0)

∣
∣
∣ t

2N−2 + ‖w‖
H

L1t2N−2 +L1L2
∆0

4
t4N−2

On the other hand, since

H∗,−1
tz = diag

(
1, . . . ,1/t2N−1

)
H∗,−1

z diag (1, . . . ,1, t, . . . , t) ,

and Ftz =

(
0 0

0 −diag (Φ′′∗
tz qtz)

)

,

we get

H∗,−1
tz FtzJ

−1
ta H−1

tz = t diag
(

1,..., 1

t2N−1

)
H∗,−1

z Ftz

J−1
a H−1

z diag
(

1,..., 1

t2N−1

)

so that

∥
∥tH∗,−1

tz FtzJ
−1
ta H−1

tz

∥
∥6

∣
∣a−1

∣
∣
∞

t4N−4

∥
∥H∗,−1

z

∥
∥
∥
∥H−1

z

∥
∥
∣
∣Φ

′′∗
tz qtz

∣
∣
∞

6C

( |λ |
t2N−2

4(2R)2N

(2N)!

∣
∣
∣η

(2N)
W (0)

∣
∣
∣

+
‖w‖

H

t2N−2
L1 +L2L1

∆0

4
t2

)

with C = sup(a,z)∈Ba0
×Bz0

∥
∥H∗,−1

z

∥
∥
∥
∥H−1

z

∥
∥
∣
∣a−1

∣
∣
∞

.

Possibly choosing t0 a bit smaller, we may assume that

0 6CL2L1
∆0

4
t2
0 <

1

8
∥
∥(Ψ∗2N−1Ψ2N−1)−1

∥
∥

.

As a consequence, there exists CT > 0 such that for all t ∈ (0, t0), and all (a,z) ∈
Ba0

×Bz0
,

(

max

( |λ |
t2N−2

,
‖w‖

H

t2N−2

)

6CT

)

=⇒
∥
∥tH∗,−1

tz FtzJ
−1
ta H−1

tz

∥
∥6

1

4
∥
∥(Ψ∗2N−1Ψ2N−1)−1

∥
∥

.

Then, recalling (3.5.8) and setting

r
def.
=
∥
∥
∥t (Ψ∗tzΨtz)

−1
H∗,−1

tz FtzJ
−1
ta H−1

tz

∥
∥
∥

6 2
∥
∥(Ψ∗2N−1Ψ2N−1)

−1
∥
∥

1

4
∥
∥(Ψ∗2N−1Ψ2N−1)−1

∥
∥
=

1

2
,
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we see that the matrix (3.5.5) is invertible, and

∥
∥
∥
∥

(

Id2N + t (Ψ∗tzΨtz)
−1

H∗,−1
tz FtzJ

−1
ta H−1

tz

)−1
∥
∥
∥
∥
6

+∞

∑
k=0

rk =
1

1− r
6

3

2
.

Eventually, using (3.5.8) again, we obtain that the norm of the inverse of (3.5.5)

is less than 3
∥
∥(Ψ∗2N−1Ψ2N−1)−1

∥
∥.

Now, if ft(u,v) = 0, then Φ′∗
tz(Φtza−Φtz0

a0−w) = 0, so that thanks to Lemma 10

we obtain

∂u ft(u,v) = Γ
∗
tzΓtzJta + t

(
0 0

0 diag(Φ′′∗
tz (Φtza−Φtz0

a0−w))

)

.

Moreover,

Φtza−Φtz0
a0−w = Γtz

(
a

0

)

−Γtz0

(
a0

0

)

−w

= Γ
∗,+
tz Γ

∗
tzΓtz0

(
a0

0

)

+Γ
∗,+
tz Γ

∗
tzw−λ Γ

∗,+
tz

(
1N

0

)

−Γtz0

(
a0

0

)

−w

= −ΠtzΓtz0

(
a0

0

)

−Πtzw−λ Γ
∗,+
tz

(
1N

0

)

= −qtz.

As a result,

∂u ft(u,v) = H∗
tzΨ

∗
tzΨtzHtzJta + t

(
0 0
0 −diag(Φ′′∗

tz qtz)

)

= H∗
tzGtz(λ ,w)HtzJta,

and ∂u ft(u,v) is invertible.

We may now study the variations of g∗t .

Corollary 2. If I2N−1 holds and ϕ ∈ KER(2N+1) then there exists M > 0 (which

only depends on ϕ and u0), such that for 0 < t < t0, for all v ∈V ∗t

‖dg∗t (v)‖6
M

t2N−1
.

Proof. Let us recall that by construction, V ∗t ⊂B
(
0,CT t2N−2

)
. Thus, from Lemma 11,

we know that for all v ∈ V ∗t , ∂u ft(gt(v),v) = H∗
tzGtz(λ ,w)HtzJta, where (a,z) =

g∗t (v). Since dg∗t (v) = − (∂u ft(g∗t (v),v))
−1

∂v ft(g∗t (v),v), we get

dg∗t (v) = −J−1
ta H−1

tz Gtz(λ ,w)−1H∗,−1
tz

((
1N

0

)

,−H∗
tzΨ

∗
tz

)

= J−1
a H−1

z diag
(

1,..., 1

t2N−1

)
Gtz(λ ,w)−1 (δ2N ,Ψ∗tz) ,

Using Lemma 11 and the fact that J−1
a ,H−1

z ,Ψtz are uniformly bounded on Ba0
×

Bz0
, we obtain the claimed upper bound of ‖dg∗t (v)‖ for all v ∈V ∗t .
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We are now in position to prove that V ∗t contains a ball of radius of order t2N−1.

Proposition 20. If I2N−1 holds and ϕ ∈KER(2N+1), there exists CR > 0 such that

for all t ∈ (0, t0),

B
(
0,CRt2N−1

)
⊂V ∗t with CR > min

(
∆0

4M
,
mini(a0,i)

4M
,
CT

t0

)

.

Proof. Let v ∈R×H with unit norm (i.e. max(λ ,‖w‖
H
) = 1), and define

Rv
def.
= sup{r > 0 ; rv ∈V ∗t } .

Clearly 0 < Rv 6CT t2N−2. Assume that Rv <CT t2N−2. Then by Corollary 2, g∗t is

uniformly continuous on V ∗t , so that the value of g∗t (Rvv) can be defined as a limit,

and ft(g∗t (Rvv),Rvv) = 0.

By contradiction, if g∗t (Rvv) ∈Ba0
×Bz0

, then by Lemma 11, we may apply

the Implicit Function Theorem to obtain a neighborhood of (g∗t (Rvv),Rv) in which

g∗t may be extended. This enables us to construct an open set V ∈ V (in particular

we may ensure that V is star-shaped with respect to 0) such that V ∗t ( V , which

contradicts the maximality of V ∗t .

Hence, g∗t (Rvv) ∈ ∂ (Ba0
×Bz0

) =
(
∂ (Ba0

)×Bz0

)
∪
(
Ba0

×∂ (Bz0
)
)
. As-

sume for instance that g∗t (Rvv) ∈ Ba0
× ∂ (Bz0

) (the other case being similar).

Then, for (a,z) = g∗t (Rvv),

∆0

4
= |z− z0|∞ 6

∫ 1

0
|dg∗t (sRvv) ·Rvv|∞ ds 6

M

t2N−1
Rv,

which yields Rv >
∆0

4M
t2N−1. Similarly, if g∗t (Rvv) ∈ ∂ (Ba0

)×Bz0
, we may prove

that Rv >
mini(a0,i)

4M
t2N−1.

Eventually, we have proved that for all v ∈R×H with unit norm,

Rv > min

(
∆0

4M
t2N−1,

mini(a0,i)

4M
t2N−1,CT t2N−2

)

,

and the claimed result follows.

3.5.4 Continuity of g∗t at 0

Before moving to Section 3.6 and to the proof of
∥
∥ηλ ,t

∥
∥

∞,X
6 1 (which ensures

that ma,tz is a solution to the BLASSO), we give a first order expansion of our

candidate solution u = g∗t (v) for all v ∈ B(0,CRt2N−1).

Proposition 21. If I2N−1 holds and ϕ ∈ KER(2N+1) then for all t ∈ (0, t0), v ∈
B(0,CRt2N−1),

‖g∗t (v)−g∗t (0)‖6 M

( |λ |
t2N−1

+
‖w‖

H

t2N−1

)

. (3.5.10)
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Proof. To show Equation (3.5.10), it suffices to write

g∗t (v) = g∗t (0)+
∫ 1

0
dg∗t (sv) · vds,

and use Corollary 2 to conclude.
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3.6 Convergence of ηλ ,t to ηW

In our scheme of proving Theorem 5 (recall that its proof using all the elements

detailed in Section 3.4, 3.5 and 3.6, can be found in Section 3.3.2), it remains to

show that ma,tz where (a,z) = g∗t (v) is indeed a solution to Pλ (yt). To demonstrate

this statement, we prove in this section with Proposition 22, that ηλ ,t converges

towards ηW when (t,λ ,w/λ )→ 0. This proposition is similar to the one already

proved in Section 1.2 (see Proposition 4) where one shows that ηλ ,t → ηV when

(λ ,w/λ )→ 0. It was crucial in the proof of the robustness to noise of the BLASSO

(see Theorem 1). The convergence proved in Proposition 22 plays a similar role

for Theorem 5 because it uses this convergence result, the assumption that ηW is

(2N−1)-non-degenerate and the transfer theorem (see Theorem 3) to conclude.

Proposition 22. Assume that ϕ ∈KER(2N+1) and that I2N−1 holds, and let CW > 0

be the constant defined in Theorem 3, g∗t , t0 > 0 and CR > 0 be the function and

constants defined in Section 3.5.

Then there exist constants t1 ∈ (0, t0) and C > 0 (which depend only on ϕ and

u0) such that for all t ∈ (0, t1) and for all (λ ,w) ∈ B
(
0,CRt2N−1

)
with

∥
∥w

λ

∥
∥

H
6C,

the following inequalities hold

∀ℓ ∈ {0, . . . ,2N},
∥
∥
∥η

(ℓ)
λ ,t
−η

(ℓ)
W

∥
∥
∥

∞,X
6CW ,

with ηλ ,t = Φ∗ ( 1
λ (Φtz0

a0 +w−Φtza)
)

and (a,z) = g∗t (λ ,w).

Proof. Let t ∈ (0, t0), v ∈ B
(
0,CRt2N−1

)
, and (a,z) = u = g∗t (v). Then, using

ft(u,v) = 0 (see (3.5.1)), we get

pλ ,t
def.
=

1

λ
(Φtz0

a0 +w−Φtza)

=
1

λ

(

Γtz0

(
a0

0

)

+w−Γtz

(
a

0

))

= Γ
∗,+
tz

(
1N

0

)

+Πtz

w

λ
+

1

λ
ΠtzΓtz0

(
a0

0

)

.

Hence,

∥
∥pλ ,t − pW

∥
∥

H
6

∥
∥
∥
∥

Γ
∗,+
tz

(
1N

0

)

− pW

∥
∥
∥
∥

H

+
∥
∥
∥Πtz

w

λ

∥
∥
∥

H

+

∥
∥
∥
∥

1

λ
ΠtzΓtz0

(
a0

0

)∥
∥
∥
∥

H

From Lemma 7, there exists CV > 0 and tV > 0 (which only depends on ϕ ,u0) such

that for all t ∈ (0, tV ) and all z ∈Bz0
,

∥
∥
∥
∥

Γ
∗,+
tz

(
1N

0

)

− pW

∥
∥
∥
∥

H

6CV t.

Moreover, since Πtz is an orthogonal projector,
∥
∥
∥Πtz

w

λ

∥
∥
∥

H

6

∥
∥
∥

w

λ

∥
∥
∥

H

,
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and by Lemma 9, there exists L2 > 0 (which only depends on ϕ ,u0) such that, for

all t ∈ (0, t0)

∥
∥
∥
∥

1

λ
ΠtzΓtz0

(
a0

0

)∥
∥
∥
∥

H

6
L2

|λ | t
2N |z− z0|∞

6
L2

|λ | t
2N M

t2N−1
(|λ |+ ‖w‖

H
) by Proposition 21

6 L2Mt
(

1+
∥
∥
∥

w

λ

∥
∥
∥

H

)

.

Gathering all these upper-bounds, one obtains

∥
∥pλ ,t − pW

∥
∥

H
6 (CV +L2M)t +(1+L2Mt)

∥
∥
∥

w

λ

∥
∥
∥

H

6 (CV +L2M)t +(1+L2M)
∥
∥
∥

w

λ

∥
∥
∥

H

Now, denoting by Φ(ℓ) : M (X)→H the operator m 7→ ∫

X ϕ (ℓ)(x)dm(x) and by

Φ(ℓ)∗ : H → C0 its adjoint (so that η
(ℓ)
λ ,t

= Φ(ℓ)∗pλ ,t and η
(ℓ)
W = Φ(ℓ)∗pW ), we let

K
def.
= max

06l62N
sup
x∈X

∥
∥
∥ϕ (ℓ)(x)

∥
∥
∥

H
,

which satisfies K <+∞ because ϕ ∈ KER(2N+1). Then, for all ℓ ∈ {0, . . . ,2N},
∥
∥
∥η

(ℓ)
λ ,t
−η

(ℓ)
W

∥
∥
∥

∞,X
6 K

∥
∥pλ ,t − pW

∥
∥

H

6 K
(

(CV +L2M)t +(1+L2M)
∥
∥
∥

w

λ

∥
∥
∥

H

)

.

As a consequence, by taking t smaller than min(t0, tV , CW

2K(CV+L2M)
) and for all

(λ ,w) ∈ B(0,CRt2N−1) such that

(1+L2M)
∥
∥
∥

w

λ

∥
∥
∥

H

6
CW

2K
,

we get ∥
∥
∥η

(ℓ)
λ ,t
−η

(ℓ)
W

∥
∥
∥

∞,X
6CW .

Remark 5. The constants involved in Proposition 22 are

t1
def.
= min(t0, tV ,

CW

2K(CV +L2M)
) and C

def.
=

CW

2K(1+L2M)
. (3.6.1)

They only depend on ϕ and u0.
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Necessary Recovery Condition

In this section, we prove Proposition 17 stated in Section 3.2. One recalls it

below.

Proposition 23. Suppose that I2N−1 holds and ϕ ∈KER(2N+1). Suppose also that

there exists a sequence (tn)n∈N such that tn → 0 and satisfying

∀n ∈N,∃(λn,wn),∃(an,zn) ∈R
N×R

N ,man,tnzn
is solution of Pλn

(ytn),

where ytn

def.
= Φma0,tnz0

+wn, (λn,wn)→ 0 with
‖wn‖H

λn
→ 0. Then

‖ηW‖∞,X 6 1. (3.6.2)

Proof of Proposition 17. For all n ∈N, the solution mn
def.
= man,tnzn

of Pλn
(ytn) sat-

isfies the following first order optimality conditions:

Γ
∗
tnzn

(Φtnzn
an−Φtnz0

a0−wn)+λn

(
1N

0

)

= 0. (3.6.3)

Since ηλn,tn = Φ∗( 1
λn
(Φtnz0

a0 +wn−Φtnzn
an)) satisfies

∥
∥ηλn,tn

∥
∥

∞,X
6 1, ηλn,tn ∈

ImΦ∗ and ηλn,tn(tzn) = sign(an) = 1.

As a result, by taking n large enough if necessary, we know that (an,zn) =
g∗t (λn,wn) with g∗t ∈ C 2N(V ∗t ) so that (an,zn)→ (a0,z0). Therefore all the asymp-

totic results that we established in Chapter 3 are true when applied for (an,zn) for

n large enough. Observe from (3.6.3), that we get for all n ∈N:

pλn,tn = Γ
∗,+
tnzn

(
1N

0

)

+Πtnzn

wn

λn

+
1

λn

Πtnzn
Γtz0

(
a0

0

)

.

As a consequence:

∥
∥pλn,tn − pW

∥
∥

H
→ 0 when n→+∞,

so that for all 0 6 l 6 2N,

∥
∥
∥η

(l)
λn,tn

−η
(l)
W

∥
∥
∥

∞,X
→ 0 when n→+∞. (3.6.4)

In particular, since
∥
∥ηλ ,t

∥
∥

∞,X
6 1, we deduce (3.6.2):

‖ηW‖∞,X 6 1.



90 CHAPTER 3. SEPARATION AND ROBUSTNESS OF BLASSO



Part II

Numerical Grid-Less BLASSO

Solving

91





Chapter 4

The Sliding Frank-Wolfe

BLASSO Solver

Grid-less approaches for super-resolution in presence of noise of sparse sig-

nals comes with strong theoretical guarantees (see Part I of the Thesis). This

suggests that algorithms that can cope with this grid-less setting may have

also nice practical recovery properties. In this Chapter we detail the Sliding

Frank-Wolfe algorithm (SFW algorithm), which is a new BLASSO solver.

It is an extension of the initial Frank-Wolfe solver of [24] (see also [22]).

This algorithm moves continuously the positions and amplitudes of the Dirac

masses after each creation of a new spike, taking advantage of the contin-

uous nature of the domain X . Our main theoretical contribution, notably

thanks to this particular update and under some mild assumptions, is that the

SFW algorithm converges after only a finite number of newly created spikes,

improving drastically the known weak-* convergence of Frank-Wolfe based

algorithms. We then compare the practical recovery performance of the Slid-

ing Frank-Wolfe algorithm on synthetic benchmarks with other algorithms

(FISTA and OMP). We show that the SFW algorithm has better performance

both for a Optimal Transport based metric and for detection indices based

metrics. Finally we study numerically, using our algorithm, some particu-

lar properties of the numerical inversion of the Laplace transform using the

BLASSO, in view of Chapter 5 where it is involved in a fluorescent mi-

croscopy model (PALM+MA-TIRF) in Biology. This experimental study

shows that normalizing the kernel (with the L2 norm) leads to better perfor-

mance and that the size of the interval containing the discretization points of

the Laplace transform influence the ability to recover spikes near or far the

origin.
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4.1 Introduction

In the first part of this thesis (Chapter 1 and 3) we provided theoretical guar-

antees when solving the BLASSO for the super-resolution problem with noise

contaminating the data. Now we move to the study of numerical methods which

may use advantageously the continuous setting of the BLASSO and thus efficiently

solving the super-resolution problem.

4.1.1 Approximation Schemes for the BLASSO

Because the BLASSO is an optimization problem over the space of Radon

measures M (X) which is an infinite dimensional space, its exact or approximate

resolution is delicate. There are several ways to tackle this problem:

Fixed spatial discretization. A common approach consists in choosing a grid

and constraining the measure to be supported on this set of points. It leads to the

well-known LASSO [142]. The link between the BLASSO and the LASSO has

already been discussed in Section . The benefit of this approach is that it leads to a

finite dimensional convex optimization problem so that many standard solvers can

be used (reviewed in Section 4.1.2). However in order to go below the Rayleigh

limit and perform super-resolution, the grid must be thin enough. This leads to

both theoretical and practical issues. On the theoretical standpoint, in [55, 56],

the authors show that pairs of spikes appears around the true ones in a small noise

regime. Numerically, the overall complexity increases with the size of the grid.

Fixed spectral discretization and SDP formulation. Following [30], where the

authors proposed, in the setting of the one dimensional ideal low pass filter (but it

easily extends to any filter with compact Fourier support) i.e. X = T, H = C2 fc+1

and:

ϕ(x) = (e2iπkx)− fc6k6 fc
,

to reformulate the Basis Pursuit for measures:

min
m∈M (X),Φm=y0

|m|(X),

into an equivalent finite dimensional SDP for which standard solvers already exist,

one can perform the same process for the BLASSO (y = y0 +w):

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X).

It corresponds to a spectral discretization of the forward operator. It can be shown

using classical convex analysis tools that the dual problem of the BLASSO [54,

141] is given by:

max
p∈H

ℜ(〈y, p〉
H
)− λ

2
‖p‖2

H
s.t. ‖Φ

∗p‖∞,X 6 1, (4.1.1)
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and that strong duality holds. Then, because Φ∗p is a trigonometric polynomial,

the constraint ‖Φ∗p‖∞,X 6 1 can be recast as a sum of squares constraint and us-

ing a result of [52], it can be rewritten as the intersection of the cone of positive

semi-definite matrices with an affine space, leading to the following equivalent

optimization problem:

max
p∈C2 fc+1,Q∈C(2 fc+1)×(2 fc+1)

ℜ(〈y, p〉
H
)− λ

2
‖p‖2

H
, (4.1.2)

s.t.

(
Q p

p∗ 1

)

� 0,

∀k ∈ {−2 fc, . . . ,2 fc}, Tr(ΘkQ) = δ k
0 ,

where Θk is the matrix with only ones at coefficient (i, j) such that i− j = k and

zeros everywhere else (it is an elementary Toeplitz matrix).

One remarks that the equivalence between this semi-definite program and the

BLASSO is only true for specific forward operators Φ (here the case of Fourier

measurements). But most importantly, the result in [52] used to obtain this semi-

definite program is only true in a 1-dimensional setting. To investigate the multi-

variate case d > 2, one needs to use the so-called Lasserre’s hierarchy [103, 102].

The BLASSO belongs to the class of generalized moment problems (GMP) [103]

where the goal is to find a representing measure defined on a semi-algebraic sets

(i.e. described by polynomials inequalities) that is a measure with a sequence of

moments prescribed to some values. For these GMP problems, the Lasserre’s hier-

archy defines a sequence of finite dimensional SDP problems whose sizes increase.

This principle has been used for the super-resolution problem in [43]. The diffi-

culty in practice is that one does not know in advance when to stop the hierarchy

(collapsing) in order to obtain a measure solution of the BLASSO. Basically, this

is because the non-negative trigonometric polynomials in dimension d > 1 are not

all sums of squares.

Adaptive discretization via optimization over the space of measures. In order

to directly solve the BLASSO, one needs to design algorithms that do not use any

Hilbertian structure and can instead deals with measures. It can seem complicated

but the benefit is the fact that one can exploit advantageously the continuous setting

of the problem (typically moving continuously spikes over the domain). In contrast

to fixed spatial or spectral discretization methods, these algorithms compute adap-

tive grids which are progressively refined and can thus be proved to converge to the

solution of the BLASSO.

In the next section, we present the existing numerical schemes depending on

these three different approaches.
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4.1.2 Numerical Solvers for the BLASSO

In this section we give an overview of the numerical methods used to solve

the BLASSO depending on the approximation considered. They can be roughly

divided into three main families although there exists a flurry of generalizations

and extensions that must be considered separately. A general study and comparison

of the complexity of the following algorithms in the case of the BLASSO (and its

approximations) does not exist to our knowledge and it is a challenging question.

We give a few elements in the next paragraphs and we provide an estimation of the

complexity of a modified Frank-Wolfe algorithm versus FISTA in Section 4.2.4.

Proximal Methods. These methods can only be applied to a discretized ver-

sion of the BLASSO i.e. the LASSO (see Equation (2)), because they rely on the

fact that the primal problem has an Hilbertian structure (the space of Radon mea-

sures is on the contrary a non-reflexive Banach space). Iterative Hard Thresholding

(IHT) [19, 20] or Iterative Soft Thresholding (IST) [41, 38] are algorithms which

are part of the family of Iterative Shrinkage-Thresholding Algorithms (ISTA) which

dates back to the proximal forward-backward method introduced in [25, 114].

Their rates of convergence have been largely studied in the literature [41, 50, 66].

Even if ISTA is simple to implement, it is in general slow to convergence (the error

in the objective function is typically in O(1/k)). FISTA [9] gives a better non-

asymptotic rate of convergence (O(1/k2)). With discrete grids, in order to achieve

a sharp localization of the spikes of the initial measure, one needs to have a suffi-

ciently small grid step size. But when the size of the grid #G increases it makes

each iteration slower and a more correlated dictionaries which in turn deteriorate

the constant of convergence. So that in practice, we often obtain a small cluster

of non-zero weights in the neighborhood of each true spike. A way to mitigate

this issue is to perform a post processing by replacing each cluster of spikes by

its center of mass, as proposed in [140]. It drastically reduces the number of false

positive spikes but this step is hard to understand theoretically (it does not improve

a Optimal Transport based metric, see Section 4.3.3 for more details) and we found

in practice that it does not lead to a clear enhancement of the performance. More-

over it has been proved that thin grids lead to unstable support recovery. Indeed

in [55, 56], the authors show that pairs of spikes appears around the true ones in a

small noise regime.

Finally one remarks that ISTA can also be applied in the case of an SDP lifting

(such as in Equation (4.1.2)) resulting of a spectral discretization of the BLASSO.

The thresholding of the weights (the amplitudes of the spikes) is replaced by the

thresholding of the singular values of a matrix [143].

Interior Point Methods. These methods are typically applied to solve an SDP

formulation of the BLASSO. In [30], the authors use an Interior Point Method

to solve the equivalent (only in 1D) SDP formulation of the BLASSO which is

detailed in Section 4.1.1. From the solution obtained p ∈ C2 fc+1, they form the
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trigonometric polynomial Φ∗p. Then the location of the spikes are just the roots

of 1− |Φ∗p|2 on the unit circle. One of the drawback of this method is that the

root finding step may pose stability issues. Moreover the overall complexity of an

interior point method for the SDP is polynomial in O( f 2d
c ) where d is the dimen-

sion of the domain X . This has led to recent developments [32] where the authors

use a relaxed low rank SDP formulation of the BLASSO in order to use a greedy

method (see the associated paragraph). Finally these methods can only be applied

to certain type of forward operators (typically Fourier measurements) where Frank-

Wolfe and greedy methods and proximal methods can be used for a larger class of

operators Φ.

To be complete note that interior point methods can also be applied to solve the

LASSO.

Frank-Wolfe and Greedy Methods. They are particularly well fitted to work

directly with measures because they consist of iteratively adding new spikes, i.e.

Dirac masses, to the recovered measures. They do not fix an a priori grid but

rather progressively refine the computational grid by adding spikes one by one.

The Matching Pursuit (MP) [109] adds new spikes by finding ones that best corre-

late with the residual. The Orthogonal Matching Pursuit (OMP) [144, 137, 86] is

similar to MP but makes sure that the current estimate of the observations i.e.

Φ

(
k

∑
i=1

aiδxi

)

,

is always orthogonal to the residual. As a result all the amplitudes of the Dirac

masses are updated after each new spikes added to the support by an orthogonal

projection. There exist many generalizations of OMP. In particular, the results of

OMP are improved by a backtracking at each iteration so that non reliable spikes

are eventually removed from the support of the reconstructed measure (improving

the precision of the adaptive grid) see [91].

The Frank-Wolfe (FW) algorithm [69] also called the Conditional Gradient

Method (CGM) [104] solves the following optimization problem:

min
x∈C

f (x),

where C is a closed, bounded and convex set of a vector space and f is a differ-

entiable convex function. The algorithm is detailed in Algorithm 1. Note that the

first step and the main idea of the algorithm consists in iteratively minimizing a

linearized version of f . Moreover no Hilbertian structure is used which makes it

well suited to work on space of measures. It has been proven under a curvature

condition on f (which is equivalent to having a Lipschitz gradient on a Banach

space) that the rate of convergence of this algorithm in the objective function is

O(1/k).

Note that the update xk+1
set.
= x̃k+1 can be replaced by any “better” candidate

x ∈ C such that f (x) 6 f (x̃k+1) without impacting the convergence proof. This
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Algorithm 1 Frank-Wolfe Algorithm

1: for k = 0, . . . ,n do

2: Minimize: sk ∋ argmins∈C f (xk)+D f (xk)(s− xk).
3: Step research: γk ← 2

k+2
or γk ∋ argminγ∈[0,1] f (xk + γ(s− xk)).

4: Tentative update: x̃k+1 ← xk + γk(s− xk).
5: Final update: xk+1 ← x̃k+1 or xk+1 ← x ∈C with f (x) 6 f (x̃k+1).
6: end for

simple idea has led to several variations on the basic algorithm which have been

shown in practice to be very successful and sometimes crucial. Indeed in [24],

the authors proposed to consider the Frank-Wolfe algorithm for the BLASSO but

where the final update is determined by a gradient descent on a non-convex op-

timization problem. This technique has been used later in [22] and provide state

of the art numerical results in many sparse inverse problems such as in the ma-

trix completion problem with the Netflix Prize dataset or in super-resolution fluo-

rescence microscopy with the Single Molecule Localization Microscopy (SMLM)

challenge [88, 125]. In this particular example where the data are 2D images ob-

tained from the stochastic readout of a sample (PALM-STORM model, see Sec-

tion 5.1 for more details on this matter), new spikes are iteratively added to the

support of the reconstructed measure by minimizing the linearized version of the

objective function and then the amplitudes and positions of the spikes are updated

by performing a local descent. Moving the spikes positions takes advantage of the

continuous framework of the problem (the domain X is not discretized) which is

the main ingredient that leads to a typical N-step convergence observed. Recently

in [58], the authors proved the N-step convergence for Fourier measurements when

fc → +∞ when minimizing the quadratic error. This modified Frank-Wolfe algo-

rithm has also been used lately [32] for an SDP relaxation, promoting low rank ma-

trices, of the BLASSO using Lasserre’s hierarchy, leading to an overall complexity

of O( f d
c log( fc)) per iteration (where fc is the cutoff frequency of the Fourier mea-

surements and d the dimension) of the Frank-Wolfe algorithm instead of a classical

complexity polynomial in f 2d
c for SDP. The algorithm in this case adds a rank one

matrix at each iteration instead of a spikes but a N-step convergence has also been

observed if the initial measure is composed of N spikes. Note however, in dimen-

sion larger than one, that the theoretical link between this problem (relaxed SDP

lifting) and the BLASSO on measures is not fully understood yet.

Other algorithms. There exist many more different solvers, in particular for

the LASSO. One can cite for example the block-coordinate descent (BCD) algo-

rithm [145, 150] or the homotopy/LARS algorithm [57, 138]. To reduce the nega-

tive impact on stability and speed of a thin grid for the LASSO solved by FISTA or

BCD, one can also consider the methods based on safe rules [62] which perform a

progressive pruning of the grid and keep only active sets of weights [112].
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4.1.3 Contributions

We detail the Sliding Frank-Wolfe (SFW) algorithm which is a modification

of [24], in Section 4.2.1. The code can be found in https://github.com/

qdenoyelle.

We prove in Section 4.2.2 with Proposition 24 that this algorithm, used to solve

the BLASSO, enjoys the same convergence property as the classical Frank-Wolfe

algorithm (weak-* convergence with a rate in the objective function of O(1/k)).
Our main theoretical contribution is Theorem 6 which proves that our algo-

rithm converges towards the unique solution of the BLASSO in a finite number of

iterations. This implies as a corollary that the SFW algorithm solves the super-

resolution problem in presence of noise in a finite number of steps by recovering

the unique measure solution of the BLASSO (and composed of the same number

of spikes) if ηW is (2N−1)-non-degenerate, see Corollary 7.

We compare numerically the SFW algorithm with FISTA and OMP in Sec-

tion 4.3 and we show that it outperforms them in a Optimal Transport based metric

but also in a metric based on detection indices.

Finally Section 4.4 deals with the properties of the numerical inversion of the

Laplace transform using our algorithm by solving the BLASSO. In particular we

show that one obtains better results when normalizing the kernel and that the size of

the interval containing the discretization points of the Laplace transform influence

the ability to recover spikes near or far the origin. This provides crucial information

for the experimentalists in order to design new imaging techniques based on the

MA-TIRF model, as detailed in Chapter 5.



100 CHAPTER 4. THE SLIDING FRANK-WOLFE BLASSO SOLVER

4.2 The SFW Algorithm

In this section one presents in detail our version (see Algorithm 3) of the mod-

ified Frank-Wolfe algorithm introduced first in [24] and one proves in Theorem 6

that it converges in a finite number of steps under mild assumptions. As already

mentioned in Section 4.1.2, this algorithm can deal with measures (no need of an

Hilbertian structure). It adds iteratively new spikes and following recent develop-

ments [24, 22, 58] it moves the spikes positions, benefiting from the continuous

framework, to further decrease the objective function. While in the literature it

was proved that the classical Frank-Wolfe algorithm has a general rate of con-

vergence of O(1/k), little is known about its modified version except that it has

state of the art numerical results in several applications (see the Introduction of

this Chapter) and that it keeps in the worst case scenario the same O(1/k) rate of

convergence [24, 22]. In [58], the authors proved a N-step convergence property

when minimizing the quadratic error (so not the BLASSO) in the case of Fourier

measurements and when fc → +∞. This is our formulation of the added update

(changing the amplitudes in the same time as moving the positions) that guarantees

the convergence in a finite number of steps both theoretically and numerically.

4.2.1 The Algorithm

We suppose in this section that X ⊂ Rd is compact, or X = Td with d ∈N∗

and ϕ ∈ KER(2) (see Definition 4, Section 1.2).

The FW algorithm for the BLASSO. First one details how the classical Frank-

Wolfe algorithm (Algorithm 1, see Section 4.1.2) operates in the case of the BLASSO.

It turns out that it requires some modification with respect to Algorithm 1 in order

to deal with an optimization problem over M (X) which is not bounded and most

importantly the objective function:

∀m ∈M (X), Tλ (m)
def.
=

1

2
‖Φm− y‖2

H
+λ |m|(X), (4.2.1)

is not differentiable. In [22], the authors do not have these issues because they

consider the Ivanov regularization (constraint formulation) of the inverse problem

Φm = y, which implies that they minimize an objective function whose differential

is Lipschitz continuous over a closed bounded subset of a Banach space. In [24],

the authors consider the Tikhonov regularization of Φm = y (i.e. the BLASSO) but

they apply a tweaked FW algorithm (partial linearization of the objective function)

to obtain in the end a similar rate of convergence of O(1/k). We follow a different

approach here since we show that one can directly apply the FW algorithm but to an

equivalent problem to the BLASSO, which we present in the following Lemma 12.

Lemma 12. The BLASSO:

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X). (Pλ (y))
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where y = Φma0,x0
+w ∈H with ma0,x0

= ∑
N
i=1 a0,iδx0,i

, is equivalent (same solu-

tions and same optimal value) to:

min





(t,m) ∈R+×M (X)

|m|(X) 6 t, t 6 M

1

2
‖Φm− y‖2

H
+λ t, (P̃λ (y))

where M
def.
= ‖y‖2

H

2λ . In the following we denote by Tλ and T̃λ the objective functions

of respectively these two problems and by C
def.
= {(t,m) ∈ R+×M (X); |m|(X) 6

t 6 M}.

Proof. If m∗ is a minimizer of Tλ on M (X) then:

Tλ (m∗) 6 Tλ (0) = λM,

so one can restrict the BLASSO to the set of m∈M (X) such that |m|(X)6 M and

then P̃λ (y) is obtained using an epigraphical representation.

P̃λ (y) is an optimization problem over C a weak-* compact and convex subset

of a Hausdorff locally convex topological vector space whose objective function

has a differential:

DT̃λ (t,m)(t ′,m′) =
∫

X
Φ
∗(Φm− y)dm′+λ t ′,

which is Lipschitz continuous (because ϕ ∈KER(2)). As a result, one can translate

directly Algorithm 1 to P̃λ (y). We obtains Algorithm 2 and by [46] we get in

Lemma 13 the classical O(1/k) rate of convergence (in the objective function).

Algorithm 2 Frank-Wolfe Algorithm for the BLASSO

1: for k = 0, . . . ,n do

2: Minimize: (t ′k,m′k) ∋ argmin(t ′,m′)∈C

∫

X Φ∗(Φmk− y)dm′+λ t ′.

3: Step research: γk← 2
k+2

or γk ∋ argminγ∈[0,1]T̃λ (tk+γ(t ′k−tk),mk+γ(m′k−
mk)).

4: Tentative update: (t̃k+1, m̃k+1)← (tk,mk)+ γk((t
′
k,m′k)− (tk,mk)).

5: Final update: (tk+1,mk+1) ← (t̃k+1, m̃k+1) or (tk+1,mk+1) ← (t,m) ∈ C

with T̃λ (t,m) 6 T̃λ (t̃k+1, m̃k+1).
6: end for

Lemma 13. Let (tk,mk)k∈N a sequence obtained thanks to Algorithm 2. Then there

exists C1 > 0 such that for any (t∗,m∗) solution of P̃λ (y) (so m∗ also solution of

Pλ (y)), one has:

∀k ∈N, T̃λ (tk,mk)− T̃λ (t∗,m∗) 6
C1

k
.
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In particular we deduce that:

∀k ∈N, Tλ (mk)−Tλ (m∗) 6
C1

k
.

We present now our version of the Frank-Wolfe which we call the Sliding

Frank-Wolfe algorithm (SFW), see Algorithm 3, for the resolution of the BLASSO.

The SFW algorithm is a transcription of the Frank-Wolfe Algorithm for the BLASSO

detailed above (see Algorithm 2) where the final update is replaced by the mini-

mization of a non-convex problem.

Algorithm 3 Sliding Frank-Wolfe Algorithm

1: Initialize with m0 = 0 and k = 0.

2: for k = 0, . . . ,n do

3: mk = ∑
Nk

i=1 ak
i δxk

i
, ak

i ∈R, xk
i pairwise distincts, find xk

∗ ∈ X s.t.:

xk
∗ ∈ argmax

x∈X

|ηk(x)| where ηk
def.
=

1

λ
Φ
∗(y−Φmk),

4: if |ηk(x
k
∗)|6 1 then

5: mk solution of Pλ (y). Stop.

6: else

7: Obtain mk+1/2 = ∑
Nk

i=1 ak+1/2
i δxk

i
+ ak+1/2

Nk+1 δxk∗
, s.t.:

(ak+1/2
i )16i6Nk+1 ∋ argmin

a∈R
Nk+1

1

2
‖ΦG a− y‖2

H
+λ ‖a‖1

where G = (xk
1, . . . ,xk

Nk
,xk
∗)

8: Obtain mk+1 = ∑
Nk+1
i=1 ak+1

i δ
xk+1

i
, s.t.:

((ak+1
i ), (xk+1

i )) ∋ argmin
(a,x)∈R

Nk+1×XNk+1

1

2
‖Φxa− y‖2

H
+λ ‖a‖1 .

9: Eventually remove zero amplitudes Dirac masses from mk+1.

10: end if

11: end for

On the paper, Algorithm 1 and the SFW algorithm may seem different. Here is

the link between the two:

• Step 3 is obtained from Step 2 of Algorithm 1. Indeed solving:

min
(t ′,m′)∈C

∫

X
Φ
∗(Φmk− y)dm′+λ t ′,
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leads to (t ′k,m′k) =
(

M, sign(ηk(x
k
∗))Mδxk∗

)

(an extreme point of C) where:

xk
∗ ∈ argmax

x∈X

|ηk(x)|. (4.2.2)

We drop the sequence (tk)k∈N, in the rest of the algorithm (we are only

interested in (mk)k∈N). So one has thanks to Algorithm 1 the following

update

m̃k+1 = mk + γk(a
k
∗δxk∗

−mk),

for a certain γk. As a result one just adds a new Dirac mass to mk with an

amplitude ak
∗, whose position solves (4.2.2).

• We add to the algorithm the natural stopping condition |ηk(x
k
∗)|6 1 because

if it is satisfied, then ‖ηk‖∞,X 6 1 which is equivalent to mk solution of the

BLASSO. Said otherwise, if the SFW algorithm stops in a finite number of

iterations then it means that mk is solution of the BLASSO.

• We do not compute γk in the SFW because after Step 7, one has

Tλ (mk+1/2) 6 Tλ (mk + γk(a
k
∗δxk∗

−mk)),

for any γk ∈ [0,1].

• Step 7 and Step 8 exploits the final update step of the FW (Step 5) by moving

the positions and the amplitudes in the same time to further decrease Tλ .

Differences and similarities with the existing equivalent algorithms.

• Step 3 of our Algorithm 3, corresponds to the step of creation of a new

spike. This is the greedy step that one can find in the classical Frank-Wolfe

algorithm (see Step 2 of Algorithm 1). It can be identically find in [24]

and [22].

• Step 4, which is our stopping condition, is up to our knowledge new in the

literature. This condition is quite natural if one seeks a convergence towards

a solution of the BLASSO in a finite number of iterations. This indeed plays

a major role in the proof of the convergence speed of the SFW algorithm,

see Theorem 6.

• Step 7 and Step 8 are also new in the literature. Even if they can be found

on other forms first in [24] and later in [22], it is crucial to write them pre-

cisely as presented above (particularly Step 8) to prove the convergence of

this algorithm in a finite number of iterations, see Theorem 6. As already

mentioned before, these steps are behind the recent new development on the

use of the Frank-Wolfe algorithm for sparse inverse problems on spaces of

measures, which have dramatically improve the overall performance of the
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algorithm (see the Introduction of this Chapter). They turn to benefit from

the degree of freedom let by Step 5 of Algorithm 1, by updating the am-

plitudes and most importantly the positions of the spikes so as to decrease

further the objective function. This procedure is notably well adapted here

because the spikes live on a continuum. In [22], the authors update sepa-

rately the amplitudes and the positions. With this choice, it is not possible

to prove a convergence in a finite number of iterations because it does not

guarentee that

∀i, ηk(x
k
i ) = sign(ak

i ) and η ′k(x
k
i ) = 0.

Instead here one performs these updates at the same time in Step 8. In [24],

the authors only perform Step 7 but they mention that one can also move the

positions following the trajectories of a gradient flow.

Note that after Step 7, one has thanks to the optimality conditions:

∀i ∈ {1, . . . ,Nk}, ηk+1/2(x
k
i ) = sign(ai) and ηk+1/2(x

k
∗) = 1,

where ηk+1/2 = 1/λ Φ∗(y−Φmk+1/2) and after Step 8, one gets:

∀i ∈ {1, . . . ,Nk + 1}, ηk+1(x
k+1
i ) = sign(ai) and (ηk+1)

′(xk+1
i ) = 0.

which is a necessary condition for mk+1 to be a solution of Pλ (y).

Before continuing with the theoretical study of the convergence of our algo-

rithm, we detail in the next paragraph the practical implementation choices made.

Implementation details. Let us review for the main steps of Algorithm 4 how

we perform it in practice:

• Step 3: the goal is to find the maximum of |ηk| over the compact domain

X . We have implemented a Newton method initialized first by a grid search.

The size of the grid on X usually depends on the size of the PSF considered

in the application. For example in the case of Φ the convolution by the

Dirichlet kernel with cutoff frequency fc, the number of points on the grid is

proportional to fc.

• Step 7: the goal is to solve the LASSO. We use FISTA.

• Step 8: the goal is to minimize the same objective function as Step 7 but

where we also optimize over the position vector x. It is thus a non-convex

optimization problem. We solve it using a Bounded BFGS, enforcing the

positions to stay in the compact domain X , the negative amplitudes in a 6 0

and the positive amplitudes to a > 0 so that the objective function is differ-

entiable (requirement to apply the BFGS).
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4.2.2 Study of the Convergence of the SFW Algorithm

We now study the convergence properties of the Sliding Frank-Wolfe algorithm

presented last section (see Algorithm 3). Our main result is Theorem 6 where it is

shown that if ηλ = 1
λ Φ∗(y−Φma,x), where ma,x = ∑

N
i=1 aiδxi

is the unique solution

of Pλ (y), is non-degenerate (see Equation (1.2.13)) then Algorithm 3 recovers

ma,x in a finite number of iterations. But first one shows that our algorithm produces

a sequence of measures (mk)k∈N that converges towards m∗ (if m∗ ∈M (X) is the

unique solution of the BLASSO) for the weak-* topology on M (X).

Proposition 24. Let (mk)k∈N be the sequence obtained from the Sliding Frank-

Wolfe algorithm. Then it has an adherence value for the weak-* topology on M (X)
that is solution of Pλ (y).

Proof. Because Step 7 and Step 8 decrease Tλ , one has:

Tλ (mk+1) 6 Tλ (mk+1/2) 6 Tλ (m̃k+1).

As a result using Lemma 13, one gets, for any m∗ solution of Pλ (y), that:

∀k ∈N, Tλ (mk)−Tλ (m∗) 6
C1

k
.

As a result (mk) is a bounded minimizing sequence. One can extract from it a

subsequence that converges towards some m ∈M (X) (with |m|(X) 6 M) for the

weak-* topology. Since Tλ is convex and l.s.c (lower semi-continuous), it is also

weak-* l.s.c so that one gets:

Tλ (m) = Tλ (m∗).

Hence m is a solution of Pλ (y).

From this Proposition, one easily deduces the following Corollary.

Corollary 3. If m∗ ∈M (X) is the unique solution of Pλ (y) then (mk)k∈N weak-*

converges towards m∗.

One can now show that our algorithm in fact converges towards a solution of

the BLASSO in a finite number of iterations, by fully exploiting the displacement

of the spikes over the continuous domain X . For the sake of clarity, one writes and

prove this Theorem in the case of d = 1 but the changes for d ∈N∗ can be easily

done.

Theorem 6. Suppose that ϕ ∈ KER(2) and that ma,x̄ = ∑
N
i=1 aiδxi

is the unique

solution of Pλ (y) and that ηλ = 1
λ Φ∗(y−Φma,x̄) is non-degenerate i.e. :

∀x ∈ X \
N⋃

i=1

{xi}, |ηλ (x)|< 1 and ∀i ∈ {1, . . . ,N}, η ′′λ (xi) 6= 0.

Then Algorithm 3 recovers ma,x̄ after a finite number of steps i.e. there exists k ∈N

such that mk = ma,x̄.
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Proof. Since ma,x̄ is the unique solution of Pλ (y), one knows by Corollary 3 that

the sequence (mk)k∈N produced by Algorithm 3 converges for the weak-* topology

towards ma,x̄.

Φ is weak-* to weak continuous thus defining pk
def.
= 1

λ (y−Φmk), one gets that

(pk)k∈N converges for the weak topology on H towards pλ = 1/λ (y−Φma,x̄)

and ηk
def.
= Φ∗pk converges pointwise towards ηλ . But Φ∗ is a compact operator.

Indeed, take any bounded subset A ∈H , then one can check easily that Φ∗A is

equicontinuous and pointwise relatively compact so that by Ascoli theorem Φ∗A is

relatively compact for the strong topology of C (X ,R). As a result one can extract

a subsequence of (ηk)k∈N that converges towards ηλ in uniform norm. ηλ is then

the unique adherence value for the uniform norm of the bounded sequence (ηk)k∈N

hence the convergence towards ηλ in uniform norm. One can repeat this argument

for (η ′k)k∈N and (η ′′k )k∈N (since ϕ ∈ KER(2)), obtaining for all j ∈ {0,1,2}:

(ηk)
( j) ‖·‖∞,X−→

k→+∞
η
( j)
λ , (4.2.3)

Since ηλ is non-degenerate, there exists a small neighborhood around each xi

such that on these sets η ′′λ 6= 0. As a result one deduces from Equation (4.2.3) that

there exists ε > 0 and k1 ∈N such that:

∀k > k1,∀i ∈ {1, . . . ,N},∀x ∈]xi− ε ,xi + ε [, η ′′k (x) 6= 0.

We denote in the following:

∀i ∈ {1, . . . ,N}, Ixi,ε
def.
=]xi− ε ,xi + ε [.

Because mk converges for the weak-* topology towards ma,x̄, one gets that:

∀i ∈ {1, . . . ,N}, mk(Ixi,ε)→ ma,x̄(Ixi,ε) = ai 6= 0,

so that there exists k2 ∈N such that for all k > k2, mk has at least one spike in each

Ixi,ε . In particular mk has at least N spikes.

Again from Equation (4.2.3), since (ηk)k∈N converges uniformly towards ηλ ,

one deduces that there exists k3 ∈N such that for all k > k3:

Sat±(ηk) ⊂
(
Sat±(ηλ )

)
⊕ (]− ε ,ε [×{0}) ,

where the set of saturation points of a given η ∈ C (X ,R) is defined as:

Sat±(η)
def.
= {(x,v) ∈ X×{−1,1}; η(x) = v} .

Moreover:

∀x ∈ X \
N⋃

i=1

Ixi,ε , |ηk(x)|< 1.
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In particular for k > k3, mk has no spikes in X \⋃N
i=1 Ixi,ε because it would contradict

the optimality conditions of Step 8 of Algorithm 3: for all i∈ {1, . . . ,Nk}, ηk(x
k
i ) =

sign(ak
i ).

Suppose now that k = max(k1,k2,k3). Then mk has at least one spike in each

neighborhood of xi and no spikes outside. Moreover |ηk|< 1 outside the neighbor-

hoods and η ′′k 6= 0 inside. Let i ∈ {1, . . . ,N} and denote xk
j ∈ Ixi,ε a position of a

spike of mk. From the optimality conditions of Step 8, one has also that η ′k(x
k
j) = 0.

But because η ′′k 6= 0 in Ixi,ε , it means necessary |ηk|< 1 except at xk
j so that mk has

in fact exactly one spike in this neighborhood. As a consequence, we proved that

mk has exactly N spikes (one inside each neighborhood) and:

∀x ∈ X \
N⋃

i=1

{xk
i }, |ηk(x)|< 1.

Hence mk, composed of N spikes, is a solution of Pλ (y). Since ma,x̄ is supposed

to be the unique solution of Pλ (y), one concludes that:

mk = ma,x̄,

i.e. the algorithm recovers ma,x̄ in a finite number of iterations.

Note that one proved the convergence in a finite number of iterations but not

exactly N iterations if ma,x̄ is composed of N spikes. However in practice this is

exactly what one observes. See Section 4.2.5 for a few examples.

Combining Theorem 5 and Theorem 6, one can deduce the following result

when d = 1 which states that using the SFW algorithm, one can always solve

numerically the super-resolution problem in a small noise regime.

Theorem 7. Suppose that ϕ ∈ KER(2N+1) and ηW is (2N − 1)-non-degenerate.

Then there exists C1 > 0 such that if:

max

(
λ

t2N−1
,
‖w‖

H

t2N−1
,
‖w‖

H

λ
, t

)

6C1,

then Pλ (yt) has a unique solution composed of exactly the same number of spikes

as the initial measure ma0,tz0
and recovered by Algorithm 3 in a finite number of

iterations.

4.2.3 Adaptation for the Positive BLASSO of SFW

In this section we overview how we implement Algorithm 3. The code can be

found in https://github.com/qdenoyelle.

From now on and in the following we suppose that one wants to recover nu-

merically a positive measure. As a result, we add a positivity constraint to the

BLASSO:

min
m∈M (X),m>0

1

2
‖Φm− y‖2

H
+λm(X). (P+

λ (y))
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A consequence is that this changes the typical optimality condition ‖η‖∞,X 6 1 (for

ηλ , ηV , ηW ...) into η 6 1.

In this setting, Algorithm 3 becomes:

Algorithm 4 Sliding Frank-Wolfe Algorithm (Positivity Constraint)

1: Initialize with m0 = 0 and k = 0.

2: for k = 0, . . . ,n do

3: mk = ∑
Nk

i=1 ak
i δxk

i
, ak

i ∈R+, xk
i pairwise distincts, find xk

∗ ∈ X s.t.:

xk
∗ ∈ argmax

x∈X

ηk(x) where ηk
def.
=

1

λ
Φ
∗(y−Φmk),

4: if ηk(x
k
∗) 6 1 then

5: mk solution of P
+
λ (y). Stop.

6: else

7: Obtain mk+1/2 = ∑
Nk

i=1 ak+1/2
i δxk

i
+ ak+1/2

Nk+1 δxk∗
, s.t.:

(ak+1/2
i )16i6Nk+1 ∋ argmin

a∈R
Nk+1

+

1

2
‖ΦG a− y‖2

H
+λ

Nk+1

∑
i=1

ai

where G = (xk
1, . . . ,xk

Nk
,xk
∗)

8: Obtain mk+1 = ∑
Nk+1
i=1 ak+1

i δ
xk+1

i
, s.t.:

((ak+1
i ), (xk+1

i )) ∋ argmin

(a,x)∈R
Nk+1

+ ×XNk+1

1

2
‖Φxa− y‖2

H
+λ

Nk+1

∑
i=1

ai.

9: Eventually remove zero amplitudes Dirac masses from mk+1.

10: end if

11: end for

Of course the convergence study made in Section 4.2.2 is still valid for Algo-

rithm 4 and Theorem 6 holds.

Implementation details. Let us review for the main steps of Algorithm 4 how

one performs it in practice:

• Step 3: the goal is now to find the maximum of ηk (the absolute values dis-

appear because of the positivity constraint). One still uses a Newton method

initialized by a grid search.

• Step 7: the goal is to solve the LASSO with positivity constraint. We use

FISTA.

• Step 8: since one has the positivity constraint a ∈R
Nk+1
+ , the ℓ1 norm of a is

just the sum of its coefficients so that the objective function is differentiable.

We solve it using a Bounded BFGS, enforcing the positions to stay in the

compact domain X and the amplitudes to remain non-negatives.
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4.2.4 Discussion on the Complexity of SFW and FISTA

In this section, one provides a rough estimate of the complexity of respectively

the SFW Algorithm and FISTA. It is important to remark that this is a challenging

question. For example, for FISTA there is no theory (to our knowledge) of how

fast it converges when the grid gets thinner. As a consequence, the estimates given

below must be taken with caution and are only here to give a coarse idea of the

number of operations performed by the two algorithms.

One denotes by N the number of spikes, ∆ the minimum separation between

the spikes, σ the typical size of the kernel, K the number of measurements (for

example (2 fc + 1)d for Fourier measurements), q the size of the grid for FISTA

and r the size of the grid for the grid search in the SFW Algorithm.

• For FISTA, each iteration costs Kq operations, one expects that the typical

condition number of the correlation matrix is κ = (σ
∆
)2N−1 and one needs to

perform of the order of
√

κ iterations. This leads to an overall complexity

of:

O

(
K

∆
(

σ

∆
)N

)

,

when using q ≃ 1/∆ (because one wants to be able to capture two close

spikes separated by ∆).

• For the SFW algorithm, the grid search requires rNK operations. The num-

ber of operations for the computations of the new amplitudes by solving the

LASSO using FISTA is negligible with respect to the next step (BFGS). The

condition number of the Hessian for the BFGS is κ = (σ
∆
)2N−1 so that the

number of iterations of the BFGS is roughly ≃
√

κ and each iterations cost

NK. If we consider that the algorithm converges in N iterations, we thus

obtain an overall complexity of:

O
(

rN2K +N2K(
σ

∆
)N
)

.

When ∆ → 0, rN2K is negligible with respect to N2K(σ
∆
)N because r de-

pends only on the size of the PSF. As a consequence, we end up with a

complexity of:

O
(

N2K(
σ

∆
)N
)

.

Therefore comparing the two complexities, we see that when the spikes are

close ∆ → 0, N2 is negligible with respect to 1/∆ so that the SFW algorithm is

expected to perform less operations than FISTA.

4.2.5 A Few Numerical Illustrations of the SFW

In this section one gathers numerical experiments performed using the SFW al-

gorithm. The goal is to give a better idea of how it works in practice.
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Number of Spikes recovered. First, one compares in Figure 4.1 the number

of spikes recovered by the SFW algorithm solving P
+
λ (y) (Algorithm 4) to the

number of spikes recovered by an interior point method to the equivalent SDP

formulation of P
+
λ (y) (see Section 4.1.1 for more details on the SDP formulation

of the BLASSO and the section at the end of this chapter for the SDP formulation

with the added positivity constraint).

(a) SFW (BLASSO) (b) Interior Point Method (SDP)

Figure 4.1: Number of spikes recovered for P
+
λ (y) solved by SFW algorithm and

for SDP formulation P
+
λ (y) solved by interior point method. Φ convolution by

ideal low pass filter ( fc = 15) and ma0,x0
= δ0.2 + δ0.7. σ representents noise level

(w = σw0 ∈R2 f c+1).

The setup of this experiment is the 1D torus and Φ the convolution with the

Dirichlet kernel with cutoff frequency fc = 15. The initial measure is composed

of two positive spikes and one varies the regularization parameter λ and the noise

level σ > 0 where w = σw0 with w0 ∈ R2 fc+1 a fixed vector whose coefficients

follow a Gaussian distribution.

One sees that the two graphs are identical, illustrating the fact that the Sliding

Frank-Wolfe algorithm recovers exactly the solution of the BLASSO. Moreover

we remark that the recovery of the support (2 spikes here) is valid in a triangle sat-

isfying max(‖w‖
H

/λ ,λ )6C1 for some C1 > 0. This illustrates the result proved

in [54] and the fact that the vanishing derivatives pre-certificate associated to the

initial measures and the forward operators Φ considered here is non-degenerate

(see Figure 4.2).

N-Steps Convergence. One now illustrates with two examples how the algo-

rithm works and ones shows that it converges in exactly N iterations in prac-

tice (if of course the noise level and the regularization parameter are appropriate:

max(λ ,‖w‖
H

/λ ) is low enough).

The setting that one chooses here is X = [0,1] and the kernel Φ is a discretiza-
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Figure 4.2: ηV for ma0,x0
= δ0.2 + δ0.7.

tion of the convolution by a Gaussian. More precisely, one considers:

Φ : m ∈M (X) 7→
∫ 1

0
ϕdm ∈R

K where ϕ(x) =

(

1√
2πσ2

e
− ( i−1

K−1
−x)2

2σ2

)

16i6K

.

One chooses σ = 0.05 and K = 100. The data y = y0 +w are the same for Fig-

ure 4.3, 4.4, 4.5, the initial measure used is ma0,x0
= 1.3δ0.3+0.8δ0.37+1.4δ0.7 and

the noise is small (w = 10−4w0 where w0 = randn(K)).

Figure 4.3: ηV for ma0,x0
= 1.3δ0.3 + 0.8δ0.37 + 1.4δ0.7.

Figure 4.3 shows ηV for this configuration. One can see that it is non-degenerate,

hence in a small noise now regime with the appropriate choice of λ there is a unique
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measure solution of P
+
λ (y) composed of the same number of spikes as ma0,x0

and

by Theorem 6, the SFW algorithm recovers it in a finite number of iterations.

Figure 4.4: Values of the objective function throughout the SFW algorithm (accu-

mulative iterations of the BFGS). The vertical black lines separate the main outer

iterations of the algorithm.

In fact the algorithm converges in exactly 3 iterations here (as indicated by

the two vertical black lines that shows the intermediate iterations). In Figure 4.4,

one sees the decrease of the objective function throughout the algorithm where we

display its value for the cumulative iterations of the BFGS. When a spike is added,

the objective function decreases suddenly. The BFGS converges with very few

iterations when k = 0 and k = 1 (first two spikes added) and the main computational

load for the displacements is done when k = 2 (more iterations of the BFGS).

Figure 4.5, shows mk and ηk at different times of the algorithm. More precisely

for k ∈ {0,1,2} (the three main iterations needed for the recovery of the unique

solution of P
+
λ (y)) we display the initial measure ma0,x0

, the measure recovered

after solving the LASSO (Step 7 of Algorithm 4) and after the BFGS (Step 8) with

their associated η .

One remarks, as expected, that for all i, ηk+1/2(xi) = 1, ηk+1(xi) = 1 and

η ′k+1(xi) = 0. In the first two main iterations, the spikes are almost not moved by

the BFGS. However the displacement of the positions of the spikes and in the same

time of their amplitudes at the last iteration is critical to obtain ηk+1 ∈ ∂ |mk+1|(X)
and thus recover the solution of P

+
λ (y) in three steps.



4.2. THE SFW ALGORITHM 113

(a) k = 0. Start of the loop.

(b) k = 0. End of the loop.

(c) k = 1. End of the loop.

(d) k = 2. End of the loop.

Figure 4.5: Main steps of the SFW algorithm.
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Figure 4.6: Last step of the SFW algorithm for an other initial measure with two

very close spikes.

In Figure 4.6, one considers an other initial measure so that the first two spikes

are separated by a distance of 0.02σ . The noise level is almost zero here because

one wants to prove that the SFW algorithm is still able to recover perfectly in a

finite number of steps a measure with two very close spikes. If the spikes are

closer than 0.02σ , the algorithm starts having some difficulty to recover faithfully

the amplitudes of the two spikes (but increasing K helps). We believe this is not a

failure of the SFW method but rather numerical instability of the BFGS solver that

reaches machine precision.
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4.3 The SFW Algorithm versus Other Solvers

This Section compares the performance of the Sliding Frank-Wolfe algorithm,

detailed in Section 4.2, with FISTA and OMP.

The common setting that one uses to compare these algorithms is the case of

the Laplace transform inversion problem. The goal is to give a better insight of

the potential of the Sliding Frank-Wolfe algorithm using an operator which is not

translation invariant. Indeed the inversion of the Laplace transform is a challenging

problem (see Section 2.1.2). Moreover one wants to have guarantees that this solver

is better than already existing numerical methods in this particular case, since the

Laplace transform is involved in the MA-TIRF model considered in Chapter 5 for

the recovery of sparse subsets of fluorescent molecules in cells.

To compare algorithms, one needs metrics to assess the recovery performance.

Section 4.3.2 is devoted to this subject. But before, one details more precisely in

the following Section the forward models considered here.

4.3.1 Laplace Transform Based Forward Models

As mentioned above, one considers here the setting of the Laplace transform.

One presented in Section 2.3 various Laplace-like operators (with or without dis-

cretization, normalization...). Since this Section is devoted to numerics, one only

works with a discretized Laplace transform. As a result the two forward models

that one considers are:

1. the discretized un-normalized Laplace transform,

2. the discretized L2-normalized Laplace.

We discuss in Section 4.4.1 of the impact on the performance of the normalization.

The domain of the positions of the spikes X and the Hilbert space of observa-

tions H are as follows:

• X = [ε ,xb] ⊂R where ε > 0 and xb > ε is a bound,

• H = RK equipped with the standard scalar product, where K is the num-

ber of points for the discretization of the Laplace transform (in the MA-TIRF

model, it is the number of angles on which the sample is observed, see Chap-

ter 5).

Similar to what was presented in Section 2.3 (the theoretical models of Laplace

like operators), here X is supposed to be a compact subset of R. This choice is

made mainly for practical numerical reasons because we find that the algorithms

are more stable when X is upper-bounded. Moreover in applications such as the

one studied in Chapter 5, the domain is compact.

Finally one recalls that the kernels for both model are given by:
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1. for all x∈X , ϕ(x) = (e−skx)K
k=1 ∈H , where sk ∈R+, for the un-normalized

transform and the correlation function is:

cϕ(x,x′) =
K

∑
k=1

e−sk(x+x′),

2. for all x ∈ X , ϕ(x) = ξ (x)(e−skx)K
k=1 ∈H , with ξ (x) =

(

∑
K
k=1 e−2skx

)−1/2
,

for the L2 normalized transform and the correlation function is:

cϕ(x,x′) = ξ (x)ξ (x′)
K

∑
k=1

e−sk(x+x′).

One can check that ‖ϕ(x)‖
H

= 1.

In this Section 4.3, the values (sk)16k6K are taken uniformly in the interval

[0,smax]:

∀k ∈ {1, . . . ,K}, sk =
k−1

K−1
smax, (4.3.1)

where the value smax is fixed later. For a study of the influence on the recovery of

the value of smax see Section 4.4.2.

4.3.2 Metrics

One presents now the metrics that one uses to measure the recovery perfor-

mance of the studied algorithms. These metrics can be divided in two major types:

• metrics based on detection indices,

• metrics that measure how close a solution is from the source signal.

The idea behind the first type of metrics (detection indices) is the fact that the ob-

jects that one wants to recover are sums of Dirac masses. As a result it is natural

to ask whether a spike has been detected or not. This notion of detection is quite

important in many applications such as in Biology and is used in the SMLM chal-

lenge 1, see [125] (Chapter 5 gives more details on these matters). The last type

of metrics is more classical. There are many ways to measure distances, but the

difficulty here is that one wants to determine a distance between Radon measures

which also takes into account their geometry. The choice that we make is to con-

sider the flat norm which is a generalized Optimal Transport distance. But first let

us give some more details concerning detection indices.

1http://bigwww.epfl.ch/smlm/index.html
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Detection of Spikes. One details in this paragraph the main metrics used in [125]

and the SMLM challenge to measure the performance. They are based on the

ability to detect spikes. They all depend on the previous choice of a radius r > 0

of detection. Suppose that such a radius is now fixed, then one has the following

Definition:

Definition 11 (Detected Spike). We say that a spike a0,iδx0,i
, of an initial measure

ma0,x0
, is detected with a scale r if there is a spike a jδx j

of the recovered measure

ma,x that lies in a ball of center x0,i and radius r > 0.

Obviously, the greater r is, the more there are detected spikes. In practice

to determine the list of detected spikes of ma0,x0
by ma,x, one uses the following

algorithm:

1. input: x0 ∈ XN0 and x ∈ XN ,

2. compute, store and sort in a list D all the distances
∥
∥x0,i− x j

∥
∥,

3. take the smallest element of D , say ‖x0,k− xl‖, if ‖x0,k− xl‖ 6 r then add

x0,k to the list of detected spikes and remove x0,k and xl from respectively x0

and x,

4. remove all ‖x0,k− xl′‖ for all l′ and all ‖x0,k′− xl‖ for all k′ from D ,

5. Go back to 3. until the smallest element of D is greater than r,

6. output: list of detected spikes and of remaining spikes of ma0,x0
and ma,x.

From this algorithm one can define the notion of true positive, false positive

and false negative spikes.

Definition 12 (True positive, false positive, false negative spikes). We have the

following definitions:

• a true positive spike is a detected spike of ma0,x0
,

• a false positive spike is a remaining spike of ma,x that has not been used for

a detection,

• a false negative spike is a remaining spike of ma0,x0
that has not been de-

tected.

The number of true positive, false positive and false negative spike are respectively

denoted TP, FP and FN.

Recall that these notions depend on a previously chosen radius r of detection.

Figure 4.7 shows an illustration of Definition 12.
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x0,i

x j

x0,k

xl

r

(a) x0,i and x0,k are true positive spikes

x0,i

x j

xl

(b) xl is a false positive spike

x0,i

x j

x0,k

(c) x0,k is a false negative spike

Figure 4.7: Illustration of the notion of true positive, false positive and false nega-

tive spike. In green the spikes of ma0,x0
and in red the spikes of ma,x.

Remark 6. The ideal case in terms of performance of detection is when TP is equal

to the number of spikes of ma0,x0
, FP = 0 and FN = 0 i.e. ma,x has the same number

of spikes as ma0,x0
and all the spikes of ma,x are closer than r of a spike of ma0,x0

.

We can now define the indices that one uses in the following to measure the

detection performance of the algorithms.

Definition 13 (Jaccard Index, Recall and Precision). We define the Jaccard index

as:

J
def.
=

TP

TP+FP+FN
, (4.3.2)

the Recall as:

R
def.
=

TP

TP+FN
, (4.3.3)

and finally the Precision as:

P
def.
=

TP

TP+FP
. (4.3.4)

If J = 1 then it is the ideal case where the recovered measure has the same num-

ber of spikes as the original measure and all the spikes of the initial measure are

detected.

Jaccard index. The Jaccard index measures the overall performance of de-

tection. It was first introduced by Jaccard in 1901 [93] and is used in many fields

such as for example in information retrieval, data mining, the study of chemical

structures, machine learning [74]. The Jaccard index is in general defined as a way

to measure the similarity of sets: let E be a set and (A,B) ∈P(E)2, then:

J(A,B)
def.
=
|A∩B|
|A∪B| . (4.3.5)

where |A| is the cardinal of the set A.
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Proposition 25 (Jaccard Metric). Let us define:

∀(A,B) ∈P(E)2, Jδ
def.
= 1− J(A,B).

Then (P(E),Jδ ) is a metric space.

The fact that Jδ is symmetric and satisfies the identity of indiscernibles is triv-

ial. For the triangle inequality, there exist many proofs [110, 133, 72, 107, 33, 70,

99].

The link between the definition of the Jaccard index in Equation (4.3.2) that

one uses in this thesis, and the general definition (4.3.5) is illustrated in Figure 4.8

and is as follows: consider ma0,x0
and ma,x and make the list (pi)16i6n containing

all the pairs:

• (x0,i,x j) if a0,iδx0,i
is a detected spike by a jδx j

,

• (x0,k,x0,k) if a0,kδx0,k
is a non-detected spike (false negative),

• (xl ,xl) if alδxl
is a spike not used for a detection (false positive).

One has max(N,N0)6 n 6 N+N0. We then form the two sets M0 and M such that:

∀i ∈ {1, . . . ,n}, pi ∈M0 ⇔ pr1(pi) ∈ supp(ma0,x0
),

and

∀i ∈ {1, . . . ,n}, pi ∈M ⇔ pr2(pi) ∈ supp(ma,x),

where pr1 and pr2 are respectively the projection on the first and second coordi-

nates, and supp(m) is the support of m. Then one has finally:

J = J(M0,M),

i.e. J measures the similarity between the sets M0 and M. The above equality is true

because TP = |M0 ∩M|, FN = |M0 ∩Mc| and FP = |M∩Mc
0| so that |M∪M0| =

TP+FP+FN.

The Recall. The Recall (R
def.
= TP

TP+FN
) measures the performance of detec-

tion with respect to the number of non-detected spikes. If R is close to 1, it means

that the algorithm has a high ability to detect the spikes of the initial measure. How-

ever it does not tell whether it comes from the fact that the solver just produces a

lot of spikes (hence a lot of false positives).
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x0,1

x1

x2

x0,2

x3

x0,3

x4

r

Figure 4.8: Illustration of the equivalence between the two definitions of the

Jaccard index. We form the list of pairs from left to right: p1 = (x0,1,x1),
p2 = (x2,x2), p3 = (x0,2,x3), p4 = (x0,3,x0,3), p5 = (x4,x4). So M0 = {p1, p3, p4},
M = {p1, p2, p3, p5}. Hence |M0 ∩M| = 2, |M0 ∪M| = 5 and J(M0,M) = 2/5.

Moreover one has TP = 2, FN = 1, FP = 2 so that J = 2/5.

The Precision. The Precision (P
def.
= TP

TP+FP
) measures the performance of

detection with respect to the number of falsely detected spikes. If P is close to 1, it

means that the spikes of ma,x are all sufficiently close of those of ma0,x0
. However

it does not tell whether it comes from the fact that the solver misses a lot of spikes

of ma0,x0
(hence a lot of false negatives).

To summarize, in the following, in order to assess the overall performance of

detection, one uses J which measures the degree of similarity of the support of

ma0,x0
and ma,x and (R,P) which tells us for a given J is this level of similarity is

obtained thanks to a high recall or a high precision.

Now we turn to the case of the Flat metric which actually measures distance

between Radon measure. We show that this particular metric has nice properties

for our goals.

Flat Metric. Let us consider here X = K a compact subset of R. The total vari-

ation norm on M (X), | · |(X), is the dual norm of the norm ‖·‖∞,X on C (X ,R).
However the metric and the topology induced by this norm are too strong for our

goals. Indeed for example let us consider two Dirac masses denoted respectively

aδx and bδy with a,b > 0 and x 6= y. Then:

TV(aδx,bδy) = a+ b,

where TV is the induced metric by | · |(X). This means that the distance between

aδx and bδy does not depend on their separation. But when comparing two mea-

sures composed of Dirac masses, we would like that closer spikes between the two

measures means smaller distance for the metric. Wasserstein distances based on

the Optimal Transport theory [148, 149] have this property. They are very popular
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both for theoretical aspects [3, 94, 31] and applications [2, 40, 12, 77]. In partic-

ular the 1-Wasserstein distance also called the Kantorovich-Rubinstein distance is

defined as follows for positive Radon measures µ , ν with equal mass:

W1(µ ,ν)
def.
= sup

f∈BL(X ,R)

{∣
∣
∣
∣

∫

X
f d(µ−ν)

∣
∣
∣
∣
; Lip( f ) 6 1

}

,

where BL(X ,R) is the set of bounded Lipschitz function on X and Lip( f ) denotes

the minimal Lipschitz constant for f . It is easy to check that W1(δx,δy) = |x− y|,
however W1(µ ,ν) is only defined for measures with equal mass (not our case).

That is why one rather considers the following metric called the Flat metric (some-

times also called the Dudley metric).

Definition 14 (Flat Metric). We define for all τ > 0 and for all µ ,ν ∈M (X), the

Flat metric between µ and ν by:

Fτ(µ ,ν)
def.
= sup

f∈BL(X ,R)

{∣
∣
∣
∣

∫

X
f d(µ−ν)

∣
∣
∣
∣
; ‖ f‖∞,X 6 τ , Lip( f ) 6 1

}

. (4.3.6)

(M (X),Fτ) is a metric space.

Note that Fτ is induced by a norm, called the flat norm, which can be seen as the

dual norm of W 1,∞(X) (Sobolev space) because the bounded Lipschitz functions

are dense in W 1,∞(X). This norm was already introduced in [63, Section 4.1.12] for

currents. It was later used in [78] for the study of Lipschitz spaces. Fτ can also be

seen as an inc-convolution between the 1-Wasserstein distance and the total varia-

tion. Equivalently Fτ can be thought as a relaxation of the dynamical formulation

of W1 (i.e. a generalization to W1 of the Benamou-Brenier formulation [11] for the

2-Wasserstein distance) where a source term is added to the equation of conser-

vation of mass and penalized by using the Fisher-Rao metric. This point of view

corresponds to the one developed in the theory of Unbalanced Optimal Transport.

The reader can find more details on this matter in [36]. As a result this means

that Fτ measures the cost of moving the mass of µ to the mass of ν and in the

same time authorizing and measuring a creation or destruction of mass by the total

variation norm. The tradeoff between the creation (or destruction) of mass and its

displacement is controlled by the parameter τ .

To have a better understanding of what exactly is measured by Fτ , the following

Proposition gives the Flat metric between two positive Dirac masses.

Proposition 26. Suppose that a,b > 0. Then one has:

Fτ(aδx,bδy) = |a−b|τ +min(a,b)min(2τ , |x− y|). (4.3.7)

Suppose, without loss of generality, that a > b. Then two case arises:
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• if |x− y|> 2τ , then (4.3.7) becomes:

Fτ(aδx,bδy) = (a−b)τ + 2bτ = τTV(aδx,bδy),

so that Fτ(aδx,bδy) can be seen as the cost of destroying the mass of bδy

(i.e. bτ) plus the cost of creating a mass a at x to form aδx (i.e. aτ). Because

the two spikes are too far away from each other (|x− y| > 2τ), no mass is

transported here.

• If |x− y|6 2τ , then (4.3.7) becomes:

Fτ(aδx,bδy) = (a−b)τ + b|x− y|,
so that Fτ(aδx,bδy) can be seen as the cost of moving the mass b from y to x

(i.e. b|x− y|) plus the cost of adding mass to bδx to make aδx (i.e. (a−b)τ).

Because the spikes are close enough (separated by less than 2τ), in addition

to creation of mass, there is also transportation.

In the following when one uses Fτ to measure the recovery performance be-

tween an initial and a recovered measure, one makes sure that τ is large enough so

that the spikes that are too far away from each other are well penalized.

Computation of the Flat metric. To conclude this paragraph on the Flat

metric, let us give details on how we compute it for measures composed of Dirac

masses. When µ = ma0,x0
and ν = ma,x, so that:

µ−ν =
N0+N

∑
i=1

a′iδx′i
,

then Equation 4.3.6 just becomes:

Fτ(µ ,ν) = sup
f∈RN0+N

{
N0+N

∑
i=1

fia
′
i; ∀i, | fi|6 τ , ∀i 6= j, | fi− f j|6 |x′i− x′j|

}

,

which is a standard linear program that can be solved using a classical optimization

toolbox. Note that because the positions are 1 dimensional, one can make the

assumption that x′1 6 x′2 6 . . .6 x′N0+N , so that the constraints on all distincts pairs

(i, j) can be replaced by all successive pairs (i, i+ 1). Thus one obtains:

Fτ(µ ,ν) = sup
f∈RN0+N

{
N0+N

∑
i=1

fia
′
i; ∀i, | fi|6 τ , | fi+1− fi|6 |x′i+1− x′i|

}

.

4.3.3 Numerical Comparison of the Algorithms

In this Section one details the numerical experiments that we made to compare

the SFW Algorithm, FISTA and OMP. We show that the Sliding Frank-Wolfe al-

gorithm has the better performance.

But first in the next paragraph one details the constant values involved in the

experiments, the chosen random model of generation of spikes and the noise model.
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Setup of the experiments. The data used for the comparison are n ∈N∗ vectors

of observations:

y = Φma0,x0
+w ∈R

K ,

obtained from a collection of n initial measures ma0,x0
and where Φ is a discretized

L2-normalized Laplace transform i.e.

ϕ(x) = ξ (x)(e−skx)K
k=1 ∈R

K with ξ (x) =

(
K

∑
k=1

e−2skx

)−1/2

.

We detail in Section 4.4.1 why we make this choice rather than the un-normalized

version of the discretized Laplace transform.

The collection of n initial measures ma0,x0
used for the comparison of the algo-

rithms are generated randomly thanks to the following process:

1. the positions of the spikes of ma0,x0
are chosen in [ε ,xb] such that for any

two consecutive positions x0,i, x0, j with x0,i < x0, j then x0, j− x0,i follows an

exponential law of parameter ι

x0, j− x0,i ∼ E (ι). (4.3.8)

We keep adding new spikes until the last position is greater than xb,

2. once x0 ∈ XN , for some N, is fixed the associated amplitudes are uniformly

randomly chosen in the interval [1,1.5].

The parameter ι > 0 controls the density (number of spikes) of the initial measures:

the smaller ι is the greater the density of the point process is.

The noise w ∈RK is obtained from a centered Gaussian distribution with vari-

ance σ2.

Finally the values of the main constants are summarized in the following ta-

ble 4.9:

Names Values

n 2000

ε 10−4

xb 150

K 20

smax 0.3

Figure 4.9: Values of numerical constants used in all Section 4.3
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Preliminary discussions concerning FISTA. Before finally moving to the ac-

tual comparison of the SFW algorithm with FISTA and OMP in the setup detailed

previously, one needs to deal with a few matters concerning FISTA:

• the question of an eventual post-processing,

• the choice of the size of the grid on the domain X ,

• the number of iterations performed.

For recall, the domain X is discretized over a uniform grid G of size #G and

one solves using FISTA the following optimization problem:

min
a∈R#G

1

2
‖ΦG a− y‖

H
+λ ‖a‖1 ,

which is the LASSO.

Influence of the clustering for FISTA. First we discuss about the post-

processing clustering step. As already mentioned in the Introduction of this Chap-

ter (see Section 4.1.2), because FISTA often leads to an approximate solution with

small clusters of non-zero weights in the neighborhood of each true spike, it might

be smart to perform a clustering in order to increase its sparsity. It has been pro-

moted in [140], where the authors proposed for each connected group of spikes

of the approximate solution to replace it by a unique spike whose position is the

barycenter of the positions of the spikes of the cluster weighted by their amplitudes

and whose amplitude is their sum. Figure 4.10 illustrates this idea and Figure 4.11

confirms the enhancement of the Jaccard index. However the Flat Norm perfor-

mance is slightly better when there is no clustering. Figure 4.11 is obtained by

running the algorithms for each values of λ (chosen uniformly in the log scale be-

tween 10−4 and 1) for the n observations and taking the mean of the indicator of

interest. The table of Figure 4.12 summarizes the choices of parameters for this

experiment.

As a result, it is not clear whether the post-processing clustering step is ben-

eficial (it depends on the metric). However because it provides a significant im-

provement of the Jaccard index and does not impair a lot the flat norm indicator,

one chooses in the following to always perform it.

Influence of the size of the grid for FISTA. We now study for FISTA the

influence of the size of the grid on the performance. Figure 4.13 shows that increas-

ing the sharpness of the grid improves the recovery performance. However going

from a grid of 200 points to a grid of 400 points only makes a small difference. The

table of Figure 4.14 summarizes the choices of parameters for this experiment.

As a result in the following, one only considers a grid composed of 200 points

in order to keep a reasonable convergence speed.
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(a) Without clustering (b) With clustering

Figure 4.10: Approximate recovered measure from the LASSO solved by FISTA

with or without clustering. We see that (b) has much less false positive spikes than

(a), hence a better Jaccard index.

Figure 4.11: Performance comparison in terms of Flat Norm and Jaccard index

of FISTA (with 104 iterations) with and without clustering. The area around the

curves correspond to a 95% confidence interval.

Names Values

ι 30

σ 5 ·10−5

r 5

Figure 4.12: Numerical constants for the experiment. ι = 30 corresponds to a

rather low density of spikes (see Equation (4.3.8) for the definition of ι).

Influence of the number of iterations for FISTA. We now study the influ-

ence of the number of iterations on the recovery performance. 50 values of the
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Figure 4.13: Performance comparison in terms of Flat Norm (left) and Jaccard in-

dex (right) for the LASSO solved by the FISTA algorithm for an increasing number

of iterations and various size of grid. The area around the curves correspond to a

95% confidence interval.

Names Values

ι 30

σ 5 ·10−3

r 5

Figure 4.14: Numerical constants for the experiment. ι = 30 corresponds to a

rather low density of spikes.

regularization parameter λ uniformly distributed in the log-scale between 10−4

and 1 were used and only the optimal value (after taking the mean over the n ob-

servations) for both the Flat Norm and the Jaccard index are kept. The table of

Figure 4.15 gathers all the main numerical constants used for the experiments of

this paragraph.

Names Values

ι 30

σ 5 ·10−3

r 5

#G 200

Figure 4.15: Numerical constants for the experiment. ι = 30 corresponds to a

rather low density of spikes.

We see in Figure 4.16 that the Sliding Frank-Wolfe algorithm performs better

whatever the number of iterations for FISTA in terms of Flat Norm although it is

slightly beaten for 106 iterations in terms of Jaccard index (but in the margin of
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error). Going from 105 iterations to 106 iterations does not significantly improve

the recovery performance.

Figure 4.16: Flat norm and Jaccard index for an increasing number of iterations

for FISTA. The area around the curves and the error bars correspond to a 95%

confidence interval.

Looking at Figure 4.17, one sees that the SFW algorithm is faster than FISTA

(with clustering) for better performance (around 25 times faster for approxima-

tively the same performance).

Figure 4.17: Flat norm over computation time for FISTA and SFW. The experiment

has been parallelized on 40 cpu. The error bars correspond to a 95% confidence

interval.

From now on when one shows results from FISTA, we fix the number of iter-

ations in the order of 104 because, as shown in Figures 4.16 and 4.17, increasing

further the number of iterations does not improve much the performance but in-

creases significantly the computation time.
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Comparison of the three algorithms. We now compare the SFW algorithm with

FISTA and OMP.

Names Values

smax 0.3

r 5

#G 200

Iterations FISTA 104

Figure 4.18: Main numerical constants for the comparison of the three algorithms.

Figure 4.19 compares the algorithms with a varying density of spikes controlled

by ι but with a fixed noise level of given by σ = 5 ·10−3 (moderate noise). ι = 5

corresponds to a mean number of spikes of roughly 5 and ι = 30 to a mean of 1.5.

Instead Figure 4.20 compares the algorithms with a varying noise level but with

a fixed density given by ι = 20 (moderate density).

Varying density. We remark as expected that, the higher the density of spikes

is, the worse are the performance (both in Jaccard index and in flat norm). More-

over the SFW algorithm always performs better than FISTA. OMP has the worst

indicators of the three.

Varying noise level. We see as expected that a higher noise level leads to

worse performance for the three algorithms. Similarly as in the previous setup

(varying density of spikes), the SFW algorithm has the better performance ahead

FISTA and finally OMP (for a continuous dictionary). We also remark that the

optimal value of λ which gives the higher Jaccard index and the smallest Flat norm

follows σ i.e. λopt ∼ σ .
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ι
=

5

(a) Jaccard (b) Precision (c) Recall (d) Flat Norm

ι
=

1
0

(e) Jaccard (f) Precision (g) Recall (h) Flat Norm

ι
=

1
5

(i) Jaccard (j) Precision (k) Recall (l) Flat Norm

ι
=

2
0

(m) Jaccard (n) Precision (o) Recall (p) Flat Norm

ι
=

2
5

(q) Jaccard (r) Precision (s) Recall (t) Flat Norm

ι
=

3
0

(u) Jaccard (v) Precision (w) Recall (x) Flat Norm

Figure 4.19: Comparison of the algorithms with a varying density of spikes and a

fixed noise level (σ = 5 ·10−3). For OMP, the parameter λ controls the sparsity of

the recovered solution.
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σ
=

1
0
−

2

(a) Jaccard (b) Precision (c) Recall (d) Flat Norm

σ
=

5
·1

0
−

3

(e) Jaccard (f) Precision (g) Recall (h) Flat Norm

σ
=

1
0
−

3

(i) Jaccard (j) Precision (k) Recall (l) Flat Norm

σ
=

5
·1

0
−

4

(m) Jaccard (n) Precision (o) Recall (p) Flat Norm

σ
=

1
0
−

4

(q) Jaccard (r) Precision (s) Recall (t) Flat Norm

Figure 4.20: Comparison of the algorithms with a varying noise level and a fixed

density of spikes (ι = 20). For OMP, the parameter λ controls the sparsity of the

recovered solution.
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4.4 Study of the Laplace Transform Numerical Inversion

One proposes in this section to study the recovery properties of the BLASSO,

using the Sliding Frank-Wolfe algorithm, in the case of the Laplace transform. The

goal is to get some insight on the numerical inversion of a discretized Laplace

transform by solving the BLASSO with our algorithm (see Section 4.4.2), in order

to better understand in a simpler setup the numerical results obtained in Chapter 5

where we use (among other models) a Laplace based forward operator to recover

fluorophores positions in a 3D volume. Moreover we justify in Section 4.4.1 why

we rather consider an L2-normalized version of the discretized Laplace transform,

in all our numerical experiments (including Chapter 5), even when the data are

generated by the un-normalized version of the model.

The setup of this section is similar to the one developed in the last one (see

Section 4.3): the forward models are the same, we use the same metrics, the same

random model of generation of spikes and the same noise model.

One recalls the two forward operators considered here:

1. Un-normalized discretized Laplace transform: for all x ∈ X ,

ϕ(x) = (e−skx)K
k=1 ∈H ,

where sk ∈R+ and the correlation function is:

cϕ(x,x′) =
K

∑
k=1

e−sk(x+x′),

2. L2-normalized discretized Laplace transform: for all x ∈ X ,

ϕ̃(x) = ξ (x)(e−skx)K
k=1 ∈H with ξ (x) =

(
K

∑
k=1

e−2skx

)−1/2

,

and the correlation function is:

cϕ̃(x,x′) = ξ (x)ξ (x′)
K

∑
k=1

e−sk(x+x′).

One can check that ‖ϕ̃(x)‖
H

= 1.

4.4.1 Influence of the Normalization

In this section we study the influence of the normalization of the kernel of a

discretized Laplace transform. One shows that it can be performed even if the data

y are generated using the un-normalized model (the case of the MA-TIRF model

detailed in Chapter 5) by rescaling the amplitudes of the spikes and one shows that

it leads to better numerical performance.
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Normalizing the kernel is quite natural when using a greedy type algorithm

(our case here), see details on the Matching Pursuit algorithm [109]. One chooses

to normalize it with the norm ‖·‖
H

because it arises naturally in the BLASSO (the

loss function uses ‖·‖
H

).

Suppose that the data:

y = Φma0,x0
+w =

N0

∑
i=1

a0,iϕ(x0,i)+w, (4.4.1)

are generated using the un-normalized version of the discretized Laplace transform,

then one has:

y =
N0

∑
i=1

a0,i

ξ (x0,i)
ϕ̃(x0,i)+w,

so that we can just consider y as input of the SFW algorithm which uses the kernel

ϕ̃ (hence the normalized version of the Laplace transform as our forward operator)

instead of ϕ and as a final step rescale the amplitudes of the recovered measure

ma,x̄ and return:

m =
N

∑
i=1

ξ (xi)aiδxi
.

Names Values

K 20

ι 10

n 2000

σ 5 ·10−3

smax 0.5

r 5

Figure 4.21: Numerical constants for the experiment of Figure 4.22. ι = 10 corre-

sponds to a high density of spikes.

Figure 4.22 shows that in the normalized case, the recovery performance are

better than in the un-normalized case because both in Flat norm and in Jaccard

index. One also remarks that the Precision is significantly higher for ϕ̃ than ϕ .

This means that normalizing the kernel leads to a better localization of the spikes

of the initial measure.

The numerical constants used to generate the results of Figure 4.22 can be

found in the table of Figure 4.21.

4.4.2 Influence of smax

In this section, we propose to numerically study the influence of the choice of

smax on the recovery performance when solving the BLASSO with the SFW algo-

rithm where Φ is a normalized discretized Laplace transform. One shows that smax
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(a) Flatnorm (b) Jaccard index

(c) Recall (d) Precision

Figure 4.22: Comparison of performance between the un-normalized and normal-

ized forward operator. Note that in both cases the data are the same (see Equa-

tion (4.4.1)). The area around the curves correspond to a 95% confidence interval.

needs to be high enough in order to recover precisely two spikes that are close near

the origin.

One recalls the values (sk)16k6K are taken uniformly in the interval [0,smax]:

∀k ∈ {1, . . . ,K}, sk =
k−1

K−1
smax,

In Figure 4.23, we propose to consider an initial measure given by:

m0 = δ
x̄− ∆

2
+ δ

x̄+ ∆

2
,

and vary the parameter (x̄,∆) such that m0 ∈ M (X) is a measure composed of

two spikes whose barycenter of positions moves in the domain X with a changing

separation ∆. For each value of (x̄,∆) we solve the BLASSO for different λ using

our algorithm n times (each time we randomly choose the noise w ∈ RK). One

then takes the mean of the Flat norm between the recovered measure and m0. This

information is displayed, for the optimal λ , in the graphs of Figure 4.23 for smax ∈
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{0.1,0.2,0.3,0.4,0.5,0.6}. The numerical constants involved for this experiment

can be found in the table of Figure 4.24.

(a) smax = 0.1 (b) smax = 0.2

(c) smax = 0.3 (d) smax = 0.4

(e) smax = 0.5 (f) smax = 0.6

Figure 4.23: Flat norm comparison for different values of smax for the recovery of

m0 = δ
x̄− ∆

2
+ δ

x̄+ ∆

2
.

One sees in Figure 4.23 that when when x̄ increases then the Flat norm gets

higher. This phenomenon is due to the exponential decay of the kernel. The worst

performance happens when (x̄,∆) ≃ (40,8) and it deteriorates with smax. As a

result, in order to recover a measure composed of two spikes far from the origin,
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it is better to have a smaller value of smax. This can be explained by the fact that

a smaller value of smax means a slower exponential decay of the kernel. On the

contrary when the two spikes are close of the origin (i.e. x̄ small), one sees that the

performance are worse when smax is smaller. This is because in order to recover

well the two spikes, the kernel has to decrease fast enough so that the data can

reflect separately the contributions of the two spikes.

Since we are performing these experiments with a constant value of K (here

equal to 20), increasing smax means that s2 =
smax

K−1
increases also, so that the re-

covery performance decreases when x̄ is large. Consequently with K constant, the

choice of the value of smax either favors the recovery of measures close of the origin

(large smax) or the recovery of measures far from the origin (small smax). Increas-

ing K in the same time as increasing smax keeps the best of both worlds ((sk)16k6K

contains small and large values). However, often in applications, the smaller K is

the better. Moreover we can also have limitations on the choice of smax. It is in

particular the case in Chapter 5 (K smaller is better and smax is upper-bounded).

Names Values

K 20

n 500

σ 5 ·10−3

Figure 4.24: Numerical constants for the experiment of Figures 4.23, 4.25 and 4.26.

(a) Flat norm vs smax (b) Jaccard index vs smax

Figure 4.25: Flat Norm and Jaccard Index optimal values with respect to smax for

different m0 where ∆ = 15. The error bars correspond to a 95% confidence interval.

Figure 4.25 is similar to Figure 4.23 (same setup) but only shows the results for

∆ = 15 and a few values of x̄. The Jaccard index is also provided. The conclusion

are the same as above: high values of smax for spikes close of the origin and the

opposite for spikes far from the origin.

Figure 4.26 shows, for the same setup as detailed above, the recovery perfor-
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(a) Flat norm vs smax (b) Jaccard index vs smax

Figure 4.26: Flat Norm and Jaccard Index optimal values with respect to smax

for different density of spikes ι . The error bars correspond to a 95% confidence

interval.

mance in terms of Flat norm and Jaccard index with respect to smax, for different

density of spikes controlled by ι . One obtains similar conclusions as above where

the measures m0 were fixed (here random but with a fixed density). Indeed one

sees in the context of a high density ι = 10 that the recovery is better with high

values of smax which makes sense because in this case there are spikes near the

origin. Instead the recovery is better with small values of smax in the context of a

low density of spikes ι = 40 because the initial measures are composed of 1 or 2

spikes that are far from the origin.

To conclude, in order to have the best recovery performance, if one controls

the value of smax and of the (sk), one needs to have:

i) a sufficiently high value of smax to discriminate close spikes near the origin.

The closer the spikes are, the higher smax needs to be.

ii) K large enough because if smax is large (see (i)) then s2 increases when K has

a fixed value (when the sk are chosen uniformly) which means that spikes that

are far from the origin are not well captured.

In Chapter 5, one looks at the recovery of fluorescent molecules in a 3D volume.

One proposes to use the MA-TIRF model (among others) to perform this recov-

ery. The L2-normalized discretized Laplace transform studied here is used in this

framework to obtain depth information. Considering that our numerical study in

1D is characteristic of what happens for the 3D problem along the z-axis, one de-

duces that:

i) the typical distance (in z) between two structures near the origin (the inter-

face) that one aims to recover determine the optimal value of smax that the

experimenters must choose,
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ii) the size of the domain in z (maximal depth) and the value of smax determine

the optimal value of K to capture well distant fluorescent molecules.

However as one details it in Chapter 5, the experimenters have strong physical

constraints on the value smax and the lower K is the better it is in practice.
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SDP Formulation of the BLASSO

In this section, we provide the SDP Formulation of the BLASSO with positivity

constraint:

min
m∈M (X),m>0

1

2
‖Φm− y‖2

H
+λ |m|(X), (P+

λ (y))

when Φ is the convolution with the Dirichlet kernel with cutoff frequency fc:

Φ : m ∈M (T) 7→
∫

T

ψ(·− x)dm(x) ∈H where ψ(t) =
fc

∑
k=− fc

e2iπkt ,

where H = L2(T).
The case when there is no positivity constraint is recalled in Section 4.1.1 and

can be found in [30] (for the basis pursuit).

Proposition 27. The SDP problem:

min
p∈R2 fc+1,Q∈C( fc+1)×( fc+1)

∥
∥
∥

y

λ
− p

∥
∥
∥

2

H

s.t. Q� 0,

∀k ∈ {− fc, . . . , fc}, Tr(ΘkQ) = δ k
0 −

∫ 1

0
p(t)e−2iπtdt,

is equivalent to P
+
λ (y). Recall that Θk is the matrix with only ones at coefficient

(i, j) such that i− j = k and zeros everywhere else (it is an elementary Toeplitz

matrix).

Proof. By standard convex analysis tools, the dual problem of P
+
λ (y) is equivalent

to the problem:

min
p∈H ,Φ∗p61

∥
∥
∥

y

λ
− p

∥
∥
∥

2

H

.

1−Φ∗p can be seen as a trigonometrical polynomial. Indeed there exists R(z) =

∑
fc

k=− fc
rkzk with rk = r−k ∈R such that:

∀x ∈ T, 1−Φ
∗
x p = R(e2iπx).

By [52] (Theorem 2.5), R > 0 on the unit circle if and only if there exists a positive

semi-definite matrix Q ∈ C( fc+1)×( fc+1) such that:

∀k ∈ {− fc, . . . , fc}, rk = Tr(ΘkQ).

Since rk = δ k
0 −

∫ 1
0 p(t)e−2iπtdt one deduces the expected result.



Chapter 5

Super-Resolution Microscopy

Imaging cells at a protein level is a major goal in modern Biology. This

challenge requires an imaging process capable of providing a high resolu-

tion both laterally and in depth (of the order of 20 nm). Some methods such

as PALM (Photo-Activated Localization Microscopy) or STORM (Stochas-

tic Optical Reconstruction Microscopy) already achieve a typical 20 nm but

only laterally. We propose to use the SFW algorithm to solve the BLASSO

for three different 3D models combining the PALM/STORM technique with

three different ways which enable the recovery of depth information: the

MA-TIRF (Multi-Angle Total Internal Reflection Fluorescence microscopy),

Astigmatism and Double-Helix models. We detail the forward operators

for these models. MA-TIRF is based on a Laplace transform for the re-

covery of depth information. Instead, Astigmatism distorts a 2D Gaussian

along the horizontal and vertical axis. And finally Double-Helix consists in

the rotation of two Gaussians with the depth. In the particular case of the

PALM+Astigmatism and PALM+Double-Helix, we formulate a mathemat-

ical framework that can deal with several camera mounted in parallel and

acquiring data from several different focal planes at the same time (increas-

ing the total amount of information gathered with respect to the standard case

of one focal plane). We design a setup close of the one encountered by ex-

perimenters and we show in this context that the SFW algorithm achieves a

resolution in all directions lower than 20 nm for the three models, even at

a high density of spikes. We demonstrate that the performance plateaus at 4

TIRF angles or 4 focal planes. The model that has the highest performance in

this framework is PALM+Double-Helix followed by PALM+MA-TIRF and

finally PALM+Astigmatism.

139
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5.1 Introduction

5.1.1 Classical Microscopy

The ability to recover high resolution images from blurred and noisy measure-

ments is a difficult challenge in imaging sciences such as in astronomy, medicine

or geophysics. For example in Biology, key events in cellular trafficking occur at

the cell surface and high resolution images are needed to capture them.

However, classical techniques of microscopy which use an optical microscope

are all limited by the Abbe diffraction limit. Indeed Ernst Abbe discovered at the

end of the nineteenth century, see [1], that a point source of light visualized through

an optical microscope makes a spot of radius:

r =
λℓ

2NA
with NA = nsin(α),

where λℓ is the wavelength of the light, NA is the numerical aperture of the mi-

croscope, n is the index of refraction of the medium being imaged in, and α is the

half-angle subtended by the optical objective lens. Because the numerical aperture

of most modern optical systems are around 1.5, the resolution limit is of the or-

der of 200 nm. This limit affects methods such as classical widefield microscopy

where the whole sample is permanently illuminated or confocal laser scanning mi-

croscopy, invented by Marvin Minsky, where the light (usually a laser) is focussed

on the sample, resulting in a slightly better resolution than widefield microscopy

(see [115]). This diffraction phenomenon is not a problem when observing cells

whose sizes vary from 1 µm to 100 µm. But to capture events involving viruses

or proteins, biologists need a resolution of the order of 10 nm. That is why the

development of new solutions of acquisition, which enable to see details below the

diffraction limit, is an important milestone.

5.1.2 Overcome the Diffraction Limit

In the 2000’s, several new acquisition methods were proposed. They provide

ways to go below the diffraction limit. They are based on fluorescence microscopy

which was already widely used in Biology with classical widefield and epifluo-

rescence microscopy or with a confocal laser scanning microscope. Fluorescence

microscopy depends on the fluorescence property of some chemical compound

called fluorophore that is within the sample (either artificially added or naturally

present). A source of light (usually a laser) is used to switch on the fluorophores of

the sample.

Based on this switching technique of the fluorescent molecules, there are two

main families of methods that break the diffraction barrier [82]. The first way relies

on specific illuminations, which enables to obtain features below the diffraction

limit, over the sample. This approach is used in STED, GSD, SIM/SSIM and

SPEM. One presents in the following a quick overview of the STED and SIM

methods (GSD and SPEM are based on those two techniques). The second way
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consists of letting individual fluorophores switch on and off stochastically in the

sample and record all those events. This path is taken in PALM, FPALM, STORM,

dSTORM and GSDIM.

STED: STimulated Emission Depletion [85, 98] invented in 1994 consists in us-

ing the physical principal of stimulated emission (see [60, 61]) by lighting the

sample with a first laser beam which activates the fluorophores and a second red-

shifted laser beam projected to a doughnut-shape. The second laser beam depletes

the emission of the fluorophores laterally leaving only a central spot with a size

below the diffraction limit (see Figure 5.1). The typical lateral resolution for liv-

ing cells is 20 to 30 nm [119, 120, 118]. See Figure 5.2 for an illustration of the

gains in resolution between an acquisition using STED and a classical widefield

microscope. Note that a similar strategy is used in the GSD [81] method.

(a) Excitation laser (b) Depletion laser (c) Resulting pattern

Figure 5.1: Principle of a STED microscope. Diffraction spot produced by the

excitation laser (a), the red-shifted depletion laser (b) and the smaller resulting

diffraction spot (c). The colors are indicative. In practice the two beams are both

in the red spectrum of light.

SIM: Structured Illuminated Microscopy [76], invented in 2000, is a widefield

technique in which a movable diffraction grid is inserted into the activation beam

path. The sample is illuminated with a sequence of excitation light patterns that

interfere with the grid at the focal plane of the objective and create an illumina-

tion in stripes. The overlap between the high frequency organization of the objects

within the sample and the high frequency of the illumination stripes creates a lower

frequency signal which can now be captured by the objective. To reconstruct the

final image, several raw images must be acquired by translating and rotating the

diffraction grid. The typical lateral resolution obtained with this method is 100 nm.

Further improvements of the methods with SPEM [80] (Saturated Pattern Excita-

tion Microscopy) and SSIM [71] (Saturated Structured Illuminated Microscopy)

give a 50 nm lateral resolution. See Figure 5.3 for an illustration of the gains in

resolution between an acquisition using SIM and a classical widefield microscope.
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(a) STED (b) Diffraction limited microscope

Figure 5.2: Comparison of STED versus a conventional diffraction limited mi-

croscope for the imaging of microtubules in a Drosophila S2 cell. Note the

increase in spatial resolution in the STED image compared to the diffraction

limited image. Images obtained from the Cell Image Library http: // www.

cellimagelibrary. org/ images/ 36148 .

After this quick overview of the sub-diffraction techniques based on specific

illuminations of the sample, we now present sub-diffraction techniques based on a

stochastic readout of the sample. Contrary to specific illuminations methods which

require a fine tuning of the optical system, stochastic readout techniques are simple

to implement (but note that they require more time of preparation of the samples).

However as one sees below, they demand expertise to assemble the final image.

This is where we aim to step in with this thesis.

PALM/STORM: Photoactivation Localization Microscopy (PALM) [16, 132]

and Stochastic Optical Reconstruction Microscopy (STORM) [124] are two very

similar techniques. They both use a TIRF (Total Internal Reflection Fluorescence)

microscope (see Section 5.1.3 for more details on TIRF microscopy). They turn on

and off stochastically sparse subsets of fluorophores in the sample with lasers of

specific wavelengths. When individual random fluorescent molecules are activated

and fluoresce, an image is recorded. A large number of images (often a few thou-

sands), each containing just a few fluorophores, are collected. For each snapshot,

a recovery is performed by solving an inverse problem thanks to some numerical

method, so as to obtain the coordinates of the fluorophores. The PSF of the system

can often be approximated by a 2D Gaussian, thus if the fluorophores are separated

enough, the centers of the spots give a nanometer precision on the real positions

of the molecules, hence the breaking of the diffraction limit. PALM/STORM can

then achieve a resolution of 20 nm [16, 8, 67]. All the coordinates obtained from
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(a) SIM (b) Diffraction limited microscope

Figure 5.3: Comparison of SIM versus a conventional diffraction limited micro-

scope for the imaging of microtubules in a Drosophila S2 cell. Note the increase in

spatial resolution in the SIM image compared to the diffraction limited image. Im-

ages obtained from the Cell Image Library http: // www. cellimagelibrary.

org/ images/ 36147 .

all the snapshots are finally assembled to form the final super-resolved image. See

Figure 5.4 for an example of an image obtained thanks to PALM.

Avoiding the accumulation of active fluorophores in time is a key point to keep

a good precision. PALM uses photoactivable protein fluorophores, for example

the PA-GFT for Photoactivatable Green Fluorescent Protein (the discovery of the

green fluorescent protein (GFP) [146] has been awarded a Chemistry Nobel Prize

in 20081), which are first activated by a high frequency laser (typically ultravio-

let light). Once activated, they emit fluorescent light (which is captured by a CCD

camera) when excited with a lower frequency laser. Then the fluorescent molecules

are spontaneously photobleached (see [59] for details on photobleaching for fluo-

rescent microscopy), i.e. the fluorophores once they have emitted a given amount

of photons are altered such that they are permanently unable to fluoresce, to re-

move them from the field of view. A new sparse subset of fluorophores can then be

activated and imaged, and so on. Since a fluorophore can only be activated once,

PALM has the potential to perform a quantization of the number of fluorophores,

see [75]. Instead STORM relies on a photo-switchable dye attached to the pro-

tein of interest thanks to antibodies binding specifically to given antigens [124].

The fluorophores are turned off by a red laser and turned on by a green laser. In

particular a given fluorophore can be detected several times.

As mentioned above, we want the fluorophores of each acquisition to be sep-

arated enough in order to achieve the best precision on the localization process.

1https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2008/
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(a) PALM (b) Diffraction limited microscope

Figure 5.4: Comparison of PALM versus a classical diffraction limited micro-

scope for the imaging of two proteins : tdEos-paxillin (green) and PsCFP20-zyxin

(red). It demonstrates that these two focal adhesion proteins have very little over-

lap when visualized with super-resolution. In contrast, when the same field is

visualized with a diffraction limited method, the two proteins appear almost com-

pletely colocalized. Bar is 2 microns. Images obtained from the Cell Image Library

http: // www. cellimagelibrary. org/ images/ 38602 .

However, from time to time, two or more fluorophores can be closer to each other

than the size of the PSF of the system. Furthermore, to obtain a detailed final im-

age composed of the stacking of all the recovered fluorophores, one needs to take

several thousands of snapshots. Therefore being able to accurately locate more

and more fluorescent molecules per activation improves the temporal resolution

of the acquisition which is a key factor for imaging rapidly occurring events in

Biology. But more fluorophores per snapshot means again more chance of over-

lapping diffraction spots hence a more challenging inverse problem to solve. That

is why PALM/STORM require high performance numerical methods to improve

the spatial and temporal resolution (see for example [73] for a method using the

CEL0 penalty). The Single Molecule Localization Microscopy (SMLM) contest2

compares different algorithms to locate the fluorescent molecules. One of the main

goals of this thesis is, after studying theoretically the super-resolution problem

in Chapter 1 and Chapter 3, to provide such a numerical method to tackle these

problems. In Chapter 4, we presented a grid-less greedy algorithm to solve the

BLASSO inverse problem. In the following, we propose to use this algorithm for

the PALM + MA-TIRF model (see Section 5.1.3 for details on MA-TIRF).

To conclude this section, note that there are others methods based on a stochas-

tic readout. FPALM (Fluorescence PALM), see [87], is similar to PALM but uses,

instead of a TIRF microscope, a classical confocal microscope. dSTORM (direct

STORM), see [79], is a simplified version of STORM (it enables to use conven-

tional photo-switchable fluorescent dyes). GSDIM (Ground State Depletion fol-

2http://bigwww.epfl.ch/smlm
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lowed by Individual Molecule return), see [68, 139], is similar to GSD but uses a

stochastic readout.

5.1.3 Axial Resolution, TIRF and MA-TIRF

So far, we have only discussed about lateral resolution but when looking at a

sample, the information is in a 3D volume. Conventional microscopes (widefield,

confocal...) have a typical axial resolution of 400 to 700 nm [83, 108] which is,

similarly to the 200 nm barrier for lateral resolution of such methods, a important

limitation for the imaging of complex living cells phenomena. We have seen in

Section 5.1.2 that methods such as STED, PALM or STORM break the diffraction

limit and achieve resolutions as small as 20 nm. However these methods offer little

improvements of the axial resolution.

To get 3D information on the sample, one can make the PSF dependent of the

axial variable and/or take data from several focal planes at the same time. For ex-

ample, a 3D adaptation of the FPALM method [95] gives a 30 nm lateral resolution

and 75nm axial resolution over a range of 800 nm. The authors obtain this improve-

ment in depth resolution by gathering data from two focal planes at the same time

and distant of each other of 500 nm. Another method based on PALM, which en-

ables the recovery of axial information can be found in [121]: a double-helix point

spread function is used and consists of two spots in the image plane whose angular

orientation rotates with the axial position of the fluorophore. It gives a 20 nm depth

resolution. In [90], the authors make a 3D adaptation of the STORM method by

using optical astigmatism i.e. they analyze the ellipticity of the diffraction-limited

image which encodes the depth of molecules. They achieve an image resolution of

20 to 30 nm in the lateral dimensions and 50 to 60 nm in the axial dimension. For

3D-STED, in [84] the authors obtained an axial resolution of 30 to 40 nm.

PALM and STORM both use a TIRF (Total Internal Reflection Fluorescence)

microscope [4, 5, 6]. This type of microscope can limit the activation of fluo-

rophores to only a small layer of the sample with a dimension inferior to the wave-

length. This reduces the background fluorescence compared to classical widefield

and confocal microscopes, hence leading to a better signal to noise ratio. In the fol-

lowing, we explain how a TIRF microscope works and how the Multi-Angle TIRF

(MA-TIRF) [126, 21] is a method capable, when used in combination with PALM

or STORM techniques, of recovering images with both high lateral resolution and

high axial resolution. In Section 5.2, we detail the mathematical models that one

considers for the PALM + MA-TIRF method along with PALM + Astigmatism

and PALM + Double-Helix. In Section 5.3, we compare the recovery performance

of fluorophores randomly selected on a generated microtubule structure for these

three models when solving the BLASSO by using the numerical method detailed

in Chapter 4.

TIRF: In a TIRF (Total Internal Reflection Fluorescence) microscope, the inci-

dent beam (or excitation beam) first travels through the glass slide. One denotes by
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ni the refractive index of this media. Then the beam goes inside the sample (a cell

for example) and we denote by nt its refractive index. In this thesis we choose:

ni = 1.515 and nt = 1.333, (5.1.1)

which correspond respectively to typical indexes for glass and water.

By the Snell-Descartes laws, we know that the incidence angle αi, the refrac-

tion angle αt and the reflection angle αr satisfy the following relationships:

ni sinαi = nt sinαt and αi = αr. (5.1.2)

Let us define the critical angle αc as:

αc
def.
= arcsin

(
nt

ni

)

. (5.1.3)

It is well defined because here nt < ni, and it corresponds to a refraction angle αt =
π
2

. This angle is the angle of incidence above which the total internal reflection

phenomenon occurs. When αi < αc, a fraction of the incident light travels through

the sample with an angle αt and the rest is reflected inside the incident media with

an angle αr according the Snell-Descartes laws. When αi > αc, all the incident

light is reflected and inside the sample an evanescent wave appears, starting at the

interface between the two media and propagating in parallel to the interface. See

Figure 5.5.

αc

αi

αr

αt

ni

nt

αc

αi

αr

αt =
π
2

ni

nt

αc

αi

αr

ni

nt

αi < αc αi = αc αi > αc

Figure 5.5: Refraction and reflection of an incident light beam according to three

different values of αi, when nt < ni. When αi > αc, all the incident light is re-

flected: this corresponds to the total internal reflection phenomenon used in a TIRF

microscope.

A TIRF microscope operates when the total internal reflection phenomenon is

valid i.e. αi > αc. A mirror galvanometer deflects the excitation laser and enables

to choose the incident angle αi. A prism or an objective [6] is used to focus the

incident beam on the sample. The angle at which the laser hits the prism or the

objective is directly linked to the incident angle αi. As a result, when using an

objective to focus the light on the sample, one cannot obtain incident angles αi
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greater than a given αmax defined by the numerical aperture NA of the objective:

αmax = arcsin

(
NA

ni

)

. (5.1.4)

Figure 5.6 summarizes the principle of TIRF microscopy.

Interface

αc

αmax

Cell

(nt = 1.333)

Excitation laser

Evanescent wave
Excited fluorophore

Fluorophore

Glass slide

(ni = 1.515)

Figure 5.6: TIRF microscopy principle. An excitation laser hits the interface be-

tween the glass and the sample with an angle αi ∈ [αc,αmax]. Since αi > αc, all

the light is reflected, an evanescent wave in the sample appears and excites some

fluorophores only on a thin region located near the interface.

The intensity of the evanescent wave in the sample is given at depth z with

angle α by (see [6, 111, 134]):

I(z,α) = I0(α)e−s(α)z where s(α) =
4πni

λℓ

(
sin2(α)− sin2(αc)

)
. (5.1.5)

When s(α)≪ 1, then z 7→ I(z,α) decreases slowly. Hence, by Equation (5.1.5),

angle values α close to αc leads to a slow decrease of the evanescent wave. On

the contrary angles values α close to αmax lead to a quick decrease which means

that only the fluorophores localized near the interface can be visualized. Figure 5.7

shows the influence of the angle α on the evanescence of the wave in the sample,

the consequence on the activation of the fluorophores and along with an example

of a microtubule structure generated in a 3D volume observed through a simulated

TIRF microscope with different angles. Figure 5.8 shows a comparison, for the

same 3D microtubule structure, of simulated views of a TIRF microscope with

different angles and a classical widefield microscope taking into account the astig-

matism phenomenon or with a double helix point spread function for several focal
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planes. See Section 5.2 for more details on the mathematical modeling of the TIRF

(MA-TIRF), Astigmatism and double helix PSF for PALM/STORM.

One sees in Figure 5.7 that varying the angle αi of the excitation laser changes

what is visualized (according to the depth) through the microscope. This suggests

that recording images for several angles at a time may enable to recover the axial

positions of the fluorophores. This is the main principle of the MA-TIRF method.
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Figure 5.7: Influence of the laser beam incident angle in a (modeled) TIRF micro-

scope on the imaging of the same microtubule structure (g) (numerically generated

and composed of four filaments of width 10 nm with a depth range of 800 nm).

When the incident angle is close of π/2 (f) then only the parts of the microtubules

that are near the interface are captured by the microscope. When the incident angle

is close of αc (d) then all the structure is imaged. Moreover the parts of the struc-

ture near the interface have a higher light intensity (f) than when all the structure is

imaged (d). This suggests that taking several angles in the acquisition process may

enable the recovery of depth information (see Multi-Angle TIRF).
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Figure 5.8: Comparison of the simulated imaging of a microtubule structure seen

by three different microscopes. For MA-TIRF, the images obtained for three dif-

ferent angles: αc < α1 < α2 < α3 < αmax. For Astigmatism and Double-Helix,

images obtained for three different focal planes: z = 0.2, z = 0.4 and z = 0.6.

When the angles or when the focal planes change, the geometrical structures dis-

played also vary. This means that we may recover depth information using these

data.
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MA-TIRF: The amount of photons collected by a TIRF microscope at the i-

th pixel of the observed image is proportional to the density of the fluorophores

modulated by the lateral impulse response and the intensity of the axial evanescent

wave (given in Equation 5.1.5), integrated over the corresponding domain in the

sample. As a result, the forward operator Φα of a TIRF acquisition for a given

incident angle α ∈]αc,αmax] can be modeled by:

Φα f
def.
=

(∫

Ωi

ψ(x,y)

(∫ zb

0
I(z,α) f (x,y,z)dz

)

dxdy

)

16i6Nx×Ny

,

where:

1. f is the density of fluorophores in the sample,

2. ψ represents the lateral impulse response (typically a Gaussian) of the mi-

croscope. Because of the fast decay of the evanescent wave along z, the PSF

can be assumed constant on the observed layer. Hence we model it as a 2D

function,

3. I is the intensity of light of the evanescent wave in the sample with respect

to the angle of the incident laser beam and the depth (see Equation 5.1.5),

4. Ωi is the region in the lateral plane of the sample corresponding to the i-th

pixel of the image obtained thanks to the microscope,

5. Nx and Ny are the number of pixels of the observed image along respectively

the x-axis and y-axis.

6. zb defines the axial range (depth) of the sample.

One sees that depending on the decay pattern of the intensity I(z,α) of the evanes-

cent wave in the sample (which is directly linked to the incident angle α , see Fig-

ure 5.7), the collected data Φα f ∈RNx×Ny change with respect to the axial content

(z axis) of the sample. This is what one observes in Figure 5.7, where only the parts

of the microtubule structure near the interface are imaged by a TIRF microscope

when the incident angle α is close of αmax whereas all the structure is imaged when

α is close of αc.

This means that if one considers a set of K ∈N∗ angles

A = {α1, . . . ,αK} with αc < α1 < .. . < αK 6 αmax,

then recording at the same time an image for each angles αk gives the following

data:

Φ f = (Φα1
f , . . . ,ΦαK

f )RK×Nx×Ny . (5.1.6)

These measures may enable to recover with high precision the axial positions of the

fluorophores. Here, Φ models the forward operator for the so-called Multi-Angle
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TIRF (MA-TIRF) technique. The typical depth resolution achieved by this method

is 20 nm over a range of 500 to 800 nm, see [126, 21].

However this method does not give any improvements of the lateral resolution

with respect to a classical microscope (because it is based on a standard optical sys-

tem). The Morpheme team (CNRS/INRIA/UCA) at the Institute of Biology Val-

rose (iBV), which works on MA-TIRF [136, 135] and built such a system, is cur-

rently working on combining the PALM/STORM techniques with the MA-TIRF

technique (i.e. using the stochastic activation of sparse subset of fluorophores with

a TIRF microscope) to get the best of both worlds: a sub-diffraction lateral and

axial resolution of the order of 20 nm. This new technique is not yet available on

the market but it is important to investigate the recovery performance of this new

method when solving the BLASSO using the Sliding Frank-Wolfe algorithm (see

Section 5.3) and compare the results to two other methods: PALM+Astigmatism

and PALM+Double-Helix.

5.1.4 Contributions

In Section 5.2, we detail a mathematical framework, close of the one encoun-

tered by experimenters, modeling the acquisition of data for the three models

PALM+Double-Helix, PALM+MA-TIRF and PALM+Astigmatism. One provides

the forward operators Φ for these three cases. In the particular case of the Double-

Helix and Astigmatism, one gives a formulation that deals with several cameras

mounted in parallel and acquiring data in the same time from several focal planes.

The number of angles in the MA-TIRF case or of focal planes is denoted K.

In Section 5.3, one uses our algorithm to solve the BLASSO for these three

models in the designed framework of Section 5.2, providing a new way (grid-

less approach) to tackle this 3D problem. One shows that the best performance

is attained by the PALM+Double-Helix model followed by the PALM+MA-TIRF

model and finally the PALM+Astigmatism model. The peak performance is at-

tained in all cases when K = 4. For the Double-Helix and Astigmatism, we show

that considering at least two focal planes (K = 2) instead of one (standard in the lit-

erature) improves significantly the recovery performance. The resolution attained

for both models is under 20 nm in all dimensions.
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5.2 Modelling of the 3D recovery problem

In this section we explore the mathematics behind the data obtained through

three different models of acquisition for optical systems based on a stochastic read-

out (PALM/STORM, see Section 5.1.2 for more details), for the 3D recovery prob-

lem of fluorophores with a resolution under the diffraction limit.

Using the Sliding Frank-Wolfe algorithm, one wants to solve the BLASSO:

min
m∈M (X)

1

2
‖Φm− y‖2

H
+λ |m|(X),

where y = Φma0,x̄0
+w, in the case of the PALM+MA-TIRF, PALM+Astigmatism

and PALM+Double-Helix models. As a result we need to define:

1. X and ma0,x̄0
are defined in details in Section 5.2.1 where we explain how we

generate the ground-truths (i.e. the initial measures ma0,x̄0
) that one wants to

recover using the algorithm,

2. H and Φ the forward operator for the three models, detailed in Section 5.2.2,

3. w the noise on the data, detailed in Section 5.2.3.

5.2.1 Model of Generation of Spikes

A typical example of structures that the biologists want to image under the

diffraction limit is structures composed of microtubules, which are protein fila-

ments and are the base components of the cytoskeleton of eukaryotic cells. The

diameter of a microtubule is around 25 nm, therefore imaging methods such as

PALM/STORM which offer a lateral resolution of 20-30 nm seem particularly ap-

propriate. Figure 5.9 shows an example of microtubules in a living cell.

One wants to compare PALM + MA-TIRF with PALM + Astigmatism and

PALM + Double-Helix when solving the BLASSO using the Sliding Frank-Wolfe al-

gorithm, for the recovery of fluorophores in a 3D volume. Therefore we propose

to use the same numerically generated microtubules structure and try to recover it

with all three models and measure various metrics to make comparisons (see Sec-

tion 5.3 for the numerical results and Section 4.3.2 for more details on the metrics

used). Figure 5.10 shows the filaments that we use in the following to generate

random sets of spikes.

Let us introduce some notations to detail how the filaments structure of Fig-

ure 5.10 is numerically generated and how we produce the initial measures we try

to recover with the algorithm for the three models. One denotes by:

X = [0,xb]× [0,yb]× [0,zb] ⊂R
3 where xb = yb = 6.4, zb = 0.8,

the set where the positions of the spikes (or fluorophores) lie. X corresponds to the

sample being imaged. The unit used here is the micrometer, thus this means that
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Figure 5.9: Microtubules (in green) and actin microfilaments (in red) of a U2OS

human osteosarcoma cell. The typical diameter of a microtubule is 25 nm. Image

obtained from the Cell Image Library, http: // www. cellimagelibrary. org/

images/ 7756 .

the depth range is 0 to 800 nm. This choice of dimensions for the domain X ties in

with real life applications and datasets used for the Single-Molecule Localization

Microscopy challenge, see http://bigwww.epfl.ch/smlm/challenge2016/

index.html?p=datasets.

The filaments of Figure 5.10 are obtained by scattering many points randomly

uniformly sampled along four curves parametrized by polynomial equations. To

ensure that the points are equidistributed along the curves, we first parametrize

each curve by a piecewise linear function (with very small steps) which is in turn

parametrized by the arc length. Finally, in order to give a width to the filaments,

each point (x,y,z) randomly chosen on one of the curves is replaced by a point

randomly chosen in a ball of center (x,y,z) and of radius 0.01 (i.e. 10 nm). This

gives the diameter of 20 nm for the microtubules showed in Figure 5.10.

An acquisition of the filaments structure of Figure 5.10 for each of the 3D

models corresponds to the imaging, using the different PSF (see Section 5.2.2),

of every of the n ∈N∗ sparse set of spikes randomly chosen on the microtubules.

This process models the stochastic activations of sparse subsets of fluorophores in

the sample and the recording of the snapshots. Each sparse set of spikes is modeled

by a Radon measure composed of a sum of Dirac masses with positive amplitudes:

ma0,x̄0
=

N

∑
i=1

a0,iδx̄0,i
where a0,i > 0 and x̄0,i = (x0,i,y0,i,z0,i) ∈ X .

Here we make the assumption that each sparse set of spikes, i.e. each ma0,x̄0
, is

composed of the same number N ∈N∗ of Dirac masses (of course the algorithm

has only access to the observations i.e. y = Φma0,x̄0
+w and not to the value N). In
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Figure 5.10: Microtubules structure used to generate the ground truths for the com-

parisons of the three different models. The diameter of the filaments is 20 nm.

general this number is not always the same and instead varies around a given value

depending on the power of the excitation laser beam. In Section 5.3, we measure

the recovery performance for several values of N (for the three models) to see the

influence of the density of fluorophores. As already explained in Section 5.1.2,

an imaging technique based on a stochastic readout which enjoys good recovery

performance for a high density of fluorophores on each snapshots results in an

improvement of the temporal resolution of the acquisition (which is a key factor

for imaging rapidly occurring events in Biology). Figure 5.11 shows an example

of an initial measure ma0,x̄0
randomly chosen on the filaments structure and used as

a ground-truth.

Figure 5.11: Microtubules structure used to generate the ground truths for the com-

parisons of the three different models with an initial measures ma0,x̄0
randomly

chosen on it (black cross).

To summarize this section, for each value of N we generate a set M0 of n

measures ma0,x̄0
, each composed of N spikes, randomly chosen on the microtubules
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structure of Figure 5.10. The set M0 is used, for every of the three models that one

wants to compare, to generate the snapshots (i.e. the Φma0,x̄0
+w) obtained thanks

to their respective PSF and used as the inputs of the Sliding Frank-Wolfe algorithm.

Now that we have our initial measures M0, we need to detail how we compute

the forward operators Φ.

5.2.2 Forward Operators

In this section, we define the forward operators Φ for the three models. One

has:

∀m ∈M (X), Φm =
∫

X
ϕ(x,y,z)dm(x,y,z).

The operator Φ, for the three models, is built upon the 2D case where only the

variables (x,y) matter. Therefore let us first study this particular setting.

Φ in the 2D case. This setting corresponds to the well-known PALM/STORM

setup. In this setup, the PSF of the system is often approximated by a 2D Gaussian

with variance σ2
x and σ2

y (for respectively the x-axis and the y-axis). Hence one

can write:

∀m ∈M (X), Φm =

(

p ∈R
2 7→

∫

X
ψ(p− (x,y))dm(x,y)

)

∈ L2(R2),

where for all (s, t) ∈R2:

ψ(s, t) =ψx(s)ψy(t) with ψx(s) =
1

√

2πσ2
x

e
−s2

2σ2
x and ψy(t) =

1
√

2πσ2
y

e
−t2

2σ2
y ,

So Φ is a Gaussian convolution in 2D. In order to manipulate Φm with a computer,

one integrates the PSF over the camera pixels.

Φ in the 2D sampled case. Let us denote Nx and Ny respectively the number of

pixels of the camera along the x-axis and the y-axis. One considers:

∀1 6 i 6 Nx, xi =
1

2Nx

+(i−1)
xb

Nx

,

∀1 6 i 6 Ny, yi =
1

2Ny

+(i−1)
yb

Ny

,

uniformly distributed points in [0,6.4], so that for (i, j) ∈ {1, . . . ,Nx}×{1, . . . ,Ny},
(xi,y j) is the center of the domain in the sample corresponding to the pixel (i, j) of

the camera. Thus we consider that the value recorded by the camera for the pixel

(i, j), i.e. (Φm)(i, j), is the integral of p ∈ R2 7→ ∫

X ψ(p− (x,y))dm(x,y) over the

domain [xi− 1
2Nx

,xi +
1

2Nx
]× [y j− 1

2Ny
,y j +

1
2Ny

].
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As a result, the forward operator Φ in the 2D case is Φm =
∫

X ϕ(x,y)dm(x,y)
where:

ϕ(x,y) = (ψx(xi− x)ψy(yi− y))(i, j)∈{1,...,Nx}×{1,...,Ny} ∈R
Nx×Ny .

where for all (s, t) ∈R2:

ψx(s) =
1

2

(

erf

(

s+ 1
2Nx√

2σx

)

− erf

(

s− 1
2Nx√

2σx

))

,

ψy(t) =
1

2

(

erf

(
t + 1

2Ny√
2σy

)

− erf

(
t− 1

2Ny√
2σy

))

,

with erf
def.
= 2√

π

∫ ·
0 e−t2

dt.

Now that we have defined a forward operator in the 2D case, in the following

we add a particular z dependency to ϕ for each of the three 3D models.

Φ for the PALM + MA-TIRF model. Following what was presented in Sec-

tion 5.1.3, we combine the MA-TIRF setup with the PALM/STORM technique to

recover 3D information. The forward operator of this model is based on the forward

operator presented in the previous paragraph for the recovery of information in the

(x,y) plane (integration of a Gaussian convolution over the camera pixel domains)

and on a normalized discretized Laplace transform, presented in Section 4.3.1), in

the z axis for the recovery of depth information. More precisely, we have:

∀m ∈M (X), Φm =
∫

X
ϕ(x,y,z)dm(x,y,z),

where:

ϕ(x,y,z) = (ψx(xi− x)ψy(yi− y)ψk(z))(i, j,k)∈{1,...,Nx}×{1,...,Ny}×{1,...,K} ∈R
Nx×Ny×K .

with for all k ∈ {1, . . . ,K} and for all z ∈ [0,zb]:

ψk(z) = ξ (z)e−skz with ξ (z) =

(
K

∑
k=1

e−2skz

)−1/2

.

Note that we consider here a normalized Laplace transform even if the data

acquired through the experimental setup, see Equation (5.1.6), are not normalized.

This is theoretically and numerically justified in Section 4.4.1.

The values of the (sk)k∈{1,...,K} are obtained according to Equation (5.1.5):

sk =
4πni

λℓ

(
sin2(αk)− sin2(αc)

)
,

where the αk are the incident angles of the excitation laser (see Figure 5.6):

A = {α1, . . . ,αK} with αc < α1 < .. . < αK 6 αmax.
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One remarks that because αK 6 αmax, the values taken by the sk are upper

bounded by the positive constant:

4πni

λℓ

(sin(αmax)
2− sin(αc)

2).

As mentioned in Section 4.4.2, it restricts the ability to recover spikes that are

aligned on the z-axis (same (x,y)) near the interface i.e. z small. This observation

is confirmed by our 3D numerical experiments, see Section 5.3.

Remark 7. On a numerical standpoint, it is worth noting that the kernel ϕ is sepa-

rable in the variables x,y,z, which is not the case for the PALM+Astigmatism and

PALM+Double-Helix (see the next paragraphs). This can be advantageously used

in the code to reduce the overall complexity.

(a) α1 (b) α2 (c) α3 (d) α4

Figure 5.12: y0 = Φma0,x̄0
when K = 4 for the PALM+MA-TIRF model with the

constants of table 5.13 and ma0,x̄0
given in (5.2.1).

Names Values Names Values

σx = σy 0.186 NA 1.49

Nx = Ny 64 ni 1.515

xb = yb 6.4 nt 1.333

zb 0.8 λℓ 0.66

Figure 5.13: Numerical constants used in all Chapter 5. They correspond to typ-

ical real-life experimental values. For σx,σy,xb,yb,zb,λℓ the unit the micrometer

(10−6m).

Figure 5.12 shows the data (y0 = Φma0,x̄0
) when K = 4 and for the numerical

constants given in the table of Figure 5.13. The initial measure considered is:

ma0,x̄0
= δ(1.5,2.5,0.1)+ δ(1.5,3,0.5)+ δ(2,5,0.7)+ δ(4.5,3.5,0.4)+ δ(5,1,0.2). (5.2.1)

The angles α1 < α2 < α3 < α4 are taken uniformly such that α4 = αmax and α1 >

αc is very close of αc. One remarks, as already mentioned, that the spikes far from

the interface (here δ(1.5,3,0.5) and δ(2,5,0.7)) are only visible for values of α close of
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(a) z = 0.1 (b) z = 0.5

Figure 5.14: ηV for the PALM+MA-TIRF model for ma0,x̄0
given in Equa-

tion (5.2.1).

αc (here α1 and α2) because of the exponential decay. In addition, for angles close

of αmax (here α3 and α4) only the spikes near the interface are visible.

Figure 5.14 shows ηV for the measure given in Equation (5.2.1) at z = 0.1

and z = 0.5. One sees that ηV (1.5,2.5,0.1) = ηV (1.5,3,0.5) = 1 and is otherwise

smaller than 1. ηV is non-degenerate so that one can recover in a low noise regime

using our algorithm a measure composed of the same number of Dirac masses as

ma0,x̄0
(see Theorem 6).

Φ for the PALM + Astigmatism model. One now details the forward operator

of the PALM+Astigmatism model. To recover depth information, this model con-

siders a deformation along the x and y axis of a 2D Gaussian with respect to z.

More precisely, we have:

ϕ(x,y,z) = (ψx(xi− x,z)ψy(yi− y,z))(i, j)∈{1,...,Nx}×{1,...,Ny} .

with for all (s, t) ∈R2 and for all z ∈ [0,zb]:

ψx(s,z) =
1

2

(

erf

(

s+ 1
2Nx√

2σx(z)

)

− erf

(

s− 1
2Nx√

2σx(z)

))

,

ψy(t,z) =
1

2

(

erf

(
t + 1

2Ny√
2σy(z)

)

− erf

(
t− 1

2Ny√
2σy(z)

))

.

So the size of the 2D Gaussian integrated over the pixel’s domains of the camera

depends on z. The dependence of σx and σy on z is illustrated in Figure 5.15. It is



5.2. MODELLING OF THE 3D RECOVERY PROBLEM 159

Figure 5.15: σx and σy with respect to z when fp = 0.4.

given by the following expressions:

σx(z) = σ0

√

1+

(
α(z− fp)−β

d

)2

,

σy(z) = σx(−z+ 2 fp),

where the constants involved are given in the table of Figure 5.16. With such choice

Names Values Names Values

σ0
0.42λℓ

NA
α −0.79

β 0.2 d λℓni

2NA
2

Figure 5.16: Numerical constants used in all Chapter 5. They correspond to typical

real-life experimental values. The values of λℓ,NA,ni can be found in Figure 5.13.

of constants, one obtains that the minimum value taken by σx and σy is σ0 ≃ 0.186

(size of the Gaussian for the PALM+MA-TIRF model).

The kernel ϕ presented above corresponds to the classical astigmatism adjust-

ment. It is made with respect to only one focal plane ( fp = 0.4 in Figure 5.15)

because there is only one camera acquiring the data. However one can imagine

several cameras focalized at different focal planes and acquiring the data in the

same time. This process can be thought as equivalent to acquiring the data for

several angles of the excitation laser for the MA-TIRF model. The experimen-

tal setup is more difficult to install than with one camera, but it can be done: see

for example [92]. One can then expect that this technique improves the recovery

performance. This is indeed confirmed in our numerical results presented in Sec-

tion 5.3. As a result the kernel of the forward operator, for the PALM+Astigmatism

model, that we rather consider is given by:

ϕ(x,y,z) = (ψx,k(xi− x,z)ψy,k(yi− y,z))(i, j,k)∈{1,...,Nx}×{1,...,Ny}×{1,...,K} ∈R
Nx×Ny×K .
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where for all (s, t) ∈R2, for all z ∈ [0,zb] and for all k ∈ {1, . . . ,K}:

ψx,k(s,z) =
1

2

(

erf

(

s+ 1
2Nx√

2σx,k(z)

)

− erf

(

s− 1
2Nx√

2σx,k(z)

))

,

ψy,k(t,z) =
1

2

(

erf

(
t + 1

2Ny√
2σy,k(z)

)

− erf

(
t− 1

2Ny√
2σy,k(z)

))

,

with:

σx,k(z) = σ0

√

1+

(
α(z− fp,k)−β

d

)2

,

σy,k(z) = σx,k(−z+ 2 fp,k).

In this case fp = ( fp,k)k∈{1,...,K} ∈ RK is a vector of focal planes. In practice we

take:

∀k ∈ {1, . . . ,K}, fp,k =
k

K + 1
zb.

Figure 5.17 shows the data (y0 = Φma0,x̄0
) when K = 4 and for the numerical

constants given in the table of Figure 5.13 and 5.16. The same initial measure as

in the previous paragraph is considered (see Equation 5.2.1).

(a) fp,1 (b) fp,2 (c) fp,3 (d) fp,4

Figure 5.17: y0 = Φma0,x̄0
when K = 4 for the PALM+Astigmatism model with

the constants of table 5.13 and 5.16, and ma0,x̄0
given in (5.2.1).

One remarks that the Gaussians around the spikes are stretched in the x and y

axis depending on the focal plane fp,k and the depth z of the spike considered. For

example, if we look at the particular spike δ(1.5,3,0.5) we note that the diffraction pat-

tern centered on it forms a disk for fp,3. This is because 0.5 is close of fp,3 = 0.48

and σx,3(0.48) = σy,3(0.48) (for all k, σx,k( fp,k) = σy,k( fp,k) = σ0

√

1+(β /d)2≃
0.25).

Figure 5.18 shows ηV for the measure given in Equation (5.2.1) at z = 0.1

and z = 0.5. One sees that ηV (1.5,2.5,0.1) = ηV (1.5,3,0.5) = 1 and is otherwise

smaller than 1. As a result, ηV seems non-degenerate.
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(a) z = 0.1 (b) z = 0.5

Figure 5.18: ηV for the PALM+Astigmatism model for ma0,x̄0
given in Equa-

tion (5.2.1).

Φ for the PALM + Double Helix model. One now details the forward opera-

tor of the PALM+Double-Helix model. To recover depth information, this model

considers a rotation controlled by z of two Gaussians offset by opposite constants.

More precisely, we have:

ϕ(x,y,z) =
(
ψ1

x (xi− x,z)ψ1
y (yi− y,z)+ψ2

x (xi− x,z)ψ2
y (yi− y,z)

)

(i, j)
,

with for all (s, t) ∈R2 and for all z ∈ [0,zb]:

ψ1
x (s,z) =

1

2

(

erf

(

s+ 1
2Nx
− rx(z)√

2σx

)

− erf

(

s− 1
2Nx
− rx(z)√

2σx

))

,

ψ1
y (t,z) =

1

2

(

erf

(
t + 1

2Ny
− ry(z)

√
2σy

)

− erf

(
t− 1

2Ny
− ry(z)

√
2σy

))

ψ2
x (s,z) =

1

2

(

erf

(

s+ 1
2Nx

+ rx(z)√
2σx

)

− erf

(

s− 1
2Nx

+ rx(z)√
2σx

))

,

ψ2
y (t,z) =

1

2

(

erf

(
t + 1

2Ny
+ ry(z)

√
2σy

)

− erf

(
t− 1

2Ny
+ ry(z)

√
2σy

))

,

where:

rx(z) =
ω

2
cos(θ (z)), (5.2.2)

ry(z) = −
ω

2
sin(θ (z)), (5.2.3)

θ (z) =
π

3

z− fp

zb− fp

. (5.2.4)
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So ψ1
x (xi − x,z)ψ1

y (yi − y,z) corresponds to a 2D Gaussian, integrated over the

pixel’s domains of the camera, offset by ω/2 are rotated by the angle θ (z). ψ2
x (xi−

x,z)ψ2
y (yi−y,z) is the same thing but offset−ω/2. Having two rotating Gaussians

instead of one prevents from eventually mis-identifying the position of a spike in

the (x,y) plane.

The numerical constants involved in this model can be found in the tables of

Figure 5.13 and 5.19.

Name Value

ω 1

Figure 5.19: Numerical constant used in all Chapter 5. It corresponds to typical

real-life experimental value.

The kernel ϕ presented above corresponds to the classical and ideal double-

helix model. It is made with respect to only one focal plane because there is only

one camera acquiring the data. However, similarly to in the case of the astigmatism

model, one can imagine several cameras focalized at different focal planes and

acquiring the data in the same time. As a result the kernel of the forward operator,

for the PALM+double model, that we rather consider is given by:

ϕ(x,y,z) =
(
ψ1

x,k(xi− x,z)ψ1
y,k(yi− y,z)+ψ2

x,k(xi− x,z)ψ2
y,k(yi− y,z)

)

(i, j,k)
,

ϕ(x,y,z) ∈RNx×Ny×K , (s, t) ∈R2, for all z ∈ [0,zb] and for all k ∈ {1, . . . ,K}:

ψ1
x,k(s,z) =

1

2

(

erf

(

s+ 1
2Nx
− rx,k(z)√
2σx

)

− erf

(

s− 1
2Nx
− rx,k(z)√
2σx

))

,

ψ1
y,k(t,z) =

1

2

(

erf

(
t + 1

2Ny
− ry,k(z)

√
2σy

)

− erf

(
t− 1

2Ny
− ry,k(z)

√
2σy

))

ψ2
x,k(s,z) =

1

2

(

erf

(

s+ 1
2Nx

+ rx,k(z)√
2σx

)

− erf

(

s− 1
2Nx

+ rx,k(z)√
2σx

))

,

ψ2
y,k(t,z) =

1

2

(

erf

(
t + 1

2Ny
+ ry,k(z)

√
2σy

)

− erf

(
t− 1

2Ny
+ ry,k(z)

√
2σy

))

.

where:

rx,k(z) =
ω

2
cos(θk(z)),

ry,k(z) = −
ω

2
sin(θk(z)),

θk(z) =
π

3

z− fp,k

fp,K

.



5.2. MODELLING OF THE 3D RECOVERY PROBLEM 163

When K = 1, one sees with Equation (5.2.4) that the rotation angle θ (z) varies

from −π/3 to π/3 when z goes from 0 to zb. So the rotation amplitude is in this

case 2π/3. In the general case that we consider in this thesis (several focal planes)

one sees that θk is designed such that the range of rotation angles changes for every

focal plane considered fp,k but has always the same amplitude given by π
3

K+1
K

. Of

course with this general formulation, we recover the classical model when K = 1.

Figure 5.20 shows the data (y0 = Φma0,x̄0
) when K = 4 and for the numerical

constants given in the table of Figure 5.13 and 5.19. The same initial measure as

before is considered (see Equation 5.2.1).

(a) fp,1 (b) fp,2 (c) fp,3 (d) fp,4

Figure 5.20: y0 = Φma0,x̄0
when K = 4 for the PALM+Double-Helix model with

the constants of Table 5.13 and ma0,x̄0
given in (5.2.1).

One sees for example by tracking the PSF produced by the spike δ(2,5,0.7), that

the two Gaussians rotate progressively throughout the different focal planes. And

one remarks that they are almost horizontal for fp,4. This is because fp,4 = 0.64 is

close of 0.7 and θ4( fp,4) = 0. More generally, the two Gaussians produced by a

Dirac mass appear horizontal for a given focal plane fp,k if the depth of the Dirac

mass is equal to fp,k, because one has θk( fp,k) = 0.

Figure 5.21 shows ηV for the measure given in Equation (5.2.1) at z = 0.1

and z = 0.5. One sees that ηV (1.5,2.5,0.1) = ηV (1.5,3,0.5) = 1 and is otherwise

smaller than 1. As a result, ηV seems non-degenerate.

5.2.3 Noise model

Now that we presented in the last section the forward models involved in this

chapter, we give in this section the model of noise that corrupts the data. This

model, that we detail below, is directly motivated by the experimental setup.

The noise on the data has two components:

• first a Poisson noise which comes from random emissions of photons by the

excited fluorophores (shot noise). One denotes it P(Φma0,x̄0
) ∈RNx×Ny×K ,

it follows a Poisson distribution whose intensity is controlled by nphoton ∈
R+, which we call the photon budget. This photon budget is distributed over

each image of the sample acquired corresponding to either an angle αk (for

the PALM+MA-TIRF model) or a focal plane fp,k (for the PALM+Astigmatism
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(a) z = 0.1 (b) z = 0.5

Figure 5.21: ηV for the PALM+Double-Helix model for ma0,x̄0
given in Equa-

tion (5.2.1).

and double-helix models). As a result the greater K, the more there is Pois-

son noise contaminating the data.

• A Gaussian noise which comes from the camera acquiring the incoming sig-

nal. One denotes it wG = σw0 where w0 follows a centered Gaussian distri-

bution with variance 1. wG is in general negligible with respect to Poisson

noise.

So one has:

y = P(Φma0,x̄0
)+wG.

Note that the noise is not additive anymore. In the next Section 5.3 where we

present our numerical results for the three models detailed previously, we consider

the numerical values given in the table of Figure 5.22 for the noise on the data. It

corresponds to a low noise framework.

Name Value

nphoton 1000

σ 1e−4

Figure 5.22: Numerical constant involved for the noise model and used in Sec-

tion 5.3.
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5.3 Numerical Results

In this section, one provides the numerical results that one obtained using our

algorithm (the SFW algorithm, see Chapter 4) to solve the BLASSO in the frame-

work of the fluorescent microscopy problem detailed in the introduction of this

chapter (see Section 5.1). More precisely one wants to recover fluorophores (flu-

orescent molecules) in a 3D volume (the sample) for each snapshot taken (several

thousands). One compares three different models of acquisition of the data (hence

three forward operators Φ). These three models are detailed in Section 5.2, there

are:

• the PALM+MA-TIRF model (abbreviated to Laplace in the following),

• the PALM+Astigmatism model (abbreviated to Astigmatism),

• the PALM+Double-Helix model (abbreviated to Double-Helix).

The use of a modified Frank-Wolfe algorithm for these 3D problems based on

the PALM/STORM model has never been done before. In [22], the authors applied

such an algorithm to the 2D problem and obtained state of the art numerical results

(see the page of the SMLM challenge 3).

One shows in the following that our algorithm applied to each of the models

provides a way to achieve a sub 20 nm resolution in the (x,y) plane but also in

the depth dimension z, when K is large enough (K = 3 or K = 4), even at the

highest density (N = 15). One shows that in this framework, the performance

plateau at K = 4. But one also proves that it improves significantly the perfor-

mance to consider at least K = 2 (two focal planes) for the PALM+Astigmatism

and PALM+Double-Helix models. One also shows that the PALM+Double-Helix

seems to achieve the best performance overall, followed by the PALM+MA-TIRF

model and finally the PALM+Astigmatism model.

One recalls that the data used in this section to produce the results are gener-

ated first by choosing randomly n measures ma0,x̄0
composed of N Dirac masses

distributed over a numerically generated microtubules structure (see Figure 5.10

and Section 5.2.1 for more details). The numerical constants used for the experi-

ments, already detailed in Section 5.2, are gathered here in the table of Figure 5.23.

Moreover one uses the following protocol: for each experiment, i.e. the choice of

a model and a set of parameters n,N,K, one chooses the value λ which maximizes

the Jaccard index for a radius of r = 0.02 (i.e. 20 nm). This radius corresponds to

the aim of resolution. The optimal values of λ are gathered in Figure 5.24. The

number of n initial measures for each density (N) is taken so that the total number of

spikes randomly chosen on the 3D structure is equal to 104. For the Double-Helix

and Astigmatism models, one considers K ∈ {1, . . . ,4} because the performance is

stabilized for K = 3 and K = 4 and because the computation time becomes unfa-

vorable. For the Laplace model we go up to K = 6 because the computation time

is quicker (see Remark 7).

3http://bigwww.epfl.ch/smlm/
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Names Values Names Values

σx = σy 0.186 NA 1.49

Nx = Ny 64 ni 1.515

xb = yb 6.4 nt 1.333

zb 0.8 λℓ 0.66

σ0
0.42λℓ

NA
α −0.79

β 0.2 d λℓni

2NA
2

ω 1 nphoton 1000

σ 1e−4

Figure 5.23: Numerical constants used in this section. Correspond to typical real-

life experimental values. Obtained from [90, 97] and the SMLM challenge web-

page.

PALM+MA-TIRF PALM+Astigmatism PALM+Double-Helix

K = 1 N=5 λ = 0.04 λ = 0.12

N=10 λ = 0.007 λ = 0.06

N=15 λ = 0.004 λ = 0.04

K = 2 N=5 λ = 0.03 λ = 0.012 λ = 0.05

N=10 λ = 0.021 λ = 0.01 λ = 0.05

N=15 λ = 0.013 λ = 0.01 λ = 0.04

K = 3 N=5 λ = 0.016 λ = 0.012 λ = 0.04

N=10 λ = 0.012 λ = 0.009 λ = 0.04

N=15 λ = 0.008 λ = 0.009 λ = 0.035

K = 4 N=5 λ = 0.012 λ = 0.012 λ = 0.04

N=10 λ = 0.008 λ = 0.009 λ = 0.04

N=15 λ = 0.008 λ = 0.009 λ = 0.03

N=20 λ = 0.005 λ = 0.003 λ = 0.01

K = 5 N=5 λ = 0.01

N=10 λ = 0.008

N=15 λ = 0.008

K = 6 N=5 λ = 0.009

N=10 λ = 0.007

N=15 λ = 0.007

Figure 5.24: Optimal values of the regularization parameter λ for all the experi-

ments made.

5.3.1 Numerical Results in Terms of Detection Indices

In this section, one presents the performance obtained for all the experiments

in terms of Jaccard index, Recall and Precision.
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Figure 5.25 shows the Jaccard index, the Recall and the Precision (see Sec-

tion 4.3.2 for their definitions) for the three models with respect to K (the num-

ber of angles or focal planes considered) and different densities of fluorophores

(N ∈ {5,10,15}).

(a) N = 5

(b) N = 10 (c) N = 15

Figure 5.25: Detection indices comparison of the three models w.r.t K for a radius

of detection r = 0.02.

One remarks that the various indices (J,R,P) increase with K, except for Laplace

for which there is a slight decrease when K = 5 and K = 6. This is expected be-

cause a higher K means more information gathered. Moreover because the photon

budget nphoton is distributed over each frame acquired of a given distribution of

fluorophores emitting light (one frame per angle or focal plane), a higher K means

also more Poisson noise contaminating the data. Hence for K large enough it bal-

ances the gain due to the increase of information. Then one sees that going from

one focal plane for Astigmatism and Double-Helix to two focal plane, improves

significantly the performance.

As expected, the Jaccard index, the Recall and the Precision decrease for the

three models for a fixed K with an increasing density of fluorophores.
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Finally, one remarks that the Double-Helix performs better than Laplace which

in turn performs better than Astigmatism.

Figure 5.26: Detection indexes and RMSE comparison of the three models w.r.t N

for r = 0.02 (20 nm).

Figures 5.26 and 5.27 show the Jaccard index, the Recall and the Precision for

the three models with respect to N ∈ {5,10,15} (all the values of K for each model

are displayed on the same graph). They also show the RMSE, for Root Mean

Square Error, which measures the mean of the quadratic errors between detected

spikes of the initial measures and the associated spikes of the recovered measures

used in the detection. The RMSE is given separately for each axes x, y and z. The

RMSE together with the Jaccard index gives more information than just the Jaccard

index alone. Indeed suppose that two models have the same J, then a difference in

the RMSE means than one of the two has a better accuracy than the other. It gives

basically an idea of the resolution obtained. The Jaccard, the Recall, the Precision

and the RMSE are computed for several radius of detection (r ∈ {0.02,0.06,0.1}).
Note that the RMSE when r = 0.02 is harder to interpret because the radius r is

very small only, the recovered spikes that are very close of a true fluorophore are

used to compute the RMSE. On the contrary, for r = 0.06 and r = 0.1, the mean

error also takes into account the spikes that are farther so that it gives a better

estimation of the real resolution achieved.

One sees, as already stated for Figure 5.25, that the increase of the density
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Figure 5.27: Detection indices and RMSE comparison of the three models w.r.t N

for r = 0.06 (60 nm) and r = 0.1 (100 nm).

leads to a decrease of the indices. In the same time and as expected, the RMSE

along the different axes increase. One remarks that the RMSE along the x and y
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axes are the same for Laplace and Double-Helix (around 5 nm when N = 5 and 12

nm at the highest density N = 15). Astigmatism has a worse RMSE along these

axes than Laplace and Double-Helix. Concerning the RMSE along the z axes, the

better performance (around 5 nm) are obtained by the Double-Helix (with even a

lower RMSE than along the axes x and y). Laplace and Astigmatism have similar

performance, around 10 nm.

To conclude, Double-Helix performs better than the other models because it

has the best resolution (equal with Laplace) in the (x,y) plane and has a signif-

icantly better resolution along the z axes than Laplace and Astigmatism. Then

comes Laplace which has a better resolution than Astigmatism in the (x,y) plane

but similar along the z axes.

5.3.2 Recovered 3D Structures

One now gives in this section the recovered structures obtained after each run

of an experiment. Figure 5.28 recalls the true microtubular structure that one aims

to recover (see Section 5.2.1 for more details on it and how the spikes of the initial

measures are generated).

Figure 5.28: Microtubules structure used to generate the ground truths for the com-

parisons of the three models. The diameter of the filaments is 20 nm.

Figures 5.29, 5.30 and 5.31 present the recovered structures for respectively

Laplace, Astigmatism and Double-Helix for all the values of K and densities.

Figures 5.33, 5.34 and 5.35 present the same thing but with a view of only the

(x,y) plane.

Figures 5.32 and 5.36 give a comparison, for respectively the side view and the

view of the (x,y) plane, of the recovered structure for the different densities, when

the models achieve the best performance (i.e. when K = 4).

Before commenting the results, note that the scale on the z axes is not the same

as on the x and y axes.
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One remarks visually that the recovery of the structure is better for every model

when K is higher and the density is lower. However it is hard to see any difference

for Laplace between the case K = 4, K = 5 and K = 6 (it should get slightly

worse according to the previous section). Moreover the visual improvement is clear

when going from K = 1 to K = 2 for Astigmatism and Double-Helix (especially

Astigmatism). One sees in Figure 5.32 that Double-Helix achieves a really nice

precision along the z axes compared to Laplace and Astigmatism. For Laplace and

Astigmatism the visual comparison is similar. This confirms the observations made

in the previous section.

One remarks that the precision along the z axes for Laplace is better for spikes

near the interface (z = 0). This is due to the exponential decay of the kernel. One

also notes that for Laplace there are spikes between two microtubules in a cylinder

centered on (x,y) = (5.7,2.9). This is because these two microtubules cross each

other in the (x,y) plane with different z. As a result when an initial measure has

(at least) two spikes with roughly the same (x,y) = (5.7,2.9) with one spike on

each microtubule, the algorithm is not able to recover both spikes and instead puts

one between the two. This comes from the fact that the maximum value pK in the

discretization of the Laplace transform obtained for the angle αK = αmax is not

large enough. This phenomenon was discussed in Section 4.4.2. The downside is

that one cannot increase enough pK to deal with this issue because in the best case

it is upper bounded by:
4πni

λℓ

(1− sin(αc)
2),

when one takes αmax = π/2 (one could also imagine take ni slightly greater with

different objectives but without changing the conclusion).

Concerning the views of the recovered structures from above (the (x,y) plane),

one sees that all the models perform well, even if one can note a slight advantage

for Laplace and Double-Helix versus Astigmatism (confirming the observations

made in the last section). This difference is particularly visible in the area around

(x,y) = (4.9,4.5) where two microtubules cross each other at the same z. In the

case of Astigmatism, this area is more noisy than for Laplace and Double-Helix.

5.3.3 Limitations and Final Comments

The setup and the experiments presented in this Section 5.3 have several limi-

tations:

• the forward operators modeling the different methods of acquisition are ideal

in the sense that they only approximate the real experimental point spread

functions. The closest PSF from the reality is the one of the PALM+MA-

TIRF model. For example the 2 Gaussians of the PALM+Double-Helix

model in practice deteriorate with z.

• We did not take into account the background noise and the noise level con-

sidered here is small.
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• We emphasized in the introduction of this chapter (see Section 5.1) the im-

portance of the time resolution: the fact that the experimenters working on a

sample have only a limited time to acquire data. Which means that a method

able to work with a higher density of spikes (at each snapshot) is better. One

proved that solving the BLASSO with our algorithm for the three models still

leads (in our ideal setup) to a resolution below 20 nm when N = 15 (which

corresponds in practice to a high resolution, see the 3D data for the SMLM

challenge). However it is better to integrate time directly to the models.

To conclude, although its setup is simplified and idealized, our study has shown

the potential of the SFW algorithm for this 3D problem, that is not yet very stud-

ied in the literature (most existing numerical methods focus on the simpler 2D

problem). In particular, it highlights the interest of the PALM+MA-TIRF model

or PALM+Astigmatism and PALM+Double-Helix with at least two focal planes

(i.e. two camera mounted in parallel and acquiring data from two different focal

planes).
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Figure 5.29: Recovered structures for the PALM+MA-TIRF model.
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Figure 5.30: Recovered structures for the PALM+Astigmatism model.
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Figure 5.31: Recovered structures for the PALM+Double-Helix model.
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Figure 5.32: Comparison of recovered structures for the three models when K = 4.



5.3. NUMERICAL RESULTS 177
K
=

2

(a) N = 5 (b) N = 10 (c) N = 15

K
=

3

(a)

(d) N = 5

(b)

(e) N = 10

(c)

(f) N = 15

K
=

4

(d)

(g) N = 5

(e)

(h) N = 10

(f)

(i) N = 15

K
=

5

(g)

(j) N = 5

(h)

(k) N = 10

(i)

(l) N = 15

K
=

6

(j)

(m) N = 5

(k)

(n) N = 10

(l)

(o) N = 15

Figure 5.33: Recovered structures for the PALM+MA-TIRF model in the (x,y)
plane.
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Figure 5.34: Recovered structures for the PALM+Astigmatism model in the (x,y)
plane.
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Figure 5.35: Recovered structures for the PALM+Double-Helix model in the (x,y)
plane.
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Figure 5.36: Comparison of recovered structures for the three models when K = 4

in the (x,y) plane.



Conclusion

This thesis demonstrates the importance of a study that provides in the same

time theoretical results which proves insights and numerical algorithms combining

guaranteed convergence rates and performance in real life applications.

Looking back on the results proved, we note that two main ingredients take

part in almost every major result of this thesis:

1. the first one involves first order optimality conditions, i.e. typically

∀i, η(xi) = 1 and η ′(xi) = 0.

These conditions are at the core of the proof of Theorem 5 (construction of

a candidate solution) but also intervene in the proof of Theorem 6 (to show

that the SFW algorithm stops after a finite number of iterations),

2. the second one involves an asymptotic argument using a simpler pre-certificate

depending only on the initial measure and the filter (ηV ) or only the filter

(ηW ) which transfer its non-degeneracy to any sufficiently close other pre-

certificate. This reasoning gives the intuition for the definition of ηW (which

is crucial in our theoretical study) and is used in the proof of Theorem 1 and

Theorem 5.

Our work opens the way to both new theoretical and numerical questions. On

the theoretical standpoint, a question of particular interest is the definition of ηW

and the extension of the results developed in this thesis, in a 2D or 3D domain.

Partial answers are given in [117], but the case of more than two points is still

open.

On the numerical standpoint, the application to fluorescence microscopy de-

tailed in Chapter 5 leads to many future collaborations and exchanges with exper-

imenters and Biologists. First, there is the important question of finding a good

metric to measure the recovery performance for synthetic data (Optimal Transport

based ?). Moreover our experimental setup can be modified to make it even closer

to real conditions (background noise, better modeling of the PSF). Another ques-

tion that needs to be addressed with the help of experimenters is the possibility to

tweak the parameters of the PALM+MA-TIRF model to improve its performance.

Then one can imagine merging two or even the three different models studied in

this thesis into one, and see if it is tractable and if it enhances the recovery perfor-

mance.
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ric spaces and in the space of probability measures. Lectures in Mathemat-
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Laurent Blanchoin, and Jean Salamero. Fast high-resolution 3d total in-

ternal reflection fluorescence microscopy by incidence angle scanning and

azimuthal averaging. Proceedings of the National Academy of Sciences,

111(48):17164–17169, 2014.

[22] Nicholas Boyd, Geoffrey Schiebinger, and Benjamin Recht. The alternating

descent conditional gradient method for sparse inverse problems. SIAM J.

Optim., 27(2):616–639, 2017.

[23] Claire Boyer, Yohann De Castro, and Joseph Salmon. Adapting to unknown

noise level in sparse deconvolution. Inf. Inference, 6(3):310–348, 2017.



BIBLIOGRAPHY 185

[24] Kristian Bredies and Hanna Katriina Pikkarainen. Inverse problems in

spaces of measures. ESAIM Control Optim. Calc. Var., 19(1):190–218,

2013.

[25] Ronald E. Bruck, Jr. On the weak convergence of an ergodic iteration for the

solution of variational inequalities for monotone operators in Hilbert space.

J. Math. Anal. Appl., 61(1):159–164, 1977.

[26] Martin Burger and Stanley Osher. Convergence rates of convex variational

regularization. Inverse Problems, 20(5):1411–1421, 2004.

[27] Martin Burger, E. Resmerita, and L. He. Error estimation for Bregman it-

erations and inverse scale space methods in image restoration. Computing,

81(2-3):109–135, 2007.

[28] James A Cadzow. Signal enhancement-a composite property mapping al-

gorithm. IEEE Transactions on Acoustics, Speech, and Signal Processing,

36(1):49–62, 1988.

[29] Emmanuel J. Candès and Carlos Fernandez-Granda. Super-resolution from

noisy data. J. Fourier Anal. Appl., 19(6):1229–1254, 2013.

[30] Emmanuel J. Candès and Carlos Fernandez-Granda. Towards a mathemat-

ical theory of super-resolution. Comm. Pure Appl. Math., 67(6):906–956,

2014.

[31] J. A. Carrillo, M. Di Francesco, and G. Toscani. Strict contractivity of the

2-Wasserstein distance for the porous medium equation by mass-centering.

Proc. Amer. Math. Soc., 135(2):353–363, 2007.

[32] Paul Catala, Vincent Duval, and Gabriel Peyré. A low-rank approach to
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R. Prony ... 1795.

[45] Laurent Demanet and Nam Nguyen. The recoverability limit for superreso-

lution via sparsity. preprint arXiv:1502.01385, 2015.

[46] Vladimir Fedorovich Demyanov and Aleksandr Moiseevich Rubinov. Ap-

proximate methods in optimization problems, volume 32. Elsevier Publish-

ing Company, 1970.

[47] AJ Den Dekker and A Van den Bos. Resolution: a survey. JOSA A,

14(3):547–557, 1997.

[48] Samuel Deslauriers-Gauthier and Pina Marziliano. Sampling signals with

a finite rate of innovation on the sphere. IEEE Trans. Signal Process.,

61(18):4552–4561, 2013.

[49] David L. Donoho. Super-resolution via sparsity constraints. SIAM J. Math.

Anal., 23(5):1309-1331, 9 1992.



BIBLIOGRAPHY 187

[50] David L. Donoho and Iain M. Johnstone. Adapting to unknown smoothness

via wavelet shrinkage. J. Amer. Statist. Assoc., 90(432):1200–1224, 1995.

[51] Marco F Duarte and Richard G Baraniuk. Spectral compressive sensing.

Applied and Computational Harmonic Analysis, 35(1):111–129, 2013.

[52] Bogdan Dumitrescu. Positive trigonometric polynomials and signal pro-

cessing applications. Signals and Communication Technology. Springer,

Cham, second edition, 2017.

[53] Vincent Duval. A characterization of the Non-Degenerate Source Condition

in Super-Resolution. December 2017. working paper or preprint.
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W Hell. Nanoscopy in a living multicellular organism expressing gfp. Bio-

physical journal, 100:L63–5, 06 2011.

[119] Brian R Rankin, Robert R Kellner, and Stefan W Hell. Stimulated-emission-

depletion microscopy with a multicolor stimulated-raman-scattering light

source. Optics letters, 33:2491–3, 12 2008.

[120] Brian R Rankin and Stefan W Hell. Sted microscopy with a mhz pulsed

stimulated-raman-scattering source. Optics express, 17:15679–84, 09 2009.

[121] Sri Rama Prasanna Pavani, Michael A Thompson, Julie S Biteen, Samuel

Lord, Na Liu, Robert Twieg, Rafael Piestun, and William Moerner. Three-

dimensional, single-molecule fluorescence imaging beyond the diffraction

limit by using a double-helix point spread function. Proceedings of the Na-

tional Academy of Sciences of the United States of America, 106:2995–9, 03

2009.

[122] Lord Rayleigh. Xxxi. investigations in optics, with special reference to the

spectroscope. The London, Edinburgh, and Dublin Philosophical Magazine

and Journal of Science, 8(49):261–274, 1879.

[123] Walter Rudin. Real and Complex Analysis, 3rd Ed. McGraw-Hill, Inc., New

York, NY, USA, 1987.

[124] Michael J Rust, Mark Bates, and Xiaowei Zhuang. Sub-diffraction-limit

imaging by stochastic optical reconstruction microscopy (storm). Nature

methods, 3(10):793–796, 2006.

[125] Daniel Sage, Hagai Kirshner, Thomas Pengo, Nico Stuurman, Junhong Min,

Suliana Manley, and Michael Unser. Quantitative evaluation of software

packages for single-molecule localization microscopy. Nature methods, 12,

06 2015.



BIBLIOGRAPHY 193

[126] Marcelina Cardoso Dos Santos, Régis Déturche, Cyrille Vézy, and
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Antipolis, 2016.

[135] Emmanuel Soubies, Laure Blanc-Féraud, Sébastien Schaub, and Gilles
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Résumé

Mots Clés

Abstract

Keywords

Cette thèse porte sur l'utilisation du BLASSO, un
problème d'optimisation convexe en dimension
infinie généralisant le LASSO aux mesures, pour
la super-résolution de sources ponctuelles. Nous
montrons d'abord que la stabilité du support des
solutions, pour N sources se regroupant, est
contrôlée par un objet appelé pré-certificat aux
2N-1 dérivées nulles. Quand ce pré-certificat est
non dégénéré, dans un régime de petit bruit dont
la taille est contrôlée par la distance minimale
séparant les sources, le BLASSO reconstruit
exactement le support de la mesure initiale.
Nous proposons ensuite l'algorithme Sliding
Frank-Wolfe, une variante de l'algorithme de
Frank-Wolfe avec déplacement continu des
amplitudes et des positions, qui résout le
BLASSO. Sous de faibles hypothèses, cet
algorithme converge en un nombre fini
d'itérations. Nous utilisons cet algorithme pour
un problème 3D de microscopie par
fluorescence en comparant trois modèles
construits à partir des techniques
PALM/STORM.

This thesis studies the noisy sparse spikes
super-resolution problem for positive measures
using the BLASSO, an infinite dimensional
convex optimization problem generalizing the
LASSO to measures. First, we show that the
support stability of the BLASSO for N clustered
spikes is governed by an object called the
(2N-1)-vanishing derivatives pre-certificate.
When it is non-degenerate, solving the BLASSO
leads to exact support recovery of the initial
measure, in a low noise regime whose size is
controlled by the minimal separation distance of
the spikes. In a second part, we propose the
Sliding Frank-Wolfe algorithm, based on the
Frank-Wolfe algorithm with an added step
moving continuously the amplitudes and
positions of the spikes, that solves the
BLASSO. We show that, under mild
assumptions, it converges in a finite number of
iterations. We apply this algorithm to the 3D
fluorescent microscopy problem by comparing
three models based on the PALM/STORM
technics.

Super-résolution, parcimonie, BLASSO, LASSO,
variation totale, mesures positives,
reconstruction exacte du support, algorithme de
Frank-Wolfe, microscopie par fluorescence,
PALM/STORM, MA-TIRF, double-hélice,
astigmatisme

Super-resolution, sparsity, BLASSO, LASSO,
total variation, positive measures, exact support
recovery, Frank-Wolfe algorithm, fluorescence
microscopy, PALM/STORM, MA-TIRF,
Double-Helix, Astigmatism


