
HAL Id: tel-02003251
https://theses.hal.science/tel-02003251

Submitted on 1 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probabilistic study of end-to-end constraints in real-time
systems

Cristian Maxim

To cite this version:
Cristian Maxim. Probabilistic study of end-to-end constraints in real-time systems. Systems and
Control [cs.SY]. Université Pierre et Marie Curie - Paris VI, 2017. English. �NNT : 2017PA066479�.
�tel-02003251�

https://theses.hal.science/tel-02003251
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

l’UNIVERSITÉ PIERRE ET MARIE CURIE

Spécialité

Informatique

École doctorale Informatique, Télécommunications et Électronique (Paris)

Présentée par

Cristian MAXIM

Pour obtenir le grade de

DOCTEUR de l’UNIVERSITÉ PIERRE ET MARIE CURIE

Sujet de la thèse :

Étude probabiliste des contraintes de bout en bout
dans les systèmes temps réel

soutenue le 11 decémbre 2017

devant le jury composé de :

Mme. Liliana CUCU-GROSJEAN Directeur de thèse

M. Benoit TRIQUET Coordinateur Industriel

Mme. Christine ROCHANGE Rapporteur

M. Thomas NOLTE Rapporteur

Mme. Alix MUNIER Examinateur

M. Victor JEGU Examinateur

M. George LIMA Examinateur

M. Sascha UHRIG Examinateur

Contents

Table of contents iii

1 Introduction 1

1.1 General Introduction . 1

1.1.1 Embedded systems . 2

1.1.2 Real-time domain . 4

1.1.3 Avionics industry . 9

1.2 Context . 14

1.2.1 Performance race . 15

1.2.2 Execution time . 17

1.2.3 Probabilities and statistics . 21

1.3 Thesis motivation . 22

1.4 Model . 24

1.4.1 Useful notions from the probability theory 24

1.4.2 Probabilistic real-time system 26

2 State Of The Art 29

2.1 Time analysis of probabilistic real-time systems 31

2.2 Probabilistic methods . 38

2.3 Measurement based probabilistic analysis 41

2.4 Randomized architectures . 49

2.5 Timing analysis in avionics industry 51

2.5.1 Integrated Modular Avionics (IMA) 52

2.5.2 Time analysis of avionics applications 54

2.5.3 Mixed-criticality systems . 56

i

ii CONTENTS

3 Conditions for use of EVT in the real-time domain 59

3.1 System consistency . 60

3.1.1 Input . 61

3.1.2 Software . 62

3.1.3 Platform . 63

3.2 Identical distributed data . 64

3.3 Independence . 66

3.4 Reproducibility and representativity of measurement-based approaches 69

3.4.1 The reproducibility of the WCET estimation method 71

3.4.2 The reproducibility of the measurement protocol 72

3.4.3 Representativity of a measurement protocol 72

3.4.4 Relations between reproducibility, representativity and con-

vergence . 74

3.5 Conclusion . 76

4 pWCET estimation methodology 77

4.1 Generalized extreme value distribution 78

4.2 Generalized Pareto distribution . 83

4.3 Validation of statistical results . 88

4.4 The pWCET estimation from dependent execution times 94

4.5 Small variability data . 96

4.6 Conclusions . 97

5 Experimental results 99

5.1 Analysis of benchmarks on multiprocessor architectures 99

5.2 Avionics application analysis . 105

5.2.1 Application presentation . 107

5.2.2 Platform characteristics . 114

5.2.3 Timing analysis results . 127

5.3 Conclusions . 156

6 General conclusions 157

6.1 Contributions . 157

6.2 Future work . 158

CONTENTS iii

A Statistical tests 161

A.1 Run test . 161

A.2 Kolmogorov-Smirnov test . 162

A.3 Anderson-Darling Test . 163

List of Figures 169

List of Tables 171

Nomenclature 177

Bibliography 196

Chapter 1

Introduction

1.1 General Introduction

Human life in the 21st century is surrounded by technology. From household to

transportation, from education to hobbies and from security to sports, informatics

plays a major role in daily activities. Social interaction, education and health are

only a few examples of domains in which the fast evolution of technology had a

major positive impact on the quality of life. Businesses rely more and more on

embedded systems to increase their productivity, efficiency and value. In factories,

robot precision tends to replace the human versatility.

Even though connected devices like drones, smart watches, or smart houses,

are becoming more popular in the last years, in the industries that deal with user

security, this kind of technology have been used for many years. Avionics industry

has been using computers for their products since 1972 with the production of the

first A300 airplane and has reached astonishing progress with the development of

the first Concorde airplane in 1976, which was considered a miracle of technology,

surpassing with many years the airplanes of its time. A considering number of

innovations and knowledge acquired for the Concorde are still used in the recent

models like A380 or A350.

A slower start of technological evolution can be seen in the space or automotive

industries, but with the start of OneWeb project [OneWeb, 2015] and the intro-

duction of self-driving cars, these domains have encountered an acceleration phase

that does not seem to take a break any time soon. In this section we present an

overview on the technologies used in the aforementioned industries with an emphasis

1

2 CHAPTER 1. INTRODUCTION

on the real-time domain as an important part critical real-time embedded systems

(CRTES).

1.1.1 Embedded systems

In our times, we are surrounded by technologies meant to improve our lives, to

assure its security, or programmed to realize different functions and to respect a

series of constraints. We consider them as embedded systems or often as parts of

cyber-physical systems.

An embedded system is a microprocessor-based system that is built to control

a function or a range of functions and is not designed to be programmed by the end

user in the same way that a PC is [Heath, 2002]. A user can make choices concern-

ing functionality but cannot modify the functionality of the system by adding or

replacing software. Embedded systems are managed by single or multiple process-

ing cores in the form of micro-controllers or digital signal processors (DSP), field-

programmable gate arrays (FPGA), application-specific integrated circuits (ASIC)

and gate arrays. These processing components are integrated with components

dedicated to handling electric and/or mechanical interfacing. An embedded sys-

tem’s key feature is the dedication to specific functions that typically require strong

general-purpose processors. For example, router and switch systems are embed-

ded systems, whereas a general-purpose computer uses a proper OS for routing

functionality. However, embedded routers function more efficiently than OS-based

computers for routing functionalities. Commercial embedded systems range from

digital watches and MP3 players to giant routers and switches. Complexities vary

from single processor chips to advanced units with multiple processing chips.

Compared to an embedded system, which puts emphasis on the computational

elements, a cyber-physical system is an integration of computation with phys-

ical processes [Lee and Seshia, 2011]. Majority of cyber-physical systems contains

at least one embedded system. The term of cyber-physical system is very broad

and encompasses various research topics from software and modeling to systems,

networking, and control in computer science and engineering. A detailed concept

map of these systems can be seen in Figure 1.1 [Cyber, 2010]. This taxonomy is an

evolving one and new domains are added in a continuous manner.

A real-time system is any information processing system which has to respond

to externally generated input stimuli within a finite and specified period [Burns and

1.1. GENERAL INTRODUCTION 3

Figure 1.1: Cyber-physical systems - a Concept Map. Image made by Edward A.

Lee after a taxonomy given by S. Shyam Sunder [Lee, Edward Ashford, 2012].

Wellings, 2001]. In this type of systems, the correctness depends not only on the

logical result but also on the time it was delivered. A failure to respond is as bad as

the wrong response. Real-time systems can be found in industries like aeronautics,

aerospace, automotive or railways but also in sensor networks, image processing,

multimedia applications, medical technologies, robotics, communications, computer

games or household systems. According to their deadline miss importance, real-time

systems can be classified as follows:

• Hard real-time systems - where it is absolutely imperative that responses

occur within the required deadline. For these systems, an overrun in response

time can be critical, leading to potential life loss and/or big financial dam-

age. Therefore many of these systems are considered to be safety critical.

If the deadline miss endangers a very expensive process, the system can be

considered mission critical but not necessarily safety critical. Such examples

4 CHAPTER 1. INTRODUCTION

are the spatial missions, which reach very high budgets and in the case of an

accident, even though no life would be endangered, the financier loss would

be considerable.

• Soft real-time systems - where deadlines are important but which will still

function correctly if deadlines are occasionally missed. These systems are often

connected to quality-of-service and are able to tolerate deadline misses even

though they are not desired.

• Firm real-time systems - which are soft real-time but in which there is no

benefit from late delivery of service. For these systems the computation is

obsolete if the response is not given in time. Forecasts systems are relevant

examples in this case.

• Weakly hard real-time systems - where k out of m deadlines have to be

met (k < m). These are the systems that become unstable with too many

deadline misses. As an example we can mention the feedback control systems.

All these systems have a cost function associated to them. An abstract depictions

of these cost functions can be found in Figure 1.2.

Between real-time systems and embedded systems there is a relation of inclu-

sion since all real-time systems are at the same time embedded systems, but not

all embedded systems present time constraints. On the other hand, there is no

direct relation between embedded systems and cyber-physical systems. Most cyber-

physical systems contain one or more embedded systems behaving as component

parts, but their names cannot be interchanged due to difference of complexity. In

this thesis we concentrate on real-time embedded systems and for ease of notations

we simply name them real-time systems. We might refer to cyber-physical systems

if that will be the case.

1.1.2 Real-time domain

The principles of real-time systems are first defined by Stankovic in [Stankovic,

1988] and since then the concept becomes an important part of major industries

like avionics, automotive or aerospace. The basic model introduced by Liu and

Layland [Liu and Layland, 1973] considers the existence of a set of tasks Γ with

n tasks τi = (Oi, Ci, Pi, Di), with i = 1...n, characterized by an offset Oi, a worst

1.1. GENERAL INTRODUCTION 5

Figure 1.2: Cost functions of real-time systems.

case execution time Ci, a period Pi and a deadline Di. To ensure the feasibility of

such a system, all tasks occurrences must finish before their deadlines. In time, this

model evolved giving birth to new associated notions. Here are some of the common

notions:

The Worst Case Execution Time (WCET) of a task represents the max-

imum time it can take to be executed. The WCET is obtained after analysis and

most of the time it cannot be accurately determined by exhausting all the possible

executions. This is why, in industry, the measurements are done only on a subset

of possible scenarios (the one that would generate the highest execution times) and

an execution time bound is estimated by adding a safety margin to the greatest

observed time. At the opposite side, we encounter the notion of Best Case Exe-

cution Time (BCET), which represents the minimum time length a task can take

to be executed. A detailed report regarding the WCET notion is done by Wilhelm

et al in [Wilhelm et al., 2008].

The Offset of a task is the exact time at which that task is supposed to start

6 CHAPTER 1. INTRODUCTION

its execution while the Jitter is the deviation from its periodicity. While the offset

occurs at once in a task’s lifetime, the jitter can take place at multiple or all instances

of the task. The offset can be defined by the system or programmer but the jitter is

an undesired effect that occurs due to architecture components. Studies have been

done in [Leung and Merrill, 1980] and [Pellizzoni and Lipari, 2005] for systems that

contain offsets and in [Goossens and Devillers, 1997] and [Goossens, 2003] for offsets-

free ones. The jitter was taken in account in the scheduling analysis proposed by

Audsley et al. [Audsley et al., 1993]. Marti et al. [Marti et al., 2001] have identified

the types of jitter that can occur in distributed real-time systems, while Nilsson et

al. [Nilsson et al., 1998] took it into account for stochastic analysis.

Periodic real-time systems - are described by tasks that release their in-

stances (jobs) in a periodical manner. Therefore, the jth job of task τi will be

released at time Oi + j ∗ Pi.

Sporadic real-time systems - are different from the periodic ones by the fact

that the composing tasks release jobs with a time interval equal or larger than the

period Pi.

The utilization of a task τi is described by the formula Ui = Ci/Pi, where the

system’s utilization is U =
∑n

i=1Ci/Pi.

The order of execution of jobs waiting at the same time for one resource is given

by their priority. The priority can be given at task level or at job level and it can

be fixed or dynamic.

If a task with higher priority is able to interrupt the execution of a lower pri-

ority, task we call this action preemption and the algorithm implementing it is

preemptive.

The property that indicates whether a real-time system can meet its deadlines

is called schedulability. Scheduling is used to determine the order in which the

tasks are executing. In literature there are multiple scheduling algorithms able

to schedule task of models described by different combinations of previously men-

tioned notions. Liu and Leyland [Liu and Layland, 1973] define the Rate Monotonic

algorithm, which gives higher priorities to tasks with smaller periods. The algorithm

that takes into consideration the deadlines rather than the periods in order to at-

tribute priorities is introduced by Leung and Whitehead in [Leung and Whitehead,

1982] with the name of deadline monotonic. The Earliest Deadline First (EDF)

algorithm [Liu and Layland, 1973] is a scheduling algorithm that allows any pre-

1.1. GENERAL INTRODUCTION 7

emptive task sets with utilization lower or equal than 1 to be scheduled by giving

to the job with earliest deadline the highest priority and allowing it to be executed

first.

Fixed priority scheduling algorithms were analyzed by Audsley et al [Audsley

et al., 1993] and by Bini and Buttazo in [Bini and Buttazzo, 2004]. As a compromise

between preemption overheads and low schedulability of non-preemptive systems,

limited preemption scheduling was proposed in papers like [Burns, 1993], [Baruah,

2005] and [Yao et al., 2011].

Larger and more detailed surveys on real-time scheduling exists, from which we

mention [Audsley et al., 1995] and [Sha et al., 2004] as complete and well-structured

ones.

With the increase in application complexity, the real-time systems had been

confronted with the problem of resource sharing. This problem occurs when two

or more tasks are supposed to use the same resource and can produce an important

increase in tasks response times through phenomena like priority inversion or dead-

locks. To confront these problems, Sha et al [Sha et al., 1990] proposed a priority

inversion protocol and Baker [Baker, 1991] introduced the stack resource policy.

Mixed-criticality systems is a hot topic in the real-time domain. It appears

as an answer to the continuous increase in complexity of applications that lead to

inefficient systems that were treating low critical tasks just like the high critical

ones. The first model of mixed-criticality system is introduced by Vestal in [Vestal,

2007] and had further been developed and analyzed in works like [Baruah et al.,

2011], [Baruah et al., 2012] and [Ekberg and Yi, 2014].

Time Analysis is a key concept that had been used in real-time systems to

assign an upper bound to the WCETs of tasks or program fragments. This as-

signment can be achieved either by static analysis [Ferdinand et al., 2001] or by

measurement based analysis [Bernat et al., 2002], [Wenzel, 2006]. Figure 1.3 pro-

posed in [Wilhelm et al., 2008] by Wilhelm et al. depicts real-time properties for a

better understanding of timing analysis.

While using similar methods in the combination of program fragments execution

times, the way these estimates are obtained is fundamentally different.

Static analysis uses abstract models of the targeted hardware and computes

a complete universe of all possible execution states that a program can reach start-

ing from all possible initial states. Based on these states, an upper bound of the

8 CHAPTER 1. INTRODUCTION

Figure 1.3: Basic notions related to timing analysis. The lower curve represents

a subset of measured executions. Its minimum and maximum are the minimal

observed execution times and maximal observed execution times. The darker curve,

an envelope of the former, represents the times of all executions. Its minimum and

maximum are the best case and worst case execution times, abbreviated BCET and

WCET.

execution time can be derived.

Measurement based analysis is pretty straight forward and consist in exe-

cuting each program fragment with a subset of the possible initial states and inputs.

The inputs and states that are considered to stress the most the systems are usu-

ally chosen, but the maximum of the measured execution times is in general an

underestimation of the WCET (see Figure 1.3). The correctness of static analysis

estimations depends on the correctness of the abstract model and the creation of

these models is an error-prone and laborious process especially if no precise spec-

ification of the hardware is available. This is happening often nowadays with the

use of commercial of the shelf (COTS) hardware that may make static analysis a

costly process. These cases may give an advantage to measurement analysis over

static analysis as they may be more portable to new architectures, as it does not

rely on such abstract models of the architecture. On the other hand, soundness of

measurement-based approaches are hard to guarantee.

Measurement would trivially be sound if all initial states and inputs were covered.

Due to their huge number, this is usually not feasible. Instead, only a subset of the

initial states and inputs can be considered in the measurements.

1.1. GENERAL INTRODUCTION 9

Both static and measurement based methods, in their deterministic approaches,

tend to be extremely pessimist. Unfortunately not all real-time systems can afford

this pessimism and the consequent over-provisioning, and for these cases other ap-

proaches should be considered. One such approach is the use of probabilities in the

time analysis or in describing the analyzed model. We detail the existing results on

this topic in the following sections of this thesis.

1.1.3 Avionics industry

Amongst all branches of real-time systems, an important role is played by the Crit-

ical Real-Time Embedded Systems (CRTES) domain. CRTESs are widely being

used in fields like automotive, avionics, railway, health-care, etc. The performance

of CRTESs is analyzed not only from the point of view of their correctness, but also

from the perspective of time.

In the avionics industry such systems have to undergo a strict process of analy-

sis in order to fulfill a series of certification criteria demanded by the certifications

authorities, being the European Aviation Safety Agency (EASA) in Europe or the

Federal Aviation Administration (FAA) in United States.The avionics industry in

particular and the real-time domain in general are known for being conservative and

adapting to new technologies only when it becomes inevitable. For the avionics in-

dustry this is motivated by the high cost that any change in the existing functional

systems would bring. Any change in the software or hardware has to undergo an-

other certification process which cost the manufacturer money, time and resources.

Despite their conservative tendency, the airplane producers cannot stay inactive to

the constant change in technology and ignore the performance benefices brought

by COTS processors which nowadays are mainly multi-processors. As a curiosity,

most of the microprocessors found in airplanes flying actually in the world, have a

smaller computation power than a modern home PC. Their chips-sets are specifi-

cally designed for embedded applications characterized by low power consumption,

predictability and many I/O peripherals.

The majority of airplane accidents documented so far are due to human errors,

nevertheless there have been some accidents provoked by one or multiple software

issues [Wong et al., 2009]. For example, the Air France Flight 447 (31 May 2009, an

Airbus A330-200) reported that the system transmitted several messages regarding

discrepancies in the indicated air speed readings before the aircraft disappeared.

10 CHAPTER 1. INTRODUCTION

Even though, this accident is classified as a human error, Airbus issued an Accident

Information Telex to operators of all Airbus models reminding pilots of the recom-

mended Abnormal and Emergency Procedures to be taken in the case of unreliable

airspeed indication.

On 20th of December, 1994, the American Airlines Flight 965 crashed in the

Andes a few minutes before its scheduled arrival time. The cause of the crashed

is portrayed as a pilot error but a large part of the blame lies within the poor

design of the software system. In short, the pilot failed to choose the correct radio

bacon necessary to correctly calculate the aircraft trajectory and the mistake forced

the plane to do a wide semicircular turn to the east. By the time the error was

detected, the plane was going straight forward towards a 3000 meter mountain. A

more detailed report on these errors and other catastrophic accidents in which the

software played an important role can be found in [Wong et al., 2009].

Recently, an Airbus A400M doing a test flight crushed in Spain during takeoff,

producing four fatalities. Investigations revealed that an incorrect installation of the

engine control software during production may have caused three out of four engines

to stop responding to throttle commands, thus causing the accident [A400M, 2015].

In order to avoid such accidents or to reduce drastically their probability of

appearance, all safety-critical systems are legally required to undergo a certifica-

tion process. This process is effectuated by independent authorities that will allow

certified aircraft to fly.

Software certification

Thoroughly examination is done to all civil airplanes before operational use. This

examination is done by independent legal authorities through specific industry stan-

dards. In order to be allowed to carry civilians, the aircraft have to obtain certifica-

tion by passing a series of objectives mentioned in the standards. According to the

criticality of the system, every component might need to pass a different number of

objectives. The criticality is a designation of the level of assurance against failure

needed for a system component. In other words, every system receives a different

level of certification depending on the consequences that might arise from its failure.

The certification standards used as a reference for the development of an airplane

are:

• ARP-4754 [SAE, 2010] deals with the system development

1.1. GENERAL INTRODUCTION 11

• DO-254 [RTCA, 2015] is the standard for the hardware development life cycle

• DO-178C [RTCA, 2015] gives the standard for software development life cycle.

Each component is given a different set of requirements and placed on its correspond-

ing Safety Integrity Level (SIL) or Design Assurance Level (DAL). In the avionics

industry there are five DALs, noted from A (the highest criticality) to E (the lowest

criticality). The description of each DAL is found in the ARP-4761 [SAE, 1996]

from which we extracted Table 1.1.

Level Proba. Severity Failure condition effect

DAL-A 10−9/h Catastrophic All failure conditions which prevent contin-

ued safe flight and landing

DAL-B 10−7/h Hazardous Large reduction in safety margins or func-

tional capabilities; higher workload or phys-

ical distress such that the crew could not be

relied upon to perform tasks accurately or

completely; adverse effects upon occupants.

DAL-C 10−5/h Major Significant reduction in safety margin or

functional capabilities; significant increase

in crew workload or in conditions impair-

ing crew efficiency; some discomfort to oc-

cupants.

DAL-D 10−3/h Minor Slight reduction in safety margin; slight in-

crease in crew workload; some inconvenience

to occupants.

DAL-E N/A No effect None.

Table 1.1: Description of the Design Assurance Levels from the ARP-4761 [SAE,

1996].

The concept of criticality in the avionics context is different from the theoretical

concept of criticality found in literature’s mixed-criticality systems [Vestal, 2007].

While mixed-criticality is seen as a ”hot-topic” and new analysis and models are

researched today, the criticality defined in the industrial context stayed unchanged

for years under the strict supervision of the certifications authorities. Further details

12 CHAPTER 1. INTRODUCTION

regarding the differences of these two context will be presented in the State of the

Art chapter (see 2.5.3).

Software development is one of the airplane development components that has

encountered a continuous evolution. For the Airbus fleet, new technologies were

added regularly in order to improve the safety, fuel consumption, cost savings and

reliability. Airplane cockpits have changed dramatically in the last 20 years, and

many piloting facilities have been introduced. As an example, between 2011 and

2016 in the Airbus A330 airplanes were introduced functions like Airborne Traf-

fic Situational Awareness (ATSAW), Traffic Collision Avoidance System Resolution

Advisory (TCAS RA), Autopilot/Flight Director Traffic Collision Avoidance Sys-

tem (AP/FD TCAS), On-board Airport Navigation System (OANS), GBAS Land-

ing System (GLS), Flight Management Landing System (FLS), Continuous Descent

Approach (CDA) and Runway Overrun Protection System (ROPS). All these func-

tions increase the total number of instructions that a board computer has to execute.

At the same time the computation need of the system raises and consequently the

number of computers on board as well as the weight of the aircraft.

In order to avoid the aforementioned problem, aircraft manufactures introduced

the concept of Integrated Modular Avionics (IMA) which allows multiple soft-

ware system parts to be hosted on the same execution target. This comes as an

answer to the conventional avionics where, for a given system, each supplier respon-

sible for the development of one or several functions provides a computer. A precise

description of the IMA concept can be found in the State of the Art chapter (see

2.5.1).

WCET in the certification process

Integration of several systems on the same hardware implies strict verifications and

validation in the process of certification. Some of the constraints of the DO-178C do

not only change the development process but also change the actual design choices

of the system overall. For example, DO-178C requires that applicants compute the

Worst Case Execution Time of software programs. Computing non pessimistic

WCETs is a difficult task on modern processors. For custom made processors this

can be achieved with a lower grade of difficulty, but for COTS hardware, where the

producers focus more on performance and average execution time than on safety and

WCET, this task seems cumbersome if not impossible. New techniques for timing

1.1. GENERAL INTRODUCTION 13

analysis have been considered recently, out of which the ones using probabilistic

methods will be further presented in this thesis.

The WCET related constrains are found in the section 6.3.4 of the DO-178B/C

standard. The objectives to be achieved by a software in order to be certified are

”accuracy and consistency”. In the context it was conceived (in 1992 for the DO-

178B), when most of the code was written in assembler, this objective is a pertinent

one. But in our days, when software development is highly partitioned between

different providers, each proposing its own writing language, techniques and tools,

the verification of accuracy and consistency may not be so obvious.

In the introduction of the same section (6.3), a phrase suggests that reviews

and analysis alone cannot totally deal with certain subjects (e.g. WCET and stack

analysis). The text pointing to this is the following:

”There may be cases where the verification objectives described in this section

cannot be completely satisfied via reviews and analyses alone. In such cases, those

verification objectives may be satisfied with additional testing of the software prod-

uct. For example, a combination of reviews, analyses, and tests may be developed

to establish the worst-case execution time or verification of the stack usage.”

With the fast evolution of technologies, the avionics industry is facing the pres-

sure of keeping the pace and each change in the software or hardware is subject to

a new process of certification. The standard requires producers to assess for impact

of WCET any modification in the compiler, linker or hardware.

One could note that the objective is not to determine the real WCET, or a

precise upper bound, but simply to verify that the maximum execution time is

consistent with the allocated time, and that the documented timing constraints (i.e.

requirements) identified by the development process are verified.

Frequently, the high-level timing requirements are expressed as processing peri-

odicity or end-to-end latency for reacting to external events. These requirements are

usually answered, in the Dynamic Design phase, by allocating system functions to

periodic tasks, of adequate periodicity. Most frequently, and specifically in Control-

Command functions, the system requirements do not tolerate timing overrun. The

software tasks are therefore designed to detect and apply some sanction when a

deadline miss is observed. Generally the sanction is to kill (maybe restart) the fail-

14 CHAPTER 1. INTRODUCTION

ing task or the whole application (or partition). A WCET analysis is requested each

case where a processing overrun would produce unintended results (e.g. undetected

overrun) or unavailability (e.g. detected overrun and sanction).

One could note that the DO-178 does not state or recommend a method to de-

termine the WCET. In the DO-258B is a FAQ document completing the DO-178:

FAQ#73: Are timing measurements during testing sufficient or is a rigorous

demonstration of worst-case timing necessary?

R: The worst-case timing could be calculated by review and analysis of the

source code and architecture, but compiler and processor behavior and its impact

also should be addressed. Timing measurements by themselves cannot be used with-

out an analysis demonstrating that the worst-case timing would be achieved, but

processor behavior (e.g., cache performance) should be assessed. Using the times

observed during test execution is sufficient, if it can be demonstrated that the test

provides worst-case execution time.

The DO 258 considers that the source code analysis is the primary source for

the worst case evaluation. The WCET identification is primarily a question of iden-

tification of the “worst case scenario”. But, the compiler and processor, hardware

in general (but foremost the caches and the memory latency) must be taken into

account. Essentially, measurements by themselves could be sufficient if one can

demonstrate that the observations are representative of the worst case scenario.

1.2 Context

Despite the fast development of technologies, the main industries dealing with safety

related machines seem to be reticent into embracing new and innovative solution

for their products. The three great industries to which we make reference are the

avionics, space and automotive. The automotive industry is fairly open to new

approaches, benefiting of the fact that there is no certification authority for cars to

regulate development as in the case of airplanes. Even in these conditions, the late

start given by the introduction of engine control units (ECU) and the great number

of users globally makes the technological acceleration slow.

In the case of satellite industry, the long duration of space programs obliges the

constructors to treat the development phase with high concern for durability and

1.2. CONTEXT 15

less for performance. This duration and the high costs of a space program push

back last moment innovations.

As presented in the previous section, the main stop in assimilating new technolo-

gies for the avionics industry is represented by the certification authorities. This

conservationist driven experts favor passenger safety over innovation.

In the following we will present the actual technological context, the innovations

proposed in the research in the last years and the way they are assimilated by the

industry.

1.2.1 Performance race

Most of today’s real-time theory was conceived for single-core systems, but in time

the performance requirements and the source code size of applications increased

and forced industries to consider more complex architectures that contain multiple

computational units. Industries from the safety-critical domain such as the avionic,

automotive, space, healthcare or robotic industry are dealing with exponential needs

in performances and functionalities and this is steering them towards commercial-of-

the-shelf (COTS) solutions that are able to offer a better average performance. The

disadvantages of these architectures are that they are not predictable and that the

worst case execution time does not necessary decrease with the average execution

time. Figure 1.4 [Bin et al., 2014] is a good echo of the way applications and

platforms are evolving.

The notions regarding actual platforms are vast and still produce confusion for

those that are not experts in this branch. This is why we give a short and non-

exhaustive classification and definition of actual processing platforms.

The cellular component of any real-time system is the core, an independent pro-

cessing unit that reads and executes program instructions. A processor is the name

usually given to a Central Processing Unit (CPU), which is the electronic circuitry

within a computing system that carries out instructions of a computer program by

performing the basic arithmetical, logical, control and input/output (I/O) opera-

tions specified by the instructions. A processor contains many discrete parts within

itself, such as one or more memory caches for instructions and data, instructions de-

coders and various types of execution units for performing operations. Every CPU

contains at least one core. Depending on the number of cores or processors that a

system has, it can be one of the following:

16 CHAPTER 1. INTRODUCTION

Figure 1.4: Evolution of code size in space, avionic and automotive embedded sys-

tems.

Single-core - is the name often use for processors with only one core instead of

the longer and complete name of single-core processor. This is the architecture on

which were designed the majority of algorithms and theories from real-time systems.

Single-processor - designs a computation system that includes a single process-

ing chip (can include one or more cores). We then have single-core single-processor

or multi-core single-processor systems.

Multi-core - represents a CPU that has multiple cores. This basically means

that there is a multiplication of certain CPU components according to the number of

cores. This permits the cores to work in parallel in separate operations by realizing

chip-level multiprocessing.

Multi-processor - is a system that contains more than one CPU that are able

to work in parallel in a simultaneous multiprocessing manner. According to the

specification of composing CPUs, we may encounter single-core multi-processor or

multi-core multi-processor

Many-core - is the name given to systems that have a number of cores in an or-

der of tens or hundreds. These systems are made for highly parallelized applications

1.2. CONTEXT 17

since the use of single threaded software would be slow on such equipment.

Presenting the different models existing is not the purpose of this chapter, but

some of them will be detailed in future chapters as part of used architectures for

the experimental part of the thesis.

Recently, a clear shift towards parallel processor can be observed. Since the 2004

when the multi-core processors were introduced, code writing and execution mindset

have changed pushing developers towards a higher parallelization of applications.

In multi-core processors, the computing cores are interconnected by a shared bus or

a crossbar, which increases the computational power of the architecture but at the

same time introduce uncertainty in the exact tracing of execution programs. An-

other issue regarding the WCET computation on multi-core processors appears with

the usage of multiple levels of caches. Despite their clear advantage in performance,

the cache memories have the undesired property of making WCET analysis harder.

The use of performant cache placement/replacement protocols makes it hard for the

users to identify the WCET of its executable by measurements. On the other hand,

an exact analysis of the cache evolution for a program is difficult and costly. Under

these circumstances (a deactivation of cache memory is not desirable) a timing anal-

ysis based on safety margins is the common practice. The main question that rises is:

How is the WCET safety margin selected?

1.2.2 Execution time

In critical real-time systems, the time factor has high importance. Understanding

the worst case timing behavior of software in such systems plays a key role in re-

liability or correct functional behavior. The worst case execution time (WCET)

needs to be guaranteed for the process of creation and verification of schedules.

In research, a considerable part of publications presumes the existence of reliable

WCET or of an exact bound. Even though this allows to conceive exact solutions

for existing scheduling problems, in reality, most of the work done with such pre-

sumptions cannot be used in practice. As an example, the earliest deadline first

(EDF) [Liu and Layland, 1973] algorithm has been proven to be optimal on pre-

emptive uni-processors but its use in practice is still scarce due to the difficulty of

implementation of such an algorithm. Providing a pessimist WCET bound to the

EDF algorithm eliminates the advantage brought by its optimality.

18 CHAPTER 1. INTRODUCTION

Historically, obtaining the WCET bound has been done by following two different

methodologies. On one side, measurement is widely used in industry while on the

research front the static analysis is the method of choice. Both approaches have

their own advantages and disadvantages and selecting one over the other one, when

computing WCET bounds, is usually the result of a practical compromise in which

the cost, the difficulty of implementation and the certification play a major role.

Measurement is the most used method for determining WCET bounds due to

its lack of complexity and due to historical reasons in industry. The way measure-

ments are carried in practice is by either determining the worst case input of the

software under analysis or by running as many inputs as possible in order to ex-

haustively obtain the longest execution path. Sequentially, the software is executed

on the target hardware and measurements are taken. Upon the criticality of the

system a safety margin will be added to the highest measurement obtained.

All these measurement steps deal with some issues. Firstly, determining the

worst case input of an arbitrary program turns up to be hard to achieve. The

complexity of the program, the predictability of the hardware and the knowledge

of the initial system state of the platform need to be taken into account while

finding the worst case input. Alternatively, running all the inputs is impossible

for a program where the number of input combinations is big. This number gets

to huge values rapidly even for relatively small number of inputs. As an example,

for n variables of size 32 bits the number of necessary measurement runs will be

4294967295n. Therefore, a mid-way between the described approaches is usually

preferred in practice. A sufficient great number of inputs are chosen to be executed

depending on an pre-establish testing scenario that takes into account extreme cases

and corners. In reality, despite all efforts at developing level or testing level, there

is no guarantee that the largest execution time measurement is yielded by the worst

case path or that all the precautions taken will guarantee that the worst case path

will be taken.

The second issue to deal with while taking execution time measurements is

the precision. Depending on the system under analysis, the measurement can be

achieved by using software methods, hardware methods or a combination of the

previous two. On the software side, the use of simulators is often encountered while

doing timing analysis. Developing a simulator is proving to be a challenging task

for nowadays’ hardware, when its correctness cannot be proven or even reached.

1.2. CONTEXT 19

Some simulators concentrate on specific features of the system studied and even

if precise execution time for scenarios using those features can be determined, a

complete analysis cannot be possible. Another method to measure execution time

is the use of operation system clocks, by calling functions like time, date or clock.

This approach is reliable under the condition that the analyzed system is using an

OS that has precise hardware timing facilities. In the case of programs running on

bare metal, this method is not an option. High-water marking is also a solution

for capturing high execution times. This method consists in keeping the system

running for a long period of time and recording the execution times observed per

task at exact moments in time. While using this approach, the system can enter in

a repeating cycle allowing the user to see only a limited number of execution time

values per report of the total possible values that the system can produce. If we

consider the effects of cached data, then the possibility of registering the WCET

seems far fetched. Some tools that combine hardware with software for obtaining

measurements are: oscilloscopes, logical analyzer, in-circuit emulators or processors

with debug support. Figure 1.5 depicts the average behavior of execution time in

the context of WCET and best case execution time (BCET). The interval between

the highest observed execution time and the real WCET stays usually unknown for

complex systems. Even using the input that will access the worst case path does

not guarantee the encounter of the WCET. In the context of figure 1.5 this will be

reflected in a shift of measurements towards right (the WCET) and a reduction of

the interval in which the high-water mark can be found.

Figure 1.5: Possible execution time in the context of WCET bounds.

20 CHAPTER 1. INTRODUCTION

Static WCET analysis has been intensely studied and occasionally applied

in embedded systems. Its core principle is the use of models based on the proper-

ties of the software and the hardware. This approach tends to be pessimistic by

providing WCET bounds over the real WCET. This is happening because static

analysis chooses the worst possible states at any certain moment. Therefore, in the

case of loop bounds, the safe choice will be the one that will be hardly seen dur-

ing execution. Input data dependencies are usually ignored by static analysis even

though their existence will reduce the WCET. A great importance when doing static

analysis must be given to the correctness of the model. For a complex program,

finding the worst case input vector is a sensitive subject, as previously described

for the measurement approach. Modeling with precision the platform on which the

analyzed system runs is becoming harder and harder due to the complexity of the

hardware, specially in the case of COTS components for which producers provide

little to none information. Overall, the WCET bound estimated through static

analysis is considerably greater than the measurements, in particular when perfor-

mance enhancement technologies are used, like CPU pipelining, branch prediction

or caches.

Hybrid methods that combine static analysis with measurements consist in par-

titioning the code into smaller parts through instrumentation. Specific instrumenta-

tion points (ipoints) are generated for code parts and based on the traces measured

at these ipoints a flow analysis can be developed for each part of the program.

Combining the program parts taking in consideration the obtained flows and the

time execution distributions generates a WCET estimation. The safety of such an

estimation is once again questionable. For such an analysis, the issues encountered

in measurements and static analysis can be observed. Moreover, the level of instru-

mentation used can be a factor of uncertainty that would need to be discuss in the

context of certification.

A series of tools, academic and commercial, have been developed for WCET

analysis, out of which some are currently used in industry with high confidence. We

will further detail some of these tools and their functionalities in the state of the

art (see 2.5.2).

1.2. CONTEXT 21

1.2.3 Probabilities and statistics

During the last twenty years, different solutions have been proposed to time critical

system designers through a pessimistic estimation of performances of the processors

(thus increased costs) while using average time behavior processors. For instance,

DARPA estimates that in 2050 the construction of an airplane with current solutions

will require the entire defense budget of USA [Augustine, 1997].

In the real-time domain, the arrival of multi-core processors or many-core pro-

cessors as well as the increased complexity of programs have made more difficult

the estimation of the worst case execution times (WCETs) of programs. The exist-

ing methods may produce estimates that are too pessimistic for some systems. As

a result, new analyses based on probabilities and statistics have appeared to cope

with this complexity by taking into account the fact that large values of WCET

may have low probability of appearance.

The disciplines of probabilities and statistics have fundamentally changed the

way science is done and the way we think about our world. New areas of mathemat-

ics and science evolved with the appearance of notions like randomness or uncer-

tainty. In modern computer science, software engineering, and other fields, the need

of taking decisions under uncertainty arises. Probability and statistics have been

historically used together and their existence is strongly linked. Nevertheless, each

one of these two notions have their own definition and can be used independently

of the other.

Probability is the measure of the likelihood that an event will occur. It is

quantified as a number between 0 and 1, where 0 indicates impossibility of the event

observed to happen and 1 indicates certainty. The probability theory is the branch

of mathematics dealing with probabilities. Basic examples, like tossing a coin or

throwing a dice are used to describe how probabilities work while complex discrete

and continuous functions stay at the basis of probability theory and are frequently

used to describe events occurring in the world. Probability theory is used in finance

where applications in risk assessment or modeling rely on it. In marketing and

behavior finance, being able to predict consumer behaviors can bring an advantage

to companies which use probability theory. In industry, producers use reliability

theory to determine the life capacity of their products, the probability of failure

and ultimately to take decision regarding the product’s warranty. In medicine,

biology and ecology, probabilities are used to analyze trends and to determine the

22 CHAPTER 1. INTRODUCTION

evolution of certain disease spread or environment changes.

Statistics is a branch of mathematics dealing with the collection, analysis,

interpretation, presentation, and organization of data. Statistical population and

statistical models are notions used while applying statistics. The population can

be a group of actually existing objects or a hypothetical and possibly infinite group

of objects. A description of the characteristics of population can be obtained by

analyzing the population, or extending the analysis results obtained for one of its

samples. A statistical model is a class of mathematical model, which embodies

a set of assumptions concerning the sample data from a larger population. The

construction of a statistical model depends on the sample used and consequently on

the way the measurements are done to obtain the sample.

After the apparition of computers, statistics encountered a rebirth. Fast compu-

tation allowed mathematicians to collect and process large volumes of data which

conducted to a switch from linear to nonlinear models (such as neuronal networks).

From the other point of view, the use of statistics in computer science gave birth to

new techniques and solutions for difficult existing problems. In software engineer-

ing, statistics can be used to test and construct models of engineering components

and systems, in quality control or to study repetitive operations in manufacturing

in order to set standards and detect errors. The ability to generate a statistical

model of the information under analysis stays at the core of big data domain and

data mining techniques. In bioinformatics statistics are used to describe biological

systems and to process the large amount of information that human (and not only)

DNA contains. Other domains such as neuronal networks, simulation, economics,

mathematics or arts use statistics and statistical tools.

Regarding the embedded systems and the real-time domain, a larger description

of the use of probabilities and statistics will be detailed in the future chapters. In

the state of the art we will mention existing work while in the contribution chapter

we will present the statistical methods developed for WCET analysis and the results

obtained applying them.

1.3 Thesis motivation

In the actual context, where critical real-time systems are invaded by multi-core

platforms, the WCET analysis using deterministic approaches becomes difficult, if

not impossible. The time constraints of real-time systems need to be verified in the

1.3. THESIS MOTIVATION 23

context of certification. This verification, done during the entire development cycle,

must take into account architectures more and more complex. These architectures

increase the cost and complexity of actual, deterministic, tools to identify all pos-

sible time constrains and dependencies that can occur inside the system, risking

to overlook extreme cases. An alternative to these problems is the probabilistic

approach, which is more adapted to deal with these hazards and uncertainty and

which allows a precise modeling of the system.

In the context of real-time embedded systems of great size, the different activi-

ties of the system (tasks, message transmission, etc.) are executed on assemblies of

heterogeneous resources (different technology microprocessors, different communi-

cation networks, etc.). In order to verify the time constraints, one must be able to

model and analyze formally the platform’s performances and the temporal behavior

of executing activities. The need exceeds often the analysis of a sole resource in an

isolated manner because certain activities rely on multiple resources. In this case

an analysis of end to end constraints must be envisioned.

As a response to these problems, a certain number of formalisms have been

proposed in last 15 years: holistic approach (York) [Tindell and Clark, 1994], the

Symta/S tool (Braunschweig) [Henia et al., 2005], the event-stream model (Ulm)

[Albers et al., 2008], trajectory models (INRIA/LRI), Real-Time Calculus (ETZ)

[Simalatsar et al., 2011], latency constrains (INRIA) [Cucu et al., 2008], and others.

These models offer a compromise between result precision and the complexity of

different analyses, and are well adapted for deterministic verifications (e.g. bounds

on the response time). From our knowledge, only the work done in [Santinelli and

Cucu-Grosjean, 2011] considers probabilistic analysis. This result is an extension of

real-time calculus and it inherits its pessimism.

Despite the existence of certain isolation mechanisms, dependencies between ac-

tivities at execution can often be noticed due to shared buses, simultaneous accesses

of input/output memory, cache memory access, preemptions, etc. These dependen-

cies are nowadays particularly important in the multi-core context. The need of a

theory dealing with dependencies of execution times and of concrete solution, seen

in a statistical tool, can be useful to the real-time community in general and to in-

dustries dealing with critical real-time systems in particular. From our knowledge,

there has been no work on this subject until now.

Therefore, under this context, with the presented needs and trying to propose

24 CHAPTER 1. INTRODUCTION

a probabilistic time analysis of execution times for critical real-times systems, the

present thesis was proposed supported by a CIFRE scholarship and reuniting the In-

ria institute of research in Paris and Airbus Operations S.A.S company in Toulouse.

1.4 Model

In this section, we present the model used in the thesis, starting with the basic

notations and definitions coming from the probabilistic domain and continuing with

the formal representation of a probabilistic real-time system. We dedicate special

attention to the definition of probabilistic worst case execution time, a notion that

often induced ambiguity and misunderstandings in the real-time domain.

1.4.1 Useful notions from the probability theory

In order to better understand the model used while performing probabilistic timing

analysis, we list the basic mathematical notations and definitions to be incountered

along the remaining of this document.

Definition 1 A probability distribution is a table or an equation that links each

outcome of an experiment with its probability of occurrence.

In this thesis we use the notions of probability distribution, distribution func-

tion, and ”distribution” with the same meaning, for both continuous and discrete

functions. As an example, the distribution of a single coin flip is represented by the

probability that each side of the coin has to appear, in other words 0.5 for heads

and 0.5 for tails. Despite the triviality of the example, a probability distribution can

be derived for any natural phenomena surrounding us, and described in the form of

random variables.

Definition 2 A random variable is a measurable function from a set of possible

outcomes to a measurable space.

A random variable X has a probability function (PF) fX (·) with fX (x) = P (X =

x). The possible values of X belong to the interval [xmin, xmax]. In this work we

associate the probabilities with the possible values of a random variable X using

the following notation

1.4. MODEL 25

X =

(
X0 = Xmin X1 · · · Xk = Xmax

fX (Xmin) fX (X1) · · · fX (Xmax)

)
(1.1)

where
∑ki

j=0 fX (Xj) = 1.

A random variable may also be specified using its cumulative distribution func-

tion (CDF) FX (x) =
∑x

z=xmin fX (z).

Definition 3 Two random variables X and Y are (probabilistically) independent

if they describe two events such that the outcome of one event does not have any

impact on the outcome of the other.

Definition 4 [Lopez et al., 2008] Let X and Y be two random variables. We say

that X is worse than Y if FX (x) ≤ FY(x), ∀x, and denote it by X � Y.

For example, in Figure 1.6 FX2(x) never goes below FX1(x), meaning that X1 �
X2. Note that X2 and X3 are not comparable. It can also be observed that FX1(x)

upper bounds the other two random variables.

Figure 1.6: Possible relations between the CDFs of various random variables.

The term of ”upper bounding” is counter-intuitive when used for cdfs, specially

when the functions are plotted. The use of complementary cumulative distribu-

tion functions is a better choice when one is interested in the tail behavior of the

distributions. This is the case while doing probabilistic timing analysis.

Definition 5 The complementary cumulative distribution function (CCDF)

of a random variable X represents the probability that X does not exceeds x. We

note the CCDF of X as F̄X = 1− FX

In Figure 1.7 we can observe the complementary cumulative distribution func-

tions of the same random variables depicted in Figure 1.6. It can be observed that

X1 curve is situated above X2 and X3 as the upper bounding variable.

26 CHAPTER 1. INTRODUCTION

Figure 1.7: Possible relations between the CCDFs of various random variables.

The CCDF representation is chosen over the CDF one in the timing analysis

performed in the following chapters of this thesis. This choice was motivated by the

definition of WCET, which is a value that a program has low probability of achieving,

and that approaches the bottom right most point in a CCDF distribution.

1.4.2 Probabilistic real-time system

We consider a system executing a task set τ = {τ1, τ2, . . . , τn} of n synchronous tasks

processor according to a predefined scheduling policy. Without loss of generality,

we consider that τi has a higher priority than τj for i < j. We denote by hp(i) the

set of tasks’ indexes with higher priority than τi.

Each task τi generates an infinite number of successive jobs τi,j , with j =

1, . . . ,∞. All jobs are assumed to be independent from other jobs of the same

task and those of other tasks.

A task τi is defined by the tuple (Oi, Ci, Pi, Di) which represents the offset,

worst case execution time, absolute period and absolute deadline. Inheriting from

the generating task, a job τi,j is characterized by the parameters (Oi, Ci, P
j
i , D

j
i),

where Oi and Ci are the task’s offline and worst case execution time, P ji is the

relative arrival time of the job (P ji = Oi + (j − 1) ∗ Pi) and Dj
i is the job’s relative

deadline (Dj
i = Oi + j ∗Di).

Definition 6 A probabilistic real-time system is a real-time system with at least

one parameter defined by a random variable.

In this thesis we concentrate on the probabilistic real-time systems (PRTS) hav-

ing the worst case execution time defined as a random variable (probabilistic WCET)

. Literature records papers dealing with systems having probabilistic inter-arrival

1.4. MODEL 27

times or even multiple parameters described as random variables. These kinds of

systems are out of the scope of our work. We dedicate the next subsection to the def-

initions of probabilistic execution time (pET) and probabilistic worst case execution

times (pWCET).

pET and pWCET

Definition 7 The probabilistic execution time (pET) of a job of a task de-

scribes the probability that the execution time of the job is equal to a given value.

The pET can be derived from execution time samples in the form of a frequency

function or computed from the task’s characteristics. We emphasize that a pET is

representative to an execution time profile of the task but not to the entire task.

We consider an execution time profile of a task as the task’s timing behavior under

specific configuration of the system.

Each task τi is represented by a probabilistic worst-case execution time (pWCET)

denoted by Ci defined as follows.

Definition 8 The probabilistic worst-case execution time Ci of a task τi is

an upper bound on the pETs Cji , ∀j and it may be described by the relation �, as

Ci � Cji , ∀j. Graphically this means that the CDF of Ci stays under the CDF of Cji ,

∀j (and equivalently the CCDF of Ci stays above the CCDF of Cji , ∀j).

The worst-case execution time Ci can be written as follows:

Ci =

(
C0
i = Cmin

i C1
i · · · Ckii = Cmax

i

fCi(C
min
i) fCi(C

1
i) · · · fCi(C

max
i)

)
, (1.2)

where
∑ki

j=0 fCi(C
j
i) = 1.

For example for a task τi we might have a worst-case execution time

Ci =

(
4 6 17

0.54 0.43 0.03

)
; thus fCi(4) = 0.54, fCi(6) = 0.43 and fCi(17) =

0.03.

We mention that following the same reasoning the probabilistic minimal inter-

arrival time (pMIT) denoted by Ti describes the probabilistic minimal inter-arrival

times of all jobs.

28 CHAPTER 1. INTRODUCTION

Hence, a task τi is represented by a tuple (Oi, Ci, Pi, Di), or in its short form

(Ci, Pi) when the deadline is equal to the period (the release time of a new job is

equivalent with the deadline of the current job) and all the tasks start at the same

moment Oi = 0 .

Since the seminal paper of Liu and Layland [Liu and Layland, 1973] the inde-

pendence of tasks is defined such that the requests for a certain task do not depend

on the initiation or the completion of requests for other tasks. Moreover the schedu-

lability analysis of independent tasks may be studied under the hypothesis that the

tasks do not share any resources except for the processor. This hypothesis cannot

be respected under current hardware architectures. We define the multiple notions

related to independence when using probabilistic timing analysis in the contribution

section (section 3.3).

Chapter 2

State Of The Art

In this chapter we present existing work on the domain of real-time systems that is

relevant to the contributions of this thesis.

Aggressive hardware acceleration features like cache and deep memory hierar-

chies determined a wide variability of executions times. As a consequent, approaches

of Worst Case Execution Time analysis and Worst Case Response Time analysis, not

taking into account that large values are rare events, may produce results indicating

deadline misses when, in practice, the probability of such an event occurring in the

lifetime of a system is considerably small. Such over-pessimistic analysis may lead

to the over-provision in the system architecture and to a reduction of the maximum

number of functionalities that the system can include.

For a precise worst-case analysis the system parameters need to be considered in

their worst case value or described using a safe upper-bound/lower-bound, which is

not always possible. Also, there are cases when the parameters are not known until

system runtime, when tasks get instantiated. For such cases, computing worst-case

values becomes difficult or even impossible, while using safe bounds for the system

analysis may introduce increased level of pessimism.

Another case where deterministic analysis may not be efficient is the case of event

triggered systems which interact with the real world. For this kind of systems, it

is not always necessary that an useful bound is placed on the arrival rate of jobs

generated by interrupts from external sensors or network interfaces, which may not

even have such a bound [Broster and Burns, 2004a]. The best known examples

of systems with streams of jobs that arrive in a random fashion are controller area

networks with faults and specifically faults generated by electromagnetic interference

29

30 CHAPTER 2. STATE OF THE ART

(EMI) [Broster and Burns, 2004a], [Navet et al., 2000].

In practice, for the presented examples, system manufacturers are in the situa-

tion that they cannot certify a system because it is deemed infeasible by the worst

case-execution analysis even though it is functioning correctly and without (or very

little) faults and all experimentation, simulation and human experience confirm that

it is in fact a feasible system. In the best case, manufacturers end up limiting the

functionality integrated in the system, severely over-provisioning it.

An alternative approach is the use of probabilistic analysis. This is a research

topic that gained ground in the last years, several works addressing the problem

from different points of view. The use of probabilities in real-time systems can

be also easy to grasp by the fact that systems’ reliability is typically expressed in

terms of probability for hardware failures, memory failures, software faults etc. An

example in the time domain is represented by the maximum failure rate demanded

in the avionics industry for DAL-A applications, which is the value of 10−9 per hour

of operation. Probabilistic analysis techniques that seek to meet this requirement,

rather than attempting to provide an absolute guarantee, have the potential to

outperform deterministic techniques.

Probabilistic real-time systems and probabilistic real-time analysis are becom-

ing a common practice in the real-time community, [Burns et al., 2003]. Papers

related to this topic use different terms like stochastic analysis [Gardner and Lui,

1999], [Kaczynski et al., 2006], [Dı́az et al., 2002], probabilistic analysis [Tia et al.,

1995] or statistical analysis [Atlas and Bestavros, 1998], [Cucu-Grosjean et al.,

2012] to indicate usually that the considered Critical Real-Time Embedded Sys-

tems (CRTES) have at least one parameter defined by a random variable.

In the following of this chapter we present existing work combining the real-

time domain with statistics and probabilistic. The structure of this chapter is given

by the impact of the probabilistic factor in the analysis or in the system being

analyzed. We separate the timing analysis of systems containing a probabilistic

component from the analysis that rely on probabilistic techniques, giving a short

summary of such techniques. We enumerate the efforts done on the randomized

architectures topic, and discussion on the precision of using probabilistic analysis

on such architectures. In conclusion, we present the actual state of avionics industry

and mention the work done in analyzing such systems.

2.1. TIME ANALYSIS OF PROBABILISTIC REAL-TIME SYSTEMS 31

2.1 Time analysis of probabilistic real-time systems

In this section we present the main timing analyses of probabilistic real-time sys-

tem. The notion of probabilistic real time systems is used here in a wider context

than presented in the model (see chapter 1.4) where one the system’s parameter

is described as a random variable. Instead, we include here results on systems or

analysis methods that have a probabilistic component. The notion of stochastic is

also used in the following description in concordance with the vocabulary employed

by the cited authors. A stochastic process is a process with a randomly defined

evolution. In mathematics the notions of stochastic process and random process are

considered interchangeable. We can consider a stochastic process to be probabilistic

if the probability function that describes that process is known.

Probabilistic real-time systems can be classified in three main categories accord-

ing to the parameters that exhibit a random behavior. In the last years, systems with

probabilistic execution time have been often analyzed motivated by their close re-

semblance to the real world. The inter-arrival time can also be modeled as a random

variable giving birth to another topic of work. Systems with multiple probabilis-

tic parameters are, for now, a theoretical exercise for researchers in the real-time

domain.

The first paper introducing probabilistic distributions for the description of exe-

cution times of tasks had associated to large values of execution times low probabil-

ities [Tia et al., 1995] as illustrated in Figure 2.1. In this work, the authors present

an analysis for semi-periodic tasks, which means that they have periodic releases

but their execution times vary. The analysis is called Probabilistic Time Demand

Analysis (PTDA) and computes the worst case probability that a task in the system

misses its deadline by bounding the total amount of processor time demanded by all

higher priority tasks. The limitation of this work come from the pessimism of the

analysis and from the limitation of the number of random variables to be combined.

The pessimism is brought by the bound put on the processor time by the higher

priority tasks. Due to the exponential explosion when combining random variables,

the authors limited the analysis algorithm at combining maximum 10 random vari-

ables, while in the case of a larger number of release jobs the analysis is carried

using the central limit theorem to approximate the response time.

In [Gardner and Lui, 1999], the authors present a stochastic analysis for real

time systems that have probabilistic execution time. The analysis, called STDA

32 CHAPTER 2. STATE OF THE ART

Figure 2.1: Distribution of execution times.

(Stochastic Time Demand Analysis), computes a lower bound on the probability

that jobs in each task meet their deadlines. The proposed analysis is the basis for

future developments, like the work of Diaz et al. [Dı́az et al., 2002] who refined the

analysis into an exact one.

In [Dı́az et al., 2002], [Kim et al., 2005], [Lopez et al., 2008] the authors present

an exact analysis for real-time systems that have random execution times. The

execution time is represented as a general random variable and the priorities may

be job-level or task-level. The analysis is proven to be bounded in time and exact for

both cases when the system utilization is lower or greater than one. Due to the cost

of convolution, the proposed analysis can be applied only for small task systems -

this problem is later studied in [Refaat and Hladik, 2010] and [Maxim et al., 2012b].

Also, the system model on which the analysis can be applied is restrictive in the

sense that, except for the execution time, it does not allow for other sources of

variability, such as variable minimum inter-arrival time, variable deadline, etc.

In [Diaz et al., 2004] the authors further refine their analysis by bringing into

discussion the concepts of pessimism and optimism, relations between two random

variables, as well as truncating the tails of execution time probability distribution

and moving probabilities from small values to large values of the execution time

distribution, which is a pessimistic way of reducing the analysis cost, later known

as re-sampling. The paper also treats the application of the pessimism concept

2.1. TIME ANALYSIS OF PROBABILISTIC REAL-TIME SYSTEMS 33

on the blocking in shared resources and on the priority assignment policy of the

system under analysis. The authors also state that Audsley’s’ algorithm [Audsley,

1991, Audsley, 2001], which is optimal in the deterministic case, is also optimal in

the stochastic case.

In [Refaat and Hladik, 2010], the authors propose a refinement of the existing

stochastic analysis by means of re-sampling of the values in the worst case execu-

tion time distribution. That is to say, the worst case execution time distribution

is reduced in size by selecting a subset of values to be kept from the original set

of values, removing the unselected values and re-distributing their probability mass

to the selected values. The proposed re-sampling techniques have two major short-

comings: a) the samples to be kept are randomly selected by assigning a selection

probability to each values of the original distribution, and b) the probability mass

of the unselected values goes entirely to the largest value of the distribution, the

worst case execution time, thus greatly increasing the introduced pessimism, as op-

posed to re-distributing the probability mass to the values that are kept. These

issues have been addressed in [Maxim et al., 2012b], by distributing the samples in

a fair manner in order to keep reduce introduce a low amount of pessimism while

reducing the number of values in the re-sampled random variable in order to reduce

the computation needed to convolve the probabilistic execution times.

In [Burns et al., 2003] and [Bernat et al., 2005], the authors provide a probabilis-

tic analysis framework for systems with tasks that have stochastic execution times,

given as random variables following some probability distribution derived from mea-

surement. The particularity of this work is the fact that the basic blocks which are

analysed can be correlated. The correlations between blocks is solved by use of cop-

ulas, a mathematical tool that investigates dependence structures between random

variables. When dependencies are not known, copulas produce upper and lower

bounds of a joint distribution function of two correlated distribution functions such

that it incorporates any possible dependences between the two distribution func-

tions.

In [Manolache et al., 2004], the problem of uni-processor scheduling of tasks with

stochastic execution times is studied. The scheduling policies taken into consider-

ation are non-preemptive, and tasks have precedence constraints between them.

The tasks’ execution times are given as generalized probability distributions and

assumed independent from one another, but the periods of tasks are assumed to

34 CHAPTER 2. STATE OF THE ART

be harmonic, i.e., the period of one task is a common multiple of all periods of its

predecessor tasks.

In [Hu et al., 2001], the authors are concerned about the feasibility of a system

as a whole as opposed to the feasibility of separate tasks. The considered system is

formed by periodic tasks that have probabilistic execution times given by random

variables. Apart from these details, the description of the system under analysis may

be improved, for example the algorithm for computing response time distributions

is not presented, nor it is explained if jobs are discarded at deadline miss or if they

are allowed to continue their execution - this specification has an impact on the

nature of the analysis. Also, the motivating examples might not be valid, since

the response time distributions presented are different than the ones that would be

obtained by applying the analysis framework in [Dı́az et al., 2002] and subsequent,

which have been proved to be safe.

Multiple papers have been published on the topic of fault analysis in Control

Area Networks (CAN) where the faults have a probabilistic arrival. We mention

here, the work presented in [Axer and Ernst, 2013] which extend on the methodolo-

gies introduced by Diaz et al. [Dı́az et al., 2002], [Kim et al., 2005], [Lopez et al.,

2008]. Also, in [Navet et al., 2000] it is introduced the notion of Worst Case Deadline

Failure Probability and present a probabilistic model for the errors that can occur in

a CAN network, especially the errors caused by electro-magnetic interference which

have a probabilistic nature. In [Broster et al., 2002] the authors present an analysis

framework dealing with random faults on CAN. The faults arrive according to a

Poisson distribution, but the analysis can only cope with a single stream of faults,

i.e., all faults are equivalent, so they are considered as instances of the same pro-

cess. In [Zeng et al., 2009b], [Zeng et al., 2009a] and [Zeng et al., 2010] the authors

present different techniques, be it stochastic or statistic, to predict response times

distributions of messages on a CAN based on simulation data on a reference CAN

bus system.

In [Atlas and Bestavros, 1998], Rate Monotonic (RM) scheduling is extended

in a statistical fashion in the sense that tasks have variable execution times and

admission control of a job in the system is based on the likelihood of it finishing

execution before its deadline. The conducted simulations show that Statistical Rate

Monotonic Scheduling (SRMS) performs better than RM scheduling in overload

conditions but not before overload occurs.

2.1. TIME ANALYSIS OF PROBABILISTIC REAL-TIME SYSTEMS 35

The problem of scheduling systems with probabilistic execution time is tackled

in [Maxim et al., 2011] where an adaptation of Audsley’s algorithm [Audsley, 1991]

is done in order to optimally assign priorities to tasks. The authors also proposed

a tree search algorithm for the Average Priority Assignment Problem (APAP) for

which a greedy algorithm like Audsley’s does not perform well.

The shift towards multi-processors architectures brought along analysis of prob-

abilistic systems on such platforms. In [Manolache et al., 2002], the authors present

a schedulability analysis for multiprocessor systems with tasks characterized by

probabilistically distributed execution times. The parameters are having arbitrary

distribution which are approximated to Coxian distributions for complexity reduc-

tion. In [Nissanke et al., 2002], the authors present a probabilistic framework for

analyzing global performance issues in multiprocessor scheduling environments. The

tasks are considered to have probabilistic execution times and probabilistic arrival

times, and also the number of processors available at a time instance can be vari-

able. The possible number of tasks in the system at a moment in time is computed

as a probabilistic quantity, and the analysis is performed based on the execution

requirements of each task and its laxity. The laxity of each task is computed based

on the execution time and deadline, hence it is also a probabilistic quantity. The

authors provide formulas for the computation of failure rates and success rates on

a wide system scale, and for particular tasks.

In [David and Puaut, 2004] the authors provide a framework for obtaining the

probabilistic execution times (pETs) of a program. This work uses static analysis

to obtain probabilistic distributions of execution times, by associating to any path

of a task a certain probability. In its initial form, the paper ignores the hardware

on which system runs and concentrates solely on the task set that is analyzed.

The topic of probabilistic inter-arrival time is relatively a new research topic.

Its lack of interest from the community is caused by the fact that industry did not

confront itself with such behavior in real life. Recently, some designers started to

introduce randomized events in their systems in order to avoid abnormal situations.

As an example, some automotive manufacturers have randomized the sampling fre-

quency for the reverse parking ultrasound sensor in order to avoid the situation

when two vehicles reverse back-to-back and they both having the same sampling

frequency reduces the efficiency of their parking sensors [Buttle, 2012]. By ran-

domizing the sampling frequency, the jobs that are generated by the sensor have a

36 CHAPTER 2. STATE OF THE ART

random arrival pattern. These jobs belong to a task that can be seen as a sporadic

task with its period equal to the minimum inter-arrival time (MIT) amongst its

jobs. Knowing that job arrivals are random, then we may describe the MITs by

distributions, i.e., the arrival distribution of the generated jobs, which gives a more

accurate description of the generated jobs.

In [Broster and Burns, 2004a] and [Broster and Burns, 2004b], the authors

provide an intuition of how the random arrival model presented in previous work

can be applied to fixed priority preemptive uni-processor scheduling. The main

difference between faults arrivals in controller area networks and random job arrivals

is that, regardless of their sources, the generated faults are all considered equivalent

and so only one stream of faults applied in the analysis. In the case of one processor,

the jobs with random behavior can be generated by multiple sources like external

interrupts, network interfaces, etc, and have different characteristics. The previous

analysis needs to be generalized in order to handle multiple streams of random

arrivals.

In [Cucu and Tovar, 2006], a framework is presented for computing response

time distributions in the case when in the system there are tasks that have random

arrivals, given as independent discrete random variables. The rest of the parame-

ters of the tasks are deterministic. The output of the analysis is the response time

probability distribution of the first release of an analyzed task, considering that all

tasks are released synchronously. The analysis is bounded in time, being polynomial

in the value of the deadline. That is, the analysis stops when the job under consid-

eration reaches values of response time that are equal to its deadline. As it is the

case of the analysis proposed by Broster et all [Broster and Burns, 2004b, Broster

and Burns, 2004a], this assumption restricts the system model to only those sys-

tems where jobs are evicted at deadline, and excluding the systems where jobs are

allowed to continue execution even after their deadline.

The case of probabilistic minimum inter-arrival time is discussed in [Maxim et al.,

2012a] from the point of view of the properties that such a parameter might have.

An initial conclusion is that MITs exhibit a behavior characteristic to a Weibull

distribution due to the short tail observed in the measurements.

In research, the exercise of multiple probabilistic parameters has been considered

for the first time by Lehoczky in [Lehoczky, 1996]. The author presents an analysis

for tasks that have arrivals according to a Poisson distribution process with rate λ

2.1. TIME ANALYSIS OF PROBABILISTIC REAL-TIME SYSTEMS 37

and exponentially distributed execution times. The paper does not deal with the

case in which the parameters are described by another distribution and because of

its tight presumptions it limits its applicability to more general task-sets.

In [Kaczynski et al., 2007] and [Kaczynski et al., 2006], the authors present an

analysis for hybrid probabilistic systems which may include periodic, sporadic and

aperiodic tasks. Tasks’ execution times are given as execution time profiles (ETP)

given as random variables. The sporadic and aperiodic tasks are considered to have

arrival profiles (AP) as well given by random variables, specifically representing

the number of task activations during a fixed time interval. All random variables’

distributions are considered known. The solution proposed is based on a Polling

Server extending the work presented in [Dı́az et al., 2002]. A method for obtaining

ETP s for servers used to encapsulate hybrid task-sets is developed and presented.

The method is simulated and shown to have a high level of accuracy both compared

to the worst case analysis and to the probabilistic analysis presented in [Dı́az et al.,

2002] where tasks’ periods are considered as deterministic.

In [Abeni et al., 2012] and [Manica et al., 2012], the authors present an anal-

ysis framework for tasks with probabilistic execution times and random arrivals.

The task system is running on a preemptive uni-processor according to a Constant

Bandwidth Server based on Earliest Deadline First.

The analysis of a system containing probabilistic execution times, minimum

inter-arrival time and deadlines is presented in [Maxim and Cucu-Grosjean, 2013].

This work relies on re-sampling to improve the complexity of the analysis that

compute response time distributions of the tasks scheduled on one processor under

a task-level fixed-priority preemptive scheduling policy.

We mention in this chapter, under the notion of probabilistic real-time systems

those systems executing on platform having probabilistic caches (cache memory

for which the behavior can be described as a random variable). For such sys-

tems, the technique called static probabilistic timing analysis (SPTA) is introduced

in [Davis et al., 2013a] in order to analyze probabilistic cache related preemption

delays (pCRPD), providing an upper bound on the 1-CDF of the probabilistic worst

case execution time distribution function (pWCET) of a task while also taking into

account the effect of one or more preemptions at arbitrary points in the tasks ex-

ecution. In [Davis et al., 2013b] the problem of static probabilistic timing analysis

is taken further to the case of multi-core processors where the existing SPTA is no

38 CHAPTER 2. STATE OF THE ART

longer applicable due to the interactions that exist at cache level between cores. The

authors formalize the problem and provide intuitions for several paths that could be

employed to find a solution, but the problem is still open up to date. In [Hardy and

Puaut, 2013], the authors introduce a static probabilistic timing analysis (SPTA)

for systems with faulty caches. This analysis stems from the observation that the

technological progress leads to system components that are more and more prone to

failures. The precise component targeted by the mentioned work is the instruction

cache, with future work directed towards other micro-architecture components with

SRAM cells such as data caches and branch predictors. In this work, the cache uses

the least recently used (LRU) replacement policy, and the only source of probability

comes from the intrinsic probability of cache blocks failing. The probability of a

permanent cache block failure is considered known and a failure actually happening

in the systems implies the (permanent) disabling of the faulty block with an impact

of the WCETs of the tasks in the system. The authors propose a technique to

compute a probabilistic bound on the WCET in the presence of permanent faults.

The technique is shown to be tight while remaining safe, due to the fact that it is

based on static analysis, which is guaranteed to always find the longest execution

path and hence the largest value of the execution time.

2.2 Probabilistic methods

For the case when the probabilistic law of the data under analysis is known, further

techniques can be applied to determine properties of that data. Such is the case

of computing deadline miss probability when knowing the random variable describ-

ing the execution times. In practice, the knowledge of the functions describing a

system’s parameters is approximated from the measurements, constructed from the

system’s functionality or even made up for the sake of research. This problem makes

previous presented work hard to apply in real systems. Nevertheless, determining

a pWCET distribution from a set of data is possible using extreme value theory

(EVT). There have been a series of papers presenting and using this theory in the

context of time analysis for real-time systems and we summarize the notable ones

in the next section (see chapter 2.3). In order to better grasp the concept EVT

without entering into details (see chapter 4), we present the basics of this theory

and its use in science in general and in the real-time domain in particular.

Extreme value theory is a branch of statistics dealing with the extreme deviations

2.2. PROBABILISTIC METHODS 39

from the median of probability distributions. In other words, EVT provides the

statistics of extreme events of a stochastic process. Extreme events are considered

those events that have a behavior which deviates from the average behavior of the

population. While the central limit theorem describes the probability law followed

by average samplings, EVT consists of a set of well elaborated statistical theory for

extreme values. Figure 2.2 gives a visual description of the place where extreme

events can be found in distribution.

Figure 2.2: Space of interest of the central theorem compared to the extreme value

theorem.

Extreme value theory has applications in various fields. In finance, EVT can be

used to describe the distribution of income in an analyzed domain of activity or to

predict the maximal daily lost in the value-at-risk analysis. In hydrology, EVT is

applied to predict extreme floods in order to allow the authorities to install measures

of protection. The result of such predictions is presented in the form of maximal

flow expected once every 100 years.

The domain in which EVT development strove is the meteorology, where natural

phenomena can be seen as events and the ability to better understand and predict

their extremes can prove life saving. A few examples of such phenomena are: ex-

treme winds, frosting, heavy precipitations, heat waves, hurricanes, droughts and

extreme climate changing. The theory of extremes as it has been used in meteorol-

ogy has been extended to the real-time domain for predicting worst case execution

40 CHAPTER 2. STATE OF THE ART

times of analyzed programs for a certain probability. We detail in the following

chapter (2.3) the main results on this theory.

In this section we mention only the work that modified the theory of extremes

in the course of history bringing it to what it is now, a well elaborated statistical

theory. For a detailed review of applications we advise the reader to consult [Faragó

and Katz, 1990].

The theory of extremes is first formalized by Fisher and Tippett in [Fisher and

Tippett, 1928]. The authors resemble the distributions of Gumbel, Fréchet and

negative Weibull to describe the maxima for a single process. Previous researchers,

as Fuller in 1914, have used some of these three distributions in applications without

a precise formalization. According to Kotz and Nadarajah [Kotz and Nadarajah,

2000], extreme value distributions can be traced back to work done by Bernoulli in

1709. The classification of the three laws of distributions have been further refined

and consolidated in [Gnedenko, 1943], [Haan, 1970], [Haan, 1976] and [Weissman,

1978]. For ease of notation, in the rest of this thesis, we use the term ”Weibull” to

describe the negative Weibull distribution.

In [Leadbetter et al., 1983], the authors provide the necessary and sufficient

conditions for a set of independent and identically distributed (i.i.d.) random vari-

ables with common cumulative distribution function (cdf) to belong to the domain

of attraction of one of the three extreme value cdfs (Gumbel, Fréchet and nega-

tive Weibull). Based on these conditions, multiple publications appeared in which

specific sequences of iid observations ae tested in order to find the domain of at-

traction of the three distributions they belong to. For the Gumbel type we men-

tion [de Oliveira and Gomes, 1984], [Marohn, 1998a] and [Marohn, 1998b]. The

Weibull type is tested in [Tiku and Singh, 1981] and [Shapiro and Brain, 1987].

More general tests have been provided in [Galambos, 1982], [Öztürk and Korukogu,

1988], [Castillo et al., 1989] and [Hasofer and Wang, 1992]

Split according to the three types of distributions, we list some of the applica-

tions in which EVT is used. Therefore, the Gumbel distribution has been applied

to fire protection and insurance problems and the prediction of earthquake mag-

nitudes, to model extremely high temperatures, and to predict high return levels

of wind speeds relevant for the design of civil engineering structures. The Fréchet

distribution has been applied to estimate probabilities of extreme occurrences in

stock index and to predict the behavior of solar proton peak fluxes. The Weibull

2.3. MEASUREMENT BASED PROBABILISTIC ANALYSIS 41

distribution has been used to model failure strengths of load-sharing systems and

window glasses, for evaluating the magnitude of future earthquakes, for partitioning

and floorplanning problems, to predict the diameter of crops for growth and yield

modeling purposes, for the analysis of corrosion failures of lead-sheathed cables at

the Kennedy Space center, to predict the occurrence of geomagnetic storms and

to estimate the occurrence probability of giant freak waves in the sea area around

Japan.

The three types of distributions can be combined in a single distribution called

generalized extreme value theory (GEV). For a given set of data, the block maxima

method is used to obtain the random variables fitting to the GEV distribution. This

method consist in choosing the maximum values from a series of equal time interval

(the annual maxima in the case of seasonal events). Most of the work done on

this topic took place in the 90’s having researchers like Dietrich, Hüsler, Dupuis or

Castillo as contributors.

In [Balkema and De Haan, 1974] and [Pickands III, 1975], the authors evidentiate

the link between GEV distribution and the survivor function of the Generalized

Pareto (GP) distribution. This distribution can also be used in modeling the tail

behavior of a given distribution. This is done using the peak over threshold method

in which all the values over a certain threshold are chosen in order to identify

the generalized pareto distribution parameters for the data under analysis. Some

practical applications of GP distribution include the estimation of the finite limit

of human lifespan, the modeling of high concentrations in short-range atmospheric

dispersion and the estimation of flood return levels for homogeneous regions.

For a complete introduction in the domain of extreme value theory and an

practical guide for applying the existing techniques regarding EVT, we guide the

reader to Cole’s book ”An introduction to statistical modeling of extreme values”

[COLES, 2001].

In the real-time domain, both GEV and GP distributions have been used to

model the behavior of execution times. We present in the following sections the

notable papers on this subject.

2.3 Measurement based probabilistic analysis

In critical real-time systems (CRTS), being able to predict the behavior of all com-

ponents is very important. This is why, most of the manufacturers using CRTS

42 CHAPTER 2. STATE OF THE ART

favor basic hardware for which well written software is easily analyzed using static

methods. In such cases, the execution times from static analysis and the ones ob-

tained by measurements tend to have similar values, with a slight pessimism on the

static side. With the evolution of hardware and the multi-core platforms piercing in

the embedded systems industry, this similarity disappears giving place to a big dis-

crepancy between static analysis results and measurements. On the measurements

side, new technologies, concentrating in increased average performance, generate

execution time distributions shifted to the left compared to the real probability law

of the system, as a result of optimism given by the platform. On the other side,

static analysis may overestimate the WCET producing values much higher that the

real WCET of the system, or even fail to compute the WCET due to the high com-

plexity of the platform and/or the program. The trivial method of increasing the

highest execution time obtained by measurement with a certain percentage might

not be safe, especially when the value of that percentage is decided upon from his-

torical reasons on the simple justification that ”it always worked like that”. Finding

a mathematical computed upper bound of a system’s WCET from measurements

came as a logical solution. This has been done in the last two decades using the

statistical methods and probability theory. The same way the central limit theorem

is used for modeling average behavior of events, the extreme value theory can be

used for modeling extreme events such as high execution times.

Doing a parallel between meteorological phenomena and a system’s execution

time, we can consider the observed execution times as the meteorological measure-

ments in a given period of time, the highest execution times (including the high

water-mark) as the rare events happening in the given interval of time, and the

WCET as the most extreme event which meteorologist try to predict in the future.

Such meteorological phenomena that fits the comparison can be heavy rain, storms,

floods or drought. Similarly, earthquake can respect the aforementioned criteria.

For all this natural events, extreme value theory (EVT) is used to predict critical

events and its corresponding probability of happening.

The first papers proposing EVT as a solution for analysis real-time systems ap-

peared in the years 2000-2002 from University of York. In [Burns and Edgar, 2000],

the authors consider for the first time determining the system model using extreme

value theory, inspired by the inaccurate approximation of the Gaussian distribution

on observed data. In this paper only one example is used in the experimental section

2.3. MEASUREMENT BASED PROBABILISTIC ANALYSIS 43

and the generalized extreme value distribution is used as a targeted distribution.

The premises of such a modeling are not specified and no statistical test that the

analyzed data need to pass are mentioned. Moreover, the GEV parameters are esti-

mated from the raw data and as a result the pWCET estimation of the given system

does not take in account dependencies coming from the periodicity of the system.

In [Edgar and Burns, 2001], the Gumbel distribution is chosen for modeling the

pWCET curve and further statistically estimate the feasibility of a task set. Select-

ing only one of the three EVT distributions is not correct in the context in which

there is no formal proof showing that the behavior of execution time of all systems

in the worst case context is modeled as that exact distribution. Indeed, from our

knowledge, there is no proof of the fact that the extremes in a execution time sample

it always fits on a Gumbel distribution. Even more, in the contribution section we

present practical examples for which the Weibull or the Fréchet distributions are the

ones obtained as fitting distributions for the observed data. As in [Burns and Edgar,

2000], the discussed paper uses the raw data to be fitted on the EVT distribution

instead of using a method for maxima picking as the theory exceeds. Even though

the level of confidence for the obtained results is calculated, no goodness of fit test

is used to support the Gumbel fitting.

A detailed work on probabilistic methods can be found in Edgar’s Ph.D. thesis

[Edgar, 2002] which extends on the previous mentioned papers and inherits the same

weaknesses: use of Gumbel instead of GEV, fitting of raw data instead of using a

maxima selecting method, generation of models with distributions not exceeding

the probability of 10−5 or limitations of EVT on statistical independent data. This

work has a great role in the domain of probabilistic analysis of real-time systems,

being the fist work that consider the idea of probabilistic worst case execution time

despite its formalization in future publications.

The issue of fitting raw data on EVT models encountered in Edgard’s work is

corrected in [Hansen et al., 2009] with the use of block maxima method and the use

of EVT in its original design. The use of a goodness of fit (GOF) hypothesis test is

also considered in this work. The paper adapts the analyzing methods to produce

results in the form of probability of failure in a given time period, which is inline

with the results obtained in the testing community. The main issue with this work

is represented by the way the block size is chosen for the block maxima method.

An iterative process in which the block size is doubled and the results are verified

44 CHAPTER 2. STATE OF THE ART

using the GOF test is used for determining the GEV parameters to be used for the

pWCET distribution. This method suffers from lack of accuracy and demands a

high number of observations for obtaining a reliable model.

In [Maxim et al., 2016], we propose a series conditions that a system under

analysis has to respect such that the pWCET estimation using EVT to be reliable

and certifiable. Therefore, the concepts of reproducibility and representativity of the

measurement protocol are introduced. It is considered that a measurement protocol

with such properties is capable to produce data samples with the same statistical

properties as the real WCET distribution of the system. A detailed description of

these concepts can be found in contributions chapter of this thesis.

In the years following the introduction of pWCET estimation, several authors

reported problems regarding the use of EVT in timing analysis. The problem of

realism in statistical analysis of WCET is tackled in [Griffin and Burns, 2010], where

several misconceptions about EVT are listed. The authors point out the capacity of

EVT to produce a continuous distribution of pWCET for systems containing a finite

number of states and, as a result, a discrete distribution of possible execution times.

This is proven not to be a real issue for statistical timing analysis in [Cucu-Grosjean

et al., 2012], but rather a common misunderstanding in the real-time community

where the clear difference between pET and pWCET is still to be done in 2010.

Another issue spotted in [Griffin and Burns, 2010] is related to the necessity of

EVT to use i.i.d. samples when dependency often arise from the hardware features.

A confusion between functional dependencies and statistical dependencies is made

when discussing this issue. Both [Edgar, 2002] and [Maxim et al., 2016] present a

clear difference between these two notions and while the second one is a requirement

for EVT use the first one is not. Even more, the use of block maxima in the case of

GEV has the role of eliminating direct dependencies, while new statistical method

are able to analyze dependent data using the GP distribution.

In [Lima et al., 2016], the use of Gumbel distribution is challenged and the

suggestion of GEV usage is made. The GEV distribution has already been used

before in papers like [Cucu-Grosjean et al., 2012] or [Wartel et al., 2013], but because

most of the analyzed data is fitting a Gumbel the use of GEV is not made clear.

A analytical look on randomized cache is done in [Lima et al., 2016] leading to the

conclusion that randomization is not necessary for the use of EVT based analysis,

but in systems with low execution time variability it can be helpful.

2.3. MEASUREMENT BASED PROBABILISTIC ANALYSIS 45

For systems having a small number of states due to fully deterministic platforms

and/or a software with a relative number of paths, EVT can hardly be used because

of the law variability of the observed execution times. To combat this problem, [Lima

and Bate, 2017] proposes the IESTA method which artificially injects variability in

the form of a known distribution in a execution time sample in order to allow

the EVT methods to model the system’s behavior. Rendering systems with low

variability analyzable comes with the costs of confidence loss, in other words the

timing analysis using EVT on an IESTA processed sample produce a upper bounding

area for the pWCET instead of a curve.

In the last decade, the rising interest in real-time systems evolution gave birth to

multiple research projects. In the context of this thesis we mention the PROARTIS

European project [Proartis, 2013] and its follow up project, PROXIMA [Proxima,

2016]. The goal of Proartis project is to develop new tools and techniques that

would make timing analysis of critical real-time systems approachable on platforms

using faster computer hardware features. The mean of achieving this goal is the

use of statistical techniques based on probability theory in order to deal with the

system’s uncertainty. During the project, randomization of cache accesses to mem-

ory is proposed as a condition for the use of EVT. This premise may be useful

but not necessary [Lima et al., 2016]. The platform used in Proartis is the Leon3

FPGA board which perfectly suited the use of hardware randomization despite its

practical limitations for the industrial partners. Most of the theory and techniques

proposed in this project apply for single-core architectures, even though the project

had as a clear purpose to make the transition from single-core architectures to multi-

cores ones. In the context of Proartis, notions like measurement-based probabilistic

timing analysis (MBPTA), statical probabilistic timing analysis (SPTA), time com-

posability or hardware randomization has been used or developed, and a series of

papers have been written where EVT is used for timing analysis.

In [Cucu-Grosjean et al., 2012], MBPTA using EVT is proposed as a alternative

choice for computing WCET bounds in industrial applications. The advantage

of this technology is the fact that a mathematical proof of the WCET bounds is

given unlike the common practice of adding an ad hoc percentage of the maximum

observed execution time as a safety margin. The presented technology is tested on

the EEMBC benchmark suite [Poovey et al., 2007] as a first step before its use on

industrial applications. The authors also propose the GOF exponential tail test

46 CHAPTER 2. STATE OF THE ART

as an alternative for the Chi-Square test which performs incorrectly for extreme

values. In the paper we can find an algorithm that computes the minimum number

of times a program needs to run in order to produce a sufficiently large sample of

execution times to be fed to the timing analysis. This algorithm is later discarded

due to its questionable necessity. It is true that industrial designers prefer to reduce

the amount of time used in the testing phase, but the time spent on executing the

analyzed systems is a small price to pay for an increase accuracy of results. Even

more, EVT is conceived to perform well even with reduced size data, due to the

difficulty of observing extreme phenomena in nature, and therefore it can be applied

to any execution trace size. Nevertheless, a larger trace increases the probability of

observing maximas or unusual patterns in the system execution. In conclusion, the

number of runs a system needs to execute is relative to the developer capacity of

producing them and to the requested results’ accuracy.

The MBPTA techniques are tested on a avionics application in [Wartel et al.,

2013] as a result of AIRBUS collaboration in the Proartis project. In this paper

extreme value theory is used for computing the pWCET distribution of a series of

Arinc 653 applications running on randomized hardware. The novelty of this paper is

the use of CRPS as a measure of convergence for the estimated distributions instead

of a GOF test. The authors concentrate on the Gumbel fitting as a particular case

for the samples used.

A full description of EVT applicability in the Proartis project can be found

in [Cazorla et al., 2013]. Also, this work considers that the worst case execution

time of a task obtained in isolation is not becoming larger in the presence of the

operating system (OSs). Such operating system is called compositional. Besides the

mentioned papers, centered around the probabilistic timing analysis, the Proartis

participants propose papers on other topics as hardware randomization [Kosmidis

et al., 2013b,Kosmidis et al., 2013a], static probabilistic timing analysis [Davis et al.,

2013a], scheduling [Baldovin et al., 2013b] or the impact of operating systems on

probabilistic timing analysis [Baldovin et al., 2013a]. A questionable presumption

taken in this project was the fact that probabilistic timing analysis can not be

achieved without randomization. We detailed in the next section 2.4 the background

of this presumption and its necessity.

Proartis project is followed up by the Proxima project [Proxima, 2016], which

extended previous work on multi-core platforms and on mixed-critical systems. This

2.3. MEASUREMENT BASED PROBABILISTIC ANALYSIS 47

project proposes improved timing analysis independently of the architecture used.

Therefore, in Proxima there are used architectures like the FPGA Leon3 board from

Gaisler, the AURIX board from Infineon, the P4080 PowerPC from Freescale and

the MPPA Manycore from Kalray. From the timing analysis point of view, such

an wide choice of platforms imposed the description of measurement protocols, the

development of techniques that would take in account dependencies between and

the definitions of new notions related to execution time representativity. From the

architectures point of view, the presumption of randomization necessity was taken

and, hardware randomization (cache and bus) is used for the FPGA architectures

while software randomization is considered for COTS products.

From the work achieved in Proxima, we mention here the following topics: com-

paring static analysis with statistical methods in [Maxim et al., 2015], the review of

SPTA in order to eliminate the optimism found in previous versions of SPTA [Alt-

meyer et al., 2015], the use of lossy compression as an alternative to SPTA [Griffin

et al., 2014], the description of a framework for evaluating MBTA [Lesage et al.,

2015b], the use of path coverage techniques in order to observe the execution path

that produces the highest execution time and eventually the WCET [Kosmidis et al.,

2014b,Ziccardi et al., 2015] and the development of SPTA analysis for programs con-

taining multiple paths [Lesage et al., 2015a].

Another use of EVT in real-time system can be observed in [Lu et al., 2011],

where a new sampling method called Simple Random Sample (SRS) is proposed in

order to improve the block maxima method. The supposed benefit of this sampling

method is to guarantee the independence of samples fed to the GEV parameter

estimation. As in previous papers, only the Gumbel distribution is presumed for the

WCET behavior and the inappropriate Chi-Square test is used to verify the goodness

of fit. The same authors considered the use of evt for obtaining probabilistic worst

case response time (WCRT) estimations [Lu et al., 2012]. The system used is

considered to be a black-box and the data fed to the analyzing method is represented

by response times, not execution time as seen in existing papers. The downside of

this method is that the system needs to be built first in order to be analysed, at which

point the estimates provided by the analysis are of little use, it can only confirm that

the system is feasible but in order for the system to be build feasible decisions need

to be made at the beginning of the design process otherwise manufacturers risk to

end up in the situation of only building unfeasible systems and the analysis would

48 CHAPTER 2. STATE OF THE ART

only confirm that the systems are unfeasible. The Gumbel only and Chi-Square test

issues are inherited in this papers.

In [Liu et al., 2013], the authors use GP for estimating the probabilistic WCRT

just as it is done in [Lu et al., 2012]. The paper proposes the use exponential

distribution as a special case of GP (the shape parameter is 0) and compare the

results with the estimations using the Gumbel distribution as it is done in Lu’s

paper. This method is proposed because it generates more optimistic results than

the GEV method, but in the real-time context being optimist is more problematic

than overestimating execution/response time. An estimation that doesn’t upper

bound the real WCET is more dangerous than an estimation that is too far above the

real WCET. The applicability of the proposed method is restricted to independent

data, which is harder to achieve for response time than for execution time and the

peak over threshold method doesn’t perform well in eliminating dependencies.

Lisper and al. [Santos et al., 2011] have studied the compositionality of the prob-

abilistic measurement-based approaches. Such approaches require an independence

hypothesis between the probability distributions in order to allow their combination

by convolution operations. The authors of [Santos et al., 2011] have presented inter-

esting results by indicating that the lack of independence has a low impact on the

combination of two sequentially executed programs. Nevertheless the paper does

not proceed at statistical testing of the independence of the execution times of the

programs under study.

The topic of dependent data used by EVT is tackled in [Melani et al., 2013].

The authors give a characterization of dependencies and propose a method to de-

compose dependency with the introduction of notions like dependence distance and

independence bound.

In [Guet et al., 2016] and [Santinelli et al., 2017], a statistical timing analysis

tool called diagXtrm is proposed by the authors. In the fist paper can be found

details on the features of the tool by presenting the i.i.d. tests used, the station-

arity detection, block and threshold selection as well as GEV and GP parameter

estimation. The second paper concentrates on the result accuracy and reliability

by defining a number of hypothesis to be checked in order to verify if the result

is valid. An initial testing of the theory that stay at the basis of this tool is done

in [Berezovskyi et al., 2014] on execution times obtained on CUDA Kernels. The

tool is tested on Graphics Processor Units in [Berezovskyi et al., 2016]. Even though

2.4. RANDOMIZED ARCHITECTURES 49

probabilistic timing analysis without human intervention is desirable, estimation of

parameters for GEV and GP distributions is a process that can hardly be automa-

tized due to the multiple parameters that can interfere in the process (sample size,

maxima size, dependencies, stationarity, etc.) and the lack of monotonicity of the

shape parameter evolution.

2.4 Randomized architectures

We discuss in this section the effect of imposed random behavior upon a system’s

architecture. A series of models and technologies are proposed that use randomiza-

tion at one or multiple levels of the platform, (e.g. memory, bus or instruction).

We present here the work done in the real-time domain and its impact on timing

analysis.

The first paper suggesting the use of randomization in real-time systems is pro-

posed by the authors of [Quinones et al., 2009]. The authors suggest the use of

randomized caches replacement policies inspired from a policy introduced by Be-

lady [Belady, 1966]. This suggestion comes as an alternative to standard cache

replacement policies (LRU, pseudo-LRU and FIFO) which suffer from lack of pre-

dictability, a necessary property for real-time systems. Also, the proposed technique

has the advantage of reducing performance anomalies encountered in the other poli-

cies. Despite its average performance reduction, the randomized replacement policy

has the advantages of eliminating dependencies from access history and in allowing

higher execution time values to be observed during measurements.

In the context of Proartis and Proxima projects, the use of randomization in hard

real-time systems is highly promoted. Randomized caches placement/replacement

policies are adapted for real-time systems [Cazorla et al., 2012,Cucu-Grosjean et al.,

2012, Davis et al., 2013a, Kosmidis et al., 2013a, Kosmidis et al., 2013c, Kosmidis

et al., 2013d,Kosmidis et al., 2014a] as an environment for static probabilistic timing

analysis (SPTA) and measurement-based probabilistic timing analysis (MBPTA).

In order to further randomize the system, a bus arbitration policy that relies on

randomized-permutations is proposed in [Jalle et al., 2014]. For those systems,

on which hardware intervention is difficult or impossible (e.g. COTS hardware),

randomization at software level is later suggested [Kosmidis et al., 2016].

Caches are fast and small memories that bridge the latency between the CPU

and main memory by storing parts of the main memory. Data is stored in cache

50 CHAPTER 2. STATE OF THE ART

lines of the size of memory blocks from the main memory. This process has the effect

of increasing performance by profiting from spatial and temporal locality. The data

in cache is placed or modified according to different policies, characteristic to each

hardware producer. From the timing analysis point of view, cache memories increase

the difficulty of reliably estimating WCET bounds. Being able to correctly calculate

the timing behavior of the system through static analysis is challenging because of

multiple system features like the cache size, the placement and replacement policies

used, the program’s complexity and the initial cache state.

Randomizing the cache has two benefits:

• Gives a totally randomized behavior to the cache which allows the use of known

statistical methods for the computation of a discrete probability distribution

over the instruction’s possible execution times and to make instructions inde-

pendent which will allow their probability distribution composition through

the the convolution operation [Davis et al., 2013a].

• Increases the observable space of a system’s states and make observation of

extreme execution times possible and, as a consequence, allows the use of

MBPTA based on EVT in order to derive a WCET bound [Cucu-Grosjean

et al., 2012].

Despite these benefits, the necessity of cache randomization is questioned in

[Reineke, 2014], where a comparison between LRU replacement policy and ran-

dom replacement policy is done. The presented result shows weak performance of

randomization on certain corner cases or dummy examples. Nevertheless, random-

ization (and MBPTA in particular) is offered as a solution for complex systems

where exact prediction of the occurring states can not be made.

In [Lima et al., 2016], the authors point out the fact that the second benefit

of randomization occurs only under certain conditions. The paper shows that the

use of MBPTA is based on a strong link between cache size and the program’s

number of executed instructions. In other words, a small program will charge all

its instructions in a cache independently of the cache replacement policy and the

execution times observed will benefit from the cache use and have a small variability.

On the other hand, a program having a large number of instructions will always be

at a disadvantage by the random replacement policy (which does not take advantage

of the spatial and temporal locality) and will make the use of cache more costly than

2.5. TIMING ANALYSIS IN AVIONICS INDUSTRY 51

direct access to main memory. This case will produce execution time traces with low

variability and high execution times. Overall, the conclusion of [Lima et al., 2016] is

that randomization is useful but ”not strictly necessary for ensuring analyzability”.

In [Maxim et al., 2016], the property of reproducibility in randomized architec-

tures is questioned. A series of properties necessary for the use of EVT are presented

and the idea that randomization does not respect them is indicated. A further ex-

planation of this presumption is presented in the contribution section of this paper

(see section 3.4).

We do not extend on the benefits and disadvantages of bus randomization and

software randomization due to the lack of information concerning these methods,

but we bring a conclusion on the use of randomization in general.

In this thesis we present MBPTA results from analysis of avionics applications

in particular, but also of existing benchmarks . The analysis is done mostly on

deterministic behavior of the system, but comparison with randomized cache is also

presented. We demonstrate with this occasion that MBPTA analysis can be done

with success on systems behaving exactly as in the conditions for which they were

conceived. We also question the confidence and possibility of certification of these

results through the problem of representativity.

In practice, randomization is seen as a tool for testing, but its use in active

systems is hard to imagine due to the performance penalty that it brings. Moreover,

the fact that new and complex architectures introduce automatically variability in

the measured execution times making the use of MBPTA possible mitigates against

randomized technologies.

2.5 Timing analysis in avionics industry

The aviation industry is one of the first domains that use real-time systems. The

time requirements in avionics come as a necessity for passenger and aircraft security.

Inside an aircraft, one can find many embedded systems with different purpose,

criticality and characteristics. A part of these systems are subject to time constrains

and their understanding is very important for the aircraft’s functioning. Examples

of such systems can be found in the applications used for flight warning, flight

control, weight and balance computation, collision avoidance, etc.

The first Airbus aircraft (A300) relayed on systems constructed according to the

federated architecture paradigm, which consisted on fully dedicated computational

52 CHAPTER 2. STATE OF THE ART

units for every component of the system. These computers, called Line Replace-

able Units, are conceived by a system supplier to allow local optimization. Timing

analysis of such components was straight forward due to the determinism of the

architecture and the small size of the code executing on it.

With the expansion of the airplanes market, the number of functionalities de-

manded by airlines increased, making the federated architectures difficult to sustain.

From the electronics perspective, the computation power of computers increased,

allowing them to perform a high number of instruction in a short interval of time.

As a consequence of these two evolutions, the apparition of an integrated approach

for avionics became inevitable. In 1995, the cockpit of the Boeing 777 aircraft con-

tained components that respected the Integrated Modular Avionics (IMA) concept.

We further detail this concept and its impact on the timing analysis.

2.5.1 Integrated Modular Avionics (IMA)

The IMA concept consists in the implementation of several functions sharing the

same computer resources like processing resource (CPU time), memory or input/output

capacity. Figure 2.3 depicts the transition process from federated architecture to

IMA. The sharing of resources implies careful implementation since avionics in-

dustry requires separation of applications. In order to avoid interference between

application, IMA relies on the concepts of partitioning. A partition is the scheduling

unit of a static schedule computed offline. The partitioning is threefold:

• Spatial partitioning: allocates dedicated memory areas to each partition

and blocks other partitions to perform accesses to memory outside of their ar-

eas. In other words, restricted access to memory areas is ensured. The spatial

partitioning occurs between different avionics applications as well as between

avionics applications and core software. The memory protection is provided

by mechanism implemented in the processor (MMU thanks to page tables and

BATs) and in the CPU board chipset (Dedicated Memory Controller Protec-

tion Registers).

• Temporal partitioning: guarantees temporal isolation between different

partitions. This is done by allocating CPU time to each partition according

to its need. The allocation is made through a mechanism called SLICER that

schedules partitions based on static configuration files and guarantees them

2.5. TIMING ANALYSIS IN AVIONICS INDUSTRY 53

uninterrupted access to common resources during assigned time periods of

partitions. The hyper-period of all partitions is known as Major Frame (MAF),

and it is divided into a number of Minor Frames (MIF). All MIFs have the

same duration and period, and contain a number of partitions. When a given

partition is active, only its processes can be scheduled. More than one partition

can be allocated to the one and the same application within a given MAF.

The exclusive access of partitions to all required resources is implemented

with success in single-core architectures, but harder to imagine in multi-core

paradigms when parallel execution of partitions would be problematic. In

order to avoid time anomalies caused by contentions and resource sharing,

new partitioning techniques that enforce separation are proposed [Jean et al.,

2012, Boniol et al., 2012], but the topic still has to evolve. A key role in

achieving temporal partitioning is represented by the WCET estimation of

the processes executing inside partitions.

• Communication partitioning: isolates the communications between par-

titions and resources via I/Os modules. The sharing of IO devices involves

two aspects: the sharing of the processing means used to perform IO data

processing (i.e. activities done before actually driving the physical line), and

the sharing of the physical line itself.

Figure 2.3: Example of transition from federated architecture to Integrated Modular

Avionics.

54 CHAPTER 2. STATE OF THE ART

An advantage brought by the IMA concept is represented by the independence

of the software applications from other applications and from the operating systems

and hardware. This way, software developers can focus on their products without

needing to know the whole system’s architecture. Another advantage is given by the

modularity aspect that allows easy replacement, adding or elimination of software

applications at the same time allowing the existing one to achieve a high level of

maturity. From the financial point of view, the use of IMA contributes to weight

reduction of the aircraft, which implies less energy consumption.

2.5.2 Time analysis of avionics applications

In practice, calculating the exact amount of time is allocated for each partition is

done through a complex process by the software architect. Time must be cautiously

attributed to each partition according to the criticality level of the processes exe-

cuting inside it and the WCET bounds of these processes. The end of a partition

attracts the suspension of all executing processes and might cause a system restart

with critical consequences for the aircraft. As a consequence, applications having a

high criticality need to be subject to a strict timing analysis in order to be certi-

fied. The WCET in avionics industry is done through static analysis computed by

certification authorities validated tools.

Static timing analysis (STA) for deterministic microarchitectures is divided in

two main parts:

1. Low-level analysis , which determines execution-time bounds for basic blocks

based on an accurate model of the underlying microarchitecture.

2. Path-level analysis, which determines an upper bound on the execution time

of the program as a whole, based on constraints on the control flow, e.g. loop

bounds, and the execution-time bounds for basic blocks determined by low-

level analysis.

Some example of tools capable of doing STA are:

• The aiT is a commercially available tool from AbsInt [Ferdinand and Heck-

mann, 2004], directly analyzes binary executables while taking cache and

pipeline behavior into account. Historically, this has been the tool of choice

for Airbus.

2.5. TIMING ANALYSIS IN AVIONICS INDUSTRY 55

• The Bound-T tool of Tidorum [Holsti et al., 2000] is a finish originated ana-

lyzer that determines an upper bound on the execution time of a subroutine,

including called functions.

• The Heptane tool of IRISA [Colin, 2001], is a open-source static WCET

analysis tool released under GPL license. This tool computes upper bounds

on execution times for programs written in C by analyzing the source code or

the binaries.

• The SymTA/P tool of TU Braunschweig [Staschulat and Ernst, 2004] is

based on the idea of combining platform independent path analysis on source

code level and platform dependent measurement methodology on object code

level, using an actual target system. The main benefit is that this hybrid

analysis can easily be re-targeted to a new hardware platform.

• The RapiTime tool of Rapita Systems Ltd. [RapiTime, 2006] derives WCET

bounds based on measurements. This tool targets the automotive electronics,

avionics and telecommunications industries.

• The Otawa tool from Irit [Cassé and Sainrat, 2006] is an academic tool ac-

cessible as a C++ library.

A detailed description of static timing analysis techniques and tools is out of

the scope of this thesis. For a complete image of this topic we guide the reader to

already existing reviews [Wilhelm et al., 2008].

Most of the existing tools are used on deterministic platforms for which a model

is created. This is the case of single-core architectures. The translation from single-

core to multi-core processors introduce unexpected interferences that can violate

partitioning [Fuchsen, 2010], becoming an impediment to further assimilation of

such architectures. Nevertheless, the high performance potential and the temptation

of parallelization make this topic an interesting one with considerable efforts in both

industry and research.

One method proposing a WCET analysis in multi-core processors consists in

analyzing applications in isolation (as it is done in single-core) and joining them

while observing the effects they have on each other. If such an approach can be

considered for those applications containing a low number of processes, for complex

systems the number of permutations that is required might reach unaffordable costs

in time and effort.

56 CHAPTER 2. STATE OF THE ART

In the Proxima project, the use of probabilistic methods are proposed as a mean

of estimating WCET bounds of applications from end-to-end measurements. The

details of approach is described in the contribution chapter.

2.5.3 Mixed-criticality systems

One advantage of the IMA concept is the possibility to incorporate on the same

computer applications from different criticality levels. Robust partitioning allows

cohabitation of software of multiple criticality levels. The definition of criticality in

the avionics industry is presented in section 1.1.3, but in research this notion took

a different signification through its use in mixed-criticality systems [Vestal, 2007].

Vestal’s model for mixed-criticality systems consists in a task set to which a finite

number of criticality levels is associated. Each task has a certain criticality being

able to release jobs in any level equal or lower than its own. According to the level

in which a task’s jobs are executing, its WCET will differ. A time violation occurs

when a job needs more time to execute than its allocated time at the level in which

the system is. In the case of a time violation, the system’s criticality will increase

with one level and all the task will adapt (task with a lower level of criticality will

be dropped while those being able to execute in the new level will generate jobs

with the corresponding WCET characterization). For a detailed description of this

model, we advise the reader to consult the original paper proposing it [Vestal, 2007].

We present in this section the main divergences between the notions of criticality

as it is used in industry and the one from Vestal’s model:

1. In Vestal’s model criticality applies to a task while in industry the criticality

is given to a function.

2. In the classical model, multiple WCET values are attributed to higher criti-

cality tasks while in industry each application needs to have only one WCET

certified. The certification of multiple WCET would mean an extra cost for

the aircraft producer. Also, if multiple WCETs would exist for an application

in industry, and its smallest WCET value will be certified what would be the

point of certifying the other larger values?

3. In research, a better CPU usage is presumed to be obtained through the use of

smaller WCET corresponding to tasks executing under low criticality. In real-

ity, the implementation of a system that allows different partition allocations

2.5. TIMING ANALYSIS IN AVIONICS INDUSTRY 57

according the dynamic changes in the system is difficult.

4. In Vestal’s model, failure in timing assumption of high criticality tasks result

in dropping lower criticality tasks. In avionics, and in the IMA concept in

particular, spatial isolation does not allow failures in a function to affect any

other function.

5. The idea of mode change in the case of time violations is inconceivable in

avionics, since functions are given a certain criticality according to its SIL and

any change of its criticality is subject to a new certification procedure.

In this thesis we do not concentrate on the study of mixed-criticality system

due to the industrial environment of the thesis. Therefore the further mentioning

of criticality will refer to the motion encountered in industry.

Chapter 3

Conditions for the use of EVT

in the real-time domain

In this chapter we establish the environment in which our work is done. The use of

EVT in any domain comes with a series of restrictions for the data being analyzed.

In our case the data being analyzed consists in execution time measurements. We

resort to this choice due to EVT’s ability to be used on any numerical values.

Besides the statistical conditions of independence and identical distribution of data,

we define the necessary conditions for a real-time systems to produce analyzable

data. The key reasoning of these conditions relies on the system consistency and on

the measurement protocol.

The final goal of EVT use is to obtain the probability distribution of an extreme

event occurring in the future based on already observed events. In our case, the event

occurring in the future is the observation of the WCET and the already observed

events are represented by a sample of measured execution times. In other words,

the probability distribution of the WCET is a statistical model of the analyzed

system based on past executions. The process of modeling the system’s behavior is

a complex one, sensitive to the used data and relying on human intervention at times.

The main steps of using EVT are data collection, data selection and modeling. The

success of the modeling process depends on the selection stage which, on its own, is

dependent on the collection one. In this chapter, we concentrate on the collection

process, while in the next chapter we present the other two steps.

59

60 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

3.1 System consistency

In practice, it is noticeable that the higher the measured execution time is, the

smaller its probability of occurrence is. In reality, the WCET is not easy to mea-

sure, and the analysis tools can either overestimate the WCET (static analysis), or

underestimate it (taking into consideration only measurements), or predict it with

a certain probability of occurrence (measurement-based probabilistic timing anal-

yses - using EVT). When applying statistic methods on execution time samples,

the provenance of these systems is highly important. We consider an analyzable

system as a compact structure formed of three elements: input, software and plat-

form. Each estimated pWCET distribution depends on the three elements of the

system and the modification of any of them results in a system change for which the

already estimated pWCET is not characteristic. A depiction of a system’s structure

seen from the probabilistic analysis point of view is presented in figure 3.1. We

numerated the components and we detail them separately.

Figure 3.1: The structure of an analyzable system.

3.1. SYSTEM CONSISTENCY 61

3.1.1 Input

When analyzing a system, there is a direct dependence between the input used and

the execution times measured. A basic approach, used in industry, is to identify the

input vector that forces the system to have the worst case behavior. The average and

maximum values of the execution times obtained using this input vector are higher

than the equivalent measurements when any other input vector is used. Meanwhile,

this approach does not guarantee the observation of the real WCET of the system.

Finding this input vector is a difficult work that depends on the knowledge of the

program and even of the hardware on which it runs. Methods that rely on model

checking and genetic algorithms [Wenzel et al., 2005] are proposed to be used with

static analysis. Heuristics that explore the input space [Ermedahl et al., 2009] can

be found for the use of measurement analysis.

In the context of statistical analysis, having the input vector is an advantage.

In this thesis, a great part of the experimental results are obtained for systems in

which this input vector is known and the variability of the system comes mostly from

the hardware platform. The advantage of using statistical methods consists in the

ability to extrapolate the system’s behavior when not all the elements of the system

are known. Treating the system as a black box is an approach often encountered in

research, but in such case, the analysis results can be validated only if the system

behaves similarly at run-time and during the analysis. For the cases when the

system is seen as a black box and no information is given about the input, EVT is

only able to provide a result as good as the used inputs are. In other words, relying

on random generated inputs is not a good choice, especially for critical real-time

embedded systems. The following reasons and examples support our claim:

• Order of inputs: the order of inputs influences the order of execution times.

The GEV distribution is sensitive to the order of the data that is being fed

with. Therefore, selecting randomly the inputs every time we are running a

series of experiments produces different traces (value-wise or/and order-wise)

corresponding to different pWCET estimations.

• Input space : finding the interval in which the accepted input values by the

analyzed program are situated is importance. Setting a limit on the minimum

and maximum used inputs also limits the GEV analysis to that interval. Any

other input value outside that interval cannot be guaranteed to be smaller

62 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

than the pWCET obtained for the fixed interval.

• Software influence: depending on the number of branches a program has,

and the weight of each branch, the execution times obtained from a random

selected inputs can be transformed in a different distribution . As an example,

in the case of a program testing the primality of a number, by randomly

choosing the inputs, around half of the executions will take the same time,

used to verify if the input number is even. Therefore, a randomly distributed

input is transformed in light tail distribution with little variability. On such

cases, variability cannot be reached by randomizing all possible inputs, but

rather by intentionally feeding the program an input meant to exercise as

many branches of the program as possible.

In the context of multi-core hardware, where uncertainty arises from the archi-

tecture, the risk of obtaining a small number of different execution times is reduced

and the interest of applying statistical methods increases. It is true that using the

input vector meant to worst case behavior of the system is pessimistic when com-

pared to behavior of the system in normal conditions (any other input vector), but

for the case of critical real-time systems being pessimistic is desired over the chance

of underestimation of the WCET.

3.1.2 Software

From a probabilistic point of view, a program can be represented as a generator of

execution time profile sets (ETPs). Combining all these ETPs, we obtain an absolute

domain of execution times. In practice, such a domain is hard or impossible to

determine through measurement for complex programs running on non-deterministic

hardware. Discovering which ETP sets have a higher influence on the pWCET

estimation would allow us to concentrate on their analysis in order to produce a

reliable pWCET without knowing the entire domain of execution time.

The key in highlighting the influential ETP sets stays in the structure of the

program and the representation of the input-output relations. Every probabilistic

analysis should start with the definition of the domain of analysis and the decision of

the interval in which our program’s inputs appear. The choice of this interval defines

the number of ETPs we need to consider for analysis. The program’s semantics is

afterwards projected on probabilities, each path and its weight are processed in

3.1. SYSTEM CONSISTENCY 63

order to compute the ETP sets and its influence on the total domain of execution

times.

By using a worst case input vector, the chances of finding an influential ETP

are maximized. In the following sections we define the necessary conditions for

maximizing the domain coverage through measurement protocol. Hence, we lift the

WCET analysis from the level of program/platform and we focus on the composi-

tional features of the ETP processing for obtaining pWCET.

When the system is treated as a black-box and there is no information concerning

the software, the EVT results depend on the inputs used and their capacity of

accessing all the software’s paths. The statistical methods proposed in this thesis

are capable of distinguishing samples coming from evidently different paths. Also,

by using maxima picking strategies we ensure the isolation of samples coming from

the dominant paths.

3.1.3 Platform

COTS hardware are becoming an option for industries everywhere due to their re-

duced cost and increase in performance. This comes with a disadvantage concerning

static timing analysis and WCET estimation. At the same time, the use of complex

platforms (as it is the case of COTS ones) gives an advantage to statistical methods

through the variability introduced in the measured execution times. Therefore, for

such architectures, a software executing multiple times the same code and using

the same input will produce different execution times. This is happening because

of the multiple performance enhancer technologies (e.g. caches, branch predictor,

pipelines) that give the system an unpredictable behavior. Rendering such an plat-

form deterministic by deactivating all these features is not an option.

The methods proposed in this thesis rely on the variability introduced by the

platform (hardware). EVT cannot be used on samples containing a limited number

of unique values. Therefore, for each results we specify the hardware used, keeping

in mind that the pWCET estimation obtained for one system will not be valid if

the platform changes.

64 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

3.2 Identical distributed data

All probabilistic theory rely on the concept of random variable which represents a

quantity whose outcome is uncertain. In practice, when using statistical methods,

we deal with observations of such random variables. We consider xi as the measured

observation of the random quantity Xi. Until measured, Xi can take any value in its

sample space. Obviously, some values are more likely to be seen than others which

translates in the fact that each value has attached a probability of appearance. Thus

Xi is assumed to have a probability distribution.

In extreme value theory the definition of GEV and GP is done based on sequences

of independent and identically distributed random variables. In practice, this means

that an event has to be observed multiple times in the form of samples that can

further help in inferring characteristics on the process that generated the data.

For EVT the characteristics we are looking for are represented by the behavior of

extreme observations. In the case of the central limit theorem, the evolution of the

average behavior is studied.

Further, we split the properties of independence and identical distributed, de-

tailing them separately through definition, interpretation in the case of execution

time observations and verification through statistical tests.

Definition 9 We say that two random variables X and Y are identically dis-

tributed iff P (X < x) = P (Y < x),∀x ∈ R.

In other words, we consider two random variables to be identically distributed if

they have the same probability distribution. On the other hand, we cannot say that

two observations are identically distributed since they are merely manifestations

of events described by random variables. If we know for sure that the same event

produced a set of observations, we can say that any two subsets of this set are coming

from identically distributed random variables. As a consequence, we consider that

a data set (a sample) is identically distributed if any two randomly picked subsets

(sub-samples) can fit to the same distribution.

In the real-time context, when the data under analysis is represented by exe-

cution time measurements, the process for which we need to infer characteristics is

the system’s execution. When the system is treated as a black-box, it is tempting

to consider a trace of its execution times identically distributed for the simple fact

that they were all obtained from a single system. We admit that this can be done

3.2. IDENTICAL DISTRIBUTED DATA 65

if the system under analysis is always executed in the same scenario (unique input,

no modification of software or hardware between runs) and the program used has a

single path. These characteristics are not known through the nature of the black-

box approach and the execution time set used for pWCET estimation needs to be

confirmed as identically distributed.

Even though, for the experimented part of this thesis, we have sufficient knowl-

edge on the system under analysis, we develop a method that tests the property of

identical distribution of data. This method is based on the Kolmorgorov-Smirnov

(KS) test, which is nonparametric and is capable of comparing two samples in order

to conclude if they come from the same population (with a specific distribution).

Nonparametric tests are also called distribution-free tests because they don’t assume

that your data follow a specific distribution. We mention that this test can also be

used to compare a sample with a reference probability distribution as a goodness of

fit test.

In our case, testing data to determine if it is identically distributed, two randomly

picked samples of the data are compared. The null hypothesis of the test is that

the samples follow the same distribution. The result of the test is the p-value,

according to whom we decide if the null hypothesis is rejected or not. Classically,

if the p-value is grater than 0.05 the null hypothesis cannot be rejected meaning

that the two samples can be considered as following the same distribution. This

test can produce false negatives, while for those cases where p-value is greater than

0.05, there is no doubt on the result. Since there is no such thing as a truly random

generator, we rely on a pseudo-random method (from the R software) for picking

the tested samples. In order to avoid borderline cases, where for two iteration of

the test the results are different we perform the procedure 100 times and we will

consider the data as being identically distributed for a success rate of 90% or higher.

We use here the theoretical argument that for a population that is not obtained by

the same procedure 0% of the test will succeed (100% failures). This can be the

case for a program with multiple pats and an input capable to take at least two of

them. The borderline case might come when multiple paths with similar behavior

are exercised.

The code of this algorithm is written in R software using the procedure ks.test()

from the stats package, and can be found in the Appendix of the thesis.

66 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

3.3 Independence

The measurement-based approaches are widely used in the real-time embedded sys-

tems industry where the concept of high water mark (HWM) is considered as the

largest observed execution time. Lifting its utilization to systems with different com-

ponents requires compositionality while two different components may have different

values for the HWM of a program executed on those components. Moreover, timing

anomalies may prevent the HWM of a program to be obtained by the combination

of the HWMs of the program on the components.

Before indicating how such measurement protocol may be proposed, we pro-

vide firstly the (necessary) definitions for independent programs, statistical inde-

pendence, and probabilistic independence.

Definition 10 We consider two programs Prog1 and Prog2 to be independent iff

any execution of Prog1 may be done before or after any execution of Prog2 without

any impact on their execution times.

Two programs that are in any other situation than those covered by the definition

of independent programs given previously, are dependent.

Consider for instance the program Progex1 described in Table 3.1 and Progex2

described in Table 3.2. These two programs are kept simple in order to ease the

understanding.

The two programs Progex1 and Progex2 are dependent as Progex1 produces a

(positive integer) value for the global variable var global2 that is then used as an

input by Progex2. For instance each time var global1 = 1, then Progex1 has an

execution time equal to 3 time units and Progex2 has an execution time equal to

6 time units. For var global1 = 2, then Progex1 has an execution time equal to 4

time units and Progex2 has an execution time equal to 10 time units.

For these two programs we may obtain both statistical dependent execution

times or statistical independent execution times.

Definition 11 Two probability distributions C1 and C2 are independent iff

P ({C1 = c1} ∩ {C2 = c2}) = P (C1 = c1) · P (C2 = c2)

For instance the probability distributions of the execution times pET (Progex1)

and the probability distributions of the execution times pET (Progex2) are proba-

bilistically dependent as there is a relation between the probability of appearance

3.3. INDEPENDENCE 67

Table 3.1: Body of program Progex1.

Progex1 (var global1);

value = var global1; // execution time = 1 time unit

for i = 1 to var global1 // the loop cost is in the instr

value = value + 1; // execution time = 1 time unit

endfor

var global2 = 2* value; // execution time = 1 time unit

Table 3.2: Body of program Progex2.

Progex2 (var global1, var global2);

value = var global2; // execution time = 1 time unit

for i=1 to var global2 // loop cost is in the instr

value = value + 1; // execution time = 1 time unit

endfor

avg global = value+var global1
2 ; // execution time = 1 time unit

of an execution time for Progex1 and the probability of appearance of an execu-

tion time for Progex2. If one wants to estimate the probability distributions of the

execution times of these two programs executed sequentially then, given their prob-

abilistic dependence, a complex probabilistic operation will be necessary to take

into account the conditional probabilities.

Sometimes these dependences are not strong and simple probabilistic opera-

tions are possible [Santos et al., 2011]. Nevertheless, if one is able to provide

a pWCET estimation pWCET (Progex1) for Progex1 and a pWCET estimation

pWCET (Progex2) for Progex2, then these two probability distributions are inde-

pendent by the definition of a worst case bound [Cucu-Grosjean, 2013].

Definition 12 A set A is statistically independent iff its elements are generated

in a random manner (i.e., the value generated at one instant only depends on the

generator and not on the values generated before).

For instance Aex = {8, 18, 21, 24, 28, 30} is statistically independent. We have

generated Aex using an on-line random generator1.

1 http://www.infowebmaster.fr/outils/generateur-nombre-aleatoire.php, (on-line form), but the

68 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

Statistically independent execution times for dependent programs.

We consider the independent set Aex as input to obtain independent execution

times for our two programs, Progex1 and Progex2. If we consider var global1 to

take the values from Aex then the set of execution times of Progex1 is CProgex1 =

{10, 20, 23, 26, 30, 32} which is statistically independent.

In order to obtain, for Progex2, a set of statistically independent execution times

we consider the values of var global2 to take the values from (another) statistically

independent set Abis = {1, 45, 59, 75, 88, 90}. We obtain a set of statistically in-

dependent execution times for Progex2 equal to CProgex2 = {3, 47, 61, 77, 90, 92}.
These two sets of execution times are statistically independent, while the programs

are dependent.

Statistically dependent execution times for dependent programs. More-

over if we use a set of dependent elements like B = {1, 2, 3, · · · , 8}, then we may

obtain statistical dependent sets for the execution times of Progex1 and Progex2. In

this case the execution times of Progex1 are {3, 4, 5, 6, 7, 8, 9, 10} and the execution

times of Progex2 are {6, 10, 14, 18, 22, 26, 30, 34}. These two sets are statistically

dependent, while the programs are dependent.

Therefore, we observe that the measurement protocol has a direct impact

on the statistical independence of the execution times. For two programs

with pWCET estimates we may proceed at a convolution (or other composition)

of their bounds [Cucu-Grosjean, 2013]. Nevertheless, the existence of this bound is

not only requiring statistical independence but also the convergence of the WCET

measurement-based estimation (see following section for more details).

The statistical independence may require appropriate tests when the sets of

execution times are large. We have considered here two types of tests: visual or

using analytical formulas.

For a visual confirmation of a dependent set of execution times, we use the

lag test which indicates a (particular) pattern for dependent data and a graph of

unrelated points for random data. Figure 3.2 depicts a set of independent data on

the left and a set of auto-correlated data on the right. A lag is a fixed time distance

(e.g. in a X1, X2, .., Xn data set X1 and X3 have lag 2). Lag plots can be generated

for any lag, but the most commonly used lag is 1. A plot of lag 1 is a plot of the

values of Xi versus Xi−1. For instance in Figure 3.2 the abscissa axis corresponds

reader may use any other such generator.

3.4. REPRODUCIBILITY AND REPRESENTATIVITY OF MEASUREMENT-BASED APPROACHES69

to Xi−1, while the ordinate to Xi.

Figure 3.2: Representation of dependences using the lag test. On the left figure we

have independent data and on the right figure dependent data.

In order to confirm the visual perception of statistical dependence (or to infirm

it), one may use the Wald-Wolfowitz test, a.k.a. the run test to quantify the data

dependence. Its mathematical description is provided in the Appendix of the thesis.

3.4 Reproducibility and representativity of measurement-

based approaches

The measurement-based approaches, in general, and the probabilistic measurement-

based approaches, in particular, propose WCET estimates using the execution

times of the program on the given platform (see Figure 3.3). More precisely let

Ci1, C
i
2, · · · , Cin be n consecutive executions of a program on a processor starting

from a given scenario of execution Si. A scenario of execution for a program on

a processor is defined by a set of states corresponding to different execution time

variability factors. A scenario of execution could correspond, for instance, to the

pair (path of the program, state of the cache) or to any other information related

to the execution of the program.

For a scenario Si we may define a probabilistic execution time Ci as an empir-

ical probability distribution of the execution time of that program for the given

processor.

70 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

Execution

Condi-

tions (1)

Execution

Condi-

tions (2)
. . .

Execution

Condi-

tions (n)

Measurement

protocol

A1

A2

. . .

An

A =⋃i=1
n Ai

Compositionality

of pWCET

estimation

pWCET =
n

OOO
i=1

pWCET (Ai)

Figure 3.3: The protocol of a (p)WCET estimation from different scenarios of exe-

cution conditions.

In the remainder of this thesis we consider that the processor is fixed in sense

that we estimate the pWCET of a program on a processor from the execution time

measurements of the program on that given processor.

In this section we identify and characterize the convergence–a key feature for the

compositionality of a measurement-based WCET estimation process. Any measurement-

based WCET estimation process has two main parts: (i) the measurement protocol

and (ii) the WCET estimation method.

The convergence of a measurement-based WCET estimation process for a pro-

gram on a processor is defined by the existence of a finite set of execution times

provided by a measurement protocol such that the associated measurement-based

WCET estimation method provides a unique WCET estimation of that program on

the given processor. A more formal definition is provided in Definition 13.

Definition 13 Given A an absolute domain of execution times, a measurement-

based WCET estimation process pWCET is convergent if for any ascending chain

of subsets Ai⊂A (obtained using its measurement protocol) converging to A (i.e.,

Ai⊆Ai+1,∀i and limiAi=A) the associated chain of WCET estimations (obtained us-

ing its WCET estimation method) is almost constant, equal (or sufficiently close) to

the WCET estimation of A (i.e., ∃t≥0 ∀j≥t such that pWCET (Aj) ≈ pWCET (A)).

The convergence of a measurement-based WCET estimation requires several

properties to be satisfied. We identify in this document a (non-exhaustive) list of

3.4. REPRODUCIBILITY AND REPRESENTATIVITY 71

A0

ith utilization

of the estima-

tion method

jth utilization

of the estima-

tion method

pWCET i(A0) = pWCET j(A0)

Figure 3.4: The WCET estimation is the same for different utilizations i, j of

a reproducible WCET estimation method from the exactly same ordered set of

execution times.

these mandatory properties (their order of presentation is not relevant):

• The reproducibility of the WCET estimation method (defined Section 3.4.1);

• The reproducibility of the measurement protocol (defined Section 3.4.2);

• The representativity of the measurement protocol (defined Section 3.4.3).

We present in Section 3.4.4 the relations between these three properties and the

convergence.

3.4.1 The reproducibility of the WCET estimation method

We may note that the measurement-based WCET estimation method is used several

times over subsets of ETPs, e.g., Ai in Definition 13. If two different utilizations of

the estimation method on (exactly) the same subset A0 of execution times provide

different WCET estimates than the measurement-based WCET estimation diverges

and it cannot provide a reliable result.

Definition 14 A measurement-based WCET estimation method pWCET is re-

producible iff for any two utilizations i and j the estimates pWCET i(A0) and

pWCET j(A0) (i 6= j) are the same.

In Figure 3.4 we depict the notion of reproducibility of a pWCET estimation.

For example, the EVT-based pWCET estimation method (introduced in [Edgar

and Burns, 2001]) is reproducible as long as the order of the elements in A0 of the

execution times is not modified.

72 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

mth utilization

of the measurement

protocol

nth utilization

of the measurement

protocol

Am

An

WCET

estimation

method

pWCET (Am) ≈
pWCET (An)

Figure 3.5: Different utilizations of a reproducible measurement protocol provides

WCET estimates that are equal (or sufficiently close).

3.4.2 The reproducibility of the measurement protocol

The measurement protocol is an essential step in the measurement-based WCET

estimation. We now focus on characterizing this step w.r.t. the convergence prop-

erty.

Definition 15 A measurement protocol P is reproducible iff for two different uti-

lizations Pm and Pn with the same execution conditions (status of the processor, pro-

gram and external factors), the obtained set of execution times Am and respectively

An correspond to equal (or sufficiently close) WCET estimates for the utilization of

the same WCET estimation method pWCET , i.e., pWCET (Am) ≈ pWCET (An).

In Figure 3.5 we depict the reproducibility of a measurement protocol. Note

that a completely randomized measurement protocol may not be reproducible with

respect to the EVT-based pWCET estimation method. For instance, given a ran-

domized cache replacement policy, if both the seed of the random generator and the

places in caches are randomly picked, then the architecture execution times may

not be equivalent as different associated pWCET estimates may be obtained with

EVT-based pWCET estimation methods.

We also note that the randomization of only the input values for a program is

not a reproducible measurement protocol either when considering an EVT-based

pWCET estimation method [Lima et al., 2016,Lu et al., 2011]. This absence of the

reproducibility is due to the sensitivity of EVT-based pWCET estimation method

to the order of the execution times.

3.4.3 Representativity of a measurement protocol

We now present a second feature of the measurement protocol which contributes to

ensuring the convergence property.

3.4. REPRODUCIBILITY AND REPRESENTATIVITY 73

mth utilization

of the mea-

surement

protocol for k

execution times

nth utilization

of the mea-

surement

protocol for k

execution times

Am

A

An

A

WCET

estimation

method

pWCET (Am) ≈
pWCET (An) ≈
pWCET (A)

Figure 3.6: A representative measurement protocol provides equivalent subsets of

execution times.

Definition 16 A measurement protocol is representative iff there exists a number

k of execution times for a measurement protocol such that

pWCET (Ak′) ≈ pWCET (A),∀Ak′ :Ak⊆Ak′⊆A (3.1)

for any Ak ⊆ A with |Ak| = k.

In Figure 3.6 we depict the representativity of a measurement protocol, where

we denote by A the ETP of the WCET estimation, while Am and An denote some

subsets of execution times of cardinal k.

Using the notations of Figure 3.6, we may indicate that measurements obtained

using randomized replacement policies (with the method provided in [Cucu-Grosjean

et al., 2012]) seem to present a representativity of the HW-randomization measure-

ment protocol for m = 6 utilizations of the protocol for k = 1000. Note that the orig-

inal set has 500 execution times in the presence of Mälardalen benchmarks [Gustafs-

son et al., 2010]. Nevertheless there is currently no proof that such representativity

may be extended to other classes of programs.

Note that the random picking of program inputs is not by default a representative

measurement protocol. However, such protocol should define a representativity

property with respect to the pWCET estimation method.

To our best knowledge, there exists no proof for the representativity of a mea-

surement protocol for any given set A.

74 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

A0 A0 + α . . . A = A0 + n∗α

Figure 3.7: The absence of the reproducibility of a measurement protocol may

prevent A0 to converge to A.

3.4.4 Relations between reproducibility, representativity and con-

vergence

We enumerate the relations between the concepts defined previously:

• The reproducibility of the WCET estimation method is a mandatory property

for the reproducibility of the measurement protocol. Indeed if the WCET

estimation method is not reproducible than for two same sets of execution

times provided by a measurement protocol, the WCET estimates could be

non-equal.

• The reproducibility of a WCET estimation process requires both the repro-

ducibility of the WCET estimation method and the reproducibility of mea-

surement protocol. Indeed if the WCET measurement protocol is not repro-

ducible, the WCET estimate will be modified for each new measurement even

in presence of a reproducible WCET estimation method.

• The reproducibility of the WCET estimation process and the representativity

of the measurement protocol are mandatory properties for the convergence

of a WCET estimation process. In Figure 3.7 we illustrate a convergence

principle by slowly increasing an initial set of execution times by α elements.

The absence of the reproducibility of the measurement protocol makes the

measurement-based WCET estimation process unable to converge. Namely,

let X and Y with |X| = |Y | = α be two disjoint input sets produced by the

measurement protocol at step n − 1. If pWCET (A0 + (n − 1)α) produces

two different results (when adding to A0+(n−2)α either X or Y) then the set

A = X ∪ Y ∪ A0+(n−2)α diverges since pWCET may produce two different

WCET estimates.

In Figure 3.8 we illustrate a measurement-based WCET protocol with rela-

tions between the three properties. For instance from execution conditions (1) the

3.4. REPRODUCIBILITY AND REPRESENTATIVITY 75

Execution

Condi-

tions (1)

Execution

Condi-

tions (2)
. . .

Execution

Condi-

tions (n)

Reproducibility of Representativity of

the measurement the measurement
+

A1

A2

. . .

An

A

Reproducibility

of the pWCET

method

pWCET (A1) ≈
pWCET (A2) ≈

. . .

pWCET (An) ≈
pWCET (A)

Figure 3.8: The impact of the reproducibility and the representativity on the con-

vergence of a measurement-based WCET estimation.

measurement reproducibility ensures that an unique set of execution times A1 is

obtained.

The relations described previously are stated in presence of any WCET estima-

tion method. If the WCET estimation method is transitive, then a stronger relation

between the representativity and the reproducibility of a measurement protocol may

be established.

Theorem 1 If a measurement protocol is representative, then the measurement pro-

tocol is reproducible for any set of execution times with a cardinal larger or equal to

k.

Proof: We prove the reproducibility of a measurement protocol by contradiction.

We suppose that the measurement protocol is not reproducible for any set of ex-

ecution times with a cardinal larger or equal to k. This implies that there exist

two utilizations i 6= j of the measurement protocol Ai and Aj , with |Ai| ≥ k and

|Aj | ≥ k, such that

pWCET (Ai) 6= pWCET (Aj) (3.2)

From the definition of the representativity we have that

pWCET (Ai) ≈ pWCET (A) (3.3)

and

76 CHAPTER 3. CONDITIONS FOR USE OF EVT IN REAL-TIME DOMAIN

pWCET (Aj) ≈ pWCET (A) (3.4)

From the transitivity of the relation ≈ and Equations (3.3) and (3.4) we obtain

pWCET (Ai) ≈ pWCET (Aj) (3.5)

We obtain the contradiction between Equation (3.2) and Equation (3.5) indicat-

ing that our initial hypothesis is not correct, thus we prove that the measurement

protocol is reproducible.

3.5 Conclusion

In this chapter we presented the i.i.d. condition necessary for the classical use

of EVT on data samples, as well as the tests used to verify this conditions. A

clarification of the independence notion is also given.

In the absence of appropriate testing, the compositionality property may be in-

troduced by the measurement protocol producing the execution times. The indepen-

dence of a set of execution times may be obtained with an appropriate measurement

protocol even in the presence of dependent programs. Therefore, we have provided

the first intuitive mandatory properties for the convergence of measurement-based

WCET estimation processes: reproducibility and representativity. The reproducibil-

ity describes the stability of the result w.r.t. different executions of the process. The

representativity describes the existence of a (small enough) number of input mea-

sures that leads to the correct global result of the process. The provided examples

are described in the context of probabilistic approaches but we expect these prop-

erties to remain true for any measurement-based WCET estimation process.

We identify an important thread of future work in providing proofs of composi-

tionality for the existing measurement-based methods following the framework we

have introduced in this chapter. In particular, we would like to study methodolo-

gies for proving and detecting convergence via reproducibility and representativity

of measurement-based WCET estimation.

Chapter 4

pWCET estimation

methodology

In this chapter we present our methods used for the pWCET estimation through

the use of EVT. The main steps of using EVT are data collection, data selection

and modeling. While in the previous chapter we detailed on the data collection

step, in this chapter we concentrate on the selection and modeling process. Before

presenting the mathematical definitions of the main distribution functions used in

dealing with extremes, we give an insight in the central limit theorem. This notions

can help for a better understanding of EVT and allow us to reference CLT for its

similarities with EVT.

The central limit theorem (CLT) indicates that the mean of a large sample from

a distribution has an approximate normal distribution. This is formalized as follows:

Theorem 2 (Central Limit Theorem) Let X1, X2, .., Xn be a sequence of inde-

pendent identically distributed random variables with mean E[Xi] = µ and variance

V (Xi) = σ2 > 0.

Let: Sn =
∑n

i=1Xi be the sum of the given random variables

Then: the following formula is verified Sn−nµ√
nσ2

D−→ N(0, 1) as n→∞,

where
D−→ represents the convergence in distribution and N(0, 1) is the standard

normal distribution.

Intuitively, the CLT says that if we collect multiple samples of a sequence of i.i.d.

random variables and we compute the mean of these observation, the values obtained

will belong to a normal distribution. The mean of the sample is an estimate and

77

78 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

the distribution of an estimate is called a sampling distribution. The power of CLT

relies on the fact that it stays true for any probability distribution of the random

variables under study.

The central limit theorem is a very important tool for thinking about sampling

distributions - it tells us the shape (normal) of the sampling distribution, along with

its center (mean) and spread (standard error). This allows us to infer about the

average behavior of an event under study. If the event being monitored is the time

taken by a program to execute (inside a system), then by using CLT on multiple sets

of measurement, we are able to compute the average value of all possible execution

times with a certain confidence.

There exists different versions of CLT which apply for non identical distributed

data or data that contains dependencies. Its use is widely spread in various science

branches like finance, computer science, engineering or medicine.

The same way CLT deals with behavior of mean, extreme value theory (EVT)

deals with the behavior of maxima from a set of random variable. This is useful

in the context of WCET, where understanding the evolution of the grater values of

measured execution times is very important. The way CLT is able to estimate the

shape, mean and spread of a mean sampling, EVT is able to compute the shape,

scale and location of a maximum sampling.

EVT is composed of two limit theorems used for the study of extremal properties.

We present these two theorems the way we use them for the estimation of a pWCET.

4.1 Generalized extreme value distribution

We are interested in the statistical behavior of Mn = max(X1, X2, .., Xn), where

X1, .., Xn is a sequence of independent and identically distributed random variables

having a common distribution F . The distribution function F is unknown and as

a consequence the distribution on Mn (P (Mn ≤ x) = {F (x)}n) cannot be derived

exactly. By using the extreme data observed we are able to estimate families of

models for Fn, the same way that CLT justifies the approximation of mean samples

with a mean distribution. EVT theory provides the asymptotic behavior of Mn as

n increases.

Theorem 3 (Fisher-Tippett Types Theorem) Let X1, X2, .., Xn be independent

random variables with the same probability distribution, and Mn = max(X1, X2, .., Xn).

4.1. GENERALIZED EXTREME VALUE DISTRIBUTION 79

If there exists sequences of constants an > 0 and bn, such that Pr
{
Mn−bn
an

≤ x
}
→

G(x), as n→∞, for some non-degenerate distribution G, then G has as one of the

following distributions:

I. Gumbel

G(x) = exp
{
− exp

(
− x− b

a

)}
, −∞ < x <∞;

II. Fréchet

G(x) =

 0, x ≤ b,
exp

(
−
(
x−b
a

)−α)
, x > b;

III. Weibull

G(x) =

 exp

{
−
(
−
(
x−b
a

))α}
, x < b

1, x ≥ b.

for parameters a > 0, b and, in the cases of families II and III, α > 0.

Thus Theorem 3 states that if the distribution of the rescaled maxima Mn−bn
an

converges, then the limit G(x) is one of the three types, whatever the distribution of

the variables. Collectively, these three classes of distribution are termed the extreme

value distributions. In analogy with the CLT, regardless of the distribution of F ,

the three distributions are the only possible limits for the distribution of rescaled

maxima Mn−bn
an

.

The most common distributions and the domain of attraction they belong to are

presented in Table 4.1.

Domain Gumbel ξ = 0 Fréchet ξ > 0 Weibull ξ < 0

Normal Cauchy Uniform

Law Lognormal Pareto Beta

Exponential Student

Gamma

Table 4.1: The most common laws distributed by attraction domain.

Figure 4.1 presents a representation of the evolution of GEV differentiating the

three families.

80 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

Figure 4.1: Examples of the GEV distributions with σ = 1 and µ = 0. We mention

that the intervals presented on the y axis are not the same for the two graphics.

Adopting one of the three types of distribution in order to estimate its param-

eters is method often encountered in early applications. In the real-time domain,

there are papers in which Gumbel family is assimilated with the behavior of execu-

tion times of a system. This approach is prone to mistakes, since an initial exact

choice cannot be made for events for which the behavior is not proved to always

belong to a certain distribution law. This is the case for execution times where,

from our knowledge, there is no proof of the distribution that they follow. Other

weaknesses of this approach are that all future inferences on the estimated model

depend on the type of distribution adopted and that an incorrect choice invalidates

the obtained results.

Although the formulas of the three laws are different, they can be combined into

a single parametrization containing one parameter ξ that controls the ”heaviness”of

the tail, called the shape parameter. This law is called the generalized extreme

value (GEV) family of distributions and it is obtained by introducing a location, µ

and scale, σ parameters:

G(x) = exp

{
−
[
1 + ξ

(
x− µ
σ

)]− 1
ξ

+

}
(4.1)

where −∞ < µ < ∞, σ > 0 and −∞ < ξ < ∞. The location parameter, µ

determines where the distribution is concentrated, the scale parameter, σ determines

its width. The shape parameter ξ determines the rate of tail decay (the larger ξ,

the heavier the tail), with:

- ξ > 0 indicating the heavy-tailed (Fréchet) case

4.1. GENERALIZED EXTREME VALUE DISTRIBUTION 81

- ξ = 0 indicating the light-tailed (Gumbel, limit as ξ −→ 0) case

- ξ < 0 indicating the truncated distribution (Weibull) case

If we take into account the GEV, then the extremal theorem may be reformulated

as follows: the asymptotic behavior of the maximum of a sufficiently large sample

is a GEV distribution. In the same way as for the CLT, a max-stability property

makes possible the convergence of the maxima and it allows to find the distribution

it converges to.

In reality, we deal with a set of observations, in our case these observations are

represented by multiple measurements of the execution of a program. The strategy

used to perceive the data as observations of n random variables is by grouping them

in blocks of equivalent length. This method is called block maxima and a trivial

representation of its functioning can be seen in Figure 4.2. As mention in theorem 3,

the convergence of G is achieved for n→∞. Therefore, one might think deciding on

the block size (value of n) is trivially done by choosing a the greater value possible.

Nevertheless, this choice is not obvious when we deal with a limited number of

observations. A equilibrium point must be found between a block size too large

that produces a number of maxima to small leading to large estimation variance,

and a block size too small that can lead to bias in estimation and extrapolation.

MBPTA

  Uses a combination of two different methods
  Generalized Extreme Value (GEV)

-  Uses Block Maxima where an optimum block size is derived

  General Pareto Distribution (GPD)

-  Uses Peaks Over a Threshold (POT) where the optimum threshold is
derived

7 Paris, France 26/02/2015

Threshold

Block Size

E
T

Figure 4.2: Block maxima method: the largest value for each block is kept.

Classically, when EVT is used in meteorology and the data is represented by

measurements of natural phenomena, the block size is pragmatically chosen of size

equal to a year worth of observation. When dealing with execution time measure-

ments, such a reasoning can not be done and the selection of block size relies solely

on the size of the data set and the estimation results. In this thesis, we propose an

iterative testing of block size values and a selection based on two methods: visual

confirmation of the fitting through quantiles plots and return level plots, and an

automated method that uses goodness of fit (GOF) tests.

In order to estimate the three parameters of GEV from a set of maxima produced

82 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

through the block maxima method, we use the maximum likelihood estimation

(MLE) method. This is a totally analytic maximization procedure that estimates

the parameters of a statistical model from a set of observations. This is done by

finding the parameter values that maximize the the likelihood of making the initial

observations by the model with given the parameters. This method is highly used

in practice and is implemented in many statistical tools (e.g.: R software packages,

Matlab libraries, etc). In our case, we rely on the fevd() function from the extRemes

package and the gev.fit() function from the ismev package. Both implementations

are found in R software and have the same backbone, based on MLE. The use of

both functions came as a result of continuous development of our global method of

pWCET estimation.

To decide on the block size used for the final pWCET estimation, we verify

multiple options by iteratively estimating the corresponding GEV parameters. De-

pending on the data size, we test as many values as possible for the block size smaller

than m/4, where m is the data size. Once the GEV parameters were estimated for

all the tested block sizes, we proceed to the selecting procedure. This selection is

done in two ways:

1. Visaul verification: This approach relies on the use of return plots to decide

upon accepting a block size or not. This method is subjective and requires

”educated” human intervention. Regardless of these weaknesses, the use of

graphical representations remains the method of choice for many statisticians

when a decision needs to be taken. This approach is very efficient on elimi-

nating block sizes that do not produce a good estimation. In Figure 4.3, we

present an example of return level plots of the GEV distribution with differ-

ent shape parameters (a), and an example of return plot of a GEV estimated

model with negative shape and the execution times observations from which

it was obtained (b).

2. Goodness of fit testing: We consider the use of Anderson-Darling GoF

test to verify how close the estimated GEV model is from the maxima used

in obtaining the GEV parameters. Other tests can be adapted for the same

purpose, out of which we mention the Kolmogorov-Smirnov test, the Shapiro-

Wilk test or the Cramér-von Mises test. We decided on the Anderson-Darling

test because it is able to give more weight to the tails than the other ones

[Stephens, 1974].

4.2. GENERALIZED PARETO DISTRIBUTION 83

Once the block size is chosen and the GEV parameters are estimated, a model is

created from which further extrapolation can be done. One result that can be taken

from this method is computing the probability with which a certain event can hap-

pen. In the case of execution time, modeling the behavior of extreme observations

will allow us to determine what the probability is for a certain execution time to

be seen. The reverse can also be considered by identifying the maximum execution

time with a given probability p of apparition.

The power of the described method consists in the fact that an estimation dis-

tribution can be calculated for very low probabilities as it is usually requested for

safety critical embedded systems. As an example, in avionics industry, the failure

rates are expressed in 10−x per flight hour, where x can go up to 9 for DAL A

systems.

Figure 4.3: Examples of return plots for GEV: (a) Return plot for three models with

different shape values. (b) Return level plot containing the model and the observed

values for a model having negative shape and 95% confidence interval.

4.2 Generalized Pareto distribution

Besides the difficulty of choosing the good block size, the block maxima method

has the weakness of ignoring valuable data if multiple extremes are found in the

same block. This kind of scenario can be found in measurements of execution times

when an abnormal functioning of the system can influence successive executions and

increase their execution time. Despite efforts of isolation inside a system, program

executions can still be subject to influences (OS, shared resources, etc) that can be

84 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

noticed in group at certain moments of the measuring. Even in a fully indepen-

dent system with an unknown behavior multiple elevated execution times can be

measured in the same block under normal condition.

In order to counteract the wastefulness of block maxima approach, the estimation

based on threshold model can be used. The basic idea of this approach is to regard

as extreme events the values that exceed some high threshold u. It is proven that

these values have the property of belonging to a special family of distribution called

Generalized Pareto (GP) distribution [Hosking and Wallis, 1987].

GP studies the behavior of the values exceeding u, a pre-chosen threshold suf-

ficiently large to assure the asymptotic ground of the analysis. This method is

introduced by Pickands and its advantage is that it uses the highest extremes avail-

able in a data set compared to GEV. In order to converge to a GP distribution, a

set of i.i.d. random variables satisfies theorem 3.

Let X1, .., Xn be an sequence of independent and identically distributed ran-

dom variable X, with X1, .., Xn having common distribution function F , and Mn =

max(X1, X2, .., Xn). We suppose that F satisfies the GEV theorem i.e. for n suffi-

ciently large

P (Mn < x) ≈ G(x)

with G(x) member of the GEV family having ξ, µ, σ, the shape, the location and

the scale parameters.

Let u ∈ R be the chosen threshold with Nu = card{i : i = 1, .., n,Xi > u}
the number of exceedances above u among the (Xi)i≤n and let Yi = Xi − u > 0

be the corresponding exceedances. We define Fu, the distribution of the values Xi

exceeding u, conditional to the distribution F and the threshold u as follows:

Fu(y) = P (X − u ≤ y|X > u) =
F (y + u)− F (u)

1− F (u)
, y ≥ 0 (4.2)

The Pickands-Balkema-de Haan theorem provides the asymptotic behavior of the

distributions Fu; their intensities are approximated by the Generalized Pareto (GP)

distribution and their frequencies by a Poisson point process. The GP distribution

is expressed as a two parameters distribution (shape and scale):

Hξ,σ(y) =

 1−
[
1 + ξy

σ̃

] 1
ξ

if ξ 6= 0

1− exp
[
− y
σ̃

]
if ξ = 0

(4.3)

4.2. GENERALIZED PARETO DISTRIBUTION 85

defined on y : y > 0 and (1 + ξy \ σ̃) > 0 where ξ and σ̃ > 0 are the shape param-

eters and scaling function (depending on the threshold u) of this function. The ξ

parameter is equal to the ξ of the equivalent GEV distribution, while σ̃ = σ+ξ(u−µ)

can be computed based on the threshold value and on the three GEV parameters.

Theorem 4 (The Pickands-Balkema-de Haan) For distributions F (x) = P (X ≤
x), the GP distribution is the limiting distribution for the distribution of the excesses,

as the threshold tends to τF (the upper bound of the distribution function). Formally,

we can find a positive measurable function F (u) such that:

lim
u→τF

sup
0≤y≤τF−u

|Fu(y)−Hξ,σ(u)(y)| = 0 (4.4)

if and only if F is in the maximum domain of attraction of the extreme value dis-

tribution Hξ i.e. F ∈MDA(Hξ).

Definition 5 (MDA) A distribution F is in the maximum domain of attraction

of a distribution H, F ∈ MDA(H), if for independent and identically distributed

X1, X2, ..Xn with probability distribution function F and Mn = max(X1, X2, .., Xn),

then we can find sequences of real numbers an > 0 and bn such that the normalized

sequence (Mn−bn)/an converges in distribution to H, where Mn = max(X1, X2, .., Xn):

lim
n→∞

P
(
Mn − bn

an
≤ x

)
= lim

n→∞
F (anx+ bn)n = H(x)

The way GEV can be separated in the three families of distributions, Gumbel,

Frecét and Weibull, GP can also be seen as a combination of three families of

distributions according to the value of ξ. Therefore, for σ → ∞ GP corresponds

to an exponential distribution with parameter y \ σ̃, for σ̃ > 0 it corresponds to a

Pareto distribution and for σ̃ < 0 , we obtain a Beta distribution. Two examples of

these three distributions can be seen in Figure 4.4.

According to the Pickands-Balkema-De Haan theorem, the distribution function

Fu of the exceedance can be approximated by a GP distribution with the parame-

ters ξ and τ = τ(u) to be estimated.

In practice, the choice of the threshold u is difficult and the estimation of the

parameters ξ and τ is a question of compromise between bias and variance. A lower

u increases the sample size Nu but the bias grows since the tail satisfies less well

86 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

Figure 4.4: Examples of the GP distribution with σ̃ = 1 and threshold=0.

the convergence criterion (Equation(4.4)), while if we increase the threshold, fewer

observations will be used and the variance will increases.

The method used to select the values over a tested level is called peak over

threshold (PoT) and a graphical representation can be seen in Figure 4.5.

MBPTA

  Uses a combination of two different methods
  Generalized Extreme Value (GEV)

-  Uses Block Maxima where an optimum block size is derived

  General Pareto Distribution (GPD)

-  Uses Peaks Over a Threshold (POT) where the optimum threshold is
derived

7 Paris, France 26/02/2015

Threshold

Block Size

E
T

Figure 4.5: PoT keeps all values above a given threshold.

Generally, u is chosen graphically using the linearity of the sample mean excess

function by plotting {(u, en(u)), Xn:n < u < X1:n} where X1:n and Xn:n are the first

and nth order statistics of the studied sample and en(u) is the sample mean excess

function defined by:

en(u) =

∑n
i=1(Xi − u)+∑n
i=1 1Xi>u

; (4.5)

Thus en(u) is the sum of the excesses over the threshold u divided by the number

of data points which exceed the threshold u. It is an empirical estimate of the mean

excess function which is defined as e(u) = E[X − u|X > u]. If the empirical plot

seems to follow a reasonably straight line with positive gradient above a certain

value of u, then this is an indication that the excesses over this threshold follow a

GP with positive shape parameter. The weakness of this procedure is the fact that

4.2. GENERALIZED PARETO DISTRIBUTION 87

a linearity of e(u) can sometimes be hard to observe for a large enough number of

observations leading to a variance increase.

Another method of deciding upon a threshold value is to estimate the model for

a range of thresholds. Above a level u0 at which the asymptotic motivation for the

generalized Pareto distribution is valid, estimates of the shape parameter ξ should

be approximately constant, while estimates of σ̃ should be linear in u.

We resort to this second selection technique for determining a pWCET distri-

bution starting from a sample of data. We explore all the threshold levels u from

an interval. We decide upon this interval by plotting the GP parameter estimates

(shape and scale) against a considerably large number of threshold, compared to

the size of the analyzed data. We are looking for those points in which the param-

eters do not manifest a variability and for which a small confidence interval can be

noticed. In figure 4.6, we present such a plot realized on real set of execution times

with values from 1000 cycles to 1800 cycles and for which we can conclude that the

thresholds to be verified are in the interval [1500-1600]. A common practice is to

select the smaller value of such an interval. In our method, we test multiple values

uniformly distributed from this interval. This decision is motivated by the need in

precision necessary while working with critical real-time systems.

The parameters estimations are done by using the MLE method. And the final

decision upon the threshold level is taken similarly as for the GEV method by

looking at the return plot and applying GoF tests.

We mention the fact that the models obtained for GEV and GP are comparable

at the tail level, the region of the distributions which interests us the most. Even

though GP represents an estimation of the exceedance, by keeping the selected values

from the PoT method in their initial form (without eliminating the threshold) we

should be able to observe similar distribution as GEV. This rational is true in the

case of a large enough sample of data and under condition of correct block size and

threshold selection. In order to back up these selections and confirm the pWCET

estimation when working with execution times, we propose a validation procedure

based on the comparing between GEV and GP methods. We present this procedure

in the next chapter.

88 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

Figure 4.6: Example of parameter estimates against threshold.

4.3 Validation of statistical results

Testing a hypothesis through a statistical test is often done by using existing func-

tions implementing statistical tests and the result is then interpreted by the user

based on his/her own experience. We present in this section a validation principle

based on a voting procedure increasing the confidence in such implementation

(or to detect invalid results), beside the usual associated errors of the original statis-

tical tests. Moreover, we deal in this chapter with the case where two independently

obtained theoretical results (GEV and GP) exist for testing the same hypothesis. All

tests are applied in parallel and independently, and the results are then compared.

This validation method is presented with the purpose to be used on probabilistic

worst case execution time estimation, but it can be applied on any kind of data for

which its extreme behavior rises interest. In this section, we detail the principle

starting from a sample of independent and identically distributed execution times,

and in the next section we adapt it for the case when the data contains dependencies.

After applying the GEV method (see section 4.1) and the GP method (see section

4.2), we are able to obtain two models of extremes extracted from the same data

4.3. VALIDATION OF STATISTICAL RESULTS 89

from which we are able to extrapolate upon the behavior of the system producing

the data. The extrapolation that we are interested in refers to the distribution of

the tail of GEV and GP distributions. These sections are able to tell us with what

probability a certain execution time value will be encountered, and if we use return

value equations, we will be able to predict in how much time (how many runs) we

can see that value for the estimated probability.

Comparing GEV and GP pWCET estimates. The comparison of the

GEV and GP curves is done using the distance between the two distributions com-

puted with the continuous ranked probability score defined as CRPS(GEV,GP) =

Σz=xmax
z=xmin [fGEV (z)− fGP (z)]2. We consider in our experiments GEV and GP as suf-

ficiently close when CRPS(GEV,GP) ≤ ε with ε ≈ 10−12. Other possible values

of ε, based on, for instance, the criticality level the pWCET estimation, may be de-

cided. In order to decrease the error introduced by such estimation, we recommend

calculating the pWCET estimate as a combination of GEV and GP results. A joint

pWCET estimate is obtained by choosing, for each probability, the smallest value

between GEV and GP. The global view of the validation method can be seen in

Figure 4.7.

A tool implementing this method is detailed in [Gogonel, 2014] and it is available

on line at inria-rscript.serveftp.com1.

The final result of the GEV and GP methods are represented by the equivalent

distributions. In theory, the two distributions are approximately equal for a large

number of blocks and a high threshold. In practice, we are limited by the number of

observations being analyzed. Therefore, depending on the block size and threshold

chosen and on the exactitude of the fitting, the two distributions might differ. To

assure that the difference is minimal and that by choosing any of the two results

we should have the same pWCET estimation, we use the CRPS function. If the

result given by CRPS after the comparing of the two distribution is under a pre-

established mean absolute error ε, we consider that the results are comparably close

and that it makes no difference which one of them we accept. We take the decision

of keeping the more optimist estimation. This choice is motivated by the fact that

for a positive shape value (Fréchet for GEV and Beta for GP) the estimations can

be high and keeping the smallest values will still produce safe WCET bounds.

In order to demonstrate the process of estimation we present a comparison be-

1The web page requires a secured connection using the login aoste and password aoste.

90 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

Figure 4.7: A global view of the pWCET estimation using GEV and GP.

Figure 4.8: Histogram plot (a) and lag test (b) of the data used for the comparison

with existing methods.

tween our work and three existing methods existing in the literature. We are using a

data set of 2000 execution times, obtained from executing an avionics application on

COTS hardware. Every software run has the same input and the cache replacement

4.3. VALIDATION OF STATISTICAL RESULTS 91

Figure 4.9: The estimated model (a) and the return level plot (b) obtained using

our method on the data used for the comparison with existing methods.

protocol is LRU. Even though all execution times are obtained following the same

procedure, the hardware inserts a considerably amount of variability that allow us

to apply EVT for the estimation of pWCET. The data is measured in CPU cycles

and is comprised in the interval [2243736,2336992], while the standard deviation is

s = 12116.12. The variability of the execution times and the result of lag test can

be seen in Figure 4.8. The i.i.d. tests for the used data are passing and the GEV

distribution is chosen over GP distribution. A depiction of the estimated model over

the used data and the return plot can be seen in Figure 4.9. Our method chooses

a block size of 45 (selecting 45 values from the data as maxima), and estimates a

GEV distribution having the shape parameter parameter ξ = 0.05413, indicating a

Fréchet distribution. The choice of the execution times trace is totally random, the

only criteria used was that the data passes the independence test. The purpose of

this comparison is to spot the weak point of existing techniques and to show how

we avoid them.

Comparison to the existing EVT-based estimations

• Comparison to the seminal work of Edgar and Burns [Edgar and Burns, 2001]:

The work described in [Edgar and Burns, 2001] fit a Gumbel curve that fits the

set of execution time traces by using the entire set of data (no block maxima

method is applied) . Our method’s estimation (in red) is compared with the

curve obtained using the method of Edgar and Burns (in black in Figure 4.10).

By fitting the raw data on the Gumble distribution, theorem 3 is not applied

correctly. The only case in which this can be done is when we know that the

data used is composed of extremes from a larger set of measurements. The

92 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

weakness of fitting the data directly to Gumbel distribution rises from the fact

that this choice must be backed up. In the example given, we show that the

best fit comes from a GEV with a positive shape, producing a heavier tail

than a Gumbel distribution. Therefore, Edgar and Burn’s method introduces

a source of uncertainty: when the data is a better fit to a Weibull distribu-

tion, the method will be pessimistic, while data fitting a Fréchet distribution

produces an optimistic method. Even though it introduces an eventual over

provisioning of the system, being pessimistic can be acceptable compared to

an optimistic estimation when the risk of deadline misses might be increased.

Figure 4.10: Comparison with Edgar’s work: (a) return level plot for Edgar’s

method, (b) our pWCET estimation (in red) against the estimation obtained ac-

cording to adversary method.

• Comparison to the work of Hansen et al. [Hansen et al., 2009]: The work

described in [Hansen et al., 2009] searches for the first Gumbel curve that

fits the set of execution time traces by using block maxima reasoning. Our

method finds the curve of Hansen et al. and compares it to a tighter fit on

the GEV distribution (see Figure 4.11). The same weaknesses as in Edgar

and Burn’s method appear in Hansen’s method due to a fitting to Gumbel

distribution. Hansen’s method would coincide with ours when the data under

analysis fits best a Gumbel distribution. Even though the Gumbel model is the

one encountered most often when applying EVT, this is not an obvious choice

for execution times. The results presented in [Lu et al., 2011, Berezovskyi

et al., 2014,Berezovskyi et al., 2016] keep also the first Gumbel.

• Comparison to the work of Cucu-Grosjean et al. [Cucu-Grosjean et al., 2012]:

4.3. VALIDATION OF STATISTICAL RESULTS 93

Figure 4.11: Comparison with Hansen’s work: (a) return level plot for Hansen’s

method, (b) our pWCET estimation (in red) against the estimation obtained ac-

cording to adversary method.

The work described in [Cucu-Grosjean et al., 2012] searches for the Gumbel

curve that fits the set of execution time traces while iterating through block

sizes that are multiples of 50. In reality fixing the block size to only a limited

number of values might not be very accurate. Our method improves on the

one proposed in Cucu’s paper by exploring a higher number of block sizes

and by eliminating the limitation on a Gumbel distribution. Cucu’s method

produces for our example a result closer to ours (see Figure 4.12), but uses a

smaller number of maxima which increases the variance.

Figure 4.12: Comparison with Cucu’s work: (a) return level plot for Cucu’s method,

(b) our pWCET estimation (in red) against the estimation obtained according to

adversary method.

Theoretical convergence of the two EVT branches to the same result

94 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

EVT indicates that the GEV and the GP estimations should theoretically provide the

same curve [COLES, 2001]. The convergence of a pWCET estimation is based on

the comparison between the two pWCET estimates obtained independently by the

two branches. Their fitting indicates that we are acceptably close to the theoretical

curve.

4.4 The pWCET estimation from dependent execution

times

We propose previously a voting procedure for the pWCET estimate from dependent

execution times while using two independent results based on GEV and GP. This

joint utilization of the two methods is differentiating the current contribution from

existing ones by the fact that it considers the possibility of execution times behavior

to be represented by the any GEV distribution. This excludes the limitation to

Gumbel-only solutions.

The (statistical) dependences that a set of values may experience in general are

(i) local dependences, where successive values are dependent in time, but values far-

ther apart are independent; (ii) long term trends dependences, where the underlying

distribution changes gradually over time; and (iii) seasonal variation dependences,

where the underlying distribution changes periodically through the time. The vot-

ing procedure handles all three general cases by extending the method described in

Section 4.3 (see Figure 4.13) to dependent execution times.

GEV for dependent execution times In general the block maxima is consid-

ered to ensure the independence of the remaining execution times [Lu et al., 2011]

even if the original set of execution times is dependent. For those cases when the

execution times left after the block maxima step are dependent, we use an exten-

sion of GEV for dependent data. This extension is built by calculating a fourth

parameter: the extremal index θ describing the dependence degree of the execution

times [COLES, 2001]. Lower is θ, higher is the correlation between the execution

times. For independent execution times θ = 1. The GEV is calculated then as

follows:

Gθ(x) = exp

{
−
[
1 + ξ

(
x− µ?

σ?

)]− 1
ξ

+

}θ
(4.6)

4.4. THE PWCET ESTIMATION FROM DEPENDENT EXECUTION TIMES95

where µ? = µ− σ
ξ (1− θ−ξ) and σ? = σθξ. where µ is the a location parameter, σ is

the scale parameter and ξ is the shape parameter.

GP for dependent execution times The GP version described in Section 4.2

requires always an extension for dependent execution times as threshold exceedances

occur in groups [Griffin et al., 2015], implying that one large value is likely to be

followed by another. We consider declustering of the execution times, that corre-

sponds to filtering the dependent observations to obtain a set of threshold excesses

that are independent. This filtering is done as follows.

We first split the set of execution times in clusters. A cluster is obtained as a set

of k+ 2 consecutive observations such that Xt < ν and Xt+i > ν, 1 ≤ i ≤ k,Xt+k+1,

where ν is a threshold value that we vary from the highest level to the lowest.

For each cluster we keep those execution times larger than the threshold of that

cluster. We obtain a set of independent execution times and the GP for independent

execution times is then applied.

Dependent'
data?'

GEV'from'dependent'
data'

GPD'from'dependent'
data'

EVT'from'independent'
data'

Valid'
pWCET''

es8ma8on'

YES' NO'

EVT'from'dependent'
data'

Figure 4.13: The two branches of EVT for dependent data and their relation with

EVT for independent data.

The convergence of the two methods is ensured by EVT that indicates that the

96 CHAPTER 4. PWCET ESTIMATION METHODOLOGY

GEV and the GP estimations should theoretically provide the same curve. Once

fitted, one may conclude that the obtained curve is acceptably close to the theoretical

curve.

4.5 Small variability data

In the case of execution times with small variability (see Figure 4.14), the pWCET

estimation is modified with respect to previous method. More precisely if the ex-

ecution times are grouped in two or three sub-sets, the pWCET will be obtained

as the joint pWCET estimate of GEV and GP by choosing for each probability the

smallest value between GEV and GP. This choice is motivated by the fact that the

previous version provides pessimistic pWCET estimation through its GP branch.

Indeed the existence of few sub-groups of possible values ”forces” GP to keep in

general the values from the largest value sub-set (sub-set 1 in Figure 4.14). GEV is

not sensitive to this grouping effect and the joint pWCET estimation will be mainly

based on GP. The choice of the smallest value between GEV and GP is kept.

For detecting this specific case we introduce a new utilization for the statistical

test of k-means algorithm [Hartigan, 1975] to check automatically the small variabil-

ity of execution times. The k-means algorithm is an algorithm clustering n objects

based on attributes into k partitions, where k < n, k ∈ Z, k > 0. The aim of the

k-means algorithm is to divide N data points into K disjoint subsets Sj containing

data points such that the sum-of-squares criterion J =
∑K

j=1

∑
n∈Sj |xn − µj |

2 is

minimized where xn is a vector representing the nth data point and uj is the geo-

metric centroid of the data points in Sj . The steps of the k-means algorithm are

the following:

• Step 1 We initialize k as an intuitive number of clusters

• Step 2 We put any initial partition that classifies the data into k clusters as

follows:

1. We take the first k training sample as single-element clusters;

2. We assign each of the remaining (N − k) sample to the cluster with the

nearest centroid. After each assignment, we recompute the centroid of

the gaining cluster;

4.6. CONCLUSIONS 97

• Step 3 We take each sample in sequence and compute its distance from the

centroid of each of the clusters. If a sample is not in the cluster with the

closest centroid, we switch it to that cluster and update the centroid of the

cluster gaining the new sample and the cluster losing the sample.

• Step 4 We repeat Step 3 until testing distances of the samples to centroid

does not cause a new assignment.

Testing the variability

!  Deciding if a set of execution time traces has an important
variability

!  The test is based on the possibility of building clusters
within the set of execution times

!  Already tested within RVS for MBPTA on dependent data

5 WP3 meeting, INRIA, April 18th 2016

Sub$set(1(

Sub$set(2(

Sub$set(3(

Figure 4.14: Set of execution times with small variability.

4.6 Conclusions

In this chapter we presented the two methods (GEV and GP) used for pWCET

estimation when the used samples are independent. A validating procedure is intro-

duced in order to decide on the consistency of the two estimations. We also propose

solutions for the cases when the data under analysis present manifest dependence

or low variability. Some of the technical details of these methods can be found in

the Appendix of the thesis. Result of using these methods can be found in the part

of the thesis containing the practical results (Chapter 5)

Chapter 5

Experimental results

In this section we present our results while studying the WCET estimation the pro-

posed methods on different systems. We focus mainly on the estimations obtained

for software provided by the Airbus company. The experiments are performed for

multiple platforms and different configurations. Also, during three years, the period

of the thesis, we encountered different stages of development for the methods used.

Therefore, results might not always follow the same type of representation or the

same level of detail. Nevertheless, we will explain at every moment the changes in

presentation and the reasons of their occurrence.

5.1 Analysis of benchmarks on multiprocessor architec-

tures

A first stage in developing a functioning pWCET estimation tool is its testing on

existing benchmarks. We use the Mälardalen Benchmark [Gustafsson et al., 2010]

and executed them on an Aurix board.

In this section we detail only the pWCET estimation for the program prime from

this benchmark suite. This choice is made in order to better exemplify the properties

of representativity and reproducibility (see section 3.4). The program prime verifies

the primality of a number given as input. We observe here a direct link between the

inputs used for this program and the execution times measured for the corresponding

executions. This program is used for a more detailed presentation as its structure

allows injecting dependences directly through the values of the number checked (to

be prime or not).

99

100 CHAPTER 5. EXPERIMENTAL RESULTS

The Aurix board is composed of 3 cores: 2 TC1.6P and one TC1.6E. The major

blocks of the Aurix processor are shown in Figure 5.1. During the experiments, we

use only one core and the programs are executed in isolation in bare metal mode

(no other programs are on the other cores and no operating system is used).

Figure 5.1: Tricore Aurix Block Diagram.

Independent execution times. We execute the prime program for 100 times

with input values for the number (to be checked as prime) randomly picked from

the set {13, · · · , 5995}. We obtain independent execution times given in Figure 5.2.

The execution times vary from 0 to 500 cycles. A representation of the lag test for

this set of execution times is given in Figure 5.3. The lack of pattern in this figure

is also confirmed by the run test results with a p-value at 0.16 > 0.05 indicating

the independence of the execution times. In this case the method presented in

Section 4.3 is applied for the pWCET estimation and we can read the value 526

cycles for a probability of 10−12 from the resulting distribution.

5.1. ANALYSIS OF BENCHMARKS 101

Figure 5.2: Distribution of independent execution times for the program prime on

the Aurix architecture.

Figure 5.3: Lag plot for independent execution times for the program prime on the

Aurix architecture.

102 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.4: pWCET estimation of the program prime on the Aurix architecture

from the measurements of Figure 5.3.

As suggested in section 3.1, the analysis results of a system depend on the

consistency of that system. In other words, we cannot pretend that the pWCET

curve obtained for the previous example applies for any usage of the system. The

simple change of the input interval automatically changes the execution time profile

of the system. Also, the change in the input order or in the way the inputs are chosen,

despite belonging to the same interval might influence the pWCET estimation. This

occurs because the condition of reproducibility is not satisfied and as a consequence,

the representativity criteria is violated. We exemplify this with another set of inputs

that produces execution times containing statistical dependence.

Dependent execution times. For the second set of experiments with prime

on Aurix board we consider dependent input values for the number (to be checked)

from the set {2010, · · · , 5000}. We obtain a set of execution times described in

Figure 5.5, which is subject to dependences. The lag plot in Figure 5.6 indicates

patterns and the p-value for the run test (8.77e − 22 < 0.05) confirms the weak

dependences. We calculate the value θ = 0.77 confirming also the utilization of

EVT for dependent execution times (as described in Section 4.4). We obtain a

pWCET estimate of 518 for a probability of 10−12, as seen in Figure 5.7.

5.1. ANALYSIS OF BENCHMARKS 103

Figure 5.5: Dependent execution times for the program prime on the Aurix archi-

tecture with independent input values.

Figure 5.6: Lag test for dependent execution times for the program prime on the

Aurix architecture while using independent input data.

104 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.7: pWCET estimation from dependent execution times of the program

prime on the Aurix architecture.

Even though the pWCETs at probability 10−12 are relatively close (1,5% differ-

ence), we cannot rely on any of these values or on an interval containing these values

as a general result for pWCET analysis of the given system. Nevertheless, we can

guarantee the first pWCET curve as an estimation for the use of independent and

randomly picked inputs from the interval {13, · · · , 5995} for the prime executing on

the Aurix platform. The same conclusion can be taken for systems having inputs

with the same types of dependence as in the second example (and coming from the

same interval).

This example is used as a justification for the best use of our method. Therefore,

EVT is able to guarantee the timing analysis of a system in one of the following

conditions:

• The analysis is done on a system behaving in the same way as at run-time

(same platform, same software) and using the same input vector for which

certification is needed. The use of a worst case input vector is accepted.

• The analysis can be done on basic blocks of the software executing in the

targeted platform. Combining the results of multiple basic blocks analyses

5.2. AVIONICS APPLICATION ANALYSIS 105

can be done through convolution. The result is capable of upper bounding

the end to end analysis with the cost of injected pessimism.

The above argumentation applies for the cases in which the architecture intro-

duces enough uncertainty and variability in the execution time measurements. In

the case of a predictable platform the use of probabilistic analysis is unnecessary

and/or inappropriate. By using complex hardware architecture seen as black boxes,

the variability necessity is satisfied. Such complex architecture are represented by

COTS hardware. This motivates in the next section the utilization of different

COTS hardware for obtaining measurement of execution times.

In Table 5.1 we provide pWCET estimations on Aurix board for other programs

of the Mälardalen Benchmark. We use an evaluation formula to quantify the ratio

between the pWCET estimate and the maximum observed value maxET . This

ratio is calculated as follows:

eval = pWCET−maxET
maxET

(5.1)

Trace ind Method pWCET max eval

fir indep GEV 162022 135457 0.20

lcdnum dep GEV 2577 1171 1.20

minver indep GEV 61501 43380 0.42

qurt indep GP 34478 28517 0.21

recursion mutual indep GEV 762 346 1.20

select dep GEV 1689 1325 0.27

sqrt input inputnorm indep GEV 43702 38553 0.13

sqrt input random6 indep GP 43702 38553 0.13

Table 5.1: pWCET estimation on Aurix for some Mälardalen Benchmark programs.

5.2 Avionics application analysis

In this section we detail the pWCET estimation of two Airbus applications. We

provide below a presentation of the applications as well as the hardware used for

obtaining execution time measurements for the analysis. We present here only a part

106 CHAPTER 5. EXPERIMENTAL RESULTS

of all the data analyzed during the three years of thesis, due to space limitation and

confidentiality reasons.

Despite the benefits that the IMA concept brings to the avionic industry, a num-

ber of problems arise due to the complexity increment of putting together different

applications with mixed criticality levels into a single computer:

Hardware complexity : The IMA concept requires using powerful processors in

order to cope with the performance requirements of the different applications. On

modern single core processors, counting cycles does not work anymore as it is cur-

rently the case for some timing analysis techniques. Moreover caches, pipelines,

branch predictors and all features that enhance performance on average, by exploit-

ing execution history, make that there is much more to the execution time of a piece

of code than only its execution paths. The large amount of state that a modern

processor incorporate leads to combinatorial explosion when trying to enumerate

all possible histories for the execution of even simple pieces of code. There are

strength-reduction techniques such as abstract interpretation but these usually re-

quire knowledge of all events in the computer, which is not compatible with features

hard to get rid of, such as dynamic RAM, paginated MMU, copy-back caches or I/O

interrupts. Introducing multicore processors to the discussion does not solve any of

these single core issues but add even more sources of interferences across cores.

Software complexity : timing analysis is non-trivial on monolithic sequential pro-

grams of limited size, it becomes difficult on large programs, is not easy to break

down in order to benefit from program modularity, and there are few techniques for

dealing with multithreaded programs.

Incremental qualification: the timing analysis of an application should be in-

dependent regardless of the execution environment in which this application runs.

Unfortunately, the timing behavior of a program can be affected due to interfer-

ences generated by sharing resources, which is obviously the case when switching to

multicore processors. Thus, static timing analysis of several programs that share a

computer is difficult or even impossible in this context.

A larger description of the IMA concept can be found in section 2.5.1. We recall

that one of the key features of IMA is partitioning and that the unit of partitioning is

called partition. IMA incremental certification is essentially based on the following

partitioning properties: spatial, temporal and communication.

5.2. AVIONICS APPLICATION ANALYSIS 107

5.2.1 Application presentation

A great part of avionics application is created with automatically generated code .

This is composed of linear code executed periodically by a sequencer. This procedure

increases the predictability of the application and favors static analysis. Despite this

code structure, due to hardware complexity or OS interferences, we can still observe

variability in the execution time measurements of these applications.

The avionics case study used in this thesis is comprised of two real A653 ap-

plications hosted on IMA Line-Replaceable Module (LRM): Weight and Balance

Back-up Computation (WBBC) is part of the flight control system of the air-

craft. Its main functions are:

• Computation of an independent estimation of center of gravity position, to

secure the aircraft from center of gravity excursions

• Supply to the whole aircraft computers, some weight and center of gravity

values to monitor

• Supply to the whole aircraft computers, some weight and center of gravity

values that could be used as backup

• Generation of warnings and caution functions to prevent from center of gravity

excursions

Flight Control Data Concentrator (FCDC) is part of the flight control system

of the aircraft. Its main functions are:

• Concentrating data from primary and secondary flight control units.

• Concentrating data from Weight and Balance Backup Computation System.

• Generating Warnings to be displayed by the Flight Warning System.

• Generating maintenance messages to the Centralized Maintenance System

(CMS).

• Transmitting messages to the Digital Flight Data Recorder from primary and

secondary Flight Control Units.

108 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.8: WBBC functional modes.

Figure 5.9: WBBC Dynamic Behavior.

5.2. AVIONICS APPLICATION ANALYSIS 109

Figure 5.10: WBBC SCADE Nodes Cycles Scheduling.

WBBC

WBBC software has four functional modes, as shown in Figure 5.8. Each functional

mode consists in a specific subset of WBBC functions to be fulfilled. Only one mode

can be active at a time.

• INIT. Call services to create A653 resources and start the partition processes.

• NORMAL BITE. Normal execution, i.e. the execution time without any in-

ternal error conditions, of functional logic .

• APPLICATION BITE. Degraded mode of WBBC functions.

• FAILURE. Failure mode following internal faults detection within WBBC soft-

ware.

110 CHAPTER 5. EXPERIMENTAL RESULTS

Degraded modes of WBBC software, i.e. FAILURE and APPLICATION BITE,

are uninteresting from the execution time point of view and, therefore they are out

of the scope for applying our methods. In these two modes a great part of software

functions are dropped and only a sequential and predictable code is kept which

from the execution time point of view doesn’t manifest any variability. WBBC case

study consists in running processes of NORMAL BITE mode. In this mode, WBBC

executes the A653 processes called APPLICATION. The APPLICATION process

sequences I/Os acquisitions and emissions and execution of automated generated

SCADE logic cycles code. Figure 5.9 illustrates how those processes are scheduled

within a Major Frame composed of 16 Minor Frames periods. Note that MIF 17

corresponds to the MIF 1 of the next MAF.

APPLICATION is a periodic A653 process, with priority set to highest priority.

It is composed out of Sampling Ports Acquisitions, Input Payload Unformatting,

SCADE nodes Execution, Output payloads Formatting and Sampling Ports Emis-

sions. The SCADE nodes scheduled during execution of the APPLICATION com-

ponent of WBBC are organized in 5 major cycles, from C1 to C5 with periodicity

constraint set to Cn = 2n−1 MIFs, subdivided in minor cycles. Such a periodicity

constraint defines the 16 MIFs required by the FCDC application: one each MIF,

one every two MIFs, etc. The complete major and minor cycles allocation is de-

scribed in Figure 5.10. In other words, during each MIF a pre-established sequence

of SCADE code is executed. For example, during MIF9, the code of C1,C2 1,C3 1,

C4 1 and C5 9 is executed. The 16 MIFs are executed in a round robin manner

implemented by a switch-case code. Our main goal is to determine a pWCET curve

for each MIF starting from each one’s set of measurements. According to the devel-

oper strategy, all MIFs can contain approximately the same amount of code or no.

This is not the case for WBBC, and we can say that the MIFs are not distributed

uniformly.

The complete WBBC software is composed of 100 klines of code without com-

ments, 13,000 lines being produced manually. WBBC application communication

layer is through the AFDX network, and few discrete signals.

The input data used for the WBBC application is represented by a set of in-

put vectors that were studied and generated inside AIRBUS in order to stress the

application as much as possible and to obtain the produce the maximum observed

execution times. These inputs stay the same all long of the execution and are used by

5.2. AVIONICS APPLICATION ANALYSIS 111

the blocks any time a MIF/MAF starts. Therefore the analysis of WBBC program

is made under the same input conditions.

Figure 5.11: FCDC functional modes.

Figure 5.12: FCDC Dynamic Behavior.

112 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.13: FCDC SCADE Nodes Cycles Scheduling.

FCDC

FCDC software has five functional modes, as shown in Figure 5.11. Each functional

mode consists in a specific subset of FCDC functions to be fulfilled. Only one mode

can be active at a time:

• INIT. Call services to create A653 resources and start the partition processes.

• NORMAL BITE. Normal execution, i.e. the execution time without any in-

ternal error conditions, of functional logic .

• APPLICATION BITE. Degraded mode of FCDC functions.

• FAILURE. Failure mode following internal faults detection within FCDC soft-

ware.

• INTERACTIVE BITE. Mode to handle interactive BITE mode, ground only.

5.2. AVIONICS APPLICATION ANALYSIS 113

Degraded modes of FCDC software, i.e. FAILURE and APPLICATION BITE,

are uninteresting from the execution time point of view and therefore out of the scope

for applying our methods. In these two modes a great part of software functions are

dropped and only a sequential and predictable code is kept which from the execution

time point of view doesn’t manifest any variability. FCDC case study consists in

running processes of NORMAL BITE mode. In this mode, FCDC executs the

following A653 processes:

• APPLICATION process, sequences I/Os acquisitions and emissions and exe-

cution of automated generated SCADE logic cycles code.

• MESSAGESERVER process, manages failure messages reporting to the Cen-

tralized Maintenance System (CMS).

• BACKGROUND process, manages dialog sessions with Centralized Mainte-

nance System.

Figure 5.12 illustrates how those processes are scheduled within a Major Frame

composed of 16 Minor Frames periods. Note that MIF 17 corresponds to the MIF 1

of the next MAF. APPLICATION is a periodic A653 process, with priority set to 10

(highest priority), and its associated deadline timer set to one time window duration.

MESSAGESERV is a 16 MIFs periodic A653 process with priority set to 5. It

consists in a simple process, managing failure reports to the CMS. BACKGROUND

is an aperiodic A653 process, with priority set to 1 (lowest priority), and no deadline.

It is in charge of interactive menu management as a background task.

The SCADE nodes scheduled during execution of the APPL component of the

APPLICATION A653 process are organized in 5 major cycles, from C1 to C5 with

periodicity constraint set to Cn = 2n−1 MIFs, subdivided in minor cycles. Such a

periodicity constraint defines the 16 MIFs required by the FCDC application: one

each MIF, one every two MIFs, etc.. The complete major and minor cycles allocation

is described in Figure 5.13. In other words, during each MIF a pre-established

sequence of SCADE code is executed. For example, during MIF13, the code of

C1,C2 1,C3 1, C4 5 and C5 13 is executed. The 16 MIFs are executed in a round

robin manner implemented by a switch-case code. Our main goal is to determine a

pWCET curve for each MIF starting from each one’s set of measurements. In the

case of FCDC the MIFs are relatively equal in charge.

114 CHAPTER 5. EXPERIMENTAL RESULTS

The complete FCDC software is composed of 1.5 million lines of code without

comments, 30,000 lines being produced manually and 95% of this code belonging to

the APPLICATION library.

For each application, an input meant to produce the worst-case scenario is used.

A team of applications specialists inside Airbus was the responsible of producing

this input. The use of an unique input vector allows us to concentrate on the time

variability produced by the architecture.

The analysis of A653 applications focuses on the analysis of the main applicative

periodic A653 processes associated to a hard deadline.

5.2.2 Platform characteristics

Our method can be used for any measured execution times, while the results and the

confidence in them depend on the data used. We tested our methods on different

types of data ranging from artificially generated values (to verify certain properties)

to traces of execution times from real application execution. In this thesis we present

the results obtained by analyzing execution times coming from the presented ap-

plications (WBBC and FCDC) running on two different platforms: Gaisler’s Leon3

Processor and Freescale’s P4080 PowerPC. In this section we present the properties

of these two platforms and the way they are used for our measurements.

The Leon3 Processor

We use the Leon3 Processor in two different ways: default behavior and randomized

behavior. By default behavior we understand the configuration offered by the hard-

ware manufacturer that has all performance enhancing techniques activated (cache

memory, branch predictors, pipeline etc.). We call this configuration as the ”nor-

mal” one. We also use this processor in a randomized configuration as described

in the PROXIMA project. This randomized configuration is achieved by modifying

the cache replacement protocol from LRU to random and adapting other features

of the hardware to be in concordance with this change. We start by presenting the

architecture in normal mode following by an clarification upon the use of random-

ization.

5.2. AVIONICS APPLICATION ANALYSIS 115

Figure 5.14: Schematic of the FPGA architecture.

The Leon3 processor is a field-programmable gate array (FPGA), which means

that it can be configured by the user. We use this possibility to modify the archi-

tecture in the randomization section. The basic architecture behaves as shown in

Figure 5.14. The processor features a 4-core multicore with a shared bus, a shared

(unified for data and instructions) UL2 cache, a memory controller and DRAM

memory. First level instruction (IL1) and data (DL1) caches are private per core.

A number of Ethernet controllers are also in place.

The core architecture consists of a pipeline with the following stages: fetch (F),

decode (D), register access (RA), execution of non-memory operations (Exe), DL1

access (M), Exceptions (Exc) and write back (WB). The operations occurring in

each stage are as follows:

• Fetch stage: The IL1 is accessed (and the ITLB on a IL1 miss) to obtain the

next instruction to be executed. Branches are predicted to be always taken.

• Decode stage: Instructions are decoded. This stage is, in essence, an extra

delay in the pipeline.

• Register access: Instructions read their input registers with fixed latency.

• Execute stage: Non-memory instructions are executed with a fixed latency

that depends solely on the type of operation, except FDIV and FSQRT in-

structions, whose latency is input data dependent. Memory operations com-

pute their addresses.

• Memory stage: Load instructions access the DL1 (and DTLB on a DL1 miss).

Indeed, they also access the write buffer. Store operations are placed in the

write buffer for their offline processing. If the write buffer is full the pipeline

will be blocked.

116 CHAPTER 5. EXPERIMENTAL RESULTS

• Exception stage: Exceptions are managed here.

• Write-back stage: Results (if any) are sent to the register file.

We describe the main components of this architecture that are able to produce

variability in execution time measurements:

Instruction Cache (IL1) IL1 is set-associative and implements modulo place-

ment and both, LRU and random replacement policies. IL1 latencies are as follows.

On a hit the instruction will be served after IL1hit cycles. On a miss, one of the

cache lines in its set will be selected for eviction, and the request will be forwarded

to the shared bus after translating the address in the ITLB (its impact in latency

is analyzed in next subsection). Miss latency will depend on a series of conditions,

like bus arbitration latency, UL2 hit/miss outcome, memory controller latency in

case of a UL2 miss, bus latency to send the cache line back to the core, etc. . . To

minimize latency, instruction streaming is performed. Instructions are fetched from

memory starting at the missed address until the end of the cache line. Control flow

changes might suffer a penalty because of this, since the fetch of a streamed line

needs to be completed before the control flow change can take effect.

The Instruction Cache implements cache locking on a per line basis. The lock

bit can be set by performing a diagnostic write to the instruction tag on the cache

offset of the line to be locked. Locking prevents the cache line to be replaced by

the replacement algorithm, but the locked cache line will be updated on a read-miss

and will remain in the cache until the line is unlocked.

Instruction Cache freezing can be enabled via the cache control register. In the

frozen state, the cache is accessed and kept in sync with the main memory as if it

was enabled, but no new lines are allocated on read misses.

Cache flushing is also implemented and takes one cycle per cache line, during

which the IU will not be halted, but during which the caches are disabled. When

the flush operation is completed, the cache will resume the state (disabled, enabled

or frozen) indicated in the cache control register.

Instruction TLB (ITLB) On a IL1 miss or store hit (the cache is write-

through), the ITLB is accessed to translate virtual into physical addresses (if the

MMU is enabled). The ITLB is fully-associative and implements LRU and random

replacement policies (configurable at implementation time).

On an ITLB hit, IL1 access proceeds normally to the bus. On an ITLB miss,

the IL1 access cannot be served until the MMU completes address translation. The

5.2. AVIONICS APPLICATION ANALYSIS 117

processor will perform a hardware table walk that:

• looks up the MMU context’s root pointer

• traverses a three-level page table for the selected context

• in the case of writes, the hardware table walk mechanism will set the page

table entry’s modified (M) bit.

Thus, an ITLB entry is evicted (according to placement/replacement policies)

and the virtual to physical address mapping is entered into the TLB. Once the ITLB

miss is served, the IL1 access can proceed.

Queues In the processor several request queues may exist to decouple different

hardware blocks. For instance, fetched instructions may be placed in a queue so that

they can be consumed by the decode stage. If any later stage stalls long enough,

such queue may get full, thus introducing backpressure into the fetch stage, which

may get stalled until at least one entry is released in the queue. Thus, whether a

queue gets full or not depends solely on the behavior of the different stages, which

in turn progress faster or slower depending on deterministic (and fixed latency)

events such as the execution in some functional units or probabilistic events such as

hit/miss in any cache-like structure (IL1, ITLB, DL1, etc.).

There are two queues known to be susceptible to the problems described above;

the instruction FIFO for the floating-point controller and the write-buffer. The

instruction FIFO in the floating-point controller accumulates floating-point instruc-

tions and keeps them in the FIFO until the floating-point controller pipeline (that

acts in parallel with the integer unit pipeline) is ready to accept a new instruction.

When the FIFO is full then the integer unit pipeline will need to stall until a slot

in the floating-point controller FIFO becomes available.

The write-buffer can hold two words of write data and it is used so that a memory

write operation can complete immediately without waiting for the delay required

for the write to complete on the bus. When the write-buffer is full, any store and

any load instruction will be stalled until the write-buffer has slots available.

Data Cache (DL1) DL1 behaves similarly to IL1 for load accesses with the

exception that those read accesses check in parallel both the DL1 and the write

buffer. Note that the write buffer contains data from older stores that have not

been sent to the DL1 yet. Additionally the data cache is subject to invalidation for

118 CHAPTER 5. EXPERIMENTAL RESULTS

data snooped from the system bus, and it is also subject to an invalidation-on-write

policy.

Store accesses are processed in order from the write buffer when no load access

is to be served.

Uncacheable requests are sent straightforward to memory affecting neither IL1

nor ITLB contents. Thus, they pay some arbitration delay in the bus.

Cache locking, freezing and flushing considerations that were made for the IL1

are also valid for the Data Cache. Instruction and Data caches can be locked and

flushed separately.

Data TLB (DTLB) Its behavior is completely analogous to that of the ITLB.

Write Buffer The core is equipped with a write buffer that prevents from

stalling the pipeline on each store operation. This is particularly important because

stored data are not typically consumed by subsequent instructions and thus, it can

be stored off-line without stalling other activities as long as data consistency is kept

(loads check the write buffer and stores occur in order).

On a store operation, its data are written into the next free entry of the write

buffer, which is implemented typically as a circular queue. If the write buffer is full,

then the corresponding pipeline stage is stalled (M), thus creating some backpres-

sure.

The write buffer does not support write combining, therefore every entry of the

buffer is sent to the shared bus as a separate write request.

Core-to-bus Queue Requests sent from the core are queued in order in the

core-to-bus queue. If two requests occur simultaneously in the IL1, DL1, and MMU

subsystems (exactly in the same cycle), which occurs very rarely, preference must

be given to one type of requests. Higher priority is given to IL1 requests, which

therefore get queued first.

Bus The bus implements round-robin arbitration among pending requests from

the cores and the Ethernet interfaces. Once a core is granted access to the bus, it

will keep it busy until its request is fully served or until it receives a SPLIT response.

No further bus request will be accepted when the bus is busy. If the request is a

memory access and SPLIT responses are not supported, no further requests will be

accepted, even if they are UL2 accesses that could hit and be served right away. If

SPLIT responses are supported, memory requests will not keep the bus busy, and

other competing cores can issue and be served data that hits in UL2, for instance.

5.2. AVIONICS APPLICATION ANALYSIS 119

On a bus transmission, the sender sends 1 or multiple beats. Each beat is a

32-bit word that can be sent at once. If multiple beats are sent (2, 4, 8 or 16), they

are sent in a burst. AMBA specification supports 8-beat, 16-beat, and undefined

length bursts. The processor will be configured to not exceed a maximum burst

size. The particular number (4 or 8 for cache line fills, 2 for load double) is to be

defined, but it will be limited.

It is also the case that Ethernet transactions may need special treatment de-

pending on their timing characteristics. This will be known at a later stage when

applications are ported onto this platform. If special treatment is needed, it will

most likely be managed by software means. However, any decision on this will be

taken after month 18.

Shared L2 Cache (UL2) The shared UL2 cache can be partitioned on a

per-way basis, thus allocating different cache ways to each core. The UL2 cache

implements the same placement and replacement policies as the IL1 and DL1 caches.

It serves only one request at a time. On a miss it requests data to the memory

controller and waits for the answer to respond to the corresponding core through

the bus. While serving a request, the UL2 cache keeps the bus busy by introducing

“wait states” (a feature of the particular AMBA bus used).

When split transactions are enabled, “wait states” will not be issued and in-

stead the UL2 cache will answer the core with a SPLIT response, freeing the bus

until the data fetch from memory has completed. UL2 will process several requests

simultaneously: the one coming from the bus and those being served in memory.

The number of requests per core is automatically limited since a core cannot issue

a new access on the bus until the current access has completed.

The UL2 cache features both, write-through and write-back (also known as copy-

back) policies. Under write-back policy write operations update UL2 contents but

are not forwarded to memory until a dirty cache line is evicted. Under write-through

policy write operations are forwarded to memory regardless of whether the data are

in UL2.

Shared Memory Controller The memory controller only processes one re-

quest at a time. The time to process such request depends on the type of request

(read or write) and the type of the previous request (read or write). Note that

currently the memory controller can only process one request at a time. Whenever

split transactions are implemented in the bus, it will be possible to receive up to

120 CHAPTER 5. EXPERIMENTAL RESULTS

one request from each core (any core stalls until its pending request is serviced).

All the presented features have an impact on the period taken by a program

to execute. This impact can be restricted for some features by deactivating them

(as it is the case of cache architectures) or the impact can be calculated if a fully

understanding of the system is possible. Nevertheless, deactivating some of the

component of the architecture implies a loos in performance.

Randomized architectures

Since it is an FPGA architecture, the Leon3 can be modified and adapted according

to the user’s needs. Inside the PROXIMA project, the idea of fully randomizing

the hardware is proposed as a environment for the use of probabilistic analysis. We

specify that our methods do not require randomized hardware in order to

be used. Furthermore, randomization can violate the condition of reproducibility

of the measurement protocol. On the other hand, statistical analyses are the only

to study execution time behavior for randomized architectures.

This possibility of using a randomized architecture an a critical real-time sys-

tem is unlikely due to the performance loss it brings. Nevertheless, my involvement

in the PROXIMA project from both Inria and Airbus parts allowed me to per-

form probabilistic analysis on measurements obtained from randomized hardware.

Therefore, in this thesis we will present results obtained in this context.

The randomized hardware used by us is obtained by using a random replacement

protocol on the IL1, DL1, ITLB and DTLB. This is translated by the fact that

once a cache miss is encounter by one of these four components a cache line or an

ITLB entry will be randomly evicted. This approach introduces a certain level of

randomization in a program’s execution (depending on the program). A higher level

of randomization might be achieved on the Leon3 process by performing changes at

the bus level or at the UL2 level. These manipulations are out of the scope of this

thesis.

The motivation promoted for using randomized hardware in the real-time do-

main is that cache configurations that have low chances of being observed using the

normal behavior would have a higher chance to be observed with such an architec-

ture. This increases the chances of observing extreme execution times but there

is no guarantee upon observing the WCET. For the measurement approach timing

analysis observing higher execution times can be useful, but by performing proba-

5.2. AVIONICS APPLICATION ANALYSIS 121

bilistic timing analysis using EVT, a high number of extreme values can artificially

induce pessimism.

The 4080 PowerPC

The Freescale’s QorIQ P4080 is a potential candidate of the next generation pro-

cessor for future avionic applications, because Freescale is a long-term provider in

the avionic domain and it collaborates with avionics manufacturers to facilitate

their certification of systems using multicore processors. In this context, Airbus

keeps a long term relationship with Freescale about PowerPC based systems. More-

over, predecessors of the QorIQ line have been used in multiple aircraft applications.

Therefore, we selected the P4080 as the target platform to evaluate the experiments,

and we present the P4080 structure and features in this section.

Figure 5.15: P4080 Block Diagram.

The P4080 Development System is the 8-core Freescale’s QorIQ platform. It

belongs to the P4 series which is a high performance networking platform, designed

for backbone networking and enterprise level switching and routing. As shown in

Figure 5.15, the system is composed of eight e500mc PowerPC cores coupled with

122 CHAPTER 5. EXPERIMENTAL RESULTS

private L1 data+instruction caches and a private L2 unified cache. A shared mem-

ory architecture including two banks of L3 cache and two associated DDR controllers

is built around the CoreNet fabric. Additionally, several different peripherals are

implemented around the CoreNet fabric. The CoreNet fabric is a key design com-

ponent of the QorIQ P4 platform. It manages full coherency of the caches and

provides scalable on-chip, point-to-point connectivity supporting concurrent traf-

fic to and from multiple resources connected to the fabric, eliminating single-point

bottlenecks for non-competing resources. This eliminates bus contention and la-

tency issues associated with scaling shared bus/shared memory architectures that

are common in other multi-core approaches.

Execution timing of e500mc cores. The e500mc core is a pipelined, super-

scalar processor. The core has six execution units: one each for branch, one for

load/store, one for floating-point operations, one for complex integer operations,

and two for simple arithmetic operations.

The common pipeline stages are as follows:

• Instruction fetch: Includes the clock cycles required to request an instruction

and the time the memory system takes to respond to the request. Fetched

instructions are latched into the instruction queue (IQ) for consideration by

the dispatcher.

• Decode/dispatch stage: This stage fully decodes each instruction; most in-

structions are dispatched to the issue stage. In principle, the latency of this

stage is fixed for each instruction type.

• Issue stage: This stage reads source operands from rename registers and regis-

ter files and determines when instructions are latched into reservation stations

feeding execution units. The latency of this stage is fixed except for the se-

lection of the next instructions to be issued for execution, as out-of-order

execution may delay the execution of an instruction an arbitrary number of

cycles letting younger instructions to proceed.

• Execute stage: It is comprised of individual non-blocking execution units that

operate in parallel. Each execution unit has a reservation station that must

be available for an instruction issue to occur. In most cases, instructions are

issued both to the reservation station and to the execution unit simultaneously.

Most instructions have a fixed execution latency, but there are some notable

5.2. AVIONICS APPLICATION ANALYSIS 123

exceptions as load/store instructions and some arithmetic operations. Further

details are provided later.

• Complete and write-back stages: They maintain the correct architectural ma-

chine state and commit results to the architecture-defined registers in the

proper order. If completion logic detects an instruction containing an excep-

tion status or a mispredicted branch, all following instructions are canceled,

their execution results in rename registers are discarded, and the correct in-

struction stream is fetched. This stage introduces execution time variation

due to misspeculations and due to stalls whenever the oldest instruction is not

complete and no further instructions can be decoded/dispatched (backpres-

sure).

This core allows fetching four instructions per cycle, decoding/dispatching two

instructions per cycle, issuing two instructions per cycle (as long as they do not

require the same reservation station), and completing two instructions per cycle in

order.

Intra-Core Cache Memories. Each core has private first level data (DL1)

and instruction (IL1) caches memories, as well as a private second level (L2) unified

(for instructions and data) cache with these features:

• DL1 and IL1:

– 32KB, 8-way set-associative, with pseudo-LRU replacement policy.

– Cache locking is enabled. Locking can be performed on a per cache line

basis. Locking is performed by a set of touch and lock set instructions,

so it is a feature that, if used, is triggered by the software.

• DL1 only:

– Write-through policy, non-blocking stores. Blocking only occurs when

any pipeline stalls puts some backpressure that cannot be mitigated by

the load/store buffer.

– The L1 data cache supports a MESI (Modified/Exclusive/Shared/Invalid)

cache coherence protocol per cache line.

• L2:

124 CHAPTER 5. EXPERIMENTAL RESULTS

– 128KB 8-way with pseudo-LRU replacement policy.

– The L2 cache supports a MESI cache coherence protocol per cache line.

– Write-Back policy.

– Arbitrary way partitioning across instructions and data is allowed. For

example, software could configure L2 to reserve 3 ways for instructions

and 5 ways for data.

– Supports direct stashing of datapath architecture data into L2 to make

it operate as a scratchpad, which may be useful for R3.2-1.9 and R2.2-

1.7.

Those caches can be emptied by means of software instructions and implement

modulo placement.

Intra-Core TLBs. Analogously to the fact that each core has its own L1 and L2

cache memories, they also have private data (DTLB), instruction (ITLB) and second

level translation lookaside buffers (L2TLB) that serve as Memory Management Unit

(MMU).

The DTLB and ITLB are each composed of two subarrays: an 8-entry fully-

associative array for variable-sized pages, and a 64-entry 4-way set-associative array

for fixed sized pages that provide virtual to physical memory address translation for

variable-sized pages and demand-paged fixed pages respectively. These arrays are

maintained entirely by the hardware with LRU replacement.

The L2TLB contains a 64-entry, fully-associative unified (instruction and data)

array that provides support for variable-sized pages. It also contains a 512-entry,

4-way set-associative unified TLB for 4KB page size support. These second-level

L2TLB is maintained completely by the software.

Shared L3 Cache Memory. The P4080 has two L3 caches shared across all

cores. Each L3 cache is connected to one of the two memory controllers in place.

The main characteristics of the L3 caches are as follows:

• 1MB, 32-way set-associative, 64 byte/line each L3 cache, implementing pseudo-

LRU replacement.

• Each L3 cache is connected to an independent memory controller as shown in

Figure 5.15.

• L3 caches can be configured as write-back or write-through.

5.2. AVIONICS APPLICATION ANALYSIS 125

• They operate at 800MHz and can serve two full cache line reads per cycle.

Each cache way of each L3 cache can be configured in one of the following three

modes: (i) disabled, (ii) as a regular cache, and (iii) as a scratchpad. If disabled,

it has no influence in the timing of the programs being run. Otherwise, L3 caches

may affect the timing behaviour. Note that in the same caches some cache ways

can be configured as regular caches and others as scratchpads simultaneously.

Interconnection Network. The P4080 implements the CoreNet coherency

fabric (CCF) as its interconnection network to communicate cores, platform-level

caches, memory subsystems, peripheral devices, and I/O host bridges in the system.

The CCF enables the implementation of coherent, multicore systems.

The CCF includes the following distinctive features:

• Multiple in-flight transactions with:

– Concurrency of transactional progress through the system.

– Out of order completion.

• Sustainable bandwidth: four transactions/cycle.

• Low latency data path for platform cache data.

• Sustainable read bandwidth: 128 bytes per cycle.

• Power Architecture coherency semantics.

• Accelerated operation for non-coherent accesses.

• Transaction ordering support.

• Address map support.

– 32 local access windows (LAWs).

– DDR memory and SRAM interleaving support.

• 64 byte coherency granules.

• Logical partitioning support.

– Address-based, secure isolation of partitions and their resources.

– Coherency subdomain assignment and snoop limiting per LAW.

126 CHAPTER 5. EXPERIMENTAL RESULTS

– Inter-partition sharing of address ranges.

• Support for stashing.

Details about the timing of the CCF are scarce. It is unclear what happens when

the number of transactions arriving simultaneously exceeds the bandwidth of the

CCF. However, based on the characteristics above, it is clear that its timing behavior

can easily resemble that of a full crossbar given the high bandwidth. Furthermore,

it may be the case that bandwidth can be exceeded only sporadically during very

short time periods due to the high bandwidth and the limited amount of traffic that

the different components connected can generate. This is particularly true because

any request traversing the CCF may likely take longer to get an answer due to

the high latency of the components attached. Thus, the amount of interference that

could eventually occur in this component is limited and its impact in execution time

is largely below that of the latency of those components processing those requests.

As for L3 caches, partitions must be defined by the software layers.

PAMU and MMU. MMU is the hardware mechanism that controls all the

address-based accesses initiated by the cores. PAMU is a similar mechanism that

controls all address-based accesses initiated by the DMA-capable peripherals.

On a core-initiated transaction, the program’s Execution Address is extended

with context IDs to make the virtual address. Through the MMU, the virtual

address is verified and translated into the real address, which is the 36-bit local

physical address. In case of a cache miss or non-cacheable access, the real address

is directed to CoreNet and searched through the Local Access Window (LAW)

registers.

The local address map is defined by a set of 32 LAWs. Each of these windows

maps a programmable region of the local address space to a specified target interface,

which is either a local memory interface (DDR, eLBC, internal SRAM) or a system

interface (PCIe, SRIO). This allows the internal interconnections of the device to

route a transaction from its source to the proper target. The LAW registers perform

no address translation.

In terms of timing the PAMU itself has little effect. What really can affect

timing are those devices attached to the PAMU. Most of them may get blocked

on an access. However, the PAMU provides means to support partitions so that

activity from different partitions can be segregated and prioritized.

Memory Controller. There are two Memory DDR SDRAM controllers which

5.2. AVIONICS APPLICATION ANALYSIS 127

control processor and I/O interactions with system memory. The controller allows as

many as 32 pages to be opened simultaneously. The amount of time (in clock cycles)

the pages remain open is programmable with specific registers. Partitioning can be

implemented only to some extent according to the documentation. In principle it is

only doable segregating activity across different memory controllers. For instance,

one may divide the system into several partitions and allow only one of them to use

a particular memory controller, thus removing interferences from other partitions.

As in the other components, partitions must be defined by the software layers.

Even though it is more performant than the Leon3, the P4080 platform inflicts

a higher variability in he execution time structure. This is a disadvantage for static

analysis but is helpful for our method because it allows us to better estimate the

behavior f the system under analysis. We are using this platform without disabling

any of the features described previous. This allows us to fully benefit from the

performance of the hardware and to get as close as possible to the configuration in

which this hardware would be used by the avionics industry.

5.2.3 Timing analysis results

The applications selected for the case study rely on the IMA concept. For these spe-

cific applications, the execution is separated in 16 isolated branches, which generate

as many Unit of Analysis (UoA). These 16 branches (UoA1, UoA2, · · · ,UoA16)

contain sequential code automatically generated by the SCADE environment. The

application is executed 1000 times in order to produce the equivalent number of

execution times per UoA.

For each application, an input meant to produce the worst-case scenario is used.

A team of applications specialists inside Airbus was the responsible of producing

this input. The use of an unique input vector allows us to concentrate on the time

variability produced by the architecture.

PPPPPPPPPPP
App.

Platform
Leon3-N Leobn3-R P4080

WBBC X X X

FCDC x X X

Table 5.2: Summary of results for avionics case study.

128 CHAPTER 5. EXPERIMENTAL RESULTS

The obtained results are split in three categories according to the used hardware

architecture: Leon3 Normal (Leon3-N), Leon3 (Leon3-R) Randomized and P4080.

The experiments done in the avionics case study are summarized in the Table

5.2. We mention that the applications are executed in isolation on one core of the

hardware and the measurements are done in processor cycles. We consider that

the methods proposed by us can apply to execution times obtained for application

running in a multi-core context, under the condition that the contenders used for

testing are the exact ones used at run-time. Any change in the system composition,

including the applications executing on the other cores, will invalidate existing anal-

ysis. Due to low variability, we were not able to successfully compute a pWCET

estimation for the execution times collected for the FCDC application on Leon3 in

normal mode.

Figure 5.16: Execution time for WBBC on Leon3 in normal mode.

WBBC on Leon3-N

Figure 5.16 shows the statistics of execution times for WBBC on the FPGA plat-

form. We observe small variations coming from an unknown or non-handled sources

of jitter. The standard deviation that describes this variations is presented in Fig-

ure 5.17. Low variability makes fitting on an EVT distribution harder to achieve,

but not impossible. UoA1 represents the path of WBBC application that has the

5.2. AVIONICS APPLICATION ANALYSIS 129

highest chance of producing the WCET. Due to lack of space, we mostly present in

thesis results and graphics from the analysis of this code. The analysis results for

the other 15 UoAs is summarized and presented in the form of graphics and tables.

Figure 5.17: Standard deviation of the execution time obtained for the WBBC

application on Leon3 in normal mode.

Table 5.3 shows the events monitored by the performance counters (PMCs) on

the Leon3 for each UoA. Since the system is executed in COTS mode under similar

conditions (i.e., inputs, executable), as expected, the PMCs do not change from

one run to another. The PMCs measured are: instruction cache miss (icmiss), data

cache miss (dcmiss), number of stores and the amount of FPU operations. The

results show that the variability in execution times for this scenario must be from

other unidentified reasons (possibly memory refreshes).

130 CHAPTER 5. EXPERIMENTAL RESULTS

icmiss dcmiss store fpu

UoA1 683 729 7466 0

UoA2 168 61 576 19

UoA3 749 211 3443 248

UoA4 402 134 1968 93

UoA5 334 124 2300 32

UoA6 412 139 1432 55

UoA7 186 61 791 0

UoA8 886 182 2039 237

UoA9 354 94 1020 74

UoA10 427 106 1049 98

UoA11 304 102 1218 10

UoA12 588 210 1956 308

UoA13 359 147 1311 208

UoA14 192 66 935 0

UoA15 90 27 276 0

UoA16 400 194 3872 0

Table 5.3: PMC readings for WBBC on Leon3-N.

From statistical point of view, we examined each trace in order to verify if

identical distributed and independence test pass. The results are presented in Table

5.4. We notice that a majority of the cycles are passing both tests despite low

variability. Since all the execution times per UoA are obtained in the same manner,

it is expected that the identically distributed test passes. For some of the code the

independence test does not pass. This result is obtained due to low variability. In

this case the measurements is composed of very few values out of which one or two

are predominant, making the test of identically distributed to perceive this data

as a unique value and therefore dependent. For these cases, we use the procedure

presented in section 4.4 to compute the pWCET curve.

5.2. AVIONICS APPLICATION ANALYSIS 131

i.d. ind.

UoA1 X X

UoA2 X X

UoA3 X X

UoA4 X X

UoA5 X X

UoA6 X X

UoA7 X X

UoA8 X X

UoA9 X X

UoA10 X X

UoA11 X x

UoA12 X X

UoA13 X x

UoA14 X X

UoA15 X x

UoA16 X X

Table 5.4: Identically distributed (i.d.) and independence tests results.

Figure 5.18: Graphical description of the UoA1 execution times obtained on the

Leon3-N platform. On the left: histogram of the data. On the right: lag test result.

132 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.19: pWCET estimation for UoA1 of WBBC application executing on the

Leon3 processor in normal mode.

A graphical description of the UoA1 containing the histogram and the Lag test

can be seen in Figure 5.18. The pWCET estimation using our method can be seen

in Figure 5.19. We depicted both GEV and GP estimations to exemplify the fact

that they produce the same pWCET curve. The estimations at probability lower

than 10−2 are the same. A summary of the estimation for all 16 UoA can be seen

in Table 5.5. We notice a safety margin between 0.1% and 0.15% compared to the

maximum observed execution time (MOET).

5.2. AVIONICS APPLICATION ANALYSIS 133

MOET P10e-12 eval

UoA1 210770 210910 0,07%

UoA2 24672 24689 0,07%

UoA3 143144 143870 0,51%

UoA4 75883 76293 0,54%

UoA5 69306 69365 0,09%

UoA6 73353 73392 0,05%

UoA7 28427 28449 0,08%

UoA8 145427 145500 0,05%

UoA9 57202 57234 0,06%

UoA10 70517 70624 0,15%

UoA11 51652 51668 0,03%

UoA12 108698 108811 0,10%

UoA13 65606 65613 0,01%

UoA14 32105 32299 0,60%

UoA15 7348 7355 0,09%

UoA16 100626 100706 0,08%

Table 5.5: pWCET estimations for WBBC execution on Leon3 in normal mode.

WBBC on Leon3-R

For this section, the experiments were done by running the WBBC application in

isolation on one of the cores of the randomized Leon3 processor. The randomization

technique is proposed in the PROXIMA project [Quinones et al., 2009]. We present

these results in order to show the impact of such a platform on the execution time

behavior.

The execution times statistics are shown in Figure 5.20. We notice an increase

in both average and maximum values of the observations. This can be better seen in

Figure 5.21 where a slowdown factor of execution times obtained on the randomized

platform are presented. We notice that the maximum execution times tend to

increase by about 8-12% (and a bit less for the average values).

134 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.20: Execution time for WBBC on Leon3 in randomized mode.

Figure 5.21: Comparing avg and max for WBBC, LEON3 in normal mode and in

randomized mode.

5.2. AVIONICS APPLICATION ANALYSIS 135

Figure 5.22: Standard deviation of the execution time obtained for the WBBC

application on Leon3 in randomized mode (compared with normal mode).

The effect of randomization upon the variability of obtained execution times can

be seen in Figure 5.22. Compared with the execution times obtained on Leon3 in

normal mode, the standard deviation for the randomized mode is highly superior.

The performance monitoring counters reveal an increase in the number of misses

on both instruction and data caches. The complete measurements can be found in

Table 5.6.

For this case study, all the tests are passing which means that EVT for inde-

pendent data can be applied on each UoA. However, because of the randomization

factor, the experiments cannot be reproduced identically, and the collected measure-

ments differ from one experiment to another. In some cases, different measurements

produce different statistical tests results.

In order to present an example of execution time distribution corresponding to

these measurements and to their probabilistic estimation we will concentrate on

UoA1 of the WBBC application. This UoA was chosen because it contains the

highest execution time observed for the application.

136 CHAPTER 5. EXPERIMENTAL RESULTS

icmiss dcmiss store fpu

UoA1 687-712 736-764 7466 0

UoA2 165-182 61-65 576 19

UoA3 797-850 211-226 3443 248

UoA4 418-453 134-144 1968 93

UoA5 342-387 124-132 2300 32

UoA6 418-443 139-147 1432 55

UoA7 188-200 61-65 791 0

UoA8 893-923 182-199 2039 237

UoA9 360-377 94-103 1020 74

UoA10 432-453 106-115 1049 98

UoA11 303-320 102-111 1218 10

UoA12 591-612 210-225 1956 308

UoA13 365-386 147-155 1311 208

UoA14 188-200 66-70 935 0

UoA15 87-95 27-28 276 0

UoA16 405-430 194-203 3872 0

Table 5.6: PMC readings for WBBC on Leon3-R.

Figure 5.23: Graphical description of the UoA1 execution times obtained on the

Leon3-R platform. On the left: histogram of the data. On the right: lag test result.

5.2. AVIONICS APPLICATION ANALYSIS 137

Figure 5.24: pWCET estimation for UoA1 of WBBC application executing on the

Leon3 processor in randomized mode.

Figure 5.23 shows the histogram of execution times obtained for the WBBC

application on the hardware randomized architecture and the lag test result (no

particular pattern is observed, in concordance with the independence tests).

Figure 5.24 shows the pWCET curve for UoA1 of WBBC, the blue line corre-

sponds to the empirical distribution of observed execution times and the red and

black distributions represent pWCET estimations for the given sample.

The full summary of the probabilistic analysis can be found in Table 5.7 and

Figure 5.25. They present the values observed for threshold probabilities in report

with the maximum observed execution time. In line with the pWCET graphically

illustrated in Figure 5.24, these results show that the pWCET prediction tightly

upper-bound the actual observations.

138 CHAPTER 5. EXPERIMENTAL RESULTS

MOET P10e-3 P10e-6 P10e-9 P10e-12

UoA1 225084 225920 227305 228690 229798

UoA2 27692 28559 30970 33381 35828

UoA3 160798 161545 165794 170043 174494

UoA4 84445 85639 87676 89606 91643

UoA5 78007 79256 82540 85824 89109

UoA6 80111 80297 82630 84962 87397

UoA7 31851 32261 33905 35508 37152

UoA8 153839 154392 157051 159520 162179

UoA9 61439 61865 63016 64244 65395

UoA10 75866 76547 77871 79196 80520

UoA11 55973 56290 56850 57340 57900

UoA12 114164 116225 119177 122130 125083

UoA13 71487 72245 73677 75199 76631

UoA14 34982 35200 36261 37323 38385

UoA15 8484 8559 9177 9795 10413

UoA16 108423 109380 110593 111806 113155

Table 5.7: pWCET estimations of WBBC executing on Leon3 in randomized mode.

WBBC on P4080

We present the results obtained for this platform independently. The comparison

with the Leon3 processor is inappropriate due to the difference in performance

between the two platforms. The P4080 processor performs the Leon3 under the

same conditions of execution but has a higher variability producing a larger number

of different observations.

Figure 5.26 shows the statistics of execution times for WBBC on the P4080. We

observe larger variations between min-max durations than for the Leon3. This was

expected given the greater complexity of the processor.

5.2. AVIONICS APPLICATION ANALYSIS 139

Figure 5.25: pWCET probabilities of exceedance for WBBC, LEON3 with HW

Randomization.

Figure 5.26: Execution time for WBBC on the P4080 hardware.

140 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.27: Standard deviation of the execution time obtained for the WBBC

application on P4080 platform.

The variability in execution time can also be observed in Figure 5.27 where

we present the standard deviation of each set of measured execution times. This

difference varies from one cycle to another due to their code sizes. We decided to

present the variability for each platform by itself because the results on P4080 are

in a different range than those on Leon3. The observed variability is similar to that

observed for the FPGA. The variability follows mostly the execution time.

The PMCs obtained on the P4080 show variability for the L1 caches misses and

L2 cache hits. Results can be seen in Table 5.8. The amount of hit/miss in the

L1 and L2 caches are different than expected. There are very low values in the L1

Data cache miss difficult to explain. This kind of behavior might be common for

COTS hardware that lack documentation or are too complex to be fully understood.

We consider these values as part of the behavior of the platform. The probabilistic

analysis includes the effects of these uncertainties by analyzing the system as a

whole.

5.2. AVIONICS APPLICATION ANALYSIS 141

L1 I miss L1 D miss L2 hit

UoA1 277-292 252-257 2430-2534

UoA2 55-64 8 278-335

UoA3 338-354 67-69 1641-1767

UoA4 169-183 36 899-1031

UoA5 141-156 33-34 886-1029

UoA6 174-189 19-21 710-871

UoA7 71-82 4 338-439

UoA8 399-411 31-32 1351-1537

UoA9 157-167 12 595-727

UoA10 215-226 14-16 657-779

UoA11 124-134 42684 510-712

UoA12 262-275 47-48 961-1097

UoA13 152-162 34-35 589-705

UoA14 79-89 6 428-508

UoA15 17-26 42430 93-157

UoA16 151-165 41-45 768-1214

Table 5.8: PMC readings for WBBC on Leon3-R.

From statistical point of view, we examined each trace in order to verify if iden-

tical distributed and independence test pass. We observe that the results obtained

on the P4080 platform have a higher tendency to pass the statistical tests and this

is caused by the higher variability in execution which can be observed in the PMCs.

The statistical test results can be seen in Table 5.9. The UoA15 is the only one that

does not pass the identically distributed test due to its low variability. For the rest

of the UoA we are able to apply our method, including for dependent data.

As decided prior, we present graphical results only from the UoA1, and a table

containing the pWCET at 10−12 for all UoAs. Therefore, Figure 5.28 describes the

measurement sample obtained after executing the WBBC execution on the P4080

platform. The histogram seems to indicate a normal behavior of the execution times

which indicates a randomness in the data. This is confirmed by the Lag test (on

the right of the figure). Also, we can observe the existence of a higher number of

extreme values than for the previous data analyzed.

142 CHAPTER 5. EXPERIMENTAL RESULTS

i.d. ind.

UoA1 X X

UoA2 X x

UoA3 X X

UoA4 X X

UoA5 X X

UoA6 X X

UoA7 X X

UoA8 X X

UoA9 X X

UoA10 X X

UoA11 X X

UoA12 X X

UoA13 X X

UoA14 X X

UoA15 x x

UoA16 X X

Table 5.9: Identically distributed (i.d.) and independence tests results.

Figure 5.28: Graphical description of the UoA1 execution times obtained on the

P4080 platform. On the left: histogram of the data. On the right: lag test result.

5.2. AVIONICS APPLICATION ANALYSIS 143

Figure 5.29: pWCET estimation for UoA1 of WBBC application executing on the

P4080 platform.

In Figure 5.29, the estimated pWCET curve for UoA1 of the WBBC application

can be seen. The blue line corresponds to the empirical distribution of observed

execution times and the red and black distributions represent pWCET estimations

for the given sample. The two curves coincide respecting the validation principle

proposed in section 4.3.

The full summary of the probabilistic analysis can be found in Table 5.10 and

Figure 5.30. They present the values observed for threshold probabilities in report

with the maximum observed execution time. In line with the pWCET graphically

illustrated in Figure 5.29, these results show that the pWCET prediction tightly

upper-bound the actual observations. For certain UoAs, the MOET is higher than

144 CHAPTER 5. EXPERIMENTAL RESULTS

the estimation at 10−3 or 10−6 (e.g. UoA8). We consider that this occurs because

a rare measurement has been observed in the first 1000 measurements. Its appear-

ance does not influence our analysis which relies on multiple extreme events for the

estimation.

MOET P10e-3 P10e-6 P10e-9 P10e-12

UoA1 66894 66591 68289 69986 71684

UoA2 5771 5840 6401 6962 7514

UoA3 40704 40273 41802 43278 44808

UoA4 19497 19629 20472 21290 22132

UoA5 19237 19805 20743 21683 22622

UoA6 17785 18016 18999 19982 20965

UoA7 7186 7452 7983 8512 9043

UoA8 41127 38682 40191 41756 43321

UoA9 15489 15752 16932 18113 19293

UoA10 19739 20249 21363 22479 23594

UoA11 12810 13123 13591 14058 14525

UoA12 33646 33762 35161 36561 37960

UoA13 19490 21058 23056 25054 27053

UoA14 7798 7997 8411 8825 9240

UoA15 1653 0 0 0 0

UoA16 26135 26755 27784 28846 29874

Table 5.10: pWCET estimations for WBBC execution on the P4080 processor.

5.2. AVIONICS APPLICATION ANALYSIS 145

Figure 5.30: pWCET probabilities of exceedance for WBBC executing on the P4080

platform.

FCDC on Leon3-N

In this subsection, we present the results obtained with the Leon3 platform executing

in normal mode. The sets of experiments have been carried out for the avionics

FCDC application in isolation.

Figure 5.31 shows the statistics of execution times for WBBC on the FPGA

platform. We observe small variations coming from an unknown or non-handled

sources of jitter. The standard deviation that describes this variations is presented

in Figure 5.32. Low variability makes fitting on an EVT distribution harder to

achieve. In the case of FCDC application the variability is very small compared to

the average of the samples and as a consequence most of the UoAs are not passing

the i.i.d. tests. Even more, for those samples that pass the test fitting is hard to

achieve. This is the reason we do not present any probabilistic analysis results for

this section.

146 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.31: Execution time for FCDC on Leon3 in normal mode.

Figure 5.32: Standard deviation of the execution time obtained for the FCDC ap-

plication on Leon3 in normal mode.

5.2. AVIONICS APPLICATION ANALYSIS 147

icmiss dcmiss store fpu

UoA1 27693-27694 7598 120171 195

UoA2 40218-40219 12058 158246 787

UoA3 20515-20516 8323 113431 339

UoA4 19401-19402 7528 134277 204

UoA5 15640-15641 6441 103748 189

UoA6 19132-19133 7655 132124 213

UoA7 15479-15480 6457 102908 201

UoA8 24244-24245 11489 194139 204

UoA9 27527-27528 7588 120045 189

UoA10 39888-39889 12066 156820 787

UoA11 20390-20391 8326 113388 339

UoA12 19483-19484 7520 134231 204

UoA13 15657-15658 6436 103749 189

UoA14 19224-19225 7646 132138 213

UoA15 15496-15497 6452 102912 201

UoA16 24340-24341 11480 194236 204

Table 5.11: PMC readings for FCDC on Leon3-N.

Table 5.11 shows the events monitored by the performance counters on the

FPGA for each UoA. This is one of the reason we encounter small variability in this

case study. Since the system is executed in normal mode, under similar conditions

(i.e., inputs, executable), most of the PMCs do not change from one run to another.

The results show that the variability in execution times for this scenario must be

from other unidentified reasons.

Table 5.12 presents the i.i.d. results and also the variability reported to the

average mean of the sample used (standard deviation devised by mean value). The

variability column might explain the low rate of success of the i.i.d. tests.

148 CHAPTER 5. EXPERIMENTAL RESULTS

i.d. ind. variability

UoA1 x x 9,06E-05

UoA2 X X 7,77E-05

UoA3 x x 1,11E-04

UoA4 x x 1,15E-04

UoA5 x x 1,24E-04

UoA6 x x 1,15E-04

UoA7 x x 1,32E-04

UoA8 x x 9,92E-05

UoA9 x x 8,94E-05

UoA10 x x 7,83E-05

UoA11 x x 1,05E-04

UoA12 X X 1,19E-04

UoA13 X X 1,32E-04

UoA14 x x 1,16E-04

UoA15 X X 1,37E-04

UoA16 X X 9,73E-05

Table 5.12: Identically distributed (i.d.) and independence tests results for the

FCDC application running on the Leon3 processor in normal configuration.

FCDC on Leon3-R

For this particular application, hardware randomization has a high impact on the

variability of the execution times. Even though the application under analysis and

the input vector used is the same, the hardware configuration changed. Therefore

we cannot state that randomization helps in the use of measurement based proba-

bilistic timing analysis. We deal here with a total different system and the pWCET

estimation obtained in this section cannot be guaranteed for the same application

running on the Leon3 processor in normal mode. Therefore, we restrict ourselves

from comparing any distribution or measurement from the previous section and this

one. Nevertheless, we compare the performance result of the different configuration

as an motivation for this decision.

For this section, the experiments were done by running the FCDC application in

5.2. AVIONICS APPLICATION ANALYSIS 149

isolation on one of the cores of the randomized Leon3 processor. The randomization

technique is proposed in the PROXIMA project. We present these results in order

to show the impact of such a platform on the execution time behavior.

The execution times statistics are shown in Figure 5.33. We notice an increase

in great both average and maximum values of the observations. This can be better

seen in Figure 5.34. In other words, the randomized cache is from 3 to 4.5 slower

than the use of the processor in its normal configuration.

The effect of randomization upon the variability of obtained execution times

can be seen in Figure 5.35. Compared with the standard deviation of the execution

times obtained on Leon3 in normal mode, the standard deviation for the randomized

mode is highly superior.

Figure 5.33: Execution time for FCDC on Leon3 in randomized mode.

150 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.34: Comparing avg and max for FCDC, LEON3 in normal mode and in

randomized mode.

Figure 5.35: Standard deviation of the execution time obtained for the FCDC ap-

plication on Leon3 in randomized mode (compared with normal mode).

5.2. AVIONICS APPLICATION ANALYSIS 151

An explication for this variability comes from the number of cache miss per-

formed by the application during its execution. The performance monitoring coun-

ters reveal an increase in the number of misses on both instruction and data caches.

The complete measurements can be found in Table 5.13.

icmiss dcmiss store fpu

UoA1 28373-28595 7857-7987 120171 195

UoA2 41566-41859 12483-12668 158246 787

UoA3 21231-21466 8591-8731 113431 339

UoA4 20255-20516 7734-7864 134277 204

UoA5 16238-16428 6608-6714 103748 189

UoA6 19999-20237 7847-7980 132124 213

UoA7 16073-16290 6613-6739 102908 201

UoA8 25547-25883 11771-11906 194139 204

UoA9 28214-28426 7854-7984 120045 189

UoA10 41211-41527 12483-12635 156820 787

UoA11 21098-21348 8597-8739 113388 339

UoA12 20333-20592 7727-7839 134231 204

UoA13 16257-16464 6608-6718 103749 189

UoA14 20085-20332 7851-7990 132138 213

UoA15 16096-16301 6617-6718 102912 201

UoA16 25639-25966 11767-11880 194236 204

Table 5.13: PMC readings for FCDC on Leon3-R.

For this case all the tests are passing which means that EVT for independent

data can be applied on each UoA. However, because of the randomization factor, the

experiments cannot be reproduced identically, and the collected measurements differ

from one experiment to another. In some cases, different measurements produce

different statistical tests results.

In order to present an example of execution times distribution corresponding to

these and to their probabilistic estimation, we concentrate on UoA16 of the FCDC

application. This UoA is chosen because it contains the highest execution time

observed for the application.

152 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.36: Graphical description of the UoA16 execution times obtained on the

Leon3-R platform. On the left: histogram of the data. On the right: lag test result.

Figure 5.37: pWCET estimation for UoA16 of FCDC application executing on the

Leon3 processor in randomized mode.

Figure 5.36 shows the histogram of execution times obtained for the FCDC

5.2. AVIONICS APPLICATION ANALYSIS 153

application on the hardware randomized architecture and the lag test result (no

particular pattern is observed , in concordance with the independence tests).

Figure 5.37 shows the pWCET curve for UoA1 of FCDC, the blue line corre-

sponds to the empirical distribution of observed execution times and the red and

black distributions represent pWCET estimations for the given sample.

The full summary of the probabilistic analysis can be found in Table 5.14 and

Figure 5.38. They present the values observed for threshold probabilities in report

with the maximum observed execution time. In line with the pWCET graphically

illustrated in Figure 5.37, these results show that the pWCET prediction tightly

upper-bound the actual observations, with a margin at probability 10−12 ranging

from 0,17% to 4% more than the maximum observed execution time.

MOET P10e-3 P10e-6 P10e-9 P10e-12

UoA1 19429761 19437805 19445848 19453892 19461935

UoA2 26369775 26512541 26655306 26798072 26940837

UoA3 17545826 17724161 17902497 18080832 18259168

UoA4 19262409 19318539 19374670 19430800 19486930

UoA5 15152684 15234720 15316757 15398793 15480830

UoA6 19016224 19190488 19364753 19539017 19713281

UoA7 15036100 15099838 15163576 15227313 15291051

UoA8 27134968 27173336 27211705 27250073 27288442

UoA9 19401119 19423702 19446284 19468867 19491449

UoA10 26190654 26266973 26343292 26419611 26495931

UoA11 17536373 17675156 17813938 17952721 18091503

UoA12 19271312 19282181 19293049 19303918 19314787

UoA13 15160959 15292313 15423668 15555022 15686376

UoA14 19020000 19035482 19050964 19066446 19081928

UoA15 15050219 15173089 15295958 15418828 15541698

UoA16 27146625 27157863 27169102 27180340 27191578

Table 5.14: pWCET estimations ofr FCDC executin on Leon3 in normal mode.

154 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.38: pWCET probabilities of exceedance for FCDC, LEON3 with HW Ran-

domization.

FCDC on P4080

In this section, we present the same set of results obtained by executing the FCDC

application on the P4080 platform running in COTS mode.

Figure 5.39 shows the execution time statistics. We observe less relative vari-

ability than for the WBBC. This suggests the variability sources are local and have

no impact on long term. And on long term, every scenario tends to be comparable.

Due to the small variability some of the UoAs do not pass the independence test

but all of them are identically distributed which allow us to apply our methods for

timing analysis. An example of how the measured execution times of the UoA are

spread can be seen in Figure 5.40. On the left is the histogram of the data while on

the right we plotted the data in the order of observation.

It can be observed that data obtained on this platform tend to be grouped on

different levels. For this scenario, we use the method presented in section 4.5 that

deals with data that has small variability.

5.2. AVIONICS APPLICATION ANALYSIS 155

Figure 5.39: Execution time for FCDC on the P4080 platform.

Figure 5.40: Graphical description of the UoA1 execution times obtained on the

Leon3-R platform. On the left: histogram of the data. On the right: plot of the

data.

156 CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.41: pWCET estimation for UoA1 of FCDC application executing on the

P4080 platform.

In Figure 5.41 we present an example of pWCET curve obtained for the UoA1.

5.3 Conclusions

In this chapter we presented the experimental results obtained during this thesis.

The data used is collected from an avionics application and executed on a series of

hardware configurations in order to observe multiple behaviors. In this context, we

used probabilistic analysis to obtain a mathematically motivated upper bounds on

the worst case execution times of the samples observed. Our methods are adapt-

able to different behaviors: independent data, dependent data and data with small

variability.

Chapter 6

General conclusions

Motivated by the continuous evolution of technology and by economical decisions,

the avionics industry is being forced to consider the use of COTS hardware as a

viable solution for future airplanes. Such a solution promotes performance with the

cost of predictability. Due to strict certifications constraints, every component of an

aircraft has to pass a series of tests during the verification and validation procedure.

Bounding the worst case execution time of a program on a given platform is an

important component of the certification process. In this context, timing analysis

that relies on statistics and probability theory is seen as an option for determining

WCET bounds.

6.1 Contributions

In this thesis we proposed and presented a series of probabilistic methods that can

be used to determine a WCET bound for different real-time systems. We also

presented the context in which these methods are used and the conditions that a

system have to satisfy such that the WCET bound obtained is reliable.

Our contributions presented in this thesis are threefold:

1 Conditions for use of EVT in the real-time domain. For this contribu-

tion we give a detailed description of the different definitions for the notion

of ”independence”, separating program independence from probabilistic and

static independence. We also define three necessary conditions for the relia-

bility of a probabilistic timing analysis: reproducibility and representativity

of measurement protocol and reproducibility of the estimation method.

157

158 CHAPTER 6. GENERAL CONCLUSIONS

2 Estimation methodology for pWCET. In this part of the thesis, we adapt

the existing Extreme Values Theory in order to be used for data composed

of execution time measurements. Therefore, we present a methodology for

choosing the block size for the block maxima method and the threshold value

for the peak over threshold method in order to obtain a precise model estima-

tion of the system under analysis. We present a validation method based on

comparing the result obtained from the two different EVT distributions, GEV

and GP. In the case of data containing dependences, we propose a declustering

procedure in order to allow the pWCET estimation using GP distribution. We

also present a method of probabilistic timing analysis based on EVT that can

be used when the data has a small variability.

3 Experimental results. Finally, we test the proposed methods on a series of

systems having as a common component the use of a real avionics applica-

tion. Therefore, we presented the analysis results obtained for the application

WBBC and FCDC running on different platforms. This allows us to observe

different systems and to conclude on the adaptability of our methods on com-

plex hardware like the P4080 PowerPC from Freescale. The presented results

are a reflection of the measurements and analysis performed during this thesis

and they were selected to demonstrate the use of the proposed probabilistic

methods.

We agree that the use of probabilities can induce a certain level on uncertainty

in the analysis results. Nevertheless, we consider that this is an affordable cost to

be payed in report with the pessimism that static analysis can inflict on systems

containing complex hardware (e.g. multi-core and manycore) or the budget needed

to fully model such systems for static analysis.

6.2 Future work

The use of probabilities in the real-time domain is a new and developing approach,

and the presented thesis is only a direction that these methodologies can take.

Future work, based on related to the proposed methods, can be considered, and we

have identified the following important problems:

• The use of presented methods to model the timing behavior of software running

on multi-core hardware with one or multiple contenders.

6.2. FUTURE WORK 159

• Use of probabilities to model contenders behavior in order to create a complex

model of all contenders and to apply the result on the analyzed program.

• Applying Bayesian inferences in order to obtain a general system starting from

measurements of multiple system configurations.

• Adapting existing methods for multiple path programs.

• The use of similar methods for the components of a real-time systems, like

predicting the maximum number of cache miss in a system.

• Develop an analysis tool that fully eliminates human intervention in the de-

cision of model choosing. This could be achieved with the development and

use of more precise goodness of fit tests when deciding on the block size and

threshold used.

We consider the use of probability theory in the real-time-domain as a promising

solution that can work in harmony with existing, deterministic, solutions. And, as

a consequence, we think that industries that have to perform timing analysis can

rely on methods like the one proposed in this thesis as a verification solution for the

ones they are using currently.

Appendix A

Statistical tests

A.1 Run test

The run test is a non-parametric test for the hypothesis that a set of numbers is

independent. A run test is defined as a succession of similar values proceeded and

followed by a different value (e.g., values that are either all above or below the mean

or the median). To simplify computations, the data are first centered about their

mean and the total number of runs is computed along with the number of positive

and negative values. A positive run is then a sequence of values greater than zero,

and a negative run is a sequence of values less than zero. We may then test if the

number of positive and negative runs are distributed equally.

The statistical test hypotheses of the run test are:

H0: Data are randomly distributed against

H1: Data are not randomly distributed.

The associated statistical test is described by the Equation (A.1)

Z =
R− E(R)√

V (R)
(A.1)

where R is the observed number of runs, E(R) the expected number of runs

and
√
V (R) the standard deviation of the number of runs. The values of E(R) and

V (R) are computed as follows:

E(R) = 2nm
n+m + 1

V (R) = 2nm(2nm−n−m)
(n+m)2(n+m−1)

(A.2)

161

162 APPENDIX A. STATISTICAL TESTS

where n is the number of positive values and m the number of negative values in

the sample.

During the tests applied to the data used in our paper we have used a significance

level of α = 0.05. This value is commonly accepted as sufficiently pessimistic and

from our previous experience no example contradicting this hypothesis has been

found. One may consider also the critical region of the runs test which rejects

the null hypothesis if |Z| > Z1−α/2. As the computed p-value (the probability of

obtaining the same value of the test or a larger one, if H0 is true) is lower than

the significance level α one should reject the null hypothesis H0, and accept the

alternative hypothesis H1.

A.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov (KS) test [Chakravarti and Laha, 1967] is based on the

empirical distribution function (ECDF). GivenN ordered data pointsX1, X2, .., XN ,

the ECDF is defined as EN = n(i)/N where n(i) is the number of points less than

Xi and the Xiare ordered from smallest to largest value. This is a step function that

increases by 1/N at the value of each ordered data point. The two sample KS test is

a variation of this and instead of comparing an empirical distribution function to a

theoretical distribution function, we compare two empirical distribution functions,

as it follows : D = |E1(i) − E2(i)| where E1 and E2 are the empirical distribution

functions for the two samples. The hypotheses of the KS tests are

H0: The two samples come from the same distribution,

H1: The two samples do not come from the same distribution.

The KS two sample test statistic is defined as D = |E1(i)−E2(i)|. The significance

level is α, chosen in advance (usually 0.05). The hypothesis regarding the distri-

butional form is rejected if the test’s statistic, D, is greater than the critical value

obtained from a table. We can diminish the risk of rejecting the true hypothesis

and in our case we better reject H0 when H0 is true than keeping H0 when H1 is

true. If the other risk is more important, then we should change the order of the

hypothesis.

A.3. ANDERSON-DARLING TEST 163

A.3 Anderson-Darling Test

The Anderson-Darling test [Stephens, 1974] is used to test if a sample of data

came from a population with a specific distribution. It is a modification of the

Kolmogorov-Smirnov (KS) test and gives more weight to the tails than does the KS

test. The KS test is distribution free in the sense that the critical values do not

depend on the specific distribution being tested (note that this is true only for a

fully specified distribution, i.e. the parameters are known). The Anderson-Darling

test makes use of the specific distribution in calculating critical values. This has the

advantage of allowing a more sensitive test and the disadvantage that critical values

must be calculated for each distribution. Currently, tables of critical values are

available for the normal, uniform, lognormal, exponential, Weibull, extreme value

type I, generalized Pareto, and logistic distributions.

The Anderson-Darling test is defined as:

H0: The data follow a specified distribution,

Ha: The data do not follow the specified distribution.

Test Statistic: The Anderson-Darling test statistic is defined as

A2 = −N − S,

where

S =
∑N

i=1
(2i−1)
N [lnF (Yi) + ln(1− F (YN+1−i))]

F is the cumulative distribution function of the specified distribution. Note that

the Yi are the ordered data.

List of Figures

1.1 Cyber-physical systems - a Concept Map. Image made by Edward

A. Lee after a taxonomy given by S. Shyam Sunder [Lee, Edward

Ashford, 2012]. 3

1.2 Cost functions of real-time systems. 5

1.3 Basic notions related to timing analysis. The lower curve represents

a subset of measured executions. Its minimum and maximum are the

minimal observed execution times and maximal observed execution

times. The darker curve, an envelope of the former, represents the

times of all executions. Its minimum and maximum are the best case

and worst case execution times, abbreviated BCET and WCET. . . 8

1.4 Evolution of code size in space, avionic and automotive embedded

systems. 16

1.5 Possible execution time in the context of WCET bounds. 19

1.6 Possible relations between the CDFs of various random variables. . . 25

1.7 Possible relations between the CCDFs of various random variables. . 26

2.1 Distribution of execution times. 32

2.2 Space of interest of the central theorem compared to the extreme

value theorem. 39

2.3 Example of transition from federated architecture to Integrated Mod-

ular Avionics. 53

3.1 The structure of an analyzable system. 60

3.2 Representation of dependences using the lag test. On the left figure

we have independent data and on the right figure dependent data. . 69

165

166 LIST OF FIGURES

3.3 The protocol of a (p)WCET estimation from different scenarios of

execution conditions. 70

3.4 The WCET estimation is the same for different utilizations i, j of

a reproducible WCET estimation method from the exactly same or-

dered set of execution times. 71

3.5 Different utilizations of a reproducible measurement protocol pro-

vides WCET estimates that are equal (or sufficiently close). 72

3.6 A representative measurement protocol provides equivalent subsets

of execution times. 73

3.7 The absence of the reproducibility of a measurement protocol may

prevent A0 to converge to A. 74

3.8 The impact of the reproducibility and the representativity on the

convergence of a measurement-based WCET estimation. 75

4.1 Examples of the GEV distributions with σ = 1 and µ = 0. We

mention that the intervals presented on the y axis are not the same

for the two graphics. 80

4.2 Block maxima method: the largest value for each block is kept. . . . 81

4.3 Examples of return plots for GEV: (a) Return plot for three mod-

els with different shape values. (b) Return level plot containing the

model and the observed values for a model having negative shape and

95% confidence interval. 83

4.4 Examples of the GP distribution with σ̃ = 1 and threshold=0. 86

4.5 PoT keeps all values above a given threshold. 86

4.6 Example of parameter estimates against threshold. 88

4.7 A global view of the pWCET estimation using GEV and GP. 90

4.8 Histogram plot (a) and lag test (b) of the data used for the comparison

with existing methods. 90

4.9 The estimated model (a) and the return level plot (b) obtained using

our method on the data used for the comparison with existing methods. 91

4.10 Comparison with Edgar’s work: (a) return level plot for Edgar’s

method, (b) our pWCET estimation (in red) against the estimation

obtained according to adversary method. 92

LIST OF FIGURES 167

4.11 Comparison with Hansen’s work: (a) return level plot for Hansen’s

method, (b) our pWCET estimation (in red) against the estimation

obtained according to adversary method. 93

4.12 Comparison with Cucu’s work: (a) return level plot for Cucu’s method,

(b) our pWCET estimation (in red) against the estimation obtained

according to adversary method. 93

4.13 The two branches of EVT for dependent data and their relation with

EVT for independent data. 95

4.14 Set of execution times with small variability. 97

5.1 Tricore Aurix Block Diagram. 100

5.2 Distribution of independent execution times for the program prime

on the Aurix architecture. 101

5.3 Lag plot for independent execution times for the program prime on

the Aurix architecture. 101

5.4 pWCET estimation of the program prime on the Aurix architecture

from the measurements of Figure 5.3. 102

5.5 Dependent execution times for the program prime on the Aurix ar-

chitecture with independent input values. 103

5.6 Lag test for dependent execution times for the program prime on the

Aurix architecture while using independent input data. 103

5.7 pWCET estimation from dependent execution times of the program

prime on the Aurix architecture. 104

5.8 WBBC functional modes. 108

5.9 WBBC Dynamic Behavior. 108

5.10 WBBC SCADE Nodes Cycles Scheduling. 109

5.11 FCDC functional modes. 111

5.12 FCDC Dynamic Behavior. 111

5.13 FCDC SCADE Nodes Cycles Scheduling. 112

5.14 Schematic of the FPGA architecture. 115

5.15 P4080 Block Diagram. 121

5.16 Execution time for WBBC on Leon3 in normal mode. 128

5.17 Standard deviation of the execution time obtained for the WBBC

application on Leon3 in normal mode. 129

168 LIST OF FIGURES

5.18 Graphical description of the UoA1 execution times obtained on the

Leon3-N platform. On the left: histogram of the data. On the right:

lag test result. 131

5.19 pWCET estimation for UoA1 of WBBC application executing on the

Leon3 processor in normal mode. 132

5.20 Execution time for WBBC on Leon3 in randomized mode. 134

5.21 Comparing avg and max for WBBC, LEON3 in normal mode and in

randomized mode. 134

5.22 Standard deviation of the execution time obtained for the WBBC

application on Leon3 in randomized mode (compared with normal

mode). 135

5.23 Graphical description of the UoA1 execution times obtained on the

Leon3-R platform. On the left: histogram of the data. On the right:

lag test result. 136

5.24 pWCET estimation for UoA1 of WBBC application executing on the

Leon3 processor in randomized mode. 137

5.25 pWCET probabilities of exceedance for WBBC, LEON3 with HW

Randomization. 139

5.26 Execution time for WBBC on the P4080 hardware. 139

5.27 Standard deviation of the execution time obtained for the WBBC

application on P4080 platform. 140

5.28 Graphical description of the UoA1 execution times obtained on the

P4080 platform. On the left: histogram of the data. On the right:

lag test result. 142

5.29 pWCET estimation for UoA1 of WBBC application executing on the

P4080 platform. 143

5.30 pWCET probabilities of exceedance for WBBC executing on the

P4080 platform. 145

5.31 Execution time for FCDC on Leon3 in normal mode. 146

5.32 Standard deviation of the execution time obtained for the FCDC

application on Leon3 in normal mode. 146

5.33 Execution time for FCDC on Leon3 in randomized mode. 149

5.34 Comparing avg and max for FCDC, LEON3 in normal mode and in

randomized mode. 150

LIST OF FIGURES 169

5.35 Standard deviation of the execution time obtained for the FCDC

application on Leon3 in randomized mode (compared with normal

mode). 150

5.36 Graphical description of the UoA16 execution times obtained on the

Leon3-R platform. On the left: histogram of the data. On the right:

lag test result. 152

5.37 pWCET estimation for UoA16 of FCDC application executing on the

Leon3 processor in randomized mode. 152

5.38 pWCET probabilities of exceedance for FCDC, LEON3 with HW

Randomization. 154

5.39 Execution time for FCDC on the P4080 platform. 155

5.40 Graphical description of the UoA1 execution times obtained on the

Leon3-R platform. On the left: histogram of the data. On the right:

plot of the data. 155

5.41 pWCET estimation for UoA1 of FCDC application executing on the

P4080 platform. 156

List of Tables

1.1 Description of the Design Assurance Levels from the ARP-4761 [SAE,

1996]. 11

3.1 Body of program Progex1. 67

3.2 Body of program Progex2. 67

4.1 The most common laws distributed by attraction domain. 79

5.1 pWCET estimation on Aurix for some Mälardalen Benchmark pro-

grams. 105

5.2 Summary of results for avionics case study. 127

5.3 PMC readings for WBBC on Leon3-N. 130

5.4 Identically distributed (i.d.) and independence tests results. 131

5.5 pWCET estimations for WBBC execution on Leon3 in normal mode. 133

5.6 PMC readings for WBBC on Leon3-R. 136

5.7 pWCET estimations of WBBC executing on Leon3 in randomized

mode. 138

5.8 PMC readings for WBBC on Leon3-R. 141

5.9 Identically distributed (i.d.) and independence tests results. 142

5.10 pWCET estimations for WBBC execution on the P4080 processor. . 144

5.11 PMC readings for FCDC on Leon3-N. 147

5.12 Identically distributed (i.d.) and independence tests results for the

FCDC application running on the Leon3 processor in normal config-

uration. 148

5.13 PMC readings for FCDC on Leon3-R. 151

5.14 pWCET estimations ofr FCDC executin on Leon3 in normal mode. . 153

171

Nomenclature

AP Arrival Profile

AP/FD TCAS Autopilot/Flight Director Traffic Collision Avoidance System

APAP Average Priority Assignment Problem

ASIC Application-specific integrated circuits

ATSAW Airborne Traffic Situational Awareness

BCET Best Case Execution Time

CAN Control Area Networks

CCDF complementary cumulative distribution function

CCF CoreNet coherency fabric

CDA Continuous Descent Approach

CDF Cumulative Distribution Function

CLT Central Limit Theorem

CMS Centralized Maintenance System

COTS Commercial of the shelf

CPU Central Processing Unit

CRPS continuous ranked probability score

CRTES Critical real-time embedded systems

DAL Design Assurance Level

173

174 LIST OF TABLES

dcmiss data cache miss

DDR Double Data Rate memory

DL1 Level 1 data cache

DSP Digital signal processors

DTLB Data Transaction Lookaside Buffer

EASA European Aviation Safety Agency

ECU Engine Control Units

EDF Earliest Deadline First

eLBC Enhanced Local Bus Controller

EMI Electromagnetic Interference

ETP Execution Time Profile

EVT Extreme Value Theory

FAA Federal Aviation Administration

FCDC Flight Control Data Concentrator

FDIV Floating Point Division

FLS Flight Management Landing System

FPGA Field-programmable gate arrays

FPU Floating-point unit

FSQRT Floating Square Root

GEV Generalized Extreme Value

GLS GBAS Landing System

GOF Goodness of Fit

GP Generalized Pareto

LIST OF TABLES 175

HWM High Water Mark

i.i.d. Independent and Identically Distributed

I/O input/output

icmiss instruction cache miss

IL1 Level 1 instruction cache

IMA Integrated Modular Avionics

ipoint instrumentation point

ITLB Instruction Transaction Lookaside buffer

KS test Kolmorgorov-Smirnov test

L2TLB Level 2 Transaction Lookaside Buffer

LAW Local Access Windows

Leon3-N Leon 3 processor executing in normal configuration

Leon3-R Leon 3 processor executing in randomized configuration

LRM Line-Replaceable Module

LRU Least Recently Used

MAF Major Frame

MBPTA Measurement-Based Probabilistic Timing Analysis

MDA Maximum Domain of Attraction

MESI Modified/Exclusive/Shared/Invalid

MIF Minor Frames

MIT Minimum Inter-Arrival Time

MLE Maximum Likelihood Estimation

MMU Memory Management Unit

176 LIST OF TABLES

MOET Maximum Observed Execution Time

OANS On-board Airport Navigation System

OS Operating System

PCIe Peripheral Component Interconnect Express

pCRPD Probabilistic Cache Related Preemption Delays

pET probabilistic Execution Time

PMC Performance Counters

pMIT probabilistic Minimal Inter-Arrival Time

PoT Peak over Threshold

PRTS Probabilistic real-time systems

PTDA Probabilistic Time Demand Analysis

pWCET probabilistic Worst Case Execution Time

RM Rate Monotonic

ROPS Runway Overrun Protection System

SIL Safety Integrity Level

SPTA Static Probabilistic Timing Analysis

SRAM Static random-access memory

SRIO Serial Rapid I/O

SRMS Statistical Rate Monotonic Scheduling

SRS Simple Random Sample

STA Static timing analysis

STDA Stochastic Time Demand Analysis

TCAS RA Traffic Collision Avoidance System Resolution Advisory

LIST OF TABLES 177

UL2 Level 2 unified cache for data and instructions

UoA Unit of Analysis

WBBC Weight and Balance Back-up Computation

WCET Worst Case Execution Time

WCRT Worst Case Response Time

Bibliography

[A400M, 2015] A400M (2015). Airbus defence and space press release: Statement

regarding accident information transmission (ait) to a400m operators as follow

up to aot of 19 may. 2015 (cited on page 20).

[Abeni et al., 2012] Abeni, L., Manica, N., and Palopoli, L. (2012). Efficient and

robust probabilistic guarantees for real-time tasks. Journal of Systems and Soft-

ware, 85(5):1147–1156.

[Albers et al., 2008] Albers, K., Bodmann, F., and Slomka, F. (2008). Advanced

hierachical event-stream model. In Real-Time Systems, 2008. ECRTS’08. Eu-

romicro Conference on, pages 211–220. IEEE.

[Altmeyer et al., 2015] Altmeyer, S., Cucu-Grosjean, L., and Davis, R. (2015).

Static probabilistic timing analysis for real-time systems using random replace-

ment caches. Real-Time Systems, 51(1):77–123.

[Atlas and Bestavros, 1998] Atlas, A. and Bestavros, A. (1998). Statistical rate

monotonic scheduling. In 19th IEEE Real-Time Systems Symposium (RTSS

1998).

[Audsley, 1991] Audsley, N. (1991). Optimal priority assignment and feasibility

of static priority tasks with arbitrary start times. Technical Report YCS 164,

University of York.

[Audsley, 2001] Audsley, N. (2001). On priority assignment in fixed priority schedul-

ing. Information Processing Letters, 79(1):39–44.

[Audsley et al., 1993] Audsley, N., Burns, A., Richardson, M., Tindell, K., and

Wellings, A. J. (1993). Applying new scheduling theory to static priority pre-

emptive scheduling. Software Engineering Journal, 8(5):284–292.

179

180 BIBLIOGRAPHY

[Audsley et al., 1995] Audsley, N. C., Burns, A., Davis, R. I., Tindell, K. W., and

Wellings, A. J. (1995). Fixed priority pre-emptive scheduling: An historical per-

spective. Real-Time Systems, 8(2-3):173–198.

[Augustine, 1997] Augustine, N. R. (1997). Augustine’s laws. AIAA.

[Axer and Ernst, 2013] Axer, P. and Ernst, R. (2013). Stochastic response-time

guarantee for non-preemptive, fixed-priority scheduling under errors. In Proceed-

ings of the 50th Annual Design Automation Conference, DAC ’13, pages 172:1–

172:7, New York, NY, USA. ACM.

[Baker, 1991] Baker, T. P. (1991). Stack-based scheduling of realtime processes.

Real-Time Systems, 3(1):67–99.

[Baldovin et al., 2013a] Baldovin, A., Graziano, A., Mezzetti, E., and Vardanega,

T. (2013a). Kernel-level time composability for avionics applications. In Proceed-

ings of the 28th Annual ACM Symposium on Applied Computing, pages 1552–

1554. ACM.

[Baldovin et al., 2013b] Baldovin, A., Mezzetti, E., and Vardanega, T. (2013b).

Limited preemptive scheduling of non-independent task sets. In Proceedings of the

Eleventh ACM International Conference on Embedded Software, page 18. IEEE

Press.

[Balkema and De Haan, 1974] Balkema, A. A. and De Haan, L. (1974). Residual

life time at great age. The Annals of probability, pages 792–804.

[Baruah, 2005] Baruah, S. (2005). The limited-preemption uniprocessor scheduling

of sporadic task systems. In Real-Time Systems, 2005.(ECRTS 2005). Proceed-

ings. 17th Euromicro Conference on, pages 137–144. IEEE.

[Baruah et al., 2012] Baruah, S., Bonifaci, V., D’Angelo, G., Li, H., Marchetti-

Spaccamela, A., Megow, N., and Stougie, L. (2012). Scheduling real-time mixed-

criticality jobs. Computers, IEEE Transactions on, 61(8):1140–1152.

[Baruah et al., 2011] Baruah, S. K., Burns, A., and Davis, R. I. (2011). Response-

time analysis for mixed criticality systems. In Real-Time Systems Symposium

(RTSS), 2011 IEEE 32nd, pages 34–43. IEEE.

BIBLIOGRAPHY 181

[Belady, 1966] Belady, L. A. (1966). A study of replacement algorithms for a virtual-

storage computer. IBM Systems journal, 5(2):78–101.

[Berezovskyi et al., 2016] Berezovskyi, K., Guet, F., Santinelli, L., Bletsas, K., and

Tovar, E. (2016). Measurement-based probabilistic timing analysis for graphics

processor units. In Architecture of Computing Systems - ARCS 29th International

Conference, pages 223–236.

[Berezovskyi et al., 2014] Berezovskyi, K., Santinelli, L., Bletsas, K., and Tovar, E.

(2014). WCET measurement-based and extreme value theory characterisation of

CUDA kernels. In 22nd International Conference on Real-Time Networks and

Systems, page 279.

[Bernat et al., 2005] Bernat, G., Burns, A., and Newby, M. (2005). Probabilistic

timing analysis: An approach using copulas. Journal of Embedded Computing,

1(2):179–194.

[Bernat et al., 2002] Bernat, G., Colin, A., and Petters, S. M. (2002). Wcet analysis

of probabilistic hard real-time systems. In Real-Time Systems Symposium, 2002.

RTSS 2002. 23rd IEEE, pages 279–288. IEEE.

[Bin et al., 2014] Bin, J., Girbal, S., Pérez, D. G., Grasset, A., and Merigot, A.

(2014). Studying co-running avionic real-time applications on multi-core cots

architectures. In Embedded Real Time Software and Systems conference.

[Bini and Buttazzo, 2004] Bini, E. and Buttazzo, G. C. (2004). Schedulability

analysis of periodic fixed priority systems. Computers, IEEE Transactions on,

53(11):1462–1473.

[Boniol et al., 2012] Boniol, F., Cassé, H., Noulard, E., and Pagetti, C. (2012).

Deterministic execution model on cots hardware. Architecture of Computing

Systems–ARCS 2012, pages 98–110.

[Broster and Burns, 2004a] Broster, I. and Burns, A. (2004a). Applying random ar-

rival models to fixed priority analysis. In the Proceedings of the Work-In-Progress

of the 25th IEEE Real-Time Systems Symposium (RTSS04).

[Broster and Burns, 2004b] Broster, I. and Burns, A. (2004b). Random arrivals in

fixed priority analysis. In 1st International Workshop on Probabilistic Analysis

Techniques for Real-time and Embedded Systems (PARTES2004).

182 BIBLIOGRAPHY

[Broster et al., 2002] Broster, I., Burns, A., and Rodriguez-Navas, G. (2002). Prob-

abilistic analysis of can with faults. In Real-Time Systems Symposium, 2002.

RTSS 2002. 23rd IEEE, pages 269 – 278.

[Burns, 1993] Burns, A. (1993). Preemptive priority based scheduling: An appropri-

ate engineering approach. Citeseer.

[Burns et al., 2003] Burns, A., Bernat, G., and Broster, I. (2003). A probabilistic

framework for schedulability analysis. In Third International Embedded Software

Conference (EMSOFT 2003), pages 1–15.

[Burns and Edgar, 2000] Burns, A. and Edgar, S. (2000). Predicting computation

time for advanced processor architectures. In Real-Time Systems, 2000. Euromi-

cro RTS 2000. 12th Euromicro Conference on, pages 89–96. IEEE.

[Burns and Wellings, 2001] Burns, A. and Wellings, A. J. (2001). Real-time sys-

tems and programming languages: Ada 95, real-time Java, and real-time POSIX.

Pearson Education.

[Buttle, 2012] Buttle, D. (2012). Real-time in the prime-time. In Keynote talk at

the 24th Euromicro Conference on Real-Time Systems (ECRTS).

[Cassé and Sainrat, 2006] Cassé, H. and Sainrat, P. (2006). Otawa, a framework

for experimenting wcet computations. In 3rd European Congress on Embedded

Real-Time Software, volume 1.

[Castillo et al., 1989] Castillo, E., Galambos, J., and Sarabia, J. M. (1989). The

selection of the domain of attraction of an extreme value distribution from a set

of data. In Extreme Value Theory, pages 181–190. Springer.

[Cazorla et al., 2012] Cazorla, F., Quinones, E., Vardanega, T., Cucu-Grosjean, L.,

Triquet, B., Bernat, G., Berger, E., Abella, J., Wartel, F., Houston, M., Santinelli,

L., Maxim, D., Kosmidis, L., and Lo, C. (2012). Proartis: Probabilistically ana-

lyzable real-time system. ACM Transactions on Embedded Computing Systems.

[Cazorla et al., 2013] Cazorla, F. J., Quiñones, E., Vardanega, T., Cucu, L., Tri-

quet, B., Bernat, G., Berger, E. D., Abella, J., Wartel, F., Houston, M., Santinelli,

L., Kosmidis, L., Lo, C., and Maxim, D. (2013). Proartis: Probabilistically ana-

lyzable real-time systems. ACM Trans. Embedded Comput. Syst., 12(2s):94–114.

BIBLIOGRAPHY 183

[Chakravarti and Laha, 1967] Chakravarti, I. M. and Laha, R. G. (1967). Handbook

of methods of applied statistics. In Handbook of methods of applied statistics. John

Wiley & Sons.

[COLES, 2001] COLES, S. (2001). An introduction to statistical modeling of ex-

treme values. Springer.

[Colin, 2001] Colin, A. (2001). Heptane webpage. URL: http://www. irisa.

fr/solidor/work/heptane-demo/heptane. html.

[Cucu et al., 2008] Cucu, L., Pernet, N., and Sorel, Y. (2008). Periodic real-time

scheduling: from deadline-based model to latency-based model. Annals of Oper-

ations Research, 159(1):41–51.

[Cucu and Tovar, 2006] Cucu, L. and Tovar, E. (2006). A framework for response

time analysis of fixed-priority tasks with stochastic inter-arrival times. ACM

SIGBED Review, 3(1).

[Cucu-Grosjean, 2013] Cucu-Grosjean, L. (2013). Independence - a missunderstood

property of and for real-time systems. In the 60th anniversary of A. Burns.

[Cucu-Grosjean et al., 2012] Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C.,

Vardanega, T., Kosmidis, L., Abella, J., Mezzeti, E., E., Q., and Cazorla, F.

(2012). Measurement-based probabilistic timing analysis for multi-path programs.

In the 24th Euromicro Conference on Real-Time Systems (ECRTS12).

[Cyber, 2010] Cyber (2010). http://cyberphysicalsystems.org/.

[David and Puaut, 2004] David, L. and Puaut, I. (2004). Static determination of

probabilistic execution times. In the Euromicro Conference on Real-Time Sys-

tems(ECRTS).

[Davis et al., 2013a] Davis, R. I., Santinelli, L., Altmeyer, S., Maiza, C., and Cucu-

Grosjean, L. (2013a). Analysis of probabilistic cache related pre-emption delays.

In IEEE Euromicro Conference on Real-Time Systems (ECRTS13).

[Davis et al., 2013b] Davis, R. I., Whitham, J., and Maxim, D. (2013b). Static

probabilistic timing analysis for multicore processors with shared cache. the 4th

International Real-Time Scheduling Open Problems Seminar (RTSOPs2013), in

conjunction with ECRTS2013.

http://cyberphysicalsystems.org/

184 BIBLIOGRAPHY

[de Oliveira and Gomes, 1984] de Oliveira, J. T. and Gomes, M. I. (1984). Two

test statistics for choice of univariate extreme models. In Statistical Extremes

and Applications, pages 651–668. Springer.

[Diaz et al., 2004] Diaz, J., Lopez, J., M., G., Campos, A., Kim, K., and Lo Bello,

L. (2004). Pessimism in the stochastic analysis of real-time systems: Concept and

applications. In 25th IEEE International Real-Time Systems Symposium (RTSS

2004), pages 197–207.

[Dı́az et al., 2002] Dı́az, J. L., Garćıa, D. F., Kim, K., Lee, C.-G., Lo Bello, L.,

López, J. M., Min, S. L., and Mirabella, O. (2002). Stochastic analysis of pe-

riodic real-time systems. In Proceedings of the 23rd IEEE Real-Time Systems

Symposium (RTSS 2002), page 289.

[Edgar and Burns, 2001] Edgar, S. and Burns, A. (2001). Statistical analysis of

WCET for scheduling. In 22nd IEEE International Real-Time Systems Sympo-

sium (RTSS 2001), pages 215–224.

[Edgar, 2002] Edgar, S. F. (2002). Estimation of worst-case execution time using

statistical analysis. PhD thesis, University of York.

[Ekberg and Yi, 2014] Ekberg, P. and Yi, W. (2014). Bounding and shaping the

demand of generalized mixed-criticality sporadic task systems. Real-time systems,

50(1):48–86.

[Ermedahl et al., 2009] Ermedahl, A., Fredriksson, J., Gustafsson, J., and Al-

tenbernd, P. (2009). Deriving the worst-case execution time input values. In

Real-Time Systems, 2009. ECRTS’09. 21st Euromicro Conference on, pages 45–

54. IEEE.

[Faragó and Katz, 1990] Faragó, T. and Katz, R. W. (1990). Extremes and design

values in climatology.

[Ferdinand and Heckmann, 2004] Ferdinand, C. and Heckmann, R. (2004). ait:

Worst-case execution time prediction by static program analysis. Building the

Information Society, pages 377–383.

[Ferdinand et al., 2001] Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F.,

Schmidt, M., Theiling, H., Thesing, S., and Wilhelm, R. (2001). Reliable and

BIBLIOGRAPHY 185

precise wcet determination for a real-life processor. In Embedded Software, pages

469–485. Springer.

[Fisher and Tippett, 1928] Fisher, R. A. and Tippett, L. H. C. (1928). Limiting

forms of the frequency distribution of the largest or smallest member of a sample.

In Mathematical Proceedings of the Cambridge Philosophical Society, volume 24,

pages 180–190. Cambridge University Press.

[Fuchsen, 2010] Fuchsen, R. (2010). How to address certification for multi-core

based ima platforms: Current status and potential solutions. In Digital Avionics

Systems Conference (DASC), 2010 IEEE/AIAA 29th, pages 5–E. IEEE.

[Galambos, 1982] Galambos, J. (1982). A statistical test for extreme value distri-

butions. Nonparametric Statistical Inference, pages 221–230.

[Gardner and Lui, 1999] Gardner, M. and Lui, J. (1999). Analyzing stochastic

fixed-priority real-time systems. In 5th International Conference on Tools and

Algorithms for the Construction and Analysis of Systems.

[Gnedenko, 1943] Gnedenko, B. (1943). Sur la distribution limite du terme maxi-

mum d’une seris aleatoire. Annals of Mathematics, 44:423–453.

[Gogonel, 2014] Gogonel, A. (2014). Evt copernic pwcet estimator for real-time

systems. http://inria-rscript.serveftp.com/.

[Goossens, 2003] Goossens, J. (2003). Scheduling of offset free systems. Real-Time

Systems, 24(2):239–258.

[Goossens and Devillers, 1997] Goossens, J. and Devillers, R. (1997). The non-

optimality of the monotonic priority assignments for hard real-time offset free

systems. Real-Time Systems, 13(2):107–126.

[Griffin and Burns, 2010] Griffin, D. and Burns, A. (2010). Realism in statistical

analysis of worst case execution times. In 10th Intl. Workshop on Worst-Case

Execution Time Analysis, pages 49–57.

[Griffin et al., 2015] Griffin, D., Lesage, B., Bate, I., Soboczenski, F., and Davis,

R. I. (2015). Modelling fault dependencies when execution time budgets are

exceeded. In the 23rd International Conference on Real Time Networks and Sys-

tems, RTNS, pages 65–74.

http://inria-rscript.serveftp.com/

186 BIBLIOGRAPHY

[Griffin et al., 2014] Griffin, D., Lesage, B., Burns, A., and Davis, R. I. (2014).

Static probabilistic timing analysis of random replacement caches using lossy

compression. In 22nd International Conference on Real-Time Networks and Sys-

tems, RTNS, page 289.

[Guet et al., 2016] Guet, F., Santinelli, L., and Morio, J. (2016). On the Reliability

of the Probabilistic Worst-Case Execution Time Estimates. In 8th European

Congress on Embedded Real Time Software and Systems (ERTS).

[Gustafsson et al., 2010] Gustafsson, J., Betts, A., Ermedahl, A., and Lisper, B.

(2010). The Mälardalen WCET benchmarks – past, present and future. In the

International Workshop on Worst-case Execution-time Analysis.

[Haan, 1976] Haan, L. d. (1976). Sample extremes: an elementary introduction.

Statistica Neerlandica, 30(4):161–172.

[Haan, 1970] Haan, L. F. M. (1970). On regular variation and its application to the

weak convergence of sample extremes.

[Hansen et al., 2009] Hansen, J., Hissam, S., and Moreno, G. (2009). Statistical-

based WCET estimation and validation. In 9th International Workshop on Worst-

Case Execution Time (WCET) Analysis.

[Hardy and Puaut, 2013] Hardy, D. and Puaut, I. (2013). Static probabilistic worst

case execution time estimation for architectures with faulty instruction caches.

In Proceedings of the 21st International conference on Real-Time Networks and

Systems (RTNS2013), pages 35–44. ACM.

[Hartigan, 1975] Hartigan, J. A. (1975). Clustering algorithms. John Wiley & Sons.

[Hasofer and Wang, 1992] Hasofer, A. M. and Wang, Z. (1992). A test for extreme

value domain of attraction. Journal of the American Statistical Association,

87(417):171–177.

[Heath, 2002] Heath, S. (2002). Embedded systems design. Newnes.

[Henia et al., 2005] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., and

Ernst, R. (2005). System level performance analysis–the symta/s approach. IEE

Proceedings-Computers and Digital Techniques, 152(2):148–166.

BIBLIOGRAPHY 187

[Holsti et al., 2000] Holsti, N., Langbacka, T., and Saarinen, S. (2000). Using a

worst-case execution time tool for real-time verification of the debie software.

EUROPEAN SPACE AGENCY-PUBLICATIONS-ESA SP, 457:307–312.

[Hosking and Wallis, 1987] Hosking, J. R. and Wallis, J. R. (1987). Parameter

and quantile estimation for the generalized pareto distribution. Technometrics,

29(3):339–349.

[Hu et al., 2001] Hu, X., Zhou, T., and Sha, E.-M. (2001). Estimating probabilistic

timing performance for real-time embedded systems. Very Large Scale Integration

(VLSI) Systems, IEEE Transactions on, 9(6):833 –844.

[Jalle et al., 2014] Jalle, J., Kosmidis, L., Abella, J., Quiñones, E., and Cazorla,

F. J. (2014). Bus designs for time-probabilistic multicore processors. In Pro-

ceedings of the conference on Design, Automation & Test in Europe, page 50.

European Design and Automation Association.

[Jean et al., 2012] Jean, X., Faura, D., Gatti, M., Pautet, L., and Robert, T. (2012).

Ensuring robust partitioning in multicore platforms for ima systems. In Digi-

tal Avionics Systems Conference (DASC), 2012 IEEE/AIAA 31st, pages 7A4–1.

IEEE.

[Kaczynski et al., 2007] Kaczynski, G., Lo Bello, L., and Nolte, T. (2007). Deriv-

ing exact stochastic response times of periodic tasks in hybrid priority-driven

soft real-time systems. In the 12th IEEE International Conference on Emerging

Technologies and Factory Automation (ETFA’07), Greece.

[Kaczynski et al., 2006] Kaczynski, G. A., Bello, L. L., and Nolte, T. (2006). To-

wards stochastic response-time of hierarchically scheduled real-time tasks. In

Proceedings of 11th IEEE International Conference on Emerging Technologies

and Factory Automation (ETFA 2006), pages 453–456.

[Kim et al., 2005] Kim, K., Diaz, J. L., Lo Bello, L., Lopez, J. M., Lee, C.-G., and

Min, S. L. (2005). An exact stochastic analysis of priority-driven periodic real-

time systems and its approximations. IEEE Trans. Comput., 54(11):1460–1466.

[Kosmidis et al., 2013a] Kosmidis, L., Abella, J., Quiñones, E., and Cazorla, F. J.

(2013a). A cache design for probabilistically analysable real-time systems. In

188 BIBLIOGRAPHY

Proceedings of the Conference on Design, Automation and Test in Europe, pages

513–518. EDA Consortium.

[Kosmidis et al., 2013b] Kosmidis, L., Abella, J., Quinones, E., and Cazorla, F. J.

(2013b). Multi-level unified caches for probabilistically time analysable real-time

systems. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 360–

371. IEEE.

[Kosmidis et al., 2014a] Kosmidis, L., Abella, J., Quiñones, E., and Cazorla, F. J.

(2014a). Efficient cache designs for probabilistically analysable real-time systems.

IEEE Transactions on Computers, 63(12):2998–3011.

[Kosmidis et al., 2014b] Kosmidis, L., Abella, J., Wartel, F., Quiñones, E., Colin,

A., and Cazorla, F. J. (2014b). PUB: path upper-bounding for measurement-

based probabilistic timing analysis. In 26th Euromicro Conference on Real-Time

Systems, ECRTS, pages 276–287.

[Kosmidis et al., 2013c] Kosmidis, L., Curtsinger, C., Quiñones, E., Abella, J.,

Berger, E., and Cazorla, F. J. (2013c). Probabilistic timing analysis on con-

ventional cache designs. In Design, Automation & Test in Europe Conference &

Exhibition (DATE), 2013, pages 603–606. IEEE.

[Kosmidis et al., 2013d] Kosmidis, L., Quinones, E., Abella, J., Vardanega, T., and

Cazorla, F. J. (2013d). Achieving timing composability with measurement-based

probabilistic timing analysis. In Object/Component/Service-Oriented Real-Time

Distributed Computing (ISORC), 2013 IEEE 16th International Symposium on,

pages 1–8. IEEE.

[Kosmidis et al., 2016] Kosmidis, L., Vargas, R., Morales, D., Quiñones, E., Abella,

J., and Cazorla, F. J. (2016). Tasa: toolchain-agnostic static software randomi-

sation for critical real-time systems. In Computer-Aided Design (ICCAD), 2016

IEEE/ACM International Conference on, pages 1–8. IEEE.

[Kotz and Nadarajah, 2000] Kotz, S. and Nadarajah, S. (2000). Extreme value dis-

tributions: theory and applications. World Scientific.

[Leadbetter et al., 1983] Leadbetter, M., Rootzén, H., and Lindgren, G. (1983).

Extremes and related properties of random sequences and processes.

BIBLIOGRAPHY 189

[Lee and Seshia, 2011] Lee, E. A. and Seshia, S. A. (2011). Introduction to embedded

systems: A cyber-physical systems approach. Lee & Seshia.

[Lee, Edward Ashford, 2012] Lee, Edward Ashford (2012). http://

cyberphysicalsystems.org/.

[Lehoczky, 1996] Lehoczky, J. (1996). Real-time queueing theory. In 10th of the

IEEE Real-Time Systems Symposium (RTSS96), pages 186–195.

[Lesage et al., 2015a] Lesage, B., Griffin, D., Altmeyer, S., and Davis, R. I. (2015a).

Static probabilistic timing analysis for multi-path programs. In IEEE Real-Time

Systems Symposium, RTSS.

[Lesage et al., 2015b] Lesage, B., Griffin, D., Soboczenski, F., Bate, I., and Davis,

R. I. (2015b). A framework for the evaluation of measurement-based timing anal-

yses. In the 23rd International Conference on Real Time and Networks Systems,

RTNS, pages 35–44.

[Leung and Merrill, 1980] Leung, J. Y.-T. and Merrill, M. (1980). A note on pre-

emptive scheduling of periodic, real-time tasks. Information processing letters,

11(3):115–118.

[Leung and Whitehead, 1982] Leung, J. Y.-T. and Whitehead, J. (1982). On the

complexity of fixed-priority scheduling of periodic, real-time tasks. Performance

evaluation, 2(4):237–250.

[Lima and Bate, 2017] Lima, G. and Bate, I. (2017). Valid application of evt in

timing analysis by randomising execution time measurements. In the 20th IEEE

Real-Time and Embedded Technology and Application Symposium, RTAS, pages

187–197.

[Lima et al., 2016] Lima, G., Dias, D., and Barros, E. (2016). Extreme value theory

for estimating task execution time bounds: A careful look. In 28th Euromicro

Conference on Real-Time Systems, pages 200–211.

[Liu and Layland, 1973] Liu, C. L. and Layland, J. W. (1973). Scheduling algo-

rithms for multiprogramming in a hard-real-time environment. J. ACM, 20(1):46–

61.

http://cyberphysicalsystems.org/
http://cyberphysicalsystems.org/

190 BIBLIOGRAPHY

[Liu et al., 2013] Liu, M., Behnam, M., and Nolte, T. (2013). Applying the peak

over thresholds method on worst-case response time analysis of complex real-

time systems. In Embedded and Real-Time Computing Systems and Applications

(RTCSA), 2013 IEEE 19th International Conference on, pages 22–31. IEEE.

[Lopez et al., 2008] Lopez, J., Diaz, J. L., E., J., and Garcia, D. (2008). Stochastic

analysis of real-time systems under preemptive priority-driven scheduling. Real-

time Systems, 40(2):180–207.

[Lu et al., 2011] Lu, Y., Nolte, T., Bate, I., and Cucu, L. (2011). A new way about

using statistical analysis of worst-case execution times. In in the WiP sesion of

the Euromicro Conference on Real-Time Systems.

[Lu et al., 2012] Lu, Y., Nolte, T., Bate, I., and Cucu-Grosjean, L. (2012). A statis-

tical response-time analysis of real-time embedded systems. In Real-Time Systems

Symposium (RTSS), 2012 IEEE 33rd, pages 351–362. IEEE.

[Manica et al., 2012] Manica, N., Palopoli, L., and Abeni, L. (2012). Numerically

efficient probabilistic guarantees for resource reservations. Emerging Technologies

and Factory Automation (ETFA), 2012 17th IEEE International Conference on.

[Manolache et al., 2002] Manolache, S., Eles, P., and Peng, Z. (2002). Schedulabil-

ity analysis of multiprocessor real-time applications with stochastic task execu-

tion times. In Proceedings of the 2002 IEEE/ACM international conference on

Computer-aided design, ICCAD ’02, pages 699–706, New York, NY, USA. ACM.

[Manolache et al., 2004] Manolache, S., Eles, P., and Peng, Z. (2004). Schedulability

analysis of applications with stochastic task execution times. ACM Trans. Embed.

Comput. Syst., 3(4):706–735.

[Marohn, 1998a] Marohn, F. (1998a). An adaptive efficient test for gumbel domain

of attraction. Scandinavian Journal of Statistics, 25(2):311–324.

[Marohn, 1998b] Marohn, F. (1998b). Testing the gumbel hypothesis via the pot-

method. Extremes, 1(2):191–213.

[Marti et al., 2001] Marti, P., Fuertes, J. M., Fohler, G., and Ramamritham, K.

(2001). Jitter compensation for real-time control systems. In Real-Time Systems

Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, pages 39–48. IEEE.

BIBLIOGRAPHY 191

[Maxim et al., 2016] Maxim, C., Gogonel, A., Asavoae, I., Asavoae, M., and Cucu-

Grosjean, L. (2016). Reproducibility and representativity-mandatory proper-

ties for the compositionality of measurement-based wcet estimation approaches.

CRTS 2016, page 17.

[Maxim et al., 2012a] Maxim, C., Gogonel, A., Maxim, D., Cucu, L., et al. (2012a).

Estimation of probabilistic minimum inter-arrival times using extreme value the-

ory. In the 6th Junior Researcher Workshop on Real-Time Computing (JR-

WRTC2012).

[Maxim et al., 2011] Maxim, D., Buffet, O., Santinelli, L., Cucu-Grosjean, L., and

Davis, R. (2011). Optimal priority assignments for probabilistic real-time sys-

tems. In the 19th International Conference on Real-Time and Network Systems

(RTNS2011).

[Maxim and Cucu-Grosjean, 2013] Maxim, D. and Cucu-Grosjean, L. (2013). Re-

sponse time analysis for fixed-priority tasks with multiple probabilistic param-

eters. In proceeding of the 34th IEEE Real Time Systems Symposium, 2013.

RTSS’2013.

[Maxim et al., 2012b] Maxim, D., Houston, M., Santinelli, L., Bernat, G., Davis,

R. I., and Cucu-Grosjean, L. (2012b). Re-sampling for statistical timing analysis

of real-time systems. In Proceedings of the 20th International Conference on

Real-Time and Network Systems, pages 111–120. ACM.

[Maxim et al., 2015] Maxim, D., Soboczenski, F., Bate, I., and Tovar, E. (2015).

Study of the reliability of statistical timing analysis for real-time systems. In

the 23rd International Conference on Real Time and Networks Systems, RTNS,

pages 55–64.

[Melani et al., 2013] Melani, A., Noulard, E., and Santinelli, L. (2013). Learning

from probabilities: Dependences within real-time systems. In Proceedings of 2013

IEEE 18th Conference on Emerging Technologies & Factory Automation, ETFA,

pages 1–8.

[Navet et al., 2000] Navet, N., Song, Y.-Q., and Simonot, F. (2000). Worst-case

deadline failure probability in real-time applications distributed over controller

area network. J. Syst. Archit., 46(7):607–617.

192 BIBLIOGRAPHY

[Nilsson et al., 1998] Nilsson, J., Bernhardsson, B., and Wittenmark, B. (1998).

Stochastic analysis and control of real-time systems with random time delays.

Automatica, 34(1):57–64.

[Nissanke et al., 2002] Nissanke, N., Leulseged, A., and Chillara, S. (2002). Prob-

abilistic performance analysis in multiprocessor scheduling. Computing Control

Engineering Journal, 13(4):171 – 179.

[OneWeb, 2015] OneWeb (2015). http://oneweb.world.

[Öztürk and Korukogu, 1988] Öztürk, A. and Korukogu, S. (1988). A new test

for the extreme value distribution. Communications in Statistics-Simulation and

Computation, 17(4):1375–1393.

[Pellizzoni and Lipari, 2005] Pellizzoni, R. and Lipari, G. (2005). Feasibility analy-

sis of real-time periodic tasks with offsets. Real-Time Systems, 30(1-2):105–128.

[Pickands III, 1975] Pickands III, J. (1975). Statistical inference using extreme order

statistics. the Annals of Statistics, pages 119–131.

[Poovey et al., 2007] Poovey, J. et al. (2007). Characterization of the eembc bench-

mark suite. North Carolina State University.

[Proartis, 2013] Proartis (2010-2013). http://www.proartis-project.eu/.

[Proxima, 2016] Proxima (2013-2016). http://www.proxima-project.eu/.

[Quinones et al., 2009] Quinones, E., Berger, E. D., Bernat, G., and Cazorla, F. J.

(2009). Using randomized caches in probabilistic real-time systems. In Real-Time

Systems, 2009. ECRTS’09. 21st Euromicro Conference on, pages 129–138. IEEE.

[RapiTime, 2006] RapiTime, W. (2006). tool homepage.

[Refaat and Hladik, 2010] Refaat, K. S. and Hladik, P.-E. (2010). Efficient stochas-

tic analysis of real-time systems via random sampling. In IEEE Euromicro Con-

ference on Real-Time Systems (ECRTS 2010), pages 175–183.

[Reineke, 2014] Reineke, J. (2014). Randomized caches considered harmful in hard

real-time systems. Leibniz Transactions on Embedded Systems, 1(1):03–1.

http://oneweb.world
http://www.proartis-project.eu/
http://www.proxima-project.eu/

BIBLIOGRAPHY 193

[RTCA, 2015] RTCA (2015). Radio technical commission for aeronautics (rtca) and

european organisation for civil aviation equipment (eurocae). do-178c: Software

considerations in airborne systems and equipment certification. 2011 (cited on

pages 20, 39).

[SAE, 1996] SAE (1996). Sae international. aerospace recommended practices 4761

- guidelines and methods for conducting the safety assessment process on civil

airborne systems and equipment. 1996 (cited on page 20).

[SAE, 2010] SAE (2010). Sae international. aerospace recommended practices 4754a

- development of civil aircraft and systems. 2010 (cited on page 20).

[Santinelli and Cucu-Grosjean, 2011] Santinelli, L. and Cucu-Grosjean, L. (2011).

Toward probabilistic real-time calculus. ACM SIGBED Review, 8(1):54–61.

[Santinelli et al., 2017] Santinelli, L., Guet, F., and Morio, J. (2017). Probabilistic

real-time guarantees: There is life beyond the i.i.d. assumption. In the 20th IEEE

Real-Time and Embedded Technology and Application Symposium, RTAS, pages

199–208.

[Santos et al., 2011] Santos, M., Lisper, B., Lima, G., and Lima, V. (2011). Se-

quential composition of execution time distributions by convolution. In Proc.

4th Workshop on Compositional Theory and Technology for Real-Time Embedded

Systems (CRTS 2011), pages 30–37.

[Sha et al., 2004] Sha, L., Abdelzaher, T., Årzén, K.-E., Cervin, A., Baker, T.,

Burns, A., Buttazzo, G., Caccamo, M., Lehoczky, J., and Mok, A. K. (2004).

Real time scheduling theory: A historical perspective. Real-time systems, 28(2-

3):101–155.

[Sha et al., 1990] Sha, L., Rajkumar, R., and Lehoczky, J. P. (1990). Priority inher-

itance protocols: An approach to real-time synchronization. Computers, IEEE

Transactions on, 39(9):1175–1185.

[Shapiro and Brain, 1987] Shapiro, S. and Brain, C. (1987). W-test for the

weibull distribution. Communications in statistics. Simulation and computation,

16(1):209–219.

194 BIBLIOGRAPHY

[Simalatsar et al., 2011] Simalatsar, A., Ramadian, Y., Lampka, K., Perathoner,

S., Passerone, R., and Thiele, L. (2011). Enabling parametric feasibility analysis

in real-time calculus driven performance evaluation. In Proceedings of the 14th

international conference on Compilers, architectures and synthesis for embedded

systems, pages 155–164. ACM.

[Stankovic, 1988] Stankovic, J. A. (1988). Real-time computing systems: The next

generation. Department of Computer and Information Science, University of

Massachusetts Amherst.

[Staschulat and Ernst, 2004] Staschulat, J. and Ernst, R. (2004). Multiple process

execution in cache related preemption delay analysis. In Proceedings of the 4th

ACM international conference on Embedded software, pages 278–286. ACM.

[Stephens, 1974] Stephens, M. A. (1974). Edf statistics for goodness of fit and some

comparisons. Journal of the American statistical Association, 69(347):730–737.

[Tia et al., 1995] Tia, T., Deng, Z., Shankar, M., Storch, M., Sun, J., Wu, L.,

and Liu, J. (1995). Probabilistic performance guarantee for real-time tasks with

varying computation times. In IEEE Real-Time and Embedded Technology and

Applications Symposium (ETFA 1995).

[Tiku and Singh, 1981] Tiku, M. and Singh, M. (1981). Testing the two param-

eter weibull distribution. Communications in Statistics-Theory and Methods,

10(9):907–918.

[Tindell and Clark, 1994] Tindell, K. and Clark, J. (1994). Holistic schedulability

analysis for distributed hard real-time systems. Microprocessing and micropro-

gramming, 40(2-3):117–134.

[Vestal, 2007] Vestal, S. (2007). Preemptive scheduling of multi-criticality systems

with varying degrees of execution time assurance. In Real-Time Systems Sympo-

sium, 2007. RTSS 2007. 28th IEEE International, pages 239–243. IEEE.

[Wartel et al., 2013] Wartel, F., Kosmidis, L., Lo, C., Triquet, B., Quinones, E.,

Abella, J., Gogonel, A., Baldovin, A., Mezzetti, E., Cucu, L., Vardanega, T., and

Cazorla, F. (2013). Measurement-based probabilistic timing analysis: Lessons

from an integrated-modular avionics case study. In the 8th IEEE International

Symposium on Industrial Embedded Systems (SIES).

BIBLIOGRAPHY 195

[Weissman, 1978] Weissman, I. (1978). Estimation of parameters and large quan-

tiles based on the k largest observations. Journal of the American Statistical

Association, 73(364):812–815.

[Wenzel, 2006] Wenzel, I. (2006). Measurement-based timing analysis of superscalar

processors. na.

[Wenzel et al., 2005] Wenzel, I., Rieder, B., Kirner, R., and Puschner, P. (2005).

Automatic timing model generation by cfg partitioning and model checking. In

Design, Automation and Test in Europe, 2005. Proceedings, pages 606–611. IEEE.

[Wilhelm et al., 2008] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing,

S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., et al. (2008).

The worst-case execution-time problem, overview of methods and survey of tools.

ACM Transactions on Embedded Computing Systems (TECS), 7(3):36.

[Wong et al., 2009] Wong, W. E., Debroy, V., and Restrepo, A. (2009). The role of

software in recent catastrophic accidents. Technical report, University of Texas

at Dallas.

[Yao et al., 2011] Yao, G., Buttazzo, G., and Bertogna, M. (2011). Feasibility anal-

ysis under fixed priority scheduling with limited preemptions. Real-Time Systems,

47(3):198–223.

[Zeng et al., 2009a] Zeng, H., Di Natale, M., Giusto, P., and Sangiovanni-

Vincentelli, A. (2009a). Statistical analysis of controller area network message

response times. In Industrial Embedded Systems, 2009. SIES ’09. IEEE Interna-

tional Symposium on, pages 1 –10.

[Zeng et al., 2009b] Zeng, H., Di Natale, M., Giusto, P., and Sangiovanni-

Vincentelli, A. (2009b). Stochastic analysis of can-based real-time automotive

systems. Industrial Informatics, IEEE Transactions on, 5(4):388 –401.

[Zeng et al., 2010] Zeng, H., Di Natale, M., Giusto, P., and Sangiovanni-Vincentelli,

A. (2010). Using statistical methods to compute the probability distribution of

message response time in controller area network. Industrial Informatics, IEEE

Transactions on, 6(4):678 –691.

196 BIBLIOGRAPHY

[Ziccardi et al., 2015] Ziccardi, M., Mezzetti, E., Vardanega, T., Abella, J., and Ca-

zorla, F. J. (2015). EPC: extended path coverage for measurement-based prob-

abilistic timing analysis. In 2015 IEEE Real-Time Systems Symposium, RTSS,

pages 338–349.

