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I. INTRODUCTION 

 

1. Pathophysiology of Hepatitis B virus infection 

 

1.1. Liver disease and pathology of Hepatitis B virus 

The liver is a key organ within the human body by, playing many crucial roles, including 

detoxification and metabolism of proteins, lipids, and carbohydrates. Hepatitis or inflammation of 

the liver, can be caused by infection of hepatotropic viruses, such as hepatitis A, hepatitis B, 

hepatitis C, hepatitis D, and hepatitis E viruses. While many of these virus infections are acute 

and self-limiting, hepatitis B and hepatitis C virus infection can lead to chronic hepatitis and cause 

severe liver disease, including cirrhosis and hepatocellular carcinoma (HCC) (1, 2). Among these 

viruses, hepatitis B virus (HBV) is a DNA virus belonging to the Hepadnaviridae family. The 

classification is based on the small size of the viral genome, the unique viral replication strategy 

differing from other known viruses (1).  

 

1.2. HBV infection worldwide 

Approximately, two hundred fifty seven million people are chronically infected by HBV 

worldwide (3, 4). HBV infection results in either acute or chronic hepatitis (1). While 95% of HBV-

infected adults will spontaneously resolve infection, 80-90% of neonates infected with HBV 

develop chronic infection (5). Progression of chronic HBV infection (CHB) can lead to end-stage 

liver disease such as liver cirrhosis and/or hepatocellular carcinoma (6, 7). CHB is defined as the 

detection of hepatitis B surface antigen (HBsAg) in serum for 6 month following infection. Although 

a highly effective vaccine has been established (8), HBV infection still remains a major health 

problem worldwide.   
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Figure 1. Countries with moderated and high endemicity for HBV infection  

(Downloaded from Oxford Medicine Online. Reproduced with permission from World Health Organization, 

Hepatitis B, Countries or Areas at Risk, Copyright ©  WHO 2012, Non-estimated area marked as gray color. 

http://gamapserver.who.int/mapLibrary/Files/Maps/Global_HepB_ITHRiskMap.png) 

 

1.3. Pathogenesis of hepatitis B 

HBV infects essentially the human liver. It is transmitted horizontally by exposure to 

infectious blood or body fluids i.e. saliva, menstrual, vaginal, and seminal fluids. However, 

perinatal vertical transmission is the major route of HBV transmission to neonates in the world 

(2).  

The incubation period of HBV infection varies from 3 to 18 days. Acute infection can be 

associated with jaundice and several symptoms such as loss of appetite, joint and muscle pain, 

low-grade fever, and possible stomach pain (2). The vast majority of acute HBV infected patients 

will resolve infection within six months. After six months, the risk to develop CHB is highly 

increased. CHB is mainly asymptomatic. 

After HBV ingress into the body it reaches the liver, where it infects hepatocytes. 

Recognition of HBV infection by Kupffer cells in the liver has been shown to activate NF-κB and 

proinflammatory cytokine production (9). In contrast to other viral infections, the innate immune 

response is not strongly triggered by HBV infection (10-12). In the infected adults, the adaptive 

file:///C:/oxfordmedicine.com
file:///C:/oxfordmedicine.com
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immune response contributes to viral clearance and prevention of viral spread during HBV 

infection (10). In contrast, impaired cellular immune responses such as, immunological tolerance, 

mutational inactivation of B-cell and T-cell epitopes, or incomplete down-regulation of viral 

replication and infection in immunologically privileged tissues are observed in chronic infection 

(13).  

The natural history of CHB infection consists of four phases, the immune tolerant phase 

is characterized by the presence of hepatitis e antigen (HBeAg), accompanied by a high level of 

HBV DNA (> 2,000 IU/ml) but normal level of alanine aminotransferase (ALT) in patient serum (1). 

Most of patients in this phase have minimal liver injury and slow risk of developing HCC. The 

immune clearance phase has a similar pattern as the immune tolerant phase. However, ALT levels 

are intermittently increased and inflammation is activated in the liver. The inactive (carrier) phase 

is characterized by the absence of HBeAg, but the presence of anti-HBe antibodies. The level of 

ALT is normal and HBV DNA level is low or undetectable in serum. The reactive phase (also 

known as HBeAg-negative CHB) is defined by the absence of HBeAg, the presence of anti-HBe, 

intermittently or persistently elevated serum HBV DNA and ALT levels, and active inflammation in 

the liver (14, 15). Most of patients in this phase are older and have more advanced liver disease 

(8).  

 

 

Figure 2. Natural history of chronic HBV infection  

The profile of natural CHB infection in patients consists of four phases: the immune tolerant phase, the 

immune clearance phase, the inactive (carrier) phase, and the reactivation phase. See text for more details 

(14).  
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1.4. Diagnosis of HBV infection  

The diagnosis of HBV infection is accomplished by evaluating clinical, biochemical and 

serological markers. Table 1 gives an overview of the serological markers used in diagnosis of 

HBV and their interpretation.  

 

Table 1. Hepatitis B virus infection serological markers, and their interpretation 

 

Abbreviations used in this table: POS, positive; NEG, negative; from reference (16) 

 

HBsAg is the first serological marker HBV infection. The detection of HBsAg correlates 

with active viral replication. Thus, it usually drops to an undetectable level in patients who clear 

the virus and persists in chronically infected patients (17). Other markers including hepatitis B e 

antigen (HBeAg) and IgM antibody to hepatitis B core antigen (anti-HBc) are also routinely 

detected in acute and chronic infected patients. HBeAg is detected in the early phase of HBV 

infection and is a marker of active viral replication. Clearance of HBeAg and appearance of anti-

HBeAg, known as e seroconversion, is related to decline of viremia and viral clearance. 

Persistence of HBeAg is observed in patients who develop CHB (18). The level of IgM anti-HBcAg 

gradually declines, often becoming undetectable within 6 months (19, 20). Meanwhile, the serum 

ALT and aspartate aminotransferase (AST) level can be elevated after the acute infection phase.  

Chronic infection exhibits a similar serological profile as acute infection during the first 

weeks following infection. However, it is considered when HBsAg persists longer than six months 

and detectable viral DNA in patient’s serum (18). The serological profile of progression to acute 

(A) and chronic (B) HBV infection is shown in Figure 3.  
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Figure 3. Typical serological courses of acute and chronic hepatitis B 

(A) Typical serologic course of acute HBV infection. (B) Typical serologic course of acute infection with 

development to chronic HBV infection (21). 

 

1.5. Therapy of chronic HBV infection 

Clinically approved treatments for CHB infection include nucleos(t)ide analogues (NAs) 

and interferon alpha (IFNα) based combination therapies (22, 23). NAs consists of three structural 

groups: L-nucleosides (lamivudine) and alkyl phosphonates (telbivudine, adefovir and tenofovir), 

and D-cyclopentanes (entecavir) (24). The first treatment of CHB infection was IFNα-based 

treatment, which has both antiviral activity and immune-stimulatory properties (23). In individuals 

with HBV infection, pegylated-IFNα treatment is more effective than standard treatment of IFNα 

due to improved pharmacokinetic properties. Furthermore, combination treatment of pegylated-

IFNα with NAs improves serological responses compared with monotherapy (23). However, these 

treatments do not provide complete cure since the virus persists in the nucleus of the infected 

cells. Moreover, these treatments have limitations, such as multiple side effects, drug resistance, 

and high cost for treatments of chronically infected patients (14, 24, 25). Thus, new strategies for 

efficient virus eradication and cure are urgently needed. An improved understanding of the viral 

life cycle and virus-host interactions may allow for such novel strategies to be developed. The 

clinically approved anti-HBV drugs are shown in Table 2.  
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Table 2. Approved drugs for treatment of hepatitis B; from reference (23) 

 

 

As shown Figure 4, most NAs effectively suppress HBV replication through inhibition of 

HBV DNA polymerase activity. Thus, antiviral therapy with NAs is the first-line of treatment for 

CHB patients. However, resistance to NAs treatments appears following discontinuation of 

treatment and/or long-term use of NAs. For instance, HBV polymerase mutations in the YMDD 

motif, cause resistance to lamivudine treatment (23, 26). Moreover, current NAs do not directly 

target cccDNA (27), resulting in cccDNA persistence in the nucleus of the infected cell. Therefore, 

not only design correct combination therapies to prevent the progression of liver disease by HBV 

infection but also development of new therapeutic targets to prevent resistance are required.  
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Figure 4. The efficacy of approved anti-HBV drugs 

Comparison of rates of viral suppression and mean baseline hepatitis B virus DNA levels (log10 copies per 

mL) at 1 year from clinical studies of pegylated IFNα-2a, lamivudine, adefovir, telbivudine, tenofovir, and 

entecavir that enrolled nucleos(t)ide-analogue-naive HBeAg-positive and HBeAg-negative patients; from 

reference (24). Abbreviations for this figure: PEG, pegylated interferon alfa-2a; LVD, lamivudine; ETV, 

entecavir; ADV, adefovir; LdT, telbivudine; TDF; tenofovir. 

 

An end stage therapeutic option for HBV-induced cirrhosis and cancer is liver 

transplantation. In general, patients awaiting liver transplantation will be treated with NAs to 

reduce progression of disease and to prevent potential flares of hepatitis. After liver 

transplantation, reinfection of the graft is systematic. Indeed, complete eradication of HBV is 

extremely rare because HBV persist in blood (28-30). Thus, new lifelong antiviral therapy and 

immunosuppressive treatments are needed for preventing recurrent hepatic flares.  
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Hepatitis B immune globulin (HBIG), a pool of human immunoglobulins, efficiently 

prevents HBV infection after liver transplantation. It has been reported that recurrence rate in 

HBsAg positive patients undergoing liver transplantation with treatment of HBIG was significantly 

reduced compared with non-treated patients (31). However, its costs for regular injection, and 

mutation of viral epitope occurs can lead to immune escape (32). Treatment of NAs reduces the 

recurrence rate after liver transplantation (33, 34). However, transplanted patients presented a 

higher rate (up to 70%) of drug resistance after 5 years in therapy (35, 36).  

 

 1.6. Vaccines against HBV infection 

Vaccination is the most effective method for preventing new HBV infection, and it is widely 

used in the world. Although HBV is transmitted at a high rate by parenteral, percutaneous and 

sexual contact, HBV vaccine effectively prevents against HBV infection. The WHO recommended 

that all countries introduce universal hepatitis B vaccination. Consequently, many countries have 

shown a decrease in the HBV carrier rate and HCC incidence after the introduction of 

immunization campaigns (37).   

The first clinical trials for plasma-derived HBV vaccine were conducted in 1982, when 

purified serum derived particles were used after viral inactivation by urea, pepsin, and heat (38). 

Thereafter, recombinant HBV vaccines were developed by overexpressing the HBV surface 

antigen in yeast. This vaccine is still widely used today. Third generation of vaccines are based 

on a mammalian cell-derived recombinant system overexpressing the viral preS region, which is 

important for viral binding on the cell surface. This vaccine should be more efficient than previous 

vaccines, but it is not widely used. Despite the global high efficacy of HBV vaccination, universal 

vaccination (UV) programs have not been adopted yet in several countries. It has been reported 

that approximately 10% of vaccinated people fail to mount an efficient immune response after 

completing vaccination (39). Moreover, one risk persists, since HBV in vaccinated subjects may 

develop mutations, allowing escape from immune responses induced by vaccination (39).  
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2. HBV molecular biology 

 

2.1. HBV molecular virology 

The Hepadnaviridae family includes DNA viruses causing hepatitis in a various number of 

hosts. The family includes two genera, avihepadnaviruses and orthohepadnaviruses (40). Their 

host range is restricted to either birds or mammals, respectively (1). Whereas, the 

avihepadnaviruses are transmitted by vertical routes, orthohepadnaviruses spread by horizontal 

transmission. The genome size of orthohepadnavirus is bigger than that of the avihepadnavirus. 

In general, these viruses have narrow host ranges, and infection leads to variable outcomes (1).  

Avihepadnaviruses exclusively infect birds (41); these include duck hepatitis B virus 

(DHBV) and heron hepatitis B virus (HHBV). Recently, parrot hepatitis B virus (PHBV) (42) was 

identified as an avihepadnavirus. Orthohepadnaviruses infect mammals (43, 44), including 

humans, bats, rodents, and primates. Notable examples include, HBV, woodchuck hepatitis virus 

(WHV), ground squirrel hepatitis virus (GSHV) and woolly monkey hepatitis virus (WMHV). 1 

genotypes have been described for HBV. 

 

2.2. The hepatitis B virus 

HBV is one of the smallest human DNA viruses. It is a 42-47 nm enveloped virus also 

called Dane particles (45) (Figure 5). Dane particles are actual infectious particles which contain 

the partial double-stranded (ds) HBV genome and the viral polymerase (46, 47). The basic unit of 

the capsid is formed by dimerization of two core proteins. HBV capsids present an icosahedral 

symmetry formed of 120 dimers. The capsid is surrounded by the viral envelope from reticulum 

endoplasmic origin, in which are embedded the three viral envelop proteins HBsAg, i.e. the small 

(S), middle (M) and the large (L) HBsAg. These transmembrane proteins share the C-terminal 

domain corresponding to the S protein, but differ in their N-terminal domains. The N-terminal 

domain of L-HBsAg is called preS1, while the N-terminal domain of M is called the preS2 domain. 

The preS1 domain is involved in HBV binding to the surface of the human hepatocyte (48, 49). In 

addition HBeAg is present between the viral envelop and the capsid.   
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Figure 5. Schematic representation of the different types of HBV infectious and noninfectious 

particles produced by HBV infected cells 

The infectious HBV particle also known as Dane particle (left). The genome consists of a partially dsDNA 

genome bound to the viral polymerase encapsulated in the capsid. Two different forms of subviral particles 

lacking the nucleocapsid are presented (right). Figure not according to the scale. Abbreviations used in this 

figure: HBeAg, HBV envelop antigen; HBsAg, HBV surface antigen. 

 

Unlike other viruses, HBV virus-infected cells produce noninfectious subviral particles 

(SVPs) (Figure 5). These empty spherical or filamentous SVPs, composed only of a lipid 

membrane and HBsAg, are approximately 22 nm in diameter but differ in their length (50). SVPs 

differ from infectious viral particles by their ratio of L-, M- and S-HBsAg (51). The 22 nm of 

spherical particles are produced in excess, more than the Dane particle. Due to lack of the 

nucleocapsid containing viral genome and polymerase, they thus are noninfectious particles (52). 

 

2.3. The HBV viral genome 

The genome of HBV consists of approximately 3.2 kb of partially circular dsDNA (known 

as relaxed circular, rcDNA) with the non-ligated minus-strand covalently linked to the viral DNA 

polymerase (53). This compact genome encodes 4 open reading frames (ORFs) that are partially 

overlapping. This allows the virus to replicate autonomously with minimal genome information. 

The complete minus-strand is the template for transcription. The incomplete plus-strand will be 
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completed in the infected cells to form the cccDNA. It is about two-thirds complete for HBV, almost 

complete for DHBV (47, 54).  

The genomic sequence presents at the 5’ terminus of each strand, direct repeat (DR) 

sequences that are complementary and help to maintain the configuration as a circular DNA (55). 

DRs are important for priming viral replication (56).  

 

 

Figure 6. Genetic organization of the HBV genome (genotype ayw) 

The internal black circle represents genomic position. Partially double-stranded genome shows the four 

encoded ORFs reading by different colored lines. The genome consists of a circular, partially double-

stranded genome. It is known rcDNA, repaired into cccDNA. cccDNA serves as a template for viral 

transcription. The Enh1, Enh2, DR1, and DR2 are indicated by different colors. The outer black circles 

represent the viral transcripts with polyadenylation tails. The core and polymerase ORF are in the same 

orientation and on the same bicistronic transcript, the S translational reading frame overlaps the polymerase 

reading frame (57). The black arrowheads present the position of different initiation sites on each ORF; 

cartoon from reference (58). Abbreviations used in this figure: rcDNA, relaxed circular DNA (rcDNA); 

cccDNA, covalently closed circular DNA; Enh, enhancers; DR, direct repeats.  
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2.4. The HBV transcripts 

HBV transcription and replication process is highly complex and unique for 

Hepadnaviruses. HBV transcription is controlled by four promoters (the core, preS1, pre S2/S, 

and X promoters) and two enhancer regions (Enh1 and Enh2) (52), generating viral capped and 

polyadenylated mRNAs that are 3.5, 2.4, 2.1, and 0.7 kb in size (58). The 3.5 kb mRNA known 

as pre-core mRNA serves as template for precore/core, HBeAg and capsid protein respectively, 

and viral polymerase synthesis. Alternatively, the pgRNA constitutes also the template for viral 

replication. The 2.4 kb (known as preS1 mRNA) is the template for the translation of L-HBsAg 

and 2.1 kb transcripts (known as pre S2/S mRNA) are used for the translation of the M-HBsAg 

and S-HBsAg. The smallest 0.7 kb transcript encodes the X protein (58). HBx might be produced 

immediately after formation of the cccDNA minichromosome resulting in activation of the other 

three promoters by direct or indirect mechanisms (59). 

 

2.5. Function and characterization of HBV viral proteins 

HBV transcripts contain multiple start codons to generate distinct proteins from 

overlapping ORFs.  

 

2.5.1. HBV envelope proteins, HBsAg  

Tree different HBV envelope proteins are expressed from the preS1 (2.4 kb) and preS2/S 

(2.1 kb) transcripts. Envelope proteins are synthesized and immediately embedded in the 

endoplasmic reticulum membrane. The major function of these proteins is to form the HBV 

envelop allowing the viral particles to bind to susceptible cells. The preS1 domain is crucial for 

viral entry. The S-HBsAg (21 kD) is the smallest surface antigen, sharing the same C-terminal 

region with the two larger surface antigens. The M-HBsAg (31 kD) overlaps the S gene and has 

additional sequences known as preS2. The L-HBsAg (39 kD) is the largest surface antigen, 

containing S, preS2 and additional amino acids forming the preS1 domain, which interacts with 

the HBV entry receptor, human sodium/taurocholate cotransporting peptide (hNTCP/SLC10A1, 

referred to as NTCP in this study) (48, 49, 60). Each HBV envelop protein contains glycosylation 

sites and the preS1 domain in L-HBsAg is myristoylated. Of note the myristoylated preS1 domain 

is the Myrcludex B, an antiviral peptide that blocks specifically HBV entry into hepatocytes (48).  
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HBV envelope proteins are highly immunogenic and are used as immunogen for the 

preparation of HBV vaccines (61).  

 

     

Figure 7. Domain structure of HBV surface proteins 

(A) HBV surface protein L, M, and S-HbsAg share the S domain with 4 transmembrane domains (I-IV). The 

disulfide-linked cysteine moieties, as a part of the antigenic loop (known as AGL) is important for virus 

infectivity. The M-HBsAg has, in addition to domain S, the preS2 domain. The L-HBsAg contains an 

additional 107 amino acids (preS1) where interacts with the HBV receptor, NTCP. The myristoylated 47 

amino acids of the L-HBsAg known as Myrcludex B, inhibits HBV entry by interruption of receptor binding. 

(B) Transmembrane topology of L-HBsAg in infectious HBV particle. The preS domains are exposed on the 

external face of the virion; cartoon from reference (48). 

 

2.5.2. HBV core or capsid protein, HBcAg 

The 21 kD HBV capsid protein core, or HBcAg, is translated from pgRNA transcript. Core 

dimerizes and dimers associate to form the viral capsid. The core protein is highly conserved 

among all HBV genotypes (62). Core protein dimers form the basic structural unit of the HBV 

capsid and ultimately provide the icosahedron symmetry of the capsid (39). Two types of capsids 

(icosahedral symmetry T=3, 30 nm in diameter; and T=4, 34 nm in diameter) have been observed 

by cryo-electron microscopy (63). The core protein is composed of two separate domains. The N-
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terminal domain (NTD) is essential to form the capsid shell (64), while the C-terminal domain 

(CTD), that can be phosphorylated is required for viral RNA packaging and DNA synthesis (65-

67).  

HBcAg is an indicator of active viral replication in HBV-infected patients, like HBeAg, but 

in contrast to HBeAg it is not secreted. It has been suggested that core binds to HBV cccDNA in 

the nucleus and reduces the spacing of nucleosomes on cccDNA-histones complexes which 

regulate HBV transcription (68, 69). However, it is still controversial thus further investigation is 

required.  

 

 

Figure 8. HBV core protein dimers depend on their activity 

The structure of HBcAg has been resolved in 1999 (70). HBcAg dimers differ structurally from monomers. 

The intradimer helical bundle (Red narrow) is distorted in free HBcAg, resulting in an impossibility to form 

an icosahedra capsid; cartoon from reference (71).  

 

2.5.3. HBV e antigen, HBeAg 

HBeAg (15kD) is a glycoprotein encoded by the precore/core genes. The precore/core 

protein is cleaved in the endoplasmic reticulum at its N-terminus at a signal peptidase recognition 

motif and at its C-terminus by a peptidase before secretion in the extracellular medium or the 

blood stream (72). Interestingly, HBeAg is not associated with virions and is secreted 

independently from HBV infected cells (73). From a diagnostic perspective, the presence of 

HBeAg in the serum is an important indicator of active HBV replication. It has been reported that 

HBeAg suppresses immune responses induced by HBV core proteins (74, 75). However, the 
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exact role of HBeAg is still unclear. 

 

 

Figure 9. The crystal structure of HBeAg 

Ribbon diagram of the HBeAg monomer (A) and dimer (B). (A) The blue to red color from N- to C-terminus, 

with the propeptide (magenta) shown, forming an intramolecular disulfide bond (yellow). (B) Front subunit 

is colored gray and each color in structure represents according to the diagram. Hairpins of the a3b and 

a4a helices from each subunit form the dimer interface, supported by the propeptides intercalated between 

subunits; cartoon from reference (76). 

 

2.5.4. HBV polymerase  

Approximately, 80% of the viral genome encodes the viral polymerase (also referred to as 

Pol). Pol (94 kD) consists of functional domains and one variable spacer region. There is a 

terminal protein (TP) domain at the amino end, a spacer domain, the reverse 

polymerase/transcriptase (RT) domain and an RNase H domain.  

 

 

Figure 10. The four domains of the HBV polymerase (genotype D) 

The domain of HBV polymerase are shown. Numbering of TP domain and spacer domain is according to 

genotype D, and follows the standardized numbering for RT and RNase H domains; cartoon from reference 

(77, 78).  
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The TP domain at the N-terminus of the HBV polymerase is responsible for initiation of 

genome replication, including binding to the pgRNA, and RNA packaging (57, 79, 80). The spacer 

domain separates the TP domain from the RT domain. The spacer domain brings flexibility to the 

protein and supports numerous mutations (81). Various studies have shown that most amino 

acids within the spacer region can be mutated without altering polymerase domain functions (82, 

83). The Pol/RT domain encodes an RNA-dependent DNA-polymerase activity and a DNA-

dependent DNA-polymerase. The reverse transcription activity is important for genome 

replication, as it catalyzes the synthesis of the DNA genome minus-strand using pgRNA as a 

template. Subsequently, the DNA dependent DNA polymerase activity is important for the 

synthesis of the DNA plus-strand, by using the DNA minus-strand as template. The polymerase 

is the target for currently approved anti-HBV drugs (84). Several teams have developped a model 

of the HBV RT domain by comparison with the human immunodeficiency virus (HIV) RT (83, 85). 

This model is used for uncovering potential recognition sites for NAs. The RNase H domain 

degrades the pgRNA templates during synthesis of the minus-stranded genomic DNA. It has also 

been shown that this domain is responsible for pgRNA packaging (86). 

 

Figure 11. The 3D structural model of HBV polymerase 

The finger, palm, and thumb subdomains in HBV polymerase are 

represented in green, blue and salmon ribbons. DNA template-primer 

duplex for replication is shown in orange cartoon mode. The insert 

indicates the catalytic subdomains; cartoon from reference (87). 

 

 

2.5.5. HBV X protein, HBx 

HBx protein (17kD) is encoded by the smallest HBV ORF. The X ORF is exclusive to 

orthohepadnavirus genus. Various studies have shown that HBx has a multifunctional role during 

HBV replication, especially for initiation of viral transcription from cccDNA (88-90). HBx can 

interfere with host signal transduction, transcriptional activation, DNA repair, and inhibition of 

protein degradation proliferation signaling (89, 91-93). It was also reported that Wnt/β-catenin, 
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p53, and AKT (which have been implicated in hepatocellular carcinoma (HCC) are affected by 

HBx proteins by promoting cell cycle progression (91, 94, 95).  

 

2.6. The viral replication cycle 

The molecular details of hepadnavirus replication were initially demonstrated using DHBV 

and later extended to HBV, similarities between HBV and DHBV are striking (96, 97). 

HBV has developed unique mechanisms to actively replicate in the infected cells without 

cytotoxicity. Unlike other viruses, HBV genome replicates via reverse transcription of pgRNA 

inside the virion (52, 97).  

The replicative HBV cycle is a sophisticated process that is regulated by both host and 

viral factors. Although the mechanisms of HBV replication have been investigated in depth, certain 

aspects of the cycle are still poorly understood and the HBV replication cycle has yet to be fully 

elucidated. The different steps of HBV replication are briefly illustrated in Figure 12.  

 

 

Figure 12. HBV replication cycle 

HBV enters hepatocytes by attachment to HSPGs then binding to NTCP. Following fusion, the nucleocapsid 
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is transferred to the host nucleus, allowing the viral genome (rcDNA) to enter into host nucleus. The rcDNA 

is repaired by host enzymes to form cccDNA. The viral mRNAs and pgRNA are transcribed from the cccDNA 

by the host RNA polymerase II, once capped and polyadenylated they are exported into the cytoplasm 

where they are translated in viral proteins. pgRNA is packaged by core protein with the viral polymerase, 

and the viral genome is reverse transcribed to produce progeny rcDNA. The mature nucleocapsid is 

enveloped and released from HBV infected cells or transported back to the nucleus for recycling. 

Abbreviations used in this figure: HSPGs, surface heparan sulfate proteoglycans; NTCP, 

sodium/taurocholate cotransporting polypeptide; rcDNA, relaxed circular DNA; cccDNA, covalently closed 

circular DNA; pgRNA, pregenomic RNA. 

 

2.6.1. HBV attachment and entry 

HBV exclusively infects hepatocytes. This tissue specificity suggests that liver-specific 

HBV receptors and/or co-factors are mainly expressed at the surface of hepatocytes (98). From 

the virus point-of-view, 75 amino acid residues in the N-terminal region of the preS1 domain of 

the HBV large envelope protein are crucial for binding to the viral receptor(s) (1, 49). Indeed, 

although the preS1 domain mediates viral attachment to ubiquitous cell surface heparan sulfate 

proteoglycans (HSPGs) including glypican 5 (GPC5) (99, 100) specific receptors on the 

hepatocyte surface are also required. Recently, NTCP, a bile acid transporter mainly expressed 

at the basolateral membrane of human hepatocytes (101), has been identified as an HBV receptor 

allowing virus entry by interaction of the N-terminal preS1 domain of the L protein (98). 

Interestingly, NTCP overexpression in human hepatoma cell lines such as Huh7 or HepG2 cells 

(which lack the expression of the receptor and cannot be infected by HBV in vitro) renders them 

susceptible to HBV infection and provides unique cell culture models to study HBV entry (98, 

102).  

After receptor binding, the virion envelope fuses with either the plasma or endosomal 

membranes. A recent study has suggested that clathrin-mediated endocytosis is likely required 

for HBV entry steps (103). Caveolin-1 mediated endocytosis has been proposed as an alternative 

mechanism for HBV entry (104). This process may be induced by low pH and/or proteolytic 

cleavage of envelope protein (105). The nucleocapsid is then transported via microtubules to the 

nuclear pore complexes (NPCs) at the nucleus membrane (106). Upon reaching the NPCs, the 

C-terminus of the HBV core protein interacts directly with nucleoporin 153, an essential 

component of the basket of NPCs (107). However, the detailed mechanisms of capsid transport 
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and genome release into the nucleus after endocytosis are still poorly understood.  

2.6.2. cccDNA formation in the nucleus 

Following nuclear entry, HBV rcDNA is converted to a plasmid-like cccDNA (52). This 

process is probably carried out by host cell DNA repair machinery and is independent of viral 

polymerase activity (108). Moreover, cccDNA is complexed with both histone and non-histone 

proteins, including transcription factors, coactivators, chromatin-modifying enzymes and viral 

proteins such as HBc and HBx (68). Interestingly, cccDNA is rapidly transcriptionally silent in 

absence of HBx suggesting a key role of this viral protein in promoting HBV replication (88). 

Therefore, the transcriptional activity of cccDNA, which behaves like a nucleosome bound 

minichromosome is highly modulated by epigenetic modifications, such as methylation, 

acetylation, ubiquitination and SUMOylation (109). It seems that cccDNA can be eliminated 

following cell division (108). However, chronic HBV infection persists in the absence of productive 

replication of the virus (52). Thus, the elimination of cccDNA remains a therapeutic challenge. 

 

2.6.3. Transcription of viral RNA 

In the nucleus, the cccDNA serves as template for transcription by the cellular RNA-

polymerase II of viral mRNA transcripts and the pgRNA (110). The 5’ capped and 3’ 

polyadenylated viral mRNA transcripts are transported to the cytoplasm and translated by 

ribosomes to form viral proteins (i.e., core, surface antigens and HBx).  

The pgRNA also transfers to the cytoplasm via nuclear pore export. The pgRNA has a two 

crucial functions: (i) it is a bicistronic mRNA acting as the template for precore/core and the viral 

polymerase translation and (ii) it is the template for viral rcDNA synthesis.  

The ε stem-loop structure is essential both for the binding of pgRNA to the viral polymerase 

and for pgRNA packaging into capsid particles (111). However, how the pgRNA/viral polymerase 

complex is recognized by the assembled core protein dimers is not well understood. 

 

2.6.4. HBV pgRNA packaging and encapsidation 

A unique property of HBV is that reverse transcription occurs inside the immature capsid. 
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Within the capsid, the viral DNA polymerase binds to the 5’ end of the pgRNA to initiate 

nucleocapsid assembly and reverse-transcription of the pgRNA into the minus-strand of the viral 

genome. The ε stem-loop structure, approximately 60 nucleotides, is located at both 5’ and 3’ 

ends of the pgRNA. Only the ε stem-loop structure at the 5’ end of pgRNA promotes the packaging 

of viral pgRNA with the polymerase into the capsid (112, 113). The ε stem-loop induces the 

structural changes to initiate reverse transcription (52). 

For reverse transcription initiation, the ε stem-loop element recruits a 3’ terminal OH group 

of tyrosine residue from the TP domain of the viral polymerase (57, 114, 115) and forms a covalent 

tyrosyl-5’-DNA-phosphodiester linkage. This allows then to add the first 3-4 nucleotides using 

bulge regions within ε element that serve as template for elongation (97). Subsequently, reverse 

transcription of the pgRNA occurs and synthesis of minus-strand viral DNA from 5’ to 3’ direction 

provides a unit length minus-strand DNA copy of the pgRNA carrying a small terminal redundancy 

(‘r’). Simultaneously, most of pgRNA is degraded by activation of RNase H of the TP domain of 

the polymerase (53). Completion of minus-strand DNA synthesis results in a genome-length 

single minus-strand DNA. However, a 15-18 length of nucleotides at the 5’ capped pgRNA 

including DR1 sequences remain. This RNA sequence functions as a RNA primer for synthesis 

of plus-strand genomic DNA. In this template switch, the plus-strand primer moves from DR1 to 

DR2 and initiates plus-strand DNA synthesis from DR2. As ‘r’ at the other end has the identical 

sequence, exchange of the two ends allows plus-strand DNA synthesis to proceed. Finally 

partially dsDNA with over length minus-strand carrying covalently linked polymerase, and an 

incomplete plus-strand is synthesized, constituting the rcDNA (Figure 13).  
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Figure 13. Model of HBV reverse transcription 

(A) The viral polymerase TP domain initiates minus-strand DNA synthesis at the bulge of the ε element at 

the 5’ end of pgRNA. The first 3-4 nucleotides are synthesized with the ε sequence used as the template 

(protein-priming at 5’ ε). Following the minus-strand DNA synthesis, RNase H activity of polymerase 

degrades the pgRNA template ((-) DNA completion). (B) Non degraded pgRNA primer including DR1 

sequence translocate to DR2 and initiates the plus-strand DNA synthesis until the 5’ end of the minus-

strand DNA, where it runs out of template. (C) Rarely, an in-situ priming process occurs, the plus-strand 

DNA synthesis is initiated from the DR1 sequence on the minus-strand template, resulting in the dsl DNA 

form of genome; cartoon from reference (108). Abbreviations used in this figure: TP, terminal domain; RT, 

reverse polymerase/transcriptase domain; pA, polyadenylated RNA; cap, capped RNA; ss, single-stranded; 

pgRNA, pregenomic RNA; DR, direct repeat; dsl DNA, double-strand linear DNA.  

 

When rcDNA is formed, nucleocapsids are matured and enter the endoplasmic reticulum 

were they acquire their envelope. Alternatively, rcDNA is recycled to the nucleus to form new 
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cccDNA molecules (111, 116, 117), which may explain how the cccDNA level can be maintained 

in the absence of reinfection (118). It has been shown that DHBV not HBV rcDNA efficiently 

converts into cccDNA by cross-species transfection assays (119). Thus, the knowledge on rcDNA 

recycling is verified by experiments performed in the DHBV model.  

Rarely, in-situ elongation of RNA primer provides double-strand linear DNA molecules (dsl 

DNA) (47, 48). Interestingly, dsl DNA is frequently detected in HBV related HCC patients (49), 

suggesting that it can be integrated into host chromosome.  

 

2.6.5. Production of viral particles  

HBV has three envelope proteins known as L-HBsAg, M-HBsAg, and S-HBsAg. They are 

all synthesized from the same ORF of the viral genome, by using different start codons. Thus, M-

HBsAg has S gene and additional amino acid known as preS2. L-HBsAg consists of S gene with 

preS1 and and preS2 additional amino acids, respectively. Nascent envelope proteins are quickly 

oligomerized in the ER. Finally, the maturing nucleocapsids containing rcDNA are enveloped at 

the post-endoplasmic reticulum-pre-Golgi membrane (120, 121) and infectious progeny virions 

are secreted. Of note, an important proportion of oligomerized envelope proteins formed at this 

stage are not associated with nucleocapsids and enter the Golgi apparatus to be secreted by the 

infected cell. These empty particles are the spherical and filamentous empty particles observed 

in patient sera and cell culture as we described above (Figure 5).  

 

3. Host response to viral infection 

The innate immune system is the first line of host defense against infections. It is usually 

initiated by the recognition of pathogen-associated molecular patterns (PAMPs) (122), which are 

pathogens conserved structures recognized by the host pattern recognition receptors (PRRs) to 

initiate antiviral responses and restrict virus spreading. These receptors are located at the cell 

surface, in the cytosol or in endosomal compartments. Upon PAMP engagement, PRRs trigger 

downstream signaling cascades ultimately inducing the expression of a variety of proinflammatory 

cytokines, chemokines, and interferons (IFN). These molecules coordinate the early stage of 

response to infection and at the same time represent an important link to the adaptive immune 
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response, which provides long-term anti-viral protection by mounting an HBV-specific T and B 

lymphocyte response (123, 124). In particular, the type I IFN family has diverse effects on the 

immune system during pathogen infection, by directly or indirectly inducing supplementary 

mediators. In humans, the type I IFN family is a multi-gene cytokine family that encodes 14 

partially homologous IFNα subtypes and a single species of IFNβ, IFNκ, IFNω, and IFNɛ, while 

there is only one type II IFN known as IFNγ.(125). The IFNα and IFNβ (referred to as IFNα/β) are 

broadly expressed. Their ability to induce antiviral effects in both virally-infected and their 

bystander cells has been well documented (126).  

After initial exposure to a specific antigen, adaptive immunity, an antigen-specific immune 

system, produces memory cells, which persist in the body and are able to mount a rapid response 

to a second infection. It has been shown and is widely accepted that adaptive immunity is needed 

for efficient clearance of HBV infection (127). However, it is still controversial whether HBV 

induces innate immune responses in the early stages of infection. This stage is more difficult to 

analyze in humans, due to the lack of patients identified in the early stage of HBV infection. 

However, in acutely HBV-infected chimpanzees, HBV infection did not induce any innate antiviral 

responses in hepatocytes and in the liver (12). Recently, the development of cell culture models 

provided insights into the temporal and spatial immunological changes during HBV infection. It 

also highlighted the importance of innate immune responses during HBV infection (128).  

 

3.1. Pattern recognition receptors 

Upon PAMPs recognition, PRRs initiate production of IFNα/β by activating several 

intracellular signaling pathways. PAMPs are derived from pathogens and thus distinguishable 

from “self” (129, 130). 
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Figure 14. Cellular PRRs 

TLRs are localized at the cell surface or at the endosomal membrane. PAMPs are recognized via the LRR 

domain (pink) and activate signaling cascades through the TRIF domain (blue). RLRs and NLRs activate 

TLR-independent pathways that have functional roles in the cytoplasm. The cartoon is taken from reference 

(131). Abbreviations used in this figure: TLRs, Toll-like receptors; PAMP, pattern associated molecular 

pattern; LRR, leucine-rich repeat; TRIF, TIR-domain-containing adapter-inducing interferon-β; RLR, retinoic 

acid-inducible gene I RIG-I-like receptors; NLR, nucleotide-binding oligomerization domain-like receptors; 

TIR, Toll/interleukin-1 receptor; CARD, caspase recruitment domain; NOD, Nucleosome binding 

oligomerization; PYD, pyrin domain.  

 

Generally, the PRRs can be categorized into two major classes depending on their 

subcellular localization. The extracellular PAMPs are typically found in the plasma or endosomal 

membranes. These, include several Toll-like receptors (TLRs), RIG-I-like receptor (RLR), Nod-

like receptor (NLR), and C-type lectin receptors (CLRs) (132). In most cases, these membrane-

bound PRRs are predominantly expressed in immune cells. In contrast, intracellular PRRs are 

found in the cytoplasm or nucleus of most mammalian cells. The different families of PPRs are 

shown in Figure 14. In this study, we will focus on the PRRs that recognize foreign nucleic acids 

in the cytosol to trigger immune signaling cascades.  

Nucleic acids generated during pathogen infection are effective PAMPs. Several PRRs 

leading to the production of pro-inflammatory cytokines including IFNs can detect viral nucleic 
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acids (133).  

 

3.2. Nucleic acid sensing by TLRs  

Nucleic acids generated during pathogen infection are effective PAMPs. In general, TLRs 

are integral glycoproteins with extracellular or luminal ligand-binding domains containing leucine-

rich repeat (LRR) motifs and a cytoplasmic signaling Toll/interleukin-1 (IL-1) receptor homology 

(TIR) domain (134). Upon the recognition of PAMPs by TLRs, they subsequently undergo 

oligomerization then induce intracellular signaling cascades. Despite sharing common structures 

and functional features, individual TRLs have unique characteristics, including the subcellular 

localization. TLRs 1, 2, 4, 5, and 6 are localized at the cell surface, while TLRs 3, 7, 8, 9, and 

likely 11, 12, and 13 are localized within intracellular compartments (135-138).  

Notably, four TLRs (TLR3, TLR7, TLR8 and TLR9) are localized in endosomal membranes 

and recognize different types of foreign nucleic acid. For instance, TLR3 recognizes dsRNA 

species, such as polyinosine-polycytidylic acid (poly (I:C), a synthetic analog of dsRNA) as well 

as dsRNA derived from protozoa, fungi, replication or transcription intermediates (126). TLR7 and 

TLR8 are both sensors for single-stranded (ss) RNA and are structurally related. TLR9 recognizes 

unmethylated CpG motif in dsDNA.  

Following the recognition of viral components by endosomal TLRs, adaptor proteins are 

recruited, such as TIR-domain-containing adapter-inducing interferon-β (TRIF) or myeloid 

differentiation primary response protein 88 (MyD88), which then activate signaling cascades via 

interferon regulatory factors (IRFs) and nuclear factor kappa B (NF-kB). This leads to the induction 

of type I IFNs, proinflammatory cytokines and chemokines. These molecules not only contribute 

to control viral replication but also activate adaptive immunity.  
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Figure 15. Endosomal Toll-like receptors specialized for RNA and DNA binding 

Endosomal TLRs including TLR3, TRL7/8, and TLR9 detect nucleic acids derived from pathogens. 

Activation of these receptors leads to the recruitment of adaptor protein TRIF or MyD88, which induce 

signaling cascades via IRF3 and NF-κB and lead to the up-regulation of type I IFN and inflammatory 

cytokines; The cartoon is taken from reference (139). Abbreviations used in this figure: ds, double-stranded; 

ss, single-stranded; TLR, Toll-like receptor; TRIF, TIR-domain-containing adapter-inducing interferon-β; 

MyD88, myeloid differentiation primary response protein 88; IRF, interferon regulatory factors; NF-κB, 

nuclear factor kappa B  

 

Most viruses have evolved effective mechanisms to avoid recognition by host sensors, or 

to inhibit the activation of PRRs and/or their downstream signaling cascades. HBV infection, 

especially in early stage, modulates neither innate antiviral responses nor intrahepatic innate 

immune responses in HBV infected chimpanzee experiments (12). It has been reported that the 

TLR signaling pathway is blocked by HBV viral proteins (140). For instance, HBsAg suppresses 

TLRs signaling pathway via induction of IL-10 expression (141) and interferes with the JNK and 

MAP kinase pathway (142, 143). HBV polymerase suppresses activation of TLR3 and TLR4 
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mediated NF-κB signaling pathway in hepatoma cells (144). Moreover, down-regulation of TLR3 

(145), TLR4 (146), TLR7 (147), and TLR9 (148) has been reported in immune cells from CHB 

patients in HBV immune escape phase. However, there is no evidence that explains how HBV 

DNA or RNA templates function as PAMPs that trigger antiviral responses via TLRs.  

 

Table 3. Innate immune signaling pathways suggested to be interfered by HBV viral proteins; from 

reference (140) 

Nucleic acid sensor related cellular targets HBV viral proteins Reference 

TLR2-pathway HBsAg, HBeAg (142) 

TLR3-pathway Polymerase (149) 

TLR4-pathway HBsAg (75) 

TLR9-pathway HBsAg (150) 

Abbreviations used in this table: TLR, Toll-like receptor; HBs, HBV surface antigen; HBe, HBV envelop 

antigen. 

 

However, it has been reported that TLR-independent sensing can successfully be 

accomplished by retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) (151) and nucleotide-

binding oligomerization domain (NOD)-like receptors (NLRs) (152). These will be discussed in the 

following section. 

 

3.3. Cytosolic RNA sensing 

Several cytosolic RNA sensing pathways including RLRs and NLRs, are activated by 

detection of dsRNA by TRL3 or ssRNA by TRL7 and TLR8. RLRs have been identified as crucial 

cytosolic RNA sensors broadly expressed by immune and non-immune cells in vivo (153). There 

are three RLR members: RIG-I, melanoma differentiation-associated protein 5 (MDA5, also 

known as IFIM1) and laboratory of genetics and physiology 2 (LGP2, also known as DHX58) 

which are expressed in most cell types (154).  
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Figure 16. Intracellular RNA sensing by RLRs  

RIG-I and MDA5 play an important role in RNA sensing through recognition of different types of RNAs. RIG-

I detects short dsRNA or 5’ppp RNA, whereas MDA5 detects long dsRNA. LGP2 may function as a 

modulator of RIG-I and MDA5 signaling. Activation of RIG-I and MDA5 trigger the polymerization of MAVS 

in the mitochondria, which activates downstream signaling cascades, resulting in the induction of antiviral 

responses. Abbreviations used in this figure: RIG-I, Retinoic acid-inducible gene I; MDA5, Melanoma 

differentiation-associated protein 5; MAVS, Mitochondrial antiviral-signaling protein.  

 

RIG-I and MDA5 participate in type I IFN production via adaptor molecules cascades. RLR 

members have an essential role as sensor proteins. RIG-I and MDA5 both recognize viral RNA, 

but they have different ligand specificity. RIG-I recognize both poly(I:C) and 5'-triphosphate RNA 

from negative-strand RNA viruses such as rhabdoviruses, and influenza (154). Moreover, 

transcription intermediates produced during DNA viruses infections, including Epstein-Barr virus 

(EBV) (155), Kaposi sarcoma-associated virus herpesvirus (KSHV) (156), herpes simplex virus 

(HPV) (157), adenovirus (158) and HBV (159), can also be detected by RIG-I (154). MDA5 has 

been shown to sense RNA species arising during picornavirus, dengue virus, and West Nile virus 
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infection. Interestingly, poly (I:C) can be detected by both RIG-I and MDA5. It has been suggested 

that the length of dsRNA is an important factor for recognition by these sensors. Indeed, the long 

length of poly (I:C) is recognized by MDA5 (160), whereas small self-RNA produced by the 

antiviral endoribonuclease RNase L could activate RIG-I signaling (161). By contrast, LGP2 

negatively regulates RIG-I signaling while promoting the binding of RNA to MDA 5 (149, 154).  

NLRs are a family of cytosolic proteins with diverse immune functions (152). Generally, 

NLRs act as adaptor molecules rather than as receptors. Recently, NOD2, known as a sensor of 

bacterial envelopes, was also implicated in the production of type I IFNs in response to viral 

infection through the sensing of ssRNA produced during infection by a respiratory syncytial virus 

(RSV) and a paramyxovirus (162).  

As for other intracellular RNA sensors, Protein kinase R (PKR) senses viral dsRNA, while 

oligo-adenylate synthase (OAS) activates RNase L to degrade viral and cellular RNAs to block 

viral propagation and to induce apoptosis respectively (163).  

The HBV viral genome could potentially be detected by cytosolic nucleic acid sensors, 

when viral nucleocapsid are destabilized and disassembled (164). It has been suggested that 

HBV polymerase interferes with RIG-I and MAVS-mediated antiviral activity (149, 165). Although 

it has been reported that MDA5 suppresses HBV replication, CHB patient in immune escape 

phase present an alteration of MDA5 expression but not RIG-I (166, 167). Indeed, 5’ ε stem-loop 

element of HBV pgRNA that is crucial for viral replication is sensed by RIG-I, resulting in activation 

of innate immunity in human hepatocytes. In addition the authors showed that RIG-I counteracts 

the interaction of HBV polymerase with pgRNA (159). 

However, there is no definitive evidence from in vivo models demonstrating that RNA 

sensors are associated with detection of HBV RNA in human hepatocytes.  

 

3.4. Cytosolic DNA sensing 

DNA is regarded as an excellent stimulator of immune responses, even though it is the 

host genetic material. The presence of aberrant DNA in the cytosol, such as pathogenic DNAs 

during infection, the leak of self-DNA from the nucleus, mitochondria or lysosome, is considered 

as a danger signal in the cells. These conditions allow the induction of immune responses, 

including production of type I and type III IFNs (154, 168, 169). After type I IFNs are produced, 
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IFNα/β binds to the receptors comprised of the IFN receptors (IFNAR) 1 and IFNAR2 subunits. 

This binding activates downstream signaling through the Janus kinase/signal transducers and 

activators of transcription (JAK/STAT) pathway, leading to the activation of transcription of 

interferon stimulated genes (ISGs) (124). 

Several cytosolic dsDNA sensors able to induce type I IFN production (170) have been 

identified and characterized, including absent in melanoma 2 (AIM2, pyrin and HIN (PYHIN) 

domain-containing protein family), DNA-dependent activator of IRFs (DAI), DExD/H box helicase 

protein 41 (DDX41), IFN-inducible protein 16 (IFI16), and cyclic GMP-AMP (cGAMP) synthase 

(cGAS) (153, 171).  

DAI was shown to trigger type I IFN expression upon dsDNA binding and TBK1-IRF3 

interaction. Several researches have reported that DAI induces type I IFN response in HBV 

infected cells (172, 173). DDX41 is a DNA sensor that depends on Stimulator of Interferon Genes 

(STING) to induce type I IFNs (174). AIM2 is part of the inflammasome and plays a role in defense 

against viral and bacterial DNA (175). AIM2 was identified as a cytosolic DNA sensor capable of 

inducing inflammatory responses. It has been reported that AIM2 increased inflammation in renal 

glomeruli of HBV infected patients in the HBV immune tolerant phase (176). Another PYHIN 

protein IFI16 was suggested to act as a DNA sensor able to induce type I IFN production in a 

STING-dependent manner. It was shown that the stability of IFI16 in HSV-infected human 

fibroblasts was promoted by cGAS (177). cGAS, was recently identified as a cytosolic DNA sensor 

that induces type I IFN responses in a STING-dependent manner (178). The detailed information 

and functional role of cGAS will be described in following parts.  

The detection of HBV DNA by cellular sensors within infected cells is still poorly 

understood. In vivo data strongly suggest that HBV behave like a “stealth” virus not able to trigger 

any innate immune response (12, 179). Only a couple a studies suggests that HBV-derived 

dsDNA fragments (180) and viral nucleocapsid destabilization and disassembly (164) could 

induce innate immune responses. 
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Figure 17. Pathways of type I interferon induction by intracellular DNA sensors and receptor 

signaling 

Double-stranded DNA (dsDNA) binding to cytosolic sensors triggers expression of the genes encoding type 

I IFNs, which is mediated by several signaling pathways that all point on the STING/TBK1/IRF3/IRF7 

cascade. After binding of type I IFNs to the IFNAR1/2, signaling cascades are activated, including JAK/STAT, 

MAPKs, and PI3K pathways, thereby leading to expression of ISGs and the establishment of an antiviral 

state. Abbreviations used in this figure: dsDNA, double-stranded DNA; AIM2, absent in melanoma 2; DAI, 

DNA-dependent activator of IRFs; DDX41, DExD/H box helicase protein; IFI16, IFN-inducible protein 16; 

cGAS, cyclic GMP-AMP (cGAMP) synthase; IFN, interferon; IFNAR1/2, IFN receptors1/2; JAK/STAT, Janus 

kinase/signal transducers and activators of transcription, MAPKs, Mitogen-activated protein kinase; PI3K, 

Phosphoinositide 3-kinase; ISRE, Interferon-sensitive response element. 

 

3.5. Identification and characterization of the cGAS-STING pathway  

cGAS has been recently identified as a cytosolic DNA sensor. Activated cGAS produces 

the second messenger cGAMP, which directly binds to and activates STING to strongly trigger 

type I IFN production (178, 181).  
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Figure 18. cGAS-STING pathway for sensing of cytosolic DNA 

Cytosolic DNA arising during microbial infection binds to cGAS, which then synthesizes 2’3’-cGAMP to bind 

to and activate the adaptor STING. STING activation triggers signaling through TBK1 cascades. 

Phosphorylated TBK1 recruits IRF3 for phosphorylation, and phosphorylated IRF3 forms dimers, which 

then transfer to the nucleus to activate the expression of type I IFNs. Abbreviations used in this figure: 

mtDNA; mitochondrial DNA. 

 

3.5.1. 2’3’-cyclic GMP-AMP synthase, cGAS 

cGAS is the 2’3’-cyclic GMP-AMP synthase, that was identified by biochemical 

fractionation and quantitative mass spectrometry approaches (178). The product synthesized by 

cGAS, 2’3’-cGAMP (cGAMP), was discovered just before the function of cGAS (181). Human 

cGAS is composed of an unstructured and poorly conserved N terminus (1-160 amino acid) and 

a highly conserved C-terminus (161-330 amino acid) (182). The cGAS protein contains a 

nucleotidyltransferase (NTase) domain and a DNA binding domain (Mab21) (6). The Zinc-ribbon 

domain within Mab21 domain interacts with the major groove of the DNA (183, 184). Human cGAS 

presents structural similarities with human OAS1 which is activated by dsRNA sensing (185). 
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cGAS binds to dsDNA to form a 2:2 complex (186, 187), then undergoes conformational changes 

allowing the synthesis of 2’3’-cGAMP (referred as cGAMP) (178, 186).  

Binding of dsDNA to cGAS is sequence-independent, since cGAS is thought to bind to the 

sugar-phosphate backbone of the DNA (188). Short dsDNA efficiently binds and activate cGAS in 

vitro. However, in cells, dsDNA of at least 15 base pairs in length is required for activation of the 

cGAS-mediated pathway. cGAS can bind to ssDNA and synthesizes cGAMP, although the binding 

affinity to ssDNA is much lower than for dsDNA binding (184). Recent reports showed that stem-

loop structure of ssDNA derived from retroviral (HIV-1) replication intermediates and RNA:DNA 

hybrids can activate cGAS to produce cGAMP (189, 190). 

The function of cGAS is regulated by various mechanisms and factors. It was reported 

that direct interaction between Beclin-I autophagy protein and cGAS not only inhibits cGAMP 

production to decrease IFN production upon either dsDNA transfection or HSV-1 infection, but 

also enhances degradation of pathogenic DNA in the cytosol to prevent excessive cGAS 

activation (191). The AKT kinase was also reported to act as a negative regulator of cGAS 

enzymatic activity by phosphorylation, resulting in the reduction of cGAMP and IFNβ production 

and increase in HSV1 replication (192).  

More recently, tubulin tyrosine ligase-like enzyme (TTLL) 6 (polyglutamylation) or TTLL4 

(monoglutamylation) were identified, and it was shown that glutamylation of cGAS by these 

proteins interferes with its synthase activity and DNA-binding ability. Moreover, deglutamylation 

by cytosolic carboxypeptidase (CCP) 6 (polyglutamylation) and CCP5 (monoglutamylation) lead 

to the activation of cGAS (193). 

 

3.5.2. 2’3’-cGAMP  

The 2’3-cGAMP produced by cGAS functions as a second messenger. It directly binds to 

STING to induce conformational changes in STING allowing the subsequent activation of TBK1, 

ultimately leading to induction of type I IFNs (178, 181). 
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Figure 19. The crystal structure of human cGAS 

(A) Functional domains in human cGAS proteins. Five red starts indicate key catalytic residues (G212, 

S213, E225, D227 and D319). Mab21 domain contains the zinc-ribbon domain bearing critical amino acids 

for DNA binding. (B) Binding of dsDNA to cGAS induces conformational changes that lead to formation of 

a catalytic pocket where cGAMP is synthesized. The model is shown as ribbon representation with 

annotated domains and secondary structure according to references (182, 194).  

 

cGAMP has two phosphodiester bonds, one between the 2’-OH of GMP and 5’-phosphate 

of AMP, and the other between the 3’-OH of AMP and 5’-phosphate of GMP (185). These 2’-5’ 

and 3’-5’ linkages are catalyzed by cGAS to form 2’3’-cGAMP. So far, the mechanisms regulating 

the intracellular cGAMP level are not known, especially as no intracellular cGAMP 

phosphodiesterase has been identified so far.  

cGAMP can spread between cells via gap junctions (195), which allows infected cells to 

activate the interferon pathway in non-infected neighboring cells to resist to virus infection. 

Interestingly, it was reported that cGAMP can be incorporated into viral particles and thus is 

delivered to cells during infection (196, 197). These findings highlight mechanisms allowing quick 

responses to virus infection. 

 

3.5.3. Role of the cGAS-STING pathway in pathogen infection 

Most pathogens have evolved mechanisms to evade immune responses in their host. 
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Since the discovery of the cGAS-STING pathway, the ability of cGAS to sense dsDNA or 

RNA:DNA intermediates and induce immune responses has been investigated for many different 

pathogens (198).  

Indeed, many DNA virus infections activate the cGAS-STING pathway after sensing of 

their viral DNA, including HSV-1 (199, 200), murine gamma-herpesvirus 68 (MHV68) (201), KSHV 

(202), vaccinia virus (VV) (201), adenovirus(203), human papillomaviruses (HPV) (204), and 

human cytomegalovirus (HCMV) (205) and even HIV after genome reverse transcription (190). 

Moreover, cellular damage or cell death signaling caused by pathogen infection may 

induce antiviral responses through the cGAS-STING pathway. For example, HSV-1, VSV and 

dengue infections can induce cellular stress and trigger mitochondrial DNA (mtDNA) release into 

the cytosol, resulting in cGAS-STING-dependent type I interferon production (206, 207).  

 

Table 4. Viruses and intracellular DNA sensors; from reference (208) 

Virus Sensor Experiment model Response Reference 

HSV-1 cGAS Mice Type I IFN (187, 200) 

MHV68 cGAS Mice Type I IFN (201) 

AdV cGAS 
Murine macrophages  

Endothelial cell lines 
Type I IFN (203) 

HIV-1 cGAS Human macrophages Type I IFN response (209, 210) 

HCMV cGAS Human macrophages Type I IFN response (205) 

VV cGAS Mice Type I IFN (201) 

HSV-1 IFI16 
Human macrophages 

Human fibroblast 
Type I IFN, IL-1β 

(177, 211, 

212) 

HCMV IFI16 
Human macrophages 

Human fibroblast 
Type I IFN (211, 213) 

KSHV IFI16 
Human dermal microvascular 

endothelial cells 
IL-1β (214) 

EBV IFI16 Human B cell lines IL-1β (215) 

HIV-1 IFI16 
Human macrophages and 

human T cells 

Type I IFN 

Pyroptosis 
(210) 

MCMV AIM2 Mice IL-18 (175) 

VV AIM2 Murine macrophages IL-1β (216) 
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Abbreviations in this table: AdV, adenovirus; cGAS, cyclic GMP–AMP synthase; EBV, Epstein-Barr virus; 

HCMV, human cytomegalovirus; HSV, herpes simplex virus-1; IL, interleukin; IFN, interferon; KSHV, 

Kaposi’s sarcoma-associated herpesvirus; MCMV, murine CMV; MHV68, murine gammaherpesvirus 68; 

VV, vaccinia virus. .  

 

As well, RNA virus infection induce antiviral responses through the cGAS-STING pathway 

due to formation of RNA:DNA replication intermediates. For instance, lentivirus replication 

generates different forms of replication intermediators such as RNA:DNA hybrids, ssDNA, and 

dsDNA (217). Both stem-loop structures in ssDNA and unpaired Y-form dsDNA derived from HIV-

1 replication activate the type I IFN production via sensing by cGAS (190).  

Many viruses encode antagonists that enable the evasion of innate immunity by 

inactivating cGAS or the cGAS-STING pathway (208, 218). For example, the KSHV protein 

ORF52 was shown to inhibit cGAS enzyme activity through direct binding to cGAS (219). The 

cytoplasmic form of KSHV nuclear antigen LANA also inhibits cGAS activity (220). Moreover, 

HSV-1 regulatory protein ICP27 targets STING and TBK1 to prevent the phosphorylation of IRF3 

by TBK1 (221). DNA tumor viruses such as HPV18 and human adenovirus 5 (hAd5) inhibit the 

cGAS-STING pathway using their viral oncoproteins E7 and E1A, respectively (222). In the case 

of HBV, the DNA polymerase disrupts K63-linked ubiquitination of STING to block its signaling 

(223). 

One effective way for viruses to evade the cGAS-STING pathway is by “hiding” their viral 

DNA. cGAS is a key sensor for retroviruses, including HIV-1 and HIV-2 (209, 224). After HIV 

infection of macrophages, reverse transcription occurs inside the viral capsid to convert viral RNA 

into cDNA. The encapsidated viral DNA is thus shielded from cytosolic DNA sensors until it is 

transported to the nucleus, where it can be integrated into the host genome. However, as soon 

as HIV-1 replication intermediates are present in the cytoplasm, they are highly and specifically 

recognized by cGAS and trigger the induction of interferon via cGAS (190). 

Cytosolic sensing of HBV pgRNA has been indicated to inhibit HBV replication, but does 

not display a decrease of viral load (149). It was suggested that HBV probably evades the sensing 

of pgRNA by readily package the pgRNA into capsid to prevent recognition by cellular sensors 

(225).  

Recently, it is has been show that the cGAS-STING pathway inhibits HBV replication and 
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viral assembly in cell culture models (180, 226), even though endogenous expression of cGAS 

and STING is lower in hepatocyte-derived cell lines, particularly the commonly used Huh7 and 

HepG2 cells than in immune cells (227). These findings suggest that the cGAS-STING pathway 

may not be crucial for sensing HBV infection in hepatocytes. A recent report described that type I 

IFN production is not induced by foreign DNA or HBV infection due to lack of STING expression 

in human and murine hepatocytes (227). It suggests that hepatic non-parenchymal cells such as 

Kupffer cells, liver sinusoidal endothelial cells and other cell types may contribute to regulation of 

innate immune responses to HBV infection, rather than hepatocytes themselves.  

 

4. HBV experimental models 

Due to the lack of a suitable in vitro HBV experimental model, it was difficult to deeply 

study the HBV life cycle for many years. In recent years, the development of new experimental 

models has allowed advances in the understanding of the HBV replication cycle and HBV virus-

host interactions, the important steps are resumed Figure 20 (128). 

 

 

Figure 20. Development of HBV experimental models 

The organism models for studying HBV have shifted to non-primates models. Several HBV mouse models 
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have been developed within the last decades. Cell based systems initially used hepatoma-derived cell lines 

engineered to express the HBV DNA genome. These models have transitioned to infectious systems since 

NTCP was identified as an entry receptor, providing the first cell culture models to allow the study of early 

steps in infection. Stem-cell-derived hepatocyte-like cells and primary hepatocytes also support HBV 

infection. Cartoon from reference (128). Abbreviations in this figure: WHBV, woodchuck hepatitis B virus; 

DHBV, duck hepatitis B virus; NTCP, sodium/taurocholate cotransporting peptide. 

 

4.1. Primate models for the study of HBV infection 

The initial experiments in animal models allowed the understanding of virus-host 

interactions in HBV infection. The early studies in HBV research were performed in chimpanzees, 

other animal models such as woodchuck hepatitis virus and duck hepatitis virus (hepadnaviruses 

closely related to HBV) have been also successfully developed (79, 228, 229). 

The most relevant model for HBV vaccine development is the chimpanzee. Because of 

their high genetic similarity with humans and natural susceptibility for infection with hepatitis 

viruses, chimpanzees have proven to be the most useful model for studying viral hepatitis, 

especially immune responses to infection. However, the limited supply, ethical implications and 

high cost of this animal have precluded their use today. Moreover, there are distinct differences 

in spectrum of liver disease compared to humans (230, 231). 

 

4.2. Mouse models for the study of HBV infection 

Meanwhile, other small animal models have been developed: Either full-length HBV-

replicating or individual HBV protein-expressing transgenic mouse models allowed to study 

immune responses to HBV infection and to evaluate antiviral treatment strategies in vivo (232, 

233). As an example, hydrodynamic injection of HBV genome into mice allowed the establishment 

of a model leading to demonstrate the role of the innate immune system during HBV replication 

(234). Using the adenoviral gene delivery system, the HBV genome could be targeted to mice 

liver. This method was used to study chronic HBV infection, adaptive immune responses and for 

anti-HBV drug testing (235, 236). Nonetheless, as different host factors are expressed on human 

hepatocytes compared with murine hepatocytes, investigating viral entry and the initiation of 

infection remains impossible in transgenic mice (237). Accordingly, whereas cccDNA formation is 

efficiently observed in the transgenic mice liver, allowing the study of cccDNA biology (238), the 
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integration of the HBV genome into the genome of these mice, however, limits the utility of the 

model for identifying therapeutic cures. 

Humanized chimeric mice provide an attractive strategy to study HBV infection (239). 

These immodeficient mice engrafted with human hepatocytes can be infected by HBV purified 

from patient serum. Thus, it allows the different HBV genotypes as well as mutants to be studied. 

First, isolated primary human hepatocytes (PHH) are injected into the mouse liver to repopulate 

the mouse liver tissue. Replacement of the murine hepatocytes with human hepatocytes can also 

induce liver injury, thereby creating a growth advantage for engrafted human hepatocytes. 

Transplanted human hepatocytes maintain functional innate immunity. Accordingly, this model is 

ideal for studying the interactions of HBV with innate antiviral responses in human hepatocytes 

(240). This approach first used severe combined immunodeficiency (SCID) mice carrying a 

urokinase plasminogen activator transgene that is activated by a liver-specific albumin promoter 

(Alb-uPA) (241). Since then, additional humanized mouse models have been developed. 

Genetically engineered mice with human homologs of two HCV entry receptors allowed 

successful HCV infection and replication as well (242) and studies are underway to pursue a 

similar approach for HBV infection.  

While murine cells expressing human NTCP are susceptible to HDV infection, they do not 

support HBV infection, suggesting that essential host factors for HBV infection may not be 

expressed (243). However, a recent paper described one mouse liver cell line that was 

susceptible to HBV infection following over-expression of human NTCP (244). A summary of the 

in vivo models used to study HBV infection is presented in Table 5.  

 

Table 5. Characterization of HBV infection in primary hepatocytes from different species expressing 

human NTCP; from reference (245) 

Primary hepatocytes  

transcomplemented with hNTCP 
     

Myrcludex-B binding +++ +++ +++ +++ +++ 

HBV infection         HBs positive 

cells 
+++ ++ - - - 

HBc positive cells +++ ++ - - - 

HBe secretion +++ ++ - - - 
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Abbreviations used in this table: cccDNA, covalently closed circular DNA; HBs, hepatitis B surface antigen; 

HBc, hepatitis B core antigen; HBe, hepatitis B e antigen; +++, strong; ++, moderate; +/-, weak; - negative.  

 

4.3. Cell-based experimental model 

For many decades, the absence of HBV infectious cell culture models hampered the 

progress in the understanding HBV life cycle. More recently, in vitro cell culture systems 

supporting complete HBV life cycle have been established when the first bona fide HBV entry 

receptor NTCP, a bile acid transporter was identified in 2012 (98). This finding opened new 

avenues for the establishment of cell culture models suitable for uncover of new virus-host 

interactions and the biology of the HBV life cycle. 

 

4.3.1. Hepatoma-derived cell lines 

As for most infection models, hepatic tumor-derived cell lines have been useful and 

powerful tools to study partly HBV-host interactions. 

The Huh7 cell line was isolated from a well-differentiated human HCC tumor (111, 246). 

This cell line has been used to study certain complex aspects of the HBV life cycle, especially 

epigenetic modifications of the episomal HBV DNA, as these cells enable the establishment of 

cccDNA following transfection of viral linear genomes (69).  

In contrast to the Huh7 cell line, the HepG2 cell line (derived from a patient with well-

differentiated hepatoblastoma) is polarized (247). It has proven to be very useful for studying HBV, 

although the difference between these cells are unexplored. The HBV genome can be stably 

expressed in HepG2 cells, and these cells support both HBV replication and cccDNA formation. 

HepAD38 and HepG-H1.3 cell lines, derived from HepG2 cells, are also suitable for studying 

certain steps of the HBV life cycle, especially late steps of HBV replication and clearance of 

cccDNA by host defense pathways (248). The HepaRG cell line (an hepatic progenitor cell line 

that retains many characteristics of primary human hepatocytes (249)) can be used for the study 

                HBV RNA detection +++ ++ - - - 

            HBV cccDNA detection +++ ++ - - - 

   HBV genome secretion ++ ++ - - - 
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of HBV infection too (250, 251). HepaRG cells can be differentiated into either biliary or 

hepatocyte-like cells and can be indefinitely divided (250). DMSO treatment is needed for 

differentiation into hepatocyte-like cells. This cell line was demonstrated to be a useful model for 

HBV infection studies. However, despite polyethylene glycerol (PEG) treatments leading to 

increased binding affinity between the HBV virion and entry receptor(s), the overall infection rate 

remains low with minimal cell-to-cell spread of the virus (100). 

Although hepatoma-derived cells are valuable research tools, they cannot exactly mimic 

the physiological environment of natural HBV infection. PHH are considered the ideal in vitro 

experimental system for studying HBV because they are the natural target cells for HBV infection 

in the liver. These cells are typically obtained from patients undergoing liver resection for a hepatic 

tumor. Although PHH do not divide, these cells express NTCP and readily support virus infection 

once in culture (60, 252). In addition, PHHs have an intact host defense system that combats the 

infection and limits viral replication (253). To extend the viability and maintain the differentiation 

of PHHs in culture, several approaches have been attempted. Micropatterning approach and 3D 

organoids systems support the extension of cell viability (254, 255). To provide more physiological 

culture conditions, micropattern systems mimic a tissue-like micro-environment by culturing 

hepatocytes with other epithelial cells. Although the micropattern system has several benefits 

compared to single cell line-based studies, an organization of hepatocytes into 3D organoids also 

offers additional advantages in that hepatocytes interact with major nonparenchymal hepatic cells.  

 

4.3.2. NTCP-overexpressing cell lines 

Lack of endogenous NTCP expression in Huh7 and HepG2 cells explains their inability to 

mediate viral entry and thus efficient infection. Since NTCP has been identified as an HBV entry 

receptor, many studies have taken advantage of NTCP overexpressing cells lines for studying the 

entire HBV life cycle (98, 99, 102, 256). Recently, glypican 5 (GPC5) was identified as a novel 

attachment factor for HBV entry using an NTCP-overexpressing Huh7 cell line (99). This study 

also suggested that additional factors may be required to achieve optimal HBV viral infection.  

NTCP-overexpressing hepatoma cells have been shown to be useful for screening anti-

HBV drugs including entry inhibitors (256). Several small molecules targeting viral entry, such as 

Myrcludex B (48, 102, 257-261), cyclosporine A (256), irbesartan (262, 263) and vanitaracin (264), 

have been reported to have antiviral activity in HBV-infected NTCP-overexpressing cells by 
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interfering with HBV-NTCP interactions or inhibition of NTCP function. This cell model allowed the 

discovery of additional viral entry factors as well as entry inhibitors through different screening 

approaches (256, 257, 265). Collectively, an increasing number of studies exploit NTCP-

overexpressing cell lines for understanding virus-host interactions. However, a low level of de 

novo virus production from HBV infected cells are an important limitation of the model. 

 

Table 6. Summary of current cell culture models for study HBV; from reference (128) 

 
* Low variability is available to change by variation in experimental results between different laboratories. 
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II. AIM OF THE THESIS 

 

To date, the recognition of HBV nucleic acids by PRRs remains elusive, although recent 

studies suggest a putative detection of the pgRNA or other HBV RNAs by either MDA5 (166) or 

RIG-I (159). Interestingly, HBV only weakly activates innate immune responses in vivo (12, 266), 

which suggests that HBV may be behaving as a “stealth” virus, avoiding detection of its viral DNA 

and RNA by the innate immune system (127). On the other hand, several studies have suggested 

that HBV proteins actively inhibit innate immune responses, explaining the absence of strong 

activation of interferon (IFN) pathways after infection (154). Consequently, the interaction of HBV 

and the innate immune system of hepatocytes, and especially the sensing of HBV DNA, is still 

only partially understood. 

Detection of foreign nucleic acids by host sensors can trigger early antiviral innate immune 

responses (198). A recent series of studies identified cGAS (encoded by MB21D1) as a new 

DNA/RNA sensor that exhibits antiviral activity against a broad range of DNA and RNA viruses 

(178, 201). Binding of dsDNA to cGAS synthesizes the second messenger cGAMP to activate 

STING to trigger expression of type I interferon-stimulated genes through TBK1 phosphorylation 

(181, 226). In the context of HBV infection, a couple of recent studies highlighted the antiviral 

activity of the cGAS-STING pathway against HBV infection (180, 267), although some 

observations suggested a lack of STING expression in hepatocytes (227), which would explain 

the weak activation of innate immunity by HBV (266, 268). Consequently, it is still unclear how 

HBV infection can be detected by cGAS, and the comprehensive function of cGAS during HBV 

infection remains elusive. The understanding of theses interactions will help to have a better 

comprehension of the nature of HBV regarding the innate immune sensors and may open 

perspectives for the development of new immune-based antiviral strategies for the treatment of 

this major chronic infection.  

In this work, I aimed to understand the interaction between cGAS and HBV infection 

through different approaches. (i) First, I aimed to study cGAS expression in different cell culture 

systems and primary human hepatocytes to determine whether type I IFNs responses can be 

induced by cGAS in hepatocytes. (ii) Second, I aimed to characterize the cGAS antiviral function 

in the context of HBV infection using loss- and gain-of-function strategies. (iii) Third, I aimed to 
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investigate HBV DNA sensing by cGAS. In particular, I aimed to determine whether the HBV 

genome is actively sensed by cGAS during HBV infection, or whether HBV DNA is protected by 

its nucleocapsid as it has been suggested (269). To do so, I designed a set a genes as a marker 

for cGAS activity including cGAS-related genes described by Schoggins et al (201), as well as 

crucial genes of the cGAS-STING pathway and innate immune response in general. I studied the 

modulation of gene expression depending on HBV infection or HBV genome transfection in 

presence or absence of cGAS expression in the common cell culture systems that we are using. 

(iv) Finally, I aimed to analyze the effect of HBV infection on cGAS expression and activity. I took 

advantage of the gene set that I designed to analyze the effect of HBV on the expression of cGAS-

related genes, in in vitro cell culture models as well as HBV-infected chimeric mice, to understand 

whether HBV could actively evade cGAS-mediated antiviral activity.     
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III. MATERIALS AND METHODS 

 

1. Human-derived materials  

Human material including liver tissue from patients undergoing surgical resections was 

obtained with informed consent from all patients. PHHs were isolated from liver tissue from 

patients undergoing liver resection for liver metastasis at the Strasbourg University Hospitals with 

informed consent. The respective protocols approved by the University of Strasbourg Hospitals, 

France (CPP 10-17). Surgical resections were performed by Prof. Patrick Pessaux, (Pole Hepato-

digestif, Strasbourg University Hospitals) and isolation and preparation of human-derived 

materials was thankfully managed by Dr. L. Mailly and S. Durand (Inserm, U1110, Strasbourg, 

France). 

 

2. Maintenance of cell lines and human hepatocytes  

The sources for HEK 293T (270), HepG2 (270), and HepG2-NTCP (99) cells have been 

described. Briefly, HEK 293T cells were maintained with Dulbecco’s Modified Eagle Medium 

(DMEM, GIBCO® ) supplemented with 10% FBS. HepG2 and HepG2-NTCP cells were cultured in 

Dulbecco’s Modified Eagle Medium (DMEM, GIBCO® ) supplemented with 10% FBS, 1% non-

essential amino acids (GIBCO® ), and 10 µg/mL gentamycin (GIBCO® ). PHHs were maintained 

and cultured as described (270). The HepAD38 cell line (serotype ayw, genotype D) has been 

reported in (271) and was kindly provided by Dr. Eberhard Hildt, Paul-Ehrlich-Institut, Langen, 

Germany. It is an HBV-inducible cell line that harbors an integrated tetracycline-responsive 1.2-

fold HBV genome. All cells were incubated at 37°C with 5% CO2. 

 

3. Reagents and plasmids  

DMSO, PEG 8000, poly (I:C) and CT-DNA (Calf thymus DNA used as a dsDNA control) 

were obtained from Sigma-Aldrich. The preS1-peptide (derived from the HBV envelope protein) 

and control scrambled peptide were synthesized by Bachem (Switzerland). The ECL reagent and 

Hyperfilms for Western blots were purchased from GE Healthcare. HBV pgRNA encoding 

plasmids expressing either wild-type or assembly- defective mutants were a generous gift from 
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Prof. Jianming Hu (Microbiology and Immunology, University Drive Hershey PA, PA, USA) (272). 

pReceiver-Lv151 plasmid was obtained from GeneCopoeiaTM. The lentiCas9-Blast, lentiCRISPR-

EGFP sgRNA 1, and lentiGuide-Puro plasmids were gifts from Feng Zhang, Broad Institute of 

Harvard and MIT, Cambridge, USA (Addgene # 52962, # 51760 and #52963, respectively). 

 

4. Small interfering RNAs for functional studies 

Pools of ON-TARGET plus (Dharmacon) small interfering RNA (siRNA) targeting MB21D1 

(cGAS), TMEM173 (STING), TBK1, and IFI16 expression were reverse-transfected into HepG2-

NTCP cells using Lipofectamine RNAi-MAX (Invitrogen) as described (270) and according to 

manufacturer’s instructions. Cells were harvested two days after transfection and target gene 

expression was monitored using qRT-PCR. 

 

5. Lentivirus production 

Lentivirus particles were produced in HEK 293T cells by cotransfection of plasmids 

expressing the HIV gap-pol, the vesicular stomatitis virus glycoprotein (VSV-G) and either the 

human MB21D1 (NM_138441.2) full ORF encoding plasmid or the empty control plasmid (Tebu-

bio), or the MB21D1-targeting sgRNA encoding lentiGuide-Puro plasmids or the Cas9 expressing 

plasmid (lentiCas9-Blast) in the ratio of 10:3:10. At 3 days post transfection, supernatants were 

collected and then pooled and clarified using a 0.45µm filter. The collected supernatants were 

kept at -80 C° until use.  

 

6. Establishment of HepG2-NTCP-cGAS overexpressing cells 

For the establishment of HepG2-NTCP cells overexpressing cGAS protein, first, an 

antibiotic kill curve test was performed to determine the optimal concentration needed to kill 

around 90% of cells over the course of one week. To do that, HepG2-NTCP cells (1X106 cell/well) 

were plated on 6-well plates then cultured with medium containing neomycin (G418) in serial 

concentration. 200 μg/mL of G418 was chosen for selection of transduced cells. After that, 

HepG2-NTCP cells were plated and transduced with lentiviruses encoding either the human 

MB21D1 full ORF or EFGP ORF in pReceiver-Lv151 vector (GeneCopoeiaTM). After 3 days, 
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transduced cells were cultured with 200 μg/mL of neomycin (G418). Selected cGAS-over-

expressing- and control HepG2-NTCP cells were then cultured in the presence of at 200 μg/mL 

G418. 

 

7. sgRNA design for CRISPR/Cas9 

The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) Type II system 

is a bacterial immune system that has been modified for genome engineering (273). Due to its 

simplicity and higher efficiency than previous methods, it has become one of the most popular 

approaches for genome editing. The ease of generating single-guide RNAs (sgRNAs) makes 

CRISPR one of the most scalable genome editing technologies. 

The specificity of the Cas9 nuclease is determined by the 20 nt guide sequence within the 

sgRNA. For our purpose, MB21D1 targeting sgRNA were designed using an online CRIPSRP 

Design (Broad Institute: http:// tools.genome-engineering.org) that selects suitable target sites 

and also offers prediction of off-target for each sgRNA. Using this program, we obtained lists of 

guide sequences and prediction of their off-targets effect by scores. sgRNA sequences proposed 

were entered into the NCBI primer BLAST software and compared with the each sgRNA database 

provided by Broad institute http://crispr.genome-engineering.org/. Finally we selected three 

sgRNA targeting the first exon of MB21D1 (Table 7).   

 

Table 7. Selected sgRNA targeting MB21D1 

 

8. Validation of sgRNA by the Surveyor assay 

Surveyor assay (IDT) was used to validate the capacity of the selected guides to target 

MB21D1. HepG2-NTCP cells (2X104 cell/well) were transfected with each sgRNA encoding 

Name guide sequence 
Complementary 

strand 

Position in the 

intron 1-exon 
Target site 

Guide 2 cgcatccctccgtacgagaa ttctcgtacggagggatgcg 604 605-606 

Guide 3 cggcccccattctcgtacgg No 595 612-613 

Guide 4 ggccgcccgtccgcgcaact No 361 378-379 

http://crispr.genome-engineering.org/
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plasmid (1μg). At 3 days after transfection, gemonic DNA was extracted using the QuickExtract 

DNA Extraction Solution (Epicentre) following manufacturer’s instruction. Briefly, transfected cells 

were washed with DPBS then incubated with 200 μL of QuickExtract solution for 10 min. Extracts 

were then incubated at 65°C for 6 minutes, 98° for 2 minutes then store the extracts at -20°C until 

use. Each sgRNA target site for MB21D1 was amplified using PCR (Table 8). For amplification of 

MB21D1 from genomic DNA, we designed 3 primer sets. Primer specificity was validated by 

sequencing of the amplified PCR product. After amplification, PCR product was run 1 % of 

agarose gel for 1 hour with 100V. Expected size of PCR product was purified using QiaQuick Spin 

Column (Qiagen) following the manufacturer’s instruction. About 300-400ng of PCR products 

were used for re-annealing process to form heteroduplexes. Briefly, reannealing was performed 

using following conditions; 95ºC for 10min, 95ºC to 85ºC ramping at - 2ºC/s, 85ºC to 25ºC at - 

0.25ºC/s, and 25ºC hold for 1 minute. After re-annealing, PCR products were treated with 

SURVEYOR nuclease and SURVEYOR enhancer S (Transgenomics) for 1 hour, and analyzed 

on 2.5% agarose gels. Only mismatched reannealed PCR fragments are susceptible to nuclease 

action. Gels were stained with EtBr (Ethidium bromide) and imaged with a GelDoc gel imaging 

system.    

 

Table 8. PCR primer list for Surveyor assay 

sgRNA Name Primer sequence 
Length of PCR 

product (bp) 

Expected DNA 

fragment size (bp) 

Guide #2 
P4_f ccaaaaaggcccctcagc 

452 
224 

P4_r tagctcccggtgttcagca 176 

Guide #3 
P4_f ccaaaaaggcccctcagc 

400 
186 

P4_r tagctcccggtgttcagca 214 

Guide #4 
P2_f gccagtagtgcttggtttcc 

452 
304 

P2_r agaaccagccctggaaagag 148 

 

9. Generation of MB21D1 knock-out cells using CRISPR/Cas9 

  We initially designed to generate cGAS KO cell line using co-expressing plasmid system. 

For that, px330 and px458 (GFP encoding) plasmids coding ampicillin resistance, a U6 promoter 

containing two expression cassettes controlling hSpCas9 and the sg RNA (274). sgRNA oligos 
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were inserted at BbsI restriction sites in these plasmids. Since each sgRNA was inserted into 

plasmid, they were each used to transform competent bacteria and plated on 100 μg/mL of 

ampicillin containing LB agar plate. Selected colonies were grown in ampicillin containing LB 

medium and then plasmid was extracted by min-prep (Qiagen). Each sgRNA insertion was 

confirmed by sequencing. pX330-U6-Chimeric_BB-CBh-hSpCas9 (px330) and pSpCas9(BB)-

2A-GFP (PX458) plasmid were a gift from Feng Zhang (Addgene plasmid # 42230, # 48138). 

Due to low transfection efficacy and difficulties of selection of transfected cells, we next 

used a lentiviral system to establish cGAS KO cell line. We first generated Cas9-expressing 

HepG2-NTCP cells by transducing HepG2-NTCP cells with the lentiCas9-Blast plasmid (275). 

Transduced cells were selected with 6 µg/mL Blasticidin S for 10 days. HepG2-NTCP-Cas9 cells 

were then seeded in six-well plates at 50% confluency 24h prior to transduction with the sgcGAS-

encoding lentiviruses expressing sgRNA targeting MB21D1 and we maintained transduced cell 

with puromycine. After 3 days, cGAS expression was assessed by Western blot. Finally, 4 cGAS 

KO clones were selected by limited dilution cloning. The cell lines cGAS KO#1 and cGAS KO#2 

were used in our experiments.  

 

10. Analysis of gene expression using qRT-PCR 

Total RNA was extracted using ReliaPrep™ RNA Miniprep Systems (Promega) and 

reverse transcribed into cDNA using Maxima First Strand cDNA Synthesis Kit (Thermo Scientific) 

according to the manufacturer’s instructions. Gene expression was then quantified by qPCR using 

a CFX96 thermocycler (Bio-Rad). Primers and TaqMan®  probes for MB21D1 (cGAS), TMEM173 

(STING), TBK1, IFI16, IFNB1, and GAPDH mRNA detection were obtained from ThermoFisher 

(TaqMan®  Gene expression Assay, Applied Biosystems). All values were normalized to GAPDH 

expression. 

 

11. Protein expression  

The expression of cGAS, HBcAg, and β-actin proteins was assessed by Western blot. 

Cells were lysed in Glo lysis buffer (Promega) and protein concentration was determined using 

the Bradford assay (Bio-Rad) following the manufacturer’s instructions. Normalized cell lysates 

(20 micrograms of protein) were run on a 10-12% SDS-polyacrylamide gel (SDS-PAGE) and 
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transferred to polyvinylidene difluoride (PVDF) membrane using the Trans-Blot® Turbo™ 

Transfer System (Bio-Rad). Membranes were then saturated with 5% milk PBS containing 0.1% 

Tween 20. Polyclonal rabbit anti-cGAS antibody (Dilution rate; 1:1000, HPA031700, Sigma), 

monoclonal rabbit anti-TBK1/NAK antibody (Dilution rate; 1:1000, (D1B4), Cell Signaling 

Technology), polyclonal rabbit anti-HBcAg antibody (Dilution rate; 1:500, B0586, Dako), and a 

monoclonal anti-β-actin antibody (Dilution rate; 1:1000, mAbcam8226, Abcam) were used for 

protein detection as described (99). Quantification of protein expression was performed using 

ImageJ software. 

 

12. HBV purification and infection 

The purification of infectious recombinant HBV particles from HepAD38 cells supernatants 

as well as HBV infection of HepG2-NTCP cells has been previously described (99, 271). Briefly, 

supernatant from HepAD 38 cells were collected and filtered on 0.45 micro pore filter. Next, 

recombinant HBV virions (strain ayw, genotype D) from HepAD38 cells supernatants were 

concentrated 100-fold using 8% PEG by centrifugation (5000g for 45 minutes at 4°C). The virions 

were resuspended in Opti-MEM solution. Virions were kept at 4°C overnight then stored at -80°C 

until use. For infection, HepG2-NTCP cells were plated one day prior to incubation with HBV virion 

from stock in the presence of 4% PEG with or without pretreatment for 1 hour with the preS1-

peptide. 16 hours after HBV infection, cells were washed twice with PBS and then cultured in 2% 

DMSO primary hepatocyte maintenance medium (PMM). The cell culture medium was changed 

every two or three days for 10 days. HBV infection was assessed by quantification of pgRNA 

using qRT-PCR with the following primers and probe as described (99, 276): Forward primer: 5’-

GGTCCCCTAGAAGAAGAACTCCCT-3’; reverse primer: 5’-

CATTGAGATTCCCGAGATTGAGAT-3’; TaqMan® probe: 5’-[6FAM]-

TCTCAATCGCCGCGTCGCAGA-[TAMRA]-3’. HBV infection was normalized to GAPDH mRNA 

(Applied Biosystems) expression. The expression of HBcAg in infected cells was detected by 

Western blot using a polyclonal rabbit anti-HBcAg antibody (B0586, Dako) as described above. 

HBeAg in lysates from transfected cells was quantified using ELISAs N0019 (Diasorin) following 

manufacturer’s instructions. 
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13. Extraction of HBV rcDNA from HBV infectious particles  

For rcDNA extraction, 4 ml of HBV virions purified from supernatant of HepAD38 were 

prepared. HBV rcDNA was extracted using QiaAMP DNA MiniKit protocol (Qiagen) following 

manufacturer's instructions. Briefly, proteinase K was mixed with recombinant HBV virions and 

lysis buffer was added (v/v). The mix was incubated at 56°C for 10 min and then DNA was 

extracted using spin column centrifugation. In parallel, PEG-precipitated cell supernatants from 

naive HepG2-NTCP cells were used as non-virion controls. The presence of HBV DNA was 

confirmed by PCR and quantified by qPCR using the following primers and probe (99) : forward 

primer 5’-CACCTCGCCTAATCATC-3’, reverse primer 5’-GGAAAGAAGTCAGAAGGCA-3’; 

TaqMan probe 5’-[6FAM]-TGGAGGCTTCAACAGTAGGACATGAAC-[TAMRA]-3’. Copy number 

of HBV DNA was determined by comparison to the standard curve created from known HBV 

genome copies. 1 μg of rcDNA or dsDNA (CT-DNA) were transfected in HepG2-NTCP cells using 

either Lipofectamine 2000 (Invitrogen) or CalPhos Mammalian Transfection Kit (Clonetech) 

according to the manufacturer’s instructions. Cells transfected with HepG2-NTCP control 

supernatants were used as a control. Three days after transfection, total RNA was extracted and 

purified as described above. 

 

14. HBV cccDNA detection by Southern blot 

Southern blot analysis of HBV cccDNA was performed using digoxigenin (DIG)-labelled 

(Roche) specific probes by our collaborator Dr. J. Lucifora, CRCL, Lyon, France. 30 μg of total 

DNA from HBV-infected cells was extracted using the previously described method (277). Equal 

amounts of total DNA were separated by 1.2 % of agarose gels for 24 h and then transferred to a 

Nylon membrane (Roche). Specific DIG-labelled probes for the detection of HBV and 

mitochondrial DNAs (mtDNA) were synthesized using the PCR DIG Probe Synthesis Kit (Roche), 

primers are detailed Table 9. After probe hybridization on the membrane (DIG-easy Buffer, 

Roche), HBV and mtDNA were detected using DIG Luminescent Detection Kit (Roche) according 

to the manufacturer’s instructions. 

 

Table 9. The list of probes to detect HBV cccDNA and mitochondrial DNA; from reference (278) 

Target Name Sequence 

HBV HBV-F1 TAGCGCCTCATTTTGTGGGT 
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15. Transcriptomic analysis using nCounter NanoString 

nCounter NanoString technology enables detection of a specific set of nucleic acid 

sequences at high through-put. The pairs of target gene specific probes with biotin encoding and 

color-coded tags provide a detection signal, called the “barcode”. Different combinations of 

barcode colors provide a detection signal corresponding to the genes of interest.  

Transcriptomic analyses using nCounter NanoString were performed according to the 

manufacturer’s instructions. Specific probes for a set of 39 cGAS-related genes (see Table10) 

were chosen according to previous published data (201) and were obtained from the 

manufacturer. HepG2-NTCP cells, HepG2-NTCP-Cas9 cells and HepG2-NTCP-KO cGAS#2 

cells were infected with HBV for two days. Alternatively, HepG2-NTCP cells were transfected with 

poly (I:C) (100ng) for two days, and HepG2-NTCP-Cas9 cells and HepG2-NTCP-KO cGAS#2 

were transfected with rcDNA (1µg) or dsDNA (CT-DNA, 1µg) for three days. Total RNA was then 

extracted and analyzed using the nCounter Digital Analyzer system (NanoString). cGAS-related 

HBV-R1 CTTCCTGTCTGGCGATTGGT 

HBV-F2 TAGGACCCCTGCTCGTGTTA 

HBV-R2 CCGTCCGAAGGTTTGGTACA 

HBV-F3 ATGTGGTATTGGGGGCCAAG 

HBV-R3 GGTTGCGTCAGCAAACACTT 

HBV-F4 TGGAACCTTTTCGGCTCCTC 

HBV-R4 GGGAGTCCGCGTAAAGAGAG 

HBV-F6 TACTGCACTCAGGCAAGCAA 

HBV-R6 TGCGAATCCACACTCCGAAA 

HBV-F8 AGACGAAGGTCTCAATCGCC 

HBV-R8 ACCCACAAAATGAGGCGCTA 

Mitochondrial DNA 

Fw_huND1 CCCTACTTCTAACCTCCCTGTTCTTAT 

Rw_huND1 CATAGGAGGTGTATGAGTTGGTCGTA 

Fw_huND5 ATTTTATTTCTCCAACATACTCGGATT 

Rw_huND5 GGGCAGGTTTTGGCTCGTA 

Fw_huATP6 CATTTACACCAACCACCCAACTATC 

Rw-huATP6 CGAAAGCCTATAATCACTGTGCC 
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genes were considered as an artificial gene set and the modulation of this gene set depending 

on the experimental conditions was determined using GSEA (Gene Set Enrichment Analysis) 

(279). False Delivery Rate (FDR) < 0.05 was considered statistically significant. Data analysis 

was thankfully performed by Dr. H. El-Saghire (Inserm, U1110, Strasbourg, France). 
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16. HBV infection of human liver chimeric mice 

These experiments were carried out in our animal facility at the UMR_S1110. Production 

of chimeric mice, HBV infection and harvesting of mouse livers was thankfully performed by Dr. 

L. Mailly (Inserm, U1110, Strasbourg, France). Isolated PHH were transplanted into 3 weeks-old 

uPA/SCID-bg mice by intrasplenic injection as described (280). Transplantation of PHH into mice 

liver was assessed 4 weeks later by quantification of human serum albumin by ELISA (ref. E80-

129, Bethyl Laboratories). Humanized uPA-SCID mice were then infected with HBV and sacrificed 

16 weeks after virus inoculation. HBV viral load in the mouse serum was determined by qPCR 

(Laboratoire Schuh-groupement Bio67) before sacrifice. Analysis of cGAS expression and the 

cGAS-related genes (cGAS signature) in the livers of HBV infected mice was performed by myself 

as described above. All mice were kept in a pathogen-free housing facility. The respective 

protocols were approved by the Ethics Committee of the University of Strasbourg Hospitals 

(number AL/02/19/08/12 and AL/01/18/08/1202014120416254981 and 02014120511054408).  

 

17. Statistical Analysis  

Each in vitro experiment (except digital multiplexed gene profiling experiments) was 

performed at least three times in an independent manner. Statistical comparisons of the samples 

were performed using a Mann-Whitney U test. For in vivo experiments, a two-tailed unpaired 

Student’s t-test was performed to compare gene expression in non-infected and HBV-infected 

mice. p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were considered significant. Significant p 

values are indicated by asterisks. Each digital multiplexed gene profiling experiment was 

performed using three biological replicates per condition and the induction or repression of the 

gene set was analyzed using GSEA. FDR < 0.05 was considered statistically significant. 
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IV. RESULTS 

 

Several studies recently reported the antiviral function of cGAS against HBV using 

transfection systems (198). They described that cGAS displays anti-HBV activity targeting viral 

replication and assembly (267), and that transfection of dsDNA fragments derived from HBV was 

detected by cGAS, resulting in the induction of innate immune response (180). However, it still 

remains largely unexplored whether the cGAS-STING pathway exerts an antiviral action against 

HBV infection, and if detection of HBV DNA by the host cellular sensors occurs in the infected cell. 

My PhD work aimed to study the functional role of cGAS in the HBV life cycle and unravel the 

mechanisms of viral evasion using loss- and gain-of-function experiments combined with cGAS 

effector gene expression profiling in an infectious cell culture model and HBV-infected humanized 

chimeric mice. 

 

1. cGAS expression in different cell types 

The HepG2 cell line is commonly used as a cellular model for HBV replication studies. 

However, the lack of HBV receptors at their surface hampered infection studies. Recently, NTCP 

was identified as the first receptor for HBV entry (98). Indeed, Yan et al., demonstrated that NTCP 

overexpressing HepG2 cells became susceptible to HBV infection, as demonstrated by detection 

of HBV pgRNA and HBsAg at 10 days post-inoculation (dpi). In this study, we used HepG2-NTCP 

cells established in our laboratory that are highly permissive to HBV infection (99).  

Several studies reported that the basal level of cGAS expression is very low in the hepatic 

cell lines that are suitable for HBV infection studies (180, 267). Thus, prior to functional 

characterization of cGAS, we first investigated whether cGAS protein is expressed in different cell 

types by Western blot. As we show in Figure 21, cGAS protein expression was clearly detected 

by Western blot in HepG2 and HepG2-NTCP hepatoma-derived cell lines, as well as in PHH from 

two different donors. Expression of cGAS in PHH was at similar levels as observed in HepG2-

NTCP cells. We also validated the specificity of cGAS detection using siRNA (sicGAS) specifically 

targeting the expression of MB21D1. HEK 293T cell lysates were used as a negative control (178). 
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Figure 21. HepG2, HepG2-NTCP cells, and PHH express cGAS  

Detection of endogenous cGAS protein expression in different cell types by Western blot. Cell lysates from 

Huh7.5.1, HepG2, HepG2-NTCP, and HEK 293T were used, as well as lysates from PHH isolated from two 

different donors (PHH #1 and PHH #2). HepG2-NTCP cells were reverse transfected with a siRNA targeting 

MB21D1 (sicGAS) or a non-targeting siRNA control (siCtrl) two days before cGAS detection. Protein 

expression was normalized to β-actin and was quantified using the ImageJ software. (Yim, Verrier et al., 

2017, submitted to Gut). 

 

2. Validation of the HepG2-NTCP cells as a model to study innate immune responses 

Aiming to perform functional perturbation studies, we next characterized the innate 

immune responses in the HepG2-NTCP cell line established in our laboratory, cell line that is 

robustly permissive to HBV infection (99). We confirmed the ability of HepG2-NTCP cells to induce 

IFNB1 expression following stimulation by poly (I:C) (100 ng/1X105 cells in 24-well plate), a well-

known innate immune inducer, or increasing concentrations (from 0.5 to 4 micrograms/ 1X105 

cells) of CT-DNA (dsDNA), a known cGAS activator following transfection (222, 281). As 

presented Figure 22, we observed a three log increase in the level of IFNB1 expression 3 days 

following poly (I:C) transfection. Similarly, transfection of 2μg CT-DNA lead to around 5 fold 

increase in IFNB1 expression.  

Moreover, cGAS protein expression was induced by both poly (I:C) (around 5 times) 

(Figure 22A) and CT-DNA (2.44 times, 4μg transfection) stimulation (Figure 22B), further 

confirming the ability of our cell culture model to establish an efficient IFN response leading to the 

upregulation of ISGs. IFNB1 induction was decreased when cells were transfected with 4 μg of 

CT-DNA, whereas cGAS protein expression already increased (Figure 22B), suggesting a 

negative feedback regulation of IFN responses by cGAS expression (282). 
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The poly (I:C) and CT-DNA experiments demonstrate that robust innate immune 

responses are obtained in these cells and that the HepG2-NTCP cell line is suitable for functional 

studies. 

 

 

Figure 22. HepG2-NTCP cells express cGAS and induce IFNB1 expression 

The poly (I:C) and CT-DNA (dsDNA) transfection induce IFNB1 expression in HepG2-NTCP cells. HepG2-

NTCP cells were transfected with 100 ng of poly (I:C) (A) or CT-DNA (B) at the indicated concentrations. 

IFNB1 mRNA expression was quantified by qRT-PCR, and cGAS protein expression was assessed by 

Western blot 72 hours after transfection. Gene expression was normalized to GAPDH mRNA expression. 

Data are expressed as means ± SD from three independent experiments performed in triplicate. IFNB1 

expression was compared to Ctrl (set at 1(A) and set at 100 (B). β-actin was detected as a Western blot 

loading control. Protein expression normalized to β-actin was quantified using the ImageJ software. p < 

0.01 (**), and p < 0.001 (***) were considered significant. (Yim, Verrier et al., 2017, submitted to Gut). 

 

3. Decrease in cGAS-, STING-, and TBK1 expression leads to an increase in HBV infection 

Previous work performed at UMR S1110 had aimed to evaluate the antiviral activity of the 

cGAS-STING pathway in HBV infection. Thus, expression of MB21D1 (encoding the cGAS 

protein), TMEM173 (encoding the STING protein), TBK1 and IFI16 (encoding the gamma-
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interferon-inducible protein 16) were silenced using specific siRNA in HepG2-NTCP cells 2 days 

prior to infection with HBV. HepG2-NTCP cells (2X104 cell/well in 96-well plate) were infected with 

HBV. Sixteen hours after infection, cells were cultured with 2% DMSO containing medium. HBV 

pgRNA level was assessed at 10 dpi by qRT-PCR. As shown in Figure 23, silencing of MB21D1, 

TMEM173 and TBK1 expression induced a two-fold increase in HBV infection at 10 dpi. In 

contrast, silencing of IFI16 had no effect on HBV infection.  

Since IFI16 is a cytoplasmic DNA sensor able to activate STING independently of the 

cGAS-STING pathway (198), these data suggest that HBV infection in HepG2-NTCP cells might 

be hampered by a cGAS-specific antiviral activity.  

 

 

 

Figure 23. The silencing of cGAS-related gene expression increases HBV infection  

siRNA targeting MB21D1 (sicGAS), TMEM173 (siSTING), TBK1 (siTBK1), IFI16 (siIFI16) or a non-targeting 

siRNA (siCtrl) were reverse transfected into HepG2-NTCP cells 2 days prior to HBV infection. Silencing 

efficacy was assessed by qRT-PCR and silencing of cGAS and STING protein was assessed by Western 

blot 2 days after siRNA transfection (A). Gene expression was normalized to GAPDH mRNA. Results are 

expressed as means ± SD % gene expression relative to siCtrl (set at 100%) from four independent 

experiments performed in technical duplicates. β-actin was detected as a Western blot loading control. (B) 

HBV infection was assessed by quantification of HBV pgRNA by qRT-PCR at 10 dpi. Gene expression was 

normalized to GAPDH mRNA expression. Non-significant results are indicated as NS. Results are 

expressed as means ± SD % of HBV pgRNA expression relative to siCtrl (set at 100%) from four 

independent experiments performed in technical duplicate. p < 0.001 (***) were considered significant. (Yim, 
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Verrier et al., 2017, submitted to Gut). 

 

4. Validation of sgRNA using Surveyor assay 

In order to confirm the cGAS-mediated antiviral activity, we generated MB21D1 (cGAS) 

KO cell lines using the CRISPR/Cas9 approach. For that, we designed MB21D1 targeting sgRNA 

using an online CRISPR Design tool. First, we designed three sgRNA targeting different sites 

within the first exon of MB21D1. Each sgRNA was cloned into plasmids co-expressing Cas9 

(px330 and px458, co-expressing plasmid). Insertion of the sgRNA was confirmed by sequencing. 

To validate their gene knock-out efficiency, each sgRNA encoding plasmid was transfected into 

HepG2-NTCP cells (1X105 cell/well in 24-well plate), and then genomic DNA was extracted 48 

hours after transfection. To validate the capacity of the sgRNA target properly the first exon of 

MB21D1, we performed a Surveyor nuclease assay. Surveyor nuclease recognizes mismatches 

in dsDNA and cleaves single base mismatch or small insertions or deletions (indels). As shown 

in Figure 24, expected DNA fragments were obtained using guide #3 (Red stars). We obtained 

unexpected DNA fragments for guide #4 (approximately 340 bp instead of 304 bp, Blue stars) 

transfection compared with control. This may be explained by the fact that guide #4 targets 

another sequence within the first exon of MB21D1. According to these results, we used guide #3 

encoding plasmids for the generation of cGAS KO cells.  

 

 

Figure 24. Representative gel image showing a typical Surveyor nuclease assay 

Digestion products were analyzed by gel electrophoresis on a 2.5% agarose gel. 400 bp PCR product was 
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amplified from genomic DNA extracted from empty plasmid (Ctrl), guide #2, and guide #3 transfected cells. 

452 bp amplicon was produced from genomic DNA extracted form guide #4. It represents the unmodified 

genomic target. Around 214 bp of DNA fragment indicates the presence of indel (Guide 3, red star). 

Unexpected dsDNA fragments (around 340 bp) were observed in (guide #4) transfected cells. Homo/Hetero 

duplex, provided by the manufacturer, were used as a Surveyor assay control. 

 

5. Selection of cGAS KO cells generated by co-expressing plasmid system 

HepG2-NTCP cells were transfected with guide #3 encoding plasmids (1X105 cell/well in 

24-well plate). Due to low transfection efficiency (around 30%) and impossibility to apply specific 

antibiotic selection (the cell line and the plasmids had the same antibiotic resistance), transfected 

cells were immediately selected from the whole population by limited dilution cloning and were 

cultured independently. Approximately 2-3 weeks later, cGAS expression was tested by Western 

blot. In total, 30 colonies were grown and around 10 individual clones were tested for cGAS 

expression. Unfortunately, cGAS protein was detected in all tested clones, and genomic 

modification was not observed after sequencing (Figure 25). In order to overcome these 

difficulties, we decided to apply an alternative strategy by using lentiviral expressing systems to 

generate cGAS KO cells. 

 

 

Figure 25. Validation of cGAS KO cells generated by co-expressing plasmid system 

cGAS targeting sgRNA (guide #3) encoding co-expressing plasmid (px330) were transfected into HepG2-

NTCP cells. Transfected cells were selected by limited dilution cloning. About 2-3 weeks after incubation, 

cGAS expression in each single colony was validated by Western blot (A). HEK 293T lysates were used 

as a negative control. β-actin was detected as a Western blot loading control. (B) cGAS KO was validated 

by sequencing. sgRNA and NGG motif of guide #3 position is indicated by color boxes and sgRNA target 
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site is pointed the by red narrow.  

 

6. Establishment of cGAS KO cell lines using the lentivirus transduction 

To improve transduction of sgRNAs, I next used lentivirus transduction system to generate 

cGAS KO cells. Prior to generate sgRNA encoding lentiviruses, we established stable Cas9 

expressing HepG2-NTCP cells. To do that, we performed antibiotic kill curve tests to determine 

the antibiotic concentration useful for selection. First, HepG2-NTCP cells (1X106 cell/well) were 

seeded on 6-well plate then cultured with medium containing Blasticidin S in serial concentration. 

Six μg/mL of Blasticidin S was chosen as the concentration useful for optimal selection of the 

transduced cells. After that, I transduced HepG2-NTCP cells with lentiviruses encoding Cas9 and 

further cultured the cells for 10 days with 6 μg/mL Blasticidin S containing culture medium. To 

select high level of Cas9 expressing HepG2-NTCP cells, cells were highly diluted and then 

cultured again for 2 weeks. Finally, 4 different highly Cas9 expressing cells were selected (#1, #7, 

#8, and #22). Meanwhile, cGAS sgRNA (we used the same sgRNA as for the co-expression 

system) was inserted into a lentiGuide-Puro plasmid. MB21D1 (cGAS) targeting sgRNA encoding 

lentiviruses were produced and transduced in the 4 different clonal HepG2-NTCP-Cas9 cells. 

Sixteen hours after transduction, medium was replaced. cGAS expression was validated by 

Western blot 3 days after transduction. As shown in Figure 26, cGAS expression decreased in 

both guide #3 encoding lentivirus transduced HepG2-NTCP-Cas 9 #8 (refer to as #8-3) and guide 

#4 encoding lentivirus transduced HepG2-NTCP-Cas 9 #22 (refer to as #22-4). These cells are 

referred as pool cGAS KO cell lines.   
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Figure 26. Validation of pool cGAS KO cell lines 

cGAS gene targeting sgRNA encoding lentiviruses were transduced in single clonal HepG2-NTCP-Cas9 

cells. Medium was change 16 hours after transduction. Transduced cells were harvested 2 days after further 

incubation. Twenty μg of total cell lysates were used for Western blot. β-actin was detected as a Western 

blot loading control. HepG2-NTCP-Cas9 cells were used as a control (Ctrl).  

 

Since a low level of cGAS was still expressed in pool cGAS KO cells, cGAS KO cells #8-

3 were seeded at limiting dilution and further cultured to select clonal cGAS KO cells. 

Approximately 2-3 weeks after, 9 clonal cGAS KO cells were selected and tested by Western blot 

for cGAS expression. Finally, we selected two single clones of cGAS KO cells #1 (referred to as 

cGAS KO#1) and #3 (referred to cGAS KO#2) for further investigation (Figure 27).  

 

 

Figure 27. Validation of clonal cGAS KO cell lines 

Pool cGAS KO cells were plated at limiting dilution. After 3 weeks, 9 clonal cGAS KO cells were tested by 

Western blot for cGAS expression. 20 μg of total cell lysates was used for Western blot. β-actin was 

detected as a Western blot loading control. HepG2-NTCP-Cas9 cell lysates were used as a control (Ctrl). 

(Yim, Verrier et al., Gut, Submitted). 
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7. Confirmation of the role of cGAS in the regulation of HBV infection 

As a confirmation of the cGAS role in HBV infection, cGAS KO cell lines (cGAS KO#1 and 

cGAS KO#2; 2X104 cell/well in 96-well plate) were infected with HBV. At 10 dpi, the level of pgRNA 

was assessed by RT-qPCR in the two selected cGAS KO cell lines and compared to HBV infected 

HepG2-NTCP-Cas9 cells as a control. As shown in Figure 28A, the absence of cGAS led to a 

significant increase in HBV infection reaching 3 fold in cGAS KO#1 and 5 fold in cGAS KO#2 

cells. As a further confirmation of cGAS antiviral function, cGAS overexpressing HepG2-NTCP 

cells were generated in our laboratory. cGAS overexpressing cells (cGAS OE) and control cells 

derived from HepG2-NTCP cells (Ctrl ORF) were infected with HBV and again, pgRNA was 

quantified at 10 dpi. As shown in Figure 28B, the overexpression of cGAS led to a significant 

decrease in HBV infection (around 40%), validating the antiviral effect of the cGAS in our model.  

 

 

Figure 28. cGAS expression alters HBV infection  

(A) Knock-out of the MB21D1 gene increases HBV infection. MB21D1 KO HepG2-NTCP cell lines (cGAS 

KO#1 and cGAS KO#2) were generated using CRISPR/Cas9 technology. The absence of cGAS protein 

was confirmed by Western blot (lower panel). β-actin was detected as a Western blot loading control. 

HepG2-NTCP-Cas9 (Cas9) and cGAS KO cell lines (cGAS KO#1 and cGAS KO#2) were infected with HBV 

and viral infection was assessed by pgRNA quantification by qRT-PCR. Gene expression was normalized 
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to GAPDH mRNA expression. Results are expressed as means ± SD % HBV pgRNA expression relative 

to control cell line (Cas9, set at 100%) from three independent experiments performed in triplicate. (B) 

HepG2-NTCP cells were transduced with lentiviruses encoding either a control plasmid (Ctrl ORF) or a 

plasmid encoding the full-length of MB21D1 ORF (cGAS OE). cGAS protein expression was assessed by 

Western blot (lower panel). β-actin was detected as a Western blot loading control. Cells were then infected 

with HBV and viral infection was assessed at 10 dpi as described above. Gene expression was normalized 

to GAPDH mRNA expression. Results are expressed as means ± SD % HBV pgRNA expression relative 

to Ctrl ORF (set at 100%) from three independent experiments performed in triplicate. p < 0.05 (*) and p < 

0.001 (***) were considered significant. (Yim, Verrier et al., 2017, submitted to Gut). 

 

Next, I analyzed the role of cGAS in HBV replication by detection of HBV DNA. For that, I 

validated the specificity of HBV DNA detection by treatment of HBV preS1-derived peptide, which 

inhibits HBV infection by binding to NTCP. After pre-incubation of HBV preS1-derived peptide and 

Ctrl peptide in HepG2-NTCP cells, cells were infected with HBV and level of HBV DNA was 

detected at 10 dpi. As shown in Figure 29A, HBV infection was inhibited by preincubation of 

preS1-peptide, resulting in low levels of rcDNA and cccDNA compared with Ctrl-peptide treated 

cells (HBV (+) with Ctrl). After that, the level of cccDNA in cGAS KO cells (cGAS KO#1 and cGAS 

KO#2) and cGAS overexpressing cells, at 10 dpi was analyzed. Genomic DNA was prepared from 

these cells and the level of cccDNA was quantified at 10 dpi by Southern blot (performed in 

collaboration with Dr. J. Lucifora, CRCL, Lyon, France). As shown Figure 29B, the level of 

cccDNA was significantly increased in cGAS KO cells (1.5 fold increase in cGAS KO#1 and 4 fold 

increase in cGAS KO#2 cells) and decreased in cGAS overexpressing cells (cGAS OE) (around 

50 % decreased) as compared with the control.  
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Figure 29. Detection of HBV cccDNA by Southern blot 

(A) HepG2-NTCP cells were plated one day prior to incubation with HBV virions with or without pre-

treatment for 1h with the control (Ctrl) or HBV preS1-derived peptide (preS1). After that, total DNA was 

extracted at 10 dpi and HBV DNA were detected by Southern blot. Non-infected HepG2-NTCP cells was 

used as a negative control (HBV(-)). (B) HepG2-NTCP-Cas9-derived cGAS KO cells (cGAS KO#1 and 

cGAS KO#2), HepG2-NTCP-Cas9 cells (Cas9) and cGAS over expressing cells (cGAS OE) with control 

cells (Ctrl ORF) were infected for 10 days with HBV. Total DNA from indicated HBV infected cells were 

extracted and HBV DNA was detected by Southern blot. Two DNA ladders (L1 & L2) were used. XhoI 

digestion of DNA extracted from HBV-infected HepG2-NTCP-Cas9 cells (Cas9-XhoI) was used as a control 

and resulted in a single 3.2 kb band (double stranded linear (dsl) HBV DNA). Mitochondrial DNA (mtDNA) 

was detected as a loading control. Quantification of cccDNA was compared with mtDNA using image J 

software (performed in collaboration with Dr. J. Lucifora, CRCL, Lyon, France). (Yim, Verrier et al., 2017, 

submitted to Gut). 

 

Altogether, our data of loss- and gain-of-function studies demonstrate clearly the antiviral 

role of cGAS in HBV infection. Most importantly, the level of HBV cccDNA which is key HBV viral 

nucleic acid responsible for viral persistance is robustly modulated by cGAS expression.  
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8. HBV infection fails to induce cGAS-related innate immune responses at early time points  

To investigate the functional role of cGAS as a DNA sensor, we first analyzed whether 

HBV infection is sensed by cGAS. To address this question, HepG2-NTCP cells were infected 

with recombinant HBV and expression of IFNB1 at day 1, 2 and 3 following HBV infection was 

quantified. As shown in Figure 30A, IFNB1 expression was not induced at early time points of 

HBV infection in HepG2-NTCP cells. In contrast, transfection with poly (I:C) led to a 4 log10 

increase in IFNB1 expression at day 1. These results suggest poor or absent HBV detection by 

cellular sensors in these cells. Since cGAS has been shown to induce the expression of a large 

set of innate effector genes (such as OAS2 or IFI44, see (201)), the analysis of expression of a 

single effector gene such as IFNB1 may not be sufficient to evaluate cGAS sensing. We thus 

analyzed whether cGAS-stimulated genes were modulated by HBV infection by quantifying the 

expression of a gene-set called “cGAS signature”. This gene-set encompasses genes modulated 

by cGAS activity as well as important innate immune genes that have been described by 

Schoggins et al (201) (for details see Table 10).  

For that, we extracted total RNA from HBV-infected HepG2-NTCP, HepG2-NTCP-Cas9 

cells as well as cGAS KO#2 at 2 dpi. Gene expression was measured using nCounting 

NanoString technology. This powerful technology, derived from the DNA microarray method, 

allows the simultaneous quantitative analysis of the expression of a selected gene-set using an 

unique RNA:probe hybridization reaction. Various conditions can thus be analyzed side by side 

and compared. Nanostring results were analyzed, in our unit, using GSEA (Gene Set Enrichment 

Analysis), a computational analysis that interprets gene expression based on the statistically 

significant, association between two biological states. As shown in Figure 30B, only weak 

modulation of the cGAS signature was detected, regardless of the expression of cGAS. Indeed 

the modulation was similar in HepG2-NTCP, HepG2-NTCP-Cas9 control cells and in cGAS KO#2 

cells. In contrast, control experiment performed with HepG2-NTCP cells transfected with 100ng 

of poly (I:C) presented strong induction of the global cGAS signature (FDR = 0.004). Altogether, 

these data suggest that HBV is not sensed in HepG2-NTCP cells by either cGAS or other cellular 

sensors. 
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Figure 30. HBV infection is associated with a very weak or absent innate immune response in cell 

culture 

(A) HBV infection does not induce IFNB1 expression at the early stage of infection. HepG2-NTCP cells 

were infected with HBV and total RNA was extracted every day for 3 days. IFNB1 expression was then 

assessed by qRT-PCR. Poly (I:C) transfection in HepG2-NTCP cells was used a control. Total RNA extracts 

from non-infected or non-transfected cells was used as a control (Ctrl). Results are expressed as means ± 

SEM of IFNB1 relative expression (log10) compared to controls (Ctrl, both set at 1) from three independent 

experiments performed in triplicate (poly (I:C) transfection) or four independent experiments performed at 

least in duplicate (HBV infection). (B) cGAS-related genes are weakly affected by HBV infection. HepG2-

NTCP (NTCP), HepG2-NTCP-Cas9 (Cas9) and cGAS KO#2 were infected with HBV. Alternatively, HepG2-

NTCP cells were transfected with 100ng of poly (I:C). Two days after infection or transfection, total RNA 

was extracted. Gene expression of the cGAS signature gene-set was then analyzed using nCounting 

NanoString. Results were analyzed by GSEA enrichment compared to non-transfected or non-infected 

controls (C-D) IFNB1 (C) and IFI44 (D) gene expression are presented to illustrate nCounting Nanostring 

technology results. NanoString results analyzed by GSEA enrichment were compared to non-transfected 

or non-infected controls (Set at 1). One experiment performed in triplicate is shown. (Yim, Verrier et al., 

2017, submitted to Gut). 
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9. HBV rcDNA is sensed by cGAS 

The HBV genome is encapsidated by the HBV core protein during its intracellular transport 

to the nucleus after viral entry (105). Moreover, pgRNA resulting from the transcription of the viral 

cccDNA in the nucleus, is capped and polyadenylated like a regular cellular mRNA before its 

transfer into the cytoplasm. Once in the cytoplasm, pgRNA is encapsulated in the viral capsid 

associated with the viral polymerase. Viral reverse transcription by the viral polymerase from the 

pgRNA form to the genomic rcDNA form occurs inside the virion, allowing HBV rcDNA to be 

protected from the cellular sensors. Thus, it has been suggested that the HBV genome and its 

replication intermediates evades recognition by the innate immune sensors responsible for 

initiating immune responses (283). Having observed failure of IFNB1 induction at the early stage 

of infection, we next studied whether naked HBV DNA could be sensed by cGAS. We first purified 

viral rcDNA from recombinant infectious HBV particles (Figure 31A). HepG2-NTCP cells (1X105 

cell/well) were seeded in 24-well plate one day prior to transfection. One μg of either CT-DNA 

(dsDNA) or purified HBV rcDNA was transfected into HepG2-NTCP cells using calcium phosphate 

transfection. HBV virion precipitation control prepared from non-infected HepG2-NTCP cell 

supernatants was used as control (Ni Ctrl). Medium was changed 16 hours after transfection, total 

RNA was extracted at 3 days after transfection.  

Again, using nCounting Nanostring technology, we investigated the potential modulation 

of cGAS-related genes in CT-DNA (dsDNA) and HBV rcDNA transfected cells, 3 days post 

transfection. Nanostring results were analyzed, in our unit, using GSEA enrichment method. As 

shown in Figure 31B, a significant increase (FDR = 0.02) in expression of the cGAS signature 

gene-set was observed after CT-DNA (dsDNA) and rcDNA transfection in HepG2-NTCP Cas9 

cells. This finding suggests that naked HBV genomes are sensed by either cGAS or other cellular 

sensors. However, since induction of the cGAS-related genes was no longer observed in cGAS 

KO#2 cells, it appears that a cGAS-specific activation of innate immunity by both CT-DNA 

(dsDNA) and rcDNA transfection occurs.  

 



81 

 

 

Figure 31. HBV genome exposure induce a cGAS-mediated innate immune response 

(A) Preparation of purified HBV rcDNA. HBV rcDNA was purified from HBV virions and analyzed by qPCR 

before transfection. Expected amplicon size is 148 bp. (B) cGAS-related genes are induced by CT-DNA 

(dsDNA) or HBV rcDNA in a cGAS specific manner. HepG2-NTCP-Cas9 (Cas9) and cGAS KO#2 cells were 

transfected with 1μg of CT-DNA (dsDNA) or 1μg of HBV rcDNA. Three days after transfection, total RNA 

was extracted. Gene expression of the cGAS signature gene-set was then analyzed using nCounting 

NanoString. Results were analyzed by GSEA enrichment compared to non-transfected or non-infected 

controls (C-D) IFNB1(C) and IFI44 (D) gene expression compared to non-transfected control (Ctrl) are 

presented to illustrate Nanostring results. One experiment performed in triplicate is shown. (Yim, Verrier et 

al., 2017, submitted to Gut). 

 

In order to confirm the hypothesis that HBV is a virus hidden from cellular sensors 

recognition in its capsid, we transfected HBV pgRNA encoding plasmids expressing either wild-

type or assembly-defective mutants (272). One μg of HBV pgRNA-encoding plasmids were 

transfected into HepG2-NTCP cells (1X105 cell/well in 24-well plate). Replication of HBV wild-type 

(WT) or mutants (L60A, L95A, K96A, and I126A) was confirmed by detection of HBV pgRNA, 
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HBV core antigen (HBcAg) and HBV e antigen (HBeAg) in the transfected cells 3 days after 

transfection. Transfection of assembly-defective genomes led to effective HBV replication 

although at variable rates as attested by the pgRNA (Figure 32A). Core (HBcAg) detection 

suggested that capsids are formed in the transfected cells at similar levels. In contrast, variations 

in HBeAg levels, quantified by ELISA in the cell lysates, likely show different capacities of 

assembly-defective mutants to express HBeAg or that HBeAg is variably degraded in the 

cytoplasm of these cells (Figure 32B). We next assessed IFNB1 expression by qRT-PCR. As 

shown Figure 32C, IFNB1 expression was not or only minimally induced in mutant transfected 

cells compared to wild-type. Since it has been established that this assembly-defective capsids 

are able to support proper reverse transcription by the viral polymerase to synthesis rcDNA (272), 

only two explanations can be proposed, either these “leaky” capsids do not confer better 

accessibility of the viral rcDNA to cellular sensors or the higher instability of the capsids leads to 

rapid nuclease degradation of the neosynthesized HBV rcDNA. Alternatively, IFNB1 expression 

is not sufficient to detect sensing and a more sensitive approach as described above is needed 

to study viral sensing. Further studies are needed to determine whether cGAS can sense HBV 

DNA in variants with mutant core.  
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Figure 32. Assembly-defective HBV mutants and IFNB1 expression  

HBV wild type (WT) or assembly-defective mutants encoding plasmids (L60A, L95A, K96A, and I126A) 

were transfected into HepG2-NTCP cells. (A-B) HBV replication was assessed by quantification of pgRNA 

by qRT-PCR (A), detection of HBeAg from lysates from each plasmid transfected cells by ELISA and HBcAg 

from lysates of transfected cells by Western at 3 days after transfection. β-actin was detected as a Western 

blot loading control. No replication (nd) was confirmed in control (Ctrl) (B). (C) IFNB1 expression in each 

transfected cells was quantified by qRT-PCR. Results are expressed as means ± SD % IFNB1 expression 

relative to empty plasmid transfection in HepG2-NTCP cells (Ctrl, set at 100%) from three independent 

experiments performed in triplicate. Gene expression was normalized to GAPDH mRNA expression. 

 

10. HBV infection down-regulates cGAS-expression in cell culture  

As HBV proteins have been shown to inhibit IFN-signaling pathways in experimental 

model systems (127, 223), we next aimed to determine whether HBV infection was able to 

interfere with the expression of cGAS and cGAS-related gene expression. To address this 

question, HepG2-NTCP cells (1X105 cells/well in 24-well plate) were infected with HBV. Sixteen 
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hour after HBV inoculation, cells were washed with DPBS and then cultured in 2% DMSO 

containing culture medium. cGAS, TBK1 and HBcAg protein expression were detected by 

Western blot, at 10 dpi. As shown in Figure 33B, we observed that 40% of cGAS and 30 % of 

TBK1 expression was decreased in HBV infected HepG2-NTCP cells (HBV+) compared with HBV 

non-infected cells (HBV-). Next, we assessed either the mRNA level of MB21D1 (encodes cGAS) 

and cGAS-related genes following HBV infection (Figure 33A) by qRT-PCR at 2 or 10 dpi. We 

observed that the MB21D1 (cGAS), TMEM173 (encodes STING), and TBK1 mRNA levels  were 

significantly inhibited in HBV-infected cells (Figure 33C). Of note, TMEM173 (STING) mRNA 

expression was detected in HBV infected HepG2-NTCP cells (Figure 33C). These results indicate 

that the cGAS-STING pathway is gradually down-regulated during HBV infection in our cell culture 

model.   

 

 

Figure 33. HBV infection reduces cGAS-STING expression in infected HepG2-NTCP cells 

 (A) HepG2-NTCP cells were infected with HBV for 2 and 10 days. HepG2-NTCP cells were infected with 
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HBV then total RNA was extracted at 2 and 10 dpi. HBV infection was assessed by detection of HBV pgRNA 

by RT-qPCR. Three experiments performed in triplicate are shown. (B) cGAS, TBK1 protein, and HBcAg 

expression were detected at 10 dpi by Western blot (One experiment is shown). β-actin was detected as a 

Western blot loading control. Protein expression normalized β-actin was quantified using the ImageJ 

software. (C) Gene expression of MB21D1 (cGAS), TMEM173 (STING), and TBK1 relative to non-infected 

control cells was assessed by qRT-PCR at 2 and 10 dpi. Results are expressed as means ± SD % HBV 

pgRNA expression relative to non-infected cells (Ctrl, Set at 100%) from three independent experiments 

performed in triplicate. Gene expression was normalized to GAPDH mRNA expression. p < 0.05 (*), p < 

0.01 (**), and p < 0.001 (***) were considered significant. (Yim, Verrier et al., 2017, submitted to Gut). 

 

11. HBV infection represses the expression of cGAS-STING pathway related genes in vivo  

To confirm this observation using an in vivo model, we then investigated the expression of 

human cGAS and cGAS-related genes in HBV-infected humanized uPA/SCID mice by 

intrasplenic injection as described (280). The liver of these mice was repopulated of PHH as 

described (280). Transplantation of PHH into mice liver, HBV infection and sacrifice of HBV 

infected and control mice were performed in our unit UMR_S1110 as described in the Material 

and Method section.  

Sixteen weeks after infection, total RNA was extracted from either HBV infected or non-

infected mice livers, and gene expression was assessed by qRT-PCR. As shown in Figure 34A, 

MB21D1 (cGAS) expression was significantly down-regulated in HBV-infected humanized mice 

livers compared to control mice livers, confirming our cell culture results. Importantly, MB21D1 

(cGAS) expression levels were not correlated with either albumin levels (attesting the level of 

PHH liver repopulation) or HBV genotype (Table 11). Next we tested IFNB1 expression is the 

same samples. IFNB1 was very low in HBV infected and non-infected mice liver (Figure 34B), 

indicating that HBV infection could not induce innate immunity responses in humanized chimeric 

mice as suggested previously by others in the Chimp model (230).  
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Figure 34. Expression of cGAS-related genes is impaired by HBV infection in vivo 

Humanized uPA-SCID mice were infected with HBV for 16 weeks. Mice were then sacrificed and the HBV 

viral load in the serum was quantified (Table 11 below). After total RNA extraction from HBV infected (HBV) 

and non-infected (Mock) mice liver, human MB21D1 (cGAS) (A) and IFNB1 (B) expression was assessed 

in 7 HBV-infected mice and 4 control mice by qRT-PCR NS means statistically non-significant. Results are 

expressed as the ratio MB21D1 mRNA / GAPDH mRNA. All individual mice are presented as well as means 

± SD for each group. p < 0.05 (*) was considered significant. (Yim, Verrier et al., 2017, submitted to Gut). 

 

We also quantified gene expression of cGAS-related ISGs in the liver of humanized mice 

by nCounting NanoString technology and analyzed data by GSEA (Figure 35). As presented 

below, the expression of most cGAS-related ISGs was downregulated in HBV-infected humanized 

mice livers. 
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Figure 35. The expression of cGAS-related genes was quantified using the nCounter NanoString 

Technology and analyzed by GSEA 

Livers form mice 6472, 6251, and 6254 (Mock-infected mice, Table 11) and 4766, 4771, and 4847 (HBV-

infected mice, Table 11) were analyzed for expression of a series of cGAS related genes and modulation 

of expressions were analysed by GSEA. A significant downregulation (FDR = 0.047) of the gene set was 

observed in HBV-infected mice compared to control mice. Individual Z-scores for the genes significantly 

modulated between the two groups according to GSEA analysis are presented. Negative Z-score (blue) 

and positive Z-score (red) correspond to repression and induction of the indicated genes, respectively. (Yim, 

Verrier et al., 2017, submitted to Gut). 

 

Taken together, our in vivo data suggest that HBV infection does not trigger a strong innate 

immune response and inhibits the expression of IFNB1, a major inducer of innate immune 

responses. 
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Table 11. cGAS expression in HBV infected human liver chimeric mice 

 

 

 

 

 

 

 

 

 

 

Levels of human albumin-, HBV viral loads, and MB21D1 (cGAS) levels in liver tissue from HBV-infected 

and control humanized mice are shown. MB21D1 (cGAS) expression is normalized by GAPDH expression. 

The source of HBV (genotype E or D) is indicated. Red mark: mice used for multiplexed gene profiling.  

  

  Mouse 
Albumin (µ

g/ml) 

HBV  

(IU/ml) 

MB21D1 m

RNA 

HBV inoculum 

(IU) 

Ctrl   

6410 1280 - 1.40E-03 - 

6472 2720 - 1.40E-03 - 

6251 3240 - 2.30E-03 - 

6254 7870 - 1.90E-03 - 

HBV 

Gt E 

4770 4200 2.9.E+07 1.30E-03 1.25x10^6  

4773 4800 1.5.E+08 1.70E-03 1.25x10^6 

4766 12760 3.6.E+06 3.20E-04 1.25x10^6  

4771 13120 6.2.E+05 3.70E-04 1.25x10^6  

Gt D 

4846 2127 5.5.E+05 3.80E-04 5.00x10^5 

4847 10045 1.6.E+08 1.70E-04 1.00x10^5 

4848 1992 6.7.E+06 7.50E-04 1.00x10^7 
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V. DISCUSSION 

 

The interaction between HBV and the innate immune system is a complex process that 

still remains elusive and controversial (266). While previous reports have studied some aspects 

of HBV-cGAS association (180, 267), the mechanism of cGAS immune evasion still remains 

controversial.  

In this study, we performed functional studies including loss- and gain-of-function experiments 

combined with cGAS effector gene expression profiling in an HBV infection-susceptible cell 

culture model and HBV-infected humanized chimeric mice. Collectively, our data shown that (i) 

cGAS-STING pathway exhibits robust antiviral activity against HBV infection including reduction 

of viral cccDNA levels; (ii) naked HBV genomic rcDNA is sensed in a cGAS-dependent manner 

whereas packaging of the viral genome during infection abolishes host cell recognition of viral 

nucleic acids; (iii) HBV infection suppresses both cGAS expression and function in cell culture 

and in humanized liver chimeric mice as shown by down-regulation of cGAS innate immune 

effector gene expression. (Yim, Verrier et al., 2017, submitted to Gut). 

 

The cGAS-STING pathway is functional in human hepatic cells 

We initially examined the basal level of cGAS protein in different cell lines. We detected 

robust expression of cGAS in our HepG2-NTCP cells as well as in PHH from two different donors 

(Figure 21). We then confirmed that cGAS protein expression was markedly induced by both 

dsRNA (poly (I:C)) and dsDNA (CT-DNA) stimulation (Figure 22), as reported by others in mice 

liver or bone marrow-derived macrophages (227, 282). This finding demonstrated that cGAS is 

as an ISGs in our cell lines, like it was already described in other cells lines, i.e. bone marrow-

derived macrophages, THP-1 cells, and plasmacytoïd dendritic cells (177, 205, 282, 284). 

A recent publication reported absence of STING expression in human hepatic cells (227). 

The authors proposed that absence of STING might explain the weak innate immune response 

during HBV infection. These observations are not in accordance with the results obtained in the 

frame of this work. Indeed, we showed that TMEM173 (encoding STING) was expressed in 

HepG2-NTCP cells and gradually decreased during the time course of HBV infection from 2 to 10 
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dpi (Figure 33). Moreover, very recently, a new antibody, allowed us to detect STING protein 

expression in hepatic cells, including PHH. As well, silencing of TMEM 173 expression 

significantly increased HBV replication and thus supports that STING is present and active in 

these cells (Figure 23). Finally, rcDNA and dsDNA induced strong IFNB1 expression in a cGAS-

dependent manner (Figure 31). Since STING is activated by cGAMP produces by cGAS and thus 

mediates specifically cGAS activation, functional presence of STING in our cell culture model is 

definitively proven in our cell culture models. (Yim, Verrier et al., 2017, submitted to Gut). 

Collectively, our data demonstrate that the cGAS-STING pathway is expressed and fully 

functional in the cells used in our study.  

 

cGAS exerts an antiviral activity against HBV infection including reduction of viral cccDNA 

levels 

Using loss- and gain- of function, we demonstrate that cGAS exerts a robust antiviral 

activity against HBV infection of hepatic cells (Figure 23, 28). This finding extends a previous 

study showing antiviral activity of cGAS against a broad range of RNA and DNA viruses (201) and 

two other studies showing anti-HBV activity targeting viral replication and assembly (180, 267). 

The originality of our study was to establish cGAS KO cell lines and cGAS overexpressing cell 

lines to study function of cGAS as a key player in HBV infection. Using our cGAS KO cell lines, 

we observed a marked increase in HBV replication (pgRNA levels) and impressive increase in 

cccDNA in these cells compared to control cells. In parallel, cGAS stable overexpressing cells led 

to a significant decrease in HBV replication and cccDNA (Figure 29). Thus, this work shows 

conclusive evidence that cGAS exerts antiviral activity against HBV infection including reduction 

of viral cccDNA. (Yim, Verrier et al., 2017, submitted to Gut). 

Despite these interesting findings, it still remains to explain how cGAS exerts antiviral 

function without viral genome sensing and without induction of innate immune responses. Our 

next question will be to investigate more deeply the molecular mechanism of cGAS antiviral 

activity. One line of inquiry will be to investigate the role of the AKT/mTOR signaling pathway in 

the cGAS antiviral mediated regulation. Indeed, it has been shown that the basal level of the PI3K-

Akt pathway regulates HBV replication in HepG2 cells (285). Since AKT can be activated by the 

HBV HBx oncoprotein (91) a role of AKT phosphorylation in decreasing cGAS activity can be 

proposed. A recent report supports our hypothesis, it reports that activated AKT by HBx protein 
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phosphorylates cGAS at Ser 291 or Ser 305, suppressing its enzymatic activity (192). This might 

in turn inhibit cGAS-STING pathway and thus lead to an increase in viral replication once the 

cccDNA is formed and viral replication started. Another line of approach would be to study the 

importance of cGAS SUMOylation in the cGAS antiviral activity. Indeed, SUMOylation and 

deSUMOylation of RIG-I and MAD5 have been described as crucial for modulation of  innate 

immune responses to viral infection (286). A recent report, published this year shows that SENP7 

(sentrin/SUMO-specific protease 7) potentiates cGAS activation by relieving SUMO-mediated 

inhibition of cytosolic sensing (287). Moreover, modifications catalyzed by tubulin tyrosine ligase-

like (TTLL) glutamylases and reversed by members of the cytosolic carboxypeptidase (CCP) 

family of enzymes have also been recently described as cGAS modulators (193). Investigating 

this very fast moving field in the context of HBV infection would be of high interest. 

 

HBV capsid protects HBV rcDNA from cellular sensors  

The detection of HBV DNA by cellular sensors within HBV infected cells is still poorly 

understood. In vitro and in vivo data strongly suggest that HBV behaves like a stealth virus unable 

to trigger strong innate immune responses (12, 179, 198). Recently, other reports suggested that 

HBV-derived dsDNA fragments (180) and viral nucleocapsid destabilization and disassembly (164) 

could induce innate immune responses. In this study, we observed that naked HBV genome 

(rcDNA) is sensed, resulting in activation of innate immune genes (Figure 31) (Yim, Verrier et al., 

2017, submitted to Gut). It suggests that HBV genome itself is recognized by the classical sensors, 

but that (i) HBV DNA recognition by cGAS is impaired due to the encapsidation of the viral genome; 

(ii) HBV viral proteins might induce alterations of the cGAS-STING pathway thus down-regulating 

IFNB1 expression (149, 165, 223). Another possibility is that mitochondrial stress caused by HBV 

infection (288) leads to the release of mitochondrial DNA (mtDNA) into the cytosol, mtDNA may 

be sensed by cGAS resulting in induction of antiviral responses, like in HSV infection (206). 

Interestingly, while HIV replicates its RNA genome to dsDNA in infected macrophage cells, 

replication intermediates such as the unpaired guanosine in Y-form DNA, and ssDNA, are 

detected by cGAS, resulting in activation of type I IFN responses (190). However, the capsid of 

HIV-1 also prevents the sensing of HIV cDNA by cGAS following reverse transcription up to 

integration, whereas HIV-2 capsid may unmask the cDNA leading to a stronger sensing by cGAS 

and a lower pathogenicity of the strain (289). Like HIV, the reverse transcription of HBV also 
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occurs inside the virion. It makes possible to hide replication intermediates from immune sensors. 

As well, HSV-1 viruses also encapsidate their genomic DNAs inside the virion. However, in 

macrophages their genomic DNA is detected by DNA sensor, IFI16, following ubiquitination of the 

capsids and degradation of the capsid by the proteasome (211). 

We observed that HBV naked DNA (extracted rcDNA from virion) appears to be properly 

sensed in hepatic cells by the cGAS-STING pathway and that, in contrast, HBV infection leads to 

neither induction of IFNB1 nor of cGAS-related genes, referred as the cGAS signature gene-set 

in our study (Yim, Verrier et al., 2017, submitted to Gut). To further understand the role of the viral 

capsid in shielding of the genome, I first tested the capacity of capsid assembly-defective genome 

to be recognized by the innate immune system. Although 4 different mutant genomes (L60A, L95A, 

K96A, and I126A) with wild-type were tested, I did not observe a robust IFNB1 response under 

my experimental conditions (Figure 32) (Yim, Verrier et al., 2017, submitted to Gut). As mentioned 

above further studies are needed to understand the role of the capsid for viral sensing. Another 

approach could be the use of capsid inhibitors to investigate whether exposing the encapsidated 

genome in the cytoplasm will trigger HBV genome sensing by host sensors including cGAS. The 

heteroaryldihydropyrimidine (HAP) series of compounds, BAY 41-4109 and GLS 4, are well 

known HBV capsid inhibitors that were tested for their antiviral activity in a uPA-SCID mice 

infected with HBV or a mouse model of HBV replication engrafted with HepAD38 cells, 

respectively (290, 291). Thus, we aimed to assess IFNB1 expression in GLS4 treated HBV-

infected cells to investigate the possibility that viral DNA genomes might be sensed once reverse 

transcription has occurred inside the capsid. Unfortunately, pilot experiments revealed a high 

cytotoxicity of these molecules in our hepatic cell lines and hampered correct analysis of HBV 

sensing. However, optimization of our experimental conditions will allow to address unresolved 

question in the future.  

 

HBV infection suppresses the cGAS-STING pathway in vivo and cell culture models 

Given the antiviral activity of the cGAS-signaling pathway against HBV infection (Figure 

23, 28), the viral-mediated restriction of MB21D1 (cGAS) expression plays an important role in 

HBV immune evasion, as it has been recently reported (180, 267). 

It has been recently described that cGAS-depleted mice were more susceptible to RNA 

virus infection and that cGAS exhibited antiviral activity against a broad range of RNA and DNA 
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viruses (201). cGAS-depleted cells may thus be more susceptible to viral infections through the 

downregulation of the basal level of innate antiviral genes (201).  

Our data show that HBV can repress the expression of the cGAS and its related genes, 

such as MB21D1 (cGAS), TMEM17 (STING) and TBK1 (Figure 33). More interestingly, we found 

MB21D1 and IFNB1 expression is down-regulated in the liver of HBV-infected mice, confirming 

the relevance of these findings in vivo (Figure 34). However, it still remains to be determined 

whether HBV can target cGAS and cGAS-related factors for an active inhibition of this signaling 

pathway or whether, down-regulation of MB21D1 may be the consequence of the global inhibition 

of the canonical IFN pathways by HBV (292) (Yim, Verrier et al., 2017, submitted to Gut).  

Indeed, given its broad antiviral function, cGAS is targeted by many viruses in order to 

evade immune responses. It has been reported that the KSHV ORF52, an abundant 

gammaherpesvirus-specific tegument protein, directly binds to cGAS, and hence negatively 

regulates the cGAS-dependent signaling pathway (219, 293). A recent study elegantly 

demonstrated an active inhibition of the cGAS pathway by dengue virus through NS2B protein 

that degraded cGAS in the virus infected cells (294). Moreover, it has been shown that HBV viral 

proteins interfere with the JAK/STAT signaling pathway, for instance by inhibiting IRF3 activation 

via the viral polymerase (149, 292). In the same line, most immortalized and tumor cell lines fail 

to respond to intracellular DNA, whereas primary cells mount a vigorous DNA-activated antiviral 

response (295). It has been demonstrated that cGAS-STING pathway is inhibited by the 

constitutive expression of oncoproteins from DNA tumor virus, such as E1A from adenovirus, E7 

from HPV, and vIRF1 from gamma-herpes virus oncogenes that transformed these cells (202, 

222). 

We assume that HBV viral proteins may interfere with cGAS optimal expression in HBV 

infected cells. We are considering that HBx, known as the HBV oncoprotein, is the most promising 

one, because it was shown to interfere with numerous cellular processes including: host signal 

transduction, transcriptional activation, DNA repair, and inhibition of protein degradation, 

proliferation, signaling, in HBV infected cells (89, 91-93). For this purpose, we plan to follow cGAS 

expression and functional activity in HBV protein expressing HepaRG cell lines kindly provided 

by our collaborator (Dr. D. Durantel, CRCL, Lyon, France).  

Finally, we analyzed HBV infected humanized mice livers for cGAS expression and 

confirmed in vitro data obtained in cell culture models, i.e. inhibition of the cGAS-STING pathway 
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gradually with time (Figure 34). Moreover, cGAS-related ISGs expression in humanized mice 

liver was quantified by nCounting nanoString technology and GSEA, indicating down-regulation 

of cGAS-related ISGs in HBV-infected humanized mice livers (Figure 35) (Yim, Verrier et al., 2017, 

submitted to Gut).  

This finding suggests that long-term HBV infection does not trigger a strong innate immune 

response and is capable of inhibiting the expression of major inducers of innate immune 

responses. In vitro and in vivo data corroborate to strongly suggest that HBV behaves like a 

stealth virus unable to trigger any innate response (12, 179, 296). 

 

Collectively, our results demonstrate that (i) basal level of cGAS is sufficient to induce 

IFNB1 expression in our hepatic cell culture model; (ii) cGAS-STING pathway exhibits robust 

antiviral activity against HBV replication and infection, including viral cccDNA levels modulation; 

(iii) naked HBV genomic rcDNA is strongly sensed in a cGAS-dependent manner whereas 

leaktight packaging of the viral genome during infection virtually abolishes host cell recognition of 

viral nucleic acids; (iv) HBV infection suppresses both cGAS expression and function in cell 

culture and humanized liver chimeric mice as shown by down-regulation of cGAS innate immune 

effector genes expression.  

Overall, this work led to describing new aspects of the complex interaction between HBV 

and the DNA sensor cGAS in hepatocytes. These findings improve the understanding of virus-

innate immune interactions in the liver, and open perspectives for a comprehensive overview of 

viral sensing and evasion by this chronic hepatotropic virus.  
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VI. Résumé en français 

 

Introduction 

 Le virus de l’hépatite B (HBV) est l’agent étiologique de l’hépatite B responsable d’une 

pandémie. En effet, en 2015, l’Organisation Mondiale de la Santé (OMS) estimait, que parmi les 

2 milliards de personnes qui avaient été en contact avec ce virus dans le monde, 257 millions de 

personnes vivaient avec une infection chronique par le VHB 

(http://www.who.int/mediacentre/news/releases/2017/global-hepatitis-report/en/ (3, 4)).  

L’hépatite chronique B (CHB) est une affection grave du foie, pouvant conduire à la cirrhose 

hépatique et au cancer du foie ou hépatocarcinome (HCC) (6, 7). Une étude française récente 

réalisée entre 1994 et 2009,  sur une cohorte de plus de 1000 personnes atteintes de CHB 

montre que ces personnes présentent un risque accru de mortalité de 70%, avec une incidence 

augmentée de maladie hépatique, de lymphome non-hogdgkinien et de cancer hépatique, 

respectivement de 10, 16 et 9 fois.  L’ensemble de ces données illustre le fait que les 

conséquences du CHB constituent un problème de santé publique majeure en France et dans le 

monde.  

 L’hépatite B se transmet de manière horizontale par voie sanguine et sexuelle. Toutefois, 

la fréquence de la transmission verticale de la mère à l’enfant, lorsque la mère n’est pas traitée, 

reste très élevée (entre 40 et 90%) et constitue une des principales causes de transmission de 

l’hépatite B en Afrique et en Asie du Sud-Est. Sans accès à un traitement, la contamination 

périnatale résulte dans  95% des cas à une infection chronique chez l’enfant (5). 

 Depuis plus de vingt ans, des vaccins préventifs, sûrs et efficaces, basés sur l’antigénicité 

des protéines de surface du virus (HBsAg) ont été établis (8). Suite à la vaccination massive des 

nouveaux-nés préconisée par l’OMS, l’efficacité des vaccins a été actée par la baisse du nombre 

de porteurs chroniques et la baisse de l’incidence du cancer du foie dans plusieurs pays (37). 

L’accès au vaccin dans les pays où l’accès aux soins est encore difficile, freine toutefois 

l’éradication de cette maladie à l’échelle mondiale. 

 L’infection est majoritairement asymptomatique. De plus, grâce à une réponse 

immunitaire adaptative robuste, 95% des personnes contaminées résoudront l’infection dans les 

six mois suivant l’infection (22). Si après six mois la charge virale persiste, on considère l’infection 

http://www.who.int/mediacentre/news/releases/2017/global-hepatitis-report/en/
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chronique établie (2).  

 Le CHB s’étend sur une période de 60 ans, et se caractérise par 4 phases définies par 

rapport au taux d’ALT, la quantité de DNA viral sérique et la présence d’antigène et d’anticorps 

HBe (HBeAg, HBeAc).  Une première phase « Immune tolerant » (DNA Viral et HBeAg élevés et 

ALT bas) est suivie de la phase « immune clearance/HBeAg-positive chronic hepatitis » 

caractérisée par l’élévation des ALT. Lors de la phase « inactive carrier » on observe une baisse 

voire la disparition de l’HBeAg et du DNA viral et une séroconversionavec apparition de HBeAc. 

La phase « reactivation/HBeAg-negative chronic hepatitis » apparait tardivement pas une 

réaugmentation de l’ADN viral et des ALT dans le sérum (14).  

 Pour les patients atteints de CHB les traitements sont proposés lorsque les taux de 

réplication virale est élevé et l’inflammation chronique du foie avérée après examen clinque 

approfondi. Les traitements sont basés sur l’administration d’analogues nucleot(s)idiques (NUC) 

ou d’interferon (IFN)-alpha (22, 23). Les NUCs consistent en trois groupes structuraux L-

nucleosides (lamivudine), les alkyl phosphonates (telbivudine, adefovir and tenofovir), et les D-

cyclopentanes (entecavir) (24). Bien que ces traitements aient prouvé leur efficacité, pour la 

négativisation de la charge virale, l’infection virale peut persister de manière occulte ou à bas 

bruit, en raison de l’établissement dans le noyau de la cellule infectée d’une forme épisomale du 

génome du HBV nommé cccDNA (covalently closed circular DNA). Cette forme résiste aux 

traitements actuellement disponibles et est le support de la phase de réactivation de l’infection 

(108).  

 Une des voies de développement de nouvelles thérapies consiste en l’identification de 

facteurs de l’hôte comme cibles thérapeutiques (260).  

 Le virus de l’hépatite B appartient à la famille des Hepadnaviridiae comprenant deux 

genres les orthohepadnavirus (infectant les mammifères), dont il est le prototype, et les 

avihepadnavirus (infectant les oiseaux), dont le duck hepatitis virus est le prototype (1, 40). Dans 

le sérum des patients infectés par le HBV, les particules sphériques infectieuses sont appelées 

particule de Dane (42, 48, 49). Le VHB est un virus à DNA enveloppé qui présente la particularité 

de posséder un génome DNA circulaire relaxé (rcDNA) dont le brin moins est complet (3,2 kb) et 

le brin plus incomplet (50). Le génome associé à la polymérase virale est protégé par une capside 

icosaédrique formée de dimères de la protéine core. L’enveloppe virale issue du réticulum 

endoplasmique de la cellule infectée dans laquelle sont enchassées les trois types d’antigènes 
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de surface (Large (L), Middle (M), et Small (S) HBsAg) partageant la même extrémité N-terminale. 

Le génome code 4 transcrits comprenant des régions codantes chevauchantes, dont un petit 

transcrit codant la protéine oncogénique x (HBxAg), deux transcrits codant pour les 3 protéines 

de surface (HBsAg), un transcrit codant la protéine pré-core/core (HBeAg et HBcAg) et la 

polymerase virale. Ce transcrit constitue également le RNA pré-génomique (pgRNA) qui sera 

reverse transcrit en génome viral une fois encapsidé (58).  

 Très récemment le récepteur NTCP (human sodium/taurocholate cotransporting peptide 

(hNTCP/SLC10A1)), un récepteur impliqué dans le transport des acides biliaire a été identifié 

comme le premier récepteur spécifique du VHB  (48, 49, 60). Cette découverte constitue une 

avancée majeure dans la compréhension du cycle viral du VHB par la possibilité d’établir des 

modèles de culture cellulaire permissifs au HBV.  

 Le cycle viral du HBV peut se résumé en 5 étapes principales. Le virus s’attache à la 

surface des hépatocytes aux Heparan Sulfate Glycoprotein tel Glypican 5 (99, 100) puis entre 

dans la cellule grâce à la reconnaissance entre les protéines de surface et la récepteur NTCP 

(98, 101) par un mécanisme en core peu documenté (103, 104).  Une fois dans le cytoplasme, 

la capside est libérée et acheminée à la membrane nucléaire (106, 107) L’entrée dans le noyau 

est associée à la libération du DNA viral qui est complété par la DNA polymérase cellulaire et une 

fois clos forme un mini-chromosome qui sera la base de la transcription du génome, le circular 

covalently closed DNA ou cccDNA (52). Les RNAs messagers ainsi que le pgRNA sont 

polyadénylés et coiffés avant de retourner dans le cytoplasme (110). Rapidement le pgRNA  est 

encapsidé avec la polymérase virale et la reverse transcription peut commencer. La 

reconnaissance spécifique du pgRNA par la capside se fait grâce a une structure secondaire e 

située en 5’ pgRNA (108, 111). La nucléocapside est ensuite enveloppée à la membrane du 

reticulum post-endoplasmic-pre-Golgi dans lequel sont enchassées les protéines d’enveloppe (L- 

M- et majoritairement S HBsAg) (120, 121). En parallèle, la protéine pré-core/core perd son 

peptide signal au niveau du réticulum endoplasmique ainsi que la région C-terminale riche en Arg 

pour libérer le HBeAg qui sera excrétée dans le milieu extracellulaire (72, 73).  HBeAg est, avec 

le pgRNA, un des marqueurs précoces d’une réplication active.  

 Pendant longtemps, les travaux sur le HBV ont été restreints à l’utilisation de lignées 

cellulaires exprimant de façon stable le génome du HBV intégré dans le génome cellulaire, ainsi 

la lignée HepAD38 produit des particules virales sous le contrôle d’un promoteur tétracycline 
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(248). La limite de ces lignées nets qu’elles ne permettent pas d’étudier le cycle biologique 

complet du HBV. La découverte du transporteur de sels biliaires, NTCP, comme récepteur 

spécifique du HBV a ouvert de nouvelles perspectives par l’établissement de lignées 

hépatocytaires exprimant NTCP et devenant de ce fait permissives au HBV, comme la lignée 

HepG2-NTCP (99).  In vivo, le seul modèle animal a longtemps été le modèle chimpanzé qui a 

permis l’étude de réponse immunitaire innée et acquise en réponse à cette infection (230). 

Toutefois, le HBV n’induit pas de chronicité dans ces animaux (22, 230). A présent, des modèles 

de souris humanisées par la transplantation de PHH sont utilisés pour confirmer ou infirmer les 

données in vitro (245). 

 L’infection par le HBV provoque une réponse adaptative forte et efficace chez la grande 

majorité des adultes infectés (22), ceci est en partie du à la production massive, en plus des 

particules infectieuses, de particules subvirales sphériques ou filamenteuses portant le HBsAg à 

leur surface (50). A l’inverse, des travaux menés dans le modèle chimpanzé ont montré que 

l’infection par le HBV n’induit pas de réponse immunitaire innée (12, 230). De ce fait, le HBV a 

été qualifié de virus « furtif » capable d‘échapper à la surveillance effectuée par les senseurs 

cellulaires de l’immunité innée.  

 La réponse immunitaire innée est la première ligne de défense antivirale. Elle est activée 

par la reconnaissance de motifs structuraux portées par les pathogènes, les « pathogen-

associated molecular patterns » ou PAMPs par des récepteurs cellulaires membranaires, 

endoplasmiques ou cytosoliques, les « pattern recognition receptors » (PRRs) (122). Parmi les 

PRRs, les Toll like receptors TLR 3, 7, 8, localisés à la membrane de l’endosome sont impliqués 

dans la reconnaissance de RNA simple brin (ssRNA) et DNA double brin (dsDNA) de virus, alors 

que les senseurs cytosoliques « RIG-I like receptors » (RLR) et « Nucleotide oligomerisation 

receptor » (NLR) sont impliqués dans la reconnaissance de structures secondaire des acides 

nucléiques. Les PPR une fois activés par les PAMPs, dans le cas des virus généralement l’acide 

nucléique, induisent une cascade de signalisation qui conduit à la production d’interférons (IFN) 

de type I (alpha/beta), de cytokines pro- et anti- inflammatoires, de chimiokines. Les IFN de type 

I permettront d’agir de manière autocrine mais aussi paracrine et ainsi d’alerter les cellules 

voisines et de leur conférer un arsenal antiviral efficace, en induisant la synthèse massive 

d’« Inteferon induced genes » ou ISGs (129). Les IFN stimuleront également la réponse 

immunitaire adaptative par l’activation de réponse efficace des lymphocytes B et T (126, 127).  
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 Les dsDNA induisent efficacement la réponse immunitaire innée, qu’ils soient issus de 

l’ADN tumoral, de l’ADN mitochondrial ou de l’ADN viral, en induisant une réponse IFN de type 1 

(170). Parmi les senseurs on notera : « absent in melanoma » (AIM2), « DNA-dependent 

activator of IRFs » (DAI), « DExD/H box helicase protein 41 » (DDX41), « IFN-inducible protein 

16 » (IFI16), and « cyclic GMP-AMP (cGAMP) synthase » (cGAS) (153, 171). Seules quelques 

études suggèrent que la présence de fragments de dsDNA du HBV (180) dans le cytosol des 

cellules infectées ou la déstabilisation des capsides (164) pourraient induire une réponse 

immunitaire.  

 Récemment, le senseur cellulaire cytosolic GMP-AMP synthase (cGAS) a été décrit 

comme un senseur efficace de molecules ssDNA et dsDNA ainsi que dans une moindre mesure 

de ssRNA et d’hybride RNA:DNA (187, 192, 193). cGAS a été décrit pour son action antivirale 

envers de nombreux virus à DNA (HSV-1 (199, 200), murine gamma-herpesvirus 68 (MHV68) 

(201), KSHV (202), vaccinia virus (VV) (201), adenovirus(203), human papillomaviruses (HPV) 

(204), and human cytomegalovirus (HCMV) (205)) et à RNA (HIV (190)). L’activation de cGAS 

entraine la synthèse d’un messager secondaire le 2’3’cyclic GMP-AMP (cGAMP) qui active par 

phosphorylation la voie STING-TBK1 et induit la synthèse d’IFN de type 1 et des ISGs. Une fois 

synthétisé dans la cellule infectée, cGAMP peut diffuser vers les cellules voisines et induire 

également une réponse antivirale efficace (195).  

 

Objectif de la thèse 

 Au moment de mon engagement dans ce travail de thèse, la question de la 

reconnaissance par les PRR de matériel génétique du HBV n’était pas tranchée. En effet, bien 

que des travaux récents suggèrent une probable détection d’ARNs HBV par MDA5 (166) ou RIG-

I (159), il est globalement admis que le HBV n’active pas ou très peu la réponse immunitaire innée 

in vivo, ce qui est en faveur de l’image de virus « furtif » dont le DNA et/ou le RNA viral est 

dissimulé au système immunitaire inné (127). Toutefois, certaines études ont suggéré que les 

protéines du HBV inhibaient la réponse immunitaire innée et expliquerait l’absence d’activation 

de la voie IFN suite à l’infection (154). Au vu de ces données les interactions entre le HBV et la 

réponse immunitaire innée des hépatocytes ne sont encore que partiellement comprises. 

Le PRR cGAS a été récemment décrit comme exerçant une action antivirale sur un large 

spectre de virus à DNA et RNA (178, 201) en activant la voie STING/TBK1 suite à la synthèse 
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d’un messager secondaire 2’3’ cGAMP (181, 226). Dans le contexte du HBV, alors certains 

auteurs suggèrent que la voie cGAS-STING exerce une activité antivirale sur l’infection HBV (180, 

267), une autre étude suggère que l’absence de l’expression de STING dans les hépatocytes 

(227), pourrait expliquer l’absence d’activation de la réponse IFN dans les cellules infectées (266, 

268).  

Le but de mes travaux de thèse a donc été de contribuer à la compréhension des 

interrelations existant entre le HBV et les cellules hépatocytaires, à des stades précoces et tardifs 

de l’infection HBV, en utilisant différentes approches.  

Notre stratégie a été (1) de caractériser le modèle cellulaire d’infection HBV mise au point 

au  laboratoire, d’une part pour l’expression de cGAS et d’autre part pour la capacité de ces 

cellules à induire une réponse IFN robuste en réponse à des inducteurs dsDNA ou dsRNA; (2) 

d’utiliser des stratégies de perte- et gain- de fonction pour confirmer l’action antivirale de cGAS 

au cours de l’infection HBV ; (3) d’étudier la reconnaissance par cGAS de la forme génomique 

rcDNA du HBV au cours des phases précoces de l’infection, et de confirmer ou d’infirmer que le 

rcDNA du HBV reste invisible au système cGAS-STING lorsqu’il est encapsidé comme cela a été 

suggéré par d’autres (269). Pour cela, j’ai choisi un ensemble de gènes constituant des 

marqueurs de l’activité cGAS incluant les gènes utilisés dans l’étude de Shoggins et al. (270), 

des gènes de la voie cGAS-STING et des gènes importants pour la réponse immunitaire innée; 

l’expression de l’ensemble de ces gènes a été analysée par une technologie innovante, la 

« nCounting Nanostring Technology » ; (4) d’analyser l’impact de l’infection par le HBV sur 

l’expression des gènes de la voie cGAS/SING ainsi que des gènes apparentés à cette voie, ceci, 

in vitro dans notre modèle cellulaire et in vivo dans des souris humanisées infectées.  

Le but ultime de ces travaux étant de comprendre par quels mécanismes le HBV échappe 

à la réponse immunitaire innée. 

 

Résultats 

1. Validation du modèle cellulaire HepG2-NTCP pour l’étude du rôle de cGAS au cours de 

l’infection par HBV 

 Au cours de mes travaux, j’ai utilisé des cellules hépatocytaires de la lignée HepG2 

exprimant de manière stable le récepteur NTCP. Ces cellules, établies au laboratoire, sont 
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fortement permissives à l’infection HBV (99). Dans un premier temps, nous avons validé ce 

modèle d’infection pour notre étude. Dans un premier temps, nous avons analysé l’expression de 

cGAS dans ces cellules, ainsi que dans les hépatocytes primaires humains (PHH). Dans un 

deuxième temps nous avons quantifié une forte induction d’IFN beta 1 après transfection de 

dsRNA (poly I:C) ou de dsDNA (calf-thymus DNA). Ces résultats confirment que les cellules 

HepG2-NTCP constituent un bon modèle pour l’étude du rôle de cGAS dans l’infection HBV et 

que la protéine STING est présente et active dans ces cellules (Yim, Verrier et al., 2017, submitted 

in Gut). 

  

2. cGAS exerce une activité antivirale sur l’infection HBV 

 Des stratégies de perte- et gain- de fonction de cGAS, ont été ensuite utilisées afin 

d’estimer le rôle de cGAS dans l’infection par le HBV. Pour cela, l’expression des protéines cGAS, 

STING et TBK1 a été inhibée par RNA interférence, puis l’infection HBV a été quantifiée par le 

dosage du pgRNA viral. Une augmentation significative de l’infection virale a ainsi été observée. 

Afin de confirmer cette observation j’ai alors établi des cellules cGAS KO en utilisant la technique 

CRISPR-CAS9. Après plusieurs tentatives avec des systèmes plasmidiques différents, j’ai réussi 

à sélectionner des cellules cGAS KO n’exprimant plus cGAS. Ces cellules, une fois infectées par 

HBV, répliquent de 3 à 5 fois plus le HBV que les cellules infectées contrôle, confirmant ainsi les 

premières expériences utilisant l’invalidation de gènes par RNA interférence. En parallèle, des 

cellules surexprimant cGAS (cGAS OE) ont été obtenues au laboratoire, l’infection de ces cellules 

par le HBV est 2 fois moins efficace que dans les cellules contrôle HepG2-NTCP, ce qui est en 

faveur d’un rôle important de cGAS au cours de l’infection HBV. 

 Afin de vérifier que la forme génomique nucléaire de HBV ou cccDNA, est également 

affecté par cGAS, j‘ai isolé l’ADN HBV de cellules cGAS KO et de cellules cGAS OE et ces dans 

on été soumis à la détection du cccDNA par Southern blot (collaboration J Lucifora, CRCL Lyon). 

Le cccDNA de ces cellules est respectivement inhibé et augmenté en fonction de la présence ou 

non de cGAS, confirmant au niveau génomique l’importance de l’action antivirale de cGAS au 

cours de l’infection par HBV (Yim, Verrier et al., 2017, submitted in Gut). 

 

3. L’infection par le HBV n’induit pas de réponse immunitaire innée par la voie cGAS-STING 

 J’ai ensuite suivi l’induction de la voie INF lors de l’infection HBV. Ceci en quantifiant 
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l’expression INF beta1 de 1 à 3 jours après infection par le HBV. La transfection de poly (I:C) a 

été utilisée comme contrôle positif de l’induction. L’infection HBV n’induit pas de réponse 

interféron dans ces conditions. Afin d’aller plus loin dans cette étude, nous avons ensuite 

sélectionné un ensemble de 29 gènes soit de la voie cGAS-STING, soit apparentés à cette voie, 

soit impliqués dans la réponse immunitaire innée en général, l’ensemble de ces génes a été 

nommé «  signature cGAS ». Nous avons testé l’induction ou la répression de manière 

simultanée de ces gènes dans des cellules cGAS KO et cellules contrôle HepG2-NTCP suite à 

l’infection par le HBV en utilisant la « nCounting Nanostring Technology », une technique 

quantitative innovante dérivée du microarray. L’analyse des données obtenues a été réalisée par 

un spécialiste du laboratoire en utilisant le « Gene Set Enrichment Analysis, GSEA ». L’analyse 

des données a montré que HBV n’était pas détecté par les cellules qu’elles soient KO ou non 

pour cGAS, alors que le contrôle positif constitué de cellules contrôle HepG2-NTCP transfectées 

par le poly (I:C) induisait fortement l’expression de la signature cGAS validant ainsi l’expérience. 

 Ces résultats montrent que le HBV est un virus furtif qui n’est pas reconnu par la réponse 

immunitaire innée (Yim, Verrier et al., 2017, submitted in Gut). 

  

4. Le rcDNA du HBV est détecté par la voie cGAS-STING 

 Afin de vérifier si cette « invisibilité » du HBV était due uniquement à la protection du 

génome par dans la nucléocapside ou si la forme relaxée du génome, le rcDNA du fait de sa 

particularité (DNA circulaire incomplet) n’était pas détectée, j’ai purifié du rcDNA HBV à partir de 

virions infectieux. Nous avons ensuite réitéré l’analyse de la « signature cGAS » par des 

expériences de nCounting Nanostring, cette fois après avoir transfecté du rcDNA ou du dsDNA 

dans des cellules contrôle HepG2-NTCP ou des cellules cGAS KO. Les résultats obtenus, 

analysés par GSEA, montrent clairement la détection du rcDNA et du dsDNA dans les cellules 

contrôle HepG2-NTCP, alors qu’aucune induction de la signature cGAS n’est observée dans les 

cellules cGAS KO.  

 Ces expériences démontrent que le rcDNA est bien détecté par les senseurs cellulaires 

dans les cellules contrôle HepG2-NTCP et que cette détection est spécifique de la voie cGAS-

STING, l’effet disparaissant lorsque cGAS était invalidé. De plus, ces résultats confirment le fait 

que l’étanchéité de la capside assure la protection du génome viral une fois encapsidé (Yim, 

Verrier et al., 2017, submitted in Gut). 
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5. L’infection HBV inhibe l’expression des protéines de la voie cGAS-STING dans le modèle 

cellulaire HepG2-NTCP et dans un modèle de souris humanisés par transplantation de PHH. 

 J’ai ensuite analysé l’expression des protéines de la voie cGAS-STING au cours de 

l’infection HBV. L ‘expression de M2B21 (cGAS), de TEM173 (STING) et de TBK1 a été analysé 

par qRT-PCR à jour 2 et jour 10 après infection de cellules HepG2-NTCP par le HBV. Une 

inhibition forte de l’expression de ces trois gènes est observée à 10 jours post-infection. Ceci 

suggère une inhibition de la voie cGAS-STING au cours de l’infection. Nous avons confirmé ces 

résultats, par détection d’une inhibition conséquente de la protéine cGAS par western blot à 10 

post-infection.  

 Afin de confirmer cette observation dans un modèle in vivo, nous avons quantifié le taux 

de mRNA M2B21 (cGAS) dans des foies de souris humanisées infectées par HBV durant 16 

semaines. Dans ce cas aussi, l’expression de cGAS est significativement inhibée dans les 9 

souris infectées analysées en comparaison aux souris contrôle non infectées. Finalement, 

l’expression des gènes de la « signature cGAS » a été analysée dans les foies de ces souris et 

a montré une inhibition globale de l’expression de l’ensemble des gènes testés.  

 Ces résultats suggèrent que l’infection HBV inhibe la voie cGAS-STING, ce qui pourrait 

expliquer en partie la capacité du HBV à échapper aussi efficacement à la réponse immune innée 

(Yim, Verrier et al., 2017, submitted in Gut). 

 

Discussion 

 Mes travaux de thèse démontrent par des expérience de perte- et gain- de fonction, que 

le senseur cytosolique cGAS exerce une activité antivirale envers l’infection par le HBV. L’analyse 

de la réponse IFN beta1 et d’un ensemble de gène de 29 gènes constituant la « signature cGAS » 

aux temps précoces de l’infection par le HBV, montre que le HBV n’induit pas de réponse IFN de 

type 1 efficace. Ces résultats confirment que le HBV est un virus « furtif ». L’échappement  à la 

réponse immunitaire innée est dû à la protection très efficace du DNA génomique encapsidé 

(rcDNA) par la capside virale. De plus, l’analyse de temps plus long d’infection montre une 

inhibition globale de l’expression des acteurs de la voie cGAS-STING à la fois en système 

cellulaire et in vivo en souris infectées par le HBV humanisées par transplantation de PHH et 
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infectés par le HBV. 

  Mes travaux invalide la thèse d’une absence de STING dans les cellules hépatocytaires 

expliquant l’échappement du HBV à la réponse immunitaire innée et démontrent la capacité de 

notre modèle cellulaire à activer la voie cGAS-STING par des acides nucléiques et de mettre en 

place une réponse INF de type 1 de manière efficace. Cette partie de mes travaux pourra se 

compléter avec l’utilisation de virus codant des capsides déficientes pour l’assemblage (272) et 

qui pourraient ainsi libérer ou rendre accessible le rcDNA dans le cytoplasme des cellules 

infectées. Une autre alternative serait d’utiliser des inhibiteurs de capsides au cours de l’infection 

(290, 291). 

 Concernant l’inhibition des acteurs de la voie cGAS-STING au cours de l’infection HBV, 

une action du virus et en particulier de protéines virales sur l’expression de ces gènes est 

probable. De tels effets inhibiteurs exercés par des protéines virales sont courantes, permettant 

aux virus de modifier sur le long terme l’efficacité des voies de signalisation impliquées dans la 

réponse immunitaire innée. Je souhaite à présent tester le rôle des protéines virales du HBV sur 

la synthèse des protéines cGAS-STING. Pour cela, j’utiliserais des lignées cellulaires exprimant 

chacune des protéines du HBV individuellement (Collaboration D. Durantel, CRCL, Lyon, France) 

et nous analyserons l’expression des protéines de la voie cGAS-STING afin d’identifier quelle 

protéine de HBV est impliquée dans l’inhibition d’expression de cGAS et des acteurs de la voie 

cGAS-STING et d’en comprendre le mécanisme moléculaire. 

 

Conclusion 

 Au cours de mes travaux nous avons démontré (1) que cGAS exerce une activité 

antivirale envers le HBV; (2) que la nucléocapside protège le DNA génomique viral et l’empêche 

d’être détecté par la réponse immunitaire innée et que (3) l’infection par HBV diminue l’expression 

des acteurs de la voie cGAS-STING in vitro et in vivo. Ce dernier point met en lumière un nouveau 

mécanisme d’échappement du HBV au système immunitaire inné dans les cellules 

hépatocytaires. 
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Abstract 

Background and aim: Chronic hepatitis B virus (HBV) infection is a major cause of liver disease 

and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate 

immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP 

synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the 

functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. 

Methods: We performed functional studies including loss- and gain-of-function experiments 

combined with cGAS effector gene expression profiling in an infectious cell culture model, primary 

human hepatocytes and HBV-infected humanized liver chimeric mice.  

Results: cGAS is expressed in the human liver and primary human hepatocytes. In an HBV 

infectious cell culture model the cGAS-STING pathway exibits antiviral activity against HBV 

infection including reduction of viral cccDNA levels. While naked relaxed-circular HBV DNA is 

sensed in a cGAS-dependent manner, packaging of the viral genome during infection abolishes 

host cell recognition of viral nucleic acids. In cell culture and humanized liver chimeric mice HBV 

infection suppresses both cGAS expression and function as shown by down-regulation of cGAS 

innate immune effector gene expression.   

Conclusions: HBV exploits multiple strategies to evade sensing and antiviral activity of the 

cGAS-STING pathway. These results uncover a new mechanism of viral immune evasion. 

Restoration of immune sensing by cGAS-STING may provide an opportunity for immune-based 

antiviral therapies.   
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SUMMARY BOX 

 

1. What is already known about this subject? 

The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV 

infection are still poorly understood. Recent studies suggested an antiviral activity of the DNA 

sensor cGAS against HBV. However, the detailed interactions between cGAS and HBV are still 

unknown. 

2. What are the new findings? 

Here, we showed that the cGAS-STING pathway exibits antiviral activity against HBV infection 

including reduction of viral cccDNA levels even in absence of viral sensing by cGAS. Indeed, while 

naked HBV genomic DNA triggered the innate immune response in a cGAS-dependent manner, 

packaging of the viral genome during infection abolishes host cell recognition of viral nucleic 

acids, confirming the “stealth” nature of HBV. Moreover, we demonstrated that HBV suppresses 

the expression of both cGAS and cGAS-induced genes in cell culture and humanized liver 

chimeric mice, highlighting a new mechanism of immune evasion by HBV. 

3. How might it impact on clinical practice in the foreseeable future? 

These results uncover a new mechanism of viral immune evasion by HBV. Restoration of immune 

sensing by cGAS-STING may provide an opportunity for immune-based antiviral therapies.  
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Introduction 

With more than 250 million chronically infected patients, hepatitis B virus (HBV) infection is a 

leading cause of liver disease and hepatocellular carcinoma world-wide[1-3]. Current antiviral 

therapies fail to provide complete cure[4-6]. HBV is a partially double-stranded DNA virus infecting 

human hepatocytes after initial attachment to HSPGs and its receptor NTCP (reviewed in[7]). 

Following uncoating, the viral nucleocapsid is released into the cytoplasm and the viral genome 

is imported into the nucleus through an unknown mechanism. The interaction between the HBV 

capsid and Nup153 suggests an interplay between the viral capsid and the nucleus import system, 

suggesting no release of the HBV genomic relaxed circular DNA (rcDNA) into the cytoplasm [8]. 

The viral genome is directly delivered in the nucleus where it is converted into a covalently closed 

circular DNA (cccDNA)[9]. This minichromosome serves as a template for both pregenomic RNA 

(pgRNA) and viral mRNA transcription. While recent studies suggested sensing of the pgRNA or 

other HBV RNAs by either MDA5[10] or RIG-I[11], the recognition of the viral nucleic acids by the 

regular Pattern Recognition Receptors (PRRs) still remains largely elusive. In general, HBV only 

marginally activates the innate immune response in cell culture models and in vivo[12-16], leading 

to the concept that HBV behaves as a “stealth” virus avoiding viral DNA and RNA detection[17]. 

On the other hand, other studies have suggested an active inhibition of the innate immune 

responses by HBV proteins, explaining the absence of strong activation of interferon (IFN) 

pathways after infection[18]. Consequently, the interaction of HBV and the innate immune system 

of hepatocytes, and specially the sensing of HBV DNA, is still only partially understood. 

Foreign DNA recognition by cytosolic DNA sensors triggers an early antiviral innate 

immune response, including type I and type III IFN production[19]. Recently, the cyclic GMP-AMP 

(cGAMP) synthase (cGAS) was identified as a DNA sensor exhibiting an antiviral activity against 

a broad range of DNA and RNA viruses[20-22]. cGAS is encoded by MB21D1 gene and directly 

binds to double-stranded DNAs inducing the production of cGAMP which is recognized by the 
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stimulator of IFN genes (STING, encoded by TMEM173) triggering the expression of type I IFN-

stimulated genes (ISGs) through TBK1 activation[23-25].  

The understanding of HBV-host interactions, including innate immune response after 

infection, has been impaired for long time by the absence of robust in vitro system for the study 

of viral infection[26]. The development of HBV-susceptible NTCP-overexpressing hepatoma cells, 

such as HepG2 cells, allows the study of the full life cycle in a robust and easy-to-use cell culture 

model[27, 28]. HepG2 cells are capable of mounting an efficient innate immune response after 

infection by hepatitis C virus[29]. Moreover, a recent study took advantage of HBV-infected 

HepG2-NTCP for studying the interaction between RIG-I and HBV RNA [11], suggesting that this 

cell line is suitable for the study of innate immune response after HBV infection.  

In this study, we aimed to study the functional role of cGAS for the HBV life cycle and 

unravel the mechanisms of viral evasion using loss- and gain-of-function experiments combined 

with cGAS effector gene expression profiling in an infectious cell culture model and HBV-infected 

humanized chimeric mice. 

 

MATERIAL AND METHODS  

Human subjects. Human material including liver biopsies and liver tissue from patients 

undergoing surgical resection was obtained with informed consent from all patients. Respective 

protocols were approved by the Ethics Committee of the University Hospital of Basel, Switzerland 

(EKBB 13 December 2004) and University of Strasbourg Hospitals, France (CPP 10-17). 

 

Cell lines and human hepatocytes. The sources for HEK 293T[30], HepG2[30], and HepG2-

NTCP[31] cells have been described. Primary human hepatocytes (PHHs) were isolated and 

cultured as described[30]. The HepAD38 cell line (expressing the HBV genome, serotype ayw, 

genotype D) has been described[32].  
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Reagents and plasmids. DMSO, PEG 8000, Poly (I:C) and calf thymus DNA (a control dsRNA) 

were obtained from Sigma-Aldrich. The ECL reagent and Hyperfilms for Western blots were 

purchased from GE Healthcare. Transfections of DNA and Poly (I:C) at the indicated 

concentrations were performed using Lipofectamine 2000 (Invitrogen) and CalPhos Mammalian 

Transfection Kit (Clonetech), according to the manufacturer’s instructions. pReceiver-Lv151 

plasmid was obtained from GeneCopoeiaTM. The lentiCas9-Blast and lentiGuide-Puro plasmids 

were gifts from Feng Zhang (Addgene # 52962 and #52963, respectively). 

 

Small interfering RNAs for functional studies. Pools of ON-TARGET plus (Dharmacon) small 

interfering RNA (siRNA) targeting MB21D1 (cGAS), TMEM173 (STING), TBK1, and IFI16 

expression were reverse-transfected into HepG2-NTCP using Lipofectamine RNAi-MAX 

(Invitrogen) as described [30] according to manufacturer’s instructions. Cells were harvested two 

days after transfection and gene expression was monitored using qRT-PCR. 

 

Lentivirus production. Lentivirus particles were generated in HEK 293T cells by cotransfection 

of plasmids expressing the human immunodeficiency virus (HIV) gap-pol, the vesicular stomatitis 

virus glycoprotein (VSV-G) and either the human MB21D1 full open reading frame (ORF) 

encoding plasmid, or the MB21D1-targeting single-guide RNA (sgRNA) encoding plasmids, or the 

Cas9 expressing plasmid in the ratio of 10:3:10. At 3 days after transfection, supernatants were 

collected and then pooled and cleared using 0.45µm pore filter. 

 

Establishment of HepG2-NTCP-cGAS overexpressing cells. For the establishment of HepG2-

NTCP cells overexpressing cGAS, HepG2-NTCP cells were plated and transduced with lentivirus 

encoding either the human MB21D1 ORF or the EFGP ORF in pReceiver-Lv151 vector 

(GeneCopoeiaTM). After 3 days, transduced cells were selected with 200 μg/ml of neomycin 
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(G418). The cGAS-over-expressing- and control HepG2-NTCP cells were then further cultured in 

presence of G418 at 200 μg/ml. 

 

Generation of MB21D1 knock-out cells. For the generation of MB21D1 knock-out cell lines, 

one MB21D1-targeting single-guide RNA (sgRNA) was designed using CRISPR Design Tool 

(Broad Institute: http://www.genome-engineering.org/crispr/?page_id=41). The sgRNA sequence 

targeting the exon 1 of MB21D1 (sgcGAS 5’-CACCGCGGCCCCCATTCTCGTACGG-3’) was 

inserted into lentiGuide-Puro plasmid [33]. We first generated Cas9 expressing HepG2-NTCP 

cells after transduction of cells with the lentiCas9-Blast plasmid[33]. Cells were then selected with 

6 µg/ml Blasticidin S for 10 days. HepG2-NTCP-Cas9 cells were then seeded in six-well plates at 

50% confluency 24h prior to transduction with the sgcGAS-encoding plasmid. Subpopulations of 

cells were selected from the whole population and cultured independently. cGAS protein 

expression was controlled by Western blot. Finally, two cGAS deficient cell lines (cGAS_KO#1 

and cGAS_KO#2) were selected for this study.  

 

Analysis of gene expression using qRT-PCR. Gene expression was assessed by qRT-PCR. 

Total RNA was extracted using ReliaPrep™ RNA Miniprep Systems (Promega) and reverse 

transcribed into cDNA using Maxima First Strand cDNA Synthesis Kit (Thermo Scientific) 

according to the manufacturer’s instructions. Gene expression was then quantified by qPCR using 

a CFX96 thermocycler (Bio-Rad). Primers and TaqMan®  probes for MB21D1 (cGAS), TMEM173 

(STING), TBK1, IFI16, IFNB1, and GAPDH mRNA detection were obtained from ThermoFisher 

(TaqMan®  Gene expression Assay, Applied Biosystems). All values were normalized to GAPDH 

expression. 

 

Protein expression. The expression of cGAS, STING and β-actin proteins was assessed by 
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Western blot. Cells were lysed in Glo lysis buffer (Promega) and protein concentration was 

determined using Bradford assay (Bio-Rad) following the manufacturer’s instructions. Normalized 

cell lysates were ran on a 10-12% SDS-polyacrylamide gene (SDS-PAGE) by electrophoresis and 

transferred to polyvinylidene difluoride (PVDF) membrane using the Trans-Blot® Turbo™ 

Transfer System (Bio-Rad). Membranes were saturated with 5% milk PBS containing 0.1% tween. 

A polyclonal rabbit anti-cGAS antibody (HPA031700, Sigma), a polyclonal rabbit anti-STING 

antibody (19851-1-AP, Proteintech), and a monoclonal anti-β-actin (performed in parallel as a 

Western blot control) antibody (mAbcam8226, Abcam) were used for protein detection as 

described[31]. Quantification of protein expression was performed using ImageJ software.  

 

Purification of HBV and infection of HepG2-NTCP cells. The purification of infectious 

recombinant HBV particles from the supernatant of HepAD38 cells as well as the HBV infection 

of HepG2-NTCP cells have been previously described[31, 32]. Briefly, HepG2-NTCP and derived 

cells were plated one day prior to incubation with HBV particles in presence of 4% PEG. 16 hour 

after HBV inoculation, cells were washed with PBS and then cultured in 2% DMSO primary 

hepatocyte maintenance medium (PMM) for ten days. HBV infection was assessed by 

quantification of HBV pgRNA using qRT-PCR using the following primers and probe as 

described[31, 34]: Forward primer: 5’-GGTCCCCTAGAAGAAGAACTCCCT-3’; reverse primer: 

5’-CATTGAGATTCCCGAGATTGAGAT-3’; TaqMan® probe: 5’-[6FAM]-

TCTCAATCGCCGCGTCGCAGA-[TAMRA]-3’. HBV infection was normalized to GAPDH 

expression. The expression of HBcAg in infected cells was detected by Western blot using a 

polyclonal rabbit anti-HBcAg antibody (B0586, Dako) as described above. Southern blot detection 

of HBV cccDNA was performed using DIG-labelled (Roche) specific probes as described [35]. 

Total DNA from HBV-infected cells was extracted using the previously described HIRT method 

[36]. XhoI digestion of DNA extracted from HBV-infected HepG2-NTCP-Cas9 cells was used as 
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a control. XhoI digestion of HBV DNA results in a single 3,2 kb band, which corresponds to a 

double stranded linear (dsl) DNA. DNA extracts were ran in an agarose gel for 24 h and then 

transferred to a Nylon membrane (Roche). Specific DIGlabelled probes for the detection of HBV 

and mitochondrial DNAs were synthetized using the PCR DIG Probe Synthesis Kit (Roche) and 

the primers indicated in Table S1. After probe hybridization on the membrane (DIG-easy Buffer, 

Roche), HBV and mitochondrial DNAs were detected using DIG Luminescent Detection Kit 

(Roche) according to manufacturer’s instructions. 

 

Extraction of HBV rcDNA from HBV infectious particles. HBV rcDNA was extracted from HBV 

preparations using QiaAMP DNA MiniKit protocol (Qiagen). PEG-precipitated cell supernatants 

from naive HepG2-NTCP cells were used as non-virion controls. The presence of HBV DNA was 

confirmed by PCR and quantified by qPCR using the following primers and probe[31] : forward 

primer 5’-CACCTCGCCTAATCATC-3’, reverse primer 5’-GGAAAGAAGTCAGAAGGCA-3’; 

TaqMan probe 5’-[6FAM]-TGGAGGCTTCAACAGTAGGACATGAAC-[TAMRA]-3’. Copy number 

of HBV was determined using a standard curve. 1 μg or rcDNA or dsDNA (calf thymus DNA) were 

transfected in cells using Lipofectamine 2000 (Invitrogen) and CalPhos Mammalian Transfection 

Kit (Clonetech) according to the manufacturer’s instructions. Cells transfected with HepG2-NTCP 

control supernatants were used as a control. Three days after transfection, total RNA was 

extracted and purified as described above. 

 

Transcriptomic analysis by digital multiplexed gene profiling using nCounter NanoString. 

Transcriptomic analyses using nCounter NanoString were performed according to manufacturer’s 

instructions. Specific probes for a set of cGAS-related genes (according to [22] and presented in 

Table S2) were obtained from the manufacturer. HepG2-NTCP cells were infected with HBV or 

transfected with Poly (I:C) (100ng) for two days. Alternatively, HepG2-NTCP-Cas9 and HepG2-
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NTCP-KO_cGAS#2 cells were transfected with rcDNA (1µg) or dsDNA (calf thymus DNA, 1µg) 

for three days. Total RNA was then extracted and subjected to nCounter Digital Analyzer system 

(NanoString). cGAS-related genes were considered as an artificial gene set and the modulation 

of this gene set depending on the experimental conditions was determined through Gene Set 

Enrichment Analysis (GSEA [37]). False Delivery Rate (FDR) < 0.05 was considered statistically 

significant. Heatmaps illustrating the induction (red color) or repression (blue color) of the cGAS 

signature compared to control were designed using Morpheus software (Broad Institute of MIT 

and Harvard, Cambridge, MA, USA). The heatmap illustrating the induction (red color) or 

repression (blue color) of individual genes in mice were designed using GenePattern software 

(Broad Institute of MIT and Harvard, Cambridge, MA, USA).  

 

HBV infection of human liver chimeric mice. Isolated PHH were transplanted into 3 week-old 

of uPA/SCID-bg mice by intrasplenic injection as described [38]. Transplantation of PHH into mice 

liver was assessed 4 weeks later by quantification of human serum albumin by ELISA (E80-129, 

Bethyl Laboratories). uPA-SCID were then infected with HBV and sacrificed 16 weeks after virus 

inoculation. HBV viral load in the mouse serum was determined by qPCR (Realtime HBV viral 

load kit, Abbott, by Laboratoire Schuh - groupement Bio67, Strasbourg) before sacrifice. Total 

liver RNA was extracted and gene expression was assessed by either qRT-PCR (MB21D1 

expression) or nCounter Digital Analyzer system (NanoString) analysis (cGAS signature). All mice 

were kept in a pathogen-free housing facility. The experiments were carried out at the Inserm 

U1110 animal facility and the respective protocols were approved by the Ethics Committee of the 

University of Strasbourg Hospitals (number AL/02/19/08/12 and 

AL/01/18/08/1202014120416254981 and 02014120511054408).  

 

FISH analyses. Fluorescence in situ hybridization (FISH) analyses were performed as 
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described[39, 40]. Briefly, liver samples were collected and then immediately embedded into 

optimal cutting temperature compound (OCT). OCT-embedded liver sections were cryosectioned 

(10 μm) using a cryostat (Leica). Upon fixation with 4% formaldehyde at 4 °C, washing, and 

dehydration in ethanol, tissue sections were boiled at 90–95°C for 1 min in a pretreatment solution 

(Affymetrix-Panomics), followed by a 10 min digestion in protease QF (Affymetrix-Panomics) at 

40°C. Sections were then hybridized using specific probe sets targeting HBV (target region 

nucleotides 483-1473 of HBV [Genotype D, GenBank V01460]) and human MD21D1 (VA1-

3013492-VC, Affymetrix-Panomics). Pre-amplification, amplification and detection of bound 

probes were performed according to the manufacturer’s instructions. Finally, pictures were 

acquired by LSCM (LSM710, Carl Zeiss Microscopy) and Zen2 software.  

 

Statistical Analysis. Each in vitro experiment (except digital multiplexed gene profiling) was 

performed at least three times in an independent manner. Statistical comparisons of the samples 

were performed using a two-tailed Mann-Whitney U test. For in vivo experiment, a two-tailed 

unpaired Student’s t-test was performed for comparing gene expression from non-infected and 

HBV-infected mice. p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***) were considered significant. 

Significant p values are indicated by asterisks in the figures. Each digital multiplexed gene 

profiling experiment was performed using three biological replicates per condition and the 

induction or repression of the gene set was analyzed using GSEA. FDR < 0.05 was considered 

statistically significant. 

 

RESULTS 

Expression of cGAS in human liver tissue, primary human hepatocytes and an infectious 

HBV cell culture model. Prior to its functional characterization, we studied cGAS/MB21D1 

expression in human liver tissues, hepatocytes, and HBV permissive cell lines. As shown in Figure 
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1A, MB21D1 mRNA was slightly detectable in human liver biopsies using FISH, as recently 

reported[15]. However, cGAS protein expression was easily detectable in primary human 

hepatocytes (PHH) (Figure 1B). Since HBV infection of primary cells is highly variable and does 

not allow robust perturbation studies, we used an HBV infectious cell culture model based on 

differentiated hepatocyte-derived HepG2 cells overexpressing NTCP[31] – a key HBV entry 

factor[27, 28]. We first investigated cGAS protein expression in our cell-based models. As shown 

in Figure 1B, cGAS is robustly expressed in HepG2-NTCP. We validated the specificity of cGAS 

detection using a siRNA specifically targeting the MD21B1 expression (sicGAS). Stimulation by 

Poly (I:C) or double-stranded DNA (dsDNA) transfection elicited IFNB1 expression in HepG2-

NTCP cells (Figure 1C-D), confirming that the model is suitable for functional studies related to 

innate immune responses. Moreover, cGAS protein expression was induced by both Poly (I:C) 

and dsDNA stimulation confirming an efficient IFN response through the upregulation of ISGs 

such as MB21D1 after RNA or DNA stimulation (Figure 1C-D, lower panels). 

 

The cGAS-STING pathway exhibits robust antiviral activity against HBV infection with 

reduction of cccDNA levels. To evaluate the antiviral activity of the cGAS-STING signaling 

pathway in HBV infection, we silenced the expression MB21D1, TMEM173 (encoding the STING 

protein), TBK1 and IFI16 (encoding the gamma-interferon-inducible protein 16, another 

cytoplasmic DNA sensor able to directly activate STING [19]) in HepG2-NTCP cells prior to 

infection with HBV. As shown in Figure 2A-B, silencing of MB21D1, TMEM173 and TBK1 

expression induced a marked increase in HBV infection. Notably, STING was detectable at the 

protein level in our model (Figure 2A, right panel). In contrast, the silencing of IFI16 had no effect 

on HBV infection. Most importantly, CRISPR/Cas9-mediated KO or overexpression of cGAS 

protein resulted in a marked increase or decrease in HBV cccDNA levels – the key viral nucleic 

acid responsible for viral persistence (Figure 2D-E).  
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HBV evades cGAS sensing by genome encapsidation. We then investigated whether HBV 

was sensed in HBV permissive cells. To address this question, we infected HepG2-NTCP cells 

with recombinant HBV and studied the expression of IFNB1 at early time points after HBV 

infection. HBV infection was assessed by qRT-PCR and immunofluorescence (Figure S1). As 

shown in Figure 3A, the lack of increase in IFNB1 expression indicates poor or absent detection 

of HBV by cellular sensors. Since cGAS has been shown to induce the expression of a large set 

of innate effector genes (such as OAS2 or IFI44, see[22]), the analysis of expression of a single 

effector gene such IFNB1 may not be sufficient to evaluate cGAS sensing. Therefore, we 

designed a probe gene-set designated “cGAS signature” comprising genes modulated by cGAS 

activity and crucial innate immune genes described in[22] and in Table S2. We then infected 

HepG2-NTCP-Cas9 cells as well as HepG2-NTCP-KO_cGAS#2 with HBV and measured cGAS 

effector function at day 2 post infection by analysis of the signature using digital multiplexed gene 

profiling (nCounter NanoString) and GSEA-based analysis. Whereas Poly (I:C) transfection 

induced a marked modulation of cGAS effector gene expression (FDR = 0.004), no significant 

modulation of the cGAS signature was detected in HBV-infected samples, suggesting an absence 

of HBV sensing (Figure 3B), as illustrated by the expression of IFNB1 and IFI44 (Figure 3C).  

As the HBV genome is packaged into the nucleocapsid[41], we investigated whether packaging 

shields virion DNA from cGAS recognition. We purified HBV genomic rcDNA from HBV infectious 

particles (Figure 3D, Figure S1) and transfected the naked viral genome into HepG2-NTCP cells. 

As shown in Figure 3E-F, a significant (FDR = 0.02) induction of the cGAS signature gene set 

(illustrated by IFNB1 and IFI44 expression Figure 3F) was observed after both rcDNA and dsDNA 

transfection, suggesting sensing of the naked HBV genome. Interestingly, this induction of the 

cGAS-related genes was no longer observed in HepG2-NTCP-KO_cGAS#2 cells, suggesting a 

cGAS-specific activation of innate immunity by both dsDNA and rcDNA transfection. Collectively, 
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these data suggest that HBV DNA is sensed by cGAS, but this sensing is impaired during HBV 

infection, probably due to the leaktight viral capsid. 

 

HBV infection induces repression of cGAS and its effector gene expression in cell culture 

and in liver chimeric mice. As several reports have suggested that HBV proteins can inhibit IFN-

signaling pathways[18], we next investigated whether HBV infection interferes with the expression 

of cGAS-related gene expression. To address this question, we quantified MB21D1/cGAS mRNA 

and protein expression following HBV infection (Figure 4A-B). Interestingly, cGAS protein 

expression (Figure 4B) as well as the expression of MB21D1, TMEM173, and TBK1 mRNA 

(Figure 4C) were significantly inhibited in HBV-infected cells. To confirm this observation in vivo, 

we then investigated the expression of human cGAS expression in HBV-infected human liver 

chimeric mice. Human liver chimeric mice repopulated with human hepatocytes were infected 

with serum-derived HBV (genotypes D and E). MB21D1 was expressed at low but detectable 

levels in human hepatocytes of liver chimeric mice (Figure 4D). As shown in Figure 4E, MB21D1 

expression was significantly (p = 0.013) downregulated in HBV-infected mice compared to non-

infected control mice, confirming our results in the cell culture model. Importantly, MB21D1 

expression levels did not correlate with HBV genotype (Table 1). An absent correlation of MB21D1 

expression with albumin (Table 1) rules out that differences in cGAS expression are due to 

different hepatocyte repopulation levels. To investigate whether HBV modulates cGAS effector 

function, we analyzed virus-induced changes on cGAS effector gene expression using gene 

expression profiling in three control mice and the three HBV-infected mice exhibiting the lowest 

levels of MB21D1 expression (Table 1). As shown in Figure 4F, HBV infection resulted in a 

significant (FDR = 0.047) down-regulation of the expression of cGAS effector genes in human 

hepatocytes of liver chimeric mice. Taken together, our data suggest that HBV is not sensed by 

cGAS in vivo and at the same time represses expression of cGAS and its effector genes.  



140 

 

 

Table 1. cGAS expression in HBV-infected human liver chimeric mice. Levels of human 

albumin-, HBV viral load-, and MB21D1 levels in liver tissue from HBV-infected and control mice 

are shown. MB21D1 expression is normalized to GAPDH expression. The HBV genotype (Gt) is 

indicated. Bold: mice used for multiplexed gene profiling 

  
Mouse Albumin (µg/ml) HBV (IU/ml) MB21D1 mRNA 

Ctrl   

6410 1280 - 1.40E-03 

6472 2720 - 1.40E-03 

6251 3240 - 2.30E-03 

6254 7870 - 1.90E-03 

HBV 

Gt E 

4770 4200 2.9.E+07 1.30E-03 

4773 4800 1.5.E+08 1.70E-03 

4766 12760 3.6.E+06 3.20E-04 

4771 13120 6.2.E+05 3.70E-04 

Gt D 

4846 2127 5.5.E+05 3.80E-04 

4847 10045 1.6.E+08 1.70E-04 

4848 1992 6.7.E+06 7.50E-04 

 

 

DISCUSSION 

The interaction between HBV and the innate immune system is a complex process still remaining 

elusive and controversial [17]. Collectively, our data demonstrate that (i) cGAS-STING pathway 

exhibits robust antiviral activity against HBV infection including reduction of viral cccDNA levels; 

(ii) naked HBV genomic rcDNA is sensed in a cGAS-dependent manner whereas packaging of 

the viral genome during infection abolishes host cell recognition of viral nucleic acids; (iii) HBV 

infection suppresses both cGAS expression and function in cell culture and humanized liver 
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chimeric mice as shown by down-regulation of cGAS innate immune effector gene expression.   

The detection of HBV DNA by the cellular sensors within infected cells is poorly understood 

and remains controversial. In vitro and in vivo data strongly suggest that HBV behaves like a 

stealth virus unable to trigger any innate immune response[12, 13, 15]. Other studies have 

suggested that HBV-derived dsDNA fragments[42] and viral nucleocapsid destabilization and 

disassembly[43, 44] could induce innate immune responses. In our study, we observed that the 

exposure of the HBV genome led to the activation of the IFN response, supporting the observation 

that the HBV genome itself is recognized by the classical sensors, but this recognition is impaired 

during HBV infection due to packaging into the viral capsid. Interestingly, the capsid of HIV-1 also 

prevents the sensing of HIV cDNA by cGAS following reverse-transcription up to integration, 

whereas HIV-2 capsid may unmask the cDNA leading to a stronger sensing by cGAS and a lower 

pathogenicity of the strain[45].  

Another explanation of this absence of sensing would be the lack a functional STING 

protein in hepatocyte, as it has been recently reported[46]. However, we detected STING at the 

protein level in our model and specific silencing of TMEM173 (STING) expression was associated 

with a significant increase in HBV infection (Figure 2). Moreover, rcDNA and dsDNA were sensed 

in a cGAS-dependent manner (Figure 3). Consequently, it is likely that STING is functionally active 

in our system. 

Moreover, we show conclusive evidence that cGAS has antiviral activity against HBV 

infection including reduction of viral cccDNA. This finding extends a previous study showing that 

cGAS exhibited an antiviral activity against a broad range of RNA and DNA viruses[22] and two 

other studies showing that cGAS has anti-HBV activity targeting viral replication and assembly[42, 

47]. Schoggins and colleagues have proposed that the expression of cGAS may be responsible 

for the establishment of a basal antiviral level in the cells through the activation of an unknown 

ligand. cGAS-depleted cells may then be more susceptible to viral infections through the 



142 

 

downregulation of the basal level of innate antiviral genes[22].  

Given its antiviral function, cGAS is a target of choice for viruses in order to evade immune 

responses. It has been reported that the Kaposi's sarcoma-associated herpesvirus negatively 

regulated cGAS-dependent signaling pathway [48, 49]. In the same vein, HBV viral proteins have 

been shown to interfere with the JAK-STAT signaling pathway [18, 50]. Our data suggest that HBV 

can repress the expression of the cGAS and its related genes, such as MB21D1, TMEM17 and 

TBK1. More interestingly, MB21D1 expression was downregulated in the liver of HBV-infected 

mice, validating the relevance of these findings in vivo. It still needs to be determined whether 

HBV can directly target cGAS and cGAS-related factors for an active inhibition of this signaling 

pathway. A recent study elegantly demonstrated an active inhibition of cGAS pathway by Dengue 

virus through NS2B protein [51]. On the other hand, MB21D1 (as a classical member of the ISGs 

[22]) downregulation may be the consequence of the global inhibition of the canonical IFN 

pathways by HBV [18]. Given the antiviral activity of the cGAS-signaling pathway against HBV 

including reduction of HBV cccDNA (Figure 2,[42, 47]) the viral-mediated restriction of MB21D1 

expression most likely plays an important role in HBV immune evasion.  

Overall, we have identified viral encapsidation and active suppression of cGAS and its 

effectors as novel strategies of viral evasion. These findings advance our understanding of virus-

innate immune factor interactions in the liver, and they open perspectives for novel therapeutic 

approaches i.e. restoration of immune sensing by cGAS-STING, for instance through capsid 

inhibitors may provide an opportunity to exploit the cGAS pathway for antiviral therapies. 
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FIGURE LEGENDS 

Figure 1: cGAS expression and function in the human hepatocytes and in a cell culture 

model for HBV infection. (A) MB21D1 mRNA expression in the human liver analyzed by FISH. 

Liver biopsies from an HBV-infected patient were stained using MB21D1-specific probes. (B) 

Detection of endogenous cGAS protein expression in different cellular models by Western blot. 

Cell lysates from Huh7.5.1, HepG2, HepG2-NTCP cells, and PHH from three independent donors 

were used. HepG2-NTCP cells were reverse transfected with a siRNA targeting MB21D1 (sicGAS) 

or a non-targeting siRNA control (siCtrl) two days before cGAS detection. β-actin was used as a 

Western blot control. Individual representative experiments are shown. (C-D) Poly (I:C) and 

dsDNA transfection induce IFNB1 expression in HepG2-NTCP cells. HepG2-NTCP cells were 

transfected with 100 ng of Poly (I:C) (C) or calf thymus DNA at the indicated concentrations (D). 

IFNB1 mRNA expression was quantified by qRT-PCR and cGAS protein expression was 

assessed by Western blot 72 h after transfection. Western blot individual experiments are shown. 

For qRT-PCR, data are expressed as means ± SD relative IFNB1 expression (log10) compared 

to Ctrl (set at 1) (C) and as means ± SD % IFNB1 expression compared to Ctrl (set at 100%) (D), 

from three independent experiments performed in triplicate.  

 

Figure 2. Antiviral activity of cGAS results in reduction of HBV cccDNA. (A, B) Silencing of 

cGAS-related gene expression increases HBV infection. siRNA targeting MB21D1 (sicGAS), 

TMEM173 (siSTING), TBK1 (siTBK1), IFI16 (siIFI16) or a non-targeting siRNA (siCtrl) were 

reverse-transfected into HepG2-NTCP cells 2 days prior to HBV infection. Silencing efficacy was 

assessed by qRT-PCR 2 days after transfection (A, left panel). Results are expressed as means 

± SD % gene expression relative to siCtrl (set at 100%) from four independent experiments 

performed in technical duplicate. Alternatively, cGAS and STING silencing were assessed by 
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Western blot (A, right panel). One experiments is shown. HBV infection was assessed by 

quantification of HBV pgRNA by qRT-PCR 10 days after infection (B). Results are expressed as 

means ± SD % HBV pgRNA expression relative to siCtrl (set at 100%) from four independent 

experiments performed in technical duplicate. (C) Knock-out (KO) of MB21D1 gene increases 

HBV infection. MB21D1 KO HepG2-NTCP cell lines were generated via CRISPR/Cas9 

technology. The absence or presence of cGAS protein was controlled by Western blot (lower 

panel) in Cas9-expressing HepG2-NTCP cells (Cas9) and in different cell lines after transduction 

with the sgRNA targeting MB21D1 (line-A, line-B, line-C, cGAS_KO#1 and cGAS_KO#2). One 

experiment is shown. cGAS_KO#1, cGAS_KO#2, and the control Cas9 cells were then infected 

with HBV and viral infection was assessed 10 days after infection as described above. Results 

are expressed as means ± SD % HBV pgRNA expression relative to control cell line (Cas9, set 

at 100%) from three independent experiments performed in triplicate. (D) cGAS overexpression 

reduces HBV infection. HepG2-NTCP cells were transduced with lentivirus encoding either a 

control plasmid (Ctrl_ORF) or a plasmid encoding the full length MB21D1 ORF (cGAS_OE). 

cGAS protein expression was assessed by Western blot (left panel). One experiment is shown. 

Cells were then infected with HBV and viral infection was assessed 10 days after infection as 

described above. Results are expressed as means ± SD % HBV pgRNA expression relative to 

control cell line (Ctrl_ORF, set at 100%) from three independent experiments performed in 

triplicate. (E) Detection of HBV cccDNA by Southern blot. HepG2-NTCP-derived cGAS_KO- or 

cGAS_overexpressing cell lines were infected for 10 days with HBV. Total DNA from indicated 

HBV infected cells was extracted and HBV DNA were detected by Southern blot. Two different 

DNA ladders (L1 & L2) were used. XhoI digestion of DNA extracted from HBV-infected HepG2-

NTCP-Cas9 cells was used as a control and resulted in a single 3.2 kb band (dsl HBV DNA). 

Mitochondrial DNA (mt DNA) was detected as a loading control. One experiment is shown.  
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Figure 3. cGAS-mediated sensing of naked HBV rcDNA and viral infection. (A) HBV infection 

does not induce IFNB1 expression. HepG2-NTCP cells were infected with HBV or transfected 

with Poly (I:C) (100ng) and total RNA was extracted every day for 3 days. RNA extracted from 

non-infected or non-transfected cells was used as a control (Ctrl). IFNB1 expression was then 

assessed by qRT-PCR. Results are expressed as means ± SEM IFNB1 relative expression (log10) 

compared to controls (Ctrl, both set at 1) from three independent experiments performed in 

triplicate (Poly (I:C) transfection) or four independent experiments performed at least in duplicate 

(HBV infection). (B-C) cGAS-related genes are not affected by HBV infection. HepG2-NTCP 

(NTCP), HepG2-NTCP-Cas9 (Cas9) and HepG2-NTCP-KO_cGAS#2 (Ko_cGAS #2) were 

infected with HBV. Alternatively, HepG2-NTCP cells (NTCP) were transfected with Poly (I:C) 

(100ng). Two days after infection or transfection, total RNA was extracted. Gene expression of 

cGAS signature gene set was then analyzed using multiplexed gene profiling. Results were 

analyzed by GSEA enrichment compared to non-transfected or non-infected controls (B) or by 

IFNB1 and IFI44 gene expression compared to non-transfected or non-infected controls (set at 1) 

(C). One experiment performed in triplicate is shown. (D-F) HBV genome exposure induced a 

cGAS-mediated innate immune response. HBV rcDNA was extracted from recombinant HBV 

virions. The presence of HBV DNA was confirmed by PCR (expected amplicon size: 148 bp, see 

Figure S1) and quantified by qPCR (D). HBV rcDNA (1 µg) and positive control dsDNA (calf 

thymus DNA, 1 µg) were transfected into HepG2-NTCP-Cas9 and HepG2-NTCP-KO_cGAS#2 

cells. Three days after infection or transfection, total RNA was extracted. Gene expression of 

cGAS signature gene set was then analyzed using multiplexed gene profiling. Results were 

analyzed by GSEA enrichment compared to non-transfected control (E) or by IFNB1 and IFI44 

gene expression compared to non-transfected control. One experiment in triplicate is shown. 
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Figure 4. HBV infection suppresses the expression of the cGAS-related genes in vitro and 

in vivo. (A-C) HepG2-NTCP cells were infected with HBV for 10 days. HBV infection was 

assessed by detection of HBV pgRNA by qRT-PCR (A, three experiments performed in triplicate 

are shown) and Western blot detection of HBcAg (B, one experiment is shown). cGAS protein 

expression was assessed 10 days after infection (B, one experiment is shown). Gene expression 

relative to non-infected control cells of MB21D1, TMEM173 and TBK1 were assessed by qRT-

PCR at day 10 after infection (C). Results are expressed as means ± SEM from three independent 

experiments performed in triplicate. (D-F) MB21D1- and cGAS-related gene expression is 

impaired in HBV-infected mice. uPA-SCID mice were infected with HBV for 16 weeks. Mice were 

then sacrified and HBV infection was assessed by HBV RNA specific in situ hybridization (D) and 

quantification of HBV viral load in the serum (Table 1). Human MB21D1 expression was detected 

in human hepatocytes by FISH from one HBV-infected mouse (D) and by qRT-PCR from 7 HBV-

infected mice and 4 control mice (E). Results are expressed as the ratio MB21D1 mRNA / GAPDH 

mRNA. All individual mice are presented as well as means ± SD for each group (Mock- and HBV-

infected mice). The expression of cGAS-related genes was analyzed using the nCounter 

NanoString in mice 6472, 6251, and 6254 (Mock-infected mice, Table 1) and 4766, 4771, and 

4847 (HBV-infected mice, Table 1). A significant downregulation (FDR = 0.047) of the gene set 

was observed in HBV-infected mice compared to control mice. Individual Z-scores for the genes 

significantly modulated between the two groups according to GSEA analysis are presented. 

Negative Z-score (blue) and positive Z-score (red) correspond to repression and induction of the 

indicated genes, respectively. 
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Supplemental Figures 

 

 

 Figure S1: Control of HBV infection in HBV time course samples. HepG2-NTCP cells were infected 

with HBV. Three days after infection, total RNA was extracted and HBV infection was assessed by 

quantification of HBV pgRNA as described in the manuscript. Results are expressed as means ± SEM HBV 

pgRNA / GAPDH mRNA from four independent experiments performed at least in duplicate (corresponding 

to the four experiments presented in Figure 3A). Alternatively, cells were infected for 10 days in HBV, and 

HBV infection was assessed by immunofluorescence using an anti-HBsAg antibody. One experiment 

(corresponding to independent experiment #2 from Figure 3A) is shown. 

 

 Figure S2: Detection of HBV DNA extracted from HBV infectious particles by PCR. HBV genomic 

DNA (rcDNA) was extracted from HBV virions. Extraction from naive HepG2-NTCP control supernatants 

was used as a control (Ctrl). HBV DNA standard preparation used as a template for the calculation of HBV 

DNA concentration was used as a positive control (Ctrl template). The presence of HBV DNA was controlled 

by PCR (expected band size: 148 baise pairs [bp]). Two independent experiments are shown. 
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Tables S1: Specific probes used for the detection of HBV and Mitochondrial DNA by Sourthern blot [1]. 

Target Name Sequence 

HBV 

HBV-F1 TAGCGCCTCATTTTGTGGGT 

HBV-R1 CTTCCTGTCTGGCGATTGGT 

HBV-F2 TAGGACCCCTGCTCGTGTTA 

HBV-R2 CCGTCCGAAGGTTTGGTACA 

HBV-F3 ATGTGGTATTGGGGGCCAAG 

HBV-R3 GGTTGCGTCAGCAAACACTT 

HBV-F4 TGGAACCTTTTCGGCTCCTC 

HBV-R4 GGGAGTCCGCGTAAAGAGAG 

HBV-F6 TACTGCACTCAGGCAAGCAA 

HBV-R6 TGCGAATCCACACTCCGAAA 

HBV-F8 AGACGAAGGTCTCAATCGCC 

HBV-R8 ACCCACAAAATGAGGCGCTA 

Mitochondrial DNA 

Fw_huND1 CCCTACTTCTAACCTCCCTGTTCTTAT 

Rw_huND1 CATAGGAGGTGTATGAGTTGGTCGTA 

Fw_huND5 ATTTTATTTCTCCAACATACTCGGATT 

Rw_huND5 GGGCAGGTTTTGGCTCGTA 

Fw_huATP6 CATTTACACCAACCACCCAACTATC 

Rw-huATP6 CGAAAGCCTATAATCACTGTGCC 

 

Tables S2: Specific probes of the cGAS signature gene set for multiplexed gene profiling analysis. 

Gene 
Accession 

Number 
Target Sequence Note 

ATP5B NM_001686.3 

GAAATTCTGGTGACTGGTATCAAGGTTGTCGATCT

GCTAGCTCCCTATGCCAAGGGTGGCAAAATTGGGC

TTTTTGGTGGTGCTGGAGTTGGCAAGACTG 

HG 

BAG6 NM_001199698.1 

CATTGATCACGGGGCTAGAAGAGTATGTGCGGGAG

AGTTTTTCCTTGGTGCAGGTTCAGCCAGGTGTGGA

CATCATCCGGACAAACCTGGAATTTCTCCA 

HG 

NDUFA2 NM_001185012.1 

ATGGGCTAGGCTTTAGGGTCCGCGGTTGGTCAGA

CCGGAGCACTTGGCCTGAAGACCTGGAATTGGCG

ACTTCGATATTAACAAGGATGGCGGCGGCCGC 

HG 
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ARL9 NM_206919.1 

CAGATATCCATGAAGCTTTGGCATTATCTGAAGTGG

GAAATGACAGGAAGATGTTCTTGTTTGGAACCTAC

CTGACTAAGAATGGCTCAGAGATACCCTC 

Schoggins 

CASP1 NM_001223.3 

TGGAGACATCCCACAATGGGCTCTGTTTTTATTGGA

AGACTCATTGAACATATGCAAGAATATGCCTGTTCC

TGTGATGTGGAGGAAATTTTCCGCAAGG 

Schoggins 

CXCL16 NM_001100812.1 

CCATGGGTTCAGGAATTGATGAGCTGTCTTGATCT

CAAAGAATGTGGACATGCTTACTCGGGGATTGTGG

CCCACCAGAAGCATTTACTTCCTACCAGCC 

Schoggins 

CXCL8 NM_000584.2 

ACAGCAGAGCACACAAGCTTCTAGGACAAGAGCC

AGGAAGAAACCACCGGAAGGAACCATCTCACTGT

GTGTAAACATGACTTCCAAGCTGGCCGTGGCT 

Schoggins 

HERC5 NM_016323.2 

TGGGCTGCTGTTTACTTTCGGTGCTGGAAAACATG

GGCAACTTGGTCATAATTCAACACAGAATGAGCTAA

GACCCTGTTTGGTGGCTGAGCTTGTTGGG 

Schoggins 

HERC6 NM_001165136.1 

TCCATCACCCAGATTTATACTTAGAGTCAGACGAAG

TCGCCTGGTTAAAGATGCTCTGCGTCAATTAAGTC

AAGCTGAAGCTACTGACTTCTGCAAAGTA 

Schoggins 

HLA-B NM_005514.6 

CCCTGAGATGGGAGCCGTCTTCCCAGTCCACCGT

CCCCATCGTGGGCATTGTTGCTGGCCTGGCTGTC

CTAGCAGTTGTGGTCATCGGAGCTGTGGTCGC 

Schoggins 

HLA-H NR_001434.3 

GAGCGGGAGGGGCCGGAGTATTGGGACCGGAAC

ACACAGATCTGCAAGGCCCAAGCACGGACTGAAC

GAGAGAACCTGCGGATCGCGCTCCGCTACTACA 

Schoggins 

IFI35 NM_005533.3 

TGCCCTCTGCTTGCGGGCTCTGCTCTGATCACCTT

TGATGACCCCAAAGTGGCTGAGCAGGTGCTGCAA

CAAAAGGAGCACACGATCAACATGGAGGAGT 

Schoggins 

IFI44 NM_006417.4 

GATGAAAGAAAGATAAAAGGGGTCATTGAGCTCAG

GAAGAGCTTACTGTCTGCCTTGAGAACTTATGAAC

CATATGGATCCCTGGTTCAACAAATACGAA 

Schoggins 

IFIH1 NM_022168.2 

GCTTGGGAGAACCCTCTCCCTTCTCTGAGAAAGAA

AGATGTCGAATGGGTATTCCACAGACGAGAATTTC

CGCTATCTCATCTCGTGCTTCAGGGCCAGG 

Schoggins 

IFIT3 NM_001031683.2 

CGCCTGCTAAGGGATGCCCCTTCAGGCATAGGCA

GTATTTTCCTGTCAGCATCTGAGCTTGAGGATGGTA

GTGAGGAAATGGGCCAGGGCGCAGTCAGCT 

Schoggins 

ISG20 NM_002201.5 

AGCCCGCCGAGGGCTGCCCCGCCTGGCTGTGTC

AGACTGAAGCCCCATCCAGCCCGTTCCGCAGGGA

CTAGAGGCTTTCGGCTTTTTGGGACAGCAACTA 

Schoggins 

LRRC17 NM_001031692.1 CAGCACAACCAGATCAAAGTCTTGACGGAGGAAG

TGTTCATTTACACACCTCTCTTGAGCTACCTGCGTC
Schoggins 
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TTTATGACAACCCCTGGCACTGTACTTGTG 

MX1 NM_002462.2 

GCCTTTAATCAGGACATCACTGCTCTCATGCAAGG

AGAGGAAACTGTAGGGGAGGAAGACATTCGGCTG

TTTACCAGACTCCGACACGAGTTCCACAAAT 

Schoggins 

OAS2 NM_016817.2 

TGAAAAACAATTTCGAGATCCAGAAGTCCCTTGAT

GGGTTCACCATCCAGGTGTTCACAAAAAATCAGAG

AATCTCTTTCGAGGTGCTGGCCGCCTTCAA 

Schoggins 

OASL NM_198213.1 

GGCGTTTCTGAGCTGTTTCCACAGCTTCCAGGAG

GCAGCCAAGCATCACAAAGATGTTCTGAGGCTGAT

ATGGAAAACCATGTGGCAAAGCCAGGACCTG 

Schoggins 

PLCG2 NM_002661.2 

GCTTGAAAATCTTACACCAGGAAGCGATGAATGCG

TCCACGCCCACCATTATCGAGAGTTGGCTGAGAAA

GCAGATATATTCTGTGGATCAAACCAGAAG 

Schoggins 

PSMB8 NM_004159.4 

ACTCACAGAGACAGCTATTCTGGAGGCGTTGTCAA

TATGTACCACATGAAGGAAGATGGTTGGGTGAAAG

TAGAAAGTACAGATGTCAGTGACCTGCTGC 

Schoggins 

PSMB9 NM_002800.4 

TCAGGTATATGGAACCCTGGGAGGAATGCTGACTC

GACAGCCTTTTGCCATTGGTGGCTCCGGCAGCAC

CTTTATCTATGGTTATGTGGATGCAGCATAT 

Schoggins 

RARRES3 NM_004585.3 

CTGACCCTCGTGCCCTGTCTCAGGCGTTCTCTAGA

TCCTTTCCTCTGTTTCCCTCTCTCGCTGGCAAAAG

TATGATCTAATTGAAACAAGACTGAAGGAT 

Schoggins 

SLC15A3 NM_016582.1 

GCCGCTTCTTCAACTGGTTTTACTGGAGCATCAAC

CTGGGTGCTGTGCTGTCGCTGCTGGTGGTGGCGT

TTATTCAGCAGAACATCAGCTTCCTGCTGGG 

Schoggins 

TNFRSF1

B 
NM_001066.2 

CCCAGCTGAAGGGAGCACTGGCGACTTCGCTCTT

CCAGTTGGACTGATTGTGGGTGTGACAGCCTTGG

GTCTACTAATAATAGGAGTGGTGAACTGTGTC 

Schoggins 

UBA7 NM_003335.2 

GCGGGAGGATGGGTCCCTGGAGATTGGAGACACA

ACAACTTTCTCTCGGTACTTGCGTGGTGGGGCTAT

CACTGAAGTCAAGAGACCCAAGACTGTGAGA 

Schoggins 

UBE2L6 NM_004223.3 

TGTTTCAAAACCACTTGCCATCCTGTTAGATTGCCA

GTTCCTGGGACCAGGCCTCAGACTGTGAAGTATAT

ATCCTCCAGCATTCAGTCCAGGGGGAGCC 

Schoggins 

ZC3HAV1 NM_020119.3 

CTCCTTCTTCACATCGTAGAAACATGGCATATAGGG

CTAGAAGCAAGAGTAGAGATCGGTTCTTTCAGGGC

AGCCAAGAATTTCTTGCGTCTGCTTCAGC 

Schoggins 

ZMYND15 NM_032265.1 

CCTCAGAGCGGCCGACAACTGCATGTCCTGGTAC

TGCAATGCCTTCATCTTCCACCTGGTTTACAAGCCT

GCTCAAGGGAGCGGGGCCCGCCCGGCGCCC 

Schoggins 
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PMAIP1 NM_021127.2 

CTAGTGTTTTTGCCGAAGATTACCGCTGGCCTACT

GTGAAGGGAGATGACCTGTGATTAGACTGGGCGG

CTGGGGAGAAACAGTTCAGTGCATTGTTGTT 

Schoggins 

GBP4 NM_052941.4 

TTCTACAAGATATGCCATGGGCCTTTTCACAGGGG

ACACAGGCTTCTTAAAACAACCCGGCTTCCTCACC

CTATGTCCTTTATTTACAAAGCTGTGCTCC 

Schoggins 

TMEM173 NM_198282.1 

CTGGCATGGTCATATTACATCGGATATCTGCGGCTG

ATCCTGCCAGAGCTCCAGGCCCGGATTCGAACTTA

CAATCAGCATTACAACAACCTGCTACGGG 

STING 

IFI16 NM_005531.1 

ACGACTGAACACAATCAACTGTGAGGAAGGAGATA

AACTGAAACTCACCAGCTTTGAATTGGCACCGAAA

AGTGGGAATACCGGGGAGTTGAGATCTGTA 

  

IFNB1 NM_002176.2 

ACAGACTTACAGGTTACCTCCGAAACTGAAGATCT

CCTAGCCTGTGCCTCTGGGACTGGACAATTGCTTC

AAGCATTCTTCAACCAGCAGATGCTGTTTA 

  

IRF3 NM_001571.5 

TCATGGCCCCAGGACCAGCCGTGGACCAAGAGGC

TCGTGATGGTCAAGGTTGTGCCCACGTGCCTCAG

GGCCTTGGTAGAAATGGCCCGGGTAGGGGGTG 

  

IRF7 NM_001572.3 

CGCAGCGTGAGGGTGTGTCTTCCCTGGATAGCAG

CAGCCTCAGCCTCTGCCTGTCCAGCGCCAACAGC

CTCTATGACGACATCGAGTGCTTCCTTATGGA 

  

STAT1 NM_139266.1 

ACAGTGGTTAGAAAAGCAAGACTGGGAGCACGCT

GCCAATGATGTTTCATTTGCCACCATCCGTTTTCAT

GACCTCCTGTCACAGCTGGATGATCAATAT 

  

TBK1 NM_013254.2 

ACCAGTCTTCAGGATATCGACAGCAGATTATCTCCA

GGTGGATCACTGGCAGACGCATGGGCACATCAAG

AAGGCACTCATCCGAAAGACAGAAATGTAG 

  

HG Housekeeping genes 

Shoggins: cGAS-related genes described by Shoggins et al., [2] 

 

 

Supplemental Material and Methods 

Detection of HBV DNA by PCR. DNA was extracted using QiaAMP DNA MiniKit (Qiagen) following 

manufacturer's instructions. The presence of HBV DNA was confirmed by PCR the following primers 

(expected band size: 148 bp) [3] : forward primer 5’-CACCTCGCCTAATCATC-3’, reverse primer 5’- 

GGAAAGAAGTCAGAAGGCA-3’. 

 

Detection of HBV infection by immunofluorescence. HepG2-NTCP cells were infected with HBV for 
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10 days as described in the manuscript. 10 days after infection, cells were fixed and HBV infection was 

assessed by immunofluorescence as described [3] using an AF488-labelled anti-HBsAg antibody 

(1044/329, Bio-Techne). 

 

Supplemental References 

 

1.     Lucifora J, Salvetti A, Marniquet X, et al. Detection of the hepatitis B virus (HBV) covalently closed-

circular DNA (cccDNA) in mice transduced with a recombinant AAV-HBV vector. Antiviral Res 2017;145:14-

19 

2.     Schoggins JW, MacDuff DA, Imanaka N, et al. Pan-viral specificity of IFN-induced genes reveals 

new roles for cGAS in innate immunity. Nature 2014;505(7485):691-5. 

3.     Verrier ER, Colpitts CC, Bach C, et al. A targeted functional RNAi screen uncovers Glypican 5 

as an entry factor for hepatitis B and D viruses. Hepatology 2016;63(1):35–48. 

 

 

  



163 

 

 

Multimodal study of the interactions between 

the hepatitis B virus and the cyclic GMP-AMP synthase cGAS 
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RESUME: Le virus de l’hépatite B (HBV) est l’agent étiologique de l’hépatite B. Ce virus  est 

responsable d’hépatite chronique B, de cirrhose et de cancer du foie au niveau mondial. L’absence 

d’activation de la voie Interféron (IFN) suite à l’infection par HBV est encore mal comprise. Récemment, 

le senseur cellulaire cytosolic GMP-AMP synthase (cGAS) a été décrit comme un senseur efficace de 

DNA double brin possédant également une activité antivirale envers des virus à ADN et à ARN. Le but 

de mes travaux de thèse a été de contribuer à la compréhension des relations existants entre le HBV et 

cGAS, à des stades précoces et tardifs de l’infection HBV en utilisant des expériences de perte- et gain- 

de function ainsi que du profilage génomique des génes apparentés à cGAS dans un modéle cellulaire 

permissif au HBV. Mes travaux ont démontré (1) que cGAS exerce une forte activité antivirale envers le 

HBV incluant une réduction de la forme nucléaire du génome, le cccDNA; (2) alors que le rcDNA 

génomique nu est reconnu par la voie cGAS/STING et induit une réponse IFN efficace, la nucléocapside 

virale protège le DNA génomique viral et l’empêche d’être détecté par la réponse immunitaire innée; et 

(3) que l’infection par HBV diminue l’expression des acteurs de la voie cGAS-STING et des gènes 

impliqués dans la réponse immunitaire innée in vitro et in vivo. Ce dernier point met en lumière le rôle 

de cGAS dans un nouveau mécanisme d’échappement du HBV au système immunitaire inné dans les 

cellules hépatocytaires et dans ce mécanisme. 

Mots-Clés: Virus de l’hépatitis B (HBV) - Réponse immunitaire innée- Cytosolic GMP-AMP synthase 

(cGAS) – échappement immunitaire 

ABSTRACT: Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and 

cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune 

responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP 

synthase (cGAS) was identified as a DNA sensor. In this PhD work, we aimed to investigate 

the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral 

evasion. We performed functional studies including loss- and gain-of-function experiments 

combined with cGAS effector gene expression profiling in an HBV infection-susceptible cell 

culture model. Collectively, our data show that (1) the cGAS-STING pathway exhibits robust 

antiviral activity against HBV infection including reduction of viral cccDNA levels; (2) naked HBV 

genomic rcDNA is sensed in a cGAS-dependent manner whereas packaging of the viral 

genome during infection abolishes host cell recognition of viral nucleic acids; (3) HBV infection 

down-regulates the cGAS/STING pathway actors as well as innate immune effector gene 

expression in vitro and vivo. Overall, this work led to describing new aspects of the complex 

interaction between HBV and the DNA sensor cGAS in hepatocytes. 

Key words: Hepatitis B virus (HBV), innate immune response, cytosolic GMP-AMP synthase 

(cGAS) , immune evasion 

Key words: HBV, innate immune response, cytosolic GMP-AMP synthase (cGAS) , immune 

evasion 
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