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“Ever tried. Ever failed. No matter. Try Again. Fail again. Fail better.” 

 

 

Samuel Barclay Beckett 

(April 13, 1906 - December 22, 1989) 

Irish avant-garde novelist, playwright, theatre director, and poet. 

1969 Nobel Prize in Literature. 
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1.1 Neurodegenerative disorders 

 

Neurodegeneration is a term used to describe progressive deterioration of structure and/or 

function of neurons that affects different parts of the central nervous system and peripheral 

systems, and leads to eventual death. 

 

Important advances have been made in our understanding of the pathways that lead to cell 

dysfunction and death in the majority of neurodegenerative disorders, in particular on 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease and Amyotrophic Lateral 

Sclerosis. These advances have been informed by both direct analysis of the post-mortem 

brain and by study of the biological consequences of the causes of these diseases. Some of the 

pathways that have been implicated so far include mitochondrial dysfunction, oxidative stress, 

kinase pathways, calcium dysregulation, inflammation and protein handling processes. 

Intriguingly, these pathways seem to be important in the pathogenesis of all the diseases and 

have led to the identification of molecular targets for candidate interventions designed to slow 

or reverse their course. 

 

1.2 Huntington’s disease 

 

1.2.1 First descriptions of Huntington’s disease  

 

Thanks to the precise description by the American physician George Huntington (1850-1916) 

in 1872 (Figure 1) of an “hereditary chorea” affecting humans that was widespread in 

extreme East of Long Island “limited by few families transmitted as an heritage, appearing in 

the adult age and getting worse with time”, it has become possible to give a name to the 

illness with jerky dancelike movements that was passing as evil possession at that time in 

some parts of the world (Bates 2005). 

George Huntington noted that in these patients the movement disorder is accompanied by 

personality changes and a cognitive decline. He also noticed that families that suffer from this 

disease were characterized by an increased incidence of suicide. 

 

Figure 1 First page of George Huntington paper 

"On Chorea", 1872 (Bates 2005). 
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This description permits Vessie at that time to identify among the first Americans affected by 

Huntington’s disease (HD) three men originated from the East of England that ran away from 

witchcraft persecution law to Salem (now called Danvers, New-England, USA). 

Unfortunately, the law was voted in this region of USA, which seen executions, including 

descendents of the three expatriates, during the famous “Salem witch trials”. The example of 

Bures family, one of the three descendant families, helped to better understand the hereditary 

hallmark of HD (Bates 2005).  

 

1.2.2. Actual description of HD 

 

HD is an autosomal dominant neurodegenerative disease, characterized by a triad of 

symptoms: motor dysfunction, cognitive decline, and psychiatric disturbance. It appears in 

early adulthood, and progresses to significant functional disability and, ultimately, death 

within 15 years after the appearance of the first symptoms. 

 

1.2.2.1.Motor dysfunction 

 

It used to be called Huntington’s chorea because of involuntary jerky dancelike movements as 

motor symptoms. These symptoms progressively appear around 35 to 40 years old and are 

more and more accentuated and incapacitating with time, even if patients show reduced 

awareness of their involuntary movements (Sitek et al 2014, Snowden et al 1998). 

Before the symptomatic phase, patients are healthy and have no detectable clinical 

abnormalities, but in the presymptomatic phase they present subtle changes of motor 

functions, as decreased speed of movement and reaction times, and slowed saccadic eye 

movements (Lasker & Zee 1997, Siemers et al 1996).  

Distinct chorea leads to a clinical diagnosis (HDSG 1996). Chorea are manifesting in the 

same time as incoordination, difficulty to swallow, motor impersistence, difficulty controlling 

the speed, decline in fine motor function, gait disturbances, dysarthria, and rigidity (Gusella & 

MacDonald 1995, Shoulson & Chase 1975). At late stage, patients present severe dystonia 

affecting the entire body while chorea disappears. Affected reflexes and oro-lingual muscles 

functions lead to “wrong-way” swallowing, broncho-pulmonary complications, pneumonia 

and eventually death. 

 

1.2.2.2.Cognitive decline 

 

In the presymptomatic phase, HD patients present also subtle cognitive changes, as 

impairment in motor sequence learning (Feigin et al 2006), or emotion recognition (Johnson 

et al 2007). 

Cognitive dysfunction in HD, often spares long-term memory, but impairs executive 

functions, such as organizing, planning, checking, or adapting alternatives, and affects the 

acquisition of new motor skills and recall/recognition memory (Ho et al 2003, Montoya et al 

2006a, Montoya et al 2006b). These features worsen over time;  speech deteriorates faster 

than comprehension (Walker 2007). 
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1.2.2.3.Psychiatric disturbance 

 

HD is associated with a wide range of psychiatric disturbances, including affective disorders, 

irritability, apathy, and psychosis (Caine & Shoulson 1983, Craufurd et al 2001). Some of 

these disorders can be measured in asymptomatic patients, as irritability (Berrios et al 2002). 

Manic and psychotic symptoms can develop (Cummings 1995). Depression has been 

observed to occur up to 20 years before the onset of motor symptoms (Folstein et al 1983) and 

increases as a function of proximity to clinical onset (Julien et al 2007). 

Despite the denial of symptoms appearance (Sitek et al 2014), depression is typical and 

suicide is estimated to be about five to ten times that of the general population. Suicidal 

ideation is a frequent finding in patients with HD, even if the first cause of death in HD 

patients is pneumonia (see as review (Roos 2010)). 

 

1.2.3. Prevalence 

 

The prevalence of HD varies greatly geographically as a result of ethnicity, local migration 

and past immigration patterns. The Caucasian populations of North America and Western 

Europe having 5-10 subjects affected by HD per 100,000 people (Agostinho et al 2013). The 

rate of occurrence is highest in peoples of Western European descent, averaging around 7 per 

100,000 people, and is lower in the rest of the world, e.g. one per million people of Asian and 

African descent. One of the highest prevalence is in the isolated populations of the Lake 

Maracaibo region of Venezuela, where HD affects up to 700 per 100,000 persons (Walker 

2007). Other areas of high localization have been found in some regions of Scotland, Wales, 

Sweden and Tasmania (Harper 2002). 
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1.2.4.  Neuropathology 

 

As many neurodegenerative disorders, HD induces preferential early vulnerability of a 

particular region in the brain, which is the striatum, composed in human by the caudate 

nucleus and putamen (Figure 2). The striatum play a key role in a group of nuclei called the 

basal ganglia. 

Basal ganglia consist of four nuclei (Figure 2), portions of which play a major role in normal 

voluntary movements. Motor functions of basal ganglia are in large part mediated by motor 

areas of frontal cortex (Wichmann & Delong 2007). 

 

 
Figure 2 Representation of human brain coronal section showing basal ganglia (in blue) in relation to 

surrounding structures (adapted from Nieuwenhuys et al 1981) (Wichmann & Delong 2007). 

The striatum is the primary site of HD pathology (Albin et al 1992, de la Monte et al 1988), 

accompanied by dilatation of the anterior horns of the lateral ventricles, which are obvious on 

MRI in advanced cases. Indeed, Hobbs and colleagues measured at onset of HD patient 

caudate volume was 2.58 mL smaller than in controls; ventricular volume was 9.27 mL larger. 

They showed that differences in caudate and ventricular volumes between patients with HD 

and controls were respectively evident 14 years and 5 years, before motor onset (Hobbs et al 

2010, Tabrizi et al 2009) (Track-HD) (Figure 3A).  

The output structures of the striatum, substantia nigra reticulata and globus pallidus (externa 

and internal segments) are also altered in symptomatic patients. The nucleus accumbens is 

relatively preserved. 

Cortical atrophy is also present in advanced cases and detectable thanks to generation of 

magnitude map (Rosas et al 2011, Tabrizi et al 2009) (Figure 3B). 
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Figure 3 Whole brain and regional atrophy in the controls, premanifest, and early Huntington’s disease 

patients (Tabrizi et al 2009). 

Figure 3A, 3T volumetric MRI scan in a 50-year-old control, a 55-year-old individual with preHD, and a 49-

year-old with early Huntington’s disease. Brain volumes are corrected for intracranial volume. B, Cortical 

thinning in the Huntington’s disease groups compared with controls. The top panel shows statistical maps 

corrected with the false discovery rate; magnitude maps are shown below. All results are adjusted for age and 

sex. ICV=intracranial volume. LH=left hemisphere. RH=right hemisphere. 

 

Interestingly, within the striatal neuronal population, different degrees of degeneration can be 

observed (Ferrante et al 1997, Ferrante et al 1985). GABAergic medium-sized spiny neurons 

(MSN) are found to preferentially degenerate in HD, occurring first in the caudate and then 

the putamen (Rosas et al 2001, Vonsattel & DiFiglia 1998). Because these neurons represent 

95% of the neurons in the striatum, their loss are likely responsible for the atrophy of the 

structure. 

In contrast, medium-sized aspiny interneurons containing somatostatin, neuropeptide Y, or 

NADPH diaphorase, as well as the large cholinergic interneurons which both represent 

approximately 5% of striatal neurons are relatively spared. However, the extreme striatal 

atrophy and the loss of neurons observed in grade 4 indicate that both spiny and aspiny 

neurons are vulnerable at the end stage of the disease (Reiner et al 1988). 

 

  

A

B
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Early neuropathological studies showed that in advanced cases of HD, the cerebral cortex 

(particularly layers III, V, and VI), globus pallidus, thalamus, subthalamic nucleus, substantia 

nigra, white matter, and the cerebellum could be markedly affected (Vonsattel & DiFiglia 

1998). Neuropathological characterization of HD brains also showed that the hypothalamus is 

probably damaged at very early stages in HD patients (Kremer et al 1990). It has been 

confirmed using PET scan and MRI imaging [for example (Douaud et al 2006, Politis et al 

2008)]. 

In addition, diffusion tensor imaging (DTI) has demonstrated pathology of the white matter in 

pre- and early symptomatic patients (Rosas et al 2006). 

 

1.2.5. Striatal neurotransmission 

 

Medium-sized spiny neurons constitute 95% of all striatal neurons and utilize gamma-

aminobutyric acid (GABA) as their principal neurotransmitters (Schaefer et al 2012). The 

dorsal striatum receives parallel sets of diffuse glutamatergic inputs from almost all 

neocortical areas and several thalamic nuclei (Tepper et al 2008). These inputs primarily 

synapse onto spines of MSN (Leavitt et al 2006). The striatum also contains a number of 

modulatory components including dopamine (DA) projections from the substantia nigra pars 

compacta (SNc) (Raymond et al 2011) and cholinergic or GABAergic inputs from striatal 

interneurons (Tepper et al 2008). These elements constitute the basic striatal microcircuit (see 

as review (Raymond et al 2011)). 

Striatal output is largely segregated into two populations of MSN with distinct projections, as 

well as DA receptor and neuropeptide expression, constituting the direct and indirect 

pathways (Calabresi et al 2014, Gerfen et al 1990, Hallett 1993, Kawaguchi et al 1995) 

(Figure 4). 

In the physiological condition, the direct pathway (red lines, Figure 4) consists of MSN that 

predominantly express D1 DA receptors, substance P and dynorphin, and project to the 

substantia nigra (SN) and the internal segment of the globus pallidus (GPi).  

The indirect pathway (blue lines, Figure 4) is comprised of MSN that express predominantly 

D2 DA receptors, enkephalin or neurotensin, and project to the external segment of the globus 

pallidus (Gpe). 
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Figure 4 Schematic representation of the direct (red lines) and indirect (blue lines) pathway classical 

model in the physiological condition (Calabresi et al 2014). 

Abbreviations: DA, dopamine; STN, subthalamic nucleus; SNpc, substantia nigra pars compacta; SNpr, 

substantia nigra pars reticulata; GPi, globus pallidus pars interna;  GPe, globus pallidus pars externa. 

 

DA arising from the SNpc is thought to activate D1-expressing striatal MSN of the direct 

pathway and to inhibit D2-expressing striatal neurons of the indirect pathway. The output 

nuclei GPi and SNpr project to the thalamus, which in turn send efferents that complete the 

cortico-basal ganglia-thalamo-cortical loop.  

 

Two of the most important disorders affecting the basal ganglia are Parkinson’s disease (PD) 

and HD. Several studies compared the ravages of this brain structure on the two diseases, 

giving an overview on the basal ganglia circuitry and its main pathologies (Albin et al 1989, 

Alexi et al 2000, Fernandez-Ruiz 2009, Fernandez-Ruiz et al 2011).  

PD is also a progressive neurodegenerative disorder whose origin has been associated with 

environmental insults, genetic susceptibility or interactions between both causes (Schapira et 

al 2014). The major clinical symptoms in PD are tremor, bradykinesia, postural instability and 

rigidity, symptoms that mainly result from the severe dopaminergic denervation of the 

striatum caused by the progressive death of dopaminergic neurons of the SNc (Clabough & 

Zeitlin 2006, Obeso et al 2014). 

 

HD pathology is associated with abnormal neurotransmitter regulation and synaptic 

communication, as well as glutamate-mediated excitotoxicity (Chen et al 1999, Sepers & 

Raymond 2014, Taylor-Robinson et al 1994). 
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It has been suggested that one early event in HD is the preferential degeneration of the GABA 

(met-enkephalin) neurons of the indirect pathway (producing the arrest of inhibition of the 

pallidum), so that an imbalance between the indirect and directly pathways would lead to an 

abnormal activation of thalamic motor neurons, in turn abnormally activating cortical motor 

neurons, which could explain the hyperkinetic symptoms in HD,  in contrast to PD where the 

repression of thalamic  nuclei leads to loss of activation of cortical neurons and the 

hypo/akinetic movements. However, this basal ganglia neurophysiology model of motor 

symptoms in HD first suggested by Albin (Albin et al 1989) has been debated and did not 

help to design efficacious therapy. 

 

Another important part of the imbalanced neurotransmission in HD is the compensatory 

mechanism occurring over time that attempts to stabilize this system, well described by 

Levine and colleagues (Andre et al 2010, Raymond et al 2011) (Figure 5).  

 

  

 
Figure 5 Glutamate and DA in basal ganglia function in intact brain and during HD (André et al 2010). 

Left is a simplified schematic showing normal basal ganglia circuitry.  

Red: glutamate inputs; blue: GABA; green: DA.  

Abbreviations: Enk: enkephalin; GLUT: glutamate; GPe: external segment of the globus pallidus; GPi: internal 

segment of the globus pallidus; SNc: substantia nigra pars compacta; SNr: substantia nigra pars reticulata; STN: 

subthalamic nucleus. 

 

Under normal conditions (Left panel Figure 5), the thalamus is inhibited by GPi and SNr 

GABA projections.  
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In early HD (Middle panel Figure 5), cortical dysfunction induces excessive glutamate 

release in the striatum. Abnormally elevated striatal glutamate and DA levels trigger selective 

dysfunction of enkephalin-containing MSN.  

Imbalance between the direct and indirect pathways induces hyperkinesia via two pathways:  

1) Selective dysfunction/degeneration (dashed lines Figure 5) of enkephalin-

containing MSN leads to decreased release of GABA in the GPe and to its disinhibition. In 

turn, overactivation of GABA neurons of the GPe leads to increased release of GABA and to 

inhibition of STN which decreases glutamate release and decreases activity of the GPi and 

SNr.  

2) Overactivation of the direct pathway MSN (by abnormal DA modulation and/or 

excessive glutamate) leads to increased release of GABA and to inhibition of GPi and SNr. 

Together, alterations in direct and indirect pathways in early HD induce inhibition of GPi and 

SNr GABA neurons and to a decreased release of GABA in their output structure, the 

thalamus. Disinhibition of the thalamus is responsible for abnormal movements.  

 

In late HD (Right panel Figure 5), corticostriatal and nigrostriatal inputs progressively 

degenerate, leading to decreased striatal glutamate and DA release. Low striatal glutamate and 

DA levels trigger dysfunction of both direct and indirect pathway MSN.  

Imbalance between the direct and indirect pathways induces hyperkinesia and hypokinesia via 

two pathways:  

1) Alterations in the indirect pathway are similar to early HD and lead to hyperkinetic 

movements.  

3) Dysfunction/degeneration of direct pathway MSN induces decreased release of 

GABA and disinhibition of GPi and SNr. Increased activity in GPi and SNr leads to inhibition 

of the thalamus and hypokinesia.  

 

Depending on the stage of dysfunction of direct and indirect pathway MSN, activity in the 

basal ganglia could result in hypokinesia or hyperkinesia and would explain why some 

symptomatic patients display both chorea and akinesia.  

 

Levine group review evidences that the evolution of neurotransmission alteration in the 

striatum and cortex are bi-phasic, with changes in excitation and inhibition in early and late 

HD for cortex and striatum compared to healthy situation (Figure 5). In other words, HD is 

associated with complex dysfunctions within the cortex and basal ganglia that involve 

glutamate and dopamine neurotransmissions. Normally these two systems interact such that 

dopamine modulates glutamate-mediated transmission. In HD, this modulation is altered in 

complex ways by the initial overactivation of glutamate function which induces concomitant 

dysregulation of dopaminergic function. Thus, the normal balance between these systems is 

upset. 
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1.2.6. Cause of the disease 

 

The highest concentration of HD sufferers was found in a tiny and isolated community around 

Venezuela’s Lake Maracaibo. Starting from 1979, a group of geneticists and physicians kept 

medical records, took blood and skin samples, and charted the transmission of the disease 

within families of this community. This allowed to narrow the genetic defect responsible for 

HD on the chromosome 4 (Gusella et al 1983). Scientists from all over the world joined 

together into a team that was collectively named the Huntington Disease Collaborative 

Research Group that, after 14 years reported the discovery of the IT15 gene responsible for 

HD and of its associated mutation (HDCRG 1993). The first exon of the IT15 gene contains a 

repetitive DNA element consisting of three nucleotides: C (cytosine), A (adenine), and G 

(guanine). When researchers examined this region of IT15 in non-HD controls, they found 

that the number of CAG repeats varied from 6 to 35. Analysis of the same region in the IT15 

gene in individuals with HD showed that they always had 40 or more CAG repeats (HDCRG 

1993). 

The length of the CAG repeat accounts for 50 to 70% of the variability in age at clinical onset, 

whereby individuals with longer repeat lengths commonly have an earlier onset than those 

with shorter repeat lengths. When considering hundreds of HD patients, the number of CAG 

repeats negatively correlates with the onset of symptoms. Long expansion can lead to juvenile 

forms of HD, while short expansion can lead to relatively late onset disease. However, at the 

individual level, the number of CAG repeats cannot predict the age of onset. 

 

It was concluded that the CAG repeat expansion in the IT15 gene was responsible for HD. 

The IT15 gene is now renamed the huntingtin (HTT) gene because of the name assigned to 

the protein. HTT gene is composed by 67 exons and codes for 3144 amino acids (~350kDa). 

It is found in metazoans, with the highest degree of conservation among vertebrates  

(Clabough 2013).  

 

Normal Htt has been found to play a major key role in most if not all cells, especially neurons.  

In HD, the mutation results in an elongated stretch of glutamine near the NH2 terminus of the 

protein (Andrew et al 1993, Hannan 1996, Ratovitski et al 2007, Trottier et al 1994) (Figure 

6).  
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Figure 6 Consequences of the number of CAG repeats in htt gene and elongated stretch of glutamine in 

Htt protein on neuron survival. 

 

This mutation in Htt protein is thought to confer to the protein a gain of function that is toxic 

to neurons (Figure 6). In addition, the disease is likely associated to a loss of function of 

normal Htt that would be detrimental to neurons. 

 

1.2.6.1.Normal functions of wt-Htt protein 

 

Htt protein is ubiquitously expressed with a highest expression level in the brain compared to 

peripheral nervous system (Moffitt et al 2009, Vonsattel & DiFiglia 1998).  

It is present in neurons, but also in glia cells (Ross & Tabrizi 2011, Zuccato & Cattaneo 2007) 

and immune cells (Li & DiFiglia 2012). 

It exists evidences that cell–cell interaction plays an important role in HD pathogenesis (Ross 

& Tabrizi 2011, Zuccato & Cattaneo 2007). In the brain, glia-neuron interactions are 

important for maintaining the normal function of neurons, but in this chapter I will focus on 

neurons dysfunction in HD pathology. 

 

At the cellular level, Htt is widely expressed, predominantly in the cytoplasm, but can also be 

found in the nucleus (Figure 7), playing roles in transcriptional regulation (Kegel et al 2002, 

Xia et al 2003), which has been studied in depth by Luthi-Carter and their colleagues over 

these past 15 years (more details in paragraph 1.2.6.3.E Transcriptional deregulation). 

The subcellular localization of Htt is complex and dynamic, and may change conformation 

depending on its compartmental localization.  
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Htt normally localizes along microtubules and participates in the transport of a variety of 

cargo, including mRNAs, proteins, vesicles, and organelles, such as mitochondria (DiFiglia et 

al 1995, Kegel et al 2000, Kegel et al 2009, Schulte & Littleton 2011) (Figure 7). 

Notably, Htt is present in excitatory synapses where it associates with synaptic vesicles in the 

presynaptic terminal and facilitates neurotransmitter release (DiFiglia et al 1995, Jeong et al 

2009). In the postsynaptic density, Htt is associated with the postsynaptic scaffolding protein 

PSD95 (Figure 7) (Sun et al 2001). 

 
Figure 7 Schematic illustrating the biological functions of wt-Htt (Schulte & Littleton 2011). 

 

The Figure 7 shows a generic neuron with an unsheathed axon (grey boxes represent 

oligodendrocyte wrapping) and an astrocyte (grey stellate shape). Enlarged circle is a 

magnified view of a synapse. The Htt protein has been suggested to regulate both neuronal 

and glial function. Within neurons, Htt has been implicated in nuclear import and 

transcriptional regulation. In addition, Htt regulates apoptotic signaling and axonal transport. 

At the synapse, Htt has been suggested to have both pre- and post-synaptic roles.  
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Wt-Htt has multiple effects in development and neuronal physiology, including regulation of 

transcription (Nucifora et al 2001), membrane dynamics (Kegel et al 2009), mitochondrial 

efficiency (Aoyama et al 2006), brain-derived neurotrophic factor (BDNF) transcription 

(Zuccato et al 2001), autophagy (Cortes & La Spada 2014, Jeong et al 2009, Kegel et al 2000, 

Qin et al 2003), and endosomal recycling (Li & DiFiglia 2012) (Figure 7). 

Several studies reported multiple physiological functions that are particularly important for 

the brain neurons affected in HD. 

Htt is required for normal excitatory synapse development in cortical and striatal circuits 

(Margulis & Finkbeiner 2014). More globally, it has been shown to be essential for 

embryonic development, as the knockout of the gene in mice causes embryonic death at the 

pre-gastrulation stage (Muhlau et al 2012), and in conditional knockout mice (Cre Lox KO 

under the CamKII promoter) late disruption of the gene in adult leads to progressive 

neurodegeneration (Dragatsis et al 2000). The antiapoptotic role of Htt was also supported by 

Michael Hayden’s group. They found that primary striatal neurons from YAC18 transgenic 

mice (for details on animal models of HD, see paragraph 1.2.7. Animal models of HD) 

overexpressing full-length wild-type human huntingtin were protected from apoptosis 

compared with cultured striatal neurons from nontransgenic littermates and YAC72 mice 

expressing mutant human huntingtin (Leavitt et al 2006). 

It is known that increased wt-Htt expression improves brain cell survival by modulating 

caspase-3 and 9 apoptosis signaling. Another way huntingtin produces antiapoptotic effects is 

through regulation of the neurotrophic factor BDNF. Indeed, wt-Htt regulates BDNF gene 

transcription, downregulated in HD (Rigamonti et al 2000, Rigamonti et al 2001, Zuccato et 

al 2001, Zuccato et al 2003). More particularly, Htt levels modulate the sensitivity of neurons 

to apoptotic death elicited by N-methyl-D-aspartate (NMDA) receptor-mediated 

excitotoxicity (Leavitt et al 2006), where wt-Htt can decrease cellular toxicity of mHtt in 

vivo.  

On the contrary, cells depleted of wt-Htt were more sensitive to apoptotic cell death and 

showed increased level of caspase-3 activity, with respect to control cells (Zhang et al 2008). 

 

Wild-type Htt has beneficial activities in the development and mature brain. It is therefore 

possible that its loss in human HD reduces the ability of neurons to survive and to counteract 

the toxic effects of the mutant protein. 

 

1.2.6.2.Loss of function of wt-Htt and toxic gain of function of mHtt 

 

Indeed, this single mutation in Htt is the triggering event that endows the protein with new 

toxic functions that are deleterious for brain cells. At the same time, it also impairs the ability 

of normal Htt protein to exert molecular activities that are fundamental for the survival and 

functioning of the neurons that predominantly degenerate in the disease (Bjorkqvist et al 

2005, Schulte & Littleton 2011). 
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Figure 8 Schematic diagram of the huntingtin amino acid sequence (Zuccato et al 2010).  

Details:(Q)n is polyglutamine tract, followed by the polyproline sequence (P)n; red emptied rectangles indicate 

the three main groups of HEAT repeats (HEAT group 1, 2, 3). The small green rectangles indicate the caspase 

cleavage sites and their amino acid position (513, 552, 586), while the small pink triangles indicate the calpain 

cleavage sites and their amino acid positions (469, 536). Boxes in yellow: B, regions cleaved preferentially in the 

cerebral cortex; C, regions of the protein cleaved mainly in the striatum; A, regions cleaved in both. Post-

translational modifications: ubiquitination (UBI) and/or sumoylation (SUMO) sites (green); palmitoylation site 

(orange); phosphorylation at serines 13, 16, 421, and 434 (blue); acetylation at lysine 444 (yellow). NES is the 

nuclear export signal while NLS is the nuclear localization signal. The nuclear pore protein translocated 

promoter region (TPR, azure) is necessary for nuclear export. Htt, huntingtin; ER, endoplasmic reticulum.  

 

Thanks to its polar zipper structure (Perutz 1995) and its diverse configurations, i.e. alpha 

helix, random coil, and extended loop (Ratovitski et al 2007), this polyQ domain may be 

important for modulation of wt-Htt function, longevity and energy status of cells (Clabough & 

Zeitlin 2006), and for stabilization of protein interactions (Schaefer et al 2012), but wouldn’t 

be essential for normal function of Htt. 

Htt is also enriched in consensus sequences called huntingtin elongation factor 3, protein 

phosphatase 2A, and TOR 1 (HEAT) repeats that are organized into protein domains 

important for protein-protein interactions (Figure 8). Htt protein also goes through post-

translational modifications and presents consensus sites for proteolytic enzymes (Figure 8) 

(Ratovitski et al 2007).  
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Functionally active nuclear export signal (NES) sequence and a less active nuclear 

localization signal (NLS) are present in Htt (Figure 8), which indicate that the protein is 

involved in transporting molecules from the nucleus to the cytoplasm (Xia et al 2003). 

The first 17 N-terminal amino acids of huntingtin revealed that the sequence forms an 

amphipathic-helical membrane-binding domain that is required and is sufficient for Htt 

association to mitochondria and for its colocalization with Golgi and endoplasmic reticulum 

(ER) (Figure 8) (Atwal et al 2007, Rockabrand et al 2007). This sequence also enhances the 

formation of visible aggregates. 

 

Post- translational modifications of Htt protein are various: acetylation, phosphorylation, 

SUMOylation, ubiquitination, palmitoylation and proteolysis (Figure 8). These processes are 

important for modulation of its interactor affinity, subcellular localization, proteolysis or 

degradation (Ehrnhoefer et al 2011). 

These characteristics make Htt indispensable for the proper functioning of cells.   

 

Thus, it appears that Htt has crucial roles in cells, potentially via different domains, and that 

loss of the antiapoptotic functions of Htt may contribute to HD (Figures 7, 8 & 9). 
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Processing of mHtt generates an amino-terminal fragment that translocates into the nucleus 

and a C-terminal portion that remains in the cytoplasm. Some of the full-length protein might 

also move into the nucleus. The generation of amino-terminal fragments coincides with 

increased toxic activity in cells. At the same time, extension of the CAG would cause a loss of 

function in the mutant protein (Figure 9a) and/or the mutant protein could act negatively on 

the functions of the normal one (Figure 9b). Finally, loss of Htt function might result as a 

consequence of decreased protein levels and stability.  

 

 
Figure 9 Potential mechanism of cell death in HD (Cattaneo et al 2001).  

 

As such HD may be viewed as a double disease (Figure 9), that is caused by both a new toxic 

property of mHtt and by a loss of the neuroprotective activity of wt-Htt (see as review 

(Cattaneo et al 2001)).  

Overall, these combined effects alter several cellular processes, such as protein degradation, 

mitochondrial respiration and transcription among many others, leading to neuronal 

dysfunction and cell loss. 
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1.2.6.3.Molecular Mechanisms in HD 

 
 

Figure 10 Key cellular pathogenic mechanisms in Huntington’s disease HD (Zuccato et al 2010).   

 

Multiple cellular pathways have been implicated in the pathogenesis of HD. These 

mechanisms could be exclusive or, more likely, have a high degree of cross-talk. The 

mutation in Htt causes a conformational change of the protein that leads to partial unfolding 

or abnormal folding of the protein. Full-length mHtt is cleaved by proteases in the cytoplasm. 

In an attempt to eliminate the toxic Htt, fragments are ubiquitinated and targeted to the 

proteasome for degradation. However, the proteasome becomes less efficient in HD. 

Induction of the proteasome activity as well as of autophagy protects against the toxic insults 

of mHtt proteins by enhancing its clearance (Figure 10.A). NH2-terminal fragments 

containing the poly-glutamine stretch accumulate in the cell cytoplasm and interact with 

several proteins (Figure 10.B) causing impairment of calcium signaling and homeostasis 

(Figure 10.C) and mitochondrial dysfunction (Figure 10.D). NH2-terminal mHtt fragments 

translocate to the nucleus where they impair gene transcription or form intranuclear inclusions 

(Figure 10.E). mHtt alters vesicular transport and recycling (Figure 10.F). 

 

From this rapid description, I will go further on details, following the order of the previous 

description of pathogenic mechanisms in HD, from A to F of Figure 10.  
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A. Huntingtin cleavages, aggregation and elimination (Figure 10.A) 

Htt contains well-characterized consensus cleavage sites for proteolytic enzymes that cleave 

the protein and generate a wide range of fragments (Goldberg et al 1996). Caspases, calpain, 

and aspartyl proteases are all involved in this process (Figure 8). In addition, Htt fragments 

produced by caspase-independent cleavage accumulate in the cytoplasm and nucleus (Lunkes 

et al 2002, Ratovitski et al 2007). Proteolytic processing is likely an important initial step in 

pathogenesis, since expressing the smaller Htt truncation product results in greater cell 

toxicity than expressing the entire mutant Htt protein (Graham et al 2006, Martindale et al 

1998, Qin & Gu 2004) and inhibition of cleavage can lessen neurotoxicity in animal models 

(Gafni et al 2004, Pattison et al 2006). 

 

PolyQ tracts in proteins might stabilize protein interactions. This happens most likely through 

structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to 

facilitate its interaction with a coiled-coil region in another protein. Alteration of this 

important biological function due to polyQ expansion results in gain of abnormal interactions, 

leading to pathological effects like protein aggregation (Schaefer et al 2012).  

N-terminal fragments of mHtt form aggregates (Davies et al 1997, DiFiglia et al 1997, 

Scherzinger et al 1997). In HD mouse models and human patients, the appearance of visible 

mHtt aggregates called inclusion bodies (IBs) correlates with the onset of behavioral deficits.  

IBs formation indicates a mismatch between the production and clearance of aggregation-

prone protein (Margulis & Finkbeiner 2014). Cell biology studies (Arrasate et al 2004) 

however indicate that the presence of neuronal intranuclear inclusions may represent a self-

defense mechanism to store and neutralize more soluble toxic species. Oligomers of mHtt 

may represent the toxic species which can interact with many proteins and trigger deleterious 

events, possibly more than visible “macroscopic” inclusions. mHtt aggregates constitute a 

neuropathological hallmark of HD. Huntingtin-containing inclusions and aggregates have 

been previously characterized by immunohistochemistry using the EM48 antibody or other 

anti-ubiquitin antibodies (Gutekunst et al 1999). 

 

Whether mHtt aggregates are neuroprotective, neurotoxic, or both remains unclear, disordered 

protein folding and aggregation are a potentially tractable hallmark of HD. 

It is tempting to think that aggregation is an event that occurs in response to toxicity of 

soluble mHtt. It has been shown that soluble mHtt, inducing mitochondrial defects, can be 

toxic for cultured hippocampal neurons (Tian et al 2014). This is consistent for early stage of 

the disease, because with progression of the disease, UPS and autophagy are dysfunctionning 

and overactivated by mHtt aggregates, resulting in a toxic effect of mHtt aggregation in late 

stage. This is supporting by the group of Lotz (Marcellin et al 2012) putting in evidence that 

soluble mHtt decrease with aging of Q150 mice whereas mHtt aggregates increase. Different 

studies have shown when testing therapeutic agents in HD animal models, a recovery of the 

symptoms arise and a lower number of mHtt aggregates is observed.  

For example, Yamamoto et al have shown that in a conditional model of HD by using the tet-

regulatable system, blockade of expression in symptomatic mice leads to a disappearance of 

mHtt inclusions and an amelioration of the behavioral phenotype (Yamamoto et al 2000), 
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which suggests that aggregation would participate to neuronal dysfunction at late stage in HD 

models presenting inclusions.  

But there are differences between HD animal models and HD patients concerning mHtt 

aggregates. Indeed, patients have low number of aggregates in the striatum, and mainly in 

nucleus and somatodendritic cellular compartments (Gutekunst et al 1999). 

 

PolyQ inclusions are also found in post-mitotic non-CNS cells of HD transgenic mice (R6/2 

and Q150) (Bjorkqvist et al 2005, Moffitt et al 2009), suggesting that either aggregates are not 

as deleterious in non-CNS tissues, or that in brain and more particularly in the striatum, 

additional components come into play to trigger neuronal cell death. 

 

What regulates accumulation of aggregates and inclusions is not totally understood.  

The probable misfolding of mHtt due to the polyQ stretch may engender cell stress. Protein 

misfolding is naturally regulated by chaperone proteins in cells. The fact that several 

chaperone proteins can reduce mHtt toxicity indicates that indeed, protein misfolding in HD 

contributes to neurodegeneration. 

For example, overexpression of a chaperone HSJ1 in R6/2 mice was shown to reduce the 

formation of large nuclear aggregates detergent-insoluble mHtt species beginning to 

aggregate. This approach lightly delayed disease progression (Labbadia et al 2012). Another 

similar example concerns the chaperone TCP1-ring complex (TRiC) which suppresses mHtt 

aggregation (Tam et al 2006). It has been shown that an Nterminal fragment of Htt (Htt 171-

82Q) induces the up-regulation of endogenous Heat-Shock protein (HSP) 70, found to be 

colocalized with Htt inclusions. The overexpression of HSP104 and HSP27 modifies the 

subcellular localization of HSP70 that becomes cytoplasmic, which rescues striatal 

dysfunction in primary neuronal cultures and HD rat models (Perrin et al 2007)(Figure 14).  

 

A possible important mechanism involved in the accumulation of aggregation and more 

generally mHtt fate, is a defect of systems important for the clearance of misfold and 

aggregated proteins. Indeed, several important systems for clearance of mHtt are deregulated 

in HD animal models and humans, as the ubiquitin-dependent proteasome. 

The presence of ubiquitinated Htt suggests a failure of the ubiquitin–proteasome system 

(UPS) (Atkin & Paulson 2014). As mHtt aberrantly accumulates in perinuclear regions and in 

numerous punctate cytoplasmic structures that resembled endosomal–lysosomal organelles 

(Sapp et al 1997), it has been proposed that the proteasome may be unable to process 

expanded polyQ stretches, resulting instead in the accumulation of peptide fragments 

containing polyQ (Venkatraman et al 2004). 

 

In addition SUMOylation is also another key regulator of protein degradation. The 

SUMOylation of mHtt may increase its toxic species in the cytoplasm, enhancing neuronal 

death. 

 

Another important mechanism of mHtt protein degradation and possibly elimination of 

aggregates is autophagy, which is a process whereby cells remove cytosolic proteins and 

organelles and in certain circumstances degrade themselves from within. 
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Autophagy can be induced by apoptotic stimuli in the presence of caspase inhibitors 

(Merienne et al 2003), and may contribute to cell death through the regulation of lysosomal 

proteases cathepsin B and D (Goula et al 2012)(Ohsawa et al., 1998). Mutant Htt can be 

cleared by macro-autophagy but impairs its own clearance through impaired cargo recognition 

(Martinez-Vicente et al 2010). Enhancement of autophagy can be obtained by inhibition of 

mammalian target of rapamycin (mTOR) by Rapamycin. It produces on the HD mouse model 

R6/2 an improvement of survival curve (Ravikumar et al 2004), which is a good trail to 

follow to develop new therapeutic tools (see Figure 14). 

 

B. Abnormal protein-protein interaction (Figure 10.B)  

 

Mutant Htt is toxic to striatal neurons, but this toxicity is probably related to one or a few of 

the more than hundred proteins that interact with Htt. Indeed, being a large protein, Htt has 

numerous binding partners [see as review (Clabough 2013, Harjes & Wanker 2003)] (Figure 

8), including transcription co-activators, co-repressors, and apoptosis-related kinases, protein 

involved in signaling, cell transport, energy metabolism (Figure 7). The presence of the 

expanded polyQ stretch, can lead to changes (increase or decrease) in the interaction of mHtt 

with binding partners (Table 1) (see as review (Clabough 2013)).  It also exists evidences of 

post-translational differences between healthy and HD conditions, for example mHtt would 

impact on Tau phosphorylation leading to a toxic hyperphosphorylation of Tau [(Blum et al 

2014); see Annexe 6.2.]. 

Alterations in numerous signal transduction pathways and aberrant activity of specific kinases 

have been identified in multiple cell and mouse models of Huntington's disease (HD), as well 

as in human HD brain. The balance and integration of a network of kinase signaling pathways 

is paramount for the regulation of a wide range of cellular and physiological processes, such 

as proliferation, differentiation, inflammation, neuronal plasticity and apoptosis. mHtt has 

wide ranging effects on multiple pro- and anti-apoptotic kinases, resulting in the 

dysregulation of numerous complex interactions within a dynamic network (see as review 

(Bowles & Jones 2014)). 

For example, activation of the C-terminus part of c-Jun (jnk) pathway would be the 

consequence of the weaker interaction between Htt and the mixed-lineage kinase 2 (MLK2), 

which is important for jnk activation (Liu et al 2000). It has been seen an higher activation of 

this pathway in striatal culture cells expressing mHtt in presence of DA (Charvin et al 2005).  

Jnk activation is followed by nuclear translocation and a higher phosphorylation of c-Jun, 

inducing apoptosis (Herdegen & Waetzig 2001).  

Akt, a serine-threonine kinase, also known as protein kinase B (PKB), is a potent pro-survival 

kinase that exerts its survival effect in neurons by phosphorylating several substrates (Franke 

et al 2003). These substrates include components of the cell death machinery (e.g. BAD), 

glycogen synthase kinase-3β (GSK3β) and transcription factors of the forkhead (FOXOs) 

family. In HD, Akt phosphorylates mHtt and this phosphorylation abrogates its toxicity 

(Humbert et al 2002). Saudou and Humbert’s group showed that during late stages of the 

disease, Akt is cleaved into an inactive form by caspase-3, which ensures the irreversible 

deactivation of Akt and abolishes the ability of Akt to promote survival in cells expressing 

polyQ-huntingtin (Colin et al 2005).  
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HD mutation leads to aggregate sequestration of various proteins, including transcription 

factors. Indeed, proteolytically cleaved N-terminal fragments of mHtt can translocate into the 

nucleus to form neuronal intranuclear inclusions, which recruit transcription factors such as 

CBP, TBP, CA150 and Sin3A (Table 1) and therefore disrupt gene transcription, leading to 

neurodegeneration. 

 

 
 

Table 1 Huntingtin interacting proteins and impact of mHtt on interactors protein expression (Clabough 

2013). 

Abbreviations: CA150, co-activator 150; CBP, (cAMP-response element binding protein) binding protein; CiP-

4, cdc42-interacting protein 4; Co-iP, co-immunoprecipitation; CtBP, C-terminal-binding protein; FiP2, for 

14.7K interacting protein; GAPDH, glyceraldehyde 3-phosphate dehydrogenase; Gnb2l1, guanine nucleotide-
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binding protein (G protein) polypeptide 2-like 1; gp78, glycoprotein 78; GRB2, growth factor receptor-binding 

protein 2; GST, glutathione S-transferase; HAP1, htt-associated protein 1; HiP, htt-interacting protein; HyP, htt-

yeast partner; iP31, inositol (1,4,5)-trisphosphate receptor type 1; Myo5a, myosin V;A NCOR, nuclear receptor 

co-repressor; NF-kB, nuclear factor-kB transcription factor; PACSiN1, protein kinase C and casein kinase 

substrate in neurons 1; [Pi(3,4,5)P3] phosphoinositol, (Pi) 3,4-bisphosphate, Pi 3,5-bisphosphate, and Pi 3,4,5-

triphosphate; PKR, doublestranded RNA-activated protein kinase; Prkra, interferon inducible double-stranded 

RNA-dependent protein kinase activator A; PSD- 95, postsynaptic density 95; RasGAP, Ras GTPase-activating 

protein; REST–NRSE, the repressor element-1 transcription factor–the neuron restrictive silencer element; Rps6, 

ribosomal protein S6; SH3GL3, SH3-containing GRB2-like protein 3; SP1, specificity protein-1; TAFii130, 

TBP-associated factor; TBP, TATA box binding protein. 

 

C. Dysfunction calcium signaling (Figure 10.C)  

 

Mutant Htt causes cytosolic and mitochondrial calcium (Ca
2+

)
 
overload and apoptosis of HD 

MSN. Mutant Htt perturbs Ca
2+

 signaling by enhancing NMDA receptor function, possibly 

through decreased interaction with the PSD95-NR1A/NR2B complex (Song et al 2003, Zeron 

et al 2001). Moreover, mHtt binds the COOH terminus of the inositol 1,4,5-triphosphate 

receptor 1 (InsP3R1) on the endoplasmic reticulum and renders the receptors more sensitive 

to IP3, which causes Ca
2+

 release through the InsP3 R1 (Tang et al 2003). DA released from 

midbrain dopaminergic neurons stimulates D1 and D2 receptors (D1R, D2R). D1R are 

coupled to activation of adenyl cyclase, increase in cAMP levels, and activation of protein 

kinase A (PKA), which potentiates glutamate-induced Ca2+ signals by facilitating the activity 

of NMDAR and InsP3 R1. D2R are coupled directly to InsP3 production and activation of 

InsP3 R1. Ca
2+

 signals activate calpain, which cleave Htt and other substrates. Excessive 

cytosolic Ca
2+

 signals result also in mitochondrial Ca
2+

 uptake, which eventually triggers 

apoptosis (Choo et al 2004).  

The mitochondrial Ca
2+

 handling is further destabilized by direct association of mHtt with 

mitochondria (Panov et al 2002). All this Ca2+ deregulation may lead to enhanced 

vulnerability to excitotoxicity at glutamatergic synapses. In line with this some HD mouse 

models show, at early ages, increased susceptibility to intrastriatal injection of the NMDA-R 

agonist quinolinate. However, older mice become resistant to excitotoxicity. 

 

D. Energy defects (Figure 10.D) 

 

The hypothesis that energy impairment could play a key role in HD was proposed by Beal 

(Beal 1992) and Albin (Albin et al 1992), who suggested that chronic defects in energy 

metabolism could indirect excitotoxicity. 

 

First evidence of a mitochondrial defect in HD came from very early studies indicating 

biochemical abnormalities in mitochondria isolated from HD cortical autoptic tissue (Gardian 

& Vecsei 2004, Goebel et al 1978). 

Biochemical studies of brain and peripheral tissues from HD patients, as well as studies on 

HD cells and animal models, revealed decreased activity of several enzymes involved in 

oxidative phosphorylation such as complex I, II, III, and IV (Arenas et al 1998, Brouillet et al 

1995, Damiano et al 2010, Gu et al 1996, Mochel & Haller 2011, Tabrizi et al 1999). 
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More generally, PET scan studies showed very early defects in brain energy metabolism, in 

particular in the striatum (for a review Brouillet et al., 1999). NMR spectroscopy indicated 

increased lactate concentrations in HD patients, suggesting defects in oxidative energy 

metabolism (Jenkins et al. 1993 ; 1998), possibly at the level of mitochondria. 

Supporting the hypothesis that chronic energy impairment could play a role in HD, it has been 

shown that chronic intoxication with the mitochondrial toxin 3-nitropropionic acid , an 

inhibitor of mitochondrial complex II (C-II) leads to preferential degeneration in rats (Beal et 

al JN 1993) and non-human primates (Brouillet et al., 1995); these pioneering studies led 

several groups to more closely look at the possible effects of mHtt on mitochondria. mHtt 

binds directly to mitochondria, thereby altering their metabolic activity, Ca2+ handling 

capacity, motility within the cells and shape through abnormal interaction with the DRP-1 

protein trigerring increased mitochondrial fission  (Damiano et al 2010, Trushina et al 2004). 

Mutant Htt also produces an increased production of reactive oxygen species (ROS), possibly 

through perturbation of oxidative phosphorylation in mitochondria. Although data on post 

mortem tissues show contrasting results on the presence of oxidative stress products (Browne 

et al 1997), different approaches in vitro and in vivo indicated that mHtt produces preferential 

loss of C-II subunits (Benchoua 2006; Damiano 2013) in animal models of HD and HD 

patients. In HD models, reduced expression of C-II, associated with loss of mitochondrial 

membrane potential and cell death. Overexpression of these subunits using lentiviral strategy 

in neuroprotective against mHtt, indicating that this event is causal in HD.  

There are a number of transcription factors known to regulate genes responsible for 

mitochondrial function and oxidative stress (Cha 2007). The group of Dimitri Krainc and 

colleagues showed that mHtt also represses transcription of PGC-1α, a gene encoding for a 

transcriptional co-activator that regulates expression of genes involved in mitochondrial 

biogenesis and respiration. The expression of these genes is severely impaired in the disease. 

Moreover, PGC-1α knock-out mice exhibit mitochondrial defects accompanied by 

hyperkinetic movement disorder and striatal degeneration (Cui et al 2006). Another group has 

shown that PGC-1α promoted Htt turnover and the elimination of protein aggregates by 

activating transcription factor EB (TFEB), a master regulator of the autophagy-lysosome 

pathway (Tsunemi et al 2012). 

 

The majority of the cellular events compromised during disease progression are highly energy 

dependent processes. Hence, impairments of these functions could stem from or be amplified 

by mHtt-induced mitochondrial and energetic defects. 

 

E. Transcriptional deregulation (Figure 10.E)  

 

Initial reports during the 1980s and 1990s demonstrated selective altered expression of highly 

identifiable neuronal genes, such as neurotransmitter receptors and neuropeptides, first in 

patients brain and later in animal models (Augood et al 1997, Cha et al 1998, Emson et al 

1980). 

It was hypothesized that mHtt reduces the expression of a distinct set of genes involved in 

signaling pathways known to be critical to striatal neuron function (Luthi-Carter et al 2000). 
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The importance of transcriptional dysregulation in the pathology of HD was demonstrated by 

nuclear-restricted variants of mHtt transgenes that reproduced part of the HD symptoms  

(Benn et al 2005, Schilling et al 2004).  

Some of the major conclusions derived from HD transcriptomics are that 1) transcriptional 

dysregulation is an early and progressive event, 2) transcriptional dysregulation affects 

relevant genes for brain function, 3) HD transcriptional signatures are a complex mixture of 

common and specific changes, 4) HD is not fully explained by mitochondrial dysfunction. 

Transcriptional dysregulation has been proposed to comprise one of the earliest and most 

central mechanisms of HD pathogenesis, and a large body of experimental evidence supports 

this hypothesis. Transcriptional profiling of HD human brain and in vivo and in vitro disease 

models demonstrates large changes in the expression of coding and non-coding RNAs 

(Desplats et al 2006, Hodges et al 2006, Lee et al 2011, Luthi-Carter et al 2002, Luthi-Carter 

et al 2000, Marti et al 2010, Runne et al 2008). A variety of mechanisms have been proposed 

to explain how mHtt causes transcriptional dysregulation (reviewed in (Beal & Ferrante 2004, 

Cha 2007, Helmlinger et al 2006). These include inhibition of positive regulators of 

transcription by both sequestration and soluble interaction mechanisms, as well as loss of 

inhibition of negative regulators of transcription (Figure 11). 

 

 
Figure 11 Mechanisms of dysregulation of gene expression in Huntington's disease (Seredenina & Luthi-

Carter 2012).  

 

Mutant Htt interferes with the transcriptional machinery at different levels (Figure 11). 
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 Mutant Htt sequesters transcription factors and co-factors into insoluble aggregates (Andrew 

et al 1993, Kazantsev et al 1999, Nucifora et al 2001, Steffan et al 2000). Soluble interactions 

of mHtt with transcriptional regulators inhibit or promote the activity of transcription factor 

complexes (Dunah et al 2002, Hannan 1996, Li et al 2002). The RE-1 silencing transcription 

factor (REST) is a repressor that is proposed to silence transcription of numerous neuron-

specific genes. Htt regulates nuclear-cytoplasmatic trafficking of REST/NRSF and mHtt fails 

to retain REST/NRSF in the cytoplasm, thereby allowing it to enter the nucleus and repress 

the expression of neuronal genes (Zuccato & Cattaneo 2007, Zuccato et al 2003). Htt might 

bind to DNA and regulate DNA structure and/or the binding of other transcriptional 

regulatory proteins. Mutant Htt changes chromatin status by increasing histone methylation 

and ubiquitination and by decreasing histone acetylation (Ferrante et al 2003, Steffan et al 

2001). Mutant Htt changes the activity of transcription factors by impairing their clearance by 

the proteasome. Mutant Htt alters the transcription or processing of miRNAs, resulting in an 

altered stability of their target mRNAs (Chen et al 1999, Dunah et al 2002). 

 

Investigations based on DNA microarray technology showed a large number of gene 

expression changes in cellular and mouse models of HD. They indicate also that gene 

dysregulation occurs before the onset of symptoms, suggesting that transcriptional 

dysregulation is an important causative factor in the disease (Cha 2007). A large set of data 

also indicates the absence of a single transcriptional regulator having a primary role in HD 

and rather demonstrates the involvement of different transcription factors and DNA target 

sequences and some critical pathways in HD, such as the GC-box/Sp1-mediated, the 

CRE/CREB regulation systems, and the REST/NRSF regulon (Cha 2007, Johnson & Buckley 

2009) (Figure 12).  
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Figure 12 Transcription factors, DNA target sequences, and chromatin structure in HD (Zuccato 2010). 

 

Expanded polyQ in huntingtin represses transcription of Sp1-dependent promoters (i.e., D2R 

gene) by abnormally interacting with specific transcription cofactors such as Sp1 itself, TFIIF, 

and TFII130 (Figure 12, A). 

The transcription factor cAMP-responsive element (CRE)-binding protein (CREB) binds to 

DNA elements that contain a CRE sequence, as in the promoter of the PGC1-α gene, a master 

regulator of genes involved in mitochondrial function and energy metabolism. Mutant Htt 

interferes with CREB and TFIID, leading to reduced activation of PGC1-α gene, reduced 

PGC1-α protein levels, and consequently, downregulation of its mitochondrial target genes 

(Figure 12, B).  

The transcription factor REST/NRSF binds to RE1/NRSE elements in neuronal gene 

promoters such as in the BDNF gene. Wild-type Htt sustains the production of BDNF by 

interacting with REST/NRSF in the cytoplasm, thereby reducing its availability in the nucleus 

to bind to RE1/NRSE sites. Under these conditions, transcription of BDNF and of other 

RE1/NRSE regulated neuronal genes is promoted. Mutant Htt fails to interact with 

REST/NRSF in the cytoplasm, which leads to increased levels of REST/NRSF in the nucleus. 

Under these conditions, REST/NRSF binds avidly to the RE1/NRSE sites, suppressing the 

transcription of BDNF and of other RE1/NRSE regulated neuronal genes (Figure 12, C).  

SREBP binds to SRE to regulate the transcription of genes involved in the cholesterol 

biosynthesis pathway.  
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Under physiological conditions, SREBP is transported from the endoplasmic reticulum to the 

Golgi region, where it is cleaved to obtain a fragment that enters the nucleus and activates 

cholesterogenic genes. In the presence of mutant huntingtin, this mechanism is impaired, 

which leads to the reduced expression of SREBP-dependent genes and decreases the 

biological effects of cholesterol biosynthesis (Figure 12, D).  

E, levels of histone acetylation at specific lysine residues are determined by concurrent 

reactions of acetylation (Ac) and deacetylation, which are mediated by histone acetylases 

(HATs) and histone deacetylases (HDACs). Histone acetylation is vital for establishing the 

conformational structure of DNA-chromatin complexes suitable for transcriptional gene 

expression. Mutant huntingtin leads to disruptions in HAT and HDAC balance, leading to 

general transcriptional repression (Figure 12, E). 

 

F. Abnormal axonal transport (Figure 10.F)  

 

Striatal neurons depend on BDNF to maintain their health, delivered from cortex to striatum 

(Zuccato & Cattaneo 2007). Thus early loss of BDNF release in the striatum would favor 

striatal vulnerability in HD. 

The expression of the N-terminal fragments of mHtt is enough to cause neuronal 

degeneration, but is not sufficient to maintain Htt axonal transport functions (Gauthier et al 

2004). Interestingly, the proteins involved in other neurodegenerative diseases do not affect 

BDNF transport. 

 It has been shown that wt-Htt specifically enhances anterograde and retrograde BDNF vesicle 

transport in cell system. The group of Frederic Saudou proposed that reduced BDNF levels in 

the HD striatum may depend also on reduced transport of BDNF vesicles along the cortico-

striatal afferents (Gauthier et al 2004). They explained it by the inhibition of Htt, HAP1, and 

motor proteins' association to microtubules caused by polyQ expansion. 

Several studies support the hypothesis that a deficit in BDNF is a major contributor to HD 

pathogenesis, suggesting the possibility that delivering BDNF or increasing endogenous 

BDNF production may stop or delay the progression of the human disease. In addition they 

showed that the release of BDNF may be reduced in HD, possibly through the involvement of 

the chaperone HSJ1B (Borrell-Pages et al 2006). 

 

Consequences of gain of toxic function of mHtt detailed in this current chapter can be linked. 

For example, it has been shown that phosphorylation of mutant huntingtin at S421 restores 

anterograde and retrograde transport in neurons (Zala et al 2008), thanks to restoration of the 

interaction between Htt and a subunit of dynactin, and their association with microtubules in 

vitro. This phosphorylation at S421 can be induced by the insulin growth factor type I (IGF-

1)/Akt pathway. Because of alteration of interaction protein-protein with mHtt, some roles of 

wt-Htt are impaired, which is leading to opposite effects of Htt protein.  
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1.2.7. Animal models of HD 

 

There is no known naturally occurring animal model of HD. For that reason, numerous 

genetic animal models of HD have been generated since the discovery and cloning of the HTT 

gene in patients in the past twenty years, by the introduction of the mutant gene into non-

human primate, mouse, fly, fish, and worm has generated disease models. 

 

1.2.7.1.Non genetic models 

 

Before the discovery of the main cause of HD, i.e. mutation in the HTT gene, non-genetic 

models were used, and are still used in some studies. They typically induce cell death either 

by direct triggering of excitotoxicity (DiFiglia 1990) or by primary blockade of energy 

metabolism.  

Quinolinic acid (QA) and kainic acid (KA) have been the two most commonly used 

excitotoxic agents in both rodent (Beal et al 1986, Vecsei & Beal 1991) and non-human 

primate models of HD (Hantraye et al 1990). These amino acids (QA and KA) induce cell 

death by binding to their cognate receptors, N-methyl-D-aspartic acid (NMDA) and non-

NMDA, respectively, on striatal neurons.  

The mitochondrial toxins 3-nitropropionic acid (3-NP) and malonic acid (MA) have also been 

used in both rodents (Beal et al 1993, Ludolph et al 1991) and non-human primates (Brouillet 

et al 1995) to produce cell death in striatal neurons via inhibition of the Complex II (succinate 

dehydrogenase) of the tricarboxylic acid cycle and the electron transport chain in 

mitochondria, effectively reducing production of adenosine triphosphate (ATP) (see as review 

(Brouillet 2014)). 

The excitotoxic lesion models of HD are useful to highlight potential pathways and processes 

that are implicated in the pathogenesis of HD, including aberrant glutamate signaling, and 

mitochondrial dysfunction and associated energetic defects. 

Nevertheless, these models have a number of limitations, including the nature of the lesions, 

the acute appearance of striatal lesions within a few hours to few days that contrasts with 

decades in HD patients, the restricted pathology in striatal neurons that doesn’t take into 

account the other brain regions and peripheral incidence of the expression of mHtt in all cells 

of the body, and the lack of Htt cytoplasmic inclusions that are a pathological hallmark of the 

disease. 

 

1.2.7.2.Genetic models 

 

In 1996, the first transgenic mouse model was generated by introducing a fragment of a 

juvenile HD patient's HTT gene into the mouse genome (Mangiarini et al 1996). The mouse 

models generated in this pioneering study, called R6/2 mice and R6/1 mice (Mangiarini et al 

1996) have been widely used since and are often studied at present. Since, many other models 

have been developed in mice, rats, zebrafish, Drosophilia Melanogaster, C.elegans, song 

birds, mini-pigs, sheep and non-human primates (Pouladi et al 2013). All these models have 

in common that they express part or the entire mutant HTT but they have major differences in 

terms of symptomatology, neuropathology, onset of disease and life span.  
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What differentiates one model to another can be summarized according to the following 

considerations (Figure 13): 

a) use of full-length or only a fragment of mutated HTT; 

b) length of the CAG repeat incorporated into the genetic construct;  

use of a coding region containing only CAG repeats or one containing repeats that 

are interrupted with one or more CAA codons (which also code for glutamine, but 

stabilize the number of repeat from generation to generation avoiding the 

anticipation phenomenon);  

c) expression of the HD mutation from a transgene or knock-in of the mutation into 

the endogenous Hdh locus;  

use of human HTT gene or the endogenous HTT gene of the animal;  

d) use of complementary DNA (cDNA) or genomic DNA containing all the introns 

and regulatory sequences in YAC or BAC vectors;  

e) use of the HTT promoter or another promoter to drive expression of the mutant 

protein, which leads to major differences in the level of expression, and the 

spatial/cellular pattern of expression. 

 
Figure 13 Genetic attributes of animal models of HD (Pouladi et al 2013).  
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Because of the number of diverse models, I shall only mention here the models used for my 

PhD study. 

 

1.2.7.3.Transgenic models 

 

Transgenic models result from the random insertion of a portion of the human htt gene, 

containing the polyglutamine repeat, in the mouse genome, the expression of which can be 

driven by different promoters. 

Borchelt and colleagues created the N171-82Q transgenic mouse model by inserting the first 

171 amino acids from the N-terminal of the human htt gene into the mouse genome (Schilling 

et al 1999). Expression of the N-terminal fragment of htt in this model is driven by the mouse 

prion promoter and, as such, mutant htt is expressed throughout the mouse brain. But its 

expression is restricted to neurons and is not found in glia. These transgenic mice contain two 

normal (wild-type) copies of the HTT genes along with one mutated copy of the truncated 

human htt gene. This model has fewer 82 polyglutamine repeats, which leads to displaying 

resting tremor, hypokinesia, hindlimb and forelimb clasping, and abnormal gait beginning at 

week 11, and showing a progressive decline in performance on the rotarod test as well as the 

onset of clasping. They have a reduced life span, dying around 120-150 days. This model has 

been often used to study genetic modifiers and experimental therapeutic interventions (Beal & 

Ferrante 2004). 

 

1.2.7.4.Knock-in models 

 

“Knocking in” a portion of the human HTT gene in the HTT gene locus results in the creation 

of knock-in models (Ki). The exogenous htt promoter drives expression of the mutant htt 

protein in these animals and so production of the mutant protein is both spatially and 

temporally accurate. 

It exist Ki mice with different length of the CAG repeats sequence: from 50Q to 175Q. The 

main characteristics of these models are the slowly progressive appearance of the symptoms, 

reflecting human HD pathology (Lin et al 2001, Menalled et al 2012, Menalled et al 2003, 

Rising et al 2011, Wheeler et al 2000). The first model that has been generated is the 

Hdh(Q111) knock-in mice by Marcy MacDonald’s group (Wheeler et al 2002). 

Zeitlin's group created a slowly progressing mouse model of HD, the knock-in mice 

expressing chimeric mouse/human exon 1 containing 140 CAG repeats inserted in the murine 

HTT gene (Ki140CAG) (Menalled et al 2003). Mice were N3 (B6) on a 129 Sv×C57BL/6 J 

background. Ki140CAG mice are described in the literature with minor hypoactivity at 1 

month of age, as seen using an open-field test, but at 12 months motor dysfunction is more 

apparent, seen by overt gait abnormalities and decrease in stride length. These mice show 

increased rearing behavior using forelimbs compared to wild-type mice at 1 month of age, but 

a significantly decline of rearing at 4 months is reported. These mice show significant rotarod 

deficits at 9 months old compared to wild-type littermate controls. Inclusion bodies appear in 

CAG140 knock-in mouse brains—in the striatum, cortex, hippocampus, and cerebellum—

starting at 2 months, and progressively increase in both size and number. These aggregates 

form in both the nucleus and neuropil as seen in HD patients. 
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1.2.7.5.Viral-mediated HTT gene transfer models  

 

In parallel of the use of transgenic and Ki models, various viral vectors have been developed 

and utilized for transferring genes in the brain (Deglon & Hantraye 2005, Kirik & Bjorklund 

2003). The recombinant viral vectors utilized for CNS gene transfer studies have been derived 

from adeno-associated virus (AAV), lentivirus (LV), adenovirus (Ad), and herpes-simplex 

virus (HSV). 

In our study, we used the in vivo HD LV model , described to be a highly flexible approach 

for the targeted overexpression of mHtt, with rapid and progressive degeneration of striatal 

neurons in rat and mice (Ruiz & Deglon 2012). A similar approach in non-human primates 

showed that intrastriatal injection of LV coding the first 171 amino acids of mHtt with 82Q 

(LV-Htt171-82Q) leads to progressive appearance of dyskinesia and choreiform movements 

(Palfi et al 2007). The LV-Htt171-82Q model in rodent  has often been used to study 

mechanisms underlying mHtt toxicity and provides the proof of principle of testing new 

experimental therapeutics targeting different cellular component such as protein chaperones, 

mitochondrial enzymes, kinases (JNK and MSK1) transcription factors (CA150) and mHtt 

itself (Damiano et al 2013, Drouet et al 2009, Galvan et al 2012, Perrin et al 2009, Perrin et al 

2007) (review Ruiz et al, 2012). The expression level of mHtt produced by the LV-Htt171-

82Q vector (which uses the pan-neuronal promoter PGK) is approximately 25-fold higher 

than the level of endogenous Htt (Drouet et al 2009). Striatal degeneration occurs within 8-12 

weeks in rats and 4-6 weeks in mice.  

 

Infection of a limited number of cells, or a subtype of cells, is particularly suited for 

dissecting the contribution of specific circuitry and pathways in these pathogenic processes. 

HD models have been also developed using similar strategy with adeno-associated virus 

(AAV) model. The first in vivo study in adult rats was performed using an AAV vector for 

expressing a GFP fusion protein containing a long polyQ tract (Senut et al 2000). Intrastriatal 

injection of this vector caused rapidly intracytoplasmic and ubiquitinated intranuclear 

aggregates in neurons. This study demonstrated that expression of an Htt polyQ tract 

throughout life does not necessarily induce cell death, but rather that acute overexpression of 

a polyQ tract in adult neurons is sufficient to induce pathology. 

 

1.2.7.6.HD models diversity 

 

From cells to non-human primates, a large spectrum of organisms has been used to model 

HD, but a particular effort has been made on rodent models, more complex than culture cells 

but less expensive than non-human primates (see as review (Perrin 2014, Pouladi et al 2013, 

Ramaswamy et al 2007)).  
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Treatment of chorea

Antidopaminergic agents Tetrabenazine Jankovic & Beach 1997; Ondo et al., 2002

Antipsychotic agents

Haloperidol, Pimozide, Clozapine, 

Olanzapine, Ziprasidone,  

Aripiprazole, Risperidone, Quetiapine

Koller & Trimble, 1985; Girotti et al., 1984; van 

Vugt et al., 1997; Bogelman et al., 2001; Bonelli 

et al., 2003; Brusa et al., 2009; Parsa et al., 

1997;   Bonelli & Niederwieser, 2002 

N-methyl-D-aspartic acid receptor 

antagornists
Amantadine, Memantine Verhagen et  al, 2002; Ondo et al., 2007

Omega-3 fatty acids Ethyl-eicosapentaenoic acid Puri et al., 2005  

Treatment of cognitive dysfuction associated with HD

Cognition Rivastigmine, Donepezil de Tommaso et al., 2007; Fernandez et al., 2000  

Treatment of behavioral disturbances associated with HD

Depression
Fluoxetine, Venlafaxine, Mirtazapine, 

Clozapine

Como et al., 1997; Holl et al., 2010; Bonelli, 

2003; Sajatovic et al., 1991

Psychosis Risperidone Erdemoglu et al., 2002   

Irritability, agitation
Olanzapine, Quetiapine, Sertraline, 

Buspirone, Valproate,  Propranolol

Squitieri et al., 2001; Alpay & Koroshetz, 2006; 

Ranen et al., 1996; Bhandary & Masand, 1997; 

Grove et al., 2000; Stewart, 1987

1.2.8. Past and future HD therapies 

 

Current therapies for HD provide control of some of the major troublesome symptoms 

(chorea, psychosis, depression). However, these treatments are only “symptomatic”, meaning 

that they ameliorate the clinical features of the illness, but the benefits are only temporary and 

disappear when the treatment is stopped. Unfortunately, no current therapy has shown to 

interfere with the underlying natural history of the disease, slowing or halting its progression.  

 

1.2.8.1.Symptomatic treatments 

 

Some symptoms can be managed with medication (Im & Kim 2014, Ross & Tabrizi 2011) 

(Table 2).  

 

Table 2 Pharmacological drugs on symptoms of HD (adapted from Im & Kim 2014). 

 

Tetrabenazine is the most commonly used drug for chorea. It reduces the amount of the 

chemical dopamine reaching some of the nerve cells in the brain.  

Antipsychotic agents, including Haloperidol, Pimozide, and Clozapine, are used to treat 

patients with psychiatric/behavioral comorbidities, particularly to control delusions, 

hallucinations and violent outbursts. But they may have severe side effects, such as stiffness 

and rigidity, sedation, tremor, slowness of movement. Because of these side effects, the 

lowest possible dose of antipsychotics will be prescribed. 

Rivastigmine and Donepezil are the preferred treatments for improving cognitive function. 

Antidepressants improve mood swings and treat depression. Mood stabilizers, particularly 

carbamazepine, is considered as a treatment for irritability (Im & Kim 2014).  

The European Huntington’s Disease Network (EHDN) has a major program of research into 

these symptomatic treatments.  
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It aims to establish which treatments and combinations are most effective, in order to develop 

guidelines to help guide treatment choices in patients with symptoms of HD. 

 

1.2.8.2.Preventive or curative treatments 

 

More than 30 clinical trials have been conducted these past years for HD, but none of them 

has shown conclusive results. Currently promising clinical trials are conducted (see Annexe 

6.3. Clinical trials status report Table3).  

 

As HD is a progressive neurodegenerative disorder, therapies aimed at treating patients at 

different stages of the disease are being pursued. Early- and mid-stage HD patients already 

see a marked loss of MSN within the caudate nucleus and putamen as well as dramatic 

decrease in BDNF, while late-stage HD patients have lost an overwhelming number of 

neurons within the basal ganglia and cerebral cortex. Early interventions with MSCs 

engineered to overexpress the trophic factor BDNF or RNAi show the ability to protect 

against neurodegeneration, while later interventions with iPSCs are aimed at cell-replacement. 

 

In the past few years, our increased understanding of how the HD gene causes disease has led 

to laboratory studies of HD animal models, in which experimental treatments have been 

shown to slow down the damage caused by HD. Many possible treatments for HD are being 

developed. They are at different stages of development — some are very early in laboratory 

models of HD, while others have already been tested in HD patients. The following lines 

explain some of the latest and most promising approaches to the development of treatments 

for HD [see as review (Ross et al 2014, Wild & Tabrizi 2014); (Figure 14)].  
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Figure 14 Schematic depicting current priority preclinical therapeutic targets under investigation for HD 

(Adapted from Ross et al 2014)(Wild & Tabrizi 2014).   

Abbreviations: HTT, huntingtin; KMO, kynurenine monooxygenase; NMDA, N-methyl-D-aspartate; PDE, 

phosphodiesterase; BDNF, brain-derived neurotrophic factor; HDAC, histone deacetylase deacetylase; Trk, 

tropomyosin-related kinase. 

 

a) Gene silencing therapy 

 

Several strategies have been designed to reduce Htt mRNA expression or protein amounts in 

experimental models. The first of these strategies is to ablate mHtt expression. 

Lowering expression of mHtt at the level of DNA on transcription or RNA on translation 

ought to reduce all of the downstream deleterious effects of the protein that lead to the 

manifestations of HD if it is delivered to the key affected cells.. Such strategies are sometimes 

known as “gene silencing”—somewhat misleadingly, because no approach is expected to stop 

mHtt expression altogether—or “huntingtin lowering” or “huntingtin suppression”.  
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These approaches aimed at reducing HTT expression are considered among the most 

promising emerging therapeutics to slow or prevent HD (Garriga-Canut et al 2012, Magen & 

Hornstein 2014). 

The blockade of mHtt expression in a tet-regulated conditional mouse model of Huntington's 

disease resulted in a behavioral improvement and a reduction of inclusion bodies (Yamamoto 

et al 2000). Thus, some of the effects produced by mHtt are reversible. 

Gene silencing therapy is already used in human patients in other diseases. One major 

problem with gene silencing is getting the molecules where they are needed. RNA and DNA 

molecules don’t enter the brain easily, and getting them to spread through the whole brain is 

difficult. New methods of designing the molecules have improved the efficiency of spread 

through the brain, and there are now devices that can deliver drugs directly into the fluid 

surrounding the brain.  

 

 
Figure 15 Schematic illustration of the three main approaches to lowering HTT (Wild & Tabrizi 2014). 

 

Zinc finger protein (ZFP) therapeutics aim to reduce transcription of the huntingtin gene. 

Translational repression can be attempted at the pre-mRNA level using DNA-based antisense 

oligonucleotides (ASOs) or on mature mRNA using short interfering RNA (siRNA) 

compounds.  

 

Three broad approaches are under investigation to reduce mHtt expression: RNA interference 

(RNAi) using short interfering RNA (siRNA); translational repression using single-stranded 

DNA-based antisense oligonucleotides (ASOs); and transcriptional repression using zinc 

finger proteins (ZFPs) (Figures 14 & 15). 

RNAi and ASO repression use synthetic modified nucleotide agents designed to bind to a 

chosen sequence in the Htt messenger RNA (mRNA), using Watson-Crick complementarity. 

Once bound, different cellular mRNA disposal mechanisms remove the Htt mRNA, resulting 

in reduced translation and lowered protein expression (Bennett & Swayze 2010).  

In RNAi, the drug molecule can be either an siRNA or a microRNA (miRNA) molecule. 

Degradation of siRNA-bound mRNA is performed by the RNA-induced silencing complex 

(RISC), which incorporates the RNAse enzyme argonaute (Figure 15).  
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The ASOs are modified single-stranded DNA molecules, and ASO-bound mRNA is degraded 

by RNAse H (Martinez et al 2013). ASO have also been developed for the CAG repeat region 

to decrease specifically the mutant huntingtin load without affecting the wild type (Hu et al 

2009). 

Plans for phase 1 trials in Huntington's disease are underway with ASO using intrathecal 

delivery.  

Several clinically relevant methods include intracerebroventricular infusion to viral vector-

mediated delivery (Hu et al 2009, Kordasiewicz et al 2012, Ramachandran et al 2013, San 

Sebastian et al 2013). 

Transient infusion into the cerebrospinal fluid of symptomatic HD mouse models of ASO that 

catalyze RNase H-mediated degradation of Htt mRNA not only delays disease progression 

but also mediates a sustained reversal of disease phenotype that persists longer than the 

huntingtin knockdown (Kordasiewicz et al 2012). 

 

As with ASO, the RNAi are designed to target either the mutant HTT (allele-specific) or both 

mutant and wild-type forms (nonallele-specific) (Figure 14). Non-allele-specific safety 

studies in non-human primates achieved a significant reduction in striatal huntingtin load 

without any safety concerns (Grondin et al 2012, McBride et al 2011). Other strategies 

include targeting of the single-nucleotide polymorphisms occurring in some, but not all, 

mutant alleles of HTT (Carroll et al 2011). 

Another technique is the trans-splicing technique, and consists in HD in replacing exon 1 of 

HTT gene with a corrected, non-pathogenic exon 1 sequence using spliceosome-mediated 

pre-mRNA trans-splicing (Rindt et al 2012). It is part of the allele-specific strategies which 

preserve expression from the wild-type allele and reduce the levels of mutant protein.  It is a 

promising technique to correct HTT gene in HD patients, but is at an early stage of 

development for the moment. 

 

Using these techniques, researchers have recently been able to slow down the progression of 

HD in mouse models. Gene silencing is very promising in HD because, unlike in many other 

diseases, the exact genetic cause of HD is known. 

Before it can be tried in humans, gene silencing therapy needs to be tested in HD model 

animals that have brains as large as a human brain, to test whether the combination of new 

molecules and new delivery techniques can get the treatment to where it is needed. It will 

probably also need refining to minimize any side effects of switching off the HTT gene. 

 

b) Cystamine and cysteamine 

 

These drugs where initially found to decrease the activity of transglutaminases. These 

ubiquitous enzymes catalyze post-translational modifications of proteins and their activity is 

increased in HD. 

The neuroprotective capacity of cystamine was established in studies in which cystamine 

treatment was initiated before the HD symptomatic phase. Tested in the transgenic R6/2 HD 

mouse model, various doses and modes of cystamine administration showed beneficial effects 

on survival and motor performances (Dedeoglu et al 2002).  



Page | 53  
 

Cystamine, as well as its reduced form cysteamine, have also been found to be 

neuroprotective in the R6/1 mouse model, potentially via the increase brain levels of BDNF 

and indirect upregulation of the heat shock DnaJ-containing protein 1b (HSJ1b) (Borrell-

Pages et al 2006, Saudou & Humbert 2006). Karpuj et al. were the first to unveil the 

beneficial effects of post-symptomatic cystamine treatment on survival and motor 

performance of R6/2 mice (Karpuj et al 2002). (See as review (Gibrat & Cicchetti 2011)). 

Given the significant benefits observed in HD models, cysteamine has recently leaped to 

clinical trial. Raptor Pharmaceutical amended collaboration agreement with the University 

Hospital Center (CHU) of Angers, in France, to conduct the Phase 2/3 clinical trial of RP103, 

delayed-release cysteamine, between 2010 and 2014. While the results did not reach statistical 

significance, an overall positive trend was observed. The full results of the trial and the open-

label extension study are awaited, as the third-part statistical analysis of clinical trial data.  

 

Another way to play on BDNF levels is to stimulate the corresponding receptor on which 

BDNF is bound: the tyrosine receptor kinase B (TrkB) receptor. One approach to overcome 

the limitations of a protein-based therapeutic has been to develop small-molecule TrkB 

agonists. Simmons and colleagues demonstrated benefits from a TrkB agonist, LM22A-4, in 

the R6/2 and BACHD models, and additionally showed reduced intranuclear aggregation of 

mHtt in striatum and cortex (Simmons et al 2013). Monoclonal antibodies were shown to 

agonize TrkB in a manner akin to BDNF and protected striatal neurons from mHtt-induced 

toxicity (Todd et al 2014). Though challenging, the use of monoclonal antibodies as BDNF 

mimics warrants further study. 

 

c) Autophagy enhancers 

 

Strategies that enhance clearance of unwanted proteins are explored in several 

neurodegenerative disorders.  

Looking for drugs that make autophagy happen more efficiently might help cells get rid of 

huntingtin and live longer. Rapamycin belongs to a group of drugs called mTOR inhibitors, 

which activate autophagy, and it has been shown to slow down HD in a mouse model. 

However, rapamycin causes lots of side-effects in humans and when tested in patients, it was 

not shown to be effective. HD researchers looking for more efficient, less toxic activators of 

autophagy have identified several drugs that might be better than rapamycin, and these now 

need testing in animal models of HD. 

Native or modified polyQ binding peptide 1 inhibits misfolding and aggregation of huntingtin 

in vitro (Okamoto et al 2009), inhibits neurodegeneration in drosophila models (Nagai et al 

2003), and is beneficial in a mouse model of Huntington's disease (Bauer et al 2010). Other 

small peptides and molecules are being developed.  

 

d) Synaptic plasticity 

 

Altered synaptic plasticity is one potentially reversible cause of dysfunction in HD. 

Phosphodiesterase (PDE) 10A is almost exclusively expressed in the striatum, and its activity 

is intimately linked to the synaptic biology of MSN.  
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In the R6/2 mouse, PDE10A inhibition with TP-10 ameliorated motor deficits, reduced 

striatal atrophy and increased brain-derived neurotrophic factor (BDNF) levels (Giampa et al 

2010). Clinical trials of PDE10A inhibition in HD patients are already underway, with motor 

and functional MRI endpoints (Pfizer study). Other phosphodiesterases implicated in HD are 

also under investigation. PDE4 inhibition with rolipram, meanwhile, improved survival and 

ameliorated neuropathology and motor phenotypes in the R6/2 mouse (DeMarch et al 2008). 

 

e) Modulation of inflammation 

 

It has been shown that the immune system is overactive in HD, and evidence is mounting that 

microglia are overactive, too. Kynurenine 3-monooxygenase (KMO), an enzyme found in 

microglia, can affect how fast HD progresses (Thevandavakkam et al 2010). Researchers are 

now working on drugs that will switch off KMO, reducing the damage microglia do to brain 

cells, and preliminary results have shown that KMO inhibitors may be effective at slowing 

down the damage done by HD in mice. 

 

CB2 cannabinoid receptors are expressed in microglia and peripheral immune cells; their 

activation is anti-inflammatory, and their levels are increased in postmortem HD brain. 

Genetic deletion of CB2 receptors was found to accelerate the phenotype in BACHD mice, 

whereas treatment with the CB2 agonist GW405833 ameliorated it and prolonged survival. 

This effect was reversed by co-administration of a peripherally acting CB2 antagonist, 

suggesting again that peripheral immuno-modulation may be capable of altering the CNS 

phenotype of HD (Bouchard et al 2012). 

 

f) HDAC inhibitors 

 

As mentioned previously, it has been shown that mHtt directly interacts with HAT and 

HDAC proteins, leading to altered histone acetylation and deacetylation (Jiang et al 2006, 

Steffan et al 2000). Numerous studies revealed that treatment with HDAC inhibitors arrested 

the ongoing progressive neuronal degeneration in both fly and mouse models of HD (see as 

review (Gray 2010)). Some recent examples using selective HDAC inhibitors showed their 

neuroprotective effects in different neurodegenerative disorders (see (Coppede 2014), and in 

particular in HD (Chopra et al 2012, Jia et al 2012). For example, HDAC inhibitors such as 

the nonselective HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) have been shown 

to be effective in slowing down the cellular damage and to ameliorate the motor phenotype in 

R6/2 mice (Hockly et al 2003). This effect would pass by reduction of HDAC4 activity 

through increased its degradation, accompanied by restoration of BDNF cortical transcript 

levels (Mielcarek et al 2011). 

 

However, HDAC inhibitors, which are often used to treat cancer (see as review (Bose et al 

2014, Falkenberg & Johnstone 2014)), are toxic drugs with serious side effects. More 

effective HDAC inhibitors with less severe side effects are prospected. 
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g) Caspase inhibitors 

 

Minocycline is a drug that acts as a caspase inhibitor. Initially there was some optimism that 

minocycline might help in HD but so far no double-blind, controlled trial (the most reliable 

kind of clinical trial) has shown evidence that minocycline is helpful in HD, but these clinical 

trials are underway.  

There are 11 types of caspase, and caspase 6 is thought to be the one that generates the most 

toxic huntingtin fragment. Work is underway to develop and test inhibitors of caspase 6 that 

might be more powerful than minocycline, but with fewer side effects. 

 

h) Apoptosis 

 

Recent evidence suggests the value of targeting of pro-apoptotic pathways in HD. In striatal 

neurons from both patients with HD and animal models, markers for apoptotic cell death are 

activated. Indeed, in the brains of HD patients, caspases 1, 3, 8, and 9, are activated and 

cytochrome c is released from the mitochondria into the cytosol (Kiechle et al 2002).  

More in details, p53 is a cell protein with many functions, but it’s known to be involved in 

energy production, the response to stress and controlling when cells divide. Recently, it has 

been shown that p53 accumulates in the brain cells most affected by HD, and that the Htt 

protein and p53 interact (Bae et al 2005). Mutant Htt binds more efficiently to p53 than does 

wild-type Htt (Steffan et al 2000), which causes an upregulation in nuclear p53, and 

consequently significantly higher amounts of downstream targets of p53, such as Bax and 

Puma, which are key effectors in the apoptotic cascade of events. Work is underway to 

identify targets in the p53 pathway that drugs might be able to alter, so that the negative 

effects of Htt on cells can be minimized.  

 

i) Cell therapy strategies 

 

Stem cells have been investigated for use in neurodegenerative disorders to develop cell 

therapy strategies (Crane et al 2014, Im & Kim 2014). The ultimate goal of cell therapy is the 

replacement or neuroprotection of dead or dying cells.  

Cell therapy strategies can be classified into two broad categories based on the use of either 

fetal tissues/cells or stem cells. Studies using fetal brain tissue were performed using animal 

models of HD prior to 1990 (Hantraye et al 1992, Palfi et al 1998). Several clinical trials on 

HD patients have been performed with fetal tissues or cells. However, effective recovery has 

not been reported in any clinical trials, although some studies showed that fetal tissue 

transplantation provided cellular improvement around lesions (Nakao et al 1996, Slow et al 

2003). Moreover, fetal tissue transplantation led to localized effects only and did not persist 

long-term (Cicchetti et al 2009, Slow et al 2003). 

Several types of stem cells, such as embryonic stem cells (ESCs), bone marrow mesenchymal 

stem cells (BM-MSCs), neural stem cells (NSCs), adipose stem cells (ASCs), and induced 

pluripotent stem cells (iPSCs), are used to develop cell therapy strategies. 

Embryonic stem cells are pluripotent, and mouse ESCs can differentiate into neurons, 

astrocytes, and oligodendrocytes (Li et al 1998).  



Page | 56  
 

It has been reported that human ESCs (hESCs) can differentiate into neurons in the lesions of 

HD animal models, attenuating progressive symptoms (Song et al 2007). Despite these 

benefits of hESCs, complications arising from their use include immune rejection, ethical 

concerns, and tumor formation. On the other hand, somatic stem cells such as BMMSCs, 

NSCs, ASCs, and iPSs are ideal sources for clinical trials because these stem cells do not 

present the above mentioned immune rejection and ethical problems.  

Other studies reported that transplanted NSCs differentiated into neurons, oligodendrocytes, 

and predominantly, astrocytes, in in vivo HD models, resulting in partial functional recovery 

(Johann et al 2007, McBride et al 2004, Visnyei et al 2006). Bone marrow mesenchymal stem 

cells and ASCs are easily obtained multipotent somatic stem cells that can be differentiated 

into neuronal cells. Moreover, these stem cells have the ability to secrete neuroprotective 

factors, such as growth factors, chemokines, and cytokines. Recent studies have shown that 

intrastriatal transplantation of BM-MSCs reduced striatal atrophy, although transplanted cells 

only survived for up to 7 days in transgenic HD mice. BMMSCs can be genetically modified 

to provide sustained and long-term delivery of neuroprotective factors (Choong et al 2007, 

Erba et al 2010, Zavan et al 2010).  

iPSCs provide a potential solution because they have the ability to differentiate into various 

cell types and can be induced from the fibroblasts of an HD patient. iPSCs from an HD 

patient with 72 CAG repeats have been efficiently induced to form GABAergiq neurons and 

were functional following transplantation into a rat model of HD (Jeon et al 2012, Takahashi 

& Yamanaka 2006). 

 

A current observational clinical study aims at establish a clinical baseline and measure 

changes over time in movement, thinking, behavior, brain imaging, blood and spinal fluid 

markers in subjects with early stage HD. Participants enrolled in this study may be eligible to 

participate in a future planned study of stem cell therapy for HD (PRE-CELL project).  

 

j) Dietary supplements 

 

CREATINE 

Creatine is a guanidine compound, which plays a key role in energy buffering within the cell, 

which is thought to be particularly important in tissues with high and fluctuating energy 

requirements such as brain and muscle (Burklen et al 2006). Among the ways that mHtt 

damages brain cells is by interfering with cellular energy production, leading to a depletion of 

ATP. Known to help restore ATP and maintain cellular energy, creatine is being investigated 

to treat a number of neurological conditions – including Parkinson disease, amyotrophic 

lateral sclerosis and spinal cord injury. Studies in mouse models of HD showed that creatine 

raises brain ATP levels and protects against neurodegeneration (Andreassen et al 2001, 

Dedeoglu et al 2003, Ferrante et al 2000). Creatine has been shown to reduce brain shrinkage 

and to extend survival of HD transgenic mice, and to reduce oxidative stress markers in blood 

and brain. The Huntington Study Group (HSG), in a partnership between Massachusetts 

General Hospital , Boston, USA (MGH) and the University of Rochester, is conducting a 

global, multi-center, randomized, double-blind, placebo-controlled clinical trial in individuals 

18 years of age and older with HD.  
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CREST-E project is designed to assess the potential of high-dose pharmaceutical grade 

creatine to slow the progressive functional decline that occurs in HD, to examine the long-

term safety and tolerability of creatine, and to assess potential changes in the body and brain 

due to creatine. The phase II PRECREST trial enrolled 64 adult participants. Followup MRI 

scans at six months showed a slower rate of atrophy in participants taking creatine compared 

to those on placebo.  

At the end of the second phase, the rate of brain atrophy had also slowed in presymptomatic 

participants that started taking creatine after 6 months on placebo. Hersch S. and Rosas D. 

(Massachusetts General Hospital), with Schifitto G. (University of Rochester, ) are currently 

leading a world-wide Phase III trial (CREST-E) of high-dose creatine in individuals with 

early symptomatic HD. 

 

COENZYME Q10 (CoQ10) 

CoQ10 is an essential cofactor of the electron transport chain where it accepts electrons from 

complex I and complex II (Ernster & Dallner 1995). It is soluble and mobile in the 

hydrophobic core of the phospholipid bilayer of the inner membrane of mitochondria, where 

it transfers electrons one at a time, to complex III of the electron transport chain. CoQ10 also 

serves as an important antioxidant in both mitochondria and in lipid membranes (Forsmark-

Andree et al 1997, Noack et al 1994). CoQ10 is also an obligatory cofactor of mitochondrial 

uncoupling proteins, which regulate ATP production and reduce free radical generation 

(Echtay et al 2002).  CoQ10 exerts neuroprotective effects both in vitro and in vivo in animal 

models of neurodegenerative diseases (Beal & Shults 2003). Due to initial promising results, 

CoQ10 has entered trials for the treatment of HD. Recent PREQUEL study of coenzyme Q10 

in presymptomatic gene carriers showed the feasibility of carrying out clinical trials to slow or 

halt onset of HD. PREQUEL is a phase II randomized, double-blind, multicenter trial of 600 

mg, 1200 mg, and 2400 mg per day of CoQ. The 90 study participants were adults who had 

previously tested positive for the HD CAGn expansion (> 36 repeats) and who were deemed 

pre-manifest by having a diagnostic confidence score of inferior or egal 3 on the Unified HD 

Rating Scale (UHDRS). Tolerability was defined as the ability to complete the 20-week study 

on the originally randomized treatment assignment. A CoQ dosage was deemed tolerable if 

the observed tolerability was higher than a pre-specified threshold of 75 %. CoQ was well 

tolerated at dosages up to 2400 mg/day for 20 weeks in patients with pre-manifest HD, with 

rates of study completion on the assigned dosage surpassing the pre-defined tolerability 

threshold in all treatment groups. The study shows the feasibility of conducting clinical trials 

in this population. 

 

SYNERGY BETWEEN CREATINE AND CoQ10  

As it has been shown by Beal’s team in 2010 that a combination of CoQ10 with creatine can 

exert additive neuroprotective effects in a 3-NP rat model of HD and the R6/2 transgenic 

mouse model of HD (Yang et al 2009). If both CoQ10 and creatine show efficacy in HD 

clinical trials, then future studies of the two compounds in combination may be warranted. A 

combination of the two compounds would also be a promising approach for treating 

presymptomatic individuals, since both compounds are natural products and are well tolerated 

with few side effects. 
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CURCUMIN 

Multiple beneficial effects of curcumin, which could be linked to its ability to act as a strong 

anti-oxidant and anti-inflammatory, have been reported during the last ten years against a 

wide variety of diseases (Monroy et al 2013).  

A recent study has shown that Ki140CAG mice fed a curcumin-containing diet since 

conception showed decreased htt aggregates and increased striatal DARPP-32 and D1 

receptor mRNAs, as well as an amelioration of rearing deficits (Hickey et al 2012). An Indian 

team has used curcumin encapsulated solid lipid nanoparticles (C-SLNs) to ameliorate 3-

nitropropionic acid (3-NP)-induced HD in rats (Sandhir et al 2014). C-SLN-treated animals 

showed significant increase in the activity of mitochondrial complexes and cytochrome levels. 

C-SLNs also restored the glutathione levels and superoxide dismutase activity, as significant 

reduction in mitochondrial swelling, lipid peroxidation, protein carbonyls and reactive oxygen 

species. C-SLN-treated rats showed significant improvement in neuromotor coordination 

when compared with non-treated rats.  

 

 

As our understanding of the consequences of the HD mutation increases, the possibility of 

tractable targets for therapeutic development is amplified, but few are well-validated, and 

many single studies of purported success have yet to be replicated.  
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PART2 THESIS OBJECTIVES 
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2.1.Working hypothesis to study striatal vulnerability  

 

As previously detailed on the introduction of this manuscript, since the discovery of the cause 

of HD, a lot of work has been done to elucidate the molecular mechanisms explaining 

consequences of the mHtt toxicity within the CNS and the peripheral nervous system (PNS).  

One obvious observation is that Htt is ubiquitously expressed. Mutant Htt is also ubiquitously 

expressed in HD mouse models and patients, but it has dramatic consequences, primarily on 

the striatum. Thus it is likely that complex molecular mechanisms render striatal cells more 

vulnerable to mHtt as compared to the cells of the other part of the brain. 

 

The hypothesis of our laboratory and other teams is that gene products selectively expressed 

in the striatum may be involved in its high vulnerability to mHtt. 

 

From this hypothesis, numerous studies have recently emerged to study “markers of the 

striatum” that are genes product enriched in the striatum whose expression are up- or down-

regulated in HD compared to healthy condition (Brochier et al 2008, de Chaldee et al 2003, 

Desplats et al 2006, Hodges et al 2006, Mazarei et al 2009, Sepers & Raymond 2014) .  

Experiment results in different models indicate that some of these striatal markers have 

neuroprotective role (e.g. MSK1, A2A and CB1 receptors) whereas others enhance the 

vulnerability of striatal neurons to mHtt (e.g. Rhes, RGS2, D2 receptors). 

 

The recent review we wrote (Francelle et al 2014) provides a comprehensive view of the 

possible involvement of these striatal markers in HD pathogenesis. We classified the different 

striatal gene products that have been experimentally studied for their capacity to change mHtt 

toxicity as “protoxic” if they amplify this toxicity, “neuroprotective” if they slow toxicity, and 

“neutral” if changing their level of expression doesn’t modify mHtt toxicity. 

Mutant Htt is expressed since birth in HD gene carriers, but symptoms appear during 

adulthood. However, subtle changes on motor and cognitive functions are observed in 

presymptomatic patients, and thanks to imaging techniques, it has been described that 

neuropathology is beginning before the appearance of symptoms (Feigin et al 2006). Indeed, 

enhanced activation of thalamocortical pathways during motor learning can compensate for 

caudate degeneration in presymptomatic HD patients, but this mechanism may not be 

sufficient to sustain a normal level of task performance. These observations reflect a 

progressive settle of compensatory mechanisms affecting the whole brain since early in the 

development of the organism to counteract mHtt toxicity. From this point, the second part of 

the review hypothesizes the existence of compensatory mechanisms in HD at the molecular 

level, in particular in the striatum, considering the down-regulation of the “protoxic” striatal 

markers as a potential self-defense mechanism to slow degeneration.  

In view of the few striatal markers that have been reviewed in this publication, many others, 

not yet studied in these conditions, may also act as modifiers of mHtt, which let place to 

better define the molecular and functional complexity of the striatum and further develop new 

therapeutic targets of HD. 
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The review on the vulnerability of the striatum and the possible involvement of some striatal 

markers has been published in the Frontiers in Cellular Neuroscience journal.  
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Abstract 22 

HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion 23 

translated into an abnormal poly-glutamine (polyQ) tract in the huntingtin (Htt) protein. The most 24 

striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of 25 

mutant Htt (mHtt) is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of 26 

the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct 27 

alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of 28 

compensatory responses to cellular stress. In this review, we focus on gene products that are 29 

preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as 30 

such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene 31 

products are for a vast majority down-regulated and more rarely increased in HD. Recent research 32 

shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g. 33 

MSK1, A2A and CB1 receptors) whereas others enhance the susceptibility of striatal neurons to mHtt 34 

(e.g. Rhes, RGS2, D2 receptors). The down-regulation of these latter proteins may be considered as a 35 

potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products 36 

that have been identified so far, their function in the striatum is unknown and their modifying effects on 37 

mHtt toxicity remain to be experimentally addressed.  Focusing on these striatal markers may 38 

contribute to a better understanding of HD pathogenesis, and possibly the identification of novel 39 

therapeutic targets.  40 

 41 
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Introduction 47 

 48 

A summary of what is HD 49 

HD is a dominantly inherited disorder generally affecting young adults. Symptoms include 50 

involuntary abnormal movements (chorea, dyskinesia, dystonia), frontal cognitive deficits (e.g. 51 

perseveration) and psychiatric disturbances (Harper, 1991; Walker, 2007). The disease is fatal 52 

approximately 15 years after the onset of symptoms. There is no treatment available to slow the 53 

progression of this devastating disorder.  54 

HD is caused by a mutation in the HTT gene encoding the protein huntingtin (Htt) that consists in 55 

a CAG triplet repeat expansion translated into an abnormal poly-glutamine (polyQ) tract within the N-56 

terminal region of the protein (The-Huntington's-Disease-Collaborative-Research-Group, 1993). When 57 

considering cohorts of HD gene carriers, genetic studies showed that the longer is the CAG repeat 58 

expansion the earlier the disease onsets. However, there is a huge inter-individual variability in age of 59 

onset (and nature) of symptoms for gene carriers with similar CAG repeat numbers. Thus, apart from 60 

HD gene mutation, many genetic, epigenetic and environmental factors may affect the course of the 61 

disease (Sturrock and Leavitt, 2010). Deciphering these factors and the underlying mechanisms 62 

affecting the onset of this disease could constitute a real hope to find an efficacious treatment to slow 63 

the disease. 64 

 The mutant protein is cleaved by many proteases leading to the production of N-terminal 65 

fragments that form toxic oligomers (Roze et al., 2008b). Eventually mutant Htt (mHtt) forms 66 

intranuclear inclusions and somatodendritic aggregates that also contain ubiquitin and represent a 67 

histopathological hallmark of HD (Li and Li, 2004a).  68 

Mechanisms of HD pathogenesis have been extensively studied in the past twenty years, since 69 

the gene has been identified and cloned. Thanks to many different genetic models (in cells, mice, rat 70 

and even monkeys) a large spectrum of cellular defects has been identified and could contribute to 71 

neurodegeneration. For this reason the pathogenesis of HD is often considered multi-factorial. The 72 

polyQ expansion in mutated Htt (mHtt) produces a gain-of-function that is toxic to neurons through 73 

several mechanisms. One major early event in HD is the alteration of transcription (Cha, 2007; 74 

Seredenina and Luthi-Carter, 2012). Importantly, reduced transcription of Brain Derived Neurotrophic 75 

Factor (BDNF), a major neurotrophic factor for striatal cells has been found (Zuccato and Cattaneo, 76 

2007). Axonal transport alterations (Li and Li, 2004b; Roze et al., 2008b) leading to several cellular 77 

disturbance, including defects in BDNF secretion and transport (Gauthier et al., 2004) also contribute 78 

to neurodegeneration. Other alterations include intracellular signaling defects (Borrell-Pages et al., 79 

2006), deregulated of the proteasome pathway (Finkbeiner and Mitra, 2008) and autophagy 80 

(Ravikumar and Rubinsztein, 2006), perturbation of calcium homeostasis leading to excitotoxicity 81 

(Cowan and Raymond, 2006; Raymond et al., 2011), mitochondrial defects and oxidative stress 82 

(Damiano et al., 2010). 83 

In addition, the mutation in one allele is thought to produce a loss of function of wild type Htt 84 

(Cattaneo et al., 2005). Indeed, htt is involved in a large variety of physiological cellular processes.  85 
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It regulates vesicle transport through regulation of molecular motors of the cytoskeleton, 86 

transcription of important pro-survival factors (such a BDNF) by interacting with key transcription 87 

factors and co-activators of transcription, cell division, intracellular signaling and ATP production 88 

(Zuccato and Cattaneo, 2014).  89 

 90 

While wild type and mHtt protein are ubiquitously expressed in the brain, degeneration primarily 91 

affects the striatum. The contribution of striatal degeneration in motor and cognitive symptoms is not 92 

totally understood but neuropathological studies showed that striatal atrophy correlates with severity of 93 

symptoms (Myers et al., 1988). Recently, follow up of HD gene carriers cohort using Magnetic 94 

Resonance Imaging (MRI) and Positron Emission Tomography (PET) showed that even at 95 

presymptomatic stages, the atrophy of the striatum is detectable and may start even 10 years before 96 

onset of symptoms (Tabrizi et al., 2013). Other brain regions may also be damaged at early stages, 97 

such as the hypothalamus, and at later stages the cerebral cortex and other regions also degenerate 98 

[for a review, (Brouillet et al., 1999; Petersen and Bjorkqvist, 2006)]. Thus HD is not a selective striatal 99 

disease. Many innovative studies discovered extra-striatal and peripheral anomalies in HD animal 100 

models and for particular studies in HD patients (Martin et al., 2008; Obeso et al., 2014). However, the 101 

preferential striatal degeneration is an intriguing characteristic of this illness, and the underlying 102 

mechanisms may represent an important aspect of HD pathogenesis. 103 

 104 

Existence of possible compensatory mechanisms in HD 105 

The existence of compensatory mechanisms in HD (as for other neurodegenerative diseases) is 106 

probable. Possibly, the best circumstantial evidence for this is that although mHtt is expressed in the 107 

brain of HD gene carriers since birth, degeneration and symptoms appear during adulthood (with the 108 

exception of long CAG repeat expansion carriers who develop the disease during childhood) (Harper, 109 

1991; Walker, 2007). Similarly in genetic animal models, degeneration and symptoms occur in adult or 110 

aged animals (Menalled, 2005; Menalled and Chesselet, 2002). It has been shown that when mHtt is 111 

expressed in striatal neurons at similar levels for the same duration, its neurotoxic effects are 112 

significantly higher in aged animals, as compared to young animals (Diguet et al., 2009). The reason 113 

for this age-dependent phenomenon is unknown but it indicates that neurons possess the ability to 114 

partially counteract cellular stress induced by mHtt, a plasticity mechanism that may be progressively 115 

lost with aging. The aim of this review is not to cover all the possible compensatory mechanisms that 116 

may occur in the HD brain, but to focus on those that can be found in the striatum. However, a few 117 

examples of potential compensatory mechanisms that could be encountered in all cell types can be 118 

given. 119 

There likely exist compensatory mechanisms at whole human brain level, to overcome cell 120 

dysfunction and/or neurodegeneration in the striatum of HD patients. For example, PET studies 121 

showed that effective learning performance on motor sequence learning tasks,  normally associated 122 

with activation of the dorsolateral prefrontal cortex and the caudate nucleus, was not requiring the 123 

same brain regions  in presymptomatic HD (pre-HD) patients and healthy volunteers (Feigin et al., 124 

2006).  125 
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In presymptomatic HD gene carriers, ventral prefrontal and orbitofrontal regions were used 126 

possibly via thalamic projections. 127 

At cellular level, transient/reversible transcriptional and post-transcriptional mechanisms may intervene 128 

to compensate for cell suffering and degeneration pathways. For example, the loss of expression of 129 

the kinase PKCδ (Rue et al., 2014) is likely a compensatory mechanism. Indeed, the overexpression 130 

of PKCδ enhances mHtt toxicity in vitro. On the contrary, the knock down of PKCδ (using siRNA 131 

strategy or expression of a dominant negative form) significantly reduces mHtt effects. Interestingly the 132 

loss of PKCδ seems to occur through an increased degradation of the protein by neurons expressing 133 

mHtt (Rue et al., 2014).  134 

Examples of potential compensatory mechanisms in HD can be found in studies related to 135 

defects energy metabolism that are thought to occur early in HD. Unexpectedly, recent experiments 136 

show that an early increase in the levels of high energy phosphate metabolites (ATP, 137 

phosphocreatine) can be found in the brain of HD mouse models (Mochel et al., 2012a; Tkac et al., 138 

2012). Consistent with these observation in genetic models of HD, dynamic measurements of brain 139 

phosphocreatine levels during synaptic activation in HD patients using 
31

P NMR spectroscopy also 140 

demonstrate abnormalities in the use of high energy phosphate metabolites (Mochel et al., 2012b). In 141 

R6/2 and Knock-in 111Q mouse models, early biochemical changes indicate that neurons tend to 142 

compensate by activating energy promoting cellular pathways (Mochel et al., 2012a). In particular, 143 

possible compensatory changes occur at the post-translational levels, leading to an increase in AMPK 144 

phosphorylation in HD mice, which could activate pathways leading to a more efficient metabolism.  145 

Large scale analyses trying to broadly identify mRNA and/or protein expression changes provide 146 

a huge amount of information from which potential compensatory mechanisms in HD may be 147 

discovered. A  well-controlled proteomic analysis of brain of R6/2 HD mice at different ages underlined 148 

that a number of proteins display transient /biphasic expression changes rather than an age-149 

dependent progressive decline (Zabel et al., 2009). For instance, the absolute expression of the 150 

mitochondrial complex II subunit Ip (iron-sulfur), a key regulator of oxidative energy metabolism which 151 

is neuroprotective against mHtt (Benchoua et al., 2006; Damiano et al., 2013), is early reduced in 2 152 

week-old R6/2 mice, but is found to be increased in 8 weeks old of these mice and brings back at 153 

basal levels at 12 weeks old (Zabel et al., 2009). 154 

Changes in the expression levels (decreases and more rarely increases) of mRNA in HD have 155 

been extensively explored in the last decade (Seredenina and Luthi-Carter, 2012). These changes 156 

may indicate two types of phenomena. On one hand, it indicates primary defects of transcription 157 

inherent to the presence of mHtt. In many cases, the direct interaction of mHtt with proteins that are 158 

part of macromolecular complexes involved in transcription regulation leads to a reduction of 159 

transcription and reduced levels of a large spectrum of gene products (Seredenina and Luthi-Carter, 160 

2012). On the other hand, changes in mRNA levels (or protein) may not be directly linked to a primary 161 

effect of mHtt but could rather result from a physiological response engendered by the cellular stress 162 

induced by toxic gain of function of mHtt. Many expression changes identified in large scale analyses 163 

have been studied with the hypothesis that they were causal in HD pathogenesis. It is not always the 164 

case. Expression changes can represent self-defense mechanisms.  165 
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To differentiate between the two above mentioned mechanisms, knock-down/knock-out or 166 

overexpression/neuro-rescue experiments in HD models are needed.  It is beyond the scope of the 167 

present review to provide a detailed description of the gene products that have been experimentally 168 

tested. Here we will limit our review to gene products that have deregulated expression and that are 169 

preferentially expressed in the striatum. The review of the studies focused on “striatal gene products” 170 

illustrates that in some cases, expression changes may represent compensation or self-defense 171 

mechanisms while in others they directly contribute to degeneration of striatal neurons. 172 

 173 

Studying the preferential vulnerability of the striatum to identify potential modifiers 174 

Working hypothesis 175 

The particular vulnerability of the striatum in HD likely resides in its molecular complexity. 176 

Whether its particular vulnerability depends on only one or a subset of gene products, acting together, 177 

is unknown. Recent publications indicate that the experimental knock-down or overexpression of only 178 

one striatal gene product can significantly change the toxicity of muHtt in cell models and mouse 179 

models. In one instance, a single nucleotide polymorphism in a striatal gene, ADORA2A (adenosine 180 

receptor 2a) has been found to be associated with earlier onset of symptoms in large cohorts of HD 181 

patients (Dhaenens et al., 2009). Thus, striatal gene products can have a significant impact of HD. 182 

From a therapeutic point of view, this indicates that acting on one single target may be sufficient to 183 

alter the course of the disease. Therefore, trying to decipher the complex mechanisms underlying 184 

neurodegeneration in the striatum may help to more broadly highlight important factors of neuronal 185 

dysfunction and death, and to point potential therapeutic interventions for HD (Brochier et al., 2008; 186 

Brouillet et al., 2005; Mazarei et al., 2010; Thomas, 2006). 187 

The study of these causal or compensatory changes in the striatum in HD may also help to better 188 

understand other neurological diseases where the striatum is functionally affected (e.g. Wilson, 189 

Parkinson, metabolic diseases, addiction, depression etc.).  190 

 191 

The notion of striatal markers  192 

The hypothesis that gene products preferentially expressed in the striatum (or more generally 193 

particularities of this brain region) could play an important role in the susceptibility of the MSN to mHtt 194 

toxicity has been studied for many years. Hypotheses related to particular properties of the MSN 195 

related to energy metabolism/oxidative stress, or glutamate –related excitotoxicity, and other types of 196 

neurotransmitter systems that could explain striatal atrophy in HD where proposed in the 80’s and 90’s 197 

(for a review [(Brouillet et al., 1999)]). The most recent developments of transcriptomic analysis led to 198 

a broader “without a priori” approach of the working hypothesis that striatum vulnerability to mHtt could 199 

reside in the expression of one or a subset of striatal enriched gene products.  200 

The notion of striatal marker stems on the contrast of expression between the striatum and other 201 

brain regions. Relatively old studies identified striatal markers based on studies using in situ 202 

hybridization, immunohistochemistry, and biochemistry [see references in (Desplats et al., 2006) for a 203 

number of validated striatal markers].  204 
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The identification of approximately fifty validated markers took approximately two decades. In-205 

depth transcriptomic analyses using serial analysis of gene expression (SAGE) further characterized 206 

the molecular complexity of the striatum as compared with other brain regions in mice allowed for the 207 

identification of a large list of “striatal markers” in wild type mice (Brochier et al., 2008; de Chaldee et 208 

al., 2003; Mazarei et al., 2010). This approach, based on the collection of polyA-containing RNA, 209 

provided a ranking of the number of copies of the different RNA species in different regions in the 210 

mouse brain. Comparison between brain regions led to the identification of gene products whose 211 

expression shows high enrichment in the striatum.  Known striatal markers were found, but many 212 

annotated gene products whose function in the striatum is unknown were also identified.  213 

Approximately, 100-150 striatal markers can be listed, many of which have been cross-validated in 214 

different studies (Brochier et al., 2008; de Chaldee et al., 2003; Desplats et al., 2006; Mazarei et al., 215 

2010). Transcriptomic studies using oligonucleotide array or RT-PCR showed that the magnitude of 216 

transcriptional changes in the striatum of HD mouse models for these genes preferentially expressed 217 

in the striatum was higher than that of ubiquitously expressed genes (Desplats et al., 2006). In the 218 

SAGE studies by Brochier and collaborators (Brochier et al., 2008), a number of gene products of 219 

unknown neurobiological function showed reduced expression in the striatum of R6/2 HD mice. 220 

Transcriptomic DNA array data in HD models and HD brain show that amongst the RNAs whose 221 

expression is deregulated, those coding for striatal markers are proportionally more frequently altered 222 

(Hodges et al., 2006; Kuhn et al., 2007). Another study validated a number of these striatal markers 223 

and identified potentially new ones that were found to be deregulated in YAC128 HD mice (Mazarei et 224 

al., 2010). Supplemental Table 1 indicates the striatal markers that have been well validated based on 225 

the studies quoted above.   226 

Thus, the notion of striatal marker has evolved with the progression of the analytical methods. 227 

The criteria to decide whether a gene product is “preferentially” expressed in the striatum remains 228 

debatable. In most cases, the currently available public databases (Allen Brain Atlas) providing gene 229 

products expression in the brain in mice and humans generally confirm that the “striatal markers” 230 

identified in the studies described above have preferential striatal expression. In general, the contrast 231 

of “striatal specificity” in comparison to the somatosensory and motor cerebral cortex is in the range of 232 

3 to 10-fold enrichment. If we were to consider a lower contrast (a two-fold difference between cortex 233 

and striatum for example), the list of striatal markers would be much longer. In addition, it must be 234 

mentioned that some striatal gene products, although referenced as “striatal markers” can have 235 

stronger expression in other anatomically restricted brain regions such as the hippocampus or some 236 

thalamic nuclei. 237 

 238 

This review aims at providing a concise overview of the striatal markers that have been 239 

experimentally assessed for their capacity to modify mHtt toxicity. These markers have a large 240 

spectrum of biological functions and the alteration of the expression levels in HD is not a priori 241 

indicative of their role in striatal vulnerability. The different striatal gene products that have been 242 

experimentally studied for their capacity to change mHtt toxicity can be classified as “protoxic”, 243 

“neuroprotective”, and “neutral”.  244 
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In some instances, the expression changes (up or down) suggest the existence of a 245 

compensatory “self-defense” mechanism. We will also point to the large list of the other striatal 246 

markers that remain to be fully investigated to determine their potential role in HD. 247 

 248 

Potential protoxic striatal gene products 249 

D2-R (Dopamine type 2 receptor) 250 

The hypothesis that dopamine, which is at high concentrations in the striatum compared to other brain 251 

areas, might play an important role in the preferential vulnerability of the striatum in HD has been 252 

suggested long time ago (Jakel and Maragos, 2000; Reynolds et al., 1998).  253 

Anatomically, MSNs expressing D2-R (D2 MSN) receive preferentially inputs from the Pyramidal Track 254 

type (PT-type) cortical neurons whose projects ipsilaterally to the striatum. This preferential innervation 255 

is believed to release more glutamate which could contribute to make D2 MSNs more vulnerable to 256 

excitotoxicity (Ballion et al., 2008; Reiner et al., 2003). Many electrophysiological evidences suggest 257 

that D2 MSNs are more excitable than D1 MSNs (Cepeda et al., 2007; Kreitzer and Malenka, 2007) 258 

partly because they display fewer primary dendrites (Gertler et al., 2008). Electrophysiological 259 

recordings of D2 MSNs show a higher frequency of spontaneous excitatory postsynaptic currents 260 

(sEPSCs) than direct pathway. Moreover, D2 MSNs display large membrane depolarizations rarely 261 

seen in direct pathway MSNs (Cepeda et al., 2008) after the addition of GABAA receptor blockers 262 

inducing epileptic form activity in CPN (Galvan, 2012). Taken together, these evidences support the 263 

idea that D2-MSN is a fertile ground to develop abnormal responses.   264 

Studies performed in YAC128 HD mouse model conducted at a presymptomatic age (1.5 months) and 265 

at symptomatic age (12 months) revealed interesting findings concerning the indirect pathways. At 266 

presymptomatic age, no differences were observed in excitatory and inhibitory synaptic transmission 267 

compared to WT. When the animals are symptomatic and become resistant to excitotoxicity, the 268 

inhibitory transmission in YAC128 D2 MSNs is greatly increased (Andre et al., 2011). This may 269 

indicate that the indirect pathway is subject to compensatory mechanism in HD, resulting in turn to the 270 

slowdown of excitatory glutamatergic synapses in the striatum.  271 

Whether these changes in D2 MSN are only related to D2-R signaling is not known. Direct support for 272 

a causal role for DA and D2-R in HD comes from the recent demonstration that the toxicity of the N-273 

terminal fragments of mHtt is potentiated by dopamine in  cells expressing mHtt exon 1 and transgenic 274 

HD mouse models (Benchoua et al., 2008; Charvin et al., 2005; Cyr et al., 2006; Stack et al., 2007). 275 

Dopamine modifies the formation of Htt-containing aggregates in primary striatal neurons transfected 276 

with exon 1 of Htt gene and exacerbates mHtt-induced cell death (Charvin et al., 2005). Of interest, 277 

this effect involves D2-R signaling, since dopamine effect is blocked by D2 antagonists (Benchoua et 278 

al., 2006; Charvin et al., 2005). Dopamine loses its detrimental effect when neurons are prepared from 279 

D2 receptor null mice (Charvin et al., 2005). Chronic blockade of the D2-R with a selective antagonist 280 

significantly reduces death of MSN in a lentiviral model of mHtt expression in rats (Charvin et al., 281 

2008). Possibly, this “protoxic” effect of dopamine through D2-R stimulation may involve a reduction of 282 

the mitochondrial complex II, a key regulator of energy metabolism in neurons (Benchoua et al., 2008). 283 
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D2-R stimulation increases mHtt toxicity in mouse striatal neurons via,  among others, the activation of 284 

JNK pathway and activation of the Rho/ROCK-II pathway (Charvin et al., 2005; Deyts et al., 2009). 285 

Thus the presence of D2-R on MSN may render these neurons more susceptible to HD. 286 

However, expression of these receptors is down regulated early in HD as seen using biochemical 287 

experiments and PET scans in patients (Antonini et al., 1998; Glass et al., 2000). Whether this 288 

decrease is entirely caused by a direct regulation of D2-R transcription by mHtt is unknown. It is 289 

conceivable that this decrease is, at least in part, an attempt of MSN to reduce cellular stress 290 

generated by mHtt.  291 

 292 

D1-R (Dopamine type 1  receptor) 293 

In line with a role of D2-R, D1-R may also be involved in the vulnerability of the striatum. Stimulation of 294 

D1-R promotes the aggregation of N-terminal fragments of mHtt and cell death in cell line in culture 295 

(Robinson et al., 2008). The mechanisms are unknown but a protoxic role for D1-R has been 296 

suggested to be mediated by regulation of glutamatergic synapse and facilitation of excitotoxicity 297 

(Tang et al., 2007).  Supporting this view, experiments in cells immortalized from knock-in HD mice 298 

(111Q) showed that activation of D1-R exacerbates mHtt–induced cell death (Paoletti et al., 2008). 299 

D1-R activation facilitates glutamate receptor-mediated activation of the Ca
2+

-dependent protease 300 

calpain that in turn cleaves Cyclin dependent kinase 5 (Cdk5). Cleavage of Cdk5 activator p35 into 301 

p25 would be neurotoxic to striatal neurons (Paoletti et al., 2008). As for D2-R, D1-R expression being 302 

reduced in HD patients and HD models, this may also be seen as a self-defense mechanism to reduce 303 

mHtt toxicity.  304 

 305 

CalDAG-GEFI (a.k.a. RASGRP2, Calcium And DAG-Regulated Guanine Nucleotide Exchange Factor 306 

I) 307 

CalDAG-GEF I is a guanine-nucleotide exchange factors (GEFs) activated by diacylglycerol (DAG) 308 

and Ca2+. CalDAG-GEFI has substrate specificity for Rap1A, and was found to be enriched in the 309 

basal ganglia (Kawasaki et al., 1998). This striatal gene product has been rarely studied, and its 310 

neurobiological function is not totally understood.  311 

A pioneering study showed that expression of this gene product may render striatal cells more 312 

vulnerable to mHtt (Crittenden et al., 2010). Interesting, it was shown that striatal neurons of R6/2 mice 313 

with the highest level of mHtt-containing aggregates had the lowest levels of CalDAG-GEF. Since 314 

macroscopic aggregates are thought to be neuroprotective since they sequester mHtt toxic soluble 315 

oligomeric species, these results indicated that the presence of high levels of CalDAG-GEF may lead 316 

to increased levels of toxic species of mHtt in transgenic mice. Supporting this view, knock-down of 317 

CalDAG-GEF in a brain slice model of HD is neuroprotective against mHtt-induced 318 

neurodegeneration. The mechanisms underlying its “pro-toxic” properties are not determined. One 319 

possibility is that it may inhibit Ras-dependent activation of the Erk/MAP kinase cascade in striatal 320 

neurons. Thus, its diminished expression in HD may allow “re-activation” of the pro-survival Erk/MAP 321 

kinase pathway to block mHtt toxicity (Crittenden et al., 2010).   322 

 323 
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RGS2 (Regulator of G-protein signaling 2) 324 

The RGS2 protein is a member of the RGS family of proteins 325 

G proteins. RGS2 interfere with G q and G i to reduce their rate of hydrolysis of GTP to GDP and 326 

thus inhibits the signal transduction from GPCRs. RGS2 play a key role in synaptic plasticity (Kehrl 327 

and Sinnarajah, 2002). RGS2 directly interacts with adenylyl cyclases to inhibit the production of 328 

cAMP. RGS2 may also regulate GPCR-mediated Akt signaling (Anger et al., 2007). RGS2 expression 329 

is reduced in the HD brain and HD mouse models. Seredinina and collaborators studied whether the 330 

loss of RGS2 could exacerbate or reduce neurodegeneration induced by overexpression of mHtt in 331 

striatal neurons using lentiviral vectors (Seredenina et al., 2011). Results showed that increased 332 

expression of RGS2 further aggravates mHtt-induced neurodegeneration. Underlying mechanisms of 333 

RGS2 protoxic effects are not fully deciphered but the authors provided preliminary data indicating that 334 

they may implicate regulation of Erk/MAP kinase signaling.  335 

 336 

RHES (a.k.a. RASD2,  Ras homolog enriched in striatum) 337 

Rhes is a small G-protein that displays striking enrichment in the striatum and can regulate signaling 338 

through G-protein coupled receptors (Falk et al., 1999; Mealer and Snyder, 2012; Vargiu et al., 2004). 339 

It has been described as a mediator of mHtt cytotoxicity (Subramaniam et al., 2009), acting as a 340 

regulator of SUMOylation. The presence of Rhes in MSN would favor the accumulation of toxic 341 

oligomeric species of mHtt in the cytoplasm. More recently, the deletion of Rhes has been found 342 

neuroprotective in HD R6/1 mice (Baiamonte et al., 2013). 343 

Rhes binds Beclin-1 and activates autophagy, a lysosomal degradation pathway critical in aging and 344 

neurodegeneration (Mealer et al., 2014). Activation of autophagy has been shown to be 345 

neuroprotective in HD models (Ravikumar and Rubinsztein, 2006).  Rhes-induced autophagy is 346 

inhibited by mHtt. The restricted expression of Rhes and its effect on autophagy may explain the 347 

selective striatal pathology and delayed onset of HD. 348 

 349 

DGK (Diacylglycerol kinase) 350 

The expression of DGK is increased in the striatum of R6/2 HD mice. Zhang and collaborators 351 

deciphered the potential role that this increase may have in striatal degeneration/dysfunction after 352 

having identified this kinase as a potential therapeutic target based on a screening of kinase inhibitors 353 

in a cellular models expressing mHtt (Zhang et al., 2012). The inhibitor of DGK (R59949) blocked 354 

induction of cell death pathways triggered by serum withdrawal in knock-in (111Q/111Q) HD striatal 355 

cells. Knockdown of all isoforms of DGK using siRNA strategy demonstrated that selective inhibition of 356 

 was responsible for the neuroprotective effect of the inhibitor.  Zhang and collaborators found 357 

that knocking down DGK gene in a fly model of HD was neuroprotective. Altogether these data 358 

indicate that increased DGK in the striatum could contribute to striatal degeneration. DGK increase 359 

could be considered as a protoxic event in HD pathogenesis. 360 

 361 

 362 

 363 
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Calcineurin (or protein phosphatase 3, formerly known as protein phosphatase 2B) 364 

Since 1986, calcineurin has been identified by Goto as a marker of neuronal degeneration in the 365 

striatum of HD patients (Goto et al., 1986). Calcineurin has preferential expression in the striatum and 366 

is downregulated in HD patients and mouse models of HD (Xifro et al., 2009).  Calcineurin 367 

dephosphorylates Htt at serine 421, inhibition of calcineurin restores axonal transport and transport of 368 

BDNF vesicles (Pineda et al., 2009). It is known that Htt phosphorylation is an important protective 369 

mechanism in striatal neurons (Humbert et al., 2002). Phosphorylation of mHtt at serine 421 promotes 370 

neuroprotection in HD, by restoring Htt function and the transport of BDNF. Supporting the view that 371 

reduced calcineurin may be neuroprotective in HD, increased Htt phosphorylation can be produced by 372 

pharmacological inhibition of calcineurin with the immunosuppressor FK506 (also known as tacrolimus 373 

and fujimycine) (Pardo et al., 2006), or by overexpression of the regulators of calcineurin RCAN1-1L 374 

(Ermak et al., 2009) leading to neuroprotective effects. 375 

Thus, the reduction of calcineurin expression and function would lead to a diminution of its activity, 376 

increasing phosphorylated state of key proteins, especially mHtt at S421, that activate survival 377 

pathways. These mechanisms may be regarded as a compensatory phenomenon that could retard the 378 

progression of striatal degeneration. 379 

 380 

PDE1B and PDE10A (Phosphodiesterase 1B and 10A) 381 

Studies on phosphodiesterase (PDE) in HD models have shown preferential reduction of the isoforms 382 

PDE1B and PDE10A in HD models, while expression of other PDEs seems relatively maintained 383 

(Hebb et al., 2004). The loss is detected before onset of symptoms in R6/2 and R6/1 models. 384 

Because, PDE regulates levels of cAMP, which plays a key role in modulation of gene expression 385 

which is altered in HD, the effects of a treatment with a PDE10 inhibitor has been studied in the R6/2 386 

mouse model of HD. Results showed that chronic pharmacological blockade of PDE10 is 387 

neuroprotective and reverses a number of transcriptomic anomalies in HD mice (Giampa et al., 2010). 388 

In line with this, the characterization of the effects of a pharmacological inhibition of PDE indirectly 389 

suggests that the reduction of PDE activity in HD could lead to multiple effects: it up-regulates cAMP-390 

responsive element –dependent transcription, it down-regulates HDAC4 (histone deacetylase 4) 391 

mRNA, and could activate Mitogen- and stress-activated kinase-1 (MSK1). These latter effects should 392 

contribute to striatal neurons against mHtt toxicity. Thus, the presence of PDE in striatal cells may be 393 

considered protoxic, and its decrease in HD could be seen as a compensatory mechanism to 394 

counteract the effect of mHtt. Interestingly, further inhibition of the enzyme may allow the triggering of 395 

neuroprotective pathway and as such may constitute an interesting pharmacological therapy. 396 

 397 

 398 

Potential Neuroprotective striatal gene products 399 

BCL11 (B-cell leukemia/lymphoma 11B) 400 

B-cell leukemia/lymphoma 11B (Bcl11b) (a.k.a. CTIP2) is a transcription factor that has been 401 

described to be a key gene for differentiation of medium sized spiny neurons in the striatum.  402 
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Since MSN represent ~95% of the neurons in the striatum, Bcl11b likely possesses a central role 403 

that determines the architecture and organization of the striatum, and as such its function is likely 404 

crucial in HD (Arlotta et al., 2008). Bcl11b mRNA levels are reduced in the HD striatum. The 405 

overexpression of Bcl11b has been found neuroprotective in cell models of HD in vitro (Desplats et al., 406 

2008). The direct interaction of Bcl11b with mHtt and its possible sequestration in inclusions may 407 

further abolish its capacity to regulate the expression of many striatal genes that are crucial for the 408 

survival of MSN. In particular, there exists a functional interaction between Bcl11b and BDNF. 409 

Chromatin-immunoprecipitation experiment and sequencing (ChIP-seq) indicated that Bcl11b is a 410 

regulator of the BDNF signaling pathway (Tang et al., 2011). Thus, the loss of Bcl11b in the striatum 411 

may lead to a striatal-selective cascade of events that could explain the preferential vulnerability of 412 

MSNs against mHtt.  413 

 414 

FOXP1 (Forkhead box protein P1) 415 

FOXP1 is thought to be an important transcription factor regulating cell-cell interaction signaling. 416 

FOXP1 shows highly expression in the striatum (Desplats et al., 2006; Desplats et al., 2008). Its 417 

expression is regulated by Bcl11b. There exist overlaps between the genes that are regulated by 418 

FOXP1 in normal neurons and the genes that are deregulated in HD (Tang et al., 2012). No rescue or 419 

knock-down experiments have been performed, but FOXP1 seems to interact with mHtt and to be 420 

trapped in mHtt-containing aggregates (Tang 2012). Therefore, its reduced expression likely 421 

contributes to the preferential vulnerability of the striatum in HD. 422 

 423 

MSK-1 (Mitogen- and stress-activated kinase-1) 424 

In healthy conditions, the mitogen- and stress-activated kinase-1 (MSK-1), a striatum-enriched 425 

nuclear protein kinase downstream Extracellular Regulated Kinase (ERK), promotes activation of the 426 

transcriptional factor kappa-light-chain-enhancer of activated B cells (NF-kappaB) signaling, inducing 427 

c-Fos transcriptional activation important for immune and inflammatory responses (Vermeulen et al., 428 

2003). MSK-1 is downregulated in R6/2 HD model mice and in caudate from HD patients (Roze et al., 429 

2008a). Overexpression of MSK-1 in primary culture of striatal neurons expressing a short fragment of 430 

mHtt is neuroprotective, whereas knockdown of MSK-1 is protoxic.  Interestingly Roze and 431 

collaborators found evidence of ERK, Elk-1 and CREB nuclear activation in the striatum of R6/2 mice. 432 

This suggested the existence of a possible self-defense response in striatal neurons. However this 433 

response appeared to be blunted, since neither phosphorylation of histone H3 phosphorylation nor c-434 

Fos activation were detected. Indeed, loss of MSK-1 in the striatum in HD mice impeaches activated 435 

ERK to produce its downstream effects on transcription. In the normal brain, MSK-1 phosphorylates 436 

histone H3, CREB and up-regulates peroxisome proliferator-activated receptor co-activator-1α (PGC-437 

1α), playing role in bioenergetic stability in MSNs. The MSK-1 downregulation likely produces 438 

mitochondrial dysfunction rendering MSNs more susceptible to mHtt. Consistent with this hypothesis, 439 

MSK-1 overexpression in striatal neurons using lentiviral vectors was neuroprotective against mHtt in 440 

mouse models of HD (Martin et al., 2011). Therefore, because MSK-1 shows enrichment in the 441 

striatum, its loss would contribute to render the striatum more fragile in HD. 442 
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ADORA2 (Adenosine receptor type 2A) 443 

A2A receptors (A2A-R), coded by the ADORA2A gene have a highly enriched expression in the 444 

striatum. The expression of A2A receptor is down regulated in the striatum of HD patients (Glass et al., 445 

2000) and in several HD mouse models (R6/2,N171-82Q) (Chou et al., 2005; Menalled et al., 2000) 446 

These receptors are located at the terminal of cortico-striatal pathway (presynaptic receptors) and in 447 

the D2-MSNs (postsynaptic receptors). The mRNA level of A2A-R in the striatum is higher in the 448 

striatum than in the cerebral cortex. These two types (pre- and post-synaptic) seem to differ in their 449 

contribution to neurodegenerative process. Evidences in HD area suggest that activation of 450 

presynaptic A2A-R is pro-toxic for MSNs by modulation of glutamate release whereas activation of 451 

postsynaptic A2A-R are protective (Popoli et al., 2007). Both agonists and antagonists were proposed 452 

to treat HD symptoms. Interestingly, the A2A-R agonist, CGS21680, produces an opposite effect in 453 

WT and symptomatic R6/2 in slices. Field potentials (FP) were recorded with and without NMDA and 454 

CGS21680. The NMDA toxicity is observed by the only partial recovery after the FP stimulation. The 455 

addition of CGS21680 increases NMDA-mediated toxicity in WT MSNs whereas it decreases it in 456 

symptomatic R6/2 mice (Martire et al., 2007).  Thus, it seems that complex regulatory mechanisms, 457 

possibly compensatory, involve A2A-R in HD mice. 458 

The chronic effect of the presence of A2A-R, especially expressed at high level in MSN is not totally 459 

understood. Genetic deletion of the ADORA2A gene precipitates motor symptoms and death in HD 460 

mice expressing a short N-terminal fragment of mHtt (Mievis et al., 2011a). In support of the 461 

hypothesis that A2A-R may have an impact on the disease progression, a single genetic 462 

polymorphism in the ADORA2A gene in HD patient can modify the age of onset (Dhaenens et al., 463 

2009). Thus, the loss of A2A-R may be detrimental.  These receptors are likely neuroprotective. 464 

However, it must be underscored that the exact contribution of presynaptic receptors of the cortico-465 

striatal pathway versus the post-synaptic receptors expressed by MSN in these experiments remains 466 

to be fully elucidated.  467 

 468 

CNR1 (Cannabinoid type 1 receptor) 469 

The profound and early loss of striatal type 1 cannabinoid receptors (CB1-R) in the striatum and 470 

projection area (substantia nigra reticulate and globus pallidus externus) in HD has been 471 

demonstrated by autoradiography studies on post mortem brain samples from patients at early stages 472 

as for the A2A-R (Glass et al., 2000). Loss of CB1 binding sites have been confirmed in vivo by PET 473 

studies in HD patients (Van Laere et al., 2010). Elegant studies demonstrated that genetic 474 

deletion/knockout of CB1 receptors exacerbates the motor phenotype in HD mice (Blazquez et al., 475 

2011; Mievis et al., 2011b).  The loss of CB1-R might be due to direct transcriptional deregulation 476 

produced by mHtt (via mHtt-induced deregulation of REST) (Blazquez et al., 2011) but also may result 477 

from more complex mechanisms. Indeed, exposure of immortalized striatal cells with endogenous 478 

cannabinoids produced an increase in CB1-R expression (Laprairie et al., 2013). Treatment of HD 479 

striatal cells (Q111/Q111) with cannabinoid markedly increases CB1-R expression. 480 

 481 
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 Available results from in vitro experiments indicate that the loss of CB1-R in HD would lead to 482 

reduced levels of BDNF, which in turn should render striatal cells more vulnerable to mHtt toxicity, 483 

possibly through decreases in PGC-1α levels (Laprairie et al., 2013). However a convincing work 484 

recently performed in  R6/2 HD mice showed that only the presynaptic CB1-R at the cortico-striatal 485 

terminals actually underlie the neuroprotective effects of the CB1-R agonists in vivo (Chiarlone et al., 486 

2014). Thus CB1-R can be considered as neuroprotective.  However, the impact of the reduced 487 

striatal expression of CB1-R in HD is uncertain. 488 

 489 

SCN4B (Sodium channel beta 4b subunit) 490 

SCN4b mRNA expression is down regulated in HD models and HD patients (Brochier et al., 491 

2008; Kuhn et al., 2007; Oyama et al., 2006). Its reduced expression is more severe than that of other 492 

sodium channel subunits (Oyama et al., 2006). The function of this sodium channel subunit is 493 

unknown. The good correlation between loss of its expression and progression of the disease in R6/2 494 

mice suggested a potential role in striatal vulnerability. In line with this, SCN4b levels seem to be more 495 

reduced in regions of the central nervous system that are the most affected by mHtt expression. 496 

Interestingly, overexpression of SCN4b in neurons in primary culture produces trophic effects 497 

characterized by increased dendritic genesis (Oyama et al., 2006). Thus SCN4b may be a 498 

“neuroprotective” striatal marker whose reduced expression in HD may contribute to the preferential 499 

degeneration of the striatal in HD. However, its putative neuroprotective effect needs to be directly 500 

assessed against mHtt toxicity. 501 

 502 

STEP61 (PTPN5 gene, Striatal-enriched protein tyrosine phosphatase 61) 503 

Reduced expression of STEP61 mRNA has been found in HD transgenic models and HD brain 504 

(Desplats et al., 2006). In different mouse models (YAC1128, TET-HDH94, R6/1 and KI111) the 505 

protein is reduced and its level of phosphorylation is increased, which should further contribute to a 506 

reduction of its phosphatase activity (Gladding et al., 2014; Saavedra et al., 2011). Convincing results 507 

indicate that the loss of STEP61 is globally detrimental to MSN, although it may also partially 508 

represent a compensatory mechanism trying to block excitotoxicity in striatal cells. In R6/1 mice, 509 

whereas STEP protein levels are reduced in young (excitotoxicity sensitive) mice, its levels of 510 

phosphorylation is much increased, leading to its further inactivation (Saavedra et al., 2011). In line 511 

with this, intrastriatal injection of a permeable and active form of SETP61 (TAT-STEP), could increase 512 

the excitotoxic lesions produced by the NMDA receptor agonist quinolinate. In addition, an increased 513 

cleavage of STEP61 has been observed, resulting from increased calpain activation due to entry of 514 

Ca
2+

 through NMDA receptors. An accumulation of the breakdown product STEP33 (inactive and 515 

unable to dephosphorylate MAPK/p38) is associated with elevated p38 phosphorylation (Saavedra et 516 

al., 2011), which his detrimental for cell survival. STEP dephosphorylates ERK , reducing its activation 517 

and pro-survival signals. There is an increased activation of pro-survival MAPK/ERK1/2 signaling in 518 

older mice resistant to excitotoxicity. In young YAC128CAG HD mice that are sensitive to 519 

excitotoxicity, STEP61 levels have also been found reduced, as STEP33 (Gladding et al., 2014).  520 
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At later stage, when YAC128 mice become resistant to excitotoxicity, the loss of STEP61 may be 521 

associated with the induction of ERK1 (blocking excitotoxicity) while maintaining activation of 522 

MAPK/p38 that favors cell death pathways. These very interesting studies clearly show the existence 523 

of complex “striatum-specific” compensatory mechanisms in HD mice, and their evolution over time, 524 

possibly to block sequentially mHtt toxicity. 525 

 Thus the role of STEP61 in striatal vulnerability is ambivalent. Its loss in HD may reduce 526 

excitotoxicity, consistent with a neuroprotective compensatory mechanism. In this case STEP61 could 527 

be considered as a protoxic actor in MSN. However its loss also contributes to activate MAPK/p38 528 

pathway. In this latter case, STEP61 may be seen as a neuroprotective agent for MSNs.  529 

 530 

ELK-1 (ETS-Like Gene 1) 531 

In basal condition, Elk-1 is ubiquitously expressed in the brain, but in HD mice models R6/1 and 532 

R6/2, and in immortalized HD mouse (Q111/Q111) cells, Elk-1 has a higher protein expression level 533 

and phosphorylation , and is found in the nucleus of the MSNs of 30 weeks old R6/1 mice and 12 534 

weeks old R6/2 mice. Elk-1 does not co-localize with mHtt, which suggests a higher transcriptional 535 

activity compared to WT mice (Anglada-Huguet et al., 2012; Roze et al., 2008a). The authors 536 

suggested that the change in Elk-1 expression may be a compensatory mechanism to protect MSN in 537 

response to mHtt-induced stress. 538 

Elk-1 is a member of a subfamily of proteins called ternary complex factors (TCF). Elk-1 is a 539 

transcriptional activator, as it interacts with serum response factor to bind jointly to serum response 540 

elements in the promoters of several immediate-early genes (IEGs), such as c-fos and egr-1. In the 541 

CNS, Elk-1 is activated by ERKs in response to neurotrophins and neurotransmitters.  542 

Anglada-Huguet and collaborators have shown that down-regulation of Elk-1 by siRNAs produces 543 

caspase 3 cleavage and cell death in immortalized HD mouse (Q111/Q111) cells, but not in wild-type 544 

cells (Anglada-Huguet et al., 2012). Thus the induction of Elk-1 expression in HD may be considered 545 

to be a neuroprotective compensatory mechanism. However, transcriptional activity at the c-546 

fos promoter was impaired in the striatum of R6/2 transgenic mice, despite activation/phosphorylation 547 

of Elk-1 (Roze et al., 2008a). As mentioned above, the reduction of MSK1 in R6/2 mice may partially 548 

impair the impact of Elk-1 activation. Elk-1 can be considered as an “inducible” striatal marker in HD, 549 

likely producing a neuroprotective self-defense mechanism. Further studies are awaited to better 550 

understand how the increase in Elk-1 plays a role in striatal degeneration at late stage in animal 551 

models of HD.  552 

 553 

Neutral striatal markers  554 

Capucin (a.k.a. Tmem90a) 555 

Capucin, a gene of unknown function is preferentially expressed in the striatum (de Chaldee et 556 

al., 2003).  Notably, lower capucin mRNA levels have been detected in the R6/1 transgenic mouse 557 

model of HD (Desplats et al., 2006), R6/2 and in primary cultures of rat striatal neurons expressing a 558 

mutant fragment of human Htt than in the corresponding controls (de Chaldee et al., 2006).  559 
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However, in vivo experiments showed that capucin overexpression is not able to counterbalance 560 

mHtt-induced toxicity in the striatum in a lentiviral mouse model of HD (Galvan et al., 2012). Mice that 561 

were knockout for capucin gene had similar susceptibility to mHtt-induced toxicity as wild type age-562 

matched littermates. Size and number of ubiquitin-containing inclusion produced by overexpression of 563 

mHtt is these mice were similar to those detected in wild type mice (Galvan et al., 2012). Capucin 564 

downregulation in HD mouse models could be a direct consequence of the transcriptional dysfunction 565 

occurring in HD without major consequence on MSN survival. Thus capucin may be considered as a 566 

“neutral” striatal gene. 567 

 568 

Hippocalcin  569 

Hippocalcin, a neuronal calcium sensor protein, is also known as p23k. Although the 570 

physiological role of hippocalcin is not completely understood, it is implicated in the regulation of 571 

neuronal viability and plasticity. Evidences showed that hippocalcin is important for the homeostasis of 572 

intracellular calcium levels (Amici et al., 2009). Hippocalcin can protect hippocampal neurons against 573 

excitotoxicity induced damage by enhancing Ca
2+ 

extrusion and maintaining ideal intracellular Ca
2+ 574 

levels (Masuo et al., 2007). 575 

The decreased expression of hippocalcin in different mouse models of HD suggested a role of this 576 

protein in striatal vulnerability. Rudinskiy and collaborators studied this hypothesis in primary culture 577 

of striatal neurons (Rudinskiy et al., 2009). Hippocalcin was overexpressed using lentiviral vectors in 578 

neurons that expressed mHtt (N-terminal fragments with 82 glutamine repeat). Analysis of different 579 

outcomes related to degeneration indicated that hippocalcin was not neuroprotective. In addition, 580 

overexpression of hippocalcin did not protect neurons subjected to mitochondrial dysfunction caused 581 

by 3-nitropropionic acid or glutamate-induced excitotoxicity, two conditions inducing increase in 582 

cytoplasmic Ca
2+

 concentrations (Rudinskiy et al., 2009). Thus, hippocalcin may have deregulated 583 

expression, in absence of major consequences in neuronal survival. In this case, as capucin, 584 

hippocalcin may be seen as “neutral” striatal marker.  However, it cannot be excluded that hippocalcin 585 

could have an effect in different HD models, including animal models that express full length mHtt.  586 

 587 

Other possible pathways to be investigated 588 

Nowadays, the number of studies trying to decipher the functions of this small number of striatal 589 

genes is limited. However, these pioneering studies which tried to understand their roles with regard to 590 

mHtt toxicity provided key results indicating that possibly, they are regulators of cell survival, upstream 591 

master gene/protein networks of neuronal survival (Fig.1). In particular, deregulation of membrane 592 

receptors (D1-R, D2-R, CB1-R, A2A-R, SCN4B) involved in neurotransmission in HD could directly 593 

modulate cell survival processes through different routes (e.g. MAP Kinase pathway, regulation of 594 

PGC1- . How these different receptors act to positively or negatively regulate striatal cell survival 595 

remains to be uncovered. It is likely that, for the GPCR, their effects are related to the activation of 596 

heterotrimeric G proteins leading to increased or decreased cAMP levels but could also be mediated 597 

through other pathways such as the endocytosis/ -arrestin-mediated pathway and/or interaction of 598 

heterotrimeric subunits with transmembrane ion channels (Ritter and Hall, 2009).  599 
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Increased cAMP levels may be considered neuroprotective while reduction of cAMP should be 600 

“protoxic”. It is likely that mechanisms converging on cAMP level regulation are important for opposing 601 

mHtt toxicity. Indeed PDE which reduce cAMP levels is considered to increase striatal cell vulnerability 602 

to mHtt (see below). However, it is probable that the effects of striatal membrane receptors on mHtt 603 

toxicity cannot be only explained according to their inherent capability to change cAMP levels. For 604 

example, D2-R and D1-R are thought to be coupled to different  subunits ( i/o and s/olf, leading, 605 

when stimulated separately, to a reduction and decrease in cAMP levels respectively) (Beaulieu and 606 

Gainetdinov, 2011), but both receptors seem to increase mHtt toxicity. Downstream cAMP changes 607 

(and possible through independent mechanisms) the protoxic effects of D2-R may involve inhibition of 608 

the pro-survival kinase Akt (Marion et al., 2014) while D1-R effects may involve CDK5 (Paoletti et al., 609 

2008). In line with these complex mechanisms, CB1-R which decrease cAMP levels when stimulated 610 

alone, are rather neuroprotective against mHtt through a mechanism that remains to be elucidated. 611 

One possibility is that co-activation of D2-R and CB1-R which increase cAMP so that the loss of CB1-612 

R in HD may result in reduced cAMP levels and a protoxic effect which would depend on the presence 613 

of D2-R (Glass and Felder, 1997). There also exist a number of very complex cross talks between 614 

membrane receptors signaling in striatal neurons that could participate to more complex/integrated 615 

biological effects when their stimulation occurs simultaneously. In particular, receptors can 616 

heteromerize, which changes their intracellular signaling impact. For example, D1-R/D2-R heteromers 617 

act preferentially  changing signaling as compared to each receptos separately. Another 618 

interesting example is related to A2A-R/D2-R heteromers. The activation of A2A-R in these 619 

heteromers reduced the binding of dopamine on the D2-R (Ferre et al., 2008). Reciprocally, 620 

stimulation of D2-R represses the activation of adenylyl cyclase by A2-R. Other pathways may also be 621 

involved. For example, t -arrestin signaling by A2A-R/D2-R heteromers is stronger 622 

and more transient as compared to D2-R alone (Borroto-Escuela et al., 2011). In summary, the 623 

mechanisms through which those different membrane receptors act all together on mHtt toxicity (as 624 

causal factors or as key actors of compensatory/self-defense mechanisms) are largely unknown but 625 

likely involve extremely complex /integrated signaling. 626 

 Similarly cytoplasmic signaling proteins (PDE, MSK1, STEP61, DGK) can also act upstream or 627 

downstream master regulators of cell survival (CREB, MAPK/Erk1). Other striatal markers seem to be 628 

involved in molecular steps between membrane receptor signaling and downstream cytoplasmic 629 

effectors. This is the case for RGS2 and CalDAG-GEF1.  Other striatal markers may not act directly on 630 

signaling processes regulating transcription or survival. Indeed, it is likely that some markers, such as 631 

Rhes, may involve key cellular “housekeeping” mechanisms such as SUMOylation of proteins and 632 

autophagy. Finally, Bcl11b and FOXP1 are good examples of striatal marker that can be directly 633 

implicated in the regulation of transcription, and the inherent state of differentiation of MSN.  634 

The study of the role of striatal markers in striatal vulnerability in HD suggests that these gene 635 

products, likely associated with highly specific neurobiological functions (and as such they are markers 636 

of highly differentiated non-dividing cells), may be, on the one hand, the most vulnerable targets of 637 

mHtt-induced transcription deregulations and, on the other hand, key “switches” of striatal adaptive 638 

changes, that may be considered as self-defense mechanisms.  639 
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How these different striatal markers functionally interact each other remains to be precisely 640 

assessed.  It is quite obvious that currently the puzzle is not complete and that many more actors are 641 

involved in the vulnerability of the striatum. Indeed, beyond the few striatal markers that have been 642 

reviewed above, many others may also act as modifiers of mHtt. When considering striatal markers 643 

with relatively stringent criteria (see paragraph above), it clearly appears that only a small proportion of 644 

striatal markers has been experimentally studied. It is beyond the scope of this review to provide 645 

extensive speculations on every striatal marker that have never been studied in the context of HD 646 

research. However, it is worth mentioning that many of them, which abnormal expression in the 647 

striatum of HD patients have been observed long ago, have never been studied for their capacity to 648 

modify mHtt toxicity. For example, neurotensin, whose expression is high in the striatum as compared 649 

to other brain regions, has been found abnormally increased in the HD striatum (Nemeroff et al., 650 

1983). Many newly identified striatal markers have been found deregulated in HD mouse models 651 

(Brochier et al., 2008; Mazarei et al., 2010). For example, the upregulation of IDO-1 (indoleamine 2,3-652 

dioxygenase) in YAC128 HD mice may be seen as a risk factor for striatal cells, since deletion of IDO-653 

1 protects the striatum against excitotoxicity (Mazarei et al., 2013b). Since kynurenine pathway likely 654 

plays a role in HD pathogenesis (Thevandavakkam et al., 2010), it is possible that IDO-1 is a modifier 655 

of mHtt toxicity (Mazarei et al., 2013a). This remains to be further assessed.  656 

 657 

Conclusion 658 

It is very difficult to know whether a change in expression of a given striatal marker in HD 659 

represents a compensatory mechanism, and/or a phenomenon that will contribute to striatal 660 

degeneration. This question needs to be experimentally addressed. However, all the gene products 661 

that have not yet been explored represent a pool of potential candidate modifiers of mHtt, relevant to 662 

striatal vulnerability. Our group and others are currently testing the effects of many newly identified 663 

striatal markers of unknown biological functions. Preliminary observations indicate that a majority of 664 

them are neuroprotective or protoxic modifiers of mHtt in cell and mouse models. As such, they could 665 

represent innovative therapeutic targets. Promoting the activity of the neuroprotective markers or 666 

blocking the activity of the protoxic gene products could help to slow the progression of symptoms and 667 

degeneration in HD. In addition, since a majority of these striatal markers have ill-defined 668 

neurobiological functions, research focused on these striatal gene products could be a unique 669 

opportunity to better define the molecular and functional complexity of the striatum, a brain region 670 

which is central stage in a broad spectrum of motor and cognitive functions and is likely implicated in 671 

different neurological and psychiatric illnesses.  672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 
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Figure Legend: 680 

 681 

 682 

 683 

 684 

 685 

Figure 1: Schematic representation of the striatal markers that have been experimentally 686 

studied as potential modifiers of mutant huntingtin toxicity in HD. Green boxes symbolize 687 

markers that are “neuroprotective”. Red boxes symbolize markers that are “protoxic”. Expression 688 

changes in markers included in the dotted-line rectangle may represent, at least in part, self-defense-689 

mechanisms. Markers in grey boxes would have altered expression without major consequences on 690 

mHtt. Note that striatal gene modifiers have broad biological functions and cellular localization, 691 

including neurotransmitters binding, intracellular signaling (kinases and phosphatases), and 692 

transcription activators. The nucleus is symbolized by the grey colored round form. MSK1 and Elk1 693 

can be found in the cytoplasm and upon activation translocate in the nucleus. 694 

  695 
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(B) Enriched striatal markers with disease modifier effect not studied

Human Gene Symbol Human Gene Name regulated expression in HD

ACTN2 Actinin. alpha 2 down

ADCY5 Adenylate cyclase type V down

AP1S1 Adaptor-related protein complex 1, sigma 1 subunit down

ARPP-16/19 16/19-kDa cyclic AMP-regulated phosphoprotein down

ARPP-21 21-kDa cyclic AMP-regulated phosphoprotein down

B3GNT1 β-1,3-N-acetylglucosaminyltransferase 1 down

BAIAP2 Insulin rec. substrate p53 down

BC092620 echinoderm microtubule associated protein like 5 (Eml5) down

CARHSP1 calcium-regulated heat stable protein 1. 24 kDa not changed

CD4 CD4 antigen (membrane glycoprotein of T lymphocytes)
up in caudate HD patient / down in 

YAC128

CHCHD3 coiled-coil-helix-coiled-coil-helix domain containing 3 not changed

CPNE5 Copine V down

CRYM crystallin, mu down

DARPP-32 / PPP1R1B
Dopamine- and cAMP-regulated phosphoprotein, 32 kDa / 

protein phosphatase 1, regulatory (inhibitor) subunit 1B
down

DCLK3 doublecortin-like kinase 3 down

DRD3 Dopamine D3 receptor down

DRRF / KLF16 dopamine receptor regulating factor down

EPHA4 Eph family receptor interacting proteins / ephrin ligands up

FLJ46347 hypothetical LOC389064 no data

FOXP2 Forkhead box protein P2 down

GALNAC4S6ST
B-cell RAG ass’d protein / carbohydrate (N-

acetylgalactosamine 4-sulfate 6-O) sulfotransferase 15
down

Gm705 Gene model 705 (NCBI) down

GNG7 G protein. c7 subunit down

GNAL G protein. aolf down

GPR88 G protein-coupled receptor 88 down

GPR155 G protein-coupled receptor 155 down

hCG2040376 hCG2040376 no data

HS6ST2 heparan sulfate 6-O-sulfotransferase 2 not changed

HTR4 5-HT4 receptor no data

HTR6 5-HT6 receptor up

ISL-1 Insulin gene enhancer protein down

KLF9 / BTE binding protein Kruppel-like factor 9 down

KCNIP2 Kv channel-interacting protein 2 down

LINC00035 Long Intergenic Non-Protein Coding RNA 35 down

LOC390205 similar to Serdin1 no data

  



Human Gene Symbol Human Gene Name regulated expression in HD

MBA51 down

MBA52 down

MBA55 no data

Mbd2 Methyl-CpG Binding Domain Protein 2 not changed

MCTP1 multiple C2 domains. transmembrane 1 not changed

MGAT5B
mannosyl (alpha-1,6-)-glycoprotein beta-1,6-N-acetyl-

glucosaminyltransferase, isozyme B
not changed

MYT1L Myelin transcription factor 1-like not changed

NEXN nexilin (F actin binding protein) not changed

NGEF neuronal guanine nucleotide exchange factor down

Nolz-1 / ZNF503 zinc-finger 503 (developmentally regulated striatum-enriched) no data

NTS Neurotensin up

OPRD1 Delta opioid receptor down

OPRK1 Kappa opioid receptor down

OPRM1 Mu-opioid receptor no data

OSBPL8 oxysterol binding protein-like 8 down

PENK Preproenkephalin 1 down

PPP1R16B Protein phosphatase 1, regulatory (inhibitor) subunit 16B down

PPP3CA Protein phosphatase 3, catalytic subunit, alpha isozyme down

RARB Retinoic acid receptor beta receptor 1 down

RGS9 Regulator of G-protein signalling 9 down

RNF13 Ring finger protein 13 up

RXRG /  NR2B3
Retinoic acid receptor gamma / nuclear receptor subfamily 2, 

group B, member 3
down

SH2D5 Src Homology 2 domain containing 5 down

SLC41A1 Solute Carrier Family 41 (Magnesium Transporter), Member 1 down

SP9 Sp9 transcription factor not changed

SPOCK3
Sparc/osteonectin, cwcv and kazal-like domains proteoglycan 

(testican) 3
down

ST8SIA3 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3 down

STRN Striatin down

SYNPR Synaptoporin down

TAC1 Substance P down

TBL1X Transducin (beta)-like 1X-linked not changed (but tendancy up)

TMEM158 Transmembrane Protein 158  not changed in YAC128 mouse model of HD

TESC Tescalcin down

WFS1 Wolfram syndrome 1 (wolframin) not changed
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 696 

Supplementary Table 1. List of striatal-enriched gene products and their expression changes in HD 697 

transgenic mice and HD patients studies. The non-exhaustive list of striatal markers has been selected 698 

on the basis of the list of striatal-enriched markers in Desplats's study (2006) and completed by other 699 

transcriptomic and SAGE studies (Desplats et al., 2006; Brochier et al., 2008; Hodges et al., 2006; 700 

Kuhn et al., 2007; Mazarei et al., 2010). A, the upper part of the table shows the short list of striatal 701 

markers which have been experimentally studied for their properties to change mutant Htt toxicity in 702 

cell or animal models. Markers with suspected involvement in self-defense mechanisms are indicated 703 

in blue. For these markers, the right columns indicate the potential qualification as "neuroprotective, 704 

protoxic, or neutral", the corresponding references, the models used and the molecular forms of 705 

mutant Htt that have been used in the experiments. B, the lower part of the table presents a list of 706 

striatal markers whose effects on mHtt toxicity have never been experimentally studied (list non 707 

exhaustive).    708 
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2.2.Thesis objectives 

 

All the striatal selective gene products that have not yet been explored represent a pool of 

potential candidate modifiers of mHtt, relevant to striatal vulnerability. Although the list of 

these “unexplored” striatal markers is debatable since the “cutoff” to define a gene product as 

“striatal selective” is subjective, currently available data point to more than 100 striatal gene 

products which remains to be studied to determine their potential impact in mHtt toxicity 

((Francelle et al 2014), Supplementary table).  

 

In collaboration with Michel de Chaldée and Jean-Marc Elalouf (Ibitecs, CEA), our 

laboratory used Serial Analysis of Gene Expression (SAGE) to generate a library of striatal 

gene products and compared to the library of other brain regions, identify novel “striatal gene 

products” or “striatal markers”. More specifically, these markers are selectively expressed and 

enriched in the brain compared to peripheral system, and more particularly in the striatum (at 

least 5 fold-time more expression than in 2 others brain structures. To address the question if 

some of these striatal markers could have an impact against mHtt, the laboratory used the 

following criteria to select a short list of striatal markers over hundreds: 

- high level of enrichment of the markers in the striatum of adult mice, 

- enrichment in the striatum validated in the human caudate and/or putamen, 

- preference for unknown or ill-defined function of the gene products, 

- down-regulation of the transcript markers in HD mouse models and   HD patients, 

- diversity of the potential biological function of these markers.  

 

Among these ten markers, Laurie Galvan (Thesis defense 2011) has studied the effects of five 

striatal markers on mHtt toxicity using the in vivo HD lentiviral model (see chapter 

Introduction 1.2.7.5. paragraph), chosen according to the easiness of study depending on the 

techniques we had in the laboratory. These markers were Capucine, Gpr88, Abhd11os, µ-

crystallin (CRYM) and Doublecortin-like kinase 3 (DCLK3). Results of these pioneering 

studies showed that in this particular model Abhd11os and DCLK3 have neuroprotective 

effects against mHtt. The results on CRYM were difficult to interpret and needed further 

studies. 

The work on Capucine leaded to a publication, showing that the overexpression or silencing 

of this striatal marker didn’t change the toxicity of mHtt (Htt 171-82Q) (Galvan et al 2012). 

According to preliminary data from the laboratory, Gpr88 did not seem to modify mHtt 

toxicity either.  

 

The objectives of my thesis were to further characterize three of these striatal markers 

(Abhd11os, CRYM and DCLK3) and to better understand the putative molecular mechanisms 

underlying their neuroprotective effects against mHtt.  

While results on CRYM and Abhd11os were interesting, we chose at the beginning of my 

thesis to keep a strong focus on DCLK3.  
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The results we obtained are reported in the 3 publications that follow. The two first 

manuscripts on Abhd11os and CRYM are in press respectively in Neurobiology of Aging 

journal and Human Molecular Genetics journal, whereas the manuscript on DCLK3 is a draft 

version presenting most of the data we obtained. This work should be soon submitted. 
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3. Disease modifiers 

 

Results will present the study of the three striatal markers Abhd11os, CRYM and DCLK3. 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Article #1 

The long non-coding RNA Abhd11os is 

neuroprotective against an N-terminal Fragment of 

Mutant Huntingtin in vivo. 
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ABSTRACT 

A large number of gene products that are enriched in the striatum have ill-defined functions, although 

they may have key roles in age-dependent neurodegenerative diseases affecting the striatum, 

especially Huntington’s disease (HD). In the present study we focused on Abhd11os, (called ABHD11-

AS1 in human) which is a putative long non-coding RNA (lncRNA) whose expression is enriched in the 

mouse striatum. We confirm that despite the presence of two small ORFs in its sequence, Abhd11os 

is not translated into a detectable peptide in living cells. We demonstrate that Abhd11os levels are 

markedly reduced in different mouse models of HD. We performed in vivo experiments in mice using 

lentiviral vectors encoding either Abhd11os or a shRNA targeting Abhd11os. Results show that 

Abhd11os overexpression produces neuroprotection against an N-terminal fragment of mutant 

huntingtin whereas Abhd11os knockdown is protoxic. These novel results indicate that the loss 

lncRNA Abhd11os likely contribute to striatal vulnerability in HD. Our study emphasizes that lncRNA 

may play crucial roles in neurodegenerative diseases. 

 

 

Key words 

 

Huntington’s disease; striatum; neurodegeneration; non-coding RNA; Neuroprotection; gene 

regulation 
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1. Introduction 

Comprehensive analysis of the molecular “complexity” of the adult striatum has shown that many of 

the gene products preferentially expressed in this brain region have a poorly characterized function 

[e.g.(Brochier et al., 2008)]. Amongst these “striatal” gene products, a non-negligible fraction has 

never been studied experimentally. However, their enrichment in the striatum as compared to other 

brain regions, suggests they are involved in the functions of the striatum such as implementation of 

motor and cognitive behaviors.  It is conceivable that they could also play a key role in the preferential 

degeneration of the striatum in a number of neurological diseases and, as such, they constitute 

potential therapeutic targets. 

Several disorders (e.g. Huntington’s disease [HD], Huntington’s disease type 2, Multiple System 

Atrophy, acute poisoning with mitochondrial toxins, inherited mitochondrial defects…) are primarily 

associated with striatal degeneration (Damiano et al., 2010) or secondarily lead to striatal dysfunctions 

(Parkinson’s disease, L-dopa-induced dyskinesia, drug addiction, schizophrenia, among others). HD is 

a dominantly inherited disorder with an onset during adulthood. Symptoms include involuntary 

abnormal movements (chorea, dyskinesia, dystonia), frontal cognitive deficits and psychiatric 

disturbances (Harper, 1991; Walker, 2007). The disease is fatal approximately 15 years after the onset 

of symptoms. There is no effective treatment to slow the progression of HD. HD is caused by a 

mutation in the gene encoding the protein huntingtin (Htt) that consists in a CAG triplet repeat 

expansion translated into an abnormal poly-glutamine (polyQ) tract within the N-terminal region of the 

protein (The-Huntington's-Disease-Collaborative-Research-Group, 1993). This polyQ expansion 

produces a gain-of-function that is toxic to neurons through unclear mechanisms, but it is likely that 

many different cellular pathways are implicated (Roze et al., 2008). One major early event in HD is the 

alteration of transcription (Cha, 2007; Seredenina and Luthi-Carter, 2012). Other early alterations 

include intracellular signaling defects, axonal transport alterations (Borrell-Pages et al., 2006), 

deregulated autophagy (Winslow and Rubinsztein, 2008), defects in BDNF transcription, secretion and 

transport (Zuccato and Cattaneo, 2014), perturbation of calcium homeostasis (Cowan and Raymond, 

2006) and mitochondrial defects (Damiano et al., 2010). 

While mutant Htt (mHtt) protein is ubiquitously expressed in the brain, degeneration primarily affects 

the striatum (Tabrizi et al., 2013). This particular vulnerability may be conferred by factors that are 

enriched in the striatum (Brouillet et al., 2005; Desplats et al., 2006; Thomas, 2006). So far, only a 

limited list of gene products preferentially expressed in the striatum have been found to promote mHtt 

toxicity, notably the small GTPase Rhes (Subramaniam et al., 2009), the dopamine type 2 receptor 

(D2R) (Benchoua et al., 2008; Charvin et al., 2005), and the RGS2 protein (Seredenina et al., 2011). 

Alternatively, striatum-enriched neuroprotective factors may be down-regulated during HD 

pathogenesis. For instance, A(2A) adenosine receptors, whose expression is early impaired in HD 

(Blum et al., 2003), have been shown to be neuroprotective (Mievis et al., 2011). However all striatal-

specific gene products with reduced expression in HD have not an effect against mHtt (Galvan et al., 

2012).  

We previously reported that 2010001M06Rik transcript, one of those we have identified as striatal 

“markers”, shows markedly reduced expression in the striatum of the R6/2 mouse model of HD 
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(Brochier et al., 2008). It has been annotated as a long intergenic non-protein coding RNA 

(LINC00035) by in silico analysis. It has been renamed ABHD11-AS1 in human, and Abhd11os in 

mouse (for abhydrolase domain containing 11, opposite strand). The potential roles of long non-coding 

RNA in neurobiological regulatory mechanisms and neurological and psychiatric diseases have been 

recently underlined (Tan et al., 2013; Wu et al., 2013). Thus, we aimed at exploring the potential role 

of Abhd11os in HD. 

Here we provide experimental evidence that Abhd11os is non-coding. We next examined its 

expression in the striatum of two additional mouse models of HD that are characterized by a slow 

progressing disease phenotype without major neurodegeneration. Finally, using lentiviral vectors, we 

tested whether overexpression or knock-down of Abhd11os could modify mHtt toxicity in the mouse 

striatum. Results indicate that Abhd11os is neuroprotective against mHtt in vivo. 

 

 

2. Materials and methods 

2.1. Animals 

Mice were housed in a temperature-controlled room maintained on a 12 hr light/dark cycle. Food and 

water were available ad libitum. All animal studies were conducted according to the French regulation 

(EU Directive 86/609 – French Act Rural  Code R 214-87 to 131). The animal facility was approved by 

veterinarian inspectors (authorization n°A 92-032-02) and complies with Standards for Humane Care 

and Use of Laboratory Animals of the Office of Laboratory Animal Welfare (OLAW – n°#A5826-01). All 

procedures received approval from the ethical committee. Adult male C57BL/6J mice (25 g each; 

Charles River, Saint Germain sur l’Arbresle, France) were used for lentiviral infections. 

For endogenous Abhd11os mRNA levels study, we used the transgenic  mouse model of HD 

generated and maintained in the FvB inbred background, the BACHD mice, that express full-length 

human mHtt from its own regulatory elements on a 240-kb BAC, which contains the intact 170-kb 

human htt locus plus about 20 kb of 5′ flanking genomic sequence and 50 kb of 3′.  We used 9 month-

old male BACHD mice for the study as previously described (Gray et al., 2008).   

We also studied 13 month-old knock-in mice expressing chimeric mouse/human exon 1 containing 

140 CAG repeats inserted in the murine Htt gene (KI140) and their littermate controls. KI140 colony 

was maintained by breeding heterozygotes KI140 males and females (Menalled et al., 2003). Mice 

were N3 (B6) on a 129 Sv×C57BL/6 J background. The resulting different genotypes mice were used 

for the study and showed no overt abnormalities. 

Genotyping was determined from PCR of tail snips taken at 10–15 days of age for BACHD and KI140 

mice.  

 

2.2. Lentiviral vector construction, production and infection 

DNA sequences coding for green fluorescent protein (GFP) and mouse Abhd11os (2010001M06rik) 

were cloned into the SIN-W-PGK lentiviral vector (LV) to generate LV-GFP and LV-Abhd11os, 

respectively (de Almeida et al., 2002). An Abhd11os -directed shRNA (target sequence: 5’ 

GGGATGAAGCCATTGCTAA 3’) and a Luciferase-targeted shRNA (target sequence: 5’ 
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CGTACGCGGAATACTTCGA 3’) were cloned into a bicistronic LV vector (Drouet et al., 2009), in such 

a way that the infected cells expressed the reporter protein GFP. The resulting constructs were 

designated as LV-shAbhd11os and LV-shLuc, respectively. The Abhd11os sequence targeted by the 

shRNA (GGGATGAAGCCATTGCTAA) is located in the second exon of the Abhd11os gene. From the 

ESTs and cDNA sequences available in the public databases, this exon is present in all splice 

variants. 

The lentiviral vectors expressing a wild-type Htt fragment (LV-Htt171-18Q), a mHtt fragment (LV-

Htt171 82Q) or beta-galactosidase (LV-LacZ) have been described previously (Diguet et al., 2009; 

Faideau et al., 2010). Viral particles were produced as described elsewhere (Hottinger et al., 2000). 

The particle content of the viral batches was determined by ELISA for the p24 antigen (Gentaur, Paris, 

France). LV-Htt171 18Q and LV-Htt171-82Q were used at a concentration of 150 ng/µl of p24, LV-

Abhd11os and LV-LacZ at a concentration of 100 ng/µl of p24. LV-shAbhd11os and LV-shLuc were 

used at a concentration of 100 ng/µl of p24. In experiments performed for PCR analysis, LV-GFP was 

mixed with LV-Abhd11os or LV-LacZ at a concentration of 50 ng/µl of p24. After being anesthetized 

(Ketamine/xylazine), mice received a total volume of 2 µl of lentiviral suspension into the mouse 

striatum as previously reported (Faideau et al., 2010; Galvan et al., 2012), using the following 

stereotaxic coordinates: 1.0 mm anterior and 2.0 mm lateral to the bregma, at a depth of 2.7 mm from 

the dura, with the tooth bar set at 0.0 mm. 

 

2.3. Histological and cytological analyses 

Brain processing 

After deep anesthesia by intraperitoneal injection of a sodium pentobarbital solution (50 µg per gram 

of body weight), mice were transcardially perfused with 100 ml of phosphate buffer containing 4 % 

paraformaldehyde at 8 ml/min. The brains were removed, post-fixed overnight in the same solution, 

then cryoprotected by immersion in a 30 % sucrose solution for 24 hours. Free-floating 30 µm-thick 

serial coronal sections throughout the striatum (i.e. 210µm inter-section space) were collected using a 

freezing sliding microtome (SM2400; Leica Microsystems, Wetzlar, Germany). 

 

Immunohistochemistry 

Sections were treated with 0.3 % hydrogen peroxide for one hour, washed three times in phosphate-

buffered saline (PBS), blocked in PBS containing 4.5 % normal goat serum for one hour, then 

incubated overnight at 4°C in PBS containing 3 % normal goat serum and one of the following 

antibodies: rabbit anti-DARPP 32 (Santa Cruz Biotechnology, Santa Cruz, CA; 1:1000), mouse anti-

NeuN (Millipore, Molsheim, France; 1:200), rabbit anti-Ubiquitin (Wako Chemicals, Neuss, Germany; 

1:1000), or mouse anti-HA (Covance, Princeton, NJ; 1:500). Sections were rinsed three times in PBS 

before incubation with the appropriate anti-IgG biotinylated antibody (Vector Laboratories, Burlingame, 

CA) at a 1:5000 dilution for one hour. Staining was visualized by the addition of avidin-biotinylated 

peroxidase and incubation with DAB or VIP substrate (Vector Laboratories, Burlingame, CA) for one 

minute. For NeuN immunostaining, we used the M.O.M. immunodetection kit (Vector Laboratories, 
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Burlingame, CA). Stained sections were mounted on microscopic slides and cover slipped using 

Permount. 

 

Quantitative histological evaluation 

The area of the striatal lesions resulting from LV-Htt171-82Q infection was delineated manually by 

identifying the border of the lesion (loss of DARPP-32 and NeuN immunolabelling).  Lesion area was 

delineated using a 5x objective. Depending on the antero-posterior extension of the lesions, 3 to 8 

coronal sections were analyzed for each mouse.  Observation of sections and calculation of the 

surface of lesioned area were performed using a Leica DM6000 equipped with a motorized stage and 

an automated image acquisition and analysis system (Mercator software, Explora Nova, La Rochelle, 

France). The volume of the striatal lesion (V) was determined using the Cavalieri method (Damiano et 

al., 2013; Diguet et al., 2009; Galvan et al., 2012). The number of Ubiquitin-positive inclusions was 

quantified as previously described (Damiano et al., 2013; Diguet et al., 2009; Galvan et al., 2012) with 

the following modifications: the inter-section distance was 210 µm (i.e. one in every seven sections 

was used) and observations were performed using a 10X objective on an Axioplan 2 Imaging 

microscope (Carl Zeiss, Le Pecq, France) equipped with a motorized stage and an automated image 

acquisition and analysis system (Mercator software, Explora Nova). With this set-up, objects with an 

apparent cross-sectional area > 3 µm
2
 (i.e. diameter > ~1 µm) could be reliably detected. 

 

2.4. Real-time quantitative PCR 

Adult mice were deeply anesthetized by intraperitoneal injection of a sodium pentobarbital solution (50 

µg per gram of body weight) before decapitation. The brains were immediately removed and 

positioned in a coronal brain matrix (Ted Pella, Redding, CA). 

For the quantification of overexpressed or downregulated Abhd11os mRNA levels, mice were infected 

with a mixture of LV-Abhd11os and LV-GFP, or LV-shAbhd11os (bicistronic for GFP) alone. Injection 

of LV-LacZ and LV-shLuc were used as controls for viral load.  The striatal region displaying 

fluorescence was dissected out using a circular punch (1.5 mm diameter) from 1 mm-thick fresh 

coronal brain sections visualized under a fluorescence binocular microscope (Leica). Total RNA 

extraction and real-time quantitative RT-PCR (qRT-PCR) were performed as previously described 

(Drouet et al., 2009; Galvan et al., 2012), using the following primer sequences Abhd11os-U 

GGATTGCCTCGGACCTG and Abhd11os-L GCACCCGCTCTCGAAC. This pair of primers allows 

detection of all Abhd11os splice variants containing the intron. 

Similar procedure was used for determination of Abhd11os RNA levels in BACHD mice and KI140 

mice. In this latter case, expression levels were normalized to the geometric mean of the mRNAs 

of three housekeeping genes [PPIA (cyclophilin A), HPRT1 (hypoxanthine 

phosphoribosyltranferase), ACTB (beta-Actin)]. 

We also performed qRT-PCR to quantify Abhd11 RNA in the striatum after infection with LV-Abhd11os 

or its control. For this the following primer sequences Abhd11-U CACATTGGAGCCTTCATAGCAG 

and Abhd11-L CGCTTCCTTGACAACCGA. 
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2.5. Biochemical analysis 

Cell culture 

Human embryonic kidney 293 T (HEK293T) cells were grown at 37°C in 5% CO2 in Dulbeco's 

modified Eagle's medium (DMEM) supplemented with 10% bovine calf serum, 1% L-glutamine and 

antibiotics (50 units/ml penicillin and 50 μg/ml streptomycin).  

HEK293T cells were transfected with recombinant Abhd11os vectors (coding the putative ORF1 or 

ORF2 sequences – see supplementary figure S1) or equivalent amount of empty vector, using the 

calcium phosphate method. Putative ORF1 and ORF2 were subcloned from Abhd11os cDNA into 

pcDNA3 expression vector (PGK promoter). Six nucleotides were retained 5’ to the potential ATG start 

codon to preserve the endogenous context of translation initiation. A sequence coding for 

haemagglutinin (HA) was introduced immediately 5’ to the stop codon. The resulting constructs have 

the following sequences (the putative coding sequence is in capital letters; the sequence encoding the 

HA tag is underlined):  

ORF1: agagggATGAAGCCATTGCTAAGAAGCGCGCGGTGGAAGAGGAGCTGGACTCCTGTCGAG

CCAGGCTGCGCACAGTGGAGGCTCAGCTGCTGGAGGTCCTGCAGGAGAAACGCCTACCCATAC

GACGTGCCTGACTACGCCTCCtga; 

ORF2: gaagacATGCAGCATATGGTTCGAGAGCGGGTGCGGAGTCAGCTGCAGGGAGAGCCCAGA

GGCACCCTGGGAACACACGAGAACACAAGCCCGGGCAGAAGTTCCTGGATTCAACTCTCCCGG

GGTCAGTGGGGGCGACGGTGGGCCTACCCATACGACGTGCCTGACTACGCCTCCtga; 

Negative controls (ORF1ΔATG and ORF2ΔATG) were obtained by deleting the initial ATG codon and, 

for ORF2, by mutating the downstream ATG codon into CTG 

 

Western blotting 

Transfected cultured cells were harvested 48h after transfection and lyzed in modified RIPA buffer : 

50mM Tris pH8.0, 50 mM NaCl, 1 mM EDTA, 0.5% Triton-X100, 1% NP40 and protease inhibitor 

cocktail (Roche). Cell lysates were centrifuged at 13,000 g for 20 min at 4°C. Total protein 

concentration was tested with BCA kit (Pierce). 

Equal amounts of total protein extract were subjected to SDS-PAGE in precast 4-12% Bis-tris gel 

(NuPAGE® Novex Bis-tris midi gel 15wells, Life Technology) or in precast 4-20% Bis-glycine gel 

(Thermo-Fisher), and transferred to nitrocellulose membranes. Blocked membranes (5% milk in TBS-

0.1% Tween-20) were incubated with primary antibodies : hemagglutinin (HA) (1:3000, mouse, 

Covance), actin (1:4000, rabbit, Sigma), active Caspase-3 (1:800, mouse, Millipore, AB3623); and 

washed three times with TBS-0.1% Tween-20 for 10 min. Membranes were then labelled with 

secondary IgG-HRP antibodies raised against each corresponding primary antibody. After three 

washes, the membranes were incubated with Immun-Star WesternC kit (BioRad) according to the 

instructions of the supplier. Peroxidase activity was detected with camera system Fusion TX7 (Fisher 

scientific).  

 

2.6 Statistical analysis 
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All data were expressed as means +/- SEM. Unpaired Student’s t-test was used for the comparison 

between two groups. When more than two groups were compared, a one-way ANOVA with multiple 

comparisons using the post hoc Bonferroni test was carried out using commercially available software 

(StatView® software, SAS Institute Inc., USA). 

 

 

3. Results 

 

Abhd11os RNA is not translated into a detectable peptide in living cells 

ABHD11-AS1 RNA is a ~473-base-long transcript processed from four exons in human. ABHD11-AS1 

and its mouse homolog Abhd1os contain two small potential ORFs (ORF1, 105 nucleotides and, 

ORF2, 138 nucleotides in mouse), which are conserved across mammals. It has been shown that 

small ORFs can be translated into functional peptides in vivo [e.g.(Galindo et al., 2007)]. Furthermore, 

Abhd11os transcript has been detected in the polysomal fraction of mouse striatal neurons (Heiman et 

al., 2008) (see table S5 of this reference). Thus, the possibility that Abhd11os may be coding for 

peptides could not be ruled out. 

We therefore experimentally examined whether plasmids expressing either putative ORFs of 

Abhd11os (ORF1 or ORF2) tagged with C-terminal hemagglutinin (HA) could generate a detectable 

peptide after transfection in HEK293T cells (supplementary Figure S1). As negative controls, ATG 

sites of each ORF were deleted (ORF1-ΔATG and ORF2-ΔATG). The transcripts of ORF1 and ORF2 

(with or without ATG) could be readily detected by RT-qPCR 24 hours after transfection. As expected, 

Western blot analysis of protein extracts from cells transfected with ORF1-ΔATG or ORF2-ΔATG did 

not reveal the presence of an HA tag peptide (supplementary Fig.1S). As positive control, in cells 

transfected with a plasmid coding the mouse striatal protein Dclk3 tagged with HA, a band at 90 kDa 

corresponding to full length mouse Dclk3 could be detected. In contrast, cell transfected with plasmids 

coding ORF1 or ORF2 did not reveal the presence of HA-containing low molecular weight peptides. 

Consistent with this, no specific fluorescent signal was observed in transfected cells subjected to 

immunofluorescence detection of the HA tag. These results support the hypothesis that, even when 

overexpressed, Abhd11os RNA does not lead to the production of a peptide. Thus as predicted, 

Abhd11os is a non-coding RNA. 

 

Abhd11os expression is downregulated in HD mouse models 

A major reduction in Abhd11os RNA levels was noted in the striatum of R6/2 mice, which express 

exon 1 of the human HD gene, containing 150 CAG repeats [the non-coding RNA Abhd11os was 

named 2010001M06rik (Brochier et al., 2008)]. To check that this loss of expression was not specific 

to the R6/2 model, we asked whether a similar change could be seen in the BACHD mouse model, 

which expresses human full-length mHtt (Gray et al., 2008). We also characterized Abhd11os RNA 

levels in a knock-in (KI140CAG) mouse model of HD (Menalled et al., 2003). A significant 33% 

reduction in Abhd11os RNA level was found in the striatum of 9 month-old BACHD mice as compared 
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to control age-matched littermates (Fig. 1A). In heterozygous and homozygous KI140CAG mice a 

significant ~70% reduction was found at 13 months of age (Fig. 1B) as compared to age-matched wild 

type littermates (Fig. 1B).  

 

Lentiviral vector approach to modulate Abhd11os expression in vivo 

In order to study how Abhd11os expression could change the neurotoxicity of mHtt in striatal neurons 

in vivo, we chose to use a lentiviral model of HD. In this model stereotaxic injection of LV encoding a 

short fragment of mHtt (LV-Htt171-82Q) produces a progressive loco-regional cell dysfunction and 

degeneration characterized by mHtt- and ubiquitin-containing inclusions, loss of markers linked to 

neuronal integrity and astrogliosis within 6 weeks (Damiano et al., 2013; Faideau et al., 2010; Galvan 

et al., 2012; Ruiz and Deglon, 2012). This versatile model is particularly suitable to assess in vivo how 

mHtt toxicity can be modified by different proteins or RNA that can be co-expressed with the mutant 

protein using injection of a mixture of lentiviral vectors in the striatum [for a review (Ruiz and Deglon, 

2012)]. 

For lentiviral-mediated overexpression of Abhd11os in vivo, we constructed a lentiviral vector 

expressing full-length mouse Abhd11os (LV-Abhd11os). To assess its efficiency, we injected it 

stereotaxically into the mouse striatum together with a lentiviral vector expressing GFP (LV-GFP). Six 

weeks after injection, brains were collected and the fluorescent region expressing GFP (and thus 

Abhd11os) was dissected out for RT-qPCR expression analysis. Results showed that LV- Abhd11os 

produced a 30-fold increase in Abhd11os expression compared to control (Fig.2). 

For Abhd11os knock-down, we designed a shRNA targeting Abhd11os. The efficacy of the shRNA 

was first tested in transfected HEK cells overexpressing Abhd11os. In this condition, expression of 

Abhd11os was reduced by ~85% by the shRNA targeting Abhd11os (Fig.S1E). We inserted the 

corresponding DNA sequence into a bicistronic lentiviral backbone allowing co-expression with GFP 

(Drouet et al., 2009). The resulting lentiviral vector (LV-shAbhd11os) was stereotaxically injected in the 

striatum of adult C57Bl/6 mice. Six weeks after the infection, the brains were collected and fresh 

coronal slices encompassing the striatum were prepared. Since LV-shAbhd11os is bicistronic for the 

GFP, the transduced region was visible using a fluorescence binocular microscope and could be 

precisely resected and processed for RNA extraction. RT-qPCR analysis showed that LV-shAbhd11os 

produced a significant 75 % reduction in the expression of endogenous Abhd11os as compared to 

control (Fig. 2). 

Absence of toxicity of LV-Abhd11os and LV-shAbhd11os was verified by histological evaluation 6 

weeks after infection. Staining for NeuN and DARPP32, which are well-known markers of neuronal 

integrity in the striatum (de Almeida et al., 2002; Diguet et al., 2009; Drouet et al., 2009; Faideau et al., 

2010; Galvan et al., 2012), revealed no degeneration in the infected striata (Fig.3 and Fig.4).  

Thus, the LV- Abhd11os and LV-shAbhd11os are not neurotoxic per se and are effective to modulate 

Abhd11os expression in the mouse striatum. 
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Overexpression of Abhd11os protects against mHtt toxicity  

To study the effects of Abhd11os overexpression on mHtt toxicity, we stereotaxically injected a mixed 

suspension of LV-Htt171-82Q and LV-Abhd11os into the mouse striatum. At 6 weeks post infection, 

LV-Htt171-82Q produced, a loss of NeuN and DARPP32 labelling in vicinity of the injection site, 

indicating overt neurodegeneration (Fig.3). In separate experiments we checked that co-infection with 

LV-LacZ (control) did not change the size of the lesion seen using NeuN immunohistochemistry as 

compared to LV-Htt171-82Q alone [not shown; mean+/-SEM; NeuN, Htt171-82Q (n=8 mice/group): 

0.440+/-0.043 mm
3
; Htt171-82Q/LacZ  (n=6 mice/group) : 0.526+/-0.088 mm

3
; Student t test, non-

significant]. Quantitative histological evaluation using NeuN immunohistochemistry showed that the 

striatal lesions produced by a mixture of LV-Htt171-82Q and LV-Abhd11os were significantly smaller 

than those produced by LV-Htt171-82Q mixed with LV-LacZ (Fig.3) [mean NeuN-depleted volume +/-

SEM; Htt171-82Q/ Abhd11os (n=6 mice/group): 0.236+/-0.062 mm
3
; Htt171-82Q/LacZ (n=9 

mice/group): 0.573+/-0.086 mm
3
; Student t test, p<0.02]. In line with this, analysis of striatal 

degeneration using DARPP32 immunohistochemistry also showed that the overexpression of 

Abhd11os reduced the lesions produced by LV-Htt171-82Q (Fig.3) [mean DARPP32-depleted 

volume+/-SEM; Htt171-82Q/ Abhd11os (n=11 mice/group): 0.289+/-0.046 mm
3
; Htt171-82Q/LacZ 

(n=11 mice/group) : 0.438+/-0.048 mm
3
; Student t test, p<0.04]. 

These results indicate that overexpression of Abhd11os can reduce the neurotoxicity of Htt171-82Q.  

We then assessed the number and size of ubiquitin-positive nuclear inclusions in mice (Fig.3) injected 

with a mixture of LV-Htt171-82Q and LV-Abhd11os or a mixture of LV-Htt171-82Q and LV-LacZ. 

Microscopic quantitative analysis of the sections processed by anti-ubiquitin-immunohistochemistry 

showed that overexpression of LV-Abhd11os changed neither the number of ubiquitin-containing 

inclusions [mean inclusion number+/-SEM; Htt171-82Q/ Abhd11os (n=8 mice/group): 10,189+/-1,597; 

Htt171-82Q/LacZ (n=8 mice/group) : 11,141+/-1,330; Student t test, p=0.654] nor their mean sizes 

[Inclusion size, Htt171-82Q/ Abhd11os (n=8 mice/group): 13.049+/-1.266 µm
2
; Htt171-82Q/LacZ  (n=8 

mice/group) : 13.875+/-1.059 µm
2
; Student t test,  p=0.624].  

 

Knock-down of Abhd11os exacerbates mHtt toxicity 

The effects of Abhd11os knock-down on mHtt toxicity were studied in the same mouse model. Co-

infection with LV-Htt171-82Q and LV-sh Abhd11os produced NeuN-negative striatal lesions that were 

significantly larger than those produced by co-infection with LV-Htt171-82Q and control LV-shLuc 

(Fig.4) [mean NeuN-depleted volume+/-SEM; Htt171-82Q/shAbhd11os (n=7 mice/group): 0.541+/-

0.124 mm
3
; Htt171-82Q/shLuc (n=7): 0.253+/-0.0.043 mm

3
; Student t test, p<0.05], indicating that 

Abhd11os depletion may enhance mHtt toxicity. However, the volume of DARPP32-depleted area was 

similar in mice co-infected with LV-Htt171-82Q and LV-shAbhd11os as compared to LV-shLuc 

[mean+/-SEM; Htt171-82Q/shAbhd11os (n=12 mice/group): 0.488+/-0.054 mm
3
; Htt171-82Q/LacZ 

(n=10 mice/group): 0.454+/-0.046 mm
3
; Student t test, p=0.64]. The number of ubiquitin-positive 

nuclear inclusions in LV-shAbhd11os infected striata compared to control showed a trend toward 

reduction although it did not reach statistical significance [mean inclusion number+/-SEM; Htt171-

82Q/shAbhd11os (n=8 mice/group): 7,861+/-1,283; Htt171-82Q/shLuc  (n=10 mice/group) : 11,221+/-
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1,497; Student t test,  p=0.118]. The mean size of inclusions in LV-shAbhd11os infected striata was 

slightly (-18.5%) but significantly smaller as compared to LV-shLuc infected striata (Fig.4) [mean 

inclusion size+/-SEM, Htt171-82Q/shAbhd11os (n=9 mice/group): 8.661+/-0.544 µm
2
; Htt171-

82Q/shLuc (n=10 mice/group): 10.638+/-0.630 µm
2
; Student t test, p<0.04].  

Altogether, these results suggest that Abhd11os exerts a neuroprotective effect against the striatal 

toxicity of mHtt in vivo, whereas its down-regulation exacerbates the toxicity of mHtt. 

 

Abhd11os does not directly down-regulate expression of Abhd11 mRNA 

The underlying mechanism of the effect of Abhd11os towards mHtt toxicity is unknown. Since 

Abhd11os gene overlaps the antisense 3’UTR region of the Abhd11 gene, we asked whether 

Abhd11os could directly regulate Abhd11 mRNA expression through an antisense-like effect where 

Abhd11os hybridizing to Abhd11 mRNA and accelerating its degradation could negatively regulate 

Abhd11 expression. We performed qRT-PCR to quantify Abhd11 RNA in the striatum after infection 

with LV-Abhd11os or its control. Results showed that overexpression of Abhd11os produced a slight 

increase (+25) in Abhd11 mRNA expression (Supplemental Figure 2). This indicated that Abhd11os 

did not directly down-regulate Abhd11 mRNA.  

 

 
4. Discussion 

Different systematic studies aimed at providing a comprehensive view of the molecular “complexity” of 

the striatum have shown that many of the preferential gene products of this brain region have a totally 

unknown function. However, their particular presence in the striatum as compared to other brain 

region, suggests that they play a key role in striatal function such as motor behavior and cognition. 

Depending on the datasets considered and methods used, numbers can vary substantially, but a large 

number of gene products show preferential expression in the striatum. Using a SAGE-based method, 

we previously identified 120 gene products whose expression levels are at least five times higher in 

the striatum than in other brain regions (Brochier et al., 2008). Amongst these “striatal” gene products, 

a large proportion are poorly characterized (<100 entries in PubMed), especially in terms of 

neurobiological functions/roles and for a non-negligible fraction of these gene products, experiments 

have never been reported (0 entry in PubMed). In comparison, well-known specific striatal gene 

products, considered as striatal markers, such as the phosphatase DARPP32 have hundreds of 

entries in public bibliographic databases.  

 

In the present study we focused on the newly identified striatal marker Abhd11os and found that its 

expression is significantly reduced in the striatum of two mouse models of HD that express full length 

Htt with a pathological expansion (BACHD and KI140CAG), which is consistent with the major loss of 

Abhd11os we previously found in the R6/2 model (Brochier et al., 2008). We asked whether 

experimental modification of Abhd11os expression in the mouse striatum could change the toxicity of 

mHtt. For this purpose, we designed lentiviral vectors encoding Abhd11os and a shRNA targeting 

Abhd11os. Results showed that these vectors were effective in increasing and reducing Abhd11os 
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expression respectively. The level of overexpression was limited (1.5 fold) using our system. Possibly, 

this suggests endogenous mechanisms of regulation, as Abhd11os has a weak basal RNA expression 

in healthy organisms. Indeed, using the very same strategy (same lentiviral vector backbone and 

promoter) for overexpression, we were able to express more strongly other recombinant transcripts 

such as mitochondrial complexes subunits and the striatal protein Capucin (Damiano et al., 2013; 

Galvan et al., 2012).  

To test the effects of Abhd11os on mHtt, we used a lentiviral model of HD in vivo, which is  a highly 

flexible approach for the targeted overexpression of a disease-causing gene, with rapid and 

progressive phenotypes (Ruiz and Deglon, 2012). This HD model has already been used to test new 

experimental therapeutics targeting protein misfolding, mitochondrial defects, cell signalling and mHtt 

itself (Damiano et al., 2013; Drouet et al., 2009; Galvan et al., 2012; Perrin et al., 2009; Perrin et al., 

2007) [review in (Ruiz and Deglon, 2012)]. Histological evaluation showed that Abhd11os 

overexpression, although limited, produces a significant protective effect, reducing the volume of 

striatal lesions as seen using two different markers of striatal neuron integrity (NeuN and DARPP32). 

Conversely, the down-regulation of Abhd11os was found to be pro-toxic, increasing the size of the 

striatal lesions produced by mHtt as seen using the neuronal marker NeuN. Lesions as seen by 

DARPP32 were not increased. The likely explanation for this is that at six weeks post-infection mHtt 

produced its maximal loss of DARPP32 neurons. In this model, loss of DARPP32 appears early after 

infection (de Almeida et al., 2002) and corresponds to a dysfunction of striatal neurons at first while 

NeuN immunoreactivity is spared. At later time points after infection, the loss of DARPP32 achieves its 

maximum while NeuN loss which represents actual degeneration is still at its initial stage (Diguet et al., 

2009). The number and size of ubiquitin (positive inclusions in the striatum, a neuropathological 

hallmark of HD), was not changed by increased expression of Abhd11os. The shRNA targeting 

Abhd11os produced a significant but small (15%) reduction in the number and size of ubiquitin-positive 

inclusions. This small reduction might be attributed to the enhancement of neuronal cell death, leaving 

alive neurons that have the lowest levels of mHtt. These data suggest that the neuroprotective/protoxic 

effects resulting from the increased/decreased expression of Abhd11os is likely independent from a 

direct effect on mHtt expression/elimination and aggregation in neurons.  

In parallel to the in vivo rescue experiments, we examined whether Abhd11os is truly a non-coding 

RNA (NCBI Reference Sequence: NR_026688). Our experiments showed that expression of the 

putative ORFs of Abhd11os in HEK293T cells could not reveal the existence of translated peptides. 

This correlates with the information provided by bioinformatics databases on the Abhd11os gene. Of 

course, we cannot rule out the possibility that the HA tag would be lost during transgene expression by 

the cells, but it would then be possible to detect this detached tag by Western blot, which was not the 

case. Thus it is highly probable that the neuroprotective effect of Abhd11os against mHtt is mediated 

by its RNA transcript. 

 

Major efforts have been made to identify and explore the various roles of non-coding RNAs. For 

example the ENCODE project has identified 9,600 long non-coding RNAs (lncRNAs) (>200 nt) and 

some hints about their localization and roles in the cells have emerged (Cech and Steitz, 2014; Wu et 
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al., 2013). Current hypotheses about the mechanisms of action of lncRNA (Vucicevic et al., 2014) 

include interactions with proteins to bring along regulatory functions (Lai et al., 2013); and binding, 

guidance and organization of chromatin domains to coordinate gene activation (Wang et al., 2011). 

They have been described to influence mRNA processing and post-transcriptional regulation (Geisler 

and Coller, 2013) and to play direct and indirect roles on modulation of epigenetic regulation 

(Peschansky and Wahlestedt, 2014). The majority of lncRNAs expressed in the brain are thought to be 

brain region specific, and could even be cell-specific and subcellular compartment-specific (ENCODE 

project). Increasing number of lncRNAs are being identified as interacting with genes or proteins 

implicated in neurodegenerative and psychiatric disorders but only a few lncRNAs have so far been 

implicated in HD, as compared to others neurodegenerative diseases (Bhan and Mandal, 2014; Tan et 

al., 2013; Wu et al., 2013). Some lncRNAs seem to directly act on mHtt, as HTTAS_v1 whose 

overexpression specifically reduces endogenous Htt transcript levels (Chung et al., 2011), or DGCR5, 

a downstream target of REST in HD that exacerbates the toxicity of mHtt (Johnson et al., 2009). 

Considering the diverse mechanisms proposed for lincRNA function (see as reviews Guttman et al, 

2009; Khalil et al, 2009; Ulitsky & Bartel 2013), it would be tempting to think that Abhd11os could 

produce neuroprotective effects acting on transcriptional control, for example guiding chromatin 

remodelling proteins to target loci, or acting with transcriptional factors, where the latter activate 

transcriptional program and Abhd11os could repress previous unstable transcriptional program. Or, it 

could also regulate gene expression of down-regulated or upregulated genes that are known to be 

modified by mHtt (see as reviews Zuccato et al, 2010; Seredenina & Luthi-Carter, 2012). Abhd11os 

could also pair with other RNAs to trigger post-transcriptional regulation known to be altered in HD. 

Abhd11os could directly scaffold nuclear or cytoplasmic complexes. These different mechanisms are 

essential for the cells to function properly and may reduce damages induced by mHtt. If Abhd11os is 

implicated in some of these functions, its down regulation would amplify transcriptional dysregulation 

induced by mHtt, leading to cell dysfunction and death. As previously said, lincRNAs, as lncRNAs, are 

aimed to be brain region specific, cell-specific and subcellular compartment-specific, and depending 

on the function of Abhd11os, the elucidation of the mechanisms underlying the neuroprotective effects 

of Abhd11os over-expression against mHtt toxicity will require further studies. In this respect, it would 

be interesting to determine the localization of Abhd11os RNA in subcellular compartments with regard 

to functions that are most likely altered by mHtt. In particular it would be tempting to speculate that 

Abhd11os could produce a neuroprotective effect by regulating the expression of a gene particularly 

important for neuronal survival. In line with this, we examined whether Abhd11os could directly 

regulate expression of Abhd11 mRNA, since Abhd11os gene is antisense with the 3’UTR region of 

Abhd11. Our results showed that overexpression of Abhd11os produces a slight increase in Abhd11 

RNA expression, and not a downregulation. In line with this, bioinformatics search indicates slight 

down-regulation Abhd11 expression in HD mouse models.   Thus Abhd11os does not seem to directly 

regulate expression of Abhd11 mRNA levels.  

In conclusion, since Abhd11os has a preferential expression in the striatum and its levels are early 

reduced in different HD models, it is possible that this down-regulation may be involved in the 

preferential degeneration of the striatum in HD. Using an in vivo lentiviral model of HD, we showed 
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that Abhd11os has a neuroprotective effect against mHtt. It should be emphasized that not all striatal 

markers deregulated in HD can modulate the toxicity of N-terminal fragments of mHtt in this model, 

and that even fewer candidates have been found to produce significant effects in both overexpression 

and down-regulation experiments (Galvan et al., 2012; Ruiz and Deglon, 2012).  

The present study therefore identifies a new potential modifier of mHtt toxicity and as such may help in 

future works to define novel therapeutic targets to slow disease progression.  
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Figures and figure legends 
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Figure 1. Down regulated expression of Abhd11os in genetic mouse models of HD. Expression 

of Abhd11os was measured by RT-qPCR in 9 month-old BACHD mice (A) and 13 month-old 

KI140CAG (B). Controls (CTRL) are age-matched wild type littermates. Results are presented as 

mean +/- standard error of the mean. HET, heterozygous (140Q/+); HOM, homozygous (140Q/140Q) 

knock-in mice carrying an expanded CAG repeat. *, p<0.05, n=6 mice per group, unpaired Student-t 

test. **, p<0.001, n=5 mice per group, One way ANOVA and Bonferroni post hoc. 
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Figure 2. Efficiency of the lentiviral vectors (LV) developed for Abhd11os overexpression and 

knock-down.  (A) Mice were injected with LV- Abhd11os mixed with LV-GFP in a 4:1 ratio in the right 

striatum, and with a lentiviral vector expressing beta-galactosidase (LV-LacZ; control) mixed with LV-

GFP in the left striatum. A second group of mice was injected with LV-shAbhd11os-GFP (bicistronic 

construct also expressing GFP) in the right striatum, and with a lentiviral vector expressing a shRNA 

directed against Luciferase (LV-shLuc-GFP; control) in the left striatum. Six weeks later, the striatal 

regions expressing GFP (B) were dissected out from fresh slices using a punch (C) and analyzed by 

RT-qPCR (D). Results are expressed relative to controls as mean +/- standard error of the mean (n=5 

to 7 mice per group). *, p<0.0001, paired Student t test.  
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Figure 3. Effect of the overexpression of Abhd11os on the toxicity induced by mHtt. Adult male 

mice received a bilateral intrastriatal injection of a mixture containing LV-Htt171-82Q with either LV-

LacZ (LacZ, control) or LV-Abhd11os. Six weeks after infection, brains were processed for histological 

evaluation using anti-DARPP32, anti-NeuN, and anti-ubiquitin-immunohistochemistry. Left panel: 

typical coronal mouse brain sections displaying representative areas with depleted staining. Right 

panel: histograms representing quantitative determination of the volume with depleted staining in the 

striatum. Results are expressed as mean +/- standard error of the mean (n=6-11 mice/group). *, 

p<0.05; **, p<0.02, unpaired Student t test.  Scale bars : NeuN, DARPP32,  100 µm; ubiquitin, 50 µm 

and (lower images) 20µm. 
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Figure 4. Effect of the knock-down of Abhd11os on the toxicity induced by mHtt. Adult male 

mice received a bilateral intrastriatal injection of a mixture containing LV-Htt171-82Q with either LV-

shLuc (control), or LV-shAbhd11os. Six weeks after infection, brains were processed for histological 

evaluation using anti-DARPP32, anti-NeuN, and anti-ubiquitin-immunohistochemistry. Left panel: 

typical coronal mouse brain sections displaying representative areas with depleted staining. Right 

panel: histograms representing quantitative determination of the volume with depleted staining in the 

striatum. Results are expressed as mean +/- standard error of the mean (n=7-12 mice/group). *, 

p<0.05, unpaired Student t test.  Scale bars: NeuN, DARPP32, 100 µm; ubiquitin, 50 µm and (lower 

images) 20µm. 
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Supplementary Figure 1. Abhd11os RNA expression in HEK293T cells does not lead to a 

peptide production. 

 

A, Representation of DNA constructs containing the full-length sequence of Abhd11os, for lentiviral-

mediated expression in mice (Construct ORF1&2) or containing either ORF1 (construct ORF1) or 

ORF2 (construct ORF2) and a C-terminal HA tag to permit their potential detection in transfected 

HEK293T.  

B, Validation of the plasmids used for biochemical studies done by molecular biology analysis. 

Construct ORF1 and ORF2 with or without ATG start codon (-ΔATG construct without start codon is 

used as control of non-expression) were digested by restriction enzymes and separated in agarose gel 

to reveal the DNA fragments. Bands obtained correlate with the expected sizes (numbers in white 

upper the gel) according molecular weight marker (1kbp). 

C, Attempt to detect a putative peptide corresponding to Abhd11os by western blot analysis of total 

protein extracts in HEK293T cells transfected with plasmids coding ORF1 and ORF2 constructs, with 

or without ATG start codon. Compared to protein expression of a control plasmid (Dclk3-HA), 

Abhd11os plasmids did not lead to the production of a detectable peptide. N.T., non-transfected cells; 

actin and active caspase 3 were used to control protein load in each lane. Duplicate experiments are 

presented with medium (left) and low (right) molecular weights markers. 

D, Detection of a putative peptide corresponding to Abhd11os by immunofluorescence of the HA tag in 

HEK293T cells. ORF1 and ORF2 constructs, with or without ATG start codon were used for 

transfection. As negative control, HEK293T cells were transfected with an empty vector. As positive 

control, HEK293T cells were transfected with a plasmid expressing the striatal protein Dclk3 with an 

HA tag. These immunofluorescence experiments don’t permit to detect a coding peptide 

corresponding to Abhd11os protein expression. 

E, In vitro assessment of the efficiency of the constructs used for Abhd11os overexpression and down-

regulation. Transfection of HEK293T cells with full-length Abhd11os resulted in a significant 

overexpression of Abhd11os (taken as 100% of expression in these experiments) as compared to 

non-transfected cells. Co-transfection with sh-Abhd11os led to a significant down-regulation of 

Abhd11os RNA expression as compared to cells transfected with Abhd11os alone. 

**, p<0.01, n=3, as compared to N.T. *, p>0.05, n=3, as compared to Abhd11os, One way ANOVA and 

Bonferroni post hoc. 

 

 

 

 

 

 

 

 

 



22 
 

 
 
 
 
 
 

 
 

 

 

Supplementary Figure 2. Impact of overexpression of Abhd11os on endogenous Abhd11 

expression.  

Mice were injected with a lentiviral vector expressing beta-galactosidase (LV-LacZ; control) mixed with 

LV-GFP in the left striatum, and with LV-Abhd11os mixed with LV-GFP in the right striatum. Results 

are expressed relative to controls as mean +/- standard error of the mean (Lacz n=5; Abhd11os n=7). 

Endogenous Abhd11 level expression in mice injected with LacZ compared to mice injected with 

Abhd11os. *, p<0.02, n=7 mice/group, paired Student t test. 
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Abstract 

The mechanisms underlying preferential atrophy of the striatum in Huntington’s disease (HD) 

are unknown. One hypothesis is that a set of gene products preferentially expressed in the striatum 

could determine the particular vulnerability of this brain region to mutant huntingtin (mHtt). Here, we 

studied the striatal protein Crym (µ-crystallin). Crym is the NADPH-dependent p38 cytosolic T3-

binding protein (p38CTBP), a key regulator of thyroid hormone T3 (3,5,3′-triiodo-L-thyronine) 

transportation. It has been also recently identified as the enzyme that reduces the sulphur-containing 

cyclic ketimines, which are potential neurotransmitters. Here, we confirm the preferential expression of 

the Crym protein in the rodent and macaque striatum. Crym expression was found to be higher in the 

macaque caudate than in the putamen. Expression of Crym was reduced in the BACHD and Knock-in 

140CAG mouse models of HD before onset of striatal atrophy. We show that overexpression of Crym 

in striatal medium-size spiny neurons using a lentiviral-based strategy in mice is neuroprotective 

against the neurotoxicity of an N-terminal fragment of mHtt in vivo. Thus, reduction of Crym 

expression in HD could render striatal neurons more susceptible to mHtt suggesting that Crym may be 

a key determinant of the vulnerability of the striatum. In addition our work points to Crym as a potential 

molecular link between striatal degeneration and the thyroid hormones deregulation reported in HD 

patients. 
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INTRODUCTION  

 

The protein mu-Crystallin (Crym) has been discovered as a highly enriched lens component in 

Marsupials (1). Crym was identified as the NADPH-dependent p38 cytosolic T3-binding protein 

(p38CTBP, also known as THBP for thyroid hormone (TH)-binding protein) which is likely a key 

regulator of the thyroid hormone T3 (3,5,3′-triiodo-L-thyronine) transportation in cytoplasm and 

nucleus, a mechanism through which it is involved in regulating thyroid-hormone-related gene 

expression (2). Indeed, in the nucleus T3 binds to THR (thyroid hormone receptor)-containing dimers, 

which bind to genomic TREs (thyroid responsive elements) to regulate gene transcription (3). Although 

Crym expression in the brain is high (4), its neurobiological function is unknown. Several observations 

indirectly suggest that Crym could be a crucial determinant of neuronal cell death/survival. Crym has 

been reported to be an actor of macular degeneration in non-human primates (5). Mutations in the 

Crym gene lead to non syndromic deafness, possibly by the incapacity of the resulting mutants to be 

involved in the potassium ion recycling system with Na, K-ATPase (6, 7). Recently mutations in CRYM 

have been tentatively related to amyotrophic lateral sclerosis (ALS) (8). Given that many species-

specific crystallins with NADPH binding properties are protective against oxidation in the lens (2), 

upregulated Crym in microglia cells in late stages of ALS may have a protective effect against 

neurodegeneration as do other NADPH requiring enzymes such as thioredoxin (9). Further supporting 

the view that Crym plays a central role in the central nervous system, Hallen and collaborators 

recently demonstrated using purification and MS/MS identification that the enzyme ketimine reductase 

(E.C. 1.5.1.25) is actually Crym (10). Thus Crym catalyzes the reduction of sulphur-containing 

substrates known as cyclic ketimines which derive from sulfur containing amino-acids and may play a 

potential role as neurotransmitters (10). Interestingly, the enzymatic activity of ketimine reductase is 

regulated by T3 levels. Thus, Crym may play a key role at the interface between metabolism, 

neurotransmission and cell survival.  

We recently focused our interest on Crym because of its preferential expression in the striatum and its 

possible involvement in the pathogenesis of Huntington’s disease (HD) (11, 12). HD is an autosomal 

dominant hereditary neurodegenerative disorder characterized by a preferential atrophy of the striatum 

associated with cognitive, psychiatric and motor symptoms (13). HD is caused by an abnormal CAG 

repeat expansion in the huntingtin (htt) gene (14). Mutant huntingtin (mHtt) is neurotoxic to neurons, 

especially toward neurons of the striatum, through both a gain-of-function and loss of function (15). 

Mutant Htt produces anomalies in energy production and oxidative stress (16), Ca
2+

 deregulation and 

excitotoxicity (17), abnormal trophic factor expression, trafficking and release (15), alterations of 

cytoskeleton-mediated transport machinery (18), and defects in signaling pathways involved in cell 

survival (19). However, none of these mechanisms can explain per se the preferential vulnerability of 

the striatum in HD. One hypothesis is that a set of factors, selectively expressed in the striatum may 

confer to striatal GABAergic projection neurons their particular susceptibility in HD [for a review (20)]. 

For example, the presence of the dopamine subtype 2 receptors (D2R) (21-23), the small GTPase 

Rhes through its E3-ubiquitin ligase activity (24) and the RGS2 protein (25) in striatal neurons have 

been shown to increase their susceptibility to mHtt in HD. On the contrary, the reduced expression of 
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several proteins with preferential expression in the striatum, and shown to possess neuroprotective 

properties may also increase the vulnerability of striatal neurons, such as for example adenosine type 

2 receptors (A2A-R) (26), cannabinoid type 1 receptors (CB1-R) (27, 28), and Mitogen and stress-

activated kinase-1 (MSK-1) (29, 30).  

We previously found that the level of mRNA expression of Crym, that we identified for its enriched 

expression in the striatum and accumbens, is significantly reduced by 50 % in the striatum of R6/2 

mice (11), a widely used transgenic model of HD. Retrospective analysis of gene array datasets of the 

striatum of HD patients and transgenic mouse models of HD confirms that Crym mRNA levels are 

reduced in HD (31, 32). Thus it is possible that Crym may be involved in striatal vulnerability through 

two possible ways: reduction of Crym expression could be a causal event leading to 

death/dysfunction, pointing to Crym as a neuroprotective/pro-survival protein.  On the opposite, 

decreased expression of Crym in HD could be a regulatory/compensatory mechanism, if the presence 

Crym (like Rhes for instance) contributes to the vulnerability of striatal neurons.   

The objective of the present study was to investigate whether the levels of Crym expression in the 

mouse striatum could change the toxicity of mHtt. We first characterized the enrichment of the protein 

Crym in the striatum in mouse, rat and cynomolgus monkey. Secondly, we examined the expression 

of Crym mRNA and protein in genetic mouse models of HD in absence of major striatal degeneration 

(BACHD transgenic mice and Knock-in 140CAG mice). Finally, we used a lentiviral vector approach 

(33) to overexpress recombinant Crym in striatal neurons and directly determine whether the protein 

could modulate mHtt toxicity in vivo in mice.  

 

RESULTS 

 

Crym is expressed preferentially in the striatum and localized in the cytosol  

While the expression of Crym mRNA was shown to be highly enriched in the striatum and accumbens, 

the expression of the protein had been rarely assessed. For this reason, a chicken IgY antibody was 

raised against Crym (anti-Crym). Western blot analysis of striatal and cortical extracts (total protein 

extracts) prepared from adult rats, mice and a male adult non-human primate (macaca fascicularis) 

showed that endogenous Crym, appearing at an apparent molecular weight of ~37kDa was 

preferentially expressed in the striatum (caudate/putamen) as compared to cerebral cortex (Fig. 1A,B). 

In a non-human primate, Crym expression was markedly higher in the caudate than in the putamen 

(Fig. 1B,C).   

Experiments using differential centrifugation of rat brain samples followed by Western blot analysis 

showed that Crym was mainly localized in the cytosol with low expression in the membrane fraction 

(Fig.2). Similar results were obtained in mouse cerebral cortex and striatum (not shown). Thus, these 

results confirmed that Crym is a cytosolic protein preferentially expressed in the striatum as compared 

to cerebral cortex in the adult brain. In the primate striatum, levels of the protein are higher in caudate 

than in putamen, consistent with mRNA levels described for the macaque and human brain (see Allen 

Brain Atlas). 
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Recombinant Crym protein is localized in the cytoplasm and nucleus  

Little is known about the expression of Crym in cells, especially neurons. The cDNA for mouse Crym 

was cloned and a sequence encoding an HA (hemagglutinin) tag was added to its 3’ end. After 

transfection of HEK293T cell using this construct, expression of the recombinant protein was 

assessed by western blot using an anti-HA antibody. A single band migrating at ~37 kDa was 

detected, which is consistent with the theoretical apparent molecular weight of full length Crym and 

with the signal obtained using the anti-Crym antibody (Fig. 3A). Confocal microscopy analysis of HEK 

cells transfected with the Crym-HA construct using immunofluorescence detection of the HA tag 

indicated that Crym was located ubiquitously throughout the cell, including the nucleus and cell 

processes (Fig.3B). Transfection of primary cultures of striatal neurons was also performed with a 

construct expressing Crym fused to the Green fluorescent protein (GFP-Crym). Confocal microscopy 

analysis of the transfected neurons also indicated that GFP-Crym was located ubiquitously throughout 

the soma, the distal portions of neurites and within the nucleus (Fig.3C).  

Finally, to study the subcellular localization of recombinant Crym in vivo, we generated a lentiviral 

vector encoding Crym-HA (LV-Crym-HA) driven by the mouse PGK promoter. The lentiviral vectors 

that we use almost exclusively transduce neurons in vivo and in vitro (21, 34, 35). Adult C57Bl/6 mice 

received intrastriatal injection of the LV-Crym-HA and six weeks later, brains were processed for 

histochemical evaluation. Immunohistochemical detection of the HA tag showed that the recombinant 

protein filled the entire soma and dendrites of neurons (Fig. 4). The nucleus was also stained. 

Confocal analysis of the striatum in mice injected with LV-Crym-HA confirmed that indeed, striatal 

neurons displayed high levels of Crym in the cytoplasm and dendrites branches and spines as well as 

in the nucleus (not shown).  

 

Crym expression is reduced in HD models 

Crym mRNA expression has been found to be reduced in HD models and patients (11, 31, 32).  Here, 

we studied its expression in two additional genetic mouse models of HD. Analysis with qRT-PCR 

showed that Crym mRNA levels were significantly reduced by 43% in the striatum of heterozygous 

BACHD mice at 6 months of age (mean mRNA expression +/- SEM, wild type littermates (n=5): 5.96 

+/- 0.186; BACHD (n=6): 3.38 +/- 0.41; p<0.0005, unpaired Student t-test; not shown). Similarly, 

significant decrease in Crym mRNA levels was found in homozygous and to a lesser extent in 

heterozygous KI140CAG mice (13 months of age) as compared to wild type mice (mean mRNA 

expression +/- SEM, wild type littermates (n=8): 0.090 +/- 0.009; heterozygous KI140CAG mice (n=8): 

0.080 +/- 0.005; p<0.05; homozygous KI140CAG mice (n=8): 0.05 +/- 0.005; p<0.01. One way 

ANOVA: p<0.0001, F=9.948; post hoc Bonferroni’s multiple comparison test: wild type littermates VS 

heterozygotes n.s; wild type littermates VS homozygotes p<0.001;   heterozygotes VS homozygotes 

p<0.05) (Fig.5). Western blot analyses in KI140CAG mice showed reduced expression of Crym protein 

in the striatum as compared to age-matched wild type littermates in homozygous mice with a trend to 

decrease in heterozygous mice (mean protein expression normalized with tubulin +/- SEM, wild type 

littermates (n=3): 4.15 +/- 0.34; heterozygotes (n=8): 3.21 +/- 0.32 n.s.; homozygotes (n=8): 2.27 +/- 

0.13 ; p<0.01. One way ANOVA: p<0.01, F=11.13; post hoc Bonferroni’s multiple comparison test: wild 
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type littermates VS heterozygotes n.s; wild type littermates VS homozygotes p<0.01; heterozygotes 

VS homozygotes ns).  Expression levels in the cortex were very low and could not be reliably 

quantified (not shown). Thus, these results show that Crym expression is down regulated in HD 

models at both the mRNA and protein levels. 

 

Crym overexpression reduces the toxicity of an N-terminal fragment of mutant huntingtin  

We next examined whether overexpressing Crym could modify the toxicity of an N-terminal fragment 

of mHtt. We first designed and characterized a lentiviral vector to increase Crym expression in vivo 

(LV-Crym-HA). For the quantitative analysis of Crym-HA mRNA expression as compared to 

endogenous Crym, LV-Crym-HA was mixed with a lentiviral vector expressing GFP (LV-GFP) to allow 

dissection of the infected region under fluorescence binoculars. A lentivirus en -Galactosidase 

(LV-LacZ) was used as a control of viral load. The fluorescent region expressing GFP (and thus Crym-

HA) was dissected out for mRNA expression analysis. Results of the qRT-PCR showed that LV-Crym-

HA produced a 14.6 fold increase of Crym expression compared to control (LV-LacZ) (Mean mRNA 

expression +/- SEM; LacZ (n=4), 0.030 +/- 0.005; Crym-HA (n=4), 0.437 +/- 0.049; p<0.0002, unpaired 

Student t-test) (Fig.1S). Thus, the LV-Crym-HA was efficacious to increase Crym expression in the 

mouse striatum. 

To study the effect of Crym overexpression on the neurotoxicity of m-Htt in striatal neurons in vivo, we 

used a lentiviral model of HD in which stereotaxic injection of a lentiviral vector encoding a short 

fragment of mHtt (LV-Htt171-82Q) produces a progressive loco-regional cell dysfunction and 

degeneration characterized by m-Htt- and ubiquitin-containing inclusions, loss of markers linked to 

neuronal integrity and astrogliosis within 6 weeks (33, 36-38). This versatile model is particularly 

suitable to assess in vivo how mHtt toxicity can be modified by different factors that can be co-

expressed with the mutant protein using injection of a mixture of lentiviral vectors in mouse striatum 

[for a review (33)]. 

We stereotaxically injected a mixed suspension of LV-Htt171-82Q and LV-Crym-HA into the mouse 

striatum. At 6 weeks post-infection, LV-Htt171-82Q produced a loss of NeuN and DARPP32 labelling 

in vicinity of the injection site, indicating overt neurodegeneration (Fig.6). In separate experiments we 

checked that co-infection with LV-LacZ (control) did not change the size of the lesion seen using NeuN 

immunohistochemistry as compared to LV-Htt171-82Q alone [data not shown; mean+/-SEM; NeuN, 

LV-Htt171-82Q alone (n=8): 0.440+/-0.043 mm
3
; LV-Htt171-82Q+LV-LacZ (n=6) : 0.526+/-0.088 mm

3
; 

unpaired Student t test, non-significant (n.s.)]. Quantitative histological evaluation using NeuN 

immuno-histochemistry showed that the striatal lesions produced by a mixture of LV-Htt171-82Q and 

LV-Crym-HA were significantly smaller than those produced by LV-Htt171-82Q mixed with LV-LacZ 

(Fig.6) [mean NeuN-depleted volume +/-SEM; LV-Htt171-82Q+LV-Crym-HA (n=10): 0.229+/-0.033 

mm
3
; LV-Htt171-82Q+LV-LacZ (n=7): 0.442+/-0.095 mm

3
; Student t test, p<0.03]. In line with this, 

analysis of striatal degeneration using COX histochemistry also showed that the overexpression of 

Crym reduced the lesions produced by LV-Htt171-82Q (Fig.6) [mean COX-depleted volume+/-SEM; 

LV-Htt171-82Q+LV-Crym-HA (n=10): 0.236+/-0.024 mm
3
; LV-Htt171-82Q+LacZ (n=7) : 0.360+/-0.057 

mm
3
; unpaired Student t test, p<0.05]. In contrast, analysis of striatal degeneration using DARPP-32 
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immunohistochemistry did not show significant differences between groups (Fig.6) [mean DARPP-32-

depleted volume+/-SEM; LV-Htt171-82Q+LV-Crym-HA (n=10): 0.450+/-0.043 mm
3
; LV-Htt171-

82Q+LV-LacZ (n=7): 0.444+/-0.023 mm
3
; unpaired Student t-test, n.s.].  

We also assessed the number and size of Em48-positive nuclear inclusions in mice (Fig.6) injected 

with a mixture of LV-Htt171-82Q and LV-Crym-HA or a mixture of LV-Htt171-82Q and LV-LacZ. 

Microscopic quantitative analysis of the sections processed by Em48 antibody-immunohistochemistry 

showed that overexpression of Crym has a tendency to increase the number of Em48-containing 

inclusions [mean inclusion number+/-SEM; LV-Htt171-82Q+LV-Crym-HA (n=8): 36,306+/-4,091; LV-

Htt171-82Q+LV-LacZ (n=6): 29,525+/-7,112; Student t-test, n.s.]. The mean size of Em48 positive 

inclusions did not show differences between groups [Inclusion size, LV-Htt171-82Q+ LV-Crym-HA 

(n=8): 19.09+/-1.48 µm
2
; LV-Htt171-82Q+LV-LacZ (n=6): 18.39+/-1.86 µm

2
; unpaired Student t-test,  

n.s.]. The mean density of Em48 positive inclusions/mm² shows a higher tendency in the LV-Crym-HA 

injected mice [Density inclusions/mm², LV-Htt171-82Q+ LV-Crym-HA (n=8): 935.42+/-62.48 µm
2
; LV-

Htt171-82Q+LV-LacZ (n=6): 831.63+/-48.15 µm
2
; unpaired Student t-test,  n.s.]. The number and size 

of Ubiquitin-positive nuclear inclusions were not different from what was observed with Em48 staining 

(data not shown). 

 

DISCUSSION 

 

The mechanisms underlying the vulnerability of the striatum in HD remain unclear. In the present 

study, we tested the hypothesis that the protein Crym may play a role in the susceptibility of adult 

striatal neurons to mHtt. 

Our results show that expression of Crym mRNA is reduced in KI140 mice and BACHD mice. This is 

in agreement with the down regulation of its mRNA we and others previously found in different HD 

mouse models and HD patients (11, 31, 32, 39). In addition, we also show that the levels of the protein 

Crym is markedly reduced in KI140 mice, indicating that down regulation that occurs at the mRNA 

levels leads to loss of the protein, likely impairing its function in the striatum. We reasoned that this 

reduction in Crym expression could participate in the striatal vulnerability to mHtt toxicity. Results of 

our study indicated that Crym overexpression could reduce the susceptibility of striatal neurons in vivo 

toward the toxicity of an N-terminal fragment of human mHtt. The effect of the continuous expression 

of mHtt in lentiviral models has been characterized by the loss of expression of three markers, 

DARPP-32, NeuN and COX (33). The loss of NeuN immunoreactivity and the loss of COX 

histochemical labelling are associated with actual neuronal degeneration and dysfunction, as 

assessed using markers of cell death (40) and stereological cell counts (34). Thus, the present results 

indicate that overexpressing Crym reduces cell death induced by the mHtt fragment.  

The number and size of Em48- and ubiquitin-positive inclusions in the striatum, a neuropathological 

hallmark of HD, were not significantly changed by the overexpression of Crym. This suggests that the 

neuroprotective effects produced by the increased expression of Crym in striatal neurons are likely 

independent from a direct effect on mHtt expression or aggregation. If Crym had reduced the levels of 

cellular mHtt, we should have observed a lower number of inclusions. Neuroprotective effects can be 



     

8 
 

produced without major change in inclusions and aggregates size or numbers. For example 

expression of the Ip and Fp subunits of mitochondrial complex II protects striatal neurons against mHtt 

in vitro and in vivo, while the number and size of inclusions remain unchanged (36).  

The neuroprotective effects of Crym overexpression using a lentiviral approach in our mouse model 

are unlikely linked to methodological bias. Indeed we have tested different transgenes using the very 

same methods. Recently, we studied the striatal marker Capucin (Syndig1l) whose expression is 

markedly reduced in HD patients and mouse models (38). Overexpression of Capucin, using a similar 

LV-mediated approach produced no significant change in the toxicity of LV-Htt171-82Q in the striatum. 

Using similar co-infection approaches in rats, we have also identified the neuroprotective roles of 

some proteins against mHtt fragment, including the transcription factor CA150 (41), chaperone 

proteins (42), signaling proteins of the JNK pathway (43), the mitogen- and stress-activated protein 

kinase 1 (MSK-1) (30) and the subunits of mitochondrial complex II (36). 

The mechanisms underlying reduced expression of Crym mRNA (and, as shown here, of Crym protein 

as well) are unknown. The downregulation of striatal transcripts in HD may result from the functional 

disruption of striatum-specific transcriptional activators such as Bcl11b (44). Depending on the 

transcript, this phenomenon can be protective, detrimental or have no effect on striatal neurons 

(Francelle et al., 2014). The downregulated expression of several proteins enriched in the striatum and 

involved in different neuronal functions such as neurotransmission, intracellular signaling, and 

transcription have been reported to play a role in striatal vulnerability in HD. For example, compelling 

experimental evidence shows that the loss of A2A-R, CB1-R, MSK-1, STEP61, Bcl11b, and Fox1b 

likely renders striatal cells more prone to degeneration in HD models [for a review (20, 45)].  

The mechanisms of whereby Crym may reduce the vulnerability of striatal neurons to mHtt are not yet 

elucidated. However this may have to be associated with the possible alteration in the levels of the 

thyroid hormones in HD patients, given that thyroid hormones regulate multiple cellular events, 

including energy expenditure and cellular differentiation (46). In their pioneering studies, Aziz and 

collaborators showed that levels of T3, which is a ligand of Crym, are increased in a small cohort of 

HD patients as compared to age matched controls (47). In a larger cohort, no significant increase in 

T3 was shown but the hormone levels were found to be negatively correlated with severity of clinical 

impairments, supporting the hypothesis that the thyrotropic axis is altered in HD patients (48). In line 

with this, a functional interaction of mHtt with thyroid hormone receptor (TR) and the nuclear co-

repressor NCor, which represses TR-mediated transcription, has been reported, suggesting that mHtt 

may lead to abnormal transcription of TR targets in the HD striatum (49). In the striatum, such 

mechanism would be exacerbated by the loss of Crym, which is normally expressed at high levels, 

likely facilitating the transport of T3 from the cytoplasm into the nucleus where it interacts with TR. 

Further studies are awaited to experimentally address these hypothetical T3-dependent mechanisms. 

In summary, the present results indicate that the expression of the protein Crym in striatal neurons 

may be one of the important molecular determinants of the preferential vulnerability of the striatum in 

HD and further links HD pathogenesis with possible alterations of thyroid hormone-mediated 

regulation of transcription in the striatum.  
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MATERIALS and METHODS 

 

Animals 

 

Mice were housed in a temperature-controlled room maintained on a 12 hr light/dark cycle. Food and 

water were available ad libitum. All animal studies were conducted according to the French regulation 

(EU Directive 86/609 – French Act Rural Code R 214-87 to 131). The animal facility was approved by 

veterinarian inspectors (authorization n°A 92-032-02) and complies with Standards for Humane Care 

and Use of Laboratory Animals of the Office of Laboratory Animal Welfare (OLAW – n°#A5826-01). All 

procedures received approval from the ethical committee. Adult male C57BL/6J mice (25 g each; 

Charles River, Saint Germain sur l’Arbresle, France) were used for lentiviral infections and preparation 

of brain extracts for biochemical studies. For biochemical studies on endogenous Crym, brains of male 

Sprague-Dawleys rats (350g) were also used.  We also had access to coronal brain slices from a 

control adult macaque fascicularis. 

For the study of endogenous Crym mRNA levels in the context of HD, we used the transgenic mouse 

model of HD generated and maintained in the FvB inbred background, the BACHD mice, that express 

full-length human mHtt from its own regulatory elements on a 240-kb BAC, which contains the intact 

170-kb human htt locus plus about 20 kb of 5′ flanking genomic sequence and 50 kb of 3′ (50).  We 

used 6 month-old male BACHD mice for the present study, a time point where there is no detectable 

striatal atrophy (51).   

We also studied 13 month-old knock-in mice expressing chimeric mouse/human exon 1 containing 

140 CAG repeats inserted in the murine Htt gene (KI140) and their littermate controls. KI140 colony 

was maintained by breeding heterozygotes KI140 males and females (52). Mice were N3 (B6) on a 

129 Sv×C57BL/6 J background. The resulting different genotypes were used for the present study. At 

this age homozygous and heterozygous KI140 mice showed no major striatal atrophy although these 

animals had motor deficits (Rotarod, CAtWalk, and open field) (data not shown). 

Genotyping was determined from PCR of tail snips taken at 10–15 days of age for BACHD and KI140 

mice.  

 

Lentiviral vector construction, production and infection 

DNA sequences coding for green fluorescent protein (GFP) and mouse Crym were cloned into the 

SIN-W-PGK lentiviral vector (LV) to generate LV-GFP and LV-Crym, respectively (40). The lentiviral 

vectors expressing a mHtt fragment (LV-Htt171 82Q) or beta-galactosidase (LV-LacZ) have been 

described previously (34, 37). Viral particles were produced as described elsewhere (53). The particle 

content of the viral batches was determined by ELISA for the p24 antigen (Gentaur, Paris, France). 

LV-Htt171-82Q was used at a concentration of 150 ng/µl of p24, LV-Crym and LV-LacZ at a 

concentration of 100 ng/µl of p24. In experiments performed for PCR analysis, LV-GFP was mixed 

with LV-Crym or LV-LacZ at a concentration of 50 ng/µl of p24. After being anesthetized 

(Ketamine/xylazine), mice received a total volume of 2 µl of lentiviral suspension into the mouse 

striatum as previously reported (37, 38), using the following stereotaxic coordinates: 1.0 mm anterior 
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and 2.0 mm lateral to the bregma, at a depth of 2.7 mm from the dura, with the tooth bar set at 0.0 

mm. 

 

Histological and cytological analyses 

Animal studies. After deep anesthesia by intraperitoneal injection of a sodium pentobarbital solution 

(50 µg per gram of body weight), mice were transcardially perfused with 100 ml of phosphate buffer 

containing 4 % paraformaldehyde at 8 ml/min. The brains were removed, post-fixed overnight in the 

same solution, then cryoprotected by immersion in a 15 % sucrose solution for 24 hours followed by 

immersion in a 30 % sucrose solution for another 24 hours. Free-floating 40 µm-thick serial coronal 

sections throughout the striatum were collected using a freezing sliding microtome (SM2400; Leica 

Microsystems, Wetzlar, Germany). 

Immunohistochemistry. For immunohistochemistry, sections were treated with 0.3 % hydrogen 

peroxide for 20 minutes, washed three times in phosphate-buffered saline (PBS), blocked in PBS 

containing 4.5 % normal goat serum for one hour, then incubated 48 hours at 4°C in PBS containing 3 

% normal goat serum and one of the following antibodies: rabbit anti-DARPP 32 (Santa Cruz 

Biotechnology, Santa Cruz, CA; 1:1000), mouse anti-NeuN (Millipore, Molsheim, France; 1:1000), 

mouse anti-Em48 (Chemicon, MAB5374, Temecula, CA; 1:1000),rabbit anti-Ubiquitin (Wako 

Chemicals, Neuss, Germany; 1:1000), or mouse anti-HA (Covance, Princeton, NJ; 1:1000). Sections 

were rinsed three times in PBS before incubation with the appropriate anti-IgG biotinylated antibody 

(Vector Laboratories, Burlingame, CA) at a 1:1000 dilution for one hour. Staining was visualized by the 

addition of avidin-biotinylated peroxidase and incubation with DAB substrate (Vector Laboratories, 

Burlingame, CA) for 30 seconds to one minute. Stained sections were mounted on microscopic slides. 

 

Quantitative histological evaluation. The area of the striatal lesions resulting from LV-Htt171-82Q 

infection was delineated manually by identifying the border of the lesion (loss of DARPP-32 and NeuN 

immunolabelling).  Lesion area was delineated using 5x and 10x objectives. Depending on the antero-

posterior extension of the lesions, 3 to 8 coronal sections were analyzed for each mouse.  Observation 

of sections and calculation of the surface of lesioned area were performed using a Leica DM6000 

equipped with a motorized stage and an automated image acquisition and analysis system (Mercator 

software, Explora Nova, La Rochelle, France). The volume of the striatal lesion (V) was determined 

using the Cavalieri method (34, 36, 38). The number of Ubiquitin-positive inclusions was quantified as 

previously described (34, 36, 38) with the following modifications: the inter-section distance was 320 

µm (i.e. one in every seven sections was used) and observations were performed using a 10X 

objective on an Axioplan 2 Imaging microscope (Carl Zeiss, Le Pecq, France) equipped with a 

motorized stage and an automated image acquisition and analysis system (Mercator software, Explora 

Nova). With this set-up, objects with an apparent cross-sectional area > 3 µm
2
 (i.e. diameter > ~1 µm) 

could be reliably detected. 

 

Real-time quantitative PCR 
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Adult mice were deeply anesthetized by intraperitoneal injection of a sodium pentobarbital solution (50 

µg per gram of body weight) before decapitation. The brains were immediately removed and 

positioned in a coronal brain matrix (Ted Pella, Redding, CA). 

For the quantification of overexpressed Crym mRNA levels, mice were infected with a mixture of LV-

Crym-HA and LV-GFP. Injection of LV-LacZ was used as controls for viral load.  The striatal region 

displaying fluorescence was dissected out using a circular punch (1.5 mm diameter) from 1 mm-thick 

fresh coronal brain sections visualized under a fluorescence binocular (Leica). Total RNA extraction 

and real-time quantitative RT-PCR (qRT-PCR) were performed as previously described (38, 54), using 

the following primer sequences for Crym mRNA Crym-U CTATGAGGGCCACAGCAACA and Crym-L 

ATGACCGCCAGCAGGGAG. Primers recognized sequence in mouse (endogenous) Crym and 

recombinant Crym-HA after viral infection.  

 

Cell studies 

The primary culture of striatal neurons has been performed as previously described (21). These 

neurons were electroporated with the mouse striatal neuron Nucleofector® kit according to the 

supplier’s manual (Amaxa, Biosystem, Köln, Germany) for detection of a chimeric eGFP-Crym 

construct. 

Human embryonic kidney 293 T (HEK293T) cells were grown at 37°C in 5% CO2 in Dulbeco's 

modified Eagle's medium (DMEM) supplemented with 10% bovine calf serum, 1% L-glutamine and 

antibiotics (50 units/ml penicillin and 50 μg/ml streptomycin). For the study of recombinant Crym, 

cultured cells were seeded on glass coverslips, and transfected with recombinant Crym-HA vector or 

equivalent amount of empty vector for HEK293T cells, and 48 h later fixed with cold-ice methanol and 

EGTA. Cells were rinsed with TBST, and blocked with 2% BSA, 0.1% Tween-20 in TBS. Primary 

polyclonal antibody rabbit anti-HA (H6908, Sigma, St Louis, MO, USA; 1:800) was used at 2 μg/ml in 

2% BSA, 0.1% Triton X-100, 0.1% azide in PBS and incubated for 1 h at room temperature. Similar 

attempt to detect native recombinant Crym protein using the affinity purified IgY chicken anti-Crym 

(Michel – see below for western blot) were also used unsuccessfully. Cells were washed with 0.05% 

Tween-20 in PBS and incubated with the appropriate fluorescent secondary antibody for 1 h. Nuclei 

were counterstained with Hoechst (DAPI). Coverslips were mounted in FluorSafe and examined with a 

Leika microscope fitted with the appropriate fluorescence filters, Retiga camera and Morphostrider 

imaging software prior to analysis in Confocal Zeiss LSM for eGFP-Crym in primary cultures and the 

SPE TCS Leica confocal with Leica LAS AF interface for the HEK experiments. 

 

Biochemical analysis 

Cell preparation. Cells were harvested 48h after transfection and lyzed in modified RIPA buffer : 

50mM Tris pH8.0, 50 mM NaCl, 1 mM EDTA, 0.5% Triton-X100, 1% NP40 and protease inhibitor 

cocktail (Roche). Cell lysates were centrifuged at 15,000 g for 20 min at 4°C.  

Brain tissue preparation. Mice and rats were euthanized by rapid decapitation and brains were 

removed, blocked and cut into 1-mm-thick coronal slices using brain matrices (Ted Pella, Redding, 

CA). On one coronal slice (+1mm from bregma), tissue punches were taken from the striatum using a 
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tissue corer (1.5-mm in diameter) and the cerebral cortex was dissected out using scalpel blades 

under binoculars.  

Cortical and striatal (caudate and putamen) tissue samples were prepared from a control non-human 

primate (macaca fascicularis, #2055, male ~7years old). Briefly, the animal received a lethal dose of 

pentobarbital, brain was rapidly removed from the skull and cut into 5 mm-thick coronal slabs. Slabs 

were put on ice-cooled Petri dish and the pre-commisural putamen, caudate, and a piece of cerebral 

cortex (grey matter ribbon) in the somato-sensori cortex were dissected out using a scalpel blade.  

For determination of total level of Crym expression in brain tissue, punches were lysed in 50 mM Tris 

pH8, 150 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, and 1% NP40, with protease inhibitor cocktail 

(Complete, Roche) and phosphatase inhibitor cocktail 2 (Sigma) using glass/glass pestle potters. 

Differential centrifugation experiments were performed to determine the cytosolic levels of Crym in 

comparison with cell membranes, tissue punches were homogenized in solution A containing 50 mM 

Tris pH 7.4, 100 mM NaCl, 0.25 M sucrose with protease inhibitor cocktail (Complete, Roche)  using a 

Teflon pestle and Thomas potter. After 10 min centrifugation at 10,000 g, the supernatant S2 was 

collected and centrifuged at 135,000 g, 30 min 4°C. The corresponding supernatant (S0) contained the 

cytosolic fraction, which was mixed in Laemli. The pellet P2 (containing membranes) was re-

suspended to further remove cytosolic contaminants, placed on a 1.7 M sucrose cushion and 

centrifuged at 135,000g for 30 min at 4°C. The material (membranes) blocked at the 0.25 /1.7 M 

sucrose interface was collected and re-suspended in solution A, then centrifuged again 30 min at 

135,000g, 4°C to remove sucrose; Pellet was re-suspended  in Laemli before electrophoresis.  

Western blotting. Total protein concentrations were determined using the BCA kit (Pierce). Equal 

amounts of total protein extract were subjected to SDS-PAGE in 4%-12% Bis-tris gels (NuPAGE® 

Novex Bis-tris midi gel 15wells, Invitrogen) and transferred to nitrocellulose membranes. Blocked 

membranes (5% milk in TBS-0.1% Tween-20) were incubated with primary antibodies : Crystalline μ 

[1:500, chicken IgY directed against AVGASRPDWRELDDE and affinity purified (AgroBio)], actin 

(1:2000, mouse, Sigma), hemagglutinin (HA) (1:3000, mouse, Covance), Dopamine- and cAMP-

regulated PhosphoProtein 32 kDa (DARPP-32, 1:3000, rabbit, Cell Signaling), α-tubulin (1:3000, 

mouse, Sigma); and washed three times with TBS-0.1% Tween-20 (TBST) for 10 min. Membranes 

were then labelled with secondary IgG-HRP antibodies raised against each corresponding primary 

antibody. After three washes with TBST, the membranes were incubated with ECL chimioluminescent 

reagent (Clarity Western ECL substrate; Biorad or Immun-Star WesternC kit, BioRad) according to the 

instructions of the supplier. Peroxydase activity was detected with camera system Fusion TX7 (Fisher 

scientific). Normalization was done by densitometry analysis with Bio1D software. 
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FIGURE LEGENDS 
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Figure 1. Western blot analysis of the expression of Crym protein in the mammalian brain.  

Representative western blots of total protein extracts prepared from adult mouse (Ms) and rat striatum 

(St) and cerebral cortex (Cx) (parietal) (A) and from macaque caudate (Cd), putamen (Put) and 

cerebral cortex (motor cortex) (B). C, semi-quantitative analysis of western blots of macaque brain 

extracts indicating preferential expression of Crym in caudate and putamen as compared with cerebral 

cortex.  

*, p<0.006, One-way ANOVA (p<0.01) and post hoc Bonferroni test. 
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Figure 2. Cytosolic localization of Crym in neurons.  

Western blot analysis of the cytosolic (cyt) and membrane (mb) fractions after differential 

centrifugation of homogenates prepared from the rat striatum and cerebral cortex (parietal). A, 

representative western blot. B, quantitative analysis of western blots. Results are expressed as mean 

+/- standard error of the mean.  

#, p<0.004 ;  *, p<0.003; One way ANOVA (p<0.001) and post hoc Bonferroni test.   
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Figure 3.  Recombinant Crym in cultured cells.  

HEK293T cells were transfected with a Crym-HA vector (A, B). Neurons were transfected with eGFP-

Crym construct. A, western blot showing the detection of recombinant Crym-HA protein as a single 

band using either an anti-HA or an anti-Crym antibody. B, immunofluorescence detection of Crym-HA 

in HEK293T cells. C, expression of the eGFP-Crym protein in striatal neurons in primary culture. 

Images were obtained using confocal microscopy.  Scale bars, 5 and 1 µm in left and right image 

respectively; 10 µm in C. 
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Figure 4.  Recombinant Crym-HA expression in neurons after lentiviral infection of the mouse 

striatum.  

Photomicrographs showing the expression of Crym-HA 6 weeks after intrastriatal injection of LV-

Crym-HA as revealed using anti-HA immunohistochemistry. A, low power magnification showing the 

expression in the anterior striatum. B, higher magnification showing densely labelled /compact 

neurons expressing Crym-HA. C-E,  typical isolated striatal neurons expressing Crym-HA at distance 

from the core of the infection showing typical medium size spiny neurons morphology. Note in D and E 

the dense labelling in the entire soma, and the presence of immuno-positive dendritic spines (white 

arrowheads). Scale bars: 200 µm in A, 20 µm in B and C, 10 µm in D and E.  
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Figure 5. Crym expression in the KI140CAG mouse model of HD.  

Endogenous Crym expression was characterized by qRT-PCR (A) in the striatum and by western blot 

(B, C and D) in the striatum and cerebral cortex of knock in heterozygous (+/KI) and homozygous 

(KI/KI) 140CAG mice and wild type littermates (+/+).  Results are expressed as mean +/- standard 

error of the mean (n=3-8).  

*, p<0.05; **p<0.01, one-way ANOVA, and post hoc Bonferroni test. 
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Figure 6. Effects of Crym-HA overexpression in the striatum on the neurotoxicity of an N-

terminal fragment of mHtt.   

Adult male mice received a bilateral intrastriatal injection of LV-Htt171-82Q mixed with either LV-LacZ 

(control) or a lentiviral vector coding for Crym-HA (LV-Crym-HA). Six weeks after infection, brains were 

processed for histological evaluation using NeuN, DARPP-32 and Cytochrome oxidase (COX) 

histochemistry to assess the mHtt171-82Q toxicity. Left panel: typical coronal mouse brain sections 

where areas with depleted staining are delineated. Right panel: histograms representing quantitative 

determination of the volume of the striatum with depleted staining in the different groups and the 

number of ubiquitin-positive inclusions.  Results are expressed as mean (n=7-10/group) +/- standard 

error of the mean. Scale bars: Neun, Cox, DARPP32, 100µm; EM48 upper images, 200µm; EM48 

lower images, 20 µm. 

*, p<0.05, unpaired Student t test.  
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Figure 1S. Overexpression of Crym-HA in the striatum using lentiviral vectors. A mixture of a 

lenti-viral vector encoding Crym-HA (LV-Crym-HA) mixed with a vector encoding GFP was 

stereotaxically injected into the striatum of adult mice. At 6 weeks post-surgery, fluorescent striatal 

tissue was dissected out for mRNA extraction and qRT-PCR analysis. Results are expressed as mean 

+/- standard error of the mean, (n=4 per group). *, p<0.002, unpaired Student t test.  
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Abstract 

 

Doublecortin-like protein kinase 3 (Dclk3) is enriched in the striatum in mammals and its 

expression is reduced in Huntington's disease (HD) patients and HD mouse models. We demonstrate 

that overexpression of Dclk3 decreases mutant huntingtin-induced neurotoxicity in vivo in a lentiviral 

mouse model of HD. Knock down of Dclk3 in this model aggravated striatal degeneration. 

Overexpression of Dclk3 using adeno-associated viral vectors in a knockin mouse model of HD tended 

to improve motor signs. MRI examination also shows beneficial effects of Dclk3 in these mice. We 

show that the expression of the kinase domain through its catalytic activity is sufficient to protect 

against mutant huntingtin. A dead kinase mutant (K543M) was unable to protect in vivo. Dclk3 and its 

breakdown products (BP) containing the kinase binds to microtubules and are also present in the 

nucleus.  Preliminary data indicate an abnormal Dclk3 cleavage and nuclear localization in the HD 

striatum. A yeast two-hybrid screen identified potential protein partners of the kinase domain that are 

known to be involved in regulation of transcription. These novel results indicate that mutant huntingtin-

induced defects in Dclk3-dependent neuronal survival pathway could participate in the preferential 

susceptibility of the striatum in HD. 
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Introduction  

Huntington's disease (HD) is an inhereted neurodegenerative disorder caused by a mutation 

in HD gene. The main HD hallmark is an early loss of medium spiny neurons (MSNs) in the striatum 

followed by massive neurodegeneration through the whole brain.  Defects in many cellular functions 

and pathways have been suggested to play a role in HD pathogenesis. (Milnerwood and Raymond, 

2010; Ross and Tabrizi, 2010). None of these mechanisms can explain the preferential early 

vulnerability of the striatum in HD.  

One hypothesis is that some factors, selectively expressed in the striatum may confer to 

GABAergic projection neurons (MSNs) their particular sensitivity to degeneration (Brouillet et al., 2005; 

Han et al., 2010).  Dopamine and its subtype 2 membrane receptors (D2R) as well as the small 

GTPase Rhes have been shown to be preferentially expressed in the striatum and rendered striatal 

neurons highly vulnerable to mutant Htt (Charvin et al., 2005; Benchoua et al., 2008; Charvin et al., 

2008; Subramaniam et al., 2009). On the contrary, neuroprotective factors, which expression is 

reduced in the HD striatum would also contribute to rendering striatal neurons more vulnerable to mHtt 

(Francelle et al., 2014). To date, there are only a few of these striatal markers that have been 

experimentally identified as real modifiers of mHtt. In this context, we performed a transcriptome 

SAGE analysis of 11 regions in the mouse brain identified approximately 120 genes with preferential 

expression in the striatum (de Chaldee et al., 2003; Brochier et al., 2008). Many gene products show a 

significantly reduced expression in the brain of HD patients or HD mouse models but their function are 

unfortunately totally unknown. 

Dclk3 is one of these striatal markers. It is a third member of a new family of kinases named 

"Double Cortin like Kinase" (Ohmae et al., 2006b). Dclk3 displays a conserved C-terminal 

"serine/threonine kinase" domain similar to Ca
2+

/calmodulin kinase IV (CaMKIV) and a possible 

Double Cortin" (DC) domain anchoring Dclk proteins to microtubules (supplemental Fig.S0). Dclk3 

displays a higly conserved kinase domain and a poorly conserved DC domain as compared to Dclk1 

and Dclk2. Striatal expression of Dclk3 is decreased in R6/2 (Brochier et al., 2008), and knock-in 

mouse models of HD (Kuhn et al., 2007). We hypothesized that loss of Dclk3 may precipitate striatal 

degeneration and its restauration could contribute to MSN survival in HD. 

 

Results 

 

Preliminary Dclk3 characterization in neurons indicate perturbation in HD  

Mouse Dclk3 primary sequence suggests two Open Reading Frames (ORF) possible leading 

to a large (L-Dclk3, 3498 base) and a short (S-Dclk3, 2800 base) form mRNAs of Dclk3. Both forms 

(L-Dclk3 and S-Dclk3) conserve the full conserved kinase sequence but only L-Dclk3 has the full 

putative DC domain.   

Northern blot analysis using wild type (WT) mouse mRNA preparation from different brain 

regions (Cortex, Hippocampus, Striatum, Thalamus, Cerebellum, whole brain) showed the prominent 

Dclk3 form in the brain is L-Dclk3, leading theoretically to a 823 aa protein in mouse (790aa in human) 

(Fig. 1S).  
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A lesser expressed S-Dclk3 (652aa in mouse) could however be detected in the striatum (Fig. 

1S). The blot also showed both forms were highly expressed in the striatum when compared to the 

others brain areas tested. 

Several dataset indicated a reduced Dclk3 mRNA expression in various HD mouse models 

(Kuhn et al., 2007). We could check in the striatum of 12 month-old heterozygous and homozygous 

knock-in 140CAG HD mice that Dclk3 mRNA expression was significantly reduced in comparison with 

wild type littermates (Fig. S2). 

 We next studied Dclk3 protein expression using different approaches. Since no commercially 

antibody is available to detect mouse Dclk3, a hemagglutin tag (HA) was added at the C-terminus of 

the recombinant protein to more easily detect the proteins. L-Dclk3 and S-Dclk3 were cloned in 

lentiviral vectors (LV). Primary culture of neurons and striatum of WT mice were infected with either 

LV-L-Dclk3-HA or LV-S-Dclk3-HA and analyzed in Western blot to determine the size of L- and S-

Dclk3 proteins. Surprisingly, full length and cleaved forms of Dclk3 were found (Fig. 1, A). All the HA-

positive bands corresponded to the C-terminal part of the protein containing the kinase domain.  In 

neurons in culture, infection with LV-L-Dclk3-HA and LV-S-Dclk3 led to the detection of the full length 

proteins at 100 kDa and 75 kDa band respectively (Fig. 1, A). In addition, bands at ~70, ~55, and ~42 

kDa were found. Similar bands were found in the adult mouse striatum after infection but, in addition, a 

fainter band at 23 kDa was also seen when S-Dclk3 was expressed (Fig. 1, A).  

To better characterize the cellular localization of Dclk3, HEK were transfected with L-and S-

Dclk3-HA constructs. Dclk3-HA co-localized with microtubules (alpha-tubulin) with the strongest 

expression in the perinuclear area (Fig.1, B). S-Dclk3-HA localization was also mainly cytoplasmic. 

Cytoplasmic localization of L-Dclk3-HA was also confirmed in primary culture of rat striatal cells and 

differentiated Neural stem cell (NSC) derived from human Induced pluripotent stem cell (IPSC) after 

LV-mediated overexpression. Biochemical experiments confirmed that L- and S-Dclk3-HA could bind 

to microtubules prepared from primary culture of neurons (not shown).  

A similar cytoplasmic localization of Dclk3-HA was also seen in striatal neurons in mice using 

the anti-HA antibody after infection with LV-Dclk3-HA (Fig. 2). This could be also seen using an 

antibody directed against human Dclk3 (ab21890002, central region a.a. 200-500). However, this 

antibody also detected a nuclear signal as seen using confocal microscopy (Fig. 2, B). This nuclear 

signal was absent when the primary antibody was omitted. Since the nuclear signal was not seen with 

the anti-HA antibody, this suggested that a cleaved product of Dclk3 (from which the HA tag has been 

removed) could be present in the nucleus.  

Since the anti-hDclk3 antibody weakly cross-reacts with mouse Dclk3, we performed 

immunochemical detection of endogenous Dclk3 in the brain of a macaca fascicularis (Fig. 2, C). In 

fixed brain sections, the anti-hDclk3 antibody labelled striatal neurons. To a lesser extent cortical 

neurons could be also detected (supplemental Fig. S3). In the striatum, immunohistochemical labelling 

suggested that the protein (and/or one of its fragments) was not exclusively in the perinuclear region of 

neurons but also in the nucleus (Fig. 2). 

The cellular localization of endogenous Dclk3 was assessed after differential centrifugation of 

tissue homogenates prepared from macaque putamen samples (Fig.3, B).  
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Fractions enriched in cytoplasm or nuclei were prepared. Western blot analysis of the 

cytoplasmic fraction showed a band at the apparent molecular weight compatible with macaque full 

length Dclk3 protein (~70kDa) and another lower molecular weight band (~38 kDa) (Fig.3, B). These 

bands were weaker in the nucleus, while bands at lower molecular weight (~26 and 20 kDa) could be 

seen.  

A similar approach was conducted in control human striatal samples (Fig.3, C). The profile of 

anti-hDCLK3 immunoreactivity seen in the cytoplasmic and nuclear fraction was very similar to that 

seen in the macaque brain. We next asked in a pilot experiment whether Dclk3 expression could be 

affected in striatal samples from HD patients (grade 1 and 2) in comparison with controls. Western blot 

analyses indicated a global reduction of the bands revealed with the anti-hDclk3 antibody as 

compared to controls. However, we noticed an elevation of the levels of one band (~52 kDa) in the 

nuclear fraction in the HD samples as compared to controls where this band was barely seen (Fig. 3).  

Since it was difficult to ascertain the specificity of the bands we observed in human samples 

(which are likely Dclk3 cleavage products but can also be unrelated proteins cross-reacting with the 

antibody), we examined the pattern of cleavage of recombinant S-Dclk3 in BACHD mice that express 

full length mHtt with 97 glutamines (Gray et al., 2008). BACHD mice were infected at 6 months of age 

with LV-S-Dclk3-HA and 4 weeks later the striatum was analysed. Western blot analysis using the 

anti-HA antibody showed a general change in the proportion of Dclk3-HA breakdown products (Fig. 3, 

D), the 57 and 25 kDa bands been reduced while the  ~48 kDa band was increased, reminiscent of 

that seen in HD patients (red arrows). 

Thus these results indicate that Dclk3 and its cleavage products are mainly cytoplasmic with a 

smaller proportion present in the nucleus. In HD, Dclk3 expression is reduced and its cleavage 

appears changed, expecially in the nucleus. 

  

Neuroprotection of Dclk3 in HD models  

We examined whether Dclk3 (L and S-Dclk3) expression could change the toxicity induced by 

the expression of mutant huntingtin (mHtt) in vivo using lentivrial vectors (LV). LV-Htt171-82Q was 

used to overexpress an N-terminal fragment of mHtt and produce striatal lesions (Galvan et al., 2012; 

Ruiz and Deglon, 2012). A lentival vector coding for βgalactosidase (LV-βgal) was used as a control.  

We injected LV-βgal, LV-S-Dclk3-HA and LV-L-Dclk3-HA with LV-Htt171-82Q in the mouse striatum. 

We checked that Dclk3 levels were increased after infection with LV coding Dclk3 (supplemental Fig. 

S4). At 6 weeks post-infection, the lesion was evaluated by immunostaining and 

immunoshistochemical labeling (Fig.4). The expression of Htt171-82Q and gal (control group) 

produced a consistent lesion size characterized by the loss of the Neuronal marker (NeuN), 

cytochrome c oxidase (COX) and DARPP-32 stainings. The lesion induced by the co-expression of 

Htt171-82Q and both froms of Dclk3-HA (L- and S-Dclk3-HA) were significantly smaller as it was 

visualized by the NeuN and COX staining compared to control group  (Fig. 4). Ubiquitin-positive 

agregages were visualized and quantified in the infected region in all groups. No significant 

differences were found indicating that neuroprotection is not directly related to modification of mHtt 

accumulation/aggregation. 
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We also generated a lentiviral vector expressing a shRNA targeting both L-and S-Dclk3 (LV-

shDclk3) to determine if loss of Dclk3 could exacerbate mHtt toxicity in vivo (Fig.5, A) As a control, we 

used the shRNA targeting luciferase mRNA, a non mammalian gene. Analysis using qRT-PCR of the 

infected striatal region showed that LV-shDclk3 produced a significant 75% reduction of Dclk3 mRNA 

expression (supplemental Fig.S4). In these ShRNA constructs, GFP is also expressed as a reporter 

gene of shRNA expression under the mouse PGK promoter. The GFP intensity measured after 

infection with the two LVs coding the shRNAs was similar suggesting equal levels of expression 

(Fig.5, B). LV-shLuc and LV-shDclk3 injected alone in the mouse striatum did not create a lesion by 

themselves (not shown). The same amount of either LV-sLuc or LV-shDclk3 was mixed with LV-

Htt171-82Q and injected into the striatum. Since in these experiments, we anticipated an acceleration 

of mHtt-induced neurodegeneration by LV-shDclk3, we used GFP expression levels as readout of 

neuronal integrity at 3 and 6 weeks post-infection (Fig.5, C). LV-Htt171-82Q produced a reduction in 

the levels of GFP in the striatum at 3 weeks post infection that was more pronounced at 6 weeks in the 

shLuc control group. In the shDclk3 group, this loss was significantly more profound. Analysis of the 

striatum using DARPP-32 immunohistochemistry at 6 weeks confirmed that lesions produced by mHtt 

in presence of shDclk3 were larger than those found in controls injected with LV-shLuc (Fig.5, D). 

Thus, Dclk3 downregulation facilitates mHtt toxicity in MSN.  

These experiments show that overexpresion of Dclk3 is neuroprotective against mHtt toxicity 

in vivo, while knockdown of Dclk3 seems to facilitate mHtt.  

 

Study of Dclk3 overexpression using AAV2/10 in knockin 140CAG mice 

We next investigated if the restauration of Dclk3 expression in the striatum could improve their 

phenotype in HD mice. We used AAV2/10 vector coding for L-Dclk3 (AAV-L-Dclk3) and tested whether 

infection of the striatum with this AAV could produce beneficial effects in the HD mouse models of HD. 

This vector allows wide diffusion in the striatum, which was prerequisite to express Dclk3 in a large 

proportion of the striatum and expect detectable functional effects (Fig.6, A). In a pilot experiment in a 

few controls and N171-82Q transgenic mice (supplemental Fig. S5, A; B), we observed that the AAV-

L-Dclk3 was well tolerated (supplemental Fig. S5, C) and tended to produce a beneficial effect in 

female HD mice when testing their motor performance as seen in the Rotarod (supplemental Fig. S5, 

D).  

We then launched a study using the KI140CAG mouse model of HD (Menalled et al., 2003). 

Homozygous KI140 mice were injected stereotaxically with AAV-L-Dclk3 or AAV-GFP at 5-6 months of 

age (Fig.6, A). At this age, homozygous KI140 mice show no major neurological signs. Behavioral 

evaluation was performed at 8 and 12 months of age in the infected mice. In vivo brain imaging was 

also conducted at 12 months of age (Fig.6, B).  

KI140 homozygous mice showed significant deficits in the rotarod test (redued latency to fall) 

at 12 months and the open field test (reduced rearing behavior) as compared to wildtype littermate 

controls (supplemental Fig. S6, A-E). The deficits were lighter in heterozygous KI140 mice. 

 



Draft Galvan, Francelle et al. 3/12/2014 

 

7 

 

In the present experiment, analysis of the wildtype littermates using the rotarod test showed 

that AAV-Dclk3 and its control AAV-Dclk3 produced behavioral perturbations, the animal displaying 

poorer performance when compared to uninjected mice of the same colony. KI140 mice infected with 

AAV-GFP showed rotaror performance similar to the wildtype mice infected with AAV-GFP or AAV-

Dclk3. However, the homozygous KI140 mice infected with AAV-L-Dclk3 performed significantly better 

in the rotarod test when tested at 8 months of age (i.e. 4 month post surgery) as compared to AAV-L-

Dclk3 (Fig. 6, C). This effect was milder at 12 months of age and was not significant. In the open field 

test, non-significant trend were seen when considering the distance traveled, the mean velocity of the 

animal displacements and the time spent in groaming behavior. However, the rearing behavior, which 

is decrease in HD mice as compared to control, was normalized by AAV-L-Dclk3 (Fig.6, D). We also 

analysed the gait and walk of the mice using the CatWalk apparatus. In this test, mice are trained to 

cross a bridge and foot prints are videorecorded for kinetic image analysis. Analysis showed that the 

displacement of the HD mice as compared to wildtype mice was mildly but significantly altered (Fig.6, 

F). In particular, body velocity of KI140 mice infected with AAV-GFP was slower than wild type mice 

injected with the same vector. Velocity tended to be improved in KI140 mice infected with AAV-L-

Dclk3. Interestingly, the mean variation of velocity when crossing the bridge was significantly 

increased by almost two fold in KI140 mice infected with AAV-GFP as compared to wild type mice, 

suggestive of saccaded displacements in HD mice. This was fully corrected in HD mice infected with 

AAV-Dclk3. KI140 mice infected with AAV-GFP also showed deficit in the forelimb grip strength test as 

compared to infected wildtype littermates.  KI140 mice injected with AAV-L-Dclk3 showed better 

performances than KI140 mice infected with AAV-GFP (Fig.6, E).  

 

A few wild type and homozygous KI140 mice injected with AAVs were examined at 12 month 

old using 1H-proton NMR spectroscopy and MRI at 11.75 teslas to characterize the striatum in vivo. 

Volumetric analysis of the striatum showed a trend to striatal atrophy in KI140 mice infected with AAV-

GFP as compared to wild type mice (Fig.7, A). This trend to atrophy was not seen in KI140 mice 

infected with AAV-Dclk3. Neurochemical profile seen by NMR spectroscopy showed significant 

changes in homozygous KI140 mice infected with AAV-GFP as compared to wild type mice (Fig.7, A). 

Concentrations in “neuronal” related metabolites GABA, NAA and glutamate were decreased in 

KI140/AAV-GFP mice (Fig.7, B; C). An increase in glutamine and a loss of choline and taurine were 

observed. In the KI140 mice infected with AAV-L-Dclk3, these changes were not significantly changed. 

However, elevation of glutamine seen in KI1140/GFP mice as compared to controls was partially 

diminished in KI140/AAV-L-Dclk3 mice (Fig.7, B; C).  

 

These results showed that restauration of Dclk3 expression in KI140 mouse can ameliorate 

some of their motor sign and neurochemical changes. 
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Kinase domain of Dclk3 underlies neuroprotection  

To better understand the possible mechanisms underlying the neuroprotective effects of 

Dclk3, we studied the role of its kinase domain. Kinase protein activation and regulation follow a 

relatively well described pathway. Based on the homology of Dclk3 with CaMKII, we investigated if 

Dclk3 followed its same pattern of activaton. CaMKII requires an initial autophosphorylation of its 

threonine 286, for the activation of the kinase catalytic site. A similar threonine in S-Dclk3 and Kin-

Dclk3 (i.e. Threonine 457 of L-Dclk3) are conserved within a motif of charged amino acids reminiscent 

of that existing in vicinity of CaMKII threonine 286. Site directed mutagenesis was used to create the 

substitution Th289>Ala (T289A) in S-Dclk3 (supplemental Fig.S7, A). We assesed if this mutation of 

S-Dclk3 could modifiy the neuroprotection in vitro. Overexpression of mHtt (Htt171-82Q) in primary 

culture of neurons produced degeneration of transfected neurons, increasing the number of 

fragmented nuclei. Co-infection with wild type S-Dclk3 showed a neuronal neuroprotective effect 

against mutant Htt toxicity. The T286A Dclk3 mutant showed no protective effects when wo-infected 

with mHtt.  (supplemental Fig.S7, B). This indicated that perturbating kinase activation could disturb its 

capability to produce protection against mHtt. 

To assess the role of the kinase domain in vivo, we cloned a Dclk3 domain containing only the 

kinase domain without the N-terminal DC domain (LV-Kin-Dclk3-HA).  Wild type mice were infected 

with LV-Kin-Dclk3 or LV-βGal (control) and LV-Htt171-82Q. Histological evaluation of NeuN and Cox 

staining showed striatal lesions were significantly reduced by overexpression of Kin-Dclk3 as 

compared to controls  (t-test, p<0.05) (supplemental Fig.S8). This experiment demonstrates that the 

overepression of Dclk3 kinase domain is sufficient by itself to produce a neuroprotection versus mHtt.  

We next generated a dead kinase mutant by point mutation at the kinase ATP binding site by 

searching for homologies with many other kinases. We identified K543 as highly conserved (Fig.8, A). 

Mutation of this amino acid in other kinases abrogates kinase activity. We generated a K543M 

substitution in Dclk3-Kin fragment. We checked that the kinase domain of wildtype mouse S- and L-

Dclk3 and Dclk3-Kin fragment were functional using 
32

P-ATP autophosphorylation assays (Fig.8, B; 

C). All three could readily autophosphorylate. We compared the autophosphorylation activity of L-

Dclk3 and Dclk3-Kin with those of the K543M mutants. Results showed that the mutants were unable 

to autophosphorylate. In line with this, while the wild type forms could phosphorylate the pan-substrate 

Myelin Basic Protein (MBP) the K543M mutants were inefficient (Fig. 8, D). Thus the K543M mutants 

could be considered as “dead kinase” proteins.  

We cloned the K543M Kin-Dclk3-HA mutant in a lentiviral vector and tested its potential 

neuroprotective effects against Htt171-82Q toxicity in mice (Fig. 8, E). The levels of expression of the 

mutant as revealed by HA immunohistochemistry was similar to that of the wild type fragment in vivo 

(not shown). Histological evaluation of the striatal lesions produced by mHtt showed that the wild type 

kinase domain significantly reduced the lesions as found in the experiment reported above, whereas 

the deadkinase domain was not protective when evaluating the lesion volume using the marker of 

neuronal neuclei NeuN (Fig. 8, F; G) and the marker of neuronal functionality Cytochrom C oxidase 

(COX) (Fig. 8, H; I). Thus these results show that the kinase domain of Dclk3 is sufficient to produce 

neuroprotection and this involves its catalytic activity. 
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Kinase Dclk3 interactors  

We launched a yeast two hybrid screen using the Kin-DCLK3 as bait in brain human mRNA 

bank to identify potential substrates (Fig. 9, A). A total of 7 interactions were found pointing to TADA3, 

BTBD9, TRIM89, SALL1, ZNF12, ZNF292 and ZNF366 (Fig. 9, B). All these proteins possess zinc 

finger domains. Bioinformatics search for experimentally validated protein partners for these proteins 

indicates that they interact with partners involved in macromolecular complexes involved in regulation 

of transcription in human. A similar analysis using only mouse data leads to the same conclusion. 

Amongst the seven Dclk3 kinase domain partners, the protein TADA3 (Transcriptional adapter 3) 

presents the highest number of known partners (Fig. 9, B). Co-immunoprecipitation experiments after 

transfection of HEK cells showed that TADA3 tagged with V5 could be pulled down using Kin-Dclk3-

HA (Fig. 9, C). These preliminary results suggest that the kinase domain of Dclk3 may preferentially 

interact with proteins involved in transcription. This may, at least in part, participate to the 

neuroprotective effect of the kinase. 

 

Discussion 

 

The present study shows that a short and a long form of Dclk3 can be identified in the mouse 

striatum, the long form appearing to be the most prominent specie. We verified that, consistent with 

previous observations, the level of Dclk3 expression is reduced in the striatum of KI140CAG mice, a 

genetic mouse model of HD characterized by slow progression of symptoms and neurodegeneration. 

We cloned the two mouse forms of Dclk3 in lentiviral vectors that correspond to two ORF. Results 

showed that the increased expression of the two froms of Dclk3 using these lentiviral vectors protects 

striatal neurons from the toxicity of a short N-terminal fragment of mHtt. We also found that 

overpression of L-Dclk3 in the striatum of KI140CAG mice could provide some beneficial effects on 

motor symptoms. We attempted to better characterize the mechanisms underlying the protective 

effects of Dclk3 and demonstrated that the kinase domain of Dclk3 is sufficient to provide 

neuroprotection against mHtt. Two inactive mutants of the kinase were found to be inefficient to 

protect against mHtt, indicating that the catalytic domain of the kinase plays a role in activating 

neuronal survival. Protein partners of Dclk3 kinase domain were identified, pointing to a possible 

involvement of Dclk3 in the regulation of transcripton. 

 

Protection of striatal neurons by Dclk3 and its breakdown fragments 

The results obtained in the HD lentiviral model underscore that the overexpression of Dclk3 

and its kinase domain can signiciantly block degeneration of striatal neurons that express mHtt. 

Consistent with this, the reduction of Dclk3 using shRNA strategy exacerbate mHtt toxicity in vivo. 

Thus, the loss of Dclk3 in HD mouse models and the striatum of HD patients could render the striatum 

more vulnerable to mHtt. This may explain, at least in part, the particular susceptibility of this brain 

region in HD, while mHtt is ubiquitously expressed in the brain. 
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We challenged this idea in a more progressive mouse model of HD, the KI140CAG strain 

using the AAV vectors that, compared to lentiviral vectors produce a more widespread transduction of 

neurons, increasing the striatal territory expressing more Dclk3. The results we report show that some 

aspect of the disease are improved by Dclk3 expression using AAV10 especially specific motor signs 

examined using the openfield test, the Catwalk test and the rotarod test. The present results are 

however to take cautiously, since the number of animals per group is relatively low (n=5-8) and the 

amplitude of the effect are small, often showing encouraging trends which are not statistically 

significant. In addition, we found that striatal injection of AAV-GFP and AAV-Dclk3 in wild type mice 

likely produced disturbing effects in mice. Indeed, compared to cohort of “uninfected” mice that we 

characterized in our lab, infected mice showed poorer performance in the rotarod motor task. The 

reason for this is unclear, but is likely related to the traumatic aspect of the surgery (anaesthsia, 

canula insertion etc.) and /or the deposit of viral particles. Concerning the viral load, we tried to 

minimize the amount of AAV10 to be injected in the present experiments, in order to obtain a good 

level of transduction and expression of Dclk3, and avoiding an inflammation that could be detrimental 

for the function of the striatum. Another important aspect of the AAV experiments is that while the level 

of Dclk3 expression appeared satisfactory, it must be emphasized that the transduction could not be 

achieved in the entire striatum. Larger quantity of vectors may have reached this goal but this might 

have likely produced a major inflammation. 

However the overexpression we produced with our paradigm may have been  sufficient to 

produce a small but detecteable effect on the function of the striatum in KI140CAG mice (i.e. 

amelioration of some neurological signs) while the effect in the striatum is diluted when assessed 

globally using NMR spectroscopy and MRI. It would be interesting to repeat these experiments with a 

larger number of mice and possibly using improved, more efficacious, vectorization procedures to 

increase Dclk3 expression in the striatum and possibly in the cerebral cortex.  

 

Possible mechanisms underlying neuroprotection by Dclk3 

The neurobiological function of Dclk3 is totally unknown so far. Some aspects can be inferred 

from homology with other kinases that are better understood. Primary sequence of Dclk3 indicates that 

this kinase has a poorly conserved DCX domain in its N-terminal domain (Ohmae et al., 2006a). In 

comparison, the conservation of this domain is greater for Dclk1 and Dclk2 proteins. We found that 

despite this limited conservation of its N-terminal part, Dclk3 interacts with the cytoskeleton. This 

question was relevant to HD since, mutant Htt toxicity involves perturbation of the cytoskeleton, in 

particular the function of protein complexes involved in retrograde and anterograde axonal transport. 

Htt associates with microtubule (Tukamoto et al., 1997) and is transported retrogradely and 

anterogradely in neurons (Block-Galarza et al., 1997). Htt interacts with HAP1 to modulate motor 

complex efficacy to move along microtubules. Alteration of the huntingtin/HAP1/p150 (Glued) complex 

correlates with reduced association of motor proteins with microtubules, reducing transport of vesicles 

(including BDNF vesicles) along the cytoskeleton (Gauthier et al., 2004).  Our data show co-

localization of Dclk3 with the microtubules. Biochemical experiments showed that Short-Dclk3, Long-

Dclk3 and Kin-Dclk3 preferentially segregate with preparations enriched in microtubules (not shown). 
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Thus, the localization of Dclk3 on microtubules could play a role in its neuroprotective effects against 

mHtt. 

However the yeast two-hybrid screen we performed did not identify partner proteins known for 

their association with the cytoskeleton. All partners we found to interact with Dclk3 kinase domain (or 

adjacent to the kinase domain) are known for their interaction with proteins related to regulation of 

transcription.  It is conceivable that Dclk3 partners identified in the yeast two-hybrid screen are also 

partitioned between the cytoplasm and the nucleus, and that the binding of Dclk3 to microtubules is 

indirectly mediated by these partners. This consists at present only a hypothesis and a better 

characterization of the cellular localization of the Dclk3 partners in neurons is required to further 

examine this hypothesis.  

In line with a possible role of Dclk3 in transcription, we found that Dclk3 C-terminal part of 

Dclk3, likely containing the kinase domain can be found into the nucleus. This is consistent with the 

recent data showing that Dclk2 can be cleaved and that its kinase domain migrates from the 

cytoplasm to the nucleus (Nagamine et al., 2014). A similar “model” of translocation from the 

cytoplasm to the nucleus has been also suggested for Dclk1. From a mechanistic point of view, our 

data on Dclk3 are original in that they show that the kinase and one or more of its breakdown 

product(s) can migrate to the nucleus to interact with partners directly linked to regulation of 

transcription. This might be a general mechanism of action of Dclks proteins.  

The preliminary analyses of the striatum in two HD patients, confirm a global loss of 

expression of Dclk3 proteins in the cytoplasm but intriguingly, the abnormal accumulation of a 

fragment of Dclk3 in the nucleus is also noticeable.  This needs to be further studied in a larger cohot 

of HD patients. We also found that the profile of cleavage of recombinant Dclk3 in BACHD mice clearly 

differs from that of wildtype littermates. Thus, in addition to a transcriptional perturbation of Dclk3 

expression, abnormal post-translational of the kinase may also contribute to reduce the efficacy of its 

pro-survival properties in HD.  

The existence of the different breakdown products of Dclk3, seen endogenously or after 

overexpression of recombinant Dclk3 proteins, in rodent, macaque and human samples, very likely 

resulting from cleavages by proteases as seen for Dclk1, emphasizes the complexicity of the post-

translational regulations of Dclk3.  In addition, other regulations likely exist. Based on the analysis of 

Dclk3 sequence and the similarities with Dclk1 and CaMKs, putative caspase 4 and calpain cleavage 

sites can be found, and a SUMOylation site in the kinase domain can be predicted (supplemental Fig. 

S9). Another putative mechanism of post-transcriptional regulation of Dclk3 probably involves 

phosphorylation by upstream kinases. Those upstream regulating kinases remain to be identified.  

 

Dclk3 loss in HD: a possible cause of striatal vulnerability to mHtt? 

The present results indicate that increased expression of Dclk3 can produce a neuroprotective 

effect upon MSN that express mHtt. Compelling evidences indicate that Dclk3 expression is reduced 

in the HD striatum. Thus a loss of function of Dclk3 could render MSN more fragile, and consequently 

could participate in the preferential and early vulnerability of the striatum in HD.  
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Previous SAGE analyses of the mouse striatum showed that the level of expression of DCLKs 

is relatively low compared to other known striatal proteins such as preproenkephalin. Dclk3 expression 

is in the range of that measured for D1 receptor and A2A adenosine receptor two other well-know 

markers of the striatum. In addition to Dclk3, other gene products which are selectively expressed in 

the striatum have been shown to be involved in the selective degeneration of this structure in HD (for a 

review, Francelle et al., 2014).  

In addition to the striatum, Dclk3 depletion (and abnormal cleavage) may lead to other 

consequences, underlying neurological phenotype in HD patients and HD models.  Dclk3 is also 

expressed in other brain regions such as the cerebral cortex and the hippocampus (to lower levels as 

compared to striatum). In this context, although not translatable in clinical terms, the cross breeding of 

mice KO for Dclk3 with HD mice might be an approach to be considered to determine whether the loss 

of Dclk3 could broadly precipitate the disease. 

 

Dclk3 as a potential therapeutic target  

If the protective role of Dclk3 against mHtt is confirmed by future experiments, the kinase 

might be considered as a therapeutic target. Different strategies may be plan to do.  Dclk3 regulations 

likely occur at different levels. Selective phosphatase inhibitors or allosteric synthetic activators of 

Dclk3 could be developed to stimulate its activity and produce neuroprotective effects. Considering 

that the striatum is involved in crucial motor and cognitive processes, and that this brain structure is 

involved in a number of neurological / psychiatric illnesses, it is conceivable that Dclk3 may represent 

a therapeutic target for other diseases, beyong HD.  

 

 
Materials and Methods 
 
Animal 

Mice were housed in a temperature-controlled room maintained on a 12 hr light/dark cycle. Food and 

water were available ad libitum. All animal studies were conducted according to the French regulation 

(EU Directive 86/609 – French Act Rural Code R 214-87 to 131). The animal facility was approved by 

veterinarian inspectors (authorization n°A 92-032-02) and complies with Standards for Humane Care 

and Use of Laboratory Animals of the Office of Laboratory Animal Welfare (OLAW – n°#A5826-01). All 

procedures received approval from the ethical committee. Adult male C57BL/6J mice (25 g each; 

Charles River, Saint Germain sur l’Arbresle, France) were used for lentiviral infections. 

For endogenous DCLK3 mRNA levels study, we used the transgenic mouse model of HD generated 

and maintained in the FvB inbred background, the BACHD mice, that express full-length human mHtt 

from its own regulatory elements on a 240-kb BAC, which contains the intact 170-kb human htt locus 
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plus about 20 kb of 5′ flanking genomic sequence and 50 kb of 3′.  We used 9 month-old male BACHD 

mice for the study as previously described (Gray et al., 2008).   

We also studied knock-in mice expressing chimeric mouse/human exon 1 containing 140 CAG repeats 

inserted in the murine Htt gene (KI140) and their littermate controls. KI140 colony was maintained by 

breeding heterozygotes KI140 males and females (Menalled et al., 2003). Mice were N3 (B6) on a 129 

Sv×C57BL/6 J background. The resulting different genotypes mice were used for the study and 

showed no overt abnormalities. 

Genotyping was determined from PCR of tail snips taken at 10–15 days of age for BACHD and KI140 

mice.  

Lentiviral vector construction, production and infection 

DNA sequences coding for green fluorescent protein (GFP) and for C-terminal hemagglutinin (HA)-

tagged mouse short and long forms of Dclk3 were cloned into the SIN-W-PGK lentiviral vector (de 

Almeida et al., 2002) to generate lenti-GFP and lenti-S-Dclk3-HA and lenti-L-Dclk3-HA, respectively. 

The following probes were used to generate S-Dclk3-HA:  

5' CACCATGGGCAAAGAGCCGCTGAC 3' et 5' CTAGGAGGCGTAGTCAGGCAC 

GTCGTATGGGTAGGCACTGTTGGGGGACTCCTC 3'.  

In addition the C-terminal domain of Dclk3 was also cloned (from aa 330 to the Cterm extremity) to 

only express the kinase domain. The vectors were designated as lenti-Kin-Dclk3-HA. The lenti-L-

Dclk3-HA and lenti-Kin-Dclk3 have been cloned and produced by Genart followed RNA sequence 

provided in GENE database. An addition of Hemmaglutinin sequence has been added before STOP 

codon. 

A Dclk3-directed shRNA (target sequence: 5’ GAGAAGTGTAAGAGAGAAA 3’) and a Luciferase-

targeted shRNA (target sequence: 5’ CGTACGCGGAATACTTCGA 3’) were cloned into a bicistronic 

lentiviral vector (Drouet et al., 2009), in such a way that the infected cells expressed the reporter 

protein GFP. The resulting constructs were designated as lenti-Dclk3-shRNA and lenti-Luc-shRNA, 

respectively. The lentiviral vectors expressing a wild-type Htt fragment (lenti-Htt171-18Q), a mutant Htt 

fragment (lenti-Htt171-82Q) or beta-galactosidase (lenti-βgal) have been described previously (Diguet 

et al., 2009; Faideau et al., 2010). Viral particles were produced as described elsewhere (Hottinger et 

al., 2000). The particle content of the viral batches was determined by ELISA for the p24 antigen 

(Gentaur, Paris, France).  
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Lenti-Htt171-18Q and lenti-Htt171-82Q were used at a concentration of 150 ng/µl of p24, lenti-Dclk3-

HA, lenti-Dclk3-shRNA, lenti-Luc-shRNA and lenti-βgal at a concentration of 100 ng/µl of p24, and 

lenti-GFP at a concentration of 50 ng/µl of p24. A total volume of 2 µl of lentiviral suspension was 

injected into the mouse striatum as previously reported (Faideau et al., 2010), using the following 

stereotaxic coordinates: 1.0 mm anterior and 2.0 mm lateral to the bregma, at a depth of 2.7 mm from 

the dura, with the tooth bar set at 0.0 mm. 

 

Directed Mutagenesis of Dclk3  

S-Dclk3-HA has been mutated on the threonine (286) (i.e. Threonine 457 of L-Dclk3) into Alanine 

(T286A) and Aspartate (T286D) using the followed probes: 

T286A : 5'CCACAGCTACCTAGAGCCCGAGGGGAGGAG 3' 

 5' CTCCTCCCCTCGGGCTCTAGGTAGCTGTGG 3' 

 

T286D: 5' CCACAGCTACCTAGAGCCCGAGGGGAGGAG 3' and  

 5' CTCCTCCCCTCGGTCTCTTGGTAGCTGTGG 3' 

 

L-Dclk3-HA and Kin-Dclk3 has been mutated on the lysine (543) into Methionine (K543M) using the 

followed probes: 

Dclk3-K543M-F GACAAAGCAGGCATATGCCATGATGATGATTGACAAGAGC 

Dclk3-K543M-R GCTCTTGTCAATCATCATCATGGCATATGCCTGCTTTGTC 

45% GC                   N=40                         %mismatch=3/40 

Tm = 81,5+0,41(%GC)-675/N-%mismatch = 81,5+0,41*45-675/40-(3/40)*100 Tm=75,58°C 

 

A restriction site has been added to facilitate the verification of the sequence (NdeI site). 

Primary culture of neurons and transfection  

The primary culture of striatals neurons has been performed as previously described (Benchoua et al., 

2008). These neurons were electroporated with the mouse striatal neuron Nucleofector® kit according 

to the supplier’s manual (Amaxa, Biosystem, Köln, Germany). 
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Human Embryonic Kidney (HEK) 293T cells and transfection 

HEK293T cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Wako) containing 10% 

fetal bovine serum and 1% phenylalanine-streptamicine (Sigma). Cells were grown at 37 °C in a 

humidified incubator with a 5% CO2/95% air atmosphere. Transfection of HEK293T cells was 

performed using ref. HEK293T cells were plated at 7,5 × 105 in 6 wells plaques or at 10 × 104 in 24 

wells plaques. After 48 h of culture, cells were transfected with 5 μg of plasmid DNA by incubation for 

4 to 6 h in DMEM containing 10% fetal bovine serum and 1% phenylalanine-streptamicine. 

 

Immunocytochemistry of DCLK3 in HEK293T cells 

Transfected cells were cultured on poly-l-lysine coated cover glass and treated with 100% ice-cold 

methanol and 5mM EGTA,to preserve microtubular network, for 3 minutes. After being rinsed with 

TBS (Trizma (Sigma), NaCl 1mM), methanol-fixed cells were permeabilized with 0.1% Triton X-100 in 

blocking solution (TBS, 1% bovine serum albumin +?) for 30 min. The cells were then incubated with 

anti-HA-11 antibody (mouse IgG, Covance) diluted 1:1000 or anti-tubulin α antibody (rabbit IgG, 

Millipore?) diluted 1:500 with 1% bovine serum albumin in PBS at room temperature for 1 h. The cell 

samples were then incubated with Alexa 594-labelled anti-mouse IgG or Al488-labeled anti-rabbit IgG 

(Invitrogen), respectively, at room temperature for 30 minutes. Subsequently, the cells were rinced in 

TBS and treated with DAPI (Wako) diluted 1:10’000 in TBS at room temperature for 3 minutes and 

observed by a confocal laser-scanning microscope (SPE and SP8 Leica). 

 

Immunoprecipitation 

Cells were collected at 48 h after transfection and lysed with modified-RIPA buffer [10 mM Tris–HCl 

(pH 8.0), 1% NP-40, 150 mM NaCl, 1 mM EDTA, 10 μg/ml protease inhibitors (Mini-Complete, Roche) 

and phosphatase inhibitor cocktail 2 (Sigma?)]. The homogenates were centrifuged at 13,000g for 

20 min, and the supernatants were collected.  

BCA protein dosage was used.  

To perform immunoprecipitation, IP/co-IP kit based on magnetic beads coupled protein A & &G was 

used (ThermoFisher). Briefly, 50µl of magnetic beads were rinced and incubated 2 hours with 

antibodies (0.5 μg of anti- HA-11 or 0.5 μg of anti-DCLK3 : 21890002 (Novus)).  
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500µg of total protein extracts were mixed with the complex antibodies-beads 4 °C for 1 h. Beads 

were then rinced with kinase assay buffer [40 mM Hepes-NaOH (pH 8.0), 2 mM dithiothreitol, 0.1 mM 

EGTA and 5 mM ?], and then determined protein kinase activity using 100 μM [γ-32P]ATP or eluted 

with SDS–PAGE sample buffer for SDS–PAGE analysis. 

 

SDS–PAGE and Western blotting 

SDS–PAGE was performed on NuPAGE® Novex® 4-12% Bis-Tris pre-cast polyacrylamide gels. To 

transfer proteins, iBlot® Transfer Stacks was used using the iBlot® Gel Transfer Device. 

 

Protein kinase assay 

The protein kinase activities of DCLK3 were determined as previously described. Phosphorylation of 

proteins was carried out at 30 °C for 10 min in a standard reaction mixture (10 μl) consisting of 40 mM 

Hepes-NaOH (pH 8.0), 2 mM dithiothreitol (DTT), 0.1 mM EGTA, 5 mM Mg(CH3COO)2, 100 μM [γ-

32P]ATP and the indicated concentration of protein substrates. After incubation, the reaction was 

stopped by the addition of 10 μl of 2 × SDS–PAGE sample buffer. Phosphorylated proteins were 

resolved by SDS–PAGE and detected by film exposition and revelation with a PhosphorImager 

apparatus (modele). 

 

Immunoblotting 

Mice were sacrificed by dislocation without anesthesia and tissue processed as previously described. 

Tissues were homogenized in 200 ml Tris buffer pH 7.4 containing  protease inhibitors (MiniComplete, 

Roche) and phosphoatase inhibitors (Phosphatase Cocktail 2, Sigma), sonicated and kept at -20°Cfor 

biochemical experiments. Protein dosage and processing were performed as previously 

described. 

 

Histological analyses 

After deep anesthesia by intraperitoneal injection of a sodium pentobarbital solution (50 µg per 

gram of body weight), mice were transcardially perfused with 100 ml of phosphate buffer containing 

4 % paraformaldehyde at 8 ml/min.  
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The brains were removed, post-fixed overnight in the same solution, then cryoprotected by 

immersion in a 15 % sucrose solution for 24 hours followed by immersion in a 30 % sucrose solution 

for another 24 hours. Free-floating 30-µm-thick serial coronal sections throughout the striatum were 

collected using a freezing sliding microtome (SM2400; Leica Microsystems, Wetzlar, Germany). 

For immunohistochemistry, sections were treated with 0.3 % hydrogen peroxide for one hour, 

washed three times in phosphate-buffered saline (PBS), blocked in PBS containing 4.5 % normal goat 

serum for one hour, then incubated overnight at 4°C in PBS containing 3 % normal goat serum and 

one of the following antibodies: rabbit anti-DARPP-32 (Santa Cruz Biotechnology, Santa Cruz, CA; 

1:1000), mouse anti-NeuN (Millipore, Molsheim, France; 1:200), rabbit anti-Ubiquitin (Wako 

Chemicals, Neuss, Germany; 1:1000), or mouse anti-HA (Covance, Princeton, NJ; 1:500). Sections 

were rinsed three times in PBS before incubation with the appropriate anti-IgG biotinylated antibody 

(Vector Laboratories, Burlingame, CA) at a 1:5000 dilution for one hour. Staining was visualized by the 

addition of avidin-biotinylated peroxidase and incubation with DAB or VIP substrate (Vector 

Laboratories, Burlingame, CA) for one minute. For NeuN immunostaining, we used the M.O.M. 

immunodetection kit (Vector Laboratories, Burlingame, CA). Stained sections were mounted on 

microscopic slides. 

The area of the striatal lesions resulting from lenti-Htt171-82Q infection was delineated 

manually by identifying the border of the lesion on each coronal brain section. The corresponding 

surface was calculated using the MCID image analysis software (InterFocus Imaging, Cambridge, 

UK). The volume of the striatal lesion was determined using the Cavalieri method (Diguet et al., 2009). 

The number of Ubiquitin-positive inclusions was quantified as previously described (Diguet et al., 

2009) with the following modifications: the inter-section distance was 210 µm (i.e. one in every seven 

sections was used) and observations were performed using a 10X objective on an Axioplan 2 Imaging 

microscope (Carl Zeiss, Le Pecq, France). With this set-up, objects with an apparent cross-sectional 

area of over 5 µm
2 
could be reliably detected. 

For GFP fluorescence analysis, equidistant 30-µm-thick coronal brain sections (intersection 

distance: 210 µm) were randomly sampled throughout the striatum. Observations were performed 

using a 10X objective on a motorized Axioplan 2 Imaging microscope (Carl Zeiss, Le Pecq, France) 

equipped with an X-Cite 120PC Q fluorescence excitation system (Lumen Dynamics, Mississauga, 

Canada) allowing controlled excitation intensity and homogeneity throughout the field of view. 
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 Images were automatically acquired and analyzed using Fluo’Up and Mercator softwares 

(Explora Nova, La Rochelle, France). Care was taken to optimize image acquisition and avoid image 

saturation. On each section, the fluorescence level of each lenti-GFP-infected striatum was 

determined by subtracting the background fluorescence level measured outside the infection site from 

the mean fluorescence level within the infected area. A mean fluorescence level was then calculated 

across sections for each striatum. 

 

Real-time quantitative RT-PCR and Northern blot analysis 

Adult mice were deeply anesthetized by intraperitoneal injection of a sodium pentobarbital solution 

(50 µg per gram of body weight) before decapitation. The brains were immediately removed and 

positioned in a coronal brain matrix (Ted Pella, Redding, CA). For Dclk3 mRNA level measurements in 

knockdown experiments, 1-mm-thick brain sections were examined under a fluorescence microscope 

(DM6000 M; Leica Microsystems) and the striatal area expressing the GFP reporter protein was 

sampled using a 1.5-mm-diameter punch (Ted Pella, Redding, CA). For the quantification of Dclk3 

levels in mice, the striatum was dissected out using a scalpel from 1-mm-thick brain sections. Total 

RNA extraction and real-time quantitative RT-PCR (qRT-PCR) were carried out according to standard 

procedures, using the primers 5’ TGGGCGGCAGGTGTGAT 3’ and 

5’ GCTCGTCTTGGTCCCTCTCAG 3’ for Dclk3. 

For Northern blot analysis, a 5-mm-thick block containing the entire striatum (between grooves 

3 and 8 of the matrix, groove 1 being the most anterior; Brochier et al., 2008) was removed from each 

brain and processed for mRNA extraction. Twenty-five-microgram total RNA samples were denatured 

in a glyoxal-dimethylsulfoxide solution, electrophoresed on a 1 % agarose gel, and then transferred 

onto a Hybond-XL nylon membrane (GE Healthcare, Little Chalfont, UK). Hybridization was carried out 

at 65°C in Rapid-Hyb buffer (GE Healthcare, Little Chalfont, UK) using an [α-
32

P]dCTP random prime-

labeled (Prime-It II; Agilent Technologies, Santa Clara, CA) 788-bp-long Pst I fragment of the Dclk3 

transcribed DNA sequence as a probe (Fig. 1A).. 
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Yeast Two-Hybrid Analysis 

Yeast two-hybrid screening was performed by Hybrigenics Services, S.A.S., Paris, France 

(http://www.hybrigenics-services.com). The coding sequence for Human DCLK3 (GenBank accession 

number gi: 149589020) was PCR-amplified and cloned into pB29 as an N-terminal fusion to LexA (N-

DCLK3-LexA-C). The construct was checked by sequencing the entire insert and used as a bait to 

screen a random-primed human adult brain cDNA library constructed into pP6. pB29 and pP6 derive 

from the original pBTM116 (Vojtek and Hollenberg, 1995; Béranger et al., 1997) and pGADGH (Bartel 

et al., 1993) plasmids, respectively. 

110 million clones (11-fold the complexity of the library) were screened using a mating approach with 

YHGX13 (Y187 ade2-101::loxP-kanMX-loxP, mat

described (Fromont-Racine et al., 1997). 36 His+ colonies were selected on a medium lacking 

tryptophan, leucine and histidine. The prey fragments of the positive clones were amplified by PCR 

and sequenced at their 5’ and 3’ junctions. The resulting sequences were used to identify the 

corresponding interacting proteins in the GenBank database (NCBI) using a fully automated 

procedure. A confidence score (PBS, for Predicted Biological Score) was attributed to each interaction 

as previously described (Formstecher et al., 2005). 

 

Statistical analysis 

All data were expressed as means +/- SEM. Unpaired Student’s t-test was used for the comparison 

between two groups. When more than two groups were compared, a one-way ANOVA with multiple 

comparisons using the post hoc Bonferroni test was carried out using commercially available software 

(StatView® software, SAS Institute Inc., USA). 

 

Acknowledgments 

The research leading to these results has received funding from the European Community's Seventh 

Framework Programme FP7/2007-2013 under grant agreement no. HEALTH-F5-2008-222925. L.G. 

was supported by the Neuropôle de Recherche Francilien and the Fondation pour la Recherche 

Médicale. LF was supported by the French Research Ministry. 

 

 

http://www.hybrigenics-services.com/


Draft Galvan, Francelle et al. 3/12/2014 

 

20 

 

References 
 
Benchoua A, Trioulier Y, Diguet E, Malgorn C, Gaillard MC, Dufour N, Elalouf JM, Krajewski S, 

Hantraye P, Deglon N, Brouillet E (2008) Dopamine determines the vulnerability of striatal 
neurons to the N-terminal fragment of mutant huntingtin through the regulation of 
mitochondrial complex II. Hum Mol Genet 17:1446-1456. 

Block-Galarza J, Chase KO, Sapp E, Vaughn KT, Vallee RB, DiFiglia M, Aronin N (1997) Fast 
transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport 8:2247-
2251. 

Brochier C, Gaillard MC, Diguet E, Caudy N, Dossat C, Segurens B, Wincker P, Roze E, Caboche J, 
Hantraye P, Brouillet E, Elalouf JM, de Chaldee M (2008) Quantitative gene expression 
profiling of mouse brain regions reveals differential transcripts conserved in human and 
affected in disease models. Physiol Genomics 33:170-179. 

Brouillet E, Jacquard C, Bizat N, Blum D (2005) 3-Nitropropionic acid: a mitochondrial toxin to uncover 
physiopathological mechanisms underlying striatal degeneration in Huntington's disease. J 
Neurochem 95:1521-1540. 

Charvin D, Vanhoutte P, Pages C, Borrelli E, Caboche J (2005) Unraveling a role for dopamine in 
Huntington's disease: the dual role of reactive oxygen species and D2 receptor stimulation. 
Proc Natl Acad Sci U S A 102:12218-12223. 

Charvin D, Roze E, Perrin V, Deyts C, Betuing S, Pages C, Regulier E, Luthi-Carter R, Brouillet E, 
Deglon N, Caboche J (2008) Haloperidol protects striatal neurons from dysfunction induced by 
mutated huntingtin in vivo. Neurobiol Dis 29:22-29. 

de Almeida LP, Ross CA, Zala D, Aebischer P, Deglon N (2002) Lentiviral-mediated delivery of mutant 
huntingtin in the striatum of rats induces a selective neuropathology modulated by 
polyglutamine repeat size, huntingtin expression levels, and protein length. J Neurosci 
22:3473-3483. 

de Chaldee M, Gaillard MC, Bizat N, Buhler JM, Manzoni O, Bockaert J, Hantraye P, Brouillet E, 
Elalouf JM (2003) Quantitative assessment of transcriptome differences between brain 
territories. Genome Res 13:1646-1653. 

Diguet E, Petit F, Escartin C, Cambon K, Bizat N, Dufour N, Hantraye P, Deglon N, Brouillet E (2009) 
Normal aging modulates the neurotoxicity of mutant huntingtin. PLoS One 4:e4637. 

Drouet V, Perrin V, Hassig R, Dufour N, Auregan G, Alves S, Bonvento G, Brouillet E, Luthi-Carter R, 
Hantraye P, Deglon N (2009) Sustained effects of nonallele-specific Huntingtin silencing. Ann 
Neurol 65:276-285. 

Faideau M, Kim J, Cormier K, Gilmore R, Welch M, Auregan G, Dufour N, Guillermier M, Brouillet E, 
Hantraye P, Deglon N, Ferrante RJ, Bonvento G (2010) In vivo expression of polyglutamine-
expanded huntingtin by mouse striatal astrocytes impairs glutamate transport: a correlation 
with Huntington's disease subjects. Hum Mol Genet 19:3053-3067. 

Francelle L, Galvan L, Brouillet E (2014) Possible involvement of self-defense mechanisms in the 
preferential vulnerability of the striatum in Huntington’s disease. Frontiers in Cellular 
Neuroscience in press. 

Galvan L, Lepejova N, Gaillard MC, Malgorn C, Guillermier M, Houitte D, Bonvento G, Petit F, Dufour 
N, Hery P, Gerard M, Elalouf JM, Deglon N, Brouillet E, de Chaldee M (2012) Capucin does 
not modify the toxicity of a mutant Huntingtin fragment in vivo. Neurobiol Aging 33:1845 
e1845-1846. 

Gauthier LR, Charrin BC, Borrell-Pages M, Dompierre JP, Rangone H, Cordelieres FP, De Mey J, 
MacDonald ME, Lessmann V, Humbert S, Saudou F (2004) Huntingtin controls neurotrophic 
support and survival of neurons by enhancing BDNF vesicular transport along microtubules. 
Cell 118:127-138. 

Gray M, Shirasaki DI, Cepeda C, Andre VM, Wilburn B, Lu XH, Tao J, Yamazaki I, Li SH, Sun YE, Li 
XJ, Levine MS, Yang XW (2008) Full-length human mutant huntingtin with a stable 
polyglutamine repeat can elicit progressive and selective neuropathogenesis in BACHD mice. 
J Neurosci 28:6182-6195. 

Han I, You Y, Kordower JH, Brady ST, Morfini GA (2010) Differential vulnerability of neurons in 
Huntington's disease: the role of cell type-specific features. J Neurochem 113:1073-1091. 

Hottinger AF, Azzouz M, Deglon N, Aebischer P, Zurn AD (2000) Complete and long-term rescue of 
lesioned adult motoneurons by lentiviral-mediated expression of glial cell line-derived 
neurotrophic factor in the facial nucleus. J Neurosci 20:5587-5593. 

Kuhn A, Goldstein DR, Hodges A, Strand AD, Sengstag T, Kooperberg C, Becanovic K, Pouladi MA, 
Sathasivam K, Cha JH, Hannan AJ, Hayden MR, Leavitt BR, Dunnett SB, Ferrante RJ, Albin 



Draft Galvan, Francelle et al. 3/12/2014 

 

21 

 

R, Shelbourne P, Delorenzi M, Augood SJ, Faull RL, Olson JM, Bates GP, Jones L, Luthi-
Carter R (2007) Mutant huntingtin's effects on striatal gene expression in mice recapitulate 
changes observed in human Huntington's disease brain and do not differ with mutant 
huntingtin length or wild-type huntingtin dosage. Hum Mol Genet 16:1845-1861. 

Menalled LB, Sison JD, Dragatsis I, Zeitlin S, Chesselet MF (2003) Time course of early motor and 
neuropathological anomalies in a knock-in mouse model of Huntington's disease with 140 
CAG repeats. J Comp Neurol 465:11-26. 

Milnerwood AJ, Raymond LA (2010) Early synaptic pathophysiology in neurodegeneration: insights 
from Huntington's disease. Trends Neurosci 33:513-523. 

Nagamine T, Nomada S, Onouchi T, Kameshita I, Sueyoshi N (2014) Nuclear translocation of 
doublecortin-like protein kinase and phosphorylation of a transcription factor JDP2. Biochem 
Biophys Res Commun 446:73-78. 

Ohmae E, Ouchi Y, Oda M, Suzuki T, Nobesawa S, Kanno T, Yoshikawa E, Futatsubashi M, Ueda Y, 
Okada H, Yamashita Y (2006a) Cerebral hemodynamics evaluation by near-infrared time-
resolved spectroscopy: correlation with simultaneous positron emission tomography 
measurements. Neuroimage 29:697-705. 

Ohmae S, Takemoto-Kimura S, Okamura M, Adachi-Morishima A, Nonaka M, Fuse T, Kida S, Tanji M, 
Furuyashiki T, Arakawa Y, Narumiya S, Okuno H, Bito H (2006b) Molecular identification and 
characterization of a family of kinases with homology to Ca2+/calmodulin-dependent protein 
kinases I/IV. J Biol Chem 281:20427-20439. 

Ross CA, Tabrizi SJ (2010) Huntington's disease: from molecular pathogenesis to clinical treatment. 
Lancet Neurol 10:83-98. 

Ruiz M, Deglon N (2012) Viral-mediated overexpression of mutant huntingtin to model HD in various 
species. Neurobiol Dis 48:202-211. 

Subramaniam S, Sixt KM, Barrow R, Snyder SH (2009) Rhes, a striatal specific protein, mediates 
mutant-huntingtin cytotoxicity. Science 324:1327-1330. 

Tukamoto T, Nukina N, Ide K, Kanazawa I (1997) Huntington's disease gene product, huntingtin, 
associates with microtubules in vitro. Brain Res Mol Brain Res 51:8-14. 

 
 
 
 



Draft Galvan, Francelle et al. 3/12/2014 

 

22 

 

 

Figures 

 

1µm

5µm

DCLK3-long fo rm

m icro tub u les

nu cleus

DCLK3-long / m icro tub u les/ nu cleus

WT mice

anti-actin

anti-HA

D CLK3-Long-HAD CLK3-Short-HA

100

75

50

37

42

100

75

50

37

42

100

75

50

37

42

Striatal neurons
in culture

HEK293Tcells

MW

(kD a)

MW

(kDa)

MW

(kD a)

anti-actin

anti-HA

A

B

 
 
Figure 1: Studies of the cellular localisation of recombinant DCLK3-HA in cultured cells. A, 

biochemical analysis of overexpressed DCLK3 Short and Long forms in striata neurons in primary 

culture of rat embryos (upper left), in HEK293T cells (upper right) and in littermate mice, actin as 

charge control. B, immunoflurescence and confocal microscopy of overexpression of Long-DCLK3 in 

HEK293T cells, detected with anti-HA antibody and Alexa 594 (red), co-staining of microtubules with 

anti-α-tubulin antibody and Alexa 488 (green) (upper panel), and nucleus of cells with DAPI (blue). 
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Figure 2: Study of the cellular expression of DCLK3 in vivo. 

A, Schematic representation of Long-DCLK3-HA tagged sequence construct used to inject mice, and 

approximate localization of antibodies used to detect DCLK3, with its HA tag (green) or with a small 

sequence between the doublecortin and the kinase domains (red). B, immunoflurescence confocal 

microscopy SP8 Leica of overexpressed Long-DCLK3 in WT mice. Detection of cell nucleus with DAPI 

(blue), DCLK3-HA with anti-HA antibody (green), overexpressed and/or endogenous DCLK3 with anti-

DCLK3 (21890002 antibody). Merge is the superposition of the DAPI, anti-HA and anti-DCLK3 

staining. High magnification is a 40Xobjective picture of the cell boxed in the merge picture. Scale bar 

10µm. C, Detection of endogenous DCLK3 protein expression in macaque caudate tissue by 

immunohistochemistry with anti-hDCLK3 antibody. Scale bar: upper left, 1mm; lower left, 50µm; right 

images, 20µm.   
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Figure 3: DCLK3 and its cleavage products in normal and HD conditions. A, Schematic 

representation of DCLK3 sequence in different species according to bioinformatics (Accession 

number: mouse Q8BWQ5, macaque H9FMA9, human Q9C098). B-D, biochemical analysis of 

endogenous DCLK3 protein expression in macaque putamen extracts (B) and human caudate extrats 

(C), and overexpressed DCLK3 Long and Short forms in BACH mice striata after 6 weeks of infection 

by LV-mediated vectors (D). Red arrows show the similar species between the human mHtt forms 

from BACHD mice and nuclear HD patients protein extracts (around 50kDa). 
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Figure 4: Effect of the overexpression of DCLK3-HA against toxicity induced by m-Htt. Adult 

male mice received a bilateral intrastriatal injection of a mixture of two lentiviral vectors containing 

lenti-Htt171-82Q with either lenti-LacZ (control), lenti-S-Dclk3-HA or lenti-L-Dclk3-HA. Six weeks after 

infection, brains were processed for histological evaluation using DARPP-32-, NeuN- ,Ubiquitin-

immunostaining and COX histochemistry to detect Htt171-82Q toxicity. Left panel: typical coronal 

mouse brain sections display representative area with depleted staining in the different groups. Right 

panel: histograms representing quantitative determination of the volume of the striatum with depleted 

staining in the different groups. Immunohistochemical detection of HA-tag indicates the presence of 

recombinant Dclk3 proteins after infection with lenti-S-Dclk3-HA and lenti-L-Dclk3-HA. The number of 

Ubiquitin-positive inclusions remains unchanged. Scale bars: 0.2 mm. Results are expressed as mean 

(n=7-10/group) +/- standard error of the mean. *, p<0.01, One way ANOVA and Fisher PLSD post hoc 

test. Scale bars: HA 0.2mm, NeuN 0.1mm, DARPP32 and Cox 0.5mm and ubiquitin 0.125mm. 
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Figure 5: DCLK3 knock down increases toxicity of mutant Htt in vivo. In A, mice received 

lentiviral vectors coding a shRNA targeting either Dclk3 (shDCLK) or luciferase (shLuc) as control. The 

constructs coding shRNA also code for the GFP. B, Three weeks later brain were removed and 

processed for quantification of GFP fluorescence under microscope observation image analysis. Note 

that both vectors alone have similar transduction efficacy, expressing same levels of GFP. In C, mice 

were infected with lenti-Htt171-18Q mixed with lenti-shLuc (control levels of GFP) or lenti-Htt171-82Q 

mixed with lenti-shDLK3 or lenti-shLuc. Quantification of GFP levels was performed at 3 and 6 weeks 

after infection. Note the levels of GFP are reduced at both time points by lenti-Htt171-82Q when 

compared to Htt171-18Q, suggesting toxic effect of the mutant protein. Loss of GFP is exacerbated by 

lenti-shDclk3. Results are expressed as mean (n=7-10/group) +/- standard error of the mean. *, 

p<0.01, One way ANOVA and Fisher PLSD post hoc test. D, Mice were also infected with lenti-

shDclk3 alone (left images). Brain were processed for histological evaluation at six weeks post-

infection using DARPP-32 to detect Htt171-82Q toxicity. Left panel: typical coronal mouse brain 

sections where areas with depleted staining can be seen when Htt171-82Q is expressed. Note that 

expression of shDclk3 alone produces no change in staining. Right panel: histograms representing 

quantitative determination of the volume of the striatum with depleted staining in the different groups. 

Note that shDclk3 leads to a significant increase of the lesion volume determined using DARPP-32. 

Scale bars = 0.2 mm. Results are expressed as mean (n=7-10/group) +/- standard error of the mean. 

*, p<0.01, Paired Student t test. Scale bars: DARPP-32 0.5mm. 
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Figure 6: Study of the effects of overexpression of L- DCLK3 using AAV10 in KI140 mice. 

A, Schematic representation of adeno-associated-virus (AAV) constructs used to overexpressed GFP 

(control) or DCLK3 in mice using AAV10-GFP (left), and typical picture of GFP expression in the 

striatum of mice after injection of AAV10-GFP, showing that GFP in green is expressed in a wide 

volume of the striatum (NeuN staining in red). 

B, Time course and experimental design. Mice were injected with AAV10-GFP or DCLK3 at around 6 

months old performed 3 days-rotarod test and open-field test at 8 months old, spectroscopy at 11 

months old, 1 day-rotarod test, catwalk and gripstrenght at 12 months old and sacrificed at 13 months 

old.  

C, Accelerated rotarod test using procol 4-40RPM with a maximum of 5minutes on the rotarod, for 

three tests (t1,2,3) by day during three consecutive days (Day1,2,3) on 8 months old mice (left panel 

=only performances of the Day3 shown) or during one day on 12 months old mice (right panel). n=7 by 

group; *, p<0.01. 

 D, Open field results on 8 months old mice of total distance moved, velocity of deplacement, rearing 

and grooming duration (in sec) over 10 minutes of test.  

E, Forelimb grip strength results in g/F of 12 months old mice. Histograms represent the mean of 3 

assays.  

F, Catwalk parameter “mean body speed variation”measured on 12 months old mice. This parameter 

is calculated by dividing the absolute difference between the body speed and the average speed of a 

run by the average speed. 
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Figure 7: MRI and NMR spectroscopy analyses in KI140 mice infected with AAV10. 

A, T2 MRI representative image and histogram of striatal volumes. B, typical spectroscopy spectrum 

showing brain metabolites. C, histograms showing changes in KI140CAG mice as compared to 

littermate controls and the effects of AAV-Dclk3 and AAV-GFP. 
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Figure 8: The kinase domain of DCLK3 is sufficient to protect against mHtt in vivo. 

A, Schematic illustrations of Long- and Kin-DCLK3 constructs with or without the mutation K543M 

used in the present study.  

B, Autophosphorylation experiments with incorporation of ATP [γ-32P] after co-immunoprecipitation of 

DCLK3-HA with anti-HA antibody, and at final detection of radioactivity with PhosphoImager 

apparatus. Colors represent the intensity of radioactivity signal (from white (no signal) to red (highest 

intensity of signal).  

C, pseudo-quantification of the intensity of signal obtained after detection of radioactivity signal. 

D, Activity kinase assays using myelin basic protein (MBP) as a universal kinase substrate after co-

immunoprecipitation of DCLK3-HA, wt and mutant K543M forms with anti-HA constructs, and 

detection of phosphorylated MBP (phosphor-MBP) and total MBP. T=input (total protein extract before 

co-IP), S=sample test, n.t.=non transfected cells (control). 

E - I, Adult male mice received a bilateral intrastriatal injection of lenti-Htt171-82Q mixed with either 

lenti-Lacz (control) or a lentiviral vector coding for the kinase domain of Dclk3 (lenti-KinDclk3) 

containing or not the mutation lysinemethionin on the position 543aa (K543M or KIN-WT) (E). Six 

weeks after infection, brains were processed for histological evaluation using NeuN (F) and COX (H) 

histochemistry to assess Htt171-82Q toxicity. Histograms represent quantitative determination of the 

volume of the striatum with depleted staining in the different groups for NeuN (G) and COX (I). Scale 

bars = 0.2 mm. Results are expressed as mean (n=7/group) +/- standard error of the mean. * 

Unpaired Student t-test p<0.05. 
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Figure 9: Yeast two-hybrid screen of interactors of the kinase domain of DCLK3.  

A, The C-terminal domain of human Kin-Dclk3 was used as bait to screen a human brain mRNA 

library (A). Seven interactors were found to interact with Dclk3 (red link). B, String 9.1 bioinformatics 

software was used to search for secondary interactors (human only) in public databases and to 

schematically represent the network of interactions using only high confidence criteria. C, interaction 

between Kin-Dclk3 and TADA3 (Transcriptional adapter 3) was verified by pull-down experiments 

(CO-IP, Co-immunoprecipitation) after transfection of HEK cells with plasmids coding mouse Dclk3-HA 

and human TADA3-V5.  
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SUPPLEMENTARY FIGURES 
 
 
 
 
 
 

 

 

 

Figure S1: Expression of DCLK3 mRNAs in the brain. Northern blot analysis was performed using 

RNA extracts prepared from brains from wild-type mice. The membrane was hybridized with a probe 

corresponding to a Pst I fragment of the Dclk3 transcribed DNA sequence. Note the preferential 

expression in the striatum and the presence of two mRNA species: the upper band corresponds to the 

long form of Dclk3 (L-Dclk3 mRNA), the lower and fainter band corresponds to the short form of Dclk3 

(S-Dclk3 mRNA).  
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Figure S2: Loss of DCLK3 expression in adult HD KI140 mice. 

Gene expression measured by RT-qPCR in 10-13 months-old Ki140CAG mice. 

Results are presented as mean +/- standard error of the mean. +/+=WT littermate mice; 

+/Tg=heterozygous (140Q/+); Tg/Tg=homozygous (140Q/140Q) knock-in mice carrying an 

expanded CAG repeat.  

Actin P=0.3727, F=1.040, ns; Hprt1 P=0.6523, F=0.4369, ns; GFAP P=0.44787, F=0.7659, ns. 

*, p<0.05, **, p<0.001, ***, p<0.0001 n=8, One way ANOVA and Bonferroni post hoc. 

m-Htt F=17.10, WTvs+/Tg t=3.488; WTvsTg/Tg t=5.775; +/Tg vs Tg/Tg t=1.858.   

DARPP32 F=46.72, WTvs+/Tg t=7.058; WTvsTg/Tg t=9.249; +/Tg vs Tg/Tg t=2.191.   

D2R F=29.69, WTvs+/Tg t=4.344; WTvsTg/Tg t=7.578; +/Tg vs Tg/Tg t=1.844.   

DCLK3 F=15.43, WTvs+/Tg t=2.688; WTvsTg/Tg t=5.555; +/Tg vs Tg/Tg t=2.867.   
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Figure S3: Expression of endogenous DCLK3 in the macaque brain. 

Detection of endogenous DCLK3 expression in the cortex of macaque by immunohistochemistry using 

anti-DCLK3 antibody (21890002).  

Scale bars, from top to bottom: 1 mm, 50 µm, 20 µm, 20 µm.
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Figure S4: Efficiency of lentiviral vectors coding DCLK3-HA and its shRNA.  

A, Schematic representation of lentiviral sequence used to overexpressed or silence DCLK3 

expression in mice. B, Mice were injected in the striatum with LV-DCLK3-HA (mixed with lentiviral 

vector coding for GFP) or LV-shDCLK3 (biscistronic construct also coding GFP). Six weeks later the 

striatal region expressing GFP mice was dissected out and analyzed using qRT-PCR. Note that the 

level of expression using LV-Short-DCLK3-HA was approximately 10 times that of the endogenous 

mRNA. Similar results were obtained with Long-DCLK3-HA. LV-shDCLK3 produced a significant 

~70% reduction of DCLK3 expression. Results are expressed as mean +/- standard error of the mean. 

*, p<0.01, Unpaired Student t test. 
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Figure S5: Pilot study in N171-82Q mice with AAV- DCLK3. 

A, Schematic representation of adeno-associated-virus (AAV) constructs used to overexpressed GFP 

(control) or DCLK3 in mice using AAV10-GFP (left), and typical picture of GFP expression in the 

striatum of mice after injection of AAV10-GFP, showing that GFP in green is expressed in a wide 

volume of the striatum without massive inflammation (GFAP positive cells in the needle track only 

=yellow staining). 

B, Time course and experimental design. Mice were injected with AAV10-GFP or DCLK3 at 6 weeks 

old, performed rotarod test at 13 weeks old and sacrificed at 16 weeks old. C, Weight in gram (g) of 

N171-82Q mice measured before and after stereotaxic injection of AAV10- GFP or DCLK3 until 

sacrifice. D, Accelerated rotarod test using procol 4-40RPM with a maximum of 5minutes on the 

rotarod, three tests (t1,2,3) by day during three consecutive days (Day1,2,3).  
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Figure S6: Characteristics of the KI140 mice and wildtype littermates in the colony. 

A, Rotarod (n=3 wildtype (WT) (control), n=3 +/Tg heterozygous mice, n=8 Tg/Tg homozygous mice; 

Two-way ANOVA P=0,0041; F=4,712; Bonferroni post-hoc **P<0,01). 

 B, Movement tracking in red analysed with Ethovision software, and measure of the total distance 

moved (n=3 WT, n=4 +/Tg heterozygous, n=8 Tg/Tg homozygous; One-way ANOVA P=0,0086; 

F=7,257; Bonferroni post-hoc WT VS Tg/Tg homozygous). 

C, Total distance moved by bin of one minute over 10 minutes and statistics done on the four last 

minutes of distance moved showing differences between WT and heterozygous/homozygous mice; 

Two-way ANOVA; Bonferroni post-hoc *P<0,05; **P<0,01. D, Rearing frequency and duration. E, 

Grooming frequency and duration. 
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Figure S7: Mutation of Short-DCLK3 abrogates neuroprotective effects against Htt171-82Q. A, 

Schematic illustration of Short-DCLK3 construct and position of the T286A mutation used in the 

present study on the sequence. B, Primary culture of striatal neurons were transfected by 

electroporation with plasmids coding wild type S-DCLK3-HA or S- DCLK3 with T286 Ala substitution 

alone or in combination with a plasmid coding Htt171-82Q. Forty eight hours later, cells were fixed and 

transfected neurons displaying apoptotic nuclei were counted. Note that while S-Dclk3-HA reduced 

Htt171-82Q-induced cell death, the T286A mutant is ineffective. Results are expressed as mean +/- 

standard error of the mean and correspond to three independent experiments each including 3-4 

slides per experimental group. *, p<0.01 as compared to mock transfection, #, p<0.01 compared to 

Htt171-82Q alone. One way ANOVA and Fisher's post hoc PLSD test. 
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Figure S8: Overexpression of Kin-DCLK3-HA in mice protects against mutant Htt. Adult male 

mice received a bilateral intrastriatal injection of lenti-Htt171-82Q mixed with either lenti-Lacz (control) 

or a lentiviral vector coding for the kinase domain of DCLK3 (lenti-KinDclk3). Six weeks after infection, 

brains were processed for histological evaluation using NeuN, DARPP-32 and Ubiquitin-

immunostaining and COX histochemistry to assess Htt171-82Q toxicity. Histograms represent 

quantitative determination of the volume of the striatum with depleted staining in the different groups. 

The number of Ubiquitin-positive inclusions is not significantly changed by the lenti-Kin- DCLK3 

compared to control. Scale bars = 0.2 mm. Results are expressed as mean (n=7-10/group) +/- 

standard error of the mean. *, p<0.01, Paired Student t test. 
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Figure S0: Dclk3 bioinformatics domain/active sites. 

Using bioinformatics (mainly UniProt and NCBI Gene databases), active domain and sites are 

predicted in the murin sequence of Long-Dclk3 (UniProtKB/Swiss-Prot Q8BWQ5; mRNA protein: 

NM_172928.5 → NP_766516.2 ). 

Pro-rich domain is a plateform for protein-protein interactions, particularly regulatory proteins 

interacting at the pro-rich domain may regulate microtubule-binding activity of Dclk3. 

UBQ: ubiquitin like protein (weak description). 

A-loops: activation loop (polypeptide region), that can be phosphorylated to strongly activate Dclk3. 

ATP-bind: selective and non-covalently interaction site with ATP, adenosine 5'-triphosphate. 

http://www.ncbi.nlm.nih.gov/nuccore/NM_172928.5
http://www.ncbi.nlm.nih.gov/protein/NP_766516.2
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The main objective of my thesis was to further characterize three striatal markers (Abhd11os, 

CRYM and DCLK3) in order to better understand the putative molecular mechanisms 

underlying their neuroprotective effects against a toxic fragment of mHtt. 

 

4.1. Abhd11os  

 

The elucidation of the mechanisms underlying the neuroprotective effects of Abhd11os 

overexpression against mHtt toxicity will require further studies.  

However, we confirmed the bioinformatics data, i.e. Abhd11os is a long intergenic non-

coding (linc) RNA, which corresponds to a long non-coding (lnc) RNA transcribed from non-

coding DNA sequences between protein-coding genes. lincRNAs are an important subgroup 

of lncRNAs (Guttman et al 2009). Indeed, lncRNAs include heterogeneous regulatory 

molecules such as lincRNAs and natural antisense transcripts (NATs) (Salta & De Strooper 

2012). As described in our publication, lncRNAs are un-translated transcripts with longer than 

200 nucleotides, which possess many of the structural characteristics of messenger RNAs 

(mRNA), including a poly A tail, 5' capping, and a promoter structure, but not full or 

functional open reading frame (Table 3). Moreover, lncRNA expression patterns change 

during differentiation and exhibit a variety of splicing patterns. Many lncRNAs are expressed 

at specific times and in specific tissues during development (see as review (Kung et al 2013, 

Ponting et al 2009, Ulitsky & Bartel 2013)). 

 

 

 

Table 3 Similarities (gray) and differences (cyan) between mRNA and lncRNA. 

 

Literature on lincRNAs is recent, but functional roles are predicted and for some of them 

already experimentally validated (Figure 16). 
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Figure 16 Diverse Mechanisms Proposed for lincRNA Function (Ulitsky & Bartel 2013). 

 

According to the review of Ulitsky 2013,  the modes of action of lincRNA include co-

transcriptional regulation (e.g., through either the interaction of factors with the nascent 

lincRNA transcript or the act of transcribing through a regulatory region), regulation of gene 

expression through recruitment of proteins or molecular complexes to specific loci, 

scaffolding of nuclear or cytoplasmic complexes, titration of RNA-binding factors, and 

pairing with other RNAs to trigger post-transcriptional regulation. The two latter mechanisms 

take place in the cytoplasm (where they are more frequently reported) but could also occur in 

the nucleus. Additional mechanisms will presumably be proposed as additional functions of 

lincRNAs are discovered (Ulitsky & Bartel 2013). 

 

Previously Guttman and colleagues speculated that many lincRNAs may be involved in 

transcriptional control—perhaps by guiding chromatin remodeling proteins to target loci—

and that some transcription factors and lincRNAs may act together, with the transcription 

factor activating a transcriptional program and the lincRNA repressing a previous 

transcriptional program (Guttman et al 2009, Khalil et al 2009).  

In this view, it would be tempting to speculate that Abhd11os could produce a 

neuroprotective effect as a negative regulator of transcription whose deregulation plays a 

central role in HD pathogenesis. This is in line with the current hypothesis of a central role of 

ncRNA in neurodegenerative disorders (Johnson & Buckley 2009, Johnson et al 2012, 

Johnson et al 2008, Salta & De Strooper 2012). 

Testing these speculations will require biochemical and genetic studies, including gene 

knockdown in appropriate settings. Several techniques have been developed to identify the 

genomic targets of lncRNAs (Kung et al 2013).  
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Based on principles of both chromatin immunoprecipitation (ChIP) and RIP, chromatin RNA 

immunoprecipitation (ChRIP) can be used to identify RNAs associated with a particular 

chromatin mark (Pandey et al 2008). On the other hand, techniques such as chromatin oligo-

affinity precipitation (ChOP) (Mariner et al 2008), chromatin isolation by RNA purification 

(ChIRP) (Chuet al.2011), and capture hybridization of RNA targets (CHART) (Simon et al 

2011) use tagged complementary oligonucleotides to identify DNA loci that interact with an 

RNA of interest. 

It would be interesting to develop this kind of techniques in the laboratory to better 

characterize Abhd11os and find the precise mechanisms of function of this lincRNA, first in 

an healthy context, then compared to an HD situation. 

As Abhd11os is a rare lincRNA to have an impact on mHtt toxicity in HD, it would be 

necessary to overexpress it in others HD models to confirm his neuroprotective effects. 

Depending on the functions of Abhd11os discovered then, it would have an impact on others 

diseases than neurodegenerative disorders. For example, lncRNAs play an important role in 

tumorigenesis (Tsai et al 2011). Indeed, ABHD11-AS1, the human related gene of Abhd11os, 

has been associated with gastric cancer (Lin et al 2014), but also with William-Beuren 

syndrome (Micale et al 2008). Overexpression or silencing of this gene in different 

pathologies context would bring understanding of the roles of this lincRNA. 
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4.2. CRYM  

 

CRYM, also known as reduced nicotinamide adenine dinucleotide phosphate (NADPH)-

dependent cytosolic T3-binding protein (CTBP) or µ-crystallin, has been first identify as a 

major structural component of the eye lens in Australian marsupials (Kim et al 1992). CRYM 

has been described as an NADPH-dependent cytosolic triiodothyronine or 3,5,3’-triiodo-L-

thyronine (T3) thyroid hormone binding protein (Suzuki et al 2007b) and a key redox-

dependent regulator of intracellular T3 bioavailability. Indeed, Suzuki and colleagues 

described the molecular functions of CRYM on thyroid hormone action (Suzuki et al 2007a, 

Suzuki et al 2007b) presented in Figure 17. 

 
Figure 17 Molecular functions of CRYM on thyroid hormone action (Suzuki et al 2007). 

Details: red arrows indicate the non-CRYM-mediated pathway (classical pathway); black arrows indicate the 

CRYM-mediated pathway.  

 

The thyroid hormone T3 moves from outside the plasma membrane into the cytoplasm of the 

cells. Free T3 enters into the nucleus and initiates transactivation through binding to nuclear 

T3 receptors. CRYM forms a dimer in the cytoplasm. Each CRYM dimer binds one molecule 

of T3 and NADPH. In the presence of NADPH, the T3-bound form of CRYM increases the 

T3 concentration in the cytoplasm. Although the mechanisms have not yet been thoroughly 

elucidated, the expression of CRYM suppresses thyroid hormone nuclear receptor 

transcriptional activity.  
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Regulation of T3 action through CRYM is composed of binding of NADPH (Figure 17 (1)); 

dimer formation (2); creation of the T3-binding site (3); binding of T3 (4); release of T3 

caused by NADPH dissociation (5); induction of transactivation (6); and suppression of 

transactivation (7).  

 

A recent work precisely describes the crystal structure of CRYM alone or in complex with 

NADPH with or without T3 and suggests that CRYM would be able to recognize most of the 

thyroid hormone derivatives, as the thyroid hormone thyroxine or 3,5,3’,5’-tetraiodo-L-

thyronine (T4) (Borel et al 2014). T4 and T3 are produced by the thyroid gland. T4, the most 

abundant, is later converted in peripheral tissues by a selenium deiodinase into the less 

abundant but more potent T3 form. 

Thyroid hormones play important regulatory roles in processes such as growth, metabolism, 

and homeostasis, and are essential for human brain development and cognitive functions 

(Rovet 2014, Schroeder & Privalsky 2014). Furthermore, T3 would be important for neuronal 

development throughout life, from early embryogenesis to the neurogenesis in the adult brain 

(see as review (Remaud et al 2014)). Thyroid signaling influences cellular metabolism and 

mitochondrial functions (Weitzel & Iwen 2011). Impaired thyroid signaling impacts 

mitochondrial respiration and hence reactive oxygen species (ROS) production, with either 

beneficial or damaging cellular effects (Long et al 2014). So, if there is a decrease of CRYM 

expression, as CRYM contributes to transportation or retention of T3 in the cytoplasm, it 

couldn’t play efficiently this role, which would have several impacts on the cell, amongst 

others diminished neurogenesis, inefficient cellular metabolism, enhancing of ROS, and 

others consequences inducing death of the cells where CRYM is enriched, i.e. in MSN. This 

hypothesis follows what is described in HD pathogenesis. Indeed, the hormone levels were 

found to be negatively correlated with severity of clinical impairments, suggesting that 

thyrotropic axe is altered in HD patients (Saleh et al 2009). 

 

In addition, CRYM has others roles in the cell that could explain its participation to the 

striatal vulnerability. Studies suggest that CRYM may therefore be a versatile enzyme with a 

reductase activity able to accommodate various substrates such as ketimine, thyroid hormones 

or AlaDH ligands pyruvate and alanine (Hallen et al 2011). Visser and colleagues suggested 

that CRYM could be also involved in thyroid hormone catabolism since the protein is able to 

bind to, and prevent the efflux of intracellular iodothyronine sulfate T3S and T4S (Visser et al 

2010). Other studies have linked abnormal CRYM expression to syndromes as diverse as 

hyperglycemia, muscular dystrophy, deafness and prostate cancer (Abe et al 2003, Al-Kafaji 

& Malik 2010, Malinowska et al 2009, Oshima et al 2006, Reed et al 2007). 

In HD, overexpression of CRYM would permit survival of MSN thanks to its different roles 

in the cells, but further studies are needed to determine by which molecular mechanisms its 

neuroprotective effects are mediated. 

Our study points to Crym as an original link between HD pathogenesis and alterations of 

thyroid hormone-mediated regulation of transcription in the striatum. 
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4.3. DCLK3 

 

Literature is dense concerning Doublecortin-like kinases (DCLK) 1 and 2 (Dijkmans et al 

2010, Friocourt et al 2007, Tuy et al 2008, Verissimo et al 2011, Weimer & Anton 2006), part 

of the same kinase family than DCLK3, but a few is known on the latter member (Ohmae et al 

2006, Reiner et al 2006, Wierinckx et al 2007).  

Its characterization permits to better understand its neuroprotective effects.  

 

4.3.1. Protein characterization 

 

According to bioinformatics and experimental validation from the laboratory, this protein 

contains a doublecortin domain that permits to bind partially microtubules. Its subcellular 

localization is in the cytoplasm, but also in the nucleus. DCLK3 is processed by proteases 

such as calpain, which cleave it in 4 or more fragments. These breakdown products  can be 

different depending on the  species considered, which complicates the reading/understanding 

of the processing of this protein. We showed DCLK3 is cleaved in its Nterminal part, with the 

kinase domain spared, likely preserving the catalytic activity of the kinase. Indeed 

autophosphorylation experiments showed that the breakdown products (containing the C-

terminal part of Dclk3) are still active. When the protein is cleaved, fragments containing the 

kinase domain may be translocated into the nucleus, but dynamic experiments would have to 

be assessed to confirm the nuclear translocation. 

The Ser/Thr kinase domain is active according to biochemical studies. DCLK3 is 

neuroprotective in the in vivo lentiviral mouse model of HD expressing the Nterminal 

fragment Htt171-82Q. We showed that the activity of its kinase domain is important for the 

neuro-rescue of MSN when overexpressed using LV-mediated gene transfer in the striatum in 

LV model mice. We showed that when DCLK3 is overexpressed using AAV10 in the 

striatum of Ki140CAG HD mice, these mice display better locomotor performances than 

controls as seen in rotarod, open-field, catwalk and grip strength tests. 

 

We conducted different approaches to explain these neuroprotective effects. 

 

4.3.2. Disease-modifying mechanisms 

 

Protective effects against mutant Htt  

Our data show that overexpression of DCLK3 or its kinase domain only can protect striatal 

cells from mHtt toxicity. Several readouts support these observations including improvement 

of behavioral/motor performance, attenuation of neuropathological changes, and apparent 

preservation of striatal integrity as seen using MRI. 

 

Because of the difficulty to have a high number of transgenic animals and the cost and 

heaviness of the processing of the brain slices by immunohistopathology, imaging permit to 

follow neurodegeneration of alive transgenic animals and to measure the effect of the 

treatment in the time by a translational approach. 
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MR spectroscopy imaging suggests that over time there are minor variations of astrocytic and 

neuronal metabolites concentration changes between transgenic mice injected with DCLK3 

compared to control. KI140CAG mice show neurochemical changes reminiscent of neuronal 

and astrocytic suffering and DCLK3 overexpression tends to reduce some of these changes. 

The most remarkable being the recovery of GABA concentrations, the main neuromediator of 

MSN in the striatum. In addition, changes in glial metabolites indicate that neurons would 

have improved function in Ki140CAG mice infected with AAV10-DCLK3. However, a larger 

number of animals is required to reliably conclude on these effects. 

 

Protein-protein interactions 

Thanks to a yeast-two-hybrid screen using DCLK3 kinase domain as bait, we found seven 

proteins that all are potential regulator of transcription. The simple bioinformatics analysis of 

the network of interaction for these proteins focuses on TADA3. We presented results of 

stringent search criteria (avoiding text-mining, constraining to human, etc) to constrain the 

network to a high confidence limits. The network of interaction becomes much broader when 

imposing lower confidence interactions, but still point to different proteins regulating 

transcription factors and histone modification (methylase, acetylase, histone deacetylase).  

TADA3 possesses a histone acetylase catalytic domain and is found to interact with several 

transcription activator factor (TAF). We checked that TADA3 is highly present in the brain, 

especially the striatum. Our preliminary immunoprecipitation experiments support the view 

that DCLK3 actually interacts with TADA3.  

The network of interaction of the other potential DCLK3 partners is more limited. Data 

mining for these proteins provides much less information as compared to TADA3. Relatively 

“robust” data indicates a few binary interactions with these other DCLK3partners which each 

constitutes a working hypothesis to explain how DCLK3 exerts a part of its biological activity 

through its kinase domain. These “secondary” partners of DCLK3 also point to regulation of 

transcription, consistent with the fact that they all contain zinc finger motifs. Elucidation of 

these questions awaits further studies. 

Concerning the partners of DCLK3, there is one important point which is not totally sorted 

out by our study. We yet do not know how the neuroprotective effects we observed when 

overexpressing DCLK3 or its active, fully functional kinase domain is related (or not) to the 

partners we identified using the Y2H screen. This question is extremely difficult to address 

experimentally. If we hypothesize that TADA3 plays a key role in DCLK3 effects against 

mHtt, knocking down TADA3 in acute cell models of mHtt overexpression should abrogate 

the neuroprotective effects of DCLK3. In line with this, the effect of DCLK3 may involve 

phosphorylation of TADA3. Site directed mutagenesis of TADA3 may also help to better 

decipher the link between DCLK3 neuroprotective effect and interaction with TADA3.  

 

Model of neuroprotective effects of DCLK3 

DCLK3 is downregulated in HD mouse models and HD patients. In addition, preliminary 

biochemical analysis indicates that in certain conditions (BACHD mice, HD patients) the 

cleavage of DCLK3 and its localization in the nucleus might be changes. Thus it is 

conceivable that its loss and perturbation could render striatal MSN more susceptible to mHtt 

in HD. Our data show that overexpression of DCLK3 is neuroprotective.  
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Our results clearly demonstrate that the kinase activity of DCLK3 is indispensable for 

neuroprotection. However, the step at which this kinase activity is required for protection 

remains elusive. According to our data, different scenario can be envisioned. When 

overexpressed in HD mice, DCLK3 would be cleaved, transported through microtubules, 

translocated to the nucleus, permitting its interaction with partners regulating transcription. Its 

interactions would induce pro-survival signals. It is likely that the effect of DCLK3 on 

transcription is relatively specific, and that it produces an “imprint” of modification rather 

than a broad effect. As mention above, however, we have not formally established the causal 

relationship between DCLK3-induced neuroprotection and the interactors we have identified 

using the Y2H screen. Further studies are currently on going to validate these results and 

permit to have a clear mechanism of action. 

 

Another possibility is that the protective effect of DCLK3 is not mediated through these 

partners and regulation of transcription. Indeed, it cannot be ruled out that the Y2H screen 

could not picked up other partners, especially those with cytoplasmic localization. It is 

intriguing that while DCLK3 decorates the microtubules and can be pulled-down with 

microtubules, none of the interactors obtained from our Y2H screen correspond to known 

cytoplasmic/cytoskeleton proteins. One possibility is that the kinase domain interacts with its 

substrates according to a “kiss-and-run”–like weak interaction which could not be evidence in 

the screen. Substrates of DCLK3, once phosphorylated, could trigger survival signaling 

pathways opposing mHtt toxicity.  

It is also conceivable that the “anchoring” of DCLK3 to the cytoskeleton is indirectly 

mediated by the interaction of the partners we identified. Preliminary results indicate that in 

cells transfected to express recombinant TADA3 and BTBD9 the proteins are found in the 

cytoplasm and the nucleus. Supporting this view a number of proteins that regulate 

transcription through direct interaction with its machinery are found in the cytoplasm and 

upon activation migrate to the nucleus, some examples of which are Htt, p53, NF-κB. 

 

4.3.3. Troubleshooting 

 

From my experience on DCLK3 project, several points have to be based in order to more 

efficiently keep on working on it. 

 

- Specificity of antibodies used 

At the beginning of this study, we didn’t have anti-DCLK3 antibodies, so the only solution 

was to generate and overexpress recombinant DCLK3 protein tagged in the terminus of its 

most conserved part (C-terminus kinase domain). This is the reason why all our constructs are 

HA tagged, to be able to follow the recombinant protein expression with the anti-HA 

antibody. 

Since the beginning of my thesis, I tested 6 antibodies directed against DCLK3 in order to be 

able to detect the endogenous form of DCLK3. Only one antibody shows the same 

biochemical result of the recombinant DCLK3-HA construct cleavage than the antibody that 

detects the HA tag of these constructs.   
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This antibody recognizes a sequence located between the doublecortin domain and the kinase 

domain, and has been produced to detect the human sequence. As the human sequence is the 

same that the macaque sequence and the short-form of the rodent sequence, it seemed logical 

that this antibody could recognize specifically DCLK3 proteins extracted from human, 

macaque and in a less extent rodent tissues. The biochemical studies indicated that even if the 

human and macaque sequences are identical according bioinformatics, the processing of 

DCLK3 seems to be different. It is more obvious comparing the human/macaque and rodent 

extracts.  This could be explained by different proteases/caspases/kinases/phosphatases 

environment in these species, leading to the generation of different fragments of DCLK3. 

When we detect DCLK3 by immunofluorescence and we compare the HA tag and the 

DCLK3 detection with respectively anti-HA and anti-DCLK3 antibodies in paraffin slices 

from Ki140CAG mice injected with DCLK3-Long and Kin forms, we see a cytoplasmic 

staining with the anti-HA, but a cytoplasmic AND nuclear staining with the anti-DCLK3. 

More observations have to be done to study more deeply this phenomenon, but two 

possibilities can be envisioned. Either the anti-DCLK3 is not specific of DCLK3 protein and 

recognizes other proteins containing the same sequence than DCLK3, for example DCLK1 

or/and DCLK2, or a homologous sequence of some CaMK, but it wouldn’t be coherent with 

the biochemical results. It is possible that when DCLK3 enters into the nucleus, it undergoes 

processing in its C-terminus and losses its HA-tag. In this case, the anti-HA would only 

recognize the HA-tag proteins in the cytoplasm. It is also possible that the HA-tag doesn’t 

allow the recombinant protein to enter into the nucleus because of a missing signalization due 

to a particular conformation of the protein containing the HA tag. To address these questions, 

we should carry out immunodepletion using recombinant DCLK3. Another approach would 

be to generate knock-down DCLK3 mice and check if we still detect a signal in the nucleus 

with the anti-DCLK3 antibody, and validate others DCLK3 antibodies. 

It would be interesting to develop anti-DCLK3 antibodies that recognize different parts of 

DCLK3, and more precisely study their subcellular localization, cleavage, kinase activity and 

interactors. This approach would bring indispensable information to understand the 

processing of DCLK3 and more globally its role/function in the cell. It would also lift the veil 

on what happens to N-terminus fragments generated by the cleavage of DCLK3. 

 

- Physiological processing of the endogenous DCLK3 protein 

Based on the previous observation with the different antibodies used to detect DCLK3, and 

from our in vivo experiments, it is now asked if the overexpression of a recombinant DCLK3 

protein without the HA tag could lead to a higher neuroprotective effect. Indeed, tags could 

change the conformation of a protein, and what is more, when targeting the highly conserved 

and active part of the protein. So it is possible that the observations we made when 

overexpressing DCLK3-HA constructs might be distorted by the possible impact of the HA 

tag on the conformation and activity of DCLK3. 

It is necessary to generate the DCLK3 constructs without tag and study its effects against 

mHtt. 

 

 

 



Page | 83  
 

- Viral vector tools as gene therapy tools in mice 

Results from the overexpression of DCLK3 in KI140CAG mice indicate that the injection of 

virus by stereotaxy is not trivial and has impact on the basal behavioral performances of mice 

because of the chirurgical traumatism it implies. I characterized some behavioral 

performances of non-injected KI140CAG mice with rotarod and open-field tests. Important 

differences were seen between littermates, heterozygous and homozygous mice that decide us 

to try to treat the mice with the injection of DCLK3 in the three genotypes.  After injection of 

AAV in the striatum of these mice, our results show that the genotype effects on locomotor 

performances of mice are flattened. The solutions are various. We may need to reduce the 

trauma produced by virus vector injection. The size of the needle/canula used for stereotaxic 

injection might not be a problem for rats and bigger animals, but it would be pertinent to try 

thinner needle for the stereotaxy method in mice or develop non-invasive techniques, 

particularly if these animals have to perform behavioral test. Because HD requires to target 

the striatum, alternatives to stereotaxy has to be developed to avoid to damage other parts of 

the brain, as the cortex.  

In addition, we tried to reduce as much as possible the amount of viral particles to avoid 

neuroinflammation. However, we cannot exclude that a minor immune response would 

change the function of striatum in wild type animals. 

 

- Controls use for preclinical therapeutic experiments 

Another recurrent difficulty encountered in our preclinical approach is to find the suitable 

control of the experiment, that most of the time produces undesired effects. In our 

neuroprotective experiment using overexpression of DCLK3 in Ki140CAG mice, we used 

GFP as control. Notably for behavioral tests, overexpression of GFP doesn’t show toxicity, 

but may induce noise to our data, conjugated to Htt expression. The improvement could be to 

inject a non-coding GFP, or to use the dead-kinase K543M mutant construct since we showed 

that the activity kinase of DCLK3 is central to induce neuroprotective effects.  
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4.4. First conclusion 

 

Since Abhd11os, Crym and Dclk3 have a preferential expression in the striatum and their 

levels are reduced in different HD models, it is possible that their down-regulation may be 

involved in the preferential degeneration of the striatum in HD. Using an in vivo lentiviral 

model of HD, we showed that they have a neuroprotective effect against N-terminal fragment 

of mHtt. It should be emphasized that not all striatal markers down-regulated in HD can 

reduce the toxicity of N-terminal fragments of mHtt when they are overexpressed. Indeed, 

many striatal markers are rather considered to be risk factors for MSN (see (Francelle et al 

2014); Figure 18). At present, only few striatal markers have been experimentally tested for 

their capacity to change mHtt toxicity. 

 

 
Figure 18 Schematic representation of the striatal markers that have been experimentally studied as 

potential modifiers of mutant huntingtin toxicity in HD (adapted from Francelle et al 2014). 

 

Interestingly, all the striatal markers that can modulate (positively or negatively) the toxicity 

of mHtt could be considered as potential therapeutic targets, which pave new paths toward 

novel therapies. 

 

4.5. Others models to study neuroprotective effects of striatal markers 

 

The in vivo lentiviral (LV) mouse model of HD has been used to permit a first screening of 

the impact of the striatal markers on an acute and toxic fragment of mHtt, which provide rapid 

results concerning disease modification at the cellular level. 
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For DCLK3, we used the transgenic mice N171-82Q and Ki140CAG (see paragraph 1.2.7. 

Animal models of HD). This latter HD mouse models have been used to test potential 

therapeutic agents, because their advantages compared to the LV mouse model are the 

behavioral deficits and transcriptional dysregulation appearing with time.  

The currently trendy mice model used for this purpose is zQ175 mice. This model 

recapitulates several features of HD (Heikkinen et al 2012, Menalled et al 2012) and is 

presented as the new mouse model that closely mimics the human genetic lesion and presents 

robust and early behavioral and molecular alterations in both homozygous and heterozygous 

mice. Moreover, behavioral deficits in zQ175 mice emerge at about the same age as do 

transcriptional abnormalities (Menalled et al 2012).  

This HD mice model would permit to validate the neuroprotective effects of Abhd11os and 

CRYM in a proper background in a shorter time than with the Ki140CAG mice. 

In parallel, it would be interesting to test the survival curve of HD mice with the three striatal 

markers presented here, in order to see the impact of the overexpression or silencing of these 

genes in a rapid HD phenotype mice model, as the R6/2 mice (Davies et al 1997, Mangiarini 

et al 1996) and see if neuroprotection measured at cellular level has an impact on a global 

improvement of survival. 

 

Concerning our mostly advanced study on DCLK3, one interesting research direction would 

be to study DCLK3 effects on mHtt more broadly using a genetic strategy using backcrossing 

of DCLK3 KO mice (conditional) with HD mice. This could allow us to confirm that the 

absence of DCLK3 in the brain could exacerbate the pathology and in addition this may 

reveal that the "peripheral" pathological changes in HD mice may also involve DCLK3. 

Beyond HD, the generation of DCLK3 KO mice would also allow us to better determine the 

physiological role of the kinase in the basal ganglia and other part of the brain when it is 

highly expressed (for example hippocampus, pituitary, substantia nigra). It is conceivable that 

DCLK3 could constitute a therapeutic target for other neurodegenerative and psychiatric 

conditions involving the basal ganglia. 

 

4.6. Impact of our study in current spotlights 

 

Striatal markers as gene modifiers of age at onset of HD manifestations 

 

A common feature of our studies is the potential involvement of our striatal markers on 

transcriptional regulation. Because the transcriptome is not limited to protein-coding genes, 

which represent less than 5 % of the genome, and new classes of noncoding RNAs are 

currently in the spotlight. The continuous development of transcriptomics technologies and 

concurrent bioinformatic tools is increasingly enlarging our global perspective of the 

transcriptional phenomenon. Currently, deep sequencing techniques coexist with newly 

improved array platforms to maximize coverage of the entire transcriptome, including 

noncoding genomic features and alternative isoforms, and to connect transcriptomics with 

other sources of genome-wide data related to DNA modification and the occupancy of DNA-

binding proteins (histones and transcription factors) (Valor 2014). 
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It has a particular importance in HD, as described in the introduction of this manuscript 

paragraph 1.2.6.3. Molecular Mechanisms in HD. 

Although neither the normal HD CAG allele repeat length nor its interaction with the 

expanded allele influenced age at motor onset, the remaining variance has been reported to be 

highly heritable, (Aziz et al 2012, Djousse et al 2003, Lee et al 2012, Wexler et al 2004) 

indicating the presence in the genome of genetic factors, called genetic modifiers, whose 

natural polymorphic variation contributes to altering the development of HD symptoms 

(Gusella & MacDonald 2009, Gusella et al 2014). Indeed, the use of RNAi screening in lower 

model organisms revealed that altering the expression of a surprisingly large number of genes 

can influence the aggregation of mHtt (Wada et al 2009). 

Furthermore, early investigations showed that a gene closely linked to the HD gene may 

modify age of onset (Farrer et al 1993). In the HD-MAPS study, suggestive evidence for 

linkage was found at chromosome 4p16, adjusted for CAG repeat size in the HD and normal 

alleles (Li et al 2003). The findings of suggestive linkage to chromosomes 4 and 6, as well as 

marginal evidence for linkage to chromosomes 1, 2, 5 and 18, in a sample of 629 affected 

sibling pairs has provided a direction for the identification of candidate modifiers for onset of 

motor symptoms of HD.  

From this knowledge, Kalathur and colleagues have generated a compendium of molecular 

mechanisms that might play critical roles in HD. The compendium links biological processes, 

molecular functions and pathways to sets of HD-relevant genes (Kalathur et al 2012). It 

permits to generate cartography of all HD-relevant genes to their loci on human chromosomes 

(Kalathur et al 2012). 

Kalathur and colleagues also derived a candidate set of 24 novel genetic modifiers, including 

histone deacetylase 3 (HDAC3), metabotropic glutamate receptor 1 (GRM1), CDK5 

regulatory subunit 2 (CDK5R2), and coactivator 1ß of the peroxisome proliferator-activated 

receptor gamma (PPARGC1B). The list of the HD-relevant genes and their loci is shown in 

Table 4. 
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Table 4 HD-relevant genes located in the four chromosomal regions implicated by both genome-wide 

scans (Kalathur et al 2012). 

As loci modifying age of onset, Kalathur and al. used those that were reported in the genome-

wide scans by (Li et al 2003) (HD MAPS study) and by (Gayan et al 2008). The LOD score 

(logarithm (base 10) of odds) for suggestive evidence for linkage and exact loci localization 

were retrieved from the publications and indicated on the left column of Table 4. 

 

This approach resulted in 26 HD-relevant genes located in the regions that were previously 

linked to age of onset. Interestingly, the results of their analyses reflect many discoveries that 

elucidated molecular mechanisms in HD. More remarkably, they also strongly support a 

functional relevance of processes, that have received little attention, or that have not been 

studied at all in the context of HD. 

 

Pooling data of approaches like these would permit to better understand phenomenon in HD. 

For example, in the Table 4 is cited CDK5 as HD-relevant gene. Yet, Varjosalo and 

colleagues show an interaction between DCLK3 and cyclin-dependent kinase 5 (CDK5) 

(Varjosalo et al 2013) tested by affinity capture-mass spectrometry. CDK5 is a member of the 

serine/threonine CDK family, and is associated with a wide range of cellular functions 

including neural development, neuromuscular development and hippocampal neurogenesis 

(see (Su & Tsai 2011) for a review). CDK5 activity has been found to be crucial for neuronal 

survival during development and disease.  
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Indeed, CDK5 activity is consistently found to suppress mHtt toxicity (Cheung & Ip 2012). 

The neuroprotective potential of CDK5 is therefore likely to be dependent on factors such as 

age and disease progression, or any other cellular insult resulting in DNA damage. CDK5 

could be initially high in models of HD, where it may act as either a compensatory protective 

mechanism by phosphorylating mHtt or as a pro-apoptotic mechanism by enhancing 

excitotoxic vulnerability, dependent on the ratio of its activators present (Cheung & Ip 2012, 

Paoletti et al 2008). It is tempting to think that DCLK3 could be integrated in kinase signaling 

of CDK5, whose results would be pro-survival effects. 

 

Striatal markers as neuronal identity protectors  

 

There is one important aspect of transcriptional regulation in HD. Transcriptional 

deregulation of “striatal markers” seems to be more profound as compared to other gene 

products (Francelle et al 2014). In other words, neurodegeneration in the striatum would start 

by a phenomenon related to a loss of neuronal identity. Establishment of neuronal identity 

requires coordinated expression of specific batteries of genes (Ballas et al 2001, Belyaev et al 

2004, Muhr et al 2001). According to Johnson and colleagues, neurodegeneration can be seen 

as an RNA disorder. They worked to demonstrate a role for microRNAs in HD, indicating 

that the molecular aetiology of HD is reflected in a loss of neuronal identity, caused in part by 

dysregulation of both transcriptional and post-transcriptional mechanisms (Johnson et al 

2012, Johnson et al 2008). 

Transcriptional repression is a principal path by which developmental programs of gene 

expression are established. One of the transcription factors proposed to play an important role 

in establishing and maintaining expression of neuron-specific genes is REST (Chong et al 

1995, Schoenherr et al 1996). Soldati and colleagues, among others, have investigated which 

aspects of the transcriptional dysregulation seen in cellular models of HD can be attributed to 

aberrant repression of coding and non-coding REST target genes (Johnson & Buckley 2009, 

Soldati et al 2013). They provided evidence that REST is likely to contribute to HD gene 

dysregulation by direct and indirect repression of a cohort of genes, including miRNAs, many 

of which are responsible for regulating neuronal identity and function (Soldati et al 2013). As 

proof of concept, Charbord and colleagues have shown that using a chemical component that 

targets REST degradation, but neither REST expression, RNA splicing nor binding to RE1 

sequence, promotes the expression of neuronal genes including BDNF and SNAP25 

[(Charbord et al 2013); see Annexe 6.1.]. Confirming these results, in vivo delivery of 

dominant-negative form of REST (DN:REST) to interfering with REST function improves 

transcriptional changes of REST-regulated genes in HD mice (Conforti et al 2013). Indeed, 

delivery of DN:REST in the motor cortex restores brain-derived neurotrophic factor (BDNF) 

mRNA and protein levels by reducing endogenous REST occupancy at the Bdnf locus. 

Similarly, expression of other REST-regulated genes such as Synapsin I (Syn1), 

Proenkephalin (Penk1) and Cholinergic receptor muscarinic 4 (Chrm4) were restored to 

normal levels while non-REST-regulated genes were unaffected. 
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Modulation of BDNF expression is encouraging, but recovering the basal expression of genes 

as important as REST would bring more efficient perspectives in HD therapy. The next 

question would be how striatal vulnerability-relevant genes influence the striatal identity.  

 

More globally, it is important to determine a potential role for other cis-factors that potentially 

modify age at onset of HD manifestations and cellular function and identity integrity.  

 

As discussed in our review (Francelle et al 2014), it is possible that striatal markers are 

amongst genes preferentially downregulated in HD, which would contribute to render the 

striatum more susceptible to mHtt. 
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There is no efficient therapies that prevent or cure HD. Current most promising strategies 

consist in directly decreasing mHtt expression (ASO and shRNA) and increasing wt-Htt 

expression, or as in our approach, playing on HD modifiers, the striatal modifiers being, as we 

showed by our study, relevant to the fact that although HD is not a purely striatal disease, 

early cellular abnormalities and symptoms are related to striatal alterations. 

 

5.1. Therapeutic perspectives  

 

As detailed previously, Htt is an important protein for vertebrates, which cannot be totally 

silenced to provide therapeutic approach. It is important to gain a better understanding of how 

much of a loss of wt-Htt expression can be tolerated by cells, since some of the therapeutic 

approaches being developed target reduction of Htt levels [(Tian et al 2014); see paragraph 

1.2.8.1. Gene silencing therapy]. Indeed, one way to obviate the risk of wt-Htt knockdown is 

to target the mutant allele selectively (Drouet et al 2014, Ruiz & Deglon 2012, Yu et al 2014).  

However, this strategy presents difficulties to develop efficient techniques to this aim: 

targeting polymorphisms dramatically reduces the repertoire of possible RNA target 

sequences, increasing the chance of off-target effects (Lombardi et al 2009, Wild & Tabrizi 

2014) 

Furthermore, reducing mHtt expression in both cortex and striatum may be necessary for 

optimal suppression of relevant phenotypes in a mouse model of HD (Wang et al 2014), 

which poses a problem of delivery of therapeutic agents in larger animal model brain. 

 

The only serotype so far utilized in CNS clinical trials has been AAV type 2 (AAV2), which 

has displayed an excellent safety profile (Mandel et al 2006). Recently, other serotypes have 

become available, such as AAV1, AAV5, AAV8, AAV9 and AAV10 (Sondhi et al 2007) that 

display greater transduction efficiency, greater diffusion in the brain parenchyma, and higher 

levels of transgene expression than AAV2. The large volumes of distribution of newly 

identified AAV serotypes favor the study of behavioral deficits. Using vascular system to 

major delivery is an attempt conducted by Dufour et al (Dufour et al 2014). Intrajugular vein 

injection of AAV9 expressing a mutant Htt-specific RNAi construct significantly reduced 

mHtt expression in multiple brain regions and peripheral tissues affected in HD. 

Correspondingly, this approach prevented atrophy and inclusion formation in the first brain 

regions touched by HD as well as the severe characteristic weight loss of HD YAC mice. 

The group of Viviana Gradinaru has developed a methodology that uses a derivative 

application of CLARITY, SCALE, SeeDB, ClearT and BABB (Murray’s Clear) techniques 

(Becker et al., 2012; Chung et al., 2013; Dodt et al., 2007; Ertu¨ rk et al., 2012a; Hama et al., 

2011; Ke et al., 2013; Kuwajima et al., 2013; Susaki et al., 2014) to facilitate fast, whole-

brain and whole-body clearing using systemic or cerebrospinal circulation to directly deliver 

clarifying agents and to immunostain intact organs. This technique can be useful to follow 

tropism of AAV without sectioning and can be used as a rapid tool for individual cell 

phenotyping and genotyping modification (Yang et al 2014). 

 

Diffusion problem of therapeutic agents is also addressed for therapeutic agents that do not 

directly target mHtt. 
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Other ways to find therapeutic targets for HD, potentially useful for other striatal disorders 

are:  

1) to used high throughput screening of chemical molecules in HD cellular models, which is a 

rapid way to identify active compounds, providing starting points for drug design and for 

understanding of the interaction or role of a particular biochemical process (Charbord et al 

2013, Lausted et al 2014, Lazzeroni et al 2013, Lu et al 2013); In certain cases, the strategy is 

to screen large FDA approved drug library. Thus efficacious drug in the screen may be 

rapidly tested in patients, and if the drug has an impact on the disease, a “repositioning” of the 

drug can be obtained very rapidly;  

2) to identify novel therapeutic targets based on proteins known to have neuroprotective 

properties against mutant Htt. There are currently hundreds of targets studied as potential 

target to treat HD. In this context the study of proteins that are relevant to the particular 

vulnerability of the striatum (i.e. the striatal markers) might be promising (Francelle et al 

2014). Concerning CRYM, Abhd11os and DCLK3 much work has to be carried out to better 

understand their mode of action and their efficacy. In parallel, it may be important to develop 

strategies to target these striatal markers. For example DCLK3 could be targeted to increase 

its activity, to produce neuroprotection. While kinase inhibitors can be easily found, allosteric 

inhibitor of kinase are more difficult to discover. For example, AMPK is allosterically 

regulated by AMP and chemical analogues have been developed to activate the kinase, which 

regulates key aspect of energy metabolism (Xiao et al 2013). Another example is the case of 

serine which is the nature allosteric activator of pyruvate kinase 2, central in coupling 

metabolism and cell proliferation in cancer cells (Chaneton et al 2012, Hawley et al 2012). 

Some kinases have allosteric pockets (docking phosphate motif on substrates) that serve to 

activate phosphorylation (Hindie et al 2009).  

This strategy could be developed for activation of DCLK3, however a better knowledge of the 

3D structure of the protein is required, and the potential mechanisms of regulation (especially 

phosphorylation by upstream kinases, such as CDK5 for example) need to be identified. 

Another parallel strategy would be to screen large libraries of chemical compounds to identify 

synthetic activators using biochemical assays with recombinant DCLK3 and FRET reporter 

substrate. 

 

 

The questions behind these approaches are:  

-What to do with the few already studied striatal markers? We need to elucidate their 

mechanisms of action and test them in complex HD animal models. 

-What to do with the hundreds striatal markers not yet experimentally studied? Identification 

of their function, if unknown, would permit to have a global idea of the mechanisms of action.  

 

Characterization of novel markers can be simple when using simple HD models (cells, yeasts, 

Drosophila, zebrafish, C. elegans, etc.) to better apprehend their mechanisms of action. Test 

their impact against mHtt toxicity, first with simple but acute HD models, using for example 

derivatives of stem cells or the in vivo LV mouse model of HD.  
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Depending on the nature of the impact against mHtt toxicity, if striatal markers exacerbate 

cytotoxicity of mHtt, it would be interesting to find inhibitors of these markers, and test their 

inhibition in different HD models; if they present neuroprotective effects, the validation of 

their effects in others animal models of HD, chosen depending on the asked question, is 

essential. 

As described in the introduction of the manuscript, paragraph 1.2.7. Animal models of HD, it 

exists a large diversity of HD animal models, but to assess the disease-modifying of a 

potential therapeutic agent, I would used Drosophila and R6/2 mice for a proof of feasibility 

and survival curve, knock-in models for long-term effects, and ultimately non-human 

primates for cognitive and fine motor behavior. 

 

The designation most commonly applied to a treatment that postpones or slows the 

progression of a neurodegenerative disease is “neuroprotective”. However, this concept is 

restrictive, because it describes a mechanism of action rather than a consequence of an 

intervention. Other similar mechanistic concepts include “neuro-rescue” (refers to the salvage 

of dying neurons) and “neuro-restoration” (refers to increasing the numbers of neurons by 

techniques such as cell implantation or nerve growth factor infusion). 

Another term used in my manuscript is “disease-modifier”, that implies halting or delaying 

the neuronal loss and therefore slowing or stopping the progression of neurological 

symptoms, and ultimately modifying the clinical course of the disease. 

 

5.2. How to improve methods to optimize the testing of modifiers 

 

Limitation of classical histological approaches, toward 3D approaches 

In our approach, we used histo-neuropathology, with functional markers as DARPP32, NeuN 

and COX proteins to detect dysfunctional or dying neurons in the striatum. These proteins are 

characteristic of the loss of MSN, but it would be useful to find others functional markers to 

have a wider overview of the neurodegeneration (for example HDAC, autophagy 

functionality detection). We counted the number of aggregates thanks to Em48 antibody and 

ubiquitin staining, even if the way aggregates are protective or toxic is still unclear. 

Protection can be functionally observed by electrophysiology experiments, to measure the 

connectivity between cells, receptors environment, neuronal and non-neuronal responses to 

stimuli/pharmacology/treatments.  

 

In vivo imaging as a prerequisite 

As in clinical studies, in vivo imaging in rodent models of HD is probably a key 

methodological approach to study modifiers of mHtt toxicity. MR-imaging is a useful tool to 

address functional question. For example, the remarkable longitudinal follow up of HD gene 

carriers in large cohorts have been performed using MRI, revealed key aspect of striatal and 

extrastriatal atrophy in the brain using cutting edge 3D analyses.  

Cerebral white matter (WM) changes in HD have been reported in a number of studies (for 

reviews see (Bohanna et al 2008, Kloppel 2009)), mainly using magnetic-resonance (MR)-

based diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) (Douaud et al 

2009, Rosas et al 2006).  
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These techniques use diffusion directions of water molecules to calculate a tensor, which can 

be converted into metrics such as fractional anisotropy (FA) (Basser & Jones 2002, Basser & 

Pierpaoli 1996),In particular, DTI techniques (tractography) permit to establish the 

”connectome” of the brain and identify subtle changes in HD gene carriers and later evolution 

in patients. So DTI has emerged as a sensitive tool for detection of altered tissue integrity at 

both preclinical and clinical stages of HD (Mascalchi et al 2004, Reading et al 2005). 

Reduced fiber connectivity between the prefrontal cortex and the caudate has been shown to 

reflect symptomatology in pre-HD (Kloppel et al 2008). Diffusion properties of white matter 

are altered across an extensive, distributed anatomical area in HD. Changes in diffusion 

metrics are associated with markers of HD severity (Dumas et al 2012, Novak et al 2014, 

Poudel et al 2014). In view of these data acquired in human, it would be interesting to study 

the grey and white matter connectivity of HD mice injected with DCLK3 to have an overview 

of grey and white matter diffusion and rely these data to literature. It may constitute one more 

argument of the large impact of DCLK3 neuro-rescue effects against mHtt toxicity. 

 

Other methods need to be further developed to improve the follow-up of patients in 

correlation with symptom evolution. For example, the GluCEST (glutamate (Glu) chemical 

exchange saturation transfer) technique, developed for detecting brain Glu in millimolar 

concentrations (Cai et al 2012, McMahon et al 2006, Sherry & Woods 2008, Ward et al 

2000). Alterations in cortical and striatal glutamate and DA neurotransmission in HD could be 

measured by this way in our laboratory.  
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5.3. Further perspectives: combinatory therapy 

 

Finally, as long-term perspectives and ultimate goal, once striatal markers and a maximum of 

therapeutic agents will be discovered and experimentally tested, a way to increase disease-

modifying effects of the molecules tested in HD animal models could be the combination of 

several neuro-rescue and neuro-restorative molecules in complement of a preventive medicine 

(see Figure 19 Combinatory therapy model of HD).  

 

 
Figure 19 Combinatory therapy model of HD 

 

Indeed, the diversity of biochemical parameters involved in neuronal death in HD (oxidative 

stress, mitochondrial dysfunction, protein aggregation, decreased neurotrophic factors, 

inflammation and activation of apoptotic enzymes) implies that a therapeutic agents targeting 

multiple cellular components and/ or embodying a range of different properties may be more 

efficacious to alleviate the various pathological features of HD disease. 
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6.1. Collaborative work #1 

High Throughput Screening for Inhibitors of REST 

in Neural Derivatives of Human Embryonic Stem 

Cells Reveals a Chemical Compound that Promotes 

Expression of Neuronal Genes. 
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ABSTRACT

Decreased expression of neuronal genes such as brain-
derived neurotrophic factor (BDNF) is associated with sev-
eral neurological disorders. One molecular mechanism
associated with Huntington disease (HD) is a discrete
increase in the nuclear activity of the transcriptional
repressor REST/NRSF binding to repressor element-1
(RE1) sequences. High-throughput screening of a library
of 6,984 compounds with luciferase-assay measuring REST
activity in neural derivatives of human embryonic stem
cells led to identify two benzoimidazole-5-carboxamide
derivatives that inhibited REST silencing in a RE1-
dependent manner. The most potent compound, X5050,
targeted REST degradation, but neither REST expression,
RNA splicing nor binding to RE1 sequence. Differential
transcriptomic analysis revealed the upregulation of

neuronal genes targeted by REST in wild-type neural cells
treated with X5050. This activity was confirmed in neural
cells produced from human induced pluripotent stem cells
derived from a HD patient. Acute intraventricular deliv-
ery of X5050 increased the expressions of BDNF and sev-
eral other REST-regulated genes in the prefrontal cortex
of mice with quinolinate-induced striatal lesions. This
study demonstrates that the use of pluripotent stem cell
derivatives can represent a crucial step toward the identi-
fication of pharmacological compounds with therapeutic
potential in neurological affections involving decreased
expression of neuronal genes associated to increased REST
activity, such as Huntington disease. STEM CELLS

2013;31:1816-1828
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INTRODUCTION

Several pathological states affecting the central nervous sys-
tem are associated with perturbations of the expression of
neuronal genes before actual neural cell loss or transformation
occurs. This, for instance, is the case for Huntington disease
(HD) [1–3]. One identified mechanism that leads to such phe-
nomena is an increased activity of the repressor element-1
silencing transcription factor (REST), also known as neuron
restrictive silencer factor (NRSF). Accordingly, a therapeutic

avenue for those pathologies may be to interfere pharmaco-
logically with REST inhibition of its target genes (RE1-genes)
[4,5]. Indeed, REST inhibition achieved in vitro via the over-
expression of a dominant-negative form of REST (D/N-
REST) lifts REST-mediated repression or silencing of several
hundreds of neuron-specific genes, among which, notably, the
brain-derived neurotrophic factor (BDNF) [6–8]. While D/N-
REST-mediated inhibition has limited clinical relevance,
pharmacological intervention that would similarly increase
neuroprotective gene expression through REST inhibition
would open promising therapeutic perspectives. This study
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has accordingly been undertaken in a search for compounds
that could meet that goal.

REST is a Kr€uppel-type zinc finger transcription factor
that exerts its repressive cis-activity in the nucleus upon bind-
ing to a 21-nucleotide DNA sequence called repressor
element-1 (RE1). REST is the key component of a nuclear
complex consisting of associated core factors such as
SIN3A, SIN3B, and RCOR1 (a.k.a Co-Rest), and epigenetic
regulators such as histone-deacetylases (HDACs), histone-
methyltransferase (EHMT2), and histone-demethylase
(KDM1A) that mediate chromatin compaction [9]. The com-
position of the nuclear complex and, as a consequence, the
exact role of REST is dependent on the cell type and devel-
opmental stage [9,10]. REST has been initially described as
an inhibitor of neuronal genes in non-neuronal cells [11,12],
and its activity has more recently extended to several aspects
of development, in particular pluripotent and neural stem cell
(NSC) maintenance and commitment [13–16].

Levels of REST transcript and protein decrease during
transition from mouse embryonic stem cells (ESCs) to neu-
rons [17,18]. REST degradation leads to neural commitment
and further differentiation of neural cells via the expression of
critical proneural and neuronal activators containing RE1
site(s) in their promoters [13,17,19,20]. Different levels of
REST may also control neuronal and glial lineage diversifica-
tion [21–23] and the maintenance of the quiescent state char-
acteristic of postmitotic neurons [24–26].

This study has been undertaken within the framework of a
program seeking therapeutics for HD, using chemical com-
pounds that may decrease the activity of REST in the human
brain. Human pluripotent stem cells (hPSC: embryonic: hESC
or induced: hiPSC) were used as they give access to an
unlimited supply of human neural cells [27,28]. Harnessing
this biological resource, we developed a cell-based reporter
system to monitor REST activity in hPSC neural derivatives
and carried out high throughput screening (HTS) that revealed
hit compounds. The mechanism of action of the most potent
of these hit compounds was subsequently determined. The
activity of this compound was measured in vitro in human
NSC carrying the Huntington mutation and in vivo in a phe-
notypic model of HD-like striatal degeneration. This work
opens a potential path for the development of therapeutic
agents against neurological diseases that involve loss of
expression of neural genes controlled by REST.

MATERIALS AND METHODS

Cell Culture

SA-01 (Cellartis) and RC9 (RoslinCells) hESC repeats lines
(WT, XY) and HD1-iPS4 [29] hiPSC line (HD 72 CAG, XY)
were differentiated into NSCs as described previously [27].
NSCs were grown on polyornithine/laminin-coated tissue cul-
ture plates in NSC medium containing Neurobasal, Dulbec-
co’s modified Eagle’s medium (DMEM)/F-12, N-2, and B-27
(Invitrogen, Carlsbad, CA, http://www.invitrogen.com) sup-
plemented with 0.55 mM 2-mercaptoethanol, 10 ng/mL epi-
dermal growth factor (EGF) (R&D Systems, Minneapolis,
MN, http://www.rndsystems.com), and 10 ng/mL fibroblast
growth factor 2 (FGF2) (Invitrogen). NSCs were passaged
every 5–7 days up to 20 passages. To obtain neurons, conflu-
ent NSCs were grown during 7 days in NSC medium without
BDNF, EGF, and FGF2. Cells were then plated at 400,000
cells per centimeter square in NSC medium supplemented
with 10 lM DAPT (Sigma-Aldrich, St. Louis, http://www.sig

maaldrich.com). Cells were harvested after 14 days. Human
embryonic kidney 293 (HEK) cells were passaged every 3–4
days and grown in DMEM, high glucose (Invitrogen) supple-
mented with 10% fetal bovine serum (Invitrogen).

Vectors

A 1,200 nucleotide (nt) fragment of the elongation factor 1
(EF1a) promoter containing the transcription start site (TSS)
was blunted and cloned into HindIII-digested pGL4.82
[hRluc/Puro] luciferase reporter vector (Promega, Madison,
WI, http://www.promega.com), upstream of renilla luciferase.
Alternatively, a 540-nt fragment of phosphoglycerate kinase
(PGK) containing the TSS was blunted and cloned into the
NheI-digested pGL4.82 upstream of renilla luciferase. Sense
and antisense 90 nt DNA fragment (see sequences in Support-
ing Information Table 3) containing three 17-nt-long RE1 or
mutant RE1 sites, each one separated by 9 nt spacer, were
synthesized by Invitrogen. These fragments were then
annealed and cloned upstream of PGK or EF1a. Subcloning
strategies for 6, 12, and 24 RE1 sites or mutantRE1 sequences
were based on polymerase chain reaction (PCR) amplification
of inserts with adapter primers or digestion/ligation of DNA
fragments containing RE1 or mutant RE1 sequences. The D/
N-REST vector was kindly provided by Dr. Noel Buckley
(King’s College, London). The D/N REST cassette corre-
sponding to 234–437 amino-acid residues of mouse sequence
coding for REST [30] was subcloned downstream of EF1a
promoter in pIRES backbone (Clontech, Mountain View, CA,
http://www.clontech.com) (pEF1a-D/N-REST: D/N-REST and
pIRES: backbone vector). pMission small hairpin RNA
(shRNA) plasmids (TRCN0000014785, Sigma-Aldrich) are
directed against human REST gene (exon IV). Myc-DDK-
tagged open reading frame (ORF) clone of Homo sapiens
REST, transcript variant 1 was purchased from Origene
(Rockville, MD, http://www.origene.com).

Bioluminescence Studies

Cells were transiently transfected using the Nucleofector
Technology (Lonza, Basel, Switzerland, http://www.lonza.-
com). One and five million cells were transfected per nucleo-
fection for HEK cells and NSCs, respectively. One
microgram of reporter plasmids was used per transfection.
Four microgram of D/N-REST or backbone plasmids were
cotransfected with 1 lg reporter plasmids. Si-REST
(Hs_REST_5) and si-RCOR1 (Hs_RCOR1_6) were purchased
from Qiagen (Hilden, Germany, http://www1.qiagen.com) and
were cotransfected at 100 and 10 nM, respectively, with 1 lg
reporter plasmids. HEK cells and NSCs were plated in 96-
well plates in 100 lL media at 350,000 and 500,000 cells per
centimeter square, respectively. Cells were treated 5 hours
after seeding with chemical compound or dimethyl sulfoxide
(DMSO) only. Plates were then incubated for 24 hours at
37�C, with 95% humidity, and 5% CO2. Enduren substrate
(Promega) was then added in each well and the biolumines-
cent signal was read 90 minutes later on an AnalystGT micro-
plate reader (Molecular devices, Union City, CA, http://
www.moleculardevices.com). This measure was immediately
followed by addition of CellTiter-Glo reagent (Promega) and
the second bioluminescence signal (viability) was read 40
minutes later. Dual-glo luciferase assay, CellTiter-Glo, and
Enduren live cell substrate experiments were done according
to the manufacturer’s protocols (Promega). The percentage of
repression, de-repression, activity and the specificity index
were calculated as follows:
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� % repression 5 [E/CTG (mutant RE1) – E/CTG (RE1)]/[E/
CTG (mutant RE1)] where E is the Enduren substrate sig-
nal, CTG is the CellTiter-Glo viability signal, and mutant
RE1 or RE1 is the reporter plasmid.

� % de-repression by D/N-REST 5 [E/CTG(RE1 1 D/N-REST)
– E/CTG(RE11backbone)]/[E/CTG(RE11D/N-REST)].

� % de-repression by si-RNA 5 [E/CTG (RE1 1 si-RNA) –
E/CTG(RE11 si-CTRL)]/[E/CTG (RE1 1 si-RNA)] where
si-RNA is si-REST or si-RCOR1. % activity 5 [(Sc/MN)) –
1] where Sc is the sample treated by compound and MN is
the mean of samples treated by negative control (DMSO)
in the same plate

� Specificity index 5 [% activity (RE1 1 backbone) – %
activity(RE11D/N-REST)]/[% activity (RE1 1 backbone)].

Primary HTS

Two chemical libraries were purchased: one from CHEM-X
Infinity (Romainville, France, http://www.chem-x-infinity.com)
and the other from Prestwick company (Illkirch, France, http://
www.prestwickchemical.com); these libraries consisted of
5,864 compounds and 1,120 compounds, respectively. The pri-
mary screening was conducted on the Biocel1800 (Agilent, Palo
Alto, CA, http://www.agilent.com) platform starting with 150
million NSCs that were transiently transfected with p12RE1-
EF1a-Luc plasmids. Cells were then seeded in 44 384-well
plates coated with poly-ornithine and laminin (15,000 cells per
well in 38 lL of NSC medium). Five hours after seeding, each
compound of Prestwick (5 lM final) or Chem-X library (2 lM
final) was transferred in duplicate into wells. Positive control
(valproic acid [VPA] 10 mM in DMSO 0.1% v/v) and negative
control (DMSO 0.1% v/v) were added in columns 1 and 2 of
each plate. Plates were then incubated for 24 hours. One day
later, Enduren substrate CellTiter-Glo reagents were added and
bioluminescence signals were measured as described above.
Data analysis of the screening was done with Spotfire software
(Tibco Co, Palo Alto, CA, http://spotfire.tibco.com/). The
robustness of the HTS was evaluated using Z0 factor calculated
as follows: Z05 1 – [3(SDH 1 SDL)/(MH – ML)] where MH
and ML correspond to the means of the positive and negative
controls, respectively, and SDH and SDL correspond to the
standard deviation of the positive and negative controls. Z-score
method was applied to normalize values.

Quantitative Reverse Transcriptase PCR

RNA from NSCs SA-01, RC9, HD1-iPS4 or HEK293 cells was
extracted after 1 day of treatment with DMSO (0.1% final) or
with X5050 (100 lM final) in NSC medium without cytokines or
HEK medium. The NSCs were lysed directly in the culture
dishes, and RNA was isolated using RNeasy Mini kit (Qiagen)
with DNAse I digestion. After quantification using a NanoDrop
ND-1000A spectrophotometer, reverse transcription was per-
formed with SuperScript III reverse transcriptase (Invitrogen)
and random primers (Invitrogen). Gene expression was deter-
mined by quantitative reverse transcriptase PCR (QRT-PCR)
performed with LC480 SYBR Green I Master mix (Roche,
Basel, Switzerland, http://www.roche-applied-science.com).
Primer sequences are presented in Supporting Information Table
4. For all experiments on human samples, values were related to
18S housekeeping gene then to appropriate control. For all
experiments on mouse samples, values were related to b-actin
housekeeping gene then to appropriate control.

Electrophoretic Mobility Shift Assay

Sense and antisense DNA fragments containing two RE1 sites
separated by 9 nt spacer were synthesized (Invitrogen) and

annealed (see sequences in Supporting Information Table 4).
c-dATP was incorporated by polynucleotide kinase T4 (Prom-
ega), and probes were purified on illustra MicroSpin G-50
Columns (GE Healthcare, Chalfont St Giles, United Kingdom,
http://www.gehealthcare.com). Lysate from HEK cells transi-
ently transfected with plasmids overexpressing REST (REST
lysate) was purchased from Origene. Five microgram of lysate
proteins were preincubated for 30 minutes at RT with or with-
out competitor DNA (100-fold radioactive probe approxi-
mately 300 ng) in 22 lL of solution containing 0.1% DMSO
(v/v) or 100 lM X5050, and the binding mix consisting of
8% (v/v) glycerol, 0.1 mM EDTA, 25 mM Hepes (pH 7.9), 5
mM MgCl2, 34 mM KCl, 1 mM dithiothreitol (DTT), and 1
lg polydI-dC. Approximately 3 ng (�40,000 cpm) of probes
were then added, and the reaction mixture was incubated for
another 20 minutes at RT. Reactions were run in 22.5 mM
Tris-borate/0.5 mM EDTA buffer and electrophoretic mobility
shift assay (EMSA) was performed using 5% polyacrylamide
gels. Gels were then fixed, dried, and exposed to Biomax X-
ray film (Kodak) for 72 hours.

Western Blot

Cells were resuspended in RIPA lysis buffer (Sigma-Aldrich)
in the presence of Protease Inhibitor Cocktail (Sigma-Aldrich)
and anti-phosphatases PhosphoSTOP (Roche). Protein concen-
tration of cell extracts was determined using Pierce BCA Pro-
tein Assay Kit (Thermo Fisher Scientific Inc, Waltham, MA,
http://www.thermofisher.com) according to the manufacturer’s
instructions. Proteins from each sample were mixed with
NuPAGE lithium dodecyl sulfate (LDS) sample buffer 43
(Invitrogen) and DTT 1 M (Sigma-Aldrich) then heated at
70�C for 10 minutes. SDS poly-acrylamide gel electrophoresis
(SDS-PAGE) was performed using NuPAGE Novex 4%–12%
Bis-Tris Gels (Invitrogen) and NuPAGE 2-(N-morpholino)e-
thanesulfonic acid (MES) SDS running buffer (Invitrogen)
with addition of NuPAGE antioxidant (Invitrogen). Twenty
microgram of total proteins was loaded per well along with
HiMark Pre-stained Protein Standard (Invitrogen). Protein
migration was performed during 45 minutes at 200 V at RT.
Proteins were transferred onto nitrocellulose membranes using
the iBlot Gel Transfer Stack (Invitrogen) and the iBlot Dry
Blotting System (Invitrogen). Membranes were blocked with
5% non-fat milk in phosphate-buffered saline (PBS) contain-
ing 0.1% Tween 20 (PBST) for 1 hour, then incubated over-
night at 4�C with REST polyclonal antibody (Abcam,
Cambridge, U.K., http://www.abcam.com). After several
washes with PBST, blots were incubated for 1 hour at room
temperature with rabbit horseradish peroxidase-conjugated
secondary antibody. Membranes were then washed with
PBST and incubated in Amersham ECL Plus Western Blot-
ting Detection Reagents (GE Healthcare) in order to reveal
immunoreactive bands by using the ImageQuant LAS 4000
mini luminescent image analyzer (GE Healthcare). Results
were normalized to b-actin revealed with AC-74 antibody
(Sigma-Aldrich). For myc-tagged experiments, we used anti-
myc antibody (Invitrogen)

Transcriptome

RNA was extracted from six samples, corresponding to three
independent cultures of NSCs SA-01, each one treated either
with DMSO (0.1%) or with X5050 (100 lM). RNA was iso-
lated using RNeasy Mini kit with DNase I digestion (Qiagen).
Quality control was assessed using Agilent Bioanalyzer (Agi-
lent Technologies, Germany) and NanoDrop spectrophotome-
ter ND-1000A. Genome-wide gene expression profiling was
performed by hybridization on oligonucleotide microarrays (in
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total six GeneChips human Gene 1.0 ST) according to stand-
ards supplied by the manufacturer (Affymetrix, Santa Clara,
CA, http://www.affymetrix.com). All quality controls and sta-
tistics were performed using Partek Genomic Suite. Raw data
were normalized using the Robust Multichip Algorithm in
Partek [32]. We first made a hierarchical clustering (Pearson’s
dissimilarity and average linkage) and principal component
analysis for unsupervised analysis with all samples. To find
differentially expressed genes, we applied a two-way ANOVA
(factor treatment and factor culture) and computed the fold-
change for each gene. All data obtained by microarray analy-
sis have been submitted on gene expression omnibus (GEO)
site with this accession number (GSE40695).

Gene set enrichment analysis (GSEA) was carried out
using the motif database from the Broad Institute [31,33].
Genes belonging to the enrichment core of datasets with false
discovery rate (FDR)< 0.05 were selected. For core enrich-
ment genes in each dataset, gene ontology was performed
using the online database DAVID (http://david.abcc.ncifcrf.
gov [34,35]) and some of these genes were selected and con-
firmed by QRT-PCR. Hierarchical clustering with Ward
method was done using JMP software.

Intraventricular Injection of X5050 in Quinolinic
Acid Lesioned Mice

12-week-old male C57Bl6 mice (Charles River, France) were
used in this study (n 5 14). All experimental procedures were
performed in strict accordance with the recommendations of the
European Commission (86/609/EEC) concerning the care and
use of laboratory animals. Mice were anesthetized with 0.1 mL/
10 g of a mixture of ketamine (100 mg/mL) and 0.5 mL xylazine
(20 mg/mL). Quinolinic acid was injected into the striatum, using
a 34-gauge blunt-tip canula linked to a Hamilton syringe by a
polyethylene catheter. A total volume of 1 lL (80 mM) was
injected at 0.5 lL/minute. The stereotaxic coordinates were:
anteroposterior, 11 mm; lateral, 12 mm from the bregma; and
ventral, 22.7 mm from the dura, with tooth bar set at 0 mm. At
the end of the injection, the needle was left in place for 5 minutes
before being slowly removed. The skin was sutured and mice
were allowed to recover. One week after the lesion, mice
received simultaneous bilateral injection of X5050 (23 2 lL of
20 mM in 10% DMSO in water) in the lateral ventricles (the ste-
reotaxic coordinates were: anteroposterior, 20.46 mm; lateral,
61 mm from the bregma; and ventral, 22.25 mm from the dura,
with tooth bar set at 0 mm). An equal volume of 10% DMSO in
water was injected in controls. Before injection, the needles were
fully removed to allow cerebrospinal fluid (CSF) to exit from the
needle tract, lower CSF pressure, and validate needle placement.
At the end of the injection, the needles were left in place for 5
minutes before being slowly removed. One day after intraventric-
ular injection, mice were killed and the brain was removed,
blocked, and cut into 1-mm-thick coronal slices. On one coronal
slice (11 mm from bregma), tissue punches from the striatum
were taken by using a tissue corer (1.5-mm in diameter). From
the adjacent (anterior) slice, the prefrontal cortex was dissected
out. RNA from all tissue punches was isolated with Trizol Rea-
gent and RNeasy micro Kit according to the manufacturer’s
instructions (Qiagen).

Statistical Analysis

With the exception of the microarray analysis, all statistical
analyses were performed using Graph Pad Prism5 and JMP
software. For multiple comparisons we used one-way
ANOVA analysis. In paired experiments, one sample t test or
Student’s t test were used depending on each experiment as
indicated in the figure legends.

RESULTS

Assay Development for Measuring REST Activity

REST activity was first measured during neuronal differentia-
tion of SA-01 hESCs, in order to control the relevance of the
cell model. REST mRNA levels were quantified using QRT-
PCR in three cell populations: undifferentiated hESCs, hESC-
derived NSCs, and neurons differentiated for 21 days from
NSCs; Nestin (NES) and SOX1 expression peaked in NSCs
while synaptophysin (SYP), neural cell adhesion molecule L1
(L1CAM), synaptosomal-associated protein 25 (SNAP25), and
a-synuclein (SNCA) were highest in neurons (Supporting
Information Fig. S1A). In keeping with previous studies
[13,17], the expression of the predominant and longer tran-
script of REST was maximal in hESCs and NSCs and
decreased by 25-fold in neurons, while that of the alterna-
tively spliced and shorter transcript REST4 was minimal in
hESCs and NSCs and increased by more than 100-fold in
neurons (Supporting Information Fig. S1B) confirming obser-
vations made in rodent brain [36–38] and PC12 derivatives
[39]. As a control, RCOR1, a core member of the REST
nuclear complex, was not significantly modulated in any of
the three cell populations. Western blot analyses confirmed
the presence of the 122 kDa longer isoform of the REST pro-
tein in NSCs, the identity of which was further established by
knocking-down REST using specific shRNA (Supporting
Information Fig. S1C). The functionality of REST protein in
NSCs was checked using a dominant/negative REST (D/N-
REST) isoform. Expression of three RE1-genes containing
two RE1 sites, L1CAM, SNAP25, and SYP, was significantly
increased 24 hours after transfection (Fig. 1D). As control of
specificity of the effects of D/N-REST, similar changes were
not observed on mRNA levels of SOX1 or NES that are not
regulated by REST or on levels of REST itself.

Several RE1-containing reporter plasmids were designed
and constructed in order to measure the activity of REST in
hESC derivatives. “RE1-plasmids” included the coding
sequence of Renilla luciferase under the control of the pro-
moter of either EF1a or PGK, itself located downstream of 3,
6, 12, or 24 consensus RE1 sites (Fig. 1A). In control vectors
(“mutant RE1-plasmids”), six nucleotides of the consensus
sequence located at position with the highest position-scoring
matrix (PSM) were mutated. The repressor activity of REST
on luciferase expression was measured in SA-01 derived
NSCs, 24 hours after transfection with either RE1-plasmids or
mutant RE1-plasmids. Luciferase signals normalized to cell
viability were lower in cells transfected with RE1-plasmids.
This suggested the RE1-mediated repression of the luciferase
expression cassette by endogenous REST in transfected cells
(Fig. 1B). Additional experiments confirmed the specificity of
the assay, that is, the relationship between luciferase signal
and repressor activity of endogenous REST on RE1 sites
upstream of PGK/EF1a promoter. RE1-plasmids were cotrans-
fected with either D/N-REST plasmids or small interfering
RNA (siRNA) targeting REST or RCOR1 to impair endoge-
nous REST function (Fig. 1B). De-repression of these control
conditions measured was found equivalent across the range of
experiments. The assay specificity was further validated using
reporter plasmids containing increasing numbers of RE1 or
mutant RE1 sites. Repression of the activity of EF1a and
PGK promoters under the control of RE1 sites increased in
parallel to the number of RE1 sites. Repression curves were
similar for both promoters and fitted a logarithmic model
(Fig. 1C). The capacity of REST to inhibit luciferase expres-
sion of RE1-plasmids was independent of the orientation
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(sense or reverse) of the RE1 sequences and of the normaliza-
tion method (Supporting Information Fig. S1A, S1B).

In order to test the correlation between REST mRNA lev-
els and repression of the reporter gene in cells transfected
with RE1-plasmids, three neural cell populations containing

different levels of REST were assayed: cells cultured with
FGF2 and EGF, in which REST level is the highest, cells
coaxed to neuronal differentiation by the notch inhibitor
DAPT (Supporting Information Fig. S2C) that have the lowest
level and cells cultured without mitogens that have

Figure 1. Luciferase-based reporter assay for REST activity in neural stem cells (NSCs). (A): Schematic of REST reporter cassette and RE1
consensus and mutated (red) sequences. (B): REST activity expressed as percentage of repression/de-repression of luciferase cassette. From left
to right : Luciferase repression comparing signals with mutant 6RE1-PGK and 6RE1-PGK plasmids: luciferase de-repression by D/N-REST com-
paring signals with 6RE1-PGK 1 D/N-REST and 6RE1-PGK 1 backbone plasmids; luciferase de-repression by si-REST comparing 6RE1-
PGK 1 si-REST and 6RE1-PGK 1 si-CTRL; luciferase de-repression by si-RCOR1 comparing 6RE1-PGK 1 si-RCOR1 and 6RE1-PGK 1 si-
CTRL. Error bars: mean 6 SEM (n 5 4). One sample t test compared to 0. (C): Percentage of repression related to the number of RE1 sites.
Experiments similar to (B) with plasmids with EF1a (continuous line) or PGK (dashed line) promoter driving luciferase. Error bars: mean 6 SEM
(n 5 11). *, p< .05; **, p< .01 by unpaired two-tailed Student’s t-test. Significant logarithmic fit of means (p 5 .014 for EF1a and p 5 .007 for
PGK). (D): REST activity and REST mRNA levels in neural derivatives. Upper panel: Percentage repression quantified as in (B) but using
12RE1-EF1a and mutant 12RE1-EF1a plasmids. Lower panel: relative REST mRNA levels by quantitative reverse transcriptase polymerase chain
reaction. NSCs pretreated for 7 days in medium without mitogens before being treated with one of three media (FGF2 1 EGF, without cytokines,
DAPT). Error bars: mean 6 SEM (n 5 6). *, p< .05; **, p< .01 by one-way ANOVA and Dunnett’s multiple comparison test. Abbreviations: D/
N REST, dominant-negative form of REST; DAPT, N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester; EGF, epidermal
growth factor; EF1a, elongation factor 1a; FGF2, fibroblast growth factor; PGK, phosphoglycerate kinase; RE-1, repressor element-1; REST,
repressor element-1 silencing transcription factor
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intermediate level. Levels of REST enzymatic reporter activ-
ity paralleled levels of REST mRNA (Fig. 1D).

HTS for REST Inhibitors

The conditions that achieved statistical robustness compatible
with HTS of several thousand chemical compounds were
defined in SA-01-derived NSCs. Several pharmacological
inhibitors of enzymes present in the REST nuclear complex
were examined in order to identify the most suitable positive
control for our REST assay in NSCs. The HDAC inhibitor
(VPA, 10 mM) showed the highest activity, as normalized to
negative control treatment (DMSO) (Supporting Information
Fig. S3A). Using these controls, the mean score of Z0 factor
calculated for the REST assay in NSCs on a set of five 384-
well plates was 0.5 6 0.2 (mean 6 SD), a value that is appro-
priate for HTS (Supporting Information Fig. S3B).

The effect of 6,984 compounds was tested in duplicate in
SA-01-derived NSCs transfected with 12 RE1-plasmids. Com-
pounds were selected as primary hits—potential REST inhibi-
tors—when viability signal was not reduced below 70% and
when REST activity was above a two-sigma threshold (mean
plate signal 1 2 SD) (Fig. 2A). Fifty compounds matched those
first selection criteria. Retest screening and counter-screening
using mutant RE1-plasmid retained 23 of them (Fig. 2B) out of
which 20 showed dose-dependent activity. We then applied an
arbitrary threshold for maximum activity of 30% over controls
(D/N-REST plasmids) and thus selected the 11 most potent
compounds. These 11 compounds mostly clustered into two
chemical families, namely benzoimidazole-5-carboxamide and
pyrazole propionamide derivatives (Supporting Information
Fig. S2C; Table 4). Properties of the two most potent and spe-
cific members of each chemical family are shown in Figure 2C,
2D, and 2E. The benzoimidazole-5-carboxamide derivative
X5050 exhibited both the highest activity and specificity. Its
activity was dependent on the number of RE1 sites (Fig. 2F)
and was confirmed both using an alternative normalization
strategy based on a firefly luciferase control plasmid and in
another NSC line derived from RC9 (WT) hESCs (Supporting
Information Fig. S2D). X5050 compound was therefore
selected for subsequent studies.

Mechanism of Action of X5050 on REST Activity

Mechanism of action of X5050 was sought on REST binding to
RE1 site, REST transcription, alternative RNA splicing, and
protein degradation. EMSA with a radioactive oligonucleotide
containing two RE1 sequences revealed a distinctive labeled
band that disappeared after addition of 100-fold excess of unla-
beled probes in extracts of HEK293 cells overexpressing REST
(Fig. 3A). Addition of X5050 (100 lM) did not decrease the
band intensity indicating that it did not affect the in vitro bind-
ing of endogenous REST to RE1 sites. Quantification of REST
levels using primers recognizing all types of REST transcripts
showed no significant change in X5050 treated cells, excluding
a transcriptional effect (REST-all in Fig. 3C). There was no
change in the titer of transcripts for the longer isoform of REST
either (REST in Fig. 3C). However, levels of the REST4 shorter
transcripts increased twofold, which is likely associated to the
initiation of neuronal commitment in treated cultures (REST4 in
Fig. 3C).

In the absence of effects of X5050 at DNA or RNA levels,
the levels of REST protein were then analyzed. Western blot
analyses of NSC extracts showed that 24-hour-long treatments
with increasing doses of X5050 induced a dose-dependent
decrease in the 122 kDa longer REST isoform (Fig. 3D). Treat-
ment of NSCs with Bortezomib (100 nM) or MG132 (10 lM),
two cell-permeable proteasome inhibitors, increased the activity

of REST as measured by the repression of the reporter cassette
but did not prevent X5050 dose-dependent inhibition. This
result indicated that the compound does not act directly on the
proteasome activity (Supporting Information Fig. S4). Although
NSCs assayed are proliferative, one possible confusing parame-
ter in these experiments could be the concomitant stimulation
of neuronal differentiation in the culture, as REST levels
decrease over that process. The activity of X5050 was therefore
assessed in non-neural cells expressing high levels of REST in
the absence of any potential neuronal differentiation. Twenty-
four hours after cotransfection of HEK cells with 12RE1-
plasmids and either backbone or D/N-REST plasmids in the
presence of increasing concentrations of X5050, REST activ-
ity—that is, de-repression of the reporter cassette—decreased
in a dose-dependent manner, similarly to results obtained in
treated NSCs (Fig. 3B). As in NSCs, REST expression was not
changed by X5050 treatment, the expression of the neuron-
specific and shorter transcript REST4 being below detection
level (Fig. 3E). Western blot analyses of HEK extracts showed
that 24-hour-long treatments with increasing doses of X5050
induced a dose-dependent decrease in the 122 kDa longer
REST isoform (Fig. 3F). This was also the case for transgenic
MYC-tagged-REST protein (Fig. 3G). These results altogether
support the hypothesis that X5050 reverses REST repression on
neuronal genes by promoting its degradation.

Functional Impact of X5050 on Gene Expression in
Human NSC

The functional impact of the changes induced by X5050 was
then investigated using a whole-genome differential transcrip-
tomic approach. Changes in gene expression resulting from
the treatment of NSCs with 100 lM X5050 for 24 hours were
analyzed using GSEA on Affymetrix human Gene 1.0 ST
array. Genes modulated by X5050 that contained a common
regulatory sequence (e.g., a binding site for a transcription
factor or for a micro-RNA) were identified using the analysis
software and “motif” gene set database from the Broad Insti-
tute. Eight out of the 828 gene sets were over-represented in
a statistically significant (FDR <0.05) manner at the top (two
upregulated gene sets) or bottom (six downregulated gene
sets) of the list of genes ranked according to their modulation
by X5050 (Fig. 4A; Supporting Information Table 2). Gene
ontology of the core enrichment group of each of these eight
gene sets—that is, the list of genes that contributed most to
the enrichment result—were analyzed using DAVID bioinfor-
matics resource (Fig. 4A). Among the six downregulated gene
sets, four comprised genes that encode nucleic acid-
interacting proteins such as histones and proteins present in
nucleosomes or spliceosomes. The last two gene sets con-
tained genes involved in focal adhesion and cellular contrac-
tility. One of the two upregulated gene sets consisted of
genes containing a consensus binding sequence for miR-380.
However, the result that attracted most attention was the other
upregulated gene set, V$NRSF, as it clusterized the 72 genes
that display at least one validated RE1 sequence and are,
accordingly, the most likely targets of REST silencing (Fig.
4B). Furthermore, gene ontology of the 26 genes that formed
the core enrichment group of V$NRSF revealed a statistically
significant over-representation of RE1-genes implicated in
neuronal function or development (p< 1023 to 1026). In
order to further confirm the specific impact of X5050 on
RE1-genes, a larger set of 494 genes that were identified as
functional RE1-genes with PSM score >0.9 (http://bioinfor-
matics.leeds.ac.uk/RE1db_mkII/) was analyzed. Hierarchical
clustering of these data segregated transcriptome observations
of DMSO-treated cells from X5050-treated cultures (Fig. 4C).
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Figure 2. Identification by high throughput screening of candidate repressor element-1 silencing transcription factor (REST) inhibitors in neural
stem cells (NSCs). (A): Primary screening and hit selection. Activity of each compound expressed as % increase in bioluminescence-to-viability
ratio signal with compound normalized to bioluminescence-to-viability ratio signals obtained with DMSO. Primary hit compounds shown in
green, toxic compounds in red, inactive compounds in blue, negative controls (DMSO) in yellow, and positive controls (10 mM VPA) in purple.
(B): Attrition cascade of primary hits. (C): Dose-response activity for four most potent hit compounds. NSCs cotransfected with 12RE1-PGK and
backbone plasmids (REST activity in red) or D/N-REST plasmids (nonspecific activity in blue). Error bars: mean 6 SD of three wells. Nonlinear
fit using the inhibitory dose-response curves with variable slope model with Graph pad Prism5. (D): Specificity index of the four selected hits.
Specificity index calculated from the difference in plateau levels of dose-response REST activity related to control. Error bars: mean 6 SEM
(n 5 6). ***, p< .001 by one sample t test compared to 0. (E): Characteristic parameters for the four selected hits. (F): Dose-dependent activity
of X5050 to the number of RE1 sites. NSCs transfected with RE1 plasmids with increasing number of RE1 sites treated for 1 day with 8 lM
X5050. Error bars: mean 6 SEM (n 5 6). *p< .05 by unpaired two-tailed Student t test. Abbreviations: DMSO, dimethyl sulfoxide; VPA, valproic
acid.
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Figure 3. Mechanism of action of X5050. (A): Electrophoretic mobility shift assay of radiolabeled oligonucleotides with 2 RE1 sequences.
Arrow corresponds to REST-RE1* complex. (B): Percentage of de-repression by D/N-REST with increasing X5050 concentrations in NSCs and
HEK cells. Cells cotransfected with 12RE1-EF1a and backbone or D/N-REST plasmids. Values are mean 6 SD (three wells). (C, E): Relative
mRNA expression levels of REST and RCOR1 in NSCs derived from SA-01 wild-type (WT) human embryonic stem cells (C) or in HEK cells
(E) treated with X5050. (D, F): Effect of X5050 on endogenous REST protein level in NSCs. Left panel: one representative immunoblot. SA-01
(WT)-derived NSCs (D) or HEK (F) treated 1 day before protein extraction, with 50 or 100 lM X5050 or with DMSO. b-Actin as loading con-
trol. Right panel: Densitometry (values are normalized to DMSO-treated cells). (G): Effect of X5050 on transgenic myc-tagged REST protein
level in transfected HEK cells. Left panel: One representative immunoblot. HEK cells transfected with Myc-tagged REST plasmid 1 day before
treatment. One day treatment with 50 or 100 lM X5050 or with DMSO. b-Actin as loading control. Right panel: Densitometry. One day treat-
ment with 50 or 100 lM X5050. For (C–G): Error bars, mean 6 SEM (n 5 6). **, p< .01; ***, p< .001 by one sample t test compared to 1.
Abbreviations: DMSO, dimethyl sulfoxide; HEK, human embryonic kidney; NSC, neural stem cell; REST, repressor element-1 silencing tran-
scription factor; RE-1, repressor element-1.
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Analysis of upregulated genes showed the predominance of
neuronal genes. Gene expression data were confirmed by
QRT-PCR in another NSC line derived from RC9 wild-type

(WT) hESCs on selected upregulated or downregulated tran-
scripts. At 100 lM, X5050 upregulated by more than twofold
two representative RE1 neuronal genes, SNAP25 and BDNF

Figure 4. Transcriptome analysis of wild-type NSCs treated with X5050. (A): Significant motif gene sets by GSEA of SA-01 NSC samples. NES
(values for genes upregulated and downregulated by X5050 in red and blue, respectively). GO analysis of enrichment core of genes in corresponding
gene set. (B): V$NRSF gene set. Upper panel: Plot of enrichment score for genes present in the gene set. Bars underneath the plot correspond to genes
of the gene set. Lower panel: Heatmap of core enrichment genes of the V$NRSF gene set. (C): Hierarchical clustering of experiments using 494 func-
tionally identified RE1 genes with position-scoring matrix >0.9. (D): Quantitative reverse transcriptase polymerase chain reaction confirmation of
transcriptome data in RC9 (WT) derived NSCs. Left panel: Expression level of RE1 genes (L1CAM, SNAP25, SYP, HTT) and control genes (RCOR1,
REST), Right panel: Expression level of BDNF alternative transcripts, 1 day after treatment with 50 lM (light blue bars) or 100 lM (dark blue bars)
of X5050. Values normalized to values in NSCs treated with DMSO. Error bars: mean 6 SEM (n 5 12). *, p< .05; **, p< .01; ***, p< .001 com-
pared to DMSO by one sample t test compared to 1. Abbreviations: BDNF, brain-derived neurotrophic factor; DMSO, dimethyl sulfoxide; FDR, false
discovery rate; GO, gene ontology; GSEA, gene set enrichment analysis; NES, normalized enrichment score; NSC, neural stem cell; REST, repressor
element-1 silencing transcription factor; UTR, untranslated region; WT, wild type.
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(Fig. 4D) while downregulating histone 1H genes
(HIST1H2BM, HIST1H3J) (Supporting Information Fig. S5).
Differential regulation of BDNF splice variants was measured
using primers specific for upstream 50 untranslated exons,
including exon II that contains an RE1 site. Upregulation of
other RE1-genes tested was less marked (SYP, HTT) or not
statistically significant (L1CAM). Expression of REST and
other control genes without known RE1 sites such as, RCOR1
or antisense BDNF was not notably upregulated. Altogether,
the unbiased GSEA and the supervised analysis of a large
number of RE1-genes indicated that X5050 upregulates neu-
ronal RE1-genes in human NSCs.

Functional Impact of X5050 in HD Models

The functional impact of the changes induced by X5050 was
finally investigated in HD pathological conditions. X5050
activity was measured on NSCs derived from a human
induced pluripotent stem cells (HD1-iPS4 line) previously
generated from somatic cells of a patient diagnosed with HD
[29]. The dose-dependent effect of X5050 was tested in HD1-
iPS4 derived NSCs (Fig. 5A). Dose-response curves for
REST activity measured in parallel in HD-iPSC4 NSCs and
RC9 (WT) NSCs showed no significant difference. Effect of
X5050 on the expression levels of selected RE1- and control
genes in HD-NSCs was measured by QRT-PCR. The profile
of regulation by X5050 of the expression of RE1-genes and
control genes was similar to that measured in WT-NSCs
(Figs. 5B, 4D). The highest and most significant upregulations
were those observed for SNAP25 and BDNF alternative tran-
script containing exon II and to a lesser degree for BDNF
transcripts containing exons IV and VIII and SYP (Fig. 5B).
Basal levels of BDNF II and BDNF IV were lower in HD-
NSCs than in WT-NSCs (Supporting Information Fig. S6),
confirming previous report using similar cells derived from
HD1-iPS4, WT-iPSC, and HD1-iPS4 clones genetically cor-
rected the for CAG expansion [40].

In vivo activity of X5050 was finally measured in the
brain of mice with Quinolinic Acid (QA)-induced excitotoxic
striatal lesions. C56BL6 mice received unilateral injection of
80 nmol of QA to induce neurodegeneration of medium spiny
striatal projection neurons (Darpp32 immunopositive), the
major population of striatal neurons [41]. Although striatal
QA does not produce direct excitotoxic neuronal death in the
cortical regions anatomically connected to the striatum, a loss
of BDNF levels has been reported in the cerebral cortex ipsi-
lateral to the lesion [42]. Thus, we reasoned that the QA
model would be appropriate to test the pharmacological effi-
cacy of X5050 in vivo to increase BDNF expression. One
week after lesioning, mice received bilateral injection of
either X5050 or vehicle in the lateral ventricles in order to
bypass the blood brain barrier. Effect of QA lesion and
X5050 acute treatment on the expression levels of selected
RE1 and control genes was measured 24 hours after X5050
injection, in striatum and in the prefrontal cortex, a cortical
area spared by the direct excitotoxic effect of QA but anatom-
ically connected to the striatum and localized near the ante-
rior part of the lateral ventricles where X5050 was injected.
A decrease in Darpp32 and Snap25 expression was found by
QRT-PCR in the lesioned striatum as compared with the con-
tralateral striatum. This confirmed that QA had induced sig-
nificant neurodegeneration in this brain region (Fig. 5C).
Expression levels in samples from prefrontal cortex from all
animals were also measured by QRT-PCR (Fig. 5D). Results
showed a significant (p< .05) upregulation of Bdnf, Snap25,
Trim9, and Omg (the mouse homologs of the top four RE1-
genes of the V$NRSF-1 core enrichment list presented in

GSEA, Fig. 4B) by X5050 in the prefrontal cortex ipsilateral
to the QA-lesioned striatum (Fig. 5D). Most importantly,
using splice variant specific primers for BDNF, QRT-PCR
revealed that, in QA-lesioned hemisphere, X5050 significantly
increased the levels of Bdnf II splice variant (exon II contain-
ing variant) while Bdnf IV levels were not significantly
changed. Altogether, the functional analysis of X5050 in HD-
NSCs and QA-lesion mice suggested that this compound was
active in an HD pathological context (Fig. 5D).

DISCUSSION

The main result of this study is the identification of a
benzoimidazole-5-carboxamide derivative (X5050) that pro-
motes the expression of neuronal genes including BDNF and
SNAP25 via the degradation of REST in human neural stem
cells. Combination of HTS and pluripotent stem cell technolo-
gies was instrumental in identifying that compound as an inhibi-
tor of REST activity from a proprietary library of several
thousand molecules and in exploring its mechanism of action in
human neural stem cells. In vitro and in vivo functional analyses
in HD models revealed that X5050 is active in HD pathological
context. In particular, X5050 upregulated among several known
REST-regulated genes, the expression of BDNF in the cortex of
mice with striatal lesions. This study underlines the value of a
strategy aimed at modulating REST in the attempt to restore key
neuronal gene transcription in the brain. This may reveal valua-
ble to tackle neurodegenerative conditions involving downregu-
lation of BDNF in particular in the case of HD for which BDNF
impairment results in part from increased REST activity.

REST transcriptional regulation of RE1-genes is modulated
at multiple levels including transcription, protein degradation,
intracellular localization, and REST-nuclear complex composi-
tion and binding to RE1-sequences [18]. We have developed a
luciferase-based assay for REST activity on transgenic RE1
sites that could report all these types of regulation. This assay
efficiently measured REST activity levels in NSCs as it suc-
cessfully integrated a number of challenges against REST func-
tion including: (a) the inhibition of REST binding to RE1 either
via the mutation of the RE1 sequences or via the competitive
binding of D/N-REST, (b) REST expression knockdown by
REST-targeting siRNA, (c) the combined reduction of REST
mRNA and protein levels via induction of NSC neuronal differ-
entiation, and finally (d) the impairment of the formation of
REST nuclear complex via the knockdown of RCOR1, one of
the main core cofactors of this complex.

With the ultimate goal of discovering chemical compounds
that may decrease the activity of REST in the human brain, we
took advantage of the specificity of this assay to identify by
HTS two clusters of candidate REST inhibitors. None of the
FDA-approved drugs (Prestwick library) we tested displayed a
significant effect against REST activity, suggesting that drug
repositioning may not be an option. All hits were identified
from a proprietary chemical library of over 5,000 synthetic
molecules. The most potent REST inhibitor was the
benzoimidazole-5-carboxamide derivative X5050. Several
compounds closely related to X5050 were active against REST,
although with reduced potency.

The exploration of the mechanisms of action of X5050 in
NSCs has evidenced drug-induced degradation of REST.
Treatment of non-neural cells, HEK, with X5050, resulted in
a similar reduction in endogenous or transgenic Myc-tagged
REST levels, indicating that this reduction was not mediated
by the induction of the neuronal differentiation of NSCs, also
known to decrease REST bioavailability [17]. The actual
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Figure 5. Functional impact of X5050 in Huntington disease models: (A): Dose-response activity for X5050 in NSC derived from RC9 (WT)
and HD1-iPS4 (HD) pluripotent stem cells. NSCs were cotransfected with 12RE1-EF1a and backbone plasmids (REST-activity in red) or D/N-
REST plasmids (nonspecific activity in blue). Nonlinear fit dose-response curves for WT-NSCs (dashed lines) and for HD-NSCs (solid lines).
Error bars: mean 6 SEM of four wells. (B): Quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) analyses of X5050 activity
in HD1-iPS4-derived NSCs. Left panel: Expression level of RE1 genes (L1CAM, SNAP25, SYP, HTT) and control genes (RCOR1, REST), Right
panel: Expression level of BDNF alternative transcripts, 1 day after treatment with 50 lM (pink bars) or 100 lM (red bars) of X5050. Values
normalized to values in HD-NSCs treated with DMSO. Error bars, mean 6 SEM (n 5 12). *, p< .05; **, p< .01; ***, p< .001 compared to
DMSO by one sample t test compared to 1. (C, D): QRT-PCR analyses of X5050 activity in the brain of mice with QA-induced excitotoxic stria-
tal lesions. (C) Expression level in striatal samples of striatal neurons marker (Darpp32, Snap25), 24 hours after X5050 bilateral intraventricular
injection of X5050 (i.e., 1 week after QA injection). (D) Expression level in prefrontal cortex samples of selected neuronal RE1-genes [Bdnf (var-
iant containing exon II, IV and all variants), Snap25, Trim9, and Omg] 24 hours after bilateral intraventricular injection of X5050. Values nor-
malized to median of values of samples from same brain region of unlesioned hemisphere injected with vehicle. Values for samples from
unlesioned brain hemisphere (blue bars), from QA-lesioned hemisphere (red bars), from X5050-treated mice (cross-hatched bars). Error bars,
mean 6 SEM (n 5 7 per group). *, p< .05; **, p< .01; ***, p< .001 by unpaired two-tailed Student t test. Abbreviations: BDNF, brain-derived
neurotrophic factor; DMSO, dimethyl sulfoxide; HD, Huntington disease; NSC, neural stem cell; QA, quinolinic acid; REST, repressor element-1
silencing transcription factor; WT, wild type.
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target protein(s) of X5050 remain(s) to be identified. Since
inhibition of proteasome did not reduce X5050 activity, good
candidates may therefore be found among the enzymes that
control REST ubiquitination by tagging REST for proteasome
degradation. Several studies have indeed demonstrated that
REST degradation in the proteasome via the SCF-bTRCP
complex, which consists of Skp1, Cul1 and the F-box protein
b-TrCP (b-transducin repeat containing protein), critically
regulates REST activity and, consequently, neuronal commit-
ment of NSCs [13,19,43].

BDNF deficiency in the brain has been linked to psychiatric
and neurodegenerative disorders including depression, Alzhei-
mer, Parkinson, or HD (for review see [44,45]). In the later
case, reduced BDNF level in the striatum has been reported
both in HD patients and in HD genetic models [46,47]. BDNF
is mostly anterogradly transported to the striatal tissue from
cortical neurons [48]. Studies in transgenic mice lacking corti-
cal BDNF expression best illustrate that BDNF is required for
the differentiation and long-term survival of the medium spiny
neurons in the striatum, the neurons most affected in HD [49].
HTT mutation disrupts both the BDNF transport from the cor-
tex to the striatum [50,51] and the expression of cortical BDNF
via HTT mutation-mediated impairment of REST [7,52,53].
These observations have set BDNF as a promising therapeutic
target for HD [54]. Along that this line, pharmacological upreg-
ulation of BDNF level in the brain through REST inhibition
should open interesting perspectives. The backbone of X5050
appears of particular interest since transcriptome analysis has
shown that, among RE1-genes encompassing a wide variety of
organ-specific cell types, X5050 affected specifically those
related to neuronal function. This included BDNF and most sig-
nificantly the BDNF splice variant known to be regulated by
REST containing exon II: BDNF II. Effect of X5050 on BDNF
was not limited in WT-NSCs to BDNF II but was detectable for
BDNF I, IV, VII, VIII mRNA variants. This could result from a
positive feedback loop induced by X5050 activity on BDNF.
Increased release of BDNF that may result from X5050 upregu-
lation of BDNF II could activate BDNF receptor TrkB and its
downstream intracellular effectors such as cyclic CREB (cAMP
response element binding) in turn responsible for BDNF I and
IV promoters’ activation (for review see [55]). Effect of X5050
on BDNF II expression was as well confirmed in HD-NSCs. An
et al. [40] have linked the reduced expression of BDNF in
HD1-iPS4 derived NSCs (compared with level in WT-NSCs) to
the HTT mutation, genetically correcting the CAG expansion
(72 CAGs) in HD1-iPS4 clones. In this work, we showed that
X5050 rescued BDNF II reduced expression in NSCs derived
from the same HD1-iPS4 line.

A pilot assessment of the acute activity of the X5050 com-
pound was conducted in mice with QA lesion of the striatum
that reproduce the neuronal loss observed in the striatum of HD
patient (for review see [56]). Reduced BDNF protein levels in
the cortex have been reported within weeks of QA injection in

the ipsilateral striatum and have been monitored to assess the
efficacy of new neuroprotective approach [42,57,58]. Using the
same animal model, Rite et al. [59] have also demonstrated that
the expression of BDNF in cortical areas projecting to striatum
is dependent on both target integrity and neuronal activity. We
consequently explored the activity of X5050 in a cortical region
known to project in the striatum, the prefrontal cortex. Neurons
in this cortical region should be affected by the loss of their
striatal targets. Indeed, we found that X5050 treatment
impacted on BDNF and other RE1-neuronal gene expression in
QA-lesioned hemisphere. The identification of novel chemical
compounds that could lift the repression of neuronal genes such
as BDNF mediated by pathologically over-active REST may
have direct therapeutic applications. Strategies to further char-
acterize the therapeutic potential of X5050 will involve chronic
administration of this hit compound or one of its chemical
derivatives in a genetic model of HD in mice and should ulti-
mately aim at exploring the capacity of the agent injected to
slow neurodegeneration and dysfunction in HD animal. Overall
our data show that compounds with X5050 backbone appear as
potential candidates for normalizing expression level of key
neuronal genes in patients with HD and even other neurodege-
nerative disorders featuring alteration of BDNF level.
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Tau abnormalities play a central role in several neurodegenerative diseases, collectively known as tauopathies.
In the present study, we examined whether mutant huntingtin (mHtt), which causes Huntington’s disease (HD),
modifies Tau phosphorylation and subcellular localization using cell and mouse HD models. Initially, we used
novel bimolecular fluorescence complementation assays in live cells to evaluate Tau interactions with either
wild type (25QHtt) or mutant huntingtin (103QHtt). While 25QHtt and Tau interacted at the level of the microtubule
network,103QHttand Tau interacted andformed ‘ring-like’ inclusions localized in thevicinity of themicrotubular
organizing center (MTOC). Fluorescence recovery after photobleaching experiments also indicated that, where-
as homomeric 103QHtt/103QHtt pairs rapidly re-entered into inclusions, heteromeric 103QHtt/Tau pairs
remained excluded from the ‘ring-like’ inclusions. Interestingly, in vitro Tau relocalization was associated
to Tau hyperphosphorylation. Consistent with this observation, we found strong Tau hyperphosphorylation
in brain samples from two different mouse models of HD, R6/2 and 140CAG knock-in. This was associated
with a significant reduction in the levels of Tau phosphatases (PP1, PP2A and PP2B), with no apparent involve-
ment of major Tau kinases. Thus, the present study strongly suggests that expression of mHtt leads to Tau
hyperphosphorylation, relocalization and sequestration through direct protein–protein interactions in
inclusion-like compartments in the vicinity of the MTOC. Likewise, our data also suggest that Tau alterations
may also contribute to HD pathogenesis.

INTRODUCTION

Huntington’s disease (HD) is an autosomal dominant inherited
neurodegenerative disorder caused by mutations in the IT15/
HD1 gene that encodes huntingtin (Htt) protein (1). The muta-
tion consists in a CAG triplet repeat expansion that is translated
into an abnormally long polyglutamine (polyQ) tract (.39)
within the N-terminal region of the protein (2). Mutant hunting-
tin (mHtt) leads to several neuronal and glial alterations,

including notable transcriptional, mitochondrial and axonal
transport defects, ultimately leading to neuronal death, primarily
in striatal and cortical areas (3).

Tau is a microtubule-associated protein widely expressed in
the central nervous system, playing a role in microtubule stabil-
ization and axonal transport (4), synaptic plasticity (5) and neur-
onal response to stress (6). Tau hyperphosphorylation and
aggregation are hallmarks of several neurodegenerative disor-
ders referred to as Tauopathies, among which Alzheimer’s
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disease (AD) is included (7). Besides Tauopathies, Tau hyper-
phosphorylation has been associated with detrimental metabolic
conditions as obesity and diabetes (8–11) but also impaired
memory function due to chronic anesthesia (12,13).

The composition and location of protein aggregates are fre-
quently used to diagnose and define neurodegenerative disor-
ders. There is general consensus, for example, that a-synuclein
is the main component of Parkinson’s disease Lewy bodies,
Tau and b-amyloid aggregate in AD, while mHtt aggregates in
HD. However, a-synuclein interacts with Tau and also with
Htt, possibly contributing to Alzheimer’s or Huntington’s
pathologies, respectively (14–17). Notably, we showed that
a-synuclein modifies the pattern of mHtt aggregation (18).
Whether Htt mutation impacts upon Tau remains unknown so
far. Previous data reported limited AD neuropathology in the
brain of HD patients (19) and we reported co-aggregation of
Htt and Tau in a patient exhibiting both corticobasal degener-
ation and huntingtin mutation (20). Altogether, these observa-
tions prompted us to evaluate the impact of mHtt upon Tau
using both in vitro and in vivo HD models.

RESULTS

Tau hyperphosphorylation in HD mice

Initially, we evaluated Tau phosphorylation in two distinct HD
mouse models, namely R6/2 and KI140. Given the important
number of phosphorylation sites on Tau (.80; 4), we first per-
formed a two-dimensional (2D) gel electrophoresis analysis to
evaluate global changes in murine Tau protein in the cortex of
HD mice. Upon membranes probing with a total Tau antibody
(C-ter), we observed a significant shift of murine Tau isovariants
from the basic to the acidic pH range in the cortex of R6/2 mice
and KI140 (arrows, Fig. 1A and B) when compared with litter-
mate controls, consistent with increased phosphorylation. This
observation was in line with the shift of Tau isovariant following
probing of 2D membranes with antibodies raised against

pSer404 and pSer396 (Supplementary Material, Fig. S1).
Next, to confirm the occurrence of increased phosphorylation,
we also performed SDS–PAGE and immunoblot analyses. In
line with the 2D results, we found a significant increase in Tau
phosphorylation at Ser396 and Ser404 in the cortex of R6/2
mice (Fig. 2A), while Tau-1 immunoreactivity representing
unphosphorylated Tau was significantly decreased. In addition,
we observed a significant shift of total Tau immunoreactive
bands toward a higher apparent molecular weight (Fig. 2A).
Similar changes were found in the cortex of KI140 animals
(Fig. 2B) as well as in the striatum of both transgenic strains
(Supplementary Material, Fig. S2). Increased phosphorylation
at Ser396 was further confirmed using immunofluorescence ana-
lysis. Notably, the number of pSer396-Tau positive cells was
increased in the brain of KI140 mice as shown in Supplementary
Material, Figure S3.

In order to determine whether mHtt and Tau could interact,
co-localize and eventually co-aggregate in vivo, we performed
additional immunohistochemical and biochemical evaluations.
Using confocal microscopy, we analyzed the expression of the
two proteins in the brain of KI140 and littermate controls follow-
ing immunofluorescence detection of Tau pSer396 and Htt (2B4
or Em48 antibodies). Results showed no major colocalization of
the two proteins (Fig. 3). Lack of major in vivo interaction
between Tau and Htt in the cortex HD animals was confirmed
by co-immunoprecipitation studies (not shown). Finally, we
failed to demonstrate the presence of Tau in cortical sarkosyl-
insoluble protein fractions from R6/2 mice (Supplementary
Material, Fig. S4).

Tau phosphorylation is under the tight control of several protein
kinases andphosphatases (4).Here,we assessed the effectsofmHtt
on the expression or activation of major Tau protein kinases, such
as GSK3b, CaMKII, Erk or cdk5. As shown in Figure 4A, neither
expression nor activation of these kinases was found increased in
R6/2mice.Rather,weobservedan increasedSer9phosphorylation
of GSK3b, reduced phosphorylation of CaMKII and reduced cdk5
expression in the cortex of R6/2 mice compared with littermate
controls (Fig. 4A). Changes in CaMKII and cdk5 were also
observed in the cortex of KI140 animals (Fig. 4B). These kinase
changes thus fail to explain the increased Tau phosphorylation
(Figs 1 and 2). In order to uncover a possible mechanism under-
lying Tau hyperphosphorylation in HD animals, we next assessed
the expression levels of Tau protein phosphatases namely PP1,
PP2A and PP2B (21). In R6/2 mice, we found an association of
Tau hyperphosphorylation with a significant decrease in PP1,
PP2A and PP2B expression (Fig. 4A). A trend for PP1 loss and a
significant reduction in PP2B expression were also observed in
KI140 animals (Fig. 4B). These results thus suggest that phosphat-
ase dysregulation correlates with Tau phosphorylation changes in
HD animals.

In vitro interaction between huntingtin and Tau

In a second series of experiments, we used an in vitro system to
estimate the impact of mHtt on Tau phosphorylation and behavior
and to evaluate a potential relationship between both proteins. We
found that, as in the in vivo situation, mHtt expression promoted
Tau hyperphosphorylation at S396 (Fig. 5B). Interestingly,
using filter trap assays, we also observed that Tau inhibited
103QHtt aggregation (Fig. 5A). Wild type 25QHtt did not

Figure 1. Global Tau phosphorylation in HD mice using Total Tau antibody.
Comparison of representative two-dimensional profile of murine tau in the
cortex of 10 week-old R6/2 (A) and 17 month-old KI140 (B) mice when com-
pared with respective littermate controls. Profiles show increased Tau acidifica-
tion in HD animals (arrows). The pH gradient used to resolve Tau protein is
indicated at the top of 2D-western blots.
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produce SDS-insoluble aggregates in the presence or absence of
Tau, while mutant 103QHtt produced more SDS-insoluble aggre-
gates in the absence of Tau. Tau was retained in filter traps when it
was co-expressed with 103QHtt, but not with 25QHtt, further
indicating that mHtt and Tau co-aggregate in vitro. Interestingly,
retained Tau was phosphorylated at S396.

In order to further evaluate the possible interaction between
Htt and Tau at a cellular level, we used the bimolecular fluores-
cence complementation (BiFC) assay. In BiFC assays, the
proteins of interest are fused to two non-fluorescent halves of a
fluorescent reporter protein. When the proteins of interest dimer-
ize/oligomerize, the two reporter halves are brought together and
reconstitute the fluorophore, emitting fluorescence. Fluores-
cence is therefore indicative of dimerization/oligomerization.
We have recently developed BiFC constructs for wild type

(25Q) and mutant (103Q) Htt (22), as well as for Tau
(Fig. 6A). Different combinations of 25QHtt, 103QHtt and
Tau formed dimers/oligomers in human cells (Fig. 6B–G).
Wild-type Htt BiFC pairs showed mostly a diffuse cytoplasmic
fluorescence, indicative of the formation of dimers/oligomers
(Fig. 6D), while 103QHtt BiFC pairs showed the occurrence of
inclusion bodies (Fig. 6F). Tau/Tau BiFC pairs marked the
microtubular network, as expected given the microtubule-
binding properties of Tau (Fig. 6C and H). When 25QHtt was
combined with Tau, the cellular phenotype resembled that of
Tau BiFC pairs, indicating that Tau recruited 25QHtt to the
microtubular network (Fig. 6E). On the other hand, combina-
tions of 103QHtt with Tau produced a mixed phenotype. As
with 25QHtt, 103QHtt was also recruited to the microtubular
network, with all cells showing the microtubular cytoskeleton

Figure 2. Immunoblot analysis of Tau phosphorylation in the cortex of HD mice. Analysis of Tau in the cortex of 10 week-old R6/2 (A) and 17 month-old KI140 (B)
animals using antibodies targeting pSer396, pSer404, dephosphorylated Tau (Tau1) and Total Tau antibody (Cter). Quantifications indicate a significant enhancement
of Tau phosphorylation at Ser396 and Ser404, a decreased dephosphorylated Tau using Tau1 antibody and a significant shift of Total Tau (Cter) immunoreactive bands
toward a higher apparent molecular weight. Quantifications of phosphoepitopes were performed versus total Tau. Total Tau quantification was performed versus
GAPDH. ∗P , 0.05, ∗∗P , 0.01, ∗∗∗P , 0.001 versus littermate control using Student’s t-test. n ¼ 5–6/group.

Human Molecular Genetics, 2014 3

 at IN
IST

-C
N

R
S on Septem

ber 28, 2014
http://hm

g.oxfordjournals.org/
D

ow
nloaded from

 

http://hmg.oxfordjournals.org/


but, in addition, we also observed cells with large inclusions
(Fig. 6G). None had the typical bright foci that characterize
103QHtt BiFC pairs (Fig. 6F). Notably, 103QHtt/Tau trans-
fected cells often exhibited bright ‘knot-like’ inclusions in
their microtubular cytoskeletons, close to where the microtubu-
lar organizing center (MTOC) is located (Fig. 6I). Besides BiFC
experiments, we also evaluated whether mutant mHtt and Tau
could colocalize in HEK293T cells following co-expression of
c-myc tagged Htt171-82Q and non-tagged Tau. Confocal ana-
lysis showed that in a small proportion of transfected cells
mHtt and phospho-Tau (AT8) colocalized in a perinuclear
region compatible with MTOC (Supplementary Material,
Fig. S5). These results are consistent with previous evidence
showing that Htt binds to microtubules and localizes in the
centrosome (23) and the mitotic spindle (24,25).

Mutant 103QHtt BiFC pairs characteristically produce aggre-
gates in 30–40% of transfected cells (18,22) with an average of
14.70% (+ 5.66) aggregates per cell (Fig. 6J). 103QHtt/Tau
BiFC pairs produced ‘knots’ in 16.21% (+1.27) of transfected
cells. These ‘knots’ are larger than average 103QHtt aggregates,
but are only one or two per cell (Fig. 6F versus G and J). A closer
look to aggregates showed that most 103QHtt aggregates are
solid (see Supplementary Material, Fig. S6), while 103QHtt/
Tau aggregates had ring-like shape in their focal center, suggest-
ing that they are hollow inclusions or complex rings (Supple-
mentary Material, Fig. S7A; see also Supplementary Material,
Figs S8 and S9 for full Z-stack videos). Furthermore, the dynam-
ics of 103QHtt and 103QHtt/Tau aggregates, as well as of Tau
dimers, were radically different (Supplementary Material,
Fig. S7B and C). 103QHtt aggregates recovered relatively
quickly after photobleaching (FRAP), indicating that they
recruit new 103QHtt molecules to their core. The same was
observed with Tau dimers, either at the MTOC or at the

microtubules (Supplementary Material, Fig. S7D). On the
other hand, 103QHtt/Tau aggregates did not recover after
2.5 min of monitoring (see also Supplementary Material, Figs
S10 and 11 for full FRAP videos).

In summary, our in vitro results indicate that mHtt can interact
with Tau and that this interaction interferes with the normal
pattern of mHtt aggregation, favors Tau hyperphosphorylation
and alters the subcellular distribution of Tau, promoting its
aggregation.

DISCUSSION

The present study reports that expression of mHtt impacts on Tau
cellular localization, molecular interactions and phosphorylation
pattern. Strikingly, in vitro, Tau was found also able to modulate
Htt aggregation. These results notably support a mutual relation-
ship between mHtt and Tau proteins that might contribute to the
neurodegenerative phenotype in HD.

Brain of symptomatic HD animals and cultured cells
co-expressing mHtt and Tau constructs showed significant Tau
hyperphosphorylation, indicating that the expression of the
former is sufficient to promote hyperphosphorylation of the
latter. Notably, in HD mice, we did not notice increase in the
activity of the main Tau kinases. Rather, we found a congruent
reduction of CaMKII and cdk5 expression in both R6/2 and
KI140 mice. Reduced CamKII expression may notably rely on
a reorganization of postsynaptic density as previously described
(26). On the other hand, we observed significant phosphatase
changes in HD lines. Both R6/2 and KI140 animals exhibited sig-
nificant reduction of cortical PP2B expression, in line with pre-
vious observations in the brain of HD patients (27) and several
HD models (28–30). PP2B dephosphorylates Tau at multiple

Figure 3. Absence of colocalization of pSer396 Tau and mHtt in the brain of KI140 HD mice. Confocal immunofluorescence images showing mutant Htt-containing
intranuclear inclusions seen as typical round small dots in the nucleus (2B4, upper images; EM48, lower images) in the striatum of Ki140 mice. Immunofluorescence
corresponding to Tau pSer369 (red) is mainly detected in the cytoplasm. No major colocalization of mutant Htt inclusions and Tau pSer396 was found. Similar results
were obtained in three KI140 mice. Scale bar, 10 mm.
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epitopes including those evaluated here (31). Therefore, a
reduced PP2B expression is one possible explanation for
increased Tau phosphorylation in transgenic HD mice and in
cells expressing 103QHtt.

Our data indicate that expression of mHtt is associated with
changes in Tau function. Indeed our in vitro data suggest that
in addition to impact Tau hyperphosphorylation, mHtt leads to

changes in its cellular distribution. Tau hyperphosphorylation
is thought to impair its cellular localization (32) and its
microtubule-stabilizing function (33). These observations
suggest that HD would be associated with a loss of Tau function,
at least regarding axonal transport, possibly contributing to the
axonal transport defects previously reported in HD conditions
(34). As Tau hyperphosphorylation can be associated with

Figure 4. Tau kinases and phosphatases in HD mice. SDS–PAGE and immunoblot analysis was performed in the cortex of 10 week-old R6/2 (A) and 17 month-old
KI140 (B) using antibodies raised against total and phosphorylated forms of several Tau kinases as well as phosphatases. Quantifications of phosphoepitopes were
performed versus respective total protein. In other cases quantifications were performed versus GAPDH. ∗P , 0.05, ∗∗P , 0.01, ∗∗∗P , 0.001 versus littermate
control using Student’s t-test. n ¼ 5–6/group.
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cognitive deficits (12) and Tau loss-of-function is possibly prone
to promote motor alterations in mice (35) as well as synaptic
plasticity defects in the hippocampus (36), altered Tau function
may underline some HD features. Whether Tau alterations
precede, contribute or are concomitant to behavioral impair-
ments and pathological features that characterize HD remains
to be evaluated.

While mHtt has a clear effect on Tau phosphorylation and
cellular distribution, in vitro, Tau also induces changes in
mHtt behavior. In our cellular system, mHtt forms solid inclu-
sions of different sizes distributed throughout the cytoplasm.
These inclusions are highly dynamic, constantly recruiting
new mHtt molecules to the core of the inclusion. In the presence
of Tau, typical Htt aggregates almost disappear, and Htt is at least
partially recruited to the microtubular network. Htt recruitment

Figure 5. mHtt co-aggregates with Tau and increases the levels of Tau phosphor-
ylation (pS396) in vitro. (A) Filter trap assays showed that mHtt, but notwild-type
Htt, produced SDS-insoluble aggregates (dark dots, first line). Co-transfection of
mutant Htt with Tau reduced the levels of insoluble aggregates (first line). Tau
was retained in filter traps only when co-transfected with mHtt, but not wild-type
Htt (second and third lines), indicating that they co-aggregate. Furthermore, retained
Tau is phosphorylated at S396 (second line). SDS–PAGE immunoblots indicated
that Htt/Tau co-transfection induced hyperphosphorylation of Tau at this residue
(third line). Htt and GAPDH signals were used as expression and loading controls,
respectively. (B) Quantification of Tau hyperphosphorylation see in A.

Figure 6. Mutant Htt interacts and interferes with normal Tau distribution. (A)
Schematic of Htt- and Tau-Venus BiFC constructs. (B) Flow cytometry analyses
of H4 cells carrying different combinations of Htt- and/or Tau-Venus BiFC con-
structs. (C–G) Representative pictures of the different BiFC pairs. Wild-type Htt
(25Q) BiFC pairs produced most frequently a diffuse cytoplasmic fluorescence,
while mutant Htt (103Q) BiFC pairs aggregated in inclusion bodies. Tau BiFC
pairs showed a clearly defined microtubular localization, as expected. Combina-
tions of 25QHtt with Tau maintained a microtubular localization, while 103QHtt
disrupted Tau distribution, producing knot-like structures. No inclusion bodies
are found in 103QHtt/Tau BiFC pairs. Scale bar (C–G), 20 mm. (H and I),
Cells co-transfected with mCherry-Tubulin (red) and Tau/Tau or 103Q/Tau
(green) pairs. Tau/Tau and 103Q/Tau dimers co-localize with the microtubular
network, including MTOC, but the microtubular network of 103Q/Tau cells pro-
duced ring-like structures close to the MTOC. Co-localization of tubulin and
BiFC dimers is shown in yellow. Scale bar (H and I), 5 mm. (J) Quantification
of the frequency of cells with aggregates (percentage versus transfected cells)
and the number of aggregates per cell. One hundred cells per experimental
group from a total of three independent experiments were counted. Data are
the average minus/plus the standard deviation.
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to the microtubular network has been reported by independent
laboratories (23–25). In particular, Htt is able to bind to micro-
tubules, and has been found in the centrosome (23) and the
mitotic spindle (24,25), although the biological meaning of
these findings remains unclear. In a significant number of
cells, one or two large ring-like inclusions are formed in the peri-
nuclear region, where cellular quality control inclusion bodies
are located. The formation of mHtt-Tau inclusions is in agree-
ment with previous observations indicating that mHtt accumu-
lates in cytoplasmic inclusions containing sequestrated
vesicle-associated proteins, such as HSP70, dynamin or HIP1
(37). mHtt-Tau inclusions have a different morphology and are
significantly less dynamic than pure mHtt inclusions or Tau
dimers, indicating severe alterations in the biology of the indi-
vidual proteins. Interestingly, other aggregation-prone proteins,
such as transthyretin or an amyloidogenic immunoglobulin light
chain, can also form ring-like inclusions (38,39). However, we
are not aware of previous reports on the formation of this type
of species by mHtt. Thus, our results indicate, for the first
time, that at least under particular conditions, mHtt can also
form this type of aggregated species. The abnormal localiza-
tion/dynamics of Tau linked to its enhanced direct interaction
with mHtt may also concurrently increase Tau phosphorylation.
It is indeed conceivable that this interaction with mHtt would
reduce the interaction of tau with its regulating phosphatase.
This possibility will require further investigation in future
studies.

Finally, it is noteworthy that while mHtt-induced Tau hyper-
phosphorylation is consistently found in vitro and in vivo using
biochemical and histochemical methods, mHtt/Tau colocaliza-
tion and co-aggregation is readily detected only in vitro using
overexpression systems, but not tissue from the animal models
tested. In vitro, under optimized conditions, co-localization
was detected in �16% of cells. Using immunohistochemistry,
we could not detect colocalization of the proteins. Since Tau
hyperphosphorylation does not accumulate in mHtt-containing
inclusions in mice, it is possible that the interaction between
Tau and mHtt may occur before the formation of detectable/
macroscopic aggregates. Together, these observations suggest
that a direct mHtt/Tau interaction might be a rare phenomenon
in vivo, and that the major impact of mHtt toward Tau is
related to kinase/phosphatase imbalance.

In conclusion, our study demonstrates that mHtt expression
may impact Tau functions by promoting its hyperphosphoryla-
tion. Interestingly, recent retrospective neuropathological data
underlined that elderly HD demented patients exhibited
AD-like lesions, supporting a relationship between mHtt and
Tau (40). Moreover, another recent report demonstrated that
Tau deletion improves the motor phenotype in a transgenic
mouse model of HD (41). Together with our current findings,
these data strongly support that Tau may play an important and
understudied role in HD pathogenesis.

MATERIALS AND METHODS

In vitro experiments

Constructs and cell lines
Wild-type (25Q) and mutant (103Q) huntingtin-Venus BiFC
constructs were described elsewhere (22). Tau-Venus BiFC

constructs were produced by subcloning a PCR-amplified Tau
gene into the Venus BiFC vectors. Tau was initially inserted in
N- and C-terminal positions in order to find the combination of
constructs that provides an optimal BiFC signal (22,42).
Optimal Tau-Tau BiFC was obtained with a combination of con-
structs where Tau was located at the C-terminus of the first Venus
half and the N-terminus of the second Venus half, as previously
described for a-synuclein (42) (Fig. 1A). mCherry-tubulin con-
structs were kindly provided by Dr Domingos Henrique (Insti-
tuto de Medicina Molecular, Lisbon, Portugal).

H4 human neuroglioma cells (HTB-148, ATCC, LGC Stan-
dards, Barcelona, Spain) were maintained as described else-
where (22,42). Cells were transfected with complementary
pairs of huntingtin- and/or tau-Venus BiFC constructs using
the Xtremegene reagent (Roche diagnostics, Mannheim,
Germany) in a proportion 1 mg DNA: 3 ml Xtremegene. For
mCherry-tubulin plus BiFC experiments (Fig. 1H and I), H4
cells were transfected first with the mCherry tubulin construct
and 24 h later with the BiFC constructs. Twenty-four hours
later, samples were prepared for microscopy, flow cytometry
or immunoblotting and analyzed as described below.

HEK293T cells were grown in DMEM cell culture medium
(Sigma-Aldrich) supplemented with 10% fetal bovine serum
(Gibco) in a humidified atmosphere at 5% CO2 at 378C. Cells
were transiently transfected 24 h after seeding with 5 mg of
plasmid DNA (SIN-PGK-FLAG-htt171-82Q-myc-WHV and
SIN-cPPT-PGK-human-Tau46wt-WHV), fixed 48 h after trans-
fection with ice-cold methanol and 5 mM EGTA for 3 min,
followed by permeabilization with 0.1% Triton X-100 in
blocking solution (TBS, 1% bovine serum albumin) for 30 min
at room temperature. Cells were then incubated with
anti-c-Myc-FITC coupled (1:400, Abcam, 3G30) antibody and
a Tau clone 8 antibody (AT8) (1:800, mouse, Thermo Scientific,
MN1020B) with 1% bovine serum albumin in PBS at room tem-
perature for 1 h, then incubated with Alexa Fluor 594-labeled
anti-mouse IgG at room temperature for 30 min. Subsequently,
cells were rinsed in TBS and treated with DAPI (Wako)
diluted 1:10 000 in TBS at room temperature for 3 min and
visualized by confocal microscope Leica SP8.

Flow cytometry
Cells were collected by trypsinization (5 min at 378C), washed
once with PBS and fixed in 1% (w/v) paraformaldehyde in
PBS for 10 min at room temperature. Samples were analyzed
by means of a FACSCalibur flow cytometer (Beckton Dickinson,
Franklin Lakes, NJ, USA). Ten thousand cells were analyzed
per group. Graphics and data analysis were carried out
by means of the FlowJo software (Tree Star, Inc., Ahsland,
OR, USA).

Fluorescence microscopy and fluorescence recovery after
photobleaching experiments
Pictures were acquired from live cultures at 378C using an Axio-
vert 200 M widefield fluorescence microscope or a META LSM
510 confocal microscope equipped with CCD cameras (Carl
Zeiss MicroImaging GmbH, Germany). No pre-incubation at
308C was needed, since Venus halves complement efficiently
at 378C. For fluorescence recovery after photobleaching
(FRAP) experiments, protein aggregates were focused at the
central focal plane and adjusted to avoid pixel saturation.
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Experiments lasted for 150 s, taking one picture every second.
After five pictures to establish the basal signal, aggregates
were bleached using the 488 nm laser line at 100% laser trans-
mission on a circular region of interest with a diameter of 30
pixels (1.31 mm radius) for 5 s (10 iterations). Fluorescence
recovery was then monitored for 140 s with LSM software. Data
analyses were carried out on ImageJ free software (http://rsb.
info.nih.gov/ij/), and represented by means of SigmaPlot 11.0
(Systat Software, Inc., Chicago, IL, USA).

Immunoblotting
Proteins were extracted in non-denaturing conditions [lysis
buffer 50 mM Tris–HCl pH 7.4, 175 mM NaCl, 5 mM EDTA
and a protease inhibitor cocktail tablet (Roche diagnostics,
Mannheim, Germany)] as described previously (22) and quanti-
fied by the Bradford method. Twenty micrograms of protein
were submitted to electrophoresis in denaturing conditions
(SDS–PAGE), transferred to nitrocellulose membranes for
immunoblotting. For filter trap assays, 100 mg of protein were
transferred by means of a vacuum-driven dot-blot device to cel-
lulose acetate membranes (0.2 mm pore) after addition of SDS to
the samples (final concentration: 1% w/v). Membranes were
washed twice with PBS plus SDS 1% (w/v) and then probed
with Htt antibody as described. Only large, SDS-insoluble
aggregates are retained in these membranes and, therefore, Htt
signal is proportional to the amount of this type of aggregate in
the samples. All antibodies used in the present manuscript are
reported in Table 1. Analyses were performed using Image J
Software.

Animal experiments

In the present study, we used 10-week-old R6/2 transgenic het-
erozygous mice overexpressing exon1 of human Huntingtin
with about 120 CAG repeats and wild-type (WT) littermate con-
trols (43). In addition, we also studied 17-month-old knock-in

(KI) mice expressing chimeric mouse/human exon 1 containing
140 CAG repeats inserted in the murine huntingtin gene (KI140)
and their littermate controls (44). Mice were maintained in a
temperature-controlled room (�238C) with a light/dark cycle
of 12/12 h. All animals had access to food and water ad
libitum. Animals were handled according to approved Animal
Care procedures. Genotyping was determined from PCR of tail
snips taken at 10–15 days of age. In our experiments, we used
5–6 animals per experimental group. Groups were balanced
between males and females, and we did not notice gender differ-
ences regarding Tau changes as well as kinase/phosphatase
modulation.

Immunoblotting
Mice were sacrificed by dislocation without anesthesia and
tissue processed as described (11,12). Tissues were homoge-
nized in 200 ml Tris buffer pH 7.4 containing 10% sucrose and
protease inhibitors (Complete, Roche), sonicated and kept at
2808C for biochemical experiments. Protein dosage, processing
as mono- and bi-dimensional electrophoresis, as well as sarkosyl
fractionations experiments were performed as previously
described (11,12).

Histological analysis
Mice brains were dissected and fixed immediately by immersion
in 4% paraformaldehyde in 0.1 M phosphate buffer (pH 7.4).
Samples were dehydrated in graded alcohol solutions, embedded
in paraffin and cut at 5 mm using a microtome. Slices were pre-
treated with boiling citrate buffer, pH 6 (4 cycles of 2 min), incu-
bated overnight in humidified chamber with anti-Htt 2B4
(mouse, 1:500, Millipore, MAB5492) or anti-Htt Em48
(mouse, 1:500, Millipore, MAB5374) and anti-Tau[pSer396]
(rabbit, 1:500, Life Technologies). Samples were washed and
incubated with anti-mouse IgG-Alexa Fluor 488 and anti-rabbit
IgG-Alexa Fluor 594 (1:500, Life Technologies) and with DAPI,

Table 1. Antibodies used in this study

Name Abbreviation Epitope Type Origin Provider WB

CaMKII (pThr286) pCaMKII pThr286 Poly Rabbit Cell Signaling Technology 1/1000
CaMKII CaMKII Human CaMKII amino-terminal region Poly Rabbit Cell Signaling Technology 1/1000
Cdk5 (C-8) Cdk5 Cdk5 COOH terminus Poly Rabbit Santa Cruz Biotechnology 1/1000
Erk1/2 pThr202/Tyr204 pErk pThr202/pTyr204 Mono Mouse Cell Signaling Technology 1/1000
Erk1/2 (3A7) Erk Mouse Erk1/2 Mono Mouse Cell Signaling Technology 1/1000
GAPDH GAPDH Human GAPDH FL 1-335 Poly Rabbit Santa Cruz Biotechnology 1/10 000
GAPDH GAPDH 6C5 Mono Mouse Ambion 1/30 000
GSK-3b (pSer9) pGSK3b (S9) pSer9 Poly Rabbit Cell Signaling Technology 1/1000
GSK-3a/b pTyr279/Tyr216 (5G-2F) P-GSK3b (Y216) pTyr279/Tyr216 Mono Mouse Millipore 1/1000
GSK-3a/b (0011-A) GSK3 Mouse GSK31 – 420 Mono Mouse Santa Cruz Biotechnology 1/2000
Huntingtin Htt mEM48 Mono Mouse Millipore 1/500
Huntingtin Htt 2B4 Mono Mouse Millipore 1/500
p35 (C-19) p35 Human P35 COOH terminus Poly Rabbit Santa Cruz Biotechnology 1/1000
PP1 (E9) PP1 Human full-length PP1 Mono Mouse Santa Cruz 1/1000
PP2A, C subunit, (1D6) PP2A-C Human PP2A C subunit 295–309 Mono Mouse Millipore 1/2000
PP2B (Calcineurin) PP2B Human Calcineurin a Poly Rabbit Cell Signaling 1/1000
Tau pSer396 pSer396 pSer396 Poly Rabbit Invitrogen 1/10 000
Tau pSer404 pSer404 pS404 Poly Rabbit Invitrogen 1/10 000
Tau-1 (PC1C6) Tau1 Non-phospho-Ser195,198,199,202 Mono Mouse Millipore 1/2000
Tau, Total Cter Cter last 15 aa of COOH terminus Poly Rabbit Home-made 1/2000

Mono, monoclonal; Poly, polyclonal; WB, dilution used in western blotting.
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and then subsequently washed and mounted. An inverted Leica
SP8 confocal microscope was used to examine the samples.

Statistics

Results are expressed as means+SEM. Differences between
mean values were determined using the Student’s t-test.
P-values ,0.05 were considered significant.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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6.3. Clinical trials status report 

 

Table 5 Current HD clinical trials (source : http://www.clinicaltrials.gov/) 
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RESUME  

 

 

Etude de marqueurs du striatum comme modificateurs d’atteinte pathologique dans la 

maladie de Huntington 

 

 

La maladie de Huntington (MH) est une affection neurodégénérative héréditaire dont 

la mutation conduit à une expansion anormale d’un segment polyglutamine dans la protéine 

Huntingtine (Htt). La Htt mutée, bien qu’ubiquitaire dans le cerveau, conduit à une 

neurodégénérescence préférentielle du striatum. Cette atteinte pourrait en partie s’expliquer 

par la présence de produits de gènes sélectivement exprimés dans le striatum. Le laboratoire 

étudie depuis plusieurs années l’implication potentielle de marqueurs moléculaires du 

striatum dans la vulnérabilité des neurones de cette structure cérébrale vis-à-vis de la Htt 

mutée. Durant ma thèse, j’ai étudié plus spécifiquement trois de ces marqueurs du striatum: 

l’ARN long intergénique non-codant Abhd11os et les protéines µ-crystalline (CRYM) et 

Doublecortin-like kinase 3 (DCLK3). Une étude préliminaire avait montré l’effet 

neuroprotecteur de Abhd11os et DCLK3 contre la toxicité induite par un fragment court de la 

Htt mutée dans un modèle murin aigu de la MH. J’ai donc étudié plus en détails les 

caractéristiques de ces "modificateurs" de la MH, ainsi que les mécanismes moléculaires 

potentiels permettant d’expliquer leur effet neuroprotecteur dans un contexte de la MH. J’ai 

également mené une expérience de thérapie génique en surexprimant le marqueur striatal 

DCLK3 dans deux modèles transgéniques de la MH. Cette étude nous a permis de valider le 

haut potentiel thérapeutique de cette protéine. 

L’élucidation précise des mécanismes d’action de ces modificateurs de la MH reste 

encore à résoudre, mais plusieurs pistes sont maintenant possiblement envisagées par rapport 

à leurs caractéristiques moléculaires.  

 

Outre la découverte de nouveaux marqueurs striataux neuroprotecteurs qui pourrait 

permettre de développer de nouvelles cibles thérapeutiques, cette étude a permis d’envisager 

de nouvelles hypothèses permettant de mieux comprendre la vulnérabilité striatale dans la 

MH et de donner une vue d’ensemble des voies sur lesquelles il serait possible d’agir pour 

induire des effets neuroprotecteurs dans ce contexte. 

 

 

Mots-clés : maladie de Huntington, marqueurs du striatum, neuroprotection, modificateurs de 

la MH. 
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ABSTRACT  

 

 

A study of striatal markers as disease modifiers in Huntington's Disease 

 

 

Huntington’s disease (HD) is a autosomal dominant neurodegenerative disorder 

caused by CAG repeat expansion in the huntingtin gene (HTT), which leads to an abnormal 

polyglutamine stretch within the Huntingtin protein (Htt). 

Whereas mutant Htt (mHtt) is ubiquitously expressed in the brain and peripheral system, it 

preferentially affects the striatum. Our hypothesis is that genes products selectively expressed 

in the striatum could be involved in the high vulnerability of the striatum.  

From this hypothesis, numerous teams studied “markers of the striatum”, that are 

genes products enriched in the striatum whose expression are up- or down-regulated in HD 

compared to healthy condition. 

During my thesis, I studied three of these striatal markers: the long intergenic non-

coding RNA Abhd11os, and the two proteins µ-crystallin (CRYM) and Doublecortin-like 

kinase 3 (DCLK3). A preliminary study from the laboratory has shown that these three 

markers have neuroprotective effects against a toxic fragment of mHtt in vivo.  

The aims of my thesis were to further characterize these three ill-defined disease modifiers 

and to better understand the putative molecular mechanisms underlying their neuroprotective 

effects against mHtt. 

I also conducted a translational study on DCLK3, whose results validate the high 

therapeutic potential of this protein. 

The elucidation of the mechanisms underlying the neuroprotective effects of these 

disease modifiers against mHtt toxicity will require further studies, but new trails can be 

envisioned, according to their characteristics. 

  

 My study has enlightened new therapeutic targets and more globally gives an 

overview of molecular mechanisms to modulate and induce neuroprotective effects in this 

context, leading to new hypotheses explaining striatal vulnerability in HD. 

 

 

Key words: Huntington’s disease, striatal markers, neuroprotection, disease modifiers. 

 


