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Table 1: Table of scientific constants and unit conversions.

Constants cgs units SI units References
Light velocity (c) 2.99792458 1010 cm s−1 108 m s−1 a
Electron charge (e) 1.6022 c 10−20 statC 10−19 C c
Electron mass (me) 9.1094 10−28 g 10−31 kg c
Proton mass (mp) 1.6726 10−24 g 10−27 kg c
Boltzmann constant (kB) 1.3807 10−16 erg K−1 10−23 J K−1 c
Planck constant (h) 6.6261 10−27 erg s 10−34 J s c
Gravitational constant (G) 6.6726 10−8 dyne cm2 g−2 10−11 m3 s−2 kg−1 c
Thomson cross section (σT) 6.6525 10−25 cm2 10−29 m2 c
Fine structure constant (α) 7.2972 10−3 10−3 c
Solar mass (M⊙) 1.9884 1033 g 1030 kg a
Solar radius (R⊙) 6.957 1010 cm 108 m b
Solar bolometric luminosity (L⊙) 3.828 1033 erg s−1 1026 J s−1 b

Notes: (a) http://asa.usno.navy.mil/static/files/2014/Astronomical_Constants_2014.pdf; (b) Mamajek et al. (2015); (c) Huba
(2013).

Astronomical distances from Cox (2000)
1 parsec (pc) 3.08567758 1018 cm
1 astronomical unit (au) 1.495979 1013 cm
1 light-year (ly) 9.460530 1017 cm
1 parsec (pc) 2.062648 105 au
1 parsec (pc) 3.2616334 ly
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Table 2: Table of acronyms.

ACIS Advanced CCD Imaging Spectrometer (CXO)
ADAF Advection Dominated Accretion Flow
AGN Active Galactic Nucleus
APEX Atacama Pathfinder Experiment
CARMA Combined Array for Research in Millimeter-wave Astronomy
CCD Charge Coupled Device
CCF Current Calibration File
CDF Cumulative Distribution Function
CXO Chandra X-Ray Observatory
DSO Dusty S-cluster Object
EHT Event Horizon Telescope
EPIC European Photon Imaging Camera (XMM-Newton)
FWHM Full Width at Half Maximum
GBT Green Bank Telescope
GRMHD General Relativity Magneto-Hydro Dynamic
GTI Good Time Intervals
HST Hubble Space Telescope
IC Inverse Compton
IR Infrared
ISCO Innermost Stable Circular Orbit
MCMC Markov Chain Monte Carlo
MJD Modified Julian Date
MOS Metal Oxide Semi-conductor (XMM-Newton)
NICMOS Near Infrared Camera and Multi-Object Spectrometer (HST)
NIR Near Infrared
NuSTAR Nuclear Spectroscopic Telescope Array
ODF Observation Data File
PSF Point-Spread Function
QPO Quasi Periodic-Oscillation
RGS Reflection Grating Spectrometer (XMM-Newton)
RIAF Radiatively Inefficient Accretion Flow
SAS Science Analysis Software
SGR Soft Gamma Repeater
Sgr Sagittarius
SINFONI Spectrograph for INtegral Field Observations in the Near-Infrared (VLT)
SMA Sub-millimeter Array
SMT Sub-millimeter Telescope
SSC Synchrotron Self-Compton
UT Universal Time
VLA Very Large Array
VLBA Very Long Baseline Array
VLBI Very Long Base Interferometer
VLT Very Large Telescope
WFC3 Wide Field Camera 3 (HST)
XMM X-ray Multi-Mirror
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« The question that I started off with was, I thought, very simple.

It was just: “Is there a massive black hole at the center of our Milky Way?”.

But one of the things I love about science is that you always end up with new questions.»

Andrea M. Ghez

in Discover Magazine, May 2009, “The Frontiers of Astronomy”.
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Preface

The main messenger of information for astrophysicists is the photon. The properties of this photon (such as
its wavelength and its polarization) are different according to the mechanisms of its formation and the medium
it goes through. The study of the characteristics of the collected photon thus allows researchers to deduce the
properties of the source and the underlying radiative processes.

The high-energy astrophysics studies mainly photons in X-rays and γ-rays, i.e., photons having energies
greater than 100 eV, corresponding to wavelengths smaller than 10−8 m. The high-energy observations, avail-
able through rockets and satellites since the 1950s, have experienced exceptional growth since 1999 thanks
to the increasing number of X-ray facilities such as Chandra, XMM-Newton, Swift, Suzaku and NuSTAR.
Future space missions such as Athena promise a much greater number of collected photons with a better
angular and spectral resolution. This will allow us to study more precisely the physical properties of the
observed objects to increase the accuracy of the theoretical models.

In parallel, the software and computer development have allowed researchers to perform systematic studies
of large datasets. It also allows the study and comparison of complex models with observations to better
understand the properties of the emitting source.

The study of the black holes allows researchers to test the physical laws in presence of strong gravitational
field that can not be reproduced in laboratory. This is also the way to test general relativity and quantum
mechanics in such environment. At the Galactic Center, Sgr A* (say Sagittarius A star) is the closest super-
massive black hole (SMBH) with a distance of only 8 kpc. It is thus a unique laboratory in which physical
processes also relevant for nuclei of other galaxies can be studied with the higher angular resolution. However,
the gas and dust on the line of sight to the Galactic Center make impossible its observation in the visible or
ultraviolet making it only accessible in radio, infrared and in energies higher than about 2 keV.

Thanks to the current generation of space and ground telescopes, we are now able to detect sudden
increases of flux (called flares) from Sgr A*. The flare characteristics improve our understanding of the
physical processes in the vicinity of the SMBH.

My Ph.D. thesis entitled “Multiwavelength study of the flaring activity of the supermassive black hole
Sgr A* at the center of the Milky Way” focuses on the study of the activity from Sgr A* mainly in X-rays
and on comparisons with other wavelengths. The Chapter 1 is an overview of the current knowledge about
the Galactic Center SMBH Sgr A* and the recently discovered Dusty Stellar Object (DSO) G2 object orbiting
Sgr A* with a small pericenter distance. The possible increase of the Sgr A* activity due to the gravitational
interaction with the DSO/G2 defines the context of my Ph.D. thesis. In this first Chapter, I also introduce the
Galactic Center magnetar SGR J1745-29 which entered in burst phase in 2013 April at only 2′′.5 from Sgr A*.
In Chapter 2, I introduce the observational facilities I used for my studies. I then explain the different analysis
methods I used and developed in Chapter 3. The results obtained for the 2011 campaign for the observations
of Sgr A* in X-rays with XMM-Newton are reported in Chapter 4. The study of the multiwavelength activ-
ity from Sgr A* in Feb.-Apr. 2014, i.e., close to the DSO/G2 pericenter passage are reported in Chapter 5.
In Chapter 6, I present the study of the X-ray flaring rate from Sgr A* observed with Chandra, XMM-Newton
and Swift from 1999 to 2015. I finally present the conclusion and perspectives of this work in Chapter 7.
Complementary informations about the radiative processes and the expanding plasmon model are given in
Appendixes A and B. The observation log and the characteristics of the X-ray flares detected from 1999 to
2015 are given in Appendix C. The accepted papers reporting the results presented in this Ph.D. thesis are
given in Appendix D.
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Chapter 1

Overview of the Galactic Center and Sgr A*

In Sect. 1.1, I first set the scene with a brief description of the Milky Way before zooming towards the Galactic
Center to meet Sgr A* and its closest environment. The physical characteristics, quiescent emission and flaring
activity of Sgr A* are described in Sect. 1.2. A summary of these properties is given in Sect. 1.3. In Sect. 1.4,
I describe the discovery and current knowledges about the DSO/G2. In Sect. 1.5, I introduce the Galactic
Center magnetar SGR J1745-29 before setting the context of my Ph.D. thesis in Sect. 1.6.

1.1 On the way towards the Galactic Center

1.1.1 The structure of the Milky Way

Our solar system belongs to a bared spiral galaxy (SBc) named the Milky Way which is composed by a 15 kpc
radius disk and by a central spherical bulge whose radius is 3 kpc (left panel of Fig. 1.1; Hüttemeister 2003).
In the disk, there are four major spiral arms which contain the majority of gas and dust of the galaxy. The arms
are composed by about 70% of hydrogen (H i, H ii and H2), about 30% of helium and some metals formed
during supernovae explosions. Our solar system is in one of these spiral arms called the Small Orion Arm at
about 8 kpc from the center of the Milky Way. The bulge is composed by an old stellar population aged of
(5 − 10) × 109 years and gas with a total mass of 1010M⊙.

In addition to the galactic plane components, there are the Fermi bubbles which are perpendicular to the
galaxy (in violet in the right panel of Fig. 1.1). These gigantic structures, reaching 50° of latitude, emit in
γ-rays with a luminosity of 4 × 1037 erg s−1 needing an exciting energy of 1054 to 1055 erg (Wardle & Yusef-
Zadeh 2014). The Fermi bubbles could be explained by a past AGN (Active Galactic Nucleus) bright phase
of Sgr A* (Su et al. 2010; Zubovas et al. 2011; Guo & Mathews 2012).

1.1.2 The central parsecs of the Milky Way

In the 1920’s, Harlow Shapley and Jan Oort deduced that the center of our galaxy is located in the direction of
the Sagittarius (Sgr) constellation and that the Sun is not located at the center of the Milky Way (Shapley &
Curtis 1921; Oort 1930). Their discovery was done with the study of the movement of stars close to the Sun
and of the position of 93 globular clusters. In 1930, thanks to a systematic study of globular clusters, Robert

Figure 1.1: Left panel: Schematic view of the Milky Way (Hüttemeister 2003). Right panel: the Fermi bubbles
(Credit: NASA’s Goddard Space Flight Center).
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Figure 1.2: The image of the Galactic Center in radio, infrared and X-rays in galactic coordinates. The three
images are shown at the same scale and aligned for an easier comparison. Top panel: Radio (333 MHz) image
(Kassim et al. 1999) rotated and scaled to correspond to the IR and X-ray images. Middle panel: Spitzer image
in infrared (blue= 3.6 µm, green= 8 µm and red= 24 µm). Bottom panel: Chandra X-ray survey between
1 and 8 keV (red= 1 − 3 keV, green= 3 − 5 keV and blue= 5 − 8 keV; Wang et al. 2002).
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Figure 1.3: Schematic view of the Sgr A complex as seen from the Earth (Herrnstein & Ho 2005). Sgr A East
fills the black ellipse. The large black band (a backwards “C” shape) is the CircumNuclear Disk. The light
gray bands represent Sgr A West. The black dot is the S-cluster and the SMBH Sgr A*.

Trumpler concluded that the Galactic Center is not observable in visible light because of the dust absorption
by the disk (Trumpler 1930).

Indeed, the presence of gas and dust on the light path implies that we do not receive all photons emitted
by a source. This effect is called the extinction and is a combination of absorption and scattering. The ratio
between the number of received and emitted photons is computed as 10−Aλ/2.5 with Aλ the extinction at the
photon wavelength λ. For the observations of the Galactic Center in radio and sub-millimeter, the galaxy
is nearly transparent to all photons. For the infrared (IR) H-band (λ = 1.637 µm), Fritz et al. (2011) found
AH = 4.21± 0.10 mag which implies that we only receive one photon on 10AH/2.5 ∼ 100. In optic (at 550 nm),
AV ∼ 30 mag (Rieke et al. 1989). This implies that only one photon on 1012 reaches us making impossible
to observe the Galactic Center in visible light or UV. Since in IR and optic smallest wavelengths suffer more
extinction, the source seems to emit more photons in longest wavelength. This phenomenon is called the
interstellar reddening. In energies higher than about 2 keV, the galaxy becomes again nearly transparent to
photons: more than 90% of emitted photons are received on Earth.

The center of our galaxy was observed, for the first time, in radio wavelengths at the end of the 1920s.
An engineer of Bell Telephone, Karl Jansky, studied the source of noise for the phone communications with
an antenna working at 20.5 MHz. He found a constant source of noise in the direction of the Sagittarius
constellation (Jansky 1933). This was the first non-optic observation of the Universe. In 1959, Frank Drake
observed for the first time the structure of the Galactic Center in radio with the Green Bank Telescope (Drake
1959).

A radio survey was made by Kassim et al. (1999) on a 4◦ × 5◦ region with the VLA (see top panel of
Fig. 1.2). Four main complexes can be seen in these wavelengths:

• Giant molecular clouds (Sgr B1, Sgr B2, Sgr C and Sgr D) forming the Central Molecular Zone;

• At the center, the 15 pc radio complex Sgr A which hosts the SMBH Sgr A*;

• Some non-thermal filaments produced by the synchrotron radiation of relativistic electrons around the
magnetic field perpendicular to the galactic plane (Yusef-Zadeh et al. 1984);

• Some supernovae remnants (SNR) which have a non-thermal shell in expansion.

An infrared and X-ray image of the Galactic Center are shown in the middle and bottom panel of Fig. 1.2.
The Sgr A complex is one of the most luminous object in each wavelength. In X-rays and IR, we can see two
clusters of young and massive stars (the Quintuplet and Arches clusters) which create H ii regions at less than
35 pc in projection from the Galactic Center. In X-rays, we can also see the center of the SNRs which are
not observable in IR. The giant molecular clouds Sgr B1 and Sgr B2 are mostly seen in radio wavelengths.
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Figure 1.4: Left panel: Orbits of the stars in the S-cluster around Sgr A* (Gillessen et al. 2009b). Right panel:

The S2 orbit (blue: NTT/VLT, red: Keck) from 1992 to 2009 (Gillessen et al. 2009a).

In the IR image, we observe stellar clusters, H ii regions and dark clouds in silhouette against bright IR
emission region.

1.1.3 The Sgr A complex

The Sgr A complex hosts the SMBH Sgr A* (black point in Fig. 1.3). Its structure thus influences and is
influenced by Sgr A*

At 9.1 pc in projection, there is a SNR candidate named G359.92-0.09 (dotted circle in Fig. 1.3), confined
by the dynamical pressure (Coil & Ho 2000).

Sgr A East (black ellipse in Fig. 1.3) is a SNR with different components: a shell dominated by synchrotron
radiation which surrounds a hot plasma with X-ray thermal emission (Ekers et al. 1983). The hot ejecta in
X-rays allows us to date the explosion to 104 years ago (Aharonian et al. 2006).

The 104 M⊙ tore of neutral gas named the “CircumNuclear Disk” (backwards “C” shape in Fig. 1.3) is the
most luminous part of Sgr A East. It is probably fed by some molecular clouds at 10 pc in projection from
Sgr A* (Eckart & Genzel 1999).

Sgr A West (light gray bands in Fig. 1.3) is composed by hot gas emitting in X-rays (Ekers et al. 1983;
Sidoli & Mereghetti 1999). It hosts luminous stars which form the S-cluster (see left panel of Fig. 1.4). These
stars have velocity that can reach 105 km s−1 and orbital period that can be as small as 10 years (Schödel et al.
2002; Gillessen et al. 2009a; Meyer et al. 2012).

A compact radio object was found in Sgr A West by Balick & Brown (1974) thanks to an interferometer
from National Radio Astronomy Observatory (NRAO). This unresolved source was named “Sagittarius A*”
by Brown (1982), the star reflecting the unresolved nature of the source, and is located at the shared focus of
the Keplerian orbits of the stars from the S-cluster.

1.2 The Galactic Center supermassive black hole Sgr A*

1.2.1 The physical characteristics of Sgr A*

The mass of Sgr A* was first estimated to 2.6 ± 0.2 × 106 M⊙ using the proper motion of 90 stars of the
S-cluster from 1995 to 1997 (Ghez et al. 1998). Schödel et al. (2002) observed, for the first time, the pericenter
passage of the 15 M⊙ B0 type star S2 (also known as S0-2; Ghez et al. 1998) of the S-cluster at 124 au from
Sgr A* on 2002. The orbit of this star is characterized by an eccentricity of 0.87 and an orbital period
of only 15.2 years (see right panel of Fig. 1.4). Using the astrometric measurements of S2 from 1992 to
2002 (one third of the orbit), the authors constrained the mass of Sgr A* to M = (3.7 ± 1.5) × 106 M⊙.
Then, the astrometric and spectroscopic measurements of S2 from 1995 to 2007 allowed Ghez et al. (2008)
to constrain the mass of Sgr A* to M = (4.1 ± 0.6) × 106 M⊙ at 8.0 ± 0.6 kpc. Gillessen et al. (2009a)
measured the orbits of 28 stars including S2 during 16 years leading to an improvement of the Sgr A* mass
of M = (4.31 ± 0.06|stat ± 0.036|dist) × 106 M⊙ at 8.33 ± 0.35 kpc. The discovery of a new faint star S0-102
having an orbital period shorter than S2 (11.5 ± 0.3 years) allowed Meyer et al. (2012) to constrain the mass
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and the distance of Sgr A* to (4.1± 0.4)× 106 M⊙ at 7.7± 0.4 kpc using only the orbit of the S0-102 star. This
large mass thus proofs that Sgr A* is a SMBH so as the majority of massive galaxies have, at their center,
a supermassive black hole whose the mass is comprised between approximately 105 M⊙ and 1010 M⊙ (Maoz
2008).

The size of a black hole is defined by its Schwarzschild radius. This is the size of the event horizon
where all matter and photons are gravitationally attracted by the black hole without possibility of escaping.
The Schwarzschild radius is computed as

Rs =
2 G M

c2
≈ 0.02

M

106M⊙
au ≈ 3.0

M

106M⊙
1011cm (1.1)

with M the black hole mass and M⊙ the solar mass (Schwarzschild 1916). The gravitational radius is defined
as rg = 0.5 Rs. The Schwarzschild radius of Sgr A* is Rs = 1.2 × 1012 cm.

The most accurate radio position of Sgr A* was obtained with the Very Long Base Array (VLBA):
RA(J2000) = 17h45m40s.036 ± 1.42 mas, Dec(J2000) = −29◦00′28′′.17 ± 2.65 mas (Petrov et al. 2011).
In near infrared (NIR), the position of Sgr A* is also known with a precision of 2 mas (Gillessen et al. 2009b).

The best constraint on the distance of Sgr A* from the Earth was given by the measure of trigonometric
parallaxes and proper motions of 80 masers associated with high-mass stellar formation regions with the
VLBA: D = 8.34 ± 0.16 kpc = 27.20 ± 0.50 kly (Reid et al. 2014).

Sgr A* has a proper motion of 20 km s−1 in the galactic plane and 1 km s−1 in the perpendicular direction
(Reid et al. 1999; Reid & Brunthaler 2004). This is more than hundred times slower than the medium around
it which proofs that it is located at the dynamical center of the Milky Way.

By abuse of language, I speak about the emission of Sgr A* instead of the emission from the matter
accreted onto Sgr A*. This emission is currently described by a quiescent state (Sect. 1.2.2) with a bolometric
luminosity, Lbol ≈ 1036 erg s−1 ≈ 300L⊙ (Yuan et al. 2003) with episodic flaring activities (Sect. 1.2.3).

1.2.2 The quiescent state of Sgr A*

Considering a spherical accretion of matter, the accretion stops when the radiative force exerted by the photons
on a matter element of mass m (Frad = LσT m/4 πmp c r2 with r the distance to the attractive object center,
mp the proton mass and σT the Thomson cross section for an electron) exceeds the gravitational force under-
gone by this stellar matter (FG = −G M m/r2). This theoretical limit on the luminosity for a black hole is
defined as the Eddington luminosity:

LEdd =
4πG M mp c

σT
∼ 3.4 × 1011 M

106M⊙
L⊙ . (1.2)

For Sgr A* whose mass is about 4 × 106M⊙, LEdd = 1.4 × 1012L⊙. Its bolometric luminosity is thus about
4.5 × 10−9 LEdd which implies that Sgr A* is an extremely low-luminosity black hole.

The mass-accretion rate is linked to the bolometric luminosity by Ṁ = Lbol/η c2 with η the accretion
efficiency (e.g., Czerny et al. 2013). The mass-accretion rate corresponding to the Eddington luminosity for
η = 0.1 is

ṀEdd = 2.2 × 10−2 M

106M⊙
M⊙ yr−1 . (1.3)

For Sgr A*, the Eddington accretion rate is 8.8 × 10−2 M⊙ yr−1. The study of X-ray quiescent emission from
Sgr A* determined a mass-accretion rate Ṁ of 10−6 M⊙ yr−1 (e.g., Baganoff et al. 2003) at the Bondi radius1.
By measuring a rotation measure of −5.6 × 105 rad m−2 at the sub-millimeter bump of the spectral energy
distribution of Sgr A*, Marrone et al. (2007) showed that the mass accretion rate is lower than 2×10−7 M⊙ yr−1

at about 10−4 times the Bondi radius if the magnetic field is near the equipartition. The current mass accretion
rate of Sgr A* is thus several thousands of time smaller than ṀEdd.

1The Bondi radius computed as RB = GMBH/cs is the distance where the matter begins to be accreted (Bondi & Hoyle 1944; Bondi
1952; Shvartsman 1971). For Sgr A*, the sound velocity at infinity is cs = 550 km s−1 for a plasma temperature kB T = 1.3 keV (i.e.,
T = 15.1 MK), an adiabatic index γ = 5/3 and a mean atomic weight of the gas µ = 0.7 leading to RB = 0.072 pc = 1′′.8 = 2.2×1017 cm
(Baganoff et al. 2003). It is about four times larger than the on-axis angular resolution of Chandra.
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Figure 1.5: Mean SED of Sgr A* from VLA, the Atacama Large Millimeter Array (ALMA) and the Sub-
millimeter Array (SMA) observations between 2012 to 2014 as shown in Bower et al. (2015).

To explain the low luminosity of Sgr A*, hot accretion flow models (for a review see Yuan & Narayan
2014 and references therein) such as the Advection-Dominated Accretion Flow (ADAF; Ichimaru 1977; Rees
et al. 1982; Narayan & Yi 1994; Narayan et al. 1995, 1998) have been developed. The ADAF model invokes
the decoupling between ions and electrons to explain the low luminosity with a mass-accretion rate Ṁ which
is supposed to be constant over the distance. Indeed, ions are hot and advect their energy behind the event
horizon before it can be radiated, while electrons are cooler than ions but radiate to produce the observed
low luminosity. This model predicts a geometrically thick accretion flow which is characterized by a vertical
scale similar to the horizontal scale (contrarily to the geometrically thin disk where the vertical scale is small
compared to the disk radius). Yuan & Narayan (2014, and reference therein) parametrized the physical char-
acteristics (density, magnetic field, sound speed,...) of the hot accretion flow as a function of the black hole
characteristics using a self-similar and axisymmetric solution. To explain the low mass-accretion rate, they
also introduced the parametrization of Ṁ with the distance with Ṁ = M0(r/r0)s leading to the possibility of
the presence of outflows such as winds (carrying most of mass) or jets (carrying most of energy) which eject
the majority of matter captured in the Bondi radius before it reaches the black hole. The presence of such kind
of mass loss is supported by the deep X-ray observations with Chandra (Wang et al. 2013) and explains the
low mass accretion rate of Sgr A*.

The proximity (100 times closer that the center of M31; Schödel et al. 2002) and the large angular diameter
(53 µas which is about twice larger than that of NGC 4486 in M87; Johannsen et al. 2012) of Sgr A* make
it the best target to investigate such kind of models which can be applied to a majority of SMBH since these
objects spend most of their lifetime in a low-luminosity state.

The quiescent luminosity of Sgr A* (S ν) may be measured at different frequencies (ν) to build the spectral
energy distribution (SED; see Fig. 1.5).

In the centimeter/millimeter range (typically from 1 to 100 GHz), the spectral index α (defined by Sν ∝ να)
varies between 0.17 and 0.5 (Falcke et al. 1998; Bower et al. 2015) indicating that the emission is produced by
an optically thick synchrotron radiation (see Appendix A.1 for further details). The quiescent emission flux
in this frequency range is not constant but varies slowly with time (Zhao et al. 2001). In the sub-millimeter
range (from 217 to 355 GHz), the spectral index is consistent with zero which represents a flat spectrum
(Marrone et al. 2006; Bower et al. 2015). The source thus becomes optically thin in this part of the SED
named the sub-millimeter bump. The intrinsic size of the quiescent emission at a certain radio/sub-millimeter
wavelength can be computed thanks to the relation given in Doeleman et al. (2008) which measured a 3σ range
of 37(230 GHz/ν)1.44 µas = 4.6(230 GHz/ν)1.44 1012 cm. They pointed out a structure for this size which was
confirmed by the observations with the Event Horizon Telescope at 230 GHz (Fish et al. 2016). These authors
were able to discriminate between the two position angles of −52◦ and +128◦ east found by Broderick et al.
(2011). The radio/sub-millimeter quiescent thus seems to be elongated with a position angle of +128◦ east.

After the sub-millimeter bump, the spectral index in IR between the L, H, K, and M-bands (i.e., between
1.63 µm and 4.67 µm) is about −0.6 (Hornstein et al. 2007; Witzel et al. 2014b). This emission is produced by
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Figure 1.6: The X-ray quiescent emission from Sgr A* as seen by Chandra (Wang et al. 2013). The north
is at the top and the east is on the left. Left panel: The dashed circle is the Bondi radius. The contours
are at 1.3, 2.2, 3.7, 6.3, and 11×10−4 count s−1 arcsec−2. Left panel: A zoom on the quiescent emission of
Sgr A* which is decomposed into extended (colored image) and point-like (contours of 0.3, 0.6, 1.2, 2.4, and
5 counts pixel−1) components. The dashed line is the orientation of the Galactic plane. The dashed ellipse
represents the elongation of the primary massive stellar disk.

an optically thin synchrotron radiation.
The X-ray quiescent emission resolved for the first time with the ACIS-I camera on-board Chandra has

a 2–10 keV unabsorbed luminosity of about 2 × 1033 erg s−1 (Baganoff et al. 2003). The study of the quies-
cent emission was then improved by Wang et al. (2013) by using the ACIS-S camera and the High Energy
Transmission Grating (HETG) on-board Chandra, i.e., with an on-axis spectral resolution of the zero order
of the HETG which is twice better than the previous ACIS-I study. The Chandra angular resolution allowed
them to study the quiescent emission of Sgr A* without contamination by the nearby sources (see left panel
of Fig. 1.6). The authors confirmed that the spectrum of the quiescent emission has several emission lines:
the Fe xxv Kα line at 6.7 keV but also the Fe xxv Kβ line at 7.8 keV, Ar xvii and Ar xviii Kα lines at 3.1 and
3.3 keV, S xv Kα line at 2.4 keV and Ca xix Kα line at 3.9 keV. They also observed a weak H-like Fe line
at 6.97 keV which suggests the presence of an outflow which eject more than 99% of the accretion mass
supporting the hot accretion flow model. Moreover, they found that the overall continuum spectrum is well
reproduced by this model with a 2–10 keV unabsorbed luminosity of 3.4+0.9

−0.5 × 1033 erg s−1. The spatial distri-
bution of the X-ray quiescent emission has an elongated shape in the east-west direction with a size of about
1′′ − 1′′.5 plus a point-like contribution which represents 20% of the total quiescent emission (see right panel
of Fig. 1.6) and which is an unresolved flaring emission in the X-ray light curve.

1.2.3 The Sgr A* multiwavelength activity

A majority of the flux coming from Sgr A* is created in the hot accretion flow with a radiatively inefficient
accretion mechanism. However, several times a day, in addition to this quiescent emission, the SMBH emits a
much larger number of photons from radio to X-rays during a limited period of time. These events are named
“flares”. Flares are important to understand the mechanism of transport and ejection of matter near Sgr A*.

The X-ray activity

Flares were first observed on 2000 Oct. 26 in X-rays with Chandra (Baganoff et al. 2001). During this obser-
vation, a bright flare was detected with a 2–10 keV peak unabsorbed luminosity of Lunabs

2−10 keV = (1.0 ± 0.1) ×
1035 erg s−1. On 2002 Oct. 3, a more luminous flare was detected with Lunabs

2−10 keV = 3.6+0.3
−0.4 × 1035 erg s−1 with

XMM-Newton (Porquet et al. 2003). On 2012 Feb. 9, an even more bright flare was observed with Chandra
(Lunabs

2−10 keV = 4.8+1.9
−1.1 × 1035 erg s−1; Nowak et al. 2012).

The 2012 Chandra X-ray Visionary Program (XVP) campaign of 3 Ms exposure reported by Neilsen et al.
(2013) allowed the authors to detect 39 eruptions (see Fig. 1.7) and to increase the flares statistics. The flaring
events brighter than 1034 erg s−1 happen 1.1+0.2

−0.1 times a day. Half of the eruptions are moderate flares (with
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Figure 1.7: Example of X-ray light curves from Sgr A* as seen with Chandra in 2012 (Neilsen et al. 2013).
The vertical dotted red lines depicts the position of the X-ray flares. The horizontal blue lines are the time
range for the bottom zoomed panels.

luminosity lower than 10 times the quiescent emission) whereas bright flares (above 1035 erg s−1) occur every
11.5 days, i.e., 0.087 times a day. The luminosity and fluence (or energy) distribution follow a powerlaw as
dN/dL ∝ L−1.9±0.4 and dN/dF ∝ F−1.5±0.2, respectively. The X-ray flares last from some minutes to 3 hours.

Neilsen et al. (2013, 2015) found that 10–15% of the X-ray quiescent emission is a flaring activity
undetected with Chandra. Neilsen et al. (2013) also demonstrated that the X-ray quiescent emission described
in Section 1.2.2 can not be considered as only variable emission. The total X-ray emission from Sgr A* is
thus composed by a detected and undetected flaring emission superimposed to the quiescent emission.

No significant quasi-periodic variability are observed in the flare light curves but some sharp drops can be
detected (Porquet et al. 2003). The shortest temporal variation during an eruption was observed by Porquet
et al. (2003) on 2002 Oct. 3 with a duration of 200 s. Using a supermassive black hole mass of 3 × 106M⊙
(leading to a Schwarzschild radius of Rs = 8.9 × 109 m), they determined the size of the emitting source to
about 7 Rs for a maximum velocity equals to the light speed. From the revised Sgr A* mass of 4× 106M⊙, the
Schwarzschild radius increases to Rs = 1.2 × 1010 m leading to a maximum source size of 5 Rs.

The spectrum of the X-ray flares is well reproduced by an absorbed power-law with a best constrained
hydrogen column density and spectral index of 16.1+1.9

−2.2 × 1022 cm−2 and 2.3+0.3
−0.3, respectively (Porquet et al.

2003; Nowak et al. 2012).

The NIR activity

On 2003 May 9, Genzel et al. (2003) discovered the first NIR flare from Sgr A* at 1.7 µm with NACO installed
on the Very Large Telescope (VLT). Since then, infrared flares have been observed several times a day (Genzel
et al. 2003; Witzel et al. 2012) with a typical duration of 40 min (Ghez et al. 2004). Quasi-periodic variabilities
of several minutes are observed in the light curve of the NIR flares (Genzel et al. 2003). Substructures with
a timescale of 15-25 min can be also seen in their light curves (Genzel et al. 2003; Meyer et al. 2006; Trippe
et al. 2007). These timescales correspond to the period of an orbit close to the last stable orbit for a Kerr black
hole, i.e., a black hole described by its mass and a non-zero spin.

The NIR flare emission comes from the synchrotron radiation (Eisenhauer et al. 2005; Eckart et al. 2006a;
see Appendix A.1 for further details) and provides a huge range of flux amplitudes. An example of NIR light
curves as observed by VLT/NACO is shown in Fig. 1.8.

Contrarily to X-rays, the NIR emission is considered as an overall variable emission and not a quies-
cent emission plus some flaring events (Meyer et al. 2014). Figure 3 of Witzel et al. (2012) shows that the
distribution of the flux density observed by VLT/NACO has a maximum at 3.57 mJy. Below this amplitude,
the distribution decreases because of the detection limit of VLT/NACO. Above 3.57 mJy, the distribution is
highly asymmetric with a rapid decay of the frequency density followed by a long tail until 32 mJy.

General Relativity Magneto-Hydro Dynamic (GRMHD) simulations done by Chan et al. (2015) show that
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Figure 1.8: Example of NIR light curves from Sgr A* as seen with VLT/NACO (Witzel et al. 2012).

Figure 1.9: Sketch of possible radiative processes for the IR/X-ray flaring emission from Sgr A*.

an accretion flow model can reproduce the time variability and spectra of IR and millimeter flares whereas
jet-dominated models produce less variability compared to observations.

The infrared eruptions show a dramatic change of polarization degree and angle during the flare: the
polarization degree can increase from 10% to 40% at the flare peak and increases during the decay phase
(Eckart et al. 2006b; Meyer et al. 2006; Trippe et al. 2007). Shahzamanian et al. (2015) found that, above
2 mJy, there is an intrinsic polarization degree of 20%±10% and a preferred polarization angle of 13°±15°
which may be linked to the orientation of the accretion disk or jet of Sgr A*.

The simultaneous NIR/X-ray activity

On 2003 June 19, for the first time, a flare was observed simultaneously in X-rays and NIR (Eckart et al.
2004). The brightest NIR/X-ray flare was then observed on 2007 Apr. 4 (Porquet et al. 2008; Dodds-Eden
et al. 2009). We now know that each X-ray flare has an infrared counterpart but the contrary is not true (Eckart
et al. 2006a, 2008; Hornstein et al. 2007; Yusef-Zadeh et al. 2006a; Dodds-Eden et al. 2009). The delay
between the maximum of the NIR and X-ray flare is lower than some minutes (Yusef-Zadeh et al. 2012).

From these simultaneous observations, three possible radiative processes involved during X-ray events are
proposed (see Appendix A for details):

• Synchrotron radiation (upper left part of Fig. 1.9) emitted by relativistic electrons which gyrate around
magnetic field lines. The relativistic properties of the electrons cause the emission to be collimated.

• Inverse Compton process (IC). Two different IC mechanisms can happen: in the first IC mechanism,
the sub-millimeter photons from the hot accretion flow are upscattered by the non-thermal electrons
producing the NIR synchrotron emission (bottom left part of Fig. 1.9). Since the hot accretion flow
is optically thick to sub-millimeter photons, only photons produced near the surface of the flow are
available to be upscattered. The second IC mechanism is the upscattering of infrared photons produced
by accelerated electrons by the thermal electrons of the hot accretion flow (bottom right part of Fig. 1.9).
Since the hot accretion flow is optically thin to the infrared photons, all these thermal electrons are
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available to produce X-rays.

• Synchrotron Self Compton process (SSC; upper right part of Fig. 1.9). This radiation is the local
counterpart of the IC process. The source of photons and electrons are the same, implying that the NIR
photons are upscattered by the non-thermal electrons that produced them.

Several studies have been made on these radiative processes both from the theory (Yuan et al. 2003, 2004;
Liu et al. 2006) and the observations (Yusef-Zadeh et al. 2006a; Marrone et al. 2008; Dodds-Eden et al. 2009;
Eckart et al. 2009; Yusef-Zadeh et al. 2012; Eckart et al. 2012). At the current date, these radiative processes
for the X-ray flaring emission are still debated and none of them can be ruled out.

Several mechanisms can explain the origin of eruptions in X-rays and infrared:

• A shock produced by the interaction between orbiting stars and the hot accretion flow (Nayakshin &
Sunyaev 2003; Nayakshin et al. 2004). This model allowed these authors to simulate the infrared flares
but their frequencies and substructures remain difficult to explain with this model. Furthermore, the hot
accretion flow has to remain dense enough at large distance from Sgr A* but it is difficult to create such
kind of flow with the hot accretion flow model.

• A hotspot model (Broderick & Loeb 2005; Eckart et al. 2006b; Meyer et al. 2006; Trippe et al. 2007;
Hamaus et al. 2009). This model has been developed to explain the variability of the light curve during
the flare event. By passing behind the black hole the observed luminosity of the source increases thanks
to the gravitational lensing. Then, as the source is moving towards the observer, a second increase
of the observed luminosity happens due to the Doppler boosting effect. These eruptions are generally
composed by two close peaks whose the first one has a higher amplitude and a shorter duration than
those of the second one. A third observed luminosity variation with an even lower amplitude can also
be created when the source is located between the observer and the black hole. In this configuration,
the observer also receives photons from the non visible part of the hotspot.

• A Rossby instability producing magnetized plasma bubbles in the hot accretion flow (Tagger & Melia
2006; Liu et al. 2006). These instability waves propagate inside and outside their corotational radius,
where they have the same velocity than the surrounding medium. The direction of the wave depends of
the sign of its specific vorticity. If the ring where the plasma bubbles are produced becomes instable, a
Rossby vorticity is created and evolves non-linearly. The instability increases during several rotations
and the bubble is accreted towards the center.

• An additional heating of electrons near the black hole due to processes such as accretion instability or
magnetic reconnection (Baganoff et al. 2001; Markoff et al. 2001; Yuan et al. 2003, 2009).

• An increase of accretion rate when some fresh material reaches the close environment of the black hole
(Yuan et al. 2003; Czerny et al. 2013).

• Tidal disruption of asteroids (Čadež et al. 2006, 2008; Kostić et al. 2009; Zubovas et al. 2012). This
explanation was proposed since the luminosity released during a NIR flare corresponds to a mass of
about 1017 kg for an efficiency for converting matter to energy of 10% (Genzel et al. 2003). If an
asteroid larger than 10 km is disrupted by the tidal forces in the hot accretion flow of Sgr A*, the shocks
and instabilities created by the fragments may produce X-rays with the required luminosity (Zubovas
et al. 2012).

The radio/sub-millimeter activity

The radio/sub-millimeter flares from Sgr A* observed since 2003 (Zhao 2003) seems to be delayed by some
tens of minutes to some hours after the infrared/X-ray flares (Marrone et al. 2008; Yusef-Zadeh et al. 2008,
2009). This behavior can be explained by an expanding plasmon with adiabatic cooling model (Van der Laan
1966; Yusef-Zadeh et al. 2006b). In this model, the IR activity comes from the synchrotron emission of a
plasmon which is initially optically thin to IR and X-ray wavelengths and optically thick to the radio and sub-
millimeter wavelengths leading to an occultation of a part of the hot accretion flow. As the source adiabatically
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expands, the density of electrons diminishes and the source becomes optically thin to the radio and sub-
millimeter wavelengths leading to an increase of observed synchrotron flux from the source and from the part
of hot accretion flow that was occulted. The formula governing this model are presented in Appendix B. Other
interpretations are also proposed: Brinkerink et al. (2015) supported the collimated outflow model based on
the measured time lag between the sub-millimeter and radio light curves and an intrinsic size of Sgr A* at a
wavelength λ of (0.52 ± 0.03) mas × (λ/cm)1.3±0.1. On 2012 May 17, Rauch et al. (2016) detected a 7-mm
flare which was delayed by 4.5 ± 0.5 h after a NIR flare with the VLBA. They localized this millimeter flare
at 1.5 mas southeast of Sgr A* which provides evidence for an adiabatically expanding jet with a speed of
0.4 ± 0.3 c.

1.3 Summary of the current knowledge on the emission from Sgr A*

For the quiescent emission, some constraints may be put on the hot accretion flow thanks to the spectral
energy distribution (SED) of Sgr A* in radio/sub-millimeter, infrared and X-rays and the polarization
measures observed in radio/sub-millimeter. But the parameters of the ADAF model reported in Yuan &
Narayan (2014, and references therein) such as the viscosity, the mass accretion rate and the magnetic field
strength are still unconstrained. Nevertheless, it is very important to understand and constrain this low-
luminosity model since it could be extended to a large variety of non-active galaxies which represent the
dominant extragalactic population in the local Universe. Moreover the ADAF model can be applied from
stellar black hole X-ray binaries to low-luminosity AGNs.

For the flaring activity from Sgr A*, we know that the NIR flares are produced by synchrotron radiation
but the radiative processes and the electrons acceleration mechanisms for the creation of the X-ray activity are
still debated. In addition, we still have some difficulties to explain the range of amplitude and duration of the
NIR and X-ray flares and the absence of detected X-ray activity simultaneous to some NIR flares. Moreover,
the time delay between the radio/sub-millimeter activity and the NIR/X-ray flares may be explained by the
expanding plasmon model but the deduced model parameters are flare-dependent. There is thus no common
model parameters which explains all the radio/sub-millimeter activity yet. We thus need a higher number
of simultaneous multi-wavelength observations to compare the emission models to the observations and to
constrain the physical characteristics of the close environment of Sgr A* such as the magnetic field, the
density, the electrons energy density,...

1.4 The Dusty S-cluster Object/G2

The current luminosity of the quiescent and flares characteristics from Sgr A* may change thanks to a recently-
discovered object orbiting Sgr A* with a close pericenter. The orbital elements of the DSO/G2 computed in
the studies presented hereafter are reported in Table 1.1.

Observations of the Galactic Center between 2004 and 2011 with VLT/NACO and SINFONI have
revealed the presence of an object named G2 on an eccentric Keplerian orbit towards Sgr A* (Gillessen et al.
2012). The hydrogen Brγ and Brδ and the He i lines were redshifted during all these observations showing
that the object has not yet passed its pericenter in 2011. The first orbit estimate based on the study of the
spectroscopic lines predicted a pericenter passage on mid-2013. This first study determined the nature of the
G2 object as to be a dusty and ionized cloud of gas. This result was supported by two findings: the spec-
troscopic lines follow the proper motion seen in the L′-band and the Brγ line measured in regions extracted
along the predicted orbit is elongated along the orbit in a velocity-position diagram (with total luminosity of
(1.66 ± 0.25) × 10−3 L⊙). Thanks to the M-band observations, the authors determined that this cloud would
have a gas and dust temperatures of about 104 and 450 K, respectively. The deduced mass and electron density
of the G2 are 3 times the Earth mass and 2.6×105 cm−3, respectively. During the pericenter passage, the cloud
would be disrupted and create a bow shock with the hot accretion flow which would be visible from radio to
X-rays. The disruption of the cloud by the tidal forces of Sgr A* and the Rayleigh-Taylor and Kelvin-
Helmholtz instabilities was also proposed by Morris (2012).

The formation scenario of G2 was first investigated by Burkert et al. (2012). They used the hot accretion
flow model of Yuan et al. (2003) and the physical constrains given by the Chandra observations to reproduce
the conditions prevailing at the Galactic Center. They deduced two possible formation scenarios according to
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Table 1.1: Orbital elements of the DSO/G2.

a e i Ω ω P t0 p0

(mas) (°) (°) (°) (yrs) (yrs) (Rs)
Gillessen et al. (2012)a 521 ± 28 0.9384 ± 0.0066 106.55 ± 0.88 101.5 ± 1.1 109.59 ± 0.78 137 ± 11 2013.51 ± 0.04 3100
Gillessen et al. (2013a)b 666 ± 39 0.9664 ± 0.0026 109.48 ± 0.81 95.8 ± 1.1 108.50 ± 0.74 198 ± 18 2013.69 ± 0.04 2200
Phifer et al. (2013)a . . . . . . . . . 0.9814 ± 0.0060 121 ± 3 56 ± 11 88 ± 6 206 ± 15 2014.21 ± 0.14 1600
Gillessen et al. (2013b)b 684 ± 55 0.9698 ± 0.0031 110.2 ± 1.4 94.5 ± 1.8 108.6 ± 1.2 276 ± 111 2013.72 ± 0.05 2000
Gillessen et al. (2013b)a 1048 ± 247 0.9762 ± 0.0074 118.1 ± 2.0 81.9 ± 4.3 97.2 ± 2.2 391 ± 66 2014.25 ± 0.06 2400
Pfuhl et al. (2015)a 1050 ± 250 0.976 ± 0.007 118 ± 2 82 ± 4 97 ± 2 . . . . . . . . . 2014.25 ± 0.06 1950
Valencia-S. et al. (2015)a 846.15 ± 76.9 0.976 ± 0.001 113 ± 1 76 ± 8 94 ± 8 262 ± 38 2014.39 ± 0.14 2032

Notes: (a) Brγ based; (b) L’-band based.

Figure 1.10: The G2’s images in L-band from 2003 to 2012 (Gillessen et al. 2013a). The arrow points toward
the G2’s position. The yellow star is the position of Sgr A*.

the nature of this object: a diffuse gas cloud or a compact source. In the diffuse gas cloud model, the object
was formed in 1995 thanks to the compression of the slow and cold wind of the luminous blue variable stars
by the rapid and hot wind of the O and WR stars in the stellar disk surrounding Sgr A*. The cold core cools
rapidly creating drops of condensed gas in the hotter medium. In this model, the G2 would be disrupted during
its pericenter passage near Sgr A*. In the compact object model, the G2 is composed by a central source which
is obscured by surrounding matter. The central object has to have a temperature lower than 104.6 K and to emit
most of their luminosity in UV to remain invisible. This compact object would be formed in the stellar disk
but its orbit may had become highly eccentric after multiple gravitational interaction with other stars. This
scenario would prevent from the disruption of the G2 at the pericenter passage.

Eckart et al. (2013) studied the compact source model and tested the nature of G2 as a star surrounded by
a gas and dust disk or shell. The authors thus named G2 as a Dusty S-cluster Object (DSO) to refer to the true
nature of the object. They used L′-, H- and Ks-bands observations from VLT/NACO between 2002 and 2012
to predict that, during the pericenter passage, only small part of matter would pass through the Lagrange point
between the DSO/G2 and Sgr A*.

Additional observations in March−July 2012 with VLT/NACO lead to updated orbital parameters of the
G2 (Gillessen et al. 2013a). The snapshots showing the evolution of the G2 object towards Sgr A* in L-band
are given in Fig. 1.10. They showed that the luminosity in Brγ is constant from 2004. The evolution of the
line width of the Brγ line still favored the gas cloud nature of G2. Some years after the pericenter passage,
the spiral-in fragmented matter from the G2 would increase the accretion rate of Sgr A* with a possible
reactivation the black hole in an AGN phase. This effect should be visible at all energy bands. The flares
characteristics would also be different than those observed today: they would be longer, brighter and would
happen more often. Furthermore, hot accretion flow around Sgr A* would become optically thin.

Phifer et al. (2013) used the W. M. Keck I and II data from 2006 to 2012 to update the orbital parameters
using the Brγ emission line and the L′-band observations. They did not detect emission from the K′-band up
to 20 mag. They pointed out a bias between the orbital parameters measured with the Brγ and in the L′-band
since the G2 object is unresolved from the ambient gas in the L′-band. They also deduced that the luminosity
in Brγ and in the L′-band were constant within uncertainties from 2006 to 2012.

Gillessen et al. (2013b) updated the orbital parameters of G2 using the Brγ and the L′-band of addi-
tional observations taken on 2013 April with VLT/NACO and SINFONI. They extracted the velocity-position
diagram along the predicted orbit of G2. The elongation of G2 in the resulting velocity-position diagram still
favored the interpretation of an ionized gas cloud. They also detected a blueshifted counterpart implying that
a part of the cloud had passed the pericenter between the last 2012 observations and 2013 April.

Ballone et al. (2014) tested the model of a compact source with ejection of matter using hydrodynamical
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Table 1.2: Rotational periods and spin-downs of the Galactic Center magnetar taken from the literature.

References Period Period derivative Period second derivative Epocha

(s) (s s−1) (s−1) (MJD)
Mori et al. (2013a) 3.7635417 ± 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56408.0417
Mori et al. (2013b) 3.76354455 ± 7.1 × 10−7 6.5 × 10−12 ± 1.4 × 10−12 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56409.2657
Gotthelf et al. (2013) 3.7635603 ± 68 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56415.4186
Kaspi et al. (2014) 3.763547895 ± 2.9 × 10−8 6.12 × 10−12 ± 1.2 × 10−13 1.15 × 10−18 ± 1.5 × 10−19 56415.42
Rea et al. (2013) 3.7635537 ± 2 × 10−7 6.61 × 10−12 ± 4 × 10−14 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56424.55
Kaspi et al. (2014) 3.76363824 ± 1.3 × 10−7 1.385 × 10−11 ± 1.5 × 10−13 3.9 × 10−19 ± 6 × 10−20 56513
Coti Zelati et al. (2015) 3.76363799 ± 7 × 10−8 1.360 × 10−11 ± 6 × 10−14 3.7 × 10−19 ± 2 × 10−20 56513
Coti Zelati et al. (2015) 3.7639772 ± 1.2 × 10−6 3.27 × 10−11 ± 7 × 10−13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56710
Mossoux et al. (2016)b 3.76398106+2.0×10−7

−2.1×10−7 3.7684 × 10−11+9.9×10−14

−1.6×10−13 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56716

Notes: (a) Reference epoch for the computed parameters. MJD=TJD+40000 days=JD-2400000.5 days; (b) The errors are the 90% confidence interval
(see left panel of Fig. 5.6).

simulations. They found that the Brγ luminosity is well reproduced by mass loss rate of the source of 8.8 ×
10−8 M⊙ yr−1 and a wind velocity of 50 km s−1. This corresponds to the stellar wind of a T Tauri star, i.e.,
a young (pre-main sequence) low-mass star. This object would have been formed 106 years ago inside the
stellar disk and entered in an elliptical orbit after the encounter with a star or a massive black hole.

New observations obtained in 2014 March−August with the W. M. Keck Observatory showed that the
L′-band emission remained constant and spatially unresolved from 2004 to 2014 with a deredened flux of
2.1 mJy which ruled out a core-less model (Witzel et al. 2014a). They deduced that the emission of G2 comes
from the heating of the surrounding dust by the compact source which would be a main-sequence star (or
close to the main-sequence).

Pfuhl et al. (2015) used the observations made from 2013 Aug. to 2014 July with VLT/SINFONI to deduce
the new orbital parameters of the G2. They had the first observation of when the object has totally passed the
pericenter passage. They computed a radial velocity change from 2700±150 on 2013.7 to −3300±150 km s−1

on 2014.3.
The best constraints on the DSO/G2 characteristics were finally provided by the study of the VLT/SIN-

FONI observations obtained in 2014 Feb.–Sept. that I cosigned (Valencia-S. et al. 2015). The results of this
study will be reported in Sect. 5.1.

1.5 The SGR J1745-29 magnetar

During the regular monitoring of the Galactic Center with Swift, a large increase of the X-ray luminosity
was detected during the 1 ks exposure of the 2013 April 24 observation in the 10′′-radius extraction region
centered on Sgr A*. This luminosity was first associated to the largest flare observed from Sgr A* (Degenaar
et al. 2013). Dwelly & Ponti (2013) triggered pre-approved Swift/XRT observations on 2013 April 25 at
14:38 and 15:58 UT. In these observations, an ongoing large X-ray activity was observed in the 22′′-radius
extraction region centered on Sgr A*. On 2013 April 25 at 19:15 UT, Swift/BAT triggered on a short (32 ms)
hard X-ray (15–50 keV) burst suggesting that the large X-ray flux is produced by a new Soft Gamma Repeater
(SGR) unresolved from Sgr A* (Kennea et al. 2013a). The subsequent Swift/XRT observations allowed the
authors to determine the position of the SGR to RA(J2000)=17h45m40s.19 Dec(J2000)=−29◦00′28′′.4 with a
2′′.8 error. This SGR was named SGR J1745-29 by Gehrels et al. (2013).

On 2013 April 26, Mori et al. (2013a) observed the Galactic Center between 3 and 10 keV with the
Nuclear Spectroscopic Telescope Array (NuSTAR). They found that the spectrum of the eruption is different
than those measured for the X-ray flares from Sgr A*: this is a blackbody spectrum with a temperature of
kTBB=0.85 keV plus a power-law spectrum with a photon index of Γ = 3.2. They measured an unabsorbed
luminosity of 1.8×1035 erg s−1 for a distance of 8 kpc. They searched for a periodic signal during the eruption
and found a rotational period of P = 3.7635417(80) s (Table 1.2) on 2013 April 26 01:00 UT leading to a
pulse profile composed by three resolved peaks.

Gotthelf et al. (2013) measured the rotational period and spin-down (Ṗ) of the SGR thanks to an observa-
tion made by Swift/XRT on 2013 May 3 (Table 1.2). The spin-down measurement implies a magnetic field
at the equator of B = 3.2 × 1019

√
P Ṗ = 3 × 1014 G. Due to this high magnetic field, SGR J1745-29 is thus
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Figure 1.11: Chandra images of the Galactic Center before and after the discovery of the magnetar (Rea et al.
2013). Left panel: Chandra image taken with the HRC-I from 2005 to 2008 (25 ks). Right panel: Chandra
image taken with the HRC-S on 2013 April 24 (10 ks). The magnetar is located at 2′′.4 southeast of Sgr A*.

considered as a magnetar.
Kennea et al. (2013b) determined the spectral parameters of the magnetar for the Swift/XRT observation

obtained on 2013 April 25 at 20:51 UT: NH = 13.7+1.3
−1.2×1022 cm−2, kTBB = 1.06±0.06 keV and Γ = 3.5±0.3.

Rea et al. (2013) observed the magnetar in X-rays with Chandra/HRC on 2013 April 29 to July 2 and
in radio with the Green Bank Telescope (GBT) and the Parkes Telescope from 2013 April 27 to May 4.
The source completes the sample of 27 magnetars already observed whose only four display a radio emission.
The rotational period and spin-down in X-rays are reported in Table 1.2. These measurements lead to a
magnetic field of 1.6 × 1014 G. They showed that the X-ray flux varies as F(t) = F0 e−(t−t0)/τ with t0 fixed the
time when the first burst was detected, F0 = (1.72 ± 3) × 10−11 erg s−1 cm−2 and τ = 144 ± 8 d. This is one of
the smallest decay time ever measured for a magnetar. Figure 1.11 shows that SGR J1745-29 is at about 2′′.4
southeast of Sgr A*. The magnetar can thus only be resolved from Sgr A* with Chandra.

The best constrain on the magnetar position was given by the Australia Telescope Compact Array (ATCA)
observations on 2013 May 1 and 31: RA(J2000)= 17h45m40′′.164 ± 0′′.022, Dec(J2000)= −29◦00′29′′.818 ±
0′′.090 (Shannon & Johnston 2013).

The rotational measure of the magnetar may constrain the magnetic field near Sgr A* since the temporal
variability of a magnetar depends on the external magnetic field. Eatough et al. (2013) computed the rotational
measure (RM) of (−6.696±0.005)×104 rad m−2. This is only one tenth of the RM measured at several dozens
of parsec from Sgr A*. The lower limit on the magnetic field at 2′′.4 in projection from Sgr A* is 50 µG.
Assuming that the magnetic field increases towards Sgr A* as r−1, the inferred magnetic field near Sgr A* is
about some hundred Gauss.

Kaspi et al. (2014) used the NuSTAR observations from 2013 April 26 to August 24 to determine the
change in the rotational period. Their observations were fitted using two different rotational period and spin-
down before and after MJD 56450 (2013 June 7). Their results are reported in Table 1.2. The best-fit parameter
of the black body model is kT = 0.94 ± 0.02 keV. They also analyzed the Swift/XRT observations from 2013
April 25 to Sept. 15 to derive the evolution of the X-ray flux. They found that the flux has decreased by a
factor 2 during 80 d.

The radiative and temporal properties of magnetars vary in much shorter timescale than those of pulsars.
The Chandra and XMM-Newton observations from 2013 April to 2014 September used by Coti Zelati et al.
(2015) showed that the blackbody temperature between 1 and 10 keV decreases linearly with time as kT (t) =
kT0 + a t with kT0 = 0.85 ± 1 keV and a = (−1.77 ± 0.04) × 10−4 s−1. They found that the decay of X-ray flux
is characterized by two exponential decay times: τ = 37±2 d until 100 d after 2013 April 25 and τ = 253±5 d
for observations more than 100 d after 2013 April 25. They also found a change in the X-ray pulse profiles
which are represented in Fig. 1.12. The updated rotational period and spin-down is given in Table 1.2.

Thanks to 18 months of Swift/XRT observations, Lynch et al. (2015) measured the exponential decay of
the magnetar X-ray luminosity (see purple points in Fig. 1.13) as F(t) = (1.00± 0.06) e−(t−t0)/(55±7 d) + (0.98±
0.07) e−(t−t0)/(500±41 d) with t0 is the time of the peak outburst. Therefore, the X-ray flux of the magnetar was
high until at least 2014 Sept. leading to a contamination of the flux observed from Sgr A* with the X-ray
facilities which are not able to resolve these two close sources (e.g., XMM-Newton or Swift).
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Figure 1.12: Pulse profile of SGR J1745-29 measured by Chandra between 0.3 and 10 keV at different epoch
(Coti Zelati et al. 2015). The epoch increases from left to right and top to bottom.

Figure 1.13: Evolution of the Galactic Center magnetar flux in X-rays (magenta; right y-axis) and radio (Lynch
et al. 2015). The total radio light curve (black; left y-axis) is decomposed in the circular (blue) and linear (red)
polarization.
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1.6 The context of my Ph.D. thesis

This Ph.D. thesis held for the study of the effect of the passage of the DSO/G2 near Sgr A* on its quiescent
and flaring emission. Indeed, a part of the matter from DSO/G2 may be transfered towards Sgr A* during
the pericenter passage leading to a possible increase of the quiescent emission up to a few 1034 erg s−1 due
to the post-shock temperature of the cloud and to a possible increase of the accretion rate onto Sgr A* with
luminosity up to 1037 erg s−1 (Gillessen et al. 2013a). Moreover, a long-duration enhanced flaring activity
and an increase of the frequency of bright flares should also be observed (Mościbrodzka et al. 2012). These
possible changes of the X-ray emission depend on the physical properties of both the surrounding hot gas and
the DSO/G2. It is therefore very important to monitor the X-ray activity of Sgr A* near and after its pericenter
passage.

The observational facilities used in this Ph.D. thesis are described in the next Chapter 2.
I used and developed some analysis tools for the study of the X-ray observations that I describe in

Chapter 3. These analysis tools were first validated using the 2011 XMM-Newton observations of Sgr A*
(XMM-Newton AO-8; PI: D. Porquet) presented in Chapter 4. This campaign was designed to perform the
first simultaneous observational campaign in X-rays with XMM-Newton and at 1.3 mm with the Event Hori-
zon Telescope (EHT) order to determine the localization of X-ray flares.

An XMM-Newton large program was submitted in 2012 to obtain multiwavelength observations in order
to study evolution of the flaring activity from Sgr A* close to the pericenter passage of DSO/G2 (XMM-
Newton AO-12; PI: N. Grosso). Simultaneous XMM-Newton and HST observations were
obtained between February and April 2014. Coordinated and simultaneous observations in NIR with the
VLT were also granted in this XMM-Newton large program. Additional coordinated and simultaneous obser-
vations were also obtained in NIR with VLT and HST and in radio/sub-millimeter with VLA and CARMA.
Such simultaneous multi-wavelength observations of Sgr A* during this putative accretion event, may allow
us to progress in the understanding of the extremely low-luminosity accretion process onto a SMBH, where
black holes are supposed to spend most of their lifetime. The results of this 2014 Feb.–Apr. campaign are
presented in Chapter 5.

The overall X-ray flares from Sgr A* observed with XMM-Newton, Chandra and Swift during the 1999–
2015 period were systematically detected in Chapter 6 using the tools developed here in order to determine
the significance of any change in the X-ray flaring rate.

Finally, the conclusion of this Ph.D. thesis is presented in Chapter 7. I also assess the perspective on the
sensitivity for the X-ray flare detection of the ESA next generation mission Athena/X-IFU observations using
the tools developed here.
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Chapter 2

Observational facilities

In this chapter I provide some overviews of the observational facilities from X-rays to infrared and radio/sub-
millimeter used during my Ph.D. thesis.

As explained before, the Galactic Center is not observable in UV and optical because of the extinction.
Moreover, the Earth atmosphere also absorbs photons. Only radio, sub-millimeter, optical/UV and small
infrared bands can be observed from ground (see Fig. 2.1). We thus have to use space telescopes to study the
Galactic Center in X-rays.

To perform radio/sub-millimeter and infrared observations, the telescopes must be placed at high altitude.
The altitude is important for two points: firstly, the transmission increases with the altitude; secondly, the
atmospheric turbulences are smaller at high altitude. Several ground-based telescopes also have adaptive
optics working primarily in IR to correct the wave front.

Figure 2.1: Atmospheric transmission on Earth. Credit: NASA/IPAC.

2.1 X-ray facilities

X-ray telescopes need a dedicated focusing system because of the great penetrating power of X-ray pho-
tons. Grazing incidence mirrors were thus designed to focus X-ray photons on the camera. A schematic
view of the Wolter type I configuration for the X-ray photons focusing is shown in Fig. 2.2. The first part
(on the left of this figure; first reflection) is composed by parabolic concentric mirrors whereas the last part
(on the right of this figure; second reflection) contains hyperbolic concentric mirrors.

2.1.1 XMM-Newton

This is the telescope I used the most during my Ph.D. thesis. It is a satellite from ESA launched on 1999
Dec. 10 (Jansen et al. 2001; ESA: XMM-Newton SOC 2013). Its orbit is highly eccentric (e = 0.72) with
a pericenter distance inside the radiation belts which imposes a stop of any observation during this passage.
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Figure 2.2: Schematic view of X-ray focusing mirrors. Credit: NASA’s Imagine the Universe.

Figure 2.3: Schematic view of XMM-Newton (ESA: XMM-Newton SOC 2013).

But, thanks to the very high eccentricity, we can make very long continuous observations (about 40 h during
the 48 h orbit).

In order to focus the X-ray photons, XMM-Newton has three telescopes of 58 concentric mirrors with
approximately parabolic and hyperbolic shapes representing a total effective area of 4650 cm2 at 1.5 keV. This
is the largest effective area ever for an X-ray instrument.

XMM-Newton offers simultaneous access to X-rays and optical/UV thanks to its two distinct telescopes.
It provides three types of science instruments which work independently and operate simultaneously (see
Fig. 2.3):

• European Photon Imaging Camera (EPIC) with 3 CCD cameras for the X-ray imaging: 2 MOS (Metal
Oxide Semi-conductor; Turner et al. 2001) cameras (7 CCD) and one pn (Strüder et al. 2001) camera
(12 CCD);

• Reflection Grating Spectrometers (RGS) placed before MOS cameras leading only 50% of photons
reaching the MOS CCDs. The effective areas of the two MOS cameras are thus lower than those of the
pn camera;

• Optical Monitor (OM) for optical/UV imaging and grism spectroscopy.

The XMM-Newton EPIC cameras have a 30′-diameter field of view. They have a good angular resolution
which does not vary over a wide energy range (0.1 − 6 keV): about 6′′ and 4′′.3 Point-Spread Function (PSF)
Full Width at Half Maximum (FWHM) for EPIC pn and MOS, respectively. The MOS cameras provide a good
sampling of the PSF thanks to their 1′′.1 × 1′′.1 pixels compared to the pn camera which has 4′′.1 × 4′′.1 pixels.

The EPIC background can be divided into two parts: a cosmic X-ray background and an instrumental
background. The latter component may be further divided into a detector noise component, which becomes
important below 300 eV, and a second component which is due to the interaction of cosmic rays with the
structure surrounding the detectors and the detectors themselves.

MOS chips are front-illuminated (the photon goes through the electronic structure before being recorded),
while the pn CCDs are back-illuminated (the electronic structure is not on the light path of the photon) leading



CHAPTER 2. OBSERVATIONAL FACILITIES 19

Figure 2.4: Schematic view of Chandra. Credit: Harvard-Smithsonian Center for Astrophysics/NASA.

Figure 2.5: Schematic view of Swift. Credit: NASA E/PO, Sonoma State University, Aurore Simmonet.

to a better efficiency for the pn camera. The two EPIC MOS cameras are rotated by 90° with respect to each
other. On 2005 Mar. 9 and 2012 Dec. 11, micrometeorite impact scattering debris were registered in the focal
plane of the EPIC MOS1 instrument. Since then, MOS1 CCD6 and CCD3 do not record events anymore.

2.1.2 Chandra

The NASA’s Chandra X-ray Observatory (Fig. 2.4) was launched on 1999 July 23 (Weisskopf 1999). Its orbit
is an ellipse whose the apocenter is located at more than a third of the Earth-Moon distance leading 85% of
its orbit above the radiation belts: its orbital revolution takes 64.3 h with 52 h (2.2 days) outside the radiation
belts. Chandra has four concentric mirrors which represents an effective area of about 600 cm2 at 1.5 keV.
It hosts four scientific instruments: the Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 2003),
the High Resolution Camera (HRC; Murray et al. 1998) and the High and low Energy Transmission Gratings
(HETG and LETG). ACIS and HRC can not be operated simultaneously.

ACIS is composed by 10 CCD with a field-of-view of 8′.3×8′.3 for each CCD. Four of the CCD are part of
the I-array (about 16′ × 16′ field-of-view) and the others are part of the S-array (about 8′ × 24′ field-of-view).
The FWHM of the PSF of the ACIS camera is about 0′′.5 (one pixel size). ACIS can be used in conjunction
with the LETG or HETG which disperse the X-rays that are emitted by all the sources on the field-of-view
from 0.08 to 2 keV and from 0.4 to 10 keV, respectively.

2.1.3 Swift

The Swift Gamma-ray Burst Mission from NASA (Fig. 2.5) was launched on 2004 Nov. 20 (Gehrels et al.
2004). It has a low-Earth orbit (600 km altitude) with a period of about 95 min. Swift has three instruments:
the Burst Alert Telescope (BAT; Barthelmy et al. 2005) to trigger the Gamma-ray Burst events, the X-ray
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Figure 2.6: VLT. Credit: ESO.

Telescope (XRT; Beardmore et al. 2006) collecting events from the observed objects between 0.2 and 10 keV
and the Ultraviolet/Optical Telescope (UVOT) observing between 170 and 600 nm. The XRT has a field-of-
view of 23′.6×23′.6, an effective area of 110 cm2 at 1.5 keV and an absolute-astrometry uncertainty of 3′′. The
XRT CCDs have a pixel size of 2′′.36 and a PSF of 18′′ (half power diameter) at 1.5 keV. This camera observes
in windowed timing mode or photons counting mode depending on the brightness of the source. The former
observing mode uses only one dimension on the CCD to increase the timing resolution of the data whereas
the latter observing mode uses the entire XRT field-of-view with a time resolution of 2.5 s.

2.2 Infrared facilities

2.2.1 VLT

The Very Large Telescope (VLT; Fig. 2.6) is an European South Observatory’s (ESO) ground based telescope
located at Cerro Paranal in the Atacama desert in Chile (altitude: 2635 m). This is a very good location
since there are very few turbulences and the infrared transparency is high in this dry site. It is composed by
four large telescopes of 8.2 m (Unit Telescope 1 to 4 named Antu, Kueyen, Melipal and Yepun, respectively)
and four smaller auxiliary Telescopes of 1.8 m which can be moved to be used for interferometry. The UT
telescopes are Ritchey-Chrétien type and have independent instruments.

In this Ph.D. thesis, I will speak about the NACO instrument which was largely used for the study of
Sgr A*. It is composed by the Nasmyth Adaptive Optics System (NAOS; Rousset et al. 2003) working with a
NIR sensor and the COudé Near Infrared CAmera (CONICA; Lenzen et al. 2003). It performs observations
in the near infrared bands J, H, K, L and M. It was mounted on UT4 until Sept. 2013, then moved to UT1 but
its operations had only resumed on Jan. 2015.

Since NACO was not available for the 2014 Sgr A* campaign, we used the Spectrograph for INtegral Field
Observations in the Near-Infrared (SINFONI) mounted on UT4. This is a NIR integral field spectrograph
operating with four gratings: J (1.10–1.40 µm), H (1.45–1.85 µm), K (1.95–2.45 µm), H+K (1.45–2.45 µm).
This instrument has an adaptive optics module with an optical (450 to 1000 nm) sensor (Bonnet et al. 2004)
which limits the correction performance in NIR compared to a NIR sensor as in NACO. The adaptive optics
system corrects the wave front thank to a Natural Guide Star (used for Sgr A*) or the Laser Guide Star which
was installed on the UT4.
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Figure 2.7: Schematic view of the HST telescope configuration since 2009 after the Servicing Mission 4 (Rose
et al. 2016). U1, U2 and U3 are the spacecraft axes.

Figure 2.8: CARMA in its compact configuration. Credit: 2001–2013 CARMA.

2.2.2 HST

The Hubble Space Telescope (HST; Fig. 2.7) from ESA and NASA was launched on 1990 April 25. It has a
2.4 m-diameter mirror and can observe currently in infrared and optical/UV thanks to the camera WFC3 and
the spectrographs STIS and COS. Its low orbit (565 km above the ground) implies repeated occultations of
Sgr A* by the Earth. Moreover, the passage through the South Atlantic Anomaly imposes a limited number
of consecutive 96-min orbits (generally 5–6 orbits with a maximum of 10 orbits).

The Wide Field Camera 3 (WFC3; Dressel 2012) was installed during the Servicing Mission 4 in May
2009. It has two cameras: the optical/UV camera that records photons from 0.2 to 1 µm with a field-of-view
of 162′′ × 162′′ and the IR camera operating between 0.9 and 1.7 µm with a field-of-view of 136′′ × 123′′.
The FWHM of this camera is 0′′.151 at 1.60 µm (1.176 detector pixels). The PSF sampling of the final
image can be improved thanks to the dithering, i.e., small movements of the telescope between the expo-
sures following a specific pattern.

The Near Infrared Camera and Multi-Object Spectrometer (NICMOS) operated between 0.8 and 2.51 µm
and was stopped after the installation of WFC3. The FWHM of Camera 1 of NICMOS was 0′′.16 (3.75 detector
pixels) at 1.60 µm (Yusef-Zadeh et al. 2006a). The NICMOS Camera 1 thus better sampled the PSF than the
WFC3/IR.

2.3 Radio/sub-millimeter facilities

2.3.1 CARMA

The Combined Array for Research in Millimeter-wave Astronomy (CARMA) was an array of radio telescopes
located in the Inyo mountains (California, USA) at 2195 m of altitude (Beasley & Vogel 2003). It was com-
posed by 23 antennas (Fig. 2.8) with various sizes: six 10.4 m diameter antennas, nine 6.1 m diameter antennas
and eight 3.5 m diameter antennas observing at 7, 3 and 1.3 mm. This telescope was shut down in April 2015.
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Figure 2.9: VLA in its compact configuration. Credit: NRAO.

2.3.2 VLA

The Karl G. Jansky Very Large Array (VLA) of the National Radio Astronomy Observatory is a ground based
radio interferometer located at the Plains of San Agustin (New Mexico, USA; 2124 m) and composed by 27
parabolic antennas of 25 m of diameter in a Y-shaped configuration (Fig. 2.9). Two of these arms measure
21 km and the other measures 19 km. Each antenna can be repositioned along a rail allowing 351 baselines for
angular resolutions from 0′′.2 to 0′′.004 and frequency coverage from 74 MHz to 50 GHz. The extended (A)
configuration allows to reach the same resolution than a 36 km-antenna. Four configurations, from extended
to compact (D) are commonly used with a cycle of 16 months.
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Chapter 3

Analysis tools for the X-ray study

In this chapter, I first explain how the data from an X-ray observation are structured and how to filter them
(Sect. 3.1). I focus on the XMM-Newton satellite since it is the facility I used the most. I then present the
creation of light curves of Sgr A* in X-rays (Sect. 3.2). I also explain how to generate a Poisson flux and
to simulate flare light curves (Sect. 3.3). These simulations allow me to study the efficiency of the analysis
tools presented in Sect. 3.4 and 3.5. I then present the creation and analyze of X-ray flare spectra from Sgr A*
(Sect. 3.6).

3.1 The event list and data filtering for an XMM-Newton observation

The exposure time of an observation is divided into frames whose duration is composed of integration time
when the events are recorded on the CCD and readout time when the CCD is read. The integration time
determines the temporal resolution of the arrival time of an event. The livetime is recorded for each frame as
the fraction of the frame time dedicated to the integration of events. For the pn camera, each pixel column has
its own readout node implying a fast readout time of about 0.004 s with a constant integration time of 0.0687 s
(in Full Frame mode). For the MOS camera, the entire CCD information are transfered in a readout storage
area where the lines are read one by one leading to a longer readout time. Therefore, the frame time is about
2.69 s which is much larger than for the pn camera but the livetime is about 99% compared to 96% for the pn
camera. For pn, an offset map is computed at the beginning of each pointed observation whereas the offset
table values of MOS (1 and 2) are fixed which causes a delayed and shorter exposure time for pn compared to
MOS.

During an ideal observation, the entire exposure would be a single Good Time Interval (GTI). But, as
explained before, when XMM-Newton is close to its perigee, it passes through the radiation belts leading to a
high flaring proton noise. The EPIC Radiation Monitor Subsystem monitors the radiations and, if the radiation
level is too high, the CCDs record less informations on the collected photons to reduce the telemetry or, in the
worst case, the observation is stopped. These time ranges of high radiation are removed from the GTI.

The characteristics of the events recorded by the cameras are stored in an event list created with the current
calibration files from the first-level Observation Data File (ODF) provided to the observer using the SAS tasks
epchain and emchain of the XMM-Newton Scientific Analysis Software (SAS) for the EPIC/pn and MOS,
respectively. These tasks first create the attitude history file which allows us to convert of the event positions
on the CCD to equatorial coordinates on the sky. They then optionally search for new bad pixels and soft
protons flares. Finally, they randomize the arrival times of the events in the frame integration time, perform
pattern recognition and compute the event position on the sky thanks to the attitude file. The resulting event
list and GTI are recorded in a multiextension FITS file.

Following the data reduction procedure described in the XMM-Newton Users Handbook (issue 2.11; ESA:
XMM-Newton SOC 2013), the event lists can be filtered on:

• CCD dead column and bad pixel using special bit masks. FLAG == 0 is very drastic and rejects several
columns/pixels around the dead column and bad pixels but also near to the edges of the CCD. This
may produce a large loss of photons and thus of flux if the observed source is close to a dead column
or bad pixels or close to the CCD edges. Flags that reject less columns are different for pn and MOS.
For pn, this is the bit mask #XMMEA_EP. For MOS, we may choose between two bit masks: #XMMEA_EM
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Figure 3.1: The event pattern definition for EPIC/MOS (imaging mode). Each square represents one CCD
pixel. The red squares are the brightest pixels. Crosses mark pixels that are not taken into account. Credit:
ESA: XMM-Newton SOC (2013).

which only rejects the dead columns, bad pixels and the edges of the camera and #XMMEA_SM which is
intermediate between #XMMEA_EM and FLAG == 0. Following Ballet (2005), I use FLAG == 0 for pn
and #XMMEA_SM for MOS.

• The pattern which determines the origin of the event: X-ray photon, cosmic ray, soft proton,.... From the
bottom to the top of Fig. 3.1, the single, double, triple, quadruple and quintuple events are classified with
patterns 0, 1–4, 5–8, 9–12 and 13–21, respectively. To keep only events produced by X-ray photons, I
select PATTERN≤ 12 and PATTERN≤ 4 for MOS and pn, respectively.

• Arrival time. I consider only the time ranges where the flux on the CCD field-of-view is lower or equal
than 0.010 and 0.002 count s−1 arcmin−2 for pn and MOS, respectively. The time ranges of higher flux
due to high rate of ionizing particles are removed from the existing GTI to create a new GTI file used to
filter the events in time. A second arrival time filter can also be applied to select a time range of study
interest (flaring activity, quiescent state,...).

• Energy. For the Sgr A* light curve creation, I consider only events with energy between 2 and 10 keV.

3.2 The X-ray light curve creation

Once all the filters are applied on the event lists, I can produce the light curves (histogram of the photon arrival
times) using the SAS. I first select a source-plus-background (src+bkg) region centered on the observing
source and a background (bkg) region which corrects the instrumental noise.

The src+bkg region is a circle of 10′′-radius, corresponding to a fraction of encircled energy of about 50%
at 1.5 keV on-axis and minimizing the contamination by other close sources, centered on the radio coordi-
nates of Sgr A* (RA(J2000)=17h45m40s.036, Dec(J2000)=−29◦00′28′′.17; Petrov et al. 2011). The absolute
astrometry of EPIC cameras is 1′′.2 (Guainazzi 2013) which is very small compared to the size of this ex-
traction region and the PSF Half Power Diameter implying that I do not have to refine the EPIC coordinates.
This src+bkg region also allows me to directly compare with the previous studies with XMM-Newton (e.g.,
Porquet et al. 2003, 2008). This region contains instrumental noise events whose rate can be estimated using
a bkg region. The bkg region has to be large, located on the same CCD than the src+bkg region, and without
X-ray sources. I thus search for the X-ray sources using the SAS task edetect_chain before filtering out
those contained in the bkg region which is a square of about 3′ × 3′ at approximately 4′ north of Sgr A*.
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Figure 3.2: Chandra images of the Galactic Center observed from 1999 to 2012. The color coding is
red=1–3 keV, green=3–5 keV, blue=5–8 keV. The image intensity (count rate) is in logarithmic scale. The
pixel size is 0′′.5 corresponding to the Chandra angular resolution. The blue circle represents the position of
the extraction region used for the data analysis with XMM-Newton. The red cross is the radio position of
Sgr A*. Left panel: Overall time range of 4.52 Ms. Middle panel: Time interval when Sgr A* is non-flaring
(4.33 Ms). Right panel: Time interval when Sgr A* is flaring (190 ks).

In the src+bkg region, the recorded X-rays are emitted by Sgr A* but also by the cluster of massive stars
IRS 13, the candidate pulsar wind nebulae G359.950.04, faint point sources and a diffuse X-ray component.
Only 10% of the non-flaring level observed in this region between 2 and 10 keV comes from Sgr A* (Baganoff
et al. 2003). The other sources are only resolved with Chandra since this telescope has a better spatial resolu-
tion. For illustration, I created the Galactic Center image as observed by Chandra with an angular resolution
of 0′′.5 with ACIS-I from 1999 to 2011 and during the 2012 XVP campaign with HETG/ACIS-S. The 2004
observations were skipped because of the presence of a transient low-mass X-ray binary at only 2′′.9 south of
Sgr A* (Muno et al. 2005a,b; Porquet et al. 2005). The observations from 2013 to 2015 were not taken into
account because of the burst phase of the magnetar SGR J1745-29 (Degenaar et al. 2013; Gehrels et al. 2013,
see Sect. 1.5). This results on a total exposure time of 1.53 Ms for ACIS-I and 2.98 Ms for HETG/ACIS-S.
The Chandra data were reduced using the Chandra Interactive Analysis of Observations (CIAO; version 4.7)
and the Calibration Database (CALDB; version 4.6.9). I reprocessed the event lists of the observations from
the first-level data with the chandra_repro script of CIAO which creates a bad pixel file, flags afterglow
events and filters the event patterns, afterglow events and bad pixels. To determine the flaring and non-flaring
time ranges, I extracted the events using a src+bkg region of 1′′.25-radius centered on Sgr A* and a bkg region
of 8′′.2-radius at 0′.54 south of Sgr A* (Nowak et al. 2012; Neilsen et al. 2013). I then applied the two-steps
Bayesian blocks algorithm to automatically detect the X-ray flares with a false positive rate for the flare detec-
tion of 0.1% (corresponding to p1 = exp(−3.5); see Sect. 3.4) and determine their start and stop times. I then
divided the overall observation time into Sgr A* non-flaring and flaring time ranges. The latter is composed
of 61 ks for ACIS-I and 129 ks for HETG/ACIS-S. I also divided the overall observations and the non-flaring
and flaring time ranges into three spectral bands to compose an RGB image (red=1–3 keV, green=3–5 keV,
blue=5–8 keV). The event lists for the three time ranges and three spectral bands were then reprojected to the
Sgr A* radio position and merged together to create the nine images and their corresponding exposure maps
with the CIAO task merge_obs. Figure 3.2 shows the resulting images for the overall (left panel), non-flaring
(middle panel) and flaring (right panel) time ranges in a 24′′.5×24′′.5 region1. For the HETG/ACIS-S observa-
tions, this region only contains the zeroth order events, leading to a count rate which is about one third those
observed with ACIS-I and no gratings. In the two first images, we clearly observe IRS 13, G359.950.04, faint
point sources, the diffuse X-ray emission and Sgr A*. In the flaring image, Sgr A* is the dominant source in
the 10′′-radius region (white circle).

1The count rate ranges for the overall and non-flaring images are 0 − 0.072, 5.4 × 10−4 − 0.34 and 0 − 0.20 count ks−1 for the
red, green and blue images, respectively, corresponding to the minimum and maximum count rates observed in each energy band
in the overall image. For a better clarity of the flaring image, the minima of the count rate ranges are negative while the maxima
of the count rate ranges are still the maximum count rates observed in each energy band: −8 × 10−4 − 0.26, −8 × 10−3 − 2.0 and
−8 × 10−3 − 1.3 count ks−1 for the red, green and blue channels, respectively.
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To construct the Sgr A* light curves, I extract from the src+bkg and bkg regions the corresponding XMM-
Newton event lists that will be also used for the flare detection (see Sect. 3.4). The src+bkg and bkg light
curves are then created by using the SAS task epiclccorr which applies relative corrections, i.e., the GTI
and livetime corrections. This task then corrects the src+bkg light curve from the bkg light curve scaled to
the src+bkg region. I finally combine the background-subtracted (src) light curves of EPIC/pn, MOS1 and
MOS2 taking the lack of observation from the pn camera at the beginning of the observation into account
by computing the mean ratio between the pn count rate and the sum of the MOS count rate in the 2–10 keV
energy range when the three cameras observe (1.46 ± 0.03; Mossoux et al. 2016). This method for the data
reduction is the same that those used by Porquet et al. (2008).

3.3 Simulation of Poisson flux for the synthetic light curves

It is useful to produce synthetic light curves to test analysis tools (see Sect. 3.4 and 3.5). This can be easily
done by simulating photon arrival times with a Poisson flux as it is observed during an X-ray observation.

I recall that for a constant Poisson flux of mean count rate CR during a total observing time T , the average
number of recorded events is Nc = CR × T with a standard deviation of

√
Nc. Therefore, I first draw, with

a random number generator, the total number M of events in the simulated event list following a Poisson
probability distribution, i.e.:

P(M) =
NM

M!
e−Nc . (3.1)

I then generate M values uniformly distributed between 0 and 1 that I sort by ascending order and I multiply
them by T to obtain the simulated arrival times.

This last step for the determination of the M arrival times is equivalent to the more general inverse method
based on the normalized Cumulative Distribution Function (CDF) of the count rate function:

CDF(t) =

∫ t

0
CR(x) dx

∫ T

0
CR(x) dx

= y . (3.2)

The simulated arrival times are thus given by the reciprocal of this function (see Klein & Roberts 1984,
Chapter 7 of Press et al. 1992 and Fig. 2 of Harrod & Kelton 2013):

CDF−1(y) = t . (3.3)

Indeed, in the simple case of constant count-rate function, these equations lead to: CDFc(t) = t/T = y and
CDF−1

c (y) = t = y × T .
This two-steps method is equivalent to the iterative method of Klein & Roberts (1984) which determines

the waiting time before the next event considering its decreasing exponential distribution until the simulated
arrival time of the event exceeds the exposure time. Their resulting total number of events thus follows a
Poisson distribution.

To simulate the arrival times during a flare from Sgr A*, I suppose that the flare produces above the non-
flaring level a Gaussian-shape light curve peaking at tpeak with a count rate amplitude Apeak and normalized to
Ng counts:

Ng = Apeak

∫ T

0
e
−

(t−tpeak)2

2σ2 dt . (3.4)

The total number of events M in each simulation thus follows a Poisson distribution of mean N = Nc + Ng.
The normalized CDF of the Gaussian is

CDFg(t) =
Apeak σ

Ng

√

π

2

(

erf

(

tpeak√
2σ

)

+ erf

(

t − tpeak√
2σ

))

(3.5)

with erf the error function andσ the standard deviation of the Gaussian (the FWHM is computed as 2
√

2 ln 2σ).
I combine the constant and Gaussian CDFs as

CDFc+g(t) = CDFc(t)
Nc

Nc + Ng
+CDFg(t)

Ng

Nc + Ng
. (3.6)
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I finally draw M values of y uniformly distributed between 0 and 1 and sorted in ascending order. The
simulated arrival times are obtained from CDF−1

c+g(y).
Figure 3.3 illustrates this method. I simulated the X-ray light curve of typical exposure of 35 ks with a

non-flaring level of CR = 0.1 count s−1, corresponding to those observed by XMM-Newton EPIC/pn, and a
flare peaking at the exposure center with an amplitude of Apeak = 0.2 count s−1, corresponding to the mean
amplitude measured in the X-ray flares, leading to Ng = 752 counts. In the top panel of this figure, the
red, green and blue lines are CDFc+g(t), CDFc(t) Nc/(Nc + Ng) and CDFg(t) Ng/(Nc + Ng), respectively.
The constant and Gaussian light curve models are shown with the corresponding color in the bottom panel.
The simulated arrival times are the black ticks at the top of the bottom panel of Fig. 3.3 (only one arrival time
on twenty are shown here for clarity purpose). I then binned the simulated arrival times with a bin time of
100 s to create the simulated light curve shown in the bottom panel of Fig. 3.3. The Bayesian blocks computed
for a false positive rate for the flare detection of 0.1% (corresponding to p1 = exp(−3.5); see next Sect. 3.4)
are also represented in this figure.

Considering the large number of counts in the typical event lists studied in this work (from several hundred
to several thousand), the Poisson variation of the total number of events in the simulated event lists leads to
a very small difference on the average detection efficiency. For example purpose, I compute the detection
efficiency for the Chandra ACIS-I3 observations with a non-flaring level of 0.005 count s−1 and a typical
exposure of 50 ks leading to 250 events, i.e., the lowest number of events in our simulations. I simulate
100 event lists with this two-steps method and 100 simulations where the first step is skipped (the number of
counts in each event list is therefore equal to Nc+Ng). The difference in the detection efficiency between these
two sets of simulations is larger for the faintest and shortest flares where Ng is in the order of ten. However,
this difference always remains lower than 1% since Nc + Ng is larger than 250 counts leading to the Poisson
distribution of the number of count very peaked around the average value (

√
250 ∼ 16). I thus skipped the

first step in the event list simulations for the determination of the detection efficiency.

3.4 The Bayesian blocks method for the flare detection

3.4.1 The Bayesian blocks method

In order to automatically detect flares with a given false positive rate, I use the Bayesian method proposed
by Scargle (1998) and improved by Scargle et al. (2013a). Scargle et al. (2013a) provide a Matlab code of
this method which was then converted in Python2. For ease purpose, I converted the Matlab code into the
Interactive Data Language (IDL).

The Bayesian blocks method works on individual arrival times of photons. I take care to first associate the
arrival time of each photon to the center of the frame during which it was recorded since the randomization of
the photon arrival time in the frame time by the epchain or emchain tasks is arbitrary and not reproducible.
The photons are thus separated by an integer number of frame durations. If several photons were recorded
during the same frame, I consider that these N photons are characterized by the same arrival time. I then
filter out the frames affected by ionizing particles (i.e., the bad time intervals) by merging the GTIs to obtain a
continuous photon flux. The resulting reduced time range is then divided into cells defined using the Voronoi
tessellation, i.e., with cells separation located at equal distance of two frame centers containing consecutive
photons. The count rate in each cell is thus the total number of photons in this cell divided by the cell length
(∆t). I define the beginning and end of the first and last cell as the observation start and stop, respectively,
instead of the first/last event minus/plus the half of the mean time interval between the events, as done in the
Matlab code, which is arbitrary and does not use the complete GTI information.

As suggested by Scargle et al. (2013a), I also take the livetime into account by increasing the count rate
of each cell by multiplying the cell length by the livetime value which is lower than 1.

The Bayesian blocks method works iteratively on the cells: it first considers the overall photon arrival
times and determines if they are better described by one block with a constant count rate or by two blocks
having different count rates assuming a Poisson distribution of the arrival times. If the event list is segmented
into two blocks (whose separation time is called a change point), the method iterates on each on these blocks
to segment them or not. The criterion for stopping the segmentation is controlled by the prior number of

2The Python version can be found at https://jakevdp.github.io/blog/2012/09/12/dynamic-programming-in-python.
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Figure 3.3: Simulation of an X-ray light curve with a flare. Top panel: The Cumulative Distribution Function
(CDF) of a constant function (green line) representing the non-flaring emission and a Gaussian function (blue
line) representing the flaring emission. The non-flaring emission has a count rate CR = 0.1 count s−1. The flare
is defined with a peak amplitude Apeak = 0.2 count s−1 at tpeak = 17500 s and FWHM = 3532 s (σ = 1500 s)
leading to a number of counts in the flare of Ng = 752. Bottom panel: The constant and Gaussian light curve
models are represented in green and blue, respectively. The red line is the model of the light curve with flare.
The ticks at the top of this panel are 5% of the simulated arrival times. The resulting light curve and its error
bars are computed for a bin time of 100 s. The results of the Bayesian block algorithm with a false positive
rate for the flare detection of 0.1% (see Sect. 3.4) are shown with dashed lines.
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change points, ncp_prior. The latter depends on two parameters: the number of events in the observation (N)
and the false positive rate (p1), i.e., the probability that a detected change point is a false one.

The result of the Bayesian blocks method is the optimal segmentation of the light curve with blocks of
constant count rates separated by change points. After having computed the Bayesian blocks, I reintroduce the
bad time intervals to obtain the true time of the change points. An example of segmentation of a flaring light
curve is presented in Fig. 3.3. The non-flaring level is defined as the count rate of the longest block whereas
flares are associated to blocks which have higher count rates. In most case, flares are defined by at least two
change points (the start and end times of the flare). One of the most advantage of this method is the flare
detection with a controlled false positive rate. Moreover, the start and end times of the flare are not limited
by the bin size of the light curve. Indeed, with previous methods the accuracy on the beginning and end of
the flares depend on the arbitrary binning of the light curve (usually 100 or 300 s). With the Bayesian blocks
method the accuracy on the start and end times of a flare is equal to the distance between the two adjacent
photons on either side of the change points. For the EPIC/pn camera of XMM-Newton, the mean count rate
of Sgr A* is about 0.1 count s−1 (Porquet et al. 2003, 2008) which implies an average time separation between
consecutive photons of about 10 s. The timing accuracy is thus at least ten times better than in the previous
methods.

Scargle et al. (2013a,c) computed a geometric ncp_prior estimation for data simulated with Gaussian
noise of unit variance. However, their data samples contain from 8 to 1024 points which is well below the
number of events recorded during an XMM-Newton observation (several thousands of events). Moreover,
an X-ray observation is described with data affected by Poisson noise. I thus calibrate the ncp_prior for the
studied XMM-Newton observations following the Scargle et al. 2013a’s recipe: I simulate a large number
of event lists representing the non-flaring level of the studied observation and apply the Bayesian blocks
algorithm on each of these event lists with different false positive rates (see next Sect. 3.4.2).

I stress that in the Python code the geometric ncp_prior computed by Scargle et al. (2013a,c) is used
without any care of the characteristics of the data sample. One thus needs to change this code to properly use
the calibrated ncp_prior corresponding to the dataset.

3.4.2 Calibration of the prior number of blocks

I simulate 100 event lists with a constant count rate (CR) corresponding to the non-flaring level observed by
XMM-Newton (0.1 and 0.04 count s−1 for EPIC/pn and EPIC/MOS1 and 2, respectively; e.g., Porquet et al.
2003, 2008). I then apply the Bayesian block algorithm on each event list with a certain value of ncp_prior

and record how many times a change point is detected. In theory, zero change point must be detected since I
work with constant light curves. Each change point is thus a false positive. I test fifteen values of ncp_prior

(from 2 to 9) and six values of number of events in the observation (from 1000 to 6000). The resulting
probability of false positive is shown in the top panel of Fig. 3.4 and can be compared to the Fig. 6 of Scargle
et al. (2013a). For different values of p1, I report the relation between N and ncp_prior (bottom panel of
Fig. 3.4 for p1 = 0.05). By combining these relations, which relies p1, N and ncp_prior, I find the calibration
corresponding the observations with EPIC/pn:

ncp_prior = 3.356 + 0.143 ln (N) − 0.710 ln (p1) − 0.002 ln (N) ln (p1) . (3.7)

For N lower than 1000, the last term is negligible and the relation has the same form than those found by
Scargle et al. (2013a,c) but the predicted ncp_prior is different since the simulated models are different.
As observed in the top panel of Fig. 3.4, the curves become closer as the number of counts increases. This is
explained by the convergence of the ncp_prior towards about 7 for observations with high number of counts.
This work has been reported in the appendix of Mossoux et al. (2015a) (see p. 125 of this Ph.D. thesis).

I use a fixed level of false positive rate p1 = exp(−3.5) (Neilsen et al. 2013; Nowak et al. 2012) which
allows me to deduce that one change point is real with a probability of 1− p1 = 96.98% and two change points
(one flare) are real with a probability of 1 − p2

1 = 99.90% corresponding to a false positive rate for the flare
detection of 0.1%. I thus just need to simulate the event list for the actual number of events in the considered
observation (leading to only one curve in the top panel of Fig. 3.4) and to report the ncp_prior which gives
the probability of false change points corresponding to p1 = exp(−3.5). With this method, I am sure that the
detected change point has only a probability p1 to be a false change point.
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Figure 3.4: Simulations of constant light curve (Poisson signal of average 0.1 count s−1) to calibrate the
ncp_prior (Mossoux et al. 2015a). Top: False positive fraction p1 vs. value of ncp_prior with separate
curves for the values N = 1000, 2000, 3000, 4000, 5000, and 6000 (left to right). The points at which the rate
becomes unacceptable (here 0.05; dashed line) determine the recommended values of ncp_prior shown as a
function of N in the bottom panel. Bottom: Calibration of ncp_prior as a function of the number of counts
(N) for p1 = 0.05. The dashed line is the linear fit of the simulation points.

3.4.3 The two-steps Bayesian blocks algorithm

As explained in Sect. 3.1, an X-ray observation is contaminated by an instrumental background. This back-
ground may reach high flaring rate especially at the beginning and end of the XMM-Newton observation
because of the radiation belts. It thus has to be taken into account in order to avoid any detection of a false
flare from the source.

The first method of background subtraction was proposed by Stelzer et al. (2007). The authors first
computed a segmentation of their bkg and src+bkg light curves. They then randomly suppressed the normal-
ized number of events present in each background block from the src+bkg event list. However, the random
suppression of events is arbitrary and the result may therefore depend of this choice, especially when the
background is high. I thus follow the recipe proposed by Scargle et al. (2013b) and described in Mossoux
et al. (2015a,b): I first separately apply the Bayesian block algorithm on the src+bkg and bkg event lists.
From these Bayesian blocks count rates, I compute a weight at each src+bkg photon arrival time equal to
w = CRsrc+bkg/(CRsrc+bkg − CRbkg). The algorithm is then applied a second time on the src+bkg event list on
which the weight is applied. With this two-steps Bayesian blocks algorithm, I keep all events from the list.

For example purpose, the results of the two-steps Bayesian blocks algorithm applied on the 2011 March
28 XMM-Newton EPIC/pn observation is shown in Fig. 3.5. In the top panel, the src+bkg event list is
characterized by three blocks whose the two highest are spurious blocks due to the contribution of the high
flaring background. Indeed, in the middle panel, the bkg event list is segmented with higher blocks at the
end of the observation due to the increase of the ionizing particles when entering the radiation belts. After
correction of the bkg with the two-steps Bayesian blocks algorithm, the src event list is described with only
one block corresponding to a non-flaring light curve (bottom panel).

After the publication of Mossoux et al. (2015a), some other weights were tested by Worpel & Schwope
(2015) on eclipse light curves but the two-steps Bayesian blocks algorithm appeared more stable. Indeed, we
can see in Fig. 12 of Worpel & Schwope (2015) that the two-steps Bayesian blocks algorithm (labeled h in
this figure) correctly locates the eclipses, as well as their weighted-photon method (labeled f in this figure),
but with no spurious short blocks of implausibly high count-rates, by contrast to their weighted photon metod.
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Figure 3.5: The two-steps Bayesian blocks algorithm for the background subtraction using the Bayesian
block method applied on the 2011 March 28 XMM-Newton observation with EPIC/pn. The Bayesian blocks
for p1 = exp(−3.5) are represented in the dashed lines over the light curves binned on 100 s. The vertical
gray boxes are the bad time intervals. Top panel: The source-plus-background light curve. Middle panel: The
background light curve. Bottom panel: The background subtracted light curve.

3.4.4 Flare detection efficiency of the Bayesian blocks method

During the Chandra XVP campaign of 2012, 45 flares were detected using the Bayesian-blocks method during
a total exposition of 2983.93 ks (Neilsen et al. 2013). Their FWHM ranges between 56.62 s and 1104 s and
they have amplitudes from 0.015 and 0.17 Chandra count s−1 above the constant rate. Their duration and
amplitude distribution are dN/dCRCh = 0.7 CR−1.9

Ch e−CRCh/0.3 and dN/dT = 0.05T−0.1e−T/3000 with CRCh the
peak count rate as observed by Chandra and T the flare duration3.

Using this flare demography, I investigate the detection efficiency of the flares from Sgr A* during an
observation with XMM-Newton by simulating event lists (see Sect. 3.3) with a Poisson noise around the mean
count rates (CR) of 0.1 and 0.04 count s−1 which represent the light curves of Sgr A* observed with EPIC/pn
and EPIC/MOS, respectively (Porquet et al. 2003, 2008). Above this constant light curves, I add Gaussian
flares with a FWHM equals to 57 s, 319 s and 1104 s which are the FWHM minimum, median and maximum
of flares from Sgr A* detected during the 2012 Chandra XVP campaign (Neilsen et al. 2013). I vary the
amplitude of the flares in the amplitude range from the lowest to the highest amplitude measured during the
2012 Chandra XVP campaign. In order to convert the Chandra count rate to the XMM-Newton count rate
(CRXMM) assuming the same spectral parameters, I use the relation derived in Chapter 5 between the Chandra
HETG count rate (zero and first order) of the flare peak and the unabsorbed luminosity at the peak flare, i.e.,
Lunabs

2−10 keV/1034 erg s−1 = −0.031 + 136.7CRCh. For each amplitude, I make 100 simulations and compute how
many times the algorithm finds the flare for false positive rate for the flare detection of 0.1% corresponding to

3The cutoff value is given as a lower limit in Neilsen et al. (2013) but the specific value does not influence the result of our flare
distribution because we are interested by flares characterized by small amplitude and short duration since these flares may suffer of
the small detection rate.
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Figure 3.6: Detection efficiency of Gaussian flares by the Bayesian blocks algorithm for EPIC/pn (left panel)
and MOS (right panel) (Mossoux et al. 2015a). I use p1 = exp(−3.5) and ncp_prior = 6.5. The solid, dotted
and dashed lines are Gaussian with FWHM = 57 s, 319 s and 1104 s, respectively.

ncp_prior = 6.5 for pn, MOS1 and MOS2. The result of the simulations is shown at Fig. 3.6.
For EPIC/pn and MOS, higher the amplitude and the FWHM, higher the detection efficiency. But, to

correctly compare the detection efficiency between these two instruments for the same FWHM, I need to com-
pute the relation between the unabsorbed luminosity of a flare and the count rate received by each instrument.
I compute fake spectra with high unabsorbed luminosity between 2 and 10 keV, a spectral index of Γ = 2
and a hydrogen column density of NH = 14.3 × 1022 cm−2 (Porquet et al. 2003, 2008; Neilsen et al. 2013).
I determine with the ARF and RMF files of EPIC/pn and EPIC/MOS1 (see Sect. 3.6.1 for details) a count rate
to unabsorbed luminosity ratio of 29.6× 10−37 pn count s−1/erg s−1 and 8.42× 10−37 MOS1 count s−1/erg s−1,
respectively. For example, for an unabsorbed luminosity of flare amplitude of 2.5 × 1034 erg s−1, the
corresponding count rate is thus 0.074 and 0.021 count s−1 for pn and MOS1, respectively. This corresponds
to a detection efficiency of 90% with pn but lower than 5% with MOS1 for FWHM = 1104 s. EPIC/pn is thus
more efficient to detect low luminosity flares.

I also study the effect of an increase of the non-flaring level observed by XMM-Newton. During the 2014
campaign, a magnetar located at 2′′.4 southeast of Sgr A* was observed in its burst phase (see Sect. 1.5 for
details). Since the extraction region for XMM-Newton is a 10′′-radius circle, the photons emitted by the
magnetar artificially increase the non-flaring level observed in the source region which varies between 0.32
and 0.29 pn count s−1 during the XMM-Newton observations in 2014 Feb.–Apr.. This contamination implies
a decay of the detection level of the faintest and shortest flares. To assess the impact on the flare detection
efficiency, I plot in Fig. 3.7 the flare detection rate of EPIC/pn presented in left panel of Fig. 3.6 versus the flare
peak significance, i.e., the amplitude of the flare expressed in unit of the standard deviation of the non-flaring
level. This scaling allows to comparison observations with the same instrument but different non-flaring levels.
Since the non-flaring level in the 2014 Feb. 28 light curve has increased by a factor of about 3.6 by comparison
with those measured by Porquet et al. (2003, 2008) and Mossoux et al. (2015a), the peak significance is divided
by a factor of about

√
3.6. For example, if we consider a flare with an amplitude of 0.2 count s−1 above the

non-flaring level (vertical dot-dashed line in Fig. 3.7), this corresponds to a peak significance of 6.3σ without
the magnetar contribution (left panel) and this flare is always detected if its FWHM is larger than 320 s. A
flare with the same amplitude in the 2014 Feb. 28 light curve (right panel) corresponds to 3.2σ and is only
detected with a probability of 53% for FWHM = 320 s.

The better detection efficiency is reached with the Chandra telescope. Thanks to its higher angular
resolution, the source extraction region is about eight times smaller that those of XMM-Newton implying
a smaller non-flaring level and a smaller Poisson noise resulting in a higher SNR of the flaring event. One can
thus compare the detection efficiency of the XMM-Newton telescope on the flaring demography observed by
Chandra during the 2012 XVP campaign. I first compute a grid of 30 flare amplitudes and 30 flare durations
in the range [0.06− 0.4] count s−1 and [337.5− 8100] s regularly distributed in the logarithmic scale. For each
point of grid, I create 300 event lists of Gaussian flares characterized by the corresponding amplitude and du-
ration (see Sect. 3.3). I then apply the Bayesian blocks algorithm on all these event lists superimposed above
a non-flaring level corresponding to those of EPIC/pn (0.1 count s−1). This allows me to have a detection



CHAPTER 3. ANALYSIS TOOLS FOR THE X-RAY STUDY 33

Figure 3.7: Comparison of the detection efficiency with the Bayesian blocks algorithm for the non-flaring
level corresponding to those of the 2011 (left panel; corresponding to left panel of Fig. 3.6) and February 2014
(right panel) observations with EPIC/pn (Mossoux et al. 2016). The vertical doted-dashed line represents an
example flare with the same amplitude above the non-flaring level for a 2011 and 2014 Feb.–Apr. observations.

efficiency for different flare amplitudes and durations with XMM-Newton.
I then normalize this probability to the duration and amplitude distribution determined during the Chandra

XVP campaign of 2012 (Neilsen et al. 2013). Since each flare can be associated to a detection efficiency
between 0 and 1, the sum of the probability for the 45 flares is the total number of flares that can be detected
in average by the Bayesian-blocks method during an EPIC/pn observation with an exposure time of about
30 ks. The distribution of the flare duration and amplitude observed during the Chandra XVP campaign and
the detection efficiency of the Bayesian-blocks algorithm are shown in the left panel of Fig. 3.8. We can detect
85.4% of the flares detected during the Chandra XVP campaign. The non-detected flares are the faintest and
shortest ones.

In order to assess how many flares cannot be detected due to the magnetar contamination, I make the same
computation as presented above to compare the 2014 EPIC/pn observation and the Chandra XVP campaign
of 2012 (Neilsen et al. 2013). The result is shown in the right panel of Fig. 3.8. For the 2014 Feb. 28, Mar. 10,
Apr. 2 and Apr. 3, we detect 79.2%, 79.4%, 80.1% and 79.8% of flares detected during the Chandra XVP

campaign, respectively which is lower than for a non-flaring level of 0.1 count s−1. This work can be found in
Appendix A of Mossoux et al. (2016) (see p. 154 of this Ph.D. thesis).

3.5 Improving the light curve shape

The light curves computed with the SAS task epiclccorr are histograms of the photon arrival times. But,
histograms have some limitations in the representation of time series:

• There is an arbitrary choice for the start of the first bin of the histogram but its shape may depend on
this start point.

• The choice of the bin length is also arbitrary.

• Discontinuities between bins do not reflect the continuity of a physical phenomenon.

In order to bypass these limitations, I compute smoothed light curves by applying a density estimator
(Silverman 1986; Feigelson & Babu 2012) on the event lists. This allows me to increase the accuracy on the
flares characteristics such as amplitude and time of the maximum by reducing the Poisson noise and to follow
the flux of the source nearly continuously. The event density is computed thanks to quantreg available in
the R project for statistical computing4. This algorithm convolves the photon arrival times with a smoothing

4https://www.r-project.org/
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Figure 3.8: The flare distribution seen by Chandra and the detection efficiency in percent of the Bayesian-
blocks algorithm during an observation with XMM-Newton (Mossoux et al. 2016). The crosses are the X-ray
flares detected during the Chandra XVP campaign of 2012. The flare amplitude is above the non-flaring
level seen by EPIC/pn (0.1 count s−1; Porquet et al. 2003, 2008). Left panel: The flare amplitude above the
non-flaring level seen by EPIC/pn during the 2011 campaign. Right panel: The flare amplitude above the
non-flaring level seen by EPIC/pn during the 2014 Feb. 28 observation.

kernel. I modified this program in order to use the Epanechnikov kernel (an inverted parabola) defined as
K(x) = 3

4

(

1 − x2
)

for |x| ≤ 1 and K(x) = 0 for |x| > 1. This kernel is more suitable since it has a “good

performance [sic]” (Feigelson & Babu 2012) and it is defined on a finite support between −1 and 1 (unlike
the Gaussian and Cauchy kernels available on the original package which are defined on an infinite support).
The finite support allows me to control boundary effects (i.e., the lack of information before and after the
observation start and end).

The normalized density estimator is

f̂ (t, h) =
1
N

N
∑

i=1

w(t)
livetime

× K

(

t − ti

h

)

(3.8)

with h the kernel window width which defines the finite support between −h and h, N the number of counts
in the observations, livetime the correction of the integration time from the CCD readout time (see Sect. 3.1),
w(t) the weight which corrects the smoothed light curve from background at a time t thanks to Bayesian blocks
(see Sect. 3.4.3), ti the arrival time of the event i (ticks at the top of Fig. 3.9) and t the time where the density is
computed. A schematic view of the density estimator is given in Fig. 3.9. The red curve is the Epanechnikov
kernel of window width h = 500 s (I suppose here that w(t) = livetime = 1). The time at which the density is
computed is t = 500 s, i.e., the first point of the smoothed light curve without boundary effects. The boundary
effects are controlled by rejecting times at which t − h and t + h are lower and higher than the first (tstart) and
the last (tstop) time of the event list. The density is thus defined for t ∈ [tstart + h, tstop − h]. The count rate of
the smoothed light curve is CR = N × f̂ (t, h). The error on the count rate is

√
n with n the number of counts

in the kernel window computed as the sum of fractions of event whose arrival time is located in [t − h, t + h].
The resulting smoothed light curve of the event simulation presented in Sect. 3.3 is shown in Fig. 3.10 with a
solid black line and gray error bars.

3.6 Spectral analysis of the X-ray flares from Sgr A*

Light curves allow us to make a temporal analysis of flares. But, we have a lack of information about energetics
since light curves are integrated over all the energy range. We thus have to create and analyze the Sgr A* flare
spectrum in order to complete our scientific investigation.
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Figure 3.9: The density estimator for the light curve smoothing. The simulated arrival times are represented
by the ticks at the top of this panel (see Sect. 3.3). The crosses are the first points of the simulated light
curve and the error bars (see left y-axis). The red curve is the Epanechnikov kernel (see right y-axis). Here
is an example for the first point of the smoothed light curve represented by an asterisk for a window width of
h = 500 s (i.e., t = 500 s). The solid black curve and gray boxes are the smoothed light curve and error bars
for a time interval of 5 s.

Figure 3.10: The resulting smoothed light curve of the event simulation presented in Sect. 3.3. The simulated
arrival times are represented by the ticks at the top of this panel (only one arrival time on twenty are shown
here for clarity purpose). The red curve is the model of the flare light curve. The crosses are the light curve
points and their error bars with a bin of 200 s. The solid black curve and gray boxes are the smoothed light
curve and error bars for a window width of h = 500 s.
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Figure 3.11: Effective area and probability distribution for EPIC/pn (medium filter, single and double events).
Left panel: Effective area from a 10′′-radius region centered on Sgr A* (ARF). Right panel: Probability
distribution of the recorded energy of a photon with an initial energy of 6.4 keV extracted from the RMF.

3.6.1 Extraction of the X-ray flare spectrum

As for the creation of light curves, I have to extract the events from a source-plus-background and background
region. The event extraction region for the src+bkg spectrum is a circle of 10′′-radius centered on the Sgr A*
radio position. Since I study the flaring spectrum, the extracted src+bkg event list is filtered to be only
composed by photons recorded during the flare time interval defined with the two-steps Bayesian Blocks
algorithm. Whereas the light curves are corrected from the instrumental background taking a large region
different from the source region, the flare spectrum is corrected from the point sources and diffuse emission
spectra contained in the 10′′ source region. During the non-flaring period, the photons extracted from the 10′′-
radius region come from Sgr A* in its quiescent state but also from the point sources and the diffuse emission
(see Fig. 3.2). I thus use the non-flaring period to correct from these contaminating sources and analyze only
the Sgr A* flaring spectrum. The bkg extraction region is thus the same that the src+bkg region and the events
are extracted before and after the flare with a rejection of 300 s before and after the flare start and stop to avoid
any contamination of the flare spectrum in the background spectrum.

The spectra are then created from the event lists extracted from the src+bkg and bkg regions and time
intervals by computing the number of events recorded in each spectral channel (4092 for XMM-Newton
corresponding 0.15 to 15 keV for the nominal gain).

The src+bkg spectrum observed by an instrument is the combination of the spectrum emitted by the
source, the efficiency of the instrument at each energy E and the background spectrum. The number of counts
observed in a spectral channel i is (Eq. 7.35 of Houck 2013):

C(i) = T

∫ ∞

0
R(i, E) A(E) S (E) dE + B(i) (3.9)

with S (E) the source spectrum, T the exposure time of the observation, A(E) the effective area of the
instrument, R(i, E) the relation between the spectral channel and the energy and B(i) is the bkg spectrum.

The effective area is the combination of the collecting area of the telescope, filter transmission, CCD
quantum efficiency and PSF encircled energy fraction. This is described in the Ancillary Response File (ARF).
The ARF has to be computed on the src+bkg region using the SAS task arfgen. The effective area from the
source region centered on Sgr A* for the 2014 April 2 observation is given at the left panel of Fig. 3.11.

R(i, E) is stored in the Redistribution Matrix File (RMF) which is created from the extraction region with
the rmfgen task from the SAS package. When a photon of energy E hits the CCD, there is a high probability
that the recorded photon energy is E ± ∆E but there is also a probability that the photon energy is recorded at
a lower energy because of the escape peak. This is produced when the X-ray photon knocks out an inner shell
electron from the detector material (Si). This atom then emits a photon of lower energy by fluorescence and
the initial photon is detected with an energy E − ESi Kα with ESi Kα = 1.74 keV. These escape peaks must be
taken into account when fitting the spectrum. The right panel of Fig. 3.11 shows the probability distribution of
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the recorded energy of a photon with an initial energy of 6.4 keV (with ∆E = 175 eV) using single and double
events.

The RMF and ARF may change from one observation to an other since the source position on the CCD
changes from one observation to an other. The src+bkg and bkg spectrum and the corresponding RMF and
ARF may be computed together for the corresponding extraction region using the SAS especget script.

The spectral fitting computes a theoretical model which, associated with the RMF and ARF, reproduces
the observed spectrum C(i).

3.6.2 The spectral model for X-ray flares from Sgr A*

The fitting model which best reproduces the observed spectrum of the flares from Sgr A* (Porquet et al. 2003,
2008; Nowak et al. 2012) is an absorbed powerlaw created with TBnew and pegpwrlw with a dust scattering
modeled thanks to dustscat (Predehl & Schmitt 1995).

The TBnew model5 is an improved version of the X-ray absorption model tbabs (Wilms et al. 2000).
This model computes the absorption by photo-ionization along the line of sight of hydrogen column density
NH taking into account the cross section of each phase (dust, gas and molecules) of the ISM, σISM:

T B(E) = exp (−σISM(E) NH) . (3.10)

The TBnew model uses the updated inner and outer shells cross-sections of Verner et al. (1996) contrarily to
the previous tbabs model which used the Band et al. (1990)’s cross section for the hydrogen, the Yan et al.
(1998)’s cross section for the helium and Verner & Yakovlev (1995)’s inner shell cross sections of all other
elements.

The dust scattering optical depth derived by Predehl & Schmitt (1995) using ROSAT observations of
supernovae remnants was

τscatt = 0.486
NH

1022 cm−2

(

E

keV

)−2

(3.11)

with E the photon energy and NH the hydrogen column density on the line of sight. The factor 0.486 was
computed using the Morrison & McCammon (1983)’s X-ray photon cross sections for photoelectric absorption
and Anders & Ebihara (1982)’s abundances. However, TBnew uses the ISM abundances updated by Wilms
et al. (2000) leading to lower metal abundances and the updated cross sections of Verner et al. (1996). Since
the metal absorbs more X-ray photons than the hydrogen, the new abundances and cross sections lead to an
hydrogen column density which is 1.5 times lower than previously obtained by Predehl & Schmitt (1995) as
discussed in Nowak et al. (2012). The new dustscat model is thus

DS (E) = exp (−τscatt) = exp

(

−0.324
NH

1022 cm−2

(

E

keV

)−2)

(3.12)

3.6.3 Spectral fitting

Several softwares have been developed to fit the X-ray spectrum. I mainly used two of them: ISIS (Houck
2013) and XSPEC (Arnaud 1996; Arnaud et al. 2015). These two softwares may fit a binned or unbinned X-ray
spectra with a user defined model using the Chi squared6 (χ2) or Cash statistic7. The Cash statistic is preferred
if the number of spectral bins is lower than the number of spectral parameters of fitting model or if the net
number of counts in each bin is lower than 10−20 since the Poissonnian distribution of photon may not be
approximated by the Gaussian distribution (Cash 1979). In order to be sure to have enough counts in each
spectral bin of the background subtracted spectrum, I group the src+bkg spectrum with a minimum signal-
to-noise ratio (SNR) using SAS task specgroup. In this task and the ISIS software, the SNR is computed
as (Csrc − Cbkg × ratio)/(Csrc + Cbkg × ratio2)0.5 with ratio the exposure ratio multiplied by the region size
ratio between the src+bkg and bkg spectrum and Csrc and Cbkg the number of counts in the src+bkg and bkg
spectrum, respectively.

5http://pulsar.sternwarte.uni-erlangen.de/wilms/research/tbabs/index.html
6The χ2 equation I use is normalized by the errors (σ) on the spectral bin count rate (yi): χ2 =

n
∑

i=1
(yi − Mi)2/σ2.

7The Cash statistic is: C = 2
n
∑

i=1
(Mi − yi log Mi).
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The reliability of a fit is defined by the goodness-of-fit which measures the discrepancy between the
observed and modeled spectrum and by the likelihood function which computes the probability to have this
goodness-of-fit. For the χ2 statistic, the goodness-of-fit is given by the reduced χ2 (χ2

red = χ
2/ν with ν

the number of degrees of freedom). The maximum likelihood is then determined with the Student’s law.
For the Cash statistic, we do not have access to the goodness-of-fit. ISIS and XSPEC thus make simulations of
fake spectra and compute how many times the goodness-of-fit is lower than for the user data sample to define
the likelihood function. The discrepancy between the observed and modeled spectrum is thus given by the
maximum likelihood.

The difference between ISIS and XSPEC is the processing of the background spectrum. XSPEC uses
the bkg spectrum scaled on the src+bkg spectrum to create a background subtracted spectrum on which the
fit is applied. ISIS does not subtract the bkg from the src+bkg spectrum. This is the model defined as a
source component plus an estimation of the background component which is fitted on the src+bkg spectrum.
Moreover, ISIS can be parallelized for the fit error bars computations which decreases the computational time
for high number of model parameters.

3.6.4 The Markov Chain Monte Carlo method for the spectral fitting

From the study of the 2014 campaign for the observation of Sgr A* (see Sect. 5), I used the Markov Chain
Monte Carlo method (MCMC) to compute the best-fit parameters. This is an iterative method producing a
set of model parameters which converges towards the target density, i.e., the marginal distribution of each
parameters describing the observed spectrum. At each step, the value of the likelihood function is computed
and the new set of parameters is accepted if this value is lower than the previous one. The advantage of this
method is that we can easily compute, for each parameter, the marginal distribution and the associated error
bar.

I use the Jeremy Sanders’ XSPEC_emcee8 program that allows the MCMC analysis of X-ray spectra in
XSPEC using emcee9, an extensible, pure-Python implementation of Goodman & Weare (2010)’s MCMC
ensemble-sampler. Goodman & Weare (2010) proposed an affine invariant ensemble sampler for which the
autocorrelation time is smaller than for the most used Metropolis-Hasting algorithm. This method uses a
number of “walkers” which evolve independently from each others in the parameter space reducing the auto-
correlation time. Following Foreman-Mackey et al. (2013), the number of walkers must be about 10 times the
number of model parameters.

The number of steps needed to construct independent samples from the observed spectrum is given by
the autocorrelation time τf of the parameters which represents the covariance between samples at each step.
τf is computed thanks to the acor package (v1.1.1) available in Python10. It defines the “burn-in” period
which is the number of steps that we do not use in the computation of the best-fit parameters. Following
Foreman-Mackey et al. (2013), the “burn-in” period must be 20 τf and the length of the Markov chain must
be 30 times the “burn-in” period to converge towards the target density.

A proof of the convergence of the model parameters is the acceptance fraction (af), i.e., the number of steps
which are accepted since their likelihood function gives a value lower than those of the previous step. A good
range (based on a huge number of simulations) is between 0.2 and 0.5 (e.g., Gelman et al. 1996; Foreman-
Mackey et al. 2013). If the acceptance fraction is too low, this means that none of the set of parameters
decreases the likelihood function. If it is too large, this means that the posterior probability function of the
model parameters is a constant function and thus the best-fit parameters can not be computed.

The result of a fitting with the MCMC is usually represented in a triangle plot diagram (Python package
corner v1.0.0). The marginal distribution of each parameter are the diagonal plots. They are the histograms
of the values taken by all walkers at each step after the “burn-in” period. The best fitting parameters are defined
by the median of the marginal distributions. The joint distributions between each couple of parameters are
shown in the other plots with the confidence levels at 68, 90 and 99% (see Fig. 5.8 for an example of triangle
plot published in Mossoux et al. 2016).

8https://github.com/jeremysanders/xspec_emcee
9http://dan.iel.fm/emcee/current/user/line/

10https://pypi.python.org/pypi/acor/1.1.1
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Chapter 4

Constraints on the radial distance and size of
the X-ray flaring region during the 2011
campaign with XMM-Newton

Original publication: Mossoux, E., Grosso, N., Vincent, F. H., Porquet, D., 2015, Study of the X-ray activity

of Sgr A* during the 2011 XMM-Newton campaign, Astronomy & Astrophysics, 573, A46, p. 1–15 (see
Annexe D, p. 113 of this Ph.D. thesis).

The goal of the 2011 campaign was to observe Sgr A* simultaneously for the first time in X-rays with
XMM-Newton and at 1.3 mm with the Event Horizon Telescope (EHT) providing very long base interferom-
etry in order to determine the localization of X-ray flares. Between 2011 March 18 and April 5, the merged
visibility window of the 1.3 mm EHT formed by the Atacama Pathfinder Experiment (APEX) in Chile, the
Sub-millimeter Telescope (SMT) in Arizona, CARMA in California and Sub-millimeter Array (SMA) in
Hawaii was 10:45–15:45 UT. The observing nights of the EHT were constrained by the weather forecast. The
XMM-Newton exposures have to began prior the EHT observation to detect the X-ray flares associated to the
delayed millimeter counterpart. The XMM-Newton observations were planned on 2011 March 28 and 30, and
April 1, 3, and 5 (XMM-Newton AO-8, 5 × 33 ks; PI: D. Porquet) for a total exposure of about 226 ks (see
Table 4.1). The weather constrained EHT exposures were obtained on 2011 March 29 and 31, and April 11,
2, and 4. Consequently, only the EHT observation on 2011 April 1 was simultaneous with XMM-Newton
observation but no X-ray flare was observed (see below). The study of the millimeter emission observed with
the EHT were reported by Fish et al. (2016). The millimeter activity was not discussed in their paper but they
found that the quiescent emission from Sgr A* in millimeter is elongated with a position angle of +128◦ east.

Table 4.1: XMM-Newton observation log for the 2011 campaign (Mossoux et al. 2015a).

Orbit ObsID Start Timea End Timea Duration
(TT) (TT) (s)

2069 0604300601 Mar. 28, 07:54:14 Mar. 28, 21:13:55 47981
2070 0604300701 Mar. 30, 08:11:26 Mar. 30, 21:14:28 46942
2071 0604300801 Apr. 01, 08:23:50 Apr. 01, 19:23:59 39609
2072 0604300901 Apr. 03, 07:56:23 Apr. 03, 19:21:36 41113
2073 0604301001 Apr. 05, 07:13:49 Apr. 05, 21:11:49 50280

Notes: (a) Start and end times of the EPIC MOS camera observations in terrestrial
time (TT) referential.

1On 2011 March 28–April 1, the timing and frequency references at CARMA was erroneously derived from a local rubidium
oscillator instead of the more accurate hydrogen maser, required for very long base interferometry; however, this setup did not affect
phase closure (Fish et al. 2016).
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Figure 4.1: XMM-Newton/EPIC (pn+MOS1+MOS2) light curves of Sgr A* in the 2–10 keV energy range
obtained in 2011 Mar.–Apr. (Mossoux et al. 2015a). The time interval used to bin the light curve is 300 s. The
X-ray flares are labeled from 1 to 2. The horizontal lines below these labels indicate the flare durations.

Table 4.2: Characteristics of the X-ray flares observed by XMM-Newton/EPIC in 2011 (Mossoux et al.
2015a).

Flare Instrument Day Start Timea End Timea Duration Totalb Peakc Lunabs
2−10 keV

d

(#) (yy-mm-dd) (hh:mm:ss) (hh:mm:ss) (s) (cts) (count s−1) (1034 erg s−1)
1 pn 2011-03-30 17:46:20 18:19:40 2000 211 ± 25 0.28 ± 0.01 2.7+2.4

−0.7
MOS1 17:42:52 18:15:51 1978 189 ± 12 0.16 ± 0.04 . . . . . . . . .
MOS2 17:39:11 18:20:02 2451 179 ± 13 0.14 ± 0.04 . . . . . . . . .

2 pn 2011-04-03 ≤08:16:35 08:41:02 ≥ 1458 ≥ 154 ± 24 0.17 ± 0.01 ≥ 2.9
MOS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOS2 ≤07:56:23 08:46:15 ≥ 2926 ≥ 206 ± 15 0.16 ± 0.04 . . . . . . . . .

Notes: (a) Start and end times (TT) of the flare time interval defined by the Bayesian blocks algorithm (Scargle et al. 2013b); (b) Total counts in the
2–10 keV energy band obtained in the smoothed light curve during the flare interval (determined by the Bayesian blocks) after subtraction of the
non-flaring level obtained with the Bayesian blocks algorithm; (c) Count rate in the 2–10 keV energy band at the flare peak (smoothed light curves)
after subtraction of the non-flaring level; (d) Unabsorbed 2−10 keV average luminosity of the flare computed from the total counts collected during
the flare (i.e., the average count rate) and assuming a distance of 8 kpc.

4.1 Analysis of the X-ray data

I follow the reduction method of the X-ray data explained in Sect. 3.1 with the SAS package version 13.5 and
the calibration files of 2014 April 4 to create the XMM-Newton/EPIC (pn+MOS1+MOS2) light curves in the
2−10 keV energy range shown in Fig. 4.1. I use the two-steps Bayesian block algorithm (see Sect. 3.4) to
determine the non-flaring level and detect the X-ray flares with a false positive rate of 0.1% (corresponding
to p1 = exp(−3.5)). The non-flaring levels are consistent with those previously observed with XMM-Newton
(e.g., Porquet et al. 2008). Table 4.2 gives the characteristics of the two X-ray flares detected on 2011 March
30 (#1) and April 3 (#2) as indicated by the horizontal lines below the labels in Fig. 4.1. I then smooth the
flaring light curves of each instrument to determine the flare peak count rates. The Bayesian blocks and the
smoothed light curves of the flares are shown in Fig. 4.2.

Contrarily to most of the X-ray flares already observed, the flare of 2011 March 30 (left panels of Fig. 4.2)
has an asymmetric shape characterized by a short (∼458 s) and luminous subflare followed by a long (∼1542 s)
and less luminous subflare with a separating time of 1000 s between the maxima. Between these two subflares,
the EPIC/pn light curve recovers a level consistent with the non-flaring level. This double peaked feature is
also observed in MOS1 but not in MOS2.

The flare of 2011 April 3 flare (right panels of Fig. 4.2) is only detected by the two-steps Bayesian blocks
algorithm in the EPIC/pn and MOS2 event lists. The absence of detection in the MOS1 camera is due to the
faintness of this flare and the lower sensitivity of the MOS cameras implying a lower detection efficiency of
the two-steps Bayesian blocks algorithm (see Fig. 3.6). The change point of the Bayesian block associated
to the beginning of this flare is not observed in EPIC/pn nor in MOS2 implying that this flare starts before
the beginning of the XMM-Newton observation. A VLT/NACO observation was made on 2011 April 3 with
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Figure 4.2: Light curves of Sgr A* in the 2–10 keV energy range obtained with XMM-Newton during the
flare of 2011 March 30 (left panels) and April 03 (right panels) binned on 100 s (Mossoux et al. 2015a). The
bad time intervals are shown with a light gray boxes. The dashed lines are the Bayesian blocks. The total
XMM-Newton/EPIC light curves are shown in the top panels. The horizontal dashed lines are the sum of
the non-flaring level in each instrument. The vertical dashed lines represent the beginning and the end of the
flare determined by the two-steps Bayesian Blocks algorithm on the EPIC/pn camera. The solid lines are the
smoothed light curves computed as the sum on the same time range of the smoothed light curves for each
instrument. The gray curves are the errors associated with the smoothed light curves. The second, third and
bottom panels represent the EPIC/pn, MOS1 and MOS2 light curves of Sgr A*, respectively.
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22 min of overlap with the beginning of the observation with EPIC MOS; at the end of this observation, the rise
phase of the NIR counterpart of this X-ray flare was observed (S. Gillessen, 2011, private communication).

I extract the X-ray spectrum of these two flares as explained in Sect. 3.6.1 and grouped them with a
minimum signal-to-noise ratio of 4. I fit the grouped spectrum of flare #1 with the absorbed powerlaw model
described in Sect. 3.6.2 with ISIS (v1.6.2-27). The best-fit parameters and their 90% confidence level are:
hydrogen column density of 6.7+8.2

−6.7×1022 cm−2, photon index of 1.5+1.5
−1.3, absorbed flux between 2 and 8 keV of

2.5×10−12 erg s−1 cm−2 and unabsorbed flux between 2 and 10 keV (Funabs
2−10 keV) of 3.5+3.1

−1.0 ×10−12 erg s−1 cm−2

which is consistent with those computed for the 2002 Oct. 3 and 2007 April 4 flares observed with XMM-
Newton (Porquet et al. 2003, 2008; Nowak et al. 2012). The physical characteristics of this flare (unabsorbed
luminosity, unabsorbed total energy and duration) lie within the mean of the characteristics of the X-ray flares
detected during the 2012 Chandra XVP campaign (Neilsen et al. 2013).

The flare #2 does not contains enough counts to constrain the spectral parameters. The unabsorbed flux of
this flare is thus computed by fitting its spectrum with the photon index and the column density values fixed to
those of the bright X-ray flare of 2002 October 3 observed with XMM-Newton (Porquet et al. 2003; Nowak
et al. 2012) leading to Funabs

2−10 keV = 3.91 × 10−12 erg s−1 cm−2.

4.2 Discussions

4.2.1 Modeling the flare of 2011 March 30 with the gravitational lensing of a hotspot-like
structure

The smallest waiting time between two consecutive X-ray flares observed during the 2012 Chandra XVP is
about 3500 s (see Fig. 1 of Neilsen et al. 2013). Since the separating time observed between the two subflares
of the flare #1 is smaller than this value, I consider that this flare is a single flare with a large flux variation.

The double-peaked structure of this flare may be explained by a flux variation due to the gravitational
lensing effect. The gravitational lensing is due to the curvature of the space-time induced by the SMBH.
The null geodesic followed by a photon is straight in a flat space-time but is bended when passing in a strong
gravitational field (see Fig. 4.3). Close to the SMBH, the photon trajectory is thus deflected producing a
lensing effect of the source flux. The more aligned are the observer, the lens (here the SMBH) and the source
of photon, the greater is the lensing effect. If the observer is exactly aligned with the lens and the source, the
deflected photons form a ring called Einstein ring (see third panel of Fig. 4.4). A consequence of the deflection
of photons is an increase of the apparent source luminosity since the source photons are lensed towards the
observer. This magnification can explain the first substructure with a high amplitude and short duration (which
would correspond to the time that the source spends behind the SMBH). The second substructure would be
explained by the Doppler relativistic boosting effect which changes the apparent luminosity of an orbiting
source near a massive object. Let us consider a source orbiting at high velocity around a SMBH (Fig. 4.4).
The emission of this relativistic source is beamed in the direction of the motion due to the length contraction in
special relativity. This relativistic phenomenon increases the apparent luminosity of a source moving towards
the observer and is maximum when the source is at the quadrature (see last panel of Fig. 4.4).

In collaboration with Frédéric H. Vincent, we constructed the light curve as it would be observed for the
gravitational lensing of a hotspot orbiting Sgr A* using the ray-tracing code GYOTO (Vincent et al. 2011).
The hotspot is defined as a spherical, optically thin structure, orbiting around Sgr A* with a Keplerian angular
velocity and an inclination close to edge-on view. The parameters describing this structure, i.e., the hotspot
radius R and the orbital radius r and inclination i, are discretized on a fitting grid. They are then constrained
by a χ2 fitting of the simulated light curve to the smoothed pn light curve of the flare #1. The parameter which
is easiest fitted is the orbital radius since it directly depends on the time delay between the maximum of the
two peaks. The two other parameters impact both the amplitude of the first peak and the flux ratio between
the two peaks. The best fitting parameters are r = 12 rg,R = 1.4 rg and i = 86.5◦ (χ2

red = 0.85).
The best-fitted light curve is compared to the smoothed pn light curve in Fig. 4.5. This figure shows that

the minimum between the two flares of the computed light curve is 2.5σ higher than the observed light curve.
However, this feature is a strong characteristic of the 2011 March 30 flare since it is observed with pn and
MOS1. We thus refine the hotspot model considering an elongated hotspot model whose radius varies along
the orbit due to the differential Keplerian rotation and a swelling hotspot whose the volume increases linearly
between the flare start and the local minimum between the two peaks. However the best-fitted light curves
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Figure 4.3: Illustration of the light bending effect. The upper image (a) is the trajectory of a photon in a flat
space-time. The lower image (b) is the trajectory of a photon in a curved space-time.

Figure 4.4: Simulation of a hotspot orbiting a supermassive black hole computed with the ray-tracing code
GYOTO (F. H. Vincent, 2013, private communication). The radial distance between the optically thick hotspot
is 9 rg, the hotspot radius is 1 rg and the SMBH spin is null. The images from the left to the right side are
when the hotspot is: in front of the SMBH, at the quadrature and moving away from the observer, behind the
SMBH, and at the quadrature and moving towards the observer.

Figure 4.5: Modeling of the 2011 March 30 flare pn light curve with a rotating hotspot (Mossoux et al. 2015a).
Best fitting theoretical light curve (dot-dashed line) plotted over the smoothed light curve (solid line, with
1σ-error in gray). The non-flaring level is given by the horizontal dashed line. The vertical axis is in observed
units, horizontal axis is in seconds. The lower panel gives the residual in units of σ.

with these two toy models never reproduce the local minimum since the hotspot remains bright all along the
orbit. We thus reject this hotspot model without adding some ad-hoc components which would make the
model less reliable.
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4.2.2 Constraints on the radial distance and the size of the flaring region of the first subflare
of 2011 March 30

Since the 2011 March 30 flare can not be reproduced as a single flare, I consider that it is composed by two
close subflares separated by about 1000 s and produced by their own population of non-thermal electrons.
In this scenario, the first subflare is one of the shortest flare ever observed and the separation time between
the two subflares is three times smaller than those observed between the two closest consecutive flares of the
2012 Chandra XVP campaign. The short duration of the first subflare allows me to constrain the size and
the distance of the flaring region. I consider that this subflare is described by a rise phase during which the
electrons are accelerated by the magnetic energy available in the flaring region, and a decay phase due to
the synchrotron cooling of the accelerated electrons. The total luminosity emitted during the overall subflare
duration is thus produced by the magnetic energy released during the rise phase.

To avoid any contamination of the non-flaring level in the computations, I consider that the start and end
times of the subflare are the times when the count rate of the smoothed light curve is larger than the Poissonnian
fluctuation of the non-flaring level at the 99.87% of confidence level (corresponding to a Gaussian single-sided
confidence level of 3σ). The end of the rise phase is the time of the maximum of the smoothed light curve.
The rise and decay phase durations are thus ∆trise = 115 s and ∆tdecay = 340 s.

These observed durations (∆t) are shorter than the proper duration (∆τ) due to time dilation in strong
gravitational field near the SMBH. I thus compute the proper times as a function of the radial distance from
Sgr A* using the Kerr metric (Kerr 1963) in Boyer-Lindquist coordinates with a dimensionless spin parameter
of 1 (see Appendix C in Mossoux et al. 2015a, p. 127 of this Ph.D. thesis).

The upper limit on the radius of the flaring region is computed considering that the Alfven velocity cannot
be larger than the speed of light (Dodds-Eden et al. 2009): R < c∆τrise. The magnetic energy available in this
flaring region located at a radial distance r from Sgr A* is UB(r) = B(r)2V(r)/8π with V(r) < 4

3πc
3∆τ3rise(r)

the upper limit on the volume of the region and B(r) = B1Rs2rg/r the magnetic field with B1Rs = 100 G (see
Barrière et al. 2014, and references therein). The variation of the upper limit on the magnetic energy with the
radial distance is represented in the top panel of Fig. 4.6 with a black solid line.

The magnetic energy is converted to the X-ray unabsorbed luminosity with a production efficiency η (≤ 1).
Thanks to the spectral parameters computed for the overall 2011 March 30 flare, i.e., NH = 6.7 × 1022 cm−2

and Γ = 1.5, I determine a mean unabsorbed luminosity of Lunabs
2−10 keV(flare) = 5.8+5.7

−1.7 × 1034 erg s−1 for the
first subflare. The total energy released during the first subflare is thus Lunabs

2−10 keV(flare)∆τflare(r) with ∆τflare(r)
the proper duration of the first subflare. The total energy is also represented in the top panel of Fig. 4.6 as a
function of the radial distance (dashed line with gray stripes for the error bars). The conversion of magnetic
energy in unabsorbed luminosity is written as

Lunabs
2−10 keV(flare)∆τflare(r) <

B2
1RS

6

(

2rg

r

)2

c3∆τ3riseη . (4.1)

I represent η = UB(r)/Lunabs
2−10 keV(flare)∆τflare(r) in the bottom panel of Fig. 4.6 (solid line with error bars in

dotted lines) as a function of the radial distance. All the parameters except the radial distance are determined
by the characteristics of the first subflare. Assuming η = 1, I obtain an upper limit on the radial distance of
r < 100+19

−29 rg (vertical dashed line with error bars in vertical dotted lines) corresponding to a radius of the
flaring region (solid red line) of R = 2.87 ± 0.01 rg.

During the decay phase of the subflare, the accelerated electrons cool by emitting synchrotron radiation
with a timescale (Dodds-Eden et al. 2009):

τsync(r) = 8

(

B(r)
30 G

)−3/2 (

ν

1014 Hz

)−1/2
min . (4.2)

Two cooling timescales are defined according to the frequency of the photons that are created: I first consider
that the X-ray photons (ν = 1018 Hz) are emitted by a direct synchrotron radiation. The comparison between
the synchrotron cooling timescales and the duration of the decay phase (τXsync(r) > ∆τdecay) leads to a lower
limit on the distance of r > 114 rg. This latter value is inconsistent with the previously derived upper limit
implying that a sustained heating must be present during the decay phase. I thus consider that the electrons
accelerated by the magnetic energy emit NIR photons which are then upscattered to create the X-ray photons.
The synchrotron cooling time of NIR photons (ν = 1014 Hz) leads to r > 4 rg (see Fig. 4.7).
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Figure 4.6: Determination of the radial distance of the flaring region (Mossoux et al. 2015a). Top panel:

Magnetic energy vs. radial distance for a magnetic field of 100 G at 2 rg and an X-ray photon production
efficiency and dimensionless spin parameter of 1. The solid black line is the distribution of the magnetic
energy (see left y-axis) vs. the radial distance. The dashed line is the central value of the X-ray total energy
with the gray stripes representing its error within 90% confidence level. The vertical lines are the upper limit
to the distance and its error corresponding to η = 1. The solid red line is the radius of the emitting region (see
right y-axis). Bottom panel: X-ray photons production efficiency vs. radial distance for the total energy and
its upper and lower limit. The solid and dotted lines represent the efficiency for the central value of the total
energy and its errors within 90% confidence level, respectively.

Figure 4.7: Synchrotron cooling time vs. the radial distance (Mossoux et al. 2015a). The solid line represents
the proper duration of the decay phase. The dashed inclined line represents the synchrotron cooling time for
infrared photons. The dotted-dashed inclined line is the synchrotron cooling time for X-ray photons. The
corresponding vertical lines are the lower limit to the radial distance for each cooling timescale.
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I thus constrain the radial distance of the flaring region of the first subflare to 4 rg < r < 100+19
−29 rg

for η = 1 and B1Rs = 100 G. This corresponds to a constraint on the radius of the flaring region of
1.8 rg < R < 2.87 ± 0.01 rg.

For comparison, Barrière et al. (2014) also reported a radial distance for the X-ray flare observed by
NuSTAR on 2012 July 21 with a mean luminosity of 21 × 1034 erg s−1. This NuSTAR flare was characterized
by a rise phase of 100 s followed by a plateau phase of about 1700 s and a decay phase of 100 s. Its was thus
about four times longer and about 3.5 times more luminous than the 2011 March 30 flare but they derived a
radial distance which is five times shorter than the upper limit that I derived here. However, considering their
radial distance and magnetic field, i.e., 20 rg and B1Rs = 100 G, the synchrotron cooling time is about 2500 s.
Compared to the duration of the plateau phase, this implies a sustained heating during this phase or a radial
distance larger than 20 rg.

Using the same method as for the first subflare of the flare #1, taking the time dilatation into account and
considering only the rise and decay phase of the flare on 2012 July 21, I derive a revised value for the radial
distance with an upper limit of 64 rg. If I consider also the plateau phase, this upper limit on the radial distance
should be larger due to the source expansion during the supplementary 1700 s. Considering the duration of the
decay phase of the 2012 July 21 flare and the synchrotron cooling time for the NIR photons, I derive a lower
limit on the radial distance of 2.2 rg. For this NuSTAR flare, the direct synchrotron emission for the creation
of X-ray photons is possible since the synchrotron cooling time leads to a lower limit on the radial distance
of 50 rg which is lower than the upper limit of 64 rg. I can not constrain the size of the flaring source for this
flare since I do not have a strict upper limit on the distance due to the presence of the plateau phase.
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Chapter 5

Multiwavelength study of the flaring activity
of Sgr A* in 2014 February–April

Original publication: Mossoux, E., Grosso, N., Bushouse, H., Eckart, A., Yusef-Zadeh, F., Plambeck, R. L.,
Peissker, F., Valencia-S., M., Porquet, D., Cotton, W. D., Roberts, D. A., 2016, Multiwavelength study of

the flaring activity of Sgr A* in 2014 February−April, Astronomy & Astrophysics, 589, A116, p. 1–26 (see
Annexe D, p. 131 of this Ph.D. thesis).

The aim of this campaign was to study the impact of the DSO/G2 pericenter passage on the NIR/
X-ray flaring activity of Sgr A*. An XMM-Newton large program was submitted in 2012 Oct. (XMM-Newton
AO-12; PI: N. Grosso) to obtain joint observations with XMM-Newton, HST/WFC3 and VLT/SINFONI close
to the DSO/G2 pericenter passage (based on the predictions of Gillessen et al. 2012). In order to increase the
number of HST orbits simultaneous with the XMM-Newton observations, 22 additional HST orbits were
requested (HST cycle 21; PI: H. Bushouse, Space Telescope Science Institute, USA).

Figure 5.1: Time diagram of the 2014 Feb.−Apr. campaign (Mossoux et al. 2016). The horizontal dashed lines
are the XMM-Newton orbital visibility times of Sgr A* labeled with revolution numbers. The thick solid lines
are the time slot of the observations for each instrument with start and stop hours. The vertical dotted lines are
the limits of the XMM-Newton observations. The vertical gray blocks are the X-ray (Arabic numerals) and
NIR (Roman numerals) flares.
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The XMM-Newton visibility of Sgr A* in the first semester of 2014 constrained the X-ray observations
between 2014 Feb. 28 and Apr. 3. The HST/WFC3 visit scheduling was optimized to avoid the South Atlantic
Anomaly (SAA) for maximizing the simultaneous observations with XMM-Newton. The three XMM-Newton
observations were obtained on 2014 Feb. 28, Mar. 10 and Apr. 2 (total exposure of 170 ks) with three simulta-
neous HST visits of 7, 7 and 10 consecutive orbits (total exposure of 69 ks). The VLT/SINFONI observations
granted in the XMM-Newton AO-12 were obtained on 2014 Apr. 2 (simultaneous with XMM-Newton) and
Mar. 11, 12 and Apr. 3, 4 (for a total of 81 exposures of 400 s). We used additional VLT/SINFONI observations
(ESO program 091.B-0183(H); PI: A. Eckart, Physikalisches Institut der Universität zu Köln, Max-Planck-
Institut für Radioastronomie, Germany) obtained on 2014 Mar. 1 (coordinated with XMM-Newton) and
Feb. 28 and Mar. 2 (for a total of 22 exposures of 400 s). We also had access to a Target of Opportunity
(ToO) that was triggered to observe SGR J1745-29 with XMM-Newton on 2014 Apr. 3 (85 ks; PI: G.L. Israël,
Osservatorio Astronomico di Roma, INAF, Italy). One VLT/SINFONI observation and four remaining HST
orbits were simultaneous with this X-ray observation. Coordinated/simultaneous observations were also
obtained with CARMA (three observations; PI: R. L. Plambeck, University of California, USA) and VLA
in its A-configuration (three observations; VLA program 14A-231; PI: F. Yusef-Zadeh, Northwestern Uni-
versity, USA). Figure 5.1 is the time diagram of the different instruments used during the 2014 Feb.–Apr.
campaign and the time ranges of the detected NIR flares (labeled with Roman numerals) and X-ray flares
(labeled with Arabic numerals).

This VLT/SINFONI observing time is also very valuable to monitor the DSO/G2 and constrain its charac-
teristics as reported in the next Sect. 5.1. I present the results of the 2014 Feb.–Apr. multiwavelength campaign
for the study of the Sgr A* flaring activity in Sect. 5.2.

5.1 Monitoring the DSO/G2 on its orbit toward the Galactic Center Black
Hole

Original publication: Valencia-S., M., Eckart, A., Zajaček, M., Peissker, F., Parsa, M., Grosso, N., Mossoux,
E., Porquet, D., Jalali, B., Karas, V., Yazici, S., Shahzamanian, B., Sabha, N., Saalfeld, R., Smajic, S.,
Grellmann, R., Moser, L., Horrobin, M., Borkar, A., García-Marín, M., Dovčiak, M., Kunneriath, D., Karssen,
G. D., Bursa, M., Straubmeier, C., Bushouse, H., 2015, Monitoring the Dusty S-cluster Object (DSO/G2) on

its Orbit toward the Galactic Center Black Hole, The Astrophysical Journal, 800, 125, p. 1–21 (see Annexe D,
p. 157 of this Ph.D. thesis).

VLT/SINFONI observations of the DSO/G2 with the H+K grating (1.45 − 2.45 µm) were obtained from
2014 Feb. 28 to Sept. 7 (Table 5.1). More than sixty percent of the total exposure time effectively used
were granted by the XMM-Newton large program previously presented. The VLT/SINFONI observations are
composed by successive exposures of 400 or 600 s on the target, preceded or followed by identical exposures
on a dark cloud at 5′36′′ north and 12′45′′ west of Sgr A*. Data cubes are constructed for each exposure using
the SINFONI pipeline. Cubes whose the FWHM of the two-dimensional Gaussian fitting of the S2 star is less
than 83 mas (6.65 pixels) are considered as bad data cubes and are not used in the study.

The DSO/G2 spectra are extracted from 0′′.05-radius aperture centered on the maximum of the Brγ emis-
sion. Since the Brγ line detection, FWHM and amplitude strongly depend on the background correction, we
test different aperture sizes, positions and shapes for the background spectra extraction. The background emis-
sion at the DSO/G2 position is estimated with the third-order polynomial fitting and scaling of the background
spectrum. The detected Brγ line is not a spurious feature if it is always detected after the different background
subtractions.

Before 2014 May, a redshifted Brγ line is detected with a signal-to-noise ratio of 3.9–4.7 at about 2.185 µm
corresponding to a velocity of 2700 ± 60 km s−1. The mean FWHM and luminosity of the line are
720 ± 150 km s−1 and 1.0 × 10−3 L⊙, respectively. We stress that taking a source extraction region along
the orbit as it was done in Gillessen et al. (2013b) leads to a narrower Brγ line compared to all other extraction
regions. The redshifted emission of the Brγ line is located at 8.6 mas south and 41.5 mas east of Sgr A*.
We do not detect any blueshifted emission of the Brγ line for different positions of the source extraction re-
gions within 200×200 mas at the southwest of Sgr A*. This absence of detection indicates that the blueshifted
emissions detected by Pfuhl et al. (2015) and Gillessen et al. (2013b) are spurious lines due to the background
subtraction.
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Table 5.1: The DSO/G2 observations log with VLT/SINFONI.

Date Start Time End Time Number of Exposures a Total Exposure
2014 (UT) (UT) (Used/Total) (s)

Feb. 27 b,i 08:20:42 09:48:55 4/4 1600
Feb. 28 c,i 08:34:58 09:54:37 0/7 0
Mar. 01 c,i,j 08:00:14 10:17:59 0/12 0
Mar. 02 c,i 07:49:06 08:18:54 0/3 0
Mar. 11 b,i 08:03:55 10:03:28 11/11 4400
Mar. 12 b,i 07:44:35 10:07:45 13/13 5200
Mar. 26 c 06:43:05 09:58:12 8/11 4800
Mar. 27 c 06:32:50 10:04:12 8/18 3200
Apr. 02 d,i,k 06:31:39 09:53:52 16/18 6400
Apr. 03 d,i,k 06:20:46 09:45:02 18/18 7200
Apr. 04 d,i 05:58:19 09:47:58 21/21 8400
Apr. 06 e 07:51:42 08:43:15 5/5 2000
June 09 f 04:48:49 09:51:47 14/14 5600
June 10 f 04:54:21 09:49:49 5/5 2000
Aug. 25 g 23:57:46 04:34:49 4/4 1600
Sept. 07 h 00:11:08 04:20:07 2/2 800

Notes: (a) Each exposure has a duration of 400 s except for the Mar. 26 which has exposures
of 600 s; (b) ESO program 092.B-0920(A) (PI: N. Grosso); (c) 091.B-0183(H) (PI: A. Eckart);
(d) 093.B-0932(A) (PI: N. Grosso); (e) 093.B-0092(A) (PI: A. Eckart); ( f ) 093.B-0092(E) (PI:
A. Eckart); (g) 093.B-0092(G) (PI: A. Eckart); (h) 093.B-0092(F) (PI: A. Eckart); (i) Also used
during the 2014 Feb.–Apr. campaign for the study of the Sgr A* activity (Sect. 5); ( j) Partially-
simultaneous observation with XMM-Newton; (k) Simultaneous observation with XMM-Newton.

Figure 5.2: The spectra of the G2 object before the pericenter passage (2014 April; lower spectrum) and after
the pericenter passage (2014 June; upper spectrum) (Valencia-S. et al. 2015). The spectra are smoothed with
a Gaussian of a FWHM of 10 spectral resolution elements. The horizontal lines are the ranges where the
emission line is detectable.

After 2014 June, a blueshifted Brγ emission is detected with a signal-to-noise ratio of 2.5–3.1, a velocity
of −3320 ± 60 km s−1, a FWHM of 210 ± 1400 km s−1 and a luminosity of 0.4 × 10−3 L⊙. The emission of the
blueshifted Brγ line is located at 16 mas west of Sgr A*. No redshifted emission is detected implying that the
entire DSO/G2 passed the pericenter between 2014.32 and 2014.55. The spectra extracted before and after
the pericenter passage are shown in Fig. 5.2.

Maps of the Brγ emission are made before and after the pericenter passage showing that the source of
emission remains compact with a size of 15 mas corresponding to 120 au for a Galactic Center distance of
8 kpc.

Using our VLT/SINFONI observations combined with the archived VLT data, the published Keck data
(Meyer et al. 2014) and the Brγ line velocities measured before and after the pericenter passage, we update
the orbital parameters of the DSO/G2 as following: an ellipticity of e = 0.976 ± 0.001, a half-axis length of
33.0 ± 0.3 Mpc, an ascending node of 76◦ ± 8◦, an argument of the periapsis of 94◦ ± 8◦, an inclination of



50 CHAPTER 5. MULTIWAVELENGTH STUDY OF SGR A* IN 2014 FEB.–APR.

Figure 5.3: Left panels: The best fitted orbit of the DSO/G2 (Valencia-S. et al. 2015). From the top to bottom
panels: radial velocity of the DSO/G2 and offsets from Sgr A* on the sky. Right panel: VLT image of the
motion of the DSO/G2 from 2006 to 2014 (ESO press release eso1512 on 2015 march 26; credit: ESO,
A. Eckart). The color represents the shift of the Brγ line.

113◦ ± 1◦, a period of 262 ± 38 yr and a pericenter passage at 2014.29 ± 0.14 corresponding to 2014 Apr. 20
(2014 Mar. 1–2014 Jun. 10) at a distance of 163 au (2032 Rs). This orbit and the DSO/G2 VLT’s images from
2006 to 2014 are shown in Fig. 5.3.

Several results from these observations allow us to reject the purely gas cloud model:

• The absence of blueshifted and redshifted Brγ emission before and after the pericenter passage, respec-
tively. A purely gas cloud would be stretched near the pericenter leading the head of the cloud passing
the pericenter before the tail. This also rules out the double feature observed in the velocity-position
diagrams of Gillessen et al. (2013b) and Pfuhl et al. (2015).

• The compactness of the source during the pericenter passage to a size lower than 20 mas while a gas
cloud model predict a size of 210–336 mas close to the pericenter passage.

• The predicted FWHM and the amplitude of the Brγ line during the pericenter passage of a gas cloud are
larger than those observed in our spectrum.

• Pfuhl et al. (2015) speculated that, for the gas cloud model, the G2 must have been formed between
1990 and 2000 in the mini-spiral. However, no special event have been observed in NIR or MIR in this
region at these dates.

The DSO/G2 is thus considered as a pre-main sequence star with an accretion disk. We test the axisym-
metric magnetospheric accretion model (see for a review Bouvier et al. 2007; see Fig. 5.4) for the emission
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Figure 5.4: Sketch of the axisymmetric magnetospheric accretion model for a T Tauri star (Camenzind 1990).
The lines are the magnetic field lines from the T Tauri star (TTS). The accretion disk of the star is represented
with a thick line.

of the Brγ line. Below the truncation radius of the accretion disk by the stellar magnetosphere, the accreted
matter is driven ballistically along the closed stellar magnetic field lines towards the stellar photosphere. This
forms an accretion shock close to the stellar photosphere producing emission lines such as Hα, Brγ,... Above
the truncation radius, the open magnetic field lines may create winds from the accretion disk. The accretion
rate, correlated to the Brγ luminosity, is estimated to be less than 10−7 M⊙ yr−1 while the outflow is about
10% of the accretion rate. From this simple model, an intermediate-mass star of 6 M⊙ is needed to explain the
FWHM of the Brγ line close to the pericenter passage but this would imply an emission larger than the upper
limit of 10 L⊙ provided by the measurements in the M−band (Eckart et al. 2013). The larger FWHM of the
Brγ line is thus explained by the stretching of the accretion disk of an 1–2 M⊙ star leading to an increase of
the accretion rate onto the T Tauri star.

In this pre-main sequence star model, the matter from the accretion disk of the star is contained in the
Roche lobe of the star. As the DSO/G2 approaches the SMBH, the Lagrange point between the star and
Sgr A* gets closer to the star (1 au for a 1 M⊙ star at the pericenter distance) and a part of the matter from
the accretion disk of the star may be transferred to Sgr A* (Eckart et al. 2013). The NIR observations of
Sgr A* during this campaign do not show any increase of the NIR flaring activity from Sgr A*. Therefore,
the accretion of the DSO/G2 matter onto Sgr A* may still be upcoming. The absence of bow shock in the
hot accretion flow of Sgr A* compared to those observed for the more distant X3 and X7 sources may be
explained by the inhomogeneities in the hot accretion flow of Sgr A*.

5.2 The multiwavelength flaring activity from Sgr A*

5.2.1 Observations and data analysis

5.2.1.1 X-ray data

The four XMM-Newton observations, whose total effective exposure is about 256 ks, are reduced using the
SAS package version 13.5 and the 2014 Apr. 4 release of the Current Calibration files as explained in Sect. 3.1.
During the last observation on 2014 April 3, MOS1 and MOS2 observed in small window requiring a bkg
extraction region on the adjacent CCD at 7′ east of Sgr A*.

The X-ray light curves observed by XMM-Newton during the 2014 Feb.–Apr. campaign are shown in
Fig. 5.5. The determination of the X-ray non-flaring level and the detection of the X-ray flares were made using
the two-steps Bayesian algorithm presented in Sect. 3.4. The non-flaring levels on Feb. 28, Mar. 10, and Apr. 2
and 3 are 0.562±0.003, 0.528±0.004, 0.489±0.003 and 0.499±0.002 EPIC count s−1, respectively, which is
about 2.5 times larger than those observed during the 2011 campaign (see Fig. 4.1) due to the contamination
by the Galactic Center magnetar SGR J1745-29 (Sect. 1.5). Two X-ray flares are detected: one on 2014
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Figure 5.5: XMM-Newton/EPIC (pn+MOS1+MOS2) light curves of Sgr A* in the 2–10 keV energy range
obtained in 2014 Feb.−Apr. (Mossoux et al. 2016). The time interval used to bin the light curve is 300 s.
The X-ray flares are labeled with Arabic numerals. The horizontal lines below these labels indicate the flare
durations.

Figure 5.6: Left panel: χ2 distribution of the period and period derivative of the magnetar (Mossoux et al.
2016). The contours are the 68%, 90% and 99% of confidence level on the parameters. Right panel: Folded
light curve between 2 and 10 keV on the 2014 Feb.–Apr. XMM-Newton observations with the best fit param-
eters (see Table 1.2).

Table 5.2: Characteristics of the X-ray flares observed by XMM-Newton in 2014 Feb.–Apr. after removing
the magnetar contribution (Mossoux et al. 2016).

Flare Instrument Date Start Timea End Timea Duration Totalb Peakc

(#) (yy-mm-dd) (hh:mm:ss) (hh:mm:ss) (s) (cts) (count s−1)
1 pn 2014-03-10 16:44:48 19:05:07 8418 900 ± 60 0.159 ± 0.032

MOS1 17:05:14 18:56:59 6705 780 ± 28 0.06 ± 0.02
MOS2 17:33:32 19:01:11 5258 880 ± 30 0.07 ± 0.02

2 pn 2014-04-02 16:52:38 17:08:42 965 180 ± 12 0.252 ± 0.058
MOS1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MOS2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notes: (a) Start and end times (UT) of the flare time interval defined by the Bayesian-blocks algorithm (Scargle et al. 2013b);
(b) Total counts in the 2−10 keV energy band obtained in the smoothed light curve during the flare interval (determined by the
Bayesian blocks) after subtraction of the non-flaring level obtained with the Bayesian-blocks algorithm; (c) Count rate in the
2−10 keV energy band at the flare peak (smoothed light curves) after subtraction of the non-flaring level.
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Mar. 10 (flare 1) and one on 2014 Apr. 2 (flare 2).
As discussed in Sect. 3.4.4, any artificial increase of the non-flaring level leads to a decay of the detection

efficiency of the two-steps Bayesian blocks algorithm for the faintest and shortest flares. I thus filter out
the pulse phase of the magnetar to decrease the contamination level and hence increase the flares detection
efficiency. I first construct the light curves from the events observed by XMM-Newton during this campaign
and extracted in a 10′′-radius region centered in the magnetar position. The best values of rotational period
P and spin-down Ṗ of the SGR J1745-29 are those which maximize the pulse shape in the magnetar EPIC/pn
folded light curves. I thus apply a χ2 fitting of a constant light curve on the folded light curves and search
for the values of P and Ṗ maximizing the χ2. The best-fitting values and their confidence contours are show
in Fig. 5.6 (left panel). The resulting folded light curve is shown in the right panel of Fig. 5.6. The pulse
shapes are similar to those represented in the panel on row 4 and column 3 of Fig. 1.12 which were computed
for a close epoch: the pulses amplitude ratio and phase delay are comparable. I then compute the count rate
threshold on the folded light curve which removes 50% of the magnetar flux. Using the rotational period
and spin-down, I create a new GTI file containing only the time ranges where the magnetar contribution is
lower than the count rate threshold. I then apply the two-steps Bayesian algorithm on the filtered event lists of
Sgr A*, but no more flares are found.

The characteristics of the two X-ray flares are reported in Table 5.2. The 2014 March 10 flare is described
by two blocks in the EPIC/pn light curve but only with one block in MOS1 and MOS2 while the 2014 April 2
flare is only detected in EPIC/pn. The differences in the flare detection are due to the lower efficiency of the
MOS cameras.

The flare 1 is one of the longest X-ray flare ever observed. Only two other flares were observed with a
larger duration: the flare observed by Baganoff et al. (2001) on 2000 Oct. 26 with a duration of about 10 ks
and the 2012 July 21 flare observed during the Chandra XVP 2012 campaign (Neilsen et al. 2013) with a
duration of 7.9 ks. Moreover, the flare 1 on 2014 March 10 has a very asymmetric shape described by a long
rise (about 7600 s) and a rapid decay (about 800 s).

The good PSF sampling of the MOS cameras allows us to confirm Sgr A* as the source of the 2014
March 10 flare and not the magnetar. We select the single events (pattern=0) since they have a better
position determination and reject only the bad columns and pixels (#XMMEA_EM). The pixel randomization is
suppressed and the position of the filtered events are associated to the center of the pixel where it was recorded
with the detector sampling of 1′′.1 × 1′′.1 sky-pixels. We then construct two sky images corresponding to the
flaring and non-flaring periods for each MOS camera (see panels a–d of Fig. 5.7). A third sky image is created
for each MOS camera as the difference between the flaring and non-flaring periods leading to a representation
of the count excess during the flaring period (see panels e and f of Fig. 5.7). The Bayesian method of Kraft
et al. (1991) then allows us to compute the significance of this count excess in each pixel of the images
assuming a Poisson statistic. The panels g and h of Fig. 5.7 show that the count-weighted barycenter of the
most significant count excesses (≥ 3σ; diamonds in Fig. 5.7) is consistent with the position of Sgr A*.

For the spectral study of these two X-ray flares, I group the X-ray flaring spectrum from 2 keV with a
minimum signal-to-noise ratio of 4 and 3 for the flares 1 and 2, respectively. I then fit the grouped spectrum
with an absorbed powerlaw model (Sect. 3.6.2) using the MCMC method (Sect. 3.6.4) with 30 walkers and
XSPEC (version 12.8.1o). The MCMC parameters and the best-fitting parameters are reported in Table 5.3
and compared to the spectral parameter obtained with the two brightest X-ray flares observed with XMM-
Newton (Porquet et al. 2003, 2008; Nowak et al. 2012). The triangle plot of the resulting MCMC is shown in
Fig. 5.8.

The poor constraints on the hydrogen column density is likely due to the contamination by the soft
spectrum of the Galactic Center magnetar which increases the background noise in the soft spectral range.

5.2.1.2 Near-infrared data

The four HST visits consist of 7, 7, 10 and 4 consecutive orbits composed by 45.5 min-exposures on Sgr A*
followed by 44.5 min-occultation of Sgr A* by the Earth. We used the medium-bandwidth (∆λ = 0.683 µm)
F153M filter having an effective wavelength λeff = 1.532 µm (from the Spanish Virtual Observatory1).
A 4-point dither pattern centered on Sgr A* with a spacing of 0′′.6 (4 detector pixels) was used to im-
prove the PSF sampling to FWHM = 0′′.145 (1.136 detector pixels) at 1.50 µm. We use the predefined

1The website of the Spanish Virtual Observatory is: http://svo.cab.inta-csic.es/main/index.php
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Figure 5.7: XMM-Newton/MOS1 (left column) and MOS2 (right column) images of Sgr A* on 2014 Mar.
10 (Mossoux et al. 2016). The energy range is 2–10 keV. The field of view is 20′′ × 20′′, the pixel size is
1′′.1 × 1′′.1. The same linear color-scale is used for Fig. a–f and Fig. g–h. In all panels, the black circle in the
right-bottom corner is the instrument angular-resolution (FWHM); the crosses are the positions of SGR J1745-
29 (Bower et al. 2015) and Sgr A* (Petrov et al. 2011), surrounded by a circle giving the absolute-astrometry
uncertainty of EPIC (1σ = 1′′.2; Guainazzi 2013). Panels a and b: count numbers observed during the flaring
period. Panels c and d: count numbers observed during the non-flaring period scaled-down to the flaring-
period exposure. The contour map shows count numbers smoothed on four pixels with a Gaussian, starting
from 2 counts with step of 1 count. Panels e and f: count excesses during the flaring period. Panels g and h:

statistically significant count excesses (≥ 3σ; computed on the boxed-pixel area with the Bayesian method of
Kraft et al. 1991), the diamond is the corresponding count-weighted barycenter of these detections.
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Figure 5.8: Best-fit spectral parameters of the 2014 Mar. 10 (top) and 2014 Apr. 2 (bottom) flares (Mossoux
et al. 2016). The diagonal plots are the marginal density distribution of each parameter. The median values
of each parameter are represented by the vertical dot-dashed lines in diagonal plots and by a cross in other
panels; the vertical dashed lines define the 90% confidence interval (see Table 5.3 for the exact values). The
contours are 68%, 90% and 99% of confidence levels.

Table 5.3: Spectral properties of the X-ray flares observed by XMM-Newton in 2014 Feb.–Apr. (adapted from
Mossoux et al. 2016).

Flare day NH
a Γb Funabs

2−10keV
c Lunabs

2−10keV
d χ2

red
g τf nburn nstep af

(yy-mm-dd) (1022 cm−2) (10−12 erg s−1 cm−2) (1034 erg s−1)
2014-03-10e 23.7 (14.5–37.5) 3.1 (2.1–4.5) 10.1 (4.9–33.5) 7.7 (3.7–25.6) 1.65 5.1 102 3060 0.66
2014-04-02e 9.8 (2.0–23.5) 2.2 (0.7–4.7) 6.3 (3.5–25.7) 4.8 (2.7–19.7) 1.72 5.3 106 3180 0.59
2002-10-03f 16.1 (13.9–18) 2.3 (2.0–2.6) 26.0 (22.5–30.6) 19.8 (17.1–23.3) . . . . . . . . . . . . . . . . . . . . . . . .
2007-04-04f 16.3 (13.7–19.3) 2.4 (2.1–2.8) 16.8 (13.8–21.4) 12.8 (10.5–16.3) . . . . . . . . . . . . . . . . . . . . . . . .

Notes: (a) Hydrogen column density; (b) Photon index of the power law; (c) Unabsorbed average flux between 2 and 10 keV; (d) Unabsorbed average luminosity
between 2 and 10 keV assuming a distance of 8 kpc; (e) Spectral properties of the EPIC/pn spectrum computed using the MCMC method. The range given
between parenthesis represents the 90% confidence interval; ( f ) Spectral properties of the EPIC (pn+MOS1+MOS2) spectrum of the two brightest flares
observed with XMM-Newton (Porquet et al. 2003, 2008; Nowak et al. 2012); (g) Reduced χ2 for 3 degrees of freedom.
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readout sequence “SPARS25” with NSAMP= 12 or 13 producing one first short (2.932 s) readout of the
detector, which is discarded for the data analysis, followed by 12 or 13 non-destructive readouts every
25 s throughout the ≈ 46 min exposure. The photometry of Sgr A* is extracted in a 3-pixels (about 0′′.4)
diameter circular aperture centered on the radio position of the SMBH. The photometry correction factor for
this aperture diameter is 1.414 whereas the extinction at λeff is 5.03 ± 0.20 mag leading to a correction factor
of the flux density for the WFC3 F153M filter of 103.2 ± 19.0.

The NIR light curves of Sgr A* and the reference star are computed and the flux density is corrected using
the two correction factors. The NIR flares are then detected using a 3σ limit on the HST light curve. Using
a 1σ-clipping method, I first compute a NIR non-flaring flux density of Sgr A* of 59.3 ± 0.7, 60.1 ± 0.9,
60.8 ± 1.1 and 60.3 ± 0.8 mJy for the four HST visits. The start and stop times of the NIR flares are then
defined as the 1σ limit on the flux density whose maximum amplitude is larger than 3σ. Three NIR flares
are observed (see left panels of Fig 5.10): two on 2014 March 10 (flares I and II) and one on 2014 Apr. 2
(flare III).

The start and stop times of the NIR flare I are delayed by about 14 min before and after the beginning and
end of its X-ray counterpart (flare 1), respectively. However, the time delay between the maximum of the NIR
flare I and the X-ray flare 1 is about 26−74 min which is one of the longest time delay ever measured between
the NIR and X-ray light curves.

The NIR flare II is less luminous than the flare I and has no detected X-ray counterpart.
We only observe the decay phase of the NIR flare III since the rise phase happens during the occultation

of Sgr A* by the Earth. A small increase of the NIR flux is observed just before the occultation. This could
be the beginning of the rise phase of the flare III. The start and stop times of this flare enclose the time range
of the X-ray flare 2.

These NIR flares belong to the 8% of the brightest NIR flares observed with VLT/NACO (Witzel et al.
2012): the flares I and III are only three times fainter than the brightest flare detected with VLT/NACO while
the flare II is seven times fainter than this event.

The VLT/SINFONI data reduction is the same that in Sect. 5.1. Sgr A* was observed in the Ks-band
implying an extinction of A(Ks) = 2.46 ± 0.03 mag (Schödel et al. 2010).

Two NIR flares are observed in the Ks band with VLT/SINFONI: one on 2014 Apr. 3 (flare IV) and one
on Apr. 4 (flare V). These flares belong to the 4% of the brightest NIR flares observed with VLT/NACO: the
flares IV and V are five and six times fainter than the brightest flares observed with VLT/NACO, respectively.
None of them have a detected X-ray counterpart.

The high amplitude of the detected NIR flares compared to the flux density distribution previously
observed (Witzel et al. 2012) is due to the higher detection threshold of the HST/WFC3 and VLT/SINFONI
compared to VLT/NACO. Therefore, no increase of the NIR flaring activity from Sgr A* is observed between
2014 February and April.

5.2.1.3 Millimeter and centimeter data

Sgr A* was also observed at 3.2 mm (95 GHz) with CARMA in its C-configuration.
The flux density of Sgr A* observed at 95 GHz (3.2 mm) with CARMA on 2014 Apr. 2 increases slowly

during the overall observation time (see Fig. 5.9). A bump is observed around 11.3 h, i.e., before the beginning
of the observations with HST and XMM-Newton on this date implying that the NIR/X-ray early counterpart
of this flare can not be observed.

The flux density measured on 2014 Apr. 3 decreases slowly and two bumps are observed at 12.4 and
13.6 h. This respectively corresponds to a delay of 4.4 and 5.6 h with the VLT flare IV observed on the same
day at 7.9 h. The time delay measurements made between the NIR/X-rays and the 0.85 or 1.3 mm flares lead
to time delays ranging between 1.6 and 2.7 h (Yusef-Zadeh et al. 2006b; Marrone et al. 2008; Yusef-Zadeh
et al. 2008, 2009). Only one measurement was made by Yusef-Zadeh et al. (2009) between X-rays and the
7 mm flare light curves leading to a time delay of about 5.3 h. Considering the expanding plasmon model,
the time delay measured between the NIR and 3.2 mm flares must be intermediate between those measured at
0.85/1.3 mm and 7 mm. This rejects the second bump as the delayed emission of the NIR flare IV since its
delay is too long.
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Figure 5.9: CARMA light curves at 3.2 mm (95 GHz) of Sgr A* (white filled circles) and the flux-density
calibrator (black filled circles) in April 2014 (Mossoux et al. 2016). The dash-dotted line represents the mean
flux density.

Sgr A* was observed at several frequency bands during the three observations with VLA in its A-configuration:
the X−, Ku−, C−, and L−radio bands at 8.56, 13.37, 5.19 and 1.68 GHz.

The three VLA observations show a constant increase or decay of the flux density from Sgr A*. Only
the 13.37 GHz (2.2 cm) light curve on 2014 Mar. 10 shows an obvious break in its rising flux density around
15.7 ± 0.2 h, with a clear increase of the rising slope. This could be the beginning of a radio flare. The break
occurs before the beginning of the NIR flare I and X-ray flare 1 leading to a rejection of this radio flare as the
counterpart of the observed NIR/X-ray flare. Therefore, the corresponding NIR/X-ray flare likely occurred
before the beginning of the HST and XMM-Newton observations.

5.2.2 Constraints on the physical characteristics of the flaring region

During the 2014 Feb.–Apr. campaign, we thus observed two NIR/X-ray flares (flare I/1 and flare III/2) and
three NIR flares without detected X-ray counterpart (flares II, IV and V). I now focus on each of the NIR flare
to deduce the NIR–to–X-ray ratio which are needed to constrain the physical characteristics of the flaring
regions.

5.2.2.1 The sample of NIR flares and X-ray counterpart

The NIR/X-ray flare I/1 on 2014 Mar. 10

The NIR/X-ray flare I/1 on 2014 Mar. 10 is characterized by a long time delay between the flare maxima
leading to a change in the NIR–to–X-ray flux ratio: between 16.5 h and 17.5 h, the NIR flux increases rapidly
while the increase of the X-ray flux is slower leading to a NIR–to–X-ray flux ratio of about 0.1. Then, between
18 and 19 h, the NIR flux is fainter than during the previous orbit while the X-ray flux is still increasing
leading to a NIR–to–X-ray flux ratio of about 0.01. Two interpretations could be tested to explain this change
of NIR–to–X-ray flux ratio: first, the efficiency of the radiation mechanism changes between 17.5 h and 18 h
to create more X-ray photons; second, the NIR/X-ray flare I/1 on 2014 Mar. 10 is composed by two close
flares, produced by their own electron population.

For the first interpretation, three radiation mechanisms evolve to create the NIR and X-ray photons: the
synchrotron–inverse Compton (SYN-IC), synchrotron–synchrotron (SYN-SYN) and synchrotron–synchrotron
self-Compton (SYN-SSC) processes (see Annexe A for more details on these radiative processes). Yusef-
Zadeh et al. (2012) found a parabolic trend between the NIR–to–X-ray amplitude ratio and the time delays
between the maximum of the flares for the SYN-IC process upscattering the NIR photons on the thermal
electrons in the hot accretion flow. However, considering the time delay between the maximum of the NIR
and X-ray flares on 2014 March 10 of about 26 − 74 min, the theoretical NIR–to–X-ray amplitude ratio must
be higher than 100 mJy/1035 erg s−1 which is much larger than the observed NIR–to–X-ray amplitude ratio of
2.5 − 40 mJy/1035 erg s−1. This process is thus likely excluded. The SYN-IC producing the X-ray photons by
upscattering of the sub-millimeter photons from the hot accretion flow on the accelerated electrons producing
the NIR photons is also rejected since the increase of the X-ray flux after 18 h would be due to a large increase
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Figure 5.10: Light curve fitting of the HST NIR flares (left panels) and the X-ray (right panels) counterparts
(Mossoux et al. 2016). The solid lines are the observed light curves with the error bars in gray. The dashed
lines in right panels are the Bayesian blocks. The X-ray light curves are smoothed with a window width of
500 s and 100 s for 2014 Mar. 10 and Apr. 2, respectively. The dotted lines are the individual Gaussians and
the dot-dashed line is the sum of the Gaussians. The vertical dotted lines are the time of the NIR flare peak
when there is no detected X-ray counterpart. The residuals are in units of σ.
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Figure 5.11: NIR-to-X-ray peak ratio vs. amplitude of the NIR flares in the Ks-band. Squares refer to the
flares reported in Table 3 of Eckart et al. (2012). Triangles are the simultaneous NIR/X-ray flares detected on
2007 Apr. 4 and labeled D and E in Table 2 of Trap et al. (2011). Diamonds are the delayed flares of 2004
Jul. 7, 2008 Jul. 26+27 and 2008 May 5 reported in Table 2 of Yusef-Zadeh et al. (2012). The labeled points
are the NIR and X-ray flares observed during this campaign.

of the sub-millimeter flux during the decay of the number of the accelerated electron explaining the decay of
the NIR flux. This interpretation is thus very fine tuned. The decay of the NIR–to–X-ray flux ratio after 18 h
could be explained by the SYN-SYN mechanism considering a cooling break frequency between the NIR and
X-rays in the synchrotron spectrum (Dodds-Eden et al. 2009). Considering that the acceleration mechanism
becomes more efficient between 18 and 19 h, more electrons from the tail of the powerlaw distribution are
accelerated producing an increase of the X-ray photons production. For the SYN-SSC mechanism, the effi-
ciency of the X-ray photons creation compared to those of the NIR photons depends on the size of the flaring
source region as R−β with β ≡ (8α2 + 28.392α + 22.99)/(2α + 5) with α the synchrotron index (S ν ∝ ν−α)
(see for detailed computations Annexe B on p. 104 of this Ph.D. thesis). Since α must be positive implying
β > 5.4, the increase the efficiency of the X-ray photons production by a factor of ten leads to an adiabatic
decay of the radius by a factor of about 0.6 in 1.2 h. The adiabatic compression of a plasmon could occur when
the plasmon goes through a bottle-neck configuration of the magnetic field. This model is preferred since it is
less fine tuning than the two last radiative processes.

For the second interpretation, the NIR/X-ray flare I/1 on 2014 Mar. 10 is decomposed in two close
flares (called Ia/1a and Ib/1b), each of them being produced by its own population of accelerated electrons.
The HST and smoothed EPIC/pn light curves are thus fitted with two Gaussians (top panels of Fig. 5.10).
The times of the NIR and X-ray maximum for each flare are now consistent with each other and the time
delay between the maximum of the two flares is about 5000 s.

The NIR/X-ray flare III/2 on 2014 Apr. 2

The Gaussian fitting could also be applied on the HST and smoothed EPIC/pn light curves of the 2014 Apr. 2
flares. The EPIC/pn light curve is well fitted with a single Gaussian while the NIR light curve needs two
Gaussians (IIIa and IIIb) to reproduce the small increase of flux at the end of the ninth HST orbit and the large
flux decay at the beginning of the tenth HST orbit (see bottom left panel of Fig. 5.10). The first NIR Gaussian
flare is thus simultaneous with the X-ray flare 2 while the luminous second NIR Gaussian flare has no detected
X-ray counterpart (vertical dotted line in the bottom right panel of Fig. 5.10).

The NIR flares II, IV, V without detected X-ray counterpart

For the four NIR flares observed during the 2014 Feb.–Apr. campaign without detected X-ray counterpart, the
Bayesian method of Kraft et al. (1991) allows me to determine the upper limit under a certain confidence limit
(here 95%) on the amplitude of the undetected X-ray counterpart. An example of HST NIR light curve of the
flare II without detected X-ray counterpart is shown in the middle panels of Fig. 5.10. I suppose that the peak
of the NIR and X-ray flares are simultaneous. The time of the peak of the undetected X-ray flare is thus given
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by the peak time of the Gaussian fit of the NIR flare (vertical dotted lines in Fig. 5.10). The non-flaring level at
the time of the NIR maximum is given by the two-steps Bayesian blocks algorithm. For the X-ray counterpart
of the NIR flare IIIb, the reference non-flaring level is given by the Gaussian fit of the X-ray flare 2 due to
the short time separation between the peaks of these NIR flares. The upper limit is then computed using the
posterior probability distribution function assuming a Poisson statistic.

5.2.2.2 The characteristics of the flaring regions

The NIR–to–X-ray flux ratio of the overall detected NIR flares is represented as a function of the NIR ampli-
tude in the Ks-band in Fig. 5.11 among the NIR/X-ray flares already observed (the amplitude of the NIR peaks
are extrapolated in the Ks-band using the H−L spectral index computed by Witzel et al. 2012). The NIR flares
detected during the 2014 Feb.–Apr. campaign with an X-ray counterpart lie well within the NIR–to–X-ray flux
ratio already observed. Most of the lower limit on the NIR–to–X-ray flux ratio also lie in the flux ratio range
already observed. The NIR flare IIIb and its undetected X-ray counterpart is one of the brightest NIR flare
ever observed and it has the largest NIR–to–X-ray flux ratio.

I use the formalism developed by Eckart et al. (2012) to constrain the physical parameters of the flaring
region, i.e., the size of the emitting region (θ), peak flux density at νm (S m), number density of relativistic
particles (ρ), and the magnetic field (B), from the NIR–to–X-ray flux ratio. I consider three local radia-
tive processes involving only the electrons accelerated in the flaring region: the SYN-SYN, SSC-SSC and
SYN-SSC radiation mechanisms. A radiative process is considered as dominant when the alternative emis-
sion processes are lower than 10%. The physical characteristics of the flaring region are computed for different
frequencies at which the source becomes optically thin (i.e., the turnover frequency νm) from 50 to 3000 GHz
by step of 200 GHz. For the SYN-SYN and SSC-SSC cases, the synchrotron spectral index α is given by the
NIR–to–X-ray flux ratio. For the SYN-SSC case, the spectral index in NIR does not depends on the X-ray
flux. I thus use seven values of α from 0.3 to 1.5 by step of 0.2. The resulting physical parameters are reported
in Fig. 5.12. The lower the NIR–to–X-ray flux ratio, the better constrained the physical parameters. The best
constraints are thus given for the flare IIIa/2. Considering the SYN-SSC emission mechanism, the size of
flaring region is 0.03 − 7 Rs and the electron density is 108.5–1010.2 cm−3 for a synchrotron spectral-index of
0.3 − 1.5. The same method is applied using the NIR flares and the upper limit on the undetected X-ray
counterpart but the physical parameters are less constrained (see Fig. 20 of Mossoux et al. 2016, p. 151 of this
Ph.D. thesis).

The synchrotron–Inverse Compton emission is difficult to test since, as explained before, the relation
between the NIR–to–X-ray flux ratio and the time delay between the maximum has a parabola trend. For the
NIR–to–X-ray flux ratio measured for the detected NIR/X-ray flares, the predicted time delay is lower than
10 min which is below the error bars on the time of the maximum of the Gaussian fitting. The synchrotron–
Inverse Compton emission is thus also a possible emission mechanism for producing X-ray flares from the
NIR photons.

5.2.3 The observed X-ray flaring rate

The observed X-ray flaring rate (three flares during 255.644 ks) is compared to those derived during the 2012
Chandra XVP campaign using the Bayesian blocks algorithm for the flare detection, i.e., 1.5 flare per day
(Neilsen et al. 2013). Assuming that we observe the same flare-amplitude and duration distribution during the
same observational exposure than for the 2012 Chandra XVP campaign (2983.93 ks), the number of X-ray
flares that we would observe above the non-flaring level of the 2014 Feb.–Apr. campaign is 36. This implies
that 3.1 flares would have to be observe during the 255.644 ks of the 2014 Feb.–Apr. campaign. This number
is consistent with the number of detected flare. I also test the null hypothesis that the flaring rate we would
have to observe and the flaring rate we currently observe are the same assuming a Poisson process (Gehrels
1986; Fay 2010). The p-value for this null hypothesis is 1 implying that the flaring rate that we currently
observe is consistent with those derived from the 2012 Chandra XVP campaign. No increase of the X-ray
flaring activity is thus observed during the DSO/G2 pericenter passage.

This is well explained by the stellar nature of the DSO/G2. Indeed due to the gravitational attraction of the
star, only a small part of the matter from the accretion disk of the star would have passed through the Lagrange
point during the pericenter passage. Moreover, the radial transport of matter in an ADAF is characterized by
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Figure 5.12: Physical parameters of the flares observed simultaneously in X-rays and NIR for the three emis-
sion models. The flare Ia/1a, Ib/1b and IIIa/2 are in the upper, middle and bottom panels, respectively. Left
panels are the size of the flaring-source region (θ) vs. the peak of the spectrum (S m) at the frequency νm. Right
panels are the density of the relativistic electrons vs. the magnetic field. The locii where the Synchrotron Self-
Compton−Synchrotron Self-Compton (SSC-SSC), Synchrotron−Synchrotron Self-Compton (SYN-SSC) and
Synchrotron-Synchrotron (SYN-SYN) are dominant are shown in black, blue and green, respectively. The
red dots represent the turnover frequencies from 50 to 3000 GHz by step of 200 GHz. The arrows show the
direction of the curves if the limit on the alternative emission processes is lowered. Dotted lines are locii of
SYN-SSC where the MIR emission is larger than the observed upper-limit value of 11.88 µm (Dodds-Eden
et al. 2009).
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the viscous timescale

τvisc ∼ 3.0

(

r

2000 Rs

)1.5 (

α

0.1

)−1
yrs . (5.1)

with α = 0.1 the efficiency of the mechanism of angular momentum transport introduced by Shakura &
Sunyaev (1973) and r = 2000 Rs the radial distance of the SMBH (Pfuhl et al. 2015; Valencia-S. et al. 2015)
the pericenter distance. The accretion timescale with these parameters is thus about 3 years implying that we
will not see any increase of the flaring activity before 2017. Moreover, the angular momentum of the matter
from DSO/G2 on its eccentric orbit likely increases this estimation of the accretion timescale.
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Chapter 6

The study of the X-ray flaring rate of Sgr A*
from 1999 to 2015

Several statistical studies on the X-ray flaring rate of Sgr A* have been already made on large observational
datasets. The first one was done by Neilsen et al. (2013) who used a Gaussian flare fitting on the binned
X-ray light curves of Sgr A* obtained during the 2012 Chandra XVP campaign (3 Ms of a total exposure) to
automatically detect the X-ray flares. They detected 39 X-ray flares leading to a flaring rate of 1.1+0.2

−0.1 flare
per day but they were biased by their fitting model which supposes a Gaussian shape of the flare light curve
with a minimum duration of 400 s. They also tested the Bayesian blocks method for the X-ray flare detection
with a false positive rate for the flare detection of 0.1% which allowed them to detect 45 flares whose 34 were
already found by their first method.

Then, Ponti et al. (2015) studied the X-ray flaring rate observed with XMM-Newton, Chandra et Swift
between Sept. 1999 and Nov. 2014 with the Python Bayesian blocks algorithm. They observed an increase
of the flaring rate by a factor of 9.3 for the most energetic flares (defined by an absorbed fluence larger than
5 × 10−9 erg cm−2 containing about 25% of the flares) starting on 2014 Oct. 30 until their last observations
obtained with Swift in 2014 Nov. 2. However, the Python Bayesian blocks algorithm uses the geometric prior

on the number of change points computed by Scargle et al. (2013a) which is not reliable for the study of the
flaring rate since the flare arrival times are described by a Poissonnian flux (see Section 3.4.1); this likely leads
to an inconsistency between their adopted value of the false positive rate for the change point detection (5%)
and their resulting false detection probability.

Yuan & Wang (2016) also made statistical analysis of the flares observed by Chandra from 1999 to 2012.
They detected the X-ray flares with a Gaussian light curve fitting directly on the event lists. The detection
efficiency of their method was presented in their Fig. 3 as a function of the flare duration and fluence. Com-
pared to this detection method, the Bayesian blocks method is more efficient for the detection of long flares
and does not assume any flare shape. For the shortest and faintest flares, the method of Yuan & Wang (2016)
detects more features than the Bayesian blocks method but they did not control their false positive rate.

At the time of writing this Chapter (June 2016), I have access to 392 ks of additional archival observations
obtained in 2015 with XMM-Newton, Chandra and Swift. I also have access to the Swift observations obtained
from 2016 Feb.–June but a new X-ray transient SWIFT J174540.7-290015 was detected at 16′′ north of Sgr A*
on 2016 Feb. 6 with a 2–10 keV flux of 1.0 × 10−10 erg s−1 (Reynolds et al. 2016). On 2016 May 28, a new
X-ray transient SWIFT J174540.2-290037 was detected in the Swift observations at 10′′ south of Sgr A*
with an unabsorbed 2–10 keV flux of about (7 ± 2) × 10−11 erg s−1 cm−2 (Degenaar et al. 2016). These two
new transient sources having large observed X-ray flux (about six and four times larger than the burst flux
of SGR J1745-29, respectively; see Sect. 1.5), they contaminate the Sgr A* light curves observed by Swift
leading to a nearly impossible X-ray flare detection with Swift for the beginning of 2016 (see Table 6.1).
In this Chapter, I thus use the 2015 observations with XMM-Newton, Chandra and Swift in addition to the
1999–2014 observations to investigate the significance and persistence of the high flaring rate argued by
Ponti et al. (2015). I first reprocess the XMM-Newton, Chandra and Swift observations from 1999 to 2015
(Sect. 6.1) to detect the flares with the two-steps Bayesian blocks algorithm for XMM-Newton and Chandra
and with the detection method of Degenaar et al. (2013) for Swift (Sect. 6.2). The unabsorbed X-ray fluxes of
the detected flares are then computed with the same spectral parameters (Sect. 6.3) to construct the observed
distribution of the mean unabsorbed flux and duration of the X-ray flares detected by XMM-Newton and
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Chandra (Sect. 6.4.1). I then compute the detection efficiencies of the Bayesian blocks algorithm for each
XMM-Newton and Chandra observation according to the observed non-flaring level (Sect. 6.4.2). I deduce
the intrinsic distribution of X-ray flares fluxes and durations by correcting the observed distribution from the
merged detection efficiency of Chandra and XMM-Newton (Sect. 6.4.3). This intrinsic distribution allows me
to determine the detection biases in the XMM-Newton, Chandra and Swift observations. I finally apply the
Bayesian blocks algorithm on the arrival times of the flares observed by XMM-Newton, Chandra and Swift to
study the flaring rate corrected from these detection biases (Sect. 6.5).

6.1 Observations and data reduction

The observational data of XMM-Newton, Chandra and Swift are retrieved from the XMM-Newton Science
Archive (XSA)1, the Chandra Search and Retrieval interface (ChaSeR)2 and the Swift Archive Download
Portal3. For XMM-Newton and Chandra, I select the observations where Sgr A* was observed with an off-
axis angle lower than 8′. For Swift, I take all the observations containing Sgr A* since I will correct for the
effects of the off-axis angle during the data reduction. At the date of writing this Ph.D. thesis, three Chandra
observations made in 2015 were not public.

6.1.1 XMM-Newton observations

XMM-Newton observed the Galactic Center 54 times from 2000 Sept. to 2015 Apr. with EPIC/pn, MOS1
and/or MOS2 for a total effective exposure of about 2.2 Ms. The observation starts and ends reported in Table
C.1 of Appendix C in Universal Time (UT) correspond to the earliest GTI start and latest GTI stop of the
three cameras. The duration of the observations is the sum of the Good Time intervals (GTI). Most of the
observations were made with EPIC/pn, MOS1 and MOS2 in frame window mode with the medium filter.
During the 2000 Sept. 21, 2001 Sept. 4 and 2004 Mar. 28 and 30 observations, EPIC/pn was in frame window
extended mode leading to a lower time resolution (199.1 ms instead of 73.4 ms). During the 2014 Apr. 3
observation, EPIC/MOS1 and MOS2 observed in small window mode leading to a better time resolution but
a smaller part of the central CCD observing. During the 2002 Feb. 26 and Oct. 3 observations, EPIC/pn
observed with the thick filter while on 2008 Mar. 3 and Sept. 23, the three cameras observed with the thin
filter.

I create the event lists for the MOS and pn cameras with the SAS version 14.0 and the Current Calibration
files of 2015 June 13. For observations in frame window extended mode, the background region is a ∼ 3′× ∼ 3′

region at about 4′ north of Sgr A*. For observations in small window mode, the background region is a
∼ 3′× ∼ 3′ area at about 7′ east of Sgr A* (i.e., on the adjacent CCD).

6.1.2 Chandra observations

Chandra observed the Galactic Center 118 times from 1999 Sept. to 2015 May with the ACIS-I or ACIS-S
cameras for a total effective exposure of about 5.7 Ms. The effective observation starts and ends reported
in Table C.2 of Appendix C in UT correspond to the first GTI start and last GTI stop of the observation.
The ACIS-S observations of the 2012 XVP campaign and the 2013 May 25, and June 6 and 9 were made
with the High Energy Transmission Grating (HETG) which disperses the events on the detector. The ACIS-S
observations on 2013 May 12, June 4 and after 2013 July 2 (except those on 2015 Apr. 25) were made with
an 1/8 sub-array of 128 rows to decrease any pile-up by reducing the detector frame exposure. The other
observations were made with ACIS-I.

I reprocess the data using the CIAO (version 4.7) script chandra_repro and the Calibration Database
(CALDB; version 4.6.9) from the level 1 data. The chandra_repro script creates a bad pixel file, flags
afterglow events and filters the event patterns, afterglow events and bad pixels. The bkg region is a 8′′.2-radius
circle at 0′.54 south of Sgr A* (Nowak et al. 2012). For observations without HETG, the src+bkg events are
extracted from a 1′′.25-radius disk centered on the radio position of Sgr A*. For observations with HETG,
the diffraction order is determined with the CIAO task tg_resolve_events. I extract the zero-order events

1http://www.cosmos.esa.int/web/xmm-newton/xsa
2http://cda.harvard.edu/chaser
3http://www.swift.ac.uk/swift_portal
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Figure 6.1: Total correction factor (bad pixels/columns, PSF extraction fraction and vignetting) for the Swift
count rate of Sgr A* computed for all Swift observations of the Galactic Center from 2006 to 2015.

from the 1′′.25-radius disk centered on Sgr A* and the ±1-order events from two wide rectangles of 2′′.5 width
centered on the Sgr A* position (Nowak et al. 2012; Neilsen et al. 2013). The position angles of the dispersed
spectra are given in the region extension of the level 1 data event list.

6.1.3 Swift observations

Swift regularly observed the galactic center since 2006 with the XRT instrument (PI: N. Degenaar). The log
of each yearly campaign is given in Table C.3 of Appendix C.

I reprocess the Swift observations made in photon counting mode from 2006 Feb. to 2015 Nov. (1.5 Ms
exposure) from the level 1 data following the data reduction method of Degenaar et al. (2013, 2015). I use
the HEASOFT task XRTPIPELINE (v0.13.1) and the calibration files released on 2014 June 12 to reject the
hot and bad pixels and select the grades between 0 and 12. I then use the HEASOFT task XSelect (v2.4c) to
extract events recorded in a disk of 10′′-radius centered on the radio position of Sgr A*. Since Swift is on a
low Earth orbit located below the radiation belts, the instrumental background caused by the flaring protons is
negligible and I thus do not create a background extraction region.

To improve this data reduction, I correct the event losses caused by the bad pixels/columns, the PSF
extraction fraction and the vignetting at 2.77 keV (the median energy observed by Swift in the 10′′ extraction
region) running the HEASOFT task XRTLCCORR (v0.3.8). This task computes the total correction factor which
have to be applied on the light curve count rates for each 10 s time interval. Figure 6.1 shows the total
correction factor computed for each Swift observation as a function of the off-axis angle of Sgr A*. It is
different from one observation to an other, varying from about 2 to about 24, since the source position on
the detector is not fixed, indeed the off-axis angle of Sgr A* can be as large as 10′.5. The correction factor is
minimum on-axis with a slightly increasing trend with the off-axis angle because of the increase of the PSF
width and the vignetting. The mean value of the correction factor is 2.8 but the correction factor can be as
high as 24 when Sgr A* is located close to a bad column or pixel leading to a large standard deviation of the
correction factor (2.1). The median value of the correction factor is 2.3 with the 5% and 95% percentiles of
2.1 and 2.4, respectively. Applying the correction factors on the count rates from Sgr A* leads to a higher
non-flaring level compared to those computed in Degenaar et al. (2013): for the observations between 2006
and 2011, when there is no contamination by transient sources, I find an average count rate level of about
0.027±0.004 counts s−1 in the 2–10 keV energy band instead of 0.011±0.007 counts s−1. This increase of the
corrected non-flaring level would lead to a decrease of the flare detection efficiency by the Bayesian blocks
algorithm but the count rate standard deviation is 1.6 times lower than computed before since I correct the
count rate bias due to the bad pixels/columns, the PSF extraction fraction and the vignetting.
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Figure 6.2: Flare detection efficiency of the Bayesian blocks algorithm (left panel) and the Degenaar et al.
(2013)’s detection method (right panel) in the Swift observations. The points are the simulation grid for the
Gaussian flare light curve above a non-flaring level of 0.027 counts s−1 in the 2–10 keV energy range. The
contour levels are the detection probabilities in percent.

Due to the low Earth orbit, the duration of the Swift observations are about 1 ks, which is short compared
to the flare observed durations (from some hundred of seconds to more than 10 ks). I test the effect of this short
exposure on the detection probability of the flares with the Bayesian blocks algorithm. I first simulate two non-
flaring event lists with a typical exposure of 1 ks and a Poisson flux with a non-flaring level of 0.027 counts s−1

in the 2–10 keV energy range. I then simulate a third event list with a Gaussian flare above this non-flaring
level using for the sampling 30 mean count rates from 0.035 to 0.1 counts s−1 and 30 durations from 300 s to
10 ks in logarithmic scale. I finally extract a time range of 1 ks from different part of the simulated flare (the
center of the time range is defined to divide the flare duration in ten time ranges) to create a typical Swift
event list of a flare. I apply the Bayesian block algorithm on the three concatenated event lists (non-flaring,
flaring and non-flaring) and compute how many times the algorithm found two change points. The flares mean
count rates are converted to mean unabsorbed fluxes using the averaged conversion factor between the mean
count-rates and mean unabsorbed-flux in the 2–10 keV energy band of 293.5 × 10−12 erg s−1 cm−2/count s−1

computed for NH = 14.3 × 1022 cm−2 and Γ = 2. The resulting detection probability, shown in the left
panel of Fig. 6.2, has two different regimes with a small mean-unabsorbed-flux range where the detection
probability jumps from 20% to 100%. For flare durations longer than 800 s, the X-ray flares are either nearly
undetected (detection probability lower than 20%) or always detected with a mean unabsorbed flux limit of
about 0.044 counts s−1 (corresponding to 13.2×10−12 erg s−1 cm−2). For flare durations shorter than 800 s, the
flare detection efficiency decreases with the decay of the flare duration with a 100% detection probability at
0.044 counts s−1 for a flare duration of 800 s and 0.065 counts s−1 for a flare duration of 300 s. The Bayesian
blocks algorithm is thus less efficient for observations with exposures shorter than the flare duration and detects
only flares with a mean unabsorbed flux larger than 13.2× 10−12 erg s−1 cm−2 when the flare duration is larger
than the observation exposure. Therefore, I use the GTI-binned method of Degenaar et al. (2013) which is
optimized to detect the X-ray flares for the Swift observing setup.

To assess the detection efficiency of the Degenaar et al. (2013)’s method for the Swift observations,
I simulate an event list with a Poisson flux that reproduce a Gaussian-flare light curve with different mean
count rates and durations above each of the non-flaring level observed by Swift which are reported in Table 6.1.
I now work on a logarithmic mean unabsorbed flux grid of 30 points between 0.6 and 40.0×10−12 erg s−1 cm−2

and a logarithmic duration grid of 30 points between 300 s and 10.1 ks to cover the duration and flux ranges of
the overall observed flares (see next sections). For each set of point, I extract ten event lists of 1 ks distributed
over the flare duration to reproduce a typical flaring observation with Swift. I then apply the Degenaar et al.
(2013)’s detection method to compute how many time the flare is detection. These simulations are done for
each non-flaring level observed by Swift from 2006 to 2015 (Table 6.1). The resulting detection efficiencies
for the 2006–2011 observations (i.e., without transient sources) are shown in the right panel of Fig. 6.2. As for



CHAPTER 6. STUDY OF THE X-RAY FLARING RATE OF SGR A* DURING 1999–2015 67

the flare detection with the Bayesian blocks method, the detection efficiency jumps from 20 to 100% in a small
mean unabsorbed flux range. However, the flux limit for the 100% detection (about 7 × 10−12 erg s−1 cm−2)
is well below those associated to the Bayesian blocks method leading the Degenaar et al. (2013)’s detection
method more efficient for the flare detection with Swift.

6.2 Systematic flare detection

I use the two-steps Bayesian blocks algorithm with a false positive rate for the flare detection of 0.1% to
detect the X-ray flares observed with XMM-Newton and Chandra and to compute the non-flaring level for
each observation4. The non-flaring level observed with Chandra and XMM-Newton is not constant over
1999–2015 due to the presence of contaminating transient sources (a low-mass X-ray binary at 2′′.9 south and
SGR J1745-29 at 2′′.4 southeast of Sgr A*; see Sect. 3.2 and 1.5 ).

For the flare detection, I use the GTI-binned detection method of Degenaar et al. (2013). I filter the
src events in the 2−10 keV energy band to build the Sgr A* light curves binned on each GTI. I reject the
GTI whose exposure is lower than 100 s since the error bars on the count rate during this short exposure are
large. For the observations between 2006 and 2012, the non-flaring level from the src event list in each yearly
campaign is computed as the ratio between the number of event recorded during these campaign and the
corresponding yearly exposures. A light curve bin is associated to a flare if the lower limit on the count rate in
this observation is larger than the non-flaring level of the corresponding yearly campaign plus three times the
standard deviation of the yearly campaign light curve. During the 2013, 2014 and 2015 Swift campaigns, the
non-flaring level observed in the Sgr A* light curves has large variations due to the presence of the Galactic
Center magnetar (see Fig. 1.13). The non-flaring level during these campaigns is fitted using two exponential
powerlaws as it was done by Lynch et al. (2015) 5:

CR = (0.246 ± 0.009) e
− t−t0

(66.2±3.5) d + (0.012 ± 0.05) e
− t−t0

(79.0±9.7) d + 0.027 counts s−1 (6.1)

with t0 = 56406 MJD. During these three campaigns, a flare is detected if the mean count rate during the
observation is larger than this count rate fit plus three times the 1σ-error. The mean count rate of a flare
detected with Swift is the mean count rate of the observation subtracted from the non-flaring level.

The time of the start and end of the flares observed by XMM-Newton, Chandra and Swift as well as the
non-flaring levels are given in Tables C.1, C.2 and C.3, respectively, of Appendix C. In total, 102 X-ray flares
were observed between 1999 and 2015: 17 flares with XMM-Newton, 77 flares with Chandra and 8 flares with
Swift. The mean flare duration is 2708 s, the standard deviation is 2082 s and the median is 2027 s implying
that the flare durations have a nearly homogeneous distribution without preferred value. The cumulative
number of flares is given in Fig. 6.3 (blue line) as a function of time (with observing gaps) for Chandra (upper
panel), XMM-Newton (middle panel) and Swift (lower panel). The flare times are computed as (tstart + tend)/2
with tstart and tend the start and end times of the flare. I also represent in this figure the cumulative exposure
(orange line) for each instrument. The cumulative flaring rate is then computed as the ratio between these two
curves (black line). The total flaring rates observed by each instrument are different: 1.16 ± 0.13, 0.67 ± 0.16
and 0.45 ± 0.16 flare per day for Chandra, XMM-Newton and Swift, respectively. This is due to the different
sensitivity of the cameras and the different non-flaring levels observed by the instruments which depends on
the instrument sensitivity and the angular resolution. It is thus required to correct the detection bias due to
the sensitivity in order to study consistently the flaring rate obtained by the combination of three instruments.
To assess the detection efficiency for the three instruments, I use two flares characteristics that are independent
of the instruments: the flare duration (already computed in this section) and mean unabsorbed flux (see next
section).

4The prior number of change points is properly calibrated with the number of flare in the list (see Sect. 3.4.2) and is not the
geometric prior estimation computed by Scargle et al. (2013a). Ponti et al. (2015) used the geometric prior coded in the Python
program of the Bayesian blocks likely leading to an inconsistency between their adopted value of p1 and their resulting false detection
probability.

5I cannot directly use their fit since they did not correct from the losses caused by the bad pixels/columns, the PSF extraction
fraction and the vignetting.
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Figure 6.3: Evolution of the X-ray flaring rate from 1999 to 2015 by Chandra (top panel), XMM-Newton
(middle panel) and Swift (bottom panel). The light gray box with the dot-dashed line is the time range of the
DSO/G2 pericenter passage (Valencia-S. et al. 2015). The blue and orange lines are the cumulative number
of flares and the cumulative observational exposure. The black line is the cumulative flaring rate computed as
the ratio between the cumulative number of flares and the cumulative exposure.

6.3 The X-ray flare fluxes

To compute the mean unabsorbed fluxes of the X-ray flares detected by XMM-Newton and Chandra with the
two-steps Bayesian blocks algorithm, I extract their spectra, ancillary files, and response matrices with the
SAS script especget for XMM-Newton and the CIAO script specextract for Chandra6. For the Swift
observations, due to the short exposure time, the flare spectra are extracted during the entire observation using
the HEASOFT task XSelect and the corresponding arf are created using xrtmkarf (version 0.6.3). The rmf
are taken in the Calibration Database7. The non-flaring spectrum is extracted from the closest surrounding
observation.

I then group each spectra of the flares observed by XMM-Newton, Chandra and Swift with a minimum
of one count with grppha to fit them using the Cash statistic (Cash 1979). For the XMM-Newton and Swift
observations, I fit the spectra with the values of NH and Γ fixed to those computed for the two brightest X-ray
flares observed with XMM-Newton and the 2012 Feb. 9 bright Chandra flare: NH = 14.3 × 1022 cm−2 and
Γ = 2 (Porquet et al. 2003, 2008; Nowak et al. 2012). Only the unabsorbed flux between 2 and 10 keV is a
free parameter. The resulting mean unabsorbed fluxes of each X-ray flare are given in Tables C.1 and C.3 of
Appendix C.

For the Chandra observations, the pile-up must be taken into account. The pile-up is due to the recording
of more than one photon per pixel island during the same readout frame. The multiple photons are either
recorded as a unique photon of merged (higher) energy or they produce the pattern (or grade) migration of the
event leading this photons not classified as an X-ray event anymore. In the latter case, a dip appears in the
center of the PSF image of a bright source. I use the pile-up model of Davis (2001) available in ISIS with
the photon migration parameter α = 1 (Nowak et al. 2012; Neilsen et al. 2013) for a PSF fraction of 95%
corresponding to the 1′′.25 extraction region. I fit the spectra with this pile-up model applied on the absorbed
powerlaw model with the fixed NH and Γ reported above and a free unabsorbed flux between 2 and 10 keV.

6Ponti et al. (2015) used WebPIMMS to compute the mean unabsorbed flux. However, this tool considers only on-axis source
with the full effective area of the facility which leads to unreliable determination of the flare mean unabsorbed fluxes.

7http://heasarc.gsfc.nasa.gov/FTP/caldb/data/swift/xrt/cpf/rmf/
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Table C.2 of Appendix C reports the resulting mean unabsorbed flux between 2 and 10 keV.
Three flares observed with XMM-Newton and Chandra begin before the start of the observation and three

other flares end after the end of the observation (see flare times in bold face in the tables of Appendix C).
According to the phase of the flare which is not observed, this leads to a lower or upper limit on the mean
unabsorbed flux. Indeed, assuming a Gaussian flare, if we only observe the end of the decay phase or the
beginning of the rise phase, the resulting mean unabsorbed flux is a lower limit on its actual value; if we
observe the end of the rise phase and the decay phase or the rise phase and the beginning of the decay phase,
the resulting mean unabsorbed flux is an upper limit on its actual value. For the eight flares observed with
Swift, the duration of the flares are associated to the observational exposure leading to a lower limit on the
mean unabsorbed flux if the flare duration is lower than the exposure. If the flare duration is larger than the
exposure, the orientation of the limit depends on the part of the flare which is observed. Hereafter, I consider
these lower or upper limits on the mean unabsorbed flux as the actual value of the flare flux.

The averaged mean unabsorbed flux for the X-ray flares observed by XMM-Newton, Chandra and Swift is
8.7 × 10−12 erg s−1 cm−2 with a standard deviation of 10.3 × 10−12 erg s−1 cm−2 while the median is
4.5 × 10−12 erg s−1 cm−2. The observed distribution of the mean unabsorbed flux is thus peaked towards
the faintest flares. However, the different detection sensitivities of the instruments according to the flare mean
unabsorbed flux and duration biases the observed distribution towards the highest and longest flares. I thus
need to correct from the detection sensitivities to correctly study the merged duration and mean unabsorbed
flux distribution.

6.4 The intrinsic flare distribution

To determine the intrinsic flare distribution, I compute the flare density distribution from XMM-Newton and
Chandra flare detection since the characteristics of the flares observed by Swift are not enough constrained.
I then correct the observed flares density from the merged detection bias of XMM-Newton and Chandra.

6.4.1 The observed flare distribution

From the mean unabsorbed fluxes and durations of the X-ray flares observed by XMM-Newton and Chandra
from 1999 to 2015, I construct the minimum triangulation of the Delaunay tessellation (blue lines in the top
left panel of Fig. 6.4). The observed flare density is computed using the Delaunay tessellation field estimator
(DTFE; Schaap & van de Weygaert 2000; van de Weygaert & Schaap 2009): the density associated to a
given flare position is computed using the Delaunay triangles connected to this flare to conserve the total flare
number in the reconstructed density field. I compute for each flare i the area Wi =

∑

Ak with Ak the area of
the triangle k whose one of the vertex is the flare i at the location xxxi. The flare density per surface unit in the
mean-unabsorbed-flux–duration plane associated to the flare i is di = 3/Wi . The discretized map of the flare
density is linearly interpolated inside the convex hull of the observed flare set at a point xxx in the Delaunay
triangle m: d(xxx) = di +▽d|m(xxx− xxxi). The resulting filled contour map of the observed flare density is shown in
the top right panel of Fig. 6.4 with the distribution density levels of the observed flares in logarithmic scale.

6.4.2 The X-ray flare detection efficiency

The detection efficiency of the X-ray flares with the Bayesian blocks algorithm depends on the non-flaring
level and the instrument sensitivity. During the 1999–2015 observations with XMM-Newton and Chandra,
12 different values of the non-flaring levels were recorded (see Table 6.1). I use flare durations and mean
unabsorbed fluxes (and not the flare count rate amplitudes as in the previous Chapters since it is instru-
ment dependent) to compute the local detection efficiency of the Bayesian blocks algorithm. I simulate an
event list with a Poisson flux reproducing a Gaussian-flare light curve with different mean count rates and
durations (defined as two times the Gaussian standard deviation) above each of these non-flaring levels as
explained in Sect. 3.3. I work on a logarithmic mean unabsorbed flux grid of 30 points between 0.6 and
40.0 × 10−12 erg s−1 cm−2 and a logarithmic duration grid of 30 points between 300 s and 10.1 ks to cover the
duration and flux ranges of the overall observed flares. The mean unabsorbed fluxes are converted into mean
count rates using the count-rate–to–unabsorbed-flux ratio computed for the flares detected with each instru-
ment, i.e., 111.3, 248.2 and 148.1×10−12 erg s−1 cm−2/count s−1 for XMM-Newton/EPIC pn, Chandra/ACIS-
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Figure 6.4: Flux–duration distribution of the X-ray flares from Sgr A*. Top left panel: The observed flare
flux–duration distribution observed with XMM-Newton and Chandra from 1999 to 2015 (black dots) and the
corresponding Delaunay’s triangles (blue lines). The red lines define the convex hull. Top right panel: The
observed flare density estimation. The filled contours are in logarithmic scale and the color bar is represented
in the right hand side of the figure in unit of 1010 s−1 erg−1 s cm2. Bottom left panel: The merged detection
efficiency of XMM-Newton and Chandra from 1999 to 2015 in percent. The dots represent the simulation grid.
Bottom right panel: The intrinsic flux–duration distribution in filled contour corrected from the observing bias.
The filled contours are in the same logarithmic scale than in the top right panel.
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Table 6.1: Average flare detection efficiency associated with the different non-flaring levels observed by Chan-
dra, XMM-Newton and Swift.

Telescope Instrument Non-flaring level Observing dates Total exposurea ηb

(counts s−1) (ks) (%)
Chandra ACIS-I3 0.005 1999-09-21–2011-07-30 and 2015-04-25 1718.7 56.0

0.045 2013-04-06–2013-04-14 40.2 33.9
ACIS-S3/HETG 0.006 2012-02-06–2012-10-31 2983.5 37.6

0.009 2013-05-25 and 2013-06-05–2013-06-09 47.8 34.9
ACIS-S3/subarray 0.024 2013-05-12 15.1 27.2

0.014 2013-07-27–2013-08-12 and 2013-09-20 119.6 31.9
0.009 2013-06-04 and 2013-07-02 and 2013-08-31–2013-09-14 and 2013-10-04–2014-02-22 216.1 34.9
0.007 2014-03-14–2015-05-14 476.6 36.6

XMM-Newton pn 0.100 2000-09-17–2002-10-03 and 2006-02-27–2012-08-31 1803.1 27.1
0.171 2004-03-28–2004-09-03 and 2014-08-30–2015-04-02 633.2 24.3
0.535 2013-08-30–2013-09-10 91.3 16.5
0.506 2013-09-22 39.4 16.7
0.320 2014-02-28 51.9 19.7
0.312 2014-03-10 54.1 19.8
0.287 2014-04-02 54.9 20.3
0.294 2014-04-03 83.5 20.1

Swift XRT 0.027 2006-02-24–2013-04-23 and 2015-02-03–2015-11-02 1102.4 24.5
0.284 2013-04-24–2013-05-11 4.0 15.7
0.245 2013-05-12–2013-05-17 8.7 17.4
0.207 2013-05-18–2013-05-29 10.6 18.0
0.153 2013-05-30–2013-06-28 23.0 21.3
0.102 2013-06-29–2013-09-07 60.1 22.2
0.042 2013-09-08–2013-10-31 44.0 23.1
0.030 2014-02-03–2014-11-02 230.5 24.1

Notes: (a) Sum of the GTIs of the corresponding observations; (b) The average flare detection efficiency above the corresponding non-flaring level.

S3 subarray and Chandra/ACIS-I, respectively. For each set of point inside and close to the border of the
convex hull, I simulate 100 event lists and apply the Bayesian blocks algorithm to compute how many times
the algorithm detects the flare.

Since the flares are described with parameters independent from the telescope instruments, I am able to
combine the local detection efficiencies of each instrument computed on the same grid. The local detection
efficiencies are firstly weighted according to the total exposure time of the corresponding instrument since the
impact of the detection efficiency on the number of observed flare depends on the exposure. I finally sum the
weighted local detection efficiencies to determine the merged local detection efficiency of XMM-Newton and
Chandra shown in the bottom left panel of Fig. 6.4 with the grid points. The merged local detection efficiency
on the convex hull is computed by a linear interpolation between the merged local detection efficiency on
either side of the convex hull.

6.4.3 Correction of the observed flare distribution

The map of flare density is finally corrected from the merged local detection efficiency XMM-Newton and
Chandra to compute the intrinsic flares distribution. The observed density distribution at a point grid xxx is then
corrected by the merged local detection efficiency XMM-Newton and Chandra p(xxx) < 1 at each grid point xxx

as dintr(xxx) = d(xxx)/p(xxx) (see Eq. 17 of van de Weygaert & Schaap 2009). The intrinsic flare density distribution
is shown with filled contour in logarithmic scale in the bottom right panel of Fig. 6.4 with the same color scale
than for the left panel of this figure. The intrinsic flare density is now highest for the faintest and shortest
flares.

6.5 Study of the unbiased X-ray flaring rate

The overall XMM-Newton, Chandra and Swift corrected observations are then combined and the observa-
tional gaps are removed to create a continuous exposure containing the times of the 102 flares detected.
The observational overlays are also removed keeping only the most sensitive instrument. Figure 6.5 shows
the flares times without observing gaps over the total exposure time of 106.8 days (corresponding to 9.2 Ms).
The height of each vertical line representing a flare corresponds to the mean unabsorbed flux (top panel) and
fluence (mean unabsorbed flux times duration; bottom panel) between 2 and 10 keV. We thus observe 102
flares during a total exposure of 106.9 days (corresponding to 9.2 Ms) leading to a flaring rate of 0.95 ± 0.09
flare per day which is statistically consistent with the flaring rate of Neilsen et al. (2013) limited to the 2012
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Figure 6.5: Temporal distribution of the flare fluxes and fluences. The mean flare times without observing
gaps and with the correction of the average flare detection efficiency are represented by the vertical lines.
The dotted lines are the time of the beginning of the first observation of the year. The blue, green and red lines
are the Chandra, XMM-Newton and Swift flares, respectively. The dashed lines are only lower or upper limits
on the flare flux and fluence due to the truncated flare duration when it begins/ends before/after the start/stop
of the observation. Top panel: The mean unabsorbed flux distribution. Bottom panel: The mean unabsorbed
fluence distribution.
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Figure 6.6: Temporal distribution of the flare fluxes and fluences corrected from the sensitivity bias. See
caption of Fig. 6.5 for details.
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Chandra XVP campaign but lower than their value since XMM-Newton and Swift are less sensitive to fainter
and shorter flares. I thus need to correct the flare count rate from the flare detection bias due to the instrument
sensitivities.

To do so, I apply the local detection efficiencies corresponding to each non-flaring level nf observed
by XMM-Newton, Chandra and Swift on the intrinsic flares distribution computed above to determine the
average flare detection efficiency η for each observation. The intrinsic flare density dintr(xxx) at each grid point
xxx is affected by the corresponding local detection efficiency pnf(xxx) < 1 leading only a percentage of this flare
density to be observed: dnf(xxx) = dintr(xxx)× p(xxx). By computing the ratio between the 2-D integral on the convex
hull of the flare density distribution affected by the local detection efficiency for a given non-flaring level and
the intrinsic flare density distribution, I assess the average flare detection efficiency η < 1 corresponding to
this non-flaring level (Table 6.1):

η =

∫ ∫

dnf(xxx) dxxx
∫ ∫

dintr(xxx) dxxx
. (6.2)

I thus obtain a set of merged observations of XMM-Newton, Chandra and Swift, each containing N ≥ 0
flares, with their corresponding exposure and average flare detection efficiency η given in Table 6.1. To correct
the flaring rate from the observing sensitivity, I apply the same method as used previously in Sect. 3.4.1 for
correcting the event count rates in each exposure frame from the exposure livetime in the two-steps Bayesian
blocks algorithm: for each observational exposure T , I compute the corrected observational exposure as
Tcorr = T η leading to a higher and unbiased flaring count rate in the corresponding observation. Figure 6.6
shows the flares times without observing gaps over the total corrected exposure time of 37.3 days.

I divide the corrected exposure time in Voronoi cells each containing one flare and whose the separa-
tion time is the mean time between two consecutive flares. I apply the Bayesian blocks algorithm on the
Voronoi cells with a false positive rate for the change point detection of p1 = 0.05 and the corresponding
ncp_prior = 3.96 obtained for an average flaring rate of 102 events during 37.3 days. The overall flaring
activity is described by a constant rate of 2.74 ± 0.27 flares per day. This is higher than those computed
by Neilsen et al. (2013) since they did not correct from the non-detection bias corresponding to their flare
detection method.

I now search for any change of the flaring rate over the flux and fluence distribution. I first performed
a top-to-bottom search: at each step, I remove the flare with the highest unabsorbed flux (but keeping the
corresponding exposure time and updating the Voronoi cells) and apply the Bayesian block algorithm with
a false probability rate of p1 = 0.05 on the resulting flare list8. I repeat this operation until the algorithm
found a flaring rate change. A change of flaring rate is detected at 32.6 days, i.e., between the two Chan-
dra flare on 2013 Oct. 28 considering only 64 flares with a mean unabsorbed flux lower than or equal to
6.3 × 10−12 erg s−1 cm−2 (the less luminous flares) with p1 = 0.05 and the corresponding ncp_prior = 4.13.
The resulting Bayesian blocks are shown in the top panel of Fig. 6.7 where only these 64 flares are shown.
The first block contains 63 flares while the second block contains only one flare. The flaring rate decreases
from 1.93± 0.24 to 0.21± 0.21 flares per day. By decreasing the false probability rate, this flaring rate change
is detected for p1 > 0.012 leading to a significance of 1 − p1 = 98.8%.

I then perform the bottom-to-top search by recursively removing the flare with the lowest unabsorbed flux
and applying the Bayesian block algorithm. One change of flaring rate is found considering only 52 flares
with a mean unabsorbed flux larger than or equal to 4.52× 10−12 erg s−1 cm−2 (the most luminous flares) with
p1 = 0.05 and the corresponding ncp_prior = 4.24. The resulting Bayesian blocks are shown in the bottom
panel of Fig. 6.7 where only these 52 flares are shown. The change of flaring rate happens between the two first
XMM-Newton flares on 2014 Aug. 31 flares (35.2 days). The blocks contain 43 and 9 flares corresponding to
flaring rates of 1.22 ± 0.19 and 4.44 ± 1.48 flares per day. There is thus an increase by a factor of 3.6 ± 1.8 of
the flaring rate of these flares. This flaring rate change is still detected until a false positive rate of p1 = 0.031
(ncp_prior = 4.67) leading to a significance for this change point of 1 − p1 = 96.9%.

The same study is done with the unabsorbed fluence. I first perform the top-to-bottom search: a change
of flaring rate was found considering only 60 flares with an unabsorbed fluence lower than or equal to
121.9 × 10−10 erg cm−2 (the less energetic flares) with p1 = 0.05 and the corresponding ncp_prior = 4.13.
The resulting Bayesian blocks are shown in the top panel of Fig. 6.8 where only these 60 flares are shown.
The first block contains 58 flares while the second one contains 2 flares. The change of flaring rate happens

8The ncp_prior was calibrated at each step to be consistent with the flare number.



74 CHAPTER 6. STUDY OF THE X-RAY FLARING RATE OF SGR A* DURING 1999–2015

between the second Chandra flare on 2013 July 27 and the 2013 Oct. 28 flare also observed by Chandra (31.89
days). The corresponding flaring rates are 1.81 ± 0.24 and 0.37 ± 0.26 flares per day. This flaring rate change
is detected for a decreasing false positive rate until p1 = 0.048 (ncp_prior = 4.18) leading to a probability
that this change of flaring rate is a real one of 1 − p1 = 95.2%.

For the bottom-to-top search, two changes of flaring rate are detected considering only 48 flares with
a mean unabsorbed fluence larger than or equal to 107.8 × 10−10 erg cm−2 (the most energetic flares) with
p1 = 0.05 and the corresponding ncp_prior = 3.93. The resulting Bayesian blocks are shown in the bottom
panel of Fig. 6.8 where only these 48 flares are shown. The three blocks are described by flaring rates of
1.13 ± 0.18, 30.1 ± 17.36 and 2.59 ± 1.16 flares per day. They contain 40, 3 and 5 flares, respectively with the
two change points between the two first XMM-Newton flares on 2014 Aug. 31 (35.26 days) and between the
XMM-Newton flare on 2014 Sept. 1 and the Swift flare on 2014 Sept. 9 (35.36 days). This flaring rate change
is detected for a decreasing false positive rate until p1 = 0.049 (ncp_prior = 3.96) leading to a probability
that this change of flaring rate is a real one of 1 − p2

1 = 99.76%. This increase of flaring rate for the flares
having a mean unabsorbed fluence larger than or equal to 107.8 × 10−10 erg cm−2 corresponding occurs at the
same date that the increase of the flaring rate for the most luminous flares. However, considering the flare
fluences, the flaring rate is not high until the end of the observations considered here but is short-lived (from
one to ten days) and the flaring rate then recovers a level consistent with those observed before 2014 Aug. 31.

In summary, no significant change of flaring rate is found with the Bayesian block algorithm considering
the overall flares. However, an increase of the most luminous and most energetic flares is observed on 2014
Aug. 31, i.e., 80–181 days after the DSO/G2 pericenter passage near Sgr A*. For the most luminous flares,
the flaring rate increases by a factor of 3.6 ± 1.8 and lasts until 2015 Nov. 2. Comparing this result to the high
flaring rate argued by Ponti et al. (2015), the high level block found here contains the six flares creating the
increase of flaring rate in Ponti et al. (2015) and the three additional flares observed in 2015 with Chandra
(two flares) and Swift (one flare). The flaring rate for those flares is still high on 2015 Nov., i.e., at the end of
the observational set considered here. The start of the higher flaring rate happened 131 days (80–181 days)
after the DSO/G2 pericenter passage near Sgr A* (computed with the DSO/G2 pericenter passage determined
by Valencia-S. et al. 2015). As argued in Sect. 5.2.3, if some material from DSO/G2 was accreted toward
Sgr A*, the increase of flux should not be observed before the end of 2017 considering a pericenter distance
of 2000 Rs and an efficiency of the mechanism of angular momentum transport of α = 0.1. Two interpretations
can thus be proposed to explain this increase of flaring rate: firstly, the increase of flaring rate could be due
to the accretion of matter from the DSO/G2 onto Sgr A* considering an efficiency of the mechanism of
angular momentum transport of at least 0.6. Secondly, the increase of flaring rate could be explained by other
mechanisms as reported in Sect. 1.2.3 which would become more efficient leading to the creation of a larger
number of luminous flares.

I identified a decay of the flaring rate for the less luminous and less energetic flares. This decay occurs on
2013 Oct. 28, i.e., 185–225 days before the pericenter passage of the DSO/G2 implying that this change of
flaring rate is difficult to be explained by the passage of the DSO/G2 near Sgr A*.

For the most energetic flares, the flaring rate increases by a factor of 26.6±19.6 on 2014 Aug. 31 and lasts
until 2014 Sept. 1 – Sept. 9. Interestingly, the decay of the less luminous and less energetic flares occurs before
the increase of the most luminous and most energetic flaring rate. For comparison, I compute the energy lost
during the decay of the flaring rate of less energetic flares between 2013 Oct. 28 and 2014 Aug. 31 and the
energy gained during the increase of the flaring rate of most energetic flares. For the flares with a maximum
fluence of 121.9 × 10−10 erg cm−2, the flaring rate decreases from 1.81 to 0.37 flare per day during 3.37 days
leading an energy lost lower than 121.9× 10−10 (1.81− 0.37) 3.37 = 5.9× 10−8 erg cm−2. For the flares with a
minimum fluence of 107.8 × 10−10 erg cm−2, the flaring rate decreases from 1.13 to 30.1 flare per day during
0.10 days leading an energy gain larger than 107.8×10−10 (30.1−1.13) 0.10 = 3.1×10−8 erg cm−2. Therefore,
the energy saved by the decrease of the number of less energetic flares during several days could be released
by a few bright flares in several hours. This energy can be stored in the distortions of the magnetic field lines
and then released during a magnetic reconnection event. This is reminiscent of the Earthquake behavior where
stresses produce several small events during a long period of time or may accumulate before releasing in a
large event. The input of fresh accreting material from the DSO/G2 is thus not needed to explain this large
increase of the most luminous and most energetic flares.

This work is planned to be submitted in A&A.
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Figure 6.7: X-ray flaring rate from 1999 to 2015 computed by the Bayesian blocks algorithm in a given mean
unabsorbed flux range. See caption of Fig. 6.5 for details. Only the flares used for the computation of the
corresponding flaring rate are shown. The Bayesian blocks are the thick black lines. Top panel: The results
for the top-to-bottom search. The largest mean unabsorbed flux is thus the flare flux threshold for which a
change of flaring rate is found. Bottom panel: The results for the bottom-to-top search. The lowest mean
unabsorbed flux is thus the flare flux threshold for which a change of flaring rate is found.

Figure 6.8: X-ray flaring rate from 1999 to 2015 computed by the Bayesian blocks algorithm in a given
mean unabsorbed fluence range. See captions of Fig. 6.5 and 6.7 for details. Top panel: The largest mean
unabsorbed fluence is thus the flare fluence threshold for which a change of flaring rate is found. Bottom

panel: The lowest mean unabsorbed fluence is thus the flare fluence threshold for which a change of flaring
rate is found.
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Chapter 7

General conclusion and perspectives

The goal of this Ph.D. thesis was to study the impact of the DSO/G2 pericenter passage on the multiwavelength
flaring activity of Sgr A*. For the X-ray analysis, I used and improved two methods for the temporal anal-
ysis (the two-steps Bayesian blocks method and light curve smoothing) and I used the Monte-Carlo Markov
chains (MCMC) method for the spectral analysis. The two-steps Bayesian blocks algorithm was proposed to
automatically detect X-ray flares with a given false detection probability using the source–plus–background
and background event lists of an observation. As proposed by Scargle et al. (2013a), I took the CCD livetime
and the recording of simultaneous events into account. I also calibrated the prior number of change points
according to the number of events. The light curve smoothing with an Epanechnikov kernel allowed me to
reduce the Poisson noise in the light curve and to increase the accuracy on the amplitude and the time of
the maximum of the flares. The MCMC method is an iterative fitting method allowing to easily compute the
marginal distribution and error of the spectral parameters. I used this method coded in the XSPEC_emcee
program to fit the absorbed powerlaw model to the X-ray flare spectra.

Some progress have been made in the constraints of the physical parameters of the flaring region from
Sgr A* thanks to the study of two observational campaigns: the XMM-Newton 2011 campaign and the 2014
Feb.–Apr. multiwavelength campaign. During the 2011 campaign published in Mossoux et al. (2015a), two
X-ray flares were detected: one on 2011 March 30 and one on April 2. The March 30 flare had two peaks:
a short and luminous peak followed by a longer and less luminous one. This flare allowed us to test the
gravitational lensing model for the X-ray flux variation during a flare. But this model was rejected since it
did not reproduced the dip separating the two peaks without adding some ad-hoc components. Considering
that the 2011 March 30 flare was actually composed by two close subflares emitted by their own electrons
population, the first subflare allowed me to constrain the distance and the size of the flaring region assuming
that the electrons are accelerated by the magnetic field. Assuming that the luminosity observed during the
overall first subflare was produced by the release of the magnetic energy (with B = 100 G at 1 Rs and varying
as the inverse of the distance to Sgr A*) during the rise phase of the subflare and that the decay phase was
only due to synchrotron colling of accelerated electrons, the constrained radial distance of the flaring source
from Sgr A* is 4 rg < r < 100+19

−29 rg and the corresponding radius of the source is 1.8 rg < R < 2.87± 0.01 rg.
I also rejected the direct synchrotron process for the creation of the X-ray photons during this first subflare.

The 2014 Feb.–Apr. multiwavelength campaign for the observation of Sgr A* was based on a XMM-
Newton/HST large program which granted additional VLT, VLA and CARMA observations. These VLT/
SINFONI observations were also very valuable for the study of the DSO/G2 (Valencia-S. et al. 2015).
We found that the DSO/G2 is a 1 − 2 M⊙ pre-main sequence star where the Brγ emission line is produced
by magnetospheric accretion of the matter from the circumstellar accretion disk on the stellar photosphere.
During the pericenter passage on 2014 Apr. 20 (Mar. 1– Jun. 10) at 2032 Rs (163 au) from Sgr A*, the DSO/G2
was not tidally disrupted but the accretion rate on the stellar photosphere increased leading to a larger FWHM

of the Brγ line. The Lagrange point between Sgr A* and a star with a 1M⊙ mass is about 1 au leading to a
possible transfer of matter from the DSO/G2 accretion disk to Sgr A*.

During the 2014 Feb.–Apr. multiwavelengths campaign published in Mossoux et al. (2016), two X-ray
flares from Sgr A* were detected with XMM-Newton: one on 2014 March 10 and one on April 2. Three
NIR flares were also detected with HST/WFC3 whose two had a detected X-ray counterpart. Two NIR flares
were also observed with VLT/SINFONI without X-ray counterpart. We also observed the beginning of a radio
flare with VLA but the NIR/X-ray counterpart could not be observed. Three other radio flares were observed
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with CARMA whose the first one may be the delayed counterpart of the first VLT flare. The NIR flare on
April 2 was actually composed by two close flares whose the first one was the simultaneous counterpart of
the X-ray flare observed on the same date. The NIR/X-ray flare observed on March 10 has a variable NIR–
to–X-ray flux ratio which could be explained by the adiabatic compression of a plasmon or the presence of
two close flares produced by their own electrons population. Considering the last interpretation, we thus
actually observed three X-ray flares and seven NIR flares. This X-ray flaring rate during this campaign was
statistically consistent with those observed during the 2012 Chandra XVP campaign showing that no increase
of the flaring activity occurred at the pericenter passage of the DSO/G2. Thanks to the three NIR/X-ray
flares and the four NIR flares without detected X-ray emission observed during the 2014 Feb.–Apr. campaign,
I put some constrains on the source size and accelerated electrons density of the flaring region for the three
local radiative processes for the NIR and X-ray emission: SSC-SSC, SYN-SYN and SYN-SSC. None of
these radiative processes nor the IC process could be favored or rejected for the creation of creation of X-ray
photons. However to NIR/X-ray flare with the lowest NIR–to–X-ray amplitude ratio allowed me to constrain
the size and the electronic density of the flaring region to 0.003 − 7 Rs and 108.5 − 1010.2 cm−3, respectively,
for the SYN/SSC mechanism and a synchrotron spectral index of α = 0.3 − 1.5. The NIR and X-ray flaring
rate observed between 2014 Feb. and Apr. was consistent with those observed by VLT/NACO and the 2012
Chandra XVP campaign, respectively, implying that we did not observe any change of flaring rate due to the
pericenter passage of the DSO/G2.

On 2015 Nov., a total of 102 X-ray flares were observed since 1999 with Swift, XMM-Newton and
Chandra whose five were detected during the two campaign analyzed during this Ph.D. thesis. Thirteen of
the 102 X-ray flares were observed with their NIR counterpart and three of them were discovered during the
2014 Feb.–Apr. campaign. To properly compute the X-ray flaring rate using these 102 X-ray flares, I computed
the local detection efficiency for each instrument as a function of the flare mean unabsorbed flux and of the
flare duration to correct from the detection bias. This allowed me to compute the intrinsic flux density and then
the average flare detection efficiency for each observation. Thanks to this average flare detection efficiency,
I corrected the observed flaring count rate in each observation to properly study the overall X-ray flaring rate.
The observations from 1999 to 2015 were then merged and the Bayesian blocks algorithm was applied on the
flare arrival times leading to an overall intrinsic flaring-rate of 2.73 ± 0.27 flare per day. I pointed out a decay
of the flaring rate for the less luminous and less energetic flares on 2013 Oct. 28. This change of flaring rate
occurred 185–225 days before the DSO/G2 pericenter passage which excludes the DSO/G2 as the origin of
this change of flaring rate. There was also an increase of the X-ray flaring rate for the most luminous and
the most energetic flares. The flaring rate of the most luminous increased on 2014 Aug. 31 until the end of
the observations set, i.e., on 2015 Nov. 2. while those of the most energetic flares increased on 2014 Aug. 31
and decreased on 2014 Sept. 9 to recovers the flaring rate observed before 2014 Aug. 31. This increase of the
flaring rate occurred 80–181 days after the DSO/G2 pericenter passage but no direct link can be done between
this event and the increase of the flaring rate. Moreover, the energy balance between the decay of the X-ray
flaring rate for the less energetic flares and the increase of the X-ray flaring rate for the most energetic flares
suggests that the energy saved during several days by the decay of the number of the less energetic flares could
be released during a few hours by a few energetic flares.

The low number of photons recorded during an X-ray flare limits the accuracy on the light curve and the
spectrum of these flares. With the current X-ray facilities, we thus can not disentangle between the radiative
processes producing the for the X-ray flares. The next generation X-ray satellite Athena will have an angular
resolution which will be intermediate between XMM-Newton and Chandra and it will be able to record a
higher number of X-ray photons.

The Advanced Telescope for High Energy Astrophysics (Athena) is the large mission of ESA which will
be launched in 2028 (Nandra et al. 2013). It is composed by two instruments which operate separately: the
X-ray Integral Field Unit (X-IFU; Barret et al. 2013) and Wide Field Imager (WFI; Rau et al. 2013). The WFI
has a field of view of 40′ × 40′(larger than XMM-Newton and Chandra) and covers the 0.1 to 12 keV energy
band. The X-IFU is a micro-calorimeter covering the 0.3 to 12 keV energy band with a spectral resolution of
2.5 eV below 7 keV (with a goal of 1.5 eV) and increasing as (E/keV)/2.8 above 7 keV. Its angular resolution
is 5′′ half-energy width on-axis (with a goal of 3′′) and its temporal resolution is 10 µs. The focal plane of the
X-IFU is an hexagon with an equivalent diameter of 5′ (with a goal of 7′) and a pixel size of 4.21′′. The goal
of the X-IFU CCD configuration is to oversample the inner array with 25× 25 smaller pixels with a pixel size
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Figure 7.1: Comparison between the effective area of Athena/X-IFU and Chandra. Top panel: effective area
of the full Athena/X-IFU focal plan for the 1190 mm mirror radii. Middle panel: effective area computed for
Chandra HETG/ACIS-S3 on a focal plane equivalent to those of Athena/X-IFU. Bottom panel: effective area
ratio between Athena/X-IFU and Chandra HETG/ACIS-S3.

of about 0.84′′.

To compare the detection efficiency of the X-ray flares from Sgr A* with the Bayesian blocks method on
the Athena/X-IFU data to those computed for XMM-Newton and Chandra, I make simulations of the Galactic
Center as it would be observed by Athena/X-IFU.

I first extract the event lists of the observations made with Chandra HETG/ACIS-S3 during the 2012
Chandra XVP campaign and filter out the time ranges when Sgr A* was flaring as it was done in Sect. 3.2.
I then create an image of the Galactic Center between 2 and 10 keV with an angular resolution of 0′′.5 with
these zeroth order filtered event lists (total exposure of 2.82 Ms). I extract the Chandra spectrum and the
weighted arf (see middle panel of Fig. 7.1) and rmf from a region corresponding to the full X-IFU focal plane
centered on Sgr A*.

To properly reproduce the source distribution at the Galactic Center with the energy, I divide this spec-
trum in several spectral bands and create the corresponding images. The embedded sources will thus appear
only in the spectral bands of higher energy. I use nine spectral bands each containing about 2 × 105 counts
from ACIS-S3 in the zeroth order of HETG: 1.0–2.0, 2.0–3.0, 3.0–3.7, 3.7–4.3, 4.3–5.0, 5.0–6.0, 6.0–7.0,
7.0–9.0 and 9.0−10.0 keV. I then create a Chandra image corresponding to each spectral band with an angular
resolution of 0′′.5.

To assess the flux of this field-of-view in each spectral band, I first compute the number of photons in each
spectral band as it would be recorded by Athena/X-IFU. To do so, I use the arf and rmf computed on the full
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Figure 7.2: Simulated Athena/X-IFU image of the Galactic Center between 1 and 10 keV for a 100 ks expo-
sure when Sgr A* (red cross) is in its quiescent state. The color coding is red=1–3.7 keV, green=3.7–7 keV,
blue=7–10 keV. The image intensity (count rate) is in logarithmic scale. The count rate for the three images
ranges from 10−4 count s−1 to 0.12 count s−1 (the maximum of the red channel).

X-IFU focal plane for the 1190 mm mirror radii of Athena1 (see upper panel of Fig. 7.1). From the spectral
equation (Eq. 3.9):

C(i) = T

∫ ∞

0
R(i, E) A(E) S (E) dE + B(i) , (7.1)

where T is the time exposure of the spectrum, I assume a background spectrum equal to zero (B(i) = 0) and
a diagonal redistribution matrix (R(i, E) = 1 at the energy E and R(i, E) = 0 elsewhere). I thus obtain the
following spectral equations for these two instruments:

CChandra(E) = T AChandra(E) S (E)∆E ,

CAthena(E) = T AAthena(E) S (E)∆E ,
(7.2)

with ∆E the energy width of the spectral channel for Chandra HETG/ACIS-S3 and AAthena(E) and AChandra(E)
the effective area of Athena/X-IFU and Chandra HETG/ACIS-S, respectively, computed for the full X-IFU
focal plane. The number of count observed by Athena at an energy E is thus

CAthena(E) =
AAthena(E)
AChandra(E)

CChandra(E) . (7.3)

I thus determine the effective area ratio between Athena/X-IFU and Chandra HETG/ACIS-S in each Chandra
spectral channel (see bottom panel of Fig. 7.1).

1The 1190 mm mirror radii corresponds to the ESA Concurrent Design Facility configuration of Athena with an effective area of
the mirror of about 1.37 m2 (Brand et al. 2016); the arf and rmf used here are athena_xifu_sixte_1190_onaxis_v20150402.arf
and athena_xifu_sixte_v20150402.rmf.
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Figure 7.3: Detection efficiency of the Bayesian blocks algorithm for Athena/X-IFU. The points are the X-ray
flares detected with Chandra and presented in Sect. 6.4.1.

I use the Simulation of X-ray Telescopes2 (SIXTE; version 2.1.0 3) package making Monte Carlo simula-
tions of event lists using the complete PSF, rmf and arf informations of the telescope. For each spectral band,
I create a SIMulation inPUT (SIMPUT) FITS file containing the energy band, the Chandra spectrum in this
energy band, the corresponding Chandra image and the flux that I first fix to an arbitrary high value. I simulate
the corresponding event lists with the SIXTE task xifupipeline. Using the resulting number of counts in
each spectral band, I then tune the input flux to match the number of counts predicted from the effective area
ratio. I run again the SIXTE task xifupipeline on each spectral band with this correct flux. I create the
Galactic Center image as observed by Athena/X-IFU by combining the images created by the SIXTE task
imgev for each simulated event list. The resulting image between 1 and 10 keV for an exposure of 100 ks is
shown in Fig. 7.2.

I then extract the src+bkg events in the 2–10 keV energy band from a disk centered on the radio position
of Sgr A* with a 5′′-radius which is the optimum to increase the signal-to-noise ratio of the flares with a
pixel size of 4.21′′; the oversampling of the inner array would allow the decay of the radius of the extraction
region leading to an increase of the signal-to-noise ratio. The bkg extraction region is a square of 1′ × 1′ at
1′.64 west of Sgr A*. The background-subtracted non-flaring level in the src+bkg extraction region is about
0.68 count s−1 in the 2–10 keV energy range.

I also need to assess the conversion factor between the unabsorbed flux and the count-rate of the flares as
observed by Athena/X-IFU. I thus create a new SIMPUT file containing the absorbed powerlaw model for the
flare spectrum between 2 and 10 keV with NH = 14.3 × 1022 cm−2, Γ = 2 and an arbitrary high unabsorbed
flux. I then use the SIXTE task xifupipeline to create the event list corresponding to a point source with an
exposure time of 1 ks. I then extract the flaring event list in the 5′′-radius disk centered on the radio position
of Sgr A*. The number of counts in the resulting event list gives me a conversion factor for Athena/X-IFU of
0.36 count s−1/10−12 erg s−1 cm−2.

To test the efficiency of the Bayesian blocks method, I produce synthetic light curves with a Poisson
flux with a non-flaring level of 0.68 count s−1 as explained in Sect. 3.3. I fix the exposure time to 20 ks and
I simulate Gaussian flares peaking at the exposure center and with varying mean count-rates and durations in
0.0001−0.5 count s−1 and 380−10083 s on a linear grid of 30 steps. The resulting detection probability of the
Bayesian blocks algorithm is shown in Fig. 7.3 and can be directly compared to those presented in Fig. 6.4.

The overall X-ray flare distribution presented in Sect. 6 would thus be detectable with at least 80%
efficiency and the intrinsic flare-flux–duration distribution determined during this Ph.D. thesis would thus

2http://www.sternwarte.uni-erlangen.de/research/sixte/
3This version 2.1.0 of SIXTE only provides the hexagonal configuration of the X-IFU field-of-view with a pixel size of 4.21′′ and

without the central oversampling of the inner array.
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be testable with Athena X-IFU. Moreover, fainter X-ray flares could also be detected allowing the inverse
Compton process to be investigated for the X-ray flare creation. Indeed, considering the NIR flares already
observed with a detected X-ray counterpart (see Fig. 5.11), the median NIR amplitude is about 5 mJy in the
Ks-band. If an X-ray counterpart of this NIR flare is detected with Athena/X-IFU, lets say with a 100%
efficiency (i.e., with a mean unabsorbed flux of 10−12 erg s−1 cm−2), the time delay predicted by Yusef-Zadeh
et al. (2012) for the IC process corresponding to this NIR/X-ray amplitude ratio is about 7 min. The error
on the time of the maximum for an X-ray flare with a mean unabsorbed flux of 10−12 erg s−1 cm−2 as it will
observed with Athena/X-IFU will only be about 2 min while those for a NIR flare as it will be observed by the
European Extremely Large Telescope (E-ELT, the ground-based telescope of 39 m-diameter with first light
in 2024) with the Multi-AO Imaging Camera for Deep Observations (MICADO, observing in 0.8 − 2.4 µm;
Davies et al. 2016) will probably be lower than 2 min. The time delay between the NIR and X-ray flare will
thus be measurable thanks to the E-ELT and Athena. For the fainter X-ray flares, the error on the time of
the maximum will be larger but the time delay predicted by the IC process also increase as the square of the
NIR–to–X-ray flux ratio, allowing a definitive test for the IC process.

Moreover, the higher number of collected X-ray photons will allow to increase the signal-to-noise ratio
of the X-ray flares spectrum and to discriminate between the two other radiative processes for the X-ray
flare creation: the synchrotron and synchrotron self-Compton. Indeed, the synchrotron self-Compton process
predicts the same spectral index in the NIR and X-ray flare spectra; the higher signal-to-noise ratio of the flare
spectrum will lead to a higher accuracy on the spectral index which can be compared to those determined for
the NIR flare spectrum.

Finally, we will be able to study the evolution of the spectral index with the flare flux thanks to the higher
signal-to-noise ratio of the flare spectrum. The evolution of the spectral index along the flare duration can also
be studied. Indeed, for an average mean unabsorbed flux of 10−11 erg s−1 cm−2 and an average flare duration
of 2700 s, the number of counts observed by Athena/X-IFU will be 9584 from the flare and 1836 from the
non-flaring level. The signal-to-noise ratio will thus be about 83. We will thus easily divide the spectrum in at
least three spectra, each containing the same number of counts and describing the rise, maximum and decay
phase since the resulting signal-to-noise ratio will be about 50.
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Eckart, A., Mužić, K., Yazici, S., et al. 2013, A&A, 551, A18
Eckart, A., Schödel, R., García-Marín, M., et al. 2008, A&A, 492, 337
Eckart, A., Schödel, R., Meyer, L., et al. 2006b, A&A, 455, 1
Eisenhauer, F., Genzel, R., Alexander, T., et al. 2005, ApJ, 628, 246
Ekers, R. D., van Gorkom, J. H., Schwarz, U. J., & Goss, W. M. 1983, A&A, 122, 143
ESA: XMM-Newton SOC. 2013, XMM-Newton Users Handbook, Issue 2.11
Falcke, H., Goss, W. M., Matsuo, H., et al. 1998, ApJ, 499, 731
Falcke, H. & Markoff, S. 2000, A&A, 362, 113
Fay, M. P. 2010, The R Journal, 2/1, 53 [online version]
Feigelson, E. D. & Babu, G. J. 2012, Modern statistical method for astronomy with R applications, ed. Cam-

bridge University Press (Cambridge, UK)
Fish, V. L., Johnson, M. D., Doeleman, S. S., et al. 2016, ApJ, 820, 90
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Fritz, T. K., Gillessen, S., Dodds-Eden, K., et al. 2011, ApJ, 737, 73
Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A., & Ricker, Jr., G. R. 2003, in Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, Vol. 4851, X-Ray and Gamma-Ray Telescopes and
Instruments for Astronomy., ed. J. E. Truemper & H. D. Tananbaum, 28–44

Gehrels, N. 1986, ApJ, 303, 336
Gehrels, N., Barthelmy, S. D., Baumgartner, W. H., et al. 2013, The Astronomer’s Telegram, 5037, 1
Gehrels, N., Chincarini, G., Giommi, P., et al. 2004, ApJ, 611, 1005
Gelman, A., Roberts, G., & Gilks, W. 1996, Efficient Metropolis jumping rules, ed. J. Bernardo (Oxford

University Press)
Genzel, R., Schödel, R., Ott, T., et al. 2003, Nature, 425, 934
Georganopoulos, M., Kirk, J. G., & Mastichiadis, A. 2001, ApJ, 561, 111
Ghez, A. M., Klein, B. L., Morris, M., & Becklin, E. E. 1998, ApJ, 509, 678
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044
Ghez, A. M., Wright, S. A., Matthews, K., et al. 2004, ApJL, 601, L159
Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009a, ApJL, 707, L114
Gillessen, S., Eisenhauer, F., Trippe, S., et al. 2009b, ApJ, 692, 1075
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2013a, ApJ, 763, 78
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2013b, ApJ, 774, 44
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2012, Nature, 481, 51
Goodman, J. & Weare, J. 2010, Communications in Applied Mathematics and Computational Science, 5, 65
Gotthelf, E. V., Mori, K., Halpern, J. P., et al. 2013, The Astronomer’s Telegram, 5046, 1
Guainazzi, M. 2013, XMM-Newton Calibration Technical Note; XMM-SOC-CAL-TN-0018, Calibration sta-

tus document, ESA-ESAC, Villafranca del Castillo, Spain
Guo, F. & Mathews, W. G. 2012, ApJ, 756, 181
Hamaus, N., Paumard, T., Müller, T., et al. 2009, ApJ, 692, 902



BIBLIOGRAPHY 85

Harrod, S. & Kelton, W. D. 2013, SIMULATION, 82, 147
Herrnstein, R. M. & Ho, P. T. P. 2005, ApJ, 620, 287
Hornstein, S. D., Matthews, K., Ghez, A. M., et al. 2007, ApJ, 667, 900
Houck, J. C. 2013, ISIS 1.0 Technical Manual, Chandra X-Ray Observatory Center, MIT Center for Space

Research One Hampshire St. Building NE80 Cambridge, MA 021394307 USA
Huba, J. 2013, NRL PLASMA FORMULARY (Washington, DC: Naval Research Lab.)
Hüttemeister, S. 2003, The Milky Way: structure, constituents and evolution, ed. H. Falcke & F. W. Hehl (IoP,

Institute of Physics), 35–71
Ichimaru, S. 1977, ApJ, 214, 840
Jansen, F., Lumb, D., Altieri, B., et al. 2001, A&A, 365, L1
Jansky, K. G. 1933, Nature, 132, 66
Johannsen, T., Psaltis, D., Gillessen, S., et al. 2012, ApJ, 758, 30
Kaspi, V. M., Archibald, R. F., Bhalerao, V., et al. 2014, ApJ, 786, 84
Kassim, N. E., Larosa, T. N., Lazio, T. J. W., & Hyman, S. D. 1999, in Astronomical Society of the Pacific

Conference Series, Vol. 186, The Central Parsecs of the Galaxy, ed. H. Falcke, A. Cotera, W. J. Duschl,
F. Melia, & M. J. Rieke, 403

Kennea, J. A., Burrows, D. N., Kouveliotou, C., et al. 2013a, ApJL, 770, L24
Kennea, J. A., Krimm, H., Barthelmy, S., et al. 2013b, The Astronomer’s Telegram, 5009, 1
Kerr, R. P. 1963, Phys. Rev. Lett., 11, 237
Klein, R. W. & Roberts, S. D. 1984, SIMULATION, 43, 193
Kostić, U., Čadež, A., Calvani, M., & Gomboc, A. 2009, A&A, 496, 307
Kraft, R. P., Burrows, D. N., & Nousek, J. A. 1991, ApJ, 374, 344
Lang, K. R. 1999, Astrophysical Formulae, 3rd edn., Vol. 1 (Springer)
Lenzen, R., Hartung, M., Brandner, W., et al. 2003, in Society of Photo-Optical Instrumentation Engineers

(SPIE) Conference Series, Vol. 4841, Instrument Design and Performance for Optical/Infrared Ground-
based Telescopes, ed. M. Iye & A. F. M. Moorwood, 944–952

Liu, S., Petrosian, V., Melia, F., & Fryer, C. L. 2006, ApJ, 648, 1020
Longair, M. S. 1994, High Energy Astrophysics, ed. Cambridge University Press, Vol. 2 (Cambridge Univer-

sity Press)
Lynch, R. S., Archibald, R. F., Kaspi, V. M., & Scholz, P. 2015, ApJ, 806, 266
Mamajek, E. E., Prsa, A., Torres, G., et al. 2015, ArXiv e-prints
Maoz, D. 2008, Journal of Physics Conference Series, 131, 012036
Markoff, S., Falcke, H., Yuan, F., & Biermann, P. L. 2001, A&A, 379, L13
Marrone, D. P., Baganoff, F. K., Morris, M. R., et al. 2008, ApJ, 682, 373
Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2006, Journal of Physics Conference Series, 54, 354
Marrone, D. P., Moran, J. M., Zhao, J.-H., & Rao, R. 2007, ApJL, 654, L57
Marscher, A. P. 1983, ApJ, 264, 296
Meyer, L., Ghez, A. M., Schödel, R., et al. 2012, Science, 338, 84
Meyer, L., Schödel, R., Eckart, A., et al. 2006, A&A, 458, L25
Meyer, L., Witzel, G., Longstaff, F. A., & Ghez, A. M. 2014, ApJ, 791, 24
Mori, K., Gotthelf, E. V., Barriere, N. M., et al. 2013a, The Astronomer’s Telegram, 5020
Mori, K., Gotthelf, E. V., Zhang, S., et al. 2013b, ApJL, 770, L23
Morris, M. 2012, Nature, 481, 32
Morrison, R. & McCammon, D. 1983, ApJ, 270, 119
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7.1 Contexte du travail

Une source radio non-résolue a été découverte au centre de notre galaxie en 1974. Il s’agit de Sgr A* qui est
le trou noir supermassif (4 millions de masses solaire; Schödel et al. 2002; Meyer et al. 2012) le plus proche
de nous (à une distance de 8 kpc; Reid et al. 2014). Sa luminosité intégrée sur toutes les longueurs d’onde
est 4,5 milliards de fois plus faible que la luminosité d’Eddington attendue pour une accrétion sphérique
sur un trou noir supermassif de la masse de Sgr A*. Plusieurs modèles sont proposés pour expliquer cette
faible luminosité comme, par exemple, des modèles de flot d’accrétion chaud (ADAF, Advection Dominated

Accretion Flow; Rees et al. 1982; Narayan & Yi 1994; Narayan et al. 1995, 1998) ou des modèles de jets
(Falcke & Markoff 2000; Slysh 2008). Superposées à cette faible luminosité constante, appelée état quiescent,
des éruptions sont détectées en infrarouge proche (NIR), rayons X et radio (millimétrique et centimétrique).

Les éruptions en NIR sont produites par le rayonnement synchrotron émis par des électrons accélérés
autour des lignes de champ magnétique, tandis que l’origine des éruptions en rayons X est encore débattue.
Trois interprétations sont avancées: le rayonnement direct synchrotron (SYN; Dodds-Eden et al. 2009; Bar-
rière et al. 2014), le processus Inverse Compton (IC; Yusef-Zadeh et al. 2012) et le processus synchrotron
self-Compton (SSC; Eckart et al. 2008). Le processus IC produit des photons X soit par la diffusion des pho-
tons submillimétriques continuellement produits par les électrons du flot d’accrétion sur les électrons accélérés
produisant les photons NIR soit par la diffusion de ces photons NIR sur les électrons du flot d’accrétion. Ce
second processus implique un délai entre le maximum des éruptions en NIR et en rayons X. Dans le processus
SSC, les photons NIR sont diffusés par les électrons accélérés qui produisent ces photons NIR. Les éruptions
en radio sont différées de quelques minutes à quelques heures par rapport à l’émission NIR/X. Le modèle
du refroidissement adiabatique d’un plasmon en expansion permet de décrire ce délai mais les paramètres
du plasmon restent difficile à contraindre. L’analyse multi-longueurs d’onde (NIR, rayons X et radio) de ces
éruptions devrait nous permettre de mieux comprendre l’origine des éruptions de Sgr A* ainsi que d’autres
trous noirs supermassif de faible luminosité se trouvant au centre de la plupart des galaxies massives.

Les observations du centre galactique entre 2004 et 2011 ont permis de détecter un objet appelé G2 sur
une orbite très elliptique se rapprochant de Sgr A* (Gillessen et al. 2012). Les raies d’émission de G2 étaient
alors décalées vers le rouge impliquant que G2 n’avait pas encore franchit son périastre. Les premières inter-
prétations associaient cet objet à un nuage de gaz compact ou une coquille sphérique de gaz qui, à l’approche
du trou noir, serait déchiqueté par les forces de marées et alimenterait Sgr A* (Burkert et al. 2012; Gillessen
et al. 2013a,b). L’activité du trou noir supermassif devrait alors augmenter dans toutes les longueurs d’ondes.
La possibilité d’une étoile entourée d’une coquille de poussière et de gaz (a Dusty S-cluster Object; DSO) a
aussi été proposée (Eckart et al. 2013; Witzel et al. 2014a; Valencia-S. et al. 2015). La matière circumstellaire
serait alors soumise à l’attraction gravitationnelle de l’étoile centrale et le transfert de matière vers Sgr A*
serait alors plus faible.

Cette thèse a pour but d’étudier les effets du possible transfert de matière de DSO/G2 vers Sgr A* lors
de son passage au périastre sur l’émission quiescente et éruptive du trou noir supermassif. Des changements
d’émission pourraient nous apporter des informations sur le DSO/G2 et sur le flot d’accrétion chaud autour de
Sgr A*. J’ai principalement utilisé les observations obtenues avec le satellite XMM-Newton qui est composé
de trois European Photon Imaging Camera (EPIC/pn, MOS1 et MOS2) observant en rayons X. Les données
collectées lors d’une observation en rayons X forment une liste d’événements qui donne les caractéristiques
des événements enregistrés par le CCD (énergie, temps d’arrivée, position,...). Lors de cette thèse, j’ai utilisé
et amélioré deux méthodes permettant une meilleure analyse temporelle des événements recueillis lors des
observations en rayons X. J’ai aussi utilisé la méthode de Monte-Carlo par chaînes de Markov pour améliorer
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l’analyse spectrale des éruptions.

7.2 Outils d’analyse pour l’étude en rayons X

7.2.1 L’algorithme des blocs Bayésiens pour la détection des éruptions

J’ai utilisé l’algorithme des blocs Bayésiens (blocs Bayésiens) développé par Scargle (1998) et amélioré par
Scargle et al. (2013a,b) pour détecter les éruptions de manière systématique à partir des temps d’arrivée
individuels des photons X sur le détecteur (résolution temporelle de 73,4 ms pour pn à 2,6 s pour MOS) tout
en contrôlant la probabilité de fausse détection. Cet algorithme permet aussi d’obtenir une meilleure précision
sur le début et la fin des éruptions contrairement aux méthodes de détection précédemment employées qui
utilisent la liste d’événements groupés par intervalles de temps de 100 ou 300s, c’est-à-dire la courbe de
lumière.

Cet algorithme permet de segmenter de manière optimale la liste de photons X en se basant sur l’inférence
Bayésienne appliquée à la statistique de Poisson. Un flux de Poisson continu est obtenu à partir des temps
d’arrivées des événements observés en supprimant les intervalles de temps où le détecteur est contaminé par
des particules ionisantes. Des cellules de Voronoï sont ensuite créées contenant chacune un seul photon et
dont le début et la fin sont définit comme la moitié de l’intervalle entre deux photons consécutifs. Le début
et la fin de la première et de la dernière cellule sont définis par le début et la fin de l’observation. Le taux de
comptage de chaque cellule est donc l’inverse de sa durée. L’algorithme considère d’abord l’ensemble des
cellules afin de déterminer si le taux de comptage est statistiquement constant ou s’il peut être mieux décrit
par deux blocs avec des taux de comptage différents et dont le temps de séparation est appelé un point de
changement. Si c’est le cas, il recommence ce test sur chacun des blocs afin de les segmenter ou pas. Le
résultat de cette itération est une courbe de lumière composée de blocs de taux de comptage (CR) constants.

Le prior du nombre de points de changement (ncp_prior) est contrôlé par deux paramètres: le nombre
d’événements enregistrés durant une observation (N) et le taux de faux positif (p1), c’est-à-dire la probabil-
ité qu’un point de changement soit une fausse détection. J’ai calibré le ncp_prior en appliquant les blocs
Bayésiens sur un grand nombre de listes de N événements simulées, décrivant un flux de Poisson de moyenne
égale au taux de comptage du quiescent. Le prior à utiliser est le ncp_prior le plus grand qui génère un taux
de fausse détection égal à celui que je souhaite utiliser (par exemple p1 = 0, 03 impliquant une probabilité de
faux positif pour une éruption de p2

1 = 9 × 10−4; Neilsen et al. 2013; Nowak et al. 2012).

Afin de corriger du bruit instrumental du CCD, j’ai créé un algorithme en deux étapes: j’ai d’abord
appliqué les blocs Bayésiens sur une liste d’événements représentative du bruit (bkg) extraite sur une large
zone du CCD où les sources ponctuelles d’émission en rayons X ont été retirées, ainsi que sur la liste
d’événements extraite de la région de 10′′ de rayon centrée sur Sgr A* (src+bkg) qui contient donc les
événements émis par Sgr A* mais aussi ceux d’autres sources non résolues et le bruit instrumental. J’ai
finalement utilisé une deuxième fois les blocs Bayésiens sur les événements src+bkg en appliquant le poids
w = CRsrc+bkg/(CRsrc+bkg −CRbkg) aux cellules de Voronoï.

J’ai aussi tenu compte de l’arrivée simultanée de plusieurs photons et de l’exposition effective de la caméra
en appliquant un deuxième poids sur les cellules de Voronoï.

Après calibration du ncp_prior et application de l’algorithme en deux étapes sur les listes d’événements,
nous pouvons facilement identifier l’état quiescent comme étant le taux de comptage du bloc le plus faible et
le mieux contraint et les éruptions qui sont décrites par les blocs de plus grands taux de comptage.

Afin de déterminer la probabilité de détection des éruptions avec les blocs Bayésiens en fonction de leur
amplitude et de leur durée, j’ai simulé un grand nombre de listes d’événements décrites par un flux de Poisson
de moyenne égale au taux de comptage du quiescent plus une gaussienne représentant l’éruption avec dif-
férentes durées et amplitudes. J’ai ensuite appliqué les blocs Bayésiens sur chacune de ces listes d’événements
et enregistré la probabilité qu’une éruption avec une certaine amplitude et une certaine durée puisse être détec-
tée. Cette méthode permet aussi de comparer la probabilité de détection pour différents satellites caractérisés
par différentes résolutions angulaires et différentes sensibilités impliquant différentes valeurs pour le taux de
comptage du quiescent.
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7.2.2 Amélioration de la courbe de lumière

Afin de diminuer le bruit Poissonnien de la courbe de lumière et de mieux rendre compte de la continuité des
phénomènes d’émission, j’ai appliqué un estimateur de densité qui effectue une convolution des événements
avec un noyau de lissage d’Epanechnikov. Ce noyau de lissage est une parabole inversée définie sur un
support fini, ce qui permet de prendre en compte les effets de bord. L’exposition effective de la caméra et le
bruit instrumental sont corrigés en appliquant les poids calculés précédemment.

7.2.3 Utilisation des chaînes de Markov pour l’ajustement des modèles spectraux

Le spectre des éruptions est créé en groupant les événements extraits de la région src+bkg par intervalle
d’énergie définit par un rapport signal à bruit minimum. Je sélectionne les événements qui ont été enregistrés
durant l’éruption (dont le début et la fin sont donnés par les blocs Bayésiens) afin de créer le spectre de
l’éruption que je corrige du spectre enregistré durant l’état quiescent.

Le modèle ajustant le mieux le spectre de l’éruption est une loi de puissance absorbée par le gaz (absorp-
tion photoélectrique) et les poussières (diffusion) des nuages moléculaires sur la ligne de visée. L’absorption
est caractérisée par une colonne d’hydrogène combinant l’effet de la diffusion par les poussières (Predehl &
Schmitt 1995) et l’absorption photoélectrique par le gaz, les molécules et les poussières (Wilms et al. 2000).

Afin d’ajuster ce modèle aux spectres observés, j’ai utilisé le programme XSPEC_emcee de Jeremy Sanders
qui permet l’analyse par la méthode de Monte-Carlo par chaînes de Markov (MCMC) des spectres en rayons
X avec XSPEC en utilisant emcee, une implémentation sous Python de l’échantillonneur de Goodman &
Weare (2010). Le MCMC utilise un ensemble de marcheurs indépendants qui évoluent dans l’espace des
paramètres en convergeant vers la distribution marginale de chacun des paramètres spectraux décrivant le
spectre observé. L’ajustement des paramètres spectraux s’effectue en utilisant la statistique de χ2 sur le spectre
groupé. La chaîne de Markov finale contient les valeurs des paramètres qu’ont pris les marcheurs à chaque
pas de l’algorithme. Après une vérification a posteriori de la convergence des marcheurs, la meilleure valeur
de chaque paramètre est donnée par la médiane (quantile à 50%) de sa distribution marginale. L’intervalle de
confiance à 90% est donné par les quantiles à 5 et 95% des distributions marginales.

7.3 La campagne d’observation de Sgr A* avec XMM-Newton en 2011

J’ai d’abord validé ces outils d’analyse avec la campagne d’observation de 2011. Cette campagne comprend
quatre observations effectuées avec XMM-Newton pour un total de 226 ks (responsable principal, PI: Delphine
Porquet, Observatoire Astronomique de Strasbourg). Deux éruptions ont été détectées grâce à l’algorithme
des blocs Bayésiens: la première le 30 mars et la seconde le 3 avril 2011. La première éruption présente
une forme particulière: elle n’est pas symétrique comme la plupart des éruptions mais présente deux pics: un
long, peu lumineux précédé d’un pic court et lumineux qui fait penser à un effet de lentille gravitationnelle.
La seconde éruption contient peu d’événements limitant les analyses scientifiques que l’on peut effectuer sur
celle-ci.

J’ai ajusté le modèle spectral décrit précédemment (loi de puissance absorbée) aux spectres des deux
éruptions et vérifié que leurs paramètres sont en accord avec ceux déterminés pour les deux éruptions les plus
brillantes observées par XMM-Newton en 2002 et 2007 (Porquet et al. 2003, 2008; Nowak et al. 2012). Les
caractéristiques physiques des deux éruptions de 2011 (luminosité intrinsèque, durée, énergie intrinsèque et
luminosité au maximum) appartiennent à la moyenne de l’ensemble des éruptions observées en rayons X avec
Chandra en 2012 (Neilsen et al. 2013).

Afin d’expliquer la forme atypique de la première éruption, nous avons simulé l’effet de lentille gravita-
tionnelle d’un élément de matière chauffé par le trou noir en rotation solide autour de ce dernier grâce au code
GYOTO (Vincent et al. 2011). Le premier pic serait alors expliqué par l’effet de lentille gravitationnelle lorsque
la boule de gaz se trouve derrière le trou noir et le second pic serait créé par l’effet d’amplification relativiste
lorsque la source se rapproche de l’observateur. Nous avons contraint la taille de la boule de gaz, le rayon de
son orbite et son inclinaison en ajustant la courbe de lumière produite par ce modèle sur la courbe de lumière
lissée observée par XMM-Newton. Cependant, le retour à un taux de comptage équivalent au quiescent entre
les deux pics n’est pas reproduit par le modèle. En l’absence d’autres composantes ad hoc, cette inadéquation
suffit pour rejeter ce modèle.
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Nous pouvons donc considérer que l’éruption du 30 mars 2011 est composée de deux éruptions distinctes
dont l’origine physique est différente. J’ai effectué une étude énergétique sur le premier pic qui fait partie des
éruptions les plus courtes jamais observées (458 s) en comparant l’énergie produite et émise durant l’émission.
J’ai extrait la limite supérieure sur l’énergie magnétique (proportionnelle à l’inverse de la distance au trou noir)
produite dans une sphère dont le rayon est déterminé par la durée de la phase de montée du pic. Les effets de
la relativité générale sur la dilatation du temps propre ont été pris en compte dans ces calculs. L’énergie totale
émise durant l’éruption doit donc être, au maximum, égale à la limite supérieure sur l’énergie magnétique.
Sachant que l’énergie magnétique ainsi que les durées dépendent de la distance au trou noir, nous pouvons
déterminer une limite supérieure sur cette distance (100+19

−29 fois le rayon gravitationnel, rg, qui vaut 0,5 fois le
rayon de Schwarzschild Rs = 1, 2 × 1012 cm pour Sgr A*). De plus, supposant que la phase de décroissance
est uniquement due au refroidissement synchrotron (qui dépend du champ magnétique et donc de la distance),
la comparaison de l’échelle de temps du refroidissement et de la phase de décroissance nous permet de déter-
miner une limite inférieure sur la distance de la source (4 rg) et de rejeter l’accélération synchrotron directe
pour la création des photons X durant cette éruption. Finalement, les limites inférieures et supérieures sur la
distance contraignent la taille de la zone des électrons accélérés (1, 8 − 2, 87 ± 0, 01 rg) car cette dernière est
proportionnelle à la durée de la phase de montée elle-même dépendante de la distance.

Ces résultats ont été publiés dans Mossoux et al. (2015a, A&A, 573, A46; 2015b, A&A, 580, C2).

7.4 La campagne d’observations multi-longueurs d’onde de Sgr A* en février–
avril 2014

La campagne d’observations de 2014 est dédiée au suivi de l’activité de Sgr A* lors du passage de DSO/G2
à son périastre. Un large program d’observations a été soumis en 2012 afin d’obtenir des observations en
rayons X avec XMM-Newton et en NIR avec le Télescope Spatial Hubble (HST) et le Very Large Tele-

scope (VLT) (XMM-Newton AO-12; PI: Nicolas Grosso, Observatoire Astronomique de Strasbourg). Les
observations HST ont été planifiées afin de maximiser le nombre d’orbites consécutives et simultanées avec
XMM-Newton. Du temps d’observations supplémentaire avec HST a aussi été obtenu pour compléter ce large

program (HST cycle 21; PI: Howard Bushouse, Space Telescope Science Institute, USA). Ces observations ont
été effectuées en février–avril 2014 avec XMM-Newton (170 ks), HST/WFC3 (69 ks) et VLT/SINFONI (81
expositions de 400 s). Nous avons aussi utilisé: des observations supplémentaires avec VLT/SINFONI (ESO
program 091.B-0183(H); PI: Andreas Eckart, Physikalisches Institut der Universität zu Köln, Max-Planck-

Institut für Radioastronomie, Allemagne); une Target of Opportunity (ToO) avec XMM-Newton déclenchée
pour l’observation du nouveau magnétar au centre galactique (85 ks; PI: G.L. Israël, Osservatorio Astro-

nomico di Roma, INAF, Italy); trois observations en millimétrique avec le Combined Array for Research in

Millimeter-wave Astronomy (CARMA; Richard L. Plambeck, Radio Astronomy Laboratory, University of Cal-

ifornia, USA) et trois observations en centimétrique avec le Very Large Array (VLA; PI: Farhad Yusef-Zadeh,
Department of Physics and Astronomy, CIERA, Northwestern University, USA).

Ces observations VLT combinées à des observations effectuées de juin à septembre 2014 nous ont permis
de confirmer l’hypothèse selon laquelle le DSO/G2 serait une étoiles entourée de matière circumstellaire
(Valencia-S. et al. 2015). Dans cet article, nous avons montré que l’évolution de la largeur de la raie Brγ émise
par le DSO/G2 est bien reproduite par une étoile jeune de une à deux masses solaires entourée d’un disque
de gaz et de poussières qui produit des chocs d’accrétion sur la photosphère stellaire (processus d’accrétion
magnétosphérique). Lors de son passage près de Sgr A*, ce disque d’accrétion serait étiré par les forces de
marrée provoquant une variation du taux d’accrétion sur l’étoile expliquant la variation de la largeur de la
raie Brγ. Nous avons contraint la date de passage au périastre au 20 avril 2014 (1er mars – 10 juin) avec une
distance de 163 unités astronomiques. Après le passage au périastre, les raies d’émission de DSO/G2 sont
entièrement décalées vers le rouge ce qui rejette l’hypothèse d’un nuage de gaz compact ou d’une coquille
sphérique de gaz.

Le 24 avril 2013, un magnétar (SGR J1745-29) est entré en éruption à seulement 2,4′′ au sud-est de Sgr A*
(Degenaar et al. 2013; Kennea et al. 2013b). Les deux sources ne peuvent donc pas être résolues par XMM-
Newton et les photons provenant du magnétar sont donc pris en compte dans la courbe de lumière de Sgr A*
ce qui en augmente artificiellement le taux de comptage et diminue la probabilité de détection des éruptions.
De plus, le spectre du magnétar augmente le bruit dans la bande d’énergie entre 1 et 3 keV diminuant ainsi la
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précision sur la colonne de d’hydrogène du modèle spectral. J’ai calculé sa période de rotation (3,76398106 s)
et dérivée première (3,7684×10−11) afin de retirer sa contribution pulsée et de vérifier que je ne perds pas
d’éruptions provenant de Sgr A* lors de la détection avec les blocs Bayésiens. Deux éruptions en rayons X
ont été détectées: une longue le 10 mars et une plus courte le 2 avril 2014. Nous avons pu vérifier grâce à
la meilleure résolution angulaire des deux caméras MOS que l’éruption longue provenait bien de Sgr A* et
non du magnétar (la seconde éruption est trop courte pour permettre cette étude). L’analyse spectrale par la
méthode MCMC a montré que les paramètres spectraux sont en accord avec ceux déterminés pour les deux
éruptions les plus brillantes observées par XMM-Newton (Porquet et al. 2003, 2008). L’analyse statistique du
nombre d’éruptions en rayons X détectées durant cette campagne par rapport aux 39 éruptions détectées avec
Chandra en 2012 montre qu’il n’y a pas eu d’augmentation d’activité en rayons X lors du passage de DSO/G2
au périastre.

Nous avons aussi détecté trois éruptions NIR avec HST dont deux se produisent en même temps que les
éruptions en rayons X, deux éruptions NIR avec VLT sans contrepartie en rayons X, le début d’une éruption
radio avec VLA (la contrepartie différée NIR/X est soit non-détectée, ou bien s’est produite avant le début des
observations XMM-Newton et HST) et trois éruptions radio avec CARMA dont une pourrait être reliée à la
première éruption vue avec VLT.

L’éruption NIR/X du 10 mars 2014 possède un profil atypique: en rayons X, elle est décrite par une phase
de montée neuf fois plus longue que sa phase de descente tandis qu’en NIR elle est caractérisée par deux
pics. Deux interprétations permettent d’expliquer ce profil: la première est la compression adiabatique d’une
boule de gaz qui émet en NIR et en rayons X par un processus SYN-SSC; la seconde est que l’éruption du
10 mars 2014 est composée de deux éruptions distinctes mais séparées par seulement 1,2 h. Le maximum des
éruptions est alors simultané en NIR et en rayons X.

Le maximum de l’éruption en NIR vue par HST le 2 avril 2014 se situe pendant l’occultation de Sgr A*
par la Terre. Un ajustement Gaussien de la courbe de lumière en NIR et en rayons X m’a permis de déter-
miner que l’éruption en NIR est composée de deux éruptions distinctes dont la première est la contrepartie
simultanée de l’éruption en rayons X. La seconde éruption possède une très grande amplitude en NIR mais
pas de contrepartie en rayons X ce qui en fait l’éruption possédant le plus grand rapport d’amplitude NIR/X.

Deux éruptions en NIR ont aussi été détectées avec VLT/SINFONI le 3 et 4 avril 2014. Aucune éruption
en rayons X n’a été détectée durant ces observations.

L’activité observée en NIR avec HST et VLT est comparable à celle précédemment détectée avec VLT/
NACO indiquant qu’il n’y a pas eu d’augmentation de l’activité en NIR lors du passage de DSO/G2 au
périastre.

J’ai utilisé la méthode de Eckart et al. (2012) pour calculer les caractéristiques physiques (taille, densité,
champ magnétique et amplitude maximale de la distribution spectrale) de la zone d’électrons accélérés en
considérant trois processus radiatifs pour le NIR et les rayons X: SSC-SSC, SYN-SYN et SYN-SSC. Pour
les éruptions non détectées en rayons X, j’ai calculé une limite supérieure sur leur luminosité à l’aide d’une
méthode Bayésienne (Kraft et al. 1991). Les caractéristiques physiques sont mieux contraintes pour la seconde
éruption NIR du 2 avril 2014 sans contrepartie en rayons X mais ne permettent pas de privilégier un des
processus radiatifs. Pour cette éruption et le processus SYN-SSC, la taille de la zone d’électrons accélérés
vaut 0,03–7 Rs et la densité d’électrons vaut 108,5 − 1010,2 cm−3. Le processus IC pour la création des photons
X reste aussi un processus possible pour chacune des éruptions car pour les éruptions en NIR possédant une
contrepartie détectée en rayons X, le délai prévu par l’IC entre les maximums en NIR et en rayons X n’est pas
actuellement mesurable alors que des délais plus grands impliquent des grands rapports NIR/X et donc une
faible probabilité de détection des éruptions en rayons X avec les moyens d’observations existants.

Ces résultats ont été publiés dans Mossoux et al. (2016, A&A, 589, A116).

7.5 Étude du taux d’éruptions en rayons X de Sgr A* entre 1999 et 2015

J’ai réduit les observations effectuées avec XMM-Newton et Chandra entre 1999 et 2015 puis, j’ai utilisé
l’algorithme en deux étapes des blocs Bayésiens afin de déterminer le taux de comptage hors éruption et de
détecter les éruptions avec un taux de faux positif de 0,1%.

Le télescope Swift observe régulièrement le centre galactique depuis 2006 avec des observations courtes
d’à peu près 1 ks effectuées entre février et novembre. J’ai utilisé la méthode de réduction des données de
(Degenaar et al. 2013) tout en l’améliorant afin de tenir compte des colonnes et pixels morts du CCD ainsi
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que de la variation de la fraction de la fonction d’étalement du point extraite et du vignettage en fonction de
la distance au centre du CCD. La méthode des blocs Bayésiens ne peut pas être utilisée pour la détection des
éruptions avec Swift car la durée des observations est courte comparées à la durée typique d’une éruption ce
qui implique une faible efficacité de détection avec cet algorithme. J’ai donc utilisé la méthode de Degenaar
et al. (2013) qui est optimale pour la détection des éruptions avec le mode opératoire de Swift: les courbes
de lumières de Sgr A* sont crées en groupant les événement sur les temps expositions des observations. Une
observation est ensuite associée à une éruption si son taux de comptage est supérieur à la limite à 3σ du
taux de comptage moyen de l’année correspondante. Les observations entre 2013 et 2015 sont contaminées
par le flux du magnétar SGR J1745-29. Le flux observé par Swift durant ces campagnes est donc ajusté par
une somme de deux exponentielles décroissantes; une observation est ensuite associée à une éruption si son
taux de comptage est supérieur au taux de comptage de l’ajustement plus trois fois son erreur. J’ai déterminé
l’efficacité de détection de la méthode de Degenaar et al. (2013) pour les observations faites avec Swift en
simulant des listes d’événements décrites par un flux de Poisson de moyenne égale aux différents taux de
comptage hors éruption observés entre 2006 et 2015. J’ai ensuite extrait les événements contenus dans un
intervalle de temps de 1 ks à différentes phases de l’éruption afin de créer une observation correspondant à
une éruption observée par Swift. La méthode de Degenaar et al. (2013) est ensuite appliquée sur chacune de
ces observations simulées afin de déterminer l’efficacité de détection d’une éruption avec différents taux de
comptage moyens et différentes durées.

Au total, 102 éruptions on été détectées entre 1999 et 2015 avec XMM-Newton, Chandra et Swift. Le
flux moyen corrigé de l’absorption de ces éruptions a été modélisé par une loi de puissance absorbée avec
XSPEC en fixant les paramètres NH et Γ aux valeurs calculées pour les trois éruptions les plus brillante:
NH = 14.3 × 1022 cm−2 et Γ = 2 (Porquet et al. 2003, 2008; Nowak et al. 2012). Pour les éruptions détec-
tées avec Chandra, j’ai ajouté le modèle de correction de l’empilement des photons à cette loi de puissance
absorbée afin de prendre en compte les photons enregistrés simultanément dans un même ilôt de détection
pendant le temps d’intégration du CCD.

J’ai ensuite calculé l’efficacité de détection de la méthode des blocs Bayésiens pour différentes éruptions
caractérisées par des taux de comptage et de durées différents superposées aux différents niveau hors érup-
tions observés par Chandra et XMM-Newton entre 1999 et 2015. J’ai ensuite fusionnée ces efficacités de
détection en pondérant par le temps d’exposition correspondant afin de créer l’efficacité de détection con-
jointe représentant l’ensemble des observations avec XMM-Newton et Chandra entre 1999 et 2015. A l’aide
du flux moyen corrigé de l’absorption et de la durée des éruptions détectées avec XMM-Newton et Chandra
entre 1999 et 2015, j’ai construit la triangulation de Delaunay dans le plan flux–durée afin de déterminer la
densité d’éruptions observée avec l’estimateur de densité de la tesselation de Delaunay (DTFE; Schaap & van
de Weygaert 2000; van de Weygaert & Schaap 2009). J’ai ensuite corrigé la densité d’éruptions observée de
l’efficacité de détection conjointe afin de déterminer la densité d’éruptions intrinsèque.

Afin d’étudier la variation du taux d’éruptions en rayons X obtenues en combinant ces différents téle-
scopes, j’ai dû tenir compte de l’efficacité de détection moyenne dans chacune des observations. J’ai calculé
le rapport entre l’intégrale à deux dimensions de la densité d’éruptions intrinsèque pondérée de l’efficacité de
détection correspondant à chacune des observations et l’intégrale à deux dimensions de la densité d’éruptions
intrinsèque afin de déterminer le pourcentage de détection des éruptions. Chacun des temps expositions
d’observation est finalement multiplié par l’efficacité de détection moyenne correspondante afin de corriger
des biais de détection.

Ces temps d’exposition corrigés sont ensuite joints en retirant les écarts et les recouvrements entre les ob-
servations afin de créer une liste continue de temps d’arrivée des 102 éruptions observées. Le taux d’éruptions
en rayons X de Sgr A* est ensuite étudié grâce à la méthode des blocs Bayésiens appliquée sur ces temps
d’arrivée. Le résultat de la méthode des blocs Bayésiens appliquée sur l’ensemble des temps d’arrivées des
éruptions avec p1 = 0,05 et ncp_prior = 3,96 est un taux d’éruptions constant à 2,74±0,27 éruptions par jour.

J’ai ensuite recherché un changement de taux d’éruptions en ne considérant que les éruptions les moins
brillantes, j’ai appliqué pour cela l’algorithme des blocs Bayésiens de manière récursive sur les temps d’arrivée
des éruptions en excluant, à chaque itération, l’éruption qui possède le plus grand flux moyen et ce jusqu’à ce
que l’algorithme détecte un changement de taux d’éruptions (le ncp_prior est recalibré à chaque itération).
Un changement de taux d’éruptions est détecté entre les deux éruptions du 28 octobre 2013 en considérant un
flux moyen inférieur ou égal à 6,3×10−12 erg s−1 cm−2 (p1 = 0,05 et ncp_prior = 4,13). Le taux d’éruptions
est alors passé de 1,93±0,24 à 0,21±0,21 éruptions par jour. J’ai ensuite étudié le taux d’éruptions en ne
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considérant que les éruptions les plus brillantes. Un changement de taux d’éruptions est détecté pour un flux
moyen supérieur ou égal à 4,52×10−12 erg s−1 cm−2 (p1 = 0,05 et ncp_prior = 4,24). Le point de changement
est détecté entre les deux premières éruption du 31 août 2014 avec des taux d’éruptions passant de 1,22±0,19 à
4,44±1,48 éruptions par jour. Ce changement de taux d’éruptions est détecté pour un taux de faux positive plus
grand que p1 = 0,031 (ncp_prior = 4,67). Le taux d’éruptions des éruptions brillantes reste haut jusqu’au 2
novembre 2015 et ne retourne pas à un niveau bas.

J’ai aussi étudié la variation du taux d’éruptions en fonction de l’énergie moyenne des éruptions corrigée
de l’absorption (c’est-à-dire le flux moyen d’une éruption multiplié par sa durée). Une diminution du taux
d’éruptions est détectée entre l’éruption du 27 août 2013 et celle du 28 octobre 2013 pour les énergies moyenne
inférieures ou égale à 121,9×10−10 erg cm−2. Le taux d’éruptions est alors passé de 1,81±0,24 à 0,37±0,26
éruptions par jour. Une augmentation du taux d’éruptions a aussi été détectée pour une énergie moyenne
supérieure ou égale à 107,8×10−10 erg cm−2 avec un premier changement de point entre les deux premières
éruptions du 31 août 2014 et un deuxième changement de point entre l’éruption du 1er septembre 2014 et
celle du 9 septembre 2014. Le taux d’éruptions passe de 1,13±0,18 à 30,1±17,36 éruptions par jour avant
de redescendre à un niveau de 2,59±1,16 éruptions par jour. Cette étude confirme donc, avec une probabilité
de fausse détection de p1 = 0,049 (ncp_prior = 3,96), l’augmentation du taux d’éruptions des éruptions
les plus énergétiques mise en évidence par Ponti et al. (2015) en étudiant les observations de 1999 à 2014.
Cependant, grâce aux observations de 2015, j’ai pu déterminer que cette augmentation est localisée dans le
temps et qu’elle n’est observée que pour les éruptions qui ont une énergie moyenne supérieure ou égale à
107,8×10−10 erg cm−2.

Les augmentations du taux d’éruptions des éruptions les plus lumineuses et les plus énergétiques se
produisent 131 jours (80–181 jours) après le passage du DSO/D2 près de Sgr A*. Cependant, le temps
visqueux caractérisant le transport radial de matière située à 163 au (distance au périastre de DSO/G2) dans
un flot d’accrétion chaud implique que l’on ne devrait pas voir les effets de l’accrétion de cette matière sur
Sgr A* avant 2017. De plus, la diminution du taux d’éruptions des éruptions les moins lumineuses et les
moins énergétiques se produit au moins 185–225 jours avant le passage du DSO/D2 près de Sgr A* ce qui
implique que ce changement du taux d’éruption n’est pas la conséquence du passage du DSO/D2 près de
Sgr A*. J’ai effectué un bilan énergétique montrant qu’il est possible que l’énergie économisée par la diminu-
tion du nombre d’éruptions peu énergétiques pendant plusieurs jours soit libérée en quelques heures par un
surplus d’éruptions énergétiques. Cette énergie pourrait être stockée dans les distorsions des lignes de champ
magnétique avant d’être libérée lors d’une reconnexion magnétique.

7.6 Conclusions et perspectives

Le but de cette thèse était d’étudier l’impact du passage de DSO/G2 à 2032 Rs (163 au) de Sgr A* sur ses
éruptions.

Grâce à l’éruption de Sgr A* en rayons X du 30 mars 2011 vue par XMM-Newton, j’ai validé l’efficacité
des trois méthodes d’analyse des données en rayons X utilisées et améliorées durant cette thèse. J’ai aussi
testé l’effet de lentille gravitationnelle et contraint la distance radiale et la taille de la région d’éruption à
4 rg < r < 100+19

−29 rg et 1.8 rg < R < 2.87 ± 0.01 rg avec rg =0,5 Rs le rayon gravitationnel de Sgr A*. J’ai
aussi pu rejeter le processus synchrotron direct pour la création du l’éruption en rayons X.

Entre février et avril 2012, 12 éruptions ont été détectées: sept en NIR avec HST/WFC3 et VLT/SINFONI,
trois en rayons X avec XMM-Newton, une en centimétrique avec VLA (sans contrepartie en NIR ou rayons
X observable) et trois en millimétrique avec CARMA (dont une pourrait être la contrepartie retardée d’une
éruption vue avec le VLT). J’ai ainsi pu calculer le rapport d’amplitude des éruptions en NIR et rayons X avec
un ajustement Gaussien des courbes de lumière des éruptions. Pour les éruptions en NIR sans contrepartie
en rayons X, j’ai calculé un limite supérieure de l’amplitude de l’éruption X non détectée avec une méth-
ode Bayésienne. Ces rapport d’amplitude ainsi calculés contraignent les paramètres physiques de la région
d’éruption et plus le rapport rayons X/NIR est grand, plus les paramètres sont contraints. Le taux d’éruptions
en rayons X et l’activité éruptive en NIR observés durant cette campagne sont compatibles avec ceux observés
avant le passage du DSO/G2 au périastre. L’activité de Sgr A* n’a donc pas augmenté durant février–avril
2014.

Grâce aux 84 éruptions détectées avec XMM-Newton et Chandra par la méthode des blocs Bayésiens
entre 1999 et 2015 et à l’efficacité de détection conjointe, j’ai déterminé la distribution intrinsèque des érup-
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tions en rayons X de Sgr A* en fonction de leur durée et de leur flux moyen corrigé de l’absorption calculé
pour NH = 14,3×1022 cm−2 et Γ = 2. En calculant l’efficacité de détection des éruptions associée à chacune
des observations avec XMM-Newton, Chandra et Swift, j’ai aussi déterminé le taux d’éruptions intrinsèque en
corrigeant le taux de comptage des éruptions dans chacune des observations du biais de détection correspon-
dant. Le taux d’éruptions instrinsèque pour les 102 éruptions observées par XMM-Newton, Chandra et Swift
entre 1999 et 2015 est de 2,74±0,27 éruptions par jour. J’ai aussi étudié la variation de ce taux d’éruptions
grâce à la méthode des blocs Bayésiens en considérant uniquement les éruptions dans un certain intervalle de
luminosité et d’énergie des éruptions. Le taux d’éruptions des éruptions les moins lumineuses et les moins én-
ergétiques a diminué d’un facteur 9,2 et 4,9 à partir du 28 octobre 2013 et du 27 juillet 2013, respectivement.
De plus, le taux d’éruptions des éruptions les plus lumineuses et les plus énergétiques a augmenté d’un facteur
3,6 et 26,6, respectivement, à partir du 31 août 2014. Le grand taux d’éruptions des éruptions les plus énergé-
tiques diminue à partir du 1er septembre 2014 afin de retrouver un niveau comparable à celui observé avant
le 31 août 2014. Le bilan énergétique montre qu’il est possible que l’énergie économisée par la diminution
du nombre d’éruptions peu énergétiques pendant plusieurs jours soit libérée en quelques heures pour créer un
surplus d’éruptions énergétiques.

La distribution intrinsèque des éruptions en rayons X de Sgr A* calculée ici pourra être testée par la
future grande mission de l’ESA dont le lancement est prévu en 2028: l’Advanced Telescope for High Energy

Astrophysics (Athena). En effet, j’ai évalué l’efficacité de détection des éruptions avec l’X-ray Integral Field

Unit (X-IFU; Barret et al. 2013) à bord d’Athena. Pour cela, j’ai d’abord créé une image du centre galactique
qui devrait être observé par Athena/X-IFU en faisant une simulation Monte Carlo d’une liste d’événements
entre 2 et 10 keV avec le programme SIXTE4. La distribution spectrale du centre galactique est extraite en
huit bandes spectrales à partir des observations de 2012 faites avec Chandra HETG/ACIS-S3. La distribution
spatiale des sources du centre galactique est ensuite donnée par les images faites avec Chandra HETG/ACIS-
S3 (résolution angulaire de 0,5′′) dans chaque bande spectrale. A partir des listes d’événements simulées
pour chaque bande spectrale, j’ai extrait les événements dans un cercle de 5′′ de rayon centré sur Sgr A*
et calculé un taux de comptage hors éruption entre 2 et 10 keV de 0,68 coups s−1. J’ai ensuite calculé le
rapport entre le taux de comptage moyen d’une éruption vu par Athena/X-IFU et son flux moyen corrigé de
l’absorption en simulant avec SIXTE une source ponctuelle dont le spectre est une loi de puissance absorbée
avec NH = 14,3×1022 cm−2 et Γ = 2. Ce rapport vaut 2,8×10−12 erg s−1 cm−2/coups s−1. J’ai finalement
testé l’efficacité de détection des éruptions avec plusieurs flux moyens et plusieurs durées au dessus du taux
de comptage hors éruption de 0,68 coups s−1 avec la méthode des blocs Bayésiens. Toutes les éruptions vues
avec Chandra, XMM-Newton et Swift devraient être détectées avec une efficacité proche de 100%. Cela
implique que des éruptions beaucoup plus faibles pourront aussi être détectées avec une efficacité plus petite.
Si ces faibles éruptions sont détectées avec leur contrepartie NIR observable avec le futur European Extremely

Large Telescope (E-ELT) de 39 de diamètre (première lumière en 2024), le processus IC pour la création des
éruptions X pourra être testé car nous serons alors capable de mesurer le délai temporel entre les maxima en
NIR et rayons X dû à ce processus. Le spectre des éruptions sera aussi décrit par un rapport signal à bruit
plus grand que celui observé par XMM-Newton ou Chandra ce qui permettra de mettre des contraintes sur les
autres processus radiatifs.

4http://www.sternwarte.uni-erlangen.de/research/sixte/
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Appendix A

The radiative processes evolving near Sgr A*

Here, I make a short mathematical summary of the three radiative processes debated for the creation of the
X-ray flares from Sgr A*: synchrotron, inverse Compton and synchrotron self-Compton.

A.1 The synchrotron radiation

The synchrotron radiation is emitted by relativistic electrons which gyrate around magnetic field lines. The en-
ergy of relativistic electrons is described by the Lorentz factor (or electron boosting factor)
γ = (1 − v2/c2)−1/2 where the electron velocity v is always perpendicular to its acceleration. The frequency at
which the electrons rotate is given by νg = eB/2πγme with e the electronic charge and me the electron mass.
The relativistic property of the electrons causes the synchrotron emission to be collimated in a beam with a
semi-opening angle of γ−1.

The electron energy distribution is deduced from their successive accelerations (Longair 1994). After
one acceleration, the average energy of a particle is E = β E0 and the probability that it remains in the
acceleration region is P. Considering k accelerations, N(E) = N0 Pk particles remain in the acceleration
region and each particle has an energy of E = βk E0. The ratio of the logarithm of these two equations
is N(E)/N0 = (E/E0)ln P/ ln β. The number of particles having an energy between E and E + dE is thus
N(E) dE = K0 E−p dE with p = 1− ln P/ ln β (Lang 1999). The spectral index p can be computed considering
the gain energy when the particle cross the shock (β = 1 − 〈E/E0〉 = 1 − 4 V ′/3 c with V ′ the velocity behind
the shock) and the probability to lose a particle (P = 1 − U/c with U the medium velocity) as it is done in
Longair (1994). A spectral index value of p = 2 is often taken to describe synchrotron radiation without
absorption for a mono-atomic and fully ionized gas of high energy particles.

The normalization parameter K0 is computed assuming that the number of particles (N0) into the emitting
region of volume V remains constant (Van der Laan 1966):

N0 = V K0

∫ Emax

Emin

E−p dE , (A.1)

leading to

K0 =
N0 (1 − p)

V
(

E
1−p

min − E
1−p
max

) . (A.2)

The solution of the synchrotron radiative transfer equation is

S ν = S ν,0 e−τν +
ǫν

κν

(

1 − e−τν
)

(A.3)

with ǫν and κν the emission and absorption coefficients and τν the optical depth. I assume here that S ν,0 = 0.

The energy radiated between ν and ν + dν by electrons with energy between E = γme c2 and E + dE is

ǫνdν = −
(

dE

dt

)

N(E)dE (A.4)
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with dE = me c2ν−1/2dν/2ν1/2g . The total energy loss of an ultra relativistic electron is (Longair 1994)

−
(

dE

dt

)

=
3
4
γ2σTcUB (A.5)

with σT the Thomson cross-section and the magnetic energy density UB = (B sin θ)2/8π with θ the angle
between the line of sight and the direction of the magnetic field . By replacing all the terms in Eq. A.4, we
have

ǫν = Cǫ(p) K0 (B sin θ)(p+1)/2ν−(p−1)/2 (A.6)

with Cǫ(p) a constant which depends on the spectral index (Lang 1999):

Cǫ(p) =

√
3

8π
e3

me c2

(

3e

4πme
3c5

)(p−1)/2

2(p−3)/2 p + 7/3
p + 1

Γ

(

3p − 1
12

)

Γ

(

3p + 7
12

)

(A.7)

with Γ the Gamma function for p > 1/3. Considering a randomly oriented magnetic field, the integration over
all angle θ leads to (Longair 1994):

∫ ∞

0

1
2

sin θ sin
p+2

2 dθ =

√
πΓ

(

p+6
4

)

2Γ
(

p+8
4

) . (A.8)

The spectrum created by such accelerated electron is characterized by a power law (ǫν ∝ ν−α with
α = (p − 1)/2) with a polarized radiation.

However, the synchrotron emission undergoes an absorption called synchrotron self absorption. This
absorption is produced by different mechanisms. First there is the Compton scattering due to the interac-
tion between the photons and the electrons producing a change in the photon frequency. There is also the
bremsstrahlung scattering due to the acceleration of an electron passing close to a proton. This acceleration
produces a photon which is re-absorbed when the electron goes out of the proton field. By conservation of
the momentum, a net absorption is created. The synchrotron self absorption happens at low frequency when
the effective electron temperature Te ∼ (me c2/3kB)(ν/νg)1/2 with kB the Boltzmann constant approaches the
brightness temperature Tb = λ

2 S ν/2 kBΩ with λ the mean wavelength of the source and Ω = πR2/d2 the
solid angle with R the source radius and d the distance from Earth. When Te = Tb, the absorption coefficient
is (Rybicki & Lightman 1979)

κν =
−c2

8π ν2

∫ ∞

0
j(ν, E)

d

dE

(

N(E)

E2

)

E2dE (A.9)

with j(ν, E) the total emitted power per frequency:

j(ν, E) =

√
3q3 B sin θ

2 πm c2
F(x) (A.10)

with F(x) = x
∫ ∞

x
K0

5
3 (ζ) dζ. Using Eq. 11.4.22 of Abramowitz & Stegun (1970), one may derive

κν = Cκ(p) K0 (B sin θ)(p+2)/2 ν−(p+4)/2 (A.11)

with
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. (A.12)

Finally, the resultant emission from the synchrotron radiation computed from Eq. A.3 with Eq. A.6 and
A.11 is

S SYN =
Cǫ

Cκ
B−1/2 ν5/2

(

1 − e−τν
)

(A.13)

with the optical depth τν = κν
∫ l

0
dl and l the the total distance followed by the photon in the absorbing

medium.
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Figure A.1: Spectrum of the synchrotron radiation emitted by a powerlaw distribution of electrons of spectral
index p = 2α + 1.

The total synchrotron spectrum is thus composed by two power laws with a maximum flux S m at the
frequency νm (see Fig. A.1):

• the first one at low frequencies (i.e., in optically thick regime): the absorption coefficient is large leading
to S SYN ∝ B−1/2 ν5/2.

• the second one at higher frequency (i.e., optically thin regime): τν << 1 leading to 1 − e−τν ≈ κν l. The
synchrotron radiation is thus reduced to S SYN ∝ B−1/2 ν5/2 κν ∝ Bα+1 ν−α with α = (p − 1)/2.

The cooling time of the synchrotron radiation is computed as the ratio between the energy powered by
the electrons and the energy of these electrons scaling as B−2 γ−1. The synchrotron cooling timescale is

τsync = 8 (B/30 G)−3/2
(

ν/1014 Hz
)−1/2

min (Dodds-Eden et al. 2009).

A.2 The inverse Compton (IC)

During the Compton scattering (or non-elastic Thomson scattering) process, a part of the photon energy is
given to the electron since the photon energy is large compared to the electron energy. The inverse Comp-
ton scattering is the inverse process where the photon energy is increased by relativistic electrons since
γ hν << me c2. The mean and maximum frequencies that the photon with an initial frequency ν0 acquires
are ν = (4/3) γ2 ν0 and νmax ∼ 4γ2ν0, respectively.

The energy lost by the relativistic electrons in the electron reference frame is (Bradt 2008)

−
(

dE

dt

)

= σTc U′rad (A.14)

with σT the Thomson cross section and U′rad = nph hν the averaged photon energy density which depends on
the size of the photons source and its distance to the relativistic electrons source.

The energy gained by the photon in its rest frame is

−
(

dE

dt

)

=
4
3
σT c Urad γ

2 . (A.15)

This equation is very similar to those of synchrotron radiation (see Eq. A.5) since the acceleration processes
are similar: in the case of synchrotron radiation, this is the magnetic field which accelerates electrons and
in the inverse Compton mechanism, this is the sum of all electric field of the incident photon flux density.
Comparing the energy losses from the synchrotron and inverse Compton radiation, we have

(dE/dt)IC

(dE/dt)SYN
=

Urad

UB
. (A.16)
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The inverse Compton catastrophe occurs when this ratio is larger than 1 implying that each scattered photon
may have a second upscattering on the relativistic electrons and produce other photons that may also be
upscattered without end.

The emissivity produced by inverse Compton scattering is given in Blumenthal & Gould (1970) for a
monochromatic radiation field at ν0 which is upscattered by a single electron:

S IC =
3σTcN(ν0)ν

16γ4ν20

(

2ν ln

(

ν

4γ2ν0

)

+ ν + 4γ2ν0 −
ν

2γ2ν0

)

dν . (A.17)

For a powerlaw energy distribution of electrons N(E) dE = K E−p dE in a plasmon volume V , the resulting
spectrum is (Georganopoulos et al. 2001)

S IC ≈ CIC
K V Urad

ν0

(

ν

ν0

)−(p−1)/2

(A.18)

with CIC = 4σT c 2p−1/((1 + p)(3 + p)). The inverse Compton radiation is thus proportional to ν−α with
α = −(p − 1)/2 as for the synchrotron emission in optically thin regime. The inverse Compton cooling
timescale is τIC = mec/γσTUrad.

A.3 The synchrotron self-Compton (SSC)

The SSC radiation is the local counterpart of the IC process. The source region of photons and electrons
are the same implying that the photons produced by synchrotron radiation are upscattered by the electrons
that produced them. Marscher (1983) computed the flux of the SSC process considering a powerlaw energy
density for the accelerated electrons N(E) dE = K E−p dE. The SSC radiation emitted by a source of radius R

is

S SSC ∝ R−2(2α+3) ν
−(3α+5)
m S

2(α+2)
m ln

(

νsyn

νm

)

ν−α (A.19)

with νsyn the cutoff frequency of the synchrotron radiation, S m maximum flux of the synchrotron spectrum
at the frequency νm and α = (p − 1)/2 the spectral index. The natural logarithm in this equation may be
approximated by c1 (νsyn/νm)c2 with c1 = 1.8 and c2 = 0.201 (Eckart et al. 2012).
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Appendix B

The adiabatically expanding plasmon model

The observed time delay between the radio/sub-millimeter flares and the NIR/X-ray flares is explained with
an expanding plasmon with adiabatic cooling model (Van der Laan 1966; Yusef-Zadeh et al. 2006b). In
this model, the plasmon is initially optically thin to NIR and X-ray wavelengths leading to an observable
NIR/X-ray flaring emission whereas it is optically thick to the radio and sub-millimeter wavelengths leading
to an occultation of a part of the hot accretion flow and an unobservable flaring emission. As the source
adiabatically expands, the density of electrons decreases and the source becomes optically thin to the radio
and sub-millimeter wavelengths leading to an increase of observed synchrotron flux from the source and from
the part of hot accretion flow which was occulted.

The velocity of the expansion is governed by the ratio between the electron energy in the plasmon E0 and
the mass density ρ0 of the ambient medium: V(t) = dR(t)/dt = (E0/2πR(t)3ρ0)0.5 (van der Laan 1963). The
radius of the plasmon, computed as R(t) = R0 + V(t)(t − t0), has as an initial radius R0 and a maximum radius
Rmax = (2 E0/B

2
0)1/3 when the expansion velocity reaches the Alfven velocity of the medium (van der Laan

1963). The total flux received by the observer is the sum of the flaring emission from the source S pl(t), the
flux emitted by the non-occulted part of hot accretion flow (1 − f (t)) S q with f (t) the part of the hot accretion
flow which is occulted and the flux from the occulted part of hot accretion flow which is transfered through
the plasmon S occ(t) (Yusef-Zadeh et al. 2010).

The initial number density of electrons in the plasmon is ne = 3 Ne/(4 πR3
0) with Ne the constant number

of electrons inside the sphere. Using the conservation of magnetic flux density density, the magnetic flux
varies as B(t) = B0 (R(t)/R0)−2. Assuming that the plasmon contains ultrarelativistic particles undergoing an
adiabatic cooling, we have E(t) = E0 (R(t)/R0)−1.

Considering a powerlaw distribution of electrons such as N(E) dE = K0 E−p dE, Ne is computed as (see
Eq. A.1)

Ne =
4
3
πR3

0

∫ E0,max

E0,min

K0 E−p dE (B.1)

with E0,min and E0,max corresponding to the initial Lorentz factors γmin and γmax. By integrating this equation,
we have (as in Eq. A.2)

K0 =
3 Ne

4 πR3
0

1 − p

E
1−p

0,min − E
1−p

0,max

. (B.2)

The initial energy density per unit of volume in the plasmon is computed by integrating E N(E) on the number
of particles:

E0 = Ne
1−p

2−p

E
2−p

0,max−E
2−p

0,min

E
1−p

0,max−E
1−p

0,min

for p , 2 ,

E0 = Ne
1−p

E
1−p

0,max−E
1−p

0,min

ln
(

E0,max

E0,min

)

for p = 2 .
(B.3)

The electron energy is not very sensible to the value of γmax whereas the value of γmin varies with the distance
and has a larger influence on the energy. For ultra-relativistic electrons, γmin >> 1.

The synchrotron emission emitted by the spherical plasmon is

S pl(t) =
ǫν(t)
κν(t)

∫ R(t)

0

(

1 − e−τν(t,r)
)

2πr dr . (B.4)
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The absorption and emission coefficients of the synchrotron emission, ǫν(t) and κν(t), have already been
described in Sect. A.1 (Eq. A.6 and A.11) at a fixed time. The parameters which depend on time in ǫν(t)
and κν(t) are K(t) ∝ R(t)−2−p and B(t) ∝ R(t)−2.

A photon passing through the sphere travels a distance of 2(R(t)2 − r2)0.5 with r ≤ R(t) the minimum
distance to the sphere center. The optical depth τν(t, r) crossed by a photon of frequency ν is thus

τν(t, r) = κν(t) 2
√

R(t)2 − r2 . (B.5)

Resolving the integral B.4, we have

S pl(t) = π
ǫν(t) R(t)2

κν(t)

(

1 − 1 − e−2κν(t) R(t)(1 + 2κν(t) R(t))

2 κν(t)2 R(t)2

)

. (B.6)

This equation has the same shape than those computed by Van der Laan (1966):

• In the optically thick regime: κν(t) R(t) >> 1 leading the term in parenthesis in the order of zero. The
plasmon emission is thus proportional to ǫν(t) R(t)2/κν(t) ∝ B(t)−1/2 ν5/2 R(t)2 ∝ ν5/2 R(t)3.

• In the optically thin regime: κν(t) R(t) << 1 leading to 1−e−2κν(t) R(t)(1+2κν(t) R(t))
2 κν(t)2 R(t)2 ≈ e−2κν(t) R(t). The plasmon

emission is thus proportional to ǫν(t) R(t)2/κν(t) (1 − e−2κν(t) R(t)) ∝ B(t)−1/2 ν5/2 R(t)2 κν(t) R(t). With the
equation of the absorption coefficient, we have K(t) B(t)(p+1)/2 ν(1−p)/2 R(t)3 ∝ ν(1−p)/2 R(t)−2p.

The flux received from the quiescent through the sphere is

S occ(t) =
S q

πR2
q

∫ R(t)

0
e−τν(t,r) 2πr dr (B.7)

with Rq the size of the hot accretion flow emitting with a flux S q.

S occ(t) =
S q R2

R2
q

(

1 − e−2κν(t)R(t)(2κν(t)R(t) + 1)

2κν(t)2R(t)2

)

(B.8)

The total flux received by the observer is thus

S ν(t) = (1 − f (t))S q + S occ(t) + S pl(t) (B.9)

with 1 − f (t) = (R2
q − R(t)2)/R2

q.

This model was tested using the equations developed in Van der Laan (1966) (i.e., without taking the
evolution of the occulted accretion flow flux nor the evolution of the expansion velocity with the radius) for
different delayed flares. The derived characteristics of the source are R0 ranging from 0.5 to 3.2 Rs, B0 ranging
from 10 to 76 G, V ranging from 0.0028 to 0.15 c and p ranging from 1 to 4.6 (Yusef-Zadeh et al. 2006b;
Eckart et al. 2008; Yusef-Zadeh et al. 2009).

The variation of the NIR–to–X-ray flux ratio in the observed flares may be explained by the variation of
the size of the plasmon which is optically thin for the NIR and X-ray photons. Let us consider that the NIR
photons are emitted by synchrotron radiation and that the X-rays are produced by synchrotron self-Compton.
The optically thin synchrotron emission emitted from a spherical region is proportional to B(t)α+1 να R(t)3 with
α = (p−1)/2 the spectral index. The magnetic field can be expressed as a function of S m(t) the maximum flux
of the synchrotron spectrum at the frequency νm(t) and a time t of the plasmon expansion (Marscher 1983):
B(t) ∝ R(t)4 νm(t)5 S m(t)−2. This leads to

S SYN(t) ∝ R(t)4α+7 νm(t)5(α+1) S m(t)−2(α+1) ν−α . (B.10)

The synchrotron self-Compton emission is also given as a function of S m(t) and νm(t) in Eq. A.19. We thus
have

S SSC(t)
S SYN(t)

∝ R(t)−(8α+13) νm(t)−(8α+10+c2) S m(t)4α+6 . (B.11)
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Van der Laan (1966) computed the parameters S m(t) and νm(t) as a function of the plasmon radius:
S m(t) ∝ R(t)−(14α+10)/(2α+5) and νm(t) ∝ R(t)−(8α+10)/(2α+5). Thus, S SSC/S SYN ∝ R−β with

β ≡ 8α2 + (30 − 8 c2)α + 25 − 10 c2

2α + 5
. (B.12)

For a synchrotron emission, α must be positive implying that β > 5.4. The variation of the NIR–to–X-
ray flux ratio thus allows us to compute the variation of the flaring source size considering the adiabatically
expanding plasmon model emitting the NIR photons with a synchrotron emission and the X-ray photons with
a synchrotron self-Compton emission.
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Appendix C

The observation log of Sgr A* from 1999 to
2015 and the detected X-ray flares
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Table C.1: Observation log of public XMM-Newton observations and the detected X-ray flares.

ObsID PI Observation start Observation end Duration Non-flaring level Flare starta Flare stopa Flare duration Mean count rateb Mean fluxc

(UT) (UT) (ks) (count s−1) (UT) (UT) (s) (count s−1) (10−12 erg s−1 cm−2)
112970601d M. Turner 2000-09-17 18:41:04 2000-09-17 19:13:58 2.0 0.102 ± 0.005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
112970501e,g M. Turner 2000-09-21 09:21:08 2000-09-21 15:16:37 24.9 0.029 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
112971601e M. Turner 2001-03-31 11:31:01 2001-03-31 12:40:31 4.0 0.038 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
112972101g M. Turner 2001-09-04 02:34:33 2001-09-04 08:41:10 21.7 0.099 ± 0.003 08:29:45 08:41:10 >685 0.105 ± 0.021 29.6
111350101j B. Aschenbach 2002-02-26 06:40:39 2002-02-26 17:55:35 40.0 0.105 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
111350301j B. Aschenbach 2002-10-03 07:15:59 2002-10-03 11:34:19 15.4 0.100 ± 0.002 10:08:32 10:52:01 2609 0.289 ± 0.018 27.9
202670501g A. Goldwurm 2004-03-28 16:44:29 2004-03-30 03:25:39 105.6 0.200 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
202670601g A. Goldwurm 2004-03-30 17:16:48 2004-04-01 03:35:08 107.0 0.187 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
202670701 A. Goldwurm 2004-08-31 03:33:48 2004-09-01 16:05:43 127.5 0.190 ± 0.002 08:48:44 10:56:42 7678 0.075 ± 0.008 4.99

30:36:54 30:54:29 927 0.023 ± 0.010 2.53
202670801 A. Goldwurm 2004-09-02 03:23:36 2004-09-03 16:03:37 130.8 0.157 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
302882601 R. Wijnands 2006-02-27 04:26:53 2006-02-27 05:49:46 4.9 0.109 ± 0.004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
302884001 R. Wijnands 2006-09-08 17:18:55 2006-09-08 18:42:09 5.0 0.092 ± 0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
506291201d R. Wijnands 2007-02-27 06:07:31 2007-02-27 16:51:07 38.6 0.048 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
402430701 D. Porquet 2007-03-30 21:27:07 2007-03-31 06:28:47 32.3 0.121 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
402430301 D. Porquet 2007-04-01 15:06:44 2007-04-02 17:05:07 101.3 0.111 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
402430401 D. Porquet 2007-04-03 16:43:24 2007-04-04 19:48:15 86.4 0.105 ± 0.001 29:11:21 30:09:27 3486 0.216 ± 0.014 14.7

38:15:19 38:57:09 2510 0.060 ± 0.009 4.52
40:16:36 40:59:51 2595 0.041 ± 0.005 4.53

504940201 R. Wijnands 2007-09-06 10:27:56 2007-09-06 13:39:06 11.1 0.109 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
511000301i R. Wijnands 2008-03-03 23:47:45 2008-03-04 01:19:25 5.1 0.111 ± 0.004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
505670101 A. Goldwurm 2008-03-23 17:21:01 2008-03-24 20:17:25 96.6 0.110 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
511000401i R. Wijnands 2008-09-23 15:53:29 2008-09-23 17:08:17 5.1 0.096 ± 0.004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
554750401 A. Goldwurm 2009-04-01 01:17:45 2009-04-01 11:58:54 38.0 0.105 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
554750501 A. Goldwurm 2009-04-03 01:55:00 2009-04-03 13:43:39 42.4 0.101 ± 0.001 08:47:39 09:13:39 1560 0.059 ± 0.010 10.7
554750601 A. Goldwurm 2009-04-05 03:52:26 2009-04-05 13:02:10 32.8 0.104 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
604300601 D. Porquet 2011-03-28 08:11:53 2011-03-28 21:15:04 45.2 0.092 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
604300701 D. Porquet 2011-03-30 09:25:00 2011-03-30 21:12:57 42.3 0.099 ± 0.001 17:42:01 18:15:46 2025 0.119 ± 0.010 11.9
604300801 D. Porquet 2011-04-01 09:01:06 2011-04-01 19:09:54 37.3 0.090 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
604300901 D. Porquet 2011-04-03 08:14:00 2011-04-03 18:55:51 36.5 0.098 ± 0.002 07:51:24 08:34:59 2615 0.104 ± 0.008 4.26
604301001 D. Porquet 2011-04-05 07:31:48 2011-04-05 20:26:33 48.1 0.089 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
658600101 C. Darren Dowell 2011-08-31 23:36:30 2011-09-01 13:04:17 47.6 0.098 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
658600201 C. Darren Dowell 2011-09-01 20:25:57 2011-09-02 10:44:22 51.3 0.095 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674600601 A. Goldwurm 2012-03-13 04:14:14 2012-03-13 09:47:24 19.6 0.096 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674600701 A. Goldwurm 2012-03-15 05:09:04 2012-03-15 09:10:51 14.0 0.094 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674601101 A. Goldwurm 2012-03-17 03:21:30 2012-03-17 10:09:54 25.7 0.101 ± 0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674600801 A. Goldwurm 2012-03-19 04:14:14 2012-03-19 10:12:43 21.0 0.096 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
674601001 A. Goldwurm 2012-03-21 03:52:26 2012-03-21 10:07:06 22.0 0.094 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
694640301 R. Terrier 2012-08-31 11:42:07 2012-08-31 22:57:43 40.0 0.078 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
694640401e R. Terrier 2012-09-02 19:09:49 2012-09-03 09:34:03 53.0 0.010 ± 0.0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
694641001e R. Terrier 2012-09-23 20:42:07 2012-09-24 09:36:52 46.0 0.015 ± 0.0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
694641101e R. Terrier 2012-09-24 10:38:50 2012-09-24 21:53:44 40.0 0.068 ± 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
724210201 G. Ponti 2013-08-30 20:52:40 2013-08-31 12:26:18 55.6 0.534 ± 0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
700980101 D. Haggard 2013-09-10 04:12:07 2013-09-10 14:11:46 35.7 0.538 ± 0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
724210501 G. Ponti 2013-09-22 21:54:32 2013-09-23 09:17:52 39.4 0.506 ± 0.003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
723410301 N. Grosso 2014-02-28 18:18:41 2014-03-01 08:53:15 51.9 0.320 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
723410401 N. Grosso 2014-03-10 14:49:09 2014-03-11 05:57:28 54.0 0.312 ± 0.002 17:07:55 19:03:51 6956 0.119 ± 0.008 6.76
723410501 N. Grosso 2014-04-02 03:42:35 2014-04-02 20:22:19 54.9 0.287 ± 0.002 16:53:00 17:08:44 944 0.200 ± 0.013 20.7
690441801h G.L. Israël 2014-04-03 05:48:45 2014-04-04 05:01:14 83.5 0.294 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
743630201h G. Ponti 2014-08-30 20:00:24 2014-08-31 04:54:26 28.5 0.170 ± 0.003 23:46:11 24:53:59 4068 0.282 ± 0.023 15.0

25:06:08 25:19:18 790 0.116 ± 0.019 16.8
28:36:49 28:53:19 990 0.234 ± 0.023 18.4

743630301 G. Ponti 2014-08-31 21:03:54 2014-09-01 04:01:15 22.3 0.169 ± 0.003 25:21:16 25:55:05 2029 0.135 ± 0.012 12.4
743630401 G. Ponti 2014-09-27 19:47:57 2014-09-28 02:57:18 22.9 0.177 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
743630501 G. Ponti 2014-09-28 21:42:09 2014-09-29 08:12:51 33.7 0.167 ± 0.002 30:06:58 30:12:47 349 0.160 ± 0.031 36.7
743630601 G. Ponti 2015-02-26 06:58:40 2015-02-26 15:26:25 27.1 0.152 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
743630701f G. Ponti 2015-03-31 10:25:12 2015-03-31 10:26:38 0.1 0.253 ± 0.058 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
743630801 G. Ponti 2015-04-01 09:14:43 2015-04-01 15:55:24 21.5 0.164 ± 0.002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
743630901 G. Ponti 2015-04-02 09:39:43 2015-04-02 11:35:50 6.23 0.182 ± 0.004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Notes: Flare starts and stops in bold face are those beginning or ending at the start or stop of the observation leading to a lower limit on the flare duration and a lower or upper limit on the flare
mean count rate and mean flux. The flux value of these flares were taken equal to this limit in the flaring rate study. (a) The flare start and end times are given in hh:mm:ss since the day of the
observation start; (b) The flare mean count rates are computed after subtraction of the non-flaring level; (c) Mean unabsorbed flux between 2 and 10 keV determined for NH = 14.3 × 1022 cm−2 and
Γ = 2; (d) For this observation, the Galactic Center was observed only with EPIC/pn; (e) For these observations, the Galactic Center was observed only with EPIC/MOS1 and 2; ( f ) The data transfer
from XMM-Newton to the Earth during this observation was affected by the GALILEO launch and Early Orbit Phase; (g) Frame window extended mode; (h) Small window; (i) Thin filter; ( j) Thick
filter.
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Table C.2: Observation log of public Chandra observations and the detected X-ray flares.

ObsID PI Observation start Observation end Duration Instrument Non-flaring level Flare starta Flare stopa Flare duration Mean count rateb Mean fluxc

(UT) (UT) (ks) (count s−1) (UT) (UT) (s) (count s−1) (10−12 erg s−1 cm−2)
242 G. Garmire 1999-09-21 02:40:30 1999-09-21 17:03:17 46.5 ACIS-I3 0.0048 ± 0.0001 02:40:49 04:10:23 5374 0.004 ± 0.001 1.30

1561 F. Baganoff 2000-10-26 19:05:19 2001-07-14 05:56:28 49.9 ACIS-I3 0.0059 ± 0.0008 26:36:54 26:46:39 585 0.030 ± 0.014 3.52
28:55:12 30:46:46 6694 0.110 ± 0.004 11.5

2951 G. Garmire 2002-02-19 14:26:32 2002-02-19 18:32:35 12.5 ACIS-I3 0.0039 ± 0.0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2952 G. Garmire 2002-03-23 12:23:04 2002-03-23 16:10:07 12.0 ACIS-I3 0.0053 ± 0.0007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2953 G. Garmire 2002-04-19 10:57:39 2002-04-19 14:13:34 11.7 ACIS-I3 0.0042 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2954 G. Garmire 2002-05-07 09:23:04 2002-05-07 13:18:12 12.6 ACIS-I3 0.0047 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2943 F. Baganoff 2002-05-22 23:17:41 2002-05-23 09:55:42 38.2 ACIS-I3 0.0054 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3663 F. Baganoff 2002-05-24 11:49:02 2002-05-24 22:56:10 38.5 ACIS-I3 0.0056 ± 0.0003 19:06:04 20:23:14 4630 0.015 ± 0.002 2.31
3392 F. Baganoff 2002-05-25 15:13:52 2002-05-27 14:32:44 168.9 ACIS-I3 0.0052 ± 0.0005 28:04:29 28:54:04 2975 0.018 ± 0.009 0.87

37:37:32 38:01:48 1456 0.015 ± 0.009 1.00
53:33:16 53:49:15 959 0.024 ± 0.008 0.69

3393 F. Baganoff 2002-05-28 05:33:33 2002-05-30 02:33:05 160.1 ACIS-I3 0.0048 ± 0.0003 15:10:11 16:02:55 3164 0.081 ± 0.040 0.61
29:40:49 31:03:47 4978 0.027 ± 0.012 3.28
42:37:15 42:52:43 928 0.058 ± 0.016 6.40

3665 F. Baganoff 2002-06-03 01:22:29 2002-06-04 03:23:00 91.1 ACIS-I3 0.0050 ± 0.0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3549 G. Garmire 2003-06-19 18:26:46 2003-06-20 01:52:50 25.1 ACIS-I3 0.0055 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4683 G. Garmire 2004-07-05 22:32:02 2004-07-06 12:54:49 50.2 ACIS-I3 0.0049 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4684 G. Garmire 2004-07-06 22:27:16 2004-07-07 12:50:57 50.2 ACIS-I3 0.0056 ± 0.0004 27:17:55 28:04:40 2805 0.039 ± 0.022 4.87
5360 F. Baganoff 2004-08-28 12:02:59 2004-08-28 13:59:10 5.2 ACIS-I3 0.0036 ± 0.0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6113 F. Baganoff 2005-02-27 06:23:57 2005-02-27 08:27:17 4.9 ACIS-I3 0.0054 ± 0.0011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5950 F. Baganoff 2005-07-24 19:56:25 2005-07-25 10:05:43 49.2 ACIS-I3 0.0052 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5951 F. Baganoff 2005-07-27 19:06:08 2005-07-28 08:25:32 45.2 ACIS-I3 0.0048 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5952 F. Baganoff 2005-07-29 19:48:58 2005-07-30 09:05:36 45.9 ACIS-I3 0.0055 ± 0.0003 26:31:09 27:29:10 3481 0.016 ± 0.002 2.16
5953 F. Baganoff 2005-07-30 19:37:18 2005-07-31 09:10:32 46.0 ACIS-I3 0.0052 ± 0.0002 22:13:27 22:47:55 2068 0.043 ± 0.004 5.13
5954 F. Baganoff 2005-08-01 20:13:00 2005-08-02 01:16:15 18.1 ACIS-I3 0.0042 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6639 F. Baganoff 2006-04-11 05:31:13 2006-04-11 07:06:03 4.5 ACIS-I3 0.0044 ± 0.0011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6640 F. Baganoff 2006-05-03 22:24:25 2006-05-04 00:22:07 5.2 ACIS-I3 0.0076 ± 0.0013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6641 F. Baganoff 2006-06-01 16:05:47 2006-06-01 17:55:45 5.1 ACIS-I3 0.0097 ± 0.0014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6642 F. Baganoff 2006-07-04 10:59:35 2006-07-04 12:51:17 5.2 ACIS-I3 0.0070 ± 0.0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6363 F. Baganoff 2006-07-17 03:56:11 2006-07-17 12:41:06 30.2 ACIS-I3 0.0042 ± 0.0004 05:52:05 06:35:07 2516 0.055 ± 0.007 6.49
6643 F. Baganoff 2006-07-30 14:28:24 2006-07-30 16:21:53 5.0 ACIS-I3 0.0042 ± 0.0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6644 F. Baganoff 2006-08-22 05:52:40 2006-08-22 07:46:29 5.0 ACIS-I3 0.0054 ± 0.0011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6645 F. Baganoff 2006-09-25 13:48:17 2006-09-25 15:41:27 5.2 ACIS-I3 0.0061 ± 0.0009 14:00:33 14:23:03 1350 0.008 ± 0.003 2.07
6646 F. Baganoff 2006-10-29 03:27:20 2006-10-29 05:12:30 5.2 ACIS-I3 0.0071 ± 0.0012 03:27:20 03:48:38 >1338 0.012 ± 0.006 3.45
7554 F. Baganoff 2007-02-11 06:15:10 2007-02-11 08:14:16 5.1 ACIS-I3 0.0044 ± 0.0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7555 F. Baganoff 2007-03-25 22:53:57 2007-03-26 00:50:14 5.2 ACIS-I3 0.0055 ± 0.0011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7556 F. Baganoff 2007-05-17 01:02:59 2007-05-17 03:11:34 5.0 ACIS-I3 0.0060 ± 0.0011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7557 F. Baganoff 2007-07-20 02:25:15 2007-07-20 04:27:51 5.0 ACIS-I3 0.0047 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7558 F. Baganoff 2007-09-02 20:17:30 2007-09-02 22:01:29 5.0 ACIS-I3 0.0072 ± 0.0012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7559 F. Baganoff 2007-10-26 10:02:16 2007-10-26 11:50:28 5.1 ACIS-I3 0.0050 ± 0.0010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9169 F. Yusef-zadeh 2008-05-05 03:50:56 2008-05-05 12:05:56 28.0 ACIS-I3 0.0055 ± 0.0005 10:35:14 11:42:44 4050 0.006 ± 0.002 1.27
9170 F. Yusef-zadeh 2008-05-06 02:58:17 2008-05-06 10:58:05 27.1 ACIS-I3 0.0050 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9171 F. Yusef-zadeh 2008-05-10 03:15:52 2008-05-10 11:24:06 28.0 ACIS-I3 0.0048 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9172 F. Yusef-zadeh 2008-05-11 03:34:30 2008-05-11 11:42:23 27.8 ACIS-I3 0.0053 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9174 F. Yusef-zadeh 2008-07-25 21:48:55 2008-07-26 06:25:59 29.2 ACIS-I3 0.0044 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9173 F. Yusef-zadeh 2008-07-26 21:18:02 2008-07-27 05:27:58 28.1 ACIS-I3 0.0038 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10556 F. Baganoff 2009-05-18 02:18:24 2009-05-19 10:22:34 114.0 ACIS-I3 0.0053 ± 0.0002 02:34:59 02:58:54 1435 0.031 ± 0.007 4.03
09:41:05 10:39:26 3501 0.019 ± 0.003 2.57
23:03:43 23:30:56 1633 0.091 ± 0.007 9.07
24:29:22 24:51:37 465 0.091 ± 0.015 10.8

11843 G. Garmire 2010-05-13 02:11:23 2010-05-14 00:41:47 80.0 ACIS-I3 0.0059 ± 0.0003 03:30:04 04:38:30 4106 0.036 ± 0.026 3.36
13016 F. Baganoff 2011-03-29 10:29:11 2011-03-29 15:56:33 18.1 ACIS-I3 0.0035 ± 0.0005 10:40:51 11:33:35 3164 0.009 ± 0.003 1.70
13017 F. Baganoff 2011-03-31 10:28:17 2011-03-31 15:58:39 18.1 ACIS-I3 0.0047 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13508 R. Terrier 2011-07-19 01:21:58 2011-07-19 10:38:44 31.9 ACIS-I0 0.0028 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12949 R. Terrier 2011-07-21 07:14:23 2011-07-22 00:19:59 59.2 ACIS-I0 0.0030 ± 0.0001 18:04:31 18:11:33 422 0.045 ± 0.011 20.5
13438 R. Terrier 2011-07-29 05:32:16 2011-07-30 00:31:56 67.1 ACIS-I0 0.0019 ± 0.0001 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13850 F. Baganoff 2012-02-06 00:36:15 2012-02-06 17:53:58 60.1 ACIS-S3/HETG 0.0061 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14392 F. Baganoff 2012-02-09 06:15:50 2012-02-09 23:18:07 59.2 ACIS-S3/HETG 0.0054 ± 0.0003 10:38:58 10:57:02 1084 0.016 ± 0.002 1.74

14:25:32 16:03:51 5899 0.109 ± 0.004 20.5
14394 F. Baganoff 2012-02-10 03:15:10 2012-02-10 08:50:27 18.1 ACIS-S3/HETG 0.0065 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14393 F. Baganoff 2012-02-11 10:12:07 2012-02-11 22:19:03 41.5 ACIS-S3/HETG 0.0077 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13856 F. Baganoff 2012-03-15 08:44:14 2012-03-15 20:24:26 40.1 ACIS-S3/HETG 0.0055 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13857 F. Baganoff 2012-03-17 08:56:51 2012-03-17 20:27:57 39.6 ACIS-S3/HETG 0.0066 ± 0.0005 16:04:36 16:23:02 1106 0.031 ± 0.006 4.41
13854 F. Baganoff 2012-03-20 10:12:19 2012-03-20 17:06:09 23.1 ACIS-S3/HETG 0.0081 ± 0.0011 11:41:40 12:04:27 1367 0.046 ± 0.006 4.47

12:41:11 13:03:23 1332 0.047 ± 0.006 4.00
14:03:42 14:26:06 1344 0.042 ± 0.006 4.34
16:23:47 16:46:59 1392 0.095 ± 0.008 3.72

14413 F. Baganoff 2012-03-21 06:43:00 2012-03-21 11:08:58 14.7 ACIS-S3/HETG 0.0064 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13855 F. Baganoff 2012-03-22 11:23:50 2012-03-22 17:29:22 20.1 ACIS-S3/HETG 0.0067 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14414 F. Baganoff 2012-03-23 17:47:45 2012-03-24 00:00:18 20.1 ACIS-S3/HETG 0.0060 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13847 F. Baganoff 2012-04-30 16:17:14 2012-05-02 11:37:48 154.1 ACIS-S3/HETG 0.0067 ± 0.0002 36:21:51 37:09:26 2855 0.016 ± 0.001 2.71
14427 F. Baganoff 2012-05-06 19:59:28 2012-05-07 18:51:38 80.1 ACIS-S3/HETG 0.0059 ± 0.0005 26:18:42 27:51:28 5566 0.015 ± 0.002 2.66

35:16:52 35:44:31 1659 0.013 ± 0.003 1.31
13848 F. Baganoff 2012-05-09 12:01:48 2012-05-10 15:41:05 98.2 ACIS-S3/HETG 0.0066 ± 0.0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13849 F. Baganoff 2012-05-11 03:17:40 2012-05-13 05:39:54 178.7 ACIS-S3/HETG 0.0071 ± 0.0003 16:37:37 17:24:19 2802 0.019 ± 0.003 2.01

24:20:31 25:52:29 5518 0.009 ± 0.002 1.72
31:41:37 32:15:35 2038 0.021 ± 0.004 9.20
51:10:55 51:57:34 2799 0.041 ± 0.005 2.08

13846 F. Baganoff 2012-05-16 10:40:15 2012-05-17 02:18:07 56.2 ACIS-S3/HETG 0.0064 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14438 F. Baganoff 2012-05-18 04:27:35 2012-05-18 12:10:09 25.8 ACIS-S3/HETG 0.0060 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13845 F. Baganoff 2012-05-19 10:41:18 2012-05-21 00:48:07 135.3 ACIS-S3/HETG 0.0062 ± 0.0002 13:50:55 14:28:21 2246 0.013 ± 0.003 4.79

44:48:29 46:03:33 4504 0.056 ± 0.004 2.62
14461 F. Baganoff 2012-07-09 22:33:10 2012-07-10 05:47:47 24.1 ACIS-S3/HETG 0.0050 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14461 F. Baganoff 2012-07-10 23:10:04 2012-07-11 05:21:09 20.1 ACIS-S3/HETG 0.0051 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14461 F. Baganoff 2012-07-12 05:47:45 2012-07-12 19:58:25 51.0 ACIS-S3/HETG 0.0073 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13853 F. Baganoff 2012-07-14 00:36:15 2012-07-14 21:05:13 73.7 ACIS-S3/HETG 0.0057 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13841 F. Baganoff 2012-07-17 21:05:19 2012-07-18 10:04:59 45.1 ACIS-S3/HETG 0.0064 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14465 F. Baganoff 2012-07-18 23:23:20 2012-07-19 11:43:25 44.3 ACIS-S3/HETG 0.0057 ± 0.0004 23:23:20 25:01:37 >5957 0.012 ± 0.002 2.51

28:18:15 28:51:17 1982 0.012 ± 0.003 4.75
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Table C.2: Continued.

ObsID PI Observation start Observation end Duration Instrument Non-flaring level Flare starta Flare stopa Flare duration Mean count rateb Mean fluxc

(UT) (UT) (ks) (count s−1) (UT) (UT) (s) (count s−1) (10−12 erg s−1 cm−2)
14466 F. Baganoff 2012-07-20 12:37:09 2012-07-21 01:32:24 45.1 ACIS-S3/HETG 0.0066 ± 0.0004 13:12:19 13:26:49 870 0.067 ± 0.009 5.61

24:27:22 24:33:42 380 0.028 ± 0.008 5.39
13842 F. Baganoff 2012-07-21 11:52:09 2012-07-23 17:42:01 191.8 ACIS-S3/HETG 0.0059 ± 0.0003 28:31:33 29:40:45 4152 0.031 ± 0.003 2.21

45:52:48 46:31:48 2340 0.049 ± 0.005 3.52
60:14:54 62:01:49 6415 0.015 ± 0.001 3.34

13839 F. Baganoff 2012-07-24 07:02:13 2012-07-26 08:21:38 176.3 ACIS-S3/HETG 0.0067 ± 0.0003 09:19:45 09:41:03 1278 0.040 ± 0.006 3.11
36:33:24 36:56:55 1411 0.066 ± 0.007 6.11
48:07:41 50:07:09 7168 0.078 ± 0.005 1.69

13840 F. Baganoff 2012-07-26 20:02:14 2012-07-28 17:39:12 162.5 ACIS-S3/HETG 0.0069 ± 0.0002 59:06:44 60:45:28 5924 0.007 ± 0.001 1.80
63:17:33 63:41:47 1454 0.014 ± 0.002 2.18

14432 F. Baganoff 2012-07-30 12:56:09 2012-07-31 10:12:43 74.3 ACIS-S3/HETG 0.0059 ± 0.0003 12:56:09 14:42:31 >6442 0.003 ± 0.001 8.29
32:56:20 34:12:43 >4583 0.051 ± 0.004 9.08

13838 F. Baganoff 2012-08-01 17:28:12 2012-08-02 21:55:51 99.6 ACIS-S3/HETG 0.0068 ± 0.0003 51:18:28 51:31:33 785 0.024 ± 0.006 5.64
13852 F. Baganoff 2012-08-04 02:37:07 2012-08-05 22:37:20 156.6 ACIS-S3/HETG 0.0072 ± 0.0003 07:37:35 08:09:05 1890 0.042 ± 0.005 3.75

32:07:01 32:22:59 958 0.016 ± 0.004 4.44
14439 F. Baganoff 2012-08-06 22:16:11 2012-08-08 05:44:50 111.7 ACIS-S3/HETG 0.0064 ± 0.0002 27:10:09 27:36:09 1560 0.009 ± 0.003 2.49
14462 F. Baganoff 2012-10-06 16:32:00 2012-10-08 06:19:59 133.4 ACIS-S3/HETG 0.0063 ± 0.0003 28:20:29 28:50:16 1787 0.024 ± 0.004 3.67

52:37:38 53:13:08 2130 0.021 ± 0.002 12.4
14463 F. Baganoff 2012-10-16 00:50:55 2012-10-16 09:46:00 30.8 ACIS-S3/HETG 0.0066 ± 0.0006 05:46:23 05:54:11 468 0.102 ± 0.019 11.0
13851 F. Baganoff 2012-10-16 18:48:39 2012-10-18 01:03:03 107.1 ACIS-S3/HETG 0.0058 ± 0.0003 26:17:47 26:35:13 261 0.047 ± 0.007 1.61

43:47:49 45:02:19 4470 0.073 ± 0.005 34.3
15568 F. Baganoff 2012-10-18 08:54:33 2012-10-18 19:35:13 36.1 ACIS-S3/HETG 0.0062 ± 0.0004 18:13:26 19:35:13 >4907 0.006 ± 0.002 5.82
13843 F. Baganoff 2012-10-22 16:00:07 2012-10-24 02:07:34 120.7 ACIS-S3/HETG 0.0066 ± 0.0003 33:11:43 35:25:03 8000 0.031 ± 0.004 6.11
15570 F. Baganoff 2012-10-25 03:29:12 2012-10-25 23:11:05 68.7 ACIS-S3/HETG 0.0061 ± 0.0003 05:37:50 06:15:44 2274 0.027 ± 0.005 4.03
14468 F. Baganoff 2012-10-29 23:42:19 2012-10-31 17:01:14 146.1 ACIS-S3/HETG 0.0058 ± 0.0002 07:09:43 08:16:53 4030 0.019 ± 0.002 6.33

37:44:54 38:13:41 1727 0.023 ± 0.001 2.01
14941 F. Baganoff 2013-04-06 01:21:15 2013-04-06 07:14:49 20.1 ACIS-I3 0.0039 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14942 F. Baganoff 2013-04-14 15:41:11 2013-04-14 21:49:30 20.1 ACIS-I3 0.0051 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14702 N. Rea 2013-05-12 10:36:44 2013-05-12 15:34:02 15.1 ACIS-S3/subarray 0.0236 ± 0.0013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15040 D. Haggard 2013-05-25 11:36:12 2013-05-25 18:48:48 24.4 ACIS-S3/HETG 0.0033 ± 0.0003 17:23:43 18:26:18 3750 0.006 ± 0.002 2.12
14703 N. Rea 2013-06-04 08:43:31 2013-06-04 14:27:14 18.6 ACIS-S3/subarray 0.0094 ± 0.0007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15651 D. Haggard 2013-06-05 21:30:38 2013-06-06 01:47:52 14.1 ACIS-S3/HETG 0.0032 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15654 D. Haggard 2013-06-09 04:23:04 2013-06-09 07:36:37 9.3 ACIS-S3/HETG 0.0027 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14946 F. Baganoff 2013-07-02 06:47:30 2013-07-02 12:43:53 20.1 ACIS-S3/subarray 0.0099 ± 0.0007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15042 D. Haggard 2013-07-27 01:27:10 2013-07-27 15:52:18 50.1 ACIS-S3/subarray 0.0141 ± 0.0006 03:29:36 03:46:53 1037 0.021 ± 0.021 7.01

11:03:11 11:16:55 924 0.019 ± 0.016 4.47
15042 D. Haggard 2013-08-11 22:55:23 2013-08-12 13:05:40 49.4 ACIS-S3/subarray 0.0138 ± 0.0005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14945 F. Baganoff 2013-08-31 10:10:43 2013-08-31 16:26:04 20.1 ACIS-S3/subarray 0.0082 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15043 D. Haggard 2013-09-14 00:03:23 2013-09-14 14:16:41 50.1 ACIS-S3/subarray 0.0090 ± 0.0006 02:02:00 04:29:39 8859 0.323 ± 0.024 38.2
14944 F. Baganoff 2013-09-20 07:00:52 2013-09-20 13:16:13 20.1 ACIS-S3/subarray 0.0144 ± 0.0008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15044 D. Haggard 2013-10-04 17:22:26 2013-10-05 06:58:38 47.1 ACIS-S3/subarray 0.0102 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14943 F. Baganoff 2013-10-17 15:38:04 2013-10-17 21:41:46 20.1 ACIS-S3/subarray 0.0080 ± 0.0002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14704 N. Rea 2013-10-23 08:52:40 2013-10-23 20:41:18 40.1 ACIS-S3/subarray 0.0093 ± 0.0009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15045 D. Haggard 2013-10-28 14:30:21 2013-10-29 04:59:07 50.1 ACIS-S3/subarray 0.0087 ± 0.0005 14:47:38 16:48:34 7256 0.008 ± 0.004 3.95

19:55:36 20:10:22 886 0.021 ± 0.016 3.90
16508 D. Haggard 2014-02-21 11:35:47 2014-02-22 01:23:57 47.9 ACIS-S3/subarray 0.0084 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16211 D. Haggard 2014-03-14 10:16:20 2014-03-14 23:43:24 46.1 ACIS-S3/subarray 0.0052 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16212 D. Haggard 2014-04-04 02:24:32 2014-04-04 16:47:09 50.1 ACIS-S3/subarray 0.0058 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16213 D. Haggard 2014-04-28 02:42:49 2014-04-28 17:11:46 49.6 ACIS-S3/subarray 0.0068 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16214 D. Haggard 2014-05-20 00:17:16 2014-05-20 14:46:55 50.1 ACIS-S3/subarray 0.0062 ± 0.0003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16210 D. Haggard 2014-06-03 02:56:53 2014-06-03 08:38:29 18.8 ACIS-S3/subarray 0.0063 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16597 D. Haggard 2014-07-04 20:45:38 2014-07-05 02:18:48 18.2 ACIS-S3/subarray 0.0075 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16215 D. Haggard 2014-07-16 22:41:39 2014-07-17 11:47:38 45.7 ACIS-S3/subarray 0.0069 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16216 D. Haggard 2014-08-02 03:29:56 2014-08-02 17:07:33 47.1 ACIS-S3/subarray 0.0069 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16217 D. Haggard 2014-08-30 04:47:01 2014-08-30 15:43:10 38.1 ACIS-S3/subarray 0.0097 ± 0.0006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16218 D. Haggard 2014-10-20 08:20:07 2014-10-20 19:57:00 40.1 ACIS-S3/subarray 0.0061 ± 0.0006 13:21:51 15:05:12 6201 0.127 ± 0.088 25.7
16963 G. Garmire 2015-02-13 01:00:03 2015-02-13 07:56:53 25.1 ACIS-S3/subarray 0.0058 ± 0.0005 06:03:19 06:16:51 812 0.033 ± 0.066 6.86
17236 M. Clavel 2015-04-25 14:09:31 2015-04-26 13:04:29 79.0 ACIS-I3 0.0034 ± 0.0004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16966 G. Garmire 2015-05-14 08:45:36 2015-05-14 16:25:37 22.7 ACIS-S3/subarray 0.0034 ± 0.0004 12:01:25 12:53:24 3119 0.052 ± 0.007 6.44

Notes: Flare starts and stops in bold face are those beginning or ending at the start or stop of the observation leading to a lower limit on the flare duration and a lower or upper limit on the flare mean count rate
and mean flux. The flux value of these flares were taken equal to this limit in the flaring rate study. (a) The flare start and end times are given in hh:mm:ss since the day of the observation start; (b) The flare mean
count rates are computed after subtraction of the non-flaring level; (c) Mean unabsorbed flux between 2 and 10 keV determined for NH = 14.3 × 1022 cm−2 and Γ = 2.

Table C.3: Observation log of public Swift observations and the detected X-ray flares.

First observation Last observation Number of observations Total exposure Non-flaring level Flaring observation start Flaring observation stop Flare durationa Mean count rateb Mean fluxc

(UT) (UT) (ks) (count s−1) (UT) (UT) (s) (count s−1) (10−12 erg s−1 cm−2)
2006-02-24 22:55:12 2006-11-02 14:22:34 198 261.7 0.021 ± 0.002 2006-07-13 21:57:36 2006-07-13 23:39:50 924 0.031 ± 0.007 15.3
2007-02-16 21:38:52 2007-11-02 13:52:19 163 174.6 0.025 ± 0.004 2007-03-03 00:38:21 2007-03-03 02:34:56 2018 0.012 ± 0.004 9.21
2008-02-19 23:02:24 2008-10-30 09:14:24 161 199.3 0.024 ± 0.003 2008-03-25 20:24:00 2008-03-25 23:36:58 707 0.056 ± 0.011 20.8

2008-05-01 14:15:22 2008-05-01 20:39:50 1056 0.029 ± 0.007 8.66
2008-10-17 17:15:22 2008-10-17 22:09:07 1369 0.036 ± 0.007 11.9

2009-06-04 07:23:31 2009-11-01 21:37:26 36 34.64 0.028 ± 0.009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2010-04-07 01:10:34 2010-10-31 10:10:34 62 70.33 0.030 ± 0.006 2010-06-12 10:23:31 2010-06-12 12:07:12 1081 0.127 ± 0.012 49.3
2011-02-04 16:53:46 2011-11-02 15:38:53 81 76.78 0.025 ± 0.006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2012-02-05 20:12:29 2012-10-31 23:21:07 79 73.95 0.020 ± 0.005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2013-02-03 22:26:24 2013-10-31 01:17:46 191 185.4 0.145 ± 0.009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2014-02-03 18:57:36 2014-11-02 12:56:09 236 231.4 0.056 ± 0.007 2014-09-09 11:41:17 2014-09-09 11:58:34 975 0.128 ± 0.013 59.4
2015-02-03 00:18:43 2015-11-02 15:14:24 231 211.1 0.033 ± 0.004 2015-11-02 14:58:34 2015-11-02 15:14:24 993 0.074 ± 0.009 22.3

Notes: (a) The flare duration corresponds to the corresponding observational exposure; (b) The flare mean count rates are background subtracted; (c) Mean unabsorbed flux between 2 and 10 keV determined for
NH = 15.46 × 1022 cm−2 and Γ = 2.07.
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ABSTRACT

Context. At the dynamical center of the Milky Way, there is the closest supermassive black hole: Sgr A*. Its non-flaring luminosity
is several orders of magnitude lower than the Eddington luminosity, but flares can be observed in the infrared and X-rays. This flaring
activity can help us to understand radiation mechanisms from Sgr A*.
Aims. Our aim is to investigate the X-ray flaring activity of Sgr A* and to constrain the physical properties of the X-ray flares and
their origin.
Methods. In March and April 2011, we observed Sgr A* with XMM-Newton with a total exposure of ≈226 ks in coordination with
the 1.3 mm Very-Long-Baseline Interferometry array. We performed timing analysis of the X-ray emission from Sgr A* using a
Bayesian-blocks algorithm to detect X-ray flares observed with XMM-Newton. Furthermore, we computed X-ray smoothed light
curves observed in this campaign in order to have better accuracy on the position and the amplitude of the flares.
Results. We detected two X-ray flares on March 30 and April 3, 2011, which for comparison have a peak detection level of 6.8
and 5.9σ in the XMM-Newton/EPIC (pn+MOS1+MOS2) light curve in the 2−10 keV energy range with a 300 s bin. The former is
characterized by two sub-flares: the first one is very short (∼458 s) with a peak luminosity of Lunabs

2−10 keV ∼ 9.4×1034 erg s−1, whereas the
second one is longer (∼1542 s) with a lower peak luminosity (Lunabs

2−10 keV ∼ 6.8×1034 erg s−1). The comparison with the sample of X-ray
flares detected during the 2012 Chandra XVP campaign favors the hypothesis that the 2011 March 30 flare is a single flare rather than
two distinct subflares. We model the light curve of this flare with the gravitational lensing of a simple hotspot-like structure, but we
cannot satisfactorily reproduce the large decay of the light curve between the two subflares with this model. From magnetic energy
heating during the rise phase of the first subflare and assuming an X-ray photons production efficiency of 1 and a magnetic field of
100 G at 2 rg, we derive an upper limit to the radial distance of the first subflare of 100+19

−29 rg. We use the decay phase of the first
subflare to estimate a lower limit to the radial distance of 4 rg from synchrotron cooling in the infrared.
Conclusions. The X-ray emitting region of the first subflare is located at a radial position of 4−100+19

−29 and has a corresponding radius
of 1.8−2.87 ± 0.01 in rg unit for a magnetic field of 100 G at 2 rg.

Key words. Galaxy: center – X-rays: individuals: Sgr A* – radiation mechanisms: general

1. Introduction

Our Galaxy hosts Sgr A* at its dynamical center. It is the clos-
est supermassive black hole (SMBH) at a distance of about
8 kpc (Genzel et al. 2010; Falcke & Markoff 2013). Sgr A*
has a mass, MBH, of about 4 × 106 M⊙, which was determined
thanks to the measurements of star motions (Schödel et al. 2002;
Ghez et al. 2008; Gillessen et al. 2009). The Galactic center
SMBH is usually in a steady state, emitting predominately at
radio to submillimeter wavelengths. Its bolometric luminosity
is about 1036 erg s−1 (Yuan et al. 2003), which corresponds to
≈2 × 10−9 LEdd with LEdd = 3.3 × 104(MBH/M⊙)L⊙. To explain
this low luminosity, researchers have developed various mass-
accretion flow models, such as the advection-dominated accre-
tion flows (ADAF; Narayan et al. 1998) and jet-disk models like
the ejection of magnetized plasma (Falcke et al. 1993).

Wang et al. (2013) have recently inferred the temperature and
density profile of the X-ray emitting gas around Sgr A* with the
help of deep Chandra observations. They have shown that ≤1%

⋆ Appendices are available in electronic form at
http://www.aanda.org

of the gas initially captured by the SMBH at the Bondi radius
reaches the innermost region around Sgr A*; i.e, ≥99% of the
gas is ejected, which is consistent with the predictions of ra-
diatively inefficient accretion flow (RIAF) models. Therefore,
Sgr A* is the ideal astronomical target for investigating the
physics of mass accretion and ejection onto SMBH in the regime
of a low mass-accretion rate, a state where they are supposed to
spend most of their lifetime (Ho et al. 2008). This physical un-
derstanding could then be extended to the normal galaxies that
dominate the population of galaxies in the local Universe.

The detections of flares from Sgr A* (first discovered in
X-rays; Baganoff et al. 2001) have provided a valuable way to
scrutinize accreting matter close to the event horizon. The X-ray
flare frequency is 1.1 (1.0−1.3) flare per day with L2−8 keV ≥
1034 erg s−1 (Neilsen et al. 2013), though episodes of higher
X-ray flaring activity can also be observed (Porquet et al. 2008;
Neilsen et al. 2013). The bulk of X-ray flares detected so far have
faint-to-moderate amplitudes with factors of about 2 to 45 com-
pared to the non-flaring luminosity (L2−8 keV ≈ 3.6×1033 erg s−1;
Baganoff et al. 2003; Neilsen et al. 2013), and three very bright
flares (factors of 100−160 times the non-flaring luminosity) have
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been observed to share very similar spectral properties (Porquet
et al. 2003, 2008; Nowak et al. 2012). The light curves of the
X-ray flares can exhibit deep drops with short duration indicat-
ing that the X-ray emission comes from a region as compact as
seven Schwarzschild radii (RS ≡ 2GMBH/c

2 = 1.2× 1012 cm for
Sgr A*, i.e., ≈0.6 AU; Porquet et al. 2003).

When near-infrared (NIR) and X-ray flares are detected si-
multaneously, their light curves have similar shapes, and there is
no apparent delay (<3 min) between the peaks of flare emission
(e.g., Yusef-Zadeh et al. 2006; Dodds-Eden et al. 2009; Eckart
et al. 2012). The current interpretation is that both X-ray/NIR
flares come from a region close to the event horizon, while de-
layed sub-mm (e.g., ≈100 min; Marrone et al. 2008) and mm
peaks (up to 5 h; Yusef-Zadeh et al. 2009) have been interpreted
as the adiabatic cooling of an expanding relativistic plasma blob.
While NIR flares are known to be due to synchrotron emission
(Eisenhauer et al. 2005; Eckart et al. 2006), the X-ray flare emis-
sion mechanism has not been settled yet, with arguments for
synchrotron (Dodds-Eden et al. 2009; Barrière et al. 2014), in-
verse Compton (Yusef-Zadeh et al. 2012), and synchrotron self-
Compton (Eckart et al. 2008) models.

We report here the results of our Sgr A* observation
campaign performed with XMM-Newton from March 28 to
April 5, 2011 in coordination with the 1.3 mm Very-Long-
Baseline Interferometry array (VLBI). In Sect. 2 we describe
the XMM-Newton observations and data processing. In Sect. 3
we present our timing analysis of Sgr A*. In Sect. 4 we describe
the spectral analysis of the two flares from Sgr A* detected dur-
ing this 2011 campaign. In Sect. 5 we compare these flares with
those detected in the 2012 Chandra XVP campaign. We also
try to model the first subflare with a simple hotspot model and
estimate a lower and upper limit to the radial distance of this
subflare. Finally, in Sect. 6 we summarize our main results.

2. XMM-Newton observations and data processing

2.1. Observation set-up

These X-ray observations of Sgr A* with XMM-Newton (AO-8,
5 × 33 ks; PI: D. Porquet) were designed to perform the first
simultaneous observational campaign in X-rays and at 1.3 mm
with the VLBI (Doeleman et al. 2008), in order to constrain the
location X-ray flares. Five observing nights with the 1.3 mm
VLBI were planned in 2011 between March 28 and April 5,
using the weather forecast each day at noon for the final op-
timized scheduling (PI: S. Doeleman). The merged visibility
window of the 1.3 mm VLBI array formed by the Atacama
Pathfinder Experiment (APEX) in Chile, the Submillimeter
Telescope (SMT) in Arizona, the Combined Array for Research
in Millimeter-wave Astronomy (CARMA) in California, and
the Submillimeter Array (SMA) in Hawaii is 10:45−15:45 UT.
Since X-ray flare peaks appear to occur before submillimeter
peak (Marrone et al. 2008) and since they can last up to three
hours (Baganoff et al. 2001), our XMM-Newton observations
started about three hours before the VLBI visibility window. We
observed Sgr A* with XMM-Newton continuously from about
07:40 UT to about 16:00 universal time (UT), which is a du-
ration of 30 ks. The XMM-Newton visibility windows finally
constrained the five following dates: 2011 March 28 and 30
and April 1, 3, and 5. The 1.3 mm VLBI observations were
obtained on 2011 March 29 and 31 and April 1 (simultaneous
with XMM-Newton), 2, and 4; the results of these observations
will be reported elsewhere. Two complementary Chandra ob-
servations were obtained to extend the X-ray coverage on 2011

Table 1. XMM-Newton observation log for the Spring 2011 campaign.

Orbit ObsID Start timea End timea Duration
(TT) (TT) (s)

2069 0604300601 Mar. 28, 07:54:14 Mar. 28, 21:13:55 47 981
2070 0604300701 Mar. 30, 08:11:26 Mar. 30, 21:14:28 46 942
2071 0604300801 Apr. 01, 08:23:50 Apr. 01, 19:23:59 39 609
2072 0604300901 Apr. 03, 07:56:23 Apr. 03, 19:21:36 41 113
2073 0604301001 Apr. 05, 07:13:49 Apr. 05, 21:11:49 50 280

Notes. (a) Start and end times of the EPIC MOS camera observations in
terrestrial time (TT) referential.

March 29 and March 31 from 10:29 UT to 15:29 UT (Cycle 12;
PI: F. Baganoff), the former being simultaneous with VLBI. The
results of these observations will be reported elsewhere.

The two XMM-Newton/EPIC MOS cameras (Turner et al.
2001) and the XMM-Newton/EPIC pn camera (Strüder et al.
2001) were operated in the full frame window mode with the
medium filter. EPIC pn camera starts to observe after EPIC MOS
cameras and stops before them. The effective starting and end
times of each observation are reported in Table 1. These times
are the time of the beginning and the stop of the observation
with EPIC MOS cameras in the terrestrial time (TT) referential.
For this observation, the relation between terrestrial time and UT
is UT = TT − 66.18s (NASA’s HEASARC Tool: xTime1).

2.2. Data processing

We observed Sgr A* five times with XMM-Newton in early 2011
for a total effective exposure of ≈226 ks. We use the version
13.5 of the Science Analysis Software (SAS) package for the
data reduction and analysis, with the latest release of the current
calibration files (CCF; as of 04/04/2014). The MOS and pn event
lists were produced using the SAS tasks emchain and epchain,
respectively. The full detector light curves in the 2−10 keV en-
ergy range computed by these tasks reveal that the observation
was only slightly affected by weak soft proton flares. The count
rate of these soft protons was high only during the last four,
three, one, and four hours of the 1st, 2nd, 3rd, and 4th observa-
tions, respectively.

We concentrate on analysis of the central point source,
Sgr A*and, in particular, on the search for the variability of its
X-ray emission. To do this, we define the source+background
region as a 10′′-radius disk around the VLBI radio posi-
tion of Sgr A*: RA(J2000) = 17h45m40.s0409, Dec(J2000) =
−29◦00′28.′′118 (Reid et al. 1999). We do not register the EPIC
coordinates again because the absolute astrometry for the EPIC
cameras is about 1.′′2 (Guainazzi 2013). To create the light
curves, we selected the events for MOS and pn with PATTERN≤
12 and #XMMEA_SM, and PATTERN≤ 4 and FLAG==0, respec-
tively. The contribution of the background proton flares was es-
timated using a ≈3′ × 3′ area with a low level of X-ray extended
emission, located on the same CCD at ≈4′ -north of Sgr A*,
where the X-ray emission of point sources were subtracted. This
data reduction is the same as in Porquet et al. (2008).

For each observation and detector, we first built the
source+background (extracted from the 10′′-radius region) and
the background (extracted from the 3′ × 3′ region) light curves
in the 2−10 keV energy range with 300 s time bins. During this

1 The website of xTime is: http://heasarc.gsfc.nasa.gov/
cgi-bin/Tools/xTime/xTime.pl
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operation, we used the epiclccorr task to apply relative cor-
rections to those light curves. The relative corrections specify
the good time intervals (GTI) of the event list according to the
corresponding CCD and compute the livetime, i.e., select the
time inside each CCD frame where the events were collected
effectively (no FIFO reset/overflow, minimum ionizing parti-
cles, or read-out-time). Then, this task subtracts the background
light curve (scaled to the same source extraction area) from the
source+background light curve and scales up count rates and
errors affected by the lost of exposure. Finally, the background-
subtracted light curves of the three detectors were summed to
produce the EPIC light curves. Any missing count rate in a de-
tector was inferred by the one observed by the other detectors us-
ing a scaling factor between them. To do this, we calculated the
scaling factor between the detectors during a time period where
all three cameras were turned on. The pn count rate is 1.31 times
the sum of the MOS count rates.

3. Timing analysis

3.1. Bayesian blocks analysis

To identify the flaring and non-flaring levels under a certain
probability using the unbinned event arrival time, we used the
Bayesian blocks analysis proposed by Scargle (1998) and re-
cently improved by Scargle et al. (2013a). The Bayesian blocks
analysis of an event arrival time list from one of the EPIC cam-
eras allowed us to segment the observing period with statistically
different count rate levels and created a succession of constant
count rate blocks. The time defining two successive blocks is
called a change point. The count rate within each block is simply
the number of events it contains divided by its effective exposure
(livetime). The non-flaring and flaring levels are identified as the
lowest and higher blocks, respectively. The duration of the flares
are determined as the time range of the Bayesian block corre-
sponding to the elevated count rate. This algorithm gives us the
duration of the flaring and non-flaring levels with better accu-
racy than in a binned light curve since it uses the best temporal
resolution available.

The number of change points is controlled by two input
parameters: the false detection probability (p1) and the prior
estimate of the number of change points, ncp_prior. We use
p1 = exp(−3.5) (Neilsen et al. 2013; Nowak et al. 2012), i.e.,
the probability that a found change point is a real change point
is 1− exp(−3.5) = 96.8% and the probability that a flare (at least
two change points) is a real flare is 1 − p2

1 = 99.9%. We cannot
use the geometric prior of Scargle et al. (2013a) since our data
contain more events and our non-flaring level is lower than in
the simulations used by Scargle et al. (2013a), see Appendix A
for a detailed explanation.

We used the EXPOSU## extension (## corresponding to
the CCD number where the source extraction region is lo-
cated) of the event list to compute the detector live time from
the nominal TIMEDEL of the corresponding instrument, i.e.,
the integration time without the time of the shift of a CCD
line to the readout node, which is about 0.0687022 and 2.59 s
for pn and MOS, respectively. The Bayesian-block algorithm
is used on the list of event of the source+background and of
the background in which we selected the GTI (i.e., we re-
ject the time where the camera did not observe). It allows us
to correct the light curve source+background from the flar-
ing background following the recipe of Scargle et al. (2013b).
Indeed, thanks to Bayesian blocks, we know what the back-
ground count rate is and where the high-background levels are.

We can correct the source+background event list of any back-
ground contribution by applying a weight to each event, which
is w = CRsrc+bkg/(CRsrc+bkg + CRbkg) with CRsrc+bkg the count
rate of the Bayesian blocks of the source+background event
list and CRbkg the count rate of the corresponding Bayesian
block of the background that is surface-corrected2. Then, the
Bayesian-blocks algorithm is applied a second time to this cor-
rected source+background event lists. This method is used on
the three cameras separately.

3.2. Smoothed light curve

We compute a smoothed light curve by applying a density
estimator (Silverman 1986; Feigelson & Babu 2012) on the
unbinned event arrival times using GTI to suppress camera
switch-off. The density estimator improves the characteriza-
tion of light curve features, e.g., the amplitude and the time
of a local maximum or minimum. The density is computed us-
ing quantreg in R package, which convolves the event arrival
times with a smoothing kernel. We modify quantreg to use the
Epanechnikov kernel, which is defined as K(x) = 3

4 (1 − x2) for
| x | ≤ 1 and K(x) = 0 for | x |> 1. We chose the Epanechnikov
kernel since it has “good performance” (Feigelson & Babu
2012); moreover, it is defined on a finite support, which allows
us to control any boundary effects. The density estimator can be
expressed as

f̂ (t, h) =
1
N

N
∑

i=1

w(t)
livetime

× K

(

t − ti

h

)

(1)

with h the width of the kernel window, N the number of count
in the event list, ti the arrival time of the event i and t the time
at which we compute the smoothed light curve, w(t) the weight
that corrects the density at the time t from the flaring background
thanks to the Bayesian-blocks algorithm (see above Sect. 3.1)
and livetime is the live time in the time interval [ti − h/2, ti +
h/2]. The time t is chose by the user. Here, we take an even time
grid with point interval of 5 s3. We choose a constant window
width of the kernel h = 100 s. The smoothed count rate (CR)
is obtained from the density by CR = N f̂ (t, h). The error of
the smoothed light curve is assumed to be Poissonnian (=

√
n

with n the number of count in the kernel window). Then, we
insert observing gaps using GTIs and combine the light curves
of the three instruments.

3.3. Results

The EPIC (pn+MOS1+MOS2) background-subtracted light
curves of Sgr A* in the 2−10 keV energy range, with a time
bin interval of 300 s, are shown in Fig. 1. Our Bayesian-blocks
analysis of the event list for individual detectors shows that dur-
ing the first exposure, no flares were detected and the activity of
the source region is constant. The first flare (#1) was observed
on 2011 March 30 and the last flare (#2) on 2011 April 3. The
non-flaring level is determined as the count rate of the longest
time interval of the Bayesian blocks of the non-flaring level,

2 With this recipe we keep all the source+background events, sowe
do not have to remove (arbitrarily) some individual events from the
event list as proposed by Stelzer et al. (2007) to subtract the background
events.
3 The position of local extrema can be easily computed with required
accuracy directly from the first derivative of Eq. (1).
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Fig. 1. XMM-Newton/EPIC (pn+MOS1+MOS2) light curves of Sgr A* in the 2−10 keV energy range obtained in Spring 2011. The time interval
used to bin the light curve is 300 s. The X-ray flares are labeled from 1 to 2. The horizontal lines below these labels indicate the flare durations.
The non-flaring level of Sgr A* corresponds to only 10% of the non-flaring level of these light curves (Porquet et al. 2008).

Fig. 2. XMM-Newton light curve of the 2011 March 30 flare
from Sgr A* in the 2−10 keV energy range. Top panel: the
XMM-Newton/EPIC pn light curve binned on 100 s. The crosses are
the data points of the light curve. The horizontal dashed lines repre-
sent the non-flaring level found by the Bayesian-blocks algorithm. The
vertical dashed lines show the start and stop of the Bayesian block.
The solid line is the smoothed light curve. The gray curves are the
errors associated with the smoothed light curve. Bottom panel: the
XMM-Newton/EPIC (pn+MOS1+MOS2) light curve binned on 100 s.
The horizontal dashed line represents the non-flaring level calculated
as the sum of the non-flaring level in each instrument found by the
Bayesian blocks. The vertical dashed lines represent the beginning and
the end of the flare calculated by the Bayesian-blocks algorithm on pn
camera. The solid line is the smoothed light curve, which is the sum
of the smoothed light curve for each instrument (calculated on the same
time range). The gray curves are the errors associated with the smoothed
light curve.

Fig. 3. XMM-Newton light curve of the 2011 April 3 flare from Sgr A*
in the 2−10 keV energy range. Top panel: the XMM-Newton/EPIC pn
light curve binned on 100s. The crosses are the data points of the light
curve. The horizontal dashed lines represent the non-flaring level found
by the Bayesian-blocks algorithm. The vertical dashed lines show the
start and stop of the Bayesian block. The solid line is the smoothed
light curve. The gray curve are the errors associated with the smoothed
light curve. The time period during which the camera did not observe
is shown with a light gray box. Bottom panel: the XMM-Newton/EPIC
(pn+MOS1+MOS2) light curve binned on 100 s. The horizontal dashed
line represents the non-flaring level calculated as the sum of the non-
flaring level in each instrument found by the Bayesian blocks. The ver-
tical dashed lines represent the beginning and the end of the flare calcu-
lated by the Bayesian-blocks algorithm on pn camera. The solid line is
the smoothed light curve, which is the sum of the smoothed light curve
for each instrument (calculated on the same time range). The gray curve
are the errors associated with the smoothed light curve.
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Table 2. Characteristics of the X-ray flares observed by XMM-Newton/EPIC in 2011.

Flare Day Start timea End timea Duration Totalb Peakc Lunabs
2−10 keV

d

(#) (yy-mm-dd) (hh:mm:ss) (hh:mm:ss) (s) (cts) (count s−1) (1034 erg s−1)

1 2011-03-30 17:46:20.69 18:19:40.86 2000.16 211 ± 25 0.284 ± 0.013 2.69+2.4
−0.7

2 2011-04-03 ≤08:16:35.65 08:41:02.04 ≥1457.67 ≥154 ± 24 0.165 ± 0.012 ≥2.9

Notes. (a) Start and end times (TT) of the flare time interval defined by the Bayesian-blocks algorithm (Scargle et al. 2013a) on the EPIC/pn data;
(b) total EPIC/pn counts in the 2−10 keV energy band obtained in the smoothed light curve during the flare interval (determined by Bayesian
blocks) after subtractingf the non-flaring level obtained with the Bayesian-blocks algorithm; (c) EPIC pn count rate in the 2−10 keV energy band
at the flare peak (smoothed light curves) after subtracting the non-flaring level; (d) unabsorbed 2−10 keV average luminosity of the flare computed
from the total counts collected during the flare (i.e., the average count rate) and assuming a distance of 8 kpc, see Sect. 4 for details.

which allows very good accuracy on the count rate of the non-
flaring level. On 2011 March 28, March 30, April 1, April 3,
and April 5, the total non-flaring level was equal to 0.179 ±
0.003, 0, 185 ± 0.004, 0.177 ± 0.003, 0.183 ± 0.004 count s−1,
and 0.179 ± 0.003 count s−1, respectively. It is consistent with
the one previously observed with XMM-Newton (e.g., in 2007,
Porquet et al. 2008). This non-flaring emission is a combina-
tion of emission coming from the complex of stars IRS 13,
the candidate pulsar wind nebula G359.950.04, and a diffuse
component, which all contribute 90% of this non-flaring level
in the 2−10 keV energy range (Baganoff et al. 2003; Porquet
et al. 2008) and the emission from Sgr A* which contribute
only 10%. Figures 2 and 3 focus on the flare light curves ob-
tained with EPIC (pn+MOS1+MOS2) and EPIC pn with a bin
time interval of 100 s. The comparison with the EPIC MOS1
and MOS2 light curves can be found in Appendix B. We also
show the Bayesian block corresponding to each camera with
a dashed line. Table 2 gives the characteristics of these X-ray
flares.

The first flare has two components: a short (∼458 s) and sym-
metrical subflare and a longer (∼1542 s) and fainter symmetrical
subflare. Between these two subflares, the smoothed light curve
returns at 17.87 h and during less than 100 s to a lower level,
which is consistent with the non-flaring state. The first flare is
seen in EPIC MOS1 camera with a shift of ≈75 s of its maxi-
mum at the first peak but the double subflare configuration is not
seen in the EPIC MOS2 camera. The amplitude of the flare in
the smoothed light curve corresponds to 6.8σ (the standard de-
viation of the non-flaring level in the 300 s binned light curve)
after subtracting the non-flaring level computed by the Bayesian-
blocks algorithm.

The second flare is seen by the Bayesian-blocks algorithm
in pn and EPIC MOS2 cameras but not in MOS1. This can be
explained by the detection limit of the algorithm and the lower
sensitivity of the MOS cameras (see details in Appendix B). The
time start of this flare is lower than or equal to the start of the
observation. In EPIC MOS2 camera we can see an enhancement
of the count-rate level after 8.25 h on April 3 but the Bayesian
block algorithm detected also an enhancement at the beginning
of the observation (before 8 h). Because of the time delay of
observation start of EPIC pn camera, we caught with this camera
only the end of this flare4. The amplitude of the flare subtracted
from the non-flaring level corresponds to 5.9σ.

4 A coordinated near-infrared observation was obtained with
VLT/NACO on 2011 April 3 from 06:30 to 08:18 UT (ESO’s archive),
which detected the rise of this flare (S. Gillessen 2011, priv. comm.),
but lead to only 22 min of simultaneous observation with EPIC MOS
before the flare peak that we observed in X-rays.

We also computed the hardness ratio using the 2−4.4 keV
and 4.4−10 keV energy bands for all observations, but we found
no significant spectral change during the flare interval. The peak
count rates of the first and second flares are three and eight times
less than that of the bright flare reported in Porquet et al. (2003).
The durations of theses flares are 1.4 and 1.8 times shorter than
this bright flare.

4. Spectral analysis

We did a spectral analysis of the first flare. The extraction re-
gion is the same as the one we used to construct the light curves,
i.e., a circle of 10′′ radius centered on the Sgr A* radio position.
The spectrum analysis was only done on the pn instrument since
the flare in MOS1 and MOS2 has a number of counts that is
too small to constrain the spectral properties. The X-ray photons
were selected with PATTERN≤ 4 and FLAG==0. The time interval
of the flare was constrained by the results of the Bayesian-blocks
algorithm (see Table 2). The background time interval is com-
posed of two subintervals: the first one began at the start of the
March 30 observation (see Table 1) and ended 300 s before the
beginning of the flare to avoid any bias. The second one started
300 s after the end of the flare and stopped at the end of the
March 30 observation.

The spectrum, response matrices, and ancillary files were
computed with the SAS task especget. We used ISIS version
1.6.2−27 (Houck & Denicola 2000; Houck 2002) to fit the spec-
trum with X-ray emission models. The model that we used is
an absorbed power law with dust scattering (dustscat; Predehl
& Schmitt 1995). NuSTAR observations of Sgr A* confirm that
this model is still a good description of the flare spectra above
10 keV (Barrière et al. 2014). We used TBnew for the absorp-
tion model, the interstellar medium abundances developed by
Wilms et al. (2000), and the cross sections from Verner et al.
(1996). These lower metal abundances and updated cross sec-
tions imply decreasing the column density (Nowak et al. 2012)
input to the dustscat model (Predehl & Schmitt 1995) by a factor
of 1.5 times. It uses the NH vs. τscatt relation obtained with wabs
(Anders & Ebihara 1982’s abundances, Morrison & McCammon
1983).

The results of the fit using 90% confidence level are hydro-
gen column density (NH) of 6.7+8.2

−6.7 × 1022 cm−2, photon index
(Γ) of 1.5+1.5

−1.3, absorbed flux between 2 and 8 keV (Fabs
2−8 keV)

of 2.5 × 10−12 erg s−1 cm−2 and unabsorbed flux between 2
and 10 keV (Funabs

2−10 keV) of 3.5+3.1
−1.0 × 10−12 erg s−1 cm−2. The ex-

tracted spectrum and best fit are shown in Fig. 4.
We can compare the spectral parameters of this flare with

those of the two brightest flares detected with XMM-Newton,
which have the better constrained spectral parameters thanks
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Fig. 4. XMM-Newton/EPIC pn spectrum of the 2011 March 30 flare.
The data are denoted by crosses. The vertical bars is the 1σ error in
the count rate and horizontal bars show the spectral bin in energy. The
events have been grouped with a minimum signal-to-noise ratio of 4.
Top: the result of the fit is shown by the continuous solid line. Bottom:
the χ2 residual in units of σ.

to the high throughput and no pileup. The very bright flare
of 2002 October 3 was fitted using the same modeling with
Γ = 2.3 ± 0.3, NH = 16.1+1.9

−2.2 × 1022 cm−2 , and Funabs
2−10 keV =

26.0+4.6
−3.5 × 10−12 erg s−1 cm−2 (Porquet et al. 2003; Nowak et al.

2012). The bright flare of 2007 April 4 was also fitted using the
same modeling with Γ = 2.4+0.4

−0.3, NH = 16.3+3.0
−2.6 × 1022 cm−2 and

Funabs
2−10 keV = 16.8+4.6

−3.0 × 10−12 erg s−1 cm−2 (Porquet et al. 2008;
Nowak et al. 2012). In Fig. 5, the confidence contours of these
two bright flares show that these NH and Γ parameters are well
constrained. However, those of the 2011 March 30 flare are not,
since there are few events collected from this flare, which im-
plies that the number of spectral bins with a minimum signal-to-
noise ratio of 4 is small. The photon index and hydrogen column
of the flare of 2011 March 30 agree with those of the flare of
2007 April 4 and 2002 October 3 within the confidence levels
for two parameters of 90% and 99%, respectively.

The second flare on 2011 April 3 does not contain enough
counts to constrain the spectral parameters. Its unabsorbed lu-
minosity given in Table 2 is calculated with ISIS by fixing
the photon index Γ to 2 and column density to NH = 14.3 ×
1022 cm−2, i.e., to the spectral values of the 2002 October 3
flare (Porquet et al. 2003; Nowak et al. 2012). Thus, the only
free parameter is the unabsorbed flux, which is Funabs

2−10 keV =

3.91 × 10−12 erg s−1 cm−2. The unabsorbed luminosity between
2 to 10 keV is 2.7+2.4

−0.8 × 1034 erg s−1 for a 8 kpc distance.

5. Discussions

5.1. The 2011 March 30 flare vs. the 2012 Chandra XVP
campaign flares

We compared the spectral properties of the 2011 March 30 flare
with the ones reported by Neilsen et al. (2013) from the 2012
Chandra XVP campaign. In this paper, the spectral properties
of all Chandra flares have been derived by assuming the spec-
tral parameters of the brightest flares obtained by Nowak et al.
(2012): Γ = 2 and NH = 14.3 × 1022 cm−2. We use two physical
quantities given in the Table 1 of Neilsen et al. (2013): the un-
absorbed 2−10 keV luminosity and the duration of the flare. We
also derived two other physical quantities that are independent
of the instrumental characteristics: the unabsorbed 2−10 keV
fluence in erg (the product of the unabsorbed 2−10 keV lumi-
nosity with the duration) and the unabsorbed 2−10 keV peak
luminosity. To compute the peak luminosity of the Chandra
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Fig. 5. Confidence contours for Sgr A* spectral parameters. Contours
are the confidence levels of 68% (dotted line), 90% (solid line), and
99% (dashed line) for the two parameters in the graph. The three sets of
confidence contours represent the 2011 March 30 flare (black lines and
asterisk), the 2007 April 4 flare (light gray lines and X point), and the
2002 October 3 flare (dark gray lines and cross point).

flares, we first derived the mean count rate in each flare as the
pileup corrected fluence in counts (see Eq. (1) Neilsen et al.
2013) divided by the flare duration, and then we computed the
linear relation between the unabsorbed 2−10 keV luminosity
and the mean count rate (higher the mean count rate, higher
the luminosity). We obtained Lunabs

2−10 keV/1034 erg s−1 = −0.031 +
136.7 (CR/count s−1) with a correlation parameter r of 0.9997.
Then, we applied this relation to the peak count rate given in
Table 1 of Neilsen et al. (2013) to obtain the peak luminosity for
each flare. The relations between these four physical quantities
are shown in Fig. 6.

Since we used quantities that are independent of the in-
strument, we can compare flares observed with Chandra and
XMM-Newton. First, we place the two brightest flare seen by
XMM-Newton in the three diagrams. The unabsorbed 2−10 keV
fluence, duration, and unabsorbed 2−10 keV luminosity are re-
ported in Nowak et al. (2012). The unabsorbed 2−10 keV peak
luminosity are computed as the ratio between the peak count
rate and the mean count rate multiplied by the unabsorbed
2−10 keV luminosity in the flares (Porquet et al. 2008). We can
see that these flares have high luminosities and fluences. They
are thus in the upper righthand corner of the diagrams repre-
senting the unabsorbed 2−10 keV peak luminosity and the un-
absorbed 2−10 keV fluence.

We also represent our first flare as a single flare (diamond)
and as two distinct subflares (squares) defined as follows. The
first subflare starts at the beginning of the Bayesian blocks cor-
responding to the 2011 March 30 flare and stops at the time
corresponding to the minimum of the smoothed light curve be-
tween the two subflares. The beginning of the second subflare
is the end of the first one, and its end corresponds to the end
of the Bayesian block. The live time of the single flare (Table
3) is shorter than the flare duration reported in Table 2. The
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Table 3. Characteristics of the 2011 March 3 flare and its two subflares assuming Γ = 2 and NH = 14.3 × 1022 cm−2.

Flare Duration Live time Mean net count rate Lunabs
2−10 keV Peak count rate Lunabs

2−10 keV(peak)
(#) (s) (s) (count s−1) (1034 erg s−1) (count s−1) (1034 erg s−1)

1 2000 1750 0.16 5.7 0.28 9.5
1.1 458 416 0.16 5.8 0.28 9.4
1.2 1542 1324 0.16 5.7 0.17 6.8
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Fig. 6. 2011 March 30 flare vs. the 2012 Chandra XVP campaign flares.
The X-ray flares from the Chandra XVP campaign (Neilsen et al. 2013)
are shown by crosses, the two brightest flares seen be XMM-Newton are
triangles, the 2011 March 30 flare is represented by a diamond, and the
two subflares are shown with squares.

mean rate of the flare is given by the Bayesian-blocks algo-
rithm. The mean rate in each subflare is the number of counts
in each subflare divided by their live time. To be consistent with

Neilsen et al. (2013) for direct comparison purpose, the unab-
sorbed 2−10 keV luminosity is computed with the same spectral
parameter (Γ = 2 and NH = 14.3 × 1022 cm−2), which implies
that the luminosity of the flare is slightly different than those
computed with our present best fit spectral analysis (see Sect. 4).
The derived quantities for the first flare (#1) and the first (#1.1)
and second (#1.2) subflares are reported in Table 3.

In Fig. 6, we can see that the unabsorbed 2−10 keV lumi-
nosity of the total flare and the two subflares are nearly the same
since they have more or less the same mean count rate, but the
fluence of the first sub-flare is small compared to the second sub-
flare owing to the shorter duration. Thus, the first subflare lies
within the shortest and less energetic flares detected by Chandra,
but the apparent lower detection limit of 400 s in the flare dura-
tion is probably due to the method used by Nowak et al. (2012)
to identify flares in Chandra light curves. In fact, they use a
Gaussian fit on the light curve binned with 300 s, which implies
that they might missed flares whose duration is below 300 s.

We can see that, in all the diagrams, if we assume a sin-
gle flare, it lies in the mean of the flares seen by Chandra and
can then be considered as a genuine medium luminosity flare.
Furthermore, if we consider the minimum waiting time between
flares in the 2012 Chandra XVP campaign shown in Fig. 1 of
Neilsen et al. (2013), we can see that the nearest flares are sepa-
rated by ∼3500 s. This waiting time can be considered as a lower
limit for observing two distinct flares. The two subflare peaks of
our first flare are separated with only 1000 s, which favors a sin-
gle flare.

5.2. Gravitational lensing of a hotspot-like structure

We modeled the light curve of the 2011 March 30 flare with a
single mechanism in order to explain the two subflares. Indeed,
the very short (∼458 s) first subflare and the second much longer
(∼1542 s) one peaking ∼1000 s later but with lower amplitude
can be the signature of a gravitational lensing of a hotspot-like
structure. We used a hotspot model and a ray-tracing code to
compute the observed intensity (Karas et al. 1992; Schnittman
& Bertschinger 2004; Broderick & Loeb 2005; Hamaus et al.
2009; Dexter & Agol 2009).

5.2.1. The hotspot model

We call a hotspot a spherical, optically thin structure, orbit-
ing around the black hole with Keplerian angular velocity. The
sphere is initially assumed to be in solid rotation around the
black hole. No shearing or expansion of the sphere is taken into
account. Such a hotspot is thus only defined by its radius R and
its orbital radius r in gravitational radius unit (rg ≡ 0.5RS). The
black hole inclination i is assumed to be close to an edge-on
view, i.e., i ≈ 90◦. Its actual value is a parameter of the model.
The emitted spectrum of the hotspot is assumed to follow a
power law, Iem

ν ∝ να, where α is a constant number, related to
the photon index Γ through Γ = 2 − α. It is then straightforward
to show that the observed intensity integrated over a range of
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Fig. 7. Normalized hotspot light curves obtained for an orbital radius
equal to the value of the best fit. The flux is in arbitrary units. Left:
hotspot radius equal to the best fit value. Inclination i varies over all
grid values. (The range of these parameters are defined in Sect 5.2.3.)
The closer the inclination to 90◦, the higher the ratio between the two
local maxima. Right: inclination fixed at its best fit value and R varies
over all grid values. The smaller R, the bigger the ratio between the two
subflare peaks. The time interval between the two local maxima is the
same for all curves in these two figures.

frequency ∆νobs is

Iobs =

∫

∆νobs

Iobs
ν dνobs ∝ g4−α (2)

where g ≡ νobs/νem is the redshift factor.
Maps of Iobs were computed by using the open-source ray-

tracing code GYOTO5 (Vincent et al. 2011). We computed maps of
300 × 300 pixels over one orbital period with a time step of about
δt ≈ 10 s, which is close to the time sampling of the smoothed
light curve. The light curve is obtained by summing each of these
maps over all pixels, which boils down to integrating over all
solid angles, i.e., to computing a flux.

The light curve of a hotspot seen edge-on shows a typical
double-bump feature (see Fig. 7). The primary maximum (t =
0 s) is due to the gravitational lensing of the light emitted by the
hotspot when it is on the opposite side of the black hole with
respect to the observer. The secondary maximum (t ≈ 1000 s)
is due to the relativistic beaming effect: light emitted when the
source is moving toward the observer is boosted.

5.2.2. Constraining the orbital radius of the hotspot

The orbital radius is easy to constrain because it is directly
linked to the time interval between the two local maxima of
the light curve, as illustrated in Fig. 7. The variation of this
time interval as a function of the orbital radius r evolved like
this: δt ≈ 860, 960, 1040, 1130, and 1230s for r/rg =

10.5, 11, 11.5, 12, and 12.5. It is clear that if the hotspot model
is correct, then r/rg ≈ 11−12.

It is not obvious to constrain the remaining parameters (R
and i) by a quick comparison to the observed data. Both of them
have a strong impact on the flux ratio between the two local max-
ima, as well as on the flux ratio between the primary maximum
and the local minimum between the two bumps.

5.2.3. Fitting the parameters of the hotspot model

Our hotspot model is defined by five parameters: the orbital ra-
dius r, the hotspot radius R, the black hole inclination i, the tem-
poral additive shift dt, and the flux multiplicative scaling d f . The

5 This code can be freely downloaded at the URL http://gyoto.
obspm.fr

two last parameters are defined according to the following. The
smoothed light curve defines the zero of time: it is by defini-
tion the time of its primary maximum. Then, each theoretical
light curve is first shifted so that its zero of time corresponds to
its own primary maximum. The parameter dt allows the fitting
of any time shift between the theoretical and the observed light
curve. Each theoretical light curve is also scaled vertically. Each
of them is first divided by the maximum of all fluxes computed
by GYOTO (then all GYOTO fluxes are between 0 and 1). Each
theoretical light curve is then again multiplied by the maximum
value of the smoothed light curve, from which the non-flaring
ground level was subtracted. (Then all GYOTO flux values are be-
tween 0 and M, the maximum of the smoothed light curve, in
observed unit.) The multiplicative d f fitting parameter is applied
to these rescaled theoretical light curves.

The spin parameter has a low impact on the light curve, thus
it is fixed to a = 0.99 (high spins lead to slightly smaller χ2 in
the fit) and not fitted. The photon index is fixed to Γ = 2 (Porquet
et al. 2003, 2008; Nowak et al. 2012; Barrière et al. 2014). Here
we are interested in determining whether the hotspot model is
viable or not, not in fitting in detail all the parameters.

The fitting is performed by determining the minimum of the
following χ2 on a grid of parameters

χ2(r,R, i; dt, d f ) =
∑

tobs

(

d f × fGyoto(r,R, i; dt; tobs)+ fnon−flaring− fsmooth(tobs)

σsmooth

)2

(3)

where fGyoto is the theoretical light curve, fnon−flaring is the
non-flaring level of the observed data (determined from the
Bayesian-blocks analysis), fsmooth the pn smoothed light curve,
σsmooth the error on the smoothed flux, and the sum is per-
formed over a subset of the range of observed times taken
into account in the smoothing procedure, with a time step
of about 10 s. We use conservatively only the pn smoothed
light curve since pn is the most sensitive instrument. The
grid that we use for the three physical parameters is r ∈
[10.5, 11, 11.5, 12, 12.5], R/rg ∈ [1.2, 1.4, 1.6, 1.8, 2, 2.2], and
i ∈ [81.93, 83.08, 84.22, 85.37, 86.52, 87.66] where radii are in
units of GM/c2, the inclination is in degrees, with i = 90◦ being
an exact edge-on view (i.e., maximum lensing effect). For each
set of parameter values, the theoretical light curve correspond-
ing to (r,R, i) is read. It is rescaled as described above. Then the
parameters dt and d f are fitted using the lmfit routine of the
Yorick software. The set of parameters that gives the smallest
χ2 following this procedure is the best-fitting set. For the fitting,
the theoretical light curve is fitted to the smoothed data, interpo-
lating linearly to determine the theoretical value at the smoothed
times.

Figure 8 shows the best fit that is found for the following
values of the parameters: r = 12rg,R = 1.4rg, i = 86.5◦, dt =
11.1 ± 4.0 s, d f = 1.40 ± 0.02. The 1σ error on the two last
parameters being computed by the lmfit routine. The final re-
duced χ2 is 0.85.

5.2.4. Viability of the hotspot model

The best fit illustrated in Fig. 8 clearly shows that one part of
the smoothed data is not well fit by the hotspot model: the local
minimum of the light curve, in between the two bumps at around
17h52m34s. At this point, the observed data reach the non-flaring
level while the model stays much higher, around 2.5σ distant.
The remaining data is explained well by the model at the 1σ
level. However, this 2.5σ inadequacy of the model at the local
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Fig. 8. Modeling of the 2011 March 30 flare pn light curve with a rotat-
ing hotspot. Best-fitting theoretical light curve (dot-dashed line) plotted
over the smoothed light curve (solid line, with 1σ error in gray). The
non-flaring level is given by the horizontal dashed line. The vertical axis
is in observed units, horizontal axis is in seconds. The lower panel gives
the residual in units of σ.

minimum is sufficient to reject the model. Indeed, a hotspot-like
model will always produce a local minimum at a higher level
than the non-flaring level. Indeed, this part of the light curve
is associated to the part of the trajectory where the hotspot is
moving from behind the black hole to the approaching side of the
orbit. At this position, the relativistic beaming effect will always
be significantly greater than at the receding side of the orbit,
which corresponds to the minimum flux level.

To be quantitative, we compare the flux ratio between the
lensing maximum and the non-flaring level and the lensing max-
imum and the local minimum flux level (in between the two
bumps), for all light curves computed in our grid. The first ratio
is always greater than ten, while the second ratio varies between
1.5 and 4. In conclusion, no set of parameters can give the same
ratio for these two quantities.

5.2.5. Refining the hotspot model

One may wonder whether, by adding more physics to the hotspot
model, this local minimum problem could be solved. To inves-
tigate this, we considered the two most natural ways of making
our model more sophisticated: considering an elongated hotspot
due to the shearing of the sphere by the differential Keplerian
rotation and allowing the hotspot to vary in radius (R) along its
trajectory. To model an elongated hotspot, we first computed the
effect of elongation over a hotspot of initial radius R = 1.8 over
the time elapsed between the triggering of the hotspot and the
local minimum. The precise triggering time of the hotspot is not
constrained, thus we assume the hotspot is created at the time
that corresponds to the minimum of the theoretical light curve
(thus at about −1500 s when t = 0 is set at the primary maxi-
mum). Under this assumption, the elapsed time between the cre-
ation of the hotspot and the local minimum is of ∆T ≈ 1800 s
for the best-fitting values of parameters. This is equivalent to one
third of the period. It is now straightforward to compute the dif-
ference of angular distance ∆θ covered by the most distant (in
terms of radial coordinate r) and least distant parts of a sphere
with radius R = 1.8 whose center is at a radius r = 11.5 from the

 0  1000  2000
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Fig. 9. Comparison of the best-fit light curve (solid line) with the light
curve of an elongated (dashed line) and swelling (dotted line) hotspot
defined by the same parameters (see text for details). The flux is in
arbitrary units.

central black hole. Explicitly,

∆θ =
2π
3

r3/2
(

r
−3/2
1 − r

−3/2
2

)

, (4)

where r1 is the shortest distance to the black hole and r2 the
largest (the spin is neglected here). For the best-fitting hotspot,
∆θ ≈ π/3. This elongation has approximately multiplied the an-
gular extension of the initially spherical best-fit hotspot by three.
Thus, we model the elongated hotspot in a simple way by con-
sidering three spherical best-fit hotspots tangent one to the next,
orbiting the same orbit. The intensity emitted by each of the
spheres is divided by three with respect to the standard single
hotspot case in order to allow a simple comparison. Figure 9
shows the light curve associated to this elongated hotspot. Here,
the hotspot is always elongated and does not change shape as a
function of time.

To determine the effect of volume changing on the light
curve, we have modeled a swelling, single hotspot. The swelling
hotspot is modeled by requiring that the initial radius of the
hotspot is the best-fitting value, R0 = 1.8 and that it will increase
linearly with time until it reaches 2 R0 at the time corresponding
roughly to the local minimum observation. The emitted intensity
is inversely proportional to the sphere volume. Figure 9 shows
the light curve associated to this swelling hotspot.

Both toy models show that changing the shape of the hotspot
will not solve the central problem of the model: the local min-
imum is always significantly higher than the non-flaring level.
We cannot formally exclude that a more sophisticated model,
such as a non-constant density hotspot, or a trajectory not con-
fined within the equatorial plane is able to fit our data. However,
it is important to note that our hotspot model is ruled out pre-
cisely because the minimum of the flare light curve goes down
to the quiescent level. Without adding some ad hoc new compo-
nents to a simple hotspot model (like an obscuring component),
it is clear that the flare light curve will always have a minimum
above the quiescent level, since the hotspot will always be vis-
ible and make a non-zero contribution to the total intensity. As
a consequence, we believe that fitting a hotspot-like model to
our data would require some fine tuning using extra parameters,
which would make the model less reliable.
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5.3. Constraining the radial distance of the first 2011
March 30 subflare from magnetic energy heating
and synchrotron cooling

We consider that the short duration of the rise phase of the first
subflare places a limit to the size of the flaring region (e.g.,
Dodds-Eden et al. 2009). Following Barrière et al. (2014), we as-
sume that the energy released during the flare is powered during
the rise phase by the magnetic energy available inside the flar-
ing region, which constrains the radial distance of the flare. By
identifying the decay phase of the first subflare with synchrotron
cooling, we derive a lower limit to the radial position of the first
subflare.

5.3.1. Timescales of the first subflare

We define the start time of the rise phase as the time when the
count rate of the smoothed light curve is too high to have been
produced by the Poissonnian fluctuation of the non-flaring level
at the 99.87% of confidence level (corresponding to Gaussian
single-sided confidence level of 3σ). This threshold level is de-
fined by CR0 = N/h, with h the width of the kernel window
(h = 100 s) and N the lowest integer solution of the following
equation:

CDF =
N

∑

n=0

(λh)n e−λh

n!
> 0.9987 (5)

with CDF the cumulative distribution function of the
Poissonnian distribution, λ the non-flaring rate (i.e., 0.107 ±
0.001 pn counts s−1). We find CR0 = 0.23 pn counts s−1 at
tstart = 17h44m59s on 2011 March 30. The end time of the
rise phase is the maximum of the smoothed light curve that is
reached at tmax = 17h46m54s. Thus, the rise phase duration is
∆trise = tmax − tstart = 115 s. The end time of the first sub-
flare is the time of the minimum between the two subflares:
tend = 17h52m34s. This leads to ∆tflare = tend − tstart = 455 s.

The proper duration of any event around an SMBH is al-
ways longer than the observed duration due to time dilation
in strong gravity field. Therefore, we compute the proper-to-
observed time ratio versus radial position (see Appendix C).
Hereafter we use a dimensionless spin parameter of one.

5.3.2. Magnetic energy heating

We constrain the radius of the spherical flaring region by consid-
ering that the Alfven velocity cannot be higher than the speed of
light (Dodds-Eden et al. 2009): R < c∆τrise, where ∆τrise is the
proper duration of the rise phase. This leads to the upper limit to
the volume of the flaring region: V = 4

3πR
3 < 4

3πc
3∆τ3

rise. The

magnetic energy contained inside this volume is UB =
B2V
8π with

B = B1RS 2rg/r the magnetic field vs. the radial distance r (see
Barrière et al. 2014, and references therein).

We define η, the X-ray photon production efficiency, as the
ratio of the flare fluence in X-rays to the available magnetic
energy. The flare fluence in X-rays is the product of the unab-
sorbed X-ray luminosity with the duration of the first subflare
(i.e., ∆τflare). Indeed, we have to compute the fluence released
during the whole first subflare since all the X-ray emission from
this event is powered by the magnetic heating of the emitting
region. We compute this luminosity with the parameters that
were fitted to the flare spectrum, i.e., NH = 6.7 × 1022 cm−2

and Γ = 1.5 (see first part of Sect. 4). The average luminosity of
the first subflare is Lunabs

2−10 keV(flare) = 5.8+5.7
−1.7 × 1034 erg s−1. As a

result, η = Lunabs
2−10 keV(flare)∆τflare/UB. Therefore, the upper limit

to the radial distance can be computed by the relation

Lunabs
2−10 keV(flare)∆τflare <

B2
1RS

6

(

2rg

r

)2

c3∆τ3
riseη. (6)

If we assume a maximum efficiency (η = 1), the upper limit
to the radial distance is r < 100+19

−29 rg (see Fig. 10). The
corresponding radius of the flaring region at this distance is
R = 2.87 ± 0.01 rg.

We can neglect any magnification of the observed luminosity
compared to the proper luminosity at this radial distance. Indeed
in the hotspot model, the combined effects of the beaming and
the gravitational redshift on the proper luminosity are small at
r = 100 rg since the corresponding orbital period is ∼1.5 days,
which implies that any magnification has a long timescale and
a very small amplitude (Broderick & Loeb 2005; Hamaus et al.
2009). In the jet geometry, the Doppler factor is small owing
to the small inclination and the mild velocity of the Sgr A*
jet; therefore, the beaming factor, varying as the square of the
Doppler factor, is also small (Barrière et al. 2014).

5.3.3. Synchrotron cooling

The electrons that were accelerated by the release of the
magnetic energy will cool by emitting synchrotron radiation
with the following timescale: τsync = 8 × (B/30 G)−3/2 ×
(

ν/1014 Hz
)−1/2

min (Dodds-Eden et al. 2009). If the X-ray pho-

tons at 1018 Hz are the primary source of synchrotron cool-

ing, then τX
sync = 0.78

(

B1RS/100 G
)

(

r/2rg

)3/2
s. From τX

sync >

∆τdecay, we derive r > 114 rg, which is not consistent with the
previously derived upper limit. Therefore, if the X-rays are the
primary source of synchrotron cooling in this subflare, sustained
heating must also be present during the decay phase.

We know that X-ray flares are always associated with NIR
flares (e.g., Dodds-Eden et al. 2009), which have power-law
spectra consistent with synchrotron process (Eisenhauer et al.
2005). Thus, we consider the synchrotron cooling time of NIR

photons (ν = 1014 Hz)–τNIR
sync = 78.9

(

B1RS/100 G
)

(

r/2rg

)3/2
s –

which leads to r > 4 rg with the flaring region outside the event
horizon. The evolution of these synchrotron cooling times with
the radial distance is shown in Fig. 11.

We conclude that 4 rg < r < 100+19
−29 rg in this subflare for

η = 1 and B1RS = 100 G. The corresponding radii of the flaring
region at these distances are 1.8 rg < R < 2.87 ± 0.01 rg. The
minimum distance of r > 1.9 rg is required to have the flaring
region well outside the event of horizon.

5.3.4. Comparison with previous works

The upper limit to the radial distance of the first subflare on 2011
March 30 is five times more than the one derived for the flare
detected by NuSTAR on 2012 July 21 (Barrière et al. 2014). The
latter was longer (1896 s) and about ∼3.5 times more luminous
(mean luminosity of 21×1034 erg s−1) than the former. Moreover,
the 2012 July 21 NuSTAR flare was characterized by a plateau
phase of ≈1700 s between the rise and decay phases of 100 s.

Barrière et al. (2014) assume that the radius of the emitting
region is constant after the rise phase. But for a radial position
lower than 20 rg and B1RS = 100 G, the synchrotron cooling
time of NIR photons is lower than 2500 s, which implies that the
heating process is still required after the rise phase to produce
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Fig. 10. Determination of the radial distance of the flaring region. Top
panel: magnetic energy vs. radial distance for a magnetic field of 100 G
at 2 rg and an X-ray photon production efficiency and dimensionless
spin parameter of 1. The solid line is the distribution of the magnetic en-
ergy (see left y-axis) vs. the radial distance. The dashed and dotted lines
represent the central value of the X-ray fluence and its errors with 90%
confidence level, respectively. The vertical lines are the corresponding
upper limits to the distance. The dashed-dotted line represents the radius
of the emitting region (see right y-axis). Bottom panel: X-ray photons
production efficiency vs. radial distance for the fluence and its upper
and lower limit. The solid and dotted lines represent the efficiency for
the central value of the fluence and its errors within 90% confidence
level, respectively.

Fig. 11. Synchrotron cooling time vs. the radial distance. The solid line
represents the proper duration of the decay phase. The dashed inclined
line represents the synchrotron cooling time for infrared photons. The
dotted-dashed inclined line is the synchrotron cooling time for X-ray
photons. The corresponding vertical lines are the lower limit to the ra-
dial distance for each cooling timescale.

the observed plateau phase. Therefore, the radius of the emitting
region of this NuSTAR flare is likely much larger than those
computed by Barrière et al. (2014) from only the rise phase. If
we remove the plateau phase of this NuSTAR flare, only the rise
and decay phases remain, so, we can use the same method as for
our first subflare.

We revise the upper limit to the radial distance of the 2012
July 21 NuSTAR flare to at least 64 rg. Including the likely
increase in the radius of the flaring region during the plateau
phase due to sustained heating leads to an even higher value for
the upper limit to the radial distance.

6. Summary

We have reported the data analysis of the XMM-Newton 2011
campaign observation of Sgr A* (five observations with a to-
tal of exposure of ≈226 ks). We used the Bayesian-blocks al-
gorithm developed by Scargle (1998) and a density estimator
with an Epanechnikov kernel to constrain the duration, the posi-
tion, and the amplitude of the X-ray flares with better accuracy.
The Bayesian-blocks algorithm uses the unbinned event arrival
time on the EPIC cameras to identify the flaring and non-flaring
period and their corresponding count-rate levels. This analysis
of the event’s arrival time increases the accuracy on the time
of the beginning and the end of a flare in comparison with a
detection above a given threshold of a binned light curve. The
algorithm uses a Bayesian statistic to find the time when the
count-rate level is statistically different under a given probabil-
ity. We worked with a false detection probability of exp(−3.5),
which implies that the detected flare is a real flare with a prob-
ability of 99.9%. We corrected the contribution of the flaring
background by applying twice this algorithm on the source and
the background regions. We used a density estimator to improve
the determination of the characteristics of the flares. The den-
sity estimator applies a convolution between the event list cor-
rected from the GTI and a kernel defined on a finite support in
order to control any boundary effects. Thanks to the Bayesian-
blocks algorithm, we could also correct the resulting smoothed
light curves from the flaring background.

We observed two X-ray flares during these observations. The
former occurred on 2011 March 30 and the latter on 2011 April
03. For comparison, these flares have a peak detection level of
6.8 and 5.9σ in the XMM-Newton/EPIC (pn+MOS1+MOS2)
light curve in the 2−10 keV energy range with a 300 s bin.
The first flare is composed of two subflares: a very short-
duration (∼458 s) one with a peak luminosity of Lunabs

2−10 keV ∼
9.4 × 1034 erg s−1 and a longer (∼1542 s) and less luminous
one (Lunabs

2−10 keV ∼ 6.8 × 1034 erg s−1 at the peak). The spec-
tral analysis of this flare allowed us to derive these parame-
ters: NH = 6.7+8.2

−6.7 × 1022 cm−2, Γ = 1.5+1.5
−1.3, Fabs

2−8 keV = 2.5 ×
10−12 erg s−1 cm−2, and Funabs

2−10 keV = 3.5+3.1
−1.0×10−12 erg s−1 cm−2.

These spectral parameters are consistent with those previously
found by Porquet et al. (2003, 2008) and Nowak et al. (2012)
but are not really constrained.

A comparison of the physical characteristics of this flare with
those reported by Neilsen et al. (2013) from the 2012 Chandra
XVP campaign shows that it lies in the mean of the X-ray flares
detected by Chandra, but the first subflare is one of the shortest
and less luminous X-ray flares. The distribution of the minimum
waiting time between two successive flares in the Chandra XVP
campaign favors the hypothesis of a single flare.

We modeled its two subflares with a single physical phe-
nomenon using the gravitational lensing of a hotspot-like
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structure. However, the consistency of the flux level between the
two subflare peaks with the non-flaring one led us to conclude
that the light curve of this X-ray flare cannot satisfactorily be
reproduced by a gravitational lensing event.

We also constrained the radial position of the emitting region
of the first 2011 March 30 subflare by assuming that the heating
energy is provided by the magnetic field available in the spher-
ical emitting region whose radius is determined by the duration
of the rise phase of this first subflare. A comparison of the du-
ration of the decay phase of this subflare and the synchrotron
cooling timescale allowed us to determine a lower limit to the
radial distance. We conclude that the X-ray emitting region of
the first subflare is located at a radial position of 4−100+19

−29 and
has a corresponding radius of 1.8−2.87 ± 0.01 in rg unit for a
magnetic field of 100 G at 2 rg.
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Appendix A: Calibration of the ncp_prior relation

We cannot use the scaling relation given in Scargle et al. (2013a)
for our data set because it has different statistical properties
than the simulated data set used by Scargle et al. (2013a).
First, our events are affected by Poissonian noise and not by
Gaussian noise. Second, our event lists with about ∼4000 counts
is longer than the published simulation limited to 1024 counts.
To calibrate the relation between ncp_prior (the prior of the
number of block) and the false positive rate (p1), we simulate
100 constant light curves with Poisson noise around a level of
0.1 count s−1, which is the typical non-flaring level measured
by XMM-Newton/EPIC pn during our observations. For each
sequence of 100 simulations, we increase the ncp_prior value
from 2 to 9 by a step of 0.5 and we compute the number of
change points detected. The percentage of change points de-
tected in 100 simulations determines the p1. We repeat this op-
eration for different numbers of count N in the light curve (from
1000 counts to 6000 counts by step of 1000 counts). With the p1
values and the corresponding ncp_prior, we can create the graph
presented in Fig. A.1. Then, we can take different values of p1
and report the relation between the count number and ncp_prior
that satisfied p1. An example with p1 = 0.05 is given in the bot-
tom graph of Fig. A.1. The dashed line is the linear fit of the
curve. Thus, we have the same number of relations between N
and ncp_prior as the number of value of p1 that we choose. By
combining these relations, which relies p1, N, and ncp_prior,
we find our calibration:

ncp_prior = 3.356 + 0.143 ln (N) − 0.710 ln (p1)
−0.002 ln (N) ln (p1) (A.1)

Fig. A.1. Simulations of point measurements (Poisson signal of aver-
age 0.1) to determine ncp_prior = − log(γ). Top: false positive frac-
tion p1 vs. value of ncp_prior with separate curves for the values
N = 1000, 2000, 3000, 4000, 5000, and 6000 (left to right). The points
at which the rate becomes unacceptable (here 0.05; dashed line) deter-
mine the recommended values of ncp_prior shown as a function of N
in the bottom panel. Bottom: calibration of ncp_prior as a function of
the number of counts (N) for a value of p1 (here: 0.05). The dashed line
is the linear fit of the simulation points.

with N the number of events in a range of [1000:6000] counts.
For N lower than 1000, the last term is lower than 0.01, which is
negligible. For a probability of false detection equals exp(−3.5)
and N = 4000, ncp_prior = 7.0099.

Appendix B: Detection rate vs. flare peak

and duration

To evaluate our detection level, we simulate light curves with
a Poisson signal of average 0.1 count s−1 for EPIC pn and
0.04 count s−1 for EPIC MOS corresponding to the non-flaring
level of these cameras. This difference in the non-flaring level
between the two cameras implies a difference in the Poisson
noise (the higher the non-flaring level, the higher the Poisson
noise), hence in the detection rate. On these constant light
curves, we add a Gaussian with a FWHM equal to 1104 s,
318.49 s, and 56.62 s, which correspond to the maximum, the
median, and the minimum, respectively, of the FWHM of the
X-ray flares from Sgr A* detected by Chandra and reported by
Neilsen et al. (2013). We vary the amplitude of the Gaussian be-
tween 0 and 0.17 count s−1 above the non-flaring level. For each
amplitude, we perform 100 simulations and compute the num-
ber of flare (two change points) found by the Bayesian-blocks
algorithm for a false positive rate equal to exp(−3.5). The results
are shown in Fig. B.1. We can see that the higher the amplitude
and the FWHM of the flare, the higher the detection rate. We
can also see that the main difference between the detection rate
in the XMM-Newton/EPIC MOS and pn camera (the former has
a non-flaring level that is two times lower than in pn) is that the
small flares with large FWHM are more detected in MOS than
in pn.

Fig. B.1. Detection level for different values of Gaussian amplitude and
p1 = exp(−3.5). The solid line corresponds to FWHM = 56.62 s, the
dotted line corresponds to FWHM = 318.49 s, and the dashed line cor-
responds to FWHM = 1104 s.
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Fig. B.2. Light curves of Sgr A* in the 2−10 keV energy range ob-
tained during the flare on 2011 March 30 binned on 100 s. Top: the
total XMM-Newton/EPIC light curve. The horizontal dashed line repre-
sents the non-flaring level calculated as the sum of the non-flaring level
in each instrument found by the Bayesian blocks. The vertical dashed
lines represent the beginning and the end of the flare calculated by the
Bayesian-blocks algorithm on pn camera. The solid line is the smoothed
light curve that is the sum of the smoothed light curve for each instru-
ment (calculated on the same time range). The gray curve shows the
errors associated with the smoothed light curve. In all panels, the time
period during which the camera did not observe is shown by a light gray
box. Second panel: the XMM-Newton/EPIC pn light curve of Sgr A*.
Third panel: the XMM-Newton/EPIC MOS1 light curve of Sgr A*. The
vertical dashed lines represent the beginning and the end of the flare
calculated by the Bayesian-blocks algorithm on MOS1 camera. Bottom
panel: the XMM-Newton/EPIC MOS2 light curve of Sgr A*. The verti-
cal dashed lines represent the beginning and the end of the flare calcu-
lated by the Bayesian-blocks algorithm on MOS2 camera.

Figures B.2 and B.3 show the flare light curves obtained with
of XMM-Newton/EPIC observed on 2011 March 30 and April 3.

Fig. B.3. Light curves of Sgr A* in the 2−10 keV energy range ob-
tained during the flare on 2011 April 3 binned on 100s. Top: the to-
tal XMM-Newton/EPIC light curve. The horizontal dashed line rep-
resents the non-flaring level calculated as the sum of the non-flaring
level in each instrument found by the Bayesian blocks. The vertical
dashed lines represent the beginning and the end of the flare calcu-
lated by the Bayesian-blocks algorithm on pn camera. The solid line is
the smoothed light curve that is the sum of the smoothed light curve
for each instrument (calculated on the same time range). The gray
curve shows the errors associated with the smoothed light curve. In
all panels, the time period during which the camera did not observe
is shown by a light gray box delimited by vertical solid lines. Second
panel: the XMM-Newton/EPIC pn light curve of Sgr A*. The dark
gray box is the time during which pn did not observe. Third panel:
the XMM-Newton/EPIC MOS1 light curve of Sgr A*. The light gray
vertical line shows the time during which MOS1 did not observe. The
vertical dashed lines represent the beginning and the end of the flare
calculated by the Bayesian-blocks algorithm on MOS1 camera. Bottom
panel: the XMM-Newton/EPIC MOS2 light curve of Sgr A*. The verti-
cal dashed lines represent the beginning and the end of the flare calcu-
lated by the Bayesian-blocks algorithm on MOS2 camera.

A46, page 14 of 15

D-126 APPENDIX D. ORIGINAL PUBLICATIONS



E. Mossoux at al.: The 2011 XMM-Newton campaign of Sgr A*

We can see that the first and second subflares on 2011 March
30 are distinguishable on XMM-Newton/EPIC pn and MOS1
but not in MOS2 even if a flare is detected by the Bayesian-
blocks algorithm. The flare on 2011 April 3 is not detected by
the Bayesian-blocks algorithm in XMM-Newton/EPIC MOS1.
This is because the algorithm allows us to find a flare whose
FWHM ≈ 900 s in EPIC MOS camera with a probability of
95% if its amplitude above the non-flaring level is higher than
0.07 count s−1 with a probability of false detection equal to
exp(−3.5), but in XMM-Newton/EPIC MOS1, the flare ampli-
tude is about 0.06 count s−1. Since XMM-Newton/EPIC MOS1
and MOS2 have lower number counts than XMM-Newton/EPIC
pn because of the RGS, it is on XMM-Newton/EPIC pn that the
flare will have higher amplitude and thus higher accuracy on the
determination of the beginning and end of the flare.

Appendix C: Time dilatation around a Kerr black

hole

We use the Kerr metric in Boyer-Lindquist coordinates:

ds2 = −dτ2 = −
(

1 − 2r
Σ

)

dt2 − 4ar sin2θ
Σ

dt dφ + Σ
∆

dr2

+Σ dθ2 +
(

r2 + a2 + 2a2r sin2θ
Σ

)

sin2θ dφ2
(C.1)

with τ the proper time, t the observed time, r the radial
distance in gravitational radius, a the dimensionless spin param-
eter, Σ = r2+a2 cos2θ, ∆ = r2−r+a2, and θ = 0 defining the spin

Fig. C.1. Ratio between the proper time and the observed time close to
a Kerr black hole with a dimensionless spin parameter of 1.

axis (Bardeen et al. 1972). For a direct circular orbit in the equa-
torial plane, we have dr

dt
= 0, θ = π

2 , and dφ
dt
= 1

r3/2+a
(Bardeen

et al. 1972). Thus, the relation between the proper time and the
observed time is

dτ
dt
=

√

1 − 2
r
− r3 − 4ar3/2 + a2r − 2a2

r
(

r3/2 + a
)2

· (C.2)

Figure C.1 shows the time dilatation as a function of the radial
distance plotted from the innermost boundary of the circular or-
bit, i.e., rg for a = 1.
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The weight equation in Sect. 3.1 of Mossoux et al. (2015) unfor-
tunately features a typo. The correct equation should read:

w =
CRsrc+bkg

CRsrc+bkg −CRbkg

(1)

with CRsrc+bkg the count rate of the Bayesian block of the
source+background event list and CRbkg the count rate of the
corresponding Bayesian block of the background that is surface-
corrected. As introduced in the first preprint version of the pro-
ceeding of Scargle et al. (2013), this weight equation adjusts
the Voronoi time-interval in order to subtract the average back-
ground. The results presented in Mossoux et al. (2015) remain
unchanged since they were all obtained following the recipe
of Scargle et al. (2013) and using the correct equation for the
Voronoi time-interval weighting.

Therefore, the “alternative” photon-weighting recently
tested by Worpel & Schwope (2015) in their Sect. 4.6 (w ≡ 1 −
CRbkg/CRsrc+bkg) is actually equivalent to the recipe of Scargle
et al. (2013) that we used in Mossoux et al. (2015) since the
photon-weighting is equal to the inverse of the Voronoi time-
interval weighting. Indeed, the “alternative” photon-weighting
of Worpel & Schwope (2015) is identical to those used in Eq. (1)
of Mossoux et al. (2015) to compute smoothed light-curve.
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4 Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn, Germany
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ABSTRACT

Context. The supermassive black hole named Sgr A* is located at the dynamical center of the Milky Way. This closest supermassive
black hole is known to have a luminosity several orders of magnitude lower than the Eddington luminosity. Flares coming from the
Sgr A* environment can be observed in infrared, X-ray, and submillimeter wavelengths, but their origins are still debated. Interestingly,
the close passage of the Dusty S-cluster Object (DSO)/G2 near Sgr A* may increase the black hole flaring activity and could therefore
help us to better constrain the radiation mechanisms from Sgr A*.
Aims. Our aim is to study the X-ray, infrared, and radio flaring activity of Sgr A* close to the time of the DSO/G2 pericenter passage
in order to constrain the physical properties and origin of the flares.
Methods. Simultaneous observations were made with XMM-Newton and WFC3 onboard HST during the period Feb.–Apr. 2014, in
addition to coordinated observations with SINFONI at ESO’s VLT, VLA in its A-configuration, and CARMA.
Results. We detected two X-ray flares on 2014 Mar. 10 and Apr. 2 with XMM-Newton, three near-infrared (NIR) flares with HST on
2014 Mar. 10 and Apr. 2, and two NIR flares on 2014 Apr. 3 and 4 with VLT. The X-ray flare on 2014 Mar. 10 is characterized by a
long rise (∼7700 s) and a rapid decay (∼844 s). Its total duration is one of the longest detected so far in X-rays. Its NIR counterpart
peaked well before (4320 s) the X-ray maximum, implying a dramatic change in the X-ray-to-NIR flux ratio during this event. This
NIR/X-ray flare is interpreted as either a single flare where variation in the X-ray-to-NIR flux ratio is explained by the adiabatic
compression of a plasmon, or two distinct flaring components separated by 1.2 h with simultaneous peaks in X-rays and NIR. We
identified an increase in the rising radio flux density at 13.37 GHz on 2014 Mar. 10 with the VLA that could be the delayed radio
emission from a NIR/X-ray flare that occurred before the start of our observation. The X-ray flare on 2014 Apr. 2 occurred for
HST during the occultation of Sgr A* by the Earth, therefore we only observed the start of its NIR counterpart. With NIR synchrotron
emission from accelerated electrons and assuming X-rays from synchrotron self-Compton emission, the region of this NIR/X-ray flare
has a size of 0.03−7 times the Schwarzschild radius and an electron density of 108.5–1010.2 cm−3, assuming a synchrotron spectral
index of 0.3−1.5. When Sgr A* reappeared to the HST view, we observed the decay phase of a distinct bright NIR flare with no
detectable counterpart in X-rays. On 2014 Apr. 3, two 3.2-mm flares were observed with CARMA, where the first may be the delayed
(4.4 h) emission of a NIR flare observed with VLT.
Conclusions. We observed a total of seven NIR flares, with three having a detected X-ray counterpart. The physical parameters of the
flaring region are less constrained for the NIR flare without a detected X-ray counterpart, but none of the possible radiative processes
(synchrotron, synchrotron self-Compton, or inverse Compton) can be ruled out for the production of the X-ray flares. The three X-ray
flares were observed during the XMM-Newton total effective exposure of ∼256 ks. This flaring rate is statistically consistent with
those observed during the 2012 Chandra XVP campaign, implying that no increase in the flaring activity was triggered close to the
pericenter passage of the DSO/G2. Moreover, higher flaring rates had already been observed with Chandra and XMM-Newton without
any increase in the quiescent level, showing that there is no direct link between an increase in the flaring rate in X-rays and the change
in the accretion rate.

Key words. Galaxy: center – X-rays: individuals: Sgr A* – radiation mechanisms: general

1. Introduction

Sgr A*, located at the dynamical center of our Galaxy, is
currently a dormant supermassive black hole (SMBH) of
⋆ The tables of the data used for the light curves are only available at

the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/589/A116

mass M about 4 × 106 M⊙ (Schödel et al. 2002; Ghez et al.
2008; Gillessen et al. 2009). Its bolometric luminosity (Lbol ∼
1036 erg s−1) is lower than the Eddington luminosity (LEdd =

3.3 × 104 M/M⊙ L⊙ = 3 × 1044 erg s−1) (Yuan et al. 2003).
This low luminosity can be explained by radiatively in-
efficient accretion flow models (RIAF) such as advection-
dominated accretion flows (ADAF; Narayan et al. 1998) and
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jet-disk models. Because of its proximity (d = 8 kpc;
Genzel et al. 2010; Falcke & Markoff 2013), Sgr A* is the best
target to study the accretion and ejection physics for the case of
low accretion rate, which is a regime where SMBH’s are sup-
posed to spend most of their lifetime. Its physical understanding
can be applied to a large number of normal galaxies that are sup-
posed to host a SMBH.

Above Sgr A* quiescent emission, some episodes of in-
creased flux are observed in X-rays, near-infrared (NIR), and
sub-millimeter/radio. These flaring events from Sgr A* were first
discovered in X-rays (Baganoff et al. 2001) and were then also
observed in NIR (Genzel et al. 2003) and sub-millimeter wave-
lengths (Zhao 2003). NIR flares, which happen several times
per day and have various amplitude up to 32 mJy (Witzel et al.
2012), are interpreted as synchrotron emission from acceler-
ated electrons close to the black hole (Eisenhauer et al. 2005;
Eckart et al. 2006). In the NIR, the synchrotron emission is op-
tically thick and the spectral index between the H and L band
is α = −0.62 ± 0.1 with S ν ∝ να (Witzel et al. 2014b).
The X-ray flaring rate is 1.0−1.3 flares per day (Neilsen et al.
2013), but two episodes of higher flaring activity in X-rays
have been observed (Porquet et al. 2008; Neilsen et al. 2013).
Most X-ray flares have moderate amplitude (Neilsen et al. 2013)
with 2–45 times the quiescent luminosity of Sgr A* (about
3.6×1033 erg s−1 in 2−8 keV; Baganoff et al. 2003; Nowak et al.
2012), but brighter flares with amplitudes up to 160 times the
quiescent level have also been observed (Porquet et al. 2003,
2008; Nowak et al. 2012). Several emission mechanism models
are proposed in order to explain X-ray flares, such as: syn-
chrotron (Dodds-Eden et al. 2009; Barrière et al. 2014), syn-
chrotron self-Compton (Eckart et al. 2008), and inverse Comp-
ton (Yusef-Zadeh et al. 2006b; Wardle 2011; Yusef-Zadeh et al.
2012) emissions. During simultaneous NIR/X-ray observations,
X-ray flares always have a NIR counterpart and their light
curves have similar shapes, with an apparent delay less than
3 min between the peaks of flare emission (Eckart et al. 2006;
Yusef-Zadeh et al. 2006a; Dodds-Eden et al. 2009). The sub-
millimeter and radio flare peaks, however, are delayed several
tens of minutes and hours, respectively (Marrone et al. 2008;
Yusef-Zadeh et al. 2008, 2009), and are proposed to be due
to synchrotron radiation of an expanding relativistic plasma
blob with an adiabatic cooling (Yusef-Zadeh et al. 2006a). Con-
sidering the intrinsic size of Sgr A* at a wavelength λ of
(0.52 ± 0.03) mas × (λ/cm)1.3± 0.1, the time lag between the sub-
millimeter and radio light curves suggests a collimated outflow
(Brinkerink et al. 2015). On 2012 May 17, a NIR flare was fol-
lowed 4.5 ± 0.5 h later by a 7-mm flare that was observed with
the Very Long Baseline Array (VLBA) and localized 1.5 mas
southeast of Sgr A*, providing evidence for an adiabatically ex-
panding jet with a speed of 0.4 ± 0.3 c (Rauch et al. 2016).

Gillessen et al. (2012) reported the detection of the object
named G2 on its way towards Sgr A* in an eccentric Keple-
rian orbit with the 2004 data from the Very Large Telescope
(VLT) using the Spectrograph for INtegral Field Observations
in the Near-Infrared (SINFONI) and the Nasmyth Adaptive Op-
tics System (NAOS) and COudé Near-IR Camera (CONICA),
i.e., NACO. Their observations of the redshifted emission lines
Brγ, Brδ, and HeI in the NIR between 2004 and 2011 allowed
them to determine the pericenter passage of 2013.51 ± 0.04.
They developed the first interpretation of the nature of the G2 ob-
ject based on the observation of these lines: a compact gas blob.
From the M-band they showed that G2 has a dust temperature
consistent with 450 K. They predicted that, because G2 moves
supersonically through the ambient hot gas, a bow shock should

be created close to the pericenter passagei, which should be seen
from radio to X-rays. The observation of such X-ray emission
could help to put some constraints on the physical characteris-
tics of the ambient medium around Sgr A*. The compact gas
blob interpretation was still favored by Gillessen et al. (2013a)
who analyzed the Brγ line width using data from SINFONI and
NACO in March−July 2012. They derived a pericenter passage
of 2013.69 ± 0.04, adding their observations to those between
2004 and 2011. A velocity-position diagram of G2 was com-
puted by Gillessen et al. (2013b) using the emission lines Brγ,
HeI, and Paα from SINFONI and NACO observations in April
2013. An elongation of G2 in the direction of its orbit was seen in
the velocity-position diagram, which, together with the low dust
temperature, favored the interpretation of an ionized gas cloud.

Two other interpretations based on the observations of these
emission lines were also developed. The first one was proposed
by Burkert et al. (2012): a spherical gas shell, which was sup-
ported by a simulation that reproduced the observed elongated
structure in the velocity profile. They also simulated the ef-
fects of tidal shearing produced by Rayleigh-Taylor and Kelvin-
Helmholtz instabilities during its approach to Sgr A* (Morris
2012). The shearing should produce a fragmentation of the en-
velope of G2 and provide fresh matter that would accrete onto
Sgr A*. This should increase the flaring activity of Sgr A*, de-
pending on the filling factor, or (re-)activate the Active Galac-
tic Nuclei (AGN) phase during the subsequent years. The other
interpretation is a dust-enshrouded stellar source, first devel-
oped by Eckart et al. (2013), which leads to the second name
of G2: a Dusty S-cluster Object (DSO). This classification is
supported by its detection in the Ks- and K′-bands in obser-
vations from NACO and the NIRC2 camera of the Keck Ob-
servatory, respectively. The M-band measurements showed that
the integrated luminosity of this object is 5−10 L⊙. More-
over, the L-band emission remained constant and spatially un-
resolved from 2004 to 2014, which ruled out a coreless model
(Witzel et al. 2014a). The compact nature of the source is also
supported by SINFONI observations between February and
September 2014 (Valencia-S. et al. 2015). They showed that the
wide range of Brγ line widths (200−700 km s−1) is reproduced
well by the emission from a pre-main sequence star, because the
magnetospheric accretion of circumstellar matter on the photo-
sphere of these young stars emits the Brγ line. The tidal stretch-
ing of the accretion disk around the star as DSO/G2 approaches
pericenter may explain the increase of the Brγ line width. A star
with a mass of 1−2 M⊙ and a luminosity less than 10 L⊙ agrees
with the dust temperature of 450 K found by Gillessen et al.
(2012). As Valencia-S. et al. (2015) observed the blueshifted Brγ
line after 2014 May, they were able to improve the estimation
of the time of the pericenter passage to 2014.39 ± 0.14 and a
distance of ∼163 au (4075 gravitational radius) from Sgr A*.
For comparison, the B0 spectral-type star S2 with a 15.2-year
orbit around Sgr A* has a 1.3 times smaller pericenter distance
(Schödel et al. 2002). The absence of a redshifted counterpart af-
ter the pericenter passage favored the interpretation of the nature
of DSO/G2 as a compact object and still ruled out the coreless
model.

The multiwavelength campaign presented here was designed
in 2012 to study the impact of the passage of the DSO/G2 ob-
ject close to the SMBH (based on the pericenter date predicted
by Gillessen et al. 2012) from the NIR/X-ray flaring activity of
Sgr A*. We report the results of joint observations of Sgr A*
between February and April 2014 with the X-ray Multi-Mirror
mission (XMM-Newton) and the Hubble Space Telescope (HST)
(XMM-Newton AO-12; PI: N. Grosso), close to the pericenter
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Fig. 1. Time diagram of the 2014 Feb.−Apr. campaign. The horizontal
dashed lines are the XMM-Newton orbital visibility times of Sgr A*
labeled with revolution numbers. The thick solid lines are the time slot
of the observations for each instrument with start and stop hours. The
vertical dotted lines are the limits of the XMM-Newton observations.
The vertical gray blocks are the X-ray (Arabic numerals) and near-IR
(Roman numerals) flares reported in this work.

passage of DSO/G2. We also obtained coordinated observations
with the VLT, the Combined Array for Research in Millimeter-
wave Astronomy (CARMA), and the Karl Jansky Very Large
Array (VLA) to investigate NIR flaring emission and delayed
millimeter/radio flaring emission. In Sect. 2 we present the ob-
servations and data reduction. In Sect. 3 we report the analysis
of these observations. In Sect. 4 we determine the X-ray emis-
sion related to each NIR flare observed during this campaign. In
Sect. 5 we constrain the physical parameters of the flaring re-
gion associated with the NIR flares and their X-ray counterparts.
In Sect. 6 we discuss the X-ray flaring rate observed during this
campaign. Finally, in Sect. 7 we summarize our main results and
discuss their possible implications.

2. Observations and data reduction

Here we present the schedule of the coordinated observations of
the 2014 Feb.−Apr. campaign (Fig. 1) followed by a description
of the data reduction for each facility used during this campaign.

2.1. XMM-Newton observations

Table 1 reports the log of the XMM-Newton campaign for 2014
Feb.−Apr. (AO-12; PI: N. Grosso). The last X-ray observation
is an anticipated Target of Opportunity (ToO) that was triggered
to observe the new flaring magnetar SGR J1745-29 (AO-12; PI:
G.L. Israël). We only use the data from the EPIC camera since
the optical extinction towards the Galactic center is too high to
get optical or soft X-ray photons from Sgr A* with the Optical-
UV Monitor or the Reflection Grating Spectrometers.

During the first three XMM-Newton observations, the two
EPIC/MOS cameras (Turner et al. 2001) and the EPIC/pn cam-
era (Strüder et al. 2001) observed in frame window mode.

Table 1. XMM-Newton observation log for the 2014 Feb.−
Apr. campaign.

ObsID Orbit Start time End time Duration
(UT) (UT) (ks)

0723410301 2605 Feb. 28, 17:59:00 Mar. 01, 08:53:14 53.654
0723410401 2610 Mar. 10, 14:28:16 Mar. 11, 05:55:49 55.653
0723410501 2621 Apr. 02, 03:18:22 Apr. 02, 20:18:01 61.178
0690441801 2622 Apr. 03, 05:23:33 Apr. 04, 05:02:52 85.159

During the last observation, the two MOS cameras were in
small window mode and the pn camera observed in frame
window mode. All observations were made with the medium
filter. The effective observation start and end times are re-
ported in Table 1 in Universal Time (UT). During these ob-
servations, the conversion from the Terrestrial Time (TT) reg-
istered aboard XMM-Newton to UT is UT = TT − 67.108s
(NASA’s HEASARC Tool: xTime1). The total effective exposure
for the four XMM-Newton observations during this campaign is
≈256 ks.

The XMM-Newton data reduction is the same as presented
in Mossoux et al. (2015a). We used the Science Analysis Soft-
ware (SAS) package (version 13.5) with the 2014 Apr. 4 re-
lease of the Current Calibration files (CCF) to reduce and an-
alyze the data. The tasks emchain and epchain were used
to create the event lists for the MOS and pn camera, respec-
tively. The soft proton flare count rate in the full detector
light curve in the 2−10 keV energy range was high (up to
0.02 count s−1 arcmin−2 in EPIC/pn) only during the last two
hours of the third observation.

As we looked for variability of the X-ray emission from
Sgr A*, we extracted events of the source+background region
from a disk of 10′′-radius centered on the VLBI radio posi-
tion of Sgr A*: RA(J2000) = 17h45m40s.0409, Dec(J2000) =
−29◦00′28′′.118 (Reid et al. 1999). The contribution of the back-
ground events was estimated by extracting a ≈3′ × 3′ region at
≈4′ -north of Sgr A* on the same CCD where the X-ray emis-
sion is low. For the last observation, the background extraction
region was a ≈3′ × 3′ area at ≈7′ -east of Sgr A* on the adjacent
CCD because of the small window mode.

The light curves of the source+background and background
regions were created from events with PATTERN ≤ 12 and
#XMMEA_SM and PATTERN ≤ 4 and FLAG==0 for the MOS and
pn cameras, respectively. These light curves are computed in the
2−10 keV energy range using a time bin of 300 s. The task
epiclccorr applies relative corrections to those light curves.
We then summed the background-subtracted light curves of the
three cameras to produce the total EPIC light curves. Missing
values were inferred using a scaling factor between the pn cam-
era and the sum of the MOS1 and MOS2 cameras. This factor
was computed during the full time period where all detectors are
observing and leads to a number of pn counts that is equal, on
average, to 1.46 ± 0.03 times the sum of the number of MOS
counts.

To perform the timing analysis of the light curves we adapted
the Bayesian-blocks method developed by Scargle (1998) and
refined by Scargle et al. (2013a) to the XMM-Newton event
lists, using a two-step algorithm to correct for any detector

1 The website of xTime is: http://heasarc.gsfc.nasa.gov/
cgi-bin/Tools/xTime/xTime.pl
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Table 2. Observation log of WFC3 on board HST for the 2014
Feb.−Apr. campaign.

Visit Start time End time Number of orbits
(UT) (UT)

1 Feb. 28, 19:06 Mar. 01, 05:25 7
2 Mar. 10, 14:55 Mar. 11, 01:13 7
3 Apr. 02, 03:09 Apr. 02, 18:11 10
4 Apr. 03, 09:26 Apr. 03, 14:54 4

flaring background (Mossoux et al. 2015a,b)2. We used the false
detection probability p1 = exp(−3.5) (Neilsen et al. 2013;
Mossoux et al. 2015a) and geometric priors of 7, 6.9, and 6.9
for pn, MOS1, and MOS2, respectively. We created smoothed
light curves by applying a density estimator (Silverman 1986;
Feigelson & Babu 2012) and using the same method as in
Mossoux et al. (2015a) to correct the exposure time and the
background contribution to the source+background event list.
The amplitude and time of the flare maximum were computed
on the smoothed light curve with a window width of 100 s and
500 s and a time grid interval of 10 s.

2.2. HST observations

The NIR observations of Sgr A* were obtained with the Wide
Field Camera 3 (WFC3) on HST, under joint XMM-Newton/HST
programs 13403 (AO-12, PI: N. Grosso) and 13316 (Cycle 21,
PI: H. Bushouse) in order to measure the delay between X-ray
flares and their NIR counterparts. Sgr A* was observed in four
visits with 7−10 consecutive HST orbits, whose observation
start and end times are reported in UT in Table 2. The total
effective exposure for these four HST visits during the 2014
Feb.−Apr. campaign is about 69 ks. Exposures were taken con-
stantly during each part of these windows in which Sgr A* was
visible to HST, usually resulting in an uninterrupted cadence of
exposures lasting for 40−50 min at a time, and then interrupted
for the remaining 40−50 min of each HST orbit in which Sgr A*
is occulted by the Earth. The four visits were planned to have
the maximum number of consecutive orbits before HST entered
the South Atlantic Anomaly (SAA), in order to maximize the
simultaneous observing time in NIR and X-ray.

Each WFC3 exposure was taken with the IR channel of the
camera, which has a 1024 × 1024 pixel HgCdTe array, with
a pixel scale of ∼0′′.13. We used the F153M filter, which is
a medium-bandwidth filter (∆λ = 0.683 µm) with an effec-
tive wavelength λeff = 1.53157 µm (from the Spanish Virtual

2 Worpel & Schwope (2015) tested different photon-weighting in or-
der to subtract the background during observations of bursting and
eclipsing objects in X-rays. The equation for the Voronoi time-interval
weighting used in Mossoux et al. (2015a,b) follows the recipe of
Scargle et al. (2013b), which is identical to the “alternative” photon-
weighting described in Sect. 4.6 of Worpel & Schwope (2015) since the
photon-weighting is equal to the inverse of the Voronoi time-interval
weighting. We can see in Fig. 12 of Worpel & Schwope (2015) that
the method of Mossoux et al. (2015a,b) (labeled h in this figure) lo-
cates the eclipses, as well as their weighted-photon method (labeled f in
this figure). As noticed by Worpel & Schwope (2015), their weighted-
photon method may produce both negative and implausibly high count
rates. Indeed, the method of Mossoux et al. (2015a,b) produces much
fewer Bayesian blocks with negative count rates and no implausibly
high count rates in comparison to their weighted-photon method (see
for comparison panel h and f of Fig. 12 of Worpel & Schwope 2015).
This last point is crucial for flare and burst detection.

Observatory3). Each exposure used the predefined readout se-
quence “SPARS25” with NSAMP = 12 or 13, which produces
non-destructive readouts of the detector every 25 secs through-
out the exposure, and a total of 12 or 13 readouts, resulting in
a total exposure time of 275−300 s after discarding the first
short (2.932 s) readout. The exposures were obtained in a 4-point
dither pattern centered on Sgr A*, with a spacing of ∼0.6 arcsec
(∼4 pixels) per step to improve the sampling of the Point Spread
Function (PSF) of FWHM = 0′′.145 (1.136 detector pixels)
at 1.50 µm (Dressel 2012)4. All of the WFC3 exposures were
calibrated using the standard STScI calibration pipeline task
calwf3. Once the pointing information was set for each WFC3
exposure, we could safely use the known relative position of
Sgr A* for positioning a photometry aperture (Sgr A* itself can-
not be easily identified in the WFC3 images because it is in the
PSF wings of the star S2 located at 0′′.15 during our observa-
tional epoch according to the orbital elements of Gillessen et al.
2009).

The absolute coordinates of HST exposures are limited by
uncertainties in the positions of the guide stars that are used to
acquire and track the target. We therefore used the radio position
of IRS-16C (also known as S96; Yusef-Zadeh et al. 2014), a star
near Sgr A*, as an astrometric reference to accurately register
the pointing of each WFC3 exposure. The radio position of IRS-
16C came from VLA observations in February 2014, which is
nearly co-eval with the HST observations.

The accumulating, non-destructive readouts of each cali-
brated exposure were “unraveled” by taking the difference of
adjacent readouts, which results in a series of independent sam-
ples taken at 25 s intervals, thereby increasing the time res-
olution for the subsequent photometric analysis. Photometry
of Sgr A* was performed with the IRAF routine phot, us-
ing a 3-pixel (∼0.4 arcsec) diameter circular aperture centered
on the known radio coordinates of Sgr A* (Petrov et al. 2011;
Yusef-Zadeh et al. 2014).

Initial analysis of the photometry results for Sgr A* and other
stars in the field revealed an overall tendency for the fluxes of in-
dividual sources to gradually decrease on the order of ∼3% dur-
ing the course of each individual exposure (i.e., across the span
of multiple readouts). We believe this effect is due to persistence
within an individual exposure, as the total signal level reaches
fairly high levels by the end of each ∼5 min exposure. We mea-
sured this trend for stars near Sgr A* and applied the results
to the Sgr A* photometry to remove the effect. When applied to
other stars in the field, the corrected photometry was constant, on
average, throughout each exposure. The error on the photometry
obtained in each of the four visits, within an individual 25 s read-
out interval, is 0.0044, 0.0046, 0.0022, and 0.0042 mJy, respec-
tively, which has been estimated from the standard deviation of
the flux density of a reference star. For comparison, similar ob-
servations obtained in the past using NICMOS camera 1 have
an uncertainty within a bin of 32 s of 0.002 mJy at 1.60 µm
(Yusef-Zadeh et al. 2006b).

Aperture and extinction corrections were also applied to the
Sgr A* photometry. The aperture correction was determined by
measuring the curves of growth of several isolated stars in the
field, using a series of apertures of increasing size. The correc-
tion factor for an aperture diameter of 3 pixels is 1.414. The

3 The website of the Spanish Virtual Observatory is: http://svo.
cab.inta-csic.es/main/index.php
4 For comparison, the FWHM of the NICMOS Camera 1 is 0′′.16
(3.75 detector pixels) at 1.60 µm (Yusef-Zadeh et al. 2006b), i.e., better
sampled than the FWHM of the WFC3 camera.
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Table 3. Coordinated observation log with SINFONI at ESO’s VLT for
the 2014 Feb.–Apr. campaign.

Date Start time End time Number of exposures f Total exposure
(UT) (UT) (Used/Total) (s)

Feb. 27a 08:20:42 09:48:55 4/4 1600
Feb. 28b 08:34:58 09:54:37 0/7 0

Mar. 01b,d 08:00:14 10:17:59 0/12 0
Mar. 02b 07:49:06 08:18:54 0/3 0
Mar. 11a 08:03:55 10:03:28 11/11 4400
Mar. 12a 07:44:35 10:07:45 13/13 5200
Apr. 02c,e 06:31:39 09:53:52 16/18 6400
Apr. 03c,e 06:20:46 09:45:02 18/18 7200
Apr. 04c 05:58:19 09:47:58 21/21 8400

Notes. (a) ESO program 092.B-0920(A) (PI: N. Grosso); (b) ESO
program 091.B-0183(H) (PI: A. Eckart); (c) ESO program 093.B-
0932(A) (PI: N. Grosso); (d) partially-simultaneous observation with
XMM-Newton; (e) simultaneous observation with XMM-Newton; ( f ) each
exposure has a duration of 400 s.

extinction correction was derived from A(H) = 4.35 ± 0.12 mag
and A(Ks) = 2.46 ± 0.03 mag (Schödel et al. 2010) with
λeff(NACO H) = 1.63725 µm and λeff(NACO Ks) = 2.12406 µm
(from the Spanish Virtual Observatory), respectively, assuming a
power law leading to A(λ) ∝ λ−2.19± 0.06. Thus, the computed ex-
tinction for the effective wavelength of the WFC3 F153M filter
(λeff = 1.53157 µm) used is 5.03 ± 0.20 mag, which corresponds
to a multiplicative factor of 103.2 ± 19.0 to correct the observed
flux density for extinction.

2.3. VLT observations

Near-infrared integral-field observations of the Galactic Cen-
ter were performed using SINFONI at the VLT in Chile
(Eisenhauer et al. 2003; Bonnet et al. 2004). Sgr A* was mon-
itored nine times in 2014 Feb.−Apr.. Table 3 summarizes the
observing log, including the amount of exposures that were se-
lected for the analysis. The selection criteria is described below.
These observations were planned to be coordinated with those
carried out with XMM-Newton. Two of these observations were
simultaneous with XMM-Newton observations and one was par-
tially simultaneous. They are part of the ESO programs 092.B-
0183(H) (PI: A. Eckart), 093.B-0932(A) (PI: N. Grosso), and
092.B-0920(A) (PI: N. Grosso) presented in Valencia-S. et al.
(2015) for the DSO/G2 study.

The SINFONI instrument is an integral-field unit fed by an
adaptive optics (AO) module. The AO module was locked on a
bright star 8′′.85 east and 15′′.54 north of Sgr A*. The H + K
grating used in these observations covers the 1.45 µm−2.45 µm
range and exhibits a spectral resolution of R ∼ 1500 (which cor-
responds to approximately 200 km s−1 at 2.16 µm). The smallest
SINFONI field of view (0′′.8 × 0′′.8) was jittered around the po-
sition of S2. Observations of different B- and G-type stars were
performed for further telluric corrections.

Exposure times of 400 s were used to observe the Galac-
tic center region, followed or preceded by observations on a
dark cloud located about 12′45′′ west and 5′36′′ north of the
Sgr A* sky position. These integration times were chosen to
fully sample the variations of Sgr A* flux density over typical
flare lengths, while optimizing the quality of the data.

The data processing and calibration was performed as de-
scribed in Valencia-S. et al. (2015) and it is outlined here for
completeness. First, bad lines were corrected using the proce-
dure suggested in the SINFONI user manual. Then, a rough

Table 4. VLA observation log for the 2014 Feb.−Apr. campaign.

Date Start time End time Banda

(UT) (UT)

2014 Mar. 01 11:22:08 18:01:07 X
2014 Mar. 10 11:17:00 17:25:24 Ku
2014 Apr. 02 10:00:15 15:52:48 C, L

Notes. (a) We report in this paper the X-, Ku-, C-, and L-band observa-
tions obtained only at 8.56, 13.37, 5.19 and 1.68 GHz, respectively.

cosmic-ray correction in the sky and target exposures was per-
formed using the algorithm of Pych (2004). Some science and
calibration files showed random patterns that were detected
and removed following the algorithms proposed by Smajić et al.
(2014). Afterwards, the SINFONI pipeline was used for the stan-
dard reduction steps (e.g., flat fielding and bad pixel corrections)
and for the wavelength calibration. A deep correction of cosmic
rays and the atmospheric refraction effects were done using our
own DPUSER routines (Thomas Ott, MPE Garching; see also
Eckart & Duhoux 1991).

The quality of individual exposures was judged based on the
point-spread function (PSF) at the moment of the observation.
The PSF was estimated by fitting a 2D Gaussian to the bright
star S2. Data cubes where the full width at half maximum of the
Gaussian was higher than 96 mas (or 7.65 detector pixels) were
discarded in the analysis. The 2014 Feb. 28, Mar. 1, and Mar. 2
observations are thus not used because of their poor quality. On
2014 Apr. 2 two data cubes of larger field-of-view were used for
pointing. They were not included in the light curves since they
map regions just beside the central S-cluster. Flux calibration on
individual data cubes was performed using aperture photometry
on the deconvolved K-band image. The deconvolution was done
using the Lucy–Richardson algorithm in DPUSER. For calibra-
tion we used the stars S2 (Ks = 14.13), S4 (Ks = 14.61), S10
(Ks = 14.12), and S12 (Ks = 15.49), and adopted the Ks-band
extinction correction A(Ks) = 2.46 ± 0.03 mag (Schödel et al.
2010). Additional information on the flux estimation is given by
Witzel et al. (2012). The final flux densities were extracted by
fitting a 2D Gaussian to the calibrated continuum images for all
time steps.

2.4. VLA observations

Radio continuum observations were carried out with the Karl G.
Jansky Very Large Array (VLA) on 2014 March 1, March 10
and April 2 (observing program 14A-231). The VLA was in its
A-configuration during these three days of observations, with
start and stop times reported in Table 4. In all observations, we
used 3C 286 to calibrate the flux density scale, both 3C286 and
NRAO530 to calibrate the bandpass, and J1744-3116 to calibrate
the complex gains.

On 2014 Mar. 1 we observed Sgr A* at 8−10 GHz (X-Band)
using the 8-bit sampler system with 2 GHz total bandwidth, each
consisting of 64 channels each 2 MHz wide. On 2014 Mar. 10
we used the same correlator setup as 2014 Mar. 1, except us-
ing the Ku-Band between 13 and 15 GHz. On 2014 Apr. 2 we
used the two bands 5−7 GHz (C-band) and 1−2 GHz (L-band),
and alternated between these bands every 7 minutes. The C-band
correlator was set-up similarly to that of X-band. The L-band
correlator, however, used 1 GHz of bandwidth, which consisted
of 16 IFs with channel widths of 1 MHz each. After primary cal-
ibration using OBIT (Cotton 2008), a self-calibration procedure

A116, page 5 of 26

APPENDIX D. ORIGINAL PUBLICATIONS D-135



A&A 589, A116 (2016)

Table 5. CARMA 95 GHz observation log for the 2014 Feb.−
Apr. campaign.

Date Start time End time
(UT) (UT)

2014 Mar. 10 11:14:46 16:29:42
2014 Apr. 02 09:54:18 15:14:31
2014 Apr. 03 10:52:01 15:10:17

was applied using AIPS in phase only, to remove atmospheric
phase errors.

2.5. CARMA observations

Observations of Sgr A* at 95 GHz (corresponding to 3.2 mm)
were obtained with CARMA on 2014 Mar. 10, Apr. 2, and Apr. 3
(see Table 5). The array was in the C-configuration, with an-
tenna separations ranging from 30–350 meters. The correlator
processed frequencies range was 88.76−93.24 GHz in the lower
sideband of the receivers and 96.76−101.24 GHz in the upper
sideband. The spectral resolution was 25 MHz after Hanning
smoothing. Channels corresponding to strong absorption lines
of HCO+ (89.19 GHz), HNC (90.65 GHz), and CS (97.98 GHz)
were dropped from Sgr A* data before averaging to get the
continuum flux density. Only visibility data corresponding to
telescope separations larger than 20 kλ were used for the flux
measurements, to reduce contamination from extended emission
near Sgr A*.

Observations of 3C279 were used to calibrate the instrumen-
tal passband. The flux density scale was established from ob-
servations of Neptune, assuming it is a 2′′.2 diameter disk with
brightness temperature 123 K (consistent with the Butler-JPL-
Horizons 2012 model shown in ALMA memo 594). Observa-
tions of a secondary flux calibrator (the blazar 1733−130, a.k.a.
NRAO 530) were interleaved with the Sgr A* observations ev-
ery 15 minutes to monitor the antenna gains. The flux density of
1733−130 was measured to be 2.7 ± 0.3 Jy on 2014 Mar. 10, and
2.5 ± 0.3 Jy on Apr. 2 and Apr. 3, relative to Neptune.

The data on Mar. 10 were obtained in turbulent weather and
are of poor quality, therefore we do not use it in this work. On
2014 Apr. 2 we only use the data before the beginning of the
snow at about 12:30 UT.

3. Data analysis

3.1. XMM-Newton data

Figure 2 shows the XMM-Newton/EPIC (pn+MOS1+MOS2)
background-subtracted light curves of Sgr A* binned to 300 s
in the 2−10 keV energy range. The non-flaring level (i.e.,
the longest interval of the Bayesian blocks) during 2014
Feb.−Apr. is about 3 times the typical value of 0.18 count s−1

(e.g., Porquet et al. 2008; Mossoux et al. 2015a). This is due
to the flaring magnetar SGR J1745-29 located only 2′′.4 from
Sgr A* (Rea et al. 2013). Because the radius enclosing 50%
of the energy for EPIC/pn at 1.5 keV on-axis is about 10′′

(Ghizzardi 2002), we extract the events from a 10′′-radius cir-
cle centered on Sgr A* as done in previous studies. This extrac-
tion region therefore includes events from SGR J1745-29, which
artificially increases the non-flaring level of Sgr A* (Fig. 2).

3.1.1. Impact of the magnetar on the flare detection

Degenaar et al. (2013) reported a large flare towards Sgr A* de-
tected by Swift on 2013 Apr. 24. The detection of a hard X-ray
burst by BAT near Sgr A* on 2013 Apr. 25 led Kennea et al.
(2013) to attribute this flux increase to a new Soft Gamma Re-
peater unresolved from Sgr A*: SGR J1745-29. The X-ray spec-
trum of this magnetar is an absorbed blackbody with NH =

13.7+1.3
−1.2 × 1022 cm−2 and kTBB = 1.06 ± 0.06 keV (Kennea et al.

2013). But the Chandra X-ray Observatory (CXO) results be-
tween 1 and 10 keV from Coti Zelati et al. (2015) show that
the temperature of the blackbody emitting region decreases with
time: kTBB/keV = (0.85 ± 0.01) − (1.77 ± 0.04) × 10−4(t − t0)
with t0 the time of the peak outburst (i.e., 2013 Apr. 24 or 56 406
in MJD). They show that before 100 d from outburst, the mag-
netar luminosity between 1 and 10 keV is characterized by a
linear model plus an exponential decay whose e-folding time
is 37 ± 2 d. After 100 d from the burst activation, the mag-
netar flux is well fitted by an exponential with an e-folding
time of 253 ± 5 d. This flux decay is one of the slower de-
cays observed for a magnetar. Thanks to 8 months of obser-
vations with the Green Bank Telescope and 18 months of ob-
servations with the Swift’s X-Ray Telescope, the evolution of
the X-ray flux and spin period of the magnetar have been well
constrained by Lynch et al. (2015). The X-ray flux between 2
and 10 keV in a 20′′-radius extraction region centered on the
magnetar decreases as the sum of two exponentials: F(t) =
(1.00 ± 0.06) e−(t−t0)/(55±7 d) + (0.98 ± 0.07) e−(t−t0)/(500± 41 d) in
unit of 10−11 erg s−1 cm−2 with t0 the same as in Coti Zelati et al.
(2015).

We determined the exponential decay of the magnetar flux
between 2 and 10 keV by applying a chi-squared fitting of
the non-flaring level of each observation computed using the
Bayesian-blocks algorithm: on Feb. 28, Mar. 10, and Apr. 2
and 3 the non-flaring level is 0.562 ± 0.003, 0.528 ± 0.004,
0.489 ± 0.003 and 0.499 ± 0.002 EPIC count s−1, respec-
tively. The magnetar flux variation can be described as N(t) =
N0 e−(t−t0)/τ with t the time corresponding to the middle of each
observation, t0 and N0 the time and count rate of the non-flaring
level of the first observation, and τ the decay time scale. Our
best fit parameters with corresponding 1σ uncertainties are:
N0 = 0.558 ± 0.003 count s−1 and τ = 281 ± 15 days. The
decay time scale is about 2 times shorter than those computed
from the formula of Lynch et al. (2015) for this date. However,
as we can see in Fig. 2 of Lynch et al. (2015), the magnetar flux
is not a perfect exponential decay and has some local increase of
the flux, in particular during our observing period. This is seen
in the last XMM-Newton/EPIC pn observation on 2014 Apr. 3,
which is characterized by two blocks whose change point is at
16:27:48 (UTC). The corresponding count rates for the first and
second blocks are 0.254±0.03 and 0.299±0.03 pn count s−1. By
folding light curves for each block on this date with the magne-
tar spin period of 3.76398106 s computed in Appendix B, we see
that the pulse shape has not changed, but the flux increased by
a factor of about 1.2, as determined by the Bayesian-blocks al-
gorithm. Moreover, the Chandra monitoring of DSO/G2 shows
that there is no significant increase of Sgr A* flux on 2014 Apr. 4
(Haggard et al. 2014).

This contamination of the non-flaring level implies a de-
crease of the detection level of the faintest and shortest flares,
as explained in details in Appendix A. Comparing the detec-
tion probability of an XMM-Newton observation with the dis-
tribution of flares during the 2012 Chandra XVP campaign
(Neilsen et al. 2013), we estimate that we lost no more than one
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Fig. 2. XMM-Newton/EPIC (pn+MOS1+MOS2) light curves of Sgr A* in the 2−10 keV energy range obtained 2014 Feb.−Apr. The time interval
used to bin the light curve is 300 s. The X-ray flares are labeled with Arabic numerals. The horizontal lines below these labels indicate the flare
durations.

Fig. 3. XMM-Newton light curve binned on 500 s of the 2014 Mar. 10
flare from Sgr A* in the 2−10 keV energy range. Top panel: the crosses
are the data points of the EPIC/pn light curve. The dashed lines rep-
resent the Bayesian blocks. The solid line and the gray curve are the
smoothed light curve and the associated errors (h = 500 s). Bottom
panel: the total (pn+MOS1+MOS2) light curve. The horizontal dashed
line and the solid line are the sum of the non-flaring level and the
smoothed light curve for each instrument. The vertical gray stripe is
the time during which the camera did not observe.

flare during our four XMM-Newton observations due to the mag-
netar contribution.

3.1.2. X-ray flare detection

By applying the Bayesian-blocks analysis on the EPIC event
lists, we are able to detect two flares: one on 2014 Mar. 10 and
one on 2014 Apr. 2. These flares are labeled 1 to 2 in Fig. 2.
Figures 3 and 4 focus on the EPIC (pn+MOS1+MOS2) and

Fig. 4. XMM-Newton light curve binned on 100 s of the 2014 Apr. 2
flare from Sgr A* in the 2−10 keV energy range. The window width
of the smoothed light curve is 100 s. See caption of Fig. 3 for panel
description.

EPIC/pn flare light curves with a bin time interval of 500 and
100 s, respectively. The comparison of the flare light curves ob-
served by each EPIC cameras can be found in Appendix C. The
second flare is detected by the Bayesian-blocks algorithm in pn,
but not in MOS1 or MOS2. This is explained by the lower sen-
sitivity of the MOS cameras, resulting in a lower detection level
of the algorithm (see Fig. A.1). Table 6 gives the temporal char-
acteristics of these X-ray flares.

We removed the magnetar contribution from the Sgr A*
EPIC/pn event list in order to increase the detection level of the
flares. This was done by computing the period and period deriva-
tive of SGR J1745-29 and filtering out time intervals where
the magnetar flux is less than 50% of its total flux (see Ap-
pendix B for details). We only work with EPIC/pn, because it
has a better temporal resolution (73.4 ms) than the EPIC/MOS
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Table 6. Characteristics of the X-ray flares observed by XMM-Newton
in 2014 after removing the magnetar contribution.

Flare Date Start timea End timea Duration totalb Peakc

(#) (yy-mm-dd) (hh:mm:ss) (hh:mm:ss) (s) (cts) (count s−1)

1 2014-03-10 16:44:48 19:05:07 8418.44 900 ± 60 0.159 ± 0.032
2 2014-04-02 16:52:38 17:08:42 964.91 180 ± 12 0.252 ± 0.058

Notes. (a) Start and end times (UT) of the flare time interval defined by
the Bayesian-blocks algorithm (Scargle et al. 2013b) on the EPIC/pn
data; (b) Total EPIC/pn counts in the 2−10 keV energy band obtained
in the smoothed light curve during the flare interval (determined by
Bayesian blocks) after subtraction of the non-flaring level obtained with
the Bayesian-blocks algorithm; (c) EPIC/pn count rate in the 2−10 keV
energy band at the flare peak (smoothed light curves) after subtraction
of the non-flaring level.

cameras (2.6 s; ESA: XMM-Newton SOC 2013). By applying
the Bayesian-blocks analysis on the filtered pn event lists, we
find no additional flares, and the start and end times of the al-
ready detected flares do not change significantly.

The flare detected on 2014 Mar. 10 is characterized by
a long rise (∼7700 s) and a rapid decay (∼844 s). This is
one of the longest flares ever observed in X-ray, with a du-
ration of about 8.5 ks. For comparison, the largest flare ob-
served during the Chandra XVP 2012 campaign has a duration
of 7.9 ks and the first flare detected from Sgr A* observed by
Baganoff et al. (2001) had a duration of ∼10 ks. In EPIC/pn, the
Bayesian-blocks algorithm divides the flare into two blocks, but
in EPIC/MOS1 and MOS2 this flare is described with only one
Bayesian block.

To localize the origin of this flaring emission we focus on
the MOS observations, which provide a good sampling of the
X-ray PSF (FWHM ∼ 4′′.3) thanks to their 1′′.1 × 1′′.1 pixels.
We first compute sky images that match the detector sampling
for the flaring and non-flaring periods, and then we look for any
significant excess counts during the flaring period compared to
the non-flaring one, using the Bayesian method of Kraft et al.
(1991).

We have suppressed the randomization of the event position
inside the detector pixel during the production of the event list,
therefore the event is assigned to the center of the detector pixel
and its sky coordinates are reconstructed from the spacecraft at-
titude with an angular resolution of 0′′.05. We filter the X-ray
events using the (softer) #XMMEA_EM flag (e.g., bad rows are
filtered out, keeping adjacent rows) and we select only events
with the best positioning (single-pixel events, corresponding to
pattern=0) and 2–10 keV energy. We first assess the mean sky
position of the detector pixel that was the closest to Sgr A* by
comparing the event sky positions with the pattern of the space-
craft offsets from the mean pointing that we derived from the at-
titude history file (*SC*ATS.FIT). We then compute images and
exposure maps centered on this sky position with 1′′.1× 1′′.1 sky-
pixels for the flaring and non-flaring periods (see Appendix C for
the definition of the Bayesian blocks). There is no moiré effect
in these images, because the mean position-angle of the detector
(90◦.78) is very close to 90◦. Panels a and b of Fig. 5 show the
MOS1 and MOS2 count numbers during the flaring period. Fol-
lowing Kraft et al. (1991) we denote this image N. The horizon-
tal row with no counts in the MOS1 image is due to a bad row.
Panels c and d of Fig. 5 show the MOS1 and MOS2 count num-
bers during the non-flaring period, scaled-down to the flaring-
period exposure using the exposure map ratios. This image is
our estimate of the mean count numbers during the non-flaring
period. Following Kraft et al. (1991) we denote this image B, as
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Fig. 5. XMM-Newton/MOS1 (left column) and MOS2 (right column)
images of Sgr A* on 2014 Mar. 10. The energy range is 2–10 keV.
The field of view is 20′′ × 20′′, the pixel size is 1′′.1 × 1′′.1. The same
linear color-scale is used for panels a)–f) and g)–h). In all panels,
the black circle in the right-bottom corner is the instrument angular-
resolution (FWHM); the crosses are the positions of SGR J1745-2900
(Bower et al. 2015b) and Sgr A* (Petrov et al. 2011), surrounded by a
circle giving the absolute-astrometry uncertainty of EPIC (1σ = 1′′.2;
Guainazzi 2013). Panels a) and b): count numbers observed during the
flaring period. Panels c) and d): count numbers observed during the non-
flaring period scaled-down to the flaring-period exposure. The contour
map shows count numbers smoothed on four pixels with a Gaussian,
starting from 2 counts with step of 1 count. Panels e) and f): count ex-
cesses during the flaring period. Panels g) and h): statistically signifi-
cant count excesses (≥3σ; computed on the boxed-pixel area with the
Bayesian method of Kraft et al. 1991), the diamond is the correspond-
ing count-weighted barycenter of these detections.

background. Panels e and f of Fig. 5 show the difference be-
tween the previous panels, shown only for potential count ex-
cesses (N − B > 0). Following Kraft et al. (1991) we denote
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Table 7. Spectral properties of the X-ray flares observed by
XMM-Newton.

Flare day NH
a Γb Funabs

2−10 keV
c Lunabs

2−10 keV
d χ2

red
h

(yy-mm-dd) (1022 cm−2) (10−12 erg s−1 cm−2) (1034 erg s−1)

2014-03-10e 23.7 (14.5–37.5) 3.1 (2.1–4.5) 10.1 (4.9–33.5) 7.7 (3.7–25.6) 1.65
2014-04-02e 9.8 (2.0–23.5) 2.2 (0.7–4.7) 6.3 (3.5–25.7) 4.8 (2.7–19.7) 1.72
2002-10-03 f 16.1 (13.9–18) 2.3 (2.0–2.6) 26.0 (22.5–30.6) 19.8 (17.1–23.3)
2007-04-04g 16.3 (13.7–19.3) 2.4 (2.1–2.8) 16.8 (13.8–21.4) 12.8 (10.5–16.3)

Notes. (a) Hydrogen column density; (b) Photon index of the
power law; (c) Unabsorbed average flux between 2 and 10 keV;
(d) Unabsorbed average luminosity between 2 and 10 keV assum-
ing a distance of 8 kpc; (e) Spectral properties of the EPIC/pn
spectrum computed using the MCMC method. The range given be-
tween parenthesis represents the 90% confidence interval; ( f ) Spec-
tral properties of the EPIC (pn+MOS1+MOS2) spectrum. See
Porquet et al. (2003) and Nowak et al. (2012); (g) Spectral properties of
the EPIC (pn+MOS1+MOS2) spectrum. See Porquet et al. (2008) and
Nowak et al. (2012); (h) Reduced χ2 for 3 degrees of freedom.

this image S , as source. Poisson statistics are required due to the
low number of counts, hence we have to carefully determine the
confidence limits of the observed count excesses to select only
pixels that exclude null values at the confidence level CL.

Since the Bayesian method of Kraft et al. (1991) requires
that the background estimate is close to the true value (see also
Helene 1983), we limit our statistical analysis to the pixels where
the count number during the non-flaring period is larger or equal
to 20, in order to reduce the Poisson noise (see the boxed pixel
areas in panels g and h of Fig. 5). We compute the confidence
level for each count excess using Eq. (9) of Kraft et al. (1991)5

and convert it to a Gaussian equivalent in units of σ. Panels g
and h of Fig. 5 show pixels with confidence levels that are larger
or equal to 3σ. The barycenters of these pixels weighted by their
count excesses (diamonds in panels g and h of Fig. 5) are consis-
tent with the position of Sgr A* when considering the absolute
astrometry uncertainty of EPIC, which confirms that the flaring
emission detected on 2014 Mar. 10 came from Sgr A*.

3.1.3. Spectral analysis of the X-ray flares

To analyze the spectrum of the two flares seen by XMM-Newton
on 2014 Mar. 10 and 2014 Apr. 2, we extracted events from a
circle of 10′′ radius centered on the Sgr A* radio position, as we
did for the temporal analysis. The X-ray photons were selected
with PATTERN≤ 4 and FLAG==0 for the pn camera. We did not
work with photons from MOS1 and MOS2, because the number
of events is too small to constrain the spectral properties. The
source+background time interval is the range between the begin-
ning and the end of the flare computed by the Bayesian-blocks
algorithm (see Table 6). The background time interval is the
whole observation minus the time range during the flare. We
also rejected 300 s on either side of the flare to avoid any bias.
This extraction is the same as used in Mossoux et al. (2015a).
We computed the spectrum, ancillary files, and response matri-
ces with the SAS task especget.

5 Following Kraft et al. (1991), we first determine the confidence in-
terval [smin, smax] of S ≡ N − B at the confidence level CL where,
for a count excess, smax is defined as fN,B(smax) ≡ fN,B(smin) and
smin = 0, with fN,B(S ) ≡ exp(−(S +B)) (S +B)N/(N!ΣN

n=0 exp(−B)Bn/n!)
is the posterior probability distribution function. We then compute
CL =

∫ smax

smin
fN,B(s) ds and its Gaussian equivalent in units of σ given

by φ−1((1 − CL)/2), with φ−1 being the reciprocal of the cumulative
distribution function of the normal distribution.

Fig. 6. Best-fit parameters of the 2014 Mar. 10 (top) and 2014 Apr. 2
(bottom) flares. The diagonal plots are the marginal density distribution
of each parameter. The median values of each parameter are represented
by the vertical dotted lines in diagonal plots and by a cross in other
panels; the vertical dashed lines define the 90% confidence interval (see
Table 7 for the exact values). The contours are 68%, 90% and 99% of
confidence levels.

The model used to fit the spectrum with XSPEC (ver-
sion 12.8.1o) is the same as that in Mossoux et al. (2015a):
an absorbed power law created using TBnew (Wilms et al.
2000) and pegpwrlw with a dust scattering model from
dustscat (Predehl & Schmitt 1995). TBnew uses the cross-
sections from Verner et al. (1996). Interstellar medium abun-
dances of Wilms et al. (2000) imply a decrease of the column
density by a factor of 1.5 (Nowak et al. 2012). The extracted
spectrum was grouped using the SAS task specgroup. The
spectral binning begins at 2 keV with a minimum signal-to-noise
ratio6 of 4 and 3 for the first and second flares, respectively. The
number of net counts during the first flare is 900 (see Table 6)

6 The equation computing the signal-to-noise ratio is the same as in
specgroup and in ISIS (Houck 2013). We therefore use the same
grouping as in Mossoux et al. (2015a).
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Fig. 7. XMM-Newton/EPIC pn spectrum of the 2014 Mar. 10 (top) and
2014 Apr 2 (bottom) flares. The model is the best spectrum obtained
with MCMC (see text for details). The lower panel in the two graphs is
the residual. The horizontal and vertical lines are the spectral bins and
the error on the data, respectively.

and the number of spectral bins is 12. This gives an average of
about 75 counts in each spectral bin. If we perform the same
computation for the second flare, which has 180 net counts for
6 spectral bins, we have 31 counts per spectral bin.

We used the Markov Chain Monte Carlo (MCMC) algorithm
to constrain the three parameters of the model: the hydrogen col-
umn density (NH), the photon index of the power law (Γ), and the
unabsorbed flux between 2 and 10 keV (Funabs

2−10 keV). The MCMC
makes a random walk of nstep steps in parameter space for sev-
eral walkers (nwalkers), which evolve simultaneously. The posi-
tion of each walker at a step in the parameter space is determined
by the positions of the walker at the previous step. Convergence
was achieved using the probability function of the parameters.
The resulting MCMC chain reports all these steps. This method
give us a complete view of the spectral parameters distribution
and correlation.

We use Jeremy Sanders’ XSPEC_emcee7 program that al-
lows MCMC analyses of X-ray spectra in XSPEC using emcee8

(Foreman-Mackey et al. 2013), an extensible, pure Python im-
plementation of Goodman & Weare (2010)’s affine invariant
MCMC ensemble sampler. We follow the operating mode ex-
plained in the XSPEC_emcee homepage to find the optimal value
for the MCMC sampler parameters. Two criteria must be ful-
filled to have a good sampling in the chain: the chain length must
be greater than the autocorrelation time and the mean acceptance
fraction must be between 0.2 and 0.5 (Foreman-Mackey et al.
2013). We created a chain containing 30 walkers. The Python
function acor computes the auto-correlation time (τacor) needed
to have an independent sampling of the target density. The
burn-in period (nburn) and chain length (nstep) are defined as
20 × τacor (Sokal 1997) and 30 × nburn (Foreman-Mackey et al.
2013), respectively. For the spectral model used here, τacor = 5.1
and 5.3 for the 2014 Mar. 10 and 2014 Apr. 2 flares, respectively.
Thus we used nburn = 102, nwalkers = 30, and nstep = 3060

7 https://github.com/jeremysanders/xspec_emcee
8 http://dan.iel.fm/emcee/current/user/line/
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Fig. 8. Unabsorbed total energy vs. unabsorbed peak luminosity of
the X-ray flares (adapted from Mossoux et al. 2015a). The top x-axis is
the unabsorbed fluence. The crosses represent the X-ray flares from the
Chandra XVP campaign (Neilsen et al. 2013), the triangles are the two
brightest flares seen with XMM-Newton (Porquet et al. 2003, 2008), the
diamond and the two squares are the 2011 March 30 flare and its sub-
flares, respectively (Mossoux et al. 2015a). The empty circles are X-ray
flares 1 and 2 of this work with their 1σ error bars. The filled circles are
the components 1a and 1b of flare 1 (see Sect. 4.1.2).

for the March 10 flare and nburn = 106, nwalkers = 30, and
nstep = 3180 for the April 2 flare. The mean acceptance frac-
tion is around 0.6 for the two flares, which is a reliable value.

The diagonal plots in Fig. 6 are the marginal distribution of
each parameter (i.e., the probability to have a certain value of
one parameter independently from others). The other panels in
Fig. 6 represent the joint probability for each pair of parameters.
The contours indicate the parameter region where there are 68%,
90% and 99% of the points (i.e., nwalkers × nstep). The best-fit
parameter values are the median (i.e., 50th percentile) of each
parameter obtained from the marginal distribution. We also de-
fine a 90% confidence range for each parameter as the 5th and
95th percentile of the marginal distribution. These numbers are
reported in Table 7. The corresponding best spectrum is over-
plotted on the data in Fig. 7.

We can compare the spectral parameters of this flare with
those of the two brightest flares detected with XMM-Newton,
which have the better constrained spectral parameters thanks to
the high throughput and no pileup (Porquet et al. 2003, 2008).
Their spectral properties are reported in Table 7. The magnetar
has a soft spectrum, which implies that the soft part (0.5−3 keV)
of the background is very high. Thus we have only one spectral
bin in this energy band (see Fig. 7), implying that the hydrogen
column density is not well constrained. The hydrogen column
density and the photon index of the two brightest flares are well
within the 90% confidence range of the 2014 Mar. 10 and 2014
Apr. 2 flares even if the parameters of the latter are less con-
strained than the former.

Assuming the typical spectral parameters of the X-ray bright
flares, i.e., Γ = 2 and NH = 14.3×1022 cm−2 (Porquet et al. 2003,
2008; Nowak et al. 2012), we determined with XSPEC and the
pn response files in the 2−10 keV energy range an unabsorbed-
flux-to-count-rate ratio of 4.41×10−11 erg s−1 cm−2/pn count s−1
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Fig. 9. Light curves of Sgr A* obtained with WFC3 on board HST during 2014 Feb.−Apr. The NIR flares are labeled with Roman numerals. The
horizontal lines below these labels indicate the flare durations. The error bar in each panel is standard deviation of the photometry.

Fig. 10. Histogram of the NIR flux densities from Sgr A* observed
in the Ks-band with NACO at ESO’s VLT (adapted from Fig. 3 of
Witzel et al. 2012). Top panel: the solid line is the normalized distribu-
tion of the NIR flux densities corrected from the background emission.
The dashed lines are the amplitude of the HST flares I, II and the lower
limit of the amplitude of the flare III extrapolated to the Ks-band. We
also represented the amplitude above the 3σ limit of the VLT flares IV
and V extrapolated to the Ks-band. The dot-dashed line is the detection
limit corresponding to 3 times the standard deviation of the quiescent
flux density of HST on 2014 Mar. 10. Bottom panel: the cumulative dis-
tribution function of the NIR flux densities from Sgr A* corrected from
the background emission.

(corresponding to an absorbed-flux-to-count-rate ratio of 2.01 ×
10−11 erg s−1 cm−2/pn count s−1). From the 8 kpc distance and
the total number of counts (Table 6), we determine a total en-
ergy of 30.4 ± 1.9 × 1037 and 6.0 ± 0.4 × 1037 ergs (1σ error)
for the 2014 Mar. 10 and Apr. 2 flares, respectively. These val-
ues can be compared to flares previously observed with Chandra
and XMM-Newton. Figure 8 shows the total energy of these flares
versus the unabsorbed peak luminosity. Flare 1 is one of the most

energetic flares, due to its very long duration. The peak ampli-
tude and total energy of flare 2 is close to the median values
observed for this flare sample.

3.2. HST data

The HST light curves of Sgr A* and a reference star for the four
visits are shown in Fig. 9. The error bar in each panel represents
the typical uncertainty on the photometry derived for the refer-
ence star (standard deviation of the photometry). The deredened
non-flaring flux density of Sgr A* and the corresponding error,
computed using a 1σ-clipping method, are 59.3±0.7, 60.1±0.9,
60.8 ± 1.1 and 60.3 ± 0.8 mJy on 2014 Feb. 28, Mar. 10, Apr. 2,
and Apr. 3, respectively (horizontal dot-dashed line of Fig. 9).
The beginning and end of each flare is set by the 1σ limit on
the flux density whose maximum amplitude is larger than 3σ.
We only considered flux-density increases that lasted longer than
25 s, in order to discard any calibration glitchs. All observed NIR
flares are labeled with Roman numerals.

The ∼10 h visit on 2014 Mar. 10 detected two NIR flares.
The first one (labeled I) peaks at 8.2σ and has an X-ray coun-
terpart. It lasts from 16:29:51 to 18:52:36 (1σ limit). We can
see in Table 6 that it begins and ends ∼14 min before the X-ray
flare. As for the X-ray flare, its shape is not a Gaussian, as it
has a dip during the third HST orbit. Two interpretations can
be made to explain this shape. First, this flare could be a single
flare and the variation from Gaussian shape during the third orbit
can be seen as substructures, as is the case for some NIR flares
(Dodds-Eden et al. 2009). The second interpretation is that this
NIR flare is in fact two distinct flares with a return below the
1σ limit between ∼18:30 and ∼18:39. The time delay between
the two maxima in this scenario would be about 90 min. From
21:32:33 to 22:02:58 on 2014 Mar. 10, we can see that there is
a second NIR flare (labeled II), which has no X-ray counterpart.
Its maximum is about 3.4σ.

On 2014 Apr. 2 we caught the end of a NIR flare (labeled III),
lasting until 17:31:15. Its amplitude is larger than 8.8σ, since its
maximum occured during the Earth occultation of Sgr A*. Its
beginning could correspond with the small increase in flux den-
sity seen just before the start of the Earth occultation of Sgr A*,
which would lead to an upper limit on its duration of 3360 s. The
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Fig. 11. Light curves of Sgr A* obtained with SINFONI at ESO’s VLT
during 2014 Apr. 3 and 4. The dash-dotted lines represent the 3σ de-
tection level of Sgr A*. The horizontal segments indicate the exposure
length of 400 s. The NIR flares are labeled with Roman numerals.

duration of this NIR flare III and its possible relation with X-ray
flare 2 will be discussed in Sect. 4.

The amplitudes of these flares can be compared to the sam-
ple of flux densities from Sgr A* observed in the Ks-band
with NACO at ESO’s VLT and reported by Witzel et al. (2012).
They constructed a histogram of all flux densities from the light
curves, without distinction between the quiescent and flaring pe-
riods. This observed distribution of the flux density has a rela-
tive maximum at 3.57 mJy. Below this amplitude the distribu-
tion decreases, because of the detection limit of NACO. Above
3.57 mJy, the distribution is highly asymmetric, with a rapid de-
cay of the frequency density followed by a long tail to 32 mJy.
Figure 10 compares the amplitude of the flares detected with
HST during this campaign with the relative frequency density
given in Witzel et al. (2012, Fig. 3). The normalized distribu-
tion of the NIR flux densities observed with NACO (top panel
of Fig. 10) is corrected for the background emission of 0.6 mJy
(Witzel et al. 2012). The amplitude of the flares detected with
HST are extrapolated to the Ks-band using the H − L spectral
index of Sgr A* computed in Witzel et al. (2014b), which is
α = −0.62.

The detection threshold of HST, which we define as the 3σ
limit (dot-dashed line in Fig. 10), corresponds to 8% of the am-
plitude sample observed with NACO (bottom panel of Fig. 10).
The amplitude of NIR flare II is about 7 times smaller than the
amplitude of the brightest flare observed with NACO, whereas
the amplitude of flare I is only 3 times smaller than the ampli-
tude of this event. We can only measure a lower limit on the
amplitude of NIR flare III, since its maximum occured during
the Earth occultation. This lower limit is nearly as large as those
of flare I.

3.3. VLT data

Figure 11 shows the ratio between Sgr A* and S2 flux den-
sities for the observations where a NIR flare was detected.
Making a very conservative estimation, the 3σ detection lev-
els of Sgr A* in the 2014 Apr. 3 and 4 data yield flux density
ratios of F(Sgr A∗)/F(S2) ≈ 0.37 and 0.22, respectively (dash-
dotted lines of Fig. 11). A flare (labeled IV) is observed on 2014
Apr. 3 with a peak amplitude of ∼3.9σ. We clearly see its rise
and decay phase below the 3σ detection level. On 2014 Apr. 4,
a smaller flare (labeled V) is seen around 9:00 UT with a peak
amplitude of ∼5.1σ.

Using Eq. (2) of Witzel et al. (2012), with Ks(S2) = 14.13 ±
0.01 and A(Ks) = 2.46 ± 0.03 (Schödel et al. 2010), we have

Fig. 12. CARMA light curves at 3.2 mm (95 GHz) of Sgr A* (white
circle) and 1733-130 (black circle) in April 2014. The dash-dotted line
represents the mean flux density.

F(S2) = 14.32 ± 0.26 mJy. The amplitude of the two NIR flares
detected with SINFONI are thus 6.92± 0.13 and 5.30± 0.09 mJy
for 2014 Apr. 3 and 4, respectively. We consider that all the
SINFONI light curve variations above our 3σ detection limit can
be attributed to Sgr A* activity. We can therefore compare these
flux densities with the sample of flux densities observed with
NACO after the background subtraction of 0.6 mJy (Fig. 10).
The 2014 Apr. 3 and 4 flares are within 4% of the largest ampli-
tude, and are 5 and 6 times smaller than the brightest amplitudes
observed with NACO, respectively. The 3σ detection level cor-
responds to 3.15 ± 0.06 mJy, which is comparable to the 11% of
the largest flux density observed with NACO (Fig. 10).

3.4. CARMA data

The flux densities at 95 GHz (3.2 mm) of Sgr A* and 1733−130
shown in Fig. 12 are computed for each 10 s integration on 2014
Apr. 2 and 3. On 2014 Apr. 2 the flux density of Sgr A* increases
slowly. A bump is seen at 11.3 h, but it could not be associ-
ated with the observed NIR or X-ray flares, since the CARMA
observation occurred before the flares observed with HST and
XMM-Newton.

On 2014 Apr. 3 the flux density decreases slowly, with two
bumps occuring at 12.4 and 13.6 h. The maximum of the NIR
flare IV observed with VLT occurred at 7.9 h on the same date.
One of these episodes of radio flux density variation could be
the delayed emission from this NIR flare, which would indicate
a time delay of 4.4 or 5.6 h for the first and second bumps, re-
spectively. The delays previously measured between the X-rays
and the 850 µm light curves range between 1.3 and 2.7 h (e.g.,
Yusef-Zadeh et al. 2006b, 2008; Marrone et al. 2008). Assuming
the expanding plasmon model, the delay between the NIR and
the longer wavelength (3.2 mm) emission must be larger than
these values, leading to a time delay consistent with those mea-
sured for these two bumps. One time-delay measurement was
made between the X-rays and the 7 mm light curve, leading to
a delay of about 5.3 h (Yusef-Zadeh et al. 2009). This measure
seems to reject the second bump as being the delayed sub-mm
emission from the VLT flare, since the delay is too long. The
first bump, therefore, could be the delayed millimeter emission
of the NIR flare IV. The second bump could then be the delayed
millimeter emission of a NIR flare whose peak is lower than the
3σ detection level of VLT or which occurred after the end of the
VLT observation and during Earth occultation for HST.

The flux density of Sgr A* during these observations in-
creases with frequency as S ν ∝ ν0.2. For comparison, previ-
ous observations of Sgr A* between 43.3, 95.0, and 151 GHz
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Fig. 13. VLA light curves of Sgr A* obtained on 2014 Mar. 1 (8.56 GHz), Mar. 10 (13.37 GHz) and Apr. 2 (1.68 and 5.19 GHz). The y-axis covers
the same range of flux density for all observation and is centered on the mean of the minimum and maximum flux density in each panel.

(corresponding to 7.0, 3.2, and 2.0 mm; Table 2 of Falcke et al.
1998) give a similar spectra index of 0.58 ± 0.23.

3.5. VLA data

We obtained light curves of Sgr A* from all three days of VLA
observations, selecting (for the purpose of simplification) only
one intermediate frequency channel with 30 s of averaging (anal-
ysis of the full radio dataset will be given elsewhere). In all ob-
servations we selected visibilities greater than 100 kλ in order to
minimize contamination from extended thermal emission from
Sgr A West. The radio light curves for the frequencies obtained
with the VLA in configuration A on 2014 Mar.−Apr. are shown
in Fig. 13.

We interleaved the CARMA and VLA L- and C-band ob-
servations from 2014 Apr. 2 in order to search for a time de-
lay between the 1.68 GHz and 5.14 GHz, and the 1.68 GHz and
95 GHz light curves, using the z-transformed discrete correlation
function (ZDCF; Alexander 1997). The cross-correlation graphs
show no significant maximum of the likelihood function, imply-
ing that we can not derive any time delay between these light
curves.

The light curves on 2014 Mar. 1 and Apr. 2 display a steady
decrease and increase of flux density. The light curve on 2014
Mar. 10 shows an obvious break in its rising flux density around
16 h, with a clear increase of the rising slope. To better con-
strain the time of this slope change, we fit the VLA light curve
with a broken line. The break is located at 15.7 ± 0.2 h with a
slope increasing from 9.7 ± 0.1 to 27 ± 1 mJy h−1 (χ2

red = 2828
with 508 d.o.f.), which is significant. We therefore tentatively at-
tribute it to the onset of a radio flare, since we have only partial
temporal coverage of this radio event. For comparison purposes,
the light curves of the 2014 Mar. 10 flare observed with VLA,
WFC3, and XMM-Newton are shown in Fig 14.

The radio flare observed at 13.37 GHz (2.2 cm) could be
the delayed emission from a NIR/X-ray flare that occurred ei-
ther at the beginning of the observation with an amplitude lower
than the detection limits of WFC3 and XMM-Newton, or before
the start of our HST and XMM-Newton observations. The latter
would imply a delay larger than 2.2h. As explained previously in
Sect. 3.4, the largest time delay that has been measured between
X-ray and sub-mm flares is 5.3 h (Yusef-Zadeh et al. 2009).
Considering the expanding plasmon model (Yusef-Zadeh et al.
2006a), the delay between the X-ray and centimeter light curves

Fig. 14. Simultaneous X-ray, NIR and radio observations of flare I/1
from Sgr A* on 2014 Mar. 10. Top panel: the EPIC/pn smoothed light
curve computed with a window width of 500 s and its error in gray. The
dashed lines are the Bayesian blocks. Middle panel: the deredened HST
light curve and its error in gray. The vertical dot-dashed lines are the
beginning and the end of the flares. Bottom panel: the VLA light curve
at 13.37 GHz. The vertical dot-dashed line is the time of the change of
slope. The dashed broken line is the fit.

must be larger than 5.3 h, and therefore the possibility of a non-
detected NIR/X-ray flare is likely excluded.
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4. Determination of the X-ray emission related

to the NIR flares

In the following subsections we determine the X-ray emission
related to each NIR flare observed with HST or VLT, with
which we associate either one of the X-ray flares detected with
XMM-Newton or an upper limit on the amplitude of a non-
detected X-ray flare.

4.1. The NIR flare I on 2014 Mar. 10

To compare the NIR and X-ray light curves of the 2014 Mar. 10
flare, we express the NIR and X-ray flux in the same units. To
convert the X-ray count rate to flux, we use the unabsorbed-flux-
to-count-rate ratio derived in Sect. 3.1.3.

The NIR flux of Sgr A* is obtained from the flux density S ν
by integrating over the F153M filter, using the filter profile T
(Spanish Virtual Observatory). To be consistent with the HST
photometric calibration (Vega system), we assume a Rayleigh-
Jeans regime (S ν ∝ ν2):

FIR

erg s−1 cm−2
=

∫

T S ν

(

ν

νeff

)2

dν, (1)

with νeff the effective frequency given by the Spanish Virtual
Observatory.

The ratio between the X-ray and NIR flux during the flare
is shown in Fig. 15 (the error bars are on the order of the sym-
bol size). The NIR flux is always lower than the X-ray flux, but
during the third orbit of the HST visit the X-ray contribution
increased by a factor of 10 compared to the NIR. We can test
two interpretations: a single flare with non-simultaneous X-ray
and NIR peaks, or two distinct flares with simultaneous NIR and
X-ray peaks.

4.1.1. A single flare with non-simultaneous peaks in NIR
and X-rays

Considering that the NIR flare is produced by synchrotron
emission, there are three radiative processes that can
explain the X-ray flare production: synchrotron (SYN;
Dodds-Eden et al. 2009; Barrière et al. 2014), inverse Compton
(IC; Yusef-Zadeh et al. 2006b, 2012; Wardle 2011), and syn-
chrotron self-Compton (SSC; Eckart et al. 2008) emission. In
this section, we discuss whether each process can explain the
entire observed NIR/X-ray light curve on 2014 Mar. 10.

The synchrotron−synchrotron process (SYN-SYN)
For synchrotron emission of NIR and X-ray photons by accel-
erated electrons in the flaring region, the electron acceleration
has to be high enough to directly emit X-ray photons. It is dif-
ficult, however, to explain how to reach the required Lorentz
factor of γ = 106 (Marrone et al. 2008; Yusef-Zadeh et al.
2012; Eckart et al. 2012b). Moreover, the synchrotron cooling

time scale τsync = 8 × (B/30 G)−3/2 ×
(

ν/1014 Hz
)−1/2

min
(Dodds-Eden et al. 2009) is very short for X-ray photons (≈1 s
for B = 100 G and ν = 4 × 1017 Hz). Thus, we must have con-
tinuous injection of accelerated electrons to maintain the X-ray
flare during the decay phase, which lasts ∼30 min. If the NIR
and X-ray flares are created by the same population of elec-
trons, whose energy distribution is described by a powerlaw
as N(E) = K E−p, the difference between the NIR and X-ray
flux can be explained if the synchrotron spectrum has a cooling
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Fig. 15. Evolution of the ratio between NIR and X-rays during flare I/1
on 2014 Mar. 10. Top panel: the dashed line surrounded by the dark
gray error bars corresponds to the smoothed light curve of the X-ray
flare and its flux can be seen on the left y-axis. The solid line and the
light gray error bars is the NIR light curve whose flux is read on the
right y-axis. Bottom panel: the flux of the X-ray light curve divided by
the NIR one.

break frequency between the NIR and X-rays (Dodds-Eden et al.
2009). In this scenario, the X-ray spectrum has a spectral index
of α = p/2, whereas the NIR spectral index is α = (p−1)/2 (with
S ν ∝ ν−α; Dodds-Eden et al. 2009). Knowing that the X-ray pho-
tons are produced by the electrons from the tail of the power law
distribution, during the first part of the flare there are many more
electrons that create NIR photons than those creating X-ray pho-
tons. Then, the acceleration mechanism has to become more ef-
ficient, accelerating more electrons to the tail (and thus increas-
ing p) of the distribution and thus changing the ratio between the
NIR and the X-ray flux. Hence the production of X-ray photons
increases, which explains the second part of the flare.

The synchrotron−synchrotron self-Compton process
(SYN-SSC)
During synchrotron self-Compton emission, X-ray photons are
produced by the scattering of the synchrotron radiation from
radio to NIR on their own electron population. If we compare
the fluxes produced by the synchrotron and SSC emissions, the
variation of the X-ray/NIR ratio constrains the size evolution of
the flaring source. Let us consider a spherical source of radius
R with a power law energy distribution of relativistic electrons.
Following Van der Laan (1966), the radiative transfer for the
synchrotron radiation can be computed as

S SYN =

∫ R

0

ǫν

κν

(

1 − e−τν(r)
)

2πr dr, (2)

with κν ∝ B(p+2)/2 ν−(p+4)/2 the absorption coefficient, ǫν ∝
B(p+1)/2ν−(p−1)/2 the emission coefficient, B the magnetic field
(Lang 1999) and τν(r) the optical depth, which can be computed
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at each distance r from the sphere center as:

τν(r) =
∫ 2

√
R2−r2

0
κνdl. (3)

Assuming that we are in the optically thin regime (i.e.,
τν(r) ≪ 1), we utilize formula 3 of Marrone et al. (2008):
S SYN ∝ B(p+1)/2 ν−(p−1)/2 R3. For synchrotron radiation, we have
B ∝ R4 ν5m S −2

m with S m the maximum flux density of the spec-
tral energy distribution occurring at frequency νm (Marscher
1983). Finally, the synchrotron radiation can be expressed using
p = 2α + 1 as

S SYN ∝ R4α+7 ν
5(α+1)
m S

−2(α+1)
m ν−α . (4)

The SSC radiation of X-ray photons is (formula 4 of Marscher
1983):

S SSC ∝ R−2(2α+3) ν
−(3α+5)
m S

2(α+2)
m ln

(

ν2

νm

)

ν−α. (5)

The natural logarithm in this equation could be approximated by
c1 (ν2/νm)c2 with c1 = 1.8 and c2 = 0.201 (Eckart et al. 2012b).
The synchrotron-to-SSC flux ratio is

S SSC

S SYN
∝ R−(8α+13) ν

−(8α+10+c2)
m S 4α+6

m . (6)

We therefore have three parameters that may vary during the
flare to explain the increased ratio of X-ray and NIR flux
(Fig. 15). Considering the plasmon model, for which a spheri-
cal source of relativistic electrons expands and cools adiabati-
cally, we have (Van der Laan 1966): νm ∝ R−(8α+10)/(2α+5) and
S m ∝ R−(14α+10)/(2α+5). Thus, S SSC/S SYN ∝ R−β with β ≡
(8α2 + (30 − 8 c2)α + 25 − 10 c2)/(2α + 5). We first consider the
adiabatic expansion. For our observation, the ratio between the
X-ray and the NIR flux increases during the 2014 Mar. 10 flare,
implying that R−β must increase as the radius R increases. This
condition is satisfied if the exponent β is negative and thus if the
α value is lower than −2.5 or is between −2.3 and −1.25, which
is inconsistent because αmust be positive. The expansion case is
thus likely to be rejected under the hypothesis of an optically thin
plasmon that expands adiabatically. We can also consider the
case where the plasmon is compressed during its motion through
a bottle-neck configuration of the magnetic field. We can still use
the equations of Van der Laan (1966), since the conservation of
the magnetic flux is explicitly taken into account. The compres-
sion case is thus preferred, because it allows positive values of α
for β > 5.4. Thus, for the SYN-SSC process, the plasmon must
be adiabatically compressed with at least S SSC/S SYN ∝ R−5.4.
Therefore, the observed increase of the X-ray-to-NIR flux ratio
by a factor of 10 in 1.2 h implies a decrease of the radius by a fac-
tor of about 0.6. The average compression velocity is estimated
as Vcomp = ∆R/∆t, leading to |Vcomp|/c < 0.0034 R/Rs with Rs

the Schwarzschild radius (Rs = 1.2 × 1012 cm for Sgr A*, which
corresponds to 0.08 au). For comparison, the expansion veloc-
ities computed with this model in the literature range between
0.0028 and 0.15c (Yusef-Zadeh et al. 2006a, 2009; Eckart et al.
2008), which is of the same order as the compression velocity
computed here. Thus, the model of an adiabatic compression of
a plasmon is the likely hypothesis to explain the variation of the
ratio between X-ray and NIR flux, in the context of the SYN-
SSC process.

Fig. 16. NIR/X-ray peak ratio vs. time delay for the synchrotron-
inverse Compton process. The asterisks are the results reported by
Yusef-Zadeh et al. (2012), the solid line is a parabolic fit. The hori-
zontal solid line and gray box are the lower limit and error bar on the
NIR/X-ray peak ratio of the flare I/1 on 2014 Mar. 10 and the corre-
sponding time-delay range. The dashed line is the ratio between the
maximum NIR amplitude reported by Witzel et al. (2012) and the X-ray
peak of flare 1, with the gray box being the corresponding error bar (see
text for details).

The synchrotron−inverse Compton process (SYN-IC)
In the case of inverse Compton emission, X-ray photons are pro-
duced by the scattering of either the NIR photons produced by
synchrotron emission from the thermal electron population asso-
ciated with the accretion flow that produces the sub-millimeter
photons, or the sub-millimeter photons of the accretion flow on
the electron population of the external source that produces the
NIR photons by synchrotron radiation.

For the former process, the accretion flow is optically
thin in the NIR, allowing all of the thermal electron pop-
ulation of the accretion flow to upscatter the NIR photons.
Yusef-Zadeh et al. (2012) estimated the X-ray to NIR time de-
lay for seven NIR/X-ray flares, which is due to upscattering of
the NIR photons in the accretion flow. They identified a trend be-
tween increasing time delay and the increase of the NIR/X-ray
peak ratio that is consistent with the SYN-IC process. The X-ray
peak of flare 1 is defined as the maximum of the pn smoothed
light curve (Table 6). We have only a lower limit on the NIR
peak of flare I, which results in an estimated time delay of
25.5−73.9 min, because we have an observational gap in the
HST data. Figure 16 shows a comparison of the peak ratio lower
limit and time delay range of flare I/1 (horizontal solid line) with
those reported in Table 2 of Yusef-Zadeh et al. (2012). This peak
ratio lower limit is located below the observed trend. Assuming
that the actual NIR peak can not be larger than the maximum
observed amplitude (i.e., 32 mJy; Witzel et al. 2012), the actual
peak ratio (dashed line) would be at least four times smaller than
the value predicted by the SYN-IC process. If the actual NIR
peak corresponds to this predicted value, this NIR flare would
be four times brighter than the brightest flare ever observed and
its shape would be completely unusual. We therefore consider
this process to be very unlikely.

For the latter process, the accretion flow is optically thick in
sub-millimeter, reducing the number of available sub-millimeter
photons produced by the thermal electron population to be up-
scattered (Yusef-Zadeh et al. 2006b, 2012; Wardle 2011). If the
sub-millimeter flux of the accretion flow is constant, the X-ray
flare should have the same shape as the NIR flare. But in flare I/1
the X-ray flux increases while the NIR flux decreases. Since the
decay of the NIR flux can only be due to the decrease of the
number of accelerated electrons, the rise of the X-ray flux would
require a simultaneous large increase of the sub-millimeter flux,
which appears rather fine tuned. Therefore, we do not favor the
SYN-IC process to explain the variation of the NIR/X-ray flux
of flare I/1.
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4.1.2. Two distinct flares with simultaneous NIR and X-ray
peaks

The 2014 Mar. 10 flare could be decomposed into two flaring
components (called Ia/1a and Ib/1b). Each NIR/X-ray flaring
component is produced by its own population of accelerated
electrons. We introduce here a general model that will be used
in the next subsections to fit the NIR and X-ray light curves. The
model is composed of a linear part (if needed), representing the
non-flaring level, plus one or two Gaussian flares:

F(t) = F0 + F1 (t − t0) +
2

∑

i=1

Ai e−(t−ti)2/2σ2
i , (7)

with Ai the amplitude above the non-flaring level and ti and σi
the center and the standard deviation of each Gaussian. For the
X-rays, the non-flaring level is fixed to the Bayesian-block value.
The results of the fit are given in Table 8 and the corresponding
light curves and residuals are shown in Fig. 17 (top panels).

The time of the first and second peaks of the NIR and
X-ray flares are consistent with each other within the 1σ errors.
Flare 1b appears broader in X-rays than in the NIR, but their
widths are consistent with each other within 1.5σ. The delay
time between the two X-ray maxima is about 5000 s, which is
longer than the time between two X-ray flares observed during
the 2012 Chandra XVP campaign (about 4000 s; see Fig. 1 of
Neilsen et al. 2013). This argument, in addition to the change of
flux ratio between the two flares, favors the interpretation of two
distinct flares.

From the unabsorbed-flux-to-count-rate ratio derived in
Sect. 3.1.3, we compute the unabsorbed total energy of these
flares using the total number of counts in each Gaussian. The
start and stop times of the flares are defined as the 3σ distance
from the time of the maximum, i.e., 16.0 and 17.6 h for flare 1a,
and 17.4 and 19.8 h for flare 1b. The unabsorbed total energy
is (12.7 ± 6.7) × 1037 and (21.2 ± 6.5) × 1037 ergs (1σ error)
for flares 1a and 1b, respectively. The unabsorbed total energy of
flare 1 is thus split nearly equally between its two components.
The peak amplitude of flare 1a is close to the smallest amplitudes
of flares observed (Fig. 8).

4.2. The NIR flare II on 2014 Mar. 10

This flare is only detected in the NIR with HST. We therefore fit
the NIR light curve with a single Gaussian above a constant non-
flaring level using Eq. (7). The best fit parameters are reported
in Table 8.

The upper limit on the amplitude of the undetected X-ray
counterpart was computed using the Bayesian method for the
determination of the confidence limits described by Kraft et al.
(1991, see also Helene 1983). We use the notations and equations
of Sect. 3.1.2. We first define a confidence limit CL = 0.95 and
the source N as the number of counts during the time interval of
the flare maximum (i.e., between ti − 3σ and ti + 3σ with σ the
error on ti reported in Table 8). The background B is the number
of counts in the non-flaring Bayesian-block at the time of the
NIR flare peak. We then determine smin and smax (see footnote 5
in Sect. 3.1.2) resolving the equation of CL. For flare II, N =
62 counts and the non-flaring level is defined by the Bayesian
blocks as 0.315 counts s−1 between 21.65 and 21.71 h, leading to
B = 68 counts and S = −6 counts. Since S is negative, smin = 0,
leading to smax = 6. The upper limit on the amplitude is thus
0.028 counts s−1 at a confidence level of 95%. The value of this
upper limit is also reported in Table 8.

Fig. 17. Light curve fitting of the HST NIR flares (left panels) and the
X-ray (right panels) counterparts. The solid lines are the observed light
curves with the error bars in gray. The dashed lines in right panels are
the Bayesian blocks. The X-ray light curves are smoothed with a win-
dow width of 500 s and 100 s for 2014 Mar. 10 and Apr. 2, respectively.
The dotted lines are the individual Gaussians and the dot-dashed line
is the sum of the Gaussians. The vertical dotted lines are the time of
the NIR flare peak when there is no detected X-ray counterpart. The
residuals are in units of σ.

4.3. The NIR flare III on 2014 Apr. 2

We consider that two NIR flares happened during the occulta-
tion of Sgr A* by the Earth. We thus fit the NIR light curve
with two Gaussians (labeled IIIa and IIIb) above a linear com-
ponent, which is used here to take into account the change in the
non-flaring level between the last two HST orbits (Eq. (7)). The
F-test strongly supports two Gaussian components, since this
significanlty increases the goodness-of-fit (p-value of 3 × 10−4).
The best-fit parameters for the X-ray and NIR flares are given in
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Table 8. Gaussian fitting of the NIR and X-ray flares observed during the 2014 campaign.

Flare Non-flaring level Gaussian flare χ2
red (d.o.f)

Date Type # F0 F1 t0 Ai ti σi

2014 (mJy) (mJy h−1) (h) ( a ) (mJy) b (h) (h)

Mar. 10 IR Ia 59.8 ± 0.5 . . . . . . . . . . . . . . . . . . . . . 8.64 ± 0.03 10.58 ± 0.03 17.4 ± 0.1 0.49 ± 0.09 1.52 (648)
– IR Ib – . . . . . . . . . . . . . . . . . . . . . 4.05 ± 0.06 4.97 ± 0.06 18.9 ± 0.1 0.2 ± 0.1 –
– X 1a [BB] . . . . . . . . . . . . . . . . . . . . . 0.08 ± 0.02 (2.8 ± 0.8) × 10−4 17.37 ± 0.09 0.3 ± 0.1 0.39 (10796)
– X 1b [BB] . . . . . . . . . . . . . . . . . . . . . 0.17 ± 0.02 (6.7 ± 0.8) × 10−4 18.58 ± 0.07 0.36 ± 0.07 –

Mar. 10 IR II 59.7 ± 0.1 . . . . . . . . . . . . . . . . . . . . . 2.3 ± 0.2 2.8 ± 0.2 21.68 ± 0.01 0.10 ± 0.01 0.67 (96)
– X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <0.028 <1.1 × 10−4 [21.67] . . . . . . . . . . . . . . . . . . . . . . . .

Apr. 2 IR IIIa 61.21 ± 0.05 −0.577 ± 0.003 [15.8] 4.3 ± 0.4 4.6 ± 0.4 16.94 ± 0.01 0.29 ± 0.02 0.48 (192)
– IR IIIb – – – 25.3 ± 1.4 27.5 ± 1.4 17.2 ± 0.1 0.09 ± 0.03 –
– X 2 [BB] . . . . . . . . . . . . . . . . . . . . . 0.25 ± 0.01 (8.4 ± 0.5) × 10−4 17.03 ± 0.04 0.09 ± 0.03 1.11 (1365)
– X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <0.030 <1.2 × 10−4 [17.2] . . . . . . . . . . . . . . . . . . . . . . . .

Apr. 3 IR IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [6.9 ± 0.1] [6.9 ± 0.1] [7.89] . . . . . . . . . . . . . . . . . . . . . . . .
– X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <0.042 <1.7 × 10−4 – . . . . . . . . . . . . . . . . . . . . . . . .

Apr. 4 IR V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [5.30 ± 0.09] [5.30 ± 0.09] [8.82] . . . . . . . . . . . . . . . . . . . . . . . .
– X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . <0.0093 <3.7 × 10−5 – . . . . . . . . . . . . . . . . . . . . . . . .

Notes. [BB] means that the value is fixed to the count rate level of the Bayesian block. (a) The units are counts s−1 for X-rays and mJy for NIR;
(b) in the Ks-band.

Table 8 and the resulting graphs are shown in the bottom panels
of Fig. 17.

We then fit the X-ray flare 2 with a Gaussian above a quies-
cent level equal to the Bayesian-block value. The maximum of
the X-ray flare has no time delay relative to the NIR flare IIIa
above the 3σ error bars, as usually observed for X-ray flares
with NIR counterparts (Eckart et al. 2006; Yusef-Zadeh et al.
2006a; Dodds-Eden et al. 2009). Moreover, the FHWM of the
NIR flare IIIa (2458 s) is about 3 times larger than that of the
X-ray flare (762 s), which is reminiscent of the FWHM ratio of
∼2 observed by Dodds-Eden et al. (2009) for the 2007 Apr. 4
NIR/X-ray flare. The NIR flare IIIa is thus probably the coun-
terpart of the X-ray flare 2. This conclusion is based on our
Gaussian fitting of flare III, but a more complex shape cannot be
excluded due to the NIR observational gap. However, since the
X-ray flare 2 and the previously observed NIR/X-ray flares also
have a Gaussian shape (Eckart et al. 2006; Yusef-Zadeh et al.
2006a; Dodds-Eden et al. 2009), we consider that this conclu-
sion is the simplest and thus the most likely.

The amplitude of the flare IIIb is one of the largest ob-
served when compared with the sample obtained with NACO
(Witzel et al. 2012). No X-ray counterpart is detected for this
flare. We thus obtain an upper limit on the X-ray amplitude using
the same method as flare II with N = 763 counts between 16.9
and 17.5 h. The background is defined as the sum of the number
of counts in non-flaring Bayesian-block values (626.4 counts)
and the number of counts in the Gaussian fit of flare 2 dur-
ing the maximum of the flare (121.7 counts). We thus have
B = 748.1 counts, leading to S = 14.9 counts. The resulting smin
is 0, with smax = 65 counts. The upper limit on the amplitude of
the undetected X-ray counterpart is thus 0.030 counts s−1 at the
confidence level of 95%. This value is reported in Table 8.

4.4. The NIR flare IV on 2014 Apr. 3

The VLT light curves consist of bins of 400 s exposures. The
number of bins is too small and the bin size too large to fit a
Gaussian to the VLT light curves. We thus consider only the bin
with the largest flux density as the peak of the flare IV. This
value and the time of the maximum are reported in Table 8.

No X-ray counterpart is detected with XMM-Newton on
Apr. 3. We thus deduce an upper limit to the putative simultane-
ous X-ray flare using the same method that was used for flare II.
The time interval of the maximum of flare IV is defined as the
bin length of the light curve, i.e., 400 s centered on 7.89 h. The
number of counts in this interval is N = 127 counts and the back-
ground is B = 119.1 counts, leading to S = 7.9 counts. The re-
sulting smin is 0, with smax = 17 counts, leading to an upper limit
on the amplitude of 0.042 counts s−1.

4.5. The NIR flare V on 2014 Apr. 4

For flare IV, we do not fit the light curve with a Gaussian and we
consider the maximum of the light curve as the peak flux density
of the NIR flare (Table 8).

We have no XMM-Newton observation on 2014 Apr. 4. How-
ever, as shown in Fig. 1, there is a simultaneous legacy Chandra
observation (ObsID: 16212; PI: D. Haggard) on this date. We
used the Chandra Interactive Analysis of Observations (CIAO;
version 4.6) to analyze these data. We worked with the level = 2
event list of the ACIS-S camera (Garmire et al. 2003), available
in the primary package of the Chandra archive. We extracted
the source+background events in the 2−8 keV energy range in a
1′′.25-radius circle centered on the radio coordinates of Sgr A*
using the dmcopy task. We used the Bayesian-blocks analysis
with a false detection probability of e−3.5 to detect any flaring
event. No X-ray counterpart to the NIR flare was detected dur-
ing this observation. Based on N = 1 counts between 8.71 and
8.93 h and a non-flaring level of 0.0065 counts s−1, we compute
B = 3 counts and S = −2 counts. The resulting smin is 0 with
smax = 4 counts. The upper limit to the putative simultaneous
X-ray amplitude is thus 0.01 counts s−1 at the confidence level
of 95% (see flare II for explanations).

5. Constraining the physical parameters

of the flaring region

In this section we constrain the physical parameters of the flar-
ing region by considering three radiative models for the NIR
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Fig. 18. NIR-to-X-ray peak ratio vs. amplitude of the NIR flares.
Squares refer to the flares reported in Table 3 of Eckart et al. (2012b).
Triangles are the simultaneous NIR/X-ray flares detected on 2007 Apr. 4
and labeled D and E in Table 2 of Trap et al. (2011). Diamonds are the
delayed flares of 2004 Jul. 7, 2008 Jul. 26+27 and 2008 May 5 reported
in Table 2 of Yusef-Zadeh et al. (2012). The labeled points are the NIR
and X-ray flares observed during this campaign.

and X-ray emission. After computing the NIR-to-X-ray simul-
taneous peak ratio sample detected during the 2014 campaign,
we investigated the synchrotron-synchrotron (SYN-SYN), syn-
chrotron Self-Compton-synchrotron Self-Compton (SSC-SSC),
and the synchrotron-synchrotron Self-Compton (SYN-SSC) ra-
diation mechanisms. These processes are called “local”, because
these emissions are produced only by the electrons accelerated in
the flaring region. The last subsection is dedicated to the Inverse
Compton mechanism, which involves external electrons.

5.1. The sample of NIR flares and the corresponding X-ray
emission

We compute the flux densities of the NIR and X-ray flare peaks
to constrain the physical parameters of the flaring region needed
to produce such fluxes. We extrapolate the amplitude of each
NIR peak to the Ks-band using the H−L spectral index computed
in Witzel et al. (2014b). The flux density of the X-ray flare peaks
is computed from the spectral fitting in ISIS, using the typical
spectral parameters of the X-ray bright flares (see Sect. 3.1.3).
The resulting conversion factor is 1 pn count s−1 = 3.935 µJy at
4 keV. The NIR peak flux density and corresponding values of
the X-ray peaks (or upper limits) are reported in Table 8.

Figure 18 shows the NIR-to-X-ray peak ratio as a function
of the amplitude of the NIR flares observed during the 2014
campaign. The unabsorbed X-ray peak luminosities are com-
puted using the conversion factor reported in Sect. 3.1.3. The
X-ray upper limit of NIR flare V was obtained from Chandra
data. The corresponding unabsorbed-flux-to-count-rate ratio of
1.97×10−10 erg s−1 cm−2/count s−1 was computed with the same
spectral parameters as for XMM-Newton.

We also show the flares reported by Eckart et al. (2012b),
the two simultaneous flares on 2007 Apr. 4 (Porquet et al. 2008;
Nowak et al. 2012) labeled D and E in Table 2 of Trap et al.
(2011), and the delayed flares of 2004 Jul. 7, 2008 Jul. 26+27,
and 2008 May 5 reported in Table 2 of Yusef-Zadeh et al. (2012).

The flare Ia/1a lies within the bulk of NIR flare ampli-
tudes and peak ratio, whereas the flare IIIa/2 has the lowest

NIR-to-X-ray ratio ever observed. The NIR flare IIIb is amongst
the largest NIR flares (e.g., Dodds-Eden et al. 2009; Witzel et al.
2012) and has the largest NIR-to-X-ray ratio ever observed.

5.2. Investigation of the local radiative processes

With the peak flux density of the flares in X-rays and NIR,
we use the formalism developed by Eckart et al. (2012b) to
constrain the range of four physical parameters of the flar-
ing emission: the size of the source region, the magnetic field,
the density, and the maximum of the flux density spectrum.
Eckart et al. (2012b) considered three cases, invoking the two
radiative processes, implying the local electrons from the flaring
source region: the SYN-SYN, SSC-SSC, and SYN-SSC emis-
sions. A radiative process is considered as dominant when the
alternative emission processes are lower than 10%. For exam-
ple, the SYN-SYN case is dominant if both SSC contribution for
NIR and X-rays are lower than 10% of the synchrotron contri-
bution. Considering different values for the turnover frequency
(νm), which defines the frequency at which the source becomes
optically thin, we have four free physical parameters for each
value of the spectral index (α): the size of the emitting region
(θ), peak flux density at νm (S m), number density of relativistic
particles (ρ), and the magnetic field (B). The spectral index is
given by the ratio between the NIR and X-ray amplitudes for the
SYN-SYN and SSC-SSC cases, and by seven different values of
α from 0.3 to 1.5 for the SYN-SSC case. Computing the SYN
or SSC flux density with the equations given by Eckart et al.
(2012b), we can constrain the values of the four physical pa-
rameters for each value of α and νm.

The resulting graphs for the flares detected in NIR and
X-rays (labeled Ia/1a, Ib/1b and IIIa/2) are shown in Fig. 19.
Each line corresponds to one value of α. The red dots are the
turnover frequencies from 50 to 3000 GHz in steps of 200 GHz.
The constraint on the MIR amplitude limit observed during the
bright L′-band and X-ray flare on 2007 Apr. 4 of 57 mJy at
11.88 µm (Dodds-Eden et al. 2009) is also used: the lines are
dashed if this limit is exceeded. This happens only for the SYN-
SSC emission mechanism and for high values of α.

The physical parameters are more constrained for flare IIIa/2,
since the X-ray-to-NIR amplitude ratio is high. For this flare, the
SYN-SSC emission mechanism leads to a size of 0.03−7 times
the Schwarzschild radius and an electron density of 108.5–
1010.2 cm−3 for a synchrotron spectral-index of 0.3−1.5.

From the magnetic field values deduced for these flares,
one can infer the presence of sustained heating during the
decay phase of the X-ray or NIR flares for the SYN-
SYN and SYN-SSC case. Indeed, if the synchrotron cooling
timescale, defined as τsync = 8 (B/30 G)−3/2 (ν/1014 Hz)−1/2 min
(Dodds-Eden et al. 2009), is shorter than the duration of the de-
cay phase then sustained heating is needed. We define the decay
phase from the time of the maximum of the Gaussian fit (see
Table 8) to the time leading to 10% of the flare amplitude (cor-
responding to 2.1σ after the maximum) in order to still have a
detectable emission of the flare.

For the SYN-SYN case, the synchrotron cooling timescale
is shorter for the X-ray photons, leading to more constraints on
the presence of sustained heating. We thus consider the X-ray
frequency (ν = 1018 Hz) in the computation of the synchrotron
cooling timescale. The synchrotron cooling timescale is shorter
than the decay time of flare 2 (695 s) for B larger than 1 G, imply-
ing that sustained heating must be present during the decay phase
for these values of magnetic field. A sustained heating is always
needed for flares Ia/1a and Ia/1b, since they have a minimum
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Fig. 19. Physical parameters of the flares observed simultaneously in X-rays and NIR for the three emission models. The flare Ia/1a, Ib/1b
and IIIa/2 are in the upper, middle and bottom panels, respectively. Left panels are the size of the flaring-source region (θ) vs. the peak
of the spectrum (S m) at the frequency νm. Right panels are the density of the relativistic electrons vs. the magnetic field. The locii where
the Synchrotron Self-Compton−Synchrotron Self-Compton (SSC-SSC), Synchrotron-Synchrotron Self-Compton (SYN-SSC) and Synchrotron-
Synchrotron (SYN-SYN) are dominant are shown in black, blue and green, respectively. The red dots represent the turnover frequencies from 50
to 3000 GHz by step of 200 GHz. The arrows show the direction of the curves if the limit on the alternative emission processes is lowered. Dotted
lines are locii of SYN-SSC where the MIR emission is larger than the observed upper-limit values (see text for details).

value of the magnetic field and a decay time larger than those of
flare 2 (2318 and 2781 s, respectively).

For the SYN-SSC case, we consider the NIR frequency (ν =
1014 Hz) in τsync that we have to compare to the decay time of the
NIR flares. Sustained heating is now needed for flare IIIa (whose
decay time is 2240 s) with a magnetic field of greater than 11 G,
corresponding to an electron density larger than 1010.1 cm−3. For
flares Ia and Ib (whose decay times are 1545 and 3785 s, re-
spectively), sustained heating is needed for magnetic fields larger

than 13 and 7 G, respectively. The corresponding electron den-
sity is thus larger than 108.4 and 109.5 cm−3.

We also apply the study of Eckart et al. (2012b) to con-
strain the physical parameters of the flaring emission for the NIR
flares that have no detected X-ray counterpart (flares II, IIIb, IV
and V). The resulting graphs are shown in Fig. 20. The neces-
sary electron density and magnetic field ranges lie within lower
values compared to those needed to produce detectable X-ray
flares, since the efficiency of the production of X-ray photons is
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smaller. Moreover, for flare IIIb, the SYN−SYN process is only
dominant for small values of νm. This is explained by the small
X-ray-to-NIR amplitude ratio, since at large νm the synchrotron
process is too efficient for the production of a small number of
X-ray photons.

We can also deduce the presence of sustained heating dur-
ing the decay phase of NIR flares II and IIIb for the SYN-SYN
and SYN-SSC case. The synchrotron cooling timescale is shorter
than the decay time of flare II (772 s) if B is larger than 22 G, re-
quiring sustained heating during the decay phase for these values
of magnetic field. For flare IIIb (whose decay times are 695 s),
sustained heating is required for B larger than 1 G.

However, as argued by Eckart et al. (2012a), alternative
models such as different spectral indexes for the NIR and X-ray,
due to inhomogeneities of the accretion disk, can also explain
the data with larger numbers of free parameters.

5.3. Investigation of the external radiative process

As reported in Sect. 4.1.1, Yusef-Zadeh et al. (2012) investigated
the upscattering of the NIR photons produced in the flaring re-
gion on electrons of the accretion flow. The ratio between the
Inverse Compton and the synchrotron emission is

LIC

LSYN
∝

Uph

UB
, (8)

with Uph the photon energy density and UB = B2/8π the mag-
netic energy density. Given the variation of B with the distance
from Sgr A* (B = B0 (r/Rs)−1 with B0 of several hundred of
Gauss; Eatough et al. 2013), it is possible to create NIR and
X-ray flares with a large range of NIR-to-X-ray ratio. Thus, we
cannot identify the IC radiation by only considering the NIR-to-
X-ray ratio.

However, using the estimation of the time delay between
X-ray and NIR flare peaks as a function of the NIR-to-X-ray
peak ratio reported in Yusef-Zadeh et al. (2012) and shown
in Fig. 16, we can estimate the time delays that we would
observe during our 2014 campaign. For the detected X-ray
flares, the NIR-to-X-ray peak ratio ranges between 6 and
45 mJy/1035 erg s−1 (see Fig. 18) leading to a time delay less
than 10 min, which is smaller than the error bars on the time of
the maximum of the Gaussians. The IC emission, therefore, is
still a possible radiative process for the production of the X-ray
flares observed during this campaign.

For the undetected X-ray flares II, IIIb, IV and V, the NIR-
to-X-ray ratio is larger than 32, 269, 48, and 55 mJy/1035 erg s−1,
respectively. The corresponding time delays are thus greater than
9, 26, 11, and 12 min, respectively. These time delays are larger
than the events with detected X-ray flares. The efficiency of the
flare detection with XMM-Newton and Chandra, however, does
not allow us to detect such faint X-ray flares, which may have
the largest delay in the inverse Compton framework.

Thus, the flares observed during the 2014 campaign leave
the IC process as a possible emission mechanism for producing
X-ray flares from the NIR photons.

6. Discussing the X-ray flaring rate

We can compare the X-ray flare frequency during our observa-
tions (three flares over 255.644 ks) to the one derived from the
Chandra XVP campaign in 2012: 45 flares detected by Bayesian-
block algorithm over 2983.93 ks (1.5 flare per day). Consider-
ing a sample of 45 flares having the same amplitude and du-
ration distribution as those observed during the Chandra XVP

campaign superimposed on the non-flaring level observed with
XMM-Newton during our campaign, the Bayesian-blocks algo-
rithm detects 36 flares over 2983.93 ks. If we sum the number of
flares that we can detect during the exposure time corresponding
to each observation during the XMM-Newton 2014 campaign,
we arrive at a prediction of 3.1 flares during this campaign. We
compare the flare rate observed during the Chandra XVP cam-
paign to those observed during this campaign (36 flares over
2983.93 ks and 3 flares over 255.644 ks), assuming a Poisson
process (Gehrels 1986; Fay 2010). The p-value for the null hy-
pothesis that the flaring rate we have to observe and the rate we
currently observe is the same, is 1, which implies that the flar-
ing rate observed close to the pericenter passage of the DSO/G2
is consistent with that observed during the Chandra XVP cam-
paign. The conclusion is the same if we consider only two X-ray
flares instead of three (p-value = 0.54). To conclude that the
measured flaring rate is statistically different from those ob-
served during the Chandra XVP campaign, we would have to
detect at least 8 flares during our campaign (p-value = 0.04),
which corresponds to an increase of the flaring rate by a factor
of 2.6 (95% confidence interval of 1.0−5.7).

Since the beginning of the observation of Sgr A* in X-rays,
two temporary episodes of higher flaring rate were observed
(Porquet et al. 2008; Neilsen et al. 2013). Porquet et al. (2008)
detected four flares on 2007 Apr. 04 with XMM-Newton. Three
of these flares happened during the last 39.6 ks of the observa-
tion, corresponding to a flaring rate of 8.8 flares per day. We
can compare this flaring rate to the 38 flares that should be
detected by the Bayesian-block algorithm. The ratio between
the two rates is 5 and the 95% confidence interval is 1.3−20
(p-value = 0.03). Neilsen et al. (2013) detected 4 flares during
23.6 ks with Chandra, which corresponds to a flaring rate of
14.6 flares per day. We can directly compare this flaring rate to
that computed during the 2012 Chandra XVP campaign if we re-
move these 4 flares from the sample of 45 flares detected by the
Bayesian-blocks algorithm. Thus, we have to compare 41 flares
over 2960.33 ks and 4 flares over 23.6 ks. The ratio between
the two rates is 13 and the 95% confidence interval is 3.3−33.3
(p-value = 9× 10−4). This implies that some temporary increase
of Sgr A* activity in X-ray may have been observed without an
increase of the quiescent level due to an increase of the accretion
rate.

The radio monitoring of Sgr A* with VLA between 2012
and 2014 May showed no change in the flux density or the
spectrum (Bower et al. 2015a; Yusef-Zadeh et al. 2015). Obser-
vations of Sgr A* after the DSO/G2 pericenter passage show
that there is no increase of the flaring activity in radio/sub-
mm (Tsuboi et al. 2015; Park et al. 2015). The 2014 Feb.−June
Chandra X-ray monitoring of Sgr A* shows no rise of the qui-
escent flux (Haggard et al. 2014). The compactness of the ob-
ject can explain the absence of any increase in the Sgr A*
accretion rate during pericenter passage at 2014.39 ± 0.14
(Valencia-S. et al. 2015), which corresponds to 2014 Apr. 20
(2014 Mar. 1−2014 Jun. 10). Five flares with an absorbed flu-
ence greater than 5 × 10−9 erg cm−2 (corresponding to an unab-
sorbed fluence of 10.9 × 10−9 erg cm−2 when using Γ = 2 and
NH = 14.3 × 1022 cm−2) were observed with XMM-Newton and
Chandra between 2014 Aug. 30 and Oct. 20, implying an in-
crease in the rate of energetic flares, but the overall flaring rate
did not change (Ponti et al. 2015).

To assess the typical timescale for the accretion of fresh mat-
ter from the DSO/G2 object onto Sgr A* at pericenter, we com-
pute the disk accretion timescale (τacc) for Sgr A*. It is governed
by the viscous timescale, which is computed for an ADAF using
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Fig. 20. Physical parameters of the flares only observed in NIR for the three emission models. The NIR flare II, IIIb, IV and V are in the upper,
second, third and bottom panels, respectively. See Fig. 19 caption for the panel description.
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the self-similar solution derived by Yuan & Narayan (2014, and
references therein). At the distance r of the SMBH, τacc is de-
fined as r/Vrad with Vrad the radial velocity for the self-similar
solution, which gives us: τacc ∼ 3.0 (r/2000Rs)1.5 (α/0.1)−1 yrs
with α ∈ [0, 1] the efficiency of the mechanism of angular
momentum transport introduced by Shakura & Sunyaev (1973).
For a pericenter distance of about 2000 Rs (Pfuhl et al. 2015;
Valencia-S. et al. 2015) and α = 0.1, we should not see any in-
crease of the flux from Sgr A* before 2017. Moreover, the large
angular momentum of the gas and dust from DSO/G2 likely in-
creases the true accretion timescale.

Some numerical simulations of the accretion of gas in a
RIAF model were made, leading to a time range for the gas ac-
cretion of some months to several ten of years after the pericenter
passage (Burkert et al. 2012; Schartmann et al. 2012). However,
these simulations modeled DSO/G2 as a gas cloud or a spherical
shell of gas, but not as a young star with circumstellar material.
The accretion time when there is no central star may thus be
lower than τacc, since the gas cloud is partially tidally disrupted
before the pericenter passage.

Zajaček et al. (2014) modeled the DSO/G2 as an interme-
diate mass star of 2 M⊙ moving in a RIAF. They studied the
tidal effects on a circumstellar dusty envelope and on a circum-
stellar accretion disk. They showed that if the test particles are
distributed in a disk-like structure, the number of particles that
remain gravitationally bound to the star after the pericenter pas-
sage is larger than that for a spherical distribution of particles.
From their Fig. 13, we can also infer that the accretion onto
Sgr A* begins earlier for a spherical distribution than for a disk-
like model. However, in these simulations, no circumstellar gas
was taken into account.

7. Conclusions

The pericenter passage of the DSO/G2 object at the beginning of
2014 was predicted to produce an increase of the flaring activity
of Sgr A* in several wavelengths. This 2014 Feb.−Apr. cam-
paign was designed to follow an increase of its flaring activity
simultaneously in X-rays, NIR, and radio/sub-mm.

Three NIR flares were detected with WFC3 on board HST:
two on 2014 Mar. 10 (I and II) and one on Apr. 2 (III). Two ad-
ditional NIR flares were detected with SINFONI at ESO’s VLT
on 2014 Apr. 3 (IV) and 4 (V). All of these NIR flares are within
the top 8% of the largest amplitude flares observed with NACO
at ESO’s VLT (Witzel et al. 2012). Since the detection limit of
WFC3 and SINFONI correspond to the 8 and 11% amplitude
levels of this sample, the fact that the observed NIR flares belong
to the most luminous NIR flares is statistically expected and can
not be taken as any indication for an increase of NIR activity.

Two X-ray flares were detected on 2014 Mar. 10 (1)
and Apr. 2 (2) using the Bayesian-blocks method on the
XMM-Newton observations. The spectral parameters of these
X-ray flares fitted with the MCMC method are consistent with
those of the two brightest flares detected with XMM-Newton
(Porquet et al. 2003, 2008).

The flare I/1 observed on 2014 Mar. 10 presents a change in
the NIR to X-ray flux ratio, with an increase of the X-ray flux
contribution during the second half of the flare. We tested the
three radiative processes that can explain the NIR/X-ray flares
from Sgr A* as a single flare, considering energetic arguments.
The most likely interpretation is that the NIR and X-ray pho-
tons are produced in a plasmon in adiabatic compression by syn-
chrotron and SSC emission mechanisms, respectively. However,
the flares I and 1 can also be decomposed into two Gaussian

flares with a time separation of only 1.2 h. We can thus asso-
ciate the NIR flares Ia and Ib to the X-ray flares 1a and 1b, re-
spectively. They reproduce the characteristics observed in other
simultaneous NIR/X-ray flares, i.e., no apparent delay between
the maxima and a similar FWHM. The flares Ia/1a lie within the
bulk of NIR flare amplitudes and peak ratio, but the flare Ib/1b
lies within the lowest peak ratio ever observed.

The NIR flare III is actually composed of two close Gaussian
flares (IIIa and IIIb). The X-ray flare 2 is the counterpart of
the NIR flare IIIa. It has the lowest NIR-to-X-ray ratio ever
observed.

The NIR flares II, IIIb, IV, and V have no detectable
X-ray counterpart in our XMM-Newton observation or the legacy
Chandra observation. The upper limits on the X-ray amplitude
were computed using the Bayesian method for the determina-
tion of the confidence limits described by Helene (1983) and
Kraft et al. (1991). The flare IIIb lies within the largest NIR
fluxes (e.g., Dodds-Eden et al. 2009; Witzel et al. 2012) and has
the largest NIR-to-X-ray ratio ever observed.

In total, we detected seven NIR flares and three X-ray flares
during the 2014 campaign.

On 2014 Mar. 10 we also identified an increase in the rising
radio flux density at 13.37 GHz with the VLA, which could be
the delayed radio emission from a NIR/X-ray flare that occurred
before the start of our observation.

On 2014 Apr. 2 we identified a bump of the flux density on
the rising 3.2-mm light curve observed with CARMA. The time
range of this observation does not allow us to associate this mil-
limeter bump to a NIR/X-ray flare. Moreover, we found no sig-
nificant delay between the CARMA light curve and VLA L- and
C-band data.

On 2014 Apr. 3 two millimeter flares were identified above
the decaying 3.2-mm light curve. The former could be the de-
layed emission of the NIR flare IV.

We derived physical parameters of the flaring emission for
local radiative processes, as done previously by Eckart et al.
(2012b), for each NIR/X-ray flare, and also for NIR flares
with no detected X-ray counterpart. Physical parameters for the
flare IIIa/2 are better constrained when asssuming synchrotron
and SSC emission mechanisms for the NIR and X-ray flares,
respectively. This flaring region has a size of 0.03−7 times
the Schwarzschild radius and an electron density of 108.5–
1010.2 cm−3, for a synchrotron spectral-index of 0.3−1.5. The
derived physical parameters of the flaring emission associated
with the undetected X-ray counterpart are poorly constrained,
since the X-ray photon production efficiency is smaller.

We also tested the SYN-IC process using the NIR-to-X-ray
peak amplitude ratio and the predicted time delay between the
NIR and X-ray peaks. This external radiative process is also a
possible emission model for the emission of the flares observed
during this campaign.

No significant increase in the X-ray flaring rate has been
detected during this campaign, but continuous monitoring of
Sgr A* is still important to detect any steady increase of its
flaring activity that could be due to accreting material from the
DSO/G2. This may put some constrains on the physical proper-
ties of the G2 object and the ambient medium inside the Bondi
radius of this SMBH.
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Eckart, A., Mužić, K., Yazici, S., et al. 2013, A&A, 551, A18
Eisenhauer, F., Abuter, R., Bickert, K., et al. 2003, in Instrument Design and

Performance for Optical/Infrared Ground-based Telescopes, eds. M. Iye, &
A. F. M. Moorwood, SPIE Conf. Ser., 4841, 1548

Eisenhauer, F., Genzel, R., Alexander, T., et al. 2005, ApJ, 628, 246
ESA: XMM-Newton SOC 2013, XMM-Newton Users Handbook, issue 2.11
Falcke, H., & Markoff, S. B. 2013, Class. Quant. Grav., 30, 244003
Falcke, H., Goss, W. M., Matsuo, H., et al. 1998, ApJ, 499, 731
Fay, M. P. 2010, The R Journal, 2, 53
Feigelson, E. D., & Babu, G. J. 2012, Modern statistical method for astronomy

with R applications (Cambridge, UK: Cambridge University Press)
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125,

306
Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A., & Ricker, Jr., G. R.

2003, in X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy,
eds. J. E. Truemper, & H. D. Tananbaum, SPIE Conf. Ser., 4851, 28

Gehrels, N. 1986, ApJ, 303, 336
Genzel, R., Schödel, R., Ott, T., et al. 2003, Nature, 425, 934
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, Rev. Mod. Phys., 82, 3121
Ghez, A. M., Salim, S., Weinberg, N. N., et al. 2008, ApJ, 689, 1044
Ghizzardi, S. 2002, In flight calibration of the PSF for the pn camera

(EPIC-MCT-TN-012)
Gillessen, S., Eisenhauer, F., Fritz, T. K., et al. 2009, ApJ, 707, L114
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2012, Nature, 481, 51
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2013a, ApJ, 763, 78
Gillessen, S., Genzel, R., Fritz, T. K., et al. 2013b, ApJ, 774, 44
Goodman, J., & Weare, J. 2010, Comm. Appl. Math. Comput. Sci., 5, 65
Guainazzi, M. 2013, XMM-Newton Calibration Technical Note; XMM-SOC-

CAL-TN-0018, ESA-ESAC
Haggard, D., Baganoff, F. K., Rea, N., et al. 2014, ATel, 6242, 1
Helene, O. 1983, Nucl. Inst. Meth. Phys. Res., 212, 319

Houck, J. C. 2013, ISIS 1.0 Technical Manual, Chandra X-Ray Observatory Cen-
ter, MIT Center for Space Research One Hampshire St. Building NE80 Cam-
bridge, MA 021394307 USA

Kaspi, V. M., Archibald, R. F., Bhalerao, V., et al. 2014, ApJ, 786, 84
Kennea, J. A., Burrows, D. N., Kouveliotou, C., et al. 2013, ApJ, 770, L24
Kraft, R. P., Burrows, D. N., & Nousek, J. A. 1991, ApJ, 374, 344
Lang, K. R. 1999, Astrophysical Formulae, 3rd edn., Vol. 1 (Springer)
Lynch, R. S., Archibald, R. F., Kaspi, V. M., & Scholz, P. 2015, ApJ, 806,

266
Marrone, D. P., Baganoff, F. K., Morris, M. R., et al. 2008, ApJ, 682, 373
Marscher, A. P. 1983, ApJ, 264, 296
Mori, K., Gotthelf, E. V., Zhang, S., et al. 2013, ApJ, 770, L23
Morris, M. 2012, Nature, 481, 32
Mossoux, E., Grosso, N., Vincent, F. H., & Porquet, D. 2015a, A&A, 573,

A46
Mossoux, E., Grosso, N., Vincent, F. H., & Porquet, D. 2015b, A&A, 580, C2
Narayan, R., Mahadevan, R., Grindlay, J. E., Popham, R. G., & Gammie, C.

1998, ApJ, 492, 554
Neilsen, J., Nowak, M. A., Gammie, C., et al. 2013, ApJ, 774, 42
Nowak, M. A., Neilsen, J., Markoff, S. B., et al. 2012, ApJ, 759, 95
Park, J.-H., Trippe, S., Krichbaum, T. P., et al. 2015, A&A, 576, L16
Petrov, L., Kovalev, Y. Y., Fomalont, E. B., & Gordon, D. 2011, AJ, 142, 35
Pfuhl, O., Gillessen, S., Eisenhauer, F., et al. 2015, ApJ, 798, 111
Ponti, G., De Marco, B., Morris, M. R., et al. 2015, MNRAS, 454, 1525
Porquet, D., Predehl, P., Aschenbach, B., et al. 2003, A&A, 407, L17
Porquet, D., Grosso, N., Predehl, P., et al. 2008, A&A, 488, 549
Predehl, P., & Schmitt, J. H. M. M. 1995, A&A, 293, 889
Pych, W. 2004, PASP, 116, 148
Rauch, C., Ros, E., Krichbaum, T. P., et al. 2016, A&A, 587, A37
Rea, N., Esposito, P., Pons, J. A., et al. 2013, ApJ, 775, L34
Reid, M. J., Readhead, A. C. S., Vermeulen, R. C., & Treuhaft, R. N. 1999, ApJ,

524, 816
Scargle, J. D. 1998, ApJ, 504, 405
Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. 2013a, ApJ, 764, 167
Scargle, J. D., Norris, J. P., Jackson, B., & Chiang, J. 2013b, in The Bayesian

Block Algorithm, 2012 Fermi Symp. Proc. – eConf C121028 (version 1)
[arXiv:1304.2818]

Schartmann, M., Burkert, A., Alig, C., et al. 2012, ApJ, 755, 155
Schödel, R., Ott, T., Genzel, R., et al. 2002, Nature, 419, 694
Schödel, R., Najarro, F., Muzic, K., & Eckart, A. 2010, A&A, 511, A18
Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337
Silverman, B. W. 1986, Density Estimation for Statistics and Data Analysis, ed.

C. Hall (Chapman & Hall)
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Zajaček, M., Karas, V., & Eckart, A. 2014, A&A, 565, A17
Zhao, J.-H. 2003, Astron. Nachr. Suppl., 324, 355

A116, page 23 of 26

APPENDIX D. ORIGINAL PUBLICATIONS D-153



A&A 589, A116 (2016)

Fig. A.1. Comparison of the flare detection level with the non-flaring
level corresponding to those of the 2011 (left panel) and February 2014
(right panel) observations. The vertical doted-dashed line represents an
example flare with the same amplitude above the non-flaring level for a
2011 and 2014 Feb.−Apr. observations.

Fig. A.2. Flare distribution seen by Chandra and the detection prob-
ability of the Bayesian-blocks algorithm during an observation with
XMM-Newton. The crosses are the X-ray flares detected during the
Chandra XVP campaign of 2012. Left panel: the flare amplitude above
the non-flaring level seen by EPIC/pn during the 2011 campaign. Right
panel: the flare amplitude above the non-flaring level seen by EPIC/pn
during the 2014 Feb. 28 observation.

Appendix A: The magnetar impact on the flare

detection efficiency

The contamination of the non-flaring level of Sgr A* by the
Galactic center magnetar implies a decrease of the detection
level of the faintest and shortest flares. To assess the impact on
our flare detection efficiency, we examine the flare detection rate
(Fig. B.1. of Mossoux et al. 2015a) versus the flare peak signif-
icance, i.e., the amplitude of the flare expressed in units of the
standard deviation of the non-flaring level. This scaling allows
the comparison of observations with different non-flaring lev-
els. The flares used in these simulations have a Gaussian shape
whose the Full Width at Half Maximum (FWHM) corresponds
to the shortest, mean, and longest duration flares observed dur-
ing the Chandra XVP campaign of 2012 (Neilsen et al. 2013).
In Fig. A.1, we show the flare detection rate for the 2011 (left
panel) and 2014 Feb. 28 (right panel) non-flaring levels for a
false detection probability of p1 = exp(−3.5).

We can see that because the non-flaring level in the 2014
Feb. 28 light curve has increased by a factor of about three by
comparison with the 2011 campaign, the standard deviation is
increased by a factor of about

√
3. For example, if we consider

a flare with an amplitude of 0.2 count s−1 above the non-flaring
level, this corresponds to a peak significance of 6.3σ for the 2011
light curves and this Gaussian shape flare is always detected if
its duration is ∼320 s (FWHM). A flare with the same amplitude
in the 2014 Feb. 28 light curve corresponds to 3.2σ and is only
detected with a probability of 53%.

In order to assess how many flares we cannot detect due
to the magnetar contamination, we create a trial sample of

flares following the duration and amplitude distribution deter-
mined during the Chandra XVP campaign of 2012 (Neilsen et al.
2013). We first compute a grid of 30 flare amplitudes and 30 flare
durations in the range [0.06−0.4] count s−1 and [337.5−8100] s,
respectively, regularly distributed in the logarithmic scale. For
each point of the grid, we create 300 Gaussian flares charac-
terized by the corresponding amplitude and duration (which is
two times the standard deviation of the Gaussian). We then ap-
ply the Bayesian blocks algorithm on all these flares superim-
posed above a non-flaring level corresponding to those of the
2011 XMM-Newton campaign seen with pn and each 2014 pn
observation. By computing how many flares are detected among
the 300 simulated flares, we estimate the probability to detect a
flare with a certain amplitude and duration.

Because Neilsen et al. (2013) detect 45 flares during a to-
tal time of 2983.93 ks using the Bayesian-blocks method,
we randomly select 100 sets of 45 flares following the
amplitudes and durations distribution given by Neilsen et al.
(2013), i.e, dN/dCRCh = 0.7 CR−1.9

Ch e−CRCh/0.3 and dN/dT =

0.05T−0.1e−T/3000 with CRCh the peak count rate as observed
by Chandra and T the flare duration9. In order to convert the
Chandra count rate to the XMM-Newton count rate (CRXMM),
we can use the relation derived in Mossoux et al. (2015a) be-
tween the Chandra HETG count rate (zero and first order) of
the flare peak and the unabsorbed luminosity at the peak flare,
i.e., Lunabs

2−10 keV/1034 erg s−1 = −0.031 + 136.7CRCh. This unab-
sorbed luminosity is obtained with the spectral index Γ = 2
and the hydrogen column density NH = 14.3 × 1022 cm−2

(Neilsen et al. 2013). We determine with the arf and rmf files
of pn a count rate to unabsorbed luminosity ratio of 2.96 ×
10−36 pn count s−1/erg s−1. We can thus convert the Chandra
count rate to the pn count rate assuming the same spectral param-
eters. Since each flare can be associated to a detection probabil-
ity between 0 and 1, the sum of the probability for the 45 flares
give us the total number of flares that can be detected in av-
erage by the Bayesian-blocks method during a pn observation
with an exposure time of 2.98393 × 106 s. The distribution of
the flare duration and amplitude seen during the Chandra XVP
campaign and the detection probability of the Bayesian-blocks
algorithm is shown in Fig. A.2. The left and right panels if this
figure represents the detection probability corresponding to the
mean non-flaring level seen by XMM-Newton during the 2011
campaign and to those observed during the 2014 Feb. 28 obser-
vation, respectively.

The mean of the number of detected flares for the 100 sets
shows that considering the non-flaring level of the 2011 cam-
paign, we can detect 85.4% of the flares detected during the
Chandra XVP campaign. The non-detected flares are the faintest
and shortest ones. For the 2014 Feb. 28, Mar. 10, Apr. 2 and
Apr. 3, we detect 79.2%, 79.4%, 80.1% and 79.8% of the
flares detected during the Chandra XVP campaign, respectively.
Therefore, we estimate that we missed about 20.4% of the flares
from Sgr A*. Since we detected three flares this means that we
lost no more than one flare.

9 The cutoff value is given as a lower limit in Neilsen et al. (2013) but
the specific value does not influence the result of our flare distribution
because we are interested by flares characterized by small amplitude
and short duration since these flares may suffer of the small detection
rate.
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Table B.1. Period and period derivative taken from the literature and from this work.

References Period Period derivative Period second derivative Epocha Period on 56716 (MJD)b Period derivative on 56716 (MJD)c

(s) (s s−1) (s−1) (MJD) (s) (s s−1)

Mori et al. (2013) 3.76354455 ± 7.1 × 10−7 6.5 × 10−12 ± 1.4 × 10−12 56409.2657 3.7637 ± 6.18 × 10−2

Rea et al. (2013) 3.7635537 ± 2 × 10−7 6.61 × 10−12 ± 4 × 10−14 56424.55 3.76372 ± 1.78 × 10−3

Kaspi et al. (2014) 3.76363824 ± 1.3 × 10−7 1.385 × 10−11 ± 1.5 × 10−13 3.9 × 10−19 ± 6 × 10−20 56513 3.7639871 ± 6.2 × 10−6 2.05 × 10−11 ± 1.1 × 10−12

Coti Zelati et al. (2015) A 3.76363799 ± 7 × 10−8 1.360 × 10−11 ± 6 × 10−14 3.7 × 10−19 ± 2 × 10−20 56513 3.7639903 ± 1.1 × 10−6 2.089 × 10−11 ± 3.5 × 10−13

Coti Zelati et al. (2015) B 3.7639772 ± 1.2 × 10−6 3.27 × 10−11 ± 7 × 10−13 56710 3.7639942 ± 1.3 × 10−6

This workd 3.76398106+2.0×10−7

−2.1×10−7 3.7684 × 10−11+9.9×10−14

−1.6×10−13 56716 3.76398106+2.0×10−7

−2.1×10−7 3.7684 × 10−11+9.9×10−14

−1.6×10−13

Notes. (a) Reference epoch for computing the parameters. MJD = TJD+40 000 days = JD-2 400 000.5 days. (b) The period on t = 56 716 (MJD) is
computed using P = P0 + Ṗ0(t − t0) + P̈0(t − t0)2 with P0, Ṗ0, P̈0 the period, period derivative and period second derivative given in the literature,
t0 the reference epoch in the literature. Errors are propagated until t = 56 716 (MJD) thanks to dP2 =

∑

(∂P/∂p)2 dp2. (c) The period derivative on
t = 56 716 (MJD) is computed using Ṗ = Ṗ0 + P̈0(t − t0) with the definitions given above. (d) The errors are the 90% confidence interval (see left
panel of Fig. B.2).

Fig. B.1. Evolution of the S/N as a function of CRth.

Appendix B: Filtering out of the magnetar pulsed

emission

To filter out the magnetar contamination, we first computed the
period (P) and period (Ṗ) derivative of SGR J1745-29 by fold-
ing the light curve of all XMM-Newton observations of this cam-
paign in which gaps between observations, GTI and exposure
correction were taken into account. The relation between events
arrival times t in the barycentric referential (computed using the
SAS task barycen) and the magnetar phase can be written as a
Taylor series on the time:

φ(t) = φ0 +
t − t0

P
− 0.5

(t − t0)2

P2
Ṗ , (B.1)

with t0 the start time of the first XMM-Newton observation and
φ0 an arbitrary phase. We choose φ0 in order to have the maxi-
mum of the pulse at φ = 0.5. A χ2 fitting with a constant func-
tion was applied on the folded light curve. The maximum χ2

give us the better period and period derivative and the corre-
sponding 1σ errors which are reported on Table B.1. The con-
fidence level of the χ2 distribution for these two parameters is
given in Fig. B.2 (left panel). A comparison with the parameters
derived from the literature is also shown. For this comparison,
we use the period and period derivative given in Table B.1. The
folded light curve for these parameters is represented in Fig. B.2
(right panel). We consider only the EPIC/pn camera because it
has a better time resolution (73.4 ms) than EPIC/MOS (2.6 s)
(ESA: XMM-Newton SOC 2013).

We use this folded light curve to compute the count rate
threshold which maximizes the signal-to-noise ratio. As the
magnetar flux is an additional noise on the Sgr A* light curve,
magnetar flux contribution at each phase (τ) of the folded light
curve is Nmagnetar(τ) =

∫ τ

0
(CRfold(t)−CRSgr A∗ ) dt with CRfold the

Fig. B.2. Left panel: χ2 distribution of the period and period derivative
of the magnetar. The contours are the 68%, 90% and 99% of confidence
level on the parameters. Right panel: folded light curve on the four
XMM-Newton observations with our best fit parameters (see Table B.1).

count rate of the folded light curve and CRSgr A∗ = 0.10 count s−1

the non-flaring level of Sgr A* seen with pn (e.g., Mossoux et al.
2015a). The signal-to-noise ratio is

S/N =
CRSgr A∗ τ

√

Nmagnetar(τ)
· (B.2)

The phase τ which maximizes the S/N allows us to compute the
corresponding count rate threshold (CRth). Figure B.1 shows that
there is no optimum value of the count rate threshold maximiz-
ing the S/N. Thus, we consider a count rate threshold which filters
out 50% of the magnetar flux. This threshold is 0.27 count s−1

and keeps 50% of the observation time. Then, from P and Ṗ,
the time interval during which the count rate of the folded light
curve is lower than CRth can be computed for all observations
from Eq. (B.1). Thus we can construct a new GTI file which is
the combination of the GTI file from the event list of pn (which
contains the time interval during which the cameras do not ob-
serve) and the GTI file created by removing the magnetar pulse
using the SAS task gtimerge.

Appendix C: The two X-ray flares seen in EPIC/pn,

MOS1 and MOS2 cameras

Figures C.1 shows the flare light curves obtained with EPIC on
board XMM-Newton on 2014 Mar. 10 (left panels) and Apr. 2
(right panels). The Bayesian-blocks algorithm characterizes the
2014 Mar. 10 flare with two blocks in the pn light curve but only
with one block in the MOS1 and MOS2 light curves. Moreover,
the duration of the flares seen in each camera is different (see
Table C.1). This can be explained by the lower number counts in
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Fig. C.1. XMM-Newton light curve of the X-ray from Sgr A* in the 2−10 keV energy range. Left panels: the light curve of flare 1 on 2014 Mar. 10
flare binned on 500 s. Right panels: the light curve of flare 2 on 2014 Apr. 2 flare binned on 100 s. The total (pn+MOS1+MOS2) light curve is
shown in the top panel. The light curves of EPIC/pn, MOS1 and MOS2 are shown in the second, third and bottom panels. The crosses are the data
points of the total light curve. The horizontal dashed line and the solid line are the sum of the non-flaring level and the smoothed light curve for
each instrument. The dashed lines represent the Bayesian blocks. The solid line and the gray curve are the smoothed light curve and the associated
errors (h = 500 and 100 s for flare 1 and 2, respectively). The vertical gray stripe is the time during which the camera did not observe.

MOS1 and MOS2 because of the RGS: the number of photons
recorded by pn during the flare is larger and thus the accuracy on
the determination of the beginning and end of the flare is better.

The flare on 2014 Apr. 2 is not detected by the Bayesian-
blocks algorithm in MOS1 and MOS2 because the amplitude
and the number of counts in this flare is rather small.

Table C.1. Characteristics of the X-ray flare observed by EPIC/MOS
on 2014 Mar. 10.

Instrument Start timea End timea Duration Totalb Peakc

(hh:mm:ss) (hh:mm:ss) (s) (counts) (count s−1)

MOS1 17:05:14 18:56:59 6705 780 ± 28 0.06 ± 0.02
MOS2 17:33:32 19:01:11 5258 880 ± 30 0.07 ± 0.02

Notes. (a) Start and end times (UT) of the flare time interval defined by
the Bayesian-blocks algorithm. (b) Total counts in the 2−10 keV energy
band obtained in the smoothed light curve during the flare interval after
subtraction of the non-flaring level obtained with the Bayesian-blocks
algorithm. (c) Peak count rate in the 2−10 keV energy band at the flare
peak (smoothed light curves) after subtraction of the non-flaring level.
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ABSTRACT

We analyze and report in detail new near-infrared (1.45–2.45 µm) observations of the Dusty S-cluster Object
(DSO/G2) during its approach to the black hole at the center of the Galaxy that were carried out with the ESO Very
Large Telescope/SINFONI between 2014 February and September. Before 2014 May we detect spatially compact
Brγ and Paα line emission from the DSO at about 40 mas east of Sgr A*. The velocity of the source, measured
from the redshifted emission, is 2700 ± 60 km s−1. No blueshifted emission above the noise level is detected at the
position of Sgr A* or upstream of the presumed orbit. After May we find spatially compact Brγ blueshifted line
emission from the DSO at about 30 mas west of Sgr A* at a velocity of −3320 ± 60 km s−1 and no indication for
significant redshifted emission. We do not detect any significant extension of the velocity gradient across the source.
We find a Brγ line FWHM of 50 ± 10 Å before and 15 ± 10 Å after the peribothron transit, i.e., no significant line
broadening with respect to last year is observed. Brγ line maps show that the bulk of the line emission originates
from a region of less than 20 mas diameter. This is consistent with a very compact source on an elliptical orbit
with a peribothron time passage in 2014.39 ± 0.14. For the moment, the flaring activity of the black hole in the
near-infrared regime has not shown any statistically significant increment. Increased accretion activity of Sgr A*
may still be upcoming. We discuss details of a source model according to which the DSO is a young accreting star
rather than a coreless gas and dust cloud.

Key words: astrometry – black hole physics – Galaxy: center – line: identification – line: profiles –
techniques: imaging spectroscopy

1. INTRODUCTION

Recently, the Galactic center region has attracted a lot
of attention owing to the fact that a dusty object has been
detected (Gillessen et al. 2012, 2013a; Eckart et al. 2013) that
is approaching the central supermassive black hole (SMBH)
associated with the radio source Sgr A*. As a result of its
infrared (IR) excess and as indicated through nomenclature (G2)
it has been speculated that the source consists of a dominant
fraction of gas and dust (Gillessen et al. 2012, 2013a; Pfuhl et al.
2015). By now the object is expected to have passed through
its peribothron and tidal disruption, and intense accretion events
have been predicted. Eckart et al. (2013) show a possible spectral
decomposition of this source using the M-band measurement
by Gillessen et al. (2012). Depending on the relative stellar
and dust flux density contributions, the M-band measurement is
consistent with a dust temperature of 450 K and an integrated
luminosity of up to ∼10 L⊙. This allows for a substantial stellar
contribution in mass and reddened stellar luminosity. A stellar
nature is also favored by many other authors (see also Murray-
Clay & Loeb 2012; Scoville & Burkert 2013; Ballone et al.
2013; Phifer et al. 2013; Zajaček et al. 2014). We will therefore
refer to it in the following as a Dusty S-cluster Object, or DSO
(Eckart et al. 2013). Hence, although the Brγ line emission may
be dominated by optically thin emission, a contribution from
more compact optically thick regions cannot be excluded. Also,
it is uncertain how large the extinction toward the center of the

gas cloud really is. Therefore, the total mass of the object is very
uncertain but is presumably less than that of a typical member of
the high-velocity S-star cluster (i.e., �20 M⊙; Ghez et al. 2003;
Eisenhauer et al. 2005; Martins et al. 2006). The compactness of
the DSO is also supported by the recent L-band detection close
to peribothron (Ghez et al. 2014; Witzel et al. 2014).

Gillessen et al. (2013a, 2013b) and Pfuhl et al. (2015) report
that the Brγ luminosity of the DSO has remained constant over
the entire time range covered by spectroscopy from 2004 to
2013. Figures 1 and 5 in Pfuhl et al. (2015) show that in their
2014 April data set the blue line emission is approximately
as spatially compact as the red side and has a significantly
stronger peak emission than the red line emission. Their derived
integrated Brγ luminosities for the blue side are about 1.14 times
brighter than those for the red side (Section 3.2 in Pfuhl
et al. 2015).

During the past year we have obtained a substantial, indepen-
dent imaging spectroscopy data set using SINFONI at the ESO
Very Large Telescope (VLT). In addition, we have re-reduced
a large number of data sets available from the ESO archive
and have used our own and published positional data to reesti-
mate the orbit of the DSO. Here we present the results of this
detailed investigation. The paper is organized in the following
way: in Sections 2 and 3 we present the observations and data
reduction, including the analysis of the spectral line properties
of the DSO. In Section 4 we discuss the results, including the
orbit (Section 4.1), the tidal interaction of the DSO with Sgr A*
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(Section 4.2) and the ambient medium (Section 4.3), conse-
quences for the flare activity (Section 4.4), and the interpretation
of the DSO as a possible pre-main-sequence star (Section 4.5).
After discussing the origin and fate of the DSO in Section 5, we
summarize and conclude in Section 6.

2. OBSERVATIONS AND DATA REDUCTION

Here we present the data sets we are using in the study
of the DSO. The procedures for data reduction and data
quality selection are also described. We report mainly on the
observations6 we conducted from 2014 February to September.
We use earlier archive data to discuss general properties like the
DSO orbit.

2.1. The 2014 Data Set

We performed near-IR (NIR) integral field observations of the
Galactic center using SINFONI at the VLT in Chile (Eisenhauer
et al. 2003; Bonnet et al. 2004). The instrument is an image-slicer
integral field unit fed by an adaptive optics (AO) module. The
AO system uses an optical wavefront sensor that was locked
on a bright star 15.′′54 north and 8.′′85 east of Sgr A*. We
employed H+K grating that covers the 1.45–2.45 µm range
with a spectral resolution of R ∼ 1500 (i.e., approximately
200 km s−1 at 2.16 µm). The 0.′′8×0.′′8 field of view was jittered
around the position of the star S2, in such a way that the star
remained within the upper half zone of the detector. This was
done in order to avoid a region with possible nonlinear behavior
of the detector. Observations of different B- and G-type stars
were taken to obtain independent telluric templates.

The Galactic center region was observed in intervals of 400 s
or 600 s, followed or preceded by time slots of equal length
on a dark cloud 5′36′′ north and 12′45′′ west of Sgr A*. The
integration times were chosen of that length in order to be able
to also monitor the flux density of Sgr A* for time intervals
of typical flare lengths and to provide a higher flexibility in
data selection to optimize the quality of the data. Although
this observational strategy reduces the effective integration time
on source to about a third when compared with parsed sky
observations at a rate of about once per hour, it ensures better
control of the noise in the frames. Because of the variable
weather conditions, the point-spread function (PSF) changed
along the observing nights. The quality of individual exposures
was judged based on the PSF at the moment of the observation,
as measured from the shape of the stars in the field of view.
For the analysis presented here, we have created two final data
cubes, one from the combination of the best-quality exposures,
and another including also medium-quality data, as described
below. Table 1 shows the list of the observing dates, including
the number of exposures that fulfilled the selection criteria. Note
that (for both pre- and post-peribothron) our observations are
bracketing and preceding those presented by Pfuhl et al. (2015).

2.2. Calibration

In the data reduction process, we first followed the SINFONI
reduction manually to correct for the bad lines created by the
data processing at the detector level. We used the suggested
IDL procedure, adjusting the identification threshold (two times
the background noise σbackground) whenever necessary. A first
cosmic-ray correction to the sky and target files was performed

6 ESO programs 092.B-0009 (PI: A. Eckart), 093.B-0092 (PI: A. Eckart),
and 092.B-0920 (PI: N. Grosso).

using the algorithm developed by Pych (2004). The random
pattern introduced by some detector amplifiers was detected and
removed in science and calibration files following the algorithms
proposed by Smajić et al. (2014). Then we used the SINFONI
pipeline for the standard reduction steps (like flat-fielding and
bad pixel corrections) and wavelength calibration. We obtained
one data cube for each on-source exposure.

DPUSER routines (Thomas Ott, MPE Garching; see also
Eckart & Duhoux 1991) were used to flag remaining bad
pixels and cosmic rays on the plane of the slitlets in the
detector (x–z, which corresponds to declination–wavelength),
in each data cube. The combined effects of the atmospheric
refraction were appreciable as a spatial displacement of the
stars by a couple of pixels when going from short to long
wavelengths. Fixing the position of the center of a bright source
at a particular wavelength and making a spatial subpixel shift at
all other wavelengths could correct the problem, but the shape
of the resulting spectrum in each pixel would depend on the
interpolation algorithm. Therefore, to preserve the integrity of
the spectrum in the narrow spectral regions where emission
lines are present, the spatial image shift was done in steps of
0.045 µm.

A two-dimensional Gaussian, fitted to the bright star S2, was
taken as an indication of the PSF. Cubes where the FWHM of
the fitted Gaussian is less than 83 mas (or 6.65 pixels) were
categorized as best-quality cubes, while those with FWHM
values between 83 and 96 mas (or 7.65 pixels) were classified
as medium-quality cubes. The combination of the selected data
cubes was done by averaging every spatial and spectral pixel
after a proper alignment of the images. The combination of the
63 best-quality cubes produced a final data cube with a total
of 7.2 hr of on-source integration time. When including the 30
medium-quality exposures, the resulting data cube covers a total
of 10.8 hr of integration time on-source. This second data cube
was used to evaluate the effects of the data quality in the signal-
to-noise ratio (S/N) of the measured quantities, and unless it is
specifically mentioned in the text, all measurements and plots
are derived from the higher-quality data cube.

Flux calibration was done using aperture photometry on a de-
convolved K-band image created from the final data cube. The
deconvolution was performed using the Lucy–Richardson algo-
rithm incorporated in DPUSER, while the PSF was estimated
using the IDL-based StarFinder routine (Diolaiti et al. 2000).
We used as calibration stars S2 (Ks = 14.1), S4 (Ks = 14.6),
S10 (Ks = 14.1), and S12 (Ks = 15.2) and adopted the K-band
extinction correction mAK

= 2.46 of Schödel et al. (2010); see
also Witzel et al. (2012) for the flux estimation.

The NIR spectrum of the inner ∼0.′′5 around Sgr A* is
dominated by the stellar continuum of hundreds of stars fainter
than Ks = 18 mag that are part of the central cluster and that are
unresolved with the current instrumentation (Sabha et al. 2012).
Several absorption features from the stellar atmospheres can
be recognized in the HK-band data. Line emission of ionized
species (hydrogen and helium) at the position of the S-stars and
all across the field is also substantial. We refer to the aggregate
of all these components as background, and we show how it
affects the detection of the faint emission of the DSO.

3. RESULTS

In summary, we find that both the line shape and line intensity
in 2014 are very similar to those of the previous years. Before
2014 May we find no blue line emission from hydrogen or
helium above the noise level. The red line center has shifted to a

2

D-158 APPENDIX D. ORIGINAL PUBLICATIONS



The Astrophysical Journal, 800:125 (21pp), 2015 February 20 Valencia-S. et al.

Table 1

Summary of the Galactic Center Observations

Date Start Time End Time Number of On-source Exposures Exp. Time

(YYYY.MM.DD) (UT) (UT) Total Medium Quality High Quality (s)

2014.02.28 08:34:58 09:54:37 7 0 0 400
2014.03.01 08:00:14 10:17:59 12 0 0 400
2014.03.02 07:49:06 08:18:54 3 0 0 400
2014.03.11 08:03:55 10:03:28 11 5 8 400
2014.03.12 07:44:35 10:07:45 13 5 9 400
2014.03.26 06:43:05 09:58:12 11 8 8 600
2014.03.27 06:32:50 10:04:12 18 1 7 400
2014.04.02 06:31:39 09:53:52 18 0 5 400
2014.04.03 06:20:46 09:45:02 18 14 17 400
2014.04.04 05:58:19 09:47:58 21 14 17 400
2014.04.06 07:51:42 08:43:15 5 4 1 400

2014.06.09 04:48:49 09:51:47 14 14 0 400
2014.06.10 04:54:21 09:49:49 5 5 0 400
2014.08.25 23:57:46 04:34:49 4 4 0 400
2014.09.07 00:11:08 04:20:07 2 2 0 400

Notes. List of start and end times and number and quality of exposures. ESO program 092.B-0009 for 2014.02.28, 2014.03.01,
2014.03.02, 2014.03.26, 2014.03.27, and 2014.04.06; ESO program 092.B-0920 for 2014.03.11, 2014.03.12, 2014.04.02, 2014.04.03,
and 2014.04.04; and ESO program 093.B-0092 for 2014.06.09, 2014.06.10, 2014.08.25, and 2014.09.07. Pre- and post-peribothron
measurements are separated by a horizontal line.

higher velocity of about 2700 ± 60 km s−1 about 40 mas east of
Sgr A*. In addition, we measure the Paα 1.875 µm line between
atmospheric absorption bands but find that the sky-subtracted
He i (2.05 µm) is very weak, i.e., less than a fifth of the Brγ
line emission. In 2014 June our data do not allow us to detect
the He i or Paα line emission. Peribothron happened in 2014
May, and after that we see in 2014 June a blueshifted Brγ line
about 16 mas west of Sgr A* at −3320 km s−1 and no red line
emission. In 2014 June we find no blue line emission helium,
Brγ , or Paα above the noise level.

3.1. Redshifted Pre-peribothron Lines

In 2014, the Brγ line emission from the DSO shifted to
a spectral region where the emission and absorption features
of the surroundings are very prominent. Moreover, the Paα
and the possible He i lines lie in a wavelength range where
the atmospheric absorption plays a main role. Therefore, a
proper background estimation and subtraction, as well as an
adequate fitting and correction of the tellurics, are critical to
detect and measure any emission from the DSO. The latter is
expected to change from one day to the next, and also during
one observing night if the weather conditions are unstable,
but it is approximately the same across the field of view. The
former, on the other hand, varies strongly across the field and
significantly in periods of about 6 months, because of the
high stellar proper motions. This means that, while the telluric
absorption can be, in principle, fitted and corrected using extra
observations of stars or sources in the field, the exact shape of
the background spectrum at the position of the DSO cannot be
known, but only approximated by using apertures in the field.
A carefully calculated approximation to the background leads
to a reliable estimation of the spectral properties of the source’s
line emission, as well as the spatial position and extension of
the DSO emission.

3.1.1. The Brγ Emission Line

Figure 1 shows the spectrum integrated over apertures of
radius 0.′′05 at the position where the redshifted Brγ emission

from the DSO is strongest. It also shows the background spectra
constructed from four different surrounding regions, as well as
the resulting line emission after subtracting them from the source
spectrum. In the left panels, the spatial pixels from which the
spectra of the source and the background have been extracted are
marked with blue crosses and pink filled squares, respectively.
The Sgr A* position is marked with the big cross. The middle
panels display the integrated spectrum at the DSO position
(thick blue line) in comparison with the background spectra
(thin pink line). The vertical dashed line at 2.166 µm marks
the spectral position of the zero-velocity Brγ line. Arrows at
2.076 µm and 2.185 µm indicate the approximate location of
the DSO redshifted He i and Brγ emission lines. The inset
panel corresponds to the dashed-line box, which is a zoom-
in to the spectra in the 2.18–2.20 µm range. The arrow in the
inset panel marks again the position of the redshifted Brγ line
and highlights the importance of the background subtraction
to recover the spectral properties of the emission. Because of
the change of the spectral slope across the field of view, the
overall shape of the spectrum extracted from the background
area has to be slightly modified to better fit the continuum in
the DSO aperture. To do that, we divide it by a third-order
polynomial fitted to the ratio between the source spectrum and
the spectrum of the background aperture. This is done using
only the spectral windows marked with (green) crosses in the top
panel of the middle column. Then, the background was scaled to
best match the continuum emission around the spectral location
of the Brγ redshifted emission (i.e., at 2.173–2.183 µm and
2.195–2.220 µm). These spectra, with modified slope and scaled
continuum, are used as an approximation of the background
emission at the DSO position. They reproduce well most of the
features in the source spectrum, as can be seen in the middle
panels. Given that at wavelengths shorter than ∼ 2.08 µm the
emission is highly absorbed by tellurics, we did not include this
spectral region in the fit of the overall background spectral shape,
but used only the selected spectral windows as described above.
For this reason, the background continuum in the source aperture
at λ � 2.08 µm cannot be fitted properly and produces an
excess of emission in the background-subtracted DSO spectra,
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Figure 1. Brγ redshifted emission of the DSO before May at 43 mas east and 5 mas south of Sgr A*. Left panels: 1 × 1 arcsec2 SINFONI mosaic of the Galactic
center region in 2014 February to April. DSO (blue crosses) and background (pink squares) apertures are shown. Middle panels: comparison between the DSO (thick
line) and the background (thin line) spectra. Arrows mark the expected location of the redshifted He i and Brγ lines. Right panels: results of the subtraction of the
background from the DSO spectrum. The baseline is shown in gray. The vertical range of the plots corresponds to one unit in the middle panels; see details in the text.

which can be seen in the right panels. There, the large mismatch
observed in the spectra in a range of 0.82 µm around the zero-
velocity Brγ line is due to strong variations of the ionized
hydrogen emission in the central r ∼ 1′′ region. Lines within
the telluric absorption region are treated differently to improve
their signal strength; see Section 3.1.3.

The four examples shown in Figure 1 correspond to the cases
when (1) the background is created from an aperture of the
same size and shape as that of the source, and it is located just

beside it. (2) Iris photometry is applied, i.e., the background
aperture is a ring around the source aperture. In this case, the
inner radius was chosen to be 0.′′06, and the outer radius, 0.′′11.
(3) An averaged background is created from a region of radius
0.′′25 at the source position that includes the DSO aperture. (4)
The source emission is integrated in a segment of 0.′′075 width
taken along the best-fit elliptical orbit with a length of ∼0.′′10
(see Section 4.1). The background is integrated from the 0.′′048
width stripes above and below the source area. In all cases the
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redshifted Brγ line is detected with S/Ns between 3.9 (in the
second case) and 4.7 (in the third one).

Fitting a Gaussian to the line emission in each case, we find
a rather robust determination of the line peak at 2.185 µm, i.e.,
2700 km s−1 on average with a variation of 60 km s−1. However,
as can be noticed from Figure 1, the line profile changes
depending on the subtracted background. The FWHM of the
Brγ line, corrected for instrumental broadening, is 730 km s−1

in the first and third cases, 560 km s−1 in the second one, and
only 240 km s−1 in the fourth one. Averaging over a dozen
background-subtracted source apertures, the FWHM(Brγ ) ≈
720±150 km s−1, i.e., the line width is 50 ± 10 Å. The line flux
changes, in general, by a factor of two owing to the background
subtraction. In the first three examples shown in Figure 1, it is
in the range 3.1–6.0×10−16 erg s−1 cm−2, while in the last case
it only reaches 1.7×10−16 erg s−1 cm−2. For a distance of 8 kpc
to the Galactic center, the average luminosity of the observed
redshifted Brγ line is 1.0 × 10−3 L⊙, and twice this value when
integrating over a larger aperture of radius r = 0.′′075.

In the last example in Figure 1 the recovered properties of
the emission line are quite different from those of any other
case, although the bulk of the source emission seems to be well
within the aperture placed along the orbit, and it covers a very
similar area to the circular aperture used in the first three cases:
e.g., the line width in the last case is narrower and the line
flux is only ∼35% of that measured in any other background-
subtracted spectrum. From this analysis, we call for precaution
when measuring line properties along predetermined areas in
the field of view.

3.1.2. Position of the DSO

To confirm the position of the Brγ emission, we removed
the background emission in every pixel of the field of view
following the procedure described above using the spectrum
shown in the second example of Figure 1 as a background—as
classical iris photometry makes unbiased and efficient use of the
background in the immediate surrounding of the source. Then
we integrated the residual flux in the range 2.181–2.193 µm. The
result, shown in the top left panel of Figure 2, is an image of the
excess flux, compared to the continuum, emitted by the source
in this wavelength range. Fitting a Gaussian to this emission in
every spatial pixel allows us to mask the areas where the flux
within the line is less than 2× the noise level. When such a mask
is applied (Figure 2, top right), the location of the DSO shown
by its redshifted Brγ emission is clearly revealed. The position
of the DSO as indicated by the position of the brightest Brγ
peak in Figure 2 is 8.6 mas south and 41.5 mas east of Sgr A*.

3.1.3. The He i and Paα Emission Lines

The detection of Paα 1.875 µm and He i 2.058 µm emission
requires modeling of the atmospheric absorption. Although we
observed some standard stars during the different runs to use
them for the telluric modeling, the sky variation throughout
the nights was large and the corrections unsatisfactory. The
alternative is to use a bright star in the field, or a combination
of some of them, as tracers of the telluric absorption. Figure 3
shows the case where the star S2 is used for this purpose. In the
top panel, a comparison between the DSO spectrum and that
of S2 is shown. The absorption features in the source spectrum
around 1.9 µm are well approximated, but the overall shapes of
both spectra differ from each other, as expected from the earlier
discussion.

Following the common telluric correction procedure, the
DSO spectrum is divided by the normalized telluric spectrum
(in the case of Figure 3, that of S2). The same correction is
applied to the background spectrum. Here we selected without
preference the background shown in the third example of
Figure 1. The resulting DSO spectrum, after the background
correction, is still very noisy around 1.9 µm, but hints of the
redshifted Paα and He i are visible. The lines are observed
with an S/N of about 2 in the case of helium and just above
1 in the case of Paα. The fact that Paα is not observed with
the expected strength (approximately 12 times brighter than
Brγ , after extinction correction) is probably due to the low
elevation of the Galactic center region in February–April, which
resulted in stronger telluric absorption in this region. We fit the
redshifted He i with a Gaussian to obtain the line properties. It
peaks at 2.076 ± 0.078 µm, i.e., ∼2650 ± 100 km s−1 within
the uncertainties at the same receding velocity as indicated by
the Brγ line. It also exhibits a similar width ∼750 km s−1.
After correcting for extinction assuming AV ≈ 26.8 mag, we
find He i/Brγ ∼ 0.6, consistent with models in which the
emission is dominated by optically thin material (Gillessen et al.
2013b; Shcherbakov 2014).

However, this value must be taken with caution, given the
low S/N of the lines and the high influence of the tellurics and
background corrections in the measured line fluxes.

3.2. Blueshifted Pre-peribothron Lines

The blue side of the line emission would be extremely
diluted if we observed the source very close to its peribothron
position, and the radial velocity range would span almost
6000 km s−1, significantly broadening the emission line and
making it virtually impossible to detect. Only if the time span for
such an event were of the order of a week (depending on the exact
orbit) would observations immediately after our measurements
have picked up significant blue line emission.

3.2.1. No Detected Blue Brγ Emission

Using a variety of apertures, we conducted a systematic search
of the DSO blueshifted Brγ emission along the portion of the
orbit that lies upstream of the red emission. As we did not
find blueshifted emission at the pre-peribothron position of
the DSO, we extended our search to consecutive positioned
apertures upstream of the 2014 April pre-peribothron position.
Corresponding to the findings of Pfuhl et al. (2015), the blue
line emission should have been the brightest line component in
our data. If the blueshifted emission is compact, and at least half
as bright as the redshifted one, we should be able to detect it
with an S/N ∼ 2.5 or higher.

Following the same approach presented in Section 3.1.1., i.e.,
subtracting background spectra created in different ways from
the source spectrum, we aimed to find hints of the blueshifted
component. The DSO spectrum was integrated from an aperture
with the PSF size (r = 0.′′05) that was placed several times in a
grid mapping a squared area of 200 mas × 200 mas with Sgr A*
at the northeast corner.

In this way we covered the large area to the west and to
the south of Sgr A* where the approaching side of the DSO
is expected to be found. We also searched for the blueshifted
emission using slightly larger apertures to account for a possibly
more extended emission that could be expected in case the
source was not as compact as before the peribothron passage.

Figures 4 and 5 show two attempts at finding the Brγ DSO
emission in two different positions upstream of the best-fit
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Blue-shifted Brγ line map Blue-shifted Brγ line map
flux > 2 × σ

Red-shifted Brγ line map
flux > 2 × σ

Red-shifted Brγ line map

Figure 2. Brγ line maps. Panels show 1.0 × 1.0 arcsec2 of the Galactic center region in 2014 February–April. The cross marks the position of Sgr A*. The thick green
line corresponds to the best-fit elliptical orbit. The K-band continuum contours depict the brightest S-cluster members. Top panels: DSO redshifted Brγ line map.
Left: integrated emission in a range of 120 Å around 2.185 µm after subtracting the background in every spatial pixel of the field of view. Right: same as left panel,
but showing only emission that is brighter than 2× the noise level. Bottom panels: blueshifted Brγ line map. Left: integrated emission in a range of 120 Å around
2.147 µm, i.e., around the expected blueshifted Brγ line emitted by a source approaching us at a speed of 2700 km s−1. The background has been subtracted in every
spatial pixel of the field of view. The color scale is the same as in the top panels. Right: same as left panel, but showing only emission brighter than 2× the noise.

elliptical orbit. These are examples of the systematic search
for the DSO Brγ emission south/west of Sgr A*. The apertures
are placed at the position (and one consecutive position) along
the orbit at which Pfuhl et al. (2015) and earlier Gillessen et al.
(2013b) had reported the detection of blueshifted line emission.

As in Figure 1, left panels show the size and position of
the background and source apertures, middle panels compare
the spectra extracted from them, and right panels present the

subtraction of the two. The expected spectral positions of the
blueshifted Brγ and He i are derived assuming the emitting
source to approach us after peribothron with a similar speed as
the still receding part. The vertical range in the right panels is the
same as the one used in Figure 1 and therefore can be directly
compared. In case there is a source emitting a blueshifted line
at any of these two positions, the line should be clearly visible
in all four rows displayed within one figure. This is because, in
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Figure 3. He i and Paα redshifted emission of the DSO before May. Top left: 1 × 1 arcsec2 SINFONI mosaic of the Galactic center region in 2014 February–April.
The DSO aperture is marked with blue crosses. The spectrum extracted from the aperture placed on S2, marked with empty green squares, is used to model the telluric
absorption. Top right: comparison between the DSO spectrum (thick blue line) and the telluric model (thin green line). The positions of the zero-velocity hydrogen
and helium lines are signaled with vertical dashed lines, while the expected positions of the redshifted emission lines from the DSO are indicated with the arrows.
Bottom left: same as in left panels of Figure 1. Bottom right: results of the subtraction of the background from the DSO spectrum, after correcting both spectra for
tellurics. Dashed lines and arrows are the same as above.

these four examples, the source spectrum is extracted from the
same region and the only difference must be the S/N of the line,
which depends on the subtracted background (we come back to
this point in Section 3.2.3). Hence, we can rule out that there is
a blue line similar to that seen on the redshifted side, despite the
fact that the source should be similarly compact (see Figures 1
and 5 in Pfuhl et al. 2015 and comments in our introduction
section).

3.2.2. Upper Limit for the Blueshifted Brγ Line

Another strategy for searching a line emission is, as we did
in previous sections, to subtract a background spectrum from
the entire data cube and then integrate the remaining flux within
narrow spectral windows around the expected wavelength. For
this search we used different background spectra and integrated
the residual flux in the range 2.143–2.151 µm. Figure 2 (bottom
left) shows one example. We fitted a Gaussian to every spatial
pixel to create a mask that selects those places where the flux
is less than 2× the noise level. In the right panel of Figure 2
(bottom right), such a mask has been applied. We see possible
hints of a spatially compact source at 37.5 mas west and 68.8 mas
south of Sgr A* that is not located on the expected DSO orbit.
Looking at the line properties, we find that on average the
emission is very broad, with FWHM > 2000 km s−1 (i.e., larger
than 0.015 µm) and centroid at ∼2.149 µm. Assuming that the
blueshifted Brγ line emission is as wide as the redshifted one,
i.e., 720 km s−1, and with a noise in that spectral range of
∼2.9 × 10−14 erg s−1 cm−2 µm−1, we obtain an upper limit for
the line flux of ∼4.7 × 10−16 erg s−1 cm−2, i.e., a luminosity
L(Brγblue) < 1.0 × 10−3 L⊙. Whether this emission is real,
considering the multiple sources of noise, and whether it has

some relation with the DSO is unknown. For the apertures placed
along the orbit, the upper limit of a blueshifted Brγ line flux is
∼2.8 × 10−16 erg s−1 cm−2, which is about half of that of the
redshifted line.

3.2.3. Influence of the Selected Background

There is no doubt that the subtraction of the background
emission plays an important role in the detection of faint
line emission. The usage of different background spectra from
regions close to the position of interest is an effective tool to
discriminate between a source line emission and the unlucky
presence of a background feature at the studied wavelength. In
the first row of Figures 6(a) and (b) we present examples of
background that produce a spurious blueshifted Brγ emission
at positions far away from the expected orbit. The panels in
the second row of each example show how, after selecting
different background spectra, a very good overlap with the
source spectrum is obtained and only noise remains after the
subtraction. The aperture shown in Figure 6(a) is located at
the position of the bright blob closest to Sgr A* in the bottom
panels of Figure 2. The background-subtracted spectrum of this
aperture was used above to estimate the upper limit for the
blueshifted line. In this case, the S/N of the feature at ∼2.15 µm
depends strongly not only on the background selected but also
on the way it is scaled and subtracted. As we were not able to
produce spurious detections on the red side, we conclude that
those in the blue may result from an enhanced local variation
of the background in this particular spectral range. Based on
this analysis, we call for caution when studying line emission
properties of faint sources in crowded fields.
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Figure 4. Nondetection of Brγ blueshifted emission before May at a first upstream position at 43 mas east and about 11 mas south of Sgr A*. Left panels: same as
Figure 1. Middle panels: comparison between the DSO (thick blue line) and the background (thin pink line) spectra. Arrows at 2.037 µm and 2.146 µm indicate the
approximate location of the expected DSO blueshifted He i and Brγ emission lines, in case the speed of the approaching component was the same as that of the
receding one. The inset panel corresponds to the dashed-line box, which is a zoom-in to the spectra in the 2.13–2.16 µm range. The arrow in the inset panel marks
again the position of the blueshifted Brγ line. The spectral windows marked with crosses in the top panel are used to fit the slope of the background spectrum to that
of the DSO. Right panels: results of the subtraction of the background from the DSO spectrum. The vertical range of the plots corresponds to one unit in the middle
panels and spans the same range as in the right panels of Figure 1. The zero line is shown in gray.

3.3. Blueshifted Post-peribothron Brγ

Figure 7 shows the spectrum integrated over an aperture of
radius 0.′′05 at the post-peribothron in 2014 June at a position
of 16 mas west and about 6 mas south of Sgr A* at an S/N of
2.5–3.1 depending on the background subtraction. The line has
a blueshifted center velocity of −3320 ± 60 km s−1 and, after
correcting for spectral resolution, an FWHM of 15 ± 10 Å.

Line flux and width were derived using several background
corrections similar to what is shown in Figure 1. The Brγ line
luminosity is about 0.4 × 10−3 L⊙. The narrow line estimate
could be a result of the weak line detection; it could also point
to a stellar nature of the source (see below).

The excess line emission can clearly be seen even before
background subtraction in the inset of the middle top plot
in Figure 7. Based on the post-peribothron observing dates
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Figure 5. Nondetection of Brγ blueshifted emission before May at a second upstream position 103.8 mas west and 50 mas south of Sgr A*. Panels and symbols are
the same as in Figure 4.

listed in Table 1, we assigned an integration time weights
epoch of 2014.55 to this measurement. No red line emission
can be claimed for this epoch at this position. In the lower
plots of Figure 7 we show that at that epoch neither red-
nor blueshifted Brγ line emission can be seen at our pre-
peribothron position (see also the inset of the middle bottom
plot). The excess line emission can clearly be seen even before
background subtraction in the inset of the middle top plot.
The baseline used for this spectrum excludes the region around
blueshifted (2.138–2.146 µm) and redshifted Brγ and He line
emission (2.175–2.190 µm and 2.070–2.080 µm) we used at the

pre-peribothron position. No redshifted emission was detected
at the post-position. No redshifted line emission was detected
at any position downstream of the post-peribothron position.
In Figure 8 we show summary spectra at the pre- and post-
peribothron positions for 2014. We obtained the spectra using
a 0.′′050 radius source and a 0.′′25 radius background aperture
centered on the DSO. We subtracted a high-pass-filtered version
of the spectra that we obtained by replacing the range over which
detectable line emission is present (indicated by the three lines
at the bottom of the graph) by the mean in the neighboring
spectral elements and smoothed the resulting spectrum with a
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Figure 6. Spurious blueshifted Brγ emission due to background selection. Panel descriptions are the same as in Figure 4. The two shown cases correspond to sources
at (a) 37.5 mas west and 68.8 mas south of Sgr A*, and (b) 200 mas west and 100 mas south of Sgr A*.

Gaussian having an FWHM of 10 spectral resolution elements.
The location of the Brγ rest emission is indicated by a vertical
dashed line.

An important question is that of the size of the line emission
region and possible velocity gradients across the DSO. To in-
vestigate this, we obtained line maps of the Brγ emission. In
Figure 9 we show maps of the DSO in its Brγ line emission
for the times before (epoch 2010.45 May7 and 2014.32 April)

7 SINFONI data from ESO program 183.B-100.

and after (epoch 2014.55) the peribothron. For the brightest
and least confused Brγ line maps for 2010 May (Figure 9) we
find a geometrical mean FWHM of 6.5 pixels. For the star S2
we find an FWHM of 6.2 pixels. With 12.5 mas per pixel this
gives an upper limit on the deconvolved FWHM source size
of 24 mas. The centroid positions of the emission-line maps of
the left half, right half, and full line in milliarcseconds relative
to the position of the full line map centroid position are given
in Table 2. Under the assumption that differences in the rela-
tive positions of the red and blue half of the single-line Brγ
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Figure 8. Summary spectra at the pre- and post-peribothron positions for the 2014 April and June epoch; see details in text.

Table 2

Centroids of DSO Line Maps

Epoch Blue Half Full Line Red Half Red–Blue Half
(mas) (mas) (mas) (mas) (mas) (mas) (mas) (mas)

2014 Apr −6.75 −7.63 0.0 0.0 +6.25 +6.00 +13.0 +13.6
2014 Jun −0.25 +4.25 0.0 0.0 +4.50 −3.88 −4.75 −8.13
2010 May −4.63 −6.00 0.0 0.0 +4.13 +4.63 +8.75 +10.63

Notes. For the single emission line we measured at both the 2014 and 2010 May epochs we list the line map right ascension and
declination centroids for the blue and red half of the corresponding single line in milliarcseconds with respect to the full line
position. In the last two columns we list the positional difference between the red- and blue-half centroid positions. One pixel
corresponds to 12.5 mas.

emission-line map can be interpreted as being due to a velocity
gradient of a tidally stretched source, we find for all epochs an
upper limit of the corresponding source size of 15 mas. This
implies that the source emitting the bulk of the Brγ line is very
compact, and we adopt the value of 15 mas as an upper limit on
the line-emitting FWHM source size. This is consistent with the
analysis of L′-band continuum images by Eckart et al. (2013)
showing that >90% of the DSO emission at 3.8 µm wavelength

is compact (FWHM � 20 mas) and only up to 10% of the flux
density of the DSO can be extended on the scale size of the PSF.
Our size limit is also consistent with the upper limit of 32 mas
presented by Witzel et al. (2014). These size estimates are all
smaller than or at the lower bound of the 2008–2013 size esti-
mate of 42 ± 10 mas Gillessen et al. (2013b). Our adopted Brγ
source size corresponds to 120 AU at a distance of 8 kpc, i.e., it is
close to the peribothron distance of the source. However, it is still
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Figure 9. Maps of the DSO in its Brγ line emission for the 2014.32 April,
2014.55 June, and 2010.45 May epochs. The maps are 0.′′5 × 0.′′5 in size. The
centroid data are given in Table 2.

about 50 times larger than the estimated size of an optically thick
dust shell of a 2 M⊙ star of about 2.6 AU Witzel et al. (2014).

4. DISCUSSION

The fact that we found redshifted Brγ emission at the pre-
peribothron position but did not detect any blueshifted emission
upstream (in Sections 3.2.2 and 3.2.1 we only show two
examples—we probed several positions along the orbit) and
vice versa (Section 3.3) has implications on the orbit and on the
DSO model.

4.1. The Orbit

Based on L-band imaging, an IR excess source within the
central cluster of high-velocity S-stars was found to approach
the immediate vicinity of Sgr A* (Gillessen et al. 2012). In
addition, Brγ line emission was reported by Gillessen et al.
(2013a) and Phifer et al. (2013). In Eckart et al. (2013) we
report the identification of K-band emission from a source
at the position of the L-band identifications. Gillessen et al.
(2013b) report a marginally spatial extension of the Brγ line
emission in their SINFONI data and find an intrinsic Gaussian
FWHM size of 42 ± 10 mas (using 2008–2013 data). Given
the peculiar orientation of the source estimated orbit, precise
estimates of the source elongation along the orbit are difficult
to obtain. Combining these observational facts indicated that a
dusty object—possibly associated with a stellar object—is on
an elliptical orbit around Sgr A*. The observational data were
also used to derive the orbit of this object and to predict its
peribothron transition. Owing to the presumably high ellipticity
of the orbit, only very weakly curved sections of the orbit were
available, and first predictions of the peribothron transition time
in 2013 (Gillessen et al. 2012) proved to be incorrect. The
inclusion of (or even restrictions to) the Brγ line emission
resulted in new predictions for early 2014 (Gillessen et al.
2013a; Phifer et al. 2013). The fact that the telescope PSF in the
L band is intrinsically larger and therefore more susceptible to

Figure 10. Right ascension, declination, and radial velocity of the DSO together
with the best orbital fit we obtained; see details in text.

diffuse extended emission is probably the main reason for this
discrepancy.

However, the predicted interactions of the gas and dust with
the strong gravitational field of Sgr A* have shown that the
gas itself may also not be a good probe of the exact orbital
motion. This is supported by the spatial extent and the velocity
gradient across the Brγ line emission. It is also highlighted by
the expected interaction of the DSO with the ambient medium
and the gravitational field. Therefore, even though the recently
derived Brγ -based orbital solutions are in reasonable agreement
(Meyer et al. 2014a, 2014b), the orbital elements may still be
uncertain.

Using results from our measurements with SINFONI ob-
tained between 2014 February and September, SINFONI
archive data, and the published Keck data (Meyer et al. 2014a,
2014b), we revisited the determination of the DSO orbit. Given
that the red emission is only about 40 mas east of Sgr A* and at
a radial velocity of about 2700 ± 60 km s−1 and blue emission
about 30 mas west of Sgr A* at −3320 km s−1, we obtained
a new orbital solution that places the peribothron passage at
2014.39 ± 0.14, a bit later than but close to 2014.2 as derived
earlier (Meyer et al. 2014a, 2014b). Otherwise, the orbital ele-
ments are very similar to the ones derived earlier. In Figure 10
we show the fit to the data we used. The formal statistical uncer-
tainties of the positional measurements are of the order of a few
milliarcseconds. However, the systematic effects probably limit
the uncertainties to a value closer to ±10 mas (see Figure 9 in
Eckart et al. 2012a). For the 2014 data presented here the exact
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Table 3

Orbital Parameters for the DSO

e a i Ω ω T P

(mpc) (deg) (deg) (deg) (yr) (yr)

0.976 ± 0.001 33.0 ± 3 113 ± 1 76 ± 8 94 ± 8 2014.39 ± 0.14 262 ± 38

Notes. The orbital parameters and their uncertainties have been derived on the basis of the UCLA measurements and the 2014
April data point we obtained using SINFONI at the VLT. We assume a distance of 8 kpc and a black hole mass of 4 × 106 M⊙.

Figure 11. Orbital projection effects. Top: evolution of the projected separation
between two neighboring points of arbitrary 0.5 units in 2011. Bottom:
foreshortening factor of any structure along the orbital extent as a function
of time.

positioning of the Brγ line emission critically depends on the
transfer of the Sgr A* position as obtained during a 3 mJy flare
we observed in March to all the other 2014 epochs. This was
done using the known position and velocity of the southward
moving bright star S2 that is currently about 0.′′11 north and 0.′′06
west of Sgr A*. For the radial velocities we assume the value of
60 m s−1 we adopted for the SINFONI data. The light-blue filled
circles indicate our per- and post-peribothron 2014 data points
we obtained using SINFONI at the VLT. The other light-blue
filled circles show the results from our re-reduction of earlier
SINFONI VLT archive data. Red filled circles represent data
as obtained with the Keck Telescope and published by Meyer
et al. (2014a, 2014b). The dashed lines indicate the approxi-
mate 1σ uncertainty of the fit. The orbital elements are given in
Table 3. With the ellipticity e = 0.976 and the half-axis length
of 33 Mpc, we obtain a pericenter distance of about 163 AU,
which is comparable to previous estimates (Pfuhl et al. 2015;
Phifer et al. 2013; Meyer et al. 2014b) and indicates that even if
the DSO is an embedded star, its outer shell may very well be
subject to tidal disruption (see also Section 5 and Eckart et al.
2013; Witzel et al. 2014).

In Figure 11 we show the size evolution of structures along
the orbit under the assumption of freely moving neighboring
points. In the case of the DSO the shapes of the two graphs by
chance look very similar. We verified that they are indeed very
different for other orbital configurations, i.e., lower inclination
or the apobothron pointing toward the observer. The top graph
shows the evolution of the projected size of a source moving
along the orbit. The bottom graph shows the same quantity
divided by the actual three-dimensional size of the source, i.e.,
the amount of foreshortening that the observer needs to correct

for. Both graphs demonstrate that close in time to the peribothron
passage the foreshortening correcting is close to unity and that
the DSO can be seen close to its full extent along the orbit.

4.2. Tidal Interaction with Sgr A*

The way in which the gas cloud will get disrupted depends
on the exact orbit and the nature of the DSO, i.e., whether there
is a stellar core or not. If there is a central star, then higher-mass
(typically 10 solar masses) objects may retain more of the gas
and dust mass in their corresponding Roche lobe than low-mass
objects (one solar mass and below). This is discussed in Eckart
et al. (2013). Recent model calculations for cases with a stellar
core or even a binary core have been published by Zajaček
et al. (2014).

A tail that is physically connected to the DSO has been
reported by Gillessen et al. (2012, 2013a, 2013b). Eckart
et al. (2013, 2014b), Phifer et al. (2013), and Meyer et al.
(2014b) have questioned this physical association of the DSO
with the extended Brγ and dust continuum emitting filament
about 0.′′3 southeast of Sgr A*. The rather extended shape of
this emission close to rest-frame velocities may very well be
associated with the Galactic center fore/background features,
which are numerous in this region. It also does not follow
precisely the orbital track of the DSO. Especially at velocities
close to rest-frame velocities, the general central cluster region
is very crowded. Hence, despite an indication of very faint
emission pointing toward this general region 0.′′3 southeast of
Sgr A*, a physical association of the bright tail emission is still
questionable.

If the DSO is a pure, very compact and solitary gas and dust
cloud, then it formed through a special process at a very special
place and time. As speculated by Pfuhl et al. (2015), it must
have formed between 1990 and 2000. Unless one claims, as a
further special feature of this source, that it has been formed
at 100% efficiency, some relics and further similarly compact
dust filaments or bullets must have been formed along that
process. These have not been identified yet. It also must be
noted that during the 1990–2000 time interval the entire Galactic
center region was under detailed investigation in the entire NIR/
mid-IR (MIR) and radio wavelength band with observing runs
closely placed in time. No special event in the mini-spiral to the
southeast of Sgr A* had been reported then.

It has been noted that the thermal instability can explain in
a natural way the pressure equilibrium between the hot and
the cold plasma in the mini-spiral region (Czerny et al. 2013;
Różańska et al. 2014).

Hence, this process is relevant for the possibility of survival of
the infalling clouds in the region, and it also allows us to estimate
the typical size of clouds. In fact, clouds as large as 1014–1015cm
(0.001–0.01 lt-yr) can persist. From the dominating optically
thin DSO line emission a total mass of the clouds of ≃10 Earth
masses can be derived, depending on the strength of the ambient
radiation field. This agrees with recent results (Shcherbakov
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2014) suggesting the mass of the DSO/G2 cloud to be within the
range 4–20 M⊕. Naturally, this would be upon the assumption
of a coreless cloud scenario, whereas the mass estimates do
not apply if a star is embedded within the cloud. It turns out
that clouds located a distance exceeding ∼0.05 pc from Sgr A*
can survive a few hundred years, which means that the cooling
and evaporation time is shorter than the free-fall time onto the
black hole.

Gillessen et al. (2013b) and Pfuhl et al. (2015) suggest that
13 years prior to the DSO peribothron passage the source G1
went through its peribothron on an orbit connected to the current
DSO orbit. Dust heating of G1 would then explain the moderate
IR excess of 0.3 K-band magnitudes of the star S2 in 2002
(Appendix in Pfuhl et al. 2015) as it passed close to Sgr A* and
G1. However, with Sabha et al. (2012) we have shown that over
timescales of a few months to a few years—especially close
to the center—serendipitous sources can frequently be formed
owing to density fluctuations of the background stars in the
central arcsecond.

The DSO is supposed to be on a similar orbit to the G1 source
(Pfuhl et al. 2015). However, up to this point, as it is approaching
peribothron, the DSO has not shown any increase in K- or even L-
band flux density that could be attributed to dust heating. In fact,
while approaching Sgr A* in 2013, the L-band identification of
the DSO was lost (Pfuhl et al. 2015). This can in part be attributed
to confusion. To some extent diffusion or destruction of dust as
the source entered the immediate surroundings of Sgr A* may
be responsible as well, but certainly no brightening of the source
in its K- or L-band emission has been observed.

Until now several models have placed a star at the center
of the DSO (Murray-Clay & Loeb 2012; Eckart et al. 2013;
Scoville & Burkert 2013; Ballone et al. 2013; Phifer et al. 2013;
Zajaček et al. 2014). An at least partial tidal disruption is also
expected if the DSO is an embedded star. A Roche description
of the Sgr A*/DSO system (Eckart et al. 2013) suggests that
a more massive central star will lose less of the gas and dust
from the central few AU than a solar-mass-type star or a dwarf.
Simulations of compact systems by Zajaček et al. (2014) support
this finding as well (see also Section 4.5).

For source sizes that are much smaller than the peribothron
distance with Jalali et al. (2014) we have shown that at the
peribothron position the gaseous source volume is compressed
by at least a factor of two owing to gravitational focusing.
This results in the fact that before and after peribothron the
source stays relatively compact despite the influence of possible
turbulences and shocks that may be induced owing to shearing
gas streams close to peribothron. Depending on the density
of the overall environment, hydrodynamic interactions with
the ambient material set in well past peribothron. This is
consistent with all hydrodynamic and particle simulations that
have been used to predict the future development of the DSO or
similar sources (e.g., Zajaček et al. 2014; Burkert et al. 2012;
Schartmann et al. 2012; Jalali et al. 2014).

4.3. Interactions with the Ambient Medium

If the DSO passes through an accretion wind from Sgr A*, it
may develop a bow shock. In case it is indeed a dusty star, then
one may expect to see cometary source structures quite similar
to the sources X3 and X7, which are in the overall mini-cavity
region just south of Sgr A* at a projected distance of 0.′′8 and 3.′′4
(Mužić et al. 2010). In mid-2014 the DSO is well within a sphere
of hot gas surrounding Sgr A* out to approximately the Bondi
radius (≈105RS). As a dusty source, the DSO can therefore

be regarded as an obvious probe for strong winds possibly
associated with Sgr A*. However, there is no clearly resolved
structure that can be considered as a bow shock, although the
DSO is already closer to Sgr A* than X3 and X7. This may
indicate that the wind from Sgr A* is highly non-isotropic,
possibly directed toward the mini-cavity (Mužić et al. 2010),
and that the DSO has not yet passed through that wind. However,
the mass load of such a wind (due to the radiatively inefficient
accretion mechanism) may not be high enough to allow for the
formation of a prominent cometary tail structure. The detailed
density profile for the central region of the radiatively inefficient
accretion flow is difficult to obtain. Methods are rather indirect
and accretion model dependent (Baganoff et al. 2003; Marrone
et al. 2007; Wang et al. 2013). However, Eckart et al. (2014a)
have pointed out that the smaller size compared to X3 and X7
may be due to the higher particle density within the accretion
stream close to Sgr A* (e.g., Shcherbakov & Baganoff 2010).

4.4. Flare Activity

A possibly efficient probe of the interaction of the DSO
with its ambient environment or with the black hole itself is
monitoring the flux density originating from the central few
tenths of an arcsecond. However, the results of these efforts
have not been very revealing so far.

The NIR flare activity we observed through SINFONI during
the peribothron approach in 2013/2014 is in full agreement with
the statistical expectations as we described them with Witzel
et al. (2012). There was no exceptional activity, with three flares
of a few milli-Jansky strength.

If the DSO were to develop a bow shock while approaching
the immediate environment of Sgr A*, then this event might lead
to shock accelerations of electrons and to correspondingly strong
excursions in the radio emission. However, the strength of these
emission peaks depends critically on the size of the bow shock,
and early estimates on the order of 1–20 Jy in the decimeter to
short centimeter wavelength range had to be revised to values
on the order of 0.01–0.2 Jy (Narayan et al. 2012; Sa̧dowski et al.
2013; Crumley & Kumar 2013). Despite a dense monitoring
program with the Very Large Array (Sjouwerman & Chandler
2014), strong radio flares have not yet been reported and the
now-predicted strength of the variability would be in the normal
range of the flux density variations observed toward Sgr A*
(e.g., Markoff et al. 2001, 2007; Eckart et al. 2012b).

So far in the X-ray observable �2 keV band no elevated
continuum flux density level or extraordinary X-ray variability
has been reported (Haggard et al. 2014). Such an extra emission
would have been expected to originate from the shock-heated
gas (Gillessen et al. 2012).

Although Sgr A* is extremely faint in the X-ray bands,
it is strongly variable in this domain of the electromagnetic
spectrum (Baganoff et al. 2001, 2003; Porquet et al. 2003, 2008;
Eckart et al. 2012b; Nowak et al. 2012; Degenaar et al. 2013;
Barrière et al. 2014; Mossoux et al. 2015; Neilsen et al. 2013).
The statistical investigation of the NIR variability by Witzel
et al. (2012) suggests that the past strong X-ray variations
are potentially linked with the origin of the observed X-ray
echoes (Revnivtsev et al. 2004; Sunyaev & Churazov 1998;
Terrier et al. 2010; Capelli et al. 2012). Assuming an underlying
synchrotron self-Compton process, the NIR variability can in
fact explain the required X-ray flare fluxes as a natural and
nonexceptional phenomenon of the source. Therefore, Sgr A*
is the ideal extremely low accretion rate target that allows us to
study this particular phase, in which apparently most SMBHs
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spend their lifetime. Phenomena like the passage of the DSO
may dominate the variability of objects in this phase throughout
the electromagnetic spectrum.

While the DSO is a very compact continuum and line-emitting
source (see Section 3.3 and Eckart et al. 2013), its peribothron
distance is rather small (see Section 4.1). Hence, it is still an
open question whether and when some activity of Sgr A* is
triggered by the DSO fly-by.

4.5. The DSO as a Young Accreting Star

Large line widths are common among pre-main-sequence
stars, including both T Tauri stars (with an age of about
105–106 yr) and protostars (with an age of about 104–105 yr),
with an infalling envelope that forms a disk close to the star.
Bertout (1994) already pointed out that Doppler broadening
from pre-main-sequence stars may range roughly from 50
to 500 km s−1 in the course of the accretion phase. As an
example, hydrogen recombination and Na D line profiles of
several hundred kilometers per second in a number of pre-
main-sequence stars (e.g., T Tau, DG Tau, DR Tau, AS205,
and SCrA) are shown. The M0V classical T Tauri star LkCa-8
(IP Tau) (Wolk & Walter 1996; Moto’oka & Itoh 2013) has
a 600–700 km s−1 Brγ line width (Edwards et al. 2013), quite
comparable to the width currently found for the DSO. Another
case of a low-mass star with exceptionally large line widths is
DK Tau A, with an 800 km s−1 wide line (Eisner et al. 2007). It
is listed by Herczeg & Hillenbrand (2014) as a K8.5 star with a
mass of 0.68 M⊙.

Without doubt the Brγ line traces high-excitation regions;
however, in the case of young embedded protostars it is currently
unclear whether these regions are associated with accretion
funnel flows, the jet base (Davis et al. 2011), or less collimated
ionized winds. All of these elements can contribute to the
emission and the large observed line width. In the case of the
DSO there are several mechanisms that can contribute to a large
line width.

1. Contribution from collisional ionization in a bow shock.
A possible origin of a broad wide Brγ emission line was
discussed by Scoville & Burkert (2013) on the basis of the
bow shock model that is relevant for the supersonic motion of
the object through the hot ambient interstellar medium (ISM)
emitting X-rays. They show that Brγ emission may arise from
the collisional ionization and the gas cooling in the narrow but
dense cold (∼105–106 K) and shocked layer of the stellar wind.
The high densities (∼108 cm−3) in this layer can explain the
observed emission measure.

2. Contribution from wind drag in a bow shock. The large
increase in FWHM line width from 137 km s−1 in 2006 to
730 km s−1 in 2014 could also be related to the increase in orbital
velocity from about 1200 km s−1 to almost 9000 km s−1 at
peribothron. Discussing the emission from photoionized stellar
wind bow shocks, Cantó et al. (2005) calculate the change of
velocity in the thin shocked layer that develops while the source
is moving through the ISM. In the context of the DSO this
effect has not yet been discussed before. In their Equations (19)
and (33) they approximate the dependence of that velocity as
vsl ∝ vw × f (va, R, θ, φ). Here vsl is the velocity in the shock
layer, vw is the stellar wind velocity, and va is the velocity
relative to the ISM. The radius R and the angles θ and φ
describe the geometry of the shock front. It is the change of vsl
across the shock front that may contribute to the observed Brγ
line width. The analytic solution of Wilkin (1996) for the thin

steady-state bow shock layer yields the estimate for the shock
layer velocity vsl ≈ 2vaθ/[3(1 + va/vw)] close to the symmetry
axis, where the angle θ is small. The ratio of this velocity at the
same θ , but different epochs, 2006 and the peribothron crossing,
yields v

per
sl /v2006

sl ≈ 1.07–1.26 for the terminal wind velocities
of 100–400 kms−1, respectively. Thus, the increase in velocity
by about 10% could be contributed by wind drag in a bow
shock layer.

3. Contribution from stellar or disk winds. There can also
be a contribution to Brγ emission from the gaseous inner disk,
stellar wind, stellar-field-driven wind (X-wind), or disk wind
(Lima et al. 2010) that can originate from the corotation radius to
several astronomical units (see Kraus et al. 2008 for discussion
and their Figure 1). Günther (2011) shows that for classical
pre-main-sequence stars, wind velocities of a few hundred
kilometers per second can occur.

4. Tidal contribution. The increase in FWHM of DSO would
then be caused by the tidal stretching and perturbation of
the accretion disk, especially close to the peribothron, which
would consequently lead to larger velocity dispersions of inflow
and outflow streams. Simple considerations analogous to the
computation of tidal compression presented by Jalali et al.
(2014) show the increase of velocity deviation. There are several
ways to assess the importance of tidal stretching of the DSO
along its orbit from our data:

α—if the total pre-peribothron line width of about 720 km s−1

was dominated by tidal stretching, then a minimum source
size of about 65 mas is expected based on the mean slope of
1000 km s−1 over a projected orbital path of about 90 mas (i.e.,
∼11 km s−1 mas−1) within the past 2 yr.

β—attributing the 2008–2013 size estimate of 42 ± 10 mas
Gillessen et al. (2013b) to the year 2013 and assuming a free
gas cloud subjected to orbital stretching along the orbit, we find
that the source should be 5–8 times larger, i.e., 210–336 mas,
close to peribothron. We cannot confirm such a large size from
our Brγ line maps in Figure 9 (see also Table 2).

γ —the separation of apparently simultaneously observed
extreme velocity components of G2 close to the peribothron
passage (Figures 1 and 15 in Gillessen et al. (2013b); Pfuhl
et al. (2015), which is consistent with a cut through their pv-
diagram in Figure 1) implies a size between 90 mas and 150 mas
along the orbit. With our data we only see a single-lined DSO
either red- or blueshifted with a diameter of <20 mas, and, given
the low foreshortening (Section 4.1 and Figure 11), we cannot
confirm the presence of multiple sources or a large source extent
(see Section 3.3 and Figure 9).

δ—we measured very close to the points at which extreme
orbital velocities in the red and blue can be observed. At these
positions for an extended tidally stretched source the emission
previously blue of the source center will become redshifted
and blueshifted, respectively. Hence, a line width that can be
up to a factor of two narrower is expected. However, the post-
peribothron line width is about a third of the pre-peribothron
value, and the small source sizes are in conflict with an extended
tidally stretched source. In addition, the orbital compression
expected for such a scenario would imply a larger line width and
a higher line flux density owing to the increased density of the
emitting gas volume. Instead, for a dust-enshrouded accreting
stellar object line variability in integrated line flux density and
line shape is expected.

5. Contributions from accretion. However, there can also be a
contribution from the gas accretion of the circumstellar envelope
onto the stellar surface if the DSO is a young stellar object as
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has already been proposed and discussed (Murray-Clay & Loeb
2012; Eckart et al. 2013; Scoville & Burkert 2013; Zajaček et al.
2014; De Colle et al. 2014). In this framework an increase of
the Brγ line width as a function of time could result from an
increased perturbation of the envelope or disk that leads to an
enhanced velocity dispersion in the accretion stream onto the
central star as it gets closer to the peribothron.

In the following we investigate whether the infalling gas that
is approximately in free fall and is being shocked upon reaching
the stellar surface can explain the observed large line width of the
DSO Brγ line, which evolved from FWHM(Brγ ) ∼ 200 km s−1

in 2006 to FWHM(Brγ ) ∼ 700 km s−1 in 2014, as laid out in
Section 3.1.1 (see also Phifer et al. 2013; Gillessen et al. 2013b).
This corresponds to radial velocities vr of infalling material that
range from about 100 km s−1 to several hundred kilometers per
second.

4.5.1. The Model Geometry

For simplicity, we consider an axisymmetric magnetospheric
accretion model (see Bouvier et al. 2007 for review) for the
accretion on pre-main-sequence stars where the gas moves
ballistically along the magnetic field lines from the innermost
orbit of the disk and gains large infall velocities of the order
of ∼100 kms−1 (Hartmann et al. 1994). Unlike the boundary
layer model, the magnetospheric accretion scenario can indeed
explain observed redshifted absorption minima at free-fall
velocity and blueward asymmetry in emission lines (Muzerolle
et al. 1998a, and references therein).

The presence of a magnetic field around pre-main-sequence
stars is justified by the observation of the Zeeman broadening
of photospheric lines (Johns-Krull et al. 1999, 2001), as well as
by the measurement of the electron cyclotron maser emission
(Smith et al. 2003). The inferred field strength is ∼1–3 kG. In
the context of the dipole magneto-accretion model, in which the
gas is in free fall, the truncation radius in terms of stellar radii
is (e.g., Bouvier et al. 2007)

RT

R⋆

≈ 6.5B
4/7
3 R

5/7
2 Ṁ

−2/7
−8 M

−1/7
1 , (1)

where the strength of the dipole magnetic field at the equator B3
is in kG, the stellar radius R2 is in units of 2 R⊙, the accretion
rate Ṁ−8 is expressed in 10−8 M⊙ yr−1, and the stellar mass
M1 is in units of 1 M⊙. The truncation radius in Equation (1)
is derived for gas in free fall in the spherical symmetry. For
disk accretion it may serve as an upper limit, since the ram gas
pressure is higher in that case and the truncation radius is thus
shifted inward.

For stable accretion to proceed, the truncation radius ex-
pressed by Equation (1) has to be smaller than the corotation
radius Rco, RT � Rco, at which the Keplerian angular velocity
is equal to the rotational angular velocity of the star,

Rco ≈ 4.2 M
1/3
1 P

2/3
1 R⊙, (2)

where M1 is the stellar mass in units of 1 M⊙ and P1 is the
stellar rotation period in units of 1 day (see Bouvier et al. 2007,
for discussion). The inner portion of the disk is purely made
up of gas up to the dust sublimation radius, which, according to
simulations by Whitney et al. (2004), may be expressed in terms
of the dust sublimation temperature and the stellar effective
temperature as

Rsub = R⋆

(

Tsub

T⋆

)−2.085

, (3)
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Figure 12. Poloidal velocity profile as a function of the distance from the pre-
main-sequence star in a magnetospherical accretion model (Hartmann et al.
1994) for different masses of pre-main-sequence stars at ∼1 Myr (Siess et al.
2000). The gray horizontal lines represent the observed radial velocity for years
2006, 2009, 2010, and 2014 with an increasing tendency (Phifer et al. 2013;
Gillessen et al. 2013b; this work).

which for typical values of T⋆ (spectral types K, M:
3000–4500 K) and Tsub ≈ 1500 K has values of ∼4–10 R⋆. Be-
yond the dust sublimation radius, dust can coexist with the
gaseous phase. The emerging radiation from the accretion flow
is reprocessed by the circumstellar dust, giving rise to the
IR excess.

For the calculation of the velocity profiles of the accretion
flow we assume the truncation radius to be at RT = 5 R⋆

(Gullbring et al. 1998; Alcalá et al. 2014), which is close to
the estimate in Equation (1). We compute the poloidal velocity
profiles in the framework of the magnetospheric accretion model
(see Equations (1) and (3) of Hartmann et al. 1994) for 0.5, 1.0,
2.0, and 3.0 M⊙ pre-main-sequence stars with a stellar radius
of 2.1, 2.6, 3.6, and 4.8 R⊙, respectively, at 1 Myr (Siess et al.
2000) for solar metallicity and no overshooting; see Figure 12
for the comparison of the poloidal velocity for the observed
radial velocity, which is observed to increase with the approach
of the DSO to the peribothron. For earlier epochs the observed
FWHM is consistent with the accretion onto a low-mass object
of ∼0.5–1 M⊙. To explain the higher FWHM in 2014, a massive
pre-main-sequence star of Herbig Ae/Be type is needed at
the first glance, since for lower-mass stars only the upstream
parts reach comparable velocities; see the poloidal velocity
profile of the 6 M⊙ star with a radius of 2.9 R⊙ in Figure 12.
However, such a massive stellar core having a luminosity of
�100 L⊙ is inconsistent with the luminosity constraint on the
DSO (�10 L⊙), and the pre-main-sequence stage is also very
short (Siess et al. 2000).

The physics of circumstellar material of pre-main-sequence
stars is generally more complex, especially close to the SMBH,
where the disk surrounding the star is expected to be warped
and perturbed by tidal effects. Although basic observational
signatures of pre-main-sequence stars (strong stellar magnetic
fields, truncation radius, accretion shocks observed mainly for
classical pre-main-sequence stars) are in accordance with the
magnetospheric accretion model (Bouvier et al. 2007) and
suggest that Brγ originates in gas infall rather than outflow
(Najita et al. 1996), it is plausible that there is a contribution to
Brγ emission from stellar or disk winds.

We note that the line profile may be generally nonsymmetric
and its width dependent on the inclination, at which the emerging
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Figure 13. Profiles of maximum line-of-sight velocity as a function of the
distance from the star in a magnetospherical accretion model (Hartmann et al.
1994) for a 2.5 M⊙ pre-main-sequence star for a different inclination of the
view of emerging radiation. The receding flow (nearer to the observer, mostly
redshifted, positive velocities) is labeled by dashes, while the approaching flow
(farther away, mostly blueshifted, negative velocities) is represented by dots.
The gray horizontal lines represent the observed radial velocity v sin i for years
2006, 2009, 2010, and 2014 with an increasing tendency (Phifer et al. 2013;
Gillessen et al. 2013b, this work):

emission is viewed. This is demonstrated by the profiles of
the maximum line-of-sight velocity in Figure 13, where we
plot separately approaching (mostly blueshifted) and receding
(mostly redshifted) accretion streams for 2.5 M⊙ pre-main-
sequence stars (at ∼1 Myr; Siess et al. 2000). The separation
between the dashed and the dotted lines for each stellar radius
and inclination is an approximate measure of the observed line
width. The line broadening is generally bigger for a larger
inclination (see also Muzerolle et al. 1998a, for detailed radiative
transfer modeling). The results in Figure 13 clearly show that
with a star of about 2 M⊙ the observed Brγ line widths, covering
the full range from about 200 km s−1 to 700 km s−1, can
be reproduced. From the range of maximum and minimum
velocities it is also evident that the line profile can be asymmetric
and skewed to one side.

4.5.2. Accretion Luminosity and Rate

In fact, the broad hydrogen Brγ line with the FWHM of
the order of ∼100 km s−1 is frequently observed in the spectra
of accreting pre-main-sequence stars (detection rate 70%–74%;
Folha & Emerson 2001; Ilee et al. 2014) and appears to be
a useful tracer of magnetospheric accretion on embedded pre-
main-sequence stars (Muzerolle et al. 1998a, 1998b; Folha &
Emerson 2001; Calvet et al. 2004). Here the star is assumed to
accrete matter from its envelope or the inner edge of an accretion
disk. Accretion from the surrounding ISM can be considered as
insignificant.

The correlation between Brγ emission-line luminosity and
accretion luminosity is found to be tight (Muzerolle et al. 1998b;
Calvet et al. 2004). The empirical relation between emission-
line and accretion luminosities is based on various signatures of
accretion luminosity (Hα luminosity, optical, and UV excess).
The recent fit is as follows (Alcalá et al. 2014):

log (Lacc/L⊙) = ζ1 log [L(Brγ )/L⊙] + ζ2, (4)

with ζ1 = 1.16 ± 0.07 and ζ2 = 3.60 ± 0.38. This correlation
may then be extended to heavily extincted protostars that are
enshrouded in a dusty envelope.

If we naively apply this relation to the DSO and its Brγ
emission-line luminosity of L(Brγ ) = facc × 10−3 L⊙, where
facc is a factor of the order of unity, we get a reasonable range for
the accretion luminosity, log (Lacc/L⊙) ≈ 1.16 log facc + 0.12;
Lacc = 1.3 × 14.5log facc L⊙, and for facc = {1, 2, 3, 4} yielding
(1.3, 3.0, 4.7, 6.6) L⊙.

For the assumption of the innermost radius of Rin = 5 R⋆, the
accretion rate is given by (Gullbring et al. 1998)

Ṁacc
∼=

LaccR⋆

GM⋆

(

1 −
R⋆

RT

)−1

, (5)

which can be written as

Ṁacc ≈ ξ

(

Lacc

L⊙

) (

R⋆

R⊙

) (

M⋆

M⊙

)−1

M⊙ yr−1, (6)

with ξ = 4.1 × 10−8.
Inserting the estimated values for mass, radius, and the

accretion luminosity, we obtain an accretion rate of the order of
�10−7 M⊙ yr−1, which is about 10 times larger than the median
value observed for pre-main-sequence stars in the Taurus and
Chameleon I regions (Hartmann et al. 1998). It is, however,
consistent with the span of pre-main-sequence accretion rates,
which seem to evolve with the age of the pre-main-sequence
star as Ṁacc ∝ t−2.1 (Baxter et al. 2008).

The gas outflow rate was shown to correlate with the accretion
in pre-main-sequence systems. The ratio of rates was established
approximately as Ṁw/Ṁacc ∼ 0.1 (Edwards et al. 2006,
and references therein), which corresponds to the order of
Ṁw � 10−8 M⊙ yr−1. This order of magnitude for the wind
outflow rate was discussed by Scoville & Burkert (2013) for the
wind–wind bow shock origin of Brγ emission.

The estimates of accretion luminosity and accretion and mass-
loss rates are upper limits since there may be contribution to Brγ
flux from sources other than accretion flows, namely, stellar
wind or disk outflows (Kraus et al. 2008).

4.5.3. Density and Emission Measure

The radial density profile of the accretion flow may be
inferred based on the estimated values of pre-main-sequence
star mass, radius, mass accretion rate, and the assumed size of
the magnetosphere. Assuming an axisymmetric steady flow of
matter along the streamlines, the following relation holds for
the hydrogen number density (Hartmann et al. 1994),

nH(r) =
Ṁacc

4πmH

(

1
rmi

− 1
rmo

)

r−5/2

(2GM⋆)1/2

(4 − 3y)1/2

(1 − y)1/2
, (7)

where the magnetic streamlines are described by r = rm sin2 θ ,
where θ denotes the angle between the magnetic dipole axis and
the radius vector r; in Equation (7) y = r/rm = sin2 θ and rmi
and rmo stand for the radius of the innermost and the outermost
streamline intersecting the accretion disk, respectively; we take
rmi = 5 R⋆ and rmo = 7 R⋆ for definiteness. The mass accretion
rate is held fixed at Ṁacc = 10−7 M⊙ yr−1 in accordance with
Equation (6). The density profiles for the same set of stars as in
Figure 12 are plotted in Figure 14.

The density profile in Figure 14 enables us to estimate the
emission measure, EM ∝ n2

eV , under the assumption ne ≈ nH;
see Equation (7). The computation is performed for the distance
range where the poloidal velocity, Figure 12, reaches the values
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Figure 14. Radial number density profile as a function of the distance from
the star in units of stellar radii. The computed profile is valid for the steady
axisymmetric accretion on a pre-main-sequence star. Individual lines correspond
to accretion flows along magnetic streamlines for a particular mass of a star (see
the labels). The radius of a star is adopted from the evolutionary tracks of Siess
et al. (2000) at ∼1 Myr.

of vpol = 200 ± 100 kms−1, which roughly corresponds to the
observed FWHM of the Brγ line. Finally, we get the profiles
of cumulative emission measure for a different mass of a pre-
main-sequence star according to the evolutionary tracks by Siess
et al. (2000) at ∼1 Myr; see Figure 15. The emission measure
is of the order of 1058–1061 cm−3, being higher for lower-mass
stars, and these values originate from close to the star, on the
scale of ∼1–3 R⋆. This implies that luminous line emission at
the observed high velocities can originate from close to a few
solar mass star.

One should consider these values highly estimative because
of the uncertain values of mass accretion rate and the size
and character of the magnetosphere. The temperature of the
accretion flow was also not discussed. However, models of the
accretion on pre-main-sequence stars show that the infalling gas
is shock heated and the Brγ line can be effectively produced
close to the stellar surface (Bouvier et al. 2007). In principle, it
is possible to reproduce the emission measure of ∼1057 cm−3

that is obtained in the cold bow shock model by Scoville &
Burkert (2013) and that corresponds to the observed flux of Brγ
emission. Thus, both mechanisms, wind–wind interaction and
gas infall, can contribute in case the DSO is a young stellar
object.

Given the accretion rate of �10−7 M⊙ yr−1, the star associ-
ated with the DSO would be embedded within the hot accretion
flow surrounding the star with a probably complex geometry.
On the length scale of one stellar radius the density profiles
in Figure 10 imply large IR K band and visible extinction of
A(K) ∼ 0.1 × A(V ) ≈ 0.1 × (1.8 × 1021)−1

∫

ne(l)dl, which
is ∼59, 37, 20, and 16 mag for a 0.5 M⊙, 1.0 M⊙, 2.0 M⊙, and
3.0 M⊙ star, respectively. Combined with the possible contri-
bution of an extended outer dust shell and a warped or inflated
outer disk, this is plenty of extinction to dim the light from the
central star and produce the observed continuum characteristics
of the DSO (Eckart et al. 2013, 2014a, 2014b; Phifer et al. 2013;
Gillessen et al. 2012).

The material within the accretion flow is certainly not
homogeneous. To first order we assume that it consists of
cloudlets, sheets, or filaments that have a dense, optically thick
core surrounded by a shell of optically thin material. Since the

lo
g
(E

M
 [
c
m

-3
])

v
p
o
l [

k
m

 s
-1

]

stellar radius [R*]

0.5 Msun
1.0 Msun
2.0 Msun
3.0 Msun
6.0 Msun

 54

 55

 56

 57

 58

 59

 60

 61

 62

 0  1  2  3  4  5  6  7
 50

 100

 150

 200

 250

 300
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overall line emission is dominated by optically thin material,
and given the uncertainties in the Paα/Brγ and He I/Brγ line
ratios, the maximum contribution of the optically thick material
to the line fluxes can only be of the order of 0.05. Since the
dense material is bright, the ratio η between the mean emission
measure of the optically thin and thick material needs to be
involved. Hence, a volume filling factor around 0.05×η will
reproduce the optically thin line ratios and give a substantial
contribution to the observed velocity profile. In addition, there
will be a temperature gradient from the start of the accretion
stream near the dust sublimation radius and the contact point on
the stellar surface, leading to an enhanced contribution of the
higher-velocity material.

The observed accreting pre-main-sequence stars generally
have a lower accretion rate than the time-averaged infall rate
(Audard et al. 2014). As a result, the gas from an infalling en-
velope is thought to be accumulated first in the quasi-Keplerian
circumstellar disk. The accumulation of matter continues until
the instability causes an increase in the mass transfer by about
three to four orders of magnitude from the disk to the star, the
so-called episodic accretion (Audard et al. 2014). If the DSO
is indeed an embedded accreting pre-main-sequence star, the
tidal effects from the SMBH lead to a gravitational instability
that, combined with magnetorotational instability (Zhu et al.
2009), can cause a continual mass transfer from the disk, es-
pecially close to the peribothron, where the tidal radius shrinks
to �1 AU for a 1 M⊙ star; see also the tidal radius discussion
related to Figure 16.

Let us sum up that the observed emission up to now is not in
contradiction with the scenario of a pre-main-sequence star that
is surrounded by a dusty envelope and accretes matter from an
accretion disk inside the dust sublimation radius. Hot accretion
flows as discussed here, possibly combined with disk winds
(Günther 2011), can indeed produce emission lines with FWHM
of several hundred kilometers per second. Hence, we find that for
a 1–2 M⊙ embedded pre-main-sequence star these two effects
can already fully account for the observed Brγ line widths.
However, in general the observed Brγ line profile and flux
may result from the combination of hydrogen recombination
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Figure 16. Temporal evolution of the tidal Hill radius for the orbits of a 1 M⊙ star
around the SMBH with a different orbital eccentricity. At t/P = 0.5 the
pericenter passage occurs. For the inferred orbit of the DSO, tidal radii for
prograde as well as retrograde orbits are depicted. Actual values of the tidal
radii at the peribothron are depicted by corresponding arrows. The current
orbital solution implies a considerable tidal stripping for distances from the star
�1 AU.

emission of the gaseous dusty envelope photoionized by nearby
stars (Shcherbakov 2014), the collisionally ionized cold bow
shock layer (Scoville & Burkert 2013), and the hot accretion
flow on a pre-main-sequence star, as is discussed here. Whether
and to what extent each of these processes contributes to the
final emission will be constrained by further observations and
modeling during the post-peribothron phase.

5. POSSIBLE ORIGIN, STABILITY,
AND FATE OF THE DSO

There is evidence of both young and more evolved stars in
the Galactic center (Genzel et al. 2010) that lie in the sphere
of influence (∼2 pc) of the SMBH. Mutual interactions among
stars cause the oscillations of their orbital eccentricity via the
mechanism of resonant relaxation (Hopman & Alexander 2006)
or the Kozai oscillations (Karas & Šubr 2007; Chen & Amaro-
Seoane 2014). These can set some stars on a plunging trajectory
toward the SMBH (Zajaček et al. 2014). Similarly, with Jalali
et al. (2014) we have shown that young stellar objects can
efficiently be formed on plunging orbits in the vicinity of
SMBHs as a consequence of orbital compressing of infalling
gas clumps. An embedded young star/protostar is surrounded
by an accretion disk whose orbit orientation can be any (direct,
retrograde, or perpendicular) with respect to the orbit of the host
star around the SMBH. These DSOs (Eckart et al. 2013) have
an IR excess, and the currently observed DSO may indeed serve
as a paradigm of these objects.

The restricted three-body problem may be used to obtain
the approximations for critical stability (Hill) radii of disks.
Using the restricted circular three-body problem, the equation
of motion for a mass element in the rotating frame of star–SMBH
becomes (i.e., Innanen 1979, 1980)

d2r

dt2
≃

(

Ω2 −
d2V

dR2
−

GM⋆

r3

)

r ± 2Ωvr , (8)

where r is the distance of a mass element from the star and
R labels the distance of the star from the SMBH, r ≪ R.
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Figure 17. Polar plot of the dependence of the ratio of critical tidal radii of
retrograde (rr) and prograde (rd) disks on the inclination of the accretion disk
around a pre-main-sequence star with respect to the orbital plane of the star
around the SMBH. In this plot the vertical and horizontal axes represent the
same quantity—the ratio between retrograde and prograde tidal radii. The ratio
dependence on the inclination was derived by Innanen (1980). The plotted
relations have the form of (rr/rd)1,2 = {1 + f1,2/2 + [f1,2 + (f1,2/2)2]1/2}2/3,
where f1 = 4(cos2 i)/3 and f2 = 4 cos i/(2 + cos i). The relation (rr/rd)1
dominates the second one. The largest difference between the critical tidal radii
of a factor of ∼2 is for low-inclination orbits with respect to the orbital plane
of DSO.

For R ≫ Rg, the gravitational potential of the black hole
is approximately equal to the Newtonian V ≡ V (R), hence
−d2V/dR2 = 2GM•/R

3. The angular frequency of the circular
motion for the star is Ω2 = GM•/R

3, and for the minor body
ω2 = GM⋆/r3. The difference between direct and retrograde
orbits arises from the different signs of the Coriolis term ±2Ωvr,
where vr = ωr .

When generalized for orbits with eccentricity e, one gets the
following ratio of critical tidal radii for retrograde and direct
disks, rH,r and rH,d, respectively (Innanen 1979):

rH,r

rH,d
=

[

5 + e + 2(4 + e)1/2

3 + e

]2/3

. (9)

In terms of the critical tidal radius,

rt = R(t)(M⋆/(3M•))1/3, (10)

the critical Hill radius for prograde orbits rd and retrograde
orbits rr may be expressed as rr = 31/3rt and rd = 3−1/3rt. Since
the mass of the SMBH M• is larger by at least five orders of
magnitude than the mass of any star M⋆, the tidal Hill radius
rt expressed by Equation (10) extends up to Lagrangian points
L1 and L2, beyond which the circumstellar matter is strongly
tidally perturbed and may escape the Roche lobe of the star (see
Figure 18 of Eckart et al. 2013). The temporal evolution of the
tidal radii for the current orbital elements and the stellar mass
of m⋆ = 1 M⊙ is shown in Figure 16.

The ratio rH,r/rH,d acquires values of (1.9, 2.1) for eccentric-
ities e ∈ (1, 0). Therefore, retrograde orbits are expected to be
stable for larger distances from the host star, approximately by a
factor of two for low-inclination orbits; see Figure 17 for the po-
lar plot of the dependence of the ratio of tidal Hill stability radii
rH,r/rH,d on the inclination iD between a putative circumstellar
accretion disk and the orbital plane of DSO.
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6. CONCLUSIONS

In our sensitive imaging spectroscopy data set we measured
prominent line emission from the DSO and determined new or-
bital parameters based on data from 2014 February to Septem-
ber. The source appeared to be single lined at all times. Before
the peribothron, we detected redshifted Brγ line emission (at
2700 km s−1) but no blueshifted emission above the noise level
at the position of Sgr A* or upstream of the presumed orbit. After
the peribothron, we detected blueshifted Brγ line emission (at
−3320 km s−1) but no redshifted emission above the noise level
at the position of Sgr A* or downstream of the presumed orbit.
We find a Brγ line FWHM of 50 ± 10 Å before and 15 ± 10 Å
after the peribothron transit, i.e., no significant line broadening
with respect to last year is observed. Such a broadening would
be expected in the case of significant tidal interaction. This is
a further indication for the fact that the DSO is spatially rather
compact.

We show that for a 1–2 M⊙ embedded pre-main-sequence star
hot accretion streams close to the star, possibly in combination
with disk winds, can fully account for the luminous observed
Brγ emission with line widths covering the full range from
about 200 km s−1 to 700 km s−1. The accretion material
and the surrounding shell/disk provide enough extinction to
explain the IR colors of the DSO (Eckart et al. 2013). The
resulting line profile can be asymmetric and skewed to one
side, calling for precaution when using the line emission to
derive orbital parameters. Following the pre-main-sequence
evolutionary tracks of low- and intermediate-mass stars by Siess
et al. (2000), we find that after an initial phase of a few × 105 yr
1–2 M⊙ stars can stay for a major portion of their T Tauri stage
with a luminosity of less than 10 L⊙ (see also Chen & Amaro-
Seoane 2014). This is consistent with a dust temperature of
450 K and a possible spectral decomposition of the NIR/MIR
spectrum (Eckart et al. 2013) of the DSO using the M-band
measurement by Gillessen et al. (2012). Higher stellar masses
would not comply with this luminosity limit and are not required
to explain the Brγ line widths. An embedded pre-main-sequence
star can also explain the increase of the Brγ line width assuming
that tidal stretching and perturbation of the envelope lead to an
enhancement of the velocity dispersion in the accretion stream
onto the central star as the DSO approaches the peribothron.
An identification of the DSO with a dust-embedded star also
puts the interpretation of a common history of the DSO/G2
and G1 at risk (Pfuhl et al. 2015). Owing to the higher mass
(1–2 M⊙ instead of 3 Earth masses), a much higher drag force
than the one provided by the small source size would be required
to connect the DSO orbit to that of G1.

We also find that the NIR flaring activity of Sgr A* has not
shown any statistically significant increment. This points to the
fact that the DSO had not yet reached its peribothron before
2014 May. Even if the source has a stellar core, a major part of
the enshrouding cloud may be dissolved during the peribothron
passage. Therefore, increased accretion activity of Sgr A* may
still be upcoming. The Sgr A*/DSO system can be looked upon
as a binary system, and the Roche lobe picture can be adopted
in which the Lagrange point L1 between the two objects is of
special importance if mass transfer between the two objects
needs to be considered. If the central star has around one solar
mass, the L1 will get very close (∼1 AU) and may allow the
dominant part of the gas and dust to transit into the Sgr A*-
dominated Roche lobe. As a result, the low-mass stellar core
may be even less luminous after the transit than the matter in
its immediate vicinity (i.e., 1 AU) before the transit. This will,

however, be only for a very short time, and it is not clear whether
the gas close to the star will remain in the Roche lobe of the
star after peribothron or not. For higher-mass stellar cores that
were heavily extincted before peribothron, most of the material
closer to the stars (i.e., a few AU) may be largely unaffected
by the transition, and the stellar core may by even cleared from
extincting material and brighter in the NIR bands than before
the peribothron.

In the near future it will become increasingly difficult to
measure the strength and spatial extent of the line emission on
the blue side of the orbit. This is due to a high-velocity star
that is moving into this field from the northwest. It will then be
followed by S2 going though peribothron around 2017.9 ± 0.35
(Gillessen et al. 2009; Eisenhauer et al. 2003) and S0–102
around 2021.0 ± 0.3 (Meyer et al. 2014a, 2014b). Strong
continuum contributions and residual line features in the stellar
atmospheres may make sensitive observations very difficult and
time-consuming.
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