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Abstract

The mechanisms of formation and destruction of molecular anions have become
a field of special interest after the recent detection of six molecular anions (C4H−,
C6H−, C8H−, CN−, C3N−, C5N−) in the interstellar medium. The main channel of
formation of these anions is expected to be radiative electron attachment in environ-
ments where the density of electron is relatively important. There is however at the
moment a lack of experimental and theoretical data allowing to assess this hypoth-
esis. Photodetachment, on the other hand, is the main source of destruction of the
anions in diffuse clouds and photodissociation regions. A single center expansion
approach is applied to the study of both processes: photodetachment and radiative
electron attachment. The results obtained with the present method are compared to
previously reported experimental and theoretical data and show a good agreement.
This method is then employed to determine the rate constants which are needed to
confirm whether or not these mechanisms are crucial for the chemistry of the inter-
stellar anions. Along with the formation and destruction rates, rotational excitation
rate coefficients are needed to accurately model the observed anions abundances.
We focus on the calculation of state-to-state rotational transitions rate coefficients of
the C3N− molecule in its ground vibrational state in collisions with H2 and He using
new potential energy surfaces

KEYWORDS: interstellar anions, radiative electron attachment, photodetach-
ment, state-to-state rate coefficients, potential energy surfaces
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Résumé court

L’étude des mécanismes de formation et de destruction des anions moléculaires
est devenu un champ d’intérêt prononcé après la détection récente de six anions
moléculaires (C4H−, C6H−, C8H−, CN−, C3N−, C5N−) dans le milieu interstellaire.
Dans les environnements interstellaires où la densité d’électrons est relativement
importante, le canal principal de formation de ces anions devrait être l’attachement
électronique radiatif. Mais il manque aujourd’hui des données expérimentales et
théoriques permettant d’évaluer cette hypothèse. D’autre part, le photodétache-
ment est la principale cause de destruction de ces anions dans les nuages diffus
et les régions de photodissociation. Une approche basée sur un développement
monocentrique est appliquée à l’étude de ces deux processus opposés que sont le
photodétachement et l’attachement électronique radiatif. Les résultats obtenus avec
la présente méthode sont comparés à des données expérimentales et théoriques
précédemment rapportées et montrent un bon accord. Cette méthode est ensuite
utilisée pour déterminer les constantes de vitesse nécessaires pour confirmer si ces
mécanismes sont cruciaux pour la chimie d’anions interstellaires. En plus des con-
stantes de vitesse de formation et de destruction des anions, les constantes de vitesse
d’excitation collisionnelle sont nécessaires pour modéliser les abondances observées
des anions. Nous avons choisi de porter notre effort sur le calcul des constantes de
vitesse de transition entre états rotationels de la molécule C3N− dans son état vi-
brationnel fondamental lors des collisions avec H2 et He en utilisant de nouvelles
surfaces d’énergie potentielles.

MOTS CLÉS: anions interstellaires, attachement électronique radiatif, photodé-
tachement, constantes de vitesse de transitions rotationnelle, surfaces d’én-ergie po-
tentielle.
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Résumé long

Chimie des anions : mécanismes de formation et de de-
struction
Depuis la détection récente dans le milieu interstellaire des anions moléculaires, la
question des mécanismes de leur formation, destruction et excitation est posée. En
phase gazeuse, les ions négatifs sont typiquement formés par l’attachement d’un
électron sur une molécule neutre. Dans les conditions du milieu interstellaire, c’est-
à-dire à température et densité basses, les anions interstellaires sont probablement
formés par attachement radiatif.

Les mesures expérimentales des constantes de vitesses d’attachement radiatif
sont difficiles à réaliser car un vide presque parfait est nécessaire pour éviter
toute stabilisation des anions par collision avec un tiers corps avant une émis-
sion radiative qui peut être tardive. Pendant longtemps, les constantes de vitesses
d’attachement radiatif ont été obtenues par un modèle statistique. Mais récemment,
une nouvelle approche de l’attachement radiatif basée sur les principes fondamen-
taux a été développée. Les constantes de vitesses d’attachement radiatif obtenues
dans cette nouvelle approche sont particulièrement faibles, ce qui invalide la forma-
tion des anions interstellaires par attachement radiatif ainsi que cela avait été sup-
posé. En conséquence, des travaux théoriques et expérimentaux supplémentaires
sont nécessaires pour bien comprendre si l’attachement radiatif peut être ou non le
principal mécanisme de formation des anions interstellaires.

D’autre part, le photodétachement est supposé être l’un des mécanismes les plus
importants de destruction des anions interstellaires dans les régions de photodisso-
ciation du milieu interstellaire. Jusqu’à présent, les constantes de vitesses de pho-
todétachement étaient principalement obtenues de manière empirique par des ex-
pressions mathématiques qui dépendent seulement de l’affinité électronique de la
molécule neutre. Il est bien connu que ces expressions empiriques sous-estiment les
constantes de vitesses de photodétachement. Une évaluation de meilleure qualité
est nécessaire.

En raison de l’importance des mécanismes de formation et de destruction des an-
ions dans les modèles d’astrochimie, nous proposons une nouvelle méthode basée
sur un développement monocentrique dans le repère attaché à la molécule et avec
diverses approximations de l’orbitale de Dyson. Les méthodes utilisées pour cal-
culer l’orbitale de Dyson ainsi que la fonction d’onde de diffusion sont présentées
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en détail. Les résultats obtenus par ces méthodes sont comparés aux données ex-
périmentales existantes pour les trois anions CN−, O−

2 et OH−. On observe un bon
accord entre les résultats obtenus avec la nouvelle approche et les résultats expéri-
mentaux et théoriques précédents.

Nous avons montré que l’onde plane est une bonne approximation de la fonc-
tion d’onde de diffusion pour les molécules étudiées. De plus cette approximation
simple réduit fortement le temps de calcul numérique. Les effets de la taille et du
type de la base d’orbitales atomiques ont aussi été analysés. Nous avons constaté
que les bases d’orbitales de type Slater donnent de meilleurs résultats que les bases
d’orbitales de type gaussien, et ceci pour un plus petit nombre de fonctions de bases.

Les constantes de vitesses d’attachement radiatif et de photodétachement ont
aussi été calculées pour les six anions détectés dans le milieu interstellaire ainsi que
pour plusieurs autres anions appartenant aux familles C−

n , CnH−, CnN−, lesquels
sont des candidats possibles à la détection dans le milieu interstellaire. La compara-
ison entre nos constantes de vitesses et celles habituellement utilisées dans les mod-
èles astrochimiques montrent que ces dernières sous-estiment fortement les con-
stantes de vitesses de photodétachement. Utiliser nos constantes de vitesses de
photodétachement dans les modèles astrochimiques devrait donc conduire à une
forte diminution du rapport d’abondance anion sur neutre, et par suite, diminuer la
qualité de l’accord existant actuellement entre les modèles et les observations. Nous
avons aussi calculé les constantes de vitesses d’attachement radiatif pour la forma-
tion les états fondamentaux ou bien des états dipolaires (états liés par l’interaction
charge-dipole) des anions. La comparaison entre nos résultats et les constantes de
vitesses d’attachement radiatif utilisées jusqu’à présent montre que ces dernières
sont beaucoup plus grandes, jusqu’à plusieurs ordres de grandeur. Nos résultats
indiquent donc que les anions interstellaires ne peuvent pas être formés par at-
tachement radiatif, y compris par la formation d’états dipolaires transitoires. En
conséquence, l’accord présent entre les abondances observées et celles obtenues par
les modèles est discutable.

Analyse des spectres : excitation et désexcitation rota-
tionnelle
Pratiquement tout ce qui est connu sur la chimie du milieu interstellaire est issu des
spectres atomiques et moléculaires enregistrés par les télescopes. L’analyse des raies
d’émission et d’absorption des molécules dans le but d’en déduire des paramètres
physico-chimiques tels que la température, la densité et les abondances moléculaires
demande d’utiliser un modèle réaliste du transfert radiatif. A leur tour, ces modèles
nécessitent la connaissance des paramètres spectroscopiques des molécules tels que
les niveaux d’énergie, les poids statistiques, les fréquences de transition et les coef-
ficients d’Einstein. Ces informations sont généralement obtenues par des mesures
expérimentales.

En plus des paramètres spectroscopiques, les modèles de transfert radiatif ont
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besoin des constantes de vitesse d’excitation et de désexcitation rotationnelle des
molécules sous l’effet des collisions avec les espèces les plus abondantes dans
l’environnement des molécules étudiées. Dans le cas du milieu interstellaire, le
partenaire de collision le plus abondant est H2. Les collisions avec les atomes H, He
et les électrons libres peuvent aussi jouer un rôle non négligeable. La connaissance
des constantes de vitesse des processus collisionnels est limité à quelques molécules
seulement. Dans le cas des anions interstellaires détectés, on a seulement des don-
nées sur les constantes de vitesse d’excitation et de désexcitation de CN− et C6H−

par collision avec H2.
En l’absence de données collisionnelles pour les molécules étudiées, ainsi que

c’est le cas pour les anions interstellaires, les astronomes utilisent des approxima-
tions pour remédier au manque de données précises. La solution la plus générale-
ment utilisée consiste à supposer que l’équilibre thermodynamique local est établi.
Cependant, en raison de la très faible densité du milieu interstellaire, cette approxi-
mation peut conduire à des évaluations très imprécises des abondances des anions
interstellaires.

En l’absence de données collisionnelles pour les anions interstellaires et en raison
de l’importance de ces informations pour l’évaluation des abondances moléculaires,
nous avons calculé les constantes de vitesse des transitions rotationnelles d’état à
état de C3N− induites par collisions avec He et H2.

Dans ce but, nous avons construit les modèles numériques des deux surfaces
d’énergie potentielle des complexes de van der Waals He–C3N− et H2-C3N− à partir
d’un large ensemble de calculs ab initio de haute qualité. Un soin particulier a été
apporté à la description des interactions à longue portée, et nous avons constaté
que nos modèles numériques sont en très bon accord avec les données des calculs
ab initio.

Avec les surfaces de potentiel précédemment déterminées, nous avons aussi cal-
culé, par une méthode variationnelle basée entre autres sur une base de fonctions
sturmiennes, les états rovibrationnels des complexes He–C3N− et H2–C3N−. Une
analyse détaillée des fonctions d’ondes rovibrationnelles obtenues a permis de met-
tre en évidence des effets quantiques tels que l’effet tunnel, l’effet de mémoire vi-
brationnelle, et aussi les résonances anharmoniques. Par exemple, l’effet tunnel a
pour conséquence la levée de dégénérescence entre des états liés appartenant à des
puits de potentiel distincts, mais équivalents par symétrie d’échange des atomes
d’hydrogène dans le cas de H2–C3N−. Les fréquences vibrationnelles et les con-
stantes rotationnelles pour les deux complexes ont aussi été calculées. Les résultats
obtenus montrent que seul un traitement quantique des mouvements des noyaux
atomiques permet de calculer avec précision les énergies rovibrationnelles de ces
complexes de van der Waals anioniques.

Les constantes de vitesse des transitions rotationnelles d’état à état de C3N−

induites par collisions avec He et H2 ont été calculées dans l’intervalle de tem-
pérature [10,300] K par la combinaison des méthodes Close-coupling et Uniform
J-shifting. Pour les collisions avec He, une tendance forte pour les transitions telles
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que ∆jC3N− = 2 a été observée pour les petites valeurs de ∆jC3N− , alors que pour les
grandes valeurs de ∆jC3N− , ce sont les valeurs impaires qui sont favorisées. Inverse-
ment, pour les collisions avec l’ortho-H2 et le para-H2, c’est la tendance ∆jC3N− = 1
qui est observée. La forte ressemblance, spécialement à haute température, entre les
constantes de vitesse avec ortho-H2 et avec para-H2 est un résultat important pour ce
système. Cela peut être attribué à l’anisotropie du potentiel d’interaction et aussi à
l’interaction répulsive à courte distance. Nous avons aussi testé l’approximation qui
consiste à déterminer les constantes de vitesse des transitions induites par collision
avec para-H2 à partir de celles calculées dans les collisions avec He multipliées par
le rapport des masses réduites. On montre que cette approximation est largement
erronée et donne des lois de tendance fausses.

Nous avons aussi évalué la qualité de l’estimation des constantes de vitesse de
désexcitation rotationnelle de C3N− par collision avec H2 à partir des constantes de
vitesse connues pour CN− et C6H−. On observe que l’accord entre les constantes de
vitesse pour CN− et C3N− est relativement bon, mais seulement pour les transitions
avec des petites valeurs de ∆j, alors que pour les grandes valeurs, les constantes
de vitesse pour CN− sont plus petites que celles pour C3N−. Plus la molécule est
grande et plus le potentiel d’interaction à courte distance est répulsif, ce qui fa-
vorise les transitions rotationnelles avec un grand ∆j. Les résultats avec C6H− sont
au contraire en bon accord avec ceux pour C3N− pour toutes les transitions. On
peut donc supposer que des effets similaires à ceux observés pour C3N− et C6H−

pourrait aussi exister pour les autres chaines longues de leurs familles respectives
C2n+1N− et C2nH−, ce qui permettrait d’évaluer les constantes de vitesse à partir de
ces premières.

Effet tunnel dans les complexes moléculaires faiblement
liés
Les propriétés physiques et chimiques des complexes moléculaires faiblement liés
sont susceptibles de présenter des aspects complexes dont certains peuvent être ob-
servés expérimentalement. On peut citer l’effet tunnel, la localisation des mouve-
ments vibrationnels, les résonances quantiques, la variation non-Arrhenius des con-
stantes de vitesse. Certains de ces effets ne sont pas encore complétement compris,
surtout quand une physico-chimie non-intuitive est en action. Il est donc important
d’étudier ces effets quantiques avec les techniques théoriques et expérimentales les
plus avancées.

Nous présentons des calculs précis des états vibrationnels inter-monomère du
système de van der Waals CO2–N2. Les effets des permutations des atomes iden-
tiques sont pris en compte et examinés. L’effet le plus notable est l’existence de puits
de potentiel symétriquement équivalents, ce qui mène à une levée de dégénéres-
cence systématique induite par l’effet tunnel. L’examen des fonctions d’onde a
révélé des caractéristiques imprévues : la fonction d’onde fondamentale a plusieurs
plan nodaux et les fonctions d’ondes d’états hautement excités sont localisées dans
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de petites régions de l’espace des coordonnées bien que la délocalisation dans
presque tout l’espace soit permise. Un bon accord avec les énergies de transition
rotationnelles expérimentales a été obtenu, ce qui confirme l’exactitude de notre
modèle 4D de surface d’énergie potentielle ainsi que du traitement quantique des
mouvements nucléaires.

En plus de son importance pour la chimie atmosphérique, ce travail révèle que la
structure et la spectroscopie du complexe CO2–N2 sont gouvernés des effets quan-
tiques qui sont l’effet tunnel, des mouvements de grande amplitude, des résonances
anharmoniques et la localisation vibrationnelle. Leurs signatures spectroscopiques
ont déjà été observées expérimentalement et sont analysées ici. Le travail présent
suggère que leurs spectroscopie et dynamique ne peuvent pas être complétement
comprises sans la prise en compte de l’effet tunnel.
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Introduction

Over the last 50 years, the formation of interstellar anions and their likely detection
have been a controversial topic inside the astrochemistry community, starting with
Dalgarno and McCray [1] who for the first time explored the role of anions, specifi-
cally H−, O−, C−, CH−, C2H−, CN−, and S−, in the formation of simple molecules
in interstellar clouds. At that time it was concluded that interstellar anions were
scarce and their contribution to the formation of other molecular species insignifi-
cant. These results were attributed to their relatively slow rate of formation through
radiative electron attachment (∼ 10−15 cm3molecule−1s−1).

A few years later, based on a simple statistical model, Herbst [2] suggested
that anions could be efficiently formed in dense interstellar clouds. Herbst sug-
gested that for large neutral species with large electron affinity (C4H, C3N, C5N,
C9N, etc) the radiative attachment rate could be near to the collision limit ∼ 10−7

cm3molecule−1s−1. One of the most relevant results of this work was the prediction
of an anion-to-neutral ratio between 1-10% which was later corroborated in astro-
nomical observations.

In the late nineties, Tulej et al. [3] suggested that the negatively charged ions C−
6

to C−
9 , and more specifically C−

7 , could be responsible for some of the diffuse inter-
stellar bands (DIBs). Subsequently, Terzieva and Herbst [4] examined the possible
formation of these anions in interstellar diffuse clouds by radiative electron attach-
ment and concluded that the abundance of large C−

n anion could be prominent if
the neutral precursors were copious and the reaction with the most abundant neu-
tral species (such as H2) did not occur. However, a few years later, the hypothesis
of C−

7 being a carrier of DIBs was rejected with the advent of new high-resolution
astronomical and laboratory spectroscopy data [5].

A few attempts were made to search for negative ions in molecular clouds. How-
ever, due to a lack of spectroscopic information on negative ions, these searches
were either unsuccessful or leading to tentative detections [6]. The definite proof
that anions could exist in interstellar medium came on 2006, when McCarthy et al.
[7] detected for the first time C6H− in the circumstellar envelope IRC+10216 and the
dark cloud TMC-1. The anion-to-neutral ratios were in agreement with the early
predictions of Herbst: 1–5 % for IRC+10216 and 2.5 % for TMC-1, thus support-
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Table 1: Anion-to-Neutral Ratios. Extracted from Table 1 of reference [8]

Source C4H− C6H− C8H− CN− C3N− C5N− References
TMC-1 0.0012% 1.6% 4.6% 6 3% 6 0.74% – [9–13]
L1544 – 2.5% – – – – [14]
L1512F – 4.0% – – – – [14]
Lupus-1A 0.0088% 2.1% 4.7% – – – [15]
L1251A – 3.6% – – – – [16]
L1512 – 4.1% – – – – [16]
L1527 0.0110% 9.3% 60.2% – – [11, 12, 17]
IRC+10216 0.0240% 6.2% 26% 0.25% 0.52% 13% [10, 18–21]

ing the hypothesis that anions could be efficiently synthesized in the interstellar
medium (ISM) by radiative electron attachment. The detection of C6H− led to the
subsequent detection of five other anions, namely C4H−, C8H−, CN−, C3N−, C5N−,
in a variety of interstellar sources, see Table 1.

These observations gave rise quickly to new chemical models of the interstellar
sources where the anions have been detected as well as other likely sources [18,
19, 22–24]. These models yielded anion-to-neutral ratios which were reasonably
successful at reproducing observations for the largest anions (C6H−, C8H−, C7N−)
and less successful for smallest anions (CN−, C4H−, C3N−). Further investigations
of the processes that form and destroy anions in the interstellar medium should help
to solve these discrepancies.

Chemistry of anions
In the gas phase, negative ions are typically formed by the attachment of an electron
to a neutral molecule. Depending on the molecule, the electron energy and the
densities of particles in the medium, this collision process proceed toward one or
more of the following exit channels:

AB + e− A− + B (1)

AB− + hν (2)

AB− (3)

DEA

(+M)
TBEA

REA

Path (1) corresponds to dissociative electron attachment (DEA), in which the incom-
ing electron attaches to a neutral molecule and then the molecular anion dissociates.
In process (2) the anion is stabilized by the emission of a photon (often called ra-
diative electron attachment, REA) while in the process (3), stabilization occurs by
collision with a third body (often called third-body electron attachment, TBEA).

DEA is typically endothermic (i.e. the electron affinity is smaller than the chem-
ical bonding energy), and so proceeds at slow rates at low temperatures. However
as discussed by Herbst and Osamura [25], there might be some slightly exothermic
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DEA processes, such as:

H2C6 + e
− −→ C6H− + H

which might have a great contribution to the formation of interstellar anions. TBEA,
on the other hand, will play an important role at low temperatures but it requires
large densities of either AB or another gas M to act as a third-body for the collisional
stabilization. Thus collisional stabilization is unlikely to occur in the ISM owing to
the low density of the gas phase. Therefore, REA is the most likely mechanism to
occur in the physical conditions of the ISM.

Experimental determinations of the REA rates are difficult to obtain due to the
excellent vacuum conditions which are required to prevent collisional stabilization.
For many years, the REA rates have been determined using the statistical model
proposed by Herbst [2]. However, as mentioned before, these rates fail at reproduc-
ing the anion-to-neutral ratio of the small anions. Recently, Kokoouline et al. [26–29]
developed a new approach to REA based on first principles and obtained REA rate
coefficients which are several orders of magnitude smaller than those previously
obtained by Herbst, thus concluding that REA cannot explain the formation of in-
terstellar anions. Therefore, more theoretical and experimental data are required to
clarify whether or not REA can be the main mechanism of formation of interstellar
anions.

One of the most relevant processes that lead to the destruction of interstellar
molecular anions is the reaction with the most abundant neutral species, namely H
and H2:

A− + H −→ AH + e−

This process, which is called associative detachment, is often exothermic and oc-
curs rapidly at low temperatures. For example the reaction of anions with atomic
hydrogen occurs at rates ∼ 10−10 cm3molecule−1s−1 [30].

Photodetachment (PD), the reverse process of REA, is a major channel for photo-
dissociation regions

A− + hν −→ A + e−

Rates for PD are obtained from the absolute cross section which is estimated using
the empirical formula [23]

σPD = 10−17
(

1 −
EEA

E

)1/2

cm2 (4)

which only depends on the neutral electron affinity threshold EEA. Recently, Kumar
et al. [31] has shown that the use of equation (4) underestimate the PD rates, thus
overestimating the anion-to-neutral fractional abundance. Hence, a better descrip-
tion of the PD process may be a solution to the discrepancy found between the as-
trochemical models and the observations.
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Owing to the importance of the mechanisms of formation and destruction of
anions in the astrochemical models, the first objective of this thesis is to develop a
theoretical method that accurately yields both REA and PD rates.

Analysis of the molecular spectra
Almost all of what we know about the ISM is based on the interpretation of spectral
lines detected by the telescopes. Analysis of the emission and absorption lines of a
molecule to infer physical and chemical parameters such as temperature, density,
and molecular abundances requires an efficient modeling of the radiative trans-
fer. Radiative transfer models require the knowledge of spectroscopic data of the
molecule such as: energy levels, statistical weights, line frequencies and Einstein
coefficients. Usually, this information is obtained from experiments.

Besides the spectroscopic data, radiative transfer models rely also on excitation
and de-excitation rates of the molecule induced by collision with the most abundant
species around the molecule. In the case of the ISM, the most abundant collision
partner is H2, however collisions with atomic H, He and electrons are sometimes rel-
evant. The availability of collisional rates is limited to a few molecules only. Among
the approximately 200 molecules that have been detected so far, there is only about
one-fifth of them for which collisional rates are available in the specialized databases
BASECOL1 and LAMBDA2. The lack of data is even worse in the case of detected in-
terstellar anions, since there is only information of the excitation and de-excitation
rates of CN− [32] and C6H− [33] in collisions with H2.

When there is no collisional data for the molecule of interest, as it is the case
for most of the interstellar anions, the astronomers use certain approximations to
remedy the lack of information. One of the most widely used workarounds is to
assume that the local thermal equilibrium (LTE) is established, which is equivalent
to assume that the energy levels are populated according to the Maxwell-Boltzmann
distribution for a given temperature. LTE conditions are satisfied at high densities
when collisions determine the excitation of molecular modes of motion. However,
owing to the low densities of ISM, the LTE approximation might be inaccurate. In-
deed, at low densities, the radiative decay may compete with collisions and as a
result, the energy level distribution will deviate from the Maxwell-Boltzmann dis-
tribution. Therefore LTE approximation can lead to inaccurate determination of the
molecular abundance of the interstellar anions.

Due to the lack of collisional data for the interstellar anions and the importance
that this information has in the determination of the molecular abundances, the sec-
ond objective of this thesis is to calculate the rate coefficients for state-to-state rota-

1http://basecol.obspm.fr
2http://home.strw.leidenuniv.nl/~moldata
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tional transitions of C3N− induced by collisions with both H2 and He.

Quantum tunneling in weakly bound complexes
The physical and chemical properties of weakly bound molecular systems may
exhibit complex behaviors that could be observed experimentally. Among them,
we can cite tunneling, vibrational quantum localization, quantum resonances, non-
Arrhenius law evolution of rate constants. Some of these effects remain not yet fully
understood, where a non-intuitive physical chemistry is in action. However they
are important for understanding the dynamics of complex molecular systems. It is
hence worth investigating them using state-of-the-art theoretical and experimental
techniques. Due to its importance for atmospheric chemistry the last objective of this
thesis is to study the dynamics of the CO2–N2 van der Waals complex using a first
principle treatment where nuclear motions and nuclear spins are fully considered.
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1.1. SCHRÖDINGER EQUATION

1.1 Schrödinger equation
In quantum mechanics, the state of a system is fully described by a function
Ψ(r1, r2, . . . , t) which evolves in time according to the following equation

i h
∂

∂t
Ψ(r1, r2, . . . , t) = HΨ(r1, r2, . . . , t) (1.1)

This partial differential equation is known as the time-dependent Schrödinger equa-
tion and the function Ψ is called the wave function. In the previous equation,
r1, r2, . . . are the spatial coordinates of particles 1, 2, . . . and H is the Hamilto-
nian operator which is commonly expressed as the sum of operators corresponding
to the kinetic K and V potential energies of a system.

H = K+V (1.2)

If the potential energy operator V is independent of time, equation (1.1) can be sep-
arated into equations for the time and spatial variations of the wave function

Hψ(r1, r2, . . . ) = Eψ(r1, r2, . . . ) (1.3)

i h
d

dt
θ(t) = Eθ(t) (1.4)

with Ψ(r1, r2, . . . , t) = ψ(r1, r2, . . . )θ(t) and E is the total energy of the system. Equa-
tion (1.3) is the time-independent Schrödinger equation. Hereafter, when we men-
tion the Schrödinger equation, we refer to time-independent equation.

Exact solutions of the Schrödinger equation are only possible for simple systems
such as the hydrogen atom. Therefore certain approximations must be done in order
to find the solutions of equation (1.3) for complex systems. As an example, let us
consider the case of a system formed by M nuclei and N electrons. For this system
the non relativistic Hamiltonian1 operator is

H =−

M∑
k

 h2

2mk
∇2
k −

N∑
i

 h2

2me
∇2
i +

N∑
i

N∑
j>i

e2

|ri − rj|

−

M∑
k

N∑
i

Zke
2

|Rk − ri|
+

M∑
k

M∑
l>k

ZkZle
2

|Rk − Rl|
(1.5)

where the Rk and ri are the vector position of nuclei an electrons respectively, mk
and me their respective masses. ∇2

i and ∇2
k are Laplacian operators which involve

differentiation over the electrons and nuclei coordinates respectively. The Hamilto-
nian in equation (1.5) contains pairwise attraction and repulsion terms implying that
no particle is moving independently of all the other. This interdependency which is
called correlation, is the main reason why exact solutions of the Schrödinger equa-
tion are difficult to obtain. In order to simplify the problem, we invoke the Born-
Oppenheimer approximation.

1Additional terms may appear in the Hamiltonian when relativity or interactions with electro-
magnetic radiation fields are taken into account.
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1.1.1 Born-Oppenheimer approximation

The Born-Oppenheimer (BO) approximation assumes that the motion of atomic nu-
clei and electrons in a molecule can be separated. The foundation of this approxi-
mation resides in the fact that as electron are lighter than the nuclei, thus they move
faster. Hence, to a good approximation, one can consider the nuclei at a fixed posi-
tion while the electrons are moving. Classically speaking, during the time of a cycle
of electronic motion, the change in nuclear configuration is negligible. Therefore
considering the nuclei as fixed, one can omit the kinetic operator of the nuclei, first
term in equation (1.5) and consider constant the repulsion potential between nuclei,
last term in equation (1.5). As any constant added to the a Hamiltonian operator
only changes the values of the total energy and has no effect on the wave functions,
the nuclei repulsion term can be dropped thus obtaining the Schrödinger equation
for the electronic motion

Helecψelec(r,R) = εelec(R)ψelec(r,R) (1.6)

with

Helec = −

N∑
i

 h2

2me
∇2
i +

N∑
i

N∑
j>i

e2

|ri − rj|
−

M∑
k

N∑
i

Zke
2

|Rk − ri|
(1.7)

and R = {R1,R2, . . . }, r = {r1, r2, . . . }. As can be seen both the electronic wave func-
tion ψelec and the pure electronic energy εelec depend parametrically on the nuclei
positions. The electronic contribution to the total energy is then obtained as

εtot(R) = εelec(R) +

M∑
k

M∑
l>k

ZkZle
2

|Rk − Rl|
(1.8)

It is time now to consider nuclear motions. According to our picture, the elec-
trons move much faster than the nuclei, thus it is reasonable to think that the nuclei
move in an average field of the electrons in which the total energy εtot(R) provides
a potential for the nuclear motion. Hence the Schrödinger equation for the nuclear
motion is

Hnucψnuc(R) = Eψnuc(R) (1.9)

where

Hnuc = −

M∑
k

 h2

2mk
∇2
k + εtot(R) (1.10)

and E is the total energy of the system that includes electronic, vibrational, rotational
and translational energy. The nuclear wave function ψnuc describes the vibration,
rotation, and translation of the system. Reached this point, we can introduce the
concept of potential energy surface (PES): a PES is a surface defined by εtot over all
nuclear coordinates on which the nuclei evolve.

Briefly, within the BO approximation the problem of finding the solution to the

9



1.2. ELECTRONIC STRUCTURE CALCULATION

Schrödinger equation is twofold. First, one solves the electronic equation for a grid
of different nuclei orientations, thus obtaining the PES. Second, the nuclear equa-
tion is solved using the PES obtained in the previous step. Finally, the total wave
function is

ψ(r,R) = ψelec(r,R)ψnuc(R) (1.11)

Having introduced the BO approximation, we proceed to describe the methods used
to solve both electronic and nuclear Schrödinger equations.

1.2 Electronic structure calculation
Nowadays with the increasing development of computational quantum chemistry,
there are a great number of approximate methods which can be employed to solve
the electronic Schrödinger equation. Most of these methods are implemented in
commercial packages such as MOLPRO [34]. In the following subsection we will
briefly describe the methods used in this work.

1.2.1 Hartree-Fock method

The Hartree-Fock (HF) method is one of the simplest approaches for solving the
electronic Schrödinger equation. It is based on a simple approximation in which the
electronic wave function is given by a single Slater determinant of N spin-orbitals
χi

ψ0(x1, x2, . . . , xN) =
1√
N!

χ1(x1) χ1(x2) . . . χ1(xN)

χ2(x1) χ2(x2) . . . χ2(xN)
...

... . . . ...
χN(x1) χN(x2) . . . χN(xN)

(1.12)

where the variables x include both coordinates of space and spin.
By minimizing the electronic energy with respect to the choice of the spin-

orbitals, one can obtain the HF equations.

f(i)χi = εiχi (1.13)

where f(i) is an effective mono-electron operator, called the Fock operator

f(i) = −
1
2
∇2
i −

M∑
k

Zk

|ri − Rk|
+ vHF(i) (1.14)

The term vHF(i) is the average potential experienced by the ith electron due to the
presence of the other electrons. In essence, the HF approximation replaces the many
electron problem by a one-electron problem in which the electron-electron repul-
sion is treated in an average way. Since the HF potential vHF(i) depends on the
spin-orbitals of the other electrons, equation (1.13) is not linear and must be solved
iteratively. This iterative procedure is called the self-consistent field method.
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The accuracy of a HF calculation will depend on a great extent on the size of the
basis set used to expand the spin-orbitals but even for an infinite basis set there will
be a difference between HF limit and the exact energy. This difference is called cor-
relation energy and arise from the fact that the HF approximation does not include
electron correlation. Usually the correlation energy represents 1% of the total en-
ergy. On an absolute basis this is not much, but for the study of chemical processes
it is too large. There are many methods which take into account the electronic cor-
relation. In the following subsections, we briefly describe those that were employed
in the present study.

1.2.2 Multi-configurational self-consistent field method

The most straightforward way to include electron correlation in electronic struc-
ture calculations is to use more than one Slater determinant in the description of
the electronic wave function. Following this concept, in the multi-configurational
self-consistent field (MCSCF) method, one writes the wave function as a linear com-
bination of Slater determinants |Ψi〉:

ψelec =
∑
i

ci|Ψi〉 (1.15)

Note that the HF and the MCSCF methods become identical for a closed-shell sys-
tem in which only one determinant is included in the expansion (1.15). The major
difficulty in the MCSCF is to choose which determinant should be included in the
expansion (1.15). The most commonly used approach is the complete active space
self-consistent field (CASSCF). In CASSCF, the determinants are selected as all pos-
sible ones that can be formed within a given set of "active" orbitals. Finally the
coefficients ci and the spin-orbitals contained in |Ψi〉 are varied to obtain the total
electronic wave function with the lowest possible energy.

1.2.3 Coupled cluster methods

Coupled cluster methods were initially developed for the treatment of many body
quantum systems in nuclear physics in the 1950s, but became more frequently used
after Čížek and Paldus [35, 36] reformulated the method for electron correlation in
atoms and molecules. Nowadays, coupled cluster methods are some of the most
powerful quantum chemistry methods that include electronic correlation.

The electronic wave function of the coupled cluster theory is written as:

ψelec = eT |Ψ0〉 (1.16)

where |Ψ0〉 is a reference wave function (typically a Slater determinant constructed
from HF molecular orbitals). The operator eT is defined by the Taylor series expan-
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sion:

eT = 1+ T +
T 2

2!
+
T 3

3!
+ · · · =

∞∑
k=0

Tk

k!
(1.17)

and T is the cluster operator which is written in the form,

T = T1 + T2 + T3 + · · ·+ TN, (1.18)

where T1 is the operator of all single excitations, T2 is the operator of all double exci-
tations and so forth. The Ti operator acting on the reference wave function generates
a linear combination of i-tuple excited Slater determinants. For example in the case
of the single and double excitation operator we have

T1|Ψ0〉 =
∑
a

∑
i

tia|Ψ
i
a〉 (1.19)

T2|Ψ0〉 =
∑
ab

∑
ij

tijab|Ψ
ij
ab〉 (1.20)

where |Ψia〉 and |Ψijab〉 are respectively single and double excited Slater determinants.
The coefficient tia and tijab are called, respectively, single- and double-excitation am-
plitudes.

To apply the coupled cluster method, two approximations are made. First, in-
stead of using a complete set of basis functions, one uses a finite basis set to express
the spin-orbitals in the reference wave function |Ψ0〉. Second, instead of including
all the operators T1, T2, . . . , TN one approximates the operator T by including only
some of these operators. The terms included in the expansion (1.18) determine the
name of the coupled cluster method. For example in the CCSD(T) method, the exci-
tation operator has the form T = T1 + T2. Terms in round brackets indicate that the
contribution of triple excitations is calculated with the perturbation theory.

The aim of a coupled cluster calculation is to find the excitation amplitudes
which are obtained by solving the set of simultaneous nonlinear equations aris-
ing from the substitution of equations (1.16) in the electronic Schrödinger equation.
Once the excitation amplitudes are known, the wave function and the energy can be
determined.

Coupled cluster methods, like many other ab-initio methods, show an extremely
slow basis set convergence of the correlation energy. The origin of this slow conver-
gence is due to the use of Slater determinants to construct two-electron and higher-
rank basis sets. Slater determinants fail to model the exact wave functions at short
inter-electronic distances. To solve this problem, one can use the explicitly corre-
lated methods (–F12) in which the wave function is modeled explicitly in terms of
the inter-electronic distances.
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1.2.4 Basis sets

In all the methods presented above, the spin-orbitals are represented as a linear
combination of atomic orbitals (LCAO):

χi =

n∑
j

cijφj (1.21)

where the set of n functions {φi} is known as basis set. The basis functions {φi} are
commonly represented using either Slater type orbitals (STOs) or Gaussian type or-
bitals (GTOs). Each orbital type has their own advantages and disadvantages. For
example, STOs are physically the best choice as they are solutions to the Schrödinger
equation of hydrogen-like atoms, and decay exponentially far away from the nu-
cleus. However, calculations of integrals over STO functions require long computa-
tional time. GTOs, on the other hand, lack physical meaning but are computation-
ally tractable.

Nowadays, there are hundreds of basis sets. Some of the most widely used
basis sets are the augmented correlation consistent polarized valence N-tuple zeta
(aug-cc-pVNZ with N= D, T, Q, 5, 6) developed by Dunning et al. [37–41]. These
GTO basis sets have become the current state-of-the-art for correlated calculations
since they are designed to converge systematically to the complete basis set limit
using empirical extrapolation techniques.

1.3 Quantum nuclear motions
Having discussed the methods to solve the electronic problem, we are in condition
to introduce the methods for solving the nuclear Schrödinger equation. Specifically,
the methods presented here focus on finding the bound and scattering states for the
interaction between: (i)–an atom and a linear rigid rotor, (ii)–two linear rigid ro-
tors. The first step in any formulation is to choose the reference coordinate frame.
Throughout this monograph, unless specified, the reference coordinate frame is
the space-fixed coordinate frame. For the systems under consideration the nuclear
Hamiltonian, equation (1.10), can be written as :

H = −
 h2

2µ

(
1
R

∂2

∂R2R

)
+Hrot(ϑ) +V(R, ϑ) (1.22)

where µ is the reduced mass, R is the intermolecular distance and ϑ stands for all
the other coordinates. Hrot(ϑ) represents the sum of the rigid-rotor Hamiltonians
of the isolated moieties and V(R, ϑ) is an interaction potential which includes the
centrifugal barrier.
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1.3.1 Coupled channel method

The coupled channel method has been widely applied to the study of inelastic col-
lision but is also applicable to vibrational-rotational levels of floppy molecules such
as van der Waals complexes. In the coupled channel approach the wave function for
the ith state is expanded as:

Ψ(i)(R, ϑ) = R−1
∑
j

Yj(ϑ)G
(i)
j (R) (1.23)

where the functions Yj(ϑ) are eigenvectors of the internal HamiltonianHrot(ϑ)

HrotYj = εjYj (1.24)

Substituting the equations (1.22) and (1.23) into equation (1.9) and projecting
onto a basis function Yk(ϑ), one obtains the following second-order differential
equation for the channel function G(i)

k (R):
d2

dR2G
(i)
k (R) =

∑
j

Wjk(R)G
(i)
j (R) (1.25)

where

Wjk(R) =
2µ
 h2

∫
Y∗k(ϑ)V(R, ϑ)Yj(ϑ)dϑ− δjkκ2

j (1.26)

with

κ2
j =

2µ
 h2 (E− εj) (1.27)

Similar equations arise for each channel and are coupled by the non-diagonal term
Wjk(R). The choice of the functions Yj(ϑ), the form of the termWjk(R) as well as the
boundary conditions depend on the system under consideration. Therefore, they
will be presented in chapters 5 and 7. The complete set of coupled equations is in-
finite, but it is necessary to truncate the basis set to perform actual computations.
Calculations that use an exact formulation, with no approximation other than basis
set truncation, are usually referred to as close coupling (CC) calculations. The re-
sulting set of coupled one-dimensional second-order differential equations can be
solved using standard numerical methods such as the R-matrix propagator [42] or
the log-derivative propagator [43].

1.3.2 Variational approach

The variational approach is one of the most employed methods for finding the en-
ergy levels of weakly bounded van der Waals complexes. This approach is based
on the variational principle which states that given a normalized wave function Ψ
that satisfies the appropriated boundary conditions (usually Ψ|R→∞ = 0), then the
expectation value of the Hamiltonian is an upper bound to the exact energy∫

Ψ∗HΨdτ > E (1.28)
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CHAPTER 1. THEORETICAL FRAMEWORK

For the systems under consideration, the unknown solution can be represented ex-
actly in a complete set of orthogonal functions.

Ψ(R, ϑ) = R−1
∞∑
jk

cjkYj(ϑ)Gk(R) (1.29)

where the functions Yj satisfies equation (1.24) and Gk are usually a set of orthonor-
mal L2 polynomials that satisfy the following equation:

−
 h2

2µ
d2

dR2Gk = ηkGk (1.30)

In practice, expansion (1.29) is truncated to a finite number of terms. This truncated
representation is often called variational basis representation (VBR) [44–46]. The
name "variational" applies because the expectation values of the Hamiltonian are
larger than or equal to the corresponding exact energy (variational principle).

The coefficients cjk are obtained by minimizing the variational integral (1.28)
with the constraint that the wave function (1.29) must be orthonormal. The problem
of minimizing a function subject to a constraint is solved by the method of Lagrange
multipliers. This problem comes down to find the minimum values of the trial func-
tion

L(c11, c12, . . . , cnm, λ) =
n∑
jj ′

m∑
kk ′

cjkcj ′k ′Hjk,j ′k ′ + λ

(
n∑
j

m∑
k

c2
jk − 1

)
(1.31)

where

Hjk,j ′k ′ =

∫∫
G∗k ′(R)Y

∗
j ′(ϑ)HYj(ϑ)Gk(R)dRdϑ

= (εj + ηk)δjj ′δkk ′ +

∫
G∗k ′(R)Wjj ′(R)Gk(R)dR (1.32)

Differentiating equation (1.31) with respect to cj ′k ′ and setting the result equal to
zero, one obtains a set of linear equations for the coefficients cjk,

∂L

∂cj ′k ′
= 2

n∑
j

m∑
k

cjkHjk,j ′k ′ + 2λcj ′k ′ = 0 (1.33)

This set of equations can be written in a matrix notation as

Hc = λc (1.34)

Finally, the expansion coefficients are nothing less than the eigenvector of the
matrix H. Solutions to equation (1.34) lead to a set of (n · m) orthonormal
eigenvector c(i) and eigenvalues λ(i) which for convenience are arranged as
λ(0) < λ(1) < · · · < λ(n·m).

Therefore, instead of finding just one solution for Ψ, we have found (n ·m) so-
lutions for which the expectation values of the Hamiltonian are λ(i). Furthermore,
from the variational principle we obtain Ei 6 λ(i). Thus, the eigenvalues of H pro-
vide upper bounds to the energies of the lowest bound states of the system and as
n,m → ∞, then λ(i) → Ei. The number of basis functions should then be increased
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1.3. QUANTUM NUCLEAR MOTIONS

systematically until the calculation converges, i.e. until the quantities λ(i) become
stationary.

The major difficulty in the VBR is the calculation of the matrix elements of the
interaction potential

Vjk,j ′k ′ =

∫
G ′k(R)Wjj ′(R)Gk(R)dR (1.35)

For very simple systems, this integral can be done analytically. However, if the
potential function is complicated, this integration must be done numerically, intro-
ducing a possible source of inaccuracy into the calculation. The approximation to
the VBR in which matrix elements of the potential energy operator are evaluated by
anm-point quadrature rule associated to the polynomial {Gk}m is called finite basis
representation (FBR) [44–46].

VFBR
jk,j ′k ′ =

m∑
α

G ′k(Rα)Wjj ′(Rα)Gk(Rα)ωα (1.36)

where ωα is the quadrature weight associated with the αth grid point Rα. The FBR
can be transformed to a new representation {Dα}m in which the basis functions are
orthogonal on a set of points in the coordinate space. The points are usually ob-
tained from a quadrature rule. Each function is worth 1 for one point and zero for
all other points. This representation is called discrete variable representation (DVR).
The transformation between the FBR and DVR basis sets is given by the matrix L†

defined as

L†kα = ωα
1/2Gk(Rα) (1.37)

The basis functions of the DVR are then

Dα(R) =

m∑
k

L†kαGk(R) (1.38)

In the DVR, the matrix elements of the interaction potential are given by the poten-
tial evaluated at the set of quadrature points

VDVR
jα,j ′β =Wjj ′(Rα)δαβ (1.39)

If the FBR basis functions are selected such that the FBR representation of the ki-
netic operator is easily evaluated, possibly diagonal, then the use of the FBR–DVR
becomes highly advantageous. The transformation between the FBR and DVR ma-
trix elements of the potential is obtained from equations (1.36) and (1.37):

VFBR
jk,j ′k ′ =

n∑
αβ

L†kαVαβLβk ′ = (L†VDVRL)jk,j ′k ′ (1.40)

Consequently the matrix element of the Hamiltonian in the DVR are

HDVR
jα,j ′β = (LHFBRL†)jα,j ′β

=
∑
k

ηkGk(Rα)(ωαωβ)
1/2Gk(Rβ) + εjδαβδjj ′ +Wjα,j ′β(Rα)δαβ (1.41)
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which are more easily computed than the VBR matrix elements given by equa-
tion (1.32).
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2.1. INTRODUCTION

2.1 Introduction
As suggested by Herbst [2] long ago, REA is expected to be the main production
channel of anions for environments where the density of electron is relatively im-
portant (10−7 the density of H2 ). On the experimental side, measurements of REA
cross sections are scarce due to the difficulties of measuring these very low magni-
tude cross sections. Conversely, PD is the subject of many studies. Also, experimen-
tal data are available for this process for several diatomic molecular anions which
can be used to benchmark our theoretical results by using micro-reversibility.

On the theoretical side, the first methods which apply equivalently to REA and
PD were proposed in the seventies [48] and were based on the use of the first Born
approximation (FBA). This approach relies on the fact that for non-polar systems the
long-range interaction between the outcoming or incoming electron and the neutral
molecule is negligible, thus allowing the use of a plane wave for describing the con-
tinuum wave function of the departing electron. Within this one-electron approach,
the wave function of the departing electron inside the anion is considered to be the
highest occupied molecular orbital (HOMO). This approach was revised more re-
cently by several authors who improved this treatment by taking into account the
correlation with the electrons of the target through the use of Dyson orbital calcu-
lated at the CCSD(T) level [49] or from density functional theory (DFT) [50]. The
use of a calculated continuum electron wave function instead of a plane wave was
also considered very early in the field of molecular photoionization by Collins and
Schneider [51] but its first use for PD was proposed in 2013 by Douguet et al. [26]
within the complex-Kohn variational formalism. We use here a very similar ap-
proach but instead we use the integral equation formalism [52, 53] to obtain the
scattered electron wave function. Before ending this introduction we would like
also to mention a novel Sturmian approach which has been recently developed by
Granados-Castro et al. [54] and satisfactory applies to photoionization, and could
be potentially extended to PD.

The chapter is organized as follows. In section 2.2 we introduce the main steps
of the scattering methods as well as the description of the calculation of the Dyson
orbitals. The parameters of the different calculations are given in section 2.3 and
a first test of the method for the calculation of the PD of O−

2 , CN− and OH− are
presented in section 2.4 where a comparison is done with the available experimental
data and with other theoretical results, e.g. Kohn variational and R-matrix methods.
In the second part of this section, the FBA is used to discuss the convergence of the
REA and PD cross sections as a function of the size and type of basis set as well as the
different approximations for the calculation of the Dyson orbital. The conclusions
of the present study are eventually presented in section 2.5.
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CHAPTER 2. A SINGLE CENTER APPROACH TO REA AND PD

2.2 Theory
In this section, we give a brief account of the method which allows us to obtain the
REA and PD cross sections for linear molecules. The same method can be straight-
forwardly extended to treat non-linear molecules as well. This method relies on a
single center body-fixed expansion of the bound and continuum wave around the
center of mass of the molecule.

For a given value of the initial relative angular momentum l0 and its projection
Λ along the molecular axis one writes the scattered electron wave function like:

ψScat
Λl0

(r) =
1
r

∑
l

ΥScat
Λl0,l(r)Y

Λ
l (r̂) (2.1)

In a similar way the one-electron wave function of the anion is taken to be a Dyson
orbital also expanded in spherical harmonics:

ψ
Dyson
Λ ′ (r) =

1
r

∑
l ′

Υ
Dyson
Λ ′,l ′ (r)Y

Λ ′
l ′ (r̂) (2.2)

where Λ ′ is the projection of the electronic angular momentum l ′ of the anion along
its molecular axis.

2.2.1 Radiative electron attachment and photodetachment cross sec-
tions

The expressions of the cross section as a function of the dipole moment matrix ele-
ments were given long ago for the photoionization of neutral molecules [51] or for
the PD [55].

σPD(ω) =
4π2e2ω

9c

∑
l0Λ

‖µΛΛ ′l0
‖2 (2.3)

where

µΛΛ
′

l0π
= N

1
2
0

〈
ψScat
Λl0

∣∣µπ∣∣ψDyson
Λ ′

〉
(2.4)

are the dipole matrix elements, N0 is the degeneracy factor (see below subsec-
tion 2.3.3),ω is the photon frequency and c the speed of light and µπ the components
of the dipole moment with π ∈ {−1, 0, 1}. While the same expression is used for both
processes PD and photoionization, the departing electron is subjected to potentials
which differ strongly in strength and range.

Using equations (2.1) and (2.2), the expression (2.4) can be rewritten :

µΛΛ
′

l0π
=
∑
l,l ′
IΛΛ

′
πll ′

∫∞
0
ΥScat
Λl0,l(r)rΥ

Dyson
Λ ′,l ′ (r)dr (2.5)

with:

IΛΛ
′

πll ′ = (−)Λ
√

(2l+ 1)(2l ′ + 1)

(
l 1 l ′

0 0 0

)(
l 1 l ′

−Λ π Λ ′

)
(2.6)

The corresponding equations for the REA cross section are straightforwardly ob-
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tained from microscopic reversibility [56, 57]:

σREA(ε) =

(
ga

gn

)
 h2ω2

2meεc2σPD(ω) (2.7)

where the quantities gn and ga are the statistical weights of the electronic states of
the neutral molecule and of the anion, respectively, ε is the electron kinetic energy
and me is the electron mass. Let us note that this principle of micro-reversibility
should be applied to processes with well-specified internal quantum states (rota-
tional, vibrational, electronic) of the initial and final species. Since in the present
work we are not considering the rovibrational states of the anion and of the neutral
molecule, the use of equation (2.7) is an approximation.

We will now detail the procedure used for obtaining the radial coefficient of the
Dyson ΥDyson

Λ ′,l ′ and the scattering ΥScat
Λl0,l wave functions.

2.2.2 Calculation of the Dyson orbital

Let us consider a N-electrons molecular system represented by the electronic wave
function ψN(r1, r2, . . . , rN). After ionization this system has lost one electron and its
(N − 1)-electron wave function is represented by ψN−1(r1, r2, . . . , rN−1). The Dyson
orbital is then defined as:

ψ
Dyson
Λ ′ (r) =

√
N

∫
ψN−1(r1, . . . , rN−1)ψ

N(r1, . . . , rN)dr1 . . .drN−1 (2.8)

If ψN and ψN−1 are represented by accurate multi-configurational wave functions,
then the Dyson orbital gathers the effects of electronic correlation on both systems
and therefore the effects of the electronic relaxation which results from the addition
or subtraction of one electron in the molecular electronic wave function.

A method for computing the Dyson orbital from MCSCF is detailed in ap-
pendix A. It is based on the overlaps between the orbitals of the N-electron system
and the orbitals of the (N-1)-electron system. Other ab-initio methods have been re-
ported, using the equation-of-motion coupled-cluster method [58] or the construc-
tion of a biorthonormal set of two multi-configurational wave functions [59].

The calculated Dyson orbital is then conveniently represented by an expansion
over the molecular orbital set of the N-electron system

ψ
Dyson
Λ ′ (r) =

∑
p

bpφp(r) (2.9)

where the index p denotes any occupied orbital.
A simple approximation of the Dyson orbital is given by the Hartree-Fock

frozen-core (HFFC) approach [48, 51]. Within this approximation, the HF orbitals
of the anion are used to describe those of the remaining neutral core. In that case,
the integral (2.8) is easily calculated. The Dyson orbital is just the spatial orbital from
which the electron is ejected. This approximation neglects the electronic correlation
and the relaxation of the molecular orbitals after PD.
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Kohn-Sham (KS) orbitals have been recently proposed as good candidates for
approximating the Dyson orbital [50, 60, 61]. Although KS orbitals were introduced
as a mere artifact only for calculating the total energy and charge density, the latter
proposition is based on the analogies found between the Dyson’s quasi-particle and
KS equations.

In any case, the Dyson orbital is represented as a linear combination of either
GTOs or STOs. The radial expansion coefficients, equation (2.2), are determined
from a set of analytical relations expressed in term of modified Bessel functions [62,
63]. The different basis sets[38, 64] used in this work are detailed in Table 2.1

Table 2.1: Basis set used in the present work

Type Basis H B–Ne
GTO aug-cc-pVQZ [5s4p3d2f] [6s5p4d3f2g]
GTO aug-cc-pV5Z [6s5p4d3f2g] [7s6p5d4f3g2h]
GTO aug-cc-pV6Z [7s6p5d4f3g2h] [8s7p6d5f4g3h2i]
STO VB2 4s2p1d 6s4p2d1f
STO VB3 5s3p2d1f 7s5p3d2f1g

All electronic calculation needed for the computation of the Dyson orbital were
performed using the MOLPRO package [34] and the SMILES package [65].

2.2.3 Calculation of the electron continuum wave function

2.2.3.1 Scattered wave

In this section we present our adaptation to PD and REA of the integral equations
approach developed long ago by Rescigno and Orel [52, 53] for electron–molecule
collisions. While only the main steps of the implementation of the method for linear
molecules will be presented, more details can be found in the seminal references
[52, 53]. First, the electronic wave function of the target is analytically expanded in
symmetrized spherical harmonics and the expansion coefficients are employed for
obtaining the static interaction potential. More specifically, we will consider here a
MCSCF wave function and use the natural orbitals and their occupancies to obtain
static contribution. The method also entails obtaining a diagonal separable form of
the exchange potential kernel for the lowest symmetries Σ, Π and ∆ of the scattered
electron wave function in the same atomic orbital basis set than the one used for the
Dyson orbital, possibly augmented with a few functions centered around the center
of mass,

K(r, r ′) =
∑
α

χα(r)ξαχα(r
′) (2.10)
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where ξα and χα(Rr) are respectively the eigenvalues and eigenvectors of the ex-
change kernel in this basis set. If needed, a density functional Hara’s free electron
gas exchange (HFEGE) [66] is used for higher symmetries. A density functional
form of the correlation-polarization potential as introduced by Padial and Norcross
[67] is also obtained from the same electronic wave function and included in the
local interaction potential.

The scattering wave function is expanded in spherical harmonics. The resulting
single center coupled equations take the usual form :(

d2

dr2 −
l(l+ 1)
r2 + k2

)
Φll0(r) =

∑
l ′α

[
Ull ′(r)Φl ′l0(r)

+ χlα(r)ξα

∫∞
0
χl
′
α(r
′)Φl ′l0(r

′)dr ′
]

(2.11)

where, to make the notation less cluttered, the projection Λ of the relative angular
momentum associated with the symmetry for which the calculations are performed
is not mentioned. In this expression, Ull ′ denotes the matrix elements of the local
contributions to the interaction potential which includes the static and correlation-
polarization potentials. The integral form of these equations are solved with the
Sams and Kouri [68, 69] method extended by Rescigno and Orel [52, 53] to the multi-
channel case with a separable exchange potential.

The radial components of the wave function are expressed as a linear combina-
tion of homogeneous and inhomogeneous terms

ΥScat
Λl0,l(r) ≡ Φll0(r) = Φ

0
ll0
(r) +

∑
α

Φαl (r)C
α
l0

(2.12)

which both satisfy a set of Volterra equations given by

Φ0
ll0
(r) = δll0jl(kr) +

∑
l ′

∫ r
0
gl(r, r ′)Ull ′(r ′)Φ0

ll0
(r ′)dr ′ (2.13)

for the homogeneous term and for the inhomogeneous term

Φαl (r) =

∫ r
0
gl(r, r ′)χαl (r

′)dr ′ +
∑
l ′

∫ r
0
gl(r, r ′)Ull ′(r ′)Φαl (r

′)dr ′ (2.14)

The integral-equations algorithm is very efficient but requires the use of two
kinds of well documented stabilization methods [53] corresponding to a change of
the initial conditions. The upper triangular stabilization entails decomposing the
homogeneous solution, at some given propagation distance, into the product of the
upper and lower triangular matrices. The solution matrix is replaced by the result-
ing upper triangular matrix whose columns are guaranteed to be linearly indepen-
dent. The second kind of stabilization, referred to as physical by Rescigno and Orel
[53], is designed to make the solution matrix resemble the physical solution as much
as possible. In both cases, the stabilization of the homogeneous part of the solution
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can be written in term of a transformation matrix T such that

Φ0
ll0
→ Φ̃0

ll0
=
∑
k

Φ0
lkTkl0 (2.15)

For the same value of the propagation distance, an associated stabilization of the
non-homogeneous part of the scattering wave function needs also to be performed.
For both kinds of stabilization, the non-homogeneous part of the scattering wave
function can be written in terms of a transformation matrix d and the stabilized
homogeneous part of the wave function:

Φαl → Φ̃αl = Φαl +
∑
l"

Φ̃0
ll"d

α
l" (2.16)

The wave function is then propagated outwardly and stabilized regularly up to the
asymptotic region where the boundary conditions are applied and the reactance
matrix is obtained.

If we now apply this method to directly propagate the dipole moment matrix
elements defined in equation (2.4), we see that the two terms of the electron con-
tinuum wave function (2.12) must be taken into account. Thus, the dipole moment
matrix elements can be split into two contributions associated with the local and
non-local parts of the interaction potential which are respectively denoted by static
and exchange:

µΛΛ
′

l0π
= [µΛΛ

′
l0π

]Stat + [µΛΛ
′

l0π
]Exc (2.17)

The static contribution is

[µΛΛ
′

l0π
]Stat =

∑
l,l ′
IΛΛ

′
πll ′

∫∞
0
Φ0
ll0
(r)rΥDysonΛ ′,l ′ (r)dr (2.18)

and the exchange contribution is

[µΛΛ
′

l0π
]Exc =

∑
α

Cαl0
MΛΛ ′
απ (2.19)

with

MΛΛ ′
απ =

∑
l,l ′
IΛΛ

′
πll ′

∫∞
0
Φαl (r)rΥ

Dyson
Λ ′,l ′ (r)dr (2.20)

These two contributions are accumulated along the propagation of the continuum
wave function and then need also to be stabilized at the points where the wave
function is stabilized.

We obtain straightforwardly from equation (2.15) that the stabilization procedure
of the homogeneous part of the dipole matrix is simply given by:

[µΛΛ
′

l0π
]Stat → [µ̃ΛΛ

′
l0π

]Stat =
∑
k

Tkl0 [µ
ΛΛ ′
kπ ]Stat (2.21)

while using equation (2.16) the corresponding transformation of the exchange part
of the dipole matrix is found to be for the intermediary matrix M:

MΛΛ ′
απ → M̃ΛΛ ′

απ =MΛΛ ′
απ +

∑
l"

dαl"[µ̃
ΛΛ ′
l"π ]Exc (2.22)
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2.2.3.2 Plane wave

We have also applied the FBA to the study of REA and PD processes as it is very
simple to use and allows huge computer time saving since neither the electron–
molecule interaction potential nor the scattering wave function need to be calcu-
lated. Indeed, within the FBA, the electron continuum wave function is just a plane
wave and the interaction potential between the electron and the target is then im-
plicitly considered to be zero. This is a reasonable approximation in the case of the
interaction between an electron and neutral non-dipolar molecule for which the in-
teraction is relatively short-ranged. The first implementation of the method for the
PD from anions was proposed long ago [48]. In this early attempt, the Dyson orbital
was approximated by the HOMO of the anion. More recently, new implementa-
tions of the method using instead a Dyson orbital calculated by the DFT or coupled-
cluster methods were shown to give very good results for several systems[49, 50].

The expansion coefficients in spherical harmonics of the scattering wave function
defined in equation (2.1) are easily obtained from

ψScat
Λl0

(r) =

√
k

(2π)3e
ikr

=

√
k

(2π)3

∑
l

iljl(kr)Pl(cosθkr) (2.23)

The radial expansion coefficients ΥScat
Λl0,l(r) of equation (2.1) reduce, in this case, to

the Ricatti-Bessel functions.

2.3 Parameters of the calculations
All the calculations are performed using the following assumptions:

- The electron affinities, the ionization energies, the parallel and perpendicu-
lar polarizabilities of the neutral molecules are fixed to the values shown in
Table 2.2.

- We consider only the contributions from the electronic ground states of both
the anion and the neutral molecule to the REA or PD processes.

2.3.1 Dyson orbital

In the case of the HFFC and KS approach, since CN− and OH− have a singlet ground
state, the Dyson orbital is just the HOMO. For O−

2 which has a 2Π ground state with
the configuration π3, and becomes after PD the O2 molecule with a 3Σ− ground state
and the π2 configuration, the Dyson orbital is the π orbital occupied by 2 electrons
in the ground state of O−

2 .
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Table 2.2: Dipole moment (µ), polarizabilities (α), ionization energies (IE) and elec-
tron affinities (EA) used in the calculations. Dipole moments and polar-
izabilities were calculated using the finite field method implemented in
MOLPRO at CCSD(T)/aug-cc-pV6Z level.

Molecule µ (Debye) α‖ (a3
0) α⊥ (a3

0) IE (eV) EA (eV)
O2 0 14.11 8.74 12.07[70] 0.4480[71]
CN 1.40 25.13 16.32 14.17[72] 3.8620[73]
OH 1.63 8.62 6.21 13.02[74] 1.8277[75]

Experimental equilibrium bond lengths of the anions are employed in the calcu-
lations, namely 2.224, 2.551, 1.833 a0 for CN− [73], O−

2 [76], and OH− [77], respec-
tively. The maximum value of l ′ for the expansion of the Dyson orbital in spherical
harmonics, equation (2.2), is fixed to 35, 34 and 25 for CN−, O−

2 and OH−, respec-
tively.

2.3.2 Continuum wave function

2.3.2.1 Scattered wave

In order to solve the integro-differential equation detailed in section 2.2.3 we need
first to obtain the static, correlation polarization and exchange potential.

Static potential. The fundamental electronic wave functions of the CN, O2 and
OH molecules are described at the CASSCF level with full valence active space and
using the basis set shown in Table 2.1 and the experimental geometries. A total of
150 values of l are included in the analytical expansions of the natural orbitals in
spherical harmonics. We then use this expansion together with the natural orbital
populations to obtain the 80 first terms of the static potential multipole expansion.

Correlation-polarization potential. We use the local density functional form of
Padial and Norcross [67] and the polarizabilities given in Table 2.2 to obtain the
l = 0 and l = 2 contributions included in our calculations.

Exchange potential. First, the local density functional HFEGE [66] is calculated for
a maximum values of l = 40 and using the ionization energies given in Table 2.2.
Secondly, a non-local separable form [52] is computed for the Σ and Π symmetries
in the GTO basis set used to calculate the electronic wave functions. The maximum
value of l considered for the expansion in GTO functions is 80 for the three systems.
For the ∆ symmetry, a HFEGE potential is used as it was shown to give equivalent
results.

2.3.2.2 Plane wave

In all calculations the partial wave expansion of a plane wave, equation (2.23), was
truncated at a maximum value of 40 Riccatti-Bessel functions for the three systems.

27



2.4. COMPARISON BETWEEN THEORY AND EXPERIMENT

2.3.3 Spin and electronic degeneracies

In the case of PD or photoionization of a closed-shell system with no electronic de-
generacy, the calculated cross section must be multiplied by 2 [51, 78, 79]. This arises
from the fact that the final state combines two electrons in two different orbitals and
must be a singlet state. The spin of the electron ejected from the initial closed-shell
system can be up or down. Both spin projections lead to the same cross section and
we have to sum over these two cases. This applies to the PD of CN−(X1Σ+) giving
CN(X2Σ+). Let us now consider the PD from OH−(X1Σ+). The HOMO is a π or-
bital occupied by 4 electrons. The final state is OH(X2Π) with the π orbital occupied
by 3 electrons. The ejected electron can be any of the 4 initial electrons occupying
the HOMO. The total PD cross section is then the sum of the four equivalent cross
sections calculated by considering only one electron among the four available ones.
Thus we multiply the calculated cross section by 4. Finally, let us turn to the PD
from O−

2 (X
2Π) which has a π HOMO occupied by 3 electrons. We consider only the

final state O2(X
3Σ−
g ). The final π HOMO is occupied by 2 electrons and must be a

triplet state. This requires two open shells. Let us denote by πx and πy the two de-
generate orbitals which form the π orbital. The initial state has two electrons in the
πx or πy orbital and one electron in the other degenerate orbital. The final state must
have one electron in each πx and πy orbitals. Therefore there is only the possibility
to eject an electron from the doubly occupied orbital. This case reduces to the case
of a closed-shell system with no electronic degeneracy and therefore, we multiply
the calculated cross section by 2. Furthermore we have to average the cross section
over all initial states. The two initial degenerate states of O−

2 (X
2Π) are equivalent (2

electrons in πx and 1 in πy or the reverse). Therefore the cross section of only one
case needs to be calculated.

2.4 Comparison between theory and experiment
In this section we first test our theoretical approaches by comparing our results for
the PD cross sections with the experimental data available for O−

2 , OH− and CN−

respectively in Figure 2.1, 2.2 and 2.3. In these calculations, the Dyson orbital as
well as the different contributions to the interaction potential were calculated at the
CASSCF level using the VB3 basis set.

For O−
2 we see in Figure 2.1 that there is a global good agreement between theory

and experiment whatever the theoretical method used. The relatively good agree-
ment between the scattered wave and plane wave calculations was expected as O2

has no dipole and the interaction potential between the ejected electron and O2 is
driven by the charge quadrupole (∝ r−3) and charge-induced dipole (∝ r−4) con-
tributions which are not very strong. Thus the continuum wave function is well
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described by a plane wave for this system. The present PD cross section obtained
using the FBA is in very good agreement with the cross section reported by Oana
and Krylov [49]. Although both calculations use a plane wave to describe the elec-
tron continuum wave, they employ different basis sets and methods for the calcula-
tion of the Dyson orbital. The PD cross section of O−

2 is, however, rather insensitive
to the basis set, as shown below in section 2.4.1. Furthermore, due to symmetry,
the Dyson orbital is essentially the πg orbital with a small contribution from the
π∗g orbital, therefore reducing the discrepancy which could come from the different
methods of calculating the Dyson orbital.
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ezDyson-PW
Burch et al.
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Figure 2.1: Experimental [80, 81] and calculated PD cross section of O−
2 . The cal-

culated cross sections correspond to different descriptions of the elec-
tron continuum wave function: plane wave (PW), scattered wave using
a separable exchange potential (SEPEX), scattered wave using a HFEGE
potential. The red dashed line depicts the cross section obtained by Oana
and Krylov [49] using the FBA.

In the case of OH− represented in Figure 2.2, four sets of experimental data are
available which agree only for the lowest photon energies. At higher energy it be-
comes difficult to decide which set of experimental data is the most reliable. But
let us note that the experimental work of Branscomb [77] is the oldest one (1966)
and gives the largest cross section while the work of Lee and Smith [82] is more re-
cent (1979) and is in good agreement with the most recent works of Hlavenka et al.
[84](2009).

Near the PD threshold, the three sets of calculations describe reasonably well the
increase of the cross section. At higher energies, a large discrepancy is observed
between the cross section calculated using a plane wave and the other two calcu-
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Figure 2.2: Experimental [77, 82–84] and calculated PD cross section of OH−. Nota-
tion as in Figure 2.1.

lated using the scattered wave function. This can be understood by reminding that
OH is a strongly dipolar molecule and that consequently the interaction potential
of this molecule with the ejected electron cannot be neglected. While the agreement
between theory and experiment is not as good as for O−

2 , the set of experimental
points of Lee and Smith [82] is however reasonably well reproduced by the separa-
ble exchange and HFEGE approaches, with a better match of the HFEGE approach
which exhibits the low energy bump observed in the experimental results. Among
the three molecules considered in this study, OH− is the one with the largest dipole
moment. It is known from previous studies [55] that rotation should be taken into
account in the case of strongly dipolar systems whereas it is neglected within our
approaches. This approximation is a possible cause of the disagreement between
theory and experiment for this system.

The calculated PD cross sections for CN− are compared in Figure 2.3 with the
only experimental point available. Our results agree reasonably well with the ex-
periment but the cross section obtained from the scattered wave with separable ex-
change potential is too large. In order to assess the energy dependence of the cross
section, we compared in the same figure our results with those obtained from state-
of-the-art R-matrix calculation of Khamesian et al. [29]. Again the agreement with
our calculations is relatively good, especially for the plane wave and scattered wave
using a HFEGE potential. The PD cross section reported by Skomorowski et al. [85]
for CN−, calculated using the FBA, is slightly lower than ours using the same ap-
proximation. There are at least two reasons for this discrepancy. First, Skomorowski
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Figure 2.3: Experimental [31] and calculated PD cross section of CN−. The cyan area
corresponds to the R-matrix calculations of Khamesian et al. [29] while
the red dashed line depicts the cross section obtained by Skomorowski
et al. [85] using the FBA. Notation as in Figure 2.1.

.

et al. use a calculated value (3.99 eV) for the PD threshold energy, while we use the
experimental value, namely 3.86 eV. The second reason for these differences is the
basis set used in the calculation of the Dyson orbital. Skomorowski et al. use a GTO
basis set while we use the VB3 STO basis set. The basis set dependence is discussed
in more details in section 2.4.1.

There are unfortunately no experimental REA data for these three systems but
two sets of theoretical calculations are available for CN using the complex Kohn
variational principle [26] and the R-matrix method [29]. The results of this calcu-
lation are compared with ours in Figure 2.4. It can be seen that the cross sections
calculated using scattered wave agree quite well with the R-matrix and Kohn varia-
tional result. Conversely, the FBA does not reproduce the very low collision energy
behavior. This result is understandable as the FBA is expected to work well when
the kinetic energy of the electron is large compared to the electron affinity of the tar-
get molecule. We then suggest that the scattered wave should be preferred for REA
calculations at very low energy.

We eventually calculated the REA rate coefficient at 300 K by Boltzmann averag-
ing of the REA cross sections for the three approaches presented above, see Table 2.3.
In the case of CN, among the three continuum wave functions used, it is the plane
wave which gives the best agreement with the value reported by Douguet et al.
[26], 7 × 10−16 cm3molecule−1s−1. While not realistic at very low energy, the FBA
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Figure 2.4: Calculated REA cross section of CN−. The cyan area corresponds to R-
matrix calculation of Khamesian et al. [29]. The red line corresponds to
the variational Kohn calculations of Douguet et al. [26]. Notation as in
Figure 2.1.

then appears to give the right order of magnitude of the REA rate coefficient at 300
K and offers a simple alternative for larger molecules for which the scattering wave
calculations could be time consuming. Also shown in Table 2.3 are the REA rate
coefficients obtained using the statistical expression proposed by Herbst [2]. The
statistical rate coefficients differ from our calculations by about 2 orders of magni-
tude. However all calculations agree with the fact that the REA rate coefficients for
diatomic molecules are particularly small.

Table 2.3: REA rate coefficients at 300 K for the different approaches discussed in the
text. We have used the notation a(b) which stands for a× 10b

Molecule SEPEX HFEGE PW Herbst
O2 6.1(−20) 7.1(−20) 5.1(−19) 2.0(−17)
CN 1.6(−15) 1.1(−15) 4.4(−16) 4.0(−18)
OH 4.8(−16) 6.8(−16) 6.8(−16) 1.1(−18)

2.4.1 Comparison of the methods and basis sets for the Dyson or-
bital evaluations

As seen above, there are several methods available to calculate the Dyson orbital and
it is also necessary to select a one-electron basis set. In this section, we investigate
how the REA and PD cross sections are depending on the type and size of the one-
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electron basis set and also on the method used to calculate the Dyson orbital. We
consider both STO and GTO basis sets and apply the various approaches and basis
sets to the three diatoms CN, O2 and OH. As it was found in the previous section
that the FBA gives reasonable results for a low computation time, we decided to use
this approximation to carry out this study.

Figure 2.5 shows first a comparison of the PD cross sections obtained using sev-
eral different electronic calculation method for obtaining the Dyson orbital. We
compare CASSCF calculations with the HFFC approximation and the KS-B3LYP ap-
proach. As can be seen on this figure, the HFFC approximation moderately under-
estimates the exact CASSCF cross sections as it neglects the electron-correlation. In
spite of the foregoing, the HFFC approach may offer a first estimate of the Dyson
orbital when the size of the system prohibits performing exact CASSCF calculations.
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Figure 2.5: Plane wave PD cross section for different approaches in the calculation
of the Dyson orbital.

We also find that the KS-B3LYP Dyson orbitals fail to provide the right order of
magnitude of the PD cross sections as it always overestimates its value. As KS or-
bitals are proportional to the Dyson orbital [60] one can understand why KS orbitals
are able to reproduce relative measurements like momentum distributions while
they fail to estimate absolute values of the PD cross sections. This interpretation is
confirmed by looking at the scaled KS results Figure 2.5, which reproduce correctly
the energy dependence of the CASSCF PD cross sections.

We now focus on the convergence of the PD and REA cross sections as a func-
tion of the size and the type of basis set used to perform the computation of the
Dyson orbital. These results are shown in Figure 2.6. The PD cross section for O−

2

shows almost no variation with respect to the choice of the basis set. Conversely,
the PD cross section for OH− and CN− show a strong dependence. This can be un-
derstood by reminding that both OH and CN are polar molecules while O2 is not.
As a consequence the interaction potential between the electron and CN or OH is
more long-ranged than for O2 and more diffuse functions are then required to prop-
erly describe the interaction potential. This is indeed what can be seen in Figure 2.6.
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Figure 2.6: Plane wave PD cross section for different basis sets employed in the cal-
culation of the Dyson orbital. AVNZ ≡ aug-cc-pVNZ.
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Figure 2.7: Plane wave REA cross section for different basis sets employed in the
calculation of the Dyson orbital. AVNZ ≡ aug-cc-pVNZ.

The largest STO basis set gives better results than the GTO ones since they are more
diffuse. This is clearly seen when comparing the VB3 and aug-cc-pV6Z results in
spite of the important difference of size between these two basis sets (Table 2.1).
Since STOs reproduce accurately the cusp of the atomic orbitals, a smaller number
of STOs is sufficient to properly describe the Dyson orbital in the short-range region.

If we now compare the results obtained for the REA cross sections, Figure 2.7,
we can see that only the low energy regime is significantly dependent on the choice
of the basis set. The explanation of this dependence is identical to the one discussed
for the PD cross sections.

2.5 Conclusion
A new method based on a body-fixed single-center approach and a variety of ap-
proximations of the Dyson orbital was presented for the calculation of the PD and
REA cross sections. Both the methods used to calculate the Dyson orbital and the
scattered wave function were reviewed in detail. The methods were benchmarked
by applying them to the three molecules CN−, O−

2 and OH− for which experimen-
tal PD data are available. The results of these approaches compare well with both
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experimental data and the only R-matrix and Kohn variational principle calcula-
tions available. We however expect that it may not be the case for strongly polar
molecules as it is based on a body-fixed approach.

We also compared available REA and PD data for these three systems with the
results given by the combination of FBA and the calculation of a Dyson orbital. We
found that a plane wave is an unexpectedly good approximation of the scattering
wave of the studied systems. Furthermore this simplified approximation reduces
drastically computer time.

The FBA was used to compare the results of several kinds of methods for the
evaluation of the Dyson orbital which is a key ingredient in the calculation of PD
and REA cross sections. We find that the KS-B3LYP results give the right energy
dependence of the cross sections but overestimates the absolute magnitudes, while
CASSCF and HFFC give relatively close results. The effects of the size and type of
orbital basis set were also investigated still within the FBA. STO basis sets are found
to perform better for a smaller number of basis functions than GTO basis sets. The
FBA combined with the HFFC Dyson orbitals appears to be an efficient alternative
tool for computing REA and PD cross sections for large molecular systems.
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Chapter 3

REA and PD rate coefficients for
carbon chains
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3.1. INTRODUCTION

3.1 Introduction
So far, interstellar anions are expected to be formed by REA

A + e− → A− + hν (3.1)

Experimental measurements of REA are very difficult to perform mainly because
of the very high vacuum required in order to prevent stabilization through colli-
sions with the background gas particles. For this reason most electron attachment
experiments [86–89] are only able to measure TBEA rates.

Long ago, Herbst [2] derived an expression for REA rate coefficients based on
phase-space theory. This model makes the assumption that the electron is first at-
tached through the formation of a temporary negative ion which is then stabilized
by the emission of a photon. At this early time, accurate calculations were impos-
sible to perform but the application of this model allowed Herbst to predict that
for species with large electron affinities the REA coefficient could be close to 10−7

cm3molecule−1s−1 at cloud temperatures of 10–50 K. The same model was later on
used to obtain REA rate coefficients for CN [90], C3N [91], Cn [4] and CnH [25].

More recently, Douguet et al. [26, 28], Khamesian et al. [29] revised the quan-
tum theory of REA and proposed a new mechanism in which the electron is at-
tached without the formation of any negative intermediate state. To distinguish the
two mechanisms they called the one-step process direct-REA and indirect-REA, the
two-step process proposed by Herbst [2]. They then calculated direct-REA rates for
the six detected anions up to now and found results which are several orders of
magnitude smaller than the indirect-REA rates calculated by Herbst and Osamura
[25]. By applying a purely quantum-mechanical approach to the indirect mecha-
nism, Douguet et al. [28] concluded that the contribution of indirect-REA process is
negligible compared to that of direct-REA if no unusual threshold effects like virtual
state, vibrational, Feshbach or dipolar resonances is involved in the process.

On the other hand, the reverse process PD (3.2) seems to be one of the most
important mechanism of destruction of interstellar anions.

A− + hν→ A + e− (3.2)

Kumar et al. [31] found for example that ultraviolet PD is the main destruction
mechanism of both CN− and C3N− anions in the IRC+10216 envelope. Experi-
mental measurements of PD are easier to perform and experimental data are avail-
able for some of the detected anions [31, 92, 93]. On the theoretical side, many ap-
proaches have also been applied to the study of PD [27, 29, 85]. The main differences
between these methods can be found in the treatment of the bound and continuum
wave of the outgoing electron.

In the previous chapter, we introduced a method allowing to compute both the
direct-REA and PD cross sections for diatomic molecules. It is based on the use of
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the FBA and on the computation of Dyson orbital to describe the electron bound
wave function. In the present chapter, we will extend this method to the study of
larger molecules, our main objective is to compute both the REA and PD rates for
the detected anions as well as for other potential candidates.

3.2 Methods
A PD process (3.2) with absolute cross section σPD proceeds at rate:

kPD = 4π
∫EH

EEA

Jλ(E)σPD(E)dE (3.3)

where Jλ(E) is the average intensity of the interstellar radiation field (ISRF) in units
of photons cm−2 s−1 sr−1 eV−1. The integral over photon energy E runs from the
electron affinity threshold EEA to the hydrogen ionization limit EH = 13.6 eV. Here,
we use the ISRF defined by Heays et al. [94].

On the other hand, the thermally average rate coefficient for a REA process (3.1)
with cross section σREA is:

kREA(T) =

√
8
meπ

(kBT)
−3/2

∫∞
0
σREA(ε)e

−ε/kBTεdε (3.4)

where kB is the Boltzmann’s constant,me and ε = E−EEA are the electron mass and
energy respectively.

The total REA cross section is the sum of the contribution from the direct-REA
and indirect-REA processes. Following the conclusions of the study of Douguet
et al. [28] we will neglect the contribution from indirect-REA in the present study
and write σREA ≡ σDREA

The use of equations (3.3) and (3.4) would require the knowledge of both the PD
and REA cross sections respectively. The calculation of PD and REA cross-section
has been described in detail in section 2.2.1. Here we employ the FBA approxima-
tion to describe the continuum wave function and a Dyson orbital calculated at the
CASSCF as the bound wave functions.

3.3 PD rate coefficients
The PD cross sections required for the calculation of the rate coefficients in equa-
tion (3.3), are calculated by neglecting the contributions from excited states of the
neutral molecule. As the inclusion of these contributions will increase the PD rate
coefficients, our calculations give a lower limit of the PD rate. Our results for the PD
rates of selected linear anions are shown in Table 3.1.

We find that the PD rates are about the same order of magnitude regardless of the
anion family and carbon chain size (10−9 − 10−8). We then suggest that the present
results can be used as a first rough estimate of the PD rates for other interstellar
anions which have not been previously experimentally measured nor calculated.
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Table 3.1: PD rate coefficient kPD in s−1 for selected linear molecular anions. The
format a(b) corresponds to a× 10b

n
C−
n CnH−

This work Millar et al. [23] This work Millar et al. [23]
1 . . . 3.32(−8) 1.41(−8)
2 4.02(−9) 3.77(−9) 4.00(−9) 3.39(−9)
3 4.18(−9) 6.60(−9) 8.75(−9) 7.50(−9)
4 5.84(−9) 2.16(−9) 4.67(−9) 2.50(−9)
5 4.42(−9) 3.41(−9) 8.38(−9) 4.35(−9)
6 7.83(−9) 1.90(−9) 5.41(−9) 2.23(−9)
7 5.18(−9) 2.75(−9) 8.08(−9) 3.39(−9)
8 1.05(−8) 1.67(−9) 5.96(−9) 2.08(−9)
9 5.47(−9) 2.36(−9) 7.48(−9) 2.87(−9)

10 1.39(−8) 1.67(−9) 7.12(−9) 2.13(−9)

n
CnN− HCnO−

This work Millar et al. [23] This work Millar et al. [23]
1 5.10(−9) 2.17(−9) 8.48(−8) 1.38(−7)
2 4.92(−9) 3.86(−9) . . .
3 3.90(−9) 1.80(−9) . . .
4 5.14(−9) 3.14(−9) . . .
5 5.03(−9) 1.70(−9) . . .
6 6.44(−9) 2.74(−9) . . .
7 4.90(−9) 1.53(−9) . . .

Also shown in Table 3.1 are the rate coefficients obtained by estimating the PD cross
section with the simple empirical formula, equation (4). This formula which was
initially proposed by Millar et al. [23] has been widely used to obtain the PD rates
currently included in most astrochemical databases like (KIDA1, UMIST2). We then
conclude that such PD rates are underestimated by approximately a factor of 3. An-
other important drawback of equation (4) is that it does not reproduce the energy
dependence of the PD cross section especially at low photon energy as can be seen
in Figure 3.1.

These two important deficiencies of equation (4) suggest that its use should be
abandoned and replaced when possible by the present approach. We furthermore
expect that the replacement of the previous database rate coefficients by our calcu-
lated values will lead to a decrease in the anion column density and will deteriorate
the agreement between the modeled and observed anion-to-neutral abundances, as
was shown by Kumar et al. [31].

1http://www.kida.obs.u-bordeaux1.fr
2http://www.udfa.ajmarkwick.net
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Figure 3.1: PD cross section of CN− (left panel) and C3N− (right panel).

3.4 REA rate coefficients
The calculated REA rate coefficients for several linear chains are shown in Table 3.2
for the temperatures 10, 50, 100 and 300 K. As for the calculations of the PD rate
coefficients, we neglect contributions from excited states of the neutral molecule in
the calculations. This simplification should not change much the values of the REA
rates since only the electronic ground state of the neutral molecules are populated
for these low temperatures.

As can be seen in this table, the REA rate coefficients are extremely small
(10−17 − 10−14) in good agreement with the results of Douguet et al. [26, 27], Khame-
sian et al. [29]. For the largest chains the rate coefficients are seen to not vary as
a function of temperature. At very low temperature the variation of the REA rate
coefficient follows the threshold laws predicted by Wigner [95] as the interaction
potential between one electron and a neutral molecule falls off faster than r−1. The
Wigner law for the cross section and rate coefficient are respectively: [48, 95]

σREA(ε→ 0) =
∑
l

alε
l−1/2 (3.5)

and

kREA(T → 0) =
∑
l

blT
l (3.6)

where l is the incoming electron angular momentum quantum number and al is a
constant. If we only consider the first value λ of l for which al is not equal to zero
we write:

kREA(T → 0) ≈ bλTλ +O(Tλ) (3.7)

The value of λ can be straightforwardly determined using expansion (2.1) and (2.2)
as well as the ∆l = ±1 selection rule. Applying this simple rule we see that σ type
(l ′ = 0, 1, . . . ), π type (l ′ = 1, 2, . . . ) or πu type (l ′ = 1, 2, . . . ) Dyson orbitals are
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3.4. REA RATE COEFFICIENTS

Table 3.2: REA rate coefficient kREA in cm3molecule−1s−1 for selected linear
molecules for various temperatures. The column Ψd corresponds to the
symmetry type of the Dyson orbital. The format a(b) corresponds to
a× 10b

n Ψd T = 10 K T = 50 K T = 100 K T = 300 K

Cn

2 σg 1.03(−17) 5.19(−17) 1.04(−16) 3.14(−16)
3 πg 5.23(−18) 2.63(−17) 5.28(−17) 1.61(−16)
4 πg 2.34(−17) 1.17(−16) 2.33(−16) 6.97(−16)
5 πu 6.34(−15) 6.31(−15) 6.27(−15) 6.14(−15)
6 πu 1.22(−14) 1.22(−14) 1.21(−14) 1.17(−14)
7 πg 4.04(−17) 2.01(−16) 3.98(−16) 1.15(−15)
8 πg 6.48(−17) 3.21(−16) 6.34(−16) 1.82(−15)
9 πu 6.92(−15) 6.82(−15) 6.70(−15) 6.32(−15)
10 πu 8.30(−15) 8.14(−15) 7.95(−15) 7.39(−15)

CnH

1 π 2.36(−15) 2.37(−15) 2.38(−15) 2.41(−15)
2 σ 2.55(−16) 2.70(−16) 2.89(−16) 3.65(−16)
3 π 1.58(−16) 1.64(−16) 1.72(−16) 2.02(−16)
4 σ 2.77(−15) 2.80(−15) 2.83(−15) 2.97(−15)
5 π 1.87(−15) 1.86(−15) 1.84(−15) 1.80(−15)
6 π 1.67(−15) 1.67(−15) 1.66(−15) 1.62(−15)
7 π 3.87(−16) 4.15(−16) 4.51(−16) 5.85(−16)
8 π 7.54(−16) 7.73(−16) 7.95(−16) 8.80(−16)
9 π 1.38(−15) 1.36(−15) 1.35(−15) 1.30(−15)
10 π 1.12(−15) 1.11(−15) 1.11(−15) 1.09(−15)

CnN

1 σ 1.30(−17) 5.71(−17) 1.12(−16) 3.31(−16)
2 π 1.31(−15) 1.32(−15) 1.33(−15) 1.37(−15)
3 σ 4.68(−15) 4.71(−15) 4.75(−15) 4.89(−15)
4 π 1.41(−15) 1.41(−15) 1.41(−15) 1.39(−15)
5 σ 8.92(−15) 8.94(−15) 8.96(−15) 9.07(−15)
6 π 8.22(−16) 8.37(−16) 8.56(−16) 9.27(−16)
7 π 2.34(−15) 2.35(−15) 2.36(−15) 2.40(−15)

HCO σ 1.64(−17) 1.71(−17) 1.79(−17) 2.17(−17)

coupled with the electron s-wave (l = 0). Then the first non-vanishing term in (3.6)
is b0 and the REA rate coefficient in this case is constant at low temperature.

Conversely, σg (l ′ = 0, 2, . . . ) or πg (l ′ = 2, 4, . . . ) Dyson orbitals are coupled
with the p-wave (l = 1) then the first non-vanishing term in (3.6) is b1 and the
threshold rate coefficient increase linearly with the temperature. These behaviors
can be clearly identified in Figure 3.2.

We see that these very simple symmetry arguments allow us sorting the REA
rates at very low temperature without performing any calculation. Indeed REA
processes ruled by p-wave electrons cannot take place when T → 0 K (kREA ≈ 0)
while those ruled by s-wave electrons can occur (kREA 6= 0). This can be equiva-
lently interpreted in terms of the presence or the absence of the centrifugal barrier
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Figure 3.2: REA rate coefficient as a function of the temperature for selected linear
chains. The curves are labeled by molecule and symmetry type of the
Dyson orbital.

− l(l+1)
r2 . For s-wave electrons there is no centrifugal barrier so they can attach even

at very low temperatures, conversely to p-wave electrons which cannot approach
the molecule because of the centrifugal barrier.

So far REA rate coefficients used to model the formation of interstellar anions
(KIDA, UMIST) have been calculated using the model proposed by Herbst [2], see
Table 3.3.

Table 3.3: Currently used REA rate coefficients for linear molecules. The rate coef-
ficient are given for T = 300 K. In order to obtain these rate coefficient
at different temperatures, the values must be multipled by (T/300)1/2. The
format a(b) corresponds to a× 10b

n Cn [4] CnH [25] CnN
2 . . . 2.0(−15) . . .
3 . . . 1.7(−14) 2.6(−10) [91]
4 1.4(−8) 1.1(− 8) . . .
5 3.3(−8) 4.1(− 8) 1.3(−7) [96]
6 1.7(−7) 6.2(− 8) . . .
7 5.0(−7) 1.9(− 7) . . .
8 1.7(−7) 6.2(− 8) . . .
9 5.0(−7) . . . . . .
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This model is based on phase space theory and consider only contributions from
the indirect-REA mechanism.

A + e−
kc−→ (A−)†

(A−)†
kd−→ A + e− (3.8)

(A−)†
kr−→ A− + hv

kREA in this case is obtained from the following expression

kREA =
kckr

kd + kr
(3.9)

In this expression kd is negligible in comparison with kr for the largest molecules.
In this case kREA reduces to the capture rate kc which is given by:

kc =
 h2ga

gn

√
2π
m3
ekT

= 4.982× 10−7ga

gn

(
T

300K

)− 1
2

(3.10)

If we compare our results with those of Herbst given in Table 3.3 we can see that
apart from the smallest molecules C2H and C3H, the two methods give results which
differ by several orders of magnitude. The main reason for this strong discrepancy
is, we believe, due to the main assumption of the model of Herbst [2] which states
that all the collisions lead to the formation of a transient negative ion thus overes-
timating strongly the indirect-REA cross sections. Moreover, as mentioned before,
a recent quantum mechanical treatment of the indirect-REA process showed that
indirect-REA is negligible with respect to the direct-REA mechanism [28].

The very small value of our calculated direct-REA rate coefficients cannot ex-
plain the formation of the interstellar anions and then demonstrate that the actual
astrochemical models of the formation of anions are strongly deficient.

3.4.1 REA through the formation of dipole bound states

Recently, Carelli et al. [97] discussed the possibility of forming interstellar anions
through the formation of dipole-bound states. These very excited states of the anion
lie a few meV below the neutral ground state and can be formed only by molecules
whose permanent dipole moment is greater than the critical value of 2.5 Debye. This
critical value was suggested long ago by Fermi and Teller and revisited since then by
many authors [98]. In any case the application of this mechanism could apply only
to this kind of molecules and then cannot explain the formation of all the interstellar
anions. Here, we consider the special case of C3N− but we will see that the results
obtained for this anion can be extrapolated to some other systems. Two dipole-
bound states of C3N− with symmetry a 3Σ andA 1Σwere found at the CASSCF level,
their binding energies being respectively equal to Eb = 0.25 meV and Eb = 0.21 meV
. The REA rate of these dipole-bound states are shown in Figure 3.3. We can see in
this figure that the formation of dipole-bound states is quite small compared with
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the formation of the anion in its electronic ground state X 1Σ, Eb = 4.305 eV. This
suggests that the role of the dipole bound states in the formation of the anion is
negligible.
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Figure 3.3: REA cross section of C3N. The curves are labeled by the electronic state
of the C3N−anion.

The very small value of the REA rate coefficient for the formation of dipole
bound states is simply due to the very small value of their binding energies. it
can indeed be demonstrated using equations (2.3), (2.7) and E = Eb + ε that σREA

∝ (Eb)
3 at low electron energy. This means that the bigger the binding energy the

bigger will be the REA cross sections. We can then conclude that the formation of
a dipole-bound state of the anion can be neglected compared with the formation of
the anion in its ground state.

3.5 Conclusions
REA and PD cross section were calculated for the six detected anions as well as for
several other potential candidates. The cross sections were obtained by using Dyson
orbitals to describe the bound wave function of the anion and a plane wave for de-
scribing the free electron. PD rates were calculated for several anions belonging to
the families C−

n , CnH−, CnN− and HCnO−. A comparison between our rates and
the rates currently used in the astrochemical model shows that the latter strongly un-
derestimate the PD rates. The inclusion of our PD rates in the astrochemical model
will then strongly decrease the anion-to-neutral abundance, thus deteriorating the
current agreement between models and observations. REA rates, as well as the
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rates of formation of dipole-bound states, were also calculated and compared with
the currently used values.

We found that the current REA rates are overestimated by several orders of mag-
nitudes. Our results suggest that interstellar anion cannot be formed by REA even
through the formation of transient dipole bound states. Consequently, the current
agreement between observed and modeled anions abundances is artificial. Other
mechanisms like DEA, need then to be thoroughly explored in order to understand
the formation of anions in the interstellar condition.
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Chapter 4

Interaction of rigid C3N− with He:
PES, bound states and rotational
spectrum
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4.1. INTRODUCTION

4.1 Introduction
Cyanoethynyl anion C3N− is one of the six molecular carbon chain anions detected
in the ISM. It has been detected in two different sources: the carbon star IRC+10216
and the molecular cloud TMC-1 [10]. Both sources are rich in highly saturated long
carbon chain (CnH, CnN) for which electron attachment rate coefficients are esti-
mated to be large due to their high electron affinities and molecular sizes [2]. Within
this hypothesis, the abundance ratio [A−]/[A] of the C3N− anion should be approx-
imately 1% [91]. Experimentally the magnitude of this ratio is obtained from the
analysis of emission spectra and requires the knowledge of radiative and collisional
rate coefficients with the most abundant species. In the absence of such collisional
data, the application of the LTE approximation is known to produce a poor estimate
of the abundance of a given specie in the regions of ISM where the density of par-
ticles is insufficient for the establishment of LTE. This is the reason why, as the first
step of a general study of this anion in the ISM, we developed the first PES for the
He–C3N− collision which is presented in section 4.2.

The second part of this chapter is dedicated to the calculation of the bound states
energy levels as well as the rovibrational spectrum of the He–C3N− van der Waals
complex. The calculation of such spectrum is often used to test the accuracy of the
PES by comparison with experiment. In the case of He–C3N−, the experimental
spectrum has not been experimentally measured yet. Nevertheless, we hope that
this first theoretical work will be of help in the future assignation of the experimen-
tal rovibrational spectrum. The bound states calculations and the spectrum compu-
tation are respectively presented in section 4.3 and 4.4. The conclusion of this study
is presented in section 4.5.

4.2 PES: ab-initio calculations and functional form
C3N−, in its 1Σ electronic ground state, is a closed-shell linear floppy molecule as
indicated by the low value of the frequency of its ω5 bending mode (ω5 = 203
cm−1) [100]. For a floppy molecule, the use of the rigid monomer approximation is
questionable. However in a recent study dedicated to the rovibrational excitation
of C3 by collisions with He, Stoecklin et al. [101] have shown that the use of this
approximation leads to accurate results for rotational excitation provided that the
maximum temperature considered in the calculations is lower than the vibrational
threshold. In the case of C3N−, the rigid monomer calculations should then be ac-
curate for temperatures T < 300K which is the domain of interest for the regions of
the ISM where this anion was detected.

Interaction energies were first computed for a 2D grid of geometries of the
He−C3N− complex expressed in body-fixed Jacobi coordinates (R, θ), where R
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Table 4.1: He–C3N− interaction energy at R = 6.50 a0, θ = 90◦. BF stands for bond
functions.

Basis set Energy (cm−1)
aug-cc-pVTZ −52.526
aug-cc-pVTZ + BF −58.790
aug-cc-pVQZ −56.280
aug-cc-pVQZ + BF −59.282

stands for the intermolecular distance between He and the center of mass of C3N−

while θ is the angle between the C3N− axis and the intermolecular axis, with θ = 0
corresponding to He facing the N-end of C3N−. These calculations were done at the
coupled cluster level with the CCSD(T) [102] method and using the aug-cc-pVQZ
basis set complemented with a set of mid-bond functions [103] to get a better de-
scription of the van der Waals interaction.

A comparison of the interaction energy computed at a near equilibrium configu-
ration for different basis sets with or without the inclusion of bond functions, placed
at the half of intermolecular distance, is shown in Table 4.1. It can be appreciated
that the interaction energy shows a small variation with respect to the size of the
basis sets and the inclusion of bond function. If we consider the two basis sets with
bond functions, the energy difference is less than 0.5 cm−1. It can be expected that
the lowering of energy induced by the aug-cc-pV5Z + bond functions will be even
smaller. At this point it is safe to assume that the aug-cc-pVQZ + bond functions
basis set is sufficient enough to describe the He−C3N− complex.

The inclusion of bond functions at short R distances can affect the repulsive wall
but for these configurations, due to the overlap between He and C3N− electronic
clouds, the interaction energy is significantly large. As this PES has been designed
for cold chemistry, this implies that for typical collisions, most of the repulsive wall
belongs to the classically forbidden region. Therefore the possible distortion of the
repulsive wall induced by the bond functions is expected to have no effect on the
collisional dynamics at low temperature.

All the C3N− bond distances were set to their equilibrium values in the ground
state obtained from corrected CCSD(T)/aug-cc-pV5Z calculations [100], namely
rC1−C2 = 2.3653 a0, rC2−C3 = 2.5817 a0, rC3−N = 2.2136 a0. This correction is based
on the bond length deviation between the accurate equilibrium structure for HC3N,
established through the combination of experimental and theoretical data, and the
one obtained from CCSD(T)/aug-cc-pV5Z calculations. The radial grid includes 31
values of R ranging from 2 to 50 a0 while the angular grid was made of 37 values of θ
ranging from 0◦ to 180◦ by step of 5◦. The use of this fine angular grid was required
for reproducing the very strong angular anisotropy of the PES. All the calculations
were done using the MOLPRO package [34] and the total number of geometries con-
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sidered was 1147. The interaction energy was obtained by subtracting the energy
of the complex to the sum of the energies of the two isolated monomers, the latter
being computed in the same basis set than the complex. This corresponds to the
basis set superposition error (BSSE) correction by using the counterpoise procedure
of Boys and Bernardi [104] applied to the rigid rotor case. The functional form of
the PES used to fit this grid of energy is defined as the sum of two terms associated
with the long-range vLR and short-range vSR contributions and mixed by a switching
function S(R):

V(R, θ) = S(R)vSR(R, θ) + [1 − S(R)]vLR(R, θ) (4.1)

where

S(R) =
1
2
[1 − tanh(A0(R− R0))] (4.2)

The long-range vLR and short-range vSR functions are expressed in a basis set ob-
tained by a product of radial and angular functions:

v(R, θ) =
∑
l

fl(R)Pl(cos θ) (4.3)

where the Pl are normalized Legendre polynomials. Sets of 21 (0 6 l 6 20) and 5
(0 6 l 6 4) angular functions were respectively used for describing the short-range
and long-range contributions. As mentioned before, a large number of angular func-
tions were required for describing the strong angular anisotropy of the short-range
interaction energy. The long-range radial functions are defined as linear combina-
tions of reciprocal power functions:

fLR
l (R) =

8∑
k=4

tk(βR)

Rk
Clk (4.4)

where tk is the Tang-Toennies damping function:

tk(x) = 1 − e−x
k∑
i=0

xi

i!
(4.5)

The fitting procedure of this functional form was performed in two steps. First, a
weighted linear least squares procedure was used to determine the expansion coef-
ficient fl(R) in equation (4.3) for each point of the radial grid. Then a cubic spline
interpolation of these coefficients was used to obtain the short-range radial func-
tions. In order to decrease the fitting error in the regions of the PES where the inter-
action energy is lower than a threshold E0, an energy-dependent hyperbolic tangent
weighting function was used:

w(E) = wmin +
wmax

2
[1 − tanh(α(E− E0))] (4.6)

For small values of R and for θ close to 0◦ or 180◦, the He atom is very close to one
end of the C3N− molecule. The interaction energy becomes extremely large. Fitting
correctly this drastic variation of the interaction energy would require a very large
angular basis set. Furthermore, in some cases, the CCSD(T) calculations happen to
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fail. Therefore, a cut-off energy was set at 50 000 cm−1 to circumvent both difficul-
ties. Such large cut-off energy is expected to have no consequences in the collisional
dynamics at low temperatures.

In the second step, the fLR
l (R) functions were obtained from a least square fitting

to equation (4.4), using only ab-initio data for R > 15 a0. The non-linear param-
eter as well as those of the weighting function were determined by the trial and
error method, giving the following values: A0 = 1.8 a−1

0 , R0 = 18 a0, β = 6.0 a−1
0 ,

wmin = 0.01, wmax = 100, E0 = 4000 cm−1, α = 1.553× 10−3 cm.
An estimate of the accuracy of the fit was obtained by computing the root mean

square (RMS) of the differences between the ab-initio and fitted energies. In the
attractive region (E < 0) the RMS is 0.007 cm−1 and the maximum difference is 0.05
cm−1 while in the long-range region (E < 0, R > 14 a0 ) the RMS is even lower
(0.0025 cm−1). As expected the major differences are found for the repulsive part
(E > 0) where the RMS increases proportionately as the energy. For energies below
5 000 cm−1 the maximum difference is 0.779 cm−1 and the maximum relative error
is 0.018%. For R smaller than the radial lower bound of the ab-initio data, large
and sudden fluctuations of the fitted energies are a common artifact arising from
polynomial interpolation. We checked the PES and concluded that the repulsive
part has a realistic behavior up to 40 000 cm−1.

4.2.1 Features of the PES
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Figure 4.1: Contour plot of the PES. Contour levels are labeled by the energy given
in cm−1. The blue and red contour lines are respectively associated with
negative and positive interaction energies.
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Figure 4.1 shows a contour plot of the PES. The global minimum is found at
a near T-shape geometry of the complex, namely R = 6.42 a0, θ = 82.96◦, with
the dissociation energyDe = 62.114 cm−1. A secondary minimum withDe = 41.384
cm−1 is also found for a linear configuration of the system in which the N-end points
to the He atom, with R = 9.83 a0 and θ = 0◦. The saddle point between these two
minima appears at 22.595 cm−1 above the global minimum for the bent geometry
R = 8.83 a0 and θ = 37.85◦. A second saddle point at 33.604 cm−1 above the global
minimum, with the linear geometry R = 11.5 a0 and θ = 180◦, connects the two
equivalent configurations of the global minimum.

In Figure 4.2 the Legendre polynomial expansion coefficients defined in equa-
tion (4.3) are represented as a function of the intermolecular coordinate. For dis-
tances up to 10 a0, the even terms are the largest while the potential appears clearly
to be strongly anisotropic. For larger distances, the l = 0 isotropic term is the largest
although the l = 1 and 2 contributions are still not negligible for distances smaller
than 16 a0. Also shown in Figure 4.2, the long-range interaction leading contribution
l = 0 agrees very well with the charge-induced dipole interaction energy

V = −
αe2

2R4 (4.7)

where α is the static dipole polarizability of the helium atom. This agreement con-
firms the validity of our ab-initio calculations and suggests that our PES is a realistic
model for the study of low energy collisions. It also means eventually that the in-
elastic rate coefficients, in agreement with the Langevin’s law, should be constant at
very low temperature.

4.3 Bound states calculations
The calculation of the bound states can give valuable information about the dynam-
ics of the van der Waals complex as shown in two recent studies [105, 106]. We use
here a slightly different approach and solve the variational Schrödinger equation of
the system expanding the solutions in a basis set which is made of a direct product
of a one-dimensional radial basis set describing the motion along R coordinates and
a coupled angular basis set describing both the rotation of the linear molecule and
the relative angular motion of the atom with respect to the C3N− molecule. The
latter coupled angular basis set takes the usual form:

YJMjl (R̂, r̂) =
j∑

mj=−j

l∑
ml=−l

〈jmjlml|JM〉Yjmj
(r̂)Ylml

(R̂) (4.8)

where Yjmj
(r̂) and Ylml

(R̂) are spherical harmonics. In order to describe accurately
the stretching motion of the complex, we need a basis set allowing to simulate the ra-
dial motion both in the short-range strong anharmonic potential and the long-range
charge-induced dipole potential. The usual imaginary exponentials or Chebyshev
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teraction energy as a function of the intermolecular distance. The curves
are labeled by the corresponding value of l. The dashed black line shows
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basis sets, as well as all the basis sets providing evenly spaced DVR grids are inef-
ficient to achieve this goal. Conversely, Sturmian functions [107] which are highly
anharmonic and allow using a sparse grid of points in the long-range region have
been shown to be very effective for describing the radial motion [108, 109]. The
most widely used Sturmian functions are those associated with the Coulomb poten-
tial, the generating equation is given by:[

d2

dR2 +
l(l+ 1)
R2 −

2kn
R

− E0

]
Snl(R) = 0 (4.9)

where

Snl(R) =

{
(n− l− 1)!
[(n+ l)!]3

}1/2

e−kR(2kR)l+1L2l+1
n+l (2kR) (4.10)

and where L2l+1
n+l (2kR) are the associated Laguerre polynomial and k is an energy

dependent parameter. As the Sturmian functions defined in equation (4.10) are or-
thonormal with respect to the weight function R−1, we use a set of orthonormal

Sturmian functions defined by Snl =
√

1
R
Snl such that

〈Sml|Snl〉 =
∫∞

0

1
R
Snl(R)Sml(R)dR = δmn (4.11)

The matrix elements of the kinetic operator in this new basis set are then obtained
by using the chain rule as well as equation (4.9) and (4.11):
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〈Sml|T |Snl〉 =−
 h2

2µ [k
2δmn − k(2n− 1)〈Sml

∣∣ 1
R

∣∣ Snl〉+ [l (l+ 1) − n+ 3/4]

× 〈Sml| 1
R2 |Snl〉+

√
n(n− 1) − l(l+ 1)〈Sml

∣∣ 1
R2

∣∣ Sn−1,l〉] (4.12)

where for n > m:

〈Sml |Rp| Snl〉 = (−1)n+m
(2l+ p+ 1)!

(2k)p

[
(n− l− 1)!(m− l− 1)!

(n+ l)!(m+ l)!

] 1
2

×
m−l−1∑
i=0

(
p

n− l− i− 1

)(
p

m− l− i− 1

)(
2l+ p+ i+ 1

i

)
(4.13)

A Sturmian DVR grid of 150 points in the range [3,50] a0 is then generated from
the zeros of the Laguerre polynomials. The matrix elements of the kinetic operator
in the DVR grid are computed by using equation (4.12) and the Sturmian colocation
matrix which is obtained from the diagonalization of the R operator in the Sturmian
basis using equation (4.13). The vibrational ground state rotational constant of C3N−

was set to its experimental value, B0 = 4851.62183 MHz [10]. The parameter k was
chosen in order to set up the maximum value of R of the DVR grid.

The Hamiltonian matrix calculated in the direct product basis set made of the
DVR Sturmian grid and the angular basis set is then diagonalized for a given value
of the total angular momentum J and of the parity ε = (−1)j+l. The convergence
of the bound states as a function of both the size of the DVR grid and the number
of rotational basis functions was checked. The maximum value of the total angular
momentum J leading to bound states was found to be 10. A total of 134 bound
states were obtained for the He−C3N− complex. In table 4.2, the J 6 2 bound states
energies are given with respect to the asymptotic limit of the infinitely separated
fragments C3N− and He.

The zero point energy of the complex is 34.473 cm−1. This energy is larger than
the potential energy of both saddle points. Consequently the ground state wave
function of the He−C3N− complex is spread over the whole interval of variation of
the angular coordinate.

This result can be observed in Figure 4.3 where all the J = 0 bound state wave
functions are shown. One can also see in the same figure that the most probable
configuration of the complex in the ground state is located around the near T-shape
minimum of the PES while the wave function extends up to the linear geometry.

In Table 4.2, we report our tentative assignation of the vibrational quantum num-
bers v1 and v2 obtained from the analysis of the bound states wave functions rep-
resented in Figure 4.3. It can be seen in the panels 2 and 3 of Figure 4.3 that both
fundamental modes result from a combination of motions along the R and θ coor-
dinates. The analysis of the wave function and the assignation of the vibrational
quantum numbers become more and more difficult when J increases. This task be-
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Figure 4.3: Contour plot of the bound states wave functions for total angular mo-
mentum J = 0. The bound states are labeled by their energy. The black
dashed line is the potential isoline equal to the energy of the bound state.
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4.3. BOUND STATES CALCULATIONS

Table 4.2: Bound states energies of the He−C3N− van der Waals complex for J 6 2
and their tentative assignment. v1 and v2 are the vibrational quantum
numbers of the complex, ε is the parity and JKa,Kc is the asymmetric top
rotational quantum number. Unassigned bound states are labeled with
the symbol ∗.

J ε Energy (cm−1) v1 v2 JKaKc J ε Energy (cm−1) v1 v2 JKaKc
0 + −27.64 0 0 000 1 + −0.52 ∗ ∗ ∗
0 + −17.77 1 0 000 2 − −26.03 0 0 202

0 + −14.63 0 1 000 2 − −24.50 0 0 212

0 + −8.07 2 0 000 2 + −24.32 0 0 211

0 + −5.84 0 2 000 2 − −19.82 0 0 220

0 + −2.94 ∗ ∗ 000 2 + −19.82 0 0 221

0 + −0.67 ∗ ∗ 000 2 − −16.73 1 0 202

0 + −0.06 ∗ ∗ 000 2 − −13.71 0 1 202

1 + −27.10 0 0 101 2 − −10.17 1 0 212

1 + −25.51 0 0 111 2 + −10.04 1 0 211

1 − −25.45 0 0 110 2 − −9.46 0 1 212

1 + −17.42 1 0 101 2 + −9.37 0 1 211

1 + −14.32 0 1 101 2 − −7.05 2 0 202

1 + −10.87 1 0 111 2 − −4.68 0 2 202

1 − −10.83 1 0 110 2 + −3.58 ∗ ∗ ∗
1 + −10.19 0 1 111 2 − −3.58 ∗ ∗ ∗
1 − −10.16 0 1 110 2 − −2.29 ∗ ∗ ∗
1 + −7.73 2 0 101 2 − −0.98 ∗ ∗ ∗
1 + −5.45 0 2 101 2 + −0.89 2 0 212

1 + −2.72 ∗ ∗ ∗ 2 − −0.79 2 0 211

1 + −1.55 2 0 111 2 + −0.79 ∗ ∗ ∗
1 − −1.52 2 0 110 2 − −0.25 ∗ ∗ ∗

comes almost impossible for J > 4 as these states get closer to the dissociation limit
and reach quickly a chaotic regime already observed for J = 0 in the panels 7 and 8
of Figure 4.3.

The rotational constants of the van der Waals complex can also be easily ex-
tracted from the rotational splitting of the J = 1 vibrational levels reported in Ta-
ble 4.2, leading to the following values: A0 = 56654.61 MHz, B0 = 8979.54 MHz, C0

= 7172.74 MHz. The corresponding value of the asymmetry parameter is κ = −0.93,
showing that the He−C3N− van der Waals complex is a near prolate asymmetric
top.
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4.4 Rovibrational spectrum
We neglected the hyperfine structure of C3N− and calculated the relative absorption
intensity for a given rovibrational transition i ′J ′ ← iJ of the He−C3N− complex at a
temperature T by using the expression:

Ii ′J ′←iJ(T) ∝
e−Ei,J/kBT

Z(T)
(Ei ′,J ′ − Ei,J)

∑
MM ′Ω

〈iJM |µΩ| i
′J ′M ′〉2 (4.14)

where Z(T) is the partition function, 〈iJM |µΩ| i
′J ′M ′〉 are the matrix elements of the

dipole matrix defined as

〈iJM |µΩ| i
′J ′M ′〉 =

∫∫
ΨJ
′M ′
i ′ (R, r̂)

∗
µΩ(R, r̂)ΨJMi (R, r̂)dRdr̂ (4.15)

where µΩ (Ω = 0,±1) are the components of µ the dipole moment with origin at
the center of mass of the complex and ΨJMi is the wave function of the ith bound
states. The components of the dipole moment can be expanded in term of YΛΩλν (R̂, r̂)
functions restricted to terms with Λ = 1 and as µ is a first-rank tensor,

µΩ(R, r̂) =
∑
λν

ΘΩλν(R)Y
1Ω
λν (R̂, r̂) (4.16)

Each term of the summation corresponds to a different multipole contribution in
the atom-linear molecule van der Waals complex, such as : dipole moment of the
linear molecule (λ = 1,ν = 0,Λ = 1), charge-induced dipole (λ = 0,ν = 1,Λ = 1),
dipole-induced dipole (λ = 1,ν = 2,Λ = 1), etc [110]. In the present work we will
consider that the major contribution to the dipole of He−C3N− is the C3N− dipole
moment and we will neglect other contributions.

Expanding the bound states in the usual space-fixed angular basis set

ΨJMi (R, r̂) = R−1
∑
jl

CiJMjl (R)YJMjl (R̂, r̂), (4.17)

one obtains for the dipole moment matrix elements the expression:

〈i, J,M |µΩ| i
′, J ′,M ′〉 =

∑
l,j,j ′

(−1)∆J
′−M+l+1 [(2J+ 1)(2J ′ + 1)(2j+ 1)(2j ′ + 1)]

1/2

×
{
j J l

J ′ j ′ 1

}(
j 1 j ′

0 0 0

)(
J 1 J ′

−M m M ′

) ∫
CiJMjl (R)Ci

′J ′M ′
j ′l (R)dR (4.18)

from which arise the selection rules ∆l = 0, ∆j = ±1, and ∆J = 0,±1.
The calculated microwave spectrum represented in Figure 4.4 spans the

3 × 10−4 − 27.602 cm−1 region and contains a total of 1548 transitions among the
134 rovibrational levels of He–C3N− van der Waals complex. For this simulation,
a temperature of 10 K was used and the zero energy was set at the rovibrational
ground state. In general, these transitions are characterized by strong R-branches,
less intense Q-branches and comparatively very weak P-branches. Based on our
previous assignment of the bound states quantum numbers, an attempt to assign
quantum numbers to the transitions inside the most intense band is presented in

57



4.5. CONCLUSION

0 2 4 6 8 10 12 14 16

ν̄ (cm−1)

In
te

ns
it

y
(a

rb
.u

ni
ts

)

P
Q
R

Figure 4.4: Rovibrational spectrum of He−C3N− at the temperature of 10 K

Table 4.3. As expected at the temperature of 10 K, the calculated transitions do not
involve changes in the vibrational levels of the complex and then correspond to an
almost pure rotational spectrum. Finally, it can be noted that as the energy increases,
R-branches becomes increasingly closer showing the growing effect of centrifugal
distortion.

4.5 Conclusion
A 2D analytical PES for collisional (de-)excitation of C3N− by He has been devel-
oped from a large set of high-level ab-initio calculations. Two equilibrium structures
of the He-C3N− van der Waals complex were identified for a near T-shaped and a
linear geometry. The corresponding dissociation energies areDe = 62.114 cm−1 and
De = 41.384 cm−1 respectively. Two saddle points connecting these minima were
also identified.

The rovibrational energy levels of the complex were computed in the space-
fixed frame using a mixed DVR-FBR approach based on a Sturmian DVR for the
intermolecular distance and a coupled FBR angular basis set. The zero point level
E0 = −27.641 cm−1 lies above the two saddle points of the PES. Consequently, the
rovibrational ground state wave function is spread over the two minima. A rovibra-
tional quantum numbers assignation was also attempted for the 134 bound states
allowed by the PES by examining the contour plots of the wave functions and the
energy levels spacings.

Finally, the He−C3N− rovibrational spectrum was predicted for a rotational tem-
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Table 4.3: Predicted rotational transition frequencies and intensities for He-C3N− at
a temperature of 10K

J ′K ′aK ′c ← JKaKc ν̄ (cm−1) rel. Intensity J ′K ′aK ′c ← JKaKc ν̄ (cm−1) rel. Intensity
110 − 101 1.651 0.294 726 − 717 5.291 0.225
211 − 202 1.713 0.427 221 − 110 5.634 0.823
312 − 303 1.810 0.486 220 − 111 5.694 0.830
413 − 404 1.943 0.476 322 − 211 6.086 0.861
514 − 505 2.118 0.414 321 − 212 6.262 0.885
111 − 000 2.129 0.277 423 − 312 6.489 0.833
615 − 606 2.344 0.326 422 − 313 6.823 0.891
212 − 101 2.605 0.476 524 − 413 6.835 0.737
716 − 707 2.642 0.231 624 − 514 7.114 0.595
313 − 202 3.043 0.646 523 − 414 7.304 0.832
414 − 303 3.441 0.743 726 − 615 7.309 0.440
515 − 404 3.796 0.744 532 − 523 7.345 0.215
523 − 514 3.969 0.259 432 − 423 7.382 0.239
616 − 505 4.103 0.659 431 − 422 7.418 0.258
422 − 413 4.239 0.391 331 − 322 7.457 0.201
717 − 606 4.361 0.514 625 − 515 7.460 0.618
321 − 312 4.394 0.411 330 − 321 7.461 0.203
220 − 211 4.499 0.304 331 − 220 9.044 1.000
818 − 707 4.587 0.341 330 − 221 9.044 1.000
221 − 212 4.680 0.313 432 − 321 9.477 0.900
322 − 313 4.757 0.441 431 − 322 9.484 0.904
423 − 414 4.858 0.461 533 − 422 9.672 0.571
524 − 515 4.982 0.410 532 − 423 9.791 0.710

perature of 10 K. The strongest lines which are associated with almost pure rota-
tional transitions belong to the R-branch.
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5.1. INTRODUCTION

5.1 Introduction
The determination of the anion molecular abundances requires the knowledge of
accurate radiative and collisional rates with the most abundant interstellar species.
Up to now, there is no experimental data available for these systems and the only
theoretical collisional rate coefficients involving anions are those calculated for the
CN−+H2 [32], C6H− + H2, He [33] and C2H−+He [112] collisions, although the lat-
ter has not been detected in the ISM yet. New studies dedicated to the collisional
excitation and de-excitation of the remaining detected anions are then needed.

In the present study, we focus our interest on the next molecule of the C2n−1N−

(n=1,2,3) series, namely C3N−, which is a linear floppy molecule in its 1Σ electronic
ground state. C3N− has a large dipole moment and is remarkably stable, as the elec-
tron affinity of C3N (4.305± 0.001 eV, [113]) is quite large. Because of the small value
of its lowest vibrational frequency (203 cm−1) [100], the use of the rigid monomer
approximation above this threshold can lead to a 10 to 20 % inaccuracy of the cal-
culated rotational excitation collisional rate coefficients as demonstrated in a recent
study dedicated to He–C3 [101]. This is the reason why the collisional rate coeffi-
cients will be given only for temperature below this threshold (330 K). In cold dense
cloud where C3N− was detected, the most abundant collider is H2. However, the
small rotational constant of C3N− (B = 4852.8 MHz) [100] makes the CC calculations
with H2 a very demanding task in terms of computational resources due to a large
number of open channels involved. For the sake of simplicity in this chapter dedi-
cated to rotational relaxation of C3N−, the H2 molecule will be here replaced by He
which is often used to model collisions with H2 using a scaling law based on the
ratio of the relative masses. This approximation works very well for some systems
like H2–CS [114] but was also found to fail in many cases[115–119]. The reliability of
this approximation for the case of C3N− will be eventually discussed in chapter 7.

Even for collisions involving He, some approximations must be used in order to
obtain the collisional rate coefficients for highly excited rotational levels in a reason-
able amount of computational time. Two of the most widely used approximations,
the infinite order sudden (IOS) approximation [120, 121] and the uniform J-shifting
(UJS) [122] will be tested here by comparison with CC results. To our knowledge,
the latter approximation which is widely used for reactive collision, is scarcely, if
ever, used to treat inelastic collisions. We will see however that it offers a good
time saving (the calculation time is approximately divided by ten) while preserv-
ing a reasonable accuracy, which is not the case of the IOS approximation at low
temperature.

In this chapter, the state-to-state rotational excitation rate coefficients kj→j ′ for
C3N− in collisions with He have been computed for the rotational levels j ∈ [0,30]
and j ′ ∈ [0,30], and temperature ranging in the [1,300] K interval. The next sec-
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Figure 5.1: Space-fixed axes and Jacobi coordinates used to describe the interaction
between He and C3N−. O ′ is the center of mass of C3N− and O is the
center of mass of the whole system

tion provides a brief description of the methodology employed while the results are
discussed in section 5.3 and the conclusions are given in section 5.4.

5.2 Methods
Following the work of Arthurs and Dalgarno [123], we firstly give a brief account of
the rigid rotor space-fixed formulation of the time-independent Schrödinger equa-
tions for the scattering of a structureless He atom colliding with the C3N− molecule
in its 1Σ electronic ground state. In this section we will also introduce the main
notation used throughout the chapter.

5.2.1 The atom–linear rigid rotor coupled equations

The space-fixed axis and the Jacobi coordinates used to describe the interaction be-
tween He and C3N− are shown in Figure 5.1. The Jacobi coordinates, namely the
intermolecular vector R and r̂ the coordinates of the C3N− molecular axis, are de-
fined as follow:

R = rHe − rO ′ (5.1)

r̂ =
rN − rC

|rN − rC|
(5.2)

The angle between them θ is defined as

cos θ = R̂ · r̂ (5.3)

with R̂ = RR−1 where R is the modulus of the vector R.
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After separation of the center of mass motion the nuclear Hamiltonian of the
system can be written as:

H(R, r̂) = −
 h2

2µ

[
1
R

∂2

∂R2R+
l2

R2

]
+Hrot(r̂) +V(R, r̂) (5.4)

where µ is the reduced mass of the system, V(R, r̂) is the BO interaction potential
and l is the orbital angular momentum operator associated with the relative move-
ment of the He atom towards the center of mass of C3N−. Hrot is the space-fixed
rigid rotor Hamiltonian of C3N− whose eigenfunctions satisfy

Hrot(r̂)Yjmj
(r̂) = Bj(j+ 1)Yjmj

(r̂) (5.5)

where B is the rotational constant of C3N−, Yjmj
(r̂) is a spherical harmonic and j is

the rotational quantum number associated with the rotation of C3N−. Since the total
angular momentum

J = j+ l (5.6)

must be conserved it is convenient to work in the coupled angular momentum rep-
resentation, equation (4.8). These coupled angular momentum functions are eigen-
functions of not only the j2, l2, J2, Jz operators but also the parity operator P (also
called inversion operator) which has the effect of inverting all the coordinates in the
center of mass

PYJMjl (R̂, r̂) = YJMjl (−R̂,−r̂) = (−1)j+lYJMjl (R̂, r̂) = εYJMjl (R̂, r̂) (5.7)

The parity index ε = (−1)j+l is one of the conserved quantities along with the total
energy E, the total angular momentum J h and its space-fixed projectionM h.

The solution of the nuclear Schrödinger can be expanded as

ΨJMjl (R, r̂) = R−1
∞∑
j ′′=0

J+j ′′∑
l ′′=|J−j ′′|

YJMj ′′l ′′(R̂, r̂)GJjlj ′′l ′′(R) (5.8)

Substituting equation (5.4) and (5.8) into the nuclear Schrödinguer equation (1.9)
and projecting onto the basis function YJMj ′l ′ we obtain the following set of coupled
equations [

d2

dR2 −
l ′(l ′ + 1)
R2 + k2

j ′

]
GJjlj ′l ′(R) =

2µ
 h2

∑
j ′′l ′′

〈jlJ|V|j ′′l ′′J〉GJjlj ′′l ′′(R) (5.9)

where kj ′ is the channel wave number:

k2
j ′ =

2µ
 h2 [E− Bj ′(j ′ + 1)] (5.10)

and the matrix elements of the potential are given by

〈j ′l ′J|V|j ′′l ′′J〉 =
∫∫

YJMj ′l ′ (R̂, r̂)∗V(R, r̂)YJMj ′′l ′′(R̂, r̂)dR̂dr̂ (5.11)

These set of coupled equations can be cast in the form of equation (1.25) by writing
d2

dR2G
Jjl
j ′l ′(R) =

∑
j ′′l ′′

WJj ′l ′

j ′′l ′′ (R)G
Jjl
j ′′l ′′(R) (5.12)
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with

WJj ′l ′

j ′′l ′′ (R) =
2µ
 h2 〈j

′l ′J|V|j ′′l ′′J〉+ l ′(l ′ + 1)
R2 δl ′l ′′ − k

2
j ′δj ′j ′′ (5.13)

In the absence of any applied external field, these coupled equations are inde-
pendent of the M quantum number as a result of the symmetry of the system by
rotation of the collision plane.

5.2.2 PES and the matrix element of the potential

The PES used in the present work has been developed in the previous chapter using
accurate CCSD(T) calculations. The functional form is defined as a direct product of
radial and angular basis sets, the former being a sum of short-range and long-range
contributions

V(R, θ) =
∑
λ

vλ(R)Pλ(cos θ) (5.14)

vλ(R) = S(R)f
SR
λ (R) + [1 − S(R)] fLR

λ (R) (5.15)

where the Pλ are normalized Legendre polynomials and fSR
λ , fLR

λ , S(R) are respec-
tively the short-range, the long-range and the switching radial functions. For the
short-range radial functions, a cubic spline was employed while the long-range part
of the PES was fitted to reciprocal power functions. A hyperbolic tangent, equa-
tion 4.2, is employed as the switching function S(R). The interaction potential in
terms of the space-fixed coordinates is obtained from equation (5.14) by means of
the spherical harmonic addition theorem

Pλ(cos θ) =
4π

2λ+ 1

λ∑
ν=−λ

Y∗λν(R̂)Yλν(r̂) (5.16)

Hence

V(R, r̂) = 4π
∑
λν

vλ(R)

2λ+ 1
Y∗λν(R̂)Yλν(r̂) (5.17)

From expansion (5.17), the matrix elements of the potential, equation (5.11), are
readily obtained using the techniques of angular momentum algebra

〈j ′l ′J|V|j ′′l ′′J〉 =
∑
λ

vλ(R)fλ(j
′l ′; j ′′l ′′; J) (5.18)

where

fλ(j
′l ′; j ′′l ′′; J) =

4π
2λ+ 1

∑
ν

∫∫
YJMj ′l ′ (R̂, r̂)∗Y∗λν(R̂)Yλν(r̂)Y

JM
j ′′l ′′(R̂, r̂)dR̂dr̂

= (−1)j
′′+j ′−J [(2j ′′ + 1)(2j ′ + 1)(2l ′′ + 1)(2l ′ + 1)]

1/2

×
{
J l ′ j ′

λ j ′′ l ′′

}(
l ′′ λ l ′

0 0 0

)(
j ′′ λ j ′

0 0 0

)
(5.19)

are the well-known Percival-Seaton coefficient [124]. Since Pλ(cos θ) is totally sym-
metric with respect to the coordinate inversion, the integral (5.19) vanishes unless
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YJMj ′l ′ and YJMj ′′l ′′ have the same parity ε.

5.2.3 Inelastic boundary conditions and cross sections

Solutions of equation (1.25) subject to the boundary conditions

GJjlj ′l ′(0) = 0

and

GJjlj ′l ′(R) −−−→
R→∞ k−

1
2

j

{
exp[−i(kj ′R− l ′π/2)]δjj ′δll ′

− exp[i(kj ′R− l ′π/2)]SJjl,j ′l ′
}

(5.20)

defines the matrix element of scattering matrix SJ. This unitary and symmetric ma-
trix contains all the information concerning the contribution of the total angular
momentum J to the scattering event. It is also convenient to introduce the transition
matrix TJ which is related to SJ by

TJ = I − SJ (5.21)

and from which the opacity functions (average transition probabilities) are defined
by

PJj→j ′ =
1

2j+ 1

J+j∑
l=|J−j|

J+j ′∑
l ′=|J−j ′|

|T Jjl,j ′l ′ |
2 (5.22)

The state selected integral cross section is then obtained by summing the opacity
functions over all possible values of J

σj→j ′ =
π

k2
j

∞∑
J

(2J+ 1)PJj→j ′ (5.23)

In practice, the summation (5.23) is truncated at a given value Jmax for which the
cross section is checked to be converged within a chosen convergence threshold.

5.2.4 Scattering calculations and rate coefficients

The close coupled equations of the He–C3N− colliding system are solved in the
space-fixed frame using the log-derivative propagator [43] implemented in the
NEWMAT code [125]. Full CC calculations were performed for collisional energy
Ec ranging from 0.1 to 2000 cm−1. All the calculations were made using the rigid
monomer approximation and the rotational constant value B = 0.1618 cm−1. The
convergence of the quenching cross section as a function of both the maximum in-
termolecular distance and the total angular momentum was checked for each col-
lisional energy. The highest rotational level of C3N− used in any calculation was
j = 40. The strong charge-induced dipole and dipole-induced dipole long-range po-
tential required propagating up to relatively large intermolecular distances and the
large reduced mass of the system required up to 145 value of J to reach convergence
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for the highest collision energies considered in the calculations. The propagation
was carried out up to a maximum distance of 150 a0 for the lowest energies and the
convergence was checked as a function of propagator step size.

The thermally averaged de-excitation rate coefficients are then calculated as fol-
low:

kj→j ′ =

√
8

πµk3
BT

3

∫∞
0
σj→j ′(Ec)e

−
(
Ec
kBT

)
EcdEc, j > j ′ (5.24)

The detailed balance relationship is then used to obtain the excitation rate:

kj ′→j(T) =
2j+ 1
2j ′ + 1

e
−

(
εj−εj ′
kBT

)
kj→j ′(T), j > j ′ (5.25)

where εj and ε ′j are respectively the energies of the rotational level j and j ′. This
straightforward method was used to obtain all the state-to-state rate coefficients
kj→j ′ among the first 16 rotational levels of C3N−, namely 0 6 j 6 15 and 0 6 j ′ 6 15.

As mentioned in the introduction, owing to the small value of the rotational
constant of C3N−, the CC calculations become more and more difficult and compu-
tationally demanding for highly excited rotational levels. The introduction of some
approximation was necessary.

The rotating C3N− molecule, in its ground electronic state, is well described by a
Hund’s case (b) wave function. When the rotational energy spacing can be neglected
compared to the collision energy, the IOS can be safely used. In such a case and
for a Hund’s case (b) 1Σ linear molecule, it was demonstrated by several authors
[120, 121] that the rotational rate coefficients kIOS

j→j ′(T) can be extrapolated as follow:

kIOS
j→j ′(T) = (2j ′ + 1)

∑
L

(
j ′ j L

0 0 0

)2

k0→L(T) (5.26)

where k0→L(T) are the rotational excitation rate coefficients previously calculated
for the transitions from the fundamental level j = 0 to the level j ′ = L. We select for
these reference rate coefficients those obtained from equation (5.24) using our ac-
curate CC calculations described above. This approach was recently used by Lique
et al. [126] to determine the rotational excitation rate coefficient of OH+ by collision
with H.

Another way to obtain the state-to-state rate coefficients with a reduced com-
putational effort is to perform accurate CC calculations for selected values of the
total angular momentum number J and then obtain the missing partial wave con-
tributions using the UJS procedure [122]. This method, which is widely used for
computing reactive collision rate coefficients, offers a very good level of accuracy
when compared with exact calculations as shown for example in the recent study
of the H + CH+ reaction [127]. In the present work, the CC calculations were per-
formed for the following set of values {0, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70} of the
total angular momentum. The calculation of the UJS rate coefficients was made by
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the summation of the partial waves running from J = 0 up to 120, see appendix B
for more details.

5.3 Results
A few examples of rotational excitation and de-excitation cross sections of C3N−

colliding with He are represented as a function of collision energy respectively in
Figure 5.2 and 5.3.
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Figure 5.2: Rotational excitation cross section of C3N−(j = 0) in collisions with He.
The curves are labeled by j→ j ′.

Many resonances associated with the formation of quasi-bound states of the He–
C3N− complex can be seen in the lower energy part of these figures. This reso-
nance region extends as usual roughly up to a collision energy equal to the van
der Waals well depth (30 cm−1). For higher energies, a propensity to favor |∆j|=2 is
observed. This approximate propensity rule is a common feature of nearly homonu-
clear molecules for which the parity is weakly broken. Even if the global minimum
is close to a T-shape structure, this near symmetry is not obvious when looking at the
contour plot of the PES (Figure 4.1) whereas it appears clearly in Figure 4.2 where
the Legendre expansion coefficients of the PES associated with even values of l are
seen to be always larger than those corresponding to the odd values of l.

An explanation of this propensity rule based on semi-classical theory was pro-
posed long ago by McCurdy and Miller [128]. Within this approach, the cross sec-
tions for odd∆j transitions are reduced as a result of destructive interferences. These
authors also showed that if the odd anisotropy of the PES is large enough, then

68



CHAPTER 5. ROTATIONAL RELAXATION OF C3N− BY COLLISIONS WITH HE

10−1 100 101 102 103

Ec (cm−1)

100

101

102

103

104

σ
(a

02 )

Langevin

Inelastic

(5 → 4)

(5 → 2)

(5 → 1) (5 → 3)

Figure 5.3: Rotational de-excitation cross section of C3N−(j = 5) in collisions with
He. The curves are labeled by j→ j ′. The dashed line corresponds to the
Langevin cross section.

an inversion of the propensity rule can take place. In the present case this inverse
propensity rule can be seen in Figure 5.4, for transitions with the largest |∆j|. Similar
propensity rules have been observed by Wernli et al. [129] for HC3N in collisions
with H2. Interestingly, these authors showed that this strong propensity rule can
lead to population inversion when LTE conditions are not met, even if hyperfine
effects are neglected.
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Figure 5.4: Rotational excitation (left panel) and de-excitation (right panel) cross
section of C3N− in collision with He at Ec = 100 cm−1 as a function of
∆j = j− j ′
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For barrierless ion-neutral collisions, the low collision energy de-excitation cross
sections can be estimated using Langevin capture theory [130, 131], which predicts
that the cross section decays as E−1/2

c . Figure 5.3 also shows a comparison between
our results to those given by the Langevin capture model, based on the long-range
charge-induced dipole interaction:

σ(Ec) = π

(
2α
Ec

) 1
2

(5.27)

where α is the polarizability of the helium atom. As can be seen in this figure the
curves associated with the rotational de-excitation cross sections decrease almost
monotonously and clearly follow the Langevin’s law at low collision energy.

The calculated CC cross sections were used to obtain rotational excitation and
de-excitation rate coefficients for the first sixteen levels of C3N− in the temperature
interval [1,300] K. Some of these results are shown in Figure 5.5. Apart from the
propensity rules discussed before, the de-excitation rate coefficients remain almost
constant at low temperature, as predicted by the Langevin’s law. On the other hand,
the excitation rate coefficients increase monotonically as the temperature increases.
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Figure 5.5: Rotational excitation and de-excitation rate coefficients of C3N−

(j = 0, 5, 10, 15) in collision with He as a function of temperature. The
curves are labeled by the final state in the transition j→ j ′. Dashed lines
correspond to the Langevin capture model rate coefficient.

As discussed in section 5.2, two approximations were tested with the aim of
obtaining a larger set of the state-to-state rate coefficients. Our results are compared
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Figure 5.6: IOS and UJS relative errors for the de-excitation (−) and excitation (+)
rate coefficients. Solid green and black lines highlight the 10% and 20%
relative error respectively. The error populations are depicted by Tukey
boxplots [132, 133]. The solid red line indicates the median (i. e. the
second quartile) of the error population, the bottom and top of the box
are the first and third quartiles respectively, and the end of the dashed
lines are distant from the box by 1.5 times the height of the box.
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Figure 5.7: IOS and UJS relative error for selected temperature ranges. See the cap-
tion of Fig. 5.6 for the details of data representation.

to the CC calculations in Figure 5.6 and 5.7. As can be seen in these figures, the UJS
approximation gives always a better agreement than IOS with the CC calculations
for both excitations and de-excitation rate coefficients. The UJS relative error for
∼99% of the transitions tested is less than 10% while for IOS, ∼50% of the transitions
tested show relative error ranging between 5% and 30%. Despite these differences
in accuracy, it is found that both methods are able to reproduce the propensity rules
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mentioned before. The relative errors are seen to be larger at low temperature where
resonances play an important role and are the largest for large |∆j| transitions which
are associated with the smallest rate coefficients. Consequently, the use of one or
the other of these two approximations is expected to impact only marginally the
calculated molecular abundance of C3N− using these rates. The UJS was chosen
and used to complement the calculations of the state-to-state set of rate coefficients
among the first 31 rotational levels of C3N− in the temperature interval [1,300] K.
A small set of rate coefficients is provided in Table 5.1.

Table 5.1: He–C3N− collisional rate coefficients kj→j ′ in cm3molecule−1s−1 for vari-
ous temperature values. Powers of ten are denoted in parenthesis.

j j ′ T = 10 K T = 50 K T = 100 K T = 300 K
0 1 1.06(−10) 1.13(−10) 1.12(−10) 1.07(−10)
0 2 1.39(−10) 2.08(−10) 2.33(−10) 2.40(−10)
0 3 9.69(−11) 8.56(−11) 7.48(−11) 6.83(−11)
0 4 7.04(−11) 8.42(−11) 7.91(−11) 7.67(−11)
0 5 6.60(−11) 7.02(−11) 5.99(−11) 5.45(−11)
5 2 5.80(−11) 4.05(−11) 3.36(−11) 3.03(−11)
5 3 7.85(−11) 8.81(−11) 9.30(−11) 9.43(−11)
5 4 1.08(−10) 9.68(−11) 8.92(−11) 8.38(−11)
5 6 9.30(−11) 1.11(−10) 1.07(−10) 1.02(−10)
10 7 6.61(−11) 5.61(−11) 5.14(−11) 4.88(−11)
10 8 8.13(−11) 9.08(−11) 9.85(−11) 1.01(−10)
10 9 9.51(−11) 9.63(−11) 9.39(−11) 9.13(−11)
10 11 6.14(−11) 9.45(−11) 9.70(−11) 9.61(−11)
10 12 3.51(−11) 8.78(−11) 1.06(−10) 1.13(−10)
15 13 9.14(−11) 9.21(−11) 9.92(−11) 1.03(−10)
15 14 8.61(−11) 9.35(−11) 9.08(−11) 8.84(−11)
15 16 4.33(−11) 8.61(−11) 9.00(−11) 8.98(−11)
15 17 2.22(−11) 7.63(−11) 9.58(−11) 1.04(−10)
20 18 8.48(−11) 9.14(−11) 9.79(−11) 1.01(−10)
20 19 7.62(−11) 8.90(−11) 8.78(−11) 8.60(−11)
20 21 3.12(−11) 7.76(−11) 8.41(−11) 8.48(−11)
20 22 1.33(−11) 6.88(−11) 8.88(−11) 9.81(−11)
25 23 8.45(−11) 8.99(−11) 9.57(−11) 9.98(−11)
25 24 7.04(−11) 8.23(−11) 8.34(−11) 8.27(−11)
25 26 2.20(−11) 6.77(−11) 7.74(−11) 7.98(−11)
25 27 7.26(−12) 5.83(−11) 8.00(−11) 9.12(−11)
30 26 5.24(−11) 3.81(−11) 3.51(−11) 3.53(−11)

Continued on next page
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Table 5.1 – Continued from previous page
j j ′ T = 10 K T = 50 K T = 100 K T = 300 K
30 27 7.43(−11) 5.88(−11) 5.36(−11) 5.15(−11)
30 28 9.25(−11) 8.90(−11) 9.73(−11) 1.06(−10)
30 29 9.29(−11) 8.88(−11) 8.83(−11) 8.79(−11)

5.4 Conclusions
Full rigid rotor CC calculations were performed for C3N− in collisions with He us-
ing a two dimensional PES based on supermolecular accurate ab-initio calculations.
This first set of calculations was done for the C3N− rotational levels j ∈ [0, 15]. A
strong |∆j|= 2 propensity rule was found while for large ∆j, the inverse propensity
rule was observed, i.e. odd ∆j > even ∆j. Two approximate methods, namely the
IOS and UJS approximations, were tested to complement this first set of rate coef-
ficients for higher rotational levels. The UJS was found to give the best agreement
with exact calculations while dividing computational time by more than a factor
ten. Consequently, the rate coefficients for transitions involving the rotational levels
j ∈ [16, 30] were calculated using this approximation. The relative error obtained
for UJS is less than 10% for ∼ 99% of the checked data. In the end, a complete set
of state-to-state rate coefficients for rotational excitation and de-excitation among
the first 31 rotational levels of C3N− was obtained for temperatures T ∈ [1, 300] by
combining CC calculations and the UJS approximation.
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Chapter 6

Interaction of rigid C3N− with H2
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6.1. INTRODUCTION

6.1 Introduction
Analysis of the C3N− astronomical emission spectra requires the knowledge of ac-
curate radiative and collisional rates with the most abundant interstellar species,
H2. Calculation of such collisional rates relies on accurate PES of the two interacting
molecules. For that reason in the present chapter, we will develop a new PES which
will be eventually used for determining the rotational excitation and de-excitation
rate coefficients of C3N− by collisions with H2.

in their ground state, both C3N− and H2 are linear closed-shell molecules and
are well described by a mono-determinantal electronic wave function. This makes
the coupled cluster method a reliable approach for calculating the interaction poten-
tial between these two molecules. The explicitly correlated CCSD(T)-F12 has been
shown to provide an accurate description of the interaction between charged and
neutral molecules [134, 135]. Furthermore, this method have been widely used to
map multidimensional PES with a reduced computational cost, since the accuracy
of the F12 correction with a triple-zeta basis set is comparable to the accuracy of the
quintuple-zeta quality coupled cluster without the F12 correction.

In the second part of this chapter, as the first application of the new PES, we
compute the bound states energy levels as well as other spectroscopic constants for
the H2–C3N− van der Waals complex.

6.2 Ab-initio calculations
We have used the CCSD(T)-F12 approach and the aug-cc-pVTZ basis set to calculate
the H2–C3N− interaction energies on a four dimensional grid of points expressed
in the body-fixed Jacobi coordinates, as defined in Figure 6.1. Both monomers are
assumed to be linear rigid rotors. Since C3N− is a long molecule, the interaction
energy is strongly anisotropic for small intermonomer separation. Therefore a large
density of ab-initio points was necessary. A total number of 28339 geometries were
calculated. In this fine grid, the Jacobi coordinates vary as follow: R goes from 2 to
50 a0, θ1 from 0◦ to 90◦, θ2 from 0◦ to 180◦, φ from 0◦ to 180◦.

For every H2 − −C3N− configuration, the H2 bond length was set to
rH−H = 1.448736 a0 which correspond to the vibrationally averaged bond length
in the rovibrational ground state. The C3N− bond lengths were set to equi-
librium values obtained from CCSD(T)/aug-cc-pV5Z calculations [100], namely,
rC1−C2 = 2.3653 a0, rC2−C3 = 2.5817 a0, and rC3−N = 2.2136 a0. The BSSE was cor-
rected by means of the counterpoise procedure [104] applied to the rigid monomer
case. All calculations have been carried out with the MOLPRO package [34].
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θ1θ2

φ φ
R

Figure 6.1: Body-fixed Jacobi coordinates used to describe the interaction between
H2 and C3N−.

6.3 Analytical representation of PES
The functional form used to fit the ab-initio energy points is defined as the sum of
the two terms fSR and fLR associated with the short-range and long-range contribu-
tions, respectively.

V(R, θ1, θ2,φ) = S(R)fSR(R, θ1, θ2,φ) + [1 − S(R)]fLR(R, θ1, θ2,φ) (6.1)

where the switching function S(R) is defined by equation (4.2). Each term in equa-
tion (6.1) is expanded over a product of normalized associated Legendre polynomi-
als Pml [136] and cosine functions.

f(R, θ1, θ2,φ) =
∑
l1l2m

vml1,l2
(R)Pml1

(cos θ1)P
m
l2
(cos θ2) cos(mφ) (6.2)

In the latter expression, only even values of l1 must be included because the inter-
action potential is symmetric with respect to the permutation of the two H atoms.

For each point Ri of the radial grid, the short-range coefficients
[
vml1,l2

(Ri)
]

SR
are

obtained through a weighted linear least squares fit of equation (6.2) to the ab-initio
data. In this step, we use an energy dependent hyperbolic tangent weighting func-
tion w(E), see equation (4.6), in order to obtain the smallest fitting errors in the low
energy region of the PES. Additionally, an energy cut-off was set at 40 000 cm−1

in order to discard the extremely large energies arising from the overlap between
monomers at short distances for θ2 close to 0◦ or 180◦. Then a cubic spline interpo-
lation was used to obtain the short-range radial functions

[
vml1,l2

(R)
]

SR
.

The long-range coefficients
[
vml1,l2

(Ri)
]

LR
are obtained by the same process, but

using only the energy points with Ri > 15 a0. The long-range radial functions are
then obtained by a linear least squares fitting of the following expression[

vml1,l2
(R)
]
LR

=

8∑
k=3

tk(βR)

Rk
Clk (6.3)
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where tk is the Tang-Toennies damping function, equation (4.5)
A total of 243 angular functions {l1 ∈ [0, 6], l2 ∈ [0, 18], m ∈ [0, 4]} were needed to

describe the strong anisotropy of the short range contribution. But only 25 angular
functions {l1 ∈ [0, 2], l2 ∈ [0, 6], m ∈ [0, 2]} were needed for the accurate description
of the long range part. The non-linear parameters as well as those of the weighting
function, equation (4.6), were determined by the trial and error method, leading
to the following values: A0 = 1.8 a−1

0 , R0 = 20 a0, β = 6.0 a−1
0 , wmin = 0.001,

wmax = 200, E0 = 4000 cm−1, and α = 1.73× 10−3 cm−1.
The quality of the fitting procedure was checked by means of the RMS error.

The RMS error for negative energies is 0.01 cm−1 while for energies in the range
0 6 E 6 5000 cm−1 it is 0.06 cm−1. For energies above 5000 cm−1 the RMS error
increases more or less linearly with the energy. For instance, for energies in the
range 5000 6 E 6 10000 cm−1 the RMS error is 59.6 cm−1 while the relative RMS
error is 0.66 %. We would like to point out that these larger errors are located at
high energy in the short-range repulsive region of the PES and are expected to have
no consequences on the collisional dynamics at low temperatures which is the main
purpose of the present PES.

6.3.1 Features of the PES

Four types of stationary points have been found in the PES of the H2–C3N− sys-
tem. These are the global minima MIN1, the secondary minima MIN2, and the
submerged saddle points SP1 and SP2. All minima have a colinear structure and all
saddle points have a planar structure, as shown in Table 6.1. In the MIN1 minima,
the C-end of the C3N− molecule is pointing towards the H2 molecule, while it is the
N-end in the case of the MIN2 minima.

Table 6.1: Stationary points of the H2–C3N− 4D PES. The angle φ is not defined
(ND) for the collinear structures.

Point R (a0) θ1 (deg.) θ2 (deg.) φ (deg.) De (cm−1)
MIN1 9.39 0 or 180 180 ND 769.75
MIN2 8.89 0 or 180 0 ND 561.77
SP1 6.42 173.11 77.81 0 348.93
SP2 6.00 97.65 81.14 0 249.52

Since the potential energy is symmetric under the exchange of the two H atoms,
there are two equivalent stationary points for each type. For the MIN1 and the MIN2
types, the two equivalent stationary points are related by the symmetry operation
θ1 7→ θ1 ± π. For the SP1 and SP2 types, the two equivalent stationary points are
related by the symmetry operation θ1 7→ π − θ1 and φ 7→ φ ± π. Both types of
saddle points correspond to the transition states for the interconversion between a
MIN1 and a MIN2 minima. In the case of the SP2 points, this interconversion is
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accompanied by a permutation of H atoms. There is no saddle point allowing a
direct path from a MIN1 minimum to the other MIN1 minimum since the rotation
of H2 is blocked by a large potential barrier. The same holds true for the MIN2
minima. The important feature of the PES is thus the strong anisotropy with respect
to the orientation of both monomers. The mentioned features of the present PES are
depicted in Figure 6.2.
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Figure 6.2: 2D contour plot of the H2–C3N− PES for φ = 0◦ and R relaxed. Contour
lines are equally spaced by 50 cm−1

6.3.2 Long-range intermolecular forces

The contributions to the long-range interaction potential have been investigated in
order to get a better understating of the nature of the interaction in the asymptotic
region as well as to validate the extrapolation capabilities of the present PES. In this
approach the potential energy is defined as the sum of three contributions: electro-
static, induction and dispersion,

V = Velec + Vind + Vdisp (6.4)

where each term is expanded as in equation (6.2). Expressions for the leading ex-
pansion coefficients are shown in Table 6.2. These expressions have been obtained
through the application of the intermolecular forces theory developed by Bucking-
ham [137].
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Table 6.2: Asymptotic form of the leading expansion coefficients as defined in equation (6.2) for long-range interaction contribu-
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CHAPTER 6. INTERACTION OF RIGID C3N− WITH H2

Multipole moments and polarizabilities needed in the analytic formulation of the
long-range interactions are shown in Table 6.3. They were calculated using the fi-
nite field method implemented in MOLPRO [34] at the CCSD(T)/aug-cc-pVQZ level.
Also shown in Table 6.3 are the ionization energies of H2 and C3N−. The ionization
energy of C3N− was considered equal to the electron affinity of its neutral counter-
part.

Table 6.3: Molecular properties of H2 and C3N− needed in the calculation of long
range interactions, see Table 6.2. The multipole moments and polarizabil-
ities values have been calculated with the origin at the center of mass. All
values are in atomic units

µ Θ α‖ α⊥ A‖ A⊥ U

H2 0 0.48 6.72 4.74 0 0 0.64a

C3N− 1.38 -19.09 83.93 38.1 115.97 79.29 0.16b

a. Shiner et al. [138]
b. Yen et al. [113]

Figure 6.3 shows a comparison between the long-range fitted coefficients of the
PES equation (6.3) and the same coefficients obtained by the formulas of Table 6.2.
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Figure 6.3: Comparison between the expansion coefficients, equation (6.2), obtained
from the fitting of the ab-initio points (solid circles) and those obtained
analytically (solid lines), using the expressions in Table 6.2.

A very good agreement is observed, although there are small differences at short
distances. The source for such differences might correspond to higher order in-
duction and dispersion terms which were excluded from the analytic formulation.
Another source of error is the London approximation for the dispersion interaction.
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6.4. BOUND STATES

The good agreement between both results confirms that the present PES has the
proper physical behavior at the asymptotic limit. Therefore it is suitable for describ-
ing cold molecular collisions.

The asymptotic regions of the potential are mainly dominated by the electro-
static charge-quadrupole interaction (∝ R−3), see Figure 6.3. However due to
the anisotropic character of this interaction, the charge–induced dipole interaction
(∝ R−4) becomes the major contribution in the θ1 angular range where P0

2(cos θ1) is
equal or close to zero.

6.4 Bound states
The rovibrational energy levels Ei have been obtained by solving variationally the
space-fixed rigid rotor Scrödinger equation:

[H(R, r̂1, r̂1) − Ei]Ψ
JM
i (R, r̂1, r̂1) = 0 (6.5)

where the rovibrational wave functions ΨJMi are expanded over a product of radial
and symmetry-adapted angular functions.

ΨJMj1j2j12l
(R, r̂1, r̂2) = R

−1
imax∑
i

j1 max∑
j1

j2 max∑
j2

j1+j2∑
j12=|j1−j2|

J+j12∑
l=|J−j12|

ciJMj1j2j12l
Gi(R)Y

JM
j1j2j12l

(R̂, r̂1, r̂2)

(6.6)
where J and M are the quantum number of the total angular momentum and its
projection onto the space-fixed z-axis, j1 and j2 are respectively the rotational angular
momentum quantum number of H2 and C3N−. The Sturmian functions Gi(R) are
used to obtain a discrete variable representation (DVR) of the radial part of these
wave functions (see section 4.3 ) while the YJMj1j2j12l

(R̂, r̂1, r̂2) are the coupled spherical
harmonics defined by

YJMj1j2j12l
(R̂, r̂1, r̂2) =

∑
all m

〈j1m1j2m2|j12m12〉〈j12m12lml|JM〉

× Yj1m1(r̂1)Yj2m2(r̂2)Ylml
(R̂) (6.7)

The symmetry-adapted angular functions YJMj1j2j12l
span the irreducible represen-

tations (see Table 6.4) of the group G4 [139] which is the complete permutation in-
version group that characterizes H2−C3N− system. As the Gi(R) radial functions
belong to the totally symmetric representation A1 (i.e they remain unaltered under
group’s operations), the rovibrational wave function belongs to the same represen-
tation that the functions YJMj1j2j12l

over which it is expanded.
The final energies are obtained by a sequential diagonalization-truncation proce-

dure [140]. First, for each point of the radial DVR, the angular dependent part of the
Hamiltonian is diagonalized in the angular basis defined by equation (6.7), and then
truncated by retaining only the eigenfunctions whose eigenvalues are smaller than
Ecut = 2000 cm−1. Secondly, the direct product of the truncated angular basis set by
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Table 6.4: Classification of the symmetry-adapted angular basis set according to G4

irreducible representations as a function of the parity, even (e) or odd (o),
of j1 and j2 + l.

j1 j2 + l Γi
e e A1

e o A2

o e B1

o o B2

the radial DVR is used to represent the full Hamiltonian which is then diagonalized.
Due to the variational nature of our approach, we have checked the convergence

of the rovibrational energies with respect to the size of the basis set. Setting the
convergence criterion at 0.001 cm−1, we found that for each symmetry 30 and 4
rotational states of C3N− and H2, respectively, together with a 50 point radial DVR
grid in the range 5–20 a0 are required to converge.

6.4.1 Vibrational levels and wave functions

The bound states energies for J = 0 are shown in Tables 6.5 and 6.6. The rovibra-
tional ground state is largely above the SP1 saddle points and slightly lower than
the SP2 saddle points by 7.7 cm−1. All other bound states are above all the sad-
dle points, therefore the rovibrational wave functions are expected to be delocalized
over all minima.

Table 6.5: Lowest A1 energy levels for J = 0, lv = 0, and v3 = 0, with their assigned
vibrational quantum numbers v1 and v2 . The wave functions can be local-
ized in MIN1 minima or in MIN2 minima or delocalized over all minima.
Energy is given in cm−1.

Level MIN1 MIN2 Global Energy

v1 v2 v1 v2 v1 v2

0 0 0 0 0 -257.22
1 2 0 2 0 -232.95
2 4 0 4 0 -216.34
3 6 0 6 0 -203.00
4 8 0 8 0 -189.93
5 10 0 0 0 10 0 -174.95
6 10 0 0 0 12 0 -174.76
7 12 0 2 0 14 0 -160.57
8 12 0 2 0 16 0 -157.08
9 0 1 0 1 -153.89

Continued on next page
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Table 6.5 – Continued from previous page
Level MIN1 MIN2 Global Energy

v1 v2 v1 v2 v1 v2

10 18 0 -146.80
11 20 0 -137.43
12 2 1 2 1 -134.08
13 22 0 -125.76
14 4 1 4 1 -120.79
15 24 0 -113.17
16 6 1 6 1 -109.80
17 8 1 8 1 -99.17
18 26 0 -98.14
21 0 2 0 2 -83.73
22 28 0 -80.74

Table 6.6: Lowest B2 energy levels for J = 0, lv = 0, and v3 = 0, with their assigned
vibrational quantum numbers v1 and v2 . The wave functions can be local-
ized in MIN1 minima or in MIN2 minima or delocalized over all minima.
Energy is given in cm−1.

Level MIN1 MIN2 Global Energy

v1 v2 v1 v2 v1 v2

0 0 0 0 0 -242.50
1 2 0 2 0 -214.84
2 4 0 4 0 -193.29
3 6 0 6 0 -174.67
4 8 0 8 0 -156.44
5 0 0 [10] 0 -141.71
6 10 0 [12] 0 -137.29
7 0 1 0 1 -125.74
8 2 0 [14] 0 -120.00
9 12 0 [16] 0 -116.38

10 4 0 [18] 0 -101.76
11 2 1 2 1 -101.45
12 14 0 6 0 20 0 -95.02
13 14 0 6 0 22 0 -84.47
14 4 1 4 1 -82.69

Continued on next page
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Table 6.6 – Continued from previous page
Level MIN1 MIN2 Global Energy

v1 v2 v1 v2 v1 v2

15 24 0 -71.89
16 6 1 6 1 -66.53
17 26 0 -59.89
20 0 2 0 2 -39.41
22 0 1 1 -33.47

Some physical insight on the nature of the vibrational wave functions can be
extracted from a normal mode analysis based on the Jacobi coordinates defined in
Figure 6.1. The coordinate φ is however not defined for all the minima which have
a linear geometry. Therefore the harmonics frequencies and normal modes of the
minima have been obtained using the Wilson’s FG method[141] restricted to the 3D
space spanned by the coordinates R, θ1 and θ2. The results are given in Table 6.7.
Since the PES is highly anharmonic, the FG harmonic frequencies are significantly
different from the accurate fundamental frequencies. However, it is still possible
to establish a correspondence between both types of frequencies and therefore to
associate the normal mode displacements to the fundamental frequencies, except
for the ν3 mode for which the harmonic frequency is larger than the dissociation
energy. The high frequency of the ν3 mode can be understood if we observe the
Figure 6.2. Indeed, for θ2 = 0◦ or θ2 = 180◦, the motion along θ1 is blocked by a
large potential barrier. We furthermore note that the bending modes ν1 and ν3 are
doubly degenerate as a result of the linear geometry of the equilibrium structures.

Table 6.7: Frequencies and normal modes coordinates for the global (MIN1) and sec-
ondary (MIN2) minima of H2–C3N−.

MIN1 MIN2

Mode Displacement Harmonic Fundamental Harmonic Fundamental
ν1 ∆θ2 49.9 14.4 44.8 8.8
ν2 ∆R 196.8 103.3 201.5 –
ν3 ∆θ1 540.5 – 420.7 –

The molecular symmetry group[139] for linear molecules without a center of
symmetry is calledC∞v(M) and is made of the two elements E and E∗. The harmonic
vibrational wave functions, which are localized in a single potential well, can be
classified according to the C∞v(M) group irreducible representations as Σ+ or Σ−

if they are symmetric or antisymmetric with respect to the inversion operation E∗.
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6.4. BOUND STATES

The connection between the harmonic model and the full variational calculation can
be deduced by invoking the permutation between the two identical H atoms. This
operation transforms a minimum structure associated with θ1 = 0◦ into another
equivalent one with θ1 = 180◦ or inversely. Therefore, the global wave functions
can be expressed as linear combinations of two equivalent local wave functions:

Ψ1 =
1√
2
(ϕ0◦ +ϕ180◦) (6.8)

Ψ2 =
1√
2
(ϕ0◦ −ϕ180◦) (6.9)

These combinations lead to the following correspondence between the irre-
ducible representations of the C∞v(M) and G4 groups:

2Σ+ = A1 ⊕ B2

2Σ− = A2 ⊕ B1 (6.10)

In our case, the normal modes coordinates and the harmonic vibrational wave
functions are invariant with respect to inversion. Thus they belong to the Σ+ irre-
ducible representation. Hence, for J = 0, we can obtain only global vibrational wave
functions belonging to the A1 and B2 irreducible representations. In the harmonic
approximation, vibrational energies level belonging toA1 are degenerate with those
of the B2. In the variational approach, which is based on a realistic PES, these levels
are no longer degenerate since they are coupled by the PES. For instance, the energy
splitting is about 15 cm−1 between the ground state of the symmetry A1 (denoted
by A1.0) and the corresponding ground state of the symmetry B2 (denoted by B2.0).
Hereinafter, the levels are denoted by the symbol of the irreducible representation
followed by the number of the state in the series of states belonging to the same
irreducible representation, ordered by increasing energy.

Contour plots of selected wave functions for J = 0 are shown in Figure 6.4. Let us
remind that the two equivalent global minima MIN1 are located at θ2 = 180◦ while
the two equivalent secondary minima MIN2 are at θ2 = 0◦. The panels (a) and (b)

of Figure 6.4 show the ground state of each symmetry, A1 and B2. Although their
energies are above the saddle points, these wave functions are noticeably localized
in the MIN1 region. In the panels (c) and (d) are shown the wave functions which
can be described as the ground states of the secondary minima since they are the
lowest levels clearly localized in the MIN2 region. These levels are labeled as A1.5
and B2.5. Again, although their energies are significantly above the MIN1↔MIN2
interconversion barriers, these wave functions remain mostly localized in the MIN2
region. One can however observe in Figure 6.4 (c) a mixing with a ν1 overtone
localized in the global minimum MIN1. Such anharmonic resonances can be seen
in many A1 rovibrational levels, while in contrast they have a low occurrence for
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Figure 6.4: 2D contour plots for selected J = 0 rovibrational wave functions. Red
contours correspond to positive amplitude and blue contours to negative
amplitude. a–d) R is relaxed and φ = 0◦ ; The shaded areas show the
classically forbidden regions at the energy of the vibrational level. e–h)
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6.4. BOUND STATES

the B2 states. Figure 6.4 (c) shows also that the A1.5 wave function span the whole
range of variation of θ1, thus revealing a strong tunneling effect between the two
equivalent MIN2 minima, even though the potential barrier is higher by about 125
cm−1 than the vibrational level A1.5.

The first excited levels localized around the global minima MIN1, labeled byA1.1
and B2.1, correspond to a vibrational excitation in the mode ν1. The corresponding
levels for the secondary minima MIN2 are A1.7 and B2.8. The levels A1.1 and B2.8
are shown in Figure 6.4 (e) and (f), respectively. Because of the small value of the
ν1 frequency for both MIN1 and MIN2 minima, many of the rovibrational levels are
either pure or mixed ν1 overtones.

The fundamental stretching mode is identified in levels A1.9 and B2.7 for the
global minima MIN1, while for the secondary minima MIN2, it appears in levels
A1.20 and B2.22. The levels A1.9 and B2.22 are shown in Figure 6.4 (g) and (h),
respectively. Overtones and combination tones of the stretching mode ν2 also occur
although in a minor extent because of the high frequency of this mode.

The list of the lowest levels for which it is possible to assign vibrational quan-
tum numbers is shown in Tables 6.5 and 6.6. Only levels with J = 0 are shown, and
therefore the vibrational angular momentum lv associated to each doubly degener-
ate bending motion is also equal to zero. This imply an equal number of quanta in
both states of each doubly degenerate bending motions. Only the v1 and v2 quan-
tum numbers are reported in Tables 6.5 and 6.6 since no excited state was found for
the ν3 bending motion. As a matter of fact, this mode has a very large harmonic
vibrational frequency, much larger than the dissociation energy.

Four cases appear when we examine the nodal pattern of the wave functions
with respect to the rotation of C3N−, i.e. the coordinate θ2. In case 1 or 2, the wave
function is localized in MIN1 or in MIN2 minima respectively, as shown in panels
(a) and (d) of Figure 6.4. In case 3, the wave function is a combination of two local
wave functions in MIN1 and MIN2 minima as for example shown in panel (c) of
Figure 6.4. In case 4, the wave function is spanning the whole range of variation of
θ2, as shown in Figure 6.5. In order to distinguish between these cases, three differ-
ent lists of quantum numbers v1 and v2 are reported in Tables 6.5 and 6.6. When the
vibrational wave function is clearly localized in the MIN1 minima, or in the MIN2
minima, or in both, then we assign quantum numbers to these local wave functions.
The third list of quantum numbers is associated to the global wave function, which
can be a wave function belonging to any of the four cases.

Table 6.5 shows that levels 0–4 are localized only in MIN1 while levels 5–8 are lo-
calized in MIN1 and MIN2 and are associated in symmetric or antisymmetric combi-
nations, the antisymmetric combination adding one nodal plane in both degenerate
states of the bending motion ν1. Some higher levels, such as levels 10, 11 and 13 for
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Figure 6.5: 2D contour plots of the A1.13 rovibrational wave function for J = 0. Red
contours correspond to positive amplitude and blue contours to negative
amplitude.

example, are fully delocalized (see Figure 6.5) and therefore only global quantum
numbers can be assigned to these levels. Whereas global quantum numbers can be
assigned to all the A1 levels listed in Table 6.5, such an assignation does not appear
to be possible for all the B2 levels listed in Table 6.6 as the wave functions of these
levels which are localized in the MIN2 minima are not mixed with those localized in
the MIN1 minima or vice versa. This is the case of the B2.5, B2.6, B2.8, B2.9, and B2.10
levels. However, if we assume that the states are mixed, for example B2.5 and B2.6,
then symmetric and antisymmetric combinations can be done and a hypothetical
v1 global quantum number can be defined. In Table 6.6, the hypothetical quantum
numbers are marked with square braket.

Another important feature of this system is that a significant fraction of the vi-
brational wave functions are localized in small regions of the coordinate space al-
though they could be delocalized over large regions since their energy is well above
the interconversion barriers. This can be understood by analyzing the distribution
of the vibrational energy among the mode of motions. The vibrational stretching
motion frequency ν2 is relatively large, around 103 cm−1, while the frequency ν3

which corresponds to the hindered rotation of H2, is even larger. Therefore, these
two modes of motion withhold a large part of the vibrational energy, but they are not
efficient for triggering the MIN1↔MIN2 interconversion since this needs a rotation
of C3N−. It is mainly the bending mode ν1 which triggers the interconversion. Only
the levels with enough energy in this last mode of motion are delocalized over both
minima, MIN1 and MIN2, such as, for instance, the level A1.5 shown in Figure 6.4
(c) .
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6.4.1.1 Vibrational frequencies

The ν2 fundamental frequency associated with the MIN1 minima can be extracted
from Table 6.5, but not the ν1 fundamental frequency since the level v1 = 1 is not
allowed for J = 0. Indeed, v1 = 1 implies lv = ±1, which in turn implies J > 1.
We have thus computed the J = 1 bound states and obtained the ν1 fundamental
frequency for both MIN1 and MIN2 minima. These results are shown in Table 6.7
along with the harmonic frequencies. The differences between both sets of data
reveal the strong anharmonicities of the vibrational motions. A rough estimate of
the ν3 fundamental frequency can also be obtained from the equation ν3 = ZPE -
ν1 - ν2/2. This gives a frequency value of 446 cm−1, which is much larger than the
dissociation energy, 257 cm−1.

6.4.1.2 Rotational Constants

Since the MIN1 and MIN2 equilibrium structures of H2–C3N− are linear, there are
only two equal rotational constants for each structure which can be calculated either
by diagonalizing the inertia tensor or from the evaluation of the energy differences
between the J = 0 and J = 1 ground levels. In the first case, we obtain 0.111 cm−1

and 0.115 cm−1 for the MIN1 and MIN2 equilibrium structures, respectively while
in the second case, we obtain 0.165 cm−1 and 0.265 cm−1. However for the MIN2
structure, the energy difference between the J = 0 and J = 1 levels involve mixed
states, i.e. states which are not fully localized in the MIN2 potential wells, as shown
in panel (c) of Figure 6.4.

6.4.2 Para and ortho states

Since the nuclear spin of hydrogen atom is IH = 1
2 , the wave function of H2 must

be antisymmetric under the exchange of the two nuclei, as required by the Pauli’s
principle. Therefore, the total wave function of H2–C3N− which is given by the
product Ψelec × Ψrovib × Ψspin must belong to the irreducible representations B1 or
B2 of the group G4. The electronic ground state wave function Ψelec belongs to the
totally symmetric representation. The rovibrational wave functionsΨrovib can belong
to any of theG4 irreducible representations for J > 1 and only toA1 and B2 for J = 0.

We can obtain the symmetry representation of the spin wave functions Ψspin by
considering the most abundant isotopes 1H, 12C, 14N whose nuclear spin are IH = 1

2 ,
IC = 0, IN = 1. Hence, the C3N− nuclear spin is I = 1 while the nuclear spin of H2

can be I = 0 for (para-H2) or I = 1 for (ortho-H2). The coupling of the singlet spin
state of H2, which is antisymmetric under the exchange of nucleus, with the triplet
spin state of C3N− gives an antisymmetric triplet spin state for H2–C3N−. On the
other side, the coupling of the triplet spin state of H2, which is symmetric under
the exchange of nucleus, with the triplet spin state of C3N− gives a singlet, a triplet,
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and a quintet spin states for H2–C3N− which are all symmetric under H exchange.
Using now the table of characters of the G4 group and noting that all spin functions
are symmetric under the inversion operator E∗, we see that the symmetric (under
exchange) spin functions of H2–C3N− belong to the A1 irreducible representation,
while the antisymmetric spin functions belong to the B2 irreducible representation.

Therefore, the spin states with symmetry A1 (I = 0, 1, 2) are combined with the
B1 and B2 rovibrational states to give the ortho states of H2–C3N− while the B2 spin
states (I = 1) are combined with the A1 and A2 rovibrational states to give the para
states. The name ortho(para) is given to the states of the complex that asymptotically
correlate with the dissociation limit ortho–H2(para–H2) + C3N−. Since transitions
between ortho and para states are forbidden one can consider them as two different
species of the H2–C3N− complex. The rovibrational ground state of the para form is
more stable than the ortho one by approximately 15 cm−1.

6.5 Conclusion
A new 4D PES which accounts for the interaction between H2 and the rigid C3N−

has been presented. This PES has been designed for the study of collisional dynam-
ics at low temperatures. We carefully checked the accuracy of the PES taking a pe-
culiar care of the long-range interactions which accurately describe the asymptotic
limit of dissociation. Two different linear equilibrium structures have been found,
one with the C end of C3N− pointing towards H2 which is the global minimum, and
the other one with the N end of C3N− pointing towards H2 which is the secondary
minimum. Since the PES is symmetric under the exchange of the two H atoms, there
is a total a four minima in the PES.

The rovibrational dynamics of the H2-C3N− van der Waals complex has been in-
vestigated, considering H2 and C3N− as linear rigid rotors. The rovibrational wave
functions have been developed over products of spaced-fixed coupled angular func-
tions and radial functions obtained from a Sturmian DVR.

The examination of the rovibrational wave functions has revealed some quan-
tum features such as unexpected wavefunction localization, tunneling effect and an-
harmonic resonances. The H2–C3N− system exhibits two doubly degenerate bend-
ing modes. One corresponds mainly to the hindered rotation of C3N− and the other
mainly to the hindered rotation of H2. The vibrational dynamics of H2–C3N− is prin-
cipally controlled by the considerable difference between the two bending frequen-
cies. This difference results on one side from the large difference in mass between
H2 and C3N− and on the other side from the potential which is soft for the rotation
of C3N− and stiff for the rotation of H2. The bending/rotation of C3N−, which trig-
gers the interconversion MIN1↔ MIN2, is largely allowed since the saddle points
energies are below those of almost all vibrational levels. But since much of the avail-
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able vibrational energy is withheld by the bending/rotation motion of H2 and also
by the stretching motion, the wave functions remain localized in the MIN1 minima
or in the MIN2 minima. In contrast, the bending/rotation of H2, which should al-
low transforming one MIN1 minimum into the other or one MIN2 minimum into
the other, is blocked by a high potential barrier. But since H2 is light, a significant
tunneling effect is observed which causes a lifting of the degeneracy between sym-
metric and antisymmetric wave functions localized in equivalent potential wells by
about 15 cm−1.

Fundamental frequencies and rotational constants have been determined for
both type of minima of the complex. We found that a full quantum treatment of
the nuclei is required in order to obtain rotational constants and fundamental fre-
quencies of such weakly bound van der Waals complexes with a good accuracy.
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Chapter 7

Rotational relaxation of C3N− by
collision with H2
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7.1 Introduction
The abundances of the molecules detected in the interstellar medium are extracted
from the spectroscopic observations through radiative transfer calculations. This
last step requires the detailed knowledge of the radiative and collisional rates. How-
ever rate coefficients for excitation and de-excitation induced by collision with H2,
the most abundant interstellar molecule, are scarce especially for the recently de-
tected anions. The only available data are limited to the collisions of H2 with the
CN− [32] and C6H− [33] anions.

In chapter 5, we determined the rotational excitation and de-excitation rates of
the C3N− anion in collisions with He. Such collisional rates are often used to esti-
mate those for para–H2 using a scaling law based on the ratio of the reduced masses.
This approximation has however been widely criticized due to its lack of physical
meaning and because it fails reproducing known collisional rates with para–H2 for a
few systems [117, 119].

In this chapter we focus on the calculation of the rotational relaxation rates of
C3N− in collisions with both ortho– and para–H2 for temperatures ranging from 10
to 300 K. While the CC method offers the highest level of accuracy for the calculation
of the collisional rates its application to the H2 + C3N− collision is quite challenging
because of the very small value of the rotational constant of C3N−, the large reduced
mass of the system and the strong long-ranged anisotropic potential. Therefore, a
few numerical and theoretical tricks are needed to make the calculations possible.
The detail of these necessary adaptations of the CC method is provided in the fol-
lowing section while the results are discussed in section 7.3. The conclusions are
eventually presented in section 7.4.

7.2 Method
In this section we give a brief account for the formalism of the quantum scattering
theory of two colliding linear rigid rotors as described by Englot and Rabitz [142],
Green [143].

7.2.1 The two linear rigid rotors coupled equations

The space-fixed axis and the Jacobi coordinates used to describe the interaction be-
tween H2 and C3N− are shown in Figure 7.1. The Jacobi coordinates, namely the
intermolecular vector R and the angular coordinates of the molecular axis r̂2 and r̂2,
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Y
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X

θ1

θ2

φ

r̂1

R

O

O ′

O ′′

Figure 7.1: Space-fixed axes and Jacobi coordinates used to describe the interaction
between H2 and C3N−. O ′′ is the center of mass of C3N−,O ′ is the center
of mass of H2 and O is the center of mass of the whole system

are defined as follow:

R = rO ′ − rO ′′ (7.1)

r̂1 =
rHa − rHb

|rHa − rHb |
(7.2)

r̂2 =
rN − rC

|rN − rC|
(7.3)

The orientation angle θ1, θ2, φ, are defined as

cos θ1 = R̂ · r̂1 (7.4)

cos θ2 = R̂ · r̂2 (7.5)

cosφ =
(R× r̂1) · (R× r̂2)

|R× r̂1||R× r̂2|
(7.6)

whit R̂ = RR−1 where R is the module of the vector R.
The rigid rotor Hamiltonian in Jacobi coordinates takes the usual form

H(R, r̂1, r̂2) = −
 h2

2µ

[
1
R

∂2

∂R2R+
l2

R2

]
+H1(r̂1) +H2(r̂2) +V(R, r̂1, r̂2) (7.7)

where µ is the reduced mass of the system, V(R, r̂1, r̂2) is the interaction potential,
l is the relative angular momentum operator while H1 and H2 are respectively the
space-fixed rigid-rotor Hamiltonian of H2 and C3N− whose eigenfunctions satisfy:

Hi(r̂i)Yjimi
(r̂i) = Biji(ji + 1)Yjimi

(r̂i) (7.8)

where Bi are the rotational constants.
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It is convenient to work in the coupled representations thus combining the an-
gular momentum of the two rigid rotors j1, j2 and the orbital angular momentum l

to give the total angular J

j1 + j2 = j12

j12 + l = J (7.9)

In this representation, the angular functions are those defined in equation (6.7). The
eigenfunctions of the total Hamiltonian (7.7) are then expanded in this basis set:

ΨJMj1j2j12l
(R, r̂1, r̂2) = R

−1
∞∑
j1

∞∑
j2

j1+j2∑
j12=|j1−j2|

J+j12∑
l=|J−j12|

GJj1j2j12l
j ′1j
′
2j
′
12l
′ (R)Y

JM
j1j2j12l

(R̂, r̂1, r̂2) (7.10)

Substituting expansion (7.10) and (7.7), multiplying on the left by YJM
j ′1j
′
2j
′
12l
′
∗

and then
integrating over all angular coordinates one obtains the following radial coupled
equations [

d2

dR2 −
l ′(l ′ + 1)
R2 + k2

γ ′

]
GJγγ ′ (R) =

2µ
 h2

∑
γ ′′

VJγ ′γ ′′(R)G
Jγ
γ ′′(R) (7.11)

where γ ≡ {j1, j2, j12, l} and kγ is the channel wave number defined as

k2
γ =

2µ
 h
[E− B1j1(j1 + 1) − B2j2(j2 + 1)] (7.12)

and VJγ ′γ ′′ are the matrix elements of the potential in the coupled angular basis set:

VJγ ′γ ′′(R) =

∫∫∫
YJMγ ′ (R̂, r̂1, r̂2)

∗V(R, r̂1, r̂2)Y
JM
γ ′′ (R̂, r̂1, r̂2)dR̂dr̂1dr̂2 (7.13)

This set of coupled equations can be cast in the form of equation (1.25)
d2

dR2G
Jγ
γ ′ (R) =

∑
γ ′′

WJ
γ ′γ ′′(R)G

Jγ
γ ′′(R) (7.14)

by defining

WJ
γ ′γ ′′(R) =

2µ
 h2 V

J
γ ′γ ′′(R) +

l ′(l ′ + 1)
R2 δl ′l ′′ − k

2
γ ′δγ ′γ ′′ (7.15)

7.2.2 PES and the coupling matrix elements

The potential energy surface used in this work was developed in the previous chap-
ter. The 4D PES was expressed in body-fixed Jacobi coordinates, namely R the in-
termolecular distance, θ1 and θ2 the rotation angle of H2 and C3N−, respectively,
and φ the torsion angle between the two molecules, see Figure 7.1. The functional
form of the PES is defined as the product of a radial and an angular part, the latter
being a product of associated normalized Legendre polynomials Pml (x) and cosine
functions:

V(R, θ1, θ2,φ) =
∑
λ1λ2µ

vµλ1λ2
(R)Pµλ1

(cos θ1)P
µ
λ2
(cos θ2) cosµφ (7.16)
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The radial part is defined as the summation of two terms associated with the short-
range and long-range contributions.

vµλ1λ2
(R) = S(R)fSR(R) + [1 − S(R)]fLR(R) (7.17)

while the switching function S(R) is an hyperbolic tangent. The short-range contri-
bution fSR(R) was interpolated using a cubic spline method, whereas the long-range
part fLR(R) was fitted to reciprocal power functions. In order to calculate the matrix
elements (7.13) it is however easier to expand the interaction potential as a function
of the space-fixed Jacobi coordinates R, r̂1, r̂2. To this end, one uses the following
space-fixed expansion of the interaction potential:

V(R, r̂1, r̂2) =
∑
λ1λ2λ

Aλλ1λ2
(R)Iλ1λ2λ(R̂, r̂1, r̂2) (7.18)

where Iλ1λ2λ are linear combinations of product of spherical harmonics

Iλ1λ2λ(R̂, r̂1, r̂2) =
∑
µ1µ2µ

〈λ1µ1λ2µ2|λµ〉Yλ1µ1(r̂1)Yλ2µ2(r̂2)Y
∗
λµ(R̂) (7.19)

Green [143] showed that the relation between the representations (7.16) and (7.19)
is simply given by:

Iλ1λ2λ(R̂, r̂1, r̂2) =

(
2λ+ 1

4π

) 1
2
λmin∑
µ=0

(−1)µ(2 − δµ0) 〈λ1µλ2 − µ|λ0〉

×Pµλ1
(cos θ1)P

µ
λ2
(cos θ2) cosµφ (7.20)

from which one can obtain the following relationships between the space-fixed and
body-fixed radial coefficients:

vµλ1λ2
(R) = (−1)µ(2 − δµ0)

λ1+λ2∑
λ=|λ1−λ2|

(
2λ+ 1
16π3

) 1
2

〈λ1µλ2 − µ|λ0〉Aλλ1λ2
(R) (7.21)

and

Aλλ1λ2
(R) =

(
2λ+ 1
16π3

)− 1
2
λmin∑
µ=0

(−1)µ〈λ1µλ2 − µ|λ0〉vµλ1λ2
(7.22)

with the restriction that λ+λ1+λ2 must be even. λmin is the minimum value between
λ1 and λ2.

Using expansion (7.18), one can readily obtain the coupling matrix elements:

VJγγ ′ = (4π)−3/2
∑
λ1λ2λ

(−1)J+j1+j2+j
′
12Aλλ1λ2

(R)([λ2][λ1][λ2][j1][j2][j12][l])
1/2

× ([j ′1][j
′
2][j
′
12][l

′])
1/2

(
λ l ′ l

0 0 0

)(
λ1 j ′1 j1

0 0 0

)

×
(
λ2 j ′2 j2

0 0 0

){
l l ′ λ

j12 j ′12 J

}
j ′12 j ′2 j ′1
j12 j2 j1

λ λ2 λ1

 (7.23)

where [j] ≡ 2j+ 1
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7.2.3 Boundary conditions and cross sections

The coupled radial equations for the collision of C3N− and H2 are solved using an
improved version of the code DIDIMAT [115] which uses the log-derivative propa-
gator developed by Manolopoulos [43]. By choosing the following boundary condi-
tions for the radial part of the scattering wave function:

GJ(0) = 0

and

GJ(R) −−−→
R→∞ JJ(R)AJ − NJ(R)BJ (7.24)

and defining the KJ and TJ matrices

KJ =BJ
(
AJ
)−1

TJ =− 2iKJ
(
I − iKJ

)−1
(7.25)

where NJ(R) and JJ(R) are diagonal matrices of spherical Ricatti-Bessel functions of
the first j̃l and second ñl kinds. We can calculate the averaged transition probabili-
ties as a function of the matrix elements of the TJ matrix,

PJ
j1j2→j1 ′j2 ′ =

1
(2j1 + 1)(2j2 + 1)

j1+j2∑
j12=|j1−j2|

j1
′+j2 ′∑

j ′12=|j1
′−j2 ′|

×
J+j12∑

l=|J−j12|

J+j12
′∑

l ′=|J−j12
′|

T J
j1,j2,j12,l,j1 ′,j2 ′,j12

′,l ′ (7.26)

and consequently the inelastic cross sections:

σj1j2→j1 ′j2 ′ =
π

k2
γ

∞∑
J=0

(2J+ 1)PJ
j1j2→j1 ′j2 ′ (7.27)

Finally, the rotational relaxation rates of C3N− in collisions with H2 can be obtained
by thermally averaging the inelastic cross sections σj1j2→j1 ′j2 ′ over a Boltzmann dis-
tribution of the collision energy Ec, equation 5.24. The rate coefficient for the reverse
process kj1 ′j2 ′→j1j2 is obtained from detailed balance:

kj1 ′j2 ′→j1j2
kj1j2→j1 ′j2 ′

=
(2j1 + 1)(2j2 + 1)
(2j1 ′ + 1)(2j2 ′ + 1)

exp
(
−
εj2 − εj2 ′ + εj1 − εj1 ′

kBT

)
(7.28)

where εj are the rigid rotor energies of the two linear molecules

7.2.4 Parameters of the calculations

In the present calculation we neglect the vibration of both H2 and C3N−, thus con-
sidering both molecules as rigid rotors whose rotational constant are set to their
experimental values B1 = 60.853 cm−1[144] and B2 = 0.1618 cm−1[100]. The small
value of the rotational constant in the case of C3N− requires using a large number
of rotational levels to build the rotational basis set for the dynamics. The highest ro-
tational level of C3N− used in any calculation was j2 = 30 while for H2 it was j1 = 2
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for para–H2 and j1 = 3 for ortho–H2.
The calculations are performed for a grid of collision energies Ec ranging from

0.1 to 2000 cm−1. For each collision energy, we checked the convergence of the
total quenching cross section as a function of the total angular momentum quantum
number J and the maximum distance in the propagation of the radial wave function.
A large reduced mass implies that many values of the total angular momentum
quantum number J are needed to obtain converged cross sections. Up to 157 values
of J were required for the highest energies. Because of the long-range potential
strength, the propagation of the radial wave functions needed to be carried out up
to a maximum value of 200 a0 .

7.2.5 Computational methodology

The aforementioned requirements make the CC calculation prohibitively expensive
even at very low collision energy. Hence, we developed a MPI version of the DIDI-
MAT code using an asynchronous task parallelization scheme. The MPI code dis-
tributes N tasks over M processor where each task corresponds to a propagation of
the wave function for a given collision energy and a given value of J.

We also used the UJS method developed by Zhang and Zhang [122] in order
to reduce the CPU time while keeping a good accuracy of the state-to-state rate
coefficients. As a matter of fact, we showed in our study dedicated to the rota-
tional excitation of C3N− in collisions with He (chapter 5) that this method offers
a very good level of accuracy when compared with exact calculations. The strat-
egy of this method is to compute the transition probabilities for selected values of
J and then implicitly interpolate the missing probabilities in such a way that they
reproduce as accurately as possible the rate coefficient at a given temperature. In
the present case we computed the transition probabilities for the following values
of J ∈ {0, 5, 10, 15, 20, 25, 30, 40, 60, 80} using CC calculations. We then interpolate
or extrapolate the missing contributions and sum them from J = 0 up to 200, see
appendix B. In order to check the accuracy of the method we also performed exact
CC calculations for the collisions involving para-H2 and compared our results with
those obtained using the UJS procedure as represented in Figure 7.2.

As can be seen on this figure the agreement between the two kinds of calculation
is remarkably good especially for the higher temperatures. While the mean relative
error is smaller than 3% for the whole temperature range, the largest relative error,
∼ 10%, is reached at low temperature [10 − 50] K. In this range of low temperatures
the magnitude of the rate coefficients are anyway very small and the origin of the
error is essentially numerical.
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Figure 7.2: Error on the calculation of para–H2 rate coefficients by using the UJS pro-
cedure as a function of temperature.

7.3 Results
Selected state-to-state rate coefficients for rotational excitation and de-excitation of
C3N− by collisions with ortho and para-H2 are shown in Table 7.1 and Figure 7.3.

Table 7.1: State to state rate coefficients kj1,j2→j1 ′,j2 ′ (cm3molecule−1s−1) for the rota-
tional excitation of C3N− in collision with para(j1 = 0) and ortho(j1 = 1) H2

for various temperature values. Powers of 10 are denoted in parenthesis.

j1 j2 j1
′ j2

′ T = 10 K T = 100 K T = 300 K
0 0 0 1 2.16(−10) 3.95(−10) 4.73(−10)
1 0 1 1 4.28(−10) 3.99(−10) 4.69(−10)
0 0 0 2 2.94(−10) 3.65(−10) 4.85(−10)
1 0 1 2 2.70(−10) 3.68(−10) 5.41(−10)
0 0 0 3 1.92(−10) 2.97(−10) 3.62(−10)
1 0 1 3 2.22(−10) 2.64(−10) 3.35(−10)
0 0 0 4 1.15(−10) 1.84(−10) 2.24(−10)
1 0 1 4 1.46(−10) 2.00(−10) 2.38(−10)
0 5 0 6 2.09(−10) 3.51(−10) 4.20(−10)
1 5 1 6 2.83(−10) 3.32(−10) 3.94(−10)
0 5 0 7 1.33(−10) 2.46(−10) 3.30(−10)
1 5 1 7 1.46(−10) 2.74(−10) 3.57(−10)

Continued on next page
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Table 7.1 – Continued from previous page
j1 j2 j1

′ j2
′ T = 10 K T = 100 K T = 300 K

0 5 0 8 7.06(−11) 1.97(−10) 2.43(−10)
1 5 1 8 8.13(−11) 1.73(−10) 2.15(−10)
0 5 0 9 3.36(−11) 1.27(−10) 1.73(−10)
1 5 1 9 4.46(−11) 1.49(−10) 1.73(−10)
0 10 0 11 1.69(−10) 3.27(−10) 3.89(−10)
1 10 1 11 1.80(−10) 2.96(−10) 3.65(−10)
0 10 0 12 8.30(−11) 2.07(−10) 2.93(−10)
1 10 1 12 8.78(−11) 2.35(−10) 3.21(−10)
0 10 0 13 3.43(−11) 1.70(−10) 2.11(−10)
1 10 1 13 3.41(−11) 1.45(−10) 1.88(−10)
0 10 0 14 1.17(−11) 9.98(−11) 1.43(−10)
1 10 1 14 1.49(−11) 1.15(−10) 1.43(−10)
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Figure 7.3: Rotational excitation rate coefficients of C3N− in collision with ortho–
(dotted lines) and para–H2(full lines). The curves are labeled by the fi-
nal state of the transition j2 → j2

′

As can be seen in this figure, the rate coefficients increase slowly as a function of
temperature while they monotonously decrease when the transferred angular mo-
mentum ∆j2 of C3N− increases. Another important result for this system lies in the
close resemblance between ortho– and para–H2 rates, especially at higher tempera-
tures.
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Similarities between ortho and para rates have also been observed for the colli-
sion of H2 with other anions such as CN− (Kłos and Lique 2011) and C6H− (Walker
et al. 2017). These authors suggested that the observed likeness could arise from the
strength of the charge-quadrupole or charge-induced dipole long-range potentials.
This explanation however does not seem to hold as the highest level of similarity
is observed at higher temperature for which only the short range potential is im-
portant. Furthermore, the same similarities have been also found for the collisions
of H2 with HC3N [129]. Therefore the resemblance between ortho and para rates
seems to be rather a consequence of the angular anisotropy and of the strength of
the short-range interaction.

In order to find out a possible origin of the resemblance between ortho and para
results we need to analyze the matrix elements of the potential which are directly
related to the space-fixed expansion coefficients Aλλ1λ2

(R) depicted in Figure 7.4. For
collisions involving para–H2 (j1 = 0), the coupling matrix elements, (7.23), are non
zero only if λ1 = 0 while for those of ortho–H2 (j1 = 1) both λ1 = 0 and 2 are possible.
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Figure 7.4: First six expansion coefficients Aλλ1λ2
as a function of the intermolecular

distance. The curves are labeled by their corresponding indexes.

Figure 7.4 shows that the interaction at short-range distances is dominated by the
attractive λ1 = 0 term which gives non zero contributions for collisions involving
both ortho– and para–H2. Conversely, the strongest contribution to the long-range
part of the potential is associated with the charge-quadrupole A2

20 term which gives
non zero potential matrix elements only for the ortho states of H2. This is indeed
what can be seen in Figure 7.3 where the difference between para and ortho rates
are seen to be larger at low temperatures, while decreasing at higher temperature.
Calculations for the higher rotational states of ortho–H2 (j1 = 3, 4 . . . ) and para–H2

(j1 = 2, 4 . . . ) are however needed to check if these similarities can be extended to
these higher rotational states.

Because the rotational relaxation rates of the three anions (CN−,C3N− and C6H−)
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show the same likeness between ortho and para rates, it may be tempting to test if
any simple rule could allow deducing C3N− rates from those of C6H− and CN−. In
Figure 7.5 we show the rate coefficient at 100 K for the de-excitation transition of
C3N− (j2 = 10) through collision with H2, along with the corresponding rates for
CN− and C6H−.
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Figure 7.5: De-excitation rate coefficients of CN−, C3N−, C6H− by collision with
para–H2 at 100 K as a function of the magnitude of the transferred an-
gular momentum |∆j2|.

As can be seen the agreement between the CN− and C3N− rates is relatively
good only for transitions with small |∆j2| while for larger values of |∆j2| CN− rates
are smaller than the C3N− ones. We think that these differences come from the size
difference of the CN− and C3N− molecules. The bigger the molecule the more re-
pulsive the short-range potential will be thus enhancing transition with large trans-
ferred angular momentum |∆j2|. The results for C6H−, are seen to be in remarkably
good agreement with those for C3N− for all the transitions. We then suggest that
similar effect to those found for C3N− and C6H− could also be seen for larger chains
of their respective families C2n+1N− and C2nH− for which rotational relaxation rates
could be estimated from the former ones.

A common stereotype in collisional rates calculations of para–H2 (j1 = 0) with
any molecule is to approximate them using those for collision with He via the fol-
lowing scaling law

r =
k0,j→0,j ′(H2)

kj→j ′(He)
=

√
µHe−X

µH2−X
≈
√

2 (7.29)

where µ are the corresponding reduced masses. In order to test the validity of this
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approximation in the case of C3N− we computed the ratio between our previously
obtained rates for the collisions with He and those we calculated for para–H2 . We
found that this ratio can reach values as large as 6 at low temperature while it is in
average equal to r ≈ 3. Even this averaged value is already more than the double
of the scaling value (7.29), thus leading to relatively large average error(< 50%)

for the scaled para–H2 rate coefficients. In addition, the use of the scaled He rates
would introduce a spurious propensity rule ∆j2 = 2 which is not obtained when
performing exact calculations.

In order to try to better understand the origin of this scaling law failure, we av-
eraged the H2–C3N− PES over the (j1 = 0) rotational state of para–H2 and compared
it with the He–C3N− potential in Figure 7.6.

We see at first that the long-range potential is stronger in the case of para–H2.
This is mainly due to the large difference between the isotropic polarizabilities1,of
He (α(He) = 1.38 a0

3) and H2 (α(H2) = 5.4 a0
3) as the charge induced dipole − α

R4 is
the leading contribution to both interaction potentials at large distance. As a result,
the long range interaction of C3N− with H2 is almost five times bigger than its He
counterpart. This may explain the quite large ratio of 6 found at low collision energy.
A second important feature of the comparison between the two systems can be seen
when comparing the two potential wells which are both found to be associated with
a distorted T-shape geometry while the para–H2–C3N well is slightly deeper than
the He–C3N− by a few cm−1. If we now compare the symmetry of the two PES with
respect to the inversion of the C3N molecule, we found that both PES are far from
being symmetric with respect to the inversion of C3N− while the interaction with
He is clearly more symmetrical than the one with H2. This last point may explain
the differences observed in the propensity rules.

7.4 Conclusions
State-to-state rotational excitation and de-excitation rates of C3N− in collisions with
ortho– and para– H2 in the temperature interval [10, 300] K were obtained by com-
bining CC calculations and the UJS procedure. The strongly repulsive nature of the
H2-C3N− interaction at short range leads to close similarities between ortho and para
rates and enhances transitions associated with large transferred angular momen-
tum.

We found that the application of the scaling law to the He–C3N− rates would
lead to relatively large errors (< 50%) on the estimation of para–H2 rates. We also
evaluate the possibility of using the available rates for CN− and C6N− to obtain
those of C3N−. We find that using the CN− rates gives relatively good results but
only for transitions associated with small |∆j2|. On the other side, a remarkably good

1Calculated using finite field method at CCSD(T)/aug-cc-pVQZ level
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Figure 7.6: 2D polar contour plots of the interaction of C3N− with para–H2(top
panel) and He (bottom panel). The interaction of C3N− with H2 is
represented by a potential averaged over the rotational wave function
|j1 = 0,m1 = 0〉. Contour levels are equally spaced and labeled by the
energy in cm−1. The contours are blue for negative interaction energy,
and red for positive ones. The origin of coordinates corresponds to the
center of mass of C3N−.
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7.4. CONCLUSIONS

agreement is found between the C3N− and C6H− rates. We also find that the relative
error related to the UJS method is always less than 10% demonstrating once again
that the UJS procedure is a very good approximation which reduces computational
cost without losing much accuracy.

106



Chapter 8

Quantum tunneling in weakly bound
complexes: the case of the CO2–N2
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8.1. INTRODUCTION

8.1 Introduction
Weakly bonded molecular clusters formed by abundant molecular species (e.g.,
H2, CO, N2, O2, CO2) can be produced in laboratories. The CO2–N2 complex is
formed through favorable interactions between CO2 and N2, which are important
constituents of the Earth atmosphere. Upon complexation, the infrared inactive vi-
brational modes of CO2 and N2 become slightly allowed and therefore may partic-
ipate in the energy redistribution and transfer in the atmosphere (e.g., greenhouse
effect). This occurs after elastic and inelastic collisions, where rotational and/or vi-
brational and/or electronic (de-) excitation processes may take place. In addition,
trapping of the complex in the potential wells should lead to unexpected quantum
effects which influence the outcomes of these collisions. CO2–N2 complex can be
studied in extraordinary detail by high-resolution spectroscopic techniques in the
frequency or time domains.

To the date, several experimental works have treated the rotational and rovibra-
tional spectroscopy of the CO2–N2 cluster[146–149]. The ground state of the complex
has been characterized using infrared and Fourier transform microwave (FTMW)
spectroscopies. Accurate structural and spectroscopic data for the ground state of
the complex and its isotopologues are available in the spectral region around the
ν3 band of the isolated CO2. These studies proposed a distorted T-shape structure,
hereafter referred as the R0 structure, with O=C=O as the cross of the T and the
N≡N axis pointing toward the carbon atom. The N2 and CO2 monomers internu-
clear axis deviates by some degrees (5◦–20◦) from those of a pure C2v molecule. In
contrast, theoretical investigations [147, 150–153] at several levels of theory showed
that the equilibrium structure of the most stable form, hereafter referred as Re, is of
C2v symmetry. In 2015, Nasri et al. [153] proposed that the deviation between R0 and
Re structures may be due to the complex dynamics of the weakly bound complex.

In this chapter, we use a variational approach that fully accounts for all angular
momenta coupling. Our treatment provides the energy levels and their 4D rovi-
brational wave functions for the most abundant isotopologue 12C16O2–14N2. We
analyzed both the pattern of the rovibrational levels and the corresponding wave
functions. A further complication comes from the permutation of identical nuclei
which is solved here by finding the correspondence between the C2v point group
(which characterizes the CO2–N2 complex at equilibrium geometry) and the G8 per-
mutation group. This study shows that the analysis of these wave functions allows
full understanding of the complex dynamics of this dimer.
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CHAPTER 8. QUANTUM TUNNELING IN WEAKLY BOUND COMPLEXES

8.2 Variational bound states calculations
The calculations were performed in the space-fixed coordinatesR(R, θ,φ), r̂1(θ1,φ1),
r̂2(θ2,φ2), where R stands for the intermolecular vector, r̂1 and r̂2 are the molecular
axes vectors of CO2 and N2 respectively. The variational Schrödinger equation is
solved using as a basis set the products of one-dimensional radial functions and
angular functions. The most suitable angular functions are the coupled angular
momentum functions, equation (6.7), which describe both the global rotation and
the internal bending modes of motion of the complex.

A DVR based on the Coulomb Sturmian functions has been employed for de-
scribing the stretching motion along the R vector. These functions are very efficient
for reproducing the stretching motion of weakly bonded van der Waals systems as
they not only have the proper anharmonic behavior but also provide a sparse DVR
grid in the long-range. The matrix elements of the kinetic energy operator in this
DVR have been described in detail in chapter 4.

8.2.1 The CO2–N2 PES

Recently, Nasri et al. [153] developed an accurate multi-dimensional interaction po-
tential of the CO2–N2 electronic ground state. The PES was mapped along the four
intermonomer Jacobi coordinates, namely the distance R connecting the CO2 and
N2 centers of mass, the polar angles θ1 and θ2 of the rigid rotors CO2 and N2 re-
spectively, and the torsional angle φ. This 4D-PES was generated at the CCSD(T)-
F12/aug-cc-pVTZ level. Its main characteristics are depicted in Figure 8.1.
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Figure 8.1: 2D contour plot of the PES for φ and R relaxed. The contour lines are
equally spaced by 20 cm−1.
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8.2. VARIATIONAL BOUND STATES CALCULATIONS

Two types of minima (denoted as MIN1 and MIN2) and three types of saddle
points (denoted as TS1, TS2 and TS3) can be located on this PES. TS1 and TS3 points
are first-order saddle points while TS2 points are second-order saddle points (i.e.
stationary points with two imaginary frequencies). Let us note that TS3 is deter-
mined in the present study and was not previously noticed by Nasri et al. [153]. TS1
connects the two equivalent MIN1 structures, while TS3 connects MIN1 and MIN2
structures. The transformation from one MIN1 structure to the other one is obtained
by an out-of-plane rotation of N2 within the complex. Similarly, upon inversion of
the two oxygen atoms, there are two equivalent MIN2 structures and four equiv-
alent TS3 saddle points. Geometrical data of the stationary points are collected in
Table 8.1.

Table 8.1: Structural parameters of the CO2–N2 complex as deduced from the 4D-
PES and experimentally [148]. See text for the definition of coordinates.
For some points, φ is not defined (ND). MIN1, MIN2, TS2 and TS3 have
two or four equivalents geometries. Only one is reported in this table.
Other geometries can be obtained by symmetry operations.

R (a0) θ1 (deg.) θ2 (deg.) φ (deg.) Energy ( cm−1)
Re/MIN1 6.98 90.0 0 ND −321.24
R0 7.04 92.0 19.2 0 −
MIN2 8.47 0 90.0 ND −158.90
TS1 6.42 90.0 90.0 90.0 −163.59
TS2 9.93 0 0 ND −30.56
TS3 8.41 13.2 79.5 180.0 −158.12

The depths of the potential wells are De (MIN1) = 321.24 cm−1 and De (MIN2)
= 158.90 cm−1 (with respect to separated CO2 and N2 monomers). TS1 is located at
−163.58 cm−1, TS2 at −30.56 cm−1 and TS3 at −158.12 cm−1. Since a potential energy
barrier of 157.7 cm−1 separates the two equivalent potential wells MIN1, bound
states with localized wave functions in each potential well are expected. Systematic
lifting of degeneracy due to tunneling effect (as in NH3) should be observed. A
splitting of ∼ 2 × 10−4 cm−1 has been predicted by a crude 1D model [148]. In
contrast, the MIN2 potential well is so shallow that localized bound states cannot a
priori be expected.

The CO2–N2 interaction potential is expanded in term of products of spherical
harmonics, equation (7.18), where the summation is restricted to even values of
λ1, λ2, λ. This form is less efficient to visualize and compute the angular dependence
of the interaction, however it is more convenient for obtaining the mathematical ex-
pressions of the potential matrix elements in the angular basis set, as we have shown
in chapter 7.
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CHAPTER 8. QUANTUM TUNNELING IN WEAKLY BOUND COMPLEXES

8.2.2 Symmetry of the CO2–N2 vibrational wave functions

The symmetry properties of the CO2–N2 system are characterized by the G8 com-
plete nuclear permutation inversion group [139] which results from the direct prod-
uct of the permutation group of the indistinguishable oxygen atoms S(O)

2 = {E, (12)},
the permutation group of the indistinguishable N atoms S(N)

2 = {E, (34)} and the
inversion group E = {E,E∗}. The resulting 8 operations {E, (12), (34), (12)(34), E∗,
(12)∗, (34)∗, (12)(34)∗} compose the G8 group. The interaction potential and the to-
tal Hamiltonian are totally symmetric under all the operations of this group.

Consequently, every rovibrational wave function belongs to one of the 8 irre-
ducible representations of the G8 group. It can be noted that all stretching functions
belong to the totally symmetric representation. Therefore, the symmetry of the rovi-
brational wave functions is directly obtained from the irreducible representations to
which belong the functions of the rotational basis set. This requires the knowledge
of the transformations of the space-fixed coordinates under the G8 group operations.
These transformations are given in Table 8.2.

Table 8.2: Transformations of the space-fixed Jacobi coordinates and parity of the
angular functions defined by equation (6.7) under the operations of the
G8 group

θ1 ϕ1 θ2 ϕ θ ϕ R parity
E θ1 ϕ1 θ2 ϕ θ ϕ R 1
(12) π− θ1 π+ϕ1 θ2 ϕ θ ϕ R (−1)j1
(34) θ1 ϕ1 π− θ2 π+ϕ θ ϕ R (−1)j2
(12)(34) π− θ1 π+ϕ1 π− θ2 π+ϕ θ ϕ R (−1)j1+j2
E∗ π− θ1 π+ϕ1 π− θ2 π+ϕ π− θ π+ϕ R (−1)j1+j2+l

(12)∗ θ1 ϕ1 π− θ2 π+ϕ2 π− θ π+ϕ R (−1)j2+l

(34)∗ π− θ1 π+ϕ1 θ2 ϕ2 π− θ π+ϕ R (−1)j1+l

(12)(34)∗ θ1 ϕ1 θ2 ϕ2 π− θ π+ϕ R (−1)l

The transformations of the angular basis set, also shown in Table 8.2, are easily
derived by making use of the spherical harmonics properties. The classification of
the rovibrational wave functions according to the irreducible representations of G8

are then obtained as a function of the parity of j1, j2, and l as shown in Table 8.3.
These properties can be used to define a symmetry adapted basis set and lead to a
considerable reduction of the size of the Hamiltonian matrices to be diagonalized.

8.3 Vibrational normal modes – asymmetric top model
The rovibrational states of a molecular system can be calculated with the combina-
tion of two approximate methods. First, with the harmonic approximation of the
PES, reliable for small displacements around the equilibrium geometry, the internal
vibrational motions are approximated by the normal modes of motion. Second, if
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8.3. VIBRATIONAL NORMAL MODES – ASYMMETRIC TOP MODEL

Table 8.3: Classification of the angular basis set functions according to the irre-
ducible representation Γi of the G8 group as a function of the parity, even
(e) or odd (o), of j1, j2, and l.

j1 j2 l Γi j1 j2 l Γi

e e e A ′1 o e e B ′′1
e e o A ′2 o e o B ′′2
e o e B ′1 o o e A ′′1
e o o B ′2 o o o A ′′2

we consider the molecule as a rigid body, the rotational states are easily calculated.
The combination of these two approximations has shown to be a very useful tool to
better understand the results of accurate calculations of fully coupled rovibrational
motions [154, 155]. In this approach, the rovibrational wave functions of CO2–N2

are defined by a direct product of harmonic oscillator functions and asymmetric top
rotational functions,

ΨJKaKcv1,v2,v3,v4
=

4∏
i

Hvi(χi)
∑
K

AKD
J
MK(α,β,γ) (8.1)

were JKaKc are the asymmetric top quantum numbers, vi the vibrational quantum
numbers, Hvi the harmonic oscillator functions, χi the normal mode coordinates,
and DJKM the symmetric top functions. The energy level are obtained as

EJKaKcv1,v2,v3,v4
= hc

4∑
i

νi

(
vi +

1
2

)
+ EJKaKc (A,B,C) (8.2)

with νi as the normal modes harmonic frequencies given in cm−1, h and c are the
Planck and speed of light constants respectively. EJKaKc (A,B,C) is the energy of the
JKaKc level of the asymmetric top as a function of the rotational constants. Analytical
expressions for EJKaKc (A,B,C) can be found elsewhere, for instance see reference
[156].

The use of the latter formula requires the knowledge of the harmonic vibrational
frequencies and the rotational constants. Harmonic frequencies are easily calculated
within the normal mode analysis which is generally performed with the cartesian
coordinates. In the case of the rigid rotor approximation, since some internal coordi-
nates are replaced by constants, the cartesian coordinates cannot be used. Therefore
we used the Wilson’s FG method [141] which is based on internal coordinates.

The elements of the G matrix have been determined following the methodol-
ogy described by Wilson et al. [141]. The elements of the force constant matrix F

have been obtained by numerical differentiation. Diagonalization of the G× F leads
to the harmonic frequencies and normal modes. On the other hand, the rotational
constants can be obtained by the diagonalization of the inertia tensor for each equi-
librium geometry.

112



CHAPTER 8. QUANTUM TUNNELING IN WEAKLY BOUND COMPLEXES
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Figure 8.2: Intermonomer vibrational modes of the MIN1 and MIN2 structures. The
representations to which each mode belongs are given for the C2v (in
black) and the G8 (in red) groups.

Figure 8.2 depicts the vibrational normal modes of CO2–N2 for the MIN1 and
MIN2 equilibrium structures determined with the Wilson’s FG method. They corre-
spond to the intermonomer stretching, the out-of-plane inversion of N2 around its
center of mass and the two in-plane bending motions

8.3.1 Symmetry considerations

The normal coordinates belong to the representations of the C2v group. It is impor-
tant to note that the C2v group operations {E,C2(a),σab,σac} operates on the vibra-
tional displacements conversely to G8 operation which permute identical nuclei and
has no effect on vibrational displacement. The irreducible representations of C2v to
which belong the normal mode coordinates are given in Figure 8.2.

The representation to which belongs the total vibrational function is obtained
from the direct product of the representations to which belong each of the four nor-
mal mode vibrational functions, as shown in Table 8.4.

The analysis of the asymmetric top wave functions requires the transformation
of the Euler angles (α,β,γ) under the element group operations. To determine such
transformations we replace each group element of C2v by their equivalent rotation
in theD2 rotation group as shown in Table 8.5. The symmetry of the rotational wave
function for a given state JKaKc is then determined using the asymmetric top sym-
metry rules [139]. The rovibrational wave functions are a direct product of the vi-
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8.3. VIBRATIONAL NORMAL MODES – ASYMMETRIC TOP MODEL

Table 8.4: Classification of the vibrational functions according to the irreducible rep-
resentation of C2v as a function of the parity, even (e) or odd (o), of the
quantum numbers v1,v2,v3,v4.

v1 v2 v3 v4 Γvib v1 v2 v3 v4 Γvib

e e e e A1 o e e e B1

e e e o B2 o e e o A2

e e o e A1 o e o e B1

e e o o B2 o e o o A2

e o e e B2 o o e e A2

e o e o A1 o o e o B1

e o o e B2 o o o e A2

e o o o A1 o o o o B1

Table 8.5: Correspondences between the elements of the C2v, D2 groups and the sub-
groups of G8 restricted to the global (MIN1) or the secondary minimum
(MIN2). All these groups have the same character table. The represen-
tations to which belong the asymmetric top rotational functions are indi-
cated in the last column, depending on the parity of Ka and Kc.

G8
(MIN1)

E
(12)

E∗ (12)∗
Γrot(MIN2) (34) (34)∗

C2v E C2(a) σab σac
D2 R0 Rπa Rπc Rπb JKaKc

Γi:

A1 1 1 1 1 e e

A2 1 1 −1 −1 e o

B1 1 −1 −1 1 o o

B2 1 −1 1 −1 o e

brational and rotational functions hence they belong to the representations Γvib×Γrot.
We have now determined to which representations belong the vibrational func-

tions in the limit of small displacements around the equilibrium geometry of the two
structures MIN1 and MIN2. Applying the symmetry operation (34) on the structure
MIN1, i.e. the permutation of the identical N atoms, we see there is two equiva-
lent structures MIN1. Similarly, with the symmetry operation (12) which permutes
identical O atoms, we have also two equivalent structures MIN2. Therefore, the
global vibrational wave functions are obtained by the combinations of the doubly
degenerate local wave functions pertaining to the MIN1 or MIN2 structures. The
correspondences between the C2v and G8 irreducible representations are given in
the Table 8.6. These correspondences are determined with the help of the character
tables shown in Table 8.5 and in the appendix C
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Table 8.6: Correspondences between the C2v and G8 irreducible representations for
the two minima.

C2v G8(MIN1) G8(MIN2)
A1 ⊕A1 A ′1 ⊕ B ′2 A ′1 ⊕ B ′′2
A2 ⊕A2 A ′2 ⊕ B ′1 A ′2 ⊕ B ′′1
B1 ⊕ B1 A ′′2 ⊕ B ′′1 A ′′2 ⊕ B ′1
B2 ⊕ B2 A ′′1 ⊕ B ′′2 A ′′1 ⊕ B ′2

8.4 Rovibrational bound states
Variationally, a total of 1091 bound states were found for J = 0. For the levels up
to ∼ −83 cm−1, Table 8.7 lists their energy, symmetry and parity. An attempt to
assign vibrational quantum numbers to these levels was made, based not only on
the vibrational normal modes-rigid rotor model but also through the examination
of their 4D rovibrational wave functions.

Table 8.7: Lowest energy levels for J = 0 with their assigned vibrational quantum
numbers v1, v2, v3, v4 whenever possible, parity ε, representation Γi of
the group G8 as well as the number of the level in a given representa-
tion. Energies are given in cm−1 with respect to the energy of separated
monomers. Levels identified as the two components of a quasi-degenerate
pair are listed on the same line. |∆E| is the energy splitting due to tunnel-
ing. When possible, it is also indicated if the vibrational wave functions
are mainly localized in MIN1 or MIN2 potential wells.

v1 v2 v3 v4 ε Energy Γi |∆E| MIN
0 0 0 0 + −224.68 −224.68 A ′1.0 B ′2.0 < 0.01 1
1 0 0 0 - −192.44 −192.44 A ′′2 .0 B ′′1 .0 < 0.01 1
0 1 0 0 + −178.79 −178.79 B ′′2 .0 A ′′1 .0 < 0.01 1
0 0 1 0 + −178.36 −178.36 A ′1.1 B ′2.1 < 0.01 1
0 0 0 1 + −173.53 −173.53 B ′′2 .1 A ′′1 .1 < 0.01 1
2 0 0 0 + −164.00 −163.86 A ′1.2 B ′2.2 0.14 1
1 1 0 0 - −150.52 −150.49 B ′1.0 A ′2.0 0.03 1
1 0 1 0 - −149.78 −149.57 A ′′2 .1 B ′′1 .1 0.21 1
1 0 0 1 - −143.49 −143.41 A ′2.1 B ′1.1 0.08 1
3 0 0 0 - −139.97 −138.44 A ′′2 .2 B ′′1 .2 1.53 1
0 1 1 0 + −138.79 −138.78 B ′′2 .2 A ′′1 .2 0.01 1
0 2 0 0 + −138.21 −138.20 A ′1.3 B ′2.3 0.01 1
0 0 2 0 + −136.72 −136.70 A ′1.4 B ′2.4 0.02 1
0 0 0 2 + −132.95 −130.13 A ′1.5 B ′2.5 2.82 1
0 1 0 1 + −132.93 −130.19 B ′2.6 A ′1.6 2.74 1

Continued on next page
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8.4. ROVIBRATIONAL BOUND STATES

Table 8.7 – Continued from previous page
v1 v2 v3 v4 ε Energy Γi |∆E| MIN
0 0 1 1 + −130.94 −130.90 A ′′1 .3 B ′′2 .3 0.04 1

+ −129.38 A ′1.7 1
+ −125.38 B ′2.7 1

2 1 0 0 + −127.74 −127.14 B ′′2 .4 A ′′1 .4 0.60 1
2 0 0 1 + −120.71 −119.26 A ′′1 .5 B ′′2 .5 1.45 1
2 0 1 0 + −119.7 −115.11 A ′1.8 B ′2.8 4.59 1

- −116.69 A ′′2 .3
0 0 0 0 + −116.11 −116.11 B ′′2 .6 A ′1.9 < 0.01 2
1 1 1 0 - −114.82 −113.96 B ′1.2 A ′2.2 0.86 1
1 2 0 0 - −113.73 −113.26 B ′′1 .3 A ′′2 .4 0.47 1
3 1 0 0 - −111.76 −109.03 B ′1.3 A ′2.3 2.73 1
1 0 2 0 - −110.38 −110.23 A ′′2 .5 B ′′1 .4 0.15 1
1 0 0 2 - −107.84 −107.36 B ′′1 .5 A ′′2 .6 0.48 1
1 0 0 0 - −107.69 −107.49 A ′′2 .7 B ′1.4 0.2 2
3 0 0 1 - −107.28 −97.83 A ′2.4 B ′1.6 9.45 1
0 3 0 0 + −104.98 −104.79 B ′′2 .7 A ′′1 .6 0.19 1
0 2 1 0 + −104.97 −104.81 A ′1.10 B ′2.9 0.16 1
1 0 1 1 - −104.87 −101.54 B ′1.5 A ′2.5 3.33 1
0 1 0 0 + −104.62 −104.62 B ′2.10 A ′′1 .7 < 0.01 1

+ −104.47 B ′′2 .8
+ −104.19 A ′1.11
- −103.39 A ′′2 .8
- −102.93 B ′′1 .6

0 1 2 0 + −102.58 −101.97 B ′′2 .9 A ′′1 .8 0.61 1
2 0 0 0 + −101.51 −101.26 B ′′2 .10 A ′1.12 0.25 2

- −101.29 A ′′2 .9
0 0 3 0 + −100.69 −100.66 B ′2.11 A ′1.13 0.03 1
0 2 0 1 + −98.93 −98.68 A ′′1 .9 B ′′2 .11 0.25 1

+ −98.46 A ′′1 .10
0 0 1 2 + −97.57 −97.52 B ′2.12 A ′1.14 0.05 1

+ −97.17 A ′1.15
3 0 0 0 - −96.94 −96.44 B ′1.7 A ′′2 .10 0.5 2

+ −96.42 B ′2.13
+ −95.2 A ′1.16

0 1 0 2 + −95.68 −95.68 B ′′2 .12 A ′′1 .11 < 0.01 1
+ −95.06 B ′′2 .13

0 0 0 3 + −94.86 −94.4 A ′′1 .12 B ′′2 .14 0.46 1
Continued on next page
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Table 8.7 – Continued from previous page
v1 v2 v3 v4 ε Energy Γi |∆E| MIN

+ −94.83 B ′2.14
- −93.27 B ′′1 .8

0 0 2 1 + −93.13 −92.79 A ′′1 .13 B ′′2 .15 0.34 1
2 1 1 0 + −92.41 −88.63 A ′′1 .14 B ′′2 .16 3.78 1

+ −92.01 B ′2.15
1 0 0 1 - −91.91 −91.87 B ′′1 .9 A ′2.6 0.04 2

+ −91.62 A ′1.17
0 2 0 0 + −91.2 −91.05 A ′1.18 B ′′2 .17 0.15 2

+ −91.04 A ′′1 .15
+ −90.95 A ′1.19
- −90.47 A ′′2 .11
+ −90.31 B ′2.16
+ −90.12 A ′′1 .16
- −89.96 B ′1.8
+ −89.95 A ′1.20

1 3 0 0 - −89 −86.28 B ′1.9 A ′2.7 2.72 1
+ −88.7 A ′1.21
+ −88.18 B ′2.17

0 0 0 1 + −86.61 −86.55 B ′2.18 A ′′1 .14 0.06 2
- −86.53 B ′′1 .10

1 2 1 0 - −86.24 −85.43 A ′′2 .12 B ′′1 .11 0.81 1
+ −84.99 A ′′1 .18
+ −84.75 B ′2.19
- −84.71 A ′2.8
+ −84.32 B ′′2 .18

0 0 1 0 + −83.92 −83.83 A ′1.22 B ′′2 .19 0.09 2
+ −83.21 A ′1.23

Systematic tunneling effects through the potential barrier connecting two equiv-
alent structures are expected, where the global wave functions are no longer doubly
degenerate. The splittings of the energy levels are listed in Table 8.7. For the low-
est levels, we do not observe the corresponding splitting on the calculated energies.
Since the numerical accuracy of our calculations is limited to 0.01 cm−1, any split-
ting smaller than this limit cannot be calculated. Indeed, energy splitting could be
as small as ∼ 2×10−4 cm−1, as shown by a simple 1D model [148]. For higher energy
levels, the splitting is larger and can reach a few cm−1. For instance, the excitation
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of the ν1 mode of motion produces most of the largest energy splittings. Indeed, the
ν1 mode corresponds to an out-of-plane rotation of N2, it is thus strongly associated
with the MIN1 ↔ MIN1 interconversion, as shown in Figure 8.2. Table 8.7 shows
that this splitting goes from less than 0.01 cm−1 for MIN1 (0,0,0,0) level to more
than 4 cm−1 for levels above the barrier, e.g. for MIN1 (3,0,0,0) level. For MIN2,
since the barrier is very low, this effect is more pronounced when ν1 is excited, for
instance an appreciable splitting (of 0.2 cm−1) is computed for MIN2 (1,0,0,0) state.
In sum, we observe splittings for all the levels of this complex but in less extent (of
few tenths of cm−1) for ν2 , ν3, ν4 modes. This is due to the couplings between the
ν1 coordinate and the other vibrational modes coordinates as observed for NH3.

Figure 8.3: Left panel: 3D plot of the ground state quasi-degenerate wave func-
tions.Right panel: 3D plot of the quasi-degenerate vibrational wave func-
tion of MIN1 (0,0,1,0) level. The A ′1 wave function is the symmetrical
combination of the two wave functions localized in the equivalent MIN1
structures. The B ′2 wave function is the corresponding antisymmetrical
combination.

Figure 8.3 displays the 3D contour plots of the quasi-degenerate ground state
wave functions A ′1 and B ′2. By definition, the B ′2 wave function has a nodal plane at
θ2 = 90◦. However, Figure 8.3 reveals two additional and unexpected nodal planes
(schematized by the change from blue to red). This is uncommon for a ground state
wave function which is usually nodeless. Both wave functions are spread out across
a large range of the R coordinate. This distance deviates greatly from the equilibrium
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value of the global minimum MIN1, reflecting the occurrence of large amplitude
motions and zero point vibrational energy effect. Furthermore, both polar angles θ1

and θ2 deviate significantly from their values at MIN1 equilibrium. This most likely
induces distortions from the T-shape C2v configuration as observed experimentally.
Note that our A0, B0 and C0 rotational constants are in close agreement with those
deduced by microwave spectroscopy [148] (Table 8.8). Such dynamical behaviors
were proposed to explain the distorted C2v planar structure of the H2–CO2 complex
[157]. Our work suggests to examine the corresponding vibrational wave functions
for confirmation.

Table 8.8: Spectroscopic constants

Vibrational MIN1 MIN2

frequencies (cm−1) Variational Harmonic Ref. [153] Variational Harmonic Ref. [153]
ν1 32.2 36.9 46 8.4 6.0 10
ν2 45.9 50.7 32 29.5 30.8 42
ν3 46.3 58.2 61 32.3 40.3 44
ν4 51.2 60.5 88 11.5 10.8 17
Rotational Inertia Inertia
constant (MHz) Variational tensor Exp.[148] Variational tensor Exp
A0 11861.37 11702.98 11885.3 41500.51 60313.50 −
B0 2087.97 2089.74 2062.88 1440.98 1306.05 −
C0 1780.38 1773.12 1743.86 1240.81 1278.37 −
Rotation-vibration
coupling constant (MHz) α β γ α β γ

ν1 807.29 20.65 6.01 − − −

The variationally determined fundamental frequencies and their harmonic coun-
terpart are given in Table 8.8. For a given isomer, the differences between both sets
of data evidence the strongly anisotropic character of the PES and the obvious im-
portance of anharmonicities in the vibrational motions for this van der Waals com-
plex. Table 8.7 reveals a high density of vibrational levels. This favors anharmonic
resonances to take place between levels belonging to the same representation of G8

group. Both the mixing of their unperturbed wave functions and the displacement
of their energies are expected. For illustration, we display in Figure 8.3 the wave
functions of the (0,0,1,0) levels. Figure 8.3 shows that the nodal planes are not par-
allel to the coordinate axes. Note that these levels belong to the same G8 irreducible
representation (A ′1 and B ′2) as the ground state. Both levels are close in energy, thus
we expect a mixing among theA ′1 levels as well as among the B ′2 levels. More gener-
ally, these anharmonic resonances make difficult the assignment of quantum num-
bers to the levels of this complex, which should be viewed as tentative for some of
the levels listed in Table 8.7.

Above the potential barrier of MIN1↔MIN1 interconversion, several phenom-
ena are taking place: vibrational quantum localization, anharmonic resonances and
mixing of the wave functions pertaining to the non-equivalent MIN1 and MIN2

119



8.4. ROVIBRATIONAL BOUND STATES

potential wells. For illustration, Figure 8.4 displays the wave functions of the
A ′1.0, A ′1.10, B ′′2 .6, B ′′2 .7 levels. The wave function B ′′2 .6 is located significantly above
TS3, but remains remarkably localized in the region of the MIN2 potential well. The
A ′1.10 and B ′′2 .7 wave functions are also lying well above TS3. They are mainly local-
ized in the MIN1 potential well with a small component in the MIN2 potential well.
The right panel of Figure 8.4 provides some insight into the surprising localization
of the wave functions. This figure shows the potential energy curve obtained by
varying θ1 while θ2 = 0◦(the curve between MIN1 and TS2) and the potential en-
ergy curve obtained by varying θ2 while θ1 = 0◦(the curve between TS2 and MIN2).
The extent of the wave functions is clearly limited by the potential energy curves
resulting from these cuts of the 4D-PES, in spite that in some other directions the
wave functions are free to extend as shown by the left panel of Figure 8.4. In fact,
this vibrational memory effect can be observed for several wave functions regard-
less whether or not the corresponding rovibrational state energy is below or above
the interconversion barriers MIN1 ↔ MIN1 or MIN1 ↔ MIN2. As a consequence,
the assignment of these levels is relatively straightforward. As demonstrated for the
[H,S,N]− system [105], these states conserve the memory of the equilibrium struc-
ture in the respective potential well above which they are located.
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Figure 8.4: Left panel: Minimum energy path (blue line) between MIN1 and MIN2
minima and selected vibrational wave functions computed at the points
of the minimum energy path. Right panel: Minimum energy path (blue
line) between MIN1 and TS2 and between TS2 and MIN2 as well as se-
lected vibrational wave functions computed at the points of the mini-
mum energy path.

Localized vibrational states with an energy above the barrier separating two iso-
mers have been observed previously in other molecular systems. This is the case
for HCN and its isomer HNC, for which it was observed that a significant frac-
tion of vibrational wave functions with energies above the isomerization barrier re-
mains completely localized on one or the other side of the barrier [158]. These wave
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functions are highly excited in one or both stretching motions with little excitation
of the bending motion. In contrast, for the delocalized wave functions, the bend-
ing motion is highly excited. Indeed, the isomerization of HCN into HNC implies
a rotation of H around CN, which is essentially triggered by the bending motion
while the stretching motions have no effect on this rotation. A more complicated
dynamics occurs in the [H,S,N]− system [105] which has two weakly bound iso-
meric complexes, namely SH· · ·N−. and SN· · ·H−. The rotation of H− around SN
produces three equilibrium configurations. Localized rovibrational wave functions
with energy above the isomerization barriers have been observed. Again, excita-
tion of the bending motion triggers isomerization while excitation of the stretching
motions prevent isomerization. Let us note that the HCN↔HNC and [H,S,N]− sys-
tems have two or more isomers separated by significant barriers. This means that
every isomer corresponds to a potential well deep enough to support one or sev-
eral bound states with energies below the corresponding barriers. A second class
of systems is defined by the case where one isomer has one (or more) very low
vibrational frequency and a very low energy barrier, significantly lower than the
harmonic zero-point energy. In such case, the potential well is not deep enough
to support even one localized vibrational level. The acetylene ↔ vinylidene iso-
merization and the MIN1↔ MIN2 isomerization of CO2–N2 belong to this second
class. Vibrational states localized in the vicinity of the vinylidene minima have been
obtained by accurate quantum calculations [159]. The acetylene ↔ vinylidene iso-
merization is triggered by the rotation of H atoms around the C2 core, while the
stretching and torsional motions have no effect on isomerization. The separation of
the vibrational modes in two groups was recently illustrated by Baraban et al. [160].
The first group contains the active modes which trigger the isomerization process,
while the modes of the second group are inactive (or spectator) modes. Inactive
modes withhold vibrational energy in motions which cannot allow isomerization.
Figure 8.1 suggests that the stretching motion along R or the torsional motion along
φ are inactive modes for the MIN1 ↔ MIN2 isomerization. Rotation of N2 or CO2

appears to be the active modes. An investigation of the CO2–N2 PES in the vicinity
of the MIN2 point shows, however, that the potential energy is repulsive when N2 or
CO2 are rotated. This is in agreement with the harmonic vibrational modes depicted
in Figure 8.2. A pure rotation of N2 or CO2 alone cannot lead to isomerization. Only
a concerted rotation of N2 and CO2, or in other words, only a particular combination
of the two rotational motions, can lead to isomerization. Therefore, we may assume
that the MIN2 localized states exist because the isomerization process is hindered.

The A ′1.0 ground state wave function represented in Figure 8.4 has two nodes.
These nodes are also observed in Figure 8.3. The PES along the minimum energy
path is also plotted in Figure 8.4 and it can be seen that the nodal structure of the
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wave function reflects the ripples of the PES. Let us note that the corrugated nature
of the PES in the region of MIN1 potential well has been already observed by Nasri
et al. [153]. More physical insight on this effect is provided by Figure 8.5. The two
nodal planes are clearly related to the wavy PES.
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Figure 8.5: Left panel: 2D contour plot for the ground state wave function of MIN1.
The black dashed line is the potential isoline equal to the energy of the
ground state. Right panel: 2D contour plot for the ground state wave
function of MIN2. For each point (θ1, θ2), both the wave function and the
potential energy have been calculated with the values of φ and R which
minimize the potential energy. The black dashed line is the potential
isoline equal to the energy of the bound state.

The localization of the B ′′2 .6 wave function in the region of the MIN2 poten-
tial well is really surprising, since the energy of this vibrational state is about
42 cm−1above the TS3 saddle point. This wave function corresponds to the ground
state of the MIN2 potential well and is quasi-degenerate with the A ′1.9 wave func-
tion. Figure 8.5 gives a more detailed view of the latter wave function, along with
a cut of the PES at the energy of this state. The A ′1.9 wave function is clearly the
symmetric combination of two local wave functions pertaining to the MIN2 poten-
tial wells and do not spread out across the whole coordinate space energetically
allowed. The small energy splitting between the B ′′2 .6 and A ′1.9 is also an evidence
of the localization of these wave functions. These levels are unusual and they are
pointed out for the first time for a molecular system.

8.5 Rovibrational spectrum
A given rovibrational transition i ′J ′ ← iJ of the complex will occur with the ab-
sorption or emission of a photon only if the matrix elements of the dipole moment
operator µ̂ does not vanish and then the relative absorption coefficients at the tem-
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perature T are proportional to:
gIe−Ei,J/kT

Z(T)
(Ei ′,J ′ − Ei,J)×

∑
M,M ′,Ω

|〈i, J,M |µΩ| i
′, J ′,M ′〉|2 (8.3)

where Z(T) is the partition function, gI is the spin-statistical weight and |i, J,M〉 is
the wave function for the ith bound states. Symmetry consideration can be used to
obtain some useful information such as selection rules and spin-statistical weight.

8.5.1 Dipole moment operator and selection rules

The dipole moment operator can be expressed in term of the space-fixed coordinates
by expanding it in term of angular momentum functions, equation (6.7)

µ̂ =
∑
ΛΩ

∑
all λ

CΛΩλ1λ2λ12λR
(R)YΛΩλ1λ2λ12λ

(R̂, r̂1, r̂2) (8.4)

As the dipole moment operator is a first-rank tensor, the latter expansion is restricted
to Λ = 1 andΩ = 0,±1. Additional restrictions in the expansion coefficients are de-
duced from the symmetry in the G8 permutation-inversion group. First the dipole
moment operator must be invariant to any permutation of equivalent nuclei and
antisymmetric with respect to inversion. From Table 8.2 one can easily note that the
only non-vanishing terms are those with λ1, λ2 even and λ odd. Using the classi-
fication given in Table 8.3 we can conclude that all the components of dipole mo-
ment operator belong toA ′2 representation and the only allowed transition are those
whose rovibrational states are connected by A ′2: A ′1 ↔ A ′2 and B ′1 ↔ B ′2. Besides
the usual ∆J = 0, ±1, the following symmetry imposed selection rules must also be
satisfied : ∆j1 even, ∆j2 even, ∆l even.

8.5.2 Nuclear spin wave function and spin statistic

Although the hyperfine structure has been neglected in the present study, the nu-
clear spins and the consequences of the spin statistics on the rovibrational spectra
are of great importance. According to Bose-Einstein statistics, the total wave func-
tion must be symmetric under any permutation of identical nuclei. Since the elec-
tronic wave function is fully symmetric, the total wave function can be restricted
here to the product of the rovibrational and nuclear spin wave functions. The CO2

molecule (IO = 0, IC = 0) has only one nuclear spin state ICO2 = 0 while in the
case of N2 molecule (IN = 1) three nuclear spin states are possible IN2 = 0, 1, 2.
As a result of the coupling, the spin states of the complex are I = 0, 1, 2. Follow-
ing the same convention as Frohman et al. [148] we denote ortho to the nuclear spin
species with I = 0, 2 and para those with nuclear spin I = 1. The representation
of G8 generated by the spin function is 6A ′1 ⊕ 3B ′2 where the A ′1 correspond to the
five components of the quintet (I = 2) and the singlet (I = 0) of complex while the
B ′1 species correspond to the three components of the triplet (I = 1). Based on the
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previous statement, the ro-vibrational states with symmetry A ′1 and A ′2 can only be
combined with A ′1 nuclear spin state (para) while those with symmetry B ′1 and B ′2
can only be combined with B ′2 spin states (ortho). Rovibrational states of symmetry
A ′′1 , A ′′2 , B ′′1 , and B ′′2 are, however, forbidden by Bose-Einstein statistics. These re-
strictions are the origin of the statistical weights shown in Table 8.9. Furthermore,
the ortho intensities are expected to be twice the para intensities.

Table 8.9: The statistical weight (Stat. wt) of the rovibrational states of CO2-N2 in the
G8 group.

Γrovib Stat. wt Γrovib Stat. wt

A ′1 6 B ′1 3
A ′′1 0 B ′′1 0
A ′2 6 B ′2 3
A ′′2 0 B ′′2 0

8.5.3 Comparison with experiments

A way to estimate the accuracy of not only the present variational calculations but
also the PES itself, is to compare the calculated frequencies with the experimen-
tal determinations. The FTMW spectra of the CO2–N2 complex have been recently
measured by Frohman et al. [148]. The reported frequencies correspond to pure ro-
tational transitions with Ka = 0 and ∆Ka = 0 as well as hyperfine transitions. The
lack of transitions with ∆Ka 6= 0 is well explained by symmetry imposed selection
rules A ′1 ↔ A ′2 and B ′1 ↔ B ′2 which, for the ground state, correspond to transitions
of type Jeo − J ′ee. A comparison of the aforementioned results (neglecting hyperfine
structure) with those obtained from our variational approach is shown in Table 8.10.

Table 8.10: Calculated and experimental frequencies (MHz) for the transitions
JK ′aK ′c−JKaKc . Relative errors from experimental data are given in percent.

JK ′aK ′c − JKaKc This work Exp. [148] rel. error %
101 − 000 3880.484 − −
202 − 101 7527.429 7608.377 1.06
303 − 202 11277.417 11388.436 0.97
404 − 303 15003.717 15148.195 0.95
505 − 404 18698.230 18877.125 0.95

The experimental frequencies are reported for transitions between rotational and
hyperfine levels. Since the hyperfine structure has been neglected in the present cal-
culations, we have selected the experimental transitions with I = I′ = 0 (which hap-
pen only for ortho states) for comparison with the calculated frequencies. The agree-
ment between the calculated and experimental frequencies is quite good, within
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approximately 1 %, which represents a maximum deviation of 0.006 cm−1. This al-
lows us to conclude that the 4D-PES model provides an accurate description of the
interaction energy of the CO2–N2 van der Waals complex.

8.6 Conclusion
Accurate calculations of the intermonomer vibrational bound states of the CO2–N2

van der Waals system have been presented. The effects of the permutations of indis-
tinguishable atoms have been considered and investigated. The most notable effect
is the existence of symmetrically equivalent potential wells leading to systematic
lifting of degeneracy induced by tunneling effects. The examination of wave func-
tions has revealed unexpected features: the ground state wave function has several
nodal planes and the wave functions of highly excited states remain localized in
small regions of the coordinate space. A good agreement with the experimental ro-
tational transition energies has been obtained, thus demonstrating the accuracy of
the 4D-PES model and validating the nuclear motion treatment.

In spite of its importance for atmospheric chemistry, our work reveals that the
structure and the spectroscopy of the CO2–N2 complex are governed by full quan-
tum effects, including tunneling, large amplitude motions, anharmonic resonances
and vibrational quantum localization. Their spectroscopic signatures were already
observed experimentally and are explained here for the first time. The plural po-
tential induced complex dynamics could be found in several organic and inorganic
molecules such as those presenting several conformers (e.g., cis–trans), isomers and
tautomers (enol–keto) interacting mutually on the same PES. The present work sug-
gests that their spectroscopy and dynamics cannot be fully understood without con-
sidering quantum tunneling.
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General conclusions

In the first part of this thesis dedicated to the possible mechanisms of formation and
destruction of anions, a new method based on a body fixed single-center approach
and the use of Dyson orbitals was developed for the calculation of REA and PD
cross sections. The accuracy of this method was successfully benchmarked against
previously reported experimental and theoretical data for O−

2 , OH−, CN−. It was
however not tested for strongly polar molecules and we recommend to test it be-
forehand in this case as our approach is based on a body fixed approach which
could not be appropriate. We also found that the FBA gives good results for these
three systems studied. In other words a plane wave is a good approximation of the
scattering wave of the ejected electron in the case of the PD of an anion or for the
impinging electron in the case of the REA by a non strongly polar neutral molecule.
In this case the long-range interaction potential between the leaving or impinging
electron and the neutral molecule is relatively low. Owing to its simplicity, the use
of the FBA drastically reduces the computation time. It is expected to work well
for REA when the kinetic energy of the electron is large compared to the electron
affinity of the target molecule. We then suggest that the scattered wave should be
preferred for REA calculations at very low energy.

Two approaches were also tested for simplifying the calculation of the Dyson
orbital: namely KS and HF frozen-core orbitals. They were tested against the exact
CASSCF results. We found that KS orbitals reproduce the right energy dependence
of the cross sections but fail to estimate their absolute magnitudes. The HF frozen-
core approximation moderately underestimates the cross sections as it neglects the
electron-correlation. Therefore we conclude that the HFFC approach may provide a
reasonable first estimate of the Dyson orbital when the size of the system prohibits
the use of exact CASSCF calculations.

The effects of the size and the type of the basis set used to calculate the Dyson
orbital were also investigated. We found that the basis set must include very dif-
fuse functions in order to properly describe the Dyson orbitals. Consequently we
recommend using STO basis sets as the best one for performing REA or PD calcula-
tions. Unfortunately these basis sets are not currently included in the most widely
used electronic structure software. A good accuracy may alternatively be reached
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by using GTO basis set approaching the complete basis set limit.
Taking advantage of the reduced computation time offered by the FBA, we cal-

culated the REA and PD cross sections for the six detected anion and other potential
candidates belonging to the families C−

n , CnH−, CnN− and HCnO−. These cross sec-
tions were then used to calculate the corresponding PD and REA rates. We find that
the calculated rates are very small suggesting that the inclusion of these calculated
PD rates in the astrochemical model will decrease the fractional abundance of these
anions, thus deteriorating the current agreement between models and observations.
We furthermore conclude that the values of the calculated REA rates are too small
to explain the formation of anions in the interstellar medium suggesting that other
mechanisms have to be considered. We also expect that the method developed here
for the study of REA and PD could be straightforwardly extended to the study of
electron recombination with a cationic molecule and to the photo-ionization of neu-
tral molecules, these two processes being of great interest for both astrochemistry
and plasma physics.

The second part of this thesis was dedicated to the rotational excitation and de-
excitation of C3N− by collision with He and H2. Two analytical models of the cor-
responding PES has been developed from a large set of high-level ab-initio calcu-
lations. We took a special care in describing the analytical long-range interactions
which were found to be in excellent agreement with the ab-initio results.

The bound states of the He–C3N− and H2–C3N− complexes were then varia-
tionally calculated using these PESs and a Sturmian DVR. The detailed analysis of
the bound states wave functions for these two systems revealed some interesting
features such as vibrational quantum memory, tunneling splitting as well as anhar-
monic resonances. Tunneling splitting for example leads to the lifting of the degen-
eracy of bound states belonging to equivalent potential wells in the H2-C3N− van
der Waals complex. Vibrational frequencies and rotational constant for both com-
plexes have also been computed. These results show that a full quantum treatment
of the nuclei movement is required to obtain accurate bound state energies for these
anionic van der Waals complexes.

State to state rotational excitation and de-excitation rates of C3N− by collision
with H2 and He in the temperature interval [10, 300] K were then obtained by com-
bining CC calculations and the UJS procedure. In the case of collision with He a
strong propensity rule to favor |∆jC3N− | = 2 was found while for large ∆jC3N− , odd
∆jC3N− are favored. Conversely, for collision with both ortho– and para–H2 a propen-
sity to favor |∆jC3N− | = 1 is clearly at work. Another important result for this system
lies in the close resemblance, especially at higher temperatures, between ortho– and
para–H2 rates which is attributed to the angular anisotropy and to the strength of
the short-range interaction. We also explore the validity of scaling the He rate co-
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efficients by using the ratio of the reduced masses in order to estimate the para–H2

rates. We found that the use of this approximation leads to relatively large error
(< 50%) and to false propensity rules.

We also evaluated the accuracy of the estimation of the rate coefficient for ro-
tational relaxation of C3N− by collision with H2 from the available rates for CN−

and C6H−. We found that the agreement between the CN− and C3N− rates is rel-
atively good only for transitions with small |∆j| while for larger values of |∆j| CN−

rates are smaller than the C3N− ones. We think that these differences come from
the difference of size of the CN− and C3N− molecules. The bigger the molecule
the most repulsive will be the short-range potential thus enhancing transition with
large transferred angular momentum |∆j|. The results for C6H−, are conversely in
remarkably good agreement with those for C3N- for all the transitions. We then
suggest that similar effect to those found for C3N− and C6H− could also be seen for
larger chains of their respective families C2n+1N− and C2nH− for which rotational
relaxation rates could be estimated from the former ones.
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Appendix A

Dyson orbital calculation

Let us consider aN-electrons molecular system, neutral or anionic. After ionization
or electron detachment, this system has lost one electron. If the electronic wavefunc-
tions are expanded over a set of determinants, such as CASSCF or CI wavefunctions,

ΦN(x1, x2, · · · , xN) =
kmax∑
k=1

CNk Ψ
N
k (x1, x2, · · · , xN) (A.1)

ΦN−1(x1, x2, · · · , xN−1) =

lmax∑
l=1

CN−1
l ΨN−1

l (x1, x2, · · · , xN−1)
(A.2)

then the Dyson orbital [58, 59, 161] is defined by

ϕD(xN) =
√
N

lmax∑
l=1

CN−1
l

kmax∑
k=1

CNk

×
∫
dx1dx2 · · ·dxN−1Ψ

N
k (x1, x2, · · · , xN)

× ΨN−1
l (x1, x2, · · · , xN−1)

(A.3)

We detail below how to calculate the (N-1)-dimensional integral, following
closely Arbelo-González et al.[161]

Any N-electrons Slater determinant can rewritten as

ΨNk (x1, x2, · · · , xN) =

1√
N

N∑
i=1

(−)N+iψN−1
ki (x1, x2, · · · , xN−1)χdki(xN)

(A.4)

where ψN−1
ki (x1, x2, · · · , xN−1) is the minor determinant obtained by removing the

column i and the line N from the determinant ΨNk (x1, x2, · · · , xN), and where χdki is
the molecular spin-orbital appearing at column i in determinant k. The spin-orbital
number is given by the function dki. Using equation (A.4), the equation (A.3) can
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be rewritten

ϕD(xN) =

lmax∑
l=1

CN−1
l

kmax∑
k=1

CNk

N∑
i=1

(−)N+iχdki(xN)

×
∫
dx1dx2 · · ·dxN−1Ψ

N−1
l (x1, x2, · · · , xN−1)

×ψN−1
ki (x1, x2, · · · , xN−1)

(A.5)

The summation on k runs on all determinants of theN-electrons system, and the
summation on i runs on all occupied spin-orbitals of the determinant k. Thus we can
replace the summation on i by a summation on all spin-orbitals of the N-electrons
system. Let us define the b coefficients such as

bdki =

lmax∑
l=1

CN−1
l CNk (−)N+i

×
∫
dx1dx2 · · ·dxN−1Ψ

N−1
l (x1, x2, · · · , xN−1)

×ψN−1
ki (x1, x2, · · · , xN−1)

(A.6)

ϕD(xN) =

kmax∑
k=1

N∑
i=1

bdkiχdki(xN) (A.7)

dki will run on all the spatial orbital which are occupied at least one times in the
list of the determinants. dki gives also the spin state. Thus all the quantities bdki
which belong to the same spatial orbital j and spin state σ can be summed and the
equation (A.7) can be rewritten

ϕD(xN) =

No∑
j=1

∑
σ=α,β

bjσχjσ(xN) (A.8)

where No is the number of spatial orbitals (atomic or molecular).
The determination of the coefficients bdki involves the calculation of the (N-1)-

dimensional integral

Ilki =

∫
dx1dx2 · · ·dxN−1Ψ

N−1
l (x1, x2, · · · , xN−1)

×ψN−1
ki (x1, x2, · · · , xN−1)

(A.9)

The integral involves the product of two Slater determinants built over two non-
orthogonal spin-orbital basis sets. The (N-1)-dimensional integral can be reorga-
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nized into an antisymmetrized product of (N-1) 1D integrals

Ilki =
∑
p∈Sn

(−)pP̂

∫
dxϕdl1(x)χdk1(x)

×
∫
dxϕdl2(x)χdk2(x) · · ·

×
∫
dxϕdl(i−1)(x)χdk(i−1)(x)

×
∫
dxϕdli(x)χdk(i+1)(x) · · ·

×
∫
dxϕdl(N−1)(x)χdkN(x)

(A.10)

where the antisymmetrization operator acts over the χdki functions. This can be also
written as a determinant in which appear the overlaps of every occupied molecular
orbitals of theN-electrons system with every occupied molecular orbitals of the (N-
1)-electrons system.

The functions ϕdlj and χdki are spin-orbitals, i.e. the products of a spin function
σ ∈ [α,β] and a spatial molecular orbital. The latter are expanded over the spa-
tial atomic orbitals basis set. Let us recall that both N-electrons and (N-1)-electrons
systems have the same atomic orbitals basis set, the same geometry, but different
molecular orbitals basis sets. Therefore, the overlaps between spin-orbitals appear-
ing in equation (A.10) are calculated with

〈ϕdli |χdkj〉 = δσdli ,σdkj
No∑
m=1

No∑
n=1

umdlivndkjSmn (A.11)

where u and v are the LCAO coefficients and S the atomic orbital overlap matrix.
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J-shifting approaches

The rate coefficients for an inelastic process at a given temperature T are calculated
as

k(T) =

√
8
πµ

(kBT)
− 3

2

∫∞
0
Eσ(E)e−

E
kBT dE (B.1)

where µ is the reduced mass of the system, E the collision energy and σ is the inelas-
tic cross section which in turn is defined as

σ(E) =
π

2µE

∑
J

(2J+ 1)PJ(E) (B.2)

with PJ(E) as the average transition probability or opacity function for the total an-
gular momentum quantum number J. Equation (B.1) can be rewritten as

k(T) =

√
2π

(µkBT)3

∑
J

(2J+ 1)
∫∞

0
PJ(E)e−

E
kBT dE (B.3)

Let us suppose that we only know the opacity function for a given value of J, say
J = 0, and want to compute the rate coefficient. A simple approach is the so called
standard J-shifting method in which the missing values are approximated as follow

PJ(E) ≈ P0(E− BJ(J+ 1)) (B.4)

where B is known as the shifting constant. Substitution of equation (B.4) into equa-
tion (B.3) leads to

k(T) =

√
2π

(µkBT)3

∑
J

(2J+ 1)
∫∞

0
P0(E− BJ(J+ 1))e−

E
kBT dE (B.5)

By using the variable substitution E ′ = E − BJ(J + 1) the above expression can be
simplified to give

k(T) = k0(T)
∑
J

(2J+ 1)e−
BJ(J+1)
kBT (B.6)

where

k0(T) =

√
2π

(µkBT)3

∫∞
0
P0(E)e−

E
kBT dE (B.7)
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The main deficiencies of the standard J-shifting are associated with the selection
of the shifting constant B. The selection of B is to some extent arbitrary and conse-
quently, the computed rate coefficients may have large uncertainties associated with
it.

Let us now suppose that besides the opacity function for J = 0 we also have the
opacity function for a nonzero value of J, then by requiring that∫∞

0
PJ(E)e−

E
kBT dE =

∫∞
0
P0(E− BJ(J+ 1))e−

E
kBT dE (B.8)

we can obtain the shifting constant B in a non-arbitrary way as

B(T) =
kBT

J(J+ 1)
ln
[
(2J+ 1)

k0

kJ

]
(B.9)

where kJ is defined similarly to k0,

kJ(T) =

√
2π

(µkBT)3

∫∞
0
(2J+ 1)PJ(E)e−

E
kBT dE (B.10)

The previous approach is known as uniform J-shifting and was introduced by
Zhang and Zhang [122]. The physical significance of equation (B.8) is that it guar-
antees that the fitted probability function PJfit(E) = P

0(E − BJ(J + 1)) gives the exact
contribution to the rate coefficient as the original probability function PJ(E) at the
given temperature T .

In practical application it is desirable to calculate the opacity function for more
that two values of J in order to obtain more accurate result. In this case the shifting
constant B at a given temperature for J ∈ [Ji, Ji+1)

Bi(T) =
kBT

Ji+1(Ji+1 + 1) − Ji(Ji + 1)
ln
(

2Ji+1 + 1
2Ji + 1

kJi

kJi+1

)
(B.11)

Once Bi(T) is obtained the contribution kJ is obtained as follow

kJ(T) =
2J+ 1
2Ji + 1

kJi(T) exp
{
−
Bi(T) [J(J+ 1) − Ji(Ji + 1)]

kBT

}
(B.12)
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The character tables

Due to its importance in the present study, we give the character table and the mul-
tiplication table of the G4 and G8 group which are not easily found in the literature.

The G4 group

Table C.1: Character table of the
G4 group.

Γi : E (12) E∗ (12)∗

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

Table C.2: Multiplication table of
the G4 group.

Γi : A1 A2 B1 B2

A1 A1 A2 B1 B2

A2 A2 A1 B2 B1

B1 B1 B2 A1 A2

B2 B2 B1 A2 A1

The G8 group

Table C.3: Character table of the G8 group.

Γi : E (12)(34) E∗ (12)(34)∗ (12) (34) (12)∗ (34)∗

A′1 1 1 1 1 1 1 1 1
A′′1 1 1 1 1 −1 −1 −1 −1
A′2 1 1 −1 −1 1 1 −1 −1
A′′2 1 1 −1 −1 −1 −1 1 1
B′1 1 −1 −1 1 1 −1 −1 1
B′′1 1 −1 −1 1 −1 1 1 −1
B′2 1 −1 1 −1 1 −1 1 −1
B′′2 1 −1 1 −1 −1 1 −1 1
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Table C.4: Multiplication table of the G8 group.

Γi : A ′1 A ′2 B ′1 B ′2 A ′′1 A ′′2 B ′′1 B ′′2
A ′1 A ′1 A ′2 B ′1 B ′2 A ′′1 A ′′2 B ′′1 B ′′2
A ′2 A ′2 A ′1 B ′2 B ′1 A ′′2 A ′′1 B ′′2 B ′′1
B ′1 B ′1 B ′2 A ′1 A ′2 B ′′1 B ′′2 A ′′1 A ′′2
B ′2 B ′2 B ′1 A ′2 A ′1 B ′′2 B ′′1 A ′′2 A ′′1
A ′′1 A ′′1 A ′′2 B ′′1 B ′′2 A ′1 A ′2 B ′1 B ′2
A ′′2 A ′′2 A ′′1 B ′′2 B ′′1 A ′2 A ′1 B ′2 B ′1
B ′′1 B ′′1 B ′′2 A ′′1 A ′′2 B ′1 B ′2 A ′1 A ′2
B ′′2 B ′′2 B ′′1 A ′′2 A ′′1 B ′2 B ′1 A ′2 A ′1
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TITRE: Etude des mécanismes possibles de formation et de destruction d’anions
dans le milieu interstellaire.

RÉSUMÉ: L’étude des mécanismes de formation et de destruction des anions
moléculaires est devenu un champ d’intérêt prononcé après la détection récente de
six anions moléculaires (C4H−, C6H−, C8H−, CN−, C3N−, C5N−) dans le milieu
interstellaire. Dans les environnements interstellaires où la densité d’électrons est
relativement importante, le canal principal de formation de ces anions devrait être
l’attachement électronique radiatif. Mais il manque aujourd’hui des données expéri-
mentales et théoriques permettant d’évaluer cette hypothèse. D’autre part, le pho-
todétachement est la principale cause de destruction de ces anions dans les nuages
diffus et les régions de photodissociation. Une approche basée sur un développe-
ment monocentrique est appliquée à l’étude de ces deux processus opposés que sont
le photodétachement et l’attachement électronique radiatif. Les résultats obtenus
avec la présente méthode sont comparés à des données expérimentales et théoriques
précédemment rapportées et montrent un bon accord. Cette méthode est ensuite
utilisée pour déterminer les constantes de vitesse nécessaires pour confirmer si ces
mécanismes sont cruciaux pour la chimie d’anions interstellaires. En plus des con-
stantes de vitesse de formation et de destruction des anions, les constantes de vitesse
d’excitation collisionnelle sont nécessaires pour modéliser les abondances observées
des anions. Nous avons choisi de porter notre effort sur le calcul des constantes de
vitesse de transition entre états rotationels de la molécule C3N− dans son état vi-
brationnel fondamental lors des collisions avec H2 et He en utilisant de nouvelles
surfaces d’énergie potentielles.

MOTS CLÉS: anions interstellaires, attachement électronique radiatif, photodé-
tachement, constantes de vitesse de transitions rotationnelle, surfaces d’én-ergie po-
tentielle.

TITLE: Study of the possible mechanism of formation and destruction of anions
in the interstellar medium

ABSTRACT: The mechanisms of formation and destruction of molecular anions
have become a field of special interest after the recent detection of six molecular
anions (C4H−, C6H−, C8H−, CN−, C3N−, C5N−) in the interstellar medium. The
main channel of formation of these anions is expected to be radiative electron attach-
ment in environments where the density of electron is relatively important. There
is however at the moment a lack of experimental and theoretical data allowing to
assess this hypothesis. Photodetachment, on the other hand, is the main source of
destruction of the anions in diffuse clouds and photodissociation regions. A sin-
gle center expansion approach is applied to the study of both processes: photode-
tachment and radiative electron attachment. The results obtained with the present
method are compared to previously reported experimental and theoretical data and
show a good agreement. This method is then employed to determine the rate con-
stants which are needed to confirm whether or not these mechanisms are crucial for
the chemistry of the interstellar anions. Along with the formation and destruction
rates, rotational excitation rate coefficients are needed to accurately model the ob-
served anions abundances. We focus on the calculation of state-to-state rotational
transitions rate coefficients of the C3N− molecule in its ground vibrational state in
collisions with H2 and He using new potential energy surfaces.

KEYWORDS: interstellar anions, radiative electron attachment, photodetach-
ment, state-to-state rate coefficients, potential energy surfaces
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