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Summary

This thesis is a theoretical study of driven-dissipative nonlinear systems described by a
Lindblad master equation, with particular focus on the emergence of criticality. In Chapter 3,
we present a general and model-independent spectral theory relating first- and second-order
dissipative phase transitions to the spectral properties of the Liouvillian superoperator. In
the critical region, we determine the general form of the steady-state density matrix and of
the Liouvillian eigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss
the relevance of individual quantum trajectories to unveil phase transitions.

After these general results, we analyse the onset of criticality in several models. In
Chapter 4, we study a nonlinear Kerr resonator in the presence of both coherent (one-photon)
and parametric (two-photon) driving and dissipation. We present exact results for the steady-
state density matrix, which allows us to study the “thermodynamic” regime with large photon
density, where dissipative phase transitions take place.

We then explore in Chapter 5 the dynamical properties of a first-order dissipative phase
transition in coherently driven Bose-Hubbard systems, describing, e.g., lattices of coupled
nonlinear optical cavities. Via stochastic trajectory calculations based on the truncated
Wigner approximation, we investigate the dynamical behavior as a function of system size
for 1D and 2D square lattices in the regime where mean-field theory predicts nonlinear
bistability. We show that a critical slowing down emerges for increasing number of sites in
2D square lattices, while it is absent in 1D arrays. We characterize the peculiar properties
of the collective phases in the critical region.

We study dynamical properties of dissipative XYZ Heisenberg lattices where anisotropic
spin-spin coupling competes with local incoherent spin flip processes in Chapter 6. In par-
ticular, we explore a region of the parameter space where a second-order magnetic phase
transition for the steady state has been recently predicted by mean-field theories and exact
numerical methods. We investigate the asymptotic decay rate towards the steady state both
in 1D (up to the thermodynamic limit) and in finite-size 2D lattices, showing that critical
dynamics does not occur in 1D, but it can emerge in 2D.

Finally, in Chapter 7 we investigate the physics of driven-dissipative resonators subject
to engineered two-photon processes and one-photon losses. We demonstrate that the unique
steady state is a statistical mixture of two photonic Schrödinger cat states, in spite of sig-
nificant one-photon losses. By considering individual quantum trajectories, we find that the
system intermittently jumps between two cats in photon-counting configurations, while the
system jumps between two coherent states in a homodyne detection. We propose and study
a feedback protocol to generate a pure cat-like steady state.
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Introduction

The foundation of quantum mechanics can be traced back to the statement that the elec-
tromagnetic field is made of photons [7, 8]. Following the revolutionary idea that the energy
exchanges between light and matter were discrete, the whole building of quantum mechanics
was constructed, making of it one of the most successful theories in human history. Histor-
ically, many of the first experimental and theoretical successes dealt with single quantum
particles: the explanation of the photoelectric effect, the hydrogen atom, Stern–Gerlach ex-
periment, and the lists goes on [9, 10]. Quantum physics becomes even more interesting
when we consider systems made of several particles. When thermal effects do not destroy
the quantum nature of the system, the fermionic or bosonic statistics can produce extraor-
dinary effects. In bosonic systems at low temperature, a macroscopic fraction of particles
starts to occupy the state of minimal single-particle energy, resulting in Bose-Eintein con-
densation [11–15]. For fermions, Pauli principle alone can easily explain the essential differ-
ences between conductors and insulators [16, 17]. The scenario becomes even richer when
interaction-induced correlations combines with quantum degeneracy, producing phenomena
such as superconductivity and superfluidity [15, 18–20].

In quantum mechanics, the unitary evolution of any closed system is described by the
action of a Hamiltonian operator on a wavefunction [9, 10]. When we describe an isolated
system we assume that none of its degrees of freedom is coupled to the rest of the universe.
Obviously, this is only an approximation: any physical system interacts with its environ-
ment, exchanging energy, matter and information. Many physical systems, however, interact
so weakly with their environment that it is possible to describe them as if they were iso-
lated. This great simplification in the description of a phenomenon dates back to the very
beginning of physics: Galileo’s Leaning Tower of Pisa experiment on falling objects (and its
interpretation) is nothing but neglecting air resistance for a body subject to gravitational
attraction [21]. With the development of thermodynamics, it has also been possible to de-
scribe systems at thermal equilibrium with their environment. Indeed, the exchanges of both
energy (canonical ensemble) and particles (grand canonical ensemble) can be described via
the partition function of the system depending on two parameters: the temperature and
the chemical potential [12]. There are systems for which, however, the condition of thermal
equilibrium is not (or cannot be) satisfied, and therefore a thermodynamic description fails
to capture the relevant phenomena. In those cases, one speaks of open quantum systems
[22–24].

Historically, one of the first examples of open quantum systems is cavity Quantum Elec-
trodynamics (cavity QED). In those systems, one or more atoms interact with the electromag-
netic field confined between two high-quality mirrors [25]. Photon are, however, continuously
lost to the environment [25–27]. Nowadays, light-matter interaction can be studied also in
superconducting circuits [28, 29], semiconductor cavities [30] and optomechanical systems
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[31]. When the interaction strength becomes larger than the dissipation, the system enters
in the so-called strong light-matter coupling regime. For example, in semiconductors the
interplay between the electronic degrees of freedom and the electromagnetic field can which
gives rise to a new hybrid quasi-particle, the polariton [27, 32, 33]. The polariton can be seen
as a photon dressed by matter excitations, thus permitting a finite effective photon-photon
interaction. In order to compensate for particle losses, such photonic systems are often driven
out of their equilibrium states. There are many ways to take a system out of equilibrium,
such as applying a (periodic) driving field, or pumping energy and particles in the system
through external reservoirs via quenches or sweeps [34, 35].

In the context of driven-dissipative systems, the characterisation of criticality is a timely
subject. In thermodynamics, the occurrence of a phase transition has been understood in
terms of thermodynamic potentials. Classical critical phenomena can be driven by a com-
petition between the value of the system energy and the entropy produced by its thermal
fluctuations [12]. A quantum system at zero temperature has zero entropy and it is in its
ground state, which is the state minimizing the system energy [36]. However, critical phe-
nomena can occur in the thermodynamic limit as the result of the competition between
noncommuting terms of the Hamiltonian. A typical example is the Bose-Hubbard model, de-
scribing bosons living on a lattice with on-site interactions and nearest-neighbours hopping.
As a function of the ratio between hopping and interaction, it presents a quantum phase
transition from a strongly localised phase (Mott insulator), to a delocalised one (superfluid)
[37, 38].

The intrinsic non-equilibrium nature of driven-dissipative systems does not allow a deter-
mination of the stationary state of the system via a free energy analysis [23–26]. At a quantum
level, by properly designing the coupling with the environment and the driving mechanisms,
it is possible to stabilize phases without an equilibrium counterpart [39, 40]. The reservoir
engineering for complex many-body phases has been deeply explored in different contexts
[41, 42]. As for criticality, in the thermodynamic limit, the competition between Hamilto-
nian evolution, pumping and dissipation processes can trigger a non-analytical change in
the steady state [43]. The impressive experimental advances of the last decade provide the
opportunity to explore non-equilibrium critical phenomena on a variety of platforms, such
as lattices of superconducting resonators [44, 45], Rydberg atoms in optical lattices [46, 47],
optomechanical systems [31, 48], and exciton-polariton condensates [27, 49]. Very recently,
the critical properties have been investigated also experimentally in single superconducting
cavities [50], semiconductor micropillars [51, 52], and large arrays of microwave cavities [45].
Dissipative phase transitions have been discussed theoretically for photonic systems [5, 53–
64], lossy polariton condensates [65–67], and spin models [39, 40, 43, 68–73]. The interplay
between classical and quantum fluctuations in triggering a nonequilibrium phase transition
has been addressed by different methods, including renormalization group approaches based
on the Keldysh formalism [65, 74, 75] and via extensive numerical analysis of lattice systems
[2, 3, 71]. Our understanding of criticality in such systems is still in its infancy, even if some
common paradigms have been identified [1, 43, 75].

For open quantum systems, the typical effect of the environment is to destroy quantum
coherences, making a realisation of a macroscopic entangled state extremely difficult [76].
Even if the environment is often detrimental to the creation and preservation of quantum
states, it can be also exploited to realise new quantum technologies. By manipulating the
exchanges between a system and its environment, reservoir engineering aims to realise previ-
ously inaccessible quantum phases of matter [42, 77–82]. Recently, a photon-pair pumping

2



have been engineered for superconducting resonators [82], leading to the generation of so
called photonic Schrödinger cats, characterised by a multi-modal Wigner function [6, 63, 83].
The possibility to control and protect such states is promising for the implementation of
quantum computation protocols [84–88].

The structure of this thesis is the following. In Chapter 1 we introduce the field of Quan-
tum Manybody physics with light, while in Chapter 2 we discuss the theoretical framework
for driven-dissipative manybody physics. In Chapter 3, we explore fundamental properties
of both first- and second-order dissipative phase transitions, the latter being associated to a
symmetry breaking [1]. In Chapter 4 we present the analytic solution to the one- and two-
photon driven-dissipative Kerr resonator, investigating the emergence of phase transitions in
such models [5]. In Chapters 5 and 6 we discuss criticality in extended lattice models: the
driven dissipative Bose-Hubbard model [3] and anisotropic Heisenberg XYZ model [2], respec-
tively. Finally, in Chapter 7 we study the creation and preservation of photonic Schödinger
cat states in quadratically driven-dissipative Kerr resonators subject to one photon losses
[4, 6].
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CHAPTER 1

Quantum Manybody Physics with
Light

My thesis is devoted to the study of manybody interacting systems coupled in a non-
negligible way to a memoryless environment. Even if a specific model is not necessary for
such a general description, at the heart of my work there stands the pivotal example pro-
vided by Quantum Manybody Physics with Light [27]. Here, every word needs some expla-
nation: Quantum means that classical physics does not fully capture the system complexity;
Manybody Physics implies that we are interested in the collective phenomena of interacting
particles; Light indicates that those particles are the elementary excitations of the Electro-
Magnetic (EM) field. The aim of this Chapter is thus to review some fundamental properties
of light and motivate the interest in studying interacting photons. The additional layer of
complexity dictated by the dissipative nature of photonic systems will be treated in a general
way in the next Chapter.

The plan of this Chapter is the following: in Sec. 1.1 we will briefly introduce the classical
and quantum harmonic oscillator and we will provide an heuristic explanation about the con-
cept of massive and interacting photons. In Sec. 1.2 we will discuss two paramount examples
of experimental setups: the semiconducting micropillars and superconducting circuits.

Contents
1.1 Massive and interacting photons . . . . . . . . . . . . . . . . . . . 6

1.1.1 The harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Photons in vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Mass from confinement and interaction from nonlinearities . . . . 8

1.2 Examples of physical systems . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Semiconducting cavities . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Circuits QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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1.1 Massive and interacting photons
In this section, we provide a simplified discussion about massive and interacting photons.

Even if this description neglects much of the interesting features emerging from the light-
matter coupling, it allows an easy and intuitive explanation of how confinement and nonlinear
media generate mass and interaction. Since the Hamiltonian of the EM field in vacuum can
be recast in term of a collection of harmonic oscillators, we start by briefly describing this
model both in the classical and quantum-mechanical cases.

1.1.1 The harmonic oscillator
A classical Harmonic oscillator is described by the Hamiltonian [9, 89, 90]

H = p2

2m + 1
2mωx

2. (1.1)

In accordance, the momentum and position functions evolve as
d
dtp(t) = −mω2x(t),
d
dtx(t) = p(t)/m.

(1.2)

The solution to the previous equation can be found by introducing the complex dimensionless
parameter α(t) = (x(t)

√
mω + ip(t)/

√
mω) /

√
2. Its equation of motion reads:

d
dtα(t) = −iωα(t), (1.3)

which has solution:
α(t) = α0 e

−iωt, (1.4)

where α0 = α(t = 0) is the initial displacement. Accordingly, position and momentum evolve
as: 

p(t) = − i
√
mω√
2

(
α0e

−iωt − α∗0eiωt
)

= − i
√
mω (α(t)− α∗(t))√

2
,

x(t) = 1√
2mω

(
α0e

−iωt + α∗0e
iωt
)

= α(t) + α∗(t)√
2mω

,

(1.5)

and the energy of the system is H(t) = E = mω (x(t)2 + p(t)2) /2 = ω |α0|2. The meaning
of Eq. (1.5) is clear: by displacing the harmonic oscillator from its rest position (i.e. x = 0,
p = 0) one induces a periodic motion, characterised by an exchange between potential and
kinetic energy.

The Hamiltonian of a quantum Harmonic oscillator is of the form [9, 10, 25]

Ĥ = p̂2

2m + 1
2mωx̂

2, (1.6)

where x̂ and p̂ are the position and momentum operator, and [x̂, p̂] = i (in this manuscript,
we will adopt the convention ~ = 1). To solve this model, one introduces the so-called
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annihilation and creation operators â and â†, defined as

â =
√
mω

2

(
x̂+ i

mω
p̂
)
, (1.7a)

â† =
√
mω

2

(
x̂− i

mω
p̂
)
. (1.7b)

It follows [
â, â†

]
= 1. (1.8)

Eqs. (1.7) can be inverted, obtaining x̂ and p̂ as

x̂ =
√

1
2mω (â† + â), (1.9a)

p̂ = i
√
mω

2 (â† − â). (1.9b)

Inserting these expression into Eq. (1.6), and exploiting Eq. (1.8), one has

Ĥ = ω
(
â†â+ 1

2

)
= ω

(
n̂+ 1

2

)
, (1.10)

where n̂ = â†â. The solution of the Harmonic oscillator problem is therefore equivalent to
the determination of the eigenvalues and eigenvectors of n̂.

It can be shown [9, 10], that the spectrum of the operator n̂ is non-degenerate and such
that n̂ |n〉 = n |n〉 with n ∈ N. The states |n〉 are called the number or Fock states. Moreover,
one has â |n〉 =

√
n |n− 1〉 and â† |n〉 =

√
n+ 1 |n+ 1〉. For this reason â and â† are said to

be creation and annihilation operators: their action on an eigenvector |n〉 makes an energy
quantum ω appear or disappear.

1.1.2 Photons in vacuum
The quantisation of the electromagnetic field was a milestone in the development of quan-

tum field theory [91]. The idea, due to Dirac, Fock and Jordan allowed to introduce the
theoretical machinery of second quantisation for the free fields: (i) one expands a classical
Hamiltonian described via a scalar or vector field on a basis consisting of a complete set of
functions; (ii) each of the coefficients in this expansion is interpreted as the classical coun-
terpart of an operator: a creation or an annihilation one; (iii) Bose or Fermi statistics is
imposed by requiring commutation or anti-commutation relations between the creation and
annihilation operators.

This procedure for the U(1) scalar field associated to the classical EM field is nowadays a
textbook example [91, 92]: in the Coulomb gauge, one decomposes the vector potential of the
EM field in its Fourier modes. The coefficients of this normal expansion are identified as the
creation and annihilation operators of the photonic field. By applying this transformation to
the classical Hamiltonian

H = ε0
2

∫∫∫
V
d3r

(
|E(r, t)|2 + c2|B(r, t)|2

)
(1.11)

one recovers the picture of the free electromagnetic field as an infinite collection of harmonic
oscillators under the form:

Ĥ =
∑
k, µ
~ω(k)(â†k, µâk, µ + 1

2), (1.12)
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where k is the momentum (whose value depends on the boundary conditions) and µ is
the polarisation of the field, together with the canonical commutation relations for bosons[
âk, µ, â

†
k′, µ′

]
= δk,k′δµ,µ′ . That is, the electromagnetic field can be understood in terms of an

infinite collection of quantum harmonic oscillators.
In what follows, we will often be interested in studying the electromagnetic field confined

inside optical cavities. The confinement (combined with the very good quality of the confining
mirrors) results in a large frequency spacing between the ω(k) levels. In this case, one
discerns the different modes of the field, so that most of the times it is possible to work in the
approximation in which only one cavity mode of frequency ω determines the field dynamics:

Ĥ = ~ω
(
â†â+ 1

2

)
. (1.13)

1.1.3 Mass from confinement and interaction from nonlinearities
In the next Section, we will introduce two of the most important experimental platforms

for the study of open quantum many-body systems, namely semiconductor micropillars and
superconducting circuits. Here, in order to grasp the main ideas behind massive and in-
teracting photons, we consider the simplified model of light propagating in a dielectric and
confined between two mirrors. Confinement will give photons an effective mass, while the
electronic degrees of freedom of the nonlinear medium will provide the effective interaction
between the photons. For a more formal description of such a light-matter coupling, one
can describe the response of the dielectric via a power series of the incoming electric field,
recovering the various element of the susceptibility tensor [93]. This tensor can be then used
to describe high-order photon-photon processes via a dielectric quantisation procedure [92].

Mass

Let us consider the EM field confined in between two mirrors at distance L in the z
direction, and free in the xy plane (see Fig 1.1, left). Under the assumption of perfectly
reflecting mirrors, the wave-vector kz cannot have arbitrary values, but only kz = 2πn/L,
where n is an integer number. Now, let us suppose that the EM field in the cavity is almost
completely parallel to the z direction. In this case the total wave vector k can be expressed
as:

k =
√
k2
z + k2

⊥ = kz

(
1 + k2

⊥
2k2

z

)
+O

(
k4
⊥
k4
z

)
(1.14)

where k⊥ � kz is the component of the field perpendicular to the z direction.
Since the particle we are considering are photons, their energy dispersion can be cast as:

E = ~ck = ~c
√
k2
z + k2

⊥ '
~kz
c
c2 + 1

2
k2
⊥~2

~kz/c
= meffc

2 + p2
⊥

2meff
, (1.15)

where we have introduced the effective mass meff = ~kz/c, and exploited the relativistic
relation between momentum and wave vector p⊥ = ~k⊥. Indeed, one finds the relativistic
equation of a slow massive particle, where the value kz plays, up to a constant, the role of
an effective mass. We stress that, since kz = 2πn/L, different values of n means different
effective masses.
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Figure 1.1 – Left panel: The EM field confined in region of space can be decomposed in a
perpendicular component and a parallel one. Its energetic dispersion can be recast in the
form of a non-zero mass term plus a kinetic one. Central panel: Heisenberg-Euler diagram
of a photon-photon interaction in vacuum. Right panel: Creation of an electron-hole pair in
a dielectric via the absorption of a photon.

Interaction

In order for photons to interact in vacuum, a creation of an electron-positron pair is
necessary (cf. Fig. 1.1, middle). The energy of the electron-positron pair is Ee−p ' 1 MeV,
while for an optical photon Eph ' 2 eV. Since the cross section of this scattering process
depends on the ratio between the energy of the photons and the one of the pair, this process
can be neglected in experiments with optical photons. The situation is extremely different if
we consider a dielectric material. In this case, instead of dealing with the virtual creation of
an electron-positron pair, we can consider the creation of an electron-hole couple by excitation
of an electron from the valence band to the conduction one (cf. Fig. 1.1, right). The diagram
describing this process has the same form as in vacuum but the energy associated to the
creation of an electron-hole pair is far smaller (e.g., for typical semiconductors Ee−h ' 1 eV).
In this regard, nonlinear media allows to introduce effective interaction between photons of
the form

Ĥint = U

2 â
†â†ââ. (1.16)

Such interaction is often called a χ(3) Kerr interaction, since it is the quantum counter-
part of the classical Kerr effect stemming from the third order development of the electric
susceptibility tensor χ.

1.2 Examples of physical systems

Having justified the rationale behind massive and interacting photons, in this section
we present two of the most significant experimental platforms for the study of quantum
many-body physics with light: semiconductor microstructures and superconducting circuits.
Indeed, in those systems sizeable photon-photon interactions can be produced, and several
resonators can be tailored to create lattices of photonic cavities [27]. In the following discus-
sion, we will explicitly ignore the driven-dissipative nature of photonic systems (which will
be addressed in Chapter 2) and we will mainly focus on the Hamiltonian properties.
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Energy

Growth

VB

CB

Figure 1.2 – Left: Energy bands of quantum states confined in a quantum well as a function
of the position along the growth direction. VB is the valence band and CB the conduction
band. The dashed lines represent the quantised energy levels of the system. Right: Scanning
electron microscope image of the polaritonic molecule (from Ref. [94]).

1.2.1 Semiconducting cavities
In a pure semiconductor the valence band is separated from its conduction one by an

energy gap. When light is shined on it, a significant number of electrons can be excited from
the valence to the conduction band, creating electron-hole pairs. Due to Coulomb interaction,
a pair can form a bound state called exciton, i.e. a bosonic quasiparticle associated to the
lowest energy optical transition of the semiconductor. In order to increase the binding energy
and favour the creation of excitons, one can confine the motion of electrons in a quantum
well.

A quantum well consists of a localised confining potential which creates a discrete en-
ergy spectrum. In semiconductors, this can be achieved by growing a thin semiconductor
layer on a second semiconductor (or by changing the doping of the semiconductor). The
chemical composition of the well is then chosen to have the bottom of the conduction (the
top of the valence) band at a lower (higher) energy than the surrounding material [27]. In
this heterostructure, the electron and holes are then confined by the semiconductor-vacuum
interface and by the “barrier material”. The motion of carriers being confined in a plane, a
quantum well acts as a two-dimensional structure (see Fig. 1.2 left).

If the confinement is sufficiently strong, the energy spacing between the confined modes is
much larger then the spectral width, and it is safe to consider only one light mode interacting
with a single excitonic level. The minimal-coupling Hamiltonian of such a exciton-photon
system reads [95, 96]

Ĥex−ph = ωphĉ
†ĉ+ ωexd̂

†d̂+ Ω(d̂†ĉ+ ĉ†d̂) + ωnl

2 d̂†d̂†d̂d̂, (1.17)

where ωph is the energy of one photon, ωex is that of an exciton pair, Ω quantifies the ligt-
matter coupling strength and ωnl is the nonlinear exciton-exciton interaction. The operators ĉ
and d̂ annihilate a photon or an exciton, respectively. To enhance the light-matter coupling,
one can embed one or more quantum wells in a Fabry-Pérot cavity with semiconducting
Bragg mirrors.

The quadratic part of the Hamiltonian can be diagonalised via a Hopfield-Bogoliubov
transformation [32], and the stemming elementary excitations are the so-called polaritons,
hybrid light-matter (quasi-)particles [27, 33, 95]. For quasi-resonant excitation between the
laser and the energy of such a quasi-particle, the micropillar can be considered as a single-
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mode polariton cavity, characterised by the Hamiltonian:

Ĥ = ωâ†â+ U

2 â
†â†ââ, (1.18)

where the frequency of the polariton mode is

ω = ωph + ωex

2 −
√

Ω2 +
(
ωph + ωex

2

)2
, (1.19)

the strength of the non-linearity is

U = ωnl

2
[
1 +

(
Ω2

ωph−ωex

)2
]2 , (1.20)

and â is the polariton annihilation operator. Indeed, we find a Kerr interaction of the form
given in Eq. (1.16).

Several semiconductor cavities can be arranged in a lattice configuration (see Fig. 1.2,
right) resulting in an evanescent coupling between different sites. Keeping only the leading
tunnelling terms, the Hamiltonian of this system reads

Ĥcoup = −J
∑
〈i,j〉

â†i âj + â†j âi, (1.21)

where J quantifies the hopping strength and the sum runs over 〈i, j〉 nearest neighbours.
This scheme has been implemented to realise artificial molecules [94], and extended lattice
systems [97–99].

1.2.2 Circuits QED
In any electronic circuit, the flow of an electric current I can be characterised by a

resistance R, an induction L, and a capacitance C. The resistance R describe the difficulty
of current to pass through the circuit via the Ohm low ∆V = RI, ∆V being the difference of
potential between the two extremes of the circuit. The capacitance quantifies the potential
energy stored in the electric field, i.e. EC = Q2/2C, Q being the charge cumulated. The
induction, instead, quantifies the energy stored in the magnetic field as EL = Φ2/2L, where
Φ = LI is the magnetic flux.

Since I = dQ/dt, the magnetic flux and the charge can be seen as conjugate variables.
Thus, for a circuit where the resistance is negligible, the classical Hamiltonian of a LC circuits
is of the form

H = Φ2

2L + Q2

2C . (1.22)

The mechanical analogous to such a LC oscillator is a simple mass-spring system, the dis-
placement playing the role of the charge and the momentum that of the flux. Accordingly,
we can quantise the charge and flux in the electrical circuit as 1

Ĥ = Φ̂2

2L + Q̂2

2C = ω(â†â+ 1
2), (1.23)

1. This procedure is known as mesoscopic quantisation. For more details see, e.g., [100].
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where we introduce the canonically commutating variables
[
Φ̂, Q̂

]
= i, the frequency ω =

1/
√
LC and the annihilation operator

â = 1√
ω

 Φ̂√
2L
− i Q̂√

2C

 . (1.24)

The previous equation establishes the close parallelism between a superconducting LC circuit
(where the resistance is zero) and a quantum harmonic oscillator. This formalism is quite
general and describe a large class of systems, since transmission lines can be modeled by a
chain of capacitors and inductors.

The nonlinear element of such a setup can be given, for example, by a Josephson junction
[29, 100]. A Josephson tunnel junction is created by sandwiching a thin insulating layer
between two superconductors [101], and the currents tunneling between the two supercon-
ductors obey the Josephson equations [19]. In particular, the current and voltage across the
barrier are related to the phase difference between the two superconductors δ as

I = I0 sin(δ), (1.25a)

dδ
dt = V

Φ0
= 4πV e, (1.25b)

where V is the voltage difference applied to the junction, I0 is the critical intensity (depending
on the superconductor energy gap and on the resistance of the junction) and φ0 = 1/4πe is
the flux quantum. A Josephson junction will introduce an additional inductance, whose form
can be derived as

dI
dt = I0V

Φ0
cos(δ) = V

LJ
cos(δ), (1.26)

where we have introduced the Josephson inductance LJ = Φ0/I0. Moreover, the junction will
store a energy

HJ =
∫ t

−∞
V (t′)I(t′)dt′ = −EJ cos(δ) = −EJ

[
1 + 1

2δ
2 + 1

24δ
4 +O(δ6)

]
, (1.27)

where EJ = I0Φ0. Such a nonlinear element can be integrated in a LC circuit. The process
to correctly quantise a Josephson junction is quite involved, and can be found, e.g., in the
supplementary material of [102]. By expressing δ as a function of Φ, and by Taylor developing
to the fourth order in the variable Φ, one obtains an effective quartic Hamiltonian of the form

Ĥ = Φ2

2Lt
+ Q2

2C −
1
24

L3
J

L4
tΦ2

0
Φ4, (1.28)

where Lt = LJ +L. One can then quantise Q and Φ and rewrite them in terms of the creation
and annihilation operators in Eq. (1.24). In one keeps only the energy-conserving terms with
equal number of annihilation and creation operators, one obtains

Ĥ = ωâ†â+ U

2 â
†â†ââ, (1.29)

where ω = 1/
√
LtC is the energy of one particle,

U = −
e2ω0

√
Lt/C

2

(
LJ
Lt

)3
, (1.30)
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|g〉

|e〉

Figure 1.3 – Top: the Jaynes-Cummings model describes a two-level system interacting with
a quantized mode of an optical cavity. It was originally developed to study the interac-
tion of atoms with the quantized electromagnetic field. Bottom: Realization of the Jaynes-
Cummings model and lattice in a circuit QED setup. Left: The device (top) and circuit
scheme (bottom). A LC resonator is capacitively coupled to a qubit (realised via nonlinear
superconducting circuit element). “In” and “out” ports connect the system to microwave
drive and detection circuitry. Right: Circuit QED realization of the Jaynes-Cummings lat-
tice. Transmission line resonators, “a”, are coupled to each other via coupling capacitors, “b”,
and thus form a regular lattice in which photons can hop from site to site. Photon-photon
interactions are induced by the presence of superconducting circuits such as the transmon
qubit, “c”. Bottom figures from Ref. [103].
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is the effective interaction and â is the annihilation operator of a photon inside the circuit.
Again, one finds a Kerr interaction as in Eq. (1.16).

Most of circuit-QED experiments focus on the interaction of microwave “cavity” photons
shined on circuit elements (see Fig. 1.3, Bottom left). Given the extreme control achieved on
the manipulation of electronic elements, there exists several ways to integrate and engineer
nonlinear elements in a LC circuit [29, 103–106]. In particular, it is possible to realise circuits
where presence of a single photon is able to effectively block the entrance of a second one.
In this regime of photon blockade the circuit is an effective two-level system (qubit), and its
physics is well capture by the Jaynes-Cummings model ([107] and Fig. 1.3, top):

Ĥ = ωcâ
†â+ ωaσ̂

+σ̂− + g(â†σ̂− + âσ̂+), (1.31)

where the operator σ̂− is the lowering operator acting on the two level system and â is the
annihilation operator for a cavity photon. The excited state of two level system has an of
energy ωa, a cavity photon has energy ωc, and g is the Rabi coupling between the qubit
and the cavity field. As it was the case for semiconducting micropillars, it is possible to
evanescently couple different resonators in a lattice geometry (see, e.g. Fig. 1.3, Bottom
right).



CHAPTER 2

Theoretical Framework for Open
Quantum Systems

When considering open systems (e.g., dissipative photonic ones) one cannot neglect the
effect of the environment. However, an exact treatment of the full problem is often impossi-
ble. Thus, in this Chapter we derive a reduced description of an open system dynamics by
tracing out the environment. Describing the time evolution of a system weakly coupled to
a memoryless environment, we obtain the so-called Lindblad master equation. By construc-
tion, the Lindblad master equation describes the average dynamics of a system, which can
be interpreted as the effect of a continuous and unread measure. By “reading” the result of
the measurement process, we determine the quantum trajectories associated to a stochastic
Schrödinger equations. Finally, we introduce the coherent states and the phase-space rep-
resentations of quantum mechanics, which allow to interpret the system density matrix in
terms of quasiprobability distributions of semiclassical states.

The plan of this Chapter is the following. In Sec. 2.1 we derive the Lindblad master
equation, while in Sec. 2.2 we investigate the physics of the stochastic Schrödinger
equations. In Sec. 2.3 we derive the phase space representations of a photonic system.
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2.1 The Lindblad master equation
A typical approach to simplify the description of an open system is to neglect the details

about the system-environment interaction and only model the average effect of the envi-
ronment on the system. To deal with such a problem, thus, one abandons a deterministic
description (in terms of a wave function) and resort to a probabilistic one (in terms of a density
matrix operator). Under the approximation of a weakly coupled and Markovian (i.e. memo-
ryless) environment, we will obtain a very general and compact form for the evolution of the
reduced density matrix of the system, called the (Gorini–Kossakowski–Sudarshan–)Linblad
master equation [108, 109]. This equation of motion will not only contain a unitary Hamilto-
nian part, but will also describe decoherence processes, i.e., the dissipation of energy, particles
and information into the environment. The following discussion was largely inspired by [23–
26, 110, 111].

2.1.1 Density matrices and quantum maps
We consider the rather general problem of a quantum system S coupled to an environment

E. By environment we mean a large collection of degrees of freedom, each one coupled to
the system, with a continuous and wide spectrum of characteristic frequencies, in thermal
equilibrium and at some temperature (possibly zero). The Hilbert space of (S⊕E) is HSE =
HS ⊗ HE, where HS is the Hilbert space of the system and HE is the Hilbert space of
the environment. The environment and system are, together, described by a wave function
|Ψ〉 ∈ HSE. We are interested in describing S, neglecting what happens to E. To do so,
one can build the reduced-density operator ρ̂S by tracing ρ̂SE = |Ψ〉 〈Ψ| over the degrees of
freedom of E [24, 25, 111, 112], that is:

ρ̂S = TrE [ρ̂SE] =
∑
i,j

cicj |ψi〉 〈ψj| , (2.1)

where ψj is a wave function in HS. The operator ρ̂ ≡ ρ̂S (from now on we will drop the
label S) contains all the information needed to describe the statistics of outcomes of any
measurement performed only on the system. Moreover, ρ̂ is a density matrix, since it is an
Hermitian, positive definite and trace-one operator [9, 22, 24–26, 112]. Such a density matrix
can describe the quantum system in a mixed state, that is, a statistical ensemble of several
quantum states. Clearly, ρ̂ can be diagonalised, obtaining

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (2.2)

where the pi can be interpreted as the probabilities of mutually excluding events associated
to the states |ψi〉. Physically speaking, the probabilities pi describe the likelihood to find the
system in a certain state upon an appropriate measure.

General form of a quantum map

Having introduced the reduced density matrix ρ̂, we are now interested in the most general
equation for its time evolution. Such a quantum map M must transform a density matrix
into another, i.e.

ρ̂(t+ τ) =Mρ̂(t). (2.3)
Therefore,M must to satisfy the following properties:
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P1 : M is linear:
M(αρ̂1 + βρ̂2) = αM(ρ̂1) + βM(ρ̂2). (2.4)

P2 : M conserves the Hermiticity of ρ̂.

(Mρ̂)† =Mρ̂. (2.5)

P3 : M conserves the trace
Tr[Mρ̂] = 1. (2.6)

P4 : M conserves the positivity 1

〈ψ|Mρ̂|ψ〉 ≥ 0 for any |ψ〉 . (2.7)

The quantum mapM is a superoperator, since it transform an operator into another.
The conditions P1-P4 severely limit the structure of the linear superoperatorM. Indeed,

whenM meets them, Choi’s theorem on completely positive maps (see, e.g., [25, 112, 113])
guarantees that there exist a set of M̂µ Kraus operators such that

Mρ̂(t) =
∑
µ

M̂µρ̂(t)M̂ †
µ, (2.8)

with the normalization condition ∑
µ

M̂ †
µM̂µ = 1. (2.9)

The number of Kraus operators is, at most, N2, where N is the dimension of the Hilbert
space HS. We also stress that Kraus operators need not be unique: any linear unitary
transformation mixing them leaves the quantum map unchanged. Kraus operators are an
extremely powerful tool: indeed it is possible to compress the infinite complexity of the
environment into the set of M̂µ operators.

2.1.2 A note about superoperators
In the following, we will often have to deal with superoperators, i.e. liner operators acting

on the vector space of operators. That is, superoperators act on operators to produce new
operators, just as operators act on vectors to produce new vectors.

An example of superoperator is the commutator A =
[
Â, •

]
= Â•−•Â. With this notation,

we mean that A acting on ξ̂ is such that Aξ̂ = Âξ̂− ξ̂Â. The dot simply indicates where the
argument of the superoperator is to be placed. Moreover, we adopt the convention that the
action is always on the operator to the immediate right of the dot. Superoperators can also
“embrace” their operators, e.g., A = Â • B̂ is such that Aξ̂ = Âξ̂B̂.

The dot-notation (i.e., •) is particularly useful, since it allows for a nesting of superoper-
ators. For example, consider A = Â • B̂, C = Ĉ • D̂ and E = ÊF̂ •. One has,

AC = (Â • B̂)(Ĉ • D̂) = ÂĈ • D̂B̂,

EA = ÊF̂ Â • B̂,

AE = ÂÊF̂ • B̂.

(2.10)

1. To be more precise, M is completely positive. That is, not only does M map positive operators to
positive operators, but so does the map for M⊗ I, where I is the idendity superoperator for an arbitrary
second system S′. Indeed,M⊗I is a legitimate quantum map for a system S ⊕ S′.
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In this manuscript, we will systematically adopt the following notation: superoperators
will be written in calligraphic characters (e.g., A), operators will be denoted by hats (e.g.,
Â), states and their duals will be expressed in the Dirac notation (|a〉 and 〈a|). Since the
operators form a vector space, it is possible to provide a vectorized representation to each
element in H ⊗ H . For an operator Â, it will be denoted by ~A or |Â〉. We choose the
convention to convert the matrices into a column vectors as

Â =
(
a b
c d

)
−→ ~A =


a
b
c
d

 . (2.11)

Consequently, to any linear superoperator A it is possible to associate its matrix represen-
tation ¯̄A.

Since there is no intrinsic definition of inner product in the operator space H ⊗ H, we
introduce the Hilbert-Schmidt one 2:

〈Â|B̂〉 = Tr
[
Â†B̂

]
. (2.12)

Hence, the norm of an operator is:

‖Â‖2 = Tr
[
Â†Â

]
. (2.13)

Most importantly, having introduced a inner product for the operators, it is possible to
introduce the Hermitian adjoint 3 of A, which by definition is A† such that:

〈ξ̂|Aχ̂〉 = 〈A†ξ̂|χ̂〉 . (2.14)

The rules to obtain such adjoint, however, are not the same as in the case of operators.
Consider the most general linear superoperator A = Â • B̂. Exploiting the definition of
Hermitian adjoint we have

〈ξ̂|Aχ̂〉 = Tr
[
ξ†Âχ̂B̂

]
= Tr

[
B̂ξ†Âχ̂

]
= Tr

[
(Â†ξ̂B̂†)†χ̂

]
= Tr

[
(A†ξ̂)†χ̂

]
= 〈A†ξ̂|χ̂〉 . (2.15)

We conclude that
A† = Â† • B̂†. (2.16)

We stress that (
Aξ̂
)†

=
(
Âξ̂B̂

)†
= B̂†ξ̂†Â† 6= A†ξ̂†. (2.17)

2. That is, given two matrices

Â =
(
a b
c d

)
, Ê =

(
e f
g h

)
one has

〈Â|Ê〉 =
(
a∗ b∗ c∗ d∗

)
e
f
g
h

 = a∗e+ b∗f + c∗g + d∗h = Tr
[
Â†Ê

]
.

3. There are several different notations in literature to indicate Hermitian conjugation, and the symbol †
is used with different meanings. In particular, Carmichael in [110] uses the symbol Â† to indicate a conjugate
“associated” superoperator.
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2.1.3 The Lindblad form
Having provided the general properties of any quantum map M, we are now interested

in the specific map describing the time evolution of the density matrix ρ̂ of a system weakly
coupled to its environment. First, we make the hypotheses that the environment is much
“bigger” than the system, and therefore at all times it remains “close” to its equilibrium.
That is, the system does not change the properties of the environment (Born approximation).
Consequently, it is natural to assume that the Kraus operators are time independent. The
density operator will evolve (smoothly) as

ρ̂(t+ τ) =Mρ̂(t) =
∑
µ

M̂ †
µρ̂(t)M̂µ = ρ̂(t) + τ

dρ̂(t)
dt +O(τ 2). (2.18)

If mathematically the time interval τ must be “infinitesimal”, from a physicist perspective
it should be handled with some care. It must be small at the scale of the system dynamics
∆tS (i.e. small compared to all characteristic timescales and relaxation times), so that the
modification of ρ̂ is only incremental. On the other hand, it must be much longer than the
correlation time of the environment ∆tE, so that there are no remaining coherent effects in
the system-reservoir interaction. In the limit in which ∆tE � ∆tS, the environment can be
thought as memoryless, and we can assume that it is always in its thermal-equilibrium state,
i.e., disentangled from the system. In other words, we are assuming that the environment is
a Markovian bath for the system.

By considering the appropriate limit τ → 0, one can arrange the Kraus operators in
Eq. (2.18) so that one is of the order of unity, while all the others are of order

√
τ : 4M̂0 = 1− iK̂τ

M̂µ =
√
τ Γ̂µ for µ 6= 0

(2.19)

The operator K̂ can be split in an Hermitian part, Î = (K̂ + K̂†)/2, and an anti-hermitian
one Ĵ = i(K̂ − K̂†)/2, so that K̂ = Î − iĴ . To the first order in τ one finds

M̂ †
0 ρ̂(t)M̂0 = ρ̂(t)− iτ

[
Î , ρ̂(t)

]
− τ

{
Ĵ , ρ̂(t)

}
+O(τ 2), (2.20)

where [•, •] indicates the commutator and {•, •} is the anticommutator. By using the normal-
isation condition of the Kraus operators, one has

1 =
∑
µ

M̂ †
µM̂µ = M̂ †

0M̂0 + τ
∑
µ6=0

Γ̂†µΓ̂µ +O(τ 2) = 1− 2τ Ĵ + τ
∑
µ6=0

Γ̂†µΓ̂µ +O(τ 2). (2.21)

Considering limit τ → 0, we conclude Ĵ = ∑
µ6=0 Γ̂†µΓ̂µ/2. Therefore, the dynamics of ρ̂(t) is

dictated by an equation of the form

ρ̂(t+ τ) = ρ̂(t)− iτ
[
Î , ρ̂(t)

]
+ τ

∑
µ 6=0

(
Γ̂µρ̂(t)Γ̂†µ −

1
2Γ̂†µΓ̂µρ̂(t)− 1

2 ρ̂(t)Γ̂†µΓ̂µ
)
. (2.22)

Eq. (2.22) means that ρ̂(t) evolves smoothly in time under the action of a completely-positive,
trace-preserving linear map. Indeed, no assumptions have been made about the nature of
the operators Î and Γ̂µ.

4. Indeed, one need a part of the quantum map M which is proportional to the identity, and the rest
which is proportional to τ . Therefore, the most general form allowed for the Kraus operator is the one in
Eq. (2.19).
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To grasp their meaning, however, we can use the analogy with the isolated systems. In
this case, the time evolution is dictated by

ρ̂(t+ τ) = ρ̂(t)− iτ
[
Ĥ, ρ̂(t)

]
, (2.23)

where Ĥ is the Hamiltonian of the isolated system. Comparing Eqs. (2.23) and (2.22), is
clear that Î plays the role of a coherent Hamiltonian evolution. As it will be clarified in
Sec. 2.1.4, Γ̂µ are called jump operators and describe the coupling with the environment. If
there are no coherent process linking the environment to the system and their interaction is
purely dissipative, one has Î = Ĥ. We finally obtain the master equation in the Lindblad
form [23–27, 111, 114]

∂ρ̂(t)
∂t

= −i
[
Ĥ, ρ̂(t)

]
+
∑
µ 6=0

(
Γ̂µρ̂(t)Γ̂†µ −

1
2Γ̂†µΓ̂µρ̂(t)− 1

2 ρ̂(t)Γ̂†µΓ̂µ
)
. (2.24)

Radiative damping in an optical cavity: an explicit example

The previous general derivation does not tell much about the operators Γ̂µ. In Sec. 2.1.4,
we will discuss a method allowing to guess the form of the jump operators. Here, instead, we
derive the evolution equation starting from a microscopic description of the electromagnetic
field in an optical cavity. We anticipate that we will recover the same form of the Linblad
master equation (2.24).

Let us consider a one-mode optical cavity, where the EM field is confined between two
high-quality mirrors. In first approximation, all photons inside the cavity have the same
frequency ωc. Thus, discarding the constant ω/2 term, the Hamiltonian reads

ĤC = ωcâ
†â. (2.25)

The environment, instead, is described as the collection of infinitely many harmonic oscilla-
tors, as discussed in Sec. 1.1.2. Therefore, its Hamiltonian is

ĤE =
∫ ∞

0
dω ω b̂†(ω)b̂(ω). (2.26)

We suppose that the system and the environment are coupled via

ĤI =
∫

dω g(ω)(â+ â†)(b̂(ω) + b̂†(ω)). (2.27)

The evolution of the cavity coupled to the environment is

− i∂t |Ψ〉 = (ĤC + ĤE + ĤI) |Ψ〉 , (2.28)

where |Ψ〉 is the wave function describing the system and the environment.
To simplify the problem, we pass in the interaction picture, i.e. we introduce |Ψ̃〉 =

Û(t) |Ψ〉, where Û(t) = exp[i(ĤC + ĤE)t]. We have

− i∂t |Ψ̃〉 = ˆ̃H |Ψ̃〉 , (2.29)

where the interaction Hamiltonian
ˆ̃H = Û(t)ĤIÛ

†(t) =
∫ ∞

0
dωg(ω)

(
âe−iωct + â†eiωct

) (
b̂(ω)e−iωt + b̂†(ω)eiωt

)
(2.30)
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can be easily obtained exploiting eiωcâ†âtâ = e−iωctâeiωcâ†ât (a similar relation exists for b̂(ω)).
When we expand the product of exponentials, we get two terms: one depending on ωc − ω
and one on ωc+ω. We can thus perform a secular approximation, that is, in the limit of small
interactions we can neglect the fast oscillating terms. Intuitively, when integrating over a
period t = 2π/(ωc−ω), the fast frequencies will average to zero in the Schrödinger equation.
This simplification, known as rotating wave approximation, gives

ˆ̃H(t) =
∫ ∞

0
dωg(ω)

(
âb̂†(ω)e−i(ωc−ω)t + â†b̂(ω)ei(ωc−ω)t

)
. (2.31)

Again, if g(ω) is small, in the previous integral the only terms which will be relevant are those
for which ωc − ω ' 0. Thus, we can send the integration limit towards −∞. Moreover, we
suppose a sufficiently regular g(ω), so that g(ω) ' g(ωc) ≡

√
γ/2π if ω ' ωc. Physically, γ

represent the decay rate (i.e. the inverse of the lifetime) of a photon inside the cavity. Hence

ˆ̃H(t) =
√
γ

2π
(
âb̂†(t) + â†b̂(t)

)
, (2.32)

where we define
b̂(t) ≡

∫ +∞

−∞
dω b̂(ω)ei(ωc−ω)t. (2.33)

The definition of b̂(t) implies that [b̂(t), b̂†(t′)] = δ(t− t′). Indeed, we are assuming that the
environment does not have memory about its previous states, i.e. it is Markovian.

We are now interested in computing the state of the system neglecting the environment.
To do that, we introduce the density matrix ˆ̃ρSE(t) = |Ψ̃(t)〉 〈Ψ̃(t)|. Formally, we obtain its
time evolution as

ˆ̃ρSE(t) = ˆ̃ρSE(0)− i
∫ t

0
dt′

[
ˆ̃H(t′), ˆ̃ρSE(t′)

]
(2.34)

and therefore

∂t ˆ̃ρSE(t) = −i
[
ˆ̃ρSE(0), ˆ̃H(t)

]
−
∫ t

0
dt′

[
ˆ̃H(t),

[
ˆ̃H(t′), ˆ̃ρSE(t′)

]]
(2.35)

We assume that the interaction term ˆ̃H(t) is too weak to create a significant correlation
between the system and the bath. Furthermore, we also assume that any excitation of the
environment due to its interaction with the system is dispersed on the infinitely many envi-
ronment degrees of freedom. These approximations, collectively known as the Born approx-
imation, allow to consider that ˆ̃ρSE(t) ' ˆ̃ρS(t)⊗ ρ̂E, where ρ̂E remain mostly unperturbed
along the dynamics. If ωc � kBT , where kB is the Boltzmann constant and T is the temper-
ature of the bath, we can assume that the environment has always zero excitations in those
degrees of freedom which can effectively couple with the system. Hence, ρ̂E = ⊗

ω |0〉 〈0|,
where ⊗ω indicates the tensor product over all the frequencies ω. We can now take the
partial trace over the degrees of freedom of the environment, obtaining

∂t ˆ̃ρS(t) = ∂tTrE
[
ˆ̃ρSE(t)

]
= γ

2
(
2â ˆ̃ρS(t)â† − â†â ˆ̃ρS(t)− ˆ̃ρS(t)â†â

)
. (2.36)

Finally, by considering again the Schrödinger representation ρ̂S = e−iĤct ˆ̃ρSeiĤct we obtain the
following master equation for a damped Harmonic oscillator:

∂tρ̂S(t) = −i
[
Ĥc, ρ̂S(t)

]
+ γ

2
(
2âρ̂S(t)â† − â†âρ̂S(t)− ρ̂S(t)â†â

)
. (2.37)

Indeed, Eq. (2.37) has the Linblad form presented in Eq. (2.24).
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The driving

In the previous discussion, we made the hypotheses that the system is weakly coupled to
the environment, and that the infinitely-many degrees of freedom of the environment remain
unchanged by the system. If, instead, there exists a part of the environment which coherently
exchanges excitations with the system, it will result in an additional effective term in the
Hamiltonian.

For example, we can include a coherent driving term representing the excitation of the
cavity mode by an external laser of frequency ω0. This coupling is described via

Ĥdrive = g(ω0)(â†d̂+ âd̂†), (2.38)

where d̂ is the annihilation operator of the Laser field at a frequency ω0. If we suppose
that the environment always remains in the coherent state |β〉 of the d̂ operator 5, by partial
tracing over the environment we have

Ĥdrive = F â† + F ∗â, (2.39)

where F = gβ. In this regard, we will often encounter Hamiltonian operators describing a
coherent drive.

More general drives can be introduced, as long as Ĥdrive is weak compared to the system
Hamiltonian Ĥ. Indeed, if the drive is too strong, the Born and Markov approximations,
necessary to obtain Eq. (2.24) may not be valid.

The Liouvillian superoperator and the steady-state solution

As we previously said, the Lindblad master equation (2.24) is linear in ρ̂(t). Hence, it is
possible to associate to it the so-called Liouvillian superoperator L, defined via

∂tρ̂(t) = Lρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+
∑
µ 6=0
D[Γ̂µ], (2.40)

where D[Γ̂µ] is the dissipator, acting as

D[Γ̂µ]• = Γ̂µ • Γ̂†µ −
1
2Γ̂†µΓ̂µ • −

1
2
• Γ̂†µΓ̂µ. (2.41)

The superoperator L is trace-preserving and generates a completely positive map, since it is
associated to the Lindblad master equation. Accordingly, the formal solution of Eq. (2.24) is
ρ̂(t) = eLtρ̂(0), for an initial condition ρ̂(0) [22, 24–26]. For a time-independent Liouvillian,
there always exists at least one steady state (if the dimension of the Hilbert space is finite
[22, 23]), i.e., a matrix such that

Lρ̂ss = 0. (2.42)

This equation means that the steady-state density matrix is an eigenmatrix of the super-
operator L corresponding to the zero eigenvalue. The procedure to explicitly obtain ¯̄L is
presented in App. E.3. If the steady-state in unique, for any initial state ρ̂(0) we have that:

ρ̂ss = lim
t→∞

ρ̂(t) = lim
t→∞

eLtρ̂(0). (2.43)

5. The coherent state |β〉 can be defined as that state for which d̂ |β〉 = β |β〉. See Sec. 2.3.1 and App. B.
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2.1.4 Quantum jumps
Having provided a physical interpretation to the coherent evolution in terms of the Hamil-

tonian of the isolated system, one still has to determine the form of Γ̂µ. To do that, we exploit
the close analogy between the Kraus operators and the formalism of generalised measures.

Read and unread measurements

The framework to discuss generalised quantum measurement is provided by the formalism
of positive-operator valued measures (POVM)[111, 113]. Consider a measure whose outcomes
r are associated to a measure operator M̂r. Upon measuring the result r, the density matrix
is modified as

ρ̂r = M̂rρ̂M̂
†
r

Tr
[
M̂rρ̂M̂

†
r

] ≡ Mrρ̂

Tr[Mrρ̂] , (2.44)

that is, the density matrix ρ̂r is obtained by “projecting” ρ̂ onto the measure operators
associated to the outcome r. In this regard, the superoperatorMr = M̂r • M̂

†
r describe the

measure process having obtained the result r. Each one of those outcomes has a probability
pr = Tr

[
M̂rρ̂M̂

†
r

]
. In order to assure ∑r pr = 1 we must require

∑
r

M̂ †
rM̂r = 1. (2.45)

The POVM formalism generalises projective measures formalism [111, 113], allowing for a
description of measurements associated to non self-adjoint operators.

In Eq. (2.44) we assumed to know which was the result of the measurement. If, however,
we ignore the result but we know a measure took place, we can describe the density matrix
after the measure as a statistical mixture of all the possible outcomes. That is, for an unread
measure we have

ρ̂′ =
∑
r

prρ̂r =
∑
r

M̂rρ̂M̂
†
r =

∑
r

Mrρ̂. (2.46)

We also notice that the density matrix for an unread measure is identical to the one describing
the mean result of several read measures.

Dissipation as a measure

Let us consider a system in which Ĥ = 0 and there exist a unique dissipator Γ̂. In this
case, Eq. (2.19) is: 

M̂0 = 1− τ

2 Γ̂†Γ̂,

M̂1 =
√
τ Γ̂,

(2.47)

and Eq. (2.22) becomes:

ρ̂(t+ τ) = M̂0ρ̂(t)M̂ †
0 + M̂1ρ̂(t)M̂ †

1 =M0ρ̂(t) +M1ρ̂(t), (2.48)

where we recall Mµ = M̂µ • M̂
†
µ. We notice that M0 +M1 can be interpreted as measure

superoperators since M̂µ are POVM. Moreover, with a probability of order one, the quantum
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state of the system is unchanged (M̂0 ' 1) or, with probabilities of order τ , the system un-
dergoes a large evolution (described by M̂1ρ̂(t)M̂ †

1). 6 We can therefore interpret the Linblad
master equation as the the time evolution of a system subject to a continuous and unread
measure [25].

We have, thus, a very simple path to guide us in writing the proper Lindblad mas-
ter equation for any system, since this picture can be easily generalized both to a nonzero
Hamiltonian and to several Γ̂µ. Accordingly, the various Γ̂µ are jump operators describing
a random (perhaps large) evolution of the system which suddenly changes under the influ-
ence of the environment. Of course, the density matrix ρ̂(t) evolves continuously, since the
probability of a quantum jumps is finite and proportional to the time step τ .

The interest of the method is that, in many cases, the nature of the quantum jumps
can be guessed from the mere nature of the system. Once again, we stress that the jump
operators are not uniquely defined, since the same relaxation processes can be modelled in
different ways, resulting in different unrevealing of the master equation. In some situations,
the nature of the coupling to the environment may privilege one of these unravellings. For
instance, for an atom completely surrounded by a photo-detector array, Γ̂ correspond to a
photodetection. As we will see, different unrevealing schemes may correspond to different
ways of monitoring the environment (photon counters, homodyne recievers . . . ). However, all
the Lindblad master equations stemming from those different jump operators are equivalent
one to the other.

Radiative damping in an optical cavity (again)

We saw previously that microscopic description of an optical resonator interacting with
an environment at T = 0 leads to Γ̂ = â under the Born and Markov approximations. Here,
according to the previous discussion, we consider the same system and we make the hypothesis
that the environment is made of nothing but a perfect photodetector. First, the photodetector
does not interact directly with the optical cavity, an therefore the Hamiltonian of the system
is ĤC defined in Eq. (2.25). We consider that, if a photon is emitted into the environment, it
is destroyed. Thus, the operator M̂1 must be of the form M̂1 =

√
τ
∑
n cn |n〉 〈n+ 1|. Let us

define c0 ≡ √γ. If we consider a cavity with one photon inside, the operator M̂1 |1〉 〈1| M̂ †
1 =

τγ |0〉 〈0| describes the probability that in a time τ a photon is emitted. We conclude that
γ is the mean lifetime of one photon inside the cavity. Now, if we have n identical photons
inside the cavity, we must require that this probability is n times bigger. We conclude that
cn = √γ√n. But, by definition, â =

√
n
∑
n

√
n |n〉 〈n+ 1|. Hence, M̂1 =

√
τ â, and therefore

Γ̂ = √γâ. The time evolution of ρ̂(t) is thus

∂tρ̂(t) = −i
[
ĤC , ρ̂(t)

]
+ γ

2 (2âρ̂(t)â† − â†âρ̂(t)− ρ̂(t)â†â). (2.49)

Clearly, Eqs. (2.37) and (2.49) coincide.

2.2 The stochastic Schrödinger equation
In Sec. 2.1.4 we saw that the structure of the Lindblad master equation admits an in-

terpretation in terms of a continuous and unread measure. The question now is which kind

6. In this sense, the factor τ Γ̂†Γ̂/2 in M̂0 can be interpreted as the backaction of the measure, introducing
a normalisation term needed to preserve the trace of the density matrix.
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Figure 2.1 – Scheme of an apparatus measuring the spontaneous emission of an atom. The
time evolution of n(t) (defined in the main text) is due to a Linblad master equation (unread
measure bottom) or to a stochastic process (read measure top).

of evolution does the system undergoes if we, instead, keep track of the results of such a
measure.

To explain the qualitative difference between a read and an unread measure procedure,
we consider the following example. An atom is prepared in an excited state |e〉. At any
time, it may emit a photon into the environment, passing into its ground state |g〉. A perfect
photodetector immediately signals such an event, thus destroying the photon (c.f. Fig. 2.1).
The quantity n(t) = 〈n̂(t)〉, where n̂ = |e〉 〈e|, indicates whether the system is in its excited
or ground state. If we do not read the photodetector, we provide a probabilistic description
of the system, so that n(t) evolves smoothly towards 0 in accordance to Eq. (2.49). On the
contrary, if the result of the measure is read, we are certain of the state of the atom: either
in the excited state or in the ground one. The time evolution of n(t) will therefore be of
stochastic nature: at any moment the photon may be detected, corresponding to an abrupt
jump of n(t). The equation of motion for a system whose environment is continuously and
perfectly probed is called a quantum trajectory [25, 110, 111, 115, 116].

2.2.1 Jump-counting trajectories

Suppose there exist a system whose coherent evolution is dictated by Ĥ, and the envi-
ronment can be modelled with a single jump operator Γ̂. We continuously measure it at a
rate τ with an instrument characterised by two possible outcomes: r = 0, associated to the
superoperatorM0, and r = 1, associated toM1. We recallMµ = M̂µ • M̂

†
µ andM̂0 = 1− τ

(
iĤ + 1

2Γ̂†Γ̂
)
,

M̂1 =
√
τ Γ̂.

(2.50)

The probability to obtain the result r = 1 is

p(t, r = 1) = Tr[M1ρ̂(t)] = τTr
[
ρ̂(t)Γ̂†Γ̂

]
, (2.51)

and the one to obtain r = 0 is p(t, r = 0) = 1− p(t, r = 1). In the limit τ → 0, at almost all
times the result of the continuous measurement will be r = 0, and the system will undergo a
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smooth (but not unitary) evolution dictated byM0. At random times, whose mean rate is
p(t, r = 1) the system will, instead, experience a finite evolution due to the jump operator Γ̂
in M̂1. This abrupt change in ρ̂(t) is called a quantum jump.

For sake of simplicity, let us suppose the system is in a pure state |ψ(t)〉, so that
ρ̂(t) = |ψ(t)〉 〈ψ(t)| (the generalisation to mixed states can be done exploiting the linearity
of any quantum map). To keep track of the continuous measure, let us define the parameter
N(t), which counts the number of quantum jumps which have occurred up to the time t.
Accordingly, N(t = 0) = 0. If a quantum jumps occur between time t and t+ τ , the result of
the measure is r = 1 and N(t+ τ) = N(t) + 1. Otherwise, if r = 0, N(t+ τ) = N(t). Thus,
we can introduce the (Itô) stochastic increment dN(t) = N(t+ τ)−N(t). It obeys:

dN(t)2 = dN(t) (2.52a)
E[dN(t)] = p(t, r = 1) = τTr

[
ρ̂(t)Γ̂†Γ̂

]
= τ 〈ψ(t)|Γ̂†Γ̂|ψ(t)〉 , (2.52b)

where E[dN(t)] indicates the expected value of the stochastic variable dN(t), and the last
equality follows from the hypothesis of a pure state. From the two previous conditions, it
follows also τdN(t) = 0.

Let us recall that a measure whose result is r transforms ρ̂(t) as

ρ̂r(t+ τ) = M̂rρ̂(t)M̂ †
r

Tr
[
M̂rρ̂(t)M̂ †

r

] = M̂r |ψ(t)〉 〈ψ(t)| M̂ †
r

〈ψ(t)|M̂ †
rM̂r|ψ(t)〉

, (2.53)

where the last follows from the hypothesis of a pure state and the denominator ensures the
condition Tr[ρ̂(t+ τ)] = 1. From Eq. (2.53) follows that, given an initial pure state, ρ̂(t) will
always remain pure. Therefore, it is sufficient to consider the wave function |ψ(t)〉 to fully
describe the evolution of the system.

The time evolution of |ψ(t)〉 is, thus, the following. If dN(t) = 1, i.e., a quantum jump
happens,

|ψ(t+ τ, dN(t) = 1)〉 = M̂0 |ψ(t)〉√
〈ψ(t)|M̂ †

0M̂0|ψ(t)〉
= Γ̂ |ψ(t)〉√
〈Γ̂†Γ̂〉

, (2.54)

where we denoted 〈Γ̂†Γ̂〉 = 〈ψ(t)|Γ̂†Γ̂|ψ(t)〉. Otherwise, if there is no detection, dN(t) = 0,
and

|ψ(t+ τ, dN(t) = 0)〉 = M̂1 |ψ(t)〉√
〈ψ(t)|M̂ †

1M̂1|ψ(t)〉
=

[
1− τ

(
iĤ − 1

2 Γ̂†Γ̂
)]
|ψ(t)〉√

〈ψ(t)|1− τ Γ̂†Γ̂ +O (τ 2) |ψ(t)〉

=
[
1− τ

(
iĤ − 1

2Γ̂†Γ̂
)] 1 + 〈Γ̂

†Γ̂〉
2 +O

(
τ 2
)

=
1− τ

iĤ + Γ̂†Γ̂
2 − 〈Γ̂

†Γ̂〉
2

 |ψ(t)〉 .

(2.55)

Finally, one obtains a nonlinear stochastic Schrödinger equation of the form

|ψ(t+ τ)〉 = dN(t) |ψ(t+ τ, dN(t) = 1)〉+ [1− dN(t)] |ψ(t+ τ, dN(t) = 0)〉

= dN(t)Γ̂ |ψ(t)〉√
〈Γ̂†Γ̂〉

+ [1− dN(t)]
1− τ

iĤ + Γ̂†Γ̂
2 − 〈Γ̂

†Γ̂〉
2

 |ψ(t)〉 , (2.56)
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which in its differential form becomes

d |ψ(t)〉 =
dN(t)

 Γ̂√
〈Γ̂†Γ̂〉

− 1

+−iτĤeff

 |ψ(t)〉 , (2.57)

where we used dN(t)τ = 0 and we introduced the effective Hamiltonian

Ĥeff = Ĥ − i Γ̂
†Γ̂
2 + i〈Γ̂

†Γ̂〉
2 . (2.58)

We will call Eq. (2.57) a counting stochastic Schrödinger equation, since it is a purity-
preserving equation which depends on the “counting” stochastic parameter N(t). We will
call a solution to this equation a counting quantum trajectory for the system. The algorithm
to numerically integrate a counting quantum trajectory, known in literature as wave function
Monte Carlo [115], is detailed in App. E.4.1.

2.2.2 Homodyne trajectories
Clearly, Eq. (2.57) is not the only possible stochastic Schrödinger equation which one

can obtain from a Lindblad equation: different choices of the Kraus operators would lead to
different evolutions. Consider a system described by an Hamiltonian Ĥ and subject to only
one jump operator Γ̂. The following transformation does not modify the structure of the
Lindblad master equation

Γ̂→ Γ̂ + β, Ĥ → Ĥ − iβ
2
(
Γ̂− Γ̂†

)
, (2.59)

where β is a real number. Under this transformation the measure operators of Eq. (2.50)
become 

M̂0 = 1− τ
[
iĤ + β

2 (Γ̂− Γ̂†) + 1
2(Γ̂† + β)(Γ̂ + β)

]
,

M̂1 =
√
τ(Γ̂ + β).

(2.60)

From a physical point of view, the parameter β can be thought as a constant coherent field
which is continuously measured together with the dissipated particles of our system.

One injects Eq. (2.59) into Eq. (2.57), obtaining a stochastic equation of the form

d |ψ(t)〉 =
dN(t)

 Γ̂ + β√
〈(Γ̂† + β)(Γ̂ + β)〉

− 1


+τ

−iĤ − βΓ̂− Γ̂†Γ̂
2 + 〈Γ̂

†Γ̂〉
2 + β 〈Γ̂† + Γ̂〉

2

 |ψ(t)〉 ,
(2.61)

The ideal limit of homodyne detection is when the coherent field amplitude goes to infinity.
We stress that, in this limit, the number of detections per time unit is infinite, and a stochastic
Schrödinger equation based on dN(t) is ill defined. Thus, some care needs to be taken in
order to derive the appropriate limit β → ∞. From a physical point of view, the condition
β � 1 implies that quantum jumps will occur more frequently, but at the same time their
effect on the evolution of |ψ(t)〉 is smaller. Indeed, the detected field is almost entirely due to
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Γ̂
Γ̂

Figure 2.2 – Sketch of the two schemes of detection on a photonic cavity. On the right side,
the photon counting mechanism. Every time a perfect photodetector “clicks”, an observer
knows that a photon has been lost by the cavity. Homodyne detection on the left. Before
the measure by a perfect photodetector, the output filed of the cavity is mixed (e.g., with a
beamsplitter) with a strong local filed. The statistics of “clicks” allows an observer to follow
the state of the cavity.

the coherent field, and thus the measure backaction on the system must be extremely small.
Here, we report only the final result (the formal derivation is provided in App. A):

d |ψ(t)〉 =
dW (t)

Γ̂− 〈Γ̂
† + Γ̂〉
2

+ τ

−iĤ − Γ̂†Γ̂
2 + Γ̂〈Γ̂

† + Γ̂〉
2 − 〈Γ̂

† + Γ̂〉2

8

 |ψ(t)〉 ,

(2.62)

where dW (t) is a Wiener process of variance τ and mean 0 [24, 117]. We call a solution of
this equation a homodyne quantum trajectory. The algorithm to numerically integrate such
a trajectory is detailed in App. E.4.2.

2.2.3 Physical interpretation of a quantum trajectory
A natural question is what is the relation between Eq. (2.57) and Eq. (2.24). In agreement

with the previous discussion, one can think of the Linblad master equation as a continuous
unread measure performed on the system, while in Eq. (2.57) one keeps track of the measure
results. In the same way in which the mean over an infinite number of read measures must
coincide with the expectation value of an unread one, it is possible to recover the result of
the Lindblad master equation by averaging over an infinite number of quantum trajectories
[24, 25, 110, 116].

Furthermore, one may try to provide some meaning to individual trajectories. Indeed, a
single quantum trajectory corresponds to the simulation of an ideal experiment, in which the
environment is continuously monitored by perfect instruments. In this regard, single quantum
trajectories can account for actually observed features. However, the result obtained along
a single quantum trajectory can strongly depend upon the choice of Kraus operators, and
some care should be taken about which properties can be inferred.

Consider, for instance, the counting trajectory derived in Sec. 2.2.1 in the specific case
of an optical cavity, where Γ̂ = √γâ (Fig. 2.2). Indeed, suppose we are able to build a
perfect photodetector which continuously measures the environment and “clicks” every time
it registers a photon. If we hear a “click”, we know for sure that a jump has occurred and
the cavity wave function has undergone a quantum jump. If no jump has occurred, instead,
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the system evolves under the effective Hamiltonian Ĥeff = Ĥ − iγâ†â/2. 7 Remarkably, the
absence of a quantum jump does not mean that the system evolves under the effect of the
Hamitonian alone, but knowing that a jump has not occurred gives us information about the
state of the cavity. Indeed, the imaginary term −iγâ†â is the backaction of the continuous
measurement of the photodetector.

Consider now Eq. (2.61) in the limit β � 1. Due to the fact that the cavity output
field is mixed to a local reference oscillator, the detector measures a superposition of the two
fields. Since the local laser is extremely strong, the detector continuously “click”, and the
field inside the cavity undergoes a quantum jump. However, as it stems from Eq. (2.61), the
effect of such a quantum jump is minimal:

Γ̂ + β√
〈(Γ̂† + β)(Γ̂ + β)〉

− 1 = Γ̂
β
− 〈Γ̂ + Γ̂†〉

2β +O(β−2). (2.63)

Indeed, the detection will be almost entirely due to the local oscillator, and therefore the
cavity wavefunction remains almost unaffected by the measure.

From an information theory perspective, the difference between the two types of trajec-
tories reduces to the way an observer acquires information about the state of the cavity. In
the counting case, the state is abruptly and randomly modified due to the great amount of
information gained by one detection. In the homodyne case, instead, the state is continuously
randomly changed due to the high number of detections. However, the information gained
about the state of the cavity is minimal since every registered photons is in a superposition
of the cavity output field and of the local oscillator.

To visualize this differences in the procedures, we simulate the radiative damping de-
scribed in Sec. 2.1.3 and Sec. 2.1.4. We consider a resonator, described by an Hamiltonian
Ĥ = ωâ†â, ω being the energy of one photon in the cavity and â the annihilation operator.
The coupling to the environment is via the single jump operator Γ̂ = √γâ, where γ is the
mean-lifetime of one photon inside the resonator. At t = 0, we initialise the cavity is the Fock
state with ten photons, i.e. |ψ(t = 0)〉 = |n = 10〉. In Fig. 2.3 we plot the mean number of
photons 〈â†â(t)〉 along five counting and five homodyne quantum trajectories 8. In the case
of a counting trajectory [panel (a)], the evolution of the parameter 〈â†â(t)〉 is smooth, except
in a finite number of points, where a quantum jump happens. As for the homodyne [panel
(b)], instead, there are no abrupt jumps, but the evolution is a noisy one. Both procedures,
once the average is taken, recover the same result [panel (c)], which coincides with the one
obtained via integration of the Linblad master equation [inset of panel (c)].

2.3 Phase-space representations
In Sec. 1.1.1 we saw that it is possible to describe the state of a classical harmonic oscillator

via a complex variable α(t) [c.f. Eqs. (1.4) and (1.5)]. Therefore, the state of a system, i.e.,
the set {x(t), p(t)}, is a point in the phase space {Re [α(t)] , Im [α(t)]}.

A phase-space formulation of quantum mechanics has the same purpose. One wants to
describe the density matrix of a quantum system as a superposition of “semiclassical states”
|α〉, i.e., those states which in the limit of many quanta recover the behaviour of the classical

7. In this discussion, we will neglected the terms ensuring the normalisation of the wave function.
8. We recall that the numerical techniques necessary to numerically simulate a quantum trajectory are

detailed App. E.4.
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Figure 2.3 – Mean number of photon 〈â†â(t)〉 as a function of time for a resonator subject
to dissipation. Panel (a): Counting trajectories. The wave function changes abruptly under
the effect of a quantum jump. Panel(b): Homodyne trajectories. The evolution of the wave
function is a noisy one. Panel (c): Average 〈â†â(t)〉 over 100 trajectories. The two procedures
recover the same results. Inset: ∆n(t) = n(t)− 〈â†â(t)〉 as a function of time, where n(t) is
the mean number of photons obtained via direct integration of the master equation with a
cutoff of 30 photons (see App. E.1). Parameters: ω/γ = 1.

harmonic oscillator. In this way, the system density matrix can be described in a quantum
phase space {Re [α] , Im [α]}. Instead of having a point in such a phase space, however, the
density matrix of the system becomes a distribution Wκ(α, t). The index κ indicates which
kind of representation are we considering, since there exists several different ones. From a
quantum optics point of view, much of the interest in this approach lies in the ability to map
the quantum dissipation onto a classical noise [24, 117].

2.3.1 Coherent states
As discussed in Sec. 1.1.1, the eigenstates of the harmonic-oscillator Hamiltonian are the

Fock states, such that â†â |n〉 = n |n〉. The number state |n〉 does not correspond at all to
the classical picture of a harmonic oscillator: under the action of the Hamiltonian the state
|n〉 does not oscillate. Moreover, those states have always zero expectation value for the
displacement x̂ ∝ â† + â and for the momentum p̂ ∝ â† − â. We conclude that |n〉 can never
become qualitatively as a classical states, even for very big n. Intuitively, we rather visualize
the harmonic oscillator has evolving in time by periodically changing its position and its
momentum. Thus the question: can we construct quantum mechanical states which, in the
“semiclassical” limit of many quanta, recover the same physical prediction as in classical
mechanics?

The solution of the classical harmonic oscillator is a function of the form α(t) = (
√
mωx(t)+

ip(t)/
√
mω)/

√
(2) which evolves according to Eq. (1.4). The phase-space representation α(t)

is equivalent to a displacement of the harmonic oscillator from its rest position x = p = 0
into x(α) = (α + α∗)

√
2 and p(α) = −i(α − α∗)

√
2. A very educated guess to retrieve the

semiclassical state comes from trying the same procedure in the quantum case. 9 In quantum
mechanics, the spatial translation operator, sending the vacuum |0〉 into |x(α)〉, has the form
exp[−ix(α)p̂]. Similarly, one can transform the ground state of the harmonic oscillator |0〉

9. There exists several other way to obtain a definition of the coherent state, for instance in [9, 24, 25].



31

into a state with momentum |p(α)〉 via the operator exp[ip(α)x̂]. Therefore, let us call the
displacement operator 10

D̂(α) = exp[−ix(α)p̂+ ip(α)x̂] = exp[− i√
2mω

(α + α∗)p̂+
√
mω

2 (α− α∗)x̂]

= exp[α
√
mω

2

(
x̂− ip̂

mω

)
− α∗

√
mω

2

(
x̂+ ip̂

mω

)
] = exp[αâ† − α∗â].

(2.64)

In analogy to classical mechanics, where α is the displacement from the rest position x =
p = 0, we define the coherent state |α〉 as the displacement operator acting on the vacuum,
i.e.,

|α〉 = D̂(α) |0〉 . (2.65)
The coherent state plays a fundamental role in the description of many quantum systems. We
report some of its most relevant properties, as well as the demonstration that the coherent
states recover the classical prediction, in App. B.

2.3.2 Quasiprobability distributions
The density matrix operator can be represented with respect to a “complete” orthonormal

basis, e.g., the Fock one:

ρ̂ =
∑
m,n

〈m|ρ̂|n〉 |m〉 〈n| =
∑
m,n

pm,n |m〉 〈n| . (2.66)

Given this representation, the density matrix can be diagonalised, obtaining:

ρ̂ =
∑
i

pi |Ψi〉 〈Ψi| . (2.67)

where |Ψi〉 are the eigenvectors of ρ̂ and pi can be interpreted as the probability of the system
to be found in the state |Ψi〉 upon an appropriate measure.

As we proved in Eq. (B.20), any operator can be expressed as analytic function of two
complex parameters, α and β. In particular,

ρ̂ = 1
π2

∫∫
d2αe−

|α|2
2

∫∫
d2βe−

|β|2
2 ρ(α∗, β) |α〉 〈β| , (2.68)

This equation closely resembles Eq. (2.66), where, instead of having a matrix of coefficient
pm,n one has a function ρ(α∗, β). What we will show is that it is possible to obtain a diagonal
form of ρ̂ on the overcomplete basis of coherent states, that is

ρ̂ =
∫

d2αWκ(α) |α〉 〈α| , (2.69)

where Wκ(α) is called a phase-space representation of the density matrix [118–121]. While
Eq. (2.68) is unique, there exists several different forms of Wκ(α) in Eq. (2.69). While the

10. The symmetric choice of ordering in D̂(α) seems quite arbitrary. However, exploiting the commutation
relations of creation and annihilation operators, one can show that all the choices are proportional:

exp[−ix(α)p̂+ ip(α)x̂] ∝ exp[−ix(α)p̂] exp[ip(α)x̂] ∝ exp[ip(α)x̂] exp[−ix(α)p̂].

The definition we gave has the advantage that D̂(α) is a unitary operator, i.e., D̂†(α)D̂(α) = 1.
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coefficients pi in Eq. (2.67) are probability coefficients, Wκ(α) cannot be interpreted as the
probability to find the system in the state |α〉. Indeed, we will show that Wκ has the features
of a quasiprobability distribution.

The advantage of this framework is that, when we consider a Lindblad master equation,
the time evolution of ρ̂(t) becomes a differential equations for the distribution Wκ(α, t).

The characteristic functions

We define the symmetrically-ordered characteristic function χ0(α) as

χ0(α) = Tr
[
D̂(α)ρ̂

]
, (2.70)

so that
ρ̂ =

∫
d2αχ0(α)D̂†(α). (2.71)

The previous equation can be proved exploiting the so-called Fourier-Weil relation (a demon-
stration can be found in App. C). We notice that χ0(α) plays (almost) the role of the char-
acteristic function of a probability distribution. Indeed, consider any symmetrically-ordered
correlator (â†mân)0, defined as the normalised sum of products of â† and â in all possible
orders (which is therefore symmetric under the exchange of â† and â). 11 We have

〈(â†mân)0〉 = Tr
[
(â†mân)0ρ̂

]
= Tr

[
(â†mân)0D̂(0)ρ̂

]
=
(
∂

∂α

)m (
− ∂

∂α∗

)n
Tr
[
D̂(α)ρ̂

]
α=0

=
(
∂

∂α

)m (
− ∂

∂α∗

)n
χ0(α)

∣∣∣∣∣
α=0

(2.72)

The characteristic function can be easily generalised for normally or antinormally ordered
operators. Consider the following characteristic function

χκ(α) = Tr
[
D̂(α)ρ̂

]
eκ|α|

2/2, (2.73)

the previous symmetrically-ordered characteristic function having κ = 0. By exploiting
D̂(α) = e−|α|

2/2eαâ
†
eα
∗â = e|α|

2/2eα
∗âeαâ

† , we have

〈(â†mân)κ〉 =
(
∂

∂α

)m (
− ∂

∂α∗

)n
χκ(α)

∣∣∣∣∣
α=0

, (2.74)

where κ = ±1 indicates the normal or antinormal ordering: (â†mân)1 = â†mân and (â†mân)−1 =
ânâ†m, respectively.

Normal, antinormal and symmetric quasi-probability distributions

In analogy with probability theory, we can associate to the characteristic function a
distribution via a complex Fourier transform, i.e.

Wκ(α) =
∫ d2β

π2 χκ(β)eαβ∗−α∗β. (2.75)

11. For example,

(â† 2â)0 = â† 2â+ â†ââ† + ââ† 2

3 .
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The function Wκ(α) plays the role of a quasi-probability distribution, since
∫

d2αWκ(α) = 1
but Wκ(α) ≯ 0. Importantly, we have

〈(â†mân)κ〉 =
(
∂

∂β

)m (
− ∂

∂β∗

)n
χκ(β)

∣∣∣∣∣
β=0

=
∫

d2βδ2(β)
[(

∂

∂β

)m (
− ∂

∂β∗

)n
χκ(β)

]

=
∫∫ d2αd2β

π
eαβ

∗−α∗β
[(

∂

∂β

)m (
− ∂

∂β∗

)n
χκ(β)

]

=
∫∫ d2αd2β

π
α∗mαneαβ

∗−α∗βχκ(β) =
∫

d2αWκ(α)α∗mαn.
(2.76)

For historical reasons, the symmetritcally ordered W0(α) ≡ W (α) is called the Wigner func-
tion, while W1(α) ≡ P (α) is the Glauber–Sudarshan P -representation and W−1(α) ≡ Q(α)
is the Husimi Q-function. From their definition it follows that

ρ̂ =
∫

d2αP (α) |α〉 〈α| , (2.77)

while
Q(α) = 〈α|ρ̂|α〉 . (2.78)

The time evolution of the quasi-probability distribution Wk(α, t) is instead determined
via the following mapping [120]:

âρ̂ −→
(
α + 1− κ

2
∂

∂α∗

)
Wk(α) (2.79a)

â†ρ̂ −→
(
α∗ − 1 + κ

2
∂

∂α

)
Wk(α) (2.79b)

ρ̂â† −→
(
α∗ + 1− κ

2
∂

∂α

)
Wk(α) (2.79c)

ρ̂â −→
(
α− 1 + κ

2
∂

∂α∗

)
Wk(α) (2.79d)

Indeed, Eqs. (2.79) maps the Linblad master equation for the density matrix onto differential
equation for the quasiprobabilities distributions.
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CHAPTER 3

Phase Transitions in
Driven-Dissipative Systems

One of the firsts efforts in understanding criticality in driven-dissipative systems exploit-
ing the spectral properties of the Liouvillian is due to Kessler et al.. In Ref. [43], the authors
present a direct and insightful analogy between thermal/quantum phase transitions in Hamil-
tonian systems and dissipative phase transitions in Markovian systems. In this Chapter, we
extend to a general framework the seminal ideas of Ref. [43], in order to provide a common
theoretical framework to describe the emergence of critical behaviour in Markovian open
quantum systems, analysing both first- and second-order phase transitions. Namely, we prove
the intimate connection between the spectral properties of the Liouvilllian superoperator and
the emergence of criticality.

First, in Sec. 3.1 we recall some fundamental properties of classical and quantum phase
transitions. We also stress why the driven-dissipative case can be profoundly different from
its equilibrium counterpart. In Sec. 3.2 we introduce the theoretical framework, pointing
out some general key properties of the Liouvillian superoperator and of density matrices.
In Sec. 3.3 we consider first- and second-order dissipative phase transitions. We show the
general form of the steady-state density matrix in the vicinity of the critical point. We de-
termine also the form of the eigenmatrix of the Liouvillian superoperator corresponding to
the non-zero eigenvalue with the smallest modulus of the real part (the so-called Liouvillian
spectral gap or asymptotic decay rate). When the transition is of the first order, we show
that the gap closes only at the critical point, where the stationary state is bimodal. Concern-
ing second-order phase transitions associated to a symmetry-breaking, we provide a general
spectral description proving that the Liouvillian gap remains closed in the whole region of
broken symmetry. In this context, we highlight the connection between the structure of the
eigenmatrices and the symmetry properties of the Lindblad master equation. Finally, in
Sec. 3.4.2, we discuss why and how quantum trajectories can be used to unveil criticality.
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3.1 Introduction to driven-dissipative phase transitions
Here, we briefly revise two examples of phase transitions at equilibrium, one triggered by

temperature and one depending on the non-commutativity of two Hamiltonian terms. We
then discuss in which aspects the driven-dissipative case is different.

3.1.1 Thermal phase transitions
Thermal “classical” phase transitions are characterised by the competition between the

minimisation of energy and the maximisation of entropy [12]. This variational constraint
can lead to the emergence of criticality in the thermodynamic limit. A classical example
is the paramagnetic-to-ferromagnetic phase transition in the Ising model [122]. This model
describes a metal as a lattice of magnetic moments (spin) which can assume only two ori-
entations: σi = ±1, where i indicates the lattice site. Nearest-neighbours spins interact, so
that two parallel spins have an energy −J , while two antiparallel have energy J . An external
magnetic field h may be present, so that the Hamiltonian reads:

H = −J
∑
〈i,j〉

σiσj − h
∑
i

σi. (3.1)

The study of this textbook problem provides several insight on the nature of thermal phase
transitions.

In absence of an external magnetic field, the lattice presents a Z2 symmetry , i.e., the
transformation σi → −σi for all i leaves the Hamiltonian unchanged. We conclude that, for
any finite lattice, the expectation value 〈σi〉 = 0. Instead, if we consider the thermodynamic
limit of an infinite lattice system, we have [12, 122]:

1. For 2D (or higher dimensional) lattices, below a critical temperature T < Tc, there
exists a spontaneous magnetisation of the lattice: a second-order transition between a
paramagnetic and a ferromagnetic phase takes place.

2. Such transition is associated with the spontaneous symmetry breaking of the Z2 sym-
metry of the lattice.

3. Dimensionality plays a fundamental role: in 1D chains a ferromagnetic order exists only
for T = 0.

If there is an external magnetic field, instead:
1. For 2D (or higher dimensional) lattices, a first-order phase transition, associated to an

abrupt change of the magnetisation, can take place.
2. This transition is caused by the competition between two states minimizing the ther-

modynamic potential.
3. The phase transition is associated to metastability and hysteresis.
4. The external magnetic field h breaks the Z2 invariance, and therefore this phase tran-

sition is not a spontaneous symmetry breaking.

3.1.2 Quantum phase transitions
We consider now a quantum transverse Ising model at T = 0 [36]. Its Hamiltonian reads:

Ĥ = −J
∑
〈i,j〉

σ̂zi σ̂
z
j − h

∑
i

σ̂xi , (3.2)
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g

E

|ΨA〉 |ΨB〉

Closure of the gap

Figure 3.1 – Low-lying spectrum of a Hamiltonain depending on a parameter g. A transition
describes an abrupt change in the ground state due to an exchange between two eigenvectors.

where σ̂x,zi are the Pauli matrices of the ith spin. This system has a Ẑ2 symmetry, since
the transformation σ̂zi → −σ̂zi leaves the Hamiltonian unchanged. We conclude that, for any
finite system with h 6= 0, the magnetisation along z must be zero, i.e. ∑

i 〈σ̂zi 〉 = 0. For
h = 0, the Hamiltonian contains only the σ̂zi terms, and the ground state must aligned along
the z direction. Conversely, in the limit J = 0, the ground state must be an eigenstate of
σ̂xi . Since [σ̂xi , σ̂zi ] 6= 0, their competition in the determination of the ground state triggers a
phase transition [36].

In this regard, quantum phase transitions present several differences with respect to their
equilibrium counterparts. A classical system has zero entropy at T = 0, and therefore no
phase transition can occur. Indeed, quantum phase transitions can only be accessed via
the competition between noncommuting terms of the Hamiltonian. While thermally-driven
phase transitions signal a reorganization of the system (e.g., from randomly oriented spin
to a collectively ordered phase in the Ising model), quantum phase transitions describe an
abrupt change in the ground state of the many-body system. In this regard, the Hamiltonian
spectrum must present a closure of the energy gap at the critical point (see Fig. 3.1).

3.1.3 Why is driven-dissipative different?
The previous discussion about classical and quantum phase transition begs the question

of why is necessary to develop a different theory for driven-dissipative critical phenomena
[75]. Indeed, when considering a system of infinite size, one expects to recover the statistical
mechanics paradigm: the infinitely many degrees of freedom of the environment should fix
both the temperature and the chemical potential of the system.

The answer to this question is in the form of the driving and dissipation. Indeed, the
system may have reached its steady state, but part of the environment may be in a non-
thermal state, and remain in such state forever. In this regard, an effective current may
continuously flow throughout the system, and therefore, ρ̂ss may not be e−βĤ . 1 For example,
consider the following configuration. A laser exciting a cavity is connected to a battery,

1. We notice that, however, any thermal state ρ̂ ∝ e−βĤ can be obtained as the steady-state of a Linblad
master equation (for a specific case see, for example, Ref. [114]). Indeed, consider a system characterised by
an Hamiltonian Ĥ, whose eigenvectors are |Ψi〉 and eigenenergies Ei, such that Ei ≤ Ei+1. Consider the
operators

Â =
∑
i

ki |Ψi〉 〈Ψi+1| ,
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which provides the necessary power. Once we switch it on, the photons enter the cavity
and, thanks to the dissipation, the resonator rapidly converges towards a stationary state.
The electric current of the battery, however, continuously flow, and the emitted field remains
in a coherent state. That is, until the battery is decharged, thermal equilibrium cannot be
reached. In the limit of an everlasting battery (i.e., the Liouvillian is time-independent), ρ̂ss
needs not obey Boltzmann statistics.

Much of the interest in studying driven-dissipative phase transitions comes from the fact
that there are several terms which can compete in determining the steady state: Hamilto-
nian noncommuting operators, dissipation-induced fluctuations and the driving. This further
enriches the panorama with respect to the equilibrium case, permitting the realisation of
new phases without any equilibrium counterpart [39–42]. From a theoretical point of view,
dissipative phase transitions have been discussed in a variety of systems, such as nonlin-
ear photonic resonators [5, 53–64], exciton-polariton condensates [65–67], and spin lattices
[39, 40, 43, 68–73]. The interplay between quantum fluctuations and dissipative phenom-
ena in the determining the steady state has been addressed in [65, 74, 75] using a Keldysh
formalism renormalisation approach, and via extensive numerical analysis of lattice systems
[2, 3, 71].

Experimentally, the onset of criticality have been discussed in few key articles. In Ref. [50],
the authors observe in a single superconducting cavity the photon-blockade breakdown phase
transition predicted in Ref. [53]. The onset of a first-order phase transition associated to a
bistable behaviour, predicted in Refs. [57, 59], has been addressed in Refs. [51, 52] using a
semiconductor micropillars. In particular, in Ref. [51] the authors explore the dynamical opti-
cal hysteresis of a semiconductor microcavity as a function of the sweep time, demonstrating
that the hysteresis area exhibit a power law decay characterising a dissipative phase transi-
tion. In Ref. [52], instead, it is proven that the asymptotic decay rate towards the steady state
can be determined by measuring photon correlations in a Hanbury Brown and Twiss set-up.
Using such a measure, the authors demonstrate the presence of a critical slowing down in
such a system. Finally, in Ref. [45], the authors study a large arrays of microwave cavities
(72 superconducting resonators). They find evidence of a dissipative phase transition, since
the steady state properties dramatically change as a function of the driving strength.

The lack of a “free energy” minimisation principle for driven-dissipative systems [23–
26], however, makes a general characterisation of phase transition extremely interesting, and
sparks some natural questions: given the intrinsic quantum origin of drive and dissipation,
what are the parallels and differences to quantum phase transitions? And to which extent
can dissipative phase transitions be assimilated to thermal ones? Even if several examples
of driven dissipative phase transition have been studied, a common theoretical background
describing the onset of criticality is still missing. Some pioneering works managed to identify
common characteristics in these phase transitions, and in what they differ from their equi-
librium counterparts [43, 65, 75]. In the following, we detail the emergence of criticality in
a general and model-independent framework. One of the goal of the present Chapter is to
identify a general spectral mechanism which can explain these phenomena regardless to the
nature of the system (bosons, fermions or spins) and dimensionality.

B̂ =
∑
i

k′i |Ψi+1〉 〈Ψi| ,

with k2
i = k′2i e

−β(Ei−Ei+1). The Linblad Master Equation with dissipators D[Â] and D[B̂] is such that
ρ̂ss = e−βĤ .
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3.2 Spectral properties of Liouvillian superoperators
As we saw in Sec. 2.1.3, it is possible to associate a superoperator L to a Linblad master

equation. In this regard, the steady state ρ̂ss is the eigenmatrix of L with zero eigenvalue.
However, to fully determine the dynamics of the system, the knowledge of the steady-state
density matrix ρ̂ss is not enough. Indeed, one has to know all the spectrum of the Liouvillian
superoperator L, whose eigenmatrices and eigenvalues are defined via the relation

Lρ̂i = λiρ̂i. (3.3)

Equivalently, in the vector-representation, ~ρi (or |ρ̂i〉) is a right-eigenvector of the superop-
erator matrix ¯̄L. Having introduced a norm, we require the eigenstates to be normalised:
‖ρ̂i‖2 = 1 2. Since L is not Hermitian, its eigenvectors need not be orthogonal: ~ρi · ~ρj 6= 0.
Generally, the Liouvillian has an holomorphic dependence on the system parameter(s) ζ.
Therefore, there might exist values of ζ for which L(ζ) is not diagonalizable: this implies the
existence of a degenerate eigensubspace. The eigenvalues λi(ζ) of L(ζ) can be obtained via
the resolution of the characteristic equation det

( ¯̄L(ζ)− λi(ζ)I
)

= 0. A well-known result
of function theory [123] guarantees that the roots of this equation are branches of analytic
functions of ζ with, at most, algebraic singularities. Therefore, the number s of distinct
eigenvalues of L(ζ) is a constant except in a countable number of points. This ensures that
if the Liouvillian has a simple spectrum on a finite region of the parameter space, it will be
diagonalizable for any ζ, except the countable exceptional points. For all the systems we will
consider, this condition is fulfilled far from the thermodynamic limit.

If the Liouvillian is diagonalizable, we can conveniently use the eigenstates of L as a basis
of the Liouville space (apart from the exceptional points) [124]. Under this hypothesis, for
any operator Â there exists a unique decomposition

Â =
∑
i

ciρ̂i. (3.4)

It can be proved [22, 23] that Re [λi] ≤ 0,∀i. The real part of the eigenvalues is responsible
for the relaxation towards the steady-state, ρ̂ss = lim

t→+∞
eLtρ(0). For convenience, we sort the

eigenvalues in such a way that |Re [λ0]| < |Re [λ1]| < . . . < |Re [λn]|. From this definition it
follows that λ0 = 0 and ρ̂ss = ρ̂0/Tr[ρ̂0]. We can also identify another relevant quantity: the
Liouvillian gap λ = |Re [λ1]|, which is also called asymptotic decay rate [43], determining the
slowest relaxation dynamics in the long-time limit.

For any Liouvillian, the following lemmas hold:

Lemma 3.1. Given Eq.(3.3), eLtρ̂i = eλitρ̂i .

Lemma 3.2. Tr[ρ̂i] = 0 if Re [λi] 6= 0.

Proof. Indeed, the Liouvillian evolution conserves the trace [22, 24–26] and if Re [λi] 6= 0
for t→ +∞ we have eLtρ̂i = eλitρ̂i → 0.

�

2. The steady-state density matrix ρ̂ss is thus proportional to the eigenstate of L whose eigenvalue is zero,
since ρ̂ss must satisfy Tr[ρ̂ss] = 1, which may not correspond to a state with norm one.
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Lemma 3.3. If Lρ̂i = λiρ̂i then Lρ̂†i = λ∗i ρ̂
†
i .

This implies that, if ρ̂i is Hermitian, then λi has to be real. Conversely, if λi is real and of
degeneracy 1, ρ̂i is Hermitian. If λi has geometric multiplicity n and L is diagonalizable, it
is always possible to construct n Hermitian eigenmatrices of L with eigenvalue λi 3.

Proof.
Thanks to the master equation (2.24) we have:

Lρ̂†i = −i
[
Ĥ, ρ̂†i

]
+ γ

2
(
2âρ̂†i â† − â†âρ̂†i − ρ̂†i â†â

)
=
(
−i
[
Ĥ, ρ̂i

]
+ γ

2
(
2âρ̂iâ† − â†âρ̂i − ρ̂iâ†â

))†
= (Lρ̂i)† = λ∗i ρ̂

†
i .

(3.5)

If ρ̂i is Hermitian, we have λiρ̂i = Lρ̂i = Lρ̂†i = λ∗i ρ̂
†
i = λ∗i ρ̂i. Thus, we can conclude λi = λ∗i .

Conversely, in case λi ∈ R is a simple eigenvalue (i.e. with degeneracy 1), we can conclude
that ρ̂i = ρ̂†i , and thus ρ̂i is Hermitian. If the eigenvalues have geometric multiplicity n, it
may happen that for some eigenmatrices ρ̂†i 6= ρ̂i. From Eq. (3.5) it follows Lρ̂†i = λiρ̂

†
i . In

this case, we can consider the matrices
(
ρ̂i + ρ̂†i

)
/2 and i

(
ρ̂i − ρ̂†i

)
/2, which are Hermitian

by construction, and whose eigenvalue is λi.

�

Lemma 3.4. If λi = 0 has degeneracy n, then there exist n independent eigenvectors of the
Liouvillian (the algebraic multiplicity is identical to the geometrical one). Therefore, there
exist n different steady states towards which the system can evolve, depending on the initial
condition.

Proof. We will prove this lemma by contradiction. Let us suppose that the algebraic
multiplicity is greater than the geometrical one. Since the dimension of the reduced space
is n, we can write the Liouvillian as a matrix acting on a basis of vector in this reduced
space, i.e. the invariant space of λ0 has a finite dimension. Since we can write the Liouvillian
as a matrix, this means that we can put in its canonical Jordan form. In other words the
Liouvillian acting on the vectors of this subspace can be decomposed in a diagonal part ¯̄Λ0

and a nilpotent matrix ¯̄N via a similarity transformation S:

¯̄Lλ0 = S−1
(

¯̄Λ0 + ¯̄N
)
S = S−1



λ0 1 0 · · · 0 0
0 λ0 1 · · · 0 0
... . . . . . . . . . ... ...
0 0 0 · · · λ0 1
0 0 0 · · · 0 λ0

S. (3.6)

Of course, the new basis of vectors obtained by the non-unitary transformation S may not be
orthonormal. The time evolution of the system is given by e ¯̄Lt, and since ¯̄Λ0 and ¯̄N commute,

3. The algebraic multiplicity of λ is defined as the number of times λ appears as a root of the characteristic
equation. The geometric multiplicity, instead, is the maximum number of linearly independent eigenvectors
associated with λ.
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one has
e

¯̄Lλ0 t = S−1e
¯̄Λ0te

¯̄NtS

= S−1eλ0t(1 + ¯̄Nt+ ( ¯̄Nt)2

2 + . . .
( ¯̄Nt)n
n! )S

= S−1eλ0t



1 t t2

2 · · · tn−1

(n−1)!
tn

n!
0 1 t · · · tn−2

(n−2)!
tn−1

(n−1)!
... . . . . . . . . . . . . . . .
0 0 0 · · · 1 t
0 0 0 · · · 0 1


S.

(3.7)

Since λ0 = 0, the previous expression clearly will cause the dynamics to diverge, proving the
absurd. We stress that this reasoning can not be directly extended to λi 6= 0 nor to infinite
degeneracies n→∞.

�

3.2.1 Spectral decomposition of eigenmatrices
Let us consider a system admitting a unique steady state. To be physical, its ρ̂(t) must

be a Hermitian, positive-definite matrix with trace equal to one. Hence, from Lemma 3.2, to
ensure Tr[ρ(t)] = 1 at every time, we must have:

ρ̂(t) = ρ̂0

Tr[ρ̂0] +
∑
i 6=0

ci(t)ρ̂i = ρ̂ss +
∑
i 6=0

ci(0)eλitρ̂i. (3.8)

The case of a real Liouvillian eigenvalue λi

When λi is real, ρ̂i can be constructed to be Hermitian (see Lemma 3.3). Thus, it can be
diagonalized, obtaining the spectral decomposition [22]

ρ̂i =
∑
n

p(i)
n |ψ(i)

n 〉 〈ψ(i)
n | , (3.9)

where all the p(i)
n must be real and 〈ψ(i)

n |ψ(i)
m 〉 = δn,m. Moreover, since ρ̂i is traceless (see

Lemma 3.2 of Sec. 3.2), some of the p(i)
n must be positive and the others negative. We can

order them in such a way to have p(i)
n > 0 for n ≤ n̄ and p(i)

n < 0 for n > n̄. Thus, we have:
ρ̂i ∝ ρ̂+

i − ρ̂−i , (3.10)
where

ρ̂+
i =

∑
n≤n̄

p(i)
n |ψ(i)

n 〉 〈ψ(i)
n | ,

ρ̂−i = −
∑
n>n̄

p(i)
n |ψ(i)

n 〉 〈ψ(i)
n | (3.11)

and where the {pn} have been normalized to ensure Tr
[
ρ̂+
i

]
= Tr

[
ρ̂−i
]

= 1. With this
definition, ρ̂±i are density matrices. Consequently, a state of the form ρ̂(0) = ρ̂ss + A ρ̂i will
evolve in time as [124]

ρ̂(t) = ρ̂ss + Aeλit(ρ̂+
i − ρ̂−i ). (3.12)
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The case of a complex Liouvillian eigenvalue λi

Let us now consider an eigenmatrix ρ̂i with a complex eigenvalue λi. As it stems from
Eq. (3.8), to ensure an Hermitian ρ̂(t) such an eigenmatrix must always appear in combination
with its Hermitian conjugate ρ̂†i , which is also an eigenmatrix of L (Lemma 3.3). Thus, one
can simply consider the Hermitian combinations ρ̂i + ρ̂†i and i (ρ̂i − ρ̂†i ). For example, given
an initial condition ρ̂(0) = ρ̂ss + A(ρ̂i + ρ̂†i ) with A real, one has [124]:

ρ̂(t) = ρ̂ss + A
(
eλitρ̂i + eλ

∗
i tρ̂†i

)
= ρ̂ss + AeRe[λi]t

(
ρ̂ie

iIm[λi]t + ρ̂†ie
−iIm[λi]t

)
= ρ̂ss + 2AeRe[λi]t

[(
ρ̂i + ρ̂†i

)
cos(Im [λi] t) + i

(
ρ̂i − ρ̂†i

)
sin(Im [λi] t)

]
.

(3.13)

3.3 Definition and properties of dissipative phase tran-
sitions

Let us consider a system where a thermodynamic limit is obtained when a parameter N →
+∞. For example, in a lattice of spins, N would be the number of lattice sites. For any finite
N , the system always admits a unique steady-state solution. In the thermodynamic limit
N → +∞, a transition between two different phases is characterized by the nonanalytical
behavior of some ζ-independent observable ô when the parameter ζ tends to the critical value
ζc. Formally, we say that there is a phase transition of order M if

lim
ζ→ζc

∣∣∣∣∣ ∂M∂ζM lim
N→+∞

Tr[ρ̂ss(ζ,N)ô]
∣∣∣∣∣ = +∞. (3.14)

Since ô does not depend on ζ, the discontinuity in Eq. (3.14) is due to a discontinuous
behavior in ρ̂ss(ζ,N → ∞). As proved in [123], a discontinuity of an eigenmatrix is to be
associated with a level crossing in the spectrum of the Liouvillian. Since ρ̂ss is associated to
λ0 = 0, the phase transition must coincide with the closure of the Liouvillian gap [43, 125]
(indeed, in this case, is more correct to talk about level touching). Therefore, dissipative
phase transitions are intimately connected to the emergence of multiple steady states in the
thermodynamic limit N → +∞.

3.3.1 Analogies and differences with respect to the equilibrium
case

The idea that a level crossing is a necessary condition in order to observe a phase transition
can be traced back to perturbation theory. Indeed, in his seminal work about perturbation
theory of linear operators (Ref. [123]), Kato provided a simple necessary condition to ob-
serve non-analiticitical behaviour. Consider, for example, a Hamiltonain Ĥ, depending on a
parameter ζ, whose eigenvalues are the energies Ei(ζ) and eigenvectors are |Ψi(ζ)〉, i.e.

Ĥ(ζ) =
∑
i

Ei |Ψi(ζ)〉 〈Ψi(ζ)| . (3.15)

We are interested in the ground state |Ψ0(ζ)〉 whose energy is E0. For sufficiently small
perturbation ∆ζ, the state |Ψ0(ζ + ∆ζ)〉 can always be expressed as an power series of ∆ζ,
except if E0(ζ) = E1(ζ). In this regard, quantum phase transitions must be accompanied
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by a closure of the Hamiltonian gap (cf. Fig. 3.1). Criticality can be then thought as an
exchange (or mixing) between two wavefunctions.

One would be tempted to extend this interpretation to a Liouvillian system, and simply
say that a phase transition is associated to an exchange between ρ̂0(ζ−) and ρ̂1(ζ−). However,
Lemma 3.2 proves that Tr[ρ̂1(ζ−)] = 0. We conclude that this simple description in terms
of an exchange (or mixing) of eigenmatrices is not sufficient to capture the emergence of a
phase transition in dissipative systems. On top of the theory developed by Kato, we must
require that the steady-state remains always physically meaningful. The formalisation of this
simple intuition is the key idea of this Section.

3.3.2 First-order phase transitions
In this section we consider the emergence of a first-order dissipative phase transition at

ζ = ζc in the thermodynamic limit N → +∞. Such a transition must be associated to the
existence of two different and steady states, one for ζ < ζc and the other for ζ > ζc, which
implies that for ζ 6= ζc the gap is finite:

λ1(ζ,N → +∞) 6= λ0 = 0 for ζ 6= ζc. (3.16)

According to our definition, a first-order dissipative phase transition occurs when Eq. (3.14)
is satisfied for M = 1, which also corresponds to

lim
ζ→ζ+

c

lim
N→+∞

ρ̂ss(ζ,N) = ρ̂+ 6= ρ̂− = lim
ζ→ζ−c

lim
N→+∞

ρ̂ss(ζ,N), (3.17)

which defines ρ+ (ρ−) as the steady state in the thermodynamic limit right after (before)
the critical point. From Eq. (3.17) we can write that ρ̂ss(ζ) = θ(ζ − ζc)ρ̂+ + θ(ζc − ζ)ρ̂− for
ζ 6= ζc, where θ(x) is the Heaviside step function. Assuming the continuity of the Liouvillian,
we can state that L(ζc)ρ̂± = 0 (we drop the explicit dependence on N when assuming the
thermodynamic limit). This implies that λ1(ζc) = λ0 = 0 and hence ρ̂ss(ζc) and ρ̂1(ζc) belong
to the kernel spanned by ρ̂±. It is worth stressing that, in the thermodynamic limit and for
ζ = ζc, both the real and imaginary part of λ1 must vanish. Furthermore, in a first-order
dissipative phase transition, the condition Im [λ1] = 0 must hold in a finite domain of ζ = ζc,
as a consequence of Lemma 3 4.

Lemma 3.2 ensures that Tr[ρ̂1(ζ)] = 0 if λ1(ζ) 6= 0 (i.e., ζ 6= ζc). Moreover, as discussed
in [123], λ1(ζ) must be continuous in a domain of the parameter space around ζ = ζc (c.f.
Fig. 3.2). By analogy, we want also ρ̂1(ζ) to be continuous around ζc, and to extend the
zero-trace condition we must set

ρ̂1(ζc) ∝ ρ̂+ − ρ̂−. (3.18)
The above equation allows the identification of the states ρ̂±1 obtained with the eigendecom-
position (3.10) with the two phases ρ̂± [Eq. (3.17)] emerging in the thermodynamic limit.
Together with the continuity requirement, this allows to interpret ρ̂±1 (ζ) ' ρ̂± in a domain
around ζ = ζc. In this region, since the Liouvillian gap is finite, we also have ρ̂0(ζ) ∝ ρ̂ss(ζ).
Using that θ(0) = 1/2, we can infer

ρ̂0(ζc) ∝ ρ̂+ + ρ̂−. (3.19)

4. Since if λ1 belongs to the spectrum of L so it does λ∗1, if Im [λ1] vanishes only at ζ = ζc there would be
three zeros in the Liouvillian spectrum at ζ = ζc. This is in contrast with the present theory of first-order
dissipative phase transitions.
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ζ

λ

⇢̂1 / ⇢̂+
1 � ⇢̂�1

<latexit sha1_base64="eiYn/jrMN04Dw5hNtJVO1df2uls="></latexit><latexit sha1_base64="eiYn/jrMN04Dw5hNtJVO1df2uls="></latexit><latexit sha1_base64="eiYn/jrMN04Dw5hNtJVO1df2uls=">AAAC+HicjVHNSsNAGBzj/3/Uo5dgEQRpSVTQY9GLxwrWClZLkm7b0CQbNhuhFh/Emzfx6gt41ScQ30Dfwm/XFFpEdEOS2flmZvfb9ZIwSKVtv48Z4xOTU9Mzs3PzC4tLy+bK6lnKM+Gzqs9DLs49N2VhELOqDGTIzhPB3MgLWc3rHql67ZqJNODxqewl7DJy23HQCnxXEtUwd+sdV/brosNvG049ETyR3Brmrrat4ihRbJgFp2TrYdk/wKBUQD4q3HxDHU1w+MgQgSGGJBzCRUrPBRzYSIi7RJ84QSjQdYZbzJE3IxUjhUtsl75tml3kbExzlZlqt0+rhPQKclrYJA8nnSCsVrN0PdPJiv0tu68z1d569PfyrIhYiQ6xf/kGyv/6VC8SLRzoHgLqKdGM6s7PUzJ9Kmrn1lBXkhIS4hRuUl0Q9rVzcM6W9qS6d3W2rq5/aKVi1dzPtRk+1S6HL/h3cLZTcuySc7JXKB/mVz2DdWxgi+5zH2Uco4IqZd/hGS94NW6Me+PBePyWGmO5Zw0jw3j6AkEApB4=</latexit><latexit sha1_base64="eiYn/jrMN04Dw5hNtJVO1df2uls="></latexit>

⇢̂+
1

<latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit><latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit><latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit><latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit>

⇢̂�1
<latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwY0lE0GXRjcuK9gF9kaTTNjTNhMlEKKUgbv0Bt/pT4h/oX3hnTEEtohOSnDn3njNz73WjwI+lZb1mjIXFpeWV7GpubX1jcyu/vVONeSI8VvF4wEXddWIW+CGrSF8GrB4J5ozcgNXc4YWK126ZiH0e3shxxFojpx/6Pd9zJFHt5sCRk6YY8GnHbh918gWraOllzgM7BQWkq8zzL2iiCw4PCUZgCCEJB3AQ09OADQsRcS1MiBO EfB1nmCJH2oSyGGU4xA7p26ddI2VD2ivPWKs9OiWgV5DSxAFpOOUJwuo0U8cT7azY37wn2lPdbUx/N/UaESsxIPYv3SzzvzpVi0QPZ7oGn2qKNKOq81KXRHdF3dz8UpUkh4g4hbsUF4Q9rZz12dSaWNeueuvo+JvOVKzae2lugnd1Sxqw/XOc86B6XLSton11Uiidp6POYg/7OKR5nqKES5RRIW+BRzzh2bg2xsadcf+ZamRSzS6+LePhA/+XlNg=</latexit><latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwY0lE0GXRjcuK9gF9kaTTNjTNhMlEKKUgbv0Bt/pT4h/oX3hnTEEtohOSnDn3njNz73WjwI+lZb1mjIXFpeWV7GpubX1jcyu/vVONeSI8VvF4wEXddWIW+CGrSF8GrB4J5ozcgNXc4YWK126ZiH0e3shxxFojpx/6Pd9zJFHt5sCRk6YY8GnHbh918gWraOllzgM7BQWkq8zzL2iiCw4PCUZgCCEJB3AQ09OADQsRcS1MiBO EfB1nmCJH2oSyGGU4xA7p26ddI2VD2ivPWKs9OiWgV5DSxAFpOOUJwuo0U8cT7azY37wn2lPdbUx/N/UaESsxIPYv3SzzvzpVi0QPZ7oGn2qKNKOq81KXRHdF3dz8UpUkh4g4hbsUF4Q9rZz12dSaWNeueuvo+JvOVKzae2lugnd1Sxqw/XOc86B6XLSton11Uiidp6POYg/7OKR5nqKES5RRIW+BRzzh2bg2xsadcf+ZamRSzS6+LePhA/+XlNg=</latexit><latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwY0lE0GXRjcuK9gF9kaTTNjTNhMlEKKUgbv0Bt/pT4h/oX3hnTEEtohOSnDn3njNz73WjwI+lZb1mjIXFpeWV7GpubX1jcyu/vVONeSI8VvF4wEXddWIW+CGrSF8GrB4J5ozcgNXc4YWK126ZiH0e3shxxFojpx/6Pd9zJFHt5sCRk6YY8GnHbh918gWraOllzgM7BQWkq8zzL2iiCw4PCUZgCCEJB3AQ09OADQsRcS1MiBO EfB1nmCJH2oSyGGU4xA7p26ddI2VD2ivPWKs9OiWgV5DSxAFpOOUJwuo0U8cT7azY37wn2lPdbUx/N/UaESsxIPYv3SzzvzpVi0QPZ7oGn2qKNKOq81KXRHdF3dz8UpUkh4g4hbsUF4Q9rZz12dSaWNeueuvo+JvOVKzae2lugnd1Sxqw/XOc86B6XLSton11Uiidp6POYg/7OKR5nqKES5RRIW+BRzzh2bg2xsadcf+ZamRSzS6+LePhA/+XlNg=</latexit><latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y=">AAAC0XicjVHLSsNAFD2Nr1pfVZdugkVwY0lE0GXRjcuK9gF9kaTTNjTNhMlEKKUgbv0Bt/pT4h/oX3hnTEEtohOSnDn3njNz73WjwI+lZb1mjIXFpeWV7GpubX1jcyu/vVONeSI8VvF4wEXddWIW+CGrSF8GrB4J5ozcgNXc4YWK126ZiH0e3shxxFojpx/6Pd9zJFHt5sCRk6YY8GnHbh918gWraOllzgM7BQWkq8zzL2iiCw4PCUZgCCEJB3AQ09OADQsRcS1MiBO EfB1nmCJH2oSyGGU4xA7p26ddI2VD2ivPWKs9OiWgV5DSxAFpOOUJwuo0U8cT7azY37wn2lPdbUx/N/UaESsxIPYv3SzzvzpVi0QPZ7oGn2qKNKOq81KXRHdF3dz8UpUkh4g4hbsUF4Q9rZz12dSaWNeueuvo+JvOVKzae2lugnd1Sxqw/XOc86B6XLSton11Uiidp6POYg/7OKR5nqKES5RRIW+BRzzh2bg2xsadcf+ZamRSzS6+LePhA/+XlNg=</latexit>

⇢̂�1
<latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y="></latexit><latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y="></latexit><latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y="></latexit><latexit sha1_base64="GuxCrrGvyaGrwIsuKURaXUYeo1Y="></latexit>

⇢̂+
1

<latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit><latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit><latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit><latexit sha1_base64="JnTUVA3200Nkih+sqxL0IHdmmkk="></latexit>

for ⇣ = ⇣c
<latexit sha1_base64="pXM21qE4Sum6I/XMKQv9B2tu8k4=">AAAC3nicjVHLSsNAFD2N7/qKuhI3wSK4KokICiIU3bhUsFVoSk3GqYbmxWQi1FLcuRO3/oBb/RzxD/QvvDNG8IHohMycOfeeM3Pn+mkYZNK2n0vG0PDI6Nj4RHlyanpm1pybb2RJLhivsyRMxLHvZTwMYl6XgQz5cSq4F/khP/K7uyp+dMFFFiTxoeylvBV5Z3HQCZgniWqbi31XRFYnEQN3y3IvufS29dxmbbNiV209rJ/AKUAFxdhPzCe4OEUChhwROGJIwiE8ZPQ14cBGSlwLfeIEoUDHOQYokzanLE4ZHrFdms9o1yzYmPbKM9NqRqeE9AtSWlghTUJ5grA6zdLxXDsr9jfvvvZUd+vR6hdeEbES58T+pfvI/K9O1SLRwaauIaCaUs2o6ljhkutXUTe3PlUlySElTuFTigvCTCs/3tnSmkzXrt7W0/EXnalYtWdFbo5XdUtqsPO9nT9BY63q2FXnYL1S2ylaPY4lLGOV+rmBGvawjzp5X+EeD3g0Toxr48a4fU81SoVmAV+GcfcGSkSZlg==</latexit><latexit sha1_base64="pXM21qE4Sum6I/XMKQv9B2tu8k4=">AAAC3nicjVHLSsNAFD2N7/qKuhI3wSK4KokICiIU3bhUsFVoSk3GqYbmxWQi1FLcuRO3/oBb/RzxD/QvvDNG8IHohMycOfeeM3Pn+mkYZNK2n0vG0PDI6Nj4RHlyanpm1pybb2RJLhivsyRMxLHvZTwMYl6XgQz5cSq4F/khP/K7uyp+dMFFFiTxoeylvBV5Z3HQCZgniWqbi31XRFYnEQN3y3IvufS29dxmbbNiV209rJ/AKUAFxdhPzCe4OEUChhwROGJIwiE8ZPQ14cBGSlwLfeIEoUDHOQYokzanLE4ZHrFdms9o1yzYmPbKM9NqRqeE9AtSWlghTUJ5grA6zdLxXDsr9jfvvvZUd+vR6hdeEbES58T+pfvI/K9O1SLRwaauIaCaUs2o6ljhkutXUTe3PlUlySElTuFTigvCTCs/3tnSmkzXrt7W0/EXnalYtWdFbo5XdUtqsPO9nT9BY63q2FXnYL1S2ylaPY4lLGOV+rmBGvawjzp5X+EeD3g0Toxr48a4fU81SoVmAV+GcfcGSkSZlg==</latexit><latexit sha1_base64="pXM21qE4Sum6I/XMKQv9B2tu8k4=">AAAC3nicjVHLSsNAFD2N7/qKuhI3wSK4KokICiIU3bhUsFVoSk3GqYbmxWQi1FLcuRO3/oBb/RzxD/QvvDNG8IHohMycOfeeM3Pn+mkYZNK2n0vG0PDI6Nj4RHlyanpm1pybb2RJLhivsyRMxLHvZTwMYl6XgQz5cSq4F/khP/K7uyp+dMFFFiTxoeylvBV5Z3HQCZgniWqbi31XRFYnEQN3y3IvufS29dxmbbNiV209rJ/AKUAFxdhPzCe4OEUChhwROGJIwiE8ZPQ14cBGSlwLfeIEoUDHOQYokzanLE4ZHrFdms9o1yzYmPbKM9NqRqeE9AtSWlghTUJ5grA6zdLxXDsr9jfvvvZUd+vR6hdeEbES58T+pfvI/K9O1SLRwaauIaCaUs2o6ljhkutXUTe3PlUlySElTuFTigvCTCs/3tnSmkzXrt7W0/EXnalYtWdFbo5XdUtqsPO9nT9BY63q2FXnYL1S2ylaPY4lLGOV+rmBGvawjzp5X+EeD3g0Toxr48a4fU81SoVmAV+GcfcGSkSZlg==</latexit><latexit sha1_base64="pXM21qE4Sum6I/XMKQv9B2tu8k4=">AAAC3nicjVHLSsNAFD2N7/qKuhI3wSK4KokICiIU3bhUsFVoSk3GqYbmxWQi1FLcuRO3/oBb/RzxD/QvvDNG8IHohMycOfeeM3Pn+mkYZNK2n0vG0PDI6Nj4RHlyanpm1pybb2RJLhivsyRMxLHvZTwMYl6XgQz5cSq4F/khP/K7uyp+dMFFFiTxoeylvBV5Z3HQCZgniWqbi31XRFYnEQN3y3IvufS29dxmbbNiV209rJ/AKUAFxdhPzCe4OEUChhwROGJIwiE8ZPQ14cBGSlwLfeIEoUDHOQYokzanLE4ZHrFdms9o1yzYmPbKM9NqRqeE9AtSWlghTUJ5grA6zdLxXDsr9jfvvvZUd+vR6hdeEbES58T+pfvI/K9O1SLRwaauIaCaUs2o6ljhkutXUTe3PlUlySElTuFTigvCTCs/3tnSmkzXrt7W0/EXnalYtWdFbo5XdUtqsPO9nT9BY63q2FXnYL1S2ylaPY4lLGOV+rmBGvawjzp5X+EeD3g0Toxr48a4fU81SoVmAV+GcfcGSkSZlg==</latexit>

⇢̂0 / ⇢̂+
1 + ⇢̂�1

<latexit sha1_base64="7wSEV5dzztLzv6yVKd7YPJmjeKg="></latexit><latexit sha1_base64="7wSEV5dzztLzv6yVKd7YPJmjeKg="></latexit><latexit sha1_base64="7wSEV5dzztLzv6yVKd7YPJmjeKg=">AAAC+HicjVHLSsNAFD3GV62vqEs3wSIIYklU0GXRjcsKthVaLUkc29A0EyYToZZ+iDt34tYfcKtfIP6B/oV3xhTUIjohyZlz7zkz914vDoNE2vbrmDE+MTk1nZvJz87NLyyaS8vVhKfCZxWfh1ycem7CwiBiFRnIkJ3GgrldL2Q1r3Oo4rUrJpKARyeyF7OzrtuKgsvAdyVRTXOn0XZlvyHafNC0G7HgseTWF84537Q2vxNbTbNgF229rFHgZKCAbJW5+YIGLsDhI0UXDBEk4RAuEnrqcGAjJu4MfeIEoUDHGQbIkzalLEYZLrEd+rZoV8/YiPbKM9Fqn04J6RWktLBOGk55grA6zdLxVDsr9jfvvvZUd+vR38u8usRKtIn9SzfM/K9O1SJxiX1dQ0A1xZpR1fmZS6q7om5ufalKkkNMnMIXFBeEfa0c9tnSmkTXrnrr6vibzlSs2vtZbop3dUsasPNznKOgul107KJzvFsoHWSjzmEVa9igee6hhCOUUSHvGzziCc/GtXFr3Bn3n6nGWKZZwbdlPHwANz+kGg==</latexit><latexit sha1_base64="7wSEV5dzztLzv6yVKd7YPJmjeKg="></latexit>

ê⇢j
<latexit sha1_base64="WmFbLN3D27iuI1G8LhQ1rY/8P5Y=">AAAC3XicjVHLSsNAFD2Nr1pfVTeCm2ARXJVEBF0W3bisYB/QlpKk03Y0TcJkopRSd+7ErT/gVn9H/AP9C++MKahFdEKSM+fec2buvW7k81ha1mvGmJmdm1/ILuaWlldW1/LrG9U4TITHKl7oh6LuOjHzecAqkkuf1SPBnIHrs5p7eaLitSsmYh4G53IYsdbA6QW8yz1HEtXObzX7jhw1r3mHSe532Kgp+uF43L5o5wtW0dLLnAZ2CgpIVznMv6CJDkJ4SDAAQwBJ2IeDmJ4GbFiIiGthRJwgxHWcYYwcaRPKYpThEHtJ3x7tGikb0F55xlrt0Sk+vYKUJnZJE1KeIKxOM3U80c6K/c17pD3V3Yb0d1OvAbESfWL/0k0y/6tTtUh0caRr4FRTpBlVnZe6JLor6ubml6okOUTEKdyhuCDsaeWkz6bWxLp21VtHx990pmLV3ktzE7yrW9KA7Z/jnAbV/aJtFe2zg0LpOB11FtvYwR7N8xAlnKKMCnnf4BFPeDbaxq1xZ9x/phqZVLOJb8t4+ACcy5oq</latexit><latexit sha1_base64="WmFbLN3D27iuI1G8LhQ1rY/8P5Y=">AAAC3XicjVHLSsNAFD2Nr1pfVTeCm2ARXJVEBF0W3bisYB/QlpKk03Y0TcJkopRSd+7ErT/gVn9H/AP9C++MKahFdEKSM+fec2buvW7k81ha1mvGmJmdm1/ILuaWlldW1/LrG9U4TITHKl7oh6LuOjHzecAqkkuf1SPBnIHrs5p7eaLitSsmYh4G53IYsdbA6QW8yz1HEtXObzX7jhw1r3mHSe532Kgp+uF43L5o5wtW0dLLnAZ2CgpIVznMv6CJDkJ4SDAAQwBJ2IeDmJ4GbFiIiGthRJwgxHWcYYwcaRPKYpThEHtJ3x7tGikb0F55xlrt0Sk+vYKUJnZJE1KeIKxOM3U80c6K/c17pD3V3Yb0d1OvAbESfWL/0k0y/6tTtUh0caRr4FRTpBlVnZe6JLor6ubml6okOUTEKdyhuCDsaeWkz6bWxLp21VtHx990pmLV3ktzE7yrW9KA7Z/jnAbV/aJtFe2zg0LpOB11FtvYwR7N8xAlnKKMCnnf4BFPeDbaxq1xZ9x/phqZVLOJb8t4+ACcy5oq</latexit><latexit sha1_base64="WmFbLN3D27iuI1G8LhQ1rY/8P5Y=">AAAC3XicjVHLSsNAFD2Nr1pfVTeCm2ARXJVEBF0W3bisYB/QlpKk03Y0TcJkopRSd+7ErT/gVn9H/AP9C++MKahFdEKSM+fec2buvW7k81ha1mvGmJmdm1/ILuaWlldW1/LrG9U4TITHKl7oh6LuOjHzecAqkkuf1SPBnIHrs5p7eaLitSsmYh4G53IYsdbA6QW8yz1HEtXObzX7jhw1r3mHSe532Kgp+uF43L5o5wtW0dLLnAZ2CgpIVznMv6CJDkJ4SDAAQwBJ2IeDmJ4GbFiIiGthRJwgxHWcYYwcaRPKYpThEHtJ3x7tGikb0F55xlrt0Sk+vYKUJnZJE1KeIKxOM3U80c6K/c17pD3V3Yb0d1OvAbESfWL/0k0y/6tTtUh0caRr4FRTpBlVnZe6JLor6ubml6okOUTEKdyhuCDsaeWkz6bWxLp21VtHx990pmLV3ktzE7yrW9KA7Z/jnAbV/aJtFe2zg0LpOB11FtvYwR7N8xAlnKKMCnnf4BFPeDbaxq1xZ9x/phqZVLOJb8t4+ACcy5oq</latexit><latexit sha1_base64="WmFbLN3D27iuI1G8LhQ1rY/8P5Y=">AAAC3XicjVHLSsNAFD2Nr1pfVTeCm2ARXJVEBF0W3bisYB/QlpKk03Y0TcJkopRSd+7ErT/gVn9H/AP9C++MKahFdEKSM+fec2buvW7k81ha1mvGmJmdm1/ILuaWlldW1/LrG9U4TITHKl7oh6LuOjHzecAqkkuf1SPBnIHrs5p7eaLitSsmYh4G53IYsdbA6QW8yz1HEtXObzX7jhw1r3mHSe532Kgp+uF43L5o5wtW0dLLnAZ2CgpIVznMv6CJDkJ4SDAAQwBJ2IeDmJ4GbFiIiGthRJwgxHWcYYwcaRPKYpThEHtJ3x7tGikb0F55xlrt0Sk+vYKUJnZJE1KeIKxOM3U80c6K/c17pD3V3Yb0d1OvAbESfWL/0k0y/6tTtUh0caRr4FRTpBlVnZe6JLor6ubml6okOUTEKdyhuCDsaeWkz6bWxLp21VtHx990pmLV3ktzE7yrW9KA7Z/jnAbV/aJtFe2zg0LpOB11FtvYwR7N8xAlnKKMCnnf4BFPeDbaxq1xZ9x/phqZVLOJb8t4+ACcy5oq</latexit>

ê⇢j+1
<latexit sha1_base64="cf19jR0rDaEl1oYf7u1HM5DWG1w="></latexit><latexit sha1_base64="cf19jR0rDaEl1oYf7u1HM5DWG1w="></latexit><latexit sha1_base64="cf19jR0rDaEl1oYf7u1HM5DWG1w="></latexit><latexit sha1_base64="cf19jR0rDaEl1oYf7u1HM5DWG1w="></latexit>

Zn
<latexit sha1_base64="oobF5bkgrZ3tv5ie3IuaT4uQ8C0="></latexit><latexit sha1_base64="oobF5bkgrZ3tv5ie3IuaT4uQ8C0="></latexit><latexit sha1_base64="oobF5bkgrZ3tv5ie3IuaT4uQ8C0="></latexit><latexit sha1_base64="oobF5bkgrZ3tv5ie3IuaT4uQ8C0="></latexit>

ê⇢j
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Figure 3.2 – Left: Sketch depicting the paradigm of a first-order dissipative phase transition,
formally described in Sec. 3.3.2. In the thermodynamic limit, the Liouvillian gap λ = |Re [λ1]|
closes when the parameter ζ of the Liouvillian assumes the critical value ζc. We note that, for
ζ ' ζc, we must also have Im [λ1] = 0. Just before (after) the critical point, the steady-state
density matrix ρ̂ss ' ρ̂−1 (ρ̂ss ' ρ̂+

1 ), which represents one of the two different phases of the
system. At the critical point ζ = ζc, ρ̂ss is bimodal: the steady state is a statistical mixture
of ρ̂+

1 and ρ̂−1 . Right: Schematic representation of a second-order dissipative phase transition
(cf. Sec. 3.3.3), associated to the breaking of a Zn symmetry (in the sketch n = 5). In the
thermodynamic limit, the Liouvillian gap λ closes over the whole region ζ ≥ ζc, being ζ the
critical parameter triggering the transition. Moreover, one has that λ0, · · · , λn−1 = 0 for
ζ ≥ ζc. When λ 6= 0 (here for ζ < ζc), the steady-state density matrix ρ̂ss is mono-modal.
In the symmetry-broken phase (λ = 0 and ζ ≥ ζc), ρ̂ss is an n-modal statistical mixture of
density matrices ˆ̃ρj, which are mapped one into the other under the action of the symmetry
superoperator Zn. Figure from Ref. [1].

Accordingly, ρ̂0(ζc) and ρ̂1(ζc) are orthogonal, since 〈ρ̂0(ζc), ρ̂1(ζc)〉 ∝ Tr
[
(ρ+)2]−Tr

[
(ρ−)2

]
=

0.
For large but finite N , provided that |Re [λ2] | � |Re [λ1] | > 0, Eqs. (3.18) and (3.19) are

asymptotic good approximations and, since ρ̂± = ρ̂±1 (ζc, N), we get the asymptotic expression

ρ̂ss(ζc, N) ' ρ̂+
1 (ζc, N) + ρ̂−1 (ζc, N)

2 , (3.20)

which ensures Hermiticity and unit trace of the ρ̂ss(ζc, N). Let us note that Eq. (3.20) has a
clear physical interpretation: at the critical point, for a finite-size system, the steady state is
the equiprobable mixture of the two phases, which are encoded in the spectral decomposition
of ρ̂1(ζc, N). Remarkably, in a small region at the left (right) of the critical point, ρ̂+

1 (ρ̂−1 )
are metastable. This means that if the system is initialized in one of these two states it will
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remain stuck, for a time proportional to 1/λ, before reaching the steady-state [124]. This
can gives rise to hysterical behaviour, typical of first-order phase transitions [51].

Conversely, if the Liouvillian gap closes in a point, there is criticality, i.e., lim
ζ→ζc

λ1(ζ) = 0
implies a first-order phase transition. We will prove this statement by contradiction. Let
us suppose that even if λ1 = 0 there is no phase transition. From the definition (3.14),
we deduce that for any operator ô in H ⊗ H, 〈ô(ζ)〉 is continuous in ζc. Hence, we have
that also ρ̂0(ζ) is continuous. From Lemma 3 and 4 of Sec. 3.2, the eigenstate ρ̂1(ζc), being
associated to λ1(ζc) = 0, exists and is Hermitian. By exploiting its spectral decomposition,
we can write ρ̂1(ζc) = (ρ̂+

1 (ζc) − ρ̂−1 (ζc))/
√

2 (we stress that here we have ‖ρ̂±1 (ζc)‖ = 1, and
〈ρ̂+

1 (ζc)|ρ̂−1 (ζc)〉 = 0 by construction).
The first part of the proof is to show that, ρ̂0(ζc) = (ρ̂+

1 (ζc) + ρ̂−1 (ζc))/
√

2. Indeed,
‖ρ̂1(ζc)‖ = 1 and eLtρ̂1 = ρ̂1. Thus, exploiting the triangular inequality, we have:

1 = ‖ρ̂1(ζc)‖2 =
∥∥∥eLtρ̂1(ζc)

∥∥∥2
=
∥∥∥∥∥eLt ρ̂

+
1 (ζc)− ρ̂−1 (ζc)√

2

∥∥∥∥∥
2

≤
∥∥∥eLtρ̂+

1 (ζc)
∥∥∥2

+
∥∥∥eLtρ̂−1 (ζc)

∥∥∥2

2 ≤ 1.

(3.21)

It follows
∥∥∥eLtρ̂±1 (ζc)

∥∥∥ = 1 for every time t. Hence, ρ̂±1 (ζc) must be a linear superposition
of eigematrices of the Liouvillian with zero eigenvalue. Considering that ρ̂1(ζc) = (ρ̂+

1 (ζc) −
ρ̂−1 (ζc))/

√
2, ‖ρ̂0(ζc)‖ = 1, and 〈ρ̂+

1 (ζc)|ρ̂−1 (ζc)〉 = 0, we obtain ρ̂0(ζc) = (ρ̂+
1 (ζc) + ρ̂−1 (ζc))/

√
2.

Having proved the first part, let us consider the eigendecomposition of ρ̂1(ζ) around ζc.
Except at the critical point, we have limt→∞ e

Ltρ̂±1 (ζ) = ρ̂0(ζ)/Tr
[
ρ̂±1
]
. But, by hypothesis,

all function are continuous, hence:

ρ̂±1 (ζc) = lim
ζ→ζc

lim
t→∞

eLtρ̂±1 (ζ) = lim
ζ→ζc

ρ̂0(ζ)/Tr
[
ρ̂±1
]

= ρ̂+
1 (ζc) + ρ̂−1 (ζc)

2 .
(3.22)

Consequently, we find that at the critical point, ρ̂+
1 (ζc) = ρ̂−1 (ζc). This statement would

require that at ζ = ζc ρ̂1(ζc) = 0. This statement is absurd, since proposition 4 of Sec. 3.2
guarantees that ρ̂1(ζc) is a well-defined eigenvector of the Liouvillian. Therefore, by contra-
diction, we deduce that the function ρ̂0(ζ) can not be continuous at ζ = ζc.

3.3.3 Second-order phase transitions with symmetry breaking
In this section, we will consider second-order dissipative phase transitions associated to

a symmetry breaking. A symmetry of an open quantum system is described by a unitary
superoperator U = V̂ • V̂ −1 (with V̂ unitary) [126], such that

U−1LU = L, (3.23)

or, equivalently, [L,U ] = 0. It follows that the matrix representations ¯̄U of U and ¯̄L of
L can be simultaneously diagonalised. From now on, we will call the symmetry sector Lu
the subspace of the Liouville space L spanned by the eigenmatrices of U with eigenvalue u.
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The existence of a symmetry means that the Lindblad master equation cannot mix different
symmetry sectors. Therefore ¯̄L can be cast in a block-diagonal form:

¯̄L =


¯̄Lu0 0 . . . 0
0 ¯̄Lu1 . . . 0
... ... . . . ...
0 0 . . . ¯̄Lun

 . (3.24)

Consider an arbitrary density matrix ρ̂ which is an eigenmatrix of U : U ρ̂ = uρ̂. Taking
the trace of both sides of the previous identity, and given the form of U , one finds u = 1. If
ρ̂ss is the only eigenmatrix with zero eigenvalue of L (unique steady state), it must also be
an eigenmatrix of U . From a physical perspective, this tells us that the symmetry sector to
which ρ̂ss (and therefore ρ̂0) belongs is always Lu=1.

A symmetry-breaking dissipative phase transition is associated to the emergence of mul-
tiple eigenmatrices of L with λ = 0, each of them belonging to a different symmetry sector
Lui . The structure imposed by Eq. (3.24) is preserved and the previous considerations still
hold. Therefore, ρ̂0 (belonging to the symmetry sector Lu=1) is still the only eigenmatrix of
L with nonzero trace.

The block-diagonal structure of the Liouvillian (see Eq. (3.24)), together with the pre-
vious observations, can play a fundamental role in reducing the complexity of the problem.
Indeed, by properly exploiting spatial and/or internal symmetries, one can explicitly con-
struct the reduced subspace in which the steady-state density matrix belongs. This can give
a substantial speed-up for algorithms based on Montecarlo strategies [127], cluster expansions
[128, 129], corner methods [130] and tensor-network ansatz [131–133].

Z2 symmetry

Let us consider at first a system which has a discrete Z2 symmetry represented by the
superoperator Z2 = Ẑ2 • Ẑ

†
2. Later, we will deal with the general case of a Zn symmetry. The

symmetry superoperator Z2 admits two eigenvalues, namely ±1. For ζ < ζc (ζ being the
critical parameter) there exists a unique steady state associated to the eigenvalue λ0 = 0,
and Z2ρ̂ss = ρ̂ss. For ζ ≥ ζc, a phase transition with a symmetry breaking takes place.
Consequently, λ0 = λ1 = 0 while ρ̂0 and ρ̂1 belong to two different symmetry sectors (cf.
Fig. 3.2). From these properties, it follows that ρ̂0 and ρ̂1 are orthogonal, since

〈ρ̂0|ρ̂1〉 = 〈Z2ρ̂0|ρ̂1〉 = 〈ρ̂0|Z2ρ̂1〉 = −〈ρ̂0|ρ̂1〉 , (3.25)

where we exploited the hermiticity of Z2. Similarly, 〈ρ̂†0|ρ̂1〉 = 0. Since λ1 = 0 is real and
ρ̂†1 6= ρ̂0, the eigenmatrix ρ̂1 is Hermitian (Lemmas of Sec. 3.2). Hence, the density matrices

ρ̂± = ρ̂0 ± ρ̂1

Tr[ρ̂0] (3.26)

are steady states of the master equation breaking the symmetry, as Z2ρ̂
± = ρ̂∓. From

Eq. (3.25) it follows that ρ̂+ and ρ̂− are orthogonal as well. So that we have:

ρ̂0 ∝ ρ̂+ + ρ̂−, (3.27a)
ρ̂1 ∝ ρ̂+ − ρ̂−. (3.27b)
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Thus, we can conclude that the two symmetry-broken states ρ̂± are the two matrices stem-
ming from the spectral decomposition of ρ̂1, i.e., ρ̂±1 [c.f. Eq (3.10)]. For a finite-size system,
where the steady state is unique,

ρ̂ss(ζ ≥ ζc, N) ' ρ̂+
1 (ζc, N) + ρ̂−1 (ζc, N)

2 . (3.28)

Since we are considering a second-order phase transition, we must ensure that the unique
steady state in ζ−c coincides with both the simmetry-breaking steady states in ζ+

c : ρ̂ss(ζ−c ) =
ρ̂+(ζ+

c ) = ρ̂−(ζ+
c ). Consequently, according to this discussion, ρ̂1(ζc) = 0. Therefore, a

second-order phase transition is characterised by the coalescence of two eigenvectors of the
Liouvillian, which may give rise to a Jordan form of the Liouvillian (see App. D).

In order to unveil the symmetry breaking in a finite-size system (where the symmetry is
always preserved) one can resort to different strategies. To identify the critical point, one
can use an external weak probe which breaks the symmetry (see for example Refs. [71, 128])
and look for divergences in the associated susceptibility.

Zn symmetry

Consider now a generic symmetry superoperator Zn = Ẑn • Ẑ
†
n. In this case, the Liouvllian

can be partitioned in n blocks, each characterised by an eigenvalue zj = exp[2 i πj/n], with
j = 0, 1 . . . n − 1 (i.e. the eigenvalues must satisfy the equation znj = 1). In the symmetry-
broken phase, in each of those blocks there exists an eigenmatrix ρ̂j such that Lρ̂j = 0 and
Znρ̂j = zj ρ̂j. Lemma 3 of Sec. 3.2 imposes Lρ̂†j = 0. Moreover, ρ̂†j is also an eigenmatrix of
Zn of eigenvalue z∗j , since

Znρ̂†j =
(
Ẑnρ̂

†
jẐ
†
n

)
=
(
Ẑnρ̂jẐ

†
n

)†
= z∗j ρ̂

†
j. (3.29)

Note that, by definition z∗j = zn−j, and hence ρ̂†j = ρ̂n−j. As a particular case, if zj = z∗j then
ρ̂j = ρ̂†j.

To construct a basis of the degenerate subspace made of density matrices, consider the
operator

ˆ̃ρ0 =
n−1∑
j=0

ρ̂j
Tr[ρ̂0] =

n−1∑
j=0

ρ̂j + ρ̂n−j
2 Tr[ρ̂0] =

n−1∑
j=0

ρ̂j + ρ̂†j
2 Tr[ρ̂0] . (3.30)

With this choice, ˆ̃ρ0 is a density matrix, since it is Hermitian and it has trace 1 (Tr[ρ̂j] =
Tr[ρ̂0] δj,0). For ˆ̃ρ1 = Zn ˆ̃ρ0, one has

ˆ̃ρ1 =
n−1∑
j=0

zj ρ̂j + z∗j ρ̂
†
j

2 Tr[ρ̂0] , (3.31)

which is still Hermitian and of unitary trace, and therefore a density matrix. By iterative
application of the symmetry operator Zn, and since ˆ̃ρi 6= ˆ̃ρj for i 6= j, one obtains a basis
{ ˆ̃ρi} of density matrices, with i = 0, · · · , n− 1. In compact notation, one has

ˆ̃ρl = Z ln
n−1∑
j=0

ρ̂j
Tr[ρ̂0] =

n−1∑
j=0

zlj(i)ρ̂j
Tr[ρ̂0] . (3.32)
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Eq. (3.32) can be inverted to obtain ρ̂k as a function of ˆ̃ρl:

n−1∑
l=0

(z∗k)
l ˆ̃ρl =

n−1∑
l=0

n−1∑
j=0

(z∗kzj)
l ρ̂j

Tr[ρ̂0] =
n−1∑
l=0

n−1∑
j=0

zlj−kρ̂j

Tr[ρ̂0]

= n

Tr[ρ̂0]

n−1∑
j=0

δj,kρ̂j = n

Tr[ρ̂0] ρ̂k,
(3.33)

where we used the identity

n−1∑
l=0

zlj−k =
∑
l=0

(
e

2iπ(j−k)
n

)l
= n δk,j. (3.34)

We conclude that
ρ̂k ∝

n−1∑
l=0

(z∗k)l ˆ̃ρl
n

. (3.35)

Summarising, we have constructed a basis of { ˆ̃ρi} of the kernel of the Liouvillian made of
density matrices such that Zn ˆ̃ρi = ˆ̃ρmod(i+1,n), as depicted in Fig. 3.2. This construction
ensures that Znρ̂0 = ρ̂0. Again, for large enough but finite N , where the steady state is
unique also for ζ ≥ ζc, we get the asymptotic expression

ρ̂ss(ζ ≥ ζc, N) '
n−1∑
l=0

ˆ̃ρl(ζ ≥ ζc, N)
n

. (3.36)

3.4 Quantum trajectories to observe a phase transition
The previous discussion clarifies that, in order to prove the emergence of criticality, one

needs ρ̂ss, and all those ρ̂i such that λi ' 0. For many systems, however, an exact solution
of the steady state does not exist, and the exponentially growing size of the Hilbert space
makes an exact numerical diagonalisation of the Liouvillian often impossible. In those cases,
however, one can use single quantum trajectories to characterise the emergence of a phase
transition, the main idea being the following. Consider a finite-size system with a unique
steady state and whose slowest timescale is τ = 1/λ1. That is, given any initial state ρ̂(0),
for t� τ we have ρ̂(t) ' ρ̂ss. As we discussed in Sec. 2.2, we can interpret ρ̂(t) as the average
over many quantum trajectories |Ψ(t)〉. Therefore, even if the density matrix is stationary,
the quantum trajectory can still change in time, and thus explore all the states compounding
ρ̂ss. In formulas, for t � τ , we have that |Ψ(t)〉 ∈ {|Ψss

i 〉}, where {|Ψss
i 〉} indicate the set of

wave function such that ρ̂ss = ∑
i pi |Ψss

i 〉 〈Ψss
i |. 5

3.4.1 First-order phase transition
According to our general theory, at the critical point ζc, the steady state is the sum of

two density matrices, i.e. ρ̂ss = (ρ̂+
1 + ρ̂−1 )/2. For finite-size systems, however, we expect

this “phase coexistence” in a finite region ζ ' ζc around the critical point. Consequently, we

5. We stress that the wavefunctions {|Ψss
i 〉} need not be orthogonal, and the form of the wavefunction

depends on the type of quantum trajectory considered. Moreover, the probabilities pi are not those obtained
via spectral decomposition of the density matrix.
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expect that ρ̂ss(ζ) to be a statistical mixture of ρ̂±1 (ζ). Each one of them is a metastable state,
decaying towards ρ̂ss on a timescale of order τ = 1/λ1. Let us call |Ψ±i 〉 the wavefunction
compounding the matrices ρ̂±1 , i.e.

ρ̂±1 =
∑
i

p±i |Ψ±i 〉 〈Ψ±i | . (3.37)

If at a time t� τ the wave function is |Ψ(t)〉 ∈ {|Ψ−i 〉}, at which time t′ we expect to have
|Ψ(t′)〉 ∈ {|Ψ+

i 〉}? Since the typical relaxation time for a system in ρ̂−1 to relax to ρ̂ss is
τ = 1/λ, we deduce that t′ − t ' τ .

Consider, instead, a region where ζ > ζc but, still, λ1 � γ (the case ζ < ζc is clearly
equivalent). In this case, ρ̂ss(ζ) ' ρ̂+

1 (ζ). Hence, for t � τ , we expect that the system will
almost always be in a state |Ψ(t)〉 ∈ {|Ψ+

i 〉}. In other words, the fact that the gap is very
small is not associated to a random switch between two density matrices, and there is no
bistable behaviour emerging in this case. However, if one can guess the form of one of the
|Ψ−i 〉, τ can be obtained by initialising the system in |Ψ(0)〉 = |Ψ−i 〉.

3.4.2 Second-order phase transition
The case of a second-order phase transition requires a separate discussion. Consider a

generic symmetry Zn = Ẑn • Ẑ
†
n. For finite size system, if λ1 � γ, in the symmetry-broken

phase the steady state is multimodal and can be approximated by ρ̂ss '
∑
k

ˆ̃ρk, where ˆ̃ρk are
the matrices in Eq. (3.32). According to our previous discussion, there are no difficulties in
observing the multimodal character of ρ̂ss.

What can be difficult, instead, is to observe the symmetry-breaking states and the emer-
gence of a critical slowing down. Indeed, along a quantum trajectory one wants to explore
states |Ψk

i 〉 such that
ˆ̃ρk =

∑
i

pki |Ψk
i 〉 〈Ψk

i | . (3.38)

Therefore, to have |Ψ(t)〉 ∈ {|Ψk
i 〉}, |Ψ(t)〉 cannot be an eigenstate of Ẑn. 6

Theorem 3.5. Suppose that Ẑn is a symmetry of the Hamiltonian, i.e.
[
Ĥ, Ẑn

]
= 0 and,

for every jump operator Γ̂µ, ẐnΓ̂µ = zµΓ̂µẐn, where zµ is an eigenvalue of Ẑn. 7 Given a
counting quantum trajectory such that Ẑn |Ψ(0)〉 = z(0) |Ψ(0)〉, at any time t we have

Ẑn |Ψ(t)〉 = z(t) |Ψ(t)〉 , (3.39)

where z(t) is an eigenvalue of Ẑn.

Proof. Let us call the times in which quantum jumps happens {T1, T2, T3, . . .}. Con-
sequently, the corresponding jump operators are {Γ̂(T1), Γ̂(T2), Γ̂(T3) . . .}. Accordingly, we
have ẐnΓ̂(Ti) = z(Ti)Γ̂(Ti)Ẑn. In between any two quantum jumps, the system evolves ac-
cording to the effective Hamiltoanian in Eq. (2.58). The operator Ẑn commutes with Ĥeff ,

6. Since Zn ˆ̃ρk 6= ˆ̃ρk, we have Ẑn |Ψk
i 〉 〈Ψk

i | Ẑ†n 6= |Ψk
i 〉 〈Ψk

i |. We deduce that |Ψk
i 〉 is not an eigenstate of

Ẑn.
7. This is explicitly the case for any

Zn = eiπâ†â/n • e−iπâ†â/n

and Γ̂µ ∝ â.
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since
[
Ẑn, Ĥ

]
= 0 and

[
Ẑn, Γ̂†µΓ̂µ

]
= ẐnΓ̂†µΓ̂µ − z∗µzµẐnΓ̂†µΓ̂µ = 0 (we recall z∗µzµ = 1). Thus,

for Ti < t < Ti+1 we have

Ẑn |Ψ(t)〉 = Ẑne
−iĤeff(t−Ti) |Ψ(Ti)〉 = e−iĤeff(t−Ti)Ẑn |Ψ(Ti)〉

= e−iĤeff(t−Ti)ẐnΓ̂(Ti)e−iĤeff(Ti−Ti−1) |Ψ(Ti−1)〉
= e−iĤeff(t−Ti)Γ̂(Ti)(z(Ti)Ẑn)e−iĤeff(Ti−Ti−1) |Ψ(Ti−1)〉
= z(Ti)e−iĤeff(t−Ti)Γ̂(Tj)e−iĤeff(Ti−Ti−1)Ẑn |Ψ(Ti−1)〉

= z(Ti)e−iĤeff(t−Ti)

i−1∏
j=1

z(Tj)e−iĤeff(Tj−Tj−1)Γ̂(Tj)
 e−iĤeffT1Ẑn |Ψ(0)〉

=
i∏

k=0
z(Tk)

e−iĤeff(t−Ti)

i−1∏
j=1

e−iĤeff(Tj−Tj−1)Γ̂(Tj)
 e−iĤeffT1 |Ψ(0)〉


=

i∏
k=0

z(Tk) |Ψ(t)〉

. (3.40)

That is, |Ψ(t)〉 is an eigenstate of Ẑn, whose eigenvalue z(t) = ∏i
k=0 z(Tk) changes at every

quantum jump.

�

We conclude that, performing a counting quantum trajectory, the system explore only
eigenstates of the operator Ẑn. Therefore, such a trajectory can never explore metastable
states. A homodyne trajectory, instead, allows to access those states. Indeed, in Eq. (2.61),
the pseudo-Hamiltonian terms contains a term proportional to Γ̂µ. Thus

[
Ĥeff , Ẑn

]
6= 0. That

is, in order to observe second-order phase transition associated to the spontaneous symmetry
breaking of Zn, we should use homodyne detection.

3.5 Conclusions
In this Chapter, we have presented theoretical results for first- and second-order dissi-

pative phase transitions. Within a general formalism, we have determined the structure of
the density matrix in the vicinity of a critical point. In particular, due to the closure of the
Liouvillan gap at the critical point, we have shown how the the steady-state density matrix
is directly related to the eigenmatrix of the Liouvillian superoperator corresponding to the
eigenvalue λ1 (the one with the smallest absolute value of the real part). Our work provides
a general insight into dissipative phase transitions, allowing for a clear analysis of critical-
ity via quantum trajectories. Moreover, it gives precise constraints for variational methods
[54, 134] to describe critical phenomena in open quantum systems, whose corresponding
ansatz matrices must satisfy the relations derived in this Chapter.
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CHAPTER 4

The One- and Two-Photon Kerr
Resonators

An exact solution of a driven-dissipative model is of particular interest, since it allows
the exploration of any range of system parameters, rather than the limiting regimes of small
or high photon densities. An example of a solvable model is the driven-dissipative Kerr
resonator, for which Drummond and Walls derived the steady-state solution via the complex
P -representation [135]. Beyond the single resonator case, analytic solutions proved to be
very useful for an efficient implementation of Gutzwiller mean-field decoupling for arrays of
coupled cavities [61, 136–142].

In the present Chapter, we use the complex P -representation to provide an exact solution
for the steady state of a general class of driven-dissipative nonlinear resonators. More pre-
cisely, we consider a standard driven-dissipative Kerr model (subject to the usual coherent
pumping and one-photon dissipation) driven by an additional parametric two-photon pump
and subject to two-photon losses. Recently, these processes have been engineered for super-
conducting resonators [82] and have been discussed for optomechanical setups [55, 64]. By
performing a Bogoliubov-like approximation, we show that the Liouvillian of a uniform lat-
tice of Kerr resonators obeys the same equation of a single nonlinear cavity with a different
photon-photon interaction strength. Thus, we use the exact solution derived in this Chapter
to capture the emergence of dissipative phase transitions and to test the theory derived in
Chapter 3.

This Chapter is organised as follows. In Sec. 4.1 we introduce the driven-dissipative
Kerr resonator. Following the seminal paper of Drummond and Walls [135], we derive the
analytic solution for the steady-state of this model using the formalism of the complex P -
representation [143]. In Sec. 4.2 we solve the general model of a one- and two-photon driven-
dissipative Kerr resonator. Having benchmarked our solution against numerical resolution of
the Linblad master equation, we study the interplay between the one- and two-photon driving
in determining the steady state. In Sec. 4.3, we study the emergence of phase transitions in
Kerr resonators. Finally, in Sec. 4.4 we study quantum trajectories in these critical systems.
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Figure 4.1 – A sketch of the considered class of systems. The picture represents a photon
resonator subject to one-photon losses with rate γ, and coherently driven by a one-photon
pump of amplitude F . The resonator is also subject to a coherent two-photon driving of am-
plitude G and two-photon losses with rate η. The strength of the photon-photon interaction
is quantified by U . On the right, we sketch the effects of these physical processes on the Fock
(number) states |n〉. Figure from Ref. [5].

4.1 The analytic solution for the one-photon pump

Let us introduce the general model of a driven-dissipative Kerr nonlinear resonator,
(sketched in Fig. 4.1 for G = η = 0). In the absence of pumping we get (we recall ~ = 1)

Ĥ0 = ωc â
†â+ U

2 â
†â†ââ, (4.1)

where â and â† are, respectively, the annihilation and creation operator for photons inside
the resonator. In the the Hamiltonian, ωc is the cavity-mode frequency and U the strength of
the Kerr nonlinearity, quantifying the photon-photon interaction (see Chapter 1). A coherent
drive with amplitude F and frequency ωp can be described by

Ĥ1ph = F e−iωptâ† + F ∗ eiωptâ. (4.2)

From now on we will denote this mechanism as one-photon pumping. To remove the time-
dependence from the Hamiltonian, we perform the unitary transformation e−iωptâ†â, describ-
ing the system in the reference frame rotating at the coherent pump frequency ωp. The full
Hamiltonian, hence, becomes

Ĥ = −∆â†â+ U

2 â
†â†ââ+ F â† + F ∗â, (4.3)

where ∆ = ωp − ωc is the pump-cavity detuning. For the considered system, photons are
typically lost individually to the environment and the jump operator is the annihilation
operator â [25–27]. The resulting Lindblad master equation describing the evolution of the
the system density matrix ρ̂ is

∂ρ̂

∂t
= −i

[
Ĥ, ρ̂

]
+ γ

2 D[â] ρ̂ (4.4)

where γ is the one-photon dissipation rates and Ĥ is the one given in Eq. (4.3).
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4.1.1 Complex P -representation solution
The exact solution to the steady-state of the Kerr resonator was find by Drummond and

Walls in [135] exploiting the complex P -representation, defined as

ρ̂ =
∫∫
C, C′

dα dβ P (α, β)Λ̂(α, β), (4.5)

where Λ̂(α, β) = |α〉 〈β∗| / 〈β∗|α〉 is the projector on the coherent overcomplete basis. C and C ′
are, instead, appropriate closed contours in the complex plane encircling all the singularities
of the P -function (for a detailed discussion about this method, see App. E.5). Substituting
the operators in Eq. (4.4) according to the rules given in Eq. (E.17), we find the integro-
differential equation:∫

C
dα

∫
C′

dβΛ̂(α, β) ∂
∂t
P (α, β) = −i

∫
C

dα
∫
C′

dβ

Λ̂(α, β)
[
− ∂

∂α

(
−α∆ + Uα2β + F − iγ

2 α
)

− ∂

∂β

(
β∆− Uαβ2 − F − iγ

2 β
)

+U2

(
∂2

∂α2α
2 − ∂2

∂β2β
2
)]

P (α, β),

(4.6)

where
Λ̂(α, β) = |α〉 〈β

∗|
〈β∗|α〉 = |α〉 〈β∗| e |α|

2+|β|2
2 −αβ, (4.7)

and C and C ′ are closed path in the complex plane encircling all the poles. Since both sides
of the equation involve the same integral, we can ask that the two integrands to be equal.
By calling δ = ∆ + iγ2 we obtain the Fokker-Plank equation

∂P (α, β)
∂t

= −i
∑
i

∂

∂xi

−AiP (α, β) +
∑
j

∂

∂xj

(
Dij

2 P (α, β)
) , (4.8)

where xi = α, β,
~A =

[
−δα + Uα2β + F
δ∗β − Uαβ2 − F ∗

]
, (4.9)

and
D =

[
Uα2 0

0 −Uβ2

]
. (4.10)

We are interested in the steady-state solution ∂tPss(α, β) = 0. Eq. (4.8) satisfies the
potential conditions defined in Eq. (E.23). Hence, one can introduce a scalar potential φ,
such that Pss(α, β) = e−φ, with

φ =
∫ xi

0
dxi(D−1)ii

(
2Ai − ∂

∂xi
Dii

)
. (4.11)

By direct integration on the path Γ := {0, 0} → {α, 0} → {α, β}, we obtain, up to a
multiplicative constant:

φ = 2αβ − 2
[
log(α)

(
1 + δ

U

)
+ F

Uα

]
− 2

[
log(β)

(
1 + δ∗

U

)
+ F ∗

Uβ

]
(4.12)
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Figure 4.2 – Integration path for the computation of the momenta of the P -function on the
complex plane. The dots represent the poles of the integrand , while the coloured lines are the
branch cuts. Left: One-photon keyhole path encircling the branch cuts. The path encircles
the pole in zero and it closes at infinity. Right: Two-photon Prochhammer’s path. It crosses
each of the cuts an equal number of times in one direction and in the opposite, hence, for
any starting point, it begins and ends on the same Riemann sheet. The change in the path
colour emphasizes the passage to a different Riemann surface. Right figure from Ref. [5].

and therefore
Pss(α, β) = e−φ = e2αβα−2(c+1)e−2f/αβ−2(c∗+1)e−2f∗/β. (4.13)

where we have introduced the rescaled parameters

f ≡ F

U
c ≡ δ

U
= ∆ + iγ/2

U
. (4.14)

Having obtained the solution for Pss(α, β), we are now interested in the expectation values
of any operator Ô, which in terms of the P -representation is

〈Ô〉 = Tr
[
ρ Ô

]
=

Tr
[
Ô
∫
C dα

∫
C′ dβ Λ̂(α, β)Pss(α, β)

]
Tr
[∫
C dα

∫
C′ dβ Λ̂(α, β)Pss(α, β)

] . (4.15)

4.1.2 Integrating the P -function
Since any operator can be expressed as a combination of creation and annihilation oper-

ators, our main task is the computation of

〈â† iâj〉 =
Tr
[∫
C dα

∫
C′ dβ âjΛ̂(α, β)â† iPss(α, β)

]
Tr
[∫
C dα

∫
C′ dβ Λ̂(α, β)Pss(α, β)

] =
∫
C dα

∫
C′ dβ αjβiPss(α, β)∫

C dα
∫
C′ dβ Pss(α, β) . (4.16)

That is, we are interested in computing the momenta of the Pss(α, β) distribution. The
crucial and missing point is the identification of a convenient path C, which has to encircle
all the branches and poles of the P function. The idea is to bring all the poles and branch
cuts along the real axis, so to allow an easy identification of C.

At first, we consider the normalisation factor:

N =
∫
C

dα
∫
C′

dβ Pss(α, β) =
∫
C

dα
∫
C′

dβ e2αβα−2(c+1)e−2f/αβ−2(c∗+1)e−2f∗/β. (4.17)
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Due to the symmetry of the P -function, we will choose C = C ′. If we expand in series e2αβ

and perform the change of variable x = −1/α, y = −1/β, we obtain

N =
∫∫
C,C

dxdy
∑
n

2n
n!x

2c−ny2c∗−ne2(fx+f∗y) =
∑
n

2n
n!

∫
C

dx x2c−ne2fx
∫
C

dy y2c∗−ne2f∗y

=
∑
n

2n
n! I(c, f, n)I(c∗, f ∗n).

(4.18)

Let us focus on the integral on x, i.e.,

I(c, f, n) =
∫
C

dx x2c−ne2fx. (4.19)

Since x2c−n is not uniquely determined, we introduce a branch cut in the complex plane from
0 to −∞. We can now identify C as the keyhole path. The path can be divided in γ1 (a
straight line from −∞− iε to 0 − iε), γ2 (a circle around zero of radius ε), and γ3 (another
straight line from 0 + iε to −∞+ iε)(c.f. left panel of Fig. 4.2). One can write

I(c, f, n) =
(∫

γ1
+
∫
γ2

+
∫
γ3

)
dx x2c−ne2fx. (4.20)

To evaluate Eq. (4.20), one consider 2c − n > 0, where all the integrals are well defined.
Then, by analytic extension, one can define this integral almost-everywhere. All together,
one has

I(c, f, n) = 2πi (2f)−2c+n−1 1
Γ(n− 2c) . (4.21)

Therefore, the normalisation N reads

N = −4π2∑
n

2n
n!

(4|f |2)−c−c∗+n−1

Γ(n− 2c)Γ(n− 2c∗) . (4.22)

Once the normalisation integral is known, we still need to compute 〈â† i âj〉 But, following
the same technique as before, we can easily write the numerator of Eq. (4.16) as

〈â† i âj〉 = 1
N

∫
C

dα
∫
C′

dβ αjβiPss(α, β)

= 1
N

∫
C

dα
∫
C′

dβ e2αβα−2(c+1)+je−2f/αβ−2(c∗+1)+ie−2f∗/β

= (−1)i+j
N

∫∫
C,C

dxdy
∑
n

2n
n!x

2c−j−ny2c∗−i−ne2fx+2f∗y

= (−1)i+j
N

∑
n

2n
n! I(c+ j

2 , f, n)I(c∗ + i

2 , f
∗, n)

= (−2f)i(−2f ∗)j
∑
n

2n
n! (4|f |2)n /

(
Γ(−2c+ n+ j)Γ(−2c∗ + n+ i)

)
∑
n

2n
n! (4|f |2)n /

(
Γ(−2c+ n)Γ(−2c∗ + n)

) .

(4.23)

This sum of Γ-functions can be recast as

〈â† i âj〉 = (−2f)i(−2f ∗)j Γ(−2c)Γ (−2c∗)
Γ(−2c+ j)Γ (−2c∗ + i)

0F2
(
{};−2c+ j,−2c∗ + i; 8 |f |2

)
0F2

(
{};−2c,−2c∗; 8 |f |2

) , (4.24)
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where pFq denotes a generalized hypergeometric function [144, 145], defined by the analytic
extension of

pFq(a1, · · · , ap; b1, · · · , bp; z) =
∞∑
k=0

∏p
n=1 (an)k∏q
m=1 (bm)k

zk

k! , (4.25)

with (a)k = Γ(a+ k)/Γ(a).
In a very similar way, one obtains

〈m|ρ̂ss|n〉 =
∫
C dα

∫
C′ dβ 〈m|Λ̂(α, β)|n〉Pss(α, β)∫
C dα

∫
C′ dβ Pss(α, β) = 1√

m!n!

∫
C dα

∫
C′ dβ

Pss(α,β)αmβn
〈β∗|α〉∫

C dα
∫
C′ dβ Pss(α, β) .

= (−2f)m(−2f ∗)n
0F2

(
{};−2c+m,−2c∗ + n; 4 |f |2

)
Γ(−2c+m)Γ(−2c∗ + n) .

(4.26)

and the Wigner function of the steady state Wss(z) reads

Wss(z) = 2
π

Tr
[
D̂(z) eiπâ†â D̂(z)† ρ̂ss

]
= 2 e−2|z|2

π

∫
C
dα

∫
C′
dβ Pss(α, β)

e2αβ e2αz∗e2βz

=
2e−2|z|2

∣∣∣∣(2√fz∗)1+2c
∣∣∣∣2

π

∣∣∣J−2c−1
(
4
√
fz∗

)∣∣∣2
0F̃2

(
{};−2c,−2c∗; 8 |f |2

) ,
(4.27)

where D̂(z) is the displacement operator [cf. Eq. (2.64)], Jn(x) is the Bessel function of first
kind and pF̃q are the regularized hypergeometric functions, defined as

pF̃q(a1, · · · , ap; b1, · · · , bp; z) = pFq(a1, · · · , ap; b1, · · · , bp; z)∏q
m=1 Γ(bm) . (4.28)

4.2 The two-photon pump
We consider now the general model of a one- and two-photon driven-dissipative Kerr

resonator. Similarly to the previous case, we consider a system whose bare Hamiltonian
is Ĥ0 introduced in Eq. (4.1). Photons are exchanged one at the time via an Hamiltonian
process of the form Ĥ1ph. Moreover, a parametric process coherently adds photons pairwise
via

Ĥ2ph = G

2 e−iω2tâ†â† + G∗

2 eiω2tââ, (4.29)

where G is the pump amplitude and ω2 its frequency. Such a two-photon pumping mech-
anism can be obtained by engineering the exchange of photons between the cavity and the
environment. The Hamiltonian Ĥ2ph can emerges from an adiabatic elimination in paramet-
ric downconversion processes [110], occurring, e.g., in birifrangent crystals [114]. Moreover, it
has been studied in optomecanical setups [55] and it has been experimentally realised in su-
perconducting circuits by engineering the coupling between two superconducting resonators
via a Josephson junction [82].

In order to get a time-independent Hamiltonian, we consider ω2 = 2ωp. By passing in the
frame rotating at the pumps frequency via the unitary transformation eiωptâ†â, we obtain the
Hamiltonian

Ĥ = −∆â†â+ U

2 â
†â†ââ+ F â† + F ∗â+ G

2 â
†â† + G∗

2 ââ. (4.30)
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In addition, we also consider two-photon losses, which naturally emerge together with the
engineered two-photon pumping [82, 110]. These losses are included through the dissipator
D[â2]. Finally, the Linblad master equation for the one- and two-photon driven-dissipative
Kerr resonator (c.f. Fig 4.1) is

Lρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+ γ

2D[â]ρ̂(t) + η

2D[â2]ρ̂(t). (4.31)

In the case F = 0, this model has a discrete Z2 symmetry, resulting from the invariance
under the transformation â→ −â. The corresponding superoperator Z2 is:

Z2 = eiπâ†â • e−iπâ†â, (4.32)

with Z2ρ̂ss = ρ̂ss.

4.2.1 Complex P -representation
In order to find the analytic solution, we proceed as in Sec. 4.1.1. The Fokker-Planck

equation for the present case will be the same as Eq. (4.8), but with the addition of the terms
related to two-photon pump and dissipation. Inserting all those other terms and introducing
δ = ∆ + iγ2 and W = U − iη2 , we obtain the following Fokker-Planck equation

∂P (α, β)
∂t

= −i
∑
xi

∂

∂xi

−AiP +
∑
xj

∂

∂xj

(
Dij

2 P (α, β)
) , (4.33)

where xi = α, β,
~A =

(
−δα +Wα2β + F +Gβ
δ∗β −W ∗αβ2 − F ∗ −G∗α

)
, (4.34)

and
D =

[
Wα2 +G 0

0 −W ∗β2 −G∗
]
. (4.35)

Again, this equation satisfies the potential conditions introduced in Eq. (E.23). Thus, we
can compute the function φ to obtain Pss(α, β) = e−φ, obtaining

φ =
∫ xi

0
dxi(D−1)ii

(
2Ai − ∂

∂xi
Dii

)

= log
(
G+Wα2

)1+c
+ log

(
G∗ +W ∗β2

)1+c∗ − 2αβ

−
2F tan−1

(
α
√
W√
G

)
√
G
√
W

−
2F ∗ tan−1

(
β
√
W ∗√
G∗

)
√
G∗
√
W ∗

.

(4.36)

Exponentiating and collecting the terms depending on W , we obtain:

Pss =
(
g + α2

)−1−c (
g∗ + β2

)−1−c∗
exp

2αβ +
2f tan−1

(
α√
g

)
√
g

+
2f ∗ tan−1

(
β√
g∗

)
√
g∗

 , (4.37)

for f = F
W
, g = G

W
, and c = δ

W
.

An important check on this result consist in recovering Eq. (4.13) for G, η → 0, i.e. g → 0
and W → U . Let us start by considering the limit g → 0. In this case, the exponential
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in Eq. (4.37) is divergent. To solve this apparent problem, we recall that P can always be
defined up to a normalisation constant. It is worth stressing that, in virtue of Eq. (4.15), any
constant prefactor is irrelevant for the evaluation of an operator mean value. Thus,

exp

2f
tan−1

(
α√
g

)
√
g

 g→0−−→ exp
[
2f

π
2 −
√
g/α

√
g

]
= exp

[
2f√
g

π

2

]
· exp

[
−2f
α

]
. (4.38)

Neglecting the constant terms, i.e., those independent of α and β, we obtain

Pss(α, β) = α−2−2cβ−2−2c∗ exp
[
2αβ − 2fα + 2f ∗β

αβ

]
, (4.39)

which immediately returns Eq. (4.13) for W → U . We stress that, however, Eq. (4.39) is
valid also for η 6= 0. That is, it allows to consider the case of a one-photon driven Kerr
resonator subject to one- and two-photon dissipation.

4.2.2 Computation of the moments
Let us now focus on the evaluation of the momenta for a two photon pump. Even if

the computation will be more involved, the procedure is similar to the one introduced in
Sec. 4.1.2.

Due to the symmetry between α and β we choose C = C ′. The moments of the P -function
reads

〈â†nâm〉 =
∫∫
C,C

dαdβ
N

Pss(α, β)Tr
[
âmΛ̂(α, β)â†n

]
= 1
N

∫∫
C,C

dαdβ αm

(g + α2)1+c
βn

(g∗ + β2)1+c∗ e
2αβ

exp

2f tan−1
(
α√
g

)
√
g

+
2f ∗ tan−1

(
β√
g∗

)
√
g∗

 ,
(4.40)

where the normalisation integral is

N =
∫∫
C,C′

dαdβ Pss(α, β) =
∫∫
C,C′

dαdβ
(
g + α2

)−1−c (
g∗ + β2

)−1−c∗
e2αβ

exp

2f tan−1
(
α√
g

)
√
g

+
2f ∗ tan−1

(
β√
g∗

)
√
g∗

 . (4.41)

Again, we expand in series the term e2αβ so that we can separate N in the sum of the product
of two integrals, namely

〈â†nâm〉 =
∑
k

2k
k!Fm+k(f, g, c)Fn+k(f ∗, g∗, c∗)∑
k

2k
k!Fk(f, g, c)Fk(f ∗, g∗, c∗)

, (4.42)

where
Fj(f, g, c) =

∫
C

dα αj

(g + α2)1+c exp
[

2f√
g

arctan
(
α√
g

)]
. (4.43)
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We notice that Fj(f ∗, g∗, c∗) = F∗j (f, g, c).
As already done in the previous section, the objective is now to bring all the poles and

branches on the real axis. First we use the following change of variable: x = −iα/√g and
the identity arctan(z) = 1/2i[ln(1− iz)− ln(1 + iz)], obtaining

Fj(f, g, c) =
∫
C

dx (i√g)j+1xj(g − gx2)−1−c exp
[

2f√
g

arctan (ix)
]

=
(i√g)j+1

g1+c

∫
C

dx xj(1 + x)−1−c(1− x)−1−c exp
[
− if√

g
ln
(1 + x

1− x
)]

=
(i√g)j+1

g1+c

∫
C

dx xj(1 + x)ϕ−1−c(1− x)−ϕ−1−c,

(4.44)

where ϕ = − if√
g
. By performing the second change of variable 2z = 1 + x we obtain

Fj(f, g, c) =
(i√g)j+1

g1+c 2−1−2c
∫
C
dz(1− 2z)j(z)ϕ−1−c(1− z)−ϕ−1−c. (4.45)

We will neglect the constant term 2−1−2c, as well as the g−1−c, since they will appear both in
the numerator and in the denominator with the same power in every integral. To explicitly
compute this integral, we could use the same contour as in Sec. 4.1.2. This procedure, even
if perfectly doable, leads to a very non-compact form.

Let us focus on a second possible method, involving a more elaborate path. The path C
must encircle both the poles at ξ = 0 and ξ = 1. Furthermore, for C to be properly closed
one must take into account the presence of two branch cuts going from each pole to |ξ| → ∞.
A convenient choice is the Pochhammer contour [146], which is sketched in the right panel
of Fig. 4.2. Such a path correctly encircles the poles and crosses the branch cuts an equal
number of times in one sense and in the opposite one (a property which does not depend on
the cut orientations). Hence, the path is closed since it begins and ends on the same Riemann
sheet. We have

Fj(f, g, c) = (i√g)j
∫
C
dz(1− 2z)j(z)ϕ−1−c(1− z)−ϕ−1−c

= (i√g)j
∫
C

j∑
l=0

dz

(
j

l

)
(−2)l(z)ϕ−1−c+l(1− z)−ϕ−1−c

= −4(i√g)j
j∑
l=0

(
j

l

)
(−2)l sin(ϕ− 1− c+ l)×

× sin(ϕ+ 1 + c)B(ϕ− 1− c+ l,−ϕ− 1− c)
= (i√g)j(1− e2πi(ϕ−c))B(ϕ− c,−ϕ− c) 2F1(−j,−ϕ− c,−2c, 2)
= const(c, ϕ) (i√g)j 2F1(−j,−ϕ− c,−2c, 2),

(4.46)

where 2F1 is the Gaussian Hypergeometric function [145, 146]. Since we can neglect the
constants independent of j, we eventually obtain

〈â†nâm〉 =
∑
k

2k
k! (i
√
g)m+n+2k

2F1(−m− k,−ϕ− c,−2c, 2) 2F1(−n− k, ϕ∗ − c∗,−2c∗, 2)∑
k

2k
k! (i
√
g)2k 2F1(−k,−ϕ− c,−2c, 2) 2F1(−k, ϕ∗ − c∗,−2c∗, 2)

.

(4.47)
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Figure 4.3 – Numerical cutoff M̃ as a function of the corresponding mean photon density
〈â† â〉M̃ [Eq. (4.50)] for different system parameters. The plot has been obtained setting the
convergence criterion as explained in the main text. Each point of the diagram corresponds
to γ = η = 0.1U , while we varied ∆/U ∈ [−30, 30] and F/U,G/U ∈ [0, 60]. From Ref. [5].

Similarly, we have

〈p|ρ̂ss|q〉 =
∫
C
dα

∫
C′
dβ P (α, β)
〈β∗|α〉

αpβq√
p!q!

= 1
N
√
p!q!

∞∑
m=0

1
m!Fm+p [f, g, c] F∗m+q [f, g, c] ,

(4.48)

and the Wigner function of the steady state Wss(z) reads

Wss(z) = 2
π

Tr
[
D̂(z) eiπâ†â D̂(z)† ρ̂ss

]
= 2 e−2|z|2

π

∫
C
dα

∫
C′
dβ Pss(α, β)

e2αβ e2αz∗e2βz

= 2
π N

∣∣∣∣∣
∞∑
m=0

(2z∗)m
m! Fm [f, g, c]

∣∣∣∣∣
2

e−2|z|2 .

(4.49)

Therefore, the Wigner function given in Eq. (4.49) is real and positive over the whole complex
plane for any choice of the system parameters.

4.2.3 Series convergence and closed forms
The analytic results for the one- and two-photon driven-dissipative nonlinear resonator

given in Eqs. (4.46), (4.48), and (4.49), contain infinite summations which, in the general case
F,G 6= 0 must be estimated numerically. First, we take as an example the photon number
〈â† â〉 to show that such series converge rapidly in a wide range of parameters. Having proved
the computational efficiency of the introduced formulæ, we benchmark them against exact
diagonalisation of the Liouvillian superoperator. Finally, we give the exact closed forms of
〈â† iâj〉, ρpq, and W (z) for the case F = 0.

Convergence of the series in the general case

To investigate the convergence of the series defined by Eq. (4.46), let us consider the mean
photon number 〈â†â〉. In this expression there are two sums to evaluate: the one explicitly
expressed in Eq. (4.46), and a second one implicitly contained in the normalization N . The
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Figure 4.4 – Mean photon number 〈â†â〉 as a function of the pump-cavity detuning ∆ normal-
ized by the photon-photon interaction strength U . Different curves and data sets correspond
to different pump intensities (cf. legend). Solid lines represent the analytic solution while
the points are the numerical results obtained by diagonalization of the Liouvillian superop-
erator on a truncated Fock basis (see App. E.3). Left: results in the absence of one-photon
pumping, i.e. F = 0 [Eq. (4.53) for i = j = 1]. Right: results in the presence of both
one- and two-photon pumping with F = G [Eq. (4.46)]. In both panels, vertical dot-dashed
red (dashed blue) lines mark the position of odd (even) photonic resonances. One- and
two-photon dissipation rates were set to γ = η = 0.03U . From Ref. [5].

convergence of 〈â†â〉 can be examined in terms of a single parameterM, the cutoff of both
sums. Hence, we introduce

〈â†â〉M =
∑M
m=0

2m
m! |Fm+1(f, g, c)|2∑M

m=0
2m
m! |Fm(f, g, c)|2

. (4.50)

In what follows, we checked the convergence by verifying that the addition of two further
elements does not affect the result beyond the 6th relevant digit. In other words, we chose
the smallest M̃ ensuring that

∣∣∣〈â†â〉M̃ − 〈â†â〉M̃−2

∣∣∣ < 10−6 〈â†â〉M̃. In Fig. 4.3, we show the
required cutoff M̃ as a function of the corresponding value of the mean photon number for
different system parameters. It turns out that M̃ grows roughly linearly with 〈â† â〉M̃. We
verified that similar convergence criteria efficiently applies to the other quantities defined
by Eqs. (4.46), (4.48), and (4.49), in a wide range of system parameters. In general, the
numerical evaluation of the exact solution can be performed with arbitrary precision. Such
a computation is faster and much less memory demanding than numerical approaches, in
particular for high-density regimes.

Benchmarking in the low-density regime

In order to benchmark the analytic solution with numerical approaches, we study it in
the low-density regime. The two panels of Fig. 4.4 show the results obtained in the presence
of only two-photon pumping (left) and for both one- and two-photon driving (right). The
agreement with numerics is excellent, thus corroborating the validity of the analytic solution.
The parameters have been chosen to clearly visualize the photonic resonances. Those are
expected to appear when the energy of n pump photons is equal to that of n photons inside
the resonator. Thus, in the regime of weak pumping, the energy of the empty cavity become
comparable to that of a state with n photons, and thus the pump struggles only against the
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dissipation in order to populate the resonator. In the frame rotating at the pump frequency,
this condition reads:

−∆n+ U

2 n(n− 1) = 0. (4.51)

Thus, beside the one-photon resonance (n = 1, thus occurring for ∆ = 0), the multi-photon
resonances are due to the competition between detuning and interaction, and arise when
∆/U = (n− 1)/2. For F = 0 only resonances with an even number of photons appear, while
all of them are observed in the presence of a one-photon pumping. For very weak pumping,
the dissipation prevent the system from populating states with high number of photons.
Therefore, in case F = 0 the main resonance is for n = 2 and ∆/U = 1/2, while if F 6= 0
the main resonance is for n = 1 and ∆ = 0 (c.f. Fig. 4.4 left and right, respectively). For
moderate pumping, also other resonances starts to appear, and the resonances progressively
merge in a continuum by increasing the pump intensities.

Closed forms for F = 0

The general model described by the master equation (4.31) can be specialized to many
different cases. Among them, a case of particular interest is the one in which the one-photon
pumping is absent, that is when F = 0 [6, 82, 147, 148]. Remarkably, in this case one finds
that

F2m+1 (0, g, c) = 0, (4.52a)

F2m (0, g, c) = (i√g)2m
2F̃1 (−2m,−c;−2c; 2)

= (−g)m 1√
π

Γ
(

1
2 − c

)
Γ (−2c)

Γ
(

1
2 +m

)
Γ
(

1
2 +m− c

) = (−g)m
Γ
(

1
2 +m

)
Γ
(

1
2 +m− c

) , (4.52b)

where, in the last identity, we dropped further m-independent factors which would be natu-
rally absorbed in the normalization.

Making use of Eqs. (4.52), we derived the following closed forms for the correlators:

〈â† (2i)â(2j)〉 =(−g)j(−g∗)i
Γ
(

1
2 + j

)
Γ
(

1
2 + i

)
√
π

2F̃3
(

1
2 + j, 1

2 + i; 1
2 ,

1
2 + j − c, 1

2 + i− c∗; |g|2
)

1F̃2
(

1
2 ; 1

2 − c, 1
2 − c∗; |g|2

) ,

(4.53a)

〈â† (2i+1)â(2j+1)〉 = (−g)j+1(−g∗)i+1 Γ
(

3
2 + j

)
Γ
(

3
2 + i

)
√
π

2F̃3
(

3
2 + j, 3

2 + i; 3
2 ,

3
2 + j − c, 3

2 + i− c∗; |g|2
)

1F̃2
(

1
2 ; 1

2 − c, 1
2 − c∗; |g|2

) ,

(4.53b)

〈â† (2i)â(2j+1)〉 = 〈â† (2i+1)â(2j)〉 = 0, (4.53c)
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For the matrix elements we find

〈2p|ρ̂|2q〉 = (−g)p(−g∗)q
Γ
(

1
2 + p

)
Γ
(

1
2 + q

)
√
π(2p)!(2q)!

2F̃3

(
1
2 + p, 1

2 + q; 1
2 ,

1
2 + p− c, 1

2 + q − c∗;
∣∣∣g2 ∣∣∣2

)
1F̃2

(
1
2 ; 1

2 − c, 1
2 − c∗; |g|2

) ,

(4.54a)

〈2p+ 1|ρ̂|2q + 1〉 = (−g)p+1(−g∗)q+1 Γ
(

3
2 + p

)
Γ
(

3
2 + q

)
2
√
π(2p+ 1)!(2q + 1)!

2F̃3

(
3
2 + p, 3

2 + q; 3
2 ,

3
2 + p− c, 3

2 + q − c∗;
∣∣∣g2 ∣∣∣2

)
1F̃2

(
1
2 ; 1

2 − c, 1
2 − c∗; |g|2

) ,

(4.54b)

〈2p|ρ̂|2q + 1〉 = 〈2p+ 1|ρ̂|2q〉 = 0, (4.54c)
Finally, for the Wigner function we obtain:

W (z) = 2
π

∣∣∣ 0F1
[

1
2 − c;−g(z∗)2

]∣∣∣2
1F2

[
1
2 ; 1

2 − c, 1
2 − c∗; |g|2

] e−2|z|2 . (4.55)

In the equations above, we stress that pF̃q are the regularized hypergeometric functions

pF̃q(a1, · · · , ap; b1, · · · , bp; z) = pFq(a1, · · · , ap; b1, · · · , bp; z)∏q
m=1 Γ(bm) . (4.56)

The closed forms presented above are computationally much more efficient than the corre-
sponding implicit forms (4.46), (4.48), and (4.49).

4.2.4 Properties of the steady state
The exact analytic solution of the Lindblad equation (4.31) allows us to compute the

average steady-state quantities of the considered system in any physical regime, from low- to
high-density phases, passing through the nontrivial mesoscopic regime. In this section, we
investigate how the properties of the steady state evolve through these different regimes.

Quantum vs semiclassical behaviour

When the resonator has a small population, the solution of the master equation (4.31)
can be obtained numerically. For instance, by integrating the master equation on a truncated
Fock basis or by diagonalizing the Liouvillian super-operator (see App. E.1 and E.3). On
the other hand, for high photon number the cavity field can be typically approximated
by a coherent state |α〉. Thus, the master equation reduces to a differential equation for
the complex amplitude α (see App. E.2). This corresponds to the so-called semiclassical
approximation [27]. In this case, however, all quantum correlations are neglected, which
makes our exact analytic solution a precious tool. The differential equation for the complex
amplitude α can be easily derived from ∂t 〈â〉 = Tr[â ∂tρ] as in Eq. (E.2), namely:

∂tα = (i∆− γ/2)α− iF − iGα∗ − (iU + η)α∗α2. (4.57)
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Figure 4.5 – Left: mean steady-state photon number 〈â† â〉 as a function of the dimensionless
detuning parameter ∆/U . The green circles (red crosses) mark the stable (unstable) semi-
classical steady-state solutions. The black line is the analytic solution given by Eq. (4.46)
(i = j = 1). One- and two-photon dissipation rates were set to γ = η = 0.1U . Right:
zoom-in on the region in which the almost-degenerate high-density semiclassical solutions
get unstable. From Ref. [5].

Note that the latter equation is coupled to the one for the conjugate variable α∗. Solving for
the steady state ∂tα, ∂tα∗ = 0 one can get, depending on the system parameters, up to five
solutions, of which at most three are dynamically stable [148, 149]. In quantum optics, this
condition of multiple semiclassical solutions is known bistability and has been observed in a
broad range of experimental realizations for a one-photon pumping [150–155].

In left panel of Fig. 4.5 we show the semiclassical prediction for the mean photon number
according to the semiclassical analysis. For large and negative detuning, Eq. (4.57) predicts
a single low-density steady-state solution. By increasing ∆, the low-density solution gets
unstable and two high-density ones emerge. The corresponding values of 〈â† â〉 are almost
equal, but the phases of their complex amplitudes differ approximatively by π. Eventually,
a third low-density stable solution appears, coexisting with the two high-density ones until
a parameter-dependent threshold is reached (see right panel in Fig. 4.5). Then, only the
low-density stable state is present. By comparing these results with the exact one given
by Eq. (4.46) (also plotted in Fig. 4.5), we note that the multi-stable behavior does not
appear in the analytic solution. We point out that the quantum solution is unique, while the
semiclassical approach gives multiple dynamically stable solutions. However, the exact and
unique quantum solution can display a multimodal mixed-state behavior.

The presence of one (or more) semiclassical solution(s) in the steady state can be visualized
by the Wigner functionW (z), whose analytic expression is in Eq. (4.49). The case F = 0 has
already been discussed in [148], in particular the evolution of W (z) across the density drop.
We present, in Fig. 4.6, the results for the general case F,G 6= 0. In the multiple-solution
regime, even for F/G � 1, the one-photon driving prevents the system from being in a
balanced mixture of coherent states, which is the case for F = 0 [6, 82, 86, 148, 149]. By
looking at the bottom panel of Fig. 4.6, one notes that a bimodal Wigner function only exists
nearby the transitions from low- to high-density regimes. Elsewhere, W (z) always exhibits
a single peak. In the low-density regimes, we recover a squeezed-vacuum steady state as the
one observed for F = 0 [148, 149]. This squeezing of the state can be seen by looking at
the elongated elliptic shape of the corresponding Wigner function in the bottom panels of
Fig. 4.6.
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Figure 4.6 – Top: steady-state photon number 〈â† â〉 as a function of the dimensionless
detuning parameter ∆/U for F = U , G = 10U , γ = η = 0.1U . The results have been
obtained through the exact solution (4.46) for i = j = 1. The vertical grid lines mark the
values of ∆/U for which we evaluated the steady-state Wigner function (cf. bottom panels).
Bottom: steady-state Wigner functions W (z) calculated according to Eq. (4.49) for the same
parameters as in the top panel and for different values of ∆/U (see frame labels). The black
dots mark the position of the corresponding stable semiclassical solutions. From Ref. [5].

Interferences effect and competition between the one- and two-photon pumps

We investigate now the interplay between one- and two-photon pumping in determining
the full quantum solution. For this purpose, we plot in the left panel of Fig. 4.7 the steady-
state photon density as a function of G/U for different values of F . Overall, as expectable,
the number of photons increases with F but, interestingly, adding a small two-photon pump
G� F decreases the photon density. In this regime, an insight on the physical origin of this
counter-intuitive effect can be found through a perturbative expansion in G. At the lowest
order, indeed, F â† + G/2 (â†)2 ≈ (F + G 〈â†〉0)â†, where 〈â†〉0 is the mean value for G = 0.
When ∆, γ � F (which is the case for all the curves in Fig. 4.7) and U ≥ 0, one finds that
Im

[
〈â†〉0

]
' 0 and Re

[
〈â†〉0

]
< 0, hence a small G effectively reduces the one-photon driving

amplitude.
The effects of the competition between F and G not only affects the photon number,

but also the whole steady-state properties. Remarkably, as shown in the right panel of
Fig. 4.7, the dominant peak in the multi-modal Wigner function is selected by the relative
phase of F and G. For this analysis, we took the same parameters as in Fig. 4.6, setting
the detuning around the threshold value. In the outer panels we have varied the relative
phase φ = arg(F/G), changing the relative weight of the Wigner-function peaks. The central
panel (e) shows the case F = 0, for which the three peaks have comparable heights. This
property can be a valuable tool for the control of two-photon driven resonators for quantum
computation based on quasi-orthogonal coherent states [87, 88]. Indeed the relative phase
φ could be experimentally controlled and adjusted at will. In this direction, it is worth
stressing that expression (4.49) allows to predict precisely the shape of the multi-modal
Wigner function even in highly populated regimes, where a numerical approach would be
extremely demanding.
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NEWFigure 4.7 – Left: On a Log-linear scale, behaviour of 〈â†â〉 [Eqs. (4.46) or (4.53) for i = j = 1]
as a function of the two-photon driving amplitude G normalized over the nonlinear interaction
strength U . Different curves (colours) correspond to different normalized values of the one-
photon driving F/U coexisting with the two-photon one (cf. legend to the right). Inset:
On a Log-Log plot, zoom-in on the low-density regime which shows the agreement of the
analytic solution (solid lines) with numerical results (markers). The latter have been obtained
via numerical diagonalization of the Liouvillian superoperator matrix with Fock-basis cutoff
nmax = 40. Parameters: ∆ = 0, γ = η = 0.05U . Right: Steady-state Wigner functions W (z)
calculated according to Eq. (4.49) for ∆ = 28U , G = 10U , γ = η = 0.1U and for different
complex values of F . For panel (e) we took F = 0. In the others, F/U = eiφ and the phase
φ changes as sketched in the bottom-right scheme. Right figure from Ref. [5].

4.3 Emergence of a phase transition in the steady state
Having found the analytic solutions to the one- and two-photon Kerr resonator, we are

interested in using this model to study dissipative phase transitions.

4.3.1 The “thermodynamic” limit
Let us consider a lattice of N Kerr resonators described via the following Hamiltonian:

Ĥ =
N∑
i=1

Ĥi − J
∑
〈i,j〉

â†i âj (4.58)

where J is the coupling strength and

Ĥi = −∆â†i âi + U

2 â
†
i â
†
i âiâi + F (â†i + âi) + G

2 (â† 2
i + â2

i ), (4.59)

where, in the following, we will assume F and G real. The dissipation acts locally via D[âi]
and D[â2

i ], so that the Lindblad master equation becomes

Lρ̂(t) = −i[Ĥ, ρ̂(t)] + γ

2

N∑
i=1
D[âi]ρ̂(t) + η

2

N∑
i=1
D[â2

i ]ρ̂(t). (4.60)

One can transform the previous equation by passing to the Fourier space k, so that

âk = 2π
N

∑
i

e−ikxi âi. (4.61)
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Accordingly, Eq. (4.58) becomes:

Ĥ =
∑

k
−(∆ + 2J cos(k))â†kâk + G

2 (â†kâ
†
-k + âkâ-k) + U

2N
∑

k,k’,q
â†k′−qâ

†
k+qâk’âk + F

√
Nâ†0â0,

(4.62)
where cos(k) = cos(kx · ex) + cos(ky · ey) + . . . , and â0 is the creation operator of the uniform
mode k = 0. The dissipators transform instead as

γ

2

N∑
i=1
D[âi] = γ

2
∑

k
D[âk], (4.63a)

η

2

N∑
i=1
D[â2

i ] = η

2N
∑

k,k’,q

(
2â†k+qâ

†
k′−q • âk′ âk − â†k+qâ

†
k′−qâk′ âk • − • â†k+qâ

†
k′−qâk′ âk

)
. (4.63b)

In the limit of a lattice of high dimensionality, we imagine that the fluctuation are suppressed,
and therefore the only relevant mode must be k = 0. Thus, the model reduce to

L0ρ̂0(t) = −i
[
Ĥ0, ρ̂0(t)

]
+ γ

2D[â0] + η

2ND[â2
0], (4.64)

where

Ĥ0 = −(∆ + 2zJ)â†0â0 + U

2N â†0â
†
0â0â0 + F

√
N(â†0 + â0) + G

2 (â† 2
0 + â2

0), (4.65)

z being the coordination number.
That is, thanks to this Bogoliubov-like approximation, we can investigate the physics of

high-dimensional lattices exploiting the analytic solution of the single cavity. The thermo-
dynamic limit corresponds to the case N →∞, and, therefore, 〈â† â〉 → +∞ [53, 59].

4.3.2 One-photon pumping: a first-order phase transition
Let us start by considering the case in which the resonator is subject only to a coherent

drive (i.e., G = 0). Since its Liouvillian has no symmetry which can be broken we expect
to observe, at most, a first-order phase transition. This can be triggered by the competition
between the detuning ∆ and the interaction U . Indeed, the energy cost to add one photon
−∆â†â can be counterbalanced by Uâ†â†ââ. Thus, it may happen that a phase with n
photons inside the cavity have the same energy of one with fewer photons. In this case, the
pump of strength F struggles against the dissipation of rate γ in determining which state is
selected.

Detuning vs Interaction

Having understood that the ratio ∆/U is the triggering parameter for the transition,
we begin our investigation exploiting the analytic solution to obtain the steady state as a
function of the detuning for different driving amplitudes F . Accordingly, in the left top panel
of Fig. 4.8 we plot the mean number of photons 〈â†â〉, which should witness the transition.
For a small drive amplitude F . U , the photon number shows well-resolved multi-photon
resonances. In the intense-pumping regime F � U , instead, these resonances are replaced
by a continuous and monotonous increase of the photon density, up to a sharp transition
from a high- to a low-density phase. Corresponding to the drop in 〈â† â〉, the normalized
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Figure 4.8 – Left: Mean photon number 〈â†â〉 (top panel) and normalized second-order corre-
lation function g(2) (bottom panel) as a function of the pump-cavity detuning ∆ normalized
by the photon-photon interaction strength U for a resonator subject only to one-photon co-
herent driving (G = 0, F 6= 0). Different curves (and colors) correspond to different pumping
intensities F/U , varied between 0.1 and 300 (as indicated in the top panel). One- and two-
photon dissipation rates were set to γ = η = 0.03U . Right: rescaled mean photon density
χ = 〈â† â〉 /|f |2/3 as a function of the dimensionless parameter τ = sgn[∆]|c|/|f |2/3 for dif-
ferent values of the dimensionless coherent drive intensity |f | (see legend). The points in the
inset mark height and position of the peak in ∂χ/∂τ as a function of |f |. The solid lines are
power-law fits with exponents ±2/3, performed on the last four points. Figure from Ref. [5].

second-order correlation function g(2) exhibits a sharp peak, shown in the Left bottom panel
of Fig. 4.8. This quantity is defined as g(2) = 〈â† 2â2〉 / 〈â† â〉2. At the transition, photons
have a highly super-Poissonian distribution (g(2) � 1).

We conclude that the abrupt change in the density is the expected precursor of a driven-
dissipative phase transition which would occur in the thermodynamic limit. As previously
discussed, we can reach the thermodynamic limit by considering a parameter N →∞. Thus,
in order to further characterize the transition, we consider a scaling of χ = 〈â† â〉 |f |−2/3,
which leads to an universal behavior in the thermodynamic limit. 1 In the Left panel of
Fig. 4.8, we saw that the high-to-low density transition is triggered by the detuning ∆. In a
more general description, we expect the phase transition to be controlled by the dimensionless
complex detuning c = (∆ + iγ/2)/(U − iη). Hence, in the right panel of Fig. 4.8 we show
the behavior of χ(τ) for τ = sgn[∆]|c||f |−2/3. In the thermodynamic limit |f | → ∞, χ(τ)
shows a discontinuous first-order phase transition. For finite values of |f |, the derivative
∂χ/∂τ is peaked at the transition point. We find that the height and position of this peak
follow the power-law behaviors max[∂χ/∂τ ] ∝ |f |2/3 and |τmax − τc| ∝ |f |−2/3 [cf. inset of
Fig. 4.8 (right)]. For the selected parameters, we find τc ∼ 2.41.

1. One can obtain the same result starting from the semiclassical equation (4.57), where one finds that
for a large photon number 〈â† â〉 ∝ |f |2/3 [as a reminder, f = F/(U − iη)].
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Figure 4.9 – Left: Numerical results for the driven-dissipative Kerr model. Top panel:
rescaled number of photons 〈â†â〉 /N as a function of the rescaled driving F̃ /γ for differ-
ent values of N . Middle panel: -Re[λ1/γ] (Liouvillian gap) for different values of N . Bottom
panel: The error 1 − f , where f is the fidelity between the steady-state density matrix ρ̂ss
and the one reconstructed via the eigendecomposition of the first eigenstate ξ̂ = (ρ̂+

1 + ρ̂−1 )/2.
Right: study of the metastable states obtained via the spectral decomposition of ρ̂1. Top
panel: average number of photons according to ρ̂ss and ρ̂± as a function of the rescaled
driving F̃ /γ for N = 10 (see definitions in the main text). The dotted line indicates the
Gross-Pitaevskii prediction. Bottom panel: fidelity f between the steady-state density ma-
trix ρ̂ss and a density matrix χ̂ = ρ̂+

1 , ρ̂−1 , ξ̂ (for ξ̂ = (ρ̂−1 + ρ̂+
1 )/2) as a function of the rescaled

driving F̃ /γ. The transition can be seen as a switching from a region where ρ̂− describes the
system to one where the physics is dominated by ρ̂+. Even if the region of phase coexistence
in ρ̂ss is very narrow, ρ̂1 describes the physics in a larger region. Parameters: ∆/γ = 10,
Ũ/γ = 10. From Ref. [1].

Applying the general theory

Having proved the onset of a first-order phase transition, we consider now the spectral
properties of L detailed in Chapter 3. We adopt the convention to express the nonlinearity
and driving amplitude in the following form:

U = Ũ/N, F = F̃
√
N, (4.66)
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and let change (we recall, the thermodynamic limit is N → +∞). In Fig. 4.9 we study
numerically the emergence of the first-order phase transition by increasing N . The top
panel shows the mean value of 〈â†â〉 /N = Tr

[
ρ̂ssâ

†â
]
/N as a function of F̃ /γ. The middle

panel shows the rescaled Liouvillian gap −Re [λ1] /γ as a function of the rescaled driving
amplitude. Such Liouvillian gap tends to zero in the thermodynamic limit N → +∞. The
bottom panel of Fig. 4.9 presents a study of the fidelity between the steady state ρ̂ss and
the matrix ξ̂ = (ρ̂+

1 + ρ̂−1 )/2, obtained by the spectral decomposition of ρ̂1 [Eq. (3.10)]. We
recall that the fidelity is defined as f(ρ̂, ξ̂) = Tr

[√√
ρ̂ ξ̂
√
ρ̂
]
. A fidelity equal to 1 indicates

that the two states are identical. As the thermodynamical parameter N increases, we notice
two important effects: (i) in the region in which the Liouvillian gap is minimal the fidelity is
maximal; (ii) the region in which ρ̂ss and ξ̂ are close becomes narrower and narrower. This
is consistent with our general results which are exact in the thermodynamic limit.

It is interesting now to connect our findings with the results predicted by mean-field
theories. A Gross-Pitaevskii-like mean-field approximation for the driven-dissipative Kerr
model is known to exhibit bistability, while the full quantum solution is always unique [135].
In the same way, a Gutzwiller-mean-field theory predicts multiple solutions [61, 138, 139]. In
Fig. 4.9, we investigate the properties of the exact steady state ρ̂ss and of the density matrices
ρ̂+

1 and ρ̂−1 for a system with N = 10 as a function of the rescaled driving amplitude F̃ /γ. In
the top panel, we plot the mean photon density 〈â†â〉 /N = Tr

[
â†â χ̂

]
/N , for χ̂ = ρ̂ss, ρ̂

+
1 , ρ̂

−
1

as indicated in the legend. To further characterize the nature of ρ̂±1 in the phase transition, in
the bottom panel we plot the fidelity between ρ̂ss and χ̂ = ξ̂, ρ̂+

1 , ρ̂
−
1 (where ξ̂ = (ρ̂+

1 + ρ̂−1 )/2).
For F̃ < F̃c, ρ̂ss is almost exactly ρ̂−1 . Around the critical point F ' Fc, ρ̂ss becomes an
equal mixture of ρ̂+

1 and ρ̂−1 . The maximal mixed character occurs for F̃ = F̃c. Finally, for
F̃ > F̃c, the density matrix becomes very close to ρ̂+

1 . This analysis allows us to interpret the
two stable solutions predicted by the mean-field approach in terms of the metastable states
which compose ρ̂1.

4.3.3 Two-photon pumping: a first- and a second-order phase tran-
sition

A similar discussion about the role of the detuning can be performed in the presence of
two-photon pumping. That is, if ∆ and U compete in determining the number of photons,
a first-order phase transition can take place. This time, however, also a second-order phase
transition can take place, since the Z2 symmetry can be broken. Again, we start by analysing
the effect of ∆ on the steady-state solution.

Detuning vs Interaction

The results obtained for different values ofG/U are presented in the Left panel of Fig. 4.10.
In the top panel, we observe a similar behavior of the photon density as in Fig. 4.8. Note that
the analytic solution allows us to reach very high values of 〈â† â〉 (up to ∼ 1300 photons for
G = 300U). The behavior of the second-order correlation function g(2) dramatically differs
from the case G = 0 considered in Fig. 4.8. For G > 10U , we find a sub-Poissonian statistics
(g(2) < 1) for small ∆ and a strong peak corresponding to the drop in density. After the peak,
in the low-density phase, g(2) drops but stays considerably larger than one and, furthermore,
it keeps growing roughly quadratically. This high probability of observing photons pairwise
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Figure 4.10 – Left: Same as Fig. 4.8, but in the presence of two-photon driving only, i.e. F = 0
and G 6= 0. Different curves (and colors) correspond to different pumping strengths G/U ,
spanning from 0.1 to 300. One- and two-photon dissipation rates were set to γ = η = 0.03U .
Right: rescaled mean photon density χ = 〈â† â〉 /|g| as a function of τ = sgn[∆]|c|/|g| for
different values of |g| (see legend). In the inset we show the rapid growth in the derivative
∂χ/∂τ around τ = −1, which tends to a discontinuity increasing |g|. Overall, dissipations
have been set to η = 0.1U and γ = 0.1|∆|. From Ref. [5].

is a clear consequence of the two-photon pumping mechanism. Again, we conclude that the
abrupt change in the density is the result of the first-order driven-dissipative phase transition
stemming from the competition between U and ∆.

We now perform the same scaling analysis we did in Sec. 4.3.2, for which, in the thermo-
dynamic limit, one expects 〈â† â〉 ∝ |g| [with g = G/(u− iη)]. In the right panel of Fig. 4.10
we plot, for different values of |g|, the function χ(τ) where we defined χ = 〈â† â〉 /|g| and
τ = sgn[∆]|c|/|g|. Once again, the behavior becomes universal for |g|≫ 1, with a sharp
transition at positive detuning. The critical-exponent analysis of the derivative is compatible
with max[∂χ/∂τ ] ∝ |g| and |τmax − τc| ∝ 1/|g| for τc ∼ 2.62. The divergent behavior of
the derivative in the thermodynamic limit signals the first-order nature of this phase tran-
sition. The latter has the same character of the one observed for G = 0 and both occur in
the regime for which the semiclassical solution predicts optical multistability. Remarkably,
we can identify another phase transition, taking place for τ ' −1. Although χ stays con-
tinuous in the thermodynamic limit, its derivative, shown in the inset of Fig. 4.10 (right),
acquires a discontinuity. In this case, there is no competition between ∆ and U in the deter-
mination of the steady state. This second-order phase transition has no counterpart in the
driven-dissipative Kerr model without the two-photon processes, and thus it strongly sug-
gest the presence of a spontaneous symmetry breaking. Moreover, it takes place around the
semiclassical bifurcation point, i.e. when the Wigner function acquires a bi-modal character.

In order to better understand the nature of the first- and second-order phase transition
in the two-photon Kerr resonator, we resort to our general theory.
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Applying the general theory

The thermodynamic limit of this model is obtained by expressing U and η as

U = Ũ/N, η = η̃/N, (4.67)

and considering the limit N → +∞. In this way the ratio U/η is kept constant.
In Fig. 4.11 we show the emergence of a second-order phase transition for ∆ < 0 by

increasing the value of N . The top panel shows 〈â†â〉 /N = Tr
[
ρ̂ssâ

†â
]
/N as a function of

G/γ. In the middle panel we show the rescaled Liouvillian gap −Re [λ1] /γ as a function of
the rescaled pump amplitude. The abrupt change in the behavior of λ1 indicates the onset of
the phase transition. In the whole region of broken symmetry, the gap is much smaller than
γ and λ1 is real, while ρ̂1 is a traceless Hermitian matrix which belongs to the odd symmetry
sector of Z2 (Z2ρ̂1 = −ρ̂1). The states ρ̂+

1 and ρ̂−1 obtained via the spectral decomposition
of ρ̂1 are such that Z2ρ̂

+
1 = ρ̂−1 . As it has been shown in Sec. 3.3.3, in the symmetry-

broken region, ρ̂ss can be constructed as a symmetric mixture of ρ̂+
1 and ρ̂−1 . As shown in

the bottom-left panel of Fig. 4.11, this gives an excellent approximation for the finite-sized
systems considered here. Remarkably, this expression for ρ̂ss remains very accurate even
quite far from the thermodynamic limit.

In order to characterize the abrupt change in the behavior of λ1, which becomes discon-
tinuous for N → +∞, we plot part of the full spectrum of ¯̄L for N = 20 across the critical
point. In the top of the right panel in Fig. 4.12, we show the real part of the spectrum, while
the bottom one reports the imaginary part. Starting from the imaginary part, we clearly
see that there is a point in which two complex-conjugate eigenvalues (highlighted by the red
line) become real. We call GB(N) the point in which this bifurcation happens. Looking
at the top panel, this merging is associated to a change in the behavior of the real part of
those eigenvalues, which split and bifurcate. The one approaching zero is responsible for the
phase transition and its associated eigenvector becomes ρ̂1 = ρ̂+

1 − ρ̂−1 for G > GB(N). As
we saw in Fig 4.11, it is not clear where the gap starts to close, but one might guess that
it happens when the two eigenvalues bifurcate. To test this conjecture, in the inset we plot,
as a function of N , the scaling of the bifurcation point ∆G = GB(N)−Gc, where Gc is the
critical point extrapolated via the study of the analytic solution for N = 1000. Indeed, the
clear power-law decay of this quantity demonstrates that the onset of this transition can be
understood in terms of a merging of two eigenvalues. The emergence of criticality is thus to
be associated with a crossing of two eigenvalues in the complex plane. This fact, together
with the emergence of a discontinuity in λ1 for N →∞, implies that, at the bifurcation point,
the Liouvillian becomes not diagonalizable, resulting in a Jordan structure. This leads to a
non-exponential relaxation dynamics at criticality. To better understand this behavior, in
App. D we study an exactly-solvable two-level system which admits a Jordan-block structure
for a specific choice of parameters.

We have previously shown that for ∆ > 0 there is a first-order phase transition associated
to a symmetry broken phase, example which seems in contrast with our general theory.
Up to now, however, we considered the case in which only an eigenvalue of the symmetry
sector L−1 approaches zero and gives rise to a symmetry breaking without inducing first-
order discontinuities in ρ̂ss. Indeed, together with the emerging of a zero in L−1, for ∆ >
0 the symmetry sector L1 acquires two zero eigenvalues: one associated to ρ̂ss, the other
to an eigenmatrix whose eigenvalue touches zero only at the critical point. This allows a
discontinuous behavior of ρ̂ss with symmetry breaking. In Fig. 4.12 we plot the behavior of
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Figure 4.11 – Left: Numerical results for the driven-dissipative two-photon Kerr model. Top
panel: rescaled number of photons 〈â†â〉 /N as a function of the rescaled driving G/γ for
different values of N . Middle panel: -Re[λ1/γ] (Liouvillian gap) for different values of N .
Bottom panel: The error 1 − f , where f is the fidelity between the steady state density
matrix ρ̂ss and ξ̂ = (ρ̂+

1 + ρ̂−1 )/2. The curves are shown in the region where λ1 is purely real.
Right: Liouvillan spectrum in the two-photon Kerr model for N = 20. Top and bottom
panels: real and imaginary part of the eigenvalues of ¯̄L. The dots represent the 10 smallest-
modulus eigenvalues obtained by numerical diagonalisation. The red lines are a guide for
the eye indicating the two eigenvalues which merge into λ1 for G � γ. Inset: log-log plot
of ∆G = (GB(N) − Gc) (defined in the text) as a function of the parameter N , showing
the power-law behaviour ∆G = AN−η with A = 21.1 ± 0.2 and η = 0.881 ± 0.006. In
the thermodynamic limit, the bifurcation point GB(N) and the critical point Gc coincide.
Parameters: ∆/γ = −10, Ũ/γ = 10, η̃/γ = 1.0. From Ref. [1].

the system in such regime. Top panel shows the emergence of a first-order phase transition
in the rescaled density. In the middle panel, we plot the real part of the two eigenvalues of
the Liouvillian with the smallest modulus. One presents the phenomenology we expect from
a symmetry breaking: −Re [λ1] � γ in the symmetry-broken phase G ≥ Gc(N). The other
is responsible for the discontinuous first-order behavior: −Re [λ2] � γ only for G ' Gc(N).
Indeed, we tested that ρ̂1 (associated to λ1) satisfies Z2ρ̂1 = −ρ̂1. Moreover, Z2ρ̂

±
1 = ρ̂∓1 and

ρ̂ss ' (ρ̂+
1 +ρ̂−1 )/2. As for ρ̂2, Z2ρ̂2 = ρ̂2 and it cannot be associated with a symmetry breaking.

In the bottom panel we test the structure of ρ̂ss in connection to the spectral decomposition
of ρ̂2: the first-order phase transition can be interpreted as a switch between ρ̂−2 and ρ̂+

2 .
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Figure 4.12 – Study of the first-order phase transition with symmetry breaking in the two-
photon Kerr resonator. Top panel: rescaled number of photons 〈â†â〉 /N as a function of
the rescaled driving G/γ for different values of N . Middle panel: real part of λ1,2 rescaled
by γ for N = 10. The two branches of Liouvillian eigevalues lead to the first-order phase
transition (red) and a symmetry breaking (blue). Bottom panel: average number of photons
according to ρ̂ss and ρ̂±2 . Parameters: ∆/γ = 10, U/γ = 10, η/γ = 1.0. From Ref. [6].

The symmetry breaking emerges in the fact that ρ̂+
2 '

(
ρ̂+

1 + ρ̂−1
)
/2. In conclusion, in these

specific numerical examples we recover all the features predicted by our general theory.

4.4 Quantum trajectories

The previous discussion of the steady-state and spectral properties proved the emergence
of a first- and second-order phase transitions in Kerr resonators. Here, we exploit quantum
trajectories to characterise criticality in these driven-dissipative systems, benchmarking at
the same time the theory proposed in Sec. 3.4.2. The details about the numerical protocol
used to simulate the quantum trajectories can be found in App. E.4.
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Figure 4.13 – Mean number of photon n(t) = 〈â†â(t)〉 for a counting trajectory as a function
of time for a Kerr resonator for N = 10. Panel (a): Simulation for F = 2.3 ' Fc, where ρ̂ss
is an equal mixture of ρ̂±1 . Panel(b): We set F = 2.1 . Fc, where λ� γ but ρ̂ss ' ρ̂−1 . The
initial state is |Ψ(0)〉 = |0〉. Panel (c): Same as in (b), but for |Ψ(0)〉 = |12〉 Parameters as
in Fig. 4.9.

4.4.1 Bistability in the Kerr resonator

Let us consider a counting quantum trajectory described in Sec. 2.2 for the one-photon
Kerr resonator. As discussed in Sec. 3.4.2, we expect that, if t� τ , the quantum trajectory
should only explore the states which make ρ̂ss.

Both the general theory developed in Chapter 3 and the numerical results presented in
Sec. 4.3.2 are in agree that, at the critical point Fc, the steady state is the sum of two
density matrices. For finite size systems, in Fig. 4.9 we saw that this phase coexistence is
present in a small region of the parameter space. Consequently, for F ' Fc, we expect that
ρ̂ss ' (ρ̂+

1 + ρ̂−1 )/2, where ρ̂±1 are a metastable state decaying towards ρ̂ss with a timescale of
order τ = 1/λ1. The numerical study of this regime via quantum trajectories is presented in
panel (a) of Fig. 4.13, where we plot the mean number of photons as a function of time. The
resonator intermittently jumps from a low-density regime [Ψ(t) ∈ {Ψ−i }, cf. Eq. (3.37)] to a
high density one [Ψ(t) ∈ {Ψ+

i }]. The switching time is of the order of τ ≈ 105γ, in agreement
with λ1 ' 10−5 obtained by the exact diagonalisation of the Liouvillian (cf. Fig. 4.9). We
stress that the wavefunction Ψ(t) ∈ {Ψ−i } [Ψ(t) ∈ {Ψ+

i }] explores all the states of ρ̂−1 (ρ̂+
1 ),

and therefore the trajectory is noisy.
In panel (b) of Fig. 4.13, we study the system for F . Fc, where λ1 � γ but ρ̂ss ' ρ̂−1

(cf. Fig. 4.9). As discussed in Sec. 3.4.2, the system remains in a low-density state, i.e.,
|Ψ(t)〉 ∈ {|Ψ−i 〉}. Indeed, the plot shows that there are no jumps to any {|Ψ+

i 〉} for a time
which is much bigger than the Liouvlillian gap (notice that the simulation has been run on
a time which is of the order 40/λ1). This confirm the previous analysis about the spectral
structure of the Liouvillian, which tell us that the Liouvillian gap can be very small even if
there is no phase coexistence.

Finally, in panel (c) of Fig. 4.13 we consider again F . Fc, but we choose |Ψ(0)〉 = |12〉,
so that the initial state is one of the wave function of {|Ψ+

i 〉}. In this case, we observe that,
before reaching the low-density branch, the system remains the high branch for a very long
time. Again, the quantum trajectory explores all the wavefunction which compose ρ̂+

1 , and
thus the trajectory is extremely noisy.
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Figure 4.14 – Counting trajectory for a two-photon Kerr resonator for N = 3 and G = 30.
Panel(a): Number of photons as a function of time for a state initialised in the vacuum.
Panel (b): Parity as a function of time for a state initialised in the vacuum. Panel (c): Mean
value of the annihilation operator as a function of time for |Ψ(0)〉 metastable. Parameters as
in Fig. 4.9.

4.4.2 Bimodality of the two-photon Kerr resonator

We consider now the case of a second-order phase transition in a quadratically-driven
resonator. As detailed in Sec. 4.3.3, this critical phenomenon is characterised by a sponta-
neous symmetry breaking of Z2 = eiπâ†â • eiπâ†â. Therefore, in the symmetry-broken phase,
we expect that ρ̂ss = (ρ̂+

1 + ρ̂−1 )/2, where ρ̂+
1 = Z2ρ̂

−
1 .

Since we are considering a second-order phase transitions, we need a order parameter to
distinguish between different phases [12]. The number of photons is not a good witness since
ρ̂±1 = Z2ρ̂

∓
1 and therefore Tr

[
ρ̂+

1 â
†â
]

= Tr
[
ρ̂−1 â

†â
]
. A more suitable order parameter is the

mean value of the annihilation operator 〈â〉 = 0. Indeed, since Z2ρ̂ss = ρ̂ss, we have that
〈â〉 = 0. That is, the emergence of a symmetry-breaking transition can be signalled by the
emergence of two metastable states with opposite 〈â〉 6= 0.

We start by studying a counting quantum trajectory. In panel (a) of Fig. 4.14, we show the
time evolution of the mean number of photons, which do not present a bimodal character. As
we proved in Theorem 3.5 of Sec. 3.4.2, a counting trajectory cannot observe a Z2 symmetry
breaking, but always jumps between eigenstates of Ẑ2 = eiπâ†â. Thus, in panel (b) we plot,
as a function of time, the expectation value of the parity P̂ = eiπâ†â. As expected, the system
switches between an even and an odd state on a timescale which is much faster than the
Liouvillian gap. Moreover, we verified that, starting from a state with well-defined parity,
for any t we have 〈â(t)〉 = 0. Finally, in panel (c), we show the time evolution of the real
and imaginary parts of 〈â(t)〉 if the system is initialised in a metastable state. The dynamics
towards 〈â(t)〉 = 0 is very slow, and the relaxation time is consistent with the value one
would obtain from the Liouvillian gap (cf. Fig. 4.11).

In order to observe the periodic switches between the two metastable states along a
quantum trajectory, in Fig. 4.15 we use a homodyne protocol. In panel (a) we show that, as
expected, the mean number of photons, is not a good observable to witness bimodality. In
panel (b) we plot the expectation value of the parity, demonstrating that it remains always
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Figure 4.15 – Homodyne trajectory for a two-photon Kerr resonator for N = 3 and G = 30.
Panel(a): Number of photons as a function of time for a state initialised in the vacuum
Panel (b): Parity as a function of time for a state initialised in the vacuum. Panel (c): Field
quadrature as a function of time for a state initialised in the vacuum. Parameters as in
Fig. 4.9.

around zero, and do not present any bimodal behaviour (in sharp contrast with Fig. 4.14 (b)).
Finally, in panel (c), we show that the system switches between two states with opposite 〈â〉
on a timescale of the order of the inverse of the Liouvillian gap (cf. Fig. 4.11).

Figure 4.16 – Quantum trajectories for a two-photon Kerr resonator for N = 10 and G = 4.
Panel(a): Number of photons as a function of time for a state initialised in the vacuum for
a homodyne trajectory. Panel (b): Mean value of the annihilation operator as a function of
time for a state initialised in the vacuum for a homodyne trajectory. Panel (c): Number of
photons as a function of time for a state initialised in the vacuum for a counting trajectory.
Parameters as in Fig. 4.12.

The case of a first-order phase transition in the quadratically-driven resonator is presented
in Fig. 4.16. This time, there are three metastable states: one with low number of excita-
tions, and two at high density (each one characterised by opposite value of 〈â〉). In panel (a)
we study the time evolution of 〈â†â〉 along a homodyne trajectory. The state intermittently
jumps between a low- and high-density regimes. In order to appreciate the symmetry break-
ing, in panel (b) we plot the mean value of 〈â〉. The system jumps between three values:
one around zero (the low-density branch) and two characterised by opposite phases. Finally,
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in panel (c), we show that a counting trajectory can capture the first-order phase transition
but not the symmetry-breaking.

4.5 Conclusions
In this Chapter, we investigated two central models in quantum optics, i.e. the one- and

two-photon driven-dissipative Kerr resonators. Having provided the analytic solution for the
steady-state of those models, we investigate their features. In particular, we demonstrate
that, in an appropriate thermodynamics limit, a phase transition might take place. We used
those models as a benchmark for our general theory presented in Chapter 3.

The discussion provided in this Chapter opens many perspectives. Indeed, for the one
photon pump, the exact results, combined with mean-field prediction [61, 138], will be the
starting point for the study of the Driven-Dissipative Bose-Hubbard lattices presented in
Chapter 5. Concerning two photon driving, the analytic solution has been used to study the
mean field diagram of a two-photon Bose-Hubbard lattice in Ref. [63], while a full numerical
study of this model is in progress.
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CHAPTER 5

The Driven-Dissipative Bose-Hubbard
Lattices

In a lattice of coupled resonators with local boson-boson interaction U , a coherent and ho-
mogeneous driving of all the sites can create a macroscopic population in the zero-wavevector
mode (k = 0). Being delocalized in space, the latter experiences a self-interaction of strength
U/N , N being the number of sites. If one retains only the k = 0-mode operators, the physics
is the one described in Sec. 4.3 and [1, 5, 59]. An interesting and challenging problem is
to understand how the presence of the other modes with k 6= 0 affects the dynamics of the
system. In particular, the emergence of criticality might depend on fluctuations associated
to this multitude of modes and on the dimensionality of the lattice. A recent work [60] has
reported calculations of the steady-state population for lattices as a function of the driving
strength, suggesting the presence of a first-order discontinuity in two-dimensional lattices,
but only a smooth crossover in one-dimensional arrays.

In this Chapter, we explore this paradigmatic example, performing a the finite-size scal-
ing of the dynamical properties, to clearly signal the absence of criticality in 1D chains and
emergence of a phase transition in 2D lattices. Exploiting the truncated Wigner approxima-
tion, we transform the Lindblad master equation into a set of stochastic equations for the
lattice fields. We numerically solve them, and determine the presence of a critical slowing
down in 2D lattices due to the emergence of a first-order phase transition between collec-
tive low-density and high-density phases. We characterize this paradigm of dissipative phase
transition via a comprehensive study of the main observables.

Another interesting question is weather the phase transition is destroyed by the presence
of disorder (i.e. in an inhomogeneous lattice). In this Chapter, we introduce a possible
strategy relying on quantum trajectories. The advantage of the proposed method is that it
only slightly increases the computational complexity of the disordered problem with respect
to the homogeneous one.

This Chapter is organised as follows. In Sec. 5.1 we introduce the Driven-Dissipative Bose
Hubbard (DDBH) model and we discuss the truncated Wigner approximation. In Sec. 5.2,
we present our main results. In Sec. 5.3, we discuss a possible way to tackle disordered
systems exploiting quantum trajectories.

Contents
5.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 The truncated Wigner approximation . . . . . . . . . . . . . . . . 85

83



84 CHAPTER 5. THE DRIVEN-DISSIPATIVE BOSE-HUBBARD LATTICES

5.1.2 Benchmark of the truncated Wigner approximation . . . . . . . . . 87
5.2 Critical behaviour in the bistable region . . . . . . . . . . . . . . 88

5.2.1 Emergence of a phase transition . . . . . . . . . . . . . . . . . . . 88
5.2.2 Different values of U . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Disordered systems: a perspective . . . . . . . . . . . . . . . . . . 93
5.3.1 An efficient numerical method . . . . . . . . . . . . . . . . . . . . 94

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



85

J

FF

γ

U

J

FF

γJ

FF

γ J

FF

γ J

Figure 5.1 – Depiction of the considered driven-dissipative Bose-Hubbard system in the 1D
case. The picture represents a lattice of photon resonators, each one subject to one-photon
losses with rate γ, and coherently driven by a one-photon pump of amplitude F . The strength
of the photon-photon interaction is quantified by U . Nearest neighbour sites are coupled by
a tunneling of intensity J . Form Ref. [3].

5.1 The model

Here, we consider a lattice of identical one-photon Kerr resonators (described in Sec 4.1).
In presence of coherent driving with frequency ωp it is described by the following Hamiltonian
(in the frame rotating with the drive):

Ĥ =
∑
j

−∆â†j âj + U

2 â
†2
j â

2
j + F

(
â†j + âj

)
− J

∑
<j,j′>

â†j âj′ (5.1)

where, we recall, ∆ = ωp − ωc is the detuning between the driving frequency and mode
frequency ωc, U the on-site interaction, F the homogeneous driving field (again, the phase
is chosen in such a way that F is real). The parameter J quantifies the hopping coupling
between two nearest neighboring sites (see Fig. 5.1). In the following, z will denote the
number of nearest neighbors (z = 2 and z = 4 for the 1D and 2D lattices considered in this
Chapter, respectively).

To describe the dissipative dynamics, we will consider that all the cavities are subject to
an uniform Markovian single-boson loss rate γ. Consequently, the Lindblad master equation
for ρ̂(t) reads:

∂tρ̂(t) = Lρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+ γ

∑
j

D[âj]ρ̂(t). (5.2)

We stress that, due to the presence of the one-photon pump, this model has no Zn symmetry.

5.1.1 The truncated Wigner approximation

Consider, for sake of simplicity, a single Kerr resonator, whose Liouvillian has been de-
scribed in Eq. (4.4). According to Eq. (2.79), we can map the time evolution of the density
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matrix onto the time evolution of the Wigner function as

∂tW (α) =∂α
[
i∆α− iU(|α|2 − 1)α + γ

2α + iF
]
W (α)

+ ∂α∗
[
−i∆α∗ + iU(|α|2 − 1)α∗ + γ

2α
∗ − iF

]
W (α)

+ γ

2 (∂α∂α∗ + ∂α∗∂α)W (α) + iU4 ∂α∂α
∗(∂α∗α∗ − ∂αα)W (α).

(5.3)

In the weakly interacting limit, i.e. U/γ � 1, and if W (α) is sufficiently regular, we can
discard the third-order term iU∂α∂α∗(∂α∗α∗ − ∂αα)W (α)/4. 1 In this case, one has a well-
defined Fokker-Plank equation for W (α), which can be interpreted as a probability distribu-
tion [27, 120, 156]. To the resulting Fokker-Plank equation one can associate a stochastic
Langevin equation of the form

α̇ =
[
−i(∆− U(|α|2 − 1)− γ/2)

]
α + iF +

√
γ/2χ(t), (5.4)

where χ(t) is a normalized random complex Gaussian noise such that 〈χ(t)χ(t′)〉 = 0 and
〈χ(t)χ∗(t′)〉 = δ(t − t′). In analogy to what we did in Sec. 2.2, we call the evolution of α a
(stochastic) Wigner trajectory. In the limit of an infinite number of trajectories, one retrieves
all the properties of the Wigner function.

Eq. (5.4) can be easily generalised for a lattice of N cavities by considering a set of {αj}
complex numbers characterised by

α̇j =
[
−i(∆− U(|αj|2 − 1)− γ/2)

]
αj − iJ

∑
j′
αj′ + iF +

√
γ/2χ(t), (5.5)

where j′ runs over the nearest neighbors of j. Since we are considering a Wigner function, one
can recover the expectation values for any symmetrized products of operators (see Sec. 2.3)
by averaging over different stochastic trajectories through the relation

〈{(â†i )nâmj }0〉 = 1
Ntraj

∑
r

(α∗i,r)nαmj,r, (5.6)

where the index r runs over the Ntraj random trajectories. The great advantage of this
approximation is that drastically reduce the computational complexity of the problem: for
an array of N cavities we need to consider a system of N complex variables. The price to pay
is that, in order to obtain sufficiently precise expectation values, one may need to consider
Ntraj � 1.

Finally, let us discuss which meaning can we assign to a single Wigner trajectory. In
Secs. 2.2.3 and 4.4, we saw that, in the case of a quantum trajectory it is possible to study
the properties of single trajectories in order to infer some relevant proprieties if the system.
In case U = 0, we can think if W (α) as genuine a probability distribution of coherent states,
and thus αj represent the state of the cavity if it is forced to remain in a coherent state all
along its dynamics. In this regard, a single trajectory {αj} can recover all those “classical”
properties of the system, such as time and spatial coherence in the lattice. We assume that,
for small enough U , this is still the case and we can give a physical meaning to a single
Wigner quantum trajectory.

1. We require a sufficiently regular Wigner function since the term which we are discarding is proportional
to

(∂α∗α∗ − ∂αα)W (α),
which is small if ∂α∗W (α) ' ∂αW (α) ' 0.
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5.1.2 Benchmark of the truncated Wigner approximation
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Corner Method

Figure 5.2 – Steady-state average boson occupation per site as a function of the driving F/γ
in a 4×1 array: different symbols correspond to different numerical methods. The statistical
error is of the order of the symbol size. Parameters are U/γ = 0.1, zJ/γ = 0.9, ∆/γ = 0.1.
From Ref. [3].
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Figure 5.3 – Ratio between the steady-state average occupation obtained through the Trun-
cated Wigner approximation nTW and the exact Runge-Kutta Integration of the Lindblad
Master Equation nex in a 2 × 1 array. The error bars refer to the statistical noise of the
results associated to the stochastic Langevin simulations. F/γ has been varied so that
UF 2/γ3 = 2.465 is kept constant; zJ/γ = 0.9 and ∆/γ = 0.1 are fixed. Note that the
results for U/γ ≤ 0.2 have been obtained with the corner-space renormalization. From
Ref. [3].
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Having detailed the truncated Wigner approximation, here we present some numerical
results showing that this method is accurate in the regime which we will consider in the
following. To do so, we compare the approximated results to what was obtained with nu-
merically exact methods for small systems.

In Fig. 5.2, we present the steady-state average population in a 4 × 1 array for U/γ =
0.1, zJ/γ = 0.9, ∆/γ = 0.1. The blue curve is computed with the Truncated Wigner
approximation and the red one with the corner-space renormalization method (see Ref. [130]
and App. E.6) finding an excellent agreement between the two. We would point out that
for the considered value of U/γ = 0.1, a brute-force integration of the master equation for a
one-site system requires a cutoff of Nmax = 40 bosons in order to achieve adequate numerical
convergence. That is, in a 4 × 1 lattice the dimension of such a Hilbert space would be
404 = 2.56 · 106, which cannot be handled numerically without exploiting advanced methods.

In Fig. 5.3 we present the ratio nTW/nex between the steady-state average population
obtained via the Truncated Wigner approximation nTW and exact methods nex as a function
of the nonlinearity U/γ for a 2 × 1 array. This quantity identifies the range of values U/γ
in which the Truncated Wigner approximation is accurate. In particular, for U/γ ≤ 0.3 the
Truncated Wigner yields results within 1% of the exact value.

5.2 Critical behaviour in the bistable region
Here we will explore the onset of a first-order phase transition in a regime where mean-field

theory predicts bistability. Within a Gross-Pitaevskii-like mean-field approach, the master
equation for the lattice density matrix is replaced by a simple equation for the mean-field
αj = 〈âj〉, which is the same as Eq. (5.5), but without the noise terms. In the homogenous case
(αj = α), the steady-state equation takes the nonlinear form |α|2((∆+zJ−U |α|2)2 +γ2/4) =
F 2, which can have three non-degenerate solutions for a given F , two of which are dynamically
stable. As in all mean-field theories [61, 138, 139], the effect of hopping depends only on zJ ,
with the lattice dimension playing no role. Hence, in the following, when comparing 1D
versus 2D lattices, we will consider the same value of zJ , so that differences will only be due
to effects beyond mean-field.

5.2.1 Emergence of a phase transition
In panel (a) of Fig. 5.4 we present results obtained with the truncated Wigner approxima-

tion for the steady-state site-averaged population nss = 1
N

∑N
i=1 Tr(ρ̂ssâ†i âi) for 1D arrays of

different length L (up to L = 512). In panel (b), the same observable is reported for 2D L×L
lattices (up to 14 × 14). Both 1D and 2D calculations have been performed with periodic
boundary conditions. In both (a) and (b) the Gross-Pitaevskii-like mean-field prediction is
depicted by the dashed line. While, in general, mean-field theories exhibit multistability, the
density-matrix solution of the master equation is under quite general assumptions unique
[135]: indeed, quantum fluctuations make the mean-field solutions metastable so that on a
single trajectory the system switches back and forth from one metastable state to another on
a time scale related to the inverse Liouvillian gap [1, 5, 51, 57, 120, 142] (see also Fig. 5.4 (c)).
The results in Fig. 5.4 (a) show that the S-shaped multivalued curve of the mean-field theory
is replaced by a single-valued function, which depends on the array size L. Remarkably, by
increasing the size L of the array nss(F ) eventually converges to a curve with a finite slope.
On the other hand, in 2D the slope of nss(F ) does not saturate when increasing the size L of
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Figure 5.4 – The left panels are for 1D arrays, while the right panels refer to 2D square
lattices. (a) and (b): steady-state average population per site versus driving amplitude F (in
units of the dissipation rate γ) for lattices of different size. The dashed line is the prediction of
the Gross-Pitaevskii mean-field theory. (c), (d): time-dependent single-trajectory population
nWj in the j-th site (dark blue) and same quantity averaged over all sites n̄Wj (light orange)
for F = 1.5695γ. (e), (f): contour plot of the probability distribution p(n) of the site-
averaged steady-state population versus the driving. White diamonds represent the steady-
state average population per site, also shown in panels (a) and (b). (c) and (e) are for a
256×1 array, while (d) and (f) are for a 14×14 lattice. Trajectories have been computed via
the truncated Wigner approximation with parameters: U = 0.1γ, ∆ = 0.1γ and zJ = 0.9γ
(hopping rate times the coordination number z). From Ref. [3].

the lattices, suggesting the emergence of a discontinuous jump in the thermodynamic limit
compatible with a first-order phase transition.

In Fig. 5.4(c) and Fig. 5.4(d), we present the dynamics of the boson population in a
single stochastic Wigner trajectory for the 1D and 2D lattices, respectively. In the considered
regime of interaction U , Wigner trajectories have a direct correspondence to local oscillator
measurements [157], such as those carried out via homodyne detection techniques [24, 111].
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Figure 5.5 – Transient dynamics of the absolute difference between the mean occupation
number n(t) and its steady-state value nss for 1D arrays (a) and 2D lattices (b) of different
sizes, with driving amplitude F = 1.57γ. Other parameters as in Fig. 5.4. From Ref. [3].

In 1D, switches between the two metastable mean-field solutions are barely visible in the
population of the j-th site nWj (t) (blue curve) and absent in the site-averaged population
n̄W (t) = 1/N ∑N

j=1 n
W
j (t) (orange curve), consistent with the formation of moving domains

with low and high density inside the array [60]. On the contrary, the 2D lattice exhibits a
strikingly different behavior, with a clear random switching behavior of nWi (t) between two
well definite metastable states. The populations in all sites switch collectively since nWj (t)
and n̄W (t) strongly overlap. Furthermore, notice that the 2D timescales are far longer than in
the 1D case, indicating a significantly slower dynamics. This result bistable behaviour along a
quantum trajectory strongly suggests the presence of criticality (cf. Sec. 3.4). A particularly
insightful quantity is the probability number distribution p(n) defined as follows. We consider
a time ts where the system has reached the steady state and statistically collect all the values
of n = n̄W (t > ts) for all the considered trajectories. Indeed, the probability distribution p(n)
can highlight the bimodal character of the steady-state at the critical point. The results for
p(n) are presented in Fig. 5.4(e,f) for different values of the driving amplitude F . We notice
that, in the 1D case, this distribution is monomodal for all values of F and the steady-state
mean value of the population follows the peak of this distribution. In the 2D lattice p(n)
exhibits a completely different behavior: it has a single peak in the limit of small and large
F , while it is bimodal in proximity of the critical region. Here, for finite-size the steady-state
expectation value nss falls in a region of negligible probability (p(nss) ' 0) in-between two
peaks corresponding to the low and high population phases. When the 2D lattice size is
increased, the crossover between the two phases becomes steeper and therefore the bistable
region also becomes narrower, eventually collapsing to a single point when L → ∞. This
explains why in large lattices a fine scan in F is necessary to observe this feature. This phase
coexistence is a clear sign of a first-order phase transition, as explained in Sec. 3.3.2.

To investigate the emergence of criticality in the dynamical properties, we calculated
the time evolution towards the steady-state value nss of the site-averaged mean occupation
number n(t) = 1

N

∑N
i=1 Tr(ρ̂(t)â†i âi) , taking the vacuum as initial state. For values of F close
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Figure 5.6 – The Liouvillian gap λ (log scale) versus the driving amplitude for several L× 1
arrays (a) and L × L lattices (b). Notice the different scales used for the 1D and 2D case.
The insets show the minimum of λ as a function of the size L. Error bars are within the
symbol size. Parameters as in Fig. 5.4. From [3].

to the critical point, n(t) − nss decays exponentially to zero at large times as reported in
Fig. 5.5. In this asymptotic regime, the dynamics is dominated by the Liouvillian gap λ,
which can be extracted by fitting the results with n(t) = nss + Ae−λt. Note that in order to
have enough accuracy, calculations have required up to 106 stochastic Wigner trajectories for
each data point. As discussed in Sec. 3.1.3, the asymptotic decay rate can measured using the
time-dependence of the second-order correlation function [52], dynamical optical hysteresis
[51] and switching statistics [45, 51]. The particular case of F = 1.57γ is analyzed in Fig. 5.5,
where we plot |nss − n(t)| for 1D arrays [panel (a)] and 2D lattices [panel (b)] of different
sizes. For this fixed value of F , the dynamics gets slower as the size of the simulated system is
increased. While in the 1D case the exponential decay rate saturates in the thermodynamic
limit, this is not the case for 2D systems. The emergence of critical slowing down is quantified
in Fig. 5.6, where we provide the size-dependence of the Liouvillian gap λ versus F . Our
general theory predicts that the Liouvillian gap in the thermodynamic limit is closed in one
point (see Sec. 3.3.2). In Fig. 5.6(a), we report results for 1D arrays: it is apparent that, when
the size L is large enough, the Liouvillian gap converges to a finite value for all the values
of F , thus proving the absence of critical slowing down. The behavior is strikingly different
for 2D lattices, as shown in Fig. 5.6(b): in this case, every curve λ(F ) presents a minimum,
which becomes smaller and smaller when the size L of the lattice is increased. As shown in
the inset of Fig. 5.6(b), the minimum of λ follows the power-law decay minλ(L) ∝ L−η, with
exponent η = 3.3± 0.1.
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Figure 5.7 – (a) and (b): population fraction f0 = nk=0/ntot in the zero-momentum mode as
a function of the driving amplitude. (c) and (d): zero-delay local second-order correlation
g

(2)
0 versus F . Left panels are for 1D arrays, right panels for 2D lattices. Same parameters
as in Fig. 5.4. From Ref. [3].

The phase transition observed here in 2D lattices is reminiscent of what predicted ana-
lytically in Sec. 4.3.2. Therefore, one may expect that a macroscopic population in the k = 0
mode would always give rise to a critical behavior. In this regard, we studied the fraction
f0 = nk=0/ntot of bosons in the k = 0-mode, where nk=0 is the steady-state population of the
driven k = 0-mode and ntot is the total lattice population. In Fig. 5.7(a) and (b) we report
the finite-size analysis of f0 as a function of F . In the region of mean-field bistability, f0
presents a minimum in both 1D and 2D. In 1D this minimum saturates to a finite value as
one approaches the thermodynamic limit, while in 2D f0 exhibits a behavior consistent with a
finite jump at the critical point. For the considered interaction, in both cases the population
of the driven mode is dominant (f0 close to 1), showing that the fluctuations induced by the
coupling to non-zero momentum modes destroy the critical behavior in 1D.

Lastly, we present the local equal-time second-order correlation function
g

(2)
0 = 〈â†j â†j âj âj〉/〈â†j âj〉2 as a function of F . This quantity describes the amplitude of the
fluctuations in the field, and has been employed extensively to investigate critical behavior in
in optical systems. In 1D this quantity has a broad peak whose shape is shown to converge for
large enough L (Fig. 5.7(c)), while in 2D (Fig. 5.7(d)) the finite-size results show an emerging
singular behavior in its derivative at the critical point. The same qualitative behavior is also
observed in the large population limit of a single-mode nonlinear resonator [5, 59], which is
equivalent to the k = 0 approximation described above.

5.2.2 Different values of U
Since the phase transition is of first order, we expect the exponent η characterising the

scaling of the Liouvillian gap not to be universal [52, 59]. To verify this, we computed
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Figure 5.8 – Minimum of the Liouvillian gap λ as a function of the size L of 2D lattices, for
different values of U/γ. The critical exponent is η = 1.7± 0.2 for U/γ = 0.15, η = 3.3± 0.1
for U/γ = 0.1 and η = 5.3 ± 0.1 for U/γ = 0.06. Parameters: zJ/γ = 0.9 and ∆/γ = 0.1.
From Ref. [3].

the critical exponent in lattices with a different nonlinearity (the other parameters were
unchanged), finding η = 5.3± 0.1 for U/γ = 0.06 and η = 1.7± 0.2 for U/γ = 0.15.

Moreover, we show how the power-law decay of the Liouvillian gap changes when the
normalized interaction U/γ is varied. In Fig. 5.8 we present the minimum of the Liouvillian
gap λ as a function of lattice size L for several 2D lattices with different nonlinearities. We
find that the power-law exponent increases as U/γ is decreased.

5.3 Disordered systems: a perspective

In the previous section we made the hypothesis of a uniform lattice. In any experimental
realisation, however, it is impossible to realise two sites which are exactly identical. In this
regards, it is interesting to study the effects of disorder on the previously-described Bose-
Hubbard lattice. When we describe disorder, we imagine that instead of having a uniform
system, any parameter may have an explicit site dependency. The latter can be modelled via
a set of parameters δ = {δi} obeying to random probability distributions p(δ) = ∏

i p(δi). To
each distribution we associate a disordered Liouvillian

L(δ) = L0 + Lδ, (5.7)

where L0 represent the homogeneous part of the Liouvillian and Lδ the inhomogeneous one.
We stress that L(δ) is to all extent a legitimate Liouvillian, describing the time evolution of
a physical system. Thus, to each disordered Liouvillian one associates a disordered density
matrix:

ρ̂(t, δ) = eL(δ)tρ̂(0). (5.8)
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Often one is interested in computing the mean quantities associated to the disorder.
Indeed, one can think of evolving the same density matrix ρ̂(0) under the action of different
L(δ) (corresponding to different disorder configurations), and then take the average. We
define the disorder-averaged density matrix as

ρ̂D(t) =
∫
dδ p(δ) eL(δ)tρ̂(0)

=
∫
dδ1 p(δ1)

∫
dδ2 p(δ2) . . . eL(δ)tρ̂(0).

(5.9)

Introducing the disorder-averaged evolution superoperator

eLDt =
∫

dδp(δ) eLD(δ)t =
∫∫

. . .
∫ ∏

i

dδi p(δi) eLD(δ)t, (5.10)

we have
ρ̂D(t) = eLDtρ̂(0). (5.11)

The expectation values of a disordered system can be obtained by 〈ô〉D (t) = Tr[ρ̂D(t)ô].
In case L0 and Lδ commute, one can separate the exponential e(L0+Lδ)t, and the overall

effect of the disorder can be easily associated to a new Liouvillian. On the other hand, if
[L0,Lδ] 6= 0, an expansion of the exponential becomes extremely complex.

5.3.1 An efficient numerical method
If we consider a system with a high number of cavities, the integral in Eq. (5.9) can be

computationally demanding. Instead of directly performing such a high-dimensional integral,
one can consider a random variable r such that the configuration δ(r) = {δi}r is extracted with
probability p(δ). Accordingly, we call Lr the Liouvillian associated to the set of parameters
{δi}r:

Lr = L0 + Lδ(r), (5.12)

and we have
ρ̂D(t) = lim

R→∞

1
R

R∑
r=1

eLrtρ̂(0). (5.13)

Numerically, one takes R big enough to ensure that the wanted precision is reached. One
concludes that, in order to simulate a disordered system, the computational cost is R times
greater that the cost of a clean system: the complexity of the disorder emerges from the
sampling problem.

As we previously discussed, the time evolution of a density matrix can be obtained either
by direct numerical integration of the master equation or by exploiting quantum trajectories.
If one choose the latter method, one would compute T trajectories and, by averaging the
obtained results, provide an estimation of the density matrix. We introduce the computa-
tional complexity parameter C = R · T which quantifies the total number of trajectories, i.e.
the total computational effort. Adding the disorder, naively one would compute R times the
same amount T of trajectories as in the homogeneous case. However, we claim that (i) it is
possible to compute an estimate of 〈ô〉D (t) by only simulating one trajectory per disorder
realization (i.e., T = 1), and (ii) having fixed C, this choice ensure the best error estimate.

This work is still in progress, but a preliminary study of a 5×1 lattice has been performed.
We considered only a local Gaussian disorder in the detuning. In this system, we were able



95

10
1

10
2

10
3

10
4

10
5

10
6

10
-2

10
-1

Figure 5.9 – Absolute error ε (defined in the main text) as a function of the computational
effort C in a system with 5 sites. The cases presented are for T = 1, 10, 100, 1000 trajectories.
Parameters: U = 1.0γ, F = 2.0γ, zJ = γ, ∆ = 1.0γ, and a Gaussian distributed disorder of
mean 0 and variance 0.5γ.

to estimate the mean number of photons in the steady state by averaging over 104 different
disorder realisations. For each of them, we performed a numerical evolution of the master
equation. We call this result 〈n̂〉D and we use it as reference. In Fig. 5.9 we plot the absolute
error ε = | 〈n̂〉D (C)−〈n̂〉D |/2 as a function of the computational cost. The quantity 〈n̂〉D (C)
is the steady-state mean number of photons obtained with a computational cost C. Different
colours represent different values of T . The dots are the results, while the dashed lines are
the extrapolation of the error curve (presenting a power-law behaviour). Clearly, the smaller
T the better the convergence, with the optimal choice being T = 1.

The presented method appears to be very powerful. For instance, let us consider the
homogeneous case, where, in order to obtain an absolute error of 5 · 10−2, one needs T = 100
trajectories (i.e., C ' 100). From Fig. 5.9 we deduce that the same precision in the disordered
case with T = 1 is attained for C ' 150. Hence, the increase in the numerical cost with respect
to the clean case is relatively small.

5.4 Conclusions

In this Chapter we proved the emergence of a phase transition in the driven-dissipative
Bose-Hubbard model. In particular, we studied the critical slowing down associated with the
closure of the Liouvillian gap. We have revealed the emergence of critical dynamics in 2D
lattices via a finite-size analysis, which is instead absent in 1D arrays, indicating that the lower
critical dimension for this nonequilibrium model is d = 2. We have shown that in 1D arrays
fluctuations destroy criticality of the dynamics even if the driven mode is macroscopically
occupied. The obtained result are in perfect agreement with the general theory developed in



96 CHAPTER 5. THE DRIVEN-DISSIPATIVE BOSE-HUBBARD LATTICES

Chapter 3.
The asymptotic decay rate associated with the Liouvillian frequency gap has been mea-

sured in nonlinear photonic systems with different techniques [45, 51, 158], hence the critical
slowing down predicted here as a function of lattice size is within experimental reach and
can unveil fundamental properties of dissipative phase transitions. Many intriguing studies
can be foreseen on the horizon, including the role of disorder as well as the critical behavior
of exotic open photonic lattices with geometric frustration [97, 159–161] or quasiperiodicity
[162, 163].



CHAPTER 6

Dynamical Properties of XYZ
Heisenberg Lattices

In the previous Chapter we studied phase transitions in regimes where the interaction
among photons was small. When the nonlinearity of the optical cavity, however, is much
larger than its dissipation rate, the presence of a single photon inside the cavity is able
to effectively block the entrance of a second one. This effect, known as photon-blockade
[164, 165], has been observed experimentally at first with optical photons using a single atom
in a cavity [166] and is particularly strong in circuit quantum electrodynamics systems in the
microwave domain [167]. In a lattice system, strong correlations can lead to a transition from
a photonic Mott insulator to a superfluid [168–172], similar to that observed with ultracold
atoms confined in optical lattices [15, 38]. Interestingly, a system of coupled resonators in
the photon-blockade regime can be mapped into an effective spin model [170, 173, 174]. This
class of systems can be realized nowadays using different experimental platforms, such as
superconducting quantum simulators [44] or Rydberg atoms [68, 175–177].

In the context of dissipative phase transitions, the XYZ Heisenberg model [39] has at-
tracted a considerable attention. It describes a lattice of spins interacting via an anisotropic
Heisenberg Hamiltonian which are coupled to an environment forcing them to align along
the z-axis. The single-site Gutzwiller mean-field theory predicts a rich phase diagram for the
magnetic properties of the steady state of this model [39]. More refined calculations, based
on numerical methods including many-body correlations, have confirmed the emergence of a
critical behaviour in two-dimensional lattices, while the phase transition disappears when the
spins are arranged according to a one-dimensional geometry [40, 62, 71, 131, 178]. All these
works, however, focussed on the calculation of steady-state properties and a full description
of the dynamics of the system is still lacking.

In this Chapter, we explore the dynamical properties of the dissipative XYZ model in
the region where a second-order phase transition from a paramagnetic to a ferromagnetic
steady state has been predicted. For finite-size 1D arrays and 2D lattices, we have performed
an exact integration of the master equation using the whole Hilbert space via numerical
simulation of counting quantum trajectories [115]. Moreover, for 1D arrays of infinite length
we have applied the infinite Matrix Product Operator (iMPO) technique [132, 179]. We
confirm the prediction about the role of dimensionality, and the study of single quantum
trajectories shed new light about the nature of the phases.

This Chapter is organized as follows. In Sec. 6.1 we discuss the theoretical framework
and describe the methods used for the calculations. In Sec. 6.2 we show the main results of
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this Chapter.
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Figure 6.1 – Phase diagram of the 2D dissipative XYZ model as a function of the normalized
coupling parameter Jy/γ, with fixed Jx/γ = 0.9 and Jz/γ = 1. For Jy ' Jx, the system
presents a paramagnetic (PM) steady state. At the critical value J (c)

y , the system undergoes
a phase transition towards a ferromagnetic (FM) steady state. Different estimations for
this critical value are: J (c)

y /γ = 1.039 from Ref. [39], J (c)
y /γ = 1.04 ± 0.01 from Ref. [40],

J (c)
y /γ = 1.07 ± 0.02 from Ref. [71] and J (c)

y /γ = 1.0665 ± 0.0005 from Ref. [128]. At
larger values of Jy, the nature of the steady state is still under debate: Ref. [40] predicts
the existence of a second critical point J (c,2)

y /γ = 1.40 (dashed blue line in the figure), above
which the steady state is paramagnetic, but Ref. [71] does not show any evidence of a phase
transition close to this value. From Ref. [2].

6.1 The model
The dissipative XYZ model describes a lattice of spins interacting via an anisotropic

Heisenberg Hamiltonian (~ = 1):

Ĥ =
∑
〈i,j〉

(
Jxσ̂

x
i σ̂

x
j + Jyσ̂

y
i σ̂

y
i + Jzσ̂

z
i σ̂

z
j

)
, (6.1)

where σ̂αi (α = x, y, z) represent the Pauli matrices acting on the i-th site. The sum runs over
the nearest neighbour sites 〈i, j〉. The dissipative part describes incoherent spin-flip processes
which tend to align a single spin towards the negative direction of the z-axis with a rate γ.
The density matrix ρ̂(t) dynamics is obtained from the Lindblad master equation

∂ρ̂

∂t
= L[ρ̂] = −i

[
Ĥ, ρ̂

]
+ γ

∑
j

(
σ̂j
−ρ̂σ̂j

+ − 1
2
(
σ̂j

+σ̂j
− ρ̂+ ρ̂ σ̂j

+σ̂j
−
))

, (6.2)

where σ̂±j = (σ̂xj ± iσ̂yj )/2 are the spin raising and lowering operators acting on the j-th spin
and L is the Liouvillian superoperator.

The Lindblad master equation (6.2) is invariant under a π-rotation of all the spins around
the z-axis (σ̂xi → −σ̂xi , σ̂yi → −σ̂yi ∀i). In the thermodynamic limit, the Z2 symmetry
associated to this transformation may spontaneously break, resulting in the appearance of
several magnetic phases for the steady state of the model. In this work, we will focus on a
particular regime where previous calculations have predicted a transition from a paramagnetic
phase with no magnetization in the xy plane (〈σ̂x〉 = Tr

[
ρ̂ssσ̂

x
j

]
= 0 , 〈σ̂y〉 = Tr

[
ρ̂ssσ̂

y
j

]
= 0)

to a ferromagnetic phase with finite magnetization in the xy plane (〈σ̂x〉 6= 0 , 〈σ̂y〉 6= 0)
[39, 40, 62, 71, 131, 178] (see Fig. 6.1).

From a computational point of view, the numerical solution of the master equation (6.2)
is a formidable task when considering extended lattices. The corner-space renormalization
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method [130], which has shown the criticality of several steady-state observables in 2D lattices
[71], does not give access to the dynamic properties of the system. For small systems with a
number N < 10 spins, the problem can be solved via a standard Runge-Kutta integration of
Eq. (6.2). For 10 ≤ N ≤ 16, instead, we have solved the master equation stochastically via
counting quantum trajectories.

As we detailed in Sec. 2.2, quantum trajectories are useful not only to reduce the com-
plexity of the integration of the Lindblad master equation (6.2), but their analysis of can also
provide insightful results about the nature of the dissipative phase transition [3, 60]. To this
aim, we have investigated the stochastic evolution of individual quantum trajectories for the
dissipative XYZ model, obtained according to the homodyne protocol [cf. Eq. (2.62)], which
in this case reads:

|Ψk(t+ dt)〉 =
∑

j

√
γ

[
σ̂−j −

sj(t)
2

]
dWj(t)

−
[
iĤ + γ

2

(
σ̂+
j σ̂
−
j − sj(t)σ̂−j + sj(t)2

4

)]
dt
|Ψk(t)〉,

(6.3)

where sj(t) = 〈Ψk(t)|σ̂xj |Ψk(t)〉 and dWj are stochastic Wiener increments with zero expec-
tation value, variance equal to

√
dt and uncorrelated among the different spins. As detailed

in Sec. 3.4, the stochastic equation in (6.3) does not conserve the Ẑ2 symmetry of the wave
function. Therefore, by studying the time evolution of the magnetic order parameter over
an individual quantum trajectory, it is possible to reveal the emergence of different magnetic
phases, when we change the parameters of the system. Nevertheless, the symmetry of the
Liouvillian is restored when we consider the density matrix, obtained by averaging over many
trajectories.

Alternative approaches for the simulation of 1D arrays are based on tensor networks
techniques [180] making use of the Matrix Product Operator (MPO) ansatz for the density
matrix [40, 62, 133, 161, 181–184]. The MPO ansatz for the many-body mixed state can
be controlled by changing a single parameter, i.e. the bond-link dimension χ: the more χ
increases, the more non-local quantum correlations can be encoded. The dynamics of the
open system is obtained via a time-evolving block decimation scheme [185, 186]. In the case
of translational invariant systems, the MPO ansatz and the time evolution procedure can be
further simplified leading to the infinite MPO (iMPO) representation [132, 179], which allows
to directly access the thermodynamic limit of an infinite number of sites. Very recently, this
technique has been extended to the case of 2D lattices [131] although with a very reduced
bond dimension.

6.2 Emergence of a second-order phase transition

In the following, we will consider as an order parameter the average lattice magnetization
Mx(t) = ∑

i Tr [ρ̂(t)σ̂xi ] /N , N being the number of spins in the lattice. For any finite size
system, Mx(t) = 0 due to the Z2 symmetry of the system. However, the emergence of a
phase transition may be signalled either by a critical slowing down in the time evolution of
Mx(t), or by the emergence of a bistable behaviour for homodyne trajectories.
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Figure 6.2 – Top panels: time dependence of the averaged magnetization Mx(t) in 1D arrays
(panel (a)) and in 2D lattice (panel (b)) of different size. Parameters: Jx/γ = 1.8, Jy/γ = 2.2
and Jz/γ = 2 for the 1D results in panel (a); Jx/γ = 0.9, Jy/γ = 1.1 and Jz/γ = 1 for the 2D
results in panel (b). Lower panels: Liouvillian gap as a function of the coupling parameter Jy
in 1D arrays (panel (c)) and 2D lattices (panel (d)). The other parameters are: Jx/γ = 1.8
and Jz/γ = 2 for the 1D results; Jx/γ = 0.9 and Jz/γ = 1 for the 2D results. From Ref. [2].

6.2.1 The Liouvillian gap
We start our discussion on the dynamics of the dissipative XYZ model by studying the

time evolution of the average lattice magnetization. In Fig. 6.2, we plot Mx(t) for a fixed
choice of the parameters of the Hamiltonian (6.1) in vicinity of the critical point, for spin
systems of different size, both with 1D (Fig. 6.2-(a)) and 2D geometry (Fig. 6.2-(b)). For
small lattices (i.e. N < 10), the density matrix ρ̂(t) is computed via Runge-Kutta integration
of the master equation (6.2); for larger lattices, ρ̂(t) is calculated averaging 2500 quantum
counting trajectories (obtained with the wave function Monte Carlo protocol described in
App. E.4.1). In all these calculations, the master equation has been solved assuming an initial
configuration where all the spins point along the positive direction of the x-axis (therefore
Mx(t = 0) = 1) and imposing periodic boundary conditions to the finite-size lattice.

For t & 5γ, all the curvesMx(t) decay exponentially towards the steady-state expectation
value Mx

ss = 0 (notice that we have Mx
ss = 0 for all the values of the parameters since we do

not break explicitly the Z2 symmetry of the Liouvillian superoperator in our simulations).
The presence of an asymptotic exponential behavior for Mx(t) indicates that, at large times,
the dynamics of the system can be described uniquely in terms of the eigenstate associated
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Figure 6.3 – Average magnetizationMx
Ψ calculated for a single homodyne quantum trajectory

as a function of time for a 3×3 lattice. The three panels refer to different values of the coupling
parameter Jy/γ (the other parameters are Jx/γ = 0.9 and Jz/γ = 1). From Ref. [2].

to the Liouvillian gap. The density matrix can be approximated as ρ̂(t) = ρ̂ss + Aρ̂1e
−λt,

where A is a real number depending on the choice of the initial configuration (c.f. Eq. (3.12)).
From our results, we notice also that the dynamics gets slower when increasing the size of
the system, both in 1D arrays and in 2D lattices (respectively Fig. 6.2(a) and Fig. 6.2-(b)).
In 1D arrays the decay rate saturates when the size of the system increases. For an array
with 16 sites the decay curve is nearly indistinguishable from what obtained for an array of
infinite length (obtained via the iMPO technique). Instead, in 2D lattices no saturation of
the decay rate is observed.

By fitting the curves for Mx(t) at large t with a simple exponential, we can extract
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the value of the Liouvillian gap λ. The results for λ obtained with this procedure have
been successfully benchmarked against those calculated with an exact diagonalization of the
Liouvillian superoperator in small systems (4 × 1 array and 2 × 2 lattice). In Fig. 6.2-
(c,d) we plot λ as a function of the normalized coupling parameter Jy/γ (the other coupling
parameters Jx/γ and Jz/γ are kept fixed). Both in the 1D and in the 2D case, all the curves
λ(Jy) present a minimum close to the critical value of Jc, indicating a slowing down in the
dynamics of the system. Nevertheless, we clearly notice that this slowing down is not critical
in 1D systems. Indeed, the results for λ(Jy) in the largest 1D systems (with N ≥ 12) overlap
and are in good agreement with the prediction for the infinite array obtained with iMPO 1,
showing a finite value of the Liouvillian gap. Instead, in 2D systems, the minimum of λ(Jy)
becomes smaller and smaller when the size of the lattice increases. This behavior is consistent
with a Liouvillian gap closed in whole region in the thermodynamic limit.

6.2.2 Quantum trajectories
In order to better characterize the behavior of the 2D system across the critical point,

we study the average magnetization of the lattice Mx
Ψ(t) = 〈Ψ(t)|∑i σ

x
i |Ψ(t)〉/N along a

single trajectory |Ψ(t)〉. To this extent, we have computed |Ψ(t)〉 following the homodyne
protocol in Eq. (6.3) in 2D lattices of different sizes, for several values of the parameter
Jy, starting from an initial configuration where all the spins are aligned along the z-axis.
Convergence of the time integration of Eq. (6.3) has been carefully checked, requiring a time
step dt ' (1000γ)−1.

In the three panels of Fig. 6.3, we show the results for Mx
Ψ(t) in a 3 × 3 lattice for

Jy = 0.95γ, Jy = 1.25γ and Jy = 1.8γ. When the steady state presents a paramagnetic
phase [Jy = 0.95γ, Fig. 6.3-(a))] the curve for Mx

Ψ(t) presents only small fluctuations around
the zero value for the magnetization. The behavior of the quantum trajectory is strikingly
different in the ferromagnetic phase [Jy = 1.2γ, Fig. 6.3-(b)]. In this case, we can clearly
distinguish intervals of time where the curve for Mx

Ψ(t) fluctuates around a positive value of
the magnetization and others where it fluctuates around the opposite value. The duration
of these time intervals is of the order ∆t ∼ λ−1. Finally, for large values of the coupling
parameter Jy [Jy = 1.8, γ, Fig. 6.3-(c)], Mx

Ψ(t) presents yet another different behavior. It is
reminiscent of what observed in the paramagnetic phase [see Fig. 6.3-(a)], since it fluctuates
around the zero value of the magnetization, but the amplitude of the fluctuations is much
larger than in the regime Jx ' Jy. This peculiar behavior can be ascribed to the strongly
mixed character of the steady state in this regime (see Refs. [40, 71] for a calculation of the
purity and the von-Neumann entropy). In this case, the stochastic processes described by the
increments dWj in Eq. (6.3) would allow the quantum trajectory to explore a much larger
number of quantum states with respect to the case at small anisotropy, where the trajectory
fluctuates weakly around the single pure state dominating in the steady-state density matrix.
As a consequence, the fluctuations of Mx

Ψ(t) in the paramagnetic regime of large anisotropy
are much stronger than in the regime at Jx ' Jy.

To better understand the nature of those three regimes, we studied the probability dis-
tribution of Mx

Ψ(t) over many trajectories, which we will call p(Mx), defined as follows. We
consider a time ts where the density matrix of the system has reached the steady state, and
statistically collect all the values of Mx

Ψ(t) for t > ts over many trajectories. The results for

1. The accuracy of the iMPO data is checked by increasing the bond-dimension χ until the convergence
is reached (in our calculation, convergence is obtained with χ = 80).
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p(Mx) are presented in the top panel of Fig. 6.4, as a function of the coupling Jy. We notice
that for small Jy the distribution is monomodal around zero. As Jy increases, one reaches
a point Jc ' 1.05γ where p(Mx) starts to present two distinct peaks, which are symmetric
around the value Mx = 0. If we continue to increase Jy, the two peaks broaden and they
move apart, until they reach their maximum distance for Jy ' 1.2γ. Above this value of Jy,
the peaks continues to broaden and they start to approach one to the other, until they merge
again into a single peak for Jy & 1.6γ. The broadening, the separation and the merging of
the peaks in the probability distribution is even more evident in the panels in Fig. 6.4-(a,f),
where we plot the curves for p(Mx) for some values of the coupling parameter Jy.

Figure 6.4 – Top panel: contour plot of the probability distribution p(Mx) of the site-averaged
magnetization along x versus the coupling parameter Jy for a 3 × 3 lattice. Lower panels:
probability distribution p(Mx) for different values of Jy. For each value of Jy, the distributions
are obtained collecting the results of Mx from NT = 16 trajectories with total time tT =
104/γ. Same parameters as in Fig. 6.3. From Ref. [2].

In order to perform a more quantitative analysis of the distribution p(Mx), we compute
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the bimodality coefficient b [187] that for an even distribution reads:

b = (
∫ 1
−1 dMxM

2
xp(Mx))2∫ 1

−1 dMxM4
xp(Mx)

. (6.4)

b is an indicator of the bimodal character of the distribution, which in the present study
is related to the ferromagnetic nature of the steady state. Indeed, when p(Mx) presents
two narrow peaks, then the quantity b approaches its maximum value bmax = 1. Instead,
unimodal distributions are characterized by smaller values of b (for instance, a Gaussian
distribution centered at Mx = 0 would have b = 1/3).

In Fig. 6.5, we plot the value of b as a function of Jy, for different sizes of the 2D lattice.
The emergence of the phase transition at Jy/γ ' 1.05 is signaled by a steep increasing of the
ratio b, which is almost independent of the lattice size. Furthermore, the decreasing of b for
Jy/γ > 1.2 indicates the disappearance of the ferromagnetic order for large anisotropies. In
this case, however, the drop of b is not particularly sharp and tends to become smoother and
smoother as the size of the lattice increases.

The study of the behavior of b(Jy) is interesting to address the open question about the
nature of the steady state of the dissipative XYZ model for large anisotropies. Several works
in literature [40, 131, 178] have predicted a ferromagnetic to paramagnetic phase transition
for Jy/γ > 1.5. However, the critical value of Jy for this second transition depends strongly
on the method used and on the size of the cluster considered in the calculation [40, 131, 178].
Moreover, the behavior of the magnetic susceptibility and of the von-Neumann entropy as
a function of Jy do not present any feature signaling the emergence of a critical point for
Jy > 1.2γ [71]. Our results in Fig. 6.5, showing a smooth decreasing of b at large Jy,
together with the absence of a slowing down for Jy > 1.2γ (see Fig. 6.2-(d)), suggest that the
disappearance of the ferromagnetic order for large anisotropies might be due to a crossover
and not to another second-order phase transition.

6.3 Conclusions

In this Chapter we investigated numerically the dynamics of a dissipative spin-1
2 lattice

interacting through an XYZ-Heisenberg Hamiltonian. This model is particularly relevant
in the context of strongly correlated open quantum systems since it is known to support a
second-order dissipative phase transition in two dimensions, associated with the breaking of
the Z2 symmetry. By performing stochastic quantum trajectories simulations on finite-size
systems, we determined the Liouvillian gap from the asymptotic decay rate of the dynamics
towards the steady state. When the system is driven across the critical point, we found that
the relaxation exhibits a slowing down. For 1D systems, the Liouvillian gap remains finite
as the length of the chain is increased up to the thermodynamical limit, thus indicating the
absence of a phase transition. Instead, results for 2D lattices do not show a saturation of
the Liouvillian gap, which is consistent with the emergence of critical slowing down. By
analyzing individual stochastic homodyne trajectories in 2D lattices, we characterized the
emergence and disappearance of two metastable states with opposite magnetization.

Our predictions might be tested in quantum simulators based on superconducting quan-
tum circuits or Rydberg atoms. As a perspective, the effects of disorder on the dynamics of
these systems is a very interesting aspect that needs to be investigated in the future.
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Figure 6.5 – Bimodality coefficient b (defined in the text) as a function of the coupling
parameter Jy, for different sizes of the 2D lattice. The full lines are a guide for the eye. Same
parameters as in Fig. 6.3. From [2].



CHAPTER 7

Schrödinger Cats and Their Feedback
Stabilisation

In Chapter 4, we derived the analytic solution to the one- and two-photon driven dissi-
pative Kerr resonator. In presence of only two-photon processes, the system steady state is
a quantum superposition of coherent states |α〉 and |−α〉 [188, 189]:

|C±α 〉 = |α〉 ± |−α〉√
2 (1± e−2|α|2)

. (7.1)

Since their theoretical conception [190], Schrödinger’s cats have captured the collective
imagination, because they are non-classical states at the macroscopic level. In quantum
optics, the states of the electromagnetic field closest to the classical ones are the coherent
states |α〉 (see App. B). In this regard, the states |C±α 〉 are known as photonic Schrödinger
cats [25, 188, 189]: they are the quantum superposition of two (almost-)orthogonal (semi-
)classical states. However, one-photon losses are known to destroy the quantum coherence of
the cat states. As a result, the presence of both one- and two-photon dissipations makes the
life of the cat states more intriguing [76, 79, 82, 189, 191, 192].

In this Chapter, exploiting the analytic solution we derived in Sec. 4.2 we demonstrate
that, for a wide range of parameters around typical experimental ones [82], the unique steady-
state density matrix has as eigenstates two cat-like states even for significant one-photon
losses, with all the other eigenstates having negligible probability. To clarify the elusive
features of quantum bimodality, we analyse this system via the quantum trajectory method
both in the photon-counting and in the homodyne case.

The Chapter is organised as follows. In Sec. 7.1 we analyse the properties of the steady-
state density matrix, proving that it can be written as a statistical mixture of two cat states
with opposite parity or of two coherent states with opposite phases. In Sec. 7.2 we use
quantum trajectories to shed light on this apparent contradiction. Finally, in Sec.7.3 we
discuss a possible implementation of a feedback mechanism to protect the cat states from
dissipation.
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Figure 7.1 – Exact results for the steady state. The corresponding density matrix can be
expressed as ρ̂ss = ∑

κ p̃κ|Ψ̃κ〉〈Ψ̃κ|, where p̃1 and p̃2 are the probabilities of the two most
probable eigenstates. Parameters: ∆ = 0, U = ~η, γ = 0.1 η. Panel (a): residual probability
1− p̃1 − p̃2 versus the two-photon drive amplitude G normalized to the two-photon loss rate
η, showing that the density matrix is dominated by the first two eigenstates. Panel (b): as
a function of G/~η, mean number of photons ñ and its contributions ñ1 and ñ2. Panel (c):
as a function of G/~η, the mean parity P̃ and its contributions P̃1 and P̃2. Panel (d): for
G = 10~η, contour plot of the Wigner function W̃ (β) for the density matrix ρ̂ss. Panel (e)
and (f): for G = 10~η, Wigner functions W̃1(β) and W̃2(β) associated to the two most
probable eigenstates. For the latter, we also show a 3D zoom of the central region |β| ≤ 1.6.
Note that the fringe pattern changes sign between W̃1(β) and W̃2(β). From [6].

7.1 Steady-state analysis

We consider the quadratically driven-dissipative Kerr resonator described in Sec. 4.2 In
spite of the several parameters in the model, the solutions in Sec. 4.2.3 depends only on two
dimensionless quantities, namely c = (∆ + i ~ γ/2)/(U − i ~ η) and g = G/(U − i ~ η). The
former can be seen as a complex single-particle detuning ∆ + i ~ γ/2 divided by a complex
interaction energy U − i ~ η; g is instead the two-photon pump intensity normalized by the
same quantity. Notably, Eqs. (4.54) show that, for any finite value of the system parameters,
there will be no even-odd coherences in the steady state. In what follows following, all the
quantities marked with a tilde will refer to steady-state values.

To further characterise the steady-state, we consider the spectral decomposition of the
density matrix ρ̂ = ∑

κ pκ|Ψκ〉〈Ψκ|, with |Ψκ〉 the κth eigenstate of ρ̂ with eigenvalue pκ.
The latter corresponds to the probability of finding the system in |Ψκ〉 upon an appropriate
measure. The eigenstates are sorted in such a way that pκ ≥ pκ+1. For a pure state, p1 = 1 and
all the other probabilities pκ are zero. We numerically diagonalised the density matrix ρ̂ss in a
truncated Fock basis, choosing a cutoff ensuring a precision of 10−14. For our calculations, we
chose a set of parameters around typical experimental ones [82], i.e. ∆ ' 0, |U | ' ~η, G & ~η,
and γ . η. In this regime, for the steady state only two eigenstates dominate the density
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Figure 7.2 – Metastable versus steady-state regime. The curves depict the time-dependent
fidelity of the density matrix ρ̂(t) with respect to the unique steady-state density matrix ρ̂ss
by taking as initial condition a pure coherent state, i.e., ρ̂(t = 0) = |β〉〈β|. The fidelity is
defined as f [ρ̂ss; ρ̂(t)] = Tr

[√√
ρ̂ss ρ̂(t)

√
ρ̂ss

]
. The values of β and the corresponding colours

are indicated in the inset. Panel (a): the phase of the initial coherent state is varied (cf.
inset). Panel (b): the amplitude is changed (cf. inset). The dashed lines correspond to the
vacuum as initial state. Parameters: ∆ = 0, U = ~η, G = 10~η, γ = η. From Ref. [6].

matrix. As shown in Fig. 7.1(a), typically p̃1 + p̃2 ' 1, and ρ̂ss ' p̃1|Ψ̃1〉 〈Ψ̃1| + p̃2|Ψ̃2〉 〈Ψ̃2|.
The aforementioned absence of even-odd coherences implies that |Ψ̃1(2)〉 is composed of only
even (odd) Fock states. Furthermore, we find that |Ψ̃1〉 ' |C+

α 〉 and |Ψ̃2〉 ' |C−α 〉 for an
appropriate choice of α. For the parameters of Fig. 7.1(d), 〈Ψ̃1(2)|C+(−)

α 〉 ' (1 − 8 × 10−6)
for α ≈ 2.7 e2.0 i. We have varied ∆/~η between -0.2 and 0.2, G/~η between 0 and 15, γ/η
between 0 and 5, U/~η between 1 and 10, always finding that 1− p̃1− p̃2 < 10−2. Moreover,
in these ranges, we verified that there exists a value of α such that 〈Ψ̃1(2)|C+(−)

α 〉 > 0.98.
Hence, we can conclude that for a broad range of parameters the eigenstates of ρ̂ss are two
cat-like states of opposite parity. 1

Using the linearity of the trace, for any operator Ô one can write Õ = Tr
[
ρ̂ss Ô

]
'

p̃1Õ1 + p̃2Õ2, where Õκ = 〈Ψ̃κ|Ô|Ψ̃κ〉. In Fig. 7.1(b) we plot, as a function of the pump
amplitude G, the steady-state mean density ñ, together with its contributions ñ1,2. For weak
pumping one has ñ1 ' 0 and ñ2 ' 1, in agreement with what one would obtain for the
even and the odd cat by taking the limit α → 0 of Eq. (F.15). These two contributions
become equal in the limit of a very large number of photons. As shown in Fig. 7.1(c), the
two contributions to the mean parity P̃1,2 always stay clearly different, being |C±α 〉 orthogonal
eigenstates of P̂ with eigenvalues ±1. To visualise the nonclassicality of the states, we use
the Wigner function. Even if the Wigner function of the steady state is always positive [cf.
Eq. (4.55)], the separate contributions W̃1(β) and W̃2(β) exhibit an interference pattern with
negative regions, typical of cat states [cf. Fig. 7.1(d-f)].

We emphasize that for finite γ the considered system has always a unique steady state.
However, the temporal relaxation towards the steady state depends dramatically on the
initial condition. This metastable behaviour is is revealed by the time-dependent fidelity
with respect to the steady state, presented in Fig. 7.2, obtained by numerical integration of
the master equation. In particular, initialising the system in one of the coherent states |±α〉

1. Let us notice that a simple method to determine the nature of the steady state in the limit γ � U � G
can be found in [88].
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composing the steady-state cats, it persists nearby for a time several orders of magnitude
longer than 1/γ and 1/η. Hence, the “multiple stable steady states” in [82] are actually
metastable.

7.2 Quantum trajectories
The density matrix ρ̂ss is well approximated by the statistical mixture of two orthogonal

states:
ρ̂ss ' p+ |C+

α 〉〈C+
α |+ p− |C−α 〉〈C−α | . (7.2)

In Eq.(7.2), the coefficients p± can be interpreted as the probabilities of the system of being
found in the corresponding cat state. For intense pumping (G � U, γ, η), one has |α| � 1
and p+ ' p− ' 1/2. However, in this strong-pumping regime, Eq. (7.2) can be recast as

ρ̂ss '
1
2 |α〉〈α|+

1
2 |−α〉〈−α| . (7.3)

Hence, the steady state can be seen as well as a statistical mixture of two coherent states of
opposite phase. Since ρ̂ss is anyhow a mixture of two (quasi-)orthogonal states, the steady
state is bimodal. Now, the pivotal question is: if one monitors the evolution of the system,
in which states can it be observed? The orthogonal cat states in Eq. (7.2) with p± = 1/2,
the two coherent states with opposite phases in Eq. (7.3), or none of them in particular? As
we will show in the following, the answer dramatically depends on the type of measurement
scheme employed to monitor the trajectory of the system.

7.2.1 Photon counting
As we discussed in Sec. 3.4.2 and proved in Sec. 4.4, a photon-counting trajectory for

this system will always jump between eigenstates of the parity. The cat states are, indeed,
orthogonal eigenstates of the parity operator P̂ = eiπâ†â with eigenvalues ±1. For the specific
case of the Schrödinger cats, this is presented in Fig. 7.3, where in panels (a,b) we follow,
respectively, the time evolution of the photon number 〈n̂〉 and of the parity 〈P̂〉, starting
from the vacuum state as initial condition. On a single trajectory, two-photon processes
initially dominate, driving the system towards |C+

α 〉. Indeed, 〈n̂〉 ' ñ1 and 〈P̂〉 = P̃1 = 1.
Two-photon losses do not affect a state parity, indeed â2 |C±α 〉 = α2 |C±α 〉. This is why the
system persists nearby the even cat until a one-photon loss occurs. At this point, the state
abruptly jumps to the odd manifold [193], since â |C±α 〉 ∝ |C∓α 〉. After the jump, two-photon
processes stabilise |C−α 〉, so that 〈n̂〉 ' ñ2 and 〈P̂〉 = P̃2 = −1. When another one-photon
jump takes place, the system is brought back to the even manifold, and so on. Hence, if
the quantum trajectory is monitored via photon counting [24], the system can only be found
nearby |C+

α 〉 or |C−α 〉. The probability of being in each cat is given by the corresponding
eigenvalue of ρ̂ss, namely p̃1 and p̃2. Since ñ1,2 ≈ ñ, it is impossible to discern the cats’ jumps
by tracking the photon density. A parity measurement, instead, would be suitable [194]. In
Fig. 7.3(a) and (b) we also present the average over 100 trajectories, which, as expected,
converges to the master equation solution (also shown). The latter corresponds to the full
average over an infinite number of realizations [110]. The fully-averaged and single-trajectory
evolutions of the Wigner function are shown in Fig. 7.3(c). In the averaged one, an even-cat
transient appears, but negativities are eventually washed out for ηt, γt � 1 [82, 189, 193].
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By following a single quantum trajectory, instead, we see that Wt(β) quickly tends to the
one of |C+

α 〉. Then, it abruptly switches to that of |C−α 〉, then back at each one-photon jump.

7.2.2 Schrödinger cats vs coherent states

The previous analysis seems to point in the direction of privileging Eq. (7.2) over Eq. (7.3)
as the more truthful picture of the steady state. This is no more the case if we consider
homodyne quantum trajectories. In Fig. 7.4(a) we present, again, the time evolution of the
parity along a counting trajectories. We also show that the filed quadrature x̂ and p̂ have
zero mean along such a trajectory. In Fig. 7.4(b), we present (in a log-linear scale) the mean
parity 〈P̂〉 along a single homodyne trajectory, taking the vacuum as initial state. In spite
of the “switching cat” picture, the parity rapidly approaches zero, and than just fluctuates
around this value. These fluctuations are due to the diffusive nature of Eq.(6.3), which rules
the stochastic time evolution of the system wave function under homodyne detection. The
bimodal behaviour, instead, is clear in the time evolution of 〈x̂〉 and 〈p̂〉, shown in Fig. 7.4(c).
This appears compatible with the picture given by Eq. (7.3): at the steady state the system
switches between the coherent states |±α〉. We point out that the phase switches observed
for homodyne trajectories have a much smaller rate than parity switches in photon-counting
trajectories. This is a consequence of the metastable nature of the coherent states |±α〉
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system parameters to U = 1η, G = 5η, and γ = 0.1η. Simulations were performed on a
truncated Fock basis with nmax = 15, ensuring convergence. From Ref. [4].

[6, 82], associated to the symmetry Z2 of the system.
Summing up, we have shown that the behaviour of the system along a single quantum

trajectory dramatically depends on the measurement protocol adopted. For photon-counting
measurements on the environment, the system switches between the parity-defined cat states
appearing in Eq. (7.2). Under homodyne detection, the states explored along a single quan-
tum trajectory are the coherent ones in Eq. (7.3). In other words, one may assign a physical
meaning to the probabilities appearing in the mixed-state representation of ρ̂ss only upon
specification of the single-trajectory protocol. However, any possible controversy at the
single-trajectory level is washed out by averaging over many of them.

7.3 A feedback protocol

The results presented above suggest that, in order to have a cat-like steady state (e.g.
keep interference fringes in the fully averaged Wigner function), one may try to unbalance the
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even and odd contributions to ρ̂ss. This effect can be envisioned through a parity-triggered
feedback mechanism [195–198] opening a one-photon loss channel. In practice, this can be
implemented via non-destructive parity measurements [194, 199], whose rate must be larger
than any other rate in the system. Note that, in general, a parity measurement projects
the system into the even- or odd-parity manifold, affecting the dynamics by destroying the
even-odd coherences. In the present case, however, those coherences are proven to be always
zero in the steady state by the analytic solution. Thus, a high-rate and non-destructive
parity measure does not alter significantly the system dynamics and allows to continuously
monitor 〈P̂〉. When the undesired value is measured, an auxiliary qubit is put into resonance
with the cavity, inducing the absorption of a photon. After the desired parity is restored,
the qubit is brought out of resonance, closing the additional dissipation channel. Such a
qubit acts as a non-Markovian bath for the system, and in principle its effects can not be
simply assimilated to those of a Markovian environment. However, if one assumes that the
excited-state lifetime of the qubit is shorter than the inverse of the qubit-cavity coupling rate,
one can safely treat it as an additional Markovian dissipator [196, 200]. In other words, the
coupled qubit must be engineered to easily lose the photon to the environment, which seems
a reasonable task for the present experimental techniques [192, 197, 198, 201]. Under these
assumptions, the proposed feedback protocol can be effectively described by the additional
jump operator âf = â 1

2(1− P̂) and the corresponding dissipator

D[âf ]ρ̂ = γf
2
(
2âf ρ̂â†f − â†f âf ρ̂− ρ̂â†f âf

)
. (7.4)

Qualitatively, D[âf ] leaves the even cat undisturbed, while it enhances the dissipation for the
odd one.

In Fig. 7.5(a) we show the time evolution of 〈P̂〉 for three different values of γf . These
results have been obtained via numerical integration of the Lindblad master equation with



a total dissipator D = D[â] + D[â2] + D[âf ]. At the steady state, as γf increases so does
P̃ , indicating that the positive cat has a larger weight in ρ̂ss. In Fig. 7.5(b) we show the
corresponding steady-state Wigner functions W̃ (β). For finite γf , negative fringes appear
in the Wigner function. They are more pronounced as γf is increased, revealing a highly
nonclassical state. In the limit γf � γ, ρ̂ss ' |C+

α 〉 〈C+
α |. By using, instead, the jump operator

âf = â 1
2(1 + P̂), one can similarly stabilize the odd cat state. Note that the Wigner-function

negativities in Fig. 7.5 are those of the full steady-state density matrix. Hence, the quantum
state of the system is on average nonclassical.

7.4 Conclusions
In this Chapter, we have studied the quantum many-body behaviour of interacting pho-

tons in a nonlinear resonator subject to engineered two-photon processes. The objective has
been to point out and characterize the bimodal nature of the steady state, which can be
seen, equivalently, as the statistical mixture of photonic Schrödinger cat states [Eq. (7.2)] or
of coherent states with same amplitude and opposite phases [Eq. (7.3)]. We have also shown
that the transient dynamics to the unique steady state can depend dramatically on the initial
condition, revealing the existence of metastable states.

Furthermore, by monitoring the quantum trajectory of the system via photon counting
(homodyne), we found that it explores the two cat states (7.2) (two coherent states (7.3))
composing the steady-state statistical mixture. On this ground, we proposed to engineer a
parity-dependent dissipation which allows to stabilize a cat-like steady state.

The general nature and richness of the results predicted here paves the way to a wide
variety of experimental and theoretical investigations. As a future perspective, a challeng-
ing but intriguing problem is the study of other photonic cat-like states in the transient
and steady-state regime for arrays of coupled resonators. Furthermore, the components of
the mixed steady state (7.2) or (7.3) can be used as (quasi-)orthogonal states in quantum
computation [84–86, 88, 202].
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General Conclusions

In this thesis we explored the physics of driven-dissipative systems, with a particular
focus on critical phenomena. We investigated both general properties of driven-dissipative
phase transitions and specific models exhibiting criticality. The generation and stabilisation of
phases without an equilibrium counterpart is a timely subject, in particular for the realisation
of nonclassical states which can be used for quantum simulation and computation. In this
regard, we studied models characterised by a two-photon pumping mechanism, which can
be obtained via reservoir engineering of the system-environment exchanges. All through
the manuscript, particular attention was given to quantum trajectories, pointing out the
possible use of single quantum trajectories to investigate criticality. The results presented
are quite general, and several experimental platform can realise the presented models, e.g.,
semiconductor optical microcavities and superconducting circuits.

In particular, in Chapter 3 we unveiled the connection between phase transitions and
spectral properties of the Liouvillian superoperator. Beyond the interest in the conceptual
foundations of the topic of dissipative phase transitions, we found a series of general proper-
ties, which can be used to identify the onset of phase transitions: (i) A punctual closure of the
Liouvillian gap indicates a first-order phase transition, while the gap closed in a whole region
signals a second-order one; (ii) Around criticality, there is an intimate connection between
the form of the steady-state density matrix and that of the Liouvillian eigenmatrix whose
eigenvalue defines the Liouvillian spectral gap; (iii) First-order phase transition show bistable
quantum trajectories only around the critical point, while to observe bimodal behaviour in
second-order phase transitions is necessary to use homodyne quantum trajectories.

Using the previously derived indicators, we have then analysed the emergence of phase
transitions in several models. In Chapter 4 we considered the one- and two-photon driven-
dissipative Kerr resonator, for which we provided an analytic solution of the steady state den-
sity matrix. We showed that, in an appropriate thermodynamic limit, the one-photon Kerr
resonator presents a first-order phase transition, while the two-photon one has a second-order
phase transition. This model, for which an exact numerical diagonalisation of the Liouvillian
is possible, allowed us to benchmark our general theory, both regarding the structure of the
Liouvillian eigenmatrices and the use of quantum trajectories. In Chapter 5, we studied the
emergence of a first-order phase transition in an extended driven-dissipative Bose-Hubbard
lattice by studying the critical slowing down associated with the closure of the Liouvillian
gap. Using the truncated Wigner trajectories, we demonstrated the emergence of a phase
transition in 2D lattices and the lack of criticality in 1D systems, proving the role of dimen-
sionality for dissipative phase transitions. In Chapter 6, instead, we studied the dynamical
properties of dissipative XYZ Heisenberg lattices, a model presenting a second-order phase
transition associated with the breaking of the Z2 symmetry. We also analysed the behaviour
of individual homodyne quantum trajectories which, according to our general theory, well
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reveal the properties of the “broken symmetry” phases.
Finally, in Chapter 7, we explored the emergence of Schrödinger cats in a two-photon

driven Kerr resonators. Exploiting the exact analytical solution derived in Chapter 4, we
demonstrated that the unique steady state is a statistical mixture of two cat-like states with
opposite parity, in spite of significant one-photon losses. We resorted to quantum trajectories
to further characterise the system. While along a single photon-counting trajectory the
system intermittently switches between an odd and an even cat states, we showed that upon
homodyne detection the system switches between coherent states of opposite phase. Finally,
we proposed and studied a feedback protocol based on the “jumping cat” behaviour. Such a
procedure can purify cat-like steady states.

The presented works open several possible prospects. First, the study of disordered sys-
tems via single quantum trajectories. Indeed, in Chapter 5 we proposed an extremely effi-
cient protocol based on quantum trajectories, making possible to investigate such a problem.
Second, the exact results derived in Chapter 3 severely constrain the nature of the steady-
state around a phase transitions. One can use the conditions in the determination of a
semi-analytical steady-state via variational methods. In this regard, it seems interesting to
develop a variational method based on the complex P -representation. Third, one can use the
symmetries of the Liouvillian superoperator to simplify the numerical cost in computing the
Liouvillian spectrum in extended lattices. Finally, concerning the stabilisation of Schrödinger
cats, an in-depth study of the proposed feedback is of great interest.
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APPENDIX A

Ideal Homodyne Detection Limit

To properly derive the stochastic Schrödinger equation (2.61) in the limit β → ∞, we
remark that the only non-deterministic term of Eq. (2.61) is dN(t). Since dN(t) = 0, 1, one
has dN(t)2 = dN(t). Moreover, the expectation value of dN(t) reads

E[dN(t)] = τ 〈(Γ̂† + β)(Γ̂ + β)〉 = τβ2 + τβ 〈Γ̂† + Γ̂〉+O(β0), (A.1)

where, in the limit β →∞ one can neglect the term due to the bare jump operator Γ̂. Clearly,
τ must be small enough to ensure E[dN(t)] < 1, and therefore τE[dN(t)] = 0. Consequently,
dN(t) can be recast as

dN(t) = τβ2 + βdX(t), (A.2)

where the first is a constant term, while dX(t) is the variable encoding the stochastic nature
of the problem. We are, therefore, interested in deriving the properties of dX(t). By taking
the expectation value of dN(t) we see immediately that

Property (i): E[dX(t)] = τ 〈Γ̂† + Γ̂〉 . (A.3)

Now, consider (dX(t))2. One has

E
[
(dX(t))2

]
= E

[
(dN(t)− τβ2)2

β2

]
= E

[
(dN)2

β2

]
− 2τE[dN(t)]− β2τ 2

= E

[
dN
β2

]
= τ + E[dX(t)]

β
= τ,

(A.4)

where we remark τE[dN(t)] ' τ 2β = 0. Hence

Property (ii) : E
[
(dX(t))2

]
= τ (A.5)

Moreover, dX(t)τ = 0, since dN(t)τ = 0.
Therefore, from Property (i) and (ii) we conclude that

dW (t) = dX(t)− E[dX(t)] (A.6)

is a Wiener process, of variance E[(dW (t))2] = τ and expectation E[dW (t)] = 0. Finally,
to obtain the stochastic Schrödinger equation for a diffusive process, we have to develop the
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first part of Eq. (2.61), keeping only the highest order in β. Since dN(t) contains terms of
order β2, the first part of Eq. (2.61) read

 Γ̂ + β√
〈(Γ̂† + β)(Γ̂ + β)〉

− 1

 = dN(t)

 Γ̂ + β

β

√
1 + 〈Γ̂†+Γ̂〉

β
+ 〈Γ̂†Γ̂〉

β

− 1


=
1 + Γ̂

β

1− 〈Γ̂
† + Γ̂〉
2β + 3 〈Γ̂† + Γ̂〉2

8β2 − 〈Γ̂
†Γ̂〉

2β2 +O(β−3)
− 1


=
 Γ̂
β
− 〈Γ̂

† + Γ̂〉
2β + 3 〈Γ̂† + Γ̂〉2

8β2 − Γ̂〈Γ̂
† + Γ̂〉
2β2 − 〈Γ̂

†Γ̂〉
2β2

 ,

(A.7)

and therefore

dN(t)
 Γ̂ + β√
〈(Γ̂† + β)(Γ̂ + β)〉

− 1


=
(
β2τ + βdW (t) + βτ 〈Γ̂† + Γ̂〉

) Γ̂
β
− 〈Γ̂

† + Γ̂〉
2β + 3 〈Γ̂† + Γ̂〉2

8β2 − Γ̂〈Γ̂
† + Γ̂〉
2β2 − 〈Γ̂

†Γ̂〉
2β2


= τ

β
Γ̂− 〈Γ̂ + Γ̂†〉

2

+ Γ̂〈Γ̂
† + Γ̂〉
2 − 〈Γ̂

† + Γ̂〉2

8 − 〈Γ̂
†Γ̂〉
2

+ dW (t)
Γ̂− 〈Γ̂

† + Γ̂〉
2

 .
(A.8)

Injecting the result of Eq. (A.8) into Eq. (2.61) we finally obtain

d |ψ(t)〉 =
dW (t)

Γ̂− 〈Γ̂
† + Γ̂〉
2

+ τ

−iĤ − Γ̂†Γ̂
2 + Γ̂〈Γ̂

† + Γ̂〉
2 − 〈Γ̂

† + Γ̂〉2

8

 |ψ(t)〉 .

(A.9)



APPENDIX B

Properties of the Coherent States

B.1 Some useful properties
Expression in the Fock basis: Using the definition of the displacement operator, and
noticing that

D̂(α) = eαâ
†−α∗â = e−

|α|2
2 eαâ

†
e−α

∗â, (B.1)

one can express the coherent state on the Fock basis as:

|α〉 = e−|α|
2/2eαâ

†
e−α

∗â |0〉 = e−|α|
2/2∑

n

αnâ†n
∑
m

α∗mâm |0〉 = e−|α|
2/2∑

n

αnâ†nα∗ 0â0 |0〉

= e−|α|
2/2∑

n

αn√
n! |n〉 .

(B.2)

Mean number of photons: From Eq. (B.2) follows:

〈n̂〉 = 〈α|n̂|α〉 = e−|α|
2 ∑
n,n′

(α∗)n αn′

(n!n′!)1/2 〈n
′|n̂|n〉 = e−|α|

2 ∑
n

|α|2n
n! n = |α|2. (B.3)

Poissonian number distribution of coherent states: The probability of finding n
photons in a coherent state |α〉 is

Pα(n) = |〈n|α〉|2 = e−|α|
2 |α|2n
n! , (B.4)

from is a Poissonian distribution with mean 〈n̂〉 = |α|2. Moreover,

〈n̂2〉 = 〈α|n̂2|α〉 = e−|α|
2 ∑

n

|α|2n
n! n2 = e−|α|

2 ∑
n

|α|2n
n! [n(n− 1) + n] = |α|4 + |α|2. (B.5)

Consequently, the variance of the second momentum is

〈n̂2〉 − 〈n̂〉2 = |α|2 = 〈n〉 , (B.6)

as required by a Poissonian distribution.
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Coherent states are the only eigenstate of the annihilation operator: From Eq. (B.2),
it follows that coherent states are eigenstate of the annihilation operator, i.e.,

â |α〉 = α |α〉 (B.7)

We stress that this equation defines uniquely the state |α〉. Indeed, suppose there exist a
second state |Ψ〉 such that â |Ψ〉 = α |Ψ〉. We would have

â |Ψ〉 − α |Ψ〉 =
∞∑
n=0

cn
√
n |n− 1〉 − αcn |n〉 =

+∞∑
n=0

(
cn+1
√
n+ 1− αcn

)
|n〉 = 0. (B.8)

This equation is true if, for every n, we have cn+1
√
n+ 1− αcn = 0. We have

cn+1 = αcn√
n+ 1

= α2cn−1√
(n+ 1)(n)

= . . . = αn+1c0√
(n+ 1)!

(B.9)

By choosing c0 = A, and imposing 〈Ψ|Ψ〉 = 1, we obtain A = e−|α|
2/2 (up to a global phase).

Thus we proven that |Ψ〉 is the coherent state |α〉, since

|Ψ〉 = e−
|α|2

2

∞∑
n=0

αn |n〉√
n!

= |α〉 . (B.10)

Therefore, equation (B.7) can be considered as an alternative definition of a coherent state,
since it uniquely identifies the state |α〉.
Action of the creation operator on the coherent states: The creation operator do not
admit any (right) eigenstate, since â† |Ψ〉 = α∗ |Ψ〉 would imply

â† |Ψ〉 − α∗ |Ψ〉 =
∞∑
n=0

cn
√
n+ 1 |n+ 1〉 − α∗cn |n〉 = c0 +

+∞∑
n=1

(
cn−1
√
n− 1− α∗cn

)
|n〉 = 0.

(B.11)
The only solution to this equation is cn = 0 for every n. However, it is possible to obtain a
compact relation for the effect of â† on |α〉:

â† |α〉 = e−
|α|2

2
∑
n

αn√
n!
√
n+ 1 |n+ 1〉 = e−

|α|2
2
∑
n

∂

∂α

αn+1 |n+ 1〉√
(n+ 1)!

= e−
|α|2

2
∂

∂α
e
|α|2

2 e−
|α|2

2
∑
n

αn+1 |n+ 1〉√
(n+ 1)!

= e−
|α|2

2
∂

∂α
e
|α|2

2 |α〉 =
(
∂

∂α
+ α∗

)
|α〉 .

(B.12)

Composition of displacement: The composition of two displacement generates, up to a
proportionality factor, a displacement operator:

D̂(β)D̂(α) = eβâ
†−β∗âeαâ

†−α∗â = e(α+β)â†−(β∗+α∗)âe(αβ∗−α∗β)/2 = e(αβ∗−α∗β)/2D̂(α+β), (B.13)

where we used the Baker-Campbell-Hausdorff formula [24]. Moreover, D̂†(α) = D̂(−α).
Scalar product: Exploiting the definition of a coherent state in Eq. (B.2), one has

〈β|α〉 = e−
|α|2

2 e−
|β|2

2

∞∑
n,m=0

αnβ∗m 〈m|n〉√
n!m!

= exp
[
−|α|

2

2 − |β|
2

2 + αβ∗
]
. (B.14)
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It follows that two coherent states are never orthogonal one to each other, since

|〈β|α〉|2 = exp
[
−|α− β|2

]
6= 0. (B.15)

Indeed, |α〉 and |β〉 are eigenstates of the annihilation operator (which is not self-adjoint),
and therefore need not be orthogonal.
Overcompleteness: Coherent states form a overcomplete basis Hilbert space. In fact, one
has

1
π

∫∫
d2α |α〉 〈α| =

∞∑
n,m=0

|n〉 〈m|
π
√
n!m!

∫∫
d2αe−|α|

2
αnα∗m

=
∞∑

n,m=0

|n〉 〈m|
π
√
n!m!

∫ ∞
0

rdr
∫ 2π

0
dθe−r2

rn+mei(n−m)θ

=
∞∑

n,m=0

|n〉 〈m|
π
√
n!m!

2πδn,m
∫ ∞

0
dre−r2

rn+m+1

=
∞∑
n=0

2 |n〉 〈n|
n!

∫ ∞
0

dre−r2
r2n+1 =

∞∑
n=0

2 |n〉 〈n|
n!

∫ ∞
0

dt
2 e
−ttn

=
∞∑
n=0

|n〉 〈n|
n! Γ(n+ 1) =

∞∑
n=0
|n〉 〈n| ,

(B.16)

where d2α = dIm [α] dRe [α] is the integral over the complex plane, and Γ(n+1) =
∫∞

0 dte−ttn
is the integral representation of the Euler gamma function (such that Γ(n+1) = n! for integer
n). As a consequence of their nonorthogonality, any coherent state can be expanded in terms
the others. Thus, the set of |α〉 forms an overcomplete basis of the Hilbert space.
Trace over coherent states: The trace can be expressed as

Tr[•] =
∑
n

〈n| • |n〉 =
∑
n

∫∫ d2αd2β

π2 〈n|α〉 〈α| • |β〉 〈β|n〉

=
∫∫ d2αd2β

π2 e−|α|
2/2−|β|2/2∑

n

(αβ∗)n
n! 〈α| • |β〉

=
∫∫ d2αd2β

π2 e−|α|
2/2−|β|2/2+αβ∗ 〈α| • |β〉 =

∫∫ d2αd2β

π2 〈α| • |β〉 〈β|α〉

=
∫ d2α

π
〈α| • |α〉 ,

(B.17)

where we used e−|α|2/2−|β|2/2+αβ∗ = 〈β|α〉.
Bargman states and expansion of states and operators in the coherent basis: Let
us introduce the Bargman states, defined as

| |α〉 = e
|α|2

2 |α〉 =
∞∑
n=0

αn√
n!
. (B.18)

The Bargman states are analytic functions of α. By using the relation derived in Eq. (B.16),
any state can be expressed as

|Ψ〉 = 1
π

∫
d2α |α〉 〈α|Ψ〉 = 1

π

∫
d2αe−

|α|2
2 Ψ(α∗) |α〉 , (B.19)
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where Ψ(α∗) = 〈Ψ||α〉 ensures that Ψ(α∗) is an analytic function of α∗. We conclude that
expansion (B.19) is unique.

Similarly, any operator ξ̂ can be recast as

ξ̂ = 1
π2

∫
d2α

∫
d2β |α〉 〈α|χ|β〉 〈β| = 1

π2

∫
d2αe−

|α|2
2

∫
d2βe−

|β|2
2 χ(α∗, β) |α〉 〈β| , (B.20)

where χ(α∗, β) = 〈α|| ξ̂ ||β〉 is an analytic function of α∗ and β. 1

Normal product: A normal product of creation and annihilation operators is defines as an
expression in which all the destruction operators are on the left of the creation operators.
Such an ordering is often identified with the symbol : :. For example : (â + â†)3 := â† 3 +
3â† 2â+ 3â†â2 + â3. For normal ordered operators, we have

〈α| : (â+ â†)n : |β〉 = (β + α∗)n. (B.21)

B.2 Coherent states and the classical limit

Here we prove that |α〉 is a semiclassical state state for the harmonic oscillator in Eq. (1.6),
that is, at every time t, 〈x̂(t)〉, 〈p̂(t)〉 and 〈Ĥ(t)〉 are the same as their classical harmonic
oscillator counterparts [cf. Eqs. (1.5)]. Consider a system prepared initially in a coherent
state |α, t = 0〉 = |α0〉. The question is what is the form of the state |α, t〉 = e−iĤt |α0〉. To
answer this question, let us consider the effect of the annihilation operator â on |α, t〉, i.e.

â |α, t〉 = âe−iĤt |α0〉 = e−iĤteiĤtâe−iĤt |α0〉 . (B.22)

Thus, one need to solve eiĤtâe−iĤt, which is

eiĤtâe−iĤt =
∞∑
j=0

eiωn̂tâe−iωn̂t |j〉 〈j| =
∞∑
j=0

eiωn̂t
√
je−iωjt |j − 1〉 〈j|

=
∞∑
j=0

√
je−iωt |j − 1〉 〈j| = e−iωt

∞∑
j=0

â |j〉 〈j| = âe−iωt.

(B.23)

Hence, we have

â |α, t〉 = e−iĤtâe−iωt |α〉 = αe−iωte−iĤt |α〉 = αe−iωt |α, t〉 . (B.24)

As proved in Eq. (B.7), Eq. (B.24) completely defines the coherent state. We conclude that

|α, t〉 = |αe−iωt〉 . (B.25)

1. We notice that, equivalently, we may have written

|Ψ〉 = 1
π

∫∫
d2 αe−|α|

2
Ψ(α∗) ||α〉 ,

and
ξ̂ = 1

π2

∫∫
d2α

∫∫
d2β e−|α|

2
e−|β|

2
χ(α∗, β) ||α〉 〈β|| .
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It follows, thanks to Eq. (1.9), that
〈p̂(t)〉 = − i

√
mω√
2

(
α0e

−iωt − α∗0eiωt
)
,

〈x̂(t)〉 = 1√
2mω

(
α0e

−iωt + α∗0e
iωt
)
,

(B.26)

which have exactly the same form as Eq. (1.5). Moreover,

〈Ĥ〉 = 〈α|ω(n̂+ 1
2)〉 = ω|α|2 + ω

2 . (B.27)

Thus, in the limit |α|2 = 〈n̂〉 → ∞, also the expectation value of the Hamiltonian correspond
to the classical energy of an harmonic oscillator. We conclude that the coherent state |α〉
is, indeed, the wanted state which, for a hight number of quanta, recovers the classical
predictions.



APPENDIX C

The Fourier-Weil Relation

The Fourier-Weil relation allows to write any operator as a composition of displacement
operators. Indeed, it constitutes the super-operatorial equivalent of the completeness relation
for the coherent states derived in Eqs. (B.16) and (B.19). We start by the following:

Lemma C.1. The displacement operators are traceless, i.e.,

Tr
[
D̂(α)

]
= πδ2(α). (C.1)

Proof. Exploiting the definition of trace given in terms of coherent operators (c.f. Eq. (B.17))
and Eq. (B.1):

Tr
[
D̂(α)

]
=
∫ d2γ

π
e−|α|

2/2 〈γ|eαâ†e−α∗â|γ〉 =
∫ d2γ

π
e−|α|

2/2eαγ
∗
e−α

∗γ

= e−|α
2|/2

π

∫
dRe [γ] eRe[γ](α−α∗)

∫
dIm [γ] e−iIm[γ](α+α∗)

= e−|α
2|/2

π

∫
dRe [γ] e−2iRe[γ]Im[α]

∫
dIm [γ] e−2iIm[γ]Re[α] = πδ2(α),

(C.2)

where with the notation δ2(α) we mean that both the real and imaginary part of α must be
zero.

�

Corollary C.2. The displacement operators are orthogonal for the Hilbert-Schmidt inner
product, i.e.,

〈D̂(α)|D̂(β)〉 = Tr
[
D̂†(α)D̂(β)

]
= πδ2(β − α). (C.3)

Proof. One has

Tr
[
D̂†(α)D̂(β)

]
∝ Tr

[
D̂(β − α)

]
= πδ2(β − α), (C.4)

where we used the result of the Lemma C.1.

�
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Theorem C.3 (Fourier-Weyl relation). Any operator ξ̂ can be written as

ξ̂ = 1
π

∫
d2αTr

[
D̂†(α)ξ̂

]
D̂(α). (C.5)

Equivalently, in super-operatorial notation

I = 1
π

∫
d2α |D̂(α)〉 〈D̂(α)| = 1

π

∫
d2αTr

[
D̂†(α)•

]
D̂(α). (C.6)

Proof. If Fourier-Weyl relation (C.5) is true, than it is also for the case |α〉 〈β|, which
would read:

|α〉 〈β| ?= 1
π

∫
dγ2Tr

[
D̂†(γ) |α〉 〈β|

]
D̂(γ). (C.7)

In the following, we will use the notation ?= to indicate the passages which need to be proved.
Exploiting the previous equation, then Eq. (B.20) becomes:

ξ̂ = 1
π2

∫∫
d2αd2β 〈α|χ|β〉 |α〉 〈β| ?=

∫ dγ2

π

∫∫ d2αd2β

π2 〈α|χ|β〉Tr
[
D̂†(γ) |α〉 〈β|

]
D̂(γ)

=
∫ dγ2

π
Tr
[
D̂†(γ)

∫∫ d2αd2β

π2 〈α|χ|β〉 |α〉 〈β|
]
D̂(γ) =

∫ dγ2

π
Tr
[
D̂†(γ)ξ̂

]
D̂(γ).

(C.8)

Consequently, the proof of the Fourier-Weil transform amounts to prove Eq. (C.7). We notice
that, since |α〉 〈β| = D̂(α) |0〉 〈0| D̂†(β), Eq. (C.7) is equivalent to

|0〉 〈0| ?=
∫ dγ2

π
Tr
[
D̂†(γ) |α〉 〈β|

]
D̂†(α)D̂(γ)D̂(β)

=
∫ dγ2

π
Tr
[
D̂†(γ)D̂(α) |0〉 〈β|

]
D̂†(α)D̂(γ)D̂(β)

=
∫ dγ2

π
Tr
[
e(α∗γ−αγ∗)/2D̂(α− γ) |0〉 〈β|

]
D̂†(α)D̂(γ)D̂(β)

=
∫ dγ2

π
e(α∗γ−αγ∗)/2 〈β|α− γ〉 e(αγ∗−α∗γ)/2e[−(α−γ)β∗+(α∗−γ∗)β]/2D̂(γ + β − α)

=
∫ dγ2

π
e−|α−β−γ|

2/2D̂(γ + β − α) =
∫ dγ2

π
e−|γ|

2/2D̂(γ),

(C.9)

where we used Eq. (B.13) to compose displacement operators, and D̂†(α) = D̂(−α). Hence,
the demonstration is

|0〉 〈0| ?=
∫ dγ2

π
e−|α−β−γ|

2/2D̂(γ + β − α) =
∫ dγ2

π
e−|γ|

2/2D̂(γ). (C.10)

By defining ∫ dγ2

π
e−|γ|

2/2D̂(γ) = Î , (C.11)

we notice that,

‖Î‖2 =
∥∥∥∥∥
∫ dγ2

π
e−|γ|

2/2D̂(γ)
∥∥∥∥∥

2

= Tr
[∫∫ dγ2dη2

π2 e−|γ|
2/2−|η|2/2D̂†(γ)D̂(η)

]

=
∫∫ dγ2dη2

π2 e−|γ|
2/2−|η|2/2Tr

[
D̂†(γ)D̂(η)

]
= 1,

(C.12)
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where we used the Corollary C.2, ensuring that Tr
[
D̂†(γ)D̂(η)

]
= πδ2(η + γ). Moreover,

Tr
[
Î |0〉 〈0|

]
= 〈0|

∫ dγ2

π
e−|γ|

2/2D̂(γ)|0〉 =
∫ dγ2

π
e−|γ|

2 = 1. (C.13)

Therefore we conclude that Î = |0〉 〈0|, ending the proof.

�

Remark: Even if the coherent states constitute an overcomplete basis of the Hilbert
space, the displacement operators are a complete basis of H ⊗ H. Moreover, given the
explicit invariance of α→ −α of Eq. (C.5), it can be rewritten as

ξ̂ = 1
π

∫
d2αTr

[
D̂(α)ξ̂

]
D̂†(α). (C.14)



APPENDIX D

An Example of Jordan Form of the
Liouvillian

Let us consider a spin-1/2 subjected to the action of two competing decay channels,
described in [203]. Its master equation is

∂tρ(t) = Lρ(t) = −i[Ĥ, ρ(t)] + ε

2D[σ̂−]ρ(t) + γ

2D[σ̂x]ρ(t), (D.1)

where Ĥ = ω
2σ

z. The steady state is

ρ̂ss = 1
2γ + ε

(
γ 0
0 γ + ε

)
, (D.2)

and the magnetizations are
Tr[σ̂xρ̂ss] = Tr[σ̂yρ̂ss] = 0, (D.3a)

Tr[σ̂zρ̂ss] = ε

2γ + ε
. (D.3b)

This simple model it’s particularly interesting since, according to the values of the coupling
ω, can display different kind of relaxations toward the steady-state. The eigenvalues of L are

λ0 = 0,

λ1 = −γ − ε

2 +
√
γ2 − ω2,

λ2 = −γ − ε

2 −
√
γ2 − ω2,

λ3 = −2γ − ε.

(D.4)

which are associated to the following (unnormalized) eigenmatrices

ρ̂0 ∝ ρSS = 1
2γ + ε

(
γ 0
0 γ + ε

)
, ρ̂1 ∝

0
√
γ2−ω2−iω

γ

1 0

 ,
ρ̂2 ∝

0 − iω+
√
γ2−ω2

γ

1 0

 , ρ̂3 =
(
−1 0
0 1

)
.

(D.5)

The eigenmatrices ρ̂1, 2 describe the decay of the σ̂x, y components with rate λ1,/,2, while ρ̂3
is associated to σ̂z and λ3.

According to the values of ω, we can distinguish among three different scenario:
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— If ω < γ the the Liouvillian has 4 real distinct eigenvalues (it is diagonalizable). In this
case, the decay at long times will be exponential. The asymptotic decay rate which is
λ1.

— If ω > λ the the Liouvillian has 4 distinct eigenvalues (it is diagonalizable), 2 of which
are complex conjugate (λ1 = λ∗2). In this case, the decay at long times will be an
exponential of magnitude Re[λ1] = Re[λ2] multiplied by and oscillation of frequency
Im[λ1].

— If ω = γ we have λ1 = λ2 and ρ̂1 = ρ̂2: the Liouvillian is not diagonalizable but it can
be written in a Jordan form.

The presence of a Jordan form has strong consequences on the long-time dynamics. In-
deed, given a general initial state

ρ(0) =
(
a b
b∗ 1− a

)
. (D.6)

the decay of the observables σ̂x,y is given by

Tr[σ̂xρ(t)] = 2e−λ1t(tω(Re[b] + Im[b]) + Re[b]), (D.7)
(D.8)

Tr[σ̂yρ(t)] = 2e−λ1t(tω(Re[b] + Im[b])− Re[b]), (D.9)

hence not exponential. However, we stress that the asymptotic decay rate is anyhow λ3 for
σ̂z (purely exponential decay).



APPENDIX E

Numerical and Analytical Techniques

In this Appendix, we provide some details about the numerical and analytical techniques
which has been used in the main text.

E.1 Numerical integration of the master equation
The most natural way to tackle the solution of the Linbald Master Equation (2.24) is to

introduce a so-called cutoff, i.e., consider a finite number of vectors in the Hilbert space. The
idea of the procedure is that, even if the Hilbert space is infinite-dimensional, one can obtain
a very good approximation of ρ̂(t) by studying the dynamics in a smaller space.

Consider, for simplicity, a system whose density matrix at time t is ρ̂(t) = ∑
n,m cn,m |n〉 〈m|,

where |n〉 are the Fock basis vectors. Similartly, any operator is Â = ∑
n,m an,m |n〉 〈m|. A

cutoff N is a number such that, for any operator, we define ÂN = ∑
n,m<N an,m |n〉 〈m| and

δÂ = Â− ÂN . Choosing a cutoff N means that we impose δÂ = 0 for any operator, so that
ρ̂N(t) obeys

∂tρ̂N(t) = −i
[
ĤN , ρ̂N(t)

]
+ Γ̂N ρ̂N(t)Γ̂†N −

1
2Γ̂†N Γ̂N ρ̂N(t)− 1

2 ρ̂N(t)Γ̂†N Γ̂N . (E.1)

Having a finite-dimensional matrix differential equation, one can resort to standard numerical
techniques to integrate it. By increasing the number N , one can verify that the quality of
the approximation.

E.2 Gross-Pitaevskii mean-field approximation
A very powerful and versatile tool to study an open quantum system it the Gross-

Pitaevskii (GPE) mean-field approximation. By exploiting a pure coherent-state ansatz,
it allows to transform the master equation into a (set of) polynomial differential equation(s)
for a (set of) complex number(s) α. For a single oscillator, one postulates ρ̂(t) = |α(t)〉 〈α(t)|.
Then, one considers

∂tα(t) = ∂t 〈â(t)〉 = ∂tTr[â |α(t)〉 〈α(t)|] = ∂tTr[âρ̂(t)] = Tr[â∂tρ̂(t)]

= −iTr
[
ρ̂(t)

[
â, Ĥ

]]
+ Tr

[
ρ̂(t)

(
Γ̂âΓ̂† − 1

2Γ̂†Γ̂â− 1
2 âΓ̂†Γ̂

)]
= −i 〈α(t)|

[
â, Ĥ

]
|α(t)〉+ 〈α(t)|Γ̂âΓ̂† − 1

2Γ̂†Γ̂â− 1
2 âΓ̂†Γ̂|α(t)〉 .

(E.2)
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Since any operator can be expressed as a combination of â and â†, the previous expression is a
polynomial function of α∗ and α, which can be numerically integrated. Once α(t) has been ob-
tained, the GPE allows to retrieve any correlation function, since 〈â†mân〉 (t) = α∗m(t)αn(t).

The previous procedure can be generalised to extended systems, either by supposing a
uniform state α(t) in each site, or by considering a site depend approach, in which each site
is characterised by a different αi(t).

E.3 Numerical diagonalisation of the Liouvillian super-
operator

As shown in Sec. 2.1.1, the Liouvillian L is a linear superoperator, since L
(
αξ̂ + βχ̂

)
=

αLξ̂ + βLχ̂ for any complex number α, β and any operator ξ̂, χ̂. Thus, it can be written as
a matrix ¯̄L.

The most naive way to write the Liouvillian matrix is to compute its matrix elements. This
procedure is straightforward, but it requires to explicitly write down an orthonormal basis
for the density matrices and project the Liouvillian onto it. For example, using the number
basis |n〉, one constructs all the basis elements H⊗H, which are of the form ξ̂(m,n) = |m〉 〈n|.
We stress that ξ̂(m,n) constitutes an orthonormal basis of H ⊗H, since any operator can be
written as χ̂ = ∑

n,m cn,mξ̂(m,n) and Tr
[
ξ̂†(m,n)ξ̂(m′,n′)

]
= 〈m|m′〉 〈n′|n〉 = δn,n′δm,m′ . The matrix

element of the Liouvillian are

L(m,n),(p,q) = Tr
[
ξ̂†(m,n) L ξ̂(p,q)

]
= Tr

[
ξ̂†(m,n)

(
−i
[
Ĥ, ξ̂(p,q)

]
+
∑
µ

D[Γ̂µ]ξ̂(p,q)

)]
. (E.3)

From a numerical point of view, the previously described procedure is very slow. Indeed,
for a cutoff N , it requires, in principle, to compute N4 times Eq. (E.3). A more efficient
procedure passes through vectorisation of the operators, i.e. the linear transformation which
converts a matrix into a column vector. Let us consider a generic operator ξ̂. The vectorisa-
tion of this matrix is:

ξ̂ =
∑
m,n

cm,n |m〉 〈n| −→ ~ξ =
∑
m,n

cm,n |m〉 ⊗ 〈n|TR =
∑
m,n

cm,n |m〉 ⊗ |n∗〉 , (E.4)

where the complex conjugate is a consequence of |n〉 = 〈n|† =
(
〈n|TR

)∗
. In order to convert

the Lindblad superoperator into its matrix form, we have to transform the right action
superoperator R[Ô] • = • Ô and the left one L[Ô] • = Ô • into their vectorised form ¯̄R[Ô] and
¯̄L[Ô]. Let us start by the right action:

¯̄R[Ô]~ξ = ¯̄R[Ô]
∑
m,n

cm,n |m〉 ⊗ |n∗〉 =
−→
ξÔ =

∑
m,n

cm,n |m〉 ⊗ (〈n| Ô)TR

=
∑
m,n

cm,n |m〉 ⊗ (ÔTR |n∗〉) = (1⊗ ÔTR)~ξ.
(E.5)

In the same way, we have:
¯̄L[Ô]~ξ = (Ô ⊗ 1)~ξ. (E.6)
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From the result of Eqs. (E.5) and (E.6), we can eventually write any Liouvillian L =
−i
[
Ĥ, •

]
+ γ/2 D[Γ̂] (for simplicity with only one jump operator Γ̂) under the form

¯̄L = −i
( ¯̄L(Ĥ)− ¯̄R(Ĥ)

)
+
(
2 ¯̄L(Γ̂) ¯̄R(Γ̂†)− ¯̄L(Γ̂†Γ̂)− ¯̄R(Γ̂†Γ̂)

)
= −i

(
(Ĥ ⊗ 1)− (1⊗ ĤTR)

)
+ 1

2
(
2Γ̂⊗ Γ̂∗ − Γ̂†Γ̂⊗ 1− 1⊗ Γ̂TRΓ̂∗

)
.

(E.7)

E.4 Numerical resolution of the stochastic Schrödinger
equation

Computing a solution to the Lindblad master equation is straightforwardly feasible for
small Hilbert spaces, but it rapidly become intractable because of the N2 scaling of the
density matrix. In Sec. 2.2 we saw that it is possible to recover the results of the Lindblad
master equation by considering the average ensemble over an infinite number of quantum
trajectories. The advantage of such procedure is clear, since the wavefunction of an N -
dimensional Hilbert space scales as N , while the density matrix has dimension N2. Moreover,
a quantum trajectory approach can exploit the parallel architecture of modern computers.
The price to pay, however, is that the number of trajectories on which it is necessary to
mediate to obtain good results may be extremely hight.

E.4.1 Counting trajectories (wave function Montecarlo)
The algorithm for counting trajectories (known as quantum wave function Monte Carlo

[115]) follows quite directly from Eq. (2.57), and its naive implementation can be sketched
as follows:
— Choose a time interval τ short on the time scale of the relaxation, but long compared

to the reservoir correlation time, so to ensure that the probability of a jump pµ(t) =
τ 〈ψ(t)|Γ̂†µΓ̂µ|ψ(t)〉 � 1 for any µ and any t. Moreover, τ should be small enough to
ensure a smooth integration of the deterministic part of the master equation.

— Initialize the state to the chosen |ψ(t = 0)〉.
— For each time interval τ over the total evolution time, evolve the quantum state |ψ(t)〉

according to to the rules:
1. Compute pµ = τ 〈ψ(t)|Γ̂†µΓ̂µ|ψ(t)〉 for every µ = 1 . . . n and p0 = 1−∑µ6=0 pµ.
2. Construct the variables P−1 = 0, P0 = p0, P1 = p0 + p1, . . . , Pn = 1.
3. Extract a random number r ∈ [0, 1].
4. Find the element of µ̄ such that Pµ̄−1 < r < Pµ̄.
5. If µ̄ = 0, evolve

|ψ(t+ τ)〉 =
1− iĤτ − τ ∑µ Γ̂†µΓ̂µ/2√

p0
|ψ(t)〉 . (E.8)

6. Else,

|ψ(t+ τ)〉 = Γ̂µ̄√
〈Γ̂†µ̄Γ̂µ̄〉

|ψ(t)〉 . (E.9)
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— Create a new trajectory, and repeat until the wanted number of trajectories has been
computed.

A far more efficient algorithm relies on sampling the jump time instead of checking weather
at each time a jump occurs. This algorithm has the huge advantage of not introducing a
characteristic time step τ . The procedure is:
— Initialize the state to its initial value.
— Evolve it until the total evolution time is reached according to the rule:

1. Take wavefunction at last simulation time t0, i.e. |ψ(t0)〉.
2. Extract a random number r ∈ [0, 1].
3. Evolve the state |ψ̃(t)〉 according to

d |ψ̃(t)〉
dt = −

iĤ +
∑
µ

Γ̂†µΓ̂µ
2

 |ψ̃(t)〉 , (E.10)

until the time t1 when 〈ψ̃(t1)|ψ̃(t1)〉 = r. To do so, one can exploit standard
adaptive-timestep algorithms. The time t1 is the time in which the next detection
occurs.

4. Compute the (unnormalised) probabilities pµ = τ 〈ψ̃(t1)|Γ̂†µΓ̂µ|ψ̃(t1)〉.
5. Construct the variables P0 = 0, P1 = p1, P2 = p1 + p2, . . .Pn = ∑

µ pµ.
6. Extract a random number s ∈ [0, Pn].
7. Find µ̄ such that Pµ̄−1 < s < Pµ̄.
8. The wave function at time t1 is

|ψ(t1)〉 = Γ̂µ̄√
〈ψ̃(t)|Γ̂†µ̄Γ̂µ̄|ψ̃(t)〉

|ψ̃(t)〉 . (E.11)

— Create a new trajectory and repeat until the wanted number of trajectories is has been
computed.

E.4.2 Homodyne trajectories
The homodyne trajectory algorithm amounts to an integration of a stochastic differential

equation: Its steps are:
— Choose a time interval τ small enough to ensure a smooth integration of the determin-

istic part of the master equation and a small enough noise.
— Initialize the state to its initial value.
— For each time interval τ over the total evolution time, evolve the quantum state |ψ(t)〉

according to to the rules:
1. For each µ generate a standard normal random variable of mean zero and variance
τ , corresponding to dWµ(t).

2. Compute d |ψ(t)〉 as in Eq. (2.62).
3. The updated state is |ψ(t+ τ)〉 = |ψ(t)〉+ d |ψ(t)〉.

— Create a new trajectory and repeat until the wanted number of trajectories is has been
computed.
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E.5 The complex P -Representation
In Sec. 2.3 we introduced the Glauber–Sudarshan P -representation. Although it is a

very powerful instrument, such a function is often singular and can only be interpreted in
a distributional sense. However, by exploiting different coherent-state base choices for the
P -representation [143], it is possible to introduce the so-called complex P -representation.

E.5.1 Derivation of the complex P -representation
Consider the following generalised P -Representation

ρ̂ =
∫∫

P (α, β)Λ̂(α, β)dµ(α, β), (E.12)

where dµ(α, β) is the integration measure and Λ̂(α, β) is the projector operator. In this
formalism, the Glauber–Sudarshan P -representation is obtained by choosing
dµ(α, β) = δ2(α− β)d2α d2β, and consequently

ρ̂ =
∫

d2α P (α) |α〉 〈α| . (E.13)

Consider now Eq. (B.20). Suppose it is possible to expand the density matrix on a bounded
region of the parameter space D for α and D′ for β. Using Cauchy theorem and considering
two closed curves C and C ′, encircling D and D′, respectively, we have

ρ̂ =
∫
D
d2α

∫
D′
d2β e−|α|

2−|β|2 ρ̂(α, β) ||α〉 〈β∗||

= −
∫
D
d2α

∫
D′
d2βe−|α|

2−|β|2
∫
C

∫
C′

dα′dβ′
4π2

C(α′, β′)
(α′ − α)(β′ − β) ||α

′〉 〈β′||

=
∫
C

∫
C′

dα′dβ′ ||α′〉 〈β′||
[
−C(α′, β′)

4π2

∫
D
d2α

∫
D′
d2β

e−|α|
2−|β|2

(α′ − α)(β′ − β)

]

=
∫
C

∫
C′

dα′dβ′ Λ̂(α′, β′)P (α′, β′),

(E.14)

where we have introduced

Λ̂(α′, β′) = |α
′〉 〈β′∗|
〈β′∗|α′〉 = |α′〉 〈β′∗|

e−
|α′|2+|β′|2

2 +α′β′
= ||α′〉 〈β′∗|| e−α′β′ , (E.15)

and the complex P function

P (α′, β′) = −C(α′, β′)e−α′β′

4π2

∫
D
d2α

∫
D′
d2β

e−|α|
2−|β|2

(α′ − α)(β′ − β) . (E.16)

Since Tr[ρ] = 1, the complex P -representation can still be regarded as a complex-valued
quasiprobability function. However, the semiclassical analogy which characterised the previ-
ously introduced phase-space representation cannot be extended to P (α, β), since the integral
is not over all the complex plane, but only on a double closed curve in the complex plane
encircling all the poles in the complex plane.

This complex-P representation is often the best candidate to find an exact solution for
driven-dissipative problems [143]. Indeed, the complex P a more regular function than
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Glauber–Sudarshan, all conserving the structure of Eq. (2.79), with the following “trans-
lation” rules:

âρ̂↔αP (α, β), (E.17a)
â†ρ̂↔ (β − ∂α)P (α, β), (E.17b)
ρ̂â↔ (α− ∂β)P (α, β), (E.17c)
ρ̂â↔β P (α, β). (E.17d)

E.5.2 Finding the steady-state solution for a Fokker-Plank like
equation

The time evolution of the Wigner function or of the Husimi Q for interacting photons
are described by third-order differential equations, as it stems from the conversion of â† 2â2

according to Eqs.(2.79). On the contrary, the P -representation for interacting photons is a
second-order partial differential equation. Thus, it satisfies a Fokker-Planck-like equation of
the form:

i ∂tP =
∑
i=α,β

∂i

−AiP + 1
2
∑
j=α,β

∂j
(
DijP

) , (E.18)

where Ai indicates the components of the drift vector and Dij is a matrix element of the
diffusion tensor. If we are interested in ρ̂ss, we search a the steady-state solution of the
Fokker-Planck equation (E.18), i.e., ∂tPss = 0. Solving the resulting differential equation is
generally a hard task [114, 117], but one can simplify the problem by requiring that every
term of the sum vanishes:

AiPss −
1
2
∑
j=α,β

∂j
(
DijPss

)
= 0, i = α, β. (E.19)

After some straightforward algebraic manipulation, Eq. (E.19) can be cast as

2Ai −
∑
j=α,β

(
∂j D

ij
)

=
∑
j=α,β

Dij ∂j ln(Pss), i = α, β, (E.20)

which, if the matrix D is invertible, is solved by

∂j ln(Pss) =
∑
i=α,β

(
D−1

)ji 2Ai −
∑
k=α,β

(
∂kD

ik
) , (E.21)

for j = α, β. Hence, we can write Pss = exp(−φ) and treat φ as a scalar potential in
the complex variables α and β. Such a potential defines a generalized force Φ̄ = −∇̄φ of
components

Φj = −∂j φ =
∑
i=α,β

(
D−1

)ji 2Ai −
∑
k=α,β

(
∂kD

ik
) . (E.22)

Eq. (E.22) is valid only if φ is a a well-behaved scalar potential. Thus, one must require that
the crossed derivatives of the force (E.22) are the same, that is

∂iΦj = ∂jΦi. (E.23)
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The latter are known as the potential conditions. They also ensure that the integral of the
coupled differential equations ∂j φ = −Φj (j = α, β) is independent of the integration path.
Hence, it is possible to obtain φ as

φ(α, β) = φ(α0, β0)−
∫

Γ
Φ̄(α′, β′) · ds̄(α′, β′), (E.24)

where ds̄(α′, β′) is an infinitesimal displacement element along the path Γ going from the
arbitrary reference point {α0, β0} to {α, β}. For example, one can use Eq. (E.24) for the
path Γ := {0, 0} → {α, 0} → {α, β}, which formally gives

φ(α, β) = φ(0, 0)−
∫ {α,0}
{0,0}

Φα(α′, 0) dα′ −
∫ {α,β}
{α,0}

Φβ(α, β′) dβ′. (E.25)

The knowledge of P (α, β) is, in theory, sufficient to fully determine the density matrix
of the system. By integrating on a suitable contour, one can indeed recover all the matrix
elements of ρ̂ss.

E.6 The corner-space renormalisation method
The main challenge encountered while simulating large quantum lattice systems is the

complexity growing exponentially with their size. If we are, however, capable of finding a
“relevant” subspace of the Hilbert space, we can extremely simplify the numerical complexity
of the problem. The corner-space renormalisation method aims to find such a corner space
[130].

Consider two lattices, A and B, for which the steady state density matrices ρ̂A and ρ̂B
can be computed. We are interested in the physics resulting from the spatial merging of the
lattices A and B. The ansatz of the method is that, using the most probable eigenvectors of
the steady-state density matrices of smaller lattices, one can construct the good portion of
the Hilbert space. To find the corner, first one diagonalises ρ̂A and ρ̂B, obtaining

ρ̂A =
∑
r

p(A)
r |ψ(A)

r 〉 〈ψ(A)
r |

ρ̂B =
∑
r

p(B)
r |ψ(B)

r 〉 〈ψ(B)
r |

(E.26)

A basis for the space HA ⊗HB is then constituted by the tensor product |ψ(A)
i 〉 |ψ(B)

j 〉. One
order such product states as{

|ψ(A)
r1 〉 |ψ

(B)
r′1
〉 , |ψ(A)

r2 〉 |ψ
(B)
r′2
〉 , . . . , |ψ(A)

rN
〉 |ψ(B)

r′N
〉
}
, (E.27)

so that p(A)
r1 p

(B)
r′1
≥ p(A)

r2 p
(B)
r′2
≥ · · · ≥ p(A)

rN
p

(B)
r′N

. One then imposes a “cutoff” by choosing the
M states maximizing the joint probability. The accuracy of the method can be controlled by
enlarging the dimension M of the corner space until convergence is reached.

More precisely, the algorithm can be decomposed into the following steps represented in
Fig. E.1:

1. Determine the steady-state density matrix for two small lattices A and B.
2. Merge spatially two lattices.
3. Select the M states maximizing the joint probability.
4. Determine the steady-state solution in the corner-space.
5. Repeat until convergence in M is reached.
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Figure E.1 – Sketch of the corner-space renormalization method, taken from Ref. [130].



APPENDIX F

Résumé substantiel

Cette thèse est une étude théorique de systèmes dissipatifs pompés, décrits par une équa-
tion maîtresse de Lindblad, focalisée sur l’émergence de phénomènes critiques. Cette équation
décrit l’évolution d’une matrice densité ρ̂(t) sous l’action d’un super-opérateur L, appelé le
liouvillien. En particulier

∂ρ̂(t)
∂t

= −i
[
Ĥ, ρ̂(t)

]
+
∑
µ

D[Γ̂µ] = Lρ̂(t), (F.1)

o l’opérateur Ĥ est l’hamiltonien du système, et les super-opérateurs D[Γ̂µ] représentent l’in-
teraction avec l’environnent, modélisée par une série d’opérateurs de saut Γ̂µ. Leur actionne
est décrite mathématiquement par :

D[Γ̂µ]ρ̂(t) = Γ̂µρ̂(t)Γ̂†µ −
1
2Γ̂†µΓ̂µρ̂(t)− 1

2 ρ̂(t)Γ̂†µΓ̂µ. (F.2)

L’équation maîtresse de Lindblad peut être aussi transformée en une équation stochastique
de Schrödinger, qui évolue de façon continue sous l’action d’une pseudo-hamiltonien et par
des changements abruptes causée par les opérateurs de saut Γ̂µ. Plusieurs plates-formes ex-
périmentales obéissent cette équation, notamment les cavités optiques, les micropiliers semi-
conducteurs et les circuits supraconducteurs (voir la discussion dans le Chapitres 1 et 2).

Dans le Chapitre 3 nous présentons une théorie générale reliant l’émergence de transi-
tions de phase du premier et deuxième ordres aux propriétés spectrales du superopérateur
liouvillien. On considère un liouvillien L(ζ) qui dépend d’un paramètre ζ. En introduisant
les matrices propres de L(ζ), ρ̂i(ζ), ainsi que les valeurs propres λi(ζ), on a :

L(ζ)ρ̂i(ζ) = λi(ζ)ρ̂i(ζ). (F.3)

Dans la région critique, nous déterminons la forme générale de l’état stationnaire ρ̂0 et de la
matrice propre du liouvillien associée à son gap spectral ρ̂1. Pour les transitions de première
ordre (voir Fig. 3.2, gauche), on appelle ρ+ (ρ−) l’état stationnaire avant (aprés) le point
critique ζc. On trouve que à la transition λ0 = λ1 = 0 et que :

ρ̂1(ζ ' ζc) ∝ ρ̂+ − ρ̂−, (F.4)

et
ρ̂0(ζc) ∝ ρ̂+ + ρ̂−. (F.5)
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Pour les transitions d’ordre deux (voir Fig. 3.2, droite), on introduit un super-opérateur de
symétrie Zn = Ẑn • Ẑ

†
n. Dans toute la phase où la symétrie est brisée on a λ0 = λ1 = · · · =

λn−1 = 0 et :
ˆ̃ρl = Z ln

n−1∑
j=0

ρ̂j
Tr[ρ̂0] =

n−1∑
j=0

zlj(i)ρ̂j
Tr[ρ̂0] , (F.6)

sont des matrices densité stationnaires tels que Zn ˆ̃ρi = ˆ̃ρmod(i+1,n). Nous discutons aussi
l’utilisation de trajectoires quantiques individuelles afin de révéler l’apparition des transitions
de phase. En particulier, le rôle du “unraveling” stochastique jeu un rôle primordial dans la
caractérisation des états pour les transitions d’ordre deux.

Après ces résultats généraux, nous mettons en évidence l’émergence de criticaillé dans
plusieurs modèles. Tout d’abord, dans le Chapitre 4 nous étudions le modèle de Kerr en
présence de pompage à un photon (cohérent) et à deux photons (paramétrique) ainsi que de
dissipation. Dans ce cas, l’équation de Linblad est (voir Fig. 4.1)

Lρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+ γ

2D[â]ρ̂(t) + η

2D[â2]ρ̂(t), (F.7)

où â et â† sont les opérateurs de création et annihilation d’un photon dans le système, et
l’hamiltonien est

Ĥ = −∆â†â+ U

2 â
†â†ââ+ F â† + F ∗â+ G

2 â
†â† + G∗

2 ââ. (F.8)

∆ est le detuning entre la fréquence propre de la cavité et les pompes, U représente l’in-
teraction entre photons et F et G sont les intensités des pompage à un et deux photons.
Nous présentons une solution analytique exacte pour l’état stationnaire de la matrice densité
utilisant la représentation-P complexe, définie par

ρ̂ =
∫∫
C, C′

dα dβ P (α, β)Λ̂(α, β), (F.9)

où Λ̂(α, β) = |α〉 〈β∗| / 〈β∗|α〉 est le projecteur sur les états cohérents, C et C ′ sont des
parcours fermés dans le plan complexe, qui encerclent les singularités de la fonctionne P (α, β).
Grâce à la solution, nous pouvons atteindre la “limite thermodynamique” des hautes densités
photoniques, dans laquelle des transitions de phase dissipatives ont lieu. On trouve que le
résonateur pompé par un photon à la fois subit une transition de premier ordre (Figs. 4.8
et 4.9), et que celui échangeant deux photons à la fois peut avoir une transition du premier
ordre au deux selon la valeur du detuning (Figs. 4.10 et 4.11).

Nous explorons les propriétés dynamiques d’une transition de phase du premier ordre
dans un modèle de Bose-Hubbard dissipatif avec pompage cohérent (voir Fig. 5.1), décrivant
des réseaux de résonateurs de Kerr couplés dans le Chapitre 5. L’équation maitresse pour un
système de N cavités est :

∂tρ̂(t) = Lρ̂(t) = −i
[
Ĥ, ρ̂(t)

]
+ γ

∑
j

D[âj]ρ̂(t), (F.10)

et
Ĥ =

∑
j

−∆â†j âj + U

2 â
†2
j â

2
j + F

(
â†j + âj

)
− J

∑
<j,j′>

â†j âj′ , (F.11)

ou les index j représente la jème cavité, et < j, j′ > sont premier voisins. Cette équation mai-
tresse pour la matrice densité est équivalente à une équation différentielle pour la fonction de
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Wigner du système. Dans la limite des interactions faibles (U � γ), on peut appliquer l’ap-
proximation dite truncated Wigner, pour associer à cette équation différentielle une équation
stochastique de Langevin pour N nombres complexes (un pour chaque cavité)

α̇j =
[
−i(∆− U(|αj|2 − 1)− γ/2)

]
αj − iJ

∑
j′
αj′ + iF +

√
γ/2χ(t). (F.12)

χ(t) c’est un bruit gaussien random et normalisé tel que 〈χ(t)χ(t′)〉 = 0 and 〈χ(t)χ∗(t′)〉 =
δ(t − t′). En prenant la moyenne sur plusieurs trajectoires on retrouve les espérances des
opérateurs pour le système initial. Au moyen ce trajectoires stochastiques issues de l’approxi-
mation truncated Wigner, nous avons étudié la dynamique du système en fonction de sa
taille et de sa dimensionalité dans un régime ou les théories de champ moyen prédisent un
comportement bistable (Fig. 5.4). Nous montrons l’émergence d’un ralentissement critique
en augmentant la taille des réseaux bidimensionnels et l’absence de criticalité dans le cas uni-
dimensionnel (Figs. 5.5 et 5.6). Dans la région critique, les propriétés spécifiques des phases
collectives ont été caractérisées (Fig. 5.7).

Dans le Chapitre 6, nous avons étudié les propriétés dynamiques d’un modèle XYZ dissi-
patif d’Heisenberg, où deux spin premier voisins 〈i, j〉 interagissent par un hamiltonien

Ĥ =
∑
〈i,j〉

(
Jxσ̂

x
i σ̂

x
j + Jyσ̂

y
i σ̂

y
i + Jzσ̂

z
i σ̂

z
j

)
. (F.13)

Ce couplage anisotrope entre spin adjacents est en compétition avec des processus incohérent
d’inversion de spin, ce qui donne

∂ρ̂

∂t
= L[ρ̂] = −i

[
Ĥ, ρ̂

]
+ γ

∑
j

D[σ̂j−]. (F.14)

Nous avons exploré une région de l’espace des paramètres où des théories de champ moyen et
des simulations numériques prévoient une transition de phase magnétique du second ordre.
Nous avons examiné le taux de relaxation asymptotique vers l’état stationnaire aussi bien dans
une chaîne unidimensionnelle (jusqu’à la limite thermodynamique) que dans des réseaux bi-
dimensionnels de taille finie, montrant l’absence de criticalité en géométrie unidimensionnelle
et sa présence dans le cas bidimensionnel (Fig. 6.2). En utilisant des trajectoires quantiques,
nous avons caractérisé la phase à symétrie brisée (Figs. 6.3, 6.4 et 6.5).

Enfin, dans le Chapitre 7 nous avons considéré la physique des cavités soumises à de la
dissipation à un et deux photons ainsi qu’un pompage à deux photons, obtenu par ingénierie
de réservoirs. En particulier, on s’est intéressé à l’émergence des états dit chats de Schrödinger
définis par :

|C±α 〉 = |α〉 ± |−α〉√
2 (1± e−2|α|2)

, (F.15)

ou |α〉 et |−α〉 sont dés états cohérents défini par

|α〉 = e−
|α|2

2

∞∑
n=0

αn |n〉√
n!

. (F.16)

L’état |C+
α 〉 (|C−α 〉) est dit chat pair (impair), vue qu’il est superposition d’états contentant un

nombre pair (impair) de photons. Nous avons démontré que l’état stationnaire unique est un
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mélange statistique de deux états chats de Schrödinger, malgré de fortes pertes à un photon,
sous la forme :

ρ̂ss ' p+ |C+
α 〉〈C+

α |+ p− |C−α 〉〈C−α | . (F.17)
Pour un pompage intense (Fig. 7.1), on a |α| � 1 et p+ ' p− ' 1/2. Par conséquence, on a
aussi

ρ̂ss '
1
2 |α〉〈α|+

1
2 |−α〉〈−α| . (F.18)

On peut comprendre la différence entre les deux résultats en utilisant des trajectoires quan-
tiques individuelles. Pour un protocole de contage de photons, le système change abruptement
entre ces deux états chats, tandis que, pour un protocole de détection homodyne, la fonction
d’onde de la cavité alterne entre deux états cohérents (Figs. 7.3 et 7.4). En raison de ces résul-
tats, nous proposons et étudions un protocole de rétroaction pour la génération d’états chat
purs. En fait, si on peut déséquilibre le taux de dissipation entre états pair et états impairs,
on favorise un des deux chats. On peut obtenir ce résultat par l’ajout d’un dissipateur :

D[âf ]ρ̂ = γf
2
(
2âf ρ̂â†f − â†f âf ρ̂− ρ̂â†f âf

)
. (F.19)

où âf = â 1
2(1− eiπâ†â). Ces effets sont prouvés en Fig. 7.5.
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Title: Out-of-Equilibrium Phase Transitions in Nonlinear Optical Systems
Abstract: In this thesis we theoretically study driven-dissipative nonlinear systems, whose
dynamics is capture by a Lindblad master equation. In particular, we investigate the
emergence of criticality in out-of-equilibrium dissipative systems. We present a general
and model-independent spectral theory relating first- and second-order dissipative phase
transitions to the spectral properties of the Liouvillian superoperator. In the critical region,
we determine the general form of the steady-state density matrix and of the Liouvillian
eigenmatrix whose eigenvalue defines the Liouvillian spectral gap. We discuss the relevance
of individual quantum trajectories to unveil phase transitions. After these general results,
we analyse the inset of criticality in several models. First, a nonlinear Kerr resonator in the
presence of both coherent (one-photon) and parametric (two-photon) driving and dissipation.
We then explore the dynamical properties of the coherently-driven Bose-Hubbard and of the
dissipative XYZ Heisenberg model presenting a first-order and a second-order dissipative
phase transition, respectively. Finally, we investigate the physics of photonic Schrödinger
cat states in driven-dissipative resonators subject to engineered two-photon processes and
one-photon losses. We propose and study a feedback protocol to generate a pure cat-like
steady state.
Keywords: Open quantum systems, Phase transitions, Quantum optics, Many-body
physics, Optical Cavities, Circuit QED, Semiconductors micropillars, Reservoir engineering,
Schrödinger cats.

Titre : Transitions de Phase Hors Équilibre dans les Systèmes Optiques Non Linéaires
Résumé : Dans cette thèse nous étudions théoriquement de systèmes dissipatifs pompés,
décrits par une équation maîtresse de Lindblad. En particulier, nous addressons les proble-
matiques liés à l’émergence de phénomènes critiques. Nous présentons une théorie générale
reliant les transitions de phase du premier et deuxième ordres aux propriétés spectrales du
superopérateur liouvillien. Dans la région critique, nous déterminons la forme générale de
l’état stationnaire et de la matrice propre du liouvillien associée à son gap spectral. Nous dis-
cutons aussi l’utilisation de trajectoires quantiques individuelles afin de révéler l’apparition
des transitions de phase. En ayant dérivé une thèorie génerale, nous étudions le modèle de
Kerr en présence de pompage à un photon (cohérent) et à deux photons (paramétrique) ainsi
que de dissipation. Nous explorons les propriétés dynamiques d’une transition de phase du
premier ordre dans un modèle de Bose-Hubbard dissipatif et d’une de second ordre dans
un modèle XYZ dissipatif d’Heisenberg. Enfin, nous avons considéré la physique des cavités
soumises à de la dissipation à un et deux photons ainsi qu’un pompage à deux photons, ob-
tenu par ingénierie de réservoirs. Nous avons démontré que l’état stationnaire unique est un
mélange statistique de deux états chats de Schrödinger, malgré de fortes pertes à un photon.
Nous proposons et étudions un protocole de rétroaction pour la génération d’états chat purs.
Mots clefs : Systèmes quantiques ouvertes, Transitions de phases, Optique quantique, Phy-
sique à N corps, Cavités optiques, Circuits supraconducteurs, Micropiliers semi-conducteurs,
Ingénierie du réservoir, Chats de Schrödinger.
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