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Abstract

The objective of this thesis is to provide complexity reduction techniques for the solution of Boundary
Integral Equations (BIE). In particular, we focus on BIE arising from the modeling of acoustic and elec-
tromagnetic problems via Boundary Element Methods (BEM). Our approach consists in using the local
multi-trace formulation which is friendly to operator preconditioning. We find a closed form inverse
of the local multi-trace operator for a particular scattering model problem and then we propose this
inverse operator for preconditioning general scattering problems. We numerically show that this pre-
conditioner is efficient and accelerates the solution of the linear system obtained from the discretization
of the continuous problem. We also show that the local multi-trace formulation is stable for Maxwell
equations posed on a particular domain configuration.

For general problems where BEM are applied, we propose to use the framework of hierarchical ma-
trices, which are constructed using cluster trees and allow to represent the original matrix in such a way
that submatrices that admit low-rank approximations (admissible blocks) are well identified. We intro-
duce a technique called geometric sampling which uses cluster trees to sample row and column indices
allowing to create accurate linear-time CUR algorithms for the compression and matrix-vector product
acceleration of admissible matrix blocks, and which are oriented to develop parallel communication-
avoiding algorithms.

For the general framework of low-rank approximations, we study widely used techniques based
on QR factorizations and subspace iteration methods; for the former we provide new bounds for the
classical column pivoting and general pivoting strategies, and for the later we solve an open question in
the literature consisting in proving that the approximation of singular vectors exponentially converges.
Finally, we propose a technique called affine low-rank approximation intended to increase the accu-
racy of classical low-rank approximation methods, in particular for those based on QR and subspace
iteration.



Résumé

L’objectif de cette thèse est de fournir des techniques de réduction de complexité pour la solution des
équations intégrales de frontière (BIE). En particulier, nous sommes intéressés par les BIE issues de la
modélisation des problèmes acoustiques et électromagnétiques via la méthode des éléments de frontière
(BEM). Nous utilisons la formulation multi-trace locale pour laquelle nous trouvons une expression ex-
plicite pour l’inverse de l’opérateur multi-trace pour un problème modèle de diffusion. Ensuite, nous
proposons cet inverse pour préconditionner des problèmes de diffusion plus générales. Nous montrons
également que la formulation multi-trace locale est stable pour les équations de Maxwell posées sur un
domaine particulier.

Pour les problèmes BEM généraux, nous posons le problème dans le cadre des matrices hiérar-
chiques, pour lesquelles c’est possible d’identifier sous-matrices admettant des approximations de rang
faible (blocs admissibles). Nous introduisons une technique appelée échantillonnage géométrique qui
utilise des structures d’arbre pour échantillonner des indices de lignes et de colonnes permettant de
créer des algorithmes CUR en complexité linéaire, lesquelles sont orientés pour créer des algorithmes
parelles avec communication optimale.

Finalement, nous étudions des méthodes QR et itération sur sous-espaces; pour le premier, nous
fournissons de nouvelles bornes pour l’erreur d’approximation, et pour le deuxième nous résolvons une
question ouverte dans la littérature consistant à prouver que l’approximation des vecteurs singuliers
converge exponentiellement. Enfin, nous proposons une technique appelée approximation affine de
rang faible destinée à accroître la précision des méthodes classiques d’approximation de rang faible.
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CHAPTER1

Introduction

1.1 Context of this work
Large scale modeling of real-world problems requires formulations and solvers that go hand in hand
with the development of computational resources. Among these problems: acoustics, diffraction, fluid
dynamics, electromagnetism, weather prediction, seismic modeling, etc. Boundary Integral Equations
(BIE) naturally arise in such applications and have been extensively studied both at the theoretical and
practical level. Abel (1826) was one of the first persons to formulate and solve an integral equation,
which then lead to the search of integral forms of partial differential equations that govern natural
phenomena. Nowadays, the challenge is to develop fast and accurate methods to solve these problems
via formulations and algorithms that can be efficiently implemented in large scale computer clusters.

Since most integral equations can not be solved explicitly, BIE are, in general, solved numerically
by using a standard approach known as Boundary Element Methods (BEM), which requires a so called
integral formulation. Classical formulations for BEM are the electric field integral equation (EFIE),
the magnetic field integral equation (MFIE), the combined field integral equation (CFIE), the PMCHW
(Poggio, Miller, Chang, Harrington, and Wu) formulation, among others, refer to [JSC02] for a sur-
vey. The first part of this thesis is devoted to a formulation for wave scattering problems in acoustics
and electromagnetism. Albeit we focus on these particular fields, the presented theory is amenable to
be extended to other fields. Wave scattering problems can be solved using the previously mentioned
formulations, by reducing the continuous problem to a discrete one represented by a linear system,
which is in general ill-conditioned and precondition techniques are necessary. Classical formulations
such as the EFIE struggle to admit operator preconditioning when dealing with several scattering do-
mains. For such case, Multi-trace formulations (MTF) [CH11, HJH12] are alternative approaches that
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are friendly to operator preconditioning and allow to have a linear system that essentially maintain a
constant condition number while refining the problemmesh. The idea behindMTF is the use of domain
decompositions techniques which make them amenable for large scale computational models.

Once we reduce a BIE problem to the solution of a linear system, the classical approach is to use
iterative solvers such as the Generalized Minimal Residual Method (GMRES), Conjugate Gradient (CG),
Bi-Conjugate Gradient (BCG), among others that can be found in [QSS06]. To accelerate such solvers
we need a fast way to compute matrix-vector products which can be achieved by classical techniques
like the Fast Multipole Method FMM [GR87, Kou95] or the more recent Kernel Independent and Black
Box FMM (resp. KIFMM and BBFMM) [MR07, FD09]. Another strategy is to use hierarchical matri-
ces [Beb08, Bör10, Hac15], which partition the matrix associated to the linear system in blocks that
admit a low-rank approximation and those who do not. And then approximate low-rank blocks us-
ing algorithms such as the Adaptive Cross Approximation (ACA) [Beb00] or its variants, e.g. ACA+
[Gra13].

Numerical model

Integral Equations Formulation

Acoustics - Electromagnetics

MTF, EFIE, MFIE, CFIE, PMCHW

!! = #

Iterative Solvers

FMM, KIFMM, BBFFM

Hierarchical Matrices

Classic  
Fast 

Solvers 

GMRES, CG, BCG

Large linear systems

Fast matrix-vector product

ACA, ACA+, CUR

$ℎ &! = &#

$ℎ: Low-rank approx. via

+

+ Fast Solver
'!Find

Real-world problem

QR, Subspace Iteration,  
Classic  

Low-Rank 
Approx. 

SVD, ID, LU,

Figure 1.1: Integral approach for the solution of acoustics and electromagnetic problems (enclosed in
the box) with classical approaches. In bold text we highlight the methods (formulations and low-rank

approximations) that we shall use for the development of this thesis.
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In the second part of this thesis, we focus on techniques for low-rank matrix approximations. We
start with a general framework for rectangular matrices, and then we analyze the particular case of
matrices arising from BEM discretization. Classical low-rank approximations can be constructed via:
the Singular Value Decomposition (SVD), QR or LU factorizations, Interpolative Decompositions (ID),
Subspace Iteration, CUR decompositions, among others, refer to [KG17] for a survey. The scope of
this thesis is summarized in Figure 1.1, which shows classical approaches to handle wave scattering
problems (enclosed in a box), and highlights the methodologies that we shall use later on: integral
MTF, hierarchical matrices, CUR decompositions, and general low-rank matrix approximations via QR
factorizations and subspace iteration.

1.2 Multi-Trace formulations
As mentioned earlier, MTF are formulations that admit efficient operator preconditioning, for a survey
on MTF refer to [CHJH13, CHJHP15]. These formulations come in two flavors based on different ideas.
To give a simple and comprehensible introduction to MTF, let us consider a scattering problem in
acoustics,

−ΔU − κ2𝑖U = 0, (Helmholtz equation),
or in electromagnetism,

−∇ × ∇ × E − κ2𝑖 E = 0, (Maxwell equation),

where we search solutions for U (resp. E). Let the problem be posed on a domain configuration as
shown in Figure 1.2, where Ω𝑖 is a Lipschitz domain and Γ𝑖𝑗 refers to the intersection of the boundaries
of Ω𝑖 and Ω𝑗 , for 𝑖, 𝑗 = 0, 1, 2. The incident wave is given as U𝑖𝑛𝑐 .

Ω0
Uinc

Ω1

Ω2

Γ01

Γ02
Γ12

Figure 1.2: Wave scattering model problem

The connection between these domains is stablished by transmission conditions. For acoustics, they
consist in continuity of the solution and normal continuity of the gradient. For electromagnetism, tan-
gential continuity of the electric and magnetic fields, c.f. chapter 3. By supplementing those conditions
with a radiation condition at infinity, we can take for granted existence and uniqueness of solutions in
the week sense, see e.g. [Pet89, CK13].

In general, integral formulations are oriented to find trace functions which are posed on the bound-
aries Γ𝑖𝑗 , classical methods search for two trace functions known as Dirichlet and Neumann traces.
Once these trace functions are obtained, using representation formulae, the solutions for U and E can
be computed in the whole volume, see e.g. [Ste08].
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• Global-MTF: Introduced in [CH11], this formulation is based on a so called gap idea, consisting in
tearing apart the scattering domains by a small separation δ > 0, see Figure 1.3. Then, proceed to
write a classical formulation considering the new interfaces configuration and then make δ → 0.

Ω1

Ω2
$

Figure 1.3: Gap Idea of global MTF

For the global-MTF framework, we get four unknown trace functions on the middle interface Γ12,
two coming from the bottom and two coming from the top (instead of two as in the case of clas-
sical formulations); hence, they are called multi-trace. Global-MTF is robust for both Helmholtz
and Maxwell equations, and admits operator preconditioner (indeed, the global-MTF operator
preconditions itself) allowing to deal with mesh refinement without making the condition num-
ber of the discrete system to blow up. As a drawback, the global-MTF needs to perform the
discretization of remote coupling operators which are non-local and when discretized yield to
dense (compressible) matrices.

• Local-MTF: Introduced in [HJH12], it is based on local use of transmission conditions. For each
domain Ω𝑖 two traces are obtained and the operator counts the contributions of the others do-
mains by using transmission operators which map traces on ∂Ω𝑗 into traces on ∂Ω𝑖 . These oper-
ators are purely local and, when discretized, yield to sparse matrices. Local-MTF admits a simple
and robust preconditioning technique. As a drawback, its stability for Maxwell equation has not
yet been proved. We devote the following two chapters to analyze this formulation and make
contributions to its developments.

1.3 Matrix-compression and low-rank approximations
In the second part of this thesis, we are interested at first in low-rank approximations for a general
rectangular matrix A ∈ ℂ𝑚×𝑛, and then we study the particular case where A arises from BEM dis-
cretization. Let A𝑘 ∈ ℂ𝑚×𝑛 be the rank-𝑘 matrix that minimizes the approximation error in the spectral
norm, A𝑘 can be obtained by the truncated SVD, [EG36, Mir60], and it holds that ‖A − A𝑘‖2 = σ𝑘+1,
where σ𝑘+1 is the 𝑘 + 1 singular value of A, and ‖ ⋅ ‖2 is the spectral matrix norm. Computing the trun-
cated SVD is considered expensive in practice and fast techniques are commonly applied to search for
good rank-𝑘 approximations.

Several low-rank approximations are linked to the Column Subset Selection Problem (CSSP), which
consists in finding a set of 𝑘 columns of A given by an index vector J, such that the low-rank ma-
trix ξ𝑘 , obtained by projecting the columns of A onto the space generated by the selected columns,
approximates A with a minimal error. For a given choice of J, we have

A ≈ ξ𝑘 ∶= CC†A, ‖A − ξ𝑘‖2 ≤ 𝑓 (𝑘,𝑚, 𝑛)σ𝑘+1, (1.3.1)
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where 𝑓 is a small degree polynomial, C ∶= A(∶, J) ∈ ℂ𝑚×𝑘 is the matrix formed by the J selected
columns, and C† is its classical Moore-Penrose pseudoinverse. Note that we can find the solution of
the CSSP by analyzing (𝑛𝑘) possible choices of J. However, it would cost 𝒪(𝑛𝑘) which is prohibitive
in practice, and finding such solution is known to be NP-hard [ÇMI13]. Polynomial-cost methods for
CSSP are extensively studied in the literature [DRVG06, DV06, BMD09] and there even exists algo-
rithms that find suboptimal approximations in polynomial time [DR10].

Pivoted QR factorization techniques can be efficiently used to approximate the solution of the CSSP
[CGMR05], providing efficient low-rank approximations that can even be proved to be suboptimal
[GE96]. Low-rank QR based approximations will play a fundamental role in the development of the
second part of this manuscript.

Another type of factorization, closely linked to the CSSP, is the CUR low-rank approximation
[MD09, DR10, WZ13, VM17], which consists in finding J via an approximation of the CSSP, and then
proceed to find a row index vector I of size 𝑘, selected such that the submatrix of C with row indices
given by I, and denoted by C(I, ∶), is non-singular. Then A is approximated as

A ≈ C ⋅ U ⋅ R,

where C = A(∶, J), R ∶= A(I, ∶) ∈ ℂ𝑘×𝑛 and U ∶= C−1(I, ∶) ∈ ℂ𝑘×𝑘 . When A is a matrix arising from
BEM discretization, CUR methods are also known as skeleton approximations [GZT97, Beb00, GT01,
GOS+08] and we devote an entire chapter to its numerical and algorithmic analysis.

To conclude, another kind of approximation that we shall use in this thesis, can be obtained via
subspace iterationmethods, c.f. §4.4, which consist in constructing a low-rankmatrix by approximating
the column space of Y ∶= (AAT)𝑞AΩ, where 𝑞 is a small integer parameter and Ω ∈ ℝ𝑛×𝑙 is a random
matrix. We get A ≈ QB𝑘 , where Q ∈ ℂ𝑚×𝑘 is the orthogonal basis of Y and B𝑘 is the rank-𝑘 truncated
SVD of QTA, see e.g. [Gu15, HMT11]. The bound on the error holds with high probability [HMT11]

𝔼‖A − QB𝑘‖2 ≤ (1 + (1 + 4√
2min(𝑚, 𝑛)

𝑘 − 1 )
1/(2𝑞+1)

) σ𝑘+1.

1.4 Summary and Contributions
This manuscript is structured in two parts that can be read independently. The first part deals with
the solution of boundary integral equations arising from acoustics and electromagnetics problem, for
which we use the multi-trace formulation. Then, in the second part of the thesis we propose methods
of low-rank compression and approximation of general matrices for accelerating the solution of linear
systems arising from BEM discretizations.

Part I

• In Chapter 2, we apply the local multi-trace formulation for acoustic scattering problems. We
consider a model problem where all scattering domains are composed with an unique homoge-
nous material and then we find a closed form for the inverse of the local-MTF operator corre-
sponding to this configuration. We then use this inverse operator for preconditioning general
composite scattering problems.
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• In Chapter 3, we analyze the stability of the local-MTF for the case of Maxwell equation, which
was an open question in the literature of MTF. We prove the injectivity of the local Multi-Trace
operator and then a generalized Gårding inequality for the local-MTF formulation on the unit
sphere.

Part II

• In Chapter 4, we recall classical low-rank approximations for general matrices, focusing in par-
ticular on QR and subspace iteration methods. For the former we provide a new bound on the
error when the classical column pivoting technique is used; and furthermore, we prove a bound
for the case when a general pivoting technique is used. For the latter, we prove exponential con-
vergence on the approximation of singular vectors, which was an open question in the literature.

• In Chapter 5,we introduce the concept of affine low-rank approximations providing an algorithm
called ALORA that is intended to modify standard approximation algorithms. We then introduce
a correlation coefficient to relate the spacial distribution of the columns of a matrix to its low-
rank structure, which helps to understand for which matrices an affine low-rank approximation
would be advantageous. Finally, we compare the performance of affine low rank-approximation
with respect to standard QR and subspace iteration algorithms.

• In Chapter 6, we introduce the novel concept of geometric sampling to approximate matrices
arising from BEM discretization, to which we refer as to BEM matrices. We provide a framework
to constuct linear-time CUR approximations using information from the geometry where the
problem is posed. We prove a general bound on the approximation error and provide a CUR
algorithm that performs very well in practice using a criterion called gravity centers sampling.

In Appendix A, we present an independent work, albeit related to the low-rank analysis performed
in Chapter 4. It consists in a communication avoiding low-rank QR approximation algorithm developed
during the first year of this thesis. Note that this work has not received any further development for
two years. However, in a future work, this contribution could be optimized for particular applications
to accelerate and increase the precision of matrix-compression and low-rank approximations.

Appendix B contains additional theoretical results and MATLAB codes corresponding to the work
developed in the second part of this Thesis.
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Muti-trace formulations





CHAPTER2

Local Multi-Trace formulation

2.1 Preliminaries
The local multi-trace formulation (later abbreviated local-MTF) was introduced in [HJH12] as a means
to solve acoustic wave scattering by heterogenous penetrable structures as those found in composite
materials. The MTF considers as unknowns Dirichlet and Neumann traces on either side of the subdo-
mains. These traces are then required to satisfy Calderón identities per subdomain and transmission
conditions per interface. This last condition forces the appearance of restriction and extension-by-zero
operators which entail Petrov-Galerkin variational forms: trial and test functions belong to different
functional spaces, H±1/2(Γ) and H̃∓1/2(Γ), respectively. Consequently, a mismatch between continuity
and coercivity spaces takes place and, consequently, the Fredholm alternative argument cannot be used
directly. Still, by using Lion’s lemma and by proving uniqueness of solutions, it is shown that the for-
mulation is well-posed [HJH12, CHJH13].

For the discretization of local-MTF, one requires a slight increase in regularity and inverse discrete
inequalities such as those presented in the original work for 2D (cf. [HJHM15] for 3D) to derive dis-
crete stability estimates. However, numerically the method has been successfully shown to be easy
to implement with standard codes, with clear parallelization and, though ill-conditioned, obvious pre-
conditioners of algebraic or Calderón type. In recent years, a great deal of work has been devoted
to either extend local-MTF [JHPT15], find alternative formulations [CHJH13, CHJHP15], find its con-
nection domain decomposition methods [HJHLP14, DG16, JHPAT17] while with applications even in
cellular simulation [HJHA16].

In this chapter we present the local multi-trace formulation, introducing main notations and back-
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ground for the theory presented in this and the following chapter. Then, we provide a closed form for
the inverse of the local multi-trace operator of a model transmission problem, we posit that this inverse
operator can be taken as a preconditioner for general local-MTF of composite scattering in acoustics.
The chapter is structured as follows, in Section 2.2 we present technical concepts needed for our heavy
analysis later on. Section 2.3 presents the local multi-trace operator and in Section 2.4 we derive its
inverse for a model problem. Next, in Section 2.5 we numerically verify the theoretical analysis and
show the efficiency of the obtained preconditioner. Finally, Section 2.6 concludes the chapter.

2.2 Functional and trace spaces
Let us consider a partition of the 𝑑 dimensional space ℝ𝑑 ∶= ⋃𝑛

𝑗=0 Ω𝑗 where each Ω𝑗 is a connected
Lipschitz domain. We refer Γ𝑗 ∶= ∂Ω𝑗 as the boundary of Ω𝑗 .

Next, let L2(Ω) be the functional space given by the square integrable functions, and define the
following functional spaces,

H1(Ω𝑗) ∶= {𝑣 ∈ L2(Ω𝑗) || ‖𝑣‖2H1(Ω𝑗) ∶= ∫Ω𝑗
|𝑣|2 + |∇𝑣|2 < +∞} , (2.2.1)

H(div, Ω𝑗) ∶= {𝑣 ∈ L2(Ω𝑗) || ‖𝑣‖2H(Ω𝑗) ∶= ∫Ω𝑗
|𝑞|2 + |div(𝑞)|2 < +∞} , (2.2.2)

H(curl, Ω𝑗) ∶= {𝑣 ∈ L2(Ω𝑗) || ‖𝑣‖2H(curl,Ω𝑗) ∶= ‖𝑣‖L2(Ω𝑗) + ‖curl𝑣‖L2(Ω𝑗) < +∞} . (2.2.3)

If H(Ω𝑗) is one of the functional spaces defined above, we define

Hloc(Ω𝑗) ∶= {𝑣 | φ𝑣 ∈ H(Ω𝑗), ∀φ ∈ 𝒟(ℝ𝑑 )} ,

where 𝒟(ℝ𝑑 ) is the space of functions of class 𝒞∞ having compact support.

2.2.1 Trace spaces
The space of Dirichlet traces is given as

H1/2(Γ𝑗) ∶= {𝑣|Γ𝑗 || 𝑣 ∈ H1(Ω𝑗)} ,
equipped with the norm

‖𝑣‖H1/2(Γ𝑗) ∶= min { ‖𝑢‖H1(Ω𝑗) || 𝑢 ∈ H1(Ω𝑗), 𝑢|Γ𝑗 = 𝑣} ,

and the space of Neumann traces, H−1/2(Γ𝑗), is defined as the dual to H1/2(Γ𝑗) and is equipped with the
corresponding canonical dual norm

‖𝑝‖H−1/2(Γ𝑗) ∶= sup
𝑣∈H1/2(Γ𝑗)\{0}

|⟨𝑝, 𝑣⟩|
..‖𝑣‖H1/2(Γ𝑗)

.

When dealing with Maxwell equation in the next chapter, letting Ω ⊂ ℝ3 be a connected Lipschitz
domain with Γ = ∂Ω, we shall refer toH−1/2(div, Γ) as the tangential traces of volume based vector fields
belonging to H(curl, ℝ3),
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H−1/2(div, Γ) ∶= {𝑢|Γ × 𝑛𝑗 || 𝑢 ∈ H(curl, ℝ3)} ,

note that this definition does not depend on the choice of the normal 𝑛𝑗 . This space is put in duality
with itself by means of one of the bilinear forms 𝑢, 𝑣 ↦ ∫Γ 𝑛𝑗 ⋅ (𝑢 × 𝑣)𝑑σ. We also need to introduce
duality pairings for H−1/2(div, Γ)2 = H−1/2(div, Γ) × H−1/2(div, Γ) that is defined by

[(𝑢, 𝑝), (𝑣, 𝑞)]Γ𝑗 ∶= ∫Γ𝑗
𝑛𝑗 ⋅ (𝑢 × 𝑞 + 𝑝 × 𝑣) 𝑑σ.

Multi-trace formulations will be written in a so-called multi-trace space and obtained as the carte-
sian product of traces on the boundary of each subdomain. It takes the simple form

ℍ(Σ) ∶= H−1/2(div, Γ)2 × H−1/2(div, Γ)2 = H−1/2(div, Γ)4.

This space will be equipped with a bilinear pairing [[⋅, ⋅]] ∶ ℍ(Σ) × ℍ(Σ) → ℂ defined as follows.
For any tuples 𝑢 = (𝑢0, 𝑢1), 𝑣 = (𝑣0, 𝑣1) ∈ ℍ(Σ) we set

[[𝑢, 𝑣]] ∶= [𝑢0, 𝑣0]Γ0 + [𝑢1, 𝑣1]Γ1 .

Note the identity [[𝑢, 𝑣]] = −[[𝑣, 𝑢]] for any 𝑢, 𝑣 ∈ ℍ(Σ). Next we need to introduce three interior
trace operators γ𝑗t, γ𝑗r ∶ H(curl, Ω𝑗) → H−1/2(div, Γ𝑗) and γ𝑗 ∶ H(curl, Ω𝑗) → H−1/2(div, Γ𝑗)2, those
traces are taken from the interior of Ω𝑗 and defined for all 𝑢 ∈ 𝒞∞(ℝ3)3 by

γ𝑗t(𝑢) ∶= 𝑢|Γ × 𝑛𝑗 ,
γ𝑗r(𝑢) ∶= curl(𝑢)|Γ × 𝑛𝑗 ,
γ𝑗(𝑢) ∶= (γ𝑗t(𝑢), γ𝑗r(𝑢)).

(2.2.4)

The trace operators γ𝑗t,𝑐 (resp. γ𝑗r,𝑐 , γ𝑗𝑐) shall refer to exactly the same operators as (2.2.4) but with
traces taken from the exterior (with the same direction of normal vector 𝑛𝑗 though). Then we shall
define jump and averages traces as

{γ𝑗⋆}(𝑢) ∶= (γ𝑗⋆(𝑢) + γ𝑗⋆,𝑐(𝑢))/2,
[γ𝑗⋆](𝑢) ∶= γ𝑗⋆(𝑢) − γ𝑗⋆,𝑐(𝑢) for ⋆ = t, r.

(2.2.5)

We define {γ𝑗} and [γ𝑗] accordingly.

2.3 Local Multi-Trace operator

We start by introducing the local multi-trace formulation for a model problem. Consider a partition of
the space ℝ𝑑 = Ω0 ∪ Ω1 ∪ Ω2 as shown in Figure 2.1.
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Figure 2.1: Geometrical configuration we consider in the analysis

We assume that Ω𝑗 , 𝑗 = 0, 1, 2 are Lipschitz domains such that Ω𝑗 ∩ Ω𝑘 = ∅ for 𝑗 ≠ 𝑘. Denoting by
Γ𝑗 ∶= ∂Ω𝑗 , we assume in addition that Γ1 ∩ Γ2 = ∅ and Γ0 = Γ1 ∪ Γ2. Let 𝑛𝑗 be the unit outer normal
for Ω𝑗 on its boundary Γ𝑗 . For a sufficiently regular function 𝑣 we denote by 𝑣|+Γ𝑗 the trace of 𝑣 and by
∂𝑛𝑗𝑣|+Γ𝑗 the trace of 𝑛𝑗 ⋅ ∇𝑣 on Γ𝑗 taken from inside of Ω𝑗 . Similarly we define 𝑣|−Γ𝑗 and ∂𝑛𝑗𝑣|−Γ𝑗 but with
traces from outside of Ω𝑗 .

The elliptic transmission problem for which we want to study the local multi-trace formulation and
its inverse is: find 𝑢 ∈ H1(ℝ𝑑 ) such that

−Δ𝑢 + κ2𝑗𝑢 = 0 in Ω𝑗 , 𝑗 = 0, 1, 2,
[𝑢]Γ1 = 𝑔1, [𝑢]Γ2 = 𝑔2,
[∂𝑛𝑢]Γ1 = ℎ1, [∂𝑛𝑢]Γ2 = ℎ2,

(2.3.1)

where κ𝑗 > 0 for 𝑗 = 0, 1, 2, 𝑔𝑗 ∈ H+1/2(Γ𝑗) and ℎ𝑗 ∈ H−1/2(Γ𝑗) are given data of the transmission
problem, and we used the classical jump notation for the Dirichlet and Neumann traces of the solution
across the interfaces Γ𝑗 , 𝑗 = 1, 2, i.e. [𝑢]Γ𝑗 ∶= 𝑢|+Γ𝑗 − 𝑢|−Γ𝑗 and [∂𝑛𝑢]Γ𝑗 ∶= ∂𝑛𝑗𝑢|+Γ𝑗 − ∂𝑛𝑗𝑢|−Γ𝑗 .

Following [HJHLP14], this problem can be rewritten as a boundary integral local multi-trace for-
mulation, using the Calderón projector: let ℍ(Γ𝑗) ∶= H1/2(Γ𝑗) × H−1/2(Γ𝑗); then for (𝑔, ℎ) ∈ ℍ(Γ𝑗), the
Calderón projector ℙ𝑗 ∶ ℍ(Γ𝑗) → ℍ(Γ𝑗) interior to Ω𝑗 associated to the operator −Δ + κ2𝑗 is defined by

ℙ𝑗(𝑔, ℎ) ∶= (𝑣|+Γ𝑗 , ∂𝑛𝑗𝑣|+Γ𝑗 ) where 𝑣 satisfies

−Δ𝑣 + κ2𝑗𝑣 = 0 in Ω𝑗 and in ℝ𝑑 ⧵ Ω𝑗 ,
[𝑣]Γ𝑗 = 𝑔 and [∂𝑛𝑣]Γ𝑗 = ℎ, and
lim sup|𝑥|→∞ |𝑣(𝑥)| < +∞,

and ℙ𝑗 is known to be a continuous map, see [SS11]. The decomposition Γ0 = Γ1 ∪ Γ2 induces a natural
decomposition of ℙ0 in the following manner: for any U ∈ ℍ(Γ0) set ρ𝑗(U) ∶= U|Γ𝑗 ∈ ℍ(Γ𝑗), 𝑗 = 1, 2. In
addition, for any V ∈ ℍ(Γ𝑗), 𝑗 = 1, 2, define ρ∗𝑗(V) ∈ ℍ(Γ0) by ρ∗𝑗(V) = V on Γ𝑗 and ρ∗𝑗(V) = 0 on Γ0 ⧵ Γ𝑗 .
Then the projector ℙ0 can be decomposed as

ℙ0 = [ ℙ̃1 R1,2/2
R2,1/2 ℙ̃2

] , where { ℙ̃𝑗 ∶= ρ𝑗 ⋅ ℙ0 ⋅ ρ∗𝑗 ,
R𝑗,𝑘/2 ∶= ρ𝑗 ⋅ ℙ0 ⋅ ρ∗𝑘 .

The operators ℙ̃𝑗 ∶ ℍ(Γ𝑗) → ℍ(Γ𝑗) and R𝑗,𝑘 ∶ ℍ(Γ𝑘) → ℍ(Γ𝑗) are continuous. Following this
decomposition, we identify ℍ(Γ0) with ℍ(Γ1) × ℍ(Γ2). We also introduce the sign switching operator
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X(𝑣, 𝑞) ∶= (𝑣, −𝑞), and a relaxation parameter σ ∈ ℂ\{0}. The local multi-trace formulation of problem

(2.3.1) is then: find (U1, U(0)
1 , U(0)

2 , U2) ∈ ℍ(Γ1)2 × ℍ(Γ2)2 such that

⎡⎢⎢⎢
⎣

(1 + σ)Id − ℙ1 −σX 0 0
−σX (1 + σ)Id − ℙ̃1 −R1,2/2 0
0 −R2,1/2 (1 + σ)Id − ℙ̃2 −σX
0 0 −σX (1 + σ)Id − ℙ2

⎤⎥⎥⎥
⎦
⋅
⎡⎢⎢⎢
⎣

U1
U(0)
1

U(0)
2

U2

⎤⎥⎥⎥
⎦

= F, (2.3.2)

where F ∈ ℍ(Γ1)2 × ℍ(Γ2)2 is some right-hand side depending on 𝑔𝑗 , ℎ𝑗 , σ whose precise expression is
not important for our present study, where we want to obtain an explicit expression for the operator
in (2.3.2) and its inverse for the special case

κ0 = κ1 = κ2. (2.3.3)

To simplify the calculations when working with the entries of the operator in (2.3.2), we set A𝑗 ∶=
−Id + 2ℙ𝑗 and Ã𝑗 ∶= −Id + 2ℙ̃𝑗 . The following remarkable identities were established in [CDG18,
§4.4] for the special case (2.3.3): ℙ2𝑗 = ℙ𝑗 , ℙ̃2𝑗 = ℙ̃𝑗 , ℙ̃1R1,2 = ℙ̃2R2,1 = 0, Xℙ𝑗X = Id − ℙ̃𝑗 , and finally
R1,2R2,1 = R2,1R1,2 = 0. These five properties can be reformulated in terms of the operators A𝑗 , namely

𝑖) A2𝑗 = Ã2𝑗 = Id,
𝑖𝑖) Ã1R1,2 = −R1,2 and Ã2R2,1 = −R2,1,
𝑖𝑖𝑖) X ⋅ A𝑗 ⋅ X = −Ã𝑗 ,
𝑖𝑣) R1,2R2,1 = R2,1R1,2 = 0,
𝑣) R1,2Ã2 = R1,2 and R2,1Ã1 = R2,1.

(2.3.4)

Let us introduce auxiliary operators 𝔸,Π ∶ ℍ(Γ1)2 × ℍ(Γ2)2 defined by

𝔸 ∶=
⎡⎢⎢⎢
⎣

A1 0 0 0
0 Ã1 R1,2 0
0 R2,1 Ã2 0
0 0 0 A2

⎤⎥⎥⎥
⎦
, Π ∶=

⎡⎢⎢⎢
⎣

0 X 0 0
X 0 0 0
0 0 0 X
0 0 X 0

⎤⎥⎥⎥
⎦
. (2.3.5)

According to property i) in (2.3.4), we have (Id + 𝔸)2/4 = (Id + 𝔸)/2, which implies the well known
Calderón identity from the boundary integral equation literature, i.e.

𝔸2 = Id, (2.3.6)

see for example [Néd01, §4.4]. The local multi-trace operator on the left-hand side of Equation (2.3.2)
can then be rewritten as

MTFloc ∶= −12𝔸 − σΠ + (σ + 1
2)Id. (2.3.7)

In (2.3.2), the terms associated with the relaxation parameter σ, namely Id − Π, enforce the trans-
mission conditions of problem (2.3.1). For σ = 0, we have MTFloc = 1

2 (Id −𝔸), which is a projector, and
MTFloc is thus not invertible. For σ ≠ 0 however, MTFloc was proved to be invertible in [Cla16, Cor.
6.3]. The goal of this chapter is to derive an explicit formula for the inverse of MTFloc, and we will thus
assume σ ≠ 0.
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2.4 Inverse of the Local Multi-Trace Operator
We now derive a closed form inverse of the local multi-trace operator in (2.3.7) for the special case
(2.3.3). Using that Π2 = Id and (2.3.6), we obtain

[ −𝔸/2 − σΠ + (σ + 1/2)Id ] [ −𝔸/2 − σΠ − (σ + 1/2)Id ]
= (𝔸/2 + σΠ)2 − (σ + 1/2)2 Id
= (σ2 + 1/4 − σ2 − σ − 1/4)Id + σ(𝔸Π + Π𝔸)/2
= −σId + σ(𝔸Π + Π𝔸)/2.

(2.4.1)

Inspired by the calculations in [CDG18, §4.4] as well as [Cla16, Prop. 6.1], we examine more closely
𝔸Π + Π𝔸. We start by comparing 𝔸Π and Π𝔸:

𝔸Π =
⎡⎢⎢⎢
⎣

0 A1X 0 0
Ã1X 0 0 R1,2X
R2,1X 0 0 Ã2X
0 0 A2X 0

⎤⎥⎥⎥
⎦
, Π𝔸 =

⎡⎢⎢⎢
⎣

0 XÃ1 XR1,2 0
XA1 0 0 0
0 0 0 XA2
0 XR2,1 XÃ2 0

⎤⎥⎥⎥
⎦
. (2.4.2)

According to Property iii) in (2.3.4), we have XÃ𝑗 + A𝑗X = 0 and XA𝑗 + Ã𝑗X = 0, and thus from (2.4.2)
we obtain

Π𝔸 + 𝔸Π =
⎡⎢⎢⎢
⎣

0 0 XR1,2 0
0 0 0 R1,2X

R2,1X 0 0 0
0 XR2,1 0 0

⎤⎥⎥⎥
⎦
.

Computing the square of this operator, and taking into account Property iv) from (2.3.4), we obtain

(Π𝔸 + 𝔸Π)2 =
⎡⎢⎢⎢
⎣

XR1,2R2,1X 0 0 0
0 R1,2R2,1 0 0
0 0 R2,1R1,2 0
0 0 0 XR2,1R1,2X

⎤⎥⎥⎥
⎦
= 0.

From this we conclude that (−Id + (𝔸Π + Π𝔸)/2)−1 = −Id − (𝔸Π + Π𝔸)/2. Coming back to (2.4.1), we
obtain a first expression for the inverse of the local multi-trace operator, namely

[ −𝔸/2 − σΠ + (σ + 1/2)Id ]−1
= σ−1[𝔸/2 + σΠ + (σ + 1/2)Id ] [Id + (𝔸Π + Π𝔸)/2]
= σ−1[ 12 (1 + σ)𝔸 + (σ + 1/4)Π + (σ + 1/2)(Id + (𝔸Π + Π𝔸)/2)]
+ σ−1[ σ2Π𝔸Π + 1

4𝔸Π𝔸].

(2.4.3)

The only terms that are not explicitly known yet in (2.4.3) are the last two, Π𝔸Π and𝔸Π𝔸. Combining
(2.4.2) with the definitions given in (2.3.5), direct calculation yields

Π𝔸Π =
⎡⎢⎢⎢
⎣

−A1 0 0 XR1,2X
0 −Ã1 0 0
0 0 −Ã2 0

XR2,1X 0 0 −A2

⎤⎥⎥⎥
⎦
,

and similarly, we also obtain

𝔸Π𝔸 =
⎡⎢⎢⎢
⎣

0 −X XR1,2 0
−X 0 0 −R1,2X

−R2,1X 0 0 −X
0 XR2,1 −X 0

⎤⎥⎥⎥
⎦
.
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We have now derived an explicit expression for each term in (2.4.3), which leads to a close form matrix
expression for the inverse of the local multi-trace operator, namely

MTF−1loc = (1 + 1
2σ)Id +

1
σ

⎡⎢⎢⎢⎢⎢
⎣

1
2A1 σX σ+1

2 XR1,2
σ
2XR1,2X

σX 1
2 Ã1

σ+1
2 R1,2

σ
2R1,2X

σ
2R2,1X

σ+1
2 R2,1

1
2 Ã2 σX

σ
2XR2,1X

σ+1
2 XR2,1 σX 1

2A2

⎤⎥⎥⎥⎥⎥
⎦

. (2.4.4)

The expression MTFloc ⋅ MTF−1loc = Id should not be mistaken for the Calderón identity (2.3.6). The
primary difference is that (2.4.4) involves coupling terms between Ω1 and Ω2, whereas in (2.3.6), all
three subdomains are decoupled.

2.5 Numerical Experiments

2.5.1 Verifying the inversion formula
We now illustrate the closed form inversion formula (2.4.4) for the local multi-trace formulation by a
numerical experiment. We consider a three dimensional version of the geometrical setting described
at the beginning in Figure 2.1. Here Ω1 ∶= B(0, 0.5) is the open ball centered at 0 with radius 0.5,
Ω2 ∶= ℝ3\[−1, +1]3, and Ω0 ∶= ℝ3 ⧵ Ω1 ∪ Ω2, see Figure 2.2.

Figure 2.2: 3D geometry for the numerical experiment

For our numerical results, we discretize both MTFloc given by (2.3.7) leading to a matrix we denote
by [MTFloc], and MTF−1loc given by (2.4.4) leading to a matrix denoted by [MTF−1loc]. Our discretization
using the code bemtool1 is based on a Galerkin method where both Dirichlet and Neumann traces are
approximated by means of continuous piece-wise linear functions on the same mesh. We use a trian-
gulation with a mesh width ℎ = 0.35, and generated the mesh using Gmsh, see [GR09].

Let Mℎ be the mass matrix associated with the duality pairing used to write (2.3.2) in variational
form. We represent the spectrum of the matrix M−1

ℎ ⋅ [MTFloc] ⋅M−1
ℎ ⋅ [MTF−1loc] in Figure 2.3. We see that

1available on https://github.com/xclaeys/bemtool under Lesser Gnu Public License.
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Figure 2.3: Eigenvalues of the matrix M−1
ℎ ⋅ [MTFloc] ⋅M−1

ℎ ⋅ [MTF−1loc] for σ = −1
2 , with a zoom below

around 1.

the eigenvalues are clustered around 1, which agrees well with our analysis at the continuous level.

2.5.2 Preconditioner efficiency

Let us consider the operator P ∶= MTF−1loc, obtained by choosing σ = −1
2 and considering a constant

wave number κ0 = 1 for all operators in equation (2.4.4). In this section, we evaluate the performance
of P for preconditioning the local-MTF operator corresponding to a composite scattering problem in
heterogenous media. We use the same domain as in section 2.5.1 and consider the problem of finding
the solution 𝑢 of the following operator equation,

M(κ0, κ1, κ2)𝑢 = 𝑏, (2.5.1)

where 𝑏 is a constant 1-valued function and M(κ0, κ1, κ2) denotes the local-MTF operator considering
the wave numbers different in each domain and given as κ0 = 1, κ1 and κ2 respectively in Ω0, Ω1 and
Ω2. Next, we use P for preconditioning (2.5.1). Then, we discretize the problem to obtain a linear system
which we solve using GMRES with a restart value of 40 and a tolerance of 10−8.

In figures 2.4 and 2.5 we present representative numerical tests which show that P is an efficient
operator preconditioner for the local-MTF operator, and its effect is more notorious when the wave
numbers are close to each other, which is in agreement with the theory. We compare our precondi-
tioning technique against the classical block diagonal preconditioning operator D, which was used in
the paper introducing local-MTF [HJH12, Sec. 5.3], given as
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D ∶=
⎡⎢⎢⎢
⎣

A1 0 0 0
0 Ã1 0 0
0 0 Ã2 0
0 0 0 A2

⎤⎥⎥⎥
⎦
.
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Figure 2.4: Convergence history of GMRES with a restart value of 40, case κ0 = 1, κ1 = 6, κ2 = 6.
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Figure 2.5: Convergence history of GMRES with a restart value of 40, case κ0 = 1, κ1 = 5, κ2 = 10.

2.6 Conclusions of the chapter
We have shown that it is possible for the local multi-trace operator of a model transmission problem to
obtain a closed form for the inverse. This would therefore be an ideal preconditioner for local multi-
trace formulations. The closed form inverse seems to be inherent to the formulation, and not dependent
on the specific form of the partial differential equation. An open question that stems from this chapter
is if such closed form inverses can also be obtained for more general situations, where the coefficients
are only constant in each subdomain, and in the presence of more subdomains.



CHAPTER3

Stability of Local-MTF for Maxwell equation

3.1 Preliminaries

In this chapter, we study the local-MTF for an electromagnetic problem posed in a geometric configu-
ration consisting in two subdomains and one interface, where one subdomain is the open unit ball, and
the interface is the unit sphere. Our goal is to investigate the stability of the local-MTF for Maxwell
in this precise setting. For this, we first prove that the local multi-trace operator is injective and then
we write the local-MTF formulation in full detail by means of separation of variables based on vector
spherical harmonics. We derive an explicit formula for the corresponding boundary integral operator,
relying only on special functions (spherical Bessel and Hankel functions). We end this chapter plotting
the first eigenvalues of the operator and commenting on the stability.

This chapter is structured as follows, in Section 3.2 we state the problem and background concepts
needed for the analysis later on. Section 3.3 presents the local multi-trace operator for this framework
and then a prove that such operator is injective. In Sections 3.4 and 3.5 we use a separation of variables
technique based on vector spherical harmonics to derive explicit formulae for the local-MTF operator
and the accumulation points of its spectrum. In Section 3.6, we numerically verify the theoretical
analysis and in Section 3.7 we discuss on the stability of local-MTF for Maxwell equations. Finally,
Section 3.8 concludes the chapter.
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3.2 Problem setting
We consider a partition of free space as ℝ3 = Ω0 ∪ Ω1 in two smooth open subdomains, Ω0 and Ω1,
such that Ω0 = ℝ3 ⧵ Ω1. We denote Γ = ∂Ω0 = ∂Ω1 and let 𝑛𝑗 refer to the unit normal vector to Γ𝑗
directed toward the exterior of Ω𝑗 , so that we have 𝑛0 = −𝑛1. Let ϵ𝑗 > 0 (resp. μ𝑗 > 0) refer to the
electric permittivity (resp. magnetic permeability) in domain Ω𝑗 . We are interested in the scattering of
an incident electromagnetic wave (Einc,Hinc) propagating in harmonic regime at pulsation ω > 0. The
equations under consideration then write

⎧
⎨
⎩

curl(E) − 𝚤ωμ𝑗H = 0
curl(H) + 𝚤ωϵ𝑗E = 0
√μ0(H − Hinc) × �̂� − √ϵ0(E − Einc) = 𝒪|𝑥|→∞(|𝑥|−2)

(3.2.1)

{𝑛0 × E|Γ0 + 𝑛1 × E|Γ1 = 0
𝑛0 × H|Γ0 + 𝑛1 × H|Γ1 = 0 (3.2.2)

where we assume that curl(Einc) − 𝚤ωμ0Hinc = 0 in ℝ3 and curl(Hinc) + 𝚤ωϵ0Einc = 0 in ℝ3; the incident
field may be, for example, a plane wave. In addition, in the problem above �̂� ∶= 𝑥/|𝑥|. In Equation (3.2.2)
the notation ”E|Γ𝑗 ” (resp. ”H|Γ𝑗 ”) should be understood as the trace taken at Γ from the interior of Ω𝑗 .
Next, let us point out that (3.2.1)-(3.2.2) can be reformulated as a second order transmission boundary
value problem, which is the basis of Stratton-Chu potential theory, given as,

{curl
2(E) − κ2𝑗E = 0 in Ω𝑗

curl(E − Einc) × �̂� − 𝚤κ0(E − Einc) = 𝒪|𝑥|→∞(|𝑥|−2)
(3.2.3)

{𝑛0 × E|Γ0 + 𝑛1 × E|Γ1 = 0
μ−10 𝑛0 × curl(E)|Γ0 + μ−11 𝑛1 × curl(E)|Γ1 = 0 (3.2.4)

In the equations above we adopted the following notations for effective wave number in each subdo-
main

κ𝑗 ∶= ω√μ𝑗ϵ𝑗 , 𝑗 = 0, 1. (3.2.5)

We wish to study the solution of this problem by means of a boundary integral formulation. There
are several possible such formulations. We focus here on the local Multi-Trace formulation (local-MTF).
Since a complete stability analysis of local-MTF is not presently available, we will concentrate on the
following special case.

Assumption: Ω1 is the unit ball and Γ is the unit sphere.

This will allow explicit calculus by means of separation of variables which will help to investigate
and clarify the structure of operators associated to the local-MTF.

3.3 Local multi-trace operator for Maxwell equation
For the mathematical analysis, we heavily rely on potential theory for electromagnetics, i.e Statton-
Chu theory. On the sequel, 𝒢κ(𝑥) ∶= exp(𝚤κ|𝑥|)/(4π|𝑥|) will refer to the outgoing Green kernel of the
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Helmholtz equation with wave number κ > 0. Next we define the integral operators: for 𝑢 = (𝑢, 𝑝) ∈
H−1/2(div, Γ)2, we set

Gκ(𝑢)(𝑥) ∶= DLκ(𝑢)(𝑥) + SLκ(𝑝)(𝑥),

where SLκ(𝑝)(𝑥) ∶= κ−2 ∫Γ
∇𝒢κ(𝑥 − 𝑦)divΓ𝑝(𝑦)𝑑σ(𝑦) + ∫Γ

𝒢κ(𝑥 − 𝑦)𝑝(𝑦)𝑑σ(𝑦),

where DLκ(𝑢)(𝑥) ∶= curl∫Γ
𝒢κ(𝑥 − 𝑦)𝑢(𝑦)𝑑σ(𝑦).

The potential operator Gκ continuously maps H−1/2(div, Γ)2 into Hloc(curl, Ω0) and it also satisfies
(curl2 − κ20)Gκ(𝑢) = 0 in Ω0 as well as a Silver-Müller radiation condition at infinity, regardless of
𝑢 ∈ H−1/2(div, Γ)2. A similar result also holds in Ω1. The potential operator plays a central role in
the derivation of boundary integral equations as it can be used to represent solution to homogeneous
Maxwell equations according to the Stratton-Chu representation theorem given as follows, c.f. [BH03,
Thm. 6].

Theorem 3.1. Let U ∈ Hloc(curl, Ω𝑗) satisfy curl2(U) − κ2𝑗U = 0 in Ω𝑗 . For 𝑗 = 0 assume in addition
that curl(U) × �̂� − 𝚤κ0U = 𝒪(|𝑥|−2) for |𝑥| → ∞. Then,

Gκ(γ𝑗(U))(𝑥) = 1Ω𝑗 (𝑥)U(𝑥),

for all 𝑥 ∈ ℝ3.
On the other hand, the jumps of trace, c.f. (2.2.5), of the potential operator follow a simple and

explicit expression given by the following proposition which can be found in [BH03, Thm. 7].

Proposition 3.1. For any 𝑢 ∈ H−1/2(div, Γ)2 we have [γ𝑗] ⋅ Gκ(𝑢) = 𝑢.
In the forthcoming analysis, we shall make intensive use of the operator A𝑗

κ ∶= 2{γ𝑗} ⋅ Gκ. From
the classical theory of potentials, it is clear that {γ𝑗t} ⋅ DLκ = {γ𝑗r} ⋅ SLκ, see e.g. [Ste08, SS11]. On the
other hand, using the vector Helmholtz equation satisfied by ∫Γ 𝒢κ(𝑥 − 𝑦)𝑢(𝑦)𝑑σ(𝑦), we get also that

{γ𝑗r} ⋅ DLκ = κ2{γ𝑗t} ⋅ SLκ. As a consequence the operator A𝑗
κ can be represented in matrix form as

A𝑗
κ ∶= [ κK𝑗

κ κ−1V𝑗
κ

κV𝑗
κ κ−1K𝑗

κ
] where { V𝑗

κ ∶= (2/κ){γ𝑗r} ⋅ DLκ,
K𝑗
κ ∶= 2{γ𝑗t} ⋅ DLκ.

(3.3.1)

Observe that, for a given κ we have A0κ = −A1κ due to the change in the orientation of the normals
𝑛0 = −𝑛1. The following proposition states that the operators in (3.3.1) can be used to characterize
solutions of Maxwell equations in a given subdomain.

Proposition 3.2. The operator γ𝑗Gκ = (Id+A𝑗
κ)/2 is a continuous projector as amapping fromH−1/2(div, Γ)2

into H−1/2(div, Γ)2. Its range is the space of traces γ𝑗(U), where U ∈ Hloc(curl, Ω𝑗) satisfies

curl2(U) − κ2U = 0 in Ω𝑗 ,
as well as

curl(U) × �̂� − 𝚤κ0U = 𝒪(|𝑥|−2), for |𝑥| → ∞ if𝑗 = 0.
An easy consequence of the above proposition is that (A𝑗

κ)2 = Id which is known as Calderón’s
identity. The incident field is solution to Maxwell equations with wave number κ0 on ℝ3 including
inside Ω1, so that we get (A1κ0 − Id)γ1(Einc) = 0 according to the proposition above. Since on the other
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handA1κ0 = −A0κ0 and γ0(Einc) = −γ1(Einc) (continuity across interfaces), we conclude that A0κ0γ1(Einc) =
−γ1(Einc). Using Proposition 3.2, we also observe that equations (3.2.3) can be reformulated as

(A1κ1 − Id)γ1(E) = 0,

and,
(A0κ0 − Id)(γ0(E) − γ0(Einc)) = 0,

where the later is equivalent to (A0κ0 − Id)γ0(E) = −2γ0(Einc).

Next, we need to reformulate the transmission conditions (3.2.4). Since these conditions are weighted
with the permeability coefficients μ𝑗 , we need to introduce scaling operators τα ∶ H−1/2(div, Γ)2 →
H−1/2(div, Γ)2 defined by τα(𝑣, 𝑞) ∶= (𝑣, α𝑞). The transmission conditions then rewrite

τ−1ωμ0γ0(E) + τ−1ωμ1γ1(E) = 0. (3.3.2)

For the sake of conciseness, we choose 𝑢𝑗 = τ−1ωμ𝑗γ𝑗(E) as unknowns of our problem. As a consequence,
equations (3.2.3)-(3.2.4) rewrite

⎧
⎨
⎩

(A0κ0,μ0 − Id)𝑢0 = −2τ−1ωμ0γ0(Einc),
(A1κ1,μ1 − Id)𝑢1 = 0,
𝑢0 + 𝑢1 = 0,

(3.3.3)

where we systematically denote ϵ ∶= κ2/(ω2μ) so thatωμ/κ = √μ/ϵ, and the scaled operators are defined
as

A𝑗
κ,μ ∶= τ−1ωμ ⋅ A𝑗

κ ⋅ τωμ = [ √ϵ/μ K𝑗
κ √μ/ϵ V𝑗

κ
√ϵ/μ V𝑗

κ √μ/ϵ K𝑗
κ
] . (3.3.4)

With this definition, we have (A𝑗
κ,μ)2 = Id. Now let us rewrite (3.3.3) in a matrix form. We first

introduce the continuous map A(κ,μ) ∶ ℍ(Σ) → ℍ(Σ) as a block diagonal operator A(κ,μ)(𝑢) ∶=
(A0κ0,μ0(𝑢0),A1κ1,μ1(𝑢1)) for any 𝑢 = (𝑢0, 𝑢1) ∈ H−1/2(div, Γ)2. The first two rows of (3.3.3) can be rewrit-
ten as

(A(κ,μ) − Id)𝑢 = 𝑓 , (3.3.5)

where 𝑢 = (𝑢0, 𝑢1) and 𝑓 = (−2τ−1ωμ0γ0(Einc), 0). To enforce transmission conditions, we also need to
consider an operator Π ∶ ℍ(Σ) → ℍ(Σ) whose action consists in inverting traces from both sides
of the interface. It is defined by Π(𝑢0, 𝑢1) ∶= (𝑢1, 𝑢0) for 𝑢0, 𝑢1 ∈ H−1/2(div, Γ), so that transmission
conditions simply rewrite 𝑢 = Π(𝑢). Plugging the transmission operator into (3.3.5) leads to the local
Multi-Trace formulation of (3.2.3)-(3.2.4),

{Find 𝑢 ∈ ℍ(Σ) such that

MTFloc(𝑢) = 𝑓 , (3.3.6)

where MTFloc ∶= A(κ,μ) + Π = [ A0κ0,μ0 Id
Id A1κ1,μ1

].

As a first result, we prove injectivity of the local Multi-Trace operator, and hence unique solvability
of the above equation.

Proposition 3.3. Ker(MTFloc) = {0}.
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Proof:
Assume that MTFloc(𝑢) = 0 for some 𝑢 = (𝑢0, 𝑢1) ∈ H−1/2(div, Γ)4 and set ψ𝑗 ∶= Gκ𝑗 (τωμ𝑗 (𝑢𝑗)) for

both 𝑗 = 0, 1. We have [γ𝑗](ψ𝑗) = τωμ𝑗 (𝑢𝑗) according to the jump formula of Proposition 3.1. Since

2{γ𝑗} = 2γ𝑗 − [γ𝑗], we have

2τ−1ωμ𝑗 ({γ𝑗}(ψ𝑗)) = 2τ−1ωμ𝑗 (γ𝑗(ψ𝑗)) − 𝑢𝑗 , 𝑗 = 0, 1. (3.3.7)

Next, from MTFloc(𝑢) = 0we directly deduce that A0κ0,μ0(𝑢0)+𝑢1 = 0, which rewrites 2τ−1ωμ0γ0(ψ0) =
𝑢0 − 𝑢1, according to (3.3.4) and (3.3.7). Similarly we obtain 2τ−1ωμ1γ1(ψ1) = 𝑢1 − 𝑢0. As a consequence
we have τ−1ωμ0γ0(ψ0) + τ−1ωμ1γ1(ψ1) = 0, which rewrites

τ−1ωμ0γ0(ψ) + τ−1ωμ1γ1(ψ) = 0,
for ψ ∶= 1Ω0ψ0 + 1Ω1ψ1.

By construction, ψ0 and thus ψ satisfies the Silver-Müller radiation condition curl(ψ) × �̂� − 𝚤κ0ψ =
𝒪(|𝑥|−2) for |𝑥| → ∞ and curl2(ψ) − κ2𝑗ψ = 0 in Ω𝑗 , 𝑗 = 0, 1. As a consequence we conclude that ψ is
solution to an homogeneous transmission problem (similar to (3.2.3)-(3.2.4) with an incident field equal
to 0). This leads to the conclusion that ψ = 0 in ℝ3. In other words,

ψ𝑗 = 0 in Ω𝑗 for 𝑗 = 0, 1. (3.3.8)

According to (3.3.7),this implies that 2τ−1ωμ𝑗 {γ𝑗}(ψ𝑗) = −𝑢𝑗 for 𝑗 = 0, 1, and finally using (3.3.4), we

obtain (Π − Id)𝑢 = 0 which is equivalent to 𝑢0 = −𝑢1. Besides, 2{γ𝑗} = γ𝑗 + γ𝑗𝑐 so that 2τ−1ωμ𝑗 {γ𝑗}(ψ𝑗) =
τ−1ωμ𝑗γ

𝑗𝑐(ψ𝑗) = 𝑢𝑗 for 𝑗 = 0, 1. So we conclude that

τ−1ωμ0γ0(ψ𝑐) + τ−1ωμ1γ1(ψ𝑐) = 0,
for ψ𝑐 ∶= 1Ω1ψ0 − 1Ω0ψ1.

By construction ψ1 and thus ψ𝑐 satisfies the Silver-Müller radiation condition curl(ψ𝑐) × �̂� − 𝚤κ1ψ𝑐 =
𝒪(|𝑥|−2) for |𝑥| → ∞ and curl2(ψ𝑐) − κ2𝑗ψ𝑐 = 0 in ℝ3 ⧵ Ω𝑗 , for 𝑗 = 0, 1. As a consequence, ψ𝑐 is the
solution to an homogeneous transmission problem with wave number κ0 in Ω1 (resp. κ1 in Ω0). We
conclude that ψ𝑐 = 0 in ℝ3 i.e. ψ𝑗 = 0 in ℝ3 ⧵ Ω𝑗 .

To summarize we have established that ψ𝑗 = 0 in both Ω𝑗 and ℝ3 ⧵ Ω𝑗 . Taking the jump trace we

conclude 𝑢𝑗 = τ−1ωμ𝑗 [γ𝑗](ψ𝑗) = 0, which finishes the proof. □

3.4 Separation of variables
We are interested in deriving an explicit expression of operator (3.3.6). As the present geometrical
setting admits spherical symmetry, this can be obtained by means of separation of variables based on
spherical harmonics. Any tangential vector field 𝑢 ∈ L2t(Γ) ∶= {𝑣 ∶ Γ → ℂ, 𝑣(𝑥) ⋅ 𝑥 = 0 ∀𝑥 ∈
Γ, ‖𝑣‖2L2t(Γ) ∶= ∫Γ |𝑣|2𝑑σ < +∞} can be decomposed as

𝑢(𝑥) =
+∞
∑
𝑛=0

∑
|𝑚|≤𝑛

𝑢∥𝑛,𝑚X∥𝑛,𝑚(𝑥) + 𝑢×𝑛,𝑚X×𝑛,𝑚(𝑥),

with X∥𝑛,𝑚 ∶= 1
√𝑛(𝑛 + 1)

∇ΓY𝑚𝑛 , X×𝑛,𝑚 ∶= 𝑛1 × X∥𝑛,𝑚,
(3.4.1)
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where ∇Γ is the surface gradient. Denoting (θ, φ) ∈ [0, π] × [0, 2π] the spherical coordinates on Γ, the
spherical harmonics (see e.g [OLBC10, §14.30]) are defined by

Y𝑚𝑛 (θ, φ) ∶= √
2𝑛 + 1
4π √

(𝑛 − |𝑚|)!
(𝑛 + |𝑚|)! P|𝑚|

𝑛 (cos θ) exp(𝚤𝑚φ). (3.4.2)

In the definition above, the functions P𝑚𝑛 (𝑡), 𝑚 ≥ 0, 𝑡 ∈ [0, 1] refer to the associated Legendre functions,
see e.g. [Leb72, §7.12]. The tangent fieldsX∥𝑛,𝑚,X×𝑛,𝑚 form an orthonormal Hilbert basis of L2t(Γ). Let us
denote X𝑛,𝑚(𝑥) ∶= [X∥𝑛,𝑚(𝑥),X×𝑛,𝑚(𝑥)] so that Expansion (3.4.1) can be rewritten in the more compact
form

𝑢(𝑥) =
+∞
∑
𝑛=0

∑
|𝑚|≤𝑛

X𝑛,𝑚(𝑥) ⋅ 𝑢𝑛,𝑚, (3.4.3)

for a collection of coordinate vectors 𝑢𝑛,𝑚 = [𝑢∥𝑛,𝑚, 𝑢×𝑛,𝑚]⊤ ∈ ℂ2. The operators coming into play in
the expression of the local multi-trace operator (3.3.6) are actually (block) diagonalized by this basis.
Define J𝑛(𝑡) ∶= √π𝑡/2J𝑛+1/2(𝑡)where Jν(𝑡) are Bessel functions of the first kind of order ν (see [OLBC10,

§10.2]) andH𝑛(𝑡) ∶= √π𝑡/2H(1)
𝑛+1/2(𝑡)whereH(1)ν (𝑡) are Hankel functions of the first kind of order ν (see

[OLBC10, §10.2 & §10.4]). Then, according to Lemma 1 in [VGG14], using notations (3.3.1), we have

V0κ ⋅ X𝑛,𝑚(𝑥) = X𝑛,𝑚(𝑥) ⋅ V0κ[𝑛], where

V0κ[𝑛] ∶= [ 0 +2𝚤 J𝑛(κ)H𝑛(κ)
−2𝚤 J′𝑛(κ)H′𝑛(κ) 0 ] ∈ ℂ2×2.

(3.4.4)

Since V1κ = −V0κ we have V1κ ⋅ X𝑛,𝑚(𝑥) = X𝑛,𝑚(𝑥) ⋅ V1κ[𝑛] by setting V1κ[𝑛] ∶= −V0κ[𝑛]. According to
Lemma 1 in [VGG14], we also have the explicit expression

K0κ ⋅ X𝑛,𝑚(𝑥) = X𝑛,𝑚(𝑥) ⋅ K0κ[𝑛] where

K0κ[𝑛] ∶= 𝚤( J𝑛(κ)H′𝑛(κ) + J′𝑛(κ)H𝑛(κ) ) [ −1 0
0 +1 ] ∈ ℂ2×2.

(3.4.5)

Here again, defining K1κ[𝑛] = −K0κ[𝑛] we obtain K1κ ⋅ X𝑛,𝑚(𝑥) = X𝑛,𝑚(𝑥) ⋅ K1κ[𝑛]. From (3.4.4) and (3.4.5)
we deduce an explicit expression for the operators A𝑗

κ,μ. First of all define the function X# 2𝑛,𝑚 by the
expression

X# 2𝑛,𝑚(𝑥) ∶= [X𝑛,𝑚(𝑥),X𝑛,𝑚(𝑥)]
∶ = [X∥𝑛,𝑚(𝑥),X×𝑛,𝑚(𝑥),X∥𝑛,𝑚(𝑥),X×𝑛,𝑚(𝑥)]

Then any element 𝑢 = (𝑢, 𝑝) ∈ H−1/2(div, Γ)2 decomposes as 𝑢(𝑥) = ∑𝑛,𝑚 X# 2𝑛,𝑚(𝑥)⋅𝑢𝑛,𝑚 where 𝑢𝑛,𝑚 ∈ ℂ4

are coordinate vectors that do not depend on 𝑥 . In this basis, the operator A𝑗
κ,μ admits the following

matrix form
A𝑗
κ,μ ⋅ X# 2𝑛,𝑚(𝑥) = X# 2𝑛,𝑚(𝑥) ⋅ A𝑗

κ,μ[𝑛] where

A𝑗
κ,μ[𝑛] ∶= [ √ϵ/μ K𝑗

κ[𝑛] √μ/ϵ V𝑗
κ[𝑛]

√ϵ/μ V𝑗
κ[𝑛] √μ/ϵ K𝑗

κ[𝑛]
] ∈ ℂ4×4.

(3.4.6)

We can reiterate the notations we used above, and introduce the fields X# 4𝑛,𝑚(𝑥) ∶= [X# 2𝑛,𝑚(𝑥),X# 2𝑛,𝑚(𝑥)].
Then, any 𝑢 = (𝑢0, 𝑢1) ∈ H−1/2(div, Γ)2×H−1/2(div, Γ)2 can be decomposed as 𝑢(𝑥) = ∑𝑛,𝑚 X# 4𝑛,𝑚(𝑥)⋅𝑢𝑛,𝑚
where 𝑢𝑛,𝑚 ∈ ℂ8 are coordinate vectors that do not depend on 𝑥 . Then, the multi-trace operator (3.3.6)
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is reduced to matrix form in this basis

MTFloc ⋅ X# 4𝑛,𝑚(𝑥) = X# 4𝑛,𝑚(𝑥) ⋅MTFloc[𝑛], where

MTFloc[𝑛] ∶= [ A0κ0,μ0[𝑛] Id
Id A1κ1,μ1[𝑛]

] ∈ ℂ8×8.
(3.4.7)

3.5 Computation of accumulation points
In this section, we study in more detail the symbol of the boundary integral operators introduced in
the previous section. To be more precise, we examine their behavior for 𝑛 → +∞. First of all, from the
series expansion of spherical Bessel functions given by [OLBC10, §10.53], we deduce that for any fixed
𝑡 > 0 we have

J𝑛(𝑡) = 𝑡𝑛+1 𝑛! 2𝑛
(2𝑛 + 1)! { 1 −

𝑡2
4𝑛 + 𝒪 ( 1

𝑛2 ) } ,

H𝑛(𝑡) = −𝚤𝑡−𝑛 (2𝑛)!𝑛! 2𝑛 { 1 + 𝑡2
4𝑛 + 𝒪 ( 1

𝑛2 ) } .
(3.5.1)

Since Bessel functions are expressed in terms of convergent series of analytic functions, we can derive
the above asymptotics. This leads to the following behaviors for the derivatives,

J′𝑛(𝑡) = 𝑡𝑛 𝑛! 2𝑛
(2𝑛 + 1)! { 𝑛 + 1 − 𝑡2

4 + 𝒪 (1𝑛) } ,

H′𝑛(𝑡) = 𝚤𝑡−(𝑛+1) (2𝑛)!𝑛! 2𝑛 { 𝑛 + 𝑡2
4 + 𝒪 (1𝑛) } .

(3.5.2)

Next, we can combine these asymptotics to obtain the predominant behavior of the functions com-
ing into play in the expression of the integral operators of the previous section. We have the following
three elementary behaviors

− 2𝚤J𝑛(𝑡)H𝑛(𝑡) ∼𝑛→∞ −𝑡/𝑛,
+ 2𝚤J′𝑛(𝑡)H′𝑛(𝑡) ∼𝑛→∞ −𝑛/𝑡,
𝚤( J′𝑛(𝑡)H𝑛(𝑡) + J𝑛(𝑡)H′𝑛(𝑡) ) ∼𝑛→∞ 1/(2𝑛).

(3.5.3)

Define T𝑛 ∈ ℂ2×2 by T𝑛(𝑢1, 𝑢2) ∶= (𝑢1, 𝑢2/𝑛). From this we conclude that, as 𝑛 → +∞, we have
K0κ[𝑛] ∼ (2𝑛)−1K̃0κ and V0κ[𝑛] ∼ T−1𝑛 ⋅ Ṽ0κ ⋅ T𝑛 where Ṽ0κ, K̃0κ ∈ ℂ2×2 are constant matrices independent of
𝑛 given by

Ṽ0κ ∶= [ 0 κ
1/κ 0 ] and K̃0κ ∶= [ −1 0

0 +1 ] .

Next, define T#2𝑛 ∈ ℂ4×4 by T#2𝑛 (𝑢1, 𝑢2) = (T𝑛(𝑢1),T𝑛(𝑢2)) for any pair 𝑢1, 𝑢2 ∈ ℂ2. Then, using
the above results, the asymptotic behavior of the matrix A0κ,μ[𝑛] is given by A0κ,μ[𝑛] ∼ (T#2𝑛 )−1Ã0κ,μT#2𝑛
where

Ã0κ,μ ∶= [ 0 √μ/ϵ Ṽ0κ
√ϵ/μ Ṽ0κ 0 ] =

⎡⎢⎢⎢
⎣

0 0 0 ωμ
0 0 (ωϵ)−1 0
0 ωϵ 0 0

(ωμ)−1 0 0 0

⎤⎥⎥⎥
⎦
.
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On the other hand, we also have A1κ,μ[𝑛] ∼ (T#2𝑛 )−1Ã1κ,μT#2𝑛 , where Ã1κ,μ ∶= −Ã0κ,μ. Finally, define T#4𝑛 ∈
ℂ8×8 by T#4𝑛 (𝑢1, 𝑢2) = (T#2𝑛 (𝑢1),T#2𝑛 (𝑢2)) for any 𝑢1, 𝑢2 ∈ ℂ4. Then we have the asymptotic behavior
MTFloc[𝑛] ∼ (T#4𝑛 )−1MTF∞locT

#4𝑛 with

MTF∞loc ∶= [ Ã0κ0,μ0 Id
Id Ã1κ1,μ1

] ∈ ℂ8×8. (3.5.4)

It is important to observe thatMTF∞loc does not depend on 𝑛. Since the eigenvalues ofMTFloc[𝑛] coincide
with the eigenvalues of T#4𝑛 ⋅MTFloc[𝑛] ⋅ (T#4𝑛 )−1, this shows that the spectrum of MTFloc[𝑛] converges
toward the spectrum of MTF∞loc.

Now let us investigate in detail the spectrum of the matrix MTF∞loc. First, as an intermediate step, we
examine the spectrum of the matrix B ∶= Ã0κ0,μ0 + Ã1κ1,μ1 . A thorough examination shows that it takes
the form

B ∶= Ã0κ0,μ0 + Ã1κ1,μ1 =
⎡⎢⎢⎢
⎣

0 0 0 αμ
0 0 βϵ 0
0 αϵ 0 0
βμ 0 0 0

⎤⎥⎥⎥
⎦
, with

⎧⎪
⎨⎪⎩

αϵ = ωϵ0 − ωϵ1
αμ = ωμ0 − ωμ1
βϵ = (ωϵ0)−1 − (ωϵ1)−1
βμ = (ωμ0)−1 − (ωμ1)−1

(3.5.5)

Trying to compute directly the eigenvalues of the above matrix leads to the conclusion that any eigen-
value λ satisfies λ2 = αϵβϵ = −(√ϵ1/ϵ0−√ϵ0/ϵ1)2, or λ2 = αμβμ = −(√μ1/μ0−√μ0/μ1)2. As a consequence
the spectrum of (3.5.5) is given by

𝒮(B) ∶= {±𝚤Λμ, ±𝚤Λϵ} with
⎧⎪
⎨⎪⎩

Λμ = ||√
μ1
μ0

−
√
μ0
μ1

||

Λϵ = ||√
ϵ1
ϵ0

−
√
ϵ0
ϵ1

||
(3.5.6)

Now let us come back to MTF∞loc. Recalling that (Ã𝑗
κ,μ)2 = Id, we obtain directly the following identity

(2Id − (MTF∞loc)2)2 = [ B2 0
0 B2 ] ,

and taking into account (3.5.6), we finally obtain the following expression for the accumulation points
of the spectrum of the local multi-trace operator MTF∞loc,

{±√2 ± 𝚤Λμ, ±√2 ± 𝚤Λϵ}. (3.5.7)

3.6 Numerical results
In the present section we numerically examine the spectrum of the operator MTFloc. An explicit ex-
pression of the eigenvectors is provided by the vector spherical harmonics X∥𝑛,𝑚 and X×𝑛,𝑚, so that we
aim to graphically see the eigenvalue distribution of ⋃+∞

𝑛=0 𝒮(MTFloc[𝑛]). Each 𝒮(MTFloc[𝑛]) consists
in 8 eigenvalues. On each picture below, we plot⋃100

𝑛=0 𝒮(MTFloc[𝑛]) for various choices of parameters.
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Figure 3.1: Eigenvalue distribution with κ0 = κ1 = 2π/λ with λ = 0.5, μ0 = 1, μ1 = 2 (left) and
μ0 = 2, μ1 = 1 (right).

Figure 3.2: Eigenvalue distribution with κ0 = κ1 = 2π/λ with λ = 1, μ0 = 1, μ1 = 2 (left) and
μ0 = 2, μ1 = 1 (right).

Figure 3.3: Eigenvalue distribution with κ0 = κ1 = 2π/λ with λ = 10, μ0 = 1, μ1 = 2 (left) and
μ0 = 2, μ1 = 1 (right).
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These plots clearly confirm that the spectrum has no more than 8 accumulation points that system-
atically admit a modulus greater than √2.

3.7 Stability of local MTF
In this section, we establish a generalized Gårding inequality for the local Multi-Trace formulation on
the unit sphere, by means of separation of variables. First of all, let us derive an expression of the norm
on H−1/2(div, Γ) in vector spherical harmonics. Such an expression can be obtained by noting that the
dissipative counterpart of the EFIE operator (i.e. associated to a purely imaginary wave number) is
continuous and coercive on H−1/2(div, Γ) so that the corresponding bilinear form

(𝑢, 𝑣)−1/2,div ∶= ∫Γ×Γ
𝒢𝚤(𝑥 − 𝑦) (divΓ𝑢(𝑥)divΓ𝑣(𝑦) + 𝑢(𝑥) ⋅ 𝑣(𝑦))𝑑σ(𝑥, 𝑦), (3.7.1)

yields a scalar product. Here 𝒢𝚤(𝑥) = exp(−|𝑥|)/(4π|𝑥|) and 𝚤 = √−1 is the imaginary unit. The vector
fieldsX∥𝑛,𝑚 andX×𝑛,𝑚 form an orthogonal familywith respect to this scalar product. As a consequence, to
obtain an expression of a norm over H−1/2(div, Γ), one can rely on the decomposition of the dissipative
EFIE on vector spherical harmonics. First observe that (𝑢, 𝑣)−1/2,div = ∫Γ(𝑛0 × γ0t ⋅ SLκ(𝑢)) ⋅ 𝑣𝑑σ. As a
consequence, using (3.4.4) we obtain

(𝑢, 𝑣)−1/2,div = 𝑣⊤ ⋅ D𝑛 ⋅ 𝑢,

where D𝑛 = diag(J′𝑛(𝚤)H′𝑛(𝚤), J𝑛(𝚤)H𝑛(𝚤))
for 𝑢(𝑥) = X𝑛,𝑚(𝑥) ⋅ 𝑢, 𝑣(𝑥) = X𝑛,𝑚(𝑥) ⋅ 𝑣 𝑢, 𝑣 ∈ ℂ2.

(3.7.2)

From this we deduce the asymptotic behavior D𝑛 ∼ D̃𝑛 ∶= diag(1 + 𝑛, 1/(1 + 𝑛)) for 𝑛 → ∞, which
yields the expression of an equivalent norm which is explicit when decomposed in spherical harmonics

𝑐−‖𝑢‖2−1/2,div ≤ (𝑢, 𝑢)−1/2,div ≤ 𝑐+‖𝑢‖2−1/2,div,

‖𝑢‖2−1/2,div ∶=
+∞
∑
𝑛=0

∑
|𝑚|≤𝑛

𝑢⊤𝑛,𝑚 ⋅ D̃𝑛 ⋅ 𝑢𝑛,𝑚,

where D̃𝑛 ∶= diag(1 + 𝑛, 1/(1 + 𝑛)).

From this we easily deduce the expression of an explicit norm for ℍ(Σ), using the matrix D#4𝑛 ∶=
diag(D𝑛,D𝑛,D𝑛,D𝑛). Next, we need to introduce intermediate notations for the predominant behavior
of two key matrices coming into play in the local-MTF formulation, namely

MTF∞loc[𝑛] ∶= (T#4𝑛 )−1MTF∞locT
#4𝑛 ∼𝑛→+∞MTFloc[𝑛],

Ã𝑗
κ𝑗 ,μ𝑗 [𝑛] ∶= (T#2𝑛 )−1Ã𝑗

κ𝑗 ,μ𝑗T
#2𝑛 ∼𝑛→+∞A𝑗

κ𝑗 ,μ𝑗 [𝑛].
(3.7.3)

Since we need to rewrite this formulation variationally, we start by inspecting how the duality
pairing decomposes on spherical harmonics. First of all, according to (3.4.1), observe that ∫Γ(𝑛𝑗 ×X∥𝑛,𝑚) ⋅
X∥𝑛,𝑚𝑑σ = ∫Γ(𝑛𝑗 × X×𝑛,𝑚) ⋅ X×𝑛,𝑚𝑑σ = 0 and ∫Γ(𝑛0 × X×𝑛,𝑚) ⋅ X∥𝑛,𝑚𝑑σ = 1. As a consequence, considering
the vector fields 𝑢(𝑥) ∶= X#2𝑛,𝑚(𝑥) ⋅ 𝑢 and 𝑣(𝑥) ∶= X#2𝑛,𝑚(𝑥) ⋅ 𝑣 where 𝑢, 𝑣 ∈ ℂ2, we have
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[𝑢, 𝑣]Γ0 = 𝑣⊤M 𝑢,

and M ∶=
⎡⎢⎢⎢
⎣

0 0 0 +1
0 0 −1 0
0 +1 0 0

−1 0 0 0

⎤⎥⎥⎥
⎦
. (3.7.4)

Observe that M⊤ = M. Since [𝑢, 𝑣]Γ0 = −[𝑢, 𝑣]Γ1 , we obtain a global matrix expression for the
pairing on the multi-trace space: for 𝑢(𝑥) ∶= X#4𝑛,𝑚(𝑥) ⋅ 𝑢 and 𝑣(𝑥) ∶= X#4𝑛,𝑚(𝑥) ⋅ 𝑣 where 𝑢, 𝑣 ∈ ℂ4, we
have

[[𝑢, 𝑣]]Σ = 𝑣⊤𝕄 𝑢 and 𝕄 ∶= [ +M 0
0 −M ] . (3.7.5)

To examine coercivity of local MTF on the sphere, we need to study the coercivity of the matrix
𝕄 ⋅ MTFloc[𝑛] as 𝑛 → ∞. If we look at the asymptotic behavior of this matrix, taking account of the
results of Section 3.5, we obtain the expression

(−1)𝑗 M ⋅ Ã𝑗
κ𝑗 ,μ𝑗 [𝑛] =

⎡⎢⎢⎢⎢⎢⎢⎢
⎣

𝑛
ωμ𝑗

0 0 0

0 −ωϵ𝑗𝑛 0 0
0 0 𝑛

ωϵ𝑗
0

0 0 0 −ωμ𝑗𝑛

⎤⎥⎥⎥⎥⎥⎥⎥
⎦

. (3.7.6)

Let us introduce a diagonal matrix θ ∈ ℝ2×2 defined by θ = diag(+1, −1), and define the matrix
Θ ∶= diag(θ, θ, θ, θ) ∈ ℝ4×4. From Expression (3.7.6), it clearly follows that (−1)𝑗 M ⋅ Ã𝑗

κ𝑗 ,μ𝑗 [𝑛] ⋅ Θ is a

real valued diagonal positive definite matrix. On the other hand, it holds (𝕄 ⋅ Θ)⊤ = −𝕄 ⋅ Θ. As a
consequence, we finally conclude that there exists 𝑐 > 0 independent of 𝑛 such that

ℜ𝑒{U⊤ ⋅MTF∞loc[𝑛] ⋅ Θ ⋅ U} ≥ 𝑐 U⊤ ⋅ D#4𝑛 ⋅ U,

for all U ∈ ℂ8 and 𝑛 ≥ 0. Since the constant 𝑐 > 0 is independent of 𝑛, summing such inequality over 𝑛,
and taking account that MTF∞loc is the asymptotic behavior of MTF∞loc[𝑛], we finally obtain the following
coercivity statement.

Theorem 3.2. There exists a compact operator 𝒦 ∶ ℍ(Σ) → ℍ(Σ) and a constant C > 0 such that

ℜ𝑒{[[(MTFloc + 𝒦)𝑢, Θ(𝑢)]]} ≥ C‖𝑢‖2ℍ(Σ),

for all 𝑢 ∈ ℍ(Σ).

3.8 Conclusions of the chapter
In this chapter we have studied the multi-trace formulation for Maxwell equation posed on a particular
domain setting. We have proven that the local multi-trace operator is injective and derived an explicit
formula for the corresponding boundary integral operator. For our case study, we have shown that
the spectrum of the local-MTF operator is located in accumulation clusters, which is in agreement to
the results obtained for the local-MTF operator in the previous chapter. The theory and numerical
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experiments suggest that local-MTF is a stable formulation suitable for Maxwell equations, we have
established this by proving a generalized Gårding inequality for the local-MTF formulation on the
unit sphere. The results from this chapter shed light for the search of efficient preconditioners and
generalization of the work done in this thesis for general problems in electromagnetism.
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Low-rank approximations





CHAPTER4

Introduction to Low-Rank approximations

4.1 Preliminaries
Many applications in linear algebra, matrix analysis, and statistics require to approximate a givenmatrix
A ∈ ℝ𝑚×𝑛 by a rank-𝑘 matrix with 𝑘 ≪ min(𝑚, 𝑛). The best approximation can be computed via the
singular value decomposition (SVD) by using state-of-the-art routines, such as dgesvj (or cgesvj for
complex matrices) from LAPACK [ABB+99] which has low backward error and high relative accuracy
[DV08a, DV08b]. The main drawback of the SVD is that it requires 14𝑚𝑛2 + 8𝑛3 arithmetic operations
[GVL96], and modern attempts to construct faster and accurate low-rank approximations have been
made using deterministic and randomized algorithms; among them: QR-based factorizations [GE96,
DGGX15], subspace iteration [Gu15], Monte-Carlo algorithms [FKV04] and random projections [VM17,
Mar18]. The work by Halko, Martisson, and Tropp [HMT11] unifies several randomized approximation
methods and presents state-of-the-art algorithms for approximating the SVD.
In this chapter we present classical low-rank approximation techniques to which we shall refer in the
following two chapters. We aremainly interested in twomethods fromwhich several kind of algorithms
for low-rank approximation andmatrix compression can be derived: the truncated QR factorization and
randomized subspace iteration. On the first hand, a truncated QR factorization produces a low-rank
approximation (to which we refer to as low-rank QR approximation), of the form (see §4.3 for details)

A ≈ QRPT, (4.1.1)

where P ∈ ℝ𝑛×𝑛 is a permutation matrix, Q ∈ ℝ𝑚×𝑘 has orthonormal columns and R ∈ ℝ𝑘×𝑛 is upper
trapezoidal. The most common method to obtain P is via the classical truncated QR with column pivot-
ing (QRCP) factorization [GVL96, Sec. 5.4.1]], which is based on interchanging columns for maximizing
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the diagonal entries of R. On the other hand, low-rank randomized subspace iteration methods have
recently gained attention for their good performance to approximate a matrix and its singular values
with tight probabilistic bounds [Gu15, HMT11], they produce low-rank approximations of the form

A ≈ QB𝑘 , (4.1.2)

where Q ∈ ℝ𝑚×𝑙 , with 𝑘 < 𝑙 < min(𝑚, 𝑛), is the orthogonal basis of matrix (AAT)𝑞AΩ, 𝑞 is a small
integer parameter, Ω ∈ ℝ𝑛×𝑙 is a random matrix, and B𝑘 is the rank-𝑘 truncated SVD of QTA, see §4.4
for details.

Algorithms to construct low-rank approximations via QR factorizations and subspace iteration, in-
trinsically inherit the properties of a complete matrix factorization, therefore they can take the desired
approximation rank 𝑘 as input, see e.g. [GE96, Alg. 4], or they can return 𝑘 as output by using a stop-
ping criterion to reveal the rank ofA; for instance, by requiring ‖A−QRPT‖2 ≤ ϵ, where ϵ is the machine
epsilon, see e.g. [GVL96, Alg. 5.4.1] and [GE96, Alg. 5].

A few words on notations

In this chapter, A ∈ ℝ𝑚×𝑛 refers to a (not necessarily square𝑚 ≠ 𝑛) real matrix. However, the basic
background and main results also hold true for A ∈ ℂ𝑚×𝑛 to which we shall refer in Chapter 6. In the
following, we use MATLAB notation for representing matrix and vector operations. The𝑚×𝑚 identity
matrix shall be denoted by I𝑚. We consider the following matrix norms,

‖A‖2 ∶= sup{‖A𝑥‖2 ∶ 𝑥 ∈ ℝ𝑛 with ‖𝑥‖2 = 1}, Spectral norm,

‖A‖F ∶=
√

𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

|A(𝑖, 𝑗)|2, Frobenius norm,

‖A‖max ∶= max𝑖,𝑗 |A(𝑖, 𝑗)|, Maximum (or Chebyshev) norm.

A matrix norm ‖ ⋅ ‖ is said to be unitarily invariant if ‖A‖ = ‖UAV‖ for all orthogonal matrices
U ∈ ℝ𝑚×𝑚 and V ∈ ℝ𝑛×𝑛, e.g. ‖ ⋅ ‖2 and ‖ ⋅ ‖F hold this condition.

Finally, let ran(A) denote the range of A, given as the vector subspace spanned by the columns of
A. Given two matrices W1,W2 ∈ ℝ𝑚×𝑘 with orthonormal columns, consider S𝑖 ∶= ran(W𝑖) for 𝑖 = 1, 2.
Then, the angle between these two spaces is defined as ∠(S1, S2) ∶= arcsin(‖W1WT1 −W2WT2 ‖2).

4.2 Best Low-rank Approximation
Definition 4.1. The rank of a matrix A ∈ ℝ𝑚×𝑛 is defined as the maximal number of linearly indepen-
dent rows or columns of A, we denote it as 𝑟 ∶= rank(A).

Definition 4.2. We denote
ℝ𝑚×𝑛
𝑘 ∶= {B ∈ ℝ𝑚×𝑛 ∶ rank(B) ≤ 𝑘}, (4.2.1)

the set of real matrices having at most rank-𝑘.
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The SVD decomposition states that A can be decomposed into a sum of rank-one matrices, see e.g.
[HJ91, Thm. 3.1.1], this is

A =
𝑟
∑
𝑖=1

𝑢𝑖σ𝑖𝑣T𝑖 ≡ U𝑟Σ𝑟VT𝑟 , (4.2.2)

where the matrices U𝑟 = [𝑢1, ⋯ , 𝑢𝑟 ] ∈ ℝ𝑚×𝑟 and V𝑟 = [𝑣1, ⋯ , 𝑣𝑟 ] ∈ ℝ𝑛×𝑟 are orthogonal, and their
columns are the left and right singular vectors respectively. For matrix Σ𝑟 ∶= diag(σ1, ⋯ , σ𝑟 ) ∈ ℝ𝑟×𝑟 ,
we assume σ1 ≥ σ2 ≥ ⋯ ≥ σ𝑟 ≥ 0 so that Σ is uniquely determined by A. The values σ𝑖 are the singular
values of A. Next, assuming that rank(A) ≥ 𝑘, the 𝑘-truncated singular value approximation of A is
given as

A𝑘 ∶=
𝑘
∑
𝑖=1

𝑢𝑖σ𝑖𝑣T𝑖 ≡ U𝑘Σ𝑘VT𝑘 . (4.2.3)

and the Moore-Penrose pseudoinverse of A𝑘 is given as

A†
𝑘 ∶=

𝑘
∑
𝑖=1

𝑣𝑖σ−1𝑖 𝑢T𝑖 ≡ V𝑘Σ−1𝑘 UT𝑘 . (4.2.4)

Note that for the spectral and Frobenius norms it holds

‖A𝑘 − A‖2 = σ𝑘+1, ‖A𝑘 − A‖F = √σ2𝑘+1 + ⋯ + σ2𝑟 . (4.2.5)

Theorem 4.1. (Mirsky, [Mir60, Thm. 2]) Consider the matrix A ∈ ℝ𝑚×𝑛, with singular triplets (𝑢𝑖 , σ𝑖 , 𝑣𝑖)
for 𝑖 = 1, ⋯ ,min(𝑚, 𝑛). Then, A𝑘 = ∑𝑘

𝑖=1 𝑢𝑖σ𝑖𝑣T𝑖 is a solution of the following problem

{
Find B ∈ ℝ𝑚×𝑛

𝑘 such that

‖A − B‖ ≤ ‖A − C‖, ∀ C ∈ ℝ𝑚×𝑛
𝑘 , (4.2.6)

where ‖ ⋅ ‖ stands for any unitarily invariant norm.

Albeit optimal, the truncated SVD is expensive to obtain, indeed it costs 𝒪(min(𝑚𝑛2, 𝑚2𝑛)) arith-
metic operations. In the following sections, we present QRCP and subspace iteration methods which
are 𝒪(min(𝑚, 𝑛)) asymptotically faster to obtain than the truncated SVD; and in Chapter 6, we present
CUR approximations having linear 𝒪(max(𝑚, 𝑛)) cost to compute low-rank approximations of BEM
matrices to be introduced later on.

Remark 4.1. Note that problem (4.2.6) has a unique solution when the Frobenius norm is used if and
only if σ𝑘 ≠ σ𝑘+1, cf. [EG36]. If the spectral norm is used, as explained in [Gu15], the solution of
problem (4.2.6) is not unique. For instance, for any 0 ≤ θ ≤ 1 the matrix B = A𝑘 − θσ𝑘+1U𝑘VT𝑘 is a
solution.

Remark 4.2. If themaximumnorm is used thenA𝑘 is not, in general, a solution of (4.2.6). For this case, in
§6.2, we present explicit suboptimal solutions via skeleton approximations, c.f. Theorem 6.1, which we
will use as a benchmark for comparisons in Chapter 6. Recently, progress on showing the NP-hardness
of finding the solution of (4.2.6) has been reported [GV18]. Next figure shows tests performed on a
100 × 100 random matrix approximated by a hundred rank-𝑘 random matrices, 𝑘 = 10. It is shown that
there are many rank-𝑘 matrices B for which ‖A − B‖max ≤ ‖A − A𝑘‖max.
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Figure 4.1: Error in maximum norm of rank 𝑘 = 10 approximations of a 100 × 100 random matrix A.

Next theorem presents some useful inequalities that will be helpful in the following chapters.

Theorem 4.2. (Horn and Jonhson, [HJ91, Thm. 3.3.16]) Let A, B ∈ ℝ𝑚×𝑛 and 𝑞 = min(𝑚, 𝑛). Then, for
1 ≤ 𝑖, 𝑗 and 𝑖 + 𝑗 ≤ 𝑞 + 1, the following inequalities hold,

σ𝑖+𝑗−1(ABT) ≤ σ𝑖(A)σ𝑗(B), (4.2.7)

σ𝑖+𝑗−1(A + B) ≤ σ𝑖(A) + σ𝑗(B). (4.2.8)

4.3 Low-Rank Approximation using Pivoted QR Factorization
A pivoted truncated QR factorization can be obtained by several algorithms, e.g. [GVL96, Alg. 5.4.1], it
has the form

AP𝑐 =
𝑘 𝑚 − 𝑘

[ ]𝑚 Q1 Q2

𝑘 𝑛 − 𝑘
[ ]

𝑘 R11 R12
𝑚 − 𝑘 0 R22

, (4.3.1)

where P𝑐 is a permutation matrix, Q = [Q1, Q2] is an orthogonal matrix, R11 is an upper triangular
matrix, and R22 is not necessarily upper triangular. The rank-𝑘 approximation is naturally obtained as

ξ𝑘 ∶= Q1 [R11 R12] PT𝑐 , (4.3.2)

and the approximation error in the spectral norm (note that it holds for any other unitarily invariant
norm) is given as

‖A − ξ𝑘‖2 = ‖Q2[0 R22]PT𝑐 ‖2 = ‖[0 R22]‖2 = ‖R22‖2. (4.3.3)

Bounds for the error in (4.3.3) depend on the technique used to select P𝑐 . Well established pivoting
techniques lead to bounds of the form

‖R22‖2 ≤ 𝑓 (𝑘, 𝑛) σ𝑘+1, (4.3.4)

‖R−111R12‖max ≤ 𝑔(𝑘), (4.3.5)

σ𝑘(A) ≤ 𝑓 (𝑘, 𝑛)σ𝑘(R11) , (4.3.6)
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where 𝑓 (𝑘, 𝑛) and 𝑔(𝑘) are explicitly known functions of 𝑘 and 𝑛, see e.g. [DGGX15, GE96, PT99]. For
a compilation of some of the different algorithms of this kind and their computational complexity see
[BMD09, Tbl. 2]. The permutation P𝑐 can also be found by applying QRCP on ΩA, where Ω ∈ ℝ𝑙×𝑚 is a
random matrix, two randomized algorithms for this purpose (without theoretical bounds on the error)
are RQRCP [DG17] and HQRRP [MGHV17].

The following table presents two classical QR algorithms that we shall use for the scope of this
thesis, the classical QR with column pivoting [GVL96, Alg. 5.4.1] and the strong RRQR [GE96, Alg. 4].

Table 4.1: Error bound for classical QR algorithms for a matrix A ∈ ℝ𝑚×𝑛, where 𝑘 is the truncation
rank and ν is a constant.

Algorithm Reference 𝑓 (𝑘, 𝑛) 𝑔(𝑘) Time

Column Pivoting QRCP [GVL96, Alg. 5.4.1] 2𝑘√𝑛 − 𝑘 2𝑘−1 𝒪(𝑚𝑛𝑘)
Strong RRQR [GE96, Alg. 4] √1 + ν2𝑘(𝑛 − 𝑘) ν 𝒪 ((𝑚 + 𝑛 logν 𝑛)𝑛2)

In Lemma 4.1 we provide a new bound for QRCP which is 2/3 of the bound presented in Table 4.1,
its proof is given in appendix B.2 and it helps to understand the origin of the exponential factor.

Lemma 4.1. Consider the truncated QRCP factorization (4.3.1). Then,

‖R22‖2 ≤
√
1 + 2𝑘 +

𝑘−1
∑
𝑗=1

4𝑗(𝑘 − 𝑗)√𝑛 − 𝑘 σ𝑘+1, (4.3.7)

As mentioned above, there exist different algorithms to select the permutation for a truncated QR
factorization. We refer the interested reader to Chapter A.4, where we present a communication avoid-
ing parallel algorithm that selects this permutation based on a technique called tournament pivoting.

Approximation error for an arbitrary permutation
To conclude this section, we analyze the error of approximation using a low-rankQR approximation

with an arbitrary permutation P. Consider a truncated QR factorization of A,

AP = QR =
𝑘 𝑚 − 𝑘

[ ]𝑚 Q1 Q2

𝑘 𝑛 − 𝑘
[ ]𝑘 R11 R12

𝑚 − 𝑘 0 R22
. (4.3.8)

Next, note that Q1R11 = AP(∶, 1 ∶ 𝑘) and that the error of a QR approximation given in (4.3.3) can
also be obtained as

‖R22‖2 = ‖(I𝑚 − Q1QT1 )A‖2, (4.3.9)

whereQ1QT1 is the orthogonal projector over the subspace generated by the first 𝑘 columns of AP. This
is true since
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‖(I𝑚 − Q1QT1 )A‖2 = ‖(QT − QTQ1QT1 )QRPT‖2 = ‖R − QTQ1QT1QR‖2,
and

QTQ1QT1Q = [ ]I𝑘
QT2Q1

[ ]I𝑘 QT1Q2 = [ ]I𝑘 0
0 0 , (4.3.10)

which holds since the columns of Q1 and Q2 are mutually orthogonal.

Note that from the previous analysis, a simple bound can be obtained for the error using a general
permutation, this is

‖R22‖max ≤ ‖R22‖2 = ‖(I𝑚 − Q1QT1 )A‖2 ≤ ‖I𝑚 − Q1QT1 ‖2‖A‖2 ≤ ‖A‖2 ≤ √𝑚𝑛‖A‖max. (4.3.11)

The following lemma, using an assumption on the right singular vectors, provides a bound of type
(4.3.4) for the approximation error when using an arbitrary permutation to compute a low-rank QR
approximation.

Lemma 4.2. Let A ∈ ℝ𝑚×𝑛, consider its truncated QR factorization,

AP = QR =
𝑘 𝑚 − 𝑘

[ ]𝑚 Q1 Q2

𝑘 𝑛 − 𝑘
[ ]𝑘 R11 R12

𝑚 − 𝑘 0 R22
,

where P ∈ ℝ𝑛×𝑛 is an arbitrary permutation. Define

[Ω1
Ω2

] ∶= (VTP)(∶, 1 ∶ 𝑘),

where V ∈ ℝ𝑛×𝑛 is the matrix containing the right singular vectors of A, as defined in §4.2. Assuming that
Ω1 is non-singular, then

‖R22‖2 ≤ √1 + ‖Ω2Ω−11 ‖22 σ𝑘+1(A). (4.3.12)

Proof. Consider the SVD decomposition A = UΣVT. Define the matrices

Ā ∶= AP = UΣṼT, and Y ∶= APΩ = UΣ (ṼT(∶, 1 ∶ 𝑘)) ≡ UΣ [Ω1
Ω2

] .

Next, note that Y is the matrix consisting of the first 𝑘 columns of Ā, and its orthogonal projector
is Q1QT1 . Then, as showed in (4.3.9) we have ‖R22‖2 = ‖(I𝑚 − Q1QT1 )A‖2 and by applying [HMT11, Thm.
9.1] on Ā, we get

‖(I𝑚 − Q1QT1 )A‖2 = ‖(I𝑚 − Q1QT1 )Ā‖2 ≤ √1 + ‖Ω2Ω−11 ‖22 σ𝑘+1(A).
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4.4 Low-rank Approximation using Subspace Iteration
Methods based on subspace iteration [GVL96, Ch. 7, 8] have shown to produce good rank-𝑘 approxima-
tion with cost between𝒪(𝑚𝑛 log(𝑘)) and𝒪(𝑚𝑛𝑘), see for example [DG17, HMT11, MRT06]. Algorithm
6 presents the basic subspace iteration method. This algorithm is well known in the literature and ver-
sions of it have been presented by different authors, see for example [Gu15, HMT11]. It takes as input
an 𝑚 × 𝑛 matrix A, a small integer 𝑞 (that is usually taken as 𝑞 = 1 or 𝑞 = 2), and a random matrix
Ω ∈ ℝ𝑛×𝑙 ; for the scope of this thesis, we create Ω using normal or uniform distributions, e.g. using,
respectively, routines randn or rand from MATLAB.

Algorithm 6 iteratively computes Y = (AAT)𝑞AΩ and then gets its orthogonal basis Q ∈ ℝ𝑚×𝑙 ,
returning the low-rank matrix QB𝑘 , where B𝑘 is the rank 𝑘 truncated SVD of QTA.

Data: A ∈ ℝ𝑚×𝑛, a fixed rank value 𝑘, Ω ∈ ℝ𝑛×𝑙 , with min(𝑚, 𝑛) > 𝑙 ≥ 𝑘, and a small integer 𝑞
Result: rank-𝑘 approximation of A

1 Compute Y = AΩ and QR factorize QR = Y ;
2 for 𝑗 = 1 → 𝑞 do
3 Y = A∗Q; QR factorize QR = Y ;
4 Y = AQ; QR factorize QR = Y ;
5 end
6 Form B = QTA ;
7 Find B𝑘 , the rank-𝑘 truncated SVD of B ;
8 Return ξ𝑘 ∶= QB𝑘 .

Algorithm 1: Randomized subspace iteration, SSITER

Note that Algorithm 6 could stop at line 6 and return QQTA as the low-rank approximation of
A. Indeed it is known in the literature (see e.g. [HMT11] ) that for any matrix B ∈ ℝ𝑙×𝑛, it holds
‖A − QQTA‖2 ≤ ‖A − QB‖2. Then, ‖A − QQTA‖2 ≤ ‖A − ξ𝑘‖2. Hence, computing ξ𝑘 provides a less
accurate low-rank approximation than QQTA, in terms of the norm of the approximation error. How-
ever, obtaining ξ𝑘 can provide better approximation of the singular values [Gu15]. In Theorem 4.3, we
prove that the first 𝑘 columns ofQ converge to the first 𝑘 left singular vectors ofA at an exponential rate.

Approximation error analysis
Considering that we choose the approximation ξ𝑘 fromAlgorithm 6 for matrixA = UΣVT with decreas-
ing singular values σ1 > σ2 > ⋯ > σ𝑘 > σ𝑘+1. It is possible to obtain rapidly converging approximations
for A and its singular values, provided that the matrix Ω̂ defined as

Ω̂ ∶= VTΩ = [ ]𝑙 − 𝑝 Ω̂1
𝑛 − 𝑙 + 𝑝 Ω̂2

, 0 ≤ 𝑝 ≤ 𝑙 − 𝑘, (4.4.1)

is such that its submatrix Ω̂1 is full row rank; 𝑝 is known as oversampling parameter. In fact, we have
the bounds (cf. [Gu15, Thms. 4.3 and 4.4]),

σ𝑗 ≥ σ𝑗(B𝑘) ≥
σ𝑗

√1 + ψ2‖Ω̂2‖22 ‖Ω̂†
1 ‖22

, (4.4.2)
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‖A − ξ𝑘‖2 ≤ √σ2𝑘+1 + ω2‖Ω̂2‖22 ‖Ω̂†
1 ‖22, (4.4.3)

where ψ = (σ𝑙−𝑝+1σ𝑗 )
2𝑞+1

, ω = √𝑘σ𝑙−𝑝+1 (σ𝑙−𝑝+1σ𝑘 )
2𝑞
, 0 ≤ 𝑝 ≤ 𝑙 − 𝑘 and Ω̂†

1 is the Moore-Penrose pseudoin-

verse of Ω̂1.

When Ω is a random Gaussian matrix, meaning that its entries are independent standard normal
variables of unit-variance and zero mean, it holds that Ω̂1 is still a Gaussian matrix [HMT11], and it is
proven that if 𝑙 − 𝑝 ≥ 2 then Ω̂1 has full rank with probability 1 [Gu15, Lem. 5.2]. For this case, setting
𝑙 = 2𝑘, 𝑞 = 0, Algorithm 6 produces a rank-𝑘 approximation with expected error [HMT11, Thm.1.2],

𝔼‖A − ξ𝑘‖2 ≤ (2 + 4√
2min(𝑚, 𝑛)

𝑘 − 1 ) σ𝑘+1. (4.4.4)

Algorithm 6 works very well in practice and has computational complexity of 𝒪(𝑚𝑛𝑙). In the next
chapter we construct approximations based on good approximations of the singular vectors; in this
context, the following theorem proves a result for the convergence of singular vectors when using
Algorithm 6.

Theorem 4.3. Consider Ω ∈ ℝ𝑚×𝑙 and A ∈ ℝ𝑚×𝑛, with SVD decomposition A = UΣVT. Consider the QR
factorizationQR = (AAT)𝑞AΩ and letQ𝑘 = [𝑞1, ⋯ , 𝑞𝑘] and U𝑘 = [𝑢1, ⋯ , 𝑢𝑘] be matrices constructed with
the first 𝑘 columns of Q and U respectively. Considering the partition

VTΩ ∶=
𝑘 𝑙 − 𝑘

[ ]𝑘 Ωα Z1
𝑛 − 𝑘 Ωβ Z2

,

if Ωα is invertible, defining φ = ∠(ran(Q𝑘), ran(U𝑘)), then

sin(φ) ≤ (σ𝑘+1σ𝑘
)
2𝑞+1

‖ΩβΩ−1α ‖2.

Proof. First, consider the partitions

Σ =
𝑘 𝑛 − 𝑘

[ ]𝑘 D𝑘 0
𝑛 − 𝑘 0 D𝑠

, U =
𝑘 𝑛 − 𝑘

[ ]𝑚 U𝑘 U𝑠 , Q =
𝑘 𝑛 − 𝑘

[ ]𝑚 Q𝑘 Q𝑠 .

Next, analyzing the QR factorization we get

(AAT)𝑞AΩ = UΣ2𝑞+1VTΩ = QR = [Q𝑘 Q𝑠] [R11 R12
0 R22] ,

where R11 ∈ ℝ𝑘×𝑘 . Hence,

[U𝑘 U𝑠] [D𝑘 0
0 D𝑠

]
2𝑞+1

[Ωα Z1
Ωβ Z2] = [Q𝑘 Q𝑠] [R11 R12

0 R22] . (4.4.5)
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Comparing the first 𝑘 columns of both sides of equation (4.4.5), we get an embeddedQR factorization
of a matrix W defined as

W ∶= [U𝑘 U𝑠] [D𝑘 0
0 D𝑠

]
2𝑞+1

[Ωα
Ωβ

] = Q𝑘R11. (4.4.6)

Next, note that we search sin(φ) = ‖U𝑘UT𝑘 −Q𝑘QT𝑘 ‖2, which by [GVL96, Thm. 2.6.1] is equivalent to

sin(φ) = ‖UT𝑠 Q𝑘‖2.

Define the matrix
X ∶= Ω−1α D−(2𝑞+1)

𝑘 ∈ ℝ𝑘×𝑘 , (4.4.7)

which is non-singular by assumption of the theorem, and consider the QR factorization of WX,

WX = U [D𝑘 0
0 D𝑠

]
2𝑞+1

[Ωα
Ωβ

] X = Q̃𝑘 R̃11. (4.4.8)

where R̃11 ∈ ℝ𝑘×𝑘 . Replacing (4.4.7) in (4.4.8), we get

[
I𝑘

D(2𝑞+1)𝑠 ΩβΩ−1α D−(2𝑞+1)
𝑘

] = UTQ̃𝑘 R̃11 = [
UT𝑘 Q̃𝑘

UT𝑠 Q̃𝑘
] R̃11,

from which we deduce that R̃−111 = UT𝑘 Q̃𝑘 . Next, let us compute

‖U𝑘UT𝑘 − Q̃𝑘Q̃T𝑘 ‖2 ≡ ‖UT𝑠 Q̃𝑘‖2 = ‖D(2𝑞+1)𝑠 ΩβΩ−1α D−(2𝑞+1)
𝑘 R̃−111 ‖2. (4.4.9)

Equation (4.4.9) is important since by [Gu15, Lem. 4.1] we have that factorizations (4.4.6) and (4.4.8)
have the property

Q𝑘QT𝑘 = Q̃𝑘Q̃T𝑘 . (4.4.10)

Finally, from (4.4.9), (4.4.10) and the fact that ‖R̃−111 ‖2 = ‖UT𝑘 Q̃𝑘‖2 ≤ 1, we obtain

sin(φ) = ‖U𝑘UT𝑘 − Q𝑘QT𝑘 ‖2 = ‖U𝑘UT𝑘 − Q̃𝑘Q̃T𝑘 ‖2 ≤ ‖D(2𝑞+1)𝑠 ΩβΩ−1α D−(2𝑞+1)
𝑘 ‖2.

Hence,

sin(φ) ≤ (σ𝑘+1σ𝑘
)
2𝑞+1

‖ΩβΩ−1α ‖2.

The previous theorem shows that the subspace generated by the span of the 𝑘 first columns of Q
(obtained by Algorithm 6 applied to a matrix A ∈ ℝ𝑚×𝑛) converges exponentially in 𝑞 to the subspace
generated by the first 𝑘 left singular vectors, provided σ𝑘 > σ𝑘+1. This agrees with the exponential
rates obtained for the convergence of singular values and approximation error (4.4.2) and (4.4.3), and
was predicted in a previous work [Gu15, Sec. 9].
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Remark 4.3. When Ωα and Ωβ are matrices with independent N(0, 1) Gaussian entries, the work devel-
oped by Edelman [Ede88] and Szarek [Sza91] tells us that, with high probability, ‖Ω−1α ‖2 ≤ 𝑐1√𝑘 and
‖Ωβ‖2 ≤ 𝑐2 max(√𝑚 − 𝑘, √𝑘). Hence, considering 𝑚 − 𝑘 ≥ 𝑘, we get that

sin(φ) ≤ (σ𝑘+1σ𝑘
)
2𝑞+1

‖ΩβΩ−1α ‖2 ≤ CΩ√𝑘(𝑚 − 𝑘) (σ𝑘+1σ𝑘
)
2𝑞+1

,

where CΩ = 𝑐1 ⋅ 𝑐2 > 0, with 𝑐1 = 𝒪(1), 𝑐2 = 𝒪(𝑚−𝑘
𝑘 ). This shows that the angle converges to zero

with an exponential rate up to a small rational factor on 𝑚 and 𝑘. Other bounds can be obtained by
using another kind of random matrices such as the centered sub-Gaussian random matrices [Rud08]
and the Wigner random matrices [TV12]. Refer to [OVW16] for a recent survey on the different types
of random matrices and their spectral properties.

4.5 Conclusions of the chapter
In this chapter we have presented classical methods and algorithms that we shall use in the following
chapters. In one hand one, the low-rankQR factorizations, for whichwe have discussed exiting pivoting
techniques and their impact on the approximation error. We have provided a bound for an arbitrary
choice of the pivoting strategy and improved the existent bound for QRCP. On the other hand, for
low-rank approximations created with subspace iteration methods, we have proved a bound on the
convergence of singular vectors which is in agreement with recent bounds obtained for the low-rank
approximation error and singular values estimates described in the literature.



CHAPTER5

Affine low-rank approximations

5.1 Preliminaries
This chapter presents a new approach to construct low-rank approximations using projections into
affine subspaces. The objective of such kind of approximations is to increase the accuracy of classical
low-rank algorithms by adding a small number of arithmetic operations. An affine approximation of
rank at most 𝑘 has the form

A ≈ ξ𝑘 ∶= (
𝑘−1
∑
𝑗=1

𝑞𝑗𝑞T𝑗 )A(I𝑛 − 𝑧𝑧T) + (A𝑧)𝑧T, (5.1.1)

where 𝑧 ∈ ℝ𝑛 has all entries equal to 1/√𝑛 and (A𝑧)𝑧T can be seen as a translation matrix. We justify
the choice of 𝑧 via a geometric argument, and then we bound the approximation error. We provide an
algorithm referred to as ALORA (short for affine low-rank approximation) that returns an approxima-
tion of type (5.1.1) by modifying any low-rank approximation method; in particular, we call ALORA to
modify QR with column pivoting and subspace iteration algorithms.

In the literature, we can find several techniques to increase the accuracy of classical low-rank al-
gorithms. For QRCP, a natural way is to improve the choice of the pivoting technique, see e.g. [GE96],
while for subspace iteration, we can improve accuracy by increasing 𝑙 or 𝑞 or both in Algorithm 6, see
e.g. [Gu15]. Such techniques typically increase the algorithm’s computational cost by a considerable
amount. The advantage of using ALORA resides in its capacity to receive any low-rank algorithm and
perform inexpensive and simple calculations without changing the permutation technique or adding
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post-processing cost.

We analyze the cases where it would behoove to use an affine low-rank approximation, for this aim
we provide a correlation coefficient 𝒢(A). We show that matrices with exponentially decreasing sin-
gular values have high correlation coefficient and provide simple formulas to approximate their norm
and first singular vectors.
For ease of presentation, in this chapter we consider A ∈ ℝ𝑚×𝑛. However, the theory and results can
directly be extended to rectangular complex matrices, by making small appropriate changes in the def-
initions, statements, and proofs. We assume that 𝑘 is given as input, since this choice allows us to show
the convergence evolution for increasing rank values in the numerical tests. Note that ALORA can also
return 𝑘 as output, see section 5.2.2 for details.

This chapter is structured as follows. Section 5.2 presents the concept of affine low-rank approxi-
mation, it starts by analyzing a general framework for constructing a low-rank approximation via pro-
jections of rows and columns. The analysis made in this section leads to the construction of ALORA
algorithm. Next, in Section 5.3 we analyze matrices for which an affine approximation would be advan-
tageous, we also introduce a matrix correlation coefficient using statistical tools. Section 5.4 presents
and discusses several numerical experiments to validate ALORA algorithm using a set of challenging
matrices arising from different interesting fields. Finally, Section 5.5 concludes the chapter.

5.2 Affine Low-rank Approximation
The main objective of this section is to present a low rank approximation of A, which has the form

ξ𝑘 ∶= (
𝑘−1
∑
𝑗=1

𝑞𝑗𝑞T𝑗 )A(I𝑛 − 𝑧𝑧T) + (A𝑧)𝑧T, ∀𝑘 = {1, ⋯ , rank(A)},

where 𝑞𝑗 ∈ ℝ𝑚 and 𝑧 ∈ ℝ𝑛 are unitary vectors, i.e. multiplying A by two orthogonal projectors on the
left and the right and adding a translation matrix. With this aim, we first review a general framework
to construct low rank approximations by projecting the columns and rows of A.

5.2.1 Low-Rank Approximation as Projection of Rows and Columns
Consider the matrix A ∈ ℝ𝑚×𝑛, with rank(A) > 𝑘, and let ‖ ⋅ ‖ be any unitarily invariant norm. Then,
let us construct a low rank approximation using a truncated QR factorization, c.f. (4.3.2), this is

A ≈ Q̄R̄ =
𝑘
∑
𝑗=1

𝑞𝑗𝑟T𝑗 =∶ ξ𝑘 , (5.2.1)

where Q̄ ∈ ℝ𝑚×𝑘 and R̄ ∈ ℝ𝑘×𝑛, and 𝑞𝑗 and 𝑟𝑗 are the 𝑗-th columns of Q̄ and R̄T respectively. Note that
this approximation can also be written as

ξ𝑘 = Q̄Q̄TA = (
𝑘
∑
𝑗=1

𝑞𝑗𝑞T𝑗 )A,

and hence, the approximation error is given by
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‖A − ξ𝑘‖ = ‖(I𝑚 −
𝑘
∑
𝑗=1

𝑞𝑗𝑞T𝑗 )A‖ = ‖
𝑘
∏
𝑗=1

( I𝑚 − 𝑞𝑗𝑞T𝑗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝒫𝑗

)A‖,

where the last equality can be easily proved by induction. Hence, the approximation error can be seen
as the norm of the matrix obtained after applying 𝑘 orthogonal projections, 𝒫𝑗 , to the columns of A.

In general, we can consider orthogonal matrices W = [𝑤1, ⋯ , 𝑤𝑘] ∈ ℝ𝑚×𝑘 and Z = [𝑧1, ⋯ , 𝑧𝑘] ∈
ℝ𝑛×𝑘 , and use the orthogonal projectors WWT and ZZT to construct

ξ̄𝑘 ∶= WWTA = (
𝑘
∑
𝑗=1

𝑤𝑗𝑤T𝑗 )A, and ξ̂𝑘 ∶= AZZT = A(
𝑘
∑
𝑗=1

𝑧𝑗𝑧T𝑗 ),

for which,

‖A − ξ̄𝑘‖ = ‖
𝑘
∏
𝑗=1

(I𝑚 − 𝑤𝑗𝑤T𝑗 )A‖ (5.2.2)

‖A − ξ̂𝑘‖ = ‖A
𝑘
∏
𝑗=1

(I𝑛 − 𝑧𝑗𝑧T𝑗 )‖ = ‖
𝑘
∏
𝑗=1

(I𝑛 − 𝑧𝑗𝑧T𝑗 )AT‖. (5.2.3)

Then, the approximation errors (5.2.2) and (5.2.3) are, respectively, the norm of the matrices ob-
tained after applying 𝑘 orthogonal projections on the columns and rows of A. According to Theorem
4.1, if 𝑤𝑗 = 𝑢𝑗(A) or 𝑧𝑗 = 𝑣𝑗(A), for 𝑗 = 1, ⋯ , 𝑘, then the errors (5.2.2) and (5.2.3) attain their minimum
among all possible choices of 𝑤𝑗 and 𝑧𝑗 .

In section 5.2.2 we contruct an approximation by mixing projections of rows and columns. This is,
we build an approximation of type

ξ ̄𝑟 ∶= (
𝑠
∑
𝑗=1

𝑤𝑗𝑤T𝑗 )A(
𝑡
∑
𝑗=1

𝑧𝑗𝑧T𝑗 ),

where ξ ̄𝑟 has at most rank ̄𝑟 = min(𝑠, 𝑡, rank(A)). The analysis of such approximation will make ref-
erence to the following lemma, in which we explore the relationship between the singular values of A
and those of the matrix obtained by projecting the columns of A. Note that Lemma 5.1 still holds when
considering projection of rows instead, by simply applying the same arguments on YT = (I𝑛 − ZZT)AT.

Lemma 5.1. Consider A ∈ ℝ𝑚×𝑛 and an orthogonal matrix Z ∈ ℝ𝑛×𝑡 , with 𝑡 < min(𝑚, 𝑛). Define the
matrix Y = A(I𝑛 − ZZT), constructed by orthogonally projecting the columns of A. Then,

σ𝑘+𝑡(Y) ≤ σ𝑘+𝑡(A) ≤ σ𝑘(Y).

Proof. The left inequality is verified by applying Theorem 4.2 on the product A(I𝑛 −ZZT) with 𝑖 = 𝑘 + 𝑡
and 𝑗 = 1, since an orthogonal projection has unitary norm. To prove the right inequality, define
F ∶= AZ ∈ ℝ𝑚×𝑡 , so that Y = A − FZT. Next, let Y𝑘−1 be the rank 𝑘 − 1 truncated SVD approximation of
Y, hence
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σ𝑘(Y) = ‖Y − Y𝑘−1‖2 = ‖A − (Y𝑘−1 + FZT)‖2 ≥ σ𝑘+𝑡 (A),

the last inequality holds since Y𝑘−1 + FZT is a matrix of rank at most 𝑘 + 𝑡 − 1.

Corollary 5.2. If 𝑡 = 1, i.e. Y = A(I𝑛 − 𝑧𝑧T), where 𝑧 ∈ ℝ𝑛 is a unit vector, then

σ𝑘+1(Y) ≤ σ𝑘+1(A) ≤ σ𝑘(Y),

rank(A) − 1 ≤ rank(Y) ≤ rank(A).

5.2.2 Getting an Affine Low-Rank Approximation
Define the gravity center of A as

𝑔 ∶= 1
𝑛

𝑛
∑
𝑗=1

𝑎𝑗 , (5.2.4)

where 𝑎𝑗 is the 𝑗-th column of A. Also define the following matrix

Y ∶= A − 𝑔𝑐T = A (I𝑛 −
1
𝑛𝑐𝑐

T)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶𝒫

, (5.2.5)

where 𝑐 = [1, ⋯ , 1]T ∈ ℝ𝑛. Next note that 𝒫 is a rank 𝑛 − 1 orthogonal projector, and let Y𝑘 and A𝑘 be
the rank-𝑘 truncated SVD approximations of Y and A respectively. By applying Corollary 5.2, we get

‖A − 𝑔𝑐T − Y𝑘‖2 = ‖Y − Y𝑘‖2 = σ𝑘+1(Y) ≤ σ𝑘+1(A) = ‖A − A𝑘‖2. (5.2.6)

We can geometrically interpret (5.2.6) by defining the lines

ℒA(τ) = τ𝑢, τ ∈ ℝ, (5.2.7)

ℒ𝑔(τ) = 𝑔 + τ�̃�, τ ∈ ℝ, (5.2.8)

where 𝑢 and �̃� are the first left singular vectors of A and Y respectively. Line ℒ𝑔 is the one that best
fits the columns of A among all lines in ℝ𝑚, [SE03, Sec.A.7] (see also appendix B.1). AndℒA is the best
fitting line among all lines passing through the origin in ℝ𝑚, see Figure 5.1. And since the misfit of ℒ𝑔
is smaller than the misfit of ℒA, then (5.2.6) holds.

Algorithm 2 constructs an affine approximation of rank at most 𝑘. We name Algorithm 2 ALORA
(short for Affine Low-Rank Approximation). Its computational complexity is 𝒪(𝑚𝑛𝑘) with a constant
factor depending on the use of QRCP or subspace iteration in line 3 of the algorithm. The value of
𝑘 is given as input; however, it can also be found adaptively by imposing a stopping criterium on the
algorithmused to compute ξ𝑘−1 in line 3. For instance, for the case of QRCP the classical implementation
for this aim is provided in [GVL96, Alg. 5.4.1].
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(a) Line ℒA(τ) = {τ𝑢 ∈ ℝ3| τ ∈ ℝ} passing through
the origin, 𝑢 = 𝑢1(A).

(b) Line ℒ𝑔(τ) = {𝑔 + τ�̃� ∈ ℝ3| τ ∈ ℝ} passing
through the gravity center of A, �̃� = 𝑢1(Y).

Figure 5.1: Best fitting lines (represented as arrows) of a matrix A = [𝑎1, ⋯ , 𝑎𝑛] ∈ ℝ3×𝑛. The small
circles represent the columns 𝑎𝑗 ’s, for 𝑗 = 1, ⋯ , 𝑛, and their projections over the lines are also showed.

The gravity center 𝑔 and the matrix Y are defined in (5.2.4) and (5.2.5) respectively.

Data: A ∈ ℝ𝑚×𝑛 and a fixed rank 𝑘
Result: A rank-𝑘 approximation of A

1 Define 𝑐 = (1, ⋯ , 1)T ∈ ℝ𝑛 ;

2 Compute Y = A (I𝑛 − 1
𝑛 𝑐𝑐

T) ;

3 Find ξ𝑘−1: a rank-(𝑘 − 1) approximation of Y ;
4 Return ξ𝑘 = 𝑔𝑐T + ξ𝑘−1

Algorithm 2: Affine low-rank approximation, ALORA

Error analysis
Below we present how to easily derive a bound for the approximation error of an affine approxi-

mation. First, consider that

‖Y − ξ𝑘−1‖2 ≤ 𝑓 (𝑘, 𝑛)σ𝑘(Y),

where 𝑓 (𝑘, 𝑛) is a function depending on the low rank method used, c.f. Table 4.1. Then, since ξ𝑘 =
𝑔𝑐T + ξ𝑘−1, we obtain

‖A − ξ𝑘‖2 = ‖Y − ξ𝑘−1‖2 ≤ 𝑓 (𝑘, 𝑛)σ𝑘(A), (5.2.9)

where we use the fact that σ𝑘(Y) ≤ σ𝑘(A) ensured by Corollary 5.2.

Next, note that geometrically the approximation ξ𝑘 can be interpreted as fitting the columns of the
matrix into an affine subspace of dimension 𝑘 − 1. And since the rank-𝑘 truncated SVD can be seen as
fitting into a subspace of dimension 𝑘, we might also use an affine subspace of dimension 𝑘. In terms
of matrices, it means that Y is approximated by a rank-𝑘 matrix ξ𝑘 , and the affine approximation for A
is constructed as

A ≈ ξ𝑘+1 ∶= 𝑔𝑐T + ξ𝑘 with ‖A − ξ𝑘+1‖2 = ‖Y − ξ𝑘‖2 ≤ 𝑓 (𝑘, 𝑛)σ𝑘+1(A), (5.2.10)
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where it should be noted that the rank of ξ𝑘+1 is bounded by 𝑘 + 1.

In Section 5.4 we plot the approximation errors when A is approximated by ξ𝑘 and ξ𝑘+1, showing
that in many cases they both overcome the QRCP approximation of rank-𝑘.

Finally, note that a derivation of a bound for the approximation error can be obtained for any low-
rank approximationmethod by using the fact that ‖A−ξ𝑘+1‖2 = ‖Y−ξ𝑘‖2. And depending on the method,
we can obtain a bound depending on σ𝑘+1(A). For instance, for a QR based approximation, simply by
replacing 𝑓 (𝑘, 𝑛) by its appropriate value, see Table 4.1. And for subspace iteration, simply by using
the fact that σ𝑘+1(Y) ≤ σ𝑘+1(A) when bounding ‖Y − ξ𝑘‖2 using (4.4.3).

5.3 Correlation of Matrices Using their Gravity Center
In the previous section we have shown how to construct an affine low rank approximation for any
matrixA ∈ ℝ𝑚×𝑛. In this section we explore the structural relation of a matrix and their best fitting lines
ℒA and ℒ𝑔 studied in the previous section. This allows us to understand for which kind of matrices
an affine low rank approximation could be better than the non-affine one. We define a correlation
coefficient that helps to understand the matrix structure seeing its columns as spatial points in ℝ𝑚. We
start by analyzing the particular case of matrices with exponentially decreasing singular values, which
have high correlation coefficient according to our definitions as we will show later on, and this helps us
to provide simple formulas to obtain estimates of the matrix norm and the first left and right singular
vectors.

5.3.1 Matrices with Exponentially Decreasing Singular Values
In many important problems of linear algebra oriented to mathematical modeling, matrix compression
and related subjects, we handle a matrix A ∈ ℝ𝑚×𝑛 with singular values that decrease exponentially.
This means that if A has singular triplets (𝑢𝑗 , 𝑣𝑗 , σ𝑗) for 𝑗 = 1, ⋯ , 𝑟 = rank(A), then

σ𝑗 ≤ ρ𝑗σ1, (5.3.1)

where 0 < ρ < 1. Such matrix arises, for example, as an “admissible” block in the context of discretiza-
tion of boundary integral operators [Beb08]. They are also interesting in merely theoretical and testing
problems such as the Kahan matrix [DB08]. In order to see if an affine low-rank approximation would
be useful for these kind of matrices, let us write the gravity center of A using its singular triplets,

𝑔 = 1
𝑛

𝑛
∑
𝑗=1

𝑎𝑗 =
1
𝑛

𝑟
∑
𝑙=1

𝑢𝑙σ𝑙 (
𝑛
∑
𝑗=1

𝑣𝑙(𝑗)) ,

then,

𝑔 = σ1 (
𝑟
∑
𝑙=1

ν̃𝑙𝑢𝑙) , with ν̃𝑙 =
σ𝑙
𝑛σ1

(
𝑛
∑
𝑗=1

𝑣𝑙(𝑗)) ,

and since ∑𝑛
𝑗=1 |𝑣𝑙(𝑗)| ≤ √𝑛, then |ν̃𝑙 | ≤ ρ𝑙

√𝑛 . Hence, if the singular values of A decrease as in equation

(5.3.1), then the unitary vector in the direction of 𝑔 would be a good approximation 𝑢1, and this ap-
proximation gets better when ρ gets smaller. In other words, the matrix A is such that its best fitting
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lines, ℒA and ℒ𝑔 , almost overlap.
Note that applying Algorithm 2 to a matrix with rapidly singular values can produce an increase on the
precision as in the case of Figure 5.2, and for some cases as in Figures 5.5 and 5.6 it may not produce
good results. However, in all the cases of matrices with exponentially decreasing singular values, we
will get interesting characterizations of their singular triplets, as it is shown in the next subsection.

Finally, a useful observation, to which we will refer later, is that if A has exponentially decreasing
singular values, then the cosine of the angle made by the gravity center and its 𝑗-th column is closer to
1 when ρ gets small, this is true since

𝑔T𝑎
‖𝑔‖2‖𝑎𝑗 ‖2

=
ν̃1𝑣1(𝑗) + ∑𝑟

𝑙=2 (
σ𝑙
σ1 )

2
ν̃𝑙𝑣𝑙(𝑗)

√ν̃21 + ∑𝑟
𝑙=2 (

σ𝑙
σ1 )

2
ν̃2𝑙 √𝑣1(𝑗)2 + ∑𝑟

𝑙=2 (
σ𝑙
σ1 )

2
𝑣𝑙(𝑗)2

. (5.3.2)

5.3.2 Characterization of Matrices using their Gravity Center
Consider A ∈ ℝ𝑚×𝑛, from the previous best fitting line analysis, it is clear that a sufficient condition for
the lines ℒA and ℒ𝑔 to coincide, is that 𝑔 = 0. Let us consider the reverse case, i.e. if ℒA and ℒ𝑔 are
identical, then what can we say about the matrix A? The following theorem provides the answer.

Theorem 5.1. Consider A ∈ ℝ𝑚×𝑛, with 𝑟 = rank(A) and singular triplets (𝑢𝑗 , 𝑣𝑗 , σ𝑗), for 𝑗 = 1, ⋯ , 𝑟 . Let
its best fitting lines be ℒA and ℒ𝑔 . Consider the vector of ones 𝑐 = (1, ⋯ , 1)T ∈ ℝ𝑛. Then, both lines are
identical if and only if

A = B + ‖𝑔‖2𝑢1𝑐T,

where B ∈ ℝ𝑚×𝑛 is a matrix for which the gravity center of its columns is zero. Furthermore, if ℒA and
ℒ𝑔 are identical, then the norm of A is bounded as

‖A‖2 ≥ √𝑛‖𝑔‖2, (5.3.3)

and if ‖𝑔‖2 ≠ 0, we get

𝑢1 =
𝑔

‖𝑔‖2
,

and the right singular vectors hold

𝑣T1 𝑐 =
𝑛
∑
𝑖=1

𝑣1(𝑖) =
𝑛‖𝑔‖2
σ1

, (5.3.4)

𝑣T𝑗 𝑐 =
𝑛
∑
𝑖=1

𝑣𝑗(𝑖) = 0, for 𝑗 = 2, ⋯ , 𝑟 . (5.3.5)

Proof. If 𝑔 = 0, the first statement follows straightforwardly. Hence, let us consider the non-trivial case
when 𝑔 ≠ 0. If A = B + ‖𝑔‖2𝑢1𝑐T, then clearly both lines coincide, since for this case when computing 𝑔
we obtain

𝑢1 =
𝑔

‖𝑔‖2
, (5.3.6)
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where we use the fact that the gravity center of B is zero. To prove the reverse statement, assume both
lines are identical, i.e. assume that (5.3.6) holds. Then, define B ∶= A − 𝑔𝑐T, where clearly the gravity
center of B is zero. And using (5.3.6) we can write

A = B + ‖𝑔‖2𝑢1𝑐T,

which proves the first statement of the theorem.

Next, to prove the second statement of the theorem, write the 𝑗-th column of A using its singular
triplets, this is

𝑎𝑗 =
𝑟
∑
𝑙=1

𝑢𝑙σ𝑙𝑣𝑙(𝑗), for 𝑗 = {1, ⋯ , 𝑛}. (5.3.7)

By definition of the gravity center and (5.3.6), we get

𝑔 = 1
𝑛

𝑛
∑
𝑗=1

𝑎𝑗 = ‖𝑔‖2𝑢1, (5.3.8)

and combining (5.3.7) and (5.3.8), we get

𝑟
∑
𝑙=1

𝑢𝑙σ𝑙 (
𝑛
∑
𝑗=1

𝑣𝑙(𝑗)) = 𝑛‖𝑔‖2𝑢1,

(σ1 (
𝑛
∑
𝑗=1

𝑣1(𝑗)) − 𝑛‖𝑔‖2)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

β1

𝑢1 +
𝑟
∑
𝑙=2

(σ𝑙
𝑛
∑
𝑗=1

𝑣𝑙(𝑗))
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

β𝑙

𝑢𝑙 = 0, (5.3.9)

and since (5.3.9) is a linear combination of linearly independent vectors, then β1 = β2 = ⋯ = β𝑟 = 0,
which proves (5.3.4) and (5.3.5). Finally, by the Cauchy-Schwartz inequality, we have that

|𝑣T1 𝑐| ≤ ‖𝑐‖2 = √𝑛, (5.3.10)

and (5.3.3) follows by replacing (5.3.4) in (5.3.10).

Next, let us explore a direct consequence of the previous theorem. First, note that

√𝑛
√𝑟 ‖𝑎△‖2 ≤ ‖A‖2 ≤ √𝑛‖𝑎⋆‖2,

where 𝑎△ and 𝑎⋆ are, respectively, the columns of Awith smallest and largest norm respectively. These
inequalities follow from the fact that

1
√𝑟 ‖A‖F ≤ ‖A‖2 ≤ ‖A‖F.

Hence, when A is such that its best fitting lines, ℒA and ℒ𝑔 , are identical, then we can obtain a
narrow bound for the matrix norm, given as

√𝑛‖𝑔‖2 ≤ ‖A‖2 ≤ √𝑛‖𝑎⋆‖2,
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and we can obtain an estimate of the norm that becomes more precise when the columns of the matrix
have similar norm. However, it is not evident when A is such thatℒA andℒ𝑔 are identical, we explore
this in the next subsection.

Finally, gathering the results from this and the previous subsection, we get that an affine approxi-
mation should not be used when the gravity center of the columns of the matrix is very small, since for
this case both best fitting lines coincide, e.g. the matrix A = randn(𝑛) constructed with MATLAB, has
as entries normally distributed random numbers having mean zero, so an affine approximation would
not make sense. For all other cases, an affine approximation might increase the precision as it is shown
in Section 5.4.

5.3.3 Measuring the Correlation of Matrices
We can obtain insights about the geometrical distribution of the columns of a matrix by using formal
concepts from statistics, as the correlation of a matrix.

The correlation of a matrix A ∈ ℝ𝑚×𝑛 is typically expressed using the pairwise correlation of its
columns, this is, consider the columns 𝑎𝑗 and 𝑎𝑙 with means ̄𝑔𝑗 ∶= 1

𝑚 ∑𝑚
𝑖=1 𝑎𝑗(𝑖) and ̄𝑔𝑙 ∶= 1

𝑚 ∑𝑚
𝑖=1 𝑎𝑙(𝑖)

respectively. Then, we can obtain the Pearson correlation coefficient defined as

ρ𝑗𝑙 =
∑𝑛

𝑖=1(𝑎𝑗(𝑖) − ̄𝑔𝑗)(𝑎𝑙(𝑖) − ̄𝑔𝑙)

√∑
𝑛
𝑖=1(𝑎𝑗(𝑖) − ̄𝑔𝑗)2√∑

𝑛
𝑖=1(𝑎𝑙(𝑖) − ̄𝑔𝑙)2

= ̄𝑎T𝑗
‖ ̄𝑎𝑗 ‖2

̄𝑎𝑙
‖ ̄𝑎𝑙 ‖2

= cos(∠( ̄𝑎𝑗 , ̄𝑎𝑙)),

where ̄𝑎𝑗 ∶= 𝑎𝑗 − ̄𝑔𝑗 ̄𝑐 and ̄𝑎𝑙 = 𝑎𝑙 − ̄𝑔𝑙 ̄𝑐 are obtained by centering 𝑎𝑗 and 𝑎𝑙 with respect to their mean,
with ̄𝑐 = (1, ⋯ , 1)T ∈ ℝ𝑚. This provides a symmetric (𝑚 × 𝑛) matrix of coefficients ρ𝑗𝑙 having ones on
the diagonal. For example, the function corr from MATLAB gives exactly this matrix. And since the
pairwise interaction of distinct columns can provide at most 𝑛(𝑛 − 1)/2 different values, then we can
define the correlation of a matrix as a real number, given as

𝒞(A) ∶= 2
∑𝑖<𝑗 |ρ𝑖𝑗 |
𝑛(𝑛 − 1) .

Note that 0 ≤ 𝒞 (A) ≤ 1. It is clear that at a given stage of the approximation, computing 𝒞(A) for
all the columns would provide an accurate stopping criterium. For instance, at the step 𝑘 − 1 of one
approximation algorithm, consider

F = A − ξ𝑘−1,

then, theoretically if 𝒞(F) = 1, then F is a rank-one matrix and the algorithm should stop at the step
𝑘. This could be replaced by the weaker condition 1 − δ < 𝒞(F). This technique could be used as a
stopping criterium, however costly, indeed it would cost 𝒪(𝑚𝑛2𝑘).

Next, we propose a cheaper way to measure the correlation of A by defining the correlation vector
ρ̃A ∈ ℝ𝑛 as

ρ̃A(𝑗) ∶=
𝑔T𝑎𝑗

‖𝑔‖2‖𝑎𝑗 ‖2
, (5.3.11)
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which costs 𝒪(𝑚𝑛) to compute, and the correlation coefficient

𝒢(A) ∶= max(ρ̃A) −min(ρ̃A)
2 . (5.3.12)

Note that 0 ≤ 𝒢 (A) ≤ 1 and that 𝒢(A) is a good indicator of the spacial distribution of the columns
of the matrix with respect to its gravity center, and in section 5.3.4 we show a very good rank-one
approximation for matrices having high correlation coefficient. A way to reduce the computation cost
of obtaining 𝒢(A) is to approximate it using only 𝒪(𝑚𝑙) arithmetic cost, where 𝑙 < 𝑛. For this we
need to use a randomized approach. For instance, the randomized version of QRCP [DG17] obtains its
permutation by applying the classic QRCP on the smaller matrix Ω𝑟A ∈ ℝ𝑙×𝑛, where Ω𝑟 ∈ ℝ𝑙×𝑚 is a
random compressionmatrix. Hence, we can use (or reuse) a random compressionmatrix to approximate
the gravity center of A by the gravity center of AΩ, where Ω ∈ ℝ𝑛×𝑙 , and make the approximation
𝒢(A) ≈ ρ̃(AΩ). Moreover, note that the approximation of 𝑔 holds

‖𝑔 − �̃�‖2 = ‖ 1𝑛A𝑐 −
1
𝑛AΩ𝑐‖2 ≤

‖A‖2(1 + ‖Ω‖2)
√𝑛 ,

where �̃� is the gravity center of AΩ, and 𝑐 = (1, ⋯ , 1)T ∈ ℝ𝑛, and this approximation is justified when
the norms of A and Ω are small.

5.3.4 Matrices with High Correlation
We consider that a matrix A has high correlation if the mean of the correlation vector ρ̃A defined in
(5.3.11) is close to 1, or if the correlation coefficient 𝒢(A), defined in (5.3.12), is close to 0. In order to
find a representation of matrices with high correlation, let us consider a rank-one matrix A. From the
linear dependency of its columns, it is clear that its correlation coefficients, 𝒞(A) and 𝒢(A), are equal
to 1. Furthermore it is clear that A can be written as A = [β1ones(𝑚, 𝑛1), ⋯ , β𝑘ones(𝑚, 𝑛𝑘)], with
appropriate coefficients β𝑗 and 𝑛1 + ⋯ + 𝑛𝑘 = 𝑛. Next lemma gives us an useful representation of A.

Lemma 5.3. Consider A = [β1ones(𝑚, 𝑛1), ⋯ , β𝑘ones(𝑚, 𝑛𝑘)] ∈ ℝ𝑚×𝑛, where β𝑗 ∈ ℝ for 𝑗 = 1, ⋯ , 𝑘, and
𝑛1 + ⋯ + 𝑛𝑘 = 𝑛. Then,

abs(𝑢1(A)) = abs ( 𝑔
‖𝑔‖2

) , abs(𝑣1(A)) = abs ( 𝑔T𝑡
‖𝑔𝑡 ‖2

) , (5.3.13)

and,

σ1(A) =
√
𝑚(

𝑘
∑
𝑗=1

𝑛𝑗β2𝑗 ), (5.3.14)

where 𝑔 and 𝑔𝑡 are the gravity centers of the columns of A and AT respectively.

Proof. First, note that the line passing through the origin of ℝ𝑚 in the direction of 𝑐1 = ones(𝑚, 1) ∈ ℝ𝑚
is the best fitting line of the columns of A. Since clearly 𝑔 also belongs to this line, it means that both
best fitting lines of A, i.e. ℒA and ℒ𝑔 , coincide, and using Theorem 5.1 we get the left equality of
(5.3.13). Analogously, to obtain the right equality of (5.3.13), observe that the line passing through the
origin of ℝ𝑛 in the direction of the vector 𝑐1 = (β1ones(1, 𝑛1), ⋯ , β𝑘ones(1, 𝑛𝑘))T ∈ ℝ𝑛 is the best fitting
line of the columns of AT and it contains 𝑔𝑡 , then apply Theorem 5.1 on AT.
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Next, note that A has rank-one, this is σ𝑗(A) = 0 for 𝑗 ≥ 2, hence both spectral and Frobenius norm

coincide and a simple calculus shows that σ1(A) = ‖A‖F = √𝑚(∑𝑘
𝑗=1 𝑛𝑗β2𝑗 ).

Next, let us propose a rank-one approximation for matrices having high correlation. Note that
in particular, from equation (5.3.2) we know that a matrix A with exponentially decreasing singular
values tends to have high correlation (just by using the definition of the correlation vector in (5.3.11)).
We define the rank-one approximation of these kind of matrices as

A ≈ ξ1 ∶=
𝑔

‖𝑔‖2
σ̃1

𝑔T𝑡
‖𝑔𝑡 ‖2

, (5.3.15)

where σ̃1 approximates σ1(A), and according to Lemma 5.3 it can be taken as in (5.3.14). However, our
experiments show that a better approximation of the first singular value is

σ1 ≈ σ̃1 ∶= ‖𝑔‖2√𝑛, (5.3.16)

which is justified by the analysis made in section 5.3.2.

In Section 5.4.2, we show that σ̃1 approximates very well σ1 = ‖A‖2 for most of the test matrices,
even though most of them do not have singular values decreasing exponentially.

Next, according to Lemma 5.3 we can approximate the directions of the first left and right singular
vectors as

𝑢1(A) = + 𝑔
‖𝑔‖2

or 𝑢1(A) = − 𝑔
‖𝑔‖2

, and (5.3.17)

𝑣1(A) = + 𝑔𝑡
‖𝑔𝑡 ‖2

or 𝑣1(A) = − 𝑔𝑡
‖𝑔𝑡 ‖2

, (5.3.18)

where 𝑔 and 𝑔𝑡 are the gravity centers of A and AT respectively.

Finally, let us introduce the following definition that will allow to measure the error of approximat-
ing 𝑢1(A) and 𝑣1(A) as in (5.3.17) and (5.3.18) respectively, c.f. Figure 5.10.

Definition 5.1. For a vector 𝑤 ∈ ℝ𝑚 we define its sign as

S(𝑣) ∶= sign (
𝑚
∑
𝑖=1

sign(𝑤(𝑖))) ,

where sign is the standard function for real numbers.

5.4 Numerical Experiments

5.4.1 Low-rank Approximation of Challenging Matrices
In this section we numerically show the benefits of Algorithm 2 on a set of challenging matrices with
𝑚 = 𝑛 = 256, given in Table 5.1. Most of the matrices from Table 5.1 have been previously used in
experiments with QR factorizations [DGGX15, GCD18]. These matrices have been constructed using
MATLAB and they are easy to replicate for testing and verification. Some of the test matrices, have
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the form A = UΣVT where, when it is not specified, U and V are random orthogonal matrices and
Σ = diag(σ1, ⋯ , σ𝑛) is a diagonal matrix containing prescribed singular values, the machine epsilon is
given as ϵ = 2.22E − 16.

Table 5.1: Test matrices

No. Matrix Description

1 BAART Coming from the discretization of the first kind Fredholm
integral equation [Han].

2 BREAK-1 A = UΣVT, where σ1 = ⋯ = σ𝑛−1 = 1, and σ𝑛 = 10−9 [Bis91].
3 BREAK-9 A = UΣVT, where σ1 = ⋯ = σ𝑛−9 = 1, and σ𝑛−8 = ⋯ = σ𝑛 = 10−9 [Bis91].
4 DERIV2 Coming from the computation of the second derivative [Han].
5 EXPON A = UΣVT, where σ1 = 1, and σ𝑖 = α𝑖−1 for 𝑖 = 2, ⋯ , 𝑛 [Bis91].
6 FOXGOOD Coming from the discretization of the first kind Fredholm integral equation

of a severely ill-posed problem, first used by Fox and Goodwin [Han].
7 GKS Upper-triangular matrix whose 𝑗-th diagonal element is 1/√𝑗 and whose

(𝑖, 𝑗) element is −1/√𝑗 for 𝑗 > 𝑖 [GE96, GKS76].
8 GRAVITY Coming from the discretization of a one-dimensional model problem in

gravity surveying [Han].
9 HC A = UΣVT, where Σ has diagonal entries 100, 10, and the following 𝑛 − 2

are evenly spaced between 10−2 and 10−8 [HT05].
10 HEAT Inverse heat equation [Han].
11 PHILLIPS Phillips test problem [Han].
12 RANDOM Random matrix A = 2 ∗ rand(𝑛) − 1 [GE96].
13 SCALE Random matrix whose 𝑖-th row is scaled by the factor η𝑖/𝑛,

with η = 10ϵ [GE96].
14 SHAW 1D image restoration model [Han].
15 SPIKES Test problem with a “spiky” solution [Han].
16 STEWART Matrix A = UΣVT + 0.1σ𝑛 ∗ rand(𝑛), where Σ has first half of the diagonals

decreasing geometrically from 1 to σ𝑛 = 10−3, and the last half
of the diagonals being set to zero [Ste99].

17 URSELL Coming from the discretization of an integral equation with no square
integrable solution [Han].

18 WING Coming from a test problem with a discontinuous solution [Han].
19 KAHAN The Kahan matrix [Kah66].
20 DEVIL Devil stairs matrix, a matrix with gaps in its singular values [Ste99].
21 RAND-UNIF Random matrix with uniformly distributed entries, A = rand(𝑛).
22 3D-ADM An admissible submatrix of a hierarchical matrix, see description in the text.
23 3D-LAP-NADM A non-admissible submatrix of a hierarchical matrix, see description in the text.

Matrices 22 and 23 are submatrices of a global hierarchical matrix coming from the discretization
of an integral operator on the domain defined in section 6.4.1, matrix 22 correspond to an admissible
block created with the admissibility condition reported in Figure 6.4, while matrix 23 corresponds to
a non-admissible block obtained from the interaction of adjacent subdomains. Matrix 22 is ensure to
have singular values decreasing exponentially, while it is not the case for matrix 23.
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Next, we present the error for a rank-𝑘 approximation of different test matrices, for 𝑘 = 1, ⋯ , 32. We
compare ALORA with QRCP and subspace iteration. Figures 5.2 to 5.6 show the approximation errors
for some of the test matrices, in order to appreciate the cases where an affine low rank approximation
is advantageous or disadvantageous. The labels ALORA_QR and ALORA_SI refer to ALORA using
QRCP and subspace iteration (using just small parameters 𝑞 = 1 and 𝑙 = 𝑘 + 3) to produce the rank
𝑘 −1 approximation needed in line 3 of Algorithm 2. All figures include a right Y-axis where the values
ALORA_QR+ and ALORA_SI+ are plotted, they are obtained by plotting for a given 𝑘, the error made
by approximating A by the matrix ξ𝑘+1 defined in (5.2.10). Note that the curves of the SVD, SSITER and
ALORA_SI+ almost overlap each other.
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(b) Approximation error of ALORA created with
subspace iteration.

Figure 5.2: Convergence curves of the approximation error for the KAHAN matrix.
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Figure 5.3: Convergence curves of the approximation error for the GKS matrix.
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subspace iteration.

Figure 5.4: Convergence curves of the approximation error for the RAND-UNIF matrix.
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Figure 5.5: Convergence curves of the approximation error for the SHAW matrix. The horizontal line
is the threshold value, ϵmax(𝑚, 𝑛)‖A‖2, beyond which the singular values are considered as zero.
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Figure 5.6: Convergence curves of the approximation error for the DERIV2 matrix.



66 Chapter 5. Affine low-rank approximations

Note that for the matrices with slowly decreasing singular values, GKS and RAND-UNIF, we have
that ALORA improves the approximation for 𝑘 small. While for the other cases, when the matrices
have rapidly decreasing singular values, as studied in Section 5.3.1, their best fitting lines tend to over-
lap each other and hence an affine approximation may increase considerably the precision as in the
case of Figure 5.2, and for some cases as in Figures 5.5 and 5.6 it may not produce good results since the
rank-one approximation 𝑔𝑐T, used by the ALORA algorithm, might be far from the optimal. For this
case it would be more suitable to use the rank-one approximation from (5.3.15) to start the approxima-
tion, see Figure 5.9.

Next, we compute the approximation errors for all the matrices described in Table 5.1. Considering
an approximation of rank 𝑘 = 1, ⋯ ,min(rank(A), 16), we compute the errors

EQRCP(𝑘) =
‖A − ξ𝑘‖2
σ𝑘+1(A)

, (5.4.1)

EALORA_QR+(𝑘) =
‖A − 𝑔𝑐T − ξ̄𝑘‖2

σ𝑘+1(A)
, (5.4.2)

EALORA_SI+(𝑘) =
‖A − 𝑔𝑐T − ξ̃𝑘‖2

σ𝑘+1(A)
, (5.4.3)

where ξ𝑘 and ξ̄𝑘 are rank-𝑘 approximations of A and Y respectively constructed using QRCP, and ξ̃𝑘 is
a rank-𝑘 approximation of Y constructed using subspace iteration (Algorithm 6). Figure 5.7 plots the
average and variances of these values for all the matrices from Table 5.1.
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Figure 5.7: Mean of the ratios of the errors of rank-𝑘 approximations created by ALORA_QR+ and
ALORA_SI+ to the optimal error. For each matrix, 𝑒QRCP, 𝑒ALORA_QR+ and 𝑒ALORA_SI+ are,

respectively, the mean of the vectors EQRCP, EALORA_QR+ and EALORA_SI+ defined in (5.4.1), (5.4.2) and
(5.4.3); and var_1, var_2 and var_3 are their variances.

We can see that inmany cases ALORA, in its both versions ALORA_QR+ andALORA_SI+, improves
the accuracy of QRCP (up to 10 times) . Note that ALORA_QR+ performs, in average, better than
QRCP, while ALORA_SI+ overpasses the accuracy of the other methods. Hence, constructing the rank-
𝑘 approximation of a matrix as fitting its columns into a 𝑘-dimensional affine subspace can improve
the accuracy of the approximation.

5.4.2 Approximation of the Matrix Norm
Using the analysis done in §5.3, we show that our estimate σ̃1 = ‖𝑔‖2√𝑛, given in (5.3.16), for the norm
of a given matrix A, works quite good for most of the test matrices from Table 5.1. We compare this
estimate with the one obtained performing a truncated QRCP Factorization of A, i.e. A = QRPT, where
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generally authors approximates the 𝑖-th singular value as |R(𝑖, 𝑖)|, see e.g. [DGGX15, Sec. 4], [GCD18,
Ste99]. However, this estimate is rough and more precisely viewing QRCP as the decomposition of
type (5.2.1), an estimate of σ𝑖 can also be taken as ‖R(𝑖, ∶)‖2. Note that there are more precise ways to
approximate the norm using a QR based method, for example we can use the L-values (or the more
efficient algorithms) proposed by Stewart [Ste99, Sec. 6]. In Figure 5.8 we plot the ratios of the values
|R(𝑖, 𝑖)|, ‖R(𝑖, ∶)‖2 and σ̃1 to the exact norm.
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Figure 5.8: Ratios of the approximated matrix norm, we compare |R(1, 1)|, ‖R(1, ∶)‖2 and σ̃1 to ‖A‖2.

In Figure 5.9 we show that the rank-one approximation ξ1 from (5.3.15) provides a very good rank-
one approximation, we consider the following two approximations

A ≈ 𝑞1𝑟T1 , and A ≈ ξ1 =
𝑔

‖𝑔‖2
σ̃1

𝑔T𝑡
‖𝑔𝑡 ‖2

, σ̃1 = ‖𝑔‖2√𝑛,

where the first is the classical QRCP rank-one approximation.
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Figure 5.9: Ratios of the error of rank-one approximation obtained by QRCP and ξ1 from (5.3.15) to
the optimal error.

5.4.3 Analyzing the Correlation Coefficient

In Figure 5.10 we numerically study the correlation of a matrix by using the vector ρ̃(A), defined in
(5.3.11), and the correlation coefficient 𝒢(A), defined in (5.3.12), as indicators of when the best fitting
lines of A tend to overlap each other, and hence provide an easy way to approximate 𝑢1(A) and 𝑣1(A)
according to Theorem 5.1. The matrix A stands for one of the 23 matrices from Table 5.1. We present
three subfigures aligned in such a way that we can see that for matrices with high correlation we can
approximate the first left and right singular vectors by using information of the spatial distribution of
the columns and rows of A, more precisely, the gravity centers of its columns and rows.
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(a) Letting A be one of the 23 matrices from Table 5.1, the circle corresponds to the mean of the correlation
vector ρ̃A defined in (5.3.11), and the length of the bar is equal to the correlation coefficient 𝒢(A) defined in

(5.3.12).
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(b) Error to approximate the first left singular vector 𝑢1(A) by �̃� = ̃𝑠 𝑔
‖𝑔‖2

, where 𝑔 is the gravity center of the

columns of A and ̃𝑠 = S(𝑔)S(𝑢1(A)), c.f. (5.3.17).
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(c) Error to approximate the first right singular vector 𝑣1(A) by �̂� = ̂𝑠 𝑔𝑡
‖𝑔𝑡 ‖2

, where 𝑔𝑡 is the gravity center the

columns of AT and ̂𝑠 = S(𝑔𝑡)S(𝑣1(A)), c.f. (5.3.18).

Figure 5.10: Correlation vector and coefficient for the 23 matrices from Table 5.1.

Note that, as expected, for the matrices with singular values decreasing at exponential rate, we have
that the mean of the correlation vector ρ̃(A) is close to 1, while the coefficient 𝒢(A) is close to 0, and
their singular vectors 𝑢1(A) and 𝑣1(A) can be safely approximated by the unit vectors in the directions
of the gravity centers of the columns of A and AT respectively, up to a corresponding sign. Moreover,
this kind of approximation also works relatively well for somematrices with slowly decreasing singular
values, such as matrices 7 and 21 from Table 5.1.

5.5 Conclusions of the chapter
We have presented the concept of affine low-rank approximation for rectangular matrices, which can
be interpreted geometrically as fitting the columns of the matrix into an affine subspace. We have
showed how to construct an affine approximation by means of orthogonal projections and propose
an algorithm named ALORA that can be adapted to any low-rank approximation algorithm. We have
derived a bound for the approximation error and analyzed the cases where this approach might be ad-
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vantageous by means of a correlation coefficient that we define in order to understand the geometrical
structure of a matrix by seeing its columns as points of a high-dimensional space. By looking for ma-
trices with high correlation, in the sense of our definitions, we encountered the case of matrices with
exponentially decreasing singular values for which we have proposed simple formulas to obtain good
approximations of their norm and first singular vectors, and hence a good rank-one approximation.

We have constructed affine low-rank approximations using ALORA with the classical QRCP and
subspace iteration algorithms. The numerical experiments performed on a set of challenging matri-
ces, showed that an affine low-rank approach can increase, in many cases, the accuracy of QRCP and
subspace iteration.



CHAPTER6

Liner-time CUR approximations for BEM
matrices

6.1 Preliminaries
In this chapter, we are interested in accelerating the matrix-vector products for matrices arising from
the discretization of boundary integral operators, as the ones from Chapter 2. Such matrices are usu-
ally referred to as BEM matrices and arise from diverse real problems such as wave propagation,
geophysics, scattering in quantum mechanics, among other applications that can be found e.g. in
[Lon77, Ste08, Waz11].

A BEM matrix has entries of type 𝒢(𝑥𝑖 , 𝑦𝑗), where 𝒢 ∶ ℝ𝑑 × ℝ𝑑 → ℂ, is a kernel integral operator
and X ∶= [𝑥1, ⋯ , 𝑥𝑚] and Y ∶= [𝑦1, ⋯ , 𝑦𝑛] are interaction domains known as source and target domains
respectively. For the scope of this work we consider 𝑑 = 3 by default, however the theory straightfor-
wardly holds for higher dimensions. The classical approach to accelerate the matrix-vector products
for BEM matrices, is to separate the kernel evaluation into far-field (tailored to low-rank approxima-
tion) and near-field (direct evaluation). One of the most prominent methods to approximate the far field
interactions is the Fast Multipole Method FMM [GR87, Kou95]; however, it has important drawbacks
such as the kernel-dependency, high cost for problems with multiple right-hand sides and its difficult
implementation. Remedies to these drawbacks have been and are currently being developed, such as
Kernel independent FMM methods [MR07, FD09].

Our approach consists in using the hierarchical form of the BEM matrix to obtain submatrices cor-
responding to the far-field interaction, which are known as admissible blocks and are constructed in a
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tree-fashion structure using a geometric admissibility criterion for clustering [Beb08, Bör10, Hac15].
Typically, hierarchical matrices are constructed such that most of its blocks are admissible and hence
the cost for compression and matrix-vector product is dominated by the cost of low-rank approxima-
tion of admissible blocks.

LetA ∈ ℂ𝑚×𝑛 denote one admissible block, a popular algorithm for approximatingA is the Adaptive
CrossApproximation (ACA), which has𝒪(𝑚+𝑛) cost and its accuracy is good enough formany practical
applications. The methodology performed by ACA can be seen as a CUR (or skeleton) approximation;
this is,

A ≈ ξ𝑘 = CUR,
where C ∶= A(∶, J), R ∶= A(I, ∶) and U ∶= A−1(I, J) ∈ ℂ𝑘×𝑘 , I and J are sets of indices with cardinality 𝑘
and must ensure thatA(I, J) is invertible. For the case of ACA, I and J are selected adaptively based on a
greedy approach to makeA(I, J) have maximum absolute determinant among all 𝑘×𝑘 submatrices ofA.
Our approach consists in finding such indices using information from the problem geometry, we call our
methodology geometric sampling and provide a general bound for the approximation error ‖A − ξ𝑘‖.
We analyze different methods to select I and J such as the Nearest-Neighbors (NN) criterion, which
have recently been evaluated on multiple kernels in high dimensions showing good accuracy [MB17].
We propose a novel criterion called Gravity Centers Sampling (GCS) which in most cases overcomes
the accuracy of ACA and the NN criterion, c.f. §6.4, having asymptotically 𝒪((𝑚+𝑛)𝑘) cost to compute.

Skeleton approximations aremainly importantwhen structure in the datamust be preserved [MD09].
For BEMmatrices, preserving data structure is not a priori relevant, our interest on CUR approximations
is to achieve linear complexity. Note that preserving data approximations are tailored for the develop-
ment of supervised machine learning algorithms that can predict the most representative source and
target points by simply analyzing properties of the domains where the problem is posed.

There exist randomized approaches to select indices I and J that can achieve linear-time complexity
algorithms, e.g. via uniformly random selection [MB17], and even sublinear cost algorithms such as
the one presented in [CD13], however their accuracy is not always guaranteed, see e.g. [MB17]. The
methodologies presented in this chapter are purely algebraic (no kernel dependency), deterministic
and can be obtained in linear time. Related works are the IE-QR algorithm [OL04], which constructs
a low-rank QR approximation using the modified Gram-Schmidt algorithm and costs 𝒪(N3/2), with
N = max(𝑚, 𝑛); the IES3 algorithm [KL98], a kernel independent method for electromagnetic simu-
lations which costs 𝒪(N log(N)); and Interpolative Decompositions [BMD09, VM17], which rely on
rank-revealing QR factorizations [GE96] and cost 𝒪(𝑚𝑛𝑘).

This chapter is structured as follows. Section 6.2 presents classical methods to compute low-rank
approximations based onCUR decompositions. Section 6.3 presents the notion of geometric sampling to
create a CUR approximation. We provide an algorithm and prove a relative error bound that can be used
for any geometric sampling method. Section 6.4 presents and discusses several numerical experiments
to validate our algorithm by using different types of geometries and integral kernels. Finally, Section
6.5 concludes the chapter.

6.2 CUR approximations
In this chapter, we consider a complex matrix A ∈ ℂ𝑚×𝑛. We consider notations from Chapter 4, and
we denoteA∗ the conjugate transpose ofA. Let row and column indices I = {𝑖1, ⋯ , 𝑖𝑘} and J = {𝑗1, ⋯ , 𝑗𝑘}
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be chosen such that A(I, J) ∈ ℂ𝑘×𝑘 is non-singular. The CUR approximation of A has the form

A ≈ CUR, (6.2.1)

where C ∶= A(∶, J) ∈ ℂ𝑚×𝑘 , R ∶= A(I, ∶) ∈ ℂ𝑘×𝑛, and U ∶= A(I, J)−1. Equation (6.2.1) is also known
as skeleton approximation [GT01, GOS+08]. The search of I and J is known as sampling. Note that if
rank(A) = 𝑘, then its skeleton approximation is exact, this is A = CUR.

Error of CUR approximation

Let us consider the indices Ĩ ∶= [I, {1, ⋯ ,𝑚}\I], and J̃ ∶= [J, {1, ⋯ , 𝑛}\J], such that

A(Ĩ, J̃) ∶= [A11 A12
A21 A22

] , (6.2.2)

where A11 = A(I, J) ∈ ℂ𝑘×𝑘 . A simple decomposition of A follows as

A(Ĩ, J̃) = [A11
A21

]
⏟
=∶C(Ĩ,∶)

A−111⏟
=∶U

[A11 A12]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶R(∶,J̃)

+ [0 0
0 S(A11)] ≡ C(Ĩ, ∶)UR(∶, J̃) + [0 0

0 S(A11)] , (6.2.3)

where S(A11) ∶= A22−A21A−111A12 is known as the Schur complement ofA11. Hence, the approximation
error is given as

‖A − CUR‖ = ‖A(Ĩ, J̃) − C(Ĩ, ∶)UR(∶, J̃)‖ = ‖S(A11)‖, (6.2.4)

where ‖ ⋅ ‖ stands for any unitarily invariant norm and the maximum norm. Hence, to get a good rank-𝑘
CUR approximation we need to sample I and J such that the norm of the Schur complement of A(I, J) is
small. Next, we consider a sub-optimal sampling technique consisting in finding I and J to make A(I, J)
have maximal volume, i.e. maximal absolute determinant among all 𝑘 × 𝑘 submatrices of A.

Theorem 6.1. Consider A ∈ ℂ𝑚×𝑛, and row and column indices I and J respectively, with |I| = |J| = 𝑘.
Define G ∶= A(I, J) ∈ ℂ𝑘×𝑘 . If G is non-singular and has maximal volume among all 𝑘 × 𝑘 submatrices of
A, then

‖A − CUR‖max ≤ (1 + 𝑘) σ𝑘+1, (6.2.5)

‖A − CUR‖max ≤ (1 + 𝑘)2 ⋅ min
B∈ℂ𝑚×𝑛

𝑘
‖A − B‖max, (6.2.6)

where C ∶= A(∶, J), R ∶= A(I, ∶), and U ∶= G−1.

Proof. Inequality (6.2.5) is proved in [GT01, Thm. 2.1], and (6.2.6) in [GT11, Thm. 1].

Although the sampling from Theorem 6.1 is nearly optimal, finding submatrices of maximal volume
is NP-hard [ÇMI13].

Algorithm 3, which is adapted from [Beb08, Alg. 3.1], computes A(∶, J) ⋅ A−1(I, J) ⋅ A(I, ∶) ≡ CUR as
sum of rank-one matrices. The advantages of this form is that we can update the choice of the selected
rows and columns adaptively, and it also allows to monitor the evolution of the determinant of the
submatrix formed by the selected indices at a given rank of approximation.
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Data: An integral kernel 𝒢 ∶ ℝ𝑑×𝑑 → ℂ, Indices: I and J, each of size 𝑘,
Source and target points: X = [𝑥1, ⋯ , 𝑥𝑚] and Y = [𝑦1, ⋯ , 𝑦𝑛]

Result: A matrix ξ𝑘 of rank at most 𝑘 and given as sum of rank-one matrices
1 for ℎ = 1 → 𝑘 do
2 Set 𝑖 = I(ℎ) and 𝑗 = J(ℎ) ;
3 ̃𝑣ℎ ∶= [𝒢 (𝑥𝑖 , 𝑦1), ⋯ , 𝒢 (𝑥𝑖 , 𝑦𝑛)];
4 𝑢ℎ ∶= [𝒢 (𝑥1, 𝑦𝑗), ⋯ , 𝒢 (𝑥𝑚, 𝑦𝑗)]T;
5 for 𝑙 = 1 → ℎ − 1 do
6 ̃𝑣ℎ ∶= ̃𝑣ℎ − 𝑢𝑙(𝑖)𝑣𝑙
7 end
8 if ̃𝑣ℎ(𝑗) vanishes then
9 Update column index 𝑗 = argmax𝑠=1,⋯,𝑛 | ̃𝑣ℎ(𝑠)|

10 end
11 Set δ(ℎ) = ̃𝑣ℎ(𝑗) ;
12 Normalize 𝑣ℎ ∶= ̃𝑣ℎ/δ(ℎ) ;
13 for 𝑙 = 1 → ℎ − 1 do
14 𝑢ℎ ∶= 𝑢ℎ − 𝑣𝑙(𝑗)𝑢𝑙
15 end
16 end

Algorithm 3: Skeleton approximation with fixed pivots

Algorithm 3 requires (𝑚 + 𝑛)𝑘 evaluations of kernel function 𝒢 and 𝒪 ((𝑚 + 𝑛)𝑘2) complex oper-
ations. When it halts, we get a rank-𝑘 matrix

ξ𝑘 ∶=
𝑘
∑
ℎ=1

𝑢ℎ𝑣ℎ ≡ CUR. (6.2.7)

This approximation only requires (𝑚 + 𝑛)𝑘 units of storage. Defining M𝑘 ∶= A(I, J), we can also
obtain the volume of the submatrix obtained by our choice of row and column indices, it is given as
[Beb00, Lem. 2],

| det(M𝑘)| =
||||

𝑘
∏
𝑖=1

δ(𝑖)
||||
. (6.2.8)

In Section 6.4 we plot the value | det(M𝑘)| for different sampling techniques, to analyze its impact
on increasing the approximation accuracy.

6.3 Linear-time CUR approximation via Geometric Sampling
In this section, we present the concept of geometric sampling to select row and column indices I and J
by using information from the geometry of the source and target points. Then, a CUR approximation
directly follows by using the theory from the previous section.

6.3.1 Geometrical sampling
Algorithm 4 shows our sampling technique. We select 𝑡 > 𝑘 (oversampling) points from the target
domain and store them into an index vector J̃ which defines a matrix C̃ ∶= A(∶, J̃) ∈ ℂ𝑚×𝑡 of sampled
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columns. Then, we work on the 𝑚-dimensional space, selecting a set of 𝑘 column indices J corre-
sponding to the most significant columns of C̃, we do this by computing the pivoted QR factorization
C̃(∶, 𝑝𝑐) = Q̂R̂. Then, we set Q = Q̂(∶, 1 ∶ 𝑘) and perform a truncated pivoted QR factorization on
matrix QT to obtain a permutation vector 𝑝𝑟 . Finally we return I = 𝑝𝑟 (1 ∶ 𝑘) and J = 𝑝𝑐(1 ∶ 𝑘) from
which a CUR approximation directly follows as done in §6.2, c.f. Algorithm 3.

Data: Approximation Rank 𝑘; Source and target points: X = [𝑥1, ⋯ , 𝑥𝑚] and Y = [𝑦1, ⋯ , 𝑦𝑛]
Result: Low-rank CUR approximation of A

1 Set oversampling: 𝑡 = 2𝑙 such that 2𝑙 > 𝑘 > 2𝑙−1;
2 Decompose Y into 𝑡 subdomains, see Appendix B.3.2 ;
3 Form J with the 𝑡 indices of target points closest to the gravity centers of subdomains;
4 Set C = A(∶, J) and compute its pivoted QR factorization C̃(∶, 𝑝𝑐) = Q̂R̂ ;
5 Set Q = Q̂(∶, 1 ∶ 𝑘) and compute the truncated QR factorization of QT to get permutation 𝑝𝑟 ;
6 Set J = 𝑝𝑐(1 ∶ 𝑘) and I = 𝑝𝑟 (1 ∶ 𝑘).
7 Return CUR = A(∶, J) ⋅ A−1(I, J) ⋅ A(I, ∶), which can be computed via Algorithm 3.

Algorithm 4: CUR with gravity centers sampling, CUR_GCS

Remark 6.1. Note that the permutation vector 𝑝𝑟 from Algorithm CUR_GCS, would be the same if
we instead perform the QR factorization of the conjugate transpose Q∗. This is true since a simple
algebraic effort shows that for any M ∈ ℂ𝑚×𝑛 with QR factorization MP = QR, it holds that MP = Q R
is the pivoted QR factorization of M (matrix with complex conjugated entries).

(a) Interaction of source (ΓS) and target (ΓT) points,
discretized by X = {𝑥1, ⋯ , 𝑥𝑛} (marked with +) and

Y = {𝑦1, ⋯ , 𝑦𝑚} (marked with ∗) respectively.

T

S

(b) Selection of representative targets points
(squares), as points closest to the gravity

centers of subdomains of ΓT.

Figure 6.1: Interaction of distant subdomains on a sphere, and selection of representative target points.

The computational cost of CUR_GCS is given as: 𝒪(𝑛 log2(𝑡)) floating point operations to obtain J
(see appendix B.3.2), 𝒪(𝑚𝑡2) complex operations to perform a truncated QR factorization on C, 𝒪(𝑛𝑘2)
complex operations to perform a truncated QR factorization on QT and 𝒪 ((𝑚 + 𝑛)𝑘2) complex oper-
ations to get the CUR approximation. Thus, the total cost is 𝒪(𝑚𝑡2 + 𝑛𝑘2). Also, note that we do not
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need to form the whole matrix A, we only need 𝑚𝑡 + 𝑛𝑘 evaluations of the kernel function.

Figure 6.1 illustrates the procedure of algorithm CUR_GCS, it displays a spherical domain with
source and target distant subdomains. We use the geometrically balanced partition technique, c.f.
[Beb08, Sec. 1.4.1] and [Bör10, Alg.2], to decompose the target domain into 𝑡 = 6 subdomains, and
then six target points (blue squares) are selected as the ones closest to the gravity centers of the subdo-
mains. In appendix B.3.1 we provide a MATLAB code for algorithm CUR_GCS, and in appendix B.3.2
we provide the code for the gravity centers sampling technique.

Note that we can easily modify Algorithm 4 to get alternative CUR approximations, by changing
the partition technique. For instance, if using the Nearest-Neighbors criterion instead of the gravity
centers criterion in line 2 of Algorithm 4, we obtain a new algorithm to which we refer to as CUR_NNS,
c.f. appendix B.3.3. The Nearest-Neighbors technique selects 𝑡 target points as the ones closest to the
source domain, this has been recently studied in [MB17]. In next subsection, we prove a bound on
the CUR approximation error for an arbitrary domain partitioning technique, and in section 6.3.3 we
discuss the advantages of the partitioning technique of our algorithm CUR_GCS over CUR_NNS.

6.3.2 Bound on the error of CUR approximation with geometric sampling
Consider that geometric sampling has been performed selecting indices I and J, with |I| = |J| = 𝑘,
such that A(I, J) is non-singular. Let Ĩ ∶= [I, {1, ⋯ ,𝑚}\I], and J̃ ∶= [J, {1, ⋯ , 𝑛}\J] and let us apply a
truncated-QR factorization in the permuted matrix A(Ĩ, J̃), this is

A(Ĩ, J̃) ∶= [A11 A12
A21 A22

] = Q̌Ř ≡ [Q11 Q12
Q21 Q22

] [R11 R12
0 R22] . (6.3.1)

Next, we use an idea presented in a previous paper [GCD18] for the case of real matrices, where
the authors observed that S(A11) = S(Q11)R22, with

S(Q11) ∶= Q22 − Q21Q−111Q12 = Q∗−122 , (6.3.2)

whereQ∗22 is the conjugate transpose ofQ22, and the last equality can be verified by computingQ∗22S(Q11)
and using the fact that Q̌Q̌∗ = I𝑚. Then, Equation (6.2.4) is rewritten

‖A − CUR‖2 = ‖S(A11)‖2 ≤ ‖Q∗−122 ‖2‖S(R22)‖2, (6.3.3)

whereC = A(∶, J), R = A(I, ∶) andU = A−1(I, J) and by using the CS decomposition [GVL96, Thm.2.6.3],
which tells us that σmin(Q11) = σmin(Q22), finally we get the bound

‖A − CUR‖2 ≤
1

σmin(Q22)
‖R22‖2 =

1
σ𝑘(Q11)

‖R22‖2. (6.3.4)

Error of column sampling
We first state a theorem to bound the error of column sampling. This bound involves C and its QR

factorization. From this we then derive a bound for CUR approximation.

Theorem 6.2. Consider A ∈ ℂ𝑚×𝑛 and a set of indices J, with |J| = 𝑡 . Let C ∶= A(∶, J) be at least rank-𝑘
and consider its QR column pivoted factorization,

C(∶, 𝑝𝑐) = Q̂R̂ ≡ Q̂
𝑘 𝑡 − 𝑘

[ ]𝑘 R̂11 R̂12
𝑚 − 𝑘 0 R̂22

(6.3.5)
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where Q̂ ∈ ℂ𝑚×𝑚 is unitary, R̂ ∈ ℂ𝑚×𝑡 , and 𝑝𝑐 is a permutation vector of size 𝑡 . Define Q = Q̂(∶, 1 ∶ 𝑘),
then

E ∶= ‖(I𝑚 − QQ∗)A‖2 ≤ √
𝑓 2(𝑘, 𝑡) + 𝑘 (2

𝑘−1‖A‖F
μ )

2
⋅ σ𝑘+1(A). (6.3.6)

where μ is the minimum, in absolute value, of the first 𝑘 diagonal entries of R̂ and 𝑓 (𝑘, 𝑡) is defined in
Table 4.1.

Note that ‖R22‖2 = ‖(I𝑚 − QQ∗)A‖2 according to (4.3.9), hence one of the factors of the bound on
the CUR approximation error (6.3.4) follows from the proof of Theorem 6.2. This bound can also be
interpreted as the error of a rank-𝑘 truncated QR approximation with geometric sampling as pivoting
technique, c.f. §4.3.

Proof. Let us consider Ĵ = J(𝑝𝑐) and define 𝑝 = [Ĵ, {1, ⋯ , 𝑛}\Ĵ], we get

Q̂TA(∶, 𝑝) =
𝑘 𝑡 − 𝑘 𝑛 − 𝑡

[ ]𝑘 R̂11 R̂12 B̂1
𝑚 − 𝑘 0 R̂22 B̂2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶R̃

, (6.3.7)

where B̂1 ∈ ℂ𝑘×(𝑛−𝑡) and B̂2 ∈ ℂ(𝑚−𝑘)×(𝑛−𝑡). Note that approximating A by QQ∗A = Q[R̂11, R̂12, B̂1], we
get (c.f. (4.3.9))

‖(I𝑚 − QQ∗)A‖2 = ‖[R̂22, B̂2]‖2,
and bounding the right hand side of the previous equation would give us the desired bound of the
theorem. However, we do not want to compute B̂2 and also, this form does not allow to directly get a
bound as in (6.3.6). Hence, we proceed to use a technique developed by Gu and Eisenstat [GE96, Thm.
3.2]. Let us define the following block diagonal matrix,

Z ∶= [αR̂11 [R̂22, B̂2]] = [R̂11 R̂12 B̂1
0 R̂22 B̂2] [αI𝑘 −R̂−111 [R̂12, B̂1]

I𝑛−𝑘 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶W

≡ R̃W

where α = σmax([R̂22, B̂2])/σmin(R̂11). Note that this choice of α ensures that σ𝑘+1(Z) = σ1([R̂22, B̂2]).
Next, using Theorem 4.2 we get,

E = ‖[R̂22, B̂2]‖2 = σ𝑘+1(Z) ≤ σ𝑘+1(R̃)‖W‖2 = σ𝑘+1(A)‖W‖2, (6.3.8)

where the last equality holds since Q̂ is unitary. Then, to complete the proof, it remains to bound ‖W‖2.
We proceed as follows,

‖W‖22 ≤ 1 + ‖R̂−111 [R̂12, B̂1]‖22 + α2 (6.3.9)

= 1 + ‖[R̂−111 R̂12, R̂−111 B̂1]‖22 + ‖R̂−111 ‖22 (‖[R̂22, B̂2]‖22) (6.3.10)

≤ 1 + ‖R̂−111 R̂12‖2F + ‖R̂−111 B̂1‖2F + ‖R̂−111 ‖2F (‖R̂22‖2F + ‖B̂2‖2F) (6.3.11)

≤ (1 + ‖R̂−111 R̂12‖2F + ‖R̂−111 ‖2F‖R̂22‖2F) + ‖R̂−111 ‖2F (‖B̂1‖2F + ‖B̂2‖2F) . (6.3.12)
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From the QRCP factorization (6.3.5), we get that (c.f. proof of [GE96, Thm. 7.2]),

1 + ‖R̂−111 R̂12‖2F + ‖R̂−111 ‖2F ‖R̂22‖2F ≤ 𝑓 2(𝑘, 𝑡). (6.3.13)

Hence,

‖W‖22 ≤ 𝑓 2(𝑘, 𝑡) + ‖R̂−111 ‖2F (‖B̂1‖2F + ‖B̂2‖2F) . (6.3.14)

Next, we observe that

‖R̂−111 ‖F ≤ √𝑘‖R̂−111 ‖2 ≤ √𝑘 2
𝑘−1

μ ,

where for the first inequality we use a classic relationship between the spectral and Frobenius norms,
and for the last inequality we use a theorem from [Hig02, Thm. 8.14].

From (6.3.7) we get that ‖B̂1‖2F + ‖B̂2‖2F ≤ ‖A‖2F. Hence,

‖W‖22 ≤ 𝑓 2(𝑘, 𝑡) + 𝑘 (2
𝑘−1‖A‖F

μ )
2
, (6.3.15)

and the result follows by replacing (6.3.15) in (6.3.8).

Remark 6.2. The value μ in the previous theorem depends on 𝑘 and its inverse can be bounded. Consider
D ∶= diag(diag(R̂)) and define Y such that R = DY. Then, using Theorem 4.2 we get σ𝑖(R̂) ≤ σ𝑖(D)‖Y‖2 =
R̂(𝑖, 𝑖)‖Y‖2. Also, since σ𝑖(C) = σ𝑖(R̂) we get

1
μ = 1

R̂(𝑘, 𝑘) ≤
‖Y‖2
σ𝑘(R̂)

= ‖Y‖2
σ𝑘(C)

≤
√
𝑡(𝑡 + 1)
2σ𝑘(C)

,

where the last inequality holds since all entries of Y are smaller than 1.
Remark 6.3. A bound can also be obtained when the strong rank-revealing factorization is used to factor

C. From (4.3.6) we get σ𝑖(R̂11) ≤ σ𝑖(C) ≤ 𝑓 (𝑘, 𝑡)σ𝑖(R̂11), then ‖R̂−111 ‖F ≤ √𝑘‖R̂−111 ‖2 ≤ √𝑘 𝑓 (𝑘,𝑡)
σ𝑘(C)

. Hence, by

using (6.3.8) and (6.3.14) as done in the proof of the theorem, we obtain

E ≤ 𝑓 (𝑘, 𝑡)
√
1 + 𝑘 ( ‖A‖F

σ𝑘(C)
)
2
⋅ σ𝑘+1(A), (6.3.16)

where 𝑓 (𝑘, 𝑡) = √1 + ν2𝑘(𝑡 − 𝑘) and ν is a parameter of the strong rank revealing QR factorization.

Error of row sampling
Next, let us complete the bound (6.3.4). We use a simple technique found in [GCD18], which is

described as follows. Once the set of column indices J, with |J| = 𝑘, is obtained, define C ∶= A(∶, J)
with QR factorization C = QR11, where Q ∈ ℂ𝑚×𝑘 and R11 ∈ ℂ𝑘×𝑘 . According to Algorithm 4, we apply
row sampling by performing a truncated pivoted QR on Q∗, c.f. Remark 6.1, this is

Q∗(∶, Ĩ) ≡ [Q∗11, Q∗21] = Q̃[R̃1, R̃2]. (6.3.17)

where Q̃ ∈ ℂ𝑘×𝑘 is unitary and R̃1 ∈ ℂ𝑘×𝑘 is upper triangular. Using (4.3.6), we get
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1 = σ𝑘(Q) ≤ 𝑓 (𝑘,𝑚)σ𝑘( ̃R1) ≤ 𝑓 (𝑘,𝑚)σ𝑘(Q11), (6.3.18)

where 𝑓 (𝑘,𝑚) can be obtained from Table 4.1 depending on the algorithm chosen. Hence,

1
σ𝑘(Q11)

≤ 𝑓 (𝑘,𝑚). (6.3.19)

CUR error bound
Finally, let C ∶= A(∶, J(1 ∶ 𝑘)), R ∶= A(I, ∶) and U = A−1(I, J) ∈ ℂ𝑘×𝑘 . The final bound on the error

‖A − CUR‖2 is obtained by replacing the bound from Theorem 6.2 and (6.3.19) in (6.3.4).

6.3.3 Discussion on geometric sampling technique
As presented in Section 6.2, the accuracy of a rank-𝑘 CUR approximation greatly depends on the choice
of row and column indices I, J, with |I| = |J| = 𝑘. We need to ensure that matrix A(I, J) is as well condi-
tioned as possible; and we know that if it has maximal volume, thenwe get a suboptimal approximation.

By construction, our CUR approximation first computes J and then using C = A(∶, J) it finds I.
Hence, finding I can be performed suboptimally in linear-time by using routines such as the Strong
RRQR (see Table 4.1) or maxvol [GOS+08] to find 𝑘 most representative rows of C. Therefore, it is
most important to select a good set of column indices and geometric sampling allows to find them in
linear-time.

To show why the gravity center criterion from Algorithm CUR_GCS is a good choice, let 𝑐𝑗 be the
𝑗-th column of C, and by seeing the columns of C as points in ℂ𝑚, let us compute the volume of the
simplex formed by these points. For this, we use the Cayley-Menger determinant [Som58, Pag. 24], the
volume of such simplex is given as

𝒱𝑘 ∶= μ

|||||||

⎡⎢⎢⎢⎢
⎣

0 1 1 ⋯ 1
1 0 𝑑212 ⋯ 𝑑21𝑘
1 𝑑221 0 ⋯ 𝑑22𝑘
⋮ ⋱ ⋮
1 𝑑2𝑘1 𝑑2𝑘2 ⋯ 0

⎤⎥⎥⎥⎥
⎦

|||||||

,

where μ = (−1)𝑘
2𝑘−1(𝑘−1)!2 and 𝑑𝑗𝑙 = ‖𝑐𝑙 − 𝑐𝑗 ‖2 for 𝑗, 𝑙 = 1, ⋯ , 𝑘.

First, note that 𝒱𝑘 = 0 if and only if there are at least two linearly dependent columns. Hence, our
selection of J can be seen as an approach to obtain a value of𝒱𝑘 as large as possible while keeping 𝑑𝑖𝑗 of
the same order of magnitude (this is different from the approach that finds maximal projective volume
rectangular submatrices [OZ18] and closely related to the approach of volume sampling [DRVG06]).
For the sake of simplicity, let us consider a smooth kernel function 𝒢 ∶ ℝ×ℝ → ℝ to construct A (and
hence C). Then, by using the mean value theorem, we get

𝑑2𝑗𝑙 = |𝑦𝑗 − 𝑦𝑙 |2
𝑚
∑
𝑖=1

|∂𝑦𝒢(𝑥𝑖 , ψ𝑙𝑗)|2,

where ψ𝑙𝑗 is a real number that lies between 𝑦𝑙 and 𝑦𝑗 . Hence, the values of 𝑑2𝑗𝑙 are directly related
to the distance between the selected target points 𝑦. Then, if the selected target points are very close
to each other (a behavior that is commonly observed for nearest-neighbors criterion) we get a small
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value 𝒱𝑘 , while the gravity centers criterion is an approach created to maintain 𝑑2𝑗𝑙 different from zero
and to keep the rows linearly independent. According to our experiments, the value of 𝒱𝑘 for matrix
C = A(∶, J), when J is obtained by the gravity center criterion, is in general greater than the case when
the nearest-neighbors or uniformly random selection are used, in some cases by one or two orders of
magnitude.

6.4 Numerical Experiments
In this section we numerically show the benefits of our algorithms. We consider the following three
kernels encountered in the discretization of elliptic partial differential equations by means of integral
equations techniques, see e.g. [Ste08, Beb08],

𝒢g(𝑥, 𝑦) =
1

4π‖𝑥 − 𝑦‖2
, 𝒢e(𝑥, 𝑦) =

exp(𝚤‖𝑥 − 𝑦‖2)
‖𝑥 − 𝑦‖2

, 𝒢𝑙(𝑥, 𝑦) = − 1
2π log(‖𝑥 − 𝑦‖2), (6.4.1)

where 𝚤 is the imaginary unit. We construct a matrix A ∈ ℂ𝑚×𝑛 by evaluating one of the above kernels
on three-dimensional interaction points, i.e. A(𝑖, 𝑗) = 𝒢 (𝑥𝑖 , 𝑦𝑗), where X ∶= [𝑥1, ⋯ , 𝑥𝑚] (red points) are
known as sources and Y ∶= [𝑦1, ⋯ , 𝑦𝑛] (green points) as targets. Domains X and Y hold an admissibility
condition given as

min(diam(X), diam(Y)) ≤ ηdist(X, Y), (6.4.2)

with η < 1, ensuring that singular values of A exponentially decrease [Beb00, Beb08]. In our plots we
report the value η that makes (6.4.2) an equality.

Comparing linear-time algorithms
Our first experiments are performed on admissible submatrices taken from global hierarchical ma-

trices. We compare algorithms CUR_GCS and CUR_NNS, introduced in section 6.3.1 to ACA with par-
tial pivoting (ACAp) [Beb00, Alg. 2], for which we only modify the first row pivot by an efficient one
proposed in [Beb08, Sec. 3.4.3]. For all three methods we also plot values δ(𝑘) and det(M𝑘) to show that
not necessarily we need to approximate maxvol submatrices to get higher accuracy. In order to show
that CUR_GCS produces a quasi-optimal approximation, we also display a line tagged Bound_MaxVol,
corresponding to the value (𝑘 + 1)σ𝑘+1 given in eq. (6.2.5). In all plots we also show the optimal error
obtained by the truncated SVD as a reference curve. These plots are displayed in figures 6.4, 6.7, 6.10
and 6.13.

We also plot the performance of our main algorithm CUR_GCS, and compare it with quadratic cost
algorithms QRCP and ACA with full pivoting (ACAf). The latter is a quadratic cost implementation
of ACA consisting in iteratively sampling rows and columns using the maximum element of residual
matrices, see e.g. [Rja02]. We show that our linear-time CUR_GCS algorithm has accuracy comparable
with these methods and in some cases even overcomes them. This can be seen in figures 6.5, 6.8, 6.11
and 6.14.

To conclude, we compare the performance of CUR_GCS against ACAp for approximating an entire
hierarchical matrix, see section 6.4.5.
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6.4.1 BEM matrix from Laplacian kernel

Using the kernel function 𝒢𝑙 , we construct matrix A which entries are obtained by evaluating 𝒢𝑙 on
source and target points located on a 3D surface proposed in [Beb00], which is shown in Figure 6.2
together with target points sampled by the gravity centers and nearest-neighbors methodologies.
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Figure 6.2: Surface from [Beb00], with admissible subdomains created with η = 0.15.

In Figure 6.4, we observe that even when the value of δ(𝑘) corresponding to CUR_GCS is in many
cases smaller than the other methods, however we still get better accuracy. For reference, we also
show the optimal error obtained by the truncated SVD. Moreover, Figure 6.5 shows that the accuracy
of CUR_GCS is comparable to those of quadratic cost algorithms QRCP and ACAf.
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Figure 6.4: Error convergence of CUR approximation with geometric sampling. The values of δ(𝑘)
and det(M𝑘) allow to show the method that better approaches a maximal volume submatrix.
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Figure 6.5: Comparison of our linear cost method CUR_GS versus 𝒪(𝑚𝑛𝑘) cost methods QRCP and
ACAf.

6.4.2 BEM matrix from Exponential kernel

We use kernel 𝒢e to construct a complex BEM matrix A using a 3D airplane surface that we construct
using MATLAB, see Figure 6.6. Analogously to previous subsection, we show the error convergence
for CUR_GCS and compare it with classical methods, showing in all cases a clear improvement, see
Figures 6.7 and 6.8 respectively.
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Figure 6.6: Airplane surface with admissible subdomains created with η = 0.22.
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Figure 6.7: Error convergence of CUR approximation with geometric sampling. The values of δ(𝑘)
and det(M𝑘) allow to show the method that better approaches a maximal volume submatrix.

In Figure 6.8 we compare our linear cost method CUR_GCS versus quadratic cost methods QRCP
and ACAf, showing comparable accuracy and even improving them in some cases.
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Figure 6.8: Comparison of our linear cost method CUR_GS versus 𝒪(𝑚𝑛𝑘) cost methods QRCP and
ACAf.

6.4.3 BEM matrix from Gravity kernel

We use kernel 𝒢g to construct matrix A using a toroid surface that we construct using MATLAB, see
Figure 6.9.
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Figure 6.9: Toroid surface with admissible subdomains created with η = 0.22.

In Figure 6.10 we plot convergence curves for linear-time algorithms, showing that CUR_GCS has
better accuracy than ACAp (about one order of magnitude). In fact, for this case study, CUR_GCS has
practically the same accuracy as quadratic cost algorithms, see Figure 6.11.
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Figure 6.10: Error convergence of CUR approximation with geometric sampling. The values of δ(𝑘)
and det(M𝑘) allow to show the method that better approaches a maximal volume submatrix.
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Figure 6.11: Comparison of our linear cost method CUR_GS versus 𝒪(𝑚𝑛𝑘) cost methods QRCP and
ACAf.

6.4.4 When ACA with partial pivoting fails
Next, we evaluate our algorithms on a challenging problem reported in [Beb08, Sec. 3.4.3]. We build
matrix A with a kernel given as

𝒢b(𝑥, 𝑦) =
(𝑥 − 𝑦) ⋅ 𝑛𝑥
4π‖𝑥 − 𝑦‖2

, (6.4.3)
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where 𝑛𝑥 is a unit vector normal to ΓX at point 𝑥 , and ΓX is a surface from where the discretization
points X are taken, see Figure 6.12.
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Figure 6.12: Two admissible subdomains, created with η = 0.39. By computing their interaction via
the kernel function (6.4.3), they produce a matrix of type (6.4.4).

When such kernel is evaluated in domains from Figure 6.12, we can get a matrix A of type

[ 0 A12
A21 0 ] , (6.4.4)

and a simple analysis shows that under this configuration ACAp fails to converge. Even though there
are improvements of ACA sampling to ensure convergence, see e.g. [Beb08, Sec. 3.4.3], our methodology
is accurate and much simpler, see Figure 6.13.
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Figure 6.13: Error convergence of CUR approximation with geometric sampling. The values of δ(𝑘)
and det(M𝑘) allow to show the method that better approaches a maximal volume submatrix.
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Figure 6.14: Comparison of our linear cost method CUR_GS versus 𝒪(𝑚𝑛𝑘) cost methods QRCP and
ACAf.

6.4.5 Approximating a Hierarchical matrix
To finalize our numerical experiments, we compare the performance of CUR_GCS and ACAp to ap-
proximate all the admissible blocks of a hierarchical matrix, obtained from the discretization of the
integral

1
4π ∫Γ ∫Γ

1
‖𝑥 − 𝑦‖2

dxdy,

where Γ is the surface of a cavity domain, see figure below.

Figure 6.15: 3D cavity domain.

We use Galerkin discretization using a triangular mesh as in Figure 6.15, obtaining a square matrix
A ∈ ℝN×N, with entries given as

A(𝑖, 𝑗) = 1
4π ∫τ𝑖 ∫τ𝑗

1
‖𝑥 − 𝑦‖2

φ𝑖(𝑥)dxφ𝑗(𝑦)dy,

where φ𝑖 and φ𝑗 are polynomials of degree one and τ𝑖 , τ𝑗 are triangular elements from the discretization
mesh.
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The following figure shows the approximation error and execution time to form the hierarchical
matrix corresponding to A, where the admissible blocks are approximated by low-rank matrices cre-
ated with ACAp and CUR_GCS. We can confirm the linear behavior of the computational cost of our
algorithm CUR_GCS as presented in the theory. We can clearly see the tradeoff between amount of
computation and accuracy. For the experiment, we have used C++ libraries HTool1 and BemTool2. We
have run the experiment using 4 MPI processes on a MacBook Pro with 4 cores and frequency of 2.5
GHz.
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Figure 6.16: Comparison of the execution time and absolute approximation error between ACAp and
CUR_GCS .

From Figure 6.16, we clearly see the improvement in the approximation error when using CUR_GCS
with respect to ACAp, at the expense of performing more arithmetics. We believe that for large scale
matrices, an optimized parallel implementation of CUR_GCS (or another CUR created with geometric
sampling) would be faster and more accurate than current parallel implementations of ACAp, see e.g.
[Beb08, Sec. 3.4.6]. This is because CUR_GCS depends on QR truncated factorizations that can be com-
puted with small communication cost, see e.g. our algorithm CALRQR in appendix A.1. And commu-
nication between processors is known to be a bottleneck for large scale problems running on computer
clusters, and optimizing communication leads to considerable speed-ups [DGHL08, DGHL12].

6.5 Conclusions of the chapter
We have presented a technique called geometric sampling to construct linear-time CUR algorithms
for admissible blocks of a hierarchical matrix coming from the discretization of a BEM problem. We
have presented a relative error bound for geometric column sampling, which we then extended to a
bound for a CUR approximation. Also, this bound can directly be used for truncated QR factorizations,
interpolative decompositions and other methods that involve the selection of representative columns.
Numerical experiments showed good performance for different integral kernels evaluated on challeng-
ing domains. We compared two CUR algorithms created with geometric sampling against ACA with
partial pivoting technique. The results showed that our main algorithm CUR_GCS is very efficient and
even can handle convergence issues of ACA with partial pivoting, having accuracy comparable with
quadratic cost algorithms QRCP and ACA with full pivoting.

1Developed by Pierre Marchand, https://github.com/PierreMarchand20/htool
2Developed by Xavier Claeys, https://github.com/xclaeys/BemTool



CHAPTER7

Conclusion

In this thesis, we have first contributed to the development of the local multi-trace formulation, we
have obtained a closed form for the inverse of the local multi-trace operator of a model transmission
problem and shown that this inverse operator can be used for preconditioning a general transmission
problem. Then, we have proven that the local multi-trace formulation is stable for Maxwell equations
on a model domain, which was an open question in the literature.

Then, we have extended the literature on classical low-rank approximations for general rectangu-
lar matrices. For approximations based on QR factorizations, we have proven a new bound for the
classical column pivoting technique and for the case where an arbitrary pivoting strategy is used. For
approximations based on subspace iteration, we have proven that the approximations of singular vec-
tors converge exponentially. And then, we have presented affine low-rank approximation techniques
to increase the accuracy of QR and subspace iteration algorithms.

To relate both parts of this thesis, we have presented a methodology based on hierarchical matri-
ces and generalized CUR approximations for accelerating the solution of linear systems arising from
the discretization of boundary integral equations. We have introduced the concept of geometric sam-
pling that in linear time allows to obtain an accurate low-rank CUR approximation that can be used
for compression and matrix-vector product acceleration. Our general bound on the error of geometric
sampling, allows to use this technique for pivoted QR factorizations and interpolative decomposition
methods, allowing to reduce their computational cost with provable convergence.

Open questions and future work

• An open question for MTF is if these formulations can be extended by using other transmission
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conditions, in the sense of optimal Schwarz iterations.

• For local multi-trace formulations, it is an open question to find closed form inverses for more
general situations and explore its performance in other engineering and mathematical fields.

• The stability of the local multi-trace formulation for arbitrary Lipschitz domains with junction
points is also an open question.

• For geometric sampling, it remains as an open research topic to evaluate its efficiency on unsuper-
vised feature selection strategies for matrices that not necessarily have exponentially decreasing
singular values, such as non-admissible blocks of hierarchical matrices.

• The development of geometric sampling techniques to deal with highly oscillatory kernels is
an interesting research topic, where more sophisticated geometric properties of the surfaces,
containing source and target points, need to be explored.
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APPENDIXA

CALRQR: Communication avoiding low-rank
QR approximation

In this supplemental chapter, we present a parallel algorithm called CALRQR which was developed
during the first year of this thesis, it is based on QR approximations described in Chapter 4.

Our interest in communication avoiding algorithms is based on the fact that the performance of
QR factorizations is highly impacted by the amount of communication performed during its execution,
where communication refers to both data transferred between different levels of the memory hierarchy
of a processor and data transferred between different processors of a parallel computer. In this con-
text, our algorithm CALRQR can perform a low-rank approximation of a dense and sparse matrix with
small communication cost compared to standard algorithms. The methodologies on which CALRQR is
based are derived from the communication avoiding pivoted QR factorization CARRQR algorithm from
[DGGX15].

We structure this short chapter into two sections, in the first section we present two algorithms
that will allow to develop an optimal communication framework. Then, in the last section we present
experimental results to evaluate the scalability and performance of our algorithm to produce a low-rank
QR approximation. In particular, we compare CALRQR with a modified version of the pdgeqp routine
from ScaLAPACK [BCC+97], which we refer to as pdgekqp, we made this adaptation since ScaLAPACK
does not provide a truncated QR factorization. The experiments show good performance of CALRQR
in terms of approximation error and scalability.
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A.1 Communication avoiding algorithm low-rank QR
We build our algorithm CALRQR using a combination of two fundamental techniques, the first one is
the algorithm TSQR which computes a communication avoiding QR factorization of a tall-and-skinny
matrix. And the second one, is tournament pivoting, which enables communication between processors
with small volume of communication and number of messages.

A.1.1 TSQR: Tall-Skinny QR factorization
In many applications we deal with matrices A ∈ ℝ𝑚×𝑛 with 𝑚 ≫ 𝑛, the Tall Skinny QR (TSQR) algo-
rithm is very well suited for such case. It was introduced in [DGHL08] and its design allows to factorize
these kind of matrices in a one-dimensional (1-D) block cyclic row layout, and is optimized in the sense
that it attains lower bounds for the communication cost up to polylogarithmic factors.

Considering P processors, and assuming that𝑚/P ≥ 𝑛, Table A.1 shows the cost in arithmetic opera-
tions and volume of communication for TSQR and for its equivalent routine pdgeqrf from ScaLAPACK.
Note that the communication cost of the pdgeqrf routine depends on the dimensions of the matrix,
and then it becomes a more important drawback when dealing with large scale matrices.

Table A.1: Performance models of parallel TSQR and ScaLAPACK’s parallel QR factorization
PDGEQRF on a 𝑚 × 𝑛 matrix with P processors, along with lower bounds on the number of flops,

words, and messages [DGHL08].

TSQR PDGEQRF Lower bound

# flops 2𝑚𝑛2
P + 2

3𝑛
3 log2 P

2𝑚𝑛2
P − 2𝑛3

3P 𝒪(𝑚𝑛2
P )

# words 𝑛2
2 log2 P

𝑛2
2 log2 P

𝑛2
2 log2 P

# messages log2 P 2𝑛 log2 P log2 P

Remark A.1. The parallel TSQR algorithm is described in [DGHL08, Alg. 3], it requires a routine for
computing local QR factorizations, for our implementation of TSQR we consider two cases,

• For dense matrices, we have implemented a truncated version of the classical truncated pivoted
QR algorithm [GVL96, Alg. 5.4.1], by modifying the routine dgeqp3 from LAPACK [ABB+99],
which obtains a full QR matrix factorization. We refer to this modifications as dgekqp3.

• For sparse matrices, we use the routine SuiteSparseQR from SuiteSparse [Dav08] to compute
local QR factorizations needed by TSQR.

For both cases, TSQR returns the Q and R factors and a permutation vector.

A.1.2 Tournament pivoting
Tournament pivoting is a pivoting technique that performs a reduction operation on blocks of columns
of a matrix to identify 𝑏 pivot columns. Recently, tournament pivoting was used to construct a com-
munication avoiding rank revealing factorization, the theory and algorithm are very well explained in
[DGHL08] and [DGGX15].
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To illustrate how tournament pivoting works, let us consider an𝑚×𝑛matrix distributed block cycli-
cally on a grid of P = P𝑟 ×P𝑐 processors using blocks of size 𝑏. Two reduction trees are constructed, one
for a local reduction (without communication) and the other for a global reduction (with communica-
tion between processors). We consider binary reduction trees (trees of types other than binary often
result in better reduction performance, depending on the architecture, see e.g. [BDHO11]).

The local reduction tree has depth log2(𝑛/(𝑏P𝑐)), at each node a QR factorization is performed on
blocks of size𝑚×2𝑏, using TSQR algorithm [DGHL08, Alg. 3]. Next a rank revealing QR factorization is
performed on the small upper triangular factor R to obtain a permutation that gives the final 𝑏 columns.
The global reduction tree has depth log2(P𝑐) and proceeds analogously as the local tree, but the𝑚×2𝑏 is
formed by the 𝑏 selected columns from 2 different processors, hence communication is required. Figure
A.1 illustrates the reduction scheme for 𝑏 = 1 and P𝑐 = 3.

Figure A.1: Illustration of the tournament pivoting scheme on an 𝑚-by-10 matrix using 3 processors. The red
and blue nodes correspond to reduction trees inside each processor and inter-processors respectively. There are
only two inter-processors messages, this number of messages (two) is independent of the number of columns

and it is obviously optimal.

The cost of a QR factorization with tournament pivoting is presented in table A.2. Note that these
costs are reported for the case where the tournament pivoting algorithm from [DGHL08] is performed
as an all-reduction operation, i.e. all processors participate at all the stages of the reduction and the final
result is available on all processors.

Table A.2: Performance model of parallel all-reduction tournament pivoting to compute a full QR
factorization [DGGX15].

# flops 4𝑚𝑛2−4𝑛3/3
P + 8𝑛2𝑏

3P𝑐
(log2 P𝑟 + 2) + 𝒪(𝑚𝑛)

# words 𝑛2
P𝑐

log2 P𝑟 +
𝑚𝑛−𝑛2/2

P𝑟
(𝑙𝑜𝑔2P𝑐 + 1)

# messages 𝑛2
2𝑏2P𝑐

log2 P𝑟 +
𝑛
𝑏 log2 P𝑐(𝑙𝑜𝑔2P𝑟 + 1)

Since we are interested in obtaining a truncated QR factorization, in order to use it to derive a low-
rank approximation as explained in §4.3, we only need tournament pivoting to select 𝑏 pivot columns
and then the truncated QR factorization easily follows since we get the orthogonal basis of the selected
columns, matrix Q of size 𝑚 × 𝑏, and then the rank-𝑏 QR approximation is given as

A ≈ ξ𝑏 ∶= QQTA. (A.1.1)
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The following algorithm named QRTP obtains the selected columns, note that Q is know implicitly
when computing tournament pivoting with TSQR, see [DGHL08, DGGX15] for details.

Data: A: the local matrix to factorize of size 𝑚 × 𝑛, 𝑏: the column panel size
Result: The QR factor and permutation vector of a selected group of 2𝑏 columns

1 A1 = A(∶, 𝑏) ;
2 for 𝑖 = 1 to 𝑛/𝑏 do
3 A2 = A(∶, 𝑖 ∗ 𝑏 + 1 ∶ (𝑖 + 1) ∗ 𝑏) ;
4 [Q, R, 𝑝] = TSQR([A1, A2]) ;
5 A1 = [A1, A2](∶, 𝑝) ;
6 A1 = A1(∶, 1 ∶ 𝑏) ;
7 end
8 while 𝑚𝑦R𝑎𝑛𝑘 ∈ W𝑜𝑟𝑘𝑒𝑟𝑠 do
9 if 𝑚𝑦R𝑎𝑛𝑘 ∈ S𝑒𝑛𝑑𝑒𝑟𝑠 then
10 Send A1 ;
11 else
12 Receive A2 ;
13 [Q, R, 𝑝] = TSQR([A1, A2]) ;
14 A1 = [A1, A2](∶, 𝑝) ;
15 A1 = A1(∶, 1 ∶ 𝑏) ;
16 end
17 Update(myRank)
18 end
19 Return [Q, R, 𝑝] ;

Algorithm 5: Tournament pivoting, QRTP

In Table A.3, we write the performance model of Algorithm 5. This will be useful for writing the
performance model of CALRQR algorithm.

Table A.3: Performance model of parallel tournament pivoting performed as a reduction operation to
select 𝑏 pivot columns.

# flops 8𝑚𝑛𝑏
P + 8𝑚𝑏2

P𝑟
(log2 P𝑐 − 1) + 16𝑛𝑏2

P𝑐
(log2 P𝑟 − 1)

# words
2𝑚𝑏 log2 P𝑐

P𝑟
+ 2𝑛𝑏 log2 P𝑟

P𝑐
# messages log2 P𝑟 log2 P𝑐

A.1.3 CALRQR: Communication avoiding low-rank QR factorization
Using TSQR and tournament pivoting, we construct CALRQR to produce a low-rank QR factorization.
Algorithm CALRQR is implemented considering that the matrix can be distributed block cyclically on a
two-dimensional grid of P = P𝑟 ×P𝑐 processors such that the local part of the matrix in a local processor
fits in its fast memory. Then the 𝑏 column candidates are selected by computing the first 𝑏 steps of
QRCP.

Algorithm 6 describes CALRQR. For the sake of simplicity, we assume that P𝑐 , P𝑟 , 𝑛 and 𝑏 are pow-
ers of two, CALRQR performs a local flat tree to select 𝑏 candidate columns and a global binary tree to
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obtain the final 𝑏 selected columns.

Data: A: matrix of size 𝑚 × 𝑛 to be approximated, 𝑏: the rank of approximation
Result: Factors of a truncated rank-𝑏 QR approximation of A using tournament pivoting.

1 Π ∶= I; Q ∶= I ;
2 Distribute the matrix A block cyclically over P = P𝑟 × P𝑐 processors using blocks of size 𝑏 ;
3 𝒫𝑗 ∶= processors in the same column of processors led by processor P𝑗 ;
4 A𝑗 := panel that lies on processors of 𝒫𝑗 ;
5 N𝑏 = 𝑛/P𝑐/𝑏 ;

/* Perform the local flat tree */
6 𝑝 = 1 ∶ 2𝑏 ;
7 for 𝑗 = 2 → N𝑏 do
8 [Q,R,ΠTP] = QRTP(A𝑗(∶, 𝑝),b) ;
9 𝑝 = [ΠTP, 2𝑗 + 1 ∶ 2(𝑗 + 1)] ;

10 end
11 A𝑤 = A(∶, ΠTP(1 ∶ 𝑏)) ;

/* Perform the global binary tree */
12 for 𝑘 = 1 → log(P𝑐) do
13 Define a communication pattern splitting between sending and receiving processors ;
14 if P𝑘 is a sender processor then
15 sends the local part of the selected columns of A𝑤 to processors in the same row of the

grid ;
16 else
17 A𝑤𝑟 ∶= Received selected columns ;
18 A𝑏 = [A𝑤 , A𝑤𝑟 ] ;
19 [Q,R,𝑝] = QRTP(A𝑏 ,b) ;
20 A𝑤 = A𝑏(∶, 𝑝) ;
21 end
22 end

/* Getting QR factors */
23 Q = Q(∶, 1 ∶ 𝑘) ;
24 Update R12 considering only the non-pivot columns;
25 R11 = triu(A𝑤); /* upper triangular part of A𝑤 */
26 R = [R11, R12] ;
27 Return [Q, R] ;
28 Verify A ≈ QR ;

Algorithm 6: Communication avoiding Low-Rank QR, CALRQR

Essentially, the cost of CALRQR is the sum of the cost of performing tournament pivoting plus the
cost of computing the low-rank QR matrix in (A.1.1). In Table A.4 we detail these costs.
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Table A.4: Performance models of the two versions of CALRQR on a rectangular 𝑚 × 𝑛 matrix with P
processors, considering the rank of the matrix equal to b. “TP” stands for tournament pivoting.

CALRQR2D = TP + TSQR

# flops 12𝑚𝑛𝑏
P + 8𝑚𝑏2

P𝑟
(log2 P𝑐 − 1) + 16𝑛𝑏2

P𝑐
(log2 P𝑟 − 1)

# words
2𝑚𝑏 log2 P𝑐

P𝑟
+ 4𝑛𝑏 log2 P𝑟

P𝑐
# messages log2 P𝑟 log2 P𝑐

A.2 Numerical Results
For the numerical tests, we have used the machine MESU from Sorbonne University in Paris. This
machine runs on Linux and has 28 nodes, each node is equipped with a socket having 24 cores based
on “Intel Xeon E5-2670”, and each core has a frequency of 2.6GHz. We assign one MPI task per core.

We first analyze the approximation error, for which we use some matrices from Table 5.1, we con-
struct these square matrices of size 𝑛 = 4096. Figure A.2 shows the normalized error for a rank 𝑘 = 32
approximation computed with CALRQR and PDGEKQP. We see that our accuracy is comparable with
this state-of-the-art algorithm and in some cases we improve its accuracy.

Figure A.2: Error of approximation for PDGEKQP and CALRQR normalized with respect to the
truncated SVD error.

We test the scalability of our algorithms using a a set of square sparse matrices of size 𝑛 × 𝑛 taken
from the University of Florida sparse matrix collection [DY11]. The results are shown in Figure A.3
for the set of matrices presented in the following table, where we show their number of rows (nrows),
columns (ncols), and number of non-zero entries (nnz). Table A.5 also presents the run-time for ob-
taining a rank-256 QR truncated factorization using different number of MPI processes on the machine
previously described.
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Table A.5: Time, in seconds, to obtain a rank-256 QR truncated factorization of a set of large matrices
taken from the University of Florida sparse matrix collection [DY11].

Matrix Dimensions Number of MPI processes
nrows ncols nnz 32 64 128 256 512

parabolic_fem 525825 525825 3674625 57.66 44.0 25.7 12.4 6.9
mac_econ_fwd500 206500 206500 1273389 94.0 55.1 28.2 13.1 7.2

atmosmodd 1270432 1270432 8814880 370.3 203.3 150.1 86.0 44.0
circuit5M_dc 3523317 3523317 19194193 916.0 465.9 245.4 143.1 80.7

32 64 128 256 512

Number of MPI processors
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Figure A.3: Scalability of CALRQR algorithm for large matrices, runtime measured assigning one MPI
task per core up to 512 cores.



APPENDIXB

Extra proofs and algorithms

B.1 Best Fitting Line Analysis
In this section we analyze the relationship of the best fitting line associated with the columns of a
matrix with respect of the singular triplets of the matrix and its covariance matrix, This analysis is
more general than the one made for the total least-square problem in [MVH07, Thm. 5]. Let A ∈ ℝ𝑚×𝑛,
we use the notation A ∶= [𝑎𝑗], where 𝑎𝑗 is its 𝑗-th column. By considering the vectors 𝑎𝑗 as points on
the space ℝ𝑚, we are interested in the problem of finding the line that fits the best to all these points,
we write this line as

ℒA(τ) = 𝑤 + τ𝑢, ∀τ ∈ ℝ, (B.1.1)

where 𝑤, 𝑢 ∈ ℝ𝑚 and 𝑢 is unitary.

In order to find ℒA, let us write the 𝑛 points as 𝑎𝑗 = 𝑤 + ρ𝑗𝑢 + δ𝑗𝑢⟂𝑗 , where ρ𝑗 = 𝑢T(𝑎𝑗 − 𝑣) and
𝑢⟂𝑗 is a unit vector perpendicular to 𝑢 with an appropriate coefficient δ𝑗 . Also define 𝑦𝑗 ∶= 𝑎𝑗 − 𝑤 and
its corresponding matrix Y ∶= [𝑦𝑗] ∈ ℝ𝑚×𝑛.

Next, we write the error as a functional, depending on𝑤 and 𝑢, which measures sum of the squared
distances from 𝑎𝑗 to ℒA, for all 𝑗 = 1, ⋯ , 𝑛. This is,

E(𝑤, 𝑢) =
𝑛
∑
𝑗=1

δ2𝑗 =
𝑛
∑
𝑗=1

‖𝑦𝑗 − ρ𝑗𝑢‖22 =
𝑛
∑
𝑗=1

𝑦T𝑗 (I𝑚 − 𝑢𝑢T)𝑦𝑗 . (B.1.2)
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Existence of the solution
Fist, to find 𝑢 that minimizes E, let us rewrite (B.1.2) as

E(𝑤, 𝑢) = 𝑢𝑡
𝑛
∑
𝑗=1

((𝑦𝑡𝑗𝑦𝑗)I𝑚 − 𝑦𝑗𝑦T𝑗 )
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

X

𝑢. (B.1.3)

Then, it is clear that E attains its minimumwhen 𝑢 corresponds to the eigenvector associated to the
smallest eigenvalue of X or, equivalently, to the greatest eigenvalue of C ∶= ∑𝑛

𝑗=1 𝑦𝑗𝑦T𝑗 = YYT ∈ ℝ𝑚×𝑚.
Hence, the first singular vector of Y is a solution for 𝑢, this is

𝑢 = 𝑢1(Y). (B.1.4)

Next, in order to find 𝑤 , simply set the derivative of E with respect to 𝑤 equal to zero, this is

∂E
∂𝑤 = −2(I𝑚 − 𝑢𝑢T)(

𝑛
∑
𝑗=1

𝑦𝑗) = 0, (B.1.5)

where the equality trivially holds when ∑𝑛
𝑗=1 𝑦𝑗 = 0, or equivalently when

𝑤 = 1
𝑛

𝑛
∑
𝑗=1

𝑎𝑗 =∶ 𝑔, (B.1.6)

where 𝑔 is known as the gravity center of matrix A.

Uniqueness of the solution
Clearly the choice of 𝑤 is not unique, since the pair (𝑤 + θ𝑢, 𝑢), for all θ ∈ ℝ, also defines the same

line ℒA as the pair (𝑤, 𝑢). Hence, we set 𝑤 = 𝑔.

It is much more interesting to analyze if the solution for 𝑢 is unique. For this case, we have that 𝑢 is
the eigenvector corresponding to the largest eigenvalue of C = YYT, named λ1. Then, E(𝑤, 𝑢) attains a
minimum if and only if 𝑢 = 𝑢1(Y), provided λ1 has algebraic multiplicity equal to 1, since its geometric
multiplicity is also going to be 1 (see e.g. [QSS06, Sec.1] ). Equivalently, the solution 𝑢 = 𝑢1(Y) is unique
provided σ1(Y) ≠ σ2(Y).

B.2 Proof of Lemma 4.1
For ease of notation, let us consider X = R11 and X̃ = X−1. Next, let us rewrite the truncated QR from
(4.3.1) as

AP𝑐 =
𝑘 𝑚 − 𝑘

[ ]𝑚 Q1 Q2

𝑘 𝑛 − 𝑘
[ ]

𝑘 X R12
𝑚 − 𝑘 0 R22

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∶R̃

, (B.2.1)
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where P𝑐 is the permutation matrix obtained from QRCP. Then, we use Gu and Eisenstat’s technique
[GE96, Thm. 3.2] as done for the proof of Theorem 6.2, we define

Z ∶= [αX R22] = [X R12
0 R22] [αI𝑘 −X−1R12

I𝑛−𝑘 ]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=∶W

≡ R̃W, (B.2.2)

where α = σmax(R22)/σmin(X) = ‖R22‖‖X̃‖2. Note that this choice of α ensures that σ𝑘+1(Z) = σ1(R22).
Next, using Theorem 4.2 in (B.2.2) we get σ𝑘+1(Z) ≤ ‖W‖2σ𝑘+1(R̃). And since from (B.2.1) we have that
the singular values of R̃ are equal to those of A, then

‖R22‖2 ≤ ‖W‖2σ𝑘+1(A). (B.2.3)

Hence, it remains to bound ‖W‖2. Our proof goes as follows. We first show that ‖X̃‖F ≤ ρ ̃𝑓 (𝑘), where
ρ ∶= 1

|X(𝑘,𝑘)| and
̃𝑓 is a function to be defined later on. Then, we shall show that ‖W‖22 ≤ ̃𝑓 (𝑘 + 1)(𝑛 − 𝑘).

To bound ‖X̃‖F, we proceed to bound each of its entries. Next, we compare the 𝑖-th row of the
equality XX̃ = I𝑘 , we get |X̃(𝑖, 𝑖)| = | 1

X(𝑖,𝑖) | ≤ ρ, where the right inequality holds by construction of

QRCP. Also,

ℎ
∑
𝑙=𝑖

X(𝑖, 𝑙)X̃(𝑙, ℎ) = 0,

for 𝑘 ≥ ℎ > 𝑖. By using the previous equality, replacing ℎ = 𝑖 + 𝑗, we get that

X̃(𝑖, 𝑖 + 𝑗) = 1
X(𝑖, 𝑖) (−

𝑖+𝑗
∑
𝑙=𝑖+1

X(𝑖, 𝑙)X̃(𝑙, 𝑖 + 𝑗)) , (B.2.4)

for 1 ≤ 𝑗 ≤ 𝑘 − 𝑖.

Next, since |X(𝑖, 𝑖 + 𝑗)| ≤ |X(𝑖, 𝑖)| for all 𝑗 ≥ 1 (by construction of QRCP), we get

|X̃(𝑖, 𝑖 + 𝑗)| ≤
𝑖+𝑗
∑
𝑙=𝑖+1

|X̃(𝑙, 𝑖 + 𝑗)|. (B.2.5)

Next, by recursively applying the previous inequality, we obtain

|X̃(𝑖, 𝑖 + 1)| ≤ 1ρ,
|X̃(𝑖, 𝑖 + 2)| ≤ 2ρ
|X̃(𝑖, 𝑖 + 3)| ≤ 22ρ

⋮
|X̃(𝑖, 𝑖 + 𝑗)| ≤ 2𝑗−1ρ

⋮
|X̃(𝑖, 𝑘)| ≤ 2𝑘−𝑖−1ρ,

since the previous bounds hold for any 1 ≤ 𝑖 ≤ 𝑘, we set 𝑖 = 1 and write
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‖X̃‖2F ≤ 𝑘|X̃(1, 1)|2 + (𝑘 − 1)|X̃(1, 2)|2 + ⋯ + 2|X̃(1, 𝑘 − 1)|2 + |X̃(1, 𝑘)|, (B.2.6)

1
ρ‖X̃‖

2F ≤ 2𝑘 − 1 +
𝑘−1
∑
𝑗=2

4𝑗−1(𝑘 − 𝑗) =∶ ̃𝑓 (𝑘). (B.2.7)

As a second step, let 𝑐 be the 𝑗−th column of matrix Y ∶= X̃R12, then ∀𝑖 = 1, ⋯ , 𝑘, we get

|𝑐(𝑖)| ≤
𝑘
∑
𝑙=𝑖

|X̃(𝑖, 𝑙)||R12(𝑙, 𝑗)| = 1 +
𝑘−𝑖
∑
ℎ=1

2ℎ−1ρ |R12(𝑖 + ℎ, 𝑗)|, (B.2.8)

since |R12(𝑖 + ℎ, 𝑗)| ≤ 1/ρ (by QRCP algorithm). Then,

|Y(𝑖, 𝑗)| = |𝑐(𝑖)| ≤ 2𝑘−𝑖 , and ‖Y(∶, 𝑗)‖2F =
𝑘
∑
𝑖=1

4𝑘−𝑖 , (B.2.9)

this result coincides with a previous bound found in [GE96, Thm. 7.2].

Next, let us bound ‖W‖2, note that

‖W‖22 ≤ 1 + ‖Y‖2F + ‖X̃‖2F‖R22‖2F = 1 +
𝑛−𝑘
∑
𝑗=1

(‖Y(∶, 𝑗)‖22 + ρ ̃𝑓 (𝑘)‖R22(∶, 𝑗)‖2F) . (B.2.10)

Since QRCP also ensures that ‖R22(∶, 𝑗)‖F ≤ 1/ρ and replacing (B.2.9) in (B.2.10), we get

‖W‖22 ≤ (𝑛 − 𝑘) ̃𝑓 (𝑘 + 1), (B.2.11)

Finally, replacing (B.2.11) in (B.2.3), we get the bound

‖R22‖2 ≤ ‖W‖2σ𝑘+1(A) = √ ̃𝑓 (𝑘 + 1)(𝑛 − 𝑘)σ𝑘+1(A). (B.2.12)
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Figure B.1: Ratio of classical bound BG for QRCP (see Table 4.1) to the new bound BA from Lemma 4.1.
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B.3 Algorithms

B.3.1 CUR via Geometric sampling

We present a MATLAB code for Algorithm 4.

1 %% CUR approximation with Gravity points criterion
2 % Requires:
3 % X,Y: Source and target points, given as matrices of size (mxd) and (nxd)
4 % respectively, where d is the geometric dimension
5 % k: fixed approximation rank.
6 % fun: kernel function, e.g. Laplacian kernel: fun = @(x,y) −1/(2∗pi)∗log(norm(x−y);
7 % Exponential kernel: fun = @(x,y) exp(1i∗norm(x−y))/norm(x−y);
8 % Gravitation kernel: fun = @(x,y) 1/(4∗pi∗norm(x−y));
9 % Returns:

10 % CUR: a rank−k approximation of matrix A(i,j)=fun(X(i,:),Y(j,:)).
11 % A \approx CxUxR, where C, R, U are complex matrices of size (mxk), (kxn), (kxk)
12
13 function [CUR] = CUR_GCS(fun,X,Y,k)
14
15 m = size(X,1); n = size(Y,1);
16
17 % Finding t: number of sampling columns
18 l = nextpow2(k);
19 % t = pow2(l);
20 if (k > pow2(l−1) && k>2 )
21 t = pow2(l+1);
22 else
23 t = pow2(l);
24 end
25 if (k==1); t = 1; end
26
27 C=zeros(m,t);
28 R=zeros(k,n);
29
30 % Decompose target domain into t subdomains
31 [J] = GC_Sampling(Y,t);
32 % [J] = NN_Sampling(Y,X,t); % Alternatively use Nearest−Neighbors sampling
33
34 % Form matrix C of sampling columns, C is of size mxt
35 for i=1:size(X,1)
36 for j=1:t
37 C(i, j) = fun(X(i ,:) ,Y(J(j) ,:) ) ;
38 end
39 end
40
41 [Q,~,p_c]=qr(C,'vector');
42 Q=Q(:,1:k);
43 C=C(:,p_c(1:k));
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44
45 % Get column indices
46 [~,~, p_r]=qr(Q.','vector') ;
47 I=p_r(1:k);
48
49 % Form Matrix R
50 for i=1:k
51 for j=1:size(Y,1)
52 R(i, j) = fun(X(I(i) ,:) ,Y(j ,:) ) ;
53 end
54 end
55
56 % Construct the CUR rank−k approximation
57 G=C(I,:);
58 CUR=C∗(G\R); % Use Algorithm 3 for computing this skeleton approximation in order to

better handle and control the selected indices
59
60 return

B.3.2 Selecting columns using Gravity centers
The following algorithm presents a technique to decompose the target domain into 𝑡 subdomains, in
which we select a target point as the one closest to its gravity center, see Figure 6.2b. Partition is made
by calling function BinaryPartition, which is an approach known as geometrically balanced clustering,
c.f. [Bör10, Alg.2], [Beb08, Sec.1.4.1]. Such partition is generated by using a binary tree in which every
non-leaf node, 𝒯 ∶= {𝑦1, ⋯ , 𝑦ℎ} ⊂ Y with gravity center g ∈ ℝ3, has two sons corresponding to disjoint
sets of pints separated by the plane orthogonal to the line having direction given as the first left singular
vector of matrix T ∶= [𝑦1, ⋯ , 𝑦ℎ] − g ∈ ℝ3×𝑟 , and intersecting it at g. The following algorithm, based
on a binary tree structure, costs O(𝑛 log2(𝑡)) floating point operations.

1 %% Select target points using geometrically balanced partition
2 % Require:
3 % Y: set of n target points, Y is an mxd matrix, d: geometric dimension
4 % t: number of subclusters to obtain from Y
5 % Returns:
6 % J: indices of target points closest to the gravity centers of the t subclusters
7
8 function [J] = GC_Sampling(Y,t)
9

10 % Sanity check
11 l = log(t)/log(2) ;
12 if ( floor ( l ) ~= l)
13 error( ' t must be a power of 2!') ;
14 end
15 if (t==1); l=1; end
16
17 % Get 1st generation of sons
18 [G{1},S{1},GGC] = Geo_Bal_Partition(Y);
19 % GGC: index of target point closest to the gravity center of Y
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20
21 % Sons of further generations
22 for i=2:l
23 S{i} = {};
24 G{i} = {};
25 for j = 1:size(S{i−1},2) % number of clusters at previous generation
26 [g,s ] = Geo_Bal_Partition(S{i−1}{j});
27 S{i} = cat(2,S{i},s) ;
28 G{i} = cat(2,G{i},g);
29 end
30 end
31
32 % Getting the indices of target points closest to gravity centers
33 for j=1:size(G{l},2)
34 for i=1:size(Y,1)
35 if (G{l}{j}'==Y(i,:))
36 J(j)=i;
37 end
38 end
39 end
40
41 if (t==1)
42 J=GGC;
43 end
44 end
45
46
47 %% Function Geo_Bal_Partition
48 % Performs geometrically ballanced partition to divide a cluster into two clusters son
49 % Requires:
50 % S_y: cluster of points
51 % Returns:
52 % Son: list of two cluster sons
53 % G: contains the gravity centers of cluster sons
54 % GCC: index of target point closest to the gravity center of S_y
55
56 function [G,Sons,GGC] = Geo_Bal_Partition(S_y)
57
58 [n,~] = size(S_y);
59 g = S_y'∗ones(n,1)/n;
60 Cov = S_y − g';
61 [~,~, v] = svd(Cov); v=v(:,1);
62
63 L = Cov∗v;
64 b_1 = (L>0);
65 b_2 = (L<0);
66 Sons{1} = S_y(b_1,:);
67 Sons{2} = S_y(b_2,:);
68
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69 % Getting the index of target point closest to the gravity center of S_y
70 v = (S_y − g.'); z = zeros(n,1);
71 for i=1:n
72 z( i )=norm(v(i,:));
73 end
74 [~,GGC]=min(z);
75
76 % Getting indices of target points closest to the gravity centers of clusters son
77 for j=1:2
78 n_s = size(Sons{j},1); G{j} = Sons{j}'∗ones(n_s,1)/n_s;
79 v = (Sons{j} − G{j}.');
80 z = zeros(n_s,1);
81 for i=1:n_s
82 z( i )=norm(v(i,:));
83 end
84 [~, f]=min(z);
85 G{j}=Sons{j}(f,:)';
86 end
87 end

B.3.3 Selecting columns using Nearest-Neighbors approach
This approach consists in selecting 𝑡 target points the closest to the set of source points, see Figure
6.2c. Then, indices corresponding to these points are the selected columns to be used to compute a
CUR approximation and we call the resulting algorithm CUR_NNS as mentioned in section 6.3.1.

1 %% Select target points using Nearest−Neighbors
2 % Require:
3 % Y: set of n target points, Y is an mxd matrix, d: geometric dimension
4 % t: number of selected points Y
5 % Returns:
6 % J: indices of target points closest to the source domain
7 function [P] = NN_Sampling(Y,X,t)
8
9 % Finding the distance

10 DX = bsxfun(@minus,Y(:,1),X(:,1)');
11 DY = bsxfun(@minus,Y(:,2),X(:,2)');
12 DZ = bsxfun(@minus,Y(:,3),X(:,3)');
13 D = sqrt(DX.^2+DY.^2+DZ.^2); % The i−th line of D is the distance from
14 % the i−th target point to X
15 d = min(D(:));
16
17 for i=1:size(D,1)
18 [ dist ( i ) ,~] = min(D(i,:));
19 end
20
21 [~,P] = mink(dist,t); % Find t points on Y closest to X
22 end
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Algorithm above costs 𝒪(𝑚𝑛) floating point operations. This non-linear complexity can be re-
duced by using efficient algorithms as the ones presented in [GA01]. In a recent work, March and
Biros [MB17] showed that nearest-neighbors approach works well in practice for matrices created with
kernels depending inversely on the distance of interaction points. However, they did not provide an
explicit bound for the error, which we provide in Theorem 6.2. For higher dimension problems, near-
est neighbors technique is still applicable by applying approximation techniques such as random trees
[DF08].
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