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THÈSETHÈSE
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Étienne SIROT Maitre de conférences Co-directeur de Thèse
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de suivi sur l’Avocette élégante jusqu’à la concrétisation de ce travail. Tout d’abord pour
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Chapter 1. General introduction

1.1 Partial migration

“The ultimate mechanisms that drive individual differences in migratory

tendency remain controversial, and very little empirical work has

considered the potential consequences of partial migration.”

Chapman et al. (2011)

The term “partial migration” comes from the ornithological literature (Lack, 1943). This

phenomenon has long been identified as a widespread feature in migratory birds of the tem-

perate zone (Berthold, 2003); it is shared by a wide range of species from many taxa (e.g.,

invertebrates, fishes, birds, mammals) under most latitudes (except close to the poles), even

in tropical birds (Boyle, 2008). Partial migration is defined as a within-population dimor-

phism in migratory behaviour; some individuals remain at the same place or in a territory

of limited size all year round, whilst other individuals migrate to a different place for part of

the year. While common, this phenomenon is poorly understood. Numerous theoretical and

empirical studies have tried to elucidate the ecological and evolutionary processes explain-

ing the emergence and persistence of partial migration and several hypotheses have been

put forward (reviewed in Chapman et al., 2011). The empirical support for these hypothe-

ses remains limited and controversial, and some fundamental questions remain unanswered:

why are there different migratory phenotypes within a population? How can these pheno-

types persist over time? What are the evolutionary consequences of the persistence of these

phenotypes?

In the current context of threats to biodiversity due to climate change and anthropogenic

damages to habitats (Sutherland et al., 2012), it becomes urgent to answer these questions,

especially to understand how species face these rapid changes. Several processes have already

been identified as responses to recent climate warming, mainly alterations of the migratory

behaviour, range shift toward higher latitude or higher elevations (Chen et al., 2011) and

population redistribution (Maclean et al., 2008). Other important phenomena are the phe-

nological changes, especially in the patterns of date of migration (Miles et al., 2017) and the

shortening of migration distance (Visser et al., 2009). Recent experiments, aimed at testing
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1.1. Partial migration

hypotheses about evolutionary responses to recent climate change; they predict a shift in

migration strategy toward residency (Pulido & Berthold, 2010). Partial migration offers

the opportunity to study the effect of global change on phenotypes at different geographic

and seasonal scales. It is reasonable to hypothesize that each migratory phenotype can be

differently affected by environmental changes, which can have important consequences on

the population dynamics. Indeed, recent studies have provided evidence of differences in

vital rates (reproductive success) in partial migrants strategies (Grist et al., 2017), or among

individuals migrating over different distances (Lok et al., 2017). A fundamental step to in-

vestigate differences between partial migrant phenotypes is to estimate their demographic

rates and fitness.

From an evolutionary viewpoint, the question of the persistence of partial migration, i.e.

the persistence of a polymorphism in a population, can be tackled in the framework of life

history evolution theory. Indeed, each phenotype can be characterized by a combinations of

life-history traits which can be subject to natural selection. The context of selection can be

complex and involves behavioural (e.g., mating system, dispersal), physiology (e.g., senes-

cence, somatic maintenance, immune response) or genetics (e.g., mutations, heritability of

traits, drift). Regardless of the processes involved in the evolution of migratory traits, esti-

mating the overall fitness, or at least fitness components of individuals exhibiting different

life-history traits remains a key point to draw inferences about the evolution of strategies

by natural selection (Stearns, 1976) From this perspective, we need to characterise the main

demographic rates that are responsible for the frequency distribution of the migratory strate-

gies in the population, and their fluctuations.

Theoretical work on partial migration has previously explained its persistence by a

frequency-dependent evolutionary stable state (ESS), where the point at equilibrium cor-

responds to equal fitness (Lundberg, 1987). In this framework, a change in a demographic

rate such as survival must be compensated by a change in another demographic rate such

as reproduction for maintaining equal overall fitness and allowing the persistence of a poly-

morphism in the population. However, recent development showed that the question of the

evolution of partial migration can also be answered by density-dependant selection (Lund-
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Chapter 1. General introduction

berg, 2013). However, very few empirical studies have been able to test these hypotheses,

especially because most theoretical studies assume homogeneity in demographic rates in

populations, or because data well suited for testing such hypotheses are difficult to collect.

The persistence of the polymorphism could also involve a frequency-dependent process re-

lying on a “conditional strategy” (Lundberg, 1988). Under this hypothesis, the individual

migratory strategy is depends on intrinsic (e.g., body condition, disease) and extrinsic fac-

tors (e.g., climate, intra-specific competition). There are more empirical support for this

hypothesis (Sanz-Aguilar et al., 2012). Different migratory strategies are potentially associ-

ated with different vital rates, and different trade-offs between these rates. In this particular

framework, a deeper understanding of the ecological and evolutionary processes modelling

migration strategies requires. The assessment of the demographic rates characterizing each

strategy.

Trade-offs are central to life-history theory (Williams, 1966; Kirkwood, 1977); individ-

uals have to allocate their finite resources between functions. Typically, according to this

“principle of allocation”, investment in current reproduction is assumed, to be traded-off

against investment in future reproduction or survival (Williams, 1966; van Noordwijk &

de Jong, 1986). In the context of migration, empirical studies have provided evidence that

the migration carries costs on survival and reproduction; these costs depend on migration

distance (Lok et al., 2017). Differences in mating and breeding success have been shown in

partial migrants, with a higher success in residents (Adriaensen & Dhondt, 1990). Long-lived

species are considered as “survivor species” (Saether & Bakke, 2000), which suggests that

migration costs are more likely to concern reproduction than survival. In addition, vari-

ability in survival is considered disadvantageous (Gaillard & Yoccoz, 2003). Consequently,

we expect reproduction to be more affected than survival by migration and to exhibit more

temporal variability (Saether & Bakke, 2000; Gaillard & Yoccoz, 2003). This would be

consistent with a recent experimental study, in a long-live species that provided evidence

that survival and offspring quality can be maintained through condition-dependant repro-

ductive allocation (Griesser et al., 2017). Reproductive traits that can be concerned by

migration costs are recruitment age, brood size, cumulative investment in reproduction or

4



1.1. Partial migration

Lifetime Reproductive Success (LRS). Among them, reproductive efforts had received a

particular attention (Stearns, 1992). However, detecting reproductive cost using observa-

tional data is known to be particularly difficult, and some experimental studies have been

criticized (Reznick, Bryga & Endler, 1990). Recent approaches, based on phenotypic ma-

nipulations of brood size in natura have shown that there are direct and delayed costs of

reproduction (Hanssen et al., 2005). In the latter study, direct costs of incubating large

clutches were a higher mass loss and a decrease in the immune function, while delayed cost

was a reduction in fecundity the following year. Moreover, a number of long-term empirical

studies have documented a positive correlation between survival and reproduction in differ-

ent taxa (Cam et al., 2002; Beauplet et al., 2006; Weladji et al., 2008; Hamel et al., 2009;

Cam et al., 2013). These results do not refute the hypothesis of costs, but they highlight

the need for carefully designed analyses that allow addressing costs within homogeneous

classes of individuals (van Noordwijk & de Jong, 1986). Assessing potential costs of migra-

tion on reproduction and costs of reproduction over time requires a demographic approach

to estimate strategy-dependant reproductive performances, while accounting for the effect

of age and reproductive states (where “state” is assumed to correspond to different levels of

investment, such as breeding failure versus successful reproduction).

Another important life-history phenomenon whose evolution is assumed to involve trade-

offs among traits is senescence. Senescence is characterized by a decrease in reproductive

performances or in survival probability with age, and is widespread in wildlife (reviewed in

Nussey et al., 2013; Jones et al., 2014). Costs of reproduction are the basis of one of the

hypotheses put forward to explain variation in the onset of senescence in populations; if

migration carries costs on reproduction, the migration strategy can also be associated with

variation in the onset of senescence. Assessing the onset of senescence in vital rates accord-

ing to reproductive or migratory strategy is an important way of characterising life-histories

specificities. There are at least three theories of ageing. The “mutation accumulation” the-

ory is based on the idea of accumulation of germ-line deleterious mutations whose effects

appear late in life, and that are not “selected against” because detrimental effects appear

when selection pressures are weak (Medawar, 1952; Edney & Gill, 1968). As the efficiency
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of natural selection to eliminate these alleles is poor, we can expect a high heterogeneity in

these deleterious alleles among individuals. This suggests that it is important to account

for individual heterogeneity in demographic parameters to address senescence (Aubry et al.,

2011). The second theory, “antagonistic pleiotropy” involves pleiotropic genes, which have

a positive effect on the phenotype at early life, and a negative effect at later age (Williams,

1957). This results in a life-history trade-off between early advantages and costs later in

life. The third theory, the “disposable soma” is also based on a trade-off, but specifically

between resources allocation for somatic maintenance and reproductive functions. This the-

ory predicts that early investment in reproduction will carry cots expressed by an earlier

onset of senescence (Kirkwood, 1977; Kirkwood & Austad, 2000). The two latter lead to

similar expected pattern of variation in reproductive performance over reproductive life, but

the former rests on genetic mechanisms, while the latter rests on trade-off between energy

allocation to maintenance and repair mechanisms. The hypotheses that migration can af-

fect reproductive success (Adriaensen & Dhondt, 1990) and that migration strategies are

associated with different reproductive costs suggest that these strategies can be associated

with different aging patterns. This pleads for the assessment of age-dependant demographic

rates. There are increasing evidences of the effect of early investment in reproduction and

earlier ageing in life (Charmantier et al., 2006).

The estimation of demographic rates and ultimately of the individual fitness remains the

key for understanding the evolution of partial migration. The description of migration strate-

gies involves determining whether individuals always adopt the same strategy during their

life, which can be achieved by estimating transition probabilities between yearly “states”,

where state is the wintering destination (either in the vicinity of breeding grounds, or not).

Such an approach is also useful to address temporal changes in the frequency of strategies in

populations. Estimated demographic parameters (age-specific breeding and survival prob-

abilities) are required to understand the dynamics of each migratory strategy. Migratory

phenotypes can be characterised by their main vital rates: survival, fecundity, recruitment

age or composite measures such as LRS. These demographic rates can also help to disentan-

gle the trade-offs between early and late performances (e.g., growth, somatic maintenance,
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survival, reproduction).

1.2 The case of Pied Avocet

The Pied Avocet is a long-lived shorebird that has been relatively little studied but that is

on the forefront of species facing environmental changes due to both climate changes and

direct anthropogenic effects (Sutherland et al., 2012). The species indeed use of natural or

man-made wetland areas during both winter and breeding seasons. After a sharp decline

since the 19th century, the number of Pied Avocet is increasing since the second half of

the 20th century and colonized France mainly in the late 70’s. Shorebirds are amongst

the first species to respond to environmental changes, through processes such as population

redistribution (Maclean et al., 2008).

1.2.1 General description

The Pied Avocet (Recurvirostra avosetta) is a wader with a completely white and black

plumage, weighting between 220 and 400 g. This slender bird is characterised by long blue

legs and especially by a thin long and upcurved black bill (7 - 9 cm). The sexual dimorphism

is weak, the females having a slightly more strongly curved bill than males, but this is nearly

impossible to detect in the field. Distinction between sexes in the field can thus only be

achieved by the observation of the mating ritual, but this event occurs only during a short

period in spring.

There is no subspecies and the distribution covers a wide range in the Palaearctic and

in Africa from Ethiopia to South Africa, but is very patchy everywhere. On the Eastern

part, Pied Avocets are inland birds breeding from central Europe and Turkey to China

(Fig. 1.1). By contrast, in the Western part of the Palaearctic Pied Avocets are mainly

a coastal waders. They distribute from Lithuania to South of Spain during the breeding

season and from South-West of Netherlands to West Africa (Senegal and Guinea-Conakry)

in winter, but a few thousands of Pied Avocet can stay in the Wadden sea region during mild

winters. In the Western Palaearctic, Delany et al (2009) separate two populations: birds
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breeding on the coasts of Western Europe and birds breeding around the Mediterranean Sea

and in South-east Europe. Here we focused on the population of Western Europe estimated

at 73,000 individuals on the basis of midwinter counts in the 90s, and 26,600 pairs (Hötker

& West, 2005).

Pied Avocet is semi-colonial during the breeding season and gregarious during the rest

of the year. The habitat used for feeding by this semi-colonial bird is linked to the particular

shape of its bill and its very special way of feeding. Indeed, Pied Avocets feed on soft, fluid

sediments from which they extract benthic animals, by sweeping or scything movements of

the head (Pierce, Kirwan & Boesman, 2017). During the breeding season, avocets mainly use

saltmarshes on the coasts of the North Sea and the Baltic Sea, and more locally lagoons and

embankments with fresh or brackish water (Hötker & West, 2005). Saltpans and fishponds

are by far the main habitats on the Atlantic coasts of France and Spain (Gélinaud, 2005;

Arroyo & Hortas, 2005). Outside breeding season, Avocets frequent mainly tidal mudflats

in bays and estuaries in North-west Europe and Portugal, saltpans and fishponds on the

Atlantic coast of Spain (Hötker & Dodman, 2009).

The food of Pied Avocet is mainly composed of aquatic and benthic invertebrates. In

winter, the diet in Portugal consisted mostly of several species of worms (Moreira, 1995a,b,c).

During the breeding season, it feeds primarily on insects, small crustaceans et some poly-

chaetes worms (Cramp & Simmons, 1983).

1.2.2 Population dynamics

The Pied Avocet population was at a very low level at the end of the 19th century, mainly

centred along the North Sea (Wadden Sea and Elbe delta). While poorly described, this

situation was mainly explained by shooting, habitat destruction and eggs collecting. As

a testimony, Harting (1874) considered the Pied Avocet as a rare species in England and

claimed that ”It was formerly a regular summer visitant to England; but the general cultiva-

tion of waste lands, and the drainage of extensive pieces of water (the natural consequence

of an increasing population and an improved system of agriculture), have gradually banished

it from its former haunts”. He also reported observations in the Netherlands and pointed
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Figure 1.1: Palaearctic distribution of the Pied Avocet. Data from the IUCN Red
List of Threatened Species: Recurvirostra avosetta, published in 2016 (http://dx.doi.org/
10.2305/IUCN.UK.2016-3.RLTS.T22693712A86539838.en).

out that ”the veto which is placed upon shooting during the nesting season in that country

enables it to rear its young in many places with more or less freedom from molestation”.

This article probably summarized the main damages done to this species, which are all

anthropogenic.
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Figure 1.2: Distribution and flyways of the European population of Pied Avocet.
Figure from Hötker & Dodman (2009).

The population growth started probably during the first half of 20th century in the
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core area, the Wadden sea are, where the species never went extinct, and probably reached

the carrying capacity there in the late 80s. The expansion began in the early 20th cen-

tury in Sweden (1927) but mostly took place in the second half of the century (Hötker &

West, 2005). Hence, the recolonization of the breeding population successively concerned

Italy (1940), England (1947) and France (1952). At this time and until the late 1980s the

growth of the population was exponential, with an annual rate of increase of 26% in France

during the 1970s for example (Gélinaud, 2005). At the present time, the estimates of the

European population are 58 400 - 74 300 pairs, corresponding to 117 000-149 000 mature

individuals (Birdlife-International, 2015), but these numbers are subject to caution. More

than 17 000 pairs (Piersma, Ens & Zwarts, 2004) breed along the west cost of Europe, from

Spain to Lithuania (Fig. 1.2); this corresponds to the Western European population. There

are some evidences from resightings of birds colour-ringed in the Wadden sea or in Spain

that dispersed to newly colonized areas, but these data are two scarce to determine whether

these areas served as sources during expansion (Hötker & West, 2005). These authors discuss

several hypotheses that may explain the changes in abundance and distribution during the

20th century in Western Europe, first of all the decrease in hunting and eggs collecting, and

the establishment of reserves in breeding and wintering areas. The increase is also proba-

bly linked to some large scale coastal engineering project, particularly along the North Sea

and the Wadden Sea (Hötker & West, 2005). The long-term climate change may also have

played a role in the population dynamic in Western Europe. Pied Avocet has also probably

benefited from dedicated habitats management on breeding sites (Cadbury & Olney, 1978;

Girard & Yésou, 1989; Castro Nogueira et al., 1996).

1.2.3 Population from Brittany

Apart from the wintering period, Avocet were absent from France in the 19th century and

in the first the half of the 20th century (Gélinaud, 2005). The first breeding record dates

back to 1952 in the Marais d’Olonne in Vendée. The colonization of new French sites mainly

began during the 70s (Fig. 1.3) and the species first bred in Brittany in 1980.

Contrary to the birds of the North of Europe, which use mainly salt marshes for breeding,
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Figure 1.3: Colonization of the French coast. Date are indicated closely to the sites.
The zoom (boxed) corresponds to the breeding colonies in Brittany, studied hereafter. The
main colony is Séné, all others are accessory and temporary colonies.

Pied Avocets from Brittany and, most of the breeders of the French Atlantic coast, breed in

salt ponds (used or disused), i.e. man-made wetlands. All the birds considered in this study

were born in South Brittany (see zoom in Fig. 1.3), i.e. around Morbihan gulf, mainly in the

natural reserve of marais de Séné. Among the 10 sites in Fig. 1.3, Séné is the first colonized

and supports most of the breeding birds. It is a protected area as are Penn en Toul, Lasné

and Le Duer. All the other sites in Fig. 1.3 are temporary or recently colonized sites (due

to management changes for conservation purpose). They are all disused salt ponds. Pied

Avocets use dykes and small muddy islands in these ponds to lay eggs. They generally lay

4 eggs per nest, but can attempt to breed two or three times per breeding season in case

of predation, which is common in all these sites. Both parents share incubation duties for
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the length of the incubation period (23 ± 2 days) (Hötker, 1998b; Lengyel, Kiss & Tracy,

2009; Chokri & Selmi, 2011). They use shallow salt water ponds or lagoons to feed and raise

their chicks. Chicks are precocial and can feed by themselves just after hatching. Parental

care is thus restricted to keeping them warm and dry in the early stages, to protect them

against any threats, and defend a feeding territory, generally until fledging. After fledging

parents and progeny generally separate, it is usual to see post-breeding flocks with groups

of juveniles together with the adults.

After the breeding season, Pied Avocets leave their breeding sites to gather in large flocks

for moulting in bays and estuaries like the Loire estuary in France (generally in August and

September). After this period they slowly begin to join their wintering areas. During Winter,

Pied Avocets from Brittany distribute along a wide coastal range, from England to Senegal.

1.2.4 Monitoring program
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Figure 1.4: Number of pairs and juveniles (counts). Panel A: bars: annual number of
juveniles produced in Brittany; solid line: total number of pairs (counts). Panel B: annual
number of pairs in the two main colonies (Séné and Lasné) and the sum of all other colonies.

In 1996, Guillaume Gélinaud, the current director of the nature reserve of Séné, began a

long-term monitoring program of Pied Avocets breeding locally, based on individual colour
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marks; and extended rapidly to the Morbihan Gulf. Chicks were marked just before fledging

with a unique combination of plastic coloured bands, flags or engraved rings. More than 550

individuals have been ringed since the beginning of the program (Appendix A.3.1, p. 144),

among which 420 in the nature reserve of marais de Séné. At least weekly during the breeding

season, the colony is visited looking for colour-ringed birds: presence, reproductive behaviour

and reproductive success of ringed individuals were recorded, from April to July (Fig. 1.4).

The number of active nests is also recorded weekly and the overall number of breeding pairs

is estimated from counts during the week of laying peak. The number of fledgings was also

recorded yearly. Specific surveys also took place during pre- and post-breeding gatherings

and during winter. The number of colonies in Brittany (Fig. 1.3) has been fluctuating during

the study, with a core colony, the nature reserve of marais de Séné (Fig. 1.4B), from which

individuals dispersed and created new breeding colonies. A second colony appeared (Lasné)

in year 2004, due to the colonization of new managed breeding areas(Fig. 1.4B).

The main wintering sites were surveyed from December to February on the Atlantic

coast of France, but the main wintering sites of migratory birds in Portugal and Andalusia

were also monitored thanks to multiple sampling sessions (13) in the Iberian Peninsula. In

addition, a vast network of volunteers across the range of the Western European population

of Pied Avocets collected capture-recapture (CR) data from ringed birds.

1.3 Objectives of the dissertation

This dissertation is inspired by G. Gélinaud’s hypothesis based on data from wintering Pied

Avocets: the number of Pied Avocets marked in Brittany, and wintering in the Iberian Penin-

sula had been decreasing over time since 1997. This pattern based on raw data could be

misleading because of detectability issues (Williams, Nichols & Conroy, 2002): there was no

guarantee that the birds wintering in the Iberian Peninsula and the others had the same

probability of being detected by observers, neither in the wintering area nor in the breeding

area. However, several studies had provided evidence that migration strategies are currently

changing in other species (destination, distance, frequency of migrants in partial migrant
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species), and that such changes are concomitant with global change (climate change and

changes in habitat availability caused by anthropogenic activities). The starting point of

this dissertation was twofold; question 1: was the proportion of partial migrants declining

after correcting for detectability issues, and question 2: did the two strategies differ in terms

of demographic rates (survival, breeding performance)? The core focus of this dissertation is

on the life-history of individuals adopting a different migration strategy (i.e. wintering in the

South, or nearby the breeding ground in Brittany). Obviously, the aforementioned questions

are also intrinsically linked to the question of the evolution of partial migration: my goal

is also to provide initial answers concerning the persistence of this life history phenomenon.

First, I will describe the wintering strategies in Pied Avocets and their dynamics. I will com-

pare the demographic rates of the two main phenotypes in order to assess migration costs on

survival and reproductive rates. Last, I will assess the demographic trend of the population

born in Brittany and calculate the fitness of the migratory strategies. The dissertation is

based on a 19-year monitoring dataset (CR data) and is composed of three articles which

use three different modelling approaches.

In the first paper we collected the available data concerning the wintering range distribu-

tion (Western European) of this species since 1990. We used the international mid-January

counts of waterbirds from the six concerned European countries to assess the temporal trend

at the country level and we also assessed trends in the North (France, England, Belgium,

the Netherlands) and the South of Europe (Portugal and Andalusia). These geographic lim-

its correspond to a natural discontinuity in the wintering distribution of the Pied Avocets,

between the Gironde estuary, in France, and Aveiro, in Portugal. In order to account for the

temporal autocorrelation in these counts, we developed an autoregressive model for count

data. Understanding the temporal changes in the wintering distribution at the European

scale requires investigating the wintering behaviour and the inter-annual movement of the

individuals inside the range. For this purpose, we used CR data of individually marked

juveniles Pied Avocets born in breeding colonies in Brittany to investigate the wintering

strategies of Pied Avocets and the dynamics of the two strategies. We used a multi-state

approach for open populations and data augmentation to account for unmarked individu-
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als entering in the population. We estimated inter-annual wintering transition probability

between North and South areas, in order to characterise wintering strategies. We also esti-

mated the annual number of individuals in each wintering area. We used model selection to

draw inferences on several biological hypotheses about, the factors affecting survival such as

migration strategies, age, time and latent individual heterogeneity (Aubry et al., 2011). We

also address the effect of various environmental and biological factors (e.g., hatching date,

winter harshness ) on the choice of wintering strategy.

In the second paper, we addressed the demographic consequences of wintering strategies

on reproductive performances. We used a multi-season multi-event model, which allowed es-

timation of transition probabilities between seasonal states while accounting for uncertainty

in breeding state assignment. We defined three breeding states (non-breeder, unsuccessful

breeder, i.e. breeders which did not succeed to breed juveniles until fledging, and successful

breeder) for philopatric and emigrant individuals and two wintering states (resident and mi-

grant). This seasonal approach also allowed us to estimate seasonal survival probabilities.

We discussed the effect of wintering strategy on recruitment age, and on breeding perfor-

mance. As a measure of breeding investment we used the annual cumulative number of

breeding attempts (cumulative reproductive investment at age a: CRI). As different recruit-

ment strategies (early or delayed) could lead to divergent long-life reproductive trajectories

(sequences of breeding states) and different senescence patterns, we compared the seasonal

survival rates and CRI at different recruitment ages. We then investigate slope of CRI for

different recruitment ages and according to wintering strategy. The onset of senescence was

also investigated on the light of the recruitment ages and the wintering strategies.

In the third paper we addressed the question whether the overall fitness values of the

two wintering strategies differed. We used an integrated population model (IPM), which is

designed to estimate a typically unobservable quantity: immigration probability (in most

study systems, immigrants are not marked and cannot be identified as such in the breeding

area). We also assessed emigration (breeding dispersal) by modelling CR data in a multistate

way, whose transitions corresponded to inter-annual probability of breeding inside or outside

Brittany. Indeed, to assess the dynamics of each strategy using temporal changes in the
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proportions of individuals adopting one or the other, we need to account for unobservable

components directly affecting the abundance of each strategy, such as immigration. This

approach allowed us to assess the “true” temporal population size and trend by estimating

three joint likelihoods from three data types: annual pair counts, annual productivity and CR

data. We used this approach to obtain robust estimates of fundamental annual demographic

rates such as juvenile survival, fecundity, juvenile age-specific recruitment probability, emi-

gration and immigration probabilities. We estimated the individual overall fitness using the

population or sub-population growth rate (Charlesworth, 1994) and we addressed the effect

of immigration and emigration on fitness. Last, we addressed the regulation processes of

the population and the persistence of partial migration by assessing post-hoc correlations

between population growth rate or population size and the distributions of the demographic

parameters.
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2.1 Abstract

Recent changes observed in range or frequency distribution in wintering populations of mi-

gratory bird species are generally attributed to global changes (milder winters) but they are

still poorly understood. Studying life history traits of partially migrant species is central to

understand underlying processes that drive distributional changes.

Identifying demographic dynamics specific to different wintering strategies in a popula-

tion, and their environmental causes, requires the analysis of changes in phenotype frequen-

cies. The individual scale is the finest and most relevant. The West Palaearctic population

of Pied Avocet (Recurvirostra avosetta) is a suitable model that currently experiences a dra-

matic decrease in the South of its wintering area in Europe and an increase northward. As

most shorebirds, this species is exposed to substantial and rapid environmental changes.

We used an open-population capture-mark-recapture model and simultaneously esti-

mated survival, transition probabilities between wintering sites, fidelity to wintering area

and population dynamics parameters for two phenotypes: North versus South wintering

birds. We analysed 19 years of data from a French breeding population marked in Brittany

and resigthed all range wide.

The estimated proportion of birds migrating South in their first winter was higher at

the beginning of the study, then dropped at a very low level in the XXIth century. Pied

Avocets remained faithful to their first winter quarter during subsequent years. We did not

find evidence of a difference in survival between South and North wintering birds but the

dynamics of the population is now mainly driven by the North wintering sub-population,

that dramatically increased until 2010 and nearly stabilized afterwards.

From an evolutionary perspective, the selection of phenotypes may be under control of

cold spells; migrating South may be advantageous if conditions are harsh in the North. The

lack of cold winters the last 2 decades may explain why the resident phenotype became

dominant. Finally, ecological and/or social canalisation may explain winter quarter fidelity

and the rare shifts observed in migratory behaviour (migrants becoming residents) may

concern birds sensitive to environmental factors such as heavy rainfall events in the Iberian
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Peninsula.

2.2 Introduction

Partial migration is the most widespread migration system in birds (ca. 70% of the species in

the Western Palaearctic are partial migrants Berthold, 2003), and deeply affects the spatial

distribution of the population, at both seasonal and annual scales. In addition, spatio-

temporal variation in the distribution frequencies can also stem from differences in fitness

among phenotypes (Palacin et al., 2017). These combined phenomena result in complex

demographic processes driven by environmental conditions and lead to local extinction or

colonisation events, especially at the range borders (Bell, 2000; Griswold, Taylor & Norris,

2011; Pulido, 2011).

Under temperate climates, many bird species are currently experiencing important changes

both in local abundances and overall distribution, often with a shift of their range north-

ward (Hickling et al., 2006; La Sorte & Thompson, 2007; Maclean et al., 2008; Chen et al.,

2011). In the framework of the wintering ecology of partial migratory birds, this shift in-

volves an increase in density at higher latitudes, generally accompanied by colonisation of

new areas northward, and a decrease in density southward with desertion of the southernmost

historical sites (Berthold, 1999, 2003; Lehikoinen & Virkkala, 2016). In the southern part

of the range, changes in numbers only result from the dynamics of wintering migrants, but

northward there is a mixture of phenotypes (migrants and residents share the same breeding

and wintering areas) and the observed changes in abundance result from more complex de-

mographic processes. Disentangling these processes is important for understanding both how

they affect overall and local population dynamics and which evolutionary processes may be

taking place. However, demographic processes underlying these changes have seldom been

studied (Nevoux, Barbraud & Barbraud, 2008; van de Pol et al., 2010).

The theory of partial migration, which aims to explain the maintenance and the evo-

lution of the two phenotypes in a same population, can be essentially partitioned in two

categories: (i) a theoretical approach, generally based on evolutionary stable state (ESS)
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models (e.g. Kaitala, Kaitala & Lundberg, 1993), relying on frequency-dependant selection,

either density-dependent demographic or behavioural switching. (ii) by contrast, the environ-

mental threshold model of migration has more empirical and experimental support (Pulido,

Berthold & vanNoordwijk, 1996; Pulido, 2011) and pleads for an extrinsic threshold from

which individual intrinsic state determines the propensity to migrate (a conditional strat-

egy). As a consequence, two non exclusive mechanisms can determine the frequency of the

two phenotypes: (i) demographic processes: e.g. a decrease in fitness of the South migra-

tory population generating a decline in the proportion of migratory individuals (Adriaensen

& Dhondt, 1990; Berthold, 1999, 2003). (ii) Behavioural processes: a change in migratory

movement, e.g. a decrease in migratory distance, or a switch to the sedentary strategy, cor-

responding to individuals skipping migration (Visser et al., 2009; Smallegange et al., 2010;

Eggeman et al., 2016) that also lead to the decrease of the proportion of migrants. Both

processes are intimately linked to individual life history. Processes operating during the non-

breeding season (wintering strategy and its corollary, wintering site selection) indeed have

major consequences on individual fitness (Gunnarsson et al., 2005; Harrison et al., 2011;

Alves et al., 2013) and can explain partial migratory population dynamics (Perez-Tris &

Telleria, 2002; Lok et al., 2011; Sanz-Aguilar et al., 2012).

In partial migrants the first winter is critical and from an evolutionary viewpoint, a

cost-benefit analysis can help to understand the decision of staying in the breeding area

in winter, or leaving. Migratory individuals endure specific risks along the journey such

as predation, parasitism, illness, and they have to face the costs associated with the jour-

ney (Alerstam, Hedenstrom & Akesson, 2003; Hegemann, Marra & Tieleman, 2015; Sillett

& Holmes, 2002; Ydenberg et al., 2004). Conversely, staying in the vicinity of the birth site

in winter can expose individuals to lethal weather conditions such as cold spells and possi-

ble starvation (Goss-Custard, 1996; Johnson, Green & Hirons, 1991). Numerous hypotheses

have been put forward to explain the decision making process, but empirical support is

still insufficient, and the underlying mechanisms remain poorly understood despite decades

of research (see Chapman et al., 2011, for a review). Nevertheless, the existing evidence

favours a conditional strategy where the fitness gain associated with each strategy depends
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on the phenotype of each individuals (Adriaensen & Dhondt, 1990). These later authors

agreed with the environmental threshold model of migration (Berthold, 1999; Pulido, 2011),

arguing that over the genetic control of migration, environmental and behavioural factors

are relevant. This provides a useful departure point to investigate the causes of the choice

of the first winter location and the consequences for individuals and populations.

Once an individual has chosen its first wintering site several options are possible for

the following years. in particular, this strategy can be fixed (individuals exhibit fidelity)

or flexible (individuals change strategy between years). In case of fidelity to the wintering

site the choice of the first wintering site determines individual life history for the entire life.

This pattern is common in birds and has the advantage of promoting “site familiarity”, i.e.

improvement of habitat use (for food acquisition or predation avoidance) especially by use of

“public information” (Greenwood, 1980; Németh & Moore, 2014; Palacin et al., 2017; Piper,

2011). Conversely, changing wintering site leads to a variety of phenotypes, depending on

the age at which changes occur and the number of times the individual changed between

wintering site. Empirical evidence suggests that the decision to remain faithful to the initial

wintering site, or not, is a conditional process that depends on age, experience, body con-

dition and environmental conditions, with possible interactions between these factors (Lok

et al., 2011; Palacin et al., 2017; Sanz-Aguilar et al., 2012). Furthermore, the co-existence

of different wintering strategies within populations can generate complex dynamics in case

of unbalanced fitness among phenotypes.

The foregoing suggests that demographic models incorporating a precise description of

individual behaviour are necessary to address the individual and population consequences

of wintering strategies, while many studies essentially focused on the environmental factors

associated with changes in population size (Jorgensen et al., 2016; Lehikoinen et al., 2013).

Comparing the demographic traits of migrant and sedentary birds is necessary to understand

changes in the proportion of each strategy, and ultimately the processes responsible for a

shift in the overall population distribution. Indeed, observed changes in distribution per

se can hardly be interpreted without additional information because they result from the

combination of dynamics of multiple strata in populations (e.g. age, environmental condi-
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tions in different locations), often with delayed effects (Duriez et al., 2012; Lok, Overdijk &

Piersma, 2013). Long-term studies of individual life history traits and environmental fac-

tors influencing individual behaviour are required to assess both changes in demographic

parameters at population level and to explore the evolutionary determinism of wintering

strategies (Pulido, 2011). Here we addressed the life history consequences (namely, mortal-

ity) of migration strategies in a coastal shorebird, the Pied Avocet (Recurvirostra avosetta),

and the relationships between the frequency of migratory strategies, population dynamics

and wintering distribution. This species has recently experienced substantial local changes

in abundance, with a dramatic increase in winter in England and a decrease in Portugal

(Mendez 2017). Furthermore, as other migratory shorebirds, the Pied Avocet mostly uses

wetland areas during both winter and breeding season and is thus on the forefront of envi-

ronmental change (Sutherland et al., 2012). Paradoxically, most shorebirds exhibit a high

level of site fidelity and behavioural consistency, as many seabirds and raptors (Alerstam,

Hake & Kjellen, 2006; Gill et al., 2014; Phillips et al., 2005). If behavioural processes are

not driving changes in their distribution, demographic ones could thus be the key processes

driving these changes.

The habitat of Pied Avocet is limited to salt or brackish wetlands such as estuaries and

shallow lakes and has dramatically shrunk over the past decades (polderized and drained) or

has been deeply transformed by human activities and is nowadays mostly artificial (e.g. salt-

pans and fish farms). The population of the West Palaearctic flyway has a vast range from

Lithuania to the Iberian Peninsula, with core breeding areas located in western Europe, along

the Atlantic coast. Members of northern populations are strictly migrants, while those of the

population situated southern to Germany are partial migrants (Hötker & Dodman, 2009).

Wintering range covers a coastal band from Guinea to the Netherlands (Hötker & Dodman,

2009). The distribution of wintering individuals is nearly continuous on coasts from the

Netherlands to South-west of France. A gap of nearly 750km (great circle distance) of poorly

suited habitats separates wintering quarters mainly from north Portugal to Andalusia (Smith

& Piersma, 1989). We focused on a long-term monitoring programme from individually

marked birds in a breeding colony in western France. Birds from this colony are partial
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migrants, with some individuals wintering in the vicinity of the colony and along the West

Atlantic French coast, and others in the Iberian Peninsula and southern (West Africa). We

addressed the temporal changes in wintering strategies in this particular colony from 1996

to 2015, and assessed population changes at the wintering sites.

We used both the coordinated mid-January counts (Wetlands International) and capture-

recapture data ; our goals were the following ones: (i) Estimating the size for the population

wintering in the North (the Netherlands, Belgium, Great Britain and France) and the South

(Iberia, restricted to Portugal and Andalusia), their trend and their growth rates. We also

addressed temporal variations in the number of individuals wintering in each area. (ii)

Estimating the survival rate according to wintering ’state’ (South or North) and testing for

the effect of age, year and climatic covariates on survival (North Atlantic Oscillation - NAO,

and winter severity). (iii) Estimating the proportion of individuals choosing a specific area

(North, South) in their first winter and its annual variation. We also tested for the effects

of year, birth date, NAO and winter severity on this parameter. (iv) Evaluating fidelity to

wintering strategies over time and testing for the influence of climatic covariates (NAO, and

winter severity) and year on fidelity. (v) Addressing the dynamics of the breeding colony, i.e.

temporal variation in the total population and in state-dependant sub-populations. We used

a multi-state model for open populations in a hierarchical framework (Schofield & Barker,

2011) which allowed estimating population dynamics metrics and all relevant demographic

parameters, i.e. survival rate, the probability of an individual choosing a wintering area

during the first winter of life, and fidelity to the previous wintering site in subsequent years.

Determining the major life history patterns also allowed us to address the question of the

evolutionary causes of the maintenance of partial migration in this colony.

2.3 Methods

2.3.1 Range-wide monitoring of wintering population size

Monitoring of water birds in the Western Palaearctic was initially established by Wetlands

International in the early 1970s and yielded estimates of range-wide population size (Hötker
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& Dodman, 2009; Stroud et al., 2004). Since then, many countries have refined their mon-

itoring schemes to different degrees, but the initial mid-January count remains the most

relevant indicator of wintering population size. We compiled the January counts in all Eu-

ropean countries (or regions when possible) that encompass the winter range of the Western

population of Avocets; we focused on the last two decades, a period of high monitoring

coverage (1990-2015). These data were provided by distinct entities and monitoring pro-

grammes: WeBS (United Kingdom), SOVON (the Netherlands), LPO/WI (France), ICNF

(Portugal), Junta de Andalucia (Andalusia/Spain) and Wetlands International (2017) IWC

Online database (URL: http://iwc.wetlands.org).

Although core winter sites have been monitored every year, a few small sites were not

covered in some years, especially some Iberian wintering sites. Moreover, counts are some-

times subject to observation error (missing data, over or underestimation). We therefore

developed a simple population model for count data (Kéry & Schaub, 2012) to estimate

numbers of birds likely to be present during counts and to assess Pied Avocet population

trends over Europe. We used a hierarchical formulation which allows accounting for: (i)

observation errors by assuming that counts are log-normally distributed with a mean equal

to the true, but unknown, population size and a variance parameter corresponding to incerti-

tude in the observation process; (ii) spatio-temporal correlations in counts by modelling true

population size as an autoregressive (markovian) process and by adding a year × country

correlated random effect (see Appendix A.1.1, p. 116). We obtained abundance estimates for

each European Country. Finally, we compared the trends between North and South winter-

ing populations by grouping data from France, United-Kingdom, Belgium and Netherlands

for the North, and from the Iberian Peninsula (Portugal and Andalusia) for the South.

2.3.2 Data from individually marked birds

Individual-level data were obtained from resightings of 540 individuals captured as juveniles

and marked with a combination of leg bands in South Brittany, France (47o37’N , 2o42’W;

Morbihan Gulf), from summer 1996 to summer 2014. During the nonbreeding season, re-

sightings of marked individuals are reported by a vast network of volunteers across the winter
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Figure 2.1: Estimated proportion of wintering Pied Avocet in different areas in
Europe. Graphics: temporal variations in the mean proportion of Pied Avocet (black line)
and confidence intervals (shaded area) from 1990 to 2013. Open circle: observed proportion
from counts. Map: the grey dots show the wintering sites in the North area and black dots
in the South area (Iberian Peninsula). Dot size is proportional to the number of resightings
indicated beside. GB: Great Britain; FR: France; PT: Portugal; NL: Netherlands; FB:
Belgium; ES: Spain.

range. In addition, regular surveys of key wintering areas have been conducted each winter

in France since the beginning of the ringing programme (between December and March),

and in Iberia (in February or March) from 1997 to 1999, and from 2006 to 2015. This

allowed establishing individual wintering location, which was considered as the individual

’state’. Yet, we only considered ’state’ as certain when an individual was observed in France

during a specific time window, from December 20 to February 25, corresponding to the last

observed departure date to the South and first return date of migratory birds. For birds

resighted outside France we extended this window from late October to March in order to

account for early arrival and late departure of migrants not resighted during the wintering
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session. We restricted inference to individuals that were resighted at least once in winter

during the study period because birds never observed in winter cannot be assigned to any

wintering area at any time and can then not inform the model.

The data used included capture-recapture (CR) histories of 221 birds resighted in win-

ter along the Atlantic coast and the Channel, from England to Spain, over 19 years (see

Appendix A.4, p. 144). This corresponds to 1274 resightings distributed along the west Eu-

ropean coast from South England to Andalusia (Fig.2.1). One individual was recorded once

on the French Mediterranean coast, but recorded on the Atlantic coast during 4 winters

and was considered as belonging to the northern wintering population, with state ’North

wintering bird’. Among the 221 birds, 51 were seen at least once in the Iberian Peninsula

during winter. Among them, birds observed in Andalusia were too few to be assigned to

a separate state (n=14). We thus grouped them with ’South wintering birds’. Similarly, 3

birds observed in England were grouped with birds resighted in France in winter and thus

assigned to the ’North wintering birds’ group.

It is important to note that all the birds retained for analyses survived at least until their

first winter: all the CR histories of birds dying before being resighted or never observed in

winter but known to be alive later have been discarded. Furthermore, observations considered

here only occurred in winter: this analysis does thus not allow for a comprehensive study of

survival in the population.

2.3.3 Modelling

We used a variant of multistate CMR models to estimate demographic parameters (Schofield

& Barker, 2011). Data consist in CR histories incorporating information about winter re-

sighting locations. We defined two individual states corresponding to wintering areas, re-

spectively North and South. Not all the individuals are detected by observers, thus models

incorporate a state- and time-specific detection probability to account for the missing data

process. If individuals survive, they can change state among years according to a transition

(or movement) probability that depends on year, the state of departure and the destination

state.
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Classical multistate models use the likelihood based on observed data (ODL); missing

data are integrated out of the likelihood (Arnason, 1973; Schwarz, Schweigert & Arnason,

1993). An alternative approach based on the complete data likelihood (CDL) incorporates all

missing data. Schofield & Barker (2008) and Schofield, Barker & MacKenzie (2009) proposed

a flexible approach based on data augmentation that generalises the use of the CDL thanks

to well developed Markov chain Monte Carlo (MCMC) methods. This approach allows

estimation of population-level demographic rates (growth, number of births and deaths per

sampling occasion, or lifespan) for each state in situations where the life history of individuals

is only partially observed (Dupuis & Schwarz, 2007).

Here we used a formulation which separates two main classes of processes in a hierarchical

way (Schofield & Barker, 2011): the observation process corresponding to the detection of

birds, and the biological processes corresponding to population dynamics (e.g., population

growth rates, survival, and movement probability). The detection process was considered as

a Bernoulli process conditional on the availability of the individual, i.e. his presence in the

population (recruited and alive). In the most general formulation of the model, detection

probability p depended on individual state as well as a random time effect, which differed

according to state: i.e., a state-dependant intercept and a random state × time effect, (see

Appendix A.2.1 for details and prior distributions, p. 128). This specification was motivated

by the difference in observation pressure between North (regular sampling occasions) and

South (punctual and short sampling occasions) and among years. From winter 1999-2000

to winter 2004-2005, the Iberian Peninsula has not been well monitored: we then set the

corresponding detection probability to 0.

Survival probability between t and t−1 is estimated through the mortality process, where

death can only occur if the individual was born and still alive at t − 1. We chose the robit

link function to formulate the relationship between survival probability and “explanatory”

variables, The robit link is the inverse of the cumulative distribution function of the Student-

t distribution. It is known to be less sensitive to outlying data than alternatives like the

logit or probit links for regression on binary responses (Liu, 2004). We set the parameters of

the Student-t distribution to 7 degrees of freedom and the scale parameter to 1.5484, which
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offers a good approximation to the logit link (Liu, 2004).

Individual state was not observed during all sampling occasions and was integrated in

the CDL as a categorical individual-specific time-varying covariate. When not observed,

state is assumed to be missing at random: missingness is assumed to be mainly due to

non-detection, not to some systematic bias or to temporal emigration, as most of the range

was covered. We modelled individual state as the outcome of a categorical process, We

distinguished the probability of choosing a wintering strategy in the first winter (i.e. the

first transition probability from the birth location to the first wintering site) and transition

probabilities in subsequent years. This allowed testing biological hypotheses focussing on

the choice of the first wintering area or subsequent decisions regarding migration strategy.

We used data augmentation to estimate parameters for which no explicit data were

available, i.e. the number of unmarked birds belonging to the breeding population (Tanner

& Wong, 1987; Schofield & Barker, 2011), for a complete description see Appendix A.2.1

(p.128). Estimates of demographic processes like birth, death and population size are derived

from the estimated life histories of all the individuals entering the population (including

pseudo-individuals used for data augmentation).

2.3.4 Covariate selection

We used several covariates to test hypotheses about the three main processes of interest:

survival, choice of first winter site and subsequent transitions between sites. For survival

probability, we tested the effect of climatic covariates: NAO and a winter severity index

(Appendix A.2.1, p.128). Since the choice of the wintering area in year t occurs before

winter, we used winter severity and NAO indexes in year t-1 as predictors of the first wintering

strategy and of subsequent transitions between wintering sites. Indeed, we expected a carry-

over effect of climatic covariates on these probabilities. We also considered hatching date

as a predictor of the choice of the first winter quarter, in agreement with (Chambon et al.,

2017) who showed that early hatching birds are more prone to migrate than later ones.

In particular, we addressed whether the choice of the first wintering area can be predicted

by the mean annual hatching date of each state, or by the interaction between previous
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winter severity and hatching date. We also tested for an effect of year and age on transition

probabilities using factors, linear or quadratic form for the covariates. Moreover, individual

heterogeneity was pointed out to be an important parameter to deal with in modelling

of life-history traits when variations between individuals are suspected and because it can

disentangle hidden patterns in estimated parameters (Aubry et al., 2009; Péron et al., 2010;

Chambert et al., 2013).

For computational reason it was not possible to compare all possible models using in-

formation criteria: the total number of combinations was too large. Consequently, we used

a shrinkage prior (Hooten & Hobbs, 2015), that allows the detection of sparse signal: the

horseshoe prior (Carvalho, Polson & Scott, 2010). This is a weakly informative, heavy tailed

prior with a point mass at zero, which shrinks model coefficients toward zero unless there is

strong signal in the data (Appendix A.2.1, p.128)). We used a sequential approach to select

the predictors for the processes of interest. First, we ran models using the horseshoe prior

on all candidate covariates for survival probability. We then ran four models containing a

year and an age effect either treated as factor or a continuous variable with a quadratic

function. At this step, year was treated as a factor for the first winter transition probability

and subsequent transition probabilities were fixed constant over time. We selected covariates

whose parameters had a 80% Bayesian confidence interval excluding zero. Then, keeping the

selected covariates for survival, we ran four new models using the horseshoe prior with all

candidate covariates for the choice of first wintering area and subsequent transition proba-

bilities between years. The difference between the models concerned year effect, which was

treated as factor or as quadratic for the first winter transition and the subsequent ones. In

the last step we ran a set of models (12), which are combinations of the covariates previously

selected, we used the deviance information criterion (DIC) in order to identify that best

accounted for the data-generating process.

2.3.5 Estimation et posterior predictive check

We used a Bayesian approach with the software programme JAGS 4.0 (Plummer 2003) called

from R 3.3.3 (R Core Team, 2016) through the package jagsUI 1.4.4 (Kellner, 2016). JAGS
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code is available in Appendix A.2.3 (p.136). Concerning the model for count data we used

three Markov chains, starting at random initial values in the range of parameter space.

The total length of each chain was 200000 but we excluded 100000 samples from the initial

convergence phase. We thinned Markov chains with a factor of 4, which led to a final number

of samples of 75000. We used the Brooks-Gelman-Rubin criterion (Gelman & Rubin, 1992;

Brooks & Gelman, 1998) to evaluate convergence (all Rhat < 1.08). The goodness-of-fit

of the model was assessed using the Bayesian p-value for each country estimates and by

checking graphically the sum of squared residuals for the data plotted against the sum of

squared residuals for simulated data. For the CR model, we first ran models until convergence

to select covariates, which led to 900000 iterations. For selection of the final model, we

used three Markov chains starting at random initial values, a total of 300000 iterations and

a burn-in period of 100000 iterations to obtain convergence. Starting from these values

we re-ran the models (300000 iterations with a thinning factor of 9) to get more accurate

estimates of posterior probabilities, and combined the samples, which led to a total sample

of size 100000. We then compared DIC weights and chose the model with the largest one.

Following Gelman et al. (2003) and Zheng et al. (2007) we conducted posterior predictive

checks by comparing observed to simulated data using the parameter estimates of the best

fitted model. 10000 data sets were simulated using 10000 draws from the joint posterior

distribution of all parameters to account for uncertainty. The individual random effects

were directly drawn from the posterior distribution. Individual states were estimated for the

first winter and the subsequent states were conditioned on the previous one using estimated

transition probabilities. Individual life histories were simulated by taking estimated detection

probabilities into account.

2.4 Results

Pied Avocets wintering in Western Europe are currently experiencing considerable changes

in numbers across their winter range. Since the late 1980s, the proportion of individuals win-

tering in Western Europe has been increasing, except in Portugal (Fig. 2.1). When pooling
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countries according to geographical continuity i.e. North Europe versus Iberia, the num-

ber of individuals wintering in the North dramatically increased (Fig. A.5, Appendix A.2.1,

p. 127). The geometric mean growth rate of the wintering European population was signifi-

cantly > 1 for Spain, England and France (Fig. A.6, Appendix A.2.1, p. 127). The growth

rate of the European population was nearly stable 1 (0.98, 1.03: 95% confidence interval -

CI hereafter). However, annual growth rate in the northern countries was equal to 3.1% (CI:

2, 4.2) versus -1% (CI: -5, 3) in the Iberian Peninsula.
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For survival probability, the model selection allow us to retain as significant a linear trend

age effect and a frailty term (individual- and state-dependant heterogeneity parameters).

We did not find evidence of a relationship between covariates and transition probabilities
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between consecutive winters. Consequently, we considered these transitions to be constant.

Concerning the first transition from birth site to the wintering area, we found evidence of

a small signal for three covariates, a factor year effect, a linear time effect and the effect of

winter severity index. Finally, the most parsimonious model (see Table A.2 and model code

Appendix A.2.2) had a weight of 0.99 and included a linear age effect on survival probability

and a factor year effect on the choice of the first wintering area.

Posterior predictive checks indicated a good fit (Fig. A.10 and A.11, Appendix A.3.2,

p. 146), with the exception of survival probability that was underestimated in 1998 and

2014, and overestimated in 2000 and 2001. Detection probability was globally low in winter

and lower in the South than in the North (main effect respectively pS=0.29[0.2, 0.4] and

pN=0.46[0.23, 0.69]), with substantial variations among years in the North but relatively

constant in the South (Fig. 2.2.a). We did not find evidence of a difference in survival between

individuals wintering in the South or in the North. Nevertheless, the most supported model

included a negative linear age effect on survival on the robit scale which corresponds on the

[0, 1] scale to a slight linear decrease until the age of eight years followed by an steep decrease

(Fig. 2.2.a). But the interpretation of the strength of the decrease in survival is obscured by

the increase of the 95% confidence interval.

State-specific individual heterogeneity levels in survival probability are different from

zero (5[2,9] in the North and 6.2[2.4,9.8] in the South), and the variance ratio showed that

they have similar distributions (Fig. A.13, Appendix A.3.4, p. 147). The distribution of

this ratio was right skewed and the mean equal 0.87 indicated that heterogeneity among

individuals in survival probability is slightly larger in the South. We also addressed whether

individual survival heterogeneity within each state differed between local wintering areas

(country sub-areas). We did not find any relationship between individual-specific survival

heterogeneity and wintering area (Appendix A.3.4, p. A.3.4).

At the beginning of the study (1997), the probability of wintering in the South during

the first winter was higher than the probability of wintering in the North. The reverse was

true in 2015 (Fig. 2.2.c). The dominating wintering strategy thus changed during the study.

Years with significant differences between strategies were 1997, 2007, 2008 and 2015. Years
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when the probability of wintering in the North or the South had large CIs corresponded to

years with small numbers of marked chicks retained for analyses and very few resightings

(Fig. A.9 and Table A.4, Appendix A.3.1, p. 144). Fidelity to the initial wintering area was

very high in the North 0.99[0.98,1] and slightly lower in the South 0.93[0.89,0.96]. Since

2011, only five birds that used to migrate to the South were observed wintering at least once

in the North.

The overall population size increased substantially until 2010 then stabilized (Fig. 2.2.d).

This situation resulted from two different tendencies affecting the main phenotypes: when

the North wintering population was experiencing a major growth, the South wintering pop-

ulation stayed stable (Fig. 2.2.d). The annual growth rate of the total population over the

study period was 1.16[0.93,2.5], with 1.48[0.88,8] for the North wintering population and

1.07[0.83,1.69] for the South wintering one (Fig. A.12.a, Appendix A.3.3, p. A.12). North

wintering birds became more abundant than their Southern con-specifics around 2005. Other

summaries of population dynamics (deaths, births) are reported in Appendix A.12 (p. A.12).

2.5 Discussion

We have shown that the demography of Pied Avocet from Brittany is the result of con-

trasting dynamics from two different sub-populations. Interestingly, the South wintering

sub-population remained stable, while the North wintering sub-population has substantially

increased during the past decades. The persistence of the South wintering population re-

vives the old debate concerning the conditions that may promote the persistence of partial

migration.

2.5.1 Demographic consequences of wintering strategies frequen-
cies

We found that the overall dynamics of Pied Avocets breeding in Brittany results from the

interplay of the specific dynamics of each wintering strategy. The North wintering sub-

population has experienced a strong increase since the early 2000s and is now stable, since
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2010 (Fig. 2.2.D). The total population trend characterized by an increase in density north-

ward is now driven by the dynamics of the North wintering sub-population (Fig. 2.2.D).

Changes in the demography of sub-populations are related to the temporal variations in the

frequency of the first winter area selection (Fig. 2.2.C). These results at the Brittany popu-

lation scale are in accordance with our first analysis at the European scale. More generally,

they are also consistent with recent observations in Europe, which show a decrease in the

migrant sub-population of partial migrant bird populations (Pulido & Berthold, 2010). Dur-

ing the past decades, the proportion of Pied Avocet in the North wintering area increased

while it decreased in the Iberian Peninsula. Additionally, the fact that a few Pied Avocets

observed have been wintering in England indicates a shift in the winter range of the Brittany

population to the North (La Sorte & Thompson, 2007; Chen et al., 2011). The European

Population range of Pied Avocet has not experienced a shift northward, but part of the

population from Brittany now winters Northern than its breeding ground. This is consistent

with the theoretical corpus on migration determinism that attributes changes in distribution

to a change in phenotypic proportion (more residency and Northern shift) as a response to

environmental changes, especially global warming (Berthold, 1999, 2003).

The stability of the South wintering population (Fig. 2.2.D) results in a mechanistic

decrease in the proportion of this strategy in the overall population. Empirical studies have

shown that the non-breeding period is generally associated to a higher mortality rate, which

shapes population demography (Barbraud & Weimerskirch, 2003; Leyrer et al., 2013). Here,

we found no difference in survival rate between the two phenotypes. This lack of difference

has two major implications. First, it may partially explain the long persistence of the South

migration strategy. Second, it highlights the contribution of other life-history traits to the

decrease in frequency of this phenotype. Indeed, the Pied Avocet has a long life expectancy,

as illustrated by the EURING database longevity record (27.8 years, Fransson et al., 2010)

and this study (19 year old birds still alive). Such long lifetime can compensate for a possible

reproductive inferiority of South wintering individuals or a delay in age at recruitment of

this sub-population. This might postpone the demographic decrease in the South wintering

phenotype, especially as long as a small proportion of fledgings still decides to migrate to
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the South.

Here, survival rate varied with age and exhibited individual heterogeneity. Senescence

had been receiving a growing interest in the last decade: it is widely spread in nature

and variation among individuals in ageing age can suggest a trade-off between life-history

traits (Orell & Belda, 2002; Jones et al., 2008). The decrease in survival with age was

identical for the two phenotypes. However, this decrease difficult to assess accurately after

eight years of age because of the sparsity of the data at the beginning of the study (i.e.

before winter 2006; Fig. 2.2b). The distribution of individual effects on survival, however,

differed between the phenotypes and the variance ratio suggested a larger degree of variation

among individuals in the South wintering phenotype. Birds encountering very different

environmental conditions in their migration route might endure different costs of migration:

we might have expected a variation of greater magnitude in migrants, if any. This hypothesis

was not supported. Individual heterogeneity in survival is governed by other factors that

remain to be identified.

We did not find any support for a relationship between climatic covariates and the yearly

probability of selecting a specific wintering area in the first winter. Resighting data showed

that individuals gather in fall before wintering in large flocks in a few estuaries, such as the

Loire estuary (middle west coast of France), during post-nuptial moult, as German Pied Avo-

cets do (Hötker & Frederiksen, 2001; Hötker & Dodman, 2009), before joining their wintering

grounds. Social interactions taking place within these groups could influence individual win-

tering strategies. In any case, the fact that individuals attending the same post-breeding

flocks choose opposite wintering strategies suggests that this choice is not determined by

climatic conditions exclusively. However, carry-over effects of weather conditions and espe-

cially wintering conditions cannot be totally excluded. In the past two decades in France,

the last severe winters occurred during the 90s (90/91, 91/92, 92/93, and 96/97), essentially

out of our study period. Hötker (1998a) has shown that these weather conditions were par-

tially responsible for winter site selection of the strictly migrant German population of Pied

Avocet. Indeed, the proportion of German birds wintering in France decreased during severe

winters: individuals chose to migrate further South. Based on data from winter 1997 (the
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only severe winter during this study) we cannot corroborate this hypothesis in our popula-

tion. We suspect a delayed effect of repeated unfavourable winters, which may explain the

higher proportion of birds migrating South at the beginning of the study.

After the choice of the first wintering area, the estimated probability of changing win-

tering area is low : < 7% from South to North, and close to zero in the other direction

(< 1%). Individuals are very faithful to their wintering strategy, which is commonly ob-

served in birds (Blackburn & Cresswell, 2016; Lourenco et al., 2016). A small number of

individuals change their migration strategy. According to the threshold model of migra-

tion (Pulido, 2011), the ability of an individual to modify its migratory programme from

migratory to sedentary behaviour and vice-versa is suspected to be influenced by environ-

ment. It was empirically shown that this behavioural flexibility can drive the maintenance

of partial migration (Eggeman et al., 2016). However, this strategy is under-represented in

the population. We observed changes in only 5 birds during the entire study period: 9.6%

of the studied South wintering individuals. Changes have been observed only recently (since

2011) and concerned too few individuals to draw conclusions about their causes and conse-

quences; they could be rare stochastic events. However, this shows that the two populations

are not genetically isolated but more probably that strong underlying canalisation processes

exist (Pulido, 2011) and maintain the predominance of mainly two phenotypes among all

possible ones. In this context, with high winter area fidelity, the temporal variations of

first winter transition probability may entirely explain the sub-population dynamics if their

breeding success is equal (i.e. globally equal fitness).

To summarise, this partial migration system is relatively simple: the winter strategy

is mainly determined for life before first winter. The long lifespan, the variations in first

winter transition probabilities associated to the high fidelity to wintering strategy are the

main drivers of the observed demographic patterns (Fig. 2.2), especially of the persistence

of South migration. Local wintering conditions may affect the frequency distribution of the

phenotypes via carry-over effects.
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2.5.2 Partial migration and evolutionary change

The demographic disconnection between North and South wintering populations also ques-

tions the evolutionary bases of the phenomenon. Partial migration theory can shed light

on results, based on the comparison of life history traits between individuals wintering in

two distinct geographical areas. To do so, we take apart the 2 birds observed in England

and one observation on the Mediterranean coast of France; we can define the sub-population

wintering on the Atlantic coast of France as ’sedentary’ and the Iberian one as ’migrant’. Nu-

merous hypotheses have been developed to explain the causes and the evolutionary stability

of partial migration (see Chapman et al., 2011, for a review).

(i) The dominance hypothesis (Gauthreaux Jr., 1982) invokes competition for food and

predicts that dominant (typically older) individuals are able to stay around breeding grounds

while subordinates (juveniles) have to migrate under dominance pressure. This hypothesis

can be ruled out in the Pied Avocet. First, the dramatic increase of sedentary birds during the

first winter contradicts the expected exclusion of these birds from their breeding grounds in

winter. Second, the small transition probability (< 7%) from migrant to sedentary strategy

is inconsistent with the expected increase in competitiveness linked to experience. Last, the

lack of difference in survival between states and the growth rate of the sub-population of

sedentary individuals suggest that there is no negative density-dependent effect at least in

the North wintering range (Taylor & Norris, 2007).

(ii) The familiarity hypothesis predict high site fidelity in sites where wintering conditions

are predictable or stable over time (Greenwood, 1980; Piper, 2011). In gregarious species, site

faithfulness and social familiarity can favour cooperative traits and reinforce social cohesion

among individuals. For example, this can be advantageous for ’newcomers’ such as juveniles

that can benefit of knowledge from older (faithful) birds at wintering site (e.g. for food

supplies or predation avoidance). Benefits due to site familiarity may however decrease

dispersal with age and even prevent birds from moving to other sites of higher quality.

Then cost and benefit balance to site fidelity can lead to important heterogeneity in fitness

component between groups of individuals other than survival. Indeed, carry-over effects of
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migration strategy, the ‘seasonal matching’, can generate long-term consequences on fitness

by affecting a diversity of traits such as productivity (Gunnarsson et al., 2005; Harrison

et al., 2011; Alves et al., 2013). This is consistent with the wintering strategies developed

by Pied Avocet: after choosing the first wintering area, most individuals remained faithful

to this area during their entire life.

(iii) The frequency-dependant hypothesis, can work as a frequency dependent ESS, with

equality in the fitness of the two strategies at the equilibrium point strategy (Lundberg,

1987). At population level the ESS depend on a genetic dimorphism the frequency of the

phenotype is maintained irrespective to time or environmental conditions. The evolution of

phenotypes frequency with time here rule out this hypotheses. At the individual level, the

ESS do not depend on genetic but the maintain of the two strategies is condition on the

homogeneity between individual (but see Griswold, Taylor & Norris, 2010), which is rejected

here. The frequency-dependant hypothesis can also work as a “conditional strategy” which

depend both on individual state and environmental variations (Lundberg, 1987, 1988). If

the previous scenario (ii) relies on habitat predictability and the advantages of site fidelity,

winter environment of Pied Avocet can also be unstable (e.g drying or flooding of shallow la-

goon, winter storm entirely depleting mudflats) or environmental conditions can deteriorate

(e.g. deleterious climate changes, increase of predation risk or density-dependence effects).

For example, sedentary individuals are exposed to cold spells that can lead to deadly starva-

tion (Sanz-Aguilar et al., 2012). These extreme events are rare but even weaker changes can

promote the coexistence and maintenance of several phenotypes with different fitness and

dynamics within the same population (Brodersen et al., 2008), the strategy with lower fitness

making “the best of a bad job” (Lundberg, 1987, 1988). In our case, major and repeated

cold spells ended at the early beginning of the study (96/97) followed by persistent mild

winters, which coincides with the shift of individual probability of migrating (Fig. 2.2.C).

We then suspect that this influenced the choice of the first winter quarter, in a conditional

manner, and promoted migration just before and at the early beginning of the study.

(iv) The ’environmental threshold model of partial migration’ (Pulido, 2011) states that

at the individual level migratory behaviour is a quantitative genetic trait with a threshold
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defined by environmental factors (ecological, social or intrinsic). This threshold separat-

ing low and high migration liability (residents versus migrants). The transition between

phenotypes is a process under environmental control; the expression of the trait depends on

individual migratory restlessness distance to the threshold. Individuals close to the threshold

will quickly adapt their migratory behaviour to environmental changes, while individuals far

from the environmental threshold are prevented from expressing phenotypic plasticity due

to canalization (Flatt, 2005). Under this model, the environmental threshold delimiting

partial migratory phenotypes (first winter dispersal area) in Pied Avocet could be partly

determined by carry-over effects of cold spells (e.g. lower productivity) or social interactions

on pre-migratory grounds. The high fidelity that follows wintering area choice could be

explained by canalization inhibiting phenotypic plasticity. The rare individuals previously

observed as migrants that return to residency are consistent with this phenomenon. The

absence of cold spell since winter 96/97 could have led to an evolutionary change in the

population toward a residency population. Additional data will be necessary to determine

whether this process is transitory or can reverse in case of new cold spells occurring in

Northern Europe, or if the migrant phenotype disappears.

(v) The ’arrival time hypothesis’ (Kokko, 1999) finally predict that mature birds winter

closer to their breeding ground in order to benefit of an earlier settlement, i.e. less competi-

tion for the best sites, and increase breeding success. Hötker (2002) showed that wintering

distance to reproductive areas is negatively correlated to the breeding success in the Ger-

man population of Pied Avocets, in accordance with this hypothesis. However, the breeding

success of the population of Brittany was not on the scope of this study but on future work.

We then cannot make inferences on this hypothesis here.

Several non exclusive hypotheses may explain the persistence of the South wintering

phenotype in the corpus of the partial migration theory. Despite the absence of genetic data

that limit our understanding of the entire evolutionary mechanisms, demographic changes

in this population may underlie a conditional strategy under strong canalization processes

which can be promoted by site familiarity. The scope of this study regarding fitness is

limited by the fact that only the contribution of survival and some wintering life-history traits
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were estimated for this population. Interestingly, there is equality in survival between the

phenotypes. Estimating fitness will in fine confirm the relative importance of first wintering

choice in the individual life-history. If the two phenotypes experience equal fitness (i.e. equal

reproductive success) this trait determine the demographic dynamics of the sub-populations.

If fitness differ, demography is under control of phenotype-specific reproductive success and

the phenotype with lower fitness make the ’best of a bad job’, i.e. fitness optimisation

is conditional to the environment. To fully assess the fitness consequences of wintering

strategies, breeding success should also be evaluated, which is beyond the scope of this

paper.
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3.1. Abstract

3.1 Abstract

Inter-individual heterogeneity in life-history or behavioural strategies can have substantial

effects on population dynamics. However, it is often challenging to measure these effects.

Partial migration, where only a part of the population is seasonally migrant, offers the

opportunity to investigate the evolutionary consequences of among-individuals variations

in life-history traits. Surprisingly, few empirical studies have addressed the estimation of

strategy-specific reproductive performances or survival probabilities.

Using capture-recapture data from a long-term study of a partial migrant population of

Pied Avocet (Recurvirostra avosetta) in Brittany, we estimated for each phenotype (residents

and migrants) the seasonal survival, the reproductive investment (recruitment age, breeding

probability and cumulative number of breeding attempts). We also addressed senescence in

survival and reproduction for each phenotype, and as a function of recruitment age.

Per time unit survival differed between seasons (it was lower in spring than in fall), but

we did not find evidence of a difference between residents and migrants. An important delay

in recruitment age was highlighted in migrants, as well as a lower cumulative reproductive

investment for individuals recruited after the age of one year. We found evidence of both

survival and reproductive senescence, but the onset of senescence did not differ between the

two migratory phenotypes. However, senescence in the cumulative reproductive investment

varied with recruitment age, with individuals recruited at the age of one year exhibiting no

senescence, and the others showing an onset of senescence around the age of 14 years.

This study thus demonstrated substantial differences in key aspects of the reproductive

investment between migrants and residents, in a partial migrant population. The repro-

ductive patterns described suggest that the resident strategy was the most advantageous

strategy, which illustrates the complex demographic mechanisms that drive the selection of

migratory phenotypes and the dynamics of such mixed populations.
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3.2 Introduction

Identifying and quantifying the causes and the consequences of life-history strategies is a key

to understanding both variations in population dynamics and life-history evolution. Partial

migrant species provide an opportunity to study variations in life-history traits within a

population and to quantify both the demographic rates and the fitness associated with

each life-history strategy (Hegemann, Marra & Tieleman, 2015; Grist et al., 2017). Partial

migration is probably the most common expression of migratory behaviour (Berthold, 1999)

and the debate over its origin and its persistence is still active (Chapman et al., 2011). The

fact that within the same population, some individuals seasonally migrate while the others

remain on the breeding grounds, potentially generates differences in the life cycle, and in

vital rates, e.g survival or reproductive performances among individuals. Each strategy

faces indeed different potential costs: migrants encounter more pathogens and predators

in addition to the energetic cost of flight while resident experience potential starvation or

harsh climatic events. However, accurate measures of variations in performance are rare,

because studies often suffer from too short time series, or use proxies to establish life-history

strategies (Hegemann, Marra & Tieleman, 2015; Grist et al., 2017). Long-term studies based

on marked individuals are thus required to explore the links between migrating behaviour,

life history, and demography. assess the demographics of migration strategies and individual

reproductive performance. Such studies should monitor the population on both breeding

and wintering grounds.

Members of partial migrant populations coexist during the breeding season, but expe-

rience different environmental conditions during the non-breeding season (usually half of

their annual cycle), because some individuals remain in the vicinity of their breeding area all

year-round, while other migrate to separate locations during the non-breeding season (Gau-

threaux Jr., 1982). Several hypotheses have been put forward to explain why the migratory

and sedentary strategies persist and coexist in populations. (i) A fix dimorphism, i.e. a

fully genetic determinism, can persist if the alternative strategies have equal fitness (Gau-

threaux Jr., 1982; Lundberg, 1987, 1988). Under this hypothesis, survival and reproductive
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rates of both migrants and residents should be equal, or if not, any difference in one rate must

be balanced by the other rate. (ii) Partial migration could also be a conditional strategy:

individuals will then choose one or the other behaviour according to intrinsic or extrinsic fac-

tors (e.i. environmental conditions, individual state). Under this hypothesis the persistence

of partial migration does not require equal fitnesses of the two strategies (Lundberg, 1987),

and individual behaviour may change over time. The strategy itself, this individual level of

plasticity, involves the possibility to be either migrant or resident according to individual and

environmental states and could be heritable. In addition, the strategy choice is assumed to

be frequency dependent. Several empirical studies have shown that residents have a higher

reproductive success than migrants, and that the latter tend to have a higher propensity

to switch to residency than residents to switch to migration (Adriaensen & Dhondt, 1990;

Sanz-Aguilar et al., 2012). Because migrant have a lower fitness, they are supposed to ”make

the best of a bad job” (Lundberg, 1987, 1988; Adriaensen & Dhondt, 1990). In any case,

exploring this question requires estimating strategy-specific demographic parameters, in-

cluding survival rate. Differences in survival between migratory strategies can affect lifetime

fitness, lead to temporal variation in the frequencies of the alternative strategies, and affect

population structure (Gillis et al., 2008).

In populations partially migratory, only migrants can be affected by migration costs, if

any. Among commonly mentioned costs is late arrival to the breeding ground, access to

lower-quality breeding territories, and lower reproductive output in migrants, related to mi-

gration distance (Forslund & Part, 1995; Hötker, 2002; Grist et al., 2017; Lok et al., 2017).

In territorial bird species, it is reasonable to hypothesize that migration can lead to a delay

in the age of first breeding; because young individuals could incur higher costs during the

journey and difficulties in meeting the physiological or social conditions to breed when they

return to breeding grounds (Rushing, Marra & Dudash, 2016; Lozano, Perreault & Lemon,

1996). If this holds, migration strategies could be associated with different individual repro-

ductive ”tactics” (sensu Stearns, 1976; i.e. a set of traits designed by natural selection, which

defines a complex adaptation). Among these traits, the age at recruitment is a key parameter

which can deeply influence both the individual fitness and population growth rate (Stearns,
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1976; McGraw & Caswell, 1996; Acker et al., 2014). Indeed, two individuals with the same

longevity but different ages of first breeding will differ in terms of lifetime fitness (assum-

ing equal probabilities of breeding successfully). In addition, a fundamental assumption of

life history theory is that there are trade-offs between fitness components (Williams, 1966;

Stearns, 1992; Harshman & Zera, 2007). In this framework, the decision to breed is assumed

to be governed by correlations between, for example, the age of recruitment and the onset

of survival senescence (Kirkwood, 1977; Kirkwood & Austad, 2000). Age of first breeding

is considered as an important choice that possibly conditions the entire reproductive career,

i.e. if reproduction carries costs on survival, age of first breeding might have consequences

on the number of subsequent breeding opportunities. If migration strategies are associated

with differences in age of first breeding, this could then have consequences on the entire

reproductive trajectory and the longevity of individuals. Early recruitment could indeed

be associated with higher reproductive costs during the first breeding attempt than late

recruitment (Forslund & Part, 1995). Understanding the relationship between migration

strategies and the lifetime longitudinal trajectory of individuals inevitably leads to consider

hypotheses put forward to explain age-specific patterns of variation in reproduction and sur-

vival, including hypotheses about the evolution of senescence (Nussey et al., 2008, 2013),

which is widespread in the wild (Austad, 1993; Jones et al., 2008; Péron et al., 2016). Under

the hypothesis of cumulative costs of reproduction, the larger the cumulated reproductive

output up to age a, the smaller the probability of a large breeding output at this age. This

could result in a progressive decrease in breeding output prospect as individuals age. Cu-

mulative reproductive costs have also been invoked to explain the evolution of senescence.

In this framework, we expect a negative correlation between early reproduction and late-life

reproductive output: early recruits should exhibit an earlier onset of senescence than late

ones (Orell & Belda, 2002).

In this paper we used long-term individual-based data on Pied Avocets (1996-2015) to in-

vestigate the variations of lifetime longitudinal trajectories among individuals in the context

of partial migration. We previously provided evidence of the existence of two demographic

processes in the population breeding in Brittany (Chapter II). Sedentary birds (individuals
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wintering mainly on the West Atlantic coast of France) experienced a substantial increase

from 1996 to 2010, while the migrant part of the population (wintering mainly in the Iberian

Peninsula) remained stable. Migrants used to form the largest proportion of the population

at the beginning of the study, but this is no longer true. We did not find evidence of a

difference in survival probability between the two phenotypes, but we showed that the first

winter destination mostly determined individual wintering strategy for the entire life.

Our main objective was to address the demographic processes that are responsible for

the different dynamics of the two wintering phenotypes. Our goal was also to provide insight

into the mechanism responsible for migration persistence. To investigate the relationship

between wintering strategy and reproduction, we used a seasonal sampling scheme: sampling

periods corresponded to the wintering and breeding seasons. Time interval between sampling

correspond to transition period between post-nuptial gathering and winter quarter in autumn

(80 days), and between winter quarter and breeding ground in spring (33 days).

First, we compared age at recruitment in the two categories of individuals, i.e. probabil-

ity of making a transition between the pre-breeding state and the breeding state for the first

time at the age of one, two or three years. Second, we assessed the cumulative reproductive

output over life and the effect of age at recruitment on seasonal survival probabilities. Third,

we investigated late life reproductive output. To address changes in vital rates throughout

life, we took individual heterogeneity in survival into account. Indeed, previous work on

the demography of migrating birds provided evidence of heterogeneity in mortality risk (see

Chapter I). To avoid the well-known biases of approaches aggregating individuals with dif-

ferent baseline mortality risks (e.g., Vaupel & Yashin, 1985; Zens & Peart, 2003) to draw

inferences about changes in vital rates at the individual level, we considered models with

random individual effects on survival probability. We also considered individual effects on

reproductive rates. Indeed, one of the conditions for migration strategies to be directly

affected by natural selection if that they affect fitness components, i.e. reproductive perfor-

mance or survival rate. Indirect selection might operate when two fitness-related traits are

correlated: selection on one trait may have consequences on the other. Our goal was not

to disentangle direct and indirect selection processes, but to consider the possibility that
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survival and breeding rates are correlated at the individual level. In this case, accurate eval-

uation of longitudinal reproductive trajectories at the individual level requires incorporating

the correlation between breeding and survival rates into models (Cam et al., 2013). Impor-

tantly, we used multi-event models to estimate demographic rates while taking uncertainty

in reproductive state determination into account.

3.3 Method

3.3.1 Study population and data collection

We selected data from juvenile birds captured and marked on the breeding ground in a

small number of colonies in South Brittany, France (47◦37’N , 2◦42’W; Morbihan Gulf),

from summer 1996 to summer 2014. As the aim of this study is to estimate and compare

vital rates between two wintering phenotypes we selected individuals observed at least once

during winter in their life; for more details see sect. 1.2.3 and 2.3.2 (p. 11, 26). Resightings

came both from regular surveys of key wintering and breeding areas in France and in the

Iberian Peninsula and from a vast network of volunteers across the distribution range, from

Denmark to Andalusia (see Fig. 3.1). Monitoring during winter in France consisted in

sampling occasions taking place between December 20 and February 25 in the main wintering

sites. In the Iberian Peninsula only one session per year took place in February, from 1997

to 1999 and from 2006 to 2015. We extended this period from November 1 to March 31 for

individuals observed outside France, where detection probability was smaller. During the

breeding season, monitoring consisted in weekly surveys at the breeding sites (Brittany) but

also in other key sites along the Atlantic French coast. The breeding period encompassed

the period from April 1 (first laying date) to September 30, which corresponds to the period

when most members of the population share similar environments along the French Atlantic

coast (this period includes both the breeding season and the moulting period characterized

by post-nuptial gathering).

We used a total of 16144 observations to build the capture-recapture (CR) histories of

221 individuals in a multi-seasonal scheme over 19 years. These data were mostly collected
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Figure 3.1: A: Distribution of resightings during winter. Grey dots: North wintering sites;
black dots: South wintering sites. B: Distribution of resightings during the breeding period.
Grey dots: ringing sites; black dots: dispersal during the breeding period and post-breeding
migration. Dot size is proportional to the number of resightings at the site.

in France but also to a large extent on the North and West coast of Europe (from Denmark

to Spain). In winter most resightings came from France and the Iberian Peninsula, and

marginally from England. Three uncommon records concerned two observations in the North

of Spain, made a at stopover region during fall migration (late October), and a bird wintering

only once on the Mediterranean coast of France but seen in Brittany during other winters

(Fig. 3.1.A). Concerning the breeding season (Fig. 3.1.B), the five observations in the Iberian

Peninsula corresponded to early arrivals or late departures of migrant adults and two first

year individuals that stayed in Iberia during the breeding season following birth. There

was no evidence that these birds actually bred in Iberia, while observations in the North of

Europe (from England to Denmark) can be attributed to northward breeding dispersal.
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3.3.2 Observed events and state transition

We assessed individual states in winter by direct observations of birds at their wintering

location. The ”North” state corresponds to individuals resighted in France and in England

(hereafter residents), the ”South” state to individuals resighted in Portugal or Spain (here-

after migrants). These two states correspond to the two main wintering strategies of the

Pied Avocet from Brittany (see chapter II). During the breeding season, we considered three

states (non-breeder, unsuccessful breeder and successful breeder) and we drew a distinction

between philopatric and other individuals (i.e. if the individuals were present in Brittany

during the breeding season, or outside). Direct determination of the reproductive state from

observation is problematic: it was indeed not possible to assign the non-reproductive state

to individuals, except to juveniles and to pre-breeder or mature birds in a retrospectively

manner because most of the time reproductive state is hidden. Indeed, breeding individuals

do not devote their time budget to reproductive behaviour. Data collected thus consist in a

set of behaviours, which can provide information on whether individuals are attempting to

breed, or not (see Appendix B.1, p. 152). In order to take into account uncertainty in breed-

ing state determination, we used the observed behaviours to define five event classes: (1)

ascertained non-breeder, (2) possible breeder, (3) suspected breeder (4) ascertained breeder

and (5) successful breeder (see Table B.1, p. 153). We used one event class, the highest

observed, to characterise the individual state for the entire breeding season. ”Ascertained

non-breeder” was assigned to the juveniles, i.e. to individuals in their birth year, and to a

few pre- or mature individuals in first or subsequent occasions (see Appendix B.1, p. 152).

At the other end, the ”successful breeder” state corresponds to the event with the highest

possible rank. It is a special case of the fourth event class. Between these extremes we used

different behaviours to assign individuals to two event classes corresponding to uncertain

breeding state: they reflect the maximum level of information we were able to collect on the

reproductive state of these individuals.

The possible transitions are illustrated in Fig 3.2, which includes only the first five

occasions in the life of an individual, starting at birth (ringing). To summarize, after ringing,
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i.e. the breeding season of his birth, an individual (in state NBi) has only two possibilities,

wintering in the North or in the South. After the first winter, if it survived, this individual

can make transitions to one of the six possible states defined during the breeding season, and

so on. As selected individuals have a least survived until the first winter, death could only

occur after that time; in this case no other transition was possible (death is an absorbing

state). Consequently, this model only accounts for the longitudinal state trajectory of the

individuals that survived up to the first winter and were observed at least once in winter.

This mean that the survival probability of the juveniles from birth to the first winter is set

equal to one.
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3.3. Method

3.3.3 Modelling Approach

We used a multievent (Pradel, 2005) multi-season CR model to investigate fitness conse-

quences (on survival and reproduction) of wintering strategies in Pied Avocet. We used

a variant of the multievent model (Pradel, 2005) based on the complete data likelihood

(CDL) (Gimenez et al., 2007; Schofield, Barker & MacKenzie, 2009; Schofield & Barker,

2011) to estimate vital rates. Within thise modelling framework, wintering and reproductive

states are treated as categorical individual time-varying covariates. This model is analogous

to a multistate models for wintering states for which there is no uncertainty if individuals are

resighted (see 2.3.3 and Appendix A.1.1, p. 116). The multi-event framework was necessary

to account for uncertainty in breeding state determination during the breeding season (Ap-

pendix B.2, p. 154). Here, we considered unknown states as missing completely at random

(MCAR), i.e. the true individual state does not affect the ability of an observer to assign

the individual to this state.

The hierarchical formulation of the model (for details see Appendix B.2, p. 154) allowed

the estimation of transition probabilities between states conditionally on survival. Transi-

tions to wintering areas were modelled in the same way as in chapter II, i.e. a year effect

on the first transition and subsequent transition probabilities were considered constant over

time. We estimated the effects of age on the transitions toward a particular breeding site,

conditionally to wintering state. The importance of individual heterogeneity was highlighted

in chapter II, especially for survival. Consequently we considered models accounting for het-

erogeneity in survival via random individual effects, with two possible levels of heterogeneity

depending on the wintering area. We also addressed individual heterogeneity in survival dur-

ing breeding periods, using an inclusion variable (Appendix B.2.1, p. B.2.1). Last, we added

a random individual effect on transitions probabilities toward breeding states. We estimated

the correlation between traits directly related to fitness (survival and reproduction).

Moreover, we assessed age related changes in cumulative breeding performance. As suc-

cessful breeding is rare in our sample: less than 10% of the population is marked, predation

is high at all chicks stages and determination of individual productivity is difficult; we then
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Chapter 3. Demographic consequences of life-history strategies in a partial migrant

cannot assess lifetime reproductive success (LRS) accurately. Consequently, we focused on

the annual breeding attempts as a proxy for breeding performance. More precisely, we esti-

mated the age-related cumulative number of breeding attempts and compared this variable

between individuals wintering in the North and in the South area. We also compared indi-

viduals recruited at different ages. In the same way, we addressed the relationship between

age at first breeding and survival probability. Last, we estimated the proportion of breeding

attempts during the reproductive lifespan and the ratio of reproductive lifespan relative to

the total lifespan. These ratio are proxies for the intensity of the reproductive investment

during life. The closer to 1 is the ratio, the higher is the investment.

3.4 Results

The posterior predictive checks showed a good fit of the multivent model (Appendix B.4.2,

p. 176). The mean of the posterior distribution of the inclusion parameter was equal to 0.72:

this provides evidence that models should include parameters accounting for individual het-

erogeneity in survival from the breeding season to winter. Hereafter, posterior distributions

of estimated parameters will be summarized by their mean and their 95% Bayesian credible

interval (BCI).

3.4.1 Survival and observation processes

During winter, as shown in chapter II, the mean detection probability was lower for birds

wintering in the South than for birds wintering in the North (Appendix B.4.1, Fig. B.2C,

p. 175). This parameter was also less variable in the South than in the North. Within breed-

ing seasons, results were contrasted too. In Brittany, on the ringing colonies, philopatric birds

had a detection probability very close to one, with a higher mean probability of detection

for successful breeders than for unsuccessful breeders (Appendix B.4.1, Fig. B.2B, p. 175).

As non-breeders are mainly juveniles that were just marked, their detection probability was

virtually equal to one. Outside Brittany (Appendix B.4.1, Fig. B.2A, p. 175), successful

breeders (0.94, BCI: 0.7, 1) and unsuccessful breeders (0.81, BCI: 0.52, 1) had a high detec-
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3.4. Results

tion probability compared to non-breeders (0.14, BCI: 0.04, 0.28). The assignment probabil-

ities illustrated the difficulty to assign individuals to the right state (Fig. 3.3.A). Multi-event

framework accounted for important bias in state determination. Indeed, in Brittany, only

non-breeders and successful breeders were correctly assigned with a high probability. As we

automatically assigned the juveniles to the non-breeders class (immature birds) and that the

assignment of non-breeders to event 2 and 3 is close to zero, there seemed to be virtually no

marked adult non-breeders in Brittany. The probability of properly assigning individuals to

the state of unsuccessful breeders is only 0.52 (BCI: 0.49, 0.56; event 4), the probability of

assigning them to event 3 was 0.28 (BCI: 0.25, 0.31) and the probability to assign them to

event 2 equal to 0.19 (BCI: 0.17, 0.22). Outside Brittany, the proper assignment for success-

ful breeders was likely, but confidence interval were larger, in relation to the few occasions

observed. As a consequence, the unsuccessful breeders were properly assigned with a rate of

0.5 (BCI: 0.4, 0.61), assigned with a rate of 0.38 (BCI: 0.26, 0.48) to event 2 and 0.12 (BCI:

0.07, 0.19) to event 3. Misclassification of non-breeders outside Brittany was high. Most of

them were indeed classified in event 2 (0.77, BCI: 0.62, 0.89), against a rate of 0.05 (BCI:

0.01, 0.12) properly classified and the rest in event 3 (0.18 BCI: 0.07, 0.32), indicating that

non-breeders can in fact have breeding behaviour.

Seasonal survival was high but was calculated over short periods, i.e. 33 days for spring

and 80 days for autumn. For comparison purpose, we rescaled estimates on a 30 days period

(Fig. 3.3.B). There was a strong age effect on survival with a decrease of -0.85 (BCI: -1.4,

-0.4) on the robit scale, which is consistent with the hypothesis of senescence in survival rate.

On average, the survival rate in spring is lower than in autumn with larger differences after

the age of nine years old. However, estimates are imprecise after the age of 14 years old.

First autumn transitions probabilities toward wintering areas (North and South, Ap-

pendix B.4.1, Fig. B.2D, p. 175) were similar to those presented in chapter II, i.e. the

migration tendency decreased and residents became the dominant strategy in the popula-

tion breeding in Brittany. Estimates of subsequent transitions can be found in Table. 3.1.

Probability to be non-breeder in Brittany (NBi) when previously resident or migrant are

equal (0.5) but they actually are not identifiable, due to the lack of data, which supports the
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Figure 3.3: State assignment and survival probability. Panel A, state assignment
probability, inside and outside Brittany. Panel B, survival probability according to season.
NB: non-breeders; B: unsuccessful breeders; SB: successful breeder.

hypothesis that none or very few marked individuals were actual non-breeders in Brittany.

Probabilities to be breeder (irrespective to the success) was higher in Brittany than outside

(Table. 3.1).

Transitions from winter state to breeding state according to age class showed few dif-

ferences considering winter state (Fig. B.3, p. 176), except for age classes two and three:

probability to be a non-breeder outside Brittany was higher for migrants in age class two

and three; probability to be an unsuccessful breeder outside Brittany was higher for residents

in age class two and three; probability to be non-breeder in Brittany was higher for residents

in age class two. Mean probability to be unsuccessful breeder is higher in Brittany, what-

ever the wintering state. Mean probability to be a non-breeder was higher outside Brittany,

whatever the wintering state.

3.4.2 Breeding investment

Pied Avocets can attempt to breed when they are one year old, but the probability of such

early breeding was largely higher for individuals spending their first winter in the North
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North South
mean 2.5% 97.5% mean 2.5% 97.5%

NBi 0.50 0.03 0.98 NBi 0.50 0.03 0.97
Bi 0.56 0.49 0.65 Bi 0.44 0.35 0.51
SBi 0.62 0.37 0.86 SBi 0.38 0.14 0.63
NBo 0.37 0.25 0.50 NBo 0.63 0.50 0.75
Bo 0.71 0.58 0.83 Bo 0.29 0.17 0.42
SBo 0.86 0.55 1 SBo 0.14 0 0.45

Table 3.1: Autumn transitions. Left table, transition probabilities from reproductive
state to North wintering area (residents). Right table, transition from reproductive state
to South wintering area (migrants). These transitions were constant after first winter of
life (Fig. 3.3.A). Mean and BCI are displayed. Reproductive states: NBi: non-breeder in
Brittany, Bi: unsuccessful breeder in Brittany, SBi: successful breeder in Brittany, NBo:
non-breeder outside Brittany, Bo: unsuccessful breeder outside Brittany, SBo: successful
breeder outside Brittany.

(0.57, BCI: 0.04, 0.95) than for those wintering in the South (0.1, BCI: 0.01, 0.3; Fig. 3.4A).

For birds attempting to breed for their first time when two and three years old, there was

no difference in breeding probability between the two wintering strategies, (see Fig. 3.4B

and Fig. 3.4C, respectively), when four years old, all individuals have virtually attempted to

breed at least once (Fig. 3.4D). The number of four-year-old first breeders is negligible (≈ 0,

BCI: 0, 0.02). Consequently, we only report results of three ages of first breeding: one, two

and three years, respectively.

Reproductive investment (RI) is the cumulative number of breeding attempts at age

a, independently of breeding success (see Methods). If an individual attempts to breed at

each breeding occasion, its investment is 100% and its performance (cumulative number

of breeding attempts) is the bisecting line (Fig. 3.5A and B). North wintering individuals

exhibited a higher investment than South wintering ones (Fig. 3.5A). Before age 6, the

RI of the former ones is higher (p(RINorth > RISouth) = 1). No strategy reached full

investment (bisecting line) and they both showed a change point around the age of 14 years,

with a positive linear trend before that age and a plateau after. The estimated slope of

the regression (before the age of 14 years), using ordinary least squares, was 0.8 for South

wintering birds and 0.7 for North wintering birds. The two lines intersect around the age of
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Figure 3.4: Probability of first reproduction. Panel A, breeding probability when one
year old according to wintering state. Panel B, breeding probability when two years old
according to wintering state. Panel C, breeding probability when three years old according
to wintering state. Panel D, probability of never attempting breeding before age of four.
light grey: individuals faithful to North (residents); black: individuals faithful to South
(migrants) ; dark grey: individuals switching wintering strategy. Dashed lines indicate mean
value.

seven years (Fig. 3.5A).

Considering age of first breeding, interestingly, individuals that began to reproduce when

one year old exhibited a higher investment than those beginning later (Fig. 3.5B). Their

cumulative investment remained higher than that of birds recruiting later, and the rate of

increase of CRI with age decelerated only slightly at old ages. Individuals recruited when

two years old exhibited a smaller investment than the two older classes, and seemed to stop

their reproductive career around 15 years of age. The cumulative investment of individuals

beginning to breed when three year old was the lowest, but converges towards the one of

birds recruiting at the age of two, after the age of eight years. It is impossible to tell whether

there is evidence of senescence in this last strategy because of identifiability issues, due to

small the sample size after after age of 13 years. We did not find evidence of an effect of the
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Figure 3.5: Effects of wintering strategy and age of recruitment on reproduction
investment and survival rates. Panel A, number of breeding attempts according to
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Dashed line correspond to line 1:1, indicating investment in reproduction every year of life.
Survival rate for first breeders at three years old were not identifiable since 13 years old due
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age at first reproduction on seasonal survival (Fig. 3.5C).

The estimated mean reproductive lifespan was equal to 0.77 (BCI: 0, 1). During this

reproductive period, individuals would breed on 86% of the breeding occasions (BCI: 0,

1). Thus, individuals rarely skip breeding occasions, and the reproductive period encom-

passes more than three-quarters of Pied Avocets lifetime. However, these results must be

considered with caution because many birds involved in this study were still alive during

the last sampling occasion: their entire trajectory is not known yet. The estimated correla-

tions of the variance-covariance matrix of individual random effects for survival and breeding

rates provided slight evidence of a positive relationship between these two parameters (Ap-

pendix B.4.1, Fig. B.4 and Table B.2, p. 176). At the individual scale, a higher survival

probability was associated with a higher breeding probability (regardless of the season and
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the wintering strategy).

3.5 Discussion

In this study we explored the life-history traits involved in the contrasted demographic dy-

namics of migratory strategies in a population of partial migrant birds. Our main question

was whether individuals with different migratory strategies exhibited different reproductive

tactics. More precisely, we addressed the differences in cumulative reproductive investment

with age, and in age at recruitment, and the differences of age at first breeding on age-

related changes in cumulative investment. We knew from previous work (see chapter II)

that the residents experienced a demographic increase from the 90s onwards, while the sub-

population of migrants remained stable; we also know that the survival rates associated to

the two strategies did not differ. Here, we provided evidence that autumn survival is higher

than spring survival probability, but we still did not find evidence of a difference between the

two migratory phenotypes. By contrast, results concerning reproductive investment revealed

important differences. From a modelling point of view, we showed that it is important to

take uncertainty in breeding state assignment into account. Indeed, miss-classification would

lead to major biases: nearly 50% of the breeders were correctly classified and only 5% of

the non breeders outside Brittany. Sources of errors were twofold: breeding behaviours is

rarely observed when individuals are detected by investigators, and non-breeders are usually

observed with ambiguous behaviour (partial sequences of breeding behaviours). Interest-

ingly, non-breeders mainly dispersed outside Brittany and they were overrepresented among

migrants younger than three years old.

One major difference in life-history traits between the migration strategies is the age

at recruitment. While this parameter varies in time, nearly 60% of the residents attempts

to breed when one year old versus 10% of the migrants. Such differences in the onset of

reproductive investment could influence the sub-populations growth rates (Stearns, 1976;

McGraw & Caswell, 1996; Acker et al., 2014) and partly explain the contrasted dynamics of

the migratory strategies. In addition migration can entail extra costs (Grist et al., 2017); we
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did not find evidence of survival costs, but migration could make reproduction more difficult

for young individuals.

The age-related cumulative reproductive investment is higher in residents at least during

their first six years of life, but the differences disappears afterwards. This can be inter-

preted as evidence of a higher early breeding investment in residents. Regardless of the

strategy, we found evidence of a decline in reproductive abilities with age (reproductive

senescence), starting at around 14-15 years of age. This phenomenon is common in wild

vertebrates (Nussey et al., 2008; Marzolin, Charmantier & Gimenez, 2011; Hammers et al.,

2013; Nussey et al., 2013; Pardo, Barbraud & Weimerskirch, 2014). Several non-exclusive

hypotheses have been developed to explain senescence. The “disposable soma” hypothesis

suggests that selection pressures on somatic maintenance and repair favour early investment

in reproduction to keep the organism in the best conditions as long as it can survive in the

wild (Kirkwood, 1977; Kirkwood & Austad, 2000). The cost of a high performance in early

life (reproduction and survival) is then balanced by higher somatic damages in later age, i.e.

an accelerated senescence, a decrease in survival or reproductive performance or both (Kirk-

wood & Austad, 2000). According to this hypothesis, this decrease is cumulative with

age (Orell & Belda, 2002). The “antagonistic pleiotropy” hypothesis proposed by Williams

(1957) postulates that gene selection that favours early life performance, ”youthful vigor”,

confers disadvantage later on, ”declining vigor”, due to a simultaneous diminishing selection

against late-acting deleterious genes that accelerate senescence. These two theories clearly

point to a trade-off between early life investment and late-life performance, which led to

optimality theories of ageing, with mutation of genes (or alleles) with pleiotropic effects in

the “antagonistic pleiotropy” hypothesis, and different possible resource allocation strategies

in the “disposable soma” hypothesis (Partridge & Barton, 1993). While it is not possible to

disentangle these mechanisms in this study, such mechanisms are consistent with the pattern

described in Pied Avocets. Indeed, the convergence of age-related cumulative reproduction

investment curves between the two migratory phenotypes, around the age of seven years, is

consistent with the hypothesis of an extra cost of higher investment in early life in residents

compared to migrants.
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The “mutation accumulation” hypothesis suggests that senescence is mainly due to dele-

terious genes caused by mutation an genetic drift; these genes impede somatic maintenance

and reparation at old age (Medawar, 1952; Edney & Gill, 1968). According to this hypothesis

we can expect that senescence affects both reproduction and survival in all individuals. The

“terminal investment” hypothesis stipulates that individuals facing decreasing performances

allocate the rest of their resources in reproduction at the expense of survival, since survival is

anyway, compromised (Williams, 1966). In such case we would observe no or weak decrease

in reproductive investment before death (in breeding probability and cumulative reproduc-

tion with age, Isaac & Johnson, 2005). We observed this pattern only in individuals that

recruited early. On the contrary, the senescence hypothesis predicts a decline in performance

at old age (McNamara et al., 2009; Weladji et al., 2010). In accordance with this theory, we

found evidence of decrease in performances (reproduction and survival).

We did not find evidence of differences in survival rate according to age of first breeding or

of a decline in survival with age, neither in spring nor in fall. However, there was a substantial

effect of the age of recruitment on cumulative age-specific reproductive investment. Interest-

ingly, individuals recruiting when one year old showed the highest reproductive investment

and nearly no decline in investment with age, which contrasts with individuals recruiting

later. However, the cumulative investment of individuals recruiting at the age of three years

became equal to the cumulative investment of those recruiting at age two around the age of

seven years. These results are consistent with the the ”individual heterogeneity” hypothesis,

or the ”individual quality” hypothesis sensu Curio (1983). The conceptual difficulties raised

by the “quality hypothesis” (i.e., a circular logic; Wilson & Nussey 2010; Bergeron et al. 2011)

do not detract the fact that heterogeneous populations can be composed of individuals with

both higher survival probability and breeding rates than others (Cam et al., 2002, 2013).

Under the heterogeneity hypothesis some individuals should be able to breed earlier and to

exhibit higher reproductive and survival rates than others (van Noordwijk & de Jong, 1986).

Such a positive correlation between life-history traits has been empirically demonstrated

several times (Cam et al., 2002; Beauplet et al., 2006; Weladji et al., 2008; Hamel et al.,

2009; Cam et al., 2013). One of the hypotheses put forward to explain heterogeneity relies
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on the idea that reproduction costs affect individuals differently (van Noordwijk & de Jong,

1986). In our study systems, some individuals recruited early, their cumulative reproductive

trajectory was higher than that of others, and we did not find evidence of senescence in these

individuals. These were mainly residents. In contrast, individuals exhibiting lower perfor-

mances sensu latto (age of first breeding, age-related cumulative reproductive investment,

late-life decline in reproductive investment), were mainly migrants. Similar results have been

found in long-lived seabirds (Nol & Smith, 1987; Beauplet et al., 2006; Aubry et al., 2009).

Our results primarily support the heterogeneity hypothesis because we found evidence that

the models including individual random effects on both survival and reproductive transition

probabilities had higher posterior probabilities than other models using an inclusion vari-

able. We also found evidence of positive correlations between individual effects on fitness

components.

However, the causes of fitness differences between migration phenotypes are unclear at

this stage, i.e. we cannot conclude if there was direct or indirect selection on these traits.

Indeed, other factors could explain why residents ”do better” than migrants. Temporary

environmental conditions during the study period (especially mild winters) could favour one

phenotype (residents) against the other and explain the contrasted demographic dynamics of

the two strategies over the study period. In contrast, harsh conditions in winter (wintering

cold spell) could partially alter the relative advantages of both strategies. In other words,

death by starvation or by cold can favour the migrant phenotype. This climatic pattern

could explain the decline of the migrating population observed since the beginning of the

study (see chapter II); thus over a period of time characterized by mild winters, especially

compared to the previous period. In this context, the persistence of partial migration, where

migrants have lower breeding performances could be explained by a conditional strategy in

which migrants made ”the best of a bad job” (Lundberg, 1987, 1988; Adriaensen & Dhondt,

1990).

Here, we found additional evidence of higher fitness in residents than in migrants, but

we only assessed fitness components, not lifetime fitness. Generally, there is no unique

response to selection in the wild and opposite responses of phenotypes can result in the same
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lifetime fitness level. We thus need to evaluate several other age-related traits to qualify

individuals or categories of individuals (Shuster & Wade, 1991). Consequently, further work

will be required to estimate the part of the growth rates of the sub-populations explained

by selection, and to fully address the fitness of each phenotype.
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”Breeding in Brittany”
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Estimating fitness of life history
strategies: when demographic
movements are of prime interest
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4.1. Abstract

4.1 Abstract

In the context of global warming, it is fundamental to understand observed changes in

population size of mobile species, but assessing the demographic rates of open populations is

still challenging. Few empirical studies allowed to quantify immigration and emigration over

time, because immigration is generally not observable and emigration can only be estimated

using capture-recapture (CR) data at a large spatial scale. Moreover, little is known on how

life-history polymorphism could be associated with variations in population dynamics, i.e.,

on strategy-dependent fitness.

We used a long-term data set (19 years) from a breeding population of Pied Avocet (Re-

curvirostra avosetta), a long-lived partial migrant shorebird, in Brittany. We addressed the

temporal variations in population size and in the representation of both migratory pheno-

types in the population. We developed an integrated population model (IPM) that allowed

us to assess immigration rate without specific data. Because individuals of different ages

are expected to have different contribution to population fluctuations, we modelled the pop-

ulation structure with fifteen age classes, on the basis of previous analyses that showed

that survival was age-dependent. We assessed the fitness of both migratory phenotypes and

addressed the question of their persistence in the population.

We found that the breeding population in Brittany was stable at the scale of Brittany,

but was in fact declining if emigration was taken into account. The population was thus

mainly sustained by immigration, productivity being too low. The fitness of the migrant

phenotype (0.92) was substantially lower than that of the resident phenotype (1.0), which

resulted in a decrease in the frequency of the migrant phenotype. We demonstrated that

the overall dynamics of this population mainly depends on a metapopulation system with

complex flux (immigration and emigration) with other populations, fluctuating over time in

relation with the dynamics of the migrant and resident sub-populations.

This study highlights the importance of accounting for emigration and immigration when

assessing local population size variations. These findings underscore the importance of long-

term CR studies at large scale for understanding the drivers of open population dynamics.
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This is the price for improving and evaluating conservation policies.

4.2 Introduction

Temporal fluctuations of population size have long been an important research area in ecol-

ogy and evolution. Which are the key demographic rates responsible of such fluctuations,

why some disappear and others persist (i.e. if and how regulation takes place), are yet

under debate (Hixon, Pacala & Sandin, 2002). Understanding the mechanisms underlying

population dynamics, not only concerning changes in number, but also in structure (age- or

stage-structure) is of vital importance, especially in the context of increasing anthropologi-

cal impacts on ecosystems and climate changes. However, estimating the size and structure

of populations of free ranging animals, their variations over time and the corresponding

variations in fitness for individuals, remains a challenge.

The dynamics of local populations result from the expression of individual life history

strategies, which can be affected by all kinds of environmental conditions, including abiotic

factors and inter-individual relationships, both within and between populations (Oro et al.,

2010; Pardo et al., 2017). In addition, population dynamics is subject to stochastic events.

First, a population can experience stochastic variations in size due to random realisation of a

given demographic strategy: i.e. “demographic stochasticity” (Kendall, 1949; Roughgarden,

1975). Second, fluctuations in the environment due to unpredictable events, for example af-

fecting climate (Goss-Custard, 1996; Johnson, Green & Hirons, 1991), can deeply influence

individual success and hence lead to population changes, i.e. “environmental stochastic-

ity” (Roughgarden, 1975). This complexity makes it challenging to identify the drivers

of population variations, and to find evidence of regulation processes in empirical studies.

Regulation relies on three basic phenomena (Murdoch, 1994): (i) persistence (long-term suc-

cession of generations), (ii) boundedness (existence of lower and upper limits of population

size variations), (iii) return tendency (feedback mechanisms constraining population fluctu-

ations to vary around a mean). Density-dependence is recognized as an essential mechanism

generating regulation (Hixon, Pacala & Sandin, 2002), but the mechanisms involved can be
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diverse (e.g., competition, predation).

Furthermore, the different strata composing a population (e.g., sex- or age-classes, devel-

opmental or physiologic stages) may react to their environment in different ways, which can

strongly influence the overall dynamics of the population (Oro et al., 2010; Saether et al.,

2013; Pardo et al., 2017). The strength and form of the relationship between demographic

parameters and environmental factors may indeed vary across the different strata of the

population. For example, density dependence in the different age classes of the population

has been demonstrated to differentially affect survival (Lok et al., 2013). The ”critical age

group”, defined theoretically by Charlesworth, 1972, denotes the age class or the group of age

classes that most strongly contributes to density-dependent regulation. As an illustration,

recent empirical study has shown that the number of first breeders strongly affects popula-

tion growth in a short live passerine (Parus major), by affecting recruitment and survival

rates of the other age classes (Gamelon et al., 2016). Fluctuations in population structure

can also induce important differences in the dynamics of strata, independently of population

size (Coulson et al., 2001).

Despite this apparent complexity, fluctuations in abundance in an open population al-

ways result from birth, death and movements, and can thus be accounted for by four pro-

cesses only : recruitment and survival probability, emigration and immigration rates (Sibly

& Hone, 2002; Schaub & Abadi, 2011). Hence, estimating these demographic parameters

is the basic step of any empirical study of population dynamics, because these parameters

are the expression of individual life history and behavioural strategies (Saether & Bakke,

2000; Saether et al., 2013). There is a growing recognition that separated analyses of demo-

graphic parameters do not allow a full understanding of variation and covariation of demo-

graphic rates and their contribution to fitness (Cam et al., 2002; Schaub, von Hirschheydt

& Grüebler, 2015). Until recently, meaningful demographic analyses of population dynamics

have indeed required detailed data from structured populations with a minimum level of

uncertainty (e.g., very good detection of individuals, knowledge of breeding status and age,

etc.), which can seldom be achieved in empirical study unless artificial conditions are intro-

duced in the environment, such as nest boxes for birds, for example (Grøtan et al., 2009).
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In recent years, several modelling techniques have been developed that offer the possibility

to use several sources of data simultaneously (e.g., data from capture-recapture, hereafter

CR, and counts) and to deal with for all known sources of bias and stochasticity at the

same time (Besbeas et al., 2002; Morgan, Brooks & King, 2004; Schaub & Abadi, 2011; Kéry

& Schaub, 2012). These methods also enable to investigate potential interactions between

demographic parameters, and their influence on the population growth.

Among the innovative features of the recent modelling approaches, the estimation of

quantities that are difficult or impossible to directly measure in the field (e.g., immigration,

emigration), become easier and their integration ensures more precise estimations. Indeed,

immigration is generally not assessed in local scale studies, because immigrant birds generally

come from non monitored areas. Emigration, either temporary or permanent, is easier to es-

timate with CR methods, but this requires monitoring a large proportion of the species range

for accurate estimates, especially if survival differs between resident and migrants (Bird et al.,

2014). In geographically open populations, movements, i.e. emigration and immigration,

can have important effects on population dynamics, some populations absorbing individuals,

some exporting individuals, and others doing both (at the same time). Immigration can con-

tribute to sustain populations but little is known about the importance and the consequences

of immigration on population dynamics (Abadi et al., 2010b; Schaub, Jakober & Stauber,

2013). Importantly, ignoring emigration can bias the estimation of demographic parameters,

such as survival rate (Schaub & Royle, 2014). Studies encompassing the analysis of the four

key demographic parameters (recruitment, survival, emigration and immigration) in open

populations are rare, althought the knowledge of all these rates is necessary to device a

comprehensive description of the population dynamics (Schaub, Jakober & Stauber, 2013;

Weegman et al., 2016).

Open and structured populations, where individuals experience different life-histories,

offer opportunities to understand these relationships in relation with growth rate fluctua-

tions and potential regulation mechanisms. In the presence of partial migrant populations,

whose persistence mechanisms remain largely unknown (Chapman et al., 2011), the use of

open population model is thus particularly appealing. Indeed, while partial migrants expe-
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rience a large set of range of environments during their annual cycle, the two phenotypes

are maintained in a large number of species (Berthold, 1999), which raises the question of

polymorphism maintenance in these populations. Residents and migrants generally coexist

during the breeding period, then, the former stay on breeding ground during winter, while

the latter migrate. As temporal variations in the growth rate (i.e. in fitness, as pointed by

Stearns, 1976, 2000) are driven by differences in life history traits (Saether & Bakke, 2000;

Saether et al., 2013), we expect different temporal dynamics, resulting from different demo-

graphic rates, between the two sub-population. Hence, each sub-populations composed by

individuals sharing the same traits, will possess a specific demography that will contribute

to the overall population. It is then fundamental to consider the specificity of both sub-

populations to disentangle the demographic processes at work in population size variations.

In the present study we propose a mechanistic analysis of the dynamic of the population

of a partial migrant shorebird, the Pied Avocet (Recurvirostra avosetta). The population of

Pied Avocet of Brittany (France) is restricted to a small number of closely related colonies,

on the Atlantic coast, in the vicinity of the Morbihan Gulf (South). Previous studies (see

chapter II and III) have shown that the two wintering strategies (sedentary and migrant

individuals) experience different dynamics, that led to a decrease in the relative frequency

of the migrants. No differences in survival rate between the two wintering strategies have

been found. In addition, the recruitment of residents took place earlier, which can partly

explain the difference in dynamics between the two sub-populations. However, demographic

informations obtained so far did not provide a definite conclusion concerning potential fit-

ness differences between the two strategies. Specifically, the previous studies focused on

sub-samples of the dataset, restricted to individuals observed during winter. A comprehen-

sive approach for the investigation of the demographic mechanisms responsible for changes

in population size over time should include, in addition to the exploration of the major

life-history traits, a study of the population flux (emigration and immigration) and of the

evolution of the population structure. In the present study we used Bayesian integrated

population models (IPMs) to combine several sources of demographic data, in order to (i)

assess the entire population trend and the key demographic parameters (e.g., adult and
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juvenile survival, productivity, emigration, immigration), (ii) identify the most influential

demographic rates on the temporal variations of the population growth rate and the possible

regulation mechanisms, (iii) assess the fitness within the two sub-populations (defined by

wintering strategies) and their demographic drivers, (iv) investigate the ”critical” age classes

which contribute most to population growth rate fluctuations.

4.3 Methods

4.3.1 Study area and data source

The population of interest corresponds to a small number of breeding colonies of Pied Avocets

in the South of Brittany, on the Atlantic coast of France (47◦37’N, 2◦42’W; Morbihan Gulf).

From summer 1996 to summer 2014, 539 juveniles were captured and individually marked

with coloured plastic bands when 3-4 weeks old (close to fledging). The combinations of

colour bands were visible from up to 300m using a 20-60× spotting scope. The main colony,

in the natural reserve of Séné, was monitored weekly during all the breeding seasons (from

April first to August). The other colonies were close to the main one and also monitored.

However, most of the colonies were not stable in time and were subject to colonization and

extinction. We thus considered them as extensions of the main colony, which was confirmed

by the resightings. Collected data consisted not only in presence/absence data but also in the

recording of the breeding behaviour of marked individuals. Annual juvenile counts consisted

in the sum of observed fledglings and juveniles observed just before fledging (when 3-4 weeks

old) but whose fate is not known. The number of pairs was estimated indirectly using laying

dynamics. We used laying accumulation curves to determine the first laying peak, which

generally occurred around the first week of May. To assess the number of pairs established

in the colonies, we summed the number of active nests active at laying peak, the number of

nests active in the previous week and that failed, and the new nests where adults laid eggs

in the following week. The breeding population was subject to high predation pressure, and

Pied Avocets generally make two or even three breeding attempts during the breeding season

in Brittany, with an estimated time interval of at least one week between nest failure and the
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laying of the first egg of the replacement clutch. Even if females can make several breeding

attempts, we considered that they bred a maximum of one fledges, because we have very

few examples of multiple broods raised up to fledging by a unique marked female during the

same breeding season (2 cases in the database).

Outside Brittany, the main breeding sites were monitored by professionals in nature re-

serves and by a network of volunteers in the other sites along the French coast, and over most

of the breeding range in Europe (see Fig. 3.1.B). Marked individuals were also resighted dur-

ing the non-breeding season, during the post-breeding gathering and the wintering periods,

with particular attention to the most important wintering places in France, Portugal and

Spain. Most of the wintering range was also covered by a large number of volunteers across

Europe (see Fig. 3.1.A). Data collected during the wintering period (from December 20th to

February 25th) allowed us to assign individuals to one of the two wintering strategies, i.e.

birds wintering in the North (France and marginally England) versus birds wintering in the

South (Portugal and Andalusia). In summary, several types of demographic data are avail-

able: annual population counts at breeding colonies (number of pairs), productivity (number

of fledging juveniles), survival (from capture-recapture data, CR) and movements outside

breeding colony (dispersal) as well as during the wintering season (wintering strategy). All

of these data are sufficient to estimate population dynamics (variation in time, gain and loss)

and the underlying demographic parameters (e.g. survival, site or state transition), as well

as lifetime, fitness for the different kinds of individuals.

We distinguished several sub-populations, in the following analyses, which all were com-

posed from individuals born in Brittany. First, we distinguished two sub-populations based

on wintering strategy, i.e. the North wintering individuals we called ”residents” and the

South wintering individuals we called ”migrants”. We also referred to ”Brittany population”

as all the individuals alive and born in Brittany, i.e. breeders in Brittany and emigrants

from Brittany. We also consider as the breeding population, only the individuals breeding

in Brittany, and not those recruited outside.
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4.3.2 Demographic parameters estimation and system description

In order to estimate demographic parameters and their changes through time, we used a

female-based aged-classified and multi-state integrated population model (Schaub & Abadi,

2011; Kéry & Schaub, 2012). We used pre-breeding census for the estimation of the popu-

lation size and split breeding range in two different units. The colonies located in Brittany

were considered as a unique colony (separated from all others), because monitoring was more

intensive: we then expected an higher resighting probability than elsewhere. This distinc-

tion allowed us to estimate movement probability from and to birth colony, i.e. fidelity,

and to estimate immigration and emigration rates. We used a female-based model with 15

adult age-specific population stages. Previous analysis (see chapter II and III) have indeed

provided evidence that survival of Pied Avocets from Brittany varies with age and exhibits

individual heterogeneity, but the precision of survival estimates decreases with age. Conse-

quently, we decided to limit the number of age classes. To illustrate the approach, the life

cycle for the first three cohorts is shown in Fig. 4.1. Pied Avocets can recruit at age of one

year, and virtually all the individuals are recruited at age of four years (see chapter III).

Here, annual recruitment implicitly included the fecundity of each cohort.

The expected population structure and age transition processes can be mathematically

described as follows (Eqn 4.1):

E(N1,t+1|N1,t, ..., N15+,t) = (N1,t +N2,t + ...+N15+,t)φjuv,tbt × 0.44,

E(N2,t+1|N1,t) = N1,tφ1,t,

...

E(N15+,t+1|N14,t, N15+,t) = N14,tφ14,t +N15+,tφ15+,t,

(4.1)

where Ni,t is the number of individuals in age-class i ∈ {1, ..., 15+} during year tt, φjuv,t and

φi,t are the survival of juveniles and adults in age-class i ∈ {1, ..., 15+}, and bt is the annual

fecundity (number of offspring per female). Juvenile survival is the survival probability

from nearly fledged (age of 3-4 weeks, i.e. time of ringing) to the following breeding season

(this estimate was used for the productivity assessment). Sex ratio was estimated from

behavioural observations of copulation events and from DNA samples from fledglings during
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Figure 4.1: Two-state life cycle graph of the Pied Avocet population from Brittany.
The population is considered geographically closed (all breeding range monitored) with two
breeding areas describing birth site, Brittany and elsewhere (outside Brittany). The model
is female-based and pre-breeding census. The population stages are defined by age, here only
1-year-old individuals (N1), 2-year-old individuals (N2) and 3-year-old individuals (N3) are
represented, for the sake of clarity. Stages also account for location: NI indicates populations
breeding inside Brittany and NO populations breeding outside Brittany. The demographic
parameters are age-specific, survival (φi, i ∈ {1, ..., 10}), productivity (fNi

, i ∈ {1, ..., 10}),
and transition between sites (ψ) depends on time and previous state (I: inside, O: outside)
except the first one. Solid lines indicate fidelity, dashed lines indicate emigration from
Brittany and dotted lines immigration. Some parameters are not individually identifiable
(e.g. fecundity of each cohort), but some parameters (e.g. annual fecundity) can be estimated
thanks to the integration of other data.

capture occasions. As well adults and fledglings shown the same male-biased sex ratio.

Thus, we used a sex ratio of 0.44, estimated from 279 individuals (123 females, 156 males;

χ2
1 = 3.67, p = 0.06 suggests a bias sex-ratio) in the whole dataset of marked individuals,

including individuals coming from several colonies along the French Atlantic coast.

Annual movement probability of individuals were estimated through CR data outside

Brittany. The emigration rate can be estimated from resightings of marked individuals
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outside Brittany, while immigration is a hidden component estimated thanks to the IPM.

Each adult age-specific population state can result from four possible transitions: NIa,t =

φa,t×(NIa,t−1ψt,I,I+NOa,t−1ψt,O,I) and NOa,t = φa,t×(NOa,t−1ψt,O,O+NIa,t−1ψt,I,O), where

a is the age-class a ∈ {1, ..., 15+}, t the year, φ the survival probability, ψ the transition

probability between Brittany and the other breeding colonies and the subscripts I and O,

which indicate transition directions, referring to inside (I) and outside (O) Brittany, respec-

tively. The number of individuals present in Brittany in year t and belonging to population

stage a is then NIa,t, i.e. philopatric and immigration from locally born individuals, and

the number of birds outside Brittany is NOa,t, i.e. emigrants.

However, immigration (from birds not born in Brittany) potentially concerns birds from

all colonies of Pied Avocets in the West Palaearctic breeding range, where there is no ringing

programme in the vast majority of cases. Consequently, immigration cannot be entirely

assessed with CR data. The estimation of immigration in Brittany was thus made possible

by including an extra annual population stage structure (Nim,t), that accounts for unmarked

immigrant birds (Eqn. 4.2):

NIt =
15+∑
a=1

NIa,t +Nimt, and ωt = Nimt

NIt
, (4.2)

where NIt is the expected number of females in Brittany during year t, NIt being estimated

from the annual counts of breeding pairs, and the sum of the NIa,t terms is the annual

population size, estimated from the integrated demographic parameters (counts, survival

and fecundity). Finally, the annual immigration rate ωt was derived from the ratio between

the number of immigrants and the population size in Brittany.

We also derived the annual growth rate of the population (λt) and the geometric growth

rate (λG), from population size estimates (Eqn. 4.3):

λt = Nt+1

Nt

= NIt+1 +NOt+1

NIt +NOt

=
∑15+
a=1 NIa,t+1 +Nimt+1 +∑15+

a=1 NOa,t+1∑15+
a=1 NIa,t +Nimt +∑15+

a=1 NOa,t

,

λG =
(

t∏
a=1

λi

)1/t

,

(4.3)

with NIa,t and NOa,t the numbers of individuals of age-class a in year t inside and outside

Brittany, respectively. We used the geometric mean of the population growth rate during the
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study as a measure of the individual fitness in this population. The CDL formulation used to

analyse the CR data, made it straightforward to derive the annual proportion of North and

South wintering birds. We derived the geometric mean growth rate of these sub-populations

and used it to assess the fitness measures for both wintering strategies, assuming that the

proportion of each strategy in the CR data is the same as in the whole Brittany population.

4.3.3 Integrated population modelling approach

IPMs are defined as ”models that jointly analyse data on population size and data on de-

mographic parameters” (Schaub & Abadi, 2011). They are relatively new (Besbeas et al.,

2002; Morgan, Brooks & King, 2004). Here, we used a Bayesian approach with a hierarchical

formulation, which facilitates the joint analysis of several datasets, including different types

of data. The Bayesian approach to IPMs is also a flexible and powerful tool to address

demographic and evolutionary questions linked to variation of population size (Schaub, von

Hirschheydt & Grüebler, 2015; Bjørkvoll et al., 2016). Implementing these models has be-

come relatively easy thanks to recent developments (Schaub & Abadi, 2011; Kéry & Schaub,

2012). The advantages of this modelling framework are numerous. For example, it allows

the analysis of several source of demographic data in one single model. It also accounts for

uncertainty in data collection by jointly modelling state and observation processes. The joint

likelihood combines three components: a state-space model for population size estimation

(count data), a state-space model for survival estimate (CR data) and a model for fecundity

estimation (fledglings count data). The population size is linked to underlying demographic

rates via an age-structured model with 15 stages (i.e. a Leslie matrix).

The equations 4.1 and equation 4.2 describe the global population structure and a part

of the breeding population life cycle graph is provided in Fig. 4.1. In order to include demo-

graphic stochasticity, appropriate statistical distributions were set to all annual population

stages (for details, see Appendix C.1, p. 199). The likelihood of the state-space model (LSS)

for count data is the product of the observation process (error in pairs estimation) and the

state process (reproduction): [C|N ][N |φjuv, φ1, ..., φ15+, f, ω], where C stands for count data,

N is the estimated population size, φ the stages-specific survival, f the fecundity and ω the
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immigration rate. The likelihood of the state-space model (LCR) for CR data is the likelihood

of multistate model, which is also the product of the observation process (error in individual

detection) and the state process (survival): [Y |p,A, z][A|φjuv, φ1, ..., φ15+][z|ψz], with Y the

observation matrix, p the detection probability, A the partially latent true alive matrix, z

a two states matrix defining reproductive state. Here we used the complete data likelihood

approach (Schofield & Barker, 2008; Schofield, Barker & MacKenzie, 2009), for details see

Chapter III and Appendix C.1.2 (p. 200). Finally, the likelihood (LP ) of the productivity

data is assumed to be unbiased (no measurement error) and dependant on the counts of pairs

and fledglings: [Juv, Fem|f ], with Juv the annual count of juveniles and Fem the annual

count of breeding females (pairs). Assuming independence among the three data sets, we

can express the joint likelihood (LIPM) as the product of the component likelihoods:

LIPM = LSS × LCR × LP =

[C|N ][N |φjuv, φ1, ..., φ15+, b, ω]× [Y |p,A, z][A|φjuv, φ1, ..., φ15+][z|ψz]× [Juv, Fem|b]

Hence, each likelihood component shares some parameters (see also Fig. C.1, p. 201) with

another component. One important assumption for the unbiased estimation of the joint

likelihood is the independence of the datasets. However, in this study, the count dataset

includes the individuals of the CR dataset. However, Abadi et al. (2010a) have shown

that the violation of this assumption has limited effects on the estimates of demographics

parameters. The use of the same data in more than one dataset mainly affects the accuracy of

the estimates and this effect is proportional to the frequency of the redundancy of individuals

in the different datasets (Abadi et al., 2010a).

IPMs offer the possibility to estimate quantities that are not measurable or not observable

in the field. The immigration rate is a good example of such parameters in wild animal

populations, because generally, unmarked immigrants and residents cannot be distinguished

(as is the case here). The integration of population size and demographic parameters allows

the estimation of this rate. The model also allows the quantification of the population

structure (i.e. size of the different age-class segments, never observed).
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4.3.4 Model fitting and goodness-of-fit assessment

We used a Bayesian approach (Kéry & Schaub, 2012) for inference on the parameters of the

IPM. We preformed analyses using Markov Chain Monte Carlo (MCMC) simulations with

the software programme JAGS 4.0 (Plummer 2003) called from R 4.4.1 (R Core Team, 2016)

through the package jagsUI 1.4.4 (Kellner, 2016). We specified vague prior distributions for

the parameters, using reasonable bounds (Appendix C.1.3, p. 203). In particular, we used

a uniform distribution for the annual number of immigrants with a left negative bound to

account for the possibility that there is no immigration at all (Schaub & Fletcher, 2015).

JAGS code is available in Appendix C.3 (p. 206).

For parameters estimation we ran 3 chains for 100000 iterations. We discarded the first

50000 iterations and retained every 2th iteration of the remainder. We used the Brooks-

Gelman-Rubin diagnostic to assess convergence (Brooks & Gelman, 1998) and it was satis-

factory (all R̂ < 1.07). To assesses model adequacy, as dedicated goodness of fit methods

are not yet available (due to the complexity of the IPMs; (Schaub & Abadi, 2011)), we

performed separated posterior predictive checks (PPC) for each observation model. We use

the χ2 discrepancy measure (Gelman et al., 2003) and computed Bayesian p-value to test

the assumption that the model satisfactorily accounts for the process that gave rise to the

data (Hooten & Hobbs, 2015). Details of the methods can be found in Appendix C.5 (p. 220).

We also performed model selection by comparing the deviance information criterion

(DIC), to test different biological hypotheses. In particular, we addressed for the hypothesis

of a time effect on adult survival, using a random time effect (ηφt ∼ Normal(0, σ2
φt)). We

also studied whether the adult transition probability from Brittany was best accounted for

by a year effect treated as factors, or a linear effects. Lastly, we compared models where the

first year recruitment probability is constant over time, with a models where recruitment

probability varies with time.
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4.3.5 Contribution of demographic parameters to population fluc-
tuations

The relationships between demographic parameters and population growth can be assessed

by studying correlations between the estimates of annual demographic rates and population

growth rates. Demographic rates used in temporal correlations were fecundity, immigration

and emigration rate, probability to be resident during the first winter, adult probability to

return in Brittany when previously emigrated and juvenile survival. As survival rate was not

time dependant, we computed from CR data an annual death rate by dividing the number

of dead individuals between year t and t + 1 by the number of alive individuals in year t.

We computed these correlations using the posterior distribution of each parameter and we

estimated the probability that they were positive or negative. Specifically, we estimated

the correlations between population growth rate and fecundity, immigration, emigration and

transition rates between different wintering and breeding areas.

Moreover, we compared the results of four approaches of population growth rates: (a)

taking immigration and emigration into account (Brittany population growth rate); (b) with-

out emigration (overall population growth rate); (c) without immigration (by subtracting

number of immigrants); (d) without emigration and immigration (by subtracting number of

immigrants from the overall population).

In order to estimate the effects of age-class numbers on population growth, we examined

the relationship between annual population growth rate and population structure in a regres-

sion framework. We used a linear regression (Schaub, Jakober & Stauber, 2013; Gamelon

et al., 2016) between the log population growth rate and the number of individuals in each

age class:

log(λt) = α + β1N1 + β2N2 + ...+ β14N14 + β15N15 + ελ, with ελ ∼ Normal(0, σ2
λ)

where α is the intercept, βi the regression coefficients for age class i and ελ a random time

effect corresponding to the variance not explained by age-specific numbers. The regression

was fitted with a simple Bayesian regression model with vague Normal priors on regression

coefficients (Appendix C.4, p. 218). This regression was fitted using 15000 random draws
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among the 75000 posterior samples of the parameters used.

4.4 Results

The model with the best fit was model 1, see Appendix C.2 (p. 206), where survival is mod-

elled with a linear time trend and an individual random effect, the recruitment probability

in first year is constant and subsequent transitions between breeding sites have a linear time

trend and a year random effect. Posterior summaries of the complete set of parameters from

the IPM is given in Appendix C.6 (p. 225). We found substantial differences in the fitness

assessment among the wintering strategies. Hereafter, we report posterior means and 95%

Bayesian credible intervals (BCI) of the estimated parameters and derived quantities.

4.4.1 Population dynamics

Estimates of population size closely fit the population counts of pairs in Brittany (Fig. 4.2).

The posterior predictive checks provide evidence of a good fit with Bayesian p-values close

to 0.5 when all the years were pooled (Appendix C.5, Fig. C.5, p. 224). Annual discrepancy

measures also indicate a good fit, except for the first two years (1996, 1997) for count data

(Appendix C.5, Fig. C.2, p. 221), and for the first year for fecundity data (Appendix C.5,

Fig. C.3, p. 222). There was no lack of fit for the detection probability (corresponding to CR

data; detection in 1996 was not estimated). Lack of fit in the first two years of the study for

most parameters was due to lack of information in the data. Hence, posterior distributions

of parameters mainly reflected prior distributions. Consequently, we discarded samples from

the posterior distributions of the parameters concerned by lack of fit, both in the figures and

in the pot-hoc analyses.

The detection probability during the breeding season in Brittany was virtually equal to

one (Fig. C.6, p. 225), while detection outside Brittany was low, with mean 0.28 (BCI: 0.1,

0.49). Detection probability was very low outside the study area (Fig. 4.2D) but regularly

increased, especially after 2005, when similar monitoring programmes were developed all

along the French Atlantic coast. During the wintering season, results were similar to those
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previously obtained (see chapter II), with mean detection probability equal to 0.4 (BCI: 0.11,

0.59) in the North of Europe and 0.21 (BCI: 0, 0.36) in the Iberian Peninsula.

The population breeding in Brittany experienced important variations with a minimum

of 154 pairs (BCI: 133-176; in 2000) and a maximum of 241 pairs (BCI: 213-270; in 1998).

For the 1998-2014 period, the geometric mean growth rate of the Brittany population, was

0.97 (BCI: 0.96, 0.98) indicating a 3% decline per year (the BCI interval did not contain the

value of 1). Conversely, the breeding colonies in Brittany (population without emigrants)

experienced fluctuations around a geometric mean growth rates equal to 1 (BCI: 0.99, 1),

indicating that the population is stable or only slightly declining (the BCI included value

of 1). From Fig. 4.3, it appeared that the population of Pied Avocet breeding in Brittany

will decrease unless there is immigration. The immigration rate compensates emigration and

fluctuations in fecundity rate. If we consider emigrants, the population is no more stable but

declines even if there are immigrant (Fig. 4.3). The difference between mean growth rates

with and without immigration for the overall population was smaller because of the dilution

effect of emigrants.

Apparent juvenile survival varied with time (Fig. 4.2B) but was high with a mean value

of 0.86 (BCI: 0.57, 1). Adult survival did not vary with time, but showed a linear trend effect

with age. The trend of adult survival with age was negative α2 = −1.97 ( the BCI: -2.99,

-1.05 did not include zero). As previously shown (chapter II and III) Pied Avocet experience

senescence in survival (Fig. 4.2C).

Juveniles recruitment, (here geographic recruitment, i.e. the place where a one year old

individual is observed during the breeding period regardless of its reproductive state), is

higher outside Brittany, with a probability of 0.60 (BCI: 0.55, 0.65), than inside. However,

annual variations were substantial (Fig. C.6D, p. 225). Adult fidelity to the breeding area

increases with time inside Brittany with a strong positive linear trend (Fig. C.6F, p. 225). It

was also the case outside Brittany, but temporal variability was more pronounced (Fig. C.6E,

p. 225).

The fecundity rate estimate was low (Fig. C.6C, p. 225) with mean 0.24 (BCI: 0.11, 0.49)

and highly variable in time. The minimum fecundity rate was 0.13 (BCI: 0.09, 0.19) in 2010
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Figure 4.2: Population size and survival rates variations in the population of
Brittany’s Pied Avocet. Panel (A), in black: annual fluctuations of whole population size;
grey: annual fluctuations of the breeding population in Brittany (without emigrants); sign
plus: observed number of pairs. Panel (B), annual juvenile survival probability, dashed line
indicate the mean. Panel (C), adult survival probability according to age class. Panel (D) in
black: annual fluctuations of the South wintering sub-population; grey: annual fluctuations
of the North wintering sub-population. Fine vertical line: 95% BCI; large vertical line: 50%
BCI.

and the maximum was 0.47 (BCI: 0.38, 0.56) in 2008. This rate was in any case not sufficient

to maintain population. This was confirmed by the decomposition of the mean population

growth rates at different scales (Fig. 4.3), which highlights the major effect of immigration

to sustain population growth in Brittany.

4.4.2 Population structure

The immigration rate was not negligible, accounting for a proportion of 0.2 (BCI: -0.02,0.48)

new arrivals in the population during the study period (Fig. C.6B). However, some 95%BCI

85



Chapter 4. Estimating fitness of life history strategies: when demographic movements are
of prime interest

Brittany Overall

0.94 0.96 0.98 1.00 1.02 0.94 0.96 0.98 1.00

0

20

40

60

0

20

40

60

80

Population growth rate

d
e

n
s
it
y

With immigration Without immigration

Figure 4.3: Mean growth rates. Density plots of the posterior distribution of the geometric
mean growth rate with and without immigration pulse in Brittany (left) or for the overall
population, i.e. population from Brittany and emigrants, (right). Population persistence
requires a growth rate equal to one (population in Brittany). It is clear that Brittany’s
population was sustained by immigration.

contained negative values or zero, which indicated a very low level of immigration, or none.

It was the case from 1996 to 2002, and in 2008. The estimated immigration rate had thus

low precision except in the years with the highest immigration rate, i.e. 2007, 2013 and

2014. Hence immigration increased during the study period, particularly at the end. The

emigration rate of adults, the complement of site fidelity, decreased along the study period

in two steps from 0.42 (BCI: 0.25, 0.59) to 0.16 (BCI: 0.09, 0.24) between 1998 to 2007 and

from 0.26 (BCI: 0.19, 0.35) to 0.11 (BCI: 0.07, 0.17) between 2008 and 2014 (Fig. C.6A).

The population composition changed over the study. First, the proportion of emigrants

was high at the beginning of the study, decreased rapidly until 2002, and then decreased

more slowly. The population of emigrants was nearly equal in size to Brittany population

and decreased by nearly a factor of 2. Second, immigrants constituted negligible part of the

population and were probably absent in the first five years of the study, but then immigration
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increased and immigrants represented nearly 40% of the population of Brittany in the last

two years of the study. Third, juvenile recruitment remained constant during the study.

The transition probability of adults, corresponding to fidelity to the previous breeding site,

increased, with a higher fidelity to Brittany’s colonies at the end of the study (Fig. C.6F),

as this parameter is the complement of emigration rate. This indicates that taking apart

immigrant, turn over among breeding birds decreased in Brittany over the study period. A

complete graphical representation of the age-class structure of the population between 1996

and 2014 can be found in Appendix C.6.1 (Fig. C.7 to C.9, p. 226 to 228). As expected

by the time-dependent structure of age classes (age-dependant survival), variations in the

number of individuals in each class is correlated in time and depends on productivity.

The posterior distribution of βi indicated contrasted effects of age class-specific numbers

on population growth rate. The βi corresponding to ages class 1, 8, 10 and 15 were positive

with probability p(βi > 0) = 1 and those corresponding to the other age classes were negative

with probability (p(βi < 0) = 1), except age class 13 where no effect on population growth

rate was detected. A negative sign indicates that an increase in the number of females in age

class i is associated with a decrease in the population growth rate. Conversely, a positive

sign indicates a similar trend between growth rate and number in age class. The effect of age

class number on population growth was progressive from age class 10 (β10 ≈ 0.002) to age

class 9 (β9 ≈ −0.002) and there was no clear relationship between ageing and trend effect

(Fig. C.10A, p. 229). Correlations between Brittany population size and age classes size were

all positives but the first six age classes seemed to have the higher contribution in population

changes (Fig. C.20, p. 239). Considering 3 population stages (first 6 ages classes, the following

six and the third last age classes), Fig. C.10B (p. 229) showed that the proportion of the

three last classes (with the highest reproductive senescence) did not varied during the study.

However, the decrease in proportion of the first six ages classes correspond to the period of

larger decline of the entire population (1996-2006), while increasing proportion of the first six

ages classes correspond to the period of lower decline of the entire population (2007-2014).

87



Chapter 4. Estimating fitness of life history strategies: when demographic movements are
of prime interest

4.4.3 Influence of demographic rates on population dynamics

The sign and the strength of correlations between breeding population growth rates in Brit-

tany and demographic parameters strongly depended on the parameter considered. Most of

the estimated correlations were negative or close to zero (Fig. C.11, p. 230). The correlation

between Brittany’s population growth rate and immigration rate was the only positive cor-

relation whose credible interval clearly excluded zero (0.51, BCI: 0.24, 0.76). Surprisingly,

this provided evidence of the influence of immigration in population growth. Fecundity was

negatively correlated (-0.33, BCI: -0.53, -0.1) with population growth. However, juvenile

survival probability was not correlated with population growth (0.04, BCI: -0.44, 0.47). The

entire population (Brittany population and emigration) growth rate (Fig. C.12, p. 231) was

also positively correlated with immigration rate (0.75, BCI: 0.53, 0.86) and was negatively

correlated emigration rate (-0.43, BCI: -0.65, -0.18).

Population size in Brittany (Fig. C.13, p. 232) was positively correlated with the num-

ber of immigrants (0.64, BCI: 0.33, 0.82), the number of residents (0.36, BCI: 0, 0.63), the

fecundity rate (0.24, BCI: -0.05, 0.53) and the return rate of previously emigrant individuals

(0.37, BCI: 0.01, 0.62). It was also logically negatively correlated with the number of em-

igrants (0.3, BCI: -0.58, -0.04) and the emigration rate (-0.31, BCI: -0.6, 0.02). The entire

population size (Fig. C.15, p. 234) was strongly (positively) correlated with the number of

emigrant (0.94, BCI: 0.82, 0.96), the number of migrants (0.96, BCI: 0.83, 0.98) the em-

igration rate (0.87, BCI: 0.57, 0.94) and one year old individuals (0.53, BCI: 0.29, 0.69).

Negative correlations existed with immigration rate (-0.7, BCI: -0.83, -0.43), the number of

immigrants (-0.45, BCI: -0.69, -0.05).

The size of the Brittany population was positively correlated with input rate (natal-

ity + immigration; 0.55, BCI: 0.25, 0.74) but not with demographic output (mortality +

emigration; -0.03, BCI: -0.36, 0.3; Fig. C.14, p. 233).
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4.4.4 Change in wintering population composition

The geometric mean growth rate of the North wintering sub-population was slightly lower

than 1 (BCI: 0.98, 1.01), suggesting a very small decrease (p(λ < 1) = 0.62). However,

the decline in the South wintering sub-population (Fig. 3.5) was strong until 2006. This

sub-population was nearly stable afterwards. The geometric mean growth rate indicates

a 8% decline per year (0.92 BCI: 0.9, 0.93), with a decline of 13% (0.87 BCI: 0.84, 0.89)

between 1998 to 2007 and of c.a. 0.5% (0.995 BCI: 0.956, 1.03; with p(λ < 1) = 0.60)

after 2007. These results are consistent with the trend observed in chapter II. The North

wintering individuals progressively formed the largest proportion of the population, while

the overall population was substantially declining, at least since the late 90s. The North

wintering sub-population dynamics is more variable in time than the other, but the two

sub-populations approach stability with a proportion of c.a. 77% of North wintering birds.

The main demographic parameters influencing the two sub-populations growth rates was

immigration rate, the correlation being positive with p(λ > 0) = 1. The South wintering

sub-population growth rate was also negatively influenced by emigration rate (-0.43, BCI:

-0.65, -0.13).

During the study period, the trajectories of the entire population size and of the South

wintering sub-population size were very similar (Fig. 4.2A and 3.5). This was confirmed by

correlations with the demographic metrics (Fig. C.17 and C.19 , p. 236 and 238). Temporal

variations in the migrant sub-population were highly positively correlated with entire pop-

ulation size (0.96, BCI: 0.83, 0.98), the number of emigrants (0.93, BCI: 0.8, 0.96) and the

emigration rate (0.9, BCI: 0.63, 0.96). Conversely, but not surprisingly, the correlation with

immigration rate was negative (-0.66, BCI: -0.82, -0.36) as with the number of immigrants

-0.6 (BCI: -0.78, 0.2). There was also evidence of a negative correlation between fecundity

and migrant population size -0.22 (BCI: -0.37, -0.06) and a positive correlation with one year

old class 0.43 (BCI: 0.14,0.43). These relationships suggest that the emigration from Brit-

tany’s colonies and the migrant phenotype are closely linked. The migrant sub-population

growth rate was negatively correlated with emigration rate -0.41 (BCI:-0.66, -0.12). The
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resident sub-population growth rate (Fig. C.18, p. 237) was strongly correlated with the

immigration rate (0.65, BCI: 0.27, 0.83). There was also evidences for a positive correlation

between the size of the sub-population of residents (Fig. C.16, p. 235) and the number of

immigrants (0.6, BCI: -0.06, 0.8) and a negative correlation with return rate in Brittany of

previously emigrant individuals (-0.45, BCI: -0.68, -0.04).

4.5 Discussion

Our approach of the dynamics of the Brittany’s breeding population of Pied Avocet reveals

several unexpected patterns, i.e. patterns that had been undetected so far and that were not

observable. It also allow to assess the fitness corresponding to each the wintering strategy. At

the scale of Brittany, the apparent stability in the total number of pairs, despite fluctuations

(Fig. 4.2), hides in fact a decline that was already at work at the beginning of the study.

4.5.1 Population dynamics

The integrated approach of the temporal variations in the population size of Pied Avocet

from Brittany allowed us to quantify major demographic metrics either helpful for under-

standing the dynamics of the population, or for conservation purpose. In particular, we

identified a global trend in the entire population that differed from the trends estimated at

more local scale. Indeed, the breeding population in Brittany was nearly stable (geometric

mean growth rate close to one), while accounting for emigration, the entire population actu-

ally experienced an annual decline of c.a. 3%. A dramatic decrease occurred between 1996

and 2007, followed by a period of slower decrease, until 2014. These contrasting findings

were mainly explained by two demographic processes: emigration and immigration. While

immigration significantly increased at the end of the study (c.a. 40% of the Brittany popu-

lation in 2014), emigration decreased linearly and dramatically. We thus demonstrated that

the population under study was no more self-sustainable and its stability at the Brittany

scale is due to immigration. This study highlighted the major interest of taking movements

into account, including both immigration and emigration, when assessing population trend.
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Accounting for emigration especially allows, by enlarging the geographic scale of the study,

a more accurate estimation of the true population dynamics (and vital rates) that when

reasoning only on local dynamics (Schaub & Royle, 2014). Ignoring emigration would, in

our case, lead to consider that the population growth was stable, while the population was

actually declining.

In terms of conservation, there are several implications: (i) Brittany population is depen-

dant on other populations, which raises the question of the origin of the immigrants and the

state of their original populations; (ii) the breeding population exports only few individuals,

which raises the question of the absorbing effect of the breeding colonies and of the manage-

ment policies; (iii) finally the question is raised of both the durability of the population and

the possible adaptations of the management policies. Answering these inquiries is beyond

the scope of this paper but we can give elements of discussion. Our findings showed that

juvenile survival is high, and not correlated with population growth rate, which is not an

important issue for conservation policies. However, the results assessed a large variability in

fecundity rates. In the context of a declining population, this is a key parameter to take into

account for management purpose. Indeed, it would be interesting to understand the reasons

for the temporal variability of this demographic rate, in the absence of specific data, we did

not investigate it. Different factors could affect fecundity. Observations showed that this

colonial species was not exempt of intra-specific competition for nest settlement or breeding

territory defence and chicks mortality was sometimes attributed to intra-specific competi-

tion. However, the effects of predation on eggs and chicks, which could reach locally c.a. a

100% rate certain years (authors pers. obs.), seemed from far the main driver of productivity

(authors pers. com.). The predators were numerous and might affect productivity oppor-

tunely but possible density-dependent predation are suspected. Indeed, the settlement of a

new colony generally led to higher success during the first years than afterwards. As annual

recruitment is dependant on both productivity an immigration, the influence of immigration

would decrease if productivity increases. The high juvenile survival implied that the critical

period was brooding and breeding of chicks until fledgling and should be take into account

in conservation and management policies.
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Emigration is the other important parameter of population dynamics. With a higher

natal dispersal (0.6, BCI: 0.55, 0.65) than breeding dispersal (0.26, BCI: 0.1, 0.5), Pied Av-

ocet is not an exception in birds (Greenwood & Harvey, 1982). We did not explore here the

drivers of dispersion, but previous analyses have shown that recruitment is mainly delayed

in migrant birds, but also took placed in sedentary birds (see chapter III). Pre-breeding indi-

viduals indeed either stayed on wintering grounds during the breeding period (e.g., Iberian

Peninsula) or outside Brittany. Some of the first breeders likely bred outside Brittany. Adult

dispersal was massive at the beginning of the study, then gradually decreased. The negative

correlation between emigration and Brittany population size, as well as the strong posi-

tive correlation between emigration and the entire population size can be explain by the

conjunction of population decline and the overwhelming effect of immigration. Indeed, in-

dividuals could reduce competition for nest sites by emigrating (Matthysen, 2005), which

could be the case at the beginning of the study. However, some confounding factors could

also contributed to explain adult dispersal. As an example, nest predation could have an

important effect on dispersion. Our CR dataset had especially shown that after reproduc-

tion failure, individuals could change their breeding site within the reproductive season, for

a new breeding attempt. We have no idea of the effects of the accumulation of reproductive

failures in time, and of social interactions, on dispersal behaviour. Incidentally, if this IPM

allowed to estimate immigration rate, we have no specific information on these individuals

and the reasons why they were attracted by Brittany colonies. We only have information

on the return rates of adult from Brittany that previously emigrated. This annual return

rate was quite large (0.31, BCI: 0.14, 0.5), but neither the life-history nor the composition

of this sub-population was addressed here. These individuals probably constitute a mix-

ture of previously pre-breeding and breeding birds with different motivations to return (e.g.,

experience, reproductive failure).

4.5.2 Population persistence

Our results showed that the Brittany population was connected, through emigration and

immigration flows, to many others colonies (CR data on breeding periods are displayed in
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Fig. 3.1B, chapter III), with a recruitment rate mainly depending on the dynamics of the

other colonies at the end of the study. Indeed, Pied Avocets from Brittany belong to the vast

network of colonies of the West European population, which forms a large metapopulation

functioning (Hanski, 1991). Hixon, Pacala & Sandin (2002) classified such open populations

in the type five, i.e. a combination of import (immigration), export (emigration) and self-

recruitment (internal recruitment), with the level of each process varying through time. In

our case, population decline was associated with a decrease in emigration partially com-

pensated either by immigration, or by an increase in philopatry. This was, however, not

accompanied by any temporal change in survival or recruitment rate, as none of these pa-

rameters was time dependant. Hixon, Pacala & Sandin (2002) argues that if a population

does not grow exponentially to infinity or get extinct, this proves the existence of a regulation

process. Our population does not necessary satisfied the basic requirements of regulation. In

particular, the persistence of the population is questionable, in the sense that this popula-

tion is relatively young, less than 40 years old, which one can hardly describe as a long-term

succession of generations. However, fluctuations in population size appeared to be bounded

(Fig. 4.2A) and the negative or positive correlations between Brittany population size and

demographic rates could possibly demonstrate some feedback processes.

Demographic regulation processes, such as density-dependence, are expected to gener-

ate negative correlations between variations in population size and demographic rates which

measure individual success (e.g., survival, recruitment, fecundity). We only found evidence

of a negative correlation between the Brittany population and emigration rate from Brittany.

Other demographic rates of importance, such as fecundity, death rate, juvenile survival, im-

migration rate and adult return rate were poorly or positively correlated. In addition, input

rate is positively correlated with growth rate which rather suggests an inverse demographic

density-dependence phenomenon (Hixon, Pacala & Sandin, 2002). In summary, we were not

able to demonstrate any density-dependent regulation in this open population, except when

considering the link between density and emigration. It is always challenging to find such

effects and their strength in open populations (Tavecchia et al., 2007). Empirical studies

demonstrating density-dependence often fall in the trap of considering only the geographic
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scale (Hixon, Pacala & Sandin, 2002) and overlook the importance of emigration and immi-

gration in demographic processes (Cam et al., 2004). In addition, migrant population size

was not correlated with Brittany population size, which does not support theoretical findings

showing that partial migration persistence is unlikely without density-dependence (Lund-

berg, 2013).

Surprisingly, fecundity was poorly linked to population dynamics showing the strength

of emigration and immigration rates. We found only evidence of a negative correlation of

fecundity with Brittany population growth and a positive with Brittany population size.

The high variability of the fecundity rate, was essentially the result of stochastic or density-

dependant predation events, which generated a poor mean fecundity rate, insufficient to

ensure the persistence of the population. Years with high fecundity rates were indeed scarce

and seemed insufficient to compensate years with low fecundity. Moreover, the investigation

of the effect of an age-dependant life history on population size showed contrasted results.

We did not identify any ”critical age group” (Charlesworth, 1972) but rather a gradient from

positive to negative effects of adult age classes on population growth rate. The temporal

variations in the six first age classes sizes showed the strongest positive correlation with

population size, supporting the important role of the youngest age classes in the temporal

variation of the population. However the six first age classes were the classes with the largest

size which explain their effect on the population size variations. If first age classes play an

important role in short live species regulation (Gamelon et al., 2016), in long live species with

age-dependant survival, we do not expect such direct relationships, especially due to delayed

effects of high age-structure. However, we noticed that the decreasing in the proportion of

the first six age classes was concomitant to the decline of the entire population until 2007.

Afterwards, the former proportion increase which correspond to the period of lowest decline

of the entire population. These findings highlighted how variations in population size can

results in contrasted variations in population structure, some age-classes increased while

others decreased or stayed stable. This is consistent with other empirical studies showing

that age-classes are not affected in the same manner by environmental factors responsible

for temporal changes in population size (Pardo et al., 2017).

94



4.5. Discussion

4.5.3 Wintering sub-populations

The two wintering sub-populations of Pied Avocets experienced different dynamics, with

migrants clearly having a lower fitness than residents. The resident sub-population size,

while fluctuating over time, was close to equilibrium during the period (p(λN > 1) = 0.4).

By contrast, the dynamics of the migrant sub-population showed two distinct phases of

decline. The emigration rate from Brittany showed the same pattern. It is clear that

the decrease in the emigration rate was associated with the decline in the migrant sub-

population. This suggests that most of the migrants were actually individuals that bred

outside Brittany. Conversely, the positive correlation between resident sub-population size

and emigration rate from Brittany, and the positive correlation between the resident sub-

population size and the number of immigrants from outside Brittany, suggested that the

resident sub-population was composed both by breeders in Brittany and outside, and was

sustain by immigration. Indeed, recent increased in immigration toward Brittany coincide

with migrant sub-population decrease, suggesting that these immigrants were mainly resident

and that the phenomenon of relative decrease in migratory phenotype could apply at larger

scale.

The reasons for the decline in the partial migrant population is still unknown, but our

results highlight the impact of life history traits on the demographic changes. Despite the de-

cline of the entire population size, residency, or, more precisely, wintering in the North, seems

to be the best strategy. Conversely, migrating (i.e. wintering in the Iberian Peninsula) and

breeding outside Brittany seem to be covarying traits, and both associated with the lower

fitness. Life-history traits are well known to covary, forming life-history strategies (Stearns,

1976), and we pointed out the importance to account for them in demographic studies. The

persistence of partial migration in Pied Avocet nevertheless raises the question of the evolu-

tionary significance of such covariation. The population structure and size at the beginning

of the study provided a possible explanation. In 1998, indeed, migrants and residents were

present in equal numbers in the population, indicating that unknown environmental factors

used to favours also migrant strategy. Changes in environmental factors appeared favourable
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to residents, while migrants were disadvantaged during the study period. Along the slow-

fast continuum of life-histories, long-lived species are supposed to favour survival probability

rather than reproduction probability (Gaillard & Yoccoz, 2003). Pied Avocet, which is rather

a long-lived specie, seems in accordance with this hypothesis as the two migratory strategies

have identical survival probability and differences occur in reproductive performances. These

findings are consistent with an adaptive process to environmental variability and could ei-

ther illustrated a case of adaptive demographic lability (Koons et al., 2009) or a bet-hedging

strategy (Nevoux et al., 2010).

In this context, we can expect, if influencing factors reappear, that the migrant strategy

will be favoured again and, as a demographic consequence, that the sub-population will again

increase in size. If these factors no more reappear, we expect, as it is actually the case under

the demographic rates estimated in this study, that this latter sub-population will persist at

a low level (if actual environmental conditions persist).

4.5.4 Limitations of the modelling framework

Here, as in the recently growing literature using integrated population models, we demon-

strated the major benefits and the flexibility of these models in demographic studies, and

for investigating numerous ecological and evolutionary questions. Several studies (Schaub,

von Hirschheydt & Grüebler, 2015, this study) mention the strong adequacy between the

population counts and the estimated population sizes and the low standard deviation as-

sociated. In absence of a specific protocol for error process estimations, we used a Poisson

distribution to account for observation errors in the count estimation. Due to the joint like-

lihood formulation of the model, bias in this measure induces bias in the other estimated

parameters. Schaub, von Hirschheydt & Grüebler, 2015 wrote:

“The accurate estimation of immigration relies on the assumptions that the other demo-

graphic rates are estimated correctly and that the observation process in the state-space model

is adequately modeled. The estimated population size is biased if the detection probability of

breeding pairs has deterministic trends (Kéry & Schaub, 2012), which in turn would result

in a biased estimate of the number of immigrants.”
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If bias is systematic, estimated population size should not be taken at face value but

should rather be interpreted as an index of the real population size. However, stochastic

bias or deterministic bias, without appropriate monitoring methods (e.g., robust design)

to estimate detection error, lead to unreliable estimated parameters. Moreover, we tested

different distributions (Normal and Log-Normal) instead of Poisson and they lead to different

estimations of population size (results not shown). Thus in our case at least, the state-space

model seemed sensible to the choice of the distribution used for the observation error in the

population count component.

IPMs are a powerful and flexible modelling framework for inference about population

ecology. Their ability to accurately estimate demographic parameters depends on the quality

of the data and on the design of the population monitoring. In the absence of a dedicated

method to account for observation errors in one component of the model, results might be

biased, depending on the quality and the accuracy of the data collection. These remarks

are obviously general, but, considering IPMs, unreliable data in one data set can lead to

important bias in the estimation of the other components of the model, due to its integrat-

ing design (the joint likelihood imposes dependency among the components). The above

observations suggest that count data strongly influence estimation of the other components

of the model. As IPMs are still in development, investigations (i.e. simulation studies) on

how data bias can be transferred from one component to another, e.g. and mainly how bias

in counts affects estimation of CR parameters, are still needed.
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The effects of global warming and of increasing anthropic damages to habitats on wildlife

are now unambiguous; this is particularly true of damages done to wetlands. There is growing

evidence of changes in species distribution and dynamics, particularly in migrant birds (Hick-

ling et al., 2006; La Sorte & Thompson, 2007; Maclean et al., 2008; Chen et al., 2011). Mobile

species have been the first species to suffer the consequences of environmental changes, and

in a more intensive manner than others. Among them, shorebirds are particularly interest-

ing models; they are already used as indicators of wetland health (Piersma & Lindstrom,

2004, see also https://www.wetlands.org/). Indeed, these species provide opportunities to

understand ecological, behavioural and evolutionary processes that underlie their ability to

adapt (or not) to changes in the most threatened habitats (e.g. estuaries, coastal lagoons,

inner wetlands). Nowadays this is a major challenge in many areas of research, but also

for conservation purpose (Sutherland et al., 2012). The most remarkable features of the

recent changes observed in birds are the distribution changes, the shift towards the pole of

population ranges, the shift in the timing of migration, the shortening of migration distance

and even the switch toward residency (Maclean et al., 2008; Visser et al., 2009; Pulido &

Berthold, 2010; Chen et al., 2011; Miles et al., 2017). Redistribution of individuals in the

population range, can be attributed to demographic and behavioural responses to environ-

mental changes, which leads to colonization and extinction phenomena. Recent northward

shifts in the wintering distribution of many bird species are supposed to result from a com-

bination of newly favourable environmental conditions in the North due to global warming,

and to changes in migratory behaviour (Lehikoinen et al., 2016), but others factors (human

disturbance) also mediate these shifts (Lehikoinen & Virkkala, 2016). In the North part of

the range, breeding individuals decide to become resident, whereas none of them used to

remain in the North during winter in the past, i.e. either individuals that used to migrate in

winter decide to switch wintering strategy and become resident or newly recruited individuals

are resident. The extreme South part of the range is abandoned because migrants no longer

use this area; either they switch migration strategy toward residency or they migrate less

South. Individuals have to choose between different strategies, and we expected to observe

differences in vital rates according to their phenotypes. In any case, there are changes in the
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frequency distribution of migratory strategies, with local demographic consequences.

Recent changes in the distribution of Pied Avocets in Europe

In this work we first investigated temporal variations in the distribution of Pied Avocets

at the European scale. We did not find evidence of a range shift northward, but we found

that density has been increasing in the North range in the past two decades, and decreased in

the South (Iberian Peninsula), which support others recent empirical studies (Lehikoinen &

Virkkala, 2016). This phenomenon is particularly clear in England, where there is a constant

increase in the wintering population size, whilst Portugal experienced a pronounced decline.

This redistribution is consistent with general patterns described in many other species in the

same area and may ultimately lead to the colonisation of new areas Northward (e.g., North

East of Netherlands, Germany). The reasons for the decline in the wintering population in

the Iberian Peninsula and the substantial temporal variations in local density are unclear;

we were unable to address these questions in this study because we lack appropriate data.

However, we suspect that stochastic events in winter such as variable rainfall can be respon-

sible for this instability in Spain. Indeed, the wintering habitats of Pied Avocet in Andalusia

are mainly man-made wetlands (e.g., saltponds, fishfarms) and food availability depends on

water level. Flood events can lead to important distribution change at the Iberian scale, as

shown in inland lakes (Goncalves et al., 2016), but we suspect that this also occurs in the

North of Africa. It would be interesting to use all the CR data from all the CR programs

on Pied Avocets in Europe and assess the effect of climatic variables on winter site fidelity

both at the intra- and inter-wintering season scales.

Demographic processes underlying observed changes in the distribution of

Pied Avocets

Using data from Pied Avocets marked in Brittany, we estimated the number of individ-

ual wintering in the North or the South. We also addressed whether a key demographic
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parameter differed according to the strategy: survival probability (as a long-lived species,

the Pied Avocet is considered as a “survivor species”, Saether & Bakke, 2000). At the indi-

vidual scale, the multistate CR modelling framework also allowed us to ask the question of

whether individuals change wintering strategy during their life. Indeed, if the proportions

of the two segments of the population (migrants and residents) vary over time, this can be

because mortality is higher in one of the segments than in the other, because individuals

change strategy over life, or because the proportion of individuals adopting a strategy at the

beginning of their life increases (under the assumption that they subsequently adopt this

strategy). Of course, both mortality and fidelity to the strategy can be involved simultane-

ously. Our results confirmed the above ones: residents have become more abundant than

migrants in Brittany. The number of residents has been increasing rapidly since the early

2000’s, while size of the migrant population remained stable. The initial intuition, which

inspired this work was confirmed: not only the frequency of the migrant component of the

population was declining but we also observed a reversal in strategy frequencies.

Fidelity to wintering strategy

The change in the proportion of migrants and residents in the individuals marked in

Brittany was not due to a switch in wintering strategy from migrant to resident, but to

an increase in the number of residents among recruited individuals. Indeed, fidelity to

the migration strategy was high. We showed that the majority of the individuals chose

their strategy during their first winter and retained this strategy for life. However, it is

interesting to note that the probability of switching from migrant to resident is higher than

the probability of moving from residency to migration (< 7% versus < 1%, respectively).

This higher probability of switching from migration to residency is consistent with results of

experimental the Pied Avocet for life, but the existence of few individuals switching strategy

pleads more for a conditional strategy (Lundberg, 1988).

Moreover, we did not find evidence of an effect of climatic variables on the probability

that juveniles spend their first winter in the South (NAO, winter harshness index), which is
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inconsistent with the hypothesis that the choice of a migration strategy is affected by local

climatic variables that are related to global climate warming.

Survival probability

Interestingly, our results did not support the hypothesis of a difference in survival prob-

ability between the two strategies. Consequently, the difference between the demographic

dynamics of the alternative strategies can’t be explained by differences in survival rate. In

all our investigations on the drivers of survival probability, at different scales (annual or

seasonal, between winters or between breeding seasons), we found the same evidences that

survival probability in this population depends mainly on age and individual “frailty”.

Nevertheless, it would be unwise to ignore the possibility that winter cold spells affect

survival. First, it has been shown that harsh winters (particularly long cold spells) are

associated with changes in the abundance and distribution of the species in north-west Eu-

rope (Mahéo, Le Dréan Quénéc’hdu, S & Triplet, 2007). We are not aware of particular

past cold spells that could have led to high mortality rate in the Pied Avocet (either on the

French Atlantic coast or elsewhere in Europe). However, several studies have documented

such effects in other shorebirds species in north-west Europe, with high mortality and a

dramatic decline in local population, which deeply affected population structure (Johnson,

Green & Hirons, 1991; Goss-Custard, 1996). Third, most harsh winters occurred before the

beginning of the study period and the frequency of these events has been decreasing during

this period (IPCC, 2014). Hötker (1998a) has shown that such events can affect the fidelity

of Pied Avocets wintering in north-west Europe. We believe that the hypothesis that fit-

ness depends on winter harshness should be considered seriously, even if no major cold spell

occurred during the study period. In addition, the proportion of migrants and residents in

the population can also vary over time because of differences in reproductive performance

between strategies: we addressed this question in the following step (Chapter III).

Evolutionary demography of migration strategies: a life history perspective
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If there are costs associated with migration (either because of the journey or because

of the environmental conditions on the wintering ground), migration offers advantages in

terms of fitness only if this strategy outweigh residency costs, e.g., lower demographic rates

(survival, reproduction) due to harsh winters in the location that residents use for breeding

and wintering. Conversely, residency is assumed to be advantageous in terms of reproductive

success in years characterized by mild winters, e.g. individuals can adapt their breeding

phenology to local climate and settle before migrants, they access to high-quality breeding

sites thanks to a reduce competition level (Kokko, 1999; Hötker, 2002).In long lived species,

even though migration or residency costs could be expressed every year (at all ages), costs

incurred at the beginning of life could also have long-term consequences during life. Such

costs could also fade as individuals gain experience. This is why we chose a longitudinal

approach and considered the hypothesis that the consequences of strategies could differ

according to age, and we put a particular emphasis on age at recruitment and its relationship

with subsequent breeding occasions in the life of the individual.

In chapter III, we addressed the question of the relationship between reproductive perfor-

mances, recruitment age and migration strategy. In “survivor species” variation in survival

is assumed to be disadvantageous (Saether & Bakke, 2000; Gaillard & Yoccoz, 2003). In

such species, the elasticity of the population growth rate to changes in survival is larger than

the elasticity to changes in fecundity (Caswell, 1989). In this framework, natural selection

might be able to weed life history features associated with large costs on survival probability

(e.g., a migration strategy). In this study, we did not find evidence of a relationship between

survival rate and migration strategy (see above). It was reasonable to consider the hypoth-

esis of variation in reproductive performances among migration strategies. Our aims were

to test for (i) a cost of migration on recruitment age and on the cumulative reproductive in-

vestment (hereafter CRI), (ii) the effect of recruitment age on the CRI and seasonal survival,

(iii) the effect of both migration strategies and recruitment age on late life CRI and (iv) the

covariation between survival and reproduction. We lacked data to work on the probability of

breeding successfully; direct observations of individual reproductive success during sampling
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sessions is extremely rare. Even though we used an analytical approach taken uncertainty

in breeding state assignment (i.e. multi-event models), the data we were able to collect led

to a too small number of cases of ascertained successful reproduction. However, available

data allowed us to estimate the probability of breeding, using a large number of observed

criteria. Sample sizes were sufficient to address the relationship between migration strategy

and estimated breeding probability. We estimated the transition probability from a specific

winter state to a specific breeding state (breeding, or not), and the cumulative breeding

investment: i.e. the age-specific cumulative number of breeding attempts.

Migration strategy, age at recruitment and pattern of age-related variation

in CRI

We clearly identified a cost of migration, characterised by a delayed age at recruitment

in migrants. Migrants mainly recruited after one year (≈ 90%), while residents mainly

recruited at the age of one year (≈ 60%). Very few studies have focused on the fitness of the

two migration strategies in populations of partial migrants. At least two studies have shown

differences in reproductive performances in partial migrants, but they have not investigated

age at recruitment (Adriaensen & Dhondt, 1990; Grist et al., 2017).

We detected senescence in both strategies (Fig. 3.5A). Senescence translates into a re-

duced pace of growth of CRI as individuals get older. Surprisingly, we did not find evi-

dence of a difference in the onset of senescence between the alternative migratory strategies

(Fig. 3.5A).

Individual recruiting at the age of one year have the highest CRI regardless of age, and

they do not show any senescence in CRI (Fig. 3.5B). These results are not consistent with

theories of ageing that predict an early onset of senescence in individuals recruiting earlier.

We detected senescence in the two other categories of individuals: those that recruited

age two and three years. The onset of senescence occurred at the same age in individuals

recruiting at the age of two and three. In addition, there was an unambiguous effect of

recruitment age on the pace of growth of CRI. Individuals recruiting at the age of one
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year exhibited the largest slope of age-specific CRI curve, with no inflexion point (i.e., no

senescent decline in CRI). The CRI curve was similar to a straight line slowly diverging from

the bisecting line (Fig. 3.5B). For those recruited at age of two or three years, the smaller

the age at recruitment, the smaller the pace of increase in CRI with age. These CRI curves

intersected around the age of seven years.

Unfortunately our CR data were insufficient to assess the effect of recruitment age and

migration strategy on CRI in a simultaneous manner. A larger dataset combining infor-

mation from different ringing sites could be useful to investigate this issue. However, these

programs began in 2005 and it is very likely that longer time series will be necessary to ad-

dress senescence. Interestingly, when we compared the slopes of the age-specific CRI curves

before the onset of senescence (Fig. 3.5A), we found that the slope associated with residents

was smaller than the slope associated with migrants, which led to a similar cumulative re-

productive performances around the age of six years (i.e. the BCIs intersect, see Fig. 3.5A).

With the data at hand, it is impossible to determine if recruitment age alone or migration

strategy alone affects the slope of CRI, or if both factors affect this slope. However, it is

possible that delayed recruitment age leads to a faster increase in CRI because of benefits as-

sociated with experience, behavioural or physiological maturity (e.g., better body condition,

competitiveness, more efficient somatic repair systems). If we can not exclude the possibility

that residency carries costs on CRI, we suspect a positive effect of delayed recruitment on

the pace of growth of CRI in migrants. In this study, we did not address intra season repro-

ductive investment, but there might be differences between wintering phenotypes in terms

of number of breeding attempts within the same season in relation with arrival date on the

breeding ground.

Reproductive senescence

Our results did not provide evidence of a relationship between recruitment age and

seasonal survival, neither in spring nor in fall. It is interesting to note that spring seasonal

survival declines with age. There is also some indication of a decline in fall survival, but this
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is more ambiguous because of large credible intervals. At the annual scale (Chapter II), we

had also found evidence of senescence in survival probability.

Detection of senescence in observational studies can be hampered by differences in mor-

tality risk among individuals in populations (Zens & Peart, 2003). Here we found evidence of

positive correlations between the individual seasonal survival and in breeding probabilities:

individuals that outperformed the others in terms of survival rate also outperform them in

terms of reproductive investment. Observational studies commonly provide evidence of such

positive correlations (Cam et al., 2002; Beauplet et al., 2006; Weladji et al., 2008; Hamel

et al., 2009; Cam et al., 2013), which is usually interpreted as a consequence of heterogeneity

in mortality risk or fecundity in populations and the failure to control for environmental

confounding factors in non-experimental studies (Stearns, 1992). Our results support the

heterogeneity hypothesis (van Noordwijk & de Jong, 1986), but we were able to detect senes-

cence in survival thanks to models incorporating individual random effects on both survival

and breeding probabilities.

Our results did not allow us to understand mechanisms relevant to natural selection

that could be responsible for differences in CRI according to recruitment age and migratory

strategies. However, the results provided evidence that migration strategies and recruitment

age have long-term consequences on reproduction. This could explain the divergent dynamics

of the residents and migrants described in chapter II.

To summarize, residents recruit earlier than migrants but the pace of growth of CRI is

larger than that of residents. In this framework it is difficult to know if the two strategies

actually differ in terms of fitness. In the following step we estimated overall fitness.

The big picture: dynamics and overall fitness of migration strategies

In chapter IV we addressed the question of strategy-dependent fitness directly, (in chap-

ter II and III, we investigated only some fitness components: survival and reproduction). We

considered the overall population of birds born in Brittany in an integrated modelling frame-

work (IPM) that also included another breeding site located outside Brittany (any breeding
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colony outside Brittany). Birds marked in Brittany when young could be philopatric and

return to breed there, or not. Thanks to this approach, movement of breeders among sites is

possible (this corresponds to breeding dispersal), and birds born in one site can also disperse

to breed in the other one (natal dispersal). The migratory strategy of individuals in winter

was also taken into account. We estimated the mean geometric growth rate of the Brittany

population and of sub-populations defined on the basis of migratory strategy. We used data

from population monitoring at the scale of Brittany (annual number of pairs and annual

fecundity), and at the species range (CR data), to estimate this quantity.

The geometric growth rate estimate of breeding pairs in Brittany was very close to one,

indicating that the population size was stable. However, when we included the estimated

number of emigrants from Brittany, i.e. breeders dispersing outside Brittany, the estimated

growth rate is clearly lower than one, which indicates a decline in the Brittany popula-

tion. This decline was strong between 1996 and 2006, followed by a slower phase of decline

until 2014 (Fig. 4.2A). This decline was mainly due to the decrease in the number of indi-

viduals in the migratory sub-population (Fig. 4.2D). Indeed, the pattern of decline in this

sub-population over time was similar to that of the Brittany population, whilst the growth

rate of the resident sub-population remained close to one (i.e., this sub-population remained

stable). The number of emigrants from Brittany exhibited a similar pattern than the Brit-

tany population: they experienced the same decline. However, this decrease in emigration

rate from Brittany was not sufficient to stop the decline of the Brittany population. Im-

migration from outside Brittany (breeding dispersal of individuals born outside Brittany)

was the main factor explaining the apparent stability of the number of breeding pairs in

Brittany, while increasing philopatry in Brittany contributed to a lesser extent to this sta-

bility. In this metapopulation system (Hanski, 1991), the dynamics of Brittany population

is characterised by an unbalanced ratio between “importation” (recruitment of individuals

born outside Brittany), “exportation” (dispersal of individuals born in Brittany) and “self-

recruitment” (philopatric individuals born in Brittany), where exportations exceeded the

sum of importation and self-recruitment.

The demographic mechanisms that could explain temporal variation in population size
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are fourfold: emigration and immigration, birth and death. Despite the temporal fluctuations

of the number of deaths, all our analyses provided consistent evidence that survival is time-

independent. The birth rate was highly variable over time; we suspect that predation is the

main factor affecting this vital rate. In this context, emigration and immigration are the

key demographic parameters whose variations are responsible for the temporal fluctuations

of the population size. This highlights the necessity to include emigration when assessing

population growth rates and temporal variations in size; local studies can lead to biased

estimates of both of them (Schaub, von Hirschheydt & Grüebler, 2015). The difference

between local and “true” demographic rates lays in the geographical scale of the study.

Here, CR data have been collected in the whole range of the species, scale for which we

considered the Palaearctic West population as closed. We are confident that our estimates

are close to “true” rates. Nevertheless, we must acknowledge that the estimate of the number

of pairs was sensitive to the choice of the prior distribution for the detection process. We

must take these estimates with caution: they should rather be considered as indices than real

population size estimates. We are not aware of an approach that would allow us to quantify

the bias in the estimated detection probability, in the context of this study. Indeed Kéry

& Schaub (2012) showed that in case of systematic bias (false-positive or negative), the

modelling approach we used for count data is no longer suitable.

We also investigated the relationships between the size or growth rate of different sub-

populations and demographic rates. Namely, (i) the entire population of Brittany (regardless

of breeding site and migratory strategy), (ii) the breeding pairs in Brittany, (iii) the segment

of the population wintering South (the migrants), (iv) and the segment of the population

wintering North (the residents). We used correlations to assess these relationships; the

sign and estimated value of the correlation indicate the direction and the strength of the

relationships. Terminology was kept from the modelling framework. Hereafter, we call

“emigration” (i.e., “emigration rate”, “emigrants”) as the movement of individuals ringed in

Brittany and that left this area to breed outside. The term “immigration” (“immigration

rate”, “immigrant”) will be restricted to movement of unmarked individuals, born outside

Brittany that joined the breeding population in Brittany.
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Our results confirmed the contribution of emigration and immigration to the dynamics

of this Pied Avocet population. Immigration toward the breeding population in Brittany

varied over time in the same way as the growth rate of all sub-population, while emigration

from Brittany varied in an opposite way. The “input rate” (rate of natality + rate of

immigration from outside Brittany) was positively correlated with the breeding population

in Brittany, which indicated an inverse density-dependence type of regulation at the scale

of Brittany. This suggests that the population decline is not linked to an issue of carrying

capacity in Brittany. Interestingly, emigration, i.e. breeding dispersal from Brittany, varied

over time in the same way as the number of migrants. This suggests a “strong” relationships

between two life-history traits in the Pied Avocet of Brittany: dispersal from Brittany and

migration phenotype. In addition, the resident sub-population was positively correlated

with the immigration rate from outside Brittany, which suggested that these immigrants

(birds that were born outside Brittany) are mainly a residents in winter. These findings

suggests that the increase of the resident segment of the population is a phenomenon involve

phenomena taking place at a larger scale (as highlighted in chapter II), shared with colonies

outside Brittany. At such a large spatial scale, environmental effects affecting the North of

Europe), such as cold spells, could drive the frequency distribution of wintering phenotypes

(see chapter II).

The fitness of the migrant sub-population was clearly lower (0.92) than that of residents

(≈ 1). This is consistent with the lower reproductive performance of the latter (see chapter

III) and the strong decline in the migrant phenotype among recruited individuals. Table 5.1

synthesizes the possible effects of winter severity on the wintering sub-populations and how

such extreme climatic events could explain variations in phenotypes frequency as in the

Brittany population size. We hypothesize that extreme weather conditions in winter do not

affect survival, recruitment age, CRI or fitness of migrants, only migratory behaviour and

the frequency of the migrant phenotype are affected. Residents suffer from lower survival,

lower CRI, delayed recruitment and lower fitness during harsh winter, but also higher switch

to migration phenotype (Hötker, 1998a), which lead to a decrease in frequency of this phe-

notype in the population.
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Phenotype Mild winter Harsh winter

Resident

survival ↗ survival ↘
recruitment age ↘ recruitment age ↗

CRI ↗ CRI ↘
fitness ↗ fitness ↘

switch to migration ↘ switch to migration ↗
phenotype frequency ↗ phenotype frequency ↘

Migrant

survival = survival =
recruitment age = recruitment age =

CRI = CRI =
fitness = fitness =

switch to residency ↗ switch to residency ↘
phenotype frequency ↘ phenotype frequency ↗

Table 5.1: Effect of winter severity on demographic parameters. In this scenario only
residents are affected by winter conditions but frequency of migrant is indirectly subject to
variations.

Conservation implications

Another key result of this paper was the variability of fecundity and its low value, which

was not sufficient to sustain population. Our fieldwork experience clearly suggests the mas-

sive effect of predation on breeding success. Predation varied over time but was generally

high (> 60% of the active nests failed at an early states, eggs to young chicks, authors

pers. obs.). Complete breeding failure occurred in some years in some colonies. There was

evidence of a negative correlation between the Brittany breeding population growth rate

and fecundity but no clear correlation with the entire population growth rate or size. This

suggests a small contribution of fecundity in the temporal variations of the population size.

This situation calls conservation policies into question at local scale if the objective is to

maintain this population. Indeed, self-recruitment was not able to sustain the population,

stability was mostly attributable to immigration. Immigration does not depend exclusively

on local management policies: the dynamics of others colonies outside Brittany is also in-

volved. Most breeding colonies in Brittany are settled in protected areas. Predation is likely
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to be the main cause of reproductive failure in these areas. The question of anti-predatory

policies must by tackled in the context of the population trend at larger scale. If the Brittany

population is the only one to decline on the Atlantic coast there is no special need to control

predation, but if all others colonies are also declining specific measure should be envisaged.

This implies the estimation of breeding population trend at least at the scale of the French

Atlantic coast. Predation seems to be a general issue in the breeding colonies of the French

Atlantic coast (authors pers. com.) and also in Europe (Thorup & Bregnballe, 2015) and

probably an important driver of the metapopulation dynamics. Another issue is immigration

and the factors affecting movement probability among declining populations. While we don’t

know the factors driving immigration, we suspect that the rare years with high productiv-

ity are attracting immigrants in the following year (Danchin, Boulinier & Massot, 1998).

Minor changes in the IPM code we used would allow us to test the relationships between

immigration rate and productivity in the previous year. Of course, adding complexity would

probably lead to a loss in accuracy in the parameter estimates (Schaub & Fletcher, 2015).

IPMs can nevertheless be used for estimating future population trend or as a conservation

tool by simulation; this could be used to estimate the minimum fecundity rate that would

allow this population to be stable without immigration.

Importantly, this study highlights the necessity of demographic approaches to under-

stand the complexity of the mechanisms underlying the changes in population size and the

evolution of life-history traits. We also plead for long-term monitoring programs. Fundamen-

tal mechanisms in population dynamics such as senescence in vital rate can not be assessed

accurately with short studies; which can lead to improper projections of population changes

and can lead to inappropriate conservation policies (Robert et al., 2015).

Future works

This dissertation describes the demographic dynamics of the Pied Avocets population

in Brittany with the objective to better understand its temporal variations in relation to

migration strategies. It is a pioneer study in France, and this species is little studied in
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Europe, except previous work from H. Hötker. This dissertation lays the foundations for a

deeper development in the knowledge of this specie. Among the different topics studied here,

we highlighted several questions which could not be answered. For example, the factors that

determine juvenile dispersal in winter remained unknown. This question has been recently

addressed in of another paper (Chambon et al., 2017), that focussed on first winter dispersal

in colour-marked Pied Avocets in several colonies along the French Atlantic coast. This work

did not make use of individual CR data collected between fledging and arrival at wintering

sites. In particular, social interactions still have to be studied. Future analyses should

take post-breeding gatherings into account, when individuals from many colonies gather in

a few estuaries late in summer and in fall. Social interactions could influence individual

behaviour, and group of individuals could migrate in the same direction. Moreover previous

investigations of the migration have shown that individual of a same brood tend to have

the same wintering phenotype (unpublished results). This will require additional work to

test hypothesis about the genetic or environmental determinants of migratory behaviour.

Moreover, one of our main hypotheses about factors affecting juvenile dispersal, the effect of

harsh winters, can-not be tested unless new extreme climatic events occur. Individual data

from a German monitoring program that started in the early 90s exits and could help to

better understand factor affecting migration patterns, there is a strong limitation: all these

bird were migrants (they did not winter in Germany).

Another important project would be to extend analyses to other colonies on the French

Atlantic coast. At least four Southern colonies have been monitored since 2005, in the same

way as the Brittany colonies. It would be possible to address whether the size of all these

colonies varies in a synchronised manner, whether some demographic rates (e.g., population

growth, fecundity, emigration) vary synchronously. Synchrony is common in many taxa (re-

viewed in Liebhold, Koenig & Bjornstad, 2004). Three main mechanisms lead to “population

synchrony”. (i) Spatial autocorrelation of environmental covariates, the so-called the Moran

effect. In this case, similar environmental conditions lead to synchronous population size vari-

ations (Saether et al., 2007). (ii) Asymmetrical dispersal of individuals among populations

generate homogenisation in population density, which can lead to synchronisation (Paradis

113



Chapter 5. General discussion

et al., 1999). (iii) Populations variations in size can be synchronised with the variations

of the trophic resources (Jones, Doran & Holmes, 2003). IPMs such the one described in

chapter IV, are particularly well suited tools to assess synchrony in populations (Schaub,

von Hirschheydt & Grüebler, 2015). We could estimate the intra-class correlation (Grosbois

et al., 2009), which allows decomposing temporal variations of demographic rates into local

and global variation. Last, to disentangle the factors affecting movement (emigration and

immigration), it is necessary to estimate transition rates between several colonies. This could

be achieved using multi-event models for open population (see chapter III) in a multi-site

context. Tacking breeding state onto account and age would allow the estimation of intra-

and inter-season transition probabilities between breeding sites.

114



”Avocets of Europe”

115



Appendix A
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A.1 Wintering population trend estimates of the Pied
Avocet of the East Atlantic flyway for European
countries.

A.1.1 European count modelling framework

In time series of counts, temporal autocorrelations, when present, must be taken into account

in the modelling framework. Fig. A.1 shows clear autocorrelation for Belgium, Great Britain

and Netherlands at least at lag one. In case of spatio-temporal replicates, a second source

of autocorrelation should be considered: spatial autocorrelation. Indeed, in the context of

bird census at wintering sites, factors such as particular weather conditions can generate

important population shifts leading to decreasing numbers in some sites or regions and

increasing numbers in other, more favourable, sites or regions. Likewise, effects at longer

time scale can result in positive or negative correlations in numbers between sites. The

cross-correlation function (CCF) Fig. A.2 indeed shows such significant correlations between

sites.

Moreover, observation errors associated with large scale monitoring must be also ac-

counted for. In the present study, we have few details on the error process (over or underes-

timation during counts, missing counts) for each country and each year.

In order to account for all these aspects in one modelling framework we adopted a

Bayesian approach using a state-space model for population counts inspired by Kéry &
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Schaub (2012). To model population size, we used a simple population model, with an

exponential growth and a random year × site effect:

Ni,t+1 = Ni,tλi,t + εi,t, (A.1)

λi,t+1 ∼ Normal(λi, σ2
λi

), (A.2)

where the growth rates λ of population i are normally distributed with a mean λ and a

variance σ2
λ. This autoregressive formulation accounts for temporal autocorrelation.

Because of the possible errors in counts, we modelled observation as a normal process:

yi,t ∼ Normal(Ni,t, σ
2
yi

), (A.3)

where the observed count y in site i and in year t is a realization of the true, but unknown,

population size N in the same site and year, and the difference due to incertitude varies

annually around population size. The magnitude of annual observation error in site i of the

reported count is then normally distributed with mean zero and variance σ2
yi

.

Spatial autocorrelation, correlation between the 6 countries, is accounted through the

parameter εi,t, a random site i and year t effect with a multivariate normal distribution:

εi,t ∼ Normal(0i,Ω). The variance-covariance matrix Ω takes the following form:

Ω =


σ2

1,1 cov1,2 · · · cov1,6
cov2,1 σ2

2,2 · · · cov2,6
... ... . . . ...

cov6,1 cov6,2 · · · σ2
6,6


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Figure A.1: Autocorrelation function (ACF) in winter counts of Pied Avocets
for the West European countries between 1990 and 2015. The left column shows
the ACF for the each contry count and the right one the partial ACF for the same counts.
Vertical lines indicate correlation value at each time lag and horizontal dashed lines, the 95%
credible interval. Values out of the 95% credible interval indicate significant autocorrelation.
ES = Spain; FB = Belgium; FR = France; GB = England; NL = Netherlands; PT =
Portugal.
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Figure A.2: Cross-correlation function (CCF) between winter counts of Pied Avo-
cets for the West European countries between 1990 and 2015. Vertical lines indicate
correlation value at each time lag and horizontal dashed lines, the 95% credible interval. Val-
ues out of the 95% credible interval indicate significant autocorrelation. ES = Spain; FB =
Belgium; FR = France; GB = England; NL = Netherlands; PT = Portugal.

In order to increase computer efficiency we used the Cholesky decomposition proposed

by Chen & Dunson (2003). They suggested using a factorization of the variance-covariance

matrix Ω into a diagonal matrix D and lower triangular matrix L with a diagonal of 1: Ω =

DL(LD)′ = DLL′D. Here we used a parameter expanded formulation proposed by Authier

(2016, unpublished): Ω = AL∆L′A, where A = diag(α1, ..., αi) and ∆ = diag(δ1, ..., δi)

are two diagonal matrices. To induce marginal half-t priors T+(0, α2, υ) on the standard
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deviations of the random effects (σ2
i ) we used the following priors: α ∼ N+(0, 1.5), δ ∼

Γ−1(1.5, 1.5) and l ∼ N(0, 4) the lower diagonal element of L. Correlations between sites

were computed from the elements of Ω:

ρi,j = covi,j√
σ2
i σ

2
j

(A.4)

where i ∈ {2, .., 6}, j ∈ {1, .., 5} and i > j.

We estimated the parameters with a Bayesian approach using Gibbs sampling, i.e. a

Markov Chain Monte Carlo (MCMC) algorithm. The observed counts were log transformed

before performing the model fitting, in order to reduce the important scale difference between

country counts.

A.1.2 JAGS code

model {

# Priors and constraints

for (i in 1:ns){

# Initial population size

N.est[i,1] ˜ dunif(0, 20)

# Mean growth rate

mean.lambda[i] ˜ dunif(0, 10)

# sd of state process

sigma.proc[i] ˜ dunif(0, 10)

sigma2.proc[i] <- pow(sigma.proc[i], 2)

tau.proc[i] <- pow(sigma.proc[i], -2)

# sd of observation process

sigma.obs[i] ˜ dunif(0, 100)

sigma2.obs[i] <- pow(sigma.obs[i], 2)

tau.obs[i] <- pow(sigma.obs[i], -2)

}
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# Likelihood

# State process (population variations)

for (i in 1:ns){

for (t in 1:(ny-1)){

lambda[i,t] ˜ dnorm(mean.lambda[i], tau.proc[i]) # eq.3

N.est[i,t+1] <- N.est[i,t] * lambda[i,t] + eps[i,t] # eq.2

}

}

# Observation process

for (i in 1:ns){

for (t in 1:ny) {

y[i,t] ˜ dnorm(N.est[i,t], tau.obs[i]) # eq.1

}

}

for (t in 1:ny) {

N.estn[t] <- sum(ExpN.est[1:4,t]) # sum of count in the North

N.ests[t] <- sum(ExpN.est[5:6,t]) # sum of count in the South

}

for (i in 1:ns){

for (t in 1:ny) {

ExpN.est[i,t] <- exp(N.est[i,t])

}

}

for (i in 1:ns){

for (t in 1:ny) {

# European country proportion
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prop[i,t] <- ExpN.est[i,t]/sum(ExpN.est[,t])

}

}

# Choleski decomposition (with priors) for the year random effects

for (i in 1:ns) {

A[i, i] ˜ dnorm(0.0, 1.5)T(0.0,)

Delta[i, i] <- 1/tau[i]

tau[i] ˜ dgamma(1.5, 1.5)

L[i, i] <- 1.0

}

for (i in 1:(ns-1)) {

for (k in (i+1):ns) {

L[i, k] <- 0.0

A[i, k] <- 0.0

Delta[i, k] <- 0.0

L[k, i] ˜ dnorm(0.0, 4.0)

A[k, i] <- 0.0

Delta[k, i] <- 0.0

}

}

# covariance matrix

Omega <- A%*%L%*%Delta%*%t(L)%*%A

# random effects: multivariate normal

for(t in 1:(ny-1)){

eps[1,t] <- A[1, 1]*(L[1, 1]*xi[t, 1])
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eps[2,t] <- A[2, 2]*(L[2, 1]*xi[t, 1] + L[2, 2]*xi[t, 2])

eps[3,t] <- A[3, 3]*(L[3, 1]*xi[t, 1] + L[3, 2]*xi[t, 2] +

L[3, 3]*xi[t, 3])

eps[4,t] <- A[4, 4]*(L[4, 1]*xi[t, 1] + L[4, 2]*xi[t, 2] +

L[4, 3]*xi[t, 3] + L[4, 4]*xi[t, 4])

eps[5,t] <- A[5, 5]*(L[5, 1]*xi[t, 1] + L[5, 2]*xi[t, 2] +

L[5, 3]*xi[t, 3] + L[5, 4]*xi[t, 4] + L[5, 5]*xi[t, 5])

eps[6,t] <- A[6, 6]*(L[6, 1]*xi[t, 1] + L[6, 2]*xi[t, 2] +

L[6, 3]*xi[t, 3] + L[6, 4]*xi[t, 4] + L[6, 5]*xi[t, 5] + L[6, 6]*xi[t, 6])

for(i in 1:6){

xi[t, i] ˜ dnorm(0.0, tau[i]);

}

}

# Covariances

covar[1] <- Omega[2,1]

covar[2] <- Omega[3,1]

covar[3] <- Omega[4,1]

covar[4] <- Omega[5,1]

covar[5] <- Omega[6,1]

covar[6] <- Omega[3,2]

covar[7] <- Omega[4,2]

covar[8] <- Omega[4,3]

covar[9] <- Omega[5,2]

covar[10] <- Omega[5,3]

covar[11] <- Omega[5,4]

covar[12] <- Omega[6,2]

covar[13] <- Omega[6,3]

covar[14] <- Omega[6,4]
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covar[15] <- Omega[6,5]

# Correlations (eq.4)

rho[1] <- Omega[2,1]/pow(Omega[1,1]*Omega[2,2],0.5)

rho[2] <- Omega[3,1]/pow(Omega[1,1]*Omega[3,3],0.5)

rho[3] <- Omega[3,2]/pow(Omega[2,2]*Omega[3,3],0.5)

rho[4] <- Omega[4,1]/pow(Omega[1,1]*Omega[4,4],0.5)

rho[5] <- Omega[4,2]/pow(Omega[2,2]*Omega[4,4],0.5)

rho[6] <- Omega[4,3]/pow(Omega[3,3]*Omega[4,4],0.5)

rho[7] <- Omega[5,1]/pow(Omega[1,1]*Omega[5,5],0.5)

rho[8] <- Omega[5,2]/pow(Omega[2,2]*Omega[5,5],0.5)

rho[9] <- Omega[5,3]/pow(Omega[3,3]*Omega[5,5],0.5)

rho[10] <- Omega[5,4]/pow(Omega[4,4]*Omega[5,5],0.5)

rho[11] <- Omega[6,1]/pow(Omega[1,1]*Omega[6,6],0.5)

rho[12] <- Omega[6,2]/pow(Omega[2,2]*Omega[6,6],0.5)

rho[13] <- Omega[6,3]/pow(Omega[3,3]*Omega[6,6],0.5)

rho[14] <- Omega[6,4]/pow(Omega[4,4]*Omega[6,6],0.5)

rho[15] <- Omega[6,5]/pow(Omega[5,5]*Omega[6,6],0.5)

# Assess model fit: compute Bayesian p-value for SSQ-type discrepancy

for (i in 1:ns) {

for (t in 1:ny) {

resid[i,t] <- y[i,t] - N.est[i,t]

sq[i,t] <- resid[i,t]ˆ2

y.new[i,t] ˜ dnorm(N.est[i,t], tau.obs[i])

sq.new[i,t] <- (y.new[i,t]-N.est[i,t])ˆ2

}

fit[i] <- sum(sq[i,])

fit.new[i] <- sum(sq.new[i,])
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test[i] <- step(fit.new[i] - fit[i])

bpvalue[i] <- mean(test[i])

}

}

A.1.3 Posterior predictive checks

Model adequacy was assessed using a graphical posterior predictive check for the estimation

of each country count. As a measure of discrepancy we chose the sum of squares of the

residuals. Graphical check consists in plotting lack of fit of the data set against the lack of

fit of replicated data using the parameters estimated by the model. A good fit is achieved

if half the points are below the 1:1 line and the second half above. Fig. A.3 indicates good

fit even if the data are not strictly symmetric. This is confirmed by the calculation of the

Bayesian p-value. A lack of fit correspond to a Bayesian p-value closed to zero or one. Here

Bayesian p-values are all around 0.54, indicating a good fit.

Figure A.3: Plot of discrepancy measures (sum of squares of residuals) for the
estimated counts of each European country. Diagonal is the 1:1 line. ES = Spain; FB
= Belgium; FR = France; GB = England; NL = Netherlands; PT = Portugal.

125



Appendix A. Supporting information to chapter II

A.1.4 Posterior distributions

The 95% Bayesian confidence intervals of the 15 correlations estimated between-country all

include zero. Nevertheless the probability of a positive correlation between Netherlands

and the three closest countries Belgium, England and France is 95.4%, 93.5% and 97.1%,

respectively (Fig. A.4).
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Figure A.4: Posterior distribution of the correlation between the six West Euro-
pean country counts. Vertical dotted lines indicate posterior mean and dashed line the
zero line. ES = Spain; FB = Belgium; FR = France; GB = England; NL = Netherlands;
PT = Portugal

Sum of counts for the North of Europe (Belgium, England, France and Netherlands) and

the South of Europe (Portugal and Andalusia) are reported in Fig. A.5. The mean growth

rate from 1990 to 2013 for each country is reported in Fig. A.6.
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Figure A.5: Estimated wintering population size of Pied Avocets in the North
and the South of Europe between 1990 and 2013. North European countries gather
Belgium, England, France and Netherlands and South of Europe Portugal and Andalusia.
Dots indicate observed counts, the line indicates estimated counts and the light grey area
the 95% credible interval.
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Figure A.6: Estimated geometric mean growth rates of Pied Avocet wintering
population in European country between 1990 and 2013. Horizontal dashed line
indicates population growth at equilibrium. The thin vertical line indicates the 95% credible
interval, the thick vertical line the 50% interval and the point the mean estimate for each
parameter. ES = Spain; FB = Belgium; FR = France; GB = England; NL = Netherlands;
PT = Portugal.
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A.2 Technical details on individual data modelling ap-
proach, code and models description.

A.2.1 Modelling framework
Hierarchical formulation

The complete data likelihood (CDL) approach facilitates the multistate modelling of demo-

graphic processes for open populations by implicitly integrating missing data in the likelihood

estimation and by using data augmentation (Schofield & Barker, 2008; Schofield, Barker &

MacKenzie, 2009). The modelling framework can be described preliminary through likeli-

hood decomposition, which includes for this study three components, the detection process,

the mortality process and the state process, i.e. individual time-varying covariates (Schofield

& Barker, 2011):

[Y |ab, ad, θY , N ]︸ ︷︷ ︸
Detection

[ad|ab, θd, N ]︸ ︷︷ ︸
Mortality

[z|θz, N ]︸ ︷︷ ︸
Covariate

(A.5)

The detection (encounter) process defines how individuals appeared over the sampling oc-

casions (winter re-sightings) and enables to estimate capture probability. Y is a matrix of

random variables (containing the resightings of birds) given ab (the matrix defining birth

dates) and ad (the matrix defining death dates). θY is the set of parameters describing the

observation process and N the total number of individuals entering in the population during

the study period. The population dynamics is also described by the death process. As all

individuals were marked as chicks, birth date is known. The matrix ab is then given as

data. However, we had no recovery of Pied Avocets, then ad is a full latent matrix of death

histories whose process is described by parameters θd. Finally, the state process is defined

by the random variable z given parameters θz describing the choice of the first winter area

and the subsequent transitions between wintering areas.

Detection process.

The data structure is a matrix Y of n=221 encounter histories with elements yi,t, taking

the values 1 or 0, to indicate whether or not individual i was detected during survey t, with
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t ∈ {1, ..., 19}. The binary observations yi,t are modelled as independent Bernoulli random

variables conditional to the availability of individual i in the population at t,

yi,t|ai,t ∼ Bern(ps,tai,t), (A.6)

where s indicates the individual state (wintering area). Thus, if ai,t = abi,ta
d
i,t = 0 (individual i

is ever died, adi,t = 0, or not yet born at t, abi,t = 0) then yi,t = 0 with probability 1, otherwise

yi,t is a Bernoulli trial with probability ps,t.

As mentioned in the main text we explicitly account for imperfect detection by modelling

encounter process as:

logit(ps,t) = γs + ηps,t, η
p
s,t ∼ N(0, σ2

p), (A.7)

with a Student-t prior T3(0, 0.16) for γs, the state dependant intercept and a T+
3 (0, 0.04)

for the state × time random effect. As an alternative to classical vague Normal prior we

chose Student-t distributions with small degree of freedom (df=3) for computational rea-

sons. Indeed, they are flat-tail distributions allowing more robust inference in logistic regres-

sion (Gelman et al., 2008) and they place iterative weighted on [-5,5], a reasonable logistic

range that stabilizes coefficient estimates, especially with sparse response data.

Ecological process.

A key feature of the CDL is the estimation of the matrix A estimating latent life history

of all individuals entering the population during the study, as well as the observed ones

as the unknown individuals included via data augmentation (see below Data augmentation

and derived quantities). This matrix is implemented with element ai,t = abi,ta
d
i,t. The latent

element adi,t which defined the mortality process is estimated as

adi,t ∼ Bern(adi,t−1(abi,t−1Si,t−1 + 1− abi,t−1)), (A.8)

where the parameter Si,t is the probability of individual i surviving between sampling occa-

sions t and t+ 1. The formulation ensures that an individual can only die after being born,

and lives only once. Dead recoveries could be included in this analysis, as date of death can

be implemented if known, but non dead recoveries appeared during our study.
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The survival probability between occasions t and t + 1, as mentioned above, is integrated

in the mortality process component of the model. We defined survival probability as a

robit regression, which is the inverse function of the cumulative distribution function of the

standard Student-t distribution.

Ss,t = cdfT7(robit(Ss,t), 1/σ2
r), σr = 1.5485, (A.9)

robit(Ss,t) = fS(θS) + ηSs,i, ηSs,i ∼ N(0, σ2
S), (A.10)

with survival, time and wintering area dependant, a function of parameters θS describing

survival process (see above section Covariates for the details on covariates tested on survival).

We included individual random effect accounting for individual heterogeneity (Cam et al.,

2002; Cam, Aubry & Authier, 2016) in survival estimates because we expected differences

between wintering strategies especially for residents facing less predictable wintering weather

conditions.

Multi-states modelling.

The CDL framework allows to treat categorical states (North or South wintering area) as

a covariate that is individual-specific and that can vary through time (Schofield & Barker,

2011). Thus we define a matrix Z (same dimension as A) with element zi,t that takes two

values, 1 if individual i is in the north of Europe at occasion t or 2 if it is in the south during

winter. Unobserved states take the value NA. The latent states zi,t are defined

zi,t ∼ Cat(pzt,s), if t = first winter, logit(pzt,s) = fpz (θz),
zi,t ∼ Cat(ψzt,s), if t > first winter, logit(ψzt,s) = gpz (αz).

(A.11)

where Cat(φ) is a categorical distribution with probability vector φ, ψz is the transition

probability between state zi,t−1 and state zi,t and pzt,s is the probability of being in state s

at occasion t given the individual was not born at t − 1 i.e., the first transition state from

breeding ground. fpz (θ) and gpz (α) are specific functions of parameter θz and αz we tested

on pz and ψz respectively.
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Data augmentation and derived quantities.

The CDL uses data augmentation (Schofield & Barker, 2011; Tanner & Wong, 1987) for

including missing or unobserved data, which allows to estimate population dynamics pa-

rameters (size, growth,...) during the study. The data augmentation is a flexible tool for

estimating the number of unmarked or unobserved items belonging to (recruiting in) the

population. This method consists in adding to the known-N number of individuals (221

here) a new dataset of a large number of unobserved individuals. The new (augmented)

dataset obtained constitutes the ”super-population” of size M from which we can estimate

the true number of individuals recruited during the study period. The chosen number of

pseudo-individuals n0 = M -N must be sufficiently large to ensure the inclusion of all the

potential individuals to the population. Following Royle & Dorazio (2008, 2012), we aug-

mented the observation matrix Y with a matrix of 570 pseudo-individuals (30 × 19 sampling

occasions) of all zero encounter histories. This enables the potential recruitment of 30 un-

marked individuals at each sampling occasion. The latent state matrices Z and Ad were

also augmented by the same number of pseudo-individuals x sampling occasions, as well as

matrix Ab for which 30 pseudo-individuals with element abi,t was set to 1 for each sampling

occasion t and the subsequent occasions. This parametrisation implies that, considering this

zero-inflated version of the model described above, we used an inclusion parameter wi,

wi = 1 if individual i ∈ known-N individuals,
wi ∼ Bern(ψi) if individual i ∈ zero-inflated individuals.

(A.12)

that determines if pseudo-individual i belongs to the population, with ψi ∼ Beta(1, 1), a flat

prior on [0,1]. Considering this parametrization, we now define ai,t = abi,ta
d
i,twi.

This new parameter enables easy calculation of numerous derived parameters, such as the

total population size (Ntot), the number of individuals alive at occasion t (Nt) or the number

of birth (Bt) and death (Dt),

Ntot =
M∑
i=1

wi, Nt =
M∑
i=1

ai,t, Bt =
M∑
i=1

(1− ai,t)ai,t+1, Dt =
M∑
i=1

(1− adi,t−1)adi,t
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the population growth rate (λ) and the per-capita entry probability f (Pradel, 1996),

λt = Nt+1

Nt

and ft = Bt

Nt

.

As covariates have two states we can easily compute quantities of interest according to each

state. From the partially latent life history matrix A we can derived individual lifespan as

row sum of A equal lifetime history of each individual:

lifespani =
T∑
t=1

ai,t i = 1, ...,M

Covariates

In order to test biological hypotheses on the processes modelled in this analysis we used

environmental covariates: North Atlantic Oscillation (NAO) index and a custom winter

severity indices. NAO is used as a proxy for global climate. When positive, it indicates that

the climate is warmer and wetter in northern Europe, whereas conditions are colder and

dryer than average in the southern Europe and Mediterranean region and vice-versa (Visbeck

et al., 2001). We particularly used indices for the winter period (December to February),

taken from http://www.cgd.ucar.edu/cas/jhurrell/indices.html. The winter severity indices

were based on the number of successive days with mean daily temperatures ≤ 0◦C, using

freely available climatic data (http://www.infoclimat.fr/climatologie) from Nantes airport

(47◦09’N, 1◦36’W) and Bordeaux airport (44◦50’N, 0◦42’W), situated at the extremity of

French Pied Avocet winter Range. We considered these two places as representative of the

climate range and then calculated the mean values. We sorted these data in discrete indices

between 1 to 4 if consecutive days are in class 0 to 4 days, 5 to 9 days, 10 to 14 days and

≥ 15 days, respectively (see Table A.1).
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Winter
(years)

Severity
indices NAO

1995-1996 1 -0.62
1996-1997 4 -0.07
1997-1998 1 -0.23
1998-1999 1 0.64
1999-2000 1 1.3
2000-2001 1 0.04
2001-2002 1 0.24
2002-2003 2 -0.05
2003-2004 1 0.07
2004-2005 1 0.89
2005-2006 1 0.11
2006-2007 1 0.36
2007-2008 1 0.65
2008-2009 1 -0.08
2009-2010 2 -1.67
2010-2011 1 -0.68
2011-2012 3 1.37
2012-2013 1 0.02
2013-2014 1 0.86
2014-2015 1 1.66

Table A.1: Environmental covariates. These covariates were incorporated in the model at
the first stage of selection as explanatory variable for the estimation of survival probability,
first wintering area selection and transition between following winters.

It is difficult to obtain a precise hatching date in Pied Avocets because it is a precocial

species and our monitoring schema is not daily. Then, hatch dates were estimated from

biometrics taken during ringing cessions. Chambon et al. (2017) showed that bill length

is the best predictor of hatch date with a precision ±2.2 days (SE=0.24). Estimated hatch

date was calculated from the following equation:

hd = rd−
1.36− log(82.23

bl
− 1)

0.08 (A.13)

where hd is estimated hatch date, rd is ringing date and bl is bill length.

The distribution of the hatching date concerning the whole data set is clearly bivariate

(see Fig. A.7.A) and the same pattern exists among the individuals never seen in the Iberian
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Figure A.7: Hatch date distributions. Values were standardized with a mean of 0 and a
standard deviation of 1. Graphic A shows the distribution of estimated hatching date for all
individuals, graphic B shows the distribution of estimated hatching date for the individuals
seen at least once in the Iberian Peninsula and graphic C shows the distribution of estimated
hatching dates for the individuals never seen in the Iberian Peninsula.

Peninsula (see Fig. A.7.B). However, the distribution of the hatch date concerning the indi-

viduals seen in the Iberian Peninsula has a higher density in negative values (see Fig. A.7.C)

indicating a globally earlier hatching date than in other individuals, despite a skew tail to-

ward positive values. As three bill length are missing among the selected individuals and

because first winter state was not known for every bird, we consider hatching date as being

normally distributed, i.e.:

Birthi ∼ N(µS,j, τS) (A.14)

µNorth,j ∼ N(1, 0.5) & µSouth,j ∼ N(−1, 0.5), (A.15)

where Birthi is the estimated birth date of individual i using equation 9 and µS,j is its mean

estimated birth date conditionally of his state S (North or South) during the first winter

in year j. Informative prior distributions (Eq.A.15) were used for the mean birth dates

considering knowledge of birth date due to equation 9 after scaling the date with mean zero

and standard deviation equal to one.

Horseshoe prior

In order to select the covariates that affect the main parameters of the model (survival, the

choice of wintering site and transition between sites), we made use of the horseshoe prior that
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is related to the shrinkage methods, e.g. the Laplacian priors (LASSO) or Student-t priors.

The horseshoe prior is a robust estimator at handling sparse data and outlying signals as

well as disentangling noise from real signal from data. It assumes that in a regression the

coefficients, say βi, are conditionally independent and their density can be represented as

scale-mixture of normal distributions:

(βi|λi, τ) ∼ N(0, λ2
i τ

2) (A.16)

λi ∼ C+(0, 1), (A.17)

with C+(0, 1) is the half-Cauchy distribution for the standard deviation λi. In this context

λi’s are considered as the local shrinkage parameters (defined for each coefficient βi) and

τ is a global shrinkage parameter. We also defined a half-Cauchy distribution for τ . Fol-

lowing Carvalho, Polson & Scott (2010) we formulated the Cauchy distributions as scale

mixture with inverse-Gamma distribution, IG(1/2, 1/2). The interest of the horseshoe prior

is to put the posterior probability mass around zero (βi = 0), see Fig. A.8, unless signal from

a covariate shift posterior probability mass of βi away from zero.
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Figure A.8: The horseshoe prior. Approximate density function of the horseshoe prior,
log(1 + 2/β2), according to Carvalho, Polson & Scott (2010) on the range [-5,5].
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A.2.2 DIC Model selection

Name DIC pD Deviance ∆DIC wi
mod0 3648.5 884.3 2764.2 25.1 0.00
mod1 3663.0 902.8 2760.2 39.6 0.00
mod2 3623.4 865.4 2758.0 0 0.84
mod3 3641.8 876.6 2765.3 18.4 0.02
mod4 3642.3 874.6 2767.7 18.9 0.00
mod5 3646.8 880.4 2766.5 23.4 0.00
mod6 3657.2 896.6 2760.6 33.8 0.00
mod7 3650.0 886.7 2763.2 26.6 0.00
mod8 3637.6 866.3 2771.3 14.2 0.13
mod9 3642.7 882.9 2759.9 19.3 0.00
mod10 3642.2 875.1 2767.0 18.8 0.00
mod11 3649.1 886.2 2762.9 25.7 0.00
mod12 3635.3 872.6 2762.6 11.9 0.00

Table A.2: Model selection. The different models were selected using the deviance infor-
mation criterion (DIC). Best fitted model has the lowest DIC, wi is the weight of the model
(wi = exp(−0.5∆DICi)/Σexp(−0.5∆DIC), with ∆DICi the difference between model i
and the model with the lowest DIC).

A.2.3 Model code

Jags code for the best fitted model (mod2).

model{

for(i in 1:m){

w[i] ˜ dbern(pw) # inclusion parameter (eq.8)

}

pw ˜ dbeta(1,1)

lambda <- sum(w[1:m]) # estimated total individuals recruted

for(i in 1:m) {

for(j in 1:(since[i]-1)){

136



Appendix A. Supporting information to chapter II

a[i,j] <- 0

a1[i,j] <- 0

a2[i,j] <- 0

ad[i,j] <- 1

}

for(j in since[i]:until[i]){

# DEATH

ad[i,j] ˜ dbern(piad[i,j]) # latente death matrix

# ALIVE

a[i,j] <- ab[i,j]*ad[i,j]*w[i] # alive matrix for all individuals

# alive matrix in for individuals in state 1 (North)

a1[i,j] <- a[i,j]*(2-z[i,j])

# alive matrix in state for individuals in state 2 (South)

a2[i,j] <- a[i,j]*(z[i,j]-1)

}

for(j in since[i]:until[i]){

# Observation process

x[i,j] ˜ dbern(pdet[i,j])

pdet[i,j]<-a[i,j]*p[i,j] # eq.2

}

for(j in 1:(until[i]-1)){

# Birth

b[i,j] <- equals(a[i,j],0)*equals(a[i,j+1],1)

# Death

d[i,j] <- equals(a[i,j],1)*equals(a[i,j+1],0)

}
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z[i,since[i]] ˜ dcat(zp[since[i],1:ns]) # first state

for(j in (since[i]+1):until[i]){

# State estimation = Covariate model

z[i,j] ˜ dcat(psi[z[i,j-1],1:ns]) # states transitions (eq.7)

}

# Prob for death

piad[i,since[i]] <- 1

for(j in (since[i]+1):until[i]){

piad[i,j] <- ad[i,j-1]*(ab[i,j-1]*sv[i,j-1] + (1-ab[i,j-1])) # eq.4

}

# Survival prob (robit link function)

for(j in since[i]:(until[i]-1)){

sv[i,j] <- pt(sv.rob[i,j],0,tau.robit,7) # eq.5

sv.rob[i,j] <- beta1 + beta2*age[i,j] + etas[z[i,j],i] # eq.6

}

for(j in since[i]:until[i]){

p[i,j] <- pdt[z[i,j],j]

}

}

# Scale parameter for the robit link

tau.robit <- pow(sigma.res,-2)

sigma.res <- 1.5485
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for(j in 1:n_occ){

logit(pdt[1,j]) <- gamma[1] + etap[1,j] # North detetection (eq.3)

}

for(j in 1:3){

logit(pdt[2,j]) <- gamma[2] + etap[2,j] # South detetection (eq.3)

}

for(j in 4:9){

pdt[2,j] <- 0 # South detetection (eq.3)

}

for(j in 10:n_occ){

logit(pdt[2,j]) <- gamma[2] + etap[2,j] # South detetection (eq.3)

}

for(h in 1:2){

# Variance priors

gamma[h] ˜ dt(0,0.16,3)

taup[h] <- 1/sdp[h]/sdp[h]

sdp[h] ˜ dt(0,0.04,3)T(0,)

taus[h] <- 1/sds[h]/sds[h]

sds[h] ˜ runif(0,10)

}

for(i in 1:m){

for(h in 1:2){

# Survival individual state-dependant random effect

etas[h,i] ˜ dnorm(0,taus[h])
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}

}

for(j in 1:n_occ){

for(h in 1:2){

# detection random year effect

etap[h,j] ˜ dnorm(0,taup[h])

}

}

for(h in 1:ns){

psi[h,1:ns] ˜ ddirch(alpha[]) # yearly transition probability

}

# Others priors

for(h in 1:ns){

alpha[h] <- 1

}

beta1 ˜ dnorm(0,0.001)T(-10,10)

beta2 ˜ dt(0,0.16,3)

for(j in 1:n_occ){

# yearly selection rate of first wintering area

zp[j,1:ns] ˜ ddirch(alpha[])

}

### Computation of lifespan

for (i in 1:(m-nz)){
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lspan[i] <- sum(a[i,since[i]:until[i]])

}

### Computation of abundance population paramerters

for(j in 1:n_occ){

N[j] <- sum(a[1:m,j])

N1[j] <- sum(a1[1:m,j])

N2[j] <- sum(a2[1:m,j])

}

for(j in 1:(n_occ-1)){

B[j] <- sum(b[1:m,j])

D[j] <- sum(d[1:m,j])

}

}

A.2.4 Model description
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A.3 Additional data and results from CMR modelling.

A.3.1 Cohort data

Cohort Total Ringed individuals Number of Resigthing
ringed kept for analysis occasions

North South
1996 26 13 10 22
1997 53 24 67 16
1998 26 4 6 9
1999 29 3 4 0
2000 8 4 19 0
2001 38 12 57 10
2002 26 8 41 5
2003 18 12 28 10
2004 43 9 43 3
2005 39 33 29 12
2006 54 22 103 5
2007 46 16 68 6
2008 24 14 37 8
2009 31 9 21 6
2010 16 3 20 1
2011 4 6 2 2
2012 0 0 0 0
2013 16 6 7 3
2014 43 14 12 2
Total 552 221 574 120

Table A.4: Ringed and resighted Pied Avocets. Number of Pied Avocets ringed as
chicks per cohort, number of individuals resighted at least once during winter and number of
resighting occasions (occasion correspond to individual resigntings of the considered cohort
and per winter) according to wintering area and for each cohort.

Pied Avocets were all ringed as chicks from 3 weeks old to 1 month old, just before

fledging. The colour-ring combinations consist of multiple plastic colour-rings or a mix of

colour-rings including a flag or engraving rings. The colour-ring combinations can be read

through a telescope (zoom 20x60) up to a distance of 300m in good weather conditions.

The maximum number of chicks is ringed, each of them with a unique combination, in the
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limits of feasibility and volunteers availability. We thank the Museum National d’Histoire

Naturelle of Paris for the authorisation to ring Pied Avocets.

50

100

150

200

2000 2005 2010

Year

C
u

m
u

la
te

d
 n

u
m

b
e

rs
 

 o
f 

b
ir
d

s
 r

in
g

e
d

a

0

25

50

75

100

125

2000 2005 2010 2015

Year

C
u

m
u

la
te

d
 n

u
m

b
e

rs
 

 o
f 

e
n

c
o

u
n

te
r 

o
c
c
a

s
io

n
s

b

Figure A.9: Accumulation curve of ringed birds entering the study. A: accumulation
of the number of birds ringed during the study period; B: Accumulation curve of the number
of encounter occasions per winter.

Winter 2006 is the cut point date between low rate of ringing and low number of encounter

occasions with higher rates of both ringing and observation as showed by the slope of the

two curves. These two variables are obviously correlated.

A.3.2 Model adequacy with data

The observed yearly survival was calculated as the number of Pied Avocets borne in year t

or before and still alive during year t+ 1, i.e. observed in year t+ 1 or after.

Apparent detection is the proportion of observed individuals among individuals know to

be alive.
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Figure A.10: Posterior predictive distribution for survival. The observed yearly sur-
vival is shown by grey squares. Boxplots show posterior distribution simulated from 10000
random draws of joint posterior distributions parameters of the best model. The numbers
in the upper part of the figure indicate numbers of individuals of the corresponding cohort
never observed subsequently during the study period.
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Figure A.11: Posterior predictive distribution for detection. Detection probability
as calculated from data set is shown by grey squares. Boxplots show posterior distribution
simulated from 10000 random draws of joint posterior distributions parameters of the best
model. The numbers in the upper part of the figure indicate numbers of detected individuals.

A.3.3 Summary of population dynamics parameters
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Figure A.12: Population dynamics. (a) Estimated annual growth rate (λt), horizontal
dashed line indicates stability (λ = 1). For graphical clarity the North population growth rate
in 1998 (7.49) was note shown on the graphic. (b) per-capita entry probability (recruitment),
horizontal dashed line indicate mean value on the period. (c) Estimated annual number of
births. (d) Estimated annual number of dead individuals. For all graphics fine vertical lines
correspond to 95% Bayesian confidence interval and large vertical lines correspond to 50%
Bayesian confidence interval.

A.3.4 Survival heterogeneity
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Figure A.13: Variance ratio. Distribution of the ratio between the state-specific survival
variance of North wintering Avocets, against the South wintering ones. The vertical dotted
line shows the mean (0.87).

Survival heterogeneity was estimated as individual and state dependant (Eq. A.9). Dif-
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ferences between states (North and South wintering area) was explored via variance ratio

(Fig. A.13).

In order to explore individual heterogeneity in survival we tested, using the posterior

mean estimates of each individual heterogeneity parameter, potential local wintering area

effects by splitting wintering quarters at different scales. To each bird we attributed one

winter site, according to its life history. To birds observed in different sites during their life,

we attributed as site the one where they were resighted the higher number of winters. We

also treated birds moving between different sites as a special category, depending on the

scale considered.

Considering the Iberian Peninsula, we compared survival heterogeneity between Spain

and Portugal using Wilcoxon rank sum test, but found no significant difference (W=289,

p=0.26). At lower scale, we only compared heterogeneity between the Tagus and the Sado

estuary, due to the very small sample size in the other sites. The difference was not significant

(W=108, p=0.48). We excluded from the analyses the 5 birds observed in the two states.
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Figure A.14: Individual heterogeneity. Distribution of the survival heterogeneity accord-
ing to bird wintering area. N: North, S: South.

Concerning birds wintering in the North of Europe, we first compared 4 main wintering

areas along the French Atlantic coast, using Mood’s median test (p=0.05). However, pair-
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wise comparison using Mood’s median test indicated no significant p-value, we thus did not

concluded to any significant difference between sites. At a lower scale we distinguished birds

seen in only one site during their life, consisting in 5 sites along the French Atlantic coast,

and a supplementary category for birds seen in different sites (with no more distinction).

Mood’s median test (p < 0.001) was significant, but a pairwise analysis revealed no signif-

icant p-value. We thus did not concluded to any significant difference. However, p-values

corresponding to comparisons between birds faithful to 3 sites in winter and birds moving

between different sites are all in the interval [0.05, 0.1]. These 3 sites correspond to the

breeding colony and the two Southern sites of the Atlantic coast, i.e. the Northern main

wintering sites of this coast.

We excluded from these analyses the 5 birds observed in the two states.

A.3.5 Posterior distributions
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Figure A.15: Posterior distribution of survival and detection parameters. A. β1:
intercept in the survival probability regression. B. β2: Age effect in the survival probability
regression. C. γ1: intercept in the detection probability regression for North wintering birds.
D. γ2: intercept in the detection probability regression for South wintering birds. Vertical
line indicates posterior mean and dotted line zero. Dashed curve indicates prior distribution.
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Figure A.16: Posterior distribution of annual first winter transition to North. From
1 to 19 respectively pzt,1 for t = {1, ..., 19}. Vertical line indicates posterior mean and dashed
curves indicate prior distribution (Dirichlet). First winter transition to South (pzt,2) is the
complement of pzt,1, i.e. pzt,2 = 1− pzt,1.
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Figure A.17: Posterior distribution of state transitions after first winter. A: prob-
ability to winter in the North if first wintering in the North (ψN,N), fidelity to the North
area. B: transition probability to the South if first wintering in the North (ψN,S). C: proba-
bility to winter in the South if first wintering in the South (ψS,S), fidelity to the South area.
D: transition probability to the North if first wintering in the South (ψS,N). Vertical line
indicates posterior mean and dashed curves indicate prior distribution (Dirichlet).
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B.1 Breeding Events

We distinguished firstly birds observed at their breeding site from those observed outside.

Monitoring of breeding period was more intensive at ringing colony than elsewhere, we then

suspected a higher detection rate, as well as a better classification rate of breeding state than

outside this colony.

During each breeding season, an individual can only have one of the three possible states:

non-breeder, unsuccessful breeder or successful breeder (inside or outside the ringing colony).

However, it was not possible to ascertain non breeding state (there is no objective criteria for

that), apart from juveniles, as breeding can occur from the breeding season following birth.

We then attributed certain non-breeding state mainly to juveniles (at ringing occasion),

and also to a few occasions for adults from which a high number of observations during

the breeding season indicated no breeding behaviour (34 occasions). Moreover, it was not

possible to classify all breeding individuals as certain breeders, because observations were

sparse and we can miss the breeding behaviours needed to classify the individual as certain

breeder. Some individuals may as well have skipped reproduction (state: non-breeder) and

we expected them to exhibit no specific breeding behaviour. Moreover, conspecific nest

parasitism is not rare in Pied Avocet (Hötker, 2000) and can hardly never be confirmed

in the field. Indeed, those individuals show no brooding behaviour. In this context, we

defined five graded observation events (see Table B.1) that reflect our knowledge about the
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Event Behaviour
Certain non-breeder (1) Juvenile (at ringing)

Possible breeder (2) No specidfic behaviour
Present at breeding site

Suspected breeder (3)

Nest prospection
Mate

Alarming
Territoriality
Copulating

Manipulating nest material
Digging nest

Certain breeder (4)
Diversion moves

Incubating
Chicks care

Successful breeder (5) Juveniles care

Table B.1: Event determination. List of behaviours observed during fieldwork and their
corresponding events.

real breeding state of individual: (1) certain non-breeder, (2) possible breeder, (3) suspected

breeder, (4) unsuccessful breeder and (5) successful breeder. These five events were recorded

both inside and outside the ringing colony, leading to a total of 10 possible events. For

events 2 and 3, no state was attributed, we used the maximum level of information from

behavioural observations to set these event grade, reflecting our best knowledge of unknown

breeding state. Event 5 is a special case of event 4, indeed it correspond to breeders that were

successful in their breeding attempt (observed whit sub-fledgling juveniles). As there was

possibly uncertainty in the success of breeding attempts, families escaping the monitoring,

we also considered event 4 as uncertain in term of success (see Fig. B.1).

Annual breeding occasions consisted in one unique value in our modelling framework.

However, as predation is very high on most of the breeding range (Touzalin pers. com.),

multiple breeding attempts are common in Pied Avocets. In order to overcome this problem

assigning a single trait to each individuals during each breeding season, we used the higher
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Real states
(partially latent) NB B SB

Events
classification Event: 1 Event: 2 Event: 3 Event: 4 Event: 5

pNB1 pNB2

pNB3 pB1

pB2 pB3 pSB1 pSB2

Figure B.1: States and events relationships. Diagram describing the hidden Markov
process with probability structure for state assignment. Circles indicate real states (NB: non-
breeder; B: unsuccessful Breeder; SB: Successful Breeder) and rectangular the event grades
established from fieldwork observations (see Tab. B.1). Plain arrows indicate unambiguous
links (event 1 and 5 correspond, respectively and exclusively to the state NB and SB) and
dotted arrows the latent links. Event 2 and 3 correspond as well as state NB as B. Event 4
correspond as well as state B as SB. The assignment probability are indicated on the arrows
with probability rule: ∑3

n=1 pNB = ∑3
n=1 pB = ∑2

n=1 pSB = 1.

event grade observed as a reference. As breeding site was of interest in this study, for

individuals observed at several breeding sites during the same breeding occasion, we used

as reference the site of the first breeding attempt if breeding events grades were equivalent.

In other cases, we used the site with the maximum grade of breeding event. In eighteen

occasions, concerning sixteen birds, no data were collected during the breeding season but

only on post-breeding gathering sites. We then set these occasions to the event potential

breeder outside the birth colony, because the absence of detection on the breeding site was

very unlikely with a detection probability nearly equal to one (see results).

B.2 Detail on the multievent modelling

B.2.1 Hierarchical formulation

The complete data likelihood (CDL) approach allows an easy estimation of vital rates by

implicitly integrating missing data in the likelihood estimation (Schofield & Barker, 2008;

Schofield, Barker & MacKenzie, 2009), by modelling multi-states or multi-events as individ-

ual time-varying covariates (Schofield & Barker, 2011). The likelihood of the model can be
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decomposed in five components, the detection process, the mortality process and three ele-

ments concerning state and event process, i.e. individual time-varying covariates (Schofield

& Barker, 2011):

[Y |p, a, zr, zh, t1]︸ ︷︷ ︸
Detection

[a|S, t1]︸ ︷︷ ︸
Mortality

[zr|ψr, t1]︸ ︷︷ ︸
1

[ω|ψr, θr, t1]︸ ︷︷ ︸
2

[zw|ψw, t1]︸ ︷︷ ︸
3

(B.1)

In this hierarchical formulation, detection process allows the estimation of the recap-

ture probability p by defining entrance of individuals throughout the sampling process. Y

is a matrix of random variables (containing the resightings of birds) given a (the matrix

defining alive status) which depends of winter state zw and reproductive state zr. Time

of entry in the study is indicated by t1, i.e. the breeding season corresponding to ring-

ing and release. Mortality process defines when individual died (if death occurred before

the end of the study). Here we used a Cormack-Jolly-Seber (CJS) formulation of the CDL

for survival estimations (Cormack, 1964; Jolly, 1965; Seber, 1965), which is the product of

the conditional likelihood component for survival and for capture given the time of death

(Detection ×Mortality in eq. B.1). The covariates zr, corresponding to the reproductive

events (component 1 in eq. B.1) were modelled as conditional on transition probability ψr,

using an extra component noted ω (component 2 in eq. B.1) that modelled the uncertainty

with parameter θr. Finally, covariate zw corresponding to wintering states (component 3 in

eq. B.1) was modelled conditionally to the transition probability ψw.

Detection process.

The data structure is a matrix Y of n=221 encounter histories with elements yi,t taking the

values 1 or 0 to indicate whether or not individual i was detected during survey t, with

t ∈ {1, ..., 19}. The binary observations yi,t are modelled as independent Bernoulli random

variables conditional to the availability of individual i in the population at t,

yi,t|ai,t ∼ Bern(ps,z,tai,t), (B.2)

where s indicates the season (breeding or wintering) and z the individual state during this

season. Detection is conditional on survival with ai,t = 0 (individual i is ever dead or not yet
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born at t) then yi,t = 0 with probability 1, otherwise yi,t is a Bernoulli trial with probability

ps,z,t.

As mentioned in the main text, we explicitly account for imperfect detection by modelling

encounter process as:logit(pzr,t) = βps + γzr + ηpg,t, ηpg,t ∼ N(0, σ2
p), if s=1 (breeding season),

logit(pzw,t) = βps + γzw + ηpzw,t, ηpzw,t ∼ N(0, σ2
p), if s=2 (wintering season),

(B.3)

with a vague Normal prior N(0, 1000) truncated on the interval [-10,10] for βs, the

seasonal intercept. The state dependant intercepts γzr and γzw were modelled with a Student-

t prior T (0, 0.16, 3). However, successful breeder is a particular case among of the breeder

states and we modelled γzr=succ. = γzr=fail + γε to ensure that γzr=succ. > γzr=fail. Indeed,

successful breeders have a higher detection probability because they are successful at all

steps of breeding (laying, incubating and chicks care) and as a consequence they spend more

time at breeding site than unsuccessful ones. We also added a season-dependent random

time effect (ηp) which is state dependant (zw) during wintering season and site dependent

(g) during breeding season (eq. B.3), i.e. we distinguish random effects at ringing sites from

other sites. We modelled ηp with a half Student-t prior T+(0, 0.04, 3). As an alternative to

classical vague Gamma prior we chose Student-t distributions with small degree of freedom

(df=3) for computational reasons. Indeed, they are flat-tail distributions allowing more

robust inference in logistic regression (Gelman et al., 2008) and they place iterative weights

on a range close to zero that stabilizes coefficient estimates, especially with sparse response

data.

Ecological process.

The survival probability between occasion t and t + 1, as mentioned above, is considered

as a part of the mortality process component of the model. We defined survival probability

as a robit regression, which is the inverse function of the cumulative distribution function of

the standard Student-t distribution:

Si,t = cdfT (robit(Si,t), 1/σ2
r , 7), σr = 1.5485, (B.4)

robit(Si,t) = β1 + α ∗ agei,t + ηSs,i, ηSs,i ∼ N(0, σ2
S), (B.5)
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where β1 is the intercept, α is the linear regression coefficients on age effect. We included

an individual random effect ηSs,i accounting for individual heterogeneity (Cam et al., 2002;

Cam, Aubry & Authier, 2016), which is dependant of individual winter state. The global

implementation of survival (age dependence and random individual effects) is inspired by

results in chapter II, and show that survival probability in Pied Avocet is mainly driven by

a negative linear age effect and by individual heterogeneity.

However, we have no a priori on the possible importance of individual heterogeneity in

survival during breeding period. To investigate the relevance of adding an individual random

term in the survival regression in breeding season, we used an inclusion variable. Inspired

by Royle & Dorazio (2008), we multiplied the individual random term with a binary variable

(wp), whose prior distribution is: wp ∼ Bern(0.5). If mean posterior distribution of wp is

closed to one there is a strong support to keep the random term in the regression. If closed

to zero, the term is not informed by the data and should be deleted.

Multi-states modelling in winter.

The CDL framework allows to treat categorical states during winter (North or South winter-

ing area) as a covariate that is individual-specific and that can vary through time (Schofield

& Barker, 2011). We used the same implementation as in chapter II for wintering states

transition, i.e. we defined a matrix Zw with element zwi,t that takes two values, 1 if individual

i is in the north of Europe at occasion t or 2 if it is in the South. Unobserved states take

the value NA. The latent states zwi,t are defined:zwi,t ∼ Cat(pzw

t,z ), if t = first winter,
zwi,t ∼ Cat(ψzw

zt−1,zt
), if t > first winter,

(B.6)

where Cat(φ) is a categorical distribution with probability vector φ, ψzw is the transition

probability between the states zwi,t−1 and the state zwi,t and pz
w

t,s is the probability of being in

state z at occasion t given not born at t − 1, i.e. the first transition from breeding ground

to wintering site. We modelled pz
w as time and state dependant and ψz

w with a Markovian

process (transition between state depends only on previous state), following results in chapter

I.
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Multi-events modelling in breeding season.

We modelled breeding events as a covariate that is individual-specific and that can vary

through time. However we need extra information to model uncertainty on real states.

Thus, we defined a matrix Zr with element zri,t that takes 6 values, 1 to 3 if individual i is in

the ringing colonies at occasion t or 4 to 6 if it is outside. These three states for each breeding

area corresponded to non-breeder, fail breeder and successful breeder, respectively. To cope

with uncertainty we considered another matrix W with element wi,t that takes 10 values

corresponding to the five events for each breeding area as described in Table B.1 (p. 153).

Unobserved or uncertain events take the value NA. The latent events zri,t are defined:
zri,t ∼ Cat(pzr

t,z), if t = first winter,
zri,t ∼ Cat(ψzr), if t > first winter, logit(ψzr) = fzr(θzr),
wi,t ∼ Cat(pw),

(B.7)

where Cat(φ) is a categorical distribution with probability vector φ, ψzr is the transition

probability between state zri,t−1 and state zri,t and pz
r

t,s is the probability of being in state z

at occasion t given first wintering state at t− 1 i.e., the first transition state from wintering

area to breeding area. fpzr (θzr) is a specific function of parameter θzr we tested on ψz
r . We

particularly tested for age, time and previous reproductive state effects on these transitions.

The probability of assignment is pwzt−1,zt
, the probability for an individual i to be observed in

the event w at t given that he is in state z.

We included individual heterogeneity in the transition probability between breeding

states (pzr,t) which was modelled as an individual random effect (Eq. B.3) . As we were inter-

ested in the correlation between the different sources of heterogeneity, we assumed these ran-

dom effects to have a multivariate normal distribution with mean 0 and a variance-covariance

matrix Ω. For computational ease we used the Cholesky decomposition proposed by Chen &

Dunson (2003). They suggested to factorize the variance-covariance matrix Ω into a diagonal

matrix D and a lower triangular matrix L with a diagonal of 1: Ω = DL(LD)′ = DLL′D.

Here we used a parameter expanded formulation proposed by Authier (2016, unpublished):

Ω = AL∆L′A, where A = diag(α1, ..., αi) and ∆ = diag(δ1, ..., δi) are two diagonal matrices.

To induce marginal half-t priors T+(0, α2, υ) on the standard deviations of the random effects
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(σ2
i ) we used the following priors: α ∼ N+(0, 1.5), δ ∼ Γ−1(1.5, 1.5) and l ∼ N(0, 4) the

lower diagonal element of L. Correlations between sites were computed from the elements

of Ω:

ρi,j = covi,j√
σ2
i σ

2
j

(B.8)

where i > j.

Derived parameters.

A main advantage of using the CDL is that it allows direct estimation of quantities of interest,

allowing in turn the easy calculation of numerous derived parameters of demographic interest.

The partially latent life history matrix A can be used to compute individual lifespan as row

sum of A equals lifetime history of each individual:

lifespani =
T∑
t=1

ai,t i = 1, ...,M,

where T is the number of occasions and M is the total number of ringed individuals. In a

similar way, it is easy to calculate the reproductive lifespan (difference between first and last

reproductive attempt) or the number of reproductive attempts (’rltime’) in an individual’s

life:

rltimei =
T∑
t=1

ai,t ∗ ri,t i = 1, ...,M with

{
ri,t = 0 if zri,t = 1,
ri,t = 1 if zri,t ∈ {2, 3},

where zri,t = 1 is the state non-breeder for individual i at occasion t and zri,t ∈ {2, 3} cor-

responds to breeding states (respectively unsuccessful and successful). Then, it is possible

to calculate the proportion of time devoted to reproduction along life as a ratio between re-

productive lifespan and lifespan. Using reproductive and wintering states we can summarize

age-related breeding attempts among recruitment stage as well as summarize their survival

probabilities.

B.3 CJS code for jags

model{
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for(i in 1:n) {

for(j in 1:(since[i]-1)){

a[i,j] <- 0

ad[i,j] <- 1

}

for(j in since[i]:until[i]){

# DEATH

ad[i,j] ˜ dbern(pad[i,j]) # latente death matrix

# ALIVE

a[i,j] <- ab[i,j]*ad[i,j] # alive matrix

}

# Prob for death

pad[i,since[i]] <- 1

for(j in (since[i]+1):until[i]){

pad[i,j] <- ad[i,j-1]*(ab[i,j-1]*sv[i,j-1] + (1-ab[i,j-1]))

}

for (j in since[i]:until[i]){

# This specifies the distribution [Y|a,p]

Y[i,j] ˜ dbern(pdet[i,j])

pdet[i,j] <- a[i,j]*p[z[i,j],j]

}

# model for breeding state asignement

for(j in f[i]:s_occ){

obst[i,j] ˜ dcat(ps[z[i,idb[j]],1:nso])

160



Appendix B. Supporting information to chapter III

}

# model the first transition

z[i,(since[i]+1)] ˜ dcat(psi1[((since[i]+1)/2),1:nsw])

# model the breeding state

for(j in (since[i]+2):until[i]){

z[i,j] ˜ dcat(psi2[i,ida[i,j],ids[j],z[i,j-1],1:nsb])

}

sv[i,since[i]] <- 1 # all individuals survive until first winter

for(j in (since[i]+1):(until[i]-1)){

sv[i,j] <- pt(sv.rob[i,j],0,tau.robit,7)

sv.rob[i,j] <- beta[1] + alpha*age[i,j] +

equals(ids[j],2)*equals(z[i,j],1)*eta[i,1] +

equals(ids[j],2)*equals(z[i,j],2)*eta[i,2] +

wp*equals(ids[j],1)*eta[i,3]

}

}

# Scale parameter for the robit link

tau.robit <- pow(sigma.res,-2)

sigma.res <- 1.5485

# prior for first event (first winter)

for(j in idw){

psi1[(j/2),1:nsw] ˜ ddirch(alphaw[])

}
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for(h in 1:nsw){

# prior the values for alphaw

alphaw[h] <- 1

}

# transition from wintering to breeding

for(i in 1:n) {

for(j in (f[i]+1):19){

for(h in 1:nsw){

qpsi2[i,ida[i,(j*2)],1,h] <- exp(lpsi2[i,ida[i,(j*2)],1,h,1]) +

exp(lpsi2[i,ida[i,(j*2)],1,h,2]) + exp(lpsi2[i,ida[i,(j*2)],1,h,3]) +

exp(lpsi2[i,ida[i,(j*2)],1,h,4]) + exp(lpsi2[i,ida[i,(j*2)],1,h,5]) +

exp(lpsi2[i,ida[i,(j*2)],1,h,6])

psi2[i,ida[i,(j*2)],1,h,1] <- exp(lpsi2[i,ida[i,(j*2)],1,h,1])/

qpsi2[i,ida[i,(j*2)],1,h]

psi2[i,ida[i,(j*2)],1,h,2] <- exp(lpsi2[i,ida[i,(j*2)],1,h,2])/

qpsi2[i,ida[i,(j*2)],1,h]

psi2[i,ida[i,(j*2)],1,h,3] <- exp(lpsi2[i,ida[i,(j*2)],1,h,3])/

qpsi2[i,ida[i,(j*2)],1,h]

psi2[i,ida[i,(j*2)],1,h,4] <- exp(lpsi2[i,ida[i,(j*2)],1,h,4])/

qpsi2[i,ida[i,(j*2)],1,h]

psi2[i,ida[i,(j*2)],1,h,5] <- exp(lpsi2[i,ida[i,(j*2)],1,h,5])/

qpsi2[i,ida[i,(j*2)],1,h]

psi2[i,ida[i,(j*2)],1,h,6] <- exp(lpsi2[i,ida[i,(j*2)],1,h,6])/

qpsi2[i,ida[i,(j*2)],1,h]

lpsi2[i,ida[i,(j*2)],1,h,1] <- iota[1,h] + delta[1,ida[i,(j*2)],h]

lpsi2[i,ida[i,(j*2)],1,h,2] <- iota[2,h] + delta[2,ida[i,(j*2)],h] + eta[i,4]

lpsi2[i,ida[i,(j*2)],1,h,3] <- iota[3,h] + delta[3,ida[i,(j*2)],h] + eta[i,4]

lpsi2[i,ida[i,(j*2)],1,h,4] <- iota[4,h] + delta[4,ida[i,(j*2)],h]

162



Appendix B. Supporting information to chapter III

lpsi2[i,ida[i,(j*2)],1,h,5] <- iota[5,h] + delta[5,ida[i,(j*2)],h] + eta[i,4]

lpsi2[i,ida[i,(j*2)],1,h,6] <- iota[6,h] + delta[6,ida[i,(j*2)],h] + eta[i,4]

}

# transition from breeding to wintering

for(h in 1:nsb){

psi2[i,ida[i,(j*2)],2,h,1] <- psi3[h,1]

psi2[i,ida[i,(j*2)],2,h,2] <- psi3[h,2]

}

}

for(j in 1:ida[i,(f[i]*2)]){

for(h in 1:nsb){

for(k in 1:nsb){

psi2[i,j,1,h,k] <- 0

psi2[i,j,2,k,h] <- 0

}

}

}

for(j in (f[i]+1):19){

for(h in 3:6){

for(k in 1:nsb){

psi2[i,ida[i,(j*2)],1,h,k] <- 0

psi2[i,ida[i,(j*2)],2,k,h] <- 0

}

}

}

}

163



Appendix B. Supporting information to chapter III

for(h in 1:nsb){

psi3[h,1:nsw] ˜ ddirch(alphaw[])

}

# specifies the values for alphab in the prior for psi2

for(h in 1:nsb){

alphab[h] <- 1

}

# state assignement

ps[1,1:3] ˜ ddirch(alphas[])

ps[2,2:4] ˜ ddirch(alphas[])

ps[3,4:5] ˜ ddirch(alphasb[])

ps[4,6:8] ˜ ddirch(alphas[])

ps[5,7:9] ˜ ddirch(alphas[])

ps[6,9:10] ˜ ddirch(alphasb[])

for(h in 1:5){

ps[1,(h+5)] <- 0

ps[2,(h+5)] <- 0

ps[3,(h+5)] <- 0

ps[4,h] <- 0

ps[5,h] <- 0

ps[6,h] <- 0

}

ps[1,4] <- 0

ps[1,5] <- 0
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ps[2,1] <- 0

ps[2,5] <- 0

ps[3,1] <- 0

ps[3,2] <- 0

ps[3,3] <- 0

ps[4,9] <- 0

ps[4,10] <- 0

ps[5,6] <- 0

ps[5,10] <- 0

ps[6,6] <- 0

ps[6,7] <- 0

ps[6,8] <- 0

# specifies the values for alphas in the prior for ps

for(h in 1:3){

alphas[h] <- 1

}

for(h in 1:2){

alphasb[h] <- 1

}

# detection

for(j in idw){

logit(p[1,j]) <- beta[2] + gamma[1] + etap[1,j]

p[3,j] <- 0

p[4,j] <- 0

p[5,j] <- 0

p[6,j] <- 0
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}

for(j in idw[1:3]){

logit(p[2,j]) <- beta[2] + gamma[2] + etap[2,j]

}

for(j in idw[4:9]){

p[2,j] <- 0

}

for(j in idw[10:s_occ]){

logit(p[2,j]) <- beta[2] + gamma[2] + etap[2,j]

}

for(j in idb){

logit(p[1,j]) <- beta[3] + gamma[3] + etap[1,j]

logit(p[2,j]) <- beta[3] + gamma[4] + etap[1,j]

logit(p[3,j]) <- beta[3] + gamma[4] + gamma[7] + etap[1,j]

logit(p[4,j]) <- beta[3] + gamma[5] + etap[2,j]

logit(p[5,j]) <- beta[3] + gamma[6] + etap[2,j]

logit(p[6,j]) <- beta[3] + gamma[6] + gamma[8] + etap[2,j]

}

# priors

alpha ˜ dt(0,0.16,3)

for(i in 1:3){

beta[i] ˜ dnorm(0,0.001)T(-10,10)

}
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for(i in 1:6){

gamma[i] ˜ dt(0,0.16,3)

}

for(i in 7:8){

gamma[i] ˜ dt(0,0.16,3)T(0.0,)

}

for(i in 1:nsb){

delta[i,1,1] <- 0

delta[i,1,2] <- 0

for(j in 2:s_occ){

for(h in 1:nsw){

delta[i,j,h] ˜ dt(0,0.16,3)

}

}

}

iota[1,1] <- 0

iota[1,2] <- 0

for(i in 2:6){

for(h in 1:2){

iota[i,h] ˜ dnorm(0,0.001)T(-10,10)

}

}

wp˜dbern(0.5)
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# Choleski decomposition (with priors) for correlation between survival

#and breeding indivisual heterogeneity

for (i in 1:4) {

A[i,i] ˜ dnorm(0.0, 1.5)T(0.0,)

Delta[i,i] <- 1/tau[i]

tau[i] ˜ dgamma(1.5, 1.5)

L[i,i] <- 1.0

}

for (i in 1:3) {

for (k in (i+1):4) {

L[i,k] <- 0.0

A[i,k] <- 0.0

Delta[i,k] <- 0.0

L[k,i] ˜ dnorm(0.0, 4.0)

A[k,i] <- 0.0

Delta[k,i] <- 0.0

}

}

# covariance matrix

Omega <- A%*%L%*%Delta%*%t(L)%*%A

# random effects: multivariate normal

for(i in 1:n){

eta[i,1] <- A[1,1]*(L[1,1]*xi[i,1])

eta[i,2] <- A[2,2]*(L[2,1]*xi[i,1] + L[2,2]*xi[i,2])

eta[i,3] <- A[3,3]*(L[3,1]*xi[i,1] + L[3,2]*xi[i,2] + L[3,3]*xi[i,3])
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eta[i,4] <- A[4,4]*(L[4,1]*xi[i,1] + L[4,2]*xi[i,2] + L[4,3]*xi[i,3] +

L[4,4]*xi[i,4])

}

for(i in 1:n){

for(j in 1:4){

xi[i,j] ˜ dnorm(0.0, tau[j])

}

}

# Covariances

cov[1] <- Omega[2,1]

cov[2] <- Omega[3,1]

cov[3] <- Omega[3,2]

cov[4] <- Omega[4,1]

cov[5] <- Omega[4,2]

cov[6] <- Omega[4,3]

# Correlations

rho[1] <- Omega[2,1]/pow(Omega[1,1]*Omega[2,2],0.5)

rho[2] <- Omega[3,1]/pow(Omega[1,1]*Omega[3,3],0.5)

rho[3] <- Omega[3,2]/pow(Omega[2,2]*Omega[3,3],0.5)

rho[4] <- Omega[4,1]/pow(Omega[1,1]*Omega[4,4],0.5)

rho[5] <- Omega[4,2]/pow(Omega[2,2]*Omega[4,4],0.5)

rho[6] <- Omega[4,3]/pow(Omega[3,3]*Omega[4,4],0.5)

for(h in 1:2){

taupb[h] <- 1/sdpb[h]/sdpb[h]
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sdpb[h] ˜ dt(0,0.04,3)T(0,)

taupw[h] <- 1/sdpw[h]/sdpw[h]

sdpw[h] ˜ dt(0,0.04,3)T(0,)

}

for(j in idb){

for(h in 1:2){

etap[h,j] ˜ dnorm(0,taupb[h])

}

}

for(j in idw){

for(h in 1:2){

etap[h,j] ˜ dnorm(0,taupw[h])

}

}

### Computation of lifespan for all individuals

for (i in 1:n) {

lspan[i] <- sum(a[i,(since[i]+1):n_occ])/2

}

### Computation of cumulative reproductive attempt by age (derived quantities)

for(i in idn2){

for (j in 1:s_occ){

rl[i,j] <- 0

acrl[i,j] <- 0

acrln[i,j] <- 0

acrls[i,j] <- 0
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acrl1[i,j] <- 0

acrl2[i,j] <- 0

acrl3[i,j] <- 0

newa[i,j] <- 0

newan[i,j] <- 0

newas[i,j] <- 0

newa1[i,j] <- 0

newa2[i,j] <- 0

newa3[i,j] <- 0

}

for(j in 1:(until[i]-1)){

sv1[i,j] <- 0

sv2[i,j] <- 0

sv3[i,j] <- 0

newas1[i,j] <- 0

newas2[i,j] <- 0

newas3[i,j] <- 0

}

}

for(i in idn){

fw[i] <- z[i,idw[f[i]]] # individual state at first winter

for (j in 1:f[i]){

rl[i,j] <- 0

rl2[i,j] <- 0

rl3[i,j] <- 20

}

for(j in (f[i]+1):s_occ){
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rl[i,j] <- equals(a[i,idb[j]]*z[i,idb[j]],2) +

equals(a[i,idb[j]]*z[i,idb[j]],3) +

equals(a[i,idb[j]]*z[i,idb[j]],5) +

equals(a[i,idb[j]]*z[i,idb[j]],6)

rl2[i,j] <- rl[i,j]*j

rl3[i,j] <- ifelse(rl[i,j]==0, 20, rl2[i,j])

acrl[i,(j-f[i])] <- ifelse(a[i,idb[j]]==1,sum(rl[i,1:j]),0)

acrln[i,(j-f[i])] <- acrl[i,(j-f[i])]*equals(fw[i],1)

acrls[i,(j-f[i])] <- acrl[i,(j-f[i])]*equals(fw[i],2)

newa[i,(j-f[i])] <- a[i,idb[j]]

newan[i,(j-f[i])] <- newa[i,(j-f[i])]*equals(fw[i],1)

newas[i,(j-f[i])] <- newa[i,(j-f[i])]*equals(fw[i],2)

}

for(j in since[i]:(until[i]-1)){

sv1[i,(j-since[i]+1)] <- sv[i,j]*a[i,j]*equals(fbreed[i],1)

sv2[i,(j-since[i]+1)] <- sv[i,j]*a[i,j]*equals(fbreed[i],2)

sv3[i,(j-since[i]+1)] <- sv[i,j]*a[i,j]*equals(fbreed[i],3)

newas1[i,(j-since[i]+1)] <- a[i,j]*equals(fbreed[i],1)

newas2[i,(j-since[i]+1)] <- a[i,j]*equals(fbreed[i],2)

newas3[i,(j-since[i]+1)] <- a[i,j]*equals(fbreed[i],3)

}

for(j in (until[i]-since[i]+1):(until[i]-1)){

sv1[i,j] <- 0

sv2[i,j] <- 0

sv3[i,j] <- 0

newas1[i,j] <- 0

newas2[i,j] <- 0
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newas3[i,j] <- 0

}

for(j in (s_occ+1-f[i]):s_occ){

acrl[i,j] <- 0

acrln[i,j] <- 0

acrls[i,j] <- 0

acrl1[i,j] <- 0

acrl2[i,j] <- 0

acrl3[i,j] <- 0

newa[i,j] <- 0

newan[i,j] <- 0

newas[i,j] <- 0

newa1[i,j] <- 0

newa2[i,j] <- 0

newa3[i,j] <- 0

}

# computation of reproductive lifetime, reproductive lifespan, and

#first breeding attempt indice

rltime[i] <- sum(rl[i,])

fbreed[i] <- ifelse(min(rl3[i,])==20,0,min(rl3[i,]))-f[i]

rlspan[i] <- max(rl2[i,]) - ifelse(min(rl3[i,])==20,

(max(rl2[i,])+1),min(rl3[i,])) + 1

qrlspan[i] <- rlspan[i]/lspan[i]

qrltime[i] <- rltime[i]/ifelse(rlspan[i]<1,1,rlspan[i])

for(j in (f[i]+1):s_occ){

acrl1[i,(j-f[i])] <- acrl[i,(j-f[i])]*equals(fbreed[i],1)

acrl2[i,(j-f[i])] <- acrl[i,(j-f[i])]*equals(fbreed[i],2)
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acrl3[i,(j-f[i])] <- acrl[i,(j-f[i])]*equals(fbreed[i],3)

newa1[i,(j-f[i])] <- newa[i,(j-f[i])]*equals(fbreed[i],1)

newa2[i,(j-f[i])] <- newa[i,(j-f[i])]*equals(fbreed[i],2)

newa3[i,(j-f[i])] <- newa[i,(j-f[i])]*equals(fbreed[i],3)

}

}

for(j in 1:(s_occ-1)){

arlt[j] <- sum(acrl[,j])/sum(newa[,j])

arltn[j] <- sum(acrln[,j])/ifelse(sum(newan[,j])==0,1,sum(newan[,j]))

arlts[j] <- sum(acrls[,j])/ifelse(sum(newas[,j])==0,1,sum(newas[,j]))

arlt1[j] <- sum(acrl1[,j])/ifelse(sum(newa1[,j])==0,1,sum(newa1[,j]))

arlt2[j] <- sum(acrl2[,j])/ifelse(sum(newa2[,j])==0,1,sum(newa2[,j]))

arlt3[j] <- sum(acrl3[,j])/ifelse(sum(newa3[,j])==0,1,sum(newa3[,j]))

}

for(j in 1:(n_occ-1)){

svg1[j] <- sum(sv1[,j])/ifelse(sum(newas1[,j])==0,1,sum(newas1[,j]))

svg2[j] <- sum(sv2[,j])/ifelse(sum(newas2[,j])==0,1,sum(newas2[,j]))

svg3[j] <- sum(sv3[,j])/ifelse(sum(newas3[,j])==0,1,sum(newas3[,j]))

}

}
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Figure B.2: Seasonal estimations of detection probability and choice of first win-
ter location. Annual detection probability of Pied Avocets during breeding season both
outside Brittany (panel A) and inside (panel B) according to breeding state (B: unsuccessful
breeder; NB: non breeder, SB: successful breeder). Annual detection probability of Pied Av-
ocets during winter according to winter state (North or South wintering, panel C). Annual
probability of first winter area choice (North or South, panel D).
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B.4 Additional results

B.4.1 Detection Probability

B.4.2 Seasonal transitions
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Figure B.3: Seasonal transition probability from winter state to breeding state.
Age dependant transition probability from winter state to breeding state. Bi: unsuccessful
breeder in Brittany; NBi: non breeder in Brittany, SBi: successful breeder in Brittany; Bo:
unsuccessful breeder outside Brittany; NBo: non breeder outside Brittany, SBo: successful
breeder outside Brittany..
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B.4.3 Vital rate correlation

North−breed. South−breed. Surv−breed.
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Figure B.4: Correlation between individual heterogeneity in vital rates. Correlation
between reproductive heterogeneity and survival heterogeneity in winter for North wintering
individuals (left panel). Correlation between reproductive heterogeneity and survival het-
erogeneity in winter for South wintering individuals (middle panel). Correlation between
reproductive heterogeneity and survival heterogeneity during breeding season (right panel).
See summary statistics in table B.2.

Correlation Mean Quantile
p(r > 0)2.5% 97.5%

North-Breeding 0.33 -0.65 0.91 0.79
South-Breeding 0.35 -0.34 0.95 0.81
Surv.-Breeding 0.28 -0.74 0.87 0.77

Table B.2: Summary of posterior distribution of the correlations between hetero-
geneity in vital rates, see in Fig. B.4.

B.4.4 Summaries of posterior distribution

Here we display the posterior density of the parameters estimated with the model whose

code is give above (p. 159) using Markov chain Monte Carlo simulation.
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Figure B.5: Posterior distribution of different parameters. Density of posterior dis-
tributions shown on the robit scale: α is the trend age parameter of adult survival regression
with mean -0.85 (BCI: -1.48,-0.40); β1 is the intercept of the juvenile survival with mean
4.32 (BCI: 3.76, 5.29). Density of posterior distributions shown on the logit scale: β2 is the
intercept of the detection probability during winter with mean -0.46 (BCI: -4.88, 3.8); β3 is
the intercept of the detection probability during breeding period with mean 3.28 (BCI: -0.89,
8.32). Mean value is indicated with a vertical line and prior distribution in dashed line.

Parameter Effect Mean Quantile
2.5% 97.5%

γ1 North 0.62 -3.59 5.08
γ2 South -0.96 -5.26 3.44
γ3 Nbi 5.97 -0.15 18.65
γ4 Bi 2.69 -2.86 11.9
γ5 Nbo -5.16 -10.21 -0.99
γ6 Bo -1.19 -7.01 4.26
γ7 Sbi 2.72 0.08 10.46
γ8 Sbo 2.58 0.07 10.1

Table B.3: Parameter estimates. Mean and BCI are given for each parameter for wich
the effect is specified. γ1 and γ2 are the effect of wintering states on detection probability,
i.e. wintering in North or South area, respectively. γ3 to γ6 are the breeding state effect on
detection. γ7 and γ8 are positive definite effect corresponding to successful breeding state
inside or outside Brittany respectively. For density of posterior distribution see Fig. B.6
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Figure B.6: Posterior distribution of parameter γ. γ1 and γ2 are the effect of wintering
states on detection probability, i.e. wintering in North or South area, respectively. γ3 to γ6
are the breeding state effect on detection. γ7 and γ8 are positive definite effect corresponding
to successful breeding state inside or outside Brittany respectively. See mean values and BCI
in table B.3. Density of posterior distributions are shown on the logit scale. Mean value is
indicated with a vertical line and prior distribution in dashed line.
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Figure B.7: Posterior distribution of parameter σ. σb1 is the standard deviation of
the random time effect in detection probability inside Brittany, with mean 1.01 (BCI: 0.61,
1.64). σb2 is the standard deviation of the random time effect in detection probability outside
Brittany, with mean 0.22 (BCI: 0.01, 0.65). σw1 is the standard deviation of the random
time effect in detection probability in the North during winter, with mean 1.24 (BCI: 0.05,
3.48). σw2 is the standard deviation of the random time effect in detection probability in
the South during winter, with mean 0.44 (BCI: 0.02, 1.09). Mean value is indicated with a
vertical line and prior distribution in dashed line.
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Figure B.8: Posterior distribution of parameter ι. ιg,w correspond to the effect of
wintering states w on transition toward breeding state g. w = 1 correspond to the North
wintering area and w = 2 correspond to the South wintering area. g ∈ {2, 3} correspond
to state unsuccessful breeder and successful breeder in Brittany, respectively. g ∈ {5, 6}
correspond to state unsuccessful breeder and successful breeder outside Brittany, respectively.
Mean value is indicated with a vertical line and prior distribution in dashed line.
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Figure B.9: Annual posterior distribution of resident frequency during the first
winter. In 2012, there was no bird ringed, parameter is then not identifiable. Mean value
is indicated with a vertical line and prior distribution in dashed line.
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Figure B.10: Annual posterior distribution of migrant frequency during the first
winter. In 2012, there was no bird ringed, parameter is then not identifiable. Mean value
is indicated with a vertical line and prior distribution in dashed line.
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Figure B.11: Posterior distribution of fall transition probabilities for residents. Bi:
unsuccessful breeder inside Brittany; Bo: unsuccessful breeder outside Brittany; NBi: non-
breeder inside Brittany; Bo: non-breeder outside Brittany; SBi: successful breeder inside
Brittany; SBo: successful breeder outside Brittany. Mean value is indicated with a vertical
line and prior distribution in dashed line.
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Figure B.12: Posterior distribution of fall transition probabilities for migrants. Bi:
unsuccessful breeder inside Brittany; Bo: unsuccessful breeder outside Brittany; NBi: non-
breeder inside Brittany; Bo: non-breeder outside Brittany; SBi: successful breeder inside
Brittany; SBo: successful breeder outside Brittany. Mean value is indicated with a vertical
line and prior distribution in dashed line.
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Figure B.13: Posterior distribution of assignment probabilities. 1:10: event from
observation in the field. Bi: unsuccessful breeder inside Brittany; Bo: unsuccessful breeder
outside Brittany; NBi: non-breeder inside Brittany; Bo: non-breeder outside Brittany; SBi:
successful breeder inside Brittany; SBo: successful breeder outside Brittany. Mean value is
indicated with a vertical line and prior distribution in dashed line.
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Figure B.14: Posterior distribution of the age effect on transition probability from
non-breeding state inside Brittany for resident. Mean value is indicated with a vertical
line and prior distribution in dashed line.
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Figure B.15: Posterior distribution of the age effect on transition probability from
non-breeding state inside Brittany for migrant. Mean value is indicated with a vertical
line and prior distribution in dashed line.
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Figure B.16: Posterior distribution of the age effect on transition probability from
unsuccessful breeding state inside Brittany for resident. Mean value is indicated
with a vertical line and prior distribution in dashed line.
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Figure B.17: Posterior distribution of the age effect on transition probability from
unsuccessful breeding state inside Brittany for migrant. Mean value is indicated
with a vertical line and prior distribution in dashed line.
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Figure B.18: Posterior distribution of the age effect on transition probability from
successful breeding state inside Brittany for resident. Mean value is indicated with
a vertical line and prior distribution in dashed line.
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Figure B.19: Posterior distribution of the age effect on transition probability from
successful breeding state inside Brittany for migrant. Mean value is indicated with
a vertical line and prior distribution in dashed line.
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Figure B.20: Posterior distribution of the age effect on transition probability from
non-breeding state outside Brittany for resident. Mean value is indicated with a
vertical line and prior distribution in dashed line.
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Figure B.21: Posterior distribution of the age effect on transition probability from
non-breeding state outside Brittany for migrant. Mean value is indicated with a
vertical line and prior distribution in dashed line.
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Figure B.22: Posterior distribution of the age effect on transition probability from
unsuccessful breeding state outside Brittany for resident. Mean value is indicated
with a vertical line and prior distribution in dashed line.
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Figure B.23: Posterior distribution of the age effect on transition probability from
unsuccessful breeding state outside Brittany for migrant. Mean value is indicated
with a vertical line and prior distribution in dashed line.
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Figure B.24: Posterior distribution of the age effect on transition probability from
successful breeding state outside Brittany for resident. Mean value is indicated with
a vertical line and prior distribution in dashed line.
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Figure B.25: Posterior distribution of the age effect on transition probability from
successful breeding state outside Brittany for migrant. Mean value is indicated with
a vertical line and prior distribution in dashed line.
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C.1 Bayesian IPM parametrisation

C.1.1 Demographic stochasticity

In the main text of chapter IV, we specified the deterministic relationships between popula-

tion age classes with the equations 4.1 (p. 76). In order to include demographic stochasticity

in our model we used statistical distributions which linked age-specific segments of the pop-

ulation from year t to t + 1. We specially use Binomial and Poisson distributions and we

specified the following relationships:

N1,t+1 ∼ Poisson(Ntott × φ1,t × ft × 0.44),

N2,t+1 ∼ Binomial(φ1,t, N1,t)
...

N14,t+1 ∼ Binomial(φ13,t, N13,t)

N15+,t+1 ∼ Binomial(φ14,t, N14,t) +Binomial(φ15,t, N15+,t),

(C.1)

where Ni,t is the number of females in age class i in year t, Ntott is the number of pairs in

year in year t, φi,t is the survival probability of age class i in year t and ft the fecundity in

year t. Poisson distribution is appropriate for first year old stage, because the number of

these individuals can vary between 0 (no juvenile survived or was product the year before)

to the maximum number of juveniles that the population can produce, i.e. a wide range

of positive values. For the other population age classes, the number of individuals in one

class is bounded by 0 (all individuals from the lower age class died the year before) and a
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maximum equal to the number of individuals in the lower age class the year before (if all

individuals survived). thus, the Binomial distribution is more appropriate.

For each population age class, we can derived four sub-populations as a product with

transition probabilities, except for age class one when juveniles can only by recruited in

Brittany or outside Brittany. Then equation C.1 become:

N1,t+1 ∼ Poisson(N1,tψ1,I,I) + Poisson(N1,tψ1,I,O) = NB1,t+1

N2,t+1 ∼ Binomial(φ1,t, N1,tψt,I,I +N1,tψt,O,I) +Binomial(φ1,t, N1,tψt,O,O +N1,tψt,I,O)

= NB2,t+1 +Nem2,t+1

...

N14,t+1 ∼ Binomial(φ13,t, N13,tψt,I,I +N13,tψt,O,I) +Binomial(φ13,t, N13,tψt,O,O +N13,tψt,I,O)

= NB14,t+1 +Nem14,t+1

N15+,t+1 ∼ (Binomial(φ14,t, N141,tψt,I,I +N14,tψt,O,I) +Binomial(φ14,t, N14,tψt,O,O +N14,tψt,I,O))+

(Binomial(φ15+,t, N15+,tψt,I,I +N15+,tψt,O,I) +Binomial(φ15+,t, N15+,tψt,O,O +N15+,tψt,I,O))

= NB15+,t+1 +Nem15+,t+1

where NBi,t is the number of philopatric females of age class i, Nemi,t is the number of

emigrated females of age class i and ψt the transition probability between breeding colonies

in Brittany (I) and outside Brittany (O).

C.1.2 Likelihoods for the available data

As explain in the main text, the likelihood of the IMP is the product of the likelihoods for

the separated dataset (population counts, CR data and productivity data). The dependence

between likelihood and model formulation is resumed in Fig. C.1.

Likelihoods for count data

The formal relationships that link the different stages of the population for the count dataset

is described above as a series of equations (see C.1.1). Here, we describe the likelihood of

the state-space model that link the true process to the observation process (de Valpine &
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Hastings, 2002), i.e. the population size fluctuations taking into account of females (pairs)

detection error. The observation process of the annual count data (Ct) was assumed to follow

a Poisson distribution :

Ct ∼ Poisson(NBt)

This parametrisation is in accordance with the fact that variance in the observation process

increase with the number of individuals monitored. As observation time is finite, when

population size increase observation time per individuals decreased and observation error

increase in the same time. In any case, the true population size is rarely known in such

study with multiple sites and large monitoring area. The count of breeding pairs is here an

estimate from census of all colonies around the Morbihan Gulf, which is subject to imperfect

detection.

Productivity data
(Poisson model)

Population count data
(State-space model)

Capture-recapture data
(Multistate model)

Fem

Juv

C

ω

NB

Y

a

b φ1 φ15+

z

ψ

p

Figure C.1: Directed acyclic graph of the IPM. Circles represent estimated parameters
and the data are represented by rectangles. Dependence between nodes are represented by
arrows. Node notation: Y=capture-recapture data; C=count data; Fem=number of repro-
ductive females; Juv=number of fledglings; b=fecundity; φ1=apparent survival of one year
old individuals; φ15+ apparent survival of ten and more years old individuals; ω immigra-
tion rate; p recapture probability; ψ=annual transition probability between breeding states;
z=observed states. Only two age-stages survival are represented for the seek of clarity, but
the model contains 15 age-stages. Share parameters between component of the IPM are at
the intersection of the rectangles.
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Likelihoods for CR data

The second likelihood, concerning the CR data, was specified as a multistate CR model

(Fig C.1). The approach is similar as the CDL approach (Schofield & Barker, 2008; Schofield,

Barker & MacKenzie, 2009) already described in chapter II (see Appendix A.2.1, p. 128).

More specifically, we used an individual-based state-space formulation with partially observed

state (z), i.e. the area where individuals bred (inside or outside Brittany). Partially observed

state was implemented as an individual random covariate with a categorical distribution

(Eqn. C.3). The first state for all individuals corresponded to the birth colony, in Brittany,

and the following state results in transitions (ψ) that depend on the initial state. We tested

a fix year effect or a constant term for the first transition. For the subsequent transitions

we tested a constant term or a linear time trend with a random time effect (see bellow,

section C.2). In the CR data likelihood, the detection process is condition on reproductive

state but not survival (results from preliminary explorations and previous analysis chapter II

and III). Observation process is assumed to follow a Bernoulli distribution (Eqn. C.2) with

a detection probability varying with state (γz) and a random time×state parameter (ηpz,t),

see Eqn. C.4. Survival probability (φ) is formulated as a logistic regression with a linear

age trend and individual heterogeneity for adult (age > 1 year) and with a year effect and

individual heterogeneity for juvenile (Eqn. C.5). We tested a random time effect on survival,

see model selection (see bellow, section C.2). This formulation was shown to be appropriate

for Brittany’s breeding Pied Avocet in chapter II and III. Then we can formulated the state-

space likelihood for individual i in time t as:

[Yi,t|pzi,t,t, ai,t, zi,t] = Bernoulli(ai,tpzi,t
), (C.2)

[zi,t|ψzi,t−1,t] = Categorical(ψzi,t−1) with (C.3)ψzi,2 ∼ Dirichlet(1, 1), recruitment (first breebing season),
logit(ψzi,t

) = β3 + α3 ∗ ((t− 10)/10)) + ελt , for t ∈ {3, ..., 19},

logit(pz,t) = β2 + γz + ηpz,t, with η
p
z,t ∼ Normal(0, σ2

pz
), (C.4)
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[ai,t|φi,t] = Bernoulli(ai,t−1φi,t) with (C.5)logit(φi,1) = β1 + α2[t] + ηφi ,

logit(φi,t) = β1 + α1 × Agei + ηφi , with η
φ
i ∼ Normal(0, σ2

φ).

We also added a wintering state covariate (zh) which describe wintering states, a two stages

categorical covariate, in order to estimate the proportion of North and South wintering birds.

We followed previous results in chapter II and used a categorical distribution for zh as :[zhi,t|zhpi,t] = Categorical(zhpi,t) for first winter, with zhpi,t ∼ Dirichlet(1, 1)
[zhi,t|ψzhi,t−1 ] = Categorical(ψzhi,t−1) for subsequent winters, with ψzhi,t−1 ∼ Dirichlet(1, 1),

where zhp was the annual dispersion probability of juveniles to wintering area and ψzh

corresponded to the subsequent transitions but was time-independent and depended only

the previous state. However, zh did not contribute to the likelihood but was used to derive

fitness concerning the two wintering strategies, i.e. the annual population growth rates of

North and South wintering individuals.

Likelihoods for productivity data

The total number of fledglings was recorded annually and supposed to be unbiased. No

particular protocol was applied to estimate possible bias in this parameter. Then, annual

number of newborn individuals observed (Juv) was modelled with a Poisson distribution

[Juvt, Femt|bt] = Poisson(Femtbt), where bt is the annual fecundity and Femt is the annual

breeding females census, assuming they bred one brood per season.

C.1.3 Prior distributions

We used the following prior distribution for each parameters:

• Intercept of survival logistic regression : β1 ∼ Student(0, 0.16, 3).

• Linear age effect on survival : α1 ∼ Student(0, 0.16, 3).

• Individual variability of survival (priors on the standard deviation, on the logit scale) :

σ2
φ ∼ Student(0, 0.04, 3).

• Intercept of detection logistic regression : β2 ∼ Student3(0, 0.16).

• State effect on detection : γ1 ∼ Student(0, 0.16, 3) and γ2 = 0.
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• Temporal variability of survival (priors on the standard deviation, on the logit scale) :

σ2
p ∼ Student(0, 0.04, 3).

• First transition probability between breeding states : zp1:2 ∼ Dirichlet(1, 1).

• Transition probability between breeding states : ψz1:2,1:2 ∼ Dirichlet(1, 1, 1, 1).

• First transition probability between wintering states : zhp1:2 ∼ Dirichlet(1, 1).

• Transition probability between wintering states : ψzh1:2,1:2 ∼ Dirichlet(1, 1, 1, 1).

• Number of individuals in first year old class during first occasion (priors were truncated

and rounded to integer) : NI1,t ∼ Normal+(50, 100) and NO1,t ∼ Normal+(50, 100).

• Number of individuals in each state (priors were truncated and rounded to integer) :

NIi,t ∼ Normal+(50, 100) and NOi,t ∼ Normal+(50, 100), for i ∈ {2, ..., 5};

NIi,t ∼ Normal+(30, 100) and NOi,t ∼ Normal+(30, 100), for i ∈ {6, ..., 9};

NIi,t ∼ Normal+(20, 100) and NOi,t ∼ Normal+(20, 100), for i ∈ {10, 11, 12};

NIi,t ∼ Normal+(10, 100) and NOi,t ∼ Normal+(10, 100), for i ∈ {13, 14, 15+};

• Number of immigrants in each year (prior rounded to integer): Nim ∼ Uniform(−5, 100).

• Mean annual fecundity: bt ∼ Uniform(0, 5).

C.1.4 Emigration and immigration, estimations and assumptions

Using resighthing localisations we estimated movements from and to Brittany for the marked

individuals and we made the assumption that these rates were share by the unmarked native

individuals. We were able to estimate emigration from marked individual, which corre-

spond to breeding dispersal. Return in Brittany, from previously emigrated individual, and

philopatry inside and outside Brittany were also estimated. However, the return rate was

estimated apart from immigration, the latter corresponding to individuals that were not

born in Brittany. Emigration rate and return rate to Brittany after dispersal were used to

derive the size of the sub-population of emigrants and philopatric individuals.

The annual number of immigrants (non native individuals entering in the population)

was not directly observable in our study as a consequence we have no data collected that

could help to estimate neither their number, their age-stage structure or their survival rate.
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In this context, as described in the plain text (see Eqn. 4.2), immigration can nevertheless

be estimated by integration as the extra number of individuals present in the population not

explain by all other demographic processes (e.g. survival, fecundity, emigration). However,

in absence of specific data on immigration, we made the assumption that the survival rate

was the same for immigrants and for the rest of the population. Indeed, when recruited

immigrants are incorporated the following year in the different age-stage population and

then considered in the model as having the same survival as their conspecifics. It is unlikely

that survival rate differ substantially between immigrant and resident individuals because

we shown in chapter II and III that life-histories (wintering or breeding strategies) did not

affected significantly survival of the Pied Avocets from Brittany. It seems plausible that

Pied Avocets, born outside Brittany but sharing similar life experiences have very similar

survival. We also suspected that immigrant individuals, even if they differ in survival rate

at their arrival, reach rapidly similar survival rate after entering the population.

Following recommendations from Schaub & Fletcher (2015), we used a prior distribution

on the number of immigrants not on the rate and derived immigration rate from population

size (see 4.2), for the seek of accuracy in parameter estimation. We used as prior for the an-

nual number of immigrants a Uniform distribution bounded to -5 in case of null immigration

or uncertainty in the estimation Schaub & Fletcher (2015).
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C.2 Model selection

Model φ ψz1 ψzt≥2 DIC pD

Model 1 linear time trend, constant linear time trend, 8609.0 2832.5random individual effect random time effect

Model 2 linear time trend, constant 8825.8 3043.9random individual effect constant

Model 3 linear time trend, linear time trend, 9581.3 3818.7random individual effect fix year effect random time effect

Model 4
linear time trend,

constant
linear time trend,

8848.6 3064.6random individual effect, random time effect
random time effect

Table C.1: Model description and model selection. Cells in grey indicated parametri-
sation changes from model 1. Model 1 is the best fitted model (lowest DIC). φ is adult
survival, ψz1 is the recruitment probability for first year old individuals, ψzt≥2 is the transi-
tion probability between breeding states from two years old. DIC is the deviance information
criterion and pD is the effective number of parameters.

C.3 IPM code

Jags code for the best fitted model (mod2).

model{

for(i in 1:m) {

for(j in 1:(since[i]-1)){

a[i,j] <- 0

ad[i,j] <- 1

}

for(j in since[i]:until[i]){

# DEATH

ad[i,j] ˜ dbern(piad[i,j]) # latente death matrix

# ALIVE
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a[i,j] <- ab[i,j]*ad[i,j] # alive matrix

}

# Observation process

for(j in (since[i]+1):until[i]){

Y[i,j] ˜ dbern(pdet[i,j])

pdet[i,j] <- a[i,j]*pdt[i,j]

}

# MODEL FOR COVARIATE

z[i,(since[i]+1)] ˜ dcat(zp[1:2]) # first breeding state

for(j in (since[i]+2):until[i]){

z[i,j] ˜ dcat(psi[j,z[i,j-1],1:2]) # breeding states transitions

}

# Prob for death

piad[i,since[i]] <- 1

for(j in (since[i]+1):until[i]){

piad[i,j] <- ad[i,j-1]*(ab[i,j-1]*sv[i,j-1] + (1-ab[i,j-1]))

}

# Death

for(j in 1:(until[i]-1)){

d[i,j] <- equals(a[i,j],1)*equals(a[i,j+1],0)

}

# Survival prob

logit(sv[i,since[i]]) <- beta[1] + alpha1[since[i]] + etas[i]
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for(j in (since[i]+1):(until[i]-1)){

logit(sv[i,j]) <- beta[1] + alpha2*age[i,j] + etas[i]

}

for(j in (since[i]+1):until[i]){

pdt[i,j] <- p[z[i,j],j]

}

}

p[1,1] <- 0

p[2,1] <- 0

for(j in 2:n_occ){

logit(p[1,j]) <- beta[2] + gamma + etap[1,j-1]

logit(p[2,j]) <- beta[2] + etap[2,j-1]

}

# Death rate

for(j in 1:(n_occ-1)){

dr[j] <- sum(d[,j])/sum(a[,j])

}

for(i in 1:n) {

for(j in since[i]:(until[i]-1)){

# Observation process

Y2[i,j] ˜ dbern(pdet2[i,j])

pdet2[i,j] <- a[i,j+1]*pdt2[i,j]

}
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zh[i,since[i]] ˜ dcat(zp2[since[i],1:2]) # first Wintering state

for(j in (since[i]+1):(until[i]-1)){

zh[i,j] ˜ dcat(psi2[zh[i,j-1],1:2]) # Wintering states transitions in winter

}

for(j in 1:(since[i]-1)){

a1[i,j] <- 0

a2[i,j] <- 0

}

for(j in since[i]:(until[i]-1)){

a1[i,j] <- a[i,j]*(2-zh[i,j]) # alive matrix in for individuals in the North

a2[i,j] <- a[i,j]*(zh[i,j]-1) # alive matrix in state for individuals in the South

}

for(j in since[i]:(until[i]-1)){

pdt2[i,j] <- p[(zh[i,j]+2),j]

}

}

for(j in 1:(n_occ-1)){

logit(p[3,j]) <- beta[4] + etaph[1,j]

}

for(j in 1:3){

logit(p[4,j]) <- beta[5] + etaph[2,j]

}
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for(j in 4:9){

p[4,j] <- 0

}

for(j in 10:(n_occ-1)){

logit(p[4,j]) <- beta[5] + etaph[2,j]

}

p[3,19] <- 0

p[4,19] <- 0

for(h in 1:5){

beta[h] ˜ dt(0,0.16,3)

}

for(h in 1:2){

taup[h] <- 1/sdp[h]/sdp[h]

sdp[h] ˜ dt(0,0.04,3)T(0,)

tauph[h] <- 1/sdph[h]/sdph[h]

sdph[h] ˜ dt(0,0.04,3)T(0,)

}

alpha2 ˜ dt(0,0.16,3)

gamma ˜ dt(0,0.16,3)T(-20,20)

taus <- 1/sds/sds

sds ˜ dt(0,0.04,3)T(0,)

for(j in 1:(n_occ-1)){

alpha1[j] ˜ dt(0,0.16,3)
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}

for(j in 1:(n_occ-1)){

for(h in 1:2){

etap[h,j] ˜ dnorm(0,taup[h])

}

}

for(j in 1:(n_occ-1)){

for(h in 1:2){

etaph[h,j] ˜ dnorm(0,tauph[h])

}

}

for(i in 1:m){

etas[i] ˜ dnorm(0,taus)T(-20,20)

}

for(h in 1:2){

# prior the values for alphat

alpha[h] <- 1

}

for(i in 1:2){

for(h in 1:2){

psi[1,i,h] <- 0

psi[2,i,h] <- 0

}

}
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alpha3 ˜ dt(0,0.16,3)

for(j in 3:n_occ){

psi[j,1,1] <- ilogit(beta[3] + alpha3*((j-10)/10) + etapsi[j-2])

psi[j,1,2] <- 1 - psi[j,1,1]

psi[j,2,1:2] ˜ ddirch(alpha[])

}

zp[1:2] ˜ ddirch(alpha[])

taupsi <- 1/sdpsi/sdpsi

sdpsi ˜ dt(0,0.04,3)T(0,)

for(j in 3:n_occ){

etapsi[j-2] ˜ dnorm(0,taupsi)

}

for(h in 1:2){

psi2[h,1:2] ˜ ddirch(alpha[])

}

for(j in 1:(n_occ-1)){

zp2[j,1:2] ˜ ddirch(alpha[])

}

# demographic processes

for(i in 1:2){

n1[i,1] ˜ dnorm(50,0.01)T(0,) # Adults = 1 years
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N1[i,1] <- round(n1[i,1])

for(j in 1:2){

n2[i,j] ˜ dnorm(50, 0.01)T(0,) # Adults = 2 years

N2[i,j] <- round(n2[i,j])

n3[i,j] ˜ dnorm(50, 0.01)T(0,) # Adults = 3 years

N3[i,j] <- round(n3[i,j])

n4[i,j] ˜ dnorm(50,0.01)T(0,) # Adults = 4 years

N4[i,j] <- round(n4[i,j])

n5[i,j] ˜ dnorm(50, 0.01)T(0,) # Adults = 5 years

N5[i,j] <- round(n5[i,j])

n6[i,j] ˜ dnorm(30, 0.01)T(0,) # Adults = 6 years

N6[i,j] <- round(n6[i,j])

n7[i,j] ˜ dnorm(30,0.01)T(0,) # Adults = 7 years

N7[i,j] <- round(n7[i,j])

n8[i,j] ˜ dnorm(30, 0.01)T(0,) # Adults = 8 years

N8[i,j] <- round(n8[i,j])

n9[i,j] ˜ dnorm(30, 0.01)T(0,) # Adults = 9 years

N9[i,j] <- round(n9[i,j])

n10[i,j] ˜ dnorm(20, 0.01)T(0,) # Adults = 10 years

N10[i,j] <- round(n10[i,j])

n11[i,j] ˜ dnorm(20, 0.01)T(0,) # Adults = 11 years

N11[i,j] <- round(n11[i,j])

n12[i,j] ˜ dnorm(20, 0.01)T(0,) # Adults = 12 years

N12[i,j] <- round(n12[i,j])

n13[i,j] ˜ dnorm(10, 0.01)T(0,) # Adults = 13 years

N13[i,j] <- round(n13[i,j])

n14[i,j] ˜ dnorm(10, 0.01)T(0,) # Adults = 14 years

N14[i,j] <- round(n14[i,j])

n15[i,j] ˜ dnorm(10, 0.01)T(0,) # Adults >= 15 years
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N15[i,j] <- round(n15[i,j])

}

}

for(j in 1:n_occ){

nim[j] ˜ dunif(-5,100) # Immigrants

Nim[j] <- round(nim[j])

}

for(j in 1:(n_occ-1)){

f[j] ˜ dunif(0,5) # fecundity

}

# productivity process

for (j in 1:(n_occ-1)){

Juv[j] ˜ dpois(rho[j])

rho[j] <- Fem[j]*b[j]

}

# population structure

for(j in 2:n_occ){

for(h in 1:2){

n1[h,j] <- b[j-1] * 0.44 * svj[j-1] * Ntot[j-1] * zp[h]

N1[h,j] ˜ dpois(n1[h,j])

}

}

NB[1] <- N1[1,1]+ N2[1,1] + N3[1,1] + N4[1,1] + N5[1,1] + N6[1,1] + N7[1,1] + N8[1,1] + N9[1,1] + N10[1,1] + N11[1,1] + N12[1,1] + N13[1,1] + N14[1,1] + N15[1,1] + Nim[1]

Ntot[1] <- NB[1] + N1[2,1] + N2[2,1] + N3[2,1] + N4[2,1] + N5[2,1] + N6[2,1] + N7[2,1] + N8[2,1] + N9[2,1] + N10[2,1] + N11[2,1] + N12[2,1] + N13[2,1] + N14[2,1] + N15[2,1]
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popcount[1] ˜ dpois(NB[1])

for(j in 2:n_occ){

NB[j] <- N1[1,j] + N2[1,j] + N3[1,j] + N4[1,j] + N5[1,j] + N6[1,j] + N7[1,j] + N8[1,j] + N9[1,j] + N10[1,j] + N11[1,j] + N12[1,j] + N13[1,j] + N14[1,j] + N15[1,j] + Nim[j]

Ntot[j] <- NB[j] + N1[2,j] + N2[2,j] + N3[2,j] + N4[2,j] + N5[2,j] + N6[2,j] + N7[2,j] + N8[2,j] + N9[2,j] + N10[2,j] + N11[2,j] + N12[2,j] + N13[2,j] + N14[2,j] + N15[2,j]

popcount[j] ˜ dpois(NB[j])

}

for(j in 3:n_occ){

N2[1,j] ˜ dbin(sva[1],round(N1[1,j-1]*psi[j,1,1]+N1[2,j-1]*psi[j,2,1]))

N2[2,j] ˜ dbin(sva[1],round(N1[1,j-1]*psi[j,1,2]+N1[2,j-1]*psi[j,2,2]))

N3[1,j] ˜ dbin(sva[2],round(N2[1,j-1]*psi[j,1,1]+N2[2,j-1]*psi[j,2,1]))

N3[2,j] ˜ dbin(sva[2],round(N2[1,j-1]*psi[j,1,2]+N2[2,j-1]*psi[j,2,2]))

N4[1,j] ˜ dbin(sva[3],round(N3[1,j-1]*psi[j,1,1]+N3[2,j-1]*psi[j,2,1]))

N4[2,j] ˜ dbin(sva[3],round(N3[1,j-1]*psi[j,1,2]+N3[2,j-1]*psi[j,2,2]))

N5[1,j] ˜ dbin(sva[4],round(N4[1,j-1]*psi[j,1,1]+N4[2,j-1]*psi[j,2,1]))

N5[2,j] ˜ dbin(sva[4],round(N4[1,j-1]*psi[j,1,2]+N4[2,j-1]*psi[j,2,2]))

N6[1,j] ˜ dbin(sva[5],round(N5[1,j-1]*psi[j,1,1]+N5[2,j-1]*psi[j,2,1]))

N6[2,j] ˜ dbin(sva[5],round(N5[1,j-1]*psi[j,1,2]+N5[2,j-1]*psi[j,2,2]))

N7[1,j] ˜ dbin(sva[6],round(N6[1,j-1]*psi[j,1,1]+N6[2,j-1]*psi[j,2,1]))

N7[2,j] ˜ dbin(sva[6],round(N6[1,j-1]*psi[j,1,2]+N6[2,j-1]*psi[j,2,2]))

N8[1,j] ˜ dbin(sva[7],round(N7[1,j-1]*psi[j,1,1]+N7[2,j-1]*psi[j,2,1]))

N8[2,j] ˜ dbin(sva[7],round(N7[1,j-1]*psi[j,1,2]+N7[2,j-1]*psi[j,2,2]))

N9[1,j] ˜ dbin(sva[8],round(N8[1,j-1]*psi[j,1,1]+N8[2,j-1]*psi[j,2,1]))

N9[2,j] ˜ dbin(sva[8],round(N8[1,j-1]*psi[j,1,2]+N8[2,j-1]*psi[j,2,2]))

N10[1,j] ˜ dbin(sva[9],round(N9[1,j-1]*psi[j,1,1]+N9[2,j-1]*psi[j,2,1]))

N10[2,j] ˜ dbin(sva[9],round(N9[1,j-1]*psi[j,1,2]+N9[2,j-1]*psi[j,2,2]))

N11[1,j] ˜ dbin(sva[10],round(N10[1,j-1]*psi[j,1,1]+N10[2,j-1]*psi[j,2,1]))

N11[2,j] ˜ dbin(sva[10],round(N10[1,j-1]*psi[j,1,2]+N10[2,j-1]*psi[j,2,2]))
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N12[1,j] ˜ dbin(sva[11],round(N11[1,j-1]*psi[j,1,1]+N11[2,j-1]*psi[j,2,1]))

N12[2,j] ˜ dbin(sva[11],round(N11[1,j-1]*psi[j,1,2]+N11[2,j-1]*psi[j,2,2]))

N13[1,j] ˜ dbin(sva[12],round(N12[1,j-1]*psi[j,1,1]+N12[2,j-1]*psi[j,2,1]))

N13[2,j] ˜ dbin(sva[12],round(N12[1,j-1]*psi[j,1,2]+N12[2,j-1]*psi[j,2,2]))

N14[1,j] ˜ dbin(sva[13],round(N13[1,j-1]*psi[j,1,1]+N13[2,j-1]*psi[j,2,1]))

N14[2,j] ˜ dbin(sva[13],round(N13[1,j-1]*psi[j,1,2]+N13[2,j-1]*psi[j,2,2]))

N15.1[1,j] ˜ dbin(sva[14],round(N14[1,j-1]*psi[j,1,1]+N14[2,j-1]*psi[j,2,1]))

N15.1[2,j] ˜ dbin(sva[14],round(N14[1,j-1]*psi[j,1,2]+N14[2,j-1]*psi[j,2,2]))

N15.2[1,j] ˜ dbin(sva[15],round(N15[1,j-1]*psi[j,1,1]+N15[2,j-1]*psi[j,2,1]))

N15.2[2,j] ˜ dbin(sva[15],round(N15[1,j-1]*psi[j,1,2]+N15[2,j-1]*psi[j,2,2]))

N15[1,j] <- N15.1[1,j] + N15.2[1,j]

N15[2,j] <- N15.1[2,j] + N15.2[2,j]

}

# Survival for each age class

for(j in 1:(n_occ-1)){

svj[j] <- 1/(1+exp(-beta[1] - alpha1[j]))

}

for(i in 2:16){

sva[i-1] <- 1/(1+exp(-beta[1] - alpha2*((i-10)/10)))

}

# Immigration rate

for(j in 1:(n_occ-1)){

omega[j] <- Nim[j+1]/NB[j]

}

for(j in 1:(n_occ-1)){
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Nn[j] <- Ntot[j] * sum(a1[1:n,j])/(sum(a1[1:n,j])+sum(a2[1:n,j]))

Ns[j] <- Ntot[j] * sum(a2[1:n,j])/(sum(a1[1:n,j])+sum(a2[1:n,j]))

}

# posterior predictive checks for count data (Pearson residuals):

for(j in 1:n_occ){

fitc[j] <- (popcount[j] - NB[j])*(popcount[j] - NB[j]) / NB[j]

popcountnew[j] ˜ dpois(NB[j])

fitc.new[j] <- (popcountnew[j] - NB[j])*(popcountnew[j] - NB[j]) / NB[j]

}

# posterior predictive checks for fledglings (Pearson residuals):

for(j in 1:(n_occ-1)){

fitj[j] <- (Juv[j] - rho[j])*(Juv[j] - rho[j]) / rho[j]

Juvnew[j] ˜ dpois(rho[j])

fitj.new[j] <- (Juvnew[j] - rho[j])*(Juvnew[j] - rho[j]) / rho[j]

}

# posterior predictive checks for detection CR data (Pearson residuals):

for(i in 1:m){

for(j in 1:since[i]){

p.resy[i,j] <- 0

p.resynew[i,j] <- 0

}

for(j in (since[i]+1):until[i]){

p.resy[i,j] <- Y[i,j]-pdt[i,j] # Pearson resi

# Replicate data sets

Ynew[i,j]˜dbern(pdet[i,j])

p.resynew[i,j] <- Ynew[i,j]-pdt[i,j] # Pearson resi
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}

}

for(j in 1:n_occ){

fity[j] <- sum(p.resy[,j])

fity.new[j] <- sum(p.resynew[,j])

}

}

C.4 Population growth regression framework

In order to estimate regression coefficients corresponding to the effects of age class numbers

on population growth (see main text), we fitted the following model using JAGS:

model{

for(j in 1:16){

for(i in 1:n){

loglam[i,j] ˜ dnorm(mu[i,j],tau[j])

mu[i,j] <- alpha + beta[1]*N1[i,j] + beta[2]*N2[i,j] + beta[3]*N3[i,j] +

beta[4]*N4[i,j] + beta[5]*N5[i,j] + beta[6]*N6[i,j] + beta[7]*N7[i,j] +

beta[8]*N8[i,j] + beta[9]*N9[i,j] + beta[10]*N10[i,j] + beta[11]*N11[i,j] +

beta[12]*N12[i,j] + beta[13]*N13[i,j] + beta[14]*N14[i,j] + beta[15]*N15[i,j]

}

}

alpha ˜ dnorm(0,0.001)

for(i in 1:15){
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beta[i] ˜ dnorm(0,0.001)

}

tau <- 1/sd/sd

sd ˜ dunif(0,5)

}

We used vague Normal priors on regression coefficients (βi ∼ Normal(0, 0.001) and α ∼

Normal(0, 0.001)) and a unifor prior on the standard deviation of the random time effect

(σλ ∼ Uniform(0, 5)). Results from the estimations of regression coefficients βi and the

probability that they were inferior to zero are shown in Table C.2. Standard deviation of

random time effects on log scale was 0.072.

Parameter P (βi < 0) Mean 2.5% 97.5%
β1 0 0.000 0.000 0.000
β2 1 -0.001 -0.001 -0.001
β3 1 -0.001 -0.001 -0.001
β4 1 -0.001 -0.001 -0.001
β5 1 0.000 0.000 0.000
β6 1 0.000 0.000 0.000
β7 1 -0.001 -0.001 -0.001
β8 0 0.000 0.000 0.000
β9 1 -0.002 -0.002 -0.002
β10 0 0.002 0.002 0.002
β11 1 -0.002 -0.002 -0.001
β12 1 0.000 0.000 0.000
β13 0.42 0.000 0.000 0.000
β14 1 -0.001 -0.001 -0.001
β15 0 0.000 0.000 0.000

Table C.2: Effects (βi) of the number of the number of individuals (Ni) in the age class i on
population growth rate. Means and associated 95% BCI are displayed and the probability
that βi < 0.
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C.5 Posterior predictive checks

The χ2 discrepancy measure Gelman et al. (2003) is the sum of squared Pearson residuals

and can be used as an overall goodness of fit test. This summary of fit, for an univariate

response y, can be written:

T (yobs|θ) =
n∑
i

(yobsi − E(yi|θ))2

var(yi|θ)
; T (yrep|θ) =

n∑
i

(yrepi − E(yi|θ))2

var(yi|θ)
,

where yobs is the observed data and yrep is the replicated data using the model estimates, θ

is the model parameters, E(yi|θ) is the expectation, var is the variance and n is the number

of posterior samples of variable y. The χ2 discrepancy metric measure distance of data and

replicated data to the model.

The posterior predictive p-value or Bayesian p-value is the probability that distance of

observed data to the model is higher than replicated data and was used to quantify the

discrepancy of the model:

Bp−value = p(T (yobs|θ) > T (yrep|θ))

A model is suspect to lack of fit if the Bp−value is close to 0 or 1. We computed these values

overall years and each year for the observed data of the three sub-models, the Bernoulli

observation process in the CR data, the Poison observation processes in the count and in

the productivity data. The results are shown on Fig. C.2 to C.5.
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Figure C.2: χ2 discrepancy plot for CR data. Annual discrepancy measures for replicates
data against observations data for all posterior samples. Panel are classified per study
occasion (year). Only year 1996 showed a lack of fit.
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Figure C.3: χ2 discrepancy plot for count data. Annual discrepancy measures for
replicates data against observations data for all posterior samples. Panel are classified per
study occasion (year). Only year 1996 and 1997 showed lack of fit.
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Figure C.4: χ2 discrepancy plot for fecundity data. Annual discrepancy measures for
replicates data against observations data for all posterior samples. Panel are classified per
study occasion (year). No lack of fit appeared.
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Figure C.5: χ2 discrepancy plot for all observation processes. Discrepancy measures
for replicates data against observations data for all posterior samples overall years. Panel
are classified per data sources: Count, CR and productivity (Prod.) data, from left to right
respectively. Global fit of the three sub-models was good.
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C.6 Complements and results from the derived quan-
tities

C.6.1 Variations in annual demographic rates
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Figure C.6: Annual fluctuation of demographic rates. Pannel (A) shows annual emi-
gration rate from Brittany’s breeding colonies, mean value 0.26 (BCI 0.1, 0.5). Pannel (B)
shows annual immigration rate of non native individuals into Brittany’s breeding colonies,
mean 0.2 (BCI: -0.02,0.48). Pannel (C) shows annual fecundity rate of the overall popula-
tion, mean 0.27 (BCI: 0.11, 0.53). horizontal dashed line is the mean value during the study.
Pannel (D) shows annual juvenile recruitment probability. In grey, recruitment in Brittany
with mean value 0.40 (BCI: 0.35, 0.45) and in black, the complement, i.e. recruitment
outside Brittany. Pannel (E) shows subsequent annual transition probabilities from outside
Brittany for individuals born in Brittany. In black, probability to remain outside Brittany
with mean 0.62 (BCI: 0, 0.86). In grey, the complement, i.e. the probability to return in
Brittany after dispersal, with mean 0.45 (BCI: 0.13, 087). Panel (F) show time trend (α3)
in colony fidelity rate for Brittany’s breeders.

C.6.2 Temporal variation in the composition of age classes
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Figure C.7: Age structure of the population of Pied Avocet. Estimated number of
individuals in each age stage. Nx indicates the cohort of age x. 95% BCI is indicated with
a horizontal line. N15+ gathers all the individual older than 14 years.
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Figure C.8: Age structure of the population of Pied Avocet in Brittany. Estimated
number of individuals in each age stage. Nx indicates the cohort of age x. 95% BCI is
indicated with a horizontal line. N15+ gathers all the individual older than 14 years.
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Figure C.9: Age structure of the population of Pied Avocet outside Brittany
(emigrants). Estimated number of individuals in each age stage. Nx indicates the cohort
of age x. 95% BCI is indicated with a horizontal line. N15+ gathers all the individual older
than 14 years.
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C.6.3 Population growth and age classes effect
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Figure C.10: Age class effect on population growth. Panel A, the points indicates the
mean value of the regression coefficient. Values are ranked in decreasing order. Nx indicates
the cohort of age x. 95% BCI is indicated with an vertical line. Panel B, proportions of
individuals in three stages of the population: S1: proportion of individuals in age classes
one to six; S2 proportion of individuals in age classes seven to twelve; S3 proportion of
individuals older than twelve years.

C.6.4 Correlation between population growth rates and demo-
graphic rates

Additional figures showing estimates of the correlations between annual population growth

rates and annual estimates of demographic rates.
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Figure C.11: Correlation between annual population growth rates in Brittany and
annual estimates of demographic rates. b = annual fecundity rate, dr = annual death
rate, ω = annual immigration rate, φJ = annual juveniles survival probability, ψem = annual
emigration rate, ψO,I = annual rate of return in Brittany if previously emigrated, zhp =
annual probability to be resident the first winter. The vertical and horizontal lines show the
limits of the 95% BCI, points indicate the posterior means. The mode of the correlation
coefficient (r) and the 95% BCI (parentheses) are also indicated. The probabilities that the
correlation coefficient was positive (p(r > 0)) or negative (p(r < 0)) are also given.
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Figure C.12: Correlation between annual growth rates of the entire population
and annual estimates of demographic rates. b = annual fecundity rate, dr = annual
death rate, ω = annual immigration rate, φJ = annual juveniles survival probability, ψem =
annual emigration rate, ψO,I = annual rate of return in Brittany if previously emigrated, zhp
= annual probability to be resident the first winter. The vertical and horizontal lines show
the limits of the 95% BCI, points indicate the posterior means. The mode of the correlation
coefficient (r) and the 95% BCI (parentheses) are also indicated. The probabilities that the
correlation coefficient was positive (p(r > 0)) or negative (p(r < 0)) are also given.
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C.6.5 Correlation of different population sizes with demographic
rates
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Figure C.13: Correlation between annual Brittany population size and different
annual demographic metrics. b = annual fecundity rate, dr = annual death rate, N1
= annual number of 1 year old cohort, Nem = annual number of emigrants, Nim = annual
number of immigrant, Nn = annual number of North wintering sub-population, Ns = annual
number of South wintering sub-population, Ntot = annual size of Brittany’s population
+ emigrants, ω = immigration rate, φJ = juveniles survival probability, ψem = annual
emigration rate, ψO,I = annual rate of return to in Brittany if previously emigrated, zhp
= annual probability to be resident the first winter. The vertical and horizontal lines show
the limits of the 95% BCI, points indicate the posterior means. Correlation coefficient (r)
and the 95% BCI (parentheses) are also indicated. The probabilities that the correlation
coefficient was positive (p(r > 0)) or negative (p(r < 0)) are also given.
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Figure C.14: Correlation between annual Brittany population size and annual
input and output rates. Input = annual proportion of natality + immigration, output
= annual proportion of mortality + emigration. The vertical and horizontal lines show
the limits of the 95% BCI, points indicate the posterior means. Correlation coefficient (r)
and the 95% BCI (parentheses) are also indicated. The probabilities that the correlation
coefficient was positive (p(r > 0)) or negative (p(r < 0)) are also given.
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Figure C.15: Correlation between annual entire population size and different an-
nual demographic metrics. b = annual fecundity rate, dr = annual death rate, N1 =
annual number of 1 year old cohort, Nem = annual number of emigrants, Nim = annual num-
ber of immigrant, Ns = annual number of South wintering sub-population, ω = immigration
rate, φJ = juveniles survival probability, ψem = annual emigration rate, ψO,I = annual rate
of return to in Brittany if previously emigrated, zhp = annual probability to be resident
the first winter. The vertical and horizontal lines show the limits of the 95% BCI, points
indicate the posterior means. Correlation coefficient (r) and the 95% BCI (parentheses) are
also indicated. The probabilities that the correlation coefficient was positive (p(r > 0)) or
negative (p(r < 0)) are also given.
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Figure C.16: Correlation between annual resident population size and different
annual demographic metrics. b = annual fecundity rate, dr = annual death rate, N1
= annual number of 1 year old cohort, Nem = annual number of emigrants, Nim = annual
number of immigrant, Nn = annual number of North wintering sub-population, Ns = annual
number of South wintering sub-population, NB = annual size of Brittany’s population, ω =
immigration rate, φJ = juveniles survival probability, ψem = annual emigration rate, ψO,I
= annual rate of return to in Brittany if previously emigrated, zhp = annual probability
to be resident the first winter. The vertical and horizontal lines show the limits of the
95% BCI, points indicate the posterior means. Correlation coefficient (r) and the 95%
BCI (parentheses) are also indicated. The probabilities that the correlation coefficient was
positive (p(r > 0)) or negative (p(r < 0)) are also given.
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Figure C.17: Correlation between annual migrant population size and different
annual demographic metrics. b = annual fecundity rate, dr = annual death rate, N1
= annual number of 1 year old cohort, Nem = annual number of emigrants, Nim = annual
number of immigrant, Nn = annual number of North wintering sub-population, Ns = annual
number of South wintering sub-population, NB = annual size of Brittany’s population, ω =
immigration rate, φJ = juveniles survival probability, ψem = annual emigration rate, ψO,I
= annual rate of return to in Brittany if previously emigrated, zhp = annual probability
to be resident the first winter. The vertical and horizontal lines show the limits of the
95% BCI, points indicate the posterior means. Correlation coefficient (r) and the 95%
BCI (parentheses) are also indicated. The probabilities that the correlation coefficient was
positive (p(r > 0)) or negative (p(r < 0)) are also given.

236



Appendix C. Supporting information to chapter IV

C.6.6 Correlation of residents and migrants population growth
rate with demographic metrics

r=0.19[−0.14,0.47]

p(r>0)=0.86

r=0.05[−0.47,0.5]

p(r>0)=0.56

r=0.02[−0.41,0.47]

p(r>0)=0.55

r=0.19[−0.22,0.54]

p(r>0)=0.8

r=−0.26[−0.53,0.08]

p(r<0)=0.93

r=0.65[0.27,0.83]

p(r>0)=1

r=0.42[−0.08,0.7]

p(r>0)=0.95

zhp

φ
J ψem ψO.I

b dr ω

0.00 0.25 0.50 0.75 1.00

0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.1 0.2 0.3 0.4 0.5

0.1 0.2 0.3 0.4 0.5 0.05 0.10 0.15 0.20 0.0 0.2 0.4

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

0.8

0.9

1.0

1.1

1.2

1.3

Parameter value

R
e
s
id

e
n
t 
p
o
p
u
la

ti
o
n
 g

ro
w

th
 r

a
te

Figure C.18: Correlation between annual resident population growth rate and
different annual demographic metrics. b = annual fecundity rate, dr = annual death
rate, ω = immigration rate, φJ = juveniles survival probability, ψem = annual emigration
rate, ψO,I = annual rate of return to in Brittany if previously emigrated, zhp = annual
probability to be resident the first winter. The vertical and horizontal lines show the limits
of the 95% BCI, points indicate the posterior means. Correlation coefficient (r) and the 95%
BCI (parentheses) are also indicated. The probabilities that the correlation coefficient was
positive (p(r > 0)) or negative (p(r < 0)) are also given.
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Figure C.19: Correlation between annual entire population size and different an-
nual demographic metrics. b = annual fecundity rate, dr = annual death rate, ω =
immigration rate, φJ = juveniles survival probability, ψem = annual emigration rate, ψO,I =
annual rate of return to in Brittany if previously emigrated, zhp = annual probability to be
resident the first winter. The vertical and horizontal lines show the limits of the 95% BCI,
points indicate the posterior means. Correlation coefficient (r) and the 95% BCI (paren-
theses) are also indicated. The probabilities that the correlation coefficient was positive
(p(r > 0)) or negative (p(r < 0)) are also given.
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Figure C.20: Correlation between entire population size and age classes size. Nx
= number of individuals of age class x. Correlation coefficient (r) and the 95% BCI (paren-
theses) are also indicated. The probabilities that the correlation coefficient was positive
(p(r > 0)) or negative (p(r < 0)) are also given.
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C.6.8 Posterior distribution of model parameters
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Figure C.21: State transition of adults during Winter. Posterior distribution of the
transition probability between the North and South of Europe during winter ψ on the logit
scale. N: North and S: South. Mean value is indicated with a vertical line.
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Figure C.22: Posterior distribution of the estimated number of pairs. Estimation
from the annual count of Females (breeding pairs). The vertical line indicates the mean and
the dashed line the observation value.
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Figure C.23: Posterior distribution of the estimated number of Juveniles. Esti-
mation from the annual count of Fledglings. The vertical line indicates the mean and the
dashed line the observation value.
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Figure C.24: Juvenile survival annual effect. Posterior distribution of parameter α1 on
the logit scale. Mean value is indicated with a vertical line and prior distribution in dashed
line.
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Figure C.25: Posterior distribution of different parameters. Density of posterior dis-
tribution shown on the logit scale. α2 is the trend age parameter of adult survival regression
with mean -2.05 (BCI: -3.13,-1.07). β1 is the intercept of the juvenile survival with mean
0.83 (BCI: 0.21,1.42). β2 is the intercept of the detection probability with mean -0.91 (BCI:
-1.39,-0.45). γ is the effect of breeding area on detection probability with mean 11.5 (BCI:
6.68,19.95), this positive value indicate a significant higher detection probability in Brittany.
σp1 is the standard error of the random time effect for the detection probability of breeding
birds inside of Brittany with mean 1.84 (BCI: 0.06,5.9). σp2 is the standard error of the ran-
dom time effect for the detection probability of breeding birds outside of Brittany with mean
0.91 (BCI: 0.58,1.41). σφ is the standard error of individual random effect in the survival
probability regression with mean 1.75 (BCI: 1,2.59). Mean value is indicated with a vertical
line and prior distribution in dashed line.
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Figure C.26: Annual juvenile dispersal during Winter. Posterior distribution of the
probability to stay in the North of Europe during winter ψ1,t on the logit scale. Mean value
is indicated with a vertical line.
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tion of populations. I used a 19-year study, in Brittany, on a long-lived and
partial migrant, the Pied Avocet, to quantify and compare the demographic
rates associated with different migration strategies. Survival rates and as-
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Résumé: Le réchauffement climatique entrâıne des changements dans
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que les résidents. L’investissement reproductif était plus élevé et exempt de
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