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ABSTRACT 

 

Total Suspended Solids (TSS) stormwater models in urban drainage systems are often 
required for scientific, legal, environmental and operational reasons. However, these TSS 
stormwater traditional model structures have been widely questioned, especially when 
reproducing data from online measurements at the outlet of large urban catchments. In this 
thesis, three potential limitations of traditional TSS stormwater models are analyzed in a 185 
ha urban catchment (Chassieu, Lyon, France), by means of 365 rainfall events monitored 
online: a) uncertainties in TSS data due to field conditions (data acquisition and validation); 
b) uncertainties in hydrological models and rainfall measurements and c) uncertainties in the 
stormwater quality model structures. These aspects are investigated in six separate 
contributions, whose principal results can be summarized as follows: 

a) TSS data acquisition and validation: (i) four sampling strategies during rainfall events are 
simulated and evaluated by means of online TSS and flow rate measurements. Recommended 
sampling time intervals are of 5 min, with average sampling errors between 7 % and 20 % and 
uncertainties in sampling errors of about 5 %, depending on the sampling interval; (ii) the 
probability of underestimating the cross section mean TSS concentration is estimated by two 
methodologies: Simplified Method (SM) and Time Series Method (TSM). TSM shows more 
realistic TSS underestimations (about 39 %) than SM (about 269 %). A power law describing 
the TSS as a function of flow rate is revealed, including higher variances of TSS for higher 
flow rates.  

b) Hydrological models and rainfall measurements: (iii) a parameter estimation strategy is 
proposed for conceptual rainfall-runoff models by analysing the variability of the optimal 
parameters obtained by single-event (SE) Bayesian calibrations, based on clusters and graphs 
representations. The results are compared to traditional Bayesian calibrations obtained by SE 
and multi-event (ME) approaches. The new strategy shows better performances than for SE 
and ME in terms of accuracy and precision in validation. A single model structure might be 
able to reproduce at least two different hydrological conditions for the studied urban 
catchment; (iv) a methodology aimed to calculate “mean” areal rainfall estimation is 
proposed, based on the same hydrological model and flow rate data. Rainfall estimations by 
multiplying factors over constant-length time window and rainfall zero records filled with a 
reverse model show the most satisfactory results compared to further rainfall estimation 
models.  

c) Stormwater TSS pollutograph modelling: (v) the modelling performance of the traditional 
Rating Curve (RC) model is superior to different linear Transfer Function models (TFs), 
especially in terms of parsimony and precision of the simulations. No relation between the 
rainfall corrections or hydrological conditions defined in (iii) and (iv) with performances of 
RC and linear Transfer Functions (TFs) could be established. Statistical tests strengthen that 
the occurrence of events not representable by the RC model in time presents a random 
distribution (independent of the antecedent dry weather period); (vi) a Bayesian 
reconstruction method of virtual state variables indicates that potential missing processes in 
the RC description are hardly interpretable in terms of a unique virtual available mass over the 
catchment that is decreasing over time, as assumed by a great number of traditional models.  
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RESUME 

Les modèles de Rejets Urbains par Temps de Pluie (MRUTP) de Matières en Suspension 
(MES) dans les systèmes d’assainissement urbains sont essentiels pour des raisons 
scientifiques, environnementales, opérationnelles et réglementaires. Néanmoins, les MRUTP 
ont été largement mis en question, surtout pour reproduire des données mesurées en continu à 
l’exutoire des grands bassins versants. Dans cette thèse, trois limitations potentielles des 
MRUTP traditionnels ont été étudiées sur un bassin versant de 185 ha (Chassieu, France), 
avec des mesures en ligne de 365 évènements pluvieux : a) incertitudes des données dues aux 
conditions sur le terrain (acquisition et validation), b) incertitudes des modèles hydrologiques 
et des mesures de pluie et c) incertitudes des structures traditionnelles des MRUTP. Ces 
questions sont étudiées dans six chapitres indépendants, dont les principaux résultats peuvent 
être synthétisés comme suit :         

a) Acquisition et validation des données : (i) quatre stratégies d’échantillonnage pendant les 
événements pluvieux sont simulées et évaluées à partir de mesures en ligne de MES et de 
débit. Les pas de temps d’échantillonnage recommandés sont de 5 min, avec des erreurs 
moyennes comprises entre 7 % et 20 % et des incertitudes sur ces erreurs d’environ 5 %; (ii) 
la probabilité de sous-estimation de la concentration moyenne en MES dans une section 
transversale du réseau est estimée à partir de deux méthodologies : méthode simplifiée (SM) 
et méthode des séries chronologiques (TSM). TSM montre des sous-estimations des MES 
plus réalistes (39 %) que TSM (269 %). Une loi puissance qui décrit la concentration en MES 
en fonction du débit a été établie, avec une variance des concentrations en MES qui augmente 
avec le débit.        

b) Modèles hydrologiques et mesures de pluie : (iii) une stratégie d’estimation des paramètres 
d’un modèle conceptuel pluie-débit est proposée, en analysant la variabilité des paramètres 
optimaux obtenus à partir d’un calage bayésien évènement par évènement (SE), basé sur des 
techniques de clusters et représentations de graphes. Les résultats sont comparés aux calages 
bayésiens traditionnels, obtenus par SE et des calages multi-évènementiels (ME). La nouvelle 
stratégie de calage montre les résultats les plus performants par rapport à SE et ME, en termes 
d’exactitude et de précision dans la phase de vérification. Une même structure de modèle 
permet de représenter au moins deux groupes de conditions hydrologiques différentes pour un 
bassin versant urbain; (iv) une méthode pour calculer les précipitations moyennes sur un 
bassin versant est proposée, sur la base du modèle hydrologique précèdent et des données de 
débit. Les estimations de pluie moyenne par des facteurs multiplicatifs sur des fenêtres 
temporelles constantes et les valeurs manquantes estimées par un modèle inverse montrent les 
meilleurs résultats comparés à d’autres modèles d’estimation de pluie.   

c) MRUTP (pollutographes) : (v) la performance du modèle traditionnel rating curve (RC) est 
supérieure à celle de différents modèles linéaires de fonctions de transfert (TF), surtout en 
termes de parcimonie et de précision des simulations. Aucune relation entre les potentielles 
erreurs de mesure de la pluie et les conditions hydrologiques définies en (iii) et (iv) et les 
performances des modèles RC et TF n’a pu être établie. Des tests statistiques indiquent que 
les évènements non-représentables par les modèles RC ou TF au cours du temps sont 
distribués aléatoirement (indépendance par rapport à la durée de temps antérieure); (vi) une 
méthode de reconstruction bayésienne de variables d’état virtuelles indique que des processus 
potentiellement manquants dans le modèle RC sont pratiquement ininterprétables en termes 
d’une masse disponible sur le bassin versant qui diminuerait avec le temps, comme nombre de 
modèles traditionnels l’ont supposé.  
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INTRODUCTION  
 

 

Urban cities continue to develop and their growth accelerates intensely: the urban population 
all over the world has increased from 30 % to 54 % in the last 70 years. In 2008, the rural 
population exceeded the urban one, and for year 2050 it is expected that 66 % of the 
population will live in urban centers (United Nations, 2015). The urban water cycle is 
severely affected by this urbanization process, increasing stormwater runoff volumes due to 
imperviousness of the surfaces producing higher runoff peaks and lower concentration times 
in the catchments (Fletcher et al., 2013). On the other hand, anthropogenic activities in cities 
generate a massive accumulation of different types of pollutants over the catchments, such as 
heavy metals, bacteria, hydrocarbons, sediments and nutrients (Pan et al., 2013). During 
rainfall events, a significant amount of these pollutants are transported to the outlet of 
drainage systems by urban runoff (Lee et al., 2002). Therefore, the alteration of stormwater 
natural cycle for urban catchments, jointly with the inherent production of pollutants by cities, 
results in a significant degradation of the water quality in receiving water bodies (e.g. rivers, 
seas, estuaries) (Goonetilleke et al., 2014). Indeed, indicators related to the biological 
integrity of streams and riparian habitats are inversely related to the amount of impervious 
surfaces adjacent to them (Wu and Murray, 2003).  

Consequently, legislation for regulating the quality standards of stormwater has been 
introduced in environmental laws, increasing the interest in urban stormwater quality (adapted 
from Zoppou, 2001). Many of these regulations, jointly with operational policies and urban 
planning strategies, have promoted the execution of measurement campaigns (Ackerman et 
al., 2010; MOE 2003, CDEP 2004). Environmental monitoring campaigns in this context 
frequently include the measurement of Total Suspended Solids (TSS), as a global water 
quality indicator (EPA, 1983). Indeed, TSS constitutes one of the most important descriptors 
of stormwater quality, as many pollutants are in particulate form (e.g. PAHs and metals), and 
many other toxic substances are attached to the solid particles transported into the water 
matrix (heavy metals, organic substances with high tendency to sorb, etc.) (EPA, 1983). 
However, it is well recognized that the inherent field conditions and the instrumental settings 
have a direct influence on the representativeness and uncertainties of TSS measurements 
(Ackerman et al., 2010). Therefore, appropriate data acquisition and validation methodologies 
for TSS measurements in drainage systems are required (Bertrand-Krajewski and Muste, 
2007).    

Aimed to collect more accurate, reliable and representative TSS data in this context, online 
monitoring has emerged as a technology for investigating the spatio-temporal variability and 
complexity of TSS dynamics in urban drainage systems (e.g. Hochedlinger et al., 2006). 
Chapter 2 presents a study comparing the differences between the Event Mean Concentrations 
(EMC) obtained from different sampling strategies commonly used by practitioners 
(Ackerman et al., 2010) to ECMs estimated from online monitoring. This comparison looks to 
explore the benefits of online measurements, considering that traditional sampling campaigns 
continue to be preferred among many practitioners in different countries (e.g. Ackerman et 
al., 2010). On the other hand, field measurement conditions are claimed to be an essential 
uncertainty source in TSS measurements, either by sampling campaigns or online monitoring 
(adapted from Rossi, 1998). Therefore, Chapter 3 evaluates potential uncertainties in TSS 
online measurements from operation of sensors under typical conditions, specifically 
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exploring the influence of sampling intake position through the cross section of a sewer 
system on the representativeness of TSS measurements.  

Mathematical models in urban drainage are recognized as a fundamental tool for purposes 
such as decision making, understanding of physical processes or real time control operation 
(adapted from Zoppou, 2001). For example, the stormwater quality standards in the European 
Union (Water Framework Directive, 2000/60/CE) and in the US (NPDES, Phase I (US EPA, 
1990) and Phase II (US EPA, 1999)) highlight the need of better prediction models for 
pollutants in stormwater runoff released to the receiving water bodies.  

The role of hydrology and rainfall measurements is recognized in TSS modelling, as rainfall 
is the driving process in the contamination of receiving water bodies by stormwater (Lee et 
al., 2002). Rainfall data and hydrological models are also known to be embedded with high 
uncertainties, potentially impacting the performance of TSS stormwater models. Hence, 
Chapter 4 proposes an estimation strategy for parameters in a conceptual hydrological model, 
aimed to improve the results obtained from traditional single-event and multiple-event based 
calibrations. Furthermore, with the purpose of increasing the representativeness of rainfall 
measurements, Chapter 5 presents a methodology aimed to calculate a mean areal rainfall 
estimation, based on a hydrological model and flow rate data.  

Apart from uncertainties in rainfall and TSS data, the TSS stormwater traditional model 
structures (e.g. SWMM in Rossman, 2010) have been widely questioned at the scale of large 
urban catchments, especially when reproducing data from online measurements (e.g. 
Métadier, 2011; Dotto et al., 2011). Different hypotheses about why these model structures 
are still unsatisfactory have been explored in Chapter 6 and Chapter 7. For this purpose, many 
of the discussed concepts, proposed methodologies and acquired knowledge from previous 
Chapters are used into an exploratory frame, questioning some of the paradigms in TSS 
stormwater traditional models. This exploratory frame can be further contextualized by means 
of the following research questions: 

- Are TSS online continuous time series reliable and useful for modelling purposes? (Chapters 
2 and 3) 

- Do these time series show bias or insufficient representativeness? (Chapters 2 and 3) 

- How to better calibrate rainfall-runoff models if model parameters are event-dependent? 
(Chapter 4) 

- If rainfall-runoff models are not satisfactory, could we assume that this is mainly due to 
errors in rainfall measurements and can we identify/correct them? (Chapter 5) 

- Are traditional TSS models appropriate when they are used with online continuous TSS time 
series instead of traditional samples? (Chapter 3) 

- Is there an event-dependent relation between rainfall errors and deficient performances of 
TSS models? (Chapter 6) 

- How could we revisit/improve TSS traditional models? (Chapter 6 and Chapter 7) 

The research presented in this thesis aims to fill these identified knowledge gaps, labelled as 
Chapters in the introduction. The Chapters of this manuscript are complementary works that 
are linked by the structure described in the introduction, grouped into three general topics. 
Therefore, these six individual contributions (Chapters 2 to 7) are grouped into three principal 
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Parts as follows: (i) assessing uncertainties in TSS data due to field conditions (Part 1: 
Chapter 2 and 3), (ii) evaluating uncertainties in hydrological models and rainfall 
measurements (Part 2: Chapter 4 and 5) and (iii) identifying potential improvements of the 
traditional stormwater quality models (Part 3: Chapter 6 and 7).  

The present manuscript corresponds to a thesis based on publications, and therefore each of 
the Chapters is an adapted version of an article already published or in publication process 
(see summary of articles and conferences in Appendix 4), except for Chapter 1 (Catchment 
and data) and Chapter 6. 

Considering the connection of the articles grouped under the three general topics (Parts), a 
common literature review and a description of the links between the Chapters are given in 
some introductory lines for each Part. Afterwards, each Chapter presents further literature 
review regarding its specific objectives, jointly with the developed scientific methodologies 
and their respective results, discussion and conclusions, as in a traditional article. Some 
general conclusions for each Part are provided, summarizing the results and conclusions of 
the Chapters and outlining their implications in other Parts of the manuscript. The general 
conclusions and perspectives of this manuscript are formulated from the conclusions drawn 
from the three Parts, linked by the outline of this document and the research questions 
presented in this section. 
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CHAPTER 1. CATCHMENT AND DATA 

 

All the Chapters of this manuscript are mainly based on the urban catchment of Chassieu 
(Lyon, France), with online time series monitored between 2004 and 2011. For this reason, a 
general description of this experimental site and the measured data is given in this Chapter of 
the thesis, separately from the methodologies developed and presented in the specific 
“Materials and Methods” sections of Chapters 2 to 7. As the Chassieu catchment has already 
been described in many previous publications, Chapter 1 is mainly based on and adapted from 
Métadier (2011). 

The Chassieu urban catchment is one of the five experimental sites of the OTHU project 
(Field Observatory for Urban Hydrology - www.othu.org), instrumented over the Grand Lyon 
territory since 2001, jointly with a pluviographic network. The OTHU is a research laboratory 
devoted to the installation and operation of an ensemble of measurement devices, installed in 
the urban drainage system of Lyon and in the receiving water bodies. The OTHU research 
federation groups 13 research teams, including 8 research organisations in Lyon (INSA, 
BRGM, CEMAGREF, ECL, ENTPE, Université Lyon I, Université Lyon II, Université Lyon 
III), covering different disciplines (climatology, biology, chemistry, hydrology, hydraulics, 
hydrogeology, public health...). One of the objectives of this observatory is to estimate the 
water volumes and the pollutant loads produced and released by urban areas 
(accumulation/wash-off linked to runoff), which is directly lined up with the problematics 
developed in this thesis. The site is located in the eastern part of the city, where the soils are 
mainly composed by fluvio-glacial deposits. A map of the localization of Chassieu on the 
territory of Grand Lyon (jointly with Ecully, another experimental site of the OTHU) is 
shown in Figure 1.  

 
Figure 1. Localization of the Chassieu experimental sites over the Grand Lyon territory (with Ecully) (Source: 
www.othu.org). 
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The Chassieu urban catchment is a 185 ha industrial area drained by a separate storm sewer 
system, with imperviousness and runoff coefficients of about 0.72 and 0.43 respectively. The 
effective area of the catchment can be estimated in about 80 ha (0.43 × 185 ha). At the outlet 
of the separate storm sewer system there is a retention basin followed by an infiltration basin. 
The volumes of the basins are 32000 m3 and 61000 m3, respectively (Figure 2 right).  

 
Figure 2. Aerial view of: the Chassieu catchment (left) (Source: www.othu.org) and the retention and infiltration 
basins (right) (source: Métadier, 2011).    

As noticed in Figure 2, the urbanization of this catchment is relatively uniform, mainly 
composed of industrial facilities, parking lots and fallow fields. A few farms and natural 
spaces are located in the surroundings of the basin (southwest), constituting about 8 % of the 
total surface. 

The flow rate Q (L/s) and TSS concentrations (mg/L) at the outlet of the catchment are 
measured in a 1.6 m circular concrete pipe with a 2 minute time-step resolution, at the outlet 
of the separate sewer system (inlet of the retention basin) (Figure 3).  

 
Figure 3. Photo of the measurement station installed at the outlet of the stormwater system (inlet of the retention 
basin) (source: Métadier, 2011). 

The discharge Q is calculated from water depth with a relative standard uncertainty from 2 % 
to 25 %. The water depth and the flow velocity are measured with a Nivus OCM PRO probe 
inside the sewer pipe. Regarding the TSS concentration, the water is pumped into an off-line 
monitoring flume in the shelter (measurement station) with a peristatic pump operating with 
an aspiration velocity of 1 m/s. Turbidity is measured by an Endress Hauser nephelometric 
probe CUS31. Turbidity measurements (NTU) are converted into TSS concentrations (mg/L) 
by local calibration functions (see a detailed description in Métadier, 2011). All probes are 

Retention 
basin 

Infiltration 
basin 
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connected to a central data acquisition unit SOFREL S50, which saves and sends the data by 
modem every night to the laboratory (see details in Dorval, 2010). The standard uncertainties 
in the estimated TSS concentrations range from 11 % to 30 %. The load (kg) for a time-step t 
with ∆t = 2 min is calculated with Q and TSS concentration data as load(t) = TSS(t)·Q(t)·∆t·c, 
where c is the SI units conversion factor. The uncertainties in the TSS load are estimated by 
the Law of Propagation of Uncertainties (LPU) (ISO, 2009), obtaining relative standard 
uncertainties from about 15 % to 50 %. Standard uncertainties become higher for higher 
values of the measurands (Q, TSS concentration, load). The rainfall is measured with the 
Meteo France rain gauge in Bron (next to Chassieu) from 2004 to 2006. After 2007, a specific 
rain gauge was installed in the Chassieu urban catchment. All rainfall measurements are 
registered with a time step of 1 min. 

The selection of the rainfall events used for each Chapter in this thesis is mainly dependent on 
the specific objectives of each study and also on the period of the thesis in which the work 
was developed (before or after 2015). From the thesis of Métadier (2011), the data from 2007 
to 2008 are particularly recommended as representative, including 89 rainfall events that were 
used to develop Chapters 2, 3 and 4. Sun et al. (2015) presented an extended version of this 
database, including additional information from 2008 to 2011, for a total of eight years of 
measurements (2004 to 2011). For the development of the subsequent Chapters (i.e. 4, 6 and 
7), 365 events were selected from the 716 events presented in Sun et al. (2015). The selection 
was based on rainfall events with a number of missing values of TSS and Q lower than 5 %. 
The missing Q and TSS values were filled by linear interpolations in these cases. The 
following Table 1 summarizes the information used for each Chapter, including the studied 
variables and the number of rainfall events.  

Table 1. Chassieu catchment data used in each Chapter  

 Chassieu urban catchment 

 Data base /data validation Variables number of events 
Chapter 2 Métadier, 2011 Q, TSS 89 
Chapter 3 Métadier, 2011 Q, TSS 89 
Chapter 4 Sun et al., 2015 Q, rainfall 365 
Chapter 5 Métadier, 2011 Q, rainfall 30 
Chapter 6 Sun et al., 2015 Q, TSS, rainfall 365 
Chapter 7 Sun et al., 2015 Q, TSS 255 

 

For the case of Chapter 2, the research was developed under an international cooperation with 
the KWB research project MIA-CSO (Berlin, Germany) and the Austrian research projects 
IMW2 and IMW3 (Graz, Austria). Therefore, the data of a second experimental site of the 
OTHU, Ecully (Lyon, France), was complementarily included in the analyses (see further 
details in Table 2 or Métadier, 2011 for Ecully and Lepot et al., 2017 for the other sites). 
Complementary works were developed during the thesis with the data of Ecully, for example: 
Gap-filling of dry weather flow rate and water quality measurements in urban catchments by 
a time series modelling approach in Appendix 3. 
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PART 1 TOTAL SUSPENDED SOLIDS IN URBAN 
DRAINAGE SYSTEMS: MONITORING, 
UNCERTAINTIES AND DATA ANALYSIS 
 

Measurement of Total Suspended Solids (TSS) in urban drainage systems are required for 
scientific, legal, environmental and operational reasons, as particulate matter constitutes a 
major source of surface water contamination (Ashley et al., 2004; Chebbo and Gromaire, 
2004). Therefore, appropriate data acquisition and validation methodologies for TSS 
measurements in urban drainage systems are necessary (Bertrand-Krajewski and Muste, 
2007). TSS monitoring of stormwater is aimed to collect the most accurate, reliable and 
representative data, given the technical and resource limitations (Ackerman et al., 2010). 
Measuring stormwater TSS in urban drainage systems with online technologies (e.g. turbidity, 
UV-VIS spectrometry) has been considered as a powerful technique for investigating into the 
spatio-temporal variability and complexity of water quality (e.g. Gruber et al., 2005; 
Hochedlinger et al., 2006; Schilperoort, 2011; Métadier and Bertrand-Krajewski, 2012).  

However, associated calibration, operation and maintenance costs of online probes make 
monitoring of stormwater TSS by traditional sampling campaigns a still widely used approach 
(see Athayde et al., 1983; Saget, 1994; Duncan, 1999; Pitt et al., 2004; Brombach et al., 
2005; Ellis et al., 2006). Therefore, Chapter 2 presents a comparative study with four datasets 
from different urban drainage systems (Chassieu-France, Ecully-France, Berlin-Germany, 
Graz-Austria) that seeks to highlight the benefits of online monitoring in terms of maximizing 
the representativeness (estimated by the Event Mean Concentration - EMC -) of the dynamics 
of TSS, compared to EMCs obtained by four different sampling strategies proposed in the 
literature (e.g. Rossi, 1998; Bertrand-Krajewski et al., 2000; Ackerman et al., 2010). EMCs 
from sampling strategies are simulated by sampling TSS time series (approx. one minute 
time-step, with about one year of data) and calculating a weighted average of the samples by 
their sampling volumes. These “simulated” EMCs are compared to the “reference” EMC 
calculated as a weighted average of the complete time series (flow rate and TSS).  

On the other hand, the main sources of error in any sampling procedure are not only due to the 
heterogeneity in both space and time of the sampling target but also due to the sampling 
technique (Paakkunainen et al., 2007). Therefore, aiming to estimate data quality, intensive 
investigations have also been carried out in the assessment of uncertainties in online and 
laboratory TSS measurements (e.g. Joannis et al., 2008; Métadier and Bertrand-Krajewski, 
2011). However, the influence of field sampling conditions (e.g. sampling intake position, 
sampling flow velocities or sampling pipe orientation) on the representativeness of TSS 
measured values has not been equivalently addressed in the literature (Shelley, 1977; Berg, 
1982; Rossi, 1998; Larrarte and Pons, 2011). Aiming to assess uncertainties in the mean TSS 
concentration due to the influence of sampling intake vertical position and vertical 
concentration gradients in a sewer pipe, Chapter 3 proposes two methods: a simplified method 
(SM) based on a theoretical concentration vertical profile and a time series grouping method 
(TSM). SM is based on flow rate and water depth time series. TSM requires additional TSS 
time series as input data. The analyzed time series for this Chapter 3 are from the urban 
catchment of Chassieu in Lyon, France (2 min time-step and 89 rainfall events measured in 
2007). 
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The objective of this Part 1 within the general frame of the Manuscript is to give a better 
understanding of the influence of elements such as the temporal resolution (Chapter 2) and the 
uncertainty sources (Chapter 2 and Chapter 3) over the TSS data to be used as the main 
modelling input of TSS loads intra-event dynamics, giving potential elements to rethink 
traditional conceptual models (Part 3). 
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CHAPTER 2.  EVALUATION OF PERFORMANCE AND UNCERTAINTIES 
IN STORMWATER SAMPLING STRATEGIES BASED ON FLOW RATE 
AND TOTAL SUSPENDED SOLIDS TIME SERIES 

 

Extended version of:  

Santiago S., Bertrand-Krajewski J.L., Caradot N., Hofer T., and Gruber G. (2017). Evaluation 
of performance and uncertainties in stormwater sampling strategies based on flow rate and 
total suspended solids time series. Proceedings of the 14th International Conference on 
Urban Drainage, Prague, Czech Republic, 10-15 September, 3 p. 

 

2.1  INTRODUCTION 

Accurately assessing stormwater pollutants through monitoring programs is essential for 
operative, legal, political and environmental requirements (Ackerman et al., 2010; Larrarte, 
2008). The strategies used for assessing the variability of water quality by sampling schemes 
(see Athayde et al., 1983; Saget, 1994; Duncan, 1999; Pitt et al., 2004; Brombach et al., 2005; 
Ellis et al., 2006) depend on sampling objectives, legal constraints, jointly with cost and 
logistics considerations. However, the main goal of any specific monitoring campaign is to 
collect the most accurate, reliable and representative data, given the technical and financial 
limitations (Ackerman et al., 2010). Considering that the main sources of error in any 
sampling procedure are due to the sampling technique and the heterogeneity in both space and 
time of the sampling target (Paakkunainen et al., 2007), generalizable and efficient strategies 
for water quality sampling during rainfall events, adaptable to technical and operative 
restrictions, remains a relevant question.  

The sampling strategies referred to in this Chapter 2 are operative rules for sampling Total 
Suspended Solids (TSS) concentrations during rainfall events with an automated sampler or 
grab sampling, aimed at maximizing the representativeness of the dynamics of the pollutants. 
One common indicator of the stormwater pollutant emissions for this purpose is the Event 
Mean Concentration (EMC) (USEPA, 1983; Charbeneau and Barrett, 1998; Carleton et al., 
2001; Kim et al., 2005; Lee et al., 2007), which can be estimated from different sampling 
schemes sampling (e.g. grab, flow weighted, time weighted composite samples) (Lee et al., 
2007). However, the EMCs have shown to be very variable, depending on the specific 
sampling strategy to be used (Lee et al., 2007; Ki et al., 2011).  

Representativeness of the mean of a single set of collected samples over the total mean of a 
complete set is a topic that has been addressed in other disciplines, defined as the mean 
sampling error (e.g. Gy, 1998; Minkkinen, 2004). Pierre Gy’s fundamental sampling theory 
gives a mathematical formalization of the sampling problem, establishing theoretical 
equations for estimating this error (Gy, 1998). This formulation has been applied to 
environmental problems (e.g. Paakkunainen et al., 2007), giving an appropriate frame for 
understanding the different components of errors. Nevertheless, theoretical assumptions and 
required parameters can be hard to measure in practice. Therefore, studies in urban drainage 
have evaluated the performance of different sampling strategies for quantifying pollutant 
concentrations and loads during rainfall events under a more practical point of view (e.g. 
Izuno et al., 1998; Robertson and Roerish 1999; Stone et al., 2000; Ma et al., 2009; 
Ackerman et al., 2010). These approaches have focused on assessing the performance of 
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different sampling strategies by comparing the EMCs obtained by measurements with a 
“reference” (closer to the true value) EMC calculated from numerical estimations (Shih et al., 
1994), Monte Carlo simulations (Richards and Holloway, 1987) or statistical methods (King 
and Harmel 2004; King et al., 2005; Ma et al., 2009). The main challenge in the mentioned 
approaches is that the differences between the EMC obtained from a sampling strategy and 
the “reference” EMC are established by hardly verifiable theoretical assumptions, under the 
absence of sufficient concentration data. Looking to overcome this limitation, further studies 
estimate the “reference” EMC using the outputs of water quality and quantity high temporal 
resolution conceptual models, calibrated with flow rate and water quality measurements 
(Ackerman et al., 2010; Ki et al., 2011). However, conceptual water quality models have been 
also described to have highly uncertain outputs due to uncertainties in model structure, model 
parameters and data (input and output) (Beck, 1987; Bertrand-Krajewski, 2007; Benedetti et 
al., 2013; Dotto et al., 2013), affecting the evaluation of a given sampling scheme, as well.  

Measurement of stormwater quality in urban drainage systems with online technologies (e.g. 
turbidity, UV-VIS spectrometry) has been increasingly used for several purposes (e.g. control 
of urban water systems, modelling, and real time control) (e.g. Ruban et al., 2001; 
Langergraber et al., 2004a; Langergraber et al., 2004b; Hur et al., 2010). In addition, multiple 
authors have reported the benefits of online monitoring in terms of the spatio-temporal 
variability and complexity of water quality (e.g. Gruber et al., 2005; Hochedlinger et al., 
2006; Schilperoort, 2011; Métadier and Bertrand-Krajewski, 2012). Accordingly, online 
monitoring emerges as a promising alternative for estimating the “reference” EMCs and to 
make comparisons across a range of conditions (adapted from Ackerman et al., 2010).  

The objective of the present Chapter 2 is to simulate and evaluate different sampling 
strategies proposed in the literature (e.g. Rossi, 1998; Bertrand-Krajewski et al., 2000; 
Ackerman et al., 2010) by using high temporal resolution flowrate and TSS time series 
(approx. one minute time-step, with about one year of data). EMCs from sampling strategies 
are simulated by sampling TSS time series and calculating a weighted average of the samples 
by their sampling volumes. These “simulated” EMCs are compared to the “reference” EMC 
calculated as a weighted average of the complete time series (flow rate and TSS). The 
approach is carried out with datasets from four urban drainage systems, aiming to compare 
results for different catchments. The approach is undertaken with datasets from four urban 
drainage systems, aimed at comparing the results among different catchments. The cases were 
the following: (i) Berlin, Germany, combined sewer overflow (CSO); (ii) Graz, Austria, 
(CSO); (iii) Chassieu, France, (combined sewer system) and (iv) Ecully, France (separated 
sewer system).  

To our best knowledge, uncertainties and sensitivity analysis in the evaluation of sampling 
strategies have not been extensively addressed in the literature (e.g. Rossi, 1998; King et al., 
2005). Therefore, uncertainties in: (i) sampling volumes, (ii) laboratory values, (iii) online 
measurements (TSS and flow rate) and (iv) beginning/ending of storm events are assessed and 
propagated in the results by Monte Carlo simulations. The effects of the independent 
uncertainty sources over the total uncertainties of performance estimations (errors between 
sampling and on line monitoring EMCs) are estimated by the Sobol’s Sensitivity Index. A 
statistical comparison between the uncertainties of EMCs obtained by sampling and online 
monitoring is also proposed.  
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2.2 MATERIALS AND METHODS 

Data sets 

Four datasets from different urban drainage systems are analyzed. Table 2 shows a summary 
of the main characteristics of the studied catchments and time series. 

Table 2. Summary of characteristics of studied urban catchments and time series  

Location Year Monitoring 
point 

area 
(km2) % imperv. Inhab. 

~ 

avaliable
# rainfall 

events 

time 
series 

time-step 
Land use TSS 

measur. Source 

Berlín, 
Germany 2010 CSO* 1 

74 
(0.74 ha) 126000 22 1 min Residential UV-VIS Sandoval et 

al., 2013 

Graz, 
Austria 2009 CSO 3.35 

32.24 
(1.08 ha) 11800 79 

Dry 
weather: 
3 min; 

Wet 
weather: 

1 min 

Residential UV-VIS Gamerith, 
2011 

Chassieu, 
Lyon, 
France 

2007 
Separate 

sewer system 
outlet 

1.85 

75 
(1.39 ha) 

 
NA 89 2 min Industrial Turbidity 

meter 
Métadier, 

2011 

Ecully, 
Lyon, 
France 

2007 CSO 2.45 
42 

(1.03 ha) 18000 220 2 min Residential Turbidity 
meter 

Métadier, 
2011 

*CSO: Combined Sewer Overflow 

The dry and wet weather periods for the cases of Graz and Ecully are defined based on the 
flow rate values. Periods in which the inflows of the CSO-chamber are greater than 120 L/s 
(in Graz) and flow rates are greater than 30 L/s in Ecully are defined as the wet periods.    

Sampling strategies  

The investigated sampling strategies are operational rules for sampling TSS concentrations 
during rainfall events with an automated sampler (jointly with a flowmeter for some cases), 
by using different criteria. Table 3, jointly with the following lines, gives a brief description 
of the sampling strategies evaluated in this Chapter 2 (additional details can be found e.g. in 
Rossi, 1998 or Betrand-Krajewski et al., 2000).  

Strategy cTcSV: Time-paced composite sampling (constant sampling volume): one sample is 
collected based on equally spaced time intervals and sampling volumes are constant. The 
inputs for this strategy are the sampling interval during the rainfall event and the constant 
sampling volume for samples. The sampling volume can be predefined to any constant value 
between 0.02 and 0.9 L (depending on operational constraints, as discussed below) (e.g. 
sampling each 10 min with a sampling volume of 0.4 L).  

Strategy cTpQ: Time-paced composite sampling (sampling volume proportional to 
instantaneous flowrate): one sample is collected based on equally spaced time intervals and 
sampling volumes are pre-set as proportional to the instantaneous flowrate measured at the 
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sampling time-step. The sampling volumes are then proportionally selected: the minimum 
flowrate value registered during a rainfall event will then correspond to the minimum 
sampling volume (0.02 L), as the maximum flowrate will be sampled with a volume of 0.9 L. 
Therefore, in addition to the constant sampling interval, the minimum and maximum flowrate 
values during the event are then required as inputs (e.g. sampling each 10 min with a 
sampling volume of 0.2 L, whenever the instantaneous flowrate is 0.2 m3/s). 

Strategy cTpV: Time-paced composite sampling (sampling volume proportional to runoff 
volume between two samples): one sample is collected based on equally spaced time intervals 
and sampling volumes are pre-set as proportional to the runoff volume cumulated since the 
last sample. The sampling volumes are then proportionally selected: the minimum volume 
between two samples during a given rainfall event will then correspond to the minimum 
sampling volume (0.02 L), and the maximum runoff volume between two samples will be 
sampled with a volume of 0.9 L. Therefore, in addition to the constant sampling interval, the 
minimum and maximum volumes between two samples during the event are then required as 
inputs (e.g. sampling each 10 min with a sampling volume of 0.1 L, whenever the runoff 
volume between samples is of 10 m3). 

Strategy vTcV: Volume-paced composite sampling: for this strategy, the automated sampler 
takes a sample at pre-set runoff volume (rather than sampling interval), during a given rainfall 
event. This will lead to have non-equally spaced time intervals between samples. The 
sampling volume can be predefined to any constant value between 0.02 L and 0.9 L 
(depending on operational constraints, as discussed below) as for the case of strategy cTcSV. 
Thus, the inputs for this strategy are the constant sampling volume and the pre-set runoff 
volume (constant values) (e.g. constant sampling volume of 0.4 L, for each 10 m3 of runoff 
between samples).  

Table 3. Sampling strategies inputs and description 

Name Sampling time 
intervals 

Sampling volume Runoff volume 
between samples 

Input parameters 

cTcSV constant constant variable Δt (constant sampling time interval) 

cTpQ constant f(flow rate) variable Δt (sampling time interval); min(flow rate) and 
max(flow rate) 

cTpV constant f(RV*) before last 
sample 

variable Δt (sampling interval); min(RV*) and 
max(RV*) between sampling 

vTcV variable constant constant Sampling intervals based on RV* 

*RV: runoff volume between samples 

For all the sampling strategies, the value of 0.02 is selected as the minimum sampling volume 
for which a TSS laboratory test can be conducted. As the sampling bottles have a capacity of 
1 L, the 0.9 L is selected as the maximum sampling volume with the purpose of leaving a 
security margin, in case of e.g. spilling some amount of the sample during the handling 
process.  
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Simulating sampling strategies 

Given the fact that comparing the results of simultaneous campaigns with several 
autosamplers (one for each strategy with different inputs) might be an unfeasible alternative 
(in economic and operative terms), the approach herein proposed is to use the TSS and flow 
rate time series to simulate the EMCsim that would have been obtained by different sampling 
strategies. Figure 4 illustrates how the TSS time series is sampled by means of sampling 
intervals ∆t, assigning a TSSi value (i equal to the sampling time-step) and a sampling volume 
SVi to each sampling bottle, as a function of the sampling strategy. The EMCssim is calculated 
as a weighted average of the “sampled” TSSi values by the sampling volumes SVi (Figure 4). 
This calculation is equivalent to grab multiple samples and mix them in a composite 20 L 
sample jar (the size of 20 L is set from standard field conditions). For example, in Figure 4 the 
sampling intervals are constant during the rainfall event (time-paced strategies). The EMCssim 
are simulated for each sampling strategy, including different inputs (Table 3). In addition, the 
“reference” EMCref is calculated by using the complete pseudo-continuous time series (one or 
two minute time-steps) of Q and TSS (Figure 5). EMCref(j) and EMCsim(j) are calculated for 
each rainfall event j (from 22 to 220 rainfall events depending on the dataset). 
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Figure 4. Procedure for obtaining the EMCsim from grab sampling (SV: sampling volume; TSS: Total 
Suspended Solids Concentration) with strategy cTcSV. 

Figure 5. Procedure for obtaining the EMCrefs from time series 
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The main hypothesis in this approach is that the TSS and Q time series are assumed to be the 
“reference” values, without any systematic error in the measurements. To support this fact, 
intensive research had explored the benefits and limitations of water quality and quantity 
online measurements, compared to traditional TSS laboratory tests (Bertrand-Krajewski et al., 
2007b; Torres and Bertrand-Krajewski, 2008b; Winkler et al., 2008).  

Different sampling intervals (e.g. from 1 min to 60 min) are evaluated for strategies with 
constant sampling intervals Δt (i.e. strategies cTcSV, cTpQ and cTpV). However, based on 
recommendations from Ackerman et al. (2010) and field experience, the minimum sampling 
interval Δt is recommended to be of 5 min. For applying proportional sampling volume SV 
strategies (cTpQ and cTpV), the minimum and maximum Q values of an event should be 
known in advance. In practice, these values can be estimated only after the end of rainfall 
event. A simple solution for the purposes of this Chapter 2 is to assume that the bottles are 
sampled with the highest possible sampling volume (0.9 L). Afterwards, the corresponding 
sampling volume SV from each bottle is corrected by using the already known minimum and 
maximum flow rate value, before mixing the sampling bottles into the 20 L jar (Figure 4). The 
performance of strategy vTcV (variable sampling intervals) is evaluated for several runoff 
volumes RV, from 5th percentile to 95th percentile of the total runoff volumes during the 
rainfall events. The mean ∆t is calculated in the vTcV strategy for comparison with constant 
sampling intervals Δt strategies (cTcSV, cTpQ and cTpV).   

Performance indicators 

The estimation of the performance of a sampling strategy could be assessed in terms of the 
variability and repeatability of the sampling error across the different rainfall events (adapted 
from Gy, 1998). Therefore, the following performance indicators are considered: (i) the 
residuals_vector for each rainfall event (Eq 1) (bias estimation) and (ii) the Mean Squared 
Relative Error (MSRE) for all rainfall events (accuracy estimation) (Eq 2).  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅_𝑣𝑣𝑅𝑅𝑣𝑣𝑑𝑑𝑣𝑣𝑣𝑣(𝑗𝑗) = 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟(𝑗𝑗) − 𝐸𝐸𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠(𝑗𝑗)                               
 
Eq 1 

 

𝐸𝐸𝑆𝑆𝑅𝑅𝐸𝐸 =
�∑ 𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑗𝑗)2𝑁𝑁

𝑗𝑗=1

𝑁𝑁 ∙ 𝑚𝑚𝑅𝑅𝑅𝑅𝑚𝑚(𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑟𝑟𝑡𝑡𝑟𝑟)
 

 
 
Eq 2 

 

The residuals_vector has a length equal to the number of rainfall events N and can be 
considered as a bias estimation (over or under estimation of the EMC), as the mean of this 
vector should be significantly close to zero for guaranteeing a non-biased estimation over all j 
rainfall events (adapted from Gy, 1998).  

On the other hand, the MSRE can be defined as the standard deviation of the sampling error, 
which is related to the accuracy (MSRE) of a given sampling strategy (Gy, 1998; 
Paakkunainen et al., 2007). The representativeness of a sample is a function of the expectation 
and the standard deviation of the sampling error (Gy, 1998). Therefore, Eq 1 and Eq 2 are 
proposed to describe the representativeness of a sampling strategy. In addition, the 
uncertainties in the MSRE are considered as a complementary indicator of the performance of 
a sampling strategy. This indicator is estimated by the Monte Carlo method, propagating the 
uncertainty sources over the MSRE (see Table 4).  
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The standard uncertainty u(x) of the random variable x can be estimated by the Law of 
Propagation of Uncertainties LPU, in which the condition of normality (or at least symmetry 
of the distribution) is necessary. In those cases the expanded uncertainty can be calculated as  
I = k · u(x), where k is the enlargement factor that guarantees a desired coverage interval (e.g. 
k = 2 for a 95 % coverage when the distribution is normal) (ISO, 2009). Whenever the 
normality or even symmetry of the distribution is not verified (especially over the propagated 
distributions), the expanded uncertainty CI(x)min95 % can be calculated by the Monte Carlo 
method as the minimum interval formed by a couple of points (a, b) that can cover 95 % of 
the distribution of x (ISO, 2009). The standard uncertainties u(x) from Table 4 are included in 
the analysis as the standard deviation of a normal distribution for each of the variables used in 
the calculation of the EMCs and MSREs (Table 4). The propagation of uncertainty sources 
over EMCs and MSREs is calculated in their expanded form as CI(EMC)min95% and 
CI(MSRE)min95% respectively. The CI(MSRE)min95% value represents the influence of 
uncertainty sources (Table 4) over the variability of the MSRE (Eq 2), as a total error 
indicator.  

Regarding the calculation of the CI(MSRE)min95% (function of CI(EMCref)min95% and 
CI(EMCsim)min95% values), six uncertainty sources are considered, which are listed in Table 4 
(adapted from Rossi, 1998). Uncertainties in sampling intake position and time shift due to 
the pumping operation are not considered due to the lack of information (sources 7 and 8 in 
Table 4).  

Table 4. Uncertainty sources description 

 Uncertainty 
source code 

Description Standard 
uncertainty value 
u(x) 

Influence on 
EMCsim 

Influence 
on 
EMCref 

Probability distribution 

1) u(Qts) 

 

uncertainty of Q 
time series 

Q online 
measurements 
uncertainties (site 
dependent) 

sampling 
volumes (cTpQ) 

(RVts) 

(used in 
all 
strategies) 

N ~ (Q ; u(Q)) 

2) u(samplV) 

 

uncertainty of 
sampling 
volumes 

4.5 % (LGCIE, 
Exera report) 

sampling volume 
in each strategy 

no effect N ~ (SV ; 0.075·SV) 

3) u(start/end) 

 

start/ending of 
rainfall event, it 
varies the 
delimitation of 
D/W periods 

Beginning 5 % and 
ending 7.5 % of the 
rainfall duration 
(Métadier, 2011) 

directly; for 
vTcV it affects 
the definition of a 
Δt related to a 
given runoff 
volume 

direct 
effect 

Beginning: 

tstart + 

U~ [-0.05·(tend- tstart) ; 0.05·(tend- tstart)] 

 

Ending: 

tend +                                                    
U~ [-0.075·(tend- tstart) ; 0.075·(tend- tstart)] 
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 Uncertainty 
source code 

Description Standard 
uncertainty value 
u(x) 

Influence on 
EMCsim 

Influence 
on 
EMCref 

Probability distribution 

4) u(TSSsampl) 

 

uncertainty 
related to the TSS 
obtained from the 
sampling strategy 

7.5 % of the value 
(TSS standard test 
uncertainty) 
(LGCIE, Exera 
report) 

directly no effect N ~ (TSS ; 0.075·TSS) 

5) u(TSSts) 

 

uncertainty of 
TSS time series 

TSS online 
measurements 
uncertainties 

(site dependent) 

no effect direct 
effect 

N ~ (TSS ; u(TSS)) 

6) u(RVts) 

 

uncertainty 
related with 
runoff volume 
from Q time 
series 

Q online 
measurements, 
including 
uncertainty of 
starting/ending of 
events 

sampling 
volumes (cTcSV, 
cTpV and vTcV) 

direct 
effect 

propaged from distributions 1 and 4 

7) u(Sampl. 
position) 

 

uncertainties due 
to sampling 
intake position 

neglected for this 
work 

NA NA NA 

8) u(Time-
shift) 

 

uncertainty due to 
the time shift 
given by the 
pumping 
operation 

neglected for this 
work 

NA NA NA 

For clarifying, the source of uncertainty u(RVts) comes from an instantaneous runoff volume 
time series (RVts). This series is calculated from the flow rate time series Q, including 
uncertainties of u(Qts) but also of u(start/end), with the purpose of establishing the sampling 
volumes for cTcSV, cTpV and vTcV strategies. Each uncertainty source is propagated over 
the EMCsim, EMCref, MRSE and residuals_vector (Eq 1 and Eq 2) by Monte Carlo 
simulations, including the proposed probability distributions (Table 4). The probability 
distribution of uncertainty source 3 (Table 4) is a uniform distribution U that represents the 
uncertainties in the moment of beginning tstart and ending tend of a rainfall event (with duration 
tend- tstart).   

The uncertainty related to the TSS sampling u(TSSsampl) is different from the uncertainties 
in the TSS from the time series u(TSSts) (Table 4, source 4 and 5 respectively). The u(TSSts) 
are related to the TSS measurement technology (Turbidity or UV-VIS spectrometry), with its 
calibration procedure. Both values are assumed to be measured with a different measurement 
approach (laboratory traditional test and online monitoring) (Figure 4 and Table 4). The 
Sobol’s sensitivity total index (SSI) estimation proposed by Glen and Isaacs (2012) is applied 
to quantify the influence of uncertainty sources (Table 4) over the total uncertainty of MSRE 
values, CI(MSRE)min95%. See a detailed description of the application of the methodology in 
Appendix 2.    

Iman and Conover (1980) propose the Latin Hypercube Sampling LHS, as an extension of the 
Monte Carlo method, which can lead to equivalent results with a lower number of 
simulations, by better covering the probability distribution domain. The LHS is tested against 
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the traditional Monte Carlo approach in punctual cases, reporting suitable results in terms of 
diminishing the computational effort. For time series analysis, some authors have pointed out 
that the correlation effect of time series (autocorrelation or variogram) can increase the values 
of propagated uncertainties over time series calculations (Bertrand-Krajewski and Bardin, 
2002). Therefore, the correlation matrix of the time series could be included in the LHS as the 
autocorrelation matrix, in order to consider this effect (adapted from McMurry and Politis, 
2010). However, the autocorrelation matrix has shown not to be a sufficient estimator of the 
time series correlation matrix (Wu and Pourahmadi, 2009). This problem is still subject of 
intensive research by multiple authors (e.g. Xiao and Wu, 2012; Xue and Zou, 2012). For 
instance, the time series are going to be considered as merely observations, without an auto-
correlated underlying process (correlation matrix equal to identity matrix in the LHS).  

Further comparisons are undertaken between CI(EMCref)min95% and CI(EMCsim)min95%  by the 
use of statistical methods (t-test or Wilcoxon) to show significant differences between 
uncertainties in EMC obtained by online monitoring or using a simulated sampling scheme. 
The selection of the t-test or Wilcoxon test is dependent on the normality of the 
residuals_vector (EMCref - EMCsim) (Shapiro Wilk test p-value > 0.05 for normally 
distributed samples). 

2.3 RESULTS AND DISCUSSION   

With the purpose of testing the efficiency of LHS against traditional Monte Carlo Method, 
and defining as well a representative number of simulations, the convergence of the results 
obtained by the two approaches is checked for some cases e.g. Chassieu, cTpQ strategy with a 
15 min sampling interval (Figure 6). The MC method (left) does not show stable results of 
CI(MSRE)min95% for a number of simulations lower than 400. These results are in agreement with 
previous studies (e.g. Helton and Davis, 2003), where the LHS approach has reported 
satisfactory results for assessing and propagating uncertainties more efficiently (lower number 
of simulations for computing the same MSRE values) in comparison to the traditional Monte 
Carlo method. From results in Figure 6, jointly with the maximum computational capacity, 
the number of simulations is defined as 200 for Berlin, Chassieu, Graz and Ecully, by using 
the LHS approach.  

 
Figure 6. Variability of MSRE values (CI(MSRE)min95%) against different number of simulations (x-axis) for 
strategy cTcSV with sampling intervals of 15 min in Chassieu (left: LHS, right: traditional Monte Carlo 
simulations). 
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The calculations are undertaken for the datasets of Berlin, Chassieu, Graz and Ecully. 
Different criteria are evaluated for each of the studied datasets and strategies: (i) performance 
of each strategy (sampling error MSRE and CI(MSRE)min95%) (Eq 2), (ii) residuals_vector (Eq 
1) (iii) Sobol’s Sensitivity Index SSI and (iv) statistical comparison between 
CI(EMCsim)min95% and CI(EMCref)min95%. Different sampling intervals are considered from 1 
min to 60 min (Graz, Chassieu and Ecully) and from 1 min to 30 min (Berlin). Only even 
sampling intervals (i.e. 2 min, 4 min, etc.) are evaluated for the case of Chassieu and Ecully, 
as the time-step of the data is 2 min. 

Considering that the maximum volume of the composite sample jar is set to 20 L, MSRE 
values increase for short sampling intervals, as the composite sample jar of 20 L is full before 
the end of the event (especially for rainfall events with high volumes). This fact is considered 
as well in constant sampling volume SV strategies (i.e. cTcSV and vTcV) by setting a 
constant SV of 0.4 L. For cTpQ and cTpV, SV are assigned from 0.02 L to 0.9 L, depending 
on the input of each sampling strategy (Table 3). Rainfall events for a given strategy are not 
included in the calculations if: (i) the sampling interval is longer than the duration of the 
events (for cTcSV, cTpV and vTcV) or (ii) the total runoff volume RV set between samples is 
greater than the total runoff volume of the rainfall (for vTcV). Therefore, the following 
number of rainfall events is used for each dataset in vTcV strategy, as a function of the 
sampling runoff volume between samples RV (Table 3).  

- Berlin: 22 events for RV > 500 m3 (mean sampling intervals of 5 min) decreasing until 9 
events for RV = 4500 m3 (mean sampling intervals of 5 min).  

- Chassieu: 89 events for RV > 280 m3 (mean sampling intervals of 15 min) decreasing until 
37 events for RV = 1700 m3 (mean sampling intervals of 60 min).  

- Graz: 79 events for RV > 100 m3 (mean sampling intervals of 5 min) decreasing until 52 
events for RV = 1300 m3 (mean sampling intervals of 60 min).  

- Ecully: 220 events for RV > 1x105 m3 (mean sampling intervals of 5 min) decreasing until 
100 events for RV = 12x105 m3 (mean sampling intervals of 60 min). 

Results about MSRE (solid lines) and CI(MSRE)min95% (colored bands) are shown for 
sampling time intervals from 1 to 60 min on the lower x-axis (strategies cTcSV, cTpQ and 
cTpV) (Figure 7). The upper x-axis shows the different runoff volumes that are used to 
evaluate the vTcV strategy, with the corresponding mean sampling time intervals on the lower 
x-axis (Figure 7). The sampling error MSRE and its uncertainty CI(MSRE)min95% increase for 
greater sampling interval, evaluated over the different rainfall events and datasets.  

In Berlin (Figure 7a), the strategies cTpQ and cTpV show the best performance, with similar 
results (MSRE 7 % to 25 %, CI(MSRE)min95% lower than 20 %). The strategy vTcV shows the 
lowest performance with the highest MSRE and CI(MSRE)min95% values. In Chassieu (Figure 
7b), CI(MSRE)min95% values are lower for strategies cTcSV and vTcV, and a lower MSRE is 
observed for strategy cTpV for all sampling intervals. The cTpQ strategy is particularly 
sensible to flow rate outliers, as the sampling volumes are obtained by a weighted average of 
instantaneous flow rate values. Therefore, the CI(MSRE)min95% values higher than 100 % for 
strategy cTpQ could be related to potential outliers in the flow rate time series. In Graz 
(Figure 7c), no strategy outperforms the other ones. CI(MSRE)min95% values are similar for all 
sampling strategies and sampling intervals, and generally lower than 15 %. In Ecully (Figure 
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7d), the strategy cTpV shows the lowest MSRE and CI(MSRE)min95% values (resp. < 20 % and 
from 1 % to 20 %) for all sampling intervals). 

 
Figure 7. MSRE (solid line) and CI(MSRE)min95% (colored bands) for different sampling time intervals in 
strategies cTcSV (black), cTpQ (red) and cTpV (blue) on the lower x-axis and different sampling volumes in 
strategy vTcV (green) on the upper x-axis, for a) Berlin, b) Chassieu, c) Graz and d) Ecully. 

For Berlin and Chassieu, the 20 L composite sample jar is filled before the end of many 
events for sampling intervals shorter than 3 and 5 min respectively (resulting in higher MSRE 
values for shortest sampling intervals). These results, along with field experience and usual 
recommendations for sampling strategies, indicate that less than 5 min time interval is not 
appropriate from an operational point of view. Therefore, the best sampling strategy might be 
cTpV (or cTpQ as well, but being aware of its sensitivity to unusual flow rate values), using 
sampling intervals of about 5 min.  

For Graz and Ecully, the constraint regarding the maximum composite sample jar volume has 
an impact for sampling intervals lower than 10 min. Therefore, for any sampling strategy to 
be implemented in these sites, sampling intervals are recommended to be about 10 min 
(MSRE of 10 % and 20 % respectively). Differences between the recommendations about the 
optimal sampling time interval for Berlin and Chassieu (5 min), compared to Graz and Ecully 
(10 min), can be related to the size of the catchments (100 and 185 ha for Berlin and 
Chassieu, compared to 335 and 245 ha for Graz and Ecully) (Table 2). Graz and Ecully 
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produce runoff volumes over longer durations leading to more frequent overfilling of the 
maximum 20 L jar. 

For all cases (Berlin, Chassieu, Graz and Ecully), the strategy cTpV delivers the most 
representative results in terms of performance MSRE and uncertainties CI(MSRE)min95%. 
Previous studies (e.g. Leecaster et al., 2002; Ma et al., 2009) also concluded that weighing the 
sampling volumes based on the runoff volume can bring up the most accurate and precise 
estimations of EMC. The constant sampling time intervals providing the best performance are 
about 5 min for the smaller catchments (Berlin and Chassieu) and about 10 min for the larger 
ones (Graz and Ecully). The sampling errors (MSRE) for these recommended sampling 
intervals range from 7 % (Berlin) up to 20 % (Chassieu and Ecully), with 95 % coverage 
intervals CI(MSRE)min95% of about 5 %. If appropriate sampling intervals are selected (about 
10 min), the cTcSV strategy can be a feasible alternative in absence of a flow-meter, with 
acceptable MSRE (lower than 20 %) and CI(MSRE)min95% (lower than 10 %). The operative 
restriction of a maximum volume of 20 L for the composite sample jar has a significant 
influence on the selection of the best sampling strategy, especially for large catchments.  

The residuals_vector between EMCref and EMCsim are calculated for each rainfall event (to be 
called EV) (Figure 8) including the same sampling intervals and runoff volumes between 
samples RVs used in the results of the MSRE estimations (lower and upper x-axis, 
respectively). In addition, uncertainties are propagated into the residuals_vector (Eq 1) by the 
LHS method, including the uncertainty sources defined in Table 4 (to be called MC) (Figure 
8). An asymmetry in the distribution of the residuals_vector towards 0 mg/L is an indicator of 
systematic over or underestimations of the EMC. Whenever at least half of the events are over 
or under-estimated, the strategy can be considered to be biased.  

The strategy cTcSV applied to Chassieu and Ecully catchments shows an underestimation of 
the EMC (positive signs of the residuals_vector) for 75 % of the rainfall events, with 
sampling intervals greater or equal to 4 min and 8 min, respectively. One particularity of the 
TSS pollutographs during a rainfall event is that the amount of TSS values lower than the 
EMCref is higher than the amount of TSS values higher than the EMCref (median TSS lower 
than mean TSS). The bias reported for this case is explained by the fact that the cTcSV 
strategy will tend to reflect the natural asymmetry of the TSS values distribution, as flow rate 
information is not considered. Gy (1998) envisaged similar conclusions, demonstrating 
mathematically that non-weighing sampling strategies (e.g. cTcSV) are less representative 
than weighing strategies (cTpQ and cTpV), under certain theoretical assumptions over the 
sampled signal (e.g. autocorrelated series). Other studies such as Leecaster et al. (2002) report 
similar bias for non-flow rate weighted strategies with site measurements. 

Analogous results are delivered for strategies cTpQ, cTpV and vTcV in Chassieu and Ecully, 
using sampling intervals greater than 30 min (underestimation of the EMC for 75 % of the 
rainfall events). These long sampling intervals lead to take more samples from the ending of 
the rainfall event (after the peak). This part of the pollutograph is usually longer and contains 
a greater amount of TSS values lower than EMCref. Therefore, the EMCsim is more likely to be 
calculated with the lowest values of the pollutograph, independently of the weighting 
sampling volumes SV (Figure 4).  
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Figure 8. residual_vector (EMCref – EMCsim) Eq 1 (EV) with propagated uncertainties (MC) for different 
sampling time intervals in strategies cTcSV, cTpQ and cTpV and different sampling volumes in strategy vTcV 
for Berlin, Chassieu, Graz and Ecully.  

The cTpQ and cTpV strategies show systematic overestimations of the EMC (negative signs 
of the residuals_vector) for more than 50 % of the events in Chassieu and Ecully, considering 
sampling intervals lower than 4 min and 8 min, respectively. The 20 L composite sample jar 
is filled during the first part of the event for short sampling intervals, leading to amplify the 
sampling in the zone before the peak of the pollutograph. Indeed, the majority of the TSS 
values higher than EMCsim are located at the beginning of the event. The residuals_vector (Eq 
1) remained towards zero for the cases of Berlin and Graz. The differences in the results 
among the different catchments can be attributed to facts such as the size of each basin, 
physical characteristics and type of hydrosystem (Table 2). 

The variability of the residuals_vector (Eq 1) becomes higher for greater sampling intervals in 
all sampling strategies in all datasets. This can be expected from results in Figure 8 (MC), as 
the mean difference between EMCsim and EMCref becomes higher due to a lower amount of 
values used to calculate the EMCsim (sampling interval size). This variability increases as well 
when uncertainties are taken into account by the LHS method (Figure 8). 
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However, the percentages of over or underestimation remain constant compared to the EV 
scenario. For Berlin and Graz, although the variability of the distribution in the 
residuals_vector increased for higher sampling intervals, no asymmetry is noticed in the 
distributions. 

The results of Sobol’s total Sensitivity Index (SSI) are shown in Figure 9 for each of the six 
uncertainty sources. Including the results for all the strategies, the following generalizations 
can be observed, independently of the selected Δt (cTcSV, cTpQ and cTpV) or RV (vTcSV): 
(i) the most important source of uncertainty in CI(MSRE)min95% comes from the TSS 
laboratory values u(TSSsampl), (ii) the uncertainties related to the D/W weather delimitation 
u(start/end) and sampling volumes u(samplV) have an important effect over CI(MSRE)min95% 
for constant sampling interval Δt strategies (cTcSV, cTpQ and cTpSV) and (iii) the volume 
time series uncertainty u(RV) has an important influence over CI(MSRE)min95% in strategy 
vTcV. Indeed, the importance of u(TSSsampl) over CI(MSRE)min95% remains systematically 
higher than for u(TSSts), for all strategies. This can be explained from the amount of TSS data 
used to calculate the EMCref, which is necessarily higher than for the EMCsim, and therefore 
EMCsim might be more sensitive to variations in the TSS values than EMCref. These results 
may encourage researchers and practitioners to find adaptable methodologies for delimiting 
the beginning and ending of rainfall events, especially for applying sampling schemes based 
on time intervals. TSS laboratory values is the main uncertainty source for estimating the 
EMC by sampling strategies, therefore special attention should be given to laboratory and 
samples handling protocols.    
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Figure 9.  Sobol’s Total Index for sensitivity analysis considering uncertainty sources in Table 4 for different 
sampling time intervals in strategies cTcSV, cTpQ  and cTpV and different sampling volumes in strategy vTcV 
for Berlin, Chassieu, Graz and Ecully.  

The standard uncertainties of the EMCs obtained from time series CI(EMCref)min95% are 
compared with the uncertainties of the EMCs calculated by different sampling strategies and 
sampling intervals CI(EMCsim)min95% (Figure 10). The notation can be read as follows: strategy 
and the sampling interval, e.g. cTcSV_5 = cTcSV strategy with 5 min sampling interval. 
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Berlin: 22 events  

 

Chassieu: 89 events 

 

Graz: 79 events events  

 

 

Ecully: 220 events 

 

Figure 10. Comparison of CI(EMCref)min95% and CI(EMCsim)min95% values obtained in all rainfall events for 
different sampling strategies. 

Statistical tests show that there is a significant difference between the uncertainties of 
CI(EMCref)min95% and CI(EMCsim)min95% (t-test or Wilcoxon with p-value < 0.05) for all 
datasets (except for Berlin with sampling intervals lower than 20 min). This implies that the 
uncertainties in the estimation of the EMCs by online measurements (turbidity or UV-VIS 
spectrometry) are significantly lower than uncertainties in the estimation of the EMC by 
sampling strategie (Wilcoxon test, p-value < 0.05). Furthermore, uncertainties of the EMC 
increases as longer sampling intervals are used. These results show up one of the potential 
advantages given by online monitoring compared to traditional sampling schemes and 
confirms the necessity of selecting an appropriate sampling interval for any sampling strategy 
to be adopted. Practitioners should bear in mind that EMCs estimated by a sampling strategy 
tends to be more uncertain than the EMCs obtained by online monitoring.  
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2.4 CONCLUSIONS 

Different sampling strategies during rainfall events are simulated and evaluated by means of 
online TSS water quality and flow measurements in four international catchments (Berlin, 
Chassieu, Graz and Ecully). The average relative sampling error and the residuals distribution 
are estimated from EMCs simulated by strategies, compared to EMCs obtained by the 
complete time series from online monitoring of various rainfall events. The uncertainties are 
propagated by the Monte Carlo method using Latin Hypercube Sampling (LHS) and the 
sensitivity of the results to the different uncertainty sources is assessed by Sobol’s Sensitivity 
Indices. For the studied datasets (Berlin, Chassieu, Graz and Ecully), a sampling volume 
proportional to runoff volume between two samples, with constant sampling intervals, 
strategy (cTpSV), delivers the most representative results in terms of accuracy (MSRE), bias 
(residuals vector) and uncertainties propagation of the errors in the estimation of EMCs. 
Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 
185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with average 
sampling errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, 
depending on the sampling interval. 

From Sobol’s total sensitivity index analyses, it can be stated that special attention should be 
paid to field sampling procedures and laboratory analyses (especially for larger sampling 
intervals), as uncertainties related to sampling volumes and TSS concentrations seemed to be 
highly influential on uncertainties of EMCs. In addition, uncertainties in the average relative 
sampling errors in the estimation of the EMCs are also very sensitive to uncertainties in the 
beginning and ending of rainfall events. Therefore, further investigations towards the 
assessment of this uncertainty source (in terms of water quantity and quality parameters) can 
be strongly recommended (see Métadier, 2011; Sandoval and Torres, 2013). Statistical tests 
indicate that the uncertainties of EMCs obtained from time series are significantly lower 
(Wilcoxon test, p-value < 0.05) than the uncertainties of EMCs obtained by sampling 
strategies.   
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CHAPTER 3. INFLUENCE OF SAMPLING INTAKE POSITION ON 
SUSPENDED SOLIDS MEASUREMENTS IN SEWERS: TWO PROBABILITY 
/ TIME-SERIES BASED APPROACHES 

 

Published in:  

Sandoval, S., Bertrand-Krajewski, J.-L., (2016). Influence of sampling intake position on 
suspended solids measurements in sewers: two probability / time series based approaches. 
Environmental Monitoring and Assessment, 188, 347. doi: 10.1007/s10661-016-5335-y.  

 

3.1 INTRODUCTION 

Total Suspended Solids (TSS) measurements in urban drainage systems are often required for 
scientific, legal, environmental and operational reasons, as particulate matter constitutes a 
major source of surface water contamination (Ashley et al., 2004; Chebbo and Gromaire, 
2004). However, the reliability of TSS measurements strongly depends on the quality of the 
collected samples, which should be representative of real field conditions in the monitored 
sewer pipe (Larrarte, 2008; Métadier and Bertrand-Krajewski, 2012). Therefore, appropriate 
data acquisition and validation methodologies for TSS measurements in urban drainage 
systems are required (Bertrand-Krajewski and Muste, 2007). Aiming to estimate data quality, 
intensive investigations have been carried out towards assessment of uncertainties in online 
and laboratory TSS measurements (e.g. Joannis et al., 2008; Métadier and Bertrand-
Krajewski, 2011). However, the influence of field sampling conditions (e.g. sampling intake 
position, sampling flow velocities or sampling pipe orientation) on the representativeness of 
TSS measured values has not been equivalently addressed in the literature (Shelley, 1977; 
Berg, 1982; Rossi, 1998; Larrarte and Pons, 2011). 

Indeed, one specific uncertainty source in TSS measurements lies in the sampling intake 
position through the sewer cross section (Shelley, 1977; Rossi, 1998; Kafi-Benyahia et al., 
2006; Larrarte, 2008; Larrarte and Pons, 2011), which is frequently neglected by implicitly 
assuming that point measured values are equal to the cross section mean concentration. This 
hypothesis seems to be valid in sewers with high enough flow velocities (Kafi-Benyahia et 
al., 2006; Larrarte, 2008), where fully mixed flow conditions can be guaranteed (Raudkivi, 
1998). However, TSS vertical gradients might be non-negligible under other hydrodynamic 
conditions corresponding to lower velocities (Verbanck, 1993, 1995; Ashley and Crabtree, 
1992; Ashley et al., 1994; Ristenpart, 1995; Ristenpart et al., 1995; Ahyerre, 1999). In this 
case, the difference between point measured and cross section mean concentrations can be 
therefore attributed to: (i) variation of the position of the cross section mean concentration 
linked to vertical and horizontal concentration profiles due to hydrodynamics, (ii) variations 
of the sampling intake position through the cross section due e.g. to oscillations of the 
sampling tube or to other experimental constraints (Larrarte and Pons, 2011) and (iii) 
uncertainties in physical variables (e.g. flow rate measured at each time-step, roughness 
coefficient, geometric properties). 

In this Chapter 3, two methods are presented and applied comparatively to a case study in 
order to evaluate how the position of the sampling intake tube, the vertical concentration 
profile and other uncertainty sources may lead to over- or underestimation of the cross section 
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mean TSS concentration. More specifically, the methods allow estimating the probability that 
sampling TSS concentrations at a random point of the sewer vertical cross section (for given a 
flow rate) leads to over- or underestimation of the true vertical mean TSS concentration. This 
information can then be used to correct possible errors in measured TSS data. 

 

3.2 MATERIALS AND METHODS 

Data set 

The simplified method (SM) is applied with flow rate Q (m3/s) data determined from water 
depth H (m) and mean flow velocity U (m/s) measurements. The time series method (TSM) in 
addition includes TSS concentrations (mg/L) estimated from online turbidity measurements. 
The experimental time series were measured with a 2 minute time step for 89 rainfall events 
in 2007 in Chassieu, France (see details in Chapter 1). For SM, information and data include: 
(i) the time series of the wet cross section A (m2) derived from the H time series, (ii) the time 
series of the wet perimeter P (m) derived from the H time series, (iii) the sewer pipe slope S 
(m/m) and (iv) the settling velocity ws (m/s) of suspended solids (details about settling 
velocity measurements are given in Torres and Bertrand-Krajewski, 2008a and Chebbo and 
Gromaire, 2009). Standard uncertainties in all above data are also needed for calculations. 
Input data and their uncertainties are given in Table 5.  

Table 5. Input data and their standard uncertainties. 

Input variable Input value Source Standard uncertainty/ pdf Source 

Diameter D 𝐷𝐷� = 1.6 m Métadier (2011) u(D) = 0.002 m Muste et al. 
(2012) 

Settling velocity ws 𝑤𝑤𝑠𝑠��� = 2.8e-4 m/s Torres (2008) u(ws) = 0.13 𝑤𝑤𝑠𝑠��� 
normally distributed 

Torres (2008); 

Torres and Bertrand-
Krajewski (2008a) 

Pipe slope S 𝑆𝑆 �  = 0.01 m/m Métadier (2011) u(S) = 0 m/m Métadier (2011) 

Water depth H 𝐻𝐻 ��� = H m Métadier (2011) u(H) = 0.0075 m  
normally distributed 

Métadier (2011) 

TSS 𝑇𝑇𝑆𝑆𝑆𝑆 ������ = TSS mg/L Métadier (2011) Variable over 
the time series 

Métadier (2011) 

 

Simplified method (SM) 

The field conditions in which the samples are taken in the sewer pipe and the TSS 
concentration profile are illustrated in Figure 11 and Figure 12, where z (m) is the sampling 
intake depth, H (m) is the total water depth, 𝑦𝑦𝑐𝑐 (m) is the depth corresponding to the vertical 
mean concentration, Ch (mg/L) is the concentration at depth h (m) above the invert, Ca* 
(mg/L) is the concentration at the reference depth a* (m) above the invert. 
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Figure 11. Scheme of the concentration profile and the sampling tube. 

..  

Figure 12. Sampling tube in the Chassieu sewer. Left: general view with the sampling tube located just upstream 
a Venturi flume created to ensure a minimum water level for sampling; Right: detail of the lower part of the 
sampling tube immersed in the flow. 

Previous studies (Coleman, 1982; Verbanck, 2000) propose to represent the vertical 
concentration profile in a pipe with the following equation: 

𝐸𝐸ℎ
𝐸𝐸𝑎𝑎∗

= �
ℎ
𝑅𝑅∗
�
−η

 

 
 
 
 Eq 3 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



32 
 

where 𝜂𝜂 =  𝑤𝑤𝑠𝑠
𝜅𝜅𝜅𝜅∗

 (-) is the Rouse number, Ch (mg/L) is the concentration at depth h (m) above 
the invert, Ca* (mg/L) is the concentration at the reference depth a* (m) above the invert, U* 
(m/s) is the shear velocity and κ =0.4 (-) is the Von Karman constant. The shear velocity is 
computed as follows (Verbanck, 1995): 

𝑈𝑈∗ = �𝑔𝑔𝑔𝑔𝑆𝑆
𝑃𝑃

 

 
 
 

Eq 4 

where A (m2) is the wet cross section, P (m) is the wet perimeter, S is the pipe slope (m/m) 
and g is the gravity (m/s2). Thus, the Rouse number η can be written: 

𝜂𝜂 =
𝑤𝑤𝑠𝑠
𝜅𝜅
�

𝑃𝑃
𝑔𝑔𝑔𝑔𝑆𝑆

               

 
 
                             
Eq 5 

 

Hence, both the shape of the vertical concentration profile and the depth 𝑦𝑦𝑐𝑐 of the mean 
concentration depend on the flow rate Q. For high enough values of Q (turbulent fully mixed 
condition), the vertical concentration profile might be expected to show a more uniform 
distribution along the vertical axis (as the Rouse number exponent η in Eq 3 gets lower than 
about 0.6) (see details in Raudkivi, 1998). In contrast, for low Q values, the TSS concentration 
will be higher near the pipe invert compared to the free surface. Although Eq 3 remains 
widely used in the context of urban drainage, one should bear in mind that alternative forms 
of this equation are obtained when considering additional hypotheses about velocity profile, 
flow stratification and hydrodynamic interactions (e.g. Verbanck, 2000; Cantero‐Chinchilla et 
al., 2016). 

The problem therefore resides in estimating how much the measured TSS value at depth z 
deviates from the mean TSS concentration (𝑇𝑇𝑆𝑆𝑆𝑆�����) located at depth 𝑦𝑦𝑐𝑐, with the above 
theoretical assumptions. The proposed method is illustrated in Figure 13. 𝑦𝑦𝑐𝑐 is considered as a 
random variable with a cumulative distribution function (CDF) based on the shape of the 
vertical concentration profile proposed by Coleman (1982) and Verbanck (2000) (Eq 3), as 
there is usually a lack of data for calculating Ca* and a*. In addition, their estimation by semi-
empirical equations developed for specific site conditions and circumstances can lead to 
erroneous results, as these values have shown to be case-dependent (e.g. Ristenpart, 1995). 
The CDF curve is thus calculated by normalizing Eq 3, making it independent from Ca* and 
a* and consistent with a CDF such that P(z=0 > 𝑦𝑦𝑐𝑐) = 0 and P(z=H > 𝑦𝑦𝑐𝑐) = 1 (Figure 13f). In 
general terms, P(z > 𝑦𝑦𝑐𝑐) = 0.5 when z is equal to the median of 𝑦𝑦𝑐𝑐, to be called med[𝑦𝑦𝑐𝑐]. The 
probability P(z > 𝑦𝑦𝑐𝑐) that a random sampling depth z is higher than the point where 𝑇𝑇𝑆𝑆𝑆𝑆����� is 
located should be equal to P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����), i.e. the probability of underestimating 𝑇𝑇𝑆𝑆𝑆𝑆�����. The 
probability of non-exceedance of 𝑇𝑇𝑆𝑆𝑆𝑆����� can be thus computed by evaluating any sampling point 
z (where 0 ≤ z ≤ H) over the CDF of 𝑦𝑦𝑐𝑐 (Figure 13g). Cases for which z is lower than med[𝑦𝑦𝑐𝑐] 
will result in a high probability of overestimating 𝑇𝑇𝑆𝑆𝑆𝑆�����. 

The Rouse number η plays a role in the shape of the CDF, leading to expect a dynamic 
behavior of P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) for different Q values. Regarding situations in which med[𝑦𝑦𝑐𝑐] is 
closer to the pipe invert, i.e. low Q values and curved vertical concentration profiles, a 
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sampling point z close to H (i.e. near the free surface) might lead to a high probability of 
underestimating 𝑇𝑇𝑆𝑆𝑆𝑆�����. For high enough values of Q with fully mixed condition, P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) 
or P(z > 𝑦𝑦𝑐𝑐) can be expected to be close to 0.5, for all 0 ≤ z ≤ H. In theory, the optimum 
scenario is obtained if the sampling point z is equal to med[𝑦𝑦𝑐𝑐]. 

With the Monte Carlo (MC) method, two sources of variability in P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) are 
accounted for: (i) normal distributions to account for measurement uncertainties in physical 
variables: Q and h both at each time step, ws and D (Figure 13a and Figure 13b); and (ii) 
uniformly distributed sampling depth z along the vertical axis (Figure 13d). With this method, 
1000 MC simulations have been done respectively for these two sources, with index i = 1 to 
1000 and j = 1 to 1000 correspondingly. Uncertainties in variables Q, h, D and ws, are 
represented by independent normal distributions with the mean equal to the measured value 
and the standard deviation equal to the standard uncertainty as proposed in (ISO, 2009).  

Considering that the sampling depth zj is uniformly distributed, the lower and upper limits of 
the distribution are defined as 0.25 H and 0.75 H. The basis of this hypothesis is the technical 
arrangement of the sampling tube in Chassieu: the tube is attached to the roof of the 1.6 m 
diameter circular sewer, it is mobile thanks to a rotation axis and its position varies with Q 
and H. This variation is not a confidence interval and is neither controlled but the above range 
is assumed to represent acceptably the existing field conditions (Figure 12). The uncertainties 
in the physical variables allow calculating the pdf (probability density function) of η (Figure 
13c) at each time-step of the rainfall event and consequently, for each Monte Carlo simulation 
i, a concentration profile Ci is established (Figure 13e). The CDF of yi for the i-th simulation 
is then calculated by normalizing the concentration profile in such a way that P(0 > 𝑦𝑦𝑐𝑐) = 0 
and P(H > 𝑦𝑦𝑐𝑐) = 1 (Figure 13e to Figure 13f). 

For each simulation (i, j), P(zj > 𝑦𝑦𝑐𝑐)i is different. Consequently, the MC runs lead to a 
complete description of the P(zj > 𝑦𝑦𝑐𝑐)i probabilistic behavior, including mean values and 
confidence intervals (expressed as 5 % and 95 % percentiles). The analysis is undertaken by 
comparing the evolution of E[P(z > 𝑦𝑦𝑐𝑐)] (mean of all simulations), 5 % and 95 % percentiles 
of P(z > 𝑦𝑦𝑐𝑐) (or P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����)) versus the flow mean velocity Um and/or the water level H. 
Given the fact that, in practice, the minimum possible sampling height is the sampling tube 
diameter (4 cm), water levels H lower than 4 cm were not considered (Um < 0.63 m/s). It is 
assumed as well that TSS values are measured in the centroid of the sampling tube (2 cm from 
the tube borders). 

It is worth to note that sampling campaigns are frequently carried out with commercially 
available autosamplers with sampling tube inner diameters in the range 10-20 mm. In such 
cases, the intake position is more a point along the vertical axis than in the Chassieu case with 
a 4 cm tube. Sampling errors may thus be potentially more significant. 

Time series method (TSM) 

If online TSS time series are available, a second method is proposed for comparison with the 
above one. The general idea is to describe the variability of TSS concentrations for a given Q 
value. Consequently, with the hypothesis previously established, the variability of TSS values 
for a given Q value can be attributed to hydrodynamic conditions through the cross section 
(concentration gradients, turbulence, sampling position variability). Thus, assuming the 
presence of concentration vertical gradients or concentration profiles (this hypothesis could 
not be properly checked in Chassieu as simultaneous TSS samplings at various points along 
the vertical axis were not available), the variability of TSS values for a given Q value might be 
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explained by (i) the variation of the sampling tube position, (ii) the concentration vertical 
profile and (iii) uncertainties of TSS concentrations.  

Given that the number of TSS values related to a specific Q value becomes lower as Q is more 
atypical in the data set, TSS values are grouped by Q classes (or Rouse number η, which 
depends on Q according to Eq 5). The classes are defined by setting the same (or nearly the 
same) number of TSS measurements within each η class. This data arrangement is also made 
with the purpose of having a better distribution and similar representativeness of the results 
for all classes. For each η class, a TSSi value is randomly selected by using a uniform 
distribution. The number of times TSSi is lower than 𝑇𝑇𝑆𝑆𝑆𝑆����� is counted and divided by the total 
number of simulations (i = 1 : 10000). This calculation gives an estimation of P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) 
for a given η class. The purpose of sampling multiple TSS values in a given η class with a 
uniform distribution is to be consistent with the hypotheses established in SM. In SM, the 
samples are assumed to be collected according to a uniform distribution along the vertical 
cross section (from 0.25 H to 0.75 H). This assumption about the uniform-sampling is 
independent from the field data distribution of the TSS values along the vertical axis for a 
given Q value. For SM, the shape of the TSS vertical distribution is based on the shape of the 
dimensionless vertical profile (Figure 13e, f). For TSM, the shape of the distribution is found 
by grouping the TSS data in η classes. The pdf of the TSS values due to the vertical variability 
given by the two approaches (SM and TSM) shows to be consistent under a visual inspection 
(similar to an exponential distribution, as in Figure 13f). The η values (in a η class) are also 
expressed versus velocity Um and water depth H for comparative purposes with SM. In 
addition, uncertainties in TSS measurements will result in additional uncertainty in P(TSS < 
𝑇𝑇𝑆𝑆𝑆𝑆�����). To take this into account, MC simulations with j = 1 : 1000 runs are carried out to 
propagate TSS uncertainties into P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����). Therefore, the curve P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) as a 
function of Um (or H) could be estimated for each simulation j, leading to calculate the mean 
simulation E[P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����)] of these curves with its percentiles 5 % and 95 %.  

It is worth mentioning that in TSM the relation between TSS variability, sediment profile and 
flow rate is assumed to be independent of the rainfall event, as the complete TSS rainfall-
weather time series is grouped by η classes (Q values). However, the relationship between 
TSS variability and flow rate is rather dependent on each particular rainfall event (due to TSS 
availability and variability on catchment surfaces, rainfall intensities and surface runoff rates, 
etc.): this inter-event variability has been neglected in our hypotheses. 
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Figure 13. Diagram of SM for a Monte Carlo i, j simulation. 
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Uncertainties due to underestimations 

P(z > 𝑦𝑦𝑐𝑐) (or P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����)) gives the probability of sampling a TSS value lower than the 
mean concentration (underestimation). Converting this probability value into a direct 
uncertainty in the TSS measurement is relevant for practical purposes. Therefore, a bias factor 
K can be proposed to assess this uncertainty source in TSS measurements (Eq 6).  

𝑇𝑇𝑆𝑆𝑆𝑆����� = 𝐾𝐾 × 𝑇𝑇𝑆𝑆𝑆𝑆𝑠𝑠𝑟𝑟𝑎𝑎𝑠𝑠𝑡𝑡𝑟𝑟𝑟𝑟𝑚𝑚 

 

 
Eq 6 

 

where K might be computed as Ksm for SM and Ktsm for TSM (Eq 7).  

      𝐾𝐾𝑠𝑠𝑠𝑠 =
𝐸𝐸[𝑦𝑦𝑐𝑐]

𝑚𝑚𝑅𝑅𝑑𝑑[𝑦𝑦𝑐𝑐]      𝑅𝑅𝑚𝑚𝑑𝑑     𝐾𝐾𝑡𝑡𝑠𝑠𝑠𝑠 =
𝐸𝐸[𝑇𝑇𝑆𝑆𝑆𝑆]

𝑚𝑚𝑅𝑅𝑑𝑑[𝑇𝑇𝑆𝑆𝑆𝑆] ∝ 𝐾𝐾𝑠𝑠𝑠𝑠    

 

 
 
Eq 7 

 

If z is equal to 𝑚𝑚𝑅𝑅𝑑𝑑[𝑦𝑦𝑐𝑐] then Ksm is equal to one. In case of TSM, Ktsm = 1 for E[TSS]= 
med[𝑇𝑇𝑆𝑆𝑆𝑆�����] (no asymmetry in the CFD of TSS). The K factors obtained by SM and TSM are 
calculated and compared, aiming to estimate an order of magnitude of the bias in TSS 
concentrations (under- or over-estimation, if K is respectively < 1 or > 1). The main 
hypothesis is that the absolute difference between 𝐸𝐸[𝑦𝑦𝑐𝑐] and 𝑚𝑚𝑅𝑅𝑑𝑑[𝑦𝑦𝑐𝑐] is proportional to the 
absolute difference between 𝐸𝐸[𝑇𝑇𝑆𝑆𝑆𝑆] and 𝑚𝑚𝑅𝑅𝑑𝑑[𝑇𝑇𝑆𝑆𝑆𝑆] obtained with real TSS measurements 
(TSM). This assumption with SM allows the comparison both approaches to describe the 
variability of the TSS under- or over-estimation as a function of Um or H. 

3.3 RESULTS AND DISCUSSION 

Both methods are applied to 89 rainfall events monitored in 2007 in Chassieu. An example is 
shown in Figure 14 for SM with a value of Q = 0.023 m3/s (corresponding to Um = 1 m/s). In 
this case, E[z] = 0.5 H = 2.3 cm and P(2.3 cm > 𝑦𝑦𝑐𝑐) = 0.88 (Figure 14). The variability of the 
curve (represented by its thickness) due to uncertainties in the Rouse number is negligible for 
this example. Therefore the probability distribution of the point where the mean concentration 
is located is constant, once uncertainties in physical variables are considered. The graph 
shows that med[𝑦𝑦𝑐𝑐] = 0.05 H = 0. 3 cm, and thus P(0. 3 cm > 𝑦𝑦𝑐𝑐) = 0.5 (best theoretical 
measurement scenario in agreement with the SM hypotheses). The mean value E[𝑦𝑦𝑐𝑐] is 
different from the median, which is coherent with the assumption of asymmetry of the CFD. 
Therefore, z = E[𝑦𝑦𝑐𝑐] is not the best sampling point as E[𝑦𝑦𝑐𝑐] = 0.16 H = 0.7 cm and P(0.7 cm 
> 𝑦𝑦𝑐𝑐) = 0.68. This means that there is a greater probability of obtaining lower TSS values than 
at 0.05 H (the med[𝑦𝑦𝑐𝑐] location) where P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) = 0.5 (same probability of under- or 
over- estimation). 
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Figure 14. SM example of the CDF of 𝑦𝑦𝑐𝑐, including med[𝑦𝑦𝑐𝑐], E[𝑦𝑦𝑐𝑐] and E[z] for illustrative purposes (Q = 
0.023 m3/s). 

For all rainfall events, P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) (or P(z > 𝑦𝑦𝑐𝑐)) is constant for the analyzed Um values 
with SM (Figure 15a). The curve of the vertical concentration profile is expected to be more 
pronounced as Um values are lower (Eq 3). This fact is considered significant when H < 4 cm 
(sampling tube height), in which the P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) estimations become higher. However, 
these results are not included here as sampling at depths lower than 4 cm is not feasible from 
a practical point of view (diameter of the sampling tube equal to 4 cm in our case). E[P(TSS < 
𝑇𝑇𝑆𝑆𝑆𝑆�����)] is 0.88 for all velocities Um (Figure 15a), with 5 % and 95 % percentiles of E[P(TSS < 
𝑇𝑇𝑆𝑆𝑆𝑆�����)] equal to 0.80 and 0.95 respectively. 

Rouse number η lower than 0.6 has been found to correspond to fully mixed and 
homogeneous suspension along the vertical axis by experimental studies (see e.g. Raudkivi, 
1998). Therefore, Eq 3 under this range of Rouse numbers can be expected to be closer to a 
fully mixed and homogeneous condition. Although the complete dataset of Chassieu showed 
lower Rouse numbers (η max = 0.04), the obtained CDFs of 𝑦𝑦𝑐𝑐 do not correspond to a fully 
uniform distribution, even for high Um values and 5 % and 95 % percentiles (Figure 15a), as 
P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) is always greater than 0.5: this is mainly due to the use of a dimensionless 
concentration profile which to some extent restricts the possibility to get a completely fully 
mixed profile for the considered Um velocities. 

This fact might lead to conclude that a uniformly-distributed behavior of the concentration for 
high Q values could not be clearly observed with SM. The interquartile range IQR of P(TSS < 
𝑇𝑇𝑆𝑆𝑆𝑆�����) is approximately 0.08, without varying as Um values increase. This IQR is mainly due to 
uncertainties in z (Figure 13d), as the shape of the CDF is not very sensitive to uncertainties 
in η (e.g. Figure 14). The value med[𝑦𝑦𝑐𝑐] is about 5 % of H for all Um values. The magnitude 
of Ksm showed the possible asymmetry between the sampling point and the proposed CDF. 
TSS underestimations are approximately 269 %, as Ksm is 3.69 for all Um values with 
negligible IQRs (from Eq 6 and Figure 15b). This reflects the significant asymmetry of the 
CDF proposed within this approach. 
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a) b) 

  
Figure 15. a) P(z > 𝑦𝑦𝑐𝑐) and b) Ksm obtained by SM versus Um (m/s) and H (cm). 

Regarding the time series method (TSM), the η classes were defined based on the criterion 
exposed in the previous section, leading to the TSS distribution within each η class shown in 
Figure 16. The length of each η class does not vary significantly, having a similar number of 
samples within each class (about 6560 samples). This can be explained by the fact that the 
data amount is higher for lower Q values. As there is an inverse relation between η and Q, the 
definition of classes based on η values tends to distribute the data more uniformly among the 
η classes. In average, P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) is about 0.64 for all Um values, including estimations 
ranging from 0.57 up to 0.73 (Figure 17a). The interquartile range IQR of P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) 
within this approach is 0.02. Likewise to SM, no trend could be detected towards a value of 
P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) = 0.5 as Um increases (towards a fully mixed condition, although η numbers are 
relatively small). The Ktsm factor is about 1.39, showing probable TSS underestimations of 
about 39 % (from Eq 6) (Figure 17b). Although the Ktsm factor is not constant for the range of 
analyzed Um values (from 0.64 m/s to 1.05 m/s), no clear trend could be neither appreciated in 
Ktsm for higher Um and H values. However, the variability of the Ktsm is significant, as this 
factor ranged from 1.21 to 1.82, i.e. underestimations from 21 % up to 82 % (with a negligible 
IQR) (Figure 17b). 
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Figure 16. TSS distribution within each η class for TSM (about 6560 samples per class). 

Globally, the P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) given by TSM (about 0.64) is lower than by SM (about 0.88). 
The ideal measurement scenario recommended by SM is for the case E[z] = med[𝑦𝑦𝑐𝑐] ≈ 
0.05 H, as P(0.05 H > 𝑦𝑦𝑐𝑐) = 0.5. TSM shows a more realistic value of TSS underestimations 
(about 39 %) compared to SM, which shows TSS underestimations of about 269 % under the 
hypothesis that Ksm and Ktsm are comparable. SM can point towards recommendations about 
the best sampling point (at 0.05 H, for the case study). Nevertheless, conclusions drawn from 
this methodology strongly depend on SM hypotheses, especially the shape of the CDF. 

a) b) 

  
Figure 17. a) P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) and b) Ktsm with TSM versus Um (m/s) and H (cm). 

Based on this case study, TSM seems preferable to estimate TSS uncertainties, as P(TSS < 
𝑇𝑇𝑆𝑆𝑆𝑆�����) and Ktsm values are more alike to ranges previously established in the literature (e.g. 
Rossi, 1998). The K factor and the P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) values indicate an important asymmetry in 
the TSS distribution along the cross section (as P(TSS < 𝑇𝑇𝑆𝑆𝑆𝑆�����) > 0.5, even if η < 0.6), a fact 
that is strongly recommended to be considered in TSS uncertainties assessment. 
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3.4 CONCLUSIONS 

The two methods presented in this Chapter 3 aim to assess uncertainties in TSS measurements 
during rainfall events due to the sampling tube intake position along the vertical axis in a 
sewer. The simplified method (SM) is based on flow rate and water depth time series. The 
time series method (TSM) requires additional TSS time series as input data. If online TSS time 
series are available, TSM appears as an applicable strategy for assessing the variability of TSS 
concentration as a function of the flow rate. Otherwise, SM is proposed as an alternative 
approach. However, SM is less site-specific (no local TSS data are used) and provides rougher 
estimations, based on further hypotheses harder to check on site. 

The probability of underestimating the cross section mean TSS concentration is estimated to 
be approximately 0.88 within SM. In case of TSM, the probability is about 0.64 for all 
velocity values. Interquartile ranges are higher for SM (IQR = 0.08) than for TSM (IQR = 
0.02). TSM shows more realistic TSS underestimations (about 39 %) than SM (about 269 %). 
Differences between the two methods are mainly due to simplifications in SM (absence of 
TSS measurements and operation of the sampling system). SM can estimate the measuring 
depth at which the probability of over estimation is equal to the probability of underestimation 
(about 0.05 H, with the proposed hypotheses). SM assumes a significant asymmetry of the 
TSS concentration profile along the vertical axis in the cross section. This is compatible with 
the distribution of TSS measurements found in TSM. 

The proposed methods can be used to calculate indicators of (i) the measurement quality and 
(ii) the representativeness of TSS measurements, expressed as the probability of under- or 
over-estimation of the true cross section mean TSS concentration. This probability may be 
useful for correcting errors in TSS raw data.  
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GENERAL CONCLUSIONS OF PART 1 

Different sampling strategies during rainfall events are simulated and evaluated by means of 
online TSS and flow measurements in four international catchments (Chassieu-France, 
Ecully-France, Berlin-Germany, Graz-Austria). The average relative sampling error and the 
residuals distribution are estimated from EMCs simulated by the studied strategies and 
compared to EMCs obtained by the complete time series from online monitoring of various 
rainfall events. For the studied datasets (Berlin, Chassieu, Graz and Ecully), a sampling 
volume proportional to runoff volume between two samples, with constant sampling intervals, 
strategy (cTpSV), delivers the most representative results in terms of accuracy (Mean Square 
Relative Error MSRE), bias (from residuals analysis) and uncertainties propagation. 
Recommended sampling time intervals are of 5 min for Berlin and Chassieu (resp. 100 and 
185 ha area) and 10 min for Graz and Ecully (resp. 335 and 245 ha area), with average 
sampling errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, 
depending on the sampling interval. From Sobol’s total sensitivity index analyses, it can be 
stated that special attention should be paid to field sampling procedures and laboratory 
analyses (especially for larger sampling intervals), as uncertainties related to sampling 
volumes and TSS concentrations seemed to be highly influential on uncertainties of EMCs. 
Statistical tests indicate that the uncertainties of EMCs obtained from time series are 
significantly lower than the uncertainties of EMCs obtained by sampling strategies (Wilcoxon 
test, p-value < 0.05).    

These results from Chapter 2 led to hypothesize about the potential errors in TSS data, 
specifically in the average EMC, estimated by means of different sampling strategies, 
compared to the average EMC obtained by considering the complete time series and 
uncertainties from online measurements. These findings highlight the influence of temporal 
resolution and uncertainties of TSS data over the EMCs estimations, bringing evidence of 
possible biases in TSS pollutographs (different means of the pollutographs) when data is 
obtained by sampling strategies instead of online measurements. This fact might significantly 
affect the calibration and performance of TSS pollutographs and loads stormwater intra-
events models, depending on the data used as input (monitoring campaigns or online 
measurements). Therefore, data from TSS online monitoring is retained for modelling 
purposes in Part 3 (TSS modelling). Data obtained from monitoring campaigns (sampling 
strategies) could still be used as an input for intra-event TSS models in the absence of online 
measurements, accounting for potential errors or biases in the EMCs of the pollutographs by 
means of modelling strategies such as bias correction factors included in the calibration 
process. 

As the main sources of error in any sampling procedure are not only due to the heterogeneity 
in time of TSS but also due to the sampling technique, uncertainties in online and laboratory 
TSS individual values are also a relevant aspect. The influence of field sampling conditions 
on the uncertainties of TSS measured values is often considered to be represented by the 
analytical uncertainty of the laboratory analysis. However, field sampling conditions might 
have a significant additional contribution to the total uncertainty of the TSS values. With the 
purpose of verifying this hypothesis, Chapter 3 presents two methods that aim to assess 
uncertainties in a TSS measurement at time step t during rainfall events due to a scarcely 
described uncertainty source in the literature: the sampling tube intake position along the 
vertical axis in a sewer. The simplified method (SM) is based on flow rate and water depth 
time series. The time series method (TSM) requires additional TSS time series as input data. If 
online TSS time series are available, TSM appears as an applicable strategy for assessing the 
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variability of TSS concentration as a function of the flow rate. Otherwise, SM is proposed as 
an alternative approach. However, SM is less site-specific (no local TSS data are used) and 
provides rougher estimations, based on further hypotheses harder to check on site. 

The probability of underestimating the cross section mean TSS concentration is estimated to 
be approximately 0.88 within SM. In case of TSM, the probability is about 0.64 for all 
velocity values. Interquartile ranges are higher for SM (IQR = 0.08) than for TSM (IQR = 
0.02). TSM shows more realistic TSS underestimations (about 39 %) than SM (about 269 %). 
Differences between the two methods are mainly due to simplifications in SM (absence of 
TSS measurements and operation of the sampling system). SM can estimate the measuring 
depth at which the probability of over estimation is equal to the probability of underestimation 
(about 0.05 H, with the proposed hypotheses). SM assumes a significant asymmetry of the 
TSS concentration profile along the vertical axis in the cross section. This is compatible with 
the distribution of TSS measurements found in TSM. 

Chapter 3 revealed a power law describing the TSS as a function of flow rate, including 
higher variances of TSS for higher flow rates, by means of analysis for the TSM. This 
information is useful for modelling intra-event TSS load dynamics, giving insights about the 
complexity for representing pollutants loads dynamics. For example, in Chapter 6 it is 
established that expressing TSS as a monotonic function of flow rate is not sufficient to 
appropriately represent TSS values, especially as flow rate is higher. However, one should 
bear in mind that global results and conclusions obtained from approaches in Chapter 2 and 
Chapter 3 assume implicitly that all rainfall events are representative and comparable, i.e. 
results for a given event are generalizable to the others. This inter-event generality is 
questioned and further analyzed in Part 2 by the use of hydrological model-based approaches, 
grouping rainfall events with similar characteristics and discarding unrepresentative events. 
These aspects are applied to TSS modelling in Part 3, jointly with discussions and reflections 
from the present Part 1.   
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PART 2 UNCERTAINTY ASSESSMENT IN A 
CONCEPTUAL HYDROLOGICAL MODEL AND 
RAINFALL DATA  
 

 

 

The flow at the outlet of urban drainage systems can be seen as the result of multiple 
anthropic and non-anthropic complex processes developed within different temporal and 
spatial scales, of which the main driving force is the water that precipitates over the catchment 
(Leonhardt et al., 2014; Kretzschmar et al., 2016). Most rainfall-runoff model structures used 
nowadays in hydrology can be classified as conceptual models (Wagener et al., 2003), which 
are models that offer a suitable balance between computational simplicity and physical 
meaning of their parameters (Wheater et al.,1993; Zhang et al., 2015). Indeed, hydrological 
simulations by these simplified mathematical structures can be a suitable description of the 
rainfall-runoff process in urban catchments for several purposes (e.g. Reed et al., 2004; Coutu 
et al., 2012). The hydrological simulation by conceptual models has been therefore applied 
for prediction of the impact of future change, decision-making processes, improvements of 
hydrological understanding and situations in which data assimilation is not possible (Beven 
and Smith, 2014).  

Therefore, a Conceptual Rainfall-Runoff (CRR) model has been tested with information of 
365 rainfall events from the Chassieu urban catchment (Lyon, France), measured between 
2004 and 2011 (see details in Chapter 1; Métadier, 2011; Sun et al., 2015). The model 
consists of a single reservoir lumped model described by Eq 8, Eq 9 and Eq 10. The effective 
rainfall input Xnet(t) (L/s) is calculated from Xobs(t) (mm/h) by the Horton infiltration model 
(Eq 8 and Eq 9). The infiltration rate at time t, f(t) (mm/h) in Eq 8, is dependent on three 
parameters: initial and final infiltration rates f0 (mm/h) and fc (mm/h), respectively, and the 
decay constant k (min-1) specific to the soil. The S value is the effective area of the catchment, 
i.e. 80 ha (Eq 9).  The single reservoir lumped model is established in Eq 10, for calculating 
the simulated flow Ysim(t) (L/s) as a function of Xnet(t). Three additional parameters are 
included in the linear reservoir: the lag time of the reservoir K1 (min), an additional advective 
delay Td (min) and q (L/s) as an additive term of the output to represent the baseflow (Eq 10). 
The parameters of this single reservoir lumped model are listed in Table 6 (from Sun and 
Bertrand-Krajewski, 2013a). 

 

 

𝑓𝑓(𝑑𝑑) = 𝑓𝑓𝑐𝑐 + (𝑓𝑓𝑐𝑐 − 𝑓𝑓0) ∙ 𝑅𝑅−𝑘𝑘𝑡𝑡 Eq 8 

𝑋𝑋𝑛𝑛𝑟𝑟𝑡𝑡(𝑑𝑑) = (𝑋𝑋𝑜𝑜𝑜𝑜𝑠𝑠(𝑑𝑑)  − 𝑓𝑓) ∙ 𝑆𝑆 ∙ 10000/3600 Eq 9 

𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = 𝑅𝑅−
∆𝑡𝑡
𝐾𝐾1 ∙ 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑 − ∆𝑑𝑑) +  �1 − 𝑅𝑅−

∆𝑡𝑡
𝐾𝐾1� 𝑋𝑋𝑛𝑛𝑟𝑟𝑡𝑡(𝑑𝑑 − 𝑇𝑇𝑚𝑚) + 𝑞𝑞 Eq 10 
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Table 6. List of parameters for the model calibration  

Parameter (θ) Unity Values [min, max] 

fc mm/h [0, 5] 

f0 mm/h [0, 120] 

k min-1 [0, 5] 

Td min [0, 60] 

K1 min [1, 120] 

q L/s [0, 20] 

 

The selection of this particular model structure is based in its performing capabilities in 
relation to its simplicity, as suggested from previous studies using the same dataset (Sun and 
Bertrand-Krajewski, 2013b). However, the performance of such simplified models depends 
strongly on parameters and their uncertainties being well identified from previous analyses or 
experiments (Thyer et al., 2009).  

Indeed, determining a strategy for assessing the uncertainty of parameters given by data 
errors, including as well the variability related to the selected calibration period or rainfall 
events remains as a key aspect (Thyer et al., 2009; Ebtehaj et al. 2010; Guerrero et al., 2013; 
Gharari et al., 2013; Ye et al., 2014). Chapter 4 compares two single-event and multiple-event 
based strategies for parameters estimation to a novel strategy for the above CRR hydrological 
model. The proposed strategy consists in grouping the local parameters estimations obtained 
from local calibrations of rainfall events, according to connectivity criterion. This 
connectivity allows classifying the events in groups of hydrological families, leading to 
express global uncertainties of the parameters as conditional probability functions. Local 
parameter uncertainties and optimal values are estimated by means of a Bayesian approach 
and the DREAM algorithm (Vrugt et al., 2016). The benefits of simulating rainfall events by 
using parameter conditional probability functions are discussed, demonstrating the advantages 
of implementing this parameter assessment strategy in terms of different performance metrics 
(e.g. Dotto et al., 2013; Ye et al., 2014). The local parameters transferability is compared to 
different statistical depth definitions, as measures of multivariate centrality into the 
parameters probability density function (Bardossy and Singh, 2008). The proposed approach 
is adopted as well for the water quality modelling in Part 3.  

It is worth to mention that there are cases in which the local optimal parameters obtained for a 
certain rainfall event are not able to reproduce other calibration events, or neither the rainfall 
event itself (non-reproducible events from the analysis presented in Chapter 4). Indeed, one of 
the facts to which these discrepancies may be attributed is the errors in the input rainfall 
(Leonhardt et al., 2014; Kretzschmar et al., 2016; Del Giudice et al., 2016). Rainfall errors 
may have various origins, one significant case being the use of local rain gauge registrations 
as direct inputs, without considering spatio-temporal variability of the rainfall (Kavetski et al., 
2006a; Schellart et al., 2012; Kretzschmar et al., 2016). Aimed to correct rainfall 
measurements and assess their uncertainties, a rainfall error model-based approach is studied 
in Chapter 5. Hence, four error rainfall models are proposed by mixing a multiplicative error 
model, a reverse modelling approach and a constant/variable time-window methodology. The 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



45 
 

capabilities of the four rainfall error models to identify errors in rainfall data are tested by 
comparing the errors in rainfall identified by the models to previously introduced error known 
structures in the original rainfall data.  

In Chapter 5 rainfall measurements are corrected in events that are non-reproducible from the 
analysis presented in Chapter 4, by means of the selected rainfall error model. The adopted 
values of the parameters to be used for calculating the corrected rainfall time series in non-
reproducible events are obtained from the conditional probability classification analysis 
presented in Chapter 4. Afterwards, general conclusions about Part 2 are given.   
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CHAPTER 4. STRATEGY FOR ASSESSING PARAMETERS OF A 
RAINFALL-RUNOFF MODEL BY CONNECTIVITY REPRESENTATIONS 
AND CONDITIONAL PROBABILITY FUNCTIONS  

 

Extended version of: 

Sandoval S., Bertrand-Krajewski J.-L. (2017). Strategy for assessing parameters of a rainfall-
runoff model by connectivity representations and conditional probability functions. 
Proceedings of the 14th International Conference on Urban Drainage, Prague, Czech 
Republic, 10-15 September, 3 p. 

 

4.1 INTRODUCTION 
 

The problem of parameters assessment consists in identifying and integrating the related 
uncertainty sources through the modelling chain (Sikorska et al., 2014). Probably the main 
types of uncertainty sources that influences model parameter estimations in CRR modelling 
are (adapted from Guerrero et al., 2013): errors in data (input/output) (e.g. Renard et al., 
2011; Del Giudice et al. 2016), model structure (e.g. Clark et al., 2008; Marshall et al., 2007) 
and selected data for calibration (e.g. Ebtehaj et al., 2010; Gharari et al., 2013) with their 
interactions (e.g. Renard et al. 2010; Sun and Bertrand-Krajewski, 2013a).   

The BATEA Bayesian approach (see Kavetski et al., 2006a; 2006b; Kuczera et al., 2006) is a 
commonly accepted framework to conceptualize the propagation of errors given by data 
(input/output) and model structure into parameters estimation by means of a solid conceptual 
basis (Yang et al., 2008). However, it can also be recognized from this approach that the low 
identifiability and the ill-posed nature of the calibration problem when errors in data 
(input/output) and model structure are explicitly accounted in the inference scheme and vague 
prior information about both sources is included (Kavetski et al., 2006a; Renard et al. 2010). 
Multiple authors used this conceptual framework to focus on specific uncertainty sources over 
parameters estimation, given its flexibility. For example, (i) input uncertainties: Thyer et al., 
2009; McMillan et al., 2011; Sun and Bertrand-Krajewski, 2013a; Del Giudice et al. 2016 and 
(ii) model structure uncertainties: e.g. Krysztofowicz, 2002; Bayesian Model Averaging 
(BMA) approaches (e.g. Duan et al., 2007; Marshall et al., 2007). Further contributions in the 
literature towards the assessment of uncertainty sources have been also proposed by 
alternative formal statistical and non-formal techniques (e.g. Abbaspour et al., 2004; 
Montanari and Brath, 2004; Montanari and Grossi, 2008; Kretzschmar et al., 2016; Fuentes-
Andino et al., 2017). However, a global consensus on how these error sources interact and a 
calibration methodology that allows to account them separately is still far from being reached, 
and thus, their interpretation is merely hypothetical (Sikorska et al., 2014). 

One simplified possibility for applying BATEA is to account for rainfall and model structure 
uncertainty sources into parameters uncertainties without further separation (Renard et al. 
2010; Dotto et al., 2011), an approach to be called from now on Bayesian Merged 
Uncertainties (BMU). The BMU tends to deliver more biased parameter estimations as errors 
in data (especially in input rainfall for hydrology, e.g. Del Giudice et al. 2016) and model 
structure are higher (e.g. Thyer et al., 2009). For those cases, model residuals are less alike to 
hold the hypothesis of Identically Independent Distributed (i.i.d.), condition on which the 
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mathematical strength of the method relies (Vrugt et al., 2016). As a potential solution to this 
inconvenient, advanced likelihood functions have been introduced, aimed to mimic complex 
nontraditional error residuals distributions (Schoups and Vrugt, 2010; Evin et al., 2014; 
Scharnagl et al., 2015). The immediate difficulty when using this statistically consistent 
approach is once again identifiability and ill-posed situations, as further parameters with 
inexistent prior information should be added into the inference scheme (adapted from Vrugt et 
al., 2016). Moreover, from an epistemological perspective, the inclusion of a likelihood 
function with additional parameters can be seen as coupling a black-box extension (in the 
sense of missing a physical interpretation) to the initial hydrological model structure, whose 
repeatability and generality are therefore questionable (adapted from Nearing et al., 2016). 
However, BMU calibrations have shown consistent results from a practical point of view 
under multiple simplified contexts, successfully avoiding obstacles related to the 
computational demand of the Bayesian inference by using the DREAM algorithm (see 
examples Vrugt et al., 2016). Stressing its simplicity, the BMU may be sounder to explore the 
inter-event variability of parameters by undertaking local event-by-event calibrations (e.g. 
Thyer et al., 2009; Singh and Bardossy, 2012; Sun and Bertrand-Krajewski, 2013a). Indeed, 
multiple further studies have revealed the variability of the parameter estimations given by the 
use of different time periods/rainfall events on calibration under different contexts (Srikanthan 
et al., 2009; Ebtehaj et al., 2010; Brigode et al., 2013; Gharari et al., 2013; Sikorska et al., 
2014; Thirel et al., 2015; Bisselink et al., 2016).  

Based on the idea of repeatability (including more than 255 calibration events for the study 
case) and the local event-dependent nature of rainfall errors, this event-by-event calibration 
approach brings in principle the possibility of dealing with rainfall uncertainties under a 
systematic inspection. Local parameter estimations in which the rainfall data is able to 
acceptably explain the flow rate can be then considered as representative (adapted from Ye et 
al., 2014; Ajmal et al., 2015; Fenicia et al., 2016) (strategy to be called single-event 
calibration SE). However, the SE strategy might fail for flexible but erroneous model 
structures that, by means of local calibrations, can mimic the flow rate from severely 
corrupted rainfall data. This shortcoming can be tackled from the idea that identifying the best 
parameter set relies also on the selection of time periods with similar hydrological 
characteristics (Seibet, 2003). Local parameter estimations can be then grouped based on the 
transferability concept, defined as the predictive capacity of parameters obtained from 
different rainfall events (Bardossy and Singh, 2008; Singh et al., 2016).  

Therefore, the global nature of model structure uncertainty and the inter-event parametric 
variability is addressed based on these concepts and the results of SE strategy, proposing a 
novel parameter estimation strategy (to be called single-event conditional, SEConditional). 
The main idea is to divide parameters marginal probability function (formed by all the sets 
local parameter estimations in the SE strategy) into conditional probability functions (formed 
by groups of sets of local parameters estimations). For this purpose, an adjacency matrix that 
reflects how local parameter estimations are interconnected to the other calibration rainfall 
events is constructed under a transferability perspective (analogue to a leave-all-out cross 
validation scheme). This adjacency matrix can be represented as a graph of “connected” 
rainfall events. The graph is analyzed by clustering techniques to construct then the 
conditional probability functions (see clusters applications over transferability indicators e.g. 
Singh et al., 2016).  

For many applications in prediction and for calculating various performance indicators (e.g. 
Nash-Sutcliffe criterion – NS -), one single set of parameters as an “optimal” estimator, is 
desired (Bardossy and Singh 2008; Bennett et al., 2013; Leonhardt et al., 2014). However, a 
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unique “best” set of parameters from the global probability functions (marginal: SE or 
conditionals: SEConditional) cannot be directly selected by comparing the likelihood values 
obtained from local BMU calibrations in different rainfall events, given the relative nature of 
likelihood estimations (adapted from Vrugt et al., 2016). Therefore, the geometrical 
consistency of the marginal (SE) and conditional (SEConditional) probability functions is 
evaluated by seeking for a reference frame that appropriately describes the increasing 
relationship between the depth of the sets of parameters inside the probability functions and 
their transferability (Bardossy and Singh, 2008; Chebana et al., 2010; Guerrero et al., 2013). 
If a geometrically consistent frame of reference is found (measure of deepness), the 
evaluation of the “deepest” parameter is direct, depending on the adopted definition of 
statistical depth (see details Pokotylo et al., 2016). Six measures of statistical depth are 
explored. 

Therefore, Chapter 4 presents a comparative study between three global parameter assessment 
strategies applied to the studied CRR model and study case: (i) mean of the set of local 
optimal parameters obtained from all acceptable event-by-event calibrations (SE), (ii) 
traditional multiple-events simultaneous calibration (strategy to be called ME) (e.g. Tan et al., 
2008; Mancipe-Munoz et al., 2014, among many others) and (iii) the proposed strategy based 
on the results of local single-event calibrations (SEConditional). The estimation of rainfall-
runoff model parameters and of their uncertainties with SEConditional aims to diminish the 
uncertainty bounds of runoff predictions (precision), maximize the number of measurements 
inside the uncertainty bounds (reliability), keeping or even improving the mean prediction for 
the verification events (accuracy). The performance of the model is evaluated for 110 
verification rainfall events.   
 

4.2 METHODOLOGY  
 

 

θ is the set of parameters of the hydrological model (fc, f0, k, Td, K1, q) and p(θ/Y) their 
probability density function (pdf), given a series of flow rate observations Yobs. The BMU, 
widely used in hydrological modelling (Vrugt et al., 2016), allows to calculate p(θ/Y), named 
posterior distribution, over the basis of a likelihood function and a prior knowledge of the 
distribution of parameters p(θ), which is expressed by   Eq 11.  
 

𝑝𝑝(θ 𝑌𝑌⁄ ) = 𝐸𝐸�
1

�2𝜋𝜋𝜎𝜎�𝑡𝑡2
exp [−

1
2

(
𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑, θ) − 𝑌𝑌𝑜𝑜𝑜𝑜𝑠𝑠 (𝑑𝑑)

𝜎𝜎�𝑡𝑡2
)2]

𝑛𝑛

𝑡𝑡=1

∙ 𝑃𝑃(θ)    Eq 11 

 

where n is the number of flow-rate data Yobs, Ysim(t, θ) is the simulated flow rate by the model 
at a given time step t from the observed rainfall Xobs and a set of parameters θ, p(θ) is a 
uniform probability distribution for each parameter (informative-less), C is a normalization 
coefficient and 𝜎𝜎�𝑡𝑡2 is the residual variance, considered for this application to be equal to the 
squared value of flow rate Yobs(t) standard uncertainty. The DREAM algorithm is used for 
determining p(θ/Y) as a solution to Eq 11 (Vrugt et al., 2016). The set of parameters that 
represents the optimal parameters values (for this case the set of values which maximizes the 
likelihood) among all probable values p(θ/Y) is called θopt. The p(θ/Y) function is estimated 
from three different approaches, by the use of the first 255 events for calibration (the last 110 
remaining events are used for verification). A 70 % / 30 % ratio for calibration / verification is 
established from recommendations given by comparable studies (Mourad et al., 2005). The 
verification events are used to evaluate the performance in prediction by the parameters 
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estimated from each of the three calibration strategies. For each approach, an identification 
criterion is proposed in order to discard non-reproducible events by the CRR model from the 
calibration phase.  

- Single-event strategy (SE): rainfall events are calibrated with the Bayesian method (Eq 11) 
and the DREAM algorithm, by using the data Xobs i and Yobs i for the calibration rainfall event i. 
This process leads to estimate an optimal set of parameters θopt i and a p(θ/Y)i function for 
each rainfall event i (i = 1 : 255). The calibration rainfall events i for which θopt i has a NS < 
0.75 are considered as non-reproducible by the hydrological model and the θopt i estimation is 
discarded. The global function p(θ/Y) is calculated as the marginal probability of all the 
functions p(θ/Y)j and the global set of optimal parameters θopt as the “deepest” point inside 
p(θ/Y) (see Bardossy and Singh, 2008), with the non-discarded events j.  

- Multi-event strategy (ME): the calibration is done globally with the ensemble of all 
calibration rainfall events, with Xobs and Yobs as two vectors (Eq 11) and with the DREAM 
algorithm. This approach leads to estimate directly a global set of optimal parameters θopt 
(based on the maximum likelihood, Vrugt et al., 2016) and a global function p(θ/Y). The 
formulation of a criterion for identifying non-reproducible rainfall events by this approach is 
less straightforward. It is worth to point out that an alternative parameter estimation strategy 
could be proposed by assigning a different set of parameters to each event and undertaking the 
calibration simultaneously. However, this will massively increase the dimension of the 
calibration problem (into a total of 1530 parameters for the CRR and the calibration dataset), 
making it expensive in computational resources. This limitation is especially unfeasible for 
Monte Carlo parameters inference schemes such as the Bayesian method with the DREAM 
algorithm, due to the number of iterations to be undertaken (of the order of 1e10 in this case). 
A plus to this alternative approach is that the inter-event correlation for each parameter of θ 
could be assessed directly, opening research directions for inter-event stochastic modelling of 
parameters. 

- Single-event strategy conditional (SEConditional): the 255 sets of optimal parameters, θopt i 
obtained by the SE approach, are classified into n types, with the aim of re-grouping the 
events with similar hydrological characteristics. The underlying hypothesis is that two rainfall 
events i and j (i = 1 : 255, j = 1 : 255 and i  ≠  j) are connected if the optimal set of parameters 
θopt i obtained for the event i is able to reproduce as well the rainfall event j and if θopt j is also 
able to reproduce the rainfall event i, in both cases with a Nash-Sutcliffe criterion NS > 0.75 
(following a leave-all-out cross validation scheme). A symmetric adjacency matrix (AM) is 
constructed with AM(i, j) = 1 and AM(j, i) = 1 if the calibration rainfall events i and j are 
connected and AM(i, j) = 0 otherwise. The diagonal of AM (i = j) is filled with zeros by 
convention. The proposed AM represents also a graph, in the sense that events (or optimal 
local sets of parameters) are nodes and the potential connections between events i and j (or 
optimal local sets of parameters θopt i and θopt j) are edges, when AM(i, j) = 1. The graph 
represented by AM is undirected (symmetric AM), as assigning an orientation to the 
connections or edges lacks of interpretability. When the connectivity of the graph is verified, 
two different scenarios can be obtained: (i) the graph is completely connected (all nodes have 
at least one connection) (Figure 18a), (ii) the graph is not entirely connected and is divided in 
sub-graphs (Figure 18b). 
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a) b) 

  

Figure 18. Topologic representation of a) connected graph (29 nodes) and b) disconnected graph into 2 sub-
graphs (18 and 11 nodes resp.). 

All events that belong to sub-graphs with less than 10 nodes are labeled as non-reproducible 
events and are discarded from the analysis, including completely disconnected events (i.e. 
sub-graphs with one node). This, given that a minimum of 10 nodes (sets of parameters) was 
required for calculating the deepness of all nodes inside a sub-graph, when considering 
definitions of statistical depth such as the Potential depth (Aizerman et al., 1970). For the 
scenario of Figure 18b the division into n = 2 sub-graphs (including a number of nodes equal 
or greater than 10) delivers the number of clusters (hydrological groups) to be used directly (2 
clusters). For the scenario described in Figure 18a, the number of n clusters in the graph can 
be defined by testing with a supervised or unsupervised cluster algorithm (predefined or not 
predefined number of clusters). As no direct grouping by sub-graphs is found for the case 
study (situation of example in Figure 18a), a supervised clustering technique with n = 2 
groups is tested with the total graph for identifying groups of connected rainfall events, with 
the “spinglass.community” function, spins = 2 (supervised cluster for two groups) (see 
Reichardt and Bornholdt, 2006) of the package “igraph” (Csardi and Nepusz, 2006), 
implemented in R (R Development Core Team, 2017). The purpose of this algorithm is 
essentially to “maximize” the connectivity density inside each cluster (Reichardt and 
Bornholdt, 2006). The number of n = 2 hydrological groups, labelled as T1 and T2, used to 
clusters the graph and classify the rainfall events can be supported on: (i) a suitable separation 
shown by a further Principal Component Analyses (PCA) (Pearson, 1901) by using two 
groups, (ii) parameters in p(θ/Y) showing bimodal behaviors in certain of their marginal 
univariate distributions (especially parameters Td and K1) that could be explained from the 
separation given by p(θ/Y, T1) and p(θ/Y, T2), (iii) satisfactory results in the verification stage 
from using p(θ/Y, T1) and p(θ/Y, T2) as parameter estimations rather than with the marginal 
distribution p(θ/Y), (iv)less performant results were obtained by further tests with n > 2 
conditional probability functions in prediction. Therefore, the selection of n = 2 conditional 
probability functions (T1 and T2) to explain the variability of the marginal distribution p(θ/Y) 
is considered as appropriate for the case study. These criteria can be useful for defining the 
number of clusters (hydrological groups), for further case studies with different datasets and 
models.  

Therefore, the function p(θ/Y) is calculated as in the SE approach (but discarding non-
connected sub-graphs instead of local estimations with NS < 0.75), and then divided into two 
conditional probability functions p(θ/Y, T1) and p(θ/Y, T2), by labeling each local p(θ/Y)i as a 
type T1 and T2 from the cluster of graph analysis. θopt is defined as well by two values θoptT1 
and θoptT2, calculated as the “deepest” point inside p(θ/Y, T1) and p(θ/Y, T2) resp. (see 
Bardossy and Singh, 2008). The classification of a verification rainfall event in a hydrological 
group (type T1 or T2), for deciding if it is more pertinent to use p(θ/Y, T1), θoptT1 or p(θ/Y, 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



51 
 

T2), θoptT2 for verification, is done based on the mean and maximum rainfall intensity. This 
criteria for deciding which rainfall characteristic to use for classifying a given verification 
rainfall event into group TI or T2 was obtained by applying a Classification Decision Tree 
(Breiman et al., 1984) and a PCA (Pearson, 1901), including four various potential rainfall 
characteristics as explicative variables (e.g. mean, max. rainfall intensity, ADWP and the 
beginning date of the event) without improving the performance of the Classification 
Decision Tree and the visual separation of the groups by PCA. In case no satisfactory 
separations (from the cluster technique) or explanations to the separations (from Classification 
Decision Tree, PCA or another data exploratory analysis) can be found, one can work with n 
= 1 and the estimation of p(θ/Y) will be undertaken directly as the marginal of all connected 
events. This will lead to obtain a very similar estimation as in SE Strategy, especially if the 
model structure is robust enough (in a transferability sense, see Bardossy and Singh, 2008) 
and parameters uncertainties are mostly due to local rainfall errors.   

With the purpose of verifying the geometrical consistency of p(θ/Y) (SE strategy),  p(θ/Y, T1) 
and p(θ/Y, T2) (SEConditional strategy), and therefore defining the “deepest” set of 
parameters for each function under an appropriate reference frame, six measures of statistical 
depth are explored, from the “ddalpha” package in R (R Development Core Team, 2017) (see 
details Pokotylo et al., 2016): Tukey depth (Tukey, 1974), Mahalanobis depth (Mahalanobis, 
1936), Projection Depth (Donoho, 1982), Spatial depth (Chaudhuri, 1996), Zonoid depth 
(Dyckerhoff et al., 1996) and Potential depth (Aizerman et al., 1970). Given that p(θ/Y) in the 
ME strategy is estimated from a global multi-event implementation of the likelihood function, 
the “deepest” set of parameters can be directly identified as the parameter set with the 
maximum likelihood. 

The benefits of the proposed strategy (SEConditional), regarding traditional parameter 
assessment strategies (SE, ME), are highlighted by comparing observed and simulated flow 
rates in 110 verification rainfall events. Three performance metrics are used for this purpose 
(comparable to e.g. Dotto et al., 2013; Ye et al., 2014; Del Giudice et al., 2016): (i) the NS 
criterion for accuracy (Eq 12); (ii) the ARIL criterion for precision (Vezzaro and Mikkelsen, 
2012) (Eq 13); (iii) the modified POC criterion for reliability (from e.g. Ye et al., 2014) (Eq 
14 and Eq 15).  
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Eq 12 
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Eq 13 
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Eq 15 
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where n is the number of flow rate data Yobs and 𝑌𝑌�𝑜𝑜𝑜𝑜𝑠𝑠 its mean value. Ysim(t, θ) is the simulated 
flow rate by the model at time step t from the observed rainfall Xobs and global optimal 
parameters θopt. 𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑡𝑡𝑜𝑜,𝑡𝑡 and 𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑛𝑛𝑟𝑟,𝑡𝑡 are the upper and lower limit for a confidence 
bound of 95 % at a time step t, obtained from p(θ/Y) or p(θ/Y, T1) and p(θ/Y, T2) depending 
on the case. The modified POC proposed for this work is based on the traditional POC 
(percentage of coverage) (see e.g. Ye et al., 2014) but also considering flow rate Yobs(t) 
standard uncertainty 𝜎𝜎�𝑡𝑡 (Eq 14 and Eq 15). The idea is that the modified POC includes as 
“reasonably explicable by the model” flow rate data that, with their measurement uncertainty, 
overlaps the parametric uncertainty bounds (similar to approaches such as Harmel et al., 
2007). This modified POC is a more flexible (in the sense that modified POC will deliver 
higher values than traditional POC) but realistic description of reliability than POC, as 
uncertainties in measurements are taken into account. 

The total simulated output uncertainty given by the residuals of the model from a set of 
optimal parameters is not completely captured by parametric uncertainties. This phenomenon 
can be attributed to remnant errors in calibration that are not accounted for by the input and 
structural error assumptions (Thyer et al., 2009). Therefore, the total simulation output 
uncertainty is estimated from propagating the parametric uncertainties given by p(θ/Y) (SE 
and ME strategy) and p(θ/Y, T1) or p(θ/Y, T2) (SEConditional strategy) as the ensenmble of 
multiple realizations of the model residuals. For comparative purposes, the total simulation 
output uncertainty is estimated by following the method proposed by Dotto et al. (2011). The 
residuals obtained from the rainfall events used in calibration (making the distinction between 
T1 and T2 for SEConditional) are binned as a function of modelled flow rates. This permits to 
construct probability distributions of residuals as a function of the modelled flow rate values. 
For a verification event, as the modelled flow rate value at t is a function of a set of 
parameters, a different probability distribution of residuals is obtained by considering each 
realization of p(θ/Y) (SE and ME strategy) or p(θ/Y, T1) or p(θ/Y, T2) (SEConditional 
strategy). The total uncertainty of simulated flow rate at t will be then given by the ensemble 
of all the probability distributions of residuals obtained at t, as a result of propagating the 
parametric uncertainties (see further details Dotto et al., 2011). Therefore, two 
complementary indicators, to be called Total ARIL and Total POC (modified), are calculated 
for the estimated total output uncertainty simulations in the 110 verification events. 
 

4.3 RESULTS AND DISCUSSION 
 
 
The results are divided into analyses of the calibration data (255 events), containing the 
assessment of the parameters by the 3 estimation strategies, jointly with the evaluation of the 
relation transferability - statistical depth of sets of parameters. Afterwards, the predictive 
capacity of the parameters estimations is evaluated with the verification data (110 events). 
The verification/calibration events are selected chronologically, an initial period for 
calibration and the subsequent period for verification. The influence of the selection of the 
calibration/verification data is also discussed. 
 
 

Calibration: application of the parameters estimation strategies 
 

The correlation plot for parameter estimations θ (fc, f0, k, Td, K1, q) with the SE and ME 
strategies by using the DREAM algorithm are presented in Figure 19. It can be seen how 
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considering uncertainties in the estimation of local set of parameters p(θ/Y)i brings up a higher 
dispersion in the p(θ/Y) global estimation rather than the sets of local optimal set of 
parameters θopt i (Figure 19a,b). 28 % of the rainfall events are identified as non-reproducible 
and therefore discarded for the SE Strategy, with NS <0.75 for the local estimation of set θopt i 
(red estimations of θopt i in Figure 19a and of p(θ/Y)i  in Figure 19b). As expected, the 
estimations of p(θ/Y) are less dispersed for ME than SE, given that more data are included in 
the likelihood function (Eq 11). 

a) 

 
b) 
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c) 

 
d) 

 
 

Figure 19. Correlation plot of parameters estimations (fc, f0, k, Td, K1, q) for 255 calibration events assessed by a) 
SE strategy local optimal set of parameters θopt i (grey) with discarded events NS < 0.75 (red); b) SE Strategy 
global function p(θ/Y) (grey) with discarded events (red); c) ME Strategy global optimal set of parameters θopt 
and d) ME Strategy global function p(θ/Y). 

Further analysis led in evidence that the propagation of p(θ/Y) over simulations for 
verification rainfall events are scarcely able to explain the observed flow rate values in the 
ME strategy, due to the narrowness of the obtained p(θ/Y) distribution (Figure 19d). This can 
be explained as in Bayesian (and frequentist) inferences, the parametric uncertainty declines 
asymptotically as more data is included in the calibration (Renard et al., 2010). The problem 
resides in “which” data should we include in the inference problem (selecting as with SE and 
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SEConditional Strategies). Correlations are an undesirable but common property when 
parameters are estimated. The infiltration parameters fc, f0 and k exhibited a global strong 
correlation in the ME strategy (Figure 19d). However, when local calibrations were done with 
SE, these parameters were identifiable for certain events and further formulations for 
modelling the infiltration process were less satisfactory. For this reason and with illustrative 
purposes of the potential of the application of the proposed methods to models with correlated 
parameters (as e.g. Guerrero et al., 2013), the model structure is kept (as in e.g. Sun and 
Bertrand-Krajeswki, 2013a) without further reformulations.    

The total 255 rainfall events are classified into T1 (blue, 32 % of calibration events), T2 
(green, 32 % of calibration events) or discarded (red, 36 % of calibration events) by applying 
the Supervised Cluster algorithm (spinglass.community) over the topological graph (Figure 
20b), given by the AM (Figure 20a). Indeed, the events labelled in red in the topological 
representation have their corresponding row or column in AM completely equal to zero 
(white). For example, in events from 173 to 222 (from 11/3/2008 to 9/13/2008), a more 
frequent non-reproducibility or disconnection of events is evidenced with a larger white stripe 
in the AM (Figure 20a), representing 53 % of the total disconnected events. These large 
groups of discarded events can be attributable to, e.g., particular climatologic conditions or 
systematic measurement errors during a specific period, given the temporal proximity of the 
events. All disconnected events are discarded for further hydrological analyses in this Chapter 
4 as explained in the methodology section.  
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b) 

 
c) 

 
d) 

 
Figure 20. a) AM for the calibration rainfall events; b) topological graph representation of AM, including the 
clusters obtained for T1 (blue), T2 (green) and disconnected events (red); c) PCA for T1 (blue), T2 (green) and 
disconnected events (red) and d) PCA for T1 (blue) and T2 (green) groups (explanatory variables: max intensity, 
mean intensity, beginning of the event and ADWP). 
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With the purpose of giving additional interpretation to the topological representation of the 
graph and separation groups (Figure 20b), a PCA is proposed to explain the differences 
between: (i) the groups T1 (blue), T2 (green) and discarded events (red) (Figure 20c) and (ii) 
the groups T1 (blue) and T2 (green) (Figure 20d). The explanatory variables are selected from 
previous tests and the idea of giving the simplest possible interpretation to the Cluster results 
in terms of temporality and pluviometry (scaled by a z normalization, see Kreyszig, 1979). 
PCA is then undertaken by focusing on four event characteristics: ADWP, beginning date of 
the event, mean rainfall intensity and maximum rainfall intensity (all variables are scaled to 
have zeroed mean and unitary standard deviation). No clear separation of the groups is 
obtained in Figure 20c, implying that a linear combination of the analyzed rainfall 
characteristics cannot explain the differences between T1 (blue) or T2 (green) with the 
discarded events (red). No special pattern in the temporal sequence of events as T1 (blue), T2 
(green) or discarded (red) is observed. 

Although the non-reproducibility of certain rainfall events can be attributed to temporality 
(from 11/3/2008 to 9/13/2008), a general explanation of why rainfall events are non-
reproducible by the CRR model is hardly supportable by rainfall physical characteristics, 
strengthen potential explanations such as the local nature of errors in rainfall measurements 
rather than the global nature of conceptual model uncertainties. On the other hand, Figure 20d 
shows a clear separation by explaining exclusively the differences between T1 and T2 
hydrological groups (blue and green). The rainfall events in group T1 or T2 are mainly 
distinguished because of the mean or maximum rainfall intensity (Figure 20d). The physical 
sense behind this finding is that the global function p(θ/Y, T1) with θoptT1 is more adapted to 
simulate high intense rainfall events (group T1) and the global function p(θ/Y, T2) with θoptT2 
is more appropriate to simulate low intensity rainfall events (group T2). For results in Figure 
20d, a Classification Decision Tree (Breiman et al., 1984) implemented in Matlab led to 
visualize that events are part of T2, except if their max intensity > 9 mm/h and their mean 
intensity > 1.6 mm/h, case in which they belong to T1, with a confidence of about 80 % 
(“fitctree” and “kfoldloss” functions from Matlab). This simplified classification and Figure 
20 bring up additional evidence that differences between group T1 and T2 and thus the 
transferability of the parameters estimations are mainly due to rainfall (intensity) and not 
temporal (ADWP, beginning of the event) inter-event characteristics. Accordingly, the use of 
p(θ/Y, T1), θoptT1 or p(θ/Y, T2), θoptT2 (SEConditional) for simulating a verification event is 
defined from this simplified classification rules into high or low intensity rainfall events (T1 
or T2).  

The correlation matrix plot for parameter estimations (fc, f0, k, Td, K1, q) by the SEConditional 
strategy by using the DREAM algorithm are presented in Figure 21.  
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a) 

 
b) 

 
Figure 21. Correlation plot of the parameters estimations (fc, f0, k, Td, K1, q)  for 255 calibration events, assessed 
by SEConditional Strategy: a) local optimal sets of parameters θopt iT1 (blue), θopt jT2 (green) with discarded 
(disconnected) events (red) (with i and j =1: number of events in T1 and T2 resp.) and b) conditional functions 
p(θ/Y, T1) (blue), p(θ/Y, T2) (green), with discarded (disconnected) events (red).  

It is worth to point out that the criterion in SEConditional for identifying non-reproducible 
rainfall events by the CRR model is more restrictive than the one adopted for SE (28 % and 
36 % of the calibration data resp.). A given rainfall event is discarded if the set of local 
optimal set of parameters are not able to satisfactorily reproduce further events from the 
dataset (NS > 0.75), although the local estimation brings a NS > 0.75 by itself. Nevertheless, 
72 % of the events discarded by SEConditional, are also discarded in SE strategy, implying 
again that irreproducibility and non-transferability of a certain set of local parameters seems 
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to be more related to potential errors in rainfall data than to deficiencies in the model 
structure. The idea that identifying more appropriate parameter set relies on the selection of 
time periods with similar hydrological characteristics (Seibet, 2003) is also strengthen by 
these findings. Situations in which all events are labeled as non-reproducible for 
SEConditional will suggest an inappropriate model structure or an extremely low repeatability 
of the model parameters.  

The proposed classification into T1 and T2 permits to separate bimodal behaviors of p(θ/Y) by 
two conditional functions p(θ/Y, T1) and p(θ/Y, T2). This can be especially noted in 
parameters Td and K, in which the blue and green distributions are considered as mixed in the 
grey marginal in SE strategy (Figure 19b and Figure 21b resp.). With further comparative 
purposes, a boxplot of the scaled estimations p(θ/Y) for SE, ME and p(θ/Y, T1) and p(θ/Y, T2) 
for SEConditional is presented in Figure 22. 

 
Figure 22. Scaled parameters boxplot of the estimations p(θ/Y) for SE, ME; with p(θ/Y , T1) and p(θ/Y , T2) for 
SEConditional. 

It can be noted that the medians of p(fc/Y), p(Td/Y) and p(K1/Y) are different from the medians 
obtained for their corresponding conditional distributions p(fc/Y,T1) and p(fc/Y,T2), p(Td/Y,T1) 
and p(Td/Y,T2), p(K1/Y,T1) and p(K1/Y,T2), due to the observed bimodalities in the marginal 
distributions (Figure 21). In addition, the dispersion of  p(fc/Y), p(Td/Y) and p(K1/Y) is higher 
than the dispersion obtained with the conditional distributions p(fc/Y,T1) and p(fc/Y,T2), 
p(Td/Y,T1) and p(Td/Y,T2), p(K1/Y,T1) and p(K1/Y,T2). This fact will directly influence the 
results to be obtained in the verification phase in terms of NS, ARIL and modified COP. 
These results are consistent with Fenicia et al. (2016), in which the variability of the response 
parameters (here the delay Td and lag time K1) of the catchment for each rainfall event is 
identified as the main degenerative factor on the results for ME calibrations. Coupling the 
results discussed in Figure 20d with findings presented in Figure 21b, one can establish that 
the rainfall intensities (high for type T1 or low for type T2) are the main explanatory factor in 
the observed bimodality of Td and K1.    
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Calibration: relation transferability-statistical depth of sets of parameters  
 

With the purpose of further analyzing the transferability of the different sets of parameters 
θopt i, the NS values for a rainfall event j evaluated with the optimal parameters θopt i, obtained 
from a different rainfall event i, are shown in a NSmatrix(i, j) (Figure 23). Contrary to the 
AM, the NSmatrix is not symmetric and its values are not binary (NS < 0 are set as zero for 
interpretability). The diagonal NSmatrix(i, i) has the highest NS values, as the set of local 
parameters θopt i are obtained with data from the rainfall event i. The mean of all rows for a 
given column NSmatrix(:, i) reflects the capacity of the rainfall event i to be simulated by the 
CRR model (reproducibility of events, Figure 23b). On the other hand, the mean of all 
columns for a given row NSmatrix(i, :) reflects the transferability of a local optimal set of 
parameter θopt i (Figure 23a). The NSmatrix is shown in Figure 23 jointly with the mean of 
rows and columns.         

 
 

 
Figure 23. NSmatrix with a) the mean of NS rows (transferability of a local set θopt i) and b) the mean of NS 
columns (reproducibility of the rainfall event i) with i = 1 : 255.         

The results regarding the mean of the columns in the NSmatrix are naturally coincident with 
the identified non-reproducible rainfall events by means of the strategies SEConditional (AM 
in Figure 20a), with lower mean NS for events 173 to 222 (from 11/3/2008 to 9/13/2008), for 
example. On the other hand, selecting an appropriate frame (statistical depth measure) might 
led to verify the geometric consistency of the p(θ/Y) estimation, where the mean row in the 
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NSmatrix for a θopt i (Figure 23a) is expected to be higher as θopt i is deeper into the function 
p(θ/Y) (SE strategy); or for the case of SEConditional strategy, θopt i (in T1 or T2) is deeper 
into p(θ/Y,T1) or p(θ/Y,T2) resp. (Bardossy and Singh, 2008; Guerrero et al., 2013).     

Hence, the geometric consistency of the estimations in SE strategy and SEConditional 
strategy is verified by comparing the “deepness” of θopt i into p(θ/Y) (SE strategy), or 
p(θ/Y,T1), p(θ/Y,T2) (SEConditional strategy) against the mean of columns for NSmartix(i, :) 
(transferability of θopt i) (Figure 24). The results from the statistical depths analyzed in this 
work are shown in Figure 24 with different definitions of statistical depth (see details in the 
Methodology section of this Chapter). For SE strategy, the depths of each θopt i are calculated 
by the cited depth definitions to the total of optimal set of parameters θopt i (grey Figure 24a), 
including for comparative purposes the θopt i from discarded events (red Figure 24a). In the 
case of SEConditional strategy, the depths of each θopt iT1 (blue), θopt jT2 (green) are 
calculated to the total of optimal set of parameters for each group, θopt T1 (blue) or θopt T2 
(green), with i and j =1 : number of events in T1 and T2 resp.      

 

a) 

 
 Mean NS (from Figure 23a) 
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b) 

 
 Mean NS (from Figure 23a) 
Figure 24. mean of NS rows (transferability of a set θopt i) (Figure 23a) versus different measures of statistical 
depth for a) SE strategy (θopt i in grey) and discarded events (red) (Figure 19a); b) SEConditional θopt iT1 (blue), 
θopt jT2 (green) with i and j =1 : number of events in T1 and T2 resp. (Figure 21a).  

Geometric consistency of the p(θ/Y) estimation in the SE strategy can be observed as the θopt i 
from discarded events (NS <0.75 in red) appeared to be swallower (less deep) into the p(θ/Y) 
function, especially when establishing as reference frames the Mahalanobis and Spatial depths 
(Figure 24a). For these reference depths, the θopt i values with higher mean NS (transferability 
from Figure 23a) also tend to be located in a geometrical deeper position among all the other 
local estimations of θopt i = 1:255 (correlation of 0.5 in Figure 24a). For the case of 
SEConditional strategy, discarded events are not included for the analysis as they cannot be 
linked to group T1 or T2 (blue and green resp., Figure 24b). The analyzed depth measures 
show as well strong enough correlations between the geometric depth of a given θopt iT1 
(blue) or θopt jT2 (green) set inside p(θ/Y,T1) or p(θ/Y,T2) and its transferability (Figure 24b).  

One should bear in mind that the evaluated correlations can be masked by the strong 
variability of the parameter sets. The analyses become more challenging, in terms of 
identification of correlations and computational calculation of depths, if the complete set of 
estimations for p(θ/Y) and p(θ/Y,T1) or p(θ/Y,T2) are included. For this reason, the analysis in 
Figure 24 is undertaken by local estimations θopt i (grey) and with θopt iT1 (blue) or θopt jT2 
(green) instead of the complete functions p(θ/Y) and p(θ/Y,T1) or p(θ/Y,T2). From this 
assumption and the correlation results shown by calculating the Mahalanobis depths in Figure 
24, the “deepest set” of p(θ/Y) and p(θ/Y,T1) or p(θ/Y,T2) is defined as the multivariate mean 
of the parameter sets, following the properties of this distance (Pokotylo et al., 2016). 
Therefore, for the verification phase, the global optimal parameters: i) θopt are calculated as 
the multivariate mean of all θopt i values for SE strategy (for non-discarded i events); ii) θoptT1 
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and θoptT2 are calculated as the multivariate mean of all θopt i or θopt j values in each type T1 or 
T2 for SEConditional strategy. 

Verification: accuracy, precision and reliability of the simulations 
 

The verification is undertaken with the 110 remaining rainfall events for each of the three 
approaches (SE, ME and SECconditional). Each verification rainfall event is classified as type 
T1 or T2 depending on the following rules: is T2, except if their max intensity > 9 mm/h and 
their mean intensity > 1.6 mm/h, case in which is T1. The values of parametric ARIL and NS 
are calculated from the flow rate simulations obtained from p(θ/Y) and θopt for SE or ME, and 
from p(θ/Y, T1) or p(θ/Y, T2) and θoptT1 or θoptT2 for SEConditional (Figure 25). 

a) b) 

  
c) 

 
Figure 25. a) NS b) ARIL and c) modifiedPOC criterion, for the 110 verification rainfall events, including the 
three studied parameter estimation approaches (SE, ME, SEConditional). 

The accuracy of the flow rate in verification for SEConditional shows an improvement 
according to the Nash-Sutcliffe (NS) criterion, from 0.4 to 0.6 for 50 % of the rainfall events, 
compared to the SE strategy (Figure 25a). A reduction of parametric uncertainty bounds in 
verification given by the ARIL values from 2 to 1.6, for 50 % of the verification rainfall 
events can be as well noticed for both strategies (Figure 25b). Furthermore, a Wilcoxon test 
(e.g. Hollander and Wolfe, 1999) shows that the mean of the NS and ARIL values in the 
SEConditional strategy are significantly higher and lower, respectively, than for the SE 
strategy (p-values <0.05). Parametric uncertainty bounds obtained by the SE and 
SEConditional approaches are equally reliable, in the sense that both are able to explain more 
than 95 % of the verification data (modifiedPOC Figure 25c). However, the SE strategy is 
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more alike to have the highest scores in the modifiedPOC criteria, as parametric ARIL values 
are commonly higher than 2 (mean width of uncertainty bound of about 200 % of the flow 
rate values), which can be considered as an overestimation of the parametric uncertainty 
(Figure 25b). This potential overestimation by the SE strategy, not only for the parametric 
(Figure 25b) but also for the total uncertainty (Figure 26a), might be indeed caused by 
simulating the flow rate from sets of optimal parameters obtained with events that are not 
necessarily linked from a hydrological point of view. These results stress the importance of 
carefully selecting the data to be used for parameter estimations and further hydrological 
simulation, considering that a selection strategy such as SEConditional shows superior results 
than SE in terms of accuracy (NS), precision (total and parametric ARIL) and reliability (total 
and parametric modifiedPOC) for verification events. 

The parametric ARIL values show that the uncertainty bounds in verification obtained by 
using the ME approach are much thinner (values close to zero), than those obtained with the 
other strategies (SE and SEConditional), besides a deficient accuracy given by NS in 
verification (Figure 25a, b). For this case, the simulations in verification can be considered as 
unreliable, as the modifiedPOC from parametric and total uncertainty reported that only about 
0.2 and 0.6, resp., of the measured values overlap the uncertainty bounds of the simulations 
(Figure 25c and Figure 26b). The almost inexistent parameter uncertainties reported by the 
ME strategy can be attributed to the asymptotically declining behavior of uncertainties when 
more data are included in Bayesian inferences (109860 flow rate continuous values of 255 
rainfall events). However, the parametric uncertainty given by ME is not considered to be 
realistic, as the total output uncertainty could only be then explained by hypothetical 
deficiencies in the model structure. The model structure demonstrated its robustness from the 
transferability analysis of the local parameters (AM Figure 20a) and therefore ME is not 
recommendable.  

In addition, parameters estimations from ME might contain important errors from rainfall, as 
events in which the model is not even able to reproduce the flow rate with a local calibration 
cannot be directly identified and discarded. Without abandoning the simulation context 
(Beven and Smith, 2014), further methods for dealing with the rainfall error detection under a 
ME parameter estimation approach might be obtained just on the expense of complicated 
statistical implementations whose departure assumptions are hardly verifiable (e.g. Pedersen 
et al., 2016).         

a) b) 

  
Figure 26. a) Total ARIL and b) Total modifiedPOC criterion, for the 110 verification rainfall events, including 
the three studied parameter estimation approaches (SE, ME, SEConditional). 
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The SEConditional strategy led to superior results than SE in terms of accuracy (NS), 
precision (total and parametric ARIL) and reliability (total and parametric modifiedPOC) for 
verification events (Figure 25 and Figure 26). However, even if SEConditional is used, the 
parametric and the total ARIL remain undesirability high (about 1.6 and 4.5, Figure 25b and 
Figure 26a, resp.) and the NS values undesirably low (about 0.6, Figure 25a).  

Undoubtedly, the model structure can be improved for the studied catchment and its 
calibration could also be fed by richer rainfall information (e.g. radar records), or more 
detailed spatial information systems (e.g. GIS, Digital Elevation Models), for example. On the 
other hand, one should bear in mind that the results for verification in this Chapter 4 are 
obtained from rainfall records that were unknown for the calibration phase, and therefore it is 
reasonable to think that there will be verification events with important rainfall errors, which 
at the end will significantly decrease the quality of the verification simulations (Thyer et al., 
2009). However, the potential rainfall error in a verification event will equally affect the 
simulations for all the adopted parameter estimations, offering also an equitable comparative 
frame among strategies SE, ME or SEConditional. For further generalization of verification 
results, one can hypothesize that the same proportion of discarded rainfall events (38 %) can 
be discarded as well from verification, taking the 62 % best results as a sure bet of “rain error 
free” estimations. This aspect can be addressed by further investigations.  
 

4.4 CONCLUSIONS 
 

The global nature of model structure uncertainty and the inter-event parametric variability is 
addressed for a CRR model based on the idea of dividing the parameters marginal probability 
function, obtained by event-by-event calibrations, into conditional probability functions, 
obtained by grouping the parameters from the event-by-event calibrations. For this purpose, 
an adjacency matrix that reflects how local parameter estimations are interconnected to the 
other calibration rainfall events is proposed with a transferability perspective (analogue to a 
leave-all-out scheme). The adjacency matrix is represented as a graph of connected rainfall 
events. The graph is analyzed by clustering techniques to determine the conditional 
probability functions. Two different hydrological conditions, given by the magnitude of the 
rainfall intensities (high or low), could be linked to a bimodal behaviour of the parameters 
marginal distribution. Furthermore, the proposed strategy allows identifying rainfall events in 
which the rainfall error is likely to be high enough to be considered as unreproducible events, 
at least by the selected CRR model. This approach is applied to 255 rainfall events.  

The results stress the importance of carefully selecting the data to be used for parameter 
estimations and further hydrological simulation, considering that the selective proposed 
parameter estimation strategy significantly improves the results of traditional parameter 
estimations from event-by-event and multi-event calibrations. The improvements achieved by 
expressing the event-by-event global parametric uncertainty into conditional probability 
functions are shown in terms of accuracy (Nash-Sutcliffe criterion), precision (total and 
parametric Average Relative Interval Length) and reliability (total and parametric Percentage 
of Coverage) for 110 verification events. The drawbacks of a multi-event calibration approach 
are exposed when facing a large enough calibration data-set (255 events). One single rainfall-
runoff model structure allows representing two groups of different hydrological conditions for 
an urban catchment by the proposed approach. 
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CHAPTER 5. METHODOLOGY FOR IDENTIFYING THE TEMPORAL 
DISTRIBUTION OF ERRORS IN RAINFALL TIME SERIES 

 

Extended version of: 

Sandoval S., Bertrand-Krajewski J.-L. (2015). Identification of errors in high temporal 
resolution rainfall time series by model based approaches. Proceedings of the 10th UDM - 
International Conference on Urban Drainage Modelling, Mont Sainte Anne, Quebec, 
Canada, 20-23 September, Oral Presentations II, 183-186. 

 

5.1 INTRODUCTION 
 
Experience indicates that, for some rainfall events with large spatial heterogeneity and/or 
significant movements of rain cells over the catchment, a single rain gauge cannot deliver 
representative rainfall intensities applicable to the entire catchment (mean areal rainfall 
intensity) (Leonhardt et al., 2014). Areal rainfall estimations by indirect methods are the 
object of intensive research e.g. by rainfall radar (Einfalt et al., 2004), satellite data (Kidd and 
Levizzani, 2011) or microwave links (Messer et al., 2006). Nevertheless, the accuracy of 
these approaches is still limited due to their nature of indirect measurements (Leonhardt et al., 
2014). Other sources of error in rainfall predictions can be also attributed to improper 
calibration of rain gauges and local instrumental uncertainties (e.g. Stransky et al., 2006). 
Generally, systematic and random components of rainfall errors (areal estimations and 
measurement errors) are not known in advance (in practical situations) and their structure can 
be complex and variable (Kavetski et al., 2006a; Schellart et al., 2012). 
 
Model-based approaches have emerged as a promising alternative for assessing rainfall areal 
estimations and uncertainties in rainfall data. Kavetski et al. (2006a) propose a multiplicative 
rainfall error identification model under the BATEA framework, which is widely used in the 
literature (e.g. Kavetski et al., 2006b; Vrugt et al., 2008; Renard et al., 2010; McMillan et al., 
2011; Sun and Bertrand-Krajewski, 2013a; Baroni and Tarantola, 2014; Leonhardt et al., 
2014) and will be adopted for our study. Renard et al. (2010) applies this methodology for 
identifying rainfall errors by means of a conceptual hydrological model. The original rainfall 
records are corrupted by means of random multipliers (errors and uncertainties around 20 %). 
The capability of identifying the errors which had been introduced is evaluated with suitable 
results. In Renard et al. (2010), as for e.g. Kavetski et al., 2006b; Vrugt et al., 2008; Renard et 
al., 2010; Baroni and Tarantola, 2014; Kretzschmar et al., 2016; Fuentes-Andino et al., 2017, 
the number and distribution of multipliers over the rainfall is usually one per event or day. 
However, the temporal scale of an urban catchment corresponds to faster responses. Thus, one 
multiplier for a whole rainfall event has been reported as insufficient in the context of urban 
drainage (Sun and Bertrand-Krajewski, 2013a). In addition, Vrugt et al. (2008) remarked that 
a single multiplier for each measurement leads to an unsolvable over-parametrized problem. 
Consequently, Sun and Bertrand-Krajewski (2013a) proposed to group data into different 
numbers of rainfall multipliers for a specific event. This approach is also implemented with 
the Bayesian Method, including the use of the DREAM algorithm (Vrugt et al., 2016). 
Nevertheless, estimations are based on average rainfall uncertainties of about 5 %, 
considering a uniform temporal distribution of the multipliers. In addition, parameters are 
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included within the calibration process, leading to possible interactions between parameters 
and rainfall multipliers estimation.   
 
Leonhardt et al. (2014) proposed a comparative study between the multiplicative rainfall error 
model (applied at higher temporal resolution, as Sun and Bertrand-Krajewski, 2013a) and the 
Reverse Modelling approach. For this case, the hydrological parameters are calibrated 
independently from the rainfall multipliers (by the Bayesian Method and the DREAM 
algorithm, see Vrugt et al., 2016). In addition, the Reverse Modelling approach is able to fill 
gaps in rainfall time series. However, the objective of Leonhardt et al. (2014) was not to 
evaluate the rainfall error prediction capacity by introducing known errors in rainfall.  
 
The proposed methodology seeks to evaluate the potential of four rainfall correction models 
for identifying and correcting errors in rainfall data. The response (simulated flow-rates) of a 
well-performing pre-calibrated rainfall-runoff model to corrupted rainfall data is used. 
Considering that the objective in this Chapter 5 is to focus on rainfall errors and not 
parameters estimations, 30 events in which the CRR model shows the most satisfactory 
performances are used for this purpose with local calibrated parameters (NS > 0.95) (from 
single-event calibrations in Chapter 4, see NS in Eq 12). The rainfall correction models are 
formulated by considering the inconveniences of the traditional multiplier approach, namely 
dealing with rainfall equal to zero (problem identified and discussed by several authors, e.g. 
Renard et al., 2010), by mixing the multiplicative error model and the reverse modelling 
approaches. Models also include a variable/constant time-window methodology that permits a 
uniform or non-uniform temporal distribution of the multipliers. Previous works are extended 
and coupled in the sense that: (i) higher multiplier values are introduced as errors with 
variable temporal distributions as areal rainfall errors can be higher and more complex, (ii) 
more general conclusions are drawn by the study of multiple rainfall events with real rainfall 
and runoff data, (iii) calibration independency between model physical parameters and 
rainfall multipliers calculation, iv) new error and more flexible correction models that contain 
additional information to generate precipitation with a Reverse Model (as suggested by Del 
Giudice et al., 2016) are proposed and compared and v) temporal correlation effect of the 
rainfall multipliers is analyzed. Recommendations about the best model and the best number 
of time windows are given based on criteria such as NS, RMSE and mass conservation. The 
methodology is applied to the Chassieu catchment with 30 rainfall events measured from 
2007 and 2008 (see Chapter 1). Rainfall error models evaluated in this Chapter 5 can be listed 
as follows: CTWrev (Reverse-constant-time-windows), VTWrev (Reverse-variable-time-
windows), CTW (constant-time-windows), and VTW (variable-time-windows). 

5.2 METHODOLOGY 
 

A general description of hydrological models is given in Eq 16 (notation consistent with 
Kavetski et al., 2006a, 2006b): 
 

𝑌𝑌 = ℎ(θ,𝑋𝑋) Eq 16 

where Y constitutes the time series response (for this case flow-rate at the outlet in L/s) to 
another input vector X (rainfall intensity measured at a given rain gauge station in mm/h). The 
mathematical simplification aimed at describing the output Y from any input X is called the 
function h: X→Y, depending on the set of parameters θ. Given the model h and observations 
Xobs and Yobs, a pre-calibration phase is undertaken for each rainfall event separately, in which 
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the optimum parameters θopt of the model h are estimated in the sense of making Yobs as close 
as possible to Ysim. 
 
However, this pre-calibration phase for each rainfall event becomes only relevant to support 
the hypothesis of having a suitable mathematical description of the physical system. A good 
rainfall correction cannot be estimated if the original h model is not well calibrated, as errors 
from the pre-calibration phase might be included in the correction. The impact of this error is 
thought to be diminished by calibrating each event separately. The “true” parameters θopt of 
the model, obtained for each rainfall event in the pre-calibration phase, are retained for the 
evaluation of the rainfall correction models.  
 
Therefore, the hypotheses for the rainfall error correction model are: (i) the function h is a 
good enough description of the system, (ii) θopt obtained from the pre-calibration phase is well 
known and (iii) standard uncertainties due to the measurement device (pluviograph) in Xobs 
and in parameters θopt are negligible in comparison to introduced error components. 

Introduction of errors in rainfall 
 
Given these previous statements, whenever h is evaluated as 𝑌𝑌𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚=h(θopt, 𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚) for 
corrupted rainfall Xcorrupted, differences between Ycorrupted and Yobs are mainly caused by 
Xcorrupted. Xcorrupted is going to be produced based on the original rainfall Xobs, which is assumed 
to be the true rainfall, considering that 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠= h(θopt, 𝑋𝑋𝑜𝑜𝑜𝑜𝑠𝑠) ≈ 𝑌𝑌𝑜𝑜𝑜𝑜𝑠𝑠, from the pre-calibration 
phase. The rainfall Xcorrupted is obtained from the original rainfall Xobs by introducing a vector 
Kintro as Xcorrupted  = Xobs / Kintro (Figure 27). With the purpose of exploring the influence of 
systematic, higher and more complex error structures in the rainfall, the Kintro vectors are 
established as non-uniformly distributed time windows by the Monte Carlo method. 
Comparable error introduction schemes are used in previous studies (Renard et al., 2010). 
 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



69 
 

 
Figure 27. Scheme of error introduction into true rainfall Xobs 

The first step of the scheme to create Xcorrupted is to define a number of Ncorrupted corruption 
time windows. For our case study, Ncorrupted is a randomly chosen integer from 3 to 25, with 
the purpose of exploring different type of error temporal distributions (Figure 27b). For more 
than about 25 windows, the Bayesian inference in the error correction models showed to be an 
ill-posed problem. For comparative purposes, the maximum number of Ncorrupted windows is 
therefore set to 25 windows for the introduction of errors. The definition of an ordered set 
Tcorrupted is based on the number Ncorrupted, as a set of points ti, Tcorrupted = {1, t2, 
t3,…, 𝑑𝑑𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐}corrupted, with Ncorrupted = dur(Xobs), indicating the boundaries of a given time 
window as [ti, ti+1] (Figure 27c). Each pair of boundaries [ti, ti+1] is evaluated to build Kintro 
and evaluate the Xcorrupted vector (Figure 27d, e, f, g). The algorithm assigns a total of 80 % of 
the times a value to the corresponding window [ti, ti+1] (Figure 27e). This Kintro[ti, ti+1] value is 
obtained from a uniform distribution bounded from 0.1 to 2 (Figure 27e). A limit lower than 
0.1 is found to bring up unrealistic Xcorrupted (e.g. 500 mm/h). The upper limit of 2 is included 
for making results comparable with the rainfall corrections. In addition, for the purpose of 
simulating scenarios in which no rainfall is measured into a certain window of the rainfall 
event, the Xcorrupted[ti, ti+1] terms are forced to zero for 20 % of the times (Figure 27f). In those 
cases, the Kintro[ti, ti+1] is reported as NaN for comparative purposes among the rainfall 
correction models and numerical convergence (as in theory Kintro[ti, ti+1] should be equal to 
infinity for having a Xcorrupted[ti, ti+1]= 0). The Kintro vector is going to be the “known” error 
structure of the corrupted rainfall Xcorrupted. These two vectors are used to evaluate the 
performance of different rainfall correction models.  
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Rainfall correction models 
 
The rainfall correction models can be defined as a modification of the function h, in which a 
Kcorrection vector is introduced as an argument of the function h in the form shown in Eq 17:  
 

𝑌𝑌𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑚𝑚 = ℎ(θ𝑜𝑜𝑜𝑜𝑡𝑡 ,  𝐾𝐾𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛 ∙   𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚) Eq 17 

Kcorrection is going to be a multiplicative vector which corrects Xcorrupted aimed at giving the 
closest approximation of Ycorrected to the vector Yobs. It is called “Error correction model”. The 
input θopt is obtained from the pre-calibration phase for each rainfall event. 
  
Estimating Kcorrection multipliers may vary from simple calibration methods (Vaes et al., 2005) 
to the application of more sophisticated approaches like the Bayesian Method (Sun and 
Bertrand-Krajewski, 2013a; Vrugt et al. 2016). The DREAM algorithm has shown to be an 
appropriate parameter optimization method for non-linear and high dimensional hydrological 
models (Vrugt et al. 2016). In addition, the Bayesian method can lead to estimate the 
posterior probability distribution of each parameter, thereby extending its potential to assess 
uncertainties in hydrological input data (Kavetski et al., 2006a, 2006b). Therefore, the 
estimation of Kcorrection is undertaken by the Bayesian method implemented with the DREAM 
algorithm (30000 simulations for cases with the highest computational demand).  
  
The likelihood function within the Bayesian framework shows the degree of belief that a 
given vector Kcorrection has for making Ycorrected = Yobs. The inferred parameters Kcorrection are 
sampled from a uniform prior distribution p(Kcorrection). Henceforth, the posterior distribution 
of Kcorrection and its uncertainties can be computed by means of Eq 18, accepting certain 
hypotheses about the distribution of the residuals (see details in Leonhardt et al., 2014).  
 

𝑝𝑝�𝐾𝐾𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛/𝑦𝑦𝑜𝑜𝑜𝑜𝑠𝑠 , 𝑥𝑥𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚  ,θ𝑜𝑜𝑜𝑜𝑡𝑡� = ∏ 1

�2𝜋𝜋𝜎𝜎𝑦𝑦𝑦𝑦
2

𝑚𝑚𝑡𝑡𝑟𝑟(𝑌𝑌)
𝑗𝑗=1 exp�−

�𝑦𝑦𝑐𝑐𝑜𝑜𝑠𝑠𝑦𝑦−ℎ�𝜃𝜃𝑐𝑐𝑐𝑐𝑐𝑐 ,   𝐾𝐾𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∙𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐��
2

2𝜎𝜎𝑦𝑦𝑦𝑦
2 � . 𝑝𝑝(𝐾𝐾𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛)     

 

Eq 18 

where dur(Yobs) is the total length of the hydrograph (index j) and σyj is the standard deviation 
of the flow-rate measurements. This uncertainty can be obtained from knowledge about the 
measurement principle or experience. A single σy can be included as well as another 
parameter into the calibration process, assuming homoscedasticity of the residuals. For 
multiple residuals (heteroscedasticity) the approach of including σyj as multiple parameters 
into the likelihood function is not commonly addressed, as the number of parameters will be 
increased dur(Yobs)  times, leading to an ill-posed problem (Renard et al., 2010). For the study 
case σyj is included as known values from flow-rate uncertainties (see details in raw data 
description, hydrological model and pre-calibration phase section). For instance, the 
hypothesis of normality of residuals for the rainfall correction model implicit in Eq 18 is 
retained as for previous studies (e.g. Sun and Bertrand-Krajewski, 2013a). Likelihood 
functions with flexibility in this hypothesis are still object of intensive research (e.g. Schoups 
and Vrugt 2010; Evin et al., 2014).   
 
It should be noted that this Bayesian function (Eq 18) does not include information about 
rainfall uncertainties, as the idea is to replicate a scenario in which knowledge about rainfall is 
limited and uncertainties due to the measurement principle are negligible in comparison to 
systematic error components with complex and well defined temporal structures. For this 
reason: (i) a rainfall term is not included in the likelihood function (e.g. Sun and Bertrand-
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Krajewski, 2013a) and (ii) the prior distributions p(Kcorrection) are assumed to follow a uniform 
probability distribution (e.g. Sun and Bertrand-Krajewski, 2013a), bounded from 0 to 2. The 
bounds of the distribution are given due to the hypothesis and limitations in the introduction 
of errors into the rainfall (see introduction of errors in rainfall section). A prior uniform 
distribution assumption of p(Kcorrection) might be recommendable just for situations in which a 
priori knowledge about rainfall errors is extremely vague (adapted from Kavetski et al., 
2006a and Renard et al., 2010).  
 

Equally / non-equally sized time windows 
 
The distribution of the 𝑁𝑁 correction factors to be calculated by the Bayesian method along the 
Kcorrection vector is proposed to be done by constant or variable length time windows [ti, ti+1], 
defined from an ordered set T= {1, t1, t2, t3,…,tN }, with tN = dur(Xobs) (analogous to Tcorrupted 
in the introduction of errors in rainfall, which is unknown for the rainfall correction model). 
Two ways of distributing the correction time windows along the Xcorrupted vector are proposed: 
equally or non-equally sized (to be called Tc and Tv respectively). 
 
Equally sized: the corrupted rainfall intensity time series Xcorrupted can be divided into equally 
spaced time windows Xcorrupted[ti, ti+1], from an ordered set Tc = {1, t1, t2, t3,…,tN}c with tNc = 
dur(Xobs), that satisfies the condition dur([ti, ti+1]c)·N = dur (Xobs), for any window i from 1:N. 
The rainfall in each [ti, ti+1]c interval is corrected by Eq 18 with the associated correction 
factor Kcorrection [ti, ti+1]c. This approach was already proposed in the literature e.g. Sun and 
Bertrand-Krajewski, (2013a). 
 
Non-equally sized: for this case, the set Tv is calculated by a more elaborated procedure, using 
the flow-rate residuals signal Qres (difference between measured and simulated flow-rates) 
defined in Eq 19. 
 

𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠 = 𝑌𝑌𝑜𝑜𝑜𝑜𝑠𝑠 − ℎ�θ𝑜𝑜𝑜𝑜𝑡𝑡,𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚� Eq 19 

 

An auxiliary set Tv
* is defined as an ordered set of time values Tv

* = {1, t1, t2, t3,…,tN}v
*, in 

which a priori 𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠[Tv
*] = 0 and tNv

* = dur(Yobs) (point with change of sign in the residuals, 
including borders). The number of time windows in Tv

* is N*, with i from 1:N*. Nevertheless, 
tests showed that N* is commonly higher than the desired number of parameters N to be used 
as an input in the rainfall correction models (due to uncertainties and variabilities in the flow-
rate). With the purpose of establishing a Tv

* group that has a number of time windows N* 
equal to or close to N (number of corrections pre-defined to be used in the rainfall correction 
model), the signal 𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠 is filtered by a median filter MF as 𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠𝑀𝑀𝑀𝑀=MF(𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠, α), using the 
parameter α (see details Arce, 2005). The parameter α is defined as the value which permits 
N* ≈ N, for 𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠𝑀𝑀𝑀𝑀[Tv

*] = 0, with tNv
* = dur(Yobs) (points with change of sign, including borders). 

The parameter α is obtained by a simple search process.  
 
The Tv

* set can be expected to show a pattern consistent with the time windows Tcorrupted 
(supposed to be unknown in practice), used to create the rainfall Xcorrupted with Kintro (see error 
introduction section). However, both sets are not still comparable given that Tv

* is defined 
over the length of the flow-rate dur(Yobs) and Tcorrupted should be defined over the length of the 
rainfall dur(Xobs). Consequently, the length and location of each time window in Tv

* defined 
from 𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠𝑀𝑀𝑀𝑀[Tv

*] = 0 must be projected into the rainfall series in order to be applied with the 
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rainfall correction model. Therefore, the ordered set of N (number of correction elements) 
Tv={1, t1, t2, t3,…,tN}v, with tNv

 = dur(Xobs), is defined by scaling Tv
*, based on the total 

duration of rainfall intensity dur(Xobs) and runoff dur(Yobs) time series. Kcorrection is then 
established by windows Kcorrection[ti, ti+1]v, from the proposed Tv set (Eq 17). It should be noted 
that whenever the argument of the function Xcorrupted would have been Xobs in Eq 19, the 
mean[𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠] ≈ 0 and the number of N* elements of Tv

* would have tended to the length 
dur(Yobs). This will occur given the fact that 𝑄𝑄𝑟𝑟𝑟𝑟𝑠𝑠will get closer to the white noise behavior, 
with a variance equal to σyj, with j=1:dur(Yobs). 
 

Reverse modelling 
 
Eq 18 is unable to correct the rainfall whenever Xcorrupted = 0. This situation is frequent within 
rainfall events (especially for short temporal resolution, typical in the urban drainage context 
e.g. Leonhardt et al., 2014), which is represented by introducing 20 % of the time windows as 
zero in the error introduction scheme (Figure 27f). The reverse problem consists in obtaining 
an Xrev rainfall time series that would have produced the measured runoff by rearranging the 
equations (whenever it is possible) or by the use of iterative methods (Leonhardt, 2014). 
Therefore, an alternative to Eq 18 for Xcorrupted = 0 can be proposed based on Xrev time series 
(Eq 20 and Eq 21).  
 

 𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 = �
 𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚   𝑅𝑅𝑓𝑓      𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚   > 0   
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟           𝑅𝑅𝑓𝑓       𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚  = 0                 

 Eq 20 

 

 

𝑌𝑌𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑟𝑟𝑚𝑚 = ℎ(θ𝑜𝑜𝑜𝑜𝑡𝑡,𝐾𝐾𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑡𝑡𝑠𝑠𝑜𝑜𝑛𝑛 .  𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟 ) 

 

Eq 21 

 

Reverse modelling can create a new rainfall time series without using rainfall measurements. 
This can be appropriate for cases in which no rainfall records are available (e.g. Leonhardt, et 
al., 2014). However, as single reservoir lumped models work as low pass filter smoothing the 
output, their reverse formulation usually amplifies the noisy behavior of the flow-rate signal 
over the rainfall estimation (Leonhardt, 2014). Consequently, reverse modelling can be quite 
sensitive to uncertainties in flow-rate data, bringing up highly uncertain solutions. In addition, 
non-meaningful physical results can be obtained (e.g. negative intensities). Therefore, Xrev is 
proposed to be used exclusively when Xcorrupted = 0 instead of replacing Xcorrupted completely by 
Xrev. This approach permits to include a reasonable dynamical behavior of the signal, without 
increasing dramatically the uncertainties and noisy components (consistent with sugesstions 
in Del Giudice et al., 2016). In addition, further tests showed strong benefits regarding the 
convergence of the DREAM algorithm by the approach in Eq 20 and Eq 21, compared to 
variations in which a constant value is introduced in gaps with Xcorrupted  = 0 (e.g. the mean of  
Xcorrupted  > 0 or an additive term). This might indicate that coarseness of the temporal 
resolution into the correction models (low or high N values) might have an important effect 
over their performance. This question is further addressed in this chapter.  
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Description of each rainfall correction model and evaluation scheme 
 
Four rainfall correction models can be established from Eq 17, Eq 20 and Eq 21, based on the 
“error correction model” concept. The results of these models are computed with the 
maximum likelihood estimation of each Kcorrection vector.  
 
 
- CTW: Y1corrected=h(θopt, K1correction[ti, ti+1]c · Xcorrupted) over equal length time windows [ti, 
ti+1]c (from Eq 17).  
 
- VTW: Y2corrected=h(θopt, K2correction[ti, ti+1]v · Xcorrupted), over variable length time windows [ti, 
ti+1]v determined by the proposed method (from Eq 17).  
 
- CTWrev: Y3corrected=h(θopt, K3correction[ti, ti+1]c · Xcorrupted), over equal length time windows 
(from Eq 20 and Eq 21).  
 
- VTWrev: Y4corrected=h(θopt, K4correction[ti, ti+1]v · Xcorrupted), over variable length time windows 
[ti, ti+1]v determined by the proposed method (from Eq 20 and Eq 21). Model CTW is already 
described in the literature (Sun and Bertrand-Krajewski, 2013a).  
 
The three additional models (VTW, CTWrev and VTWrev) are established based on the 
variable-size time-windows and reverse model inclusion. The four models are tested to 
evaluate their ability to detect the generated controlled errors and re-construct the original 
rainfall time series. 
 
Thirty error scenarios are introduced within the original rainfall time series (Figure 28), 
assumed as the known or controlled errors. Therefore, 30 Xcorrupted  time series are tested 
(Figure 28a, b) to be corrected by each of the four rainfall error correction models (CTW, 
VTW, CTWrev, VTWrev). A given number of time windows N are proposed following a 
uniform distribution, for each Xcorrupted to be corrected by the models (Figure 28c). The 
evaluation process is detailed in Figure 28d. The scheme in Figure 28 has the purpose of 
guaranteeing that the same number of parameters N are used to correct a Xcorrupted time series 
(an iteration), making the results comparable across the models. In addition, the performance 
results (Figure 28e) can be grouped by the number of time windows N used in each iteration. 
This permits a performance comparison of corrections against different N values for any 
rainfall correction model.   
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Figure 28. Scheme for evaluating the performance of the rainfall correction models (CTW, VTW, CTWrev and 
VTWrev) in 30 different 𝑋𝑋�𝑜𝑜𝑜𝑜𝑠𝑠 error scenarios, for a given rainfall event.  

The proposed methods are applied to the 30 rainfall events described in the introduction of 
Part 2. For each event, the observed rainfall Xobs is corrupted for 30 iterations, bringing up 30 
different scenarios of Xcorrupted (Figure 28), including different values for Ncorrupted, Kintro[ti, ti+1] 
and zeroes windows. Two main performance indicators are considered: the NS coefficient (Eq 
12) and the RMSE (Root Mean Square Error), considering the maximum likelihood 
estimation of each Kcorrection vector. Mentioned indicators are calculated by for Y1corrected, 
Y2corrected, Y3corrected and Y4corrected compared to Yobs (Figure 28e). Therefore, the variability of 
the performance (NS and RMSE) of each model is analyzed, for each iteration, in each event 
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(900 cases for each rainfall correction model). Regarding uncertainties analyses about 
Kcorrection, the 95 % confidence bounds CB95 are calculated for all probability density functions 
(pdfs) of Kcorrection[ti, ti+1] as a non-parametric measurement of dispersion. The CB95 value is 
different for each time window [ti, ti+1], for a given iteration and a given rainfall event. For 
verifying the uncertainties of Kcorrection in each model with a single value of a CB95 value 
representative of the whole number of corrections N, a weighted-over-time indicator is 
proposed in Eq 22, to be called CB95_weighted.  
 

𝐸𝐸𝐶𝐶95_𝑤𝑤𝑟𝑟𝑠𝑠𝑤𝑤ℎ𝑡𝑡𝑟𝑟𝑚𝑚 =  
1

𝑑𝑑𝑅𝑅𝑣𝑣(𝑋𝑋)
�(𝑑𝑑𝑠𝑠+1 − 𝑑𝑑𝑠𝑠) ∙ 𝐸𝐸𝐶𝐶95(𝑘𝑘𝑠𝑠𝑛𝑛𝑡𝑡𝑟𝑟𝑜𝑜[𝑑𝑑𝑠𝑠, 𝑑𝑑𝑠𝑠+1])
𝑁𝑁

𝑠𝑠=1

 

 

Eq 22 

 

Eq 22 gives the weighted average of the 𝐸𝐸𝐶𝐶95 value for each influence window [ti, ti+1], over 
the rainfall event. Consistently, there will be a single 𝐸𝐸𝐶𝐶95_weighted value for a given iteration 
and a rainfall event (900 values in total). The Bayesian approach permits as well to explore 
correlations among the different Kcorrection[ti, ti+1] pfds (verifying aspects such as identifiability 
of the parameters). With the purpose of exploring correlations among the different Kcorrection[ti, 
ti+1] pdfs parameters, the number of times in which ρ(Kcorrection[ti, ti+1], Kcorrection[tj, tj+1]) (for i 
and j 1 : N and i < j) has a p-value < 0.05 are counted and divided into the number of 
comparisons, i.e. N/2·(N-1). These statistics to be called prob(ρsig) give the probability of 
having a significant correlation, for a couple of parameters distributions Kcorrection[ti, ti+1] and 
Kcorrection[tj, tj+1], obtained in a given iteration, for a rainfall event. There will be 900 prob(ρsig) 
values in total for each model, as for NS, RMSE and 𝐸𝐸𝐶𝐶95_weighted statistics. 
 

5.3 RESULTS AND DISCUSSION 
 
Regarding a single-event analysis, results are shown for the rainfall event measured from 
11/02/2007 23:06 to12/02/2007 07:12. Figure 29 compares the measured hydrograph (blue), 
the hydrograph produced by a rainfall with generated errors (black) and with the rainfall 
corrected (red) by a well-performing iteration into the CTW model. Figure 30 shows the 
differences between identified and controlled errors Kcorrection and Kintro, with illustrative 
purposes. The error structure is acceptably predicted over time as Kcorrection - Kintro ≈ 0.  
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Figure 29. Hydrographs: measured (blue), produced by corrupted rainfall (black) and produced by corrected 
rainfall (red) by CTW model. 

 

 

Figure 30. Well performing iteration of the K factor: Kcorrection (red) and Kintro (black) by CTW model. 

From an analysis at inter-event scale (30 events, 30 iterations per event), the values of 
adjustment between the original and corrected runoff are shown in Figure 31a, b. The 
performance of models can be listed as follows (from the most to the least performant): 
CTWrev, VTWrev, CTW, and VTW, in both terms of NS (Figure 31a) and RMSE (Figure 
31b). This can be explained by fact that the models CTW and VTW are not able to correct 
rainfall with zeros records that are introduced as “known” errors. 
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a) b) 

  

Figure 31. a) NS coefficient and b) RMSE between the original and runoff produced by corrected rainfall (for 
CTW, VTW, CTWrev and VTWrev models) (30 events, 30 iterations). 

The mass balance analysis (total volumes per event and iteration, i.e. 900 values) with 
corrected rainfall compared to Xobs confirms an underestimation of rainfall total volume by 
models CTW and VTW (Figure 32a, b). This leads to envisage the importance of including 
terms for correcting zero rainfall into the correction models without falling into an ill-posed 
problem, as discussed by Del Giudice et al., 2016 and in the following lines. In addition, 
results shown in Figure 32 are in agreement with Renard et al. (2010), in which rainfalls with 
larger volumes (total volume > 10 mm) are corrected much more precisely than smaller 
events (total volume < 10 mm) (especially for CTWrev and VTWrev in our research, Figure 
32c, d).  
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a) b) 

  

c) 

 

d) 

 

  

Figure 32. Total rainfall volume between the original and corrected rainfall, for a) CTW, b) VTW, c) CTWrev 
and d) VTWrev models (30 events, 30 iterations). 

The rainfall correction based on reverse modelling coupled with the Bayesian method 
(CTWrev and VTWrev) offers a suitable strategy for dealing with zero rainfall records in 
terms of convergence. This can be explained as the reverse model gives an appropriate “clue” 
or reference point to the Bayesian optimization problem: the Xrev is produced by flow-rate 
values with a smooth enough behavior from the pre-calibration phase (NS > 0.95). In 
addition, the Kcorrection values contribute to compensate fragments of 𝑋𝑋𝑐𝑐𝑜𝑜𝑟𝑟𝑟𝑟𝑡𝑡𝑜𝑜𝑡𝑡𝑟𝑟𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟  mixed with the 
Xrev solution and original Xcorrupted values to be corrected. This fact makes as well the 
𝐸𝐸𝐶𝐶95_weighted values of Kcorrection (weighted uncertainties) lower for the reverse-based models 
than for CTW and VTW, with 𝐸𝐸𝐶𝐶95_weighted of about 0.6 for CTW to 0.2 in VTWrev (Figure 
33a). Coefficients of variations CVs are about 17 % for CTW to 5 % in VTWrev. This result 
is comparable to Renard et al., (2010) who found CVs of about 13 % for the correction factors 
in their rainfall correction implementation. 
 
However, one should bear in mind that for our study case it is feasible to arrange the 
equations of the hydrological model (Eq 8, Eq 9 and Eq 10) in their reverse form. This 
situation is not frequent in a massive number of hydrological models for urban catchments. 
Therefore, reverse formulation should be undertaken by iterative methods, which can severely 
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increase the computational demand of the correction models CTWrev and VTWrev (adapted 
from Leonhardt, 2014). Further cases should be examined for evaluating the pertinence of 
using the reverse approach for more complex hydrological models. Indeed, for cases in which 
reverse formulation is not feasible, alternative approaches for dealing with zero records can be 
proposed, always being aware about the well-posseness of the problem.  
 
The proposed variable time window approach (in VTW and VTWrev) deteriorates the quality 
of the predictions (Figure 31a, b). This can be explained by the hypotheses established for this 
method (e.g. linear transformation from Tv

* to Tv) in addition to its sensitivity to the α 
parameter. For many cases, the filter reported too short (or long) windows, leading to a not 
equitable repartition of the error corrections. The corrections made into very short windows 
(e.g. 6 minutes) do not have an effect on the flow-rate values generated by the corrected 
rainfall. Uncertainties for this correction Kcorrection[ti, ti+1] over a short window (e.g. 6 minutes) 
are higher, but their influence over 𝐸𝐸𝐶𝐶95_weighted is lower (as this indicator is a weighted 
average depending on the duration of each window). For this reason, uncertainties 
(𝐸𝐸𝐶𝐶95_weighted) are slightly lower for variable-time-windows approaches (Figure 33a). The 
number N of correction windows for the Bayesian correction model tends to be used in a more 
“efficient” way by the constant time-window models (CTW and CTWrev). Additional 
explorations are undertaken by the use of Step Detection algorithms (e.g. Canny, 1986; 
Sandoval and Torres, 2013) aimed at distributing the time windows over the rainfall. The 
mentioned approach didn’t show significant improvements of the results. Nevertheless, 
further explorations can be proposed towards this aspect.  
 
a) b) 

  

Figure 33. a) 𝐸𝐸𝐶𝐶95_weighted and b) prob(ρsig) statistics (for CTW, VTW, CTWrev and VTWrev models) (30 events, 
30 iterations). 

 
Another question herein addressed is the appropriate number of time windows N to be 
included into the rainfall correction models. Figure 34 shows the NS coefficients given by the 
four rainfall correction models, for different N values. Regarding the variable time-window 
models (especially VTW), the performance is lower than for the other models. In addition, the 
increment of NS coefficients as a function of N is less clear. In multiple cases, the correction 
shows less good results, although the number of windows N is high enough (e.g. 25 % of the 
NS coefficients < 0.4, for N = 16) (Figure 34b). This confirms the previously mentioned 
drawback about the variable time window approach: an inappropriate distribution of the error 
correction terms. Therefore, recommendations about the N selection for time window variable 
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approaches are harder to suggest. For the case of CTW, CTWrev (best performing model) and 
VTWrev, a number of time windows N of about eight seems to be the point beyond which no 
significant improvement is made (Figure 34a, c, d). These results can be compared with 
previous studies, in which preliminary recommendations about the number of time windows 
N are given (12 to 50 time windows) (Sun and Bertrand-Krajewski, 2013a). 
Recommendations from Sun and Bertrand-Krajewski, (2013a) about N can be higher due to 
facts such as: (i) the estimation of the Kcorrection multipliers jointly with the calibration of 
parameters, (ii) the evaluation is done with different performance measurements (RMSE 
instead of NS) and (iii) results are obtained from a synthetic case study.  
a) b) 

  

c) 

 

d) 

 

Figure 34. NS coefficient between the original and runoff produced by corrected rainfall vs the number of N time 
windows (ki parameter), for (a) CTW, (b) VTW, (c) CTWrev and (d) VTWrev models (30 events, 30 iterations 
with different N values). 

The error correction models assume a perfect correlation of rainfall uncertainties among all 
the time steps that belong to window [ti, ti+1], as the pdf of the parameter Kcorrection[ti, ti+1] is 
constant over [ti, ti+1]. This hypothesis should be established, as calculating a different pdf for 
each time-step leads to an ill-posed over-parameterization problem. However, correlation 
between two consecutive random variables Kcorrection[ti, ti+1] and Kcorrection[ti+1, ti+2] can be 
expected to be much lower, as they are two independent parameters into the calibration 
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process, theoretically uncorrelated to be fully identifiable. These correlation values among the 
Kcorrection parameters are against identifiability, i.e. if Kcorrection[ti, ti+1] and Kcorrection[ti+1, ti+2] 
are highly correlated, a more parsimonious correction model can be proposed making 
Kcorrection[ti, ti+1] = Kcorrection[ti+1, ti+2]. However, completely uncorrelated Kcorrection parameters 
(p-value < 0.05) will dismiss the temporal structure of the process to be represented. For our 
case study, the prob(ρsig) statistics is in average about 0.6 for all iterations and rainfall events 
(Figure 33b). This means that there is a probability of about 60 % to find a couple of 
parameters Kcorrection[ti, ti+1], Kcorrection[tj, tj+1] that are significantly correlated (p-value < 0.05). 
This indicator can bring insights about an appropriate balance between representation of the 
correlation along the temporal structure and parsimony of the model. However, this aspect is 
strongly recommended to be further addressed in future investigation. 
 
Complementary results led in evidence the benefits of the reverse-based models. Trend tests 
revealed that there is a steeper trend to diminish the mean NS coefficients (mean of 30 
iterations) as dur(Xobs) of rainfall events gets longer for CTW and VTW (Figure 35a). 
Analogous results are obtained with the increment of mean RMSE (mean of 30 iterations) as 
rainfall mean intensities during the event (Xcorrupted) (mm/h) are higher (Figure 35b). In 
addition to the slope of the trend, mean NS and RMSE (mean of 30 iterations) are shown to 
perform better for reverse-based models, independently of dur(Xobs) and Xcorrupted (Figure 35). 
 
a) b) 

  

Figure 35. Trend analysis for a) the rainfall duration dur(Xobs) vs the NS between the original and runoff 
produced by corrected rainfall (mean of 30 iterations) and b) the mean rainfall intensity Xcorrupted vs the RMSE 
between the original and runoff produced by corrected rainfall  (mean of 30 iterations) (for CTW, VTW, 
CTWrev and VTWrev models). 

 

5.4 APPLICATION OF RAINFALL CORRECTION TO IDENTIFIED EVENTS 
WITH IMPORTANT UNCERTAINTIES IN RAINFALL MEASUREMENTS 
 
The purpose of this section is to present the results of applying the proposed rainfall 
correction model by mixing the Bayesian and reverse approaches from Chapter 5 (CTWrev) 
to rainfall events hypothesized to be severely influenced by rainfall errors in Chapter 4 (the 
discarded 38 % of the 255 calibration events). For correcting rainfall in events with important 
errors in rainfall measurements by means of CTWrev, a set of parameters must be defined to 
recreate the backward rainfall intensity from flow rate observations. Given that from analyses 
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in Chapter 4 is established that there are at least two hydrological conditions that need to be 
separated in order to obtain meaningful results with the selected CRR model, the rainfall 
events can in principle be classified as T1 or T2 by using the Classification Decision Tree 
presented in Chapter 4. By classifying the rainfall events to be corrected as T1 or T2, the set 
of “optimal” parameters θoptT1 or θoptT2 can be used in the reverse formulation of the CRR 
model to obtain a more appropriate reconstruction of the rainfall intensity. However, one 
should bear in mind that rainfall events to be corrected will need to be classified as T1 or T2 
by means of “uncertain” rainfall characteristics. A simple solution is to classify the events to 
be corrected by using their characteristics and verifying if, once the rainfall is corrected, the 
Classification Decision Tree assigns the rainfall event in the same group than before the 
correction. For the analyzed events, around 80 % are classified into the same departure group 
(T1 or T2). In case that the reclassification gives different results with the corrected event, an 
iterative process can be started until the group assignation converges. For the studied rainfall 
events, after the second reclassification practically all the events remained in the same group 
(T1 or T2). 
 
A plot comparing the original rainfall intensities from discarded events in parameters 
estimation (presented as red events in Chapter 4, Figure 18) versus the corrected rainfall 
intensities by means of the rainfall correction model CTWrev (from Chapter 5) and the final 
classification T1 (blue) and T2 (green) is presented in Figure 36. 

 
 

Figure 36. Measured versus corrected rainfall intensities (mm/h) for the discarded rainfall events from analysis 
in Chapter 5, including the final reclassification into T1 (blue) and T2 (green).  

 

Figure 36 demonstrates from another perspective the hydrological difference of the data set in 
terms of “low intensity” and “high intensity” rainfall events, as corrections for both cases 
exhibit separated behaviors. The measured rainfall intensities from group T2 (green) are 
mainly corrected by a lower value, suggesting that over-estimations might be the principal 
source of error in rainfall measurements of non-reproducible (red) high intensity events. On 
the other hand, for the non-reproducible events (red) that can be associated with the lower 
intensities group T1 (blue) when rainfall is corrected, measured rainfall intensities are 
generally lower than the proposed mean areal rainfall reconstruction. The importance of the 
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reverse model in the rainfall corrections is reflected for both cases as rainfall intensities with 
zero values are corrected with intensities that can be up to 16 mm/h and 4 mm/h, for group T2 
and T1, respectively. The rainfall intensities in group T2 (green) are more separated, as the 
rainfall measurement resolution becomes thicker for higher intensities. The rainfall correction 
carried out over the initially non-reproducible events (red) reported a NS > 0.8, for more than 
85 % of cases. Therefore, all the estimated rainfall corrections are retained as representative 
However, a discrete classification of the events into two groups for representing the inter-
event variability might lack of physical interpretability regarding the boundary between 
groups (highest or lowest rainfall intensity), which at the end is model and data dependent.   

For further analyses in Chapter 6, the measured rainfall intensities R in the 365 events are 
tested as a potential input for different TSS stormwater models. Potential benefits of 
employing the corrected rainfall calculated in this section Rcorr as an alternative input for TSS 
stormwater models are evaluated with the same 365 events, but replacing R for Rcorr in the 
non-reproducible events (red).   

 

5.5 CONCLUSIONS 
 

A model-based approach is presented which aims to correct rainfall measurements and assess 
their uncertainties. Four error correction models are formulated, by mixing the Bayesian and 
Reverse approaches, jointly with the implementation of a constant/variable time-window 
method. The error’s predictability is evaluated by introducing rainfall errors (10 % to 200 %) 
with variable time-windows in a well-performing pre-calibrated rainfall-runoff model. The 
methodology is applied to the Chassieu catchment.  
 
From an analysis at a multi-event scale (30 events, 30 iterations per event), models can be 
listed in decreasing order of performance: CTWrev, VTWrev, CTW, and VTW, in terms of 
RMSE and NS coefficients, independently of duration or mean intensity of the events. The 
mass balance analysis with corrected rainfall confirms an underestimation of rainfall total 
volume by models CTW and VTW. This leads to envisage the importance of including 
informative terms for correcting zero rainfall into the correction models (Del Giudice et al., 
2016). Results show that rainfalls with larger volumes (total volume > 10 mm) are corrected 
much more precisely than smaller events (total volume < 10 mm), especially for CTWrev and 
VTWrev. Uncertainties in the corrections are lower for the reverse-based correction models as 
well. 
 
The proposed variable time-window approach (in VTW and VTWrev models) tend to 
deteriorate the quality of the predictions. This can be attributed to the hypothesis in the 
variable time-windows definition method that leads to a not equitable repartition of the error 
correction windows. However, uncertainties of corrections factor for this variable time-
window approach are slightly lower (temporal-averaged means of 95 confidence bounds from 
0.6 to 0.2 and CVs from 17 % to 5 %) as highest uncertainties are found during shortest 
windows along the rainfall duration. A minimum number of about eight corrections (time 
windows) within a rainfall event can be recommended for the CTW, CTWrev, and VTWrev 
models. Trend tests shows that there is a steeper trend to diminish the NS values as the 
duration of the events gets longer for CTW and VTW models. Similar results are obtained 
with the increment of RMSE as rainfall mean intensities of the event are higher. 
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GENERAL CONCLUSIONS OF PART 2 
 
In Chapter 4 the nature of model structure uncertainty and the inter-event parametric 
variability is addressed for a CRR model based on the idea of assessing the parameters 
marginal probability function obtained by event-by-event calibrations into conditional 
probability functions obtained by grouping the parameters from the event-by-event 
calibrations. The results stresses the importance of carefully selecting the data to be used for 
parameter estimations and further hydrological simulation, considering that the proposed 
parameter estimation strategy significantly improves the results of traditional parameter 
estimation strategies based on event-by-event and multi-event calibrations. One single 
rainfall-runoff model structure allows representing two groups of different hydrological 
conditions for an urban catchment by means of the variability of the optimal parameters found 
for each rainfall event. Furthermore, the proposed strategy led to identify rainfall events in 
which the rainfall error is likely to be high enough to be considered as unreproducible events, 
at least by the selected CRR model. 
 
A model-based approach is presented in Chapter 5 to correct rainfall errors, demonstrating the 
advantages of a rainfall correction model in which the rainfall is corrected by multiplying 
factors over constant-length time window and rainfall zero records are filled with a reverse 
model. The rainfall events that are identified to be highly rainfall-error influenced in Chapter 
4 are corrected by means of the rainfall error correction model recommended from results in 
Chapter 5. The correction of rainfall events shows to be consistent with the groups of 
hydrological conditions established in Chapter 5, showing a “correction dependency” as a 
function of the hydrological group in which the rainfall correction is undertaken. The 
correction of the rainfall events open further perspectives for water quality modelling, aspect 
that is studied in Part 3, as areal rainfall estimations might be more appropriate to model 
runoff quality than data from a single rain gauge. In Chapter 6, different water quality models 
are tested by including rainfall events with corrected rainfall as input in order establish 
relations between rainfall errors, hydrological conditions with performances of TSS 
stormwater models. Furthermore, Chapter 7 applies the proposed rainfall correction method of 
Chapter 5 as a more general estimator of observed virtual state variables, seeking for evidence 
about the existence of a virtual mass assumed by many of the traditional accumulation/wash-
off models used for TSS stormwater modelling. 
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PART 3 REVISITING CONCEPTUAL 
STORMWATER QUALITY MODELS  
 
During the past 40 years, modelling the dynamics of stormwater Total Suspended Solids 
(TSS) loads at the outlet of urban catchments has been mainly addressed by the idea of 
accumulation/wash-off originally by Sartor et al. (1974). Although this conceptual model 
does not constitute a rigorous physical description of the system, it is usually considered as a 
physically-based model in the sense that its parameters are interpretable from a physical point 
of view (Bonhomme and Petrucci, 2017). The original accumulation/wash-off idea from 
Sartor et al. (1974) establishes that the stormwater TSS load (kg) at the outlet of an urban 
catchment is given by the product of two processes, M(t,u(t),θ) (kg) and W(u(t),θ), (-), 
simultaneously interacting during the rain events as Eq 23:  

load(t) = 𝐸𝐸(𝑑𝑑,𝑅𝑅(𝑑𝑑), θ) ∙ 𝑊𝑊(𝑅𝑅(𝑑𝑑), θ)     Eq 23 
 

where M and W represent respectively the state of available mass of pollutant M (kg) to be 
transported by the wash-off term W (-), u(t) is the input signal (rainfall R or flow rate Q) 
(m3/s) and θ are the calibration parameters. In the original formulation of Sartor et al., (1974) 
𝐸𝐸 = 𝐸𝐸0 𝑅𝑅−𝑎𝑎∙ 𝑡𝑡(𝑡𝑡)𝑐𝑐∙ 𝑡𝑡 and 𝑊𝑊 = 𝑅𝑅 ∙ 𝑄𝑄(𝑑𝑑)𝑟𝑟, constituting the model expressed in Eq 24 with a (-) 
and r (-) as the set of calibration parameters.   

𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑(𝑑𝑑) = 𝐸𝐸(𝑑𝑑) ∙ 𝑊𝑊(𝑑𝑑) = 𝐸𝐸0 ∙  𝑅𝑅−𝑎𝑎∙ 𝑄𝑄(𝑡𝑡)𝑐𝑐∙ 𝑡𝑡 ∙ 𝑅𝑅 ∙ 𝑄𝑄(𝑑𝑑)𝑟𝑟 Eq 24 

 
For this case, the exponential decaying function M is obtained from a mass conservation 
principle, representing how the initial pollutant mass M(0) = M0 is transported outside of the 
catchment during the event by W, without adding further mass inputs. For Sartor et al. (1974), 
the M0 value was determined by coupling a build-up model that represents the accumulation 
of the pollutant mass as a function of the Antecedent Dry Weather Period ADWP (e.g. Freni 
et al., 2009; Chow et al., 2015). However, the need of this extension can be eliminated when 
M0 is estimated as an additional parameter by direct event-based calibrations (e.g. Kanso et 
al., 2005). The benefits of using build-up in TSS stormwater simulation models have been 
questioned by previous studies (Vaze and Chiew, 2002; Dotto et al., 2011).  

A wide amount of formulations based on Eq 23 can be found in the literature for representing 
the load dynamics during rainfall events, where two main categories of models can be 
distinguished, based on the formulation of M process: 

- Time variable virtual process (TVP): The M process is commonly understood as the 
dynamics of the available mass over the catchment. This approach is usually cited in the 
literature as a mass-limited (ML) description (e.g. Piro and Carbone, 2014), with M following 
a decaying behaviour in time given by an e.g. linear, potential, exponential (e.g. Eq 24) or 
logistic functions (Egodawatta et al., 2007; Crobedu and Bennis, 2011; Imteaz et al., 2014; 
Zhao et al., 2015; Qin et al., 2016), limiting the flow rate production given by W. The 
variations in the description of M are generally aimed to retain a certain analogy with the 
mass conservation principle established in the case of Eq 24 (exponential decay). The set of 
parameters θ might change for different definitions of M (Egodawatta et al., 2007; Freni et al., 
2009; Crobedu and Bennis, 2011), in all cases with M0 as an additional parameter when no 
build-up model is coupled. 
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 - Time constant virtual process (TCP): a second family of studies consider M = M0 for all t 
(constant value), implying that there is no varying state understood as the pollutants mass to 
be potentially washed by W, and therefore M will not be a limiting factor of W to calculate the 
load. The load dynamics will be directly governed by the input u(t) (m3/s) in the W term (most 
commonly 𝑊𝑊 = 𝑅𝑅 ∙ 𝑄𝑄(𝑑𝑑)𝑟𝑟). This approach is cited in the literature as an infinite available 
mass (e.g. Kanso et al., 2005) or flow-limited (FL) description (e.g. Piro and Carbone, 2014). 
When M0 is evaluated by calibration, usually a = 1 for having 𝑊𝑊 = 𝑄𝑄(𝑑𝑑)𝑟𝑟 and avoid 
identifiability problems, obtaining the model in Eq 24 with M0 (kg) and r (-) as the total set of 
parameters θ: 

load = 𝐸𝐸0 ∙ 𝑅𝑅(𝑑𝑑)𝑟𝑟   Eq 25 
 

In this case, this model can be also referred to as the rating curve model RC (Huber et al., 
1988) and is probably the simplest model structure to be found in the literature.  

For larger urban catchments (e.g. over 100 ha), further formulations have been applied by 
explaining the TSS load as a function of different contributions (e.g. loadsurface, loadroads, 
loadparkways, loadsewer) or sub-catchments, aimed to keep a physically-based essence in the 
models (Robien et al., 1997; Hong et al., 2016). These studies have developed approaches 
including more detailed descriptions of the pollutant local processes inside the different 
components of the studied urban system (e.g. surface, roads, parkways, sewer system) (Freni 
et al., 2009; Muleta et al., 2012) or sub-catchments (e.g. Bonhomme and Petrucci, 2017), 
considering for example: (i) separate rainfall R (m3/s) and flow rate Q (m3/s) contributions as 
different inputs u(t) (m3/s) (Mannina et al., 2010; Crobedu and Bennis, 2011; Bonhomme and 
Petrucci, 2017) and (ii) sedimentation/resuspension characteristics of the transported 
pollutants (Cristina and  Sansalone, 2003; Shaw et al., 2009; Mannina et al., 2010; Wijesiri et 
al., 2015). However, these approaches in their current state of development still represent 
important challenges related to parameters identifiability, in the absence of data and 
representative information about the load dynamics inside the system (Benedetti et al., 2013).  

Consequently, probably the most popular choice remains to adopt a “mean” or lumped 
description of the accumulation/wash-off process for the complete urban catchment, even if 
this last one is much larger than the experimental sites used for conceiving these TVP or TCP 
conceptual models (Bonhomme and Petrucci, 2017). Indeed, this lumped approach has been 
implemented in a massive amount of literature, considering the input u(t) as rainfall R (e.g. 
Vaze and Chiew, 2002; McCarthy et al., 2012; Manz et al., 2013) or flow rate Q (e.g. Vaze et 
al., 2003; Kanso et al., 2005), including purposes such as real time control, climate change 
assessment, risk analysis, water management and in multiple commercial softwares (e.g. Freni 
et al., 2009; Rossman, 2010; Muleta et al., 2012). However, the unsatisfactory performance of 
this approach is frequently stated, as well as the difficulty of generalizing its results to real 
world applications, especially as urban catchments are large and complex (e.g. Vaze et al., 
2003; Deletic et al., 2009; Dotto et al., 2011). This can be explained by the non-generalizable 
nature of this accumulation wash-off idea to larger scales, where modelling errors of the TSS 
load are amplified when these lumped descriptions are faced to larger urban catchments (Liu 
et al., 2012). Furthermore, even the existence of a “mean” state of available TSS mass for 
large catchments have been questioned from a low identifiably and a high spatial variability 
of models parameters (Bonhomme and Petrucci, 2017). Accordingly, one can ask under this 
“large urban catchments” context whether a traditional lumped TVP approach might be more 
adaptable than simplified lumped TCP descriptions. Many researchers have claimed the 
necessity of including an M essential process (always interpreted as an available TSS mass) 
by TVP formulations, while many others have found satisfactory results with TCP approaches 
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(RC models) (e.g. Kanso et al.,2005; Obropta and Kardos, 2007). Firstly, it is reasonable to 
argue that many of these discrepancies can be attributed to the following constraints in the 
experimental/methodological settings: (i) non representative controlled laboratory conditions 
or small catchments (ii) limited number of TSS data, (iii) limited number of rainfall events 
and (iv) insufficient assessment of uncertainty in data and model parameters. On the other 
hand, studies adopting alternative TCP formulations rather than the RC model are limited 
(e.g. Bai and Jing, 2012; Zhao et al., 2015). Likewise, the notion of understanding M in TVP 
descriptions as a more general process missed by TCP formulations, which might be 
oversimplified or misinterpreted by the accumulation/wash-off idea, has not been explored 
according to author’s best knowledge. Therefore, the TSS models are revisited under an 
Hypothetico-Inductive Data Based Mechanistic (HI-DBM) framework (Young, 2013), testing 
physically-interpretable Transfer Functions models (TF) jointly with traditional accumulation-
wash-off models (TCP and TVP), applied to the Chassieu catchment with methods presented 
in Chapter 4. 

The single input (rainfall R or flow rate Q) - single output (load) (SISO) HI-DBM model 
application for this work can be summarized in two stages, Chapter 6 and Chapter 7 
respectively (adapted from Young, 1998):  

Model identification TCP (Chapter 6) - different candidate TCP models, including: (i) black-
box linear TF physically-interpretable model structures and (ii) previously known conceptual 
model with similar characteristics (i.e. RC model), are calibrated by means of a Bayesian 
method. One of the calibrated model structures is selected among them based on direct 
comparisons with the other structures by means of a set of statistical criteria over the 
calibration and verification data sets. Any model without a reasonable physical interpretability 
is discarded.  
 

Model improvement TVP (Chapter 7) - the initial model structure selected in previous stage 
(Chapter 6) is sought to be improved if the results are still unsatisfactory in terms of 
performance or physical interpretation. For this purpose, statistical evidence of Time Variable 
virtual Processes TVP (or parameters as referred to in e.g. Young and Garnier, 2006) is 
sought in this initial model structure and a TVP(s) reconstruction(s) (e.g. fixed interval 
smoothing method for TF, see Young (1998), Bayesian methods, Reverse Modelling) can be 
undertaken. This reconstruction estimates how a parameter, interpreted as a virtual process, of 
a given model structure might change in time in order to bring the observed and simulated 
outputs as close as possible (see e.g. Young and Garnier, 2006). From statistical and physical 
interpretations of the TVP(s) reconstruction(s), one can replace the originally time constant 
parameter(s) in the TCP model structure by a finite parametric function that matches the 
assessed TVP(s) dynamics, constructing an improved TVP version of the initial TCP model. 
The parameters of the resulting model for TVP can be estimated by numerical optimization 
methods. The introduced finite parametrized function into the TCP model structure, or the 
TVP dynamics, should also have a physical meaning to be accepted, e.g. as a decaying M 
available TSS mass to be washed off. These TVP reformulated models structures are useful to 
describe potential missing process in the initial TCP model structure. 
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CHAPTER 6. REVISITING TIME CONSTANT VIRTUAL MASS MODELS 
WITH TRANSFER FUNCTIONS AND RATING CURVES 

 

6.1 INTRODUCTION AND BACKGROUND 
 

The TCP model structures are characterized by the simplification of not including an 
independent M process. Therefore, the TSS load dynamics is mainly governed by W and 
consequently the TSS load is produced as a monotonic function of the input dynamic u(t) 
(m3/s), without the influence of a potential limiting factor M. Revisiting further TCP 
descriptions might bring evidence to question the necessity of applying a more complex 
model from the TVP family than a simplified TCP approach, if satisfactory enough 
performances are obtained by TCP. Although there has been an increasing interest during 
recent years in Transfer Functions TF models into the environmental context (e.g. Jakeman et 
al., 1990; Young 2003 and the prior references therein), implementations for water quality 
modelling are less frequent (e.g. Davis and Atkinson, 2000; Young and Garnier, 2006). 
Therefore, TFs emerge as a promising research direction towards alternative TCPs 
description, in the sense that all of them are monotonic functions of the input dynamic u(t) 
(m3/s) and no virtual state variables are introduced in the calculation. 

One immediate difference between TFs and RC is that the second has a well-known physical 
meaning, linking shear stress produced by flow rate to TSS resuspension and transfer 
(Crobedu and Bennis, 2011). On the other hand, TFs models are in principle black-box 
descriptions. However, system identification and control enhance their potential to be 
interpreted as serial, parallel and feedback connections of sub-systems that often have a 
physical meaning (Young and Garnier, 2006).  

Therefore, further TCP descriptions are explored by visiting different TFs in the first stage of 
the proposed HI-DBM application, which are compared to the traditional RC model structure. 
Parameter identification and uncertainties are assessed for TFs and RC by the use of the 
Bayesian calibration approach proposed in Chapter 4, given the restriction of further methods 
such as the Simplified Refined Instrumental Variable method for TFs due to uncertainty-free 
input/output hypotheses (adapted from Pedregal et al., 2007). A statistical analysis in order to 
recommend a model structure is undertaken based on tests in the preliminary analysis of the 
HI-DBM frame (AIC, BIC and YIC) (Young, 2013), together with further analysis and 
performances for verification data (NS, AIC, POCmod) (from Chapter 4). The differences of 
the results by using flow rate at the outlet of the catchment Q, the rainfall R or the corrected 
rainfall Rcorr (from Chapter 5) as inputs u(t) (m3/s) are also discussed.  
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6.2 METHODOLOGY 

TCP model structures: Transfer Functions (TFs) and Rating Curve (RC) 
 

A single-input single-output (SISO) TF can be expressed by the following equations: 

�     𝑥𝑥(𝑑𝑑) =  
𝐶𝐶(𝑅𝑅)
𝑔𝑔(𝑅𝑅) 𝑅𝑅(𝑑𝑑 − 𝜏𝜏)

𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑(𝑑𝑑) = 𝑥𝑥(𝑑𝑑) + 𝑅𝑅(𝑑𝑑)
 Eq 26 

where: 

𝑔𝑔(𝑅𝑅) =  𝑅𝑅𝑛𝑛 + 𝑅𝑅1𝑅𝑅𝑛𝑛−1 + ⋯+  𝑅𝑅𝑛𝑛−1𝑅𝑅 + 𝑅𝑅𝑛𝑛  
𝐶𝐶(𝑅𝑅) =  𝑏𝑏0𝑅𝑅𝑠𝑠 +  𝑏𝑏1𝑅𝑅𝑠𝑠−1 + ⋯+  𝑏𝑏𝑠𝑠−1𝑅𝑅 + 𝑏𝑏𝑠𝑠  

Eq 27 

 

A(s) and B(s) are polynomials with the derivative operator s = d/dt and τ (min) is a pure time 
delay. In Eq 26 and Eq 27, u(t) is the input signal, x(t) is the noise free output signal and 
load(t) is the noisy output signal. The component e(t) is considered i.i.d., however this 
assumption is not restrictive for the TF application (Young, 1998). A TF is a compact 
representation of a differential equation. Therefore, the physical interpretability of Eq 26 can 
be directly related to the following differential equation form Eq 28 (Garnier and Young, 
2006):  

 
𝑑𝑑𝑛𝑛𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑(𝑑𝑑)

𝑑𝑑𝑑𝑑𝑛𝑛
+ 𝑅𝑅1

𝑑𝑑𝑛𝑛−1𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑(𝑑𝑑)
𝑑𝑑𝑑𝑑𝑛𝑛−1

+ ⋯+  𝑅𝑅𝑛𝑛𝑦𝑦(𝑑𝑑) =  𝑏𝑏0
𝑑𝑑𝑠𝑠𝑅𝑅(𝑑𝑑 − 𝜏𝜏)

𝑑𝑑𝑑𝑑𝑠𝑠
+  ⋯+ 𝑏𝑏𝑠𝑠𝑅𝑅(𝑑𝑑 − 𝜏𝜏) + 𝑔𝑔(𝑅𝑅) ∙ 𝑅𝑅(𝑑𝑑) 

 

Eq 28 

A given model structure for this type of models is defined from the pair (n poles, m zeros) 
TFn, m. The number of parameters for the set θ is equal to n + (m + 1), where the set θ = [a1, .., 
an, b0, …, bn]. For RC in Eq 25 the set of parameters θ = [M0, r]. Seven different model 
structures are tested in this Chapter, including TF0,0 TF1,1 TF2,1 TF2,2TF3,2 TF3,3 and RC. For Q 
as input u(t) the delay τ = 0 and the number of parameters is: 1, 3, 4, 5, 6, 7 and 2, 
respectively. For rainfall R or Rcorr as the input u(t), τ is added as another parameter for all 
model structures. One difference between TFs and RC is their linear and non-linear nature, 
regardless the number of parameters. On the other hand, TFs led to include information from 
previous time-steps (measured Q and/or simulated TSS load) in the calculation, contrary to 
the RC in which the calculation of load(t) only depends on u(t - τ). Implications of these 
differences are further discussed in the results and discussion section.  
 

Parameter identification 
 

Although there is a wide range of calibration methods in the literature for TF, most of them 
are based on hypotheses related to normality and data input free-error (Pedregal et al., 2007). 
For being consistent with the development of this work, the identification of the set of 
parameters for a TF or RC is preferred to be undertaken by a Bayesian approach (Vrugt et al., 
2016), under event-based calibrations, as proposed in Chapter 4. For a given calibration 
rainfall event i (i = 1 : 255), θi is the local set of parameters of a given model structure and 
p(θ/load)i  their probability density function (pdf), given an input u(t)obs i (Q, R or Rcorr) and an 
output load(t)i. The Bayesian approach leads to calculate local p(θ/load)i, named posterior 
distribution, over the basis of a likelihood function and a prior knowledge of the distribution 
of parameters p(θ), which is expressed by Eq 29: 
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𝑝𝑝(θ 𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑⁄ )𝑠𝑠 = 𝐸𝐸�
1

�2𝜋𝜋𝜎𝜎�𝑡𝑡2
𝑅𝑅𝑥𝑥𝑝𝑝 �−

1
2

(𝑣𝑣𝑅𝑅𝑅𝑅(𝑑𝑑)𝑠𝑠)
𝜎𝜎�𝑡𝑡2

2

�  
𝑛𝑛

𝑡𝑡=1

∙ 𝑃𝑃(θ) 
 
Eq 29 

 

𝑣𝑣𝑅𝑅𝑅𝑅(𝑑𝑑)𝑠𝑠 = (𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑, θ)𝑠𝑠 − 𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑜𝑜𝑜𝑜𝑠𝑠 (𝑑𝑑)𝑠𝑠) Eq 30 
 

where n is the number of input data in u(t)obs i, loadsim(t, θ)i is the simulated load by a given 
TF or RC model at a given time step t and a set of parameters θi, p(θ) is a uniform probability 
distribution for each parameter (informative-less), C is a normalization coefficient (irrelevant 
for the implementation of numerical algorithms to solve Eq 29, see Vrugt et al., 2016), res(t)i 
are the residuals of the model in Eq 30, and 𝜎𝜎�𝑡𝑡2 is the residual variance, considered for this 
application to be equal to the squared value of loadobs(t)i standard uncertainty for each time-
step t. The DREAM algorithm is used for determining p(θ/load)i as a solution to Eq 29. The 
local set of parameters that represents the optimal parameters values among all probable 
values of p(θ/load)i is called θopt i.  

The global estimation of p(θ/load) is calculated as the marginal distribution of representative 
local estimations of p(θ/load)i, θopt i estimations with Nash-Sutcliffe efficiency coefficient 
(NS) < 0.8 are discarded as unrepresentative, and θopt = mean(p(θ/load)). However, this 
marginal p(θ/load) is encouraged to be treated as a conditional probability function, by means 
of the SE Conditional strategy (SEConditional), given the potential benefits presented in 
Chapter 4 for this approach. The objective of SEConditional is to divide the marginal 
distribution p(θ/load) into Tnum_c conditional probability functions p(θ/load, Tnum_c) and 
θopt Tnum_c = mean(p(θ/load, Tnum_c). The idea behind this division is to improve the accuracy 
and diminish the uncertainties in the simulations for the verification stage (see details in 
Chapter 4). However, its applicability depends on the possibility of linking a verification 
event to a given Tnum_c group by means of characteristics of the input signal u(t)obs (e.g. 
max., min., mean, volume, duration, ADWP), in order to establish which p(θ/load, Tnum_c) 
conditional function should be utilized for simulating the TSS load. Hence, the marginal 
p(θ/load) function can only be represented by num_c conditional functions p(θ/load, Tnum_c) 
if a clear association between characteristics of this input u(t)obs and a given conditional 
Tnum_c function can be established. Otherwise, the marginal estimations p(θ/load) and θopt 
are recommended to be retained. 

 

Model identification 
 

A methodology for identifying the most suitable model structure in the TCP models family is 
developed based on the HI-DBM framework (Young, 2013), including the proposed 
parameter identification method. The candidate model structures j = 1: num_str are the 
traditional RC (2 parameters) and the following TFs (n poles, m zeros): [0,0], [1,1], [2,1], 
[2,2], [3,2], [3,3], (1, 3, 4, 5, 6, 7 parameters) for a total of model structures num_str = 7. The 
methodology is explained by the following Figure 37: 
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Figure 37. Model selection diagram: a) selection of an u(t) input (Q, R, Rcorr) b) proposed model structures, c) 
parameters identification for a given model structure (calibration) and evaluation of AIC, BIC, YICmod and NS 
for each calibration event, d) p(θ/load) marginal or conditional representation, e) verification with p(θ/load) 
calculating NS, ARILpar, ARILtot, POCmod par, POCmod tot for each verification rainfall event, f) selection of 
a model structure from b). 

The first step consists in selecting an input u(t)obs between Q, R or Rcorr (Figure 37a). 
Afterwards, a model structure from j = 1 : num_str  is selected to be evaluated (Figure 37b), 
undertaking a preliminary analysis from three statistical criteria with the calibration dataset: 
the AICj (Akaike Information Criterion) (Akaike, 1974), the BICj (Bayesian Information 
Criterion) (Schwarz, 1978), a modified version of the YICj (Young Information Criterion) 
(Young, 1998), to be called YICmodj and NSj (Nash-Sutcliffe efficiency coefficient). 
However, these I indicators Ii,j (I for generality) are different for each rainfall event, given the 
inter-event variability. Accordingly, the AICi,,j, BICi,,j, YICmodi,j and NSi,,j are directly 
calculated from each event from local p(θ/load)i and θopt i  estimation (i =1 : 255 for the study 
case) to be further compared (Figure 37c). These comparisons of Ii,j lead to establish if the 

no yes 

Selection of p(θ/load)  
 

a)   Input u(t)obs: Q or R or Rcorr 

b)    Model structures j =1 : num_str (7)  
TF0,0 TF1,1 TF2,1 TF2,2TF3,2 TF3,3 and RC 

c)     Parameter identification i = 1 : number of events (255)  
 

For each i event calculate: p(θ/Y)i and θopt i (Eq 29) 
Preliminary indicators: 

 - AICi,j BICi,j and YICmodi,j and NSi,j 
 

e)  Verification (for i = 256 : 365 events) with further indicators: 
NS 

i,j , ARILpar i,j, ARILtot i,j, POCmod pari,j POCmod toti,j 
 

f)  Select a j model structure to represent load from verification 
(based on performance and physical interpretation) 

 

d)   Can the marginal p(θ/Y) be represented by num_c > 1 conditional 
 

Selection of p(θ/load, Tnum_c)  
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proposed model structures are feasible solutions and finding initial evidence about a probable 
best structure based on statistical criteria, to be confirmed by the verification data (Figure 37d 
and Figure 37e). It is worth clarification that the methodology presented in Figure 37 can be 
applied to any dataset when it is desired to select a single model structure, considering the 
inter-event variability of the optimal sets of parameters. 

A brief description of these indicators I for calibration is given in the following lines.   

The AIC, BIC and YICmod are aimed to bring a basis for selecting a particular model 
structure from a group of models, by selecting the model structure that reports the minimum 
value among the other model structures to which it is compared. One should bear in mind that 
each statistics has a specific objective and was developed under different theoretical basis.  

The objective of AIC model selection is to estimate the information loss when the probability 
distribution f associated with the true model is approximated by the probability distribution g, 
associated with the model that is to be evaluated. A measure for the discrepancy between the 
true model and the approximating model is given by the Kullback–Leibler (1951) information 
quantity Information (f, g) (see Burnham and Anderson, 2002). The AIC can be calculated as 
follows by Eq 31:  

𝑔𝑔𝐴𝐴𝐸𝐸 = 𝑚𝑚 ∙ ln ��𝑣𝑣𝑅𝑅𝑅𝑅(𝑑𝑑)2
𝑛𝑛

𝑡𝑡=1

� − 2𝑚𝑚𝑃𝑃 
 
  Eq 31 

 
where n is the number of data in the residuals res(t) and np is the number of parameters. One 
hypothesis on which the mathematical strength of the AIC indicator depends is the white 
noise behavior of the residuals in Eq 30 (Young, 1998). However, several statistical methods 
based on this i.i.d. residuals assumption are still widely applied in urban drainage modelling 
despite residuals do not follow this condition. Furthermore, the introduction of mathematical 
transformation for accomplishing normality of residuals has shown to decrease the predictive 
ability of the models (e.g. Dotto et al., 2013). On the other hand, a robust aspect of this 
indicator is the implicit assumption that the “true” model is unknown, at least for the 
candidate set of models that are tested, which is usually the case in practical applications 
(Young, 1998; Young, 2012).  

A second indicator included in the HI-DBM framework is the BIC (Young, 1998). The BIC 
has being also proclaimed to be less prone to over-fitted models than the AIC (Young, 2012). 
On the other hand, the BIC indicator is based on the hypothesis that the true model is one of 
the candidate models, which is in principle problematic under a practical point of view, as 
none of the proposed models constitute a the true model, given their nature of conceptual 
approximations (Burnham and Anderson, 2002). BIC is defined as Eq 32: 

𝐶𝐶𝐴𝐴𝐸𝐸 = 𝑚𝑚𝑃𝑃 ∙ ln {𝑚𝑚} − 2ln ��𝑣𝑣𝑅𝑅𝑅𝑅(𝑑𝑑)2
𝑛𝑛

𝑡𝑡=1

� 
 
Eq 32 
 

 

A favored model by the BIC minimizes the BIC value. According to Eq 32, the BIC also 
rewards model goodness-of-fit with maximized likelihood and penalizes lack of model 
parsimony. An extensive comparison between AIC and BIC can be found in e.g. Aho et al. 
(2014), and further references recommend to include both indicators in any model 
identification diagnosis (e.g. Yang, 2005). 

The YIC (Young, 1989) is a heuristic indicator based on intuition, as it is not a formal 
statistical approach. The YIC in its classical form is a function of the standard deviations σθ of 
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the parameters of the set θ. However, the Bayesian approach proposed Eq 29 allows to deliver 
a detailed description of p(θ/load), which might be neither normal nor symmetric and 
therefore cannot be summarized by a mean and a standard deviation, impeding the direct 
application of YIC proposed by Young, (1989). The uncertainty of p(θ/load) can be 
characterized by means of a non-parametric measurement of dispersion aimed to represent 
e.g. 95 % of the coverage interval of the random variable. Therefore, a modification of the 
original YIC to be called YICmod is proposed for this Chapter, modifying the standard 
deviation of parameters estimations σθ in the original YIC indicator by a non-parametric 
estimation of dispersion. Accordingly, the YICmod is calculated as follows by Eq 33: 

𝑌𝑌𝐴𝐴𝐸𝐸𝑚𝑚𝑣𝑣𝑑𝑑 = ln �
∑ 𝑣𝑣𝑅𝑅𝑅𝑅(𝑑𝑑)2𝑛𝑛
𝑡𝑡=1

𝜎𝜎𝑙𝑙𝑜𝑜𝑎𝑎𝑚𝑚2 � − ln � 
1
𝑚𝑚𝑜𝑜

�
𝑝𝑝(𝜃𝜃(𝑘𝑘)/𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑)97.5 − 𝑝𝑝(𝜃𝜃(𝑘𝑘)/𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑)2.5

𝜃𝜃(𝑘𝑘)𝑜𝑜𝑜𝑜𝑡𝑡

𝑛𝑛𝑐𝑐

𝑘𝑘=1

� 

 

Eq 33 

where p(θ(k)/load)97.5 and p(θ(k)/load)2.5 are the 97.5 % and 2.5 % limits of the p(θ(k)/load) 
distribution, for a 95 % coverage of the parameter θ(k) from the set θ. The 𝜎𝜎𝑙𝑙𝑜𝑜𝑎𝑎𝑚𝑚2 is the standard 
deviation of the load pollutograph. Indeed, the calculation of YICmod is directly linked to the 
parametric uncertainties and the first term is simply a relative, logarithmic measure of how 
well the model explains the data: the smaller the model residuals the more negative the term 
becomes. The second term in Eq 33, on the other hand, provides a logarithmic measure of the 
uncertainty in parameters. If the model is over-parameterized, then it can be shown that the 
covariance matrix of parameters will increase in value, often by several orders of magnitude 
(e.g. Young et al., 1998). When this is the case, the second term in the YICmod tends to 
dominate the criterion function, indicating over-parameterization. The YICmod indicator is 
commonly a large negative value (due to the logarithmic term), but the choice is not critical 
provided the associated NS is relatively high compared with that of other models (adapterd 
from Young et al., 1998).  

However, neither the AIC, BIC nor YICmod are aimed to bring direct information about the 
quality of the estimation from the model, as these indicators are exclusively designed for 
comparative purposes in a set of model structures (Figure 37c). Hence, the HI-DBM 
framework proposes to complement the analysis in calibration with the classical coefficient of 
determination R2 (Nash-Sutcliffe efficiency coefficient - NS - in the hydrological context). 

The NS assesses the portion of the total variance of the output load data 𝜎𝜎𝑙𝑙𝑜𝑜𝑎𝑎𝑚𝑚2  able to be 
explained by a given model structure. This indicator can be calculated as follows Eq 34: 

𝑅𝑅2 = 𝑁𝑁𝑆𝑆 = 1 −  
∑ 𝑣𝑣𝑅𝑅𝑅𝑅(𝑑𝑑)2𝑛𝑛
𝑡𝑡=1

𝜎𝜎𝑙𝑙𝑜𝑜𝑎𝑎𝑚𝑚2  Eq 34 

The NS is not recommended to be used as a unique model selection criterion with calibration 
data, given its sensitivity to over parametrization (Young, 1998). The NS indicator in 
calibration is mainly aimed to complement AIC, BIC nor YICmod results, in terms of 
verifying that the proposed models structures have acceptable performances (e.g. NS > 0.6).   

The HI-DBM recognizes this preliminary analysis by means of the calibration data as a 
powerful inference tool to scrutinize and discard inappropriate models from a preliminary 
stage, and even to deliver strong conclusions about model performance whenever verification 
is not possible. However, inferences obtained from the verification stage (Figure 37e) offer 
without doubt more generality in the sense of transferability and robustness, as presented in 
Chapter 4. The performance of the models is then assessed by means of p(θ/load) and θopt  (or 
p(θ/load, Tnum_c) and θopt Tnum_c if a conditional division is conceivable, Figure 37d) for the 
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remaining i = 256 : 365 verification events, including the following indicators Ii,j : the size of 
uncertainty intervals of load predictions (precision) (ARIL, Vezzaro and Mikkelsen, 2012), 
the number of measurements inside the uncertainty intervals (reliability) (POCmod, from 
Chapter 4 and Ye et al., 2014) and the mean prediction for the verification events (accuracy) 
(NS) as for the verification dataset in Chapter 4 (Figure 37e). The ARIL and POCmod can be 
calculated by the following Eq 35, Eq 36 and Eq 37: 

𝑔𝑔𝑅𝑅𝐴𝐴𝐴𝐴 =  
1
𝑚𝑚
�  

𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑡𝑡𝑜𝑜,𝑡𝑡 − 𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑛𝑛𝑟𝑟,𝑡𝑡

𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠 �𝑑𝑑, θ𝑜𝑜𝑜𝑜𝑡𝑡�

𝑛𝑛

𝑡𝑡=1

 
 

Eq 35 

𝐸𝐸𝑡𝑡 = � 1 𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑜𝑜𝑜𝑜𝑠𝑠(𝑑𝑑) − 2𝜎𝜎�𝑡𝑡  ≤  𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑡𝑡𝑜𝑜,𝑡𝑡  𝑅𝑅𝑚𝑚𝑑𝑑 𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑜𝑜𝑜𝑜𝑠𝑠(𝑑𝑑) + 2𝜎𝜎�𝑡𝑡  ≥  𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑛𝑛𝑟𝑟,𝑡𝑡  
0                                                                                                                       𝑣𝑣𝑑𝑑ℎ𝑅𝑅𝑣𝑣𝑤𝑤𝑅𝑅𝑅𝑅𝑅𝑅

  

Eq 36 

𝑃𝑃𝑃𝑃𝐸𝐸𝑠𝑠𝑜𝑜𝑚𝑚 =  
1
𝑚𝑚
�  𝐸𝐸𝑡𝑡

𝑛𝑛

𝑡𝑡=1

 
 

Eq 37 

where n is the number of input u(t) data, loadobs. loadsim(t, θ)  is the simulated load by the 
model at time step t from the observed rainfall u(t)obs and global optimal parameters θopt. 
𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑡𝑡𝑜𝑜,𝑡𝑡 and 𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑠𝑠𝑛𝑛𝑟𝑟,𝑡𝑡 are the upper and lower limits for a confidence interval of 95 % at 
time step t, obtained from p(θ/load).  

The total simulated output uncertainty in reality will not be completely captured by parametric 
uncertainties. This phenomenon can be attributed to remnant errors in calibration that are not 
accounted for the input and structural error assumptions (Thyer et al., 2009). Therefore, the 
parametric uncertainties given by p(θ/load) can be propagated to estimate the total simulation 
output uncertainty. For comparative purposes, the total simulation output uncertainty is 
estimated by following the method proposed by Dotto et al. (2011). The residuals obtained 
from the rainfall events used in calibration are binned as a function of modelled loads. This 
allows constructing probability distributions of residuals as a function of the modelled load 
values. For a verification event, as the modelled load value at t are a function of a set of 
parameters, a different probability distribution of residuals is obtained by considering each 
realization of p(θ/load) (or p(θ/load, Tnum_c)). The total uncertainty of simulated load at t 
will be then given by the ensemble of all the probability distributions of residuals obtained at 
t, as a result of propagating the parametric uncertainties (see further details in Dotto et al., 
2011). Therefore, two complementary indicators, to be called ARILtot and POCmod tot, are 
calculated for the estimated total output uncertainty simulations in the 110 verification events. 

However, delivering a conclusion about a best j model structure, based on the data set from 
events i = 1 : 255 (calibration) or i = 256 : 365 (verification) and the corresponding Ii,j 
estimation represents additional challenges. Indeed, the model selection problem is an active 
field of research by itself (e.g. Murtaugh, 2014) and is commonly addressed from 
comparisons of the I scores obtained by the candidate model structures (i.e. AIC, BIC and 
YICmod for calibration or NSval, ARILpar, ARILtot, POCmod par and POCmod tot in 
verification) (Figure 37f). However, this selection is not direct, given the inter-event 
variability either for calibration or verification, for which the best j model structure might be 
different from one event to another. For the context of this work, this aspect is analyzed by 
comparing the indicators I:,j under two perspectives: 
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- Approach of selection 1 (S1): the model selection is undertaken based on the idea of 
evaluating if the inter-event mean of a given indicator mean(I:, j) calculated for a model 
structure j is significantly higher (or lower) than the inter-event mean for the other model 
structures I:, ≠j. By using an ANOVA or Kruskal-Wallis statistical test, the group I:,j is 
compared to all of the remaining groups formed by each structure I:, ≠j (the number of samples 
for each group is equal to the number of events), evaluating the null hypotheses that the 
mean(I:,1) = mean(I:,2) = mean( I:,3)  = ... = mean(I:, j) = …= mean(I:, num_struc) versus the alternative 
hypothesis that these means are not equal. Whenever the ANOVA or Kruskal-Wallis test 
reports a p-value < 0.05 between two groups, one can conclude that there is enough statistical 
evidence to state that the mean(I:,1) is higher (or lower) than the mean(I:,2). The selection of a 
more adaptable test between the ANOVA (normality) and Kruskal-Wallis (non-parametric) is 
dependent on the normality of the groups I:, j to be compared (tested by the Shapiro Wilk test 
for each I:, j group separately). The ANOVA test is preferred instead of the Kruskal-Wallis 
test only if there is enough statistical evidence that all the j = 1: num_str groups are normally 
distributed (Shapiro Wilk test with p-values j > 0.05 for all j = 1: num_str groups) (Figure 38).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 38. Application of the S1 approach for model selection. 

- Approach of selection 2 (S2): the model selection is undertaken based on the number of 
victories (i.e. number of i events in which Ii,,j  > Ii,≠j) lower (or higher) than the number of 
victories that might be obtained by chance (binomial distribution), giving a significance level 
of 95 %. An intermediate aspect should be addressed under this perspective, in which one 
needs to define when the value of Ii, j is significantly higher or lower than for the others 
structures Ii, ≠j, to declare it as the winner j structure for a given rainfall event i. For this 
purpose, a Bayesian likelihood approach is adopted, inspired from the Alkaline weights for 
the AIC (Aho et al., 2014), in which the values of an indicator Ii,j are weighted by using all 
the values obtained for the analyzed structures Ii, :, in order to represent the probability that Ii ,j 
is the best model for a given i rainfall event. The probability p(Ii,,j  > Ii,≠j) can be expressed as 
follows:  

yes 

ANOVA test for the null 
hypothesis: mean( I:,1) = 

mean(I:,2) = mean( I:,3)  = ... = 

mean(I:, j) = …= mean(I:, 
num_struc) 

 

Kruskal-Wallis test for the null 
hypothesis: median( I:,1) = 

median(I:,2) = median( I:,3)  = ... = 

median(I:, j) = …= median(I:, 
num_struc) 

The Shapiro Wilk test p-value j of any I:, j = 1: num_str groups is > 0.05 ? 

no 

S1 model structure selection results based on p-values from 
the ANOVA or Kruskal-Wallis test  
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𝑝𝑝�𝐴𝐴𝑠𝑠,𝑗𝑗 > 𝐴𝐴𝑠𝑠,≠𝑗𝑗� =
exp (−∆𝐴𝐴𝑠𝑠,𝑗𝑗 2� )

∑ exp (−∆𝐴𝐴𝑟𝑟 2� )𝑛𝑛
𝑟𝑟=1

     Eq 38 

where: 

∆𝐴𝐴𝑠𝑠,𝑗𝑗 = �𝐴𝐴𝑠𝑠,𝑗𝑗 − 𝐴𝐴𝑠𝑠,𝑜𝑜𝑜𝑜𝑡𝑡�        Eq 39 
 

and 

𝐴𝐴𝑠𝑠,𝑜𝑜𝑜𝑜𝑡𝑡 =  �
𝑚𝑚𝑅𝑅𝑥𝑥𝑗𝑗=1

𝑛𝑛𝑡𝑡𝑠𝑠_𝑠𝑠𝑡𝑡𝑟𝑟𝑡𝑡𝑐𝑐�𝐴𝐴𝑠𝑠,𝑗𝑗�        𝑅𝑅𝑓𝑓 𝐴𝐴 𝑅𝑅𝑅𝑅 𝑁𝑁𝑆𝑆𝑟𝑟𝑎𝑎𝑙𝑙 ,𝑃𝑃𝑃𝑃𝐸𝐸𝑚𝑚𝑣𝑣𝑑𝑑
min𝑗𝑗=1

𝑛𝑛𝑡𝑡𝑠𝑠_𝑠𝑠𝑡𝑡𝑟𝑟𝑡𝑡𝑐𝑐�𝐴𝐴𝑠𝑠,𝑗𝑗�       𝑅𝑅𝑓𝑓 𝐴𝐴 𝑅𝑅𝑅𝑅 𝑔𝑔𝐴𝐴𝐸𝐸,𝑌𝑌𝐴𝐴𝐸𝐸,𝑔𝑔𝑅𝑅𝐴𝐴𝐴𝐴
   Eq 40 

 
 

 

One should bear in mind that this weighting approach is originally proposed for the case I = 
AIC, which is based on a formal frame, contrary to the case of BIC, or YICmod. However, the 
simplicity of the approach proposed by Eq 38 is appealing for establishing a semi-formal 
hypothesis test in which an indicator Ii,,j  > Ii,≠j is declared as the winner for a given rainfall 
event i if p(Ii,,j  > Ii,≠j) > 0.95 (Eq 38), for a significance level of 95 %. Indeed, this method 
can be only considered as a formal statistical test for the case of I = AIC, evaluating the null 
hypothesis that ∆AICi,j > 0, based on the premise that the ∆AICi,j statistics follows a chi-
squared X2 distribution. Accordingly, an analytical expression for calculating the p-value can 
be obtained (Aho et al., 2014). However, this approach is valid exclusively for cases of 
normally distributed residuals and nested models, which is also problematic for the case study 
as RC is not nested with TFs and an analogue equation for BIC, YIC or YICmod is not direct. 
For the case of NS, testing for statistical significance of the victory of an event i can be done 
by verifying the null hypothesis of ∆NSi > 0 by a t-test (or Wilcoxon), depending on the 
normality of ∆NSi , which for our case is unknown (adapted from Fay et al., 2010). However, 
the test proposed in Eq 38 is retained in regards of keeping a unique decision criterion for 
identifying the winner model structure for each rainfall event i. With this information one can 
establish if the number of victories (events) in which p(I:,,j  >I:,≠j) > 0.95 for a given model 
structure j is high enough to proclaim it as significantly greater than the number of victories 
attributable to randomness. For a binomial distribution, this value will be of 48 victories for 
calibration (255 events) and 23 for verification (110 events) for a 95 % significance level, 
given the probability of winning by chance for a given structure in an event is 1/num_struc = 
1/7. Therefore, the model structure j can be considered to have a significant number of 
victories if the (number victories j)/(number of calibration events) is greater than 48 
(calibration) or 23 (verification); for any indicator I.   
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6.3 RESULTS AND DISCUSSION 
 

Model identification-calibration 
 

The methodology presented in Figure 37 is applied by testing different inputs u(t): Q, R and 
Rcorr. Considering the large amount of information from these results, the findings presented 
in this section are focused on the flow rate Q as the input u(t). The results for the R and Rcorr 
inputs are similar, and therefore they are further described for the discussion of the results at 
the end of the section. The preliminary analysis in Figure 37c is applied for the calibration 
dataset (255 events) by undertaking individual calibrations for each i rainfall event, delivering 
an estimation of p(θ/load)i and θopt i for  i = 1 : 255  for each model structure j = 1: num_str, 
leading to estimate AICi,j, BICi,j, YICmodi,j and NSi,j (Figure 37 and Figure 39).  

a) b) 

  
c) d) 

  
 
 

 

Figure 39. AICi,j, b) BICi,j, c) YICmodi,j and d) NSi,j, for  each  i = 1 : 255 calibration event and model structures  
j = 1: num_str 

From a visual exploration of the Ii,j values, the AIC :,7  and YICmod :,7 groups seem to be lower 
than the others (Figure 39a, c). However, this result should be confirmed by statistical 
analyses (S1 and S2 approaches). The NSi,j values for the studied TFs are in average NS > 0.8, 
reporting lower values for the RC model (Figure 39d). 

j j 

j j 
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Nevertheless, the mean value of NS > 0.6 for RC can be considered as acceptable in 
calibration, especially considering that this model structure has only two parameters. 
However, in order to verify from a more formal approach if any of the j= 1: num_str model 
structures is significantly more performant in calibration, in terms of Ii,j, the S1 and S2 
approaches are undertaken under the calibration context. The NS in calibration is considered 
as a complementary indicator, in order to verify that the proposed model structures are 
appropriate candidates. The NS is not included for being analysed under the S1 and S2 
approaches with calibration data, as a significantly higher NS value does not imply that a 
model is a more appropriate selection than another, as NS high values can be a result of over-
parametrization.   

 
 

Approach S1 for calibration: AIC, BIC and YICmod. 
 

The first step for S1 is to verify the normality of the I:,j  (j = 1 : num_str) groups, in order to 
define the most appropriate statistical test to look for significant differences between 
mean(I:,1) = mean(I:,2) = mean( I:,3)  = ... = mean(I:, j) = …= mean(I:, num_struc) (ANOVA or Kruskal-
Wallis test). The results of the Shapiro-Wilk test for this purpose with calibration rainfall 
events i =1 : 255 are presented in Table 7. 
 
 
Table 7. p-values of Shapiro-Wilk test for groups AIC:,j, BIC:,j and YICmod:,j from calibration events in model 
structures j = 1: num_str (p-value >0.05, hypothesis of normality accepted at a significance level of 95 %, values 
in light gray). 

 

 

MODEL STRUCTURE 

 
 (1-1) (2-1) (2-2) (3-1) (3-2) (3-3) RC 

IN
D

IC
A

T
O

R
S AIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

BIC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

YICmod 0.46 0.85 0.40 0.38 0.79 0.04 0.00 

 
 

 

The hypothesis of normality is rejected at a significance level of 95 % (Shapiro-Wilk test p-
value < 0.05) for at least one of the model structures I:,j=1:num_str in all the three indicators AIC, 
BIC and YICmod (Table 7). Therefore, the Kruskal-Wallis test is applied for verifying the 
null hypotheses: mean(I:,i) = mean(I:,j), for i and j = 1:num_str (Table 7). shows the p-values 
obtained from the Kruskal-Wallis test for each comparison of mean(I:,i) = mean(I:,j), where 
the p-value < 0.05 are shown in black, meaning that mean(I:,i) ≠ mean(I:,j), for a 95 % 
significance level.   
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a) b) 

  
c)  

 

 

Figure 40. p-values of Kruskal-wallis test for comparisons of groups mean(I:,i) = mean(I:,j), for all j = 1:num_str 
in calibration, with I: a) AIC:,j, b) BIC:,j and c) YICmod:,j (p-value < 0.05 hypothesis of equal means rejected at a 
significance level of 95 %, comparisons in black). 

Kruskal-Wallis test reported strong enough statistical evidence (p-value < 0.05) that the AIC 
and YICmod indicators for the RC model are significantly lower than for all the other TF 
model structures with the calibration dataset (black rows and columns in Figure 40a, c). This 
finding strengths the complementariness of the proposed indicators (AIC, BIC and YICmod), 
as e.g. analyses are not conclusive regarding the BIC (Figure 40b). One can conclude from 
this S1 approach in the calibration stage that RC is a promising model structure, which offers 
a suitable balance between performance (mean NS > 0.6 in Figure 39d) and the number of 
parameters and their parametric uncertainties (AIC and YICmod). No particular conclusions 
can be drawn from the results among the different TFs.  

   
Approach S2 for calibration: AIC, BIC and YICmod. 
 
 
S2 is proposed as an alternative approach to S1 aimed to generalize the model selection based 
on an indicator I given the inter-event variability. For the calibration events, the following 
results are obtained regarding AIC, BIC and YICmod indicators (Figure 41).  

 

 

j j 

j 

p-value 

p-value 

p-value 
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a) b) 

 
 

c)  

 

 

 

Figure 41. number of victories for model structure and group I:,i a) AICi,j, b) BICi,j and c) YICmodi,j for i = 1 : 
255 calibration events and the model structures j = 1 : num_str with 48 victories as the threshold for a 
significance level of 95 % 

The S2 analysis confirmed the promising results obtained for the RC model structure by the 
S1 approach for the calibration dataset. This model is found to be the winner more times (220) 
than what can be attributed to randomness regarding the AIC and YICmod indicators (48 
victories, for a significance level of 95 %, see Eq 38). Therefore, from calibration analyses, 
the RC model can be a reasonable recommendation in case that verification tests are not 
available. The verification is undertaken with the i = 256 : 365 events in further analyses.  
 

Model identification- verification 

For any of the j = 1 : num_str model structures, the marginal p(θ/load) function could not be 
represented by num_c > 1 conditional functions p(θ/load, Tnum_c), as no clear association 
between characteristics of inputs u(t)obs (e.g. max., min., mean, volume, duration, ADWP) and 
the different p(θ/load, Tnum_c) functions could be established (methodology from Chapter 4). 
Therefore, the global estimation of p(θ/load) is proposed to be calculated as the marginal 
distribution sum of representative local estimations of p(θ/load)i  (θopt i estimations with NS < 
0.8 are discarded as unrepresentative) and θopt = mean(p(θ/load)) for all models structures 
(Figure 37d). 

 

j j 

j 
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For the case of verification, different indicators I are proposed than for the calibration stage. 
As the NS is not susceptible to over-parametrization with verification data, it is included as 
another comparative indicator I, jointly with parametric and total ARIL and POCmod, i.e. 
ARILtoti,j, POCmod toti,j, ARILpari,j, POCmod pari,j, and NSi,j, (calculations in Figure 42).  

 

a) b) 

  
 
c) 

 
d) 

  
 
 
e) 

 

 

 

 

Figure 42. a) ARILpari,j, b) POCmod pari,j, c) ARILtoti,j, d) POCmod toti,j and e) NSi,j, for  each  i = 256 : 365 
verification event and model structure j = 1: num_str 

 
From a visual exploration of the Ii,j values, the ARILpar:,7 and ARILtot:,7 (RC model) groups 
seem to be lower than for the other model structures (Figure 42a, c). The POCmod par and 
POCmod tot are nearly one in all cases (Figure 42b, d), given the size of the ARIL values. The 

j j 

j j 

j 
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NSi,: (for all model structures) values are in average about 0.6, which might be considered as 
still unsatisfactory for the verification stage. However, in order to evaluate if any of the model 
structures is performing significantly better, the S1 and S2 approaches are undertaken with 
verification events. 

 
 
Approach S1 for verification: ARILpar, POCmod par, ARILtot, POCtot and NS. 
 
 
Results of the Shapiro-Wilk test with verification events i = 256 : 365 are presented in Table 
8.  
 
 
Table 8. p-values of Shapiro-Wilk test for groups ARILpari,j, POCmod pari,j, ARILtoti,j, POCmod toti,j and NSi,j, 
from verification events in model structures j = 1: num_str (p-value >0.05, hypothesis of normality accepted at a 
significance level of 95 %). 

 
 

MODEL STRUCTURE 
 

 (1-1) (2-1) (2-2) (3-1) (3-2) (3-3) RC 

IN
D

IC
A

T
O

R
S ARIL par 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ARIL tot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

POCmod par 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

POCmod tot 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

NS 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 
 

 

The hypothesis of normality is rejected at a significance level of 95 % (Shapiro-Wilk test p-
value < 0.05) for all the model structures and in all the verification indicators (Table 8). 
Therefore, the Kruskal-Wallis test is applied for verifying the null hypotheses: mean(I:,i) = 
mean(I:,j), for i and j = 1:num_str (Figure 43).  
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a) b) 

  
 
c) 

 
d) 

  
 
e) 

 

 

 

Figure 43. p-values of Kruskal-Wallis test for comparisons of groups mean(I:,i) = mean(I:,j), for all j = 1 : num_str 
in verification, with I: a) ARILpari,j, b) POCmod pari,j, c) ARILtoti,j, d) POCmod toti,j and e) NSi,j, (p-value < 
0.05 hypothesis of equal means rejected at a significance level of 95 %, comparisons in black).  

Kruskal-Wallis confirms for a significance level of 95 % (p-value < 0.05) that the ARILpar 
and ARILtot indicators for the RC model are significantly lower than for most of the TFs in 
verification (comparisons in black in Figure 43a, c). The NS values for model structure TF3,2 
are significantly lower than for all other cases in verification. Furthermore, the NS for RC (2 
parameters) is significantly higher than TF0,0 (1 parameter) (p-value <0.05). Indeed, no 
conclusive information is obtained from the POCmod par and POCmod tot indicators, due to 
the magnitude of the ARIL values (Figure 42a, c). One can also conclude from this S1 
approach in the verification stage that the RC performed significantly better than the TFs, 
regarding the size of the uncertainty intervals obtained in simulation. No particular 

j j 

j j 

j 

p-value 
p-value 

p-value 

p-value 
p-value 
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conclusions can be drawn from the results regarding comparisons of the NS values, as the 
performances for all model structures are very similar (NS about 0.6) (Figure 42e and Figure 
43e).  
 
Approach S2 for verification: ARILpar, POCmod par, ARILtot, POCtot and NS. 
 
For the verification events, the following results are obtained with S2 regarding ARILpar, 
POCmod par, ARILtot, POCmod tot and NS indicators (Figure 44). 

a) b) 

  
c) d) 

  
e)  

 

 

  
Figure 44. number of victories for model structure and group I:, a) ARILpari,j, b) POCmod pari,j, c) ARILtoti,j, d) 
POCmod toti,j and e) NSi,j,  for  each  i = 256 : 365 verification event and the model structures j = 1: num_str with 
23 victories as the threshold for a significance level of 95 % 

The S2 approach does not bring evidence towards recommending a best model structure from 
the analyzed cases in the verification data. Although the ARILpar and ARILtot are the only 

j j 

j j 

j 
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indicators in which any model structure reported significant victories (14 and 18 events for 
the case of RC in Figure 44a and Figure 44c, this number of victories can be attributed to 
randomness (23 for significance level of 95 %, from a binomial distribution).  

Calibration analyses indicated that the RC model structure is a reasonable recommendation 
from a parsimony perspective (avoiding over-parametrization, with only 2 parameters r and 
M0), as AIC and YICmod indicators are significantly lower than for the TFs by the S1 and S2 
approaches, keeping an average NS:, j > 0.6. This preliminary analysis is recommended in the 
HI-DBM framework, especially when verification data is insufficient, unrepresentative or 
computationally demanding. In the verification stage, the S1 approach reported significantly 
lower ARILpar and ARILtot values for the RC model than for the TFs. Furthermore, the NS 
for RC (2 parameters) is significantly higher than TF0,0 (1 parameter) (p-value < 0.05). No 
conclusive results are obtained in terms of reliability (POCmod indicators), given the 
magnitude of the ARIL values. 
 
A potential benefit from modelling the TSS load with TFs, i.e., in form of physically 
interpretable linear differential equations, is that information from previous time-steps 
(measured Q and/or simulated TSS load) is explicitly included in the calculations. However, 
the benefit of this approach remains unproved regarding the obtained results, as the 
performance indicators of the RC model are superior to the tested TFs, for cases in which 
significant conclusions could be drawn (AIC and YICmod in calibration and ARIL in 
verification). The benefits of RC compared to TFs might be explained from the non-linear 
properties of RC, as the implicit relation between Q and TSS load seems to be governed by a 
non-linear power law (results presented in Chapter 3 Figure 16, comparable to Daly et al., 
2014 and Sun et al., 2015). The TFs approach might be also restrictive for non-linear 
processes due to their linear nature. This can be also supported in the similarities of the 
averages of NS = 0.6 in verification for RC and TFs, which might be a result of the inherent 
non-linear power law relation between TSS and Q. 

The selection of the RC model structure as the most suitable option among the proposed 
models might by tempting, given the exposed reasons. However, the selection of a single 
model structure for cases in which different indicators I suggest a different “best” option is 
more challenging. For those cases, the following approaches can be recommended: (i) 
modeler’s principal interest (e.g. accuracy from NS, precision from ARIL or reliability from 
POCmod), (ii) weighting strategies among the indicators I (Marshall et al., 2007), multi-
objective analysis (Huang and Liu, 2010) with further statistical analysis (e.g. Pareto multi-
objective solutions, see e.g. Ye et al., 2014).   

On the other hand, the RC model structure by itself can be still considered as an unsatisfactory 
model, given that NS < 0.6 for about 50 % of the verification rainfall events and ARILpar > 
2.5 about 75 % of the verification events. On the other hand, the generally deficient 
performances of RC and TFs (TCP descriptions) can be also an evidence of the lack of a 
potential M process (TVP description). Therefore, the RC is retained for Chapter 7 as an 
appropriate enough description of W, towards reconstructing a potentially missed M process 
(TVP) by this TCP description. These results of M can be compared to the traditional 
accumulation/wash-off idea in Chapter 7.     

The results obtained when the input u(t) is equal to the flow rate Q are analogous for the R 
and Rcorr cases. The main difference is that all indicators from the verification stage (i.e. NS, 
ARIL and POCmod) present lower performances (e.g. mean NS = 0.4), although conserving 
similarities in terms of relative comparisons and the best model selection. This uncertainty 
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reduction by including the flow rate in TSS calculations has been previously reported 
(Sikorska et al., 2015), contrary to previous studies that claim the rainfall as a better predictor 
of TSS than Q (e.g. Vaze and Chiew, 2002; McCarthy et al., 2012; Manz et al., 2013). On the 
other hand, more performant models with Q as input might be expected when the predicted 
variable is the TSS load, as these values are directly calculated from the flow rate and the TSS 
concentrations. The rainfall correction applied in Chapter 5 to events with high measurement 
errors in rainfall Rcorr, led to improve the results compared to the use of the rainfall R as the 
predictor in RC and TFs model. Nonetheless, Rcorr did not show better performances than 
when Q is used as the predictor. This can be explained by the fact that Rcorr is directly 
obtained from Q (see details in Chapter 5), and therefore no information seems to be added by 
using Rcorr as a predictor instead of Q. Coupling a model by detailing rainfall and flow rate as 
two different inputs may be promising (e.g. Mannina and Vivianni, 2010; Métadier, 2011; 
Hong et al., 2016), when having enough information about the load separation in one 
component produced by rainfall and the other one from flow rate (surface and in the sewer), 
in order to avoid identifiability problems (Bonhomme and Petrucci, 2017). No relation 
between rainfall events with high rainfall errors (from Chapter 4) and bad performances of 
TSS models is found: only 42 % of the events highly influenced by rainfall errors (from 
Chapter 4) have also non-reproducible (NS < 0.8) TSS loads (by Q, R or Rcorr as input). This 
finding is contradictory to Manz et al. (2013), who found a relation between rainfall errors 
and TSS model performances, although from a different experimental setting and conceptual 
approach.       

The rainfall events for which RC reported unsatisfactory results (NS < 0.8) are neither 
reproducible by TFs, for the vast majority of cases (in calibration and verification). In 
addition, a PCA is undertaken, aimed to identify potential relations between the 
representability of a given event by a TCP model (RC or TFs) (events with NS < 0.8 red 
points and NS > 0.8 grey points) and physical characteristics of the event (max flow rate 
(m3/s), mean flow rate (m3/s), ADWP (days), beginning of the event (days)) (scaled by a z 
normalization, see Kreyszig, 1979) (Figure 45).  

 
Figure 45. PCA analysis with explanatory variables: max flow rate, mean flow rate, beginning of the event and 
ADWP, for the differences between calibration events with NS < 0.8 (red points) and NS > 0.8 (grey points), for 
the RC model. 
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The results in Figure 45 might lead to conclude that, if the unsatisfactory performances of the 
RC model (events with NS < 0.8 in red) are due to the lack of a potential deterministic 
process, this process is not dependent on the ADWP, as assumed by the vast majority of 
accumulation/wash off models (no separation between red and grey events) (Figure 45). 
Furthermore, a Wald Wolfowitz test (Wald and Wolfowitz, 1943) suggested that the 
distribution of these “red” or “grey” events in time, as a time series vector of binary states, is 
random (p-value < 0.05). 

 

6.4 CONCLUSIONS 
 

Different linear Transfer Functions (TF) models are tested as alternative descriptions to the 
non-linear traditional Rating Curve (RC) model, aimed to scrutinize for better representations 
of the stormwater TSS load dynamics as a function of flow rate or rainfall, without 
considering a virtual mass over the catchment decreasing process in time. The benefits of 
using flow rate or rainfall as inputs in the models are also discussed. The advantages of 
implementing the TFs for this “omitted virtual mass approach” compared to RC models 
remains unproved regarding the obtained results, as the performance indicators of the RC 
model are superior to those of the tested TFs, for cases in which significant conclusions could 
be drawn (especially parsimony in calibration and precision of the simulations). This can be 
explained from the non-linear properties of RC, as the implicit relation between flow rate and 
TSS load seems to be governed by a power law (Chapter 3).  

The rainfall correction applied in Chapter 5 to events with high measurement errors in rainfall 
improves the results compared to the use of the rainfall as the predictor in RC and TFs model. 
However, rainfall corrected according Chapter 5 does not show better performances than 
when the flow rate is used as the predictor. This can be explained by the fact that the rainfall 
corrections are directly estimated from the flow rate (see details Chapter 5), without adding 
information by using corrected rainfall as a predictor instead of the flow rate. No relation 
between rainfall events with high rainfall errors (from Chapter 4) and bad performances of 
TSS models is found: only 42 % of the events highly influenced by rainfall errors (in Chapter 
4) have also non-reproducible TSS loads by the flow rate or rainfall as input. Furthermore, a 
comparison between RC and TFs models is developed when the flow rate, rainfall or mean 
areal rainfall estimations from Chapter 5 are used as inputs. The main difference is a lower 
modelling performance when rainfall is used as input rather than flow rate (from mean NS of 
0.6 to 0.4 in verification events). On the other hand, the RC by itself can be still considered as 
an unsatisfactory model (e.g. NS about 0.6 in verification with flow rate as input), suggesting 
the lack of an essential missing process in this model. The unsatisfactory performances of the 
RC model are found to be independent of the ADWP, suggesting that a potential missed 
process in the RC model (if there is one) is not necessarily linked to temporality. 
Complementarily, statistical tests strengthen that the occurrence of these non-reproducible 
events by the RC model shows a random distribution in time. 
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CHAPTER 7. REVISITING CONCEPTUAL STORMWATER QUALITY 
MODELS BY RECONSTRUCTING VIRTUAL STATE-VARIABLES 

 

Extended version of:  

Sandoval S., Vezzaro L., Bertrand-Krajewski J.-L. (2017). Revisiting conceptual stormwater 
quality models by reconstructing virtual state-variables. Proceedings of the 14th International 
Conference on Urban Drainage, Prague, Czech Republic, 10-15 September, 3 p. 

 

7.1 INTRODUCTION AND BACKGROUND 
 
The RC model calibrated in Chapter 6 and selected from comparisons with multiple TFs (TCP 
models) can be directly linked with any traditional TVP formulation of M, by making M0 in 
the RC model (Eq 25) a time variable parameter (TVP). Indeed, one can ask for the existence 
of another deterministic global process missed by the RC model, essential to represent the 
pollutant loads, which is oversimplified or misinterpreted by the accumulation/wash-off idea.  
 
For this purpose, Time Variable Parameters (or virtual processes) (TVP) concept has been 
introduced in the hydrological and environmental context as a powerful statistical model-
based approach to describe unobserved processes or state variables (see e.g. DBM 
applications). The idea of TVP is to deliver a reasonable reconstruction, under certain 
hypotheses, of how one or multiple parameters of a mathematical model might vary in time, 
in order to make the output of the model to match the observed data. Different TVP 
estimation techniques are cited in the literature, where the time variations in the parameters 
can be assumed e.g. stochastic processes (Random Walk or Integrated Random Walk) 
(Pedregal et al., 2007; Young, 2012). However, most of these approaches are developed for 
linear models, without a wide flexibility in the hypotheses about the error model for the TVP 
estimation. From this perspective, Bayesian calibrations have emerged as a promising model-
based approach for reconstructing unmeasured inputs or state variables, adaptable to non-
linear and complex model structures, including flexibility in the error model of the 
reconstructed state variable (e.g. Sun and Bertrand-Krajewski, 2013a; Leonhardt et al., 2014). 
 
Therefore, this Chapter proposes to undertake Bayesian reconstructions of the “virtual” state 
variable M by modifying the RC traditional model in Eq 25, with r as a calibration parameter 
and replacing M0 by a TVP 𝐸𝐸�(t) (kg) (formulation F1). This 𝐸𝐸�(t) reconstruction can be 
directly compared to a time constant or variable traditional M formulation (e.g. Eq 24). As a 
complementarily analysis, a formulation F2 is explored, in which the RC model is modified 
with �̂�𝑣(t) (-) as the TVP to be reconstructed and M0 as a calibration parameter. The proposed 
approach led to revisit the accumulation/wash-off idea by using Bayesian TVP 
reconstructions and the RC model, scrutinizing for evidence of a deterministic global process 
and its interpretability as a “mean” state of available pollution washed by rainfall. 
Furthermore, this accumulation/wash-off model structure is sought to be reformulated by 
analysing the inter-event repeatability of the reconstructed state variables.  
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7.2 MATERIALS AND METHODS 
 

Bayesian reconstruction of virtual state variables by TVPs 
 

The reconstruction of a virtual state variable by Time Variable Parameters (TVP) consists in 
solving a calibration problem where a TVP is represented as an additional time series of 
parameters. In principle, every time-step of a TVP can be considered as an independent 
parameter in the inference scheme, with a length equal to the length of the output series load. 
However, the dimensionality of this problem will be massive, risking over-parametrization 
and delivering incorrect estimations (Vrugt et al., 2009). To avoid over-parametrization, the 
TVP time series has usually a coarser temporal resolution than the output data. Therefore, a 
time window strategy is adopted, reducing the dimensionality of the problem by dividing the 
TVP reconstruction into equally spaced time windows (see e.g. Sun and Bertrand-Krajewski, 
2013a). Further test with non-equally spaced time windows (see e.g. Chapter 5) reported 
analogue results.  
This TVP can be estimated jointly with the other set of calibration parameters θ (r for F1 and 
M0 for F2) by means of a Bayesian inference scheme. Therefore, θ and TVP are defined as 
random variables, where their joint posterior probability density function (PDF) is calculated 
by Eq 41 as p(θ, TVP/ Q, load), given the input Q(t) and output loadobs(t) data with some prior 
knowledge about θ and TVP (from BATEA in Kuczera et al., 2006, see application Kavetski 
et al., 2006a). p(θ, TVP/ Q, load) is a posterior probabilistic characterization of θ and TVP 
(𝐸𝐸�(t) for F1 or �̂�𝑣(t) for F2), in which the values with the maximum likelihood are assumed be 
the “optimal” parameters θopt and TVPopt (𝐸𝐸�(t)opt for F1 or �̂�𝑣(t)opt for F2).  
 

 
where n is the total observed load values in 𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑜𝑜𝑜𝑜𝑠𝑠(𝑑𝑑). 𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄(𝑑𝑑)𝑠𝑠, θ,𝑇𝑇𝑆𝑆𝑃𝑃) is the 
simulated load by the input flow rate series 𝑄𝑄(𝑑𝑑) and a set of θ and TVP. p(θ) and p(TVP) 
represents a prior belief about the probability that a candidate set of θ and TVP values are 
“true” (assumed as a non-informative uniform distribution for all cases).  
 
Eq 41 allows to explicitly separate the model error of TVP (second Pi product) from the error 
model of the output load (first Pi product). With the purpose of finding a TVP estimation “as 
constant as possible” (and therefore less informative), the error model of TVP (second Pi 
product) is assumed to be proportional to TVP’s own variance Var(TVP). Both error models, 
for the load and TVP estimations (first and second Pi product resp.), are assumed to be 
independent and normally distributed, with the error variances 𝜎𝜎�𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑡𝑡2 and 𝜎𝜎�𝑇𝑇𝑆𝑆𝑃𝑃 

2, 
respectively. 𝜎𝜎�𝑅𝑅𝑣𝑣𝑅𝑅𝑑𝑑𝑡𝑡 

2  is considered heteroscedastic, being equal to the square of the standard 
uncertainty of each observed value loadobs(t) (e.g. Sun and Bertrand-Krajewski, 2013a). On 
the other hand, 𝜎𝜎�𝑇𝑇𝑆𝑆𝑃𝑃 

2 is considered to be homoscedastic and is estimated as another 
parameter in the set θ (e.g. Sage et al., 2015), expressed as 𝜎𝜎�𝐸𝐸 

2 (kg) for F1 and 𝜎𝜎�𝑣𝑣 2 (-) for 
F2. The same Eq 41 is used for calibrating the RC model, by omitting the second Pi product 
term, delivering p(θ/Q, load) as a posterior probabilistic characterization of θ (with θopt also 
for the “optimal” parameters) (results from Chapter 6). 
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The DREAM algorithm (Vrugt, 2016) is applied to solve Eq 41 and to evaluate the three 
formulations (the traditional RC, the F1 and F2 formulations) for the different θ and TVP 
variants (Table 9). The logarithmic form of Eq 41 is implemented to ensure numerical 
stability and a max. number of simulations of 6x105 is used with a max. of 30 parallel Markov 
Chains to reach convergence (Gelman and Rubin RB convergence criteria > 1.2, see Gelman 
and Rubin, 1992). The TVPs reconstruction is undertaken with a resolution of 12 time 
windows (i.e. equivalent to 12 parameters, see Table 9), balancing between the convergence 
of the algorithm (RB > 1.2) and capturing the global dynamics of the TVPs (see application in 
Sun and Bertrand-Krajewski, 2013a). Table 9 summarizes the parameters min. and max. 
values search ranges in the prior uniform distributions p(θ) and p(TVP) in Eq 41. These 
ranges are defined for r and M0 from the literature (Kanso et al., 2005) and are equally 
adopted for each window of 𝐸𝐸�(t) and �̂�𝑣(t). The max. of the error variances 𝜎𝜎�𝐸𝐸 

2 and 𝜎𝜎�𝑣𝑣 2 are 
defined, respectively, as 4 times the standard deviation of M0 and r in the RC calibration 
(Chapter 6).  
 
 
Table 9. DREAM solving of Eq 41 for virtual state variables reconstruction formulations, specifying the set of 
parameters θ and TVP, the total number of parameters and the min. and max. search range in the prior 
distributions p(θ) and p(TVP). 

Formulation Parameters θ  
Parameters 

in TVP  

Number of 
parameters  

θ + TVP 

Min/max search range values 

RC model 
(Chapter 6) 

r (-), Mo (kg)  - 2 r [0, 5] ; Mo[0 , 8e5]  

F1 r (-), 𝜎𝜎�𝐸𝐸 
2 (kg) 𝐸𝐸�(t) (kg) 2 + 12 = 14 r [0, 5] ; 𝐸𝐸�(t) [0 , 8e5] for each t ; 𝜎𝜎�𝐸𝐸 

2 [0 , 2.4e5] 

F2 M0 (kg), 𝜎𝜎�𝑣𝑣 2 (-) �̂�𝑣(t) (-) 2 + 12 = 14 M0 [0 , 8e5] ; �̂�𝑣(t) [0 , 5] for each t ; 𝜎𝜎�𝑣𝑣 2 [0 , 1.5] 

 
The parameters are estimated for each individual rainfall event (event-based calibration). This 
eliminated the need for a “dry build up” model (see e.g. Freni et al., 2009; Chow et al., 2015) 
as the initial sediment mass (M0) is estimated for each event. 
 
For each i-th calibration event, the parameter estimation results (posterior probability and 
optimal parameter sets) provide the basis for the model evaluation. This is performed by 
looking at: (i) the Nash-Sutcliffe efficiency (NSi) between simulated (loadsim(t)i) and observed 
(loadobs(t)i) loads, besides the well-posedness and identifiability of the Bayesian inference p(θ, 
TVP /Q, load)i (intra-event identifiability); (ii) similarities in the shape or dynamics of TVPopt i 
with estimations for other events (inter-event identifiability from repeatability); (iii) the 
capacity of a given set of θopt i and TVPopt i to represent another rainfall event measured by NSi 
(inter-event transferability, see Bardossy and Singh, 2008) and (iv) formulate further 
hypotheses about a potential missing process based on physical knowledge about the system 
and the obtained results (interpretability). 
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7.3 RESULTS AND DISCUSSION 

 
With illustrative purposes, the calculations related to the formulations proposed in Table 9 are 
illustrated for an example rainfall event i = 16 in Figure 46 and Figure 47 (event from 
23/09/2004 22:00 to 24/09/2004 07:00). The experimental data is used with Q(t) hydrograph 
as the input (Figure 46a) for representing the TSS load(t) pollutograph (Figure 46b) (black 
solid lines with 95 % coverage bands in grey). The TSS load simulated by the calibrated local 
set of parameters θopt 16 for the RC model is compared to results from F1 and F2 formulations 
(with θopt 16 and TVPopt 16) in Figure 46b (green, blue and red solid lines resp.).  
 
 
 
a) b) 

 
 

Figure 46. a) measured Q hydrograph (solid black) and b) measured TSS load pollutograph (solid black) 
including 95 % coverage intervals (grey bands), including simulations with θopt 16 and TVPopt 16 for RC, F1 and 
F2 (solid green, blue and red lines resp.).  

 

For the formulations F1 and F2 in Figure 47 (in blue and red resp.), the estimations of TVP16 
(𝐸𝐸�(t)16 or �̂�𝑣(t)16) are represented with 𝐸𝐸�(t)opt 16 for F1 (blue solid line) and �̂�𝑣(t)opt 16 for F2 (red 
solid line), jointly with their blue and red coloured 95 % coverage intervals (Figure 47a and 
Figure 47b, resp.). Estimations of the θ16, i.e., r(-); 𝜎𝜎�𝐸𝐸 

2
16 (kg) (for F1) and M0 16 (kg); 𝜎𝜎�𝑣𝑣 2(-) 

(for F2) are shown in two correlation plots (blue in Figure 47c and red Figure 47d, resp.).  
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Figure 47. Results from event 16, TVPopt 16 reconstructed time series (solid line) with 95 % coverage intervals 
(colored bands). a) 𝐸𝐸�(t) 16  for F1( blue). b) �̂�𝑣(t) 16  for F2 (red). The correlation matrix of θ16 for c) r16 (-); 𝜎𝜎�𝐸𝐸 

2
16 

(kg) (F1 blue) and d) M0 16 (kg); 𝜎𝜎�𝑣𝑣 2 (-) (F2 red). 

 
Intra-event Identifiability   
 
Although there is an intrinsic correlation between RC model parameters (therefore for F1 and 
F2) due to the mathematical structure of the model (Kanso et al., 2005), the intra-event 
identifiability regarding θ and TVP gives promising results. The RC model local calibrations 
report unsatisfactory adjustments between the simulated and measured loads, with NSi < 0.8 
for 142 of the 255 events (56 %) (from Chapter 6).The F1 or F2 formulations achieve greater 
NS values in all the events, increasing the values of NSi > 0.8 for 60 % of cases in which RC 
reported NSi < 0.8. In the example shown in Figure 46, the NS for the RC model (green) is 
0.65, while the F1 (blue) and F2 (red) formulations show NS above 0.8. This analysis 
encourages the applicability of the studied model structures with local estimations of θopt i and 
TVPopt i, supporting the reasoning behind the F1 and F2 reconstructions as potential processes 
unrepresented by RC.  
However, these preliminary results should be analysed under a transferability perspective, as 
this improvement in NS values can be simply a numerical effect resulting from increasing the 
number of parameters in F1 or F2 formulations. For the case of TVPopt i, undesired 
correlations between the measured loadobs(t)i and the TVP parameters 𝐸𝐸�(t)opt i or �̂�𝑣(t)opt i  are 
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above 0.6 and 0.5 (respectively) for only 25 % of the events. This result brings evidence that 
the TVPopt i reconstructions are contributing with additional information (also as NS values are 
higher than for RC), without mimicking the measured load dynamic. Further tests with the 
CAPTAIN Toobox in Matlab (Pedregal et al., 2007) for TVP estimations, using comparable 
model structures (TFs), reported unsatisfactorily high correlations with the TSS load. The 
Reverse Modelling is another technique to reconstruct virtual state variables recommended to 
be merged with Bayesian estimations in Chapter 5, under a hydrological context. However, 
Reverse Modelling was found as an unfeasible reconstruction technique by using the RC 
model, given also the high correlations between the reconstructed TVPs with Q and TSS load. 
The strength of the proposed Bayesian method for reconstruction of TVPs relies in the 
flexibility regarding the likelihood function, including an appropriate error term of the TVPs, 
towards a “non-informative” reconstruction (second Pi product in Eq 41). 
 
For the case of θ parameters, the couples ri; 𝜎𝜎�𝐸𝐸 

2
i (for F1) and M0 i; 𝜎𝜎�𝑣𝑣 2i (for F2) exhibited an 

appropriate parametric identifiability in terms of their PDFs unimodality, with spurious 
parametric correlations Rho(ri; 𝜎𝜎�𝐸𝐸 

2
i) < 0.3 (F1) and Rho(M0 i; 𝜎𝜎�𝑣𝑣 2i) < 0.11 (F2), in 90 % of 

the i = 1 : 255 events (see example event: Rho(r16; 𝜎𝜎�𝐸𝐸 
2

16) = 0.05 in Figure 47c and Rho(M0 

16;  𝜎𝜎�𝑣𝑣 216) = 0.12 in Figure 47d). Although the PDFs of the error variances (𝜎𝜎�𝐸𝐸 
2

i = 1:255 (F1) 
and 𝜎𝜎�𝑣𝑣 2i = 1:255 (F2)) are sharper close to the max. value of the search ranges given in Table 9 
(see example event 𝜎𝜎�𝐸𝐸 

2
16 and 𝜎𝜎�𝑣𝑣 216 in Figure 47c and Figure 47d), the results are retained, as 

higher max. limits tended to ill-posedness in the inferences. 
 
Inter-event identifiability from repeatability  
 
A functional clustering by k-centre method is applied to identify groups of the TVPopt time-
varying curves with similar shapes (Chiou and Li, 2007, see environmental applications of 
functional data classification in e.g. Ternynck et al., 2016). A number of k groups is defined 
in order to visualize k different potential “repeated” behaviours in the set of optimal TVPopt 
curves. For interpretability, each of the TVPopt i curves is standardized by the transformation 
z(TVPopt i) with zero mean and unitary standard deviation (Kreyszig, 1979). For the F1 
formulation, applying the Chiou and Li (2007) functional method with e.g. k = 2 groups 
allows separating the 𝐸𝐸�(t)opt into two “similar” clusters, shown in Figure 48a (light and dark 
blue groups of curves, corresponding to about 57 % and 43 % of the events). The mean curves 
of each group are shown in the figure on the right, along with the corresponding 95 % 
coverage intervals. 
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a) b) 

  
c) d) 

  
 

Figure 48. Curves of TVP parameters (a) 𝐸𝐸�(t)opt i (blue) (c) �̂�𝑣(t)opt i (red) grouped by k = 2 clusters (light and dark 
colours groups). Mean curve and 95 % confidence intervals for (b) 𝐸𝐸�(t)opt i (blue) and (d) �̂�𝑣(t)opt i (red) (light and 
dark colours groups). 

 

The traditional interpretation of M can be preliminarily associated to the dark blue group, as 
the mean curve shows an apparent decaying trend (Figure 48b). However, this hypothesis 
would lack of an immediate physical interpretation for the remaining 57 % events (light blue 
group). Furthermore, the trends of the mean curves for the dark blue group (negative trend) 
and light blue group (positive trend) show to be statistically insignificant, due to the strong 
variability of the curves inside each light or dark blue group. This effect of randomness is 
stronger when the variability of 𝐸𝐸�(t)i (estimated by calculating the 95 % coverage intervals 
from the posterior distributions) is considered. Similar conclusions are drawn for clustering 
the 𝐸𝐸�(t)opt i curves into more groups (k > 2), and for the F2 formulation (Figure 48c and 
Figure 48d). These results reveal the difficulty in identifying or characterizing a unique virtual 
process potentially missed by the RC regarding an inter-event scale, given the lack of 
repeatability of the shapes of the TVPopt i curves. 
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Inter-event transferability  
 
The transferability of TVPs is analysed based on the methodologies proposed in Chapter 4, 
investigating how a given TVPopt i time series is able to reproduce another event from the 
dataset. Results for 𝐸𝐸�(t) or �̂�𝑣(t) are analogue, therefore discussion focuses on 𝐸𝐸�(t)opt,i 

estimations. Each of the 29 most transferable estimations of 𝐸𝐸�(t)opt i is able to explain at least 
30 rainfall events (NS > 0.8). On the other hand, for the “optimal” local estimations θopt i of 
RC, 60 estimations are able to explain at least 30 events (NS > 0.8). The flatter curves from 
𝐸𝐸�(t)opt i = 1:255 tend to be more transferable, as they resemble the constant values in the RC 
formulation. These results stress the low transferability of the potential missing processes (F1 
or F2) to further rainfall events. 
 
Interpretability 
 
These results bring evidence of a potential missing process in the RC model. Although both 
processes (𝐸𝐸�(t) or �̂�𝑣(t)) are good candidates to explain RC obstacles from an intra-event 
analysis, there is no evidence that F1 or F2 is a more valid approach than the other. Indeed, 
the F1 or F2 formulations show the same explanatory capacity, in the sense that none of them 
performs better. This highlights the challenge in terms of identifiability and unicity of a 
potential process missed by the RC model structure, which is hardly identifiable from an 
inter-event analysis. The low repeatability of the reconstructed TVP curves might suggest as 
more adaptable a random description of a potential missing essential process by RC models, 
rather than a deterministic interpretation regarding an inter-event scale.   
 

7.4 CONCLUSIONS 
 
This work suggests the missing representation of an essential process in the traditional Rating 
Curve model based on the observations from 255 rain events (from Chapter 6). The results 
indicate that the high unrepeatability of this missing process makes it hardly interpretable in 
terms of a virtual unique state of available TSS mass in the catchment that is decreasing over 
time, as assumed by a great number of traditional models. This Chapter shows how high-time 
resolution quality measurements can provide a support to revisit and question existing models, 
and to potentially allow developing new stormwater quality model formulations. 
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GENERAL CONCLUSIONS PART 3 

 
Chapter 6 and Chapter 7 are aimed to revisit the traditional approach of accumulation wash-
off models to represent the stormwater TSS loads pollutographs at the outlet of large urban 
catchments (> 100 ha), based on different concepts from the HI-DBM framework (Young, 
2013), the Bayesian methods applied for reconstruction of virtual state variables presented in 
Chapter 5 (for mean areal rainfall estimation) and the calibration frame in Chapter 4.  
 
The first stage of Part 3 (Chapter 6) explored different linear Transfer Functions (TFs) models 
as a possible alternative to the traditional Rating Curve (RC) models, considering the case in 
which a virtual mass over the catchment decreasing process is omitted. The expected 
advantages of implementing TFs compared to the RC model are not verified, as the 
performance indicators of the RC model are superior to the tested TFs (especially parsimony 
in calibration and precision of the simulations). This can be explained from the non-linear 
properties of RC, as the implicit relation between flow rate and TSS load seems to be 
governed by a power law (described in Chapter 3).  
 
The benefits of using flow rate or rainfall as inputs in the RC model are also discussed. No 
relation between rainfall events with high rainfall errors (from Chapter 4) and bad 
performances of TSS models is found: only 42 % of the events highly influenced by rainfall 
errors (in Chapter 4) have also non-reproducible TSS loads by the RC model (NS < 0.8). 
Furthermore, a comparison between RC and TFs models is developed when the flow rate, 
rainfall or mean areal rainfall estimations from Chapter 5 are used as inputs. The main 
difference relies in a lower modelling performance when rainfall is used as input rather than 
flow rate (mean NS 0.6 to 0.4 in verification events). On the other hand, the RC model by 
itself can be still considered as an unsatisfactory model (e.g. NS about 0.6 in verification with 
flow rate as input), suggesting the lack of an essential missing process in this model. 
Furthermore, the unsatisfactory performances of the RC model are found to be independent of 
the ADWP, suggesting that this potential missed process is not necessarily linked to 
temporality, as assumed by the majority of accumulation/wash-off models. Complementarily, 
statistical tests strengthen that the occurrence of these not representable events by the RC 
model is randomly distributed in time.  
 
Chapter 6 suggests the missing representation of an essential process in the RC model based 
on the observations from 365 rain events, without further scrutinizing about how the shape or 
dynamics of this process could be. Therefore, Chapter 7 applies the Bayesian rainfall 
reconstruction method explored in Chapter 5 as a more general estimator of virtual state 
variables, which is used for undertaking an intra-event reconstruction of this potential missing 
process in 255 rainfall events. The results of Chapter 7 indicate that these potential missing 
processes, although identifiable at the intra-event scale, are hardly interpretable in terms of a 
unique state of a virtual available mass over the catchment that is decreasing over time, as 
assumed by a great number of traditional models. Furthermore, the reconstructed processes 
are highly unrepeatable regarding their shape, besides having a low transferability to other 
rainfall events (transferability notions established in Chapter 4). This study shows how high-
time resolution quality measurements can provide a support to revisit and question existing 
models, and to potentially allow developing new stormwater quality model formulations. 
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GENERAL CONCLUSIONS AND PERSPECTIVES 
 
 
 
The measurement of Total Suspended Solids (TSS) in urban drainage systems is often 
required for scientific, legal, environmental and operational reasons, as particulate matter 
constitutes a major source of surface water contamination (Ashley et al., 2004; Chebbo and 
Gromaire, 2004). However, the reliability of TSS measurements strongly depends on the 
quality of the collected samples, which should be representative of real field conditions in the 
monitored sewer pipe (Larrarte, 2008; Métadier and Bertrand-Krajewski, 2012). Therefore, 
appropriate data acquisition and validation methodologies for TSS measurements in urban 
drainage systems are required (Bertrand-Krajewski and Muste, 2007). The role of hydrology 
and rainfall measurements is recognized in TSS modelling, as rainfall is the driving process in 
the contamination of receiving water bodies by stormwater (Lee et al., 2002). Rainfall data 
and hydrological models are also known to be embedded with high uncertainties, impacting 
the performance of TSS stormwater models. Apart from uncertainties in rainfall and TSS data, 
the TSS stormwater traditional model structures have been widely questioned at the scale of 
large urban catchments, especially when reproducing data from online measurements (e.g. 
Métadier, 2011; Dotto et al., 2011). The manuscript is mainly developed with online flow 
rate, TSS and rainfall measurements from the Chassieu urban catchment (Lyon, France), 
monitored by the OTHU project (Field Observatory for Urban Hydrology - www.othu.org). 
Information includes 365 rainfall events measured between 2004 and 2011 (see a detailed 
description of the catchment in Chapter 1). 

Different hypotheses about why TSS models are still unsatisfactory have been explored, 
motivated by the following scientific questions: 

- Are TSS online continuous time series reliable and useful for modelling purposes?  

- Do this time series show bias or insufficient representativeness?  

- How to better calibrate rainfall-runoff models if model parameters are event-dependent?  

- If rainfall-runoff models are not satisfactory, could we assume that this is mainly due to 
errors in rainfall measurements and can we identify/correct them?   

- Are traditional TSS models appropriate when they are used with online continuous TSS time 
series instead of traditional samples?  

- Is there an event-dependent relation between rainfall errors and deficient performances of 
TSS models?  

- How could we revisit/improve TSS traditional models?  

In Chapter 2, different sampling strategies during rainfall events are simulated and evaluated 
by means of online TSS and flow rate measurements. The average relative sampling error and 
the residuals distribution are estimated from Event Mean Concentrations (EMCs) simulated 
by the studied strategies, compared to EMCs obtained by the complete time series from online 
monitoring of various rainfall events. For the Chassieu data set, the strategy with the sampling 
volume proportional to runoff volume between two samples, with constant sampling intervals, 
delivers the most representative results in terms of accuracy, precision and uncertainties 
propagation. Recommended sampling time intervals are of 5 min, with average sampling 
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errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, depending on 
the sampling interval. These results lead to hypothesize about the potential errors in TSS data, 
highlighting that data obtained from monitoring campaigns (sampling strategies) could still be 
used as an input for intra-event TSS models in the absence of online measurements. However, 
potential errors or biases in the EMCs by means of modelling strategies such as bias 
correction factors are recommended to be accounted for in the calibration process.  

In Chapter 3, the probability of underestimating the cross section mean TSS concentration is 
estimated to be approximately 0.88 or 0.64 for all the flow velocity values, by two proposed 
methodologies: the Simplified method (SM) and the Time Series Method (TSM). TSM shows 
more realistic TSS underestimations (about 39 %) than the SM (about 269 %). Differences 
between the two methods are mainly due to simplifications in SM (absence of TSS 
measurements and operation of the sampling system). SM can estimate the sampling depth at 
which the probability of over estimation is equal to the probability of underestimation (about 
5 % of the total depth, with the proposed hypotheses). SM assumes a significant asymmetry of 
the TSS concentration profile along the vertical axis in the cross section. This is compatible 
with the distribution of TSS measurements found in TSM. Furthermore, a power law 
describing the TSS as a function of flow rate is revealed, including higher variances of TSS 
for higher flow rates. Results from Chapter 2 and Chapter 3 provide insights towards an 
indicator of the measurement performance and representativeness for a TSS sampling 
protocol. 

In Chapter 4, the nature of model structure uncertainty and the inter-event parametric 
variability is addressed for a conceptual rainfall-runoff model based on the idea of assessing 
the parameters marginal probability function (obtained by event-by-event calibrations) into 
conditional probability functions (obtained by grouping the parameters from the event-by-
event calibrations). The results stress the importance of carefully selecting the data to be used 
for parameter estimations and further hydrological simulation, considering that the proposed 
parameter estimation strategy significantly improves the results in terms of accuracy and 
precision in verification, compared to the parameter estimation strategies based on event-by-
event and multi-event calibrations. The Nash-Sutcliffe criterion (NS) obtained by the 
proposed parameter estimation strategy is improved from 0.4 to 0.6, for 50 % of the 
verification rainfall events, compared to traditional calibration strategies. One single rainfall-
runoff model structure allows representing two groups of different hydrological conditions for 
an urban catchment by the proposed strategy, leading also to identify (i) bimodalities in the 
parameters and (ii) rainfall events with high errors in rainfall measurement. Chapter 5 
presents a methodology aimed to estimate mean areal rainfall, based on a hydrological model 
and flow rate data. This model-based approach demonstrates the advantages, compared to 
previous approaches in the literature, of correcting rainfall by multiplying factors over 
constant-length time window and rainfall zero records are filled with a reverse model. 

Chapter 6 explores different linear Transfer Functions (TF) models alternative to the 
traditional Rating Curve (RC) models, considering the case in which a virtual mass over the 
catchment decreasing process is omitted. From flow rate, rainfall and corrected rainfall tests 
as different potential inputs, no relation between rainfall errors or hydrological conditions 
with performances of RC and TFs could be established. The expected advantages of 
implementing the TFs compared to the RC model are not verified, as the performance 
indicators of the RC model are superior to the tested TFs (especially parsimony in calibration 
and precision of the simulations). This can be explained from the non-linear properties of RC, 
as the implicit relation between flow rate and TSS load seems to be governed by a power law 
(described in Chapter 3). This Chapter 6 suggests the missing representation of an essential 
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process in the RC model, based on its performance (NS of about 0.6 in verification, with 110 
events). The unsatisfactory performances of RC model are found to be independent of the 
antecedent dry weather period, suggesting that a potential missed process in the RC model (if 
there is one) is not necessarily linked to temporality. Complementarily, statistical tests 
strengthen that the occurrence of these not representable events by the RC model is randomly 
distributed in time. These results are used as an input for Chapter 7, defining the RC as a 
candidate model to be improved or revisited by defining its parameters as virtual state 
variables. The advantages of selecting RC among a wider family of models (given by 
different TFs), besides mentioned aspects regarding its performance, is the potential 
interpretability of RC time varying parameters as a decreasing virtual available mass. 

Therefore, Chapter 7 applies the proposed Bayesian rainfall correction method explored in 
Chapter 5 as a more general Bayesian reconstruction method of virtual state variables with the 
RC model. Results indicate that these potential missing processes in RC description are hardly 
interpretable in terms of a unique state of virtual available mass over the catchment that is 
decreasing over time, as assumed by a great number of traditional models. Furthermore, the 
reconstructed processes are highly unrepeatable regarding their shape, besides having a low 
transferability to other rainfall events. This manuscript shows how high-time resolution 
quality measurements can provide a support to revisit and question existing models, and to 
potentially allow developing new stormwater quality model formulations for large urban 
catchments. 

Probably the first recommendation that can be formulated from the work presented in this 
manuscript is to implement the proposed methodologies in further urban catchments with 
similar data, aimed to compare and provide more generality to the conclusions herein 
presented. The results from Chapter 2 can be validated by comparing the EMCs obtained from 
real autosamplers operated in situ with different sampling strategies, to the EMCs obtained 
from TSS online monitoring. Moreover, TSS models aimed to represent the complete 
pollutograph can be calibrated with data obtained by different sampling strategies and 
compared to model calibrations with online monitoring. These explorations might lead to 
formulate complementary modelling recommendations for cases in which TSS online data is 
not available. 

TSS measurements in different points of the cross section of the sewer system (e.g. Larrarte, 
2008) can be recommended in order to further compare and validate the methodologies 
proposed in Chapter 3. These methods could be extended, by similar theoretical assumptions, 
to assess the uncertainties not only due to the vertical but also due to the transversal sampling 
intake position in the cross section of the sewer system or other field conditions. Furthermore, 
the conception of new measurement devices could be envisaged for measuring online the TSS 
3D profile of the cross section in the sewer system. This information would be very useful for 
validating several of the hypotheses proposed in this manuscript, regarding the 
representativeness of the studied TSS time series. On the other hand, the representativeness of 
TSS measurements due to further uncertainty sources and field sampling conditions such as 
the pumping velocity of the sampling tube or the time shift due to the pumping operation 
(Rossi, 1998) can be assessed in future works. These uncertainty sources can be included with 
further hypotheses regarding, for example, theoretical pumping velocities and operation. 
However, mentioned assumptions are recommended to be verified with further experiments in 
all cases.  

The spatial variability of the rainfall and its influence on the performance TSS models can be 
further explored, by the use of mean areal rainfall estimations that are non-dependent on flow 
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rate data. These mean areal rainfall estimations can be obtained by using information from 
other rain gauges, radar data or by microwave links as recently proposed (van het Schip et al., 
2017). Furthermore, a continuous approach for representing the inter-event variability instead 
of a discrete classification of the events can be recommended, given the lack of physical 
interpretability regarding the boundary between classification groups (e.g. highest or lowest 
rainfall intensity), which at the end are model and data dependent. Nevertheless, the proposed 
approach could be an input for reformulating the selected model structure, seeking to include 
physically-based continuous terms to reproduce the parametric variability instead of 
establishing discrete hydrological conditions, also avoiding the parametric dependency on e.g. 
rainfall characteristics (e.g. Chapter 6 and 7; Young, 1998). Extending the modelling 
calibration methods presented in Chapter 4 by including a better understanding of rainfall 
uncertainties, jointly with the implementation of further hydrological models, may also lead to 
improve the performance of rainfall-runoff modelling for the studied catchment. However, the 
calibration methodology proposed in Chapter 4 in its current state offers enough flexibility to 
be applied towards a better understanding of the local/global nature of input data/model 
structure uncertainties for further modelling frames in the urban drainage field. For example, 
in Chapter 6, the calibration method is applied into the water quality modelling context, 
leading to identify irreproducible events by different water quality models. 

The Bayesian reconstruction method applied to rainfall and TSS mass reconstructions in 
Chapter 5 and Chapter 7, respectively, may constitute a powerful tool for hypotheses testing 
in urban drainage models. In principle, this reconstruction method could be applied to 
formulate a reasonable hypothesis about the dynamics of any input, output or virtual state 
variable of a mathematical model, by means of the available data. This might open a wide 
range of possibilities for increasing the understanding of mathematical models commonly 
used in the urban drainage context, as demonstrated in this manuscript for the case of 
traditional TSS models. 

Coupling a TSS model by including rainfall and flow rate as two different inputs may be 
promising (e.g. Métadier, 2011), when having enough information about the TSS load 
separation in one component produced by rainfall and the other from flow rate (surface and in 
sewer processes). Furthermore, exploring physically detailed TSS models might also be a 
potential alternative (Hong et al., 2016), when extensive granulometric measurements are 
available, coupled with a better understanding of physical processes inside the sewer 
processes (e.g. TSS resuspension, transfer). Therefore, TSS modelling approaches in their 
current state of development still represent important challenges, in the absence of data and 
representative information about the load dynamics inside the system.  

From the above lines, many scientific questions can be formulated for incoming 
investigations. The following examples can be proposed: 

- Are the results obtained in the different parts of this investigation generalizable to other 
urban catchments? 

- What is the effect of calibrating and using TSS models with traditional samples data for sites 
in which online data is not available?  

- What is the influence of the sampling intake position in the cross section of the sewer system 
over the representativeness of TSS measurements from a 3D analysis?  

- Can a better rainfall-runoff model structure be proposed for the studied catchment?  
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- Can the performance of TSS models be improved by considering mean areal rainfall 
estimations non-dependent in flow rate data as additional modelling inputs?  

- What are the benefits in terms of modelling performance when physically detailed TSS 
models are calibrated by using more detailed data (e.g. granulometric measurements, TSS 
online data recorded at different points inside the urban drainage system)?  

- Can we still revisit these physically detailed TSS models by means of more detailed data and 
the Bayesian reconstruction methods proposed in this manuscript? 
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APPENDICES 
 

1. PRESENTATION DES RESULTATS MAJEURS DE LA THESE – RESUME 
ETENDU EXIGE POUR UNE THESE REDIGEE EN ANGLAIS 
(PRESENTATION OF THE PRINCIPAL RESULTS OF THE THESIS –LONG 
ABSTRACT DEMANDED FOR A THESIS WRITTEN IN ENGLISH) 

 

CHAPITRE 2 Evaluation de performance et d’incertitudes dans les stratégies 
d’échantillonnage d’eaux de pluie, fondée sur le débit et les séries chronologiques 
de charge totale de solides en suspension 

 

Introduction 
 
Un indicateur commun pour estimer les émissions polluantes est la Concentration Moyenne 
d’Evénement (CME), qui est très variable selon les stratégies d’échantillonnage adoptées (Lee 
et al., 2007; Ki et al., 2011). Les stratégies d’échantillonnage sont des règles d’applications 
pour l’échantillonnage de polluants, par exemple les charges Totales de Matière en 
Suspension (MES), pendant des événements pluvieux avec un échantillonneur automatique. 
La valeur CME est estimée en mélangeant manuellement ou automatiquement les échantillons 
individuels collectés dans un bocal à échantillon (Lee et al., 2007). Le plus gros inconvénient 
pour évaluer quelle stratégie d’échantillonnage peut apporter les CME les plus justes est que 
le “vrai” CME ou le CME “de référence” est établi à travers des suppositions théoriques, vu le 
manque de données de concentration (par exemple : Ma et al., 2009; Ki et al., 2011) . D’autre 
part, de nombreux auteurs ont rapporté les bénéfices du suivi en ligne pour expliquer la 
variabilité significative de la qualité des eaux de pluie. En conséquence, le suivi en ligne 
émerge comme une alternative prometteuse pour l’estimation des “vrais” CME ou des CME 
“de référence” à travers une série de conditions. La présente étude propose de simuler et 
d’évaluer différentes stratégies d’échantillonnage (exemple : Ackerman et al., 2010) en 
utilisant un débit de haute résolution et une série chronologique de MES pendant des 
événements pluvieux. Les CME de stratégies d’échantillonnage sont simulés en 
échantillonnant des séries chronologiques de TSS et en calculant une moyenne pondérée des 
échantillons par leurs volumes d’échantillonnage. Ces CME “simulés” sont comparés au 
“vrai” CME calculé comme une moyenne pondérée du débit complet et des séries 
chronologiques de MES pendant l’événement pluvieux. 

 

Matériels et méthodes 
 
Les quatre cas internationaux sont les suivants: i) Berlin, Allemagne (débordement d’égouts 
unitaire, surface de 100 ha, 22 événements pluvieux); ii) Chassieu, France (réseau séparatif 
des eaux, surface de 185 ha, 75 événements pluvieux); iii) Graz, Autriche (débordement 
d’égouts unitaire, surface de 335 ha, 85 événements) and iv) Ecully, France (réseau d’égouts 
unitaire, surface de 245 ha, 200 événements pluvieux). Les CME obtenus à partir de stratégies 
d’échantillonnage (CEMsim) sont simulés en échantillonnant des séries chronologiques de 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



140 
 

MES et en calculant une moyenne pondérée des valeurs MES “échantillonnées” par leur 
volume d’échantillon. Les valeurs CEMsim sont ensuite comparés aux “vrais” CME 
(EMCtrue) calculés comme une moyenne pondérée du débit et des séries chronologiques de 
TSS pendant l’événement pluvieux. 

Quatre stratégies d’échantillonnage typiques sont étudiées : i) stratégie d’échantillonnage à 
intervalle temporel constant et volume constant (cTcSV): les échantillons sont collectés à des 
intervalles temporels constants, les volumes d’échantillonnage sont également constants (par 
exemple: échantillonner toutes les 10 minutes un volume d’échantillonnage de 0.4L), ii) 
stratégie d’échantillonnage à intervalle temporel constant et proportionnel à la décharge 
(cTpQ): les échantillons sont collectés à des intervalles temporels constants et les volumes 
d’échantillonnage sont prédéfinis comme proportionnels au débit instantané mesuré au pas de 
temps d’échantillonnage (par exemple : échantillonner toutes les 10 minutes un volume 
d’échantillonnage de 0.2L si le débit instantané est de 0.2 m3/s), iii) stratégie 
d’échantillonnage à intervalle temporel constant et proportionnel au volume (cTpV): les 
échantillons sont collectés à des intervalles temporels constants et les volumes d’échantillons 
sont prédéfinis comme proportionnels au volume de débordement cumulé depuis le dernier 
échantillon (par exemple : échantillonner toutes les 10 minutes un volume d’échantillonnage 
de 0.1L si le volume de débordement depuis les échantillons précédents est de 10 m3), et iv) 
stratégie d’échantillonnage à intervalle temporel variable et volume de débordement constant 
(vTcV): les échantillons sont collectés à un volume de débordement cumulé prédéfini depuis 
l’échantillon précédent (e.g. échantillonner avec constance le volume de 0.4 L pour un 
volume de débordement cumulé de 10 m3 entre échantillons). L’erreur quadratique moyenne 
relative (MSRE) entre EMCtrue et EMCsim et son incertitude élargie CI(MSRE) sont utilisés 
comme des indicateurs de performance pour les stratégies d’échantillonnage. Les incertitudes 
standard dans les données utilisées pour des calculs se trouvent dans i) les volumes 
d’échantillonnage (4.5 %), ii) les analyses laboratoire de TSS (7.5 %), iii) la mesure en ligne 
(selon la technologie et la méthode de calibration) et iv) les temps de début et de fin 
d’événements pluvieux (respectivement 5 % et 7.5 % de la durée des précipitations). 

Résultats 
 
Les résultats sont résumes dans le Figure 1, dans lequel MSRE (lignes continues) et 
CI(MSRE) (bandes de couleur) sont donnés pour les intervalles temporels d’échantillonnage 
entre 1 et 60 minutes sur l’axe horizontal inférieur (stratégies cTcSV, cTpQ et cTpV). L’axe 
horizontal supérieur montre les différents volumes de débordement utilizes pour évaluer la 
stratégie vTcV, avec les intervalles temporels moyens correspondants sur l’axe horizontal 
inférieur (Figure 1).  
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 Figure 1. MSRE (ligne continue) et CI(MSRE) (bandes de couleur) pour les différents 
intervalles temporels d’échantillonnage pour les stratégies cTcSV (noir), cTpQ (rouge) and 
cTpV (bleu) sur l’axe horizontal inférieur et différents volumes d’échantillonages pour la 
stratégie vTcV (vert) sur l’axe horizontal supérieur pour a) Berlin, b) Chassieu, c) Graz et d) 
Ecully. 

Conclusions 
 
La stratégie d’échantillonnage la plus représentative pourrait être cTpV, en utilisant des 
intervalles d’échantillonnage d’à peu près 5 minutes pour Berlin et Chassieu resp. zones de 
100 et 185 ha) et 10 minutes pour Graz et Ecully (resp. zones de 335 et 245 ha), plaçant 
MSRE entre 7 % et 20 % et CI(MSRE) vers 5 %. 
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CHAPITRE 3 Estimation de l’influence du point d’échantillonnage des matières en 
suspension dans une section de réseau d’assainissement 

 

Introduction 
 
Le mesurage des matières en suspension (MES) dans les systèmes d’assainissement urbains 
est essentiel pour des raisons scientifiques, environnementales, opérationnelles et 
réglementaires. Cependant, la validité des résultats de mesure (pour différents usages tels que 
le calage et la vérification de modèles, la gestion des ouvrages et l’autosurveillance) dépend 
étroitement de la qualité des données qui doivent être représentatives des conditions réelles in 
situ. Des méthodes spécifiques sont donc nécessaires pour garantir l’acquisition et la 
validation appropriées des concentrations en MES mesurées dans les prélèvements en réseau. 
Afin d’estimer la qualité des données, de nombreux travaux de recherche ont été consacrés à 
la détermination des incertitudes expérimentales sur les mesurages en ligne et en laboratoire 
des concentrations en MES (Harmel et al., 2006; Harmel et Smith, 2007; Joannis et al., 2008; 
Métadier et Bertrand-Krajewski, 2012). En revanche, l’influence des conditions 
d’échantillonnage in situ (par exemple la hauteur du point de prélèvement ou de mesurage 
dans la section, les vitesses d’aspiration ou l’orientation du tube de prélèvement) sur la 
représentativité des valeurs mesurées n’a pas fait l’objet d’autant d’investigations dans la 
littérature (Shelley, 1977 ; Berg, 1982 ; Rossi, 1998 ; Larrarte et Pons, 2011). Une approche 
préliminaire a été établie par Métadier (2011), sur la base de l’expérience des  techniciens 
(comme 10 % de la valeur mesurée).    

Les incertitudes associées à la localisation du point d’échantillonnage de MES dans la section 
transversale du collecteur sont habituellement négligées, en admettant que la valeur mesurée 
est égale à la concentration moyenne vraie dans la section. Cette hypothèse semble valide 
pour des collecteurs présentant des vitesses d’écoulement élevées susceptibles d’assurer une 
homogénéisation satisfaisante des concentrations en MES à travers la section. Cependant, le 
gradient vertical de concentration en MES ne peut pas être négligé pour d’autres conditions 
hydrodynamiques, notamment aux faibles vitesses. Lorsque c’est le cas, la différence entre la 
valeur mesurée et la concentration moyenne réelle peut être due à plusieurs sources : i) la 
variabilité de la position représentative de la concentration moyenne à travers la section, ii) la 
variabilité de la position du point de prélèvement dans la section transversale et iii) les 
incertitudes des variables physiques (ex. débit, coefficient de rugosité, propriétés 
géométriques) (Figure 1). 

Nous proposons de traiter ces sources de variabilité en terme de probabilité, estimée par une 
approche de type Monte Carlo avec 1000 simulations. Il a été considéré le nombre de fois où 
la localisation du point d’échantillonnage sur le profil de concentration vertical (valeur 
mesurée) était égale à la position représentative de la concentration moyenne (sous 
l’hypothèse de l’homogénéité des profils horizontaux de concentration). La méthode proposée 
estime la représentativité des mesurages au moyen du facteur correctif ROU (ratio of over- or 
under-estimation) par lequel il faut multiplier la concentration mesurée pour obtenir la 
concentration moyenne vraie. 
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Matériels et méthodes 
 
La méthode proposée a été testée avec les séries chronologiques de concentration C en MES, 
débit Q et hauteur d’eau h mesurées en 2007 pour 89 événements pluvieux, au pas de temps 
de 2 minutes, à l’exutoire du réseau séparatif pluvial de Chassieu, France. Les autres 
grandeurs nécessaires aux calculs sont i) la section mouillée au point de mesure, ii) le 
coefficient de Manning-Strickler KMS du collecteur et iii) la vitesse de chute ws des MES. Les 
incertitudes de toutes les variables sont également déterminées. Les variables, les conditions 
expérimentales et le profil de concentration en MES sont représentés schématiquement Figure 
1. 

 

Figure 1. Schéma de principe avec les variables principales, le profil de concentration et le 
point de prélèvement, avec H la hauteur d’eau, z la hauteur de la prise d’échantillon, 𝑦𝑦𝑐𝑐 la 
hauteur correspondant à la concentration moyenne sur le profil vertical de concentration C(h) 
et a* la hauteur de référence du profil de concentration (voir détails Coleman, 1982; 
Verbanck, 2000). 

Des études antérieures ont montré que la forme du profil vertical de concentration en MES, 
ainsi que la profondeur 𝑦𝑦𝑐𝑐 correspondant à la concentration moyenne, dépendent fortement de 
la vitesse (Coleman, 1982; Verbanck, 2000). Un profil de concentration relativement 
uniforme est attendu pour les valeurs élevées de débit assurant des conditions de turbulence et 
de bon mélange. Néanmoins, pour des valeurs de débit plus faibles, la concentration en MES 
sera plus élevée près du radier (Coleman, 1982; Verbanck, 2000). Le problème consiste donc 
à estimer l’écart entre la concentration en MES mesurée sur un échantillon prélevé à la 
hauteur z et la concentration moyenne à la hauteur 𝑦𝑦𝑐𝑐, sous les hypothèses théoriques 
proposées. La position y représentative de la concentration moyenne en MES est considérée 
comme une variable aléatoire avec 𝐸𝐸[𝑦𝑦] =  𝑦𝑦𝑐𝑐   et une fonction de densité de probabilité (pdf) 
fondée sur le profil vertical théorique de concentration proposé par Coleman (1982) et 
Verbanck (2000), avec les grandeurs Q, ws, ks, h et D permettant de calculer le nombre de 
Rouse η (voir détails dans Verbanck, 2000). La courbe C(h) est normalisée pour rendre son 
aire égale à 1 indépendamment de η. La probabilité p(z = 𝑦𝑦𝑐𝑐) peut alors être calculée pour une 
hauteur d’échantillonnage z quelconque. Si 𝑦𝑦𝑐𝑐 est proche au fond du collecteur (faibles 
valeurs du débit Q), une hauteur z plus proche de la surface libre supérieure à 𝑦𝑦𝑐𝑐 conduit à une 
sous-estimation de la concentration en MES. Réciproquement, dans le cas où z est inférieure à 
𝑦𝑦𝑐𝑐, il y a surestimation de la concentration en MES. Avec la méthode de Monte Carlo, deux 
autres sources de variabilité sont prises en compte: i) la variation de la hauteur de prélèvement 
z supposée suivre une distribution uniforme sur la verticale entre 0.25 H et 0.75 H, et ii) les 
incertitudes sur les grandeurs physiques Q, ws, ks, h et D supposées normalement distribuées. 

H

h

a*

z

𝑦𝑦𝑐𝑐̅ Profil de concentration C(h)

Point de prélèvement

h 
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Les incertitudes de ces grandeurs permettent de calculer la distribution de probabilité du 
nombre de Rouse, lequel a un impact direct sur la variabilité de 𝑦𝑦𝑐𝑐. Les résultats sont 
présentés en mettant en rapport l’évolution du ratio ROU et celle de la vitesse moyenne de 
l’écoulement Um au cours des événements pluvieux, avec pour objectif de déterminer pour 
quelles valeurs de la vitesse d’écoulement le point d'échantillonnage conduit à des valeurs de 
concentrations en MES mesurées qui sur- ou sous-estiment la concentration moyenne vraie, et 
ceci pour l’ensemble des 89 événements pluvieux. 

 

Résultats et discussion 
 
La figure 2 montre les résultats pour la période du 20/08/2007 08:06 au 22/08/2007 01:38 
extraite des séries chronologiques. La probabilité d’avoir une concentration mesurée égale à la 
concentration moyenne est proche de 1 pour des vitesses d’écoulement supérieures à 0.5 m/s 
(Figure 2 gauche). Ce résultat est conforme avec ceux d’études similaires (par exemple 
Larrarte, 2008). Toutefois, les valeurs de vitesse ont été supérieures à 0.4 m/s, ce qui n’a pas 
permis d’analyser comment se dégrade la représentativité (comme ROU) au fur et à mesure 
que la vitesse moyenne descend (en-dessous de 0.4 m/s). Un nombre de Rouse η inférieur à 
0.6 est supposé correspondre à un mélange complet et à une concentration homogène sur la 
verticale, ce qui est la situation la plus fréquente pour les séries chronologiques étudiées ici 
(Figure 2 droite). 

 

Figure 2. Pour la période du 20/08/2007 08:06 au 22/08/2007 01:38 – A gauche : ROU 
(moyenne et intervalle de confiance à 90 %) et vitesse moyenne d’écoulement Um ; à droite : 
ratio 𝑦𝑦𝑐𝑐/H et nombre de Rouse η. 

Une sous-estimation de la concentration en MES pour des valeurs de ROU comprises entre 
1.04 et 1.10 se produit pendant 95 % de la durée des 89 événements pluvieux, 
particulièrement lorsque les vitesses d’écoulement sont faibles. La valeur médiane de ROU est 
égale à 1.07. Cette sous-estimation systématique de la concentration moyenne en MES peut 
être expliquée par le fait que l’espérance de z égale à 0.5 H est supérieure à l’espérance de 𝑦𝑦𝑐𝑐 
qui est de l’ordre de 0.4 H.  

Pour les faibles valeurs du débit Q (principalement au début et à la fin des événements 
pluvieux), l’incertitude type u(η) est élevée et la valeur de 𝑦𝑦𝑐𝑐 est déterminée avec une grande 
incertitude également. Une attention particulière doit donc être portée aux débuts et fins 

  

ROU 
Rousse 
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d’événements pluvieux, périodes pendant lesquelles le risque est plus important d’observer 
une sous-estimation de la concentration en MES. Afin d’améliorer les mesures in situ les 
gestionnaires pourrions prendre en compte ces types d’incertitudes.  

 

 

CHAPITRE 4 Modélisation pluie-débit : stratégie améliorée de calage et estimation des 
incertitudes guidée par les données 

 

Introduction 
 
Déterminer une stratégie robuste pour quantifier les incertitudes paramétriques et de calcul 
des débits reste un défi clé en hydrologie (Thyer et al., 2009; Ye et al., 2014). L’estimation 
des incertitudes des paramètres par le calage de plusieurs évènements pluvieux de manière 
chronologique est une stratégie courante (e.g. Tan et al., 2008; Thyer et al., 2009; Mancipe-
Munoz et al., 2014). Cependant, le calage multi-évènementiel fournit un jeu moyen de 
paramètres, avec des incertitudes généralement sous-estimées, en négligeant la diversité des 
conditions hydrologiques possibles sur un bassin versant (Thyer et al., 2009). En effet, la 
valeur optimale des paramètres obtenue en faisant un calage évènement par évènement peut 
varier de manière significative en raison des changements stochastiques des conditions du 
bassin versant (Thyer et al., 2009; Ajmal et al., 2015). De plus, les sous-estimations 
systématiques des incertitudes paramétriques et de simulation des débits, obtenues 
habituellement en utilisant cette approche, sont dues à une simulation des débits à partir de 
jeux de paramètres optimaux pour quelques évènements qui ne sont pas nécessairement liés 
d’un point de vue hydrologique (adapté de Ye et al., 2014 et Ajmal et al., 2015). Pourtant, 
cette stratégie de calage peut être utile pour explorer la variabilité inter-évènementielle (Thyer 
et al., 2009; Ajmal et al., 2015). 

Pour améliorer la résolution des problèmes ci-dessus, nous proposons une nouvelle stratégie 
de simulation des débits, utilisant le calage évènement par évènement, dans laquelle les jeux 
de paramètres optimaux obtenus pour chaque évènement sont représentés par un graphe à 
partir de leur prédictibilité. Ensuite, la technique de cluster “spinglass.community” est 
employée pour former des groupes de paramètres (deux groupes pour le cas d’étude) dans le 
graphe précédent, à partir d’un critère de maximisation de la densité de connections dans 
chaque groupe de paramètres (voir Reichardt and Bornholdt, 2006). Ceci permet d’exprimer 
les incertitudes des paramètres en tant que fonctions de probabilité conditionnelle sur 
quelques caractéristiques générales d’un évènement donné (e.g. hauteur de pluie, intensité 
moyenne). L’estimation des paramètres d’un modèle pluie-débit et de leurs incertitudes à 
partir de la méthode proposée a comme objectif de réduire les bandes d’incertitude de 
simulation des débits, en conservant ou en améliorant la simulation moyenne des débits sur 
les évènements de vérification (évaluée par les indicateurs ARIL et NS respectivement, voir 
Dotto et al., 2012; Ye et al., 2014), en comparaison avec d’autres stratégies traditionnelles de 
calage (voir Tan et al., 2008). La méthode proposée a été testée avec un modèle pluie-débit 
conceptuel (réservoir linéaire et infiltration de Horton), pour un bassin versant urbain de 
Lyon, France, avec 365 évènements pluvieux mesurés de 2004 à 2011 (séries chronologiques 
de pluie et débit). 
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Matériel et méthode  
 

Les méthodes décrites ci-dessous ont été testées avec une base de données de 365 évènements 
pluvieux du bassin versant de Chassieu (Lyon, France) mesurés en 2004 et 2011. Il s’agit d’un 
des sites expérimentaux de l’OTHU (Observatoire de Terrain en Hydrologie Urbaine, 
www.othu.org). Le bassin versant est une zone industrielle de 185 ha, avec des coefficients 
d’imperméabilisation et de ruissellement de 0.72 et 0.43 respectivement (Métadier, 2011). Le 
débit observé Yobs est estimé à partir de la hauteur d’eau à la sortie du bassin versant au pas de 
temps de 2 minutes et avec une incertitude élargie relative qui varie entre 15 % et 25 % 
(Métadier, 2011). Un modèle à réservoir linéaire, avec une constante de réservoir K1 (voir 
Sun et Bertrand-Krajewski, 2013), est utilisé pour représenter la relation pluie-débit (Eq 1, 2 
et 3). La pluie nette Xnet (L/s) est calculée à partir de la pluie observée Xobs (mm/h) par le 
modèle d’infiltration d’Horton, ayant comme paramètres les capacités d’infiltration du sol 
initiale et finale f0 et fc, et le taux de décroissance k (Eq 1 et Eq 2). Nous avons ajouté un 
paramètre q comme un terme additif pour représenter l’infiltration dans le réseau. La valeur 
de la surface active S est égale à 80 ha (0.43 × 185 ha) (Eq 3). La sélection de ce modèle 
particulier est basée sur sa performance et sa simplicité, comme suggéré par des études 
précédentes sur la même base de données (Sun et Bertrand-Krajewski, 2013). Les paramètres 
de ce modèle conceptuel sont décrits dans le Tableau 1, ainsi que les valeurs maximales et 
minimales possibles envisagées pour le calage (selon des expériences précédentes et des 
valeurs raisonnables déjà proposées dans la littérature, e.g. Sun et Bertrand-Krajewski, 2013). 

𝑓𝑓 = 𝑓𝑓𝑐𝑐 + (𝑓𝑓𝑐𝑐 − 𝑓𝑓0) ∙ 𝑅𝑅−𝑘𝑘𝑡𝑡  

 

Eq 1 

𝑋𝑋𝑛𝑛𝑟𝑟𝑡𝑡 = (𝑋𝑋𝑜𝑜𝑜𝑜𝑠𝑠 − 𝑓𝑓) ∙ 𝑆𝑆 ∙ 10000/3600 

 

Eq 2 

𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑) = 𝑅𝑅−
∆𝑡𝑡
𝐾𝐾1 ∙ 𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑 − ∆𝑑𝑑) +  �1 − 𝑅𝑅−

∆𝑡𝑡
𝐾𝐾1� 𝑋𝑋𝑛𝑛𝑟𝑟𝑡𝑡�𝑑𝑑 − 𝑇𝑇𝑙𝑙𝑎𝑎𝑤𝑤� + 𝑞𝑞 

 

 

Eq 3 

Tableau 1. Liste des paramètres utilisés pour le calage du modèle 

Paramètre (θ)  Unité  Valeurs [min, max] 

f0 mm/h [0, 50] 

fc mm/h [0, 5] 

k min-1 [0, 5] 

Tlag min [0, 60] 

K1 min [1, 120] 

q L/s [0, 20] 
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On note θ le jeu de paramètres du modèle hydrologique (Tableau 1) et p(θ/Y) sa fonction de 
densité de probabilité (pdf), étant données une série d’observations du débit Yobs. Par ailleurs, 
la méthode bayésienne a été testée dans de nombreux cas en modélisation hydrologique. Elle 
permet de calculer p(θ/Y) (e.g. Thyer et al., 2009). La base de la méthode pour estimer p(θ/Y), 
appelée distribution a posteriori, repose sur une fonction de vraisemblance et une 
connaissance a priori de la distribution p(θ) des paramètres, que nous pouvons exprimer 
comme suit : 

𝑝𝑝(θ 𝑌𝑌⁄ ) = 𝐸𝐸�
1

�2𝜋𝜋𝜎𝜎�𝑡𝑡2
exp [−

1
2

(
𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 (𝑑𝑑, θ) − 𝑌𝑌𝑜𝑜𝑜𝑜𝑠𝑠 (𝑑𝑑)

𝜎𝜎�𝑡𝑡2
)2]

𝑛𝑛

𝑡𝑡=1

∙ 𝑃𝑃(θ) 
 

Eq 4 

où n est le nombre de mesures de débit Yobs, Ysim(t, θ) est le débit simulé par le modèle à un 
instant t à partir de la pluie observée Xobs et du jeu de paramètres θ, p(θ) est une loi de 
probabilité uniforme pour chaque paramètre (à partir des intervalles [min, max] du Tableau 
1), C est un coefficient de normalisation et 𝜎𝜎�𝑡𝑡2 est la variance des résidus, considérée égale à 
l’incertitude standard au carré de la valeur du débit Yobs(t). L’algorithme DREAM est utilisé 
pour déterminer p(θ/Y) (Vrugt et al., 2008). Le jeu de paramètres représentant la valeur 
optimale (vraisemblance maximum) parmi toutes les valeurs probables p(θ/Y) est appelée θopt. 
Le but est de déterminer une estimation de p(θ/Y) et θopt en fonction des observations de 
calage Xobs et Yobs qui maximisent la capacité de simulation moyenne des débits dans la phase 
suivante de vérification (mesurée à partir de l’indicateur de Nash-Sutcliffe NS), en minimisant 
la largeur des bandes d’incertitude moyenne des débits simulées, largeur déterminée par 
l’indicateur ARIL des paramètres - Average Relative Interval Length) (voir e.g. Ye et al., 
2014). Les indicateurs NS et ARIL liés au jeu de paramètres θopt sont calculés pour chaque 
évènement de vérification à partir des Eq 5 et Eq 6. 

𝑁𝑁𝑆𝑆(θ𝑜𝑜𝑜𝑜𝑡𝑡) =  1 −  
∑ �𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 �𝑑𝑑, θ𝑜𝑜𝑜𝑜𝑡𝑡� − 𝑌𝑌𝑜𝑜𝑜𝑜𝑠𝑠 (𝑑𝑑)�

2
𝑛𝑛
𝑡𝑡=1
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Eq 5 

 

𝑔𝑔𝑅𝑅𝐴𝐴𝐴𝐴(θ𝑜𝑜𝑜𝑜𝑡𝑡) =  
1
𝑚𝑚
�  

𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑅𝑅𝑠𝑠𝑡𝑡𝑜𝑜,𝑡𝑡 − 𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑅𝑅𝑠𝑠𝑛𝑛𝑟𝑟,𝑡𝑡

𝑌𝑌𝑠𝑠𝑠𝑠𝑠𝑠 �𝑑𝑑, θ𝑜𝑜𝑜𝑜𝑡𝑡�

𝑛𝑛

𝑡𝑡=1

 
 

Eq 6 

où n est le nombre de mesures de débit Yobs et 𝑌𝑌�𝑜𝑜𝑜𝑜𝑠𝑠 leur moyenne. Ysim(t, θ) est le débit simulé 
par le modèle à un instant t à partir de la pluie observée Xobs et du jeu de paramètres θopt. 
𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑅𝑅𝑠𝑠𝑡𝑡𝑜𝑜,𝑡𝑡 et 𝐴𝐴𝑅𝑅𝑚𝑚𝑅𝑅𝑑𝑑𝑅𝑅𝑠𝑠𝑛𝑛𝑟𝑟,𝑡𝑡 sont, respectivement, les limites supérieure et inférieure pour un 
intervalle de confiance à 95 % à un instant t à partir de p(θ/Y) ou p(θ/Y, T1) et p(θ/Y, T2) selon 
le cas. 

La fonction p(θ/Y) est calculée par trois approches, en utilisant 255 évènements pluvieux de 
calage choisis de manière aléatoire parmi les 365 évènements disponibles : 

- Calage évènement par évènement (SE) : les évènements sont calés séparément par la 
méthode bayésienne. Ceci permet d’obtenir un jeu optimal de paramètres θopt i et une 
estimation de p(θ/Y)i pour chaque évènement de calage i (i = 1:255). La fonction p(θ/Y) 
globale est calculée comme la probabilité marginale de toutes les fonctions p(θ/Y)i et θopt 
comme la moyenne des θopt i. 
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- Calage multi-évènementiel (ME) : le calage est effectué globalement en une seule fois avec 
l’ensemble des évènements pluvieux (simulation chronologique de 255 évènements) pour 
obtenir directement un seul jeu de paramètres θopt et une fonction globale p(θ/Y). 

- Calage évènementiel par cluster (SEClusters): le groupe de 255 jeux de paramètres optimaux 
θopt i obtenus avec l’approche SE sont classés dans deux types T1 et T2, avec l’objectif de 
regrouper les évènements qui ont des caractéristiques hydrologiques similaires. L’hypothèse 
est que deux évènements i et j (i = 1:255 et j = 1:255) sont connectés si le jeu optimal de 
paramètres θopt i obtenu pour l’évènement i est capable de reproduire également l’évènement j 
et si θopt j est lui aussi capable de reproduire l’évènement i, dans les deux cas avec un 
indicateur de Nash-Sutcliffe NS > 0.75 fixé comme valeur seuil. Une matrice de connectivité 
symétrique AM est remplie avec AM(i, j) = 1 si les évènements de calage i et j sont connectés 
et AM(i, j) = 0 sinon (pour i = j, AM(i, j) = 0 par convention). La technique de clustering est 
appliquée à AM pour identifier les groupes d’évènements connectés. La fonction 
“spinglass.community” avec spins = 2 (cluster supervisé de deux groupes) (voir Reichardt et 
Bornholdt, 2006) du package “igraph” (Csardi et Nepusz, 2006), implémentée sur R (R 
Development Core Team, 2016), est utilisée pour classer les évènements en type T1 ou T2. La 
fonction p(θ/Y) est calculée de la même manière que dans l’approche SE, mais elle est répartie 
en deux pdf conditionnelles p(θ/Y, T1) et p(θ/Y, T2) en utilisant les types T1 et T2. θopt est 
défini également dans deux valeurs θoptT1 et θoptT2, calculées comme la moyenne des θopt 
dans chaque groupe T1 et T2. La catégorisation d’un évènement pluvieux de vérification dans 
un groupe hydrologique (T1 ou T2), pour décider s’il faut utiliser p(θ/Y, T1), θoptT1 ou p(θ/Y, 
T2), θoptT2 dans la simulation des débits, est effectuée avec un modèle de classement Kernel 
KCM (fonction fitcsvm sur Matlab, Cristianini and Shawe-Taylor, 2000) en utilisant comme 
variables d’entrée certaines caractéristiques de la pluie. 
 

Résultats et discussion 
 
Dans le cas de SEClusters, la technique de clustering a été appliquée sur la matrice AM, en 
classant les évènements de calage dans deux groupes (32 % et 36 % des évènements pour T1 
et T2 respectivement). Ce classement a permis le calcul de p(θ/Y, T1) et θoptT1 d’une part, et 
de p(θ/Y, T2) et θoptT2 d’autre part. Un KCM a été proposé pour décider s’il faut utiliser p(θ/Y, 
T1), θoptT1 ou p(θ/Y, T2), θoptT2 dans la simulation des débits d’un évènement de vérification 
donné, en le désignant comme étant de type T1 ou T2. Les caractéristiques suivantes de la 
pluie ont été retenues dans le KCM comme variables d’entrée pour chaque évènement de 
calage (choisies à partir d’essais préalables) : intensité moyenne [mm/h], intensité maximum 
[mm/h], durée [min], hauteur totale de pluie [mm], nombre d’intensités > 0 mm/h [# 
données], accélération moyenne de la pluie [mm/h2], accélération maximum de la pluie 
[mm/h2], accélération minimum de la pluie [mm/h2] et hauteur moyenne [mm]. Le KCM a 
donné un pourcentage d’assertivité de classement sur les évènements de calage d’environ 
80 %.  

La vérification est exécutée avec les 110 évènements restants pour les trois approches 
proposées (SE, ME et SEClusters). Chaque évènement de vérification a pu être classé T1 ou 
T2 à partir du KCM selon ses caractéristiques (i.e. intensité moyenne, intensité maximum, 
etc.). Les valeurs ARIL des paramètres et de NS sont calculées à partir des simulations de 
débit faites avec les pdfs p(θ/Y) et θopt pour les approches SE ou ME, et avec les pdfs p(θ/Y, 
T1) ou p(θ/Y, T1) et θoptT1 et θoptT2 pour l’approche SEClusters (Figure 1). 
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Figure 1. Indicateurs ARIL et NS pour les 110 évènements de vérification, pour les 3 
approches de calage étudiées. 

La stratégie de calage SEClusters montre une réduction des bandes d’incertitude dans la 
simulation des débits (valeurs ARIL des paramètres) par rapport à la stratégie traditionnelle de 
calage SE de 2 à 1.6, pour 50 % des évènements de vérification (Figure 1, gauche). La 
simulation moyenne des débits montre aussi une amélioration des valeurs de Nash-Sutcliffe 
(NS) de 0.4 à 0.6 pour 50 % des évènements (Figure 1, droite). Les valeurs ARIL montrent 
que les bandes d’incertitude des débits obtenues en utilisant l’approche ME sont beaucoup 
plus étroites (valeur proche de zéro) que celles obtenues à partir des autres stratégies (SE et 
SEClusters) (Figure 1, gauche). Dans ce cas, la plupart des valeurs de débit en vérification se 
trouvent en dehors des limites des bandes d’incertitude de simulation des débits. D’autre part, 
les bandes d’incertitudes obtenues avec les approches SE et SEClusters incluent environ 95 % 
des débits de vérification, même si pour l’approche SE les valeurs ARIL dépassent 2 (largeur 
moyenne des intervalles d’environ 200 % des valeurs de débit), ce qui pourrait être considéré 
comme une surestimation des incertitudes des débits simulés. 

 

Conclusions 
 
Ces résultats sont considérés comme satisfaisants pour utiliser le KCM déjà calé pour la 
vérification. La stratégie de calage proposée fournit une estimation des bandes d’incertitude 
des débits simulés à partir des incertitudes des paramètres expliquant environ 95 % des débits 
mesurés. La simulation moyenne des débits montre aussi une amélioration de l’indicateur 
Nash-Sutcliffe (NS) de 0.4 à 0.6 pour 50 % des évènements. Une même structure de modèle 
pluie-débit permet de représenter deux groupes de conditions hydrologiques différentes pour 
un bassin versant urbain au moyen de la variabilité des paramètres optimaux pour tous les 
évènements pluvieux. 
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CHAPITRE 5 Identification d’erreurs dans des séries pluviométriques a haute résolution 
temporelle à travers des approches fondées sur des modèles conceptuels 

 

Contexte et objectifs 
 
Des modèles mathématiques simples peuvent constituer une description adéquate du 
processus de l’écoulement des eaux dans les bassins versants urbains, quand les paramètres 
sont bien identifiés à partir d’analyses antérieures ou d’expériences. Cependant, les situations 
dans lesquelles des modèles étalonnés performants reproduisent des valeurs de débit 
irrégulières sont dans beaucoup de cas dues aux erreurs dans la saisie des données de 
précipitations. Ces erreurs peuvent avoir différentes origines, un cas significatif étant 
l’utilisation de données pluviométriques locales comme des entrées directes, sans considérer 
la variabilité spacio-temporelle des précipitations (Kavetski et al., 2006). Sur base de cette 
hypothèse, des études récentes ont proposé l’estimation nouvelle (Modelisation Inverse) ou 
corrigée (Approche Bayésienne) de séries chronologiques de pluies représentatives 
(Leonhardt et al., 2014). Ces séries devraient permettre la reproduction des valeurs de débit 
mesuré par un modèle hydrologique bien calibré. Néanmoins, les composants systématiques 
et accidentels des erreurs de mesure de précipitations ne sont pas connus à l’avance, et leur 
structure peut être complexe et variable. La méthodologie proposée ici cherche à évaluer le 
potentiel des modèles de correction de précipitations pour identifier et corriger les erreurs 
dans les données de pluie. Elle a été appliquée à un bassin versant de Lyon, France, avec des 
enregistrements de 30 événements pluvieux de 2007 à 2008 (pluviomètre et série 
chronologique de débit, pas de temps de 1 et 2 min respectivement).  

La méthode bayésienne a été appliquée en utilisant une équation de de correction d’erreurs 
générales (Vrugt et al., 2008; Leonhardt et al., 2014). 

 

Icorr=Ki*Imesuré                       Eq. 1 

La série chronologique d’intensité de précipitations mesurée I (mm/h) peut être divisée en une 
fenêtre temporelle I [a, b]i (de taille égale ou inégale) avec l’index i, et les précipitations dans 
chaque intervalle sont corrigées par l’Eq. 1 avec le facteur de correction associé Ki . Eq. 1 
n’est pas en mesure de corriger les précipitations quand Imesuré = 0. Comme cette situation est 
fréquente dans les événements pluvieux, un autre modèle de correction a été proposé: 

 

 

 

où I est l’intensité de précipitations obtenue à travers un modèle inversé (Leonhardt et al., 
2014). Ceci génère une intensité pluviale probable pour quand elle n’avait pas été mesurée. 
De plus, un nombre n de fenêtres de tailles égales ou inégales I [a, b]i est testé pour toute série 
I chronologique d’intensité pluviale mesurée. Taille égale: divisez en parts égales n et 
appliquez Ki à chaque I [a, b]i avec i = 1:n (Eq. 1 ou Eq. 2). Taille non-égale: évaluez les 
signaux de résidus de débit Qres (différence entre les débit mesurés et simulés) avec un 
algorithme Détecteur de Pas (Canny, 1986). La longueur et l’emplacement de chaque fenêtre 
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temporelle dans Qres [a, b]i peut être projetée dans la série de précipitations I [a, b]i par mise à 
l’échelle, basée sur la durée totale de l’intensité pluviale I et la série chronologique de 
ruissellement Q. Ki est ensuite appliquée à chaque fenêtre I [a, b]i (Eq. 1 ou Eq. 2). 

 

Quatre modèles de correction de précipitations ont été étudiés: 1) CTW: correction 
traditionelle sur des fenêtres temporelles de taille égale (en utilisant  l’Eq. 1), 2) VTW: 
correction sur des fenêtres de taille inégale (en utilisant l’Eq. 1), 3) CTWrev: correction 
associée à un modele inversé sur des fenêtres temporelles de taille égale (en utilisant l’Eq. 2) 
et 4) VTWrev: correction associée à un modele inversé sur des fenêtres temporelles de taille 
inégale (en utilisant l’Eq. 2). Trente scénarios d’erreur ont été vérifiés avec la méthode Monte 
Carlo, en introduisant des diviseurs Kj intro ou des zéros sur des segments aléatoires avec 
l’index j dans la série chronologique de mesure de précipitations d’origine (présumées être 
des erreurs connues ou contrôlées). Les quatre modèles ont été testés pour évaluer leur 
capacité à détecter les erreurs contrôlées générées et à reconstruir la série chronologique de 
précipitations d’origine.  
 

Résultats  
 
Concernant l’analyse d’un événement unique, les résultatas sont présentés pour l’événement 
pluvieux mesuré entre le 11/02/2007 à 23:06 au 12/02/2007 à 07:12. La Figure 1 compare 
l’hydrographe mesuré (bleu), l’hydrographe produit par les précipitations avec des erreurs 
générées (noir) et avec les précipitations corrigées (rouge) par le modèle CTW. La Figure 2 
montre les différences entre les erreurs identifiées et controllées, Krecons et Kintro. La structure 
d’erreurs (facteurs K) a été prédite raisonnablement dans la durée puisque Krecons – Kintro ≈ 0. 
En partant d’une analyse générale à l’échelle de plusieurs événements (30 événements), les 
valeurs de NS et RMSE (ajustement entre les précipitations d’origines et les précipitations 
corrigées) pour tous les événements pluvieux et tous les modèles sont présentées dans les 
Figures 3 et 4. Les meilleurs résultats ont été obtenus avec le modèle CTWrev pour la justesse 
(RMSE les plus bas) comme pour la précision (NS le plus bas, Figure 4) et la conservation de 
la masse.  
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Figure 1. Hydrographes: mesuré (bleu), produit par des précipitations corrompues (noir) et 
produit par des précipitations corrigées (rouge) 

 

Figure 2. Simulation performante du facteur K: Krecons (rouge) et Kintro (noir) 
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Figure 3. indicateur RMSE pour les quatre modèles de correction de précipitations  

 

Figure 4. indicateur NS pour les quatre modèles de correction de précipitations 

 

Conclusions principales 
 
L’étude propose une approche nouvelle pour évaluer le potentiel de quatre modèles de 
correction de précipitations, en termes de l’identification et la description de différentes 
structures d’erreurs sous-jacentes dans dans des données pluviométriques. Trois nouveaux 
modèles de correction d’erreurs ont été formulés dans des traveaux précédents (Kavetski et 
al., 2006; Leonhardt et al., 2014), ainsi que la mise en oeuvre d’un algorithme de Détection de 
Pas de temps. La structure d’erreur a été raisonnablement prédite dans la durée par les 
modèles de correction de précipitations testés. Cependant, le modèle le plus simple a 
fonctionné mieux que les autres.  
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CHAPITRES 6 et 7. Modèles conceptuels de qualité d’eaux pluviales: une révision à 
travers la reconstruction de variables d’état virtuelles  

 

Introduction 
 
Durant les 40 dernières années, le modelage des dynamiques des charges de Matière en 
suspension (TSS) dans les eaux pluviales au débouché de bassins de versant urbains a été 
discuté en majorité vis à vis de l’idée d’accumulation/érosion transfère (Sartor et al., 1974). 
Une grande quantité de formulations de modèles analogues ont été proposées et testées, et 
dont les constats peuvent être presque impossibles à généraliser pour des applications dans la 
réalité, à cause des restrictions suivantes dans les paramètres expérimentaux/méthodologiques 
(Bonhomme and Petrucci, 2017): (i) des conditions de laboratoires contrôlées non-
représentatives, (ii) des nombres limités de données TSS, (iii) des nombres limités 
d’événements pluvieux, et (iv) l’évaluation insuffisante de l’incertitude dans les données et 
dans les paramètres de modèles.  

La structure de modèle de pollutographe la plus simple trouvée dans la documentation est 
probablement la courbe d’étalonnage RC (Sartor et al., 1974), dans laquelle la charge du 
débouché du bassin versant (kg/s) à l’instant t (s) est calculée par une relation non-linéaire au 
débit Q (m3/s) et aux paramètres d’ajustement M et r: 

𝑣𝑣ℎ𝑅𝑅𝑣𝑣𝑔𝑔𝑅𝑅(𝑑𝑑) = 𝐸𝐸 ∙ 𝑄𝑄(𝑑𝑑)𝑟𝑟  

La deuxième grande famille de structures de modèles (que nous nommerons ACUM) 
représente M(t), plutôt qu’avec une valeur constante, comme une variable d’état décomposée 
d’un stock de masse virtuel disponible, qui au final limitera la production de charge donnée 
par 𝑄𝑄(𝑑𝑑)𝑟𝑟.  

D’autre part, le cadre de calibration bayésien a émergé comme une approche basée sur modèle 
pour la reconstruction d’entrées non-mesurées ou de variables d’état (e.g. Leonhardt et al., 
2014). Pour 255 événements pluvieux, une reconstruction bayésienne de la variable d’état 
virtuelle M(t) est proposée, à travers le modèle RC (avec r comme paramètre de calibration 
inclus dans le schéma d’inférence) (formulation F1). Par ailleurs, une formulation alternative 
F2 est explorée, dans laquelle M est un paramètre constant et r(t) est défini comme la variable 
d’état virtuelle à être reconstruite, en considérant la même structure de modèle RC.  
 

Matériels et méthodes  
 
Les deux formulations d’inférence différentes (F1 et F2) sont testées en utilisant la charge 
TSS et les données de débit (pas de temps de 2 min) d’un bassin versant urbain séparé de 85 
ha à Lyon, France, collectées de 2004 à 2011. Les paramètres de modèle (r pour F1, M pour 
F2) et variables d’état (M(t) pour F1, r(t) pour F2) sont estimés pour chaque événement 
pluvieux avec une approche bayésienne (algorithme DREAM, cf. Vrugt et al., 2009), en 
séparant explicitement les erreurs d’estimation de la variable de débouché (load(t)) et les 
variables d’état reconstruites (M(t) ou r(t)) dans la fonction de probabilité (de Leonhardt et 
al., 2014). L’erreur de modèle pour M(t) ou r(t) est prétendue égale à son propre standard de 
déviation (σM(t) ou σr(t)), avec l’objectif de permettre aux variables d’état de varier moins 
librement dans l’espace d’inférence, ce qui les rapproche de la moyenne (reconstruction 
moins informative). 
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Résultats 
 
Dans un objectif d’illustration, la simulation du pollutographe de charge TSS obtenue par la 
calibration d’un modèle RC traditionnel est comparée aux reconstructions F1 et F2 et aux 
valeurs mesurées dans la Figure 1a (vert, bleu, rouge et gris resp. avec 95 % de bornes de 
confiance) dans un exemple d’événement pluvieux. Des reconstructions des variables d’état 
virtuelles M(t) et r(t) obtenues par F1 and F2 sont présentées dans les Figures 1b et 1c (bleu et 
rouge, resp. avec 95 % de bornes de confiance). 

Figure 1. a) simulation de pollutographe de charge TSS avec 95 % de bornes de confiance 
pour le modèle traditionnel RC (vert), reconstructions F1 (bleu) et F2 (rouge), et données 
expérimentales (noir), b) variables d’état virtuelles estimées pour M(t) (bleu) et c) r(t) (rouge) 
avec 95 % de bornes de confiance. 

Pour cet exemple, F1 comme F2 permettent d’améliorer considérablement le résultat (Nash = 
0.85, lignes bleues et rouges dans la Figure 1a), en comparaison avec la calibration 
traditionnelle RC (Nash = 0.65, ligne verte dans la Figure 1a). Des analyses de regroupement 
montrent la faible possibilité de reproduction de ces courbes temporellement variables M(t) ou 
r(t) concernant: (i) les similarités dans leur forme (contrairement à des formulation 
traditionnelles ACUM, où M(t) est toujours une fonction en décomposition) et (ii) leur 
capacité de prédiction parmi d’autres événements pluvieux (au sens de la similarité entre une 
courbe donnée M(t) ou r(t) pour expliquer les manques potentiels du modèle RC pour 
reproduire un autre événement de l’ensemble des données). 
 

Conclusions 
 

Ce travail suggère le manque de représentation d’un processus essential dans le modèle de 
courbe d’étalonnage (RC) traditionnel, en se fondant sur les observations de 255 événements 
pluvieux. Les résultats indiquent que la difficulté de reproduction de ce processus manquant 
le rend pratiquement ininterprétable en termes d’un unique état virtuel de masse disponible 
dans le bassin de versant qui diminue avec le temps, comme nombre de modèles traditionnels 
l’ont supposé. Cette étude démontre comment des mesures à haute résolution temporelle 
peuvent fournir un support pour revisiter et remettre en question des modèles existants, et 
potentiellement permettre le développement de nouvelles formulations de modèles 
d’accumulation/érosion transfère. 
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2. APPLICATION OF THE SOBOL’S SENSITIVITY INDEXES  
A description of this methodology and its computational implementation in Chapter 2 for 
estimating the influence of each uncertainty source over the uncertainty of MSRE (i.e. 
CI(MSRE)min95%) is given in the following lines. Each of the variables in the calculation of 
MSRE in Table 4 (uncertainty sources from 1 to 6, Num_unc_inp = 6) can be represented as a 
as a time series. The LHS can be applied to generate random time series for each of these 
variables, following the probability distributions indicated in Table 4. A certain number of 
randomly generated time series (Num_sim = 600) can be split into two sub-matrices (UP and 
DOWN), where each one corresponds to half of the simulations (Num_sim/2) (Figure 1). 

 

 

  

 

 

 

  

 

 

 

  

 

  

 

 

The SSI requires the comparison between different scenarios (given by the UP and DOWN 
matrices in Figure 1). Therefore, for different combinations of the UPs and DOWNs sub 
matrices (an UP or DOWN for each uncertainty source), one will have an output array of 
length Num_sim/2, containing the MSRE computed for each randomly generated time series 
(simulations in rows, Figure 1). A “combination matrix” that contains all the required 
combinations of UP and DOWN sub matrices for computing the SSI is summarized in Figure 
2. The combination matrix is made by: (i) two reference rows (first and last) that are made by 
exclusively to the DOWN and UP labels (without mixing them) and (ii) the intermediate 
rows, in which a given scenario i (where 2 ≤ i ≤ Num_scenarios/2) has an “opposite” row in 
the position i + Num_unc_inp (e.g. row 4 is the opposite of row 11 in Figure 2, left) (see more 
details in Glen and Isaacs, 2012). Therefore, the result of the MSREs (length of Num_sim/2) 
for each scenario of Ups and DOWNs sub matrices (rows in the combination matrix) are 
grouped in a MSRE SR matrix, as shown in Figure 2, right. 
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Figure 1. Data organization for matrices from LHS random generation of: a) flow rate time series, b) sampling 
volumes, c) start/ending of event, d) TSS lab. values, e) TSS time series and f) volume time series. 
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Figure 2. Combination matrix (left) for computing the SSI, based on two reference scenarios (first and last row) 
and “opposite” combinations and MSRE SR matrix (right). 

Once the MSRE SR is obtained, Glen and Isaacs (2012) established that the S (main effect 
sensitivity index) and T (total effect sensitivity index) will be computed based in the two 
reference scenarios: the first and last row of combination matrix (n = 1 and n = end) (Figure 
3). The main and the total sensitivity indexes for uncertainty input k will be then calculated 
based in the correlation coefficient ρ between MSRE SR(: , k+1) and MSRE SR(: , 
k+1+num_unc_inp), compared to the “reference” correlations MSRE SR(: , 1) and MSRE SR(: 
, end). Calculations are summarized in Figure 3. 
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Gap-filling of dry weather flow rate and water quality measurements in urban catchments 
by a time series modelling approach  
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Sandoval S., Vezzaro, L., Bertrand-Krajewski, J.-L., (2016). Gap-filling of dry weather flow 
rate and water quality measurements in urban catchments by a time series modelling 
approach. Proceedings of Novatech 2016, Lyon, France, 28 June-1 July, 4 p.  

 

Résumé 
 

Les séries chronologiques de débit et de qualité des eaux par temps sec dans les systèmes 
d’assainissement unitaires peuvent contenir une quantité importante de données manquantes, 
ceci pour de multiples raisons, telles que les défaillances de fonctionnement des capteurs ou 
des contributions additionnelles par temps de pluie. Par conséquent, l’approche proposée 
cherche à évaluer le potentiel de la méthode Singular Spectrum Analysis (SSA), une méthode 
de modélisation et de comblement de données manquantes, pour combler des séries 
chronologiques de temps sec. La méthode SSA est testée en reconstruisant 1000 séries 
chronologiques discontinues artificielles, construites aléatoirement à partir de séries réelles de 
débit et matières en suspension (MES) (année 2007, pas de temps de 2 minutes, système 
unitaire, Ecully, Lyon, France). Les résultats montrent la capacité de la méthode à combler 
des lacunes de données supérieures à 0.5 jour, surtout entre 0.5 et 1 jour (NSE moyen < 0.6) 
dans les séries chronologiques de débit. Les résultats sur les MES ne sont pas encore 
satisfaisants. Plusieurs analyses à différentes échelles temporelles sont envisagées. 
 

Mots clés : Comblement de lacunes, mesures en ligne, métrologie, séries chronologiques, 
temps sec, validation de données. 
 

Abstract 

Flow rate and water quality dry weather time series in combined sewer systems might contain 
an important amount of missing data due to several reasons, such as failures related to the 
operation of the sensor or additional contributions during rainfall events. Therefore, the 
approach hereby proposed seeks to evaluate the potential of the Singular Spectrum Analysis 
(SSA), a time-series modelling/gap-filling method, to complete dry weather time series. The 
SSA method is tested by reconstructing 1000 artificial discontinuous time series, randomly 
generated from real flow rate and total suspended solids (TSS) online measurements (year 
2007, 2 minutes time-step, combined system, Ecully, Lyon, France). Results show up the 
potential of the method to fill gaps longer than 0.5 days, especially between 0.5 days and 1 
day (mean NSE > 0.6) in the flow rate time series. TSS results still perform very poorly. 
Further analysis at different temporal scales might be needed.  
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Keywords: Data validation, dry weather, gap filling, metrology, online monitoring, time 
series,  

Introduction 
 

Flow rate and water quality time series measured during dry weather periods at different 
locations in urban drainage systems (e.g. sewer system, WWTP, gully pots, detention basins) 
can be useful for several purposes (e.g. modelling, real time control, water management…). 
However, long-term dry weather time series may contain an important amount of unregistered 
or invalidated data due to failures related to the operation of the sensors, errors in 
measurement devices, maintenance and cleaning activities or disturbing contributions during 
rainfall events (wet weather period). These data gaps might vary from 1 or 2 minutes to days, 
weeks or even months. 

Previous data-driven experiences sought to estimate the dry weather signal by the use of 
simplified periodic equations (e.g. Rodriguez et al., 2013) or by filling gaps with data 
corresponding to similar dry weather periods (e.g. Métadier and Bertrand-Krajewski, 2011). 
However, these approaches do not consider the continuity of the real and long-term dry 
weather time series, dismissing possible frequency-variable, non-stationary and seasonal 
behaviors. These simplifications might bring up inconsistent results such as overestimations 
of the dry weather contributions during rainfall events, or mismatches between the 
beginning/ending of the gap with the beginning/ending of the signal to be fitted, especially for 
longer gaps (beyond hourly scale) (adapted from Métadier, 2011). 

Singular Spectrum Analysis (SSA) is a modern non-parametric method for the analysis of 
time series and digital images (Korobeynikov, 2010). The SSA method has been applied for 
filling gaps in long-term and non-linear time series from analogue environmental contexts, 
reporting encouraging results (Musial et al., 2011). The aim of this study is to assess the 
potential of the SSA method to estimate periods of missing data (from 6 minutes to 4.3 days), 
which might be useful for several additional applications, such as assessing the dry weather 
behavior during rainfall events. 

 

Materials and methods 
 

The method is tested with a one year flow rate and a TSS time series of the Ecully catchment 
(combined system, Lyon, France). The raw data includes 261 477 measurements (year 2007, 2 
min time-step), with duration of gaps ranging from 2 min to 4.3 days for flow rate and 8.29 
days for TSS, throughout the whole year (3.6 % and 28 % of the year respectively). Three 
data processing steps are applied to the raw data: 

- Removing flow rate values during dry weather greater than the 95 percentile of the flow 
rates measured during the preceding storm event, which are about 70 L/s (dry weather 
outliers). For the case of TSS, values over 590 mg/L are considered as outliers from 
preliminary analyses. 

- Removing the wet weather periods for both flow rate and TSS series (event durations ranged 
from 50 minutes to 39 hours, giving a total duration of events of about 21 days of additional 
data to be removed, even if they are already missing values). 
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- Filling redundant short-gaps in both series (with durations from 2 to 6 minutes), by linear 
interpolation, as the purpose is to explore especially longer gaps. 

After applying the above raw data processing, the total percentage of gaps in the time series 
increased to 13 % (flow rate) and 34 % (TSS) of the year, with gaps from 6 minutes to 4.3 
days for flow rate and 6 minutes to 8.3 days for TSS. The influence of beginning and ending 
of rainfall events over the flow rate and TSS time series (rainfall event) is identified from 
previous studies in this data set (Métadier, 2011). 

The SSA method is applied to fill the gaps in both flow rate and TSS time series with the 
function “gapfill”, from the “Rssa” package (Korobeynikov, 2010), implemented in R 
software (R Development Core Team, 2015). The function “gapfill” fills the missed entries in 
the series by performing forecast from both sides of the gap and taking an average in order to 
reduce the forecast error (see details: SSA sequential gap-filling method in Golyandina and 
Osipov, 2007). With the purpose of evaluating the performance of the SSA method in terms 
of predictability, a validation strategy based on the Monte Carlo method is hereby proposed. 
1000 artificial discontinuous time series are generated by introducing gaps with random 
durations (uniformly distributed random numbers from 6 minutes to 4 days) over random 
parts of the original time series, with a check to guarantee a uniform distribution of gaps along 
the series. The additional percentage of gaps for each of the artificial discontinuous time 
series was set between 5 % and 30 % of the total duration of the time series (one year). The 
artificial time series are completed (gap filling) by the SSA method and compared to the 
original time series using the Nash-Sutcliffe model Efficiency (NSE). The NSE is chosen as 
the performance measure as it compares the performance of the method to a model that only 
uses the mean of the observed data (simplest prediction method) (from Bennett et al., 2013). 
The variability of the NSE value against gaps of different duration is analyzed as well. 

 

Results and discussion 
 

For illustrative purposes, the reconstruction obtained by the SSA method for an artificial gap 
(from 20/10/2007 16:23 to 23/10/2007 08:35) in the flow rate time series is compared to the 
original measured values, reporting a NSE value of 0.5 (Figure 1 a; line: reconstruction, dots: 
measurements). The NSE value is calculated between all the time series fragments 
reconstructed by the SSA method in each of the 1000 artificial discontinuous time series and 
the corresponding fragments in the original flow rate and TSS time series. Regarding flow 
rate, the NSE values are greater than 0.6 for all reconstructed fragments in half of the 1000 
artificial discontinuous time series (Figure 1 b). The cases in which the NSE values show a 
poor performance of the SSA method can be attributed to the complexity and the large 
amount of data in the series. This trend is stronger in the case of TSS time series, in which 75 
% of the NSE values are lower than zero (which is the NSE value corresponding to filling the 
gaps with the mean of the series). 
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a)  b)  

  

c)  d) 

  

 Figure 1. a) reconstruction obtained (line) for an artificial gap compared to the original flow 
rate values (dots), b) NSE values for the reconstruction of the 1000 artificial discontinuous 
flow rate, c) NSE values for gaps of different durations for flow rate and d) NSE values for 
gaps of different durations for TSS. 

The performance of the SSA method is also analyzed by grouping the NSE values obtained 
for the reconstruction of gaps of different durations. For the case of flow rate, the SSA 
method shows a better performance for filling long-term gaps longer than 0.5 days (Figure 1 
c). Specifically, the best performances are obtained for the reconstruction of gaps with 
durations between 0.5 day and 1 day (Figure 1 c). For shorter gaps, the results are poorer. This 
can be expected, as for this case, the SSA method includes long-term (weekly to monthly 
scales) components that are not related with the short-term (sub-daily scale) behaviors. 
Therefore, the SSA method at low temporal scales (e.g. daily or hourly scales) might have 
some potential adaptability by considering exclusively a certain amount of data adjacent to the 
gaps consistent with the temporal scale of analysis. However, filling gaps shorter than 0.5 day 
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with other methods that do not consider long-term patterns (e.g. mean values, typical dry 
weather daily curve or linear interpolations) might also be a suitable strategy. 

The results for TSS show the same trend as for the flow rate series but with a significantly 
lower performance (more complex behaviors at all temporal scales) (Figure 1 d). Previous 
analyses highlighted the importance of finding an appropriate approach for representing the 
different long-term and short-term behaviors, aimed at modelling flow rate and TSS dry 
weather time series. 

 

References 
 
Bennett, N.D., Croke, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., 
Marsili-Libelli, S., Newham, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., 
Seppelt, R., Voinov, A.A., Fath, B.D., and Andreassian, V. (2013). Characterising 
performance of environmental models. Environmental Modelling & Software, 40, 1-20. 

Golyandina, N. and Osipov E. (2007). The “Caterpillar”-SSA method for analysis of time 
series with missing values. Journal of Statistical Planning and Inference, 137, 2642-2653. 

Korobeynikov, A. (2010). Computation- and space-efficient implementation of SSA. 
Statistics and Its Interface, 3(3), 257-368. 

Musial, J.P., Verstraete, M.M. and Gobron, N. (2011). Technical Note: Comparing the 
effectiveness of recent algorithms to fill and smooth incomplete and noisy time series. 
Atmospheric Chemistry and Physics, 11(15), 7905-7923. 

Métadier, M. (2011). Traitement et analyse de séries chronologiques continues de turbidité 
pour la formulation et le test de modèles des rejets urbains par temps de pluie. PhD Thesis, 
Institut National des Sciences Appliquées de Lyon, Lyon, France. 

Métadier, M. and Bertrand-Krajewski, J.-L. (2011). From mess to mass: a methodology for 
calculating storm event pollutant loads with their uncertainties, from continuous raw data time 
series. Water Science and Technology, 63(3), 369-376. 

Rodríguez, J.P, McIntyre, N., Díaz-Granados, M., Achleitner, S., Hochedlinger, M. and 
Maksimovic, C. (2013). Generating time-series of dry weather loads to sewers. Environmental 
Modelling & Software, 43, 133-143. 

R Core Team (2015). R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/ 

 

 

 

 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



165 
 

4. SCIENTIFIC ACTIVITIES DURING THE THESIS 
 

Published, submitted and prepared papers 

Santiago, S., Bertrand-Krajewski J.-L., Caradot N., Hofer T., Gruber, G., (2017). Evaluation 
of performance and uncertainties in stormwater sampling strategies based on flow rate and 
total suspended solids time series. Submitted. (Main contributor) 

Sandoval, S., Bertrand-Krajewski, J.-L., (2017). Strategy for assessing parameters of a 
rainfall-runoff model by connectivity representations and conditional probability functions. In 
preparation. (Main contributor) 

 Sandoval, S., Bertrand-Krajewski, J.-L., (2017). Methodology for identifying the temporal 
distribution of errors in rainfall by reverse modelling and Bayesian methods. In preparation. 
(Main contributor) 

Sandoval, S., Vezzaro L., Bertrand-Krajewski, J.-L., (2017). Revisiting conceptual 
stormwater quality models by reconstructing virtual state-variables. Submitted (Mayor 
contribution) 

Sun, S., Leonhardt G., Sandoval S., Bertrand-Krajewski, J.-L., Wolfgang  R., (2017) A 
Bayesian method for missing rainfall estimation using a conceptual rainfall-runoff model. 
Hydrological Sciences Journal. 62(15), 2456-2468. (Secondary contributor) 

Sandoval, S., Bertrand-Krajewski, J.-L., (2016). Influence of sampling intake position on 
suspended solids measurements in sewers: two probability / time series based approaches. 
Environmental Monitoring and Assessment, 188, 347. doi: 10.1007/s10661-016-5335-y. 
Published on line 13 May 2016.  

International conferences 

Santiago, S., Bertrand-Krajewski, J.L., Caradot, N., Hofer, T., Gruber, G., (2017). Evaluation 
of performance and uncertainties in stormwater sampling strategies based on flow rate and 
total suspended solids time series. Proceedings of the 14th International Conference on 
Urban Drainage, Prague, Czech Republic, 10-15 September, 3 p. (Main contributor) 

Sandoval, S., Bertrand-Krajewski, J.-L., (2017). Strategy for assessing parameters of a 
rainfall-runoff model by connectivity representations and conditional probability functions. 
Proceedings of the 14th International Conference on Urban Drainage, Prague, Czech 
Republic, 10-15 September, 3 p. (Main contributor) 

Sandoval, S., Vezzaro, L., Bertrand-Krajewski, J.-L., (2017). Revisiting conceptual 
stormwater quality models by reconstructing virtual state-variables. Proceedings of the 14th 
International Conference on Urban Drainage, Prague, Czech Republic, 10-15 September, 3 
p. (Main contributor) 

Vezzaro, L., Sandoval, S., Bertrand-Krajewski, J.-L., (2017). Training the urban water 
engineers of the future – the challenge of stormwater TSS model. Proceedings of the 14th 
International Conference on Urban Drainage, Prague, Czech Republic, 10-15 September, 3 
p. (Contributor) 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



166 
 

Sandoval, S., Vezzaro, L., Bertrand-Krajewski, J.-L., (2016). Gap-filling of dry weather flow 
rate and water quality measurements in urban catchments by a time series modelling 
approach. Proceedings of Novatech 2016, Lyon, France, 28 June-1 July, 4 p.  

Sandoval, S., Bertrand-Krajewski, J.-L., (2015). Identification of errors in high temporal 
resolution rainfall time series by model based approaches. Proceedings of the 10th UDM - 
International Conference on Urban Drainage Modelling, Mont Sainte Anne, Quebec, 
Canada, 20-23 September, Oral Presentations II, 183-186.  

Sandoval, S., Bertrand-Krajewski, J.-L., (2014). A methodology for estimating the influence 
of sampling intake position in suspended solids measurements in sewers. Proceedings of the 
13th International Conference on Urban Drainage, Kuching, Malaysian Borneo, 7-12 
September, 8 p.  

National conferences 

Sandoval, S., Bertrand-Krajewski J.-L., (2016). Modélisation pluie-débit : stratégie améliorée 
de calage et estimation des incertitudes guidée par les données. Actes des 7° Journées 
Doctorales en Hydrologie Urbaine "JDHU 2016", Nantes, France, 1-3 juillet, 5 p. (in French) 
(Main contributor) 

Sandoval, S., Bertrand-Krajewski, J.-L., (2014). Estimation de l'influence du point 
d'échantillonnage des matières en suspension dans une section de réseau d'assainissement. 
Actes des 6° Journées Doctorales en Hydrologie Urbaine "JDHU 2014", Lyon, France, 1-3 
juillet, 4 p. (in French) (Main contributor) 

Bertrand-Krajewski, J.-L., Sandoval, S., (2013). Les micropolluants dans les eaux pluviales : 
méthodologie expérimentale, incertitudes et étude de cas. Actes de la 5° conférence régionale 
GRAIE " Gestion des rejets d'eaux usées non domestiques au réseau d'assainissement ", 
Villeurbanne, France, 14 novembre 2013. (in French) (Secondary contributor) 

Other international communications 

Sandoval, S., Bertrand-Krajewski, J.-L., (2017). Strategy for assessing parameters of a 
rainfall-runoff model by connectivity representations and conditional probability functions. 
Proceedings of the 23th European Junior Scientists Workshop on "Monitoring urban drainage 
systems", Chichilianne (France), 5-20 May 2017, 4 p. (Main contributor) 

Sandoval, S., Bertrand-Krajewski J.-L., (2015). Influence of sampling intake position on 
suspended solids measurements in sewers: two probability / time-series based approaches. 
Proceedings of the 22th European Junior Scientists Workshop on "Monitoring urban drainage 
systems", Chichilianne (France), 18-22 May 2015, 4 p. (Main contributor) 

Attended courses and national seminars 

Séminaire MEGA : Système de roselière artificielle et bassin réservoir pour la collecte et 
l’utilisation des eaux de pluie : vers le développement d’un système d’aide à la décision en 
continu. Présenté par : Andres Torres (18 May 2016) (in French).  

French language summer school A1 level (Ecole d’été niveau A1) at INSA (Lyon, France) 
duration: 80 hours (August-September 2013) (in French). 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



167 
 

French language annual course level A2/B1 at INSA (Lyon, France) duration: 20 hours 
(September- December 2013) (in French). 

MSc course: Expérimentation et modélisation at INSA (Lyon, France) duration (13 weeks). 
(September-December 2014). 

eLearning online MSc course: Integrated Urban Water Quality Management. Proposed by 
DTU (Copenhagen, Denmark) duration: 13 weeks. September-December 2015. 

Students supervision 

Mesurage automatisé par turbidimétrie des vitesses de chute des particules dans les rejets 
urbains de temps de pluie. Projet d’Initiation à la Recherche et Développement 2 (PIRD2) 
(2015). Etudiants encadrés : Terrier., V., Torras, L. Directeurs : Bertrand-Krajewski J.-L., 
Becouze, C., Sandoval, S., Vacherie, S. (in french). (Co-director)  

Améliorer les modèles de flux polluants des rejets urbains de temps de pluie. Projet 
d’Initiation à la Recherche & Développement 2 (PIRD2) (2017) Etudiants encadrés : Kohl, 
M., Hugues, O. (in French). (Director) 

Teaching 

Assistant lecturer at the international PhD Course: Modelling of Integrated Urban Drainage-
Wastewater Systems. Universities of INSA (Lyon, France); DTU Environment (Copenhagen, 
Denmark); ModelEAU, Laval University (Quebec, Canada), April 2016, held at INSA (Lyon, 
France).   

Lecturer in the MSc Courses: (i) Experimentation and Modelling (INSA, Lyon) (3 sessions in 
February 2016, in French) and (ii) Modelling of Environmental Processes and Technologies 
(DTU, Denmark) (3 sessions in November 2016). 

Scientific visits and collaborations 

Participation in the collaborative research group  “On-line surrogate measurements” (OSM) 
with Technical University of Graz (Graz, Austria), PUJ (Bogota, Colombia), 
Kompetenzzentrum Wasser Berlin gGmbH (Berlin, Germany)and INSA (Lyon, France) 
(2013). 
 
Participation in the collaborative research group  “Stormwater quality modelling tournament” 
(STOQUAMOT) with Technical University of Innsbruck (Innsbruck, Austria), Monash 
University (Melbourne, Australia), DTU (Copenhagen, Denmark) and INSA (Lyon, France) 
(2017).  

Scientific visit under the frame of ECOS NORD Colombie project (December 2013-January 
2014) to work in Bogota, Colombia under the supervision of Andres Torres, at Pontificia 
Universidad Javeriana (Bogota, Colombia). 

Scientific visit under the frame French-Danish Research Collaboration Program (financed by 
French Institute in Denmark) (November 2016-December 2016) to work in Copenhagen, 
Denmark under the supervision of Luca Vezzaro, at DTU University (Copenhagen, 
Denmark). 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



168 
 

Evaluation committees 

Member of the evaluation committee of the Master Thesis entitled: “Metodología para 
clasificar las tuberías que no han sido inspeccionadas según su condición estructural en la 
red de alcantarillado de Bogotá D.C.” (Methodology for classifying sewer pipelines that have 
not been inspected according to their structural condition in the sewer system of Bogota 
D.C.). Pontificia Universidad Javeriana. Bogota, Colombia. Student: Hernandez, N. 

Reviewer of two scientific articles for the “Revista Tecnura” and “Water Science and 
Technology” international journals.  

 

 

 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés



 
 
 
 
 
 

FOLIO ADMINISTRATIF 
 

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON 
 

 
NOM : SANDOVAL DATE de SOUTENANCE : 05/12/2017 
 
 
Prénoms : Santiago 
 
TITRE : REVISITING STORMWATER QUALITY CONCEPTUAL MODELS IN A LARGE URBAN CATCHMENT: ONLINE 
MEASUREMENTS, UNCERTAINTIES IN DATA AND MODELS 
 
 
NATURE : Doctorat Numéro d'ordre :  2017LYSEI089 
 
Ecole doctorale : MEGA DE LYON (MECANIQUE, ENERGETIQUE, GENIE CIVIL, ACOUSTIQUE) - ED162 
 
Spécialité : Génie Civil  
 
 
RESUME : 
 
Different hypotheses about traditional Total Suspended Solids (TSS) stormwater models from data validation and hydrological 
concepts have been revisited in a 185 French urban catchment, including online data from 365 rainfall events. Four sampling 
strategies during rainfall events are simulated and compared to online monitoring. Recommended sampling time intervals are of 
5 min, with average sampling errors between 7 % and 20 % and uncertainties in sampling errors of about 5 %, depending on 
the sampling interval. The probability of underestimating the cross section mean TSS concentration in the sewer system is 
estimated by two methodologies, were one shows more realistic TSS underestimations (about 39 %). A power law describing 
the TSS as a function of flow rate is revealed. In the hydrological context, a parameter estimation strategy is proposed by 
analyzing the variability of parameters obtained by event-based Bayesian calibrations, based on clusters and graphs 
representations. A single model structure might be able to reproduce at least two different hydrological conditions. A 
methodology aimed to calculate “mean” areal rainfall estimation is proposed, based on a hydrological model and flow rate data. 
Regarding TSS modelling, the performance indicators of the traditional Rating Curve (RC) model are superior to different 
transfer Functions (TFs), with flow rate, rainfall or “mean” areal rainfall as the model input. The potential missing representation 
of an essential process in the RC model is found to be independent of antecedent dry weather period. A Bayesian 
reconstruction method indicates that a potential missing process in the RC description is hardly interpretable in terms of a 
unique state of virtual available mass over the catchment that is decreasing over time, as assumed by a great number of 
traditional models. Furthermore, the reconstructed processes are highly unrepeatable regarding their shape, besides having a 
low transferability to other rainfall events.  
 
MOTS-CLÉS: Bayesian method, conceptual modelling, conditional probability, clustering, error models, identifiability, 
parameters variability 
 
Laboratoire (s) de recherche : Laboratoire DEEP (Déchets Eaux Environnement Pollutions)  
 
Directeur de thèse: Jean-Luc BERTRAND-KRAJEWSKI 
 
Président de jury : Sylvie BARRAUD 
 
Composition du jury :  
   
BARRAUD, Sylvie                                        INSA Lyon             Présidente  
 
CLEMENS, François                                    TU DELFT          Rapporteur 
TORRES, Andres  PUJ Pontificia Universidad Javeriana         Rapporteur 
BONHOMME, Céline Ecole des ponts – Paristech         Examinatrice 
VIKLANDER, Maria Lulea University of Technology         Examinatrice 
RENARD, Benjamin  IRSTEA LYON         Examinateur 
 
BERTRAND-KRAJEWSKI, Jean-Luc           INSA Lyon                            Directeur de thèse 
 
 

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI089/these.pdf 
© [S. Sandoval], [2017], INSA Lyon, tous droits réservés


	Notice XML
	Page de titre
	Dedication
	Acknowledgements
	Abstract
	Résumé
	List of abbreviations and acronyms
	Table of contents
	Introduction
	Chapter 1. Catchment and data

	Part 1 Total suspended solids in urban drainage systems: monitoring, uncertainties and data analysis
	Chapter 2.  Evaluation of performance and uncertainties in stormwater sampling strategies based on flow rate and total suspended solids time series
	2.1  Introduction
	2.2 Materials and methods
	Data sets
	Sampling strategies
	Simulating sampling strategies
	Performance indicators

	2.3 Results and discussion
	2.4 Conclusions

	Chapter 3. Influence of sampling intake position on suspended solids measurements in sewers: two probability / time-series based approaches
	3.1 INTRODUCTION
	3.2 MATERIALS AND METHODS
	Data set
	Simplified method (SM)
	Time series method (TSM)
	Uncertainties due to underestimations

	3.3 RESULTS AND DISCUSSION
	3.4 CONCLUSIONS

	General conclusions of part 1

	Part 2 Uncertainty assessment in a conceptual hydrological model and rainfall data
	Chapter 4. Strategy for assessing parameters of a rainfall-runoff model by connectivity representations and conditional probability
	4.1 Introduction
	4.2 Methodology
	4.3 Results and discussion
	Calibration: application of the parameters estimation strategies
	Calibration: relation transferability-statistical depth of sets of parameters
	Verification: accuracy, precision and reliability of the simulations

	4.4 Conclusions

	Chapter 5. Methodology for identifying the temporal distribution of errors in rainfall time series
	5.1 Introduction
	5.2 Methodology
	Introduction of errors in rainfall
	Rainfall correction models
	Equally / non-equally sized time windows
	Reverse modelling
	Description of each rainfall correction model and evaluation scheme

	5.3 Results and discussion
	5.4 Application of rainfall correction to identified events with important uncertainties in rainfall measurements
	5.5 Conclusions

	General conclusions of part 2

	Part 3 revisiting conceptual stormwater quality models
	Chapter 6. Revisiting time constant virtual mass models with transfer functions and rating curves
	6.1 Introduction and background
	6.2 Methodology
	TCP model structures: Transfer Functions (TFs) and Rating Curve (RC)
	Parameter identification
	Model identification

	6.3 Results and discussion
	Model identification-calibration
	Model identification- verification

	6.4 Conclusions

	Chapter 7. Revisiting conceptual stormwater quality models by reconstructing virtual state-variables
	7.1 Introduction and background
	7.2 Materials and methods
	Bayesian reconstruction of virtual state variables by TVPs

	7.3 Results and discussion
	7.4 Conclusions

	General conclusions part 3

	General conclusions and perspectives
	References
	APPENDICES
	1. Présentation des résultats majeurs de la thèse – Résume étendu exige pour une thèse rédigée en anglais (presentation of the principal results of the thesis –long abstract demanded for a thesis written in english)
	Chapitre 2 Evaluation de performance et d’incertitudes dans les stratégies d’échantillonnage d’eaux de pluie, fondée sur le débit et les séries chronologiques de charge totale de solides en suspension
	Introduction
	Matériels et méthodes
	Résultats
	Conclusions

	Chapitre 3 Estimation de l’influence du point d’échantillonnage des matières en suspension dans une section de réseau d’assainissement
	Introduction
	Matériels et méthodes
	Résultats et discussion

	Chapitre 4 Modélisation pluie-débit : stratégie améliorée de calage et estimation des incertitudes guidée par les données
	Introduction
	Matériel et méthode
	Résultats et discussion
	Conclusions

	Chapitre 5 Identification d’erreurs dans des séries pluviométriques a haute résolution temporelle à travers des approches fondées sur des modèles conceptuels
	Contexte et objectifs
	Résultats
	Conclusions principales

	Chapitres 6 et 7. Modèles conceptuels de qualité d’eaux pluviales: une révision à travers la reconstruction de variables d’état virtuelles
	Introduction
	Matériels et méthodes
	Résultats
	Conclusions

	Références résumé étendu

	2. Application of the sobol’s sensitivity indexes
	3. Complementary publications and works
	Gap-filling of dry weather flow rate and water quality measurements in urban catchments by a time series modelling approach
	Introduction
	Materials and methods
	Results and discussion
	References


	4. Scientific activities during the thesis

	Folio administratif



